{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "source": [ "# импорт модулей\n", "import os\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab4')\n", "\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n" ], "metadata": { "id": "mr9IszuQ1ANG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "f0Sa1hdp4hQd" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import tensorflow as tf\n", "device_name = tf.test.gpu_device_name()\n", "if device_name != '/device:GPU:0':\n", " raise SystemError('GPU device not found')\n", "print('Found GPU at: {}'.format(device_name))" ], "metadata": { "id": "o63-lKG_RuNc" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка датасета\n", "from keras.datasets import imdb\n", "\n", "vocabulary_size = 5000\n", "index_from = 3\n", "\n", "(X_train, y_train), (X_test, y_test) = imdb.load_data(\n", " path=\"imdb.npz\",\n", " num_words=vocabulary_size,\n", " skip_top=0,\n", " maxlen=None,\n", " seed=3,\n", " start_char=1,\n", " oov_char=2,\n", " index_from=index_from\n", " )\n", "\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ], "metadata": { "id": "Ixw5Sp0_1A-w" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# создание словаря для перевода индексов в слова\n", "# заргузка словаря \"слово:индекс\"\n", "word_to_id = imdb.get_word_index()\n", "# уточнение словаря\n", "word_to_id = {key:(value + index_from) for key,value in word_to_id.items()}\n", "word_to_id[\"\"] = 0\n", "word_to_id[\"\"] = 1\n", "word_to_id[\"\"] = 2\n", "word_to_id[\"\"] = 3\n", "# создание обратного словаря \"индекс:слово\"\n", "id_to_word = {value:key for key,value in word_to_id.items()}" ], "metadata": { "id": "9W3RklPcZyH0" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(X_train[26])\n", "print('len:',len(X_train[26]))" ], "metadata": { "id": "Nu-Bs1jnaYhB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "review_as_text = ' '.join(id_to_word[id] for id in X_train[26])\n", "print(review_as_text)\n", "print('len:',len(review_as_text))" ], "metadata": { "id": "JhTwTurtZ6Sp" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print('MAX Len: ',len(max(X_train, key=len)))\n", "print('MIN Len: ',len(min(X_train, key=len)))" ], "metadata": { "id": "xJH87ISq1B9h" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# предобработка данных\n", "from tensorflow.keras.utils import pad_sequences\n", "max_words = 500\n", "X_train = pad_sequences(X_train, maxlen=max_words, value=0, padding='pre', truncating='post')\n", "X_test = pad_sequences(X_test, maxlen=max_words, value=0, padding='pre', truncating='post')" ], "metadata": { "id": "lrF-B2aScR4t" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print('MAX Len: ',len(max(X_train, key=len)))\n", "print('MIN Len: ',len(min(X_train, key=len)))" ], "metadata": { "id": "81Cgq8dn9uL6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(X_train[26])\n", "print('len:',len(X_train[26]))" ], "metadata": { "id": "vudlgqoCbjU1" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "review_as_text = ' '.join(id_to_word[id] for id in X_train[26])\n", "print(review_as_text)\n", "print('len:',len(review_as_text))" ], "metadata": { "id": "dbfkWjDI1Dp7" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод данных\n", "print('X train: \\n',X_train)\n", "print('X train: \\n',X_test)\n", "\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of X test:', X_test.shape)" ], "metadata": { "id": "7MqcG_wl1EHI" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "embed_dim = 32\n", "lstm_units = 64\n", "\n", "model = Sequential()\n", "model.add(layers.Embedding(input_dim=vocabulary_size, output_dim=embed_dim, input_length=max_words, input_shape=(max_words,)))\n", "model.add(layers.LSTM(lstm_units))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(1, activation='sigmoid'))\n", "\n", "model.summary()" ], "metadata": { "id": "ktWEeqWd1EyF" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# компилируем и обучаем модель\n", "batch_size = 64\n", "epochs = 3\n", "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.2)" ], "metadata": { "id": "CuPqKpX0kQfP" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "test_loss, test_acc = model.evaluate(X_test, y_test)\n", "print(f\"\\nTest accuracy: {test_acc}\")" ], "metadata": { "id": "hJIWinxymQjb" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#значение метрики качества классификации на тестовых данных\n", "print(f\"\\nTest accuracy: {test_acc}\")" ], "metadata": { "id": "Rya5ABT8msha" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#отчет о качестве классификации тестовой выборки\n", "y_score = model.predict(X_test)\n", "y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))]\n", "\n", "from sklearn.metrics import classification_report\n", "print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive']))" ], "metadata": { "id": "2kHjcmnCmv0Y" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#построение ROC-кривой и AUC ROC\n", "from sklearn.metrics import roc_curve, auc\n", "\n", "fpr, tpr, thresholds = roc_curve(y_test, y_score)\n", "plt.plot(fpr, tpr)\n", "plt.grid()\n", "plt.xlabel('False Positive Rate')\n", "plt.ylabel('True Positive Rate')\n", "plt.title('ROC')\n", "plt.show()\n", "print('AUC ROC:', auc(fpr, tpr))" ], "metadata": { "id": "Kp4AQRbcmwAx" }, "execution_count": null, "outputs": [] } ] }