Этот коммит содержится в:
SukhotinMD
2025-06-02 02:42:33 +03:00
родитель 02aef608e0
Коммит c8374b1339
326 изменённых файлов: 118158 добавлений и 0 удалений

80
curl/dep/libssh2/docs/AUTHORS.txt Обычный файл
Просмотреть файл

@@ -0,0 +1,80 @@
libssh2 is the result of many friendly people. This list is an attempt to
mention all contributors. If we have missed anyone, tell us!
This list of names is a-z sorted.
Adam Gobiowski
Alexander Holyapin
Alexander Lamaison
Alfred Gebert
Ben Kibbey
Bjorn Stenborg
Carlo Bramini
Cristian Rodríguez
Daiki Ueno
Dan Casey
Dan Fandrich
Daniel Stenberg
Dave Hayden
Dave McCaldon
David J Sullivan
David Robins
Dmitry Smirnov
Douglas Masterson
Edink Kadribasic
Erik Brossler
Francois Dupoux
Gellule Xg
Grubsky Grigory
Guenter Knauf
Heiner Steven
Henrik Nordstrom
James Housleys
Jasmeet Bagga
Jean-Louis Charton
Jernej Kovacic
Joey Degges
John Little
Jose Baars
Jussi Mononen
Kamil Dudka
Lars Nordin
Mark McPherson
Mark Smith
Markus Moeller
Matt Lilley
Matthew Booth
Maxime Larocque
Mike Protts
Mikhail Gusarov
Neil Gierman
Olivier Hervieu
Paul Howarth
Paul Querna
Paul Veldkamp
Peter Krempa
Peter O'Gorman
Peter Stuge
Pierre Joye
Rafael Kitover
Romain Bondue
Sara Golemon
Satish Mittal
Sean Peterson
Selcuk Gueney
Simon Hart
Simon Josefsson
Sofian Brabez
Steven Ayre
Steven Dake
Steven Van Ingelgem
TJ Saunders
Tommy Lindgren
Tor Arntsen
Viktor Szakats
Vincent Jaulin
Vincent Torri
Vlad Grachov
Wez Furlong
Yang Tse
Zl Liu

989
curl/dep/libssh2/docs/HACKING-CRYPTO.txt Обычный файл
Просмотреть файл

@@ -0,0 +1,989 @@
Definitions needed to implement a specific crypto library
This document offers some hints about implementing a new crypto library
interface.
A crypto library interface consists of at least a header file, defining
entities referenced from the libssh2 core modules.
Real code implementation (if needed), is left at the implementor's choice.
This document lists the entities that must/may be defined in the header file.
Procedures listed as "void" may indeed have a result type: the void indication
indicates the libssh2 core modules never use the function result.
0) Build system.
Adding a crypto backend to the autotools build system (./configure) is easy:
0.1) Add one new line in configure.ac
m4_set_add([crypto_backends], [newname])
This automatically creates a --with-crypto=newname option.
0.2) Add an m4_case stanza to LIBSSH2_CRYPTO_CHECK in acinclude.m4
This must check for all required libraries, and if found set and AC_SUBST a
variable with the library linking flags. The recommended method is to use
LIBSSH2_LIB_HAVE_LINKFLAGS from LIBSSH2_CRYPTO_CHECK, which automatically
creates and handles a --with-$newname-prefix option and sets an
LTLIBNEWNAME variable on success.
0.3) Add new header to src/Makefile.inc
0.4) Include new source in src/crypto.c
0.5) Add a new block in configure.ac
```
elif test "$found_crypto" = "newname"; then
LIBS="${LIBS} ${LTLIBNEWNAME}"
```
0.6) Add CMake detection logic to CMakeLists.txt
1) Crypto library initialization/termination.
void libssh2_crypto_init(void);
Initializes the crypto library. May be an empty macro if not needed.
void libssh2_crypto_exit(void);
Terminates the crypto library use. May be an empty macro if not needed.
1.1) Crypto runtime detection
The libssh2_crypto_engine_t enum must include the new engine, and
libssh2_crypto_engine() must return it when it is built in.
2) HMAC
libssh2_hmac_ctx
Type of an HMAC computation context. Generally a struct.
Used for all hash algorithms.
int _libssh2_hmac_ctx_init(libssh2_hmac_ctx *ctx);
Initializes the HMAC computation context ctx.
Called before setting-up the hash algorithm.
Must return 1 for success and 0 for failure.
int _libssh2_hmac_update(libssh2_hmac_ctx *ctx,
const void *data, int datalen);
Continue computation of an HMAC on datalen bytes at data using context ctx.
Must return 1 for success and 0 for failure.
int _libssh2_hmac_final(libssh2_hmac_ctx *ctx,
void output[]);
Get the computed HMAC from context ctx into the output buffer. The
minimum data buffer size depends on the HMAC hash algorithm.
Must return 1 for success and 0 for failure.
void _libssh2_hmac_cleanup(libssh2_hmac_ctx *ctx);
Releases the HMAC computation context at ctx.
3) Hash algorithms.
3.1) SHA-1
Must always be implemented.
SHA_DIGEST_LENGTH
#define to 20, the SHA-1 digest length.
libssh2_sha1_ctx
Type of an SHA-1 computation context. Generally a struct.
int libssh2_sha1_init(libssh2_sha1_ctx *x);
Initializes the SHA-1 computation context at x.
Returns 1 for success and 0 for failure
int libssh2_sha1_update(libssh2_sha1_ctx ctx,
const unsigned char *data,
size_t len);
Continue computation of SHA-1 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha1_final(libssh2_sha1_ctx ctx,
unsigned char output[SHA_DIGEST_LEN]);
Get the computed SHA-1 signature from context ctx and store it into the
output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_hmac_sha1_init(libssh2_hmac_ctx *ctx,
const void *key,
int keylen);
Setup the HMAC computation context ctx for an HMAC-SHA-1 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.
