форкнуто от main/is_dnn
				
			
			Вы не можете выбрать более 25 тем
			Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
		
		
		
		
		
			
		
			
				
	
	
		
			119 строки
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			119 строки
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
| import numpy as np
 | |
| import matplotlib.pyplot as plt
 | |
| import seaborn as sns
 | |
| 
 | |
| def make_confusion_matrix(cf,
 | |
|                           group_names=None,
 | |
|                           categories='auto',
 | |
|                           count=True,
 | |
|                           percent=True,
 | |
|                           cbar=True,
 | |
|                           xyticks=True,
 | |
|                           xyplotlabels=True,
 | |
|                           sum_stats=True,
 | |
|                           figsize=None,
 | |
|                           cmap='Blues',
 | |
|                           title=None,
 | |
|                           f_name=None,):
 | |
|     '''
 | |
|     This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization.
 | |
| 
 | |
|     Arguments
 | |
|     ---------
 | |
|     cf:            confusion matrix to be passed in
 | |
| 
 | |
|     group_names:   List of strings that represent the labels row by row to be shown in each square.
 | |
| 
 | |
|     categories:    List of strings containing the categories to be displayed on the x,y axis. Default is 'auto'
 | |
| 
 | |
|     count:         If True, show the raw number in the confusion matrix. Default is True.
 | |
| 
 | |
|     percent:       If True, show the proportions for each category. Default is True.
 | |
| 
 | |
|     cbar:          If True, show the color bar. The cbar values are based off the values in the confusion matrix.
 | |
|                    Default is True.
 | |
| 
 | |
|     xyticks:       If True, show x and y ticks. Default is True.
 | |
| 
 | |
|     xyplotlabels:  If True, show 'True Label' and 'Predicted Label' on the figure. Default is True.
 | |
| 
 | |
|     sum_stats:     If True, display summary statistics below the figure. Default is True.
 | |
| 
 | |
|     figsize:       Tuple representing the figure size. Default will be the matplotlib rcParams value.
 | |
| 
 | |
|     cmap:          Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues'
 | |
|                    See http://matplotlib.org/examples/color/colormaps_reference.html
 | |
|                    
 | |
|     title:         Title for the heatmap. Default is None.
 | |
|     
 | |
|     f_name:        Filename for saving picture. Default is None, which means no saving.
 | |
|  
 | |
|     '''
 | |
| 
 | |
| 
 | |
|     # CODE TO GENERATE TEXT INSIDE EACH SQUARE
 | |
|     blanks = ['' for i in range(cf.size)]
 | |
| 
 | |
|     if group_names and len(group_names)==cf.size:
 | |
|         group_labels = ["{}\n".format(value) for value in group_names]
 | |
|     else:
 | |
|         group_labels = blanks
 | |
| 
 | |
|     if count:
 | |
|         group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()]
 | |
|     else:
 | |
|         group_counts = blanks
 | |
| 
 | |
|     if percent:
 | |
|         group_percentages = ["{0:.2%}".format(value) for value in cf.flatten()/np.sum(cf)]
 | |
|     else:
 | |
|         group_percentages = blanks
 | |
| 
 | |
|     box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels,group_counts,group_percentages)]
 | |
|     box_labels = np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1])
 | |
| 
 | |
| 
 | |
|     # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS
 | |
|     if sum_stats:
 | |
|         #Accuracy is sum of diagonal divided by total observations
 | |
|         accuracy  = np.trace(cf) / float(np.sum(cf))
 | |
| 
 | |
|         #if it is a binary confusion matrix, show some more stats
 | |
|         if len(cf)==2:
 | |
|             #Metrics for Binary Confusion Matrices
 | |
|             precision = cf[1,1] / sum(cf[:,1])
 | |
|             recall    = cf[1,1] / sum(cf[1,:])
 | |
|             f1_score  = 2*precision*recall / (precision + recall)
 | |
|             stats_text = "\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.3f}\nF1 Score={:0.3f}".format(
 | |
|                 accuracy,precision,recall,f1_score)
 | |
|         else:
 | |
|             stats_text = "\n\nAccuracy={:0.3f}".format(accuracy)
 | |
|     else:
 | |
|         stats_text = ""
 | |
| 
 | |
| 
 | |
|     # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS
 | |
|     if figsize==None:
 | |
|         #Get default figure size if not set
 | |
|         figsize = plt.rcParams.get('figure.figsize')
 | |
| 
 | |
|     if xyticks==False:
 | |
|         #Do not show categories if xyticks is False
 | |
|         categories=False
 | |
| 
 | |
| 
 | |
|     # MAKE THE HEATMAP VISUALIZATION
 | |
|     plt.figure(figsize=figsize)
 | |
|     sns.heatmap(cf,annot=box_labels,fmt="",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=categories,annot_kws={"size": 20})
 | |
| 
 | |
|     if xyplotlabels:
 | |
|         plt.ylabel('True label')
 | |
|         plt.xlabel('Predicted label' + stats_text)
 | |
|     else:
 | |
|         plt.xlabel(stats_text)
 | |
|     
 | |
|     if title:
 | |
|         plt.title(title)
 | |
|     
 | |
|     if f_name:
 | |
|         plt.savefig(fname = f_name, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', pad_inches=0.1) |