diff --git a/labworks/LW2/IS_LR2.ipynb b/labworks/LW2/IS_LR2.ipynb new file mode 100644 index 0000000..f60be86 --- /dev/null +++ b/labworks/LW2/IS_LR2.ipynb @@ -0,0 +1,7839 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tvmU7QJtpPhS", + "outputId": "ed844e01-5c3e-461d-89da-1f890a45f8b5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2025-11-19 19:39:23-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 304 Not Modified\n", + "File ‘lab02_lib.py’ not modified on server. Omitting download.\n", + "\n", + "--2025-11-19 19:39:24-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/name_train.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 404 Not Found\n", + "2025-11-19 19:39:24 ERROR 404: Not Found.\n", + "\n", + "--2025-11-19 19:39:24-- http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/name_test.txt\n", + "Resolving uit.mpei.ru (uit.mpei.ru)... 193.233.68.149\n", + "Connecting to uit.mpei.ru (uit.mpei.ru)|193.233.68.149|:80... connected.\n", + "HTTP request sent, awaiting response... 404 Not Found\n", + "2025-11-19 19:39:25 ERROR 404: Not Found.\n", + "\n" + ] + } + ], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')\n", + "\n", + "# скачивание библиотеки\n", + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/lab02_lib.py\n", + "\n", + "# скачивание выборок\n", + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/name_train.txt\n", + "!wget -N http://uit.mpei.ru/git/main/is_dnn/raw/branch/main/labworks/LW2/data/name_test.txt\n", + "\n", + "# импорт модулей\n", + "import numpy as np\n", + "import lab02_lib as lib" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "Qs5O3gh093SP", + "outputId": "a4637808-4500-40d6-ecda-d3ea6a28f608" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoLRJREFUeJzt3Xt0HdV96PGfJCPZPGQe5RHAxHCMZclgQtO0DSmProY41HHBJiYkobxWbqBACaWU4gQT3pTUAVoopL2XOATHpLiVyQqGECBxWy5NQgKEYMsyBgyEx4Jwg0RqkNDRuX+cjHTOaGbOPPaevffM97OWlq2j89izZ8+c/dvPtlqtVhMAAAAAAGBcu+kEAAAAAACAOoJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAK6PTTT5fZs2eneu3ll18ubW1tahMEAABiIUgHACBHbW1tsX42bNhgOqnOW7Nmjdx0002mkwEAQCJttVqtZjoRAACUxerVq5t+/+Y3vykPPvig3HnnnU2PH3vssbL33nun/pz33ntPxsfHpaurK/Frx8bGZGxsTKZPn576823wiU98Qp5++mnZtm2b6aQAABDbNNMJAACgTE455ZSm33/0ox/Jgw8+OOVxv+3bt8uOO+4Y+3N22GGHVOkTEZk2bZpMm0YVAQAAExjuDgCAZY455hg55JBD5Gc/+5kcddRRsuOOO8oXv/hFERH5zne+I4sWLZJ9991Xurq6pFKpyFVXXSXVarXpPfxz0rdt2yZtbW2ycuVK+Zd/+RepVCrS1dUlH/rQh+Sxxx5rem3QnPS2tjY577zz5J577pFDDjlEurq6ZP78+fK9731vSvo3bNggv/d7vyfTp0+XSqUi//zP/xx7nvszzzwjJ554ouyzzz4yffp02X///eXkk0+WoaGhpuetXr1aPvjBD8qMGTNk9913l5NPPlleeumlpjxcv369vPDCCxNTCNLO0QcAIE80kwMAYKE333xTjjvuODn55JPllFNOmRj6/o1vfEN23nlnufDCC2XnnXeWH/zgB3LZZZfJ8PCw/P3f/33L912zZo28/fbbctZZZ0lbW5t85StfkaVLl8pzzz3Xsvf9kUcekf7+fjnnnHNkl112kX/8x3+UE088UV588UXZY489RETkiSeekI9//OPyvve9T6644gqpVqty5ZVXyp577tkybaOjo7Jw4UIZGRmRv/zLv5R99tlHXn75Zbn33nvlrbfekpkzZ4qIyDXXXCMrVqyQk046ST73uc/JG2+8ITfffLMcddRR8sQTT8iuu+4qX/rSl2RoaEh++ctfyo033igiIjvvvHPLNAAAYFwNAAAYc+6559b8X8dHH310TURqX/va16Y8f/v27VMeO+uss2o77rhj7d1335147LTTTqu9//3vn/j9+eefr4lIbY899qj9v//3/yYe/853vlMTkdp3v/vdice+/OUvT0mTiNQ6OztrW7dunXjs5z//eU1EajfffPPEY4sXL67tuOOOtZdffnnisWeeeaY2bdq0Ke/p98QTT9REpLZ27drQ52zbtq3W0dFRu+aaa5oe/8UvflGbNm1a0+OLFi1qygMAAFzAcHcAACzU1dUlZ5xxxpTHZ8yYMfH/t99+W371q1/JkUceKdu3b5fNmze3fN9PfepTsttuu038fuSRR4qIyHPPPdfytR/96EelUqlM/L5gwQLp7u6eeG21WpWHHnpITjjhBNl3330nnjdnzhw57rjjWr6/11P+wAMPyPbt2wOf09/fL+Pj43LSSSfJr371q4mfffbZRw4++GD54Q9/2PJzAACwGcPdAQCw0H777SednZ1THt+4caNceuml8oMf/ECGh4eb/uaftx3kgAMOaPrdC9h//etfJ36t93rvta+//rq88847MmfOnCnPC3rM78ADD5QLL7xQbrjhBvnWt74lRx55pPzZn/2ZnHLKKRMB/DPPPCO1Wk0OPvjgwPfIsmAeAAA2IEgHAMBCjT3mnrfeekuOPvpo6e7uliuvvFIqlYpMnz5dHn/8cfnbv/1bGR8fb/m+HR0dgY/XYuzImuW1cX31q1+V008/Xb7zne/I97//fTn//PPluuuukx/96Eey//77y/j4uLS1tcn9998fmB7mnQMAXEeQDgCAIzZs2CBvvvmm9Pf3y1FHHTXx+PPPP28wVZP22msvmT59umzdunXK34IeC3PooYfKoYceKpdeeqk8+uij8pGPfES+9rWvydVXXy2VSkVqtZoceOCBMnfu3Mj3ibOaPAAAtmFOOgAAjvB6jht7rkdHR+XWW281laQmHR0d8tGPflTuueceeeWVVyYe37p1q9x///0tXz88PCxjY2NNjx166KHS3t4uIyMjIiKydOlS6ejokCuuuGJKD36tVpM333xz4veddtop1hQAAABsQk86AACOOOKII2S33XaT0047Tc4//3xpa2uTO++8U+lw86wuv/xy+f73vy8f+chH5C/+4i+kWq3KLbfcIocccog8+eSTka/9wQ9+IOedd54sW7ZM5s6dK2NjY3LnnXdKR0eHnHjiiSIiUqlU5Oqrr5bly5fLtm3b5IQTTpBddtlFnn/+eVm3bp18/vOfl4suukhERD74wQ/Kv/7rv8qFF14oH/rQh2TnnXeWxYsX684CAAAyIUgHAMARe+yxh9x7773y13/913LppZfKbrvtJqeccor8yZ/8iSxcuNB08kSkHhjff//9ctFFF8mKFStk1qxZcuWVV8rAwEDL1ecPO+wwWbhwoXz3u9+Vl19+WXbccUc57LDD5P7775c//MM/nHjeJZdcInPnzpUbb7xRrrjiChERmTVrlnzsYx+TP/uzP5t43jnnnCNPPvmkrFq1Sm688UZ5//vfT5AOALBeW82m5ncAAFBIJ5xwgmzcuFGeeeYZ00kBAMBqzEkHAABKvfPOO02/P/PMM3LffffJMcccYyZBAAA4hJ50AACg1Pve9z45/fTT5aCDDpIXXnhBbrvtNhkZGZEnnngidH9zAABQx5x0AACg1Mc//nG566675LXXXpOuri758Ic/LNdeey0BOgAAMdCTDgAAAACAJZiTDgAAAACAJQjSAQAAAACwROnmpI+Pj8srr7wiu+yyi7S1tZlODgAAAACg4Gq1mrz99tuy7777Snt7dF956YL0V155RWbNmmU6GQAAAACAknnppZdk//33j3xO6YL0XXbZRUTqmdPd3W04NQAAAACAohseHpZZs2ZNxKNRSheke0Pcu7u7CdIBAAAAALmJM+WaheMAAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWKJ0C8clVa1W5b333jOdDBTUDjvsIB0dHaaTAQAAAMASBOkharWavPbaa/LWW2+ZTgoKbtddd5V99tkn1kqPAAAAAIqNID2EF6DvtddesuOOOxJAQblarSbbt2+X119/XURE3ve+9xlOEQAAAADTCNIDVKvViQB9jz32MJ0cFNiMGTNEROT111+Xvfbai6HvAAAAQMmxcFwAbw76jjvuaDglKAOvnLH2AQAAAACC9AgMcUceKGcAAAAAPATpAAAAAABYgiAdAAAAAABLEKRDudNPP11mz56d6rWXX345w78BAAAAlBZBeom0tbXF+tmwYYPppDpvzZo1ctNNN5lOBgAAAADHtNVqtZrpRORpeHhYZs6cKUNDQ9Ld3R34nHfffVeef/55OfDAA2X69Ok5p1Cf1atXN/3+zW9+Ux588EG58847mx4/9thjZe+99079Oe+9956Mj49LV1dX4teOjY3J2NiY8/n+iU98Qp5++mnZtm1by+cWtbwBAAAAqIsTh3rYJ71ETjnllKbff/SjH8mDDz445XG/7du3J9qObocddkiVPhGRadOmybRpFEsAAAAA5cRwdzQ55phj5JBDDpGf/exnctRRR8mOO+4oX/ziF0VE5Dvf+Y4sWrRI9t13X+nq6pJKpSJXXXWVVKvVpvfwz0nftm2btLW1ycqVK+Vf/uVfpFKpSFdXl3zoQx+Sxx57rOm1QXPS29ra5LzzzpN77rlHDjnkEOnq6pL58+fL9773vSnp37Bhg/ze7/2eTJ8+XSqVivzzP/9z7HnuzzzzjJx44omyzz77yPTp02X//feXk08+WYaGhpqet3r1avngBz8oM2bMkN13311OPvlkeemll5rycP369fLCCy9MTCFIO0cfAAAAQLnQZYkp3nzzTTnuuOPk5JNPllNOOWVi6Ps3vvEN2XnnneXCCy+UnXfeWX7wgx/IZZddJsPDw/L3f//3Ld93zZo18vbbb8tZZ50lbW1t8pWvfEWWLl0qzz33XMve90ceeUT6+/vlnHPOkV122UX+8R//UU488UR58cUXZY899hARkSeeeEI+/vGPy/ve9z654oorpFqtypVXXil77rlny7SNjo7KwoULZWRkRP7yL/9S9tlnH3n55Zfl3nvvlbfeektmzpwpIiLXXHONrFixQk466ST53Oc+J2+88YbcfPPNctRRR8kTTzwhu+66q3zpS1+SoaEh+eUvfyk33nijiIjsvPPOLdMAAAAAAATpBlSrIh0dplMR7rXXXpOvfe1rctZZZzU9vmbNGpkxY8bE72effbacffbZcuutt8rVV1/dcg76iy++KM8884zstttuIiLS09Mjxx9/vDzwwAPyiU98IvK1AwMDsmnTJqlUKiIi8sd//Mdy2GGHyV133SXnnXeeiIh8+ctflo6ODvm///f/yr777isiIieddJL09va2POZNmzbJ888/L2vXrpVPfvKTE49fdtllE/9/4YUX5Mtf/rJcffXVE6MLRESWLl0qhx9+uNx6663yxS9+UY499ljZb7/95Ne//nXLqQQAAAAA0Ijh7jkaHBSZP19k2rT6v4ODplMUrKurS84444wpjzcG6G+//bb86le/kiOPPFK2b98umzdvbvm+n/rUpyYCdBGRI488UkREnnvuuZav/ehHPzoRoIuILFiwQLq7uydeW61W5aGHHpITTjhhIkAXEZkzZ44cd9xxLd/f6yl/4IEHZPv27YHP6e/vl/HxcTnppJPkV7/61cTPPvvsIwcffLD88Ic/bPk5AAAAABCFID1HS5dOBuaDg/XfbbTffvtJZ2fnlMc3btwoS5YskZkzZ0p3d7fsueeeEz3F/nnbQQ444ICm372A/de//nXi13qv9177+uuvyzvvvCNz5syZ8rygx/wOPPBAufDCC+X//J//I7/zO78jCxculH/6p39qOq5nnnlGarWaHHzwwbLnnns2/QwMDMjrr7/e8nMAAAAAIArD3XNSrYps2jT1dxuHvjf2mHveeustOfroo6W7u1uuvPJKqVQqMn36dHn88cflb//2b2V8fLzl+3aEHGicXQCzvDaur371q3L66afLd77zHfn+978v559/vlx33XXyox/9SPbff38ZHx+XtrY2uf/++wPTw7xzAAAAAFkRpOeko0Okr6/eg+4F5j099gXoYTZs2CBvvvmm9Pf3y1FHHTXx+PPPP28wVZP22msvmT59umzdunXK34IeC3PooYfKoYceKpdeeqk8+uij8pGPfES+9rWvydVXXy2VSkVqtZoceOCBMnfu3Mj3ibOaPOA6GxsZAQAAXMdw9xz199cDc5H6v/39ZtOThNdz3NhzPTo6KrfeequpJDXp6OiQj370o3LPPffIK6+8MvH41q1b5f7772/5+uHhYRkbG2t67NBDD5X29nYZGRkRkfoCcR0dHXLFFVdM6cGv1Wry5ptvTvy+0047xZoCALjIlfU1AAAAXERPeo56ekQ2bnSz9+mII46Q3XbbTU477TQ5//zzpa2tTe68806lw82zuvzyy+X73/++fOQjH5G/+Iu/kGq1Krfccosccsgh8uSTT0a+9gc/+IGcd955smzZMpk7d66MjY3JnXfeKR0dHXLiiSeKiEilUpGrr75ali9fLtu2bZMTTjhBdtllF3n++edl3bp18vnPf14uuugiERH54Ac/KP/6r/8qF154oXzoQx+SnXfeWRYvXqw7C4BcBK2vsXGj2TQBAAAUBUG6Aa4F6CIie+yxh9x7773y13/913LppZfKbrvtJqeccor8yZ/8iSxcuNB08kSkHhjff//9ctFFF8mKFStk1qxZcuWVV8rAwEDL1ecPO+wwWbhwoXz3u9+Vl19+WXbccUc57LDD5P7775c//MM/nHjeJZdcInPnzpUbb7xRrrjiChERmTVrlnzsYx+TP/uzP5t43jnnnCNPPvmkrFq1Sm688UZ5//vfT5COQnBpfQ0AAAAXtdVs6grNwfDwsMycOVOGhoaku7s78DnvvvuuPP/883LggQfK9OnTc04hVDvhhBNk48aN8swzz5hOSiDKG1zjDXFvXF+DnnQAAIBwceJQD3PSUSjvvPNO0+/PPPOM3HfffXLMMceYSRBQQC6vrwEAAGA7hrujUA466CA5/fTT5aCDDpIXXnhBbrvtNuns7JSLL77YdNKAwnB5fQ0AAADbEaSjUD7+8Y/LXXfdJa+99pp0dXXJhz/8Ybn22mvl4IMPNp00oHAI0AEAANQjSEehrFq1ynQSAAAAACA15qQDAAAAAGAJgnQAAAAAACxBkB6hZLvTwRDKGQAAAAAPQXqAHXbYQUREtm/fbjglKAOvnHnlDgAAAEB5sXBcgI6ODtl1113l9ddfFxGRHXfcUdra2gynCkVTq9Vk+/bt8vrrr8uuu+4qHSyVDQAAAJQeQXqIffbZR0RkIlAHdNl1110nyhsAAACAciNID9HW1ibve9/7ZK+99pL33nvPdHJQUDvssAM96AAAAAAmEKS30NHRQRAFAAAAAMgFC8cBAAAAAGAJgnQAAAAAACxBkA4AAAAAgCUI0gEAAAAAsARBOgAAAAAAliBIBwAAAADAEgTpAAAAAABYgiAdAAAAAABLEKQDAAAAAGAJo0F6tVqVFStWyIEHHigzZsyQSqUiV111ldRqtdDXPPLII/KRj3xE9thjD5kxY4bMmzdPbrzxxhxTDQAAAACAHtNMfvj1118vt912m9xxxx0yf/58+elPfypnnHGGzJw5U84///zA1+y0005y3nnnyYIFC2SnnXaSRx55RM466yzZaaed5POf/3zORwAAAAAAgDpttahua80+8YlPyN577y233377xGMnnniizJgxQ1avXh37fZYuXSo77bST3HnnnS2fOzw8LDNnzpShoSHp7u5OlW4AAAAAAOJKEocaHe5+xBFHyMMPPyxbtmwREZGf//zn8sgjj8hxxx0X+z2eeOIJefTRR+Xoo48O/PvIyIgMDw83/QAAAAAAYCOjw90vueQSGR4elnnz5klHR4dUq1W55ppr5LOf/WzL1+6///7yxhtvyNjYmFx++eXyuc99LvB51113nVxxxRWqkw4AAAAAgHJGe9Lvvvtu+da3viVr1qyRxx9/XO644w5ZuXKl3HHHHS1f+1//9V/y05/+VL72ta/JTTfdJHfddVfg85YvXy5DQ0MTPy+99JLqwwAAAAAAQAmjc9JnzZoll1xyiZx77rkTj1199dWyevVq2bx5c+z3ufrqq+XOO++UwcHBls9lTjoAAAAAIE/OzEnfvn27tLc3J6Gjo0PGx8cTvc/4+LiMjIyoTBoAAAAAALkzOid98eLFcs0118gBBxwg8+fPlyeeeEJuuOEGOfPMMyees3z5cnn55Zflm9/8poiI/NM//ZMccMABMm/ePBER+c///E9ZuXJl6JZtAAAAAAC4wmiQfvPNN8uKFSvknHPOkddff1323XdfOeuss+Syyy6beM6rr74qL7744sTv4+Pjsnz5cnn++edl2rRpUqlU5Prrr5ezzjrLxCEAAAAAAKCM0TnpJjAnHQAAAACQJ2fmpAMAAAAAgEkE6QAAAAAAWIIgHQAAQ6pV0ykAAAC2IUgHACBng4Mi8+eLTJtW/3dw0HSKAACALQjSAQDI2dKlk4H54GD9dwAAABGCdAAAclWtimzaNDnU3f87AAAoN4J0AABy1NEh0tdX/zfodwAAUG4E6QAA5Ky/X6Snp/7/np767wAAACIi00wnAACAsunpEdm4sT7EnR50AADQiJ50AAAMIUAHAAB+BOkAAAAAAFiCIB0AAAAAAEsQpAMAAAAAYAmCdAAAAAAALEGQDgAAAACAJQjSAQAAAACwBEE6AAAAAACWIEgHAAAAAMASBOkAAAAAAFiCIB0AAAAAAEsQpAMAAAAAYAmCdAAAAAAALEGQDgAAAACAJQjSAQAAAACwBEE6AAAAAACWIEgHAAAAAMASBOkAAAAAAFiCIB0AAAAAAEsQpAMAAKCwqlXTKQCAZAjSAQAAUDiDgyLz54tMm1b/d3DQdIoAIB6CdAAAABTO0qWTgfngYP13AHABQToAAAAKpVoV2bRpcqi7/3cAsBlBOgAAAAqlo0Okr6/+b9DvAGAzgnQAAAAUTn+/SE9P/f89PfXfAcAF00wnAAAAAFCtp0dk48b6EHd60AG4hJ50AAAAFBYBOgDXEKQDAAAAPiwyB8AUgnQAAADgt9hfHYBpBOkAgFKilwxAEPZXB2AaQToAoFToJQMQhv3VAdiAIB0AUCr0kgEIw/7qAGxAkA4AKA16yQC0wv7qAExjn3QAQGl4vWKDg5N7J/f00EsGYBL7qwMwjZ50AIBRefdi00tmJ0YzwDYE6ABMIUgHABhhagE3r5dsbKz+rxewwwwW8gMAoBlBOgDACNMLuNFLZgfT5QAAANsQpAMAcscCbhChHAAAEIQgHQCQO5e2OSJg1MelcgAAQF4I0gEARti+gFsR50rb2OBgezkAACBvbbVarWY6EXkaHh6WmTNnytDQkHR3d5tODgCUnsltjqI+2wvMG7dq27gx3/Sp4s313rSp3lPdGBjbgu2uAABFliQOpScdAGCUicCsVS950eZKu7A4GwE6XOHqfQCAOwjSAQCl0ypoLdJc6aI1OACmFHEKDAA7EaQDAEolbtBalLnSYQ0MCxYQZABJuDAiBUAxEKQDAEolbi+5Nwd9bKz+r21zuJMImoNOkAHEx4gUAHkiSAcAlE6SXnIXh7j79fSIPPVU82M2Bhk2pUXEvvTAnCJNgQFgP4J0AEDpFKmXPK6ODpFKpfmxSsWOIMO2ub62pQd2KMoUGAD2I0gHAJSWDQEq7Jvra1t6YIcyNu4BMIN90gEAKIFqtd4z7Dc2ZraxwrZ02ZYewAbVKuUfyIp90gEAQBNb59Tali7b0gOYxNQPwAyCdAAASsLWObW2pcu29ACmMPUDMIPh7gAAlIytQ1dtS5dt6QHyxNQPQC2GuwMAgFC2VrBtS5dt6QHyxNQPwByCdAAAAFiBventwtQPwAyCdAAAgAQIJNVjgTI7se0cYAZBOgAAQAwEkvqwQJndGOIO5IsgHQAAg+iVdQeBpB7VqsimTZPXgv93ACgbgnQAyBkVT4jQK+uaogSSNqaXBcoAoBlBOgDkhKAMjeiVdYvrgaTt9x8WKAOASeyTDgA58SrG3t7L3oI8eWHPZ3uw/7CbvMaUTZvqAXpjYGk70/efuLhPASgq9kkHAMuYHCprew9aXDYO003L9V7ZsnJ1pWuXhupzDQAAQToA5MJkUObysOpqtTiNDH4M73WXa4EkjUIA4BajQXq1WpUVK1bIgQceKDNmzJBKpSJXXXWVRI3A7+/vl2OPPVb23HNP6e7ulg9/+MPywAMP5JhqAEjHRFDmUg9ao8bAfMECdxsZorjaKws30SgEAO4ImBGXn+uvv15uu+02ueOOO2T+/Pny05/+VM444wyZOXOmnH/++YGv+c///E859thj5dprr5Vdd91VVq1aJYsXL5Yf//jHcvjhh+d8BAAQnxeU5Tnn0usx889Ftb0HrbH3f3R08vHGRgbbjyGuohwH7Gbi/hOHbekBABsYXTjuE5/4hOy9995y++23Tzx24oknyowZM2T16tWx32f+/PnyqU99Si677LKWz2XhOEAvKlz2cW2xq7BF1UTsXvAKQHyu3ZcAICtnFo474ogj5OGHH5YtW7aIiMjPf/5zeeSRR+S4446L/R7j4+Py9ttvy+677x7495GRERkeHm76AaBeUecNF4Frw6r982Xb20U6O+v/Z5guUAxp1sqwfZoOAKhiNEi/5JJL5OSTT5Z58+bJDjvsIIcffrhccMEF8tnPfjb2e6xcuVJ+85vfyEknnRT49+uuu05mzpw58TNr1ixVyQfQwOXFycrCpREOjb1q8+aJPPWUO40MeSNwgWuSrpVBIzCAsjEapN99993yrW99S9asWSOPP/643HHHHbJy5Uq54447Yr1+zZo1csUVV8jdd98te+21V+Bzli9fLkNDQxM/L730kspDACDuLk4GewX1/rvUyJAHAhe4Kulq8zQCAygbo3PSZ82aJZdccomce+65E49dffXVsnr1atm8eXPka7/97W/LmWeeKWvXrpVFixbF/kzmpAN6eEFC4+JkzBsG9OGasxdrc7QWd0562BoVY2PkMQC3ODMnffv27dLe3pyEjo4OGR8fj3zdXXfdJWeccYbcddddiQJ0APqwvQ+QH0av2InRDfHFXSuDPd4BlJHRIH3x4sVyzTXXyPr162Xbtm2ybt06ueGGG2TJkiUTz1m+fLmceuqpE7+vWbNGTj31VPnqV78qf/AHfyCvvfaavPbaazI0NGTiEAD8lmuLk0EdAsP8EbjYiWHZycUpszQCAygbo8Pd3377bVmxYoWsW7dOXn/9ddl3333l05/+tFx22WXS+dulfE8//XTZtm2bbNiwQUREjjnmGPmP//iPKe912mmnyTe+8Y2Wn8lwdwBQgy2UzCL/7cKwbP2YRgDAZUniUKNBugkE6QCgBnOi7UDg0sxkfnBNAADCODMnHQDgJuZE24MAvc6G+eAMywYAqECQDgBIjDnR0WisyJ/O+eBxzydrcwAAVCBIBwCkQq/hVDb05paRrpEdac8njVUAgCyYkw4AyIQ50ZOYk2yOjrznfAIAVGFOOgAgNwTodczTN0v1yA7OJwDAlIDNQgAAQFLevHx/zyuNGPnwerlVjezgfAIATKEnHQAARZinb57KIJrzCQAwgZ50AAAUUd2bC71anSfOJwDABHrSASTGnEwgGgGd3ZKu2s75VI/vEQAIR5AOIDa2lwJQBDr2VCfojIfvEQBojSAdQGw6KrYAkCfVq7YTdCbD9wgAtEaQDiAWtiMC3MV1Oslbtd0bwu7/PSmCzvj4HgGAeAjSAcSiumILQD96eYOpWrWdoDMZvkcgwvUBxEGQDiA2tiMC3EIvbzBv1faxsfq/3n0tKYLO5PgeKS+TjYY0DMA1bbVarWY6EXkaHh6WmTNnytDQkHR3d5tODuAktiMC7Fet1ivDfmNjXL8qeY0fmzbVA/TGILQIdN3v+R4pHy8w986911imU9GvT7glSRxKTzqAxKhYAfajlzcfqnrlbaO715NyWC6mpoYwmgiuIkgHAKCgGFqcn6IFnQQ3UMlEoyFrRsBlBOkAAOtRqUqnqL280IvgBjrk3WjIaCK4jCAdAGAtVidPLiiQolJqJ1uD3qDgpreXcoRsTDQaMpoIriJIBwBYiyG38dGg4Q4XzlVjcNPRITIwYG9aPbY2eqBZno09jCaCqwjSAQBWYshtMv4GjSVLzKYH4VxofPKCm97eyWvO1rS60OhRdqbv24wCgWsI0i1n+qYGAKYwnzC+oAaNgYF6fhGwpKPr+9elxievHCVNa97H4kKjR1nRgAKkQ5BuKW5qAHSzMSjwYz5hPGENGFu2ELAklcfWY640PiVNq4m6iyuNHibSY0Me0IACpEOQbiluagB0cakRkPmE8fX3i8yd2/yYrQGLzfL4/nWp8SlJWk3UXVQ0eui8Pkzcb225x7vSgALYqK1Wq9VMJyJPw8PDMnPmTBkaGpLu7m7TyQlUrdZvrH5jY3a2tANwi1dpq1br9xQvEEYx9PXVe9A5v8nl/f3rnSMXtEqrybqL1yCwaVO9/Dc2LOh4XRIm7rc23eNtSgtgWpI4lJ50C7k0FA6AW+jZKL5169zppbVN3t+/Ln2vt0qryR7ttCNudPf8m7jf2naPd2nUCGATgnRLcVMDoAONgMWXNmChoaYu6/dvmfMxbd6pGp6dtEFAdzBr4n6b9DN1l1emLAHpEKRbipsaYDeXK+I0ApZD3EDAlvmrtkj7/Us+2tujHSSvANrE/TbOZ+ZdXm1vCHb5Ox3FxJx0AEggjzmMeXFpPiz0sWnOqMtl0qZ8dImLc9nTMFG2oz4zbXl1+RoNUqTvdNiPOekAoEmRdl4oUkUL6dgyf9X1Xmhb8tFFJqfg5Dlq0cT9NmqIe9Ly6vo1GqZI3+koFoJ0AIiJijiKxpY1ClyvKNuSj64yPQWnbOcpTXl1/RoNwnc6bEaQDgAxURFHEZkOkFpVlF2pMJvOR5exDk/+kpTXogazfKfDZgTpAJAAFXFkYWOl1nSAFFZR3rrVreG1qvPRxrKiG8FRfpKU1yIHs3ynw1YE6QCQgOmABm5yYT6niQq3F4gGVZRdHV6bNR9dKCs2K2PjRhZxy2tRg1m+02ErgnQASKEIPQjIj6qAsygBiD8QFWmuKM+ZU8zhtXG42jhhGo0behU9mOU7HbYhSAcAQCMV8zmLFoCEBaJhw2mLNLw2SlHn/uaBxo18FP0aBGxBkA4AgEYqAs4iBSBxA9E8htfaFvyWtXEiKxo3ABQNQToAAJplCTiLFoDEDUR1Dq+1eWRCUef+6kTjBoCiIUgHAEu4GnShtSwBp40BSNaymiQQ1XGcNo9MMDn31+V7kI7GDZfzA4DbCNIBwDCbe/WgVtqA05beVVVlVUcgGjegMj0yIe7nRJUV1Wktwj1IZZkqQn4AcBtBOgAYZnOvHpLTEezZsrKy6rKqopc8aUBlamSCisBPV/AY97y60LOs4jxyTwZgGkE6ABhkulcP6uTR+2Z6iLuNZTVNQGViZIKKwE9H8BjnvJapZ9nWcg6gXNchQToAGGTjfGOkU/TeNxvLatqAKu+RCSoCP13BY5zzGla2i1hhNlnOi5ifgAplaij0EKQDgGG2zDd2hY0VWVd63/Jc8C0PWQOqvBoYVAR+cd4j7fmNOq9hZbuvr7gV5rzLeRkDECCJojeCByFIBwDDbJlvbLuwiqwNgXCevW9pjldFEFCt2llWbWs4CKMinWHvkfX8Rp3XoLLd2SmyZcvkZ2epMNtw/frlXc7LGIAAcbnSCK4aQToAWIIh7tH8FdlFi+zqfdIdLGYJxLIEAUGf6y+rJitLNjYcBFGRzrD3UBXkhd2DGsv23Lkio6PZK8wu9B7nNcS9jAEIEJeNU63y0Far1WqmE5Gn4eFhmTlzpgwNDUl3d7fp5AAAYqhW65V5v46O+t86OiYDGNO89KjmBTJJjzcs78bG4qUz6nO9gNAb/twYzNlK1/kxJer8iqg9Vi/v5swRefbZyccrFZGtW5O9V9ryrIpN5cB0XgC2c/G7JkiSOJSedACA9fwt5+2//faysffJS6PKtMTtbQv6zCy9EK0+16Vhui703KYRdH4rFZEFC9Qfq6qgNk551nUt21gOXJmyAZjiyogplQjSAQBOaKzIzptXD0RsHP6mIwhoFWi3+sy0QUDU59o+TNefDpcaFJLyn18RfcdarTb3oovUf09y3qPKle4g2sZyUMYABEjDhu/4vDDcHUATm4YAolzilj3vebYOf9M1dDXqeON+ZprrW8Xn5ikovXPmZBvy7wovUNZ9rCrOe1i50lmmsk79AIAsksShBOkARMTegAfF11j2entF1q1LVvZsaljKIwjwH29egUdQPtt43+jrq6887g/ybGpQ0F1mdR+rqvPuNSo0ThFxoYEBANJgTjqAxGwcAohyaCx7AwP1ubRJhrjaEqCL5LMKbeN7DQ7W8ysqDao/t1qdDK5sGqY7OFg/7oGB4CH4Juf9eunJaz607mPNet4b86Hxes/j+mH+NwAX0JMOgCGAMCas7PX21oMrF+XZu9zYK+jR9ZnetnfefORKRWT9evM9556gvAjqKQ3rxdbRu+0vCyMjItu25deLa9Mok0Y27Bhga94AKC6Gu0cgSAeCMQSwNSp1eni9n355NhLpOLe6y4vOxrWgtM+fP7XhpK/PjvtEVGNPq+kTOoPCxqH37e0i4+NTn1O2xtC45Zb7LYCiYbg7gMQYAhjOxi17isDr8Vy3TqSzc/Lx9vboIa4qVw/XeW51Bxg6hgaH5Yc3bNzPhtXcvWDOnxfeaIxWAbeOqT5BQ++9AN3GHQnyFLfcli1fAKARQToAEbFrbqltslTiTQcwNvIHgiIiTz1VD6pE6turBTUS6QioXVmLIawcqW5cC8sPL5DyMxlk+svDypXNebFuXev30LWN3NKl9R70Rt7+5VnOl877iar3jvM+NAoDQDSGuwOwho3DG9MOKbZx1WtbRE2tiCoDqqdkuLAWQ9xypOLaaZUfts1JDysPSfMir3LVOPQ+aRp13k9UvXea97Hxng8AujAnPQJBOmAf2wPaNJV45vgHSxsY6wqo05ynPAOLvMtRnM/zb5sVl8p8U1kedNx//Pk4d262hRBVlIOw/FdVxrjn6UFDBlAczEkH4JSwIba2DBVPOjRT1xDaIkg7j1rX1kxJzm3eaxOYKEdx8qOjI3kvsOp8U1kedEz18edjnKH3YbKWg6j8V1XGuOepx1ooQLnRk44paLVFnqKGhg4M2NWznuTaoFcpXNqeS50jLuKcWxPn1FQ5Uvk9oOsYbB+BI6IuH7PkYavXqjg/g4P1/c5HR+u/t7fX15bI655XxHqL6tEYaK2I5Qh2oScdqdBqCxOCesQ6OycXXbJpMa8kX94sjBQubc+lzsUNW51bUz2FpsqRymHpuvLNhsUuWx2HqnxMWw7i5L+KMrZ0afN7TpuWT1ktar0l6Lx5jdZBx8iIhWyKWo7gNnrSMYGeP5jS2CPm9aD72bSYVxK0zBeHyXuky+WoiN8tWXvx057PNK+Lm/9Z0mRqAcYili1P47F5/MfowmgSFxS5HMEu9KQjMeaT5Yc8naqxR8yrbBRlL2FX042pTI6OsLkctbqnFXFUSdqt+7L22KUpB3HzP20Z07VeRCtFr7f099eHuDfyH6MrW0jarOjlSKRYx1ImBOkQEXNfsmVShOFUum/0XnkrYqUe6dlSwdA9vNqW44wr7j3NhmHpKmWp1JsIqvLIfxP37LzqLaauy56eydFlQcdYhuAyD0Wu/xah3llmBOmYQGCkl8st3nnf6ItWqUc6tlYwVFfebD3OVpLe02yp9GYNYtJW6k0HVV76VH6e916m7tk66y22XJfr1gUfY5GDy7wVtf7rcr0TzEk3nRwruTz30VYm5+ypwHwtmFCWcuficbp4T1M5fzfte5k81zYcvy466i22XZdBx2jbeXBdkeq/Lt6jyyBJHEqQDuTEti/8uLjRw4SylLtWx2lzpdG1e5qO9Iadn7DHTQZVKo/ftXOflGv3H5vvEzCn6Nepi1g4DrCQq8OpGFIHE8pS7sKOc+tWO4baRnHpnqZrqHlQz2bUeTM1LFzl8at6L5vnTrt2/7E1XTDLpXs0piJIB3Li8jxrbvQwwcVylybwCDpOF+YSunRPyyvoinve8g6qVB5/0Hs1Lm7Wii1zvVuJc/+xuaEBcOkejakY7g4gNobUIQ7V5cSFcqdiGLN3nLYNtXUh/+PQPdTctvPmp2tOemenyOho9Hs2liHXhuAyFxyAKgx3B6CFDRXNtOjx0E9XD5kL5U5Fz3djz2RnZ/PfOjvzzwdXejzD+K953b1Ktg+RVnn83nv19k7mc1C595ehTZvc2zYs6Py1ut5tPh4AbjAapFerVVmxYoUceOCBMmPGDKlUKnLVVVdJVOf+q6++Kp/5zGdk7ty50t7eLhdccEF+CQbgnKBAgwqUHi4M0dZB9XznarXeM9lodFRduY37Pq6ez1aNCzqDZhemaKg6/mpVZGAgutz7y9CyZXY3ZMQRdb273rAFwB5Gg/Trr79ebrvtNrnllltkYGBArr/+evnKV74iN998c+hrRkZGZM8995RLL71UDjvssBxTC8BFjZXEzZtFFiygAqVD3ntA29DQ4qUhbg9q3DTr6pFNEkCY3tM7C5ONC2WaA9qqnIaVobVr7W/IiBJ13K42bAGwj9Eg/dFHH5Xjjz9eFi1aJLNnz5ZPfvKT8rGPfUx+8pOfhL5m9uzZ8g//8A9y6qmnysyZM3NMLQCddFT+/ZXE8fHJHkrXKlC2B0d5DfW1oacqKA39/SJz59b/7g880qRZR49skiG6tg/dDmNL44Lt+aRKVDkNK0N9fe43ZAQdty1lD0AxGA3SjzjiCHn44Ydly5YtIiLy85//XB555BE57rjjlH3GyMiIDA8PN/0AsIfOoCsqsHClAmVDUBpXHkN9beip8qfhT/+0/tjAQH2Orn8RqTRpVt0jm2aIrgtDt/1cbVxIy/T9q1U5bRXEuyrouMtW9gDoZTRIv+SSS+Tkk0+WefPmyQ477CCHH364XHDBBfLZz35W2Wdcd911MnPmzImfWbNmKXtvANnpDroaK4mNi2+5UoGyISiNS/dQXxt6qoLS8Nxz9cdERLZsaT5HWdOsqnxu3dq8GF2cIbquDt12sXEhKdsa78LKqWtlKOm9xH/cZSh7APJhNEi/++675Vvf+pasWbNGHn/8cbnjjjtk5cqVcscddyj7jOXLl8vQ0NDEz0svvaTsvQFkk0fQ1VhJfOqp7BUo0wGhC73/uho+bOipavWZ/nOUd5rDysbSpfVrwNPREX+Iru0NWX6uBYZpuNR4J2J/GVLV6FGGsgcgH0aD9L/5m7+Z6E0/9NBD5c///M/lr/7qr+S6665T9hldXV3S3d3d9APADnkGMI378aapQJnouVKdP7YH93HY0FPVOP/cL+gc5ZHmqPLpbXs1Pj752OioyJw5djR8+FWrasqq7YFhWq423tlMdaNHUcsegPwYDdK3b98u7e3NSejo6JDxxpoEgEIzEXSlqUDp6rlqVbFWkT+2DI1VEUTY0FPV01MPinp7p5aloHOUR5qjyueyZVOf3xiI29DwIVJP95w59XI6bVr9/6aHcdvIxoYVl9HoAcBGRoP0xYsXyzXXXCPr16+Xbdu2ybp16+SGG26QJUuWTDxn+fLlcuqppza97sknn5Qnn3xSfvOb38gbb7whTz75pGzyJgQCcIoNQVcrOipxcQNnFfljemisjkYCGwKSdesmz4e3YnXUOdI5xD2sfHr/91u7dvL/rcpYXsHK0qUizz47+fuzz9o/jFu3sLy3pWGlCGj0AGCjtlqtVjP14W+//basWLFC1q1bJ6+//rrsu+++8ulPf1ouu+wy6fztCjenn366bNu2TTZs2DDxura2tinv9f73v1+2bdvW8jOHh4dl5syZMjQ0xNB3ALF5wWW12jx03pb3C1Ot1oNjv7ExtZVQ7ziC5HWspkQde16i8rjxb+3tIvPmxct/r0Fn06Z60OJftT6toPwKK6ci6suqC+LmvYqyZ0P5NU1XWQeARkniUKNBugkE6QDSUFmJyytw9ugMklvlS97HWlZR5yFt2VVdblqlY/78qb3+3ggFHWwOTvNo2CIwnUplmbC5fAEwgyA9AkE6gEZJK1KqKl559i7rrIzHOQ6be9KLVpGOOp4kx6qjcaVVORgcFFm0aHLIe6Uisn69urLqfW6ewWma8pVXw5bN16XLaPwwr2j3dYRz7VwniUONzkkHdGCxF8SRdp60qi+DPOeU6pr3H3euvo3zZ21ZTE+1qPKZpOzq2FmgVVnp6anv5z4yUi+rW7fWF4/LatOm5nO9aJH+NRqylK885kizWJo+ptcAKbOi3tcxVRnONT3pKAxar5FE2l4k1a22rrUC+yXJR5uONc35tyn9eWi8p/b2Ni+Ul0acnnTv8yqV+mPPPpv+sxvfz9Pe3rwVncd0L7W/bOXxfUZPuno2T+8pw/2LMl0erp5retJRSrReI640vUi6Wm1drzQl6SW35ViTnP9qtRwt9kG889nbKzIw0HyPTaNVWWl8/2efnRz2PjAgsmBB8s8OSq8XoMftpU7Ts5ykfIWVrbDRLyp7um0c4ZKWrhEASd/XxpXiXbp/ZTmPjA7Rw8b8K8u5JkhHIZTlgoUaaSpSNAIFc2ELPb8457+xYrtggcjmzZOPl+ncL10qsmVL/f9Zjz2qrLS6Z4+OijTsztpS2Pu1t9d76VsFp3kNV291X/FeoyPQcvHa9QvKFxXf+1ny27bGDxe+u1SUbxsbSFxmc+NOWc41w91RGK4OfYEZSYaT2jyEsQx0DNOMs9J4VIW/DOfe5C4EYZJ8dtD7NZ5rndsGxrm/JMlfvt+C+fOlo6PeoJN1ioCK/DYxvNz/ma58d6kq30x7VMf2e46r55rV3SMQpBeXqxcszIpbkerrq/co2vqFVUR5XNNJ9+wu27nPq6LmX9n9gANEXn1V5L336r8n2d+98T0by8/atfV/W1EZ2LS6v8TJX1cCrbylvU7DrnnvMRP5nTWgj7pX2h5s6cjvMsy/F9F3nC7dc1w718xJRykVYege8tfq5u6tDD0wMPlcG4YwlkEewzSDzn/QULrOzvr/y3bu8xq6u3SpyLZt9f+3t4vsvLPIL35Rnw8vUg/Qk362/zshToAuonYoZavXxMnfsgztTCoqH4KmOwQN3w16LM/8VjWkOOpeadvwez8d+V30a0P3UHSX7jk2pkkVetIBIEDQytAdHSJz5zY/Bj1Mt+QH9UzNmeNOhcClXQhanWsTPSV5j8xqdYy60uNaL5RfY750dtbLzPh4cI9xUI+y9x7+Xua40xWy5p2qYfVx7pU2n2tGQiaTx+gIzokeDHePQJAOII758+uLheWxXROmqlYnV/Q2OUzT5optEJsqVknyLqjS+dRT5vPehnnFOtJjUzlRoVoV2bo1/Jiihsb7Nd7fg/JbVd6pbIi0fUh7XK7db9PKcpx5N2CX5ZzkheHuAJCBN1TSH6DbPOTLBB27JzQO4xsZEZk9u/64qWGaeZ3rsO3fkkozRUD1eUwzFLMx0Jk9u37ubVhVOM9rPc5K5arSY8OK3yrLXWNgGjTlLWz4bqshvWlW5E+SZlVDim0f0h5X0b9bXVzFvujnxGYE6QDgE/al53LlRyWd8+EaK8Dbtol0dRV7nYm482TjSLoVZePn9PWpO49pgpjGAKura3J+uq1bRunQmG+bN9dHkqi6xhrLgOktS/OYTxskKJBNGtyqzjtVwTVr8rhBVQNPURplEI3h7gAQYNMmkWXLkq8MXQa6hlaanoduQpJ5smnfL+y1/t7azs76EPMsFfys59DmMtBqVfCs761jR4Gwodkmh0ebHpqd9TzqSD9DiouPVezjK+pxiTDcHQ7LqyUfCOP18syfX/9948ZkK0MXnc5eOJdWlFUhLC+z5G/cHpag9x0dFVmyJN2xeLKeQxvLgMrRDmGSrlQeV1jPnameONO9+CLhOzrEpSPvinqPwyRWsW9N9ygb1xCkwwpcmLCFv1K7bJnZ9NhGdxBVpmF8aefJRgU0cYe9dnRMbm/WaGAge8DUeA7nzk1+Dm0rA0GBro453Y3H3dmZ/RqLCohNDY+2sREmKRuGlhe5Q6PIx2bbvc02NqyVYROCdFiBCxM2sKGXxwU6Kxo2VIDzlGSebJLGzDhBz7p1k/u/i9T3J0/SIBDGS3Nvbz3ob7y/x319qzJQreZzXeoY7RCm8bgbpx2kvcbiBMR5Bsde/hQlUMl6naRR5A6NIh+bx6bvN9vqNdS/piJIh3FcmOVm03kuQi9PHvKoaJQlz4PyMix/VTdm9vSI3HOPyA471H+fNk1k5crJ989SYV66VGTLlvr/N29Ol9agMjA4WN+vftq0+s+cOXor82lHO2T9TFXXmImA2H9P95clEXsClazyDiyL3KFR5GPzs236jg2of03FwnGwgumFZJA/W/fptTVdKDddC6qF3Xuz3JPD0qpibYf58+vXZqO+Pr3fF0H3BJHJx3p766MSbL5PeIGzzgqvjYvU6Zbnsdm8qGJWRT4229h8PZah/pUkDiVIhxXKcGGimc1fFCLFXl00jrIff97irDit+poJqxiPjNS3QfNLUmHWEUxHrYCeR2Xefz4GB+sL7Q0M2P29ldf3a1D5fOopO4MvFfc3E4Gl7d+bWYQdG99F6rjSGJL0nLtURljdHc6xaZ4O9HNhioMrN3zVgobC2XReVPHvG21KkpXDVQ9d7uhonpMuUv+9szP7sMO1a6c+lvUa99Lhl9eQSP9nNA7p1zE8V9W8+zyGEYfd00XsGsKqcqivieG5RZnPH8R/bCtX2jks22WuDCmPmx5bh+4rUyuZoaGhmojUhoaGTCcFKLW+vlqto6NWE6n/29dnOkWo1ZrPS3t7rdbZWf9/X1+ttnmz3s8eG9P7/rVa/Rj6+urHVKnUf3QfX9RxBV0Hra6NNPkU9Jqxsfpn+H/GxprzKW3e6LjGN2+ePGfeT6Wiv2z6ReVdVv5jzHJ8OtPpF3a+VZQl3WlMK+jY8riP5fEZpnjHRh1BD5uux6xcLCNJ4lCGuwMwgikO9okaTuwfWqlyeJmushCUxrDRATqGjrY6rqj89ks7HLFVGhrzo71dZN685jzIcp51XuN9ffVebJPDfnUNPVY9VSCvIdJxyrvpIe66hvpWqyJbt/KdpkrWc2W6rLnA9TxyZei+H8PdASSW95BfpjjYJ2roW+PWU6qHl6kejhs2BC5qWoWOKRetjiuPlcNbpaG/X2T27Pr/x8fr89Ebz2mWyo6ua7xabd7P3dR0GR1DjxuHiTfKcnx5DZFudb7jBle6tBrqm3UqRplWJ9ct7bDswg9/Vqijw+2pbK4M3c+CIB0oOdNfakW6oRZBY4W+s3PqF+CyZWorolH7UKcVVlmO+hJX/QUfd92FJPuk60hDT099kTjvuLdtUx9cqL7Gbamc6WiE0DHvPu8G0TRBb17fQ0HXlorPdmGdlSB5py/J56W5D9JQEo/pep8qRV6jQUSYkw6UnYtzeqBf0LzkjRv1zG/1PqPxJ205bDUHN8856UmurbGxqfmoYt5pnPntuuYs65w3W6R5lX4q56SbkObc5P091Fg2VX22S9+leV8/WT4v7n0kz/UXXOdSWY3DpXPMnPQIzEkHJuU1p8f1uU9l13j+dMxv9YbQ+6Uth1Fp9B5rPCZd5TPunGydc7fjvLfqc5r1eMLOR5xt6ookzt7mNh5/0vJkcm6pys92aZ2VvLdyy+vzirxFnSquzuUuCuakAyWiYksjXcNG4wypsn04IJrLg47hZd487Pb2yc/LUg7jDGndunXy+boqJnGHGescohknDarPadzj8V/7YfeLqPtIkSuVHR3hx5fXcNWk9+c0w75NTl9Q+dmurLOS99D8PD+v8MOfFbBluhBi0N6vbxmGu6MoVA1X0znsLWpIVZGHq+bF5BAv1Z8dtzwk+VwdQ1pVyzJEs/E5Wc6H99q0eet/vNXxhJ3rsHNk67nTIe6UB915kuX+nCZtJr8PyvhdlPc1ZXI6A6YqY5m3RZI4lCAdcJTqLz3VX2qtKutlqnirZuILNq9KT9jnZJ3TaPNcxbjXgup59WnyNM5rWh1P0N/DztHIiN3nThV/vt53X3g+51Ges9yf85h/rEPRylQUl+aku8DVsuNqul3GnPQIzElHEbgypyhsfpgt6c9zPqf/s7J8dp7z7myZZ5n1mG2eq9gqj/1/Hxmpr8Keda/3NHkS5zVRxxN17S9YEPzeNp87VfzH6K2bEHbMOvNE1f3ZxvnyRaEqb9O8T5bPLlqZsOX7Ee5gTjpQcK7MKQqbH2Y6/XluP+L/rPvvz/bZec8ntGFLGxXHbHquYlRaW81l9Z+DZ5+Nv9d72OemydO4r4k6nqhrP+wcmT53qvnzKyhfR0ej81lnnqi6P9v2fVQEqr+7kpwjFZ9dtDJhw/cjCkx7v75lGO6OonBp+FjQkCqT6c9zqL3/szo7s392XulXNV9aBVXHnPfwvqzlPOwctLdPfawxX1QMSw+i4jy0SlvUfHeXRR132vtE0NZ9utNqO53lxHQZNDlNjClqzWyfRgU7MSc9AkE6isb1L4S805/nF2vYZ2X97Dwr0EkrZrrS5mrQ0LjftTeHPOn59p+DSqX1nPQ4503XnPS4XL93JZVkIc2oOelhr9FxTbh0jnTmhw33H5NBIQFpMBoukBRz0iMwJx1AnnNck841TSKP+X1J59zpzluX9soOm9srkmz+Ytg5CNvrPemc4jj5p3JNBR1sSk9YGY1zTpLkcxnm6ieRNj/ilB1b8tpkOmzJA5swJx1JMScdACLkOcfV/1n33KPus/MISpLs/ZvHfPnGY85zbYE0oo47yfzFsHPQmBf+/yeZUxxVjsLy2JaA2KYy0Go/9zjnpNXvnrzXpshKd7rS5EfcsmNTXptcn6Foa0OokOT7EUiKnnQApeXq6u42MzlKIcln6cz/xt6VHXYQee+98Ofq2tFAVQ+P7b1nNqWvVVpU97rZdOxh8uxpTJofSZ5vW16b/P4o6ncXkIckcShBOgBAmbwq5Wm3icojfUFTHEZHRTo76+kbH89W0U9SSc66XZINWyWGyTN9rfIxSVpUBTkuDLW1dbvIpGXHhbwGYD+GuwMAjMhr+F/abaJ0b5kTtp3WyIjIU0+JzJtXfzzNcNE0Q7uTBPNBr7Vlq0cV6UszPDlunidJi39ETVq2D7XNe5h4kvxIWnZsz2sAxUOQDgBQTmWgFCbpHMm85swHVf47O7NX9HU0MLQKQk3PQ1WRvizz1pPkeZK8UjmX3oZRDUFMNfLEff80ZdvWvAZQPAx3BwBop3O4aJLhw3kMv9VxrLqGdsfNj6g81jlHVUX6sqz6nSbPXVotXPf8YheGiTPHGkBeGO4OoPRsXeW4rHQOM09SwTbdM5yWjl7JJCMLwubphvUGq7j+sqYv6XsEvWeaPI+znZ3p1cLzWhXfhWHiBOgAbESQDqBQbNqSqaz8wYYNQYknj6BBV4NEf7/I3Ln1/6toYMga+Acdp+ph3FkbJrK+h45GHRvm+utem8GPQBgAkiFIB1AoeVc+MSlqT23TQYmfrs/W1SDhleWBAZHeXnXDhtMGoWHHuWSJ2usvSfrC8jhLoK2rUcfkiA6bGs0AEcoeEIQ56QAKw/Yto4ouap6tC3NTVdEx31j3HOY083L9aZo7t96I4Kfi+otKX9yyZePcY1Npmj9fZPPm7NsBAlmU6XsBEGFOOgqIVlbEkWePLWWyGb1zk1T3kua1Kn1S/uNct07f9Rf1HnFHz9gWoIuYSdPgYH1LwPHx+u+zZweXUV3Xbqv3zeueUcZ7k20Y+QaEI0iH1ZhfjKR0DyN1oUzqrHyGvXerBpIyVca8XsmRETVDpFU3PqkqH0FDwfMexl3WxqEsx7d0qci2bfX/d3SIdHU1l1Fd97hW75vkc7Mcv+rjs6XRwTVlvXaBuAjSYbUyVeyhhu6FwWwpk0EVGZ0NCHHeOyxAK1tlzMurri5150FF8KujfPiHa+e9mreN6x3olDWQjXMt6rrHtXrfOJ+rogyrOj6VjQ5lVLZrF0iKOemwFvOLYZu4ZVLnPNPBwfriXAMDU+fw6Zy3nOS9g44/TdpsnEMch87zkCVPVKbLprmkNqUlLu8cJD2fcc5hq/yIeg9d37ut3jfu52YtwyqPr1VadK8jUQQuXrsmuPpdiKmYk45CoJUVtmlVJnX3nAwOiixYMLk41+bNk71AOnurk7530DWapCd4cLCery72QOkeNZBliLvKdNkyokTEjb24PY33iK6uZGU87jlsdW6irsUk37tJyk5HR31XgrD3jfO5KsqwqnpFq7SUbfRQWnldu67mO6Mxyo0gHVYzuU0NECSqTOoOXJYsERkdnfx9fHyy4qezUcv/Xu3tyd87bmUsqiHCBWHnIQkdFUqV5cPWAMSFBtzGe4R3Lce9V6gKZFtdi62+d5MGDt7zBwYm0xr0vq0+N6zMLliQLHhRUa9I2sig4n5s+vrSSefIM5eDXJsaQ2FArWSGhoZqIlIbGhoynRQkMDZmOgVAM3+ZHBur1USm/qgqu2Hv39s7+ZzNm2u1vr7643199d9V2by5VqtUJj+3UlH7/p7eXr35mIfG81CpTOZbq3Oi8/ypfv++vlqto6P+Xh0d9d+zcukcpxF2DScp43HOYWdn8/t2dqZPb5Ck597//MZ7VpLPrdWaj9/7SVv+spa3VudC1fWm+75QZDruU3nRXaeAGUniUOakA4AireYgNs4ry7ovtYhIZ6fIU09N7QkLem8Vc9ry2Ks7aL5ob2+9N9BWYXlbrU728sXJs7zmsKooCyrnkpZlXqo3SqRxNIxI+rnVYWVO51ouSd9fR3psW6+m1fWU9Xpjbns6tpWTNPzf+SLFvkeWAXPSAcCAsGGUjUPu5syp/7Qafhc0tLHx/Xt7gwN0keYKiKrhfmHDaP0BRxZBQ0I7O+v7bydJpy7+946Tt3GHhec5hFxFBVXlXNKyDOlcurSeX36thlwHlYGwc6h7LZek768jPbatV9Pqc7MOcbdxaokLbCsnaQQF40W+R6IZQToAKBIWuDQGIc8+W/8RCf6yjQr8Gt9/06Z4gZGqACiowtPZqXabsWo1fkOEn4nt51rlbZJKoqsVyrjpCwsqyhKEeMc1Pt78+MhIeCNH2jKtey2XpO+vIz1lWa/G1fuCKlnvA66Xk56e+ndgo6LeIzEVw92BFNgOA3GFDblr1Dj8TuXQRtXD/RqHJXd21t9nfDx7OoOGO8+ZkyyNeW8/99RT8fI2yVDutMO+bb4fxTkmXefOtnyZP7++EKIXqIdNV2l8ftbtxsKGoKdZzTzrFBod58O2c6yDrdNBdOa96mN2vZww5aE4GO4OaOL6SqHIX5LeU9W9iqp7YbyKwchIfZi7F2zo2M4raeU/7+3nROLlbZJh4XGe23hMLtyP4ozkUN3bZWu+9Pc3N+xUq+EjW1RtN9YoTb5EvSbpfURHkORy4BWXbVsM5nF9qZ4C43o5cX1EANKhJx1IoEytma63PNuksVegUqk/9uyzwb3GqsuYrl4YVelU1dufd0/6xo359nAFfZZXkfWny5ZrN80iYyrSHTbywXSeJM0P1WU6zftlSYMt5VDErrS4ztQCoioXP3S1LLicdtTRkw5oUJa5kypbyYuWN2k19oRs3Vr/GRubDLQa81p1i7muXhhV6VTV258kPUnLZdh7q87bqHT5e5aWLAm+H/X12dODnGaRsazC7tM25ElQfvT2hh+3yntB1PeX6vUCbBrJYFNaiiCPepCuefhFKAsE6CWjdTM4C7FPOrJwec/NuFQcI/u6xhOV167shaoinSrLS9w9ltN8jq5z0ipdYfvl9vY2l5/OzmzXro7jy/tesHnz1H3Cs+6nrTp9Xn546WyVL6rOi/9+U6m0Pjdpvg/iviaPe1wZvrPzFidPde9BnwZlATZgn/QIDHdHFrYu4KKKC0OPi6IIe7iqpmooX9j72Fou46SrcdEx7zneSIxNm+o9sgMDU997ZKS+QFmUPO5reQ3TDNpX2M/bBi2P9IQdd1+fyJYt+ZZF/3keGRHZti06DUnLRpz7Wl7fo9xj9Yg6f7Yu+EZZgC0Y7g5oYtsCLqqpGGZWlmkBWbmwtU7e50zncEZby2VYurzF6UTqxzEyMrlQ3+zZk2sZNG7J11h+2tvjb5GXxz7leQXEQee08RqrVEQWLNA/5LVVWRwYMFsWa7X6uhit0pD0Oy/OfS2P8hY3LUguqkzYuuAbZQEuIkgHUijyjT3rPEi+DOOzdcVWV+fuRVUQbS2XXjr8li2b/P/SpfUeT+/53mPe+dm6tf5YY3kaH6+vwC8SXVk21Xih4/2DznGl0nyNieQTIIaVRa9n0ERZbEzTli31Rhwd6wVE3dfyLm+23mOLwF8mbG0I9VAW4BqGuwMIlGWYWdGnBahm24qtpoeFp93H2ZZhtq34j2/Tpnqe+3nDsoOOq6Mj/Pz09taHxge9n+lpALrPQdj7e4FCHkNew8qiNyWhr09k5UqRiy4KzwfV94Q4aVJ9LmyadmLbPbaoTH93xEFZgEkMdweQWZYvsaJPC1DNpgqDyd6QLD34cXonTZfLsOPr66v/tLdPTbv/OLznhJ2fajU4QG/sNfXLs4cpaJV6lcLOcVBe6urB7ugIXgdgy5b6v4OD9QA9KJ1pr4FW12fYsW/apO96sKG8tUpLXLb0BtvOhd5qm75vgSgE6QC04cvQPaoCmaBKbauKbtb5jHEriK2OJSqdWSrrUcfX3y8yb179//60Nx7XvHn1Idxh58fb1stvdDQ87XEaL1QEKUENCl4vruopFXkFiGHl3JtqEPTcxnzwpzPpNZAkqA87dl336SzlzRa2Tf2xvbFA57m1/dgB1QjSAQBN/JX5tWvDn+uvOAVVauNUdFX04GetIEalM2tlvdXxRaXd/7f166MDzXXrmnty4za0BP1dZZASlo4tW6YGo7oq5KqCiKh8CWo4iTP/O801kCSozys4jltmVDUO6Aze8lrkrhXbGgtaUdnw49qxA8po3g7OOuyTDgDxbNwYvldt2D62QXvRxt2f1vQ+tlGfryJtqo+v1Z7wvb3Z9xlWnebGdPl/xsby31c9rVb54j+O++6Ld1xB7xt2nsfGwvPRpLyuY91lxab8NX1v1CFuPhbx2FFe7JMegYXjYBsWMYEJccpd1CJAQX974on6ll9xBC3WZXJht6iF50TULDhm4viy3F907i0ctk+4KwtPxc0Xf/63Oh+NZaRSqT/27LPh5cW2/MpzP+o8jt2G/C3aHt9J7oNFO3aAheMABzCECybm2MUtd1FDb8P+1tUVPKw37hx3k3NVo+biq5qnb+L4slRkdS60tm7d1CH7tm/h5EmSL/7HWuVdYxnp6prcei9sqHWcOfZ55l9ei/PpKiv+19uQv1nz1LbrJ8kUAlPbFQI2IEgHDLFlrhvyZ7KBJm65SxK0Nmrs4fAqtUkX6zJVAYtKp8oFx1yqYOparTmowcKlCnkeq1jHCUKjGn6C7jNeI5tOeeSN6rISdk9Omr+6pMlTGzsC0jSuuLBiPKADw90BAxjCVW6mhlAmLXdRwxIb/xZkZGTqNlS6pnbo2FM67P3KOj0lr+O2ZS/7uHTki/eeSe8T/rQ0vr69vf63996r/61SaV6AUAcv8NJVblSWlTT3ZNv3e7dhqL7KdJX13oticWa4e7ValRUrVsiBBx4oM2bMkEqlIldddZW0ajfYsGGD/O7v/q50dXXJnDlz5Bvf+EY+CQYUcanHCGqZHNLrbc8Vt9zFXXHcH4x3dgbvE626fOvqKYpKZ1mv0aC51jrYtD1X4zH6jzdNANoqz/zleeXKeD2IYT3mjfeV8fHJAF2kPs9d5+itwUGRBQv09uKqKitp7smm7uNJhrjbOnUkbc94We+9KC+jQfr1118vt912m9xyyy0yMDAg119/vXzlK1+Rm2++OfQ1zz//vCxatEj++I//WJ588km54IIL5HOf+5w88MADOaYcyI4hXHbJq/JiqoHGq8gPDEwdjt5Kq7T594SO2pO7lSSvY8pI/vIaQmuyQt54jHPm1H+8473//uDjjyq3cfPMX54vuije/vVB10Gc+4rOoC3PazNrWYlzT/bnk+0N7Tanz6aGOJvZ0KACw/QuNB9t0aJFtTPPPLPpsaVLl9Y++9nPhr7m4osvrs2fP7/psU996lO1hQsXxvpMtmCDbUxvl1N2JrZ8MvGZ/m1senv1vXeaLXKS5olN2yOVSRm2Q2o8xsafjo5arbOz+fgrlfBy65XFvr5arb09Os+SlufG6yXoZ2Sk+TmdnVOfo+vcuXhtht1/ou5Ltm8XaHv6THKxLKIYksShRoP0a665pvb+97+/Njg4WKvVarUnn3yyttdee9VWr14d+pojjzyy9oUvfKHpsa9//eu17u7uwOe/++67taGhoYmfl156iSAdwIQkQYfqL/a8Kgq6K80qKhVpgr80r7G5cqaSjuNUUY6inpvnuUm693jUj78MNl4PBx0UP8/iBPONzw1qSGhvnwzIvbR4+89XKpPPq1T0Vv5dbczxn5c4x2H7PcX29OXJhQDYxmuHMqROkiDd6HD3Sy65RE4++WSZN2+e7LDDDnL44YfLBRdcIJ/97GdDX/Paa6/J3nvv3fTY3nvvLcPDw/LOO+9Mef51110nM2fOnPiZNWuW8uMAYJ84Q8XiztszMfdZJd1DH7MOX0w7fzLJlJG8hmnrHKIY9N55lVURka1bm9caaG+PX46i0pXnKtStPqvVdmqNWwy2/7YG5S+3S5ZMvu9zz019n76+4HSNjNTnjouIzJ4dXp6jro9p0yYfbxz63tNTP39jY/WfrVv1DjOOe23aNqTXO7dRW00GDX2HG2yfImXbWgI27hBQKjk0GoS66667avvvv3/trrvuqj311FO1b37zm7Xdd9+99o1vfCP0NQcffHDt2muvbXps/fr1NRGpbd++fcrz6UkHyiVpS3mcVmsbW7aTsr0HIUseR/WKqnj/OHTmb9B7h32ezuP09952dsY/zqh0xU1z4/lM27PT+Fnt7cGf1Zi3lcpkD3RfX612333N+V6pTJ1G0qrn3etdz3Legp4/MmLfMPM4w/Vtuh/50+U/vy7d+xuPpbfXnjzOi7/suTINw6b6hk1pKQpnhrvvv//+tVtuuaXpsauuuqrW09MT+pqkw939mJMOFFvSL5VWlUXbvtizfq5tFRKPykq7/702btR/DvMKjr33DnpMZ1nN8t5Rr43zvlFBc5y1C1qlY+PGeK8N+ltQuU0ypz3teTPRSKOSren0pytqzQHbZWlUc1nUd4mt5a6RLQ1YttV9isKZIH333Xev3XrrrU2PXXvttbWDDz449DUXX3xx7ZBDDml67NOf/jQLxwEl0WpOa5ZAIowNX+y2fHHrpqICEDeoVcVEcBz2eXk3FkSlO+5rW71vVNAbloaoINb/PiryKE6jQlgve5bz5s9nF+4Ttlb+WzUmqXj/vIQdi8oFQ+OmI29R15IL14fH9PVQq9lR9ykarUH6qaeeWvuP//iPVAnzO+2002r77bdf7d577609//zztf7+/trv/M7v1C6++OKJ51xyySW1P//zP5/4/bnnnqvtuOOOtb/5m7+pDQwM1P7pn/6p1tHRUfve974X6zMJ0gE3xf1y1fGlYsMXexEWMMpDVG+pjnPYuIK36Z70Wi3/Yfdxn5N2lew4jRRhi7AF5U/cURWqg7JW5aRVHmT5bFVULRBYq9lb+Xfh+yPueYhqFNLN1Hdm3AYgvivjsaHuUzRag/Tjjz++tsMOO9TmzJlTu+aaa2q//OUvUyWyVqvVhoeHa1/4whdqBxxwQG369Om1gw46qPalL32pNjIyMvGc0047rXb00Uc3ve6HP/xh7QMf+ECts7OzdtBBB9VWrVoV+zMJ0gE3xa08pf1SydrbrlOrikeZv0iTBGje81VMGfDnuX+usqk56Y1p1CXLqJM0q7sn7Ulvdb3k2dOWtKc7rEfe5HWdJB1xn2vLsfnpSJeqwD9p2jZvbt56L2wNBh1MNsI0fnaex1xkNGqoo324++uvv1776le/WluwYEFt2rRptY9//OO1tWvX1kZHR9O8Xa4I0gH3pBkeGfdLRUelrNVnp/nCyzJcWAfTX9ppemaznmv/vtNB22XFWcQuraD38B4zcT7yWpgpzZz0tIG4roDKP+89Tp7Y0tucJB1J02z6PhJGVbpUXhNpRlNt3jzZo55XY4jp6Qx5bzcIJJHrnPSf/exntfPOO682ffr02u/8zu/ULrjggtqWLVuyvq02BOmAm3RVWFW+b6sgMEuQGPbavCtEQemwbd6hJ82ex3E/M26e6+4xNNGjbmphpiSru8fJF52NDEFlJenIHpOBTpp02JJm26i4JrKOplLZ6BCH6QYm058PhMktSH/llVdqf/d3f1fr6emp7bTTTrVTTz219id/8ie1adOm1W644YYsb60NQTrgpjjBTtKKiOpKZauKgarKWtLPVcn/Wd5wShvnHWZ9TZzXt8pz3ecm7P11Ng4k7aU2GaQlHW6uM6CKGnpr+rqOorMnvZUkDTO2UnUtmhxNlWaovanpDDQWwWZag/TR0dHav/3bv9UWLVpU22GHHWof/OAHa7fddlvTh/X399d23XXXpG+dC4J0wO0vK9W9laoqN60qBmF/b1iCI7W8KkRpA1Ud0pw3lT3pcRoodFcWo95fV6U97grYQfP2G0d/mBKULzrmgUeNuoj7ebbM207SQKoqzWmmONhO5bSPvEdTpb2fmLrWbWngAvy0Bul77LFHbbfddqudc845tSeeeCLwOb/+9a9rs2fPTvrWuSBIR5nZUulTLcsXsso8SdKT3t6uvhc6jwpRmiHfOqQ5byrnpMftJTbRk657X3j/Z4btJR33eXmJamTyp0dlQBXVkBWnfNjSqJqkgTRrmsPuMwRcakZdJF2p37We6aLWdeA+rUH6N7/5zdo777yTKmE2IEhHmRWxdVlVBUJFhSPJnPTOTjfPRVDw0Rjo5C3JeVNVcTPxmWHuu2+ysaezs3mVeR3nJqiHvFIJ7p0OG3GRpMyrDgR0BX9h6Yza+k9l8JNXwKR6nYewzwhrTHEhQDRB96r6rtYdKCewTZI4tK1Wq9WkRIaHh2XmzJkyNDQk3d3dppMD5KZaFZk2berjY2MiHR35p0el+fNFBgfrx9jRIdLTI7Jxo7n0eOkIMzoq0tU19XFXzkVYWdq4UaSvL//0xGWynLQqE2n5j2nuXJGBganPy3puBgdFli4V2bSp/j79/SJz5tT/FnZfWbBgMm3t7SLj48HP8/KlMY+CPq+nJzqNcfK48X2DJL0G46YzLG1Zy2SafGqVprifM2eOvu+UxnxpFCePdF1rSZlIR6vPTFvespQz1VTmqy1lBeWRJA5tzylNQKH5KxI26uiof7l6X0j+313WWGHo6an/blKrPO3sdPtc+NPb3l7/3eYAvVqtVzC9a9X/u25Jzm3cNAUd08CASG+v+nOzdGm9oi4yWWHv6Ii+rzRel/PmiVQqU5/nvd/8+fWAzwsigj4vTNDrw3hBydiYmmswbjrD3jfrvStJPnmS5FfU5+j8TmnMl0ql/iMSnUdpjkuHvNIRdJ+Iyvss98DG62bjxvwD9GpVbb7aUlaASNr79S3DcHeo5Nq8J9fSm5RLQ9tcPxcupt/2IZtp8jTomFSfG1XbP4UtBuaf+uHt6xx3iHPa85o1n0wPV0/7+WnmLwd9zsaN8fajznJfTrK6uy3Xt+502LBQqipJtlLs7Kyv5aIi7bblA8qD4e4RGO4OlWwbZh0XQ7yS0Zlfqt87y/ulea1LZcmmIZtB0txPoo5J5bkJSttTTzW/f9zPq1abh8IH6e0V2bKldV5kncbjfX7afDL9HZD089PmV9DniDRPZ5g3r/mz87zebJnOlUc6spQ5W+6BcdMRNu3BkyZfbSkrKCeGuwM5MD18Ngu+iOLJY0icqnORJa1ZXmuqLKW5zrzK7MiImSGbUdLeT6KGoao8N42V6Nmz63noLy9hnxd0DGHH5g2ZXrcuehh4Y3CdZsh1Y5n3GgzSMD3VJunnp80v/+esXdt8DsfHp57TNEPx07JlOpfudGStdzTeL556ytw9ME7ZiDq2xukySdlSVoCWtPfrW4bh7lCp7EOmVA1jtJVL5zdLWoNea+v5yTLU0/Yh+qrLm45zmGQP9qj8jrsdof8Ygt4zzTZgNuZ13PcIel5eOw40fk5UHprYtsuW61t3OrKW3aj05XHfT1I2/Mfq3Scap8ukyWNbygrKR+sWbK4jSEeYNF9OZb3RFzlQ8ri0N2yWtCbZO9oGqhsjbKLq2tB5jY2MpK9gN+Z3mj3nW71nkjnyuq9tHUGzjrUGsmiVHlPXmy33aF3pyFoO8ljHIk0agoTdJ1SVLVvKCsqDOekRmJMOPxVztFyal6tCljlxpudwJlGWtGbZ7ihPaeYSevnh0jzErPcTHeW28T7Z2VnPt/Hx8PePm99JjjXue8Y5/rh5lPRcpPk+iZuWLOfVxLoatsx/Lqq0a4gEXUNx14BQJWnZaDxWl+7lgB9z0gGJP0dLxby5Mn0xjI4mnxMX9lzb5/Gbnm+aRNq0VqvRezvbdH6SzCX0z7PfutWdeYhZ0qTjGqtWm++TjZXksLIW91x5DShxxHnPuMff6npJu07DkiXJvk+i0tuY5rTn1eS6Gqa37WrFlvtaWmnuE0HXUG9vfevGPL+Xk5aNxmNlTjnKgiAdhZOkUuJa0GiSl69dXfWetPbf3j2KGiiJ2F/JbJQ0rY3nZunSepCiau9oneI2RgQ1vplqdGm8v+i2dWv9+vR4+6QnWenc4/VyTZs29T45Otp6AT4dgXCr94xbgW91vSRtvB0crH9O0mAnKL2VSn0xu8Z8SROY+BtXohbo0knH/SNLmsu+R7b/Glq3ztx9P+1nuNSADqSmffC9ZZiTXnxJ5yrZPk/VFmELuETNX7Nh7huC9fYGl3tXzk/UXMJWc47zmofo3+NXdZ62mgfufW6rz/Of8/vua97/2v+T9D6pen/zqPcMOp489j/353uSY/Knt1LJdm02Pi/qOFy51hupSDPf+XWN5dnFslCrMacc7mFOegTmpBdbmrlKzJtrLSxfR0aae+3ivMY7F2Wbx+9n6vgHB+tDcgcGpv6t8Tqx9fzETZcN6wkEzfVXkZawe5aqPbA7Ouo95WFU3CfzmFeapQwnKT9R83wbt5KLk16R1vnS6rii9pauVOqjLfzPs239iTBZ02xyPrOt99RGLqQRcBlz0lFaaYYEujSk2ZSwfA0L0KNe0/h7GZkearl0aX2BoEZB14lt5ydpvukcDhlnqG3YUGcVU2rC5j23uuaCPjNoyk9YgN7bq+4+mce80izvlaT8hM3z3bQpWT55DSSt8qXVEPeo8vXss/XrZ9MmO6d6tVrbJGuaTcxnNn3PT8K2+74Opss4EBdBOgonbeW8DF9OWaxc2VyxWbmy9WuYNzaVioUK0wqr1M6dm8+5yVI5SppvOhrfklS2oxZKSxsUxJn3HHTNRaU7KGgJanzr7Kz3Cqu8T9p8f0hafoLm+aaVJV/ilK/Nm0WWLas/L87aInmIc22pCrDzLneq7/kEmem41FgCiIgw3B2FxbAttWzd/sclNmwd4z+Pc+fWgzydsk4psSHfRJJfA/5ty0ZHsw0VTzJ8vvGaa5Vu//lZuVLkL/+y3usqUh8ivX59c5pVXtNJt2Gz+V5iKl8ahW2X51epRJ/jPMW9tlROT4ubv1nOqcp7F1PzsnFxegeKJ0kcSpAOoCVbgqQiMF1RuP9+kRNOqAeMnZ0i99wjctxxej9TxTGbzrcsayx4f9NR2W817znJtetP3+jo5BBsj6lAgQAluWq1Pv/cyzePd069bd5MByxpvl/yaKxRVeZU3bv6+vLdy7xIqMPAFsxJB6CUiXl8YVwd6hc1HDlPF13UPFT6oov0fp6qbQ5N51vYNbB1a7xhunGCiqRbdcWZ95zk2vUea9xuccGC5mNKM3RXxTVrcpqIx7V7T2Mgt3Fj/byL1EfPjI6qmY+uIk/SfL/k8d3jL3NLlqR7n6z3rrTb+2GSTXWYIqM8qkWQDiAW00GSyflkKvfkFclnocK4i4TprOgNDtaDvEZpK0dx5whnPZao1wddA62CxzjlNm7ZTjvvOem1G3ZMScuPqms273LrV4S5rH19k9eP1zMcN2AJymfVeRJVRnWf57j3yoGBej4lPdas62PEXewT0UzXYYqsCPdIK2ndDM5C7JMOZGNqX1ITe9u6uCdvqzTnmZ6gvaN17cGb9VwleX3jfuut9mOPk99Bz2m1D3wacV7X6piSlB+VZc3k3tY6Ptv0/s6tyvvYWPRzdJ2PsL27e3vV3zeS3Cu9n7zLXtj1qCM/VDBdruNQlUYXjjUvJu/PrkkShxKkA7Beq8BBl6xfPCbS3SrNKhoe4sj72LOeq7SvD3pdYx63yoOwfNJ9fuIekz8tccuP6vOfV7n1S3McUX8zdRxh/GltTF9nZ/A1kde13ddXq7W3T75/Z6fa/Ipzr+zt1XOsSV7vT2dvb7bP1sG2cq1TmY41DlP1M1cRpEcgSAfclHdLraovnjzTnSTNeXyBqq5chqU567nK8vqgCltQkBu3J91kr13QMYWlxd/QEMR/XCqCLBXlVtc1HKfybnuPU1hZ9F8Tuo8jqgdZ5/sHlY3eXnXHmibAcyEotL1cq1SmY42LPImPID0CQTrgJhMVFRVfPHmn26Yvy8aeqM7O9HmQR/CjYtSE92/SnvEkPe95GRlpnZZW52Xz5snzLlLvFTVdHtNci0GvCzonrcqQ7T1OUWXXfzz+PNm4UX160vRiZ+mhztL4ovozg9hSTvxsL9cqlelYk3ChIckWBOkRCNIBt+X5ZajyiyevdNvyZdmYjh12mBy2qiuAznNOepr0xp0PbrqRJWy4c1BDg2tBqYqGmLByEvdYTZ/fVhrT197eunFt40Z99xt/I4/qQDrpa1QMcbfpelDJ9nKtUpmONakilGXdksSh7JMOAC3ksSevaqbT3Lg3cJC4+9Mm3d8263GryLcs+yub3g+88by1t9fzfnR08u/etl5PPRXvvJje396TZZ/kxjIRdTxxjtX0+W0lKH1z5oTnke7z62195q2sHpZfWdIR95rPem/wdrvwrqf2dpF584qx17nt5VqlMh0r1EsShxKkAwCUCguIRNJV5ONWwE03TPhlSU+a16pooAg7b35jY5N7qJsMSqOO2f+3pIGcP+1r105uo9jIC/STHKttZdUvTvqyNHyoTI/udKgqw3199a3UvIbLzs56Y1eRAjzby7VKZTpWqJMkDmWfdACAUv49fDs66hVSkXT707ba39bWPVqzVOCSvFbV8Qedt76+8D214+w7nHWP6DBBx+wFP2H5kXW/+E9+Mnp/8STHanvlPk76wsqLjmOLek/vc9vb46cjyd7rjeVg8+b670kMDtbTMzDQ/Lmjo/VRCkVie7lWqUzHCjPoSQcAKJd02GwcYT0XtgypNiXt8QflZ1DvcUfH5GO9vSLr1jUHoKp7lOK8X9iw/L4+kZERkW3bwvMjSy9xpVL/99lnJ/Onry/R4RWKDUN/BwdFFi2qnxOR+jlavz44HUnTG1YONm6Mf97Dpv50dtbLKoDyoCcdAFJK0sOCcEG9ilkDubA56Js2TZ43/+9Fl+b4o3revfPWOM966VKRlSvrAfrAQHPPooi6AL0xXX194SMC/Mc4Pj45z3dwsB6sReVHnPRu3To5+qPRtm0iXV3N+RNn9EJRy6OukRJJLF1aPy8i9XPb1RWeDv/oiFa94l6vvN+yZfHSFnU9jo4Wt1wAyI4gHQDEniHTSSptLlTwdA8JzHPIrY3SHH+cQGXZsubnnHBCfT5t1GuyakzXwMDknHe/qGP0rokkQ5/D0hJ0fXlB1yc/GS/YM3VfyfveYOp6S9JIlbZBb+3aqY/FbQiMKn+VSvwF6wCUD0E6gNKrVqcGLkuW5JuGJJV5WxoUktBZ0Uw619hVYXmY5PijApWw4KVabe710zFaIeg9R0fDr8O1ayePubOzuZGiUqmvmi2SrjxEHV9Hx+SIgjj5kbTnNisX7w1ZJGmkStugF7UuQxxppwAU8VzS4ADER5AOoLQaK0H+oMTb8ievilGSynzeFf8s8qho2jDkVqdWeZh0wTJ/wFGp1HutvfffujV44T+doxW84NfPv9iWlxfeKusbNzavkN3TU5+PnKU8tFr4cN26eEFblqkYaYMZV+4NKoO1JI1UaRv0sjQEelsW+jVOywjiyrmMo4gNDoBuLBwHoLRa7eWd1yJkSbYQynPbIxVUL+pWpm1vvGNVnYf+xbOCFlrr729+zsqVIhddpHeBsDj7SEflhcqy0Wrhw7gLkGXd9i1JPrtwb9C50FyS85+2rGQpY0nKggvnMomyL+4JeNgnPQJBOuAmHStIJ9kTWnfFKEklJs8KT9a9vlVVNG1YRTovjcfqDa32U1EmvcapqHPkP/+6G0m8qSbeSJbG8xxWnrZvF5kxQ096Wh1vq78nLbdZr+2kr9d5PoPeu8zBWt5lwRZZvgfK1CiLcmB1dwCFoWuYXNj8xN5eM4uQ5TFkMwkV+R41BzTpcNciDf1spfFYt2zRN9S8oyP4HPmvAf9rdOrpqQcxQUPV/Wlta6v/u+OO9RW9779ffXpaHW/QSJdGSaYiqNipIO69Qefw47D3LvtODEmn5RRlrY2kawFUqwyPB0REpFYyQ0NDNRGpDQ0NmU4KgBj6+mq1jo5aTaT+b1+fuvfevLn+fiL1fzdvDn4sT2Njep6bVJx8j/P5/vy8777k+Ts2Vn++/0fn8esUle6wY/V+KpXoPEuTJ43nqLPTXNmPozGt/p/OTjvSlSXvVN3vWpUDnffVqPfW+blF5ep9rlGc68N/H6KcoIiSxKEMdwdgrbzm5QUNqSvzMLtW+Z5m6HnW+dWmhn7qnufcah5zo7a2ei930HGrmA7Q11fvuY/KY1uui3feqfeg+42MBO9vrpuq8pnHtA6d91Ud944isOW6MS0qH1qtEePqfHygEcPdARRCXntgh23XU0Rp9vb1/55m6Lk3xD3tcNe8h37qGG4ZN9/CApdaLflWX3GHEns7GoSdGxuGnzYey4wZU4Pxzk4zAbrKYdyqdyoI20ZO13211XsXfScGv6jrpizD/BtFDXGP2vYwbvksY56iuAjSAVitKPPysspa+YgTZDV+Rli+ZwlIsgQHeVfuVc+BT5JvYVs2iTTPF2/13n198YJqb1X1RioaZlQJK7v33DMZlHd21n83QUfQmzVgbnW967yvBr23v5zn3QhqKngLum5saPCyjf+aaW9v3vawVfkkT1FI2gffW4Y56YCbijAvL4085rpGfUZQvmeZV2p6zn8cuubAJ823xud78zTD8sv/3knmdPo/x39uTK8J0CrfRkbySUcU28p13LKm8xyOjZnPF5OfH3bd9PYy3zpI0LmKWz5Z6wCuYE56BOakA3CJirmureaJ5rmXc2OaooY+mp5uoGMOfNJ882/Ftm5d+PPTbtsWd36yyTUBXNovOq+y2+r6sWXLK9PbiNn2+XPn6ttSsSiSlkHX7hEoN+akA0ABjI6qmevaaiu0pJ+hYuh5UOXJpiGLOoYDJ823xudv2hT9fP9z4w6/jjtU29S0k7zWpVBFd7o2bWp9jaTJMx3XXpJ7i47h6DZs+ea/btatc6s8m5A0L1y7RwBxEaQDgGW8CnNXl7o9ssOCrLgVnLAFfVRqnL+5eXPzvOe855TqnAOfphKa9LlJguo4z43KD93nZu1a1qXw7gnz59cDTe+xOIsPxskzHWsOxLm36GyYsyF4C7puWGdFPfIURcRwdwCwTOMQyfb2egV2dFTNlkVBQwmjhmHntWVS2JDFe+8Vufji8m3ZpEqSoaNJh5nqLhv+91+7tv6vKrZPuWgUtT1V1LDeOMehc7hwqzKiezi6zVu+2VbGioA8he2SxKEE6QBgkbAKcx77PwdVcPKc09nYS+jp7Kx/tqk5pQinu2zoen/VjVK6A4Owe0J7u8i8eWryRPe5DMqjPOcSe40bcbfxItADoANz0gHAUWFDNHUE6EHbIjU+lveczq98Zepjo6Nm55QimO6yofP9o4Z2R0258MtrDYWwYdrz5qkb1qt7uHCW9RCy8rYYbHWebFoTA/rxPQLbEaQDgGV0V5iDKqNBj+U9p/Pii6c+pmpOPtTSVTYaezzTvH+rindU8O//2/h4/Xf/6A5Pq3ncjZ+RVeM9oa+v3sutcq0EnWswRMljLnHc+fY65uXDPjTGwBUE6QBgGd0V5qDKaFgFNawSrboXwguQ/P79391bEKgsPTRxAqy4eRFUcU4SwMWteEcF/97//ZYtCz6usGC/MS1dXWqCAf89QeXc/EZ5N4DpvtfFHZGRZeSGiuu9LPcMG9AYA1cQpAOApXRUmMMqo2EVVH8lWkRPL0RY8PSJT5jp4UujbD00UQFW0rwIqjgnCeCSVLxXrmwuZytXTv5t7dqpzw8K1qKC/ca0jI7GS1NcRR1Fouq4/Odp69bmqUJhIzJMbVtXtnuGaTZsywfERZAOWKCsXxBlPW6TOjqmzm/v7GxdQfX+r7MXIqrn1IXgxGQPjclrKejcJMmLVhXnOEPck1S8L7qo+bkXXTT5t76++MFaUHmN21NbVKaOLyzYXbq03sjj6egIH5FhYts6enXzZcO2fEBcBOmAQWVtRbfluIteYQ5SrU727nlGR+PtRa27F8LUvFgVTPXQ2HItNUqaF2EV57iSVLzjpC1usBZUXjs6RCqV1mksGtPlMCjY9c7t+Pjk80ZHRebMCX6PJPcfFdc7vbpmsKc6XEGQDhhU1lZ008dtukIZJo/KWVhA4y1GFVRBzbqYV5o0usZUD43paylImrxorDjPnl3fcjDq+vRfK3Er3nHSlrSxKM45LnowYHoUSVCwK5LumoxzPlVc7/TqmuFyYzDKhSAdMKSsreg2HLdtgU3ejQZxh5VnXczLU7QyHXY8effQ2HAthUmaF40V564ukW3b6o/7r8+wayVJxTtJQJ9UtSry7LNTH3/qqeIGA6bLYVSwq/OaVPHe9OqaQ2MIbNdWq9VqphORpySbyAO6eZXMarX+heFVNIvO5HFXq/UKvt/YmLkvbVP54X1emnS1eq3IZIC1aVO90txYIXVNtVpfhCrO8YTlTZw8SyroHD31lD0V0KTH3Or6VHmt6DgfInquZ11pVcX0d1mre02a/Iv7GhXnxvbzC0CNJHEoPemAQWVtRTd53LYNMTTZCxV1zFkX8xKxb8RCGo09twsWiGzePPl42PH480bnSImkw8TzlvS6iro+VV8ruq55lfc3W6fm+Jn+Lms1kiLJuU6a5yrKEQE6AD960gELlLUV3dRx29bDa7oXSke6bByxkEZjHgSJczx5nN9qtd6IYGM5Sirq+swrL1WUURXvk/Z4Td1bi/BdZuv9GMiqCNen6+hJBxxT1pumqeO2beEY071QYbKky7YRC2lE9dTGPZ48R0pEfY4N89Tjiro+dV4rqnutVQyBTlp2TPe8m2oYUPletq7zAKRl+r6AdAjSARhnqgJkS8BoW6OBJ2u6bG18iCtqK7C4x5PnivhBn7N1q7uVs6A80nmt2DY9I03ZSXMMrgag/sDDW9E9C5cbF109j9DPtnsb4iFIB2AMrbvNbK0Ipk1XUEDlWkVy7drgx5Os1p1XY0XQ5/grZ0uW6PnsPDSWHdXXiq09qEnKTtJjcP3+21i2N22qH4OK43CtcdH18wi9bL23oTXmpAMwhrl/5WHbOgBJzJ9fXzBufDxbOc1rPqD3OWHrAvT2iqxblzz/i76GhM33o7h5n+QYbD7eVsLKdnu7yLx5ao7Dlfm7Lp/HPLhyHnWijNiDOekArEfrrnlF25te1/H099cr/iLZetbyqii2Gqq7ZUuy/DfdU5fXUE2be1Djlp24x+D6/TesbI+PqzsOFwI718+jTqbvWzax+d6WRlnKN0E6gNSy3ChdnvvnurwrL7orkrqPx9Y1A+Lo7xeZO7f5saT5nyVIznqO8wxCXD7PHv8xzJkT/DzvftveUAvs7KyvYZCnLOcxaERF2b5H+B4Np6Nxz9XgsAj3NpHyNbwQpANITNWNsmitu67IexGZNBXJJJWhvI7HxYpvT089qO3tTVeRTxskq7pHmAhCXDzPfnEWDOzvbx4yXq3mt6CUivLhBR4bN04u8FjG7xHXvkfzCHRVN+4VJTh0/d5WtgXwmJMOKFSWuU+q5zeVJd9sYGr/8rjzipPOP7ZtP3ZdZTnr+2aZ153meld5j3BlPYO81xyIEif/TV47OubIlv17xPbjz/s6VlnGmNNtnm3f9WkxJx3IWVFaWePQMfzUpRus60wNj4y70nvSlnJbhnsODtY/N8k9IM41o+reEme4Y1h6kvbUqb5H2D5UM6/7f9zPiZv/pq4dXVMYyv49Yvvx590LqmqEAfP+7WDLd32eCNIBBco0BKeMN8qiMTk8sqMjPNhIWxkyPdxzcFBkwQKRgYHJ3/33gMZjSBLUqb63BF2nrdKTNEjWdY+w9R6T1/0/7uckyX8T1w7fIeVjItBV1bhHebWH6e/6vDHcHcioKENwknBl+CmimRoeGTV0MMuwwjyOJ+gz+vomA/RGY2P1ucH+a8ULtlodY173lqg8T5unRbtHhOVDXuco6eekmTaS573AhfJh+/Bx17g8ZNyF8lomLl+bzgx3nz17trS1tU35OffccwOf/95778mVV14plUpFpk+fLocddph873vfyznVQLMytrLaPvwU8eRVRht7S1r1qGRpKdc9pz6s9z8oQPcWavP3fi5ZEr9HKY97S9j52LQp2xBuXfeIvIeYthplkNf9P+nnpBn9kCebv0PKNH0tTy73gtpcXsuoyPXrRkaD9Mcee0xeffXViZ8HH3xQRESWLVsW+PxLL71U/vmf/1luvvlm2bRpk5x99tmyZMkSeeKJJ/JMNjCFy18+WZTlRol0giq7rYINWytDYUONw7ayWrcuOAAeGEi20rrue0vY+Vi2TM0Q7lb3iLhBt6nAKc4Q87zu/2k+x/Z7tI3pK9P0tTzZem9PwsbyiklFWyfAquHuF1xwgdx7773yzDPPSFtb25S/77vvvvKlL32pqaf9xBNPlBkzZsjq1atjfQbD3aGTy0NwANXChje6NnSw1VDjxuPp7a0H6N7xBOWBN+Q9yfHrvLf4z8fatfV0+6kcwp20DJgYKpt0iLlNq7sjnTJOXwNc51KdIkkcGnArMmN0dFRWr14tF154YWCALiIyMjIi06dPb3psxowZ8sgjj4S+78jIiIyMjEz8Pjw8rCbBQAC+xOFX1gq114vs/71anQywXMkbr3fZHyT6e/+DjqcxIPcC9DTHH/Y8FXkYlJ6o41UhqLcyLOiOKksi+spQq/Me9Pw80BCgT9JzDsC8JN8nLrFmdfd77rlH3nrrLTn99NNDn7Nw4UK54YYb5JlnnpHx8XF58MEHpb+/X1599dXQ11x33XUyc+bMiZ9Zs2ZpSD0ANCv7vMY4c2hdqvjGGWocdDxRQzyzHL+O8tWYHp1DuJOu9NzRUZ9C0GiHHeor6uu+vso2lans9y0RN8550Yb1wl62l7Uib5FnzXD3hQsXSmdnp3z3u98Nfc4bb7wh/+t//S/57ne/K21tbVKpVOSjH/2ofP3rX5d33nkn8DVBPemzZs1iuDsArVxeyVZETU+aS0PQ4rKlhzGv8qXreJOkP2wIckdHfteXLec9rrTpdf2+pZKN57yI91TYyaWy5tJ9y5nV3T0vvPCCPPTQQ/K5z30u8nl77rmn3HPPPfI///M/8sILL8jmzZtl5513loMOOij0NV1dXdLd3d30AwA6udyyq7InrQgLBfnZUGnPs3zpOt4kvZX+URjeIn15Xl82nPc4sly/Lt+3dLDxnLOoHfLiUllzYfRLGlYE6atWrZK99tpLFi1aFOv506dPl/3220/Gxsbk3//93+X444/XnEIAiM/lbfl0fDHnedxlCChcLl+epA04jZWwefNEKpXm429cMT8u18pKnPRmuX79+ehiuSoyGlGQF9fKWhE7BEQsCNLHx8dl1apVctppp8k033i2U089VZYvXz7x+49//GPp7++X5557Tv7rv/5LPv7xj8v4+LhcfPHFeScbACK52LLr2hdzo7LNpXWxfAWJGwD6K2Hr108ef0dHfWu7uOfdtbISN71Zrl/vMwYGmhdEdLVcFVERGufgBlfLmu3pS8p4kP7QQw/Jiy++KGeeeeaUv7344otNi8K9++67cumll0pfX58sWbJE9ttvP3nkkUdk1113zTHFANCaiy27rn4xi7g1NE8Fr3yNjLhTvlTwr6jf2zsZhLY6797zXCsrcdOb5fpt/IxqtZ6vZSpXrihK4xzsR1kzz5qF4/LCPukAEM6lxWI8Zdzb2MXzpFrc8+7fx35goPVrbJG0bKcpF2W8flxn46J2KCbKmlrOLRwHALADIwDc4FpvsA5xz3tjXm3ZUt/OzZWykrRsN16/Tz0V7/oty/XjwrSduIp2bmAvypo5BOkAgCls/GKOqmSXaWiey2sHqNbqvAfl1eioyNy54a+xTdKyPTiYfA/5Il8/tq9BUMbrFkBrDHcHAFgtyRDesgzNc2lf2LSSnMvR0XoPeZCwvHKtrMRNb5ay4VqexGHrtcKUFaB8GO4OACiMJEO7ixZghKHns/m5XV3hzw3LK9fKSpz0Zh1l4VqetGLzqBOmrISz4fwAptGTDgAF4kpPWNx0sqhVNFfOdxJJej6TPLcxr4qYbx5be45NiZMfUeVBR1nhvhaM0QUoOnrSAaBkbJ936YlKZ1DvSVkWtUqraPmQpOczaS9pR4c710kWcUZZlKmnMio/osqDzrLCfS0YowuSKdN1XEYE6QBQAK5UboLS2aoyXOSh3X66Kl2uVOaSBC9xnus/bleukyyidmgoQyOFX1R+RJUH3WWlTPe1OGyemmCbMl7HZcRwdwBwnCtDJ8PS2dtb3xqr1fDcIg9R1jXMM+n72pDHrdLcmMaw5wY9PmeOG9eJTlFDv6MW3yuiqPumSH5lxYZrLguV6WeqRjzkk7sY7g7AebSex+fK0MmgdPb2igwMxOs9se14VErTaxfnGon7vjb1zIT1fAalMey5QcftynWiS1hP5fr19YX3vJ/77zebzrxElYc8y4qr5U/HPYPRBa0x4qA8CNIBWMWmYMElKis3Or/s/elct67cgZNI8kpX3GskyfvaOAzcXwai0ugf4h523GUOAsICz6VL673oIvV/TzjBWBJzF1UeylxW4tBxz4iamoC6sjc2lgnD3YEQrg9Bc5WKYVxlPndZjj3PlXXjDFkuE10rmsdd2dr2YeBJ09jquMt6j/Bfa9/+tsiCBVOfNzJSvqHvea7u7joX7hlFxnemuxjuDmRAT645WYdxleXcReVHlgpSnr2pjemk9yR+r13SayTO+4b1xCxYYM81lLT3qNVxlzWQ8F9rhx46NRjv7CxXgC4SXR7KWlai0JtrFt+Z5UCQDvjYOOyzLLJ+8Rf93OlshLBhnlvZKniNeRu30pX0Gon7vkE9MbZdQ0mGH1OJjdZYXu65ZzIo7+ys/w60UuTpAK7M7y7bd2bZMNwdaMAQLvPSDuMqw7nTuaJrtTrZc8qKsXplHaqoa6ijK9cQw4/1KNvq7lCjSNcjw8ihG8PdgZQYwmVe2h6wpOfOlZZyj66e7sbe+ZERkdmz648XrWfEJllHfOjqJXbl/heUHlPXc16fm8fnEKAjSKuyZ9v9IYuij8aDWwjSAZ8iD+FySZov/jjnztV567oCqMZKybZt9S2YGCKsj8rGFh2VY9fuf6au57w+19X7FdxXtrJnw5QvoBHD3YEQRRrCVTbeuQs6hzqHjGcRp7ypHopn+/Dmol6DtpbBRq7kvam8zOtzXSgrKCabyl5e9yObjhnFxHB3QAEXKqgItnVrcA+AjS3lSXorVA9ztnV4c9F7cFzorTZdBuLQeT1HvUde9xEb71coB1vKXt7fBS7cm1EeBOkACidsXpmNQWmaOXAq02tjpaTo8wJZeVwNHddznKAgr/uIjfcrlIMtZS/v7wLuzbAJQTqAQmnVA2BTUGpDb4VtlRIb8iQvBFvZqb6e4wYFrT5XVXm16X6FYt6Hwpgueya/C7g3wwbMSQdQOHHmldky55Y5cFORJ26x4VpSkYY0azT4P1fn9nim87jMyrw1l8myx3cBioY56QBKLU4PgC0VXtO9FTYqW5642jtn09oBKq7nNEN8/X/TNTzXlvtVGFfLcJCgYyn6FJwoJste2b4LgEb0pAMoLJd6n1xKa16Knieu984VsZcryzmxfbcEHVwvw43CjqWM59U2Rf8uQHkkiUMJ0gEAMKCvT2TLFjeD3KIHLmmDgiI2XEQp0vFGHYup4yQ4BYqF4e4AAFhqcLAeoA8MuLtAni2rP+uS9jjKNDy3SIs82rbgqE1TSQCYQZAOADDOxYp9WkuX1nvQG7kY5JYpII3Ltt0SdErbUGPjtd7qWPI+r2WeAw+gjiAdAGBM2XqMwnob587Vt42XLmUKSJNyqbEliyQNNTZf64ODIiMjk9fc7NnmFhwt0ggFAOkRpAMAjHGlx0hFBdmbX+rvsevtrVfCvWDHpmAm7LgbHy9aQEowFF+Shhqbr/WlS0W2bav/v71dpKtLf6NTWDkr+lQSAPEQpAOwks0VZZvT5hIXeoxUBMz+91i5srn3cd265ufbEMyEHbdNDQiqFfnYdIszxN3Wa92flvFxvWmLU86YSuIeG8oyioUgHYBVbK4o25w2F7nQY6QiYPa/x0UXhfc+2hLMhB23DQ0IuhT52Eyz+VrPO21xyhlTSdxBvQC6sAUbAKvYvKWPzWlzlc37LKvYZizNe5guZ2FpHhmpDwP2K8K2a3ltKefKllo60mnztZ5X2oq+dWEZmb5fwy1swQbASbb0IgaxOW0us7nHSEUPW0eHSKXS/FilMvkeQeXH9FDXsOPu7LS3NzQr3b2prvS26Uynzdd61rTF/R6weUQBkqNeAJ0I0gFYw+YKjM1pKwLT+RhWqdIVMEcFQ17AMDJiLpgJO27TDQg66Tw2V4bS55FO09d6lKRpS9OoUeRrqGyoF0AnhrsDsApDIiGS37DguOc0bXrChrf29tb3Sg8aImlTOQs7bleGbaeh+thcGeLsSjptkmWoc5GvoTKx6X4N+yWJQwnSAUQyVZGwuQJjc9pcl3eFJ4/5hP7PmDtXZGBg6vO8YIg5jsXjyjl1JZ02oFEDjcpcLyjzsSfFnHQAmZmeQ2nzDd/mtLkuz2HBec0n9A9vXbcufIgkcxyLyZUhzq6k0wb+oc3t7Qx1LrMynnfT9cSioycdQCB6VBBEZ4u5iZ6pPMt5Y95FjRjg2ksur56crJ/jSo+TK+k0bXBQZNEikWefrf9eqYisX89wZ5QD31XJ0ZMOIBOTvXn0GNopjxZzE4vw5Nlz2HgcUatJ05sZX149Oao+x5XA15V0mtbTU9+W0MuvbdvsXRQQUIlRX/rRkw4gUN4tpCy+Yre8yoOpcmBjz6GqNNl4bKrkVS6L1GNU5PKQN+alo8yKdF/MCz3pADLLuzfPlS2KyijPFnNTeynbWKHOmqaizxfMq1wWoceoWi1ueTB5HtiCC2XGqC+9CNIBBMozWCpCJbjITFRE0753WctM0HEXveErr3LpciDWGJgvWDBZHjZvdr882NLoQKCCsjLVqF4WBOkAIuVREXW5ElwWtldEbamw5y3suMvS8JVXubS9/IdpbKgZHZ08/+Pj9fKwaZO5tGVlSyMUgQrKjrqaHsxJB2AF5qS7wdb5rGWdGxd13GXKkyzlMslrbS3/QcLmSzfq63OzTDAXHICLmJMOwDn0RrjBxgpwWXqN/Vodt6u9v2Gizmeacplm9EXY59hY1vwjktrapj7H1euE0VcAio4gHYBVqGSVi4oAwdUKe9Zjb3XcRWn40jWVQcVwadunWTQ21PT21vfxdu06CVO0RigAaESQDgDInergxqUKu8pjj3PcrgZhHn8wvWTJ5N/SNnSoGn1hy7zoMP6GmvXr3blOWilKIxSyc3E0CNAKc9IBALnTNV/ahTnDOo7dheP2JJ0DHjT3+KCD6sO3n302/RoWWc+Dy/OiXSovQBjWsoFrmJMOALCWzjnktgceuo7d9uMWST8HPGhI9nPP1QN0733T9GBnHX3h6jQLETfSCLRi+0gWIAuCdABArlwObrIq87GnrVD394vMnRv+97QNHSqGS7s0zQIokrIuGIryIEgHAOSuzMFNGY89S4W6p6f+3N7e4MaMrA0dUa9rlT7mRQNmlLnBE+VAkA4AyF2Zg5uoYy9qL5CKCvW6dZN5VanUf0T0NHQkHZpPYIAoRb2uTStjgyfKgyAdAGBMmYObxmO3fSsvFbJWqBsbN7Zurf/oauRhritUKMN1bVKZG3tRfKzuDgCAYbpWu7eR7SuLu7xqe15sP4e2KNN1DaA1VncHAKAFW4ag2r4AUlQ60qTR9uCOua7h6BmOz/brGoDdCNIBAKViW6Bha1AYlU+25aFqzHUNxjSA+Gy9rgG4geHugEMYYghkZ+MQVC/g2bSpXpFvDBJNiconG/MwqTj3U+65k5gGkJyN1zUAc5LEoQTpgAP4ogfUsD3QsCUojMonEbvzsBXup+kVoXHGBFuuawBmMScdKBidQwzLND+uTMeKYLYPQbUpHWH5pDIPTVyTeQzZLuq9hmkA6dhyXQNwB0E6YDldi88UfU5pozIdK1oj0IgnKp+y5qGpa1L3Yl423mtUNhiw5RUA5IPh7oADdAwxLNOwxTIdK+JjCGo8UfmUNg9NXZPVqsiCBfo+26Z7DcP6AcAuDHcHCkZ1z1+ZtoYp07EiGQL0eKLyKe0Q97yvycYe7pERkdmz64+rHElh272GldgBwF0E6YADVA8xtH1erkplOla4rwyNRyauycaAdds2ka4u9UO2bbrX2NZgYIuyHz8AdxCkAw5RWdkr07xcFcdK5Q462TiXWac87z9hAasOttxXbWowsEHZri8A7mNOOlByZZqXm+ZYmddZHiavBZvmMucprzzv6hIZHZ38vbOzPuxdFxvuq9y7JpX1+gJgF/ZJj0CQDiAJKnfFZzqYsX3vdteVPX9taDAwqeznH4A9WDgOABRgXmc5mF5gi6HJepU9f8tynGHKfv4BuIkgHQBCULkrPlsaYmyZy1xU5K9Zphs2Of8AXEOQDgARqNwVmy0NMap3cEAz8jc5FYF1Hgu2xUkn5x+AawjSASAClbvis6khhlEaermSvyZ7nlUG1jqnkqRJpyvnHwBYOA4AAGGBLZhnehFDEXWLZepesI1FPQG4xpmF42bPni1tbW1Tfs4999zQ19x0003S09MjM2bMkFmzZslf/dVfybvvvptjqgEARUSADtNML2Koco0GnVNJsqTT9Px4AIjDaJD+2GOPyauvvjrx8+CDD4qIyLJlywKfv2bNGrnkkkvky1/+sgwMDMjtt98u//qv/ypf/OIX80w2AACAUjYsYqg6sNY1lSRNOvOYHw8AqhgN0vfcc0/ZZ599Jn7uvfdeqVQqcvTRRwc+/9FHH5WPfOQj8pnPfEZmz54tH/vYx+TTn/60/OQnP8k55QAAAOrYsoihysBa55oeSdNpepQCACRhzcJxo6Ojsnr1ajnzzDOlra0t8DlHHHGE/OxnP5sIyp977jm577775E//9E9D33dkZESGh4ebfgAAAGxjwyKGOgJrHQ0NSdJpwygFAEgiYEkPM+655x5566235PTTTw99zmc+8xn51a9+JX/0R38ktVpNxsbG5Oyzz44c7n7dddfJFVdcoSHFAAAA6niBpw2LGJr+/LjipNMbleBfaM6VYwTisuHeATWs6Um//fbb5bjjjpN999039DkbNmyQa6+9Vm699VZ5/PHHpb+/X9avXy9XXXVV6GuWL18uQ0NDEz8vvfSSjuQDAAAoQSVbPRtGKQC6sOZC8VixBdsLL7wgBx10kPT398vxxx8f+rwjjzxS/vAP/1D+/u//fuKx1atXy+c//3n5zW9+I+3trdsc2IINAACgnOhpRBGxJaEbnNmCzbNq1SrZa6+9ZNGiRZHP2759+5RAvOO3d1oL2hoAAABgMQJ0FA1rLhST8SB9fHxcVq1aJaeddppMm9Y8Rf7UU0+V5cuXT/y+ePFiue222+Tb3/62PP/88/Lggw/KihUrZPHixRPBOgAAAACUgS07Q0At4wvHPfTQQ/Liiy/KmWeeOeVvL774YlPP+aWXXiptbW1y6aWXyssvvyx77rmnLF68WK655po8kwwAAAAAVujvr28ruGkTay4UhRVz0vPEnHQAAAAARcOaC3Zzbk46AAAAACA9AvTiIEgHAADwYdElAIApBOkAAAC/xX7DAADTCNIBAAB+a+nSycB8cLD+exkxkgBpUXaA7AjSAQAAhP2GRRhJgPQoO4A6BOkAAADCfsMijCRAepQdQB2CdAAAgN/q76/vMyxSvv2GGUmAtCg7gFrTTCcAAADAFj09Ihs3Fm+/4TjH440cGBycfH5PT7HyAXpQdgC16EkHYD1a4gHkrSjBRdJ5wmUeSYBsKDuAOm21Wq1mOhF5Gh4elpkzZ8rQ0JB0d3ebTg6ACN6ctk2b6i30jRUAAEBrXmDe2Lu5cWPr1xVtJAHyQ9kBgiWJQ+lJB2AtFqEBgPSyzBMmyEJalB0gO4J0AFZiERpzyGOgGFitHgDcRJAOwEpULvPHHrdA8TBPGADcQ5AOwFpULvPF9AKgeLw56GNj9X9Z1wMA7McWbACsVdStkGzkTSfw/07eA8XAdQwA7qAnHYD1qFzqx/QCAAAAOxCkAwBEhOkFgI1YyBEAyocgHQAgIuWau0rgA9uxkCNcwf0UUI8gHQDQpMhD3Al84AoWcoTtuJ8C+rTVarWa6UTkaXh4WGbOnClDQ0PS3d1tOjkAgBx5FUlvQTxv9ABgk2q1Hvj4jY0VuxENbuF+CiSTJA6lJx0AYA2dwyYbV6wP+h12KfN5YSFH2I77KaAXQToAwLg8hk0S+LiBIbR1LOQIm3E/BfQiSAcAGJfX/FsCH/sxF7uuTAs5wk3cTwF9mJMOADDKxPxbbw4l7MJcbMA93E+BeJiTDgBwholhk1Qo7aSzLDBXFtCD+ymgHkE6AMA4hk3Co7osMMcdAOAahrsDAKzBsEl4VJUFtokCANiA4e4AACcRoMOjaog720QBAFxDkA4AAAqJbaIAAC4iSAcAIAZ6X93EegcAANcQpAMAEMHmhcdoOGiN/cYBfbgHAXoQpAMAEGHp0snAfHCw/rtpNjcc2Ioh7oA63IMAvVjdHQCAENVqvRLqNzZmNuhjxXIAJnEPApJjdXcAABSwceExViwHYBL3IEA/gnQAACLYtvCYjQ0HAMqDexCgH0E6AAARbFx4zLaGAwDlwj0I0Ctgph0AAPCzqZfIazjw5oMCQJ64BwF60ZMOAICjqBwDMIl7EKAHQToAACg1FrwCANiEIB0AAJQSez0DAGxEkA4AAEpp6dLJwHxwsP47AACmEaQDAIDSYa9nAICtCNIBAEDpsNczAMBWBOkAAKCU2OsZAGAj9kkHAAClxF7PAAAb0ZMOAABKjQAdAGATgnQAAADLsaAdAJQHQToAAICl2MsdAMqHIB0AAMBS7OUOAOVDkA4AAGAh9nIHgHIiSAcAALAQe7kDQDkRpAMAAFiKvdwBoHzYJx0AAMBS7OUOAOVDTzoAAIDlCNABoDwI0gEAAAAAsARBOgAAAAAAliBIBwAAAADAEgTpAAAAAABYgiAdAAAAAABLEKQDAIBEqlXTKQAAoLgI0gEAQCyDgyLz54tMm1b/d3DQdIoAACgegnQAABDL0qWTgfngYP13AACgFkE6AABoqVoV2bRpcqi7/3cAAKAGQToAAGipo0Okr6/+b9DvAABADYJ0AAAQS3+/SE9P/f89PfXfAQCAWtNMJwAAALihp0dk48b6EHd60AEA0IOedAAAkAgBOgAA+hCkAwAAAABgCYJ0AAAAAAAsQZAOAIAibEcGAACyIkgHACCjwUGR+fNFpk2r/zs4aDpFAADAVUaD9NmzZ0tbW9uUn3PPPTfw+cccc0zg8xctWpRzygEAmLR06WRgPjhY/x0AACANo1uwPfbYY1JtGBv49NNPy7HHHivLli0LfH5/f7+Mjo5O/P7mm2/KYYcdFvp8AAB0q1ZFNm2a+jvblAEAgDSMBul77rln0+9/93d/J5VKRY4++ujA5+++++5Nv3/729+WHXfckSAdAGBMR4dIX1+9B90LzHt6CNABAEA61sxJHx0dldWrV8uZZ54pbW1tsV5z++23y8knnyw77bRT6HNGRkZkeHi46QcAAJX6++uBuUj93/5+s+kBAADuMtqT3uiee+6Rt956S04//fRYz//JT34iTz/9tNx+++2Rz7vuuuvkiiuuUJBCAACC9fSIbNzIEHcAAJBdW61Wq5lOhIjIwoULpbOzU7773e/Gev5ZZ50l//3f/y1PPfVU5PNGRkZkZGRk4vfh4WGZNWuWDA0NSXd3d6Y0AwAAAADQyvDwsMycOTNWHGpFT/oLL7wgDz30kPTHHB/4P//zP/Ltb39brrzyypbP7erqkq6urqxJBAAAAABAOyvmpK9atUr22muv2FuprV27VkZGRuSUU07RnDIAAAAAAPJjPEgfHx+XVatWyWmnnSbTpjV37J966qmyfPnyKa+5/fbb5YQTTpA99tgjr2QCAAAAAKCd8eHuDz30kLz44oty5plnTvnbiy++KO3tze0Ig4OD8sgjj8j3v//9vJIIAAAAAEAurFk4Li9JJuwDAAAAAJBVkjjU+HB3AAAAAABQR5AOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAByVK2aTgEAALAZQToAADkYHBSZP19k2rT6v4ODplMEAABsRJAOAEAOli6dDMwHB+u/AwAA+BGkAwCgWbUqsmnT5FB3/+8AAAAegnQAADTr6BDp66v/G/Q7AACAhyAdAIAc9PeL9PTU/9/TU/8dAADAb5rpBAAAUAY9PSIbN9aHuNODDgAAwtCTDgBAjgjQAQBAFIJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWIIgHQAAAAAASxCkAwAAAABgCYJ0AAAAAAAsQZAOAAAAAIAlCNIBAAAAALAEQToAAAAAAJYgSAcAAAAAwBIE6QAAAAAAWGKa6QTkrVariYjI8PCw4ZQAAAAAAMrAiz+9eDRK6YL0t99+W0REZs2aZTglAAAAAIAyefvtt2XmzJmRz2mrxQnlC2R8fFxeeeUV2WWXXaStrc10cjIZHh6WWbNmyUsvvSTd3d2mkwPHUZ6gEuUJqlGmoBLlCapRptBKrVaTt99+W/bdd19pb4+edV66nvT29nbZf//9TSdDqe7ubm4GUIbyBJUoT1CNMgWVKE9QjTKFKK160D0sHAcAAAAAgCUI0gEAAAAAsARBusO6urrky1/+snR1dZlOCgqA8gSVKE9QjTIFlShPUI0yBZVKt3AcAAAAAAC2oicdAAAAAABLEKQDAAAAAGAJgnQAAAAAACxBkA4AAAAAgCUI0i01e/ZsaWtrm/Jz7rnnBj7/mGOOCXz+okWLck45bJS0PImI3HTTTdLT0yMzZsyQWbNmyV/91V/Ju+++m2OqYbOkZeq9996TK6+8UiqVikyfPl0OO+ww+d73vpdzqmGrarUqK1askAMPPFBmzJghlUpFrrrqKmm1tu2GDRvkd3/3d6Wrq0vmzJkj3/jGN/JJMKyWpjy9+uqr8pnPfEbmzp0r7e3tcsEFF+SXYFgvTZnq7++XY489Vvbcc0/p7u6WD3/4w/LAAw/kmGq4bJrpBCDYY489JtVqdeL3p59+Wo499lhZtmxZ4PP7+/tldHR04vc333xTDjvssNDno1ySlqc1a9bIJZdcIl//+tfliCOOkC1btsjpp58ubW1tcsMNN+SVbFgsaZm69NJLZfXq1fK///f/lnnz5skDDzwgS5YskUcffVQOP/zwvJINS11//fVy2223yR133CHz58+Xn/70p3LGGWfIzJkz5fzzzw98zfPPPy+LFi2Ss88+W771rW/Jww8/LJ/73Ofkfe97nyxcuDDnI4BN0pSnkZER2XPPPeXSSy+VG2+8MecUw3ZpytR//ud/yrHHHivXXnut7LrrrrJq1SpZvHix/PjHP+Z7Dy2xBZsjLrjgArn33nvlmWeekba2tpbPv+mmm+Syyy6TV199VXbaaaccUgiXtCpP5513ngwMDMjDDz888dhf//Vfy49//GN55JFH8kwqHNGqTO27777ypS99qamn/cQTT5QZM2bI6tWr80wqLPSJT3xC9t57b7n99tsnHmtVPv72b/9W1q9fL08//fTEYyeffLK89dZbjNIouTTlqdExxxwjH/jAB+Smm27SmEq4JGuZ8syfP18+9alPyWWXXaYjmSgQhrs7YHR0VFavXi1nnnlmrABdROT222+Xk08+mQAdU8QpT0cccYT87Gc/k5/85CciIvLcc8/JfffdJ3/6p3+aZ1LhiDhlamRkRKZPn9702IwZM2j0gYjU7zkPP/ywbNmyRUREfv7zn8sjjzwixx13XOhr/vu//1s++tGPNj22cOFC+e///m+taYX90pQnIIqKMjU+Pi5vv/227L777rqSiQJhuLsD7rnnHnnrrbfk9NNPj/X8n/zkJ/L00083tfYBnjjl6TOf+Yz86le/kj/6oz+SWq0mY2NjcvbZZ8sXv/jF/BIKZ8QpUwsXLpQbbrhBjjrqKKlUKvLwww9Lf39/05B5lNcll1wiw8PDMm/ePOno6JBqtSrXXHONfPaznw19zWuvvSZ7771302N77723DA8PyzvvvCMzZszQnWxYKk15AqKoKFMrV66U3/zmN3LSSSdpTCmKgp50B9x+++1y3HHHyb777hv7+Yceeqj8/u//vuaUwUVxytOGDRvk2muvlVtvvVUef/xx6e/vl/Xr18tVV12VY0rhijhl6h/+4R/k4IMPlnnz5klnZ6ecd955csYZZ0h7O19DELn77rvlW9/6lqxZs0Yef/xxueOOO2TlypVyxx13mE4aHER5gmpZy9SaNWvkiiuukLvvvlv22msvzalFIdRgtW3bttXa29tr99xzT6zn/+Y3v6l1d3fXbrrpJs0pg4vilqc/+qM/ql100UVNj9155521GTNm1KrVqs4kwjFJ71HvvPNO7Ze//GVtfHy8dvHFF9f6+vo0pxAu2H///Wu33HJL02NXXXVVraenJ/Q1Rx55ZO0LX/hC02Nf//rXa93d3TqSCIekKU+Njj766CllC+WWpUzdddddtRkzZtTuvfdeXclDAdGFYblVq1bJXnvtFXsrtbVr18rIyIiccsopmlMGF8UtT9u3b5/Sw9nR0SEi0nJLJJRL0nvU9OnTZb/99pOxsTH593//dzn++OM1pxAuCLvnjI+Ph77mwx/+cNPiliIiDz74oHz4wx/Wkka4I015AqKkLVN33XWXnHHGGXLXXXexLTISYU66xcbHx2XVqlVy2mmnybRpzafq1FNPlf3220+uu+66psdvv/12OeGEE2SPPfbIM6lwQJLytHjxYrnhhhvk8MMPlz/4gz+QrVu3yooVK2Tx4sUTwTqQpEz9+Mc/lpdfflk+8IEPyMsvvyyXX365jI+Py8UXX2wi6bDM4sWL5ZprrpEDDjhA5s+fL0888YTccMMNcuaZZ048Z/ny5fLyyy/LN7/5TREROfvss+WWW26Riy++WM4880z5wQ9+IHfffbesX7/e1GHAEmnKk4jIk08+KSIiv/nNb+SNN96QJ598Ujo7O6Wvry/vQ4Bl0pSpNWvWyGmnnSb/8A//IH/wB38gr732mojUF02dOXOmkeOAQ0x35SPcAw88UBOR2uDg4JS/HX300bXTTjut6bHNmzfXRKT2/e9/P6cUwiVJytN7771Xu/zyy2uVSqU2ffr02qxZs2rnnHNO7de//nV+CYb1kpSpDRs21Hp7e2tdXV21PfbYo/bnf/7ntZdffjnH1MJmw8PDtS984Qu1Aw44oDZ9+vTaQQcdVPvSl75UGxkZmXjOaaedVjv66KObXvfDH/6w9oEPfKDW2dlZO+igg2qrVq3KN+GwUtryJCJTft7//vfnm3hYKU2ZOvroowPLlL/+DgRhn3QAAAAAACzBnHQAAAAAACxBkA4AAAAAgCUI0gEAAAAAsARBOgAAAAAAliBIBwAAAADAEgTpAAAAAABYgiAdAAAAAABLEKQDAAAAAGAJgnQAAAAAACxBkA4AAAAAgCUI0gEAAAAAsARBOgAAiPTGG2/IPvvsI9dee+3EY48++qh0dnbKww8/bDBlAAAUT1utVquZTgQAALDbfffdJyeccII8+uij0tPTIx/4wAfk+OOPlxtuuMF00gAAKBSCdAAAEMu5554rDz30kPze7/2e/OIXv5DHHntMurq6TCcLAIBCIUgHAACxvPPOO3LIIYfISy+9JD/72c/k0EMPNZ0kAAAKhznpAAAglmeffVZeeeUVGR8fl23btplODgAAhURPOgAAaGl0dFR+//d/Xz7wgQ9IT0+P3HTTTfKLX/xC9tprL9NJAwCgUAjSAQBAS3/zN38j//Zv/yY///nPZeedd5ajjz5aZs6cKffee6/ppAEAUCgMdwcAAJE2bNggN910k9x5553S3d0t7e3tcuedd8p//dd/yW233WY6eQAAFAo96QAAAAAAWIKedAAAAAAALEGQDgAAAACAJQjSAQAAAACwBEE6AAAAAACWIEgHAAAAAMASBOkAAAAAAFiCIB0AAAAAAEsQpAMAAAAAYAmCdAAAAAAALEGQDgAAAACAJQjSAQAAAACwxP8HXAfg7Eh7F9oAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "data = lib.datagen(8, 8, 1000, 2)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gs8JbPdF_c2c", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1db0f0be-5c20-4c26-8a6d-3e8c68388dff" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 1\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 1\n", + "Epoch 1/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step - loss: 58.6168\n", + "Epoch 2/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 58.5819\n", + "Epoch 3/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 58.5470\n", + "Epoch 4/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 58.5122\n", + "Epoch 5/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 58.4774\n", + "Epoch 6/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 58.4427\n", + "Epoch 7/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 58.4080\n", + "Epoch 8/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 58.3733\n", + "Epoch 9/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 58.3387\n", + "Epoch 10/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 58.3041\n", + "Epoch 11/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 58.2695\n", + "Epoch 12/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 58.2350\n", + "Epoch 13/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 58.2005\n", + "Epoch 14/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 58.1660\n", + "Epoch 15/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 58.1316\n", + "Epoch 16/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 58.0972\n", + "Epoch 17/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 58.0629\n", + "Epoch 18/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 58.0286\n", + "Epoch 19/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 57.9943\n", + "Epoch 20/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.9600\n", + "Epoch 21/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 57.9258\n", + "Epoch 22/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 57.8916\n", + "Epoch 23/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.8575\n", + "Epoch 24/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 57.8233\n", + "Epoch 25/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 57.7892\n", + "Epoch 26/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.7552\n", + "Epoch 27/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 57.7211\n", + "Epoch 28/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.6871\n", + "Epoch 29/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 57.6532\n", + "Epoch 30/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 57.6192\n", + "Epoch 31/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 57.5853\n", + "Epoch 32/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.5514\n", + "Epoch 33/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 57.5175\n", + "Epoch 34/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 57.4837\n", + "Epoch 35/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 57.4499\n", + "Epoch 36/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.4161\n", + "Epoch 37/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 57.3823\n", + "Epoch 38/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 57.3486\n", + "Epoch 39/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 57.3149\n", + "Epoch 40/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.2812\n", + "Epoch 41/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 57.2475\n", + "Epoch 42/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 57.2139\n", + "Epoch 43/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 57.1803\n", + "Epoch 44/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 57.1467\n", + "Epoch 45/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 57.1131\n", + "Epoch 46/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 57.0796\n", + "Epoch 47/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 57.0461\n", + "Epoch 48/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 57.0126\n", + "Epoch 49/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.9791\n", + "Epoch 50/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 56.9457\n", + "Epoch 51/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.9123\n", + "Epoch 52/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 56.8789\n", + "Epoch 53/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 56.8455\n", + "Epoch 54/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.8121\n", + "Epoch 55/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 56.7788\n", + "Epoch 56/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 56.7455\n", + "Epoch 57/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.7122\n", + "Epoch 58/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 56.6789\n", + "Epoch 59/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.6457\n", + "Epoch 60/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.6125\n", + "Epoch 61/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 56.5793\n", + "Epoch 62/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 56.5461\n", + "Epoch 63/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 56.5130\n", + "Epoch 64/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 56.4798\n", + "Epoch 65/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 56.4467\n", + "Epoch 66/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 56.4136\n", + "Epoch 67/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 56.3806\n", + "Epoch 68/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 56.3475\n", + "Epoch 69/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 56.3145\n", + "Epoch 70/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 56.2815\n", + "Epoch 71/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 56.2485\n", + "Epoch 72/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 56.2156\n", + "Epoch 73/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 56.1827\n", + "Epoch 74/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 56.1497\n", + "Epoch 75/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 56.1169\n", + "Epoch 76/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 56.0840\n", + "Epoch 77/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 56.0511\n", + "Epoch 78/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 56.0183\n", + "Epoch 79/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 55.9855\n", + "Epoch 80/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 55.9527\n", + "Epoch 81/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 55.9199\n", + "Epoch 82/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 55.8872\n", + "Epoch 83/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 55.8545\n", + "Epoch 84/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 55.8218\n", + "Epoch 85/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 55.7891\n", + "Epoch 86/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 55.7564\n", + "Epoch 87/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 55.7238\n", + "Epoch 88/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 55.6912\n", + "Epoch 89/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 55.6586\n", + "Epoch 90/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 55.6260\n", + "Epoch 91/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 55.5934\n", + "Epoch 92/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 55.5609\n", + "Epoch 93/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 55.5284\n", + "Epoch 94/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 55.4959\n", + "Epoch 95/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 55.4634\n", + "Epoch 96/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 55.4310\n", + "Epoch 97/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 55.3986\n", + "Epoch 98/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 55.3661\n", + "Epoch 99/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 55.3338\n", + "Epoch 100/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 55.3014\n", + "Epoch 101/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 55.2690\n", + "Epoch 102/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 55.2367\n", + "Epoch 103/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 55.2044\n", + "Epoch 104/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 55.1721\n", + "Epoch 105/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 55.1399\n", + "Epoch 106/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 55.1076\n", + "Epoch 107/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 55.0754\n", + "Epoch 108/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 55.0432\n", + "Epoch 109/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 55.0110\n", + "Epoch 110/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.9788\n", + "Epoch 111/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 54.9467\n", + "Epoch 112/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 54.9146\n", + "Epoch 113/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.8825\n", + "Epoch 114/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.8504\n", + "Epoch 115/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.8183\n", + "Epoch 116/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.7863\n", + "Epoch 117/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 54.7542\n", + "Epoch 118/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 54.7222\n", + "Epoch 119/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.6903\n", + "Epoch 120/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 54.6583\n", + "Epoch 121/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.6264\n", + "Epoch 122/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 54.5944\n", + "Epoch 123/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 54.5625\n", + "Epoch 124/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.5307\n", + "Epoch 125/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.4988\n", + "Epoch 126/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 54.4670\n", + "Epoch 127/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 54.4351\n", + "Epoch 128/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.4033\n", + "Epoch 129/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 54.3716\n", + "Epoch 130/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 54.3398\n", + "Epoch 131/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 54.3081\n", + "Epoch 132/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 54.2763\n", + "Epoch 133/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 54.2446\n", + "Epoch 134/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 54.2130\n", + "Epoch 135/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.1813\n", + "Epoch 136/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 54.1496\n", + "Epoch 137/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 54.1180\n", + "Epoch 138/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 54.0864\n", + "Epoch 139/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 54.0548\n", + "Epoch 140/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 54.0233\n", + "Epoch 141/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 53.9917\n", + "Epoch 142/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 53.9602\n", + "Epoch 143/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 53.9287\n", + "Epoch 144/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 53.8972\n", + "Epoch 145/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 53.8658\n", + "Epoch 146/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 53.8343\n", + "Epoch 147/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 53.8029\n", + "Epoch 148/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.7715\n", + "Epoch 149/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 53.7401\n", + "Epoch 150/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 53.7087\n", + "Epoch 151/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 53.6774\n", + "Epoch 152/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 53.6461\n", + "Epoch 153/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 53.6148\n", + "Epoch 154/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.5835\n", + "Epoch 155/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 53.5522\n", + "Epoch 156/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.5210\n", + "Epoch 157/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 53.4897\n", + "Epoch 158/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 53.4585\n", + "Epoch 159/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 53.4273\n", + "Epoch 160/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 53.3962\n", + "Epoch 161/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 53.3650\n", + "Epoch 162/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 53.3339\n", + "Epoch 163/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.3027\n", + "Epoch 164/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 53.2717\n", + "Epoch 165/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 53.2406\n", + "Epoch 166/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.2095\n", + "Epoch 167/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.1785\n", + "Epoch 168/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 53.1475\n", + "Epoch 169/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 53.1165\n", + "Epoch 170/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 53.0855\n", + "Epoch 171/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 53.0545\n", + "Epoch 172/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 53.0236\n", + "Epoch 173/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 52.9927\n", + "Epoch 174/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 52.9618\n", + "Epoch 175/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 52.9309\n", + "Epoch 176/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 52.9000\n", + "Epoch 177/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 52.8692\n", + "Epoch 178/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 52.8383\n", + "Epoch 179/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 52.8075\n", + "Epoch 180/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 52.7767\n", + "Epoch 181/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 52.7460\n", + "Epoch 182/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 52.7152\n", + "Epoch 183/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 52.6845\n", + "Epoch 184/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 52.6538\n", + "Epoch 185/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 52.6231\n", + "Epoch 186/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 52.5924\n", + "Epoch 187/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 52.5617\n", + "Epoch 188/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 52.5311\n", + "Epoch 189/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 52.5005\n", + "Epoch 190/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 52.4699\n", + "Epoch 191/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 52.4393\n", + "Epoch 192/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 52.4087\n", + "Epoch 193/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 52.3782\n", + "Epoch 194/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 52.3476\n", + "Epoch 195/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 52.3171\n", + "Epoch 196/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 52.2866\n", + "Epoch 197/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 52.2561\n", + "Epoch 198/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 52.2257\n", + "Epoch 199/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 52.1953\n", + "Epoch 200/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 52.1648\n", + "Epoch 201/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 52.1344\n", + "Epoch 202/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 52.1040\n", + "Epoch 203/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 52.0737\n", + "Epoch 204/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 52.0433\n", + "Epoch 205/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 52.0130\n", + "Epoch 206/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 51.9827\n", + "Epoch 207/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 51.9524\n", + "Epoch 208/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.9221\n", + "Epoch 209/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 51.8919\n", + "Epoch 210/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.8616\n", + "Epoch 211/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.8314\n", + "Epoch 212/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 51.8012\n", + "Epoch 213/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.7710\n", + "Epoch 214/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 51.7409\n", + "Epoch 215/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 51.7107\n", + "Epoch 216/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 51.6806\n", + "Epoch 217/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 51.6505\n", + "Epoch 218/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 51.6204\n", + "Epoch 219/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 51.5903\n", + "Epoch 220/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 51.5603\n", + "Epoch 221/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 51.5302\n", + "Epoch 222/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 51.5002\n", + "Epoch 223/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 51.4702\n", + "Epoch 224/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 51.4402\n", + "Epoch 225/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 51.4103\n", + "Epoch 226/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 51.3803\n", + "Epoch 227/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 51.3504\n", + "Epoch 228/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.3205\n", + "Epoch 229/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 51.2906\n", + "Epoch 230/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.2607\n", + "Epoch 231/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 51.2308\n", + "Epoch 232/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.2010\n", + "Epoch 233/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 51.1711\n", + "Epoch 234/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.1413\n", + "Epoch 235/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 51.1115\n", + "Epoch 236/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 51.0818\n", + "Epoch 237/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 51.0520\n", + "Epoch 238/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 51.0223\n", + "Epoch 239/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 50.9925\n", + "Epoch 240/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.9628\n", + "Epoch 241/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.9332\n", + "Epoch 242/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 50.9035\n", + "Epoch 243/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 50.8738\n", + "Epoch 244/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 50.8442\n", + "Epoch 245/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.8146\n", + "Epoch 246/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 50.7850\n", + "Epoch 247/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 50.7554\n", + "Epoch 248/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 50.7258\n", + "Epoch 249/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 50.6963\n", + "Epoch 250/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 50.6667\n", + "Epoch 251/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 50.6372\n", + "Epoch 252/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 50.6077\n", + "Epoch 253/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 50.5783\n", + "Epoch 254/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 50.5488\n", + "Epoch 255/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.5193\n", + "Epoch 256/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 50.4899\n", + "Epoch 257/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 50.4605\n", + "Epoch 258/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 50.4311\n", + "Epoch 259/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 50.4017\n", + "Epoch 260/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 50.3724\n", + "Epoch 261/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.3430\n", + "Epoch 262/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 50.3137\n", + "Epoch 263/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 50.2844\n", + "Epoch 264/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 50.2551\n", + "Epoch 265/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 50.2258\n", + "Epoch 266/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.1966\n", + "Epoch 267/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 50.1673\n", + "Epoch 268/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 50.1381\n", + "Epoch 269/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 50.1089\n", + "Epoch 270/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 50.0797\n", + "Epoch 271/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 50.0505\n", + "Epoch 272/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 50.0213\n", + "Epoch 273/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 49.9922\n", + "Epoch 274/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 49.9631\n", + "Epoch 275/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 49.9340\n", + "Epoch 276/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 49.9049\n", + "Epoch 277/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 49.8758\n", + "Epoch 278/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 49.8467\n", + "Epoch 279/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 49.8177\n", + "Epoch 280/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 49.7887\n", + "Epoch 281/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 49.7597\n", + "Epoch 282/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 49.7307\n", + "Epoch 283/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 49.7017\n", + "Epoch 284/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 49.6727\n", + "Epoch 285/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 49.6438\n", + "Epoch 286/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 49.6148\n", + "Epoch 287/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 49.5859\n", + "Epoch 288/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 49.5570\n", + "Epoch 289/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 49.5282\n", + "Epoch 290/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 49.4993\n", + "Epoch 291/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 49.4704\n", + "Epoch 292/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 49.4416\n", + "Epoch 293/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 49.4128\n", + "Epoch 294/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 49.3840\n", + "Epoch 295/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 49.3552\n", + "Epoch 296/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 49.3265\n", + "Epoch 297/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 49.2977\n", + "Epoch 298/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 49.2690\n", + "Epoch 299/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 49.2403\n", + "Epoch 300/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 49.2116\n", + "Epoch 301/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 49.1829\n", + "Epoch 302/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 49.1542\n", + "Epoch 303/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 49.1255\n", + "Epoch 304/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 49.0969\n", + "Epoch 305/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 49.0683\n", + "Epoch 306/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 49.0397\n", + "Epoch 307/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 49.0111\n", + "Epoch 308/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 48.9825\n", + "Epoch 309/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 48.9540\n", + "Epoch 310/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 48.9254\n", + "Epoch 311/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 48.8969\n", + "Epoch 312/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 48.8684\n", + "Epoch 313/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 48.8399\n", + "Epoch 314/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 48.8114\n", + "Epoch 315/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 48.7830\n", + "Epoch 316/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 48.7545\n", + "Epoch 317/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 48.7261\n", + "Epoch 318/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 48.6977\n", + "Epoch 319/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 48.6693\n", + "Epoch 320/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 48.6409\n", + "Epoch 321/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 48.6125\n", + "Epoch 322/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 48.5842\n", + "Epoch 323/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 48.5558\n", + "Epoch 324/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 48.5275\n", + "Epoch 325/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 48.4992\n", + "Epoch 326/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 48.4709\n", + "Epoch 327/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.4426\n", + "Epoch 328/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 48.4144\n", + "Epoch 329/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 48.3861\n", + "Epoch 330/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 48.3579\n", + "Epoch 331/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 48.3297\n", + "Epoch 332/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.3015\n", + "Epoch 333/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 48.2733\n", + "Epoch 334/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.2451\n", + "Epoch 335/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.2170\n", + "Epoch 336/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.1889\n", + "Epoch 337/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 48.1607\n", + "Epoch 338/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 48.1326\n", + "Epoch 339/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 48.1045\n", + "Epoch 340/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 48.0765\n", + "Epoch 341/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 48.0484\n", + "Epoch 342/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 48.0204\n", + "Epoch 343/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 47.9923\n", + "Epoch 344/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 47.9643\n", + "Epoch 345/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 47.9363\n", + "Epoch 346/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.9083\n", + "Epoch 347/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.8804\n", + "Epoch 348/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.8524\n", + "Epoch 349/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.8245\n", + "Epoch 350/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.7966\n", + "Epoch 351/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 47.7687\n", + "Epoch 352/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.7408\n", + "Epoch 353/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 47.7129\n", + "Epoch 354/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 47.6850\n", + "Epoch 355/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 47.6572\n", + "Epoch 356/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.6294\n", + "Epoch 357/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 47.6015\n", + "Epoch 358/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.5737\n", + "Epoch 359/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.5460\n", + "Epoch 360/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 47.5182\n", + "Epoch 361/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 47.4904\n", + "Epoch 362/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.4627\n", + "Epoch 363/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 47.4350\n", + "Epoch 364/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.4072\n", + "Epoch 365/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 47.3795\n", + "Epoch 366/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.3519\n", + "Epoch 367/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.3242\n", + "Epoch 368/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.2965\n", + "Epoch 369/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 47.2689\n", + "Epoch 370/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.2413\n", + "Epoch 371/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.2137\n", + "Epoch 372/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.1861\n", + "Epoch 373/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.1585\n", + "Epoch 374/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 47.1309\n", + "Epoch 375/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 47.1034\n", + "Epoch 376/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 47.0759\n", + "Epoch 377/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 47.0483\n", + "Epoch 378/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 47.0208\n", + "Epoch 379/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 46.9933\n", + "Epoch 380/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 46.9659\n", + "Epoch 381/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 46.9384\n", + "Epoch 382/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.9110\n", + "Epoch 383/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.8835\n", + "Epoch 384/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 46.8561\n", + "Epoch 385/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 46.8287\n", + "Epoch 386/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.8013\n", + "Epoch 387/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 46.7739\n", + "Epoch 388/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 46.7466\n", + "Epoch 389/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 46.7192\n", + "Epoch 390/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 46.6919\n", + "Epoch 391/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 46.6646\n", + "Epoch 392/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 46.6373\n", + "Epoch 393/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 46.6100\n", + "Epoch 394/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 46.5827\n", + "Epoch 395/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 46.5555\n", + "Epoch 396/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 46.5282\n", + "Epoch 397/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 46.5010\n", + "Epoch 398/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 46.4738\n", + "Epoch 399/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 46.4466\n", + "Epoch 400/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 46.4194\n", + "Epoch 401/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.3922\n", + "Epoch 402/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 46.3651\n", + "Epoch 403/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.3379\n", + "Epoch 404/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.3108\n", + "Epoch 405/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 46.2837\n", + "Epoch 406/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 46.2566\n", + "Epoch 407/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.2295\n", + "Epoch 408/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 46.2024\n", + "Epoch 409/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 46.1754\n", + "Epoch 410/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 46.1483\n", + "Epoch 411/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 46.1213\n", + "Epoch 412/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 46.0943\n", + "Epoch 413/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 46.0673\n", + "Epoch 414/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 46.0403\n", + "Epoch 415/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 46.0133\n", + "Epoch 416/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.9864\n", + "Epoch 417/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.9594\n", + "Epoch 418/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.9325\n", + "Epoch 419/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 45.9056\n", + "Epoch 420/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 45.8786\n", + "Epoch 421/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 45.8518\n", + "Epoch 422/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 45.8249\n", + "Epoch 423/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 45.7980\n", + "Epoch 424/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.7712\n", + "Epoch 425/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 45.7443\n", + "Epoch 426/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 45.7175\n", + "Epoch 427/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 45.6907\n", + "Epoch 428/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 45.6639\n", + "Epoch 429/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 45.6371\n", + "Epoch 430/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 45.6104\n", + "Epoch 431/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.5836\n", + "Epoch 432/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 45.5569\n", + "Epoch 433/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.5302\n", + "Epoch 434/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 45.5035\n", + "Epoch 435/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.4768\n", + "Epoch 436/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.4501\n", + "Epoch 437/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.4234\n", + "Epoch 438/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.3968\n", + "Epoch 439/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 45.3701\n", + "Epoch 440/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 45.3435\n", + "Epoch 441/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.3169\n", + "Epoch 442/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.2903\n", + "Epoch 443/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 45.2637\n", + "Epoch 444/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 45.2371\n", + "Epoch 445/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.2106\n", + "Epoch 446/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 45.1840\n", + "Epoch 447/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 45.1575\n", + "Epoch 448/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 45.1310\n", + "Epoch 449/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 45.1045\n", + "Epoch 450/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 45.0780\n", + "Epoch 451/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 45.0515\n", + "Epoch 452/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 45.0250\n", + "Epoch 453/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.9986\n", + "Epoch 454/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 44.9722\n", + "Epoch 455/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.9457\n", + "Epoch 456/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.9193\n", + "Epoch 457/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 44.8929\n", + "Epoch 458/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 44.8666\n", + "Epoch 459/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.8402\n", + "Epoch 460/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 44.8138\n", + "Epoch 461/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 44.7875\n", + "Epoch 462/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.7612\n", + "Epoch 463/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.7349\n", + "Epoch 464/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.7085\n", + "Epoch 465/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 44.6823\n", + "Epoch 466/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.6560\n", + "Epoch 467/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.6297\n", + "Epoch 468/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.6035\n", + "Epoch 469/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.5772\n", + "Epoch 470/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 44.5510\n", + "Epoch 471/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 44.5248\n", + "Epoch 472/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.4986\n", + "Epoch 473/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 44.4724\n", + "Epoch 474/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.4463\n", + "Epoch 475/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 44.4201\n", + "Epoch 476/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 44.3940\n", + "Epoch 477/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 44.3679\n", + "Epoch 478/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.3417\n", + "Epoch 479/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 44.3156\n", + "Epoch 480/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 44.2895\n", + "Epoch 481/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 44.2635\n", + "Epoch 482/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 44.2374\n", + "Epoch 483/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 44.2114\n", + "Epoch 484/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 44.1853\n", + "Epoch 485/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.1593\n", + "Epoch 486/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 44.1333\n", + "Epoch 487/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 44.1073\n", + "Epoch 488/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 44.0813\n", + "Epoch 489/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 44.0553\n", + "Epoch 490/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 44.0294\n", + "Epoch 491/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 44.0034\n", + "Epoch 492/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 43.9775\n", + "Epoch 493/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 43.9516\n", + "Epoch 494/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 43.9257\n", + "Epoch 495/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 43.8998\n", + "Epoch 496/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 43.8739\n", + "Epoch 497/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 43.8481\n", + "Epoch 498/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 43.8222\n", + "Epoch 499/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 43.7964\n", + "Epoch 500/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 43.7705\n", + "Epoch 501/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 43.7447\n", + "Epoch 502/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 43.7189\n", + "Epoch 503/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 43.6931\n", + "Epoch 504/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 43.6674\n", + "Epoch 505/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 43.6416\n", + "Epoch 506/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 43.6159\n", + "Epoch 507/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 43.5901\n", + "Epoch 508/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 43.5644\n", + "Epoch 509/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 43.5387\n", + "Epoch 510/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 43.5130\n", + "Epoch 511/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 43.4873\n", + "Epoch 512/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 43.4616\n", + "Epoch 513/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 43.4360\n", + "Epoch 514/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 43.4103\n", + "Epoch 515/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 43.3847\n", + "Epoch 516/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 43.3591\n", + "Epoch 517/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 43.3335\n", + "Epoch 518/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 43.3079\n", + "Epoch 519/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 43.2823\n", + "Epoch 520/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 43.2567\n", + "Epoch 521/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 43.2312\n", + "Epoch 522/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 43.2056\n", + "Epoch 523/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 43.1801\n", + "Epoch 524/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 43.1546\n", + "Epoch 525/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 43.1291\n", + "Epoch 526/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 43.1036\n", + "Epoch 527/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 43.0781\n", + "Epoch 528/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 43.0526\n", + "Epoch 529/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 43.0272\n", + "Epoch 530/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 43.0017\n", + "Epoch 531/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.9763\n", + "Epoch 532/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 42.9509\n", + "Epoch 533/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.9255\n", + "Epoch 534/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 42.9001\n", + "Epoch 535/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 42.8747\n", + "Epoch 536/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 42.8493\n", + "Epoch 537/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.8240\n", + "Epoch 538/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.7986\n", + "Epoch 539/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 42.7733\n", + "Epoch 540/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 42.7480\n", + "Epoch 541/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 42.7227\n", + "Epoch 542/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 42.6974\n", + "Epoch 543/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.6721\n", + "Epoch 544/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.6469\n", + "Epoch 545/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 42.6216\n", + "Epoch 546/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.5964\n", + "Epoch 547/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 42.5711\n", + "Epoch 548/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 42.5459\n", + "Epoch 549/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 42.5207\n", + "Epoch 550/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.4955\n", + "Epoch 551/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 42.4703\n", + "Epoch 552/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 42.4452\n", + "Epoch 553/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 42.4200\n", + "Epoch 554/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.3949\n", + "Epoch 555/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 42.3698\n", + "Epoch 556/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.3446\n", + "Epoch 557/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 42.3195\n", + "Epoch 558/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 42.2944\n", + "Epoch 559/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 42.2694\n", + "Epoch 560/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 42.2443\n", + "Epoch 561/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 42.2192\n", + "Epoch 562/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 42.1942\n", + "Epoch 563/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 42.1692\n", + "Epoch 564/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 42.1441\n", + "Epoch 565/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 42.1191\n", + "Epoch 566/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 42.0941\n", + "Epoch 567/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 42.0692\n", + "Epoch 568/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 42.0442\n", + "Epoch 569/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 42.0192\n", + "Epoch 570/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 41.9943\n", + "Epoch 571/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 41.9694\n", + "Epoch 572/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.9444\n", + "Epoch 573/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.9195\n", + "Epoch 574/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 41.8946\n", + "Epoch 575/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 41.8698\n", + "Epoch 576/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 41.8449\n", + "Epoch 577/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.8200\n", + "Epoch 578/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 41.7952\n", + "Epoch 579/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.7703\n", + "Epoch 580/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 41.7455\n", + "Epoch 581/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 41.7207\n", + "Epoch 582/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.6959\n", + "Epoch 583/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 41.6711\n", + "Epoch 584/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 41.6464\n", + "Epoch 585/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 41.6216\n", + "Epoch 586/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.5968\n", + "Epoch 587/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 41.5721\n", + "Epoch 588/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 41.5474\n", + "Epoch 589/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 41.5227\n", + "Epoch 590/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 41.4980\n", + "Epoch 591/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 41.4733\n", + "Epoch 592/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 41.4486\n", + "Epoch 593/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 41.4239\n", + "Epoch 594/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.3993\n", + "Epoch 595/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.3746\n", + "Epoch 596/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 41.3500\n", + "Epoch 597/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.3254\n", + "Epoch 598/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 41.3008\n", + "Epoch 599/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.2762\n", + "Epoch 600/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 41.2516\n", + "Epoch 601/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.2270\n", + "Epoch 602/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 41.2025\n", + "Epoch 603/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 41.1779\n", + "Epoch 604/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.1534\n", + "Epoch 605/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 41.1289\n", + "Epoch 606/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 41.1044\n", + "Epoch 607/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 41.0799\n", + "Epoch 608/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 41.0554\n", + "Epoch 609/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 41.0309\n", + "Epoch 610/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 41.0064\n", + "Epoch 611/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 40.9820\n", + "Epoch 612/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 40.9576\n", + "Epoch 613/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 40.9331\n", + "Epoch 614/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 40.9087\n", + "Epoch 615/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.8843\n", + "Epoch 616/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.8599\n", + "Epoch 617/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.8355\n", + "Epoch 618/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 40.8112\n", + "Epoch 619/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 40.7868\n", + "Epoch 620/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 40.7625\n", + "Epoch 621/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 40.7381\n", + "Epoch 622/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 40.7138\n", + "Epoch 623/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 40.6895\n", + "Epoch 624/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 40.6652\n", + "Epoch 625/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 40.6409\n", + "Epoch 626/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 40.6167\n", + "Epoch 627/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 40.5924\n", + "Epoch 628/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 40.5681\n", + "Epoch 629/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.5439\n", + "Epoch 630/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.5197\n", + "Epoch 631/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 40.4955\n", + "Epoch 632/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.4712\n", + "Epoch 633/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 40.4471\n", + "Epoch 634/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.4229\n", + "Epoch 635/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 40.3987\n", + "Epoch 636/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 40.3746\n", + "Epoch 637/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 40.3504\n", + "Epoch 638/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 40.3263\n", + "Epoch 639/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 40.3022\n", + "Epoch 640/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 40.2780\n", + "Epoch 641/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 40.2540\n", + "Epoch 642/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 40.2299\n", + "Epoch 643/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.2058\n", + "Epoch 644/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 40.1817\n", + "Epoch 645/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 40.1577\n", + "Epoch 646/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 40.1336\n", + "Epoch 647/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 40.1096\n", + "Epoch 648/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 40.0856\n", + "Epoch 649/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 40.0616\n", + "Epoch 650/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 40.0376\n", + "Epoch 651/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 40.0136\n", + "Epoch 652/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 39.9896\n", + "Epoch 653/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 39.9657\n", + "Epoch 654/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 39.9417\n", + "Epoch 655/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 39.9178\n", + "Epoch 656/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 39.8939\n", + "Epoch 657/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 39.8700\n", + "Epoch 658/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.8461\n", + "Epoch 659/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.8222\n", + "Epoch 660/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 39.7983\n", + "Epoch 661/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 39.7744\n", + "Epoch 662/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.7506\n", + "Epoch 663/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.7267\n", + "Epoch 664/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.7029\n", + "Epoch 665/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 39.6791\n", + "Epoch 666/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 39.6553\n", + "Epoch 667/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 39.6315\n", + "Epoch 668/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 39.6077\n", + "Epoch 669/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 39.5839\n", + "Epoch 670/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.5601\n", + "Epoch 671/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 39.5364\n", + "Epoch 672/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 39.5126\n", + "Epoch 673/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 39.4889\n", + "Epoch 674/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.4652\n", + "Epoch 675/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 39.4415\n", + "Epoch 676/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 39.4178\n", + "Epoch 677/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 39.3941\n", + "Epoch 678/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 39.3704\n", + "Epoch 679/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 39.3468\n", + "Epoch 680/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 39.3231\n", + "Epoch 681/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 39.2995\n", + "Epoch 682/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 39.2758\n", + "Epoch 683/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 39.2522\n", + "Epoch 684/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 39.2286\n", + "Epoch 685/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 39.2050\n", + "Epoch 686/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 39.1814\n", + "Epoch 687/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 