3.2) SHA-256
Must always be implemented.
SHA256_DIGEST_LENGTH
#define to 32, the SHA-256 digest length.
libssh2_sha256_ctx
Type of an SHA-256 computation context. Generally a struct.
int libssh2_sha256_init(libssh2_sha256_ctx *x);
Initializes the SHA-256 computation context at x.
Returns 1 for success and 0 for failure
int libssh2_sha256_update(libssh2_sha256_ctx ctx,
const unsigned char *data,
size_t len);
Continue computation of SHA-256 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha256_final(libssh2_sha256_ctx ctx,
unsigned char output[SHA256_DIGEST_LENGTH]);
Gets the computed SHA-256 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha256(const unsigned char *message,
size_t len,
unsigned char output[SHA256_DIGEST_LENGTH]);
Computes the SHA-256 signature over the given message of length len and
store the result into the output buffer.
Return 1 if error, else 0.
Note: Seems unused in current code, but defined in each crypto library backend.
LIBSSH2_HMAC_SHA256
#define as 1 if the crypto library supports HMAC-SHA-256, else 0.
If defined as 0, the rest of this section can be omitted.
int libssh2_hmac_sha256_init(libssh2_hmac_ctx *ctx,
const void *key,
int keylen);
Setup the HMAC computation context ctx for an HMAC-256 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.
3.3) SHA-384
Mandatory if ECDSA is implemented. Can be omitted otherwise.
SHA384_DIGEST_LENGTH
#define to 48, the SHA-384 digest length.
libssh2_sha384_ctx
Type of an SHA-384 computation context. Generally a struct.
int libssh2_sha384_init(libssh2_sha384_ctx *x);
Initializes the SHA-384 computation context at x.
Returns 1 for success and 0 for failure
int libssh2_sha384_update(libssh2_sha384_ctx ctx,
const unsigned char *data,
size_t len);
Continue computation of SHA-384 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha384_final(libssh2_sha384_ctx ctx,
unsigned char output[SHA384_DIGEST_LENGTH]);
Gets the computed SHA-384 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha384(const unsigned char *message,
size_t len,
unsigned char output[SHA384_DIGEST_LENGTH]);
Computes the SHA-384 signature over the given message of length len and
store the result into the output buffer.
Return 1 if error, else 0.
3.4) SHA-512
Must always be implemented.
SHA512_DIGEST_LENGTH
#define to 64, the SHA-512 digest length.
libssh2_sha512_ctx
Type of an SHA-512 computation context. Generally a struct.
int libssh2_sha512_init(libssh2_sha512_ctx *x);
Initializes the SHA-512 computation context at x.
Returns 1 for success and 0 for failure
int libssh2_sha512_update(libssh2_sha512_ctx ctx,
const unsigned char *data,
size_t len);
Continue computation of SHA-512 on len bytes at data using context ctx.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha512_final(libssh2_sha512_ctx ctx,
unsigned char output[SHA512_DIGEST_LENGTH]);
Gets the computed SHA-512 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_sha512(const unsigned char *message,
size_t len,
unsigned char output[SHA512_DIGEST_LENGTH]);
Computes the SHA-512 signature over the given message of length len and
store the result into the output buffer.
Return 1 if error, else 0.
Note: Seems unused in current code, but defined in each crypto library backend.
LIBSSH2_HMAC_SHA512
#define as 1 if the crypto library supports HMAC-SHA-512, else 0.
If defined as 0, the rest of this section can be omitted.
int libssh2_hmac_sha512_init(libssh2_hmac_ctx *ctx,
const void *key,
int keylen);
Setup the HMAC computation context ctx for an HMAC-512 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.
3.5) MD5
LIBSSH2_MD5
#define to 1 if the crypto library supports MD5, else 0.
If defined as 0, the rest of this section can be omitted.
MD5_DIGEST_LENGTH
#define to 16, the MD5 digest length.
libssh2_md5_ctx
Type of an MD5 computation context. Generally a struct.
int libssh2_md5_init(libssh2_md5_ctx *x);
Initializes the MD5 computation context at x.
Returns 1 for success and 0 for failure
int libssh2_md5_update(libssh2_md5_ctx ctx,
const unsigned char *data,
size_t len);
Continues computation of MD5 on len bytes at data using context ctx.
Returns 1 for success and 0 for failure.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_md5_final(libssh2_md5_ctx ctx,
unsigned char output[MD5_DIGEST_LENGTH]);
Gets the computed MD5 signature from context ctx into the output buffer.
Release the context.
Note: if the ctx parameter is modified by the underlying code,
this procedure must be implemented as a macro to map ctx --> &ctx.
Must return 1 for success and 0 for failure.
int libssh2_hmac_md5_init(libssh2_hmac_ctx *ctx,
const void *key,
int keylen);
Setup the HMAC computation context ctx for an HMAC-MD5 computation using the
keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.
3.6) RIPEMD-160
LIBSSH2_HMAC_RIPEMD
#define as 1 if the crypto library supports HMAC-RIPEMD-160, else 0.
If defined as 0, the rest of this section can be omitted.
int libssh2_hmac_ripemd160_init(libssh2_hmac_ctx *ctx,
const void *key,
int keylen);
Setup the HMAC computation context ctx for an HMAC-RIPEMD-160 computation using
the keylen-byte key. Is invoked just after libssh2_hmac_ctx_init().
Returns 1 for success and 0 for failure.
4) Bidirectional key ciphers.
_libssh2_cipher_ctx
Type of a cipher computation context.
_libssh2_cipher_type(name);
Macro defining name as storage identifying a cipher algorithm for
the crypto library interface. No trailing semicolon.
int _libssh2_cipher_init(_libssh2_cipher_ctx *h,
_libssh2_cipher_type(algo),
unsigned char *iv,
unsigned char *secret,
int encrypt);
Creates a cipher context for the given algorithm with the initialization vector
iv and the secret key secret. Prepare for encryption or decryption depending on
encrypt.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_cipher_crypt(_libssh2_cipher_ctx *ctx,
_libssh2_cipher_type(algo),
int encrypt,
unsigned char *block,
size_t blocksize,
int firstlast);
Encrypt or decrypt in-place data at (block, blocksize) using the given
context and/or algorithm.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
void _libssh2_cipher_dtor(_libssh2_cipher_ctx *ctx);
Release cipher context at ctx.
4.1) AES
4.1.1) AES in CBC block mode.
LIBSSH2_AES
#define as 1 if the crypto library supports AES in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_aes128
AES-128-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
_libssh2_cipher_aes192
AES-192-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
_libssh2_cipher_aes256
AES-256-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
4.1.2) AES in CTR block mode.
LIBSSH2_AES_CTR
#define as 1 if the crypto library supports AES in CTR mode, else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_aes128ctr
AES-128-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
_libssh2_cipher_aes192ctr
AES-192-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
_libssh2_cipher_aes256ctr
AES-256-CTR algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
4.2) Blowfish in CBC block mode.
LIBSSH2_BLOWFISH
#define as 1 if the crypto library supports blowfish in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_blowfish
Blowfish-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
4.3) RC4.
LIBSSH2_RC4
#define as 1 if the crypto library supports RC4 (arcfour), else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_arcfour
RC4 algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
4.4) CAST5 in CBC block mode.
LIBSSH2_CAST
#define 1 if the crypto library supports cast, else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_cast5
CAST5-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
4.5) Triple DES in CBC block mode.
LIBSSH2_3DES
#define as 1 if the crypto library supports TripleDES in CBC mode, else 0.
If defined as 0, the rest of this section can be omitted.
_libssh2_cipher_3des
TripleDES-CBC algorithm identifier initializer.
#define with constant value of type _libssh2_cipher_type().
5) Diffie-Hellman support.
LIBSSH2_DH_GEX_MINGROUP
The minimum Diffie-Hellman group length in bits supported by the backend.
Usually defined as 2048.
LIBSSH2_DH_GEX_OPTGROUP
The preferred Diffie-Hellman group length in bits. Usually defined as 4096.
LIBSSH2_DH_GEX_MAXGROUP
The maximum Diffie-Hellman group length in bits supported by the backend.
Usually defined as 8192.
LIBSSH2_DH_MAX_MODULUS_BITS
The maximum Diffie-Hellman modulus bit count accepted from the server. This
value must be supported by the backend. Usually 16384.
5.1) Diffie-Hellman context.
_libssh2_dh_ctx
Type of a Diffie-Hellman computation context.
Must always be defined.
5.2) Diffie-Hellman computation procedures.
void libssh2_dh_init(_libssh2_dh_ctx *dhctx);
Initializes the Diffie-Hellman context at `dhctx'. No effective context
creation needed here.
int libssh2_dh_key_pair(_libssh2_dh_ctx *dhctx, _libssh2_bn *public,
_libssh2_bn *g, _libssh2_bn *p, int group_order,
_libssh2_bn_ctx *bnctx);
Generates a Diffie-Hellman key pair using base `g', prime `p' and the given
`group_order'. Can use the given big number context `bnctx' if needed.
The private key is stored as opaque in the Diffie-Hellman context `*dhctx' and
the public key is returned in `public'.
0 is returned upon success, else -1.
int libssh2_dh_secret(_libssh2_dh_ctx *dhctx, _libssh2_bn *secret,
_libssh2_bn *f, _libssh2_bn *p, _libssh2_bn_ctx * bnctx)
Computes the Diffie-Hellman secret from the previously created context `*dhctx',
the public key `f' from the other party and the same prime `p' used at
context creation. The result is stored in `secret'.
0 is returned upon success, else -1.
void libssh2_dh_dtor(_libssh2_dh_ctx *dhctx)
Destroys Diffie-Hellman context at `dhctx' and resets its storage.
6) Big numbers.
Positive multi-byte integers support is sufficient.
6.1) Computation contexts.
This has a real meaning if the big numbers computations need some context
storage. If not, use a dummy type and functions (macros).
_libssh2_bn_ctx
Type of multiple precision computation context. May not be empty. if not used,
#define as char, for example.
_libssh2_bn_ctx _libssh2_bn_ctx_new(void);
Returns a new multiple precision computation context.
void _libssh2_bn_ctx_free(_libssh2_bn_ctx ctx);
Releases a multiple precision computation context.
6.2) Computation support.
_libssh2_bn
Type of multiple precision numbers (aka bignumbers or huge integers) for the
crypto library.
_libssh2_bn * _libssh2_bn_init(void);
Creates a multiple precision number (preset to zero).
_libssh2_bn * _libssh2_bn_init_from_bin(void);
Create a multiple precision number intended to be set by the
_libssh2_bn_from_bin() function (see below). Unlike _libssh2_bn_init(), this
code may be a dummy initializer if the _libssh2_bn_from_bin() actually
allocates the number. Returns a value of type _libssh2_bn *.
void _libssh2_bn_free(_libssh2_bn *bn);
Destroys the multiple precision number at bn.
unsigned long _libssh2_bn_bytes(_libssh2_bn *bn);
Get the number of bytes needed to store the bits of the multiple precision
number at bn.
unsigned long _libssh2_bn_bits(_libssh2_bn *bn);
Returns the number of bits of multiple precision number at bn.
int _libssh2_bn_set_word(_libssh2_bn *bn, unsigned long val);
Sets the value of bn to val.
Returns 1 on success, 0 otherwise.
_libssh2_bn * _libssh2_bn_from_bin(_libssh2_bn *bn, int len,
const unsigned char *val);
Converts the positive integer in big-endian form of length len at val
into a _libssh2_bn and place it in bn. If bn is NULL, a new _libssh2_bn is
created.