39.1579\n", + "Epoch 688/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 39.1343\n", + "Epoch 689/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 39.1107\n", + "Epoch 690/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 39.0872\n", + "Epoch 691/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 39.0637\n", + "Epoch 692/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 39.0402\n", + "Epoch 693/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 39.0167\n", + "Epoch 694/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 38.9932\n", + "Epoch 695/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 38.9697\n", + "Epoch 696/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 38.9462\n", + "Epoch 697/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 38.9228\n", + "Epoch 698/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 38.8993\n", + "Epoch 699/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 38.8759\n", + "Epoch 700/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 38.8524\n", + "Epoch 701/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 38.8290\n", + "Epoch 702/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 38.8056\n", + "Epoch 703/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 38.7822\n", + "Epoch 704/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 38.7589\n", + "Epoch 705/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 38.7355\n", + "Epoch 706/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 38.7121\n", + "Epoch 707/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 38.6888\n", + "Epoch 708/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 38.6654\n", + "Epoch 709/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 38.6421\n", + "Epoch 710/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 38.6188\n", + "Epoch 711/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 38.5955\n", + "Epoch 712/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 38.5722\n", + "Epoch 713/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 38.5489\n", + "Epoch 714/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 38.5257\n", + "Epoch 715/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 38.5024\n", + "Epoch 716/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 38.4791\n", + "Epoch 717/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 38.4559\n", + "Epoch 718/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 38.4327\n", + "Epoch 719/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 38.4095\n", + "Epoch 720/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 38.3863\n", + "Epoch 721/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 38.3631\n", + "Epoch 722/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 38.3399\n", + "Epoch 723/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 38.3167\n", + "Epoch 724/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 38.2936\n", + "Epoch 725/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 38.2704\n", + "Epoch 726/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 38.2473\n", + "Epoch 727/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 38.2241\n", + "Epoch 728/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 38.2010\n", + "Epoch 729/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 38.1779\n", + "Epoch 730/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 38.1548\n", + "Epoch 731/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 38.1317\n", + "Epoch 732/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 38.1087\n", + "Epoch 733/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 38.0856\n", + "Epoch 734/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 38.0626\n", + "Epoch 735/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 38.0395\n", + "Epoch 736/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 38.0165\n", + "Epoch 737/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 37.9935\n", + "Epoch 738/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 37.9705\n", + "Epoch 739/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 37.9475\n", + "Epoch 740/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 37.9245\n", + "Epoch 741/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 37.9015\n", + "Epoch 742/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 37.8786\n", + "Epoch 743/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.8556\n", + "Epoch 744/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 37.8327\n", + "Epoch 745/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 37.8097\n", + "Epoch 746/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 37.7868\n", + "Epoch 747/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 37.7639\n", + "Epoch 748/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 37.7410\n", + "Epoch 749/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.7181\n", + "Epoch 750/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 37.6953\n", + "Epoch 751/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 37.6724\n", + "Epoch 752/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.6495\n", + "Epoch 753/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.6267\n", + "Epoch 754/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.6039\n", + "Epoch 755/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.5810\n", + "Epoch 756/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.5582\n", + "Epoch 757/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 37.5354\n", + "Epoch 758/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 37.5126\n", + "Epoch 759/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 37.4899\n", + "Epoch 760/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 37.4671\n", + "Epoch 761/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 37.4443\n", + "Epoch 762/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 37.4216\n", + "Epoch 763/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 37.3989\n", + "Epoch 764/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 37.3761\n", + "Epoch 765/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 37.3534\n", + "Epoch 766/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 37.3307\n", + "Epoch 767/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 37.3080\n", + "Epoch 768/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 37.2853\n", + "Epoch 769/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 37.2627\n", + "Epoch 770/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 37.2400\n", + "Epoch 771/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.2174\n", + "Epoch 772/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.1947\n", + "Epoch 773/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.1721\n", + "Epoch 774/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 37.1495\n", + "Epoch 775/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 37.1269\n", + "Epoch 776/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 37.1043\n", + "Epoch 777/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.0817\n", + "Epoch 778/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 37.0591\n", + "Epoch 779/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 37.0366\n", + "Epoch 780/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 37.0140\n", + "Epoch 781/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.9915\n", + "Epoch 782/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.9689\n", + "Epoch 783/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.9464\n", + "Epoch 784/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 36.9239\n", + "Epoch 785/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 36.9014\n", + "Epoch 786/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 36.8789\n", + "Epoch 787/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 36.8564\n", + "Epoch 788/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.8340\n", + "Epoch 789/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.8115\n", + "Epoch 790/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 36.7891\n", + "Epoch 791/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.7666\n", + "Epoch 792/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.7442\n", + "Epoch 793/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 36.7218\n", + "Epoch 794/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 36.6994\n", + "Epoch 795/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 36.6770\n", + "Epoch 796/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.6546\n", + "Epoch 797/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.6322\n", + "Epoch 798/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.6099\n", + "Epoch 799/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.5875\n", + "Epoch 800/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.5652\n", + "Epoch 801/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.5428\n", + "Epoch 802/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 36.5205\n", + "Epoch 803/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.4982\n", + "Epoch 804/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 36.4759\n", + "Epoch 805/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 36.4536\n", + "Epoch 806/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.4313\n", + "Epoch 807/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.4091\n", + "Epoch 808/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.3868\n", + "Epoch 809/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 36.3646\n", + "Epoch 810/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 36.3423\n", + "Epoch 811/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 36.3201\n", + "Epoch 812/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.2979\n", + "Epoch 813/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 36.2757\n", + "Epoch 814/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.2535\n", + "Epoch 815/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 36.2313\n", + "Epoch 816/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 36.2091\n", + "Epoch 817/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 36.1870\n", + "Epoch 818/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.1648\n", + "Epoch 819/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 36.1427\n", + "Epoch 820/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 36.1206\n", + "Epoch 821/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 36.0984\n", + "Epoch 822/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 36.0763\n", + "Epoch 823/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 36.0542\n", + "Epoch 824/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 36.0321\n", + "Epoch 825/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 36.0101\n", + "Epoch 826/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 35.9880\n", + "Epoch 827/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 35.9659\n", + "Epoch 828/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 35.9439\n", + "Epoch 829/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 35.9218\n", + "Epoch 830/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 35.8998\n", + "Epoch 831/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 35.8778\n", + "Epoch 832/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 35.8558\n", + "Epoch 833/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.8338\n", + "Epoch 834/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 35.8118\n", + "Epoch 835/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 35.7898\n", + "Epoch 836/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.7679\n", + "Epoch 837/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 35.7459\n", + "Epoch 838/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 35.7240\n", + "Epoch 839/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 35.7020\n", + "Epoch 840/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.6801\n", + "Epoch 841/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 35.6582\n", + "Epoch 842/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 35.6363\n", + "Epoch 843/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 35.6144\n", + "Epoch 844/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 35.5925\n", + "Epoch 845/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 35.5706\n", + "Epoch 846/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 35.5488\n", + "Epoch 847/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 35.5269\n", + "Epoch 848/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 35.5051\n", + "Epoch 849/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 35.4833\n", + "Epoch 850/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 35.4614\n", + "Epoch 851/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 35.4396\n", + "Epoch 852/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 35.4178\n", + "Epoch 853/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 35.3960\n", + "Epoch 854/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 35.3743\n", + "Epoch 855/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 35.3525\n", + "Epoch 856/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 35.3307\n", + "Epoch 857/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 35.3090\n", + "Epoch 858/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 35.2872\n", + "Epoch 859/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 35.2655\n", + "Epoch 860/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 35.2438\n", + "Epoch 861/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 35.2221\n", + "Epoch 862/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 35.2004\n", + "Epoch 863/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 35.1787\n", + "Epoch 864/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 35.1570\n", + "Epoch 865/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 35.1354\n", + "Epoch 866/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 35.1137\n", + "Epoch 867/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 35.0920\n", + "Epoch 868/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 35.0704\n", + "Epoch 869/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 35.0488\n", + "Epoch 870/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 35.0272\n", + "Epoch 871/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 35.0056\n", + "Epoch 872/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 34.9840\n", + "Epoch 873/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 34.9624\n", + "Epoch 874/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 34.9408\n", + "Epoch 875/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 34.9192\n", + "Epoch 876/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 34.8977\n", + "Epoch 877/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 34.8761\n", + "Epoch 878/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 34.8546\n", + "Epoch 879/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 34.8331\n", + "Epoch 880/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 34.8116\n", + "Epoch 881/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 34.7901\n", + "Epoch 882/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 34.7686\n", + "Epoch 883/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 34.7471\n", + "Epoch 884/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 34.7256\n", + "Epoch 885/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 34.7041\n", + "Epoch 886/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 34.6827\n", + "Epoch 887/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 34.6612\n", + "Epoch 888/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 34.6398\n", + "Epoch 889/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 34.6184\n", + "Epoch 890/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 34.5970\n", + "Epoch 891/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 34.5756\n", + "Epoch 892/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 34.5542\n", + "Epoch 893/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 34.5328\n", + "Epoch 894/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 34.5114\n", + "Epoch 895/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 34.4900\n", + "Epoch 896/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 34.4687\n", + "Epoch 897/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 34.4473\n", + "Epoch 898/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 34.4260\n", + "Epoch 899/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 34.4047\n", + "Epoch 900/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 34.3834\n", + "Epoch 901/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 34.3621\n", + "Epoch 902/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 34.3408\n", + "Epoch 903/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 34.3195\n", + "Epoch 904/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 34.2982\n", + "Epoch 905/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 34.2769\n", + "Epoch 906/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 34.2557\n", + "Epoch 907/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 34.2344\n", + "Epoch 908/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 34.2132\n", + "Epoch 909/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 34.1920\n", + "Epoch 910/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 34.1708\n", + "Epoch 911/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 34.1496\n", + "Epoch 912/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 34.1284\n", + "Epoch 913/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 34.1072\n", + "Epoch 914/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 34.0860\n", + "Epoch 915/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 34.0648\n", + "Epoch 916/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 34.0437\n", + "Epoch 917/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 34.0225\n", + "Epoch 918/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 34.0014\n", + "Epoch 919/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 33.9803\n", + "Epoch 920/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 33.9592\n", + "Epoch 921/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.9381\n", + "Epoch 922/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.9170\n", + "Epoch 923/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 33.8959\n", + "Epoch 924/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.8748\n", + "Epoch 925/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.8537\n", + "Epoch 926/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.8327\n", + "Epoch 927/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 33.8116\n", + "Epoch 928/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 33.7906\n", + "Epoch 929/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.7696\n", + "Epoch 930/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 33.7486\n", + "Epoch 931/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.7276\n", + "Epoch 932/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 33.7066\n", + "Epoch 933/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 33.6856\n", + "Epoch 934/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 33.6646\n", + "Epoch 935/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 33.6436\n", + "Epoch 936/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.6227\n", + "Epoch 937/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 33.6017\n", + "Epoch 938/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 33.5808\n", + "Epoch 939/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.5599\n", + "Epoch 940/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.5389\n", + "Epoch 941/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 33.5180\n", + "Epoch 942/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 33.4971\n", + "Epoch 943/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.4762\n", + "Epoch 944/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 33.4554\n", + "Epoch 945/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 33.4345\n", + "Epoch 946/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.4136\n", + "Epoch 947/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.3928\n", + "Epoch 948/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.3720\n", + "Epoch 949/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.3511\n", + "Epoch 950/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 33.3303\n", + "Epoch 951/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 33.3095\n", + "Epoch 952/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 33.2887\n", + "Epoch 953/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.2679\n", + "Epoch 954/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 33.2471\n", + "Epoch 955/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 33.2264\n", + "Epoch 956/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.2056\n", + "Epoch 957/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.1848\n", + "Epoch 958/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 33.1641\n", + "Epoch 959/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 33.1434\n", + "Epoch 960/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 33.1226\n", + "Epoch 961/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 33.1019\n", + "Epoch 962/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 33.0812\n", + "Epoch 963/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 33.0605\n", + "Epoch 964/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 33.0398\n", + "Epoch 965/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 33.0192\n", + "Epoch 966/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 32.9985\n", + "Epoch 967/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 32.9779\n", + "Epoch 968/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 32.9572\n", + "Epoch 969/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 32.9366\n", + "Epoch 970/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 32.9160\n", + "Epoch 971/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 32.8953\n", + "Epoch 972/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 32.8747\n", + "Epoch 973/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 32.8541\n", + "Epoch 974/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.8335\n", + "Epoch 975/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 32.8130\n", + "Epoch 976/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 32.7924\n", + "Epoch 977/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 32.7718\n", + "Epoch 978/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 32.7513\n", + "Epoch 979/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 32.7308\n", + "Epoch 980/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.7102\n", + "Epoch 981/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 32.6897\n", + "Epoch 982/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.6692\n", + "Epoch 983/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.6487\n", + "Epoch 984/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 32.6282\n", + "Epoch 985/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 32.6077\n", + "Epoch 986/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 32.5873\n", + "Epoch 987/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 32.5668\n", + "Epoch 988/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 32.5463\n", + "Epoch 989/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 32.5259\n", + "Epoch 990/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 32.5055\n", + "Epoch 991/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 32.4850\n", + "Epoch 992/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 32.4646\n", + "Epoch 993/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 32.4442\n", + "Epoch 994/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 32.4238\n", + "Epoch 995/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 32.4034\n", + "Epoch 996/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 32.3831\n", + "Epoch 997/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 32.3627\n", + "Epoch 998/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 32.3423\n", + "Epoch 999/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 32.3220\n", + "Epoch 1000/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - loss: 32.3017\n", + "Epoch 1000/1000\n", + " - loss: 32.3017\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 32.3017\n", + "Restoring model weights from the end of the best epoch: 1000.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE1\n", + "patience= 300\n", + "ae1_trained, IRE1, IREth1= lib.create_fit_save_ae(data,'out/AE1.h5','out/AE1_ire_th.txt', 1000, True, patience)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SDJWOwuADSgJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "outputId": "6836ee8d-9bf9-4415-f7b1-81ca908585ab" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtqlJREFUeJzs3Xd4FNX6wPF3U0gIELr0IspFBAUUsICIBbGg4gUVRAUVRWx4uf4U7AUFvWJBsF4FvYpdERUUVBCVLlUEBASkS00Bkm3n98dhdmdmZ0uSTQbC9/M850l2dnbm7OyUM++c4lFKKQEAAAAAAAAAF6S4nQEAAAAAAAAARy8ClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAOCItXLlSrntttvkxBNPlCpVqojH4wmlDRs2uJ29o9KECRNCv8GAAQPKdN3m3x8AAABHDgKUAAAcYbp27RoKwjz66KNR5zMHa+wpNTVVqlWrJs2bN5crr7xS/vvf/0p+fn6x8lDUlKyg1eTJk6Vdu3byyiuvyMqVK4uUfwD47rvvLOemli1bFnkZjz76aLHPhU2bNo257K1bt8oXX3whDz74oFx44YVSs2ZNHsIAAMqtNLczAAAAyl4wGJScnBzJycmRtWvXyieffCLDhw+X119/Xa644gq3sxdXfn6+DBgwQAoLC0VEpF69etK5c2epXbt2qPZcdna2m1kskUcffVQee+wxERF55JFHYgaigcNV06ZNZePGjSIisn79+rgBubL29ttvW16vWrVK5s+fLx07dnQpR2H169eXbdu2uZ0NAADKDAFKAACOAj179pQGDRqEXgeDQdm1a5fMmTNHNm/eLCIiu3btkt69e8snn3xSpCBlhw4dinRDf/rppyee8Si++uor2bt3r4iItGrVShYsWCAVK1Ys8XIBHB3y8vLks88+i5j+9ttvFztAWb9+/SKdO2vWrBn1PYKTAICjDQFKAACOAkOGDJGuXbtGTA8Gg/L222/L4MGDpbCwUILBoAwePFi6d+8uWVlZCS374osvLvMafosWLQr937dvX4KTh5EBAwaUed+TBqWUK+vFkeeTTz6RAwcOiIhIxYoV5eDBgyIi8sEHH8jzzz8vFSpUKPIymzdvLmPHjk1aHjMzM6Vt27bSoUMH6dChg9SpU0e6d++etOUDAHA4oQ9KAACOYikpKXLDDTfIM888E5q2Y8cOmTRpknuZSoBRe1JEN+8GgKIwN+++7777pE6dOiIismfPHvnyyy/dylbIokWLJC8vT+bMmSNjxoyR6667Tv7xj3+4nS0AAEoNAUoAACCDBg2SzMzM0OtZs2a5mJv4fD5f6P+UFIozABK3YcOG0DnO4/FI//79pW/fvqH37X1TuqFdu3aSlkZjNwDA0YMSPQAAkIyMDMsItlu3bnUxN87Mo+WaAwg33HBDxOi4EyZMcFxGfn6+jBkzRrp37y4NGzaUzMxMqV69urRu3VruuOMOmTdvXkJ5Ma/LsHTpUhkyZIi0bt1aatSoIR6PR3r27Fmk72iMjm4MkCMi8thjjyU0GvqAAQMivv++ffvkxRdflC5dukiDBg0kLS1NPB6P7Nu3z/LZv//+W8aPHy/9+/eXdu3aSY0aNSQ9PV2qVasmJ5xwgtxwww3y7bffJvQdJkyYEHfE9pkzZ4bmMXc98MMPP0ifPn2kWbNmkpmZKTVr1pQuXbrI2LFjLUHpaJx+F7umTZtGjIK8efNmeeihh6RNmzZSrVo1qVSpkpxwwgly5513hgZ5SdT06dOlT58+0rhxY8nMzJR69erJWWedJePGjZP9+/eLiHVfTlb3CLt27ZJnn31Wzj//fKlfv75kZmaGfsNWrVpJ79695bnnnpP169cntLzvv/9ebr31VmnVqpXUqFFDMjIypH79+tK9e3cZO3ZsqEm03YYNG0Lfzbztjj32WMf9eObMmcn4+kXyzjvvhLoD6Ny5szRt2lSuu+660PtTp06Vv//+u8zzBQDA0YzHcgAAQETE0o9jQUGBizkpHV999ZXcfPPNsn37dsv0wsJC2bdvn6xYsULGjRsn11xzjbzxxhsJ98EpogNOI0aMkEAgkOxsF9svv/wiffv2lU2bNsWcb8yYMTJ06FDHvBsjva9evVomTJgg5557rnz00UcxB/coDq/XK3fccYe88cYblumFhYXy008/yU8//STjx4+Xb7/9VmrVqpXUdU+aNEkGDBggOTk5lumrV6+W1atXy5tvvikff/yxXHLJJXG/w0033STvvvuuZfr27dtl+/bt8vPPP8u4cePk888/T2r+RUS++OILueGGGyxdHxiM3/D333+XTz/9VJ577rnQwFhONm3aJNdff71j4HDbtm2ybds2mTZtmowcOVI++OADOeuss5L5VcrEO++8E/rfCEyecsop0qpVK1mxYoX4/X6ZOHGi3H333S7lEACAow8BSgAAICLWWpNGf2yHk44dO8rtt98uIrp216pVq0RE5LzzzpMTTjjBMq+5NqiIyIcffij9+vULBeFSU1Olc+fOcvzxx0t+fr789NNPoe8/ceJEWb9+vfzwww+WZu/R/Oc//wnVeDzuuOOkY8eOkpWVJRs2bJD09PQifccrrrhCWrduLfPnz5cFCxaISPRR0mONhr527Vq5++67JScnR6pUqSJdunSR+vXry969eyOa72/dujW0XZo1ayYtW7aU2rVrS2Zmpuzbt0+WL18uK1asEBFdw/H888+XuXPnSkZGRpG+Wyy33HKLvP3225KSkiKnnXaanHDCCRIMBmXu3LmyevVqEdF98l1//fUyZcqUpK33u+++k1tvvVUCgYA0btxYzjjjDMnOzpb169fLzJkzxe/3y8GDB+Wqq66S3377TY499tioy+rbt69lVOgaNWpI165dpUaNGrJp0yb58ccfZeXKlXLJJZfIZZddlrTvsHDhQundu7f4/X4R0Q8aTj/9dGnatKlkZGRIbm6urFu3TpYvXx4aFCaalStXynnnnRcaQdrj8cgpp5wiJ554olSsWFG2bNkis2bNkry8PNm6dat069ZNpk6dKuecc05oGdnZ2aHj9J133pG8vDwREbn++uulSpUqEets0KBBUrZDon7++WdZt26diOia41deeWXoveuuu06GDRsmIrqZNwFKAADKkAIAAEeUs88+W4mIEhH1yCOPRJ3PmEdE1IwZM2Iuc/Xq1Zb5x44dm5Q8lJb+/fuH1j9+/PiY865du1ZVrlw5NH/Hjh3VmjVrLPMEAgE1evRolZKSEprvzjvvjLpM87ZKS0tTVatWVZ9//nnEfAUFBcX5euqRRx4p8vY1b5O0tDQlIur2229XeXl5lvm8Xq8KBAKh12+++aZ66aWX1ObNm6Mue+nSpap9+/ah5T/xxBNR5x0/fnxovv79+zvOM2PGjNA8GRkZSkRUhw4d1MqVKy3zBYNB9cILL1i2948//hh13eb5omnSpIll3ZUqVVL/+9//VDAYtMz322+/qQYNGoTmveGGG6Iu87///a9l3f/+978jfvsdO3aoiy66yPKdk3H89OzZM7SsXr16qT179jjOd/DgQfX111+rQYMGOb6fn5+vWrZsGVrWRRddpNauXRsxX05Ojho8eHBovnr16ql9+/Y5LtO8rdevX1/s75hMAwcODOWpd+/elvc2bdpkOQcsXbo07vLMx+rZZ59dSrnW1q9fb9nPDpdtCgBAMlCDEgCAo5zf75chQ4aEXmdnZ0ufPn0S/vyUKVNk165dCc//+OOPS40aNYqUx5J4/PHHJT8/X0REjj/+eJk2bZpUrVrVMk9KSooMHTpUPB6PDB06VERExo0bJ//6179i1poTEQkGgzJ58mTp0qVLxHvJrGVYFH6/XwYOHChjx46NeM9eq/PGG2+Mu7yTTz5ZvvvuOznhhBNk+/bt8vLLL8vw4cMlNTW1xHktLCyU5s2byw8//CCVK1e2vOfxeGTIkCHy888/yyeffCIiIu+//77jti4Or9crkyZNkgsvvDDivVatWslrr70mPXr0EBGRjz/+WF5//fWIgUsCgYA88sgjodeDBg2SZ599NmJ5xxxzjEyaNEk6d+4cqh2bDD/99JOI6H1twoQJEdvQkJmZKRdffLFcfPHFju8/99xzsnLlShHRNXk/+eQTxwGosrOz5eWXX5YDBw7I22+/Ldu2bZNXX31V7rvvviR9o9Jz8OBB+eijj0Kvzf1Oiog0bNhQunbtKj/88IOI6FqUo0ePTnj5a9askTvuuCPh+a+77jo57bTTEp4fAIDyjAAlAABHoWAwKLt27ZJffvlFRo0aJfPnzxcRkbS0NHnrrbeK1MfgggULihRwueeee8osQLlv3z758MMPQ6+feeaZiOCk2ZAhQ+TNN9+UFStWSDAYlNdff11GjhwZcx29e/dOWsAsWTIzM+WZZ55J6jKrVq0qV1xxhbzyyiuybds2+f333+Wkk05KyrJHjRoVNbAmooOoRoDS2FeToUePHo7BScPFF18sdevWle3bt0t+fr6sXLky4jt/8803smXLFhERqVSpkowaNSrq8ipUqCDPPvusnH322cn5AiKSm5srIiJZWVkxt2EsPp8vFMzOyMiQV1991TE4afbUU0+FBpt57733jogA5aRJk0Lbq2bNmnLRRRdFzHPdddeFApTvvfeePP300wmPpr1161YZN25cwvlp3749AUoAAA4hQAkAwFHA3EdcNC1atJDRo0fHHQzkSDJ79mwpLCwUEZFatWrJpZdeGnP+lJQUufHGG+Xf//63iIjMmDEj7jqKUtu0rFxwwQVSvXr1In/u77//lrlz58rKlStl7969sn///tBoxyK6v0PDkiVLkhKgzMzMjPu7tGvXLvS/MfJ2Mpj7H3Ti8XikTZs2oYGVNmzYEPGdzYPJXHLJJVKtWrWYy+zSpYs0btxY/vrrr2Ll2a5Ro0by559/yt69e+XDDz+Uq6++usjLWLhwYWjU6vPOO0+OOeaYuJ+pX7++nHDCCbJy5Ur57bffJCcnJ2bw/3Dw9ttvh/7v06ePYx+xvXv3lttvv10OHDggO3bskG+//bZcnRMBADhcEaAEAABSp04deeeddxwHY4nnkUcekUcffTT5mUqCxYsXh/7v2LFjQjWhOnXqZPm8Uko8Hk/U+U899dSSZbIUFDVPv//+u9x3330yderUhEciL0qz/lhatGgRdzAhc41eowZcMiQSYI237iVLloT+T7Q2XMeOHZMWoLzqqqtCtTb79u0bClKec845CQUaRUTmzJkT+n/z5s0JN1Pet2+fiIgopWTz5s2HdYBy69at8t1334Ve25t3GypXriw9e/aUiRMniogOaiYaoDz77LMdRz8HAADxEaAEAOAo0LNnT8toubt375Z169aFmmbv2LFDzjrrLPn0009Dfe6VBzt37gz936RJk4Q+07Rp09D/Xq9X8vLyJDs7O+r8tWvXLnb+SktR8vTtt9/K5ZdfHqppmihjdOaSSiSoZQ5gGqNVu7Fun88X8b55H2vUqFFC623YsGFC8yXiwQcflJkzZ8rcuXNFKSWff/65fP755yIi0rx5cznrrLPkvPPOk0svvdRxFG0RCY1gLyKybNkyWbZsWZHzsXfv3uJ9gTLy7rvvhoLvzZs3jxlMvu6660IBysmTJ8vevXuLVSMZAAAkLnbnMgAAoFwYMmSIjB07NpTef/99mT9/vixdulTatGkjIjoY17dvX1m3bp3LuU0eY3AcEd0/YCLs88ULxFWsWLHoGStlieZp586dcvXVV4eCk02aNJGRI0fKzz//LFu3bpUDBw5IMBgUpZQopSyDwQSDwaTkNVbt1NKWjHWb97GsrKyEPlPcviKdVKpUSX788Uf5z3/+Ywmui+hBW9566y3p16+f1K1bV+699145ePBgxDJycnJKnI9kBo5Lg7l597XXXhtz3m7dukndunVFRA/iZO7HFgAAlA4ClAAAHMVOPvlkmTZtWqh2ZX5+vgwcONDlXCWPORC0f//+hD5jny9arbPy4I033ggFp9q0aSPLli2TYcOGSadOnaRevXpSsWJFSxAvWbUmyxPzPnbgwIGEPpPovpioChUqyD333CN//vmnLFmyRMaMGSN9+vSx1Jo+cOCA/Oc//5FzzjknIkhpDsrfddddoYB0UVLXrl2T+p2SaeHChfL777+HXj/yyCPi8XiiprS0tFC/oyLW4CYAACgdBCgBADjKHXPMMfLSSy+FXs+cOVO+/vprF3OUPOamzon2+WcehKVChQrlOkD5/fffh/5/8MEHYzZlFxHZuHFjaWfpiFOrVq3Q/5s3b07oM4nOV1TGoD533nmnvP/++7J582ZZtGiR3HDDDaF55s2bFzHSdJ06dUL/mwNz5UVJA4xz586VP/74I0m5AQAATuiDEgAAyBVXXCGdOnWSX375RUR0sKo8jFxrHv15/vz5EggEJDU1NeZnZs+ebfm8G02Qy2qd5r4H4w0YEwgEQvsHwtq2bRsK9M6bNy+hz8yfP780s2TRrl07eeuttyQ1NVX++9//iojuV/Gee+4JzWPuj3H27NlxB4ZKlJvN9w1er1fef//90OsWLVrEHWndsGbNGtmzZ4+I6CDnk08+WRpZBAAAQg1KAABwiHkk7iVLlsjkyZPdy0ySnHnmmZKRkSEiur/FeDVDg8GgjB8/PvT63HPPLdX8RZOZmRn632lglmRJSQkXBeM1T540aVK5rF1XUuamzV9//XXc/hx//vlnV2qiXnbZZaH/d+zYYXmvU6dOoaDd5s2b5csvv0zKOstqP47l66+/lt27d4uISFpamsyaNUvmzp2bULr//vtDy/nf//6XtH5XAQBAJAKUAABARETOP/98OfPMM0OvR4wY4WJukqNatWpy9dVXh17/3//9X8x+FMeOHSvLly8XER28u+WWW0o9j05q1qwZ+n/Lli2ltp5mzZqF/o8VkN65c6f861//KrV8HMkuvPBCqV+/vojoPlzNQS07r9drqblYUoWFhZZBemLZtGlT6P9jjjnG8l5GRobcfffdode33XZbkfY7e8DTUFb7cSzm5t3dunWL+O6x9O3bNxTE37Rpk8yYMSPp+QMAABoBSgAAEPLwww+H/l+wYIF88803LuYmOR5++OHQQCZ//PGHdO/eXf7880/LPMFgUF588UUZOnRoaNrtt98eMSpyWWndunXo/2nTpiVllGUnl156aej/kSNHyrvvvhsxz6JFi+Tss8+WTZs2JTwS+tEkLS3NUvv45Zdflvvuu0+8Xq9lvp07d0qvXr1k3rx5oVq9JbVt2zZp1KiR3HPPPbJw4cKo802fPt0yAvtFF10UMc+///1vadWqlYjoYGL79u3l448/jlprcNeuXfL666/LKaecIv/5z38c5zHvxx9//HFC32nChAmWAWvMfcIW1a5du2TKlCmh1/369SvS5+vXry/nnHNO6DWD5QAAUHrogxIAAIR0795dTjvttFBfek888YRceOGFMT8zZcoU2bVrV8LryMrKkmeeeaZE+SyK4447Tv773/9Kv379JBAIyJw5c6RFixZy1llnyXHHHSf5+fny008/WWp4nX766WWaR7uOHTtKo0aNZNOmTbJt2zY54YQT5IILLpBatWqF+vXr0KGDpXZocfTv319Gjx4tf/zxhxQWFsp1110nTz31lLRp00YyMzPlt99+CwW+2rRpI927d3d1uxyuBg4cKF9//bV88cUXIiLyzDPPyJtvvildu3aVGjVqyObNm2XGjBlSUFAgzZo1k8svv1yef/55EbE2sy+Offv2yejRo2X06NFSo0YNadeunTRo0EAyMzPl77//lmXLllkC8v/4xz9kyJAhEcupXLmyTJ48Wc4//3xZv369bN++Xa666iqpVauWnH766VK3bl1RSsmePXvk999/lzVr1oSCl9G6QujVq5e89tprIqIDt7/++quccsopkpWVFZpn8ODBctxxx5VoG0QzceLEUNPySpUqSc+ePYu8jH79+oX6GP3ss8/k5ZdftozcbrZmzRq54447irT84cOHW0ZbN7z66qvy6quvWqbZg94XX3yxVKhQwTLt1ltvlVtvvbVIeQAA4HBAgBIAAFg8/PDDoQFyZs+eLd9//72cd955UedfsGCBLFiwIOHlV61atcyDXFdffbVUqlRJBg4cKDt27BC/3y8zZsxwbLLZt29f+e9//2vpP6+spaSkyMsvvyy9evUSr9cr27dvl3feeccyT//+/UscoMzIyJAvv/xSLrroolAQa+XKlbJy5UrLfJ06dZIPP/xQ3njjjRKtr7zyeDzy4YcfyoABA+SDDz4QEZHdu3fLp59+apmvZcuW8vnnn1t+y3gjp8eSnp4uGRkZUlhYKCIie/bssYzMbte1a1d5//33o9aEbdasmSxcuFBuvfVW+eSTT0QpJbt27ZKvvvoq6jKrVasWdYClbt26Sd++fUOD1MybNy9iIKEePXqUWoDSXOOxZ8+exaoB3KtXL7ntttukoKBA9u/fL5988okMGDDAcd6tW7dGjJAez8CBAx0DlNu3b5elS5fG/Kz9ODU+BwDAkYgm3gAAwOLiiy+W9u3bh14//vjjLuYmeXr06CFr166VF198Ubp16yb169eXChUqSNWqVaVly5Zy2223ydy5c2XixImWGl5u5nfhwoUyaNAgadWqlVSpUqVURkX+xz/+IYsXL5annnpK2rdvL1WqVJGMjAxp0qSJ9OjRQyZOnCg//vijYxAFYRkZGfL+++/Lt99+K1deeaU0bNhQKlSoIHXq1JFOnTrJSy+9JAsWLJAWLVqERoYWkYRHlHbSoEED2b17t0yePFn+7//+T84991xp3LixVKxYUVJTU6VatWrSpk0bGThwoEyfPl1mzJghdevWjbnMGjVqyEcffSTLli2T+++/X84880ypV6+eVKhQQTIzM6Vu3brSuXNnueuuu2Ty5Mmybds26d+/f9Tlvffee/Lee+9Jjx49pGHDhmUW+P/tt99k0aJFoddFbd5tyM7OtnSFMGHChJJmDQAAOPAopZTbmQAAAACOFp06dZLZs2eLiMjcuXPltNNOczlHAAAA7iJACQAAAJSRjRs3ynHHHSeBQEAqVKggOTk5rnYnAAAAcDigiTcAAABQBpRSMmTIEAkEAiIicsUVVxCcBAAAEAKUAAAAQIk9/PDD8uKLL0Yd0X7Dhg1yxRVXhEb6Tk1NlXvuuacsswgAAHDYYhRvAAAAoIT++usveeKJJ+See+6Rk046SU444QSpWrWq5Ofny6pVq2Tx4sWhmpMiIg8++KBlMCoAAICjGQFKAAAAIEn8fr8sXrxYFi9e7Ph+xYoV5fHHH6f2JAAAgAmD5AAAAAAltG/fPvniiy/khx9+kBUrVsjOnTtl165dEggEpEaNGtKiRQs577zz5KabbpJ69eq5nV0AAIDDCgHKKILBoGzdulWqVKkiHo/H7ewAAAAAAAAARxSllOTl5Un9+vUlJSX6UDg08Y5i69at0qhRI7ezAQAAAAAAABzRNm3aJA0bNoz6PgHKKKpUqSIiegNmZ2e7nJvk8vl8Mm3aNLngggskPT3d7ewARyWOQ8BdHIOA+zgOAfdxHALuK+/HYW5urjRq1CgUZ4uGAGUURrPu7OzschmgzMrKkuzs7HK58wNHAo5DwF0cg4D7OA4B93EcAu47Wo7DeN0nRm/8DQAAAAAAAACljAAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAArklzOwPlkc/nk0Ag4HY2ovL5fJKWliYFBQWHdT7Li5SUFElPTxePx+N2VgAAAAAAAA47BCiTKDc3V3bt2iWFhYVuZyUmpZTUrVtXNm3aRNCsjKSmpkpWVpYcc8wxUqFCBbezAwAAAAAAcNggQJkkubm5smXLFqlcubLUqlXrsK4xFwwGJT8/XypXriwpKbTyL01KKQkEAnLw4EHJycmRDRs2SMOGDSUrK8vtrAEAAAAAABwWCFAmya5du6Ry5crSsGHDwzYwaQgGg+L1eiUzM5MAZRmpXLmy1KhRQzZu3Ci7du2Sxo0bu50lAAAAAACAwwLRqSTw+XxSWFgoVatWPeyDk3BPamqq1KhRQ/bv3y9+v9/t7AAAAAAAABwWCFAmgTHQTHp6uss5weEuIyNDRIQAJQAAAAAAwCEEKJOI2pOIh30EAAAAAADAigAlAAAAAAAAANcQoAQAAAAAAADgmiMyQDlr1iy59NJLpX79+uLxeGTSpEmh93w+n9x3331y0kknSaVKlaR+/fpy/fXXy9atW93LMAAAAAAAAABHR2SAcv/+/dKmTRsZN25cxHsHDhyQRYsWyUMPPSSLFi2Szz77TFavXi2XXXaZCzmFWdOmTcXj8ciECRNC0yZMmCAej8eSUlJSJDs7W9q1ayfDhw+XnTt3Rl2m/bPR0syZM0v/CwIAAAAAAKDI0tzOQHFcdNFFctFFFzm+V7VqVZk+fbpl2tixY6Vjx47y119/SePGjcsiiyiiSpUqSe/evUVEj4q+ceNGmTNnjixZskTGjx8vP/30kzRv3jzq57t37y5169aN+n6s9wAAAAAAAOCeIzJAWVQ5OTni8XikWrVqUecpLCyUwsLC0Ovc3FwR0U3GfT5fzOX7fD5RSkkwGJRgMJiUPJcmpVTorxv5NW8n42+tWrXkrbfessy3YsUKOeecc2THjh0yZMgQ+eqrr6Iu895775WuXbvGXa/bgsGgKKXE5/NJamqq29mBi4zzSrzzC4DSwTEIuI/jEHAfxyHgvvJ+HCb6vcp9gLKgoEDuu+8+6du3r2RnZ0edb+TIkfLYY49FTJ82bZpkZWXFXEdaWprUrVtX8vPzxev1ljjPZSUvL69M12cECAsKCkIB4IKCgtB7xjRDo0aNZPDgwTJixAj57rvvZOfOnZKRkeG47AMHDkR8/nDk9Xrl4MGDMmvWLPH7/W5nB4cBe41vAGWLYxBwH8ch4D6OQ8B95fU4PHDgQELzlesApc/nk6uuukqUUvLKK6/EnHf48OEydOjQ0Ovc3Fxp1KiRXHDBBTEDmyI6yLZp0yapXLmyZGZmJiXvpUkpJXl5eVKlShXxeDxltt6UFN3laWZmZmibGtvL6HfSrkOHDiKif0u/3y+1a9d2XHZWVlbc3+lwUFBQIBUrVpQuXbocEfsKSo/P55Pp06dLt27dJD093e3sAEcdjkHAfRyHgPs4DgH3lffjMNHKZOU2QGkEJzdu3Cg//PBD3OBVRkaGY+289PT0uDtIIBAIDe5iBOEOZ0ZNRiPPZc28nczrd8pLfn6+iIikpqbKMcccEzW/R8q2T0lJEY/Hk9B+haMD+wLgLo5BwH0ch4D7OA4B95XX4zDR71QuA5RGcHLNmjUyY8YMqVmzpttZQjF9/fXXIiJy4YUXlssDFQAAAAAA4Gh3RAYo8/PzZe3ataHX69evlyVLlkiNGjWkXr160rt3b1m0aJF89dVXEggEZPv27SIiUqNGDalQoYI7mW7fXuRQPtzmEZFspRJr3l23rsjChaWeJzNjFO/XX39dJk6cKE2aNJExY8bE/Mw555wT9b2qVavKvn37kpxLAAAAAAAAJMMRGaBcuHChJSBl9B3Zv39/efTRR2Xy5MkiItK2bVvL52bMmBF3pOdSs327yJYt7qzbxnMoHU42btzoGDDt2LGjTJs2TapWrRrz8927d5e6des6vhdvkCMAAAAAAAC454gMUHbt2lWUUlHfj/Wea6IEz9ygRG8jj8cTP1BZRvmuVKmS9O7dW0RECgsLZeXKlbJ06VKZP3++DBo0SD744IOYnx82bJh7wWcAAAAAAAAU2xEZoDwilXEz6VhUMCi5ubmSnZ0tnsNkYJlatWrJhAkTLNM+++wzufrqq+XDDz+ULl26yG233eZO5gAAAAAAAFBqDo/oFODgn//8pwwbNkxERB5++GHJyclxOUcAAAAAAABINgKUOKwNHz5c6tWrJ7t375bnnnvO7ewAAAAAAAAgyQhQ4rCWlZUlDz30kIiIvPDCC7J3716XcwQAAAAAAIBkog9KHPYGDhwoo0ePlnXr1smzzz4rTz75ZMQ8o0aNiujD0uyaa66RCy64oBRzCQAAAAAAgOIgQInDXnp6uowYMUL69u0rL730kgwdOlRq1qxpmefbb7+NuYy2bdsSoAQAAAAAADgMEaBEmdmwYUPEtAEDBsiAAQPifrZPnz7Sp0+fiOlKqSTkDAAAAAAAAG6hD0oAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEmWmadOm4vF4ZMKECaFpEyZMEI/HY0kpKSmSnZ0t7dq1k+HDh8vOnTujLtP+2Whp5syZRcqrka8BAwYU78sCAAAAAAAgIWluZwAQEalUqZL07t1bREQCgYBs3LhR5syZI0uWLJHx48fLTz/9JM2bN4/6+e7du0vdunWjvm9/z+PxiIiIUioJuQcAAAAAAEBxEaDEYaFWrVqWmpUiIitWrJCzzz5bduzYIXfffbd8/fXXUT8/bNgw6dq1a+lmEgAAAAAAAElHE28ctlq1aiVDhw4VEZHp06dLYWGhyzkCAAAAAABAshGgxGHt5JNPFhERn88ne/bsKfHyHn300VDzbpHIPiw3bNgQ8Zn9+/fL8OHD5fjjj5eMjAypW7eu9O/fX7Zs2VLi/AAAAAAAABztaOKNw1pubq6IiKSmpkqtWrVKvLy2bdtK//795e233xYRkf79+1ver1y5suV1Tk6OnHnmmfLXX3/JWWedJa1bt5Y5c+bIO++8Iz/++KMsXbpUqlatWuJ8AQAAAAAAHK0IUOKwZvQ7eeGFF0p6enqJl9ezZ0/p2bNnKEBp7/fSbtKkSdK9e3f56aefJDs7W0RE9u7dK+eee64sWbJEXn75ZRk+fHiJ8wUAAAAAAHC0IkBZRtq3by/bt293OxshSilLU+do6tatKwsXLiyDHIUZo3i//vrrMnHiRGnSpImMGTMm5mfOOeecqO9VrVpV9u3bV6y8VKpUScaPHx8KToqIVK9eXYYNGyZ9+vSR7777jgAlAAAAAABACRCgLCPbt2+nz8IYNm7c6Bgw7dixo0ybNi1uM+ru3btL3bp1Hd/Lysoqdr7at28v9erVi5jesmVLERF+UwAAAAAAgBIiQFlGogXP3FKUGpRloVKlStK7d28RESksLJSVK1fK0qVLZf78+TJo0CD54IMPYn5+2LBh0rVr16Tnq3Hjxo7TjRqVBQUFSV8nAAAAAADA0YQAZRkp62bSsQSDQcnNzZXs7GxJSTk8BnKvVatWRH+Qn332mVx99dXy4YcfSpcuXeS2224r83wdLtsHAAAAAACgvCL6gsPWP//5Txk2bJiIiDz88MOSk5Pjco4AAAAAAACQbAQocVgbPny41KtXT3bv3i3PPfdc0pZrjAju9/uTtkwAAAAAAAAUHQFKHNaysrLkoYceEhGRF154Qfbu3ZuU5TZs2FBERFasWJGU5QEAAAAAAKB46IMSh72BAwfK6NGjZd26dfLss8/Kk08+GTHPqFGjIvqwNLvmmmvkggsuCL3u1auXPPvss3L++efLueeeK1WqVBERkaefflpq1qyZ9O8AAAAAAAAAZwQocdhLT0+XESNGSN++feWll16SoUOHRgQRv/3225jLaNu2rSVA+cQTT0hKSop89tlnMmnSJPF6vSIi8uCDDxKgBAAAAAAAKEMEKFFmNmzYEDFtwIABMmDAgLif7dOnj/Tp0ydiulKqWHnJzMyUp59+Wp5++mnH9+Plq2nTpsVeNwAAAAAAAMLogxIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClEmklHI7CzjMsY8AAAAAAABYEaBMgpQUvRkDgYDLOcHhzthHjH0GAAAAAADgaEeUJAnS09MlNTVVDh486HZWcJjLy8uT9PR0SU9PdzsrAAAAAAAAhwUClEng8XgkKytLcnJyqEWJqA4ePCi5ublSpUoV8Xg8bmcHAAAAAADgsJDmdgbKi2OOOUY2bNggGzdulBo1akhGRsZhG4QKBoPi9XqloKCApsalTCklgUBA8vLyJDc3VzIyMqRWrVpuZwsAAAAAAOCwQYAySSpUqCANGzaUXbt2ybZt29zOTkxKKTl48KBUrFjxsA2iljfp6elSrVo1qVWrlqSmprqdHQAAAAAAgMMGAcokysrKksaNG4vf7xe/3+92dqLy+Xwya9Ys6dKlC30hloGUlBRJT08nGAwAAAAAAOCAAGUpSEtLk7S0w3fTpqamit/vl8zMTAKUAAAAAAAAcBUdEAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDVHZIBy1qxZcumll0r9+vXF4/HIpEmTLO8rpeThhx+WevXqScWKFeX888+XNWvWuJNZAAAAAAAAAFEdkQHK/fv3S5s2bWTcuHGO7z/zzDMyZswYefXVV2XevHlSqVIl6d69uxQUFJRxTgEAAAAAAADEkuZ2BorjoosukosuusjxPaWUvPDCC/Lggw/K5ZdfLiIi77zzjtSpU0cmTZokffr0KcusAgAAAAAAAIjhiAxQxrJ+/XrZvn27nH/++aFpVatWldNOO03mzJkTNUBZWFgohYWFode5ubkiIuLz+cTn85VupsuY8X3K2/cCjiQch4C7OAYB93EcAu7jOATcV96Pw0S/V7kLUG7fvl1EROrUqWOZXqdOndB7TkaOHCmPPfZYxPRp06ZJVlZWcjN5mJg+fbrbWQCOehyHgLs4BgH3cRwC7uM4BNxXXo/DAwcOJDRfuQtQFtfw4cNl6NChode5ubnSqFEjueCCCyQ7O9vFnCWfz+eT6dOnS7du3SQ9Pd3t7ABHJY5DwF0cg4D7OA4B93EcAu4r78eh0UI5nnIXoKxbt66IiOzYsUPq1asXmr5jxw5p27Zt1M9lZGRIRkZGxPT09PRyuYOIlO/vBhwpOA4Bd3EMAu7jOATcx3EIuK+8HoeJfqcjchTvWI499lipW7eufP/996Fpubm5Mm/ePDnjjDNczBkAAAAAAAAAuyOyBmV+fr6sXbs29Hr9+vWyZMkSqVGjhjRu3FjuvvtuGTFihDRv3lyOPfZYeeihh6R+/frSs2dP9zINAAAAAAAAIMIRGaBcuHChnHPOOaHXRt+R/fv3lwkTJsi9994r+/fvl1tuuUX27dsnnTt3lm+++UYyMzPdyjIAAAAAAAAAB0dkgLJr166ilIr6vsfjkccff1wef/zxMswVAAAAAAAAgKIqd31QAgAAAAAAADhyEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAADK3o4dUnXdOhGl3M4JAABwmUcpSgROcnNzpWrVqpKTkyPZ2dluZyepfD6ftGzZUgoKCtzOCnBUKygokMzMTLezARy1OAbLkM8nkpIikprqdk5wuFBKZNs2/bd6dZGsLLdzBJRPPp+IxyOSlhZ1ljK5Hnq9+hpwtFwH/H6RfftEMjJEqlRxOzc4AhQUFEiTJk3k119/dTsrSZdofC36WQrl2r59+2T37t1uZwMAAABHu717dQKA8qawUCQ31+1c4AhxtD84J0B5lKpWrVrJdn6/Xz/xTk+PPV8goOfNyCj+uo4EwaDInj36iWD16m7nRj+hTEmJ+aQU7qP2FuAujsFSpJS+FlWoILJjhy4PiIhUqiRSrVrk/IWF+pp1tNSsgUh+vkhOTvh1gwbu5QVHvry8cBAoOzu5Ndb27hU5cECfz2rXTuwzgYDI9u36/5o1Rdy61mzfHv/8K0W4Hvp8In//rf/PyBCpVSuxfGzdGu7KIdm/j9sKCkSMij8VK4rUqKH/37IlPE/t2nr/cYvPp2tzZmYWbdsf7vfy5m1ft+4RX4YoKCiQOnXquJ0Ndyk4ysnJUSKicnJy3M5K0nm9XjVp0iTl9XqLt4A1a5RKTVVKRKkffog+X36+UtWq6fleeql46zpSXHml/p4iSn32WXKXnZOj1JQpSu3fn9j8kybpfGRmKrVlS3LzgqQp8XEIHK327dPnxAMHSrQYjsFS1quXvhb16KFU9erha+RVV0XO+9pr+r2qVfXvq5RSI0cqdeaZSs2fX7J8jBmj1OmnK/XjjyVbTlmbOVPne8wYt3NSesaMCe8X3JIkxx9/KNWli1J33qlUMBh//mBQqXvuUeqss5RaubL081ea2rUL70tnnpncZZv300TvDe+9N/yZ6tWTm5+iMOd90CDHWYp0PRw1qnjHrfkz/fsn/rkjwRNPOG8T87QZM1zLnlJKqQYNwnlZvz6xz+zfr1S9evozTz1VqtlLyObNSk2frpTPF57WqlX4e914o3t5S4LyXi5NNL7GIDlHsZTXXhPp2FHku++K9sGnnw4/ibvllujzLV6sn9SIiNx5Z+xljhkj0qGDyIwZRcvL4eLjj8P/L1kS/j8/X+Srr0pWrb93b5GLLxa58cbE5r/hBv23oEBvVxTPqlUis2Ylt+P+b74ROf10kddfT94yjxS//SbSqZPI8OGJza+UyG23iZxzjsiGDcnNi88n8vXX8ZerlN4HVq0q+jry8kS+/DJ8DiyvVq4U+fnnsh3g4vLL9Tkx1vUH7vv0U/33q69EKlcOT8/Pj5x30CD9NydHlwP27hV54AGR2bNFHnmk+HkoKBC56y6RuXNFzj67+Mtxw80363zfdVe4dsiRzusVmTIlXKvscO8G3+cTmTpV59frFbn6apELL9QtZspaQYG+bu3YEXu+UaP0deull0S++CL+cmfOFHn2WZGffhK5//6kZNU1wWD4/9mzdZlj2bLkryfRMsGBA+H/y6r7gu3b9T7r8zm/X6lSydexcGHxPmeuFbZ8ecnz4YYRI0ROOUUfY2ZONd68Xutrt5t4m2tzbtsm8vvvIj/+GPs8/Msvel6R0j8/rF2r75OMGIPdwYMibduKdOsm8uKL4enm437lylLNIsoGAcqjVSAgqXfeKbJggT7Qi2L//vD/RhV/J/aLo9NNiYg+4QwZoi94555btLwcjsxNJ266SeTSS0X++c/wNKVEBg8W6dxZZN262MtSSmT6dP3/hx8mtn7zdj5cbmoCAZFrrxXp2jV8oUumNWt0QfT225Nzw7N5s74Inn22yOefl3x5hoceEpk3T2TQIPFMnpy85R4JevTQNwyjRon88Uf8+b/5RuSVV/TNkz0QpZQOipkfBsSzfbu+WTt4UOSpp3R+Ona0Ni+0++ILvQ+cfLLIpk2Jr0tEZOBAkcsu08e/m3bt0t/DfN6OZu5c/aDoiScSW/Zff4m0aSNy1ln6xrks+Hy6QC0i8u67ZbPOo8mIESKnniry7bd6vzFfQ5Yt08HDRM6x0W6ORXTwPpaDB3VTQOOmY8GC4p/X7dcb+w3j4WjnTv1wY82a8LSffiqbde/ercuEl12WvIcrDz0kctppIr/+qv+/5BJ9zvD7rQEcQ2GhyOTJ+jrstkce0Q9DzjpL3xB/9JE+NkaMKPu83H+/vm6ddVb0G3gRkbfeCv//7rsiq1froLD5Jt5sypTw//HKO3//rX+bgwcTz3dZsm+X2bNFevUq+XILC62vf/+95MtMtkWLRH74QeTMM/U++9hjerp9QNSSBteVCl+DRUQaNkz8s+bjfenSxMolh5OcHH1OWLxYlw3N+bdvZ58v8hwWq7xZGoYM0fuDU0B940aRdu30fdmkSdGXYQ9G79yZzByG/f23Ln9edFH0yjXLlukyrYjIPfeEpzdtGv7/zz9jrycY1PcUnTvrgCgOT2VUo/OIU96beE8dPz6x6vkvvaTUSScpNXlyeNp114U/l5UVnl5QoNTnnyv155/6tdHU2EhTpzqv4/ffrfPl5YXfmztXqZ9/jvyMz6fU11/rpiyxBIO6mdTChfr1iBG6CchPP8X+XFEEAtb8P/ZY+D2nbfz99+FpXbrEXvbu3dZlJNJcp2rV8Px9++ppzz+vVJs2Sg0bpv+OGlW076iUUg89pNTJJys1a1bRP/vpp+E8XXZZ0T8fz4UXhpf/7bclX96//x1eXrVqzvP4fPpYOP10pdatS2y5pt8yWLu2+uLjj92vxr9ypf4Ot91Wuusx78dZWUp172491u1GjIh+jpo+XU9LSVFq1ar46w4ElDr+eP2ZO++0Lvftt6N/LiUlPN+jjyb2PZXSTY/N6zA3RYmlsFA3fz3rrOR1z3DqqeFmLz6fUl99pdTq1c7zNmwYzvPGjfGXfdddZd98bePGop8To0hqU5qCAqU++sh5u73xhj53fvpp4svLzVWqWzd9bsvPL3n+DNu2KfXhh+Fm1GZ//mndtiJ6/5k6VV/b09P1tM8/j7+eLVusy6lQIfx/y5aReTLP++yzuimcedpffxXv+/78s3U5v/5avOWUhWXLlPruO6Vat478He66K/nr++sv3SWNuauEV19N/FodDCp1991KnXKKUosWOc9jPl5r1bJ+p9WrdZnEfp43pjVqpJTb10dz3sznx+OPL/u8HHdcYudnczPOtDTd3Y+IUs895zz/BReE569YMfpyg8FwU8qilBeCQb1fL1gQnrZzp1KffJJ4U+lAQKlvvlFqxYrY87VsGXnsJONW134++7//09P9fn1trVNHbxt7+fj220uej4MHlbr0UqXOP1+pvXud51m+3FpeMa9v2TLrtEsusX524UKlTj1V+e+5R80aOVL54pXxX3jBurwqVRL7Hrm5kfkrqybPv/2m959AQKmPP9bX47feKt5yzPk3lwufesr63sqVkdexsWOT9pXimjcvvN62bfU0c17M3SHEKr9dfrn1cx9/XDr5ffbZ+MfKDz84l60vvtg63e+Pvp6JE8PzDRgQnr50qVKdOik1eHCJypUlRRNvLQln7fKpvAcof3j++fg30Dk54fdr1AhPv+KK8PSMjPD0++/X0+rV0zdU77xjXce99+oCysknK3XTTeGbri+/tM73/fd6+q+/hqfZg5QvvaSnV60a/YKtlFLTpun5PB4dqDSWV6lSMbacyebN+mazoCDyhnnIED3PwYPW6QcP6ukvvph4gcUevN2zJ37e6te33mDY82EkpxvUaP76K/y5Y45J/HOGRx8tXiHthx90gPzuu3XwJppoBYZE5ebqAOyJJyp1xx1K3XCD8z5u9sYb4XkGD05sPVWqWPL63bhx7l+E2rYN56m4gfuCAn2zsXat8/vR9sFhw6IvM9Y+Y74Jufpq63uzZ+tzzPDh4WnbtzuvX0Spnj2tn//vf5Vq0UIp+0McEaVOO02pDRvib4/vvrN+btOmyHlee03vbx9+qB+0GIFEI91zT/z1xFNQYF2mcd6sUsX5vGme97vv4i/ffJyYH1aVpl9+seYzVpA7jmIXBH/+ObL/5UGDdH4aNIgMqhTn3PfII+HPPPRQ9PkCAaWuvVY/ZIjXp1QgEA5+2fd7pZR65ZXox4k5JRKcWbQo+ucrVbLeAEydan3/X//SwV7ztEmT4q/TyccfW5fz6qvFW05p++uvcADYKZ10UnLX5/Uq1bixXvbQoeHpQ4ZY12vuk3D+fH1uHTJE/35z54bnu+465/WY57GnqVN1oMt+fERbv2HyZB0MevFFXSbq0kUH2UpwLgj59Vd9LTPKp9Hy3q6dfn/TJqXee09fY0rTvn3W9T/wgDXgZwgEdJklWr4DAev8Xq8+Ho33a9eOnoe//y7eueyzz/T85geKHTvqaZddpq+B0coOOTn6XPCf/+j5K1bUDzQMu3bpz+/erV//4x/O37ukli61Ls8I8tnPUyL6HPvCC/r9668veT7MfRv++9/O89iDSEZq1Uqpzp0jyzFmbdpEfs5p31JKqTlznNeTyDV05crIz40fH31+r1ffb555pvU3L6qtW8NBevt9aVF9+230a+EDD1jf+/RTpSZMsE578snIZebn66DZsmXF/45O3n8/9rm1du342yIYVKpuXet8iT6cMB6IJ9qv7XnnWdfjdM/3ySfWeZYu1dM7dbJON84z//ufLs+/9lp4GT16hOdLS9PTdu2yfn7uXOc8+v26clSyfysTApRaEs7a5VN5D1D+Yr75EdFPB7du1Tc5l1+uLwxGocJIJ56oT8Cnnx6elpISLvCY5/3kE/2kyDzt3HOtF9HTT9eftQfs/vEPHfQz14qzX1ATvcCdfHJ4PvPT55IUWMxPkbt00YM1mJd7/fV6vnXrrNONC6w9OByL/elbIrXFzN+zY8fIp6dGKkpNEvuF7v339Ta4777IeXfs0Bdbo8CoVOSTxUR16xb+zEUXhW9q167VBUMj6Gtetj1Y+Omn+gL1/PPR19OnT2QBzvi/Zk3rvIGA/s3NN5OJBLwDAR0oN63nl0cfdf8iZP7eb75ZvGUYBbPatZ0HLlm82HkfjHXTbS/smRm1IY108sk6mK+UUk2ahKcbNz3RjgERXXA1bmzNN2D2QpmRunVLfHsYad68yHnM7994Y+R6/vGP+OuJx17rw5ycasGZ308kkNOvX3j+aDWNk+3DD635TLT2sgOv16u+ev995ZswIbHAs1LWwNtXX+lp5gc4ItYCub3WSKwHamannBL+TFqaUl98ERlcUMpaOz3evmmuvS+i93ezyy6Lvr+YU716+rP287zZN9/EXsauXXq+d9+NfO+qq5QaN8467eGHE9tudvbyxU03Oc/37LP6wYfxm8byww96XqMWVTIMHRp/u99yi37omgz2YIHBHjB88MHwe+ay3/z5+iGK8bpTJ523E0+0DqTw1VfRv8+YMdZziEhkbVqnFhHGII0i1jwU5+Gk2caN4et6jRrWh9r21LmzUk8/rY9NkXANpdIya1ZkHlJSIlsRxTrni+h99/vvdVDq/vudA07RyiT263g0mzcr9cEH4euqufb0sGE68GBfZ506zgFmc4stI40YEX7/3HP1tIsv1q+NwTzsKVGLF+tyybXXWh+i2M+dxx6r3+/QIfq2LijQgUynfMybp8vQ3bvHr0VoDr60bm19LxCIvFeLl447zroMp3mMBw5vv63UCSfoQJtS+mGZ0/wTJ+pz4iOPRP8e9m0ooo8hs9mz9Xe89169bvO8J56oW88katOm2L+PiC6vTpmi15sI+4PrtLRwbT37w5277tLbzjzt3nsjl2ku//Xpk7zae2+9ZV13MBh7Wzixl21EdE3yWDUUDcYDz8qVdTnhuuv0sfXbb5Hz7txpPa+LOAcJX3/dOs9//6un21sdvPde9JZM5nPEqafqaebWQCK6AooT4/fPzNQxk1JAgFIrwln76FLeA5S/2k+k8+dbC4qvvKLUwIGJXeyMJ8fmaYMHRwalTj5ZB3vM0+yvzRd/81O/E0/U69i5Uz8RMc8bK/DUokViJ2OvVzeh6NBBF65iWb/euhzz6KQi+umMUnrEUPN0I4By333xLwoGe2Dw9tvjBymPOSY8f926kTVIjPTBB7GXs22bDnB266bUzTdH3441auhCojHKuPG7GdtBKV0D0vyZRI8rc21Q44J18GD4AnP//Xo+c7Dw7LOtyzB/3ukGPxjU38E8n7mmY+PG1vmjbc/jjtMFqrffdq4NYK6RfCgtuv328EVo3Tp9M/3SSyUKuoTs36+fFv/0k/6to41gm8hFORZ7oWfx4sh57E+tjWRv6mnmVLPG4PTE31iWeZrRNYW9RqNTatcusrZDIucOJ2eeaZ2/Xz9rE8hoNUrN6YIL4q/HkJenAz1G9xoGe60Pc/rkE+u89t/xX/+Kv94rrwzPf8wxOqh5/PG6IGrPS7KMHm3N55w5zvO9+qpSzZvr60UUXq9X/dWli15O5crWYMjtt+vrh3355u4fUlP1NHOQxLzfKaWbsZrfS7RJm30fErHWCjbYbxhjufba6Md7QYG1JlWs1KKFUueco/+/6CLnddlvLu3JeEDWrFnke507665SzNPM15NE5OUp9c9/Ri775JMj5/X5inZ8mx+ezpxZtHxFM3hwYtteRAd/S8recsVonXHVVdbpRuBHKev0J57Q5TTjdaNG1veNGohvvhn9e9x1ly53maeZH0ra91GnfNjTSScptWSJ83eeP1/XxH34YX29mDLF+r65VYRIZN7MqV07XZvPPG3TJn3cnndeuDyULPZAu5HOPVc/rDXKNvYa5vZknO+M9NxzkfM41fhXKnKfyc2NnMf8AL9//8jryp13RrY6MpJTk1un+Ywav/YWAn5/OGBsT04PTu38futnzPuR/cGYxxNZgcCeliyxPuwW0QEW+wNWEV2u//lnHeiz1xwzP6zq0MH63i23JH7eMFLVqvG38cCBke8pZW1Ka9+X4u0/TuXACy7QD9leeEFfr83v2YO7IkXrSsZ+LnFKRs1cj8e5+4Dp0/U5pV8/fYzZux4SCXe3cNNN8dd3663W5Xu9SmVnR+4LyWC/B9+7N3benO7Lot3vjBqlz6H9+oUDfytX6nJotIojxv/HHqvf37FDlxNWrXKuiezUJcXIkdZ5srL0/ma//txwgw5SmqctWhRZccioJGEPZJtbFWzapI+zpk2t84wcWbzfxegOyClQqwhQGqSM8nPEKe8Byt/sN+KTJsVuFhIrLVigC6PmaZUr6ydFxVmekU48Mfy/EXxwumDFav5mbzZpTn6/vnk0ClNGincjNHly7Hyfeaaez35y/OUXPd3+RDhW02V7Xy8iuh+naE2ZgkFrAc3j0YVxp3waT6HnztWFInvwrm/fov1eY8ZEBuGMZdqXZWwLOyOYFgjo75KVZf3c6NGRT/x9PmvNxBo1wk8gN2ywzuvUDMt+wbKnZs2s89uD+07JqZnnpk0R8/154YUq0L27LoCajz+PRzfBjNavVyzr1+uCoL1WqMfj3CzBPE9x+sexd0Pw9deR8/zf/zlvp+bNoy+3Vy/rvGb25hxG2r/f+tqoyWMP9Jc0jR8fvbuFrVsjnwSL6JtZo19Jp6fS9lSUGjnGTUrTpvp4CAQit5899eplrS1m7+/WHJiIxtxURsT6vevXL1o3EvH8/bdzMzZzMNBgvymOwmv/HSpV0g9m1q61/m5Tp+oHEA88EPmwJT8/sna+uWDtVAtr4MD4NRCiPVwzah4a7LV1d+7UtV3sT/d//z3czM1I3buH358/P/H9394UORDQAW9zMNe48YuWPvssstxgpGOP1V1tmKfVq2f9PrNm6Vql9tomfr8OJth/EyN5PDpobTQNU0rfKCWwv4TYl3nRRTq48NlnidUsMTP6RDvppMS3v71bi8JCfY5zejgUjb0lh1Ez0wg827f75s2Rx0q0Y18kXIvYfkNp327RghxGMtfgjLb97enccyM/8+efkfvtmWfqm8UPPtD7w4AB1vfr1En8NxGxBqOMJr6JGDtWPwh1qrW+erW+mb3mmtjrNmqiOdVIjpXsAWkRfXPevHlk7TZ7FxArV+rjb/Lk8LFvL0/ZywcXXxy9mfBZZ1nX5/BQV4noB+ZKRbaMiNWtxLJlettEC54pFVk7y9ythL1Gt0j8a+z//uccjIyX7Pc05i5tzA/gS1KuMZdPo21je8A2GAwfE9WrR14LjfTuu/p88sUX1u8xalTR8mi/NzNSkya6tn+sVmD2vCeS7r47/PkPPrBW9hDR1xz7g3OR8MN/e5nbKRnjAiilm3s7zWN+iPn00/oeJFa/j88/r6+ZEydap9trBcZLTs36zQ9fzV36mNPTT+uyrTH+gdGywDxP167W1088Eb7nqVlTPxC3L7d378j8ON1L2H8nEX3dsjcZHztW17g0T6tTRy/XXlnqwgvD6zT31WlORgWZoti9O3z/kp3teB9BgFKTMsrPEae8ByjX2JtyjRsX0T9ekZLRt1kykzk/LVpE1nIwp3btwgPhmLVvH/0z27c7194Q0Tf6ToEWpaJfVIx0wgl6vqeftk7/8kt9A2PvyNqpaeHMmboJpr0DeSOZn/zfd58OBtx8c2RhUEQX+pyWUbOmDqIahfbRo615KOrvddVVkc2QjIEN7Dc9r76qgxevvaYLLYsXW59MPvFEZJ9LIrpGjLmDY5HIvgpFdBB3+vTIi6LTPvLBB7G/l73p6tVXJ7Y97LU4Vqwo3jFQlH61pk6NXwvq5JOtzcLM7z3+eOQy8/J0wMN4ujxzpp6vWzd9U3X++dZlvP565DK6d3fOi712qpl9vzUHIs44w3l59pv8vn114fHss63TPR5dGLPX0C1K6tPHOd/2496cnn1Wz7NwYfzlm/t69fv1fh/liavlc3PnOj+NjpbefVcvw75/2puBPf+8/r2Mpl6xfgcjOTVnKo6cnMin10bq3Dm8bwYC+jevVs06T5SCnt/phumZZyL7RDQn84ASIvom1H5Or1s3HPCJdhN5993WYJYRpBg3LnatsyeesH4Jc41OkfBDvNNPN31Rv/PNXmZm+CFSSW52jc7t09LCtcfttUrt6cUXrcdB48bhmvEZGc7nWSPoumJF+KGUfeAh8yAvsVLlyuHWEvZ9P96gVk43REYaNy72Z+3sQRGn1KOHdcCDypV1jbAdO/S+Yjw0q1Qp8b4Q7TfaRt9oToHSihWdu6GIlYz9P1oQQ0QHwZxqw5tT7drW2v9eb2LrN2pwB4M60OQUWBAJn69TUkpWBran/v2t2/vHH/U5bMAA68NgezknENAPYzp1it7NSLT0yiuRLXTipWjnVREddN6/X2/ziy6KfP+776znKqftZw/sHXdc7CbJ5oc70R6aGA9W7GW3aLVMRcL7WfXq0Wv328syxrH822/h/lqjJXMzdiPde2/ktSiRZA6OKGVdt1EBQilr/+FFTUaXU/YH/Ea67LLIBzfm8+T551v7xjQncz+gRmDN3hdjMlKlSpG1eLdu1efUeOV6p2TUGlXKeaCyF15wfkj6wAPRg6n2ZPRdum+f86BGIrr8plRk9zBK6WvWSSfpe5u8vMhArNerv/v8+c4PH2IloyxoZi6Hb9oU2drM2PfN26VTJ/1Z8zzxzmXmrpmM1KpVZH4SqaUaLfXtG1njODU1es3SL7+M/hBVJLGxB/bu1WWZ44/XD2bsXZo4dFlAgFKTMspPmfL7/erBBx9UTZs2VZmZmapZs2bq8ccfV8Ei9OtQ3gOUf9lv2O+/3/nEU9YpWm2/OnWcO1i2p+XLrV/WXu3bnBKpMVKvni4smPsnifeUzHgiYx8t2Km5mUjkAEA//uhcYDCnUaN0X0L2J9rmUSaLk4xjJC+v6J/t0SOygNi3rw7UmWvDiujmk7G6EKhYMbIzahF9kbP3n1qcfBYU6Hy9+27k7+SUzDes5mMnVq0Xe9+os2cnlr+0NOvF3D4Yh1K6AFO/vnWQmb17I5uKREu9eunCp/3mwRjgycx4spmerpuYxts377tP38ycfLKulRIIRHaDYKT0dOdm90pFdnZvPhfb+/WJllJTnfNr1ByMVbsnkWSvLeX3x+5W4pZb9HyxAmDmZNSuNo6VmjUjn7jaawuOHBlZqy5eCgQiR0cU0Q9+cnIia6Yed5wuKCZy0xatj0K7WbN0zd9AQD/lrl9f18JTKvaNp4h+IJGbG72/u19/1TdItkGggk43eC1bOteWMZL9AYDTjamR5s2LbJJuTv/4h74htz/Vj5fq1w8fq059tBnJqG1pDm61bm29ETceIsV78JZoOv98/eDLXhC3p+HDrU3+nn3WGvx1+m2Mh4bmc7Z91GF7M/ZY6ZZbIkf/FIndzUswGLu1SaxuK5wkkk+j1o25BsvnnzsHjZ5/Xu/njz2m3z/mmMhrkVNfcCK65lxRg2LRktGfcayaf2lpsctoRvJ4dDBs5crEa2EZfeHZmzna1+/0+ycj2a+l5mNu4ED9kLl//8jPrVjhXJvIrbRgQeRDYSONHx9/f3F60GAMkBMtGS1H7N05GcloeWEvC/bundh36tjR+sBz/XrdvN8+aIhI9JrY9uTUJYc94JloMvfNbR/0qHlz/YC4OMu113KeNy/6AIKnnx5ZQ9V8LbvvPqVefjn+Oo85Rm/f4rbQi5fMtSiDwcgm9UVJ55wTXk6i3Z0kkszHeefOsc/BIuHA+NdfW6cHg9YHLU89pdSaNdZ5jJYLGRnWLjgSSYMH6+PAeBDo84VbsTVtqqcZfb7GSg0aJH5ts6caNcI1hs0PUA3mQXoXL7bWLk4kX07l8+nTo3/G3tWMOZlboNgFg7p8Y74nP//8yFYsL76o51+2TP+eL72kvNu2EaBUqnwGKJ988klVs2ZN9dVXX6n169erjz/+WFWuXFm9aOwICSjvAcq/zYPHGCdQe3NakcRORvYUrQ+YeKlyZV2jLtr79ibTTmnQoPAXDQZjj4pZlOrvFSvqpnNKRQbb7Ck9Xa/bfCKNlex9QUarbWZOTZpEf/pWkmQ8zUk0gJJIqlYt8ib+0kudn1CaU7SCb0kKIEbq08e5GW60tGOHDgyZA8JVqsS+eNlvUOINGmGkTz+1dm49alTkQWwuSK9Zo6fZB2sy0oknOj/ddboxdBqJNdqomNGSuV+uZs3iB2ajjc5or3kwe7YuEK9fH7sGU7xkbgZ58GDRawaZk72WrDkw6FQzyOjg3ql/Po9HB4vM540NG/QNonm+AQOsTVvtNxgXXBC9SX209OWX0WvQvftu7IEu7KlvX2shetIkvU+//Xb0wRc2bAgfj/Ya0a++mtix+umniXW/MHmy3nbBoAoeKiwGW7Sw1hQoznXPKQ0aFL8mYWkmo69Cc7ckjz9uHZDFeABSkuOgOGnAAGsLga+/jt6EzEhG7VH7tdvMPJBLcdP8+ZH76KF9xlKrpVatyFYaRh9peXn6Jr52bX1st2sXWbvRabAQp2Q0aTXfsDoFJ0V0X1r2Mlj9+uHzRVGO5ZIkY8AaezO7RFKXLpE3csceG7vGe8eO1hYTrVo5dqsSkZIVkLUnY7BEpfRNdqKfe+YZ57J4UZPHk5yy0ltv6QoMTu9Fe+huTolUfPjwQ+tDhxdfjH3eTE+PPTp8Isnc3U28Mr09OT2Yc3rQHevhVbxtppQu8zjdw9gfut5/f2LNi+3znHNO9AEEjz02MnBj7tPxo4+KV0tRRJcpnYLBxUlffhn+He1lpeKkpk2t3bJ06lS0ewWn9Ntv1vPZpEmRD1rsAdw2bSK7nLB3m9KqlS4LJmM7mlOXLnp7LlkSnmZ0KxJrPAIjeTyRXQaZU6wYwbnnWgfrM/r3NJi7BDlwILJGZFEClkaKVhNYRMclYn22dWvnPkMTvYceNEhXAjBV4ghcfTUBSqXKZ4DykksuUTfeeKNl2j//+U/Vr1+/hJdR3gOUOfYLbLQ+FopTW624NTFeeSWyE25zSmQAizPOCH/RXbtiz2svAMdLL78cf0Q4I+XlJT5vo0a6tkHt2skpUJYkpabqC1G0fqHszRuLm045Rd/cOb3ndPFKNCBlb+5YlBRrf1ixIrJmTvPmkZ1+22tUTp2qa4a9+Wb02gD2tHKlrglsvO7Vy3oA79ljnd+oRRktWNqlS+IDMJj7HQwGI2vOlUZyCgbYO78XCfcRc/LJzoV2pyYiTsnoB9IsXk3AaMncnNMcIE5NdR6swOPRNV2NJrFG6tBB9+GqlLXvvdmzY4+s3KBBZKE1K6voTXv69HHu71ZEBxqKMoDH0KHRg53mPtYKCvTr2bOT0/zrllsSb2YlYrl5DHTrFtknXzLSGWdYa5C1bKlrvn37bdH6HCxuMgJ65pFHx42zPmh57TU9j707DHu68sroNamKky680Lpvr1/vXPPXfHN4xRX6vGQvC7zySnhQEuM80bChc/cfiaR779XBsCuu0EFEo5Zd7drWJtlXXaXP1fabmG3bnJsU33CDzuOGDbpbnES7YjAGrPL5Ej/POaWbb3Zu0ut0/ot2Tjz1VGuA2zyYoTndeGPRRxc2/56J1v5JS9Pb2gjAmrudcDoPVqrkHIyvWFE/9PV4St5KQ8Q6yJn5el5W6eqrI/sIPhyTESg0dw/Us2fpr/ezz/R6nboSipfM+7+I3m/sIyaXNB08mHjtXqNbjVj9/o4dq4Pf9umxAimx+oddu1Z341CU71Stmn5otndv8q5/5jKFvZxS3BZl5vvh/v0Tf8AfLfn9kfcw5j4Px4937qs6XkpJidwXk5V27LBWGDK6Xki01VG0B2hNmujff/Zs/VDZ/v6//239Tl99pfNhVCwwKrYYLSfstYn794+8P7jjjsRbl0XrEi1WOuUUa03PYDDxa8hZZ0Ucg8EmTQhQKlU+A5RPPvmkatKkiVq9erVSSqklS5aoY445Rr3r1L/CIQUFBSonJyeUNm3apERE7dq1S3m93nKV9u/frwqMzmxjpGBamvLFqNHomzhRBR0CBb5Y1aVFVNChnxrfxIk6f+amaPbPJfDELVilivIWFuplLV5cOiduY13Rmq2KKO9vvyWU3yMt+Yt7w2ffdlGeqgfat1d+h0CJP1ZNRVPyTZkS0WwzEK9WjjHf5ZerYJQnpT6Hgligc+eIfd3r9aqg0Y+a/TsnGDzx7t+vvAcPquChJibBxo2Vd/9+FejVSwWbNFF+h24QAmedpYMsTt+rZ0/lXbYstLyY26BjR+X1elXgpptUsFYt5X/wwei/YbT+W4u6Tz32mPI/95zybt6svF6v8n3zjQoWsXZwMC1N+RIMnnjz8yPOiYF4Tc6iba++ffX5ZutWyz7tHzVKFy6cvu///Z8KmgpLvmnTLHnxm/pi9b3/vgraO+9OZHs4nJuCDRuqQJQ+I4M1aii/qVCY6DHj+P1GjVLeKN1xBHr3Dn/PQw8TgpmZKuDU1NHp80VpvluE5Lv+euWLcqMWjFILJnDVVSoYp/+8YFqaCpgeVHl37w7/1nv2KP+tt8bP28cfK+/SpSpQjKaogR499LY29Yvq+9//LN/VP3So8pkengRr1lQBh9GL/YMHK5+9j+EkpWBWlvIWFDieZ4MnnaSCpgBgsEED5+/aq5fymvpMC3TtavlexU1+W00uy3E+eLD+Lf/8UwVMfXD5Jk9WQYdaWUGPR/l+/lkFYvWN7ZSH++8PHzexugywb5NoN4nmec45R58DbcG8wFVXKf9zz6nA1Vcr36uvqsDFFyv/iBHKu3On8u7bp/yDByv/7bdHLe85lQ0TTb4EawUFevRQ3k2brOfPODeGgVNOUX6HGoGBrl2Vd9065V29Our5S4lElBECUYI4wZNPVt7Fi5X/hReUP5FuZJy2w+efq4Ctq4SAQ5cOwYwM5c3LC5U9gpmZyrtmjfIPGhSex1YuCSbaTUqCyTtvnvJFG/FXdDnG8XNbt+rfLpGB45KYAmecofz33Ves38ZnewAXrFcv6vUjXgpGeVDvdepP3ul7XHxxeN93GpFdRPk++0y/b38wakuFI0eqnQmUU4PVqulyj0Mt1qBDn5vBxo1V4OyzLWWdQJJaKfgfeECXGz/4QAUP1UIMVqyofN99p7w5OSoYrfJNossfNsy5KxiJfh9jvscNtm6t7wuiDJYUrFRJeQ8eVN7Vq5OyPYqTfG++GVHm9r33ngqYanD6Zs7U29lWzg6cdZYKVqqkghUqRC1fWuY/77zw+dph//FNmKD8Y8eGt4+pNnnA1P9ksEEDnZ833rD+XnffrYK24Lfvxx+V19alWzDKgz7f99+rQDFbk/g++ED5pk9XQVut/ICtkkGwZk0VPBSwDtasGXE9CqalqUmffqr279/veryoNNKuXbtUIgHKNCmHhg0bJrm5uXLCCSdIamqqBAIBefLJJ6Vfv35RPzNy5Eh57LHHIqZPmzZNsrKySjO7Zc4TCMilublx5/NXqCCL1q+X00zT/rz4YkktLBRf5cqyIjNTzjzhBKm9fLnlM9N27JCLYyx3T8OGUnPlSsu06X6/eKdMkQr79slF0fK9c2fcPHvy8mTus89K7eXLpc6vv0r1uJ8onp0nnSTrL7pIOj7zjOP76a1bl3gdG7p1k6bTpyc8f0G1apK5b19C824580ypumGDVN66VUREVvbtK55gUJp+841k5uRE/dyy3bulnen1xvPPF+XxFCmfIiKePXuc81W5sixu2FDOO+YYqfT336Hpv1SsKK1btJAaq1fHXO6stWvl+OrVpbFp2vQzz5Tu48fHzdPKqlXluOxsydy7N/LNHj0iJm1TSpZv2iQXHnq9u2VL+XnKFDmtQQOpu21bxPyeFStC/+83fb+/27SRY5YuDb035dC27NSkidT6/Xfx/PWX/DF4sLT69FMREUl9/PGIZaf89FPU7/XXgQOy9M8/JeOllyQlEJA6v/4qJ779tqQfPBgx74FNm+SXd9+V7m++qdc1YoTjMguqV5ecatWkTtS16nnM2zKQliapfn/EfKmPPCIiIjs+/lj+vOQSOfORR8QTDMZYcqScRo1kjs8X9dxhCKamypTvvouY3iElReoXaY1ayvvvi/ebbyzfc1uHDjK/RQuRKVPkcofPpP7nP5bXs1atkrwDB0KvG+3cKacc+n/jxIly3O7dRc6Xx2EfnvrUU+LLzpbzBg+Wyrb907Nnjxz46COpcuj1zy1bSpcir1VbvGOHbFm1Si7OypJ00/cSETkwe7Z8P2WKpPh8cuno0XrdBQXiefvtuMv1Z2bKjE6dpFa1alJn4UKpP3dukfL1d5s2UlCjhlTeulWq//GHeJQKvbe2sFA2btsm3W2fya9XT5bedpu0GzNGsmzXn3V+v/hbt5aWpmN38R13SLuxY0OvPX6/eBYsCOV/iv04vfBCabtmjTT5/nvHPP/Rq5esTEsTWb9e2vj90rRI31jE+8sv8u2XX0rL+fPlH4emzV+3TvIPHpQLDr1Ofe45y2f21aghP/XvL9U6dZIuw4aF87Jvn6zdvl3Oq1VLsnbtKmJOYtvbsKH89M03IiJS64knpNNDD4Xe2x0IiKdRo1CZwbNli+MyUj79VHIXL5Zqh17/lZ4uyytUkHMPnWuXDhokbV57rch5U6bfU8R67Vqzd6+snjJFREQaNmsmpx6avu7dd6X5qlXiEZHcRo1kY7ductJbb4lHKfFfeqnzNSaGVZs3y9pD60mrV08uTkmJe45cfeWVsuncc+X8qVNjzre4bVvZPGWKNKlZU9qapm/Iz5flzZqJNGumJ9xyi/77yy/6b3d9tFRcvz60L5l5fL443yq6WRs3SsNeveQfh6550fxWt66s//VXy7RqVarI2TE+s6ewULbs2SNtbNM3ezyy2CjLBgJySYUKkub1ht73Z2bK6quuEn9mprR5/fXQ9OUnnCAtFy+WCnl5luV5li0T6dRJUm3nwOU33SQnHbq+hr7vqFHSevx4S/kmmJIiU/1+qXXccXKGad5vLrhAMjt2lJNefz1U9valpcnU77+X6kOGSPPPP5eN3brJjhUrJLN9ezlv/HhJ9fnkp3/9S7rce6+IiHirVJHt9epJ41WrLPnIbdRIsjdtktVXXiktPv44xla0ymvQQH7Ytk0kPV2OveUWOdm0fQyLe/aUKn/9Jc0nTbJMnzJvnojHI6KUXJKZKWkFBQmvtyRS5swRmTMnoXnz69cPlZVFRGbt2iXnmt7fV6mSLF6zxjItUfNvvlk6HLqP2N2qldRetkxERFaNHi0nxfjczpNOkt9uuEHyGzaU4KFzQ1WlpKvDvL/8+afsmzJFah48KJ1jLHP5jh1St1q1uHne1aiRzJ46VSru2BFx7H/39NPyj48/lsKqVWXdZZdJhfx8ya9fX//GBw6IHMrrqT6fNIy7Jm3NP/8phVWrSmuHcvzmefNk7euvyzlDhognEBARkfXnnivL8/NFZsyQ9llZ0iDB9Tj5be9e8XToICcvWWKZvvbyy6Xm779LdYd7mf2VK8vqgQOl/uzZsurqqyV3yhTpIuJ4P7q7aVP55dtvJe3gQbmkBPksie9SUqT2nXdK21dekdRD57xN//uf1Pz9d8kWXW6eumOHBKdMkapbt1r2sd+PO062DBggHr9fjlmyRNrGOaY2pqfLskP7QMa+faH7J8OsvDzJ3LNHzjz02mM6f6aYzpu56ekyc8oUqb1lS2heEZE/duyQyjVqSCPTtOkbNoi3alVpMHSonPLiixLIyJC1nTpJy40bI/I3bcsW8V12mZy+ZInUWbQo5nexy7//fkk7cEAqb98emhZMSZFFzZtLe9N8a7p2lepr1kjtv/8Wz+7dkvrUU5blePx+ydy3T6YX8b76SHHAdk2MKilVFg8z77//vmrYsKF6//331bJly9Q777yjatSooSaYRx+1OapqUK5dG47UxxhhLtC5s/LZBk7wvfqqZVkBW6fUwebNlbewMGqtEyWi/DffHPG0xnvggF5mQUGRn7wHK1eOeMocMU+dOkl72uQfNkzndcuWUltHsEED5bV3fmzaxo75itNxtn/kSBW44grlmzpV5//AAeW/804VuOkm5c3N1dP27VOBQ81rgi1bKp+pCbP/kUeUz9Zps++tt5TP1LTVP3Cgru0TrdlXnOT7+mv9pNfWVNu7bp3y2QcEckje3buV39YpvtcbWZPNP3iw8pub0oquyRbtSanj9rzjDv0E75VXVOCqq5R31Sr92ql/Qfv3fOMN5evTR/12/fWqwNT8MpiSEjq2/ElquhHaX81p924V6Ns3ct+qXl35YnXefSgFunaNW5vN/8ADyvfaa6EaAvYaOo7LLUYtsaDHo3yzZ+un1AmMmOl0TkykJlvC+/BHH4WXe6jJVbBpUxWMMriQUXPUSL4E+ioNFrXzcxH9lN7rTagmr3fLloinwAl//0O1JKLV2PXu3u08erbx3Rya4gSuu055//rLsp2Kmi//f/4T+qy99m/B2LH6umVbd+CCC/RnNm+OXN5LLymvrf8ur9ervMuXK7/DIDvB44933PeitVKwX2v9Dz1kXf/ttyf2vYcPV37TgGTeefN0De1oNUMvvdRxG/vHjdPTly4t0v5nP7acaqkbtTNC5QpTVyfBatUiztUJrXfkyNC5zrtsWbH2mbjrGDMmnG9Ti42gqflf4PrrdQ34YtbSjliP16v7THWYL1i3rgqceaYKDBigvHv3Rp032LSprrl2aLt4vV7ls/UV7H/oocTKlPv3W2q5REv2fMSq0e/ds0d5N25UgWuuUf4RI6Ke130TJkTmp6AgZq3zQL9+yvfJJ5Hb+FBNrNA+aOvL1Pf993o72frd827cqIIJtEhSosuq3ry8UO2Z0DI2bVJ+28A4wZYtdV5s/WiGzgemvtcCnTtH/322bFHetWt13r/4QgV69lS+mTMjWkcEU1N1OXDhQr0No9RUdtym11xjPVc5DGrmXb5cv2dbr2W/dqiRHq9M5nvjDeWdP18FrrxS+T74QHlXr1b+oo5kHus3O/lk5T1wwPraNrJvoEcPS+3toiRvfr7yrl+vvOvXx7wuRuyvzz7rXJYZNSpim3n//DN0bPiHDo2o0WWkg198odYlUAbzDx2ql2frRivYtGnC96H+InQb4/vwQ+VdtCixfbFvX90KyVjX77+rYIUKKpiaGvUeLXD99aH+qCPW/dlnyrt3rwrccIPy/+tfyv/kkyrQp4/y/vln1Nq3wTZtIr5v4JxznLflXXfpeQoLQzVA4+6Txx5btGvwnXdG3MuHluXxhO+/9+wJXZ+D9euHyqzBdu3C38W2n4daP3q9ypdA/8b+Z56xnqtN9/vBzEydlyj3vpbf7Oyz9TLM/WSKKP/o0cpv62Yu1KrS61XeNWuUd9s25Zs0KXJb1K8fmtd+/xWtxZi5BrRT2SZ4/PHKu26dNT8bNsQtv/349NNHfQ1KSWZg8HDRsGFDNXbsWMu0J554QrVo0SLhZZTrPijNVZ1vvjmyTzsR3e/TkiW67z3z9C++sC7MfpCdd56eHqt/jieftHacXa2adZlF6Q9u1Cjd12S85p0ffKD7GOvVK/FlG8locpmaqvsuOnhQ59M+eq69iW2rVs790InovlL27NGdJzt93yuv1Ot4993IURADAT3KqL3Zs72JgL3QnJeX2A4SDOo+k/Ly9Lruu0935HvgQGRfStOmhee5+ebwOhYudN7WTk13//1v3TfXww+H+5GyN/X3enX/W//6l+4Xx94HWZ8+uo9Hpaz936Wl6WnmeY2uHuz9n+Tk6H4lE90vnnoq+jZcsyb2KIC//KK8Xq/uZ2Tv3nBfOR9+GF7GjBmx13/ssZEj+IlEdrb9/PPOeYzW/DGRG+nLLos/+MfSpXo9Bw7o/mP8/pL1n+aUBg60jrg7f74+dmL1ZevE1Kw6ZmraVHeIHasJiL1PzVWr9DnDaZRPkciRwDdudB55/OWXdf86jzyij5NoAxfE+97mglbr1pHHZGqqPqbt+XXqv8opGR2Gmx+YmLu7iDUIWOfO+hxiK3SqOXMifzNzE1pT81o1fLjzsufODX/W1peub/JkPd0+wMrgwXp6IBA54IExAI3xfYx+ApXSHcTbt6vR8bxdtKZ8P/9snc/WlEn95z/xO3B3Shs26OVFa+J5113hdZqnG322KaX7ZbTn26m/rxYt9KAyxijlTZtG9mP88suR28Tcn+uDDxavj1Jzfg3m5n4vvVT0ZdrTRx+Fl+33Wzq6D6UXXtDv//ln8dfz9tvW7+HwcMny25rNnx85v7Ffm5mCMErE2r9uPIl0wWIu81WvrtTZZ0ef1y5a/6jGqO529qaGWVn6+E1P1/utrbmfEgmPOm6wD8S0fLmebu+GQCk9uFys7962rS4ffv65nr9TJ+v7wWBkf53GoBRKhQcaMvqbVkr/1pmZ4bJ6Ub36auTvE+t9I117bWTZzj4AqX3wlKyscB9tn38e/be+8krre/Xq6emxtm1ubuR327tXfx+PR5cRjMDU1VcX/ZxpjOw8ZYru09S4jpjnufnmyPuBaGnQIF0+vvpqXQY1izYQ6FdfRV7vY/3m27ZZ5/U69GVn7z9d9MOr36OdW8zJGNgzGLT2pWjs34kwdT8QNaWl6d+voED/pvHmb9Qo3Bex2Y4demTqaM3w58zR79seAiqR8IjyThyCXEpEH9920UZ0N593Eukzc9Qofa9SlD6zx43TfTw7vVe7tjWfTuVU+/XC/N68eeHpiTRT/+4767LMfSJ37Kin+f2R5S372ARXXKHnzcmxTh8/PvY5xmC/Bpx5pu4b3GA/PuwDgp1yir539fn0Phrt+15yiT5OjL4t77lHL3/WLOdy/qE0///+T3mdjtty4Kjug7JGjRrqZVuh96mnnlLNmzdPeBnlOkCZm6t+eOEFXRvO6HjWfPL89dfwaJP2EWJnz7YuzN4nodEJfKynnu+8o9Rxx4VfN2tmXaa9D78hQ/TIXtdco/Nmfm/aNP2ZeJ2Qz5yp5wsGIwM48dKBA/rmYseOyI1pns9e483vdx5J3Bi4wLBkSeQALMYImIZFi5Tq108XVAzmi4Gx3c0jY9sDAclgD2YbQaho7P1wOQUtX3898nPBYPjkffzxzsueMkXfeC1caJ2enx8OkBsFQPP6jAKm/YZRKeuADFH6krRcCGOJ1dnyodoEoY6Q8/N1AcLM748cydqcXnhBF/rtfbrag2dG4NYuXgDUnDp1st5Q3nlnZMDK/FDiwQed1/njjzpwU7Nm7E7SL7tMD1QRr/+gp5+Ovv2j3Yg4efPN6OswP4QxbsRi9eXkNAiPUtYRi+Plx+nm8FCfyiH2Qli8ZDDXjLz8cj0ghbkfrN699Xz2c5I9aDhkiPMopcY1c88epW66SZ/vEqj9rESsBWFj/zr11MggrlJ6xM6+ffV5IDdXBxSGDdM3Yx9+qM+X5oBRYWH4s7YHa95ff9XT7Q8+zA8MzPt3Vlb4RsgI1hkPVwz2IMm99zr/1sFg5LwiOshpZg7aGXmL9UAlWtDdeIjkVKM5Lc16jTe/N2tWZN7ND+U2blTq7rv1dfC11/Q1yXxOW7NG/072UUDtgVjDc8/pc9n27dFHmhXR++mHH0YGsYyAktmyZboc8fnn+saipLXUjRHQDU7b9Mcfw+8Xt99eeyDD6WHBGWdE7oNm5lqo5ptKM/Pyol03nPj98Qc2GTFC71t9++qb1Lvvjj6vXbR5nR5cKBX5UPeSS3T5zSjXOo3ubb9xtj/AM87r+/frwcnMv8u6dXrE3Xffjbz+2stySkUGNJWKLGuby4k+n37wY/99d+2KHBk+UZMnW9d37LGR8/zxh/WB5W236en28rb9vsDeL+mpp4bfMwfPjCCDwR6Eu+wyPT3afmKv3GCWmxt+eFlQoI99v1+PIB3veDNf1+64w3n55oCJMWK7MSCaUzn3r790mTMWp4FSOnTQv/u771qnmwflsPPaaotHY6s17V2/Xi0z9fMXNRmD8iilHwZfc41SP/0U+7vZRRv0tHdvfa3780+ldu4Mz28PADs97I4XIA0G9b2kSPi+rGPH8LZ0Grfg77+jL8+pco+Ivveyi/ZA0PxAO5HR5Net0/Pu3h2+j+7Y0fl+45xzdFknPz9ynzDSSSdZ8+k02JO99an5vW3bwtMPHoyff3u5xtzabtCg8HRz68ysLH08m8tgRjDTnp/PPrOe3+3nGIM9YGtn7oe4enVdmchcC9a8XxgPYJ3S0KF6nsJCvQzzcbtpkw40G5WJTGXu5TfcQICyjPJTpvr3768aNGigvvrqK7V+/Xr12WefqVq1aql7o90gOCjXAUpzYMSwfbsuYNmfmttPauYLk1J6ZDjz+w8/rKebn8LYq87PmKELLMZrc+FFKeuNxk03RX4B87KMp1t+v1JG85DWrfWF9913dZCrQQPrU7VoT7KcUqwCkFLWAMqKFbrWXMWK1gKbffS2aAV/882SETiO5/XX9Y2gURAzmgufcEJkDbdksBcSnIK2ZuYbsgYNnGvCGLWX7GbP1gWfGTOKns/9+/UNs8EYebVt23CwIxgMXxxHjtTTzDf19ieU9oDNlCmx8xCrCv/Gjc7HoZ158JB69cLHUosW4afi9iee9gEGpk51XnYCzShC6ZdfdIAqLU0H/v76yzoysIgu2Nx5p1KjR8cuPG/dqoMkDoP9hJJxHorXUfwbb0Rfj9MT5htvdJ7X/iTcXNjLz9eBr3vuCW9ze7DISKmpzsE0pfT+6DBAWFT2hzH2bWpvdtyyZextZTAHw4xafwcO6MD9woXh9dib1dpHO50+Xd9A2IO1TkESh87QVf/+kSP12h9WrFljDSwW1ZIlOhhgr2llG4jLa9zkm5sGpadbt7k5n+bR7qOx1yr766/o83q9+tpqDPBx4YXO38W8vNmzrSNKm1Pduvoz995rnV6hQvj3+eMPfU577DF9Ht+501ob2f6dnWqSLF2qA8GTJsXfHgZ7LZV9++J/xudz/p79+lnnM475E0/Un0lEggOwOSZ7ENR+ThQJB+yVigyciejzabzuFIzaugZ7AGjNGudaUmY7duiyglGj04l5me+/n9j2MwSD+ubZfpNfrZpSt96qg2lmTucEkcjyoFL6muI0r/2hjcG+3w8caH3f6WZ9zRrrPKtWWd83Ws4opa9f5vKFmb0Gt1NZztQ823JuNk8z184tDQsWWNfXtq3zfCtW6If6mZnWbWSU4StV0tcPM/s+cO211vffe0/fbxjBFoM9OGJsA/M08zUjI6Po39teHndKn3yiz//Z2bq84sR8Hf33v/W0QEBvo0DAWhGiQYPE8mYvkz33nA6uKqXz5LTPRGPMl50dfR6/37JMb36+WhKvu5umTWM/CEmUPUCeyPcyBm0ZPFgpUzcgSiTcciOeggJ93ggG9TXXXL7w+SIDn/G+q9N36NUrcr5o3WCY703NtQnNydwazpyfnJzwNdv+0MrcoiNWXs8/P3L7mCtnVKsWGaQ1Rovv0iVy+5hbs9hTampknszXRPOI7IWF+n7xyivDgWdztwDmMpJ5Hd9/r6e9/bbeX5xaFSilj1HjHPbSS87zjBunrx1G3GP9en0NtQ+4/Ntv0b+zEROJJS9PBytNgxCuPTTAYXl0VAcoc3Nz1ZAhQ1Tjxo1VZmamatasmXrggQdUYRFudI66AGUs5oPN3pziww+t7xsBA3MQ0N7sad0661PZ006zLtNo5tC8ufPNi3lZ5kLiwYP6pst8wvzrL+sNglKRBTN7f0W33KLUxx/rG+hoT+gNK1fqE5YRZPv778ignb2WS7Qnjbt26SdI0U6WiQgG9Qn54EGdd2Odw4cXf5l25u8SLRhjMAf8Pv008sZKJLJJbGnZuDHyJs7nsz7V3rtXB2aee06/ZwR9jCeIifyO5vU5BaRElDrUP1jc43D5cn0DUKOGDgZ8+aUO2psfFJifQFarFrl/L1jgvGx7k75oydzkc+dOvY2U0kGfomwPO4cRe0Pp99/1PDk5OuAvoreB/YGIvWaRWWGhvnF44AEdyBk0yPq018zeP8+KFdbj2m7DBud8N2oU+zvv2RMZ3IylTx89j/nJspnRXLZ379iFJPN6fv1VB6qqVYv9gMHcRLtNm8iHE0ZwwB4Qd1JYaD0PHnecLgjb+2Uqq+utra8kr1E2+OMPfSORlRVZy8xc82bMmPjrMAcUr7su8bz9+afzeXXnTuu22rRJF7IffDCy9lrXrvoz9lrSRpPJRBkBg1NPjf3QoSjsx3CinPZpp4dEa9dGBkxisdeevuYancelS+OfG+211+xNK3v0sL5vD+ZfdZU+j8YbUdley9S+LyTLtGnhh7r5+cVfjrnJW6zrwqefKlWpkgpmZqqVV1+tAjfc4FzLzN7VkJHMNazM7H3AOtXoNweqKlYMB4IMgUDxtvHTT1s/5xTgMD8IadUqPN2ogWcc36XJ1oe6Ovvs6PPu3h0ZYF6xQp/XnB5O2EfkjtUdjtn27fq6lJ6uj0GD+TxkrmV5+umJLdcsyqjrllRYqK+NTs3HDcuX6+tolSrOrSbMAcpLLkksb/v3R+bDkJ8frrlrf2Dh5IcfdIDGaB0QjdEn6KG+h79+910VNHfJYk9O3UMURzCoyxj2mu/xPvPnn/qvuWusaMH14jB3EeUUULNzekho1Kg1i9aiwSzKiO5q3jx9Pxqrsoa9i4hRoyLnqV8/ctlGd2JmRo3ABg2iN3HfsMG5nBII6Hv8tWt1Gdq8riZNIuc3PyCM1yLv77/1eTs93XpdMa9j+vTYyzArLNRBx5IG3P3+6Pd6Rbm/NdXq3HL66QQoyyg/RxwClCaxClv2G3vjwnnppeFp9pNiQYFuthCrkPHXX9ELyO3bhz9blBsRM6PJ0GWXWWv5JVIzpqjMAdqaNYuf5+J4/nkdYIpV0Coqo+Zbnz7x592zJxzwCwadbzRKuyBeEgcPWvP30Uf6Bq5Vq8Rq6OTk6KCH/Tv7/Ykfh/v26e0YjblA9eabOjBqXpe96bhZrEJ6Sop+Ohvt4m3vwyVabZZoCgvDzbzN/XXan8p++qluWrZhgz4nFLcwEovPp2teezzWZr3R2G9ejXTGGYl91uiDLF4/b36/LuxF+w0CgfBDmtzcyPxUraq/k70Pu5074wcgduzQQeH09HA3CuZlG+cxe79O0eTk6PPATTeF95UxY8KfMz89L222vpIsx+DOnc6Bj08/1cdE8+aJB2/eektfa5JRjrAHiM03B4FAuAVB+/bhWlv2WrbmYEiitmxJvDZiImy1VxNmdBPQrp2uzfzoo8kJmtprTxsKC639iDZsGFn7ymm7GM28L7448rr744/O64rW35+RnPqbM8pYjz9e8m1gtn17ycso+/frfqntfRM6yctT3u3b418L33gjMrgUbb+090Fs65NeKaWvKSL6oZLRp56d0aqlf//438NgDsBHeyCwZ0/4Rtvc2mbrVv2APMaAnkljr5VsNKdOBnugrSg1rPPyIoOhSoXPQ3//rQM56enxKxA4mTNHf7ZWLed+aCtUSHxZu3dHP7ebl3nLLYkv0ziuH3kk8r39+4vfpD8ao1JDIBAuk+7Zo6+B9v6CRaI/tC0u+8PeRJkDm0VoHRlXMKjP3UVZrr3LCKffe98+XavRXpPSzHgYb0+JsHe78NZbkfP89ltkf4nRzm0bN1prjRfX8ceH1+XUN+fu3brlVaJ9HjsdA+ZBn+ytQMqK0U+wOT33XNGW4fWGujbb07w5Acoyys8RhwClifHE0ujn0Mx+UjRqPpn7YrI/jVPK2sQ7kZt6s7VrdZMhc3+MRWU8iQsErP1hOjWtKylzXyuJPPk8EmzZUrynTvZmoiIla8Lphu3b4zens7M3w1bFOA6j8fv1U/CHHtL/22tGxgqmxLopjlcwshcsE2mqaef1hvelVav0E9R4tXLNtcViBV+LyucrWuHfaXs5PY124vdH76uyuJz6192/P3qt0UTk5VmD4088Efk97Q+piqKwUNdwHTMmOc3GirLeQ/nddWi03IRs2+bu+cp42FWpUuR7Bw/qB3vm7WgPpEcbqKcsmcsM5trZidiyJf75oah+/jn6/msetKBjR2stlWh9IweD0Zvz5+WFP9+zZ3i6z6cf/EXrpsHetY6xHrduxpIs4Wuhvc+3aOx9ljrVtA8G9fUjVvDd2MZFOTft3BkOoMWqPXPggHMgriyZt1FRankXddl//JHcZe/fX7Jtt3NnuFsTcz5vvjl6n7hFZT6Wow1U6CQQ0AGvsrweHhJxHAYC+pxrLnMlOthmooLBcEuK115L/HM//qiDyfXrR/ZrWFI+ny7fFuU3MPd57nSvbDA/2H/gAet70UZxT4T9oUC0AcSUsva1b/QrW1rMNUw/+aR01rFtm64IY296XZYeeMC6/YvSh7PZoQpdB6tVO+oDlGkCxPPkkyJ33SVyzDGR79WubX3dqJH+26xZeFqzZiJXXiny8ssi996rpykVfj8lpWj5Oe44kVdeKdpn7DwekWOPDf9vMOcrWR57TKRaNZGLLhLp3j35y3dD/frF+1zVqno7TJ2qX9esKVKhQvLyVRbq1Cn6Z3r3Fpk9O/l5ERFJTRV54onw64oVre9nZUX/7JlnhvO1ebPIxx+L/Otf+vXxx8der/3Yz85OLL9m6enhfalFi8Q+M2GCyCOPiLRuLdK0adHXGU1aWtF+27FjRe64wzqtevXEPpuaWvxjKBqPR/8mmzfr1/Xr698+1u8fT+XK1tcPPigycKB1O3XpItKmjchvv4l8+mnRll+hgsiIEcXPX3FVqCDy7bcS+PxzWXzyyXJ2op+rW7c0cxXftGkib74pcuONke9lZoavv4aUFH3t2bdPv65WrZQzmIDWrUVee03kjz9EHn64aJ9N9jEjInLGGSIdOogsWiQycaL1PfP+n5EhcsUVInPmiLzzjsi11zovz+OJ/B3My/v6a5GvvhL597/D09PSdDnh1FNFLr/c+XNO62nQIPZ3K28S3X+bNLG+djpuPZ7414/ibONatUTWrxcJBHR5J5qKFSOv1W6qUqX0lm2UtZOlpNe1WrX03w4dRE4/XWT+fH1M9+uXnPyJiLz6qki3biL16oncdFPin0tJEWnYMHn5KImUFH3OfeYZ/T169nQ+F5WExyPy3XciO3cWrfzVpYvIli16v83ISG6e0tIizyHxZGaK5Ofr/wsKos/XoYPIuHH6HDFsmPW9O+/U1+pvvhFZskRPS3Sb2I8Hp/t1QyAQ/XPJdt11Ihs36rLxP/9ZOuuoW1fkpZdKZ9mJOu006+viHsONGols3SqZ+/aJr7BQ3yMdpQhQIjHRTpI1a1pfGxev++4TefttkdxckddfFzn5ZJFHHw0HNcyBQHOA0A0tWoisXav/T2bAw9C0qciLLyZ/uUeqDz4QueYafaM2YIDbuSkb//ynyNChZbe+GjVE9uzRhbdYx9fEiSLPPy9y4YX6RuyWW3Twf8OG+A8B7AWbsjqOq1YVeeGFsllXLLffLnLVVfrcaJzPzAU/N5gDlMm+KTTYb/ZTU0V+/VUkJ0fvd0eKCy6Q4DnnyP4pU9zOSeLat9epKGrUCAcoDxxIepaK5ZZb3M5BWEqKyNy5Inv3RpZnKlUK/3/woP57+uk6FdfFF+vkJNo5NNlBgSOVxyMyeLC+Nj30UPT57A/L6tUr3XzZHSm/V4UKIl6v/t/nS+6y779f5KmnRG69VQd8DkcpKSK//KLLSkbQMlm6dBHZvl3vC0d6kKF5c13BpLSkpBTvwX+yf7OSMAdJYwUoRURuu815elaWyMiR+sHdSSeJbNok8tFHxctPrLLYscfqAKmISOPGxVt+ojIz3XkIXdbsAcriPjwcO1Z8waB8t3q1nH+kVd5JsiJWXQNs0tLCT17NtSarVdNPTbZt08FJEWuNK6OWloi+0XfTmDE66FG7tq7FgNKVna1rkOzeLfLss27npmw0aRKucVMWF+sffhAZMkRk5szY8zVpooN9F16oX2dliaxYoQvW558ffz133qn/xrpZLM9q17YWTEq7sBeP+RxbGg9boklNPbKCk0cT8++yZ497+TicpaREBidFrA9hyiK4G63G3eFU085tL7+syw6PP574Z4oT/DgamPfv/fuTu+wnnxTZtavkrZ1KW0pK6QW6qlc/8oOTSExmZvj/wsKSLatiRZFVq0T+/lsHuhP1v//psti558Z+QP3ee/rYP/543SIGJXfMMdYYSHEDlO3bi7RrJ97sbPcrb7mMACVK7vvvde2wr76yTk9Pj95s5JprdLOB0aN1LSQ3NWumA6mbNlGQLUtHW0DjnXd0gOCBB0p/XW3a6MDjKacU/bNpaYk3VR4zRtc8KsrNYnnzxhv6PNeoke4Kw03mAGVp1aDEkeXUU8P/mwvQiM/cDHv48NJfX+fOusm5vcliUbvBKe8SKTu89JLebtdcU/rNGI9U5hrCpRGAdwr6A+WR+fqQjBYCaWmxu4hwcu21+uHNd9/FDm6dcYauhLBqFQ+/kunOO/V255qTFIdpvXscUTp00KkoUlNF/u//Sic/xcFJGqXN40k88HckORz6tXNT69a6sFehgvtN2dyqQYnD14gRIl9+qZudjRrldm6OLJddpgNdBw6I9OlT+uszmpzm5xevT1+E3XGHyPXXsx1jefRRkZtv1v8PGuRqVoAj2oABuiuVChX0dcMtiQY1S7PP2aPV3Xfr/sHZtklBgBIAgJI4XJ6WtmoV/t9ccw5Hr1q1dHcrfr+1GRri83giB8Iqi3VWqaL7IXvyybKpcV9eEZyM7YYbRPLy9HmhvAzgCLghNdVa4x5HJ645SUOAEgCA8uDaa3WT+3r1RNq2dTs3OFykpblfuxdF89hjepRXWnegtKSmWvuDBwDgMECJFQCA8iAz8/DqOgNA8RGcBAAARxl63gYAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuCatOB/Kzc0VEZHs7OwSrTw/P19++OEHERG57LLLSrQsAAAAAAAAAEeeYgUoq1WrJikpKbJs2TI58cQTI97funWrPPjgg+LxeOTNN9+MupyNGzdKz549JSUlRfx+f3GyAgAAAAAAAOAIVuwm3kqpqO/t3btXJkyYIBMmTCjxsgAAAAAAAACUX/RBCQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwTYkClB6PJ1n5AAAAAAAAAHAUSivJh1u3bh31PSN4mZqaWpJVAAAAAAAAACjHShSgVEolKx8AAAAAAAAAjkLFClB26dKF5t0AAAAAAAAASqxYAcqZM2cmORsAAAAAAAAAjkaM4g0AAAAAAADANQQoAQAAAAAAALjG9QDlgQMHZPTo0W5nAwAAAAAAAIALXAtQ5uXlyZNPPilNmzaVe++9161sAAAAAAAAAHBRsQbJKYk9e/bI888/L+PGjZOcnBxRSjEiOAAAAAAAAHCUKlENyo0bN8pdd90lJ554olSpUkVq1Kghp5xyiowcOVJycnIs8+bn58sjjzwiTZs2laeeekr27dsnSimpVauWjBgxokRfAgAAAAAAAMCRqdg1KKdPny69evWS/fv3i4iIUkpERJYuXSpLly6Vd955R2bMmCF169aVX375Rfr16yebNm0KzdegQQO555575JZbbpGKFSsm4asAAAAAAAAAONIUK0C5c+dO6du3r+Tn54emVapUSdLS0kI1J//44w+5/fbbZciQIdK9e3fxer2ilJJjjz1Whg0bJgMGDJD09PTkfAsAAAAAAAAAR6RiNfF+4403ZM+ePeLxeKR3796ydu1aycvLk71798rWrVvljjvuEBGRL774Qq699lopLCyUypUry0svvSSrV6+Wm2++meAkAAAAAAAAgOIFKKdNmyYiIqeffrp89NFH0qxZs9B7devWlTFjxsj1118vwWBQNm/eLNWqVZPZs2fL7bffLmlpZTMuz5YtW+Taa6+VmjVrSsWKFeWkk06ShQsXlsm6AQAAAAAAACSmWAHKVatWicfjkdtuuy3qPHfddZeIiHg8HrnrrrukVatWxcthMezdu1c6deok6enpMnXqVPn9999l9OjRUr169TLLAwAAAAAAAID4ilWdce/evSIicvzxx0edp3nz5qH/zzrrrOKsptiefvppadSokYwfPz407dhjjy3TPAAAAAAAAACIr1gBSp/PJx6PR6pUqRJ1nsqVK4f+r1u3bnFWU2yTJ0+W7t27y5VXXik//vijNGjQQG677Ta5+eabo36msLBQCgsLQ69zc3NFRH9Xn89X6nkuS8b3KW/fCziScBwC7uIYBNzHcQi4j+MQcF95Pw4T/V4epZQq6sJTUlLE4/HI8uXL5cQTTyzxfMmWmZkpIiJDhw6VK6+8UhYsWCBDhgyRV199Vfr37+/4mUcffVQee+yxiOkTJ06UrKysUs0vAAAAAAAAUN4cOHBArrnmGsnJyZHs7Oyo85XLAGWFChWkffv2Mnv27NC0u+66SxYsWCBz5sxx/IxTDcpGjRrJrl27Ym7AI5HP55Pp06dLt27dGE0dcAnHIeAujkHAfRyHgPs4DgH3lffjMDc3V2rVqhU3QFmiIbVvuOEGqVSpUonn83g88v3335ckKxb16tWLCIi2bNlSPv3006ifycjIkIyMjIjp6enp5XIHESnf3w04UnAcAu7iGATcx3EIuI/jEHBfeT0OE/1OJQpQLly4MOb7Ho8n7nxKqdB8ydKpUydZvXq1Zdoff/whTZo0Sep6AAAAAAAAAJRMsQOUxWgZXmb+9a9/yZlnnilPPfWUXHXVVTJ//nx5/fXX5fXXX3c7awAAAAAAAABMihWgDAaDyc5HUnXo0EE+//xzGT58uDz++ONy7LHHygsvvCD9+vVzO2sAAAAAAAAATErUxPtw1qNHD+nRo4fb2QAAAAAAAAAQQ4rbGQAAAAAAAABw9CJACQAAAAAAAMA1xWri/fjjjyc7H/Lwww8nfZkAAAAAAAAADm/FClA++uij4vF4kpoRApQAAAAAAADA0afYg+QopZKWiWQHOwEAAAAAAAAcGYoVoJwxY0ay8wEAAAAAAADgKFSsAOXZZ5+d7HwAAAAAAAAAOAoxijcAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANccFQHKUaNGicfjkbvvvtvtrAAAAAAAAAAwKfcBygULFshrr70mJ598sttZAQAAAAAAAGBTrgOU+fn50q9fP3njjTekevXqbmcHAAAAAAAAgE2a2xkoTbfffrtccsklcv7558uIESNizltYWCiFhYWh17m5uSIi4vP5xOfzlWo+y5rxfcrb9wKOJByHgLs4BgH3cRwC7uM4BNxX3o/DRL9XuQ1QfvDBB7Jo0SJZsGBBQvOPHDlSHnvssYjp06ZNk6ysrGRn77Awffp0t7MAHPU4DgF3cQwC7uM4BNzHcQi4r7wehwcOHEhoPo9SSpVyXsrcpk2bpH379jJ9+vRQ35Ndu3aVtm3bygsvvOD4GacalI0aNZJdu3ZJdnZ2WWS7zPh8Ppk+fbp069ZN0tPT3c4OcFTiOATcxTEIuI/jEHAfxyHgvvJ+HObm5kqtWrUkJycnZnytXNag/PXXX+Xvv/+WU045JTQtEAjIrFmzZOzYsVJYWCipqamWz2RkZEhGRkbEstLT08vlDiJSvr8bcKTgOATcxTEIuI/jEHAfxyHgvvJ6HCb6ncplgPK8886T5cuXW6bdcMMNcsIJJ8h9990XEZwEAAAAAAAA4I5yGaCsUqWKtG7d2jKtUqVKUrNmzYjpAAAAAAAAANyT4nYGAAAAAAAAABy9ymUNSiczZ850OwsAAAAAAAAAbKhBCQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlAAAAAAAAANcQoAQAAAAAAADgGgKUAAAAAAAAAFxDgBIAAAAAAACAawhQAgAAAAAAAHANAUoAAAAAAAAAriFACQAAAAAAAMA1BCgBAAAAAAAAuIYAJQAAAAAAAADXEKAEAAAAAAAA4BoClAAAAAAAAABcQ4ASAAAAAAAAgGsIUAIAAAAAAABwDQFKAAAAAAAAAK4hQAkAAAAAAADANQQoAQAAAAAAALiGACUAAAAAAAAA1xCgBAAAAAAAAOAaApQAAAAAAAAAXEOAEgAAAAAAAIBrCFACAAAAAAAAcA0BSgAAAAAAAACuIUAJAAAAAAAAwDUEKAEAAAAAAAC4hgAlgP9v786jtKjO/IE/Db2xoywNiCAkUaPiElAkmCBKQOUYiahREdGMSwyMAjNqMIPoEAcjMUZwT+IyAdcAcTngBEFAIqK0gAiKmRE1KksQ2bVp6Pr9YXjTbS8Cv24qNJ/POe85b9e9t+pWv+9zbL7eqgIAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABITa0MKMeMGRPHH398NGrUKFq2bBn9+vWL5cuXpz0tAAAAAOBLamVAOXv27Bg8eHC88sorMX369CguLo7evXvHli1b0p4aAAAAAFBKdtoTqAnPP/98mZ8ffvjhaNmyZRQWFsZ3v/vdlGYFAAAAAHxZrQwov2zDhg0REXHggQdW2qeoqCiKiooyP2/cuDEiIoqLi6O4uLhmJ7iX7Tyf2nZesC9Rh5AuNQjpU4eQPnUI6avtdbir55WVJElSw3NJVUlJSXz/+9+P9evXx9y5cyvtd9NNN8XNN99cbvujjz4a9evXr8kpAgAAAECts3Xr1rjwwgtjw4YN0bhx40r71fqA8qqrropp06bF3Llzo23btpX2q2gF5cEHHxxr166t8he4LyouLo7p06fH9773vcjJyUl7OrBfUoeQLjUI6VOHkD51COmr7XW4cePGaN68+VcGlLX6Eu8hQ4bEc889F3PmzKkynIyIyMvLi7y8vHLbc3JyauUXJKJ2nxvsK9QhpEsNQvrUIaRPHUL6amsd7uo51cqAMkmS+Nd//deYMmVKzJo1Kzp06JD2lAAAAACACtTKgHLw4MHx6KOPxtNPPx2NGjWKVatWRUREkyZNol69einPDgAAAADYqU7aE6gJ9957b2zYsCFOPvnkaN26deb1xBNPpD01AAAAAKCUWrmCspY/9wcAAAAAao1auYISAAAAANg3CCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDUCCgBAAAAgNQIKAEAAACA1AgoAQAAAIDU1OqA8u67745DDjkk8vPzo2vXrvHqq6+mPSUAAAAAoJRaG1A+8cQTMXz48Bg1alS8/vrrccwxx0SfPn1izZo1aU8NAAAAAPi7WhtQ/upXv4rLL788Lr300jjiiCPivvvui/r168eDDz6Y9tQAAAAAgL/LTnsCNWHbtm1RWFgYI0aMyGyrU6dO9OrVK+bNm1fhmKKioigqKsr8vGHDhoiIWLduXRQXF9fshPey4uLi2Lp1a3zyySeRk5OT9nRgv6QOIV1qENKnDiF96hDSV9vrcNOmTRERkSRJlf1qZUC5du3a2LFjRxQUFJTZXlBQEG+//XaFY8aMGRM333xzue0dOnSokTkCAAAAwP5g06ZN0aRJk0rba2VAuSdGjBgRw4cPz/xcUlIS69ati2bNmkVWVlaKM6t+GzdujIMPPjj++te/RuPGjdOeDuyX1CGkSw1C+tQhpE8dQvpqex0mSRKbNm2KNm3aVNmvVgaUzZs3j7p168bq1avLbF+9enW0atWqwjF5eXmRl5dXZlvTpk1raor/FBo3blwrv/ywL1GHkC41COlTh5A+dQjpq811WNXKyZ1q5UNycnNzo3PnzjFjxozMtpKSkpgxY0Z069YtxZkBAAAAAKXVyhWUERHDhw+PQYMGRZcuXeKEE06IX//617Fly5a49NJL054aAAAAAPB3tTag/OEPfxh/+9vf4sYbb4xVq1bFscceG88//3y5B+fsj/Ly8mLUqFHlLmkH9h51COlSg5A+dQjpU4eQPnX4hazkq57zDQAAAABQQ2rlPSgBAAAAgH2DgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgHI/dPfdd8chhxwS+fn50bVr13j11VfTnhLUCmPGjInjjz8+GjVqFC1btox+/frF8uXLy/T5/PPPY/DgwdGsWbNo2LBh9O/fP1avXl2mzwcffBB9+/aN+vXrR8uWLePaa6+N7du3781TgVrh1ltvjaysrBg6dGhmmxqEmvfRRx/FRRddFM2aNYt69epFp06dYsGCBZn2JEnixhtvjNatW0e9evWiV69e8Ze//KXMPtatWxcDBgyIxo0bR9OmTeNf/uVfYvPmzXv7VGCftGPHjhg5cmR06NAh6tWrF1/72tdi9OjRUfr5uOoQqtecOXPizDPPjDZt2kRWVlb88Y9/LNNeXTX3xhtvxHe+853Iz8+Pgw8+OG677baaPrW9RkC5n3niiSdi+PDhMWrUqHj99dfjmGOOiT59+sSaNWvSnhrs82bPnh2DBw+OV155JaZPnx7FxcXRu3fv2LJlS6bPsGHD4tlnn42nnnoqZs+eHR9//HGcffbZmfYdO3ZE3759Y9u2bfHyyy/HI488Eg8//HDceOONaZwS7LNee+21uP/+++Poo48us10NQs369NNPo3v37pGTkxPTpk2LZcuWxe233x4HHHBAps9tt90W48aNi/vuuy/mz58fDRo0iD59+sTnn3+e6TNgwIBYunRpTJ8+PZ577rmYM2dOXHHFFWmcEuxzfvGLX8S9994bd911V7z11lvxi1/8Im677bYYP358po86hOq1ZcuWOOaYY+Luu++usL06am7jxo3Ru3fvaN++fRQWFsbYsWPjpptuigceeKDGz2+vSNivnHDCCcngwYMzP+/YsSNp06ZNMmbMmBRnBbXTmjVrkohIZs+enSRJkqxfvz7JyclJnnrqqUyft956K4mIZN68eUmSJMnUqVOTOnXqJKtWrcr0uffee5PGjRsnRUVFe/cEYB+1adOm5Bvf+EYyffr0pEePHsk111yTJIkahL3h+uuvT0466aRK20tKSpJWrVolY8eOzWxbv359kpeXlzz22GNJkiTJsmXLkohIXnvttUyfadOmJVlZWclHH31Uc5OHWqJv377Jj370ozLbzj777GTAgAFJkqhDqGkRkUyZMiXzc3XV3D333JMccMABZf4mvf7665PDDjushs9o77CCcj+ybdu2KCwsjF69emW21alTJ3r16hXz5s1LcWZQO23YsCEiIg488MCIiCgsLIzi4uIyNXj44YdHu3btMjU4b9686NSpUxQUFGT69OnTJzZu3BhLly7di7OHfdfgwYOjb9++ZWotQg3C3vDMM89Ely5d4txzz42WLVvGcccdF7/5zW8y7StWrIhVq1aVqcMmTZpE165dy9Rh06ZNo0uXLpk+vXr1ijp16sT8+fP33snAPurb3/52zJgxI955552IiFi8eHHMnTs3Tj/99IhQh7C3VVfNzZs3L7773e9Gbm5upk+fPn1i+fLl8emnn+6ls6k52WlPgL1n7dq1sWPHjjL/6IqIKCgoiLfffjulWUHtVFJSEkOHDo3u3bvHUUcdFRERq1atitzc3GjatGmZvgUFBbFq1apMn4pqdGcbULXHH388Xn/99XjttdfKtalBqHnvvvtu3HvvvTF8+PC44YYb4rXXXourr746cnNzY9CgQZk6qqjOStdhy5Yty7RnZ2fHgQceqA5hF/z0pz+NjRs3xuGHHx5169aNHTt2xC233BIDBgyIiFCHsJdVV82tWrUqOnToUG4fO9tK305lXySgBKgBgwcPjjfffDPmzp2b9lRgv/HXv/41rrnmmpg+fXrk5+enPR3YL5WUlESXLl3iv/7rvyIi4rjjjos333wz7rvvvhg0aFDKs4P9w5NPPhkTJ06MRx99NI488shYtGhRDB06NNq0aaMOgX9aLvHejzRv3jzq1q1b7mmlq1evjlatWqU0K6h9hgwZEs8991y8+OKL0bZt28z2Vq1axbZt22L9+vVl+peuwVatWlVYozvbgMoVFhbGmjVr4lvf+lZkZ2dHdnZ2zJ49O8aNGxfZ2dlRUFCgBqGGtW7dOo444ogy2775zW/GBx98EBH/qKOq/h5t1apVuQc4bt++PdatW6cOYRdce+218dOf/jTOP//86NSpUwwcODCGDRsWY8aMiQh1CHtbddVcbf87VUC5H8nNzY3OnTvHjBkzMttKSkpixowZ0a1btxRnBrVDkiQxZMiQmDJlSsycObPc8vvOnTtHTk5OmRpcvnx5fPDBB5ka7NatWyxZsqTMf5ymT58ejRs3LvcPPqCsU089NZYsWRKLFi3KvLp06RIDBgzIvFeDULO6d+8ey5cvL7PtnXfeifbt20dERIcOHaJVq1Zl6nDjxo0xf/78MnW4fv36KCwszPSZOXNmlJSURNeuXffCWcC+bevWrVGnTtl/6tetWzdKSkoiQh3C3lZdNdetW7eYM2dOFBcXZ/pMnz49DjvssH3+8u6I8BTv/c3jjz+e5OXlJQ8//HCybNmy5IorrkiaNm1a5mmlwJ656qqrkiZNmiSzZs1KVq5cmXlt3bo10+fHP/5x0q5du2TmzJnJggULkm7duiXdunXLtG/fvj056qijkt69eyeLFi1Knn/++aRFixbJiBEj0jgl2OeVfop3kqhBqGmvvvpqkp2dndxyyy3JX/7yl2TixIlJ/fr1kwkTJmT63HrrrUnTpk2Tp59+OnnjjTeSs846K+nQoUPy2WefZfqcdtppyXHHHZfMnz8/mTt3bvKNb3wjueCCC9I4JdjnDBo0KDnooIOS5557LlmxYkUyefLkpHnz5sl1112X6aMOoXpt2rQpWbhwYbJw4cIkIpJf/epXycKFC5P3338/SZLqqbn169cnBQUFycCBA5M333wzefzxx5P69esn999//14/35ogoNwPjR8/PmnXrl2Sm5ubnHDCCckrr7yS9pSgVoiICl8PPfRQps9nn32W/OQnP0kOOOCApH79+skPfvCDZOXKlWX289577yWnn356Uq9evaR58+bJv/3bvyXFxcV7+WygdvhyQKkGoeY9++yzyVFHHZXk5eUlhx9+ePLAAw+UaS8pKUlGjhyZFBQUJHl5ecmpp56aLF++vEyfTz75JLnggguShg0bJo0bN04uvfTSZNOmTXvzNGCftXHjxuSaa65J2rVrl+Tn5ycdO3ZMfvaznyVFRUWZPuoQqteLL75Y4b8FBw0alCRJ9dXc4sWLk5NOOinJy8tLDjrooOTWW2/dW6dY47KSJEnSWbsJAAAAAOzv3IMSAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAAAABIjYASAAAAAEiNgBIAAAAASI2AEgAA9gGHHHJIZGVlxSWXXJL2VAAAqpWAEgDgK1x55ZWRlZUVWVlZMXPmzN0a+6c//Skz9pprrqmhGQIAwL5LQAkA8BUuvvjizPsJEybs1tjf//73Fe4nLbNmzcoEprNmzUp7OgAAIKAEAPgq3bt3j6997WsRETFp0qT47LPPdmncli1bYsqUKRERceSRR0bnzp1rbI4AALCvElACAOyCgQMHRkTExo0b4+mnn96lMZMnT44tW7aUGQ8AAJQloAQA2AUDBw6MrKysiNj1y7x3Xt5dp06duOiii2psbgAAsC8TUAIA7IKOHTtG9+7dIyLif/7nf2LNmjVV9v/4449jxowZERFxyimnxEEHHVSuzx//+Mc499xzo127dpGfnx9NmzaNLl26xM033xyffvrpLs1r6tSpcdFFF0XHjh2jQYMGkZ+fHx06dIj+/fvHww8/HFu3bo2IiPfeey+ysrKiZ8+embE9e/bM3I9y5+vhhx8ud4xt27bFPffcEz179owWLVpEbm5utGrVKs4444yYMGFClJSUVDq/Sy65JLKysuKQQw6JiIiVK1fG9ddfH0ceeWQ0atRot++FWdE9NJ988sk49dRTo0WLFlGvXr047LDD4rrrrot169ZVup+TTz45srKy4uSTT67yeDfddFPmeBXZ2XbTTTdFRMSLL74Y/fr1izZt2kS9evXim9/8ZowePTqzknanqVOnxhlnnJHpd8QRR8SYMWNi27Ztu/y7eO211+KCCy6Igw8+OPLz8+Pggw+OSy+9NN5+++1dGv+///u/MWzYsOjUqVM0adIk6tWrFx07doxLLrkkFixYUOm4L38GJSUl8eCDD0bPnj2joKAg6tSp40njAMDuSQAA2CUPPPBAEhFJRCR33nlnlX3Hjh2b6fvf//3fZdrWrVuXnHLKKZn2il4tW7ZM5s2bV+n+165dm5x66qlV7iMikoceeihJkiRZsWLFV/Yt3X+nFStWJIcffniVY0466aTkk08+qXCegwYNSiIiad++fTJv3rykefPm5ca/+OKLX/m73+nFF1/MjJsxY0Zy0UUXVTqvr3/968nKlSsr3E+PHj2SiEh69OhR5fFGjRqV2V9FdraNGjUqGTNmTJKVlVXhXL797W8nmzdvTkpKSpKrr7660jmfdtppyfbt2ys8Vvv27ZOISAYNGpT87ne/S7KzsyvcR15eXvLkk09WeV5jx45NcnJyKp1HVlZWMnLkyArHlv4Mpk2blvTq1avc+EGDBlV5fACA0qygBADYReedd17k5+dHRNmnc1dkZ3vDhg3j7LPPzmwvKiqKXr16xcyZM6Nu3boxcODAeOyxx+KVV16Jl156KW655ZZo1qxZrFmzJs4444x4//33y+1769at0bNnz8wKzc6dO8f9998ff/7zn2PBggUxZcqUGDZsWLRp0yYz5qCDDoolS5bEgw8+mNn24IMPxpIlS8q8+vXrl2nfvHlznHrqqZkVef369YtnnnkmFixYEE899VT06NEjIiLmzp0bZ555ZuzYsaPS38fmzZujf//+8fnnn8fPfvazmDVrVrz66qvxu9/9Llq3bl3l77IyI0eOjAkTJkS/fv1i8uTJUVhYGFOnTo2+fftGxD9WCO4N06ZNixEjRsSJJ54Yjz76aCxYsCCef/75OP300yMi4uWXX44xY8bEHXfcEePGjYvTTz89Jk2aFIWFhfH000/HiSeeGBERzz//fPzmN7+p8liLFi2KH//4x9GyZcsYP358zJ8/P2bPnh3XX3995OXlRVFRUQwYMKDSVZBjx46Na6+9NoqLi+Poo4+Oe++9N1544YVYsGBBTJw4Mbp16xZJksTo0aNj3LhxVc7l+uuvjxdeeCG+//3vl/kMdp43AMAuSTshBQDYl5x33nmZVWJvv/12hX0WL16c6XPxxReXabvhhhuSiEiaNm2aLFiwoMLx7733XtK6deskIpILL7ywXPuwYcMy+x88eHBSUlJS4X6KioqSVatWldlWevXbV61c/Pd///dM3//4j/8o115SUpIMGDAg0+eee+4p12fnCsqISBo2bJgsWrSoymN+ldLzj4jk5z//eYXz6t27dxIRSXZ2drJmzZpyfap7BWVEJP379y+3+nH79u3JiSeemERE0qhRoyQ/Pz8ZOnRouf1s2bIls0Ly6KOPrvBYO9vj7ytSK1odOnPmzMzKyuOPP75c+9KlSzMrJ0eNGlXhd2fHjh2ZlakNGzZM1q1bV6b9y59BRd8NAIDdYQUlAMBuuPjiizPvK1tFWXp76f6bN2+Ou+++OyIiRo8eHZ07d65wfPv27WPkyJEREfHUU0+VuX/h+vXr4/7774+IL1ZO3nnnnZXeHzE3NzcKCgp25bTKKSoqit/+9rcREXHkkUdm7rFYWlZWVtxzzz3RrFmziIi46667qtznddddF8ccc8wezacinTt3jhtuuKHCeQ0fPjwiIrZv3x7z5s2rtmNWpn79+vHAAw9E3bp1y2yvW7duXHHFFRERsWnTpmjRokXcdtttFY4fNGhQRES88cYbsWHDhiqPd/vtt0erVq3Kbe/Zs2dcfvnlEfHFPSq/vIry9ttvj+Li4ujSpUuMGjWqwu9OnTp1Yvz48ZGXlxebN2+OP/zhD5XO49BDD63wuwEAsDsElAAAu6FPnz6Z0G/ixImRJEmZ9pKSknj00UcjIqJt27ZlHkoze/bsTPB0zjnnVHmc7373uxERUVxcHIWFhZntM2fOzDz45uqrry4XiFWXwsLCWL9+fUR88aCbyo7TuHHjOO+88yIiYtmyZbFy5cpK9zlgwIBqneOFF15YaThbOvx99913q/W4Ffne974XBx54YIVtpUPZs88+O3Jycr6y34oVKyo91gEHHBBnnXVWpe0/+tGPMu9feOGFMm3PPvtsRET079+/0t9dRETTpk2jU6dOERFVBrw//OEPa+w7CADsPwSUAAC7ITs7Oy688MKI+OLJ2HPnzi3TPmPGjPj4448j4otArk6df/y5VXo1W+vWrcs9Qbv066ijjsr0XbVqVeb9woULM++/853vVO/JlfLmm29m3nft2rXKvqXbS48rrWHDhtGxY8fqmdzfHX744ZW2lQ4LN23aVK3Hrcihhx5aaVvTpk13u19Vcz7uuOMiOzu70vZjjz02cnNzIyJiyZIlme3vv/9+/O1vf4uIiBEjRlT5/cvKysp8X0t//77s6KOPrrQNAGBXCSgBAHZTVZd5V3Z5d0TEmjVr9uh4O1dMRkSsXbs2835PHy6zK9atW5d537Jlyyr7lr7UuPS40kqHb9Wlfv36lbaVDoarenjP3p5Ldcz5qz6P7OzsTEBb+vOoju/flx1wwAF7tE8AgNIq/1+vAABU6Nhjj41OnTrFkiVL4qmnnsrcr2/Lli0xefLkiPjiEuMjjjiizLjSodPrr79e6aW+X9a2bdvqm/weqOpS4F3lMuDqs6efR+nv34033hjnnnvuLo1r0KBBpW0+VwCgOggoAQD2wMUXXxzXXnttrF+/Pp599tk455xzYsqUKZkH2nx59WREZB4mExHRokWLPQoemzdvnnm/cuXK6NChwx7M/quVvkR69erVVV6aXPoS4Mruw/jPZudqxZKSkir7lX5A0T+L1atXV9m+ffv2zMrJ0p9H6e9fTk5OmdsIAACkySXeAAB7YMCAAZnVYxMmTIiIf1zenZOTExdccEG5Mccdd1zm/Z///Oc9Ou63vvWtzPs5c+bs9vhdXX1XOryaP39+lX1fffXVCsf9M2vUqFFERHz66adV9nvnnXf2xnR2y6JFi2L79u2Vti9evDi2bdsWEWU/j44dO0aTJk0iYs+/fwAANUFACQCwB1q3bh29evWKiIipU6fGm2++GTNmzIiIiNNOOy1atGhRbkyvXr0y9yAcN25cuSeA74qePXtmLrkdP378bt9fMT8/P/O+qKio0n6dO3fO3DfykUceqXSl4aZNm+LJJ5+MiIgjjjiiRu+LWZ12rjx95513Kn0gzdq1a2P69Ol7c1q7ZN26dZmncVfkwQcfzLzf+R2N+OJy7DPOOCMiIv70pz/FW2+9VXOTBADYDQJKAIA9tPMy7uLi4jj//PMzYWFFl3dHfPGgmCFDhkRExMsvvxzDhg2r8hLj1atXx29/+9ty+7jyyisjIqKwsDCGDh1aadBZXFxc7sEopQPE//u//6v02Hl5eXHZZZdFxBdP5h49enS5PkmSxJAhQzIP7tl5bvuCHj16RETEtm3bYvz48eXai4uL47LLLovPPvtsb09tlwwfPrzCS71nz54dDzzwQER8ETIff/zxZdpHjBgRdevWjZKSkjjnnHPiww8/rPQYO3bsiIkTJ1bZBwCgOrgHJQDAHvrBD34QjRo1ik2bNsXSpUsj4ounGp955pmVjvnP//zPmD17dsyfPz/uvPPOmDVrVlx++eVx7LHHRoMGDeLTTz+NpUuXxgsvvBDTpk2LTp06ZYLCnUaPHh3Tp0+PJUuWxF133RXz5s2LK6+8Mjp16hS5ubnx4YcfxksvvRSPPfZY/PznP49LLrkkM7Zdu3bRtm3b+PDDD+OXv/xltG3bNg477LDM5eoFBQWZy59vvPHGmDx5crz77rtx0003xZIlS+LSSy+N1q1bx4oVK+Kuu+6KWbNmRUREt27d4oorrqjG327N6tu3b7Rv3z7ef//9GDlyZKxduzbOPvvsyM/Pj6VLl8a4ceNi4cKFceKJJ8Yrr7yS9nTLOOaYY2LZsmXRuXPnGDFiRJxwwglRVFQUU6dOjTvuuCO2b98e2dnZcffdd5cb26lTp/jlL38Zw4YNi2XLlsVRRx0VV1xxRZxyyilRUFAQn3/+ebz33nsxb968+MMf/hArV66MJUuWpP6gJgCgdhNQAgDsoXr16sU555wTDz30UGbbeeedF3l5eZWOycvLi+nTp8cll1wSkydPjsWLF1e58rBx48blttWvXz9mzpwZ/fv3jzlz5kRhYeFuhYM33HBD/OQnP4kVK1bEWWedVabtoYceygSajRo1ihkzZsTpp58eb7/9dkyaNCkmTZpUbn/du3ePZ555Zp96onNubm5MmDAhTjvttNiyZUvccccdcccdd2Ta69atG7/+9a9j3bp1/3QB5bHHHhtDhgyJq666qsLvTm5ubjzyyCPRtWvXCscPHTo0GjRoEEOHDo0NGzbE2LFjY+zYsRX2zc3NLXNbAACAmuASbwCA/w+DBg0q83Nll3eX1qhRo5g0aVK89NJLcdlll8Vhhx0WjRo1iuzs7DjwwAPj+OOPj8GDB8fUqVMrvQdi8+bNY/bs2TF58uQ455xzom3btpGXlxf5+fnRsWPHOPfcc2PixIkVPqznqquuikmTJkXv3r2jZcuWkZ1d+f+zPuSQQ2Lx4sVx1113RY8ePaJZs2aRk5MTBQUFcdppp8Xvf//7mDNnzj7z9O7STjrppCgsLIyBAwdGmzZtIicnJ1q3bp0Jfq+++uq0p1ipyy67LF566aU477zzok2bNpGbmxsHHXRQXHzxxbFw4cI4//zzqxx/+eWXx7vvvhs333xzdO/ePZo3bx7Z2dnRoEGDOPTQQ6N///5x3333xUcffRRf//rX99JZAQD7q6xkT+7ODgAAAABQDaygBAAAAABSI6AEAAAAAFIjoAQAAAAAUiOgBAAAAABSI6AEAAAAAFIjoAQAAAAAUiOgBAAAAABSI6AEAAAAAFIjoAQAAAAAUiOgBAAAAABSI6AEAAAAAFIjoAQAAAAAUiOgBAAAAABSI6AEAAAAAFLz/wBm5g509yaX0wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "#Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wowRMjHPDgLV", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b7c8d23e-e96d-42ce-a4bc-0c4a1f8c47e8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mВыходные данные были обрезаны до нескольких последних строк (5000).\u001b[0m\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 24.6555\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 24.6040\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 24.5527\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 24.5015\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 24.4503\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 24.3994\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 24.3485\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 24.2978\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 24.2471\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 24.1966\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 24.1462\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 24.0960\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 24.0458\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 23.9958\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 23.9459\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 23.8961\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 23.8464\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 23.7969\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 23.7474\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 23.6981\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 23.6489\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 23.5998\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.5509\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.5020\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.4533\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.4046\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.3561\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 23.3077\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 23.2594\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 23.2112\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 23.1632\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 23.1152\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 23.0674\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 23.0196\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 22.9720\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 22.9245\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.8771\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 22.8298\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.7827\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 22.7356\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 22.6886\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 22.6418\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 22.5950\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 22.5484\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 22.5019\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 22.4555\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 22.4091\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 22.3629\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 22.3168\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.2708\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 22.2250\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.1792\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 22.1335\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 22.0879\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 22.0424\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.9971\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.9518\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 21.9066\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.8616\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.8166\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.7718\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.7270\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 21.6824\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 21.6378\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 21.5934\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.5490\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 21.5048\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.4606\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 21.4166\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.3726\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 21.3288\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 21.2850\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 21.2414\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 21.1978\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.1544\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 21.1110\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 21.0678\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 21.0246\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.9815\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.9385\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 20.8957\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.8529\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 20.8102\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 20.7676\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.7251\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.6827\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.6404\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 20.5982\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.5561\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 20.5140\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 20.4721\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 20.4303\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 20.3885\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.3468\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 20.3053\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 20.2638\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 20.2224\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 20.1811\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.1399\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.0988\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.0578\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 20.0169\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.9760\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.9353\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 19.8946\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.8540\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.8135\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 19.7731\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.7328\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 19.6926\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 19.6525\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.6124\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 19.5725\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 19.5326\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 19.4928\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.4531\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.4135\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 19.3739\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.3345\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 19.2951\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 19.2559\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 19.2167\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 19.1776\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.1385\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 19.0996\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.0607\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.0220\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 18.9833\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 18.9447\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 18.9061\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 18.8677\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 18.8293\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 18.7910\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 18.7529\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 18.7147\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 18.6767\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 18.6387\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 18.6009\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 18.5631\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 18.5254\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 18.4877\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 18.4502\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 18.4127\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 18.3753\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 18.3380\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 18.3007\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 18.2636\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 18.2265\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 18.1895\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 18.1526\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 18.1157\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 18.0790\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 18.0423\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 18.0056\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 17.9691\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 17.9326\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 17.8962\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 17.8599\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 17.8237\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 17.7875\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 17.7515\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 17.7154\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 17.6795\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 17.6436\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 17.6079\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 17.5721\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 17.5365\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 17.5009\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 17.4655\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 17.4300\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 17.3947\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 17.3594\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 17.3242\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 17.2891\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 17.2540\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 17.2191\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 17.1842\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 17.1493\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 17.1146\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.0799\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 17.0452\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 17.0107\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 16.9762\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.9418\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 16.9075\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.8732\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 16.8390\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 16.8048\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 16.7708\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 16.7368\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.7029\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.6690\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 16.6352\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 16.6015\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 16.5679\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 16.5343\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.5008\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.4673\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.4340\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 16.4007\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 16.3674\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 16.3343\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 16.3012\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.2681\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 16.2351\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 16.2022\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 16.1694\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 16.1366\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.1039\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 16.0713\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 16.0387\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.0062\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.9737\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.9414\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 15.9090\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 15.8768\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.8446\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 15.8125\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 15.7804\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.7484\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.7165\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.6846\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.6528\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.6211\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.5894\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.5578\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.5263\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.4948\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.4634\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 15.4320\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 15.4007\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.3695\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.3383\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.3072\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.2761\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.2451\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 15.2142\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 15.1833\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 15.1525\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.1218\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 15.0911\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 15.0605\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.0299\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.9994\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.9690\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.9386\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 14.9082\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 14.8780\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 14.8478\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.8176\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 14.7875\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.7575\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.7275\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.6976\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 14.6678\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.6380\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.6083\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 14.5786\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 14.5490\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 14.5194\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 14.4899\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 14.4604\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 14.4311\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.4017\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 14.3725\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.3432\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.3141\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 14.2850\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.2559\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.2269\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 14.1980\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.1691\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 14.1403\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.1115\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 14.0828\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 14.0542\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 14.0256\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 13.9970\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 13.9685\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.9401\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.9117\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.8834\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.8551\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.8269\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.7988\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 13.7706\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.7426\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.7146\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.6867\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 13.6588\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 13.6309\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.6031\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.5754\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.5477\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.5201\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.4925\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.4650\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.4376\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 13.4102\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 13.3828\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 13.3555\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 13.3282\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 13.3010\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.2739\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 13.2468\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.2197\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.1927\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.1658\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 13.1389\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 13.1121\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 13.0853\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 13.0585\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 13.0319\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 13.0052\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 12.9786\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 12.9521\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 12.9256\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 12.8992\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 12.8728\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 12.8465\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 12.8202\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 12.7939\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 12.7678\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 12.7416\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 12.7155\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 12.6895\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 12.6635\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 12.6376\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 12.6117\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 12.5859\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 12.5601\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 12.5343\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 12.5087\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 12.4830\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 12.4574\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 12.4319\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 12.4064\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 12.3809\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 12.3555\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 12.3302\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 12.3049\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 12.2796\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 12.2544\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 12.2292\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 12.2041\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 12.1791\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 12.1540\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 12.1291\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 12.1041\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 12.0793\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 12.0544\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 12.0296\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 12.0049\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.9802\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 11.9556\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.9310\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.9064\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.8819\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 11.8574\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.8330\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 11.8087\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.7843\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.7601\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 11.7358\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 11.7116\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.6875\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 11.6634\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 11.6394\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 11.6154\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 11.5914\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.5675\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.5436\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.5198\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 11.4960\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.4723\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.4486\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 11.4249\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.4013\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 11.3778\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.3542\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.3308\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.3073\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 11.2840\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.2606\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.2373\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 11.2141\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.1909\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 11.1677\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 11.1446\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.1215\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 11.0984\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 11.0755\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.0525\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.0296\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 11.0067\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.9839\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 10.9611\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.9384\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.9157\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.8930\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 10.8704\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.8479\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 10.8253\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.8028\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.7804\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 10.7580\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.7356\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.7133\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.6910\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 10.6688\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 10.6466\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 10.6245\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.6023\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 10.5803\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.5582\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.5363\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.5143\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 10.4924\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 10.4705\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.4487\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.4269\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 10.4052\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.3835\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 10.3618\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.3402\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 10.3186\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 10.2970\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 10.2755\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.2541\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.2326\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.2113\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.1899\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.1686\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.1473\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.1261\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.1049\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.0838\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.0627\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 10.0416\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 10.0206\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 9.9996\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.9786\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 9.9577\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.9368\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.9160\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 9.8952\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.8744\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.8537\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.8330\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 