Returns a pointer to target _libssh2_bn or NULL if error.
int _libssh2_bn_to_bin(_libssh2_bn *bn, unsigned char *val);
Converts the absolute value of bn into big-endian form and store it at
val. val must point to _libssh2_bn_bytes(bn) bytes of memory.
Returns the length of the big-endian number.
7) Private key algorithms.
Format of an RSA public key:
a) "ssh-rsa".
b) RSA exponent, MSB first, with high order bit = 0.
c) RSA modulus, MSB first, with high order bit = 0.
Each item is preceded by its 32-bit byte length, MSB first.
Format of a DSA public key:
a) "ssh-dss".
b) p, MSB first, with high order bit = 0.
c) q, MSB first, with high order bit = 0.
d) g, MSB first, with high order bit = 0.
e) pub_key, MSB first, with high order bit = 0.
Each item is preceded by its 32-bit byte length, MSB first.
Format of an ECDSA public key:
a) "ecdsa-sha2-nistp256" or "ecdsa-sha2-nistp384" or "ecdsa-sha2-nistp521".
b) domain: "nistp256", "nistp384" or "nistp521" matching a).
c) raw public key ("octal").
Each item is preceded by its 32-bit byte length, MSB first.
Format of an ED25519 public key:
a) "ssh-ed25519".
b) raw key (32 bytes).
Each item is preceded by its 32-bit byte length, MSB first.
int _libssh2_pub_priv_keyfile(LIBSSH2_SESSION *session,
unsigned char **method,
size_t *method_len,
unsigned char **pubkeydata,
size_t *pubkeydata_len,
const char *privatekey,
const char *passphrase);
Reads a private key from file privatekey and extract the public key -->
(pubkeydata, pubkeydata_len). Store the associated method (ssh-rsa or ssh-dss)
into (method, method_len).
Both buffers have to be allocated using LIBSSH2_ALLOC().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_pub_priv_keyfilememory(LIBSSH2_SESSION *session,
unsigned char **method,
size_t *method_len,
unsigned char **pubkeydata,
size_t *pubkeydata_len,
const char *privatekeydata,
size_t privatekeydata_len,
const char *passphrase);
Gets a private key from bytes at (privatekeydata, privatekeydata_len) and
extract the public key --> (pubkeydata, pubkeydata_len). Store the associated
method (ssh-rsa or ssh-dss) into (method, method_len).
Both buffers have to be allocated using LIBSSH2_ALLOC().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
7.1) RSA
LIBSSH2_RSA
#define as 1 if the crypto library supports RSA, else 0.
If defined as 0, the rest of this section can be omitted.
libssh2_rsa_ctx
Type of an RSA computation context. Generally a struct.
int _libssh2_rsa_new(libssh2_rsa_ctx **rsa,
const unsigned char *edata,
unsigned long elen,
const unsigned char *ndata,
unsigned long nlen,
const unsigned char *ddata,
unsigned long dlen,
const unsigned char *pdata,
unsigned long plen,
const unsigned char *qdata,
unsigned long qlen,
const unsigned char *e1data,
unsigned long e1len,
const unsigned char *e2data,
unsigned long e2len,
const unsigned char *coeffdata, unsigned long coefflen);
Creates a new context for RSA computations from key source values:
pdata, plen Prime number p. Only used if private key known (ddata).
qdata, qlen Prime number q. Only used if private key known (ddata).
ndata, nlen Modulus n.
edata, elen Exponent e.
ddata, dlen e^-1 % phi(n) = private key. May be NULL if unknown.
e1data, e1len dp = d % (p-1). Only used if private key known (dtata).
e2data, e2len dq = d % (q-1). Only used if private key known (dtata).
coeffdata, coefflen q^-1 % p. Only used if private key known.
Returns 0 if OK.
This procedure is already prototyped in crypto.h.
Note: the current generic code only calls this function with e and n (public
key parameters): unless used internally by the backend, it is not needed to
support the private key and the other parameters here.
int _libssh2_rsa_new_private(libssh2_rsa_ctx **rsa,
LIBSSH2_SESSION *session,
const char *filename,
unsigned const char *passphrase);
Reads an RSA private key from file filename into a new RSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_rsa_new_private_frommemory(libssh2_rsa_ctx **rsa,
LIBSSH2_SESSION *session,
const char *data,
size_t data_len,
unsigned const char *passphrase);
Gets an RSA private key from data into a new RSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_rsa_sha1_verify(libssh2_rsa_ctx *rsa,
const unsigned char *sig,
size_t sig_len,
const unsigned char *m, size_t m_len);
Verify (sig, sig_len) signature of (m, m_len) using an SHA-1 hash and the
RSA context.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_rsa_sha1_signv(LIBSSH2_SESSION *session,
unsigned char **sig, size_t *siglen,
int count, const struct iovec vector[],
libssh2_rsa_ctx *ctx);
RSA signs the SHA-1 hash computed over the count data chunks in vector.
Signature is stored at (sig, siglen).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
Note: this procedure is optional: if provided, it MUST be defined as a macro.
int _libssh2_rsa_sha1_sign(LIBSSH2_SESSION *session,
libssh2_rsa_ctx *rsactx,
const unsigned char *hash,
size_t hash_len,
unsigned char **signature,
size_t *signature_len);
RSA signs the (hash, hashlen) SHA-1 hash bytes and stores the allocated
signature at (signature, signature_len).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
Note: this procedure is not used if macro _libssh2_rsa_sha1_signv() is defined.
void _libssh2_rsa_free(libssh2_rsa_ctx *rsactx);
Releases the RSA computation context at rsactx.
LIBSSH2_RSA_SHA2
#define as 1 if the crypto library supports RSA SHA2 256/512, else 0.
If defined as 0, the rest of this section can be omitted.
int _libssh2_rsa_sha2_sign(LIBSSH2_SESSION * session,
libssh2_rsa_ctx * rsactx,
const unsigned char *hash,
size_t hash_len,
unsigned char **signature,
size_t *signature_len);
RSA signs the (hash, hashlen) SHA-2 hash bytes based on hash length and stores
the allocated signature at (signature, signature_len).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
Note: this procedure is not used if both macros _libssh2_rsa_sha2_256_signv()
and _libssh2_rsa_sha2_512_signv are defined.
int _libssh2_rsa_sha2_256_signv(LIBSSH2_SESSION *session,
unsigned char **sig, size_t *siglen,
int count, const struct iovec vector[],
libssh2_rsa_ctx *ctx);
RSA signs the SHA-256 hash computed over the count data chunks in vector.
Signature is stored at (sig, siglen).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
Note: this procedure is optional: if provided, it MUST be defined as a macro.
int _libssh2_rsa_sha2_512_signv(LIBSSH2_SESSION *session,
unsigned char **sig, size_t *siglen,
int count, const struct iovec vector[],
libssh2_rsa_ctx *ctx);
RSA signs the SHA-512 hash computed over the count data chunks in vector.
Signature is stored at (sig, siglen).
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
Note: this procedure is optional: if provided, it MUST be defined as a macro.
int _libssh2_rsa_sha2_verify(libssh2_rsa_ctx * rsa,
size_t hash_len,
const unsigned char *sig,
size_t sig_len,
const unsigned char *m, size_t m_len);
Verify (sig, sig_len) signature of (m, m_len) using an SHA-2 hash based on
hash length and the RSA context.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
7.2) DSA
LIBSSH2_DSA
#define as 1 if the crypto library supports DSA, else 0.
If defined as 0, the rest of this section can be omitted.
libssh2_dsa_ctx
Type of a DSA computation context. Generally a struct.
int _libssh2_dsa_new(libssh2_dsa_ctx **dsa,
const unsigned char *pdata,
unsigned long plen,
const unsigned char *qdata,
unsigned long qlen,
const unsigned char *gdata,
unsigned long glen,
const unsigned char *ydata,
unsigned long ylen,
const unsigned char *x, unsigned long x_len);
Creates a new context for DSA computations from source key values:
pdata, plen Prime number p. Only used if private key known (ddata).
qdata, qlen Prime number q. Only used if private key known (ddata).
gdata, glen G number.
ydata, ylen Public key.
xdata, xlen Private key. Only taken if xlen non-zero.
Returns 0 if OK.
This procedure is already prototyped in crypto.h.
int _libssh2_dsa_new_private(libssh2_dsa_ctx **dsa,
LIBSSH2_SESSION *session,
const char *filename,
unsigned const char *passphrase);
Gets a DSA private key from file filename into a new DSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_dsa_new_private_frommemory(libssh2_dsa_ctx **dsa,
LIBSSH2_SESSION *session,
const char *data,
size_t data_len,
unsigned const char *passphrase);
Gets a DSA private key from the data_len-bytes data into a new DSA context.
Must call _libssh2_init_if_needed().
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_dsa_sha1_verify(libssh2_dsa_ctx *dsactx,
const unsigned char *sig,
const unsigned char *m, size_t m_len);
Verify (sig, siglen) signature of (m, m_len) using an SHA-1 hash and the
DSA context.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_dsa_sha1_sign(libssh2_dsa_ctx *dsactx,
const unsigned char *hash,
size_t hash_len, unsigned char *sig);
DSA signs the (hash, hash_len) data using SHA-1 and store the signature at sig.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
void _libssh2_dsa_free(libssh2_dsa_ctx *dsactx);
Releases the DSA computation context at dsactx.
7.3) ECDSA
LIBSSH2_ECDSA
#define as 1 if the crypto library supports ECDSA, else 0.
If defined as 0, _libssh2_ec_key should be defined as void and the rest of
this section can be omitted.
EC_MAX_POINT_LEN
Maximum point length. Usually defined as ((528 * 2 / 8) + 1) (= 133).
libssh2_ecdsa_ctx
Type of an ECDSA computation context. Generally a struct.
_libssh2_ec_key
Type of an elliptic curve key.
libssh2_curve_type
An enum type defining curve types. Current supported identifiers are:
LIBSSH2_EC_CURVE_NISTP256
LIBSSH2_EC_CURVE_NISTP384
LIBSSH2_EC_CURVE_NISTP521
int _libssh2_ecdsa_create_key(_libssh2_ec_key **out_private_key,
unsigned char **out_public_key_octal,
size_t *out_public_key_octal_len,
libssh2_curve_type curve_type);
Create a new ECDSA private key of type curve_type and return it at
out_private_key. If out_public_key_octal is not NULL, store an allocated
pointer to the associated public key in "octal" form in it and its length
at out_public_key_octal_len.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_new_private(libssh2_ecdsa_ctx **ec_ctx,
LIBSSH2_SESSION * session,
const char *filename,
unsigned const char *passphrase);
Reads an ECDSA private key from PEM file filename into a new ECDSA context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_new_private_frommemory(libssh2_ecdsa_ctx ** ec_ctx,
LIBSSH2_SESSION * session,
const char *filedata,
size_t filedata_len,
unsigned const char *passphrase);
Builds an ECDSA private key from PEM data at filedata of length filedata_len
into a new ECDSA context stored at ec_ctx.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_curve_name_with_octal_new(libssh2_ecdsa_ctx **ecdsactx,
const unsigned char *k,
size_t k_len,
libssh2_curve_type type);
Stores at ecdsactx a new ECDSA context associated with the given curve type
and with "octal" form public key (k, k_len).
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_new_openssh_private(libssh2_ecdsa_ctx **ec_ctx,
LIBSSH2_SESSION * session,
const char *filename,
unsigned const char *passphrase);
Reads a PEM-encoded ECDSA private key from file filename encrypted with
passphrase and stores at ec_ctx a new ECDSA context for it.