9.8124\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.7918\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 9.7712\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.7507\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 9.7302\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.7097\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.6893\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 9.6689\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.6486\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 9.6283\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 9.6080\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 9.5878\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 9.5676\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 9.5475\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 9.5273\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 9.5073\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 9.4872\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 9.4672\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 9.4472\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 9.4273\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 9.4074\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 9.3876\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 9.3677\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 9.3480\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 9.3282\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 9.3085\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 9.2888\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 9.2692\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 9.2496\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 9.2300\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 9.2105\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 9.1910\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 9.1715\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 9.1521\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 9.1327\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 9.1134\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 9.0941\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 9.0748\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 9.0555\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 9.0363\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 9.0171\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 8.9980\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 8.9789\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 8.9598\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 8.9408\n", + "Epoch 1000/3000\n", + " - loss: 8.9408\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.9408\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 8.9218\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.9029\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.8839\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 8.8650\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 8.8462\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 8.8274\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.8086\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.7898\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.7711\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 8.7524\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 8.7338\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 8.7152\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 8.6966\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.6780\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.6595\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.6411\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.6226\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.6042\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 8.5858\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.5675\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.5492\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.5309\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.5127\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.4945\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.4763\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.4582\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.4401\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.4220\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.4040\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 8.3859\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 8.3680\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.3500\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.3321\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.3143\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 8.2964\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.2786\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.2608\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.2431\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.2254\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.2077\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.1901\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.1725\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.1549\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.1374\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.1199\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.1024\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.0849\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.0675\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.0501\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.0328\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.0155\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.9982\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 7.9809\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.9637\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.9465\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.9294\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 7.9122\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.8951\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 7.8781\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.8611\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.8441\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.8271\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.8102\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.7932\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.7764\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 7.7595\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 7.7427\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 7.7259\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.7092\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.6925\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.6758\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.6591\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.6425\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.6259\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.6094\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 7.5928\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 7.5763\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.5599\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.5434\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.5270\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.5106\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 7.4943\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.4780\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.4617\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.4454\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.4292\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.4130\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.3968\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.3807\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.3646\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.3485\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.3324\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.3164\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.3004\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.2845\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.2686\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.2527\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.2368\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 7.2210\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 7.2051\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.1894\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.1736\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.1579\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 7.1422\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.1265\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 7.1109\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.0953\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 7.0797\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 7.0642\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 7.0487\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 7.0332\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.0177\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.0023\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 6.9869\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.9715\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 6.9562\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 6.9408\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 6.9255\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 6.9103\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 6.8951\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 6.8799\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 6.8647\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 6.8495\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 6.8344\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 6.8193\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 6.8043\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 6.7892\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.7742\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 6.7593\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 6.7443\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 6.7294\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 6.7145\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.6996\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 6.6848\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 6.6700\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 6.6552\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 6.6405\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 6.6257\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 6.6110\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 6.5964\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 6.5817\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.5671\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 6.5525\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 6.5380\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 6.5234\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 6.5089\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 6.4944\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 6.4800\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 6.4656\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 6.4512\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 6.4368\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 6.4224\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 6.4081\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 6.3938\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 6.3796\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 6.3653\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 6.3511\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.3370\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.3228\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.3087\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 6.2946\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.2805\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 6.2664\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.2524\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 6.2384\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 6.2245\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 6.2105\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 6.1966\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 6.1827\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.1688\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.1550\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 6.1412\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.1274\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 6.1136\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.0999\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.0862\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 6.0725\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.0589\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 6.0452\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.0316\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 6.0180\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.0045\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 5.9910\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 5.9775\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 5.9640\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 5.9505\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 5.9371\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.9237\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 5.9103\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.8970\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 5.8837\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 5.8704\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 5.8571\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 5.8438\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.8306\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 5.8174\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 5.8042\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 5.7911\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 5.7780\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.7649\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.7518\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 5.7387\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 5.7257\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 5.7127\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 5.6997\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.6868\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.6739\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 5.6610\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 5.6481\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.6352\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.6224\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 5.6096\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.5968\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 5.5841\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.5714\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 5.5587\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 5.5460\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.5333\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.5207\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 5.5081\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.4955\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.4829\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.4704\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 5.4579\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.4454\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 5.4329\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.4205\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 5.4081\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.3957\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.3833\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 5.3710\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.3586\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.3463\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 5.3341\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 5.3218\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 5.3096\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.2974\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 5.2852\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.2731\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 5.2609\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 5.2488\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 5.2367\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 5.2247\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 5.2126\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.2006\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 5.1886\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 5.1766\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 5.1647\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 5.1528\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 5.1409\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 5.1290\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 5.1171\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 5.1053\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 5.0935\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 5.0817\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 5.0699\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 5.0582\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 5.0465\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 5.0348\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 5.0231\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 5.0114\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 4.9998\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 4.9882\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 4.9766\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 4.9651\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 4.9535\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 4.9420\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 4.9305\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 4.9190\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 4.9076\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 4.8962\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 4.8848\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.8734\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 4.8620\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 4.8507\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.8394\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.8281\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 4.8168\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 4.8055\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.7943\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.7831\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 4.7719\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.7607\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 4.7496\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 4.7385\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 4.7274\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 4.7163\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.7052\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 4.6942\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 4.6832\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.6722\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.6612\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.6503\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.6394\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.6285\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.6176\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.6067\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.5959\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.5850\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.5742\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.5635\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.5527\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.5420\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.5313\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.5206\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.5099\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.4992\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.4886\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.4780\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.4674\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.4568\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.4463\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.4358\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.4253\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 4.4148\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.4043\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 4.3939\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.3834\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.3730\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 4.3627\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.3523\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.3420\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 4.3316\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.3213\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 4.3111\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 4.3008\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.2906\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 4.2803\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 4.2701\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.2600\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.2498\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.2397\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.2295\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.2194\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.2094\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.1993\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 4.1893\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 4.1792\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 4.1692\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.1593\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.1493\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 4.1394\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.1295\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.1196\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 4.1097\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.0998\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 4.0900\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 4.0801\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.0703\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.0606\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 4.0508\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 4.0411\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.0313\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 4.0216\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 4.0119\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.0023\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.9926\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.9830\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.9734\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.9638\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9542\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.9447\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.9352\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.9256\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.9162\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.9067\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.8972\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.8878\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 3.8784\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.8690\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.8596\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.8502\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 3.8409\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.8316\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.8223\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 3.8130\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.8037\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.7945\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.7852\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.7760\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.7668\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 3.7577\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.7485\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.7394\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.7303\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 3.7212\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 3.7121\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.7030\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 3.6940\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 3.6849\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.6759\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 3.6669\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.6580\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 3.6490\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 3.6401\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.6312\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 3.6223\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.6134\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.6045\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 3.5957\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 3.5869\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 3.5780\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 3.5693\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 3.5605\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.5517\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 3.5430\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 3.5343\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 3.5256\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 3.5169\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 3.5082\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 3.4996\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.4909\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.4823\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 3.4737\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 3.4652\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 3.4566\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 3.4481\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.4395\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 3.4310\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.4225\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 3.4141\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.4056\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.3972\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 3.3888\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.3803\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.3720\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.3636\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.3552\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 3.3469\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.3386\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.3303\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.3220\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.3137\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.3055\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.2973\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.2890\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 3.2808\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.2727\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.2645\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.2564\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2482\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2401\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2320\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.2239\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.2159\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 3.2078\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.1998\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.1918\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 3.1838\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 3.1758\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 3.1678\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 3.1599\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.1520\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.1440\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.1361\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 3.1283\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1204\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.1126\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.1047\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.0969\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 3.0891\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.0813\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 3.0736\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.0658\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 3.0581\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 3.0504\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.0427\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.0350\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.0273\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 3.0196\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.0120\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 3.0044\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.9968\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.9892\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9816\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.9741\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.9665\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.9590\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9515\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.9440\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.9365\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.9290\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.9216\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.9142\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.9068\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.8993\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.8920\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.8846\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 2.8772\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.8699\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.8626\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.8553\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.8480\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.8407\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.8334\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.8262\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.8190\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.8118\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.8046\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7974\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.7902\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.7831\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.7759\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.7688\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.7617\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.7546\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.7475\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.7404\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.7334\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.7264\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.7194\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.7123\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.7054\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.6984\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 2.6914\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.6845\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.6776\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.6706\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.6637\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.6569\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 2.6500\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 2.6431\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 2.6363\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 2.6295\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 2.6227\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 2.6159\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.6091\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 2.6023\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 2.5956\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 2.5888\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.5821\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 2.5754\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.5687\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 2.5620\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.5554\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.5487\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 2.5421\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 2.5355\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 2.5288\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 2.5223\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 2.5157\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 2.5091\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.5026\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 2.4960\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 2.4895\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.4830\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 184ms/step - loss: 2.4765\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 2.4700\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 2.4636\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 2.4571\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 2.4507\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.4442\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 2.4378\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.4314\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 2.4251\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 2.4187\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.4123\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 2.4060\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 2.3997\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 2.3934\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.3871\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.3808\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.3745\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.3682\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.3620\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.3558\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 2.3495\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.3433\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 2.3372\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.3310\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.3248\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.3187\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.3125\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.3064\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.3003\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.2942\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2881\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.2821\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 2.2760\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 2.2700\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 2.2639\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.2579\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.2519\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.2459\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.2400\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.2340\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.2280\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.2221\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.2162\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.2103\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.2044\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.1985\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.1926\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.1868\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.1809\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.1751\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.1693\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.1635\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.1577\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.1519\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 2.1461\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.1404\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.1346\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.1289\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.1232\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 2.1175\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.1118\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.1061\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 2.1005\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.0948\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.0892\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.0835\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 2.0779\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.0723\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.0667\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.0612\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.0556\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.0501\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 2.0445\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 2.0390\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.0335\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.0280\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0225\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.0170\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0115\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.0061\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 2.0007\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.9952\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 1.9898\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.9844\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.9790\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 1.9736\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.9683\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.9629\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.9576\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.9522\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.9469\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.9416\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.9363\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9311\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.9258\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.9205\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.9153\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.9100\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.9048\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.8996\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8944\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.8892\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.8841\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.8789\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.8737\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.8686\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.8635\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.8584\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.8533\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.8482\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.8431\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.8380\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.8330\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.8279\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 1.8229\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 1.8179\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.8128\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 1.8078\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 1.8029\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 1.7979\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.7929\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.7880\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 1.7830\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 1.7781\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.7732\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.7683\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.7634\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.7585\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 1.7536\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.7487\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.7439\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 1.7390\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.7342\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 1.7294\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.7246\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.7198\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.7150\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 1.7102\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 1.7055\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 1.7007\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6960\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 1.6913\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 1.6865\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.6818\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.6771\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.6725\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 1.6678\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 1.6631\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.6585\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.6538\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 1.6492\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 1.6446\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.6400\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.6354\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.6308\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 1.6262\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 1.6216\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.6171\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.6125\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.6080\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.6035\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.5990\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.5945\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.5900\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5855\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.5810\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.5766\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5721\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.5677\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.5632\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.5588\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.5544\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.5500\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.5456\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.5413\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.5369\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.5325\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.5282\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.5239\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.5195\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.5152\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.5109\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.5066\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.5023\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4981\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.4938\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.4895\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.4853\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.4811\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.4768\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.4726\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.4684\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.4642\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.4601\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.4559\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.4517\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.4476\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.4434\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.4393\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.4352\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4311\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 1.4270\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.4229\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.4188\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.4147\n", + "Epoch 1752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.4106\n", + "Epoch 1753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.4066\n", + "Epoch 1754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 1.4025\n", + "Epoch 1755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.3985\n", + "Epoch 1756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.3945\n", + "Epoch 1757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.3905\n", + "Epoch 1758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.3865\n", + "Epoch 1759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3825\n", + "Epoch 1760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.3785\n", + "Epoch 1761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.3745\n", + "Epoch 1762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.3705\n", + "Epoch 1763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.3666\n", + "Epoch 1764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.3626\n", + "Epoch 1765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.3587\n", + "Epoch 1766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.3548\n", + "Epoch 1767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.3509\n", + "Epoch 1768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.3469\n", + "Epoch 1769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.3430\n", + "Epoch 1770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.3392\n", + "Epoch 1771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3353\n", + "Epoch 1772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.3314\n", + "Epoch 1773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.3275\n", + "Epoch 1774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.3237\n", + "Epoch 1775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.3198\n", + "Epoch 1776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.3160\n", + "Epoch 1777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.3122\n", + "Epoch 1778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.3084\n", + "Epoch 1779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 1.3046\n", + "Epoch 1780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.3008\n", + "Epoch 1781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.2970\n", + "Epoch 1782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2932\n", + "Epoch 1783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2894\n", + "Epoch 1784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2857\n", + "Epoch 1785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2819\n", + "Epoch 1786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2782\n", + "Epoch 1787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.2745\n", + "Epoch 1788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.2707\n", + "Epoch 1789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.2670\n", + "Epoch 1790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.2633\n", + "Epoch 1791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.2596\n", + "Epoch 1792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.2559\n", + "Epoch 1793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.2523\n", + "Epoch 1794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.2486\n", + "Epoch 1795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2449\n", + "Epoch 1796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.2413\n", + "Epoch 1797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.2376\n", + "Epoch 1798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.2340\n", + "Epoch 1799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.2304\n", + "Epoch 1800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.2268\n", + "Epoch 1801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 1.2232\n", + "Epoch 1802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.2196\n", + "Epoch 1803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.2160\n", + "Epoch 1804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.2124\n", + "Epoch 1805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 1.2088\n", + "Epoch 1806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.2053\n", + "Epoch 1807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 1.2017\n", + "Epoch 1808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 1.1982\n", + "Epoch 1809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.1946\n", + "Epoch 1810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 1.1911\n", + "Epoch 1811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 1.1876\n", + "Epoch 1812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.1841\n", + "Epoch 1813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 1.1806\n", + "Epoch 1814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 1.1771\n", + "Epoch 1815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 1.1736\n", + "Epoch 1816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.1701\n", + "Epoch 1817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 1.1667\n", + "Epoch 1818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 1.1632\n", + "Epoch 1819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 1.1598\n", + "Epoch 1820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.1563\n", + "Epoch 1821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 1.1529\n", + "Epoch 1822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.1495\n", + "Epoch 1823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 1.1461\n", + "Epoch 1824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.1427\n", + "Epoch 1825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 1.1393\n", + "Epoch 1826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 1.1359\n", + "Epoch 1827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.1325\n", + "Epoch 1828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.1291\n", + "Epoch 1829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 1.1258\n", + "Epoch 1830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.1224\n", + "Epoch 1831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 1.1191\n", + "Epoch 1832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.1157\n", + "Epoch 1833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1124\n", + "Epoch 1834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 1.1091\n", + "Epoch 1835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 1.1058\n", + "Epoch 1836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 1.1025\n", + "Epoch 1837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.0992\n", + "Epoch 1838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 1.0959\n", + "Epoch 1839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 1.0926\n", + "Epoch 1840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 1.0893\n", + "Epoch 1841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.0861\n", + "Epoch 1842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.0828\n", + "Epoch 1843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.0796\n", + "Epoch 1844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 1.0763\n", + "Epoch 1845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.0731\n", + "Epoch 1846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.0699\n", + "Epoch 1847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0667\n", + "Epoch 1848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.0635\n", + "Epoch 1849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.0603\n", + "Epoch 1850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.0571\n", + "Epoch 1851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0539\n", + "Epoch 1852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.0507\n", + "Epoch 1853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.0476\n", + "Epoch 1854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.0444\n", + "Epoch 1855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.0413\n", + "Epoch 1856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0381\n", + "Epoch 1857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.0350\n", + "Epoch 1858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.0319\n", + "Epoch 1859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.0288\n", + "Epoch 1860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.0257\n", + "Epoch 1861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.0226\n", + "Epoch 1862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.0195\n", + "Epoch 1863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.0164\n", + "Epoch 1864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.0133\n", + "Epoch 1865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.0102\n", + "Epoch 1866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.0072\n", + "Epoch 1867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0041\n", + "Epoch 1868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 1.0011\n", + "Epoch 1869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9980\n", + "Epoch 1870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9950\n", + "Epoch 1871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.9920\n", + "Epoch 1872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.9890\n", + "Epoch 1873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.9860\n", + "Epoch 1874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.9830\n", + "Epoch 1875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9800\n", + "Epoch 1876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.9770\n", + "Epoch 1877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9740\n", + "Epoch 1878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.9711\n", + "Epoch 1879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.9681\n", + "Epoch 1880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.9652\n", + "Epoch 1881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9622\n", + "Epoch 1882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.9593\n", + "Epoch 1883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.9563\n", + "Epoch 1884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.9534\n", + "Epoch 1885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.9505\n", + "Epoch 1886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9476\n", + "Epoch 1887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9447\n", + "Epoch 1888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9418\n", + "Epoch 1889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.9389\n", + "Epoch 1890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9360\n", + "Epoch 1891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.9332\n", + "Epoch 1892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9303\n", + "Epoch 1893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.9275\n", + "Epoch 1894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.9246\n", + "Epoch 1895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9218\n", + "Epoch 1896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.9189\n", + "Epoch 1897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.9161\n", + "Epoch 1898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9133\n", + "Epoch 1899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9105\n", + "Epoch 1900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.9077\n", + "Epoch 1901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9049\n", + "Epoch 1902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.9021\n", + "Epoch 1903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8993\n", + "Epoch 1904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.8966\n", + "Epoch 1905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.8938\n", + "Epoch 1906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.8910\n", + "Epoch 1907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.8883\n", + "Epoch 1908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.8855\n", + "Epoch 1909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.8828\n", + "Epoch 1910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.8801\n", + "Epoch 1911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.8773\n", + "Epoch 1912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.8746\n", + "Epoch 1913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8719\n", + "Epoch 1914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8692\n", + "Epoch 1915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8665\n", + "Epoch 1916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8638\n", + "Epoch 1917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.8612\n", + "Epoch 1918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.8585\n", + "Epoch 1919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8558\n", + "Epoch 1920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.8532\n", + "Epoch 1921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8505\n", + "Epoch 1922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.8479\n", + "Epoch 1923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.8452\n", + "Epoch 1924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8426\n", + "Epoch 1925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.8400\n", + "Epoch 1926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8374\n", + "Epoch 1927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8348\n", + "Epoch 1928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8321\n", + "Epoch 1929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.8296\n", + "Epoch 1930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.8270\n", + "Epoch 1931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8244\n", + "Epoch 1932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8218\n", + "Epoch 1933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.8192\n", + "Epoch 1934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8167\n", + "Epoch 1935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.8141\n", + "Epoch 1936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.8116\n", + "Epoch 1937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.8090\n", + "Epoch 1938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.8065\n", + "Epoch 1939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.8040\n", + "Epoch 1940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.8014\n", + "Epoch 1941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.7989\n", + "Epoch 1942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.7964\n", + "Epoch 1943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.7939\n", + "Epoch 1944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.7914\n", + "Epoch 1945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.7889\n", + "Epoch 1946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.7865\n", + "Epoch 1947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.7840\n", + "Epoch 1948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.7815\n", + "Epoch 1949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.7791\n", + "Epoch 1950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.7766\n", + "Epoch 1951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.7742\n", + "Epoch 1952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.7717\n", + "Epoch 1953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.7693\n", + "Epoch 1954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.7669\n", + "Epoch 1955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.7644\n", + "Epoch 1956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.7620\n", + "Epoch 1957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.7596\n", + "Epoch 1958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.7572\n", + "Epoch 1959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.7548\n", + "Epoch 1960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.7524\n", + "Epoch 1961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.7500\n", + "Epoch 1962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.7477\n", + "Epoch 1963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.7453\n", + "Epoch 1964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.7429\n", + "Epoch 1965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.7406\n", + "Epoch 1966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.7382\n", + "Epoch 1967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.7359\n", + "Epoch 1968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.7335\n", + "Epoch 1969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.7312\n", + "Epoch 1970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.7289\n", + "Epoch 1971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.7266\n", + "Epoch 1972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.7243\n", + "Epoch 1973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.7220\n", + "Epoch 1974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.7197\n", + "Epoch 1975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.7174\n", + "Epoch 1976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.7151\n", + "Epoch 1977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.7128\n", + "Epoch 1978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.7105\n", + "Epoch 1979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.7083\n", + "Epoch 1980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.7060\n", + "Epoch 1981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.7037\n", + "Epoch 1982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.7015\n", + "Epoch 1983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.6992\n", + "Epoch 1984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.6970\n", + "Epoch 1985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.6948\n", + "Epoch 1986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.6925\n", + "Epoch 1987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.6903\n", + "Epoch 1988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.6881\n", + "Epoch 1989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.6859\n", + "Epoch 1990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6837\n", + "Epoch 1991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.6815\n", + "Epoch 1992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6793\n", + "Epoch 1993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.6771\n", + "Epoch 1994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.6750\n", + "Epoch 1995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6728\n", + "Epoch 1996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.6706\n", + "Epoch 1997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.6685\n", + "Epoch 1998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.6663\n", + "Epoch 1999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.6642\n", + "Epoch 2000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 0.6620\n", + "Epoch 2000/3000\n", + " - loss: 0.6620\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6620\n", + "Epoch 2001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.6599\n", + "Epoch 2002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.6578\n", + "Epoch 2003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.6556\n", + "Epoch 2004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6535\n", + "Epoch 2005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.6514\n", + "Epoch 2006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6493\n", + "Epoch 2007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.6472\n", + "Epoch 2008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.6451\n", + "Epoch 2009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.6430\n", + "Epoch 2010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6409\n", + "Epoch 2011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6389\n", + "Epoch 2012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.6368\n", + "Epoch 2013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.6347\n", + "Epoch 2014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.6327\n", + "Epoch 2015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6306\n", + "Epoch 2016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6286\n", + "Epoch 2017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6265\n", + "Epoch 2018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6245\n", + "Epoch 2019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6225\n", + "Epoch 2020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6204\n", + "Epoch 2021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6184\n", + "Epoch 2022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6164\n", + "Epoch 2023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6144\n", + "Epoch 2024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.6124\n", + "Epoch 2025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6104\n", + "Epoch 2026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.6084\n", + "Epoch 2027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.6064\n", + "Epoch 2028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.6044\n", + "Epoch 2029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6025\n", + "Epoch 2030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.6005\n", + "Epoch 2031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5985\n", + "Epoch 2032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5966\n", + "Epoch 2033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.5946\n", + "Epoch 2034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5927\n", + "Epoch 2035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5907\n", + "Epoch 2036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5888\n", + "Epoch 2037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5869\n", + "Epoch 2038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5849\n", + "Epoch 2039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.5830\n", + "Epoch 2040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.5811\n", + "Epoch 2041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.5792\n", + "Epoch 2042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5773\n", + "Epoch 2043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5754\n", + "Epoch 2044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.5735\n", + "Epoch 2045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.5716\n", + "Epoch 2046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.5697\n", + "Epoch 2047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5679\n", + "Epoch 2048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.5660\n", + "Epoch 2049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.5641\n", + "Epoch 2050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5623\n", + "Epoch 2051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5604\n", + "Epoch 2052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5586\n", + "Epoch 2053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.5567\n", + "Epoch 2054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.5549\n", + "Epoch 2055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.5530\n", + "Epoch 2056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.5512\n", + "Epoch 2057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5494\n", + "Epoch 2058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5476\n", + "Epoch 2059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.5458\n", + "Epoch 2060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.5440\n", + "Epoch 2061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5421\n", + "Epoch 2062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.5404\n", + "Epoch 2063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5386\n", + "Epoch 2064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5368\n", + "Epoch 2065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5350\n", + "Epoch 2066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5332\n", + "Epoch 2067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5314\n", + "Epoch 2068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.5297\n", + "Epoch 2069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.5279\n", + "Epoch 2070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.5262\n", + "Epoch 2071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.5244\n", + "Epoch 2072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.5227\n", + "Epoch 2073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.5209\n", + "Epoch 2074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5192\n", + "Epoch 2075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5174\n", + "Epoch 2076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5157\n", + "Epoch 2077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.5140\n", + "Epoch 2078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.5123\n", + "Epoch 2079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5106\n", + "Epoch 2080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.5089\n", + "Epoch 2081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5072\n", + "Epoch 2082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5055\n", + "Epoch 2083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5038\n", + "Epoch 2084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5021\n", + "Epoch 2085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5004\n", + "Epoch 2086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4987\n", + "Epoch 2087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4971\n", + "Epoch 2088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.4954\n", + "Epoch 2089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4937\n", + "Epoch 2090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4921\n", + "Epoch 2091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.4904\n", + "Epoch 2092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.4888\n", + "Epoch 2093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.4871\n", + "Epoch 2094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.4855\n", + "Epoch 2095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.4839\n", + "Epoch 2096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.4822\n", + "Epoch 2097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.4806\n", + "Epoch 2098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.4790\n", + "Epoch 2099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.4774\n", + "Epoch 2100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.4758\n", + "Epoch 2101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.4742\n", + "Epoch 2102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4726\n", + "Epoch 2103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.4710\n", + "Epoch 2104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.4694\n", + "Epoch 2105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.4678\n", + "Epoch 2106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.4662\n", + "Epoch 2107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4646\n", + "Epoch 2108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.4630\n", + "Epoch 2109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.4615\n", + "Epoch 2110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.4599\n", + "Epoch 2111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.4584\n", + "Epoch 2112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 271ms/step - loss: 0.4568\n", + "Epoch 2113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4553\n", + "Epoch 2114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.4537\n", + "Epoch 2115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.4522\n", + "Epoch 2116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.4506\n", + "Epoch 2117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.4491\n", + "Epoch 2118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.4476\n", + "Epoch 2119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.4461\n", + "Epoch 2120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.4445\n", + "Epoch 2121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.4430\n", + "Epoch 2122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.4415\n", + "Epoch 2123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.4400\n", + "Epoch 2124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.4385\n", + "Epoch 2125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.4370\n", + "Epoch 2126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.4355\n", + "Epoch 2127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.4340\n", + "Epoch 2128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4326\n", + "Epoch 2129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.4311\n", + "Epoch 2130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.4296\n", + "Epoch 2131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4281\n", + "Epoch 2132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4267\n", + "Epoch 2133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.4252\n", + "Epoch 2134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.4238\n", + "Epoch 2135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.4223\n", + "Epoch 2136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.4209\n", + "Epoch 2137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.4194\n", + "Epoch 2138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4180\n", + "Epoch 2139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.4165\n", + "Epoch 2140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.4151\n", + "Epoch 2141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.4137\n", + "Epoch 2142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4123\n", + "Epoch 2143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.4109\n", + "Epoch 2144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4094\n", + "Epoch 2145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4080\n", + "Epoch 2146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4066\n", + "Epoch 2147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.4052\n", + "Epoch 2148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.4038\n", + "Epoch 2149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.4024\n", + "Epoch 2150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.4011\n", + "Epoch 2151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.3997\n", + "Epoch 2152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3983\n", + "Epoch 2153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.3969\n", + "Epoch 2154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3956\n", + "Epoch 2155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3942\n", + "Epoch 2156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3928\n", + "Epoch 2157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3915\n", + "Epoch 2158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.3901\n", + "Epoch 2159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.3888\n", + "Epoch 2160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3874\n", + "Epoch 2161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.3861\n", + "Epoch 2162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3847\n", + "Epoch 2163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3834\n", + "Epoch 2164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3821\n", + "Epoch 2165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3808\n", + "Epoch 2166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3794\n", + "Epoch 2167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3781\n", + "Epoch 2168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3768\n", + "Epoch 2169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.3755\n", + "Epoch 2170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3742\n", + "Epoch 2171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3729\n", + "Epoch 2172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3716\n", + "Epoch 2173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3703\n", + "Epoch 2174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3690\n", + "Epoch 2175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3677\n", + "Epoch 2176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3664\n", + "Epoch 2177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3652\n", + "Epoch 2178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3639\n", + "Epoch 2179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.3626\n", + "Epoch 2180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.3614\n", + "Epoch 2181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3601\n", + "Epoch 2182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3588\n", + "Epoch 2183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3576\n", + "Epoch 2184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.3563\n", + "Epoch 2185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.3551\n", + "Epoch 2186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.3538\n", + "Epoch 2187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3526\n", + "Epoch 2188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3514\n", + "Epoch 2189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3501\n", + "Epoch 2190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3489\n", + "Epoch 2191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.3477\n", + "Epoch 2192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3465\n", + "Epoch 2193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.3453\n", + "Epoch 2194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3440\n", + "Epoch 2195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.3428\n", + "Epoch 2196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3416\n", + "Epoch 2197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3404\n", + "Epoch 2198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.3392\n", + "Epoch 2199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.3380\n", + "Epoch 2200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3368\n", + "Epoch 2201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3357\n", + "Epoch 2202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3345\n", + "Epoch 2203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.3333\n", + "Epoch 2204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3321\n", + "Epoch 2205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.3310\n", + "Epoch 2206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.3298\n", + "Epoch 2207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3286\n", + "Epoch 2208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.3275\n", + "Epoch 2209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3263\n", + "Epoch 2210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.3252\n", + "Epoch 2211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.3240\n", + "Epoch 2212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3229\n", + "Epoch 2213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3217\n", + "Epoch 2214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.3206\n", + "Epoch 2215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3194\n", + "Epoch 2216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3183\n", + "Epoch 2217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3172\n", + "Epoch 2218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3161\n", + "Epoch 2219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3149\n", + "Epoch 2220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3138\n", + "Epoch 2221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3127\n", + "Epoch 2222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3116\n", + "Epoch 2223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3105\n", + "Epoch 2224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3094\n", + "Epoch 2225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.3083\n", + "Epoch 2226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.3072\n", + "Epoch 2227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.3061\n", + "Epoch 2228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.3050\n", + "Epoch 2229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.3039\n", + "Epoch 2230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.3028\n", + "Epoch 2231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.3018\n", + "Epoch 2232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.3007\n", + "Epoch 2233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.2996\n", + "Epoch 2234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.2985\n", + "Epoch 2235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.2975\n", + "Epoch 2236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2964\n", + "Epoch 2237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.2954\n", + "Epoch 2238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.2943\n", + "Epoch 2239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.2932\n", + "Epoch 2240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.2922\n", + "Epoch 2241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.2912\n", + "Epoch 2242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.2901\n", + "Epoch 2243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2891\n", + "Epoch 2244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.2880\n", + "Epoch 2245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.2870\n", + "Epoch 2246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.2860\n", + "Epoch 2247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.2849\n", + "Epoch 2248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.2839\n", + "Epoch 2249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.2829\n", + "Epoch 2250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2819\n", + "Epoch 2251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.2809\n", + "Epoch 2252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.2799\n", + "Epoch 2253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.2789\n", + "Epoch 2254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2779\n", + "Epoch 2255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.2769\n", + "Epoch 2256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.2759\n", + "Epoch 2257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.2749\n", + "Epoch 2258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.2739\n", + "Epoch 2259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.2729\n", + "Epoch 2260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.2719\n", + "Epoch 2261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.2709\n", + "Epoch 2262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.2700\n", + "Epoch 2263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.2690\n", + "Epoch 2264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.2680\n", + "Epoch 2265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.2670\n", + "Epoch 2266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2661\n", + "Epoch 2267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2651\n", + "Epoch 2268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2642\n", + "Epoch 2269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2632\n", + "Epoch 2270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2622\n", + "Epoch 2271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2613\n", + "Epoch 2272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.2604\n", + "Epoch 2273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2594\n", + "Epoch 2274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2585\n", + "Epoch 2275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2575\n", + "Epoch 2276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.2566\n", + "Epoch 2277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2557\n", + "Epoch 2278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2547\n", + "Epoch 2279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2538\n", + "Epoch 2280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2529\n", + "Epoch 2281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2520\n", + "Epoch 2282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2511\n", + "Epoch 2283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.2501\n", + "Epoch 2284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.2492\n", + "Epoch 2285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2483\n", + "Epoch 2286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2474\n", + "Epoch 2287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2465\n", + "Epoch 2288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2456\n", + "Epoch 2289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2447\n", + "Epoch 2290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2438\n", + "Epoch 2291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2430\n", + "Epoch 2292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2421\n", + "Epoch 2293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2412\n", + "Epoch 2294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2403\n", + "Epoch 2295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2394\n", + "Epoch 2296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2386\n", + "Epoch 2297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2377\n", + "Epoch 2298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.2368\n", + "Epoch 2299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2359\n", + "Epoch 2300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2351\n", + "Epoch 2301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2342\n", + "Epoch 2302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2334\n", + "Epoch 2303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.2325\n", + "Epoch 2304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2317\n", + "Epoch 2305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2308\n", + "Epoch 2306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2300\n", + "Epoch 2307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.2291\n", + "Epoch 2308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2283\n", + "Epoch 2309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2274\n", + "Epoch 2310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2266\n", + "Epoch 2311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.2258\n", + "Epoch 2312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2249\n", + "Epoch 2313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2241\n", + "Epoch 2314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2233\n", + "Epoch 2315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2225\n", + "Epoch 2316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2217\n", + "Epoch 2317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2208\n", + "Epoch 2318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2200\n", + "Epoch 2319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2192\n", + "Epoch 2320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2184\n", + "Epoch 2321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.2176\n", + "Epoch 2322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2168\n", + "Epoch 2323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2160\n", + "Epoch 2324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.2152\n", + "Epoch 2325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2144\n", + "Epoch 2326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2136\n", + "Epoch 2327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.2128\n", + "Epoch 2328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2120\n", + "Epoch 2329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2113\n", + "Epoch 2330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2105\n", + "Epoch 2331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2097\n", + "Epoch 2332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2089\n", + "Epoch 2333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2082\n", + "Epoch 2334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.2074\n", + "Epoch 2335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2066\n", + "Epoch 2336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2059\n", + "Epoch 2337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.2051\n", + "Epoch 2338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.2043\n", + "Epoch 2339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2036\n", + "Epoch 2340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2028\n", + "Epoch 2341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2021\n", + "Epoch 2342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2013\n", + "Epoch 2343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2006\n", + "Epoch 2344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1998\n", + "Epoch 2345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1991\n", + "Epoch 2346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1983\n", + "Epoch 2347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1976\n", + "Epoch 2348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1969\n", + "Epoch 2349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1961\n", + "Epoch 2350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1954\n", + "Epoch 2351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1947\n", + "Epoch 2352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1940\n", + "Epoch 2353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1932\n", + "Epoch 2354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1925\n", + "Epoch 2355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1918\n", + "Epoch 2356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1911\n", + "Epoch 2357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1904\n", + "Epoch 2358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1897\n", + "Epoch 2359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1889\n", + "Epoch 2360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1882\n", + "Epoch 2361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1875\n", + "Epoch 2362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1868\n", + "Epoch 2363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1861\n", + "Epoch 2364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1854\n", + "Epoch 2365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1848\n", + "Epoch 2366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1841\n", + "Epoch 2367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.1834\n", + "Epoch 2368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1827\n", + "Epoch 2369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1820\n", + "Epoch 2370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 172ms/step - loss: 0.1813\n", + "Epoch 2371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1806\n", + "Epoch 2372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.1800\n", + "Epoch 2373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.1793\n", + "Epoch 2374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1786\n", + "Epoch 2375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.1780\n", + "Epoch 2376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.1773\n", + "Epoch 2377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.1766\n", + "Epoch 2378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1760\n", + "Epoch 2379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.1753\n", + "Epoch 2380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1746\n", + "Epoch 2381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 186ms/step - loss: 0.1740\n", + "Epoch 2382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1733\n", + "Epoch 2383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.1727\n", + "Epoch 2384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1720\n", + "Epoch 2385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1714\n", + "Epoch 2386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1707\n", + "Epoch 2387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.1701\n", + "Epoch 2388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.1695\n", + "Epoch 2389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.1688\n", + "Epoch 2390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1682\n", + "Epoch 2391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1675\n", + "Epoch 2392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.1669\n", + "Epoch 2393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1663\n", + "Epoch 2394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1657\n", + "Epoch 2395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.1650\n", + "Epoch 2396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1644\n", + "Epoch 2397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.1638\n", + "Epoch 2398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.1632\n", + "Epoch 2399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.1626\n", + "Epoch 2400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1619\n", + "Epoch 2401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.1613\n", + "Epoch 2402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1607\n", + "Epoch 2403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1601\n", + "Epoch 2404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.1595\n", + "Epoch 2405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.1589\n", + "Epoch 2406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.1583\n", + "Epoch 2407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.1577\n", + "Epoch 2408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1571\n", + "Epoch 2409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.1565\n", + "Epoch 2410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.1559\n", + "Epoch 2411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1553\n", + "Epoch 2412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.1547\n", + "Epoch 2413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1542\n", + "Epoch 2414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1536\n", + "Epoch 2415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1530\n", + "Epoch 2416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1524\n", + "Epoch 2417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1518\n", + "Epoch 2418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1513\n", + "Epoch 2419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1507\n", + "Epoch 2420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1501\n", + "Epoch 2421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1495\n", + "Epoch 2422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1490\n", + "Epoch 2423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1484\n", + "Epoch 2424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1478\n", + "Epoch 2425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1473\n", + "Epoch 2426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1467\n", + "Epoch 2427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1462\n", + "Epoch 2428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1456\n", + "Epoch 2429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1450\n", + "Epoch 2430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1445\n", + "Epoch 2431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1439\n", + "Epoch 2432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1434\n", + "Epoch 2433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1429\n", + "Epoch 2434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1423\n", + "Epoch 2435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1418\n", + "Epoch 2436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1412\n", + "Epoch 2437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1407\n", + "Epoch 2438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1402\n", + "Epoch 2439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1396\n", + "Epoch 2440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1391\n", + "Epoch 2441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1386\n", + "Epoch 2442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1380\n", + "Epoch 2443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.1375\n", + "Epoch 2444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1370\n", + "Epoch 2445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1365\n", + "Epoch 2446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1359\n", + "Epoch 2447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1354\n", + "Epoch 2448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1349\n", + "Epoch 2449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1344\n", + "Epoch 2450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1339\n", + "Epoch 2451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1334\n", + "Epoch 2452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1328\n", + "Epoch 2453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1323\n", + "Epoch 2454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1318\n", + "Epoch 2455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1313\n", + "Epoch 2456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1308\n", + "Epoch 2457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1303\n", + "Epoch 2458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1298\n", + "Epoch 2459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1293\n", + "Epoch 2460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1288\n", + "Epoch 2461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.1283\n", + "Epoch 2462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1278\n", + "Epoch 2463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.1274\n", + "Epoch 2464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.1269\n", + "Epoch 2465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1264\n", + "Epoch 2466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1259\n", + "Epoch 2467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1254\n", + "Epoch 2468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1249\n", + "Epoch 2469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.1244\n", + "Epoch 2470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.1240\n", + "Epoch 2471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.1235\n", + "Epoch 2472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1230\n", + "Epoch 2473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1225\n", + "Epoch 2474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1221\n", + "Epoch 2475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1216\n", + "Epoch 2476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1211\n", + "Epoch 2477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1207\n", + "Epoch 2478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1202\n", + "Epoch 2479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1197\n", + "Epoch 2480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.1193\n", + "Epoch 2481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1188\n", + "Epoch 2482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1184\n", + "Epoch 2483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1179\n", + "Epoch 2484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1175\n", + "Epoch 2485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1170\n", + "Epoch 2486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1166\n", + "Epoch 2487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1161\n", + "Epoch 2488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1157\n", + "Epoch 2489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1152\n", + "Epoch 2490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1148\n", + "Epoch 2491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1143\n", + "Epoch 2492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1139\n", + "Epoch 2493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1135\n", + "Epoch 2494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1130\n", + "Epoch 2495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1126\n", + "Epoch 2496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1121\n", + "Epoch 2497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1117\n", + "Epoch 2498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1113\n", + "Epoch 2499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.1109\n", + "Epoch 2500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1104\n", + "Epoch 2501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1100\n", + "Epoch 2502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1096\n", + "Epoch 2503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1092\n", + "Epoch 2504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.1087\n", + "Epoch 2505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.1083\n", + "Epoch 2506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1079\n", + "Epoch 2507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.1075\n", + "Epoch 2508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1071\n", + "Epoch 2509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1067\n", + "Epoch 2510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1062\n", + "Epoch 2511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.1058\n", + "Epoch 2512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1054\n", + "Epoch 2513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 0.1050\n", + "Epoch 2514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.1046\n", + "Epoch 2515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1042\n", + "Epoch 2516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1038\n", + "Epoch 2517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.1034\n", + "Epoch 2518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1030\n", + "Epoch 2519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1026\n", + "Epoch 2520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1022\n", + "Epoch 2521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1018\n", + "Epoch 2522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.1014\n", + "Epoch 2523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.1010\n", + "Epoch 2524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1006\n", + "Epoch 2525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 173ms/step - loss: 0.1002\n", + "Epoch 2526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0999\n", + "Epoch 2527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0995\n", + "Epoch 2528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0991\n", + "Epoch 2529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0987\n", + "Epoch 2530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0983\n", + "Epoch 2531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0979\n", + "Epoch 2532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0976\n", + "Epoch 2533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0972\n", + "Epoch 2534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0968\n", + "Epoch 2535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0964\n", + "Epoch 2536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0961\n", + "Epoch 2537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0957\n", + "Epoch 2538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0953\n", + "Epoch 2539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0949\n", + "Epoch 2540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0946\n", + "Epoch 2541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0942\n", + "Epoch 2542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0938\n", + "Epoch 2543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0935\n", + "Epoch 2544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0931\n", + "Epoch 2545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0928\n", + "Epoch 2546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0924\n", + "Epoch 2547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0920\n", + "Epoch 2548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0917\n", + "Epoch 2549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0913\n", + "Epoch 2550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0910\n", + "Epoch 2551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0906\n", + "Epoch 2552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0903\n", + "Epoch 2553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0899\n", + "Epoch 2554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0896\n", + "Epoch 2555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0892\n", + "Epoch 2556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0889\n", + "Epoch 2557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0885\n", + "Epoch 2558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0882\n", + "Epoch 2559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0878\n", + "Epoch 2560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0875\n", + "Epoch 2561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0872\n", + "Epoch 2562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0868\n", + "Epoch 2563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0865\n", + "Epoch 2564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0862\n", + "Epoch 2565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0858\n", + "Epoch 2566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0855\n", + "Epoch 2567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0852\n", + "Epoch 2568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0848\n", + "Epoch 2569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0845\n", + "Epoch 2570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0842\n", + "Epoch 2571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0838\n", + "Epoch 2572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0835\n", + "Epoch 2573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0832\n", + "Epoch 2574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0829\n", + "Epoch 2575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0826\n", + "Epoch 2576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0822\n", + "Epoch 