Return 0 if OK, else -1.
Currently used only from openssl backend (ought to be private).
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_sign(LIBSSH2_SESSION *session, libssh2_ecdsa_ctx *ec_ctx,
const unsigned char *hash, unsigned long hash_len,
unsigned char **signature, size_t *signature_len);
ECDSA signs the (hash, hashlen) hash bytes and stores the allocated
signature at (signature, signature_len). Hash algorithm used should be
SHA-256, SHA-384 or SHA-512 depending on type stored in ECDSA context at ec_ctx.
Signature buffer must be allocated from the given session.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_verify(libssh2_ecdsa_ctx *ctx,
const unsigned char *r, size_t r_len,
const unsigned char *s, size_t s_len,
const unsigned char *m, size_t m_len);
Verify the ECDSA signature made of (r, r_len) and (s, s_len) of (m, m_len)
using the hash algorithm configured in the ECDSA context ctx.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
libssh2_curve_type _libssh2_ecdsa_get_curve_type(libssh2_ecdsa_ctx *ecdsactx);
Returns the curve type associated with given context.
This procedure is already prototyped in crypto.h.
int _libssh2_ecdsa_curve_type_from_name(const char *name,
libssh2_curve_type *out_type);
Stores in out_type the curve type matching string name of the form
"ecdsa-sha2-nistpxxx".
Return 0 if OK, else -1.
Currently used only from openssl backend (ought to be private).
This procedure is already prototyped in crypto.h.
void _libssh2_ecdsa_free(libssh2_ecdsa_ctx *ecdsactx);
Releases the ECDSA computation context at ecdsactx.
7.4) ED25519
LIBSSH2_ED25519
#define as 1 if the crypto library supports ED25519, else 0.
If defined as 0, the rest of this section can be omitted.
libssh2_ed25519_ctx
Type of an ED25519 computation context. Generally a struct.
int _libssh2_curve25519_new(LIBSSH2_SESSION *session, libssh2_ed25519_ctx **ctx,
uint8_t **out_public_key,
uint8_t **out_private_key);
Generates an ED25519 key pair, stores a pointer to them at out_private_key
and out_public_key respectively and stores at ctx a new ED25519 context for
this key.
Argument ctx, out_private_key and out_public key may be NULL to disable storing
the corresponding value.
Length of each key is LIBSSH2_ED25519_KEY_LEN (32 bytes).
Key buffers are allocated and should be released by caller after use.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ed25519_new_private(libssh2_ed25519_ctx **ed_ctx,
LIBSSH2_SESSION *session,
const char *filename,
const uint8_t *passphrase);
Reads an ED25519 private key from PEM file filename into a new ED25519 context.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ed25519_new_public(libssh2_ed25519_ctx **ed_ctx,
LIBSSH2_SESSION *session,
const unsigned char *raw_pub_key,
const size_t key_len);
Stores at ed_ctx a new ED25519 key context for raw public key (raw_pub_key,
key_len).
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ed25519_new_private_frommemory(libssh2_ed25519_ctx **ed_ctx,
LIBSSH2_SESSION *session,
const char *filedata,
size_t filedata_len,
unsigned const char *passphrase);
Builds an ED25519 private key from PEM data at filedata of length filedata_len
into a new ED25519 context stored at ed_ctx.
Must call _libssh2_init_if_needed().
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ed25519_sign(libssh2_ed25519_ctx *ctx, LIBSSH2_SESSION *session,
uint8_t **out_sig, size_t *out_sig_len,
const uint8_t *message, size_t message_len);
ED25519 signs the (message, message_len) bytes and stores the allocated
signature at (sig, sig_len).
Signature buffer is allocated from the given session.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_ed25519_verify(libssh2_ed25519_ctx *ctx, const uint8_t *s,
size_t s_len, const uint8_t *m, size_t m_len);
Verify (s, s_len) signature of (m, m_len) using the given ED25519 context.
Return 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
int _libssh2_curve25519_gen_k(_libssh2_bn **k,
uint8_t private_key[LIBSSH2_ED25519_KEY_LEN],
uint8_t srvr_public_key[LIBSSH2_ED25519_KEY_LEN]);
Computes a shared ED25519 secret key from the given raw server public key and
raw client public key and stores it as a big number in *k. Big number should
have been initialized before calling this function.
Returns 0 if OK, else -1.
This procedure is already prototyped in crypto.h.
void _libssh2_ed25519_free(libssh2_ed25519_ctx *ed25519ctx);
Releases the ED25519 computation context at ed25519ctx.
8) Miscellaneous
void libssh2_prepare_iovec(struct iovec *vector, unsigned int len);
Prepare len consecutive iovec slots before using them.
In example, this is needed to preset unused structure slacks on platforms
requiring it.
If this is not needed, it should be defined as an empty macro.
int _libssh2_random(unsigned char *buf, size_t len);
Store len random bytes at buf.
Returns 0 if OK, else -1.
const char * _libssh2_supported_key_sign_algorithms(LIBSSH2_SESSION *session,
unsigned char *key_method,
size_t key_method_len);
This function is for implementing key hash upgrading as defined in RFC 8332.
Based on the incoming key_method value, this function will return a
list of supported algorithms that can upgrade the original key method algorithm
as a comma separated list, if there is no upgrade option this function should
return NULL.

316
curl/dep/libssh2/docs/INSTALL_AUTOTOOLS.txt Обычный файл
Просмотреть файл

@@ -0,0 +1,316 @@
Installation Instructions
*************************
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005 Free
Software Foundation, Inc.
This file is free documentation; the Free Software Foundation gives
unlimited permission to copy, distribute and modify it.
SPDX-License-Identifier: FSFULLR
When Building directly from Master
==================================
If you want to build directly from the git repository, you must first
generate the configure script and Makefile using autotools. Make
sure that autoconf, automake and libtool are installed on your system,
then execute:
autoreconf -fi
After executing this script, you can build the project as usual:
./configure
make
Basic Installation
==================
These are generic installation instructions.
The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, and a
file `config.log' containing compiler output (useful mainly for
debugging `configure').
It can also use an optional file (typically called `config.cache'
and enabled with `--cache-file=config.cache' or shortly `-C') that saves
the results of its tests to speed up reconfiguring. (Caching is
disabled by default to prevent problems with accidental use of stale
cache files.)
If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If you are using the cache, and at
some point `config.cache' contains results you do not want to keep, you
may remove or edit it.
The file `configure.ac' (or `configure.in') is used to create
`configure' by a program called `autoconf'. You only need
`configure.ac' if you want to change it or regenerate `configure' using
a newer version of `autoconf'.
The simplest way to compile this package is:
1. `cd' to the directory containing the package's source code and type
`./configure' to configure the package for your system. If you are
using `csh' on an old version of System V, you might need to type
`sh ./configure' instead to prevent `csh' from trying to execute
`configure' itself.
Running `configure' takes awhile. While running, it prints some
messages telling which features it is checking for.
2. Type `make' to compile the package.
3. Optionally, type `make check' to run any self-tests that come with
the package.
4. Type `make install' to install the programs and any data files and
documentation.
5. You can remove the program binaries and object files from the
source code directory by typing `make clean'. To also remove the
files that `configure' created (so you can compile the package for
a different kind of computer), type `make distclean'. There is
also a `make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.
Compilers and Options
=====================
Some systems require unusual options for compilation or linking that the
`configure' script does not know about. Run `./configure --help' for
details on some of the pertinent environment variables.
You can give `configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:
./configure CC=c89 CFLAGS=-O2 LIBS=-lposix
*Note Defining Variables::, for more details.
Compiling For Multiple Architectures
====================================
You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of `make' that
supports the `VPATH' variable, such as GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'.
If you have to use a `make' that does not support the `VPATH'
variable, you have to compile the package for one architecture at a
time in the source code directory. After you have installed the
package for one architecture, use `make distclean' before reconfiguring
for another architecture.
Installation Names
==================
By default, `make install' installs the package's commands under
`/usr/local/bin', include files under `/usr/local/include', etc. You
can specify an installation prefix other than `/usr/local' by giving
`configure' the option `--prefix=PREFIX'.
You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option `--exec-prefix=PREFIX' to `configure', the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.
In addition, if you use an unusual directory layout you can give
options like `--bindir=DIR' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.
If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
Optional Features
=================
Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.
For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it does not,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.
Specifying the System Type
==========================
There may be some features `configure' cannot figure out automatically,
but needs to determine by the type of machine the package will run on.
Usually, assuming the package is built to be run on the _same_
architectures, `configure' can figure that out, but if it prints a
message saying it cannot guess the machine type, give it the
`--build=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name which has the form:
CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:
OS KERNEL-OS
See the file `config.sub' for the possible values of each field. If
`config.sub' is not included in this package, then this package does not
need to know the machine type.
If you are _building_ compiler tools for cross-compiling, you should
use the option `--target=TYPE' to select the type of system they will
produce code for.
If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with `--host=TYPE'.
Sharing Defaults
================
If you want to set default values for `configure' scripts to share, you
can create a site shell script called `config.site' that gives default
values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.
Defining Variables
==================
Variables not defined in a site shell script can be set in the
environment passed to `configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the `configure' command line, using `VAR=value'. For example:
./configure CC=/usr/local2/bin/gcc
causes the specified `gcc' to be used as the C compiler (unless it is
overridden in the site shell script). Here is a another example:
/bin/bash ./configure CONFIG_SHELL=/bin/bash
Here the `CONFIG_SHELL=/bin/bash' operand causes subsequent
configuration-related scripts to be executed by `/bin/bash'.
`configure' Invocation
======================
`configure' recognizes the following options to control how it operates.
`--help'
`-h'
Print a summary of the options to `configure', and exit.
`--version'
`-V'
Print the version of Autoconf used to generate the `configure'
script, and exit.
`--cache-file=FILE'
Enable the cache: use and save the results of the tests in FILE,
traditionally `config.cache'. FILE defaults to `/dev/null' to
disable caching.
`--config-cache'
`-C'
Alias for `--cache-file=config.cache'.
`--quiet'
`--silent'
`-q'
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to `/dev/null' (any error
messages will still be shown).
`--srcdir=DIR'
Look for the package's source code in directory DIR. Usually
`configure' can determine that directory automatically.
`configure' also accepts some other, not widely useful, options. Run
`configure --help' for more details.
More configure options
======================
Some ./configure options deserve additional comments:
* --with-libgcrypt
* --without-libgcrypt
* --with-libgcrypt-prefix=DIR
libssh2 can use the Libgcrypt library
(https://www.gnupg.org/) for cryptographic operations.
One of the cryptographic libraries is required.
Configure will attempt to locate Libgcrypt
automatically.
If your installation of Libgcrypt is in another
location, specify it using --with-libgcrypt-prefix.
* --with-openssl
* --without-openssl
* --with-libssl-prefix=[DIR]
libssh2 can use the OpenSSL library
(https://www.openssl-library.org/) for cryptographic operations.
One of the cryptographic libraries is required.
Configure will attempt to locate OpenSSL in the
default location.
If your installation of OpenSSL is in another
location, specify it using --with-libssl-prefix.
* --with-mbedtls
* --without-mbedtls
* --with-libmbedcrypto-prefix=[DIR]
libssh2 can use the mbedTLS library
(https://tls.mbed.org) for cryptographic operations.
One of the cryptographic libraries is required.
Configure will attempt to locate mbedTLS in the
default location.