2577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0819\n", + "Epoch 2578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0816\n", + "Epoch 2579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0813\n", + "Epoch 2580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0810\n", + "Epoch 2581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0807\n", + "Epoch 2582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0803\n", + "Epoch 2583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0800\n", + "Epoch 2584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0797\n", + "Epoch 2585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0794\n", + "Epoch 2586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0791\n", + "Epoch 2587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0788\n", + "Epoch 2588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0785\n", + "Epoch 2589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0782\n", + "Epoch 2590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0779\n", + "Epoch 2591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0776\n", + "Epoch 2592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0773\n", + "Epoch 2593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0770\n", + "Epoch 2594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0767\n", + "Epoch 2595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0764\n", + "Epoch 2596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0761\n", + "Epoch 2597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0758\n", + "Epoch 2598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0755\n", + "Epoch 2599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0752\n", + "Epoch 2600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0749\n", + "Epoch 2601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0746\n", + "Epoch 2602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0743\n", + "Epoch 2603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0741\n", + "Epoch 2604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0738\n", + "Epoch 2605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0735\n", + "Epoch 2606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0732\n", + "Epoch 2607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0729\n", + "Epoch 2608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0726\n", + "Epoch 2609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0723\n", + "Epoch 2610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0721\n", + "Epoch 2611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0718\n", + "Epoch 2612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0715\n", + "Epoch 2613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0712\n", + "Epoch 2614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0710\n", + "Epoch 2615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0707\n", + "Epoch 2616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0704\n", + "Epoch 2617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0701\n", + "Epoch 2618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0699\n", + "Epoch 2619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0696\n", + "Epoch 2620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0693\n", + "Epoch 2621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0691\n", + "Epoch 2622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0688\n", + "Epoch 2623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0685\n", + "Epoch 2624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0683\n", + "Epoch 2625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0680\n", + "Epoch 2626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0677\n", + "Epoch 2627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0675\n", + "Epoch 2628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0672\n", + "Epoch 2629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0670\n", + "Epoch 2630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0667\n", + "Epoch 2631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0664\n", + "Epoch 2632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0662\n", + "Epoch 2633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0659\n", + "Epoch 2634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0657\n", + "Epoch 2635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0654\n", + "Epoch 2636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0652\n", + "Epoch 2637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0649\n", + "Epoch 2638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0647\n", + "Epoch 2639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0644\n", + "Epoch 2640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0642\n", + "Epoch 2641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0639\n", + "Epoch 2642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0637\n", + "Epoch 2643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0634\n", + "Epoch 2644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0632\n", + "Epoch 2645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0629\n", + "Epoch 2646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0627\n", + "Epoch 2647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0625\n", + "Epoch 2648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0622\n", + "Epoch 2649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0620\n", + "Epoch 2650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0617\n", + "Epoch 2651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0615\n", + "Epoch 2652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0613\n", + "Epoch 2653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0610\n", + "Epoch 2654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0608\n", + "Epoch 2655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0606\n", + "Epoch 2656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0603\n", + "Epoch 2657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0601\n", + "Epoch 2658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0599\n", + "Epoch 2659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 303ms/step - loss: 0.0596\n", + "Epoch 2660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0594\n", + "Epoch 2661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0592\n", + "Epoch 2662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0590\n", + "Epoch 2663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0587\n", + "Epoch 2664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0585\n", + "Epoch 2665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0583\n", + "Epoch 2666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0581\n", + "Epoch 2667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0578\n", + "Epoch 2668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0576\n", + "Epoch 2669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0574\n", + "Epoch 2670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0572\n", + "Epoch 2671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0570\n", + "Epoch 2672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0567\n", + "Epoch 2673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0565\n", + "Epoch 2674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0563\n", + "Epoch 2675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0561\n", + "Epoch 2676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0559\n", + "Epoch 2677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0557\n", + "Epoch 2678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0555\n", + "Epoch 2679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0552\n", + "Epoch 2680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0550\n", + "Epoch 2681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0548\n", + "Epoch 2682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0546\n", + "Epoch 2683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0544\n", + "Epoch 2684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0542\n", + "Epoch 2685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0540\n", + "Epoch 2686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0538\n", + "Epoch 2687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0536\n", + "Epoch 2688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0534\n", + "Epoch 2689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0532\n", + "Epoch 2690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0530\n", + "Epoch 2691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0528\n", + "Epoch 2692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0526\n", + "Epoch 2693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0524\n", + "Epoch 2694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0522\n", + "Epoch 2695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0520\n", + "Epoch 2696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0518\n", + "Epoch 2697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0516\n", + "Epoch 2698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0514\n", + "Epoch 2699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0512\n", + "Epoch 2700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0510\n", + "Epoch 2701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0508\n", + "Epoch 2702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0506\n", + "Epoch 2703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0504\n", + "Epoch 2704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0502\n", + "Epoch 2705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0500\n", + "Epoch 2706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0498\n", + "Epoch 2707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0497\n", + "Epoch 2708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0495\n", + "Epoch 2709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0493\n", + "Epoch 2710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0491\n", + "Epoch 2711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0489\n", + "Epoch 2712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0487\n", + "Epoch 2713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0485\n", + "Epoch 2714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0484\n", + "Epoch 2715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0482\n", + "Epoch 2716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0480\n", + "Epoch 2717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0478\n", + "Epoch 2718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0476\n", + "Epoch 2719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0475\n", + "Epoch 2720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0473\n", + "Epoch 2721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0471\n", + "Epoch 2722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0469\n", + "Epoch 2723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0468\n", + "Epoch 2724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0466\n", + "Epoch 2725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0464\n", + "Epoch 2726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0462\n", + "Epoch 2727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0461\n", + "Epoch 2728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0459\n", + "Epoch 2729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0457\n", + "Epoch 2730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0455\n", + "Epoch 2731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0454\n", + "Epoch 2732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0452\n", + "Epoch 2733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0450\n", + "Epoch 2734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0449\n", + "Epoch 2735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0447\n", + "Epoch 2736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0445\n", + "Epoch 2737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0444\n", + "Epoch 2738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0442\n", + "Epoch 2739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0440\n", + "Epoch 2740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0439\n", + "Epoch 2741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0437\n", + "Epoch 2742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0436\n", + "Epoch 2743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0434\n", + "Epoch 2744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0432\n", + "Epoch 2745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0431\n", + "Epoch 2746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0429\n", + "Epoch 2747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0428\n", + "Epoch 2748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0426\n", + "Epoch 2749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0424\n", + "Epoch 2750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0423\n", + "Epoch 2751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0421\n", + "Epoch 2752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0420\n", + "Epoch 2753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0418\n", + "Epoch 2754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0417\n", + "Epoch 2755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0415\n", + "Epoch 2756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0414\n", + "Epoch 2757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0412\n", + "Epoch 2758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0410\n", + "Epoch 2759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0409\n", + "Epoch 2760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0407\n", + "Epoch 2761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0406\n", + "Epoch 2762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0405\n", + "Epoch 2763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0403\n", + "Epoch 2764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0402\n", + "Epoch 2765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0400\n", + "Epoch 2766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0399\n", + "Epoch 2767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0397\n", + "Epoch 2768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0396\n", + "Epoch 2769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0394\n", + "Epoch 2770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0393\n", + "Epoch 2771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0391\n", + "Epoch 2772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0390\n", + "Epoch 2773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0389\n", + "Epoch 2774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0387\n", + "Epoch 2775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0386\n", + "Epoch 2776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0384\n", + "Epoch 2777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0383\n", + "Epoch 2778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0382\n", + "Epoch 2779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0380\n", + "Epoch 2780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0379\n", + "Epoch 2781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0377\n", + "Epoch 2782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0376\n", + "Epoch 2783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0375\n", + "Epoch 2784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0373\n", + "Epoch 2785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0372\n", + "Epoch 2786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0371\n", + "Epoch 2787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0369\n", + "Epoch 2788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0368\n", + "Epoch 2789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0367\n", + "Epoch 2790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0365\n", + "Epoch 2791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0364\n", + "Epoch 2792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0363\n", + "Epoch 2793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 0.0361\n", + "Epoch 2794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0360\n", + "Epoch 2795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0359\n", + "Epoch 2796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0358\n", + "Epoch 2797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0356\n", + "Epoch 2798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0355\n", + "Epoch 2799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0354\n", + "Epoch 2800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0353\n", + "Epoch 2801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0351\n", + "Epoch 2802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0350\n", + "Epoch 2803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0349\n", + "Epoch 2804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0348\n", + "Epoch 2805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0346\n", + "Epoch 2806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0345\n", + "Epoch 2807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0344\n", + "Epoch 2808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0343\n", + "Epoch 2809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0341\n", + "Epoch 2810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0340\n", + "Epoch 2811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0339\n", + "Epoch 2812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0338\n", + "Epoch 2813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0337\n", + "Epoch 2814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0336\n", + "Epoch 2815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0334\n", + "Epoch 2816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0333\n", + "Epoch 2817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0332\n", + "Epoch 2818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0331\n", + "Epoch 2819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0330\n", + "Epoch 2820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0329\n", + "Epoch 2821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0327\n", + "Epoch 2822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0326\n", + "Epoch 2823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0325\n", + "Epoch 2824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0324\n", + "Epoch 2825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0323\n", + "Epoch 2826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0322\n", + "Epoch 2827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0321\n", + "Epoch 2828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0320\n", + "Epoch 2829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.0318\n", + "Epoch 2830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0317\n", + "Epoch 2831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0316\n", + "Epoch 2832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0315\n", + "Epoch 2833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0314\n", + "Epoch 2834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0313\n", + "Epoch 2835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0312\n", + "Epoch 2836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0311\n", + "Epoch 2837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0310\n", + "Epoch 2838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0309\n", + "Epoch 2839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0308\n", + "Epoch 2840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0307\n", + "Epoch 2841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0306\n", + "Epoch 2842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0305\n", + "Epoch 2843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0303\n", + "Epoch 2844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0302\n", + "Epoch 2845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0301\n", + "Epoch 2846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0300\n", + "Epoch 2847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0299\n", + "Epoch 2848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0298\n", + "Epoch 2849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0297\n", + "Epoch 2850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0296\n", + "Epoch 2851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0295\n", + "Epoch 2852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0294\n", + "Epoch 2853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0293\n", + "Epoch 2854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0292\n", + "Epoch 2855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0291\n", + "Epoch 2856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0290\n", + "Epoch 2857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0289\n", + "Epoch 2858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0288\n", + "Epoch 2859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0288\n", + "Epoch 2860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0287\n", + "Epoch 2861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0286\n", + "Epoch 2862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0285\n", + "Epoch 2863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0284\n", + "Epoch 2864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0283\n", + "Epoch 2865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0282\n", + "Epoch 2866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0281\n", + "Epoch 2867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0280\n", + "Epoch 2868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0279\n", + "Epoch 2869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0278\n", + "Epoch 2870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0277\n", + "Epoch 2871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0276\n", + "Epoch 2872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0275\n", + "Epoch 2873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0274\n", + "Epoch 2874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0274\n", + "Epoch 2875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0273\n", + "Epoch 2876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0272\n", + "Epoch 2877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0271\n", + "Epoch 2878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0270\n", + "Epoch 2879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0269\n", + "Epoch 2880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0268\n", + "Epoch 2881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0267\n", + "Epoch 2882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0267\n", + "Epoch 2883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0266\n", + "Epoch 2884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0265\n", + "Epoch 2885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0264\n", + "Epoch 2886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0263\n", + "Epoch 2887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0262\n", + "Epoch 2888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0261\n", + "Epoch 2889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0261\n", + "Epoch 2890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0260\n", + "Epoch 2891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0259\n", + "Epoch 2892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0258\n", + "Epoch 2893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0257\n", + "Epoch 2894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0256\n", + "Epoch 2895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0256\n", + "Epoch 2896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0255\n", + "Epoch 2897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0254\n", + "Epoch 2898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0253\n", + "Epoch 2899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0252\n", + "Epoch 2900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0252\n", + "Epoch 2901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0251\n", + "Epoch 2902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0250\n", + "Epoch 2903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0249\n", + "Epoch 2904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0249\n", + "Epoch 2905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0248\n", + "Epoch 2906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0247\n", + "Epoch 2907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0246\n", + "Epoch 2908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0245\n", + "Epoch 2909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0245\n", + "Epoch 2910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0244\n", + "Epoch 2911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0243\n", + "Epoch 2912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0242\n", + "Epoch 2913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0242\n", + "Epoch 2914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0241\n", + "Epoch 2915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0240\n", + "Epoch 2916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0239\n", + "Epoch 2917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0239\n", + "Epoch 2918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0238\n", + "Epoch 2919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0237\n", + "Epoch 2920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0237\n", + "Epoch 2921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0236\n", + "Epoch 2922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0235\n", + "Epoch 2923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0234\n", + "Epoch 2924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0234\n", + "Epoch 2925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0233\n", + "Epoch 2926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0232\n", + "Epoch 2927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0232\n", + "Epoch 2928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0231\n", + "Epoch 2929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0230\n", + "Epoch 2930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0229\n", + "Epoch 2931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0229\n", + "Epoch 2932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0228\n", + "Epoch 2933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0227\n", + "Epoch 2934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0227\n", + "Epoch 2935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0226\n", + "Epoch 2936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0225\n", + "Epoch 2937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0225\n", + "Epoch 2938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0224\n", + "Epoch 2939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0223\n", + "Epoch 2940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0223\n", + "Epoch 2941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0222\n", + "Epoch 2942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0221\n", + "Epoch 2943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0221\n", + "Epoch 2944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0220\n", + "Epoch 2945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0220\n", + "Epoch 2946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0219\n", + "Epoch 2947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0218\n", + "Epoch 2948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0218\n", + "Epoch 2949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0217\n", + "Epoch 2950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0216\n", + "Epoch 2951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0216\n", + "Epoch 2952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0215\n", + "Epoch 2953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0214\n", + "Epoch 2954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0214\n", + "Epoch 2955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0213\n", + "Epoch 2956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0213\n", + "Epoch 2957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0212\n", + "Epoch 2958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0211\n", + "Epoch 2959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0211\n", + "Epoch 2960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0210\n", + "Epoch 2961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 0.0210\n", + "Epoch 2962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0209\n", + "Epoch 2963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0208\n", + "Epoch 2964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0208\n", + "Epoch 2965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0207\n", + "Epoch 2966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0207\n", + "Epoch 2967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.0206\n", + "Epoch 2968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0206\n", + "Epoch 2969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0205\n", + "Epoch 2970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0204\n", + "Epoch 2971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0204\n", + "Epoch 2972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0203\n", + "Epoch 2973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0203\n", + "Epoch 2974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0202\n", + "Epoch 2975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0202\n", + "Epoch 2976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0201\n", + "Epoch 2977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0201\n", + "Epoch 2978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0200\n", + "Epoch 2979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0199\n", + "Epoch 2980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0199\n", + "Epoch 2981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0198\n", + "Epoch 2982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0198\n", + "Epoch 2983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0197\n", + "Epoch 2984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0197\n", + "Epoch 2985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0196\n", + "Epoch 2986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0196\n", + "Epoch 2987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0195\n", + "Epoch 2988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0195\n", + "Epoch 2989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0194\n", + "Epoch 2990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0194\n", + "Epoch 2991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0193\n", + "Epoch 2992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0193\n", + "Epoch 2993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0192\n", + "Epoch 2994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0192\n", + "Epoch 2995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0191\n", + "Epoch 2996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0191\n", + "Epoch 2997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0190\n", + "Epoch 2998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0190\n", + "Epoch 2999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0189\n", + "Epoch 3000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 0.0189\n", + "Epoch 3000/3000\n", + " - loss: 0.0189\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0189\n", + "Restoring model weights from the end of the best epoch: 2942.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "# обучение AE2 patience = 1000\n", + "\n", + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt', 3000, True, patience)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NT1Mwj0dNOB3" + }, + "outputs": [], + "source": [ + "#Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lqKLvHM8NUu_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "be4d9ea3-1c0b-43df-e26b-307bde8620f6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m238/238\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg19JREFUeJzt3Xl8VOXZ//HvTCYZwjIQIIRMCGELKFTU2F9b8aFoA6WIaF0DXUQQi4+2io/iUotIERW1m/q04oZUEJcqtu6SuFSLj0tRI0oTEAKBQAiQEDazzJzfH5MzmT2TdSbJ5/165WXm5Jwz98wcYq5z3fd1WQzDMAQAAAAAAGLOGusBAAAAAAAAD4J0AAAAAADiBEE6AAAAAABxgiAdAAAAAIA4QZAOAAAAAECcIEgHAAAAACBOEKQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQAQExZLBbdfvvtsR5Gt/PEE0/IYrGopKSk2ce+8847slgseuedd9p8XF3dsGHDdNlll8V6GH5uv/12WSwW7d+/P9ZDaZF4fE8BoDUI0gGghf785z/LYrHou9/9bqvP9eqrrxKodqCqqir16NFDFotFmzdvDrnPZZddJovFEvKrR48efvsuW7ZM5557rtLS0lp90+HMM88M+7y+X1wvrbdhwwbdfvvtqqqqavW5vv76a82fP18jRoxQjx495HA4dMYZZ+hPf/qTjh8/3vrBAgC6DVusBwAAndWaNWs0bNgwffTRR9q6datGjRrV4nO9+uqr+t///V8Crw7y3HPPyWKxaPDgwVqzZo3uuOOOkPvZ7XY9+uijQdsTEhL8Hv/mN7/R4MGDdeqpp+qNN95o1dhuvfVWzZs3z/v4448/1v33369f//rXOvHEE73bx48f36rn+fnPf66ZM2fKbrc3+9jvf//7On78uJKSklo1hljbsGGDlixZossuu0z9+vVr8XleeeUVXXzxxbLb7br00kv1rW99S7W1tXr//fe1cOFCffnll3r44YfbbuAAgC6NIB0AWmD79u3asGGDXnjhBc2fP19r1qzR4sWLYz2sbu+bb75RUlKSrNbIE8VWr16ts88+W1lZWXrqqafCBuk2m00/+9nPmnze7du3a9iwYdq/f79SU1NbNHbTlClT/B736NFD999/v6ZMmaIzzzwz7HFHjx5Vr169on6ehISEoJsN0bJarUGzCbqr7du3a+bMmcrKytJbb72l9PR078+uvvpqbd26Va+88koMR4jmiPZ3CAC0J34DAUALrFmzRikpKZo+fbouuugirVmzJmifcOt2S0pKZLFY9MQTT0jyTKv+3//9X0nym85sOnr0qK6//nplZmbKbrdrzJgxuu+++2QYRtBzrl69WqeddpqSk5PVv39/zZw5U6WlpX77nHnmmfrWt76lr776SmeddZZ69uypjIwM3XPPPUHn++abb3T77bdr9OjR6tGjh9LT03XBBRfo66+/bvb4ampqdN111yk1NVV9+vTRueeeq127doV8f3fv3q25c+cqLS1Ndrtd48aN0+OPPx7y/X366af1m9/8RhkZGerZs6eqq6tDntO0c+dOvffee5o5c6ZmzpzpveHSGsOGDWvV8c1lriH+6quv9JOf/EQpKSn6r//6L0lSYWGhLrvsMu+068GDB2vu3Lk6cOCA3zlCrUkfNmyYzjnnHL3//vv6zne+ox49emjEiBH661//6ndsqGu7OdfVjh07dO6556pXr14aNGiQrrvuOr3xxhtRrXM/fPiwFixYoGHDhslut2vQoEGaMmWKNm7c6Lffhx9+qB/96Efq27evevbsqUmTJulf//qX33u4cOFCSdLw4cO9/+6au0b/nnvu0ZEjR/TYY4/5BeimUaNG6dprrw17/MGDB3XDDTfopJNOUu/eveVwODRt2jR9/vnnQfs+8MADGjdunHr27KmUlBR9+9vf1lNPPdXs9yac/fv365JLLpHD4dCAAQN07bXX6ptvvvHbp76+XkuXLtXIkSNlt9s1bNgw/frXv1ZNTY3ffuGWZASuHzevw3/961/6n//5H6WmpqpXr146//zzVVFR4XesYRi64447NGTIEPXs2VNnnXWWvvzyy6DniPY9Dfc75LPPPpPFYtEf/vCHoHNv2LBBFotFa9eubertBIAWI5MOAC2wZs0aXXDBBUpKStKsWbP0l7/8RR9//LH+3//7f80+1/z581VWVqb169frySef9PuZYRg699xz9fbbb+vyyy/XKaecojfeeEMLFy7U7t27/f6IXLZsmRYtWqRLLrlE8+bNU0VFhR544AF9//vf16effuo3nbeyslI/+tGPdMEFF+iSSy7R3/72N91000066aSTNG3aNEmSy+XSOeeco4KCAs2cOVPXXnutDh8+rPXr12vTpk0aOXJks8Y3b948rV69Wj/5yU80YcIEvfXWW5o+fXrQ+1FeXq7vfe97slgs+uUvf6nU1FS99tpruvzyy1VdXa0FCxb47b906VIlJSXphhtuUE1NTZNTsNeuXatevXrpnHPOUXJyskaOHKk1a9ZowoQJIfcPVUwrKSlJDocj4vN0hIsvvljZ2dm68847vTdF1q9fr23btmnOnDkaPHiwd6r1l19+qf/7v//zuwEUytatW3XRRRfp8ssv1+zZs/X444/rsssu02mnnaZx48ZFPDaa6+ro0aP6wQ9+oD179ujaa6/V4MGD9dRTT+ntt9+O6jVfeeWV+tvf/qZf/vKXGjt2rA4cOKD3339fmzdvVk5OjiTprbfe0rRp03Taaadp8eLFslqtWrlypX7wgx/ovffe03e+8x1dcMEFKi4u1tq1a/WHP/xBAwcOlKRmz4R46aWXNGLEiLDXT1O2bdumF198URdffLGGDx+u8vJyrVixQpMmTdJXX30lp9MpSXrkkUd0zTXX6KKLLvIGz4WFhfrwww/1k5/8JOr3JpJLLrlEw4YN01133aX/+7//0/3336/Kykq/mzTz5s3TqlWrdNFFF+n666/Xhx9+qLvuukubN2/WunXrWvQeSNKvfvUrpaSkaPHixSopKdEf//hH/fKXv9Qzzzzj3ee2227THXfcobPPPltnn322Nm7cqB/+8Ieqra1t0XtqCvwdcsIJJ+iMM87QmjVrdN111/ntu2bNGvXp00fnnXdei18rADTJAAA0yyeffGJIMtavX28YhmG43W5jyJAhxrXXXuu339tvv21IMt5++22/7du3bzckGStXrvRuu/rqq41Qv5JffPFFQ5Jxxx13+G2/6KKLDIvFYmzdutUwDMMoKSkxEhISjGXLlvnt98UXXxg2m81v+6RJkwxJxl//+lfvtpqaGmPw4MHGhRde6N32+OOPG5KM3//+90HjcrvdzRrfZ599ZkgyrrrqKr/9fvKTnxiSjMWLF3u3XX755UZ6erqxf/9+v31nzpxp9O3b1zh27JhhGI3v74gRI7zbonHSSScZP/3pT72Pf/3rXxsDBw406urq/PabPXu2ISnk19SpU0Oeu6KiIuj1tNZzzz0XdB0tXrzYkGTMmjUraP9Q78XatWsNScY///lP77aVK1cakozt27d7t2VlZQXtt2/fPsNutxvXX3+9d1uoazva6+p3v/udIcl48cUXvduOHz9unHDCCSH/vQTq27evcfXVV4f9udvtNrKzs42pU6d6r1PD8Lwvw4cPN6ZMmeLddu+99wa9B81x6NAhQ5Jx3nnnRX1MVlaWMXv2bO/jb775xnC5XH77bN++3bDb7cZvf/tb77bzzjvPGDduXMRzN/XehGNeT+eee67f9quuusqQZHz++eeGYTT+O543b57ffjfccIMhyXjrrbe828L9Owh8/eZ1OHnyZL/P67rrrjMSEhKMqqoqwzA812FSUpIxffp0v/1+/etfG5Ja9J5G+h2yYsUKQ5KxefNm77ba2lpj4MCBfs8FAO2B6e4A0Exr1qxRWlqazjrrLEmeaZ15eXl6+umn5XK52vS5Xn31VSUkJOiaa67x23799dfLMAy99tprkqQXXnhBbrdbl1xyifbv3+/9Gjx4sLKzs4OylL179/Zba52UlKTvfOc72rZtm3fb888/r4EDB+pXv/pV0LjMbGy043v11VclKWi/wKy4YRh6/vnnNWPGDBmG4fdapk6dqkOHDgVN3Z09e7aSk5NDv4EBCgsL9cUXX2jWrFnebbNmzdL+/ftDFnzr0aOH1q9fH/R19913R/V87e3KK68M2ub7XnzzzTfav3+/vve970lSVNOex44dq4kTJ3ofp6amasyYMX7XRjjRXFevv/66MjIydO6553q39ejRQ1dccUWT55ekfv366cMPP1RZWVnIn3/22WfasmWLfvKTn+jAgQPe6+fo0aPKzc3VP//5T7nd7qieqynm0oo+ffq0+Bx2u927/tnlcunAgQPq3bu3xowZ4/d59evXT7t27dLHH38c9lxNvTdNufrqq/0em//2zX+/5n//53/+x2+/66+/XpJatfb+F7/4hd8sj4kTJ8rlcmnHjh2SpPz8fNXW1upXv/qV336Bv0Ok6N9TU6jfIZdccol69Ojht5TpjTfe0P79+6OqUwEArcF0dwBoBpfLpaefflpnnXWWtm/f7t3+3e9+V7/73e9UUFCgH/7wh232fDt27JDT6QwKAswq3+YfsFu2bJFhGMrOzg55nsTERL/HQ4YMCZr2nJKSosLCQu/jr7/+WmPGjJHNFv5/FdGOb8eOHbJarRo5cqTffmPGjPF7XFFRoaqqKj388MNhq2Hv27fP7/Hw4cPDji/Q6tWr1atXL40YMUJbt26V5AkQhw0bpjVr1gRNv09ISNDkyZOjPn9HC/XaDx48qCVLlujpp58Oeq8OHTrU5DmHDh0atC0lJUWVlZVNHhvNdbVjxw6NHDkyaL9ouyPcc889mj17tjIzM3Xaaafp7LPP1qWXXqoRI0ZI8vxbkDyBVziHDh1SSkpKVM8Xibnk4fDhwy0+h9vt1p/+9Cf9+c9/1vbt2/1u9A0YMMD7/U033aT8/Hx95zvf0ahRo/TDH/5QP/nJT3TGGWd492nqvWlK4O+PkSNHymq1etfpm/+OAz+rwYMHq1+/ft5/7y0ReN2Zn4953ZnnDhxjampq0GcZ7XtqCvXvqF+/fpoxY4aeeuopLV26VJLnBm1GRoZ+8IMfNPflAUCzEKQDQDO89dZb2rNnj55++mk9/fTTQT9fs2aNN0gPt/a3rbPtkuePUovFotdeey1kxe7evXv7PQ5X1dsIUYyuI5kZzp/97Gdhg6zA1mPRZtENw9DatWt19OhRjR07Nujn+/bt05EjR4Leq3gW6rVfcskl2rBhgxYuXKhTTjlFvXv3ltvt1o9+9KOoMsituTY64rq65JJLNHHiRK1bt05vvvmm7r33Xi1fvlwvvPCCpk2b5n2N9957r0455ZSQ52irz9jhcMjpdGrTpk0tPsedd96pRYsWae7cuVq6dKn69+8vq9WqBQsW+H1eJ554ooqKivTyyy/r9ddf1/PPP68///nPuu2227RkyRJJTb83zRXud1hTdQ0iCff7ry2vnWjfU1O43yGXXnqpnnvuOW3YsEEnnXSS/vGPf+iqq66i8juAdkeQDgDNsGbNGg0aNMhbjd3XCy+8oHXr1umhhx5ScnKyN7tTVVXlt1+obFO4P3qzsrKUn5+vw4cP+2Wr//Of/3h/LslbxG348OEaPXp0i15boJEjR+rDDz9UXV1dUCa+uePLysqS2+32ZudNRUVFfuczK7+7XK42z2C/++672rVrl37729/69RuXPNm6X/ziF3rxxRc79VTWyspKFRQUaMmSJbrtttu8283scjzIysrSV199JcMw/K57c2ZDNNLT03XVVVfpqquu0r59+5STk6Nly5Zp2rRp3tkaDoejyWuoNcGm6ZxzztHDDz+sDz74QKeffnqzj//b3/6ms846S4899pjf9qqqKm8xO1OvXr2Ul5envLw81dbW6oILLtCyZct0yy23eFviRXpvmrJlyxa/rPLWrVvldru93QvMf8dbtmzx+zdUXl6uqqoq7793yZMJD/zdV1tbqz179kT1vgQyz71lyxa/mQEVFRVBszya855G8qMf/Uipqalas2aNvvvd7+rYsWP6+c9/3qLxA0BzcCsQAKJ0/PhxvfDCCzrnnHN00UUXBX398pe/1OHDh/WPf/xDkuePyoSEBP3zn//0O8+f//znoHOb/a0D/6g9++yz5XK59OCDD/pt/8Mf/iCLxeL9w/uCCy5QQkKClixZEpR5MgwjqP1WNC688ELt378/6LnNczZnfOZ/77//fr/9/vjHP/o9TkhI0IUXXqjnn38+ZHYysCVTc5hT3RcuXBj02V1xxRXKzs4O2UqvLe3fv1//+c9/dOzYsXY5v5mNDLwGAt/nWJo6dap2797t/XciedbOP/LII00e63K5gqbsDxo0SE6n09sC7LTTTtPIkSN133336ciRI0Hn8L2Gwv27kzyt+sybTZHceOON6tWrl+bNm6fy8vKgn3/99df605/+FPb4hISEoM/rueee0+7du/22Bf4bTkpK0tixY2UYhurq6qJ6b5oSePPxgQcekNT47/fss8+WFHw9/f73v5ckv+UiI0eODPrd9/DDD7d4JtHkyZOVmJioBx54wO/9CnVtR/ueNsVms2nWrFl69tln9cQTT+ikk04KmskDAO2BTDoAROkf//iHDh8+7Ffwytf3vvc9b9YlLy9Pffv21cUXX6wHHnhAFotFI0eO1Msvvxy0TljyBBaSp7Da1KlTlZCQoJkzZ2rGjBk666yzdOutt6qkpEQnn3yy3nzzTf3973/XggULvFnDkSNH6o477tAtt9yikpIS/fjHP1afPn20fft2rVu3Tr/4xS90ww03NOv1XnrppfrrX/+q//mf/9FHH32kiRMn6ujRo8rPz9dVV12l8847L+rxnXLKKZo1a5b+/Oc/69ChQ5owYYIKCgpCZk/vvvtuvf322/rud7+rK664QmPHjtXBgwe1ceNG5efn6+DBg816HZKnR/vzzz+vKVOmeDOOgc4991z96U9/0r59+zRo0CBJnp7Qq1evDrn/+eef7w3ynnzySe3YscMbfP/zn//UHXfcIUn6+c9/7s0CPvjgg1qyZInefvttnXnmmc1+HU1xOBz6/ve/r3vuuUd1dXXKyMjQm2++6Vc/Idbmz5+vBx98ULNmzdK1116r9PR0rVmzxvu5RMpuHz58WEOGDNFFF12kk08+Wb1791Z+fr4+/vhj/e53v5MkWa1WPfroo5o2bZrGjRunOXPmKCMjQ7t379bbb78th8Ohl156SVLjv7tbb71VM2fOVGJiombMmKFevXrp0ksv1bvvvtvkdOuRI0fqqaeeUl5enk488URdeuml+ta3vqXa2lpt2LBBzz33nF9f8EDnnHOOfvvb32rOnDmaMGGCvvjiC61ZsyZoHfkPf/hDDR48WGeccYbS0tK0efNmPfjgg5o+fbr69OmjqqqqJt+bpmzfvl3nnnuufvSjH+mDDz7wtkw8+eSTJUknn3yyZs+erYcfflhVVVWaNGmSPvroI61atUo//vGPvcU0JU+rtiuvvFIXXnihpkyZos8//1xvvPFGszLZvlJTU3XDDTforrvu0jnnnKOzzz5bn376qV577bWgc0b7nkbj0ksv1f3336+3335by5cvb9HYAaDZOrSWPAB0YjNmzDB69OhhHD16NOw+l112mZGYmOhtH1ZRUWFceOGFRs+ePY2UlBRj/vz5xqZNm4JasNXX1xu/+tWvjNTUVMNisfi1Yzt8+LBx3XXXGU6n00hMTDSys7ONe++9168Nken55583/uu//svo1auX0atXL+OEE04wrr76aqOoqMi7z6RJk0K2cpo9e7aRlZXlt+3YsWPGrbfeagwfPtxITEw0Bg8ebFx00UXG119/3ezxHT9+3LjmmmuMAQMGGL169TJmzJhhlJaWhmzVVF5eblx99dVGZmam93lzc3ONhx9+2LuP2T7pueeeC/t5+L4vkozHHnss7D7vvPOOIcn405/+5H0/FKYFmwLadpntx0J9hWqd1lSbMV+RWrBVVFQE7b9r1y7j/PPPN/r162f07dvXuPjii42ysrKg9zlcC7bp06cHnXPSpEnGpEmTvI/DtWCL9rratm2bMX36dCM5OdlITU01rr/+eu9n9H//939h34uamhpj4cKFxsknn2z06dPH6NWrl3HyyScbf/7zn4P2/fTTT40LLrjAGDBggGG3242srCzjkksuMQoKCvz2W7p0qZGRkWFYrVa/98P8TKNVXFxsXHHFFcawYcOMpKQko0+fPsYZZ5xhPPDAA8Y333zj3S9UC7brr7/eSE9PN5KTk40zzjjD+OCDD4Le8xUrVhjf//73va9n5MiRxsKFC41Dhw41+70JZF5PX331lXHRRRcZffr0MVJSUoxf/vKXxvHjx/32raurM5YsWeL9nZCZmWnccsstfq/RMAzD5XIZN910kzFw4ECjZ8+extSpU42tW7eGbcH28ccf+x0f6hpzuVzGkiVLvO/VmWeeaWzatKnF72m0v0PGjRtnWK1WY9euXU2+lwDQFiyGEeMqQQAAoNv74x//qOuuu067du1SRkZGrIcDeJ166qnq37+/CgoKYj0UAN0Ea9IBAECHOn78uN/jb775RitWrFB2djYBOuLKJ598os8++0yXXnpprIcCoBthTToAAOhQF1xwgYYOHapTTjlFhw4d0urVq/Wf//yn3Qv3AdHatGmT/v3vf+t3v/ud0tPTlZeXF+shAehGCNIBAECHmjp1qh599FGtWbNGLpdLY8eO1dNPP00ghLjxt7/9Tb/97W81ZswYrV27NmzBSQBoD6xJBwAAAAAgTrAmHQAAAACAOEGQDgAAAABAnOh2a9LdbrfKysrUp08fWSyWWA8HAAAAANDFGYahw4cPy+l0ymqNnCvvdkF6WVmZMjMzYz0MAAAAAEA3U1paqiFDhkTcp9sF6X369JEk3bbmXfXo2TvGowG6ts8OPy9JmvDul7K7pcG9Bit9yA+0+XiZ+gwcFNU5Xu7XV7Z+dg0dOrQ9hwoAAAC0m2+OHNGdZ5zmjUcj6XZBujnFvUfP3urRiyAdaE/f6zVbkvTJtGc0saBQSY7j+s/253SyY7KSXI6ozuHatUsFPcdo74EDkqRhw4a113ABAACAdhXNkutuF6QD6Hg5jjy9l+v5fmJBoQqr8+V0O6M6Nts6VioukiM1TetS+qlEJQTqAAAA6LII0gF0iBxHniTpvVxPoL79WFlUx5W5yzRek5WUbFNuRZEKRo9RiUokkVUHAABA10OQDqBD5TjydPT8vKj23VjtmSa/J3GDKjYf03jHZLLqAAAA6NII0gHErXDT5J3JGUFZ9WgQ0AMAALS9BMOtJLdbFhmxHkrMGLKo1mqVyxK5vVo0CNIBxLXAafJ19ip9snmVX1Y9GmbmXSJYBwAAaCuO+lqdeLxaSVEUROvqag1Dm5MdqrYlteo8BOkAOoVIWfVo5FYwTR4AAKAtJRhunXi8Wql9+qh3//5Sd47TDenIwYPS4Wp90rt/qzLqBOkAOo1wWXVn76YrxadIIafJE6wDAAC0TJLbrSSLRb3791dijx6xHk7M9e7fX4eOHFGS263jCQTpALqRwKx6nb0qquMCp8mTVQcAAGg57xr07pxB92Ux/9O6tfkE6QA6Jd+serSaKj5HsA4AAIBYI0gH0KmZwXo0QhWfG1d6RKWVVX6F5aJBQA8AAID2QJAOoNsIV3wuzTpWuf3Lm10pnkAdAAAAba31TdwAoBPJceQ1BOvjVWOV6uxVKqzOV/ZBKfOILaqv3OIi1VfWqKSkRCUlJbF+SQAAAGiBfXv36tbrFui7J4xRlqOPThs5UpdecL7ee+stSdKTjz6qC6ZMUXbqQKX3sOtQVVWHjItMOoBuKVxWPRrZ1rEUnwMAAOjESktKdO4PzpKjb18tuutunfitcaqvq9fb69/ULQuu1fuFX+j48WM664c/1Fk//KHuXPSbDhsbQTqAbitUS7doFB6g+BwAAEBndvO118hisei19/+lnr16ebePGTtWs2ZfJkn6xa+ukSRtePfdDh0bQTqAbs83qx6NporPEagDAAA0n8slJSS0//NUHjyot998Uzcv+a1fgG7q269f+w8iAoJ0AFDzq8RLoYvP+WbVo0FADwAAurutxdLll9hU/B+rRp/g1mPP1mvU6PZ7vpKvv5ZhGBo1Zkz7PUkrEKQDQDOFmiZfeCBf49WYVY+Gb9s3gnUAANBdXX6JTV9vsUiSvt5i0eWX2PTuZ/Xt9nyGYbTbudsCQToAtFCklm5JGRlNHp9bQfE5AADQvblcUvF/rD6PLSr+j6Vdp74PHzVKFotFW4uK2ucJWokgHQBaIVxWPZpK8SmSBh5U0DR5gnUAANBdJCRIo09w6+stFrlcFiUkGBqZbbTr2vSU/v115pQpemLFQ5p39dVB69IPVVXFdF06fdIBoA3kOPJ09PxlWpszytt/PZovs0f7NaVHNGNbubf/OgAAQHfx2LP1GpntmYI+MtvQY8+231R3011//JNcLpem/dcZenndOm3bukXF/9msR//3QZ0z6fuSPH3UN33+ubZ//bUkafOmTdr0+eeqPHiwXcdGJh0A2lBLKsVHKj5HVh0AAHR1o0ZL735W32HV3SUpa8QIvfnB/+lPy+/Wkptu0r69ezQgNVXjTz1Vy+9/QJL010ce0e+W3eE95vzJnj/y/vjwI8q79NJ2G5vFiPdV822surpaffv21Z3r/q0evXrHejgAurmN1c9oYkGhhqT0VMWBYxrvmKykjAyV9q7XupR+sqXYoz4XAT0AAOhIPV11Ou14tTKyhirR3iPWw4m5uppvtHvHTv072aFjCYl+P/vm8GHddvIYHTp0SA6HI+J5yKQDQAxFKj6X279cjtS0qM5D8TkAAICugSAdAGIsUku3pOTofk3nVhQxTR4AAKALIEgHgDjhKT6Xp7UNU+DNrHo0sq1jvT3ayaoDAAB0XgTpABBnzCnwZlY9GmbbN4rPAQAAdG4E6QAQh3yz6tEInCY/rvSIvixunAJPoA4AANqaIYv5DSTv++B9X1qIIB0A4pi5Xr0poYrPZVvHSsVFcqSm6aWG/QjWAQBAW6m3WGQYhlx1dUrsQXV3V12d3IahegtBOgB0e00Vn5v0YSFZdQAA0KbqLFYdsNrU88ABWW02WaytC047M8Nt6ND+/TpotanOYm3VuQjSAaALCVd8jqw6AABocxaLvk7uo95Hq3S8tDTWo4m5bwzp6179JDLpAIBAgcXnyKoDAID2UGtN0Ce9+6uH2yVLN16cbsiib6wJMloZoEsE6QDQZUWTVV9XWSNbip1gHQAAtJhhseh4AqFlW2ndZHkAQNzzZNXHK3/KeE9WvTpf2QelzCM25RYXqb6yRiUlJbEeJgAAAEQmHQC6BbOw3NocsuoAAADxjCAdALoRc626JM3auNVvrXpuRWNf9WgR0AMAALQtgnQA6GYCs+p7EjcosbSfX1Y9GutS+lF8DgAAoI0RpANAN+WbVZ9YUKgyd5k3qx6N3AqmyQMAALQ1gnQA6MbMrLrZrm1P4gZVbD7W5HHO3p717IHT5AnUAQAAWocgHQDgl1WPhpl5p/gcAABA2yJIBwBIasyqRyPa4nME6wAAAM1DkA4AaLZois+ZheWiQTAPAADgQZAOAGixSMXnzMJy0WCaPAAAgAdBOgCgVUIVnzOz6s2pFM80eQAAAIJ0AEAbCZVVd7qdUR0bapo8gToAAOiOCNIBAG0mMKteZ6+K6jiKzwEAAHgQpAMA2lxLWrpFKj5HoA4AALoLgnQAQLtoSUu3UMXnyKoDAIDuhCAdABBzoYrPVWw+pvGOyWTVAQBAt2KN9QAAADB5psmP19qcUaqxSoXV+UrZ/5Uyj9iUW1yk+soalZSUqKSkJNZDBQAAaBcxDdIPHz6sBQsWKCsrS8nJyZowYYI+/vjjiMe88847ysnJkd1u16hRo/TEE090zGABAB0ix5HnDdZrrFKdvUqfbF6l7INSbnGRZmwr9wbrAAAAXU1Mg/R58+Zp/fr1evLJJ/XFF1/ohz/8oSZPnqzdu3eH3H/79u2aPn26zjrrLH322WdasGCB5s2bpzfeeKODRw4AaG9k1QEAQHdkMQzDiMUTHz9+XH369NHf//53TZ8+3bv9tNNO07Rp03THHXcEHXPTTTfplVde0aZNm7zbZs6cqaqqKr3++utRPW91dbX69u2rO9f9Wz169W79CwEAtLuN1c9oYkGhhqT0VMUBz1r1pIwMlfau17qUfrKl2FmrDgAA4tY3hw/rtpPH6NChQ3I4HBH3jVnhuPr6erlcLvXo0cNve3Jyst5///2Qx3zwwQeaPHmy37apU6dqwYIFYZ+npqZGNTU13sfV1dUtHzQAICZ8W7pNLChUYXW+nG6n0qxjldu/3K8CfDQI6AEAQLyKWZDep08fnX766Vq6dKlOPPFEpaWlae3atfrggw80atSokMfs3btXaWlpftvS0tJUXV2t48ePKzk5OeiYu+66S0uWLGmX1wAA6DiBFeDr7FUqPJCv8ZqscaVHVFpZFdV5zCrxEsE6AACIPzFdk/7kk0/KMAxlZGTIbrfr/vvv16xZs2S1tt2wbrnlFh06dMj7VVpa2mbnBgB0vFBr1ctK1yutqFyZR2xNflF8DgAAxLOY9kkfOXKk3n33XR09elTV1dVKT09XXl6eRowYEXL/wYMHq7y83G9beXm5HA5HyCy6JNntdtnt9jYfOwAgdsJl1Z1uZ5PHpkgaeFBB0+TJqgMAgHgQF33Se/XqpfT0dFVWVuqNN97QeeedF3K/008/XQUFBX7b1q9fr9NPP70jhgkAiDM5jjwdPX+ZN6teZ6+K6quwOl/ZB6VrSo+QVQcAAHElppn0N954Q4ZhaMyYMdq6dasWLlyoE044QXPmzJHkmaq+e/du/fWvf5UkXXnllXrwwQd14403au7cuXrrrbf07LPP6pVXXonlywAAxJhvYbloNFV8jqw6AACIlZgG6YcOHdItt9yiXbt2qX///rrwwgu1bNkyJSYmSpL27NmjnTt3evcfPny4XnnlFV133XX605/+pCFDhujRRx/V1KlTY/USAABxwpwCH41IxefMwnIE6gAAIBZi1ic9VuiTDgCQPL3XJU+wbndLzt5ODbSO1Zb+kiM1TS+N8HQTIVgHAACt1Zw+6XGxJh0AgI6W48jzVoo317Oba9Uzj9g06cNC1qoDAIAOF9Pp7gAAxJqn+Fye1lY/47dWPds6Viou8mTVG/Ylqw4AANobmXQAACSy6gAAIC6QSQcAoEE0WfV1lTWypdjJqgMAgHZBJh0AgABmVj1/yvigrHpucRFZdQAA0G7IpAMAEILZ0m1tTtNZ9WiQeQcAANEgSAcAIAJPVt3z/ayNW7191ZOSbcqtKIrqHBSfAwAA0SJIBwCgCYFZ9T2JG5RY2k8pURw70DpWScme4nMFo8eoRCUE6gAAICyCdAAAouSbVZ9YUKghKT2bPKbwAMXnAABA9AjSAQBoBjOrbgbr0Qg1TZ6sOgAACIUgHQCAFjCD9WhEU3yOYB0AAEi0YAMAoN1F29KNtm4AAIAgHQCADpDjyFOOI09rc0apxirtSdygstL1yj4o5RYXaca2cvqvAwAAprsDANCRAovPlbnLQq5Vl2jXBgBAd0SQDgBAB/MtPufb0s1vrXpKPwrLAQDQDRGkAwAQI6Gy6k63U87kDLLqAAB0U6xJBwAghsy16u/ljleNVaqzV+mTzatYqw4AQDdFJh0AgDgQmFU327WFyqpHg8w7AACdE0E6AABxInCtuplVH++Y7F2rHg1zPbtEsA4AQGdDkA4AQJyJlFWPRm4FxecAAOisCNIBAIhD4bLqzt7OJo9NkSg+BwBAJ0WQDgBAHAvMqtfZq6I6LnCaPFl1AAA6B4J0AADinG9WPVpNFZ8jWAcAID4RpAMA0EmYwXo0QhWfG1d6RKWVVWTVAQCIYwTpAAB0QeGKz6VZxyq3fzlZdQAA4pQ11gMAAADtI8eR1xCsj1eNVaqzV6mwOl/ZB6VrSo9oxrZy1VfWqKSkJNZDBQAADcikAwDQxZFVBwCg8yCTDgBAN9BUVn3Sh4Vk1QEAiANk0gEA6EbCZdWzrWO97dpeatiXrDoAAB2PIB0AgG7Gt6WbWQG+8EC+xmuykpJtmvRhod8U+GgQ0AMA0DYI0gEA6KZyHHk6en6e1lY/EzarHg1augEA0HYI0gEA6ObMKfChsurRyK1gmjwAAG2FIB0AAITNqkcj2zo2aJo8gToAAC1DkA4AALx8C8vN2rg1qmMKD1B8DgCAtkKQDgAA/JiF5dbmPBPV/k0VnyNQBwAgegTpAAAgJDNYb0pTxefWVdbIlmInWAcAIArWWA8AAAB0fp5p8uNVY5Unq16dr+yDUuYRm3KLi1RfWaOSkpJYDxMAgLhHJh0AALSJaFq6kVUHACAyMukAAKBNmVn1/CnjyaoDANBMZNIBAECb8y0+R1YdAIDokUkHAADtJtqsOpl1AAA8CNIBAEC7ynHkKceRp7U5o1RjlfYkblBZ6XplH5Ryi4s0Y1s5U+ABAGjAdHcAANAhPFl1z/cTCwpV5i7z9lXPrShSwegx2lpZ1OR5bCl2SWKaPACgSyJIBwAAHcZcq/5eridQ35O4QYml/ZRtHatxpUeiOseXxZ6AvkQlkgjWAQBdC0E6AADocKGy6k63M6pj/YrPpfRTiUoI1AEAXQZBOgAAiInArHqdvSqq4woP5AdNkyerDgDoKgjSAQBATPlm1aMROE2erDoAoCshSAcAADFnZtWj0VTxObLqAIDOjCAdAAB0KpGKz5FVBwB0dgTpAACgUwpXfM6ZnEFWHQDQaVljPQAAAICWynHkNQTr41VjlersVfpk8yplH5Ryi4s0Y1u56itrVFJSEuuhAgAQFYJ0AADQ6ZmB+tqcUaqxSoXV+UrZ/5Uyj9iUW1zkDdQJ1gEA8Y4gHQAAdAmRsurXlB4hqw4A6BRYkw4AALqUwLXqhdX5crqdSrOOVW7/ctaqAwDiGpl0AADQ5YTKqhdW55NVBwDEPTLpAACgy2oqq+5ITdNLDfuSVQcAxAMy6QAAoEuLlFXPPGLTpA8LyaoDAOIGmXQAANAt5DjydPT8PK2tfsYvq55tHSsVF5FVBwDEBTLpAACgWyGrDgCIZ2TSAQBAt0NWHQAQrwjSAQBAt2UWlptYUOjJqh/I13hNVlKyJ6vu264tGgT0AIDWIkgHAADdWjRZ9WisS+mnEpUQqAMAWoUgHQAAQP7t2mZt3OqXVY9GbgXT5AEArUeQDgAA0CDHkSdJWpvjn1WPRrZ1bNA0eQJ1AEBzEaQDAAAECMyqR6PwQPA0+XWVNbKl2AnWAQBRI0gHAAAIwTerHq3AafK5FUVk1QEAzUKQDgAAEIEZrEcjcJo8WXUAQHNZYz0AAACArsIzTX688qeM97R0q85X9kEp84hNucVFqq+sUUlJiUpKSmI9VABAnCJIBwAAaEM5jjzlOPK0NmeUaqxSYXW+ykrXK/uglFtcpBnbyr3BOgAAgZjuDgAA0A58i89NLChUmbss5Fp1iXZtAIBGBOkAAADtxFzP/l6uJ1Dfk7hBiaX9/Neqp/SjsBwAwIsgHQAAoJ2RVQcARIsgHQAAoAOQVQcARIMgHQAAoAOFyqo73U45kzPIqgMAqO4OAADQ0cwK8O/ljleNVaqzV+mTzauoAA8AiG2Q7nK5tGjRIg0fPlzJyckaOXKkli5dKsMwwh7zzjvvyGKxBH3t3bu3A0cOAADQemag7tuuLWX/V/RVB4BuLKbT3ZcvX66//OUvWrVqlcaNG6dPPvlEc+bMUd++fXXNNddEPLaoqEgOh8P7eNCgQe09XAAAgDYXuFbdzKqPd0zWuNIjKq2sYq06AHQjMQ3SN2zYoPPOO0/Tp0+X5Fl3tXbtWn300UdNHjto0CD169evnUcIAADQMQLXqhdW58vpdirNOla5/ctZqw4A3URMp7tPmDBBBQUFKi4uliR9/vnnev/99zVt2rQmjz3llFOUnp6uKVOm6F//+lfY/WpqalRdXe33BQAAEI9CrVUvrM5X9kHpmtIjrFUHgG4gppn0m2++WdXV1TrhhBOUkJAgl8ulZcuW6ac//WnYY9LT0/XQQw/p29/+tmpqavToo4/qzDPP1IcffqicnJyg/e+66y4tWbKkPV8GAABAmyKrDgDdl8WIVKWtnT399NNauHCh7r33Xo0bN06fffaZFixYoN///veaPXt21OeZNGmShg4dqieffDLoZzU1NaqpqfE+rq6uVmZmpu5c92/16NW7TV4HAABAe9lY/YwmFhRqSEpPVRw4pvGOyUrKyNCXx3erYPQY2VLsBOoAEOe+OXxYt508RocOHfKrrRZKTDPpCxcu1M0336yZM2dKkk466STt2LFDd911V7OC9O985zt6//33Q/7MbrfLbre3yXgBAAA6Wo4jT0fPz9PahmDdzKpnW8dKxUVypKbppYZ9CdYBoPOL6Zr0Y8eOyWr1H0JCQoLcbnezzvPZZ58pPT29LYcGAAAQV8KtVc88YtOkDwtZqw4AXURMM+kzZszQsmXLNHToUI0bN06ffvqpfv/732vu3LnefW655Rbt3r1bf/3rXyVJf/zjHzV8+HCNGzdO33zzjR599FG99dZbevPNN2P1MgAAADoEWXUA6PpiGqQ/8MADWrRoka666irt27dPTqdT8+fP12233ebdZ8+ePdq5c6f3cW1tra6//nrt3r1bPXv21Pjx45Wfn6+zzjorFi8BAACgw5mF5cy+6oUH8jVek5WU7Mmqm4XlCNQBoPOJaeG4WKiurlbfvn0pHAcAALoEs7Cc3S05ezs10DpWW/pLjtQ0rUvpJ1tKdLV5COgBoP10msJxAAAAaB3fdm2zNm71y6rnVnimwEeDafIAEB8I0gEAADq5HEeeJGltToi16gfLmzw+KSODafIAECcI0gEAALqIwKz6Hm1o8piKA8eCis+tq6yh/zoAxAhBOgAAQBfim1WPVqhp8mTVASA2CNIBAAC6IDNYj0bIafJk1QEgJqyxHgAAAABiyzNNfrzyp4z3tHSrzlf2QSnziE25xUWqr6xRSUlJrIcJAN0CmXQAAABELj5HVh0AOgxBOgAAALx8i89NLChUmbss5Fp1iXZtANAeCNIBAADgx8yqv5frCdT3JG5QYmk//6x6Sj8KywFAOyBIBwAAQEhk1QGg4xGkAwAAICyy6gDQsQjSAQAA0KRQWXWn2ylncgZZdQBoQ7RgAwAAQFRyHHnedm01VqnOXqVPNq9S9kEpt7hIM7aV064NAFqJIB0AAADNYgbqa3NGqcYqFVbnK2X/V0F91QnWAaD5CNIBAADQbJGy6teUHiGrDgAtxJp0AAAAtFjgWvXC6nw53U6lWccqt385a9UBoJnIpAMAAKBVQmXVC6vzyaoDQAuQSQcAAECbIKsOAK1HJh0AAABthqw6ALQOmXQAAIBuxu2SrAnt+xxNZdUdqWl6qWFfsuoA0IhMOgAAQDexrzRRy+dl6YZpo7V8Xpb2lSa26/NFyqpnHrFp0oeFZNUBIABBOgAAQDexcolTFbuSJEkVu5K0comzQ543x5Gno+cv8+urXla6XtkHpdziIs3YVk5fdQBoQJAOAADQDbhdUvlOu9xui+ex2+J57Oq4MZBVB4CmsSYdAACgG7AmSGlDa1SxK0lut0VWq6HUIbXtvjY9kCernqe11c/4rVXPto6ViovkSE3Tusoa2VLsUZ2P9ewAuhqCdAAAgG5izuIyrVziVPlOu1KH1GrO4rKYjcW3sNysjVtVeCBf4zVZSck25VZ4gvVoUHwOQFdjMQzDiPUgOlJ1dbX69u2rO9f9Wz169Y71cAAAADpcR1R3b46NDVl1u1ty9nZqoHWskjIyojr2y+O7VTB6jGwpdgJ1AHHrm8OHddvJY3To0CE5HI6I+5JJBwAA6GbiKUCXQmfVne7oitqFmiZPsA6gM6NwHAAAAKLWXoXmzHZtZgX4OntVVF++xedyi4soPgeg0yOTDgAAgCbtK030rmdPG1qjOYvLNCizrs2fxzerHo2mis+RVQfQ2RCkAwAAoEmheqzf9OiOdnmuHEde1PtGKj5XMHqMSlRCoA6gUyFIBwAAQERmj3XvY58e67Fe324G9Gtzmm7pRrAOoDNgTToAAAAiMnusW62epkBWq+F5HEcF6DzT5Mcrf8r4iGvVWa8OIN4RpAMAAKBJcxaXKXVIrSTFvMd6OIHF5/YkblBZ6XplH5Ryi4s0Y1s5heUAxD2muwMAAKBJgzLrdNOjO+JiinsovuPyLT43saBQZe6ykGvVJTEFHkDcIUgHAABA1OItQA9VdX6gs867Vv29XE+gvidxgxJL+/mvVU/pR2E5AHGHIB0AAABB4jVjHsi36vy+XUm6d36WXPVWb8CekxmcVXe6nXImZ5BVBxCXWJMOAADQjbld/o/3lSZq+bws3TBttJbPy9K+0sQ2O3dbM6vOu90WSZLhtshV7/nz1mwTJzWuVX8vd7xqrFKdvUqfbF7FWnUAcYkgHQAAoBsKF4yH6oceSahAvC0D/UgCq877jcunTZzJDNTNwnKF1flK2f8VFeABxBWCdAAAgG4oVDAemJk2A929O4KDbN9A/O7L/QPxaAL9tsqy+1adT7C5JTUG7Ak2t/aX+Y+drDqAeEeQDgAA0M2EC8al4EBXMrRqaXCQvXKJU/tKG9aCl9p19+XDtPnjnk0G+m2dZTerzt/3WrEWrtihBFvj2N1uS9iZAL5Z9eOyerPqaUXlZNUBxBRBOgAAQDcTOE3cajWUNrRGkhrWdFt89g6eNm4G4obhv99jtzm95w4X6Dd3On04gZl4a4I00FnnXZMuedaoB47d15BDP9P6/7lR/73iGd3y7O+1/UgPFVbnK/ugdE3pEbLqAGKCIB0AAKALCReQBm73nSaeOqRWsxeVhQ2w04bWeCu9m1XfB2XWhHgOq+prpdmLyhQq0K+vjX46fbjXEikTH+7mQ7gq9b43DPYeytCNr9zgXateVrqerDqAmCBIBwAAiFPNWbcdLngNt92cJn7jI9slSfdcMVzL52Xp3PkVGpBe5z3vgPQ6zVlcFnSe866sUGAwn2Bzy5YkDc6qU9rQGlks/sGyLSlylr2p1yI1nYkPvPkwZ3FZyPcruDK8VYd2perdM0/2rlUnqw4gFiyGYQSXw+zCqqur1bdvX9257t/q0at3rIcDAAAQZF9polYucap8p93b73tQZl3EY5bPy1LFriS53RZZrYZSh9Tqpkd3hN1uZsSXzR6mA3sS5cl8GxqQXqdbV5V4bxCYWejA8wzMqNV5V1bosduccrusSrC5NXdJmU78f8civoa9OxJ1zxXDg8Z/32vFYZ/Ld8w3TBsd8VhTNH3ewz3PxupnJHn6qtvdkrO3UwOtY7Wlv+RITdNLI9Ik0VcdQPS+OXxYt508RocOHZLD4Yi4r62DxgQAAIAohcoW3/TojrD7m1lh72O3//TywO3L52V5g+cDe5J8zmTRgT1JQQFuqPPvK7XrHytSdePDO9Q/rU4239OoMVPvey63qzHLXr4zSeaUeLMK+6DMurCvxTxPgs0tV71F5k0FyaJ752cF3choKkCXPFl380aCb9Y9x5EnSXov1xOo19mrVHggX+M1WUnJNk36sFAFo8eoRCUE6gDaHEE6AABAHGkqSA3FXIsdmBU2p5f7brdYDb8bAE0xM+IenqDY/G80NxCsCf5Z9QHptXLVS75r1t0ui/c84V6LNcHz3vgWhjPPEc04Qgl1I8FXjiNPR8/P09rqZzSxoFCF1flyup3Kto6Vios8WfWGfQnWAbQV1qQDAADEETNIDVzP3VRmONxabN/tAzNq5aq3+hVu8zC8/x2QXuv3XL5Z/Ub+hd+aWjvve44DexJVVeFfKM4w/M8T7rUEvjemaMcRTlPvbWBfdXOteuYRT1adteoA2hKZdAAAgDiyrzRR9XUWb3uzlLS6sMXPfIXLCgduD1yHnZJWJ1ui0TD93b/QWmBW3wzOLRZDhtG4Nj1SkBvuHP48a+HN84SbKr+/zP+9MTP6vtn21gqVVXe7osuqr6uskS3FTlYdQKsQpAMAAMSRlUucqiz3ZJqtVkO2RKPJonG+Ik2Jl0Kvwx6UWaf6WgWtKw819dw3qLdYDe0r9axxD1fcLvAcjVPmFfB96DH7TpVPsLnldjUem2Az5Kq3aGBG+Cru0QpV6E5S0LaczDy9l+s5ZtbGrX5r1XMrilirDqDVqO4OAADQhGgqhbfV80Rbvbwl5w4sBhcYBIeqJB8ueL3nF1lyu8yVk41V4UPxPUckgzJrNPd2/+f3rz4f+ph9pY1jG+isC/k6I70X+0oTde/8LO96d4vV0KCG6fahqr+bNjZk1UNVgF+X0o+sOgCv5lR3J0gHAAAIoyWt0ForXFuwpoS7kdDUa4j2+XzPf/flWdpXGhxwN9UK7e7Ls1SxO0mGOzCT7j9t3Xz+cDctGhmyWCXDbZHFYsiaYMhVb1Xa0BqdO79C/1iRGjEzPntRmQZn1emuuVmq2BX5BkK412i2a5u1casqDhzTeMdkJWVk6Mvju1UweoxsKZ7zEqwD3VtzgnQKxwEAAIQRqhVaewtXNC2cfaWJWj4vSzdMG63l87K0r9S/KFuk12CuF/ctJBeuAJtZXd3tUsgAXfJk183n31eaqLsv9x/X3NvLZLWGyg81rxCd73FmwG8YFm8mvGJXkh5fHPy6fd+L8p1JuueK4Vp49qiQAXra0JqgInVmqzhfOY485TjytDZnlGqs0p7EDSorXa/sg1JucZFmbCunsByAZmFNOgAAQAgtaYXWFppqCxYoVBC+cMUOb1Ad6TVEanfmK7CFmqdXuW+ux5MJ37/b8/xzFpf5TYcv35mkR36ToVseLwnZQs13bXqCza19uxI1OMszbX1Aem3E6e6huN0WyW3xexw81d7zc0/P9eAxmDdHPNPgG28ihGv15qkA7/l+YkGhytxlIdeqS2TVAURGJh0AACAEM4A1M7/RtkJry+dvSrhMuJm93l+W2ORriCZz//jt/i3UGgNbk//z3zvfd7265+cH9iTpzjnDlGBzh3gljedz1Vt0zxXDtXxeljZ/3DPg50aI/4b63vM4sI1dqPZtjee2NLwHNVq4YocGZdZpoLPO76aC0USm38yqm+3awmXVt31dEvoEACCCdAAAgLCaO/W8owXeSPANVM2sejSvob7OE6CW77Trkd9k+E1Z90xVt/v0VLcoOKvtHzz7Z8sbHdwbGOCHn/pevtOuR27N0MG9iUE/838celwWi2RN8JzfYvVUo6+vs6j/YHM9vv+YzUD+lsd3eNfst/RGjRmor80Zpe3Hyrx91eu/7qtX/3u8Hppyuu46q68+/efeyCcC0C1ROA4AAKAJHVXdvSXPta80UY/f7gy7TtwsdBbuvMvnZal8Z5J8s9VpQ2u1cMUO3Ts/S/tKk3z6knt+7hG4Lfrp6K0T+Pz+xecCpQ6p0YEy/+n8sxeVadXSxrZuZrG5UIUBW1s80KwAPySlp674yx0qr8qQy7DKanXL4Tyun/y1kOnvQDfQnMJxrEkHAABoQkcE6E0Fg+YU68DWYSuXOL0tyOpqLaralxhyfXmo1/Dlhz1DrtU2p8yHFioYD5dZj9QP3VCflDodrmzeevPQ2fTA5258/aHW5A8a4r/uP9KNkebWCAhkrlV3uywqq8z0GYtVVbt6qXZ/DWvVAfhhujsAAEALRF+BPLpjw1Vh31eaqGWzh+mGaaN1w7TRWjZ7mHc6emC18oN7k2RpmJrd1PT8faWJemxRRoifBK7zbgnP1PPUITVyDKhTuMDeE6AHPndLBa4t97z+Aem18n09/QcH37iIJvg2g/mmhNonx5Gnb6dcor5DKmS1eHawWlwaMeCgpnxNBXgA/sikAwAANENrpj+HOzZcFfa7L/dUFvdUN/c4sCfRW8HdPwveULzNZVHa0Jome6s/frtTTWfFm8qQR+a5gRBp33BZ8cDMe6Tp9IHT3SPta9HBvUlaNnuYrrhjd6s/t+bu899Ljugvi6VDu1KV1q9MV0y+Tyn7JWdyBhXgAXiRSQcAAGiG1vROD3ds6AJw0v7dSTqwJzDQbaww7n9Mw5FG073Gw/c692TRQ/cyl8IXjYu0v8L8PFLWvKkp7U3bV5qkx293hnj/Gm90RCuazzyafQZl1mnx45W677Vi5T7yhPr3L1OdvUqfbF6l7IPSNaVHyKoDIEgHAACIVriWZ9FOg450rG8Vdt+WZh7+rcUSbG7deM5ole+0e6e3B1YpD5yebX6/rzRR987PCnFe83kt6jcosAJ6qH0bK6eHC6ItFkMpabXqlxoqYx0p8A5upxbu+QOnuZv/NQyL50aEJXTLt7b63KLdx5c1wb8CfI1VKqzOV1npeqUVlSu3uMgbqBOsA90P090BAACiZGa8K3YlhSzO1ppjzQJld1+epf27G/dxDKhX9cEEuV0W73l825iZ3yfYDLnqLUodUqtzrqhoqNpub1iTLR3Yk6S0oTWqr7OosjzUWvDGGwKJSZ612023P5MMd6icj+d8hiFVlicp+rXm5jiiyaR7tlkshgzD0vDfEPsaoabAeyrYt8XnFu0+oeQ48iRJ7+VKEwsKVWevUuGBfI3XZI0rPaLSyiqtS+mnEpUw/R3oRsikAwAANEO0vdNDZVGjOXbu7f77JNiMhkBTkoyGYD143bjbZVH/wZ7jHls0pKGtmmdqt7mmfV+pZ/q8f89zBZ2vfKddB/c2tZ68tdPVmwrcI2XxPQak12pQpuc1mz3RQ4/F4r1Z4TmuTrMXhS+qF5glj+ZzC7VPU0sOTE1l1WdsKyerDnQj9EkHAABogXAtuaIpIBZNOy8ziAvdCi3yFHP/vuah+GfOE2ye4N8wLLJYDVkshtyuluZyoikuF6rIW1PF4fzPmWBz64Jf7tMLDw6Sqz7SWD2v795Xt8rtkvbuTNSTy0J/Pr6fXeAMhDmLyzTQWef3ufl+jr7t3PaXhb8Gmro+fPuqVxw4pvGOyUrKyNCXx3erYPQY2VLsZNWBTqg5fdIJ0gEAANqI2yXdOz8raNpzU5XWI1k+z/98KWl1DcXQAoULchsD3GgC+ASbu2EKfej+46lDalT7jUWH9jenv3mkADx6qUNqVLHLrkGZNZp7e5nunZ/lM9bIz+EbdAf2Ujc/H9/32vd9C9yvqWDeLCIX6hoIXM4Q7vowg3W7W3L2dmqgday29JccqWl6aUSaJCrAA51Jc4J0prsDAAC00r7SRC2fl6Ubpo1ucWG5cOYsLtPAjMZp1FfcsVtpQ2sUuuibJ5Pu4fnvgPQ6DUj3ZGr7D65Tgi2wkJr/tHJPVjr0GvDeKXWq2GXXof1NTYUPPrZ1PMXyLl9SptQhNdpXatfjtzsDxho5C++Z9p/kt6/v5xNY/M13bXzg5+hbyd13OYFZ1T3UNbB3h+ca2Vca3fVhToGvscqzVr06X9kHpcwjNk36sJAK8EAXRuE4AACAVvIN2kJlYKMpUGbynUJtZmz3lfpPjZ6zuEz3/CLLW0zOV+qQ2ob9azV7UZkGZ3kC9L07EvW7/84KMTU8VF/04EJrFquhI5WR/nRsTra8uZl1i1z1lobMuWf8+0p9C9JF04s99CwD3wJywbMI/DPu5nT2UP3ppcagO9Sxq5YGXiOebP2A9Lqw10eOI09Hz8/T2oasemF1vpxup7KtY6XiIjlS07SusoYp8EAXQ5AOAADQCpGCtkiF5QLPEWodsydA9++9fdOjOzTQWRdyzbg1wa0bH97R8H3jua0J0qOLMsKs3W56Xbg1IZo16u2bWbcmuAPGb/Fu99ysiDTdP9zzWVRfZ9Hmj3vq7w+lhr2BYbEaOnd+RcPz+Vdy979REHzTIHWI52bJPVcMDzpvtDxZdc/3szZu9VaAT0q2KbeiSAWjx1ABHuhCCNIBAABaIVz7rYUrdjSZQfdd25xgc3unQVfsStLDt2Y0VFj38J0abT6np4J7Y4Dt6O/SDdNGK21ojc6dX6F/rEhV+U7PGm7fczWKVBHd5+dNFqJrruavUQ93k2Cgs87TDz1CIB78nIYsFk8v9cryRD2+2CnDHX48bpdF/1iRqgGDy/w+L7kt3qUEnqn0wbMSzOvAP7Bv3OfAnqSoCgma7drW5pBVB7o61qQDAAC0Uqj2W9FMcfedJu+qt3oDRbfb0hBU+68XT7C5ZU3wBPf1dY3TsvsPrlW/1HpVVXjyL+U7k/T44sZzN06zDhS6nVvgz90RAtjmMWRNcHsD22iPicQToDctwWY0/NctTw/3xvfaVW+N+BoNw3OD5PHbG99Tw23RoMwa3bqqRLeuKtE9LxdHfH7fa8R8TVarobShNc1aDmGuVc+fMj5orXpucRFr1YEugEw6AABAKw3KrNNNj+6IKiNqCp4m36ixCrt/AO2qt8jt8gT3leWeYmVWqyFboqF9fplyS8Paao/wFd2jyWhHs+47Wha5XRbvzYTonj+aXu3hp7tbrIasVsN7A8RwW5Rgc8twW3ymqzf+12IxJIshw231bjNnR/h+Xm63xVMEruEztyV5Ksh7isgFrzc3r5G9OxK1aqknGx/tcohAZNWBro1MOgAAQBsxC4tFu2/a0BpZrZ5A02IxvJXXB2XWNrT28s+kD0iv1T2/yAqqHh42m2xpzNhaE9wKzkpH20+9JQF6+Ay47w2EaHmq1ocaf+Tq7gOdtX6ZcjNzblbMDzzemuAJ0Aek13oz/mYw7ft5+WbBzc/cU3nfc960oZ5K/IEGZ3mC9fteK9ZNj+7w65HeXNFm1cmsA50LfdIBAADagO/6ct9K7M09ZqCzzjul/ZHfZHjbhpn9uCvLE/0ywGam2L/omX/222J166Jr9umtZ/qH6bHeHtqiN3rTRe2C9w0+xlzvbwT0Jg/sWW5pyLgH1haQ5P1MfD+vwHX/c2/3fObNmVHRVsy+6kNSeiqxpp9fX/V1Kf3IqgMx1pw+6QTpAAAAbWD5vKyg4nE3PbrDb59wwVvgdt/Hvpn5G6aNDjo2uG2YFCqgTbC5ldy7XkeqIgfp/udri0A7lMCA2ve/auI5wwXu4YN03/Mm2Nyau6RMJ/6/Y35B96DMmpAzEsztvjdezM/H0/c8ybucIMHm1sIVrcuOt8bG6mckSRMLCmV3S+Mdk5WUkaEvj+9WwegxsqVEt35fEgE90MaaE6SzJh0AAKCVAteXB1ZibyrLHtgXPVRmXQquIj8wozbMVPfgINdVb20yQDf3a1rb9ERPsBkBNxiiOWe4QnehzhG8zXB7KrWf+P/8b6BIntkKB/cm+qzhN7wt8Mp3JumR32To1lUlYfqle947s01eLJhr1d/L9QTqexI3KLG0n3eterTMlm4SwToQCwTpAAAArRSuDZsZXPtWcfftdx7Id799u5J07/wsueqt3oDd7J3uW3TM8ziw/VdbaaqtWaBQAXnofQek1+rcK/dp5eIhLRxbOJGLyfneQPHtQ7+v1NNWzWI1ZLhCB/y+7dKsCQqZffe9ORMrvn3VJxYUqsxdJqfbGdWxA32Lz6X0o/86EAMxLRzncrm0aNEiDR8+XMnJyRo5cqSWLl2qpmbgv/POO8rJyZHdbteoUaP0xBNPdMyAAQAAwgjVhk1qzLj6Fi4r32lXfa3/8YH7GQ0FzqTGwN6sEO5bdGzO4rIoW5qFKrzW1qK9UeAJeFsfoId6PY2ZeWuCb9s1w3uMub6/fKfdr/K9q94ath97KHNvL/MW+5M8leSb21KtveQ48ryF5WqsUp29Kqovis8BsRfTTPry5cv1l7/8RatWrdK4ceP0ySefaM6cOerbt6+uueaakMds375d06dP15VXXqk1a9aooKBA8+bNU3p6uqZOndrBrwAAAMAjXBu2wCy7WejtxnNG+019D9zPV+D0eV8DnXW65fESbf6kpx5blCG/QNniVp8Ulw4fTFTzst+dReC4/V+LxSLd+Mh2PXZbRkNrNI8DezyzFPoPrm3oRx8o1Bp5/5ZqkuczX7hihx6/3al9pXYNCmipFuuMuuSfVY9GqGnyZNWBjhV14biysjI5ndFNk4nWOeeco7S0ND322GPebRdeeKGSk5O1evXqkMfcdNNNeuWVV7Rp0ybvtpkzZ6qqqkqvv/56k89J4TgAANDRfNeaJ9jccrssMozgAnNN7TdncZk3IByQXitXvVRV0Vj93VVv9iBvDCor99nkdrW0jVq8aPmNhHAF4STJmuCWxRLtOnzPe3zFHbu99QQCC8+Z1d1bUuk/XkRbfI5gHWie5hSOi3o+z7hx4/TUU0+1enC+JkyYoIKCAhUXF0uSPv/8c73//vuaNm1a2GM++OADTZ482W/b1KlT9cEHH4Tcv6amRtXV1X5fAAAAHcnMst/zcrFc9VbvFGvfDLnkyYqb09k9VcIbp8+fO79C987P8gacB/YkegP0xse+GXNzDbVVLQtwA/M4kfI60eR8WjPVPvT4PUF25PPuK7XLYg3VI15yu6zqO7DeO/29kRHwX4+Dez3Bt8m3hsD+3Unen4WqQdBZBE6T35O4QWWl65V9UMotLtKMbeXeKfAA2kfU092XLVum+fPna926dVqxYoX69+/f6ie/+eabVV1drRNOOEEJCQlyuVxatmyZfvrTn4Y9Zu/evUpLS/PblpaWpurqah0/flzJycl+P7vrrru0ZMmSVo8VAACgtcIVmNtfFjrz6jt9fvm8rICMb1MF2ppqT9aU6ArANf2z5uwTTuhxR7t+3HCHf+7G6e5NF70zDP+bKqEq+tfXRq7031mEKz7nTM5QbkURFeCBdhR1Jv2qq65SYWGhDhw4oLFjx+qll15q9ZM/++yzWrNmjZ566ilt3LhRq1at0n333adVq1a1+tymW265RYcOHfJ+lZaWttm5AQAAorF3R6KWz8vSDdNGq77OopQ0z9Rn3wrtgZlXMxC0Jigo8AstMFMcrlWZEfB9WxSTa++idNEE+JHGEG66v+8x4d4vf/0H13qru6cNrZHV6jne2lA0zpYUentnCtBNoYrPfbJ5FVl1oJ01q3Dc8OHD9dZbb+nBBx/UBRdcoBNPPFE2m/8pNm7cGPX5Fi5cqJtvvlkzZ86UJJ100knasWOH7rrrLs2ePTvkMYMHD1Z5ebnftvLycjkcjqAsuiTZ7XbZ7U39Tw0AAKDt7d2RqFVLnQ0BtidoqyxPVOqQWt33WnHIfttm5vWGaaO907AP7ElSgs3dxNrpSIFsqEA08HFrCsjFw3p3iyxWt0/WPNRMguBjQgu3vyGLz+ZQLfEibe+sArPqhdX5ZNWBdtTs6u47duzQCy+8oJSUFJ133nlBQXpzHDt2TFar//9sEhIS5Ha7wxwhnX766Xr11Vf9tq1fv16nn356i8cBAADQlnwLhwUGyGYQbgqu6t64v6ciuec4lytwunpLp677n6OxuFzgDYBwgX38MtxWpQ6pUcUuu6LNjDent3tgr/RwFf0Dt5uzIjqzHEeeJOm9XE+gbmbVxzsma1zpEZVWVlEBHmgjzYqwH3nkEV1//fWaPHmyvvzyS6WmprbqyWfMmKFly5Zp6NChGjdunD799FP9/ve/19y5c7373HLLLdq9e7f++te/SpKuvPJKPfjgg7rxxhs1d+5cvfXWW3r22Wf1yiuvtGosAAAAbWXlEqf2lZprnf0DPovF0KDMWr+gzjfzGja4NPzPMyC9TvV10qH9ZiAfGGxGkz33vxEQfr94Eyqw9mwzlw0E39BQiGMat3lmKjRVBd9Q2tDAInPh15qHqzXQmYXLqqdZxyq3fzlZdaANRN2C7Uc/+pE++ugj/fGPf9Sll17aJk9++PBhLVq0SOvWrdO+ffvkdDo1a9Ys3XbbbUpK8vyCveyyy1RSUqJ33nnHe9w777yj6667Tl999ZWGDBmiRYsW6bLLLovqOWnBBgAA2pPbJd0wbXSIn3iCxkjBWu1x6ebzQh3rfw4z0K+v8w2ymztdvTP3R29LhqwJhtwuq8+SgvDvzYD0Wh3YkxRV0L18XlZQkUCz3V5XsLH6GU0sKNSQlJ6qOHDM266ttHe91qX0ky3FTqAONGhOC7aog/QpU6Zo5cqVGjJkSJsMMlYI0gEAQHvzDc58g/PZi8o0OCtyJnXh2aN8MrrdMZDu2Nfs24/eYvEE0nNvL9Nji50N0+Y947FaDVmshgy3JaqgO9zNGrMWQVcR2Ffd2dupgdax2tJfcqSm6aURnq5MBOvo7tqlT/r69es7fYAOAADQEeYsLlPqEM+06LShtbrxke266dEdTQbokjR3SZkSbP45lEGZNRqQXuvtCe75b6g+5oGV2xW8nyV87Z/4YJGa6H0eWZjX7fPzAemewn2BfesNw6J9pXbV10k3PbJDNz6y3Tu9fWBGrVz11oYbL8E97gOFq/7elQJ0KXQF+MLqfGUflDKP2DTpw0IqwAPNFHUmvasgkw4AADpKa3pj19dKtiTPOfaXJeqR32TowB7PckBrgjtkj3D/7aF6ozen8FxLequ3Bd/145Geu2XjSrC5tXDFDu809eXzslS+M0mh3pcB6bW6/Le7NWhInbdXfXOmr/sWEOwqa9KbYk6BJ6sO+GuX6e5dBUE6AADobHyDQ4vF8GZ+24t/EbWWVHmP9gZAc4Rvi9bcVnK+U8737kjUPVcMj/ic5lIFq1UtCrpbc7OmMwq3Vv3L47tVMHoMa9XRLTUnSG95/zQAAAC0WLSBW2Af9cYAPbiVmi3RCMgKt4QR0I+9JeeyqFe/Wh2tSmp612acM1ioXFPk8QZOOR+cVae0oTXatyvJp8e6/7nKdybpniuGewPzgc66ZgXd3SlAlzxT4I+en6e1DcG6WQE+2zpWKi6SIzVN6yprCNaBMKJekw4AAIDW21eaqOXzsnTDtNFaPi9L+0oTI+577/yshkeNa5v7pdbKmtAYoPZLrdcVd+zWOVdUqPVT0y1+a6nDr3VXxG1HqxJDbG/qcXOFa5kWel16gs2tOYvLgvaes7hMg4bUhjym8XmkfaVJWrnE2WTQ3RX6oreFSGvVc4uLWKsOhEGQDgAA0IFWLnF6e3lX7PIEfaG4Xf77mlKH1CrBJm/fdIvFkD3ZrUGZdXr5kVRFH/iG3i91iCdb3KuvOY07MBAO7D0eTqgA2hLmv9GIoihe0PP4H98vtV4DncHT0wdl1ummRz2F4gak1/kd43cGI3KxuGhvwHSnIN6TVV+mtTmjVGOVCqvzVVa6XtkHpdziIs3YVq6tnxYRrAM+CNIBAAA6iDl1PVKFcN9Az3dfM/D8+a/LdGBPkne7GTjW15rT4gMD1FCV4KXQwbahil12rVzi1OFK30x4qAA5MHBv7zJHoW4UNBXk+x9zYE9SxAB6cFadbnm8RPe9VhwiYJfM13jv/NDHN3UDpjmzKLoaM6ueP2U8WXWgCQTpAAAAHSDc1PXANdL+2fPgqeZP3ukM2drLluRp1Ra4vV9qfRMjawzWLQ3flpea69pDBcPhAuNobw60hO+5mnve4OOaCqDvnZ8lq1WyJYZ+rlDHR3MDJtpZFF2V2a6NrDoQGUE6AABABwg3dd13jXRgoBdqqnn5TrtmL2rsw546pFbnzq9oyMzaZWkI0lOH1Gr2ojJVVSQqumnllsaidEakKe3NCZCbet7ADH24aeyBNwyimyafYHP7ZMMbj4smgH78dmeImQnhjw/VF31QZuMNmHBB/N2Xd6+MuhR9Vp1gHd0VQToAAEA7Cx18y69ftxQ60EuwuYOy44OzPGuo73utWDc9ukP/WJHqDTANt6fw202P7vBWLrdYDJ/ncMtidTcxYkOyuBU6GI52HXno6fThzxUuc9947ID02ghF7fyz3mY/9FtXleiGFduVYGt8zZaAGQyhAuh9pfawzxVqBoTkKUBn3jyxWA3tK7V7p7UHfrbmufbv7n4ZdSk4q74ncUNQVp0p8OiuCNIBAADaWajgO1SQJ/kHeqlDajV3if9j38y7NaHpadazF5X5VYJ3uy0y3OH+BPQJoo3m/JnYnEA8mOcmQqRMuufYA3uS/GYRDEivU7/U0AXuXPVWud2eHvP3zR/e0Pfdw2o1gt5H38/HYjG87dZ8n8vMygd+DpLnczAL0KUNrfG2c/Od1u57vkhZ+e7EzKqvzRml7cfKyKoDok86AABAh5i9qEyrlnqmUIcK8kxmoOfbR/3E/7fDG8SZgbn5MzPArNjlKSZntRpKHVKr/WWJWrnE6ddjXVLjVHaL4TOt3RSYyfbtxR6K5+cJNsMbBFsTDLldliiObTw+dUit9pX6jjP8cYOG+L8/y+dlyWo1Gm5SND5ngs2tx27LUGW5OZXcP4APrPI+e1GZHrstQwf2JMkwLKqv8+wf+FkE9rffV9r4PqcNrdHsRWV+77lvEG5+tndfnqX9u/0/r+7WS91XjiNPkvRerjSxoFB7EjcosbSff1/1lH4qUQl91dEtEKQDAAC0o8Ag7sZHtmtwVnAbsEDhAsEEm1uueqsGZdbostvKNDirTnMWl3l/njqkVudcUaF752fJVW9mw30rshvql1qnw5U2v+yyL4vFUP/BdbIlGirfadegzBq56i06sCdwfbvn+8YA3a3Lf1umvgPrdN/84U2+xkGZtd7XsHxelvdGQ2iGBqTX+d2cMGcRBI7HHNOBPf41AMzXNiizMSjeuyPRe/MkweaWxWrIcFt0cK/nPb/p0R1hA3QpeC37qqXOkDdNfI+be7v/5xXuhk1348mqe76fWFCoMneZnG6nnMkZyq0oUsHoMSpRiSQRrKNLsxiG0d79MuJKdXW1+vbtqzvX/Vs9evWO9XAAAEAX5xt8mgHbTY/uaPE5AjPUA9JrdcUduzUos84v4AzPUN+BdTq0PziANZlTvQdl1sntkvbtStQ9VzQddEuGrAmG7nttq5bPy1L5TrNKfHjmcx3Ym6jHFzsbbiyEzsLf8NB2OUf43+BoKri3WIyGgniec5rPJ8lnpkH4rP+Nj2yX1Sq/Gy2+780N00aHPMb8HHz3DxQq6IfHxupnNLGgUENSeqriwDGNd0zWlv7yZtVtKXYCdXQq3xw+rNtOHqNDhw7J4XBE3JcgHQAAoJ2EC+Lue6046uAs3DkaGUob6gn8m85GN0obWhMiiDZ04yMlQZn+aANu06DMGs34RYUeWzQk7Jh9z5Vgc6tfar0qyxND3ogw3fNysWxJ/sGt7ywD/+MM9Uutlz3Z7Z0NYGbtzde0rzSpsaJ9mHGmDfWsIQ93oyXSTRiC8NbZWP2MJE9W3e6WnL2dcmZO0ZfHd6tg9BjZUjw3owjW0Rk0J0incBwAAEA7aU7BuKbO4Vuh3Z9nzXN9bWAF+ch+fmuZggNhiwYN8Q/QzfOGq7ge6r/7dyfp5UdSNSizJuyYfbnqrTqwJymo+r3vea0Jbt14zmgtPHuUbpg22ls13VznfdE1e4OeJcFmNGSxa7Sv1K5VS53aV5ronSYfHKAHF70r32mPWJgvsNBfYEE6tJxZAf693PGqsUp19ip9snkVFeDR5RGkAwAAtKNIQVw4vpW+95Umqr7Op4d5UCDpefy7q7I0IL02qMXXoMwa9UutlW/AOyC9Vs7hdQ1tyRq3J9jcfmu1l8/L0o3njA7xnB4JNkMXXbPX25s9sGL5ZbeV+bc+C3ujwf/nVqtnjL49zj3F6BrXv/tWTZekdX8epMD18gf2JOne+VneonT7Go4J1w4tbWit33to3lQJta/nvI03Ccx2eIHT2rtr1fa25FsBvsYqFVbnK2X/V0orKqcCPLokCscBAAC0o1DV2sMJLDJnFoQzK5RbrYZS0jxBYGBRtIpdSUpJq1PqkNqG42s1e5Fnerf/eT3b3S75FJaTJItc9RaVbU/Uk8t8p497fhaKq96q7/ywWu+9mBIwHd5Qgs3Q4Kw6LVyxw/vc1gRDrvpw5zMafm7x3sx4/Hant5BbYOV534x2fW3ga2k8p+92w+cY32J74d4r35sqgZXyzZsE5tT2wM821GcZal06ohNYAb7OXqXCA/kar8kaV3pEpZVVVIBHl8GadAAAgDgRan1zqCJw971WLLdLDVnu4J9JoW8I+BaWSxtao/1liQ2ZaXMduHy+j659WiT3vVYcvhVcGPe8XKwtn/fUY7c55XaFDrwli/eGhVmBvqkbCqa0oTV+hfvC3TwJ3N7c+gJtUTAQoYVaqz7QOlZb+ou16ohbrEkHAADoZMx10oFrn60Joaek25LCr3cPl7FftbSxXVj5zqSGLLNvhjpwTbgpVE7HEvBzw++xeRPg3vlZPgG6737+57Q0jN+WJD2+2Omd3h44hgSb57/mEgLz9URT0y7B5g5abhDuvTJbvPk+jra+QLjPkqnvbSPUWvXC6nxlH5SuKT3CWnV0ekx3BwAAiANmEBg5k+6Zkm5meQP7o0da7x6pp3h4DVnrBKMhwAx3jP/2BJsnu33PL7ICsuHBPdZNVqunyFu4qesJNkPX/8VTed4Mdv0y2w1r9gc4a3SgLDhrnzqkRpcviW7Kebip6tG+3+E+SwrJta3AvuqF1flyup1Ks45Vbv9yOVLT9FLDvmTV0ZmQSQcAAIgh3+xqqCJz4bK3bpeaLFrmK7hYWij+We4Em6E5S3Y1BNqRsuuGX4E4s7hb6OnqobnqrRrorJMtSQ2zB4J//sRvPdXZzdkCod6bK5b6F6vzvA531AG65Fl/bmbofQvUNef9bknBQDRfpKx65hGbJn1YSFYdnQ5r0gEAAGIgMFt77vwK/WNFqren99zbPUFlpP3MLO9AZ11UWVrfcyXY3HK7LTLcFlkshvoPDlzf3ZgBlhRUGM6TXfcE4Qk2t8/a9pZJsLm1cIUn8P3gVYee+2Oa3/P5jsdc2x343vgWf7t3fpY3I2+xGhoU5ZrwtuhtH3g+MugdZ2P1MyHXqjtS0/TSiDRJZNURG81Zk06QDgAAEAOBhcXMKubhCo2ZwZ7vcRaLWRHd2qwK4m6X/Aq6+Qb7oQLUG1Zs133zhwdtv+dlT5G6UAXsGvkWmAssNtf42DeQ9vRATwrRx7zxeW0+xe19K9Kbwfo9VwSPN9pAm6JvnZsZqA9J6amKA8c03jFZSRkZ+vL4bm9hOQJ1dLTmBOmsSQcAAOhggevD3W6L5Lb4PTYLjZlBpTnF3fc4w7AE9Q2PJpi0JoRvDeefFfe0UjN7qgduNwPltKE1AZl2X+HXofs+Ntuj3X15Y1/zoDM13JS48ZzRQbMKzOn3FbuStGqps1Vrwpuz1h/xJ8eRp6Pn52ltQ7BurlXPto6ViovkSE3TusoagnXELdakAwAAdLBQ66kTbO4mK4dHWlfe0grigW3GAiu+u+qtPsXc/LebzzVncZkGpDdm8BNsbll8XsugzJqQz+3/Wjz/3b87ye+98F37bhjyVn2v2JWkxxc3rh0P7J8+e1HL14Q3Z+25L6q3xxdzrXr+lPFBa9Vzi4tYq464RZAOAAAQA4GFxeYuiS6o9D0uMBgO1xIsWuGKsUVq9yZ5gtpbV5XovteKdd9rxZ615b6v7fYy9UutlW9hur4Da/1ei2+Q7aq3aoDTf7v5vTkF3tzP7Q7MzntueAzOalmgHfh+RGNfaaKWz8vSDdNGN0zVT2z2c6F9mIXl1uaMUo1VKqzOV1npemUflHKLizRjW7m2flpEsI64wpp0AACAGAqcbh5tobFw68pbEoz6Ctd+LNz2aF9bYNE633X0j9/u1P7dwWvAm1q37/s4UEsKvbW0yBtr2DuHjdXPSJJmbdwadq26RGE5tA8Kx0VAkA4AADqrcEFke1QQb6/nChXQ+q4B970B8OWHPfXEEqdc9VYl2Ny64Jf79M8XUkJWug9XAT4aLbkBYWrravBof5EqwK9L6cdadbQLCscBAAB0IU0FkdEGg80JsMPt15rAM1TBvPKddg10+hexM6eP+xaEM9wW/fOFlKBidyf+vx3auyNRq5a2vNBbqL7o0Qb55hKBlhapQ8fzrFX3fD+xoFBl7jKN12QlJduUW1GkgtFjVKISSWTVERsE6QAAAHGuNUGk1HSQ39Ip99EIrFAfKaA1K9j7vt7AgnChxmauP2/JuMPdOGjOuagG3/nkOPIkSe/legL1PYkblFjaz78CfEo/laiEQB0djiAdAAAgjrVFEBkuyA8M3n2nj7d2jXu4GwOzF5WFzHr77h+KxWJoUGbkDHVLbizsL0v0rpGXGvu1N+dc4drZIf6RVUc8IkgHAACIY62dTh0pyA8M3h9f7JTh9u+7vnDFjhYFnoHnfuQ3GbIlGt6g/cZHtmtwVl3I/RurwFtkrjUflNk+GeqVS5zetm6Sp3J9S5+HAL1zIquOeEMLNgAAgDgX2K6tOUFkuLZqkid4NyujB7Y0M4P5cG3FIvUEN28M+J7rwJ4k7SttDNpXLXWG3d8TnHu+Txtaqxsf2d7iNmqRmM9rtnWTPP3gBzrb9nnQOZh91dfmjNL2Y2UqrM5Xyv6vgvqq064N7Y1MOgAAQJxr7XTqUGumQ2Xo/VuaNWazI02RDzUlPtS53W7/Hue+U/bDzRZoaRY/WtYEaUB6rQ7sSZSZtR+QXkdGvBsLzKrX2av0yeZVGu+YTFYdHYZMOgAAQCfR0uDRDPLve63YLyMdmKGfu6TxsW82O9IU+ZVLnIFPF/LcA9JrZbE0dv5NsLm1vywx7P7mjQQgFnyz6jVWkVVHhyKTDgAA0E0EBr2hMvQn/j/P43vnB/czl6IvYhd47n2libp3fpZc9Y2Bv2+VenP/+lrJlqQO4XZJB/b4PplnWj4F4CBFzqqPKz2i0soqsupoF2TSAQAAurnAgNSaED6zHWp9ezQV1wc667wV1CVP33MzwJcae6PfeE7oNfDtoSWvB91PqKx6Wel6pRWVk1VHuyBIBwAAQJBop8hHW8SuqYA42mn0ba01RfnQfeQ48rzBeo1VqrNXqbA6X9kHpWtKj2jGtnJvsA60FtPdAQAAEFY0U+R9RZoqHqqAnXlMa3vBtxQ9ztEcgX3VC6vz5XQ7lWYdq9z+5XKkpumlhn2ZAo+WIkgHAABAswUGtNFUfQ8XELe2F3xbIEBHtEKtVS88kK/xmqykZJsmfViogtFjWKuOFmO6OwAAACKK1BPd1Jzp6qECYqado7PJceTp6PnLgtaqZx+UcouLNGNbOWvV0SJk0gEAABBSNNlxqW2mqzPtHJ2VOQWerDraCpl0AAAAhBRtdrwtq6QToKMzIquOtkSQDgAAgCBmdtztbuxr7tsyLRDT1QGFrQCfecSTVacCPKLBdHcAAAAEaW4xN6arAx6erHqe1lY/41cBPts6VioukiM1Tesqa2RLsTMFHiGRSQcAAEBILcmOE6ADHmZWPX/K+KCsem5xEVl1hEUmHQAAACGRHQdax2zXtjaHrDqiRyYdAAAAERGgA60TbVadzDokgnQAAAAAaHc5jjzlOPK8FeD3JG4IqgDPFHhITHcHAABAlJj2DrSe2Vdd8vRWL3OXefuq51YUefuqS2IKfDdFkA4AAICI9pUmauUSp8p32pU2tEZzFpdpUGZdrIcFdFrmWvX3cj2B+p7EDUos7ee/Vj2ln0pUQqDeDTHdHQAAABGtXOJUxa4kSVLFriStXOKM8YiArsFcq742Z5S2HytTYXW+UvZ/xVr1bo5MOgAAAMJyu6TynfbGx26LynfamfoOtBHfrPqsjVt1yuBsfbZjvcZlTpGjskqqlF4akRbbQaJDkUkHAABAWNYEKW1ojaxWw/PYangeE6AD7e70oafGegiIAYJ0AAAARDRncZlSh9RKklKH1GrO4rIYjwgAui6muwMAACCiQZl1uunRHUxxB4AOQCYdAAAAUSFAB4D2R5AOAAAAAECcYLo7AAAAAMSBXZXHJH2sRPVT7e7d2iVJveVpxUbP9G6DTDoAAAAAxJjZM31X5THV2atUWJ2v2t27g3qmo+sjkw4AAAAAcSDHkaej5+dpbfUzmlhQqMLqfDndTmVbx0rFRXKkpmldZY1sKXay6l0YmXQAAAAAiCNmVj1/ynhvVj37oMiqdxNk0gEAAAAgzuQ48iRJa3PIqnc3ZNIBAAAAIE5Fm1Uns951EKQDAAAAQBzLceQpx5GntTmjVGOV9iRuUFnpemUflHKLizRjWzlT4LsQprsDAAAAQCfgyap7vp9YUKgyd5nGa7KSkm3KrShSwegxKlGJJDEFvhMjSAcAAACATsJcq/5eridQ35O4QYml/fzXqqf0o696J0aQDgAAAACdTKisutPtlDM5g6x6J8eadAAAAADohMy16u/ljleNVaqzV+mTzatYq97JEaQDAAAAQCdmBupmYbnC6nyl7P+KCvCdFEE6AAAAAHRyZNW7DtakAwAAAEAXEbhWvbA6X063UwMPSrn9y1mr3gmQSQcAAACALiRUVr2wOl/ZB6VrSo+QVY9zZNIBAAAAoAsKl1VPs44lqx7HYppJHzZsmCwWS9DX1VdfHXL/J554ImjfHj16dPCoAQAAAKBzIKve+cQ0k/7xxx/L5XJ5H2/atElTpkzRxRdfHPYYh8OhoqIi72OLxdKuYwQAAACAzq6prLojNU0vNexLVj22Yhqkp6am+j2+++67NXLkSE2aNCnsMRaLRYMHD27voQEAAABAl5LjyJMkvZfrCdTr7FUqPJCv8ZqspGSbJn1Y6J0CT6AeO3FTOK62tlarV6/W3LlzI2bHjxw5oqysLGVmZuq8887Tl19+GfG8NTU1qq6u9vsCAAAAgO4qx5Gno+cv8+urXla63q9dG33VYydugvQXX3xRVVVVuuyyy8LuM2bMGD3++OP6+9//rtWrV8vtdmvChAnatWtX2GPuuusu9e3b1/uVmZnZDqMHAAAAgM4l3Fr1zCOerDpr1WPDYhiGEetBSNLUqVOVlJSkl156qemdG9TV1enEE0/UrFmztHTp0pD71NTUqKamxvu4urpamZmZunPdv9WjV+9WjxsAAAAAOruN1c9oYkGh7G7J2dupgdax2tJfcqSmaV1KP9lS7EyBb4VvDh/WbSeP0aFDh+RwOCLuGxct2Hbs2KH8/Hy98MILzTouMTFRp556qrZu3Rp2H7vdLrvd3tohAgAAAECX5VtYbtbGrX5r1XMrilir3oHiYrr7ypUrNWjQIE2fPr1Zx7lcLn3xxRdKT09vp5EBAAAAQPdgtmuLtFZ966dFTIFvZzEP0t1ut1auXKnZs2fLZvNP7F966aW65ZZbvI9/+9vf6s0339S2bdu0ceNG/exnP9OOHTs0b968jh42AAAAAHRJ5lr1/Cnjg9aq5xYXedeqE6y3j5hPd8/Pz9fOnTs1d+7coJ/t3LlTVmvjfYTKykpdccUV2rt3r1JSUnTaaadpw4YNGjt2bEcOGQAAAAC6NLNd29ocz1r1PYkblFjaT9nWsVJxkXetOlPg217cFI7rKNXV1erbty+F4wAAAAAgChurn5Ekb2G58Y7JSsrI0JfHd6tg9BjZUjw1wAjWw+t0heMAAAAAAPHJzKq/lyuy6h2AIB0AAAAA0CTfCvATCwpV5i4LWQFeIqveGgTpAAAAAICokFVvfwTpAAAAAIBmCZVVd7qdciZnkFVvpZi3YAMAAAAAdD5mX/X3cserxirV2av0yeZVfn3VzXZtiB5BOgAAAACgxcxAfW3OKNVYpcLqfKXs/4q+6i1EkA4AAAAAaJVIWfVrSo+QVW8G1qQDAAAAANpE4Fr1wup8Od1OpVnHKrd/OWvVo0AmHQAAAADQZkJl1Qur88mqR4lMOgAAAACgzTWVVXekpumlhn3Jqjcikw4AAAAAaBeRsuqZR2ya9GEhWfUAZNIBAAAAAO0qx5Gno+fnaW31M35Z9WzrWKm4iKy6DzLpAAAAAIAOQVa9aWTSAQAAAAAdJpqs+rrKGtlS7N0yq04mHQAAAADQ4SJl1XOLi7ptVp1MOgAAAAAgJsiqByOTDgAAAACIKTOrnj9lfLfPqpNJBwAAAADEXI4jT5K0Nqd7Z9XJpAMAAAAA4ka0WfWumlknSAcAAAAAxJUcR55yHHlamzNKNVZpT+IGlZWuV/ZBKbe4SDO2lXfZKfBMdwcAAAAAxCVPVt3z/cSCQpW5yzRek5WUbFNuRZEKRo9RiUokqctMgSdIBwAAAADELXOt+nu5nkB9T+IGJZb281+rntJPJSrpEoE6090BAAAAAHHPXKu+NmeUd616yv6vlHnEpvMrq7rM9HeCdAAAAABAp2Bm1Usu/q5SB/T0bj996Kk6v7IqRqNqWwTpAAAAAADECYJ0AAAAAADiBEE6AAAAAABxgiAdAAAAAIA4QZAOAAAAAOjUdn31RayH0Gbokw4AAAAA6DRyHHn64OtnZKs8Jrv7mFS6XgOtY1XdX5ohaV1ljWwp9k7bM51MOgAAAACgUzF7ptdY5e2Znn1QyjxiU25xUafumU4mHQAAAADQ6eQ48nT0/DytrX5GEwsKVVidL6fbqWzrWKm4SI7UtE6ZVSeTDgAAAADotMysev6U8V0iq04mHQAAAADQqeU48iRJa3M6f1adTDoAAAAAoEuINqsez5l1gnQAAAAAQJeR48hTjiNPa3NGqcYq7UncoLLS9co+KOUWF2nGtvK4ngLPdHcAAAAAQJfjyap7vp9YUKgyd5nGa7KSkm3KrShSwegxKlGJJMXVFHiCdAAAAABAl2SuVX8v1xOo70ncoMTSfv5r1VP6qUQlcROoE6QDAAAAALq0UFl1p9spZ3JG3GXVWZMOAAAAAOjyzLXq7+WOV41VqrNX6ZPNq+JurTpBOgAAAACg2zADdbOwXGF1vlL2fxU3FeAJ0gEAAAAA3Uo8Z9VZkw4AAAAA6JYC16oXVufL6XZq4EEpt395TNaqk0kHAAAAAHRbobLqhdX5yj4oXVN6pMOz6mTSAQAAAADdXrisepp1bIdm1cmkAwAAAACgprPqkz4sbPesOpl0AAAAAAB8hMuqZ1vHSsVFcqSm6aWGfds6q04mHQAAAACAAJGy6plHbO2WVSeTDgAAAABAGDmOPB09P09rq5/pkKw6mXQAAAAAAJrQUVl1MukAAAAAAEQhmqz6usoa2VLsLc6qk0kHAAAAAKAZzKx6/pTxQVn13OKiVmXVyaQDAAAAANBMOY48SdLanKaz6oMHDIj6vGTSAQAAAABoocCs+n73V96s+vmVVZKknTt3Rn0+gnQAAAAAAFrBzKpL0ilZ2drv/sr7+CJ906xzEaQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQAAAAAAOIEQToAAAAAAG3k470f+z2u2XaoWccTpAMAAAAA0AbW5ozSrspjKjtSprLS9UorKld1Rbnqq2qiPgdBOgAAAAAArZTjyPP2TK+xSnX2KhVW5yv7oHTl7qNRn8fWjmMEAAAAAKBb8QTqnu8nFhSqsDpffY8PiPp4gnQAAAAAANpQjiNPkvReridQr7dHvy6dIB0AAAAAgHaQ48jT0fPzVLB3VdTHsCYdAAAAAIB2dEqfC6PelyAdAAAAAIA4QZAOAAAAAECcIEgHAAAAACBOEKQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQAAAAAAOIEQToAAAAAAHGCIB0AAAAAgDgR0yB92LBhslgsQV9XX3112GOee+45nXDCCerRo4dOOukkvfrqqx04YgAAAAAA2k9Mg/SPP/5Ye/bs8X6tX79eknTxxReH3H/Dhg2aNWuWLr/8cn366af68Y9/rB//+MfatGlTRw4bAAAAAIB2YTEMw4j1IEwLFizQyy+/rC1btshisQT9PC8vT0ePHtXLL7/s3fa9731Pp5xyih566KGonqO6ulp9+/bVnev+rR69erfZ2AEAAAAACOWbo0f06/NP06FDh+RwOCLuGzdr0mtra7V69WrNnTs3ZIAuSR988IEmT57st23q1Kn64IMPwp63pqZG1dXVfl8AAAAAAMSjuAnSX3zxRVVVVemyyy4Lu8/evXuVlpbmty0tLU179+4Ne8xdd92lvn37er8yMzPbasgAAAAAALSpuAnSH3vsMU2bNk1Op7NNz3vLLbfo0KFD3q/S0tI2PT8AAAAAAG3FFusBSNKOHTuUn5+vF154IeJ+gwcPVnl5ud+28vJyDR48OOwxdrtddru9TcYJAAAAAEB7iotM+sqVKzVo0CBNnz494n6nn366CgoK/LatX79ep59+ensODwAAAACADhHzIN3tdmvlypWaPXu2bDb/xP6ll16qW265xfv42muv1euvv67f/e53+s9//qPbb79dn3zyiX75y1929LABAAAAAGhzMQ/S8/PztXPnTs2dOzfoZzt37tSePXu8jydMmKCnnnpKDz/8sE4++WT97W9/04svvqhvfetbHTlkAAAAAADaRVz1Se8I9EkHAAAAAHSkTtknHQAAAACA7o4gHQAAAACAOEGQDgAAAABAnCBIBwAAAAAgThCkAwAAAAAQJwjSAQAAAACIEwTpAAAAAADECYJ0AAAAAADiBEE6AAAAAABxgiAdAAAAAIA4QZAOAAAAAECcIEgHAAAAACBOEKQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQAAAAAAOIEQToAAAAAAHGCIB0AAAAAgDhBkA4AAAAAQJwgSAcAAAAAIE4QpAMAAAAAECcI0gEAAAAAiBME6QAAAAAAxAmCdAAAAAAA4gRBOgAAAAAAcYIgHQAAAACAOEGQDgAAAABAnCBIBwAAAAAgThCkAwAAAAAQJwjSAQAAAACIEwTpAAAAAADECYJ0AAAAAADiBEE6AAAAAABxgiAdAAAAAIA4QZAOAAAAAECcIEgHAAAAACBOEKQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQAAAAAAOIEQToAAAAAAHGCIB0AAAAAgDhBkA4AAAAAQJwgSAcAAAAAIE4QpAMAAAAAECcI0gEAAAAAiBME6QAAAAAAxAmCdAAAAAAA4gRBOgAAAAAAcYIgHQAAAACAOEGQDgAAAABAnCBIBwAAAAAgThCkAwAAAAAQJ2yxHkBHMwxDkvTNsSMxHgkAAAAAoDsw408zHo3EYkSzVxeya9cuZWZmxnoYAAAAAIBuprS0VEOGDIm4T7cL0t1ut8rKytSnTx9ZLJZYD6dTqq6uVmZmpkpLS+VwOGI9HMQQ1wJ8cT3AxLUAX1wP8MX1AFN3uxYMw9Dhw4fldDpltUZedd7tprtbrdYm71wgOg6Ho1v8g0LTuBbgi+sBJq4F+OJ6gC+uB5i607XQt2/fqPajcBwAAAAAAHGCIB0AAAAAgDhBkI5ms9vtWrx4sex2e6yHghjjWoAvrgeYuBbgi+sBvrgeYOJaCK/bFY4DAAAAACBekUkHAAAAACBOEKQDAAAAABAnCNIBAAAAAIgTBOkAAAAAAMQJgnQE2b17t372s59pwIABSk5O1kknnaRPPvkk4jHvvPOOcnJyZLfbNWrUKD3xxBMdM1i0q+ZeC++8844sFkvQ1969eztw1GgPw4YNC/nZXn311WGPee6553TCCSeoR48eOumkk/Tqq6924IjRnpp7PTzxxBNB+/bo0aODR4324HK5tGjRIg0fPlzJyckaOXKkli5dqqbqEvN3Q9fUkuuBvx26rsOHD2vBggXKyspScnKyJkyYoI8//jjiMfxu8LDFegCIL5WVlTrjjDN01lln6bXXXlNqaqq2bNmilJSUsMds375d06dP15VXXqk1a9aooKBA8+bNU3p6uqZOndqBo0dbasm1YCoqKpLD4fA+HjRoUHsOFR3g448/lsvl8j7etGmTpkyZoosvvjjk/hs2bNCsWbN011136ZxzztFTTz2lH//4x9q4caO+9a1vddSw0U6aez1IksPhUFFRkfexxWJp1zGiYyxfvlx/+ctftGrVKo0bN06ffPKJ5syZo759++qaa64JeQx/N3RdLbkeTPzt0PXMmzdPmzZt0pNPPimn06nVq1dr8uTJ+uqrr5SRkRG0P78bGtGCDX5uvvlm/etf/9J7770X9TE33XSTXnnlFW3atMm7bebMmaqqqtLrr7/eHsNEB2jJtfDOO+/orLPOUmVlpfr169d+g0PMLViwQC+//LK2bNkSMtjKy8vT0aNH9fLLL3u3fe9739Mpp5yihx56qCOHig7Q1PXwxBNPaMGCBaqqqur4waFdnXPOOUpLS9Njjz3m3XbhhRcqOTlZq1evDnkMfzd0XS25HvjboWs6fvy4+vTpo7///e+aPn26d/tpp52madOm6Y477gg6ht8NjZjuDj//+Mc/9O1vf1sXX3yxBg0apFNPPVWPPPJIxGM++OADTZ482W/b1KlT9cEHH7TnUNHOWnItmE455RSlp6drypQp+te//tXOI0VHq62t1erVqzV37tyw2VB+L3Qf0VwPknTkyBFlZWUpMzNT5513nr788ssOHCXay4QJE1RQUKDi4mJJ0ueff673339f06ZNC3sMvx+6rpZcDyb+duha6uvr5XK5gpY2JScn6/333w95DL8bGhGkw8+2bdv0l7/8RdnZ2XrjjTf03//937rmmmu0atWqsMfs3btXaWlpftvS0tJUXV2t48ePt/eQ0U5aci2kp6froYce0vPPP6/nn39emZmZOvPMM7Vx48YOHDna24svvqiqqipddtllYfcJ93uBNYZdTzTXw5gxY/T444/r73//u1avXi23260JEyZo165dHTdQtIubb75ZM2fO1AknnKDExESdeuqpWrBggX7605+GPYa/G7qullwP/O3QNfXp00enn366li5dqrKyMrlcLq1evVoffPCB9uzZE/IYfjc0Yk06/Ljdbn3729/WnXfeKUk69dRTtWnTJj300EOaPXt2jEeHjtSSa2HMmDEaM2aM9/GECRP09ddf6w9/+IOefPLJDhk32t9jjz2madOmyel0xnooiAPRXA+nn366Tj/9dO/jCRMm6MQTT9SKFSu0dOnSjhgm2smzzz6rNWvW6KmnntK4ceP02WefacGCBXI6nfzd0A215Hrgb4eu68knn9TcuXOVkZGhhIQE5eTkaNasWfr3v/8d66HFPYJ0+ElPT9fYsWP9tp144ol6/vnnwx4zePBglZeX+20rLy+Xw+FQcnJyu4wT7a8l10Io3/nOd8JOa0Lns2PHDuXn5+uFF16IuF+43wuDBw9uz+Ghg0V7PQQyM2xbt25tp5GhoyxcuNCbPZWkk046STt27NBdd90VNijj74auqyXXQyj87dA1jBw5Uu+++66OHj2q6upqpaenKy8vTyNGjAi5P78bGjHdHX7OOOMMv+q7klRcXKysrKywx5x++ukqKCjw27Z+/Xq/rAk6n5ZcC6F89tlnSk9Pb8uhIYZWrlypQYMG+RWBCYXfC91DtNdDIJfLpS+++ILfDV3AsWPHZLX6/zmZkJAgt9sd9hh+P3RdLbkeQuFvh66lV69eSk9PV2Vlpd544w2dd955Iffjd4MPA/Dx0UcfGTabzVi2bJmxZcsWY82aNUbPnj2N1atXe/e5+eabjZ///Ofex9u2bTN69uxpLFy40Ni8ebPxv//7v0ZCQoLx+uuvx+IloI205Fr4wx/+YLz44ovGli1bjC+++MK49tprDavVauTn58fiJaCNuVwuY+jQocZNN90U9LOf//znxs033+x9/K9//cuw2WzGfffdZ2zevNlYvHixkZiYaHzxxRcdOWS0o+ZcD0uWLDHeeOMN4+uvvzb+/e9/GzNnzjR69OhhfPnllx05ZLSD2bNnGxkZGcbLL79sbN++3XjhhReMgQMHGjfeeKN3H/5u6D5acj3wt0PX9frrrxuvvfaasW3bNuPNN980Tj75ZOO73/2uUVtbaxgGvxsiIUhHkJdeesn41re+ZdjtduOEE04wHn74Yb+fz54925g0aZLftrfffts45ZRTjKSkJGPEiBHGypUrO27AaDfNvRaWL19ujBw50ujRo4fRv39/48wzzzTeeuutDh412ssbb7xhSDKKioqCfjZp0iRj9uzZftueffZZY/To0UZSUpIxbtw445VXXumgkaIjNOd6WLBggTF06FAjKSnJSEtLM84++2xj48aNHThatJfq6mrj2muvNYYOHWr06NHDGDFihHHrrbcaNTU13n34u6H7aMn1wN8OXdczzzxjjBgxwkhKSjIGDx5sXH311UZVVZX35/xuCI8+6QAAAAAAxAnWpAMAAAAAECcI0gEAAAAAiBME6QAAAAAAxAmCdAAAAAAA4gRBOgAAAAAAcYIgHQAAAACAOEGQDgAAAABAnCBIBwAAAAAgThCkAwAAAAAQJwjSAQBAWC6XSxMmTNAFF1zgt/3QoUPKzMzUrbfeGqORAQDQNVkMwzBiPQgAABC/iouLdcopp+iRRx7RT3/6U0nSpZdeqs8//1wff/yxkpKSYjxCAAC6DoJ0AADQpPvvv1+33367vvzyS3300Ue6+OKL9fHHH+vkk0+O9dAAAOhSCNIBAECTDMPQD37wAyUkJOiLL77Qr371K/3mN7+J9bAAAOhyCNIBAEBU/vOf/+jEE0/USSedpI0bN8pms8V6SAAAdDkUjgMAAFF5/PHH1bNnT23fvl27du2K9XAAAOiSyKQDAIAmbdiwQZMmTdKbb76pO+64Q5KUn58vi8US45EBANC1kEkHAAARHTt2TJdddpn++7//W2eddZYee+wxffTRR3rooYdiPTQAALocMukAACCia6+9Vq+++qo+//xz9ezZU5K0YsUK3XDDDfriiy80bNiw2A4QAIAuhCAdAACE9e677yo3N1fvvPOO/uu//svvZ1OnTlV9fT3T3gEAaEME6QAAAAAAxAnWpAMAAAAAECcI0gEAAAAAiBME6QAAAAAAxAmCdAAAAAAA4gRBOgAAAAAAcYIgHQAAAACAOEGQDgAAAABAnCBIBwAAAAAgThCkAwAAAAAQJwjSAQAAAACIEwTpAAAAAADEif8Pso2MBAdUByMAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 18\n", + "amount_ae: 302\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVNX/B/D3nWFfBFFUBAE30FxwNy3XNDXFJRXFcsNyTdLM1My0zMwld0XN1DI1M9fqm6ZlrhVairuQigsuiMqA7Mx8fn/wmxvDzDAXucxl8PN6nnmyw53zvufcAxzO3EUgIgJjjDHGGGOMMcYYY4zJTKX0DjDGGGOMMcYYY4wxxsomXnxkjDHGGGOMMcYYY4yVCF58ZIwxxhhjjDHGGGOMlQhefGSMMcYYY4wxxhhjjJUIXnxkjDHGGGOMMcYYY4yVCF58ZIwxxhhjjDHGGGOMlQhefGSMMcYYY4wxxhhjjJUIXnxkjDHGGGOMMcYYY4yVCDuld4AxVrrdu3cPx44dw/379/HgwQMkJSVh8uTJCAgIUHrXGGOMMcYYY4wxVsrxmY+MMZNiY2PRpUsX+Pr6on///njrrbfw0UcfISoqCocPH1Z69xhjEsTHx0MQBMyaNcsqebNmzYIgCIiPj7dKHmOMMcYYY6z048VHJjv9H7tSXqNHj1Z6d5kJsbGxaNWqFX777TdMmTIFcXFx0Ol0ICJotVoMGTJE6V1kjBXD8uXLIQiC2e/lx48fw9fXFy4uLoiNjRXLAwMDERgYaKW9ZIwxxhhjTF6BgYFo3759iefoP5T//fffTZY/ax/W82XXrMTUrFkTr7/+usmvxcfH46uvvrLyHjGpRowYgdTUVPz444/o0qWL0rvDGJPZW2+9hZ07d2LTpk3o27cvevXqZfD1cePG4c6dO1i6dCmCgoIU2kvGmC2Ij49H9erVJW07atQorF69uoT3iCmpffv2OHz4MIhI6V1hjDHJ/vnnH7Rs2RI1atTAmTNn4OzsbLTNK6+8gp9//hmbNm0yu87BzOPFR1ZiatWqZfZSv99//50XH0upc+fO4dixY5g0aRIvPDJWRgmCgA0bNqBBgwYYOXIkXnjhBVSsWBEA8P3332Pr1q3o0KEDxo8fr/CeMsZsBX/ozBhjzFY1adIE06dPx0cffYRp06ZhyZIlBl9fu3Ytfv75Z/Tp04cXHp8SX3bNSqXAwECzl2pv3LjRaPsNGzagZcuWcHNzg5ubG1q2bGlyu99//93s/c8EQTB5+nX79u0hCIJR+aFDhxAREYHg4GAxt1mzZli7du1Tt63gKdnDhg2T7ZTs8+fPIywsDJUqVYKjoyOqV6+OCRMm4OHDhwbbnThxAgAQHByM8PBwVK5cGQ4ODggICMCYMWNw9+5dcVudToeAgABUqFABWVlZJnPbtm0LOzs73L59G4D5/tRfrj9s2DCD8qL2s6nLQu/du4exY8eievXqcHBwgJeXF3r06IE//vjD6P3mTo9/mrEDAGfPnsXAgQPh4+Mj9uP48eON+t3S7QrWrVtnsL3U41kY/fhSqVS4fv260dePHj0q5hdsd2FtNteHgPTv1U2bNkGlUmHgwIEGZ0+YGyfR0dFwc3NDkyZNkJqaavC11NRUzJw5E/Xq1YOzszM8PT3RpUsXHDt2zOT+p6am4qOPPkLDhg3h4uICDw8PNG7cGDNmzEBOTk6Rbi2h/97V94n+pVKp4OPjg+7du4vfc/nt2rUL4eHhqFWrlrgPbdq0wY4dO0zu89MIDAzE559/jsTERIwZMwYAcP/+fYwZMwbu7u7YsGGD+L2qb/ONGzdw48YNg7ZY636SjLHSTf+hs6lXwZ/ZjDHGWGkzffp0NG7cGMuWLTN4xsH169cxadIkeHt7Y82aNQruoW3jxUdWanl4eGDmzJniq+BlgXqRkZGIiIhAQkICRowYgREjRiAhIQHDhw/H22+/XWL7N2/ePBw5cgTNmzfHW2+9hddffx1JSUkYNWoUJk2aVOh7C7atXbt2JbafAHDs2DG0bNkSu3btwksvvYR33nkHAQEBWLp0KVq2bImkpCRx2wcPHgAAxowZg+3bt6N9+/aYNGkS6tati9WrV6NZs2a4ceMGAEClUuGNN97Ao0ePTC6KXLlyBUePHkXXrl3h5+f3VPtenH4GgDt37qB58+aIioqCl5cX3nnnHfTq1Qu//fYb2rZti507dz7Vfkmxd+9etGjRAnv37kX79u0xYcIENGjQACtWrECrVq3w+PFjo/eEhIQYjA39q0mTJuI2RTmeUqhUKpO/SKOioqBWq4vecDOK8r06ePBgzJs3D9u2bcPEiRMLrTc2Nhbdu3dHpUqV8PPPP8Pd3V382qNHj9CqVSt8/PHHKF++PEaPHo2+ffvi77//RocOHbB7926DuhITE9GiRQvMmjULarUaY8aMQUREBKpUqYJ58+YhLS0Nnp6eRsfHw8PD6Pt65syZ8PT0NKh/6NChmDlzJqZPn4527drhwIED6NSpEy5fvmyw3bRp03DhwgW8+OKLePvtt9G/f39cuXIF/fr1w/Lly4ve+WaMHDkSXbp0Ec92HDlyJJKSkrBkyRKDJ9rr22yqnda4Zw5jrGzjD53zyPmhc/62SO1XIsL69evxwgsvoFy5cnBxcUGzZs2wfv16k/XHxsaiU6dOcHFxQZ06dbBv3z7xa1evXkX79u3h7OyM5557Dtu3bzdZx40bNzBixAj4+vrCwcEBfn5+GDFiBG7evGm2PZmZmZg6dSr8/f3h5OSEunXrYvny5UaXem/cuLHQ9qalpcHDw8PkWDA3Ds6cOQO1Wm1UZ/4PRy9cuIDu3bvD09MTbm5uePnll/H333/L1n79y8HBAYGBgXjjjTeMts/Ozsby5cvRpUsXVKtWDY6OjqhUqRJeffVVnD592qhufV+Z6ifA9If7hY1Xcx8WA0X7AL2w75+CZ58lJSVhwoQJqF69utjesLAwnD9/3mSbTCmJMQMU/rPo+PHj6N69O7y8vODk5IQ6depg5syZSE9PN9ju3LlzKF++POrWrWvUV6aOz8OHD1G3bl2UL18e586dM/haUb/XiQgbNmxAmzZt4OnpCRcXF9SuXRujRo0Sx15hx8rUzx59n+R/eXl5oWXLlvj666+N9uHvv//GW2+9hfr168PDwwPOzs5o0KABPvvsM+Tk5Jjc76Kyt7fH119/DXt7ewwfPhxPnjyBTqfDsGHD8OTJE6xZswbe3t5G77t16xbCw8Ph5eUFNzc3tGvXDkeOHJFln8oUYkxm169fJwDUpUsXs9scOnSIANCoUaNMft3X15cCAwMNyjZs2EAAaMOGDWLZ4cOHCQDVrVuXkpOTxfJHjx5RUFAQAaAjR44Y5c6cOdMoEwC1a9fOqLxdu3Zk6lvl2rVrRmU5OTnUuXNnUqvVdOPGDZNt8/PzM2rbzJkzCQAdOnTIoHzo0KEEgK5fv26yLim0Wi3VrFmTANC+ffsMvjZ58mQCQBEREUb7AoB++ukng+0XLlxIAKhHjx5iWUJCAtnZ2VH79u2Nst99910CQLt37xbL2rdvTwBIp9MZbKsfN0OHDjUoL2o/BwQEUEBAgPj/AwYMIAD02muvGWT+888/5ODgQOXLl6eUlBSj9hc8FkUdO0lJSVSuXDny9fWl+Ph4g69t3bqVANBbb71lsf0FFfV4FkY/vnr16kXe3t6UlZUlfi0xMZEcHByod+/eJttt7vuFyHQfFvV7VW/ixIkEgD777DMiMu6nO3fuUGBgIHl7e1NsbKzR+wcNGkQA6IsvvjAov3//PlWrVo28vb0pIyNDLO/bty8BoPfff9+ornv37lFOTo7JNhccd1L6hIho5cqVBICWLFliUH716lWjOlJTU6lBgwbk4eFBaWlpZrPy0/eXqXGrd/v2bfL09CRHR0ej7++CpLazOD+zGGO2RY55X0BAAHl4eNDMmTPFV69evYzmfURE48ePJwDk6+tLkZGRFBkZSb6+vgSAIiMjTebKMe/r0qUL1axZk1577TWaMmUKjRo1igICAggAvfPOO2bbbqpt+oySmPeZaouUftXpdBQeHk4AqHbt2jRq1CgaP3481alThwDQpEmTDLa/f/8++fj4kCAI1KdPHxo3bhxVqFCB/P39CQAFBQVRv379aOTIkeTl5UWCINCOHTsM6rhy5Qp5e3sTAAoNDaWpU6dSjx49CAB5e3vTlStXTLYnNDSU/Pz86O2336a3336b/Pz8TB4H/d8OarWaWrZsadQ/a9asIbVabXIsmBsHbdq0EefJ+ftQ/33Qpk0b8vDwoA4dOtDUqVMpPDyc7OzsyMXFhf78809Z2q8/llOnTqUOHTqIxyz/HOXu3bukUqmoXbt2NHLkSJoyZQr179+fHB0dycnJiaKjo032VcFxoWfq939h49XcvPbo0aPk4uJCdnZ2NHDgQJo6darYrpo1a9KDBw+Mcgt+/+hf+cdTYmKiOD9u3749TZ06lQYMGEBqtZpcXFzo6NGjJttVUEmMGSLzP4u+++47cR+HDx9OU6ZMocaNGxMAatmypcEclShvPu3k5EStWrWi9PR0g37Kf3zS0tLo+eefJ0dHRzp8+LBBHUX9XtdqtdSvXz/x5+7o0aPpvffeo7CwMPL09KRdu3YREdHixYsNjk9ISAgBoLffftug/PTp0wZ90q5dO/Fro0aNogoVKhAA2rhxo8F+jBo1iqpWrUoDBw6kyZMn07hx46hevXoEgF599VWT/W5OQECA2b9jiIjmzp1LAGjkyJH0+eefEwAaPHiwyW3v3Lkj/g7q0qULTZs2jXr37k0ODg7UpUsXkz/rn9X5Mi8+MtnJMQmtVKkSBQcHG5SZ+qUYERFBAGjbtm1GdWzevNloIUbOSag5O3bsMPkDU69ChQoUFBRkUFaSi49HjhwhANStWzejr6WmppKXlxc5OTmJC0/6fTF1/HJycqh69eokCAIlJiaK5X369CFBECguLk4sy87OpkqVKpGPj4/BZCgsLMxkm6QuvumZ6+f8v3wzMzPJ3t6e7O3t6datW0Z1vPnmmwSANm3aJJbJtfi4aNEiAkBff/21yf1v0qQJVaxYUfx/qe0v6vEsjH58/fzzzwSANm/eLH5t7ty55OLiQrt27ZJl8bGo36t6Op1OXED86quvDPpJo9FQSEgIubq6Gk2iiYgePHhAarWaOnbsaHI/ly1bRgDohx9+IKK8ibogCFSzZk3Kzs42+R5znnbxcenSpWLbpNBPgH7//XdJ20tZfCQi+uCDDwgA2dvb0507d8xux4uPjLGC+EPn0vWhc34vvviiUVvMLTKtXbuWANDw4cMNfgdmZWVRaGgoAaBTp06J5ZGRkQSAVq5cKZYdP35c/CBr4cKFYnlcXBy5u7uTn58f5ebmiuX6hbM1a9YY7Iv+g7mCv7/1xyY4ONjg+CcnJ1NwcDAJgkAnT540aqt+wfWff/4xqK9Ro0bih6xSFpK+/fZbAkBNmzY1u/gIgKZOnWrwvn379hEAatCggUH507a/oP79+xMAOnPmjFiWmZlJt2/fNtr2/Pnz5ObmRp06dTIot8bi49N8gG5p3qE3fPhwAkDTpk0zKP/pp58IANWqVYu0Wq3FeuQeM3qmfhZpNBry8PAgR0dHiomJEcu1Wq148sTHH39sVNfOnTtJrVZTjx49xO+n/P2Uk5ND3bt3J5VKZbTgT1T07/Xly5cTAHrppZcMFjyJiNLT0+nhw4cm22zp55m5n88XLlwgANS7d2+D8hs3bhj8/CDK+ztB/zfGsWPHTOaYYmnxMTc3l1q2bEkAyMHBgfz8/Ojx48cmt9W385NPPjEoX7NmjfgzgRcf8/Bl16xUSklJgZOTk8Xt9JcNmLpspkOHDgDyLo8oCfr7yIWEhMDNzU08Xbxv374A8i73LUin00Gj0cDFxaVIWUuWLMGsWbPw8ccfIyoqCr/++it0Op2k9xbWR/pLhjIzM3HlyhWDr+n7Lz87Ozu0adMGRISYmBixfNSoUSAig/sS7t27F4mJiRg+fDjs7P57tlXLli0BAO+99x7u379vcf+fpp/196RzcnJCTk4OatWqZfKy75IcI3/++ScA4K+//jJ5/6vMzEwkJSUV+RLppz2ehalTpw46duwoPoFUp9NhzZo1CA8PN7psOL/4+HiTbTN1r8en/V4VBAHvvPMOgLynsOsv6crKykLv3r0RExODtm3bonnz5kbvPXnyJLRaLbKyskzup/4Y6S95PnXqFIgIHTp0gL29vdl2F8fGjRsxa9YszJgxAwMGDMC7776Lrl27IiwszGC7xMREvPPOO6hbty5cXFzEca+/1YCpcf+0EhMTxcvuc3Jy8OOPP8pWN2OMSZGTkwNHR0eL2+kfWjNr1ix4eHiI5eXLl8fMmTMBwOxlo8Vl6onednZ2GD16NLRaLQ4dOmTyfRkZGXBwcCiRfbKkKNkrVqyAq6srVq5cafA70MHBAXPmzAEAbN26VSz//vvvUb58eYwaNUosa926NZ5//nkAMLg1Tq1atRAWFobbt2+Lv3tv3ryJQ4cO4bnnnsObb75psC+jR49GnTp18Ntvv+HWrVtG+zpjxgyD4+/h4YEPPvgARGTywUahoaHw8/NDVFSUWPbnn3/izJkz4j2PLcnIyMDkyZPx3HPPYfTo0Wa38/T0xPTp0w3KunTpgpdeegnnzp0TL78uTvsLys3NFbP1HB0d4evra7RtvXr10KFDBxw5ckS2S1WlOn78OK5evYpu3boZPdTyww8/hJeXF7Zs2YLs7Owi1ZudnY2tW7eiQoUK+OCDDwy+9sorr6Bz5874999/cfz4ccl1yjFmLNmzZw80Gg0iIiLQsGFDsVylUmH+/Pmws7Mz+fOsT58+WLlyJX788UeD7z+9kSNH4qeffsKKFSvw6quvGn29qN/rq1atglqtRlRUlNEToJ2dneHl5VXkthdGP57Lly9vUO7v7290OyhBEDBu3DgAwMGDB2XbB7VaLfZFdnY2lixZYvJvouzsbGzbtg2VKlUyuh3YG2+8gdq1a8u2T2UBP+2alTrp6enIzMw0eT+FglJSUqBSqUxuW7lyZQiCgJSUFNn3MTs7G+3bt8c///yDxo0bY/DgwahQoQLs7OzEJzqaegDL/fv3kZubi6pVqxYpb+nSpUZlQUFB2L17N+rWrVvoe/Xtr1y5ssmv+/j4GGynXyisUqVKodtrNBqx7OWXX0b16tXx1Vdf4ZNPPoGdnR3WrVsHQRAwYsQIg/ePGzcOu3btwvbt283e/0fvafvZw8MDEyZMQEpKChYvXmyx7fnbIpdHjx4BAFauXFnodmlpaeJThqUo6vGUasyYMejfvz8uXLiA+Ph4xMfHY8yYMUYPb8nvxo0b+OijjyTv99N8r2q1WowePRrlypVDjRo18NZbbwEAtm/fDp1OhzZt2uDnn3/G7t270bt3b4P36o/B8ePHC51wpqWlAfhvHJiarMul4B9FFStWRNOmTQ3uEfTo0SM0b94cN2/exAsvvIBOnTrB09MTarUaZ86cwZ49e8w+4OlpjB49Gg8ePMBnn32GhQsXik+69/f3ly2DMcYKk5KSIv7+KozSHzovXLgQu3fvxtWrV8XfHXqFfehcrVq1ImXp/9DV/94MCgpChw4doFIV7byRx48fS/rAOz09HefOnUPVqlUxb948o6/rF6n0H9ZpNBrcuXMHrVq1knxv6AYNGgAALly4gBdeeEE8Tu3atTO6T55KpULbtm1x+fJlnDlzxqj/2rRpY1S/vszU/QzVajVGjhyJefPmYeHChShXrhxWrVqFWrVqoXPnzpL2f968ebh16xZ++eUXJCQkmN2ucePGcHNzM7l/v/76K06fPo2mTZsWq/36+wZmZWXhjz/+wIkTJzB9+nSDezUDed8L8+fPx7Fjx3Dv3j2jxcakpCSj77vdu3ebvIdjcnKy2Q+kTS3MJCcnG20n5QP0X375BVeuXBHHixSXL19GZmYmOnToYHK8d+jQAQcOHMCZM2dMjh1TijNmTN3X0VSfFtYf/v7+qFGjBmJjY5GammpwP3Mg797oM2fOxJdffmnwN9v06dOxYcMGeHt7Y8iQIUb1FvV7/cmTJ7h06RJq1apVYgtpv//+u9hnd+/exfbt2xEUFIRp06YZbJednY0VK1bg22+/xeXLl/HkyROD+7zK+cE8EeGTTz4R/3/nzp3iiS/5XblyBZmZmejYsaPRiVMqlQovvPAC4uLiZNsvW8eLj6zUuXr1KgAY3TTXlHLlykGn0+HBgweoVKmSwdcSExNBRChXrpzs+7hnzx78888/GDFihNFTiL/99luTn7oC/02Ig4KCipR3/fp1BAYGgohw584dzJ8/H8uWLcP48eMtfsqjb7+5swzv3btnsJ3+0yt9ubnt83/iLAgCRo4ciWnTpuGHH34QJw8vvfQSatSoYfB+R0dHHD58GD///DPOnTuHzMxMAHmTlIKLrE/bz56enpg1axZSU1OxePFii23P3xa56Pvz3LlzqF+/vuz1Sj2eUvXu3Rs+Pj6IiopCfHw8mjdvjqZNm5o8i1GvXbt2Jr8+a9Yso0XJp/1eXbRoEU6dOoXVq1ejd+/eaN26Na5duwatVouFCxdizJgxqF+/PsaOHYv27dsbTH719U2aNAkLFy602Af69xb2R0VxHTp0SJxkPnjwABs3bsSUKVNw9epV8VPmL7/8Ejdv3sTs2bONPsH/7LPPsGfPHtn2Z9OmTdi1axd69OiBKVOmIDAwEAMHDsSIESNw4MAB2XIYY8wc/tDZWHE+dNbTzxkLzsNMefz4MYgICQkJhX6oqF9w1X8waWqRzRz9tvrjU5wPU029R19m7gPlN954Ax9//DE2bdqEgQMHYvv27fjkk0/MPiAkv5s3b2L+/Pno2bMnOnfuXOjZtebaU3D/itP+gseobt26qFWrlkHZiRMn0LFjRwB5JwnUrl1bvIJo9+7diImJMTlm9+zZY3aeYW7x0dR4NaWkPkAvqXqfdswU5YN5oPD9jo2NRUpKitHi4/Tp03H//n20bdsWc+bMET8E+PTTT9G2bVscOXIE77//vtGxKer3ujU+mD98+LDBk6Xt7e0RGhpqtJDcr18//PDDDwgKCsKAAQNQqVIl2Nvbi39DyvnB/LJly/D7779j8ODBuHnzJrZs2YL+/fsbneig75+Cf9vomTu2zyq+7JqVOvrLMZo1a2Zx28aNGwOAyQUQfVmjRo3k2jWRfoHU1BO4jx49avZ9+oXCtm3bPlWuIAjw9fXFkiVL4OHhgVOnTll8T2F9lJaWhlOnTsHZ2RnBwcEAID5V2dT2Wq0Wx44dgyAIRv06fPhw2NvbY926dVi/fj10Op3RZSR6KpUK3bt3x9SpU8VLYCdMmGC03dP2s567uztq1aqFf//91+SCUkmOEf3l5X/88Yes9Rb1eEplZ2eHN954A1999RV+/vln2S4p0Xua79V///0XM2fORNu2bTFy5EhUrlwZ27ZtAwB0794dkyZNgouLC9auXYu7d+/i3XffNXh/8+bNIQiC5GPQrFkzqFQqHDp0yCqXInl7e2Py5Mlo0KABtm/fLi7EF3fcS5WQkIDIyEh4eXmJT2sdMGAA+vXrh4MHD5p8ArparYZWq5VtHxhj7Gk/dC7IWh86//PPP4iKisInn3yCWbNmoWvXrmbfV5wPnYkIOp0Ot2/fRmRkJGJjYzF+/HjJdejPBpOSre+zpk2bgvKeCWDypb+03NXVFUDeWVFS6bfVL0IW58NUU+/Rl5n7QNnHxwe9e/fG6tWrsWHDBgB5c1cpJk+eDJ1Oh0WLFlnc1lx7Cu5fcdqvPx65ubm4evUqmjRpguHDhxv83p4zZw6ysrJw8OBB7N27F59//jk++ugjzJo1y+zVTUDek+RNHfuCZ1Xmpx+v+V/Xr1832q6kPkAvqXqfdswU9r0jx37/9ddfWLZsGQYOHIjffvsNvXr1glarhVarRa9evfDbb79hwIABWLFihfh3dcFMqd/r+vFakh/Mz5w5U8xNSUnBjh07sHfvXrRt2xYZGRkA8m6l9MMPP6BLly64ePEivvjiC8yZMwezZs3CwIEDZd2f2NhYTJs2DX5+fli+fDnWr18PV1dXjB492ugp4/r+SUxMNFmXlFuMPUt48ZGVKhqNBsuWLYO9vT169uxpcfuhQ4cCyPuEKf+nWRqNRvw0R7+NnPS/gI8dO2ZQfvjwYXzxxRcm35OUlIRNmzbBy8sL3bp1K1b+3bt38eTJE6N7YZjywgsvoGbNmvj555+NzpL85JNP8PDhQ4SHh4v3BGrZsiWCgoKwb98+8f56esuXL8fVq1cRGhpqdKlw5cqV0bt3b+zbtw9RUVGoWLGi0adDRfU0/VzQ8OHDkZOTg2nTphmcmn/27Fls3LgR5cuXL/Z+mst1d3fH9OnTceHCBaOvp6enG00IpCjq8SyKkSNHonz58qhVq5bsv8iL+r1KRHjzzTfFe4nqP2XWj7v8469Tp04YPnw4vvzyS/z2229ieZUqVRAWFoYTJ05gwYIFBsdf76+//kJ6ejqAvDHct29fXL161eSnwYmJieJ9aOTy+PFjJCQkGHyKbm7cb9myBf/73/9kyx4xYgSSk5OxYsUKg8uuVq1aJS6M3rhxw+A9Xl5eSEpKEhdKGWOsuPhDZ/Oe5kPnp8l2d3dH3bp1cenSJZOXyxZUvnx5VK5cGZcvX5b8gdT58+cBQDxzU3+cjhw5YvT7mYhw5MgRg+3yM9Xn+jL9GDFlzJgxOH/+PGbPno2wsDBJ96o7evQovvvuO0ycOBE1a9a0uP3p06dNLsoW3L/itF9PrVajRo0aWL58OYC8qxn0rl69Ci8vL7z44osG70lPT8c///xjsR0loaQ+QK9Tpw6cnJxw8uRJcU6XX3F+NjzNmJGqsP64desWrl69iho1ahic9ZidnY0RI0agfPnyWLZsGdRqNbZu3YqKFSuiYsWK2Lp1K9RqNZYtWwZPT0+MGDHC4B6aRf1ed3Nzw3PPPYfr169b5fJhd3d3hIaGYsiQIbh27Zp42yT9z+Du3bsb3epBzg/mtVothg4dioyMDKxbtw4eHh6oUaMG5s2bh/v374u3f9ILCgqCk5MTTp06ZTQ31ul0OHHihGz7Vhbw4iMrNT755BMEBwfj/Pnz+PjjjyXd+6dt27YYP348Ll68iPr162PixImYMGEC6tevj8uXLyMyMtLkpEt/GWf+F5B3r4iC5fr7R6xevVqc9IWGhiIwMBDz589H9+7dMWXKFPTu3RsvvfSSyYnpxo0b0apVKzx48AD+/v747LPPTD6gY+PGjdi9e7fR+zdv3ozVq1cjKioKM2bMQKtWraDVajFy5EiLfaRSqbBx40a4uLjglVdewWuvvYb3338fHTp0wGeffYaaNWvis88+E7cXBAFffvklnJ2dERoaioEDB+L9999Ht27dMHHiRPj6+mLFihUms0aPHg2dTof79+9j6NChxb7BelH72ZRJkyahZcuW2LRpE1q0aIGpU6ciIiJC7MN169aZvGxo7969BuNg7969ACyPHf148fb2xtatW/HkyROEhISgR48eePfddzF+/HiEhoaiSpUqJu8JY0lRj2dR+Pn54ebNm7hy5YrRDaWLq6jfq2vXrhXvASPlHjOff/45qlSpgpEjRxpMPFetWoVGjRrhvffeQ0hICEaNGoUpU6Zg0KBBCAoKwvPPP2+wGLpq1SrUrVsXc+bMQZMmTfDuu+9i0qRJCA0NRbVq1Yp0locp+gfOzJo1C2+99RYaNmyIhw8fYvDgweK9YgYPHgwPDw+MHz8eYWFhmDx5Ml5++WUMHjzY5I3Dn8aaNWuwf/9+9OvXD+Hh4QZf8/b2RlRUFFJTUxEREWHwR1HHjh2RmZmJbt264cMPP8Qnn3wi/oHEGGNFxR86S1OUD50BIDMzE6tWrYKdnR0GDBgg6T2RkZFIT0/Hm2++aXQ/SyDv7Lb8963r3bs3Hj9+bHBbnD/++ENcTP7888/F8mvXruG7775D5cqV0bp1awB597Tr0KEDLly4gPXr1xtkrV27FpcuXULHjh1N3i9z9uzZBpdXazQa8XLYwo5/x44d0bp1a7i7u2Ps2LEWeiRPZGQkfHx8jB4iY05ycrL4oAq9/fv349dff0X9+vXRtGlTAMVrf0Hnzp0zKgsICMDjx48NPgDXarV49913TZ45bA0l9QG6g4MDwsPDkZSUhLlz5xp8bd++fdi/fz9q1aqFF154ocj7/DRjRqpevXrBw8MDGzZsMDhORIQpU6YgNzcXw4YNM3jPnDlzcOHCBSxevFi8/YSzszNcXV3h6uoqzt8rVaqExYsX4+LFi0bjsajf6+PGjYNWq8XYsWPFMxH1MjMzxXusy4WIxA8r9Mz9DL5w4YLRMS+O+fPn488//8TIkSMNHoo0duxYdOzYEd9++y127twpljs6OiIsLAyJiYkGP/MAYN26dYiNjZVt38oE2Z6bzdj/u379OgGgLl26mN3m0KFDBIBGjRollrVr1446depEe/bsMfmeDRs2EADasGGD0dfWr19PzZs3JxcXF3JxcaHmzZvT+vXrzeY+7WvmzJliXdeuXaO+ffuSt7e3mPntt9+KGfm3bdeuneSMoUOHiu8bOnSo0de9vb3phRdeoE2bNpk/CCacPXuW+vXrRxUrViR7e3sKCAigt99+mx48eGBy+5iYGIPtq1WrRmPHjqW7d++azdDpdOTv708A6NKlS0XaP/24yd9+oqL1MxFRQEAABQQEGJSlpqbS+++/T7Vq1SIHBwcqX7489ejRg06cOGG0HzNnzizWGDl06JBBfZcvX6YRI0ZQQECAmN2gQQOKjIyk6Ohoi+03p6jH0xT9+Lp+/brZbcz1MwBq166dyffo+7BgXxBJ+169ffs2lStXjho3bkw5OTkGXyusn77//nsCQO+8845BeXp6Os2fP5+aNm1Krq6u5OzsTNWrV6fevXvT119/bZSh0WhoxowZVKdOHXJ0dCQPDw9q1KgRffjhh5SdnW2yzabGnak+yf8qX748NW3alJYvX260D2fOnKGXX36ZypcvT+7u7tSuXTs6ePBgoT8HTdH3V8GfXW5ublSpUqVCx0t4eDgBoJUrV4plqamp9Oabb5KPjw+p1WqjuvXtLGxMMcbKlqed982ePZsqV65MAGju3LlG7zH38278+PEEgKpVq0YTJkygt99+m/z8/AgARUZGmszt3r07RUVFGbwAUO3atY3Ka9euTQAoKiqKTp48SUR5P/sCAwMJAL3yyiv03nvvUa9evUitVlO/fv2MfhZu2LCBatWqRQCoUaNGNHPmTIOXfl44dOhQ2rVrl/g+/e/lTz75hKKiomjVqlX0wQcfiHOrTz/91OLx2LVrFzVp0oQAUGBgoFF2r169CAD16tXLoG91Op2Y7+PjQ4MHD6YpU6bQsGHD6PnnnydBEGjr1q3i9rdv36aKFSuSIAjUt29feuutt8jb25sCAgIIAD333HPUv39/GjVqFFWoUIEA0ObNmw329fLly2IdvXr1omnTplHPnj3F+e6VK1cMttf3W2hoKPn5+dHbb79tcPwL/v6X+jvT1Jwm/9z9q6++sliv/vugTZs25OHhQR06dKBp06ZReHg42dnZkbOzM/3555+ytF9/LD/44AMaMmQIubq6Gu3nDz/8QADI09OTRo4cSZGRkdSwYUOqUKECtW/f3uh3taW+MjXPKWweaW6+dvToUXJxcSF7e3saNGgQTZs2TdyfmjVrUmJiosVcUxITE6lGjRoEgDp27GjQ9y4uLnT06FGLdRDJM2ZMMTef/u6770itVpOrqytFRETQlClTqGnTpgSAWrRoQRkZGeK2586dI3t7e+ratatR/eb6qUuXLmRvb0/nzp0Ty4r6va7T6SgsLIwAkK+vL40ZM4amTJlC4eHh5OXlZfAzLD9Lf2fo+6Rdu3bimJ40aZLY/jp16lBmZiYREeXm5lKLFi3E77HJkyfTgAEDyNnZWfwZLPVvKH1/FTx+Z8+eJQcHB6pevTqlpqYavef69esm58937twhX19fAkBdu3aladOmUe/evcnBwYFefvllk38TPavzZV58ZEyigIAAo18YUrVr107SD0Sp25VWd+7cITs7O2rTpo3Su2J1+kmWqQU3xpRiavGxJD2rkynGnmX8oXPp+tDZVB3mXqY+RNy2bRt16tSJypcvT/b29uTr60vt27enzz//3OgDqwsXLlCHDh3IycmJgoODad++fWLbr169Su3atSNHR0cKCgoyWnjUi4+Pp+HDh5OPjw/Z2dmRj48PDR8+nOLj44221dedkZFB7733HlWrVo0cHBwoODiYli1bRjqdzmB7ORaSWrZsKane/Itt58+fp1deeYXKlStHrq6u1KlTJzp16pRs7de/VCoVValShTp16kQ//vij0fbff/89NWnShFxcXKhixYoUFhZGV69eNbkoZK3FR6KifYAudfGRiOjBgwcUGRlJAQEBZG9vTxUrVqR+/foZLLxZYu3FRyKiI0eOULdu3cjT05McHBwoKCiIZsyYQU+ePBG30S++ubm50Y0bN4zqMNdP8fHx5ObmRi1atKDc3FyDrxXle12n09G6devo+eefJ1dXV3JxcaHatWvT6NGj6ebNmybbLHXxMf/L1dWVgoODacqUKUYL0YmJiRQREUFVq1YlJycnatCgAa1cuZKuXbtW7MXH7OxsatSoEQmCUOjfcmvWrCEA1L9/f4PyGzdu0IABA8jT05NcXFyoTZs2dPjwYbMnZDyr82WByMRNsBhjRgIDAzFs2LCnulS2ffv2CAwMLPTpeEXZrrSaMmUK5s+fjy1bthhdylnWxcfHo3r16gZPM2ZMafpxOXPmzKf62VVU+iedX79+XdLDIxhjrLSy1XnfsGHDEB8fb/I+ck+zXVG1b98ehw8fNnmf5dJcd3Hpf98OHTrUZufxjD0rAgMDERgYKPvPP6me1fmyndI7wJiteO211yTdDN2UYcOGwdPTU7btShONRoOoqCjcuHED69atw3PPPYewsDCld8vq3N3dMWrUKFStWlXpXWGMMcYYY4wxxkoNXnxkTKKCN+stioI3Cy7udqXJ48ePMW3aNDg5OeHFF1/E6tWrjZ5C9iyoUKGC+PAZxhhjjNk2W/3QuXfv3pKeYit1O8YYY0wOvPjIGCuWwMDAUnn5C2MM8PT0xMyZM612KwB9jq2dwc0YYwXZ6ofOvXv3lnU7xhhjTA58z0fGGGOMMcYYY4wxVuYtWbIEnp6eil11+Pvvv+P333/HhAkTnqkP7HnxkTHGGGOMMcYYY4wxViJUSu8AY4wxxhhjjDHGGGOsbHrm7vmo0+lw584duLu7QxAEpXeHMcYYY6zIiAipqamoWrUqVCr+LNkW8ZyUMcYYY7asKPPRZ27x8c6dO6hWrZrSu8EYY4wxVmy3bt2Cn5+f0rvBngLPSRljjDFWFkiZjz5zi4/u7u4A8jqnXLlyVssdMGAAtm3bxnmcVyrzlMjkPNvOUyKT8zivtGdaMy8lJQXVqlUT5zXM9vx37G5BQN6/Cf+dAWmn1iEoIA2xN1yRq1VZLBdAEuoYAGBbMetQJk9aHYXnyd9uefMieiZgQWQsCjPg/U+x7dP3C91GTgPmrS2zP0efhTwlMjmP80p7JufJpyjz0Wdu8VF/WUu5cuWsuvhob2/PeZxXavOUyOQ8285TIpPzOK+0ZyrRRr5c13b9d+zKAdBP2v87njodoXa1LFy+7iGpHCAJddgDKFfMOpTJk1ZH4Xnyt1vevDqB91DOzRWFsbezs7iNnMr6z9GynqdEJudxXmnP5Dz5SZmP8k2CGGOMMcYYU4gAQkjtVDQMSoVKINjb6aASCI2CUrF+xgWESCyXUocgULHrUCpPSh2W8uRut9x5o1+9rfRwZIwxxkrEM3fmI2OMMcYYY6XFnLFxmBCeDABYvdMP1xJcUMM3HaNfvQ1nJx2Or4uWXG6pjmXbMhE54Eqx6lAyz1IdUvLkbHdJ5DHGGGNlEZ/5yBhjjDHGGGOlQEamCou3+GP8gjpYvMUfGZkqg/JzV90MyhljjDFbwGc+MsYYY4wxppDpq2pj2wEBEIBzce5QqwlarYBN/6uKgytPodO4ZoiJtVz+1Y9VLdZBcMK7S4KLVYdSeVLqsJQnd7utkVdYnx5fF81nSzLGGLMJvPhogVarRU5OTrHrqVChAjIzM2XYI87jvLKRact59vb2UKvVstTFGGPs2UYQcDbuv6dd63LzbtoeE+uOiNn1EBPrDidnHSpWzIEgAMlZ9pi8JgjJWfao5p8l1qPJtgcAgzLjbSsCyCpmHcrkSauj8Dz5213yeYX16VcHq2JYjzsoSbY8X+M8ZTJ5zs0YM4UXH80gIty7dw/Jycmy1Dds2DBcv35dlro4j/PKQqat53l6eqJKlSr8pFnGGGPFpv9VQvRfmVpNuH7HGSNG3EX3Hho4OOi3I9jbEfpHpMDwCcqmFNx2GIDrxaxDqTwpdVjKk7vd1sgz36fuLlpct/OyUG/x2Pp87VnPUyKT59yMMVN48dEM/cJjpUqV4OLiUuwfdoIgIDAwUJ6d4zzOKwOZtppHREhPT0diYiIAwMfHp9h1MsYYe7blX3TU02oFDB5yH42ez4WnZyUALshbfCK4u+YiNc0OBRep8hiWGW4rAAgsZh3K5Vmuw3KevO22Tp65Pq1SIQsVPYp/hVZhhMSHNjlf4zzlMnnOzRgzhRcfTdBqteLCY4UKFWSpU61Ww8nJSZa6OI/zykKmLec5OzsDABITE1GpUiW+HIQxxthTE0AIqZ0KKnAPwOdDktG1Wwp0dv7IzvGCIOQtUro46VDTNwexNx2Qnqn6r9xRBxLyHkxibltADcCxWHUoliehDot5MrfbKnmF9GnVijlQqRxKdHza8nyN85TJ5Dk3Y8wUXnw0QX+PRxcXF4X3hDFWWul/PuTk5PBEiDHG2FObMzYOE8KTAQCrd/rhWoILavimY3jfO7ir9kR1X+BJRiayslVwdNDB2zMHKhWhTkAaHiTbG5QDMCrLv+39R4TKXpnFqkPJPEt1SMmTs93WyiusTxkr63jOzVjZwIuPheD7SjDGzOGfD4wxxuQwrv8tODu5AgAmDroplmdCBQBQq4DKXtlG71OpyGR5YdumpGkNvv40dSidV1gdUvPkarc188z1KWNlHc+5GSsbePGRMcYYY4wxhazcXs3smY+wA3Qk4P4jB6Mz4XQ6QfLZdPptM7LUuP/IoVh1KJlnqQ4peXK221p55vq0qHUwxhhjSuHFR/ZU0tLS8OjRI7i5uaF8+fJK7w5jjDHGmE2avqo2th0QgAL3fDxwuiIWLLqFawnOyMx2Eu8B+FDjgCD/NMTedDW4N2BSsgNQ4D6CBbcFBNy671SsOpTKk1KHpTy5222NPHN9WtQ66gSk8QIkY4wxxaiU3gFmO7Zv346XXnoJ7u7ucHNzg7+/P+bPn6/0bjHGGGOM2SyCgLNx7jgb6w4dCcjJVUFHAi7HuyIp2R6Z2XkLTkR5TzpOz1Qh/q6zuBClL8/IUokLYua2zVO8OpTKk1KHpTy5222NPHN9WtQ6HiTbP/0gZYwxxoqJFx+fURcuXMDrr78OX19fODo6omrVqnjttddw4cIFk9tPnToVYWFhcHd3xxdffIEDBw7g4MGDGDt2rJX3nDHGGGOsbBGEvFd+ajUhVysYlQsCkJWtMio3V6+pbeWoozh5P/ywEc2bC2jeXIXmzVV44QUn9O0bhPnz38KjR/dLbJ+VbrfSdZRGLVq0gCAIiIqKMvn1jRs3QhAEs68///xT3Hbbtm14/fXXUbt2bQiCgPbt21upFYwxxizhy66fQTt37kR4eDi8vLwwYsQIVK9eHfHx8fjyyy/x/fff49tvv0WfPn3E7Q8fPox58+Zh7ty5mDp1qoJ7zhhjjDFW9pCJq2G1WgF2ajL6GhHg6KBDRpblxSRz28pRhxx5o0Z9hKpVqyM7OwtnzhzDjh1ROH78f9j302kQlbPafhSlDmvnyVlHaRMXF4eTJ08iMDAQmzdvxpgxY8xu+/HHH6N69epG5bVq1RL/HRUVhb///hvNmzfHw4cPS2SfGWOMPR1efHzGXL16FYMHD0aNGjVw5MgReHt7i197++230aZNGwwePBhnz55FjRo1AAALFy5E69ateeGRMcYYY0xmAgghtVNBBe75WDcwDRU9c0BqHTKzSbx/n4uTDoE+GYjNMbyvn4ujDlTgHoAFt81DxapDnry8FdWO7bugXv1myMhUoU+fEfDw8MKWLYsR888ONGkx1DBPwn5YbJ/M7bZKnrk+LWId+gfUlCbffPMNKlWqhM8//xz9+vVDfHy82W27deuGZs2aFVrfpk2b4OvrC5VKhfr168u8t4wxxoqjdJ5/z0rMggULkJ6ejrVr1xosPAJAxYoVsWbNGqSlpRncy/HPP/9E/fr1MXDgQHh5ecHZ2RnNmzfH7t27xW3S0tLg6uqKt99+2yjz9u3bUKvVmDt3LgBg2LBhCAwMNNpOEATMmjVL/P8bN25g7NixCA4OhrOzMypUqID+/fsbTUx+//13CIKA33//XSw7efIkOnfuDHd3d7i6uqJ9+/Y4evSowfv0l3GcOnVKLEtKSjLaDwAYOXKkyX3+66+/0LVrV3h4eMDFxQXt2rXD8ePHjbZLSEhAREQEKleuDEdHR9SrVw/r16832s4U/WUlS5YsMfpanTp1IAgC3nrrrULbVVjbTp8+jW7duqFx48Zwc3PDSy+9ZHAJCwCsWbMGKpUK27dvF8vi4+MhCAI2btwolsXGxsLLywuDBg0yeH9ycjImTJiAatWqwdHREbVq1cLatWuh0xl+Cq/T6bB06VI0aNAATk5O8Pb2RteuXcW2FHbZTf7La/RjQv9ydHTEyy+/jLlz54IKnEKib3+5cuXMtp8xxhgrKXPGxuHE+mj88WU0Fk64glGv3sbCCVew+ZOzUAmEGr4ZqFY5E96e2ahWORN1AtJgpybUCUgzLA9MQ92CZQW2dbCnYtchR567Sy4AINAnw6CObp1fBADcvBmPOgFpcHO8gzVR72Dw6w3Q4nkPePn54Z2JXZHyMNpoP7w9kvHlumUYEBaEJs1cUS0oCNPf7w1txkV4e2aDsq+gXgM72Ht4oF4DOzRvrkKzZnmXfddraIdxY9obtMXLJR6jxo9Dh44+ePFFZwx+PQQnjqwzaPedhKuY8HYHdHypKly9vdGlawCWL3kT9rgntvvY8SOo18AOZ05tNdrndu3c8dmnQ8RtUzSP8OXaCRj8egO0beuODh088M7Errhw8axBn9689gvqNbTDhdObjfrfs2pVzJs7RCw/fuQL1Gtgh3/O/GMw7pKSHkJw88SsOXMNyk/HxKBbn34o51MNbpV9MWTIEJPzIlNzu3nz5hnN7QqzZcsW9OvXDz169ICHhwe2bNlS1G8fA9WqVYNK9XR/3uafO545c8bgawkJCVCr1RAEAd9//71YPmzYMLi5uRnV9f333xv9bQLk3T+/T58+cHZ2RsWKFfH6668jISHBYJtBgwahQoUKiIuLE8v0c/v8fwNt374dKpUKa9asMXj/5cuX0a9fP3h5ecHJyQnNmjXDr7/+arSPycnJmDhxIgIDA+Ho6Ag/Pz8MGTIESUlJRvNoUy/93xOzZs0yKHd3d0ffvn0N/k7Mv89NmzYttP2MsbKLz3x8xvzwww8IDAxEmzZtTH69bdu2CAwMxE8//SSWPXz4EGvXroWbmxsiIyPh7e2Nb775Bq+++io2b96M8PBwuLq6ok+fPti2bRsWLVoEtVotvn/r1q0gIrz22mtF2teTJ0/ixIkTGDhwIPz8/BAfH4+oqCi0b98ee/fuNfu+f//9F+3bt4eLiwsmT54MFxcXfPHFF+jUqRMOHDiAtm3bFmk/zPntt9/QrVs3NG3aFDNnzoRKpcKGDRvQsWNHHD16FC1atAAA3L9/H88//7y4SOjt7Y2ff/4ZI0aMQEpKCiZMmGAxy8nJCRs2bDDY9sSJE7hx40ax2nDhwgW0adMG5cqVw5tvvokqVapgzZo1aN++PQ4fPoyWLVsCAEaNGoUrV65g6NChCAwMRPPmzY3qevToEXr06IG6detiw4YNYnl6ejratWuHhIQEjBo1Cv7+/jhx4gQ+//xz5OTkGCyqjhgxAhs3bkS3bt3wxhtvIDc3F0ePHsWff/6JZs2aYdOmTeK2R48exdq1a7F48WJUrFgRAFC5cmWDfXr//fdRt25dZGRkYMOGDXj//fdRqVIljBgxwqj97733Huzt7U22nzHGGGMl78aN6wCACl5e4v//cmAvevZ4Fc8F++HBg0SsWb8RfcK64ODPp+FfrQoAQKvVYvDwvjh6/BB69+yPieNG40laKg78dgiXYy/Ap+p/l+aG9++Hrp1fRmq6Gjm5AuztCJ8t+NBgPzIyM/BKaHf8e+0axo0ciYqVamDvjzvx9qSR0OU8QuTYvMuDMzIy4FPFF6/26AIPDzecu3AZq774Agl37mLzV9+jqK7Fx2PPjz/hlW59UbVqIB4/vo/NW79Eu67dcT46GvbO/k/Vr3o6nYAHyfbIylbhyZO8B9AQCbj/yAFZ2Spcv34e3Xu/gnLu7nhvQiTs7e2xYu06o3mRubndtGnTcPfuXZMfmBf0119/4d9//8WGDRvg4OAg/l3Rv39/k9trNBokJSUZlAmCgAoVKhSrTwrSz7mXLl0qln311VdwcHBAZmbmU9e7ceNGDB8+HA0aNMDcuXNx//59LF26FMePH8fp06fh6ekJAFi/fj06duyI7t2746+//kL58uWN6oqOjsbQoUMxceJEjBo1Siy/cOECXnjhBfj6+mLq1KlwdXXFd999h7Fjx6Jy5cribbWePHmCNm3a4NKlS4iIiECTJk2QlJSEvXv34vbt26hbt67BnHvt2rW4dOkSFi9eLJY1bNjQYJ/02yclJWHp0qXo378/zp8/j+DgYIP2N2/evND2M8bKLl58fIZoNBrcuXMHvXr1KnS7hg0bYu/evUhNTYW7u7t4ptiPP/6Idu3aAchbjGratCneeecd9OvXDwAwZMgQbN68GQcOHEDXrl3F+r755hu0bdsW/v55EyaVSmV09pkp3bt3F+vWCw0NRatWrbB//36jX3p6U6dORVZWFqKjo1GvXj0AwPDhwxEcHIx33nnH6IzAp0FEGD16NDp06ICff/4Zwv/f2XvUqFGoV68ePvjgA/zyyy8AgOnTp0Or1eLcuXPiBGn06NEIDw/HrFmzMGrUKDg7Oxea16NHD+zevRt///03mjZtCiBvcvLqq68W61PiDz74ADk5OTh27Bi0Wi1q166NIUOGIDg4GO+99x4OHz4sbrtw4UL8+++/6NWrF6Kjow3qycnJQd++fZGbm4vdu3fD0dFR/NqiRYtw9epVnD59GrVr1xb7ycnJCStWrMCkSZNQrVo1HDp0CBs3bkRkZKTBhG/SpEnieHn99dfF8tzcXKxduxa9e/c2eVYqAHTu3Fk8G7J169Zo2LAh/vnnH3HxMX/79bcZMNd+xhhjrCRMX1Ub2w4IQIHLrg+crogFi27hWoIzMrOdxEtoH2ocEOSfhtibhpfWJiU7AAUuwy24LSAg7oYTFi13xBNNLtw87BDaU4Czs/Q6ipp3676TUXlqet6fIOdis5GtyoAmRYOzZ49jweK5cHJyRteXu+LyDVe4ezXD9u9jIQgquDjpEOSfhudfjECPnvWwftMmjBgxA0nJDti1eyOOHj+EiROnYdCgOeK2PV+dgbQMAQ+SBdxNypubNGoYgmatIgza4rR8EdIyVbh1P6+ft2yJwqUrV/DVF1+g2fPDkZ6pQqcub+HNN9tj+sefoHX7UVCpnVCzVn1MmdZbzIu96YqERML//rdJbLdWlzdHfKixx4NkB4O+IwIys9XitnXr1MPu3VeQmW0n7lunzkMR2qse5i37FkOHfQhAwIPHDgCAhAdO4j7r+x8ANE/sxPJHmrxFxlwtcPnGf8fw8WMnAMADjb247aw5nyA7OwdH9u9DrZqBAIAXO3ZCt27dDOZF5uZ2VatWxYIFC8S5XWG++eYbVKtWDS+88AIAYODAgVi/fj0uXrwo1plfp06djMocHR2LtSBoSp8+fbB582YsWLAADg55/blx48ZizblzcnIwZcoU1K9fH1u2bBEvCX/xxRfRo0cPLF68GB999BGAvMXP3bt3o2XLlujbty/2799vUNetW7fQq1cvdO7cGQsWLDD42ttvvw1/f3+cPHlSnIuPHTsWzZo1w5QpU8TFxwULFuD8+fPYuXOnwX3+P/jgAxARBEEwmHMfPHgQN2/eNCgrKP/XPD09MXz4cJw9exbBwcEG7T9y5AicnJzMtp8xVnYpftl1amoqJkyYgICAADg7O6N169Y4efKk2e137tyJzp07w9vbG+XKlRMXomxBVkYOdi/+E6vH78PuxX8iK8O6915JTU0FALi7uxe6nf7rKSkpYlnz5s3FhUcAcHZ2xtixY3Hv3j3880/eZRydOnVC1apVsXnzZnG78+fP4+zZswa/kCpVqoTExERkZ2cXuh/5F+RycnLw8OFD1KpVC56enrh48aLR9hqNBomJiThw4AC6dOkiLjwCQIUKFTBs2DD8/fffuH//fqG5Upw5cwZxcXEYNGgQHj58iKSkJCQlJSEtLQ0vvfQSjhw5Ap1OByLCjh07EBoaCiISt0tKSkKXLl2g0WjE/itM5cqV0b17d/GMwvT0dHz33XcYPny42ffoPyHWvx49emTwda1Wi19++QW9e/cWF94AwMfHB4MGDcKxY8cMxoBKpcLWrVtRoUIFhIaGIi0tTfzamDFjEB0djR9//NHocv7t27ejTZs2KF++vMH+tG7dGlqtFkeOHAEA7NixA4IgYObMmUZt0S/uFpW+D27evIkvvvgCOp0OHTt2fKr2M8YYK7uUnI8SBJyNc8fZWHfoSEBOrgo6EnA53hVJyfbIzM5bxCMSAAhIz1Qh/q6zuLinL8/IUv3/fQjNb5uZKeCNNwQsWChg7Xp7LFiY9/8ZGdLrKEpeHnN1AG+M7II2baugRw9/vP9+OFxc3DB//k7kCDWRnqmCg4MTBEENQEBqGuH0xXQI6nIICAjG5cunxf3Y/8sueHpWRFjYYKM8QVCJ+wcAj1Lsjdqio7yzAvVlJ078jAoVquD5FwaL26rVDhg4MBLp6U9w/MRRg/YlJqXi1LkU/H7kEI4f/x8aN24r7se9h3mLQGlpT/D48UMkJz/E3fuPcPde3rws7/PVvG3vPvJEZrYdAAG5uTokJz+CoC6H6oFBOH/hjEEmADxOfoLk5IdivXfuPQIRkKsVDNoHALHxWbhz75G4vUbzGACQmyuIeX/++QvatesN9/JB4visVKmS0bzI3NyuU6dOBnM7c3Jzc7Ft2zYMGDBAnON17NgRlSpVwg8//GDyPStXrsSBAwcMXj///HOhOU8jNDQUgiCIV1kdPXoUt2/fxoABA8y+J38fJCUliX9z6Z06dQqJiYkYO3aswQf03bt3R506dQyuOAPy+vynn37CX3/9hbFjx4rlT548QWhoKCpWrIgtW7YYXGL+6NEj/PbbbwgLC0Nqaqq4Lw8fPsSLL76IuLg48RLnHTt2ICQkxGDhUe9p59z6vEuXLmHr1q1wdXXF888/b9R+/cJjYe1njJVNip/5+MYbb+D8+fPYtGkTqlatim+++QadOnXCxYsX4evra7T9kSNH0LlzZ3z66afw9PTEhg0bEBoair/++guNGzdWoAXSZGfm4r0XNuJazH2o1AJ0WsKhTecw//gwODrbW2Uf9IuKBX8hFmRqkbJOnTpG29WtWxdA3r3/vLy8oFKp8NprryEqKgrp6elwcXHB5s2b4eTkZHAJRevWrTFv3jx88MEHiIyMNPgllF9GRgbmzp2LDRs2ICEhweBsSVNt6N27t/hv/Sn+5va34OW5RaW/D8vQoUPNbqPRaJCTk4Pk5GSsXbsWa9euNbldYmKipMzhw4dj+PDh+Pzzz7F9+3aUL19eXEgzxdQnxPk9ePAA6enpZvtKp9Ph1q1bBou4Wq0WSUlJuHfvnrjwuWrVKpw8eRKCIJg8LnFxcTh79qzRoqSevv1Xr15F1apV4fX/l1rJIf+YUKlU+OCDD9C3b18AT9d+xhhjZZPS81H93/v5LwxRqwm5WkE8qy3/tlnZKqNyc/Xm33bnTg/ExuZdapubd9tFxMYCO3cCBW7XLEuepfL33lsBf/8g2NnZw8urMgICgqFWC8jK1kEQAK1Wh2+/XYrvv1+FO3euQ6vViu/18Pjvctvbt68iICAYdnZ2FvfZVJ8WdPfuDfj710ZOrp3BtoGBdcWv5zd+fFecP/8XAKBVq6749NNt4n5k5+Yd3NmzIyz2XUYmsGXLYnz/fZRRe93cKxq9Z/bsEWbrKmjo8K7Ghfk8fvwAmZnpCAwMQla24fkpBedFUud25vzyyy948OABWrRogX///Vcs79ChA3788UfodDqjeze2aNHC4gNn5GBvb4/XX38d69evR79+/bB+/Xr07dsX5cqVM7l9Wlqa2X7Q098mydScs06dOjh27JhReUpKCjIyMrBu3TrExMQAACIiIhATEwMfHx+DsQHk3XaKiDBjxgzMmDHD5H4kJibC19cXV69eFefDcsnfB25ubti8ebN49uvTtJ8xVvYouviYkZGBHTt2YM+ePeJ9+GbNmoUffvgBUVFR+OSTT4zeU/AeIp9++in27NmDH374oVQvPp7YehXXYu6DdAStLm8Gcy3mPn5e/Td6T3zeKvvg4eEBHx8fnD17ttDtzp49C19fX/GXrKVLgvMbMmQIFixYgN27dyM8PBxbtmwRbyKt17NnT0RERGDBggVGlwvkN378ePE+h61atYKHhwcEQcDAgQNN3sx64cKFqF27tsXLyuWgz1+wYAEaNWpkchs3Nzc8fPgQQN6lCOYWKs1dPl5Q9+7d4eDggN27d2PDhg0YOnRooTfVXrlyJYKC/vvkOiUlpdgTjRkzZiAzMxN79+4VPwE+efIkli1bhq1bt2Ls2LE4efKkwX7pdDp07twZ7733nkFdt2/fhp+fn8E+ym3hwoUICQlBTk4O9u3bh3nz5sHOzs7k2ZWMMcaeTaVhPmpqIUyrFWCnJqOvEQGODjpkZFm+gKngtgkJ9lCrIS48AoBaDRT2zIfi5Fkqr1evBZ57rhn+O6Mv79Y2+m03bPgUq1fPQM+eERg9+mP4VPZAeqY9Fi2aWOiDTQrbZ1N9ao7Udr/77jLkZt/HuQtXsHHjZ5g7dzRmz/4GRICDXV7YG298iEaN9PdczyubNKmnwT6v3/Apliyd9f/tnY1y5bwgCAKWLp1gsr1vvDEDjRrlv5c5YdKknibbN+vDZahYqQ70fZ2WloIpU4znhfq+K4y5uZ2epbmd/iqpsLAwk18/fPgwOnToUGgdJSkiIgKNGzfGlStXsH379kLvNe/k5GR0tubRo0fx8ccfP3W+VqvF2LFj0apVKwwYMEB8oOf58+exd+9eDB48GB9++KHBzyH9+Hj33XfRpUsXg/r0c+5atWqhpBw4cABA3mLshg0bEBYWhh9//BGdO3cusUzGmG1RdPExNzcXWq3W6Mw3Z2dnyZ+A6HQ6pKamynq2VEl4eOsJVGpBXHgEAJVawL1ryVbdjx49euCLL77AsWPH8OKLLxp9/ejRo4iPjze4eXH16tVx5coVo20vX74MAAb326tfvz4aN26MzZs3w8/PDzdv3sTy5cuN3vvll1/iww8/xNWrV8VflgV/OX3//fcYOnQoPv/8c7EsMzMTycnJJtvWtGlTtGvXDm5ubpL392nVrFkTAFCuXLlCzzD09vaGu7s7tFqtxTMRLbGzs8PgwYMxZ84cXLhwweLTsgt+QlzwJt3e3t5wcXEx21cqlcrgfj1nzpzBypUrsXTpUoSGhmLdunV47bXX8Oabb2L8+PFo06YNmjVrhlWrVhk8fbtmzZp48uSJUfvj4uIM7ulTs2ZN7N+/H48ePZLt+7lp06biPR9r1aqFzMxMzJs3DzNmzChy+xljjJVNSs9HBRBCaqeCCtzzsW5gGip65oDUOmRmk3gGnouTDoE+GYjNMbwHo4ujDlTgHowFt/X1zYFWS8i/2KfVEvQnd0qpoyh5echEHXnzYScHHZyddGbr+PXX79GsWQfMmLHO4L6KH3+cDE/Pinl1O+rg718DZ89GIzc3B3Z2pvLy9gMAvMrlwMVJZ9AWlQCoVAQgr599fALw779n4V85Ddk57uK28fGXAAABAdXE+gBC86ZN/3/fXoGXVyXMnDkUERHvo17dYFSpkAUAqFWrPp5//iWDvlOp1OK+uTjp8NtvO9CiRXvMmLHOoD/mfpoMT4+KBpkA8Fzd+mjZ8iWDbe3s1LBT/9cW/bZdOjRAuYpt8t3zMW9eaGeXt62XV0U4Obkg4fYVeHsa3hqq4LzI3NxOirS0NOzZswcDBgwwurc7AIwbNw6bN29WdPGxQYMGaNy4McLCwuDt7Y0OHTqYvQ+4Wq026oeCf6sEBAQAAK5cuWI0t7xy5Yr4db1Vq1bh7Nmz+PvvvxESEoLz58/jiy++wLp16xAaGopPPvkEEyZMwPDhwxESEgIA4i2E7O3tJc25z58/L7E3pMmf+dxzz+HSpUtYuHAhOnfubND+gldtmWo/Y6xsUvSej+7u7mjVqhVmz56NO3fuQKvV4ptvvsEff/yBu3fvSqpj4cKFePLkidlPzrKyspCSkmLwUkKFam7QaQ0/htRpCVVqeFp1PyZPngxnZ2eMGjVKPCtP79GjRxg9erT4lGi9V155BdHR0Thx4oRYlpmZiaioKFSpUkV8AIre4MGD8csvv2DJkiWoUKECunXrZnJfAgIC0LFjR3Tq1Mnk5EWtVhs9mGb58uVGlxnkJwgCXn75Zezfvx+XLl0yaNtXX32FZs2aFfuSayBvUatmzZri+CvowYMHYhv69u2LHTt2mPwlr99OqoiICJw7dw5t27Y1uE/h01Cr1Xj55ZexZ88exMfHi+X379/Hli1b8OKLL4pnvxIRxo4di5CQEIwZk/eEx9atWxv8t1GjRhg3bhw++OADg/tqhoWF4Y8//jB5L6zk5GTk/v/pF3379gURmbzhtJQHFEmRkZGB3Nxc5ObmFqn9jDHGyi5rzEcB83PSOWPjcGJ9NP74MhoLJ1zBqFdvY+GEK9j8yVmoBEIN3wxUq5wJb89sVKuciToBabBTE+oEpBmWB6ahbsGyAtsOHJCM+vUIKhXB3j7vv/XrEUaPkF5HUfIc7MlkubtL3u/+QJ+MQutwdhRgp9YalJ/75xskJibAwU4n7seQgd2RnJyEHd9/Y1SHX6UMeHtmw6di3iKgSgWjtjg66ODqpBPLunfpjKSke9ixa4e4bXm3dOzZtQxubm54vU8zs+2D9h4AwMs9BXUC0qBW5c1hKnjkGPWdIABODvnbp4KLo9Zg38798w0S7tyBy//vn4M9wbt83n3Tfb0zjfoOADzccsVyL4+8hUQ7tWG7q3rnPajF2yMH1SpnokoFLTq0ewmHft+Lm7fixXGblJRkNC+SOrczZdeuXUhLS8O4cePQr18/o1f79u2xY8cOZGVlWfiuK1kRERE4e/Yshg0b9tT3QdRr1qwZKlWqhNWrVxvc8/7nn3/GpUuX0L17d7Hs/v37mDFjBt566y1xYbHgnHvMmDEICQnB2LFjxTlypUqV0L59e6xZs8bkz638f3P07dsXMTEx2LVrl9F2csy5tVotsrOzxWOYv/35j6up9jPGyi7F7/m4adMmREREwNfXF2q1Gk2aNEF4eDj+/vtvi+/dsmULPvroI+zZsweVKlUyuc3cuXNNLmYMGDAA9vam77WofziJIAhQq9VFa5AZjXtVxak98bhz6bF4z8eqdTxRu5OHeP9AOaWnp5ut97PPPsO7776L5557Dv369YOfnx8SEhKwfft2PH78GIsWLYJOpxPf369fP3z99dfo0qULhgwZgvLly2PPnj24ePEiPv/8c1y/ft0gT39z4V27dmHQoEEGCzuWPHz4UKynbdu22LRpE4gINWvWxJkzZ3DixAl4enoiNzdX3O727dvif+Pi4vDGG29g3759ePHFFzF48GA4OTnhu+++Q3JyMpYsWSK+T79AtmfPHvFeKvqFxNOnT+PLL78U9yspKQlPnjzBl19+aXBJ1htvvIHg4GC8+uqrqFy5Mu7fv4+//voLbm5uWLNmDQBg5MiROHDgAFq0aIGwsDDUrFkTGo0GFy9exIkTJ0ze0L7g8UtOTkZcXBzs7Ozw119/wcnJyeTX87fr5s2bBpe76x84k7+P33zzTfzyyy94/vnn0b9/fzg7O+Pbb79FZmYmxo8fL263fft2/PXXX9i2bRuuXr1q0O/3798Xtxs2bBi2bt2KUaNGiZfU9+nTB9u3b0ePHj3Qp08f1K9fH+np6bh48SJ+/fVX/Pbbb/Dy8oKfnx969eqFZcuW4cyZM2jbti10Oh1OnTqFli1bYvDgwQZ9pG/n9evXkZNj+Am9ft+2bduGU6dOITc3F//88w927NiBjh07iveeyd/+QYMGwc7OzmT7TdFqtUhMTMT8+fONFvIBIDo6Gj179jTxzpJh7TwlMjmP80p7pjXzCv7cY8VT0vNRwPyc9Ov/vYNjMXnH88ZdZ6RlquHqpMWZ+HKIGP82BIf70GrtoNUJUKsIKWn/XRKbnaMyKjdVpi+3s8vAhvX/YscOD9y6bY9qfjno21eDzFwgJ1laHUXJy83NQFLyTaPy9My835u3HzxA+YQEs3W0fqE1Vq9ZhdHjX0PTJo0QGxeLH374EX5+1ZCrzRLrfqFtWzRv3gILP5+LCxdi0KJ5U2RkpOPEH38iLGwQ2rXrhMcpedeWJyVrcLVAZnZODjKy8urT6gR0694ZG7+pgaGjxuDg0WOoUsUPv/zyC079HY3p06YhMSUF2TlPsCpqCR49fITg4FpwcHDAxYsXsWPnLgQFBaOSjweuJiTg9oO8tqamPUDykxsGbSQiZOekie1o1bo1Vq6Kwujxr6Fhwyb49+oV/O+nH1CtWjVx/3JzM6B5kjcHuv/okbjP+nqJdEhNTxfLn6Tn5d+8/wAe+dqdosmbFz5KTRG3HTVqJA4fPYjnO76MQeEDIcAe27b//7xo7BjEXb6E7BwVunbpje+2fZc3t+vdG/XrPYf0jAzExsZh/y/78dvBg/AqX97k98HatWvg6ekJb6/yiLt8yejrL77QGt999x2+WLMGXV7ujPt37wAAvvn6a/z+269G2zdu3Bj+/3824cmTp3Dy1CkAwL1796BJTsbE/79kuXmzZmje3PiekelZ2YiLixPnjnfv3kVcXBzat2+PP//8E+7u7ia/DuTd0oiIjOaL+sU//d8mAPDOO+9g6tSpCA8PR8+ePZGUlISvv/4afn5+6Nmzp7jdu+++C0dHRwwdOtRobp9/zjtt2jSEhYXhs88+E88gfe+99xAeHo7nnnsOYWFhqFatGh4+fIhTp07hwYMH4uXhffr0wZYtW9C/f3/07dsX9evXR3JyMn777Td89NFH4n3y9VJSUgz+9spPPwdeuHAhgLwP+vfv34/4+Hi89tprRu1v2bIlevToYbb9pjzrc+6ynqdEJufJp0jzUSolnjx5Qnfu3CEiorCwMHrllVcK3X7r1q3k7OxMP/74Y6HbZWZmkkajEV+3bt0iAKTRaMy+JyMjgy5evEgZGRlFb4gZsbGxlJmeTbsW/UFRb/1Muxb9QZnp2bLVbyqvMGfPnqXw8HDy8fEhe3t7qlKlCoWHh9O5c+dMbn/16lXq168feXh4kJOTEzVv3px2795tNu+VV14hAHTixAnJ+wyAZs6cKf7/48ePafjw4VSxYkVyc3OjLl260OXLlykgIID69Okjbnfo0CECQIcOHRLL/v77b3r55ZfJzc2NXFxcqG3btnT48GGDvA0bNuRdZ1LEV36nT5+mV199lSpUqECOjo4UEBBAYWFh9Ouvvxpsd//+fRo3bhxVq1ZN7O+XXnqJ1q5da7Iv8vcnABo3blyh/Zb/6/p2nTx50mC7Bw8eGPUxEdE///xDXbp0IVdXV3JxcaEOHToYHLeHDx9SxYoVaeTIkQbvu379OgGgDRs2GJRv3ryZABj0d2pqKk2bNo1q1apFDg4OVLFiRWrSpAktXLiQsrP/+z7Izc2lBQsWUJ06dcjBwYG8vb2pW7du9Pfffxu1W9/O69evG31NPyb0Lzs7O/L19aXIyEh6/Pixyfbrx0rB9ptj6edEaGioxTrkZO08JTI5j/NKe6Y18zQajcX5DCu6kpqPEpmfkwpIppDaGgoJ0pBK0JG9nZZUgo66tX9A5//5h87FPKGTJ3V06pSOTp7U0YVzuZSj0dCFc7kG5efP5tL5AmUFtz15MrbYdciRN3PmegJA3279s9A6jh/PoNdff4cqVvQhJydnav3887Tlm2PUpEk7atKkncF+HD2aRhERY6hq1epkZ2dPVSpXppc796Vdu/6lU6d0tGfPNQJA82bPNmpLrZr1qFmztgZlR36/Q0Nff53Kl69I9vYOVKtWA/rww/UG7Z43bzk991xzcnMrR87OzuTvX4tee+0dOngwUWzLwR9/JAD02WffGfWds7Mr9egxVNz2SWIiDRs6kSpW9CFHR2cKCXmBtnxzjNq++CI1///9O3kyllav/o0A0KLPtxn1naurK/XqOUQs//DDvL7+49Ahg3YfOJBIAGjMmBkGdXz/3Ul6+aWXyMXFjZycXKhZs+fpyy+PGx3vw4dT6M03plCtGjXy5nYVKlDr51vSwk9nU/bjB0RPko1e96/FkZ2dHQ0OH2Dy6/Qkmc6e/odcXFyoT2gPoifJtGH1ykLn5RtWrxTfO3PaFLPbzZw2xWSefs6tnztu377d5Pevqa8PHTqUXF1djbbdvn270d8mRETbtm2j5557jhwdHcnLy4tee+01un37tvj133//nQDQli1bDN5nbs775ptvUsWKFenhw4di2dWrV2nIkCFUpUoVsre3J19fX+rQoQN9//33Bu99+PAhvfXWW+Tr60sODg7k5+dHQ4cOpaSkJKP2DB06lAICAkz2y8yZMw362dnZmWrVqkWLFy8mnU5n1P7GjRubbb85z/qcu6znKZHJefIpynxUIJLpekaZPH78GNWrV8f8+fMxcuRIk9ts3boVERER+Pbbb4v8cJGUlBR4eHhAo9GYvaQyMzMT169fR/Xq1c0+ibmoCt5ro6QpndenTx+cO3fO4Al2JZlX0uLi4mBvb4/q1avLdgmwpTxrtk+JTFvPs/RzomfPnoXeoFxu1s5TIpPzOK+0Z1ozT8p8hj29kp6PAv8dQ0ADAe4AAMp3L8bqgRnYsP4qXN1rAsj/8D+Cp3suklPtkP/ejf/dD1AoZNs4ALWLWYdyeZbrsJwnb7utk2euT5++jqLsR+F51SpnorJXNuQSd+sOalerKlt9FvPuJNr0fLQ0ZvKcm/NKeybnyaco81HFL7vev38/iAjBwcH4999/MXnyZNSpUwfDhw8HkHdKeUJCAr7++msAeZe2DB06FEuXLkXLli1x717efVWcnZ0NLjFlyrl79y5++uknTJ8+XeldYYwxxhizSOn5qP6Wcvk/31SrCblaQXyYSP5ts7JVRuXm6jW1rRx1WDuvtNRhi/tc0u1mjDHGLFH8t4VGo8G4ceNQp04dDBkyBC+++CL2798v3o/x7t27uHnzprj92rVrkZubi3HjxsHHx0d8vf3/9/Ngyrl+/Tq++eYbhIeHw97e3uCJ2WWBs7MzunTpovRuMMYYY0xmSs9HiYwXerRaAXZqMionAhwddBYXhgrbVo46rJ1XWuqwxX0u6XYzxhhjlih+5mNYWFihTwbcuHGjwf///vvvJbtD7KkdPnwYw4cPh7+/P7766itUqVJF6V2SVeXKlbFv3z6ld4MxxhhjMlNyPiqAEFI7FSQA5+LcoVYTtFoBdQPTUNEzB6TWITObxDPRXJx0CPTJQGyOK9Iz/ztDzcVRBxKAjPxlBbbNQ8WqQ7E8CXVYzJO53VbJM9enMvfd0+Z5e/LDrxhjjFmm+OIjKzuGDRuGYcOGKb0bjDHGGGM2Y87YOEwITwYArN7ph2sJLqjhm47hfe/gruCJAN8MpKarkJWtgqND3mKPSkWoE5CGB8n2BuUAjMryb3v/EaGyV2ax6lAyz1IdUvLkbLe18sz1qZx9V5w8xhhjzBJefGSMMcYYY4wx9lR0OsHkoqS5csYYY88eXnxkjDHGGGNMIdNX1ca2AwJQ4LLrA6crYsGiW7iW4IzMbCfxUteHGgcE+ach9qbhJbRJyQ5AgctiC24LCLh136lYdSiVJ6UOS3lyt9saeeb6VO6+s0beQ40D6gSk8QIkY4w9g3jxsRAk5U7LjLFnEv98YIwxJgeCgLNx7uK/dbl5j76+dN0VScn2cHUXAAjiA0DSM1WIv+ssLgzpyzOy9PfnM7+t/uvFqUOpPCl1WMqTu93WyDPXp3L3nTXy0jNVeJBsj8pe2WBMKp5zM1Y2KP6069LIzi5vTTY3N1fhPWGMlVb6nw/6nxeMMcbY0xKEvFd+jx/bISNTgCCkG22bla0y2t5cvaa2laMOa+eVljpscZ9LS7v15YwVRXp63s9Ae3t7hfeEMVYc/FezCWq1Gmq1GikpKXB3d1d6dxhjpVBKSor4s4IxxhgrDlMn9qSm2uH83w5o9PwDeHoKAFyQdxYZwc4uF5Rlh//OTAMAfSX/lRlvqwWQWcw6lMmTVkfhefK3u+TzzPWp/H1X8nlEBJUqC5lZ5p+QrdXpkJllvTMjtVotMjMzy2yeEply5RER0tPTkZiYCE9PT55zM2bjePHRBEEQUKlSJdy9exeOjo5wdXWFIOXjv0LY6g99zns28pTItNU8IkJaWhpSUlLg4+NT7J8NjDHGnm0CCCG1U0EF7vnYKCgVw1vdwpJfaqB560TYOxAEQYCDvQ7O6mykaByQnaNC3qKQAAc7HQAgOzdfmdG2iQComHUolCepDgt5srfbCnnm+lT2vrNCnr0OLupspGrMX0ab+FgDys4y+3W5JWpSrXpZb2JiotUvI7Z2ptx5np6eqFKlimz1McaUwYuPZnh4eCAjIwNJSUl48OBBseuz9R/6nFe285TItOU8QRDg6ekJDw8PWepjjDH27JozNg4TwpMBAKt3+uFaggtq+KZj9Ku34eykw/uh/+KLvb64n+KEalUyMbDzfThpdfB1UuHbo1Vw+74T/CrnlQPAtwcMy/Jvu+l/azD4lQ+KVYeSeZbqkJInZ7utlWeuT+XsO2vlOWl1hX4/zF+5AlFT3yr+N5ZE8zduRlRUlPXy5s+3ap4SmXLm2dvb8xmPjJURvPhohiAI8PHxQaVKlZCTY/7SAKls+Yc+55X9PCUybTmPJ0KMMcasSZsrIOWxHTJcVHAkHZygAxGQkaKC5pEdKjjnlQPGZfm3vZPwABkpxatDyTxLdUjJk7Pd1soz16dy9p218ijT9CK73sPE+3BC4QuUcnr48CGcnJzKbJ4SmUq0kTFW+vHiowVy3dOtrP/Q5zzbzlMis6znMcYYY1JMX1Ub2w4IQIHLrjf9ryoOrjyFTuOaISbWcvlXP1a1WAfBCe8uCS5WHUrlSanDUp7c7bZGnrk+lbvvlMw7vi7aYAGSMcZY2cOLj4wxxhhjjCmEIOBsnLv4b11u3r2EY2LdETG7HmJi3aEjy+VS6si7w6RQrDqUypNSh6U8udttjTxzfWrtMVOSeat3+mHioJtgjDFWdqmU3gHGGGOMMcaeZYKQ98pPrSZcS3CBWk2Syq1dhy3uM7e79LabMcZY2caLj4wxxhhjjCmIKO+Vn1YroIZvOrRaQVK5teuwxX3mdpfedjPGGCvbePGRMcYYY4wxhQgghNRORcOgVKgEgr2dDiqB0CgoFetnXECIxHIpdQgCFbsOpfKk1GEpT+52WyPPXJ9ae8yUZN7oV28r/W3IGGOshPE9HxljjDHGGFPInLFxmBCeDMD0U4CPr4uWXG6pjmXbMhE54Eqx6lAyz1IdUvLkbLe18sz1qbXHTEnmMcYYK9v4zEfGGGOMMcYYY4rJyFRh8RZ/nLvqhsVb/JGRqTIoH7+gjkE5Y4wx26LomY+pqamYMWMGdu3ahcTERDRu3BhLly5F8+bNTW5/9+5dTJo0CadOncK///6LyMhILFmyxLo7zRhjjDHGyhQl56TTV9XGtgMCIADn4tyhVhO0WgGb/lcVB1eeQqdxzRATa7n8qx+rWqyD4IR3lwQXqw6l8qTUYSlP7nZbI89cn8rdd6Utr7C6j6+L5rMlGWPMxii6+PjGG2/g/Pnz2LRpE6pWrYpvvvkGnTp1wsWLF+Hr62u0fVZWFry9vfHBBx9g8eLFCuwxY4wxxhgra5SckxIEnI1zF/+ty817SEdMrDsiZtdDTKw7dGS5XEodeXeYFIpVh1J5UuqwlCd3u62RZ65PrT1mSssYjYl1x+qdfpg46CYYY4zZDsXOW8/IyMCOHTswf/58tG3bFrVq1cKsWbNQq1YtREVFmXxPYGAgli5diiFDhsDDw8PKe8wYY4wxxsqa0jAnFYS8V35qNeFaggvUapJUbu06bHGfud223259OWOMMdui2OJjbm4utFotnJycDMqdnZ1x7NgxhfaKMcYYY4w9S0rDnJQo75WfViughm86tFpBUrm167DFfeZ223679eWMMcZsi2KLj+7u7mjVqhVmz56NO3fuQKvV4ptvvsEff/yBu3fvypaTlZWFlJQUgxdjjDHGGGOA8nNSAYSQ2qloGJQKlUCwt9NBJRAaBaVi/YwLCJFYLqUOQaBi16FUnpQ6LOXJ3W5r5JnrU2uPmdIyRhsFpYpPzWaMMWY7BKKCnz9Zz9WrVxEREYEjR45ArVajSZMmCAoKwt9//41Lly4V+t727dujUaNGFm/uPWvWLHz00UdG5V27doW9vX1xdr9IoqOj0aJFC87jvFKZp0Qm59l2nhKZnMd5pT3Tmnk5OTnYt28fNBoNypUrZ5XMskzJOWmdwDao4ZsDALhx1xlpmWq4OmkR4JMBtQrQ6qSXW6rjWsI51PBtUKw6lMyzVIeUPDnbba08c31q7TFTWsaoWsbTZ6IvXEGLesHyVWgpL/Y6/y7kPM5TOJPz5FOU+aiii496aWlpSElJgY+PDwYMGIAnT57gp59+KvQ9Uid6WVlZyMrKEv8/JSUF1apVs/pkvWfPnti7dy/ncV6pzFMik/NsO0+JTM7jvNKeac28lJQUeHh48OKjzBSZkx7aiXJurnLsvkU935mJvYuMF0A5zzbylMjkPJnzPl7Bvws5j/MUzuQ8+RRlPqro0671XF1d4erqisePH2P//v2YP3++bHU7OjrC0dFRtvoYY4wxxljZpMScdOX2apgQngwAWL3TD9cSXFDDNx2jX70NZycdMjJVksst1XHuqhsWb/EvVh1K5lmqQ0qenO22Vp65PrX2mLHFMerspJPrW5gxxlgxKLr4uH//fhARgoOD8e+//2Ly5MmoU6cOhg8fDgCYNm0aEhIS8PXXX4vvOXPmDADgyZMnePDgAc6cOQMHBwc899xzSjSBMcYYY4zZOCXnpNNX1ca2AwIgAOfi3KFWE7RaAZv+VxUHV55Cp3HNEBNrufyrH6tarIPghHeXBBerDqXypNRhKU/udlsjz1yfyt13pS1Prr47vi6aFyAZY6wUUHTxUaPRYNq0abh9+za8vLzQt29fzJkzR7wX4927d3Hz5k2D9zRu3Fj8999//40tW7YgICAA8fHx1tx1xhhjjDFWRig5JyUIOBvnLv5bl5v3dN+YWHdEzK6HmFh36MhyuZQ68h5vIxSrDqXypNRhKU/udlsjz1yfWnvM2OIYjYl1x+qdfpg4yPB7lzHGmPUpuvgYFhaGsLAws1/fuHGjUVkpuEUlY4wxxhgrQ5SekwqCvs7/ytRqwrUEF6jVJC6mFFZu7TpscZ+53c9muxljjClPxmeFMcYYY4wxxoqKyHAxBQC0WgE1fNOh1QqSyq1dhy3uM7f72Ww3Y4wx5fHiI2OMMcYYYwoRQAipnYqGQalQCQR7Ox1UAqFRUCrWz7iAEInlUuoQBCp2HUrlSanDUp7c7bZGnrk+tfaYscUx2igoVXxADWOMMWWViqddM8YYY4wx9iyaMzau0KddH18XLbncUh3LtmUicsCVYtWhZJ6lOqTkydlua+WZ61NrjxlbHKP8sBnGGCsdePGRMcYYY4wxxliZlJGp4kVJxhhTGC8+MsYYY4wxppDpq2pj2wEBEIBzce5QqwlarYBN/6uKgytPodO4ZoiJtVz+1Y9VLdZBcMK7S4KLVYdSeVLqsJQnd7utkWeuT+Xuu9KWV5JjZtP/quL4umhegGSMMSvixUfGGGOMMcYUQhBwNs5d/Lf+ab0xse6ImF0PMbHu0JHlcil15N1hUihWHUrlSanDUp7c7bZGnrk+tfaYscUxWlj56p1+mDjoJhhjjFkHP3CGMcYYY4wxBQlC3is/tZpwLcEFajVJKrd2Hba4z9xubnf+csYYY9bDi4+MMcYYY4wpiCjvlZ9WK6CGbzq0WkFSubXrsMV95nZzu/OXM8YYsx5efGSMMcYYY0whAgghtVPRMCgVKoFgb6eDSiA0CkrF+hkXECKxXEodgkDFrkOpPCl1WMqTu93WyDPXp9YeM7Y4Rgsr1z81mzHGmHXwPR8ZY4wxxhhTyJyxcZgQngwAJp/Ie3xdtORyS3Us25aJyAFXilWHknmW6pCSJ2e7rZVnrk+tPWZscYwWVs4YY8x6+MxHxhhjjDHGGGPPjIxMFRZv8ce5q25YvMUfGZkqg/LxC+oYlDPGGCsePvORMcYYY4wxhUxfVRvbDgiAAJyLc4daTdBqBWz6X1UcXHkKncY1Q0ys5fKvfqxqsQ6CE95dElysOpTKk1KHpTy5222NPHN9Knfflba80jRmjq+L5jMlGWOsmHjxkTHGGGOMMYUQBJyNcxf/rcvNezhGTKw7ImbXQ0ysO3RkuVxKHXl3mBSKVYdSeVLqsJQnd7utkWeuT609ZmxxjMp1DFfv9MPEQTfBGGPs6fF55IwxxhhjjClIEPJe+anVhGsJLlCrSVK5teuwxX3mdnO7n7YOxhhjxcOLj4wxxhhjjCmIKO+Vn1YroIZvOrRaQVK5teuwxX3mdnO7n7YOxhhjxcOLj4wxxhhjjClEACGkdioaBqVCJRDs7XRQCYRGQalYP+MCQiSWS6lDEKjYdSiVJ6UOS3lyt9saeeb61NpjxhbHqFzHUP+EbcYYY09P0Xs+arVazJo1C9988w3u3buHqlWrYtiwYfjggw8gFDwXPp+VK1dixYoViI+Ph7+/P6ZPn44hQ4ZYcc8ZY4wxxlhZoPR8dM7YOEwITwYArN7ph2sJLqjhm47Rr96Gs5MOx9dFSy63VMeybZmIHHClWHUomWepDil5crbbWnnm+tTaY8YWx6hcx5AxxljxKLr4OG/ePERFReGrr75CvXr1cOrUKQwfPhweHh6IjIw0+Z6oqChMmzYNX3zxBZo3b47o6Gi8+eabKF++PEJDQ63cAsYYY4wxZst4PsoYK0xGpooXJBljrLhIQd27d6eIiAiDsldffZVee+01s+9p1aoVvfvuuwZl77zzDr3wwguSMjUaDQEgjUZT9B0uhtDQUM7jvFKbp0Qm59l2nhKZnMd5pT3TmnlKzWfKIiXmo0T/HUMByRRSW0MhQRpSCTqyt9OSStBR42ANPTz4KzUOllYupQ5B6FHsOpTKk1KHpTy5222NPHN9au0xY4tjVI5jaC4v/egBopP7i/zi34Wcx3nKZ3KefIoyH1X0zMfWrVtj7dq1iI2NRVBQEGJiYnDs2DEsWrTI7HuysrLg5ORkUObs7Izo6Gjk5OTA3t6+pHebMcYYY4yVEUrPRwkCzsa5i//W5eZd6h0T646I2fUQE+sOHVkul1JH3h0mhWLVoVSelDos5cndbmvkmetTa48ZWxyjchxDc3mrd/ph4qCbYIwxJo2ii49Tp05FSkoK6tSpA7VaDa1Wizlz5uC1114z+54uXbpg3bp16N27N5o0aYK///4b69atQ05ODpKSkuDj42OwfVZWFrKyssT/T0lJKbH2MMYYY4wx22KN+ShQ+JxUf2vJ/E/gVasJ1xJcoFaTuOhRWLm167DFfeZ2c7vlbDdjjDHpBKL8P0qt69tvv8XkyZOxYMEC1KtXD2fOnMGECROwaNEiDB061OR7MjIyMG7cOGzatAlEhMqVK+P111/H/Pnzce/ePVSuXNlg+1mzZuGjjz4yqqdr165WPUsyOjoaLVq04DzOK5V5SmRynm3nKZHJeZxX2jOtmZeTk4N9+/ZBo9GgXLlyVsksq6wxHwXMz0mBrgBMz0mrVMjCvYeOksst1xENoEUx61Auz3IdlvPkbbd18sz16dPXUZT9UC6vtIwZU+rVeIIavhmStjVIu3AFLeoFF/l9xREde73M/i7kPNvPUyKT8+RTpPloCV8CXig/Pz9asWKFQdns2bMpODjY4nuzs7Pp1q1blJubS6tWrSJ3d3fSarVG22VmZpJGoxFft27d4ns+ch7nlYJMzrPtPCUyOY/zSntmab3HDiucNeajRObnpAKSqZGJ+8o1MXMPOnPlUurQ39+uOHUolSelDkt5crfbGnnm+tTaY8YWx6gcx9Bc3lPf87HN80/1vuK8yvLvQs6z/TwlMjlPPjZzz8f09HSoVCqDMrVaDZ3O8tPD7O3t4efnByDvE+sePXoY1QUAjo6OcHSU9gkWY4wxxhh7tlhjPgqYn5POGRuHCeHJAGDyibrH10VLLrdUx7JtmYgccKVYdSiZZ6kOKXlytttaeeb61NpjxhbHqBzH0FweY4wx6RRdfAwNDcWcOXPg7++PevXq4fTp01i0aBEiIiLEbaZNm4aEhAR8/fXXAIDY2FhER0ejZcuWePz4MRYtWoTz58/jq6++UqoZjDHGGGPMRvF8lDH2NDIyVSYXJc2VM8bYM80KZ2KalZKSQm+//Tb5+/uTk5MT1ahRg6ZPn05ZWVniNkOHDqV27dqJ/3/x4kVq1KgROTs7U7ly5ahXr150+fJlyZlKXaZUlk+15Tzbz1Mik/NsO0+JTM7jvNKeWVovc2GFU2I+SvTfMRSQTCEmLu1sbOYyUHPlUurQX2JanDqUypNSh6U8udttjTxzfWrtMWOLY1SOYyhHXuN8l2nzZdecx3nKZ3KefGzmsmt3d3csWbIES5YsMbvNxo0bDf6/bt26OH36dMnuGGOMMcYYeyYoPR8lCDgb5y7+W/+k3ZhYd0TMroeYWHfoyHK5lDoAAQShWHUolSelDkt5crfbGnnm+tTaY8YWx6gcx1COvJhYd6ze6YeJg26CMcaeVaZvSsMYY4wxxhizCkHIe+WnVhOuJbhArSZJ5dauwxb3mdvN7Vai3fpyxhh7lvHiI2OMMcYYYwoiynvlp9UKqOGbDq1WkFRu7TpscZ+53dxuJdqtL2eMsWcZLz4yxhhjjDGmEAGEkNqpaBiUCpVAsLfTQSUQGgWlYv2MCwiRWC6lDkGgYtehVJ6UOizlyd1ua+SZ61NrjxlbHKNyHEM58hoFpYpPzWaMsWeVovd8ZIwxxhhj7Fk2Z2wcJoQnA4DJJ+QeXxctudxSHcu2ZSJywJVi1aFknqU6pOTJ2W5r5ZnrU2uPGVsco3IcQzny+GnXjLFnHZ/5yBhjjDHGGGOMlZCMTBUWb/HHuatuWLzFHxmZ/Gc4Y+zZwmc+MsYYY4wxppDpq2pj2wEBEIBzce5QqwlarYBN/6uKgytPodO4ZoiJtVz+1Y9VLdZBcMK7S4KLVYdSeVLqsJQnd7utkWeuT+Xuu9KWV1rGTEnmHV8XzWdEMsaeGbz4yBhjjDHGmEIIAs7GuYv/1uXmPawiJtYdEbPrISbWHTqyXC6ljrw7TArFqkOpPCl1WMqTu93WyDPXp9YeM7Y4RuU4hiWZt3qnHyYOugnGGHsW8PnejDHGGGOMKUgQ8l75qdWEawkuUKtJUrm167DFfeZ2c7tLW7sZY+xZwYuPjDHGGGOMKYgo75WfViughm86tFpBUrm167DFfeZ2c7tLW7sZY+xZwYuPjDHGGGOMKUQAIaR2KhoGpUIlEOztdFAJhEZBqVg/4wJCJJZLqUMQqNh1KJUnpQ5LeXK32xp55vrU2mPGFseoHMewJPP0T9JmjLFnAd/zkTHGGGOMMYXMGRuHCeHJAIDVO/1wLcEFNXzTMfrV23B20uH4umjJ5ZbqWLYtE5EDrhSrDiXzLNUhJU/Odlsrz1yfWnvM2OIYleMYlmQeY4w9K3jxkTHGGGOMMYWM638Lzk6uAGDy4RPOTroilRe27aFTTwy+/jR1KJ1XWB1S8+RqtzXzzPWptceMLY5ROY5hSeUxxtizghcfGWOMMcYYU8jK7dUKPfMxI1MludxSHeeuumHxFv9i1aFknqU6pOTJ2W5r5ZnrU2uPGVsco3Icw9IyRvlMScaYTaNnjEajIQCk0WismhsaGsp5nFdq85TI5DzbzlMik/M4r7RnWjNPqfkMk4/+GApIppDaGgoJ0pBK0JG9nZZUgo4aB2vo4cFfqXGwtHIpdQhCj2LXoVSelDos5cndbmvkmetTa48ZWxyjchzD0jJGGwdrKP3oAaKT+4v8Ksu/CznP9vOUyOQ8+RRlPspnPjLGGGOMMaYQgoCzce7iv3W5eU/KjYl1R8TseoiJdYeOLJdLqSPv8TZCsepQKk9KHZby5G63NfLM9am1x4wtjlE5jmFpGaMxse5YvdOPL9lmjNksfto1Y4wxxhhjChKEvFd+ajXhWoIL1GqSVG7tOmxxn7nd3G5bbbe+nDHGbJWii49arRYzZsxA9erV4ezsjJo1a2L27NkgokLft3nzZoSEhMDFxQU+Pj6IiIjAw4cPrbTXjDHGGGOsrCgN81GivJfhfgmo4ZsOrVaQVG7tOmxxn7nd3G5bbbe+nDHGbJWii4/z5s1DVFQUVqxYgUuXLmHevHmYP38+li9fbvY9x48fx5AhQzBixAhcuHAB27dvR3R0NN58800r7jljjDHGGCsLlJ6PCiCE1E5Fw6BUqASCvZ0OKoHQKCgV62dcQIjEcil1CAIVuw6l8qTUYSlP7nZbI89cn1p7zNjiGJXjGJaWMdooKFV8cA1jjNkiRe/5eOLECfTq1Qvdu3cHAAQGBmLr1q2Ijo42+54//vgDgYGBiIyMBABUr14do0aNwrx586yyz4wxxhhjrOxQej46Z2xcoU+7Pr4uWnK5pTqWbctE5IArxapDyTxLdUjJk7Pd1soz16fWHjO2OEblOIalZYzy064ZY7ZM0TMfW7dujV9//RWxsbEAgJiYGBw7dgzdunUz+55WrVrh1q1b+N///gciwv379/H999/jlVdesdZuM8YYY4yxMoLno4wxW5CRqcLiLf4Yv6AOFm/xR0YmP76BMWZDSvjJ24XSarU0ZcoUEgSB7OzsSBAE+vTTTy2+77vvviM3Nzeys7MjABQaGkrZ2dkmt83MzCSNRiO+bt26JflR4HIqy49X5zzbz1Mik/NsO0+JTM7jvNKeac08jUajyHymLLLGfJTI/JxUQDKF1NZQSJCGVIKO7O20pBJ01DhYQw8P/kqNg6WVS6lDEHoUuw6l8qTUYSlP7nZbI89cn1p7zNjiGJXjGJb2MZp+9ADRyf2Fvsry70LOs/08JTI5Tz5FmY8KRBbupl2Cvv32W0yePBkLFixAvXr1cObMGUyYMAGLFi3C0KFDTb7n4sWL6NSpEyZOnIguXbrg7t27mDx5Mpo3b44vv/zSaPtZs2bho48+Mirv2rUr7O3tZW+TOdHR0WjRogXncV6pzFMik/NsO0+JTM7jvNKeac28nJwc7Nu3DxqNBuXKlbNKZllljfkoYH5OCnQFYHpOWqVCFu49dJRcbrmOaAAtilmHcnmW67CcJ2+7rZNnrk+fvo6i7IdyeaVlzFg7ryj7Ua/GE9TwzSh0m+gLV9CiXrCk+uQQHXu9zP7u5byykcl58inSfLTEl0IL4efnRytWrDAomz17NgUHB5t9z+uvv079+vUzKDt69CgBoDt37hhtz2c+ch7nlc5MzrPtPCUyOY/zSntmaf2kmRXOGvNRIvNzUiDvbCaVoKP/notLZG+npQa1UsjeTiupXFodoTLUoUyetDoKz5O/3SWfZ65PrT1mbHGMynEMS/sYfSvshuUzH9s8b3EbOV9l+Xcv55WNTM6TT1Hmo4reKCI9PR0qleEuqNVq6HTmb6Zr7j0AQCZO4nR0dES5cuUMXowxxhhjjAHWmY8Chc9J9csJ+Wm1Amr4pkOrFSSVW7sOW9xnbje3uyy2mzHGbIGii4+hoaGYM2cOfvrpJ8THx2PXrl1YtGgR+vTpI24zbdo0DBkyxOA9O3fuRFRUFK5du4bjx48jMjISLVq0QNWqVZVoBmOMMcYYs1FKz0cFEEJqp6JhUCpUAsHeTgeVQGgUlIr1My4gRGK5lDoEgYpdh1J5UuqwlCd3u62RZ65PrT1mbHGMynEMS/sY1T9JmzHGSjs7JcOXL1+OGTNmYOzYsUhMTETVqlUxatQofPjhh+I2d+/exc2bN8X/HzZsGFJTU7FixQpMmjQJnp6e6NixI+bNm6dEExhjjDHGmA1Tej46Z2wcJoQnAwBW7/TDtQQX1PBNx+hXb8PZSYfj66Ill1uqY9m2TEQOuFKsOpTMs1SHlDw5222tPHN9au0xY4tjVI5jWNrHKGOM2QJFFx/d3d2xZMkSLFmyxOw2GzduNCobP348xo8fX3I7xhhjjDHGngk8H2WM2bKMTJXJRUl9+bmrbli8xZ8XKxljyirxO1CWMkrdoL0s32SU82w/T4lMzrPtPCUyOY/zSntmab3BNyud9MdQQDKF1NZQSFDeg2fs7bSkEnTUOFhDDw/+So2DpZVLqUMQehS7DqXypNRhKU/udlsjz1yfWnvM2OIYleMY2uIYLaxP048e4AfOcF6pylMik/PkU5T5qKJnPjLGGGOMMfYsIwg4G+cu/luXm/egiZhYd0TMroeYWHfoyHK5lDry7jApFKsOpfKk1GEpT+52WyPPXJ9ae8zY4hiV4xja4hgtrE9X7/TDxEH/3UKCMcasRdEHzjDGGGOMMfasE4S8V35qNeFaggvUapJUbu06bHGfud3c7me53fpyxhhTAi8+MsYYY4wxpiCivFd+Wq2AGr7p0GoFSeXWrsMW95nbze1+ltutL2eMMSXw4iNjjDHGGGMKEUAIqZ2KhkGpUAkEezsdVAKhUVAq1s+4gBCJ5VLqEAQqdh1K5Umpw1Ke3O22Rp65PrX2mLHFMSrHMbTFMVpYn+qfms0YY9bG93xkjDHGGGNMIXPGxmFCeDIAmHxi7fF10ZLLLdWxbFsmIgdcKVYdSuZZqkNKnpzttlaeuT619pixxTEqxzG0xTFaWJ8yxpgSePGRMcYYY4wxxhgr4zIyVSYXKhljrMRZ4enbpUpRHgUup7L8eHXOs/08JTI5z7bzlMjkPM4r7ZnWzFNqPsPkoz+GApIppLaGQoI0pBJ0ZG+nJZWgo8bBGnp48FdqHCytXEodgtCj2HUolSelDkt5crfbGnnm+tTaY8YWx6gcx9AWx2hRj2H60QNEJ/fL9irLv3s5r2xkcp58ijIf5TMfGWOMMcYYUwhBwNk4d/Hfuty8h0TExLojYnY9xMS6Q0eWy6XUkXeHSaFYdSiVJ6UOS3lyt9saeeb61NpjxhbHqBzH0BbHaFGP4eqdfpg46CYYY6wk8QNnGGOMMcYYU5Ag5L3yU6sJ1xJcoFaTpHJr12GL+8zt5nZzu03XwRhjJY0XHxljjDHGGFMQUd4rP61WQA3fdGi1gqRya9dhi/vM7eZ2c7tN18EYYyWNFx8ZY4wxxhhTiABCSO1UNAxKhUog2NvpoBIIjYJSsX7GBYRILJdShyBQsetQKk9KHZby5G63NfLM9am1x4wtjlE5jqEtjtGiHkP9k7QZY6wk8T0fGWOMMcYYU8icsXGYEJ4MACafQnt8XbTkckt1LNuWicgBV4pVh5J5luqQkidnu62VZ65PrT1mbHGMynEMbXGMFvUYMsZYSePFR8YYY4wxxhhj7BmVkamSvNjJGGNPxQpP3y5VivIocDmV5cerc57t5ymRyXm2nadEJudxXmnPtGaeUvMZJh/9MRSQTCG1NRQSpCGVoCN7Oy2pBB01DtbQw4O/UuNgaeVS6hCEHsWuQ6k8KXVYypO73dbIM9en1h4ztjhG5TiGtjhG5TiG5rZNP3qA6OT+Ql9l+Xcv55WNTM6TT1Hmo3zmI2OMMcYYYwohCDgb5y7+W5eb95CImFh3RMyuh5hYd+jIcrmUOvLuMCkUqw6l8qTUYSlP7nZbI89cn1p7zNjiGJXjGNriGJXjGJrbdvVOP0wcdBOMMVZUij5wRqvVYsaMGahevTqcnZ1Rs2ZNzJ49G1TwMVz5DBs2DIIgGL3q1atnxT1njDHGGGNlQWmYjwpC3is/tZpwLcEFajVJKrd2Hba4z9xubje3u/jtZoyxp6Ho4uO8efMQFRWFFStW4NKlS5g3bx7mz5+P5cuXm33P0qVLcffuXfF169YteHl5oX///lbcc8YYY4wxVhaUhvkoUd4rP61WQA3fdGi1gqRya9dhi/vM7eZ2c7uL327GGHsaii4+njhxAr169UL37t0RGBiIfv364eWXX0Z0dLTZ93h4eKBKlSri69SpU3j8+DGGDx9uxT1njDHGGGNlgdLzUQGEkNqpaBiUCpVAsLfTQSUQGgWlYv2MCwiRWC6lDkGgYtehVJ6UOizlyd1ua+SZ61NrjxlbHKNyHENbHKNyHENz2+ofRMMYY0Wl6D0fW7dujbVr1yI2NhZBQUGIiYnBsWPHsGjRIsl1fPnll+jUqRMCAgJMfj0rKwtZWVni/6ekpBR7vxljjDHGWNlgjfkoYH5OOmdsHCaEJwMw/WTZ4+uiJZdbqmPZtkxEDrhSrDqUzLNUh5Q8OdttrTxzfWrtMWOLY1SOY2iLY1SOY2huW8YYexoCFXZDmxKm0+nw/vvvY/78+VCr1dBqtZgzZw6mTZsm6f137tyBv78/tmzZgrCwMJPbzJo1Cx999JFRedeuXWFvb1+s/S+K6OhotGjRgvM4r1TmKZHJebadp0Qm53Feac+0Zl5OTg727dsHjUaDcuXKWSWzrLLGfBQwPyetE9gGNXxzAAA37jojLVMNVyctAnwyoFYBWp30ckt1XEs4hxq+DYpVh5J5luqQkidnu62VZ65PrT1mbHGMynEMbXGMynEMi5qnF33hClrUCzb7s1Bu0bHXy+zv+mchT4lMzpNPkeajJfzk7UJt3bqV/Pz8aOvWrXT27Fn6+uuvycvLizZu3Cjp/Z9++ilVqFCBsrKyzG6TmZlJGo1GfN26dUvyo8DlVJYfr855tp+nRCbn2XaeEpmcx3mlPdOaeRqNRpH5TFlkjfkokfk5qYBkCqmtoZAgDakEHdnbaUkl6KhxsIYeHvyVGgdLK5dShyD0KHYdSuVJqcNSntzttkaeuT619pixxTEqxzG0xTEqxzEsal760QNEJ/cTndxPoW2eF/9tjVdZ/l3/LOQpkcl58inKfFTRy64nT56MqVOnYuDAgQCABg0a4MaNG5g7dy6GDh1a6HuJCOvXr8fgwYPh4OBgdjtHR0c4OjrKut+MMcYYY6xssMZ8FDA/JyUIOBvnLv5bl5v34IeYWHdEzK6HmFh36MhyuZQ68u4wKRSrDqXypNRhKU/udlsjz1yfWnvM2OIYleMY2uIYleMYFjVv9U4/TBx0E4wxZo6iD5xJT0+HSmW4C2q1Gjqd5XtJHD58GP/++y9GjBhRUrvHGGOMMcbKuNIwHxWEvJfhPhCuJbhArSZJ5dauwxb3mdvN7eZ2l1y7GWOsMIouPoaGhmLOnDn46aefEB8fj127dmHRokXo06ePuM20adMwZMgQo/d++eWXaNmyJerXr2/NXWaMMcYYY2VIaZiPEuW98tNqBdTwTYdWK0gqt3YdtrjP3G5uN7e75NrNGGOFUXTxcfny5ejXrx/Gjh2LunXr4t1338WoUaMwe/ZscZu7d+/i5k3DU7g1Gg127NjBZz0yxhhjjLFiUXo+KoAQUjsVDYNSoRII9nY6qARCo6BUrJ9xASESy6XUIQhU7DqUypNSh6U8udttjTxzfWrtMWOLY1SOY2iLY1SOY1jUPP3TsRljzBxF7/no7u6OJUuWYMmSJWa32bhxo1GZh4cH0tP50xXGGGOMMVY8Ss9H54yNw4TwZADA6p1+uJbgghq+6Rj96m04O+lwfF205HJLdSzblonIAVeKVYeSeZbqkJInZ7utlWeuT609ZmxxjMpxDG1xjMpxDIuaxxhjhVF08ZExxhhjjLFn2bj+t+Ds5AoAJh/Y4OykK1J5YdseOvXE4OtPU4fSeYXVITVPrnZbM89cn1p7zNjiGJXjGNriGJXjGBZlW8YYKwwvPjLGGGOMMaaQldurFXrmY0amSnK5pTrOXXXD4i3+xapDyTxLdUjJk7Pd1soz16fWHjO2OEblOIa2OEblOIZy5PEZkYwxET1jNBoNASCNRmPV3NDQUM7jvFKbp0Qm59l2nhKZnMd5pT3TmnlKzWeYfPTHUEAyhdTWUEiQhlSCjuzttKQSdNQ4WEMPD/5KjYOllUupQxB6FLsOpfKk1GEpT+52WyPPXJ9ae8zY4hiV4xja4hiV4xjKkdc4WEPpRw8Qndxfoq+y/Lv+WchTIpPz5FOU+Sif+cgYY4wxxphCCALOxrmL/9bl5j1JNibWHRGz6yEm1h06slwupY68x9sIxapDqTwpdVjKk7vd1sgz16fWHjO2OEblOIa2OEblOIZy5MXEumP1Tj++RJsxBkDhp10zxhhjjDH2rBOEvFd+ajXhWoIL1GqSVG7tOmxxn7nd3G5ut/XarS9njDGAFx8ZY4wxxhhTFFHeKz+tVkAN33RotYKkcmvXYYv7zO3mdnO7rddufTljjAG8+MgYY4wxxphiBBBCaqeiYVAqVALB3k4HlUBoFJSK9TMuIERiuZQ6BIGKXYdSeVLqsJQnd7utkWeuT609ZmxxjMpxDG1xjMpxDOXIaxSUKj64hjHG+J6PjDHGGGOMKWTO2LhCn3Z9fF205HJLdSzblonIAVeKVYeSeZbqkJInZ7utlWeuT609ZmxxjMpxDG1xjMpxDOXI46ddM8b0ePGRMcYYY4wxxhhjssrIVJlcqDRXzhgrw6zw9O1SpSiPApdTWX68OufZfp4SmZxn23lKZHIe55X2TGvmKTWfYfLRH0MByRRSW0MhQRpSCTqyt9OSStBR42ANPTz4KzUOllYupQ5B6FHsOpTKk1KHpTy5222NPHN9au0xY4tjVI5jaItjVI5jqMQYTT96gOjk/iK/yvLv+mchT4lMzpNPUeajfOYjY4wxxhhjCiEIOBvnLv5bl5v30IaYWHdEzK6HmFh36MhyuZQ68u4wKRSrDqXypNRhKU/udlsjz1yfWnvM2OIYleMY2uIYleMYKjFGV+/0w8RBN8EYK5v4gTOMMcYYY4wpSBDyXvmp1YRrCS5Qq0lSubXrsMV95nZzu7ndpbvdjLGyixcfGWOMMcYYUxBR3is/rVZADd90aLWCpHJr12GL+8zt5nZzu0t3uxljZRcvPjLGGGOMMaYQAYSQ2qloGJQKlUCwt9NBJRAaBaVi/YwLCJFYLqUOQaBi16FUnpQ6LOXJ3W5r5JnrU2uPGVsco3IcQ1sco3IcQyXGqP4J24yxsonv+cgYY4wxxphC5oyNw4TwZAAw+fTX4+uiJZdbqmPZtkxEDrhSrDqUzLNUh5Q8OdttrTxzfWrtMWOLY1SOY2iLY1SOY6jEGGWMlV28+MgYY4wxxhhjjDFFZWSqeFGSsbLKCk/fNis3N5c++OADCgwMJCcnJ6pRowZ9/PHHpNPpzL7n0KFDBMDodffuXUmZRXkUuJzK8uPVOc/285TI5DzbzlMik/M4r7RnWjNPqflMWaTEfJTov2MoIJlCamsoJEhDKkFH9nZaUgk6ahysoYcHf6XGwdLKpdQhCD2KXYdSeVLqsJQnd7utkWeuT609ZmxxjMpxDG1xjMpxDEvLGG0crKH0oweITu43+yrLv+ufhTwlMjlPPkWZjyq6+DhnzhyqUKEC/fjjj3T9+nXavn07ubm50dKlS82+Rz/Zu3LlCt29e1d8abVaSZm8+Mh5nFc6MjnPtvOUyOQ8zivtmaV1sscKp8R8lOi/YwhoSICOBOjov0c0EKkEHfVqd49UgrRyaXWEylCHMnnS6ig8T/52l3yeuT619pixxTEqxzG0xTEqxzEsLWNUJeho0cRLvPhYhvOUyOQ8+RRlPqroZdcnTpxAr1690L17dwBAYGAgtm7diujoaIvvrVSpEjw9PUt4DxljjDHGWFlWGuajwv8/+DX/k2HVasK1BBeo1QRdrmCx3Np12OI+c7u53dxu22q3vpwxZvsUfdp169at8euvvyI2NhYAEBMTg2PHjqFbt24W39uoUSP4+Pigc+fOOH78uNntsrKykJKSYvBijDHGGGMMsM58FCh8Tqo/zyc/rVZADd90aLWCpHJr12GL+8zt5nZzu22r3fpyxpjtU/TMx6lTpyIlJQV16tSBWq2GVqvFnDlz8Nprr5l9j4+PD1avXo1mzZohKysL69atQ/v27fHXX3+hSZMmRtvPnTsXH330kVH5gAEDYG9vL2t7ChMdHY2ePXtyHueVyjwlMjnPtvOUyOQ8zivtmdbMy8nJsUrOs8Aa81HA/JwUGAB317w/uFPS7CAIBCIB7i65yMpOhpuLp7Ry11yLdQDRAHoWqw7F8iTUYTFP5nZbJc9cn8rcd6Uur7SMGVsco3Icw9IyRl1ycTD6MQ6dMvljFQAQfeEKerZtZX4DmUXHXi+zcwsl8pTI5Dz5FGU+KhAV/DzCer799ltMnjwZCxYsQL169XDmzBlMmDABixYtwtChQyXX065dO/j7+2PTpk1GX8vKykJWVpb4/ykpKahWrRo0Gg3KlSsnSzuk6NmzJ/bu3ct5nFcq85TI5DzbzlMik/M4r7RnWjMvJSUFHh4eVp/PlEXWmI8C5uekn449iQnhyQBg8imv5p7+aqrcUh3Lto1H5IDlxapDyTxLdUjJk7Pd1soz16fWHjO2OEblOIa2OEblOIalZYxaetp1z3dmYu8iUx/slIyeH68os3MLJfKUyOQ8+RRlPqromY+TJ0/G1KlTMXDgQABAgwYNcOPGDcydO7dIk70WLVrg2LFjJr/m6OgIR0dHWfaXMcYYY4yVLdaYjwI8J2WMsafxNAuSjLFSqMQff1MILy8vWrVqlUHZp59+SrVr1y5SPZ06daI+ffpI2pafds15nFc6MjnPtvOUyOQ8zivtmaX16YKscErMR4n+O4YCkimktoZCgjSkEnRkb6cllaCjxsEaenjwV2ocLK1cSh2C0KPYdSiVJ6UOS3lyt9saeeb61NpjxhbHqBzH0BbHqBzHsLSP0fSjB/572nWb5wt9Grbcr7I8t1AiT4lMzpOPzTztOjQ0FHPmzIG/vz/q1auH06dPY9GiRYiIiBC3mTZtGhISEvD1118DAJYsWYLq1aujXr16yMzMxLp16/Dbb7/hl19+UaoZjDHGGGPMRik9HyUIOBvnLv5b/6TXmFh3RMyuh5hYd+jIcrmUOgABBKFYdSiVJ6UOS3lyt9saeeb61NpjxhbHqBzH0BbHqBzHsLSP0dU7/TBx0E0wxmyHoouPy5cvx4wZMzB27FgkJiaiatWqGDVqFD788ENxm7t37+Lmzf9+sGRnZ2PSpElISEiAi4sLGjZsiIMHD6JDhw5KNIExxhhjjNmw0jAfFf7/Aa/578SuVhOuJbhArSbxj+7Cyq1dhy3uM7eb283tLjvtZozZFpWS4e7u7liyZAlu3LiBjIwMXL16FZ988gkcHBzEbTZu3Ijff/9d/P/33nsP//77LzIyMvDw4UMcOnSIFx4ZY4wxxthTKQ3zUSLDP64BQKsVUMM3HVqtIKnc2nXY4j5zu7nd3O6y027GmG1RdPGRMcYYY4yxZ5kAQkjtVDQMSoVKINjb6aASCI2CUrF+xgWESCyXUocgULHrUCpPSh2W8uRutzXyzPWptceMLY5ROY6hLY5ROY5haR+j+idpM8Zsh6KXXTPGGGOMMfYsmzM2DhPCkwHA5BNdj6+LllxuqY5l2zIROeBKsepQMs9SHVLy5Gy3tfLM9am1x4wtjlE5jqEtjlE5jmFpH6OMMdvCZz4yxhhjjDHGGGPMZmRkqrB4iz/OXXXD4i3+yMjkpQ3GSjUrPH27VCnKo8DlVJYfr855tp+nRCbn2XaeEpmcx3mlPdOaeUrNZ5h89MdQQDKF1NZQSND/sff38VFV594//ll7MpIACVALagKIoUlQNEOq5dQ+xX61SsuDPd5y89AjtJz26MFTBLXnSCsVpfh0K3ioD9yVgoqlIr2pP7QeKFBRRGvQIiBoCKQFiSCIZjKQTJjMXr8/4oSEZGf2MCtr7zX5vF+veZWs7Lk+61rX1cvFYu99haUlbBnMiktL2LKsJCyPbdgoy0rcjbuxIcSYtG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5mhZSVjWb14v5dZ1XfrJ5L2FF3peaFJPHansR/nYNSGEEEIIIR4hIbCjKrflz4lOr9v35GLavOHYvicXtkw+7sZG8xsmRVo2vNJzYyOZnmq/deg5ranunDExR1XE0MQcVRFDE3N0+55cLF49ELMmHwAhxH/w3mRCCCGEEEI8RIjmT2sCAYnqmp4IBKSrcd02TJwz/abf9Dvz/SaE+BMePhJCCCGEEOIhUjZ/WhOPCxQW1CMeF67Gddswcc70m37T78z3mxDiT3j4SAghhBBCiEcISISKIigtjsASEsEsG5aQGFEcwdI5uxByOe7GhhAybRte6bmxkUxPtd869JzWVHfOmJijKmJoYo6qiKGJOTqiONLSHZsQ4j/4zkdCCCGEEEI8Yv70KsycVAsAWLx6IKpreqKwoB43XXcQOdk2tiypcD2ezMailVHMmFCZlg0v9ZLZcKOn0m9dek5rqjtnTMxRFTE0MUdVxNDEHM3JttOsyISQroKHj4QQQgghhBBCCDGehqjl+gCTEKIRDd23fUUqrcBVksnt1alnvp4XmtQzW88LTepRz++aOvW82s8QdSRiKFArQ0VhGSoOS0vYMpgVl5awZVlJWB7bsFGWlbgbd2NDiDFp2/BKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3M0VRt1G9eL+XWdSl/Mnlv4YWeF5rUU0cq+1EePmoikxOOeubreaFJPbP1vNCkHvX8runXzR7xJ4kYAmEpYEsBW55qryClJWx5bflhaQl34+5sjFVgwxs9dzY611Pvd9frOa2p7pwxMUdVxNDEHFURQxNzNFUbC2a9z8NHH+h5oUk9daSyH2XDGUIIIYQQQjxEiOZPawIBieqanggEpKtx3TZMnDP9pt/0m363vpYQog8ePhJCCCGEEOIhiftxWhOPCxQW1CMeF67Gddswcc70m37Tb/rd+lpCiD54+EgIIYQQQohHCEiEiiIoLY7AEhLBLBuWkBhRHMHSObsQcjnuxoYQMm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTmaqo1EIxpCiB7Y7ZoQQgghhBCPmD+9CjMn1QLouBvrliUVrseT2Vi0MooZEyrTsuGlXjIbbvRU+q1Lz2lNdeeMiTmqIoYm5qiKGJqYo6naIITow9PDx3g8jrlz5+LZZ5/F4cOHkZ+fjx/+8Ie48847IU5/MUMHbNmyBeXl5bj44ovx7rvvdv2ECSGEEEJIRuH1fvTm8R8iJ7sXAGDW5APtfp+Tbac03tm1r7x9vM3vz8SG13qd2XCrp8pvnXpOa6o7Z0zMURUxNDFHVcTQxBxNxQYhRB+eHj4+8MADeOKJJ/D0009j+PDhePvtt/GjH/0Iffr0wYwZMzr9bm1tLaZMmYIrr7wSH3/8saYZE0IIIYSQTMLr/ehjqwZ1eudjQ9RyPZ7Mxs59vbFwxeC0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmqCpfCCFdgIbu246MHj1aTps2rc3YddddJ3/wgx8k/e6ECRPknXfeKe+66y4ZCoVca6bSClwlmdxenXrm63mhST2z9bzQpB71/K6pU8+r/Uwm4sV+VMpTMRSolaGisAwVh6UlbBnMiktL2LKsJCyPbdgoy0rcjbuxIcSYtG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5qgqX+o3r5dy6zrHTybvLbzQ80KTeupIZT/q6eHj/Pnz5fnnny8rKyullFK+++67csCAAfLZZ5/t9HtLly6VX/nKV2QsFku62YtGozIcDrd8PvzwQx4+Uo96PtCkntl6XmhSj3p+1/TrZo90jo79qJTOe1IgLAVsKWDLU31ZpbSELa8tPywt4W7cnY2xCmx4o+fORud66v3uej2nNdWdMybmqIoYmpijKmJoYo6q8mXBrPd5+KiZTPcxk/VS2Y8KKU9vPK8P27bx85//HA8++CACgQDi8Tjmz5+P2bNnO36nqqoK3/jGN7B582YUFxdj7ty5eOGFFxzfsTN37lzcfffd7cZHjRqFYDCoypWkVFRUYOTIkdSjni/1vNCkntl6APD6G2/hoosv06a394N3MnpNqWe+pk69WCyGtWvXIhwOIy8vT4tmpqJjPwo470mBUQDa70mFkOidE8fxhgCkFEnHO6L9tRUARqZpwxs9dzY611Pvd9frOa1pejZSmYc3en7JGd16fskZ3Xp+ypnzz4vikqHHHb9bsasSI4eXdGpfJRV7/p6xexmvNKmnjpT2o11+FNoJv//97+XAgQPl73//e7ljxw75zDPPyC984Qvyqaee6vD6pqYmedlll8knnniiZYx3PlKPemZqUs9sPSml/Hr59+SW7Se0fTJ9TalnvqZf/6WZdI6O/aiUvPMxU+4qM/EuNt75yDsfu+b/35mZM0nvfPzmVzv9vepPJu9lvNKknjpS2Y9aXX8W6szPfvYz3HHHHZg4cSIuueQS3HDDDZg1axbuu+++Dq+PRCJ4++238R//8R/IyspCVlYW7rnnHmzfvh1ZWVn4y1/+0u47PXr0QF5eXpsPIYQQQgghgJ79KOC8JxWQCBVFUFocgSUkglk2LCExojiCpXN2IeRy3I0NIWTaNrzSc2MjmZ5qv3XoOa2p7pwxMUdVxNDEHFURQxNzVJUviQY1hBC1eNrtur6+HpbV9vwzEAjAtjvuMJWXl4edO3e2GXv88cfxl7/8BX/4wx9wwQUXdNlcCSGEEEJI5uH1fnT+9KpOu11vWVLhejyZjUUro5gxoTItG17qJbPhRk+l37r0nNZUd86YmKMqYmhijqqIoYk5qsoXQoh6PD18HDt2LObPn4/Bgwdj+PDh2LZtGxYsWIBp06a1XDN79mzU1NTgmWeegWVZuPjii9vYGDBgALKzs9uNE0IIIYQQkgzuRwkhhCRoiFo8kCSkK9DwGLgjdXV18pZbbpGDBw+W2dnZsrCwUP7iF7+QjY2NLddMnTpVlpeXO9pw846d1nj1jqRMfs6feubreaFJPbP1pOQ7H6nnbz0vNP36jh3SOV7sR6U8FUOBWhkqCstQcVhawpbBrLi0hC3LSsLy2IaNsqzE3bgbG0KMSduGV3pubCTTU+23Dj2nNdWdMybmqIoYmpijKmJoYo52ZV2r37ye73zMIE3qqSOV/aindz7m5ubikUcewSOPPOJ4zVNPPdWpjblz52Lu3LlK50UIIYQQQroHXu9HJQR2VOW2/Nluau68un1PLqbNG47te3Kb2yUkGXdjo/kNkyItG17pubGRTE+13zr0nNZUd86YmKMqYmhijqqIoYk52pV1bfHqgZg1+QAIIWeOpw1nCCGEEEII6e4I0fxpTSAgUV3TE4GAdDWu24aJc6bf9Jt+0+8zvZYQkh48fCSEEEIIIcRDpGz+tCYeFygsqEc8LlyN67Zh4pzpN/2m3/T7TK8lhKQHDx8JIYQoJxaNoWL5O1h330ZULH8HsWjM6ykRQogvEZAIFUVQWhyBJSSCWTYsITGiOIKlc3Yh5HLcjQ0hZNo2vNJzYyOZnmq/deg5ranunDExR1XE0MQcVRFDE3O0K+taomM2IeTM8fSdj4QQQjKPWDSGZ6Y+hyOVRyECAjIusfOl3Zjy9EQEs4NeT48QQnzF/OlVmDmpFgA67LC6ZUmF6/FkNhatjGLGhMq0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmaFfWNUJIevDOR0IIIUrZtmoHjlQehZQSdpMNKSWOVB7FtlU7vJ4aIYQQQgghKdMQtbBwxWDs3NcbC1cMRkOURymEpESX9972Gam0AldJJrdXp575el5oUs9sPSml/Hr59+SW7SfafX45cY0cm/UrORr3tHzGZv1K/nLimg6vd/vJ9DWlnvmaOvW82s8QdSRiKFArQ0VhGSoOS0vYMpgVl5awZVlJWB7bsFGWlbgbd2NDiDFp2/BKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3MUS/qWv3m9VJuXdeln0zey3ilST11pLIf5WPXhBBClNJvYF/IeNu3dcu4RL+Bfb2ZECGE+BgJgR1VuS1/tpuaGyBs35OLafOGY/ueXNgy+bgbG81vmBRp2fBKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3MUS/q2uLVAzFr8gEQQpLDe4UJIYQopWx8KQaU9IcQAlaWBSEEBgzrj7LxpV5PjRBCfIkQzZ/WBAIS1TU9EQhIV+O6bZg4Z/pNv+k3/VatRwhxBw8fCSGEKCWYHcSUpyfiytvKUXZ9Ka68rRxTnmKzGUIIcULK5k9r4nGBwoJ6xOPC1bhuGybOmX7Tb/pNv1XrEULcwcNHQgghyglmBzHyhktxzewrMfKGS3nwSAghDghIhIoiKC2OwBISwSwblpAYURzB0jm7EHI57saGEDJtG17pubGRTE+13zr0nNZUd86YmKMqYmhijqqIoYk56kVdS3THJoQkh+98JIQQQgghxCPmT6/CzEm1AIDFqweiuqYnCgvqcdN1B5GTbWPLkgrX48lsLFoZxYwJlWnZ8FIvmQ03eir91qXntKa6c8bEHFURQxNzVEUMTcxRL+oaIcQdPHwkhBBCCCGEEEIISZGGqOX6AJOQbo2G7tu+IpVW4CrJ5Pbq1DNfzwtN6pmtJ6WUXy//ntyy/cQZfTa9VSsX3v6a/OXENXLh7a/JTW/VJv1Opq8p9czX1Knn1X6GqCMRQ4FaGSoKy1BxWFrClsGsuLSELctKwvLYho2yrMTduBsbQoxJ24ZXem5sJNNT7bcOPac11Z0zJuaoihiamKMqYmhijvq9rtVvXi/l1nUpfzJ5L+OVJvXUkcp+lHc+EkII0UosGsMzU5/DkcqjEAEBGZfY+dJuTHmaTWkIId0PCYEdVbktf7abmpsabN+Ti2nzhmP7nlzYMvm4GxvNb5gUadnwSs+NjWR6qv3Woee0prpzxsQcVRFDE3NURQxNzFG/17XFqwdi1uQDIKS7woYzhBBCtLJt1Q4cqTwKKSXsJhtSShypPIptq3Z4PTVCCPEEIZo/rQkEJKpreiIQkK7Gddswcc70m37Tb/rtpR4h3RkePhJCCNHKZwdrIQJtd2UiIPDZwVpvJkQIIR4jZfOnNfG4QGFBPeJx4Wpctw0T50y/6Tf9pt9e6hHSnfH08DEej2POnDm44IILkJOTg6FDh2LevHmQp/+/tRWvv/46vv71r+Pss89GTk4Ohg0bhoULF2qcNSGEkHToN7AvZLxtnZdxiX4D+3ozIUJIt8br/aiARKgogtLiCCwhEcyyYQmJEcURLJ2zCyGX425sCCHTtuGVnhsbyfRU+61Dz2lNdeeMiTmqIoYm5qiKGJqYo36va4lGNIR0Vzx95+MDDzyAJ554Ak8//TSGDx+Ot99+Gz/60Y/Qp08fzJgxo8Pv9OrVC//xH/+B0tJS9OrVC6+//jpuvPFG9OrVC//2b/+m2QNCCCGpUja+FDtf2t3mnY8DhvVH2fhSr6dGCOmGeL0fnT+9CjMn1QLouDvqliUVrseT2Vi0MooZEyrTsuGlXjIbbvRU+q1Lz2lNdeeMiTmqIoYm5qiKGJqYo36va4R0Zzw9fHzjjTdw7bXXYvTo0QCAIUOG4Pe//z0qKiocv1NWVoaysrKWn4cMGYLVq1dj8+bNPHwkhBADCGYHMeXpidi2agc+O1iLfgP7omx8qdJmM40NMfzP4ndwuLoW5xb2xXdvuhQ9ctjMhhDSHu5HCSGE6KAhavFQknRfurjzdqfMnz9fnn/++bKyslJKKeW7774rBwwYIJ999lnXNv72t7/Jc845Rz755JMd/j4ajcpwONzy+fDDD123AldJJrdXp575el5oUs9sPSml/Hr59+SW7Se0fdz6GK0/KWeU/UaOsebJccFfyTHWPDmj7DcyWn8yJf8yPYaZrueFpk69cDjsyX4mE9GxH5XSeU8qUCtDRWEZKg5LS9gymBWXlrBlWUlYHtuwUZaVuBt3Y0OIMWnb8ErPjY1keqr91qHntKa6c8bEHFURQxNzVEUMTcxRU+ta/eb1Um5d5/jJ5L2MV5rUU0cq+1EhZScvtOlibNvGz3/+czz44IMIBAKIx+OYP38+Zs+enfS7AwcOxNGjR9HU1IS5c+dizpw5HV43d+5c3H333e3GR40ahWBQ310wFRUVGDlyJPWo50s9LzSpp5bX33gLF118mTY9ANj93ttaNd3q1R6sxSf7juH0/7h9sfBs9BvUV7meKvZ+8E5G5yjrmlpisRjWrl2LcDiMvLw8LZqZio79KOC8JwVGAeh4T3ru2Y04fKyH6/HkNioAjEzThnd6yW0k11Prtx49pzU9cxupzMM7Pb/kjG49v+SMbj2/5IxuveGFx1FY0OD4vYpdlRg5vMSVhgoq9vyd+zXquSaV/ainj10///zz+N3vfocVK1Zg+PDhePfddzFz5kzk5+dj6tSpnX538+bNOH78OP7617/ijjvuwJe+9CVMmjSp3XWzZ8/Grbfe2vJzXV0dBg0ahJUrV2rdrI8bNw5r1qyhHvV8qeeFJvXU8o0rRuPBRau06QHAf84Yn5JmLBpL61Frt3rr7tuIbft3wG5q+xhLzqc5+I/f/8S1Zqr+pcv9d07M6BxlXVNLXV0d+vTpo0Ur09GxHwWc96TASlgiFwBgy1NdU4NZNvr3O4Fj4V6INVlJxy0hXdgYB2BNmja80XNno3M99X53vZ7TmqpfO3/p+SVnTMxRFTE0MUdNrWvfvuwgfv2zD+DEuFvvwpoFHf3DVdcw7p5HuV+jnmtS2Y962u36Zz/7Ge644w5MnDgRl1xyCW644QbMmjUL9913X9LvXnDBBbjkkkvwk5/8BLNmzcLcuXM7vK5Hjx7Iy8tr8yGEEKKHWDSGiuXv4H/mrcfisUux8eFN2PaHHdj48Kt4ZupziEVjjt9Zd99GVCx/p8NrOqPfwL6w4+3fn9NQ24Btq3acsS+EkMxEx34U6HxPKmXzpzXxuEBhQT3iceFqXLcNE+dMv+k3/abfftJLjBPSHfD08LG+vh6W1XYKgUAAtp3aS1dt20ZjY6PKqRFCCEmTWDSGZ6Y+h40Pv4p3V+9E5MhxSAnYTTaklPi48gje/v22NoeNby6twNNTfo+ND7+a9JDSibLxpcjpm9NuXAQEPjtYq9BDQkgm4PV+VEAiVBRBaXEElpAIZtmwhMSI4giWztmFkMtxNzaEkGnb8ErPjY1keqr91qHntKa6c8bEHFURQxNzVEUMTcxRU+taojs2IZmOp49djx07FvPnz8fgwYMxfPhwbNu2DQsWLMC0adNarpk9ezZqamrwzDPPAAAee+wxDB48GMOGDQMAvPbaa3jooYcwY8YMT3wghBDSMdtW7cCRyqOQUqLdCxgBQAJvLtuKXf/zAY7uOQoIAWmfulA2Nf/5SOXRlO5YDGYH8dUpl+GV/97cVi4ukXdO7hn5QgjJXLzej86fXoWZk2oBoMMuqFuWVLgeT2Zj0cooZkyoTMuGl3rJbLjRU+m3Lj2nNdWdMybmqIoYmpijKmJoYo6aWtcI6Q54evj461//GnPmzMH06dNx5MgR5Ofn48Ybb8Qvf/nLlmsOHTqEAwcOtPxs2zZmz56Nv//978jKysLQoUPxwAMP4MYbb/TCBUIIIQ58drAWIiBaDhE7IhqOIhqONv/g1P9MAO+vr8TRo5+gYvk7rt4VednkMuz6nw9wZM/RNuO71n6AyyaXpfSuSUJIZsP9KCGEEC9piFo8lCQZj6eHj7m5uXjkkUfwyCOPOF7z1FNPtfn5pz/9KX7605927cQIIYSkTb+BfSHjzgePLQh0fGfk50hbomb7IYRFHTY+/Cp2vrQbU56e2OkBYjA7iOHfG4YjVUfb2D665xNsW7UDZeNL02p+QwjJHLzej/7i8SKsXC8AAeysykUgIBGPCyx/OR8bHnsbV918GbbvST7+9Ev5SW1IZOP2R0rSsuGVnhsbyfRU+61Dz2lNVa+d3/T8kjMm5qiKGJqYo5lU15a/nI8tSyp4AEkyCk8PHwkhhGQuZeNLsfOl3c2PXsPh0Wug04PHNpdJCYlT74q8/Ecj2/z+9G7atTVhWAGrTddrERA49o9P8czU53Ck8mjznZlx6epAkxBCugIJgR1VuS1/tpuaGxJs35OLafOGY/ueXNgy+bgbG81vmBRp2fBKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3M0Uyqa9v35GLx6oGYNfnUHfeEmA4PHwkhhJwxpx/4XTz2Irz34u6Wnyf93+vx3ou78cHGPTi47aN238/KzoLdZLc5IEyKBP761NsI/fMlLVp55+Zi18sf4GjVJy0Hir3694I8reu1jEsc/+REy7soT3+v5MgbLk1rPQgh5EwQnzdAbf32iUBAorqmJwIB2fIX0s7Gddswcc70m37Tb/rtJ71k44RkEp52uyaEEGIu0rZbulk3d6behEev/g02PLSppVP1ip+swsnoSUhbIpjTfFehsE5truKxeGoHj5/TUNuAJeOfadF+5b8348ie5gPFRDft40eOo3f/3hBCwMqyIITAgGH90bt/L4iAaGOPnbAJIV4iZfvX3sbjAoUF9YjHhatx3TZMnDP9pt/0m377SS/ZOCGZBA8fCSGEdEosGkPF8new7r6NqFj+DmLRGAAg/FFdyx2EzQd+QFNjEwC0HAAe2XMUrz36Bmq2H0Ksofl7WWcFWmy3eyfk53uvwFkBCIF2h4Strzt+5HiLttOj20O+OhhX3laOsutLceVt5Zjy1EScff4X2unKuES/gX1TWxhCCFGAgESoKILS4ggsIRHMsmEJiRHFESydswshl+NubAgh07bhlZ4bG8n0VPutQ89pTXXnjIk5qiKGJuaoihiamKOZVNdGFEdaumYTkinwsWtCCCGOxKIxx/cjxhqaknaz7thmE4QlIO3238vpm4OvTrkMoetOPVJdWxPGvs1/b3uhRNJGNQCw5y97MeoXV7V5l2Prd1EmfBowrD/Kxpem5AchhKhg/vQqzJxUCwAddjvdsqTC9XgyG4tWRjFjQmVaNrzUS2bDjZ5Kv3XpOa2p7pwxMUdVxNDEHFURQxNzNJPqGpvNkExDSHn6TcGZTV1dHfr06YNwOIy8vDxtuuPGjcOaNWuoRz1f6nmhST21fOOK0Xhw0SrldiuWv4OND7+K1v+pEELgytvKseSPd+CC6u8i5f+MdHJomLA98oZLW94neWz/p9jzyj5s+uQ3+Ap+kLIPV91+Rbt3OZ7+rsqOul3/54zxXbKmTtx/58SMzlHWNbV4tZ8h6miJ4Surkde7lxbNcbfehTUL7taiRb3M0KSe2XpeaFLPcL17HuV+jXquSWU/yjsfCSGEOPLZwdp2dzcm3o/YJz8PA4L9W91BaCNwVlbLo9eOdHJWmbB9+h2Xnb0X0sqyHH8vrI7f5RjMDrK5DCHEFzy2alCndz42RC3X48ls7NzXGwtXDE7Lhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOdoe6Roip8PCREEKII3nn5LY72Eu8H1EcsjDl6Yntul3/Yeb/DzXvfpT6HZGtbG9btaNdR+p2CGDgiAKcU9IfeefkouJ3f8OJT06cZpDvciSE+JtfPF6ElesFIICdVbkIBCTicYHlL+djw2Nv46qbL8P2PcnHn34pP6kNiWzc/khJWja80nNjI5mear916Dmtqeq185ueX3LGxBxVEUMTc7Q71LUtSyp4AEmMhYePhBBCOiQWjWHX2g/ajfcv/iLKxpfiD1s7voNw2JVFqHn3o3bf61PQB72/2BMfvXe4faOZz+nVvxcuHnsRNj/xRvL3SUqg8Gvn46ycs3Bs/6cdXtK/uPN3ObZ+/Drv3FxAAnUfR9BvYF9Im5s7QkjXIyGwoyq35c92U3Ojre17cjFt3nBs35MLWyYfd2Ojub2NSMuGV3pubCTTU+23Dj2nNdWdMybmqIoYmpijKmJoYo52h7q2ePVAzJp8AISYCA8fCSGEdMi2VTtwdM8nbQcFMPy7w9q9H7E1pzd0sZts9B7QG4VfOx/Hj55wPHhMdLBe8W+rMPy7w5yva8U7K7c33+3o8B7JvAG5jt91erRbBARgAx/2+gixaKxTXwkhRAWi+e+baH3DeCAgUV3TE4GAbPkLaWfjum2YOGf6Tb/pN/32k96Z2CDEVCyvJ0AIIUQ9sWgMFcvfwbr7NqJi+TuIRWMp20i877E1VsBC3eFIp7rbVu1A/sXn4kvlhbhk3EXIHdAbJ44ex/Y/voe9r+5DVo/mf/eysk77T9DnG6wjlUcRb4pjQEn/pHNsecza4Zxy7+ZqPDHmt3j9N29i3X0b8eayCry5tALr7tuIF/7rT/i48giklG0eLZdxCSklTh5vxLZVO5LOgRBC0kXKtn/JBIB4XKCwoB7xuHA1rtuGiXOm3/SbftNvP+mdiQ1CTIWHj4QQkmEk7ujb+PCr2PaHHdj48Kt4ZupzKR9A9hvYt93dh4l3MgKAtO02B5z1tQ0tuttfeA97X63Gvtf/geNHj0NKwG6yISUQP9mEoiuGouz6UvQ5r+OuaHtfrcaUpyfiS98qPKM1aM3xoyfw2mNv4G+rtuOVRzbjlf/ejHdWvouqTfs6bX4DAMf+0fHj3IQQogoBiVBRBKXFEVhCIphlwxISI4ojWDpnF0Iux93YEEKmbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR7tDXUs0oiHERPjYNSGEZBgdNWs5UnkU21btSKnD8+mPT8u4xIBhze9QjEVj+HDbR9j4+qstv3vrmbcROXIcAFp0jx85DmGJNv98KwIW8s7NxTWzr8TezdUdah/a/TH++LOXcGjXx2e6DO1oc5DqoheOBLD3tWo+ek0I6VLmT6/qtNv1liUVrseT2Vi0MooZEyrTsuGlXjIbbvRU+q1Lz2lNdeeMiTmqIoYm5qiKGJqYo92hrhFiKjx8JISQDCPxuHTrZi0iIPDZwdqU7ASzg+26WZeNL0UwO4iK5e/g5PFGSJw64Ix8ftAo7Va6p/0MNB8C5p2b2/w4eEPHd2PKuMTe1zo+mNTJ8aPHUz60JYQQQgghpCtoiFodHmAS4nd4+EgIIRlGsselU6GjbtZA8wEnhGh7B6FA+4NGWyJ3QG8cP3qi5Q7J/sVfxK6XP8CRPUdTnk+HODSbUWI6YKV8aEsIIanwi8eLsHK9AASwsyoXgYBEPC6w/OV8bHjsbVx182XYvif5+NMv5Se1IZGN2x8pScuGV3pubCTTU+23Dj2nNVW9dn7T80vOmJijKmJoYo5257q2ZUkFDyCJ7+HhIyGEZBidPS6tin4D+7Z/E3arH60sq0V3/H9/H+vu3YjamjD6FvTBgGFfxJbFbymbS1cdPAKdH9ommuucflcoIYSkgoTAjqrclj8nOp5u35OLafOGY/ueXNgy+bgbG81vmBRp2fBKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3M0e5c1xavHohZkw+AED/jacOZeDyOOXPm4IILLkBOTg6GDh2KefPmQZ7+F9pWHDp0CJMnT0ZxcTEsy8LMmTP1TZgQQgwg8bj0lbeVo+z6Ulx5WzmmPDVR6cFY2fhSnNW7R/Ndhx2Qf8l5uPK2ckxafD2e/48/omrTPhzd+wmqNu3Dlv+r8OBRIV/6ZiEGlPSHEAJWlgUBOB7aqmrqQwjxHj/sR4Vo/rQmEJCorumJQEC6Gtdtw8Q502/6Tb/pt5/0VNogxO94evj4wAMP4IknnsCjjz6K999/Hw888AAefPBB/PrXv3b8TmNjI/r3748777wToVBI42wJIcQcEo9LXzP7Soy84dIzOniMRWNtulm3PlgLZgcxqCwfA0fktzuAtLIsnFPSHyNvuBRbV7xz6vHqxF6pC+9UTBVhCQgBnHPhAPzzQ2Mw9ZlJLYe2Xxx6tuOhbeumPs1dvGVLUx9CiFn4YT8qZfubyeNxgcKCesTjwtW4bhsmzpl+02/6Tb/9pKfSBiF+x9PDxzfeeAPXXnstRo8ejSFDhuD666/H1VdfjYqKCsfvDBkyBP/93/+NKVOmoE+fPhpnSwgh3Ydkd/bFojGEP6prfsfj6U9ff/6oct3HEd/e5SgCAgPL8vHl/x3Clbdd0XLI2PrQtu/Avo6HtommPqfb5PshCTEPr/ejAhKhoghKiyOwhEQwy4YlJEYUR7B0zi6EXI67sSGETNuGV3pubCTTU+23Dj2nNdWdMybmqIoYmpijKmJoYo5257qW6I5NiJ/x9J2PX/va1/Cb3/wGe/bsQXFxMbZv347XX38dCxYsUKbR2NiIxsbGlp/r6uqU2SaEEBM4k3cTtr6zL9HN+uMPjuA31z2F3l/shfBHdTh69BhqcKjdd/sXfxEXj70IT4xe0iX+qEDGJc4fOQjl07/RZrz1WtUerEUsGutwrVQ29SGEeIuO/SjgvCedP70KMyfVAkCHHUy3LKlwPZ7MxqKVUcyYUJmWDS/1ktlwo6fSb116TmuqO2dMzFEVMTQxR1XE0MQc7c51jRC/I2RnL7TpYmzbxs9//nM8+OCDCAQCiMfjmD9/PmbPnu3q+1dccQVGjBiBRx55xPGauXPn4u677243PmrUKASD+hoDVFRUYOTIkdSjni/1vNCknlpef+MtXHTxZe3GpW3jw20f4eTxxs+7U0uc1bsHBpXlQ1hWu2vDH9Uh1tCExuONiEYaO33nWS0Ooi8Gthv/YuHZEAI4uu9Y+o650EuHC756PrJ6NP873Olr9Zn8EOf0HopBZfkA0LI2wZws5J6Ti5odh1ytq1v2fvBORuco65paYrEY1q5di3A4jLy8PC2amYqO/SjgvCcdNuSbKCxovqt8/6EcnIgG0Cs7jvPPa0DAAuK2+/FkNqprdqKw4JK0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmKOta+/FUqdhViZHDS1L/YhpU7Pl7xu7XMl0vlf2op3c+Pv/88/jd736HFStWYPjw4Xj33Xcxc+ZM5OfnY+rUqUo0Zs+ejVtvvbXl57q6OgwaNAgrV67UulkfN24c1qxZQz3q+VLPC03qqeUbV4zGg4tWtRuvWP4ONr7+KiROPR4tTghc+U/lGHnDpS3XJR6zPlLd3CHbbkr+L6hb8Tt8BT9oM2ZlWSgb2dyg5Z197565Qy710uWLR8/Gv63+IYD2a7UVv0PoxHhc8eVvYPe6ypa1kXGJAcH+mPen6/Hei7uVdbu+/86JGZ2jrGtqqaur4+tnFKFjPwo470kr//EiegQFIID3/56LQEAiHhc4KxjBhsfexlU3X+ZqPCsQSWpDYhze//uatGx4pefGRjI91X7r0HNaU9Vr5zc9v+SMiTmqIoYm5ijrWvvxLUsqUr4rctytd2HNgvb/UNaVjLvn0Yzdr2W6Xir7UU8PH3/2s5/hjjvuwMSJEwEAl1xyCfbv34/77rtP2WavR48e6NGjhxJbhBBiGol3EyYenQY6fjdhR49ZnwmJR4/jsfgZ29DJ8U9OtPzZaa2qXtvXbm2OVB7Fey/ubnOASwgxEx37UcB5TyohsKMqt+XPdlPz+2S378nFtHnDsX1PLmyZfNyNjeY3TIq0bHil58ZGMj3VfuvQc1pT3TljYo6qiKGJOaoihibmKOta+/HFqwdi1uQDIMQPeNpwpr6+HtZpj6cFAgHYNt9ZQAghKnD7bsKOGqicCdl9s3GyIYb3Xn4/bVs66P3FXi1/dlorQLC5DCEZjB/2o0I0f9rOQaK6picCAelqXLcNE+dMv+k3/abfftLrShuJcUL8gqeHj2PHjsX8+fPxpz/9Cf/4xz/wxz/+EQsWLMA///M/t1wze/ZsTJkypc333n33Xbz77rs4fvw4jh49infffRe7d+/WPX1CCPE9ZeNLMaCkP4QQsLIsCCEwYFh/lI0vbXNdRwdvAIAUzyOj4Shee2wLjlZ9ksasNSGAiU/8r5Yf260VgAHD+qOovJDNZQjJYPywH5Wy+dOaeFygsKAe8bhwNa7bholzpt/0m37Tbz/pdaWNxDghfsHTw8df//rXuP766zF9+nRceOGFuP3223HjjTdi3rx5LdccOnQIBw60vVW4rKwMZWVleOedd7BixQqUlZXhe9/7nu7pE0KI7wlmBzHl6Ym48rZylF1fiitvK8eUp5ofLaxY/g7W3bcRFcvfwcVjL2p/SFnSHwOK+6d0ACltz3qYpUTgrAC+fuM/IadPdpvxi0aVoGBEPvIvORdnX3A2pjw1EZdNKnM8wI1FY23WMRaNeeQRIeRM8Xo/KiARKoqgtDgCS0gEs2xYQmJEcQRL5+xCyOW4GxtCyLRteKXnxkYyPdV+69BzWlPdOWNijqqIoYk5qiKGJuYo61r78UTXbEL8gKfvfMzNzcUjjzzSaXfAp556qt2Yhw26CSHEOILZwY6by1SeaqCy86XdmPR/2zdQAYDf3/QHHHz3o5aGNZlA/GQcWxa/haq/VGPyk+Ox/Y878den3kZDbUPzI9Y2EOl1vOX6i64pQTAnC9KWyMnLQe45vfH2im3YtfYDHN3zSZt1nPL0xLQazxBC9OL1fnT+9CrMnFQLAFi8eiCqa3qisKAeN113EDnZNrYsqXA9nszGopVRzJhQmZYNL/WS2XCjp9JvXXpOa6o7Z0zMURUxNDFHVcTQxBxlXWs/Tohf8PTwkRBCiH46ai7TWQOVYVcWo+bdQ81doDOMI3uO4snrn8aJT060HK4mHrFuPN6IP97+Emp2Hmo5lEz8rvWfAbRZx22rdrARDSGEEEII8ZSGqMUDSeIbePhICCHdjGP7P21+lLrVWWJnDVTKxpdi50u7caTyKIDMu/v8xNETjr/bu7m65c9tDhs7ej8m2IiGEJI6v3i8CCvXC0AAO6tyEQhIxOMCy1/Ox4bH3sZVN1+G7XuSjz/9Un5SGxLZuP2RkrRseKXnxkYyPdV+69BzWlPVa+c3Pb/kjIk5qiKGJuYo65q7eWxZUsEDSOIJPHwkhJBuRCwaQ9Wr1e3ezSjjtmMDlWB2EJP+7/X4013r8NF7h5vvEiQdYjc5ryMhhHSEhMCOqtyWP9tNzS/a3b4nF9PmDcf2PbmwZfJxNzaa3zAp0rLhlZ4bG8n0VPutQ89pTXXnjIk5qiKGJuaoihiamKOsa+7msXj1QMya3PYdxoTowNOGM4QQQvSybdUOHD9yvN147/6923XATjRT+Z956/Hb8c9g76v70FDb4GhbCIGv3/hPyMruvv+uZQUsXDz2Iq+nQQgxDCGaP60JBCSqa3oiEJCuxnXbMHHO9Jt+02/67Sc9r2wQ4gU8fCSEkG7EZwdrYWW1Lf3CEvjStwpbmqTEojG8ubQCj456Ehse3oRt/28HIkeOQ8rmO/ucOO/ic3FW9lloijZ1qQ9+xo7beO/F3V5PgxBiGFI2f1oTjwsUFtQjHheuxnXbMHHO9Jt+02/67Sc9r2wQ4gU8fCSEkG5Ev4F927+vUAJnD/kCgFOdsF/5781o+Kyh+b2QLl/xWFsTxlvPvq12wn5AJL+k5VKL73wkhKSGgESoKILS4ggsIRHMsmEJiRHFESydswshl+NubAgh07bhlZ4bG8n0VPutQ89pTXXnjIk5qiKGJuaoihiamKOsa+7mkeikTYhuuu+zcYQQ0g1p3Twm0bF5wLD+LY9cJzphnwn1n2bov6Sm0F9H2pLvfCSEpMT86VWYOakWADrsSrplSYXr8WQ2Fq2MYsaEyrRseKmXzIYbPZV+69JzWlPdOWNijqqIoYk5qiKGJuYo65q7eRDiBTx8JISQbkQwO4gpT0/EtlU78NnBWvQb2Bdl40tbHrn+7GBt86FkU2Z1tO4qzup9Fk4ePwlhCUhb4pwLB7R7dyYhhBBCCCF+oSFq8VCSaIeHj4QQ0s0IZgcx8oZLO/xdh49lE8ACgj2CiDXE2hw0Tlp8Pd57cXeHB7mEEOKGXzxehJXrBSCAnVW5CAQk4nGB5S/nY8Njb+Oqmy/D9j3Jx59+KT+pDYls3P5ISVo2vNJzYyOZnmq/deg5ranqtfObnl9yxsQcVRFDE3OUdS29eWxZUsEDSNKl8PCREEK6GbFozPHOx9aPZcMCZFy2HLZlPAKABII5zYeMbbCB8y8bhEFfLkDdx5E26+Z0kEsIIW6QENhRldvyZ7up+UWz2/fkYtq84di+Jxe2TD7uxkbzGyZFWja80nNjI5mear916Dmtqe6cMTFHVcTQxBxVEUMTc5R1Lb15LF49ELMmHwAhXQUPHwkhpBuRaCjT+p2PO1/ajSlPT0QwO9jhY9kXj70I2/+4E39btR3hmjqvXeg6Pj9fjTXEcFbvs4DjbX+9d3M16j6OYOrySby7kRCiFPF5Y6vWnUkDAYnqmp4IBGTLXxA7G9dtw8Q502/6Tb/pt5/0/GaDkK6E3a4JIaQbkWgoI6WE3WRDSomPPziCF/7rT1h330ZULH8HADDyhktxzewrMfKGS9Gzbw4u/9FIfOmbhbCyMuc/G72+2BO9zu54o3Xy+ElYgfa+HtlzFG+v2NbVUyOEdDOkbPsXRACIxwUKC+oRjwtX47ptmDhn+k2/6Tf99pOe32wQ0pVkzt8iCSGEJCXRUOZ0qjbtw7Y/7MDGh1/FM1OfQywaQywaQ8Xyd/A/v1qPVbe8gMO7P4Ydz5x3wZz4pB4njjlvtJx8rXptX1dNiRDSDRGQCBVFUFocgSUkglk2LCExojiCpXN2IeRy3I0NIWTaNrzSc2MjmZ5qv3XoOa2p7pwxMUdVxNDEHFURQxNzlHUtvXkkumMT0lXwsWtCCOlGdNZQxm5qPmw7UnkUb/9+G3avrcSRyiPt/tUUAIQlgMw5h0yR9oe3hBBypsyfXoWZk2oBoMPuo1uWVLgeT2Zj0cooZkyoTMuGl3rJbLjRU+m3Lj2nNdWdMybmqIoYmpijKmJoYo6yrqU3D0K6Et75SAgh3Yiy8aUYUNIfQohOH6H+26rtjgePAJB/ybkQonsewhWVF3o9BUIIIYQQQpTRELWwcMVg7NzXGwtXDEZD1Goz/tP/M6zNOCGpwjsfCSGkG3F6Q5m6wxHsfXVfm0NGKWWnjWWsLAvnXngOhuQMBv6qYdIektMnGw11UQgISEgMKO6PyyaVeT0tQkgG8YvHi7ByvQAEsLMqF4GARDwusPzlfGx47G1cdfNl2L4n+fjTL+UntSGRjdsfKUnLhld6bmwk01Pttw49pzVVvXZ+0/NLzpiYoypiaGKOsq7pq2tbllTwTkmSMq4PHz/66CPk5+crFY/H45g7dy6effZZHD58GPn5+fjhD3+IO++8s9M7ajZt2oRbb70Vu3btwqBBg3DnnXfihz/8odK5EUJIphLMDmLkDZcCONX9+uPKIy3dnpNhN9k4tOswavYdwqC+2WiojXbhbL3lyxNH4EjlUdTWhNG3oA+u+fmVbTqBl40vZedrQjSSiftRCYEdVbktf050IN2+JxfT5g3H9j25sGXycTc2mt8wKdKy4ZWeGxvJ9FT7rUPPaU1154yJOaoihibmqIoYmpijrGv66tri1QMxa/IBEJIKru+ZHT58OFasWKFU/IEHHsATTzyBRx99FO+//z4eeOABPPjgg/j1r3/t+J2///3vGD16NL797W/j3XffxcyZM/HjH/8Y69atUzo3QgjpDiTuhBw4Ij+lVxl+tPMwTtafzOiDRwD467IK7H11H479/VPsfXUfFo9dig0PbWrXnIcQoodM3Y8K0fxpTSAgUV3TE4GAdDWu24aJc6bf9Jt+028/6fnFxpnoEZIqrg8f58+fjxtvvBHjx4/Hp59+qkT8jTfewLXXXovRo0djyJAhuP7663H11VejoqLC8TuLFy/GBRdcgIcffhgXXngh/uM//gPXX389Fi5cqGROhBDS3QhmBzHsymKIDk4f+xTkoSB0Hgq/NgTB7O73po74SRtSNt/tKSXQ1NgEIPGzxJHKo9i2aofHsySk+5Cp+1Ep0e4du/G4QGFBPeJx4Wpctw0T50y/6Tf9pt9+0vOLjTPRIyRVXB8+Tp8+HTt27MCxY8dw0UUX4cUXX0xb/Gtf+xo2btyIPXv2AAC2b9+O119/Hd/97ncdv/Pmm2/iqquuajN2zTXX4M033+zw+sbGRtTV1bX5EEIIaYtTI5q6wxF8tOMwjuz9BLFok4cz9CciIPDZwVqvp0FIt8HU/SjgvCcVkAgVRVBaHIElJIJZNiwhMaI4gqVzdiHkctyNDSFk2ja80nNjI5mear916Dmtqe6cMTFHVcTQxBxVEUMTc5R1TV9dS3TSJiQVhJROvUydefTRRzFr1ixceOGFyMpqeyfM3/72N9d2bNvGz3/+czz44IMIBAKIx+OYP38+Zs+e7fid4uJi/OhHP2pzzcsvv4zRo0ejvr4eOTk5ba6fO3cu7r777nZ2Ro0ahWBQ33u6KioqMHLkSOpRz5d6XmhSTy2vv/EWLrr4sjP6rrRthD+qw8n6GOIn42iKxRGtS/44dS0Ooi8GnpHmmeBHPQHgi0PPRt+BfdPW2/vBOxmdo6xraonFYli7di3C4TDy8vK0aPoNk/ajgPOedNiQb6KwoPn1DfsP5eBENIBe2XGcf14DAhYQt92PJ7NRXbMThQWXpGXDS71kNtzoqfRbl57TmurOGRNzVEUMTcxRFTE0MUdZ1/TVNZVU7Pl7xu7XMl0vlf1oys/Q7d+/H6tXr0a/fv1w7bXXttvspcLzzz+P3/3ud1ixYgWGDx/e8s6c/Px8TJ069Yzttmb27Nm49dZbW36uq6vDoEGDsHLlSq2b9XHjxmHNmjXUo54v9bzQpJ5avnHFaDy4aFVK34lFY3hr+dt4c8lW9IvGmk/SJJDTNweNWY2wmzrvYrcVv8NX8IM0Zp0aXupZWRZk3EbgrCw0NTZ9/rPEgGH9MeWpiUqaztx/58SMzlHWNbXU1dWhT58+WrT8iGn7UcB5T/rWslnI691LmU5njLv1LqxZcIcWLeplhib1zNbzQpN61EtZ855HM3a/lul6qexHU9qpPfnkk7jttttw1VVXYdeuXejfv/8ZTTDBz372M9xxxx2YOHEiAOCSSy7B/v37cd999zlu9s4991x8/PHHbcY+/vhj5OXldfivzD169ECPHj3SmichhGQasWgMT9/wexzZc/TU4Of3wTfUNqTUfCaTEZZAQSgf55T0R7+BfXHx2Ivw3ou72e2aEA8xcT8KOO9JH1s1CDMn1QIAFq8eiOqanigsqMdN1x1ETraNhqjlejyZjZ37emPhisFp2fBSL5kNN3oq/dal57SmunPGxBxVEUMTc1RFDE3MUdY1b+taTnbnNy6Q7o3rw8dRo0ahoqICjz76KKZMmaJEvL6+HpbV9p7dQCAA23ZO2ssvvxwvv/xym7H169fj8ssvVzInQgjpDmxbtaPtwWNrRPPdjw2fNeidlA+RtsSwK4sw8oZLW8bKxpdi26od+OxgLbat2sEDSEI0kon70V88XoSV6wUggJ1VuQgEJOJxgeUv52PDY2/jqpsvw/Y9yceffik/qQ2JbNz+SElaNrzSc2MjmZ5qv3XoOa2p6rXzm55fcsbEHFURQxNzlHXN27q2/OV8bFlSwQNI4ojrw8d4PI4dO3Zg4EB179saO3Ys5s+fj8GDB2P48OHYtm0bFixYgGnTprVcM3v2bNTU1OCZZ54BANx000149NFH8Z//+Z+YNm0a/vKXv+D555/Hn/70J2XzIoSQTOezg7Utj1m3QwJfnXIZtiz5K06eiGmemb84q/dZuHjsRS0/x6IxPDP1ORypPAoREJBxiZ0v7caUp9U8ek0I6ZxM3I9KCOyoym35s93UfOv59j25mDZvOLbvyYUtk4+7sdHc3kakZcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXvK1r2/fkYvHqgZg1+QAI6QjXrwpdv3690o0eAPz617/G9ddfj+nTp+PCCy/E7bffjhtvvBHz5s1ruebQoUM4cOBUAl9wwQX405/+hPXr1yMUCuHhhx/GkiVLcM011yidGyGEZDL9Bvbt+OARQO8BvXHZ5DLk9O340cHuxMnjJ/H7G/+AWLT5EHbbqh04UnkUUkrYTTaklDhSeRTbVu3weKaEdA8ydT8qRPOnNYGARHVNTwQC0tW4bhsmzpl+02/6Tb/9pOcXGyr0EuOEOKG4T1Fq5Obm4pFHHsH+/fvR0NCAffv24Ve/+hXOOuuslmueeuopbNq0qc33rrjiCmzbtg2NjY3Yt28ffvjDH+qdOCGEGE7Z+FIMKG7/nrTe/Xvhx6umIJgdROj7F3swM//R+nDxs4O1EIG2uzMREM13khJCjMQP+1Epmz+ticcFCgvqEY8LV+O6bZg4Z/pNv+k3/faTnl9sqNBLjBPihKeHj4QQQrwhmB3E1OWT8O1bvomBZfkYWFaAb8/8Jv79pX9Fz8/vePynKZeh/5e+6PFMvaf14WK/gX0h4213ZzIum+8kJYSQM0BAIlQUQWlxBJaQCGbZsITEiOIIls7ZhZDLcTc2hJBp2/BKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3MUdY1b+vaiOJIS+MaQjoipW7XhBBCModgdhCXTxuJy6eNdPz9D383GdtW7cDRfZ9g54u7YTd1v5dItz5cLBtfip0v7W7zzscBw/qjbHypt5MkhBjL/OlVnXa73rKkwvV4MhuLVkYxY0JlWja81Etmw42eSr916Tmtqe6cMTFHVcTQxBxVEUMTc5R1zdu6xmYzpDN4+EgIIcSRYHYQI2+4FBXL34GMd88NRevDxWB2EFOentjS7brfwL7sdk0IIYQQQro9DVGLB5LEER4+EkIISUrzuw4tyG525+OXvlWIf/4/Y9ocLiYOZAkhRAW/eLwIK9cLQAA7q3IRCEjE4wLLX87HhsfexlU3X4bte5KPP/1SflIbEtm4/ZGStGx4pefGRjI91X7r0HNaU9Vr5zc9v+SMiTmqIoYm5ijrmj/r2pYlFTyAJAB4+EgIIeRzYtGY4x19eefkZtwj1wNK+qP2YC1Onog5XlOz45DGGRFCuiMSAjuqclv+bDc1v8R/+55cTJs3HNv35MKWycfd2Gh+w6RIy4ZXem5sJNNT7bcOPac11Z0zJuaoihiamKMqYmhijrKu+bOuLV49ELMmHwAhbDhDCCEEsWgMz0x9DhsffhXb/rADGx9+Fc9MfQ6xaAyxaAy71n7g+F1hCcff+ZXAWQFM/s14/NsffwQry/k/hQ21DS2drgkhpKsQovnTmkBAorqmJwIB6Wpctw0T50y/6Tf9pt9+0vOLja7WIwTg4SMhhBAA21btwJHKo5BSwm6yIaXEkcqj2LZqR8vvnJC2dPydX4mfjONPd61DTp9szNh4E4Z+84IOD1ETna5j0Rgqlr+DdfdtRMXydxCLOt8tSQghqSJl86c18bhAYUE94nHhaly3DRPnTL/pN/2m337S84uNrtYjBODhIyGEECTe6dh2EyECAsf2f4r31+/xaFZdS9WmfXh6yu+xffVO9C3ogwu+en67a2RcotcXe3Z6VygPJQkh6SAgESqKoLQ4AktIBLNsWEJiRHEES+fsQsjluBsbQsi0bXil58ZGMj3VfuvQc1pT3TljYo6qiKGJOaoihibmKOuaP+taopM2IXznIyGEEOSdmwv7tG7WMm6j6tVqHD9y3KNZdT1HKo/iSOVRiICAjHd8B+ffVm7H8aMnAACySbZ87+0V27B7XWWb7+98aTemPD2R3a8JIa6ZP70KMyfVAkCHXUK3LKlwPZ7MxqKVUcyYUJmWDS/1ktlwo6fSb116TmuqO2dMzFEVMTQxR1XE0MQcZV3zZ10jBOCdj4QQ0u2JRWPY9fIHwGlnb72+2CujDx5b43TwCADHj55o90i2hMTf/rAdH1ceOe1R9SN8RyQhhBBCCCGf0xC1sHDFYPz0/wzDwhWD0RDlMVR3hHc+EkJIN2fbqh04WvVJu/E++X1Q/1mDY5fr7Nxs9M7u1XJXYKYiLNH+vZYSCNfUtbtWSuDY/k81zYwQkgn84vEirFwvAAHsrMpFICARjwssfzkfGx57G1fdfBm270k+/vRL+UltSGTj9kdK0rLhlZ4bG8n0VPutQ89pTVWvnd/0/JIzJuaoihiamKOsa2bVtS1LKnhXZDeDh4+EENLNSbzvMfFIMQBYWRaE5XBHoADOGTYAf4/2wol/dIOXSEuJ3gN6u74LNNMPYwkhapEQ2FGV2/Jnu6n5Tuvte3Ixbd5wbN+TC1smH3djo/kNkyItG17pubGRTE+13zr0nNZUd86YmKMqYmhijqqIoYk5yrpmVl1bvHogZk0+ANJ94P2uhBDSzek3sG+7Q0YZlyj61lAMKOkPIURLM5qcfjn49i3fxJSnJqKpsaldkxqjEEB23+yWP3d4iQD6F/fHl/93KXp9sZcrs71dXkcIIQmEaP60JhCQqK7piUBAuhrXbcPEOdNv+k2/6bef9Pxiw6s5k+4FDx8JIaSbUza+tOWQ0cqyIITAgGH9cdnkMkx5eiKuvK0cXx4fwrdnfhNfnXIZ6g5HsG3VDmRlZ3X6rkSvOKuny2YvEsi/6FwEc4KARMt7HbP7ZuNL3yxEn/PycMUt3wQksPmxN1H/qbu7PM8e8oUznTohpJsiZfOnNfG4QGFBPeJx4Wpctw0T50y/6Tf9pt9+0vOLDa/mTLoXPHwkhJBuTCwaw7ZVO5B/ybn4UnkhQt+/GFfeVo4pTzV3bA5mBzHyhkvx/836FnavrcSmRZvxzsp3seGhTfj0H5+i59k9m/+l87SGLF7SI7eHq+usgIXqN/6BWEMMAFre6xitjSJ6vLH5EFMCR6s+gZSyzXsfE/5m9ciCEGg5tD3nwgEoG1+q2CNCSCYjIBEqiqC0OAJLSASzbFhCYkRxBEvn7ELI5bgbG0LItG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrmll1LdEdm3Qf+M5HQgjppsSiMTwz9TkcqTza/M7HuMSAkv646mdXIJjd9u7Bbat24EjlkTb/omnbEic+OYFeZ/dEQ23D6c2yO6XDJi6KSBwmdj4BwI47v+S65t2P8Ik8hr8+83bzP9PFW33VEvji0LMRuvZiXDz2Irz34m58drAW/Qb2Rdn40nZrRwghnTF/ehVmTqoFACxePRDVNT1RWFCPm647iJxsG1uWVLgeT2Zj0cooZkyoTMuGl3rJbLjRU+m3Lj2nNdWdMybmqIoYmpijKmJoYo6yrplV10j3wtM7H4cMGdL8LrHTPjfffHOH18diMdxzzz0YOnQosrOzEQqFsHbtWs2zJoSQzKD5QPEopJSwm2xIKXGk8ii2rdrR7trPDtY6Hi6eOFYPO4XHrwNnBbrs4BFovgsxKUnkpZSQQPOh6um+SSB07cUYecOl6Nk3ByNvuBTXzL4SI2+4lAePhBgI96OEEEKIfhqiFhauGIydO4GFC4GGBq9nRLoST+983Lp1K+LxU7eTvPfee/jOd76D8ePHd3j9nXfeiWeffRZPPvkkhg0bhnXr1uGf//mf8cYbb6CsrEzXtAkhJCPoqMu1CAh8drC23bX9BvZNemDnlgFF/XFo12E1xjqg8fhJ9BvUF599WJu2LStgoUfvHoiGo6fuDh3Wn49WE5JBeL0f/cXjRVi5XgAC2FmVi0BAIh4XWP5yPjY89jauuvkybN+TfPzpl/KT2pDIxu2PlKRlwys9NzaS6an2W4ee05qqXju/6fklZ0zMURUxNDFHWddMrmvA7bcDy5cDW7YAOTln+l904mc8PXzs379/m5/vv/9+DB06FOXl5R1ev3z5cvziF7/A9773PQDAv//7v2PDhg14+OGH8eyzz3b5fAkhJJNw6nLdb2DfdteWjS/FpkdfR1O0KW3dTw98lraNzoifjKPu44gSW3aTjYJLzsOgSwtQdzjCR6sJyUC83o9KCOyoym35s93U/E7Z7XtyMW3ecGzfkwtbJh93Y6P5DZMiLRte6bmxkUxPtd869JzWVHfOmJijKmJoYo6qiKGJOcq6ZnJda25Ws307sHgxMGsWSAbim3c+njx5Es8++yxuvfVWiNN7tH9OY2MjsrOz24zl5OTg9ddfd7Tb2NiIxsbGlp/r6urUTJgQQgynbHwpdr60u+07H1vd1ZdoRvPZwVrknZuLs3qdpeTwsTHSmPyiNImfjCe/yCV7N1cjcvQ4pjw9kYeOhGQ4XbUfTXzPaU+akGr9Xt1AQKK6picCAdnyF7bOxnXbMHHO9Jt+02/67Sc9v9jwy5wDAaC6GiRDEVKe3hDdG55//nlMnjwZBw4cQH5+fofXTJ48Gdu3b8cLL7yAoUOHYuPGjbj22msRj8fbbOZaM3fuXNx9993txkeNGoVgUN9fIisqKjBy5EjqUc+Xel5oUk8tr7/xFi66+LKUvydtG+GP6hBraEIwJwt98vMgLAvStvHhto9w8ngjIAQ6+k9FLQ6iLwa2G7cCFs7qGUQs2oR4TN0hoJNeOgiceppcfO6nFbBgx+02egLAF4eejb4D+zquWbrs/eCdjM5R1jW1xGIxrF27FuFwGHl5eVo0uwNdtR8FnPekwCgAHe9Jzz27EYeP9XA9ntxGBYCRadrwTi+5jeR6av3Wo+e0pmduI5V5eKfnl5zRreeXnNGt55ec0a3nl5zRree0psMLj6OwoGtf/lix5+8Zuz/UrZfKftQ3h4/XXHMNzjrrLLz44ouO1xw9ehQ/+clP8OKLL0IIgaFDh+Kqq67C0qVL0eDwdtKO/pV50KBB2jfr48aNw5o1a6hHPV/qeaFJPbV844rReHDRKmX2Kpa/g40Pv9rhoWOCrfgdvoIfnBoQQEHpeYg1NOFo1SeQkMreE9mhXpoUXTEUeefmIu+cXECg5bHqY//4FNtfeA9vNS1v0bOyLJRdX4r/b9a3OuwQruKuyPvvnJjROcq6ppa6ujr06dOHh4+K6ar9KOC8JxWoRahIQIq278oaURzB+g7eleU0XvqlSFIbEuMgsCYtG17pubGRTE+13zr0nNZU9dr5Tc8vOWNijqqIoYk5yrpmfl0bURzB60squrwT9rh7Hs3Y/aFuvVT2o7547Hr//v3YsGEDVq9e3el1/fv3xwsvvIBoNIpjx44hPz8fd9xxBwoLCx2/06NHD/To4e5UnhBCSDMdNaNJhoBAz349sXdHdaeHln4gd0BvfP+B0S0Hhq0fMT/+yQnYTW03PYl3YbbuEJ5Ym0SH8JE3XKrdD0KIOrpyPwo470nnT6/CzEm1AIDFqweiuqYnCgvqcdN1B5GTbWPLkgrX48lsLFoZxYwJlWnZ8FIvmQ03eir91qXntKa6c8bEHFURQxNzVEUMTcxR1jXz61pXHzwS7/DF4eOyZcswYMAAjB492tX12dnZKCgoQCwWw//7f/8P//t//+8uniEhhHQvOmpGczqJN7RYWVbL+yJ7f7FXyoeWurGCFv511ZQ2B49t72a0kdUjC2hs61vZ+FL8ZeFrrjuEE0LMgvtRQgghxFsaolaHB5XEfDw/fLRtG8uWLcPUqVORldV2OlOmTEFBQQHuu+8+AMBbb72FmpoajBgxAjU1NZg7dy5s28Z//ud/ejF1QgjJWFo3o4EApN3+MPELQ76Aq66/Ap8drG3pAr1t1Y6kh5ZdTeJxaCcunzYSPfvmtPzc0d2M8ZNN6H12L5R9p7RNh+tUOoQTQszBy/3oLx4vwsr1AjjtcbXlL+djQwePqzmNP/1SflIbEtm4/ZGStGx4pefGRjI91X7r0HNaU9Vr5zc9v+SMiTmqIoYm5ijrWubWtS0aHsUmXY/nh48bNmzAgQMHMG3atHa/O3DgAKxWL/GPRqO48847UV1djd69e+N73/seli9fjr59+2qcMSGEZC6Jx4+P7f8Uvfv3QtZZAUAA4Y/qcPzoCVhZFuwmG70H9EZTY3Pn6/9v1rda7iJMHFp+/MERz3xIdvhZtWkfvjZtZMucO3rEXAQsZPXIwjWzr2zz3WQdwgkhZuLlflRCYEdVbsufE50/t+/JxbR5w7F9Ty5smXzcjQ1AQEKkZcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXMreuLV49ELMmHwAxG88PH6+++mrHd4Nt2rSpzc/l5eXYvXu3hlkRQkj349Tjx0dwelkeUNIfX5n8ZdTWhLH3tWpEjhxHHeqw4aFN+Oszb+PHq6agZ98cBLODmPL0RLzwX39C1aZ93jjyOcISHd6xeXTPJ23e0eh0N2Mwp/1/IhP+Jd4P2fquSEKIuXi9HxWfv8ei9RQCAYnqmp4IBGTLX8I6G9dtw8Q502/6Tb/pt5/0/GLDhDkT87GSX0IIIaQ7cOrx4/a/O7rnEwSCAZw95AuIHDkO4FQj6+NHjuO3459BLBoD0HxA9/0HRuOcYQMghICVpfk/NQIIZmd1ePAItH9HY9n4Ugwo6d8yVyEEBgzrjz75HXdsC2YHMfKGS3HN7Csx8oZLefBICEkbKdGu9sbjAoUF9YjHhatx3TZMnDP9pt/0m377Sc8vNkyYMzEfHj4SQggBcOrx445IHNh9drAWwmp/TeTIcWxbtaPl58QdglfeVo6y60vxpW923gVWKRKIRZucf33aOxpPn+uVt5VjylMTISz+J5IQ0vUISISKIigtjsASEsEsG5aQGFEcwdI5uxByOe7GhhAybRte6bmxkUxPtd869JzWVHfOmJijKmJoYo6qiKGJOcq6lrl1LdFJm5iN549dE0II8QeddbhufWDX0R2Fwmrf8TlxhyAAvLmsAns3Vyudb6o0P8ohOnxHY+u5nk7iPZh8zJoQ0hXMn16FmZNqAaDDDp9bllS4Hk9mY9HKKGZMqEzLhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOsq5lbl0j5sPDR0IIIQBaN1Pp4J2PrQ7s/vrM2zj++aPXLcjOOz7XHY60NKtxRABnX/AF1NaEEW+MAwKnnu1WQF5+Hr4y6cspHR6eeg/mqQYzO1/ajSlPT+QBJCGEEEIIIRpoiFo8lDQd2c0Ih8MSgAyHw1p1x44dSz3q+VbPC03qqeXr5d+TW7afSPuz6a1aufD21+Sd41+QM6/4nbzz+hfkwttfk5veqm25Zv2rn8iJAxbIASiRY6x5coy4R067cHGba07/LLz9NTlGzJOjcU/bj7hHjs36lRwj5rXYSMzh5//8RzkmcOo7A1DS/vspfO4c/0JKa/H18u91OO8xYp5cePtrSta79SfTc5R1TS1e7WeIOhIxFKiVoaKwDBWHpSVsGcyKS0vYsqwkLI9t2CjLStyNu7EhxJi0bXil58ZGMj3VfuvQc1pT3TljYo6qiKGJOaoihibmKOta96tr9ZvXS7l1XcqfTN4f6tZLZT/KOx8JIYS00Nnjxwl69s3BTS9Ow87Jf8CXvxJy9SjyqbsqT91B2L/4ixj+3WGoOxxpZyMxh2/+++V48rqn0Hj8ZNq+nX3+F9r87OZx6sR7MGXTqVswT29YQwgh6SAhsKMqt+XPic6f2/fkYtq84di+Jxe2TD7uxkbzGyZFWja80nNjI5mear916Dmtqe6cMTFHVcTQxBxVEUMTc5R1rfvVtcWrB2LW5AMgZsDDR0IIIa44/bCuT34erpl9pavvJpq6pPruxA/+vAcnT8Q6/qUF4PSnLSygV7+eOHGsbVe8ASVt3/Po9nHqjt6DeXrDGkIISRfxeR+v1q+8CAQkqmt6IhCQLX/Z6mxctw0T50y/6Tf9pt9+0vOLDRPnnBgn5sBWnoQQQpKSOKzb+PCr2PaHHdj48Kv4cNtHiEXbHwzGojFULH8H6+7biIrl77Rck7ir8prZV2LkDZe6emdiRx24rSwLBaF8BHt08H0bGPkvl+LbM7+JgWUFGFiWj2/f8k1MfWZSG71tq3bgSOVRSClhN9mQUuJI5dE2HbuB5js2B5T0hxACVpYFITpuWEMIIekgZdu/bAFAPC5QWFCPeFy4Gtdtw8Q502/6Tb/pt5/0/GLDxDknxok58PCREEJIUjo6rDt5vLHdYV1Hh5TPTH0OsWjM8VCyMzq+89BG4/FGxBraf19YAnUfR3D5j0ZiylMTMeWpSbh82kjHx6nbfLeDx6kTd2xeeVs5yq4vxZW3lWPKU2w2QwhRh4BEqCiC0uIILCERzLJhCYkRxREsnbMLIZfjbmwIIdO24ZWeGxvJ9FT7rUPPaU1154yJOaoihibmqIoYmpijrGvdr64lumMTM+Bj14QQQpLS0bsPIdof1rU+pExc+3HlEaz4t1WoOxTB8aPHIQJW0q7RiUe8j/3jU/Tu36v5exAQAAJnZeGTfcc6nKe03T0SnXdubrvO23aTjbxzc9td6+Y9mIQQcqbMn16FmZNqAaDDTp5bllS4Hk9mY9HKKGZMqEzLhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOsq51v7pGzEFIefqNrZlNXV0d+vTpg3A4jLy8PG2648aNw5o1a6hHPV/qeaFJPbV844rReHDRqi6zX7H8HWx8+FW0/k/G2/gd7rj9yTYHc+vu24htf9jR7mCvI4QQuPK28nYHe6e/j9FushHMCeJvwefwz6GfYe/makebvQf0xr+/OC3pnYlvLq3AK/+9ud34t2/5Ji6fNhIA8J8zxnfpmp7O/XdOzOgcZV1Ti1f7GaKOlhi+shp5vXtp0Rx3611Ys+BuLVrUywxN6pmt54Um9ajnd81x9zyasftD3Xqp7Ed55yMhhJCkdNSt+qxePdq9+7Cjx6QdEcDRfcdQsfydNk1oOrp7MtYQQ7Qhipr3DrXon07ugN7411VTXD0SXfdxpH3DGuvzcUII0chjqwZ1eudjQ9RyPZ7Mxs59vbFwxeC0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmKOsa6xrviPQxspsRDoclABkOh7Xqjh07lnrU862eF5rUU8vXy78nt2w/0aWfTW/VyoW3vyZ/OXGNXHj7a/Jr3xzV4TXThi2WY8Q8OUbMk6NxT6efsYFfyTHiHjk261dyjJgnpw1bLO8c/4Icm/WrdtcOQIkcLTq2M/OK38lNb9W69uWhW17p0M5Dt7zSco2ONW39yfQcZV1Ti1f7GaKORAwFamWoKCxDxWFpCVsGs+LSErYsKwnLYxs2yrISd+NubAgxJm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa6lhiv37xeyq3rHD+ZvD/UrZfKfpR3PhJCCHHF6e8+/MPW9j3LEg1atq3agQ82VuHgtppObdrx5n+ZlJ8/pn2k8ijyzs11vHtSCIEeeT3QWNfYcgfkgGH98f0HRqfWBEakOE4IIV2EhMCOqtyWP9tNzYVo+55cTJs3HNv35MKWycfd2GhubyPSsuGVnhsbyfRU+61Dz2lNdeeMiTmqIoYm5qiKGJqYo6xrrGuJ8cWrB2LW5AMg/oLdrgkhhCglcUg5afH/wjnDBkAIASvL3X9uRECg9xd7YUBJ/w4PAqUtkXVWAFfM+EZa3afrDkfazcnKslB3mI9dE0L0I0TzpzWBgER1TU8EAtLVuG4bJs6ZftNv+k2//aTnFxsmzjnZOPEfPHwkhBDSJSTugrzytnKUXV+KoiuGtttQnI6MS5w95AuY8vREfPuWbyKY0/5Q8fgnJ3Bw+0dpza2jd1PKuLtO2YQQohopmz+ticcFCgvqEY8LV+O6bZg4Z/pNv+k3/faTnl9smDjnZOPEf3h6+DhkyBAIIdp9br755g6vv+KKKzq8fvTo0ZpnTgghxA2JuyCvmX0lvv/AaAwoaXsnZFaPLAjRfNehEAIDhvVH2fhSBLODuPxHI3HxmAshrNNOLCVQtWkftv1hBzY+/CqemfocYtFYSvMqG1+KASX9W+bSWpsQ0r3wej8qIBEqiqC0OAJLSASzbFhCYkRxBEvn7ELI5bgbG0LItG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGutaYjzRuIb4C0/f+bh161bE4/GWn9977z185zvfwfjx4zu8fvXq1Th58mTLz8eOHUMoFHK8nhBCiH9o/T7IRHfri8dehPde3N2m23XrR6jPPv8LgEPzbLvVeyK3rdrR5n2UZzKX07UJId0Dr/ej86dXddrtesuSCtfjyWwsWhnFjAmVadnwUi+ZDTd6Kv3Wpee0prpzxsQcVRFDE3NURQxNzFHWNdY1drv2L54ePvbv37/Nz/fffz+GDh2K8vLyDq//whe+0Obn5557Dj179uThIyGEGMLpTWsAdHpoWDa+FDtf2o0jlUchIDo8iBQBgc8O1iqZCyGk+8H9KCGEEJI5NEQtHkj6EQ3dt13R2Ngozz77bDl//nzX37n44ovlT37yk06viUajMhwOt3w+/PBD163AVZLJ7dWpZ76eF5rUU8vXy78nt2w/ofWjWnPTW7Vy4e2vyV9OXCMX3v6a3PRWbZvx4vyRcuYVv5OjcU+bzxgxTy68/TXf+5fsk+k5yrqmlnA47Ml+JtPpqv2olM57UoFaGSoKy1BxWFrClsGsuLSELctKwvLYho2yrMTduBsbQoxJ24ZXem5sJNNT7bcOPac11Z0zJuaoihiamKMqYmhijrKusa51ZqN+83opt66Tcuu6jN4f6tZLZT8qpDz9lZ7e8Pzzz2Py5Mk4cOAA8vPzk15fUVGBf/qnf8Jbb72FkSNHOl43d+5c3H333e3GR40ahWBQ3+N1FRUVnc6TetTzUs8LTeqZrQcAr7/xFi66+DIltqRt48NtH+Hk8cbmNndS4qzePTCoLB/Can4/5N4P3sFll16G3a9/iPq6U9f17NMDF319EKyA2tcYZ3oMM13PC02derFYDGvXrkU4HEZeXp4Wze5AV+1HAec9KTAKQMd70nPPbsThYz1cjye3UQFgZJo2vNNLbiO5nlq/9eg5remZ20hlHt7p+SVndOv5JWd06/klZ3Tr+SVndOvpzpnhhcdRWNDQrLarEiOHl7j6ngoq9vyd+1F4/Nh1a37729/iu9/9rquNXuL6Sy65JOmizp49G7feemvLz3V1dRg0aBBWrlypdbM+btw4rFmzhnrU86WeF5rUM1sPAL5xxWg8uGhVyt+LRWPt3rW4bdUObHz9VUjIlkerxQmBK/+pvOXR6PvvnIg1a9agsSGG/1n8Dg5X1+Lcwr747k2XokcHXbHTJdNjmOl6Xmjq1Kurq0OfPn20aHUnumo/CjjvSYGVsEQuAMCWpxpsBbNs9O93AsfCvRBrspKOW0K6sDEOwJo0bXij585G53rq/e56Pac1Vb92/tLzS86YmKMqYmhijrKusa51No9vX3YQv/7ZBwCAcbfehTULOvrHwK5h3D2Pcj8Kj7tdJ9i/fz82bNiAH//4x66uP3HiBJ577jn867/+a9Jre/Togby8vDYfQggh3hCLxvDM1Oew8eFX23SrPvaPTyECbbtaO73LsUdOEN+f9VXc9OtR+P6sr3bJwSMhpPvRlftRoPM9qZTNn9bE4wKFBfWIx4Wrcd02TJwz/abf9Jt++0nPLzZMnPOZ2CDe4ovDx2XLlmHAgAEYPXq0q+tXrVqFxsZG/Mu//EsXz4wQQohKtq3agSOVRyGlhN1kQ0qJI5VHcfyTE5DxtjsFGZfoN7CvNxMlhHQ7vNqPCkiEiiIoLY7AEhLBLBuWkBhRHMHSObsQcjnuxoYQMm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa61pmNRCdt4h2eP3Zt2zaWLVuGqVOnIiur7XSmTJmCgoIC3HfffW3Gf/vb3+L73/8+zj77bJ1TJYQQkiafHayFCAjIplMHjSIg0Lt/Lwwo6d/c1TogIOMSA4b1R9n4Ug9nSwjpLni5H50/vQozJ9UCQIfdObcsqXA9nszGopVRzJhQmZYNL/WS2XCjp9JvXXpOa6o7Z0zMURUxNDFHVcTQxBxlXWNd68wG8RbPDx83bNiAAwcOYNq0ae1+d+DAAVhW25szKysr8frrr+PPf/6zrikSQghRRL+BfTu8w/Hs87+Aq26/ot27IIPZfKSaENL1cD9KCCGEZDYNUQuLVw/Ezn29sXDFYB5K6qaLO2/7jlRagaskk9urU898PS80qWe2npRSfr38e3LL9hMpfTa9VSunDVssx4h5cmzWr+QYMU9Ou3Cx3PRWbdLvZvqaUs98TZ16Xu1niDoSMRSolaGisAwVh6UlbBnMiktL2LKsJCyPbdgoy0rcjbuxIcSYtG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGuvamcSwfvN6Kbeu69IP96PN8PBRE5mccNQzX88LTeqZrSflmR0+Jg4gF97+mvzlxDVy4e2vuTp45OEj9UzQ9Otmj/iTRAyBsBSwpYAtT70qX0pL2PLa8sPSEu7G3dkYq8CGN3rubHSup97vrtdzWlPdOWNijqqIoYk5qiKGJuYo6xrr2pnEcMGs93n4mAap7Ec9f+yaEEJI9yKYHcTIGy71ehqEEOIbxOfNOqU8NRYISFTX9EQgIGE3iaTjum2YOGf6Tb/pN/32k55fbJg4Z5U2iB580e2aEEIIIYSQ7kri/ozWxOMChQX1iMeFq3HdNkycM/2m3/SbfvtJzy82TJyzShtEDzx8JIQQQgghxCMEJEJFEZQWR2AJiWCWDUtIjCiOYOmcXQi5HHdjQwiZtg2v9NzYSKan2m8dek5rqjtnTMxRFTE0MUdVxNDEHGVdY107kxgmumOTroePXRNCCCGEEOIR86dXYeakWgDA4tUDUV3TE4UF9S1dOLcsqXA9nszGopVRzJhQmZYNL/WS2XCjp9JvXXpOa6o7Z0zMURUxNDFHVcTQxBxlXWNdO5MYEj3w8JEQQoh2YtEYtq3agc8O1qLfwL4oG1+KYHbQ62kRQgghhBBCugkNUavDg0rSBWhogOMr2O2aetTzhyb1zNaTMr1u19OGLZZjxDw5NutXcoyYJ6cNW5y063Wmryn1zNf0a3dB4k8SMRSolaGisAwVh6UlbBnMiktL2LKsJCyPbdgoy0rcjbuxIcSYtG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGuuaqrpWv3k9u127JJX9KA8fNZHJCUc98/W80KSe2XpSnvnh48LbX5NjxDw5Gve0fMaIeXLh7a/x8JF6Rmv6dbNH/EkihkBYCthSwJanXpUvpSVseW35YWkJd+PubIxVYMMbPXc2OtdT73fX6zmtqe6cMTFHVcTQxBxVEUMTc5R1jXUt1Rg6Xbtg1vs8fHRJKvtRNpwhhBCilc8O1kIE2nabEwGBzw7WejMhQgjxGCGaP60JBCSqa3oiEJCuxnXbMHHO9Jt+02/67Sc9v9gwcc5d7TdRDw8fCSGEaKXfwL6Q8bb/8ZdxiX4D+3ozIUII8ZjEPReticcFCgvqEY8LV+O6bZg4Z/pNv+k3/faTnl9smDjnrvabqIeHj4QQQrRSNr4UA0r6QwgBK8uCEAIDhvVH2fhSr6dGCCHaEZAIFUVQWhyBJSSCWTYsITGiOIKlc3Yh5HLcjQ0hZNo2vNJzYyOZnmq/deg5ranunDExR1XE0MQcVRFDE3OUdY11TVVdS3TMJmpht2tCCCFaCWYHMeXpiex2TQghAOZPr8LMSbUA0GHHzS1LKlyPJ7OxaGUUMyZUpmXDS71kNtzoqfRbl57TmurOGRNzVEUMTcxRFTE0MUdZ11jXVNU1oh4ePhJCCNFOMDuIkTdc6vU0CCGEEEIIIYR0NRoa4PgKdrumHvX8oUk9s/WkPPNu12f6yfQ1pZ75mn7tLkj8SSKGArUyVBSWoeKwtIQtg1lxaQlblpWE5bENG2VZibtxNzaEGJO2Da/03NhIpqfabx16TmuqO2dMzFEVMTQxR1XE0MQcZV1jXVNV1+o3r2e3a5eksh/l4aMmMjnhqGe+nhea1DNbT0oePlLP33peaPp1s0f8SSKGQFgK2FLAlqdefy+lJWx5bflhaQl34+5sjFVgwxs9dzY611Pvd9frOa2p7pwxMUdVxNDEHFURQxNzlHWNdS3VGDpdu2DW+zx8dEkq+1E2nCGEEEIIIcRDhGj+tCYQkKiu6YlAQLoa123DxDnTb/pNv+m3n/T8YsPEOXe130Q9nh4+DhkyBEKIdp+bb77Z8Tu1tbW4+eabcd5556FHjx4oLi7Gyy+/rHHWhBBCCCEkU/DDfjRxz0Vr4nGBwoJ6xOPC1bhuGybOmX7Tb/pNv/2k5xcbJs65q/0m6vH08HHr1q04dOhQy2f9+vUAgPHjx3d4/cmTJ/Gd73wH//jHP/CHP/wBlZWVePLJJ1FQUKBz2oQQQgghJEPwej8qIBEqiqC0OAJLSASzbFhCYkRxBEvn7ELI5bgbG0LItG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGuuaqrqW6IJN1OJpt+v+/fu3+fn+++/H0KFDUV5e3uH1S5cuxaeffoo33ngDwWAQQPO/VhNCCCGEEHImeL0fnT+9CjMn1QIAFq8eiOqanigsqMdN1x1ETraNLUsqXI8ns7FoZRQzJlSmZcNLvWQ23Oip9FuXntOa6s4ZE3NURQxNzFEVMTQxR1nXWNdU1TWiHt+88/HkyZN49tlnMW3aNIjTH7z/nDVr1uDyyy/HzTffjHPOOQcXX3wx7r33XsTjcUe7jY2NqKura/MhhBBCCCHkdLpqPwpwT0oIIYSYQkPUwsIVg/HT/zMMC1cMRkPUN0dnxiKkPP0pd294/vnnMXnyZBw4cAD5+fkdXjNs2DD84x//wA9+8ANMnz4de/fuxfTp0zFjxgzcddddHX5n7ty5uPvuu9uNjxo1quVfq3VQUVGBkSNHUo96vtTzQpN6Zut5oUk96vldU6deLBbD2rVrEQ6HkZeXp0WzO9BV+1HAeU8KjEJer+aDzroTWRBCQkqBvF5N+FppLd7Y0df1eDIbQAWAkWnZ8FIvmQ03eir91qXntKa6c8bEHFURQxNzVEUMTcxR1jXWta6sa98Y8RkCZ3AGWbHn79yPAkCX9952ydVXXy3HjBnT6TVFRUVy0KBBsqmpqWXs4Ycflueee67jd6LRqAyHwy2fDz/80HUrcJVkcnt16pmv54Um9czW80KTetTzu6ZOvXA47Ml+JtPpqv2olM57UiAsBWwpYMtTr7+X0hK2vLb8sLSEu3F3NsYqsOGNnjsbneup97vr9ZzWVHfOmJijKmJoYo6qiKGJOcq6xrqWagxT1Vsw630pt65L+cP9aDOevvMxwf79+7FhwwasXr260+vOO+88BINBBAKBlrELL7wQhw8fxsmTJ3HWWWe1+06PHj3Qo0cP5XMmhBBCCCGZQ1fuR4HO96SJJ7ylPDUWCEhU1/REICBhN4mk47ptmDhn+k2/6Tf99pOeX2yYOGev/CZnji8eXF+2bBkGDBiA0aNHd3rd17/+dezduxe2feoFoHv27MF5553nuNEjhBBCCCEkGV7uRxP3VrQmHhcoLKhHPC5cjeu2YeKc6Tf9pt/02096frFh4py98pucOZ4fPtq2jWXLlmHq1KnIymp7I+aUKVMwe/bslp///d//HZ9++iluueUW7NmzB3/6059w77334uabb9Y9bUIIIYQQkiF4uR8VkAgVRVBaHIElJIJZNiwhMaI4gqVzdiHkctyNDSFk2ja80nNjI5mear916Dmtqe6cMTFHVcTQxBxVEUMTc5R1jXWtq+taojs2OTM8f+x6w4YNOHDgAKZNm9budwcOHIBlnTofHTRoENatW4dZs2ahtLQUBQUFuOWWW/Bf//VfOqdMCCGEEEIyCC/3o/OnV2HmpFoAwOLVA1Fd0xOFBfW46bqDyMm2sWVJhevxZDYWrYxixoTKtGx4qZfMhhs9lX7r0nNaU905Y2KOqoihiTmqIoYm5ijrGutaV9c1cub4ptu1Lurq6tCnTx/t3SHHjRuHNWvWUI96vtTzQpN6Zut5oUk96vldU6eeV/sZoo6WGL6yGnm9e2nRHHfrXViz4G4tWtTLDE3qma3nhSb1qOd3Te169zzK/Sh8cOcjIYQQQggh3ZXHVg3q9M7HhqjlejyZjZ37emPhisFp2fBSL5kNN3oq/dal57SmunPGxBxVEUMTc1RFDE3MUdY11jUv6hrviHRJl/fe9hmptAJXSSa3V6ee+XpeaFLPbD0vNKlHPb9r6tTzaj9D1JGIoUCtDBWFZag4LC1hy2BWXFrClmUlYXlsw0ZZVuJu3I0NIcakbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXWNe8qGtlJWFZv3m9lFvXOX64H22Gh4+ayOSEo575el5oUs9sPS80qUc9v2v6dbNH/EkihkBYCthSwJanem9KaQlbXlt+WFrC3bg7G2MV2PBGz52NzvXU+931ek5rqjtnTMxRFTE0MUdVxNDEHGVdY11LNYYq9CxhywWz3ufho4v9qOfdrgkhhBBCCOnOCNH8aU0gIFFd0xOBgHQ1rtuGiXOm3/SbftNvP+n5xYaJc/aL34lxkhwePhJCCCGEEOIhiXsoWhOPCxQW1CMeF67Gddswcc70m37Tb/rtJz2/2DBxzn7xOzFOksPDR0IIIYQQQjxCQCJUFEFpcQSWkAhm2bCExIjiCJbO2YWQy3E3NoSQadvwSs+NjWR6qv3Woee0prpzxsQcVRFDE3NURQxNzFHWNdY1L+raiOJIS+Ma0jnsdk0IIYQQQohHzJ9e1Wm36y1LKlyPJ7OxaGUUMyZUpmXDS71kNtzoqTWEnR8AAFuiSURBVPRbl57TmurOGRNzVEUMTcxRFTE0MUdZ11jXvKhr7HbtDh4+EkIIIYQQQgghhBCSIg1RiweSbtDQAMdXsNs19ajnD03qma3nhSb1qOd3Tb92FyT+JBFDgVoZKgrLUHFYWsKWway4tIQty0rC8tiGjbKsxN24GxtCjEnbhld6bmwk01Pttw49pzXVnTMm5qiKGJqYoypiaGKOsq6xrvmprtVvXs9u16fBw0dNZHLCUc98PS80qWe2nhea1KOe3zX9utkj/iQRQyAsBWwpYMtTr7+X0hK2vLb8sLSEu3F3NsYqsOGNnjsbneup97vr9ZzWVHfOmJijKmJoYo6qiKGJOcq6xrqWagy7Um/BrPd5+HgabDhDCCGEEEKIhwjR/GlNICBRXdMTgYB0Na7bholzpt/0m37Tbz/p+cWGiXM2wW/SFh4+EkIIIYQQ4iGJ+yVaE48LFBbUIx4XrsZ12zBxzvSbftNv+u0nPb/YMHHOJvhN2sLDR0IIIYQQQjxCQCJUFEFpcQSWkAhm2bCExIjiCJbO2YWQy3E3NoSQadvwSs+NjWR6qv3Woee0prpzxsQcVRFDE3NURQxNzFHWNdY1P9W1RCdtcgp2uyaEEEIIIcQj5k+vwsxJtQDQYbfMLUsqXI8ns7FoZRQzJlSmZcNLvWQ23Oip9FuXntOa6s4ZE3NURQxNzFEVMTQxR1nXWNf8VNdIW3jnIyGEEEIIIYQQQgghimiIWli4YjB27gQWLgQaGryekcdoaIDjK9jtmnrU84cm9czW80KTetTzu6ZfuwsSf5KIoUCtDBWFZag4LC1hy2BWXFrClmUlYXlsw0ZZVuJu3I0NIcakbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXWNf8W9fGSsuSsqxMyvr6rt9f+HU/6unh4/nnny8BtPtMnz69w+uXLVvW7toePXqkpMnDR+pRzx+a1DNbzwtN6lHP75p+3eyRzvFiPyrlqRgCYSlgSwFbnnp1vZSWsOW15YelJdyNu7MxVoENb/Tc2ehcT73fXa/ntKa6c8bEHFURQxNzVEUMTcxR1jXWtVRjqD1HLSkXLEh315Icv+5HPX3n49atWxGPx1t+fu+99/Cd73wH48ePd/xOXl4eKisrW34Wp/c1J4QQQgghxCV+2I8mvi7lqbFAQKK6picCAQm7SSQd123DxDnTb/pNv+m3n/T8YsPEOZvpN1BdjW6Lp+987N+/P84999yWz0svvYShQ4eivLzc8TtCiDbfOeecczTOmBBCCCGEZBJ+2I8m7pdoTTwuUFhQj3hcuBrXbcPEOdNv+k2/6bef9Pxiw8Q5m+k3UFiIbotvGs6cPHkSzz77LKZNm9bpvx4fP34c559/PgYNGoRrr70Wu3bt6tRuY2Mj6urq2nwIIYQQQgg5na7ajwLOe1IBiVBRBKXFEVhCIphlwxISI4ojWDpnF0Iux93YEEKmbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXWNf8W9cAywJGjABuuknVjsU8hJSnn9N6w/PPP4/JkyfjwIEDyM/P7/CaN998E1VVVSgtLUU4HMZDDz2E1157Dbt27cLAgQM7/M7cuXNx9913txsfNWoUgsGgUh86o6KiAiNHjqQe9Xyp54Um9czW80KTetTzu6ZOvVgshrVr1yIcDiMvL0+LZnegq/ajgPOedNiQb6KwIAYA2H8oByeiAfTKjuP88xoQsIC47X48mY3qmp0oLLgkLRte6iWz4UZPpd+69JzWVHfOmJijKmJoYo6qiKGJOcq6xrpmQl3rair2/N2X+1HfHD5ec801OOuss/Diiy+6/k4sFsOFF16ISZMmYd68eR1e09jYiMbGxpaf6+rqMGjQIO2b9XHjxmHNmjXUo54v9bzQpJ7Zel5oUo96ftfUqVdXV4c+ffrw8FExXbUfBZz3pPdO34qZk2oBAItXD0R1TU8UFtTjpusOIifbRkPUcj2ezMailT/FjAm/TsuGl3rJbLjRU+m3Lj2nNdWdMybmqIoYmpijKmJoYo6yrrGumVrXcrJth91D6oy751F/7ke7uPmNK/7xj39Iy7LkCy+8kPJ3r7/+ejlx4kTX17PbNfWo5w9N6pmt54Um9ajnd02/dhck7tC5H5XyVAwFamWoKCxDxWFpCVsGs+LSErYsKwnLYxs2yrISd+NubAgxJm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa6ZmpdKysJy/rN66Xcuk7Jx6/7UV8cPt51113y3HPPlbFYLKXvNTU1yZKSEjlr1izX3+HhI/Wo5w9N6pmt54Um9ajnd02/bvaIO3TuR6U8FUMgLAVsKWDLU6+ul9IStry2/LC0hLtxdzbGKrDhjZ47G53rqfe76/Wc1lR3zpiYoypiaGKOqoihiTnKusa6lmoM/ZKjlrDlglnvZ/zho+cNZ2zbxrJlyzB16lRkZWW1+d2UKVMwe/bslp/vuece/PnPf0Z1dTX+9re/4V/+5V+wf/9+/PjHP9Y9bUIIIYQQkiF4vR8VovnTmkBAorqmJwIB6Wpctw0T50y/6Tf9pt9+0vOLDRPnnEl+J8YzHc8PHzds2IADBw5g2rRp7X534MABHDp0qOXnzz77DD/5yU9w4YUX4nvf+x7q6urwxhtv4KKLLtI5ZUIIIYQQkkF4vR9N3P/QmnhcoLCgHvG4cDWu24aJc6bf9Jt+028/6fnFholzziS/E+OZjueHj1dffTWklCguLm73u02bNuGpp55q+XnhwoXYv38/GhsbcfjwYfzpT39CWVmZxtkSQgghhJBMw8v9qIBEqCiC0uIILCERzLJhCYkRxREsnbMLIZfjbmwIIdO24ZWeGxvJ9FT7rUPPaU1154yJOaoihibmqIoYmpijrGusa6bWtRHFkZbGNZlMVvJLCCGEEEIIIV3B/OlVnXa73rKkwvV4MhuLVkYxY0JlWja81Etmw42eSr916Tmtqe6cMTFHVcTQxBxVEUMTc5R1jXXN1Lqmstu1X+HhIyGEEEIIIYQQQgghHtAQtTL/QLLL29/4DHa7ph71/KFJPbP1vNCkHvX8runX7oLEnyRiKFArQ0VhGSoOS0vYMpgVl5awZVlJWB7bsFGWlbgbd2NDiDFp2/BKz42NZHqq/dah57SmunPGxBxVEUMTc1RFDE3MUdY11rVMq2v1m9dnVLdrHj5qIpP/AkQ98/W80KSe2XpeaFKPen7X9Otmj/iTRAyBsBSwpYAtT726XkpL2PLa8sPSEu7G3dkYq8CGN3rubHSup97vrtdzWlPdOWNijqqIoYk5qiKGJuYo6xrrWqox9HuOLpj1fkYdPnrecIYQQgghhJDujBDNn9YEAhLVNT0RCEhX47ptmDhn+k2/6Tf99pOeX2yYOOfu4ncmwcNHQgghhBBCPCRxr0Nr4nGBwoJ6xOPC1bhuGybOmX7Tb/pNv/2k5xcbJs65u/idSfDwkRBCCCGEEI8QkAgVRVBaHIElJIJZNiwhMaI4gqVzdiHkctyNDSFk2ja80nNjI5mear916Dmtqe6cMTFHVcTQxBxVEUMTc5R1jXUt0+paopN2psBu14QQQgghhHjE/OlVmDmpFgA67HS5ZUmF6/FkNhatjGLGhMq0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmKOsa61qm1bVMgoePhBBCCCGEEEIIIYT4iIaolTmHkhoa4PgKdrumHvX8oUk9s/W80KQe9fyu6dfugsSfJGIoUCtDRWEZKg5LS9gymBWXlrBlWUlYHtuwUZaVuBt3Y0OIMWnb8ErPjY1keqr91qHntKa6c8bEHFURQxNzVEUMTcxR1jXWte5S1+o3rzey2zUPHzWRyX8Bop75el5oUs9sPS80qUc9v2v6dbNH/EkihkBYCthSwJanXjsvpSVseW35YWkJd+PubIxVYMMbPXc2OtdT73fX6zmtqe6cMTFHVcTQxBxVEUMTc5R1jXUt1RiamKOWsOWCWe8befjIhjOEEEIIIYR4iBDNn9YEAhLVNT0RCEhX47ptmDhn+k2/6Tf99pOeX2yYOOfu7reJ8PCREEIIIYQQD0nc09CaeFygsKAe8bhwNa7bholzpt/0m37Tbz/p+cWGiXPu7n6bCA8fCSGEEEII8QgBiVBRBKXFEVhCIphlwxISI4ojWDpnF0Iux93YEEKmbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXWNe6S11LdMc2DXa7JoQQQgghxCPmT6/CzEm1ANBhR8stSypcjyezsWhlFDMmVKZlw0u9ZDbc6Kn0W5ee05rqzhkTc1RFDE3MURUxNDFHWddY17pLXTMRIeXpN3hmNnV1dejTpw/C4TDy8vK06Y4bNw5r1qyhHvV8qeeFJvXM1vNCk3rU87umTj2v9jNEHS0xfGU18nr30qI57ta7sGbB3Vq0qJcZmtQzW88LTepRz++aGa93z6O+3I96eufjkCFDsH///nbj06dPx2OPPdZufPXq1bj33nuxd+9exGIxFBUV4bbbbsMNN9ygY7qEEEIIISTD8Ho/+tiqQZ3e+dgQtVyPJ7Oxc19vLFwxOC0bXuols+FGT6XfuvSc1lR3zpiYoypiaGKOqoihiTnKusa61p3rmu/viOzy3tudcOTIEXno0KGWz/r16yUA+corr3R4/SuvvCJXr14td+/eLffu3SsfeeQRGQgE5Nq1a11rptIKXCU6251Tj3omaFLPbD0vNKlHPb9r6tTzaj+TiXixH5XyVAwFamWoKCxDxWFpCVsGs+LSErYsKwnLYxs2yrISd+NubAgxJm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa61p3rWllJWNZvXi/l1nW+3Y96evh4OrfccoscOnSotG3b9XfKysrknXfe6fp6Hj5Sj3r+0KSe2XpeaFKPen7X9Otmj6SGjv2olKdiCISlgC0FbHmq56WUlrDlteWHpSXcjbuzMVaBDW/03NnoXE+9312v57SmunPGxBxVEUMTc1RFDE3MUdY11rVUY2hijnY2vmDW+74+fPRNt+uTJ0/i2WefxbRp0yCESHq9lBIbN25EZWUlvvWtbzle19jYiLq6ujYfQgghhBBCTqer9qNA53tSIZo/rQkEJKpreiIQkK7Gddswcc70m37Tb/rtJz2/2DBxzvS743E/45tu1y+88AJqa2vxwx/+sNPrwuEwCgoK0NjYiEAggMcffxzf+c53HK+/7777cPfd7V/uOWHCBASDwXSn7ZqKigqMGzeOetTzpZ4XmtQzW88LTepRz++aOvVisZgWne5GV+1HAec9KTABtmy/J401AUc/a0SsqYercbvt30Mcrq0AMC5NG97oubPRuZ56v7tez2lN1a+dv/T8kjMm5qiKGJqYo6xrrGvu52FujnY2/srbxzHu1gZU7KrEuG9d3t5oFxBranJ/cZffh+mSq6++Wo4ZMybpdfF4XFZVVclt27bJhx56SPbp08fxnTxSShmNRmU4HG75fPjhh65vC1VJJj/6RT3z9bzQpJ7Zel5oUo96ftf062MuxD1dtR+V0nlPKlArR3TwvqcvO7zXyWncjY3Ee6fSseGVnhsbyfRU+61Dz2lNdeeMiTmqIoYm5qiKGJqYo6xrrGvdua59ufU7H7/5VSm3rtPyCb+y2vV+1Bd3Pu7fvx8bNmzA6tWrk15rWRa+9KUvAQBGjBiB999/H/fddx+uuOKKDq/v0aMHevTo0eHvCCGEEEIIAbp2Pwo470nnT6/qtNv1liUVrseT2Vi0MooZEyrTsuGlXjIbbvRU+q1Lz2lNdeeMiTmqIoYm5qiKGJqYo6xrrGvdua75vdu1L975uGzZMgwYMACjR49O+bu2baOxsbELZkUIIYQQQroL3I8SQgghhHQRbh9D6Sri8bgcPHiw/K//+q92v7vhhhvkHXfc0fLzvffeK//85z/Lffv2yd27d8uHHnpIZmVlySeffNK1HrtdU496/tCkntl6XmhSj3p+1+Rj1+aiez8q5akYCtTKUAePXJU5PFrlNO7GRuLRr3RseKXnxkYyPdV+69BzWlPdOWNijqqIoYk5qiKGJuYo6xrrWneua2UGPHbt+eHjunXrJABZWVnZ7nfl5eVy6tSpLT//4he/kF/60pdkdna27Nevn7z88svlc889l5IeDx+pRz1/aFLPbD0vNKlHPb9r8vDRXHTvR6U8FUMgLAVsKWBLQLZ8LGHLa8sPS0u4G3dnY6wCG97oubPRuZ56v7tez2lNdeeMiTmqIoYm5qiKGJqYo6xrrGupxtDEHO1sfMGs9319+Oj5Ox+vvvpqSCk7/N2mTZva/PyrX/0Kv/rVrzTMihBCCCGEdBe83o8K0fy/racQCEhU1/REICBhN4mk47ptmDhn+k2/6Tf99pOeX2yYOGf63fG4n/HFOx8JIYQQQgjpriTuXWhNPC5QWFCPeFy4Gtdtw8Q502/6Tb/pt5/0/GLDxDnT747H/QwPHwkhhBBCCPEIAYlQUQSlxRFYQiKYZcMSEiOKI1g6ZxdCLsfd2BBCpm3DKz03NpLpqfZbh57TmurOGRNzVEUMTcxRFTE0MUdZ11jXunNdG1Ecaema7Vc8f+yaEEIIIYSQ7sr86VWYOakWALB49UBU1/REYUE9brruIHKybWxZUuF6PJmNRSujmDGhMi0bXuols+FGT6XfuvSc1lR3zpiYoypiaGKOqoihiTnKusa61p3rWk623cluw3t45yMhhBBCCCGEEEIIIYbSELWwcMVg7NzXGwtXDEZD1GfHfSm35jMcdrumHvX8oUk9s/W80KQe9fyuyW7XJBUSMRSolaGisAwVh6UlbBnMiktL2LKsJCyPbdgoy0rcjbuxIcSYtG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGusa61p7vfrN633T7ZqHj5rI5L8AUc98PS80qWe2nhea1KOe3zV5+EhSIRFDICwFbClgy1OvnZfSEra8tvywtIS7cXc2xiqw4Y2eOxud66n3u+v1nNZUd86YmKMqYmhijqqIoYk5yrrGupZqDE3M0VRjuGDW+745fPTZfZiEEEIIIYR0L4Ro/rQmEJCorumJQEC6Gtdtw8Q502/6Tb/pt5/0/GLDxDnTb/c2/AIPHwkhhBBCCPGQxL0LrYnHBQoL6hGPC1fjum2YOGf6Tb/pN/32k55fbJg4Z/rt3oZf4OEjIYQQQgghHiEgESqKoLQ4AktIBLNsWEJiRHEES+fsQsjluBsbQsi0bXil58ZGMj3VfuvQc1pT3TljYo6qiKGJOaoihibmKOsa6xrrWnu9RCdtP5Dl9QQIIYQQQgjprsyfXoWZk2oBAItXD0R1TU8UFtTjpusOIifbxpYlFa7Hk9lYtDKKGRMq07LhpV4yG270VPqtS89pTXXnjIk5qiKGJuaoihiamKOsa6xrrGvt9fwCDx8JIYQQQgghhBBCCMkwGqJWhweY2tHQzM9XsNs19ajnD03qma3nhSb1qOd3TXa7JqmQiKFArQwVhWWoOCwtYctgVlxawpZlJWF5bMNGWVbibtyNDSHGpG3DKz03NpLpqfZbh57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNfcx7B+83rt3a55+KiJTP4LEPXM1/NCk3pm63mhST3q+V2Th48kFRIxBMJSwJYCtjz1yngpLWHLa8sPS0u4G3dnY6wCG97oubPRuZ56v7tez2lNdeeMiTmqIoYm5qiKGJqYo6xrrGupxtDEHFUVwwWz3td++MiGM4QQQgghhHiIEM2f1gQCEtU1PREISFfjum2YOGf6Tb/pN/32k55fbJg4Z/qdvg3d8PCREEIIIYQQD0ncj9CaeFygsKAe8bhwNa7bholzpt/0m37Tbz/p+cWGiXOm3+nb0A0PHwkhhBBCCPEIAYlQUQSlxRFYQiKYZcMSEiOKI1g6ZxdCLsfd2BBCpm3DKz03NpLpqfZbh57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNfcxzDRHVsnnna7HjJkCPbv399ufPr06XjsscfajT/55JN45pln8N577wEALr30Utx7770YOXJkl8+VEEIIIYRkHl7vR+dPr8LMSbUA0GE3yi1LKlyPJ7OxaGUUMyZUpmXDS71kNtzoqfRbl57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNfcx1A3nt75uHXrVhw6dKjls379egDA+PHjO7x+06ZNmDRpEl555RW8+eabGDRoEK6++mrU1NTonDYhhBBCCMkQuB8lhBBCSHeiIWph4YrB+On/GYaFKwajIarhaFBDMz/X3HLLLXLo0KHStm1X1zc1Ncnc3Fz59NNPu9Zgt2vqUc8fmtQzW88LTepRz++a7HadGejYj0p5KoYCtTJUFJah4rC0hC2DWXFpCVuWlYTlsQ0bZVmJu3E3NoQYk7YNr/Tc2Eimp9pvHXpOa6o7Z0zMURUxNDFHVcTQxBxlXWNdY11LT69+8/ou7Xbtm8PHxsZGefbZZ8v58+e7/k5dXZ3Mzs6WL774ouM10WhUhsPhls+HH37Iw0fqUc8HmtQzW88LTepRz++aPHw0n67aj0rpvCcFwlLAlgK2PPXKeCktYctryw9LS7gbd2djrAIb3ui5s9G5nnq/u17PaU1154yJOaoihibmqIoYmpijrGusa6nG0MQc7cq6tmDW+116+CiklLLr769MzvPPP4/JkyfjwIEDyM/Pd/Wd6dOnY926ddi1axeys7M7vGbu3Lm4++67242PGjUKwWAwrTmnQkVFhdZ3U1KPen7XpJ7Zel5oUo96ftfUqReLxbB27VqEw2Hk5eVp0ewOdNV+FHDekwKjALTfkwoh0TsnjuMNAUgpko53RPtrKwCMTNOGN3rubHSup97vrtdzWtP0bKQyD2/0/JIzuvX8kjO69fySM7r1/JIzuvX8kjO69fySM056558XxSVDj3d63enEmpqw9s233e1HXf+zbhdz9dVXyzFjxri+/r777pP9+vWT27dv7/Q63vlIPer5U5N6Zut5oUk96vldk3c+mk9X7Uel5J2Pfrjbg3cI8Q4hVXcI+TlHeecj61p6fpuRo6xr5t356GnDmQT79+/Hhg0b8OMf/9jV9Q899BDuv/9+/PnPf0ZpaWmn1/bo0QN5eXltPoQQQgghhLSmK/ejgPOeVEAiVBRBaXEElpAIZtmwhMSI4giWztmFkMtxNzaEkGnb8ErPjY1keqr91qHntKa6c8bEHFURQxNzVEUMTcxR1jXWNda19PQSHbO7iqwute6SZcuWYcCAARg9enTSax988EHMnz8f69atw2WXXaZhdoQQQgghJNPxaj86f3oVZk6qBQAsXj0Q1TU9UVhQj5uuO4icbBtbllS4Hk9mY9HKKGZMqEzLhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOsq6xrrGupafXlXh++GjbNpYtW4apU6ciK6vtdKZMmYKCggLcd999AIAHHngAv/zlL7FixQoMGTIEhw8fBgD07t0bvXv31j53QgghhBBiPtyPEkIIIaS70xC1uu5Q0vVLbbqIdevWSQCysrKy3e/Ky8vl1KlTW34+//zzJYB2n7vuusu1nlfvSMrk905Rz3w9LzSpZ7aeF5rUo57fNfnOR3PRvR+V8lQMBWplqCgsQ8VhaQlbBrPi0hK2LCsJy2MbNsqyEnfjbmwIMSZtG17pubGRTE+13zr0nNZUd86YmKMqYmhijqqIoYk5yrrGusa61jV69ZvXK3nno+eHj7rh4SP1qOcPTeqZreeFJvWo53dNHj6SVEjEkA1n2JghNRtszOCHxgx+zlEVMTQxR1nXWNdSjaGJOepFXeusEY1xDWcIIYQQQgjprgjR/GlNICBRXdMTgYB0Na7bholzpt/0m37Tbz/p+cWGiXOm33r9VgEPHwkhhBBCCPGQxD0GrYnHBQoL6hGPC1fjum2YOGf6Tb/pN/32k55fbJg4Z/qt128V8PCREEIIIYQQjxCQCBVFUFocgSUkglk2LCExojiCpXN2IeRy3I0NIWTaNrzSc2MjmZ5qv3XoOa2p7pwxMUdVxNDEHFURQxNzlHWNdY11rWv0Et2x08XzbteEEEIIIYR0V+ZPr8LMSbUA0GGHyS1LKlyPJ7OxaGUUMyZUpmXDS71kNtzoqfRbl57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNe6Rk8FQsrTb7jMbOrq6tCnTx+Ew2Hk5eVp0x03bhzWrFlDPer5Us8LTeqZreeFJvWo53dNnXpe7WeIOlpi+Mpq5PXupUVz3K13Yc2Cu7VoUS8zNKlntp4XmtSjnt81qaeOuuMn0Ofb17naj/LOR0IIIYQQQjzisVWDOr3zsSFquR5PZmPnvt5YuGJwWja81Etmw42eSr916Tmtqe6cMTFHVcTQxBxVEUMTc5R1jXWNda1r9JSQtB92hhEOhyVctgJXydixY6lHPd/qeaFJPbP1vNCkHvX8rqlTz6v9DFFHIoYCtTJUFJah4rC0hC2DWXFpCVuWlYTlsQ0bZVmJu3E3NoQYk7YNr/Tc2Eimp9pvHXpOa6o7Z0zMURUxNDFHVcTQxBxlXWNdY13rGr36zeul3Lquw0/4ldWu96M8fNREJv8FiHrm63mhST2z9bzQpB71/K7Jw0eSCokYAmEpYEsBW57qQSmlJWx5bflhaQl34+5sjFVgwxs9dzY611Pvd9frOa2p7pwxMUdVxNDEHFURQxNzlHWNdS3VGJqYo17UtQWz3ldy+Mhu14QQQgghhHiIEM2f1gQCEtU1PREISFfjum2YOGf6Tb/pN/32k55fbJg4Z/qt128V8PCREEIIIYQQD0ncY9CaeFygsKAe8bhwNa7bholzpt/0m37Tbz/p+cWGiXOm33r9VgEPHwkhhBBCCPEIAYlQUQSlxRFYQiKYZcMSEiOKI1g6ZxdCLsfd2BBCpm3DKz03NpLpqfZbh57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNe6Ri/RoCZd2O2aEEIIIYQQj5g/varTbtdbllS4Hk9mY9HKKGZMqEzLhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOsq6xrrGudY2eCnj4SAghhBBCCCGEEEIIaUdD1Er/UFJDMz9fwW7X1KOePzSpZ7aeF5rUo57fNdntmqRCIoYCtTJUFJah4rC0hC2DWXFpCVuWlYTlsQ0bZVmJu3E3NoQYk7YNr/Tc2Eimp9pvHXpOa6o7Z0zMURUxNDFHVcTQxBxlXWNdY13Tp1dWEpb1m9en1O2ah4+ayOS/AFHPfD0vNKlntp4XmtSjnt81efhIUiERQyAsBWwpYMtTr4GX0hK2vLb8sLSEu3F3NsYqsOGNnjsbneup97vr9ZzWVHfOmJijKmJoYo6qiKGJOcq6xrqWagxNzFG/1DVL2HLBrPdTOnxkwxlCCCGEEEI8RIjmT2sCAYnqmp4IBKSrcd02TJwz/abf9Jt++0nPLzZMnDP99tbvxHgqeHr4OGTIEAgh2n1uvvnmDq/ftWsX/tf/+l8t33vkkUf0TpgQQgghhGQUftiPJu4laE08LlBYUI94XLga123DxDnTb/pNv+m3n/T8YsPEOdNvb/1OjKeCp4ePW7duxaFDh1o+69evBwCMHz++w+vr6+tRWFiI+++/H+eee67OqRJCCCGEkAzE6/2ogESoKILS4ggsIRHMsmEJiRHFESydswshl+NubAgh07bhlZ4bG8n0VPutQ89pTXXnjIk5qiKGJuaoihiamKOsa6xrrGv69EYUR1q6ZrvF027X/fv3b/Pz/fffj6FDh6K8vLzD67/yla/gK1/5CgDgjjvu6PL5EUIIIYSQzMbr/ej86VWYOakWADrsJLllSYXr8WQ2Fq2MYsaEyrRseKmXzIYbPZV+69JzWlPdOWNijqqIoYk5qiKGJuYo6xrrGuuaPr2cbBux4x1ubTrE08PH1pw8eRLPPvssbr31VojTH0BPg8bGRjQ2Nrb8XFdXp8w2IYQQQgjJHLpqPwpwT0oIIYSQ7ouQ8vSnvb3h+eefx+TJk3HgwAHk5+cnvX7IkCGYOXMmZs6c2el1c+fOxd13391ufNSoUQgGg2c63ZSpqKjAyJEjqUc9X+p5oUk9s/W80KQe9fyuqVMvFoth7dq1CIfDyMvL06LZHeiq/SjgvCcFRiGvV/NBZ92JLAghIaVAXq8mfK20Fm/s6Ot6PJkNoALAyLRseKmXzIYbPZV+69JzWlPdOWNijqqIoYk5qiKGJuYo6xrrGuuaPr1vjPgMtt2EtW++7Wo/6ps7H3/729/iu9/9rquNXirMnj0bt956a8vPdXV1GDRoEFauXKl1sz5u3DisWbOGetTzpZ4XmtQzW88LTepRz++aOvXq6urQp08fLVrdia7ajwLOe1JgJSIncj8fFS0vgT9eL9HjrCM4Xj/A1XjkhExqAxgHYE1aNrzSc2MjmZ5qv3XoOa2p6rXzm55fcsbEHFURQxNzlHWNdS3VGJqYo36pa8frJa4aWYl/Hfc++nz7OrjB04YzCfbv348NGzbgxz/+sXLbPXr0QF5eXpsPIYQQQgghrenK/SjQ+Z5UiOZPawIBieqanggEpKtx3TZMnDP9pt/0m377Sc8vNkycM/321u/EeCr44vBx2bJlGDBgAEaPHu31VAghhBBCSDfEy/2olGi5myBBPC5QWFCPeFy4Gtdtw8Q502/6Tb/pt5/0/GLDxDnTb2/9ToyngueHj7ZtY9myZZg6dSqysto+BT5lyhTMnj275eeTJ0/i3XffxbvvvouTJ0+ipqYG7777Lvbu3at72oQQQgghJEPwcj8qIBEqiqC0OAJLSASzbFhCYkRxBEvn7ELI5bgbG0LItG14pefGRjI91X7r0HNaU905Y2KOqoihiTmqIoYm5ijrGusa65o+vRHFkZau2W7x/J2PGzZswIEDBzBt2rR2vztw4AAs69T56EcffYSysrKWnx966CE89NBDKC8vx6ZNm3RMlxBCCCGEZBhe7kfnT6/CzEm1AIDFqweiuqYnCgvqcdN1B5GTbWPLkgrX48lsLFoZxYwJlWnZ8FIvmQ03eir91qXntKa6c8bEHFURQxNzVEUMTcxR1jXWNdY1fXo52TZixzvc2nSI54ePV199NZwabp++gRsyZIjjtYQQQgghhJwJ3I8SQgghhHQhspsRDoclABkOh7Xqjh07lnrU862eF5rUM1vPC03qUc/vmjr1vNrPEHUkYihQK0NFYRkqDktL2DKYFZeWsGVZSVge27BRlpW4G3djQ4gxadvwSs+NjWR6qv3Woee0prpzxsQcVRFDE3NURQxNzFHWNdY11jV9emUlYVm/eb0Mv7La9X6Uh4+ayOS/AFHPfD0vNKlntp4XmtSjnt81efhIUiERQyAsBWwpYMtTr4GX0hK2vLb8sLSEu3F3NsYqsOGNnjsbneup97vr9ZzWVHfOmJijKmJoYo6qiKGJOcq6xrqWagxNzFG/1DVL2HLBrPdTOnz0vOEMIYQQQggh3Rkhmj+tCQQkqmt6IhCQrsZ12zBxzvSbftNv+u0nPb/YMHHO9NtbvxPjqcDDR0IIIYQQQjwkcS9Ba+JxgcKCesTjwtW4bhsmzpl+02/6Tb/9pOcXGybOmX5763diPBV4+EgIIYQQQohHCEiEiiIoLY7AEhLBLBuWkBhRHMHSObsQcjnuxoYQMm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa6xrqmT29EcaSla7ZbPO92TQghhBBCSHdl/vQqzJxUCwBYvHogqmt6orCgHjdddxA52Ta2LKlwPZ7MxqKVUcyYUJmWDS/1ktlwo6fSb116TmuqO2dMzFEVMTQxR1XE0MQcZV1jXWNd06eXk20jdrzDrU2H8M5HQgghhBBCCCGEEEJI16ChmZ+vYLdr6lHPH5rUM1vPC03qUc/vmux2TVIhEUOBWhkqCstQcVhawpbBrLi0hC3LSsLy2IaNsqzE3bgbG0KMSduGV3pubCTTU+23Dj2nNdWdMybmqIoYmpijKmJoYo6yrrGusa7p0ysrCcv6zetT6nbNw0dNZPJfgKhnvp4XmtQzW88LTepRz++aPHwkqZCIIRCWArYUsOWp18BLaQlbXlt+WFrC3bg7G2MV2PBGz52NzvXU+931ek5rqjtnTMxRFTE0MUdVxNDEHGVdY11LNYYm5qhf6polbLlg1vspHT7ysWtCCCGEEEI8RIjmT2sCAYnqmp4IBKSrcd02TJwz/abf9Jt++0nPLzZMnDP99tbvxHgq8PCREEIIIYQQD0ncS9CaeFygsKAe8bhwNa7bholzpt/0m37Tbz/p+cWGiXOm3976nRhPBR4+EkIIIYQQ4hECEqGiCEqLI7CERDDLhiUkRhRHsHTOLoRcjruxIYRM24ZXem5sJNNT7bcOPac11Z0zJuaoihiamKMqYmhijrKusa6xrunTG1Ecaema7ZasLtpHEUIIIYQQQpIwf3oVZk6qBQAsXj0Q1TU9UVhQj5uuO4icbBtbllS4Hk9mY9HKKGZMqEzLhpd6yWy40VPpty49pzXVnTMm5qiKGJqYoypiaGKOsq6xrrGu6dPLybYRO97h1qZDeOcjIYQQQgghhBBCCCGka9DQzM9XsNs19ajnD03qma3nhSb1qOd3TXa7JqmQiKFArQwVhWWoOCwtYctgVlxawpZlJWF5bMNGWVbibtyNDSHGpG3DKz03NpLpqfZbh57TmurOGRNzVEUMTcxRFTE0MUdZ11jXWNf06ZWVhGX95vUpdbvm4aMmMvkvQNQzX88LTeqZreeFJvWo53dNHj6SVEjEEAhLAVsK2PLUa+CltIQtry0/LC3hbtydjbEKbHij585G53rq/e56Pac11Z0zJuaoihiamKMqYmhijrKusa6lGkMTc9Qvdc0Stlww6/2UDh89f+y6pqYG//Iv/4Kzzz4bOTk5uOSSS/D22293+p3HHnsMF154IXJyclBSUoJnnnlG02wJIYQQQkim4fV+VIjmT2sCAYnqmp4IBKSrcd02TJwz/abf9Jt++0nPLzZMnDP99tbvxHgqeHr4+Nlnn+HrX/86gsEg/ud//ge7d+/Gww8/jH79+jl+54knnsDs2bMxd+5c7Nq1C3fffTduvvlmvPjiixpnTgghhBBCMgE/7EcT9xK0Jh4XKCyoRzwuXI3rtmHinOk3/abf9NtPen6xYeKc6be3fifGU8HTw8cHHngAgwYNwrJlyzBy5EhccMEFuPrqqzF06FDH7yxfvhw33ngjJkyYgMLCQkycOBH/9m//hgceeEDjzAkhhBBCSCbg9X5UQCJUFEFpcQSWkAhm2bCExIjiCJbO2YWQy3E3NoSQadvwSs+NjWR6qv3Woee0prpzxsQcVRFDE3NURQxNzFHWNdY11jV9eiOKIy1ds92SlfIOSSFr1qzBNddcg/Hjx+PVV19FQUEBpk+fjp/85CeO32lsbER2dnabsZycHFRUVCAWiyEYDLa7vrGxseXnuro6tU4QQgghhBBj0bEfTXynoz3p/OlVmDmpFgCwePVAVNf0RGFBPW667iBysm1sWVLhejyZjUUro5gxoTItG17qJbPhRk+l37r0nNZUd86YmKMqYmhijqqIoYk5yrrGusa6pk8vJ9tG7DhcI6Q8/YZLfSQ2bbfeeivGjx+PrVu34pZbbsHixYsxderUDr/z85//HMuWLcNLL72EL3/5y3jnnXcwZswYfPzxx/joo49w3nnntbl+7ty5uPvuu9vZGTVqVIcbw66ioqICI0eOpB71fKnnhSb1zNbzQpN61PO7pk69WCyGtWvXIhwOIy8vT4tmpqJjPwp0sie9/DIEs/TcD1CxqxIjh5do0aJeZmhSz2w9LzSpRz2/a1JPHbGmJqx9821X+1FP73y0bRuXXXYZ7r33XgBAWVkZ3nvvvU43e3PmzMHhw4fx1a9+FVJKnHPOOZg6dSoefPBBWFb7p8hnz56NW2+9teXnuro6DBo0CCtXrtS6WR83bhzWrFlDPer5Us8LTeqZreeFJvWo53dNnXp1dXXo06ePFq1MR8d+FHDek36r7IlO73xsiFqux5PZ2Lnvp/j2Zb9Oy4aXeslsuNFT6bcuPac11Z0zJuaoihiamKMqYmhijrKusa6xrunTy8m2UXf8BPp8+zq4Imk/7C5k8ODB8l//9V/bjD3++OMyPz8/6XdPnjwpP/zwQ9nU1CQff/xxmZubK+PxeNLvhcNhCZetwFUyduxY6lHPt3peaFLPbD0vNKlHPb9r6tTzaj+TiXixH5XyVAwFamWoKCxDxWFpCVsGs+LSErYsKwnLYxs2yrISd+NubAgxJm0bXum5sZFMT7XfOvSc1lR3zpiYoypiaGKOqoihiTnKusa6xrqmT6+sJCzrN6+X4VdWu96Penr4OGnSJPmNb3yjzdjMmTPl5ZdfnpKdb33rW3LSpEmuruXhI/Wo5w9N6pmt54Um9ajnd00ePpqJF/tRKU/FEAhLAVsK2PJUD0opLWHLa8sPS0u4G3dnY6wCG97oubPRuZ56v7tez2lNdeeMiTmqIoYm5qiKGJqYo6xrrGupxtDEHPVLXbOELRfMej+lw0dPu13PmjULf/3rX3Hvvfdi7969WLFiBX7zm9/g5ptvbrlm9uzZmDJlSsvPe/bswbPPPouqqipUVFRg4sSJeO+991oelSGEEEIIIcQtftiPCtH8aU0gIFFd0xOBgHQ1rtuGiXOm3/SbftNvP+n5xYaJc6bf3vqdGE8FTw8fv/KVr+CPf/wjfv/73+Piiy/GvHnz8Mgjj+AHP/hByzWHDh3CgQMHWn6Ox+N4+OGHEQqF8J3vfAfRaBRvvPEGhgwZ4oEHhBBCCCHEZPywH03cS9CaeFygsKAe8bhwNa7bholzpt/0m37Tbz/p+cWGiXOm3976nRhPiZSeJ8kA+Ng19ajnD03qma3nhSb1qOd3TT52TVKh9TsfR3Tw/qUvO7xnyWncjY3Ee6DSseGVnhsbyfRU+61Dz2lNdeeMiTmqIoYm5qiKGJqYo6xrrGusa/r0vnwG73z0tNs1IYQQQggh3Zn506s67Xa9ZUmF6/FkNhatjGLGhMq0bHipl8yGGz2VfuvSc1pT3TljYo6qiKGJOaoihibmKOsa6xrrmj69nGwbseMdbm06xNPHrgkhhBBCCCGEEEIIIRmMhqdKfAUfu6Ye9fyhST2z9bzQpB71/K7Jx65JKrR+7DrUwSNQZQ6POjmNu7GReBQrHRte6bmxkUxPtd869JzWVHfOmJijKmJoYo6qiKGJOcq6xrrGuqZPr+wMHrvm4aMmMvkvQNQzX88LTeqZreeFJvWo53dNHj6SVEjEEAhLAVsK2PLUa+CltIQtry0/LC3hbtydjbEKbHij585G53rq/e56Pac11Z0zJuaoihiamKMqYmhijrKusa6lGkMTc9Qvdc0Stlww6/2UDh/52DUhhBBCCCEeIkTzpzWBgER1TU8EAtLVuG4bJs6ZftNv+k2//aTnFxsmzpl+e+t3YjwVePhICCGEEEKIhyTuJWhNPC5QWFCPeFy4Gtdtw8Q502/6Tb/pt5/0/GLDxDnTb2/9ToynAg8fCSGEEEII8QgBiVBRBKXFEVhCIphlwxISI4ojWDpnF0Iux93YEEKmbcMrPTc2kump9luHntOa6s4ZE3NURQxNzFEVMTQxR1nXWNdY1/TpjSiOtHTNdktWF+2jCCGEEEIIIUmYP70KMyfVAgAWrx6I6pqeKCyox03XHUROto0tSypcjyezsWhlFDMmVKZlw0u9ZDbc6Kn0W5ee05rqzhkTc1RFDE3MURUxNDFHWddY11jX9OnlZNuIHe9wa9MhvPOREEIIIYQQQgghhBDSNWho5ucr2O2aetTzhyb1zNbzQpN61PO7Jrtdk1RIxFCgVoaKwjJUHJaWsGUwKy4tYcuykrA8tmGjLCtxN+7GhhBj0rbhlZ4bG8n0VPutQ89pTXXnjIk5qiKGJuaoihiamKOsa6xrrGv69MpKwrJ+8/qUul3z8FETmfwXIOqZr+eFJvXM1vNCk3rU87smDx9JKiRiCISlgC0FbHnqNfBSWsKW15YflpZwN+7OxlgFNrzRc2ejcz31fne9ntOa6s4ZE3NURQxNzFEVMTQxR1nXWNdSjaGJOeqXumYJWy6Y9X5Kh4987JoQQgghhBAPEaL505pAQKK6picCAelqXLcNE+dMv+k3/abfftLziw0T50y/vfU7MZ4KPHwkhBBCCCHEQxL3ErQmHhcoLKhHPC5cjeu2YeKc6Tf9pt/02096frFh4pzpt7d+J8ZTgYePhBBCCCGEeISARKgogtLiCCwhEcyyYQmJEcURLJ2zCyGX425sCCHTtuGVnhsbyfRU+61Dz2lNdeeMiTmqIoYm5qiKGJqYo6xrrGusa/r0RhRHWrpmuyWri/ZRhBBCCCGEkCTMn16FmZNqAQCLVw9EdU1PFBbU46brDiIn28aWJRWux5PZWLQyihkTKtOy4aVeMhtu9FT6rUvPaU1154yJOaoihibmqIoYmpijrGusa6xr+vRysm3Ejne4tekQ3vlICCGEEEIIIYQQQgjpGjQ08+uUgwcPyh/84AfyC///9u4+KqoyjwP4784MzAwobFomAmKgkKgBLeaiFltrctbXk6tSofnSttvq8XV9ybWWzLRj2yl1015MsZQlK2mPmy9IHjVRA0ozF0xeOwK+tGvyFoky89s/XNARhrl35r7Mhe/nnPmDx3uf733ufXj4eRnmduvGFouFBw4cyPn5+e3us337dr7vvvvYarVyz549ecaMGfzf//5XVB6edo085HlHJvL0nadFJvKQ5+2ZeNq1fqldjzLfvIYCVXNMvxqOiaxhg2BnH5ONDYKd46Jq+PLnBzguSly7mD4EYYzHfWiVJ6YPV3lyj1uNPGfnVO05o8c5Ksc11OMcleMa6nGOYl3DuoZ1Tb28uKgabjiSLelp15refPzxxx85LCyMp0+fzrm5uVxWVsZZWVlcUlLidJ+cnBw2GAy8bt06Lisr4yNHjvCAAQP4scceE5WJm4/IQ553ZCJP33laZCIPed6eiZuP+qRFPcp88xoS1bBAdhbIzjc/Bp7ZINh5fOJFNgji2sX1MVaGPrTJE9dH+3nyj1v5PGfnVO05o8c5Ksc11OMcleMa6nGOYl3Duib1GupxjnrLumYQ7Pz6gjOSbj5q+pmPa9asodDQUEpLS2tpu+eee9rd5/jx49SnTx+aO3duy/Z//OMfac2aNYoeKwAAAAB0PN5Qjwr/f4gk8802o5GprMqPjEYme5Pgsl3tPvR4zBg3xo1xY9zelOctfejxmDFubcfd3C6Fpp/5uGvXLoqPj6dJkyZRjx49KC4ujjZt2tTuPgkJCVRRUUF79uwhZqZLly7RJ598QqNGjWpz+8bGRqqtrXV4AQAAAAAQqVOPErVfkza/l+BWNptA4cENZLMJotrV7kOPx4xxY9wYN8btTXne0ocejxnj1nbcze1SaPrOx7KyMnrrrbdo4cKF9Je//IXy8/Np7ty55OvrS9OmTWtzn2HDhlF6ejolJyfT1atXqampicaOHUsbNmxoc/tXXnmFVqxY0ao9OTmZfHx8ZB1Pe/Ly8mjcuHHIQ55X5mmRiTx952mRiTzkeXummnnXr19XJaczUKMeJXJekxIlU1f/G0V97U8mEgQmZoG6+jVR47Vq6uL3C3Ht/k0u+yDKI6JxHvWhWZ6IPlzmyTxuVfKcnVOZz53X5XnLnNHjHJXjGupxjmJdw7qGdU29PL8m+jzvCu3/8kZfYgjMt9/zVI+vry/Fx8fTsWPHWtrmzp1L+fn5dPz48Tb3KSwspBEjRtCCBQsoKSmJLly4QIsXL6bBgwfT5s2bW23f2NhIjY2NLV/X1tZSaGgo1dTUUEBAgPyDcmLcuHG0a9cu5CHPK/O0yESevvO0yEQe8rw9U8282tpaCgwMVL2e6YjUqEeJnNekq2fl0/wnqomI6O3MECqr8qPw4AZ6dkIlWS12+vmqQXS7qz7W75hDc5P/7lEfWua56kNMnpzjVivP2TlVe87ocY7KcQ31OEfluIZ6nKNY17CuYV1TL89qsVNt/U8U+PAEUfWopu98DAoKoujoaIe2/v37086dO53u88orr9CwYcNo8eLFRER03333kb+/Pz344IP08ssvU1BQkMP2ZrOZzGaz/AcPAAAAALqnRj1KhJoUAAAAOjHRj+RTwBNPPMHDhw93aJs/fz4nJCQ43WfChAk8efJkh7Zjx44xEXFVVZXLTDztGnnI845M5Ok7T4tM5CHP2zPxtGt90qIeZb55DQWq5ph+NRwTWcMGwc4+JhsbBDvHRdXw5c8PcFyUuHYxfQjCGI/70CpPTB+u8uQetxp5zs6p2nNGj3NUjmuoxzkqxzXU4xzFuoZ1DeuaenlxUTXccCRb0tOuNb35mJeXxyaTiVetWsXFxcWcnp7Ofn5+vH379pZtnnvuOZ46dWrL12lpaWwymXjjxo1cWlrKOTk5HB8fzw888ICoTNx8RB7yvCMTefrO0yITecjz9kzcfNQnLepR5pvXkKiGBbKzQHa++THwzAbBzuMTL7JBENcuro+xMvShTZ64PtrPk3/cyuc5O6dqzxk9zlE5rqEe56gc11CPcxTrGtY1qddQj3PUW9Y1g2Dn1xeckXTzUdOnXQ8ePJg+/fRTysjIoIEDB9LKlStp7dq1lJKS0rLNhQsX6Ny5cy1fT58+nV5//XV68803aeDAgTRp0iSKioqizMxMLYYAAAAAADrmDfWoINx43cpoZCqr8iOjkUW1q92HHo8Z48a4MW6M25vyvKUPPR4zxq3tuJvbpdD05iMR0ZgxY+j06dN09epVOnPmDD3zzDMO/75161Y6dOiQQ9ucOXOooKCAGhoa6Pz587R9+3YKDg5W8agBAAAAoKPQuh5tfi/BrWw2gcKDG8hmE0S1q92HHo8Z48a4MW6M25vyvKUPPR4zxq3tuJvbpdD85iMAAAAAQGclEFNMvzq6L7KODAKTj8lOBoEpNrKOtrxQQDEi28X0IQjscR9a5Ynpw1We3ONWI8/ZOVV7zuhxjspxDfU4R+W4hnqco1jXsK5hXVMvLzayruWp2WJp+rRrAAAAAIDObNWsYpr/RDUREb2dGUJlVX4UHtxAz06oJKvFTkffyxPd7qqP9Tuu0tzksx71oWWeqz7E5Mk5brXynJ1TteeMHueoHNdQj3NUjmuoxzmKdQ3rGtY19fKsFjtdr2+ztGkT3vkIAAAAAAAAAAAAypD2PED9w9OukYc878hEnr7ztMhEHvK8PRNPuwYpmq+hQNUc06+GYyJr2CDY2cdkY4Ng57ioGr78+QGOixLXLqYPQRjjcR9a5Ynpw1We3ONWI8/ZOVV7zuhxjspxDfU4R+W4hnqco1jXsK5hXVMvLy6qhhuOZEt62jVuPqqkI/8HCHn6z9MiE3n6ztMiE3nI8/ZM3HwEKZqvIVENC2Rngex882PgmQ2CnccnXmSDIK5dXB9jZehDmzxxfbSfJ/+4lc9zdk7VnjN6nKNyXEM9zlE5rqEe5yjWNaxrUq+hHueot6xrBsHOry84I+nmI/7sGgAAAABAQ4Jw43Uro5GprMqPjEYW1a52H3o8Zowb48a4MW5vyvOWPvR4zBi3tuNubpcCNx8BAAAAADTU/F6CW9lsAoUHN5DNJohqV7sPPR4zxo1xY9wYtzfleUsfejxmjFvbcTe3S4GbjwAAAAAAGhGIKaZfHd0XWUcGgcnHZCeDwBQbWUdbXiigGJHtYvoQBPa4D63yxPThKk/ucauR5+ycqj1n9DhH5biGepyjclxDPc5RrGtY17CuqZcXG1nX8tRssUwK1VEAAAAAAODCqlnFNP+JaiIiejszhMqq/Cg8uIGenVBJVoudjr6XJ7rdVR/rd1yluclnPepDyzxXfYjJk3PcauU5O6dqzxk9zlE5rqEe56gc11CPcxTrGtY1rGvq5Vktdrpe32Zp0yaB+fY3XHZstbW1FBgYSDU1NRQQEKBa7rhx42jXrl3IQ55X5mmRiTx952mRiTzkeXummnla1TMgn5ZreDCTArr4q5I5bmEq7Xp9hSpZyOsYmcjTd54WmchDnrdnIk8+tfU/UeDDE0TVo3jnIwAAAACARjZ8HNruOx9/vmoQ3e6qj9OlXeiNf/T2qA8t81z1ISZPznGrlefsnKo9Z/Q4R+W4hnqco3JcQz3OUaxrWNewrqmXZ7XY26xrnHL5POwOpqamhknko8DlNHbsWOQhz2vztMhEnr7ztMhEHvK8PVPNPK3qGZBP8zUUqJpj+tVwTGQNGwQ7+5hsbBDsHBdVw5c/P8BxUeLaxfQhCGM87kOrPDF9uMqTe9xq5Dk7p2rPGT3OUTmuoR7nqBzXUI9zFOsa1jWsa+rlxUXVcMORbK45mCm6HsXNR5V05P8AIU//eVpkIk/feVpkIg953p6Jm48gRfM1JKphgewskJ1vPoOS2SDYeXziRTYI4trF9TFWhj60yRPXR/t58o9b+Txn51TtOaPHOSrHNdTjHJXjGupxjmJdw7om9RrqcY56y7pmEOz8+oIzkm4+4mnXAAAAAAAaEoQbr1sZjUxlVX5kNLKodrX70OMxY9wYN8aNcXtTnrf0ocdjxri1HXdzuxS4+QgAAAAAoKHm9xLcymYTKDy4gWw2QVS72n3o8Zgxbowb48a4vSnPW/rQ4zFj3NqOu7ldCtx8BAAAAADQiEBMMf3q6L7IOjIITD4mOxkEptjIOtryQgHFiGwX04cgsMd9aJUnpg9XeXKPW408Z+dU7TmjxzkqxzXU4xyV4xrqcY5iXcO6hnVNvbzYyLqWB9eIpfnTrquqqmjp0qW0d+9eamhooL59+1JaWhrFx8c73aexsZFeeukl2r59O128eJGCgoLor3/9K82cOVPFIwcAAACAjkDLenTVrOJ2n3Z99L080e2u+li/4yrNTT7rUR9a5rnqQ0yenONWK8/ZOVV7zuhxjspxDfU4R+W4hnqco1jXsK5hXVMvz2qx0/X6NkubNml68/HKlSs0bNgwevjhh2nv3r101113UXFxMd1xxx3t7jd58mS6dOkSbd68mfr27UsXLlwgu13iY74BAAAAoNNDPQoAAACgMBUe5ufU0qVLefjw4ZL22bt3LwcGBvLly5fdysTTrpGHPO/IRJ6+87TIRB7yvD0TT7vWJy3qUeab11Cgao7pV8MxkTVsEOzsY7KxQbBzXFQNX/78AMdFiWsX04cgjPG4D63yxPThKk/ucauR5+ycqj1n9DhH5biGepyjclxDPc5RrGtY17CuqZcXF1XDDUeyJT3tWmC+/aMm1RMdHU1JSUlUWVlJhw8fpuDgYJo1axY988wzTveZNWsWFRUVUXx8PG3bto38/f1p3LhxtHLlSrJara22b2xspMbGxpava2pqqHfv3lRRUUEBAQGKjKstycnJtGPHDuQhzyvztMhEnr7ztMhEHvK8PVPNvNraWgoNDaXq6moKDAxUJbOjUqMeJXJekxJVEFHX/7fe/EB3gZh+O+w/tPfoXcQi2olYRB/JRLTDwz60yRPXR/t58o9b+Txn51T+c+dded4yZ/Q4R+W4hnqco1jXsK6JPw79zlFvWdcEYlo1q5imjjpLoWOmiKtH3f51rQzMZjObzWZetmwZnzhxgt955x22WCy8detWp/skJSWx2Wzm0aNHc25uLu/evZvDwsJ4+vTpbW6fmprK/z+7eOGFF1544YUXXh3qVVFRoVSZ1mmoUY8yoybFCy+88MILL7w65ktMParpOx99fX0pPj6ejh071tI2d+5cys/Pp+PHj7e5z8iRI+nIkSN08eLFljurmZmZNHHiRPrpp59a/bb59t8yV1dXU1hYGJ07d061dwo0vztBrXdbIg953p6JPH3naZGJPOR5e6baecxMdXV11KtXLzIYDIrndWRq1KNE2tekHf17oqPnaZGJPH3naZGJPOR5eyby5CWlHtX0gTNBQUEUHR3t0Na/f3/auXNnu/sEBwc7FGn9+/cnZqbKykrq16+fw/Zms5nMZnOrfgIDA1X9s2siooCAAFUzkYc8b89Enr7ztMhEHvK8PVPNPPy5tTzUqEeJvKcm7cjfE50hT4tM5Ok7T4tM5CHP2zORJx+x9aimvyofNmwYnT171qGtqKiIwsLC2t3n/PnzVF9f77CPwWCgkJAQxY4VAAAAADoe1KMAAAAAytL05uOCBQvoyy+/pNWrV1NJSQn94x//oHfffZdmz57dss2yZcvoqaeeavn6ySefpO7du9OMGTOosLCQvvjiC1q8eDHNnDnT6Qd8AwAAAAC0BfUoAAAAgLI0vfk4ePBg+vTTTykjI4MGDhxIK1eupLVr11JKSkrLNhcuXKBz5861fN2lSxfKzs6m6upqio+Pp5SUFBo7diytX79eVKbZbKbU1NQ2/+xFKWpnIg953p6JPH3naZGJPOR5e6YWYwR5aFGPEnX8OYo8/WciT995WmQiD3nenok87Wj6wBkAAAAAAAAAAADouPB4RAAAAAAAAAAAAFAEbj4CAAAAAAAAAACAInDzEQAAAAAAAAAAABSBm48AAAAAAAAAAACgiA538/HFF18kQRAcXvfee6/T7X/961+32l4QBBo9erQiedevX6eXXnqJIiIiyGKxUExMDO3bt0/SGKuqqmjKlCnUvXt3slqtNGjQIPrqq6+cbn/hwgV68sknKTIykgwGA82fP1/RvMzMTHr00UfprrvuooCAAEpISKCsrCzF8m519OhRMplMFBsbq2heY2MjLV++nMLCwshsNlOfPn1oy5YtiuWlp6dTTEwM+fn5UVBQEM2cOZMuX76s6Bg3bNhA/fv3J6vVSlFRUfTBBx+IyurTp0+b31OzZ89uc/uCggL63e9+17Lf2rVrRY/LnbzMzEyKj4+nX/ziF+Tv70+xsbG0bds2xfK2bt3aaluLxaLoGD1d16TmERGtXbuWoqKiyGq1UmhoKC1YsICuXr0qKs9ms9ELL7xA99xzD1mtVoqIiKCVK1eSq+ehHTp0iO6//34ym83Ut29f2rp1q2J5nqxr7o6vmdR1zd08d9c1d/KmT5/e5hwbMGCAomN0d10jIqqrq6P58+dTWFgYWa1WGjp0KOXn5zvd3tOfvaBvqEdbQz2qTKaeatKOXI+6k6m3mhT1aNtQj8qfqZeaFPWoRNzBpKam8oABA/jChQstr//85z9Ot798+bLDtv/+97/ZaDRyWlqaInlLlizhXr168e7du7m0tJQ3btzIFouFT5w4ISrvxx9/5LCwMJ4+fTrn5uZyWVkZZ2VlcUlJidN9ysvLee7cufz+++9zbGwsz5s3T1SWu3nz5s3jNWvWcF5eHhcVFfGyZcvYx8dH1BjdyWt25coVDg8P55EjR3JMTIxi42NmHjduHA8ZMoSzs7O5vLycjx07xjk5OYrk5eTksMFg4HXr1nFZWRkfOXKEBwwYwI899phiY9y4cSN37dqVP/zwQy4tLeWMjAzu0qUL79q1y2XeDz/84PD9kJ2dzUTEBw8ebHP7vLw8XrRoEWdkZHDPnj35jTfeEDUud/MOHjzImZmZXFhYyCUlJbx27Vo2Go28b98+RfLS0tI4ICDAYZ+LFy8qOkZP1zWpeenp6Ww2mzk9PZ3Ly8s5KyuLg4KCeMGCBaLyVq1axd27d+fPPvuMy8vL+eOPP+YuXbrwunXrnO5TVlbGfn5+vHDhQi4sLOS///3voq+jO3merGvu5DVzZ11zN8/ddc2dvOrqaoc5VlFRwd26dePU1FTFxujJusbMPHnyZI6OjubDhw9zcXExp6amckBAAFdWVra5vSc/e0H/UI+2hnpUmUy91KQdvR51J1NvNSnq0dZQjyqTqZeaFPWoNB3y5qOUb4jbvfHGG9y1a1eur69XJC8oKIjffPNNh7YJEyZwSkqKqP2XLl3Kw4cPF513u8TEREkTztO8ZtHR0bxixQpF85KTk/n555+XdE3cydu7dy8HBgby5cuXJR+jO3l/+9vfODw83KFt/fr1HBwcrFhmQkICL1q0yKFt4cKFPGzYMEn9MN/4IRkREcF2u93ltmFhYW4Ve+7mNYuLi+Pnn39ekby0tDQODAx0q293M28ndV2Tmjd79mx+5JFHHNqkzJfRo0fzzJkzHdpcrYtLlizhAQMGOLQlJydzUlKSInltEbuueZLnzrrmTp4n65oc5/PTTz9lQRD4+++/VyzTk3WtoaGBjUYjf/bZZw7t999/Py9fvtzl/lJ/9oL+oR5tH+pReTL1VJN2tnpUamYzPdWkqEdRjyqRqaeaFPWoNB3uz66JiIqLi6lXr14UHh5OKSkpdO7cOdH7bt68mR5//HHy9/dXJK+xsbHV29utVivl5OSIytq1axfFx8fTpEmTqEePHhQXF0ebNm0SfaxSyZFnt9uprq6OunXrplheWloalZWVUWpqqqRjcyeveZ9XX32VgoODKTIykhYtWkQ///yzInkJCQlUUVFBe/bsIWamS5cu0SeffEKjRo1SbIzO5mleXh5dv35dVC4R0bVr12j79u00c+ZMEgRB9H7ukprHzHTgwAE6e/YsPfTQQ4rl1dfXU1hYGIWGhtL48eOpoKBAcpbUzFu5s65JyRs6dCh9/fXXlJeXR0REZWVltGfPHtFzdOjQoXTgwAEqKioiIqJTp05RTk4O/fa3v3W6z/Hjx2nEiBEObUlJSXT8+HFF8m4nZV1zN8/ddc2dPE/WNTnO5+bNm2nEiBEUFhYmant3Mj1Z15qamshms3n08xs6H9Sj8uno9ai7mXqqSTtTPepOpt5qUtSjN6AelT9TTzUp6lGJNLvtqZA9e/bwRx99xKdOneJ9+/ZxQkIC9+7dm2tra13um5uby0TEubm5iuU98cQTHB0dzUVFRWyz2Xj//v1stVrZ19dXVJ7ZbGaz2czLli3jEydO8DvvvMMWi4W3bt0qan+pd7s9zWNmXrNmDd9xxx186dIlRfKKioq4R48efPbsWWaW9tt/d/KSkpLYbDbz6NGjOTc3l3fv3t3yZyRK5DEzf/TRR9ylSxc2mUxMRDx27Fi+du2aYmNctmwZ9+zZk7/66iu22+2cn5/Pd999NxMRnz9/XlQuM/OOHTvYaDRyVVWVqO09/U2z2Lzq6mr29/dnk8nEZrOZN2/erFjesWPH+P333+eTJ0/yoUOHeMyYMRwQEMAVFRWKZd7KnXXNnbx169axj49Pyxx99tlnRWfYbDZeunQpC4LAJpOJBUHg1atXt7tPv379Wm2ze/duJiJuaGiQPe92UtY1d/I8WdfcyfNkXfP0fFZVVbHRaOQdO3aI3sedTE/XtYSEBE5MTOSqqipuamribdu2scFg4MjISJf7av2bZlAf6tH2oR6VJ1NPNWlnqkelZOq1JkU9egPqUfkz9VSToh6VpsPdfLzdlStXOCAggN977z2X2/7hD3/gQYMGKZr3ww8/8Pjx49lgMLDRaOTIyEieNWsWWywWUf37+PhwQkKCQ9ucOXP4V7/6laj9pU44T/PS09PZz8+Ps7OzFclramri+Ph4fuutt1rapCyK7ozv0UcfZYvFwtXV1S1tO3fuZEEQXP6QcSevoKCAg4KC+NVXX235T8WgQYNavcVbzsyGhgaeMWMGm0wmNhqN3KtXL16yZAkTkaTPhhk5ciSPGTNG9PaeFnti82w2GxcXF/PJkyf5tdde48DAQKefHyNH3q2uXbvGERERbv9JjdRMT9c1MXkHDx7ku+++mzdt2sTffvstZ2ZmcmhoKL/00kuiMjIyMjgkJIQzMjL422+/5Q8++IC7devW7n9IPCn23Mm7ldR1TWqep+uaO+PzZF3z9HyuXr2au3fvzo2NjaK2dzfT03WtpKSEH3roISYiNhqNPHjwYE5JSeF7773X5b5aF3ugPdSjjlCPep7JrK+atDPVo1Iy9VqToh69AfWovJnM+qpJUY9K0+FvPjIzx8fH83PPPdfuNvX19RwQEMBr165VJe/nn3/myspKttvtvGTJEo6OjhbVd+/evfnpp592aNu4cSP36tVL1P5SJ5wneRkZGWy1Wlt9JoGceVeuXGn5xmt+CYLQ0nbgwAFZ85iZn3rqKY6IiHBoKywsZCLioqIi2fOmTJnCEydOdGg7cuSI6N+OeHINr127xhUVFdzU1NTy4bg2m83lfszM33//PRsMBv7nP/8pantmz4o9d/KaPf300zxy5EjV8iZOnMiPP/645P2kZnq6ronNGz58eKvPLtm2bRtbrVZR8yUkJKTVZ4+tXLmSo6KinO7z4IMPtlrLtmzZwgEBAYrkNXNnXZOa5+m65s74PFnXPDmfdrud+/bty/Pnz3e5rVyZnqxrzDe+r5rX3smTJ/OoUaNc7qN1sQfeAfXoTahHPc9k1ldN2lnqUXczm+mhJkU9ehPqUXkzmfVVk6IelaZDfubjrerr66m0tJSCgoLa3e7jjz+mxsZGmjJliip5FouFgoODqampiXbu3Enjx48X1f+wYcPo7NmzDm1FRUWiPydLKnfzMjIyaMaMGZSRkUGjR49WLC8gIIBOnz5N33zzTcvr2WefpaioKPrmm29oyJAhsuY173P+/Hmqr6932MdgMFBISIjseQ0NDWQwOH6rGo1GIrrx+TCueDJnfHx8KCQkhIxGI3344Yc0ZsyYVsfiTFpaGvXo0UPS9feEJ3l2u50aGxtVybPZbHT69GmXa4QcmZ6ua2LzPJ2jzva32+1O90lISKADBw44tGVnZ1NCQoIieUTur2tS8zxd19wZnyfrmrvnk4jo8OHDVFJSQk8//bTLbeXK9GRdIyLy9/enoKAgunLlCmVlZYn++Q2dG+pRz3T0etSdzOZ99FKTdpZ61NNMPdSkqEdvQj0qbyaRvmpS1KMSaXbbUyF//vOf+dChQ1xeXs5Hjx7lESNG8J133sk//PADMzNPnTq1zd8CDx8+nJOTkxXP+/LLL3nnzp1cWlrKX3zxBT/yyCN8zz338JUrV0Tl5eXlsclk4lWrVnFxcXHL2623b9/ess1zzz3HU6dOddjv5MmTfPLkSf7lL3/JTz75JJ88eZILCgoUyUtPT2eTycQbNmxweGz9rW+dlnt8t5LydnB38urq6jgkJIQnTpzIBQUFfPjwYe7Xrx///ve/VyQvLS2NTSYTb9y4kUtLSzknJ4fj4+P5gQceUGyMZ8+e5W3btnFRURHn5uZycnIyd+vWjcvLy0Vl2mw27t27Ny9durTVv93+PdHY2NgyP4OCgnjRokV88uRJLi4uFpUlNW/16tW8f/9+Li0t5cLCQn7ttdfYZDLxpk2bFMlbsWIFZ2VlcWlpKX/99df8+OOPs8ViEfX9525mM3fXNal5qamp3LVrV87IyOCysjLev38/R0RE8OTJk0VlTZs2jYODg/mzzz7j8vJyzszM5DvvvJOXLFnSss3tc7SsrIz9/Px48eLFfObMGd6wYQMbjUbet2+fInmerGvu5N1OyrrmTp4n65on45syZQoPGTJE1Lg8zfR0Xdu3bx/v3bu3ZY7HxMTwkCFDWj7rTM6fvaB/qEdRj0r988SOXpN2hnpUaqYea1LUo6hHpaxrHb0mRT0qTYe7+ZicnMxBQUHs6+vLwcHBnJyczCUlJS3/npiYyNOmTXPY57vvvmMi4v379yued+jQIe7fvz+bzWbu3r07T506VfQH9Tb717/+xQMHDmSz2cz33nsvv/vuuw7/Pm3aNE5MTHRoI6JWr7CwMEXyEhMT28y7/bzLOb5bSV0U3ck7c+YMjxgxgq1WK4eEhPDChQtdfgaFJ3nr16/n6OhotlqtHBQUxCkpKVxZWanYGAsLCzk2NpatVisHBATw+PHj+bvvvhOdl5WVxUTU8uHEt7r9e6K8vLzN+dLeNfYkb/ny5dy3b1+2WCx8xx13cEJCAn/44Yeis6TmzZ8/n3v37s2+vr58991386hRo/jEiROS8qRmMnu2rknNu379Or/44oscERHBFouFQ0NDedasWaL/E1tbW8vz5s3j3r17s8Vi4fDwcF6+fLnD56209X1x8OBBjo2NZV9fXw4PD+e0tDTF8jxZ19wd362krGvu5rm7rrmbV11dzVartdV6pNQYPV3XduzYweHh4ezr68s9e/bk2bNnOxT7cv/sBX1DPYp6VGo96m6mnmrSjl6PSs3UY02KehT1qJR1raPXpKhHpRH+fzAAAAAAAAAAAAAAsurwn/kIAAAAAAAAAAAA2sDNRwAAAAAAAAAAAFAEbj4CAAAAAAAAAACAInDzEQAAAAAAAAAAABSBm48AAAAAAAAAAACgCNx8BAAAAAAAAAAAAEXg5iMAAAAAAAAAAAAoAjcfAQAAAAAAAAAAQBG4+QgAIAObzUZDhw6lCRMmOLTX1NRQaGgoLV++XKMjAwAAAIDOAPUoAHgrgZlZ64MAAOgIioqKKDY2ljZt2kQpKSlERPTUU0/RqVOnKD8/n3x9fTU+QgAAAADoyFCPAoA3ws1HAAAZrV+/nl588UUqKCigvLw8mjRpEuXn51NMTIzWhwYAAAAAnQDqUQDwNrj5CAAgI2amRx55hIxGI50+fZrmzJlDzz//vNaHBQAAAACdBOpRAPA2uPkIACCz7777jvr370+DBg2iEydOkMlk0vqQAAAAAKATQT0KAN4ED5wBAJDZli1byM/Pj8rLy6myslLrwwEAAACATgb1KAB4E7zzEQBARseOHaPExETav38/vfzyy0RE9Pnnn5MgCBofGQAAAAB0BqhHAcDb4J2PAAAyaWhooOnTp9Of/vQnevjhh2nz5s2Ul5dHb7/9ttaHBgAAAACdAOpRAPBGeOcjAIBM5s2bR3v27KFTp06Rn58fERG98847tGjRIjp9+jT16dNH2wMEAAAAgA4N9SgAeCPcfAQAkMHhw4fpN7/5DR06dIiGDx/u8G9JSUnU1NSEP3cBAAAAAMWgHgUAb4WbjwAAAAAAAAAAAKAIfOYjAAAAAAAAAAAAKAI3HwEAAAAAAAAAAEARuPkIAAAAAAAAAAAAisDNRwAAAAAAAAAAAFAEbj4CAAAAAAAAAACAInDzEQAAAAAAAAAAABSBm48AAAAAAAAAAACgCNx8BAAAAAAAAAAAAEXg5iMAAAAAAAAAAAAoAjcfAQAAAAAAAAAAQBG4+QgAAAAAAAAAAACKwM1HAAAAAAAAAAAAUMT/AFi3Gz6nys5yAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0FFUbx/HvpvdAGpAASZBQpEiXKqGIVEEBQUCaCC8gVUSaAgIqUqQX6U2QplTpBGnSu5RI7wmEFNKz2fePZZdsdjeN3RR4PufkSKbdOzsx88s8M3cUKpVKhRBCCCGEEEIIIYQQQgghhBAiz7HI6Q4IIYQQQgghhBBCCCGEEEIIIbJGin1CCCGEEEIIIYQQQgghhBBC5FFS7BNCCCGEEEIIIYQQQgghhBAij5JinxBCCCGEEEIIIYQQQgghhBB5lBT7hBBCCCGEEEIIIYQQQgghhMijpNgnhBBCCCGEEEIIIYQQQgghRB4lxT4hhBBCCCGEEEIIIYQQQggh8igp9gkhhBBCCCGEEEIIIYQQQgiRR0mxTwghhBBCCCGEEEIIIYQQQog8Sop9QgghhBBCCJELKZVKpk+fTrVq1XBxcUGhUKBQKGjVqhUAQUFB2mlBQUEmbduc2xZCCCGEyMskJwkhciMp9gmRS6UMDhn9GjhwYE53W6SjXr162uPVqFGjDK8XGBiY6Z+H8PBwve2Eh4eze/duJkyYQMuWLfH29tYuHxgYaLodFUIIIfIAY3nLysoKNzc3/P39ee+99xg0aBAbNmwgISEhW/v36aefMnDgQE6cOEFUVFS2tp1XSLYSQgghcl5CQgKrV6+mc+fOlCpVCnd3d6ytrfHw8KBy5cr07t2bPXv2kJycnNNdFSa0bNkybe6xtLTk3r17GVpv6dKlmc5h06ZN09tOUlISZ86cYf78+fTo0YPy5ctjZWWlXefWrVum3WEhcjmrnO6AEEK8KW7fvs2BAwe03+/du5cHDx7g7e2dbX2oWLGihB0hhBAiHUqlkmfPnvHs2TNu3brFwYMHmTZtGp6envTv359hw4ZhZWXeP6WOHDnCunXrAGjWrBkDBw6kQIECKBQKXFxczNp2RowZM4axY8cCoFKpcqQPkq2EEEKInLdx40a++uorg+fDp0+f8vTpU06fPs28efMoUaIEU6dOpVmzZtnf0XTcunULf39/AJYsWULXrl1ztkN5wLJly7T/Tk5OZuXKlQwbNizb2p8wYQJjxozJtvaEyO2k2CdEHtC7d2/69OmT7nIeHh7Z0BuRVStWrEClUmFra4tSqSQpKYmVK1cydOjQTG3nwoULGVrO0IXAlBfjChQoQNWqVdm6dWum2hdCCCFeR6nz1vPnz3n27Bnnz59n79697Nmzh9DQUL799lu2bNnC1q1b8fT0NFt/9uzZA4ClpSW//fabwfN6YGCg2Qpt5ty2qUi2EkIIIXLWuHHj+O6777Tfv//++3z44Ye8/fbb5MuXj7CwMK5evcqWLVvYvXs3165dY+TIkbmy2JcZeSEnmdvdu3e1Q5g6OTnx/PlzVqxYkeli3/jx42nZsmW6yxUqVEhvWspjYGdnR4UKFQgNDeX69euZ6oMQrwsp9gmRB3h5eVG2bNmc7oZ4RStWrACgefPmxMbGsn37dlasWJHpC1Kv8rPw5Zdf4u/vT7Vq1ShSpAgACoUiy9sTQgghXhfG8laTJk345ptv+Pfff+nUqRNnzpzh+PHjfPTRR+zbtw8bGxuz9Of+/fuAuoCUG57ky40kWwkhhBA5Z8mSJdpCn5eXF2vXrqVu3bp6yzVs2JC+ffty8eJFBg0aRGhoaHZ3VZiB5qYra2trJk+ezP/+9z/+/fdfTp48SZUqVTK8HR8fnyxnsRo1ajBv3jyqVatGuXLlsLKyomvXrlLsE28sKfYJIUQ2+Oeff7h27RoAHTt2JC4uju3bt3Px4kVOnz5NpUqVsqUfQ4YMyZZ2hBBCiNfN22+/zeHDh6lVqxZnzpzh8OHDzJ49m0GDBpmlvfj4eACsra3Nsv28TrKVEEIIkXPu37/Pl19+CYCjoyMHDhygVKlSaa5TtmxZdu7cyW+//ZYdXRRmprnpqkmTJnTp0oVvvvmGiIgIli9fnqli36v44IMPsqUdIfIKi5zugBDCPFQqFR988AEKhQIrKyuOHj1qdNkZM2ZoX147evRog8tERUUxZcoU6tevT8GCBbGxscHFxYWKFSvSr18/Dh8+bHT7SqWSZcuW0bx5c7y9vbG1tcXd3Z3atWszdepUYmNj09yXU6dO8fnnn1OiRAkcHR2xs7OjSJEiVK5cmb59+7J582aDwyfExcUxY8YMAgMD8fT0xNraGjc3N0qWLEmTJk2YOnVqtr1jZfny5QDkz5+fZs2a0apVK5ydnXXmCSGEECJ3s7e3Z8WKFdontyZPnkxiYqLR5R89esTIkSOpUqUKbm5u2NraUqRIET755BPtMJ2paTKZ5h0ot2/f1k7TfGkEBQVpp2mGUTJm+/btdOrUiWLFimnzlL+/P61bt2bp0qXExMToLG9s20uXLkWhUGjf15eyzym/zJ2xJFsJIYQQOeeXX37RZofvv/8+3UKfhoWFBZ06dTI6/9ChQ3z22Wf4+flhZ2dHvnz5qFixIqNGjUr3icCHDx8yZ84c2rRpQ0BAAI6Ojtja2uLj40PLli35/fffSU5ONriuQqHQvq8PoFu3bnrZJuW74dLLYF27dkWhUODn5wdAeHg43333HWXKlMHR0ZF8+fLx3nvvsWrVqjT3SWPLli00btwYT09PHBwcKFGiBF9//TWPHj0CwM/PD4VCkW3vGTx+/DhXrlwBoFOnTtjZ2dGmTRsA1qxZk2Y+FkKYkUoIkSvt379fBagA1ejRo7O0jQcPHqjc3d1VgKpYsWKqyMhIvWUuXryosrOzUwGqd999V5WYmKi3zO7du1UeHh7a/hj7MuT27duqd955J831ihcvrrp69arB9adOnaqysLBIt+2oqCi9fX/77bfTXe+rr77KwiebOfHx8So3NzcVoOrZs6d2epcuXVSAysvLy+DnnlLdunXT/JxfhWa7devWNfm2hRBCiNwsq3mrUaNG2vUOHz5scJmVK1eqHB0d08whn3/+uV4GSC+7pMwCKfu/f/9+g/148uSJqkGDBuluc8mSJUY/m5TbXrJkSYb6ePPmzQx/npkl2UoIIYTIOcnJydprRI6OjgavNWWWUqlU9e3bN81s4erqqtq1a5fB9ZOSkjJ07ej999/Xu36kUmUsf6XMiullME0m8fX1VV25ckXl5+dndLt9+/ZN87Pp06eP0XULFiyoOn36tMrX11cFqLp06ZKZjz3LNMfK1dVVFRsbq1KpdD+TTZs2pbl+yjyZOoO+Ks1nb+48KkRuJE/2CfEaK1SoEAsXLgTgxo0b9O/fX2d+fHw8HTp0IC4uDkdHR1auXImVle7ovvv376dJkyY8efIES0tLunbtyh9//MGpU6c4fPgwCxYs4OOPPzY4xNTTp0+pXbs2586dw9bWli+//JJ169Zx4sQJ9u/fz/Dhw3FwcOC///6jSZMmRERE6Kx//vx5hgwZQnJyMv7+/kyZMoW9e/dy5swZ/v77bxYsWECHDh1wdHTUa7tfv378+++/gPouo40bN/LPP/9w4sQJNm/ezHfffcc777zzSp9vRm3dupWwsDBtXzQ0/w4JCWHHjh3Z0hchhBBCvLqGDRtq/33w4EG9+WvXruWzzz4jOjqaYsWKMXXqVHbs2MGpU6fYsGEDTZs2BWDRokV675e7cOECFy5coGXLlgB4e3trp2m+MiomJoZ69eqxd+9eACpXrsz8+fM5fPgwJ0+e5I8//mDQoEF4e3tneJutWrXiwoUL9O7dW6/PKb98fHwyvM3MkmwlhBBC5JxLly7x5MkTAOrUqaN9sv5VDBs2jNmzZwPg7+/PvHnzOH78OPv372fQoEFYW1sTERFB8+bNOXfunN76qhejPdWvX59JkyZpc1dQUBCLFy+mRo0aAOzevZu+ffvqrX/hwgV27typ/X78+PF62aZPnz6Z3q+YmBhatGjB06dPGTVqFEFBQZw8eZIFCxZQuHBhAGbPnq3Tdko///wzc+bMAaBIkSLMnj2bY8eO8ffffzNy5EgiIiJo06aN3ggN5pSYmMiaNWsAaN26NXZ2dgDUrVtX+/5iGWVBiJwh7+wTIg8ICQnh4sWL6S5XsmRJvaJbq1at6NGjBwsXLmTp0qU0a9ZM+2j9iBEjOH/+PADTpk2jePHiOuvGxcXRqVMnkpKScHBwYNu2bQQGBuosU7NmTXr06MHdu3f1+tO/f3/u3r2Lr68v+/fv1xkSASAwMJC2bdtSp04dbty4wc8//8yECRO089evX09ycjKOjo4cPXqUAgUK6Kxfp04devToQUREBA4ODjr93rx5MwBfffUVkydP1utbixYtGDt2rPZCkTlpQo6fnx+1a9fWTq9fvz7e3t48ePCA5cuX07x58wxtLyM/C/nz5zfrRTYhhBDiTZbyfXCa98ZpPHnyhJ49e6JSqejevTvz58/XuZmqUqVKfPzxx4wcOZIffviB6dOn06tXL0qWLAmo32cDkC9fPkD9zj7NtMwaNWqUtjjYt29fZs6cqTMMaOXKlWnVqhU//fQTz549y9A28+XLR758+fDy8tJOy2r/skqylRBCCJFzUhbbKleu/Mrbu3DhAlOmTAHUmeLgwYPaHATqa0eNGjWiWbNmJCQk0LNnT44dO6azDUtLS65evap3XQvURahu3boxevRovv/+e1asWMGoUaMICAjQLlO2bFmcnJy03/v4+Jgk34SGhpKQkMDRo0cpU6aMdnrlypUJDAykXLlyxMXFMWfOHL33zz169Ej7qp3ixYtz9OhRPDw8tPPr1KlD06ZNqVevHgkJCa/c14zatm0bT58+BXRvulIoFHTo0IGJEyeydetWnj17Rv78+dPd3v379zOUxbI7bwqRF8mTfULkAXPnzqVcuXLpft2/f9/g+tOmTdOGmF69enH//n327NnDL7/8ArwsCKa2fPlyHjx4AMAPP/ygV+hLSXP3jsatW7f4/fffAZg1a5ZeoU+jYsWK2ruqli5dqjNPM/Z4iRIl9Ap9Kbm6umJh8fLXWVhYmHZ88Pfee8/oegBubm5pzn9VT58+Zfv27QB06NBB5wKbhYUFHTp0ANTjr4eHh2domxn5WRg5cqTJ90UIIYQQau7u7tp/py6SzZ07l4iICHx8fJgzZ47eqAkaY8eOxcfHh+TkZLPc/RweHs78+fMB9QWl6dOn6+SQlGxsbNLMWrmJZCshhBAiZ2kKPYDOzT9ZNXfuXO279BYuXKhT6NNo3Lgx3bt3B9Tviztx4oTOfIVCYbDQl9J3332Hh4cHKpVKe4N4dhg3bpxOoU+jePHitGrVClC/qzC1ZcuWERcXB6iv66Us9GnUrFnT4JOK5qTJrYULF9a7TvjZZ58B6pHENNcE0zNq1KgMZTEhRPqk2CfEGyDlEJ1hYWF06NCBrl27olKpKFSoEAsWLDC43tatW7Xrf/HFF5lqc9u2bSiVShwcHGjSpEmay2oKcg8ePODOnTva6YUKFQLg33//5fjx4xlu293dHRsbGwBWrFhBUlJSpvpuSqtXr9YWHg29hFozLS4ujnXr1mVr34QQQgiRNSnv/I6KitKZp7l41Lx5c2xtbY1uw8rKSjuk1NGjR03ex3379mmHdOrfvz+WlpYmbyMnSLYSQgghclbK7GPotSqZtWfPHgDKlCnDu+++a3S5lNelNOsYk5yczIMHD7h69SoXL17k4sWLXL58WTt0pqGhQM1B87SbMZonI8PCwvRuUtLso4eHR5rX1Tp37vzqHc2gsLAwtm3bBujfdAXqY1ihQgVAfT1OCJG9pNgnRB4wevRoVCpVul9+fn5Gt1GtWjXt4/9///039+/fR6FQsGTJEoN3BwGcOXMGUIePlMNkZsTJkycB9fjkVlZWKBQKo18ph1jSPM0H8Omnn2JtbU18fDy1atWiRYsWzJs3j4sXL2rHYzfE1taWdu3aAeqhQIsXL87QoUPZvn17hu/wNpVly5YB6iG7SpcurTf/nXfe0Q5FkNG7+jPys5D6KUkhhBBCmE7Ki1wuLi7afyuVSs6ePQvA/Pnz08w/CoWC9evXA7r5x1Q0OQ7Uwzy9LiRbCSGEEDkr5Tv6oqOjX2lb8fHxBAcHA6RZ6AP1yFCaV9cYGvZRpVKxcuVK6tWrh5OTEz4+PpQqVUrn6TBNTtO8c9DcPDw8dEaESC3laFOpbyDT7GOFChV0RrNKrVy5ctob3s1t9erV2iFDDd10lXL6kSNHuH79errbXLJkSYaymBAifVLsE+INMnz4cIoVK6b9vkePHnpjgqekCT+aJ+wyIyQkJPMdBJ2XCpcqVYrVq1eTP39+kpKS2Lp1K71796ZcuXJ4eXnx2WefcfDgQYPbmTVrFi1atADg9u3bTJo0iWbNmuHu7k7VqlWZNGkSERERWepjRl2+fFlb9DQWguDlMAeHDx/m5s2bZu2TEEIIIV5dygtEKS/ShIWFZWlEgZT5x1RS9jErWS43kmwlhBBC5LyUxavHjx+/0rZSDoee3pCg1tbW2rbDwsJ05sXFxdGsWTM+++wzgoKCiI2NTXNb6c03lfRunE9ZxFMqlTrzNJ+Np6dnmtuwtLQ0+ytqNDQ3UpUvX97o0JodOnTQjihhjqHqhRDGGX6BhBDitbRt2zZu3Lih/f7QoUPExsZib29v8rY0IcXDw4P9+/dneL3U7/Zr3bo1DRs25Pfff2fnzp0cPHiQ0NBQnjx5wsqVK1m5ciVdunRh8eLFOiHJxcWFzZs3c/z4cdauXUtQUBBnz55FqVRy8uRJTp48yeTJk/nzzz+1Q2iZWspQM3jwYAYPHpzm8iqViuXLl2ufwBRCCCFE7pTyqbmSJUtq/53yIk2PHj0YMGBAhraXXXdj53WSrYQQQoic984772j/ffr0aZNt19i7hTNiwoQJ/PXXXwDUrVuXvn37UqlSJQoWLIi9vb32etF7773HwYMH5UmxLLh69ar2FTvnz5/P0PFauXIlY8aMeaVjK4TIOCn2CfGGePz4MT169ADUhbDIyEguX77M119/zaxZswyu4+Hhwb1793j48GGm29PcbRUVFUXp0qVf6T0xrq6u9OzZk549ewLqu7o3bdrEzJkzefDgAcuWLaNixYoGL6hVq1aNatWqafsSFBTE0qVL2bhxIyEhIbRu3Zrr16+bvOCZnJzMqlWrMr3eihUr5IKUEEIIkcvt3r1b++/atWtr/53yrmqVSqUdTjInpBym/eHDh3o3VOU1kq2EEEKI3KFMmTJ4eHjw5MkTDh48SGRkpM6w5pmRP39+7b/Te0owKSmJp0+fAvqZa+HChYB66PJ9+/YZHfYy9ROBuVn+/Pl59OgRoaGhaS6nVCp1npA0l6w8pXfjxg0OHTr0Wg0pL0RuJsU+Id4Q3bt3JzQ0FAsLC7Zu3cr06dPZsGEDs2fPpnnz5jRu3FhvnUqVKnHv3j1OnjxJTExMpt7bV7FiRX777Tfi4+M5efJkumOvZ0bp0qUpXbo0HTt2pHTp0kRHR7N27dp07553dnamRYsWtGjRggEDBjBjxgwePnzIoUOHeP/9903WP4D9+/dz9+5dAPr160fNmjXTXP7YsWNMmzaN69evc/jwYWrVqmXS/gghhBDCNC5evMjevXsBKFKkCFWqVNHOs7GxoUyZMly6dInDhw/nVBcBdY7T+Pvvv01e7MvuO7QlWwkhhBC5g0KhoEuXLkyZMoXo6GgWLlyY7tP2xtja2hIQEEBwcDDHjh1Lc9kzZ86QmJgIoHNDVVhYmPb9x23btjVa6Hv+/DlXr141uv3c9vRZmTJlePToEWfPniU5Odnofl24cIH4+Hiz9kXzPkRQD+E5fPjwdJfv3r07cXFxLF++XIp9QmQTKfYJ8QaYM2cO27dvB+Cbb76hTp06lClThn/++Yf79+/TrVs3Lly4oHMHOECLFi3YvHkzMTEx/PrrrwwcODDDbbZo0YKhQ4eiUqmYNm0aq1evNuUuAeoLbCVKlODMmTOZfrlygwYNmDFjBmCeFzNr7niytLRk1KhR6Y4937BhQ2bNmkVSUhLLly+XC1JCCCFELhQbG0vnzp21Qz8NGTIEKyvdP6k+/PBDLl26xJUrV9i5c2ea70c2p3r16uHo6Eh0dDQzZ86kU6dOrzTSQmp2dnbaf8fHx2Nra2uybRsi2UoIIYTIPQYNGsTcuXOJiYnhu+++o2nTppQqVSrd9ZKTk1m9ejUdO3bUTmvYsCHBwcFcunSJ48ePa0dnSk3z9J5mHY2U70uOjo422vbChQvTfLdy6myT0xo0aMDevXt58uQJf/31F82aNTO4XHa8Fy8oKIg7d+4A0LlzZ9q3b5/uOr///jubNm1i3bp1zJw5U+fzFUKYh+FbAoQQr42rV6/y9ddfA1C5cmXGjh0LqIc8WLp0KQqFgkePHmmHyEypU6dO+Pj4ADBy5EgOHDhgtJ179+7pfF+yZEnatm0LwJo1a5g6dWqa/bx586ZeQfDPP/8kPDzc6Dp3797lypUrgO67/m7cuJFmXwF27dql/XfqO92DgoJQKBQoFAq6du2a5nYMiY6OZuPGjYB6CIn0LkaBeqitunXrArB27dpcESyFEEII8dK///5L7dq1te/rq1u3Lr1799ZbbsCAATg5OQHQrVs3Ll26lOZ2t23bxvnz503e33z58tGrVy8ATp06xcCBA42+nyYxMZGQkJBMbb9QoULaf1+/fj3NZSVbCSGEEK8XHx8f7SthoqOjqVu3brrXYf79918aN27MpEmTdKb37t1b+9Raz549iYyM1Ft3165dLFq0CFC/rqVq1araeZ6enuTLlw+A1atXGzznnzhxgm+//TbN/rm7u2vfo5xetskOXbp00d5MNXDgQIM3qh89epTZs2enuy0/Pz9tFsuKlAXF1q1bZ2idNm3aABAREcGmTZuy1K4QInPkyT4h8oCQkBAuXryY7nL29va89dZb2u8TExPp2LEjMTEx2Nvbs3LlSqytrbXzGzZsyIABA5g2bRp//PEHixcvpnv37tr5dnZ2rFixgkaNGhETE0PDhg357LPPaNWqFYULFyY+Pp4rV66wfft2Nm/erBeo5s6dy8mTJ7lx4wZfffUVmzZtonPnzpQpUwZbW1uePn3KuXPn2LFjB/v27eOjjz7i008/1a4/bdo0OnbsSLNmzahfvz6lS5fG1dWVZ8+ecfLkSWbOnElsbCwA//vf/7Tr3blzh3r16vH222/z0UcfUaVKFW3R8u7du/z++++sXbsWgAoVKph0iFGAjRs38vz5cyDjIUiz7N69ewkPD2fz5s3aYmlqGflZAPD19cXZ2Vln2tmzZzl79qzB5R89esTSpUt1prVp00Z7wVIIIYR4naXOW9HR0Tx79ozz58+zd+9edu/erS2WVa9enfXr1+vkKo0CBQqwbNky2rRpw8OHD6lSpQpdu3alSZMmFC5cmMTERO7du8fx48dZv349N27cYMuWLZQvX97k+zRu3Dh2797NhQsXmDVrFkePHqVXr16UK1cOGxsb7t27x8GDB1m9ejXjx4/PVCEu5TCagwYNYuTIkRQqVEh7EcnPz0/vqceskmwlhBBC5D7dunXj3r17fPfdd4SEhBAYGEijRo1o2bIlpUuXJl++fISFhXHt2jW2bdvGjh07UCqVvPPOOzrbKVeuHF999RWTJk3i3LlzVKpUiW+++YaKFSsSHR3Nli1bmDFjBkqlEhsbG+bPn6+zvoWFBR07dmT27NmcP3+e2rVrM3jwYAICAoiIiGD79u3MmTMHJycnvL29uXbtmsH9sbKyomrVqhw+fJjFixdTsWJFKlSooM17bm5uOu8KNDdvb29Gjx7NiBEj+O+//6hcuTLDhg2jSpUqxMfHs3PnTqZMmYK3tzfR0dGEhoaaZSjSmJgYNmzYAKgfIvDz88vQei1atMDGxoaEhASWL19Ou3btDC53//79DGUxFxcXihYtqjPt+fPnrF+/Xmfaf//9p/33+vXrdUYxq1ChAhUqVMhQ/4XIk1RCiFxp//79KiBTX++8847ONoYPH66dN3v2bIPtxMXFqcqWLasCVE5OTqrr16/rLbNjxw5V/vz5023fkIcPH6rq1KmTof5369ZNZ926deumu46FhYVq3LhxWfrsSpUqpbpx40aan32XLl3SOEqGNWzYUAWoFAqF6v79+xle79GjRyoLCwsVoGrevHmmP4vUX3/88YdeG6NHj87UNm7evJnp/RdCCCHyiszmLU9PT9WECRNUiYmJ6W578+bNKjc3twxlmX379umt36VLFxWg8vX1zVD/9+/fb3CZ0NBQ1XvvvZduP5YsWZLpbX/yyScZyhCSrSRbCSGEeH1t2LBB5efnl6HzYJkyZVQ7d+7U24ZSqVT16dMnzXVdXV0NrqtSqVTh4eGqChUqGF3Xzc1NdeDAAe35v27duga3s3XrVpVCoTC4jdGjR2uXSy8nZSTHqVQq1ZIlS9LMCMnJyapevXoZ3S8PDw/ViRMnVEWKFFEBqv/9738G2/H19dWuk1krV67Urvvjjz9mat2mTZuqAJWVlZXq0aNH2ukp9zujXy1bttTb/s2bNzO1jZTHUIjXkQzjKcRr6tChQ0ycOBGApk2b0qdPH4PL2drasmrVKmxtbXn+/DmdOnVCqVTqLPPBBx9w48YNfvjhB2rWrIm7uzuWlpa4uLhQqVIlBg4cyPHjxw1uv2DBgvz9999s3bqVjh07UqxYMRwcHLC2tsbT05OaNWvy1VdfceDAARYvXqyz7urVq/n111/p0KEDFSpUoGDBglhZWeHk5ESZMmXo3bs3Z86cYdSoUTrr1alTh6CgIIYPH069evUoXrw4zs7OWFtbU6BAARo1asS8efM4e/as3hCer+r+/fvs27cPgBo1auDt7Z3hdQsUKKB9n8yOHTsIDQ01ad+EEEIIkTEWFha4urpStGhR6tSpw8CBA9mwYQP37t1jxIgRGXpirUWLFty8eZPJkydTv359ChQogLW1Nfb29vj7+9O8eXOmTp3KrVu3qFevntn2xcPDgwMHDrBx40batGlD4cKFsbW1xc7OjmLFitG2bVtWrVqlM7pCRq1cuZKff/6ZatWq4erqqh2Cy5QkWwkhhBC528cff8zVq1dZtWoVnTp1omTJkuTPnx8rKyvc3NyoVKkSffr0Yd++fVy4cIFGjRrpbcPCwoLZs2fz999/07FjR4oWLYqtrS0uLi5UqFCBESNGEBwcbHBdAFdXVw4fPsy4ceMoV64cdnZ2ODk5Ubp0aYYMGcK5c+d477330t2XZs2asXfvXlq2bIm3t7fBURyyk0KhYN68eWzatIlGjRrh5uaGnZ0dxYsXp3///pw5c4YqVapohz51dXU1eR+yMoRn6uWTkpL47bffTNovIYQ+hUpl5MUNQgghhBBCCCGEEEIIIYTIle7du0eRIkUAWLhwIZ9//nkO90gIkVPkyT4hhBBCCCGEEEIIIYQQIo9ZvXq19t/Vq1fPwZ4IIXKaPNknhBBCCCGEEEIIIYQQQuQi0dHRREZGUqhQIYPzz5w5Q926dYmKiqJy5cqcPHkym3sohMhN0n/ZhBBCCCGEEEIIIYQQQgghsk1oaCilS5emVatWNG7cmJIlS2Jra8uDBw/YsWMHixYtIjY2FoVCwdSpU3O6u0KIHCZP9gkhhBBCCCGEEEIIIYQQucitW7fw9/dPcxkbGxsWLFhA586ds6lXQojcSop9QgghhBBCCCGEEEIIIUQukpiYyB9//MGOHTs4ceIEoaGhhIWF4eDggJ+fHw0bNqRfv374+vrmdFeFELmAFPuEEEIIIYQQQgghhBBCCCGEyKPeuHf2JScn8+DBA5ydnVEoFDndHSGEEEK8ApVKRVRUFN7e3lhYWOR0d954krOEEEKI14fkrNxFcpYQQgjxejBXxnrjin0PHjygSJEiOd0NIYQQQpjQ3bt3KVy4cE53440nOUsIIYR4/UjOyh0kZwkhhBCvF1NnrDeu2Ofs7AzAZ+ULU8fXwyxtrDp3hwN3wmhZoiDNShYE4OazaKYe/Q8fF3sGvvsWdtaWZmknLXGJSqYdu879yFgG1yiOf35Hk7eREduuPmTTtce0LFGAZiULmaWN1FK3YY7jcexeGIvO3OHXX3+lXbt2Jui1Ye3ateP333832/alDWkjL7eRXe1IG7mnjcjISIoUKaI9v4ucpTkO0z8oR4VCrmZpY9f1ECYcvMavzStQ0sNJ2sjhNrKrnatPntNz61kOHDhAhQoVzNIGvB6/F6UNaUPaeDPayI52JGflLpKzpA1zeJ0yVna1I21IG9KGtPGqzJWx3rhin2aogzq+HnxRyc8sbZx5GM6BO2FU8cnPF5X8OH7/GUN2XaSyd352dKyBs621WdpJS1R8Io1XHeVJTAJ/d3uPaj75Td5GRoz/+yqbrj1mXL3SjHqvpFnaMCRlG+8UcDXL8XCwtmTRmTs4ODjg4uJikm0aYm1tbdbtSxvSRl5uI7vakTZyVxuADGWUS2iOQ4VCrrxnppuq7kbGAlDZOx+VCuWTNnK4jexqx8lG/WeLk5OT5CxpQ9qQNqSNbG5HclbuIDlL2jCH1yljZVc70oa0IW1IG6Zi6owlg66b2fH7z3h/xWHKermYtLCUGZpC38WQSHZ/VivDhT5TG//3Vb7df1mn0Jfd7kXG5vjxEEIIIYQQQgghhBBCCCGEMBUp9plRbigsSaFP19Kzt6XQJ4QQQgghhBBCCCGEEEKI14YU+8wopwtLUuh76XF0PABejrZS6BNCCCGEEEIIIYQQQgghxGtDin1mkBsKS1Loe+n4/WdsufoQgC7vFJVCnxBCCCGEEEIIIYQQQgghXhtS7DOx3FBYkkLfS5p3JrrZ2wBga2WZI/0QQgghhBBCCCGEEEIIIYQwByn2mVBuKCxJoe8lzfEo6+VC8xIFc6QPQgghhBBCCCGEEEIIIYQQ5iTFPhPJDYUlKfS9lPJ47OhYAxtL+VEXQgghhBBCCCGEEEIIIcTrxyqnO5DXJNo4oLS2A4VCO+3840i6H7hH/YplWNiiApOPBOMbpsDRsxBxTu5m64trAW98fVU4ehbiqY0rPXaeJcIuP7v7NaB8ARfiTNxGRvZl7ombLLwRw9RP6tO7qn+G+pDZNtKT+nhY21jhWuCZSdswxMY9AV9fX2xsbIiLM8Wnb5i7u7tZty9tSBt5uY3sakfayD1tJCSof/cmJCRky8/Xm87S0hJra/MMUa4CEu1cSLa00slZqWnOtypXT+KcXMzSF2kj97WjcrVWt6FSSc6SNqQNaUPayKZ2JGdlL3PmLEPXsgx5XfKJtJFxr1PGyq52pA1pQ9qQNl5VRjJWVnKBQqVSqUzRwbwiMjISV1dXfm1RgS8q+WV8PQ9/nvhXIT5fQbB4OTxnvDKZx9Hx2FhY4OVoi4UCnsYm8jwhiXx21rjamq+eqmnH1daKuKRkEpKTKeBoi60Jn2LLzL5ExCcRHpeY6f025edl6HiYug1johOVPIlJwMPDA0dHR7O0ARASEoKXl5fZti9tSBt5uY3sakfayD1tJCcnc/fuXYoUKYKFhTzFnR1sbW3x8PDAxUX/goMmZx3oWpv3fD0ytL0EO2dC/KsS4+mP0s4p3YtQmvNtISc7bCzTXjarpI3c106CUsXD53EUKlQIGxsbs7QBr8fvRWlD2pA23ow2sqMdyVnZz9Q5y9i1LGNel3wibWTc65SxsqsdaUPakDakjVeV0YyVVi4wRJ7sy4BID3/uV2yOk5snHnbWWFsoUCggJjGZW+ExFHG2wNfVHssXlSWbyDiexSXi5WiDl6Ot2fqlacfaQoGtCvzyOeBgbdoAntF9CYmOJzo6gbcLZH6fTfV5GTsepmwjLc9iEyEqDh8fH/LnN98QqgqFAj8/P7NtX9qQNvJyG9nVjrSRe9pQKpXExsbi5+eHpWX2vyv3TaJSqUhMTCQiIoL79+8DZDhwGhPj7MXdii2wdCtIficH7K0ssFQo0qz3ac63RfI7mjz3SBu5t52YxGQSn0VTpEgRHBwczNIGvB6/F6UNaUPaeDPayI52JGdlH3PkLGPXstLyuuQTaSPjXqeMlV3tSBvShrQhbbyq9DJWVnOBFPsy4Il/FZzcPCnsYofiRTKKTlByOzwGB2tLAtwcdQpLVi/+bWVhgZ2V+QKxps2kZBWlPJxxtDF9WxnZlwdRcYREJ+DtbIe3s51Z2khPWsfDVG2kx8pCCYCNjQ12dpn/HDLK0tLSrNuXNqSNvNxGdrUjbeSeNpRK9e9eOzs7uQiVDezt7XF2dubevXs8efLklS9CPfGvgrWnD775nfTO3cbYWKqPua2V+c7p0kbua0f5YiwSW1tbyVnShrQhbUgb2dSO5KzsZY6clfpaVnpel3wibWTc65SxsqsdaUPakDakjVeVkYyVlVwg4zCkI9HGgfh8BXG1s9Yp9F17+hx7I4Wl7KBMVhERlwiAh4ONWQp9GfEgKo4HUXFZLvSZQm45Ho+i5R0GQgghXn8KhQJXV1fi4+NJTEzM8naSrO2J9noLN0e7HDl3CyGEEELkNqbKWYauZQkhhBAib8lsLpBiXzqU1nZgYYm1Re4q9AWHRZOUrL79xtqE7+jLDCn0qWmOR4IyOdvbFkIIIXKC5iXRmrvRsiLJxh4sLU36rmEhhBBCiLzOFDkr9bUsIYQQQuRNmckFcnUlPS/ugFIocldhKTZRiauddba3ryGFPrWUx6OQU858DkIIIUR2M8kd4ikylhBCCCGEUJOcJYQQQgiNzOQCKfZlUExicq4qLJVwd8qxO7Sk0KeW+njIkwlCCCGEEEIIIYQQQgghhMhuUp3IgHhlMrfCY3JVYUne0Ze7Cn05dTyEEEIIIYQQQgghhBBCCPFmk2JfOs4/juRxdDx2VhZvfGFJCn1queV4CCGEEEIIIYQQQgghhBBCWOV0B3Kz4/ef0f3APWY26oGvq73xwtKvX+t86/viy1QsgVIGpr9SOz0nZWrxqIQkouKTpNAnhT4hhBAie6XKWe4vvszpldvIZM4SQgghhMgReS1nScYSQgghjJIn+4w4fv8Z7684TIC7E16OtjlSWMpN0iv0+b0biMInIMNfY6bMyFT7UugTIndRKBT4+fnpTR89ejQKhYJy5cqRkJBgcF2VSkWDBg1QKBR8/vnnmWrXz88PhULBrVu3MtwnIYTIy8ydsYQQuYtkLCGEyD6Ss4R4s0jOEq87ebLPAE2hr6yXCwtbVCDkDa7zxSQqAXC2tcrQE321qlamuF9Ro/N3BB3kceiTTPVBCn1C5B2jRo1i8+bNnD17ltGjR/Pjjz/qLTNz5kz27duHr68vv/zySw70Uggh8h5zZCwhRN4hGUsIIcxHcpYQbzbJWeJ1IcW+VFIW+nZ0rIG1zZv7ET2IiiNaU+zL4OfQ49O2dG3X2uj8wDYdMxWQpNAnRN5ibW3N8uXLqVKlCpMmTaJly5ZUr15dOz84OJjhw4ejUChYvHgxLi4uOdhbIYTIO0ydsYQQeUt6GevWrVuSsYQQIoskZwnxZpOcJV4XMoxnCqkLfc621jndpRzzICqOB1FxOFrnXGFLCn1C5E3lypVjzJgxKJVKunTpQmxsLID2+5iYGPr27Uv9+vVzuKdCCCGEEHlHWhnrm2++kYwlhBBCCJFFkrPE60CKfS9Ioe8lTaHP29kOh2wu9gUdOaYdC93JvxSVqlSh9DsVsSpSQjvdkCv/XafboG/wrVYXW/+3cStThQafdGbt5u0Glx8zZYbR8daX/r4BhU8AXQYM1Sv03bp7D4VPAH7vBuqt9+RpGGvWrKF9+/b4+/tjb2+Pi4sLVapUYeLEicTFxaW57127dkWhUBj96tq1q9F1li5dmua2M2rp0qUoFApKlCjBe++9Z3S5999/X9uv1G2n16dbt26hUCioV6+ewflXrlyhW7du+Pr6Ymtri5ubGw0aNGDt2rV6yyYnJ9O+fXsUCgUdOnQgOTlZZ/6MGTNQKBSMGTNGb70OHTqgUCj49NNP9dYDOHXqFB07dqRo0aLafnzwwQds3274ZwogKSmJxYsX07BhQzw8PLC1taVw4cI0bNiQmTNnapdL6zinddwDAwP15js7O1OqVCkGDRrEnTt39PoUGhrKjBkzaNq0aZZ+LrNq6NChVKtWjWvXrjFixAgAFi5cyNGjRylevDgTJ040uu6///5L27Zt8fDwwN7enrJlyzJ58mSUSqVZ+iqEEG+ClBnL2Jch5shYXQcO1ZuXVsYKffqUOUuWM2DAAMqUKZOnM5Ymsxhjioxl7J0fpsxYY8aMoUSJEpKxcknGmjRpEmfOnJGMJYQQOSRv5yz1tayPP/44z1/LkpwlOetVSc4Sed2bO0ZlClLoeylloc/b2Y7b4TE50g93d3fq1KqJi40VihcP9C1b94fBZbft2U+bXv2Ii4un5FvF+LhJI0KehHHgn+PsO3yUnQcO8t2332a6D5EJSZl6om/focNMmTKFQoUKUaJECapXr05oaCjHjh1j2LBhbNq0if3792Nra5vmdmrVqkXx4sW13//3338cPnw40/1/VQcPHuTs2bNUqFBBZ/qlS5fYs2ePWdrctm0bbdq0IS4ujpIlS/Lxxx8TEhLCgQMH2LdvHzt37mTRokXa5S0sLFixYgXR0dGsXr0aFxcX5s2bl247vXv3ZvXq1TRv3pwVK1ZgYaF738P06dMZPHgwycnJVKhQgXfffZdHjx4RFBTErl27GDt2LN99953OOhERETRv3pxDhw5hbW1NzZo18fb25tGjR5w/f569e/fSr18/ALp06aKz7vPnz9mwYQOOjo60adNGZ17t2rX1+v/BBx9QsGBBAMLDwzl48CDTpk1j1apVnD9/XjsPYOfOnQwYMAAfHx+KFy9u9OfS1CwtLVm2bBkVK1Zk+vTpBAQEMGPGDCwsLFi2bBkODg4G1zt06BCNGzcmOjqaYsWK8f777/PkyRNGjBjBP//8Y/J+CiHEm6aApweNA+voTHuVjLVoiv77LExtZ9Ahho79AS8vL0qUKEGNGjXydMY6efKkZKw3KGOl93OZWYYy1ujRoyVjCSFELmDqnPXzuLFm7/Pevw8xZcoUvL29CQgIyPPXsiRnSc56FZKzRF6X48W+qKgovv32W/744w9CQkK0/zNVrVrV4PIbN25k7ty5nD17lvj4eMqUKcOYMWP44IMPstS+FPpeSl3oywnP4xMBeMvfn/Wzp+gM3WkoID0OfULHfl8RFxfP+KGDGNG/N4oX1cGT5y7QqEM3Fq9ZT0Cpt2nYrEWG+pCsUv9XmazK1NCdFcq8zeLFi/nwww9xd3fXTn/27Bnt27dn165dzJgxg6+//tpwuy/uyOnRo4fOHTBLly7N9oBUrVo1Tp06xYwZM1i8eLHOvBkzZmBpaUmdOnUICgoyWZuPHz+mY8eOxMXFMX78eEaMGPHyWJ48SaNGjVi8eDHVq1fniy++0K5nbW3NunXraNq0KfPnz8fFxYWff/7ZaDtff/01v/76K/Xr12fdunVYWen+Gty5cyeDBg3C3d2dDRs26DzheOHCBZo2bcro0aOpW7cudevW1c7r3r07hw4domLFimzcuFHnbq+kpCS2bdum/T71nWK3bt1iw4YNeHh4GLyLLDg4WOf7YcOGERgYqP0+OjqaunXrcurUKdavX8+XX36pnVe5cmWOHj2qM9Y46P9ctmrVythHlmWlSpXihx9+YPDgwfTt2xdQf/41a9Y0uHxcXBwdOnQgOjqagQMHMnnyZCwt1f//nT9/ngYNGvDkibwnQYiMyumMJXIXzR2lpYu/xdJpuufJV8lY1StV4OOPPjJr3yuXL8O+jWtwLvIWpUuXxtHREcibGatu3bocOnRIMlYuyVipmSNjGfu5fBWGMlaPHj0kYwmRjSRniZTMlbPKli1LnQ+ambXvFcqVYfHixXzyySfajAWSszJKcpbkLMlZIjfJ8WE8e/Towe7du1mxYgUXLlygUaNGNGzYkPv37xtc/u+//+b9999n+/btnDp1inr16tGiRQvOnDmT6bal0PdSbij0JSqTuRUWBYCLvW2G3tG3YNXvRERGUbl8WUYO6KM9oQJUeaccI/v1BuDXJUsz1AdlsorH0fHqPthaZeodfSWKv0W5cuX0pufPn1/72Pu6deuMrq95BN3aOud/Dn18fPjwww9ZvXq1zgkpLCyMlStX8uGHH+Lr62vSNhcsWEBERASVK1dm5MiRuseyShVGjhwJqB+fT83Ozo7Nmzfz7rvvMmnSJCZMmGCwjfHjxzN58mSqV6/Opk2bsLPT/1kfPXo0KpWKefPm6Q1lWq5cOaZOnQqgM5TBuXPn2LhxI3Z2dmzZskVvWAcrKytatmyZsQ8iCxwdHalRowaA3jAOpUuX1gtHkPGfy1fVp08fXF1dAfDy8mLcuHFGl92wYQN3796lSJEi/Pzzz9pwBFC+fHntz4AQImNyMmOJ3CcxKQkAa+uM3euX0Yw1ae5C03c2ldIBxalWqYLe9LyYsfz8/Khfv75krAxmrMuXL0vGMiJlxvL29mbgwIFGl5WMJYTpSc4SKZkrZ81auMT0nU2l1Gt0LUtyluQsU5GcJfKqHH2yLzY2lg0bNrBp0ybtL6IxY8awZcsW5s6dy/jx4/XWmTZtms73P/zwA5s2bWLLli1UrFgxw23ffBbNkF0XpdBH7ij0ATyJSUCVpH6yz87WJkPrBB09DkCXtobvKP/807YMGfcTN2/fITQ0FG/nIka3pUxWERwWTYJSfYKxykCxUW8bSiV///03Fy9e5OHDh8TGxqJSqVCp1I8LXr161ei60dHRAEYfCc9u/fv3548//uDXX3/VjlO9YMECYmJi6N+/v8nGVtfQ3FmVelgAjc8//5whQ4YQHBzMgwcP8Pb21pnv5OTEX3/9xVtvvcWoUaO0J2WNmTNn8u2335I/f362b9+Ok5OTXhtPnjzh+PHj2Nvb06KF4SdBNXchHTlyRDttx44dADRr1gwfH58M7a+pRERE8Ndff7F8+XIcHBwM9lupVBIUFMSRI0cy/XP5qiZMmEBERASAdhiLRo0aGVxW8zPwySefGPxDoUuXLgwaNMhsfRXidZKTGUvkTrEvLsTY2pg2YwXfvMXDxyFgq39eNSWlUsnx48fZtGkTT58+zdMZq3PnzuzevVsyViqGMtbBgwcByViGpMxYDx484Pjx45QpU8bgspKxhDAtyVkiNXPlrBu3bhMaGkppT2fTdNQIpVLJ/v37OXPmTJ6/liU5S3KWKUjOEnlVjhb7kpKSUCqVenck2Nvbc+jQoQxtIzk5maioKNzc3AzOj4+PJz4+Xvt9ZGQkAD8fCsbbxY76fh5MP3bD6PYdPQtRo0oSIdHxWFkYfhDS2+DU3O1BlDqIRCUkERWfhLOtlc50jZhEpXa51PNSUr4Y+/JZXGKayyUkqQtpUfFJOn0AsFAoiHuufrLP1tHJ6HZSTr/94CEALh4FDC9vYUM+V1fCIyIICQkhqnAhHkTFERWfpNMPlQqexsaTqFThaG2p3ffU23z8PF67v6nnXf7vBj37D+LGDeM/T5GRkTx9+tTgPM0Laa2srHSWef78OaD+WX769CkJCQna+Zqf7W7dutGtWzdAPb50vnz5KFeuHJ06dcrU8IyatlQqFYGBgZQvX565c+cydKj6Bc+zZ8+mfPnyBAYGphuQUvYpIzR3QPr7+xucny9fPtzc3AgLC+PevXt6AQnU46Q/e/YMUBcrS5UqBcCff/7J+fPnAfUj/9u3b6djx45669+8eROVSkVsbGy6436HhoZq/3379m0AbXvmVq9ePb1plStXZsmSJXqfX3BwMB999BGXLl0yuj3N70VTO3nyJD/++CPW1tb07NmT2bNn06NHDy5cuKAXYAHu3bsHGP8ZyJ8/P66urtrAJYQwLjsyFqjPQwkJCdrvNb9Prj55jpNN2jFT5WqNlVJFTGIySpXx5RyNz8q1ohPTfwl7/Iubi+LSWVbzx2y8MjnN7WqyWEKK5VK28eBJGADOLi5Gt5Ny+t2HjwAo5O1tcHlrB0fc8rkSFh7B7QcPKeAfQFyiUnvTVIKB/mr6k5Ss0punyZwqlf68/27eon3PL7kS/J/R/Y+MjNRebErt7t27gPoiVMplNDkqKSlJO12pVBIdHU3Sizv0DWWsd955hy5dutC6dWuj/UktZVvVqlXL8xnrnXfeAcyfsR48eABIxkrNUMYaOXIkH3/8sWQsIbKB5Kyck5GMBa9XzgoJCSEuwFfbfup+aGQ1Z10KvkGHXl+mey3rVXOWJmNppoHkLA3JWZKzhDCVHC32OTs7U6NGDcaNG0fp0qUpUKAAq1ev5ujRozovdU3L5MmTef78OZ988onB+T/++CNjx+q/0FYJ3I2MY/zBa2lu39c3htLdErGKTjC6TF4u9mlExSdpC2CGpDdf+SIghadT7NOED0PFQ6VKxX/31CcaR9f8GSr2Jb0IXGGxCUaXT5lrNfuhKTAa6odmnsFi34shPpUq/WJf70FDuHHjBrVr16Zz5874+/vj5OSElZUViYmJ2rGdb968qdfH5ORk7XSFQqGzjOZEHBUVpZ2u+W9UlLo4+s4771C4cGEAEhISuHXrFkFBQQQFBXHixAl69Ohh8LNJTdNWYmIiV65coX379owYMYI5c+YA6hDXq1cvgoODtSfVx48f67xTTjO9UqVKBodHiImJYefOnSQnJ+usp/kj5sGDB3rvqEv5OYG6MJo/f36deY8fP+bLL7/EwcGB+fPnM3ToUC5fvgyoh9n09vbmp59+4n//+x99+/bF19eXAgUK6GxDU7RzdHQ0+vRZSsHBwcTExGhP2GFhYUb7nhZNMEhKSjK4fkxMDMHBwcTGxgJQp04dPDw8APWQGVeuXOHUqVN88sknzJs3Tyc8tmjRgqtXr1KvXj169OhB8eLFcXJywtramoSEBMqWLavTRmYY6y+oj+enn35KUlISAwYMoE+fPhw/flz78/jDDz/oraMJ/iEhIen+DNy8eZPExESDfcrKvmSWtJF72tD8gS50ZUfGAowON9Nz69l0t+/r68u8+t1JfGb4woFGlXS3lPtcDo3K8LI3w2PSnJ/4Ius8iIpLc7uaizhPYhL0lrsZHsP5G+oLMdZOrka3k3K65mLS3YhYo8trLh4+iUmgwIt2nsQkGO2HJjuFxyXqzwuL1u5v6nkdevYjOPi/dDOW5ryfUnJysvbiVWJios4ymgsc4eHhOtMvX75MeHg4YDhj7du3j3379nHkyJEMZ6yUbUVGRtKuXTtGjhxployV+lxojox19uxZwLwZC9Ce682VsUD9uZkzY2nyYmb6n9mMderUKf755x/JWG9YG9nRjuQswyRn5ZzMZCx4PXJWyv0wR87q1GdAhq5lmSJnaf4rOeslyVmSszR9el3yibSRMebKWDla7ANYsWIF3bt3x8fHB0tLSypVqsSnn37KqVOn0l33t99+Y+zYsWzatAkvLy+DywwfPpzBgwdrv4+MjKRIkSLUKpKf8gX0q/GpuRbwxsnGivx21lka1jG3crS2JDpRiaO1JQ7Wxt9LF5WQRFxScrrLWbwYk9rZxgpPB+PDFlhbqp+OdLC2JJ+dNRFxiSgUkKxS9+n+nVsAVChdwuh2Uk73KViAW7duERH6yODykVFR2kKMp6endj80++JgbYm1hYKkZBWudtZYWyhwfnGHnJ2Vpd424+yttfubct5/N24SHByMm5sbC2dOw8PJXme9lHei++fTH9rg+MXLREdH4+HuTo1SxQzur7ONFc42VkQlJJHfzpp8dtbavvb4tC2fttYd/mHp6rUM+W4sK1csZ8yA3umOnx6vTCbF0OJ4enoyaNAgpk6dqh0H293dncGDB2Nvb4+LiwsABQoUICAgQLueZnq/fv10Xs6scevWLfz9/bGwsNBZz9/fnxs3bhAXF6czXSMiIkIbCGvUqKE3xMCAAQOIiIhgzpw5dOrUiWrVqlGzZk2ePn1KgQIFCAoKIiAggKioKPr27cuPP/6o86JhQPsyagsLC9avX4+Fkad5UwoODtaObx8SEmKw7+nRHBsrKyuD6wcHBxMQEIC9vfrn6vvvv9d5qTGox2f//vvvmTRpElu3bgXgypUrXL16FS8vL3bt2qX3AueUd0g5ODhkuu/G+gvql0f/999/VK5cmcmTJ2NlZcXEiRP58MMPWb9+PZ9//jmNGzfWWadEiRIcPHiQmJgYg9sNDw/XFrj9/f31xpPX9Ckr+5JZmmMibeR8G0qlUt51YoS5Mxao/1/X3DELL3PWyDol0h1uyMa9AB4ONvg422FjmeOvkTYpQ+f61J4nJBEak4C3sx22aey/Jn96OtikuV07K3W2yWdnrV0uZRuP76lHEKherrTR7aScXtS7ILdu3SIuLNTg8ikzVqmi6j/MvZ3tyGdnrdcPjZSZJvU8y+f22v1NOS/4+g2Cg4PxcHdj0qRJBHi4YJcik/577eUfYIZ+5v69Fkx0dDReHh7UK6f7u+jUi+Hr89lZU9rTmYgXN63553PQ7kfvTu3o1PZjnfUWrVrDgJFjWLliBT8N+TJD76jRtKXJbr169eKXX34xS8ZKfS40R8aqU6cOISEhZs1YAEWLFgXMl7FAfZ4yZ8YKCAjI9Lkwsxlr9erVlC1bVjLWG9ZGdrQjOcs4yVk5IyMZC16vnOXp6andD3PlLDc3N9YvmI2Tve5TYabKWd7OdtqMZffieiBIzgLJWZKzXvZJctab1Ya5MlaOn/HfeustDhw4wPPnz7l79y7Hjx8nMTGRYsWKpbnemjVr6NGjB2vXrqVhw4ZGl7O1tcXFxUXnC6BLBV/mNKuQ7tfowNK421vj42KHbz4Hg195UXSiEm9nO0p7OhvdL998DtoTpauddZrLaQKSh4NNmsvZWb0s9kXFJ+FoY4WbvTqQOFjC8RMnAWgVWNPo55xyWuM66he5btm6zWB7e/7aDoC/b1G8vLy0+6EJFknJKpJVUMrDmeJujvjmc8DjRUBysrHU215hl5cBKeV0e6X6iT8PDw+c7W1xd7DR+dq6fbu2/6nnxSuT+fOvXQA0rfee3nzN8By2Vhbaz8/e2hJ3BxtsX3zvZGOlt17vDuohD6JjYlHFRevNT/llZ2XJ4+fx2FrqFnTt7Ozo2bMnhw4d4tChQ/To0UN7kjY1zQl/2bJlBucvXrwYUJ/IU4ejBQsW8Ndff9GwYUP+97//AeqTbfv27QF10NP8gu7duzcNGjRg+/btLFy4UGc73t7elC9fnqioKO17+DJCc6Lfvn279o6y7NauXTsADhw4oJ0WFqYeSsTb21svHAGsXLnSLH05fPgwU6dOxdbWlmXLlmnbLly4sPal1D169NAbwqBu3boArF271uCdTsuXLzdLf4V4XZk7Y4HxnNXoLS86liuS5leLEoVwtLYkv711mueovCit/Ul9fne1S3v/NTdUGTrXp/yytlQv5/AiI6Rsw8ESjhxTvxumce13jX7GKae9X6s6AOs3bTbY3p+bNgMQ4O9H8SI+2n1JeUNVWpkm9bz8KW6oSjk9OU59J3shLy+srKyws7bEMcXXxs1btf13TDXP0dqSv3btVu93YB29eZqLf1YWCp3v7awttdnW1tJCb70e7dQXpaJjYoiNijTYrrG2LF9sN69nLM2/zZ2x6tSpA0jG0jCWsfz8/LQFAclYQmQPyVk5IyMZ63XKWcX8fLXXstwdbMyWszw8PHCyt9XLL6bKWSkzlqPkLC3JWZKzhDC1HC/2aTg6OlKoUCGePXvGzp07admypdFlV69eTbdu3Vi9ejXNmjXLxl6+Pryd7fB2tkt/QTN5GpOAvbUlAW6OKFA/Ov7thJ8IfRpGYI138S9aJEPb+aJjO1ycnTh94RI/zJir8wjsmYuXGD9d/ch+z25dddZLfrFcojKZEu5OONoYf2oxI0q85YelpSXXr1/nyLETOvO27NrLLwuWGFzvQVQcp4Nvsf7F3Ua9O3/6Sv1IafveIAAcHRzwcMtvdLnoBCXXnj7H3tqSAo76Y3v36dOHZs2a0axZM/r27Wuy/qX2xRdf4OLiwunTp/nhhx90j+WZM9qXnH/99dc6692+fZuvvvoKFxcXFi1ahCLF44maf6eetnjxYlxcXBg8eLB2uAMNTTvdunVjy5Ytev1UqVQcO3aMXbt2aadVqFCBli1bEhsbS8uWLbXvX9RISkpi8+bNmfo8MmvNmjUA2iERQB0SLS0tuXDhgvaFwRpbtmzhl19+MXk/YmJi6Nq1K8nJyYwdO1bvBca9evWiQYMG3L9/n4EDB+rMa9OmDT4+Pty5c4fhw4drhzkAuHjxosEX3Qsh0icZ682WmJjIkDETzJaxvu6dseGVskqTsf69Fqz3tERaGQvg7v2HzFy8AsiZjJUeyVi6DGWst99+WzLWC+llrPbt20vGEiIHSM56s5k7Z33ZI+PvjsuKlNey/j56TGee5KyMkZz1aiRnCWFaOT6M586dO1GpVJQsWZL//vuPr7/+mlKlSmlfhjp8+HDu37+vrYL/9ttvdOnShenTp/Puu+/y6JH6pbb29vYGX5IpDMupQp/mpcbWlhYEuDliaaHg9w0b+Xn6LJ4+fYpPwQLMnzguw9sr4OnBqplTaPu//oycOJUVG/6kYtm3CXkSxoF/jpOUlES3dq35tG1rQl+Mba5MVhEWq77T4sKZU4ybPFVnmxcuXwXg1IVLDPthks68iEj1Y9fPIiIY9sMk2jZvQuXyZfFwc6Pzp+1ZsnIV7br1oM67VfAu4MXV6zc5feESowb00YY1jQdRcQwd9xPbtm4lPCICRwcH5q1YzbwVq3WW+++W+mR76MQpvhrxLe07fYZ3Od2X567b+hdXrqvHSY+PT+DK9RvsOqB+Mfg3fb4wOuxBykJfgJsj/xgYqdbHx0f7KL05FShQgFWrVtG2bVtGjhzJihUrqFixIiEhIRw4cEB9LLt144svvtCuo1Kp6NatG1FRUSxatEg7BEF6ihYtytSpU+nRowfdu3dnz5492hDVokULpk+fzldffcWHH35I8eLFKVmyJK6uroSGhnLu3DlCQkL45ptvdMZCX7JkCU2bNuWff/4hICCAmjVr4u3tzaNHj7hw4QKhoaEmG4/5p59+0r5UOiYmhgsXLnDlyhUAvv32W+1yHh4efPnll0yfPp0GDRpQp04dvL29uXr1KqdPn2bUqFEmDx1Dhw7lv//+o3r16gwZMkRvvkKhYNGiRZQrV46lS5fStm1bmjZtCqh/j69atYqmTZsyZcoU/vzzT6pWrcrTp08JCgqiRYsWnDp1Si/UCiEMk4wlVq7bwLgp082asb7o2I6nMfrvtt5z8Ahx8fE607Kasb7s2onpi5bRp08fVlatTJFCBdLMWABDvv+JJb9vICw8PEMZq+vAofzv8+5YuRfUWSarGSsjJGNJxsoMyVhC5C6Ss0R25KzO7doafO+gKXNWj06fMn/ZSpp37Jaha1mQ+Zz15dARtO7QidKe5XSWkZwlOUtylhCmlePFvoiICIYPH869e/dwc3OjdevWTJgwQfsL/eHDhzp3Fvz6668kJSXRt29fnTszunTpov2Fke166p5Eb4fHaMftLuBoS3BYNLGJSpM8QWasnfSKdw+i4ngQFZejT/RFJyiJffFSYzd7a+3j9Tdv38HNzY1On7RmZO/ueLq7Z2q7zd+vz+kdfzJx9q/sPXSU9dt24uhgT51qVejVqT3tWjbj9otwpFJBcFg0iS9ehnz05GmOnjxtcLsXr1zj4pVrBudFRj1n4uxfKfVWMSqXV78U9rthX1PYvxibNm7g1PlLnLW8TLlSJVkzZxrtWjbTCUia43Fg/37CXzz+HR0Tw7J1fxjdz+u37nD91h3eb9JUb972fQfYvk/9yLuFhQX5XV2pX6s6PT79hHYtDd8xmLrQZ5kL3knZvHlzTp8+zcSJE9m7dy/r16/H0dGROnXq0KtXL+3j/RqzZs1i//79NG3alO7du2eqrc8//5wNGzbw119/MWvWLPr166ed179/f+rXr8/MmTPZv38/e/fuxcLCgoIFC1KxYkWaNWtG69atdbaXP39+Dhw4wOLFi/ntt984e/YsR44cwcvLiwoVKtCqVassfy6p7dy5U/tvS0tLPDw8aNGiBf369eP999/XWfaXX36hfPnyzJkzh1OnTnH27FnKlSvHmjVraNeunUkD0r59+5gzZw729vYsXboUS0vDv+98fX2ZPHkyvXr14osvvuDSpUvky5cPUA9/cOzYMUaPHk1QUBB//PEHxYoV4/vvv2fIkCEZfuG9EOI1yVigl7OexiRwMzyG0p7OOKbxPuFXkR1tZIcbt27j5ubG5x0+YcgXXcySsYw5fOIUh08Yfm9RZjPWL2NHUuyt4sxb8RtnL17iwuUrRjOWxvptOwh78X6UjGasj1p+iE+qYl9WMlZuJBkrYyRjCSEySnJW1knOUstIzjJ0QxWYNmeNHzkMr6L+bP1zY7rXsjSykrMCP2iiN09yluQsyVlCmJZCZaryfB4RGRmJq6srv7aowBeV/NJdPs7JnZu1PsPfp6D2hbzp0RThCjnZEZWQZJZCX8p20ivgvUqhLzMFxbSkVVgyVRtp0bRhY6lAmcwrH49bd+/hX70eS6b+RNd2rXXayMzxqNmwMX5FfAhavyrdNpf+voFug4cxb948WgTWMtvx0ARvf39/3DMZVjPjdXiZ6pvchkKhwNfXl1u3bpmtjczS9Gn37t257vOSNsz/UuOKFSsaDeXC9OLi4rh58yb+/v7Y2b08H2ly1oGutXnP1yONLWQtY8HrcxHqdWnD1O0YylhZacPv3cBMZ6w/Vy7Bp2RZs35e0YlKLodGUbp0aRwdHc3SBrwev9/f1DaykrEy20ZmScbKnW1kRzuSs3KG5Cxpw1xtGMpZWWkjKzlr3rx5dGocaNZMKjlL2kiP5KzcdTze5DYyk7GM5QJDcvzJvtfZ09h4kxSWXkVueaIvp58g01S0E5UqSnk4y/HIZU/0CSGEEEIIIYQQQgghhBAia6TYZwZSWHopNxSWlMkqIuLU7+jzcLAxyfHI7+rKj8OHaIc9yAhDx2Pyt9/glMG7jWpXq8Kk8d/j6+ubpT5D7jgeQgghhBDGZCVjGZLZjLVk6k8EFPNH/604QgghhBCvh5zKWTN/Gv9K17KEEEJkjBT7TMwchaWskEKfmjJZRXBYNEnJ6hKstaWFSbbr6uLMsC97ZXh5Y8ejTXP9McuNKe7vS9v8noQaGbM9PbnheAghhBBCpCWzGcuYzGas4v6+2mGshBBCCCFeRzmVsz4tUEgylhBCZAPTVD4EYL7CUmZJoU9NczxiE5W42llne/sacjyEEEIIIYQQQgghhBBCCGEu8mSfiaQuLIW/eLovu0lhSS3l8Sjh7sSTmPhs7wPI8RCvr9GjR5MvX76c7oaO3NgnIYQQQojMyI15Jjf2SQghhBAis3JjpsmNfRJ5lxT7TEAKSy/lhsJS6uPhaGPJkxwYLUCOh3idjRkzJqe7oEfTp+Dg4JztiBBCCCFEFknGEkIIIYQwD8lZ4nUnw3i+IkOFpZwghSU1OR4v5YbjIYQQQgghhBBCCCGEEEII85In+15BbiksRSUkERWf9MYXluR4vJQbjocQQgghhBBCCCGEEEIIIcxPnuzLotxSWAKksIQcj5Ryw/EQQgghhBBCCCGEEEIIIUT2kGJfFuSWwlJMohIAZ1urN7qwJMfjpdxwPIQQQgghhBBCCCGEEEIIkX2k2JdJuaWw9CAqjmhNcckmZ0ZjzQ2FJTkeL+WG4yGEEEIIIYQQQgghhBBCiOwlxb5MyE2FpQdRcTha59xQlbmhsCTH46XccDyEEEIIIYQQQgghhBBCCJH9pNiXQbmtsOTtbIdDDhWXckNhSY7HS7nheAghhBBCCCGEEEIIIYQQImdIsS8DklVwOyI2VxWW3uR3wuXGQt+bfDyEEEIIIYQQQgghhBBCCJFzpNiXjuiEJEKi44lLSpbCUi4oLEmh76XccDyEEEIIIYQQQgghhBBCCJGzrHK6A7lZVHwiPXae5X+V2+OXz8FoYan+eJtUU1J/bwo2gIvJ2tk3KiFTyycqk9MsLPm9G8jte/czvL3Rg/sx5qv+meqDFPpeSu94CJGT/Pz8uH37NiqVSmf6hg0bGD58OAULFuTSpUu4ubkZXL9bt24sXbqUBg0asHv3bhSKjP98BwUFUa9ePbp06cLSpUtfZTeEELmE4ZzlZOZWX62NzOastGRHxhJC5A3GMtaSJUvo3r27ZCwhRKbltZxlyowFkrOEEC9JzhKvAyn2GREVn0jjVUeJsMtPAUdbHKzf7Icgn8Qk4GhjlW5hqVbVyhT3K2p0/o6ggzwOfZLp9qXQpyujx0OI3KR169YcOnSIbdu20bdvX1avXq23zJYtW1i6dCkuLi4sXrxYJxwFBgZy4MAB9u/fT2BgYDb2XAghcp65MpYQIu/r1q0by5cvJygoSDKWEEJkgeQsIYQxkrNEXiLFPgM0hb6LIZHs7tcAW8s3t9CXmKy+m8HaUpGhwlKPT9vStV1ro/MD23TMdECSQt9LmT0eQuQ2CxYsoGzZsqxZs4bWrVvTpk0b7bynT5/yxRdfADBt2jSKFjX+x5YQQrxpzJGxhBCvj/Hjx/Phhx9KxhJCiCyQnCWESIvkLJFXvLlVLCN0Cn2f1aJ8gdRDZ745ohOURMQlAuBubyvv6MsF7+jL6eMhxKsqVKgQs2bNAqB3796EhIRo5/Xp04fHjx/TokULunXrllNdFEIIIYTIc7y8vCRjCSGEEEKYgeQskVfkaLEvKiqKgQMH4uvri729PTVr1uTEiRNGl3/48CEdOnSgRIkSWFhYMHDgQNP2J1Whr5pPfpNuPy+JTlBy7elzrF4UlDIxzPArCTpyDIVPgPbLqkgJSr9TkUpVquDkXwqFT4DB9a78d51ug77Bt1pdbP3fxq1MFRp80pm1m7cbXH7MlBkofAIYM2WG3rylv29A4RNA14FDAd1CX0L4ExQ+Afi9G6i33tOwMNasWcNnPXvjX70e9m+VxaVkBao0+YiJs+cTFxef5r53HThUZ99Tf33ab4je8dCss/T3DWluO6OW/r4Bj4AyVK1alebNmxtd7v3330ehUKBQKPTGku7atavB6Rq3bt1CoVBQr149g/OvXLlCt27d8PX1xdbWFjc3Nxo0aMDatWv1lk1OTqZ9+/YoFAo6dOhAcnKyzvwZM2agUCgYM2aM3nodOnRAoVDw6aef6q0HcOrUKTp27EjRokW1/fjggw/Yvt3wzxRAUlISixcvpmHDhnh4eGBra0vhwoVp2LAhM2fO1C6n+ewy8tW1a1fteoGBgXrznZ2dKVWqFIMGDeLOnTt6fQoNDWXGjBk0bdoUf39/7O3tcXFxoUqVKkycOJG4uDij+2Mun376Ka1bt+bJkyf06tULgDVr1rB27Vrc3Nz49ddfdZYPCgpCoVBw4MABAOrVq6fzGch45kIYlttylshZqTOWoS9DzJmxUrp1957RjBX69Cm/LlvJgAEDKFO7gckzlqH+mCNjKXwCcPIrRc+ePY0uZ4qM5efnZ3C+KTPWmDFjKFGihGQsyVhCvLEkZ4mU8nLOevJUfS3r4649zXItS3KW5CzJWZKzRPbJ0WE8e/TowcWLF1mxYgXe3t6sXLmShg0b8u+//+Lj46O3fHx8PJ6enowaNYpffvnFpH2RQt9LmkKfvbUldlYWPIkx7QuQM6KApwc1atRAmazCxdYKKwsFy9b9YXDZbXv206ZXP+Li4in5VjE+btKIkCdhHPjnOPsOH2XngYN89+23WepH6if6boUbX/bvw0eYMmUKBQt4UbKYH9UrvUPo02ccO3OOYT9MZtPOvexftwJbW9s020w9Vvy1m7c5evI0lhYKXO2ss+14/PPPP5w9e5YKFSroTL906RJ79uwxS5vbtm2jTZs2xMXFUbJkST7++GNCQkI4cOAA+/btY+fOnSxatEi7vIWFBStWrCA6OprVq1fj4uLCvHnz0m2nd+/erF69mubNm7NixQosLHTve5g+fTqDBw8mOTmZChUq8O677/Lo0SOCgoLYtWsXY8eO5bvvvtNZJyIigubNm3Po0CGsra2pWbMm3t7ePHr0iPPnz7N371769esHQJcuXXTWff78ORs2bMDR0VFnKACA2rVr6/X/gw8+oGDBggCEh4dz8OBBpk2bxqpVqzh//rx2HsDOnTsZMGAAPj4+FC9enOrVqxMaGsqxY8cYNmwYmzZtYv/+/el+ZqY2d+5cDh48yJ9//smkSZP46aefAJg9e7ZO/wEKFixIly5d2LFjB48fP9bZf4DixYtna9+FyCtyU84SuUcBTw8aB9bRmfYqGWvRlB/N3uedQYcYMf5HvLy8KOHvS43KFUySsf67dYfDJ06Zu/t6zpw5w/nz56lRo4bOdMlYr2fGSu/n0tQkYwmRPSRnCUNMnbN+HjfW7H3ed+gwU6ZMwbtgAQL8fU12LUtyluSs1CRnSc4S5pdjxb7Y2Fg2bNjApk2beO+99wD1nQtbtmxh7ty5jB8/Xm8dPz8/pk+fDsDixYtN1hcp9L2UstAX4ObIvcjYbG1fqVQC4Ovrx3ffjdYZutNQQHoc+oSO/b4iLi6e8UMHMaJ/b+1LUE+eu0CjDt1YvGY9AaXepmGzFpnqS0yiMlNDd5Z7+20WL17MBzWr6iz/LDyC9n0GsuvAIWYsXs7Xvb8wuH7yi/fxpRwrPjpByeSlqzl68jQuNlZk18CdlSpV4ty5c8yYMUPv/7UZM2ZgaWlJnTp1CAoKMlmbjx8/pmPHjsTFxTF+/HhGjBjx8liePEmjRo1YvHgx1atX146FDWBtbc26deto2rQp8+fPx8XFhZ9//tloO19//TW//vor9evXZ926dVhZ6f4a3LlzJ4MGDcLd3Z0NGzZofz8BXLhwgaZNmzJ69Gjq1q1L3bp1tfO6d+/OoUOHqFixIhs3btS52yspKYlt27Zpv099986tW7fYsGEDHh4eBu/sCQ4O1vl+2LBhOi/1jY6Opm7dupw6dYr169fz5ZdfaudVrlyZo0ePUr16dZ1tPHv2jPbt27Nr1y5mzJhBq1atjH1kZuHp6cm8efP4+OOPGTpUfadf27Ztad++vd6ypUqVYunSpQQGBvL48WO9/RdC6MtNOUvkDpqMVbr4WyydpnuefJWMVb1SBT7+6COz9r1y+TLsWPsb7v4BlPZ0xtFanQ1fJWOB+i7w7L4IVfvdqhw9eZq5c+fqXYSSjJX9GSs1c2Ssr7/+Ot12TUkylhDmJzlLpGaunFW2bFnqfNDMrH2vUEZ9LeuT+jW1GQskZ2WU5CzJWZKzRG6SY8W+pKQklEoldna6RRR7e3sOHTpksnbi4+OJj3/5yHlkZCQA264+4vHzeOKTlCw7d4eQ6Hi6VvBl1/UQdl1/Oe6uo2chalRJIiQ6HisLY6Oe2pisv9nlQZT+486JymSexCRgbanA2caKx9HxxCSqA0tUQpLBdTSUL07uz+IS01wuIUn9iHlU/MvtpWzjYWQMAApLS9zsrYmITyQiPtFo36ctWUVEZBTly7xNt+7defj85bH2LhbAlz2/YNzPk5m3eCkNm7XQ7kdUfJJePzSevXgvXkyiEmdbK502H7/YvjJZpbeed1FfXAsV1v+sLG0ZNewbdh04xG+bttOx02cGP5tn0ep9f65Ub1tzPDSv5otNUuodD8336X3uGaXZ90KFCuHp6cnq1asZNmwY7u7u6vnPnrFy5UoaN26Ms7Ozur/Pn/P06VPtNjT/v6Werm3j2TMAVCqVzvQFCxYQERFB5cqVGTlypM68KlWqMHLkSIYMGcKkSZN0AhKAnZ0dmzdvpmHDhkyaNAlXV1e9bYD6hbqTJ0+mevXqbNq0Se/3D8Do0aNRqVTMmzdPJxwBlCtXjqlTp/LJJ58wc+ZMbUA6d+4cGzduxM7Oji1btujdyWllZUXLli312jIVR0dHatSowalTp/SGcShdurTBdfLnz8/MmTMpWbIk69aty/ZiH8BHH31EqVKluHLlCra2tsyZMyfb+yDE6yo7c1ZCwssnzjU56+qT5zjZpB0zVa7WWClVxCQmo1SluWieE/3i/JyWeKX693VcOstqzpfxyuQ0t6vJYgkplkvZRlSc+jhZWFka3U7K6bNXrCEiMoqK5cowsE8vYpJenl9Kv/02X/ftxYgJP/Pz3AU0+7Cltp2EF20mGOivpj9JySq9eZpMo1Lpzyvq549rwcI8iIrT+bxsHJ2YOHoku+o34fctf9GnR3eD+/X8xTA/yRa6+566Pyk/r6TkjH3uGaXZdmFvb+rUcWTdunWMGzcODw8PAMLCwli5ciVNmzbFxUX9zvD4+Hiio6O120hKSjI4XSMmRp0lVSqVTs7Kyxnr8uXLeT5jZfdFKJCMJYS5Sc7KORk9J78uOWvmgiXU+aCZdj/MkbN8/f2x9iik91mZMmelPh6Ss9QkZ0nOEsLUcqzY5+zsTI0aNRg3bhylS5emQIECrF69mqNHj5r0MdYff/yRsWP1H3vfdO0Rm6490pk2/9QtveV8fWMo3S0Rq+i0hk50ecVeZr80C3JKFQ+f686Pik/SFsgMUb440YWnU3TSnIANFQ+j4pN4GB4FqO9wCTUyXGXK9YKOHAOgUZOmBtut17gp436ezO07dwgNDQVPT/W+JCQZ7Ud43MviYur9fhwdr91fQ+0plUr2HjzO+fPnefLkCfHx8TohIPjGTaOfz7ModZiIVVnqLKMJQTGJSm0I0vRLE9jS+9wzKuW+f/TRR+zcuZPp06drXzC7bNkyYmJiaNGiBVu2bAHU42jfvHlTu15UVJTB6RoPHjwA1AHpypUrWFqq7xzTjB/epEkTvSfZAO3dL8HBwRw6dIgCBQroLTNr1iwaNmzIqFGjiI+PJzFRvT9Pnz7l22+/Zfz48bi6ujJz5kwePnyot35YWBjHjx/Hzs6OUqVKGexH0aLqYSkOHjxIcHAwMTExrFy5EoC6desSExNjcL203Lt3D1CHS0PrarYZGxurXV6zXFRUFAcOHGDp0qXY29tTtmxZvW0olUqOHTvGmTNnCA0NJS4uTiegXr58OUv9NkYTklNvL3Ub69ev58qVK4A6UM+dO9fg3VAahvY/Nc1nGRkZabL9McSUn5e08WpS3zgg1LIrZ02aNIkJEyboTe+59Wy66/r6+jKvfncSn+n/Ma3LPmudy0GXQ6MyvOzN8Jg05ye+yAEPouLS3K4mEzyJSdBb7mZ4DMEh6pttElQWRreTcvqOv48A0OCDJgaXr96gMUz4mf9u3ubcjbt4enpyMzxGO9y4oX5oskp4XKL+vLBo7f4aak+pVHLq1CkWGslYV/67YXS/Ql7ky6cJuts21p+b4THaTJTe555RmraiEpJo3749QUFB/Pzzz3oZq1mzZtqM9eDBAy5fvqzdRnh4uMHp2jZeZKzExEQiIyO5du0aCoXCLBlLc/OWOTMWwL59+wDzZSxQn6fMmbE0edEU50JjGUuzH5rpkrHejDayox3JWYZJzso5mT0n5/WcdfP2bfW1LDy17Rvrx6vmrN93BRm9lvWqOUvzb83xkJylS3KW5CzJWW9eG+bKWDn6zr4VK1bQvXt3fHx8sLS0pFKlSnz66aecOmW6x7yHDx/O4MGDtd9HRkZSpEgRahXJz39h0YTFJtCiZCEKOBoe49e1gDdONlbkt7PGyiK7BlE0P0+Hl08jJiariIhLxOrFO+FS7mVUQhJxSck4WlvikOJx/tQsXjyi7mxjpbPt1Kwt1U9HOlhbapfTtGGhgMiICAC83PIZ3U7K6WFPnwBQ2r+oweU9HdzJ5+pKeEQEISEh+HkXxCHFvqTsB7wMcAB2VpZ624yzt9bub+p5F4Nv0H/wV9y4ccPo/kdHRxvdr7An6n3x8XRHAdrj4fzijj07K/U7FFMeDzsr9X58//33fP/99wBYWlri6uJCmdIladf6Y5o3/sBof1JzTnF34LtVqxAQEMAfGzfwXT/1i2f/2LCeMqVK0KZBHYJ2/gWoj4d/Pge9baTskzGenp46Tw0CvPvuuwQEGH55tZubG2FhYdjY2BhcZuXKlUS8+BkaP348pUqVAtRh5vz584B6PPKrV6/SsWNHvfVPnDiBSqUiLi6OsmXLptn3sLAwAgICCA4O1t71VaVKFaN9T4u1tfrnysrKyuD6wcHBBAQEYG+v/kPss8/0nw6tXLkyS5YsoVy5cnrrtmnThkuXLhlt//nz5zg4OGSp74ZohpNIvT3NfgDcuXNHO7b5wIEDmTZtGpMmTaJz5874+voa3K5m/wsXLmy0r/fv3wfAxcXFZPtjSMp9kTZytg2lUsmZM2fMtv28LDty1tdff60dvgRe5qyRdUpQ2tM5zXVt3Avg4WCDj7MdNpbGRk/Im1KeF415npBEaEwC3s522Kax/5r8mfp8m5omE+Szs9Yul7IN60T1H5neHm5Gt5NyeviLp/MrBvgbXj6fA/nzufIsPIKEiDDw9MTb2Y58dtZ6/dDQZCBnGyu9eZbP7bX7m3re9Vu36dy7H9f+u250/6Ojo43uV8SLvFjKp4DOMqn7k/LzMpRnLC0tyefiQrm3S9Ppk9a0atrYaH9S07RlZ2VJ5cqVKVOqBJv+2MgPg/sA8OfGDZQtVZJOjQM5uHsHAN7Odjr/H2k+2/QyluZnxsfHB0dHR7NkrHfeeQcwb8YCXlzgNF/GAvV5ypwZS5MXTXEuNJaxNP0JCAiQjPUGtZEd7UjOMk5yVs7ISMaC1ytnhYSE8E6xIthaWpglZ10Ivs7nXw5M91rWq+QsTwcbneMhOUuX5CzJWZKz3rw2zJWxcrTY99Zbb3HgwAGio6OJjIykUKFCtGvXjmLFipmsDVtbW4Mv63z4PJ7YpGQOda+b5jv64pzcuWlvjY+Lnfbk/jrwfXEC1ryjz9HGigA3RyxTFTRvh8cQl5SAq511mu+t05zsPBxstNs2xM5KHbLy2Vlrl7v1og2VCpKj1Se3gCLeRreTcrr1i3a9HG2NLq8pRALa/UgZkDTrPYiKIzomQTvPycZSb5uqqJcBKfW8xkO/4caNGzQMrMt3/XvxdkBxXJydsLa2JiEhAVv/Mnr910hOTub+A/Uv9vyeBXSOh8eL0OJkY4mzjZXO8XB68T7DlC9CjotP4Mp/1zl45B8OHvmHsIf3+XbQl3ptGuKRohCpTFYxqEdX+nwzkr8PHADg/sNHjBncD3cHG2xfHEsnGyvcU6ynmZ765cwaz6Nj2LB9Z4b6kxkPHjygf//+ODo6snXrVjp37qy9G+vcuXMULVqUpUuX0qJFC/r160e9evXw9vbW2YZm2AAnJydat26t10ZukfKlvjExMZw/f55Tp07x2WefsXnzZu0dW4A2HDVv3pyhQ4fy9ttv4+Li8vLnMptfZgzqu1e6d+9OZGQk3bt355dffiE8PJylS5fy+eefs3v3bu0Y90KIrMuunGVoGJlGb3nxnq9HmuvGOblz09qS/PbWr1XGAnTOi2kJjVGf0x0zcENV6vNtataW6uUcrC11ltO0ERGmvqjk71PQ6HZSTtdcF3OxNd6ugpdtgjpnpbyhKvV6miHHbK0s9OZFpbihKvW8+v0Hc+2/69SuXZtv+/+PyqVLGMxYhvqZnJzMnRd/PFcI8NdZxlB/NJ+XoTyjyVhBh48QdPgID+7eyXDG0rSlya59u3ehz9CR7NqjvqP63oOHjB70JY7WltpcbWtpofOzoZmeXsYy9RnUUMY6e/YsIBlLMpYQby7JWTkjoxkLXp+cBWj3wxw568vBQ7hx4wZNGgQyvG9Po9eyXiVnOdlY6RwPyVkvSc6SnCWEKeVosU/D0dFRezfEzp0703whqancj4zl727vpVnoe91pCn321pYGC33ZQfniqUJQF5r+u66+k6hMiYxVzn0KFuTKfze4ceeuwfkRkVGEvXgU39PT0+h2HkTF8SAqDm9nO/K/KPZlxpX/rnPl2jXc3NxYNGsaRfM76cwPvnk7zfUvB18nMuo57u7u+BfxyfTxSP0iZID5K1bzv2HfMXHOAoZ92Ut7x01aklM8QezhYEO3Ni35buJkZixeDoB7/vx0/OjDLPcJ4NbdewaLfT4+Ply5csXo3WQRERGEhYVpl9Vrr0cPnj17xpw5cwgMDGTPnj3UrFmTp0+fUqBAAfbs2UNAQAA///wzffv25YsvvtB50TBAkSJFAFAoFCxevBgLo+/p1KUJJJrH+M3N0Et9R48ezffff0+fPn3YunWrtj/nz5/Hy8uLP/74Q+8FztkxtJAhc+bMYe/evRQpUoRffvkFgF9++YXdu3ezd+9e5s+fz//+978c6ZsQr6OcyFki9/n32n+AeTJWoQIFePXBxA278t91zl++gqe7O5MmTaJcofw6F2YymrEKeHpQxKdQpts3VcZK7ZMPm/PdT3k3Y9WpU4eQkBCzZ6xChdTHTDJWxkjGEiL7Sc4SYN6clda1rFd15b/rXLqivpa1ev4sXO11CyiSs16SnPXqJGcJYX45+iz/zp072bFjBzdv3mT37t3Uq1ePUqVKacdUHj58OJ07d9ZZ5+zZs5w9e5bnz58TGhrK2bNn+ffffzPd9uAaxaXQlwsKfcFh0dp30pGsZP+RfwCoXa1yhrYRWKMaAMvW/WFw/uI16wHw9y2Kl5eXwWVSFvrSenoxLWHP1E8kenh46J2EAFZu3JTm+qu3qIfErF2zhsmOx2dtWgEQHRPDk7Bn6S6vTFZp30kI6iFX7exs6dmxPYeOn+TQ8ZP06NAWe/usfUbp0Zzwly1bZnD+4sWLAfXj9KkD0oIFC/jrr79o2LCh9sRaokQJ7ZjZvXr10j563bt3bxo0aMD27dtZuHChzna8vb0pX748UVFR7NixI8N9b9xYPbzE9u3bteO4Z7d27doBcODFU5iANlB6e3sb/rl88a7B7HT9+nW++eYbbQjVvBw7X758LFiwAFAPV3Pr1i29dW1s1HcJasZRF0KkLSdzlshdEhMTzZaxAvz9KFRQ/90jpqLJWAW9PLOUsTZsV5/PP6hbx2R9ymzGMiSvZyzNv82dserUUR83yVjpu3PnjmQsIbKR5CyhYc6cVczP1+i1LFN41WtZkrMkZ70qyVlCmFaOFvsiIiLo27cvpUqVonPnztSuXZudO3dq79p4+PAhd+7c0VmnYsWKVKxYkVOnTvHbb79RsWJFmjZtmum2/fM7mmQf8qqcLvQlq9SFvthEJa521iQmJvLthJ8IfRpGYI138S9aJEPb+aJjO1ycnTh94RI/zJir83LLMxcvMX76HAB6dutqcP2o+KRXLvQBlHjLD0tLS65fv86RYyd05m3ZtZdfFiwxuu7VW/eYvWQFAF/36Gyy47F9bxAAjg4OeLilXdjWFF4TlMl68/p06UCzBoE0axBI3y6dTNI3Q7744gtcXFw4ffo0P/zwg+6xPHOG8ePHA+qTZ0q3b9/mq6++wsXFhUWLFuk8Mq/5d+ppmhPz4MGDuX1b9041TTvdunXTvrg5JZVKxbFjx9i1a5d2WoUKFWjZsiWxsbG0bNlS7/dWUlISmzdvztTnkVlr1qwB1CFdo0SJElhaWnLhwgWCgoJ0lt+yZYv2TqTskpycTNeuXYmOjqZXr140bNhQZ36TJk3o3r07z58/p3v37novqy1cuDBAmmO2CyFeysmcJXKPxMREhoyZYLaM9XXvHmbpt4YmY/17LVjvPUjpZay79x8yc7E6Y/Xu/KnJ+pSZjJUWyVi6DGWst99+WzJWBiQnJ/PNN99IxhIiG0nOEmD+nPVlj25m6bdGymtZfx89pjNPclbGSM56NZKzhDCtHB3G85NPPuGTTz4xOn/p0qV601L/DyOyJicLfQBhsYnEJiop4e7E7BWr+Xn6LJ4+fYpPwQLMnzguw9sp4OnBqplTaPu//oycOJUVG/6kYtm3CXkSxoF/jpOUlES3dq35tG1rQmMS9Nbfe+gI8Qnx2vG9AS5cvgrAqQuXGPbDJJ3lIyKjAHgWEcGwHybRtnkTKpcvi4ebG50/bc+Slato160Hdd6tgncBL65ev8npC5cYNaCPNqylNGD0Dyxbt5GIiAgcHRxYsHI1C1au1lnmv1vqk+2hE6f4asS3tO/0Gd7lSukss27rX1x5MQRqfHwCV67fYNeBQwB80+eLNIc90BT6YhOVFHTSH/Pap1BBti5fYHR9UylQoACrVq2ibdu2jBw5khUrVlCxYkVCQkI4cOCA+lh268YXX3yhXUelUtGtWzeioqJYtGiRzvjeaSlatChTp06lR48edO/enT179mhDVIsWLZg+fTpfffUVH374IcWLF6dkyZK4uroSGhrKuXPnCAkJ4ZtvvqFRo0babS5ZsoSmTZvyzz//EBAQQM2aNfH29ubRo0dcuHCB0NBQk/3++umnn7S/H2NiYrhw4YJ22IVvv/1Wu5yHhwdffvkl06dPp0GDBtSpUwdvb2+uXr3K6dOnGTVqlDYQZoclS5Zw6NAh/P39mTRpksFlNEMg7N+/n7lz59KnTx/tvNatW7NkyRKGDh3Knj178PLyQqFQ0L17d2rWrJlduyFEniE5S6xct4FxU6abNWN90bEdTw1krD0HjxAXH68zLasZ68uunZi+aBl9+vRhZdXKFClUIN2MNeT7n1jy+wbCwsNxdHBg3orVzFthPGN1HTiU/33eHSv3gjrLvErGSo9kLMlYpjJ16lROnTolGUuIbCQ5S2RHzurcri03w2P01jdlzurR6VPmL1tJ847dMnwtK7M568uhI2jdoROlPcvpLCM5S3KW5CzJWcK0csU7+/K6faN0L3DcDo8hNCZB52kxUwwVmZqhdtKSG4bu1JwfEpXJlHB3wtHGkpu37+Dm5kanT1ozsnd3PN3dM7XN5u/X5/SOP5k4+1f2HjrK+m07cXSwp061KvTq1J52LZtxO1U4iopXPzp97tw5zp07Z3C7F69c4+KVawbnRUY9Z+LsXyn1VjEqly8LwHfDvqawfzE2bdzAqfOXOGt5mXKlSrJmzjTatWymF5CiE5Ss27aDiAj1sAnRMTFGh3AAuH7rDtdv3eH9Jvp3/m3fd4Dt+9SPvFtYWJDf1ZX6tarT49NPaNeymdFtpiz0lXB34pxljj7sS/PmzTl9+jQTJ05k7969rF+/HkdHR+rUqUOvXr20j/drzJo1i/3799O0aVO6d++eqbY+//xzNmzYwF9//cWsWbPo16+fdl7//v2pX78+M2fOZP/+/ezduxcLCwsKFixIxYoVadasmd5Lj/Pnz8+BAwdYvHgxv/32G2fPnuXIkSN4eXlRoUIFWrVqleXPJbWdO1+OE29paYmHh4f2Zc3vv/++zrK//PIL5cuXZ86cOZw6dYqzZ89Srlw51qxZQ7t27bItIF2+fJlp06ahUChYsmQJTk5OBpdzcXFh4cKFfPDBBwwdOpQmTZrg7+8PQLNmzViwYAFz585l3759xMSo/7+uXbu2BCQhXmOpc9bTmARuhsdQ2tNZ591tppQdbWSHG7du4+bmxucdPmHIF13MkrGMOXziFIdPnDI4L7MZ65exIyn2VnHmrfiNsxcvceHylTQzFsD6bTu077rJaMb6qOWH+KQq9mU1Y+U2krEyJq9mrG+//VYylhAiSyRnZV125CxDN1SBaXPW+JHD8Crqz9Y/N2boWhZkLWcFftBEb57kLMlZkrMkZwnTUqjesFuLIiMjcXV15dcWFfiikl+6y8c5uXOz1mf4+xTEzipjISR1Ec4chT5D7aQlq4W+zBYU05K6sORoY2nyNoxJ2Qbwysfj1t17+Fevx5KpP2lf3JuV49H8wxYUL1qEAxtWpdvm0t830G3wMObNm0eLwFp5+nhowr2/vz/umQzEmREcHKwd31zayL42/Pz8uH37tt7dX9mxH0FBQdSrV48uXboYvJvWVPLaMXmd21AqlZw5c4aKFStiaZl3LxbkNXFxcdy8eRN/f3/s7F6eKzQ560DX2rzn65HGFrKWseD1uQj1urRh6nYMZaystOH3biB+RXwIWp/xjPXnyiX4lCyb549JdKKSy6FRlC5dGkdH87264HU4h+S1NoxlLFO2YYxkrNzXRna0IzkrZ0jOkjbM1YahnJWVNrKSs+bNm0enxoF5JpMaIznr9W1Dcpa0kZ1tZCZjGcsFhsiTfWZmrkJfZuSGJ/qMFZayW1RCElHxSbnmeFhbWKDIgZFUc8vxEEIIIYQQQgghhBBCCCHEq5FinxnltsLSm17oA0x2PPK7uvLj8CHaYQ8yKvXxmPztNzhl8E6g2tWqMGn89/j6+maly1q56XgIIYQQQqSU1YyVWmYz1pKpPxFQzB/9t+IIIYQQQrwecipnzfxp/CtfyxJCCJE+KfaZkRT6ck9hKSZRCYCzrZVJjoerizPDvuyVqXUMHY82zfXHLDemuL8vbfN7EmpkzPaMyC3HIzwuMUfaFUIIIUTulpWMZUhmM1Zxf1/t0E9CCCGEEK+jnMpZnxYoJBlLCCGygUVOd+B1ZOrCUlZIoe+lB1FxRGuOiU3O1LfleLz0ICqOZ1LsE0IIIYQQQgghhBBCCCFMQp7sMzEpLKnlpsLSg6g4HK0ttcclu8nxeElzPPLbWUvB7zU2cOBAwsPDc6RtPz8/vvzySxo0aJAj7QshhBBCmItkLCGEEEII85CcJV4HUuwzISksqeW2wpK3sx2JyuQcOSZyPF5KeTxsLS2k2PcaGzhwYI617efnR//+/QkICMixPgghhBBCmINkLCGEEEII85CcJV4HMoyniaQsZDhY50wxRQpLL6U8HjKUqhwPIYQQQgghhBBCCCGEEOJ1JcU+E8gNhQwpLL0kx0NNjocQQgghhBBCCCGEEEII8fqTYt8ryg2FjERlshSWXpDjoSbHQwghhBBCCCGEEEIIIYR4M0ix7xXklkLGk5gEKSwhx0NDjocQQgghhBBCCCGEEEII8eaQYl8W5YZCRmKyCgBrS4UUluR4AHI8hBBCCCGEEEIIIYQQQog3jRT7siA3FDKiE5RExCUC4G5vK4UlOR5yPIQQQgghhBBCCCGEEEKIN5AU+zIpNxQyohOUXHv6HKsXBSVF9teVpLCUghyPl3LD8RBCCCGEEEIIIYQQQggh3iRS7MuE3FDI0BSW7K0tcbWzzpE+SGHpJTkeL+WG4yGEEEIIIYQQQgghhBBCvGmscroDeUVIdDwh0QkGCxl37j/gSdgz7fcPo+J4FpfIUwcbHjnamqwPsYlKbkfEYmtlQVEXe65Hx2e5HQ+3/BT18c50H6Sw9FLKQl+AmyP3ImOzvQ9yPIQQQrzuUues8LhEHkTFEf/YAXsr85z3XrWNrOYsIYQQQojslNdylmQsIYQQwjgp9mVARHwS0WkU+krXbUxMbPYXel6Fg709lw/syFRIksLSS6kLffKOPin0CSGEML03KWcJIYQQQmSnvJizJGMJIYQQxkmxLx1zT9ykdNlE3i5gY7CQ8STsGTGxsaycOZnSAcWBl0/2eTrY4GmCJ/tOXbzCgFFjKFq0CPN/GIOzk+MrtXM5+D869RvCk7BnGQ5IKhVpFpb83g3k9r37Ge7D6MH9GPNV/wwvr5EbCku5odCX3vF4Fb/Mnsv0OfOY+sM4BnVpr50e8uQpZeo14UnYM1bNmkKHjz40eDyCjhyj/iefYWdry9ldmynxln+G2l26dCndunWjS5cuLF26VGfemDFjGDt2LEuWLKFr166m2lUh3mgKhQIfHx/u3bunM3306NF8//33lC1bllOnTmFjY6O3rkqlomHDhuzbt4/u3buzaNGiTLWt+f999OjRjBkzJkv9/+ijj9ixYwdXrlzRm6dQKPD19eXWrVs60829b35+fty+fZubN2/i5+dHkyZN2LFjBzdu3MDf3/Dvwi5durB8+XIaNWrEzp07DS4TFxdHpUqVuHz5Mt9//z3ffvtthvsEaf8ObdiwIcePH+fatWsULFgwU9vNDoZyluZucP/85r/jPCttZCVnpSW7MpYwvzFTZjB26ky+++47SnfvoJ1uKGMZktWMpaH5HaVSqV5pP4QQasbyTGxsLB988AE3b95kwoQJjBgxwuD6V65coWLFisTHx7N//37q1q2boXaDgoKoV68edevWZcGCBRnqU2ZoMlZwcDCFChXSmZfdGevhw4f4+PhQp04dDhw4YHCZkJAQypQpw5MnT1i1ahUdOnQwuFxQUBD169fHzs6Os2fPUqJEiXTbh6z/nZrbMxaYJ2ddvHKNPiNG85avL7MmfIejg4PeMlltw9QZCyRnCSFeL2llk4oVK3L16lWzZBONwMBADhw4oL0mktOMnadzQ3ZYtGgR5cuXz+quGSXFvjSM//sqC2/EsKa3NV7pFNNKBxSnUrkyANwOjyE0xvCTgJl14PgZBo8eR6lSJdm3egn5XJy180zZTnqexsajTCbdwlKtqpUp7lfU6PwdQQd5HPokS32QQt9LGT0epuTl4c7cH8fStld/+o0aR+nyFVHaO+scj6jnz+k66BtUKhU/Dv8q0xehhBA5b9SoUWzevJmzZ88yevRofvzxR71lZs6cyb59+/D19eWXX37RmZe64GUOe/bs4c8//2TIkCEULlyY0NDQDK33qvuWWa1bt2bHjh1s3LiRr776yuAy06dPZ+/evezatYv58+fTq1cvvWVGjBjB5cuXqVq1KsOHD9eZp1Coz0NZvXj/008/abe7ZMmSLG0jO6TMWU9jEnAJj6G0pzOO1uY5B2ZHG5llzowlclbqjFWvZnUKFfDSWSatjLX09w10GzyMLm0/Yum0n7O7+0KIVOzt7fn5559p3749Y8eOpUWLFpQrV05nGaVSSZcuXYiLi2PgwIGZvphmLqkzllKpzNB65sqPhQoVombNmhw6dIiQkBC8vLxIzcvLi7lz59K2bVv69etHvXr19IqUUVFRdO3aVf079McfM3yx7lXklYwFpstZx8+co9+33/PO26XZsWoRzk5OBpeTnCWEENnL3t6eZcuWUatWrSxlk5Q3GgUFBWVz700vI9nh+fPn2Z4dTMEiJxtXKpV8++23+Pv7Y29vz1tvvcW4cePSvWA1e/ZsSpcujb29PSVLlmT58uUm79v4v6/y7f7LDHj3LVxtc6YmeuD4GZp36kZAQHG9Ql920RyJRKUqQ4WlHp+2Zem0n41+lSpeLEv9kEKfWmaPh6m1ad6E9i2bERYeTv8R3+kdj0FjfuD2vfsE1niX/p93yda+CSFMw9ramuXLl2NjY8OkSZP4559/dOYHBwczfPhwFAoFixcvxsXFJdv7OGjQIOzs7Bg2bFim1svufWvVqhWWlpZs2LDB6DL58uXT3tk+ZMgQbt68qTP/77//Zvr06djZ2bFs2TKsrDKWSVJmrAkTJgCwefNmvYxVpUoVmjdvzrJlyzh37ly2ZCyRNebKWCJ3SJmxvvh6pN58yVhC5C3vvPMOX3/9NQkJCXTu3JnExESd+T/++CPHjx+nZMmS/PDDDznUS325MWO1bt2a5ORk/vzzT6PLtGnThvbt2xMWFsYXX3yhN3/QoEHcvn2bwMBA+vd/9aeyNDlr+vTpAAwdOlTvWlbqjAXZcy0rpxw/c473P+1K2ZIl0iz05VaSs4QQr7t3332Xzz//PM9lE3NJLzv88MMPJs0O2SVHi30TJ05k7ty5zJo1i8uXLzNx4kR+/vlnZs6caXSduXPnMnz4cMaMGcOlS5cYO3Ysffv2ZcuWLSbrl6bQN65eaXpXzZknk3JDoU+ZrCIiTv0/voeDzRv9TrjcUOjLLcdj1PDhuLu7c+jQIXZse/n/3fa9QSxavQ5nJ0eW/PKT9mkTIUTeU65cOcaMGaO9syv2xXs8NN/HxMTQt29f6tevn+192717NxcvXqRVq1a4u7tnev3s3DcPDw/q1KnDP//8w4MHD4wu98EHH9CzZ0+eP39Ot27dtBeKNN8nJyczfvx4SpcuneG2U2asvn37AvDXX38ZzFiff/45KpWK3r17mz1jCSGMmz1hDAW9PNm2N4jFa9Zpp0vGEiJvGjt2LGXLluXs2bOMGzdOO/3cuXN8//33WFpasnz5cuzt7XOwly/l1oz18ccfA6R58xSoC2kFCxZk27ZtLF68WDt9+/btLFq0CGdnZ5YsWWKS36GanNWkSRMA2rZta/BaliZjTZ8+PVuuZeWUvF7oE0KIN0X//v3zVDYxt7Syw/r1602aHbJLjhb7jhw5QsuWLWnWrBl+fn60adOGRo0acfz4caPrrFixgl69etGuXTuKFStG+/bt6dmzJxMnTjRJn1IW+ka9V9Ik28ys3FLoCw6LJilZfcHR2jJ7flSCjhxD4ROg8+VTqhxVq1bFp1Q5FD4BBte78t91ug36Bt9qdbH1fxu3MlVo8Eln1m7ebnD5MVNmoPAJYMyUGXrzlv6+AYVPAF0HDgV0C33W0c+wKlICv3cD9dZ7GhbGmjVr+Kxnb/yr18P+rbK4lKxAlSYfMXH2fOLi4tPc964Dh+rte8qvNn2/0jsemnWW/p72Hz6m8iAqjlhLWyaPGwOo7zK/e/8hz8Ij6PHiLvQp3w3Hr0hhg+snJSUxbcES6jRrRa1atShZsiStW7fmwoULZunv4sWLqV+/PoULF8be3h4XFxdKly7NoEGD9J6eAbh9+zYTJ06kfv36FC1aFFtbW/Lly0ft2rWZP38+ycnJme6DQqEwelIYPXq0dn7qMZw19u3bR//+/SlcuDC2trZ4enpStWpVRo8ezdOnT7XLLV26FIVCYfCdhrt378bBwQFHR0f27dtnsJ169epp+2LoK3X/unbtanB6ZGQkY8aMoUKFCjg5OWFnZ0dAQAADBgzg8ePHeu2m1W9QD+mjUCj03gsC6p+nhQsXEhgYiJubG7a2tvj7+zN69Gju3r2rt3xQUBAKhYLAwECDbYF6fHGFQqE3LIGx6QD79+/Xfk7G9uPatWv06tWLt956Czs7O1xdXXnvvfdYuXKl0X6UKFFCe/ezIXfu3MHKyirNn7FXMXToUKpVq8a1a9e047lPmjSJo0ePUrx4cb3zruZY3r59GwB/f38UCoV2P0w11MOsWbMAXun9nZndt5T+/fdf2rZti4eHB/b29pQtW5bJkycbHeaqdevWqFQq/vjjjzT7NHnyZPz8/Dhw4AAzZqjPTUOGDOHGjRvUrl2bQYMG6Sw/ZswYneOe+v/ZvXv3ajNWvnz5AChTpozBjNWsWTM8PDz4559/6NKli9kylshZhjJW6i9DzJmxUrp19x4KnwCDGSv06VN+XbaSAQMGUKZ2A5NnLEP9ye6MBeCWPx+/TlT/0Z3RjOX3biDdBqufwFm27g8UPgE4+ZWiatWqNG7c+JX7FBYWRpcuXahYsSKenp7Y2NhQsGBBatWqxerVq0lISNBbZ8+ePfTr148KFSrg4eGBra0thQsXpl27dpw4cSLTfUgrK8THx2vPM8bOhTExMUybNo3atWuTP39+bG1t8fX1pUWLFvz22286yxo736tUKnr27IlCoaB69epERETotaPJGYa+NH1MzVi/z5w5Q6dOnXTyaK1atfj1118Nnm80ucHQuTa9/PPgwQMGDx5M6dKlcXBwwNnZmapVqzJr1iySkpL0ljeWATVu3bqFQqHQG8rb2HSNLl26aD8rY5lh/fr1NG7cWPuz6OPjQ6dOnfj333+N9kOhUODs7ExkZKTBbU6YMCHdHJdVNjY2LF++HGtra3788UdOnTqlczf9N998Q7Vq1Yyuv3z5cqpWrYqDgwNubm40btyYgwcPmrSPKeVExjKWHzVfQUFB+Pr6UrlyZfbv3094eLjRtt3c3Pj1118B9ZN8d+/e5dmzZ/To0QOAKVOmGP35S0pKYtq0aZQrVw47Ozs8PT3T/DtVcy1LM6RX1apVDV7L0mSs1atXs2TJErNey8opUuhTy8s568lT9bWsj7v2NMu1rOzIWZp9/3Ko4feQgTozKXwCuHVX9531/14LZvTk6dRq2Q6fyrWx8Xsb9zJVadiui9HjkJaU55/0voydS/fu3Uvfvn0pVKgQNjY2eHl58dFHH3H06FGDy6fMEwsWLKBy5co4OjqSL18+mjZtqve0dUrGrqv07t3b4HUVjfv37/P1119Trlw5nJ2dcXR0pESJEnTt2pUjR47oLR8bG8uUKVOoXr06+fLlw87OjpIlSzJ06FCda1saaV2DyYlsU6JEiSxnG3NcY8qqrGSTwMBA6tWrB8CBAwd0foZN9eqWtK79aYptCoUiy+8jNiY7s0N2ydF39tWsWZNff/2Va9euUaJECc6dO8ehQ4eYOnWq0XXi4+Oxs9N9usve3p7jx4+TmJiItbW13vLx8S9PTJqQv+3qIx4/1z1hBd0KZe/NJzTw9wDUhT9Hz0LUqJJESHQ8Vhb6Ba/Q6Hjtfx9ExQEQk6j+AywqIUk7LaNOnDlHxx69CCj+FqsXzidGYU2MkW1ktR1DfU5JpVK/Ey5RqcLWyoK4pOR021C+KEI9e/GiZWMSktTFkqj4JIOf15MY9QUDTw93atWsSaIyGWtLC6wtFKz7czOA3vb3BP1NrwGDiYuP5y1/P5o0bMiTsDAO/HOcfYeP8seeIL779lttGw+i4oiKT9Lrh8azF0/PxSQquR0ew5OYBKwtFTjbWHEvNEG7v6nX2/33IaZMmUIBLy+K+RblnXLlePosjDPnLjDsh8ms276bdcsXY2vgZeUpP4eqlSriV7SIdvqtO3c5cfoMScpkveOhWSe9zz0zEpXqYxSnTNbZZlRCElHxSTjbWtGofiCffNSStX9souPAobjnz8/DxyHUq1OLZh+2NNiX5ORkvug/iB179mFtbU3lypXx8PDg5MmTVKtWTfsy1Pj4eL0TfUxMDKB+ysVQCDBm9+7dPHv2jPLly5MvXz5iY2M5duwY06ZNY/HixdrH0zVWrFihHfauRIkS1KpVi4cPH3L06FEOHz7Mrl27WL9+vUkKK9evX0/3D7v+/ftr7w6tUKECderUISIigqtXr/L9999Tr169NAtXms+gZcuWKBQKtm7dqj1BG9O6dWucUvyBdujQIa5fv56hfXr8+DHvvfce165dw87OjsDAQFxdXTly5AgzZsxgxYoV7Nmzh0qVKmVoe2mJioriww8/JCgoCCcnJypXroynpycXLlxg9erV7Nq1i927d1OxYsVXbistiYmJ2qemjFm3bh2dO3cmLi6OUqVK0bRpUyIiIjh27BifffYZ+/btM1rQA/X7Tbp37643fdasWRl+j0pWWFpasmzZMipWrMj06dMJCAhg9OjRWFhYsGzZMhwcHHSWL168OF26dGH9+vVER0drf5YiIyNxcXGhYMGCr9ynuLg4du7cibW1Ne+9916Wt5PZfdM4dOgQjRs3Jjo6mmLFivH+++/z5MkTRowYYfQPqI8++oj+/fuzYcOGNH9WNHeM1a9fn+HDh2Npacn8+fNxdHRk6dKlWKTKIBUqVKBLly4sW7YMUP8hkZKPjw+rVq3i2rVr2mnBwcF6RUNQD70VGBjI+vXruXdP94/ftDIWqH9np7zYr8lZV588x8km7ZipcrXGSqkiJjEZpZER3GOTlNr/Rr8458VrzlOJ5vv5f5U2DPX5VdrQPOkZr0xOc3uaLJaQYrmUbWj65eXhwft1a+usu2rDnwB629+xL4hOvQcQFx9PQDF/PvzgfUKfvsxY2/b/zZyfJ+i0k/Di3wkG+qtZLilZpTdPk2lUKv15m/f+zYjxP+Ll5UVxP1+qVnyHJ2HPOHn2HMN+mMwfO/awffVybG0NZyzNzVI1qlSimO/L9/HcuH2HoydPa/uTcj8066T3uWeG5rPRtGFI/XqBdGrzESvX/0GXwcPwcFNnrPfr1qHDJ230+tKySSNOnDnH0ZOnKeZblBpVKqFMVhGVkESlSpWIjo7WLqv5WUo5LT337t1j7dq1lClThurVq+Pg4MDjx485evQoR44c4ejRo/z111866/zvf//j7t27lClThlq1amFlZcWVK1dYu3YtGzduZM2aNbRu3TrDfUjLpEmTCA4ONjr/7t27NG7cmH///RcHBwdq1aqFu7s79+/f5+DBg1y4cIHdu3en2YZKpaJXr14sWLCA6tWrs3PnzjSHICxQoIBeoVXzuzoj1q5dS6dOnUhMTKRIkSK0atWKqKgo9u/fz5EjR9i4cSObN2/GxsjfFJnx999/06pVK549e4afnx/vv/8+8fHxHD9+nH79+rFlyxa2bt1q8Pe/KR06dCjN4QyTkpLo2LEja9euxdbWlsqVK+Pj48O1a9dYtWoVGzduZOPGjUYL3M+fP2fx4sUMHDhQZ3piYiJz5swx5a7oqVixIiNHjmTMmDF07tyZJk2acP78ecqXL8/o0aONrjdgwABmzJiBhYUFtWvXxtvbm/PnzxMYGEi/fv1M3s+cyljG8qOGJj+2bt2aU6dOsXnzZjp37my0/RYtWtC1a1eWLl1K9+7d8fT05OHDhzRu3NjgEF2g/ju1bdu2/Pnnn9jY2BAYGEj+/Pk5duwY1apVM5jDNdeyWrRoAahvwjN0LStlxgoNDc3UtSzI/Tnr5NnzfPhZd94uEcCGpb9iYWufoXNmVnNWRjNWZtrI7Tnrx+/H6OyHOXLWrr8PMmXKFAoVKMBbfkWpUqG8yXNW6uNh6pyl2b7yxfE0dNw1xzomUffn5+d5i1n2+3pKvFWMt0sE4Oriwr0HD9h/5B/2HjrCwZOn+enbl+9N12w7Ls7ItdoX168cHR1p1aqVwWWOHj3KjRs3iI+P18tlI0aM0P7+r1KlCnXq1OHOnTts2rSJLVu2sGDBArp162Zwu4MHD2batGnUqlWLli1bcuHCBf766y92797N2rVr+eijj3SWf/78Oe+//77B6yrz5s1j3bp1Bq+r7N27lzZt2hAeHo6XlxcNGjTAxsaGW7duaW+kqlmzpnb5Bw8e0LhxYy5cuICbmxtVq1bF2dmZ06dPM2nSJNatW6e9ueNV5ZVsY0xGrjG9qsxmk8aNG2NnZ8fOnTv1cq6Hh4dZ+/rs2TO++eYbs7ZhLDvUqVPHpNkhu+RosW/YsGFERkZSqlQpLC0tUSqVTJgwgY4dOxpd54MPPmDhwoW0atWKSpUqcerUKRYuXEhiYiJPnjzRe5nijz/+yNixY/W2s+naIzZde2Swjb03n7D3pvrFu/9n787DoirbMIDf7Jus4gIqiwuGaC6p5VJpWpZrpZZfmluaaW6ZmqiUpmaaEi6pmRaaS5mmueWSueQWomIuCKaAKcgm+zLAwPfHeGaBGZiBWQ5w/67ru74YZ87zzjwM88z7nPO+3t658B9TCMucsmetAkDyk+ZUcm5BmQZHlqRI3lTSxs2bN/Hhhx+iWbNmCFm1GlklFsjSooGja5zyxlxavlJzrrwYwgdqegVNJ+EDWF3zMEtShKRs2VIfXt4+mBf0qcq/q2v2paam4sOZnyBfIsHEiRMxZswYeSPm1q1bmDJlCn7asxdNW/rjjTfekD+PrIIijeNIV2r2Ca9VgbQECdn5SHzSKJWWlG32NW3REt9//32ZDU4zMzMxb948XLx4ESGbtuDdd99V+9rkPBnTa/0HyL80AMCBAwdw6cpVlKBsPoSCraLXXReFxYriSN0xhdgTp07H6fMX8dd52QS3o6MjZs6Zq3Ecu3btwpE//oSbmxs2bNgAX1/ZErlFRUVYsWKFvNmRlZVV5qo74QzO5ORktVfkabJ69Wq4ubnBwkKx5KlUKsXs2bNx4MABfPXVVyofGv7+/jh48GCZTVcTExMxfvx4/Prrr1izZo18uRZAVsiVN8kkKH2fcePGQSKRwNPTE/Hx8UhMTFS5z9atW7FmzRq4uLjgq6++UtkYF5BdYm9ubi5/jHDVXGZmpvy2c+fOYeLEiTAzM8O3336Lxo0baxyrcHbT5MmT0ahRI/ntn3zyCe7evVtmfMIXTeXbx48fj+joaDRu3BihoaHw8pIV+oWFhfjss8+we/duDBo0CEeOHJFPUKkbt7pxxcTEqKwn/vHHH8s3CP7iiy9UlhrauHEjVqxYgTfffBO///67PP9CEyMvL0/j6yAsN/TgwQOV+5S+Xcj7d999h8jISHkeSz+PqKgojBgxAmZmZlizZg369Okj/7eHDx/igw8+wA8//ICnnnpKpfAW4j333HO4ePEiduzYgU6dOqn8+8aNG9GlSxf52X3a/B6WVlxcXO7jLCws8NFHH2Hp0qXygnPcuHGoV69emcc1aNAA8+bNwx9//IGcnBx8+OGHaNy4MXJzc+UTO6V/X1NTU3Ua9/nz5yGRSNCmTRt5Piva51eTp556Cl988QVmzJghf26zZs1S+VKiLD8/H++88w5ycnIwffp0rFixQv679c8//6BXr15ISUkp87hGjRrhueeew5kzZ5CSklJuMSxM4K1evVo+kbd8+XI0a9aszH1ff/11vP766/IJ5NJnIRYXF0MqleKpp56Sfy6+/PLLGmusrl27Yvfu3Th69CguX76sVY0FyCbahT0Blb1/MELj8xR4e3tjw0tjUZimufEQk5Yr/3+b5CzVf0vPrTBGVVUmRnljrkwM4XM5PisfkeUcT6gJUnILytwvJj0XMY+zAQBNvL0xfY7qnnDCJJTy41JTUzF66sxya6ytu/agcfOW8r9fMU9OktI0DqFGSM8vLPtvj3Pkz7f0vzk18qmwxlr4zSaNNVZanmxML/ftX6bGuhB+pcx4YtJz5fVgRa+7LoTXRoihyXsfTsXxv87j5FnZWdGOjo6YPnuO2nG8+/4kuDx5Hv6t25TJbWRkpPy/hc9R5dsqIpVKcfLkyTL7hT569AgjR47EkSNHcPjwYbRoobhiYcaMGejcuTOcnZ1VHnP8+HFMmzYN48aNg5+fX5lJb3Vyc3M11goPHjzAkiVL5J/BgOpnYXFxMYYMGYJbt26he/fuWLFiBdzc3OT/LpFIcOHCBZVarvTnfUlJCYKCgrBr1y60a9cO69atQ2JiotrVCoQrk3x8fDBvnmoehL/Vmj7zhNvj4+MxatQoFBYW4q233sJnn30mn4y6f/8+Ro8ejaNHj2LatGmYMWOG/PGa6hfhNuE+yv+WnJyMQYMGISMjAwsWLMCwYcPkJ5akpaVh2rRpOHbsGGbOnInJkyfL86GuBlQXr6ioqEy+1N1eVFSEcePGwcLCAnXr1kVSUlKZ5xEcHIxdu3ahbdu2CA4ORpMmihMjjxw5go8++gjDhg3DiRMn5I1YIZ6npyesrKwQEhKCvn37wszMTJ7zgwcPIj4+Xl5PaapHNSmvnlH+vXrrrbfwyy+/4ObNm7h16xasrKywaNEi+e9MaSdPnsTq1athb2+P7777TqUG3LBhg7yhlJeXV+a7iD5rLKBydZYuNVb37t3RvXt3nDp1Cjk5OfKVDkobPHgw5s6diz179pTb7AOAkJAQnDhxAn/88QcA2f7ImzZt0nj/9evXY9++fWjQoAFOnjwpXza9qKgIU6dOVdsQFuayhJM3FyxYoHEuS6ixnJ2ddZrLAsRdZynPX3258ms8yCsB8nT7vNS1ztK1xtImRnWps4TnYYg6q6FPc4PXWcLYhOeh7zqr9MUE6vIu5PrfxznItVXE7NKzN14fNhyNG6uunhAbG4sPP/wQazdvQcfneyIgIEDl3zXNTQk1iZOTU5mTTATp6em4d+8e4uPjVeqyvXv3YvXq1WjSpAmWLVuGZ555Rv57cenSJbz//vuYMGECGjdurPZv5fr16xEaGoouXbrIb9u0aROWL1+OUaNGwcPDQ2XuZN68eRrnVUJDQ/HFF1+UmVdJSEiQza9mZeH999/H1KlTVU5ASk1NRUxMjPwzKCcnB8OGDcP169cxZMgQzJ07V35Sh/J84LBhw1SaY7rUNsJnYWVqG0D9/Ja6ePqsbdQ9v9zcXMybN6/cOaaKVFQHCK+VLrXJ4MGD0bhxYxw9ehTe3t5l6lx1z6v0HF5FNM39LViwAMnJyfLXQ3he2s7FCheMaMqtYMqUKTh69Ki8dnBycsL8+fM1Pmbbtm3Yt28f3N3dsXXrVjRv3lz+PBYvXiyvHdTlTxhTUlJSheOvDJM2+3bt2oXt27djx44dCAgIQEREBKZPnw5PT88yZ6gLgoKC8OjRIzz33HMoKSlBgwYNMGrUKCxfvrzMWe8AEBgYqPJFKDMzE02aNMGLXm5oVV/2RSA8Ph2X4tPRydMFHT1dVB7v3MATdawt4WprBUs1+7Ql2sq+fLnaWqGeveyPW1ZBEfKLiuFgZQF7K+32VQu/9g8+/PBDNG/eDNu+2wBHB4cKH1OZOJrGDAAlADLyC1FUXAJnWytYmZtpHcP8yYePo7WlyjFLE5aftLeyUPt6OVjIjmNpaakxpvLxf9p6ANnZ2WgT0AqfTP5A5X4vdmyHKRPGYclXwdi+bRveeOMN+TGF4yqPQ+D45Aw5MwBW5mZwtrWCkPl8Oyv58y39ONsWzdS+VvXs3fFFUCBe6jcIp/88gRkT3lP72phJZX/Y3BxsUc/eWp4PIbatpQVsn1zZJ8SwtbSQj7m8110Xwu+5jYU56tlby896Kvu83DD6nWFY9rVsU/KPp0xCgI/65TsB4JeffwYAzJg8Ef5PXitXWyu42Npj1cJ5+OvMaSQlp8DR2hK+LqpnfAo5sbIwg7ezPbTZMjG7oAjJAOrVq6dSsJSUlMiXtKtbt67K5JTyfytr0aIFVq1ahT59+uDs2bMqG7PeuXNH4+NKH0Owd+9enDlzBgMGDICbmxu2bNmCBg0ayO9TVFSEb7/9FgCwefNmtGnTpkyM0j83aNAAgOwDqUWLFjh+/DgmTZoECwsLHDp0qEyzsDThCjE/Pz94enrKbxcmTJTHp+72f//9F6dPnwYga7L26tVL5fhbtmzBqVOn8ODBA1y7dk1+Jadw5lZBQYHa11GYXPT19ZUXs5GRkTh48CA8PT3x22+/wdFRdanj999/H7du3cLhw4fx77//on///gBkzTVAdgatppwJ65I3btxY5T6lb79z5w7s7Oywbt06eHp6IjAwEFOmTJG//oKgoCAUFBRgxYoVKsUkIMvhjz/+iM6dO2PXrl2YPXt2mXgfffQRRo4ciV9//VX+mgGyiZ6MjAzMmTMHgwYNkh9PV+bm5hU+7rPPPsO6deuQkZEBT09PrF27FjY2NhrvXzpn6t4jwu9r6fdgRX777TcAsjPRhMdJpVJcvXpV62MomzRpEhYuXCh/bspr1pe2Z88e/Pfff2jSpAmWL1+uchLB008/jXnz5qm9ag6Q7TVz4cIF7Nu3T74chCaffPIJ1q5di+LiYjzzzDOYOHFipZ6bco11+vRpbNiwAUeOHMGWLVvU1ljCl1c7OzutayxANnmn/Lsr1FnznveDf73ylyG3rtsA7vbWaORoC2sNy4VnPtmr19PRVv7ZkF1QhOTcAng62sLGQMuMVyWGujFXJYbwuVzP3rrc4wk1gYutldrXyt32Sc1ga6PxOMq3/7p9K7Kzs9G2dQAWzVD9++XbtSNiJ03AZ19+hZ92bMf7w9+Wx3F5Umcqj0Mg1CrqPustsu3kz7f0v/m2D1D/ernYI+TzIDz3Sj/8depPfDplgtrnZVUi+4zzcHJQOXbp8SjHEGqPil53XQivDYDy8+5ijwnvvoPPV3wNAJg7fQqe9fPReFxNz8PXxR62SrWb1ZPfpYrem9qwlWTL/9vX11freurs2bPYuXMn/vvvP/Tt27fCOHfu3ClT4whmzpyJ/Px8rFmzRn6loPK///bbb7hx4wY8PDzw+++/q1wtJGjdurXK55Ty533z5s0xYcIE7Nq1C126dMGRI0fKvaJPWAmh9DhLvwbl3b5lyxbk5+ejYcOGCA0NVdkvpUWLFggJCcGQIUOwfft2fP311/KGqaurKwDIl09Xpqn+2bx5M9LT0zF58mS1Z3Hv3r0bvr6+2LlzJ0JCQmBmZoY7d+5orA0FQnPS0tJS5d813f71118jKioKU6ZMwT///IOkpCSVOuzx48fYsmULbG1tcejQIZWT0oTX5fbt21i3bh0uXLggr7eEeFZWVpgxYwamTZuG6Oho9O/fX57zn3/+GQ0bNsTo0aNx4cKFcnOnTnn1TOn6JygoCMOGDQMgm1AaOHCgxuNOmjRJfj/l+g+QLSf1559/IiIiAnZ2drC3t1eJo88aC6h8naVLjaUNPz8/BAQE4NixY8jOzlb7fhY4Ozvjww8/xJw5siWOP//88zK/N8pCQkIAyCYUlfdHtrS0RHBwMPbu3YtHj1RPFBfqrMGDB2PPnj0YN24cVqxYoXYuS7lB8Nprr9WIOuvKtX8wZfJkBLRsgZ83b4RjnYrnr5RVts7StsbSJYbY66yd22VzWcLzMESdVS+gpfrXSo91Vj17a5UY+q6zhFhCntTlXch1Eyc7eCnF9O31vNpj+rZrhU+mTMTHQQsRfvY0+neTnXihqc4S2OfL3g9W5mYa36dCHj0dbeX3KS4uxg+bZScm/LB6JZwb+6JRo0ZweDI/3KJFCzx8+BCzZ8/G0aNHsWLFijLH/eCDD8qcELFs2TL8+eefCA8Px59//ilfYjkyMhJHjhzROK+yZMkSRERElJlXWbduHbKysjBgwAD5vJWyFi1a4LnnnpP/vHnzZly5cgXt2rXDzp07y5xA9t133yEsLAwXL16ERCJB69atAehW2wifuZWpbQDN814Cfdc2wtgB1bmnv/76q8I5popUVAco1ye61CbazKcpPy/lOTxtqJv7u3z5Mn766Se0b98e/fr1w+LFi+XPS9u5WGE+WFNulU2bNk1eOyxevLjMdxxlwhWsixYtUrkgBJD9zv/555949OiR2vwJY6pfv36F468Mkzb7Zs2ahTlz5sh/sdq0aYO4uDgsXbpUY7PPzs4O33//Pb799lskJibCw8MDGzduhKOjI+rVq1fm/jY2NmonJYe39cL4Dj5YfCYKl+JjNe7Rl1+nLmLsrNDIyVb+oaEs9Umx4eFoC+8nHxZx6bnILyqAs60VPB0rPmP1dNhVjB7/Afx03KNP1zjljVnYo6+4BHjK3REO1hY6xRA+NN3treXHVMfWUvZh62Jrpfb1KiqUnRHkaGer8UNR+fgRT754jB82WG3cmWOGY8lXwYi7f192JkDTJmUmoko/ztFG9rawtDBH6/pOsFDqLJVkKQqk0o+LS89FjiQP/9yIQPTNG0hISkZefj5KSkognBAZExen8fUpKZRdNehV1xmNnezk+fB48rrXsbaAo7WlSj7qPMlTRa+7LoQvAnZWFrCyMEfOk4KsdP6TUlKxeYvirJs//jiBoIlj1X5ReZjwCLH37wMApo0YitRCM+QXFcDOygJ17a0Be2sMG9gXqzdvhY2luey2J3IKpMh+ctWjZx071HPQvqkpXJm5cOFCxMTEICsrC+Hh4bh//z4aNmwo/yKtTCKR4NixY7h06RKSkpIgkUhQUlKCrCzZmV9RUVFax1cnNzcXH330Eezs7LBq1Sq1Vx5fvnwZycnJcHd3xxtvvIF///1XpxjC0p15eXnYu3dvhY0+QLEERXlNHHU2bdqEU6dOyddyd3Z2VrtUhb29Pfr164ctW7bg5MmT8omLp556CoBszfXY2FitioHDhw+jpKQEr732WpmCVNCjRw8cPnwY58+flxel+vbRRx8hJycHmzZtUruER3FxsXxps7ffflvtMTp27Ig6derg6tWryM/PL3OVQ/369TFs2DBs27ZN3mgCZA3Vpk2bGuy5KVuyZIl8b6L4+HicPn0ar7zyisHjqiOcpabcwK8KXZ6bsJb+W2+9pXbJj1GjRmls9g0ePBizZs3Cr7/+WmGzb86cOfL9Qa9fv46bN2/Kv/DoQrnGun37NgDglVde0VhjCa+pra0tHj16pFWNBcj+Zqi7OueVZvXxgnf5S3rk16mLGCsLuNpZqa2xAKh8Xit/NiTnyj4LHXQ42UlXlY2hacyVjSGcUFXH2rLc41k9OWHKXvhsLRVDmIipY2ej8TjKt4eFXwYAvPf2m2rvP3XkMHz25Ve4FxuHrLTHgE0dONtaqZxQVfpxwpJjpT/rASBL6YQqdfGkUinCwsKQcDcKqSkpZWqsuzGxGp9XoUT2N7qBSx2V+6gbj/B62TypWSt63XWhfNJUeXlPSknFuu9D5T8fOnoMs98fpXEyWNPzsLWyUIkhTGhU5n3zMOER5i0LRnFxCRJTUvDX3+HIy8/H0KFDVSbHBfHx8Th06BBu376NjIwM+dm6N2/eBCCrp7Rp9mly6NAh7N+/H3369MGbb76p9j5HjhwBALzzzjvlNgbUUV66s0mTJjh69KjGmkMgnMmsay0FKPZIO3nyJADZZ41yo0/w5ptvwtXVFWlpabh8+TK6desGQFZPHT16FFu3bsUbb7yhckKKJocOHQKguUZp1KgRWrRogVu3buHOnTtlVr7Qh4SEBCxYsAANGjTAokWL5CcwKTt58iTy8vLQq1cvjQ2bHj16YN26dTh//nyZk6sAYMyYMZg/fz5Wr14tr53+/vtv/P333/jss8/0siRqefLy8lQmHffv349FixapXTa8qKgIZ8+eBQCMGDFC7fFGjhyJiIgIvY7RlDWWtgYPHozPP/8chw8fxltvvaXxfklJSSqT4Lt27cKHH36o/nvqw4fy71rqXm9bW1u89dZb8v2UBUKdlZycjD179qBr167w8vJSW2cJr2lycrJOc1mAOOussKvXMGTMeLR5qmp79FWmztKlxtI2htjrrJg42VyWf72mKidg67vOepSVhyuXw3H1aoTauayq1ll1rC1V8qHvOkuIJZzYpC7vQq5d7cr+/mTn5OD3P8/g6o1bSElLky+fm5CUDEB2dX3pvJeuswRCjszMzDT+7imfZC/c5/I/kUhITEIzHy881/5ptVc8Ctu4qNsTDyi7tYNg5MiRCA8Px6lTp+TNvsrOqwj11fvvv6/2MaUJ36MHDx5cptEHyE5AfuGFF3Djxg2cP39e/t23Jtc2mnzxxRflzjHpky61iSkUFxdj0qRJKCkpwTfffIOjR48aNJ662kFT3VLZ2sFYTNrsy83NLVNwWVhYyCe5ymNlZSW/xPqnn35C//79NX4B1mTxmSgEnYzU2OgzhtNhV9F/xBi00LHRp09Coy+vUAq/unXkjT5jyyooQswj2QepR11XrR7z8MkZdr5N1F9R5uLsBDcXFzxOT5ddHtu0idr7CXIKpHj0ZC9HJ2tLlUZfRWLi4vDe5Om4d++exvtkZmVr/LeHjxKfjNlFJR/XtDjTbcyMORgzQ3b2gYWFBVydndC+dSuM+99beGtg5SZShD371DX6AGDCJ0FIeZyG1199GdduReJsWDhCvgvFjAll1yV+kCDLk7ubK+o4OCBVzZIK6nKYUyBFdGq2/IpQHdKh4sCBA7h8+bL85x49emDr1q0qSwABwMWLF/H222/j/pPGpDrC5f2VtXjxYsTFxWHhwoXypUxLEy6bb9mypc77A4aHh2PXrl3yCadt27ZpXCdeUFhYiOzsbJibm5dZcqsi586dw7lz5+Q/C5vqqiO83sIZQYBs37GXX34Zx48fR7t27dCjRw/5lZcA1C6LKLzHNm/ejM2bN5c7vuTk5DK3CRsKV8XZs2exe/duvPTSSxg2bJjajZxTU1Plvy+lf9fUSU1NVTuJNW3aNGzZsgXffPMNvvzySxw7dgyRkZFYuXKlzp97ugoPD8fSpUthZWWF999/H9988w3GjRuH69ev6/y7og/CpFF5V1ZoS9fnJizRoel96+rqCmdnZ/kYlfn6+qJ9+/Y4ceIEMjIyNL52v/32G3788Ue4uLjg9ddfR2hoKEaNGoW///5b7Rej8qirsczNzTXWWMJrmpaWppcai8QnNS0dAOCq5XtXlxor4dEjuHo318s41blzLxYDx07E7TuaT37Rpsaq6+qic2xD1FgV0aXGMpa0jExs+WWv/GcrKyuMGzcOX3/9dZn7Lly4EEuWLCl36Z6q1FP5+fmYOnUqbGxs5HsbqyPUU8KJRbqYPXs2wsPDAcj2/Tt16pTK0mTqCEvyCGei66L0nn6aPmvMzMzg6+uLtLQ0lXpq0qRJ+O6773DgwAG0bt0aHTp0kJ+YUvqKJIFQTz3/vPorGpQlJyeXmRAbM2aMxj2DtPXxxx8jMzMTa9as0fjZKIzzxIkTFdZv6uo+QLYU7pgxY7BmzRpERkbC0tISq1atgrW1NT744AP5xKWhBAYGIioqCl26dEFJSQkuXryIOXPmqJ0ESk1NlU/wafo90HR7VZiyxtKW0Ozbs2dPuc2+CRMmICUlBa+//jquXbuGs2fPIiQkRGXFJ4FQ37m7u2s8KUDd663LXJZyjQXoZy7LVMKuXsPL/xuN1i2r1uiriQxZZyUlJQGtmuplnOrcjY3DOxMmV3kuSwx11k97f8NPe3/T6TEHjp3AmBmBSH3yHlWnvOevL/fiZCdQ3429jzo+5dcumj7vKvrcUF6mubLzKrrWV8KJ4UFBQQgKCtI6zqRJk7Bp06YaWduoc+zYMRw5cqTcOSZ90qU2MYVNmzYhLCwMY8aMQZcuXQze7FNXO4SGhmLp0qVl7lvZ2sFYTNrsGzBgAJYsWQIvLy8EBATg6tWrCA4OVtnEMDAwEA8fPpSv2xsdHY2wsDA8++yzSEtLQ3BwMG7cuKHTpucAcCgqAb9FJ7LRJ5JGHyDbCy4/Q/bh6tnQMJeylkdoLAlXtunaC5g4fSbu3buH3j1exKdTJ6BVi+ZwcqwDKysrFBQUwMY3QONji4uLEfPfkw9dJzed89Gt0zNo7iPbHy1fUoDb/97F8TPncPzMOUTdvYegj8qe4VqR/EKpxkbfj7v3Yd+R46jvXhfffbUY1yOj0evtkZi//Gv0790Tfs2q/kdNyIedlQXc7Kq2ca4wWZOcnIyTJ09i+vTpePHFF3H06FH55dS5ubl4/fXXkZiYiDFjxmDixIlo3rw5nJycYGFhgejoaLRs2bLS+4MBsr9fK1euRPPmzQ22wezNmzdhb2+Pw4cPY86cOdizZw82b96M995Tv3wsoFhTvl69ejo3FH744QeMHj0ae/bswZAhQyo15r179+LTTz/FTz/9hP3791f4Ggtfotu1a4e2bduW+ffMzEz5l+pnn322zL+X3lBY2ZEjR9Tuw6OsoKAAixYtgpWVFdauXVvhOAHNZ9gp03QlQPv27fH8889j06ZNWLBgAVatWgUHB4dyc6oPEokEo0aNQlFRET7//HPMnz8ft27dwsmTJzFjxowKvxAYgtAIrmrT3RTPbfDgwbh69SoOHDig9uyvlJQU+dmRq1evxtChQ3Hx4kVcuXIFS5curfCLUWnKNZaw7+nRo0dVrmhWrrGEST4bGxvcuXOnSjUWiZMwEWOKGquqhrw/Bbfv/Ivu3bsjaOoHeMbfr1I1lq8WJ16UZogaqzzGqLEqo/VTfih5eAdFRUW4/zAea7bsQMi3m5CTk4Pt27fLmzC//vorFixYgDp16mDt2rV46aWX4OnpCTs7O5iZmWHu3LlYunRpleqpL7/8Evfu3cP8+fMrtYS1NsLDw/Hss88iKCgIgwYNwnvvvYd//vkHDRs21PgYofmmvBy6toTXY8CAATh48KDOj/fz88OOHTuwYcMG/PXXX/Irussj1ClDhgyRLxGmibqrvbp16ybfn0RZdnY29uzZU2H8U6dOYefOnXj++efL3YNNGGfz5s3lVzJqUt7E45QpU7BmzRqsXbsW//vf/7B792689dZb5eZUH06fPo3Vq1fDzs4OoaGhKC4uRvv27bF27VoMHjxYqxU4jKE61FhPP/00mjdvjsOHD6tdEQMAfvzxR+zbtw/169fHd999h+vXr6NXr16YP38++vfvr7erOIQ664UXXgCgWGpM3VyWsAWEo6Mjtm3bVuW5LFMRQ6MvJ9fw+zVXVnWus8ZOkZ20/lqvHgj88P1Kz2WJoc7y9WqCVm2ehouarZh2Hzpa5nfoYcIjvD1xOvLy8zF70ngMf2MgfJo0Qh0HB5ibm+PY6b/Q552xKEHl6xZtCZ93DevXQ6/nuyE9vxAuLi5q52jK2we+PMr1V0XzKsrUzatoS4jTvXt3tXvRK1Ne9tjPzw9nz55FYGBgjattSisoKMCUKVMqnGPSF7HXJqmpqZg7dy5cXV3le+MakqbaISQkBGPGjDHIFaCGZNJm35o1axAUFIRJkyYhKSkJnp6emDBhAj799FP5fRISElSuspFKpVi5ciWioqJgZWWFnj174vz58zqtAwuAjT6Ip9EnbKDraGOJ/+JiAQABftp9cW/UsCFu/3sP9+7/p/bfMzKz8PjJJKempTEA1cZSAwfdl965/e9d3I6OhpubGzavDYGXq2rheydG/ebrgsg7d5GZlQ33unXhUreezvkY97+hGP32YJXbvv1xJz6Y8ymWrfsOcyZPULvsnDqFUtmHo62VhdpG38OER5j6qWzPhW+XLYK7mxt6dnsOk0YNxzeh2zBmxhz8tXenytmJjRrK1oxOeZyG7JwcAGU7qbH/Kc5OVs5HCzcH+XILVVWvXj35skgDBw7EJ598gl9//RUAcObMGSQmJqJDhw74/vvvyzxWlw1xNZk8eTIKCgqwevXqcpd48vKSFbvR0dE6T4bZ29vjwIEDeOmll+Dt7Y1nnnkG06ZNwwsvvKBxQuzWrVsAUGbDaV0IV67FxsaipKRE7ZnXwtkvpa9ec3BwwMqVK7Fy5coyj/Hx8SmzQbAQq1u3bmoLoYrW7n7qqac0niXVo0ePCpt9X331FWJiYjB79my1S5cJ3N3dYWdnh7y8PKxYsaLSBTkATJ06FUOHDsWCBQvw+++/44MPPjD4lXXC5MwzzzyDwMBAmJmZyTdu//777zF06FCNTVNDEdY0F66eqKzKPDfh9zY2NlbtMdPT09Ve1Sd48803MX/+fOzZs0dts0+ohQYNGoR3330XgGxT9G7dusmX/3j66ae1fo7KNZbQ0O/Ro4fKnjnKNZbwmkokErRt27ZKNRaJ061o2VVxhqixPBo0gKEWmrn97138E3kb9erWxVdffYU2Hq4qSyJpW2M1qOeOJo08dI6vzxqrIpWpsYzN0tISTb29sDhwFq5F38POnTsxbNgw+R4fu3btAiBbwk/d8k5Vrafu3buHZcuWwcfHR74MlSZCPaXN5FBpzz77LI4ePQpnZ2fMnTsXixYtwujRo/H7779rvLpMn/VUeVdXxMTEAChbT7Vq1Uq+fLiyU6dOoWfPnmpj3blzB5988gk6duyo81jHjRsnX35UWWxsbIUTYoWFhfjwww9haWmJb775ptz7Cq9Jy5Ytq3SWe/PmzdG3b19s3boVWVlZKCwsVNmH2xCys7MxZswYlJSU4IsvvpBPFi1atAizZs3C2LFj8c8//6hMSNatWxc2NjaQSCSIjY1V+/ukqRapClPWWLp48803sXz5chw9erTM0mjKjbVvv/0W7u7u6NmzJyZNmoRvvvkGY8aMwV9//aX6PfXJ+yglJUXjXoDqXm+hzhJ+J3/++WeNc1nCa1q3bl29zGWZghgafVnZ2Zg873Ojx9WWIeus8uayqur2v3dx87ZsLmvnt2vhbKc6T1Hd6qxnn+mAj+fOh389xzJLaJ66EFam2Xfg+J/Iy8/HG6+9jGXzZqO0ip6/PjXxlL1+dV1d8O3KLxGZnAV/f/8Km1bKYmJi0K5duzK3C3/HhKuKgYrnVTTx8vJCVFQUbt++rbYxVpqHh+x5DRo0CDNnztQ6DiBrRNbE2qa0r776CtHR0Rg/fny5c0z6kJOTo3NtYmxz5sxBamoq1q1bZ9C/f4BxawdjMelaAY6OjggJCUFcXBzy8vJw9+5dLF68WGXN/NDQUPn6vgDg7++Pq1evIjc3FxkZGdi3bx9attS9YTfIr0GtbvQBwP3MPJM3+uKz8pHzpNlna1aCk+cvAgC6d35Gq8f36NIZAFSWFVL2/U+7AQC+3l4aN74s21jS6SkAAB6nySZ43d3d1Z51s+3X8pcR+OWQbOmY5557Tm/5eHfI6wBkZ7+lPNa8HIGy+Kx8FBbLmku2GpYPfW/mXKRnZGLEm4Pw+qsvy29fNm8Wmno3wfnwKwjeqNosa+zpgabeskJix94DZY4pkUjkr0FRcYlKPnRZSlVbwodFZGSk/LbHjx8DUEwMlbZt27Yqxfzll19w/PhxvP7662U2by2tY8eOcHd3R3JyMvbt26dTnCFDhuCll14CIJv0WbFiBXJycvDOO+9oXE7r2LFjAGRnWlVW+/bt4erqioyMDOzdW/b9mJeXJ18/XRhfZQmv3/79+w2+jnlpcXFx+OKLL9CwYUOVL/PqWFhY4OWXZe8RYfKzst544w14eXlh2bJlKCkpwZQpU6p0vIqcO3cOwcHBsLGxwZYtW+R/13x8fPDVV18BkBXC6ppbwme4sD+TPnXo0AGAYkK1Mir73ISz23bt2qX2vSSsQKCJv78//P39cfToUeTk5Kj8286dO/HLL7+gbt26KpucP/vss5g5cyYKCwsxevRotXGFL7+lX2/lGmvevHkAZFcXaqqxbty4AQAYPnx4lWssEp/CwkKD1VgtfH3g8eSkHkMQaqyG9dVffV5RjbXnsKy+6PNixcv5aKsyNZY2KlNjAYC19ZO/A1Kp3saiDWG5SnX1lLe3d5n7JyUl4fjx41WKOXXqVOTn5yMkJETtnnbKhIbCzp07y/zdrcjSpUvlJ9V8+umneO6553D06FGsWrVK7f0LCwvl++1VpZ4SaiTlJdmV7d27F2lpaXBycqrUJJYyoZ6qao1SGSEhIbh16xYmT56MNm3alHvfXr16wdraGqdOnZItZVcF06ZNQ3Z2Nn788Uc8++yz6Ny5c5WOV5GPP/4YMTExeOGFFzBt2jT57TNmzEDXrl1x7969Mqt9WFpayq9g3L59u9rj/vjjj3ofqylrLED7+nHwYFlTQDhhU9l7772H9PR0jBgxQmUbg2XLlqFp06Y4f/48goODVR7TuHFjNG0qWx5xx44dZY4pkUjwyy+/lLldqLOmT58OAFi+fLnGuSyhxurWrZte5rKMTSyNvleHv4e7ccZrvOjCkHVWUx9vjXNZ+lDVuazqVGep8zhd9vy91WynUVJSonb+ylA6tWsDdzdX3Ir+F7eiK3dylKbPB+F2Yc8/oPLzKkJ99d1332l1f+EK6F9++aVKKztoo7rUNsqEOabGjRvjww8/NOAIZb788kudaxPAsPM8ysLCwrB582Y888wzmDBhgkFjAeXXDk2aNNFr7WAs1WNhcAPo11L3M070QQyNvqxs2ZddSVGxyRt98Vn5cLCyQGFhIYKWfInk1Mfo0eVZ+Hppd/n/+OFvw8mxDq5cv4kvVq9X+eC4euMmFq9aBwB4f8xotY8vkBbrpbHk18wHFhYWuHv3Ls7/fUnl3w4cO4Gvv/tB42NjH8Rj9feySeIZ772rt3wcPnEKAOBgbw93t4r3DhHyYVXOa7Bx2084euoveDZsgNWLVJeUc7C3xw/BX8LMzAxBX4Ug6l/VM5KnjxsNAFgQvAb/3ouR3y6VSjFz0TLEP1n2IlNSpJdG3+O0dERFRZW5PTU1FXPmyNaEb9Wqlfx24eyZEydOlPmSu3HjRvz888+VHgsg++C0t7dHSEhIhfe1tLSUT86///77uHTpUpn7XLp0SWW9dUHps80//PBD9OvXD+Hh4WqbU8eOHcOGDRtgZWWl9mojbVlZWckLhZkzZ8rPOgdkX36mTZuG5ORkNG3aVP4lvbLat2+PwYMH47///sObb76p9owZYVmxiq7S09X8+fORm5uLwMBArc50+uyzz2BtbY1Zs2Zhy5YtavfxuHHjhtoJC2UWFhZYtGgR+vXrh48++sigZ3vl5uZi9OjRKC4uxsKFC8ucUT5hwgT06tULDx8+lE9wKBPOFrx586bex9a1a1fY2Njg2rVraidBK1KV5zZkyBA0atQI9+/fR2BgoEoub9y4gcWLF1cYf/DgwcjLy1M5O/HRo0eYPFm2PM0333yDBg1UmyYLFy5Eq1atcPXqVXzxxRdljqmv11vY5L2qzXgSn8LCQsxcsMRgNdasieMMMm6BUGPdir6jsv8uUHGN9d/DBKz5Xja5MXHk//Q2Jl1rLG1UpcZq7CFbhlC4qkCfIm7cQqqaibbT5y/K985QV09t3LgRBQUF8tszMjIwatSocq+ArsiJEydw6NAh9O3bt8wVPeoMHDgQ7du3R3x8PIYOHVrmiqX8/Hy1Z4sDqvWUpaUltm/fDkdHR8yZMwf//POPyn0LCgowdepUJCcno0ePHlXao2PQoEFo0aIFEhMTMW3aNJWTPGJiYvDxxx8DgHzPwqqYNWsWXFxcEBwcjJUrV6rkSzlmVU94Ky0jIwOff/45PDw8sHDhwgrv36BBA0yZMgU5OTkYMGAArl+/XuY+EokE+/fvr/AqzpdffhkjR45Ejx49Kjxpq6r++usvbNy4EQ4ODvjhhx9UfqfMzc3xww8/wM7ODuvWrVM5uRmAvAZZs2aN/PNZsHz5cly5ckXv4zVljQVoX8906tQJTZo0wf79+1XeHxs3bsTRo0fh6elZZr8h5RwEBQWV+Y4ojGfBggUqv0NSqRQzZ86Ur5BQWdW5xhJTo+9GVDTWfVHx3wxjM3SdNXlc1fYPq4jyXNaZC3+r/FtNqrM08W8hW1Zy96EjSEhUnFAilUrx6VchOB+u/7+3mlhZWeGzGVNQUlKCdyZMRkRERJn7SKVS/Pnnn7h48aLaY6xfv77MZ8rXX3+NsLAwODo6qmwF0r59e/Tp00fneZUZM2bA0dER+/fvx/z588uckJqUlISzZ8/Kf+7duzc6deok339N3X6DaWlp2LBhQ5UbSdWltlEmzDEFBwfD3t5er+Mq7ejRo/j5558rVZsIn9N37twpd1/uqhJq3W+++cbgq5lUVDt8+eWXJqsdqsKky3jWJJF3FF+uE7LykZZfiFR7azxSWhLy8o3bmDZ/Aby8muDr+bNxL+6+ukNpTVOc8mRl52DUjEAAgLeznckafVmSIsRn5cPT0Rbbdu3G8lVrkZqaikYNG+DbZYsqPsATDeq5Y/ualRj6wVTMWxaMH/fsQ/vWrZCU8hinL4ahqKgIY94ejP8NHYzk3LJ/5H8/dRbJmTlwtbOSLxV5PVL2Br58/SbmfPGVyv0zMrMAAGkZGZjzxVcY2v81PPN0a7i7uWHk/4bhh23b8faYcXj+2Y7wbFAfUXdjcOX6TcyfNklerCmbsXApvv95DzIyMuBgb48tO3/Glp2qTaV/Y2W/J2cvXcbHc4MwbMS78Gyjuh/FLwd/x+27sokfiaQAt+/ew7HTsg/XTyaNr3DZA6HR5+loCysNV/TF/vcAH3/+JQBg47JFcHUpu4TgC891xpSx72L15q0Y/dEnOPfbz/I/zh+OHoHjZ87hwPE/0ffNoejwzDNo4OaKf25cR0JSMsaN+B82bdsJC3MzvVzR9zAhASNGjICvry/8/Pzg5uaGxMREnD9/Hvn5+XB3d1eZnG/fvj0GDRqE3377De3bt0ePHj3g5uaGiIgIREVFYe7cuViyZEmlx/PgwQMsXrxY7Znu6kybNg1RUVHYsGEDhg8fjhUrVqBly5bIzMzE7du3ce/ePZw8eVJlGQZNvv/+ezz99NNYvnw5Xn31Vbz44ouIi4vD4MGDcfnyZZibm2Pu3LlV3vdm7ty5uHDhAo4ePYpWrVqhZ8+ecHJywoULF3D//n24ublhz549Kme8VtYPP/yA9PR0/P7772jZsiXatm0LX19flJSU4Pbt24iKikJBQQEiIyPLNE+q4sGDB3j55ZcrvDpT0KFDB2zbtg2jR4/G6NGjMX/+fLRq1Qr16tXD48ePcf36dTx48ABvv/023nzzzXKPNXLkSJ3Wfa+s2bNn499//8Vzzz2ndpkNMzMzbN68GW3atEFoaCiGDh2Kvn0Vm6cPHjwYJ0+exIgRI/DKK6/A3Nwczs7OmDVrVpXPXra1tUWfPn2wf/9+nDp1Sus86OO52dnZYfv27ejbty9WrlyJffv2oVOnTkhNTcWpU6cwYMAAXL58ucyys8oGDx6MxYsXq+xxOX78eDx+/BhDhw7F22+/XeYxNjY2CA0NRZcuXbBkyRK8/vrrKnsqDB48GCtWrEDv3r3x0ksvwdFRdhLRsmXL1O5DoE5hYSHOnDkjf33FSLnOSs8vRHxWPiSJ9rCzNEwdU5UYymM1tW2/7MGilasMWmONH/42UtXUWH/8dR75EonKbZWtsSaPHoFVm7dg0qRJ2NbpGTTxaFBhjTXz8y/xw8978Dg9HQ729tjw405s+HGnyn2Ua6zR02fjg/fGwrKu6v5dVa2xtFHVGuu5Du3g2bABrt64hQ59BsGvRXPkF5uhUys/zJtcdilNXYTu+hXrtu5AuwB/NPZoAAtzC0Tfi8U/kbIvta+99hr69esnv//06dOxdetWHD58GE2bNsVzzz2HwsJCnD59Gvb29hg7dqza5dK18eDBA9ja2pb5Mq6Jubk59u7diz59+uD333+Hl5cXunfvjrp16+Lhw4e4du0aXFxctLrasGnTpli7di1GjRqFd955B+Hh4bC1tcXmzZsxf/58PHr0CI0aNVK5OrsyrKys8PPPP+Pll1/Gd999h6NHj6JLly7IysrCn3/+ifz8fPTt21cvjarGjRvjt99+w+DBgzFz5kwsX74crVu3hoeHBzIyMhAZGYm7d+/i2WefrdIJYaUJ+8hu2LBBvsdyRb788kskJCRgx44d8r2FmjZtCktLSzx48AARERHIycnB77//Xu6+fQCwZcuWCpd8r6r09HT5iXvLly+Xn/2tzM/PD0uWLMGMGTMwduxYXL9+XX4i2YABA/Dhhx/im2++wfPPP48XXngBHh4e+OeffxAZGYlp06ZpvMq0skxZYwFl60fhyuHS9aOZmRnefPNNrFq1Cn/++Sf69OmD2NhY+eTgxo0b5Y9V9sILL2DKlClYvXo1Ro8ejXPnzim+p374IY4fP44DBw6gbdu26NmzJ1xdXfH3338jISEBEydOxPr163V6PQTVocYC1NdZV888xEdBC9HM2xtfzp2p1+UMta2zcnJzMXne57gbF4d1XyyEhYa5ClMxRp018u2hiEkvu1ehPuuscSP+h2+3bEP/4WO0nsvStc6aPHsuBr8zAv71VK94MkadVZ4BL7+EZ55ujcv/3IDf86/gxec6wcHeHn9fvYb4xCR88uH7WPbNRoOOQdnkMe/i/sN4fLV+E8aPH4/g4GD4+fnBzs4Ojx49QkREBNLT07F+/Xo899xzZR4/YcIEvPTSS3j++efRqFEj3LhxA9evX4eFhQW+//77MvvULl26FEVFRWrnVWJjY3Ht2rUy8ypeXl7YvXs3hgwZgiVLlmDTpk3o0qULrKysEBcXh6tXr+Kdd96Rr3Rgbm6Offv2oV+/ftiyZQt2796Ntm3bwsvLCwUFBbh37x6uX78OqVSK0aNHq73CVFvVqbYRCHNMQ4cO1cv2QZqkp6dj3DjZSZqVqU28vLzQsWNHhIeHo02bNujYsSNsbW3h7u6OL7/8Um/jfPDgAcaNG1elfSK1oU3t0KlTJ5PUDlXFZl8Vubu5wt7ODiOmaL/ucFT0HfQYMtyAo6qYna0tmjSo/P5RVZVVUARPR1t4OtoiJk7WBBjx1mDMmzgW9bScnBT0f/klXDmyD8u+2YgTZy9g96GjcLC3w/OdO2LCiGF4e1A/xJUqjgqe7EsXce0aIq5dU3vcG7ejceN2tNp/y8zKxrJvNuKpZk3xzNOtAQCfzpmFxr5N8duve3D5n5uIsIhEm6da4qd1IXh7UL8yBZK0uAQ/H/xdfoZzTm6uxiUcAOBu7H3cjb2Pl1/rW+bfDv95Gof/PA1A9kHq6uyMl7o9h3H/ewtvD+pX5v7KlBt96vboA2TLF4z5aA6yc3Iw5u3B6Ne77NrYgqWBM3H4xGlcvBKBFRs2Yfak9+Xj+nXTN1i9eSs2bP8ZV65cgYO9PV54tiN2rF+Lo2FXAQBO1pZ6WbrTs2FDvP3224iMjER4eDjS09NhZ2eHli1bok+fPpg+fbp87XDBL7/8glWrVmHr1q04e/YsbG1t0bFjR6xevRotWrSoUrOvRYsWmDVrltb3NzMzw/r16zFo0CCsWLECN27cwI0bN+Di4gJfX1+MGjVK6/276tevj9DQUPTt2xfvvvsurl27hvT0dCQnJ2PYsGGYMmWKXtbBtrKywsGDB7Fx40Zs3boVf/31FwoLC9GkSRNMmzYNQ4cOVbt+fGU4Ojri2LFj+Pnnn7Ft2zZcvnwZERERcHJyQt26dTF8+HAMHDiwwg2gdWVtbY01a9bo9JihQ4eiU6dOWL16NY4fP45z585BKpWiQYMGaN68OSZPnixv/Jjan3/+iXXr1sk3arawUP/l29vbGytWrMCECRMwfvx43Lx5Ey4uLgCAiRMnIisrC9u2bcPhw4flS4KMGDFCL0sVTZ48Gfv370doaKhOE1H6eG4vvvgi/v77b3z22Wc4deoU9u7di6ZNm+Lzzz/HzJkzK9yzoF27dmjatCkOHToEiUSCHTt24ODBg6hfvz7WrSv7JVrQqVMnzJ49G0uXLsWoUaNw6dIl+RffRYsWyf6+/vor9u3bJz97cf78+Vo3+w4ePIiUlBSMGTMGbm5uWj3GWCpTZ4mBvZ2dwc9E1sa92Di4ubnhvXfewszxowxSY2ly7tJlnLt0We2/6Vpjfb1wHpo2a44NP+5AxI2buB55u9waC5CdoS3sdaNtjfXGoIFoVKrZV5UaSxv6qLGsra1xdPv3mLcsGBcuX8W1W7dRXFyM1Eedqtzs69+7JxKSkhH+z3Xciv4XkoICuLk446Xnu6Jbj16YOXOmylm3vr6+uHr1KubPn4+//voLBw8eRMOGDfG///0PCxYsqPKX3tmzZ+v02e7t7Y3w8HCsW7cOu3fvxoULF1BQUICGDRvixRdfxDvvvKP1sUaOHInff/8dP/30E2bOnIm1a9fizp07aNCgAcaNG4epU6fqpZ5q3749IiIisHTpUvz+++/Yu3cvbGxs8Mwzz2DUqFEYO3asxs8wXb3wwgu4efMm1q5di0OHDuHSpUuQSCSoX78+vLy8MGLEiCqvyKDOiy++iOHDtf8+LFxdOWLECGzatAl///03bty4AQcHB3h4eGDAgAEYOHCgfKkwU5s2bRoePXqEXr16YeLEieXe79dff8XZs2cxa9YslVpg7dq1eOaZZ/DNN9/g4sWLsLGxQadOneT7Kum72QeYtsbSpX4Umn179uzBK6+8gjFjxsj3R1Q++aC0pUuX4vDhw7h48SJWrFiB2bNl+3MJddTq1auxefNmnDp1CnXq1EH37t2xd+9eXL16tdJ/u8RcYwHa1Vn/RN7GC29q/7fSUEZNl+VLLDUWYJw6S90JVYB+66zF8+agvpcvDu77Vau5LKBydVaPPmX/rhi6zqqIpaUlTu3ehqVrvsWew0dx4twFONWpg64dO2DPd2uRlZ1j1GYfACyf/wn69H4JK77bilu3buHIkSOwtraGh4cHevTogf79+2s8Ufjrr79Gy5Yt8e2338q/M7766qsICgpC165dy9y/Tp06GudVPDw8NM6rvPLKK7hx4waCg4Nx5MgRHDlyBJaWlvD09MS7776L8ePHq9zf09MTFy9eRGhoKH7++Wf8888/CAsLg5ubGzw9PfHBBx9g4MCBsLVVPyepi+pS2wgqM8dUGdOmTcODBw/QpUuXStcme/bsQWBgIE6ePImff/4ZRUVF8Pb21muzz83NTa/HU6ekpETUtUNVmZUYesFckcnMzISzszM2DmiH8R18Krx/fp26iOn2LnwbNYSthjOO7j+MV1lHWrjirp69Neo52CCvUIq4jDzYWJrDy8lOb3uQlY5THmlxCe5n5kFSVAxvZzs0aeAOr0aeFcaIS89Fcm5BuY0gXahrLOk7hjrKMZxtrKq8dGfsfw/g+1xP/BD8pXwzYV2eh7S4BHce5+ClV/uimVdj/PVr2TV+Swv9eQ/GzJiDDRs2YECPbgbLx/QlK7Fq3QYEf7EIH40aVuUY6uiajwUrV2Nh8BqV17siqbkFiEnPha+vr9YT3pVh6DODGUOccWpCDDMzMzRq1EjtcrD6pO55hIaGYsyYMfjss8+wYMECnY5XUlKCp59+Gnfu3MGDBw/g6uqKq1evon379vLJJTMzM3h7e5t0U2RNZs2ahRUrVuDAgQPo37+/UWIuWLAACxcuxA8//KB2w/EBAwbg0KFDuHLlitYN+fz8fMTExMDX11flS5lQZ50e3R0veJd/UpE2NRZQts4Szgb3dTX8lX2VjeHu5lphnSV8TvnXc4SDlWGehzFi6DuOuhqrMjF8nu0BnyaNcGq3+j2vlAk11r5tP6BRy9YGe72EeubTTz/F7LHvGD3vPs/2QNyDhyh5WPWzhnMKpYhMzoK/v79Wy1pXVk34vGWMmhujvHrGVHWvPmssd3d3SKVSlTpLDDVWcXExPD09UVJSgoSEBIMv81UeQ9RYAOus8mhTYwE1p87Sdwx1dVZlYlSmztqwYQNGvNqj2tSkpoyha50lLMeo6xR/dfrMZQztVFQHGPp59OjRA6dPn0ZMTAx8fHwMFkfb51HR57Q+YuhKGNPmzZvx9NNPq8xlaaKpLlCHV/bpgVcjT5ViQ10jo4NX1fcgK03b5pLQWGpaXyqKPfoM2dSrSKGe9uirCiEfeYVSWJmbmWQMAPNBRNWTmZkZgoOD8corr+DLL7/EsmXLTD0knYwfPx4ODg5V3mtJXy5duoSDBw9i9OjRervyVt9K11mpuQVwMsKXeEPHICIiEpPSNdaKFStMPSS1zM3NsXr1aty6dQupqal6uaLWEKpDjQWwziIiIqpJ2OwzIDE0MpQbS7W90QcAKbkFcLC2rHI+XJ2dsTRwpnzZA22VzsfKT+egjpZnQ3fv3BFfLf5c6z3fylPT8kFEtcvLL7+M119/Hd988w2mTJli6uHoxM/PT+cz7Q0pMDAQjo6OWLp0qamHQgSg8jVWaSuCPtGpxvoh+Eu0aOqLsrviEBHVHso1lrptD8TirbfeMvUQKsQai8TIVHXWmi8X62Uui4iIysdmnwGZupHBRp9CYbHsUnYrCzO95MPZyRFzJk/Q6THq8jGkv/Z7ITT39cZQ13pI1rBmu7ZqYj6IqPbZu1e2L4RUKkVycrKJR1N9/fHHH6YeApGKytRY6uhaYzX39ZYvy0REVJsJNRYgq7OoclhjkRiZqs76XwMP1lhEREbAZp8BiKGRwUafQk6BFBn5hQCAunY2zAfzQUREREREREREVO3pulcfEdVcbPbpmRgaGWwsKeQUSBGdmg1LczMUFpfAzAR9peqWj+c6dUTu+PEI8H9K72OobD56dHkWmAG0C/DX+5iIaqvPPvsMhYWFJondrl07fPbZZ+jRo4dBjv/ZZ5/BxcXFIMeujoTXWcz7xRDVBj26PIvcKVL4+fmZJP70caOQnpllkthENZGh65nKYI1lXKyxiIhITExdm4wePRpt2rQRTa0gxs9pYUxt27Y1SKOezT49YmNJQUyNPjsrC9hamiOlistfVkZ1zEeXzp3QvHVbveetKvno0fVZ9Oj6rF7HQ1TbLViwAHfu3DFJ7Hbt2hm02BLTnnhi0KNHD1FNRBLVVj26Pos27dqbbBmr6ePHmCQuUU1l6HqmMlhjGRdrLCIiEhNT1yajR49Gt27dRNXsE9vntDAmqVSKq1ev6v345no/Yi2l3MhwtrUyyRiqY2PJUJTz0cLNAaZYKJL5UBBDPoiIiIiIiIiIiIiIaiI2+/RADI0MNpYUSueDS6kyH0RERERERERERERENRWbfRV5snaqpiVUxdDIKCkBG0tPMB8KzAcRERmKXtaWr6DGIiIiIqqNWGcRERGRQJe6gM2+ClgU5gPFUhQWl31RxdLISM2TsLEE5kMZ80FERIZUWFgIALCwqPznnGVBHiCVQiIt1tewiIiIiKo9fdRZ5c1lERERUfWhS13AZl8FrApyYZP+CBn5hSpdVDE0MoTRFEpL2FhiPuSYDxl+pyEiMoySkhJkZGTAxsYGVlaV36fYsjAPDkl38TgnH1L+0SYiIiLSW52laS6LiIiIqg9d6wJLI4yp2nOPCcdDl4Z4gHpwtrVCkbQEsRm5sLU0RxMnWxQWF6NQ6aT0oicTVkXFxcgvkhpkTNLiEqTnybq6LrZWsDCHQWJV9FySciRIyilAfQdruNlZVWoMVX29cguLEZuuOR/6iFER5kNBLPlIyM4DABQUFCA/P1/vMeSxpFKDHp8xxBmHMcQTQyqV/Q3Jz8+v0tnPVLGSkhIUFhYiIyMD2dnZaNSoUZWP6R4Tjv9cPBAjbQhnBzvYWVnAwswMZuWcI1Lw5EpASVExLAx0LgljiC8OY4grhqToSQyJxKB/e2vC5xRjMEZ1jsM6y3gMVWcpz2VZmZdfYwE153OKMWpfDGPFYZ3FGIzBGPo6PqC5xqpsXcBmnxacUmKAqweR4tsRd+vUR1JeEawtzGHjYIP7uZll7p+aV4jsgiIUZVshx0b/L3FxiaypIyx7VWRrhYIsw6SyvOeSISlCen4hXGytkFNoiZh0/ceoiERajMQcCazNNeejqjEqwnwoiCkfBdJi+dWW6enpeo2hLCkpyeBnSjKG+OIwhnhiFBcXIyUlBbGxsTA354IFxmBjY4NGjRrBycmpyseyz0qCb9guJPl2Qlo9X6TY1kFFs1A5hVKk5BbAKj8b1gb6hs0Y4ovDGOKKUSAtQUp2PqysrGBtbW2QGEDN+JxiDMaoznFYZxmfPuss5bmshy4NAfOKmwY15XOKMWpfDGPFYZ3FGIzBGPqgbY2la11gVlLLrufPzMyEs7MzNg5oh/EdfHR6bNjDNAw9cAvtfRpi88AOcLBW36RYeCoSO288xLRnm2FiJ189jFohp6AI4w5E4E5qNro2ccOxu0kGiSPQ9FzWX4rBqr/v6iV2ZV+vfxIzMfa3K2hRtw42DWinMR9ViVER5kNBbPkY084La8Lu4auvvsKAAQP0FqO0iRMnYv369QY7PmOIMw5jiCdGdnY2OnbsiPDwcNSpU8dgcUjGwsKi3KUjhDrr9OjueMHbXadjlwAotHVCsYVluQ2/A9EJmHXsJva81RkB9as+EcYY1SMOY4grxs2kTAzeFYY9e/YgICDAIDGAmvE5xRiMUZ3jsM4yLkPWWYXW9pBa2VZ4UlVN+ZxijNoXw1hxWGcxBmMwhj5oU2NVVBeowyv7tBT2MA0v/3gOres74ceeXnAsyAAK1N83IzEecXFxyGlqD9ts/f3hz5IUYuD2C7iRlInj73ZDaEScQeIoU/dcFp+JQtDJSCzq6Y+P/J2A7FS9x6iIcj629niq3HxUNkZFmA8FMebjzuNMxMXFoaCgALa2htu7MDU11aDHZwxxxmEM8cQoKChAXFwcrK2tjfL7RYZjBsA6X/0V4coKUhMRFxcHswxf2NoXGmQsjCG+OIwhrhhmGemyGGZmrLMYgzFMFMMYcVhn1RxWBbmwKsit8H415XOKMWpfDGPFYZ3FGIzBGPpgqBqL6zBoQbmRcWR4FzjaVH6T5MrKkhTiVaVGRudGrkYfA6DaWJr/QkuTjIH5UGA+ZMSSDyIiIiIiIiIiIiIiYzNps08qlSIoKAi+vr6ws7NDs2bNsGjRogrXQ92+fTvatm0Le3t7eHh4YOzYsUhNrdrVTJqwkaHAxpIM86HAfBARiVN1qLGIiIiIqiPWWURERCRGJm32LVu2DOvXr8fatWsRGRmJZcuWYfny5VizZo3Gx5w7dw4jR47Ee++9h5s3b+KXX35BWFgYxo8fr/fxsZGhcCo2mY0lMB/KmA8iIvESe41FREREVF2xziIiIiIxMumefefPn8egQYPQr18/AICPjw927tyJsLAwjY+5cOECfHx8MHXqVACAr68vJkyYgGXLlul1bGxkqDoRk8LGEvMhx3wQEYmbmGssIiIiouqMdRYRERGJkUmbfV27dsXGjRsRHR0NPz8/XLt2DWfPnkVwcLDGx3Tp0gVz587F4cOH8dprryEpKQm7d+9G37591d5fIpFAIpHIf87MzAQAHIp6hMRsidrHPMjMQ2hEHOo72OAlH3es+vueTs8rPD4dgOzqq8qSFEmx5dp9JOVIMLqdN47dTcKxu0l6j1OR/bcfAQCautgDkC0dqW8VPY+q5kObGBVhPhSqSz6uPcoAIDuD0pDS0tIMenwiosowRo0FaK6zolKyUcfaMGVmTFouACAyOcsgx2cMccZhDHHFEI4dGRlpsBgAkJeXZ9DjExFVBussxmAM8cUwVhzWWUQkZmYlFS0qbkDFxcWYO3culi9fDgsLC0ilUixZsgSBgYHlPu6XX37B2LFjkZ+fj6KiIgwYMAB79uyBlVXZq4sWLFiAhQsXGuopEBGhe/fucHU13JWFYWFh6Ny5s8GOX5NiGCsOY4gnRmFhIY4cOYKMjAw4OTkZLE51Y4waC2CdRUSG17t3b9jZ2Rns+DXhs5AxamcMY8RhnaUe6ywiqilYZzEGY5gmhqFqLJM2+3766SfMmjULX331FQICAhAREYHp06cjODgYo0aNUvuYW7duoXfv3vjoo4/Qp08fJCQkYNasWejUqRM2b95c5v7qzoRq0qQJXvRyQ6v6qi9kYo4EB6IS4GZnjf5+DWFtUbktDU/HpuBWSjY6ebqgo6eLTo8tkBbjYPQjPM4rwICWHmjgYGOQOBUJj0/Hpfh01LOzRnJegUFiCDQ9D33lo7wYFWE+FDGqaz6G+HvidX+PSo9VnX2R8dgdmYDOni4Ii0/Htm3bMHz4cL3GUDZw4EDs37/fYMevSTGMFYcxxBMjMzMTzs7OnIQqxRg1FqC5zpr3vB/86zka5Lmdu5+K9eGxWNTTH76u9oxh4hjGisMY4oyx7Y1nDPZej0zOwoi9l3H58mV06NDBIDGAmvFZyBi1M4Yx4rDOUo91FmMwhvhiGCsO6yzd1JTPXMZgDH0zVI1l0mU8Z82ahTlz5mDYsGEAgDZt2iAuLg5Lly7VWCAtXboU3bp1w6xZswAATz/9NBwcHPD8889j8eLF8PBQndS3sbGBjU3ZhsDwtl4Y38FH/rOwB1mnRm5V3oNs0qEI3ErJxsCWHjrtqSbsQZZXVIyzY1+scA+yysapyOIzUbgUL/vgis/Kw/rwWL3HUKbueegzH5piVIT5qBn5aNvQGcPbNKnSeJUtPhOF3ZEJ8sJuxK+X9XZsIiJ9MUaNBWius15pVh8veLvr8RmpWh8ei74tGqCDhwtjiCCGseIwhvhi+NdzNPjvFhGR2LDOYgzGEGcMY8VhnUVEYlX5S3P0IDc3F+bmqkOwsLBAcXGxzo8BgMpepCg0MlrXd9JLI6MyhEbGjaRMHH+3W4WNDENZfCYKQScjsainv8GaSRVhPhSYDxnmg4hIN2KpsYiIiIhqGtZZREREJEYmbfYNGDAAS5YswaFDhxAbG4u9e/ciODgYb7zxhvw+gYGBGDlypMpjfv31V6xfvx737t3DuXPnMHXqVHTu3Bmenp46j4GNDAUxNDKYDwXmQ4b5ICLSnRhqLCIiIqKaiHUWERERiZFJl/Fcs2YNgoKCMGnSJCQlJcHT0xMTJkzAp59+Kr9PQkIC7t+/L/959OjRyMrKwtq1a/Hxxx/DxcUFL730EpYtW6ZzfDYyFMTQyHiQmcd8PMF8yDAfRESVY+oai4iIiKimYp1FREREYmTSZp+joyNCQkIQEhKi8T6hoaFlbpsyZQqmTJlSpdgxaTmYeewGGxkQTyMjNCIOz3i6Mh/MBwDmg4ioKkxZYxERERHVZKyziIiISIxMuoynKQVf+JeNPoijkZGYIwEA1HewYT6YDwDMBxERERERERERERGRtmpts6+Rkx0bGSJoZIQ9TMOBqAQAwKi2XswH88F8EBERERERERERERHpoNY2+6Y/24yNDBE0ll7+8Rzc7KwBADaWFkYfA/OhwHwoiCEfRERERERERERERETaqLXNPlsrNjLE0FhqXd8J/f0ammQMzIcC86EghnwQEREREREREREREWmr1jb7jI2NDAXlxtKR4V1gbWH8X0PmQ4H5UBBDPoiIiIiIiIiIiIiIdMFmnxGwkaFQurHEpVSZD+aDiIiIiIiIiIiIiKjy2OwzMDYyFMTQWJIUSZmPJ5gPBTHkg4iIiIiIiIiIiIioMixNPYCajI0MBTE0lgBgy7X7yJAUMR/Mh5wY8kFEREREREREREREVFls9hkQGxkyYmgsFUiLAQBJORKcGfMC88F8ABBHPoiIiIiIiIiIiIiIqoLLeBqAciODjT7TN5ayJIU4GP0IADC6nTfzwXwAEEc+iIiIiIiIiIiIiIiqis0+PWMjQ0EsjaVXt1/A47wCAEBjJzujjwFgPgTMBxERERERERERERGRfrHZp0dsZCiIqbF0IykTA1p6GD2+gPmQYT6IiIiIiIiIiIiIiPSPzT49YSNDQWyNpePvdkMDBxujjwFgPgTMBxERERERERERERGRYbDZpwdsZCiIsbHEpVSZD0Ac+SAiIiIiIiIiIiIi0jc2+6qIjQwFNpYUmA8Z5oOIiIiIiIiIiIiIyLAsTT2A6kwsjYxTsck4EZPCxhLzIcd8KIghH0REREREREREREREhsIr+ypJLI0MACZvZLCxpIr5YD6IiIiIiIiIiIiIiIyFzb5KEEsjIzw+HQDQy9edjSXmAwDzoUwM+SAiIiIiIiIiIiIiMjQ2+3QklkbG4jNRuPSkmdHDp55JxsDGkgLzIcN8EBEREREREREREREZF5t9OhBTIyPoZCQ6ebqYJD7AxpIy5kOG+SAiIiIiIiIiIiIiMj6TNvukUimCgoLg6+sLOzs7NGvWDIsWLUJJSYnGx4wePRpmZmZl/hcQEGDQsYqtkbGopz86mqiZwcaSAvMhw3wQEYlLdaqxiIiIiKoT1llEREQkRiZt9i1btgzr16/H2rVrERkZiWXLlmH58uVYs2aNxsesWrUKCQkJ8v/9999/cHNzw9ChQw02TjE2MrgnHPMBMB/KxJAPIiKxqC41FhEREVF1wzqLiIiIxMjSlMHPnz+PQYMGoV+/fgAAHx8f7Ny5E2FhYRof4+zsDGdnZ/nP+/btQ1paGsaMGWOQMbKRocDGkgLzIcN8EBGJU3WosYiIiIiqI9ZZREREJEYmbfZ17doVGzduRHR0NPz8/HDt2jWcPXsWwcHBWh9j8+bN6N27N7y9vdX+u0QigUQikf+cmZkJADgU9QiJ2RK1j5E/tkiKLdfuIylHgtHtvHHsbhKO3U2qcEzh8ekAgFOxyVo+i/Kdik3GiZgU9PJ1ByBrbBgijjpCjN9uJ2Dxmduo72CDl3zcserve3qPUdHzqGw+dImhDeZDhvkArj3KAACcO3fOYDEAIC0tzaDHJ6Kaxxg1FqC5zopKyUYda8OUmTFpuQCAyOQsgxyfMcQZhzFqXwzh2JGRkQaLAQB5eXkGPT4R1TyssxiDMcQXw1hxakoM1llENZNZSXmLihtYcXEx5s6di+XLl8PCwgJSqRRLlixBYGCgVo+Pj4+Hl5cXduzYgbfeekvtfRYsWICFCxfqc9hEREbXvXt3uLoa7srJsLAwdO7c2WDHN1YMY8VhDPHEKCwsxJEjR5CRkQEnJyeDxalujFFjAayziKhm6N27N+zs7Ax2/JrwecsY4othjDiss9RjnUVEpD3WWYzBGGUZqsYyabPvp59+wqxZs/DVV18hICAAERERmD59OoKDgzFq1KgKH7906VKsXLkS8fHxsLa2VnsfdWdCNWnSBC96uaFVffUvZIG0GAejH+FxXgEGtPRAAwcbnZ7X6dgU3ErJRidPF3T0dNHpscrC49NxKT5d43H0Fac8v/+biNj0PNSxssDbrRvB2kL/2zxW9Dyqmg9tYmiD+ZBhPhSEfNS1s8KXvQNgZ2Wh9xjn7qdifXgstm3bhuHDh+v9+IKBAwdi//79Bju+sWIYKw5jiCdGZmYmnJ2dOQlVijFqLEBznTXveT/413PUy3MpTfi7uKinP3xd7RnDxDGMFYcxam+MbW88Y7C/J5HJWRix9zIuX76MDh06GCQGUDM+bxlDfDGMEYd1lnqssxiDMcQXw1hxaloM1lmMwRimiWGoGsuky3jOmjULc+bMwbBhwwAAbdq0QVxcHJYuXVphgVRSUoLvv/8e7777brnFkY2NDWxsyjYjhrf1wvgOPmVuF/YgyysqxtmxL1ZqD7JJhyJwKyUbA1t6VHr/sMVnonApPrbcPcj0Eac8YQ/TsOlKLABg+nPNsOilVnqPAZT/PPSRj4piaIP5kGE+FJTzMbGjL8ap+XuiL+vDYw12bCKqmYxRYwGa66xXmtXHC97ulX8CFVgfHou+LRqgg4cLY4gghrHiMEbtjOFfz9Hgv79ERLpgncUYjCHOGMaKU5NisM4iqln0f1mQDnJzc2FurjoECwsLFBcXV/jY06dP499//8V7772nt/EIjYwbSZk4/m63SjcyqmrxmSgEnYwst5FhaGEP0/Dyj+fgZicrPm0s9X/FUkWYDwXmQ4H5ICKqmNhqLCIiIqKagnUWERERiZFJm30DBgzAkiVLcOjQIcTGxmLv3r0IDg7GG2+8Ib9PYGAgRo4cWeaxmzdvxrPPPovWrVvrZSxsZCgIjYzW9Z3Q36+hScbAfCgwHwrMBxGRdsRUYxERERHVJKyziIiISIxM2uxbs2YNhgwZgkmTJsHf3x8zZ87EhAkTsGjRIvl9EhIScP/+fZXHZWRkYM+ePXo7E4qNDAXlRsaR4V0MsidcRZgPBeZDgfkgItKeWGosIiIiopqGdRYRERGJkUn37HN0dERISAhCQkI03ic0NLTMbc7OzsjNzdXLGNjIUCjdyHC0sTL6GJgPBeZDgfkgItKNGGosIiIiopqIdRYRERGJUa2+LIWNDAUxNDIkRVLm4wnmQ4H5ICIiIiIiIiIiIiLSzKRX9plSfiEbGQKxNDK2XLuPDEkR88F8yDEfRERERERERERERETlq7XNvpC/7yIlt4CNDBE0MgqkxQCApBwJzox5gflgPgAwH4K8QqnRYxIRERERERERERFR9VFrl/F8mJnHRp8IGhlZkkIcjH4EABjdzpv5YD4AMB+CLEkhlp+7Y/S4RERERERERERERFR91Npm34wuzdnIEEEj49XtF/A4rwAA0NjJzuhjAJgPAfOhIKZ8/JeZZ/TYRERERERERERERFR91Npmn6+rg0nispEhIzQybiRlYkBLD6PHFzAfMsyHgtjyEdjdz+jxiYiIiIiIiIiIiKj6qLXNPlNgI0NGuZFx/N1uaOBgY/QxAMyHgPlQEGM+mrmZ5sQEIiIiIiIiIiIiIqoe2OwzEjYyZEo3MriUKvMBMB8CseSDiIiIiIiIiIiIiKoPNvuMgI0MGbE0MpgPGeZDgfkgIiIiIiIiIiIiourK0tQDqOnYyJARSyPjVGwyTsSkMB/MhxzzQURERERERERERETVGZt9BsRGhoyYGhnMB/OhjPkgIiIiIiIiIiIiouqOy3gaEBsZ4mlkhMenAwB6+bozH8wHAOaDiIiIiIiIiIiIiGoGNvsMgI0MGbE0MhaficKlJznp4VPPJGNgPhSYDxmx5IOIiIiIiIiIiIiIqjc2+/SMjQwZsTQyhD0TO3m6mCQ+wHwoYz5kxJIPIiIiIiIiIiIiIqr+2OzTIzYyZMTSyBDysainPzqaKCfMhwLzISOWfBARERERERERERFRzcBmn56wkSEjlkaGcj64lCrzATAfRERERERERERERFQzsdmnB2xkyIilkcF8yDAfCswHEREREREREREREdVUbPZVkRgaGQ8y89jIeIL5kGE+FJgPIiIiIiIiIiIiIqrJ2OyrAjE0MgAgNCKOjQwwHwLmQxXzQUREREREREREREQ1GZt9lSSGRkZijgQAUN/BptY3MpgPGeZDgfkgIiIiIiIiIiIiotrApM0+qVSKoKAg+Pr6ws7ODs2aNcOiRYtQUlKi8TGnTp2CmZlZmf89evTIaOMWQyMj7GEaDkQlAABGtfWq1Y0M5kOG+VBgPoiotquuNRYRERGR2LHOIiIiIjGyNGXwZcuWYf369diyZQsCAgIQHh6OMWPGwNnZGVOnTi33sVFRUXBycpL/XL9+fUMPF4B4Ghkv/3gObnbWSMwpgI2lhdHHIJZGBvMhw3woMB9ERNWzxiIiIiKqDlhnERERkRiZtNl3/vx5DBo0CP369QMA+Pj4YOfOnQgLC6vwsfXr14eLi4uBR6hKTI2M1vWd4O9eB5uv3jf6GMTSyGA+ZJgPBeaDiEimutVYRERERNUF6ywiIiISI5M2+7p27YqNGzciOjoafn5+uHbtGs6ePYvg4OAKH9uuXTtIJBK0bt0aCxYsQLdu3dTeTyKRQCKRyH/OzMwEAByKeoTEbInax6hzKjYZJ2JS0MvXHYCssaFJeHy6/DH69CAzD6ERcajvYIOXfNxx9G6SQeIoK/1cJEVSbLl2H0k5Eoxu541jd5Nw7Mk49BVDG7rko7IxKsJ8KDAfhsvHtUcZAIBz585V6TgVSUtLM+jxici4jFFjAZrrrKiUbNSxNkyZGZOWCwCITM4yyPEZQ5xxGIMxDEE4dmRkpMFiAEBeXp5Bj09ExsU6izEYQ3wxjBWHMbTHOovI+MxKyltU3MCKi4sxd+5cLF++HBYWFpBKpViyZAkCAwM1PiYqKgqnTp1Cx44dIZFIsGnTJvz444/4+++/0aFDhzL3X7BgARYuXGjIp0FEVCN0794drq6GuxIxLCwMnTt3NtjxjRmHMcQTo7CwEEeOHEFGRobKkki1nTFqLIB1FhGRtnr37g07OzuDHb8mfKYzhvjisM5Sj3UWEZG4sM5ijOoWw1A1lkmbfT/99BNmzZqFr776CgEBAYiIiMD06dMRHByMUaNGaX2cF198EV5eXvjxxx/L/Ju6M6GaNGmCF73c0Kp+xS9keHw6LsWno5OnCzp6umg1ntOxKbiVkq3TY8qTmCPBgagEuNlZo79fQ1hbmBskjjpCjA4NnfEwKw+P8wowoKUHGjjY6D2GNs+jMvnQNUZFmA8F5sN4+Rji74nX/T3Kve++yHjsjkzAEH8PvO7vqXWMc/dTsT48Ftu2bcPw4cOrOmSNBg4ciP379xvs+MaMwxjiiZGZmQlnZ2dOQpVijBoL0FxnzXveD/71HKv8PNQR/mYt6ukPX1d7xjBxDGPFYQzGMGSMbW88Y7C/WZHJWRix9zIuX76scUJfH2rCZzpjiC8O6yz1WGcxBmOIL4ax4jCG7jFYZzEGY5RlqBrLpMt4zpo1C3PmzMGwYcMAAG3atEFcXByWLl2qU4HUuXNnnD17Vu2/2djYwMam7MT78LZeGN/Bp9zjLj4ThUvxsTrvQTbpUARupWRjYEuPKu9dJuxB1qmRG44M7wJHGyuDxNFEiJGcK0FeUTHOjn1R73uQafs8KpsPXWJUhPlQYD6Mm4+2DZ0xvE0TjfdbfCYKuyMTKr1n4vrw2CqMkojExhg1FqC5znqlWX284O2u+8C1tD48Fn1bNEAHDxfGEEEMY8VhDMYwVAz/eo4Gf48QUc3BOosxGEOcMYwVhzF0i8E6i8h4zE0ZPDc3F+bmqkOwsLBAcXGxTseJiIiAh0f5V7zoavGZKASdjKz0xLk+CI2M1vWdyjQyjKVAKstFUo4Ex9/tpvdGhraYDxnmQ4H5UBBDPohIXMRcYxERERFVZ6yziIiISIxMemXfgAEDsGTJEnh5eSEgIABXr15FcHAwxo4dK79PYGAgHj58iK1btwIAQkJC4Ovri4CAAOTn52PTpk34888/cezYMb2NSwwT52JoZGRJCnEw+hEAYHQ771rdyGA+FJgPGeaDiMRMrDUWERERUXXHOouIiIjEyKTNvjVr1iAoKAiTJk1CUlISPD09MWHCBHz66afy+yQkJOD+/fvynwsKCvDxxx/j4cOHsLe3x9NPP40//vgDPXv21MuYxDBxLpZGxqvbL+BxXgEAoLGT4TY5LQ/zIcN8KDAfCmLIBxGJkxhrLCIiIqKagHUWERERiZFJm32Ojo4ICQlBSEiIxvuEhoaq/Dx79mzMnj3bIOMRw8S5mBoZN5IyMaClB36NTDD6GADmQ8B8KDAfCmLIBxGJl9hqLCIiIqKagnUWERERiZFJ9+wTEzFMnIutkXH83W5o4FB2M2hjYD5kmA8F5kNBDPkgIiIiIiIiIiIiInFgsw/imDgXYyOjNu9BxnwoMB8yzAcRERERERERERERiVGtb/aJYeKcjQwF5kOG+VBgPhTEkA8iIiIiIiIiIiIiEheT7tlnamKYOGcjQ+FUbDJOxKQwH8yHHPOhIIZ8EBEREREREREREZH41Npm36GoBPwWnchGhkgaGQBM3shgPlQxH8wHEREREREREREREYlfrV3Gk40+8TQywuPTAQC9fN2ZD+YDAPOhTAz5ICIiIiIiIiIiIiLxqrXNvkF+DdjIEEEjY/GZKFx60szo4VPPJGNgPhSYDxnmg4iIiIiIiIiIiIiqi1rb7OvX0sMkcdnIUBD2TOzk6WKS+ADzoYz5kGE+iIiIiIiIiIiIiKg6qbXNPlNgI0NBaGQs6umPjiZqZjAfCsyHDPNBRERERERERERERNUNm31GwkaGgnIjg0upMh8A86FMDPkgIiIiIiIiIiIiouqDzT4jYCNDQQyNDOZDgfmQYT6IiIiIiIiIiIiIqLpis8/A2MhQEEMj40FmHvPxBPMhw3wQERERERERERERUXXGZp8BsZGhIJZGRmhEHPMB5kPAfBARERERERERERFRdcdmnwGxkSEjhkZGYo4EAFDfwYb5YD4AMB/K7j7OMUlcIiIiIiIiIiIiIqo6NvsMgI0MBTE0MsIepuFAVAIAYFRbL+aD+WA+lIQ9TMPSs9EmiU1EREREREREREREVcdmn56xkaEglkbGyz+eg5udNQDAxtLC6GNgPhSYDwUx5aOJk51J4hMRERERERERERFR1bHZp0dsZCiIqZHRur4T+vs1NMkYmA8F5kNBbPmY3a2FScZARERERERERERERFXHZp+esJGhILZGxpHhXWBtYfxfdeZDgflQEGM+7KyMf2ICEREREREREREREekHm316wEaGghgbGVxKlflgPhTEkA8iIiIiIiIiIiIi0h+TNvukUimCgoLg6+sLOzs7NGvWDIsWLUJJSYlWjz937hwsLS3Rrl07ww60HGKYOJcUSdnIeIL5UGA+ZJgPBTHkg4iMoybUWERERERixDqLiIiIxMjSlMGXLVuG9evXY8uWLQgICEB4eDjGjBkDZ2dnTJ06tdzHpqenY+TIkejVqxcSExONNGJVYpk433LtPjIkRWxkMB9yzIcC8yEjlnwQkXFU9xqLiIiISKxYZxEREZEYmbTZd/78eQwaNAj9+vUDAPj4+GDnzp0ICwur8LEffPAB3nnnHVhYWGDfvn0GHmlZYpg4L5AWAwCSciQ4M+YFNjKYDwDMh4D5UBBDPojIuKpzjUVEREQkZqyziIiISIxM2uzr2rUrNm7ciOjoaPj5+eHatWs4e/YsgoODy33cDz/8gHv37mHbtm1YvHhxufeVSCSQSCTynzMzMwEAh6IeITFboulh5XqQmYfQiDjUd7DBSz7uWPX3PZV/D49PBwCcik2u1PG1ISmS4ucbDwEAbeo749jdJBy7m6T3OBU9l1OxyTgRk4Jevu4AZI0NfceoSEX50EeMijAfCsyHQnXJx7VHGQBky8kYUlpamkGPT0QKxqixAM11VlRKNupYG6bMjEnLBQBEJmcZ5PiMIc44jMEYhoxx+E4iIlMME0f+PCIjDXJ8QV5enkGPT0QKrLMYgzHEF8NYcRhD9xibrsTC09HOIDHis2T1D+ssIhmzEm0XFTeA4uJizJ07F8uXL4eFhQWkUimWLFmCwMBAjY+5c+cOunfvjr/++gt+fn5YsGAB9u3bh4iICLX3X7BgARYuXGigZ0BERLro3r07XF0Ne5VlWFgYOnfuzBi1JEZhYSGOHDmCjIwMODk5GSxOdWOMGgtgnUVEJCa9e/eGnZ1hJtOAmlE31KQYxojDOks91llERLUP6yzG0CdD1VgmvbJv165d2L59O3bs2IGAgABERERg+vTp8PT0xKhRo8rcXyqV4p133sHChQvh5+enVYzAwEDMmDFD/nNmZiaaNGmCF73c0Kq+bi9kYo4EB6IS4GZnjf5+DWFtYa72fqdjU3ArJRudPF3Q0dNFpxgVKZAW42D0IzzOK0AjJzvEpucZJI5A03MJj0/Hpfh0vcSu7OulbT6qEqMizIcC86GIoc98nIlNwc2UbHi0GgEXj45VG7AG6QnhSLi1DUP8PfG6v4fejptXKMXyc3fwX2Ye+jVvgD23E/DBBx9g+PDheouhzsCBA7F//37GqCUxMjMz4ezsbLDjV1fGqLEAzXXWvOf94F/PUS/PpbRz91OxPjwWi3r6w9fVnjFMHMNYcRiDMQxhX2Q8dkcmwL9XCBxcmxskRk7av4g8MR2Levqjb4sGBokRmZyFEXsvY9myZejQoYNBYgA1o26oSTGMEYd1lnqssxiDMcQXw1hxGEN7P1yJw4nYFHgGjIBzQ83zWXmZcbh/ZT2s6zSEd7sPYG5pq3WMjEfhiL+5DRM7+mBcBx89jLos1lmMYQiGqrFM2uybNWsW5syZg2HDhgEA2rRpg7i4OCxdulRtgZSVlYXw8HBcvXoVkydPBiA7o6qkpASWlpY4duwYXnrpJZXH2NjYwMbGpsyxhrf1wngd/ggIe151auRW4Z5Xkw5F4FZKNga29NDrHl1ZkkK8uv0C8oqKcXbsiwiNiMP68Fi9x1Gm7rksPhOFS/GxetuDrDKvly75qGyMijAfCsyHYfNxMyUbLh4d0dDvjSofT5OEW9vQtqEzhrdpopfjCflIzJHg9OjncedxNvbcTtDLsYmoYsaosQDNddYrzerjBW93PT8rhfXhsejbogE6eLgwhghiGCsOYzCGvsWk5WJ3ZAIcXJvDsV4bg8QQ+LraG/x9SETGwTqLMRhDnDGMFYcxtHPufipOxKbAuaHm+azMxAhE/xWEOvUC0LbfVlha19E5TvzNbfB0tGOdRQQTN/tyc3Nhbq569Y+FhQWKi4vV3t/JyQnXr19XuW3dunX4888/sXv3bvj6+hpknEIjo3V9J60aGYYgTJzfSMrE8Xe7oXMjV4RGxBl9HIvPRCHoZKTeGhmVwXwoMB8yzIe4qMvHncfZph4WUa1SXWosIiIiouqGdRYRUdVlJkYg4uAIOLj5VbrRR0SqTNrsGzBgAJYsWQIvLy8EBATg6tWrCA4OxtixY+X3CQwMxMOHD7F161aYm5ujdevWKseoX78+bG1ty9yuL2JtZJiCGBoZzIcC8yHDfIiLWPJBVNtVhxqLiIiIqDpinUVEVDVs9BEZhkmbfWvWrEFQUBAmTZqEpKQkeHp6YsKECfj000/l90lISMD9+/dNMj42MhROxSbjREwKG0vMhxzzoSCGfIiBWPJBROKvsYiIiIiqK9ZZRESVx0YfkeGYtNnn6OiIkJAQhISEaLxPaGhoucdYsGABFixYoNdxAWxklGbqRgbzoYr5YD7ERkz5ICJx11hERERE1RnrLCKiymGjj8iwzCu+S+3DRoZCeHw6AKCXrzsbS8wHAOZDmRjyIQZiyQcREREREREREYkPG31EhsdmXylsZCgsPhOFS0+aGT186plkDMyHAvMhw3yIi1jyQURERERERERE4sNGH5FxsNmnhI0MhcVnohB0MhKdPF1MEh9gPpQxHzLMh7iIJR9ERERERERERCQ+eZlxbPQRGQmbfU+wkaEgNDIW9fRHRxM1M5gPBeZDhvkQF7Hkg4iIiIiIiIiIxOn+lfVs9BEZCZt9YCNDmXIjg3vCMR8A86FMDPkQA7Hkg4iIiIiIiIiIxMu6TkM2+oiMpNY3+9jIUBBDI4P5UGA+ZJgPcRFLPoiIiIiIiIiISNy8233ARh+RkdTqZh8bGQpiaGQ8yMxjPp5gPmSYD3ERSz6IiIiIiIiIiEj8zC1tTT0Eolqj1jb7YtJy2Mh4QiyNjNCIOOYDzIeA+RAXseSDiIiIiIiIiIiIiFTV2mZf8IV/2ciAOBoZiTkSAEB9Bxvmg/kAwHwoE/JhSmLJBxERERERERERERGVVWubfY2c7NjIEEEjI+xhGg5EJQAARrX1Yj6YD+ZDiSwfj0wSWyCWfBARERERERERERGRerW22Tf92WZsZIigkfHyj+fgZmcNALCxtDD6GJgPBeZDQUz5qPskH6YglnwQERERERERERERkWa1ttlna8VGhhgaGa3rO6G/X0OTjIH5UGA+FMSWj35+DUwyBrHkg4iIiIiIiIiIiIjKV2ubfcYmlolzsTUyjgzvAmsL4/8aMh8KzIcC8yEjlnwQERERERERERGpU1yUb+ohEIkKm31GIJaJczE2MriUKvPBfCgwH0REREREREREROUrKshGXMQGUw+DSFTY7DMwsUycs5EhIymSMh9PMB8KzIeMWPJBRERERERERESkTlFBNq4dGomC7EemHgqRqLDZZ0BimThnI0Nhy7X7zAeYD2XMh4IY8kFERERERERERKSO0OjLeRwNrw4TTT0cIlGxNPUAarIt1+4jQ1LERoYIGhkF0mIAQFKOBGfGvMB8MB8AmI/STJ0PIiIiIiIiIiIidZQbfe36b0NuRoyph0QkKryyzwCUGxls9Jm+kZElKcTBaNll3aPbeTMfzAcA5kMdU+aDiIiIiIiIiIhIndKNPqcG7Uw9JCLRYbNPz9jIUBBDI0PYM/FxXgEAoLGTndHHADAfAuZDQQz5KM1U+SAiIiIiIiIiIlKHjT4i7bDZp0dsZCiIoZEh5ONGUiYGtPQwenwB8yHDfCiIIR9ERERERERERERixkYfkfZM2uyTSqUICgqCr68v7Ozs0KxZMyxatAglJSUaH3P27Fl069YNdevWhZ2dHZ566il8/fXXRhy1emxkKIihkaGcj+PvdkMDBxujjwFgPgTMh4IY8kFENV9NqrGIiIiIxIR1FhGRcbDRR6QbS1MGX7ZsGdavX48tW7YgICAA4eHhGDNmDJydnTF16lS1j3FwcMDkyZPx9NNPw8HBAWfPnsWECRPg4OCA999/38jPQKZ0IyM0Is4k42AjQ6Z0Pjo3cjVJTpgPGeZDQQz5IKLaoabUWERERERiwzqLiMjw2Ogj0p1Jm33nz5/HoEGD0K9fPwCAj48Pdu7cibCwMI2Pad++Pdq3by//2cfHB7/++iv++usvkxRIbGQoiKGRoS4fpsB8yDAfCmLIBxHVHjWhxiIiIiISI9ZZRESGxUYfUeWYtNnXtWtXbNy4EdHR0fDz88O1a9dw9uxZBAcHa32Mq1ev4vz581i8eLHaf5dIJJBIJPKfMzMzAQCHoh4hMVui9jHakucBU2kAAJvkSURBVBRJseXafSTlSDC6nTeO3U3CsbtJCI9PBwCcik2u0vErIsT54Woc7qXnopevOwBZY0PfMSp6Lg8y8xAaEYf6DjZ4yccdq/6+p/cYFdGUD33GKA/zoYr5UKhKPi4/iZGX+R+ykq9Xdqjlysv8D4Bh83HtUQYA4Ny5cwaLIUhLSzN4DCKxM0aNBWius6JSslHH2jBlZkxaLgAgMjnLIMdnDHHGYYzaG+PwnUREphgmzrVH6QCAnLR/DXJ85WOfu59qsBjy1+rwYURGRhosDmssIhnWWYzBGOKLYaw4NS3Gpiux8HS0M0iM8IfpAIDkmGPyeSdtFEsLkBi9BwW5KWjYcghS/zuD1P/OqL1vdqqs7jkVY7j5rPisPADApk2b4OnpabA4CQkJBjs21R5mJeUtKm5gxcXFmDt3LpYvXw4LCwtIpVIsWbIEgYGBFT62cePGSE5ORlFRERYsWICgoCC191uwYAEWLlyo76ETEVEluDbqDnNLW4PGSI37A927d4erq+GuJA0LC0Pnzp0NdnzG0F5hYSGOHDmCjIwMODk5GSxOdWOMGgtgnUVEJBZWdu5wqt/OoDFYY4krhjHisM5Sj3UWEREZQseOHeHh4WGw49eUGqgmxDBUjWXSK/t27dqF7du3Y8eOHQgICEBERASmT58OT09PjBo1qtzH/vXXX8jOzsbFixcxZ84cNG/eHP/73//K3C8wMBAzZsyQ/5yZmYkmTZrgRS83tKpfuReyQFqMg9GP8DivAANaeqCBg43Kv5+OTcGtlGx08nRBR0+XSsXQxu6b8UjOK0CjOrYY+FRDg8So6Lkk5khwICoBbnbW6O/XENYW5nqPUZGK8qGPGNpgPmRqUz7OxKbgZko2PFqNgItHR4PESE8IR8KtbfDp9DHsnJpU6xj5GbFoN3C7QY6v7OR6b3zwwQcYPny4wWIMHDgQ+/fvN9jxGUN7mZmZcHZ2Ntjxqytj1FiA5jpr3vN+8K/nqNfnJDh3PxXrw2OxqKc/fF3tGcPEMYwVhzFqX4x9kfHYHZkA/14hcHBtbpAYKXEnEXtppVHqLEM/j6yka3i672aDHF/AGktcMYwRh3WWeqyzGIMxxBfDWHFqSowfrsThRGwKPANGwLlhR+RlxuH+lfWwrtMQ3u0+0MtJ2gm3f0H6w3OoU68tHOu1qfD+JcWFSI07gcL8dLh794aVvXuFj0mP/xt56Xfg3rQv6vm+UuUxA0ByzFGk3Psd7k1fQz3fPvLn4dv5Y9T16qmXGKXlpP2LyBPTMWjQIMyfP98gMYCaUwPVhBiGqrFM2uybNWsW5syZg2HDhgEA2rRpg7i4OCxdurTCAsnX11f+mMTERCxYsEBtgWRjYwMbm7LNhuFtvTC+g4/OYxb2IMsrKsbZsS+q3YNs0qEI3ErJxsCWHgbbH2zxmSgk5xUAAD7o5GuwOOU9F2EPsk6N3Kq0B1lVXi9t8lHVGNpgPmRqYz5upmTDxaMjGvq9YZAYAJBwaxvcvXtqVRyJOUZSziODHZuIVBmjxgI011mvNKuPF7wr/nJWWevDY9G3RQN08HBhDBHEMFYcxqhdMWLScrE7MgEOrs0NVp8IS2wao84y9PPISrpmkGMTUVmssxiDMcQZw1hxakKMc/dTcSI2Bc4NO8Le2RfRfwWhTr0AtO23FZbWdfQSIz0hHOkPz8Hdpzd8O04t977CHn3FUgmeeWOP1nv03T49D3npd1Cnrr9e5uViL69Gyr3f4dv5Y/g8Ixuz8DxsHZsYtF4k0gfdL/vRo9zcXJibqw7BwsICxcXFOh2nuLhYZR1zQxEaGTeSMnH83W4aGxmGtvhMFIJORqKTAa8arIjQWGpd36lKjaWqYD4UmA8FMeSDiMjUqluNRURERFRdsM4iopoiLzMOEQdHwMHNT6+NPl0Ijb6cx9Fo13+b1o0+fYu9vBoxYStVGn1E1Y1Jr+wbMGAAlixZAi8vLwQEBODq1asIDg7G2LFj5fcJDAzEw4cPsXXrVgDAN998Ay8vLzz11FMAgDNnzmDFihWYOtWwb0KxNTIW9fRHfFYeLsWnG30MbCwpMB8yzAcRkbhUpxqLiIiIqDphnUVENcX9K+v1fkWfLtjoI9Ivkzb71qxZg6CgIEyaNAlJSUnw9PTEhAkT8Omnn8rvk5CQgPv378t/Li4uRmBgIGJiYmBpaYlmzZph2bJlmDBhgsHGKcZGxvwXWmLSoQijj4GNJQXmQ4b5ICISn+pSYxERERFVN6yziKimsK7TkI0+ETT6clKjTRKXah6TNvscHR0REhKCkJAQjfcJDQ1V+XnKlCmYMmWKYQemRKyNDFNgY0mB+ZBhPoiIxKk61FhERERE1RHrLCKqKbzbfcBGn4kbfZmJEYj6a75JYlPNY9I9+8SOjQyFB5l5bCw9wXzIMB9ERERERERERETVk7mlrdFjstGnkJkYgYiDI2Dn7G2S+FTzsNmnARsZqkIj4thYAvMhYD6IiIiIiIiIiIhIW2z0KQiNPgc3P/h1/9wkY6Cah80+NdjIUEjMkQAA6jvYsLHEfABgPpQJ+SAiIiIiIiIiIiL12OhTUG70te23FRZWdiYZB9U8bPaVwkaGQtjDNByISgAAjGrrxcYS88F8KJHl45FJYhMREREREREREVUHbPQplG70mWLPRKq52OxTwkaGQtjDNLz84zm42VkDAGwsLYw+BuZDgflQEFM+6j7JBxEREREREREREakqlhaw0fcEG31kaGz2PcFGhoLQyGhd3wn9/RqaZAzMhwLzoSC2fPTza2CSMRAREREREREREYldYvQeNvrARh8ZB5t9YCNDmXIj48jwLrC2MP6vCPOhwHwoMB9ERERERERERETiV1JcCAAoyE1ho4+NPjKSWj9TzUaGQulGBveEYz6YDwUx5IOIiIiIiIiIiEjMigqykRp3AgDQsOUQNvrY6CMjqdXNPjYyFMTQyJAUSZmPJ5gPBeaDiIiIiIiIiIhI/IoKsnHt0EgU5qcDAGzqeJhkHGz0UW1Ua5t9+YVsZAjE0sjYcu0+8wHmQxnzQUREREREREREJH5Coy/ncTTcvXubbBxs9FFtVWubfSF/32UjA+JoZBRIiwEASTkS5oP5kGM+iIiIiIiIiIiIxE+50deu/zZY2bubZBxs9FFtVmubfQ8z89jIEEEjI0tSiIPRjwAAo9t5Mx/MBwDmg4iIiIiIiIiIqDoo3ejjHn1s9JFp1Npm34wuzdnIEEFj6dXtF/A4rwAA0NjJzuhjAJgPAfOhIIZ8EBERERERERERiRkbfQps9JGp1dpmn6+rg0nispEhIzSWbiRlYkBL02zUCjAfAuZDQQz5ICIiIiIiIiIiEjOxNPrS4y+y0UeEWtzsMwU2MmSUG0vH3+2GBg42Rh8DwHwImA8FMeSDiIiIiIiIiIhIzMTS6AOA9Ifn2OgjApt9RsNGhkzpxhKXUmU+AOaDiIiIiIiIiIioOhBLoy8r+ToAwKVRNzb6iMBmn1GwkSHDxpIC86HAfBAREREREREREYmfWBp9sZdXIzv5GgDAxfM5k4yBjT4SG0tTD6CmYyNDRiyNpVOxyTgRk8J8MB9yYsgHERERERERERGRmImp0RcTthJ16rWVN/yMjY0+EiM2+wyIjQwZsTSWADAfYD6UiSEfREREREREREREYia2Rp9v54+Rn51okmYfG30kVlzG04DYyBBPYyk8Ph0A0MvXnflgPgCIIx9ERERERERERERiJsZGH/foIyrLpM0+qVSKoKAg+Pr6ws7ODs2aNcOiRYtQUlKi8TEJCQl455134OfnB3Nzc0yfPt14A9YSGxkyYmksLT4ThUtPctLDp55JxsB8KDAfRESGV1NrLCIiIiJTY51FRLUJG30KbPSR2Jm02bds2TKsX78ea9euRWRkJJYtW4bly5djzZo1Gh8jkUhQr149zJ8/H23btjXiaLXDRoaMmBpLQScj0cnTxSTxAeZDGfNBRGQcNbHGIiIiIhID1llEVFuw0aeQlxnHRh+Jnkn37Dt//jwGDRqEfv36AQB8fHywc+dOhIWFaXyMj48PVq1aBQD4/vvvjTJObSk3MoSGn7GJoZEhtsbSop7+iM/KM0lOmA8F5oOIyHhqWo1FREREJBass4ioNmCjT9X9K+tRp14AG30kaiZt9nXt2hUbN25EdHQ0/Pz8cO3aNZw9exbBwcF6iyGRSCCRSOQ/Z2ZmAgAORT1CYrZE08N0dio2GSdiUtDL1x2ZkiL5bYYkLBcqxHmQmYfQiDjUd7DBSz7uWPX3Pb3HqIikSIot1+4jKUeC0e28cexuEo7dTdJrDG0o58NQMUpjPjSrqfm4/CRGXuZ/yEq+XuXjqZOX+R8AICftX4Mc39gxjOXcuXMGPX5aWppBj09UVcaosQDNdVZUSjbqWBumzIxJywUARCZnGeT4jCHOOIxR+2LEZ+UBqDk1UE2ps2JiYnDlyhWDHT8vL89gxybSF9ZZjMEY4othrDg1JUZyjuxvS3LMMbV1RLG0AInRe1CQm4KGLYcg9b8zSP3vjE4xhHmy9PiLiAmv3DjT4y8i/eE5uDTqhpISICZ8td5jaDMGALCwdoRHy6FIiT2u9xj5WbIcxMfHs86iKjErKW9RcQMrLi7G3LlzsXz5clhYWEAqlWLJkiUIDAzU6vE9evRAu3btEBISovE+CxYswMKFC/U0YiIiIpnu3bvD1dVwV8qGhYWhc+fOBjt+TYlRWFiII0eOICMjA05OTgaLU90Yo8YCWGcREZH+9e7dG3Z2dgY7fk2of4wVh3WWeqyziIioumKdJY4YhqqxTHpl365du7B9+3bs2LEDAQEBiIiIwPTp0+Hp6YlRo0bpJUZgYCBmzJgh/zkzMxNNmjTBi15uaFW/6i9keHw6LsWno5OnCzo+2YfsdGwKbqVkq9xmCEIcf/c6+PdxNtzsrNHfryGsLfS3FaO2z6VAWoyD0Y/wOK8AA1p6oIGDjd5jaENdPvQdQxPmo6yano8zsSm4mZINj1Yj4OLRUW/HVZaeEI6EW9vg0+lj2Dk1YQwt4wzx98Tr/h5q75NXKMXyc3fwX2YeArv7oZmbg04xzt1PxfrwWHzwwQcYPny4Poat1sCBA7F//36DHb+mxMjMzISzs7PBjl9dGaPGAjTXWfOe94N/PUe9xVEmvAcX9fSHr6s9Y5g4hrHiMEbti7EvMh67IxOqfX1SU2LkZf6H2EsrsainP/q2aGCQGJHJWRix9zKWLVuGDh06GCQGUDPqH2PFYZ2lHussxmAM8cUwVpyaEuOHK3E4EZsCl0bdYOfsK7+9pLgQqXEnUJifDnfv3rCyd690jPT4v5GXfgd16rWFY702Oj02K/k6spOvVfjYqsSoSGFuClLi/oCZuSVKpPkGiSHIy4hB+sNzmNjRB+M6+BgkBussccUwVI1l0mbfrFmzMGfOHAwbNgwA0KZNG8TFxWHp0qV6K5BsbGxgY1O20TG8rRfGV/HNs/hMFC7Fy/74zn+hpfz2SYcicCslGwNbeqjcrm9CnHtpOejUyM0ge5Bp81yEPeHyiopxduyLOu8Jp6/XS1M+9BmjPMyHqtqSj5sp2XDx6IiGfm/o9djKEm5tg7t3T4MVFTUphhCnbUNnDG9TdrJLeH8k5khwevTzld7Dcn14bBVHSWRYxqixAM111ivN6uMF78p/MazI+vBY9G3RAB08XBhDBDGMFYcxaleMmLRc7I5MqBH1SU2IkZV8HbGXVsLX1d7gf0+IxI51FmMwhjhjGCtOTYhx7n4qTsSmwOOpofL5LGGPvmKpBM+8safKe/TdPj0Peel34O7TG74dtd9rL/byaiTc2qbVHn2VjVGRzMQIRBwcAacGbWHv0hyPbv+s9xjKHkXvRfrDc/B0tGOdRVWiv0tcKiE3Nxfm5qpDsLCwQHFxsYlGpL3FZ6IQdDJSbSPDWBKfrK9c38HGII0MbQgT5zeSMnH83W6VnjivKuZDhvlQEEM+SFzE8v4gMobqXGMRERERiRnrLCKqaYRGX87jaLTrv63Kjb7Kir28GjFhK7Vq9BmK0OhzcPND235bYWbO+USqPkx6Zd+AAQOwZMkSeHl5ISAgAFevXkVwcDDGjh0rv09gYCAePnyIrVu3ym+LiIgAAGRnZyM5ORkRERGwtrZGq1atjDJuMTQywh6m4UBUAgBgVFsvNpaYD+ZDiRjyQeIilvcHkbFU1xqLiIiISOxYZxFRTcJGn0LpRp+ldR2TjIOoskza7FuzZg2CgoIwadIkJCUlwdPTExMmTMCnn34qv09CQgLu37+v8rj27dvL//vy5cvYsWMHvL29ERsba/Axi6WR8fKP5+BmZ43EnALYWFoYfQximThnPmSYDwUx5IPERSzvDyJjqo41FhEREVF1wDqLiGqK4qJ8NvqeYKOPagKTNvscHR0REhKCkJAQjfcJDQ0tc1tJSYnhBlUOMTUyWtd3gr97HWy+er/iB+mZWCbOmQ8Z5kNBDPkgcRHL+4PI2KpbjUVERERUXbDOIqKaIi5iAwrzUtnoY6OPagiT7tlXnYitkXFkeBdYWxg/fWKZOGc+ZJgPBTHkg8RFLO8PIiIiIiIiIiKxKch+xEafCBp9xUX5Ro9JNRNnw7UgxkYG94RjPpgPBTHkg8RFUiQVxfuDiIiIiIiIiEiMvDpMZKPPxI2+ooJsxEVsMHpcqplMuoxndcBGhoxYJs6ZDxnmQ0EM+SDx2XLtPjIkRWz0ERERERERERGpYefkbZK4bPTJFBVk49qhkSjIfmT02FQz8cq+crCRobDl2n02lsB8KGM+SMySciRs9BERERERERERiQgbfTJCoy/ncTS8Okw0enyqmdjs04CNDJkCaTEA00+cMx8yzIeCmPJB4jO6nTcbfUREREREREREIsFGn4xyo69d/20mu8KSah42+9RgI0MmS1KIg9Gyy4hNOXHOfMgwHwpiyceh6ESjxyXtNHayM/UQiIiIiIiIiIgIbPQJSjf6TLVnItVMbPaVwkaGTJakEK9uv4DHeQUATDdxznzIMB8KYspH6pN8EBERERERERERUVls9Mmw0UeGxmafEjYyZIRGxo2kTAxo6WH0+ALmQ4b5UBBfPhoaPT4REREREREREVF1kB5/kY0+sNFHxsFm3xNsZMgoNzKOv9sNDRxsjD4GgPkQMB8KzAcREREREREREVH1kf7wHBt9bPSRkbDZBzYyBKUbGdwTjvkAmA+BWPJBREREREREREQkZlnJ1wEALo26sdHHRh8ZSa1v9rGRISOWRgbzIcN8KDAfRERERERERERE1UPs5dXITr4GAHDxfM4kY2Cjj2ojS1MPwJTYyJARSyPjVGwyTsSkMB/MhxzzQUREREREREREVD3EXl6NmLCVqFOvrbzhZ2xs9FFtVWubfYeiEvBbdCIbGSJqZLCxxHwoYz5IrPZFxpt6CEREREREREREoiI0+nw7f4z87ESTNPvY6KParNYu48lGn3gaGeHx6QCAXr7uzAfzAYD5IPFafCYKuyMTTD0MIiIiIiIiIiLRUG70cY8+NvrINGpts2+QXwM2MkTQyFh8JgqXnjSXevjUM8kYmA8F5kNGLPkgcRGWfh7i72HqoRARERERERERiQIbfTJs9JGp1dpmX7+WppmsZSNDQZg47+TpYpL4APOhjPmQEUs+SFyU93h93d/T1MMhIiIiIiIiIjI5MTT6JNkJbPQRoRY3+0yBjQwF5YnzjiZqLjEfCsyHjFjyQeKi/P4w1RXhRERERERERERiIoZGHwA8itrNRh8R2OwzGjYyFMQwcc58KDAfMmLJB4mLGN4fRERERERERERiIoZGX2FuCgDA2t6djT4isNlnFGxkKIhh4pz5UGA+ZMSSDxIXMbw/iIiIiIiIiIjERAyNvszECKTE/QEAaOA3mI0+IrDZZ3BsZCiIYeL8QWYe8/EE8yEjlnyQuIjh/UFEREREREREJCZiafRFHBwBK1sXAIC5hbXRx8BGH4mR1s2++Ph4vQeXSqUICgqCr68v7Ozs0KxZMyxatAglJSXlPu7UqVPo0KEDbGxs0Lx5c4SGhup9bPrARoaCWCbOQyPimA8wHwKx5IPERSzvD6pd9F1n1fQai4iIiEgbnMsiItIfMTX6HNz8UNe7l0nGwEYfiZXWzb6AgADs2LFDr8GXLVuG9evXY+3atYiMjMSyZcuwfPlyrFmzRuNjYmJi0K9fP/Ts2RMRERGYPn06xo0bh6NHj+p1bPrARoaMGCbOE3MkAID6DjbMB/MBQDz5IHERw/uDaid911k1vcYiIiIi0gbnsoiI9ENsjb62/bbCzNz484ls9JGYWWp7xyVLlmDChAnYu3cvvv32W7i5uVU5+Pnz5zFo0CD069cPAODj44OdO3ciLCxM42M2bNgAX19frFy5EgDg7++Ps2fP4uuvv0afPn2qPCZ9YCNDQQwT52EP03AgKgEAMKqtF/PBfIgmHyQuYnh/UO2l7zqrptZYRERERLrgXBYRUdWJsdHHPfqIytK62Tdp0iS89tpreO+999CqVSt89913GDBgQJWCd+3aFRs3bkR0dDT8/Pxw7do1nD17FsHBwRofc+HCBfTu3Vvltj59+mD69Olq7y+RSCCRSOQ/Z2ZmAgAORT1CYrZE7WOq4kFmHvZFyhoZTV0dsOrve3qPIQiPTwcAnIpNVrldUiTFlmv3kZQjweh23jh2NwnH7ibpNYY2TsUm40RMCnr5ugOQTaTrO0ZFHmTmITQiDjYWFigsluLCg8cax1FVzEfFalo+Lj+JkZf5H7KSr1dluBrlZf4HAMhJ+9cgx69JMZTj6Pr7q+37AwCuPcqo/ACJNNB3nWWMGgvQXGdFpWSjjrXWZaZOYtJyAQCRyVkGOT5jiDMOY9S+GPFZeQCqf31SU2IIx45Jy8WVhHSDxDD03yqqnarrXBbAOosxGEOMcWpKjOQnF6okxxyT1xGapMdfRPrDc3Bp1A0lJUBM+GqtYgjzZOnxFxETXrXxSrIT8ChqN6zt3eHi2RX//fO93mNoIsR4/OAsEiJ3oiA3BQ1bDkHqf2eQ+t8ZvcTITo0EIKt/WWdRVZiVVLSouBpr167FRx99BH9/f1haqhYYV65c0fo4xcXFmDt3LpYvXw4LCwtIpVIsWbIEgYGBGh/j5+eHMWPGqNzn8OHD6NevH3Jzc2FnZ6dy/wULFmDhwoVaj4mIiEgbTz/9NLy9vQ12/LCwMHTu3Nlgx68pMQoLC3HkyBFkZGTAycnJYHGMSR91ljFqLIB1FhER6V/37t3h6mq4lTdqQv1jrDg1rc6qTnNZAOssIiLSP9ZZ4ohhqBpL51OB4uLi8Ouvv8LV1RWDBg0qUyDpYteuXdi+fTt27NiBgIAA+brlnp6eGDVqVKWPqywwMBAzZsyQ/5yZmYkmTZrgRS83tKqvvxcyMUeCA1EJcLOzhqutNW6nZqOTpws6erroLUZpp2NTcCtFEadAWoyD0Y/wOK8AA1p6oIGDjd5jaCM8Ph2X4tO1fkxlYlREOR/9/Rriwn+P9R6jNOZDs5qajzOxKbiZkg2PViPg4tFRD6MuKz0hHAm3tsGn08ewc2rCGFrG0fZ3S9f3BwBEp2TjRGwKZs+ejeHDh1dtwOUYOHAg9u/fb7Dj15QYmZmZcHZ2NtjxjU1fdZYxaixAc50173k/+Ndz1FscZefup2J9eCwW9fSHr6s9Y5g4hrHiMEbti7EvMh67IxOqfX1SU2LkZf6H2EsrMbGjD7p51TVIjJi0XASdjMSqVavQoUMHg8QAakb9Y6w4NanOqm5zWQDrLMZgDDHGqSkxfrgShxOxKXBp1A12zr5q75OVfB3ZyddQp15bONZro3OM9Pi/kZd+p9KPB4DC3BSkxP0BK1sX1PXuVWaPPn3EqEha/AXkp98FYA53n1dgZe+u9xh5GTFIf3gOQ/w98Lq/p96PD7DOElsMQ9VYOlU33333HT7++GP07t0bN2/eRL169aoUfNasWZgzZw6GDRsGAGjTpg3i4uKwdOlSjQVSw4YNkZiYqHJbYmIinJyc1J4JZWNjAxubspP6w9t6YXwHnyqNXxD2MA0v/3gOnRq54cjwLvjkj5u4nZqNgS09DLrv06RDEbiVIosz7dmmeHX7BeQVFePs2Bf1tgeZcgxtnsviM1G4FB+r055XusaoSOl8ONpY6T2GOsyHejU9HzdTsuHi0REN/d7QyzHVSbi1De7ePQ1WuNSkGEIcbX63KvP+AIDt1//DidiUqg6TqAx91lnGqLEAzXXWK83q4wVv/X8JEqwPj0XfFg3QwcOFMUQQw1hxGKN2xYhJy8XuyIQaUZ/UhBhZydcRe2klunnVxfA2hmkoXklIR9DJSIMcm2q36jiXBbDOYgzGEGucmhDj3P1UnIhNgcdTQ9XOZ8VeXo2EW9uqtEff7dPzkJd+B+4+veHbUfdjCHv0OTVoq3GPvqrGqEhRQTYu7ngRAODhPwxP9Viq9xgA8Ch6L9IfnkPbhi6ss6hKtG72vfrqqwgLC8PatWsxcuRIvQTPzc2Fubm5ym0WFhYoLi7W+JguXbrg8OHDKrcdP34cXbp00cuYdCU0MlrXd5I3MoxNUiTFq9sv4EZSJo6/201vjQxdLT4ThaCTkTpPnOsT86HAfMiIJR8kLmJ4fxAp03edVRNqLCIiIqKq4lwWEZFuYi+vRkzYyio1+qpKaPQ5uPlpbPQZWlFBNq4dGonC/HQAgE0dD6OPgUhXWjf7pFIp/vnnHzRu3FhvwQcMGIAlS5bAy8sLAQEBuHr1KoKDgzF27Fj5fQIDA/Hw4UNs3boVAPDBBx9g7dq1mD17NsaOHYs///wTu3btwqFDh/Q2Lm2JoZEBAFuu3UeGpIiNJeZDjvlQEEM+SFzE8P4gKk3fdVZ1r7GIiIiI9IFzWURE2mOjT0Zo9OU8joa7d2+kxB4x+hiIKkPrZt/x48f1HnzNmjUICgrCpEmTkJSUBE9PT0yYMAGffvqp/D4JCQm4f/++/GdfX18cOnQIH330EVatWoXGjRtj06ZN6NOnj97HVx4xNDIKpLKzxpJyJDgz5gU2lpgPAMyHQCz5IHERw/uDSB1911nVucYiIiIi0hfOZRERaYeNPhnlRl+7/tsQf/sXo4+BqLIqvyOxHjg6OiIkJAQhISEa7xMaGlrmth49euDq1auGG1gFxNDIyJIU4mD0IwDA6HbebCwxHwCYD4FY8kHiIob3B5GxVNcai4iIiEjsWGcRUU3DRp9M6UafU4N2bPZRtWJe8V1ImVgaGa9uv4DHeQUAgMZO6jdzNjQxTJwzHwrMh4xY8kHiIob3BxERERERERGRmLDRJ6Ou0UdU3bDZpwMxNTJuJGViQEvTbQwqholz5kOB+ZARSz5IXMTw/iAiIiIiIiIiEpPkmKNs9IGNPqo52OzTktgaGcff7YYGDjZGHwMgjolz5kOB+ZARSz5IXMTw/iAiIiIiIiIiEpuUe7+z0cdGH9UgbPZpQYyNDO4Jx3wAzIdALPkgcRHD+4OIiIiIiIiISIzcm77GRp8IGn3JMUdNEpdqHktTD0Ds2MhQEMPEOfOhwHzIiCUfJC6nYpNxIiaFjT4iIiIiIiIiIjXq+fYxSVw2+hRiL69Gyr3fTRKbah42+8rBRoaCGCbOmQ8F5kNGLPkg8TH1+4OIiIiIiIiIiFSx0acQe3k1YsJWwr3pa2z4kV5wGU8N2MhQZeqJc+ZDFfMhrnyQ+PTydWejj4iIiIiIiIhIJNjoUxAafb6dPzbZFZZU87DZpwYbGQrh8ekATDtxznwoMB8yYssHiU8Pn3qmHgIREREREREREYGNPmXKjT5T7ZlINRObfaWwkaGw+EwULj1pZphq4pz5UGA+ZMSYDyIiIiIiIiIiIiqLjT4FNvrIkNjsU8JGhsLiM1EIOhmJTp4uJokPMB/KmA8Z5oOIiIiIiIiIiKh6kGQnsNH3BBt9ZGhs9j3BRoaC0MhY1NMfHU3UzGA+FJgPGeaDiIiIiIiIiIio+ngUtZuNPrDRR8bBZh/YyFCm3MjgnnDMB8B8KBNDPoiIiIiIiIiIiMSsMDcFAGBt785GHxt9ZCS1vtnHRoaCGBoZzIcC8yHDfBAREREREREREVUPmYkRSIn7AwDQwG8wG31s9JGR/L+9ew+Psr7z//8KCRnCIQJCIOGQIArGaqEUdCkqnoCtoLa7UltBUFp/u4WrWt2eWOulFmrVta3tbuu2roIFq7WVtiItcvgKKFoIIlQOTQQSIhAOgYQQiBNIPr8/biafBHKYJDNzf2byfFzXfV1NuGfe9/jKDO++32SmQy/7WGRYLiwy9lVUkcdZ5OEhDwAAAAAAACA+VBzaoi1vTFfnLj0lSZ2SU2N+DSz60FF12GVfYdlJFhlnubLIWLhlL3mIPELIA67afeyk35cAAAAAAADglNCir1vvYbow+0ZfroFFHzqyDrvs+8l7u1hkyI1FxqGTQUlSRrcAeZCHJPKAuzbuL9OP3inw+zIAAAAAAACcUX/RN2Lyb5TUKfbzRBZ96Og67LJvQHoaiwwHFhkb95dpaX6JJGnmiMHkQR7kAWeF3vp5UHqa35cCAAAAAADghHMXfXxGH4s++KPDLvu+edVQFhkOLJYmLFqv3mneezcHUpJjfg3kYZGH5UIecEv9z3j9zrhL/L4cAAAAAAAA37mw6KutqWbRB6gDL/u6dGaR4cJi6fKMdE0Z1t+XayAPizwsF/KAW+o/P5ZPG6s0H/7+AAAAAAAAcIkLiz5JOlTwGos+QB142RdrLDKscwfnqcmx/zEkD4s8LBfygFvOfX748RvhAAAAAAAALnFh0WdqT0uSqk+VsugD5POyLycnR0lJSecdc+bMafT806dP6wc/+IGGDh2qLl26aMSIEVq+fHmMr7r1WGRYLgzOycMiD8uFPOAWF54fQHt0lD4LAAAgluixAHR0Liz6zlRX6uje1ZKk/sNvZ9EHSErxs3heXp5qamrqvt62bZsmTJigqVOnNnr+97//fS1evFjPPfecLr30Ur355pv64he/qHfffVef+cxnYnXZrcIiw3JhcB48U0MeZ5GH5UIecIsLzw+gvTpCnwUAABBr9FgAOjJXFn1bl83Q6U/KJUmB7pkxvwaJRR/c4+tv9vXt21f9+/evO9544w0NHTpU48ePb/T8RYsW6T//8z91880366KLLtLXv/513Xzzzfrxj38c4ysPD4sMy5XB+Ytbi8lD5FGfC3nALa48P4D2SvQ+CwAAwA/0WAA6KpcWfSePFahP9k0xrx/Cog8u8vU3++qrrq7W4sWL9eCDDyopKanRc4LBoLp06dLge2lpaXrnnXeavN9gMKhgMFj3dUVFhSRpWf5BHaoMNnWzdtl0oFyS9N8b9+iTMzW6e2S2Vuw+rBW7D0elzpqiI02es6boiFYXlurGIX0keYuNSNdoyb6KKi3cslcZ3QK6IaePfrZhT8RrtGTDvjJJ0oETn+hro3LIgzzq/qw9ebx/tkZVxcc6ceTDNl1nS6oqPpYknSzbFZX7T6Qa9eu09ee3peeHJG09eFyStH79+rZfaBjKysqiev/oWGLdZ+WXVqp7anTazMKyU5KknUdOROX+qeFmHWp0vBoHTlRJiv/+JFFqhO67sOyUNpeUR6VG6Odp586dUbn/kKqqqqjePzqWaPVYodvRZ1GDGm7VSZQaR056ry1HClfU9REtCVaW6GD+H5TatY96Zn1OH//9hWbPD83Jyg/8TYWb2ne9IbU11TpU8JqqT5Wq//DbdaJ0e8RrnKuxx1F+4G8q379ePQeMkzFS4aaft6tG5VGv9zlwooo+C+2SZIwxfl+EJL366qu68847VVxcrKysrEbPufPOO7V161b96U9/0tChQ7V69WrddtttqqmpadAA1ffoo4/qsccei+alAwAQFVdffbV69Yreb71u3LhRV155ZdTuPxY1Tp8+reXLl+v48eNKT0+PWp14R58FAIB10003KS0tLWr3H4seKxZ16LNaFq0eS6LPAgDEp0Tos+K1x3Jm2Tdp0iSlpqZq6dKlTZ5z5MgR3XvvvVq6dKmSkpI0dOhQ3XTTTXrhhRea3Bo39i+hBg0apPGDe+uyjMg3q9U1tfrth/tUdaZWuX2667qcPhGvEbK2qFQ7Sis1JqunRmf1bPBnmw6UK+9AeaN/FqkaLTl0Mqil+SXqnZaqKcP6KzW58XeNbU+NllTX1OqNgoM6fLJaRopKjRDyaFmi5bGuqFTbSyuVedl09cwc3b4LbkJ5ySaV7FisnDH/obT0QdQIs05rsw33+SHZn63bc7P0hdzIvS981ekaPbX+I31cUaXJF/fTa/8o0eLFizVt2rSI1TjXrbfeqtdffz1q9x+LGhUVFbrgggsYQrUg1n3WQ9cMU27fHhF/HJK0vviont1UpHnX52pIr67U8LlGrOpQo+PV+NPOA/rDzpK4708SpUZVxccqyvuxvj46R+MGXxiVGqGfq8Vf/GzU/g7ZeeSEpv/xfb3//vsaNWpUVGpIsemxYlGHPqtl0eqxJPosalDDxTqJUmPB5r1aXVSqngPGKe2CIc2ee/pUqUr3rlLnLj11YfaNSuoU3kedlB/YoKryj9S97wj16HtFu67X1J7W0b2rdfqTcvXJvkmdu/aJeI2m1K8hSZVHtka8XtXxQpXvX6/bczP1hdzG/+FIe9FnuVUjWj2WE2/juXfvXq1atUpLlixp9ry+ffvqT3/6kz755BMdPXpUWVlZ+t73vqeLLrqoydsEAgEFAoHzvj9txGDdOyqnvZfewIngaf3zS+/pTG2tJOnOKwZF9TPAZi/boh2llbp1eGaDOvPX5SvvQFFEPoOsqRotCX3m1ZgBvVv8zKu21mhJKI+qM7X6Ym6mluwsiXiN+sijeYmax/bSSvXMHK3+w77Y3ktuUsmOxeqTfX3UGpdEqhGq05qfrdY8PyT7szWi/wWadkVkBmqh58ehk0GtvfsafXSsUq/9oyQi9w340WdNHJqha7Oj9w+ent1UpJsv6adRmT2p4UCNWNWhRseqUVh2Sn/YWZIQ/Uki1Dhx5EMV5f1Y4wZfGLH+pzHPbipSbt8eUX/NAiIhmj2WRJ9FDWq4WicRaqwvPqrVRaXKvHRqs/Os0Gf0pfcb0erP6PvH2odUVf6R+uTcpCGj2/6ZdqHP6KutCeqzX3xN6f1GRrxGc0I1UlK7q3z/+qh8Rt/Bgj+qfP96jejfkz4L7dL0ry7E0IIFC5SRkaHJkyeHdX6XLl00YMAAnTlzRq+99ppuu+22KF9hy0KD2m2HK3TL8Mj9pkdrzV+Xr4ff2hmRRUZbhQbnl2ekhzU4j4b6eay8a5z6dTu/QY4F8vCQB1zl4vPjygHRe9tOdEyJ0GcBAAC4hh4LQCILLfq69R7W6kVfpIQWfSePFWjklMUNFn2xFq1FHxBJvi/7amtrtWDBAs2cOVMpKQ1/0XDGjBmaO3du3dcbNmzQkiVLtGfPHr399tv653/+Z9XW1uo73/lOrC+7ARYZFoNzizw85AFX8fxAR5AIfRYAAIBr6LEAJDIWfdaJIx9KknoOGMeiD87z/W08V61apeLiYs2aNeu8PysuLlanTnYf+cknn+j73/++9uzZo+7du+vmm2/WokWL1LNnzxhecUONDWoXbtkb8+twYZHB4NwiDw95wFU8P9BRxHufBQAA4CJ6LACJikWfVfT+z1V5ZKskqWfWP/lyDUBr+L7smzhxoowxjf7ZmjVrGnw9fvx47dixIwZXFR5XBrVrio5odWEpiyXyqEMelgt5wC08P9CRxHOfBQAA4Cp6LACJiEWfVfT+z1W48cfq3ndE3cIPcJ3vb+MZr1wa1Pq9yGBw3hB5kAfcxfMDAAAAAACgIRZ9VmjRN+TK/1CPvlf4cg1AW7DsawNXBrWbDpRLkm4c0ofFEnlIIo/6XMgDbuH5AQAAAAAA0BCLPqv+oo/P6EO8YdnXSq4Mauevy1fe2WXGdTl9fbkGBucWeXjIA67i+QEAAAAAANAQiz6LRR/iHcu+VnBlUDt/Xb4efmunxmT19KW+xOC8PvLwkAdcxfMDAAAAAACgoaqKvSz6zmLRh0TAsi9MrgxqQ4uMedfnarRPywwG5xZ5eMgDruL5AQAAAAAAcL7izc+y6BOLPiQOln1hcGVQW3+RwWfCkYdEHvW5kAfcwvMDAAAAAACgcand+7Poc2DRV1Wx15e6SDws+1rgyqDWhUUGg3OLPDzkAVftq6ji+QEAAAAAANCE7JH/zqLP50VfxaEtKt78rC+1kXhY9jXDlUGtC4sMBucWeXjIAy5buGUvzw8AAAAAAIAmdErpEvOaLPqsikNbtOWN6Urt3t+X+kg8LPua4Mqg1pVFBoNzD3l4yAOuy+gW6PDPDwAAAAAAAFew6LNCi75uvYcpe+S/+3INSDws+xrhyqDWhUXGoZNBSQzOJfIIIQ8rlAfcM3PE4A79/AAAAAAAAHAFiz6r/qJvxOTf+PIblkhMLPvO4cqg1oVFxsb9ZVqaXyKJwTl5eMjD8vI46EtttCyQkhzzmq48PwAAAAAAAFzBos86d9Hnx2cmInGx7KvHlUGtK4uMCYvWq3daqqSOPTgnDw95WKE8LjybB+DK8wMAAAAAAMAVtTXVLPrOYtGHaGPZd5Yrg1qXFhmXZ6RryjB/PiCUPCzysFzLY/Kwfr5cA9ziyvMDAAAAAADAJYcKXmPRJxZ9iA2WfXJnUOvaImP5tLFKTY79jwh5WORhkQdc5MrzAwAAAAAAwBWm9rQkqfpUKYs+Fn2IkQ4/qXZlUOviIoPPhCMP8rBcyANuCZ6pceL5AQAAAAAA4Ioz1ZU6une1JKn/8NtZ9LHoQ4yk+H0BfmKRYbmwyHBlcE4eHvKwXMgD7nlxa7GOB8+w6AMAAAAAAJC36Nu6bIZOf1IuSQp0z/TlOlj0oSPqsL/Z98lpFhkhriwyXtxaTB4ij/rIAy6qrqmVJB0+GWTRBwAAAAAAILvoO3msQH2yb/LtOlj0oaPqsMu+ZzbsZpEhNxYZrgzOycNDHpYLecAtJ4Kn9UbBQUnS3SOzWfQBAAAAAIAOr/6ib+SUxerctY8v18GiDx1Zh1327a+oYpHhwCLDlcE5eXjIw3IhD7gl9NbPx6qqJUkD09N8viIAAAAAAAB/nbvo4zP6WPTBH74u+3JycpSUlHTeMWfOnEbPv+666xo9f/Lkya2u/eDYi1lkOLBYcmFwTh4e8rBcyANuqf8Zr7cM9+f95oHW8rPPAgAASFT0WABgseizWPTBbyl+Fs/Ly1NNTU3d19u2bdOECRM0derURs9fsmSJqqur674+evSoRowY0eT5zRnSq1vrLzgCWGR4zh2cL9lZEvNrkMgjhDwsF/KAW+o/P1beNU4Lt+z1+5KAsPjZZwEAACQqeiwA8Liy6Cs/8DeV71/Pog8dnq/Lvr59+zb4+oknntDQoUM1fvz4Rs/v3bt3g69feeUVde3aNW4aJBYZHlcG5+ThIQ/LhTzglnOfH1cO6MWyD3Gjo/VZAAAAsUCPBQDuLPoksegDzvJ12VdfdXW1Fi9erAcffFBJSUlh3eb555/Xl7/8ZXXr1vRv6QWDQQWDwbqvKyoqJEnL8g/qUGWwqZu1y6YD5ZKkNUVH6r63puiIVheW6sYh3oeTzl+XH5U6zdlXUaWFW/Yqo1tAN+T00c827Il4jZYEz9Toxa3FOnwyqLtHZmvF7sMRr9GYc2uQh4c8rLbk8f7ZGuUlm9p6mS0K3ffJsl1Rq1FV8bEkqXTvW1GrE3oc0axRv04kfn4be37E6jmy9eBxSdL69eujVkOSysrKonr/cEes+6z80kp1T41Om1lYdkqStPPIiajcPzXcrEONjlfjwIkqSbHpgajRstB9F5ad0uaS8qjUiMXPVei+d+7cGbUaklRVVRXV+4c7otVjSfRZ1KCGi3USpcaRk95ry/GDbZtn1Z75RHu3/K+qKw9q8Kiv69TxQp06XtjgnKqzX5cf+JsKozQ2Ky1aJUnq2usSdekxSAcL/hjxGqHHUXl0Z6P3X1WxV8Wbn1Vq9/7KHD5VpUUrW10jlMOBE1X0WWGgz2pakjHG+H0RkvTqq6/qzjvvVHFxsbKyslo8f+PGjbrqqqu0YcMGXXnllU2e9+ijj+qxxx6L5KUCAJAwrr76avXqFb3PsN24cWOzf0+31+nTp7V8+XIdP35c6enpUasT7+izAACIrZtuuklpadH9HHT6LP9Fq8eS6LMAAGhKtPuseO2xnFn2TZo0SampqVq6dGlY5//bv/2b3nvvPf39739v9rzG/iXUoEGDNH5wb12WEZ1mdW1RqXaUVmpMVk9JUt6Bco3J6qnRZ7+ORp3m7vvQyaCW5peod1qqpgzrr9TkThGv0ZLqmlq9UXBQx6qqdcvwTPXrFoh4jeaEagzo3kX7Kz8hD/KoE4k8rszqqc+2M49lBYd0tKpatwzv3yCPdUWl2l5aqczLpqtn5ug212hOeckmlexYrAE9Atp/IhiVPEKPo6X/Vl4eB3VhWqomD+vXqjzq12nPY2ju+SHF9jkiSbfnZuoLuS0PDlprffFRPbupSIsXL9a0adMifv8ht956q15//fWo3X9FRYUuuOAChlAtiHWf9dA1w5Tbt0e7rrkpoZ/dedfnakivrtTwuUas6lCj49b4+ugcZfWIzv+RX1N4RKuLSpUz5j+Ulj4oKjWqKj5WUd6PdXtupkb07xmVGlsPlusPO0ui+t8qVCNRfq4Wf/GzUft7aueRE5r+x/f1/vvva9SoUVGpEUKf5b9o9VgSfRY1qOFinUSrcXtupvqeM/OIlNBco+eAcUq7YEhE7/vEkQ9VeWSruvQYpE9OfKwxmT01ekDPiNYIKSit1Oqi0qj+twrVSJSfq0Tos+K1x3LibTz37t2rVatWacmSJWGdf/LkSb3yyiv6wQ9+0OK5gUBAgcD5T8RpIwbr3lE5rb3UsMxetkU7SiuVHkjR6sLSqH0GWajOrcMzm7z/0GeQjRnQu02fQRZOjZaEPvOq6kyt3pk1XlcOaPgbJJGo0ZJQjf2Vn5AHedSJVB63RCCPU2dq9M6saxvNY3tppXpmjlb/YV9sU41wlOxYrP0nglHNY3sL/61sHr3a/JmJoTpt/flt6fkRqhHt58iVz62RJN04pI9+/6WrolJDkp7dVBS1+4Y7/OizJg7N0LXZfVp9reF6dlORbr6kn0Zl9qSGAzViVYcaHbPG10blRLXG6qJS9cm+Xj36XhGV+z9x5EMV5f1YX8jN0rQrorNQfOnDj/WHnSVR/W8VqpEoP1e5fXtE/XURiS+aPZZEn0UNarhaJ5FqzL1meNRqhGYnmZdOjeg8q+j9n6tkx2INufI/1KXHIO1c/U3demn05jMvffixVheVRvW/VahGovxc0Wf5p3W/MhElCxYsUEZGhiZPnhzW+b///e8VDAY1ffr0KF9Z+0Rz0ReO0OD88oz0Ng/O2ys0ON92uEIr7xrX6OA8FkKfsXXjkD7kQR6SyKMx5OFGHvPX5Svv7HPkupy+vlwDEkui9lkAAAB+oscCgNgqev/nKtz4Yw258j+U89n7/L4cwDm+L/tqa2u1YMECzZw5UykpDX/RcMaMGZo7d+55t3n++ef1hS98QRdeeGGsLrNVWGR4GJxb5GGRh8eVPOojD//zmL8uXw+/tbPubaCB9krEPgsAAMBv9FgAEFss+oCW+f42nqtWrVJxcbFmzZp13p8VFxerU6eG+8j8/Hy98847WrFiRawusVVYZHhcHJyHcok18rDIw+NKHi4gDyv0/Jh3fa4OnKjy7TmCxJJofRYAAIAL6LEAIHZY9AHh8X3ZN3HiRBljGv2zNWvWnPe94cOHN3m+31hkeBicW+RhkYfHlTxcQB5W/efH968drtnLtvhyHUg8idRnAQAAuIIeCwBig0UfED7f38YzUdQf1I726e3XGJxb5w7O/UAeFnl4XMnDBeRhufD8AAAAAAAAcAmLPqB1WPZFgAuDWgbnFnl4yMMiD7eQh+XC8wMAAAAAAMAlLPqA1mPZ104uDGr3VVQxOD+LPDzkYZGHW8jDcuH5AQAAAAAA4BIWfUDbsOxrB1cGtQu37GVwLvIIIY+GyMMt5OFx4fmx+9hJX+oCAAAAAAA0hkUf0HYs+9rIhUHtoZNBSVJGtwCDc/KQRB71kYdbyMNy4fmxcX+ZfvROgS+1AQAAAAAAzsWiD2gfln1t4Mqgdml+iSRp5ojBDM7JgzzqIQ+3kIflyvNjwqL1GpSe5kt9AAAAAACA+lj0Ae3Hsq+VXBrU9k5LlSQFUpJjfg0Mzi3ysMjD40oeLiAPy6Xnx+UZ6frOuEt8uQYAAAAAAIAQFn1AZLDsawXXBrVThvX35RoYnFvkYZGHx5U8XEAelmvPj+XTxiqtc+wXrwAAAAAAACEs+oDIYdkXJhcHtanJsY+PwblFHhZ5eFzJwwXkYbn4/PDjrVQBAAAAAABCWPQBkcWyLwwMaj0Mzi3ysMjD40oeLnAhj+CZGify4PkBAAAAAADQEIs+IPJS/L4A1zGo9TA4t8jDIg+PK3m4wIU8JOnFrcU6HjzD88ORPAAAAAAAACQWfUC0sOxrBoNai8G5hzws8rBcyMMFLuRRXVMrSTp8Mqh191zL88OB5wcAAAAAAIDEog+IJt7GswkMaj31B+cslsgjhDw8ruThAhfyOBE8rTcKDkqS7h6ZzfODRR8AAAAAAHAEiz4gulj2NYJBrYfBuUUeFnl4XMnDBa7k8c8vvadjVdWSpIHpaTG/BonnBwAAAAAAwLlY9AHRx7LvHAxqPQzOLfKwyMPjSh4ucCmPbYcrdMvwzJjXD+H5AQAAAAAA0BCLPiA2WPbVw6DWw+DcIg+LPDyu5OEC1/JYedc49esWiPk1SDw/AAAAAAAAznWk8E0WfUCMsOw7i0Gth8G5RR4WeXhcycMFLubBW9uy6AMAAAAAAO4o3fNXFn1AjLDsE4PaEAbnFnlY5OFxJQ8XkIfF8wMAAAAAAKBxfS76PIs+IEZS/L4AvzGo9TA4t8jDIg+PK3m4gDysNUVHtLqwtMM/PwAAAAAAABrTd8gkvy8B6DA69LKPRYaHwblFHhZ5eFzJwwXk0RDPDwAAAAAAAAAu8PVtPHNycpSUlHTeMWfOnCZvU15erjlz5igzM1OBQEDDhg3TX/7yl1bXXpZfwqJPDM7rI4+GyMOtPPxGHtamA+WSpBuH9OnQzw+4z88+CwAAIFHRYwEAABf5+pt9eXl5qqmpqft627ZtmjBhgqZOndro+dXV1ZowYYIyMjL0hz/8QQMGDNDevXvVs2fPVtf+c8EhFhkMzuuQh0UeHtfy8BN5WPPX5SvvbCbX5fT15RpcyAPxwc8+CwAAIFHRYwEAABf5uuzr27fhoPSJJ57Q0KFDNX78+EbPf+GFF3Ts2DG9++676tzZG27m5OS0qfZtw/qxyGBwLok86iMPj4t5+IU8rNBbP4/J6ulbLi7kgfjhZ58FAACQqOixAACAi5z5zL7q6motXrxYDz74oJKSkho95/XXX9fYsWM1Z84c/fnPf1bfvn1155136rvf/a6Sk5MbvU0wGFQwGKz7uqKi4uz/StL8dfmRfhiS7G/irCk6ct6f7auo0sIte5XRLaAbcvroZxv2RKVOc4JnavTi1mIdPhnU3SOztWL3Ya3YfTiiNcIR+ky4Ad27aH/lJ1GpEdLU4yAPizw8zuXRI6D9J4IqL9kU8RohofuO9zzaU6cloTxuHNJHFcEzUalRX2OPI5J5SNLWg8fbdXvEl1j3WfmlleqeGp02s7DslCRp55ETUbl/arhZhxrUiIYDJ6okSSfLdkWtRui+C8tOaXNJeVRqJEoeiVIj2q+5cEu0eiyJPosa1HCxDjXCd+Sk9/p1/GD05lmh+z5wooo+q4PUoM9qXpIxxvh9EZL06quv6s4771RxcbGysrIaPefSSy9VUVGRpk2bptmzZ2vXrl2aPXu27rvvPj3yyCON3ubRRx/VY489Fs1LBwAgbn36059WdnZ21O5/48aNuvLKK6N2/6dPn9by5ct1/PhxpaenR61OvKPPAgAgtq6++mr16hXdd6Sgz/JftHosiT4LAICmRLvPitcey5ll36RJk5SamqqlS5c2ec6wYcP0ySefqLCwsO5fP/3kJz/Rf/3Xf6mkpKTR2zT2L6EGDRqk8YN767KM6DSra4tKtaO0UmOyemp0Vk9J0qGTQS3NL1HvtFRNGdZfqcmdolKnOdU1tXqj4KCOVVXrluGZ6tctEPEa4dh0oFx5B8rr7jMaNc51bg3ysMjD43oeV2b11GejlMe6olJtT4A82lKnJefmEY0ajalfY9AFaRHPQ5IKSiu1uqhUixcv1rRp0yJyn4259dZb9frrr0ft/isqKnTBBRcwhGpBrPush64Zpty+PSL7IM5aX3xUz24q0rzrczWkV1dq+FwjVnWoQY1o1vj66Bxl9UiLSo2tB8v1h50lCfPfihotKyw7pYff2qn3339fo0aNikqNEPos/0Wrx5Los6hBDRfrUKP1NW7PzVTfMGc6rRWaayTKfytqtCxWfVa89lhOvI3n3r17tWrVKi1ZsqTZ8zIzM9W5c+cGb3OQm5urgwcPqrq6WqmpqefdJhAIKBA4/wVl2ojBundUTruvvTGzl23RjtJK3To8U9+/dnjdZyyNGdA7op+xdG6d5oQ+86rqTK3emTU+7M+8ak2NcHifQeY96UP3F+kajalfY+LQDPI4izw88ZDHLVHOY3sC5NHaOi1pLI9I12hKqMaozJ56edu+iOchSS99+LFWF5VG7P7gLj/6rIlDM3Rtdp/2X3wTnt1UpJsv6adRmT2p4UCNWNWhBjWiVeNro3KiVuOlDz/WH3aWJMx/K2q0bHNJuR5+a2dU7htuiWaPJdFnUYMartahRutqzL1meFT7rNVFpQnz34oaLaPPal5kfj2gnRYsWKCMjAxNnjy52fPGjRunXbt2qba2tu57BQUFyszMbLI58lto0Xd5RnrEB7XhCg3Otx2u0Mq7xrVqcB5J89fl6+G3dp43OI+lfRVV5HEWeXjIwyIPy4U8JGnhlr2+5oHEkMh9FgAAgF/osQAAgEt8X/bV1tZqwYIFmjlzplJSGv6i4YwZMzR37ty6r7/+9a/r2LFjuv/++1VQUKBly5bp8ccf15w5c2J92WFhcG4xOPeQR0Pk4SEPD3lYh85+kHVGtwCLPrRLIvdZAAAAfqHHAgAArvH9bTxXrVql4uJizZo167w/Ky4uVqdOdh85aNAgvfnmm3rggQf06U9/WgMGDND999+v7373u7G85LAt3LJXn83qxeCcwbkk8qiPPCzy8JCHtXF/mZbme5/dMXPEYBZ9aJdE7rMAAAD8Qo8FAABc4/uyb+LEiTLGNPpna9asOe97Y8eO1d/+9rcoX1X7MDi3GJx7yMMiD4s8PORhhd76uXdaqg6drFYgJbnlGwHNSMQ+CwAAwG/0WAAAwDW+v41nomFwbrk2OJfky+CcPCzysMjDQx5W/c94nTKsvy/XAAAAAAAAACD+sOyLIAbnFoNzD3lY5GGRh4c8rPp5LJ82VqnJ/PUMAAAAAAAAIDxMEyOEwbnF4NxDHhZ5WOThIQ/r3Dz4jD4AAAAAAAAArcGyLwIYnFsMzj3kYZGHRR4e8rBcyAMAAAAAAABAfGPZ104uDGqDZ2oYnJ9FHhZ5eMjDIg+LPAAAAAAAAAAkihS/LyCeuTKofXFrsY4HzzA4J4865GGRh4c8LPLwVJ2uiXlNAAAAAAAAAJHHb/a1kQuD2uqaWknS4ZNBBufkUYc8PORhkYdFHp4TwdN6av1HMa8LAAAAAAAAIPJY9rWBK4PaNwoOSpLuHpnN4Jw8JJFHCHlY5GGRhyf0mYkfV1TFvDYAAAAAAACAyGPZ10ouDWqPVVVLkgamp8X8GiQG5yHkYZGHRR4e8rBcymPb4QrNvXpYzOsDAAAAAAAAiDyWfa3g2qD2luGZMa8fwuDcQx4WeVjk4SEPy7U8Vt41TkN7d4v5NQAAAAAAAACIPJZ9YXJxUNuvWyDm1yAxOA8hD4s8LPLwkIflYh5+vZUqAAAAAAAAgMhj2RcGBrUWg3MPeVjkYZGHhzws8gAAAAAAAAAQbSl+X4DrGNRaDM495GGRh0UeHlfyWFN0RKsLS8nDkTwAAAAAAAAARA/LvmYwqLUYnHvIwyIPizw8ruQhiTzkVh4AAAAAAAAAooe38WwCg9qGGJyTR33k0RB5uJPHpgPlkqQbh/QhDwfyAAAAAAAAABB9LPsawaDWYnDuIQ+LPCzy8LiSx/x1+co7m8l1OX19uQbyAAAAAAAAABBrLPvOwaDWYnDuIQ+LPCzy8LiUx8Nv7dSYrJ6+1JfIAwAAAAAAAIA/WPbVw6DWYnDuIQ+LPCzy8LiWx7zrczXap0zIAwAAAAAAAIBfWPadxaDWYnDuIQ+LPCzy8LiYB2+l6n8eAAAAAAAAAGKPZZ8Y1NbH4NxDHhZ5WOThIQ+LPAAAAAAAAAD4zddlX05OjpKSks475syZ0+j5CxcuPO/cLl26tOsaGNRaDM495GGRh0UeHvKw9lVUkQec5kKfBQAAkGjosQAAgItS/Cyel5enmpqauq+3bdumCRMmaOrUqU3eJj09Xfn5+XVfJyUltbk+g3OLwbmHPCzysMjDQx4NLdyyV5/N6tXh84C7/O6zAAAAEhE9FgAAcJGvy76+ffs2+PqJJ57Q0KFDNX78+CZvk5SUpP79+7e7dmHZSX1rxTYG52JwHkIeDZGHhzw85GEdOhmUJGV0C3T4POA2P/ssAACAREWPBQAAXOTrsq++6upqLV68WA8++GCz/8KpsrJS2dnZqq2t1ahRo/T444/rU5/6VJPnB4NBBYPBuq8rKiokSU+985Gy0rvohpw++tmGPZF7IJI2HSiXJK0pOtL0dZ2p0Ytbi3X4ZFB3j8zWit2HtWL34YjXacmaoiNaXViqG4f0keQN0iNdo+VrKJUkdUlJjkoeUsuPgzzqXwN5hJCHJ17yiFSd5uyrqNKfdpZIki7q1S0qeUjNP45I5CFJWw8elyStX7++XdfakrKysqjeP8IT6z4rv7RS3VOj02YWlp2SJO08ciIq908NN+tQgxrUoEa81Ajd986dO6NWI6SqqirqNdC8aPVYEn0WNajhYh1qUIMa/taIVZ8Vrz1WkjHG+H0RkvTqq6/qzjvvVHFxsbKysho957333tNHH32kT3/60zp+/LiefvpprVu3Ttu3b9fAgQMbvc2jjz6qxx57LJqXDgAAmnH11VerV6/o/Pbh6dOntXz5ch0/flzp6elRqZEI6LMAAEhMN910k9LS0qJy3/RZLYtWjyXRZwEA4Kd47LGcWfZNmjRJqampWrp0adi3OX36tHJzc/WVr3xF8+bNa/Scxv4l1KBBgzRuUC99ut8F7b7uxqwtKtWO0kqNyeqp0Vk9G/xZdU2t3ig4qGNV1bpleKb6dQtEpU5LNh0oV96B8hZv254aLTl0Mqil+SVK6dRJVWdqo1IjpKnHQR4WeVjk4Ym3PNpbpzmhPHqnpapXl1T942h0cg9p7HFEMo/6NW7PzdIXcjPDvt2fdh7QH3aW6PbcTH0ht/GBRsj64qN6dlORFi9erGnTprXreptSUVGhCy64gCFUC2LdZz10zTDl9u3R7utuTOjnat71uRrSqys1fK4RqzrUoAY1qBFvNRZ/8bNR+7tQ8v5l+/Q/vq/3339fo0aNikoN+qyWRavHkuizqEENF+tQgxrUcKNGNPuseO6xnHgbz71792rVqlVasmRJq27XuXNnfeYzn9GuXbuaPCcQCCgQOH8gOnNktu4dldPaSw3L7GVbtKO0UrcOz2zwmVKhz1iqOlOrd2aNb/dnLDVVpyXz1+Ur70BRWJ951dYaLdm4v0wTFq3XmAG9ldunu57/oDjiNepr7HGQh0UeFnnEbx7tqdOc+nksnzZW3121Xf84Gvnc6zv3cUQ6j/o1RvS/QNOuGBTWbeavy9cfdpa06jMTn91U1I6rRCT40WdNHJqha7P7tPpaw/XspiLdfEk/jcrsSQ0HasSqDjWoQQ1qxFON3L49ov7aC39Fs8eS6LOoQQ1X61CDGtTwvwZ9VuM6+X0BkrRgwQJlZGRo8uTJrbpdTU2NPvzwQ2Vmhv8bCX4JDWq3Ha7QyrvGRWRQ2xbz1+Xr4bd2tmpQG2mhwfnlGelaPm2sUpNj/2NIHhZ5WOThIQ/r3Dx6BDrH/BrIA+3VEfosAACAWKPHAgAALvF92VdbW6sFCxZo5syZSklp+IuGM2bM0Ny5c+u+/sEPfqAVK1Zoz5492rx5s6ZPn669e/fqa1/7Wqwvu1UY1FoMzi3y8JCHRR4WeXiCZ2rIA+3SEfosAACAWKPHAgAArvH9bTxXrVql4uJizZo167w/Ky4uVqdOdh9ZVlame++9VwcPHlSvXr302c9+Vu+++64uu+yyWF5yqzA4txicW+ThIQ+LPCzysF7cWqzjwTMdPg+0XaL3WQAAAH6gxwIAAK7xfdk3ceJEGWMa/bM1a9Y0+PqnP/2pfvrTn8bgqiKDwbnF4NwiD4s8PORhkYenuqZWknT4ZFDr7rm2Q+eB9knkPgsAAMAv9FgAAMA1vi/7EhmDcw+Dc4s8PORhkYdFHp4TwdN6o+CgJOnukdkdOg8AAAAAAAAALfP9M/sSUf3BOYs+Buch5OEhD4s8LPLwhN76+VhVtSRpYHpazK9BciMPAAAAAAAAAOFh2RdhDM4tBucWeXjIwyIPizw89T/j9ZbhmTGvH+JCHgAAAAAAAADCx7IvghicWwzOLfLwkIdFHhZ5eOrnsfKucerXLRDza5DcyAMAAAAAAABA67DsixAG5xaDc4s8PORhkYdFHp5z8+jIvxEOAAAAAAAAoPVY9kUAg3OLwblFHh7ysMjDIg8PeQAAAAAAAABoL5Z97cSg1mJwbpGHhzws8rDIw+NKHmuKjvieBwAAAAAAAIC2S/H7AuKZS4Pa1YWlDM7Jow55WOThIQ+LPBryOw8AAAAAAAAA7cNv9rURg1qLwXlD5EEe9ZFHQ+ThTh6bDpRLkm4c0odFHwAAAAAAABDHWPa1AYNai8G5RR4e8rDIwyIPjyt5zF+Xr7yzmVyX09eXawAAAAAAAAAQGSz7WolBrcXg3CIPD3lY5GGRh8elPB5+a6fGZPX0pT4AAAAAAACAyGLZ1woMai0G5xZ5eMjDIg+LPDyu5THv+lyNZtkHAAAAAAAAJASWfWFiUGsxOLfIw0MeFnlY5OFxMQ8+ow8AAAAAAABIHCz7wsCg1mJwbpGHhzws8rDIw0MeAAAAAAAAAKKNZV8LGNRaDM4t8vCQh0Uelgt57KuoIo+zXMgDAAAAAAAAQPSw7GsGg1qLwblFHh7ysMjDciEPSVq4ZS95yJ08AAAAAAAAAEQPy74mMKhtiMG5hzw85NEQeXhcyOPQyaAkKaNbgDwcyGP3sZO+1AUAAAAAAAA6EpZ9jWBQazE4t8jDQx4WeVgu5LFxf5mW5pdIkmaOGEweDuTxo3cKfKkNAAAAAAAAdCQs+87BoNZicG6Rh4c8LPKwXMljwqL16p2WKkkKpCTH/BrIwwrlMSg9zZf6AAAAAAAAQEfCsq8eBrUWg3OLPDzkYZGH5VIel2eka8qw/r5cA3lY9fP4zrhLfLkGAAAAAAAAoCPxddmXk5OjpKSk8445c+Y0ev6SJUs0evRo9ezZU926ddPIkSO1aNGiiFwLg1qLwblFHh7ysMjDci2P5dPGKjU59n+tkYd1bh5pnWO/CIflUp8FAACQKOixAACAi1L8LJ6Xl6eampq6r7dt26YJEyZo6tSpjZ7fu3dvPfTQQ7r00kuVmpqqN954Q/fcc48yMjI0adKkNl8Hg1rr3EHtd1dtj/k1kIdFHhZ5eMjDOjcP3kqVPNCQK30WAABAIqHHAgAALvJ12de3b98GXz/xxBMaOnSoxo8f3+j51113XYOv77//fr344ot655132twgMai1XBjUkodFHhZ5eMjDciGP4Jka8jjLhTxwPhf6LAAAgERDjwUAAFzk67Kvvurqai1evFgPPvigkpKSWjzfGKP/9//+n/Lz8/Xkk082eV4wGFQwGKz7uqKiQpK0LP+gistP6cWtxTp8Mqi7R2Zrxe7DWrH7cLsfy6YD5ZKkNUVHwjp/TdERrS4s1Y1D+kjyBrfRqNOcfRVVWrhlrzK6BXRDTh/9bMOeiNdoSqjGqj2H9ev3CyOeR/0a4TwO8vBqkIdFHpbLeUS6TlNCNf574x59cqYm4nnUr9HS42hrHq2p0ZLm8th68Lgkaf369e2q0ZxTp05F7b4TSaz7rPzSSnVPjU6bWVjmZb7zyImo3D813KxDDWpQgxrUaCh0/zt37oxajcrKyqjdd6KIVo8l0WdRgxou1qEGNaiR+DXiucdKMsaYqNxzK7366qu68847VVxcrKysrCbPO378uAYMGKBgMKjk5GT98pe/1KxZs5o8/9FHH9Vjjz0WjUsGAACOOH78uNLT0/2+DGfRZwEAkHj6dQtE9d0lTtfUavnuw/RZzYhWjyXRZwEA4Jd47bGcWfZNmjRJqampWrp0abPn1dbWas+ePaqsrNTq1as1b948/elPfzrvbRFCGvuXUIMGDVJ6arKqztToluGZ6tctEMmHorVFpdpRWqkxWT01Oqtnk+dtOlCuvAPlLZ7X3jrNOXQyqKX5Jeqdlqopw/orNblTxGu05K3CUv3jaKU6SfpCbuTzkMJ7HOThIQ+LPKx4yCNSdZpTXVOr3364T1VnapXbp7uuy+kT8RpSy4+jvXmEU6Mlrclj3vW5uvmSfm26zuacrD6ju/+8WXvKTjGEakGs+6yHrhmm3L49IvkQ6qwvPqpnNxVp3vW5GtKrKzV8rhGrOtSgBjWoQY3z6+yr+ESvf+WfolajInhaFzyxjD6rGdHqsST6LGpQw8U61KAGNTpGjXjtsZx4G8+9e/dq1apVWrJkSYvndurUSRdffLEkaeTIkdq5c6d+9KMfNdkgBQIBBQLnD8eDNbV6Z9b4qGxoZy/boh2llbp1eGaTn580f12+8g4UteszlsKp05zQZyyNGdC7yc9Yam+NlpwIntYl/71SknTvZ3P0v1NGRryG1PLjIA8PeVjkYcVLHpGo05zQZyaeqa2VJN15xaCofUZec48jEnm0VKMlrc1jSK+uGpXZs83X2phQHgdPfBLR+01EfvRZE4dm6Nrs6CzDJenZTUW6+ZJ+Ef+5oobbdahBDWpQgxoN/W7b/qjeP5oXzR5Los+iBjVcrUMNalAj8WvEa491/j/D98GCBQuUkZGhyZMnt/q2tbW1Df6lU7geHHtxVH8Vsznz1+Xr4bd2tntQ2x6hQe3lGenNDmqjKTSoPVZVLUkamJ4W82uQyCOEPCzysMjDE8pj2+EK3TI8M+b1Q8jDUz+Pn0y6Iub1440ffRYAAECio8cCAAAu8X3ZV1tbqwULFmjmzJlKSWn4i4YzZszQ3Llz677+0Y9+pJUrV2rPnj3auXOnfvzjH2vRokWaPn16q+sO6dWt3dfeFgxqPQzOLfKwyMNDHpZreay8a1xU3ko1HOThOTePaL2FUaLwq88CAABIZPRYAADANb6/jeeqVatUXFzc6AcTFxcXq1Mnu488efKkZs+erX379iktLU2XXnqpFi9erDvuuCOWl9xmDGo95w5qF27ZG/NrkMgjhDws8rDIw3NuHlcO6OVLJuThaSyPdXtLY34d8aQj9VkAAACxQo8FAABc4/uyb+LEiTLGNPpna9asafD1/PnzNX/+/BhcVeQxqPUwOLfIwyIPD3lYrubhB/LwuJJHvOkofRYAAEAs0WMBAADX+L7s6wgY1HpcGdSSh4c8LPKwyMPjSh5rio5odWEpeTiSBwAAAAAAAOAiln1RxuDc48qglsG5hzws8rDIw+NKHpLIQ27lAQAAAAAAALiIZV8UMTj3uDSoJQ/yqI88GiIPd/LYdKBcknTjkD7k4UAeAAAAAAAAgMs6tXwK2orBuTuDWgbnHvKwyMMiD48recxfl6+8s5lcl9PXl2sgDwAAAAAAACB+sOyLAgbnHlcGtQzOPeRhkYdFHh6X8nj4rZ0ak9XTl/oSeQAAAAAAAADxhmVfhDE497gyqGVw7iEPizws8vC4lse863M12qdMyAMAAAAAAACIPyz7IojBuceVQS2Dcw95WORhkYfHxTz4jXD/8wAAAAAAAADiCcu+CGFw7nFlUMvg3EMeFnlY5OEhD4s8AAAAAAAAgPjFsi8CGNR6XBnUkoeHPCzysMjDQx7Wvooq8gAAAAAAAADiGMu+dmJQ63FlUEseHvKwyMMiDw95NLRwy17yAAAAAAAAAOIYy752YFDrcWVQSx4e8miIPDzk4SEP69DJoCQpo1ugw+cBAAAAAAAAxDOWfW3EoNbjyqCWPDzkYZGHRR4e8rA27i/T0vwSSdLMEYM7dB4AAAAAAABAvGPZ1wYMaj2uDGrJw0MeFnlY5OEhDyv0mYm901IlSYGU5Jhfgyt5AAAAAAAAAImAZV8rMaj1uDKoJQ8PeVjkYZGHhzysUB6XZ6RryrD+vlyDK3kAAAAAAAAAiYJlXyswqPW4MqglDw95WORhkYeHPKz6eSyfNlapybFvAVzJAwAAAAAAAEgkLPvCxKDW48qgljw85GGRh0UeHvKwzs2jI7+VKgAAAAAAAJBoWPaFgUGtx5VBLXl4yMMiD4s8PMEzNeRxlgt5VJ12Iw8AAAAAAAAgEaX4fQGuY1DrYXBukYdFHh7ysFzIQ5Je3Fqs48Ez5OFIHk+t/0iHTgZZ9AEAAAAAAABRwLKvGQxqLQbnHvKwyMMiD48LeVTX1EqSDp8Mat0915KHI3l8XFGltXdfw6IPAAAAAAAAiALexrMJDGo99QfnLDLII4Q8PORhuZDHieBpvVFwUJJ098hs8nAoj7lXD2PRBwAAAAAAAESJr8u+nJwcJSUlnXfMmTOn0fOfe+45XXPNNerVq5d69eqlm266SRs3boz4dTGo9TA4t8jDIg8PeViu5PHPL72nY1XVkqSB6WkxvwaJPELOzWNo724xvwa422cBAADEM3osAADgIl+XfXl5eSopKak7Vq5cKUmaOnVqo+evWbNGX/nKV/TWW2/pvffe06BBgzRx4kTt378/YtfEoNbD4NwiD4s8PORhuZTHtsMVumV4Zszrh5CHx5U84GafBQAAEO/osQAAgIt8Xfb17dtX/fv3rzveeOMNDR06VOPHj2/0/JdeekmzZ8/WyJEjdemll+r//u//VFtbq9WrV0fkehjUelwZ1JKHhzws8rDIw1M/j5V3jVO/boGYX4NEHiGu5AGPa30WAABAIqDHAgAALkrx+wJCqqurtXjxYj344INKSkoK6zanTp3S6dOn1bt37ybPCQaDCgaDdV9XVFRIkpblH9ShSvv9NUVHtLqwVDcO6SPJG9y21aYD5XX32Rr7Kqq0cMteZXQL6IacPvrZhj1RqdOc4Jkavbi1WIdPBnX3yGxtLol8jXM19jgimUdTNVpCHuRxLvKwXMxjxe7DUalzrnNrRDqPxmq0pLV5tKVGS5rLY33x0YjUaMzOIyeidt+JJNZ9Vn5ppbqnRqfNLCw7JSm62VPDvTrUoAY1qEGNxuvAX9HqsST6LGpQw8U61KAGNTpOjbhkHPG73/3OJCcnm/3794d9m69//evmoosuMlVVVU2e88gjjxhJHBwcHBwcHAl8HD9+PBLtSMKiz+Lg4ODg4OBo60Gf1bRo9VjG0GdxcHBwcHAk+hHpHivJGGPkgEmTJik1NVVLly4N6/wnnnhCTz31lNasWaNPf/rTTZ7X2L+EGjRokMYP7q3LMtK16UC58g6Ua0xWT43O6tnehyFJWltUqh2llWHf56GTQS3NL1HvtFRNGdZfqcnhvbtqa+s0p7qmVm8UHNSxqmrdMjyz7q3XIlmjKfVrSIp4HufWaOl+yYM8zkUelst5RLpOU0I1BnTvov2Vn0SlVriPo615tKZGS/zOY8fhCq0tPqbjx48rPT09KjUSQaz7rIeuGabcvj3afd2NWV98VM9uKtK863M1pFdXavhcI1Z1qEENalCDGrGvs/PICf3w7QL6rGZEq8eS6LOoQQ0X61CDGtSgRiREq8dy4m089+7dq1WrVmnJkiVhnf/000/riSee0KpVq1psjgKBgAKB8z8zaNqIwTpUGVTegaKIf8bS7GVbtKO0UrcOz2zxfkOfsTRmQO9Wf8ZSa+o0J/QZS1VnavXOrPG6ckCviNdoTqhGeiBFqwtLo/KZV+E+DvIgj3ORh+V6HpGs05xQjf2Vn0TtM/rCeRztySPcGi1xIY/nNhdpbfGxqNx3ovCjz5o4NEPXZvdp0/WG49lNRbr5kn4aldmTGg7UiFUdalCDGtSgRmzrrNtbqh++XRCV+04E0eyxJPosalDD1TrUoAY1qNFe0eqxnFj2LViwQBkZGZo8eXKL5z711FP64Q9/qDfffFOjR49uc81l+SX6c8GhqA1qwxEa1F6ekd6mQW0khAa12w5XaOVd484b1MZStBYZ4SKPhsiDPOojDyv0OXQ3DulDHg7ksSy/xJe68cSPPgsAACDR0WMBAACXhP9+X1FSW1urBQsWaObMmUpJabh7nDFjhubOnVv39ZNPPqmHH35YL7zwgnJycnTw4EEdPHhQlZWVra7Los+dQS2Dcw95WORhkYfHlTzmr8tX3tlMrsvp68s1kIc1f12+/lxwyJfa8cKvPgsAACCR0WMBAADX+L7sW7VqlYqLizVr1qzz/qy4uFglJfZf7D/77LOqrq7W7bffrszMzLrj6aefbnXd24b1Y3DuyKCWwTl51EceFnl4XMrj4bd21n1+oh/Iwwrlcduwfr7Ujxd+9VkAAACJjB4LAAC4xve38Zw4caKMMY3+2Zo1axp8XVRUFLG6k4dnRuy+WoNBrVV/cB5aaMQaeVjk4SEPizysUB7zrs/VgRNVvmRCHlb9PPp1D/Dbfc3wq88CAABIZPRYAADANb7/Zl9HwqDWqj+oHe3Tb8mQh0UeHvKwyMOqnwe/EU4eAAAAAAAAgGtY9sUIg1rLhUEteVjk4SEPizws8vCQBwAAAAAAAOAuln0xwKDWcmFQSx4WeXjIwyIPy4U89lVUkcdZLuQBAAAAAAAAuIhlX5QxOLdcGNQyOLfIw0MeFnlYLuQhSQu37CUPuZMHAAAAAAAA4CKWfVHE4NxyZVDL4NxDHh7yaIg8PC7kcehkUJKU0S1AHg7kAQAAAAAAALiMZV8UMTj3uDCoZXBukYeHPCzysFzIY+P+Mi3NL5EkzRwxmDxY9AEAAAAAAADNYtkXBQzOLRcGtQzOLfLwkIdFHpYreUxYtF6901IlSYGU5JhfA3kAAAAAAAAA8YVlX4QxOLdcGNQyOLfIw0MeFnlYLuVxeUa6pgzr78s1kAcAAAAAAAAQf1j2RRCDc8uFQS2Dc4s8PORhkYflWh7Lp41VanLs/3omDwAAAAAAACA+seyLEAbnlguDWgbnFnl4yMMiD8vFPPiNcBZ9AAAAAAAAQGuw7IsABueWC4NaBucWeXjIwyIPizw8wTM15AEAAAAAAADEsRS/LyDeMai1XBjUkodFHh7ysMjDIg/rxa3FOh480+HzAAAAAAAAAOIVy752YFBruTCoJQ+LPCzy8JCHRR6e6ppaSdLhk0Gtu+faDp0HAAAAAAAAEM94G882cm1Qy+CcPELIw0MeFnlY5OE5ETytNwoOSpLuHpndofMAAAAAAAAA4h3LvjZgUGu5MKglD4s8PORhkYdFHp7QZyYeq6qWJA1MT4v5NUhu5AEAAAAAAAAkApZ9rcSg1nJhUEseFnl4yMMiD4s8PKE8th2u0C3DM2NeP8SFPAAAAAAAAIBEwbKvFRjUWi4MasnDIg8PeVjkYZGHp34eK+8ap37dAjG/BsmNPAAAAAAAAIBEwrIvTAxqLRcGteRhkYeHPCzysMjDc24eHfmtVAEAAAAAAIBEw7IvDAxqLRcGteRhkYeHPCzysMjDQx4AAAAAAABAYvN12ZeTk6OkpKTzjjlz5jR6/vbt2/Wv//qvdbd75plnon6NDGotFwa15GGRh4c8LPKw1hQdIQ+RR0cXD30WAABAvKHHAgAALkrxs3heXp5qamrqvt62bZsmTJigqVOnNnr+qVOndNFFF2nq1Kl64IEHon59DGqtNUVHtLqwlME5edQhD4s8PK7kIYk8RB5wv88CAACIR/RYAADARb4u+/r27dvg6yeeeEJDhw7V+PHjGz1/zJgxGjNmjCTpe9/7XlSvjUFtQ34PasmjIfIgj/rIw9p0oFySdOOQPuRBHh2ey30WAABAvKLHAgAALvJ12VdfdXW1Fi9erAcffFBJSUkRu99gMKhgMFj3dUVFhSRpWf5BHaoMNnqbfRVVWrhlrzK6BXRDTh/9bMOeVtUMDTfXFB1p20VLCp6p0Ytbi3X4ZFB3j8zWit2HtWL34YjXacnr/zgoSbqoZ1dJ3lsVRlpLj6O9eYRToyXkYZGHRR4eV/JYU3REeWfrSNHJQ2r+sUQij5ZqtCScPNpbIxwxy2N/WVTuN9HEus/KL61U99TotJmFZackSTuPnIjK/VPDzTrUoAY1qEGN2NfJL62M2n0nimj1WBJ9FjWo4WIdalCDGtSIhKj1WMYRv/vd70xycrLZv39/WOdnZ2ebn/70py2e98gjjxhJHBwcHBwcHAl8HD9+vJ2dSGKjz+Lg4ODg4OBo60Gf1bRo9VjG0GdxcHBwcHAk+hHpHsuZ3+x7/vnn9fnPf15ZWVkRvd+5c+fqwQcfrPu6oqJCgwYN0vjBvXVZRnqDcw+dDGppfol6p6VqyrD+Sk3u1Kaaa4tKtaO0UmOyemp0Vs9W3ba6plZvFBzUsapq3TI8U/26BaJSpyWbDpQr70C5+qal6khVdVRqhDT1OCKVR3M1WkIetgZ5WOThcS2PMVk9dbL6TNTqhDT2WCKZR1M1WtKaPNpaIxyxzmPH4QqtLT4WlftOJLHusx66Zphy+/aIaK2Q9cVH9eymIs27PldDenWlhs81YlWHGtSgBjWoEfs6O4+c0A/fLojKfSeKaPVYEn0WNajhYh1qUIMa1IiEaPVYTiz79u7dq1WrVmnJkiURv+9AIKBA4PyB57QRg3XvqJy6r0OfsTRmQO92f8bS7GVbtKO0UrcOz2zVZxSFPmOp6kyt3pk1vsXPWGprnZbMX5evvAPeD/SBE1V6dlNRxGvU19jjiGQeTdVoCXmQR2PIw+NiHt+/dnjU6tR3bo1I59FYjZa0No+21AiHH3k8t7mIZV8L/OizJg7N0LXZfSJeL+TZTUW6+ZJ+GpXZkxoO1IhVHWpQgxrUoEZs66zbW8qyrxnR7LEk+ixqUMPVOtSgBjWo0V7R6rHa96sHEbJgwQJlZGRo8uTJvtQPDWovz0iP2KC2tUKD2m2HK7TyrnFhDWqjYf66fD381s66Qa0fyMMiDw95WORhkYeHPNASv/ssAACARESPBQAAXOL7b/bV1tZqwYIFmjlzplJSGl7OjBkzNGDAAP3oRz+S5H3w8Y4dO+r+9/79+7VlyxZ1795dF198cZvqM6i1XBjUkodFHh7ysMjDciGPfRVV5HGWC3mgcX73WQAAAImIHgsAALjG92XfqlWrVFxcrFmzZp33Z8XFxerUyf7y4YEDB/SZz3ym7uunn35aTz/9tMaPH681a9a0ujaDc8uFQS2Dc4s8PORhkYflQh6StHDLXn02qxd5OJIHGudnnwUAAJCo6LEAAIBrfF/2TZw4UcaYRv/s3KYnJyenyXNbq7DspL61YhuDc7kzqGVw7iEPD3k0RB4eF/I4dDIoScroFiAPB/IoLDvpS9144VefBQAAkMjosQAAgGuc+Mw+P/zkvV0s+uTGoJbBuUUeHvKwyMNyIY+N+8u0NL9EkjRzxGDycCCPn7y3y5faAAAAAAAAgCs67LJvQHoag3NHBrUMzj3k4SEPizwsV/KYsGi9eqelSpICKckxvwbysEJ5DEhP86U+AAAAAAAA4IoOu+z75lVDGZw7MqhlcE4eIeRhkYflUh6XZ6RryrD+vlwDeVj18/jmVUN9uQYAAAAAAADAFR122delM4NzVwa1DM7JQyKP+sjDci2P5dPGKjU59n91kod1bh5+/H0OAAAAAAAAuKTDLvtijUGtxeDcIg8PeVjkYbmYB78RTh4AAAAAAACAa1j2xQCDWsuFQS15WORhkYeHPCwX8gieqSGPs1zIAwAAAAAAAHBRit8XkOgYnFsuDGoZnFvkYZGHhzwsF/KQpBe3Fut48Ax5OJIHAAAAAAAA4CKWfVHE4NxyZVDL4NxDHhZ5WOThcSGP6ppaSdLhk0Gtu+da8nDg+QEAAAAAAAC4imVfFDE497gwqGVwbpGHRR4e8rBcyONE8LTeKDgoSbp7ZDZ5sOgDAAAAAAAAmsVn9kVB/cE5iz7/B7UMzi3ysMjDQx6WK3n880vv6VhVtSRpYHpazK9BIg8AAAAAAAAgnrDsizAG55YLg1oG5xZ5WOThIQ/LpTy2Ha7QLcMzY14/hDwAAAAAAACA+MKyL4IYnFsuDGoZnFvkYZGHhzws1/JYedc49esWiPk1SOQBAAAAAAAAxCOWfRHC4NxyYVDL4NwiD4s8PORhuZgHvxHOog8AAAAAAABoDZZ9EcDg3HJhUMvg3CIPizw85GGRh0UeAAAAAAAAQPxi2ddODGotFwa15GGRh0UeHvKwyMNaU3SEPAAAAAAAAIA4luL3BcQzlwa1qwtLO/ygljws8rDIw0MeFnk0RB4AAAAAAABAfOM3+9qIQa3lwqCWPCzyaIg8yKM+8rA2HSiXJN04pE+HzgMAAAAAAACIdyz72oBBreXCoJY8LPKwyMNDHhZ5WPPX5SvvbCbX5fT15RpcyAMAAAAAAABIBCz7WolBreXCoJY8LPKwyMNDHhZ5WKHPTByT1dOX+pIbeQAAAAAAAACJgmVfKzCotVwY1JKHRR4WeXjIwyIPK5THvOtzNdqnTFzIAwAAAAAAAEgkvi/79u/fr+nTp+vCCy9UWlqarrjiCm3atKnZ2/ziF79Qbm6u0tLSNHz4cP3mN7+J+nUyqLVcGNSSh0UeFnl4yMMiD6t+Hh35rVQ7knjpsQAAAOINfRYAAHBNip/Fy8rKNG7cOF1//fX661//qr59++qjjz5Sr15ND0KfffZZzZ07V88995zGjBmjjRs36t5771WvXr10yy23ROU6XR3Uzl62JebX4MKgljws8rDIw0MeFnlYLPo6nnjpsQAAAOINfRYAAHCRr8u+J598UoMGDdKCBQvqvjdkyJBmb7No0SL927/9m+644w5J0kUXXaS8vDw9+eSTUWmQGNRaLgxqycMiD4s8PORh7auoIo+zyKNjioceCwAAIB7RZwEAABf5uux7/fXXNWnSJE2dOlVr167VgAEDNHv2bN17771N3iYYDKpLly4NvpeWlqaNGzfq9OnT6ty583nnB4PBuq8rKiokScvyD+pQZVDNCZ6p0Ytbi3X4ZFB3j8zWit2HtWL34RYf16YD5ZKkNUVHWjw3HGuKjmh1YaluHNJHkje4jUadxoRq/PkfJZq/7h/K6BbQDTl99LMNeyJeo6XH0dY8WlMjHOThIQ/yaIyfedSv83+bi5TVo0vE86hfo7nH0p48wq0RjqbyiGSN5sQkj/1lEb2/RBGLHit0m8b6rPzSSnVPjU6bWVh2SpK088iJqNw/NdysQw1qUIMa1Ih9nfzSyqjddzyjz6IGNdyrEas61KAGNagRCVHrsYyPAoGACQQCZu7cuWbz5s3mV7/6lenSpYtZuHBhk7eZO3eu6d+/v9m0aZOpra01eXl5pl+/fkaSOXDgwHnnP/LII0YSBwcHBwcHRwIfx48fj2bLEndi0WMZQ5/FwcHBwcHREQ76rIboszg4ODg4ODgicUS6x0oyxhj5JDU1VaNHj9a7775b97377rtPeXl5eu+99xq9TVVVlebMmaNFixbJGKN+/fpp+vTpeuqpp3Tw4EH169evwfmN/UuoQYMGafzg3rosI73RGtU1tXqj4KCOVVXrluGZ6tct0KrHtbaoVDtKKzUmq6dGZ/Vs1W3r23SgXHkHypu8n0jVac5fdx1SUXmVundO1h2XD1BqcqeI12jpcbQ3j3BqhIM8PORhkYflQh6HTgb1x50lMpJG9b9AVw2MzttmNvdYIpFHSzXC0VIekajRkljlseNwhdYWH9Px48eVnt743+sdUSx6LKnpPuuha4Ypt2+PyD8wSeuLj+rZTUWad32uhvTqSg2fa8SqDjWoQQ1qUCP2dXYeOaEfvl1An3UO+ixqUMO9GrGqQw1qUIMakRCtHsvXt/HMzMzUZZdd1uB7ubm5eu2115q8TVpaml544QX96le/0qFDh5SZmalf//rX6tGjh/r27Xve+YFAQIHA+cPWaSMG695ROed9P/QZS1VnavXOrPFt+oyl2cu2aEdppW4dntnmz0eavy5feQeKmv2MpUjUac7G/WX6v81FkqRv/tNQzbvhsuZv0EbNPY5I5NFSjXCQh4c8LPKwXMljwqL1yuiWqkMnq/XF3KyofT5dU48lUnk0VyMc4eTR3hotiWUez20u0triY1G573gWix5LarrPmjg0Q9dm92nfg2jGs5uKdPMl/TQqsyc1HKgRqzrUoAY1qEGN2NZZt7dUP3y7ICr3Hc/os6hBDTdrxKoONahBDWq0V7R6rMj/GkorjBs3Tvn5+Q2+V1BQoOzs7BZv27lzZw0cOFDJycl65ZVXNGXKFHXq1L6HExrUbjtcoZV3jWvXoLY95q/L18Nv7WxxUBtNoUFt77RUSVIgJTnm10AeFnlY5OEhDyuUx+UZ6ZoyrL8v10Aelgt5wL0eCwAAIFHQZwEAABf52lE88MAD+tvf/qbHH39cu3bt0m9/+1v9+te/1pw5c+rOmTt3rmbMmFH3dUFBgRYvXqyPPvpIGzdu1Je//GVt27ZNjz/+eLuuhUGt5cKgljws8rDIw0MeVv08lk8bG5W3Um0JeVgu5AGPSz0WAABAIqHPAgAALvJ1CjdmzBj98Y9/1Msvv6zLL79c8+bN0zPPPKNp06bVnVNSUqLi4uK6r2tqavTjH/9YI0aM0IQJE/TJJ5/o3XffVU5OTpuvg0Gt5cKgljws8rDIw0Me1rl59Ah0jvk1kIflQh6wXOmxAAAAEg19FgAAcJGvn9knSVOmTNGUKVOa/POFCxc2+Do3N1cffPBBxOozqLVcGNSSh0UeFnl4yMNyIY/gmRryOMuFPHA+v3ssAACAREWfBQAAXOP7ss9PDM4tFwa1DM4t8rDIw0Melgt5SNKLW4t1PHiGPBzJAwAAAAAAAOioOuyy75PTDM5DXBnUMjj3kIdFHhZ5eFzIo7qmVpJ0+GRQ6+65ljx8zuOT0zUxrwkAAAAAAAC4pMMu+57ZsFulp6oZnDswqGVwbpGHRR4e8rBcyONE8LTeKDgoSbp7ZDZ5OJDHMxt2x7wuAAAAAAAA4JJOfl+AX/ZXVLHoc2RQy+DcQx4WeXjIw3Ilj39+6T0dq6qWJA1MT4v5NUjkERLKY39FVcxrAwAAAAAAAC7psMu+B8dezODckUEtg3PyqI88PORhuZTHtsMVumV4Zszrh5CHp34eD469OOb1AQAAAAAAAJd02GXfkF7dfKnLoNbD4NwiD4s8PORhuZbHyrvGqV+3QMyvQSKPkHPz8OvvcwAAAAAAAMAVHXbZ5wcGtR4G5xZ5WOThIQ/LxTz4jXDyAAAAAAAAAFzDsi9GGNR6XBnUkoeHPCzysMjDQx4WeQAAAAAAAADuSvH7AjoCBrUeVwa15OEhD4s8LPLwuJLHmqIjWl1YSh6O5AEAAAAAAAC4iGVflDE497gyqGVw7iEPizws8vC4kock8pBbeQAAAAAAAAAuYtkXRQzOPS4NasmDPOojj4bIw508Nh0olyTdOKQPeTiQBwAAAAAAAOAyPrMvihicuzOoZXDuIQ+LPCzy8LiSx/x1+co7m8l1OX19uQbyAAAAAAAAAOIHy74oYHDucWVQy+DcQx4WeVjk4XEpj4ff2qkxWT19qS+RBwAAAAAAABBvWPZFGINzjyuDWgbnHvKwyMMiD49recy7PlejfcqEPAAAAAAAAID4w7Ivghice1wZ1DI495CHRR4WeXhczIPfCPc/DwAAAAAAACCesOyLEAbnHlcGtQzOPeRhkYdFHh7ysMgDAAAAAAAAiF8s+yKAQa3HlUEteXjIwyIPizw85GHtq6giDwAAAAAAACCOsexrJwa1HlcGteThIQ+LPCzy8JBHQwu37CUPAAAAAAAAII6x7GsHBrUeVwa15OEhj4bIw0MeHvKwDp0MSpIyugU6fB4AAAAAAABAPGPZ10YMaj2uDGrJw0MeFnlY5OEhD2vj/jItzS+RJM0cMbhD5wEAAAAAAADEO9+Xffv379f06dN14YUXKi0tTVdccYU2bdrU7G1eeukljRgxQl27dlVmZqZmzZqlo0ePxuiKGdSGuDKoJQ8PeVjkYZGHhzys0Gcm9k5LlSQFUpJjfg2u5JHo4rHHAgAAiAf0WQAAwDW+LvvKyso0btw4de7cWX/961+1Y8cO/fjHP1avXk0P/davX68ZM2boq1/9qrZv367f//732rhxo+69996YXDODWo8rg1ry8JCHRR4WeXjIwwrlcXlGuqYM6+/LNbiSR6KLxx4LAAAgHtBnAQAAF6X4WfzJJ5/UoEGDtGDBgrrvDRkypNnbvPfee8rJydF9991Xd/6//du/6cknn4zqtUruDWpz+3TX8x8Ux/waXBnUkoeHPCzysMjDQx5W/TyWTxur767aHvNrcCWPjiDeeiwAAIB4QZ8FAABc5Ouy7/XXX9ekSZM0depUrV27VgMGDNDs2bOb/ZdNY8eO1X/+53/qL3/5iz7/+c/r8OHD+sMf/qCbb7650fODwaCCwWDd1xUVFZKkZfkHdagy2OhtGrOm6IhWF5bqxiF9JHmD26ZsOlBed5tI2ldRpYVb9iqjW0A35PTRm7sPR6VOfec+luCZGr24tViHTwZ198hsrdh9WCvOXkekaoSjNXm0tUZLyMMiD/I4lx95SA0fSzTyOLdGOFqbR1tqtOTcPH62YU/U/q6qLyZ57C9r930kolj0WFLTfdaK3Yf1cUVV5B5QPeuLvbe72nnkRFTuX5IKy05Rw7E61KAGNahBjdjXyS+tjNp9xzO/+6z80kp1T43OOC9RniPU6Hg1YlWHGtSgBjUiIWo9lvFRIBAwgUDAzJ0712zevNn86le/Ml26dDELFy5s9navvvqq6d69u0lJSTGSzC233GKqq6sbPfeRRx4xkjg4ODg4ODgS+Dh+/Hg0WpW4FYseyxj6LA4ODg4Ojo5w0Gc1RJ/FwcHBwcHBEYkj0j1WkjHGyCepqakaPXq03n333brv3XfffcrLy9N7773X6G127Nihm266SQ888IAmTZqkkpISffvb39aYMWP0/PPPn3d+Y/8SatCgQRo/uLcuy0hv8Ro3HShX3oFyjcnqqdFZPcN6XGuLSrWjtLJVt2nOoZNBLc0vUe+0VE0Z1l+pyZ2iUqcxoRqj+l+g/SeqdKyqWrcMz1S/boGI1wjncbQlj9bWaAl5WORBHufyM4/6dbp3TlawpibiedSv0dJjaWseranRkqbyiGSN5sQijx2HK7S2+JiOHz+u9PSW/17vKGLRY0lN91m3Deuv0VF6m9bQb8t+fXSOxg2+MCo11hcf1bObijTv+lwN6dWVGg7UoQY1qEENasS+zs4jJ/TDtwvos87hd5/10DXDlNu3R2Qf1FmJ8hyhRserEas61KAGNagRCdHqsXx9G8/MzExddtllDb6Xm5ur1157rcnb/OhHP9K4ceP07W9/W5L06U9/Wt26ddM111yj+fPnKzMzs8H5gUBAgcD5g8VpIwbr3lE5zV7f/HX5yjtQ1OrPWJq9bIt2lFbq1uGZ7f5sptBnLI0Z0FvLp41Vj0DnqNRpSqjGkVNBVZ2p1Tuzxkf8M5bCfRxtzaM1NVpCHhZ5kMe5/M5Dkr72+mbtKK3U6dro5CGF91jak0e4NVrSXB6RqtGSWOTx3OYirS0+FvH7jXex6LGkpvusycP7t9hntcfqwlKNG3yhpl0xKGo1nt1UpJsv6adRmT2p4UgdalCDGtSgRmzrrNtbqh++XRCV+45nfvdZE4dm6NrsPu18FE1LlOcINTpejVjVoQY1qEGN9opWj9Wp5VOiZ9y4ccrPb/jZRQUFBcrOzm7yNqdOnVKnTg0vOzk5WZIUyV9SnL8uXw+/tbPNg9pICA1qL89Ib3RQGwvVNbWSpMMng1p517ioDGrDQR4e8rDIwyIPz4ngab1RcFCSdPfIbPIgjw7N5R4LAAAgntFnAQAAF/m67HvggQf0t7/9TY8//rh27dql3/72t/r1r3+tOXPm1J0zd+5czZgxo+7rW265RUuWLNGzzz6rPXv2aP369brvvvt05ZVXKisrKyLXxaDW48qgljw85GGRh0UenhPB0/rnl97TsapqSdLA9LSYX4NEHiGu5NGRudpjAQAAxDv6LAAA4CJfl31jxozRH//4R7388su6/PLLNW/ePD3zzDOaNm1a3TklJSUqLi6u+/ruu+/WT37yE/3P//yPLr/8ck2dOlXDhw/XkiVLInJNDGo9rgxqycNDHhZ5WOThCeWx7XCFbhl+/tvfxAp5eFzJo6NzsccCAABIBPRZAADARb5+Zp8kTZkyRVOmTGnyzxcuXHje977xjW/oG9/4RsSvhUGt59xB7ZKdJTG/Bok8QsjDIg+LPDz181h51zgt3LI35tcgkUeIK3nA41KPBQAAkEjoswAAgGt8/c0+lzCo9Zw7qO3X7fwPg44F8vCQh0UeFnl4zs2Dt1IlDwAAAAAAAKAjYtknBrUhrgxqycNDHhZ5WOThIQ+LPAAAAAAAAICOzfe38fQbg1qPK4Na8vCQh0UeFnl4XMljTdERrS4sJQ9H8gAAAAAAAAA6qg697GNw7nFlUMvg3EMeFnlY5OFxJQ9J5CG38gAAAAAAAAA6qg677FuWX6I/FxxiUOvQoJbBOXnURx4NkYc7eWw6UC5JunFIH/JwII9l+SW+1AUAAAAAAABc0WE/s49FnzuDWgbnHvKwyMMiD48recxfl6+8s5lcl9PXl2sgD2v+unz9ueCQL7UBAAAAAAAAV3TYZd9tw/oxOHdkUMvgnDzqIw+LPDwu5fHwWzs1JqunL/Ul8qgvlMdtw/r5Uh8AAAAAAABwRYdd9k0enulLXQa1FoNzD3lY5GGRh8e1POZdn6vRPmVCHlb9PPz6+xwAAAAAAABwRYdd9vmBQa3F4NxDHhZ5WOThcTEPfiOcPAAAAAAAAADXsOyLEQa1lguDWvKwyMNDHhZ5WOThIQ8AAAAAAADAXSz7YoBBreXCoJY8LPLwkIdFHpYLeeyrqCKPs1zIAwAAAAAAAHARy74oY3BuuTCoZXBukYeHPCzysFzIQ5IWbtlLHnInDwAAAAAAAMBFLPuiiMG55cqglsG5hzw85NEQeXhcyOPQyaAkKaNbgDwcyAMAAAAAAABwGcu+KGJw7nFhUMvg3CIPD3lY5GG5kMfG/WVaml8iSZo5YjB5sOgDAAAAAAAAmsWyLwoYnFsuDGoZnFvk4SEPizwsV/KYsGi9eqelSpICKckxvwbyAAAAAAAAAOILy74IY3BuuTCoZXBukYeHPCzysFzK4/KMdE0Z1t+XayAPAAAAAAAAIP6w7IsgBueWC4NaBucWeXjIwyIPy7U8lk8bq9Tk2P/1TB4AAAAAAABAfGLZFyEMzi0XBrUMzi3y8JCHRR6Wi3nwG+Es+gAAAAAAAIDWYNkXAQzOLRcGtQzOLfLwkIdFHhZ5eIJnasgDAAAAAAAAiGMpfl9AvGNQa7kwqCUPizw85GGRh0Ue1otbi3U8eKbD5wEAAAAAAADEK99/s2///v2aPn26LrzwQqWlpemKK67Qpk2bmr1NMBjUQw89pOzsbAUCAeXk5OiFF16I0RVbLg1qGZyTR33kYZGHhzws8vBU19RKkg6fDHb4PBJVPPdYAAAALqPPAgAArvH1N/vKyso0btw4XX/99frrX/+qvn376qOPPlKvXs0PHL/0pS/p0KFDev7553XxxRerpKREtbW1Mbpqj2uD2nX3XNuhB7XkYZGHhzws8rDIw3MieFpvFByUJN09MrtD55Go4rnHAgAAcBl9FgAAcJGvy74nn3xSgwYN0oIFC+q+N2TIkGZvs3z5cq1du1Z79uxR7969JUk5OTnRvMzzMKi1XBjUkodFHh7ysMjDIg9P6DMTj1VVS5IGpqfF/BokN/JIZPHaYwEAALiOPgsAALjI12Xf66+/rkmTJmnq1Klau3atBgwYoNmzZ+vee+9t9jajR4/WU089pUWLFqlbt2669dZbNW/ePKWlnT+wDAaDCgaDdV8fP35ckvT23tI2XXNh2Un95L1dGpCepi9/aoBe2b7/vHN2HK6QJG3aX6bnNhe1qU5zPjldo2c27NaRk96g9uCJT6JSR2r+sSzLL9GfCw7ptmH91K97oM3X0J7/XuHk0d4aLSEPizws8vDEMg+p6ccSqTyaq9GScPNoT42WhPLYX1GlK/peoM2Hjkft7yopNnmE/j43xrTnUhNOLHosKfJ9Vjg27S+TJO08ckLrolRn55ETkqT3D5SrsvoMNRyoQw1qUIMa1Ih9nS0l3t/r9FkN+d1nhXKJhkR5jlCj49WIVR1qUIMa1IiEqPVYxkeBQMAEAgEzd+5cs3nzZvOrX/3KdOnSxSxcuLDJ20yaNMkEAgEzefJks2HDBrNs2TKTnZ1t7r777kbPf+SRR4wkDg4ODg4OjgQ+Pv7442i1K3EpFj2WMfRZHBwcHBwcHeGgz2qIPouDg4ODg4MjEkeke6wkY/z7J1qpqakaPXq03n333brv3XfffcrLy9N7773X6G0mTpyot99+WwcPHtQFF1wgSVqyZIluv/12nTx58rx/EXXuv4QqLy9Xdna2iouL624faRUVFRo0aJA+/vhjpaenR6VGrOpQgxrUoEa81IhVHWq4VcMYoxMnTigrK0udOnWKSo14FIseS0rcPosa7tWhBjWoQQ1qxL4OfVbj6LOoQQ33asSqDjWoQQ1qREK0eixf38YzMzNTl112WYPv5ebm6rXXXmv2NgMGDGjQ2OTm5soYo3379umSSy5pcH4gEFAgEDjvfi644IKo/gUjSenp6VGvEas61KAGNagRLzViVYca7tSI1rAjnsWix5ISv8+ihnt1qEENalCDGrGtQ591PvosalDD3RqxqkMNalCDGu0VjR7L13+aNW7cOOXn5zf4XkFBgbKzs5u9zYEDB1RZWdngNp06ddLAgQOjdq0AAADxgh4LAAAgOuizAACAi3xd9j3wwAP629/+pscff1y7du3Sb3/7W/3617/WnDlz6s6ZO3euZsyYUff1nXfeqQsvvFD33HOPduzYoXXr1unb3/62Zs2a1eSHGgMAAHQk9FgAAADRQZ8FAABc5Ouyb8yYMfrjH/+ol19+WZdffrnmzZunZ555RtOmTas7p6SkRMXFxXVfd+/eXStXrlR5eblGjx6tadOm6ZZbbtHPf/7zsGoGAgE98sgjjb4VQqTEokas6lCDGtSgRrzUiFUdarhVA43zo8eSEufnihru1aEGNahBDWr4Uwfno8+iBjXcqxGrOtSgBjWo4bIkY4zx+yIAAAAAAAAAAAAAtJ6vv9kHAAAAAAAAAAAAoO1Y9gEAAAAAAAAAAABximUfAAAAAAAAAAAAEKdY9gEAAAAAAAAAAABxKuGWfY8++qiSkpIaHJdeemmT51933XXnnZ+UlKTJkydHrMbp06f1gx/8QEOHDlWXLl00YsQILV++vNnHsX//fk2fPl0XXnih0tLSdMUVV2jTpk1Nnl9SUqI777xTw4YNU6dOnfTNb36z2ftva50lS5ZowoQJ6tu3r9LT0zV27Fi9+eabEa1R3/r165WSkqKRI0dGvEYwGNRDDz2k7OxsBQIB5eTk6IUXXohojZdeekkjRoxQ165dlZmZqVmzZuno0aMRrfGLX/xCubm5SktL0/Dhw/Wb3/ymyXNzcnIa/XmfM2dOo+dv375d//qv/1p3u2eeeabZa2lLjSVLlmj06NHq2bOnunXrppEjR2rRokURrbFw4cLzzu3SpUtEa7TltaS1NSTpmWee0fDhw5WWlqZBgwbpgQce0CeffNLk+TU1NXr44Yc1ZMgQpaWlaejQoZo3b56MMc0+/jVr1mjUqFEKBAK6+OKLtXDhwojWaMtrSVsfS0g4rydtrdGa15O21Lj77rsb/Vn51Kc+FdHH0ZrXE0k6ceKEvvnNbyo7O1tpaWn63Oc+p7y8vCbPb+vfVXBDovRYUmz6LHqs8Husttahz6LPos9qXGtfT+ix6LHgP/os+ixmWc2/LtJn0WfRZ42MeA36rATss0yCeeSRR8ynPvUpU1JSUnccOXKkyfOPHj3a4Nxt27aZ5ORks2DBgojV+M53vmOysrLMsmXLzO7du80vf/lL06VLF7N58+ZGzz927JjJzs42d999t9mwYYPZs2ePefPNN82uXbuarFFYWGjuu+8+8+KLL5qRI0ea+++/v8lz21Pn/vvvN08++aTZuHGjKSgoMHPnzjWdO3eO6GMJKSsrMxdddJGZOHGiGTFiREQfhzHG3Hrrreaqq64yK1euNIWFhebdd98177zzTsRqvPPOO6ZTp07mZz/7mdmzZ495++23zac+9SnzxS9+MWI1fvnLX5oePXqYV155xezevdu8/PLLpnv37ub1119v9PzDhw83+LlduXKlkWTeeuutRs/fuHGj+da3vmVefvll079/f/PTn/60yWtpa4233nrLLFmyxOzYscPs2rXLPPPMMyY5OdksX748YjUWLFhg0tPTG9zm4MGDEX0cbXktaW2Nl156yQQCAfPSSy+ZwsJC8+abb5rMzEzzwAMPNFnjhz/8obnwwgvNG2+8YQoLC83vf/970717d/Ozn/2sydvs2bPHdO3a1Tz44INmx44d5r//+7+bzaQtNVr7WtLWOiHhvp60tUZrXk/aUqO8vLzBz8rHH39sevfubR555JGI1Wjt64kxxnzpS18yl112mVm7dq356KOPzCOPPGLS09PNvn37Gj2/LX9XwR2J0GMZE5s+ix4r/NfEttahz6LPos+KXJ9Fj0WPBf/RZ9FnMctq/nWRPos+iz5rRJPn0WfRZ4Uk5LKvuR/+lvz0pz81PXr0MJWVlRGrkZmZaf7nf/6nwff+5V/+xUybNq3R87/73e+aq6++Ouz7P9f48ePD+qFrb52Qyy67zDz22GMRr3HHHXeY73//+y3+925Ljb/+9a/mggsuMEePHg3r/LbU+K//+i9z0UUXNfjez3/+czNgwICI1Rg7dqz51re+1eB7Dz74oBk3blxYt7///vvN0KFDTW1tbYvnZmdnh9UctadGyGc+8xnz/e9/P2I1FixYYC644IKw768tNc4VzmtJa2vMmTPH3HDDDQ2+11LekydPNrNmzWrwveZef4zx/k/dpz71qQbfu+OOO8ykSZMiVqMxzb2WtLdOuK8nbanR2teTSPz3+uMf/2iSkpJMUVFRxGq09vXk1KlTJjk52bzxxhsNvj9q1Cjz0EMPtfgYwv27Cu5IhB7LmNj0WfRY4b8mtrUOfVbra4TQZ9FnRbIGPRY9FiKDPstDn9U8ZlkWfVb46LPosxpDn5WYfVbCvY2nJH300UfKysrSRRddpGnTpqm4uDjs2z7//PP68pe/rG7dukWsRjAYPO9XrNPS0vTOO+80ev7rr7+u0aNHa+rUqcrIyNBnPvMZPffcc2E/hnBFok5tba1OnDih3r17R7TGggULtGfPHj3yyCNReRyh2zz11FMaMGCAhg0bpm9961uqqqqKWI2xY8fq448/1l/+8hcZY3To0CH94Q9/0M033xyxGk39bG3cuFGnT59u9rbV1dVavHixZs2apaSkpGbPbavW1jDGaPXq1crPz9e1114b0RqVlZXKzs7WoEGDdNttt2n79u1RexxS+K8lranxuc99Tu+//742btwoSdqzZ4/+8pe/NPkzFbrN6tWrVVBQIEnaunWr3nnnHX3+859v8jbvvfeebrrppgbfmzRpkt57772I1ThXS68l7anTmteTttRo7etJJP57Pf/887rpppuUnZ0dsRqtfT05c+aMampqWvX3G+JfvPdYUmz6LHqs8F8T21qHPos+iz4rcn0WPZZFjwU/0WeFhz6rY8+yJPos+iz6rEjUoM9K0D7Lz01jNPzlL38xr776qtm6datZvny5GTt2rBk8eLCpqKho8bYbNmwwksyGDRsiWuMrX/mKueyyy0xBQYGpqakxK1asMGlpaSY1NbXR8wOBgAkEAmbu3Llm8+bN5le/+pXp0qWLWbhwYcv/AUz4G+b21jHGmCeffNL06tXLHDp0KGI1CgoKTEZGhsnPzzfGtPyvz9pSY9KkSSYQCJjJkyebDRs2mGXLltW97UCkahhjzKuvvmq6d+9uUlJSjCRzyy23mOrq6ojVmDt3runfv7/ZtGmTqa2tNXl5eaZfv35Gkjlw4ECz1/a73/3OJCcnm/379zd7Xkhb/iVUuDXKy8tNt27dTEpKigkEAub555+PaI13333XvPjii+aDDz4wa9asMVOmTDHp6enm448/jujjCAn3taQtNX72s5+Zzp071/1M/fu//3uz59fU1Jjvfve7JikpyaSkpJikpCTz+OOPN3ubSy655Lxzli1bZiSZU6dORaTGuVp6LWlrnda+nrSlRmtfT9r732v//v0mOTnZ/O53v4vo42jL68nYsWPN+PHjzf79+82ZM2fMokWLTKdOncywYcNafByu/2sonC8ReixjYtNn0WOF/5rY1jrG0GfRZ9Fnhaul1xN6LA89FvxEn+Whz2KW1VKPZQx9Fn1W0+iz6LM6ep+VcMu+c5WVlZn09HTzf//3fy2e+//9f/+fueKKKyJe4/Dhw+a2224znTp1MsnJyWbYsGFm9uzZpkuXLo2e37lzZzN27NgG3/vGN75h/umf/ims6wn3h669dV566SXTtWtXs3LlyojVOHPmjBk9erR59tln677X0gtaWx7HhAkTTJcuXUx5eXnd91577TWTlJTU6It/W2ps377dZGZmmqeeeqqumb7iiivO+3Xk9tQ4deqUueeee0xKSopJTk42WVlZ5jvf+Y6R1OJ7eE+cONFMmTKl2XPqa0tzFG6Nmpoa89FHH5kPPvjAPP300+aCCy5o8n2+21qjvurqajN06NCw31qhtTXa8loSTo233nrL9OvXzzz33HPm73//u1myZIkZNGiQ+cEPftDkbV5++WUzcOBA8/LLL5u///3v5je/+Y3p3bt3s413a5ujttSoL5zXkrbUacvrSVseS2tfT9r73+vxxx83F154oQkGgxF9HG15Pdm1a5e59tprjSSTnJxsxowZY6ZNm2YuvfTSFh+H6w0SWhaPPZYxsemz6LHCf01sax36LPqs1qDPav71hB7LQ48Fl9BnNY0+q2PPsoyhz6LPos+KxOOgz0rMPivhl33GGDN69Gjzve99r9lzKisrTXp6unnmmWeiVqOqqsrs27fP1NbWmu985zvmsssua/S8wYMHm69+9asNvvfLX/7SZGVlhXUt4f7QtafOyy+/bNLS0s57f9v21igrK6t7ooWOpKSkuu+tXr06Io9jxowZZujQoQ2+t2PHDiPJFBQURKTG9OnTze23397ge2+//XaT/7KgPXlUV1ebjz/+2Jw5c6bug0lramqaPL+oqMh06tTJ/OlPf2rxvkNa2xy1pUbIV7/6VTNx4sSo1rj99tvNl7/85YjXaMtrSbg1rr766vPeh3rRokUmLS2tybwHDhx43ucszJs3zwwfPrzJOtdcc815ryEvvPCCSU9Pj1iNkHBfS9pSpy2vJ215LK19PWnPf6/a2lpz8cUXm29+85vNnteeGq19PTHG+7kPva596UtfMjfffHOLdVxvkBCeeOuxjIlNn0WPFf5rYlvr0GfRZ4WLPqvl1xN6LHosuIk+K/I1OlqflWg9ljH0WcbQZ9Fn0Wc1hj7Lk5Cf2VdfZWWldu/erczMzGbP+/3vf69gMKjp06dHrUaXLl00YMAAnTlzRq+99ppuu+22Rs8bN26c8vPzG3yvoKCgyfezbau21nn55Zd1zz336OWXX9bkyZMjWiM9PV0ffvihtmzZUnf8+7//u4YPH64tW7boqquuisjjGDdunA4cOKDKysoGt+nUqZMGDhwYkRqnTp1Sp04Nn2LJycmSvPfyjkSNkM6dO2vgwIFKTk7WK6+8oilTppxXu74FCxYoIyOjxfzaoz01amtrFQwGo1ajpqZGH374YYvP2bbUaMtrSbg1Wvsz1dxtamtrm6wzduxYrV69usH3Vq5cqbFjx0ashtS615K21GnL60lbHktrX0/a+t9LktauXatdu3bpq1/9arPntadGa19PJKlbt27KzMxUWVmZ3nzzzSb/fkNiicceS4pNn0WPFf5rYlvr0GfRZ4WLPqvl1xN6LHosuIc+q2n0WR13liXRZ9Fn0WfRZzWOPussPzeN0fAf//EfZs2aNaawsNCsX7/e3HTTTaZPnz7m8OHDxhhj7rrrrkb/1dLVV19t7rjjjqjU+Nvf/mZee+01s3v3brNu3Tpzww03mCFDhpiysrJG73/jxo0mJSXF/PCHPzQfffRR3a8EL168uO6c733ve+auu+5qcLsPPvjAfPDBB+azn/2sufPOO80HH3xgtm/f3uTjaEudl156yaSkpJhf/OIXpqSkpO6o/yu/kXgs9bX0q8ptqXHixAkzcOBAc/vtt5vt27ebtWvXmksuucR87Wtfi1iNBQsWmJSUFPPLX/7S7N6927zzzjtm9OjR5sorr4xYjfz8fLNo0SJTUFBgNmzYYO644w7Tu3dvU1hY2OR/r5qaGjN48GDz3e9+97w/O/dnNxgM1v1cZWZmmm9961vmgw8+MB999FGT99/aGo8//rhZsWKF2b17t9mxY4d5+umnTUpKinnuueciVuOxxx4zb775ptm9e7d5//33zZe//GXTpUuXZp8fra0R0prXktbWeOSRR0yPHj3Myy+/bPbs2WNWrFhhhg4dar70pS81ef8zZ840AwYMMG+88YYpLCw0S5YsMX369DHf+c536s459+dqz549pmvXrubb3/622blzp/nFL35hkpOTzfLlyyNWo7WvJW2tc66WXk/aUqO1ryfteRzTp083V111VZPX354abXk9Wb58ufnrX/9a9/M4YsQIc9VVV9V9nkMk/q6COxKhxzImNn0WPVb4r4ltrUOfRZ8VDvqs8F5P6LHoseA/+iz6LGZZzb8uGkOfRZ9FnxXJ/1b0WYnZZyXcsu+OO+4wmZmZJjU11QwYMMDccccdZteuXXV/Pn78eDNz5swGt/nHP/5hJJkVK1ZEpcaaNWtMbm6uCQQC5sILLzR33XVXix9aunTpUnP55ZebQCBgLr30UvPrX/+6wZ/PnDnTjB8/vsH3JJ13ZGdnR7TO+PHjG61z7n/T9j6W+lp6QWtrjZ07d5qbbrrJpKWlmYEDB5oHH3ywyc+SaWuNn//85+ayyy4zaWlpJjMz00ybNs3s27cvYjV27NhhRo4cadLS0kx6erq57bbbzD/+8Y8m798YY958800jqe5DXus792e3sLCw0byby6u1NR566CFz8cUXmy5duphevXqZsWPHmldeeaXZ+29tjW9+85tm8ODBJjU11fTr18/cfPPNZvPmzRGtYUzrX0taW+P06dPm0UcfNUOHDjVdunQxgwYNMrNnz272/2xVVFSY+++/3wwePNh06dLFXHTRReahhx5q8B7Zjf3svvXWW2bkyJEmNTXVXHTRRWbBggURrdGW15K2Ppb6Wno9aWuN1ryetLVGeXm5SUtLO+91IVI12vJ68rvf/c5cdNFFJjU11fTv39/MmTOnQYMbqb+r4IZE6bGMiU2fRY8Vfo/V1jr0WfRZkazRkfsseix6LPiPPos+i1lW86+LxtBn0WfRZ0XycRhDn5WIfVaSMU38riwAAAAAAAAAAAAApyX8Z/YBAAAAAAAAAAAAiYplHwAAAAAAAAAAABCnWPYBAAAAAAAAAAAAcYplHwAAAAAAAAAAABCnWPYBAAAAAAAAAAAAcYplHwAAAAAAAAAAABCnWPYBAAAAAAAAAAAAcYplHwAAAAAAAAAAABCnWPYBAAAAAAAAAAAAcYplH4CEUVNTo8997nP6l3/5lwbfP378uAYNGqSHHnrIpysDAACIb/RZAAAAkUePBSBSkowxxu+LAIBIKSgo0MiRI/Xcc89p2rRpkqQZM2Zo69atysvLU2pqqs9XCAAAEJ/oswAAACKPHgtAJLDsA5Bwfv7zn+vRRx/V9u3btXHjRk2dOlV5eXkaMWKE35cGAAAQ1+izAAAAIo8eC0B7sewDkHCMMbrhhhuUnJysDz/8UN/4xjf0/e9/3+/LAgAAiHv0WQAAAJFHjwWgvVj2AUhI//jHP5Sbm6srrrhCmzdvVkpKit+XBAAAkBDoswAAACKPHgtAe3Ty+wIAIBpeeOEFde3aVYWFhdq3b5/flwMAAJAw6LMAAAAijx4LQHvwm30AEs67776r8ePHa8WKFZo/f74kadWqVUpKSvL5ygAAAOIbfRYAAEDk0WMBaC9+sw9AQjl16pTuvvtuff3rX9f111+v559/Xhs3btT//u//+n1pAAAAcY0+CwAAIPLosQBEAr/ZByCh3H///frLX/6irVu3qmvXrpKkX/3qV/rWt76lDz/8UDk5Of5eIAAAQJyizwIAAIg8eiwAkcCyD0DCWLt2rW688UatWbNGV199dYM/mzRpks6cOcNbIAAAALQBfRYAAEDk0WMBiBSWfQAAAAAAAAAAAECc4jP7AAAAAAAAAAAAgDjFsg8AAAAAAAAAAACIUyz7AAAAAAAAAAAAgDjFsg8AAAAAAAAAAACIUyz7AAAAAAAAAAAAgDjFsg8AAAAAAAAAAACIUyz7AAAAAAAAAAAAgDjFsg8AAAAAAAAAAACIUyz7AAAAAAAAAAAAgDjFsg8AAAAAAAAAAACIUyz7AAAAAAAAAAAAgDj1/wMrupVLF+O2+wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 