If your installation of mbedTLS is in another
location, specify it using --with-libmbedcrypto-prefix.
* --with-libz
* --without-libz
* --with-libz-prefix=[DIR]
If present, libssh2 will attempt to use the zlib
(https://zlib.net/) for payload compression, however
zlib is not required.
If your installation of Libz is in another location,
specify it using --with-libz-prefix.
* --enable-debug
Will make the build use more pedantic and strict compiler
options as well as enable the libssh2_trace() function (for
showing debug traces).

180
curl/dep/libssh2/docs/TODO.txt Обычный файл
Просмотреть файл

@@ -0,0 +1,180 @@
Things TODO
===========
* Fix -Wsign-conversion warnings in src
* Fix the numerous malloc+copy operations for sending data, see "Buffering
Improvements" below for details
* make sure the windowing code adapts better to slow situations so that it
does not then use as much memory as today. Possibly by an app-controllable
"Window mode"?
* Decrease the number of mallocs. Everywhere. Will get easier once the
buffering improvements have been done.
* Use SO_NOSIGPIPE for Mac OS/BSD systems where MSG_NOSIGNAL does not
exist/work
* Extend the test suite to actually test lots of aspects of libssh2
* Update public API to drop casts added to fix compiler warnings
* Expose error messages sent by the server
* select() is troublesome with libssh2 when using multiple channels over
the same session. See "New Transport API" below for more details.
* for obsolete/weak/insecure algorithms: either stop enabling them by default
at build-time, or delete support for them completely.
At next SONAME bump
===================
* stop using #defined macros as part of the official API. The macros should
either be turned into real functions or discarded from the API.
* delete or deprecate libssh2_session_callback_set()
* bump length arguments in callback functions to size_t/ssize_t
* remove the following functions from the API/ABI
libssh2_base64_decode()
libssh2_session_flag()
libssh2_channel_handle_extended_data()
libssh2_channel_receive_window_adjust()
libssh2_poll()
libssh2_poll_channel_read()
libssh2_session_startup() (libssh2_session_handshake() is the replacement)
libssh2_banner_set() (libssh2_session_banner_set() is the replacement)
* Rename a few function:
libssh2_hostkey_hash => libssh2_session_hostkey_hash
libssh2_banner_set => libssh2_session_banner_set
* change 'int' to 'libssh2_socket_t' in the public API for sockets.
* Use 'size_t' for string lengths in all functions.
* Add a comment field to struct libssh2_knownhost.
* remove the existing libssh2_knownhost_add() function and rename
libssh2_knownhost_addc to become the new libssh2_knownhost_add instead
* remove the existing libssh2_scp_send_ex() function and rename
libssh2_scp_send64 to become the new libssh2_scp_send instead.
* remove the existing libssh2_knownhost_check() function and rename
libssh2_knownhost_checkp() to become the new libssh2_knownhost_check instead
Buffering Improvements
======================
transport_write
- If this function gets called with a total packet size that is larger than
32K, it should create more than one SSH packet so that it keeps the largest
one below 32K
sftp_write
- should not copy/allocate anything for the data, only create a header chunk
and pass on the payload data to channel_write "pointed to"
New Transport API
=================
THE PROBLEM
The problem in a nutshell is that when an application opens up multiple
channels over a single session, those are all using the same socket. If the
application is then using select() to wait for traffic (like any sensible app
does) and wants to act on the data when select() tells there is something to
for example read, what does an application do?
With our current API, you have to loop over all the channels and read from
them to see if they have data. This effectively makes blocking reads
impossible. If the app has many channels in a setup like this, it even becomes
slow. (The original API had the libssh2_poll_channel_read() and libssh2_poll()
to somewhat overcome this hurdle, but they too have pretty much the same
problems plus a few others.)
Traffic in the other direction is similarly limited: the app has to try
sending to all channels, even though some of them may very well not accept any
data at that point.
A SOLUTION
I suggest we introduce two new helper functions:
libssh2_transport_read()
- Read "a bunch" of data from the given socket and returns information to the
app about what channels that are now readable (ie they will not block when
read from). The function can be called over and over and it will repeatedly
return info about what channels that are readable at that moment.
libssh2_transport_write()
- Returns information about what channels that are writable, in the sense
that they have windows set from the remote side that allows data to get
sent. Writing to one of those channels will not block. Of course, the
underlying socket may only accept a certain amount of data, so at the first
short return, nothing more should be attempted to get sent until select()
(or equivalent) has been used on the master socket again.
I have not yet figured out a sensible API for how these functions should return
that info, but if we agree on the general principles I guess we can work that
out.
VOLUNTARY
I wanted to mention that these two helper functions would not be mandatory
in any way. They would just be there for those who want them, and existing
programs can remain using the old functions only if they prefer to.
New SFTP API
============
PURPOSE
Provide API functions that explicitly tells at once that a (full) SFTP file
transfer is wanted, to allow libssh2 to leverage on that knowledge to speed
up things internally. It can for example do read ahead, buffer writes (merge
small writes into larger chunks), better tune the SSH window and more. This
sort of API is already provided for SCP transfers.
API
New functions:
LIBSSH2_SFTP_HANDLE *libssh2_sftp_send(SFTP_SESSION *sftp,
libssh2_uint64_t filesize,
char *remote_path,
size_t remote_path_len,
long mode);
Tell libssh2 that a local file with a given size is about to get sent to
the SFTP server.
LIBSSH2_SFTP_HANDLE *libssh2_sftp_recv();
Tell libssh2 that a remote file is requested to get downloaded from the SFTP
server.
Only the setup of the file transfer is different from an application's point
of view. Depending on direction of the transfer(s), the following already
existing functions should then be used until the transfer is complete:
libssh2_sftp_read()
libssh2_sftp_write()
HOW TO USE
1. Setup the transfer using one of the two new functions.
2. Loop through the reading or writing of data.
3. Cleanup the transfer