15.777777777777779\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.059602649006622516\n", + "\n", + "\n" + ] + } + ], + "source": [ + "#построение областей покрытия и границ классов\n", + "#расчет характеристик качества обучения\n", + "numb_square= 20\n", + "xx,yy,Z1=lib.square_calc(numb_square,data,ae1_trained,IREth1,'1',True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lKFYII-TkAQF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "6ecd0d3b-e6fc-4a21-8837-3da8d292f4dd" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m238/238\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAenFJREFUeJzt3Xl4VOX9/vF7JsuwBgIkIQkhAQQEFCi2KliLFChFUFs3wH4Lglj8aVWsglqLgGgR0daqtSIoUkFc6lJ3hLhUhSoWFXFhURJCAklYkrBmmTm/P4aZzHJmMlnnkLxf18Ulc+YszyzE3OfzLDbDMAwBAAAAAICos0e7AQAAAAAAwI2QDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgCIKpvNpnnz5kW7GS3OU089JZvNppycnFof+/7778tms+n9999v8HY1d1lZWbryyiuj3Qw/8+bNk81m0759+6LdlDqx4nsKAPVBSAeAOnr00Udls9l01lln1ftcb775JkG1CZWUlKhVq1ay2Wz69ttvTfe58sorZbPZTP+0atXKu993332n2bNna/DgwWrfvr1SU1M1btw4ffbZZ3Vq23nnnRfyur5/+L7U3/r16zVv3jyVlJTU+1zff/+9ZsyYoZ49e6pVq1ZKSEjQOeeco7/97W86duxY/RsLAGgxYqPdAAA4Wa1atUpZWVn69NNPtWPHDp1yyil1Ptebb76pv//97wSvJvLCCy/IZrOpa9euWrVqle6++27T/RwOh5YtWxa0PSYmxvv3ZcuW6YknntAll1yia6+9VqWlpVqyZInOPvtsvf322xo1alSt2nbHHXdo+vTp3scbN27UQw89pD/+8Y/q16+fd/vAgQNrdd5Av/3tbzVx4kQ5HI5aH/uzn/1Mx44dU3x8fL3aEG3r16/X/PnzdeWVV6pjx451Ps8bb7yhyy67TA6HQ5MnT9Zpp52miooKffTRR5o1a5a+/vprPf744w3XcABAs0ZIB4A62Llzp9avX6+XXnpJM2bM0KpVqzR37txoN6vFO378uOLj42W3h+8otnLlSp1//vnKzMzUM888EzKkx8bG6v/+7//CnmvSpEmaN2+e2rVr5902bdo09evXT/Pmzat1SB89erTf41atWumhhx7S6NGjdd5554U87siRI2rbtm3E14mJifG72VAbdrvdrzdBS7Zz505NnDhRmZmZevfdd5Wamup97rrrrtOOHTv0xhtvRLGFqI1If4YAQGPiJxAA1MGqVauUmJiocePG6dJLL9WqVauC9gk1bjcnJ0c2m01PPfWUJHe36r///e+S5Ned2ePIkSO6+eablZGRIYfDob59++r++++XYRhB11y5cqXOOOMMtW7dWp06ddLEiROVl5fnt895552n0047Td98841GjBihNm3aKD09Xffdd1/Q+Y4fP6558+apT58+atWqlVJTU3XxxRfr+++/r3X7ysvLddNNNykpKUnt27fXhRdeqN27d5u+v/n5+Zo2bZpSUlLkcDg0YMAAPfnkk6bv77PPPqs//elPSk9PV5s2bVRWVmZ6To9du3bpww8/1MSJEzVx4kTvDZe6OuOMM/wCuiR17txZ5557bsiu9PXlGUP8zTff6IorrlBiYqJ++tOfSpI2b96sK6+80tvtumvXrpo2bZr279/vdw6zMelZWVkaP368PvroI5155plq1aqVevbsqX/+859+x5p9t2vzvcrNzdWFF16otm3bKjk5WTfddJPWrFkT0Tj3Q4cOaebMmcrKypLD4VBycrJGjx6tTZs2+e33ySef6Je//KU6dOigNm3aaPjw4fr444/93sNZs2ZJknr06OH9d1fbMfr33XefDh8+rCeeeMIvoHuccsopuvHGG0Mef+DAAd1yyy06/fTT1a5dOyUkJGjs2LH68ssvg/Z9+OGHNWDAALVp00aJiYn68Y9/rGeeeabW700o+/bt0+WXX66EhAR17txZN954o44fP+63T1VVlRYsWKBevXrJ4XAoKytLf/zjH1VeXu63X6ghGYHjxz3fw48//lh/+MMflJSUpLZt2+rXv/61iouL/Y41DEN33323unXrpjZt2mjEiBH6+uuvg64R6Xsa6mfIF198IZvNpr/+9a9B516/fr1sNptWr15d09sJAHVGJR0A6mDVqlW6+OKLFR8fr0mTJukf//iHNm7cqJ/85Ce1PteMGTNUUFCgtWvX6umnn/Z7zjAMXXjhhXrvvfd01VVXafDgwVqzZo1mzZql/Px8v18i77nnHs2ZM0eXX365pk+fruLiYj388MP62c9+ps8//9yvO+/Bgwf1y1/+UhdffLEuv/xy/etf/9Ktt96q008/XWPHjpUkOZ1OjR8/XtnZ2Zo4caJuvPFGHTp0SGvXrtWWLVvUq1evWrVv+vTpWrlypa644goNGzZM7777rsaNGxf0fhQWFurss8+WzWbT73//eyUlJemtt97SVVddpbKyMs2cOdNv/wULFig+Pl633HKLysvLa+yCvXr1arVt21bjx49X69at1atXL61atUrDhg0z3d9sMq34+HglJCSEvc7evXvVpUuXsPvU12WXXabevXvrz3/+s/emyNq1a/XDDz9o6tSp6tq1q7er9ddff63//ve/fjeAzOzYsUOXXnqprrrqKk2ZMkVPPvmkrrzySp1xxhkaMGBA2GMj+V4dOXJEP//5z7Vnzx7deOON6tq1q5555hm99957Eb3ma665Rv/617/0+9//Xv3799f+/fv10Ucf6dtvv9WQIUMkSe+++67Gjh2rM844Q3PnzpXdbtfy5cv185//XB9++KHOPPNMXXzxxdq2bZtWr16tv/71r97PKikpKaJ2eLz22mvq2bNnyO9PTX744Qe98soruuyyy9SjRw8VFhZqyZIlGj58uL755hulpaVJkpYuXaobbrhBl156qTc8b968WZ988omuuOKKiN+bcC6//HJlZWVp4cKF+u9//6uHHnpIBw8e9LtJM336dK1YsUKXXnqpbr75Zn3yySdauHChvv32W7388st1eg8k6frrr1diYqLmzp2rnJwcPfjgg/r973+v5557zrvPnXfeqbvvvlvnn3++zj//fG3atEm/+MUvVFFRUaf31CPwZ8ipp56qc845R6tWrdJNN93kt++qVavUvn17XXTRRXV+rQBQIwMAUCufffaZIclYu3atYRiG4XK5jG7duhk33nij337vvfeeIcl47733/Lbv3LnTkGQsX77cu+26664zzH4kv/LKK4Yk4+677/bbfumllxo2m83YsWOHYRiGkZOTY8TExBj33HOP335fffWVERsb67d9+PDhhiTjn//8p3dbeXm50bVrV+OSSy7xbnvyyScNScZf/vKXoHa5XK5ate+LL74wJBnXXnut335XXHGFIcmYO3eud9tVV11lpKamGvv27fPbd+LEiUaHDh2Mo0ePGoZR/f727NnTuy0Sp59+uvGb3/zG+/iPf/yj0aVLF6OystJvvylTphiSTP+MGTMm7DX+85//GDabzZgzZ07E7QrlhRdeCPoezZ0715BkTJo0KWh/s/di9erVhiTjP//5j3fb8uXLDUnGzp07vdsyMzOD9isqKjIcDodx8803e7eZfbcj/V498MADhiTjlVde8W47duyYceqpp5r+ewnUoUMH47rrrgv5vMvlMnr37m2MGTPG+z01DPf70qNHD2P06NHebYsXLw56D2qjtLTUkGRcdNFFER+TmZlpTJkyxfv4+PHjhtPp9Ntn586dhsPhMO666y7vtosuusgYMGBA2HPX9N6E4vk+XXjhhX7br732WkOS8eWXXxqGUf3vePr06X773XLLLYYk49133/VuC/x37RH4+j3fw1GjRvl9XjfddJMRExNjlJSUGIbh/h7Gx8cb48aN89vvj3/8oyGpTu9puJ8hS5YsMSQZ3377rXdbRUWF0aVLF79rAUBjoLs7ANTSqlWrlJKSohEjRkhyd+ucMGGCnn32WTmdzga91ptvvqmYmBjdcMMNfttvvvlmGYaht956S5L00ksvyeVy6fLLL9e+ffu8f7p27arevXsHVSnbtWvnN9Y6Pj5eZ555pn744QfvthdffFFdunTR9ddfH9QuTzU20va9+eabkhS0X2BV3DAMvfjii7rgggtkGIbfaxkzZoxKS0uDuu5OmTJFrVu3Nn8DA2zevFlfffWVJk2a5N02adIk7du3T2vWrAnav1WrVlq7dm3Qn3vvvTfkNYqKinTFFVeoR48emj17dkTtqqtrrrkmaJvve3H8+HHt27dPZ599tiRF1O25f//+Ovfcc72Pk5KS1LdvX7/vRiiRfK/efvttpaen68ILL/Rua9Wqla6++uoazy9JHTt21CeffKKCggLT57/44gtt375dV1xxhfbv3+/9/hw5ckQjR47Uf/7zH7lcroiuVRPP0Ir27dvX+RwOh8M7/tnpdGr//v1q166d+vbt6/d5dezYUbt379bGjRtDnqum96Ym1113nd9jz799z79fz3//8Ic/+O138803S1K9xt7/7ne/8+vlce6558rpdCo3N1eStG7dOlVUVOj666/32y/wZ4gU+XvqYfYz5PLLL1erVq38hjKtWbNG+/btq3GeCgCoL7q7A0AtOJ1OPfvssxoxYoR27tzp3X7WWWfpgQceUHZ2tn7xi1802PVyc3OVlpYWFAI8s3x7foHdvn27DMNQ7969Tc8TFxfn97hbt25B3Z4TExO1efNm7+Pvv/9effv2VWxs6P9VRNq+3Nxc2e129erVy2+/vn37+j0uLi5WSUmJHn/88ZCzYRcVFfk97tGjR8j2BVq5cqXatm2rnj17aseOHZLcATErK0urVq0K6n4fExNTq4nfjhw5ovHjx+vQoUP66KOPgsaqNzSz137gwAHNnz9fzz77bNB7VVpaWuM5u3fvHrQtMTFRBw8erPHYSL5Xubm56tWrV9B+ka6OcN9992nKlCnKyMjQGWecofPPP1+TJ09Wz549Jbn/LUju4BVKaWmpEhMTI7peOJ4hD4cOHarzOVwul/72t7/p0Ucf1c6dO/1u9HXu3Nn791tvvVXr1q3TmWeeqVNOOUW/+MUvdMUVV+icc87x7lPTe1OTwJ8fvXr1kt1u947T9/w7Dvysunbtqo4dO3r/vddF4PfO8/l4vneecwe2MSkpKeizjPQ99TD7d9SxY0ddcMEFeuaZZ7RgwQJJ7hu06enp+vnPf17blwcAtUJIB4BaePfdd7Vnzx49++yzevbZZ4OeX7VqlTekhxr729DVdsn9S6nNZtNbb71lOmN3YFgMNau3YTIZXVPyVDj/7//+L2TIClx6LNIqumEYWr16tY4cOaL+/fsHPV9UVKTDhw/XOVhXVFTo4osv1ubNm7VmzRqddtppdTpPbZi99ssvv1zr16/XrFmzNHjwYLVr104ul0u//OUvI6og1+e70RTfq8svv1znnnuuXn75Zb3zzjtavHixFi1apJdeekljx471vsbFixdr8ODBpudoqJsnCQkJSktL05YtW+p8jj//+c+aM2eOpk2bpgULFqhTp06y2+2aOXOm3+fVr18/bd26Va+//rrefvttvfjii3r00Ud15513av78+ZJqfm9qK9TPsJrmNQgn1M+/hvzuRPqeeoT6GTJ58mS98MILWr9+vU4//XS9+uqruvbaa5n5HUCjI6QDQC2sWrVKycnJ3tnYfb300kt6+eWX9dhjj6l169be6k5JSYnffmbVplC/9GZmZmrdunU6dOiQX7X6u+++8z4vyTuJW48ePdSnT586vbZAvXr10ieffKLKysqgSnxt25eZmSmXy+Wtznts3brV73yemd+dTmetly6ryQcffKDdu3frrrvu8ltvXHJX6373u9/plVdeqVNXVpfLpcmTJys7O1vPP/+8hg8f3lDNrpWDBw8qOztb8+fP15133und7qkuW0FmZqa++eYbGYbh97339GyIRGpqqq699lpde+21Kioq0pAhQ3TPPfdo7Nix3t4aCQkJNX6H6hM2PcaPH6/HH39cGzZs0NChQ2t9/L/+9S+NGDFCTzzxhN/2kpKSoIkH27ZtqwkTJmjChAnem0L33HOPbr/9du+SeOHem5ps377dr6q8Y8cOuVwuZWVlSar+d7x9+3a/f0OFhYUqKSnx/nuX3JXwwJ99FRUV2rNnT0TvSyDPubdv3+7XM6C4uDiol0dt3tNwfvnLXyopKUmrVq3SWWedpaNHj+q3v/1tndoPALXBrUAAiNCxY8f00ksvafz48br00kuD/vz+97/XoUOH9Oqrr0py/1IZExOj//znP37nefTRR4PO7VnfOvCX2vPPP19Op1OPPPKI3/a//vWvstls3l+8L774YsXExGj+/PlBlSfDMIKW34rEJZdcon379gVd23PO2rTP89+HHnrIb78HH3zQ73FMTIwuueQSvfjii6bVycAlmWrD09V91qxZQZ/d1Vdfrd69e5supReJ66+/Xs8995weffRRXXzxxSH327dvn7777jsdPXq0ri8jLE81MvA7EPg+R9OYMWOUn5/v/XciucfOL126tMZjnU5nUJf95ORkpaWleZcAO+OMM9SrVy/df//9Onz4cNA5fL9Dof7dSe6l+jw3m8KZPXu22rZtq+nTp6uwsDDo+e+//15/+9vfQh4fExMT9Hm98MILys/P99sW+G84Pj5e/fv3l2EYqqysjOi9qUngzceHH35YUvW/3/PPP19S8PfpL3/5iyT5DRfp1atX0M++xx9/vM49iUaNGqW4uDg9/PDDfu+X2Xc70ve0JrGxsZo0aZKef/55PfXUUzr99NODevIAQGOgkg4AEXr11Vd16NAhvwmvfJ199tneqsuECRPUoUMHXXbZZXr44Ydls9nUq1cvvf7660HjhCV3sJDcE6uNGTNGMTExmjhxoi644AKNGDFCd9xxh3JycjRo0CC98847+ve//62ZM2d6q4a9evXS3Xffrdtvv105OTn61a9+pfbt22vnzp16+eWX9bvf/U633HJLrV7v5MmT9c9//lN/+MMf9Omnn+rcc8/VkSNHtG7dOl177bW66KKLIm7f4MGDNWnSJD366KMqLS3VsGHDlJ2dbVo9vffee/Xee+/prLPO0tVXX63+/fvrwIED2rRpk9atW6cDBw7U6nVI7jXaX3zxRY0ePdpbcQx04YUX6m9/+5uKioqUnJwsyb0m9MqVK033//Wvf622bdvqwQcf1KOPPqqhQ4eqTZs2Qft79pOkRx55RPPnz9d7772n8847r9avoyYJCQn62c9+pvvuu0+VlZVKT0/XO++84zd/QrTNmDFDjzzyiCZNmqQbb7xRqampWrVqlfdzCVfdPnTokLp166ZLL71UgwYNUrt27bRu3Tpt3LhRDzzwgCTJbrdr2bJlGjt2rAYMGKCpU6cqPT1d+fn5eu+995SQkKDXXntNUvW/uzvuuEMTJ05UXFycLrjgArVt21aTJ0/WBx98UGN36169eumZZ57RhAkT1K9fP02ePFmnnXaaKioqtH79er3wwgt+64IHGj9+vO666y5NnTpVw4YN01dffaVVq1YFjSP/xS9+oa5du+qcc85RSkqKvv32Wz3yyCMaN26c2rdvr5KSkhrfm5rs3LlTF154oX75y19qw4YN3iUTBw0aJEkaNGiQpkyZoscff1wlJSUaPny4Pv30U61YsUK/+tWvvJNpSu6l2q655hpdcsklGj16tL788kutWbOmzssSJiUl6ZZbbtHChQs1fvx4nX/++fr888/11ltvBZ0z0vc0EpMnT9ZDDz2k9957T4sWLapT2wGg1pp0LnkAOIldcMEFRqtWrYwjR46E3OfKK6804uLivMuHFRcXG5dcconRpk0bIzEx0ZgxY4axZcuWoCXYqqqqjOuvv95ISkoybDab33Jshw4dMm666SYjLS3NiIuLM3r37m0sXrzYbxkijxdffNH46U9/arRt29Zo27atceqppxrXXXedsXXrVu8+w4cPN13KacqUKUZmZqbftqNHjxp33HGH0aNHDyMuLs7o2rWrcemllxrff/99rdt37Ngx44YbbjA6d+5stG3b1rjggguMvLw806WaCgsLjeuuu87IyMjwXnfkyJHG448/7t3Hs3zSCy+8EPLz8H1fJBlPPPFEyH3ef/99Q5Lxt7/9zft+KMQSbPJZtivS/QyjeqmrmpYZ8xVuCbbi4uKg/Xfv3m38+te/Njp27Gh06NDBuOyyy4yCgoKg9znUEmzjxo0LOufw4cON4cOHex+HWoIt0u/VDz/8YIwbN85o3bq1kZSUZNx8883ez+i///1vyPeivLzcmDVrljFo0CCjffv2Rtu2bY1BgwYZjz76aNC+n3/+uXHxxRcbnTt3NhwOh5GZmWlcfvnlRnZ2tt9+CxYsMNLT0w273e73fniWlIvUtm3bjKuvvtrIysoy4uPjjfbt2xvnnHOO8fDDDxvHjx/37me2BNvNN99spKamGq1btzbOOeccY8OGDUHv+ZIlS4yf/exn3tfTq1cvY9asWUZpaWmt35tAnu/TN998Y1x66aVG+/btjcTEROP3v/+9cezYMb99Kysrjfnz53t/JmRkZBi3336732s0DMNwOp3GrbfeanTp0sVo06aNMWbMGGPHjh0hl2DbuHGj3/Fm3zGn02nMnz/f+16dd955xpYtW+r8nkb6M2TAgAGG3W43du/eXeN7CQANwWYYUZ4lCAAAtHgPPvigbrrpJu3evVvp6enRbg7g9aMf/UidOnVSdnZ2tJsCoIVgTDoAAGhSx44d83t8/PhxLVmyRL179yagw1I+++wzffHFF5o8eXK0mwKgBWFMOgAAaFIXX3yxunfvrsGDB6u0tFQrV67Ud999V+eJ+4CGtmXLFv3vf//TAw88oNTUVE2YMCHaTQLQghDSAQBAkxozZoyWLVumVatWyel0qn///nr22WcJQrCMf/3rX7rrrrvUt29frV69OuSEkwDQGBiTDgAAAACARTAmHQAAAAAAiyCkAwAAAABgES1uTLrL5VJBQYHat28vm80W7eYAAAAAAJo5wzB06NAhpaWlyW4PXytvcSG9oKBAGRkZ0W4GAAAAAKCFycvLU7du3cLu0+JCevv27SVJf/z4f2rVrl2UWwMAAAAAaO6OHz6sP59zhjePhtPiQrqni3urdu3UKoI3CAAAAACAhhDJkGsmjgMAAAAAwCII6QAAAAAAWAQhHQAAAAAAi2hxY9IBAAAAAA0nxnAp3uWSTUa0mxI1hmyqsNvltNW/Dk5IBwAAAADUSUJVhfodK1N8BBOiNXcVhqFvWyeoLDa+XuchpAMAAAAAai3GcKnfsTIltW+vdp06SS05pxvS4QMHpENl+qxdp3pV1AnpAAAAAIBai3e5FG+zqV2nTopr1SrazYm6dp06qfTwYcW7XDoWU/eQzsRxAAAAAIBa845Bb8kVdF82z3/qNzafkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAAC0OEV79+qOm2bqrFP7KjOhvc7o1UuTL/61Pnz3XUnS08uW6eLRo9U7qYtSWzlUWlLSJO0ipAMAAAAAWpS8nByNGTZUH73/vuYsvFfv/u9/eua11zRs+HDdPvNGSdKxY0c14he/0A2zb23StrEEGwAAAACgRbntxhtks9n01kcfq03btt7tffv316QpV0qSfnf9DZKk9R980KRto5IOAAAAAIg6p7NprnPwwAG99847unLGNX4B3aNDx45N05AQCOkAAAAAgKjZsU0aPjhW3drGa/jgWO3Y1rjXy/n+exmGoVP69m3cC9URIR0AAAAAEDVXXR6r77fbJEnfb7fpqssbd1S2YRiNev76Ykw6AAAAACAqnE5p23d2n8c2bfvOJqdTiolpnGv2OOUU2Ww27di6tXEuUE9U0gEAAAAAURETI/U51aWYGOPEY+PE48a7ZmKnTjpv9Gg9teQxHT1yJOj5plpqLRRCOgAAAAAgap54vkq9ertDeq/ehp54vqrRr7nwwb/J6XRq7E/P0esvv6wfdmzXtu++1bK/P6Lxw38myb2O+pYvv9TO77+XJH27ZYu2fPmlDh440Khto7s7AAAAACBqTukjffBFVaN2cQ+U2bOn3tnwX/1t0b2af+utKtq7R52TkjTwRz/SooceliT9c+lSPXDP3d5jfj1qpCTpwceXasLkyY3WNpth9VHzDaysrEwdOnTQXV9uVav27aPdHAAAAAA4KbVxVuqMY2VKz+yuOEeraDcn6irLjys/d5f+1zpBR2Pi/J47fuiQ7hzUV6WlpUpISAh7Hrq7AwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAoNYM2Tx/geR9H7zvSx0R0gEAAAAAtVZls8kwDDkrK6PdFEtwVlbKZRiqstUvpLNOOgAAAACg1iptdu23x6rN/v2yx8bKZq9fOD2ZGS5Dpfv26YA9VpW2+tXCCekAAAAAgNqz2fR96/Zqd6REx/Lyot2aqDtuSN+37ShRSQcAAAAAREOFPUafteukVi6nbC14cLohm47bY2TUM6BLhHQAAAAAQD0YNpuOxRAtGwoTxwEAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBFRDemHDh3SzJkzlZmZqdatW2vYsGHauHFj2GPef/99DRkyRA6HQ6eccoqeeuqppmksAAAAAACNLKohffr06Vq7dq2efvppffXVV/rFL36hUaNGKT8/33T/nTt3aty4cRoxYoS++OILzZw5U9OnT9eaNWuauOUAAAAAADQ8m2EYRjQufOzYMbVv317//ve/NW7cOO/2M844Q2PHjtXdd98ddMytt96qN954Q1u2bPFumzhxokpKSvT2229HdN2ysjJ16NBBd325Va3at6//CwEAAAAAIIzjhw7pzkF9VVpaqoSEhLD7Rq2SXlVVJafTqVatWvltb926tT766CPTYzZs2KBRo0b5bRszZow2bNgQ8jrl5eUqKyvz+wMAAAAAgBVFLaS3b99eQ4cO1YIFC1RQUCCn06mVK1dqw4YN2rNnj+kxe/fuVUpKit+2lJQUlZWV6dixY6bHLFy4UB06dPD+ycjIaPDXAgAAAABAQ4jqmPSnn35ahmEoPT1dDodDDz30kCZNmiS7veGadfvtt6u0tNT7Jy8vr8HODQAAAABAQ4qN5sV79eqlDz74QEeOHFFZWZlSU1M1YcIE9ezZ03T/rl27qrCw0G9bYWGhEhIS1Lp1a9NjHA6HHA5Hg7cdAAAAAICGZol10tu2bavU1FQdPHhQa9as0UUXXWS639ChQ5Wdne23be3atRo6dGhTNBMAAAAAgEYV1ZC+Zs0avf3229q5c6fWrl2rESNG6NRTT9XUqVMlubuqT5482bv/Nddcox9++EGzZ8/Wd999p0cffVTPP/+8brrppmi9BAAAAAAAGkxUQ3ppaamuu+46nXrqqZo8ebJ++tOfas2aNYqLi5Mk7dmzR7t27fLu36NHD73xxhtau3atBg0apAceeEDLli3TmDFjovUSAAAAAABoMFFbJz1aWCcdAAAAANCUTop10gEAAAAAgD9COgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIqIa0p1Op+bMmaMePXqodevW6tWrlxYsWCDDMEIe8/7778tmswX92bt3bxO2HAAAAACAhhcbzYsvWrRI//jHP7RixQoNGDBAn332maZOnaoOHTrohhtuCHvs1q1blZCQ4H2cnJzc2M0FAAAAAKBRRTWkr1+/XhdddJHGjRsnScrKytLq1av16aef1nhscnKyOnbs2MgtBAAAAACg6US1u/uwYcOUnZ2tbdu2SZK+/PJLffTRRxo7dmyNxw4ePFipqakaPXq0Pv7445D7lZeXq6yszO8PAAAAAABWFNVK+m233aaysjKdeuqpiomJkdPp1D333KPf/OY3IY9JTU3VY489ph//+McqLy/XsmXLdN555+mTTz7RkCFDgvZfuHCh5s+f35gvAwAAAACABmEzws3S1sieffZZzZo1S4sXL9aAAQP0xRdfaObMmfrLX/6iKVOmRHye4cOHq3v37nr66aeDnisvL1d5ebn3cVlZmTIyMnTXl1vVqn37BnkdAAAAAACEcvzQId05qK9KS0v95lYzE9VK+qxZs3Tbbbdp4sSJkqTTTz9dubm5WrhwYa1C+plnnqmPPvrI9DmHwyGHw9Eg7QUAAAAAoDFFdUz60aNHZbf7NyEmJkYul6tW5/niiy+UmprakE0DAAAAAKDJRbWSfsEFF+iee+5R9+7dNWDAAH3++ef6y1/+omnTpnn3uf3225Wfn69//vOfkqQHH3xQPXr00IABA3T8+HEtW7ZM7777rt55551ovQwAAAAAABpEVEP6ww8/rDlz5ujaa69VUVGR0tLSNGPGDN15553effbs2aNdu3Z5H1dUVOjmm29Wfn6+2rRpo4EDB2rdunUaMWJENF4CAAAAAAANJqoTx0VDWVmZOnTowMRxAAAAAIAmUZuJ46I6Jh0AAAAAAFQjpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIuIjXYDAAAAUC0nJyfaTWgSWVlZ0W4CAFgSIR0AAMACcnJyVHWwXL8+WBLtpjS6lxM7Kkc5BHUAMEFIBwAAiDJPQB+5basyWqc3+vWcLikmioMeRxZvVUJSil478ZiwDgDVCOkAAABR4ls9LysuVO8DUoFrbaNdL+9Asua/Ok279qeqe+c9mnvhk8roVNRo1wult72/4lvHavgnm5Xdpy9VdQDwQUgHAACIgsDqecUBaXPZOiV1btNo15z32mzlH0iWJO0+kKx5r12px373x0a7Xiib969TmitNve39pW1U1QHAFyEdAACgCYWqnhccLlC5XVo95JRGua7LaVPevuqu9C4jRnn70rVqUG/ZY4xGuWYo52ZvVqWjRJv3r9NAjaKqDgA+COkAAAD1VJsZ2c2q5+V26cPRAyVJQxImNFIrpezu5SreHS+Xyya73VBStwr9OPHyRrteKEd+PUGry57TudmbtbksuKr+8sFyxSY6GvSaBH8AJwtCOgAAQD3UdlZ23+p5paPEHdBHDmzUcO4xdW6Bls9PU+Euh5K6VWjq3IJGv2YoQxIm6MOR7r9P2rTDr6rumViuoTCbPICTCSEdAACgDgK7rUc6K7tf9Xxo41fPfSVnVOrWZblyOSV7TJNcMizP6149JLiqHt+64X5NHVm81duVXqKqDsDaCOkAAAC14OnaHthtPdJZ2Zu6em7GCgHdl1lVPc2V1mDn723vrwF5h5V3sISqOgDLI6QDAABEKNSkb5WOkoiO333waJNXzxtaY1XhA6vqkb6nkfCE/hR7f43sVMhs8gAsjZAOAABQg1DV88Bu65E4WcN5UV6cdzx7SvdyTZ1boOSMyga/jm9VvaEwmzyAk4nNMIymXXMjysrKytShQwfd9eVWtWrfPtrNAQAAURTprOyB1fN9rm9U6ShxV8aj2G29KS2anhk0M/yty3Kj3ayIbToxm7zDJaW1S1MXe39t7yR3Vb2ne5I6wjqAxnL80CHdOaivSktLlZCQEHZfKukAAKDFqcuM7KGq5y0hoLucUuGu6iXRXC6bCnc5LDMBXSQ8FXqq6gCsjpAOAABaDLNu65GoOCB9VrZCSZ3bRH3St2iwx0gpJmusnywB3WNIwoSI12gnrAOIFkI6AABoEUJN+haJgsMFKrdLq4ecIqllVM8DWWmN9fqqaY12quoAoomQDgAAmrVwk74ldW4T0TnKj7a86nkgq62xHqi27Qq3RjtVdQDRREgHAADNVrgl03wr45FoyQHdl9UCutms813SKiNuZ6RVdYmJ5QA0DUI6AABodsyq5wX7vtHmE93WW9Kkb3Vl1Yp5oOXz01S8O16SVLQ7XotnZMpZZa/VMnERVdUTO9IFHkCTIKQDAIBmxax67p30jW7rQQLDeEOuh97YQT9w1nnDZZPTZZMkFe+O1/L5abVaJs63qn5u9mYVuApCVtUjQaAHUBeEdAAA0CzUVD1vyZO+mQkVxn0r05EEXbMg3pBBP5zAWef92lXHZeI83w/Pcm174tYrLq+jt6oeKSafA1BXhHQAAHDSo3pee2ZhfNaSXNP10Pfmxqlrpn/I9g3iyRnlmjavOohHEvQbqsruO+t8TKxLziqbJHdgj4l1aV9BXJ1uEJhV1dNcaREd24XJ5wDUAyEdAACctAKr5ykHpBgX1fOaBHYT94RxSUFBVzK0YkFwyF4+P01FeSfGguc5dO9VWbr6nnz1HXI0bNBv6Cq776zz+wriToxJt3mvHUmX91A3DAKr6pWOkojaxORzAOqDkA4AAE5KvtXzjMOxfsuqUT0PL7CbuN1uKKlbhSTJWWUP2Du423hgyPfs98Sdabr/rR1K6V6uwl3xMgv6te1OH0pgsLbHSF3SKv3ab9TQ5T3SGwa+VfVImHWTZ/I5AJEipAMAgJOKWfW8wPWNCqieSwpdFQ7c7ttNPKlbhabMKfCG98CAndK9wi+g22Ok5IxyFeU5Aq5hV1WFNGVOge67uofPM+6wXFVhXsE3604f6rWEC9ahbj6E6lZfmxsGtfk+RTr5HGEdgJnAW6UAAACW5ameX/BDoW7IO6zeJ6rnnnXPPdXz5hLQXc7I9y3Ki9Oi6Zm6ZWwfLZqeqaK8uLDbPd3EZy/dKUm67+oeWjQ9UxfOKFbn1OrA3Dm1UlPnFgSd56JriiUZPi0wFBPrUmy81DWzUindy2WzuZ+32w2ldC9XbLw7RAcet2KB/1jvUG2WzIO1r6lzC7y9ApK6VWjq3ALT98vTG8Az4ZzvRHP15fkOfjhyoMrt0p649SrIW6veB6SR27bqgh8KVXWw3HvDCQB82QzDMGrerfkoKytThw4ddNeXW9WqfftoNwcAAETAE2Yu+KHQOzHcPp/q+Ycjm9e653UZt71oemZQBfnWZbkht3uq1PdMydL+PXFyV84NdU6t1B0rcrxh1VOFDjxPl/QKXXRNsZ64M00up10xsS5Nm1+gfj85GvY17M2NC6iyu93/1raQ1/Jt8y1j+4Q91iOSielCXachbSp7TpK7qu5wSWnt0pSWMVpfH8tXdp++ik109yygqg40b8cPHdKdg/qqtLRUCQkJYfeluzsAALA0T/Xcs6xaSxh7Xpdl0My6kYfqXr5oeqY3PO/fE+9zJpv274kPCrhm5y/Kc+jVJUma/XiuOqVUKtb3NPKf0M23q7ynyu7bpd53FvZQr8VzHv+J7QxJNi2ekRl0IyOSmeMDu/yHqrrXh9nkc599u0IDE0YxVh2AKUI6AACwJLPqeYFrrd/Y8yEJEzQkus1scDWFVDOhxmJ7upf7brfZDb8bADXxVMTd3KHY899IbiDYY/yr6p1TK+SskqrHvEsuZ/Us7OHGlbucgRPb2byvoy4T0JndSGgsgUu6bS5bpzRXmtJapzNWHYAfxqQDAADL8VTPh3+yWRmHY0OOPW+OPCE1cDx3TSEy1Fhs3+1d0ivkrLL7jcN2M7z/7ZzqP9Gab1W/Wu3GcfueY/+eOJUUx/k9bxj+5wn1WgLfG4/6jidv7IDuEThW3VNVZ6w6AF9U0gEAgGX4LqvWkqrnvory4lRVaZNhuINwYkplRN2wQ1WFA7cHjsNOTKlUbJxxovu7f5fv4KXW3G2y2QwZRvXY9HAhN9Q5/LnHwnvOE6qr/L4C//fGU9GvaRb32jCrqjd0pZ2qOoBwCOkAAMASwo09Xze0eU0MF87y+Wk6WOiuNNvthmLjjBonjfMVrku8ZD4OOzmjUlUVChpXbtb13DfU2+yGivLcY9xDTW4XeI7qLvMK+Lt5m327ysfEuuRyVh8bE2vIWWVTl/T6jyc3m+hOUq0n8IuU71j1SZt2SOVSaVqpBhSkK+FgiRyJHfQvtWqQawE4udDdHQAARFVOTo52fO7u6jty21Z39TxvrTaXrfOvnkcxoDfEslyRXqexlgXznMNTpb7/rW3eMdyLpmdq9vjg5c6k4K7nV9+dr6lzC2SPcXnHhxfuitfSP6WHvLbvOfxDuc373/174nXvVcHXX/qn9BOTzLnHo1dX0W1yVtm967Uvn5+mory4oPfK7L0L3FaUF6fFMzK9Ff+iE2Pca1ruDQAaA5V0AAAQFZ5xt1auntdlKbT6CDdpWk1CdckO9Ro8+9Y0k7xZ1/N7r8qUy+k/gZvZrPCednnOce9VmSrOj5fhCqyku/+7L9//+i6nAmafD2SoOD/+xOuM1+IZmXJW2ZXSvVwXzijWq0uSwlbGp8wpUNfMSj0xN81vQjrjxM0Rv9cRwQR+ANAQqKQDAIAm5+nabuXquWQeYBtbqEnTQinKi9Oi6Zm6Zax5JTzca6hN5d4zu7rLKRXlOYJ3kHTf76qvX5QXp3uv8m/XtHkFstsNkyPr2nPA5g38hmHzBu3i3fF6cm7w6/Z9Lwp3xeu+q3to1vmnqHh38OtJ6V4eNEmdZ6k4AGhMVNIBAECTCVc9L7dLH46OfvXcoy5LoTWE2i4LZhbCZy3J9YbqcK8h0sp94BJq7rXKfWs9/pXwqXMLdN/vqqvtnu7wtz+ZY7qEmu/Y9JhYl4p2x6lrprva3zm1Qvv3xCnc2PVALpdNctn8HgdWxj3nc6+5HtwGz80Rd3W++iZCXZZ6A4DaIKQDAIAmEWrmdqsuq1afrucNdf2ahArht4zt4+3iXdNrMJtILtCT89K0L796CbVg/pXwxTPMu8P/eWqWScCvPl5yh+b7ru7h7bLu/7x/9/jqpeMC/+7e12aTdxZ6T++Eorx4n3Htvvu7/5vUrVxXzXcPCQhcl91ooBs1dJkHEA7d3QEAQKPKycnxn7ndZ93znUcLtHrIKZYL6B617Xre1Dw3Eqq7kBvyhFVPVT2S11BV6Q6ohbscWvqndL8u6+6u6g6fNdVtCq5qG37/DQ7hbgf2xvlUrn2P8+XTljvSdWBvXNBz/o/N22WzSfYY9/ltdvds9FWVNnXq6plTwL/NnvXob38y1zvvQOD7G+ma9aGEGpqw++BRFRwu0JFPPlVFfr7KigtV/kMpa6YDLZTNMAyzn47NVllZmTp06KC7vtyqVu3bR7s5AAA0a2bV832ub1TpKNHug0ctG84DNWXls7bXKsqL05Pz0kKOE7//rW3eru9m5100PfPE7OnVFeiU7hWatSRXi2dkmlSeAyvWnm2Rd0evn+CKuX913V9St3LtL/DvSTBlToFWLKhe1s0z2ZzZxIANOXlg4Br1Sd0qdOuyXG0qe06Seym24v1HNTBhlOLT0/X1sXxl9+mr2ET3Z8ua6cDJ6/ihQ7pzUF+VlpYqISEh7L50dwcAAA3ObOx5wb5vtPlwgbtruwVmbq+NpgjoNYVBz2Rqvm3xHFOU5z6mssKmkqI4067tZq/h60/amI7V9nSZN2cWxkNV1sOth26ofWKlDh2s3Xhz82p64LWrX7/ZcIDkbv7j/sPdGKntHAGhhJsfwPPvYPWQ53Ru9mbtiVuvuLyO6m3vL23bqoSkFL2c2FE5yiGoAy0AIR0AADQos+r5Z2UrlNS5jcqPWm/seV3VJ7SZHRtqKbSivDgt/VO6dymyzqnutcqTMyqDZiuXbIqJdUkuW43d84vy4vTEHLO1zQPHedelQl49vrv8mF1l+83HsbsDeuC161qRDxxb7n797vfOcyPAUKeulUE3LiL5HGsK8x6h9olkjoMhCRP04Uj338/N3qwCV4EGapTiW8dqZPFWZffpqxzlSKKqDjRnhHQAANAgaqqerx5yiqSTp3oeSn26P4c6NlSV9d6r3DOL+07Wtn9PnHcGd/8q+InJ25w2pXQvr3EG8ifnpanmqnhNFfLw3DcQwu0bqioeGNbDhXezyeRC7WvTgb3xumdKlvdGRyQi+cwj2SeSSfo8/z4+HCmq6kALxZh0AABQb77V84zDsarIz9fmsnVK6tzmpBp7HolQ44rre6zvc75dtl0u88B53+vb9MC1vsf484xFN+NyKkR3ds8EaQp53VDHhA/j5t3dG2Ycu3lIt9nc76/5WH33uPuG+Nxqs49HpL0wPGPVz83eLIdLSmuXprSM0YxVB05CtRmTzuzuAACgXjwVdE9AL00r1T7XN0rq3MbSM7fXhafi7QmwvuOK63us7yzsvkuaufnWVAzFxLo0e3wfFe5yyGY3n6Xc0z3b9/qSu+K7eEamyXk917WpY3LgDOhm+1bPnB4qbNtshhJTKtQxyaxiXVOoD7y2+fUDu7l7/msYNndAt7lMr91Qn1uk+/iKdJjEkIQJJ7rAD1S5Xap0lOizb1eo9wFp5LatuuCHQmaAB5ohursDAIB6u1THVR7iueYS0KX6rZ1e07GeCcruvSpT+/Kr90noXKWyAzFyOW3e8/guY+b5e0ysIWeVeyz6+KuLT8za7lDnVHfw378nXindy1VVadPBwnBjwQ3FxRvq1LUiguXPJMNlVvNxn88wpIOF8TJfas2Mpx01TQ5Xvc1mM2QYthP/NdnXMOsC766kN8TnFuk+9RE4Vn1z2TqludKU1jqdsepAM0QlHQAAoBYiXTvdrIoaybHT5vnvExNrnAiakmScCOvB48ZdTps6dXUf98ScbicmknOPYfeMaS/Ki9f+PfEBa54r6HyFuxw6sLem8eThgnckIbum4B6uiu/WObVCyRnu1+xZE928LTbvzQr3cZWaMif0pHqBVfJIPjezfcJV6iOp4vuiqg60HIxJBwAA9ZKTk+OupP9Q6u3ufuSTT1XpKNHqIac0q0q6r1DjiiOZQCzSWcKlcGPHQ3cx91/X3Ix/5Twm1h3+DcMmm92QzWbI5axrLac2Y9T92xF+cjj/c8bEunTx74v00iPJclaFa6v79S1+c4dcTmnvrjg9fY/55+P72QX2QJg6t0Bd0ir9Pjffz9F3Obd9BaG/Aw2x7rrZWPUu9v7a3kmMVQcsijHpAAAAjcwsZLuc5kupRXKs2T6ebtR2e/V4c3d4DF2ZDg7o1eO5bTazAG2Ts8ruPc5uN7xd683On9StXB26VCh0Jdysu7rZ2PfgdoTmPmdSN/egiuSMcs1aknsioJuN2/c/1lll1z1TsrRwWpbun9HD28sg8PPx/ex8eyB49vN8bkV5cVo0PVO3jO2je6Zk6Z4pWbplbB8tmp7pDeihvgNPzqv5+1ETs6r65rJ16n1AuiHvMFV14CRHSAcAAKgn39BW14nlQpk6t0Bd0qu7UV99d75SupcrVPCtDuLu/3ZOrVTnVHeltlPXSvc66n78u5W7q9LmY8DbJVaqeLdDpftq6goffGz9uCfLu2p+gZK6lasoz6En56UFtDV8Fd4duuP99vX9fAInf/O92RD4OdYU5s2+A3tz3d+RoryG+354gvrqIaeo3C5tLlungry1StlaqJHbtnqDOmEdOLkwcRwAAKgzzy//5T+Uqqy4UGqdriOffKqCwwVKcrSJbuOakG9o8+2aXZcJxHy7UHu6Rhfl+XeNnjq3QPf9LtO04u1Zdiyle4WmzClQ10x3QN+bG6cH/l+mSddws2p28ERrNruhwwfD/epYmyXVarv8mk3OKpsWz6huf1Ge74R0kazFbt47wHcCuZhY14nKvP/74Ps5Bq5p73teT+g2O3bFgsDviLu7f+fUynpNMOe7rvqkTTtUqRLtK/9GA1qP1oC8w8o7WKLXeqbU/QIAmhwhHQAA1Inv2uhlxYXqfUAqcK1VpaNE5UfVrMej+woX2sJNLBd4DrNxzO6A7t81+tZlueqSVmk6Ztwe49Lsx3NP/L363PYYadmc9BBjt2seF26PiWSMeuNW1u0xroD227zb3TcrQgX/cDcEbKqqtOnbjW3078eSQt7AsNkNXTij+MT1/Gdy979REHzTIKmb+2bJfVf3CDpvQ8u57CxlvfCJJKk0rVQdCjo0ynUANC5COgAAqBVP9bzqYLlGbtuqjNbpqjjg7mpbbpc+HDpQUvNaei2cUMtvzVqSW2OF1HcSsZhYl7cbdPHueD1+R/qJGdbdfLtGe67pHltdHbATOjl1y9g+SulergtnFOvVJUkq3OVQcka537mqhRtX7vN8jRPR1VZtK+kKeZOgS1qlez30MEE8+JqGbDb3+P2DhXF6cm6aDFfo9ricNr26JEmduxb4fV5y2bxDCdxd6YN7JXi+B/7Bvnqf/XviI5pIEEDLQUgHAAARC1s9t0sfjhzYYsK5L0/Vu3CXw1s9jyR0+XaT963iuly2E6E6eBZ2e4w73FdVVnfL7tS1Qi6nTSXF7l/tCnfF+wXP6m7WgWpaKs0zdrrm1xIZQ/YYQ4nJVT7jw2s+Jlygdwf0mnnWkXd3abfLs76Ry2WTwgR0yR3mC3e5x8Hvy3e323DZlJxRrtuecPdcqKqQZo83m4nfzfc7YtaNHgA8COkAAKBGVM/DS86o1K3LcmtVEQ3uJl+tehm1wFnYbd4Z5A8Wuicrs9sNxcYZKvKrlNt8Zj03m/Hd+4xqrmhHMu47Uja/mwmRXT+StdpDd3e32Q3Z7Yb3hoXhcgd1w2Xz6a5e/V+bzZBshgyXXYFh2vfzcrls7kngTnzmsfHuddvdk8gFjzf3fEf25sZpxQL/GzoA4IuQDgAAwjKrnn9WtkJJndu06Oq5Gc/EYpEusebbBdpmc1eZnVV2JWdUqKrS5hP4JE/ou+93mX7VY09YNGUzJMMdMmXzLK0W6bJn7mvWPZyHPtb3BkKk3DcupNDtNz9nl7QKFe/2f790ogru303eM8bd/Rn4rpPuCdOeng++wxp8P/Or7873mVfAPIB3zaz9DR0ALQshHQAAhOQb0DMOx6pg3zfaJympcxutHnKKpJZbPQ/kO77cdyb2cHy7QCdnuENdl7RKb5f2pX9K93YL94x99nS39lZ+T1SK/Sc98x9LbsjQpdcX6d3nOtWim7nUWBOc1bxsmkd10A8O6KH29R8iULy7ery/4ROub12Wq3uvytS+/OrQbfOpuB8sjFNStwrd/9Y2Se5AHTis4cIZxVo0PdM77n/avIKIAzgBHUAohHQAABDWrw+WaGj3H2n3N19JkgZn9tbGvRslEdB9+Y4v952J3VdgeAvVTd7ldD93x4ocvzW0bxnrO+b5ROXXboSoTPt0d3fZ9dIjyWrdrqrG1+G/DFl9Kum1CdS+//U9tqbl4SJrn+/74ztT+7R51aG7S3pFUA+Fwl0Ob88Fz40X38/Lve65+zMvynNo8YxMzVqSW+PNGQAIp6a1NAAAAFADz/hyz8zdvjOxS+6q+KLpmbplbJ8TwS7O73jfddHN9rPHVHePt9vdQdZuN5ScUX6igl7TBHDuiekOl9RcRTc/X6BQs8LXbt+YWLNQXpsx6mZ/D7Wtekz6q0uSTM/cObXCPSbdy/CG8MJd8Vr6p3RJ1cMaCnc5/Mb7O6vsWj4/rYb2A0B4hHQAAIB6MgvQKd3LveHbrMpuxne/ot3xWjzDP7BPnVugpG7usdJJ3So0bV6BUrqXq3ahuTZqWtYskFk7zPftnFqhyXMaY9I0w6cdwe3xvYHiuw59UZ5DJcWxstl9j/G9aVC9XJrk/syTM8qDzu97cwYA6iKqId3pdGrOnDnq0aOHWrdurV69emnBggUyjPD/o3n//fc1ZMgQORwOnXLKKXrqqaeapsEAAAAhBAZoz6RhoarsVRX+xwfuZ7hs3nHmnmDv6R5//1vbdOsyd7fqqXMLvOPVw/MNr40l0q7x7sC7fG63el4v1E2B6kngJHcXft/g7pkUzqwSHmo9djPT5hWcOPeJKwfcnAGAuohqSF+0aJH+8Y9/6JFHHtG3336rRYsW6b777tPDDz8c8pidO3dq3LhxGjFihL744gvNnDlT06dP15o1a5qw5QAAAP7MArQUXGW32Q3FxLo0e3xwl3bf/XwFdp/31SWtUrc/maOrFuxWUGi1udS+kyfAh+pK3tjBvTEFvh7/12KzSbOX7lTHJP+x+Pv3uHspdOoacKck6Dz+VfnOqRVBcwq4x6C7K+rJAUuqUVEHUBcRTxxXUFCgtLSGHWOzfv16XXTRRRo3bpwkKSsrS6tXr9ann34a8pjHHntMPXr00AMPPCBJ6tevnz766CP99a9/1ZgxYxq0fQAAALVlVkX1nRXcbvcshRY8wZzvfjGxLrmcNhlG9Yzk+wri9OS8NBXlOdQ5tULOKqmk2DP7e4U6JlWdWIP8xDrdXat0sChW4SdYa6wZ3BtSpBPY+e/jrLLrqbvSAma0d+9TuMshe4zrxER5gXWr0OPbi/LivDdgPDP6F+W5Z3f3zOhfl5n+G8KG7/cr68Tfj3zyqTpkjPY+l5OTo6ysLLPDAFhMxJX0AQMG6JlnnmnQiw8bNkzZ2dnats29tMWXX36pjz76SGPHjg15zIYNGzRq1Ci/bWPGjNGGDRtM9y8vL1dZWZnfHwAAgKbkqbLf9/o2Oavs3i7WgRXyLmnV1Xh3hba6+/yFM4q1eEb1Gun798R5A3r1Y9911T1jqCOZCM5MYIU9XMU9kmp8fSr25u23x7gCJnoLVpTnkM3u2929mstpV4cuVd7u79XMx7Qf2BvnN5+A7xwC+/Kr5xqIdA6ChuRZaWH3waOqdJSo4HCBKvLzlXE4VsM/2ayqg+XKyclp9HYAqL+IK+n33HOPZsyYoZdffllLlixRp06d6n3x2267TWVlZTr11FMVExMjp9Ope+65R7/5zW9CHrN3716lpKT4bUtJSVFZWZmOHTum1q1b+z23cOFCzZ8/v95tBQAAqC9Pl/bi3dVrc3sq5GaV18DlvvwrvjXN6G62VFltllSrecb4yJ6rzT6hmLc70vHjnrXPzRzY67/uvD//x4bhf1OlcFfwkm1VFebbI1k7vb6GJEzQkV9P0Oqy53Ru9mZtLlunNFeaetv7S9u2KiEpRa+d2JeqOmBdEVfSr732Wm3evFn79+9X//799dprr9V8UA2ef/55rVq1Ss8884w2bdqkFStW6P7779eKFSvqfW6P22+/XaWlpd4/eXl5DXZuAACASOzNrV5ararSpsQUd9dnzwRzZpVX31nEA4OfucBKcailyoyAvzfEmPTGnpQukoAfrg3hxuMHLgMX/nqdulaEXBIvpXu5YuPDz/TfFIYkTNCHIweq3C5VOkq0uWydeh8QVXXgJBFxJV2SevTooXfffVePPPKILr74YvXr10+xsf6n2LRpU8TnmzVrlm677TZNnDhRknT66acrNzdXCxcu1JQpU0yP6dq1qwoLC/22FRYWKiEhIaiKLkkOh0MOR03/UwMAAGh4e3PjtGJB2omA7Q5tBwvjlNStQve/tc1vvW0PT+X1lrF9vN2w9++JDzF22le4IGsWRAMf16bKXptrNxWbbHaXT9XcrCdB8DHmQu1vyOaz2XcOAd8Z/UNtb0qRVNVfPliu2EQHVXXAYmoV0iUpNzdXL730khITE3XRRRcFhfTaOHr0qOx2///ZxMTEyOVyhThCGjp0qN58802/bWvXrtXQoUPr3A4AAICG5DtxWGBA9oRwj8Au8L77799TPcbc6Qzsrl7Xruv+5+icWqmDRbEmXcdDBXvrMlx2JXUrV/FuhyKtjEfSzd13u2etdPc66f5DEjwCt0dzlnd3Vd3990mbdmjz/nUaqFGKbx2rkcVbld2nr3LEpHKAldQqYS9dulQ333yzRo0apa+//lpJSUn1uvgFF1yge+65R927d9eAAQP0+eef6y9/+YumTZvm3ef2229Xfn6+/vnPf0qSrrnmGj3yyCOaPXu2pk2bpnfffVfPP/+83njjjXq1BQAAoKG4Z/z2jHX2D3w2m6HkDP+lvHwrryHDpeF/ns6plaqqlEr3eYJ8YNiMpHrufyMg9H5WYxas3ds8wwaCb2jI5Jjqbe6eCqG6xVdfI6V78LJtobqyh5proKl5JpVbPYSx6sDJIOIx6b/85S9166236pFHHtFLL71U74AuSQ8//LAuvfRSXXvtterXr59uueUWzZgxQwsWLPDus2fPHu3atcv7uEePHnrjjTe0du1aDRo0SA888ICWLVvG8msAAMASPN3XDcMsRErJGcHdnz2V13v/va2Gs59Ya91mKDbOUGxcuH1rDpzV+51swt1UCLV8Wuiu7fYY91CCmFjzWd19z1NVadMtY/3XuA8lGrO8h+MZq57UuY0GZ/bWPtc3GtA6XZJ0qY5HtW0AqkVcSXc6ndq8ebO6devWYBdv3769HnzwQT344IMh93nqqaeCtp133nn6/PPPG6wdAAAADcW8+7pNKd0rNGVOgbpmhq6kxrcOrOgGVozdf/fMMu6vtmHbquG8PmPjay8mtnrdepfTpuSMck2bV6An5qad6Dbvbo/dbshmN3Sw0B3MA9e4DxRqroGmmOUdwMkt4kr62rVrGzSgAwAANFdT5xYoqZu7W3RK9wrNXrpTty7LDRvQPabNL/Cp6LolZ5Src2qFd01w93/N1jEPnLldwfvZQs/9Yw02qYa1z8OrqRpuqHOqe+K+wHXrDcOmojyHqiqlW5fmavbSnd7u7V3SK+Sssp+48RK8xn2gULO/E9AB1KTus74BAADAVKgJxSLR7ydHtfjNHaqqkGLj3RXZfQVxWvqndG+YtNkNGUETvdlkj3F5q8LmDMmwV/89ognVmray7W5jYBtC7BdRt3d/MbGGrr47328ZtcJd8T77G7r/mh6SpM6pFbrqrnwld6v0rlUfuMZ9uM/XCrO8Azj5ENIBAAAaSX2qprHx1edYPj/N283aZjNMZmJ3898eamy22d/9VXe596htUI/0BoCZcOu7mz1nNmFe6Gs7q+zqklbdo2HKnALdd3UP02vu3xOn+67uoZTu5Zoyp6DWobs+N2sAtFyEdAAAgCiINLgFjm2unpAueCm12DgjoCpcF0bAeux1OZdNbTtW6EhJfM271uKcwcy6tIdvb2CX866ZlUrpXq6i3fE+a6z7n6twV7w3rE+dW6AuaZW1Ct0EdAC1EfGYdAAA0LLk5OSo6mC5yooLtfubr1SRn6+CwwXauHejVg85JdrNO2kV5cVp0fTMiGYIL8qL0+IZmSceVY9t7phUIXtMdUDtmFSlq+/O1/iri1X/ruk2v7HUoce6K+y2IyVxJttrelxboWZtNx+XHhPrMq1+T51boORuFabHVF9HKspzTxZXU+iO5rroAE5+hHQAAOAnJydHOz7fqgt+KNTIbVvV+4BUkLdWm8vWqdwurR5yioYkTPCuvYzaiXRZLpfTf1+PpG4ViomVd910m82Qo7VLyRmVen1pkiIPvub7JXVzV4vbdvB0CQ8MwoFrj4diFqDDLZNWkwgmxQu6jv/xHZOq/Lq6e3i6pc9eulOdUyv9jvE7gxF+srhIb8AQ4gGEQ3d3AAAgyR3OJanqYLlGbtuqjNbpqjggbS5bp6TObbRu6EBJIpzXQyTLchXlxXnHPftzB8/f/rHAO7GZVB0cqypkcowUej10827zxbsdWj4/TYcOxvk8Z5jsHxjcG3uCObMbBTVdz/+Y/XvidcvYPt5u68kZ/oG9a2albn8yR5JUtDtOT9yZrv17fG+SuF/j4hmZpseb3YDxXaLN97MN1QYAoJIOAAC8XdupnjeeUF3XA8dI+1fPg7uaP/3nNNOlvWLj3Uu1BW7vmFRVQ8uqw7ftxF8L8zzj2muafM7sPNVtrX93drNz1fa8wceZ9WDwrYIvnpEpu12KjTO/ltnxnhsw4ZZoi7QXBYCWjZAOAEALlpOT4w3oI7dtVcbhWPU+UT3febRA60YP1IcjBxLOG0Coruu+Y6QDg55Zxbpwl0NT5lSvw57UrUIXzig+0b3aIduJkJ7UrUJT5hSopDhOkVW4bdWT0vlNTheoNgG5pusGdmEP1Y098IZBZBX7mFiXT/f16uMiCdBPzvP0Zgi+QWF2vNm66MkZ1TdgQoX4e68KPy8BgJaH7u4AALRQnnD+64MlKisudFfPXWtV6ShRuV2E8wYU2M3dE/ZmLcn1q6J7gp7vWtw2uyHDZfNbm7trpv/SXp71uyXJcLknfvN0s07pXq6ivHhvALfHuGQYkuEKV6sxJJvvmuq+Iu3Sbt6dPrIl4czHlHtmsPe8P/5d+f279cfEujRrSa6SMypVsDNOf70u0ztrvc1uKNlnjXOzYQhFeQ6/z8L3/KHWSPddos1mN1SU59Ci6dVd44PPZ9O+/OBu8QBaNirpAAC0YL8+WKKMw7Ea0Dpd+1zfqNJRopzLziKgNzCzKmtgN3ePqXP9q+TT5vs/9q2822Nq7mY9ZU6B30zwLpctTED3qWCbBvRQws3+XnNXeZvNU0UPNyGce0y5by+CzqmV6phkPsGds8oul8t9A+P+GT381n23242g99H387HZDO+Ycd9rearyZmuku5zVE9CldC/3Lufm263d93zhqvIAWjYq6QAAQKVppVJetFvRvE2ZU6AVC9xVVrOQ5+EJer6TyfX7Sa43xHmCuec5s+p7UrcK7SsIMQGdpyu7zfDp1u4ROAa9psng3M/HxBreEGyPMeRyRjqRnHufpG4VKsoL7mlgJrlbcC8Cu93wq05L7kr6E3em62Chpyu5f4APnOV9ypwC70RxhmFTVaV7/8DPInB9+8DJ4KbMKQg5OaDns733qkzty/f/vFhLHYAHIR0AAKARBYa42Ut3qmtmzTN6hwqCMbEuOavsSs4o15V3FqhrZqVfN+ukbhUaf3WxFs+o7t4d2C28Y1KlDh2M9asu+7LZDHXq6u5aXrjLoeSMcjmrbNq/J3B8u/vv1QHdpavuKlCHLpW6f0aP4BMHSM6o8L4GT5f96vH4gdzd3X1vToQaRuBpk//M7NWvLTmjOhTvzY3z3jyJiXV5hxcc2Bvn7YYeKqBLwWPZVyxIM71p4nvctHn+n1eoGzYAWiZCOgAAQCMyC3G1HX/sew5PIC7Kc+i+q3uoc2qFrr47X7cuy/UGzifmdAs4g3/wNQz5BPhgyRkV3nHULqd7ObL7rg4Xuk903Xba9MSdabr/rR1K6V6uwl3xClcVL8pzaMWCNE2dW6ALZxTryblpkitUFd6mqXPz/bYE9iIwa5PNZpwYj+8+p+e1+S91576J4fueeJa225sbJ7tdpkunhVpSb/bSnWF7TZj1lgAAD0I6AABAI4lkXfTaniMwvO7fU13xXbEgeAb5YDaV7osPEaINzV6a41fpt8dIKxakKbLu6za5nDbde1WmLvhdscnNgurreM5VuMuhxTMy1TGpyjuOO5Tkbu52+b5/vr0IAiep65hUJUdr14neANVVe0knZsP3vFehq/fu1y7T9c9DDTUInNgvFAI6ADNMHAcAANBIajNhXE3ncE+uZsYd/KsqApdvC++3dxTIrFrtCcIenvOGmnHd7L/78uP1+tIkJWeUh2yzL2eVXfv3xAcsPed/XnuMS7PH99Gs80/RLWP7nAjZcd6q9KU37A26SkyscaLqXe6t2hflxXlvfBhBY/KDJ70r3OUIOzFf4ER/gRPSAUBtEdIBAAAaUbgQF4rvTN9FeXGqqvRZwzwoSLofP3BtpjqnVnhvCHi2J2eUq2NShXwDb+fUCqX1qFRMrMtve0ysy2+s9qLpmZo9vo/JNd1iYg1desNe79rsgTOWX3lnwYlrnHg25I0G/+ftdncbfdc4d09GV93d33fWdEl6+dFkBY6X378nXotnZHonpSs6cUzgzRPP60vpXuH3Hnpuqpjt6z5v9U2C+9/apluXuZd888Ws7QBqi+7uAAAAjag2448DJ5nzdOX2zFButxtKTHGHwMBJ0Yp3xysxpVJJ3SpOHF+hKXPc3bv9z+ve7nIGjku3yVllU8HOOD19j/9Y7VDdwZ1Vdp35izJ9+EpiQNd5QzGxhrpmVmrWklzvte0xhpxVoc5nnHje5r2Z8eS8NO9EboEzz/tWtKsqQo2xN/zHmfsc49tNPtR75XtTJXCmfN9u71LwZ2v2WQYGeAAwQ0gHAABoApF0fQ6cZC4wGLpc7urw/W9tk8upE1VuW9Bzgdfz3CjwTCx339U9lNK9/MRM8Z4A7A7k7lnZw4dzN/f4b3cbArkDf2AVOdxkdZ5j7nt9m7Z/2Ub3/S5TLqd58JZs3hsWi2dkhrmhENx+z3CDUDdPQm2ftSRXt4z1f7/DzS9g9lnWdsJAAC0T3d0BAAAswDNOOnDssz3GvEt6bHzo8e6hbgj4TixXuCv+RGj2rVAHjgn3MOumbgt43vB7nNK9XPsK4nxCdOB+/ue0nWh/bLz05Nw0b/f2wDbExLr/6xlC4J0oL4Kh+DGxrqDhBqHeK88Sb76PI51fINRnSdd3AJEgpAMAAFhAqBDoriZXh2dnlT2iScsCBQbHiFLtiWBsjwkM4YF8A747SBfucui+32UGdakPdSPAbndP8lbddd3/+ZhYQ7OX7tTiN3fo/re2adaSXP/J5gz3uTunmU9Wl9StXLOWBI8ZN1OU5x6P7ztBnRT5+90QEwYCaLkI6QAAAFHkW101C4Ghwp7LqRonLfMVPFmaGf8qd0ysoanzdwfcKAjc1/133wniPJO7mXdXN+essqtLWqVi43Wi90Dw80/d5Z6d3dNbwOy9uXqB/2R17tfh0lXzIx8TbtZVXard+12XCQMBQCKkAwDQ4n19LF8dCjpIkor3H1XWC59EuUUtQ2C19tuNbbxj0JMzqicaCwx7F84oNq3yRsL3XDGxLu+s7Dabezb1lO4VfvsbLpvefCJJKd3LFRjK3dV1nTiX4Q3mbpEtA+crJtalfQXu13LJ9UVB15PcS7v5zuge+N5MmeN+z2YtyfUL6i6Xze+4cCLpqh5JRbw2gR4AfBHSAQBoobKysvRazxRl9+mrr4/lKy1jtAYmjFLx/qOatGmH2r58hzaVPRftZjZbgdXaJ+dWP/YNo4Fh79UlSd79ivLcS4xFGth9zzVrSa6STwTc5IwKXX13vmYt8Uxs5h9Qg9dUt8nltOu+17fpvte3mXZPrxYcts0e+wbp/7yUKJvf6fzbU1Xh/3puWbJTknTf1T20aHqmXC6FnNW9Jg3dVZ0u7gBqi9ndAQBowbKyspSjHH1w1kAl/FCosk7SQI3SvvJv5HAd1bnZm/XhSGlIwoRoN7VZ8VRrvY9dNsll83scOHO4p4u773GGYQtaNzySGcTDzW4eOON7TKzhXVM9cHvsiTnbUrqXByzB5itchb36sSdI33tV9brmQWeyuSv4s8f3UUr3cl04o1ivLknym929eHe8VixIU0r3chXvdo9Zt9sNJXWriDgw+y7PRld1AE2NSjoAAC1cVlaWX1V9eyd5q+oOl6iqNwKzam1MrKvG6m24ceV1nUHc9xrVa6f7T1QXPJlb8AR2nVOru3P7dqW32w0lZ5hP5ub/Wqq7tPu+F77VdsOQd9b3wN4HgdX2KXPqPia8rl3Vmb0dQEMgpAMAAEnusB6b6NAHZw1UXrsqbe8kDUwYpbjyjnK4pHOzN2tT2XOE9QYSOJ562vzIQmWoceUNMYN4qK7e4ZZ7k9yh9o4VObr/rW1BXemTulVo2rwCdUyqkO/EdB26VPi9Ft+Q7ayyq3Oa/3bP3w3Dfz+XK3hCu5hYl7pm1n9MeKTvZajZ4AGgLmyGYYSb4rPZKSsrU4cOHXTXl1vVqn37aDcHAABLysnJUdXBcv36YIkyDseqIj9fm8vWKalzG+0+eFQfjhxIF/gGEtjdPPBxuOP2FcR5u2WndK+ebK4+ivLMzxlqe6Svzfd4d9d5u/c8T85L0758/67pty7L1aLpmX5d1m12Q4bLZvo40P1vbav1DYtI3/tAge30tN+KNpU9p0mbdugnXX+iL3K3Ky1jtPLaVcnRs4P+pVbKysqKdhOBZun4oUO6c1BflZaWKiEhIey+jEkHAABBPGPVX0tM0QU/FCojPd07Vr1bohir3oDMurSHEjhGPdS48voIdc66XMvseE+glarH0U+bZz4GfPzVxXpqfprksslmN3Tx74v0n5cSvfsFj0mv/fhzKfSNiUiYzS8QOJ8AANQGIR0AAJjKyspSTk6OJKlb/9O1W5LyvtFPuv5E0sYotqzlqSlERhoG6xqwI9ke6fXNAm2XNP8bAJ7u474Twhkum/7zUmLQjYJ+P8nV3tw4rVhQ94nezNZFj7QS7hkiUNdJ6gAgECEdAADA4uoTIqWaQ35du9xHIrD6Hy7Qemaw9329gRPCmbXNM/68Lu1uiEo4s8EDaEiEdAAAAAtriBAZKuQHhnff7uP1HeMe6sbAlDkFplVv3/3N2GyGkjPCV6jrcmNhX0Gcd4y8JNnshpJrWQlvjGEHAFouQjoAAICF1bc7dbiQHxjen5ybJsPlv+76rCW5dQqegede+qd0xcYZ3tA+e+lOdc2sNN2/ehZ4mzxjzZMzGqdCvXx+mndZN8k9c31dr0NAB9AQWIINAADA4gKXa6tNiAy1rJrkDu+emdEDlzTzhPlQy4qFWxPcc2PA91z798SrKK86tK9YkBZyf3c4d/89pXuFZi/dWedl1MLxXNezrJvkXg++S1rDXgcAaoNKOgAAgMXVtzu12Zhpswq9/5Jm1dXscF3kzbrEm53b5fJf49y3y36o3gJ1reJHyh4jdU6t0P49cfJU7TunVjbbivimsue8f/8id3sUWwIgHCrpAAAAJ4m6hkdPyL//rW1+FenACv20+dWPfavZ4brIL5+fFng503N3Tq2QzWZ4n4+JdWlfQVzI/T03EtAwNpU9p3OzN2vSph0q3n9UXez9vWukv5zYkTXSAQuhkg4AANBCBIZeswp9v5+4Hy+ekRlU2ZYin8Qu8NxFeXFaPCNTzqrq4O87S71n/6oKKTZeTcLllPbv8b2Yu1t+c5oAzlM9Pzd7sxwuKa68owYmDNP2TlJ2RjvFJjoUKxHQAQshpAMAALRwgYHUHhN5F/maJrHzPNclrdI7g7rkXvfcN+BH0o2+oTX3Nc491fNuiW1U7JIGJoxSfHq68tpVKTuxo2ITHYRzwIII6QAAAAgSahx8XdcErykQ13ct+LpqjmucUz0HTm6EdAAAAIQUSRd5X+G6iocKxA2xFnxdNbc1zs2q59s7Sc6kFKrnwEmCkA4AAIBaCwy0kXRXDxWIrdDt/GQP6GbV8x/3u0xfH8tXdp++VM+BkwizuwMAACCscGuie0Q667tkHojrsxY83Ib26qxuiW2U1i5Nbc86U5KUkJTirZ4T0IGTA5V0AAAAmIp0MreG6K7e3LqdA0BdUUkHAACAqUir457u6na7ex10u91wP65D2CagA2jpCOkAAAAI4qmOu1zV65p7quNm6K4OAA2D7u4AAAAIUtvJ3OiuDgANg0o6AAAATNWlOk5AB4D6oZIOAADCejmxo7Trc5UdK1Rve399kfuNig8f1bnZm/XhSGlIwoRoNxGNhOo4ADQ9QjoAAAgpKytLypJey8lRVWJHadtWDWg9Wl3y87W5bJ0mbdqh1UPc6zMT1psvAjoANB26uwMAgBplZWUpNtGh7D59ldeuSts7SQMTRimuvKNGrd2sc7M3a1PZc9FuJgAAJz1COgAAiEhWVpZO+VFfvdYzRdl9+mp7JyktY7QGJoySwyVN2rRDbV++g7DejIWa2R0A0HAI6QAAoFY8VfUPzhoYVFV3uERVvRkqyovToumZumVsHy2anqmivLhoNwkAmi1COgAAqLWsrCxlZWVRVW8hls9PU/HueElS8e54LZ+fFuUWAUDzRUgHAAB15qmqJ53VR3ntqhSfnq60dmmKK++oboltot08NACXUyrc5ZDLZXM/dtncj+n6bhmem2FZL3yi4v1HJUkdCjro62P57tUZAJxUmN0dAAA0qLZnnakjn3wa7WaggdhjpJTu5SreHS+Xyya73VBStwpmfLeITWXP6dzszeqW2EZx5R01MGGYtneSnO2qlJ3RV7GJDvcqDQBOGoR0AAAAhDV1boGWz09T4S6HkrpVaOrcgmg3qcXzVM/Pzd4sh0tKrRym+Ix0fX0sX9l93OE8ViKgAychQjoAAADCSs6o1K3LcuVysma6FfhVz9ukqYu9v7Z3khKongPNAiEdAAAAESGgR5enej5p0w4VUz0Hmi1COgAAAGBxnuq5wyXFtUvzjj2neg40P4R0AABQb/9SK12gUn19LF8DCtJ15MT2c7M368OR0pCECVFtH3CyCqyeD0wYpfh0/+r5KYRzoFkhpAMAgHrJyspSTk6OXuuZoqrEjtK2rRqQMVoV+fkqdq3zBnWJsA7UBtVzoGUipAMAgHrzBIUc5Si7T18lHCxRWSdpoEZpn+sbddu0Q7sPHqWqDkTAE84nJbaheg60QPZoNwAAADQfWVlZik106LWeKcru01fbO0lpGaOVWjlMDpe7y+6msue8XXgB+POrnpd31MCEUdreScprV+UN6FTPgeaNSjoAAGhQYavq5d9o1NrNKreLqjrgg+o5AA9COgAAaBRZWVlSlvRaTk71WPXWo9UlP1+by9Zp0qYdWj3EXVEnrKMlC66eV489/2DgQJZVA1oYQjoAAGhUWVlZVNUBE5FUzwnnQMtDSAcAAI0ukqr67oN36MORAwnraPY8czJQPQdghpAOAACajKeq/sFZA5XwQ6FfVd3hOsq66mj2PNXzbgHV87x2VcpO7Ej1HAAhHQAANC1PAHlNoqqOFiNc9Tw7o51iEx1UzwFIIqQDAIAoibSqLlFZx8mN6jmA2iCkAwCAqAmsqiccLFHG4fSAqvpRusDjpGRWPf9xv8vcE8NRPQcQAiEdAABEnaeq/lpiiqoOlmvkMarqOLmZVc+3d5Kc7aqUncHM7QBCI6QDAABL8AQW3+XaqKrjZBO2en5iWTWq5wDCIaQDAABLoaqOkxXVcwANgZAOAAAsh6o6TiaB1fPUymHK7JdO9RxAndijefGsrCzZbLagP9ddd53p/k899VTQvq1atWriVgMAgKaSlZWl2ESHXuuZoocy2ml7J+nH/aYorryjHC53KNpU9pw3JAFNzVM9n7Rph3q0SfNWz/PaVXkDelZWFgEdQMSiWknfuHGjnE6n9/GWLVs0evRoXXbZZSGPSUhI0NatW72PbTZbo7YRAABEl1lVvaxLfw2096eqjqgxq57HZ1A9B1B/UQ3pSUlJfo/vvfde9erVS8OHDw95jM1mU9euXRu7aQAAwGL8xqondpS2bdWP06eoIG8tY9XRpHzHnse1SVMXe39t7yQlMPYcQAOwzJj0iooKrVy5Un/4wx/CVscPHz6szMxMuVwuDRkyRH/+8581YMCAkPuXl5ervLzc+7isrKxB2w0AAJpOuKr6Ptc36kZVHY3IUz2ftGmHiqmeA2gklgnpr7zyikpKSnTllVeG3Kdv37568sknNXDgQJWWlur+++/XsGHD9PXXX6tbt26mxyxcuFDz589vpFYDAIBoMKuqD2g9WhX5+Sp2raOqjgbnqZ47XFJcuzQNTBhG9RxAo7AZhmFEuxGSNGbMGMXHx+u1116L+JjKykr169dPkyZN0oIFC0z3MaukZ2Rk6K4vt6pV+/b1bjcAAIiunJwcVR0s168PlqisuFC9D0j7XN+o0lFyoqo+kKCOOvOrnu8/qoEJoxSf7l89J5wDqMnxQ4d056C+Ki0tVUJCQth9LVFJz83N1bp16/TSSy/V6ri4uDj96Ec/0o4dO0Lu43A45HA46ttEAABgUTVV1Sdt2qHVQ9xBi7CO2qB6DiAaLBHSly9fruTkZI0bN65WxzmdTn311Vc6//zzG6llAADgZGA6Vr2TNFCjtK/8G41au1nldjFWHRHxLquW2EbFLplWz08hnANoJFEP6S6XS8uXL9eUKVMUG+vfnMmTJys9PV0LFy6UJN111106++yzdcopp6ikpESLFy9Wbm6upk+fHo2mAwAAi8nKypKypNdycvyq6l3y873LtVFVRzh+1fPyjn7V8w8GDmRiOACNLuohfd26ddq1a5emTZsW9NyuXbtkt9u9jw8ePKirr75ae/fuVWJios444wytX79e/fv3b8omAwAAi/N0ga+pqh4pAv3JzTOuvCY1Vc8J5wCagmUmjmsqZWVl6tChAxPHAQDQQngmlhu5basGtE5XxYmqelLnNhEdz+RzJy/fSd8iUbz/qNLa+ax7npSi13qmSKJ6DqB+TrqJ4wAAABpLuKp6JByuo3STPwkFTvoWiYEJwxSfnq68dlXKTuxI9RxAVBDSAQBAsxdqrHokuuTnM/ncSSTUpG+R+PpYvrIz2ik20cHYcwBRQ0gHAAAthqeq/sFZA5XwQ2FEx5R1EpPPnSTCTfoWCZZVA2AFhHQAANCieALYaxHuX5XYkSXdLC6SJdMiQfUcgBUQ0gEAQIsUcRjLCr+k2+6DdzCxXJR4JoZjyTQAzQkhHQAAoAaB3eR9q+oO11Gdm725Vku6RaI5hv5Il0KL1LnZm9UtoHrOpG8ATnaEdAAAgAj4dpM3q6qPWru5wa7lu457cwnrni7p3RLbqHj/0QY7r2/1nEnfADQHhHQAAIBaMKuq/zh9SoOdvyI/X/tc36jbph0n1mg/uYO671rlxS4ptXKYMvtFNtt6pKieA2hOCOkAAAC1FFhVTzhY0mDn9swmX5Gfr2LXyT2bfOBa5bWdbT0SL58I51TPATQXhHQAAIA68lTVX0tMabBzNofZ5BtqtvVIEM4BNDeEdAAAgHpo8ICYFX42eatX1cOtVc5s6wBQM0I6AACAxXgq9Nl9+oatqltNTdVzwjkA1IyQDgAAYEFZWVk1VtWtppjqOQDUGyEdAADAwsKt0W41AxOGsVY5ANQTIR0AAMDizNZol/pHsUXmDoq1ygGgvgjpAAAAJwnfqrpVEc4BoH4I6QAAACcRAjAANG/2aDcAAAAAAAC4EdIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALCIqIb0rKws2Wy2oD/XXXddyGNeeOEFnXrqqWrVqpVOP/10vfnmm03YYgAAAAAAGk9UQ/rGjRu1Z88e75+1a9dKki677DLT/devX69Jkybpqquu0ueff65f/epX+tWvfqUtW7Y0ZbMBAAAAAGgUNsMwjGg3wmPmzJl6/fXXtX37dtlstqDnJ0yYoCNHjuj111/3bjv77LM1ePBgPfbYYxFdo6ysTB06dNBdX25Vq/btG6ztAAAAAACYOX7okO4c1FelpaVKSEgIu69lxqRXVFRo5cqVmjZtmmlAl6QNGzZo1KhRftvGjBmjDRs2hDxveXm5ysrK/P4AAAAAAGBFlgnpr7zyikpKSnTllVeG3Gfv3r1KSUnx25aSkqK9e/eGPGbhwoXq0KGD909GRkZDNRkAAAAAgAZlmZD+xBNPaOzYsUpLS2vQ895+++0qLS31/snLy2vQ8wMAAAAA0FBio90AScrNzdW6dev00ksvhd2va9euKiws9NtWWFiorl27hjzG4XDI4XA0SDsBAAAAAGhMlqikL1++XMnJyRo3blzY/YYOHars7Gy/bWvXrtXQoUMbs3kAAAAAADSJqId0l8ul5cuXa8qUKYqN9S/sT548Wbfffrv38Y033qi3335bDzzwgL777jvNmzdPn332mX7/+983dbMBAAAAAGhwUQ/p69at065duzRt2rSg53bt2qU9e/Z4Hw8bNkzPPPOMHn/8cQ0aNEj/+te/9Morr+i0005ryiYDAAAAANAoLLVOelNgnXQAAAAAQFM6KddJBwAAAACgpSOkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALCI2Gg3oKkZhiFJOn74cJRbAgAAAABoCTz505NHw7EZkezVjOzevVsZGRnRbgYAAAAAoIXJy8tTt27dwu7T4kK6y+VSQUGB2rdvL5vNFu3mnJTKysqUkZGhvLw8JSQkRLs5iCK+C/DF9wEefBfgi+8DfPF9gEdL+y4YhqFDhw4pLS1Ndnv4Uectrru73W6v8c4FIpOQkNAi/kGhZnwX4IvvAzz4LsAX3wf44vsAj5b0XejQoUNE+zFxHAAAAAAAFkFIBwAAAADAIgjpqDWHw6G5c+fK4XBEuymIMr4L8MX3AR58F+CL7wN88X2AB9+F0FrcxHEAAAAAAFgVlXQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIR5D8/Hz93//9nzp37qzWrVvr9NNP12effRb2mPfff19DhgyRw+HQKaecoqeeeqppGotGVdvvwvvvvy+bzRb0Z+/evU3YajSGrKws08/2uuuuC3nMCy+8oFNPPVWtWrXS6aefrjfffLMJW4zGVNvvw1NPPRW0b6tWrZq41WgMTqdTc+bMUY8ePdS6dWv16tVLCxYsUE3zEvN7Q/NUl+8Dvzs0X4cOHdLMmTOVmZmp1q1ba9iwYdq4cWPYY/jZ4BYb7QbAWg4ePKhzzjlHI0aM0FtvvaWkpCRt375diYmJIY/ZuXOnxo0bp2uuuUarVq1Sdna2pk+frtTUVI0ZM6YJW4+GVJfvgsfWrVuVkJDgfZycnNyYTUUT2Lhxo5xOp/fxli1bNHr0aF122WWm+69fv16TJk3SwoULNX78eD3zzDP61a9+pU2bNum0005rqmajkdT2+yBJCQkJ2rp1q/exzWZr1DaiaSxatEj/+Mc/tGLFCg0YMECfffaZpk6dqg4dOuiGG24wPYbfG5qvunwfPPjdofmZPn26tmzZoqefflppaWlauXKlRo0apW+++Ubp6elB+/OzoRpLsMHPbbfdpo8//lgffvhhxMfceuuteuONN7RlyxbvtokTJ6qkpERvv/12YzQTTaAu34X3339fI0aM0MGDB9WxY8fGaxyibubMmXr99de1fft207A1YcIEHTlyRK+//rp329lnn63Bgwfrsccea8qmognU9H146qmnNHPmTJWUlDR949Coxo8fr5SUFD3xxBPebZdccolat26tlStXmh7D7w3NV12+D/zu0DwdO3ZM7du317///W+NGzfOu/2MM87Q2LFjdffddwcdw8+GanR3h59XX31VP/7xj3XZZZcpOTlZP/rRj7R06dKwx2zYsEGjRo3y2zZmzBht2LChMZuKRlaX74LH4MGDlZqaqtGjR+vjjz9u5JaiqVVUVGjlypWaNm1ayGooPxdajki+D5J0+PBhZWZmKiMjQxdddJG+/vrrJmwlGsuwYcOUnZ2tbdu2SZK+/PJLffTRRxo7dmzIY/j50HzV5fvgwe8OzUtVVZWcTmfQ0KbWrVvro48+Mj2Gnw3VCOnw88MPP+gf//iHevfurTVr1uj//b//pxtuuEErVqwIeczevXuVkpLity0lJUVlZWU6duxYYzcZjaQu34XU1FQ99thjevHFF/Xiiy8qIyND5513njZt2tSELUdje+WVV1RSUqIrr7wy5D6hfi4wxrD5ieT70LdvXz355JP697//rZUrV8rlcmnYsGHavXt30zUUjeK2227TxIkTdeqppyouLk4/+tGPNHPmTP3mN78JeQy/NzRfdfk+8LtD89S+fXsNHTpUCxYsUEFBgZxOp1auXKkNGzZoz549psfws6EaY9Lhx+Vy6cc//rH+/Oc/S5J+9KMfacuWLXrsscc0ZcqUKLcOTaku34W+ffuqb9++3sfDhg3T999/r7/+9a96+umnm6TdaHxPPPGExo4dq7S0tGg3BRYQyfdh6NChGjp0qPfxsGHD1K9fPy1ZskQLFixoimaikTz//PNatWqVnnnmGQ0YMEBffPGFZs6cqbS0NH5vaIHq8n3gd4fm6+mnn9a0adOUnp6umJgYDRkyRJMmTdL//ve/aDfN8gjp8JOamqr+/fv7bevXr59efPHFkMd07dpVhYWFftsKCwuVkJCg1q1bN0o70fjq8l0wc+aZZ4bs1oSTT25urtatW6eXXnop7H6hfi507dq1MZuHJhbp9yGQp8K2Y8eORmoZmsqsWbO81VNJOv3005Wbm6uFCxeGDGX83tB81eX7YIbfHZqHXr166YMPPtCRI0dUVlam1NRUTZgwQT179jTdn58N1ejuDj/nnHOO3+y7krRt2zZlZmaGPGbo0KHKzs7227Z27Vq/qglOPnX5Lpj54osvlJqa2pBNQxQtX75cycnJfpPAmOHnQssQ6fchkNPp1FdffcXPhmbg6NGjstv9f52MiYmRy+UKeQw/H5qvunwfzPC7Q/PStm1bpaam6uDBg1qzZo0uuugi0/342eDDAHx8+umnRmxsrHHPPfcY27dvN1atWmW0adPGWLlypXef2267zfjtb3/rffzDDz8Ybdq0MWbNmmV8++23xt///ncjJibGePvtt6PxEtBA6vJd+Otf/2q88sorxvbt242vvvrKuPHGGw273W6sW7cuGi8BDczpdBrdu3c3br311qDnfvvb3xq33Xab9/HHH39sxMbGGvfff7/x7bffGnPnzjXi4uKMr776qimbjEZUm+/D/PnzjTVr1hjff/+98b///c+YOHGi0apVK+Prr79uyiajEUyZMsVIT083Xn/9dWPnzp3GSy+9ZHTp0sWYPXu2dx9+b2g56vJ94HeH5uvtt9823nrrLeOHH34w3nnnHWPQoEHGWWedZVRUVBiGwc+GcAjpCPLaa68Zp512muFwOIxTTz3VePzxx/2enzJlijF8+HC/be+9954xePBgIz4+3ujZs6exfPnypmswGk1tvwuLFi0yevXqZbRq1cro1KmTcd555xnvvvtuE7cajWXNmjWGJGPr1q1Bzw0fPtyYMmWK37bnn3/e6NOnjxEfH28MGDDAeOONN5qopWgKtfk+zJw50+jevbsRHx9vpKSkGOeff76xadOmJmwtGktZWZlx4403Gt27dzdatWpl9OzZ07jjjjuM8vJy7z783tBy1OX7wO8Ozddzzz1n9OzZ04iPjze6du1qXHfddUZJSYn3eX42hMY66QAAAAAAWARj0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAACMnpdGrYsGG6+OKL/baXlpYqIyNDd9xxR5RaBgBA82QzDMOIdiMAAIB1bdu2TYMHD9bSpUv1m9/8RpI0efJkffnll9q4caPi4+Oj3EIAAJoPQjoAAKjRQw89pHnz5unrr7/Wp59+qssuu0wbN27UoEGDot00AACaFUI6AACokWEY+vnPf66YmBh99dVXuv766/WnP/0p2s0CAKDZIaQDAICIfPfdd+rXr59OP/10bdq0SbGxsdFuEgAAzQ4TxwEAgIg8+eSTatOmjXbu3Kndu3dHuzkAADRLVNIBAECN1q9fr+HDh+udd97R3XffLUlat26dbDZblFsGAEDzQiUdAACEdfToUV155ZX6f//v/2nEiBF64okn9Omnn+qxxx6LdtMAAGh2qKQDAICwbrzxRr355pv68ssv1aZNG0nSkiVLdMstt+irr75SVlZWdBsIAEAzQkgHAAAhffDBBxo5cqTef/99/fSnP/V7bsyYMaqqqqLbOwAADYiQDgAAAACARTAmHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAs4v8DgtE/HvnNJs8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 18\n", + "amount_ae: 40\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+o9JREFUeJzs3XlYVNX/B/D3MOy7CyiLAi644IZraiou5YpaKm4piiWuZJkplYmZX9PMcAs1c03NyLVNK3O3RE1xF8UdF8AUUBZh5vz+4Dc3hpmBQWYYlvfreeZRzpx7PufcWfhw7r3nyoQQAkREREREREREREQGZmbqDhAREREREREREVH5xMlHIiIiIiIiIiIiMgpOPhIREREREREREZFRcPKRiIiIiIiIiIiIjIKTj0RERERERERERGQUnHwkIiIiIiIiIiIio+DkIxERERERERERERkFJx+JiIiIiIiIiIjIKMxN3QEiKt0ePHiAI0eO4OHDh0hKSkJycjKmTZsGLy8vU3eNiIiIiIiIiEo5nvlIRFrFxcWhe/fu8PDwwKBBgzBp0iTMnj0bUVFROHjwoKm7R0R6uHnzJmQyGSIiIkokXkREBGQyGW7evFki8YiIiIiIqPTj5CMZnOqPXX0e48aNM3V3SYu4uDi0bdsWf/75J6ZPn46rV69CqVRCCAGFQoGRI0eauotEVAxLly6FTCbT+Vl+/PgxPDw8YGtri7i4OKnc29sb3t7eJdRLIiIiIiLD8vb2RkBAgNHjqA7KHzhwQGt5RTtYz8uuyWhq166NN954Q+tzN2/exPr160u4R6SvMWPGIC0tDT/99BO6d+9u6u4QkYFNmjQJ27dvx8aNGzFgwAD069dP7fmJEyfi3r17WLx4MXx9fU3USyIqC27evAkfHx+96oaGhmLFihVG7hGZUkBAAA4ePAghhKm7QkSkt3/++Qdt2rRBrVq1cObMGdjY2GjU6dWrF3799Vds3LhR5zwH6cbJRzKaOnXq6LzU78CBA5x8LKXOnTuHI0eOYOrUqZx4JCqnZDIZ1q5di8aNG2Ps2LFo3749qlatCgD44YcfsGXLFnTu3BmTJ082cU+JqKzgQWciIiqrmjdvjg8//BCzZ89GeHg4IiMj1Z5ftWoVfv31V7z22muceHxBvOyaSiVvb2+dl2qvW7dOo/7atWvRpk0b2Nvbw97eHm3atNFa78CBAzrXP5PJZFpPvw4ICIBMJtMo379/P0JCQlCvXj0pbsuWLbFq1aoXHlv+U7JHjRplsFOyz58/j6CgILi6usLKygo+Pj6YMmUKHj16pFbv2LFjAIB69eph6NChqFatGiwtLeHl5YXx48fj/v37Ul2lUgkvLy9UqVIFWVlZWuN27NgR5ubmuHv3LgDd+1N1uf6oUaPUyou6n7VdFvrgwQNMmDABPj4+sLS0ROXKldGnTx/89ddfGtvrOj3+Rd47AHD27FkMGTIEbm5u0n6cPHmyxn4vbLmC1atXq9XX9/UsiOr9ZWZmhhs3bmg8f/jwYSl+/nEXNGZd+xDQ/7O6ceNGmJmZYciQIWpnT+h6n8TExMDe3h7NmzdHWlqa2nNpaWmYNWsW/Pz8YGNjA2dnZ3Tv3h1HjhzR2v+0tDTMnj0bTZo0ga2tLZycnODv74+ZM2ciOzu7SEtLqD67qn2iepiZmcHNzQ29e/eWPnN57dixA0OHDkWdOnWkPnTo0AHbtm3T2ucX4e3tjS+++AKJiYkYP348AODhw4cYP348HBwcsHbtWumzqhrzrVu3cOvWLbWxlNR6kkRUuqkOOmt75P/OJiIiKm0+/PBD+Pv7Y8mSJWr3OLhx4wamTp0KFxcXrFy50oQ9LNs4+UillpOTE2bNmiU98l8WqBIWFoaQkBAkJCRgzJgxGDNmDBISEjB69Gi8/fbbRuvf/PnzcejQIbRq1QqTJk3CG2+8geTkZISGhmLq1KkFbpt/bJ06dTJaPwHgyJEjaNOmDXbs2IGuXbvi3XffhZeXFxYvXow2bdogOTlZqpuUlAQAGD9+PKKjoxEQEICpU6eiQYMGWLFiBVq2bIlbt24BAMzMzPDmm2/i33//1TopcuXKFRw+fBg9evSAp6fnC/W9OPsZAO7du4dWrVohKioKlStXxrvvvot+/frhzz//RMeOHbF9+/YX6pc+du/ejdatW2P37t0ICAjAlClT0LhxYyxbtgxt27bF48ePNbZp2rSp2ntD9WjevLlUpyivpz7MzMy0/iKNioqCXC4v+sB1KMpndcSIEZg/fz62bt2Kd955p8B24+Li0Lt3b7i6uuLXX3+Fg4OD9Ny///6Ltm3b4pNPPkGlSpUwbtw4DBgwAKdOnULnzp2xc+dOtbYSExPRunVrREREQC6XY/z48QgJCUH16tUxf/58PHv2DM7Ozhqvj5OTk8bnetasWXB2dlZrPzg4GLNmzcKHH36ITp064ffff0e3bt1w+fJltXrh4eG4cOECXn75Zbz99tsYNGgQrly5goEDB2Lp0qVF3/k6jB07Ft27d5fOdhw7diySk5MRGRmpdkd71Zi1jbMk1swhovKNB51zGfKgc96x6LtfhRBYs2YN2rdvD0dHR9ja2qJly5ZYs2aN1vbj4uLQrVs32Nraon79+tizZ4/0XHx8PAICAmBjY4OGDRsiOjpaaxu3bt3CmDFj4OHhAUtLS3h6emLMmDG4ffu2zvFkZmZixowZqFmzJqytrdGgQQMsXbpU41LvdevWFTjeZ8+ewcnJSet7Qdf74MyZM5DL5Rpt5j04euHCBfTu3RvOzs6wt7fHq6++ilOnThls/KqHpaUlvL298eabb2rUf/78OZYuXYru3bujRo0asLKygqurK15//XWcPn1ao23VvtK2nwDtB/cLer/qOlgMFO0AekGfn/xnnyUnJ2PKlCnw8fGRxhsUFITz589rHZM2xnjPAAV/Fx09ehS9e/dG5cqVYW1tjfr162PWrFlIT09Xq3fu3DlUqlQJDRo00NhX2l6fR48eoUGDBqhUqRLOnTun9lxRP+tCCKxduxYdOnSAs7MzbG1tUbduXYSGhkrvvYJeK23fPap9kvdRuXJltGnTBhs2bNDow6lTpzBp0iQ0atQITk5OsLGxQePGjfHZZ58hOztba7+LysLCAhs2bICFhQVGjx6Np0+fQqlUYtSoUXj69ClWrlwJFxcXje3u3LmDoUOHonLlyrC3t0enTp1w6NAhg/SpXBFEBnbjxg0BQHTv3l1nnf379wsAIjQ0VOvzHh4ewtvbW61s7dq1AoBYu3atVHbw4EEBQDRo0EA8efJEKv/333+Fr6+vACAOHTqkEXfWrFkaMQGITp06aZR36tRJaPuoXL9+XaMsOztbvPLKK0Iul4tbt25pHZunp6fG2GbNmiUAiP3796uVBwcHCwDixo0bWtvSh0KhELVr1xYAxJ49e9SemzZtmgAgQkJCNPoCQPz8889q9RcuXCgAiD59+khlCQkJwtzcXAQEBGjEfu+99wQAsXPnTqksICBAABBKpVKtrup9ExwcrFZe1P3s5eUlvLy8pJ8HDx4sAIjhw4erxfznn3+EpaWlqFSpkkhNTdUYf/7XoqjvneTkZOHo6Cg8PDzEzZs31Z7bsmWLACAmTZpU6PjzK+rrWRDV+6tfv37CxcVFZGVlSc8lJiYKS0tL0b9/f63j1vV5EUL7PizqZ1XlnXfeEQDEZ599JoTQ3E/37t0T3t7ewsXFRcTFxWlsP2zYMAFAfP3112rlDx8+FDVq1BAuLi4iIyNDKh8wYIAAID744AONth48eCCys7O1jjn/+06ffSKEEMuXLxcARGRkpFp5fHy8RhtpaWmicePGwsnJSTx79kxnrLxU+0vb+1bl7t27wtnZWVhZWWl8vvPTd5zF+c4iorLFEHmfl5eXcHJyErNmzZIe/fr108j7hBBi8uTJAoDw8PAQYWFhIiwsTHh4eAgAIiwsTGtcQ+R93bt3F7Vr1xbDhw8X06dPF6GhocLLy0sAEO+++67OsWsbmyqGMfI+bWPRZ78qlUoxdOhQAUDUrVtXhIaGismTJ4v69esLAGLq1Klq9R8+fCjc3NyETCYTr732mpg4caKoUqWKqFmzpgAgfH19xcCBA8XYsWNF5cqVhUwmE9u2bVNr48qVK8LFxUUAEIGBgWLGjBmiT58+AoBwcXERV65c0TqewMBA4enpKd5++23x9ttvC09PT62vg+pvB7lcLtq0aaOxf1auXCnkcrnW94Ku90GHDh2kPDnvPlR9Djp06CCcnJxE586dxYwZM8TQoUOFubm5sLW1FX///bdBxq96LWfMmCE6d+4svWZ5c5T79+8LMzMz0alTJzF27Fgxffp0MWjQIGFlZSWsra1FTEyM1n2V/32hou33f0HvV1157eHDh4Wtra0wNzcXQ4YMETNmzJDGVbt2bZGUlKQRN//nR/XI+35KTEyU8uOAgAAxY8YMMXjwYCGXy4Wtra04fPiw1nHlZ4z3jBC6v4u+//57qY+jR48W06dPF/7+/gKAaNOmjVqOKkRuPm1tbS3atm0r0tPT1fZT3tfn2bNn4qWXXhJWVlbi4MGDam0U9bOuUCjEwIEDpe/dcePGiffff18EBQUJZ2dnsWPHDiGEEF9++aXa69O0aVMBQLz99ttq5adPn1bbJ506dZKeCw0NFVWqVBEAxLp169T6ERoaKtzd3cWQIUPEtGnTxMSJE4Wfn58AIF5//XWt+10XLy8vnX/HCCHEvHnzBAAxduxY8cUXXwgAYsSIEVrr3rt3T/od1L17dxEeHi769+8vLC0tRffu3bV+11fUfJmTj2RwhkhCXV1dRb169dTKtP1SDAkJEQDE1q1bNdrYtGmTxkSMIZNQXbZt26b1C1OlSpUqwtfXV63MmJOPhw4dEgBEz549NZ5LS0sTlStXFtbW1tLEk6ov2l6/7Oxs4ePjI2QymUhMTJTKX3vtNSGTycTVq1elsufPnwtXV1fh5uamlgwFBQVpHZO+k28quvZz3l++mZmZwsLCQlhYWIg7d+5otPHWW28JAGLjxo1SmaEmHxctWiQAiA0bNmjtf/PmzUXVqlWln/Udf1Ffz4Ko3l+//vqrACA2bdokPTdv3jxha2srduzYYZDJx6J+VlWUSqU0gbh+/Xq1/ZSSkiKaNm0q7OzsNJJoIYRISkoScrlcdOnSRWs/lyxZIgCIH3/8UQiRm6jLZDJRu3Zt8fz5c63b6PKik4+LFy+WxqYPVQJ04MABverrM/kohBAfffSRACAsLCzEvXv3dNbj5CMR5ceDzqXroHNeL7/8ssZYdE0yrVq1SgAQo0ePVvsdmJWVJQIDAwUAcfLkSak8LCxMABDLly+Xyo4ePSodyFq4cKFUfvXqVeHg4CA8PT1FTk6OVK6aOFu5cqVaX1QH5vL//la9NvXq1VN7/Z88eSLq1asnZDKZOHHihMZYVROu//zzj1p7zZo1kw6y6jOR9N133wkAokWLFjonHwGIGTNmqG23Z88eAUA0btxYrfxFx5/foEGDBABx5swZqSwzM1PcvXtXo+758+eFvb296Natm1p5SUw+vsgB9MLyDpXRo0cLACI8PFyt/OeffxYARJ06dYRCoSi0HUO/Z1S0fRelpKQIJycnYWVlJWJjY6VyhUIhnTzxySefaLS1fft2IZfLRZ8+faTPU979lJ2dLXr37i3MzMw0JvyFKPpnfenSpQKA6Nq1q9qEpxBCpKeni0ePHmkdc2HfZ7q+ny9cuCAAiP79+6uV37p1S+37Q4jcvxNUf2McOXJEaxxtCpt8zMnJEW3atBEAhKWlpfD09BSPHz/WWlc1zk8//VStfOXKldJ3Aicfc/GyayqVUlNTYW1tXWg91WUD2i6b6dy5M4DcyyOMQbWOXNOmTWFvby+dLj5gwAAAuZf75qdUKpGSkgJbW9sixYqMjERERAQ++eQTREVFYd++fVAqlXptW9A+Ul0ylJmZiStXrqg9p9p/eZmbm6NDhw4QQiA2NlYqDw0NhRBCbV3C3bt3IzExEaNHj4a5+X/3tmrTpg0A4P3338fDhw8L7f+L7GfVmnTW1tbIzs5GnTp1tF72bcz3yN9//w0AOH78uNb1rzIzM5GcnFzkS6Rf9PUsSP369dGlSxfpDqRKpRIrV67E0KFDNS4bzuvmzZtax6ZtrccX/azKZDK8++67AHLvwq66pCsrKwv9+/dHbGwsOnbsiFatWmlse+LECSgUCmRlZWntp+o1Ul3yfPLkSQgh0LlzZ1hYWOgcd3GsW7cOERERmDlzJgYPHoz33nsPPXr0QFBQkFq9xMREvPvuu2jQoAFsbW2l971qqQFt7/sXlZiYKF12n52djZ9++slgbRMR6SM7OxtWVlaF1lPdtCYiIgJOTk5SeaVKlTBr1iwA0HnZaHFpu6O3ubk5xo0bB4VCgf3792vdLiMjA5aWlkbpU2GKEnvZsmWws7PD8uXL1X4HWlpaYu7cuQCALVu2SOU//PADKlWqhNDQUKmsXbt2eOmllwBAbWmcOnXqICgoCHfv3pV+996+fRv79+9Hw4YN8dZbb6n1Zdy4cahfvz7+/PNP3LlzR6OvM2fOVHv9nZyc8NFHH0EIofXGRoGBgfD09ERUVJRU9vfff+PMmTPSmseFycjIwLRp09CwYUOMGzdOZz1nZ2d8+OGHamXdu3dH165dce7cOeny6+KMP7+cnBwptoqVlRU8PDw06vr5+aFz5844dOiQwS5V1dfRo0cRHx+Pnj17atzU8uOPP0blypWxefNmPH/+vEjtPn/+HFu2bEGVKlXw0UcfqT3Xq1cvvPLKK7h27RqOHj2qd5uGeM8UZteuXUhJSUFISAiaNGkilZuZmWHBggUwNzfX+n322muvYfny5fjpp5/UPn8qY8eOxc8//4xly5bh9ddf13i+qJ/1r776CnK5HFFRURp3gLaxsUHlypWLPPaCqN7PlSpVUiuvWbOmxnJQMpkMEydOBAD88ccfBuuDXC6X9sXz588RGRmp9W+i58+fY+vWrXB1ddVYDuzNN99E3bp1Ddan8oB3u6ZSJz09HZmZmVrXU8gvNTUVZmZmWutWq1YNMpkMqampBu/j8+fPERAQgH/++Qf+/v4YMWIEqlSpAnNzc+mOjtpuwPLw4UPk5OTA3d29SPEWL16sUebr64udO3eiQYMGBW6rGn+1atW0Pu/m5qZWTzVRWL169QLrp6SkSGWvvvoqfHx8sH79enz66acwNzfH6tWrIZPJMGbMGLXtJ06ciB07diA6Olrn+j8qL7qfnZycMGXKFKSmpuLLL78sdOx5x2Io//77LwBg+fLlBdZ79uyZdJdhfRT19dTX+PHjMWjQIFy4cAE3b97EzZs3MX78eI2bt+R169YtzJ49W+9+v8hnVaFQYNy4cXB0dEStWrUwadIkAEB0dDSUSiU6dOiAX3/9FTt37kT//v3VtlW9BkePHi0w4Xz27BmA/94H2pJ1Q8n/R1HVqlXRokULtTWC/v33X7Rq1Qq3b99G+/bt0a1bNzg7O0Mul+PMmTPYtWuXzhs8vYhx48YhKSkJn332GRYuXCjd6b5mzZoGi0FEVJDU1FTp91dBTH3QeeHChdi5cyfi4+Ol3x0qBR10rlGjRpFiqf7QVf3e9PX1RefOnWFmVrTzRh4/fqzXAe/09HScO3cO7u7umD9/vsbzqkkq1cG6lJQU3Lt3D23bttV7bejGjRsDAC5cuID27dtLr1OnTp001skzMzNDx44dcfnyZZw5c0Zj/3Xo0EGjfVWZtvUM5XI5xo4di/nz52PhwoVwdHTEV199hTp16uCVV17Rq//z58/HnTt38NtvvyEhIUFnPX9/f9jb22vt3759+3D69Gm0aNGiWONXrRuYlZWFv/76C8eOHcOHH36otlYzkPtZWLBgAY4cOYIHDx5oTDYmJydrfO527typdQ3HJ0+e6DwgrW1i5smTJxr19DmA/ttvv+HKlSvS+0Ufly9fRmZmJjp37qz1/d65c2f8/vvvOHPmjNb3jjbFec9oW9dR2z4taH/UrFkTtWrVQlxcHNLS0tTWMwdy10afNWsWvvnmG7W/2T788EOsXbsWLi4uGDlypEa7Rf2sP336FJcuXUKdOnWMNpF24MABaZ/dv38f0dHR8PX1RXh4uFq958+fY9myZfjuu+9w+fJlPH36VG2dV0MemBdC4NNPP5V+3r59u3TiS15XrlxBZmYmunTponHilJmZGdq3b4+rV68arF9lHScfqdSJj48HAI1Fc7VxdHSEUqlEUlISXF1d1Z5LTEyEEAKOjo4G7+OuXbvwzz//YMyYMRp3If7uu++0HnUF/kuIfX19ixTvxo0b8Pb2hhAC9+7dw4IFC7BkyRJMnjy50KM8qvHrOsvwwYMHavVUR69U5brq5z3iLJPJMHbsWISHh+PHH3+UkoeuXbuiVq1aattbWVnh4MGD+PXXX3Hu3DlkZmYCyE1S8k+yvuh+dnZ2RkREBNLS0vDll18WOva8YzEU1f48d+4cGjVqZPB29X099dW/f3+4ubkhKioKN2/eRKtWrdCiRQutZzGqdOrUSevzERERGpOSL/pZXbRoEU6ePIkVK1agf//+aNeuHa5fvw6FQoGFCxdi/PjxaNSoESZMmICAgAC15FfV3tSpU7Fw4cJC94Fq24L+qCiu/fv3S0lmUlIS1q1bh+nTpyM+Pl46yvzNN9/g9u3bmDNnjsYR/M8++wy7du0yWH82btyIHTt2oE+fPpg+fTq8vb0xZMgQjBkzBr///rvB4hAR6cKDzpqKc9BZRZUz5s/DtHn8+DGEEEhISCjwoKJqwlV1YFLbJJsuqrqq16c4B1O1baMq03VA+c0338Qnn3yCjRs3YsiQIYiOjsann36q8wYhed2+fRsLFixA37598corrxR4dq2u8eTvX3HGn/81atCgAerUqaNWduzYMXTp0gVA7kkCdevWla4g2rlzJ2JjY7W+Z3ft2qUzz9A1+ajt/aqNsQ6gG6vdF33PFOXAPFBwv+Pi4pCamqox+fjhhx/i4cOH6NixI+bOnSsdBPjf//6Hjh074tChQ/jggw80XpuiftZL4sD8wYMH1e4sbWFhgcDAQI2J5IEDB+LHH3+Er68vBg8eDFdXV1hYWEh/QxrywPySJUtw4MABjBgxArdv38bmzZsxaNAgjRMdVPsn/982Krpe24qKl11TqaO6HKNly5aF1vX39wcArRMgqrJmzZoZqmsS1QSptjtwHz58WOd2qonCjh07vlBcmUwGDw8PREZGwsnJCSdPnix0m4L20bNnz3Dy5EnY2NigXr16ACDdVVlbfYVCgSNHjkAmk2ns19GjR8PCwgKrV6/GmjVroFQqNS4jUTEzM0Pv3r0xY8YM6RLYKVOmaNR70f2s4uDggDp16uDatWtaJ5SM+R5RXV7+119/GbTdor6e+jI3N8ebb76J9evX49dffzXYJSUqL/JZvXbtGmbNmoWOHTti7NixqFatGrZu3QoA6N27N6ZOnQpbW1usWrUK9+/fx3vvvae2fatWrSCTyfR+DVq2bAkzMzPs37+/RC5FcnFxwbRp09C4cWNER0dLE/HFfd/rKyEhAWFhYahcubJ0t9bBgwdj4MCB+OOPP7TeAV0ul0OhUBisD0REL3rQOb+SOuj8zz//ICoqCp9++ikiIiLQo0cPndsV56CzEAJKpRJ3795FWFgY4uLiMHnyZL3bUJ0Npk9s1T5r0aIFRO49AbQ+VJeW29nZAcg9K0pfqrqqScjiHEzVto2qTNcBZTc3N/Tv3x8rVqzA2rVrAeTmrvqYNm0alEolFi1aVGhdXePJ37/ijF/1euTk5CA+Ph7NmzfH6NGj1X5vz507F1lZWfjjjz+we/dufPHFF5g9ezYiIiJ0Xt0E5N5JXttrn/+syrxU79e8jxs3bmjUM9YBdGO1+6LvmYI+O4bo9/Hjx7FkyRIMGTIEf/75J/r16weFQgGFQoF+/frhzz//xODBg7Fs2TLp7+r8MfX9rKver8Y8MD9r1iwpbmpqKrZt24bdu3ejY8eOyMjIAJC7lNKPP/6I7t274+LFi/j6668xd+5cREREYMiQIQbtT1xcHMLDw+Hp6YmlS5dizZo1sLOzw7hx4zTuMq7aP4mJiVrb0meJsYqEk49UqqSkpGDJkiWwsLBA3759C60fHBwMIPcIU96jWSkpKdLRHFUdQ1L9Aj5y5Iha+cGDB/H1119r3SY5ORkbN25E5cqV0bNnz2LFv3//Pp4+faqxFoY27du3R+3atfHrr79qnCX56aef4tGjRxg6dKi0JlCbNm3g6+uLPXv2SOvrqSxduhTx8fEIDAzUuFS4WrVq6N+/P/bs2YOoqChUrVpV4+hQUb3Ifs5v9OjRyM7ORnh4uNqp+WfPnsW6detQqVKlYvdTV1wHBwd8+OGHuHDhgsbz6enpGgmBPor6ehbF2LFjUalSJdSpU8fgv8iL+lkVQuCtt96S1hJVHWVWve/yvv+6deuG0aNH45tvvsGff/4plVevXh1BQUE4duwYPv/8c7XXX+X48eNIT08HkPseHjBgAOLj47UeDU5MTJTWoTGUx48fIyEhQe0ouq73/ebNm/HLL78YLPaYMWPw5MkTLFu2TO2yq6+++kqaGL1165baNpUrV0ZycrI0UUpEVFw86Kzbixx0fpHYDg4OaNCgAS5duqT1ctn8KlWqhGrVquHy5ct6H5A6f/48AEhnbqpep0OHDmn8fhZC4NChQ2r18tK2z1VlqveINuPHj8f58+cxZ84cBAUF6bVW3eHDh/H999/jnXfeQe3atQutf/r0aa2Tsvn7V5zxq8jlctSqVQtLly4FkHs1g0p8fDwqV66Ml19+WW2b9PR0/PPPP4WOwxiMdQC9fv36sLa2xokTJ6ScLq/ifDe8yHtGXwXtjzt37iA+Ph61atVSO+vx+fPnGDNmDCpVqoQlS5ZALpdjy5YtqFq1KqpWrYotW7ZALpdjyZIlcHZ2xpgxY9TW0CzqZ93e3h4NGzbEjRs3SuTyYQcHBwQGBmLkyJG4fv26tGyS6ju4d+/eGks9GPLAvEKhQHBwMDIyMrB69Wo4OTmhVq1amD9/Ph4+fCgt/6Ti6+sLa2trnDx5UiM3ViqVOHbsmMH6Vh5w8pFKjU8//RT16tXD+fPn8cknn+i19k/Hjh0xefJkXLx4EY0aNcI777yDKVOmoFGjRrh8+TLCwsK0Jl2qyzjzPoDctSLyl6vWj1ixYoWU9AUGBsLb2xsLFixA7969MX36dPTv3x9du3bVmpiuW7cObdu2RVJSEmrWrInPPvtM6w061q1bh507d2psv2nTJqxYsQJRUVGYOXMm2rZtC4VCgbFjxxa6j8zMzLBu3TrY2tqiV69eGD58OD744AN07twZn332GWrXro3PPvtMqi+TyfDNN9/AxsYGgYGBGDJkCD744AP07NkT77zzDjw8PLBs2TKtscaNGwelUomHDx8iODi42AusF3U/azN16lS0adMGGzduROvWrTFjxgyEhIRI+3D16tVaLxvavXu32vtg9+7dAAp/76jeLy4uLtiyZQuePn2Kpk2bok+fPnjvvfcwefJkBAYGonr16lrXhClMUV/PovD09MTt27dx5coVjQWli6uon9VVq1ZJa8Dos8bMF198gerVq2Ps2LFqiedXX32FZs2a4f3330fTpk0RGhqK6dOnY9iwYfD19cVLL72kNhn61VdfoUGDBpg7dy6aN2+O9957D1OnTkVgYCBq1KhRpLM8tFHdcCYiIgKTJk1CkyZN8OjRI4wYMUJaK2bEiBFwcnLC5MmTERQUhGnTpuHVV1/FiBEjtC4c/iJWrlyJvXv3YuDAgRg6dKjacy4uLoiKikJaWhpCQkLU/ijq0qULMjMz0bNnT3z88cf49NNPpT+QiIiKiged9VOUg84AkJmZia+++grm5uYYPHiwXtuEhYUhPT0db731lsZ6lkDu2W15163r378/Hj9+rLYszl9//SVNJn/xxRdS+fXr1/H999+jWrVqaNeuHYDcNe06d+6MCxcuYM2aNWqxVq1ahUuXLqFLly5a18ucM2eO2uXVKSkp0uWwBb3+Xbp0Qbt27eDg4IAJEyYUskdyhYWFwc3NTeMmMro8efJEulGFyt69e7Fv3z40atQILVq0AFC88ed37tw5jTIvLy88fvxY7QC4QqHAe++9p/XM4ZJgrAPolpaWGDp0KJKTkzFv3jy15/bs2YO9e/eiTp06aN++fZH7/CLvGX3169cPTk5OWLt2rdrrJITA9OnTkZOTg1GjRqltM3fuXFy4cAFffvmltPyEjY0N7OzsYGdnJ+Xvrq6u+PLLL3Hx4kWN92NRP+sTJ06EQqHAhAkTpDMRVTIzM6U11g1FCCEdrFDR9R184cIFjde8OBYsWIC///4bY8eOVbsp0oQJE9ClSxd899132L59u1RuZWWFoKAgJCYmqn3nAcDq1asRFxdnsL6VCwa7bzbR/7tx44YAILp3766zzv79+wUAERoaKpV16tRJdOvWTezatUvrNmvXrhUAxNq1azWeW7NmjWjVqpWwtbUVtra2olWrVmLNmjU6477oY9asWVJb169fFwMGDBAuLi5SzO+++06Kkbdup06d9I4RHBwsbRccHKzxvIuLi2jfvr3YuHGj7hdBi7Nnz4qBAweKqlWrCgsLC+Hl5SXefvttkZSUpLV+bGysWv0aNWqICRMmiPv37+uMoVQqRc2aNQUAcenSpSL1T/W+yTt+IYq2n4UQwsvLS3h5eamVpaWliQ8++EDUqVNHWFpaikqVKok+ffqIY8eOafRj1qxZxXqP7N+/X629y5cvizFjxggvLy8pduPGjUVYWJiIiYkpdPy6FPX11Eb1/rpx44bOOrr2MwDRqVMnrduo9mH+fSGEfp/Vu3fvCkdHR+Hv7y+ys7PVnitoP/3www8CgHj33XfVytPT08WCBQtEixYthJ2dnbCxsRE+Pj6if//+YsOGDRoxUlJSxMyZM0X9+vWFlZWVcHJyEs2aNRMff/yxeP78udYxa3vfadsneR+VKlUSLVq0EEuXLtXow5kzZ8Srr74qKlWqJBwcHESnTp3EH3/8UeD3oDaq/ZX/u8ve3l64uroW+H4ZOnSoACCWL18ulaWlpYm33npLuLm5CblcrtG2apwFvaeIqHx50bxvzpw5olq1agKAmDdvnsY2ur7vJk+eLACIGjVqiClTpoi3335beHp6CgAiLCxMa9zevXuLqKgotQcAUbduXY3yunXrCgAiKipKnDhxQgiR+93n7e0tAIhevXqJ999/X/Tr10/I5XIxcOBAje/CtWvXijp16ggAolmzZmLWrFlqD1VeGBwcLHbs2CFtp/q9/Omnn4qoqCjx1VdfiY8++kjKrf73v/8V+nrs2LFDNG/eXAAQ3t7eGrH79esnAIh+/fqp7VulUinFd3NzEyNGjBDTp08Xo0aNEi+99JKQyWRiy5YtUv27d++KqlWrCplMJgYMGCAmTZokXFxchJeXlwAgGjZsKAYNGiRCQ0NFlSpVBACxadMmtb5evnxZaqNfv34iPDxc9O3bV8p3r1y5olZftd8CAwOFp6enePvtt9Ve//y///X9naktp8mbu69fv77QdlWfgw4dOggnJyfRuXNnER4eLoYOHSrMzc2FjY2N+Pvvvw0yftVr+dFHH4mRI0cKOzs7jX7++OOPAoBwdnYWY8eOFWFhYaJJkyaiSpUqIiAgQON3dWH7SlueU1AeqStfO3z4sLC1tRUWFhZi2LBhIjw8XOpP7dq1RWJiYqFxtUlMTBS1atUSAESXLl3U9r2tra04fPhwoW0IYZj3jDa68unvv/9eyOVyYWdnJ0JCQsT06dNFixYtBADRunVrkZGRIdU9d+6csLCwED169NBoX9d+6t69u7CwsBDnzp2Tyor6WVcqlSIoKEgAEB4eHmL8+PFi+vTpYujQoaJy5cpq32F5FfZ3hmqfdOrUSXpPT506VRp//fr1RWZmphBCiJycHNG6dWvpMzZt2jQxePBgYWNjI30H6/s3lGp/5X/9zp49KywtLYWPj49IS0vT2ObGjRta8+d79+4JDw8PAUD06NFDhIeHi/79+wtLS0vx6quvav2bqKLmy5x8JNKTl5eXxi8MfXXq1EmvL0R965VW9+7dE+bm5qJDhw6m7kqJUyVZ2ibciExF2+SjMVXUZIqoIuNB59J10FlbG7oe2g4ibt26VXTr1k1UqlRJWFhYCA8PDxEQECC++OILjQNWFy5cEJ07dxbW1taiXr16Ys+ePdLY4+PjRadOnYSVlZXw9fXVmHhUuXnzphg9erRwc3MT5ubmws3NTYwePVrcvHlTo66q7YyMDPH++++LGjVqCEtLS1GvXj2xZMkSoVQq1eobYiKpTZs2erWbd7Lt/PnzolevXsLR0VHY2dmJbt26iZMnTxps/KqHmZmZqF69uujWrZv46aefNOr/8MMPonnz5sLW1lZUrVpVBAUFifj4eK2TQiU1+ShE0Q6g6zv5KIQQSUlJIiwsTHh5eQkLCwtRtWpVMXDgQLWJt8KU9OSjEEIcOnRI9OzZUzg7OwtLS0vh6+srZs6cKZ4+fSrVUU2+2dvbi1u3bmm0oWs/3bx5U9jb24vWrVuLnJwcteeK8llXKpVi9erV4qWXXhJ2dnbC1tZW1K1bV4wbN07cvn1b65j1nXzM+7CzsxP16tUT06dP15iITkxMFCEhIcLd3V1YW1uLxo0bi+XLl4vr168Xe/Lx+fPnolmzZkImkxX4t9zKlSsFADFo0CC18lu3bonBgwcLZ2dnYWtrKzp06CAOHjyo84SMipovy4TQsggWEWnw9vbGqFGjXuhS2YCAAHh7exd4d7yi1Cutpk+fjgULFmDz5s0al3KWdzdv3oSPj4/a3YyJTE31vpw1a9YLfXcVlepO5zdu3NDr5hFERKVVWc37Ro0ahZs3b2pdR+5F6hVVQEAADh48qHWd5dLcdnGpft8GBweX2TyeqKLw9vaGt7e3wb//9FVR82VzU3eAqKwYPny4XouhazNq1Cg4OzsbrF5pkpKSgqioKNy6dQurV69Gw4YNERQUZOpulTgHBweEhobC3d3d1F0hIiIiIiIiKjU4+Uikp/yL9RZF/sWCi1uvNHn8+DHCw8NhbW2Nl19+GStWrNC4C1lFUKVKFenmM0RERFS2ldWDzv3799frLrb61iMiIjIETj4SUbF4e3uXystfiAhwdnbGrFmzSmwpAFWcsnYGNxFRfmX1oHP//v0NWo+IiMgQuOYjERERERERERGVe5GRkXB2djbZVYcHDhzAgQMHMGXKlAp1wJ6Tj0RERERERERERGQUZqbuABEREREREREREZVPFW7NR6VSiXv37sHBwQEymczU3SEiIiIqMiEE0tLS4O7uDjMzHksui5iTEhERUVlWlHy0wk0+3rt3DzVq1DB1N4iIiIiK7c6dO/D09DR1N+gFMCclIiKi8kCffLTCTT46ODgAyN05jo6OJRZ38ODB2Lp1K+MxXqmMZ4qYjFe245kiJuMxXmmPWZLxUlNTUaNGDSmvobLHFDlpef5MVIR4pojJeGU7niliMh7jlfaYjGc4RclHK9zko+qyFkdHxxKdfLSwsGA8xiu18UwRk/HKdjxTxGQ8xivtMU0xRl6uW3aZIict75+J8h7PFDEZr2zHM0VMxmO80h6T8QxPn3yUiwQRERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFJx8JCIiIiIiIiIiIqOocDecKSqFQoHs7Oxit1OlShVkZmYaoEeMx3jlI2ZZjmdhYQG5XG6QtoiIiArDfJTxTBWT8cp2PFPEZM5NRNpw8lEHIQQePHiAJ0+eGKS9UaNG4caNGwZpi/EYrzzELOvxnJ2dUb16dd5ploiIjIb5KOOZOibjle14pojJnJuItOHkow6qRM/V1RW2trbF/rKTyWTw9vY2TOcYj/HKQcyyGk8IgfT0dCQmJgIA3Nzcit0mERGRNsxHGc/UMRmvbMczRUzm3ESkDScftVAoFFKiV6VKFYO0KZfLYW1tbZC2GI/xykPMshzPxsYGAJCYmAhXV1deDkJERAbHfJTxSkNMxivb8UwRkzk3EWnDG85ooVpTx9bW1sQ9IaLSSvX9YIg1uIiIiPJjPkpExJybqLzg5GMBuK4EEenC7wciIioJ/H1DRBUZvwOJygdOPhIREREREREREZFRcPKRXsizZ89w584dPH782NRdISIiIiIiIiKiUoqTj6S36OhodO3aFQ4ODrC3t0fNmjWxYMECU3eLiIiIiIiIiIhKKU4+VlAXLlzAG2+8AQ8PD1hZWcHd3R3Dhw/HhQsXtNafMWMGgoKC4ODggK+//hq///47/vjjD0yYMKGEe05EREREZdm6desgk8mkh7W1NXx9fTFp0iQ8fPjQ1N2jEtS6dWvIZDJERUVpfT7/eyX/4++//wYAPHr0CJ9//jk6duwIFxcXODs746WXXsLWrVtLcjhERKSDuak7QCVv+/btGDp0KCpXrowxY8bAx8cHN2/exDfffIMffvgB3333HV577TWp/sGDBzF//nzMmzcPM2bMMGHPiYiIiKi8+OSTT+Dj44PMzEwcOXIEUVFR+OWXX3D+/Hne5bsCuHr1Kk6cOAFvb29s2rQJ48eP11lX9V7Jr06dOgCAv/76Cx9++CF69eqFjz76CObm5ti2bRuGDBmCixcvYvbs2UYbBxERFY6TjxVMfHw8RowYgVq1auHQoUNwcXGRnnv77bfRoUMHjBgxAmfPnkWtWrUAAAsXLkS7du048UhEREREBtOzZ0+0bNkSAPDmm2+iSpUqWLRoEXbt2oWhQ4eauHdkbN9++y1cXV3xxRdfYODAgbh586bOunnfK9r4+fnh6tWr8PLyksomTJiAbt26Yf78+Xj//fdhZ2dnyO4TEVER8LLrCubzzz9Heno6Vq1apTbxCABVq1bFypUr8ezZM7W1HP/++280atQIQ4YMQeXKlWFjY4NWrVph586dUp1nz57Bzs4Ob7/9tkbMu3fvQi6XY968eQCAUaNGwdvbW6OeTCZDRESE9POtW7cwYcIE1KtXDzY2NqhSpQoGDRqkkZgcOHAAMpkMBw4ckMpOnDiBV155BQ4ODrCzs0NAQAAOHz6stp3qMo6TJ09KZcnJyRr9AICxY8dq7fPx48fRo0cPODk5wdbWFp06dcLRo0c16iUkJCAkJATVqlWDlZUV/Pz8sGbNGo162qguK4mMjNR4rn79+pDJZJg0aVKB4ypobKdPn0bPnj3h7+8Pe3t7dO3aVbqERWXlypUwMzNDdHS0VHbz5k3IZDKsW7dOKouLi0PlypUxbNgwte2fPHmCKVOmoEaNGrCyskKdOnWwatUqKJVKtXpKpRKLFy9G48aNYW1tDRcXF/To0UMaS0GX3chkMgQEBAD47z2helhZWeHVV1/FvHnzIITQOn5HR0ed4yciIiLj69KlCwDgxo0bAIB///0X7733Hho3bgx7e3s4OjqiZ8+eiI2N1dg2MzMTS5Ysga+vL6ytreHm5obXX38d8fHxAP7LWwrLIVQSExMxZswYVKtWDdbW1mjatCnWr1+vVuf69evo0qULqlevDisrK9SoUQPjxo3Dv//+K9VR5SQ//PCDRp/t7e0xatQo6Wd9x1uUNl80L1TlRSNHjtSaF2nL7ebPn6+R2xVk8+bNGDhwIPr06QMnJyds3rxZ723z8/HxUZt4BHLzxv79+yMrKwvXr18vcPu8ueOZM2fUnktISIBcLtfY56NGjYK9vb1GWz/88IPG3yZA7vr5r732GmxsbFC1alW88cYbSEhIUKszbNgwVKlSBVevXpXKVK9h3r+BoqOjYWZmhpUrV6ptf/nyZQwcOBCVK1eGtbU1WrZsiX379mn08cmTJ3jnnXfg7e0NKysreHp6YuTIkUhOTtbIo7U9VO+biIgItXIHBwcMGDBA7e/EvH1u0aJFgeMnovKLZz5WMD/++CO8vb3RoUMHrc937NgR3t7e+Pnnn6WyR48eYdWqVbC3t0dYWBhcXFzw7bff4vXXX8emTZswdOhQ2NnZ4bXXXsPWrVuxaNEiyOVyafstW7ZACIHhw4cXqa8nTpzAsWPHMGTIEHh6euLmzZuIiopCQEAAdu/erXO7a9euISAgALa2tpg2bRpsbW3x9ddfo1u3bvj999/RsWPHIvVDlz///BM9e/ZEixYtMGvWLJiZmWHt2rXo0qULDh8+jNatWwMAHj58iJdeekmaJHRxccGvv/6KMWPGIDU1FVOmTCk0lrW1NdauXatW99ixY7h161axxnDhwgV06NABjo6OeOutt1C9enWsXLkSAQEBOHjwINq0aQMACA0NxZUrVxAcHAxvb2+0atVKo61///0Xffr0QYMGDbB27VqpPD09HZ06dUJCQgJCQ0NRs2ZNHDt2DF988QWys7PVJlXHjBmDdevWoWfPnnjzzTeRk5ODw4cP4++//0bLli2xceNGqe7hw4exatUqfPnll6hatSoAoFq1amp9+uCDD9CgQQNkZGRg7dq1+OCDD+Dq6ooxY8ZojP/999+HhYWF1vETERGR8akmCqtUqQIgd3Jv586dGDRoEHx8fPDw4UOsXLkSnTp1wsWLF+Hu7g4AUCgU6NOnD/bt24chQ4bg7bffRlpaGn7//XecP38etWvXlmIMHToUvXr1UosbHh6u9nNGRgYCAgJw7do1TJo0CT4+PoiOjsaoUaPw5MkT6WB7RkYGPD09ERgYCEdHR5w/fx7Lly9HQkICfvzxxyKPX9/xGou2vGjZsmUaeZGu3C48PBz379/XesA8v+PHj+PatWtYu3YtLC0tpb8rBg0apLV+SkoKkpOT1cpkMpn0XtHlwYMHACDlioVR5dyLFy+WytavXw9LS0tkZmbq1YY269atw+jRo9G4cWPMmzcPDx8+xOLFi3H06FGcPn0azs7OAIA1a9agS5cu6N27N44fP45KlSpptBUTE4Pg4GC88847CA0NlcovXLiA9u3bw8PDAzNmzICdnR2+//57TJgwAdWqVZOW1Xr69Ck6dOiAS5cuISQkBM2bN0dycjJ2796Nu3fvokGDBmo596pVq3Dp0iV8+eWXUlmTJk3U+qSqn5ycjMWLF2PQoEE4f/486tWrpzb+Vq1aFTh+IirHRAWTkpIiAIiUlBSddTIyMsTFixdFRkaGweLGxcUZrK0XjffkyRMBQPTr16/Abfv27SsAiNTUVCGEEAAEAHHgwAGpTnp6umjQoIGoXr26eP78uYiLixN79+4VAMSvv/6q1l6TJk1Ep06dpJ9Hjx4tatasqREXgJg1a5ZajPz++usvAUAsWLBAKtu/f78AIPbv3y+EEGLAgAFCLpeL8+fPS3WSk5NFlSpVRIsWLaSytWvXCgDixIkTUllSUpJGP4QQIiAgQHh5eUk/K5VKUbduXdG9e3ehVCrV+uzj4yNeeeUVqWzMmDHCzc1NJCcnq7U5ZMgQ4eTkpHWceV8/AGLgwIHC3NxcnDx5Uq3dYcOGCQBi4sSJBY5L19j69+8vLC0tRXx8vBTz3r17wsHBQXTs2FFte4VCIQIDA4Wbm5u4c+eOuHHjhgAg1q5dK54/fy4CAgKEj4+PSExMVNtuzpw5ws7OTuM9OXbsWCGXy8Xt27eFEEL8+eefAoAICwvT2B9593H+cd64cUPjufzvCSGEOH/+vDAzMxMTJkzQOn4VXePPr7DvicDAwAK3N7SSjmeKmIzHeKU9ZknG0yefodKtsNfQWPloeroQixYJMWlS7r9a0hCDxtNG9Tv8jz/+EElJSeLOnTviu+++E1WqVBE2Njbi7t27QgghMjMzhUKhUNv2xo0bwsrKSnzyySdS2Zo1awQAER4erhFLlUOo8pbPP/9co46fn59arhoZGSkAiG+//VYqe/78uWjbtq2wt7eXcmRt45swYYKwt7eXflblJNHR0Rp17ezsRHBwsPSzPuONi4srUpsvmheqHDlyRCMv0pXbzZgxQy23K8ikSZNEjRo1pNfnt99+EwDEzp071eqp+q/tYWVlVWCMR48eCVdXV9GhQweddVRjUO3ToUOHiipVqoisrCypTt26daWcO+8+Dw4OFnZ2dhptRkdHq+Whz58/F66urqJRo0bi3LlzUr2ffvpJABAff/yx2vYPHz4U3t7eonPnzuL58+dqOe/t27dF9erVRd++fTXeK127dhWNGzcWmZmZUplSqRTNmzcXdevWlco+/vhjAUBs375do+/acu7g4GC1v4PymjVrlsg/paDq7/fff68x/rzfZ7rGn19Fz7nLezxTxGQ8wylKPmryy67T0tIwZcoUeHl5wcbGBu3atcOJEyd01t++fTteeeUVuLi4wNHREW3btsXevXtLsMcvLisjGzu//BsrJu/Bzi//RlZGdonGT0tLAwA4ODgUWE/1fGpqqlTWqlUrdOrUSfrZxsYGEyZMwIMHD/DPP/8AALp16wZ3d3ds2rRJqnf+/HmcPXsWb7zxhlTm6uqKxMREPH/+vMB+2NjYSP/Pzs7Go0ePUKdOHTg7O+PixYsa9VNSUpCYmIjff/8d3bt3h5+fn/RclSpVMGrUKJw6dcogd1E8c+YMrl69imHDhuHRo0dITk5GcnIynj17hq5du+LQoUNQKpUQQmDbtm0IDAyEEEKql5ycjO7duyMlJUXafwWpVq0aevfuLZ1RmJ6eju+//x6jR4/WuY3qCLHqkfcSICD3LIHffvsN/fv3l9b3BAA3NzcMGzYMR44cUXsPmJmZYcuWLahSpQoCAwPx7Nkz6bnx48cjJiYGP/30k8bl/NHR0ejQoQMqVaqk1p927dpBoVDg0KFDAIBt27ZBJpNh1qxZGmORyWSF7qOC9sHt27fx9ddfQ6lUSpd0FXX8RERUflWUfDQzU4b27YH33gNWrsz9t317ICPDNP3p1q0bXFxcUKNGDQwZMgT29vbYsWMHPDw8AABWVlYwM8v9c0WhUODRo0ewt7dHvXr11PKnbdu2oWrVqhgxYoRGjBfJIX755RdUr15dbd1JCwsLhIWF4enTpzh48KBa/ZSUFDx8+BD79u3Dzz//rPUqm7S0NLU8KP9ZfEUZb1HazNvHF8kLXV1dNfIiXbldt27d1HI7XXJycrB161YMHjxYen26dOkCV1dXnWeMLl++HL///rva49dff9UZQ6lUYvjw4Xjy5AmWLl1aYH/yCgwMhEwmk66yOnz4MO7evYvBgwfr3Cb/a6D6m0vl5MmTSExMxIQJE2BlZSWV9+7dG/Xr11e74gzI3ec///wzjh8/jgkTJkjlT58+RWBgIKpWrYrNmzdL7xUg9wqkP//8E0FBQWrvi0ePHuHll1/G1atXpUuct23bhqZNm6rdYFTlRXNuVbxLly5hy5YtsLOzw0svvaQxfmtr60LHT0Tlk8kvu37zzTdx/vx5bNy4Ee7u7vj222/RrVs3XLx4UUo88jp06BBeeeUV/O9//4OzszPWrl2LwMBAHD9+HP7+/iYYgX6eZ+bg/fbrcD32IczkMigVAvs3nsOCo6NgZWNRIn1QTSrm/4WYn7ZJyvr162vUa9CgAYDcNXQqV64MMzMzDB8+HFFRUUhPT4etrS02bdoEa2trtUso2rVrh/nz5+Ojjz5CWFiY2i+hvDIyMjBv3jysXbsWCQkJamv1aRtD//79pf+rTvHX1d/8l+cWlWodluDgYJ11UlJSkJ2djSdPnmDVqlVYtWqV1nqJiYl6xRw9ejRGjx6NL774AtHR0ahUqZI0kaZNt27dCmwvKSkJ6enpOveVUqnEnTt31CZxFQoFkpOT8eDBA2ni86uvvsKJEycgk8m0vi5Xr17F2bNnNSYlVVTjj4+Ph7u7OypXrlxgv4si73vCzMwMH330EQYMGADgxcZPRETlU0XJR7dscUJsLKBU5j4AIDYWWLECeOedku/P8uXL4evrC3Nzc1SrVg316tVTm1BRrQX91Vdf4caNG1AoFNJzeS+3jY+PR7169WBubpg/bW7duoW6deuq9QX4L5fMv+xN9+7dcfz4cQBAjx49sHXrVo02Q0JCCo2r73iL0qaKIfNCfXM7XX777TckJSWhdevWuHbtmlTeuXNn/PTTT1AqlRr7vnXr1gXecCa/yZMnY8+ePdiwYQOaNm2q93YWFhZ44403sGbNGgwcOBBr1qzBgAED4OjoqLX+s2fPdO4HFdX7Rdu+rV+/Po4cOaJRnpqaioyMDKxevVpa8zMkJASxsbFwc3NTe28AuctOCSEwc+ZMzJw5U2s/EhMT4eHhgfj4eCkfNpS8+8De3h6bNm1CjRo1ALzY+Imo/DHp5GNGRga2bduGXbt2SUcIIyIi8OOPPyIqKgqffvqpxjb51xD53//+h127duHHH38s1cnesS3xuB77EEIpoFDmTqJdj32IX1ecQv93XiqRPjg5OcHNzQ1nz54tsN7Zs2fh4eEh/ZLNewZiYUaOHInPP/8cO3fuxNChQ7F582ZpEWmVvn37IiQkBJ9//jk+//xznW1NnjxZWuewbdu2cHJygkwmw5AhQ7QuZr1w4ULUrVsX/fr107u/L0oV//PPP0ezZs201rG3t8ejR48AAG+88YbOicr8a6bo0rt3b1haWmLnzp1Yu3YtgoODNRKzvFQJvUpqamqxE42ZM2ciMzMTu3fvlo4AnzhxAkuWLMGWLVswYcIEnDhxQuMPh1deeQXvv/++Wlt3796Fp6enWh8NbeHChWjatCmys7OxZ88ezJ8/H+bm5lrPriQiooqpIuWjd+5YQC7/b+IRAORyoJB7cRhNYRNK//vf/zBz5kyEhIRgzpw50sHuKVOmFOnGJsa2dOlSJCcn4+LFi5g3bx7GjRuHb7/9Vq3Oxx9/rLHmemBgoNrPRR2vPm2qGDIv1JXbqRSW26mukgoKCtL6/MGDB9G5c+cX6hsAzJ49G1999RU+++wzrWfDFiYkJAT+/v64cuUKoqOjC1xr3traWuNszcOHD+OTTz4pclwVhUKBCRMmoG3bthg8eLC0xuj58+exe/dujBgxAh9//LHa95Dq/fHee++he/fuau2pcu46deq8cJ8K8/vvvwPInYxdu3YtgoKC8NNPP+GVV14xWkwiKltMOvmYk5MDhUKhceabjY2N3kdAlEol0tLSDHq2lDE8uvMUZnKZNPEIAGZyGR5cf1Ki/ejTpw++/vprHDlyBC+//LLG84cPH8bNmzfVFi/28fHBlStXNOpevnwZANTuAt2oUSP4+/tj06ZN8PT0xO3bt7Ve6vDNN9/g448/Rnx8vPTLMv8vpx9++AHBwcH44osvpLLMzEw8efJE69hatGiBTp06wd7eXu/+vijVwuWOjo4FHkl2cXGBg4MDFApFoUecC2Nubo4RI0Zg7ty5uHDhQqF3y86f0Oe/FMfFxQW2trY695WZmZl0xBLIvdR8+fLlWLx4MQIDA7F69WoMHz4cb731FiZPnowOHTqgZcuW+Oqrr9Tuvl27dm08ffpUY/xXr15F3bp11ert3bsX//77r8E+zy1atJDuXlmnTh1kZmZi/vz5mDlzZpHHT0RE5VNFykdr1MhGvhOmoFAAea6yLVV++OEHdO7cGd98841a+ZMnT9RuIFK7dm0cP34c2dmGWdLIy8sLZ8+e1TgDT5VL5r+rsupGfD179oSrqytGjhyJDz/8UDpTEgAaN26skQvlvUEjoP94i9KmiiHzQl25nT6ePXuGXbt2YfDgwRg4cKDG8xMnTsSmTZteePJx+fLliIiIwJQpUzB9+vQXaqNx48bw9/dHUFAQXFxc0LlzZ41L7VXkcrnGfsj/t4rq/XLlyhWN3PLKlSsa76evvvoKZ8+exalTp9C0aVOcP38eX3/9NVavXo3AwEB8+umnmDJlCkaPHi2d1am6VN7CwkKvnPv8+fN67g395I3ZsGFDXLp0CQsXLsQrr7yiNv78V21pGz8RlU8mXfPRwcEBbdu2xZw5c3Dv3j0oFAp8++23+Ouvv3D//n292li4cCGePn2q88hZVlYWUlNT1R6mUKWGPZQKoVamVAhUr+Vcov2YNm0abGxsEBoaKp2Vp/Lvv/9i3Lhx0l2iVXr16oWYmBgcO3ZMKsvMzERUVBSqV6+OFi1aqLUzYsQI/Pbbb4iMjESVKlXQs2dPrX3x8vJCly5d0K1bN63Ji1wuV7vUGsg9spz/MoO8ZDIZXn31VezduxeXLl1SG9v69evRsmXLYl9yDeROatWuXVt6/+WXlJQkjWHAgAHYtm2b1l/yqnr6CgkJwblz59CxY0e19XhehFwux6uvvopdu3bh5s2bUvnDhw+xefNmvPzyy9LZr0IITJgwAU2bNsX48eMB5F4+n/ffZs2aYeLEifjoo4/U1tUMCgrCX3/9pXUtrCdPniAnJwcAMGDAAAghMHv2bI16+d8HLyojIwM5OTnIyckp0viJiKj8Kol8FCgdOenQoSlo2hQwMwMsLHL/bdYMGDeuxLuiF225YHR0tLR2ncqAAQOQnJyscbYh8GI5RK9evfDgwQO1y6dzcnKwdOlS2Nvbq62Dnp9qUi8rK6vIcfUdrzHoyouSk5M18iJ9czttduzYgWfPnmHixIkYOHCgxiMgIADbtm17of23detWhIWFYfjw4Vi0aFGRt88rJCQEZ8+exahRo154HUSVli1bwtXVFStWrFBb8/7XX3/FpUuX0Lt3b6ns4cOHmDlzJiZNmiRNLObPucePH4+mTZtiwoQJ0vvF1dUVAQEBWLlypdbvrbx/cwwYMACxsbHYsWOHRj1D5NwKhQLPnz+XXsO848/7umobPxGVXyZf83Hjxo0ICQmBh4cH5HI5mjdvjqFDh+LUqVOFbrt582bMnj0bu3btgqurq9Y68+bN0zqZMXjwYFhYaF9rUXVzEplMpvPoYVH593PHyV03ce/SY2nNR/f6zqjbzUlaP9CQ0tPTdbb72Wef4b333kPDhg0xcOBAeHp6IiEhAdHR0Xj8+DEWLVoEpVIpbT9w4EBs2LAB3bt3x8iRI1GpUiXs2rULFy9exBdffIEbN26oxVMtLrxjxw4MGzZMLYEpzKNHj6R2OnbsiI0bN0IIgdq1a+PMmTM4duwYnJ2dkZOTI9W7e/eu9O/Vq1fx5ptvYs+ePXj55ZcxYsQIWFtb4/vvv8eTJ08QGRkpbaeaINu1a5e0lopqIvH06dNqR52Tk5Px9OlTfPPNN2qXZL355puoV68eXn/9dVSrVg0PHz7E8ePHYW9vj5UrVwIAxo4di99//x2tW7dGUFAQateujZSUFFy8eBHHjh3TuqB9/tfvyZMnuHr1KszNzXH8+HFYW1trfT7vuG7fvq12ubtqYfG8+/itt97Cb7/9hpdeegmDBg2CjY0NvvvuO2RmZmLy5MlSvejoaBw/fhxbt25FfHy82n5/+PChVG/UqFHYsmULQkNDpUvqX3vtNURHR6NPnz547bXX0KhRI6Snp+PixYvYt28f/vzzT1SuXBmenp7o168flixZgjNnzqBjx45QKpU4efIk2rRpo3HZjGqcN27c0DjTQdW3rVu34uTJk8jJycE///yDbdu2oUuXLtLaM3nHP2zYMJibm2sdvzYKhQKJiYlYsGCBxkQ+AMTExKBv3746tze0ko5nipiMx3ilPWZJxjPUGV6Uy9j5KFD0nNQY+ahSmY71669hyxYn3LljgRo1sjF0aAru3jXMQb78dOWjunKV/Nq2bYvly5djwIAB8Pf3R1xcHH788UfUqFEDGRkZUttt27ZFmzZtMG/ePJw9exYtW7ZERkYGjh07hmHDhqFbt25SbpCcnKzRp+fPn6u116VLF9SuXRvBwcH4448/4OHhgb179yImJgYffvghHjx4gAcPHuDLL7/Ev//+i7p168LS0hIXL17Etm3bUK9ePdjY2ODq1atS3Pv372vEFUIgNTVVbRyFjTc9Pb1Ibb5oXqjKi7Zs2aKRF+nK7eLi4rB3714pt9Nm1apVcHZ2houLi9b3xssvv4zvv/8eX3/9Nbp37y71/9tvv8WBAwc06vv7+6NmzZqIjY3FiBEj4OzsjEaNGqldOZW3Xn6q92j+fRoQEIC///4bDg4OOl/H1NRUCCE0xqGa/FP9bQIA7777LmbMmIGhQ4eib9++SE5OxoYNG+Dp6Ym+fftK9d577z1YWVkhODhY4zXMm/OGh4cjKCgIn332mXQG6fvvv4+hQ4eiYcOGCAoKQo0aNfDo0SOcPHkSSUlJ0uXhr732GjZv3oxBgwZhwIABaNSoEZ48eYI///wTs2fPVjtjVzXOvH975aXKgRcuXAgg90D/3r17cfPmTQwfPlxj/G3atEGfPn10jl+bip5zl/d4pojJeIZTpHzU8DfbfjFPnz4V9+7dE0IIERQUJHr16lVg/S1btggbGxvx008/FVgvMzNTpKSkSI87d+4UeivwjIwMcfHiRZGRkVH0gegQFxcnMtOfix2L/hJRk34VOxb9JTLTnxusfW3xCnL27FkxdOhQ4ebmJiwsLET16tXF0KFDxblz57TWj4+PFwMHDhROTk7C2tpatGrVSuzcuVNnvF69egkA4tixY3r3GYCYNWuW9PPjx4/F6NGjRdWqVYW9vb3o3r27uHz5svDy8hKvvfaaVG///v0CgNi/f79UdurUKfHqq68Ke3t7YWtrKzp27CgOHjyoFm/t2rUCQJEfeZ0+fVq8/vrrokqVKsLKykp4eXmJoKAgsW/fPrV6Dx8+FBMnThQ1atSQ9nfXrl3FqlWrtO6LvPsTgJg4cWKB+y3v86pxnThxQq1eUlKSxj4WQoh//vlHdO/eXdjZ2QlbW1vRuXNntdft0aNHomrVqmLs2LFq2924cUMAEGvXrlUr37RpkwCgtr/T0tJEeHi4qFOnjrC0tBRVq1YVzZs3FwsXLhTPn//3OcjJyRGff/65qF+/vrC0tBQuLi6iZ8+e4tSpUxrjVo3zxo0bGs+p3hOqh7m5ufDw8BBhYWHi8ePHWseveq/kH78uhX1PBAYGFtqGIZV0PFPEZDzGK+0xSzJeSkpKofkMFZ2x8lEhip6TGisfLUm64unKVfLLzMwUU6dOFW5ubsLGxka0b99e/PXXX6JTp06iU6dOanXT09PF+PHjhY+Pj5RrDRw4UMTHxwsh/stbPv/8c404fn5+Gu09fPhQykMtLS1F48aNNXKepUuXilatWglHR0dhY2Mj6tSpI6ZOnSqSkpKkOqqcJDo6WiOunZ2dCA4OLtJ44+LiitTmi+aFqrzopZde0poXacvt2rVrp5Hb5d+n5ubmYsSIEVqfFyL3bxRbW1sp1y8sX1e9JvrWy0/1Hi1on+p6Pjg4WNjZ2WnUjY6O1vjbRAghtm7dKho2bCisrKxE5cqVxfDhw8Xdu3el5w8cOCAAiM2bN6ttpyvnfeutt0TVqlXFo0ePpLL4+HgxcuRIUb16dWFhYSE8PDxE586dxQ8//KC27aNHj8SkSZOEh4eHsLS0FJ6eniI4OFgkJydrjCc4OFh4eXlp3S+zZs1S28+qz8GXX34plEqlxvj9/f11jl+Xip5zl/d4pojJeIZTlHy01Ew+qvz777/CyclJrFy5UmedzZs3C2tra7XJL33ps3PKc7JXUvH69+8vateuXWLxjC0uLk5KWksqXkkz9XumrMWr6ImQKWIyHuOV9pilNdmjojN2PipE4a8h81HGKw0xGa9sxzNFTObcjFfaYzKe4RQlHzX5Zdd79+6FEAL16tXDtWvXMG3aNNSvXx+jR48GkHtKeUJCAjZs2AAg99KW4OBgLF68GG3atMGDBw8A5C4KXtBlG1Ry7t+/j59//hkffvihqbtCREREVCjmo0RERETGY9IbzgBASkoKJk6ciPr162PkyJF4+eWXsXfvXmntm/v37+P27dtS/VWrViEnJwcTJ06Em5ub9Hj77bdNNQT6fzdu3MC3336LoUOHwsLCQu2O2eWBjY0NunfvbupuEBERkYExHyUiIiIyHpOf+RgUFFTgnQHXrVun9rO2hYapdDh48CBGjx6NmjVrYv369ahevbqpu2RQ1apVw549e0zdDSIiIjIw5qNERERExmPyyUcqP0aNGoVRo0aZuhtERERERERERFRKmPyyayIiIiIiIiIiIiqfOPlIRERERERERERERsHJxwIIIUzdBSIqpfj9QEREJYG/b4ioIuN3IFH5wMlHLczNc5fCzMnJMXFPiKi0Un0/qL4viIiIDEl1p+309HQT94SIyHRU34Gq70QiKpv4V7MWcrkccrkcqampcHBwMHV3iKgUSk1Nlb4riIiIDE0ul8PZ2RmJiYkAAFtbW8hksmK1qVAokJmZaYjuMZ4J4pkiJuOV7XimiGmoeEIIpKenIzExEc7Ozsy5ico4Tj5qIZPJ4Orqivv378PKygp2dnZM9hivXMczRcyyGk8IgWfPniE1NRVubm7F/m4gIiLSpXr16gAgTUAWV2JiYolewsh4ZT8m45XteKaIaeh4zs7O0nchEZVdnHzUwcnJCRkZGUhOTkZSUlKx2yvrX/qMV77jmSJmWY4nk8ng7OwMJycng7RHRESkjUwmg5ubG1xdXZGdnV3s9hYsWICoqCgD9IzxTBHPFDEZr2zHM0VMQ8azsLDgGY9E5QQnH3Vgssd4FSmeKWKW5XhMhIiIqCQZapmPR48ewdra2gA9YjxTxDNFTMYr2/FMEdMUYySi0o+Tj4Vgssd4FSGeKWKW93hERERERERExLtdExERERERERERkZFw8pGIiIiIiIiIiIiMgpOPREREREREREREZBScfCQiIiIiIiIiIiKj4OQjERERERERERERGQUnH4mIiIiIiIiIiMgoTDr5mJaWhilTpsDLyws2NjZo164dTpw4obP+/fv3MWzYMPj6+sLMzAxTpkwpuc4SERERUbnEnJSIiIjIeEw6+fjmm2/i999/x8aNG3Hu3Dm8+uqr6NatGxISErTWz8rKgouLCz766CM0bdq0hHtLREREROURc1IiIiIi4zHZ5GNGRga2bduGBQsWoGPHjqhTpw4iIiJQp04dREVFad3G29sbixcvxsiRI+Hk5FTCPSYiIiKi8oY5KREREZFxmWzyMScnBwqFAtbW1mrlNjY2OHLkiIl6RUREREQVCXNSIiIiIuMy2eSjg4MD2rZtizlz5uDevXtQKBT49ttv8ddff+H+/fsGi5OVlYXU1FS1BxERERERwJyUiIiIyNhkQghhquDx8fEICQnBoUOHIJfL0bx5c/j6+uLUqVO4dOlSgdsGBASgWbNmiIyMLLBeREQEZs+erVHeo0cPWFhYFKf7RRITE4PWrVszHuOVynimiMl4ZTueKWIyHuOV9pglGS87Oxt79uxBSkoKHB0dSyRmeVZRctLy/JmoCPFMEZPxynY8U8RkPMYr7TEZz3CKlI+KUuDp06fi3r17QgghgoKCRK9evQrdplOnTuLtt98utF5mZqZISUmRHnfu3BEAREpKSnG7XSSBgYGMx3ilNp4pYjJe2Y5nipiMx3ilPWZJxktJSTFJPlPelfectDx/JipCPFPEZLyyHc8UMRmP8Up7TMYznKLko+bGnwstnJ2dHezs7PD48WPs3bsXCxYsMFjbVlZWsLKyMlh7RERERFQ+MSclIiIiMjyTTj7u3bsXQgjUq1cP165dw7Rp01C/fn2MHj0aABAeHo6EhARs2LBB2ubMmTMAgKdPnyIpKQlnzpyBpaUlGjZsaIohEBEREVEZx5yUiIiIyHhMOvmYkpKC8PBw3L17F5UrV8aAAQMwd+5cad2b+/fv4/bt22rb+Pv7S/8/deoUNm/eDC8vL9y8ebMku05ERERE5QRzUiIiIiLjMenkY1BQEIKCgnQ+v27dOo0yYbr74xARERFROcSclIiIiMh4zEzdASIiIiIiIiIiIiqfOPlIRERERERERERERsHJRyIiIiIiIiIiIjIKTj4SERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFJx8JCIiIiIiIiIiIqPg5CMREREREREREREZBScfiYiIiIiIiIiIyCg4+UhERERERERERERGwclHIiIiIiIiIiIiMgpOPhIREREREREREZFRcPKRiIiIiIiIiIiIjIKTj0RERERERERERGQUnHwkIiIiIiIiIiIio+DkIxERERERERERERmFSScfFQoFZs6cCR8fH9jY2KB27dqYM2cOhBAFbrd8+XI0aNAANjY2qFevHjZs2FBCPSYiIiKi8oT5KBEREZFxmZsy+Pz58xEVFYX169fDz88PJ0+exOjRo+Hk5ISwsDCt20RFRSE8PBxff/01WrVqhZiYGLz11luoVKkSAgMDS3gERERERFSWMR8lIiIiMi6TTj4eO3YM/fr1Q+/evQEA3t7e2LJlC2JiYnRus3HjRoSGhmLw4MEAgFq1auHEiROYP38+kz0iIiIiKhLmo0RERETGZdLLrtu1a4d9+/YhLi4OABAbG4sjR46gZ8+eOrfJysqCtbW1WpmNjQ1iYmKQnZ1t1P4SERERUfnCfJSIiIjIuEx65uOMGTOQmpqK+vXrQy6XQ6FQYO7cuRg+fLjObbp3747Vq1ejf//+aN68OU6dOoXVq1cjOzsbycnJcHNzU6uflZWFrKws6efU1FSjjYeIiIiIypaSyEcB5qRERERUcclEYatpG9F3332HadOm4fPPP4efnx/OnDmDKVOmYNGiRQgODta6TUZGBiZOnIiNGzdCCIFq1arhjTfewIIFC/DgwQNUq1ZNrX5ERARmz56t0U6PHj1gYWFhlHFpExMTg9atWzMe45XKeKaIyXhlO54pYjIe45X2mCUZLzs7G3v27EFKSgocHR1LJGZ5VRL5KFA6ctLy/JmoCPFMEZPxynY8U8RkPMYr7TEZz3CKlI8KE/L09BTLli1TK5szZ46oV69eods+f/5c3LlzR+Tk5IivvvpKODg4CIVCoVEvMzNTpKSkSI87d+4IACIlJcVg49BHYGAg4zFeqY1nipiMV7bjmSIm4zFeaY9ZkvFSUlJMks+URyWRjwpROnLS8vyZqAjxTBGT8cp2PFPEZDzGK+0xGc9wipKPmvSy6/T0dJiZqS87KZfLoVQqC93WwsICnp6eAHKPWPfp00ejLQCwsrKClZWVYTpMREREROVKSeSjAHNSIiIiqrhMOvkYGBiIuXPnombNmvDz88Pp06exaNEihISESHXCw8ORkJCADRs2AADi4uIQExODNm3a4PHjx1i0aBHOnz+P9evXm2oYRERERFRGMR8lIiIiMi6TTj4uXboUM2fOxIQJE5CYmAh3d3eEhobi448/lurcv38ft2/fln5WKBT44osvcOXKFVhYWKBz5844duwYvL29TTACIiIiIirLmI8SERERGZdJJx8dHBwQGRmJyMhInXXWrVun9nODBg1w+vRp43aMiIiIiCoE5qNERERExqV9URoiIiIiIiIiIiKiYuLkIxERERERERERERkFJx+JiIiIiIiIiIjIKDj5SEREREREREREREbByUciIiIiIiIiIiIyCk4+EhERERERERERkVFw8pGIiIiIiIiIiIiMgpOPREREREREREREZBScfCQiIiIiIiIiIiKj4OQjERERERERERERGQUnH4mIiIiIiIiIiMgoOPlIRERERERERERERsHJRyIiIiIiIiIiIjIKTj4SERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFCadfFQoFJg5cyZ8fHxgY2OD2rVrY86cORBCFLjdpk2b0LRpU9ja2sLNzQ0hISF49OhRCfWaiIiIiMoL5qNERERExmXSycf58+cjKioKy5Ytw6VLlzB//nwsWLAAS5cu1bnN0aNHMXLkSIwZMwYXLlxAdHQ0YmJi8NZbb5Vgz4mIiIioPGA+SkRERGRc5qYMfuzYMfTr1w+9e/cGAHh7e2PLli2IiYnRuc1ff/0Fb29vhIWFAQB8fHwQGhqK+fPnl0ifiYiIiKj8YD5KREREZFwmPfOxXbt22LdvH+Li4gAAsbGxOHLkCHr27Klzm7Zt2+LOnTv45ZdfIITAw4cP8cMPP6BXr14l1W0iIiIiKieYjxIREREZl0nPfJwxYwZSU1NRv359yOVyKBQKzJ07F8OHD9e5Tfv27bFp0yYMHjwYmZmZyMnJQWBgIJYvX661flZWFrKysqSfU1NTDT4OIiIiIiqbSiIfBZiTEhERUcUlE4Wtpm1E3333HaZNm4bPP/8cfn5+OHPmDKZMmYJFixYhODhY6zYXL15Et27d8M4776B79+64f/8+pk2bhlatWuGbb77RqB8REYHZs2drlPfo0QMWFhYGH5MuMTExaN26NeMxXqmMZ4qYjFe245kiJuMxXmmPWZLxsrOzsWfPHqSkpMDR0bFEYpZXJZGPAqUjJy3Pn4mKEM8UMRmvbMczRUzGY7zSHpPxDKdI+agwIU9PT7Fs2TK1sjlz5oh69erp3OaNN94QAwcOVCs7fPiwACDu3bunUT8zM1OkpKRIjzt37ggAIiUlxTCD0FNgYCDjMV6pjWeKmIxXtuOZIibjMV5pj1mS8VJSUkySz5RHJZGPClE6ctLy/JmoCPFMEZPxynY8U8RkPMYr7TEZz3CKko+a9LLr9PR0mJmpLzspl8uhVCoL3MbcXL3bcrkcACC0nMRpZWUFKysrA/SWiIiIiMqbkshHAeakREREVHGZ9IYzgYGBmDt3Ln7++WfcvHkTO3bswKJFi/Daa69JdcLDwzFy5Ei1bbZv346oqChcv34dR48eRVhYGFq3bg13d3dTDIOIiIiIyijmo0RERETGZdIzH5cuXYqZM2diwoQJSExMhLu7O0JDQ/Hxxx9Lde7fv4/bt29LP48aNQppaWlYtmwZpk6dCmdnZ3Tp0gXz5883xRCIiIiIqAxjPkpERERkXCadfHRwcEBkZCQiIyN11lm3bp1G2eTJkzF58mTjdYyIiIiIKgTmo0RERETGZdLLromIiIiIiIiIiKj84uQjERERERERERERGQUnH4mIiIiIiIiIiMgoOPlIRERERERERERERsHJRyIiIiIiIiIiIjIKTj4SERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFJx8JCIiIiIiIiIiIqPg5CMREREREREREREZBScfiYiIiIiIiIiIyCg4+UhERERERERERERGwclHIiIiIiIiIiIiMgpOPhIREREREREREZFRcPKRiIiIiIiIiIiIjIKTj0RERERERERERGQUJp18VCgUmDlzJnx8fGBjY4PatWtjzpw5EELo3GbUqFGQyWQaDz8/vxLsORERERGVB8xHiYiIiIzL3JTB58+fj6ioKKxfvx5+fn44efIkRo8eDScnJ4SFhWndZvHixfjss8+kn3NyctC0aVMMGjSopLpNREREROUE81EiIiIi4zLp5OOxY8fQr18/9O7dGwDg7e2NLVu2ICYmRuc2Tk5OcHJykn7euXMnHj9+jNGjRxu9v0RERERUvjAfJSIiIjIuk1523a5dO+zbtw9xcXEAgNjYWBw5cgQ9e/bUu41vvvkG3bp1g5eXl9bns7KykJqaqvYgIiIiIgJKJh8FmJMSERFRxSUTBS1oY2RKpRIffPABFixYALlcDoVCgblz5yI8PFyv7e/du4eaNWti8+bNCAoK0lonIiICs2fP1ijv0aMHLCwsitX/ooiJiUHr1q0Zj/FKZTxTxGS8sh3PFDEZj/FKe8ySjJednY09e/YgJSUFjo6OJRKzvCqJfBQoHTlpef5MVIR4pojJeGU7niliMh7jlfaYjGc4RcpHhQlt2bJFeHp6ii1btoizZ8+KDRs2iMqVK4t169bptf3//vc/UaVKFZGVlaWzTmZmpkhJSZEed+7cEQBESkqKoYahl8DAQMZjvFIbzxQxGa9sxzNFTMZjvNIesyTjpaSkmCSfKY9KIh8VonTkpOX5M1ER4pkiJuOV7XimiMl4jFfaYzKe4RQlHzXpmo/Tpk3DjBkzMGTIEABA48aNcevWLcybNw/BwcEFbiuEwJo1azBixAhYWlrqrGdlZQUrKyuD9puIiIiIyoeSyEcB5qRERERUcZl0zcf09HSYmal3QS6XQ6lUFrrtwYMHce3aNYwZM8ZY3SMiIiKico75KBEREZFxmfTMx8DAQMydOxc1a9aEn58fTp8+jUWLFiEkJESqEx4ejoSEBGzYsEFt22+++QZt2rRBo0aNSrrbRERERFROMB8lIiIiMi6TTj4uXboUM2fOxIQJE5CYmAh3d3eEhobi448/lurcv38ft2/fVtsuJSUF27Ztw+LFi0u6y0RERERUjjAfJSIiIjIuk04+Ojg4IDIyEpGRkTrrrFu3TqPMyckJ6enpxusYEREREVUIzEeJiIiIjMukaz4SERERERERERFR+cXJRyIiIiIiIiIiIjIKTj4SERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFJx8JCIiIiIiIiIiIqPg5CMREREREREREREZBScfiYiIiIiIiIiIyCg4+UhERERERERERERGwclHIiIiIiIiIiIiMgpOPhIREREREREREZFRcPKRiIiIiIiIiIiIjIKTj0RERERERERERGQUnHwkIiIiIiIiIiIio+DkIxERERERERERERkFJx+JiIiIiIiIiIjIKEw6+ahQKDBz5kz4+PjAxsYGtWvXxpw5cyCE0LnNgQMHIJPJNB4PHjwowZ4TERERUXnAfJSIiIjIuMxNGXz+/PmIiorC+vXr4efnh5MnT2L06NFwcnJCWFhYgdteuXIFjo6O0s+urq7G7i4RERERlTPMR4mIiIiMy6STj8eOHUO/fv3Qu3dvAIC3tze2bNmCmJiYQrd1dXWFs7OzkXtIREREROUZ81EiIiIi4zLpZdft2rXDvn37EBcXBwCIjY3FkSNH0LNnz0K3bdasGdzc3PDKK6/g6NGjOutlZWUhNTVV7UFEREREBJRMPgowJyUiIqKKSyYKWtDGyJRKJT744AMsWLAAcrkcCoUCc+fORXh4uM5trly5ggMHDqBly5bIysrC6tWrsXHjRhw/fhzNmzfXqB8REYHZs2drlPfo0QMWFhYGHU9BYmJi0Lp1a8ZjvFIZzxQxGa9sxzNFTMZjvNIesyTjZWdnY8+ePUhJSVG77JeKriTyUaB05KTl+TNREeKZIibjle14pojJeIxX2mMynuEUKR8VJrRlyxbh6ekptmzZIs6ePSs2bNggKleuLNatW1ekdjp27CjeeOMNrc9lZmaKlJQU6XHnzh0BQKSkpBhiCHoLDAxkPMYrtfFMEZPxynY8U8RkPMYr7TFLMl5KSopJ8pnyqCTyUSFKR05anj8TFSGeKWIyXtmOZ4qYjMd4pT0m4xlOUfJRk675OG3aNMyYMQNDhgwBADRu3Bi3bt3CvHnzEBwcrHc7rVu3xpEjR7Q+Z2VlBSsrK4P0l4iIiIjKl5LIRwHmpERERFRxmXTNx/T0dJiZqXdBLpdDqVQWqZ0zZ87Azc3NkF0jIiIiogqA+SgRERGRcZn0zMfAwEDMnTsXNWvWhJ+fH06fPo1FixYhJCREqhMeHo6EhARs2LABABAZGQkfHx/4+fkhMzMTq1evxp9//onffvvNVMMgIiIiojKK+SgRERGRcZl08nHp0qWYOXMmJkyYgMTERLi7uyM0NBQff/yxVOf+/fu4ffu29PPz588xdepUJCQkwNbWFk2aNMEff/yBzp07m2IIRERERFSGMR8lIiIiMi6TTj46ODggMjISkZGROuusW7dO7ef3338f77//vnE7RkREREQVAvNRIiIiIuMy6ZqPREREREREREREVH5x8pGIiIiIiIiIiIiMgpOPREREREREREREZBScfCQiIiIiIiIiIiKj4OQjERERERERERERGQUnH4mIiIiIiIiIiMgoOPlIRERERERERERERsHJRyIiIiIiIiIiIjIKTj4SERERERERERGRUXDykYiIiIiIiIiIiIyCk49ERERERERERERkFJx8JCIiIiIiIiIiIqPg5CMREREREREREREZBScfiYiIiIiIiIiIyCg4+UhERERERERERERGwclHIiIiIiIiIiIiMgqTTj4qFArMnDkTPj4+sLGxQe3atTFnzhwIIfTa/ujRozA3N0ezZs2M21EiIiIiKpeYjxIREREZl7kpg8+fPx9RUVFYv349/Pz8cPLkSYwePRpOTk4ICwsrcNsnT55g5MiR6Nq1Kx4+fFhCPSYiIiKi8oT5KBEREZFxmXTy8dixY+jXrx969+4NAPD29saWLVsQExNT6Lbjxo3DsGHDIJfLsXPnTiP3lIiIiIjKI+ajRERERMZl0suu27Vrh3379iEuLg4AEBsbiyNHjqBnz54Fbrd27Vpcv34ds2bNKjRGVlYWUlNT1R5EREREREDJ5KMAc1IiIiKquGRC3wVtjECpVOKDDz7AggULIJfLoVAoMHfuXISHh+vc5urVq3j55Zdx+PBh+Pr6IiIiAjt37sSZM2e01o+IiMDs2bM1ynv06AELCwtDDaVQMTExaN26NeMxXqmMZ4qYjFe24wHAkWPH0bBRyxKLd+3yqXK9Txmv7McsyXjZ2dnYs2cPUlJS4OjoWCIxy6uSyEeB0pGTlufPREWIZ4qYjFe245kiZszRI2jtV6/k4l24Ur7jxd3ge5TxSm28ouSjJr3s+vvvv8emTZuwefNm+Pn54cyZM5gyZQrc3d0RHBysUV+hUGDYsGGYPXs2fH199YoRHh6Od999V/o5NTUVNWrUwNatW0s0We/bty92797NeIxXKuOZIibjle14APByQG8sWBJdYvE++2hIud6njFf2Y5ZkvNTUVDg5OZVIrPKuJPJRoHTkpOX5M1ER4pkiJuOV7XimiNm3Y1vsXqR5oMVo8d6dVb7jfbKM71HGK7XxipKPmnTycdq0aZgxYwaGDBkCAGjcuDFu3bqFefPmaU320tLScPLkSZw+fRqTJk0CkHu0WggBc3Nz/Pbbb+jSpYvaNlZWVrCysjL+YIiIiIiozCmJfBRgTkpEREQVl0knH9PT02Fmpr7spFwuh1Kp1Frf0dER586dUyv76quv8Oeff+KHH36Aj4+P0fpKREREROUP81EiIiIi4zLp5GNgYCDmzp2LmjVrws/PD6dPn8aiRYsQEhIi1QkPD0dCQgI2bNgAMzMzNGrUSK0NV1dXWFtba5QTERERERWG+SgRERGRcZl08nHp0qWYOXMmJkyYgMTERLi7uyM0NBQff/yxVOf+/fu4ffu2CXtJREREROUV81EiIiIi4zLp5KODgwMiIyMRGRmps866desKbCMiIgIREREG7RcRERERVQzMR4mIiIiMy6zwKkRERERERERERERFx8lHIiIiIiIiIiIiMgqTXnZNRETlU3ZmNk5Hn8Xju09QydMZ/oOawMLawtTdIiIiIiIiohLGyUciIjKo7MxsbAj+DolXkiCTyyAUAud+uoiR64dwApKIiIiIiKiC4eQjEREZ1Onos0i8kgQhBESOAAAkXknC6eizaD2ihYl7R0RERERlRUamGVZs98T1BFvU8kjHuNfvwsZaKZWfi7fHl5trapTnrQ+gwDaKUjd/PCLSDycfiYjIoB7ffZJ7xuP/TzwCgEwuw+O7T0zXKSIiIiIqUzIyzdD+zdaIjXOAXC6gUMiw8Rd3/LH8JLpNbInYOAcIWOO9yHoa5ar6639yB2TAuau62yhK3bzxjq6O4QQkkZ44+UhERAZVydMZQiHUyoRCoJKns2k6RERERERlzortnoiNc4BSyKDMkQEAYuMcEDLHTyoHZBCQaZSr6p+96gAAENDdRlHq5o23Yrsn3hl2uwT3CFHZxbtdExGRQfkPagLXei6QyWQwMzeDTCaDa30X+A9qYuquEREREVEZcT3BFnK5+gFtuVwUqVwmy30Yuq6qnIj0wzMfiYjIoCysLTBy/RDe7ZqIiIiIXlgtj3QoFOqzgQqFDLU80nEh3l6vcqE+Z2iwuqpyItIPz3wkIiKDs7C2QOsRLdA9vCtaj2jBiUciIiIiKpJxr99FU980mMkELMyVMJMJNPNNw5qZF6RymUxoLVfVb1o3DU0KaaModfPGU92ghogKxzMfiYiIiIiIiKhUsbFW4ujqGK13n1aVL9maibDBVzTK9bmD9YvUzR+PiPTDyUciIiIiIiIiKhEZmWZaJ/i0lZd2uvqs7/g4gUkVBScfiYioxGVnZnNNSCIiIqIKJiPTDO3fbI3YOAfI5QIKhQwbf3HHH8tPotvElmrl639yB2TAuau66wpY473IesVqw1TxNv7ijqOrYzgBSRUCJx+JiKhEZWdmY0Pwd0i8kgSZXAahEDj300WMXD+EE5BERERE5diK7Z6IjXOAUsigzMm9mUxsnANC5vhplJ+96gAAENBdF5BBQFasNkwVLzbOASu2e+KdYbeNs7OJShHecIaIiErU6eizSLySBCEElDlKCCGQeCUJp6PPmrprRERERGRE1xNsIZer31ZaLhday2Wy3Ic+dQ3RRknHU5UTVQScfCQiohL1+O4TyOTqWZlMLsPju09M0yEiIiIiKhG1PNKhUKjngQqFTGu5ELkPfeoaoo2SjqcqJ6oITDr5qFAoMHPmTPj4+MDGxga1a9fGnDlzIPJ/WvM4cuQI2rdvjypVqsDGxgb169fHl19+WYK9JiKi4qjk6QyhUP+eFwqBSp7OpukQEVVozEeJiErOuNfvoqlvGsxkAhbmSpjJBJr5pmHNzAsa5U3rpqFJIXVlMlHsNkwVr5lvWpm4qQ6RIZh0zcf58+cjKioK69evh5+fH06ePInRo0fDyckJYWFhWrexs7PDpEmT0KRJE9jZ2eHIkSMIDQ2FnZ0dxo4dW8IjICKiovIf1ATnfrqotuaja30X+A9qYuquEVEFxHyUiKjk2FgrcXR1jNa7PmsrB7TfOVpVd8nWTIQNvlKsNkwZjzeboYrCpJOPx44dQ79+/dC7d28AgLe3N7Zs2YKYmBid2/j7+8Pf31/62dvbG9u3b8fhw4eZ7BERlQEW1hYYuX6IUe92nZWRjV9XnMKD609QvZYzeo5rASsb3syGiDQxHyUiKr6MDGDFCuBcvD2+3FyzwEk4UpeRacb9ROWeSScf27Vrh1WrViEuLg6+vr6IjY3FkSNHsGjRIr3bOH36NI4dO4ZPP/1U6/NZWVnIysqSfk5NTS12v4mIqHgsrC3QekQLo7SdlZGN99uvw/XYhzCTy6BUCOzfeA4Ljo7iBCQRaSiJfBRgTkpE5VdGBtC+PRAbCwhhjfci62H9T+6ADDh31QFyuYBCIcPGX9zxx/KT6DaxJWLjCi/Xpw2B3HjFacNU8QoqP7o6hhOQVK7IREEL2hiZUqnEBx98gAULFkAul0OhUGDu3LkIDw8vdFtPT08kJSUhJycHERERmDlzptZ6ERERmD17tkZ5jx49YGFRcn+ExsTEoHXr1ozHeKUyniliMp5hHTl2HA0btSyxeABw8fzJEo2pb7wnd58gOf4R8v9yq1qrCirVcDZ4PEO5dvlUuX6P8nvNsLKzs7Fnzx6kpKTA0dGxRGKWVyWRjwKlIyctz5+JihDPFDEZr2zHA4CYo0fQ2q+eUWNcT7DBhev2qogAdI+xepUsPHhkpXd54W38F+/F2zBdPF3lfrWeopZHBmIuXDH665dXTNwNfq8xnt6Kko+a9MzH77//Hps2bcLmzZvh5+eHM2fOYMqUKXB3d0dwcHCB2x4+fBhPnz7F33//jRkzZqBOnToYOnSoRr3w8HC8++670s+pqamoUaMGtm7dWqLJet++fbF7927GY7xSGc8UMRnPsF4O6I0FS6JLLB4AvB82qEgxszOzi3Wptb7x9s7bh9O3zkKZo3602OZfG0za8pbeMYs6vuL67KMh5fo9yu81w0pNTYWTk1OJxCrvSiIfBUpHTlqePxMVIZ4pYjJe2Y4HAH07tsXuRZoHPgxp8uf1EXfbE9k5ZgD6AtgNM1nuYWCl+O8OzxbmSrhUeoZHKXb/X7fgcv3ayI1XvDZME6+g8s4t72LptMvo++4so79+efX9ZBm/1xhPb0XJR006+Tht2jTMmDEDQ4YMAQA0btwYt27dwrx58wpN9nx8fKRtHj58iIiICK3JnpWVFays9DsaQUREhqWacHx0819cO3QdT5OeQiY3g1AInPvpIkauH6IxGVjcScpKns5QKjQvU8l4koHT0WeNdrk3EZVNJZGPAsxJiaj8quWRDoVCplam7fpKhUKGWh7puBBvr1d5SbdRWvqsKicqT8wKr2I86enpMDNT74JcLodSWbS1DZRKpdoaOkREZHrZmdnYEPwd9n1xEGe2n0Na4lMIAShzlBBC4OGVRJzcchrZmdmI2XgKe+ftw19rYrB+5Bbs++IgTv9wFvu+OIgNwd8hOzNb77j+g5rAxtlGo1wml+Hx3ScGHCERlQfMR4mIimfc63fR1DcNZjIBmUzATCbQtG4amvx/mYW5EmYygWa+aVgz84JUt7ByfdpQxStOG6aKV1C56oY9ROWFSc98DAwMxNy5c1GzZk34+fnh9OnTWLRoEUJCQqQ64eHhSEhIwIYNGwAAy5cvR82aNVG/fn0AwKFDh7Bw4UKEhYWZZAxERKTd6eizSLySBCEENBZgBAAB/LX2BC78ehlJcUmATAah/K+iyMn9f+KVJJyOPqt3XAtrC7w0siX2Lz6sHk4h4FjN4YXGQkTlF/NRIqLisbFW4ujqGKzY7oklWzMRNvhKgXe7VtXVp7ywNvLGe9E2TBmvoHKi8sSkk49Lly7FzJkzMWHCBCQmJsLd3R2hoaH4+OOPpTr379/H7du3pZ+VSiXCw8Nx48YNmJubo3bt2pg/fz5CQ0NNMQQiItLh8d0nkMll0iSiNpkpmchMycz9Qdf9z2TApd+vICkpGTEbT+l1GXbLYf648OtlJMYlqZVf2HMZLYf5F+kybiIq35iPEhHpLyPTjBNlJUC1n8/F2+PLzTWl/cz9T2WVSScfHRwcEBkZicjISJ111q1bp/bz5MmTMXnyZON2jIiIiq2SpzOEQvfEo0QG7WdG/j+hFEiIvY8UWSr2fXFQ51qReVlYW8CvV30kXk1SazspLhmno8/Cf1CTYq0rSUTlB/NRIiL9ZGSaof2brREb5wC5XEChkGHjL+74Y/lJdJvYErFxDhCwxnuR9bD+J3dABpy7qrtuYeX6tKGKV5w2TBVPnzYKi7fxF3ccXR3DCUgq9Uw6+UhEROWX/6AmOPfTxdxLr6Hj0mugwIlHtWpCQOC/tSLbjm6t9nz+G9U8SUiBmdxM7a7XMrkMj27+iw3B3yHxSlLumZkF3PyGiIiIiHKt2O6J2DgHKIUMypzcG8zExjkgZI6fVA7IICDD2au5S90I6K5bWLk+bajiFacNU8XTp43C4sXGOWDFdk+8M+y/s/OJSiNOPhIR0QvLP+HXKLAhzv94Ufp56MqBOP/jRVzeF4e7p+9pbG9ubQ5ljlJtgrBQAvh73Uk0fa2xFMuxugMu/HIZSVeTpQlFOxc7iHx3vRYKgafJz6S1KPOvK8k7YRMRERFpdz3BFnK5kCa+AEAuF1rLZf//37yr6uiqW1raKIt9VpUTlXacfCQiohcilMp8ZxAqcWDpEeRk5cDM3AxCIXB29wXUf7UuhFLAwsYC2RnZkJn9d2MZRbZCv0uz88l4koHVgzbgWdIzyOQyKBVK6QxK1YTi08SncHC1x9P/ryMUAq71XWDvYqexFiXvhE1ERERUsFoe6VAoZGplCoUMtTzScSHeXq1c21LeuuqWljbKYp9V5USlnZmpO0BERKVbdmY2Yjaewt55+xCz8RSyM7MBACn3UqUzCJU5SggB5GTlAMD//yyQGJeEQ8uOISH2PrIzcrczt5RLbWtMPP5/Piu3lEMmy50U1EqWO7moiq3r0m3vl2qi69RO8B/YBF2ndsLIdUNQxauyRlyhEKjk6Vy0HUNERERUgYx7/S6a+qbBTCZgYa6EmUygmW8a1sy8IJXLZAJmMoGmddPQpJC6hZXr04YqXnHaMFU8fdooLF4z3zTpDttEpRnPfCQiIp2yM7N1ro+YnZFT6N2stbeZo3b2Y142zjZ4aWRLNH39v0uqnySkIP7wDfWKAoXeqAYA4v68hh4fdlNbyzHvWpR5z4j0H9SkSOMgIiIiqkhsrJU4ujpG692WVeVLtmYibPAVaUKsoLr6lBfWRt54L9qGKeMV1oY+8XizGSoLOPlIREQ6nY4+q3N9RAsb8xe6ZBoyaJ14BIDMJ5mQW8hh62wj3ZFaqVDCrqodkJyvsh6hs54+11jL0cLaAiPXD+HdromIiIiKyMZaqfXmJqry/Sefqj1fUF19y4sS70XaMHW8gtrQNx5RacfJRyIi0unx3Sc610d0cneEq4WL2pqPcktz6dJrnQqYNFS1nf+My4JuSGNmbqbzeZmZ9rUcLawteHMZIiIiIh0yMs20nmFXWPm5eHt8ublmgWcAFqXtwtrIG+9F2zBlvMLa0CdeQeVEpQUnH4mISCfHag4aE3uq9RFl9800ziBsFNgQP0zZhYQz9yC0rZZdCFXb2s641CADPJt5oFo9FzhWc0DMpn/wLPlZvga5liMRERFRUWRkmqH9m60RG+cAuVxAoZBh4y/u+GP5SXSb2LLAcgFrvBdZD+t/cgdkwLmrRW9DVa5PG6p4xWnDVPH0aaOweAWVH10dwwlIKjU4+UhERFplZ2bjwp7LGuUuvlXhP6gJfjih/QzC+l3rIuHMPY3tnDycYF/VFvfOP9B5ubadix0aBTbE4ahjha8nKYBa7bxgaWOJR7f+1VrFxbfgtRyzM7OlyVPH6g6AAFIfpqGSpzOEkskaERERVTwrtnsiNs4BSiGDMif35n+xcQ4ImeNXaDkgg4AMZ686AAAEit6GqlyfNlTxitOGqeLp00Zh8QoqX7Hdk5doU6nByUciItLqdPRZJMXlW2hRBvj1rF/g+oj5b+iizFHC3tUetdp54WnSM93rRP7/Haw3j42GX8/6eq0neWprbO7ZjjpuPuPo6qBzW12XdsvkMkAJ3LG7h+zMbK4FSURERBXK9QRbyOVCmsgCALlcFKlc9v//zXshTGlvoyz2ubByotLCzNQdICIiw8vOzEbMxlPYO28fYjaeQnZmdpHbUK33mJeZ3AypD9IKjHs6+izcG1VHnU610LhvQzi42uNZ0lPE7jiPawfjYW6Ve9zLzDzfr6D/T7ASryRBkaOAaz2XQvsoXWatY57y2uHriOrzDY6s+gt75+3DX2tj8NeaGOydtw87p/+Mh1cSIYRQu7RcKASEEHj+NAuno88W2gciIiKi8qSWRzoUCvUcUKGQFalcCPXJs7LQRlnsc2HlRKUFJx+JiMoZ1Rl9+744iNM/nMW+Lw5iQ/B3RZ6ArOTprHH2oWpNRgAQSqXaBGf6kwwpbuzO87h28Drij9zE06SnEAJQ5ighBKB4noO6AbXhP7AJnNwctca+dvA6Rq4fgjoda73QPsjradIzHFp+DP9Ex2J/5GHsX3wYp7aewdUD8YXeMfvRTe2XcxMRERGVV+Nev4umvmkwkwlYmCthJhNo5puGNTMvFFoukwmYyQSa1k1DkxdsQ1WuTxuqeMVpw1Tx9GmjsHgFlatuXENUGvCyayKickbbzVoSryThdPTZIt3hOf/l00Ih4Fo/dw3F7Mxs3Dl9D/uOHJSeO77hJNISnwKAFPdp4lPIzGRqh29lcjM4VndA9/CuuHb4utbY9y8+xI5pP+H+hYcvuhs0qE2k6nEvHAHg2qHrvPSaiIiIKhQbayWOro7RevfkwsqXbM1E2OArBd71uShtF9ZG3ngv2oYp4xXWhj7xCionKi04+UhEVM6oLpfOe7MWmVyGx3efFKkdC2sLjbtZ+w9qAgtrC8RsPIXnT7Mg8N8EZ9r/TzQKZZ64+X4GcicBHas75F4OnqH9bEyhELh2SPvEZEl6mvS0yJO2RERERGVJRqaZ1skvIiJD4eQjEVE5U9jl0kWh7W7WQO4EJ2Qy9TMIZdCcaFQKOLja42nSM+kMSRffqrjwy2UkxiUVuT9a6bjZjEGalpsVedKWiIiIqKzIyDRD+zdbIzbOAXK5gEIhw/qf3AEZcO7qf2Ubf3HHH8tPotvElmp185cLWOO9yHrFaqMo/VDFK04bpoqnTxuFxSuo/OjqGJ79SKUGJx+JiMqZgi6XNpRKns6aK2Hn+dHM3EyKO2hxf+z93z48SUiBs4cTXOtXxdEVxw3WF2NNPAIFT9qqbq6T/6xQIiIiorJixXZPxMY5QClk0t2Sz151AAAI/FcWG+eAkDl+GnXzlwMyCMiK1UZR+qGKV5w2TBVPnzYKi1dQ+Yrtnnhn2O0Xe2MQGZhJbzijUCgwc+ZM+Pj4wMbGBrVr18acOXMg8v9Bm8f9+/cxbNgw+Pr6wszMDFOmTCm5DhMRlQGqy6W7Tu0E/4FN0HVqJ4xcN8SgE2P+g5rA0t4q96xDLdwbu6Hr1E4YumIgvp+0A1cPxCPpWjKuHojH0ZUGnHg0oDodasG1ngtkMhnMzM0gA3RO2hrqpj5EZHrMR4moIrueYAu5XP37TibLfeQllwutdXWVl8U2ymKfCysnKi1MOvk4f/58REVFYdmyZbh06RLmz5+PBQsWYOnSpTq3ycrKgouLCz766CM0bdq0BHtLRFR2qC6X7h7eFa1HtHihicfszGy1u1nnnVizsLZADX93eDZz15iANDM3Q7V6Lmg9ogVObD713+XVqpzIiGcqFpXMTAaZDKjWwBWvLeyD4A1DpUnbqrWr6Jy0zXtTn9y7eAvppj5EVLYwHyWiiqyWRzoUCvVkTgjNC1wUCpnWurrKy2IbZbHPhZUTlRYmnXw8duwY+vXrh969e8Pb2xsDBw7Eq6++ipiYGJ3beHt7Y/HixRg5ciScnJxKsLdERBVHYWf2ZWdmI+Veau4aj/mvvv7/S5VTH6aV2rMcZXIZPP3d0TyoKbpODZAmGfNO2jp7OuuctFXd1Cd/m1wfkqjsYT5KRBXZuNfvoqlvGsxkAhbmSpjJBJrWTUOTfGXNfNOwZuYFjbr5y2UyUew2itIPVbzitGGqePq0UVi8gsp54yAqTUy65mO7du2watUqxMXFwdfXF7GxsThy5AgWLVpksBhZWVnIysqSfk5NTTVY20REZcGLrE2Y98w+1d2sH15OxKrX18G+qh1S7qUiKekREnBfY1sX36poFNgQUb1XG2U8hiAUAl6ta6DThJfVyvPuqyd3nyA7M1vrvjLkTX2IyLRKIh8FmJMSUelkY63E0dUxWu92nb9MV9285Uu2ZiJs8JVitVGUfuSNZ4ixlHS8wtrQJ15B5USlhUwUtKCNkSmVSnzwwQdYsGAB5HI5FAoF5s6di/DwcL22DwgIQLNmzRAZGamzTkREBGbPnq1R3qNHD1hYlNyNAWJiYtC6dWvGY7xSGc8UMRnPsI4cO46GjVpqlAulEndO38Pzp1n/f3dqAUt7K9Twd4fMzEyjbsq9VGRn5CDraRYy07IKXPPsCe7CGZ4a5VVrVYFMBiTFPyr+wPSIVxw+L3nB3Cr3OFz+ffVY3EE1+9qo4e8OANK+sbAxh0M1ByScva/XftXXtcunyvV7lN9rhpWdnY09e/YgJSUFjo6OJRKzvCqJfBQoHTlpef5MVIR4pojJeAaOd/QIWvvVK7F4ABBz4YoUU6EEbt23wbNMOeysFfByy4DcTHs5oH/dvOXXE86hlkfjYrVRlH7kjWeIsZR0vMLa0CdeUftR4Psl7ga/1xhPb0XJR0165uP333+PTZs2YfPmzfDz88OZM2cwZcoUuLu7Izg42CAxwsPD8e6770o/p6amokaNGti6dWuJJut9+/bF7t27GY/xSmU8U8RkPMN6OaA3FiyJ1iiP2XgK+44chMB/l0fLnsnQtU0ntB7RQqqnusw68XruHbKVOYUfKT2BTWiF4WplZuZm8G+de4OWU/FnXnxAesYrrqpJVTB2+ygAmvvqBDah6bNBCGj+Mi7uvSLtG6EQcLVwwZyfB+L8jxcNdrfrzz4aUq7fo/xeM6zU1FRe7msgJZGPAqUjJy3Pn4mKEM8UMRnPwPE6tsXuRZoHIYwa891Z2L1oNjIyzdD+zda4dMMBcrmAQiGDpUUa/lh+Et0mtlQrN5enATLoVTd/uUBfXLqxu1htFKUfqniGGEtJx9OnjcLiFbUfR1fHFHhGZN9PlvF7jfH0VpR81KSTj9OmTcOMGTMwZMgQAEDjxo1x69YtzJs3z2DJnpWVFaysrAzSFhFRWaNam1B16TSgfW1CbZdZvwjVpceKbMULt1GSniY/k/6va19dPRSvsW8SryTh/I8X1SZwiahsKol8FGBOSkSmtWK7J2LjHKAUMihzctetjo1zQMgcP43ys1cdAAAChdfNXw7IICArVhtF6YcqniHGUtLx9GmjsHhF7ceK7Z54Z9jtIr13iAzBpDecSU9Ph1m+y9PkcjmUSq5NQERkCPquTajtBiovwtrZGs8zsnH+l0vFbqsk2Fe1k/6va18BMt5chqgcYz5KRBXB9QRbyOXqeY5cLrSWy2S5D33qlqc2ymKfX6QNIlMw6eRjYGAg5s6di59//hk3b97Ejh07sGjRIrz22mtSnfDwcIwcOVJtuzNnzuDMmTN4+vQpkpKScObMGVy8eLGku09EVOr5D2oC13oukMlkMDM3g0wmg2t9F/gPaqJWT9vEGwCgiPORmSmZOLT8KJKuJhej1yVEBgyJGiD9qLGvALjWd0HdTrV4cxmicoz5KBFVBLU80qFQqCd2CoVMa7kQuQ996panNspin1+kDSJTMOnk49KlSzFw4EBMmDABDRo0wHvvvYfQ0FDMmTNHqnP//n3cvq1+WrC/vz/8/f1x6tQpbN68Gf7+/ujVq1dJd5+IqNSzsLbAyPVD0HVqJ/gPbIKuUzth5LrcSwtjNp7C3nn7ELPxFBoFNtScpKznAldflyJNQAqlye5hViRySznah7aBjZO1WnnDHvXg0cwd7o2ro4pPFYxcNwQth/rrnMDNzsxW24/ZmdkmGhERvSjmo0RUEYx7/S6a+qbBTCZgYa6EmUygmW8a1sy8oFHetG4amuhZN3+5TCaK3UZR+qGKZ4ixlHQ8fdooLF5R+6G6kzZRSTPpmo8ODg6IjIws8O6A69at0ygz4Q26iYjKHAtrC+03l7ny3w1Uzv10EUNXat5ABQC2jPsBd8/ck25YUx4onitwdMVxXP3zOoZ9PQixO87h73UnkfEkI/cSayWQZvdUqt+wez1Y2JhDKAVsHG3gUM0eJzefxoU9l5EUl6y2H0euH1KsG88QUcliPkpEFYGNtRJHV8dgxXZPXE+wRS2PdIx7/a7OcgB6181bvmRrJsIGXylWG0XpR954hhhLSccrrA194hW1H0SmYNLJRyIiKnnabi5T0A1U6nf1RcKZ+7l3gS5nEuOS8PXA9XiW/EyaXFVdYp31NAs73vsJCefuS5OSqufy/v//2rv3+Kiqe///7z2TkARIACkoSRAMAgLKpcW0SBXbIngEtIcjYlGhUvstlZ8oltpyrA9RWm9HK4dqm1YEEe/U2C8iRcWv2IrWgNKAUAkQJRBRqEISDAnJzPr9EWbI5DYzmb3nltfz8ZjHw1lZe73XhmRYfrL3XpIC/hy3rt7GRjQAAACIS8drXBQlEXUUHwGgg/li35cNt1I3qiW2tYHKqGnDtX3tTh3adVhS8l3t89Xhr1r92p6/l/r/O6DY2NLzMcVGNAAAID4dr3Fp7A35Ki7JlNtt5PFYWrUuWxse3aLxc0cHtK9cmy1Z0vbdwfs2bTdK14IlgyMaI5x5+PLsOJdo54UyRrA8u+axaVkRBUg4iuIjAHQgdTV12v1WabNnMxqPt9UNVFLTU/WDP16pV+58VZ9++FnDVYJokbe+9T9HAACAWCkozFVxSaa8xpK3vuGB3sUlmZq9eFiz9m27MyVJRsH7Nm2XLBlZEY0Rzjx8eXacS7TzQhkjWJ5d8ygozNX8GYHPNgbsRPERADqQrau36dihY83au/bq2mwH7LqaOm1dvU1ffPKl9vytVMcOH5Plbn2fMsuydMH/ydd7K99XfU297XNPBC63S+dOGRrraQAAAAQoLe8st9v4C06S5HabFtutk//Z+GaX1vom0xiJOGc7xwCcFNPdrgEA0XXkwFG5UgI/+i2XpbMvyvNvklJXU6d3lxfpkUsf04aHNmrri9tUdeiYjGm4sq81fc49Q53SO3XYwqMkeT1effjyzlhPAwAAIEBeTrU8HiugzeOxWmw3JrBo1VbfZBojEeds5xiAkyg+AkAH0iO3e/PnFRqpZ//TJJ3aCfvN//27jh853vBcyBAf8Xi0vELvPbXF3gnHAyt4F39XF898BAAA8WfO1AMaMahKLssoNcUrl2U0clCVlt+xo1n7iIFVGh5i36btlmUiHiOcefjy7DiXaOeFMkawPLvm4dsdG3AKt10DQAfSePMY347Nvc/p5b/l2rcTdntUf5mkvzENY38d4zU88xEAAMSdjHSvNi0ranGX45baJYXct3H70udrNG/6rojGCGcejfPsOJdo5wUbI5Q8u+YBOIniIwB0IKnpqZq58mptXb1NRw4cVY/c7ho1bbj/lusjB442FCXrk2tHa6d06tpJJ46dkOWyZLxGpw/p3ezZmQAAANF2vMalgsJcbd/bVQ8/cyZXtgGIKYqPANDBpKanKv+6b7T4tRZvy4bkklLTUlV3vC6g0PiDgiv14cs7WyzkAgAAxMLxGpfG3pCv4pJMGaVrwZLBWrk2W7Kk7bsz5XYbeTyWVq3L1oZHt2j83NEqLjnVHk7fpu3tyYtkHr48O84l2nmhjBEsz655bFpWxNWPcBTFRwDoYHy7WLdUMGt8W7ZckvEYf7Et6VmSjJSa0VBkDOCV+o3uq75fz1Hl51UBf26tFXIBAABioaAwV8UlmfIaS5IlI0vbdmdKkows/07HxSWZmr14mL+vrz2cvk3b25MXyTx8eXacS7TzQhkjWJ5d8ygozNX8GWWhfYMB7UDxEQA6EN+GMo2f+bh97U7NXHm1UtNTW7wt+9wpQ1X80nZ9sLpYFeWVsT4F55ysr9Ydr1Onrp2kY4Ff3vP3UlV+XqVZq37A1Y0AACBulZZ3lttt/MUlSbJO/mfjHZDdbhNx32QaIxHnbOcYgJPY7RoAOhDfhjLGGHnrvTLG6POPDukvv3hFr977hopWvS9Jyr/uG5q48HvKv+4b6tw9Q2Ouz9fZF+bJlZI8/2x0+VpndenZ8kLrxLETcrmbn+uhksPa8sxWp6cGAADQbnk51fJ4rIA2YwILUZLk8VgR902mMRJxznaOATgpef4vEgAQlG9DmaZ2b9yrrX/epjceektPznpOdTV1qqupU9Gq9/XXX7+u1Tf/RZ/t/FxeT/I8C+arf1frqy9aX2i1dq67/7bXqSkBAABEbM7UAxoxqEouy8iyjFyW0YiBVRp+si01xSuXZTRyUJWW37HD39fXHk7fpu3tyYtkHr48O84l2nmhjBEsz655sCERnMZt1wDQgbS1oYy3vqHYdmjXYW15dqt2rt+lQ7sONfutqSRZLktKnjpkmJoXbwEAAOJFRrpXm5YVqaAwV0ufr9G86bv8xaWCwlyVlndWXk615kw9ENC3cXs4fe3Ia+88GufZcS7Rzgs2Rih5ds0DcBJXPgJABzJq2nD1HtxLlmW1eQv1B6uLWy08SlL2eWfIsjpmEW7guLxYTwEAAAAAEgZXPgJAB9J0Q5nKz6q05629AUVGY0ybG8u4Ulw6Y8jp6p9xpvSPKEw6hjK6pet4ZY0sWTIy6j2ol0b/YFSspwUAANCq4zUujb0hX8UlmTJK14Ilg7VybbZkSdt3Z8rtNvJ4LK1al60Nj27R+LmjVVxyqj2cvk3b25MXyTx8eXacS7TzQhkjWJ5d89i0rIirH+GokK98/PTTT20P93g8uuOOO3TWWWcpIyNDAwYM0OLFi2Vau9TmpI0bN+rrX/+60tLSdPbZZ+uJJ56wfW4AkKxS01P9G8p8//5J6j24d1h3EnvrvTq44zOVbzuojO7pzk00Dnz96pEaOG6AvnZ2Tw0cN0BX/e4/tXX1Nv/mPHU1dbGeItChsB4FgOAKCnNVXJIpr7FkjCWvsbRtd6a2nWyrq3fJaywVl2Rq9uJh/r6+9nD6Nm1vT14k8/Dl2XEu0c4LZYxgeXbNo6AwN9bftkhyIRcfhw0bpmeeecbW8Pvvv19/+MMf9Mgjj+hf//qX7r//fj3wwAP63e9+1+oxH3/8sSZNmqTvfOc7+uc//6lbbrlFN9xwg1599VVb5wYAHYHvSsjckdlhFSA/3f6ZTlSf0PGjNc5NLg78Y0WR9ry1V198/KX2vLVXBVOWa8ODG5ttzgMgOliPAkBwpeWd5XYH/gLFshpejbndJuK+yTRGIs7ZzjEAJ4VcfPzNb36jn/zkJ5o2bZq+/PJLW8LfeecdXXHFFZo0aZL69++vK6+8UhMmTFBRUVGrxxQUFOiss87SQw89pCFDhuj/+//+P1155ZV6+OGHbZkTAHQ0qempOud7g2S1UH3slpOlnBF9lHdBf6Wmd7wndXhOeGVMw9Wexkj1tfWSfO+NDu06rK2rt8V4lkDHwXoUAILLy6mWxxO4rjNGzZ7l7fFYEfdNpjEScc52jgE4KeTi44033qht27bpiy++0NChQ/Xyyy9HHH7BBRfojTfeUElJiSSpuLhYb7/9tv7jP/6j1WPeffddjR8/PqBt4sSJevfdd1vsX1tbq8rKyoAXACBQaxvRVH5WpU+3faZDe/6tupr6GM4wPlluS0cOHI31NIAOI1HXoxJrUgDRM2fqAY0YVCWXZWRZRi7LaMTAKg0/2Zaa4pXLMho5qErL79jh7+trD6dv0/b25EUyD1+eHecS7bxQxgiWZ9c8fLtjA06xTLAH2rTgkUce0fz58zVkyBClpAReCfPBBx+EPI7X69V///d/64EHHpDb7ZbH49FvfvMbLVy4sNVjBg0apOuvvz6gz7p16zRp0iRVV1crIyMjoP+iRYt01113NRvn0ksvVWpqashzjVRRUZHy8/PJIy8u82KRSZ693n7nPQ09d3S7jjVeryo+rdSJ6jp5TnhUX+dRTWXw26mP6oC6K3rPh4nHPEvS1wb0VPfc7hHn7fno/aT+HuVzzV51dXVav369KioqlJWVFZXMeJNI61EpPtakyfwz0RHyYpFJns15m95W/rDBUcnyeKV9BzNUWr5deTnnqV+f45Ia2r6qcatLukf9+hyX23Wqb+P2cPo2bm9vXnvn0TjPjnOJdl6wMULJs2seklRU8jGfa+SFLJz1aNj30O3bt0+FhYXq0aOHrrjiimaLvXC88MILevrpp/XMM89o2LBh/mfmZGdna9asWe0et7GFCxfq1ltv9b+vrKxU37599fzzz0d1sX755ZdrzZo15JEXl3mxyCTPXt++eJIeWLo6rGPqaur03qotenfZZvWoqWuopBkpo3uGalNq5a1ve8e7zXpa5+uaCGYdnljmuVJcMh6v3J1SVF9bf/K9Ue9zemnmE1crNT3ywsF9v7o6qb9H+VyzV2Vlpbp16xaVrHiUaOtRKT7WpMn8M9ER8mKRSZ7NeReN0ZrfNv8lhKOZt96pNb/9JXnkhZZ39yN8rpEXsnDWo2Gt1B577DH97Gc/0/jx47Vjxw716tWrXRP0+fnPf65f/vKXuvrqqyVJ5513nvbt26d777231cXeGWecoc8//zyg7fPPP1dWVlaLv2VOS0tTWlpaRPMEgGRTV1Onldc9q0Mlh081nrwO/vjR42FtPpPMLJelnBHZOn1wL/XI7a5zpwzVhy/v1JEDR9Ujt7tGTRtuS+ERQOgScT0qsSYFEF3Ha1wqKMzV9r1d9fAzZ/pvqy0ozFVpeWfl5VRrztQDykj3+vs2bg+nb+P29ua1dx6N8+w4l2jnBRsjlDw7z3v7dunhh6U5c6RW/jkD2iXk4uOll16qoqIiPfLII5o5c6Yt4dXV1XK5Ah876Xa75fW2frXNmDFjtG7duoC2119/XWPGjLFlTgDQEWxdvS2w8NiY1XD14/Ejx6M7qThkvEbnfG+g8q/7hr9t1LTh2rp6m44cOKqtq7dRgASiiPUoAAR3vMalsTfkq7gkU0bpWrBksFauzZYsafvuTLndRh6PpVXrsrXh0S0aP3e0iktOtYfTt2l7e/IimYcvz45ziXZeKGMEy7P7vI2kBQukVaukTZsoQMI+IRcfPR6Ptm3bptxc+563NWXKFP3mN7/RmWeeqWHDhmnr1q367W9/q9mzZ/v7LFy4UOXl5XryySclSXPmzNEjjzyi2267TbNnz9b/+3//Ty+88IJeeeUV2+YFAMnuyIGj/tusmzHSt2aO1qZl/9CJr+qiPLP40qlrJ507Zaj/fV1NnZ6c9ZwO7Tosy23JeIy2r92pmSvtufUaQNtYjwJAcAWFuSouyZTXWJIsGVnatjtTkmRkyVvfcItLcUmmZi8e5u/raw+nb9P29uRFMg9fnh3nEu28UMYIlmf3eUsNu2QXF0sFBdL8+cG+24DQhLzb9euvv27rQk+Sfve73+nKK6/UjTfeqCFDhmjBggX6yU9+osWLF/v7HDx4UGVlZf73Z511ll555RW9/vrrGjFihB566CEtW7ZMEydOtHVuAJDMeuR2b7nwKKlr764aPWOUMrrzq84Tx07o2Z/8WXU1DUXYrau36dCuwzLGyFvvlTFGh3Yd1tbV22I8U6BjYD0KAMGVlneW2x240LOshldjbreJuG8yjZGIc3buvKXSUgG2Cbn46ITMzEwtWbJE+/bt0/Hjx7V37179+te/VqdOnfx9nnjiCW3cuDHguIsvvlhbt25VbW2t9u7dqx/+8IfRnTgAJLhR04ar96Dmz0nr2quLblg9U6npqRrx/XNjMLP407i4eOTAUVnuwNWZ5bYariQFkJBYjwJINnk51fJ4AtcrxjS8GvN4rIj7JtMYiThn585byssTYJuYFh8BALGRmp6qWat+oO/cfKFyR2Urd1SOvnPLhfrp2h+p88krHr85c7R6nf21GM809hoXF3vkdpfxBK7OjMc0XEkKAAAQB+ZMPaARg6rksowsy8hlGY0YWKXhJ9tSU7xyWUYjB1Vp+R07/H197eH0bdrenrxI5uHLs+Ncop0XyhjB8uw+b8uSXC5p5MiGTWcAu4S12zUAIHmkpqdqzOx8jZmd3+rXf/j0DG1dvU2H9/5b21/eKW996xswJKvGxcVR04Zr+9qdAc987H1OL42aNjy2kwQAADgpI92rTcuKVFCYq6XP12je9F1t7n7s6xvKTskt9bUjr73zaJxnx7lEOy/YGKHk2XneS1+S5s1jt2vYj+IjAKBVqempyr/uGypa9b6Mp+MVHiUFFBdT01M1c+XV/t2ue+R2Z7drAAAAAGgDxUcAQFANzzp0yXSwKx/PvihP//k/kwOKi76CLAAAQDw6XuPS2BvyVVySKaN0LVgyWCvXZkuWtH13ptxuI4/H0qp12drw6BaNnztaxSWn2sPp27S9PXmRzMOXZ8e5RDsvlDGC5dl93kbSggXSqlXSpk1c/Qj7UHwEAEiS6mrqWr2iL+v0zKS75br34F46euCoTnxV12qf8m0HozgjAACAyBUU5qq4JFNeY0myZGRp2+5MSZKRJW99w4YjxSWZmr14mL+vrz2cvk3b25MXyTx8eXacS7TzQhkjWJ7d5y01bD5TXCwVFEjz5wf7bgNCQ/ERAKC6mjo9Oeu5gGcZbl+7UzNXXi1J2rH+o1aPtVyWjNe0+vV45O7k1ow/TVN9bb1+f9myVgurx48e19bV27jSEQAAJIzS8s5yu42/uCRJ1sn/bLyrsdttIu6bTGMk4pydO2+ptFSAbdjtGgCgrau36dCuwzLGyFvvlTFGh3Yd1tbV2/xfa02iFR4lyXPCo1fufFUZ3dI17405GnDhWbJcVrN+vp2u62rqVLTqfb167xsqWvW+6mpav1oSAAAglvJyquXxBK5rjAksLkmSx2NF3DeZxkjEOTt33lJengDbUHwEAJx8pmPgQsRyW/pi35f61+slMZqVs3Zv3KuVM59VceF2dc/pprO+1a9ZH+Mx6vK1znpy1nN646G3tPXP2/TGQ2/pyVnPqa6mjqIkAACIO3OmHtCIQVVyWUaWZeSyjEYMrNLwk22pKV65LKORg6q0/I4d/r6+9nD6Nm1vT14k8/Dl2XEu0c4LZYxgeXaft2VJLpc0cmTDjteAXbjtGgCgrDMy5W2ym7XxeLX7rVIdO3QsRrNy3qFdhwNuNW/JB88X69jhryRJpt74j9vyzFbtfHVXi7eqs/s1AACIlYx0rzYtK1JBYa6WPl+jedN3ac7UA5IangdZWt5ZeTnVmjP1QEDfxu3h9LUjr73zaJxnx7lEOy/YGKHk2XneS1+S5s1rKDyy2QzsxJWPANDB1dXUace6j6QmtbcuX+uS1IXHxlorPErSscNfNbsl28jogz8X6/Ndh5rcqn5IW1dvc3q6AAAAkhp2tn74mTN10/+co4efOVPHa/hffADxhysfAaCD27p6mw7v/nez9m7Z3VR95Hirm7GkZ6ara3oX/1WByarFDXWMVFFe2ayvMdIX+76M0swAAEBHdrzGpbE35Ku4JFNut5HHY2nVumxteHSLxs8dreKSTBmla8GSwVq5NluypO27W+/raw+nrx15kczDl2fHuUQ7L5QxguXZfd5G0oIF0qpV0qZNXP0I+1B8BIAOzve8R98txZLkSnHJcrVyRaAlnX5Ob31c00VffVIdxZnGiDHq2rtryFeBJnsxFgAAxIeCwlwVl2TKayz/7sXFJZmavXiYv12yZGRp2+5MSZJR63197eH0tSMvknn48uw4l2jnhTJGsDy7z1tq+GV6cbFUUCDNn9/mtyAQMq7JBoAOrkdu92ZFRuMxGnjRAPUe3EuWZfk3o8nokaHv3HyhZj5xtepr65ttUpNQLCm9e7r/v1vsYkm9BvXS168ari5f6xLSsF1D7AcAABCJ0vLOcrsD13But2mx3bIaXnb3TaYxEnHOzp23VFoqwDYUHwGggxs1bbi/yOhKccmyLPU+p5dGzxilmSuv1vd+Nk5fnzZC37nlQn1r5mhVflalrau3KSU9pc1nJcZKp84hbvZipOyhZyg1I1Uy8j/XMb17us6+ME/d+mTp4psvlIz090ffVfWXoV3l2bP/ae2dOgAAQMjycqrl8QRWjTweq8V2YxpedvdNpjEScc7OnbeUlyfANhQfAaADq6up09bV25R93hk6e1yeRnz/XH3vZ+M084mGHZtT01OVf9039N35F2nn+l3auPTvev/5f2rDgxv15SdfqnPPzg2/LW2yIUsspWWmhdTP5Xap9J1PVHe8TpL8z3WsOVqjmmO1DUVMIx3e/W8ZYwKe++g735S0FFmW/EXb04f01qhpw20+IwAAgObmTD2gEYOq5LKMUlO8cllGIwdVafkdO/ztlmXksoxGDKzS8CB9fe3h9LUjL5J5+PLsOJdo54UyRrA8u8/bsiSXSxo5smHHa8AuPPMRADqoupo6PTnrOR3adbjhmY8eo96De2n8zy9Wanrg1YNbV2/ToV2HAn4r6vUaffXvr9SlZ2cdP3q86WbZbWpxExeb+IqJbU9A8npa3khHksr/+an+bb7QP57c0vBrOk+jQ12Wvjagp0Zcca7OnTJUH768U0cOHFWP3O4aNW14sz87AAAAJ2Ske7VpWZEKCnNVWt5ZeTnVmjP1QED70udrNG/6Ls2ZekCS2uzbuD2cvnbktXcejfPsOJdo5wUbI5Q8O8976UvSvHkNhUc2m4GdYnrlY//+/RueJdbkNXfu3Bb719XV6e6779aAAQOUnp6uESNGaP369VGeNQAkh4aC4mEZY+St98oYo0O7Dmvr6m3N+h45cLTV4uJXX1TLG8bt1+5ObscKj1LDVYhBBYk3xshIDUXVpudmpBFXnKv8676hzt0zlH/dNzRx4feUf903KDwCCYj1KAAAgLNieuXj5s2b5fGcupzkww8/1CWXXKJp06a12P9Xv/qVnnrqKT322GM655xz9Oqrr+o///M/9c4772jUqFHRmjYAJIWWdrm23JaOHDjarG+P3O5BC3ah6j2wlw7u+MyewVpQe+yEevTtriP7j0Y8lsvtUlrXNNVU1Jy6OvScXtxaDSQR1qMAEtXxGpfG3pCv4pJMud1GHo+lVeuyteHRLRo/d7SKSzJllK4FSwZr5dpsyZK27269r689nL525EUyD1+eHecS7bxQxgiWZ/d5G0kLFkirVkmbNnH1I+wT0+Jjr169At7fd999GjBggMaNG9di/1WrVun222/XZZddJkn66U9/qg0bNuihhx7SU0895fh8ASCZtLbLdY/c7s36jpo2XBsfeVv1NfUR535ZdiTiMdriOeFR5edVtozlrfcq57w+6vuNHFV+VsWt1UASYj0KIFEVFOaquCRTXmPJW9/wPOrikkzNXjzM3y5ZMrK0bXemJMmo9b6+9nD62pEXyTx8eXacS7TzQhkjWJ7d5y01bD5TXCwVFEjz57f5LQiELG6e+XjixAk99dRTuvXWW2U13ef9pNraWqWnpwe0ZWRk6O2332513NraWtXW1vrfV1ZW2jNhAEhwo6YN1/a1OwOf+djoqj7fZjRHDhxV1hmZ6tSlky3Fx9qq2uCdIuQ54QneKUR7/l6qqsPHNHPl1RQdgSTn1HrUdxxrUgB2Ki3vLLfb+ItIkuR2mxbbfR9pjZ/fbUffZBojEefs3HlLpaUCbGMZ03RT9dh44YUXNGPGDJWVlSk7O7vFPjNmzFBxcbH+8pe/aMCAAXrjjTd0xRVXyOPxBCzmGlu0aJHuuuuuZu2XXnqpUlOj9z+RRUVFys/PJ4+8uMyLRSZ59nr7nfc09NzRYR9nvF5VfFqpuuP1Ss1IUbfsLFkul4zXq/1bP9WJY7WSZamlfyqO6oC6K7dZu8vtUqfOqaqrqZenzr4iYGt5kbB06m5y6+R5utwueT3egDxL0tcG9FT33O6t/plFas9H7yf19yifa/aqq6vT+vXrVVFRoaysrKhkdgROrUel+FiTJvPPREfIi0UmeTbnbXpb+cMG2zZeaXmGdpR2bdZ+Rs9affZFmi9VUuvnGNi3ba31tSOv/fM4lWfHuUQ7L/gYwfPsPe9TecOGSXl5IQ0bkaT/uU/ivHDWo3FTfJw4caI6deqkl19+udU+hw8f1o9//GO9/PLLsixLAwYM0Pjx47V8+XIdP368xWNa+i1z3759o75Yv/zyy7VmzRryyIvLvFhkkmevb188SQ8sXW3beEWr3tcbD73VYtHRZ7Oe1vm65lSDJeUM76O64/U6vPvfMjK2PSeyxbwIDbx4gLLOyFTW6ZmSJf9t1V988qWK//Kh3qtf5c9zpbg06srh+u78i1rcIdyOqyLv+9XVSf09yueavSorK9WtWzeKjzZzaj0qxceaNJl/JjpCXiwyybM576IxWvPb5r+EaK+Wnvk4clCVXg94RuHlsrRGw8+ukmnyDMCmfX3t4fS1Iy+Sefjy7DiXaOeFMkawPLvP2+gKWdYajRwpvf12dJ75mPQ/90mcF856NC5uu963b582bNigwsLCNvv16tVLf/nLX1RTU6MvvvhC2dnZ+uUvf6m8NsrxaWlpSksL7bcAAIAGLW1GE4wlS517dNaebaVtFi3jQWbvrvr+/ZP8BcPGt5gf+/dX8tZ7A/r7noXZeIdw35+Nb4fw/Ou+EfXzAGAfJ9ejEmtSAPbLSPdq07IiFRTmqrS8s/JyqjVn6oGA9qXP12je9F2aM/WAJLXZt3F7OH3tyGvvPBrn2XEu0c4LNkYoeXae99KXpHnzpDlz2GwG9oqL4uOKFSvUu3dvTZo0KaT+6enpysnJUV1dnV588UVdddVVDs8QADqWljajacr3pBhXisv/vMiuX+sSdtEy2lypLv1o9cyAwmPg1YxepaSlSLWB5zZq2nD9v4f/FvIO4QASC+tRAAAAZ8S8+Oj1erVixQrNmjVLKSmB05k5c6ZycnJ07733SpLee+89lZeXa+TIkSovL9eiRYvk9Xp12223xWLqAJC0Gm9GI0sy3ubFxNP6n6bxV16sIweO+neB3rp6W9CipdN8t0O3ZszsfHXufupXuS1dzeg5Ua+uPbto1CXDA3a4DmeHcACJg/UogETU0m3Xq9Zla0PAbcLpWrBksFauzZaa3IbbtK+vPZy+duRFMg9fnh3nEu28UMYIlmf3eRtJCxZIq1ZJmzZx9SPsE/Pi44YNG1RWVqbZs2c3+1pZWZlcjR7iX1NTo1/96lcqLS1V165dddlll2nVqlXq3r17FGcMAMnLd/vxF/u+VNdeXZTSyS1ZUsWnlTp2+Cu5Ulzy1nvVtXdX1dc27Hz93fkX+a8i9BUtP//oUMzOIVjxc/fGvbpgdr5/zi3dYm65XUpJS9HEhd8LODbYDuEAEhPrUQCJqKAwV8UlmfIay797cXFJpmYvHuZvlywZWdq2O1OSZNR6X197OH3tyItkHr48O84l2nmhjBEsz+7zlhp2vS4ulgoKpPnz2/wWBEIW8+LjhAkTWn022MaNGwPejxs3Tjt37ozCrACg4zl1+/EhNf1Y7j24l86f8XUdLa/Qnr+VqurQMVWqUhse3Kh/PLlFN6yeqc7dM5SanqqZK6/WX37xinZv3BubEznJclktXrF5uOTfAc9obO1qxtSM5v9E+s7P93zIxldFAkhcrEcBJKLS8s5yu42/iCRJbrdpsd06+Z+NP+rs6JtMYyTinJ07b6m0VIBtXMG7AAA6glO3Hzf/2uGSf8ud6lbP/qep6tAxSac2sj526Jgen/ak6mrqJDUU6L5//ySdfk5vWZYlV0qU/6mxpNT0lBYLj1LzZzSOmjZcvQf38s/Vsiz1PqeXumW3vGNbanqq8q/7hiYu/J7yr/sGhUcAABATeTnV8nisgDaPx2qx3Rg1W+PZ0TeZxkjEOTt33lKQfdSAsFB8BABIOnX7cUt8BbsjB47KcjXvU3XomLau3uZ/77tC8Hs/G6dRVw7X2RdGcfVipLqa+ta/3OQZjU3n+r2fjdPMJ66W5eKfSAAAEL/mTD2gEYOq5LKMUlO8cllGIwdVafkdO/ztlmXksoxGDKzS8CB9fe3h9LUjL5J5+PLsOJdo54UyRrA8u8/bsiSXSxo5smHHa8AuMb/tGgAQH9ra4bpxwa6lKwotV/Mdn31XCErSuyuKtOfvsb13o+GWEqvFZzQ2nmtTvudgcps1AACIJxnpXm1aVqSCwlyVlndWXk615kw9ENC+9PkazZu+S3OmHpCkNvs2bg+nrx157Z1H4zw7ziXaecHGCCXPzvNe+pI0b15D4ZHNZmAnio8AAEmNN1Np4ZmPjQp2/3hyi46dvPXaz7S943PlZ1X+zWpaZUk9zzpNR8sr5Kn1SJZO3dttg6zsLJ3/g6+HVTw89RzMUxvMbF+7UzNXXk0BEgAAxFxGulfzZ5TFehoA0CaKjwAASYGbqXyx70sdO/yVun6ti3r2Py2gYHfD6pl6fNqT0qGGKx5ljHqf07vNHZ9bvarSklxul3/X6JlPXC2p4fmTh/d+oW1rPgy6e3Wo8i7o3+rVja059RxM498N+9CuwwEb1gAAAMST4zUujb0hX8UlmTJK14Ilg7VybbZkSdt3Z8rtNvJ4LK1al60Nj27R+LmjVVxyqj2cvk3b25MXyTx8eXacS7TzQhkjWJ7d520kLVggrVolbdrE1Y+wD8VHAIBfW7cf+3TunqE5L8/W9hl/1tfPHxHSrcinrqo8dQVhr0Ff07D/OEeVn1U1G8M3hwt/OkaPTX1CtcdORHxuPfudFvA+lNupfc/B9BUepeYb1gAAAMSTgsJcFZdkymssSZaMLG3bnSlJMrL8Ox0Xl2Rq9uJh/r6+9nD6Nm1vT14k8/Dl2XEu0c4LZYxgeXaft9Sw+UxxsVRQIM2fH+y7DQgNxUcAQEiaFuu6ZWdp4sLvhXRs46sqw3l24kevlejEV3Utf9Elqeld3C6pS4/O+uqL6oDm3oMDn/MY6u3ULV2x2XTDGgAAgHhSWt5ZbrfxF5ck37OvA3c1drtNxH2TaYxEnLNz5y2VxvZx7UgyFB8BAEG1VKzb3+VT1dXUNSsgtnZFYShXVTbV0pWHrhSX+gw7Q4dKDqvueJPCpFfKv/YbkiXtfqtUktHAiwZo9IxRAfMM9Xbqlq7YbGnDGgAAgHiRl1Mtj8cKaGv6PG9J8ngs5eVUa8feru3um0xjJOKcnTtvKS+veTvQXq5YTwAAEP8aF+u89V4ZY3TiWK22rt4W0M9XpHzjobe09c/b9MZDb+nJWc+prqZOdTV1Klr1vl699w0VrXpfdTWtXNHYSMtXHnpVe6y2eeFRDc+grPy8SmOuz9fMJ67WzCd+oDGz81u9nTrg2BZup/Zdsfm9n43TqCuH63s/G6eZT7DZDAAAiF9zph7QiEFVcllGlmXksoxGDKzS8JNtqSleuSyjkYOqtPyOHf6+vvZw+jZtb09eJPPw5dlxLtHOC2WMYHl2n7dlSS6XNHJkw47XgF248hEAEFRLVyDKal6sa+mKws93HdIz/2e1Kg9W6djhY7JObjDT1q7Rvqsnv/jkS3Xt1aXhOFmyJLk7pejfe79ocZ7GG9ot0VlnZDbbedtb71XWGZnN+rbnik0AAIBYyUj3atOyIhUU5mrp8zWaN32X5kw9IKnheZCl5Z2Vl1OtOVMPBPRt3B5OXzvy2juPxnl2nEu084KNEUqenee99CVp3ryGwiObzcBOFB8BAEG1uFu1aV7oa7FIaaTy4oOn3p4s+rW2a3TTW7y99V6lZqQqLTVNA0bkac/fW38ATdfeXUO7Jbq1DbTt2VgbAAAgpjLSvZo/o0xvbjmm+TPK/O2N/7tp36bC6WtHXnvm0TTPjnOJdl5bY4SaZ9d5v7mHTWbgDIqPAICgWnr2Yacuac0KfS0WKVtjSYf3fqGiVe8HPB+ypasn647XqeZ4jco/POjPbyqzd1f9aPXMkG6Jrvy8qvmGNa6T7QAAAAnueI1LBYW52r63qx5+5sw2r4Tz9Q3lqrmW+jZub29ee+fROM+Oc4l2XrAxQsmz87y3b5cefpgrH2E/io8AgKBa2q36y/c2NSv0NS5SSpJp6QnWJxmv0fY1O2S83oBbsbPPO6P51ZMnHT96vMWrEwdePEDfv39SyM9izDo9s/lO2d6T7QAAAAnseI1LY2/IV3FJpozStWDJYK1cmy1Z0vbdmXK7jTweS6vWZWvDo1s0fu5oFZecag+nb9P29uRFMg9fnh3nEu28UMYIlmf3eRtJCxZIq1ZJmzZRgIR9KD4CAELS9NmHf97cfM+yxkXKj97YrQNby9sc0+tpqAA2vhU764zMVq+etCxLaVlpqq2sDdh9OpzCY8NAYbYDAAAkiILCXBWXZMprLEmWjCxt293wC1YjS976hgVPcUmmZi8e5u/raw+nb9P29uRFMg9fnh3nEu28UMYIlmf3eUsNu18XF0sFBdyCDftQfAQA2MpXpBw1bXizZzcGY7ktdf1aF/Ue3Euf7zrU7CpH4zVK6eTWmHnfVuXnVf5btcPdfbrysyq5UlwBc3KluFT5GbddAwCAxFZa3llut/EXlyTJOvmfjW9KcbtNxH2TaYxEnLNz5y2Vtv6YdSBszS9bAQDABr6rIL/3s3EadeVwDbx4gH9x0xrjMerZ/zTNXHm1vnPzhUrNaF5UPPbvr3Sg+NOI5tbSsymNJ7SdsgEAAOJZXk61PJ7ARZcxgcUlSfJ4rIj7JtMYiThn585byssTYJuYFh/79+8vy7KavebOndti/4svvrjF/pMmTYryzAEAofBdBTlx4ff0/fsnqffg3rIsS66Uhn9+UtJSZFkNVx1alqXe5/TyX8k45vp8nTt5iCxXk4qlkXZv3Kutf96mNx56S0/Oek51NXVhzWvUtOHqPbiXfy6NswF0LKxHASSbOVMPaMSgKrksI8sycllGIwZWafjJttQUr1yW0chBVVp+xw5/X197OH2btrcnL5J5+PLsOJdo54UyRrA8u8/bsiSXSxo5smHTGcAuMb3tevPmzfJ4PP73H374oS655BJNmzatxf6FhYU6ceKE//0XX3yhESNGtNofABA/Wtq05twpQ/XhyzsDdrtufAt1z36ntbjBjCT/LdOHdh3W1tXbAp5H2Z65tOf2bQCJj/UogGSTke7VpmVFKijM1dLnazRv+q42dz/29Q1lp+SW+tqR1955NM6z41yinRdsjFDy7DzvpS9J8+ax2zXsF9PiY69evQLe33fffRowYIDGjRvXYv/TTjst4P1zzz2nzp07s9gDgATRdNMaSW0WDRvvnm3JarEQabktHTlw1Ja5AOh4WI8CADq6jHSv5s8o05t72GQGzoibDWdOnDihp556SrfeequsYA8FO+nxxx/X1VdfrS5durTap7a2VrW1tf73lZWVEc8VAGC/upq6Fq9E9F2hWPLMyxo4aIB2b9wbcBzPagRgF6fWoxJrUgDRc7zGpbE35Ku4JFNG6VqwZLBWrs2WLGn77ky53UYej6VV67K14dEtGj93tIpLTrWH07dpe3vyIpmHL8+Oc4l2XihjBMuzax6blhUpIz345pBAe1nGNH20aGy88MILmjFjhsrKypSdnR20f1FRkb75zW/qvffeU35+fqv9Fi1apLvuuqtZ+6WXXqrU1OjdXldUVNTmPMkjL5Z5scgkL7HzJOntd97T0HNH2zKW8Xq1f+unOnGstmHLPWPUqWua+o7KluVqeD7kno/e1+hvjNbOt/eruvJUv87d0jR0bF+53PY+xjjZ/w6TPS8WmdHMq6ur0/r161VRUaGsrKyoZHYETq1HpfhYkybzz0RHyItFJnk25216W/nDBjueU1qeoR2lXX2pklo/xzN61uqzL9JCGre1voHt7ctr/zxO5dlxLtHOCz5G8Dw75jEs75jyco6rqORjPtfIC1k469G4KT5OnDhRnTp10ssvvxxS/5/85Cd69913tW3btjb7tfRb5r59+0Z9sX755ZdrzZo15JEXl3mxyCQvsfMk6dsXT9IDS1eHfVxLVzhuXd2weUzjf5Isy9L3fjbOf2v0fb+6WmvWrFHt8Tr9teB9fVZ6VGfkddd/zPmG0lrYFTtSyf53mOx5sciMZl5lZaW6detG8dFmTq1HpfhYkybzz0RHyItFJnk25100Rmt+2/yXEHa76X/O0R8Lc1VX75J0uaQ1clkNayyvOXVVd2qKV+f0/0offdLlZN8G4fRt3h5+XmTzaMiz41yinRfaGG3n2TWPn0w9oN/9/CNdfvcjfK6RF7Jw1qNxcdv1vn37tGHDBhUWFobU/6uvvtJzzz2nu+++O2jftLQ0paWF9lsAAICz6mrq9OSs5xqe4ei2ZDxG29fuVPa5ZzS8r29UfGzlWY5pGan6/vxvRXHWADoCJ9ejEmtSANGTl1Mtjyfw0REtXXLk8VjKy6nWjr1d2903mcZIxDnbOQbgJHvvUWunFStWqHfv3po0aVJI/VevXq3a2lpde+21Ds8MAGCnrau36dCuwzLGyFvvlTFGh3Yd1rF/fyXjCVwl8SxHANHEehRAspgz9YBGDKqSyzKyLCOXZTRiYJWGn2xLTfHKZRmNHFSl5Xfs8Pf1tYfTt2l7e/IimYcvz45ziXZeKGMEy7NrHr4drwGnxPzKR6/XqxUrVmjWrFlKSQmczsyZM5WTk6N77703oP3xxx/X97//ffXs2TOaUwUAROjIgaMtXuHYtVcX9R7cK+CKyN7n9NKoacNjOFsAHQXrUQDJJCPdq03LilRQmKulz9do3vRd/uJSQWGuSss7Ky+nWnOmHgjo27g9nL525LV3Ho3z7DiXaOcFGyOUPLvmATgp5sXHDRs2qKysTLNnz272tbKyMrlcgRdn7tq1S2+//bZee+21aE0RAGCTHrndW7zCsWe/0zR+wcUt7nYNAE5jPQoAAOCcmBcfJ0yYoNb2vNm4cWOztsGDB7faHwAQ30ZNG67ta3e2eIVjanqqf3MZAIgm1qMAksnxGpfG3pCv4pJMGaVrwZLBWrk2W7Kk7bsz5XYbeTyWVq3L1oZHt2j83NEqLjnVHk7fpu3tyYtkHr48O84l2nmhjBEsz655bFpWxNWPcFTMi48AgI4jNT1VM1dezRWOAAAADikozFVxSebJnY4tGVnatjtTkmRkyVvfsBlNcUmmZi8e5u/raw+nb9P29uRFMg9fnh3nEu28UMYIlmfXPAoKczV/Rllo32BAO1B8BABEFVc4AgAAOKe0vLPcbuMvLkmSdfI/G1+07XabiPsm0xiJOGc7xwCcFBe7XQMAAAAAgMjl5VTL47EC2owJLERJksdjRdw3mcZIxDnbOQbgJIqPAAAAAAAkiTlTD2jEoCq5LCPLMnJZRiMGVmn4ybbUFK9cltHIQVVafscOf19fezh9m7a3Jy+Sefjy7DiXaOeFMkawPLvm4dsdG3AKt10DAAAAAJAkMtK92rSsSAWFuVr6fI3mTd/lLy4VFOaqtLyz8nKqNWfqgYC+jdvD6WtHXnvn0TjPjnOJdl6wMULJs2segJMoPgIAoq6upo5NZwAAABySke7V/BllenPLMf9GIsdruPERQGxQfAQARFVdTZ2enPWcDu06LMttyXiMtq/dqZkrr6YACQAA4IDjNS6NvSFfxSWZcruNPB5Lq9Zla8OjWzR+7uiA9pVrsyVL2r47eN+m7UbpWrBkcERjhDMPX54d5xLtvFDGCJZn1zw2LSvi6kc4iuIjACCqtq7epkO7DssYI1Pf8CTsQ7sOa+vqbeyCDQAA4ICCwlwVl2TKayz/TsfFJZmavXhYs/ZtuzMlSUbB+zZtlywZWRGNEc48fHl2nEu080IZI1ieXfMoKMz1XyELOIHrrgEAUXXkwFFZ7sBd9iy3pSMHjsZmQgAAAEmutLyz3O7A7Y/dbtNiu2U1vELpm0xjJOKc7RwDcBLFRwBAVPXI7S7jCVz0GI9Rj9zusZkQAABAksvLqZbHE1iN8nisFtuNaXiF0jeZxkjEOds5BuAkio8AgKgaNW24eg/uJcuy5EpxybIs9T6nl0ZNGx7rqQEAACSlOVMPaMSgKrkso9QUr1yW0chBVVp+x45m7SMGVml4iH2btluWiXiMcObhy7PjXKKdF8oYwfLsmodvd2zAKTzzEQAQVanpqZq58mp2uwYAAIiSjHSvNi0rUkFhrkrLOysvp1pzph5otV1SyH0bty99vkbzpu+KaIxw5tE4z45ziXZesDFCybNrHoCTKD4CAKIuNT2VzWUAAACAKMtI97K5DKKO4iMAAAAAAEnseI1LY2/IV3FJptxuI4/H0qp12drw6BaNnzs6oH3l2mzJkrbvDt63abtRuhYsGRzRGOHMw5dnx7lEOy+UMYLlhTuPTcuKuMoRMUHxEQAAAACAJFZQmKvikkx5jSVvfcOGI8UlmZq9eFiz9m27MyVJRsH7Nm2XLBlZEY0Rzjx8eXacS7TzQhkjWF648ygozOWqR8QEG84AAAAAAJDESss7y+0O3P7Y7TYttltWwyuUvsk0RiLOuT1jALEQ0+Jj//79ZVlWs9fcuXNbPebo0aOaO3eu+vTpo7S0NA0aNEjr1q2L4qwBAACQLFiPAugI8nKq5fEEVqM8HqvFdmMaXqH0TaYxEnHO7RkDiIWYFh83b96sgwcP+l+vv/66JGnatGkt9j9x4oQuueQSffLJJ/rzn/+sXbt26bHHHlNOTk40pw0AAIAkwXoUQEcwZ+oBjRhUJZdllJrilcsyGjmoSsvv2NGsfcTAKg0PsW/TdssyEY8Rzjx8eXacS7TzQhkjWF648/Dtgg1EW0yf+dirV6+A9/fdd58GDBigcePGtdh/+fLl+vLLL/XOO+8oNTVVUsNvqwEAAID2YD0KoCPISPdq07IiFRTmqrS8s/JyqjVn6oFW2yWF3Ldx+9LnazRv+q6IxghnHo3z7DiXaOcFGyOUvHDnAcRC3Gw4c+LECT311FO69dZbZTV9OMFJa9as0ZgxYzR37lz93//7f9WrVy/NmDFDv/jFL+R2u1s8pra2VrW1tf73lZWVjswfAAAAic2p9ajEmhRA7GWke9lspAPh7xvxxDKm6ZMAYuOFF17QjBkzVFZWpuzs7Bb7nHPOOfrkk090zTXX6MYbb9SePXt04403at68ebrzzjtbPGbRokW66667mrVfeuml/t9WR0NRUZHy8/PJIy8u82KRSV5i58Uikzzy4j0zmnl1dXVav369KioqlJWVFZXMjsCp9agUH2vSZP6Z6Ah5scgkL7HzJKlo09vKHza41a97vNLb/+yhyq9SZFlGxljK6lIvSc3aLhh+VO9s695mu1QkKT+iMcKZR+O89o4Ry7xgY4SS11r7t0cekTvMB+0VlXzM5xp5IQtrPWrixIQJE8zkyZPb7DNw4EDTt29fU19f72976KGHzBlnnNHqMTU1NaaiosL/2r9/v5FkKioqbJt7KKZMmUIeeXGbF4tM8hI7LxaZ5JEX75nRzKuoqIjJeibZObUeNSY+1qTJ/DPREfJikUleYucZY8yUC79lzOZXW339dv6/jMvymlNblBhjyWssBba5LK+5Ytxnzfo2b59iwxjhzGOKDWPEJi+0MdrOa6v9t/P/1ebffUsvPtfIC0c469G4uO1637592rBhgwoLC9vs16dPH6Wmpgbc0jJkyBB99tlnOnHihDp16tTsmLS0NKWlpdk+ZwAAACQPJ9ejEmtSAPGptLyz3G4jb/2pR034njrR+B5Jt9u02Le19kQcIxHnHKwdiBcx3e3aZ8WKFerdu7cmTZrUZr+xY8dqz5498npPPSS1pKREffr0aXWhBwAAAATDehRAR5SXUy2PJ/AZt77r5xrzeKwW+7bWnohjJOKcg7UD8SLmxUev16sVK1Zo1qxZSkkJvBBz5syZWrhwof/9T3/6U3355Ze6+eabVVJSoldeeUX33HOP5s6dG+1pAwAAIEmwHgXQUc2ZekAjBlXJZRmlpnjlsoxGDKzS8CZtIwdVafkdO5r1bdpuWSbiMcKZhy8vkjFilRfKGMHy2mr37XgNxIOY33a9YcMGlZWVafbs2c2+VlZWJpfrVH20b9++evXVVzV//nwNHz5cOTk5uvnmm/WLX/wimlMGAABAEmE9CqCjykj3atOyIhUU5qq0vLPycqr9Raumba31bdy+9PkazZu+K6IxwplH4zw7ziXaecHGCCWvrXYgXsS8+DhhwgSZVjbc3rhxY7O2MWPG6B//+IfDswIAAEBHwXoUQEeWke7V/Bllzdpbamutr6/9zS3HAr7enjHCmUfTPDvOJdp5bY0Ral5r7UC8iHnxEQAAAAAAxI/jNa4Wr6QL1r59b1c9/MyZbV4BGM7YwcZonNfeMWKZF2yMUPK4whGJgOIjAAAAAACQ1FB4HHtDvopLMuV2G3k8llaty9aGR7do/NzRbbYbpWvBksFauTZbsqTtu8Mfw9ceyhi+vEjGiFVeKGMEy1u1LlublhVRgETco/gIAAAAAAAkNVxxV1ySKa+x5K1v2EW5uCRTsxcPC9ouWTKytG13piTJKPwxfO2hjOHLi2SMWOWFMkawvOKSTBUU5nLLNeJezHe7BgAAAAAA8aG0vLPc7sDn4LrdJqx2y2p4JdIYiThnXzsQ7yg+AgAAAAAASVJeTrU8nsDql8djhdVuTMMrkcZIxDn72oF4R/ERAAAAAABIkuZMPaARg6rksoxSU7xyWUYjB1Vp+R07grZblpHLMhoxsErD2zmGrz2UMXx5kYwRq7xQxgiWN3JQlX+DGiCe8cxHAAAAAAAgScpI92rTsqIWd1UO1r70+RrNm76rzV2fwxk72BiN89o7Rizzgo0RSh6bzSARUHwEAAAAAAB+GeleNjGJQ/y9IFFRfAQAAAAAAG06XuPS2BvyVVySKbfbyOOxtGpdtjY8ukXj545WcUmmjNK1YMlgrVybLVnS9t2t9w3WHsoYvrxIxohVXihjNM7btKyIqxyRsCg+AgAAAACANhUU5qq4JFNeY8lb37DxSXFJpmYvHuZvlywZWdq2O1OSZNR632DtoYzhy4tkjFjlhTJG47yCwlyuekTCYsMZAAAAAADQptLyznK7A7dhdrtNi+2W1fAKpW+8jJEIcwYSFcVHAAAAAADQprycank8gVUxj8dqsd2YhlcofeNljESYM5CoKD4CAAAAAIA2zZl6QCMGVcllGaWmeOWyjEYOqtLyO3b42y3LyGUZjRhYpeFB+gZrD2UMX14kY8QqL5QxGuf5dsEGEhHPfAQAAAAAAG3KSPdq07IiFRTmqrS8s/JyqjVn6oGA9qXP12je9F3+QllbfUNpDzZG47z2jhHLvGBjNM0DEhXFRwAAAAAAEFRGupdNT6LA9+f85pZj/HkjKVB8BAAAAAAA7XK8xqWxN+SruCRTRulasGSwVq7Nlixp++5Mud1GHo+lVeuyteHRLRo/d7SKS4K3hzKGLy+SMWKV11b7pmVFXOmIpBLTZz72799flmU1e82dO7fF/k888USzvunp6VGeNQAAAJIF61EAiExBYa6KSzLlNZaMseQ1lrbtztS2k2119S55jaXikkzNXjzM3zdYeyhj+PIiGSNWeW21FxTmxvqvFbBVTK983Lx5szwej//9hx9+qEsuuUTTpk1r9ZisrCzt2rXL/95qugc9AAAAECLWowAQmdLyznK7jbz1pz4LfR+LjXdtdrtNi31ba4/2GPEyZ187kExieuVjr169dMYZZ/hfa9eu1YABAzRu3LhWj7EsK+CY008/PYozBgAAQDJhPQoAkcnLqZbHE/hLGGMCC3CS5PFYLfZtrT3aY8TLnH3tQDKJafGxsRMnTuipp57S7Nmz2/zt8bFjx9SvXz/17dtXV1xxhXbs2NHmuLW1taqsrAx4AQAAAE05tR6VWJMCSF5zph7QiEFVcllGlmXksoxGDKzS8JNtqSleuSyjkYOqtPyOHf6+wdpDGcOXF8kYscprq9234zWQLCxjmtblY+OFF17QjBkzVFZWpuzs7Bb7vPvuu9q9e7eGDx+uiooKPfjgg/rb3/6mHTt2KDe35WciLFq0SHfddVez9ksvvVSpqam2nkNbioqKlJ+fTx55cZkXi0zyEjsvFpnkkRfvmdHMq6ur0/r161VRUaGsrKyoZHYETq1HpfhYkybzz0RHyItFJnmJnRfNTI9H2rdPKt3zrvJyzlO/PsclSfsOZuirGre6pHvUr89xuV2Sxxt6e7AxSsu3+/PaO0Ys89pql6Siko/5HiUvbvPCWY/GTfFx4sSJ6tSpk15++eWQj6mrq9OQIUP0gx/8QIsXL26xT21trWpra/3vKysr1bdv36gv1i+//HKtWbOGPPLiMi8WmeQldl4sMskjL94zo5lXWVmpbt26UXy0mVPrUSk+1qTJ/DPREfJikUleYufFIvPyi8ZozW+b/6KlseM1LhUU5qq0vLPycqo1Z+oBZaR7W2yX1Gbfpc/fpHnTfxfRGNHKa9ef592P8D1KXtzmhbMejemGMz779u3Thg0bVFhYGNZxqampGjVqlPbs2dNqn7S0NKWlpUU6RQAAACQxJ9ejEmtSAJAaCo9jb8hXcUmm3G4jj8fSqnXZ2vDoFo2fOzqgfeXabMmStu9uva9RuhYsGRzRGNHI27SsqN0FSCAZxMUzH1esWKHevXtr0qRJYR3n8Xi0fft29enTx6GZAQAAoCNgPQoAzisozFVxSaa8xlJdvUteY6m4JFOzFw9r1r5td6a2BelrjBXxGNHIKyhs/bEcQEcQ8+Kj1+vVihUrNGvWLKWkBF6IOXPmTC1cuND//u6779Zrr72m0tJSffDBB7r22mu1b98+3XDDDdGeNgAAAJIE61EAiI7S8s5yuwOf/OZ2mxbbLavhFUpfO8ZwOg/oyGJefNywYYPKyso0e/bsZl8rKyvTwYMH/e+PHDmiH//4xxoyZIguu+wyVVZW6p133tHQoUOjOWUAAAAkEdajABAdeTnV8ngCq3Mej9ViuzENr1D62jGG03lARxbzZz5OmDBBre15s3HjxoD3Dz/8sB5++OEozAoAAAAdBetRAIiOOVMPaNW67IDnJI4cVKXld+zQ+LkZAe3Dz66SafL8xKZ9jYwsmYjGiEaebyMaoKOKefERAAAAAAAkv4x0rzYtK2pxN+iW2qWWd4729V36fI3mTd8V0RjRygM6MoqPAAAAAAAgKjLSvZo/oyzk9pbaos03tze3HAuYTzzPGYgnFB8BAAAAAEBCOF7j0tgb8k/eBp2uBUsGa9W6bG14dIvGzx0dcBv0yrXZUpPboMPtu2lZEVcuAhGi+AgAAAAAABJCQWGuiksy5TWWJEtGlopLMjV78TB/u7e+YSOYbbszJUlGp9rC7VtQmMuVjECEYr7bNQAAAAAAQChKyzvL7Q7cJMztNi22W1bDK9K+ACJD8REAAAAAACSEvJxqeTyBVUKPx2qx3ZiGV6R9AUSG4iMAAAAAAEgIc6Ye0IhBVXJZRpZl5LKMRg6q0vI7dvjbU1O8cllGIwZWaXiTtnD7+nawBtB+PPMRAAAAAAAkhIx0rzYtK1JBYa6WPl+jedN3ac7UAwHtpeWdlZdT7S8cNm0Lty+AyFB8BAAAAAAACSMj3av5M8r05pZjAZvB+NqbaqktnL4AIsNt1wAAAAAAAAAcQfERAAAAAAAAgCMoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR8S0+Ni/f39ZltXsNXfu3Bb7FxYWavTo0erevbu6dOmikSNHatWqVVGeNQAAAJIF61EAAABnpcQyfPPmzfJ4PP73H374oS655BJNmzatxf6nnXaabr/9dp1zzjnq1KmT1q5dq+uvv169e/fWxIkTozVtAAAAJAnWowAAAM6KafGxV69eAe/vu+8+DRgwQOPGjWux/8UXXxzw/uabb9bKlSv19ttvs9gDAABA2FiPAgAAOCtunvl44sQJPfXUU5o9e7Ysywra3xijN954Q7t27dJFF13Uar/a2lpVVlYGvAAAAICmnFqPSqxJAQBAx2UZY0ysJyFJL7zwgmbMmKGysjJlZ2e32q+iokI5OTmqra2V2+3W73//e82ePbvV/osWLdJdd93VrP3SSy9VamqqLXMPRVFRkfLz88kjLy7zYpFJXmLnxSKTPPLiPTOaeXV1dVq/fr0qKiqUlZUVlcyOwKn1qBQfa9Jk/pnoCHmxyCQvsfNikUkeefGeSZ59wlqPmjgxYcIEM3ny5KD9PB6P2b17t9m6dat58MEHTbdu3cybb77Zav+amhpTUVHhf+3fv99IMhUVFTbOPrgpU6aQR17c5sUik7zEzotFJnnkxXtmNPMqKipisp5Jdk6tR42JjzVpMv9MdIS8WGSSl9h5scgkj7x4zyTPPuGsR2P6zEefffv2acOGDSosLAza1+Vy6eyzz5YkjRw5Uv/617907733Nnv+jk9aWprS0tLsnC4AAACSjJPrUYk1KQAA6Lji4pmPK1asUO/evTVp0qSwj/V6vaqtrXVgVgAAAOgoWI8CAAA4I+ZXPnq9Xq1YsUKzZs1SSkrgdGbOnKmcnBzde++9kqR7771Xo0eP1oABA1RbW6t169Zp1apV+sMf/hCLqQMAACAJsB4FAABwTsyLjxs2bFBZWVmLD+kuKyuTy3Xq4syvvvpKN954ow4cOKCMjAydc845euqppzR9+vRoThkAAABJhPUoAACAc2JefJwwYYJMKxtub9y4MeD9r3/9a/3617+OwqwAAADQUbAeBQAAcE5cPPMRAAAAAAAAQPKh+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR1B8BAAAAAAAAOAIio8AAAAAAAAAHEHxEQAAAAAAAIAjKD4CAAAAAAAAcATFRwAAAAAAAACOoPgIAAAAAAAAwBEUHwEAAAAAAAA4guIjAAAAAAAAAEdQfAQAAAAAAADgCIqPAAAAAAAAABxB8REAAAAAAACAIyg+AgAAAAAAAHBETIuP/fv3l2VZzV5z585tsf9jjz2mCy+8UD169FCPHj00fvx4FRUVRXnWAAAASBasRwEAAJwV0+Lj5s2bdfDgQf/r9ddflyRNmzatxf4bN27UD37wA7355pt699131bdvX02YMEHl5eXRnDYAAACSBOtRAAAAZ6XEMrxXr14B7++77z4NGDBA48aNa7H/008/HfB+2bJlevHFF/XGG29o5syZjs0TAAAAyYn1KAAAgLNiWnxs7MSJE3rqqad06623yrKskI6prq5WXV2dTjvttFb71NbWqra21v++srIy4rkCAAAg+Ti1HpVYkwIAgI7LMsaYWE9Ckl544QXNmDFDZWVlys7ODumYG2+8Ua+++qp27Nih9PT0FvssWrRId911V7P2Sy+9VKmpqRHNORxFRUXKz88nj7y4zItFJnmJnReLTPLIi/fMaObV1dVp/fr1qqioUFZWVlQyOwKn1qNSfKxJk/lnoiPkxSKTvMTOi0UmeeTFeyZ59glrPWrixIQJE8zkyZND7n/vvfeaHj16mOLi4jb71dTUmIqKCv9r//79RpKpqKiIdMphmTJlCnnkxW1eLDLJS+y8WGSSR168Z0Yzr6KiIibrmWTn1HrUmPhYkybzz0RHyItFJnmJnReLTPLIi/dM8uwTzno0Lm673rdvnzZs2KDCwsKQ+j/44IO67777tGHDBg0fPrzNvmlpaUpLS7NjmgAAAEhSTq5HJdakAACg44qL4uOKFSvUu3dvTZo0KWjfBx54QL/5zW/06quvavTo0VGYHQAAAJId61EAAABnuGI9Aa/XqxUrVmjWrFlKSQmshc6cOVMLFy70v7///vt1xx13aPny5erfv78+++wzffbZZzp27Fi0pw0AAIAkwXoUAADAOTEvPm7YsEFlZWWaPXt2s6+VlZXp4MGD/vd/+MMfdOLECV155ZXq06eP//Xggw9Gc8oAAABIIqxHAQAAnBPz264nTJgg08qG2xs3bgx4/8knnzg/IQAAAHQorEcBAACcE/MrHwEAAAAAAAAkJ4qPAAAAAAAAABxB8REAAAAAAACAIyg+AgAAAAAAAHAExUcAAAAAAAAAjqD4CAAAAAAAAMARFB8BAAAAAAAAOILiIwAAAAAAAABHUHwEAAAAAAAA4AiKjwAAAAAAAAAcQfERAAAAAAAAgCMoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR8S0+Ni/f39ZltXsNXfu3Bb779ixQ//1X//lP27JkiXRnTAAAACSCutRAAAAZ8W0+Lh582YdPHjQ/3r99dclSdOmTWuxf3V1tfLy8nTffffpjDPOiOZUAQAAkIRYjwIAADgrJZbhvXr1Cnh/3333acCAARo3blyL/c8//3ydf/75kqRf/vKXjs8PAAAAyY31KAAAgLNiWnxs7MSJE3rqqad06623yrIs28atra1VbW2t/31lZaVtYwMAACB5OLUelViTAgCAjssyxphYT0KSXnjhBc2YMUNlZWXKzs4O2r9///665ZZbdMstt7TZb9GiRbrrrruatV966aVKTU1t73TDVlRUpPz8fPLIi8u8WGSSl9h5scgkj7x4z4xmXl1dndavX6+KigplZWVFJbMjcGo9KsXHmjSZfyY6Ql4sMslL7LxYZJJHXrxnkmefsNajJk5MmDDBTJ48OeT+/fr1Mw8//HDQfjU1NaaiosL/2r9/v5FkKioqIpht+KZMmUIeeXGbF4tM8hI7LxaZ5JEX75nRzKuoqIjJeibZObUeNSY+1qTJ/DPREfJikUleYufFIpM88uI9kzz7hLMejYvbrvft26cNGzaosLDQ9rHT0tKUlpZm+7gAAABIHk6uRyXWpAAAoOOK6W7XPitWrFDv3r01adKkWE8FAAAAHRDrUQAAAGfE/MpHr9erFStWaNasWUpJCZzOzJkzlZOTo3vvvVdSw0PAd+7c6f/v8vJy/fOf/1TXrl119tlnR33uAAAASHysRwEAAJwT8+Ljhg0bVFZWptmzZzf7WllZmVyuUxdnfvrppxo1apT//YMPPqgHH3xQ48aN08aNG6MxXQAAACQZ1qMAAADOiXnxccKECTKtbLjddAHXv3//VvsCAAAA7cF6FAAAwDlx8cxHAAAAAAAAAMmH4iMAAAAAAAAAR1B8BAAAAAAAAOAIio8AAAAAAAAAHEHxEQAAAAAAAIAjKD4CAAAAAAAAcATFRwAAAAAAAACOoPgIAAAAAAAAwBEUHwEAAAAAAAA4guIjAAAAAAAAAEdQfAQAAAAAAADgCIqPAAAAAAAAABxB8REAAAAAAACAIyg+AgAAAAAAAHAExUcAAAAAAAAAjqD4CAAAAAAAAMARMS8+lpeX69prr1XPnj2VkZGh8847T1u2bGnzmEcffVRDhgxRRkaGBg8erCeffDJKswUAAECyYT0KAADgnJRYhh85ckRjx47Vd77zHf31r39Vr169tHv3bvXo0aPVY/7whz9o4cKFeuyxx3T++eerqKhIP/7xj9WjRw9NmTIlirMHAABAomM9CgAA4KyYFh/vv/9+9e3bVytWrPC3nXXWWW0es2rVKv3kJz/R9OnTJUl5eXnavHmz7r//fhZ7AAAACAvrUQAAAGfF9LbrNWvWaPTo0Zo2bZp69+6tUaNG6bHHHmvzmNraWqWnpwe0ZWRkqKioSHV1dS32r6ysDHgBAAAAUnTWo75jWJMCAICOyDLGmFiF+xZtt956q6ZNm6bNmzfr5ptvVkFBgWbNmtXiMf/93/+tFStWaO3atfr617+u999/X5MnT9bnn3+uTz/9VH369Anov2jRIt11113Nxrn00kuVmppq/0m1oqioSPn5+eSRF5d5scgkL7HzYpFJHnnxnhnNvLq6Oq1fv14VFRXKysqKSmayisZ6VIqPNWky/0x0hLxYZJKX2HmxyCSPvHjPJM8+Ya1HTQylpqaaMWPGBLTddNNN5lvf+larx1RXV5vrr7/epKSkGLfbbbKzs81tt91mJJnPPvusWf+amhpTUVHhf+3fv99IMhUVFbafT1umTJlCHnlxmxeLTPISOy8WmeSRF++Z0cyrqKiIyXomGUVjPWpMfKxJk/lnoiPkxSKTvMTOi0UmeeTFeyZ59glnPRrT26779OmjoUOHBrQNGTJEZWVlrR6TkZGh5cuXq7q6Wp988onKysrUv39/ZWZmqlevXs36p6WlKSsrK+AFAAAASNFZj0qsSQEAQMcV0w1nxo4dq127dgW0lZSUqF+/fkGPTU1NVW5uriTpueee0+TJk+VyxbSWCgAAgATDehQAAMBZMS0+zp8/XxdccIHuueceXXXVVSoqKtKf/vQn/elPf/L3WbhwocrLy/Xkk09KalgMFhUV6Zvf/KaOHDmi3/72t/rwww+1cuXKWJ0GAAAAEhTrUQAAAGfF9Fez559/vl566SU9++yzOvfcc7V48WItWbJE11xzjb/PwYMHA2578Xg8euihhzRixAhdcsklqqmp0TvvvKP+/fvH4AwAAACQyFiPAgAAOCumVz5K0uTJkzV58uRWv/7EE08EvB8yZIi2bt3q8KwAAADQUbAeBQAAcA4PpQEAAAAAAADgCIqPAAAAAAAAABxB8REAAAAAAACAIyg+AgAAAAAAAHAExUcAAAAAAAAAjqD4CAAAAAAAAMARFB8BAAAAAAAAOILiIwAAAAAAAABHUHwEAAAAAAAA4AiKjwAAAAAAAAAcQfERAAAAAAAAgCMoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR8S8+FheXq5rr71WPXv2VEZGhs477zxt2bKlzWOefvppjRgxQp07d1afPn00e/ZsffHFF1GaMQAAAJIJ61EAAADnxLT4eOTIEY0dO1apqan661//qp07d+qhhx5Sjx49Wj1m06ZNmjlzpn70ox9px44dWr16tYqKivTjH/84ijMHAABAMmA9CgAA4KyUWIbff//96tu3r1asWOFvO+uss9o85t1331X//v01b948f/+f/OQnuv/++x2dKwAAAJIP61EAAABnxfTKxzVr1mj06NGaNm2aevfurVGjRumxxx5r85gxY8Zo//79WrdunYwx+vzzz/XnP/9Zl112WYv9a2trVVlZGfACAAAApOisRyXWpAAAoOOyjDEmVuHp6emSpFtvvVXTpk3T5s2bdfPNN6ugoECzZs1q9bjVq1dr9uzZqqmpUX19vaZMmaIXX3xRqampzfouWrRId911V7P2Sy+9tMX+TikqKlJ+fj555MVlXiwyyUvsvFhkkkdevGdGM6+urk7r169XRUWFsrKyopKZrKKxHpXiY02azD8THSEvFpnkJXZeLDLJIy/eM8mzT1jrURNDqampZsyYMQFtN910k/nWt77V6jE7duwwffr0MQ888IApLi4269evN+edd56ZPXt2i/1rampMRUWF/7V//34jyVRUVNh6LsFMmTKFPPLiNi8WmeQldl4sMskjL94zo5lXUVERk/VMMorGetSY+FiTJvPPREfIi0UmeYmdF4tM8siL90zy7BPOejSmz3zs06ePhg4dGtA2ZMgQvfjii60ec++992rs2LH6+c9/LkkaPny4unTpogsvvFC//vWv1adPn4D+aWlpSktLs3/yAAAASHjRWI9KrEkBAEDHFdNnPo4dO1a7du0KaCspKVG/fv1aPaa6ulouV+C03W63JMnE7g5yAAAAJCDWowAAAM6KafFx/vz5+sc//qF77rlHe/bs0TPPPKM//elPmjt3rr/PwoULNXPmTP/7KVOmqLCwUH/4wx9UWlqqTZs2ad68ecrPz1d2dnYsTgMAAAAJivUoAACAs2J62/X555+vl156SQsXLtTdd9+ts846S0uWLNE111zj73Pw4EGVlZX53//whz9UVVWVHnnkEf3sZz9T9+7d9d3vflf3339/LE4BAAAACYz1KAAAgLNiWnyUpMmTJ2vy5Mmtfv2JJ55o1nbTTTfppptucnBWAAAA6ChYjwIAADgnprddAwAAAAAAAEheFB8BAAAAAAAAOILiIwAAAAAAAABHUHwEAAAAAAAA4AiKjwAAAAAAAAAcQfERAAAAAAAAgCMoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR1B8BAAAAAAAAOAIio8AAAAAAAAAHEHxEQAAAAAAAIAjKD4CAAAAAAAAcATFRwAAAAAAAACOiHnxsby8XNdee6169uypjIwMnXfeedqyZUubx9TW1ur2229Xv379lJaWpv79+2v58uVRmjEAAACSCetRAAAA56TEMvzIkSMaO3asvvOd7+ivf/2revXqpd27d6tHjx5tHnfVVVfp888/1+OPP66zzz5bBw8elNfrjdKsAQAAkCxYjwIAADgrpsXH+++/X3379tWKFSv8bWeddVabx6xfv15vvfWWSktLddppp0mS+vfv7+Q0AQAAkKRYjwIAADgrpsXHNWvWaOLEiZo2bZreeust5eTk6MYbb9SPf/zjNo8ZPXq0HnjgAa1atUpdunTR5ZdfrsWLFysjI6NZ/9raWtXW1vrfV1RUSJIqKyvtP6E21NXVRTWTPPLiPZO8xM6LRSZ55MV7ZjTzfDnGmKjkJbNorEel+FiTJvPPREfIi0UmeYmdF4tM8siL90zy7BPWetTEUFpamklLSzMLFy40H3zwgfnjH/9o0tPTzRNPPNHqMRMnTjRpaWlm0qRJ5r333jOvvPKK6devn/nhD3/YYv8777zTSOLFixcvXrx48Uq61/79+51apnUY0ViPGsOalBcvXrx48eKVnK9Q1qOWMbH7lXmnTp00evRovfPOO/62efPmafPmzXr33XdbPGbChAn6+9//rs8++0zdunWTJBUWFurKK6/UV1991ey3zU1/y3z06FH169dPZWVl/uOdVllZqb59+2r//v3Kysoij7y4yotFJnmJnReLTPLIi/fMaOcZY1RVVaXs7Gy5XDHfPzChRWM9KsV+TZrsPxPJnheLTPISOy8WmeSRF++Z5NkrnPVoTG+77tOnj4YOHRrQNmTIEL344ottHpOTkxOwSBsyZIiMMTpw4IAGDhwY0D8tLU1paWnNxunWrVvUfqB8srKyoppJHnnxnkleYufFIpM88uI9M5p50folarKLxnpUip81aTL/THSEvFhkkpfYebHIJI+8eM8kzz6hrkdj+qvysWPHateuXQFtJSUl6tevX5vHfPrppzp27FjAMS6XS7m5uY7NFQAAAMmH9SgAAICzYlp8nD9/vv7xj3/onnvu0Z49e/TMM8/oT3/6k+bOnevvs3DhQs2cOdP/fsaMGerZs6euv/567dy5U3/729/085//XLNnz271Ad8AAABAS1iPAgAAOCumxcfzzz9fL730kp599lmde+65Wrx4sZYsWaJrrrnG3+fgwYMqKyvzv+/atatef/11HT16VKNHj9Y111yjKVOmaOnSpSFlpqWl6c4772zxthenRDuTPPLiPZO8xM6LRSZ55MV7ZizOEfaIxXpUSv7vUfISP5O8xM6LRSZ55MV7JnmxE9MNZwAAAAAAAAAkL7ZHBAAAAAAAAOAIio8AAAAAAAAAHEHxEQAAAAAAAIAjKD4CAAAAAAAAcETSFR8XLVoky7ICXuecc06r/S+++OJm/S3L0qRJkxzJq6ur0913360BAwYoPT1dI0aM0Pr168M6x/Lycl177bXq2bOnMjIydN5552nLli2t9j948KBmzJihQYMGyeVy6ZZbbnE0r7CwUJdccol69eqlrKwsjRkzRq+++qpjeY1t2rRJKSkpGjlypKN5tbW1uv3229WvXz+lpaWpf//+Wr58uWN5Tz/9tEaMGKHOnTurT58+mj17tr744gtHz/HRRx/VkCFDlJGRocGDB+vJJ58MKat///4t/kzNnTu3xf47duzQf/3Xf/mPW7JkScjn1Z68wsJCjR49Wt27d1eXLl00cuRIrVq1yrG8J554olnf9PR0R88x0s+1cPMkacmSJRo8eLAyMjLUt29fzZ8/XzU1NSHleTwe3XHHHTrrrLOUkZGhAQMGaPHixQq2H9rGjRv19a9/XWlpaTr77LP1xBNPOJYXyedae8/PJ9zPtfbmtfdzrT15P/zhD1v8Hhs2bJij59jezzVJqqqq0i233KJ+/fopIyNDF1xwgTZv3txq/0j/7UViYz3aHOtRZzITaU2azOvR9mQm2pqU9WjLWI/an5koa1LWo2EySebOO+80w4YNMwcPHvS/Dh8+3Gr/L774IqDvhx9+aNxut1mxYoUjebfddpvJzs42r7zyitm7d6/5/e9/b9LT080HH3wQUt6XX35p+vXrZ374wx+a9957z5SWlppXX33V7Nmzp9VjPv74YzNv3jyzcuVKM3LkSHPzzTeHlNXevJtvvtncf//9pqioyJSUlJiFCxea1NTUkM6xPXk+R44cMXl5eWbChAlmxIgRjp2fMcZcfvnl5pvf/KZ5/fXXzccff2zeeecd8/bbbzuS9/bbbxuXy2X+93//15SWlpq///3vZtiwYeY///M/HTvH3//+9yYzM9M899xzZu/evebZZ581Xbt2NWvWrAmad+jQoYCfh9dff91IMm+++WaL/YuKisyCBQvMs88+a8444wzz8MMPh3Re7c178803TWFhodm5c6fZs2ePWbJkiXG73Wb9+vWO5K1YscJkZWUFHPPZZ585eo6Rfq6Fm/f000+btLQ08/TTT5uPP/7YvPrqq6ZPnz5m/vz5IeX95je/MT179jRr1641H3/8sVm9erXp2rWr+d///d9WjyktLTWdO3c2t956q9m5c6f53e9+F/LfY3vyIvlca0+eT3s+19qb197PtfbkHT16NOB7bP/+/ea0004zd955p2PnGMnnmjHGXHXVVWbo0KHmrbfeMrt37zZ33nmnycrKMgcOHGixfyT/9iLxsR5tjvWoM5mJsiZN9vVoezITbU3KerQ51qPOZCbKmpT1aHiSsvgYzg9EUw8//LDJzMw0x44dcySvT58+5pFHHglomzp1qrnmmmtCOv4Xv/iF+fa3vx1yXlPjxo0L6xsu0jyfoUOHmrvuusvRvOnTp5tf/epXYf2dtCfvr3/9q+nWrZv54osvwp5je/L+53/+x+Tl5QW0LV261OTk5DiWOWbMGLNgwYKAtltvvdWMHTs2rHGMafhHcsCAAcbr9Qbt269fv3Yt9tqb5zNq1Cjzq1/9ypG8FStWmG7durVr7PZmNhXu51q4eXPnzjXf/e53A9rC+X6ZNGmSmT17dkBbsM/F2267zQwbNiygbfr06WbixImO5LUk1M+1SPLa87nWnrxIPtfs+PN86aWXjGVZ5pNPPnEsM5LPterqauN2u83atWsD2r/+9a+b22+/Pejx4f7bi8THerRtrEftyUykNWlHW4+Gm+mTSGtS1qOsR53ITKQ1KevR8CTdbdeStHv3bmVnZysvL0/XXHONysrKQj728ccf19VXX60uXbo4kldbW9vs8vaMjAy9/fbbIWWtWbNGo0eP1rRp09S7d2+NGjVKjz32WMhzDZcdeV6vV1VVVTrttNMcy1uxYoVKS0t15513hjW39uT5jnnggQeUk5OjQYMGacGCBTp+/LgjeWPGjNH+/fu1bt06GWP0+eef689//rMuu+wyx86xte/ToqIi1dXVhZQrSSdOnNBTTz2l2bNny7KskI9rr3DzjDF64403tGvXLl100UWO5R07dkz9+vVT3759dcUVV2jHjh1hZ4Wb2Vh7PtfCybvgggv0/vvvq6ioSJJUWlqqdevWhfw9esEFF+iNN95QSUmJJKm4uFhvv/22/uM//qPVY959912NHz8+oG3ixIl69913HclrKpzPtfbmtfdzrT15kXyu2fHn+fjjj2v8+PHq169fSP3bkxnJ51p9fb08Hk9E/36j42E9ap9kX4+2NzOR1qQdaT3ansxEW5OyHm3AetT+zERak7IeDVPMyp4OWbdunXnhhRdMcXGxWb9+vRkzZow588wzTWVlZdBj33vvPSPJvPfee47l/eAHPzBDhw41JSUlxuPxmNdee81kZGSYTp06hZSXlpZm0tLSzMKFC80HH3xg/vjHP5r09HTzxBNPhHR8uNXuSPOMMeb+++83PXr0MJ9//rkjeSUlJaZ3795m165dxpjwfvvfnryJEyeatLQ0M2nSJPPee++ZV155xX8biRN5xhjzwgsvmK5du5qUlBQjyUyZMsWcOHHCsXNcuHChOeOMM8yWLVuM1+s1mzdvNqeffrqRZD799NOQco0x5vnnnzdut9uUl5eH1D/S3zSHmnf06FHTpUsXk5KSYtLS0szjjz/uWN4777xjVq5cabZu3Wo2btxoJk+ebLKyssz+/fsdy2ysPZ9r7cn73//9X5Oamur/Hp0zZ07IGR6Px/ziF78wlmWZlJQUY1mWueeee9o8ZuDAgc36vPLKK0aSqa6utj2vqXA+19qTF8nnWnvyIvlci/TPs7y83LjdbvP888+HfEx7MiP9XBszZowZN26cKS8vN/X19WbVqlXG5XKZQYMGBT021r9pRvSxHm0b61F7MhNpTdqR1qPhZCbqmpT1aAPWo/ZnJtKalPVoeJKu+NjUkSNHTFZWllm2bFnQvv/n//wfc9555zmad+jQIXPFFVcYl8tl3G63GTRokLnxxhtNenp6SOOnpqaaMWPGBLTddNNN5lvf+lZIx4f7DRdp3tNPP206d+5sXn/9dUfy6uvrzejRo80f/vAHf1s4H4rtOb9LLrnEpKenm6NHj/rbXnzxRWNZVtB/ZNqTt2PHDtOnTx/zwAMP+P+n4rzzzmt2ibedmdXV1eb66683KSkpxu12m+zsbHPbbbcZSWE9G2bChAlm8uTJIfePdLEXap7H4zG7d+82W7duNQ8++KDp1q1bq8+PsSOvsRMnTpgBAwa0+5aacDMj/VwLJe/NN980p59+unnsscfMtm3bTGFhoenbt6+5++67Q8p49tlnTW5urnn22WfNtm3bzJNPPmlOO+20Nv+HJJLFXnvyGgv3cy3cvEg/19pzfpF8rkX653nPPfeYnj17mtra2pD6tzcz0s+1PXv2mIsuushIMm6325x//vnmmmuuMeecc07QY2O92EPssR4NxHo08kxjEmtN2pHWo+FkJuqalPVoA9aj9mYak1hrUtaj4Un64qMxxowePdr88pe/bLPPsWPHTFZWllmyZElU8o4fP24OHDhgvF6vue2228zQoUNDGvvMM880P/rRjwLafv/735vs7OyQjg/3Gy6SvGeffdZkZGQ0eyaBnXlHjhzx/+D5XpZl+dveeOMNW/OMMWbmzJlmwIABAW07d+40kkxJSYnteddee6258sorA9r+/ve/h/zbkUj+Dk+cOGH2799v6uvr/Q/H9Xg8QY8zxphPPvnEuFwu85e//CWk/sZEtthrT57Pj370IzNhwoSo5V155ZXm6quvDvu4cDMj/VwLNe/b3/52s2eXrFq1ymRkZIT0/ZKbm9vs2WOLFy82gwcPbvWYCy+8sNln2fLly01WVpYjeT7t+VwLNy/Sz7X2nF8kn2uR/Hl6vV5z9tlnm1tuuSVoX7syI/lcM6bh58r32XvVVVeZyy67LOgxsV7sIT6wHj2F9WjkmcYk1pq0o6xH25vpkwhrUtajp7AetTfTmMRak7IeDU9SPvOxsWPHjmnv3r3q06dPm/1Wr16t2tpaXXvttVHJS09PV05Ojurr6/Xiiy/qiiuuCGn8sWPHateuXQFtJSUlIT8nK1ztzXv22Wd1/fXX69lnn9WkSZMcy8vKytL27dv1z3/+0/+aM2eOBg8erH/+85/65je/aWue75hPP/1Ux44dCzjG5XIpNzfX9rzq6mq5XIE/qm63W1LD82GCieR7JjU1Vbm5uXK73Xruuec0efLkZnNpzYoVK9S7d++w/v4jEUme1+tVbW1tVPI8Ho+2b98e9DPCjsxIP9dCzYv0e7S1471eb6vHjBkzRm+88UZA2+uvv64xY8Y4kie1/3Mt3LxIP9fac36RfK61989Tkt566y3t2bNHP/rRj4L2tSszks81SerSpYv69OmjI0eO6NVXXw353290bKxHI5Ps69H2ZPqOSZQ1aUdZj0aamQhrUtajp7AetTdTSqw1KevRMMWs7OmQn/3sZ2bjxo3m448/Nps2bTLjx483X/va18yhQ4eMMcZcd911Lf4W+Nvf/raZPn2643n/+Mc/zIsvvmj27t1r/va3v5nvfve75qyzzjJHjhwJKa+oqMikpKSY3/zmN2b37t3+y62feuopf59f/vKX5rrrrgs4buvWrWbr1q3mG9/4hpkxY4bZunWr2bFjhyN5Tz/9tElJSTGPPvpowLb1jS+dtvv8GgvncvD25FVVVZnc3Fxz5ZVXmh07dpi33nrLDBw40Nxwww2O5K1YscKkpKSY3//+92bv3r3m7bffNqNHjzb5+fmOneOuXbvMqlWrTElJiXnvvffM9OnTzWmnnWY+/vjjkDI9Ho8588wzzS9+8YtmX2v6M1FbW+v//uzTp49ZsGCB2bp1q9m9e3dIWeHm3XPPPea1114ze/fuNTt37jQPPvigSUlJMY899pgjeXfddZd59dVXzd69e837779vrr76apOenh7Sz197M33a+7kWbt6dd95pMjMzzbPPPmtKS0vNa6+9ZgYMGGCuuuqqkLJmzZplcnJyzNq1a83HH39sCgsLzde+9jVz2223+fs0/R4tLS01nTt3Nj//+c/Nv/71L/Poo48at9tt1q9f70heJJ9r7clrKpzPtfbkRfK5Fsn5XXvtteab3/xmSOcVaWakn2vr1683f/3rX/3f4yNGjDDf/OY3/c86s/PfXiQ+1qOsR8O9PTHZ16QdYT0abmYirklZj7IeDedzLdnXpKxHw5N0xcfp06ebPn36mE6dOpmcnBwzffp0s2fPHv/Xx40bZ2bNmhVwzEcffWQkmddee83xvI0bN5ohQ4aYtLQ007NnT3PdddeF/KBen5dfftmce+65Ji0tzZxzzjnmT3/6U8DXZ82aZcaNGxfQJqnZq1+/fo7kjRs3rsW8pn/udp5fY+F+KLYn71//+pcZP368ycjIMLm5uebWW28N+gyKSPKWLl1qhg4dajIyMkyfPn3MNddcYw4cOODYOe7cudOMHDnSZGRkmKysLHPFFVeYjz76KOS8V1991UjyP5y4saY/Ex9//HGL3y9t/R1Hknf77bebs88+26Snp5sePXqYMWPGmOeeey7krHDzbrnlFnPmmWeaTp06mdNPP91cdtll5oMPPggrL9xMYyL7XAs3r66uzixatMgMGDDApKenm759+5obb7wx5P+JraysNDfffLM588wzTXp6usnLyzO33357wPNWWvq5ePPNN83IkSNNp06dTF5enlmxYoVjeZF8rrX3/BoL53OtvXnt/Vxrb97Ro0dNRkZGs88jp84x0s+1559/3uTl5ZlOnTqZM844w8ydOzdgsW/3v71IbKxHWY+Gux5tb2YirUmTfT0abmYirklZj7IeDedzLdnXpKxHw2OdnAwAAAAAAAAA2Crpn/kIAAAAAAAAIDYoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR1B8BAAAAAAAAOAIio8AAAAAAAAAHEHxEQBs4PF4dMEFF2jq1KkB7RUVFerbt69uv/32GM0MAAAAHQHrUQDxyjLGmFhPAgCSQUlJiUaOHKnHHntM11xzjSRp5syZKi4u1ubNm9WpU6cYzxAAAADJjPUogHhE8REAbLR06VItWrRIO3bsUFFRkaZNm6bNmzdrxIgRsZ4aAAAAOgDWowDiDcVHALCRMUbf/e535Xa7tX37dt1000361a9+FetpAQAAoINgPQog3lB8BACbffTRRxoyZIjOO+88ffDBB0pJSYn1lAAAANCBsB4FEE/YcAYAbLZ8+XJ17txZH3/8sQ4cOBDr6QAAAKCDYT0KIJ5w5SMA2Oidd97RuHHj9Nprr+nXv/61JGnDhg2yLCvGMwMAAEBHwHoUQLzhykcAsEl1dbV++MMf6qc//am+853v6PHHH1dRUZEKCgpiPTUAAAB0AKxHAcQjrnwEAJvcfPPNWrdunYqLi9W5c2dJ0h//+EctWLBA27dvV//+/WM7QQAAACQ11qMA4hHFRwCwwVtvvaXvfe972rhxo7797W8HfG3ixImqr6/ndhcAAAA4hvUogHhF8REAAAAAAACAI3jmIwAAAAAAAABHUHwEAAAAAAAA4AiKjwAAAAAAAAAcQfERAAAAAAAAgCMoPgIAAAAAAABwBMVHAAAAAAAAAI6g+AgAAAAAAADAERQfAQAAAAAAADiC4iMAAAAAAAAAR1B8BAAAAAAAAOAIio8AAAAAAAAAHEHxEQAAAAAAAIAj/n/DPBanztvw6gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKCigKKGgsECvBFksES6xYokajRsCgxt67Bo1GY41i7AUUDXZjjdjAiIkNNWInsVewIdKkzPcH38y7yxZ2gaV5fs/Do+yUe2dndudwZ+ZemSAIAoiIiIiIiIiIiIiIiIioyDEo6AoQERERERERERERERERUc7wYh8RERERERERERERERFREcWLfURERERERERERERERERFFC/2ERERERERERERERERERVRvNhHREREREREREREREREVETxYh8RERERERERERERERFREcWLfURERERERERERERERERFFC/2ERERERERERERERERERVRvNhHREREREREREREREREVETxYh8REREREVEhlJ6ejmXLlqFhw4awtLSETCaDTCZD165dAQDh4eHSa+Hh4Xlatj7XTURERFSUMScRUWHEi31EhZR8cND2Z/To0QVdbcqGp6entL++/PJLrZfz8PDQ+Xh4+/at0npu3LiBhQsXolOnTnB2doapqSnMzc1RuXJl9O7dG4cPH87DrSUiIirc1OUtIyMjWFtbo3Llyvjiiy8wZswY7N69Gx8+fMjX+n3zzTcYPXo0Lly4gPj4+Hwtu6hgtiIiIip4Hz58QEhICPr37w8XFxfY2NjA2NgYtra2cHd3x5AhQ3D8+HFkZGQUdFUpD23atEnKSYaGhnj8+LFWywUFBemcw5YuXaq0nri4OGzduhW+vr6oW7curKysYGxsjLJly8LT0xOLFy9Wmd+Iiiujgq4AEdHH4sGDBzh16pT0+4kTJ/D06VPY29vnS/ne3t7YvHmzymn379/H/fv3sX37drRt2xbbtm1D6dKl86VeREREhU16ejrevHmDN2/e4P79+zh9+jSWLl2KsmXLYuTIkZg8eTKMjPT7p9Rff/2FnTt3AgA6duyI0aNHw87ODjKZDJaWlnotWxszZ87ErFmzAACCIBRIHZitiIiICt6ePXswbtw43L9/X2naq1ev8OrVK1y6dAmrV69G9erVsWTJEnTs2DH/K5qN+/fvo3LlygCAwMBA+Pj4FGyFioBNmzZJ/8/IyMCWLVswefLkfCn7jz/+QLdu3ZCSkqI07eXLlwgPD0d4eDgWLVqE3377DZ6envlSL6KCxIt9REXAkCFDMHTo0Gzns7W1zYfaUE4FBwdDEASYmJggPT0daWlp2LJlCyZOnKjTeqKiorSaL2tD4JMnTwAA1tbW6NGjBzw8PODs7AwjIyNcvnwZS5Yswe3btxEaGgovLy+cOnUKBgZ8AJyIiD4OWfPW+/fv8ebNG1y9ehUnTpzA8ePHERsbixkzZuDAgQM4ePAgypYtq7f6HD9+HABgaGiI3377TeUFPg8PD71daNPnuvMKsxUREVHBmj17Nn744Qfp9zZt2qBz58749NNPUbp0abx+/Rq3b9/GgQMHcOzYMdy5cwfTpk0rlBf7dFEUcpK+PXr0SOrCtGTJknj//j2Cg4N1vtg3Z84cdOnSJdv5KlSooPD7q1evkJKSAgMDA7Rp0wbt2rVD3bp1Ubp0aTx+/Bhbt27F9u3b8fz5c3Tq1AlnzpxBvXr1dKobUVHDi31ERUC5cuVQq1atgq4G5VJwcDAAoFOnTkhKSsLhw4cRHBysc4NUTo+FihUrYs2aNfD29oaJiYnCtAYNGqBfv35o27YtIiIiEBERgS1btqB///45KouIiKioUZe32rdvj0mTJuHGjRvo168fLl++jPPnz6Nbt244efIkSpQooZf6iBeS7OzsCsWTfIURsxUREVHBCQwMlC70lStXDjt27ECLFi2U5mvdujWGDRuGa9euYcyYMYiNjc3vqpIeiDddGRsbY9GiRfj+++9x48YNXLx4EfXr19d6PQ4ODjnKYsbGxhg8eDCmTp2KSpUqKUxzc3ODl5cXmjZtipEjRyIxMRFjx47FyZMndS6HqCjhbYVERPng7NmzuHPnDgCgb9++6NevHwDg2rVruHTpUr7UITAwEIMGDVJqjBKZm5tj1apV0u+7du3Kl3oREREVBZ9++inOnDkDNzc3AMCZM2ewYsUKvZUndklkbGystzKKMmYrIiKigvPkyRMMHz4cAGBhYYFTp06pvNAnr1atWggNDcX48ePzo4qkZ+JNV+3bt4e3tzesrKwAQG0X53mtV69eWL16tdKFPnkjRoyQLjyeOnUKL1++zJe6ERUUXuwjKqYEQUDbtm0hk8lgZGSEv//+W+28AQEB0oC3/v7+KueJj4/H4sWL0bJlS5QvXx4lSpSApaUl3NzcMGLECJw5c0bt+tPT07Fp0yZ06tQJ9vb2MDExgY2NDZo1a4YlS5YgKSlJ47ZERkbiu+++Q/Xq1WFhYQFTU1NUrFgR7u7uGDZsGPbv36+y+4Tk5GQEBATAw8MDZcuWhbGxMaytrVGjRg20b98eS5YsUdmnvD6IYadMmTLo2LEjunbtilKlSilMKwxq1aoldQf733//FXBtiIiIChczMzMEBwdDJpMBABYtWoTU1FS18z9//hzTpk1D/fr1YW1tDRMTE1SsWBFff/211E1nVmImE8dAefDggfSa+CMKDw+XXhO7UVLn8OHD6NevH6pUqSLlqcqVK6N79+4ICgpCYmKiwvzq1h0UFASZTCaN1ydfZ/kffWcsZisiIqKC88svv0jZ4ccff4SLi4tWyxkYGEg36KgSERGBb7/9Fs7OzjA1NUXp0qXh5uaG6dOnZ/tE4LNnz7By5Ur06NED1apVg4WFBUxMTODg4IAuXbpg+/btyMjIULmsTCaTxusDAF9fX6VsM3PmTGl6dhnMx8cHMpkMzs7OAIC3b9/ihx9+QM2aNWFhYYHSpUvjiy++wNatWzVuk+jAgQNo164dypYtC3Nzc1SvXh0TJkzA8+fPAQDOzs6QyWT5Ns7g+fPncevWLQBAv379YGpqih49egAAtm3bpjEf5zcPDw8AmWMK3rt3r2ArQ6RvAhEVSmFhYQIAAYDg7++fo3U8ffpUsLGxEQAIVapUEd69e6c0z7Vr1wRTU1MBgNCoUSMhNTVVaZ5jx44Jtra2Un3U/ajy4MEDoW7duhqXq1q1qnD79m2Vyy9ZskQwMDDItuz4+Hilbf/000+zXW7cuHE5eGd1k5KSIlhbWwsAhEGDBkmve3t7CwCEcuXKqXzf5bVo0ULj+5yXLC0tBQBC7dq19V4WERFRQcpp3vryyy+l5c6cOaNyni1btggWFhYac8h3332nlAGyyy7yWUC+/mFhYSrr8fLlS6FVq1bZrjMwMFDteyO/7sDAQK3qeO/ePa3fT10xWxERERWcjIwMqY3IwsJCZVuTrtLT04Vhw4ZpzBZWVlbC0aNHVS6flpamVdtRmzZtlNqPBEG7/CWfFbPLYGImcXJyEm7duiU4OzurXe+wYcM0vjdDhw5Vu2z58uWFS5cuCU5OTgIAwdvbW5e3PcfEfWVlZSUkJSUJgqD4nuzbt0/j8vJ5MmsGzWsjRoyQyoqMjNRrWUQFjU/2ERVjFSpUwPr16wEAd+/exciRIxWmp6SkoE+fPkhOToaFhQW2bNkCIyPFoTzDwsLQvn17vHz5EoaGhvDx8cHevXsRGRmJM2fOYN26dfjqq69UdjH16tUrNGvWDP/88w9MTEwwfPhw7Ny5ExcuXEBYWBimTJkCc3Nz/Pvvv2jfvj3i4uIUlr969SrGjx+PjIwMVK5cGYsXL8aJEydw+fJl/Pnnn1i3bh369OkDCwsLpbJHjBiBGzduAMi8y2jPnj04e/YsLly4gP379+OHH35A3bp1c/X+auvgwYN4/fq1VBeR+P+YmBgcOXIkX+qSncuXL+Pdu3cAAFdX1wKuDRERUeHUunVr6f+nT59Wmr5jxw58++23SEhIQJUqVbBkyRIcOXIEkZGR2L17Nzp06AAA2LBhg9L4clFRUYiKikKXLl0AAPb29tJr4o+2EhMT4enpiRMnTgAA3N3dsWbNGpw5cwYXL17E3r17MWbMGNjb22u9zq5duyIqKgpDhgxRqrP8j4ODg9br1BWzFRERUcG5fv261B1i8+bNpSfrc2Py5MlS9+iVK1fG6tWrcf78eYSFhWHMmDEwNjZGXFwcOnXqhH/++UdpeeH/e3tq2bIlFi5cKOWu8PBwbNy4EZ9//jkA4NixYxg2bJjS8lFRUQgNDZV+nzNnjlK2GTp0qM7blZiYCC8vL7x69QrTp09HeHg4Ll68iHXr1sHR0REAsGLFCoWy5S1YsAArV64EkDlW8IoVK3Du3Dn8+eefmDZtGuLi4tCjRw+lHhr0KTU1Fdu2bQMAdO/eHaampgCAFi1aoGLFigAKVy8Lp06dApDZNX7VqlULuDZEelbQVxuJSDX5O2KGDBkiREVFZfvz4cMHlevy8/OT1rVz507p9bFjx0qvr1u3Tmm5pKQkwd7eXgAgmJubq71jXBAE4eHDh0qv9enTR7qT6e7duyqXu3TpknTX+9SpUxWmzZgxQ7pT7Pnz52rLfvv2rZCenq5Qb2NjY62e3Hv16pXG6XmhS5cuAgDB2dlZyMjIkF5PT0+X3t+ePXtqXIf83efaHAuPHz/OUV179OghlbNr164crYOIiKioyOmTfcePH5eWGzBggMK02NhYwcrKSpqm7gmzqVOnCgAEAwMD4datW0rT5e8I16b+qnLamDFjFO4al88h8lJSUpSyVnbr9vf3z7cn47JitiIiIio4W7Zskc5t06ZNy/X6rl69Kj2VV6tWLeHNmzdK8/zxxx/SPA0bNlSanpGRIURHR2ss54cffhAACDKZTLhz547S9Hv37mn9tJm2T/bh/59+u3btmtI80dHRUk9bnTt3Vpr+7NkzaXrVqlWF2NhYpXnOnDkjlChRQiorP57s27t3r1TeyZMnFaZNmjRJACCYmJgIr1+/VrsO+Sf75syZo1UWy4mDBw9K5XTq1ClH6yAqSnixj6iQkg8O2v6o6y7p/fv3QrVq1QQAgrW1tfD48WPh2LFjgkwmEwAIXbt2VbncmjVrpHUvXbpUp/rfu3dPMDQ0FAAIBw4c0DjvxIkTBQCCvb29wusDBw4UAAhubm46lf3kyROtuw7Qt5cvX0oXHrNezBQEQRg/frwAQDA1NVUZaEXyDVLa/OQk4O3atUta3t3dXW2DIBERUXGR04t9ly9flpbr1q2bwrQff/xRACA4ODgIycnJateRmpoqODg4qM0Iub3Y9+bNG8Hc3Fw6r6elpWm9fdmtWxAK7mIfsxUREVHBWrZsmXR+W7ZsWa7XN2TIEGl9Z8+eVTuf/I3s58+f17mctLQ0qfvRRYsWKU3X18W+gIAAtevp3bu31FaX1c8//yyt4+DBg2rXIX9zV35c7OvWrZsAQHB0dFTKNteuXZPqsmrVKrXr0LZbePkfXb169Urq3tTQ0FC4dOmSzusgKmrYjSfRR0C+i87Xr1+jT58+8PHxgSAIqFChAtatW6dyuYMHD0rLDxw4UKcyDx06hPT0dJibm6N9+/Ya5/3iiy8AAE+fPsXDhw+l1ytUqAAAuHHjBs6fP6912TY2NihRogQAIDg4GGlpaTrVPS+FhIRIAxOrGoRafC05ORk7d+7M17rJu3nzJnx9fQEAZmZmCA4OhkwmK7D6EBERFWYlS5aU/h8fH68wbf/+/QCATp06wcTERO06jIyMpC6l/v777zyv48mTJ6UunUaOHAlDQ8M8L6MgMFsREREVLPnso2pYFV0dP34cAFCzZk00atRI7Xzy7VLiMupkZGTg6dOnuH37Nq5du4Zr167h5s2bUteZqroC1QeZTIY+ffqone7u7g4AeP36Nd6+faswTdxGW1tbje1q/fv3z31FtfT69WscOnQIANCnTx+lbFOzZk3Uq1cPQGZ7XEFJT09H37598eDBAwDA9OnT4ebmVmD1IcovvNhHVAT4+/tDyHwSV+OPs7Oz2nU0bNgQ/v7+AIA///wTT548gUwmQ2BgIGxtbVUuc/nyZQCZ4cPc3FynOl+8eBFAZv/kRkZGkMlkan86deokLff8+XPp/9988w2MjY2RkpKCpk2bwsvLC6tXr8a1a9ek/thVMTExQa9evQAAu3btQtWqVTFx4kQcPnxYKTzp26ZNmwAAn332mcpxWurWrYtatWoB0L5Pc22OhaCgIK3r+PTpU3To0AHx8fGQyWTYuHEjx5QhIiLSQL6Ry9LSUvp/eno6rly5AgBYs2aNxvwjk8mwa9cuAIr5J6+IOQ7IHE+nuGC2IiIiKljyY/QlJCTkal0pKSmIjo4GAI0X+gDAzc0NxsbGAIBr164pTRcEAVu2bIGnpydKliwJBwcHuLi4oHbt2tKPmNPEMQf1zdbWFjY2NmqnW1tbS//PegOZuI316tWDgYH6JvzatWtLN7zrW0hICD58+ABA9U1X8q//9ddf+O+//7JdZ2BgoFZZTBdDhw6Vxm/u1KkTZsyYodPyREUVL/YRfUSmTJmCKlWqSL/7+fmhbdu2aucXw4/4hJ0uYmJidK8goDCosIuLC0JCQlCmTBmkpaXh4MGDGDJkCGrXro1y5crh22+/xenTp1Wu59dff4WXlxcA4MGDB1i4cCE6duwIGxsbNGjQAAsXLkRcXFyO6qitmzdvShc91YUgAPj2228BAGfOnMG9e/f0WqesXr9+jS+//BL3798HACxfvhy9e/fO1zoQEREVNfINRPKNNK9fv85RjwLy+SevyNcxJ1muMGK2IiIiKnjyF69evHiRq3W9efNG+n+5cuU0zmtsbCyV/fr1a4VpycnJ6NixI7799luEh4cjKSlJ47qym55XsrtxXv4iXnp6usI08b0pW7asxnUYGhoq5FF9Em+kqlOnDmrXrq1ynj59+kg9Smh741VemjJlCtauXQsg84a3HTt2FJseLoiyY1TQFSCi/HPo0CHcvXtX+j0iIgJJSUkwMzPL87LEkGJra4uwsDCtl6tcubLC7927d0fr1q2xfft2hIaG4vTp04iNjcXLly+xZcsWbNmyBd7e3ti4caNCSLK0tMT+/ftx/vx57NixA+Hh4bhy5QrS09Nx8eJFXLx4EYsWLcLvv/8udaGV1+RDzdixYzF27FiN8wuCgM2bN0tPYOpbfHw82rVrh+vXrwMAZs+ejWHDhuVL2UREREWZ/FNzNWrUkP4v30jj5+eHUaNGabW+/Lobu6hjtiIiIip4devWlf5/6dKlPFtvbrq7/umnn/DHH38AAFq0aIFhw4bhs88+Q/ny5WFmZia1F33xxRc4ffq0zk+KEXD79m1piJ2rV69qtb+2bNmCmTNn5ltX5vPnz8fPP/8MILMXiIMHD+qlzZOosOLFPqKPxIsXL+Dn5wcg80LYu3fvcPPmTUyYMAG//vqrymVsbW3x+PFjPHv2TOfyxLut4uPj4erqmqu7aKysrDBo0CAMGjQIQOZd3fv27cPy5cvx9OlTbNq0CW5ubiob1Bo2bIiGDRtKdQkPD0dQUBD27NmDmJgYdO/eHf/991+en/wzMjKwdetWnZcLDg7OlwappKQkeHl54cKFCwCACRMmYPr06Xovl4iIqDg4duyY9P9mzZpJ/5e/q1oQBKk7yYIg3037s2fPlG6oKmqYrYiIiAqHmjVrwtbWFi9fvsTp06fx7t07hW7NdVGmTBnp/9k9JZiWloZXr14BUM5c69evB5D5JNfJkyfVdnuZ9YnAwqxMmTJ4/vw5YmNjNc6Xnp6u8ISkvuTkKb27d+8iIiIiX7qUX7lyJSZPngwAcHV1RWhoaI6PS6Kiihf7iD4SAwYMQGxsLAwMDHDw4EEsW7YMu3fvxooVK9CpUye0a9dOaZnPPvsMjx8/xsWLF5GYmKjTuH1ubm747bffkJKSgosXL2bb97ouXF1d4erqir59+8LV1RUJCQnYsWNHtnfPlypVCl5eXvDy8sKoUaMQEBCAZ8+eISIiAm3atMmz+gFAWFgYHj16BAAYMWIEmjRponH+c+fOYenSpfjvv/9w5swZNG3aNE/rIy81NRXdu3fHqVOnAADff/89FixYoLfyiIiIipNr167hxIkTAICKFSuifv360rQSJUqgZs2auH79Os6cOVNQVQSQmeNEf/75Z55f7MuvO7RFzFZERESFg0wmg7e3NxYvXoyEhASsX78+26ft1TExMUG1atUQHR2Nc+fOaZz38uXLSE1NBQCFG6pev34tjX/cs2dPtRf63r9/j9u3b6tdf35nm+zUrFkTz58/x5UrV5CRkaF2u6KiopCSkqLXuojjIQKZXXhOmTIl2/kHDBiA5ORkbN68We8X+4KDgzF8+HAAQJUqVXD8+HGFG9+IPha82Ef0EVi5ciUOHz4MAJg0aRKaN2+OmjVr4uzZs3jy5Al8fX0RFRWldCL08vLC/v37kZiYiLVr12L06NFal+nl5YWJEydCEAQsXboUISEheblJADIb2KpXr47Lly/rPLhyq1atEBAQAEA/AzOLdzwZGhpi+vTp2fY937p1a/z6669IS0vD5s2b9dYglZ6ejj59+kjdW3z77bdYuXKlXsoiIiIqbpKSktC/f3+p66fx48fDyEjxT6rOnTvj+vXruHXrFkJDQzWOj6xPnp6esLCwQEJCApYvX45+/frl6Xglpqam0v9TUlJgYmKSZ+tWhdmKiIio8BgzZgxWrVqFxMRE/PDDD+jQoQNcXFyyXS4jIwMhISHo27ev9Frr1q0RHR2N69ev4/z581LvTFmJT++Jy4jkx0tOSEhQW/b69es1jq2cNdsUtFatWuHEiRN4+fIl/vjjD3Ts2FHlfPkxLl54eDgePnwIAOjfv79W4xFv374d+/btw86dO7F8+XKF9zcv7dmzB76+vhAEAY6Ojjhx4gTs7e31UhZRYaf6lgAiKjZu376NCRMmAADc3d0xa9YsAJldHgQFBUEmk+H58+dSF5ny+vXrBwcHBwDAtGnTpLuVVXn8+LHC7zVq1EDPnj0BANu2bcOSJUs01vPevXtKFwR///13vH37Vu0yjx49wq1btwAojvV39+5djXUFgKNHj0r/z3qne3h4OGQyGWQyGXx8fDSuR5WEhATs2bMHQGYXEtk1RgGZXW21aNECALBjxw69BEtBEDBw4EDs2rULQOZ4iIGBgYXu7jUiIqLC6MaNG2jWrJk0Xl+LFi0wZMgQpflGjRqFkiVLAgB8fX2l8dvUOXToEK5evZrn9S1dujQGDx4MAIiMjMTo0aPVjk+TmpqKmJgYndZfoUIF6f///fefxnmZrYiIiIoXBwcHaUiYhIQEtGjRItt2mBs3bqBdu3ZYuHChwutDhgyRnlobNGgQ3r17p7Ts0aNHsWHDBgCZw7U0aNBAmla2bFmULl0aABASEqLynH/hwgXMmDFDY/1sbGykcZSzyzb5wdvbW7qZavTo0SpvVP/777+xYsWKbNfl7OwsZbGckL+g2L17d62W6dGjBwAgLi4O+/bty1G52Tl69Ci++eYbpKeno1y5cjh+/DicnZ31UhZRUcAn+4iKgJiYGFy7di3b+czMzPDJJ59Iv6empqJv375ITEyEmZkZtmzZAmNjY2l669atMWrUKCxduhR79+7Fxo0bMWDAAGm6qakpgoOD8eWXXyIxMRGtW7fGt99+i65du8LR0REpKSm4desWDh8+jP379ysFqlWrVuHixYu4e/cuxo0bh3379qF///6oWbMmTExM8OrVK/zzzz84cuQITp48iW7duuGbb76Rll+6dCn69u2Ljh07omXLlnB1dYWVlRXevHmDixcvYvny5UhKSgKQ2V2S6OHDh/D09MSnn36Kbt26oX79+tJFy0ePHmH79u3YsWMHAKBevXp52sUokHlX0fv37wFoH4LEeU+cOIG3b99i//790sXSrLQ5FgDAyckJpUqVkn4fP348AgMDAWR2eTF16lTcvHlT4zoKcqwhIiKi/JQ1byUkJODNmze4evUqTpw4gWPHjkkXyxo3boxdu3Yp5CqRnZ0dNm3ahB49euDZs2eoX78+fHx80L59ezg6OiI1NRWPHz/G+fPnsWvXLty9excHDhxAnTp18nybZs+ejWPHjiEqKgq//vor/v77bwwePBi1a9dGiRIl8PjxY5w+fRohISGYM2eOThfi5LvRHDNmDKZNm4YKFSpIjUjOzs5KTz3mFLMVERFR4ePr64vHjx/jhx9+QExMDDw8PPDll1+iS5cucHV1RenSpfH69WvcuXMHhw4dwpEjR5Ceno66desqrKd27doYN24cFi5ciH/++QefffYZJk2aBDc3NyQkJODAgQMICAhAeno6SpQogTVr1igsb2BggL59+2LFihW4evUqmjVrhrFjx6JatWqIi4vD4cOHsXLlSpQsWRL29va4c+eOyu0xMjJCgwYNcObMGWzcuBFubm6oV6+elPesra0VxgrUN3t7e/j7+2Pq1Kn4999/4e7ujsmTJ6N+/fpISUlBaGgoFi9eDHt7eyQkJCA2NlYvNxwlJiZi9+7dADIfItD2YpqXlxdKlCiBDx8+YPPmzejVq5fK+Z48eaJVFrO0tESlSpWk38+ePYtu3brhw4cPMDY2xi+//ILU1FSN63J0dJQuDBMVSwIRFUphYWECAJ1+6tatq7COKVOmSNNWrFihspzk5GShVq1aAgChZMmSwn///ac0z5EjR4QyZcpkW74qz549E5o3b65V/X19fRWWbdGiRbbLGBgYCLNnz87Re+fi4iLcvXtX43vv7e2tYS+p1rp1awGAIJPJhCdPnmi93PPnzwUDAwMBgNCpUyed34usP3v37lVYh5OTk87rICIiKs50zVtly5YVfvrpJyE1NTXbde/fv1+wtrbWKsucPHlSaXlvb28BgODk5KRV/cPCwlTOExsbK3zxxRfZ1iMwMFDndX/99ddq13fv3j2V62K2IiIiKl52794tODs7a3UerFmzphAaGqq0jvT0dGHo0KEal7WyslK5rCAIwtu3b4V69eqpXdba2lo4deqUdP5v0aKFyvUcPHhQkMlkKtfh7+8vzZddTtImxwmCIAQGBqrMTqKMjAxh8ODBarfL1tZWuHDhglCxYkUBgPD999+rLEc+s+hqy5Yt0rLz5s3TadkOHToIAAQjIyPh+fPn0uvy263tT5cuXRTW7e/vr/M6suZdouKG3XgSFVMRERGYP38+AKBDhw4YOnSoyvlMTEywdetWmJiY4P379+jXrx/S09MV5mnbti3u3r2LuXPnokmTJrCxsYGhoSEsLS3x2WefYfTo0Th//rzK9ZcvXx5//vknDh48iL59+6JKlSowNzeHsbExypYtiyZNmmDcuHE4deoUNm7cqLBsSEgI1q5diz59+qBevXooX748jIyMULJkSdSsWRNDhgzB5cuXMX36dIXlmjdvjvDwcEyZMgWenp6oWrUqSpUqBWNjY9jZ2eHLL7/E6tWrceXKFaUuPHPryZMnOHnyJADg888/16mfcDs7O2k8mSNHjiA2NjZP60ZERETaMTAwgJWVFSpVqoTmzZtj9OjR2L17Nx4/foypU6dq9cSal5cX7t27h0WLFqFly5aws7ODsbExzMzMULlyZXTq1AlLlizB/fv34enpqbdtsbW1xalTp7Bnzx706NEDjo6OMDExgampKapUqYKePXti69atCr0raGvLli1YsGABGjZsCCsrK6kLrrzEbEVERFS4ffXVV7h9+za2bt2Kfv36oUaNGihTpgyMjIxgbW2Nzz77DEOHDsXJkycRFRWFL7/8UmkdBgYGWLFiBf7880/07dsXlSpVgomJCSwtLVGvXj1MnToV0dHRKpcFACsrK5w5cwazZ89G7dq1YWpqipIlS8LV1RXjx4/HP//8gy+++CLbbenYsSNOnDiBLl26wN7eXmUvDvlJJpNh9erV2LdvH7788ktYW1vD1NQUVatWxciRI3H58mXUr19f6vrUysoqz+uQky48s86flpaG3377LU/rRUTKZIKgZuAGIiIiIiIiIiIiIiIqlB4/foyKFSsCANavX4/vvvuugGtERAWFT/YRERERERERERERERUxISEh0v8bN25cgDUhooLGJ/uIiIiIiIiIiIiIiAqRhIQEvHv3DhUqVFA5/fLly2jRogXi4+Ph7u6Oixcv5nMNiagwyX6wCSIiIiIiIiIiIiIiyjexsbFwdXVF165d0a5dO9SoUQMmJiZ4+vQpjhw5gg0bNiApKQkymQxLliwp6OoSUQHjk31ERERERERERERERIXI/fv3UblyZY3zlChRAuvWrUP//v3zqVZEVFjxYh8RERERERERERERUSGSmpqKvXv34siRI7hw4QJiY2Px+vVrmJubw9nZGa1bt8aIESPg5ORU0FUlokKAF/uIiIiIiIiIiIiIiIiIiqiPbsy+jIwMPH36FKVKlYJMJivo6hAREVEuCIKA+Ph42Nvbw8DAoKCr89FjziIiIio+mLMKF+YsIiKi4kFfGeuju9j39OlTVKxYsaCrQURERHno0aNHcHR0LOhqfPSYs4iIiIof5qzCgTmLiIioeMnrjPXRXewrVaoUgMw30tLSUm/l9OrVC9u3b9fb+vOzHJbBMlgGyygqZeRXOSyj8JTx7t07VKxYUTq/U8EqTjmLZRS+clgGy2AZLINl5G85zFmFC3MWy2AZhaMclsEyWAbLyC19ZayP7mKf2NWBpaWlXsORsbGxXtefn+WwDJbBMlhGUSkjv8phGYWrDADsyqiQKE45i2UUvnJYBstgGSyDZRRMOcxZhQNzFstgGYWjHJbBMlgGy8greZ2x2Ok6ERERERERERERERERURHFi31ERERERERERERERERERRQv9hEREREREREREREREREVUbzYR0RERERERERERERERFRE8WIfERERERERERERERERURHFi31ERERERERERERERERERRQv9hEREREREREREREREREVUUYFXYGiJjU1Fenp6dnOZ2Njg+TkZL3XJz/KYRksg2WwjKJSRn6VwzIKTxkfPnyAk5MTPnz4kC/H18fO0NAQxsbGelm3IAhITU1FRkZGtvMWh2O3OJWRX+WwDJbBMlgGy8jfcpiz8pc+c5a2bVlA8fmMsIyPr4z8KodlsAyWwTJyS5uMlZNcIBMEQciLChYV7969g5WVFeLi4mBpaanTci9fvkRKSopW88fExKBcuXI5rabW8qMclsEyWAbLKCpl5Fc5LKPwlJGRkYFHjx6hYsWKMDBghwX5wcTEBLa2tipzVE5y1ocPHxATE4PExEStG6GKw7FbnMrIr3JYBstgGSyDZeRvOcxZ+S+vc5aubVlA8fmMsIyPr4z8KodlsAyWwTJyS9uMpSkXqMIn+7Tw7t07PHnyBCVLloStrS2MjY0hk8k0LiOTyeDs7Kz3uuVHOSyDZbAMllFUysivclhG4SkjPT0dSUlJcHZ2hqGhod7Kof89eRcXF4cnT54AgE43TqmSmJiIR48ewdDQEGXKlIGZmRkMDQ0LRc5iGYWvHJbBMlgGy2AZ+VsOc1b+0UfOyklbFlB8PiMs4+MrI7/KYRksg2WwjNzKLmPlNBfwYp8WXr58iZIlS8LR0VGrYARkPmZpamqq55rlTzksg2WwDJZRVMrIr3JYRuEpQ3wSzNTUlI1Q+cDMzAylSpXC48eP8fLly1w3Qr18+RLGxsZwcnLSaf8Vh2O3OJWRX+WwDJbBMlgGy8jfcpiz8pc+cpaubVlA8fmMsIyPr4z8KodlsAyWwTJyS5uMlZNcwH4YspGamoqUlBRYWVnpFI6IiIiIiiOZTAYrKyukpKQgNTU1x+tJS0tDQkICrK2t2YBIREREhLzLWWzLIiIiKvp0zQW82JcN8SqrvgZJJiIiIipqxFyk7Rh7qqSlpQHI7IOeiIiIiDLlRc5iWxYREVHxoEsu4MU+LfFOKCIiIqJMeZmLmLGIiIiI/oc5i4iIiES6nMt5sY+IiIiIiIiIiIiIiIioiOLFPiIiIiIiIiIiIiIiIqIiihf7iIiIiIiIiIiIiIiIiIooo4KuQLEws5vSS9XyqegclzNzb15Wg4iIiEg/Cihn5aoM5iwiIiIqCopazmLGIiIiUotP9lGecHZ2hkwm0/pn5syZBV1lIsoFmUwGZ2dnpdf9/f0hk8lQu3ZtfPjwQeWygiCgVatWkMlk+O6773QqV/yuuX//vtZ1IiIqypixiD4uzFhERPmHOYvo48KcRcUdn+yjPNW0aVNUrVpV7fQjR47gxYsX+VgjIspP06dPx/79+3HlyhX4+/tj3rx5SvMsX74cJ0+ehJOTE3755ZcCqCURUdHDjEX0cWPGIiLSH+Ysoo8bcxYVF7zYR3nKz88PPj4+aqd7eHgwIBEVY8bGxti8eTPq16+PhQsXokuXLmjcuLE0PTo6GlOmTIFMJsPGjRthaWlZgLUlIio6mLGIPm7ZZaz79+8zYxER5RBzFtHHjTmLigt240lERHmqdu3amDlzJtLT0+Ht7Y2kpCQAkH5PTEzEsGHD0LJlywKuKREREVHRoSljTZo0iRmLiIiIKIeYs6g44MU+KlTCw8Oz7SNdlVu3bsHX1xdOTk4wMTGBtbU1WrVqhR07dqicf+bMmWr7Ww8KCoJMJlN5V9f9+/fV9qUcGxuLzZs3o0OHDqhcuTLMzMxgaWmJ+vXrY/78+UhOTta47T4+Phq3W1V9xGWCgoI0rltb4rZXr14dX3zxhdr52rRpI9Ura9nZ1Ul8Dz09PVVO12VfZmRkoHfv3pDJZOjTpw8yMjIUpgcEBKjczxkZGejTpw9kMhm++eYbpeUAIDIyEn379kWlSpWkerRt2xaHDx9W+76kpaVh48aNaN26NWxtbWFiYgJHR0e0bt0ay5cvl+bTZUwA+f3u4eGhNL1UqVJwcXHBmDFj8PDhQ6U6xcbGIiAgIMfHZU5NnDgRDRs2xJ07dzB16lQAwPr16/H333+jatWqmD9/vtplb9y4gZ49e8LW1hZmZmaoVasWFi1ahPT0dL3UlYjoY1DUM1ZAQAD8/PyKfMYSM4s6eZGx1I35kZcZa+bMmahevTozViHJWAsXLsTly5eZsYiICkhRz1nFpS2LOYs5K7eYs6ioYzeeVCjZ2dmhXbt2Cq9t2rRJ5byHDh1Cjx49kJycjBo1auCrr75CTEwMTp06hZMnTyI0NBQbNmzQe51DQ0MxZ84cODg4oGrVqmjcuDFiY2Nx7tw5TJ48Gfv27UNYWBhMTEw0ridrX/H//vsvzpw5o+/qKzl9+jSuXLmCevXqKbx+/fp1HD9+XC9l6rovDQwMEBwcjISEBISEhMDS0hKrV6/OtpwhQ4YgJCQEnTp1QnBwMAwMFO97WLZsGcaOHYuMjAzUq1cPjRo1wvPnzxEeHo6jR49i1qxZ+OGHHxSWiYuLQ6dOnRAREQFjY2M0adIE9vb2eP78Oa5evYoTJ05gxIgRAABvb2+FZd+/f4/du3fDwsICPXr0UJjWrFkzpfq3bdsW5cuXBwC8ffsWp0+fxtKlS7F161ZcvXpVmgZkHpejRo3K9rjMa4aGhti0aRPc3NywbNkyVKtWDQEBATAwMMCmTZtgbm6ucrmIiAi0a9cOCQkJqFKlCtq0aYOXL19i6tSpOHv2bJ7Xk4joY1NUM9aoUaNgZ2cHFxeXIp+xLl68yIz1EWWs7I5LXanKWP7+/sxYRESFQFHNWcWpLYs5izkrN5izqKgr8It98fHxmDFjBvbu3YuYmBjpw9SgQQOV8+/ZswerVq3ClStXkJKSgpo1a2LmzJlo27ZtPtec9EG828HV1VXpbhpVAenFixfo27cvkpOTMWfOHEydOlW6Y+rixYv48ssvsXHjRjRu3BgeHh56rbu7uzt27NiBnj17Krz+5s0b9O7dG0ePHkVAQAAmTJigcnnxjpysfcUHBQXle0Bq2LAhIiMjERAQgI0bNypMCwgIgKGhIZo3b47w8PA8K1OXfTlw4EBpOWNjY+zcuRMdOnTAmjVrYGlpiQULFqgtZ8KECVi7di1atmyJnTt3wshI8WswNDQUY8aMgY2NDXbv3q3whGNUVBQ6dOgAf39/tGjRAi1atJCmDRgwABEREXBzc8OePXsU7vZKS0vDoUOHpN+zHtv379/H7t27YWtrq/IusujoaIXfJ0+erHA8JyQkoEWLFoiMjMSuXbswfPhwaZq7uzv+/vtvhb7GAeXjsmvXrureshxzcXHB3LlzMXbsWAwbNgxA5vvfpEkTlfMnJyejT58+SEhIwOjRo7Fo0SIYGhoCAK5evYpWrVrh5cuXeV5PouKKGYvk6TNjyZ+X9UE8l9nY2KBatWrS60UxY7Vo0QIRERHMWIUkY2Wlj4yl7rjMDVUZy8/PjxmLKB8xZ5E8tmUxZzFnKU5ThTmLSP8KvBtPPz8/HDt2DMHBwYiKisKXX36J1q1b48mTJyrn//PPP9GmTRscPnwYkZGR8PT0hJeXFy5fvpzPNSd9SE1NBZB50tPGunXrEBcXB3d3d0ybNk2ha4T69etj2rRpADIfudY3V1dXpTuHAKBMmTLSY+87d+5Uu7z4CLq2265PDg4O6Ny5M0JCQhROSK9fv8aWLVvQuXNnODk55WmZudmXpqam2L9/Pxo1aoSFCxfip59+UlnGnDlzsGjRIjRu3Bj79u2Dqamp0jz+/v4QBAGrV69W6sq0du3aWLJkCQAodGXwzz//YM+ePTA1NcWBAweUunUwMjJCly5dtHsjcsDCwgKff/45ACh14+Dq6qoUjgDtj8vcGjp0KKysrAAA5cqVw+zZs9XOu3v3bjx69AgVK1bEggULpHAEAHXq1JGOASLSDjMWySvqGSs357LClLGcnZ3RsmVLZiwtM9bNmzeZsdSQz1j29vYYPXq02nmZsYjyHnMWySvqOau4tGUxZzFn5RXmLCqqCvTJvqSkJOzevRv79u2TvohmzpyJAwcOYNWqVZgzZ47SMkuXLlX4fe7cudi3bx8OHDgANze3/Kg26ZE4+Km2j2GLd+NkfZRc9N1332H8+PGIjo7GixcvFO4G14f09HScOHECf/31F549e4akpCQIggBBEAAAt2/fVrtsQkICAKh9JDy/jRw5Env37sXatWulfqrXrVuHxMREjBw5Ms/6Vhfpsi+fPn0Ke3t7heklS5bEH3/8gU8++QTTp0+XTsqi5cuXY8aMGShTpgwOHz6MkiVLKpXx8uVLnD9/HmZmZvDy8lJZD/EupL/++kt67ciRIwCAjh07wsHBQavtzStxcXH4448/sHnzZpibm6usd3p6OsLDw3N0XObWTz/9hLi4OACQurH48ssvVc4rHgNff/21yj8UvL29MWbMGL3Vlag4YcairPSZsZ4+fZonddQkPT0df/31F7Zt21bkM1b//v1x7NgxZqwsVGWs06dPA2DGUkU+Yz19+hTnz59HzZo1Vc7LjEWUt5izKCu2ZTFnMWfphjmLSD8K9GJfWloa0tPTle5IMDMzQ0REhFbryMjIQHx8PKytrVVOT0lJQUpKivT7u3fvcl5h0rtXr14ByLxTQxviXXOVK1dWOb106dKwtrbG69ev8fz587yppBrR0dHo3LmzUpeL8jQdf+K22NjY6Fy2r68vfH19AWT2L12mTBm4ubnBz88PX3/9tc7rAzKDQJ06dbBq1SpMnDgRALBixQrUqVMHHh4e2QYk+TppQ5d9+fjxY6WABGT2k/7mzRsAmRcrXVxcAAC///47rl69CiDzkf/Dhw+jb9++Ssvfu3cPgiAgKSkp25AeGxsr/f/BgwcAIJWnb56enkqvubu7IzAwUOn9i46ORrdu3XD9+nW169PX9+LFixcxb948GBsbY9CgQVixYgX8/PwQFRWlFGAB4PHjxwDUHwNlypSBlZWVFLiISL38yFhAZs768OGD9DtzVuGlz4z1+PFjrdebE7k9lxW2jNWoUaMin7Hq1q0LQP8ZS7yQzIylSFXGmjZtGr766itmLKJ8wJxFWbEtizmLOSt7zFnMWaR/BXqxr1SpUvj8888xe/ZsuLq6ws7ODiEhIfj7778VBnXVZNGiRXj//r3ak8C8efMwa9Yspdd79eql1SPmNjY28PHxgUwmU3gMV55+76/RD00n8awSExOznT8tLQ1AZl/VmuYV73Z69eqVwnxiGeJJzNTUVO165F8Xg+/Tp0/Vzi8+Cp6cnCzNIwaxrPUQtwHIPGlknSZ+gaelpSlN8/LyQnR0NDw9PeHn54eqVauiZMmSMDY2xocPH1CrVi2l+svX8b///lO5jVnrI78/xBPbZ599JnVFkJKSgrt37+LYsWM4duwY/vrrL6mP6eyIZYnb17t3b0ydOhUrV64EADx69AiDBw9GdHS0VHbWfa6qTvISExMRGhqKjIyMHO/Lhw8fKoXoFy9eYPjw4TA3N8eaNWswceJE3Lx5E0BmN5v29vb4+eef8f3332PYsGFwcnKCnZ2dwjrEi3YWFhZqnz6TJ+4P8YT9+vVrnT5bIk3HFfC/z4f4+WnevDlsbW0BZB7Xt27dQmRkJL7++musXr1aITx6eXnh9u3b2R6X2nzOs1JXXyBzf37zzTdIS0vDqFGjMHToUJw/fx4XLlyAn58f5s6dq7SMeEdgTExMtsfAvXv3pK5SstYpJ9uiK5ZReMoQ7+ojRfmRsQCo7W5Gm5ylTcYCinfOKi4Z6+HDhzAxMUF0dLTeMtbt27fxxRdfYPDgwXrLWMD/3i99Zax3794hMTFRrxkr67lQHxnrypUrAPSbsYD/dYumr4wFZL5v+sxYWfO7NnTNWJGRkTh79iwz1kdWRn6Uw5ylGnNWwWFbFtuyVGHOYs5iztIOyyg8ZegrYxXoxT4ACA4OxoABA+Dg4ABDQ0N89tln+OabbxAZGZntsr/99htmzZqFffv2oVy5cirnmTJlCsaOHSv9/u7dO1SsWBHbt2+HpaVltmUkJyfj3r17cHZ2VtknclGlSxcA0dHR2c4vDgxrZ2encV4zMzMAmcFTfj6xDPEE3bx5c7XrkX+9cuXKuHv3LpKTk1XOHxcXh7dv3wIAnJycpHnEO46y1kPcBgCwtLRUmiYGaiMjI4Vpt27dwu3bt2FjY4OjR48qDZQrfyeKqnpev34d79+/h52dnVLf2lnrI78/xGN4xIgRCgMhA8CaNWvw/fffY/369Vi4cKFWF7fFssTtGzNmDJYsWSL1g21jY4OxY8fCzMxMKjvrPtdUJyBzAN/KlSvDwMAgx/vy888/V+piYNSoUYiLi8PKlSvRr18/NGzYEE2aNMGrV69gZ2eH8PBwVKtWDfHx8Rg2bBjmzZunMNAwkBmMAMDAwAC7du2CgUH2w5pGR0ejdu3aADJP7DnpXkPdcSVfRrVq1aTPz48//qg0SLe/vz9+/PFHLFy4EAcPHgTwv+OyXLly2R6X5ubmOtddXX2BzMGj//33X7i7u2PRokUwMjLC/Pnz0blzZ+zatQvfffcd2rVrp7BM9erVcfr0aSQmJqpc79u3bxEfHw8g83jJ2p+8WKecbIuutPleZBn5U0Z6ejrHOlFD3xkLyPysi3fMArrlrOKasQDtc1ZxyViff/659N2tr4xVrlw5rF69Gq6urgrL5WXGAv73fukrY1laWsLc3FyvGSvruVAfGat58+aIiYnRa8YCgEqVKgHQX8YCMve5PjNW1vyuDV0zVkhICGrVqsWM9ZGVkR/lMGepx5xVMNiWxbYsVZizmLOYs7RTXDJQcShDXxlLu0+/Hn3yySc4deoU3r9/j0ePHuH8+fNITU1FlSpVNC63bds2+Pn5YceOHWjdurXa+UxMTGBpaanwQ4VTamoqwsLCAADNmjXTahnxJLFp0yaV0zdu3Agg88u/fPnyua+kGq9fvwYAlCtXTukkBABbtmzRuPzu3bsBAG3bts2zOn377bcAMu8wkR+YWBempqYYNGgQIiIiEBERAT8/P+kkndd02ZdZw9G6devwxx9/oHXr1vj+++8BZJ5se/fuDQAYPHiw9AU9ZMgQtGrVCocPH8b69esV1mNvb486deogPj5eGodPG+KJ/vDhw/kybpEqvXr1AgCcOnVKek08Lu3t7XN0XObUmTNnsGTJEpiYmGDTpk1S2Y6OjtKg1H5+fkpdGLRo0QIAsGPHDpV3Om3evFkv9SUqrvSdsQDmrKJC3xlLn2N85PZcxoyln4wl/l/fGat58+YAmLFE6jKWs7OzdEGAGYsofzBnkYhtWcxZAHNWTjFnEeWtAr/YJ7KwsECFChXw5s0bhIaGokuXLmrnDQkJga+vL0JCQtCxY8d8rCXpy4cPHzBy5EjExsbCw8NDbT/HWQ0cOBCWlpa4dOkS5s6dq/AI7OXLl6WBsSdMmKCXeouqV68OQ0ND3LlzRxqYVXTgwAH88ssvapd99OgRli9fDiDz5J1XDh8+DCDzsyU+Jp8TQ4cORceOHdGxY0etu1DIiZzuywcPHmDcuHGwtLTEhg0bIJPJpGni/7O+tnHjRlhaWmLs2LFSdwcisRxfX18cOHBAqZ6CIODcuXM4evSo9Fq9evXQpUsXJCUloUuXLnj48KHCMmlpadi/f79O74eutm3bBgAK+1o8LqOionQ+LnMqMTERPj4+yMjIwKxZs5QGMB48eDBatWqFJ0+eYPTo0QrTevToAQcHBzx8+BBTpkyRujkAgGvXrqkc6J6IsseM9XErLhkrKioK586dU5jGjKWdopyxPv30U2as/5ddxurduzczFlEBYM76uBWXnMW2rJxjzsod5iyivFXg3XiGhoZCEATUqFED//77LyZMmAAXFxdpMNQpU6bgyZMn0lXw3377Dd7e3li2bBkaNWokDVRrZmamcpBMKvw2bNiAKVOmIDY2Fg4ODlizZo3Wy9rZ2WHr1q3o2bMnpk2bhuDgYLi5uSEmJganTp1CWloafH19MXDgQJX97B4/fhzJyckKr0VFRQEAIiMjMXnyZIVp4t0bb968weTJk9GzZ0+4u7vD1tYWw4cPx7Jly9CqVSs0b94c9vb2uH37Ni5duoTp06er/HIfP348AgMD8fr1a1hYWGD16tVYvXq1wjz//vsvACAiIgI+Pj7o3bu30mPEO3fuxK1btwBk9nN+69Yt6QQ+adIkrbo9UMfBwUF6lF6fdNmXIkEQ4Ovri/j4eGzYsEHqgiA7lSpVwpIlS+Dn54cBAwbg+PHjUojy8vLCsmXLMG7cOHTu3BlVq1ZFjRo1YGVlhdjYWPzzzz+IiYnBpEmTFPpCDwwMRIcOHXD27FlUq1YNTZo0gb29PZ4/f46oqCjExsbmWX/MP//8szSodGJiIqKioqT9P2PGDGm+nB6XuTFx4kT8+++/aNy4McaPH680XSaTYcOGDahduzaCgoLQs2dPdOjQAUDm9/jWrVvRoUMHLF68GL///jsaNGiAV69eITw8HF5eXoiMjFQKtUSkGjMW5VfGUkUfGcvb2xvr16/XW8aaPHmy0rhGzFjMWMxYRKQKcxaxLYttWQBzli6Ys5izKB8IBWz79u1ClSpVhBIlSgjly5cXhg0bJrx9+1aa7u3tLbRo0UL6vUWLFgIApR9vb2+tyouLixMACHFxcVrNn5SUJNy4cUNISkrSZbOEO3fu6DR/TuVHOdqU4eTkJAAQAgMDNc4n7j9/f3/ptUmTJgkuLi7C9OnThZiYGLXLivtalRs3bgje3t6Co6OjYGxsLJQuXVrw9PQUtm3bpnI7/P39VR5Huv7Ib29GRoYwd+5cwd3dXShZsqRgZWUlNGvWTKqDqvqL75suP8HBwdLy3t7eStMNDAwEGxsboXXr1grbr43AwEABgNCtW7ds5xXLzrrP1b0uunfvngBAcHBwUDldm30pCggIEAAIHTp0ULmu4cOHKx1v8tq3by8AEAICApSmRUVFCYMGDRKqVasmmJqaCubm5kKVKlWEtm3bCgEBAcKTJ08EQVA8rlJSUoRVq1YJzZs3F0qXLi2UKFFCcHR0FNq0aSOsWLFCZR3k3xMnJyeV08UyVH3/GRoaCnZ2doKXl5dw9OhRpWUzMjKEDRs2ZHtc6vpdoqq+J06cEGQymWBmZibcunVL7XYIgiCsWbNGACDY29sLb968UZgvKipK+OqrrwRra2vBxMREcHV1FebNmyekpqZKn5l79+6prVNh+V5kGflTRlpamnDhwgUhLS1Nr+UURfrMWOrykS45K6cZSxCKx7GrbRlFIWPJb4u+MtaGDRuEWrVq6TVjhYWFSduhr4zl7e2d7X7PbcZSdy7My4wl7md9ZixB+N9xpa+MJZahz4wlvx3ayEnGki+DGevjKSM/ymHOUo85K3cKSxlFIWexLSt7zFn/w5ylGXMWyygsZeiSsXQ5pxf4xb78xot9LCMviCe0rCFA1zKcnJwU/gDQRAwv8gFJX4ra/mAZ+V9GdoEuL8rQFQPSx1kGG6EKBhuhWIa+ylGXsXQtIycZS/5inz6xDJahSU4ylq5l6IoZq3CWkR/lMGcVDOYslqGvMop7W5YgFL19wjLytwzmLJZRWMrQ18W+QjNmHxERERERERERERERERHppsDH7CMqisqUKYN58+bB3d09V+tZtGgRSpYsqdW8zZo1Q2BgIKpUqZKrMomIiIgKq4LMWC4uLoiPj89VuURERESFFduyiIiKN17sI8oBKysrpQGPc6JHjx5az1u1alVUrVpV5eDMRERERMVBQWYsALzYR0RERMUW27KIiIo3duNJREREREREREREREREVETxyT4iItKZv78/SpcuXdDVUFAY60RERESki8KYZwpjnYiIiIh0VRgzTWGsExVdvNhHREQ6mzlzZkFXQYlYJ3YPQkREREUVMxYRERGRfjBnUXHHbjyJiIiIiIiIiIiIiIiIiihe7CMiIiIiIiIiIiIiIiIqonixj4iIiIiIiIiIiIiIiKiI4sU+IiIiIiIiIiIiIiIioiKKF/uIiIiIiIiIiIiIiIiIiihe7CMiIiIiIiIiIiIiIiIqonixj4iIiIiIiIiIiIiIiKiI4sU+IiIiIiIiIiIiIiIioiKKF/uIiIiIiIiIiIiIiIiIiiijgq5AcdBy6EMVr5oAUPV6XstZOSdXVsrTWjg7O+PBgwdaz+/v74+ZM2fmaR2IqHAQvw8EQVB4fffu3ZgyZQrKly+P69evw9raWuXyvr6+CAoKQqtWrXDs2DHIZDKtyw4PD4enpye8vb0RFBSUm80gokKi4HJWzsvIy5zFjEVEInUZKzAwEAMGDGDGIiKdFbWcxbYsItIX5iwqDnixj/JU06ZNUbVqVbXTjxw5ghcvXuRjjYiosOjevTsiIiJw6NAhDBs2DCEhIUrzHDhwAEFBQbC0tMTGjRsVwpGHhwdOnTqFsLAweHh45GPNiYgKHjMWEanj6+uLzZs3Izw8nBmLiCgHmLOISB3mLCpKeLGP8pSfnx98fHzUTvfw8GBAIvqIrVu3DrVq1cK2bdvQvXt39OjRQ5r26tUrDBw4EACwdOlSVKqUt3dtEhEVZcxYRKTJnDlz0LlzZ2YsIqIcYM4iIk2Ys6io4Jh9RESUbypUqIBff/0VADBkyBDExMRI04YOHYoXL17Ay8sLvr6+BVVFIiIioiKnXLlyzFhEREREesCcRUVFgV7si4+Px+jRo+Hk5AQzMzM0adIEFy5cUDv/s2fP0KdPH1SvXh0GBgYYPXp0/lWW8kV4eDhkMpnGH1Vu3boFX19fODk5wcTEBNbW1mjVqhV27Nihcv6ZM2dCJpOp7Gs9KCgIMplM5V1d9+/fh0wmg7Ozs9K02NhYbN68GR06dEDlypVhZmYGS0tL1K9fH/Pnz0dycrLGbffx8dG43arqIy6TV/05i9tevXp1fPHFF2rna9OmjVSvrGVnVyfxPfT09FQ5XZd9mZGRgd69e0Mmk6FPnz7IyMhQmB4QEKByP2dkZKBPnz6QyWT45ptvlJYDgMjISPTt2xeVKlWS6tG2bVscPnxY7fuSlpaGjRs3onXr1rC1tYWJiQkcHR3RunVrLF++XJovu2Nc3X738PBQml6qVCm4uLhgzJgxePhQecyD2NhYBAQE5Pi41IdvvvkG3bt3x8uXLzF48GAAwLZt27Bjxw5YW1tj7dq1CvOL3wunTp0CAHh6eiq8B+zPnEg15iySV9QzVkBAAPz8/Ip8xhIzizp5kbFUvYdA3masmTNnonr16sxYzFhEHy3mLJJX1HNWcWnLYs5iztIn5iwqCgq0G08/Pz9cu3YNwcHBsLe3x5YtW9C6dWvcuHEDDg4OSvOnpKSgbNmymD59On755ZcCqDHlFzs7O7Rr107htU2bNqmc99ChQ+jRoweSk5NRo0YNfPXVV4iJicGpU6dw8uRJhIaGYsOGDXqvc2hoKObMmQMHBwdUrVoVjRs3RmxsLM6dO4fJkydj3759CAsLg4mJicb1ZO0r/t9//8WZM2f0XX0lp0+fxpUrV1CvXj2F169fv47jx4/rpUxd96WBgQGCg4ORkJCAkJAQWFpaYvXq1dmWM2TIEISEhKBTp04IDg6GgYHifQ/Lli3D2LFjkZGRgXr16qFRo0Z4/vw5wsPDcfToUcyaNQs//PCDwjJxcXHo1KkTIiIiYGxsjCZNmsDe3h7Pnz/H1atXceLECYwYMQIA4O3trbDs+/fvsXv3blhYWCh0BQAAzZo1U6p/27ZtUb58eQDA27dvcfr0aSxduhRbt27F1atXpWlA5nE5atSobI/L/LZq1SqcPn0av//+OxYuXIiff/4ZALBixQqF+gNA+fLl4e3tLY2TIL/9ADSOrUD0MWPOIlWKasYaNWoU7Ozs4OLiUuQz1sWLF5mxPqKMld1xmdeYsYjyB3MWqVJUc1ZxastizmLO0ifmLCrsCuxiX1JSEnbv3o19+/ZJTxDNnDkTBw4cwKpVqzBnzhylZZydnbFs2TIAwMaNG/O1vpQ/0tPTAQCurq5KdzioCkgvXrxA3759kZycjDlz5mDq1KnSHVMXL17El19+iY0bN6Jx48bw0PMgqO7u7tixYwd69uyp8PqbN2/Qu3dvHD16FAEBAZgwYYLK5cU7crL2FR8UFJTvAalhw4aIjIxEQECA0mctICAAhoaGaN68OcLDw/OsTF32pdgXNgAYGxtj586d6NChA9asWQNLS0ssWLBAbTkTJkzA2rVr0bJlS+zcuRNGRopfg6GhoRgzZgxsbGywe/duhScco6Ki0KFDB/j7+6NFixZo0aKFNG3AgAGIiIiAm5sb9uzZo3C3V1paGg4dOiT9nvXYvn//Pnbv3g1bW1uVd/ZER0cr/D558mSF4zkhIQEtWrRAZGQkdu3aheHDh0vT3N3d8ffff6Nx48YK68h6XHbt2lXdW6YXZcuWxerVq/HVV19h4sSJAICePXuid+/eSvO6uLggKCgIHv8/TkLW7SciZcxZlJU+M5b8eVkfxHOZjY0NqlWrJr1eFDNWixYtEBERwYxVSDJWVvrIWOqOS31hxiLSP+YsyoptWcxZzFmK01RhzmLOIv0rsG4809LSkJ6eDlNTU4XXzczMEBERkWflpKSk4N27dwo/VHilpqYCyDzpaWPdunWIi4uDu7s7pk2bptA1Qv369TFt2jQAwMKFC/O+slm4uroq3TkEAGXKlJEee9+5c6fa5cVH0LXddn1ycHBA586dERISgpcvX0qvv379Glu2bEHnzp3h5OSUp2XmZl+amppi//79aNSoERYuXIiffvpJZRlz5szBokWL0LhxY+zbt0/p+wcA/P39IQgCVq9erdSVae3atbFkyRIAUOjK4J9//sGePXtgamqKAwcOKHXrYGRkhC5dumj3RuSAhYUFPv/8cwBQ6sbB1dVVKRwB2h+X+tStWze4uLgAAExMTLBy5coCqQdRccScRVkV9YyVm3NZYcpYzs7OaNmyJTOWlhnr5s2bzFg5wIxFpF/MWZRVUc9ZxaUtizmLOSs/MGdRYVZgT/aVKlUKn3/+OWbPng1XV1fY2dkhJCQEf//9d54+xjpv3jzMmjVL6fVevXppdSKysbGR+m02NDRUM1f+PjKcF7I+KaRJYmJitvOnpaUByLyjRdO8SUlJAIBXr14pzCeW8d9//0nrU7ce+dfFPqfbt2+vcn7xjono6Gjcv39fev3Vq1cq6yFuAwC8e/dOadrjx4811i8+Ph6bNm3C5cuXERsbi+TkZAiCAEEQAGSeSNVtlzi469u3bxXmyVof+f0hhv3s3ndtiWWlpaXh66+/xt69ezF37lwMGTIEALB27VokJibiq6++wp49e1SWnV2dxPcwIyMjx/syIiICdnZ2SvP8+uuvaN26NaZPn46UlBQpcL969QozZszAnDlzYGVlheXLl+PZs2dKy79+/Rrnz5+HqakpXFxcVNajUqVKADK7ORX3x5YtWwBk3kWmzeclq+yOK3Gd4ufn8ePH0nzx8fE4deoUgoKCYGZmhlq1aimtIz09HefOndN4XOak3uqI3wdZ15e1jF27duHWrVsAMv+QXbVqlcq7oUSqtj8r8b1U9fnNS3n5frGM3BGPY1KUXzlL3R+l2uQs7TIWUJxzVnHJWBEREShVqhSio6P1lrHS09Px559/YsWKFXrLWMD/3i99Zax3797h66+/xrFjx/SWsdLS0hSOLX1krDdv3gDQb8YCgJMnTwLQX8YCMve5PjNW1vyeG+oylrgd4uvMWB9HGflRDnOWasxZBYdtWWzLUoU5izmLOUs7xSUDFYcy9JWxCnTMvuDgYAwYMAAODg4wNDTEZ599hm+++QaRkZF5VsaUKVMwduxY6fd3796hYsWK2L59OywtLbNdPjk5Gffu3YOzs7PKOycyKQ8kWtjJd4GUnejo6GznFx8ft7Oz0zivmZkZACh1wySWIQ5a6ujoqHY9WbtvAoBGjRqpnd/a2hqvX79GXFycNI+NjY3KeojbAACWlpZK08RAbWRkpDQtOjoavXv31vhF8P79e7X1fPv2LYDMO27k58laH/n9IR7DkydPxuTJkwEAhoaGKFOmDNzc3ODn54evv/5abX2yEssyMjJCv379sHDhQuzcuVPqSmD79u2oU6cO+vXrJ/V1nnWfq6qTKgYGBjnelyVKlFA5z5YtWxAXFwcg884n8U6b06dP4+rVqwAy+yO/ffs2+vbtq7T8hQsXIAgCkpOTUatWLbV1BzLDlLg/EhISAGTetaXLZ0uk6bgC/vf5ED8/3377rdI87u7uCAwMRO3atZWW7dGjB65fv662/Pfv38Pc3DxHdVdF/D5Q9RkRX3v48KHUt/no0aOxdOlSLFy4EP3791d7p524/Zq+H548eQJA9ec3L2nzvcgy8qeM9PR0XL58WW/rL8ryI2dNmDBB6r4E0C1naZexgOKcs4pLxipRooR0HtFXxtLmXJbbjCWWVa1aNb1lLEtLS7Ro0QJ16tTRW8YyMjJSOK/rI2PVrVsXgH4zFgDExsYC0F/GAjL3uT4zVtb8nhvqMpZYn2rVqjFjfURl5Ec5zFnqMWcVDLZlsS1LFeYs5izmLO0UlwxUHMrQV8Yq0It9n3zyCU6dOoWEhAS8e/cOFSpUQK9evVClSpU8K8PExCTfB+uknBO/3Ozt7Qu4Jrrr0aMHoqOj0alTJ0ycOBGffvopLC0tYWxsjA8fPmg8DjMyMnDv3j0AQOXKlXUuW34g5OTkZNy6dQvHjh3DsWPHcPv2bcyYMSNH2zRq1Ch899132Lt3LwDg0aNHSoP5alMneeIAvnnt6dOnGDlyJCwsLHDw4EH0798fN2/eBJDZzWalSpUQFBQELy8vjBgxAp6enkrHmdhtQMmSJdG9e/c8r2NekR/UNzExEVevXkVkZCS+/fZb7N+/X7pjC4AUjnJyXOqLIAgYMGAA3r17hwEDBuCXX37B27dvERQUhO+++w7Hjh1T6PqCiHImv3KW5gYkKiyKesa6fv06PD09MWvWLGasQpCxrly5AoAZixmL6OPFnEXyinrOYluW6jrJY87KPeYsIv0r0It9IgsLC1hYWODNmzcIDQ3VOCApFW83btwAANSsWVOr+R0cHHDr1i3cvXtX5fS4uDi8fv0aAFQ+Kp9Xbt26hatXr8LGxgZ79+5VGig3u8d+b968iXfv3sHOzg4VK1bUufysAyEDwJo1a/D9999j/vz5mDx5co76T+/Tpw8mTZqEgIAAAJl3j6m6i0jbOgH/G8A3K132pYODg8ry3rx5g5UrV8LDwwPHjx9HkyZN8OrVK9jZ2eH48eOoVq0aFixYgGHDhmHgwIEKAw0DkN57mUyGjRs3wsBAu2FNxUAiPsavb6oG9fX398ePP/6IoUOH4uDBg1J9rl69inLlyuXouNSXlStX4sSJE6hYsSJ++eUXAMAvv/yCY8eO4cSJE9KxS0R5gzmLAP1mLAcHByQmJuZNRbOQP5etWLECrq6uCtOZsf4nPzNW8+bNERMTo/eMVaFCBQDMWNpixiLKf8xZBLAtizmLOUsbzFlE+qfdp19PQkNDceTIEdy7dw/Hjh2Dp6cnXFxc4OvrCyCzC87+/fsrLHPlyhVcuXIF79+/R2xsLK5cuSKdVKloS01NRVhYGACgWbNmWi0jniQ2bdqkcvrGjRsBZD6CLd49og/iibtcuXJKJyEA0phu6oiBoW3btnlWJ/Hx+ISEBIWBiXVhamqKQYMGISIiAhEREfDz85MeP89ruuzLrAFp3bp1+OOPP9C6dWvpxFq9enWpz+zBgwdLj14PGTIErVq1wuHDh7F+/XqF9djb26NOnTqIj4/HkSNHtK57u3btAGT21f706VOtl8tLvXr1AgCp+xDgf8elvb19jo5Lffjvv/8wadIkKYSKXWWULl0a69atA5DZXY38uASiEiVKAPhfP+pEpBlzFon0nbFUNVzkldyey5ix9JOxxP/rO2M1b94cADOWNh4+fMiMRZSPmLNIxLYs5iyAOSunmLOI8laBXuyLi4vDsGHD4OLigv79+6NZs2YIDQ2V7tp49uwZHj5U7D/czc0Nbm5uiIyMxG+//QY3Nzd06NChIKpPeejDhw8YOXIkYmNj4eHhofXj/wMHDoSlpSUuXbqEuXPnKgxuefnyZcyZMwdA5heuPlWvXh2Ghoa4c+cOwsPDFaYdOHBAuuNDlUePHmH58uUAIA0enBfEQYItLCxga2ub4/UMHToUHTt2RMeOHTFs2LC8qp6SnO7LBw8eYNy4cbC0tMSGDRsUHpkX/5/1NfHEPHbsWDx48EBhfWI5vr6+OHDggFI9BUHAuXPncPToUem1evXqoUuXLkhKSkKXLl2UvrfS0tKwf/9+nd4PXW3btg0AFPa1eFxGRUXpfFzqQ0ZGBnx8fJCQkIDBgwejdevWCtPbt2+PAQMG4P379xgwYIDSYLWOjo4AoLHPdiL6H+YsAopPxoqKisK5c+cUpjFjaacoZ6xPP/2UGUsLGRkZmDRpEjMWUT5iziKg+OQstmXlHHNW7jBnEeWtAu3G8+uvv9Y44GpQUJDSa1k/MFT0bdiwAVOmTEFsbCwcHBywZs0arZe1s7PD1q1b0bNnT0ybNg3BwcFwc3NDTEwMTp06hbS0NPj6+mLgwIEqH/M+fvw4kpOTFV6LiooCAERGRioNyisOmPvmzRtMnjwZPXv2hLu7O2xtbTF8+HAsW7YMrVq1QvPmzWFvb4/bt2/j0qVLmD59unTilTd+/HgEBgbi9evXsLCwwOrVq7F69WqFef79918AQEREBHx8fNC7d2+lAUJ37twpPXafkpKCW7duSSfwSZMm5ajbA5GDg4P0KL0+6bIvRYIgwNfXF/Hx8diwYYNC/96aVKpUCUuWLIGfnx8GDBiA48ePSyHKy8sLy5Ytw7hx49C5c2dUrVoVNWrUgJWVFWJjY/HPP/8gJiYGkyZNwpdffimtMzAwEB06dMDZs2dRrVo1NGnSBPb29nj+/DmioqIQGxubZ99fP//8s/T9mJiYiKioKGn/y/dpn9PjUl8CAwMRERGBypUrY+HChSrnEbtACAsLw6pVqzB06FBpWvfu3REYGIiJEyfi+PHjKFeuHGQyGQYMGIAmTZrk12YQFRnMWZRfGUsVfWQsb29vrF+/Xm8Za/LkyTA0NFSYhxmLGasoZKwlS5YgMjKSGYsoHzFnEduy2JYFMGfpgjmLOYvygfCRiYuLEwAIcXFxWs2flJQk3LhxQ0hKStKpnDt37uSkejrLj3K0KcPJyUkAIAQGBmqcr0WLFgIAwd/fX3pt0qRJgouLizB9+nQhJiZG7bIABHWH7I0bNwRvb2/B0dFRMDY2FkqXLi14enoK27ZtU7kd/v7+0vpy8yO/vRkZGcLcuXMFd3d3oWTJkoKVlZXQrFkzqQ6q6i++b7r8BAcHS8t7e3srTTcwMBBsbGyE1q1bK2y/NgIDAwUAQrdu3bKdVyw76z5X97ro3r17AgDBwcFB5XRt9qUoICBAACB06NBB5bqGDx+udLzJa9++vQBACAgIUJoWFRUlDBo0SKhWrZpgamoqmJubC1WqVBHatm0rBAQECE+ePBEEQfG4SklJEVatWiU0b95cKF26tFCiRAnB0dFRaNOmjbBixQqVdZB/T5ycnFROF8sQPz/yP4aGhoKdnZ3g5eUlHD16VGnZjIwMYcOGDdkel3n5XSIe1/Ju3LghmJiYCDKZTAgPD9e4fGhoqABAsLCwEO7evaswbd26dcJnn30mmJubq/wchoWFCQAEb2/vvNoclQrLdy/LEIS0tDThwoULQlpaml7LIUXq8pEuOSunGUsQisexq20ZRSFjyW+LvjLWhg0bhFq1auk1Y4WFhUnboa+M5e3tne1+z23GcnJyUllGXmYscT/rM2MJwv+OK31lLLEMfWYs+e3ILXUZy9TUlBnrIywjP8phzioYzFn5V0ZRyFlsy8oec9b/MGflHHMWy8jPMnTJWLqc03mxLxu82McyVBFPaFlDgK5lODk5CS1atNBqXjG8yAckfSlq+4NlFK4yVAWkvC5DHQakj68MNkIVDDZCsQx9laMuY+laRk4ylvzFPn1iGSwjp9RlrLwsQx1mrMJXRn6Uw5xVMJizWIa+yijubVmCUPT2CcsoPGUwZ7GM/CxDXxf7CnTMPiIiIiIiIiIiIiIiIiLKuQIds4+oqCpTpgzmzZsHd3f3XK1n0aJFKFmypFbzNmvWDIGBgahSpUquyiQiIiIqrAoyY7m4uCA+Pj5X5RIREREVVmzLIiIq3nixjygHrKyslAY8zokePXpoPW/VqlVRtWpVlYMzExERERUHBZmxAPBiHxERERVbbMsiIire2I0nERERERERERERERERURHFJ/uIiChPjR49Gm/fvi2Qsp2dnTF8+HC0atWqQMonIiIi0hdmLCIiIiL9YM6i4oAX+4iIKE+NHj26wMp2dnbGyJEjUa1atQKrAxEREZE+MGMRERER6QdzFhUH7MaTiIiIiIiIiIiIiIiIqIjixT4iIiIiIiIiIiIiIiKiIooX+4iIiIiIiIiIiIiIiIiKKF7sIyIiIiIiIiIiIiIiIiqieLGPiIiIiIiIiIiIiIiIqIjixT4iIiIiIiIiIiIiIiKiIooX+4iIiIiIiIiIiIiIiIiKKF7sIyIiIiIiIiIiIiIiIiqijAq6AsXBw4cP8fLlS6XX4uPj86XsnJRja2uLSpUq6aFGRERERHmnoHJWbspgziIiIqKioKjlLGYsIiIi9XixL5cePnwIV1dXJCYmFnRVdGJubo6bN28yJBEREVGhxZxFREREpB9FMWcxYxEREanHbjxz6eXLl0hMTMSWLVsQGRkp/ezdu1fh99z8bNq0CRYWFqhTpw7+/PPPXJezZcsWJCYmKt29lRvOzs6QyWRa/8ycOTPPyqa8NXPmTFSvXh1BQUEKr8fExKBs2bKQyWT47bff1C4fHh4OAwMDmJub486dO1qXGxQUBJlMBh8fH5V1kslkSnUiopyTyWTw9PRUet3f3x8ymQy1a9fGhw8fVC4rCAJatWoFmUyG7777Tueyxc97bs4F3bp1g5mZGR4/fqw0TSaTwdnZWel1fW+beC68f/8+AKB9+/aQyWS4d++e2mW8vb0hk8nQtm1btfMkJyfj008/hUwmw+zZs3WqE6D5O7R169awtLTE8+fPdV5vfsiPnKXuJ6dl5HXOYsYqPsTP4p49exRe13fGEonHEhHlDXV5JikpCW3btoVMJsPcuXPVLn/r1i2YmZnBwMAAp06d0rrc8PBwyGQyeHh4aF0nXRSmjPXs2TMYGBigRYsWaucprH+nFvaMBegnZ2lqv2JbFhGRfmnKJi4uLqhevbpesonIw8MD1atXl9pECpq683RhyA6bNm3Sen264JN9ecTV1RWfffaZ9HupUqVQrVq1XK/3/PnzGDFiBOrWrYsjR46gVKlSCtPzqpy80rRpU1StWlXt9CNHjuDFixf5WCPKK+XKlcOqVavQs2dPjBgxAp6enqhQoYLCPPHx8fDx8YEgCJg3bx6qV69eQLUlopyaPn069u/fjytXrsDf3x/z5s1Tmmf58uU4efIknJyc8MsvvyhMc3Z2xoMHD3Dv3j2VjUF54fjx4/j9998xfvx4ODo6IjY2VqvlcrttuurevTuOHDmCPXv2YNy4cSrnWbZsGU6cOIGjR49izZo1GDx4sNI8U6dOxc2bN9GgQQNMmTJFYZrYcC8IQo7q+PPPP0vrDQwMzNE68oO+cpYmzFiUX3KbsYKCguDr6wtvb2/eGEVUCJiZmWHBggXo3bs3Zs2aBS8vL9SuXVthnvT0dHh7eyM5ORmjR4/WeDErP2XNWOnp6Votp6/8WKFCBTRp0gQRERGIiYlBuXLllNZbWP9OLSoZC8i7nJVd+5U85iwiovxjZmaGTZs2oWnTpjnKJuHh4fD09ESLFi0QHh6ez7XPe9pkh/fv3xfJNu4CfbIvPT0dM2bMQOXKlWFmZoZPPvkEs2fPzrbBasWKFXB1dYWZmRlq1KiBzZs351ON89f58+fRpk0b1KpVK9ugVFj4+fkhKChI7Y+Li0tBV5FyoUePHujduzdev36NgQMHKk0fM2YMHjx4AA8PD4wcObIAakhEuWVsbIzNmzejRIkSWLhwIc6ePaswPTo6GlOmTIFMJsPGjRthaWmZ73UcM2YMTE1NMXnyZJ2Wy+9t69q1KwwNDbF7926185QuXRobNmwAAIwfP17pKcA///wTy5Ytg6mpKTZt2gQjI+3u05LPWD/99BMAYP/+/UoZq379+ujUqRM2bdqEf/7556PJWEURM1bxxoxFVLzUrVsXEyZMwIcPH9C/f3+kpqYqTJ83bx7Onz+PGjVqaLzDPr8VxozVvXt3ZGRk4Pfff1c7T35/h4o5a9myZQCAiRMnKrVlZc1YQPFuyyqK7VfymLOIqLhr1KgRvvvuuyKXTfQlu+wwd+7cIvn3V4Fe7Js/fz5WrVqFX3/9FTdv3sT8+fOxYMECLF++XO0yq1atwpQpUzBz5kxcv34ds2bNwrBhw3DgwIF8rLn+FfWgRMXXihUrUL58eRw6dAgbN26UXj98+DA2bNiAUqVKITAwkN1EERVhtWvXxsyZM6U7u5KSkgD8706vxMREDBs2DC1btsz3uh07dgzXrl1D165dYWNjo/Py+blttra2aN68Oc6ePYunT5+qna9t27YYNGgQ3r9/D19fX6mhSPw9IyMDc+bMgaurq9Zly2esYcOGAQD++OMPlRnru+++gyAIGDJkyEeRsYgKK2YsouJl1qxZqFWrFq5cuaLQDfc///yDH3/8EYaGhti8eTPMzMwKsJb/U1gz1ldffQUAGm+eAvL3O1TMWe3btwcA9OzZU2Vblpixli1bVqzbsth+RURUNIwcObJIZRN905Qddu3aVST//irQi31//fUXunTpgo4dO8LZ2Rk9evTAl19+ifPnz6tdJjg4GIMHD0avXr1QpUoV9O7dG4MGDcL8+fPzseb69TEHJXH8AU0/qty6dQu+vr5wcnKCiYkJrK2t0apVK+zYsUPl/GL/uKr6W9fUr+79+/fVjlMQGxuLzZs3o0OHDtLTqpaWlqhfvz7mz5+P5ORkjdvu4+OjcbtV1UdcJj+7bLK2tsbatWsBZN4h+ejRI7x58wZ+fn4AgMWLF6vtui8tLQ1Lly5F7dq1UatWLZQtWxbdu3dHVFSUXuq6ceNGtGzZEo6OjtL+cHV1xZgxY1SOofXgwQPMnz8fLVu2RKVKlWBiYoLSpUujWbNmWLNmDTIyMnSug6bjVhzbQtM+PHnyJEaOHAlHR0eYmJigbNmyaNCgAfz9/fHq1StpPk3H7bFjx2Bubg4LCwucPHlSZTmenp4aj7+s9VN37L179w4zZ85EvXr1ULJkSZiamqJatWoYNWqUym5PNNUbUB4DTV5aWhrWr18PDw8PWFtbw8TEBJUrV4a/vz8ePXqkNL+m8U1EHh4ekMlkSt0SqHsdAMLCwjR+TgHgzp07GDx4MD755BOYmprCysoKX3zxBbZs2aK2HtWrV5fuflbl4cOHMDIy0niM5cbEiRPRsGFD3LlzB1OnTgUALFy4EH///TeqVq2qdN4V9+WDBw8AAJUrV4ZMJpO2I6+6evj1118BQO17rQ1dt03ejRs30LNnT9ja2sLMzAy1atXCokWL1HZz1b17dwiCgL1792qs06JFi+Ds7IxTp04hICAAQOaTfnfv3kWzZs0wZswYhfnF85go62f2xIkTUsYqXbo0AKBmzZoqM1bHjh1ha2uLs2fPwtvbu1hnrI9ZUc9YAQEB8PPzY8bK8v44OzvD19cXALBp0yZpm6pXr67xfKet169fw9vbG25ubihbtixKlCiB8uXLo2nTpggJCVE5Ntfx48cxYsQI1KtXD7a2tjAxMYGjoyN69eqFCxcu6FwHTcdNSkqKdJ5RdwwnJiZi6dKlaNasGcqUKQMTExM4OTnBy8tLaYwOded7QRAwaNAgyGQyNG7cGHFxcUrlaPqMiXXMSl29L1++jH79+ink0aZNm2Lt2rUqzzdiblB1rs0u/zx9+hRjx46Fq6srzM3NUapUKTRo0AC//vor0tLSlObP7rOh7rOs6TMO/G8MW3XbAQC7du1Cu3btpGPRwcEB/fr1w40bN9TWQyaToVSpUnj37p3Kdf7000/Z5ricKlGiBDZv3gxjY2PMmzcPkZGRCnfTT5o0CQ0bNlS7/ObNm9GgQQOYm5vD2toa7dq1w+nTp/O0jvIKImOpy4/iT3h4OJycnODu7o6wsDC8fftWbdl59Xeqqalptn+nim1ZYpdeDRo0UNmWJWaskJAQBAYGFsu2rI+5/UpeUc9ZRb0tK7t2BUB928KNGzfg7++Ppk2bwsHBASVKlICNjQ1at26tdj9oIn/+ye5H3fafOHECw4YNQ4UKFVCiRAmUK1cO3bp1w99//61yfvljbN26dXB3d4eFhQVKly6NDh06KD1tLU9du8qQIUNUtquInjx5ggkTJqB27dooVaoULCwsUL16dfj4+OCvv/5Smj8pKQmLFy9G48aNUbp0aZiamqJGjRqYOHGiQtuWSFMbTEFkm+rVq+c42+ijjSmncpJNPDw84OnpCQA4deqUwjGcV0O3aGr7Ey+2qfvuy438zA75pUDH7GvSpAnWrl2LO3fuoHr16vjnn38QERGBJUuWqF0mJSUFpqamCq+ZmZnh/PnzSE1NhbGxsdL8KSkp0u/qQn5hwaCUyc7ODu3atVN4Td3AlYcOHUKPHj2QnJyMGjVq4KuvvkJMTAxOnTqFkydPIjQ0VOoiTZ9CQ0MxZ84cODg4oGrVqmjcuDFiY2Nx7tw5TJ48Gfv27UNYWBhMTEw0ridrX/H//vsvzpw5o+/q68TLyws+Pj4ICgrCgAEDULZsWTx79gzt2rVT+egzAGRkZKBnz574/fffUaJECTRs2BAODg44d+4cGjZsiAEDBuR5PY8fP47Xr1+jTp06KF26NJKSknDu3DksXboUGzdulB5PFwUHB0vd3lWvXh1NmzbFs2fP8Pfff+PMmTM4evQodu3alScXVv77779s/7AbOXKkdHdovXr10Lx5c8TFxeH27dv48ccf4enpmW1D3rFjx9ClSxfIZDIcPHhQOkGr0717d5QsWVL6PSIiAv/9959W2/TixQt88cUXuHPnDkxNTeHh4QErKyv89ddfCAgIQHBwMI4fP64wHkROxcfHo3PnzggPD0fJkiXh7u6OsmXLIioqCiEhITh69CiOHTsGNze3XJelSWpqqvTUlDo7d+5E//79kZycDBcXF3To0AFxcXE4d+4cvv32W5w8eVLtBT0gc3wTVZ+PX3/9VetxVHLC0NAQmzZtgpubG5YtW4Zq1arB398fBgYG2LRpE8zNzRXmr1q1Kry9vbFr1y4kJCRIx9K7d+9gaWmJ8uXL57pOycnJCA0NhbGxMb744oscr0fXbRNFRESgXbt2SEhIQJUqVdCmTRu8fPkSU6dOVfsHVLdu3TBy5Ejs3r1b47Ei3jHWsmVLTJkyBYaGhlizZg0sLCwQFBQEAwPF+7Pq1asHb29v6dzo7e2tMN3BwQFbt25VGEQ6Ojpa6aIhkNn1loeHB3bt2oXHjx8rTNOUsYDMnCXf2F/YcxYV3Yw1atQo2NnZwcXFhRlLTo8ePXD27FmcOXMGn3zyCZo1awYg87Oo6SKCtl6/fo0dO3agdu3aaNq0KSwsLPD8+XNERETgr7/+wt9//40//vhDYZnvv/8ejx49Qs2aNdG0aVMYGRnh1q1b2LFjB/bs2YNt27ahe/fuua4bkHkRITo6Wu30R48eoV27drhx4wbMzc3RtGlT2NjY4MmTJzh9+jSioqJw7NgxjWUIgoDBgwdj3bp1aNy4MUJDQzV2QajLZ0yVHTt2oF+/fkhNTUXFihXRtWtXxMfHIywsDH/99Rf27NmD/fv3o0SJElqvU50///wTXbt2xZs3b+Ds7Iw2bdogJSVFGnfrwIEDOHjwoMrv/7wUERGhsTvDtLQ09O3bFzt27ICJiQnc3d3h4OCAO3fuYOvWrdizZw/27Nmj9L6L3r9/j40bN2L06NEKr6empmLlypV5uSlK3NzcMG3aNMycORP9+/dH+/btcfXqVdSpUwf+/v5qlxs1ahQCAgJgYGCAZs2awd7eHlevXoWHhwdGjBiR5/UsqIylLj+KxPzYvXt3REZGYv/+/ejfv7/a8vPi71QPDw+UKVNG49+pYluWl5cXgMyb8FS1ZclnrNjYWJ3asoDCn7PYfqWsqOasj6UtS5UlS5Zgw4YNcHFxQe3atVG6dGk8fPgQYWFhOHHiBM6ePauxnVodCwsL9OjRQ+U0Te0s48ePx+LFi2FgYID69eujefPmePjwIfbt24cDBw5g3bp10o1eWY0dOxZLly5F06ZN0aVLF0RFReGPP/7AsWPHsGPHDnTr1k1h/vfv36NNmzYq21VWr16NnTt3qmxXOXHiBHr06IG3b9+iXLlyaNWqFUqUKIH79+9LN1I1adJEmv/p06do164doqKiYG1tjQYNGqBUqVK4dOkSFi5ciJ07d0o3d+RWUck26mjTxpRbumaTdu3awdTUFKGhoUrfcba2tnqt65s3bzBp0iS9lqEuOzRv3jxPs0N+KdCLfZMnT8a7d+/g4uICQ0NDpKen46effkLfvn3VLtO2bVusX78eXbt2xWeffYbIyEisX78eqampePnypdJgivPmzcOsWbOU1tOrVy+tPtg2NjbSFX5DQ0Ol6Q8fPpT+lQ82iYmJGv/wVOWff/6Br68vqlevjl9//RXPnz/H8+fPNS6Tk3LU1Tk3ZYh3Rrx48ULjvGJXHq9evVKYTyxDvKPP2dkZ06ZNU1hWDEjyy718+RLffPMNkpOTMWbMGHz//ffShZioqCgMGDAAGzduROXKleHl5SUtK941krUe4jYAmUE66zSxETQtLU1pmo2NDTZv3ozGjRsrvB4XF4cxY8YgIiICP/zwg3R3QFbiXYpeXl5SVyUAsGfPHpw5c0aqj/z+EMN+du+7LsT3Jrt1jhgxAqGhoTh+/DgAwNLSElOnTlW7zJYtW/D777/D1tYWmzdvhr29PczNzZGWloY5c+ZIf2iret+1rVNWK1eulJ5oEaWnp2PixIk4cOAAFi5cqHDScHV1xcGDB5UGXX3x4gUGDhyIPXv2YPny5VJ3LYD2n8Gs8/j5+SElJQX29vZ4+vSp0rZt3rwZy5cvR+nSpbFw4UKFgXGBzO8LAwMDaRlVx+2ZM2cwZMgQyGQyrFmzBo6OjmrrKn6Ghw8fDgcHB+n1SZMm4b///lOqn6pjb+DAgbhz5w4cHR0RFBSESpUqAcgMK/7+/ti1axe6dOmCI0eOSA1Umj5v8vW6d++eQn/i48aNkwYInjt3rkJXQ2vXrsWiRYvw1Vdf4Y8//pC+u8XPb1JSktr3QfyOevz4scI8WV8X9/u6detw8+ZNaT9m3Y7bt2+jX79+kMlkWL58Odq2bStNe/LkCb7//nsEBgbCxcVFIXiL5TVu3Bhnz57Fb7/9hgYNGihMX7t2LT7//HPp7r6cfAdkZGRoXM7Q0BBjxozBvHnzpMDp5+eHsmXLKi1nZ2eHadOm4fjx40hISMCwYcPg6OiIxMREqWEn6/Gq6jtYk7/++gspKSmoXbu2tD+zG+dXHRcXF8ydOxdjx46Vtm3ChAkKf5TIS05ORp8+fZCQkIDRo0dj0aJF0rF19epVtGrVCi9fvlRazsHBAY0bN8aff/6Jly9fagzDYgNeQECA1JC3YMECfPLJJ0rzdu3aFV27dpXOjVnvQszIyEB6ejpcXFyk82KbNm3UZqwmTZpg165dCA0NRWRkpFYZC8hsaBfHBJSnTc7KLmMBeZuzdJXTMnTJWcUlY/Xq1UsqR18Za8eOHahevbpCQ3FeZyz590ufGSslJSXPMtbgwYNRtmxZnDlzBnXq1JH2rfjdK7+MeCzpsj3p6em4dOmS0nihT58+Rbdu3XDkyBEcPnwY1apVk6aNHTsWDRs2hJWVlcIyx44dw6hRo+Dn54fq1asrNXqrkpiYqPa4efz4MX766SfpHJx12zIyMtCjRw/cuHEDzZo1w6JFi2BtbS1NT0lJwd9//63wOcx6vhcEATNmzMCOHTtQr149rFy5Ei9evFDZW4GunzF54utPnz6Ft7c3UlNT8fXXX8Pf31/6Ln348CF8fHyki99jx46VlleXX8TXxHnkp8XGxqJLly6Ii4vDzJkz0bt3b+nGkjdv3mDUqFE4evQoxo8fj+HDh0v7I7vPhrrPsrrX09LS4OfnB0NDQ9jY2CAmJkZpO5YsWYIdO3agbt26WLJkCSpWrChNO3LkCMaMGYPevXvjxIkT0oVYsTx7e3sYGxtj6dKl6NChA2QymbTPDx48iKdPn0p5Sl0eVUdTnpE/rr7++mvs3LkT169fx40bN2BsbIzZs2dLx0xWYWFhCAgIgLm5OdatW6eQAVevXi01OiclJSmdR/IyYwE5y1m6ZKxmzZqhWbNmCA8PR0JCgtTTQVbdu3fH1KlTsXv3bo0X+wBg6dKlOHHihPQdWrp0aaxfv17t/KtWrcLvv/8OOzs7hIWFSd2mp6WlYeTIkSovCIttWeLNmzNnzlTbliVmLCsrK53asoDCnbNy0n4lj21ZbMsS65wXOUt+29Xtd3VtC56envjmm2+k9gvR3bt34ePjg19++QVNmjRB3bp1pWmaji3xvS5durTSsSBS186yfft2LF68GE5OTli4cCHq1asnTbtw4QIGDRqEwYMHw9HRUeV35apVqxAUFITPP/9cem39+vVYsGABvL29UaFCBYW2k2nTpqltVwkKCsLcuXOV2lWePXuGbt26IT4+HoMGDcLIkSMVbkB69eoV7t27J21XQkICevfujaioKPTo0QNTp06VbupIS0vDokWLsHHjRvTu3Vvh4pgu2UbcHznJNkD2x6M+so2q7UtMTMS0adM0tjFlJ7scIL5XumST7t27w9HREaGhoXByclI6rlVtV9bPWXbUfT5nzpyJ2NhY6f0Qt0vbc0hu2rinT5+udRu3eKODLm3cMTEx2dY/R4QCFBISIjg6OgohISHC1atXhc2bNwvW1tZCUFCQ2mUSExMFX19fwcjISDA0NBTs7e2FiRMnCgCE58+fK82fnJwsxMXFST+PHj0SAAhxcXFa1TEpKUm4ceOGkJSUpHJ6ZGSkAECIjIxUeP3OnTtarV907tw5wdLSUmjSpInw7t07rZfTtRxBUF/n3JTh5OQkABACAwM1zteiRQsBgODv76+yjD/++EMAILRp00ZpWQBC1kN29uzZAgDB3d1dZXmLFi0SAAjVqlVT2A5/f3+V9RAEQQgMDBQACN7e3krT7t27JwAQnJycVJan7r26ffu2AEBo0KCByumCIAg9e/YUAAhbtmzRWB/5Mry9vbV633UhvjfarPPnn3+W9ktAQIDGeatWrSoAEFatWiUIguJ2JCUlCeXLl1f7vutSJ3mq9kdGRobw7bffCgCEiRMnar2u0NBQAYDQs2fPbMuQp+q43bNnjwBA8PLyUrkPU1NThbJlywoAhN27d2v1Gcx6nBw9elQwMzMTLCwshPDw8GyXt7W1FQAIT548UXhd3TGW9fXo6GhpW/fs2aO0/oSEBKmMrVu3Sq+HhIQIAISOHTuqrJf43XLv3j3ptRs3bggymUywt7dX+X15584doUOHDgIA4cCBA9LrYWFhAgChRYsWat8H8TsqLCxM4+t37twRHj16JFhYWAj29vbC8uXLVR6/vXr1EgAIixYtUlne+fPnVX6HieVt375dMDExEbp3764wfdWqVQIAYd++fSqPMW0AEBwcHLKdLzk5WbCyshIACPb29kJycrLG+bPuM1XHr3i8qvoO1mThwoUCAKF///7Sa2lpacKFCxeEtLQ06TVN39PydNm2LVu2CACEihUrCh8+fFCa/ssvv0j7Qv54la/3unXrsq3TkydPBAMDA+m4yMjI0Di/uv0vn7G+//57AYBgYWGhNmOJ33HW1tZaZSwxH719+zbHOSu7jCUIeZezciKnZeiSs4pLxpIvR18ZS74MeXmZseTL0GfG+vnnn7OdV5eMpWk75InHUl548uSJYG1tLQAQbty4ofVy33zzjQBAOHTokFbz37lzR+1x07lzZykrqTqGf//9dwGAUKFCBSE+Pl5jGSL5831GRoYwcOBAAYDw+eefZ/u9putnTNXr06ZNEwAI5cuXFxITE5Xm37VrlwBAKFWqlMJ3Z9u2bQUAws6dO5WWUZd/Jk2aJAAQhg8frnJ7Hj9+LBgbGwtly5aVzkV37tzJ9rOh7rOs7vUlS5YIAIQRI0aozGGvXr0SzMzMBFNTU+Hx48cqyxw6dKgAQFi+fLnK8pYtW6aQC8V93qhRI6F8+fLCmjVr1H43aaIpz2T9DG7btk3a32PHjtW43tatWwsAhEmTJqmcXq9ePWmfZi0nLzOWICjnLH1kLEFQnfmzqlmzpmBqaqrx8yzKzd+p8tT9nSrmrO7duwsAhIEDB6ptyxIzVt26dbVuyyrsOSun7Ve6lKEK27LYlqWOfFnqtkWb75msxPPDhAkTFF7XdGxpk2lVbX96erpgb28vABAuXryosowFCxYIAIRx48YpvC4eY6NHj1ZZXv369QUAwk8//SS9ll27iiAIKttVRo8eLQCZ7VnaWL9+vQBAqFevnpCamqo0PT09XahVq5YAQIiKipJe1yXbiO9VTrKNIGR/POZ1thEE1W1Pf/75Z7ZtTNnJLgfIH1e6ZBNt2tME4X/bpcvnTBBUfz4vXrwoGBgYCG5ubsL06dMVtkvbc0hu2rg1lZGT7JC1Ths2bFBqy1JHm3O6qEDH7JswYQImT56M3r17o3bt2vj222+lJwjUMTMzw8aNG5GYmIj79+/j4cOHcHZ2RqlSpVC2bFml+U1MTGBpaanwU9iw64P/Ee8AyK57AJHYt3HW7stE3333HYDMuwxU3YGb19LT03HixAnMnj0bQ4cOha+vL3x8fKS78W7fvq122YSEBABQ231cYRMTE4NFixZJv+/YsUPtmHZPnjzBv//+CwDo16+f0nRTU1N8/fXX+qkogFmzZsHHxwfdu3eHs7MzgoODUb58eQwdOlRp3pSUFBw4cAA//PADvv/+e2kfrlmzBoDmfaiNxMREjBkzBmZmZli2bJnKeSIjIxEbGwtbW1ulbha0IXbdmZSUhC1btig9FaiK2A+/tp890fr16+Hj44PBgwcDAKysrNC1a1el+czNzdGxY0cAmXcri1xcXABkfpZV9c2tyuHDhyEIAtq3b6/2+1Ls3lRVX/F5ZcyYMUhISMDixYsVuhsSZWRkSF2b9erVS+U66tevj5IlS+Ly5csqx0IoV64cevfujd9//12hv/yAgABUqVIFnTp1yqOtUe+nn36SxiZ6+vQpTp06pfcy1RG/x+XvOMwNXbZNPN98/fXXKu+kVnceAiB1V7dnz55s6zR58mTpuzQqKgrXr1/PdhlV5DOWnZ0dAODLL79Um7HE99TU1FTrjAUUjZxFmfSZscSnqvQpPT0df/31FzNWAXny5Al8fHzQv39/tG3bFlWrVsXr16/xzTffSE/ByHv69CnWrVuHcePGwc/PDz4+PvDx8ZG+03Kbpw4dOoT9+/ejbdu2Ck8RyDty5AgAoE+fPirP05oIcl13VqxYMduuOwHdP2PyxPcnODgYQOa5xszMTGm+r776CmXKlEF8fDwiIyOl18U8tXnzZq27+D506BAA9RnFwcEB1apVQ2xsrN6epH727BlmzpwJOzs7zJ49W+U8YWFhSEpKksZSUiW73Ofr64tSpUpJY+ICwLlz53Du3DkMHjw4T7pE1SQpKUmhW6z9+/cjMTFR5bxpaWmIiIgAoPrvJgDZPtmWEwWZsbTVvXt3JCcn4/Dhwxrny4+/U8WcVatWLQCZT++pa8sS39PY2Fid2rKAwpmz2H6lGtuyik7OUuX9+/fYuXMnpk6dikGDBknn5d27dwPIfW7RxuXLl/H06VN88skncHd3VzlPduc7dceTeN6QHx8up+0qYr4aNGiQ2m2RJ5bZvXt3pZ4iAMDAwEDqPlq+nOKcbdSZO3euxjamvKRLNikIGRkZGDp0KARBwIoVK9Q+oZ5XilIbd3YKtBvPxMREpTFoDA0Ntfpj1tjYGI6OjgCAbdu2oVOnTkrrKgoYlBSJj7KWKVNGq/mfPHkCIHMgb1VKly4Na2trvH79WqcuJXIiOjoanTt31njC0NTHvrgtOfkDy9fXV+qz29DQEGXKlIGbmxv8/Pz09gUzePBgvHz5El27dpXG21y6dKlCl0Ii8dF2W1tbtScsdfswLxw4cEChQcTDwwObN29W6AIIAM6ePYtevXpJ3YOokttxEubMmYMHDx5g1qxZardZfGy+Ro0aOo8PePHiRezYsUP6Y2PLli0qL77JS01Nxfv372FgYKDU5VZ2zpw5o9APvzioriri+y0e60DmuGNt2rTBsWPHUK9ePXh4eCh0vaqqW8S7d+8CADZs2JDtGAaxsbFKr4kDCudGREQEdu3ahZYtW6J3794qB3J+9eqVdLxkPdZUefXqlcpGrFGjRmHTpk1YsWIFfv75Zxw9ehQ3b96U+vHXp4sXL2LevHkwNjbGoEGDsGLFCvj5+SEqKkrnYyUviI1GedHQoeu2id9j6j63ZcqUgZWVlVRHeZUrV4abmxtOnDiBuLg4te/dvn37EBwcjNKlS6Nr164ICgqCt7c3zp07p/IPI01UZSwDAwO1GUt8T9+8eVNsMhYp0mfGevz4sdbrzYno6Gh069ZN48XvjzVj5Zc3b94ojDlkbGyMYcOGSWMLy5s1axZ++uknjV335CZPJScnY+TIkTAxMVFZvkjMU2JjkS4mTpyIixcvAsgc9y88PFwam0sdXT9j8rKO56TucyeTyVC5cmW8efNGIU8NHToU69atw4EDB1CrVi189tln0o0p6v4GEvNU8+bNs61fbGysUjf38p+NnBo3bhzevXuH5cuXqz03ivU8ceJEtvlNVe4DMsfF9fX1xfLly3Hz5k0YGRlh2bJlKFGiBL7//nup4VJfpkyZgtu3b+Pzzz+HIAg4e/YsJk+erHDxUfTq1SvpBjB1x4E+/m4qyIylre7du+PHH3/E7t27NX7/5sffqbq0ZclnLKBot2Wx/Uo9tmUVjpy1adMmncbJBTLbi3x9faV9qEp+jJcpnu/++++/HJ/vsjtvyHfTnNN2FV3zlXjT8owZMzBjxgytyxk6dCjWr19fLLONKkePHsWRI0c0tjHlJV2ySUFYv349zp8/D19fX3z++ecIDQ3Va3mqskNQUJDKm3gKuo07OwV6sc/Lyws//fQTKlWqhJo1a+Ly5ctYsmSJwiCGU6ZMwZMnT6R+e+/cuYPz58+jUaNGePPmDZYsWYJr167p/GVeGDAoKRNDgr29fQHXRHc9evRAdHQ0OnXqhIkTJ+LTTz+FpaUljI2N8eHDB413eGVkZODevXsAcvaFID8QcnJyMm7duoVjx47h2LFjuH37drYnVF0FBwfj999/R7ly5bBu3TpERUWhVatWmD59Ojp16qR0wixoYmNNbGwswsLCMHr0aLRo0QKhoaHSGDOJiYno2rUrXrx4AV9fXwwZMgRVq1aFpaUlDA0NcefOHdSoUSPH44MBmd9fixcvRtWqVfU2wOz169dhbm6Ow4cPY/Lkydi9ezc2bNgg3RmoivhERtmyZXW+oBAYGCjd8aZu8Ons7N27Fz/88AO2bduG/fv3Z/sei39E16tXT6HffNG7d++kP6obNWqkNF3VoOmiI0eOZHvn5IcPHzB79mwYGxvj119/zbaegOanvkTqviPc3NzQvHlzrF+/HjNnzsSyZctgYWGhcZ/mhZSUFHh7eyMtLQ0//vgjpk+fjhs3biAsLAxjx47Nl8HisxIvBOf2j62C2Lbu3bvj8uXLOHDggMq7v16+fCndHRkQEICePXvi7NmzuHTpEubNm6fz97h8xhLH0QgNDVV4olk+Y4mNfCYmJoiOji7yGYuUFfWMdf36dXh6emLWrFnMWAWgVq1aEAQBaWlpePjwIVavXo2FCxfi3bt32LRpk9QotWfPHsycORMlS5bEr7/+ipYtW8Le3h5mZmaQyWSYOnUq5s2bl6s89fPPP+Pu3buYPn26wliBeenixYto1KgRZsyYgS5duuC7777D1atXUb58ebXL5OYzJr4fXl5eOHjwoM7LV69eHb/99htWr16N06dP49atW9kuI+aUHj16wMLCQuO8qhpw5T8b8t6/fy89CaFJeHg4QkJC0Lx5c41Pqon1rFq1Kpo2bapxnZoaHkeMGIHly5fj119/xTfffINdu3bh66+/1rhP88KpU6cQEBAAMzMzBAUFISMjA25ubvj111/RvXt3rXrgyA9FIWPVqVMHVatWxeHDh5GcnKxy3M/8+g4Vc5b4NEpkZCS2bdumsi1r5MiRADIvOm/ZsqXItmUVhvYr8Qmywqio56zi0pb1ySefoE6dOipvXNi1a5fSMfTkyRP06tULSUlJmDhxIvr27QtnZ2eULFkSBgYGOHr0KNq2bZur3KIt8XxXvnx5tG3bVqFdIytN48BrIr8d2bWryFPVrqItsZxmzZqpHIteXs2aNaX/V69eHREREZgyZUqxyzZZffjwASNGjMi2jSmvFPZs8urVK0ydOhVlypSRxsbVJ3XZYenSpdLYtEVJgV7sW758OWbMmIGhQ4ciJiYG9vb2GDx4MH744QdpnmfPnik8ZZOeno7Fixfj9u3bMDY2hqenJ/766y+VA5MWZoUhKBVGN27cAKD4Ba+Jg4MDbt26Jd29kVVcXBxev34NAFI3Zvpw69YtXL16FTY2Nti7d6/SBZPsHg+/efMm3r17Bzs7O62eAMpK7B5J3po1a/D9999j/vz5mDx5crYDeGtL/g+WNWvWwNbWFp6enhg6dChWrFgBX19fnD59WuHuRPFppZcvX+L9+/cq73zQtgvH3ChbtqzULVLnzp0xadIkqVu9P//8Ey9evMBnn32GjRs3Ki2bF4/4Dx8+HB8+fEBAQIDGwCwODH3nzh2dQ6W5uTkOHDiAli1bwsnJCe7u7hg1ahS++OILtQ1iun7uVBGP2/v370MQBJV3ool3v2R9es3CwgKLFy/G4sWLlZZxdnZWGiBYLKtp06Yqg1B0dLTGxj8XFxe1d0l5eHhke7Fv4cKFuHfvHiZOnKiy6zKRra0tzMzMkJSUhEWLFuU4kAPAyJEj0bNnT8ycORN//PEHvv/+e70/WSc2zri7u2PKlCmQyWTYuHEjateujY0bN6Jnz55qL5rqS7ly5QBA412X2sjJtonHrbrvqrdv36p8qk/01VdfYfr06di9e7fKi31iFurSpQu+/fZbAJmDojdt2hSzZ89Gly5dUKdOHa23UT5jiRf0PTw8FLoSkc9Y4nuakpKCunXrFumMRarpM2M5ODjordsXMWOVK1cOK1asUPre/dgzVn4zMjJClSpVsGDBAvzzzz8IDg5Gjx490LlzZwCZXd4AmV34qereKbd56u7du5g/fz6cnZ0xdepUjfOKeUqbxqGsGjVqhNDQUFhZWWHq1KmYPXs2fHx88Mcff6i92z4v85S6zx0AqVE1a5769NNPpe7D5YWHh8PT01NlWdHR0Zg0aRLq16+vc11VfTaAzPNkdg1iqampGDZsGIyMjLBixQqN84rvSY0aNXJ1l3vVqlXRoUMHbN68GfHx8UhNTZU+b/ry/v17+Pr6QhAEzJ07V2osmj17NiZMmIABAwbg6tWrCg2SNjY2MDExQUpKCu7fv6/yeNLH300FmbF08dVXX2HBggUIDQ1Fly5dFKbl59+pYs4Sj8nt27erbcsS31MbG5si25ZVGNqv4uPjMXz48HwvV1tsyyocOatZs2aYNm2ayvaA8PBwpYt9Bw4cQFJSErp166byooK+unpURXz/bGxsEBQUlG27hir37t1DvXr1lF4Xv8fEp4rly1PXrqJOpUqVcPv2bdy6dUvlhbGsKlSoAADo0qULxo8fr3U5QOaFyOKYbbJauHAh7ty5g4EDB2psY8oLCQkJOmeT/DZ58mS8evUKK1euVNvNdV4pym3c6hRoXwGlSpXC0qVL8eDBAyQlJeG///7DnDlzFPrMDwoKUuhT2NXVFZcvX0ZiYiLi4uLw+++/o0aNGgVQ+5wrDEGpMEpNTZXG8mrWrJlWy4j9R6u7G068aFOtWjW93rUphrBy5cqpfDJqy5YtGpcXTxpt27bNszqJjcUJCQkqu0LMqe+++w5v375Fv379FLqHnD9/PqpUqYK//voLS5YsUVjG0dERVapUAQD89ttvSutMSUnBzp0786yO2RFPFjdv3pReE/eh2DCUVXb7MDs7d+7EsWPH0LVrV7Rv317jvPXr14etrS1iY2Px+++/61ROjx490LJlSwCZjT6LFi1CQkIC+vTpo7Y7raNHjwLQ/nOnipubG8qUKYO4uDjs3btXaXpSUpLUf7pYv5wS37/9+/erHOdOnx48eIC5c+eifPnyCn/Mq2JoaIg2bdoA+F/jZ05169YNlSpVwvz58yEIAkaMGJGr9WXnzJkzWLJkCUxMTLBp0ybpe83Z2RkLFy4EkBmEVV3cEs/haWlpeV6vzz77DMD//pjOiZxum3h3244dO1R+lsQeCNRxdXWFq6srQkNDlf7IDAkJwc6dO2FjYyONDwpkNjaPHz8eqamp8PHxUVmu+Mdv1vdbPmNNmzYNQObTheoy1rVr1wAAffv2LdIZi1TTd8ZSN45WXhDPz/b29sxYKjIWoN/vXU2sra0BqM5TTk5OSvPHxMTg2LFjuSpz5MiRSE5OxtKlS1WOaSdPvKAQEhKi89Mg8+bNk26q+eGHH9C4cWOEhoaqHW85J58xVcSMJN8lu7y9e/fizZs3sLS0zFEjljwxT+U2o+TE0qVLcePGDQwfPhy1a9fWOG+rVq1QokQJhIeHIyYmJlfljho1Cu/fv0dwcDAaNWqEhg0b5mp92Rk3bhzu3buHL774AqNGjZJeHzt2LJo0aYK7d+8q9fZhZGQkPcG4detWlesVx3bMSwWZsQDtv8c0jYOcn3+nijlr9OjRAIAFCxaobcsSM1bTpk2LZFtWYWi/io+PR7t27fDff//le9naYFtW0chZqmjKLYIgqPxe0JcGDRrA1tYWN27cyPG47erOD+Lr4nEH5LxdRcxX69at02p+8QnonTt36v0JyaKSbeSJbUyOjo4YNmyYHmuY6eeff9Y5mwD59/fG+fPnsWHDBri7u2Pw4MF6LQvQnB0qVqxYJNq4syoaHYMXI4UhKBXGrg8+fPiAkSNHIjY2Fh4eHlo//j9w4EBYWlri0qVLmDt3rsKJ4/Lly5gzZw6AzAG09al69epSV4/yF6eBzDuFfvnlF7XLPnr0SBpvZMiQIXlWJ3HgcgsLi1w9USRv7dq1CA0Nhb29vVI/zhYWFggMDIRMJsOMGTOUBjAW/xCaOXOmwh3W6enpGD9+vPTkSV559eqVyj9WX716hcmTJwPIvBgmEu+eOXHihNJya9euxfbt23NVn7Fjx8Lc3BxLly7Ndl4jIyOpcX7QoEG4cOGC0jwXLlxQ6G9dlPVu82HDhqFjx464ePGiyotTR48exerVq2FsbKzyaSNtGRsbS0Fh/Pjx0l3nQOYfP6NGjUJsbCyqVKki/ZGeU25ubujevTsePXqEr776SuUdMwkJCdi6dWueD2Y+ffp0JCYmYsqUKVrd6eTv748SJUpgwoQJ2LRpk8pxPK5du6aywUKeoaEhZs+ejY4dO2LMmDF6vdsrMTERPj4+yMjIwKxZs5TuTh08eDBatWqFJ0+eSJ9reeLdgjn9A0WTJk2awMTEBP/884/KRtDs5GbbevToAQcHBzx8+BBTpkxR2JfXrl2TzjeadO/eHUlJSQp3Jz5//ly6S3nFihVKd+6KXRZevnwZc+fOVVpnXr3f4mDoub0YT4VPcclYUVFROHfunMI0ZqxM4vdAbhrp1bly5YrKJ33CwsJw4MABAKrz1Nq1a/Hhwwfp9bi4OHh7e2t8Ajo7J06cwKFDh9ChQwelJ3pU6dy5M9zc3PD06VP07NlTaTuSk5NV3i0OKOYpIyMjbN26FaVKlcLkyZNx9epVhXlz+hlTpUuXLqhWrRpevHiBUaNGKdzkce/ePYwbNw4ApDELc2PChAkoXbo0lixZgsWLFyvsL/kyc3vDW1ZxcXH48ccfUaFCBcyaNSvb+e3s7DBixAgkJCTAy8sLUVFRSvOkpKRg//792T7F2aZNG/Tv3x8eHh7Z3rSVW6dPn8batWsVPr8iAwMDBAYGwszMDCtXrlT6+1HMIMuXL5fOz6IFCxbg0qVLeV7fgsxYgPZ5pkGDBqhYsSL279+v8PkozH+nFuWMVRjar8QLfdeuXcPKlSvzvfzsFJecVdzbstQRc8uuXbvw7Nkz6fX09HT88MMPSt/B+mRsbAx/f38IgoBu3bpJw9HIS09Px8mTJ3H27FmV61i1apXSfvzll19w/vx5lCpVSmEoEDc3N7Rt21bndpWxY8eiVKlS2L9/P6ZPn650Q2pMTAwiIiKk31u3bo0GDRpI46+pGm/wzZs3WL16da4vJBWVbCNPbGNasmQJzM3N87ReWYWGhmL79u05yibieTo6OlrjuNy5JWbdFStW6L03k+yyw88//1xo2rh1UaDdeBYn8ne0AsDDhw8RHx+v8Nq1a9cwdOhQfPLJJ/j555/z5HFwVeVokpCQoPdxnnS1YcMGTJkyBbGxsXBwcFB4qiE7dnZ22Lp1K3r27Ilp06YhODgYbm5uiImJwalTp5CWlgZfX18MHDhQ5ft9/PhxpTtYxD8gIyMjpYtCIrGB4s2bN5g8eTJ69uwJd3d32NraYvjw4Vi2bBlatWqF5s2bw97eHrdv38alS5cwffp0lQ3B48ePR2BgIF6/fg0LCwusXr0aq1evVpjn33//BQBERETAx8cHvXv3VnqUf+fOndKXS0rK/7F35/FR1Xf7/6/shCUJS5CEJYnQYEQW2aqiBSpbRdBWab2BgtD6RaEq1Z9LvEXhRspSpbi08XYDEaS1it6uqFBQE6whQBAlEq1ZEMISyEIgJCE5vz8wgZCEbHO2yev5eOTRzuScc31mhknezpWZU6Jvvvmm6t1aDzzwgEc+XiozM7Pqh+5zzz1X64mnf/azn+nOO+/UU089pVtvvVVJSUlVP5znzJmjjz/+WO+884769++vn/70p+ratau++OIL5eTk6I477lBCQkKz11lp3759uvHGG9WzZ0/16tVLHTp00KFDh7R161adOnVKnTp1qvaYXH755brhhhv0f//3f7r88ss1YsQIdejQQampqdq7d68eeughLVq0qMnr+eGHH/TYY4/V+hdjtbn77ru1d+9ePfvss5oyZYoef/xx9e7dW4WFhVUf97F58+ZqH8NQl5deekn9+vXTsmXLNG7cOA0fPlxZWVm66aabtH37dvn6+uqhhx5q9nlvHnroIX3++ef68MMPdemll2rkyJEKCQnR559/ruzsbHXo0EFvvPFGtb94baqVK1cqPz9fH3zwgXr37q3+/fsrJiZGhmHom2++0d69e1VaWqq0tDSPfuzJDz/8oNGjR9f77sxKAwcO1Jo1a3Trrbfq1ltv1cMPP6xLL71U4eHhOnbsmHbv3q0ffvhBv/nNb/SrX/3qgseaNm1aoz73vanuv/9+fffdd7riiitq/ZgNHx8fvfjii+rbt69WrVqlSZMm6brrrqv6/k033aTNmzdr6tSpGjNmjHx9fRUaGqr77ruv2X+93KpVK40dO1Zvv/22tmzZ0uDHwRO3LTg4WGvXrtV1112nJ554Qm+99ZaGDBmio0ePasuWLZowYYK2b99e42Nnz3XTTTfpscceq3aOy9tuu03Hjh3TpEmT9Jvf/KbGPkFBQVq1apWuvPJKLVq0SDfeeGO1cyrcdNNNevzxxzVq1Cj9/Oc/r3oRZunSpbWeh6A2ZWVl+vTTT6vuXydqyJzlaU3NOH+tdrJqxqqNGTPW9OnT9cILL5g2Yz344IPy8/Orto0bZqwrrrhCkZGR2rlzpwYOHKi+ffvq5MmTGjp0aLNfJFy1apX+9re/acCAAerWrVvVC4KVhdf111+v8ePHV20/d+5crV69Wu+//74uvvhiXXHFFSorK9Mnn3yi1q1ba+bMmbV+XHpD/PDDD2rVqlWN/xivi6+vr958802NHTtWH3zwgXr06KGrr75aHTt21P79+7Vr1y6FhYU16N2GF198sZ555hlNnz5dkydPVkpKilq1aqUXX3xRDz/8sA4ePNjo51htAgIC9I9//EOjR4/W888/rw8//FBXXnmljh8/rn/96186deqUrrvuOo8UVd26ddP//d//6aabbtL/9//9f1q2bJkuu+wyRUREqKCgQGlpafrPf/6jn/70p836g7DzVZ5H9tlnn63zXETnW7JkiXJycvTqq69WnVvo4osvlr+/v3744QelpqbqxIkT+uCDDy543j7pzLtomvLRaI2Rn59f9Yd7y5Ytq/rr73PFxsZq0aJFuueeezRz5kzt3r276g/JJkyYoDlz5uivf/2rrrnmGv3sZz9TRESEvvzyS6Wlpenuu++u812mTWXnjCXVnB8rfw6ePz/6+PjoV7/6lZ588kn961//0tixYz3+36kjR45U+/btPfLfqW6YsaTa56zPP//c469fnZ9R35x14sQJ/eEPf9B//vMf/e1vf6vxO9puvJbljteyLmTChAkaNGiQtm/frtjYWA0fPlxt2rTRF198oQMHDuiBBx6w5Jxhlf7whz8oOztbf/7znzV58mQtWrRIvXr1UnBwsA4ePKjU1FTl5+crISFBV1xxRY39Z82apZ///Oe65ppr1LVrV3311VfavXu3/Pz89NJLL9V4l+jixYt1+vTpWl9XyczM1K5du2q8rtKjRw+9/vrruvnmm7Vo0SK98MILuvLKKxUQEKCsrCzt3LlTkydPrnqXq6+vr9566y2NHz9eL7/8sl5//XX1799fPXr0UGlpqb7//nvt3r1b5eXluvXWW2t9h2lDuWm2qVT5GtOkSZNM/djY/Px8/f73v5fUtNmkR48eGjx4sFJSUtS3b18NHjxYrVq1UqdOnbRkyRKPrfOHH37Q73//+2adJ7IhGjI7DBkyxJbZodmMFqagoMCQZBQUFDRo++LiYmPPnj1GcXFxrd/PysoyWrdubUhy1Vfr1q2NrKysBt0H6enp9W4TFRVlSDJWrlx5we2GDx9uSDIeffTRquseeOAB45JLLjEefvhh4/Dhw3XuW7n22uzZs8eYPn260a1bNyMgIMAICwszRo4cafz973+v9XY8+uijHrkfz729FRUVxp/+9Cdj0KBBRtu2bY3Q0FDj6quvrlpDbeuvvN8a8/XKK69U7T99+vQa3/f19TU6duxojBo1qtrtb6jK++b82zZixAhDkjFjxowL7n/ixAmjV69ehiRj6dKl1b5XVlZmPPHEE8all15qBAYGGh07djRuuOEGIzU11Vi5cqUhyZg+fXqD1lSfI0eOGL/97W+NgQMHGh07djT8/PyMtm3bGv379zfuv/9+48CBAzX2KS0tNf785z8bffv2NVq3bm106NDBGDNmjPHRRx8ZGRkZhiQjKiqq2j71PT8qH5ef/OQnRklJSY3vVz6Gdd22Dz74wLj22muNiy66yAgICDDCw8ONoUOHGgsWLDCOHj1atd2F7r/K4/j4+Bjdu3c3jh07ZqSmpho9evQwbrnlFiMpKanO21HX+uq6vqyszPjrX/9q/PSnPzXatm1rBAUFGb169TLuvvtuIzExsc77qS6Vz5GMjIwa3ysvLzdeffVV47rrrqu6fzp27GjExsYaM2bMMN58802jtLS0avvNmzcbkozhw4fXmVf5M2rz5s21Xh8YGGh88803Ne6v+u7/jIwM449//KNx2WWXGW3atDFatWplREVFGSNGjDCWLFlifPfddw1aR20u9LOxvv26du1a7bpNmzYZPj4+RnBwsPHNN99ccP///d//NSQZkZGRRl5eXtX15eXlxuLFi40+ffoYrVq1qlrfubel8v4693dBQ3300UeGJOPXv/61YRiGcfr0aWPbtm3G6dOnq92285+rnrhthmEYu3fvNn71q18ZHTp0MIKCgoy4uDhj8eLFRllZ2QX/vVa6+OKLjXbt2hmnTp0yXnrpJUOS0blzZ+PIkSMXXFN8fLwhyejfv3+1f9fFxcXG/fffb/Tq1csIDAysur/PXUN9P0PXr1/foJ/v56prPmrMnFXfjGUY3j9necuMde5tMWvGevHFF43LLrvM1Blr8+bNVbfDzBlryZIl1W6bJ2as3bt3GxMnTjTCw8MNX1/fWn/fVd4njfHxxx8bv/71r42LL77YaNOmjeHv72907tzZGD16tLF48eJqP3srZWRkGFOmTDF69OhhBAUFGVFRUcbtt99uHDx4sOo+aOjP//T09KrfGZKMRx55pNbtLvRv+Pjx48bSpUuNIUOGGO3atata08SJE42///3v1Z6H9f3+veWWWwxJxpw5cwzDOPMc69+/f5OfY3Vdv2/fPmP27NlGTEyMERgYaLRr184YNmyY8dxzz9V6nxtG3T9P6pt/Dh06ZMybN88YOHCg0a5dOyMwMNDo1q2bcdVVVxmPPvqo8eWXX1bLqG92rWtmrrz+Qmup7/5///33jV/96ldG165dq34excXFGbfccovx6quvGidOnKh3HZW341z1zXF1qWuemTZtmiHJuPbaa42Kioo69y8vLzeuvvpqQ5Jxxx131Pj+Sy+9ZAwaNMho1aqVERoaaowaNcrYvHlztce0rtviiRnLMGrOWWbNWA2ZHyt98sknhiTjtttuM+W/U4OCgjz236lNmbEMgznLEzOWYXjPnMVrWfU793la1+Ne13+rHT9+3HjooYeM3r17G61atTI6d+5s3HjjjUZKSkqdv0Mv9G/rQr9/KtX3uzQpKcmYOHGiERUVZQQFBRnt2rUzYmNjjRtvvNF44YUXjGPHjlXb/tzHKCEhwRgwYIARHBxshISEGOPGjTOSkpJqzUlPT6/zdZXLLrus1tdVKmVlZRl333131f3Wtm1bIzY21pg5c6bx+eef17ivTp06ZTz77LPGyJEjjY4dO1bNlAMGDDDmzJljfPjhh3XeX+c7/3E5//FozGxjGPU/HmbMNue/xnT+7TBrNrnyyiubPJtkZWUZkydPNiIiIgx/f/9a75PK23Wh10RqU/n87NChg5Gbm1vj++f/N0RDfr6fu19TXuNOT083dXZ48cUXa7yWVZeG/E6v5GMYJn9grsMUFhYqNDRUBQUFDWrbT506pYyMDMXExKhVq1a1bpOdnV3jc6Szs7PrPPeXJzU1p1OnTg3ez+y/fHRjRmZmpmJiYrRy5cpqJ29tbEZ0dLSio6NrvD26NqtWrdKMGTP0yiuvePQvUM43f/58LViwoMZt87TG3FdNXZPb/l2R4Z4cb8jw8fFR165da/04WE+q7XZU/jx79NFHNX/+/EYdzzAM9evXT99++61++OEHtW/fXjt37tTll19e9de+Pj4+ioqKsvWkyHW577779Pjjj+udd97R9ddfb0lmfT9DJ0yYoPfee087duyo9YTutalrPmrMnNWQGUuyb85qTkZD5yxv+Fni6Zy6ZqzGZjRlxtq8ebO6du1q2v1V+VxcsmRJrefC8KTa7qvo6GhlZWV57Hwp3vLvlwwymupC84xdP3s9OWN16tRJ5eXl1eYsJ8xYFRUVioyMlGEYysnJMf1jvi7EjBlLYs66EF7Lah5vfi2rktseE09kVH4cY2NnPKfdDjKan1HfHGD27RgxYoQ++eQTZWRkKDo62rScht6O5rzGbdZ9VbmmF198Uf369av2WlZdGvo7XeJjPD2iR48eNYaNdu3aWTLcW5UDAIAT+Pj4aPny5RozZoyWLFli6ceqeMJtt92mNm3aNPtcS56ybds2vfvuu7r11lsb9SKUleyas5ixAAAtyfkz1uOPP273kmrl6+urp556Snv27NHRo0cVHh5u95Jq5YYZS2LOAgDAm1D2AU3Qvn17LV68WIMGDWrWcR5//HG1bdu2QdteffXVWrlyZa2fqwwALcno0aN144036q9//avuvPNOu5fTKLGxsY3+S3szxcfHq127dlq8eLHdSwEk2TtjXXLJJaafCxIAnOzcGWvu3LmKiIiwe0m1+vWvf233EurFjAUn4rUsAPBulH1AE4SGhtY44XFT3HzzzQ3etlevXurVq5epJ2wFALd48803JUnl5eU6cuSIzatxr40bN9q9BKAaO2csSZR9AFq8yhlLOjNnoWmYseBEvJYFAN6Nsg8AAAAAAAAAAJfx1PmYAbgfZR+AakaMGKGjR4866rwCI0aMkCRHrQlwu0cffVRlZWW2ZA8YMECPPvpo1XPb0x599FGFhYWZcmw34mco4AyVz8VLLrnElvy5c+cqPz/flmzAG5k9zzQFM5a1mLEAAE5i92xy6623qm/fvo6ZFZz4e7pyTf379zelqKfsA1DNiBEj1LVrV0edLHvEiBGO+o9owBvMnz/fto9SGTBggKnDlpPOiecE/AwFnKHyuWjXz965c+fakgt4K7PnmaZgxrIWMxYAwEnsnk1uvfVWDRs2zFFln9N+T1euqby8XDt37vT48X09fkQAAAAAAAAAAAAAlqDsAwAAAAAAAAAAAFyKsq+BONkpAADAGZ6ci5ixAAAAzmLOAgAAlRrzu5yyrx5+fn6SpLKyMptXAgAA4AyVc1HlnNQU/v5nTh1dUlLikTUBAAB4A0/MWbyWBQCAd2jMXEDZV4+AgAAFBQWpoKCAv4gCAAAtnmEYKigoUFBQkAICApp8HH9/f7Vp00bHjh1TeXm5B1cIAADgTp6as3gtCwAA92vsXOBvwZpcr1OnTtq/f79++OEHhYaGKiAgQD4+Phfcp7y8XKdOnTJ9bVbkkEEGGWS4JcOqHDKck1FZEp06dapZf/2M+hmGobKyMhUUFKioqEhdu3Zt9jE7deqkffv2KSMjQ6GhoQoODpafn58j5iwynJdDBhlkkEGGtTnMWdYxa85q7GtZkvc8R8hoeRlW5ZBBBhlkeOL4Ut0zVlPnAsq+BggJCZEk5ebmav/+/Q3a5/Dhw5b89ZQVOWSQQQYZbsmwKocM52RUVFQoNzdXmZmZ8vXlAwusEBQUpK5du1bNR83RunVrxcTE6PDhw8rLy1Nubm6D9vOGf7velGFVDhlkkEEGGdbmMGdZz5NzVlNey5K85zlCRsvLsCqHDDLIIKO5GjpjNXYu8DFa2Pv5CwsLFRoaqoKCgiYNT2VlZQ36qKk77rhDCQkJTVlio1iRQwYZZJDhlgyrcshwTkZRUZEGDx6slJQUtW3b1rQcnOHn53fBj45ozpxV+ZdrFRUV9W7rDf92vSnDqhwyyCCDDDKszWHOspaZc1ZDX8uSvOc5QkbLy7AqhwwyyCCjuRoyY9U3F9SGd/Y1UkBAQIPu5KNHj6pVq1amr8eKHDLIIIMMt2RYlUOGczJKS0uVlZWlwMBAS/59wTw+Pj4KDAxs0Lbe8G/XmzKsyiGDDDLIIMPaHOYs79HQ17Ik73mOkNHyMqzKIYMMMshoLrNmLD6HAQAAAAAAAAAAAHApW8u+8vJyzZs3TzExMQoODlbPnj21cOHCej8Pde3aterfv79at26tiIgIzZw5U0ePHrVo1QAAAM7GjAUAAGAO5iwAAOBEtpZ9S5cuVUJCgp555hmlpaVp6dKlWrZsmZ5++uk690lKStK0adP0u9/9Tl9//bX++c9/Kjk5WbfddpuFKwcAAHAuZiwAAABzMGcBAAAnsvWcfVu3btUNN9yg8ePHS5Kio6O1bt06JScn17nP559/rujoaN11112SpJiYGM2aNUtLly61ZM0AAABOx4wFAABgDuYsAADgRLa+s++qq67Spk2blJ6eLknatWuXEhMT9Ytf/KLOfa688krt27dP77//vgzD0KFDh/T666/ruuuuq3X7kpISFRYWVvsCAADwZlbMWBJzFgAAaHmYswAAgBP5GPV9qLiJKioq9NBDD2nZsmXy8/NTeXm5Fi1apPj4+Avu989//lMzZ87UqVOndPr0aU2YMEFvvPGGAgICamw7f/58LViwoMb148aNq3V7T0lOTtbQoUNNO76VOWSQQQYZbsmwKocM52SUlZVpw4YNKigoUEhIiGk5bmPFjCV595xFhvNyyCCDDDLIsDaHOat2zFlkkOHMDKtyyCCDDDKay7QZy7DRunXrjG7duhnr1q0zvvzyS2P16tVGhw4djFWrVtW5z9dff21EREQYy5YtM3bt2mVs2LDB6Nu3rzFz5sxatz916pRRUFBQ9bVv3z5DklFQUGDWzTIMwzAmTJhg6vGtzCGDDDLIcEuGVTlkOCejoKDAkt/rbmPFjGUY3j1nkeG8HDLIIIMMMqzNYc6qHXMWGWQ4M8OqHDLIIIOM5jJrxrL1nH333XefHnzwQd1yyy2SpL59+yorK0uLFy/W9OnTa91n8eLFGjZsmO677z5JUr9+/dSmTRtdc801euyxxxQREVFt+6CgIAUFBZl7QwAAABzEihlLYs4CAAAtD3MWAABwIlvP2Xfy5En5+lZfgp+fnyoqKhq9jyQZ9n0iKQAAgGMwYwEAAJiDOQsAADiRrWXfhAkTtGjRIr333nvKzMzUm2++qeXLl+uXv/xl1Tbx8fGaNm1atX3Wr1+vhIQEff/990pKStJdd92loUOHKjIy0o6bAQAA4CjMWAAAAOZgzgIAAE5k68d4Pv3005o3b55mz56tw4cPKzIyUrNmzdIjjzxStU1OTo6ys7OrLt966606fvy4nnnmGd17770KCwvTz3/+cy1dutSOmwAAAOA4zFgAAADmYM4CAABOZGvZ165dO61YsUIrVqyoc5tVq1bVuO7OO+/UnXfead7CAAAAXIwZCwAAwBzMWQAAwIls/RhPAAAAAAAAAAAAAE1H2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEvZWvaVl5dr3rx5iomJUXBwsHr27KmFCxfKMIw697n11lvl4+NT46tPnz4WrhwAAMC5mLEAAADMwZwFAACcyN/O8KVLlyohIUEvv/yy+vTpo5SUFM2YMUOhoaG66667at3nySef1JIlS6ounz59Wv3799ekSZOsWjYAAICjMWMBAACYgzkLAAA4ka1l39atW3XDDTdo/PjxkqTo6GitW7dOycnJde4TGhqq0NDQqstvvfWW8vLyNGPGDNPXCwAA4AbMWAAAAOZgzgIAAE5k68d4XnXVVdq0aZPS09MlSbt27VJiYqJ+8YtfNPgYL774okaNGqWoqKhav19SUqLCwsJqXwAAAN7MihlLYs4CAAAtD3MWAABwIh/jQh8qbrKKigo99NBDWrZsmfz8/FReXq5FixYpPj6+QfsfOHBAPXr00Kuvvqpf//rXtW4zf/58LViwoMb148aNU0BAQLPWfyHJyckaOnSoace3MocMMsggwy0ZVuWQ4ZyMsrIybdiwQQUFBQoJCTEtx22smLEk756zyHBeDhlkkEEGGdbmMGfVjjmLDDKcmWFVDhlkkEFGc5k2Yxk2WrdundGtWzdj3bp1xpdffmmsXr3a6NChg7Fq1aoG7f+nP/3J6Nixo1FSUlLnNqdOnTIKCgqqvvbt22dIMgoKCjx1M2o1YcIEU49vZQ4ZZJBBhlsyrMohwzkZBQUFlvxedxsrZizD8O45iwzn5ZBBBhlkkGFtDnNW7ZizyCDDmRlW5ZBBBhlkNJdZM5at5+y777779OCDD+qWW26RJPXt21dZWVlavHixpk+ffsF9DcPQSy+9pN/+9rcKDAysc7ugoCAFBQV5dN0AAABOZsWMJTFnAQCAloc5CwAAOJGt5+w7efKkfH2rL8HPz08VFRX17vvJJ5/ou+++0+9+9zuzlgcAAOBKzFgAAADmYM4CAABOZOs7+yZMmKBFixapR48e6tOnj3bu3Knly5dr5syZVdvEx8dr//79Wr16dbV9X3zxRf30pz/VZZddZvWyAQAAHI0ZCwAAwBzMWQAAwIlsLfuefvppzZs3T7Nnz9bhw4cVGRmpWbNm6ZFHHqnaJicnR9nZ2dX2Kygo0BtvvKEnn3zS6iUDAAA4HjMWAACAOZizAACAE9la9rVr104rVqzQihUr6txm1apVNa4LDQ3VyZMnzVsYAACAizFjAQAAmIM5CwAAOJGt5+wDAAAAAAAAAAAA0HSUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuJStZV95ebnmzZunmJgYBQcHq2fPnlq4cKEMw6hzny1btsjHx6fG18GDBy1cOQAAgHMxYwEAAJiDOQsAADiRv53hS5cuVUJCgl5++WX16dNHKSkpmjFjhkJDQ3XXXXddcN+9e/cqJCSk6nLnzp3NXi4AAIArMGMBAACYgzkLAAA4ka1l39atW3XDDTdo/PjxkqTo6GitW7dOycnJ9e7buXNnhYWFmbxCAAAA92HGAgAAMAdzFgAAcCJbP8bzqquu0qZNm5Seni5J2rVrlxITE/WLX/yi3n0HDBigiIgIjR49WklJSXVuV1JSosLCwmpfAAAA3syKGUtizgIAAC0PcxYAAHAiH+NCHypusoqKCj300ENatmyZ/Pz8VF5erkWLFik+Pr7Offbu3astW7Zo8ODBKikp0QsvvKBXXnlFX3zxhQYOHFhj+/nz52vBggU1rh83bpwCAgI8envOlZycrKFDh5p2fCtzyCCDDDLckmFVDhnOySgrK9OGDRtUUFBQ7SORWjorZizJu+csMpyXQwYZZJBBhrU5zFm1Y84igwxnZliVQwYZZJDRXKbNWIaN1q1bZ3Tr1s1Yt26d8eWXXxqrV682OnToYKxatapRx/nZz35mTJ06tdbvnTp1yigoKKj62rdvnyHJKCgo8MRNqNOECRNMPb6VOWSQQQYZbsmwKocM52QUFBRY8nvdbayYsQzDu+csMpyXQwYZZJBBhrU5zFm1Y84igwxnZliVQwYZZJDRXGbNWLaes+++++7Tgw8+qFtuuUWS1LdvX2VlZWnx4sWaPn16g48zdOhQJSYm1vq9oKAgBQUFeWS9AAAAbmDFjCUxZwEAgJaHOQsAADiRrefsO3nypHx9qy/Bz89PFRUVjTpOamqqIiIiPLk0AAAA12LGAgAAMAdzFgAAcCJb39k3YcIELVq0SD169FCfPn20c+dOLV++XDNnzqzaJj4+Xvv379fq1aslSStWrFBMTIz69OmjU6dO6YUXXtC//vUvffTRR3bdDAAAAEdhxgIAADAHcxYAAHAiW8u+p59+WvPmzdPs2bN1+PBhRUZGatasWXrkkUeqtsnJyVF2dnbV5dLSUt17773av3+/WrdurX79+mnjxo0aOXKkHTcBAADAcZixAAAAzMGcBQAAnMjWsq9du3ZasWKFVqxYUec2q1atqnb5/vvv1/3332/uwgAAAFyMGQsAAMAczFkAAMCJbD1nHwAAAAAAAAAAAICmo+wDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcClby77y8nLNmzdPMTExCg4OVs+ePbVw4UIZhtGg/ZOSkuTv768BAwaYu1AAAAAXYcYCAAAwB3MWAABwIn87w5cuXaqEhAS9/PLL6tOnj1JSUjRjxgyFhobqrrvuuuC++fn5mjZtmq699lodOnTIohUDAAA4HzMWAACAOZizAACAE9la9m3dulU33HCDxo8fL0mKjo7WunXrlJycXO++t99+uyZPniw/Pz+99dZbJq8UAADAPZixAAAAzMGcBQAAnMjWsu+qq67Sc889p/T0dMXGxmrXrl1KTEzU8uXLL7jfypUr9f3332vNmjV67LHHLrhtSUmJSkpKqi4XFhZ6ZO0AIEl5eXlau3atqRlZWVlekZGXl2fq8QGcZcWMJTFnATBXcXGxduzYYWpGTk6O6TNQTk6O6bejuLjY1OMDOIs5C4A3sGLOysrKatDPu+ZmMGcBZ/gYDf1QcRNUVFTooYce0rJly+Tn56fy8nItWrRI8fHxde7z7bff6uqrr9Znn32m2NhYzZ8/X2+99ZZSU1Nr3X7+/PlasGBBjevHjRungIAAT92UGpKTkzV06FDTjm9lDhlkkFG7vLw8JSYmmnZ8b3T11Verffv2pmZ4w78tMhqurKxMGzZsUEFBgUJCQkzLcRsrZizJu+csMpyXQ0bLyiguLtbGjRtNO743GjVqlIKDg007vjf8u/KmDCtymLNqx5xFBhnOzLAqxxsymLMajzmLDE8ya8ay9Z19r732mtauXatXX31Vffr0UWpqqubOnavIyEhNnz69xvbl5eWaPHmyFixYoNjY2AZlxMfH65577qm6XFhYqO7du+sf//iHqcPqxIkT9fbbb5t2fCtzyCCDjNqtXbtWiYmJumNwtIb16Fh1/VtpB/R6Wo5ujovQjXGRzcpYuTNLmzJyFT3kXnWKGtncJdcqN2uzMrc9oZvjInVjXITHjltcVq5lSd9qX2Gxxve6SG98k6Pbb79dU6ZM8VhGbbzh3xYZDVdYWKjQ0FDTju9WVsxYknfPWWQ4L4eMlpWxY8cODRo0SGt+OUhx4e1MyXhhR6YSUjIVd+0KtWnfy5SME3nfKW3TXC0cGafrfnKRKRlpR45r6pvbtXTpUg0cONCUDMk7/l15U4YVOcxZtWPOIoMMZ2ZYleMNGVbMWYs/26vX03IU2WeqQrsMrnO74sIsZe9IUGDbLooacLt8/Vs1OKPgYIoOfL1GdwyO1u8HRntg1TUxZ5FhBrNmLFvLvvvuu08PPvigbrnlFklS3759lZWVpcWLF9c6IB0/flwpKSnauXOn/vCHP0g68xdVhmHI399fH330kX7+859X2ycoKEhBQUHm3xgALdawHh01pW93SdJjn54ZZhaOjNPDP+vd7GMnZR/VpoxcBYd0V7vwvs0+Xm1O5H0nSerfJbTqdjTX8ZIyjVv7uQ6dKNEnt16jb48V6Y1vcjxybAD1s2LGkpizAJgvLrydBkaEmXLsyHZn/jq7Tfteps1ZlWLatzbtdgCwFnMWAG9h5pwV3ubMz6/QLoPVJfaXtW5TeChV6Z/NU9vwPuo/frX8A9s2OufA12sU2S6YOQuQzWXfyZMn5evrW+06Pz8/VVRU1Lp9SEiIdu/eXe26v/3tb/rXv/6l119/XTExMaatFQDq89inezVvc5rHij63qiz6vjpcqI9/O0xDu7bXt8eK7F4W0KIwYwEAAJiDOQsAmq/wUKpS352qNh1im1z0AajO1rJvwoQJWrRokXr06KE+ffpo586dWr58uWbOnFm1TXx8vPbv36/Vq1fL19dXl112WbVjdO7cWa1atapxPQBYiaLvjNqKPgDWY8YCAAAwB3MWADQPRR9gDlvLvqefflrz5s3T7NmzdfjwYUVGRmrWrFl65JFHqrbJyclRdna2jasEgAurPEcfRR9FH+AUzFgAAADmYM4CgKaj6APMY2vZ165dO61YsUIrVqyoc5tVq1Zd8Bjz58/X/PnzPbouAGgMij6KPsBpmLEAAADMwZwFAE1D0QeYy7f+TQAAF3JzXARFH0UfAAAAAAAAakHRB5iPsg8AmunGuEi7l2Abij4AAAAAAADUhaIPsAZlHwCgSSj6AAAAAAAAUJfiwiyKPsAilH0AgEaj6AMAAAAAAMCFZO9IoOgDLELZBwBoFIo+AAAAAAAA1CewbReKPsAilH0AgAaj6AMAAAAAAEBDRA24naIPsAhlHwCgQSj6AAAAAAAA0FC+/q3sXgLQYlD2AQDqRdEHAAAAAAAAAM5E2QcADnboRIndS6DoAwAAAAAAAAAHo+wDAIdK3p+nd/YetHUNFH0AAAAAAAAA4GyUfQDgQMn78zT6lSR1DA60bQ0UfQAAAAAAAADgfJR9AOAwlUXfZZ1DND72IlvWQNEHAAAAAAAAAO5A2QcADnJu0bdhypUK9LP+xzRFHwAAAAAAAJys4vQpu5cAOAplHwA4xPlFX7ugAMvXQNEHAAAAAAAAJztdWqSs1GftXgbgKJR9AOAATij6Sk6XU/QBAAAAAADAsU6XFmnXe9NUWnTQ7qUAjkLZBwA2c0LRJ0kv78qm6AMAAAAAAIAjVRZ9J46lq8fAO+xeDuAolH0AYCOnFH2SdPhECUUfAAAAAAAAHOfcom/A9WsUHBJl95IAR6HsAwCbOKnok6RbB0RR9AEAAAAAAMBRzi/6Qi4aYPeSAMeh7AMAGzit6JOkbiHBdi8BAAAAAAAAqELRBzQMZR8AWMyJRR8AAAAAAADgJBR9QMPZWvaVl5dr3rx5iomJUXBwsHr27KmFCxfKMIw690lMTNSwYcPUsWNHBQcH65JLLtFf/vIXC1cNAE1H0QfACsxYAAAA5mDOAgBrUPQBjeNvZ/jSpUuVkJCgl19+WX369FFKSopmzJih0NBQ3XXXXbXu06ZNG/3hD39Qv3791KZNGyUmJmrWrFlq06aN/t//+38W3wIAaDiKPgBWYcYCAAAwB3MWAJiPog9oPFvLvq1bt+qGG27Q+PHjJUnR0dFat26dkpOT69zn8ssv1+WXX151OTo6WuvXr9dnn33GgATAsSj6AFiJGQsAAMAczFkAYC6KPqBpbC37rrrqKj333HNKT09XbGysdu3apcTERC1fvrzBx9i5c6e2bt2qxx57rNbvl5SUqKSkpOpyYWFhs9cNwB3y8vK0du1a046flJQkSXorLUcZeSfr3O6HwmKtSs1S5zZB+nl0Jz35xfcNzth+IF+SVFy4T8eP7G7WeutSXLhPkrQl84gpx5ekXQcLJJ29z8yUl5dnegbgdFbMWBJzFtCSFRcXa8eOHaYdPy0tTZL0/reHlJZ73JSMXQfzJUkn8r4z5fjnHjsp+6hpGZVz6Pvvv191v5mBGQs4gzkLgNmsmrNe2JGpyHbBpmSk7M+XJB3J+KjqdaeGqCgv1aH0N1R6Mlddet+so/s+1dF9n9a6bdHRM7djS4Z5r2cdOF4sSXrhhRcUGRlpWk5OTo5px0bL4WNc6EPFTVZRUaGHHnpIy5Ytk5+fn8rLy7Vo0SLFx8fXu2+3bt105MgRnT59WvPnz9e8efNq3W7+/PlasGBBjevHjRungADz3lmTnJysoUOHmnZ8K3PIIMONGXl5eUpMTDTt+Gia9l2vlq9/K1MzjmZt1NVXX6327dubluENzxFvySgrK9OGDRtUUFCgkJAQ03LcxooZS/LuOYsM5+WQ4ZyM4uJibdy40bTjo/ECgjsppPMAUzOYsZyVYUUOc1btmLPIIMOZGVblMGfBLIMHD1ZERIRpx/eG54e3ZJg1Y9la9v3973/Xfffdpz//+c/q06ePUlNTNXfuXC1fvlzTp0+/4L4ZGRkqKirSv//9bz344IN65pln9F//9V81tqvtL6G6d+9u+rA6ceJEvf3226Yd38ocMshwY8batWs1depUDY0M011X9DQlY+XOLG3KyFXEpVMVFjHYlIz8nBTl7Fmj6CH3Kjiku6szThVkasBE895pWWlzQpTWrFmjKVOmmJbhDc8Rb8koLCxUaGgoL0Kdx4oZS/LuOYsM5+WQ4ZyMHTt2aNCgQVrzy0GKC29nSsYLOzKVkJKpuGtXqE37XqZk5GZtVua2JyyZs8y+HccP71K/61405fiVmLGclWFFDnNW7ZizyCDDmRlW5XjDnLX4s716PS1HkX2mKrTLYBUXZil7R4IC23ZR1IDbPfJH2jnf/FP5+5PUNry/2oX3rXd7o6JMR7M2qexUvjpFjVJA60717pN/4AsV53+rThdfp/CYMc1esyQdyfhQud9/oE4X/0LhMWOrbkfM0HvVscdIj2Sc70Ted0rbNFcLFy7Uww8/bEqG5B3PD2/JMGvGsvVjPO+77z49+OCDuuWWWyRJffv2VVZWlhYvXlzvgBQTE1O1z6FDhzR//vxaB6SgoCAFBQV5fvEAXOGuK3pqSl9zXrxJyj6qTRm5CosYrC6xvzQlQ5Jy9qxRp6iRDRqOnJxx+MRB044NoDorZiyJOQto6eLC22lgRJgpx678SKk27XuZNp9UfsSmFXOW2bfj+OFdphwbQE3MWQCsYOacFd7mzM+W0C6D1To0RumfzVPb8D7qP361/APbeiQjPydF+fuT1Cl6lGIG33XBbSvP0VdRXqJBv3yjwefo++aT/1Zx/rdq2zHOI6/LZW5/Srnff6CYofcqetCZNVfejlbtups6LwKe4Gtn+MmTJ+XrW30Jfn5+qqioaNRxKioqqv21EwAAQEvGjAUAAGAO5iwA3qK4MEup705Vmw6xHi36GqOy6DtxLF0Drl/T4KLP0zK3P6WM5CeqFX2A29j6zr4JEyZo0aJF6tGjh/r06aOdO3dq+fLlmjlzZtU28fHx2r9/v1avXi1J+utf/6oePXrokksukSR9+umnevzxx3XXXTwJAQAAJGYsAAAAszBnAfAW2TsSPP6Ovsag6AM8y9ay7+mnn9a8efM0e/ZsHT58WJGRkZo1a5YeeeSRqm1ycnKUnZ1ddbmiokLx8fHKyMiQv7+/evbsqaVLl2rWrFl23AQAAADHYcYCAAAwB3MWAG8R2LYLRZ8Dir4TR9NtyYX3sbXsa9eunVasWKEVK1bUuc2qVauqXb7zzjt15513mrswAAAAF2PGAgAAMAdzFgBvETXgdoo+m4u+wkOp2vvZw7Zkw/vYes4+AAAAAAAAAABgLV//VpZnUvSdVXgoVanvTlVwaJQt+fA+lH0AAAAAAAAAAMA0FH1nVRZ9bTrEKvbq/7FlDfA+lH0A0ESHTpTYvQQAAAAAAADA0Sj6zjq36Os/frX8AoJtWQe8D2UfADRB8v48vbP3oN3LAAAAAAAAAByLou+s84s+O86ZCO9F2QcAjZS8P0+jX0lSx+BAu5cCAAAAAAAAOFJFeSlF348o+mA2yj4AaITKou+yziEaH3uR3csBAAAAAAAAHOlQ+hsUfaLogzUo+wCggc4t+jZMuVKBfvwIBQAAAAAAAM5lVJRJkkpP5lL0UfTBIrxSDQANcH7R1y4owO4lAQAAAAAAAI5yurRIR7M2SZK69L6Zoo+iDxah7AOAelD0AQAAAAAAABd2urRIu96bprJT+ZKkoLYRtqyDog8tEWUfAFwARR8AAAAAAABwYZVF34lj6eoUNcq2dVD0oaWi7AOAOlD0AQAAAAAAABd2btE34Po1CmjdyZZ1UPShJaPsA4BaUPQBAAAAAAAAF3Z+0cc5+ij6YA/KPgA4D0UfAAAAAAAAcGEUfWdR9MFu/nYvAACchKIPAAAAAAAAuDCnFH35B/6t/P1JFH1o8XhnHwD8iKIPAAAAAAAAuDCnFH2SKPqAH1H2AYAo+gAAAAAAAID6OKXoO35ktyQprOswij5AlH0AQNEHAAAAAAAA1MMpRV/m9qdUdGSXJCks8gpb1kDRB6eh7APQolH0AQAAAAAAABfmpKIvI/kJtQ3vb0u+RNEHZ6LsA9BiUfQBAAAAAAAAF+a0oi9m6L1qF97XljVQ9MGpKPsAtEgUfQAAAAAAAMCFObHo4xx9QE22ln3l5eWaN2+eYmJiFBwcrJ49e2rhwoUyDKPOfXJycjR58mTFxsbK19dXc+fOtW7BALwCRR8Ab8eMBQAAYA7mLAAtCUXfWRR9cDp/O8OXLl2qhIQEvfzyy+rTp49SUlI0Y8YMhYaG6q67an/SlpSUKDw8XA8//LD+8pe/WLxiAG5H0QegJWDGAgAAMAdzFoCWgqLvrOLCLKV/No+iD45ma9m3detW3XDDDRo/frwkKTo6WuvWrVNycnKd+0RHR+vJJ5+UJL300kuWrBOAd6DoA9BSMGMBAACYgzkLQEtA0Vdd9o4EtQ3vQ9EHR7O17Lvqqqv03HPPKT09XbGxsdq1a5cSExO1fPlyj2WUlJSopKSk6nJhYaHHjg2g6fLy8rR27VrTjp+UlCRJeistRxl5J/VDYbFWpWapc5sg/Ty6k5784vtmZ2w/kC9JKi7cp+NHdjf7eLUpLtwnSTqR950px7c6A4A1rJixJOYswKmKi4u1Y8cO046flpZ25n+PHDct48DxYkneMwMxZwHegzkLaNm8Yc46cuLMz5YjGR/VOkdUlJfqUPobKj2Zqy69b9bRfZ/q6L5PG5VR+TpZ/oF/KyOlaevMP/Bv5e9PUljXYTIMKSPlKY9nNGQNkuQX2E4RvScpN/Njj2ecOs4sB8/wMS70oeImq6io0EMPPaRly5bJz89P5eXlWrRokeLj4xu0/4gRIzRgwACtWLGizm3mz5+vBQsW1Lh+3LhxCggw7109ycnJGjp0qGnHtzKHDDI8LS8vT4mJiaYdH+jXr5+ioqJMO743PA+9JaOsrEwbNmxQQUGBQkJCTMtxGytmLMm75ywynJdDRsMUFxdr48aNph0fLRszlnMyrMhhzqodcxYZZDgzw4oc5iyYqVevXoqLizPt+N7yXPeGDLNmLFvf2ffaa69p7dq1evXVV9WnTx+lpqZq7ty5ioyM1PTp0z2SER8fr3vuuafqcmFhobp3765//OMfpg6rEydO1Ntvv23a8a3MIYMMT1u7dq0SExN1x+BoDevR0ZSMlTuytCkzV3Gd2uq7Y0XqEByo62O7KNDP12MZn2bm6uvcIkVcOlVhEYM9dtxz5eekKGfPGkUPuVfBId3JqEdx4T5lbntC999/v6ZMmWJajjc8D70lo7CwUKGhoaYd362smLEk756zyHBeDhkNs2PHDg0aNEhrfjlIceHtTMl4/9tDmrc5TQtHximmfWtTMt5KO6DX03JcP594SwYzlvMyrMhhzqodcxYZZDgzw4ocb5mzKl8zC+s6TMGhMVXXGxVlOpq1SWWn8tUpapQCWndqckb+gS9UnP+t2ob3V7vwvo3a9/iR3So6sqvefZuTUZ+yk7nKzdooH19/GeWnTMmoVFyQofz9SZo+fboefvhhUzIk73mue0OGWTOWrWXffffdpwcffFC33HKLJKlv377KysrS4sWLPTYgBQUFKSgoyCPHAuBZw3p01JS+5rwgkZR9VJsyc/V93gkN6drBlHP0zX4vVV/nFiksYrC6xP7So8c+V86eNeoUNdK0ocKbMo4f2a3MbU+YdnzALayYsSTmLMDJ4sLbaWBEmCnHTss987FS1/3kItMyMvJO6vW0HK+YT7whgxkLOIs5C4Db56zK18wiLplU9XpW5Tn6KspLNOiXbzT7HH3ffPLfKs7/Vp2iRylmcMPPtZe5/Snl7FnToHP0NTWjPoWHUpX67lSFXNRfrcN66eA3//B4xrkOpr+p/P1JphwbLYvn3uLSBCdPnpSvb/Ul+Pn5qaKiwqYVAfAWh378/PHObYJMKfoAwMmYsQAAAMzBnAXA21QWfSeOpWvA9WuaXfQ1Veb2p5SR/ESDij6zVBZ9bTrEqv/41fLx5fVEuIet7+ybMGGCFi1apB49eqhPnz7auXOnli9frpkzZ1ZtEx8fr/3792v16tVV16WmpkqSioqKdOTIEaWmpiowMFCXXnqp1TcBgAMl78/TO3tzJEnT+/eg6APQ4jBjAQAAmIM5C4A3oeg76/yizz+wrS3rAJrK1rLv6aef1rx58zR79mwdPnxYkZGRmjVrlh555JGqbXJycpSdnV1tv8svv7zq/2/fvl2vvvqqoqKilJmZadXSAThU8v48jX4lSR2CA3XoRKmC/P3sXhIAWI4ZCwAAwBzMWQC8RcXpUxR9P6Logzewtexr166dVqxYoRUrVtS5zapVq2pcZxiGeYsC4FqVRd9lnUMU16mtXtyZXf9OAOCFmLEAAADMwZwFwFtkpT6rsuKjFH0UffAStp6zDwA85dyib8OUKxXox483AAAAAAAAoDalRQcp+hxQ9FWcPmV5JrwTr4YDcL3ziz7O0QcAAAAAAADUrcfAOyj6bC76TpcWKSv1Wctz4Z0o+wC4GkUfAAAAAAAA0DjBIVG25FL0nXG6tEi73pum0qKDlmfDO1H2AXAtij4AAAAAAADAHSj6zqgs+k4cS1ePgXdYng/vRNkHwJWcUPSVlldYngkAAAAAAAC4DUXfGecWfQOuX2PbOyzhfSj7ALiOE4q+4yVlei/9kOW5AAAAAAAAgJtQ9J1xftFn1zkT4Z0o+wC4ilOKvnFrP9fR4lLLswEAAAAAAAC3oOg7g6IPZqPsA+AaTir6vjpcqAm9u1ieDwAAAAAAALhB/oF/U/SJog/WoOwD4ApOK/o+/u0wXdQmyPI1AAAAAAAAAG6Qvz+Joo+iDxah7APgeE4s+oZ2bW/5GgAAAAAAAACnO35ktyQprOswij6KPliEsg+Ao1H0AQAAAAAAAO6Quf0pFR3ZJUkKi7zCljVQ9KElouwD4FgUfQAAAAAAAIA7ZG5/ShnJT6hteH/b1kDRh5aKsg+AI1H0AQAAAAAAAO5QWfTFDL1X7cL72rIGij60ZJR9AByHog8AAAAAAABwh3OLPs7RR9EHe1D2AXAUij4AAAAAAADAHSj6zqDog90o+wA4BkUfAAAAAAAA4A5OKPpKinIo+gBR9gFwCIo+AAAAAAAAwB2cUPRJ0sG9r1P0AaLsA+AAFH0AAAAAAACAOzih6Cs7mStJCmzdiaIPEGUfAJtR9AEAAAAAAADu4ISir/BQqnKzNkqSLoq9iaIPEGUfABv959gJij4AAAAAAADABZxS9KW+O1UBrcIkSb5+gZavgaIPTtTgsu/AgQMeDy8vL9e8efMUExOj4OBg9ezZUwsXLpRhGBfcb8uWLRo4cKCCgoLUq1cvrVq1yuNrA2C+xYnpFH0AIM/PWcxYAAAAvJYFAJ7kpKKvTYdYdYy61pY1UPTBqRpc9vXp00evvvqqR8OXLl2qhIQEPfPMM0pLS9PSpUu1bNkyPf3003Xuk5GRofHjx2vkyJFKTU3V3Llz9fvf/14ffvihR9cGwHzdQ4Ip+gBAnp+zmLEAAAB4LQsAPMVpRV//8avl42v964kUfXAy/4ZuuGjRIs2aNUtvvvmm/vd//1cdOnRodvjWrVt1ww03aPz48ZKk6OhorVu3TsnJyXXu8+yzzyomJkZPPPGEJCkuLk6JiYn6y1/+orFjxzZ7TQCsc/+wn1D0AYA8P2cxYwEAAPBaFgB4ghOLPs7RB9TU4LJv9uzZ+sUvfqHf/e53uvTSS/X8889rwoQJzQq/6qqr9Nxzzyk9PV2xsbHatWuXEhMTtXz58jr3+fzzzzVq1Khq140dO1Zz586tdfuSkhKVlJRUXS4sLGzWmgF4zoffHdbBopL6N2yClAP5kqQtmUeqXV9yulwv78rW4RMlunVAlD76z2F99J/DTcrY/mNGceE+HT+yuznLrVNx4T5J0om870w5vjdlWHF8wCyenrOsmLEk5izAydKOHDft2Bl5J03POHC8WJL75xNvyWDGglu59bUsiTkLcDK3z1lHTpz52XIk46OqOaIu+Qf+rfz9SQrrOkyGIWWkPNWgjMrXyfIP/FsZKc1bb0lRjg7ufV2BrTspLPIq7fvyJY9n1KUy49gPicpJW6fSk7nq0vtmHd33qY7u+9QjGUVH0zxyHMDHqO9DxWvxzDPP6I9//KPi4uLk71+9L9yxY0eDj1NRUaGHHnpIy5Ytk5+fn8rLy7Vo0SLFx8fXuU9sbKxmzJhRbZv3339f48eP18mTJxUcHFxt+/nz52vBggU1jjNu3DgFBJj3jqLk5GQNHTrUtONbmUMGGZ6WlZWlL7/80rTjA/369VNUVJRpx/eG56G3ZJSVlWnDhg0qKChQSEiIaTlW8sScZcWMJXn3nEWG83LIaJi8vDwlJiaadny0bMxYzsmwIsfb5iw3vZYlMWeRQYYTc5izYKZevXopLi7OtON7y3PdGzLMmrEa/M6+SllZWVq/fr3at2+vG264ocaA1Bivvfaa1q5dq1dffVV9+vSp+tzyyMhITZ8+vcnHPVd8fLzuueeeqsuFhYXq3r27/vGPf5g6rE6cOFFvv/22ace3MocMMjxt7dq1mjp1qq6N7qTYTua87f6TzFztyS3SkMgwDY4MU2l5hd5NP6hjxaWa0DtCF7UJanbGp5m5+jq3SBGXTlVYxGAPrLqm/JwU5exZo+gh9yo4pDsZ9Sgu3KfMbU/o/vvv15QpU0zL8YbnobdkFBYWKjQ01LTjW81Tc5YVM5bk3XMWGc7LIaNhduzYoUGDBmnhyDjFtG9tSkZS9lElpGSamvFW2gG9npbj+vnEWzKYsZyXYUWON81ZbnstS2LOIoMMJ+Z4y5y1ckeWNmXmKqzrMAWHxtS6zfEju1V0ZJfahvdXu/C+jc7IP/CFivO/bfL+klR2Mle5WRsV0CpMHaOurXGOPk9k1CfvwOc6lf8fSb7qFD1GAa07eTyjuCBD+fuTNH36dD388MMeP34lb3mue0OGWTNWo6ab559/Xvfee69GjRqlr7/+WuHh4c0Kv++++/Tggw/qlltukST17dtXWVlZWrx4cZ0DUpcuXXTo0KFq1x06dEghISG1/iVUUFCQgoKa/6I+AM+bMTBKU/qa84LE7PdStSe3SBN7R+jun16scWs/V/HpCiXOHO6xc/TNfi9VX+cWKSxisLrE/tIjx6xNzp416hQ10rTBxZsyjh/ZrcxtT5h2fMBMnpyzrJixJOYswMmu+8lFGhgRZtrxE1IyTc3IyDup19NyvGI+8YYMZiy4mRtfy5KYswAnc/uclZR9VJsycxVxyaRaX8/K3P6UcvasadY5+r755L9VnP+tOkWPUszgxh+j8hx9IRf1r/Mcfc3NqM/p0iL9+9XhkqSIuFt0yYjFHs+QpIPpbyp/f5Ipx0bL0uCyb9y4cUpOTtYzzzyjadOmeST85MmT8vX1rXadn5+fKioq6tznyiuv1Pvvv1/tuo8//lhXXnmlR9YEwLuUnC7XuLWf66vDhfr4t8M8VvQBgCd5es5ixgIAAOC1LABorMztTykj+YlmFX3NVVn0tekQW2fRZ7bTpUXa9d40lZ3KlyQFtY2wfA1AYzW47CsvL9eXX36pbt26eSx8woQJWrRokXr06KE+ffpo586dWr58uWbOnFm1TXx8vPbv36/Vq1dLkm6//XY988wzuv/++zVz5kz961//0muvvab33nvPY+sC4D1e3pWtgpLTFH0AHM3TcxYzFgAAAK9lAUBjUPSdUVn0nTiWrk5Ro5SbucHyNQBN0eCy7+OPP/Z4+NNPP6158+Zp9uzZOnz4sCIjIzVr1iw98sgjVdvk5OQoOzu76nJMTIzee+89/fGPf9STTz6pbt266YUXXtDYsWM9vj4A7lVafuavKg+fKNGnM35G0QfA0Tw9ZzFjAQAA8FoWADQURd8Z5xZ9A65fowPf/NPyNQBN1fQzEntAu3bttGLFCq1YsaLObVatWlXjuhEjRmjnzp3mLQyAqx0vKdO76QclSbcOiKLoA9DiMGMBAACYgzkLgLeh6Dvj/KIv5KIBlH1wFd/6NwEA9zheUqZxaz/XseJSSVK3kNpPdg4AAAAAAAC0ZBR9Z9RW9AFuQ9kHwGtUFn1fHS7UhN6cOBcAAAAAAACozZGMDyn6RNEH70HZB8ArnFv0ffzbYbqoTZDdSwIAAAAAAAAcKff7Dyj6KPrgRSj7ALje+UUf5+gDAAAAAAAA6tbp4l9Q9Dmg6DuS8aEtufA+lH0AXI2iDwAAAAAAAGic8JixtuRS9J2Vuf0p5X7/gS3Z8D6UfQBci6IPAAAAAAAAcAeKvrMytz+ljOQn1OniX9iSD+9D2QfAlSj6AAAAAAAAAHeg6DursuiLGXqvbe+whPeh7APgOk4p+lIO5NuSCwAAAAAAALgFRd9Z5xZ9dp0zEd6Jsg+Aqzil6Hvs073aRtkHAAAAAAAA1Imi7yyKPpiJsg+Aazip6Ju3OU1DIsNsyQcAAAAAAACcrqQoh6LvRxR9MBtlHwBXcFrRt3BknAZT9gEAAAAAAAC1Orj3dYo+UfTBGpR9ABzPiUXfwz/rbcsaAAAAAAAAACcrO5krSQps3Ymij6IPFqHsA+BoFH0AAAAAAACAOxQeSlVu1kZJ0kWxN1H0UfTBIpR9AByLog8AAAAAAABwh8JDqUp9d6oCWoVJknz9Ai1fA0UfWirKPgCORNEHAAAAAAAAuENl0demQ6w6Rl1ryxoo+tCSUfYBcByKPgAAAAAAAMAdzi36+o9fLR/fAMvXQNGHlo6yD4CjUPQBAAAAAAAA7nB+0cc5+ij6YA/KPgCOQdEHAAAAAAAAuIMTir6K8lKKPkCSv90LAACJog8AAAAAAABwCycUfZJ0KP0NnS49TtGHFo+yD4DtKPoAAAAAAAAAd3BC0WdUlEmSSk/mauCN/6ToQ4tn68d4RkdHy8fHp8bXnDlzat2+rKxM//M//6OePXuqVatW6t+/vzZs2GDxqgF4EkUfAJiDOQsAAMDzmLEAtHROKPpOlxbpaNYmSVKX3jdT9AGy+Z1927ZtU3l5edXlr776SqNHj9akSZNq3f7hhx/WmjVr9Pzzz+uSSy7Rhx9+qF/+8pfaunWrLr/8cquWDcBDisvKKfoAwCTMWQAAAJ7HjAWgJXNK0bfrvWkqO5UvSQpqG2H5GiSKPjiPre/sCw8PV5cuXaq+3n33XfXs2VPDhw+vdftXXnlFDz30kK677jpdfPHFuuOOO3TdddfpiSeesHjlADxhWdK3FH0AYBLmLAAAAM9jxgLQUjmp6DtxLF2dokZZnl+Jog9O5Jhz9pWWlmrNmjW655575OPjU+s2JSUlatWqVbXrgoODlZiYWOdxS0pKVFJSUnW5sLDQMwsG0GwZeSf1u4FR+ug/h/XRfw579NgpB/IlSVsyj9S5zZbMI9qUkatrYzpJOlP8Ncb2HzOKC/fp+JHdTVpnfYoL90mSTuR9Z8rxvSnDiuMDbsWcBbQ8aUeOm3bsjLyTpmccOF4syf3zibdkMGMBtTNrxqrcjzkLcCa3z1lHTpz52XIk46OqOaI+JUU5Orj3dQW27qSwyKu078uXLrh95etk+Qf+rYyU5q23UkV5qQ6lv6HSk7nq0vtmHc/92uMZ56vtduQf+Lfy9ycprOswGYaUkfJUszKKjqY1d5mAJMnHMAzD7kVI0muvvabJkycrOztbkZGRtW4zefJk7dq1S2+99ZZ69uypTZs26YYbblB5eXm1Aehc8+fP14IFC2pcP27cOAUEBHj0NpwrOTlZQ4cONe34VuaQQYanZWVl6csvvzTt+EC/fv0UFRVl2vG94XnoLRllZWXasGGDCgoKFBISYlqO2zFnkWE2b7kt3pCRl5dX7wvIQFMxYzknw4oc5qz6mTVjScxZZJDhxBzmLJipV69eiouLM+343vJc94YMs2Ysx5R9Y8eOVWBgoN555506tzly5Ihuu+02vfPOO/Lx8VHPnj01atQovfTSSyouLq51n9r+Eqp79+6mD6sTJ07U22+/bdrxrcwhgwxPW7t2raZOnaprozsptpM5b/n/JDNXe3KLNCQyTIMjw6p9L+VAvrYdyK/1e43xaWauvs4tUsSlUxUWMbh5C65Dfk6KcvasUfSQexUc0p2MehQX7lPmtie0Zs0aTZkyxbQcb3geektGYWGhQkNDeRGqHsxZZJjNW26LN2Ts2LFDgwYN0sKRcYpp39qUjKTso0pIyTQ14620A3o9Lcf184m3ZDBjOS/DihzmrPqZNWNJzFlkkOHEHG+Zs1buyNKmzFyFdR2m4NCYC25bdjJXuVkbFdAqTB2jrpWPb8P+2CD/wBcqzv9WbcP7q11432at16go09GsTSo7la9OUaMU0LqTxzPqcm6GJBUd2eXxvOKCDOXvT9LChQv18MMPe+y45/OW57o3ZJg1YzniYzyzsrK0ceNGrV+//oLbhYeH66233tKpU6d09OhRRUZG6sEHH9TFF19c5z5BQUEKCgry9JIBeMCMgVGa0tecFyRmv5eqPblFmtg7otq5+B77dK+2Hcj0yDn6Zr+Xqq9zixQWMVhdYn/Z3CXXKWfPGnWKGmna4OJNGceP7FbmNs59AZyLOQtoma77yUUaGBFm2vETUjJNzcjIO6nX03K8Yj7xhgxmLKAmM2csiTkLcDK3z1lJ2Ue1KTNXEZdMuuDrWZXn6Au5qH+jz9H3zSf/reL8b9UpepRiBjf9nHaV5+irKC/RoF++oZCLBng840IqM/wD2yp/f5Ip5+g7mP6m8vcnefSYaJl87V6AJK1cuVKdO3fW+PHjG7R9q1at1LVrV50+fVpvvPGGbrjhBpNXCMAbPPbpXs3bnOaRog8A3II5CwAAwPOYsQB4s8qir02H2EYXfZ5SWfSdOJauAdevqVb0Wc2sog/wJNvLvoqKCq1cuVLTp0+Xv3/1NxpOmzZN8fHxVZe/+OILrV+/Xt9//70+++wzjRs3ThUVFbr//vutXjYAl6HoA9ASMWcBAAB4HjMWAG9G0XfW8SO7JUlhXYdR9MHxbP8Yz40bNyo7O1szZ86s8b3s7Gz5+p7tI0+dOqWHH35Y33//vdq2bavrrrtOr7zyisLCwixcMQC3oegD0FIxZwEAAHgeMxYAb0XRd1bm9qdUdGSXJCks8gpb1gA0hu1l35gxY2QYRq3f27JlS7XLw4cP1549eyxYFQBvsSXziDZl5FL0AWiRmLMAAAA8jxkLgDei6Dsrc/tTykh+Qm3D+1cVfoDT2f4xngBgJoo+AAAAAAAAoG4UfWdVFn0xQ+9Vu/C+tqwBaArKPgBeKeVAviTp2phOFH0AAAAAAABALSj6zjq36OMcfXAbyj4AXuexT/dq249l34jocHsXAwAAAAAAADgQRd9ZFH1wO8o+AF7lsU/3at7mNA2JDLN7KQAAAAAAAIAjFRdmUfT9iKIP3oCyD4DXqCz6Fo6M02DKPgAAAAAAAKBW2TsSKPpE0QfvQdkHwCucW/Rxjj4AAAAAAACgboFtu1D0OaDoKy7MsiUX3oeyD4DrUfQBAAAAAAAADRc14HaKPpuLvsJDqcrekWBLNrwPZR8AV6PoAwAAAAAAABrH17+V5ZkUfWcVHkpV6rtTFdi2iy358D6UfQBci6IPAAAAAAAAcD6KvrMqi742HWIVNeB2W9YA70PZB8CVnFD0HTpRYksuAAAAAAAA4BYUfWedW/T1H7/alndYwjtR9gFwHScUfcn78/TO3oO2ZAMAAAAAAABuQNF31vlFnx3nTIT3ouwD4CpOKfpGv5KkjsGBtuQDAAAAAAAATldRXkrR9yOKPpiNsg+Aazip6Lusc4jGx15kyxoAAAAAAAAApzuU/gZFnyj6YA3KPgCu4LSib8OUKxXox49QAAAAAAAA4FxGRZkkqfRkLkUfRR8swivVABzPiUVfu6AAW9YBAAAAAAAAONXp0iIdzdokSerS+2aKPoo+WISyD4CjUfQBAAAAAAAAzne6tEi73pumslP5kqSgthG2rIOiDy0RZR8Ax6LoAwAAAAAAAJyvsug7cSxdnaJG2bYOij60VJR9AByJog8AAAAAAABwvnOLvgHXr1FA6062rIOiDy0ZZR8Ax6HoAwAAAAAAAJzv/KKPc/RR9MEetpZ90dHR8vHxqfE1Z86cWrcfMWJErduPHz/e4pUDMAtFHwB4BnMWAACA5zFjAcBZFH1nUfTBbv52hm/btk3l5eVVl7/66iuNHj1akyZNqnX79evXq7S0tOry0aNH1b9//zq3B+AuFH0A4DnMWQAAAJ7HjAUAZzil6Ms/8G/l70+i6EOLZ2vZFx4eXu3ykiVL1LNnTw0fPrzW7Tt06FDt8t///ne1bt2aAQnwAhR9AOBZzFkAAACex4wFAM4p+iRR9AE/srXsO1dpaanWrFmje+65Rz4+Pg3a58UXX9Qtt9yiNm3a1LlNSUmJSkpKqi4XFhY2e60APOOttBxl5J3Ulswj2pSRq2tjzpy897FP9zb72CkH8iVJWzKPNGj7HwqLtSo1S53bBOnn0Z305Bff17vP9h8z8nNSmrrMelUe+0Ted6ZlFBfukyTlZm02LafydpiZIZ29LQCqY84CWp73vz2ktNzjphw7KfuoJCntiDnHl6QDx4slWTMDkVE/M48NuJlZM5bEnAU4mZkzUEbeSdMzjpw487Ol4GDTXs+qOH1KWanPqrTooHoMvEMnCzJ0siCj2jbFP17OP/BvZZj0sllu5kZJUuv2P1Grdt11MP1Nj2dU3o6io2m1Hr+4MEvZOxIU2LaLInpPUm7mx43OaOrjAJzPxzAMw+5FSNJrr72myZMnKzs7W5GRkfVun5ycrJ/+9Kf64osvNHTo0Dq3mz9/vhYsWFDj+nHjxikgwLx37SQnJ19wXW7KIYMMT8vKytKXX35p2vGBfv36KSoqyrTje8Pz0FsyysrKtGHDBhUUFCgkJMS0HLdjziLDbN5yW7whIycnRykpvGAAcwwePFgRERGmHd8bnoNWZViRw5xVP7NmLIk5iwwynJiTl5enxMRE046Plo3XslpOhlkzlmPKvrFjxyowMFDvvPNOg7afNWuWPv/883oLg9r+Eqp79+6mD6sTJ07U22+/bdrxrcwhgwxPW7t2raZOnaqLw1rr+/yTGhIZpsGRYR7N+CQzV3tyi+o99qETJXpnb446BAfq+tguCvTzbXTG0MgwDWrG+kvLK/Re+iEdLS7VhN5ddFGboKrvfZqZq69zixRx6VSFRQxucsaF5OekKGfPGnVtF6T9x0tMeTwqb0d999WZx+OgOgYHanzsRY16PCQp/WiRNmXkas2aNZoyZUozV103b3geektGYWGhQkNDeRGqHsxZZJjNW26LN2RUzlk3x0Wqf5dQUzIqP5XhjsHRGtajoykZSdlHlZCSqTsGRyuyXbApGVsyjmhTZq6ih9yr4JDupmQUF+5T5rYndHNchPp3CTMlY9fBfL2elmPqfXXgeLESUjK1fft2DRw40JQMyTueg1ZlWJHDnFU/s2YsiTmLDDKcmLNjxw4NGjRIC0fGKaZ9a1MyKmcgKzJujotQ+DmvQXlS5WtmYV2HKTg0xqPHPn5kt4qO7FKrdt116vg+DYkI0+CuYR7NqJSeW6RNmbmm3ldHTpTo9bQc5qwWlGHWjOWIj/HMysrSxo0btX79+gZtf+LECf3973/X//zP/9S7bVBQkIKCzHkiAmie7/NPmnaOvtnvpWpPbpEm9o6o8/iV5+gb0rVDk87RV5kx4QIZ9TleUqZxaz/XydPlSpz5Mw3t2r5Gxte5RQqLGKwusb9sUkZD5OxZo/3HS0x9PL6u5746+3i0b/I5E9fu3qdNGbnNXS7gVZizgJbpxrgITelrToElSZsycjWsR0dTMxJSMvX7gdEaGBFmWsamzFx1ihqpduF9TTn+8SO7lbntCd0YF2nafbV29z69npZj6n21IydfCSmZphwbcCszZyyJOQtwsut+cpGp80lCSqYlGfHX9DYto/I1s4hLJnn09azM7U8pZ88axQy9V63adVfaprmaeEnTX5erz9rd+7QpM9fU+2pHzpk/3AKaq3FvmTDJypUr1blzZ40fP75B2//zn/9USUmJpk6davLKAJjp5jjzfhnXp7JYuqxzSJOLpeaqLPq+Olyoj387rEbRZ7VrYzq16McD8FbMWQAAAJ7HjAUA1src/pQykp9QzNB7FT3oLruXAziO7WVfRUWFVq5cqenTp8vfv/obDadNm6b4+Pga+7z44ou68cYb1bGjOR8ZA8AaN8bVf04DMzihWHJa0SdJI6LDbcl1wuMBeCvmLAAAAM9jxgIAa1H0AfWz/WM8N27cqOzsbM2cObPG97Kzs+XrW72P3Lt3rxITE/XRRx9ZtUQAXsQJxZITiz67OOHxALwZcxYAAIDnMWMBgHUo+oCGsb3sGzNmjAzDqPV7W7ZsqXFd796969weAC7ECcUSRd9ZTng8AG/HnAUAAOB5zFgAYA2KPqDhbP8YTwCwghOKJYq+s5zweAAAAAAAAMCZKPqAxqHsA+D1nFAsUfSd5YTHAwAAAAAAAM5E0Qc0HmUfAK/2Q2Gx7cUSRd9ZTng8AAAAAAAA4EwUfUDTUPYB8GqrUrMo+hzE7scDAAAAAAAAzkTRBzQdZR8Ar3ToRIkkqXObIIo+B3DC4wEAAAAAAABnougDmoeyD4DXSd6fp3f25kiSpvfvQdFnMyc8HgAAAAAAAHAmij6g+Sj7AHiV5P15Gv1KkjoEB0qSgvz9LF8DRd9ZTng8AAAAAAAA4EwUfYBnUPYB8BqVxdJlnUN0fWwXW9ZA0XeWEx4PAAAAAAAAOBNFH+A5lH0AvMK5xdKGKVcq0M/6H28UfWc54fEAAAAAAACAM1H0AZ7Fq68AXO/8Yolz9NnLCY8HAAAAAAAAnImiD/A8yj4AruaEYqnkdDlF34+c8HgAAAAAAADAmSj6AHP4270AAGgqpxRLL+/KVkHJaYo+BzwexWXllmcCAAAAAACgfhR9gHl4Zx8AV3JCsVRaXiFJOnyihKLPAY/H8ZIyLUv61vJcAAAAAAAAXBhFH2Auyj4AruOUYund9IOSpFsHRFH0OeDxGLf2c+0rLLY8GwAAAAAAAHWj6APMR9kHwFWcVCwdKy6VJHULCbZ8DU7hpMfjq8OFir861vJ8AAAAAAAA1I6iD7AGZR8A13BasTShd4Tl+U7itMfj498OU88ObSxfAwAAAAAAAGo6kvEhRR9gEco+AK7gxGLpojZBlq/BKZz4eLTkj1IFAAAAAABwmtzvP6DoAyxC2QfA8SiWnIXHAwAAAAAAAPXpdPEvKPoAi1D2AXA0iiVn4fEAAAAAAABAQ4THjLV7CUCLQdkHwLEolpyFxwMAAAAAAAAAnMfWsi86Olo+Pj41vubMmVPnPvn5+ZozZ44iIiIUFBSk2NhYvf/++xauGoAVKJachccDcB/mLAAAAM9jxgIAAE7kb2f4tm3bVF5eXnX5q6++0ujRozVp0qRaty8tLdXo0aPVuXNnvf766+ratauysrIUFhZm0YoBWIFi6ayUA/m25J6LxwNwJ+YsAAAAz2PGAgAATmRr2RceHl7t8pIlS9SzZ08NHz681u1feuklHTt2TFu3blVAwJkXm6Ojo81eJgALUSyd9dine7XN5rKPxwNwL+YsAAAAz2PGAgAATmRr2Xeu0tJSrVmzRvfcc498fHxq3ebtt9/WlVdeqTlz5uj//u//FB4ersmTJ+uBBx6Qn59frfuUlJSopKSk6nJhYaEp6wfQeEnZR6td/s+xE1qcmK7uIcGaMaCH3k4/2ORjp+cWSZK2ZB5p1H4lp8v18q5sHT5RolsHROmj/xzWR/85XOu2le+6a2xGQ2zJPKJNGbnq2i5I+4+XKD8nxeMZlSqPff7t+KGwWKtSs9S5TZB+Ht1JT37xfZMzmnpfNebxkKRdBwuavEbAmzFnAS3P+XOWJ1X+vs3IO6kdOfmmZGTknZQkpR05bsrxJenA8WJJ0om870zLqDy22+8rM48NuJlZM5bEnAU4mZm/F634vW5FxpETZ35+FRw07/WsymMfOF7MnAVI8jEMw7B7EZL02muvafLkycrOzlZkZGSt21xyySXKzMzUlClTNHv2bH333XeaPXu27rrrLj366KO17jN//nwtWLCgxvXjxo2r+osqMyQnJ2vo0KGmHd/KHDLI8LS8vDwlJiaadnygX79+ioqKMu343vA89JaMsrIybdiwQQUFBQoJCTEtx+2Ys8gwm7fcFm/IYM6Cma6++mq1b2/epyx4w3PQqgwrcpiz6mfWjCUxZ5FBhhNziouLtXHjRtOOj5aNOavlZJg1Yzmm7Bs7dqwCAwP1zjvv1LlNbGysTp06pYyMjKq/flq+fLn+/Oc/Kycnp9Z9avtLqO7du5s+rE6cOFFvv/22ace3MocMMsxwzTXX6Pbbbzft+ElJSUpISNC10Z0U26ltvduXllfo3fSDOlZcqgm9I3RRm6B69/kkM1d7cos0JDJMgyPDPLDqM++A23Ygv+qYlRlDI8M0yEMZ5/s0M1dfn3M7Dp0o0Tt7c9QhOFDXx3ZRoJ9vszMae1815fGQzryjc1NmrtasWaMpU6Y0c9V185bnoTdkFBYWKjQ0lBeh6sGcRYbZvOW2eEuG2XNWRkaG5s2bp4Uj4xTTvrUpGUnZR5WQkmlJxh2DoxXZLtiUjF0H8/V6Wo7r76uMvJOatzlN27dv18CBA03JkLznOegtP3uZs+pn1owlMWeRQYZTc0aPHq2lS5eadvy0tDRNnTrV9bNDZcbNcREKb+BrOo1V+RqQ2+8r5qyWl2HWjOWIj/HMysrSxo0btX79+gtuFxERoYCAgGofcxAXF6eDBw+qtLRUgYGBNfYJCgpSUJA5P1AANF379u1NLWMkKSEhQTMGRmlK3+4X3K7ynHDFpyuUOHN4g88JN/u9VO3JLdLE3hF6+Ge9m73eM+foOzNAVB6vMmOChzJqM/u9VH394+0Y07OzRr+SpCFdO3j0HH2Nua+a+nhI0trd+7QpM7e5ywW8CnMW0PKYPWft2LFD8+bN03U/uUgDI8JMy0lIybQk4/cDo03LWLt7n15Py3H9fbUjJ1/zNqeZcmzArcycsSTmLMCpgoODTS1kKrl9dqjMiL+mt6lz1qbMXNffV8xZ8JTmv13DA1auXKnOnTtr/PjxF9xu2LBh+u6771RRUVF1XXp6uiIiIuocjgDgQiqLpa8OF+rj3w5rVLHkSY99ulfzNqdVK/qs9kNhsUa/kqTLOod4tOhrDKc8HoA3Yc4CAADwPGYsAADgJLaXfRUVFVq5cqWmT58uf//qbzScNm2a4uPjqy7fcccdOnbsmO6++26lp6frvffe05/+9CfNmTPH6mUD8AJOKZacUPRJ0qrULIo+wMswZwEAAHgeMxYAAHAa2z/Gc+PGjcrOztbMmTNrfC87O1u+vmf7yO7du+vDDz/UH//4R/Xr109du3bV3XffrQceeMDKJQPwAk4plpxQ9B06ceY8EJ3bBFH0AV6GOQsAAMDzmLEAAIDT2F72jRkzRoZh1Pq9LVu21Ljuyiuv1L///W+TVwXAmzmlWHJC0Ze8P0/v7D1zUvjp/XtQ9AFehjkLAADA85ixAACA09j+MZ4AYCWnFEtOKfpGv5KkDsFnzhMR5O9Xzx6e55THAwAAAAAAAADcirIPQIvhlGLJSUXfZZ1DdH1sF1vW4JTHAwAAAAAAAADcjLIPQIvglGLJaUXfhilXKtDP+l8FTnk8AAAAAAAAAMDtKPsAeD2nFEtOLPo4Rx8AAAAAAAAAuBtlHwCvVlxW7ohiiaLvjJLTzng8AAAAAAAAAMBb+Nu9AAAw07Kkb3XoRAlFnwOKPkl6eVe2CkpOU/QBAAAAAAAAgIdQ9gHwavsKi/XJrddQ9Nlc9JWWV0iSDp8o0aczfkbRBwAAAAAAAAAewsd4AvBq8VfHUvQ54Bx976YflCTdOiCKog8AAAAAAAAAPIiyD4BX69mhjS25FH1nHC8p07i1n+tYcakkqVtIsOVrAAAAAAAAAABvRtkHAB5G0XdGZdH31eFCTegdYXk+AAAAAAAAALQElH0A4EEUfWecW/R9/NthuqhNkOVrAAAAAAAAAICWgLIPADyEou+M84s+ztEHAAAAAAAAAOah7AMAD6DoO4OiDwAAAAAAAACs5W/3AgDA7bZkHtGmjFyKPoo+AAAAAAAAALAc7+wDgGai6HNO0fdW2gFbcgEAAAAAAADALpR9ANBEKQfyJUnXxnSi6HNA0ffYp3v1elqOLdkAAAAAAAAAYBfKPgBogsc+3attP5Z9I6LDbVkDRd9ZledMvDkuwpZ8AAAAAAAAALALZR8ANFJlsTQkMsy2NVD0nVX5eCwcGacb4yJtWQMAAAAAAAAA2IWyDwAa4dxiabBNZR9F31nnPh52fZQqAAAAAAAAANiJsg8AGsgJxRJF31lOeDwAAAAAAAAAwG62ln3R0dHy8fGp8TVnzpxat1+1alWNbVu1amXxqgG0RE4olij6znLC4wE4HXMWAACA5zFjAQAAJ/K3M3zbtm0qLy+vuvzVV19p9OjRmjRpUp37hISEaO/evVWXfXx8TF0jADihWPqhsJii70dOeDwAN2DOAgAA8DxmLAAA4ES2ln3h4eHVLi9ZskQ9e/bU8OHD69zHx8dHXbp0MXtpACDJOcXSqtQsDYpsT9HnkMcDcAPmLAAAAM9jxgIAAE5ka9l3rtLSUq1Zs0b33HPPBf/CqaioSFFRUaqoqNDAgQP1pz/9SX369Klz+5KSEpWUlFRdLiws9Oi6AThbUvbRJu/7VtoBvZ6Wo5vjIhTTvrXW7t5X7fvpuUWSpC2ZR5q1xgvZkpkrSWrl76efR3fSk1987/GMlAP5P2bVfjtKTpfr5V3ZOnyiRLcOiNJH/zmsj/5zuEkZuw4W1LgfG6q+x0Nq3uMNeDPmLABmSDty3LRjZ+SdJMNBGWYeG3Azs2YsiTkLaOncPjuQ0XDMWfAUH8MwDLsXIUmvvfaaJk+erOzsbEVGRta6zeeff65vv/1W/fr1U0FBgR5//HF9+umn+vrrr9WtW7da95k/f74WLFhQ4/px48YpIMC8d8ckJydr6NChph3fyhwyyHBjRl5enhITE007Ppzt6quvVvv25r370BueI96SUVZWpg0bNqigoEAhISGm5bgdcxYZZvOW20JGwxQXF2vjxo2mHR/ONWrUKAUHB5t2fG94fliVYUUOc1b9zJqxJOYsMshwag5zFszCnNVyMsyasRxT9o0dO1aBgYF65513GrxPWVmZ4uLi9F//9V9auHBhrdvU9pdQ3bt3N31YnThxot5++23Tjm9lDhlkuDXjmmuu0e23327a8ZOSkpSQkKBrozsptlNbjx770IkSvbM3R/6+vio+XaEhkWEaHBnm0YxKn2Tmak9uUY2M0vIKvZt+UMeKSzWhd4QuahPU5Iz03CJtyszVHXfcoWHDhnlg1XV79tln9dlnn5ma4S3PEW/IKCwsVGhoKC9C1YM5iwyzecttIaPhRo8eraVLl5p2/LS0NE2dOlULR8Yppn1rUzKSso8qISXT9RkZeSc1b3Oa1qxZo7i4OFMyJOmBBx7Qxx9/bNrxJe95fnjLz17mrPqZNWNJzFlkkOHUHOashmHOahzmrJaVYdaM5YiP8czKytLGjRu1fv36Ru0XEBCgyy+/XN99912d2wQFBSkoqOkvUANwr/bt22vKlCmmZiQkJGjGwChN6dvdY8dM3p+n0a8kaUjXDorr1FYv7szWxN4Rpp2jbvZ7qdqTW1Qto/IcfcWnK5Q4c3izz9G3dvc+bcrM1bBhw0x/TP7xj3+YenzAbZizAJghODhYAwcOND3nup9cpIERYaYdPyEl0/UZO3LyNW9zmuLi4kx9TMz8S3PAjcycsSTmLKAlY85yTgZzFtzE1+4FSNLKlSvVuXNnjR8/vlH7lZeXa/fu3YqIiDBpZQBgrcqi77LOIdow5UoF+ln/Y7qy6PvqcKE+/u2wZhd9AOzFnAUAAOB5zFgAAMBJbC/7KioqtHLlSk2fPl3+/tXfaDht2jTFx8dXXf6f//kfffTRR/r++++1Y8cOTZ06VVlZWfr9739v9bIBwOPOL/raBZl3Hoa6UPQB3oU5CwAAwPOYsQAAgNPY/jGeGzduVHZ2tmbOnFnje9nZ2fL1PdtH5uXl6bbbbtPBgwfVvn17DRo0SFu3btWll15q5ZIBwOOcUPSVnC6n6AO8DHMWAACA5zFjAQAAp7G97BszZowMw6j1e1u2bKl2+S9/+Yv+8pe/WLAqALCOE4o+SXp5V7YKSk5T9AFehDkLAADA85ixAACA09j+MZ4A0JI5oegrLa+QJB0+UULRBwAAAAAAAAAuQ9kHADZxQtF3vKRM76YflCTdOiCKog8AAAAAAAAAXIayDwBs4JSib9zaz3WsuFSS1C0k2PI1AAAAAAAAAACah7IPACzmpKLvq8OFmtA7wvJ8AAAAAAAAAIBnUPYBgIWcVvR9/NthuqhNkOVrAAAAAAAAAAB4BmUfAFjEiUUf5+gDAAAAAAAAAHej7AMAC1D0AQAAAAAAAADMQNkHACaj6AMAAAAAAAAAmIWyDwBMRNEHAAAAAAAAADATZR8AmISi76y30g7YkgsAAAAAAAAA3o6yDwBMQNF31mOf7tXraTm2ZAMAAAAAAACAt6PsAwAPo+g767FP92re5jTdHBdhSz4AAAAAAAAAeDvKPgDwIIq+syqLvoUj43RjXKQtawAAAAAAAAAAb0fZBwAeQtF31rlF38M/623LGgAAAAAAAACgJaDsAwAPoOg7i6IPAAAAAAAAAKxD2QcAzfSfYyco+n5E0QcAAAAAAAAA1qLsA4BmWpyYTtEnij4AAAAAAAAAsANlHwA0U/eQYIo+ij4AAAAAAAAAsAVlHwA00/3DfkLRR9EHAAAAAAAAALag7AOAZgoO8LM8k6IPAAAAAAAAACDZXPZFR0fLx8enxtecOXNq3X79+vUaPHiwwsLC1KZNGw0YMECvvPKKxasGAHtR9AFoCOYsAAAAz2PGAgAATuRvZ/i2bdtUXl5edfmrr77S6NGjNWnSpFq379Chg/77v/9bl1xyiQIDA/Xuu+9qxowZ6ty5s8aOHWvVsgHANhR9ABqKOQsAAMDzmLEAAIAT2Vr2hYeHV7u8ZMkS9ezZU8OHD691+xEjRlS7fPfdd+vll19WYmIiAxIAr0fRB6AxmLMAAAA8jxkLAAA4ka1l37lKS0u1Zs0a3XPPPfLx8al3e8Mw9K9//Ut79+7V0qVL69yupKREJSUlVZcLCws9sl4AqJSUfdS0Y6fnFkmSUg7kadBzW7SvsFjxV8fq22NF+vZYkUczdh0s0Nrd+y647VtpB/R6Wo5ujotQTPvW9W5fycz7CED9mLMAuFXakeOmHTsj76RXZJh5bAAXZtaMJTFnATCf22cg5iygOh/DMAy7FyFJr732miZPnqzs7GxFRkbWuV1BQYG6du2qkpIS+fn56W9/+5tmzpxZ5/bz58/XggULalw/btw4BQQEeGTttUlOTtbQoUNNO76VOWSQQUbt8vLylJiYaNrxvdHVV1+t9u3NfUeiN/zbIqPhysrKtGHDBhUUFCgkJMS0HLdjziLDbN5yW8hwTkZxcbE2btxo2vG90ahRoxQcHGza8b3h35U3ZViRw5xVP7NmLIk5iwwynJrjDRnMWY3HnEWGJ5k1Yzmm7Bs7dqwCAwP1zjvvXHC7iooKff/99yoqKtKmTZu0cOFCvfXWWzU+FqFSbX8J1b17d9OH1YkTJ+rtt9827fhW5pBBBhl1u+aaa3T77bebmrFs2TLdf//9rs949tln9dlnn5maIXnPvy0yGqawsFChoaG8CFUP5iwyzOYtt4UMZ2WMHj263ne+NNfdd9+tJ5980vUZDzzwgD7++GNTM7zl35W3ZFiRw5xVP7NmLIk5iwwynJrjLRnMWQ3HnEWGp5k1YzniYzyzsrK0ceNGrV+/vt5tfX191atXL0nSgAEDlJaWpsWLF9c5IAUFBSkoKMiTywWAKu3bt9eUKVNMzfjHP/7hNRkArMecBcCtgoODNXDgQFMz2rdv7xUZZv6lOYDamTljScxZAMzFnNVwzFlwC1+7FyBJK1euVOfOnTV+/PhG71tRUVHtL50AAABwFnMWANW6VXwAAC0FSURBVACA5zFjAQAAJ7H9nX0VFRVauXKlpk+fLn//6suZNm2aunbtqsWLF0uSFi9erMGDB6tnz54qKSnR+++/r1deeUUJCQl2LB0AAMDRmLMAAAA8jxkLAAA4je1l38aNG5WdnV3riYmzs7Pl63v2zYcnTpzQ7Nmz9cMPPyg4OFiXXHKJ1qxZo9/85jdWLhkAAMAVmLMAAAA8jxkLAAA4je1l35gxY2QYRq3f27JlS7XLjz32mB577DELVgUAAOB+zFkAAACex4wFAACcxhHn7AMAAAAAAAAAAADQeJR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4lK1lX3R0tHx8fGp8zZkzp9btn3/+eV1zzTVq37692rdvr1GjRik5OdniVQMAADgfcxYAAIDnMWMBAAAnsrXs27Ztm3Jycqq+Pv74Y0nSpEmTat1+y5Yt+q//+i9t3rxZn3/+ubp3764xY8Zo//79Vi4bAADA8ZizAAAAPI8ZCwAAOJG/neHh4eHVLi9ZskQ9e/bU8OHDa91+7dq11S6/8MILeuONN7Rp0yZNmzbNtHUCAAC4DXMWAACA5zFjAQAAJ7K17DtXaWmp1qxZo3vuuUc+Pj4N2ufkyZMqKytThw4d6tympKREJSUlVZcLCwubvVYAAAA3Yc4CAADwPLNmLIk5CwAANI6PYRiG3YuQpNdee02TJ09Wdna2IiMjG7TP7Nmz9eGHH+rrr79Wq1atat1m/vz5WrBgQY3rx40bp4CAgGat+UKSk5M1dOhQ045vZQ4ZZJBBhlsyrMohwzkZZWVl2rBhgwoKChQSEmJajtsxZ5FhNm+5LWSQQQYZbsmwIoc5q35mzVgScxYZZDg1hwwyyCCjuUybsQyHGDNmjHH99dc3ePvFixcb7du3N3bt2nXB7U6dOmUUFBRUfe3bt8+QZBQUFDR3yRc0YcIEU49vZQ4ZZJBBhlsyrMohwzkZBQUFlvxedzvmLDK8IYcMMsgggwxrc5iz6mfWjGUYzFlkkOHUHDLIIIOM5jJrxnLEx3hmZWVp48aNWr9+fYO2f/zxx7VkyRJt3LhR/fr1u+C2QUFBCgoK8sQyAQAAXIc5CwAAwPPMnLEk5iwAANA4jij7Vq5cqc6dO2v8+PH1brts2TItWrRIH374oQYPHmzB6gAAANyLOQsAAMDzmLEAAICT+Nq9gIqKCq1cuVLTp0+Xv3/17nHatGmKj4+vurx06VLNmzdPL730kqKjo3Xw4EEdPHhQRUVFVi8bAADA8ZizAAAAPI8ZCwAAOI3tZd/GjRuVnZ2tmTNn1vhedna2cnJyqi4nJCSotLRUN998syIiIqq+Hn/8cSuXDAAA4ArMWQAAAJ7HjAUAAJzG9o/xHDNmjAzDqPV7W7ZsqXY5MzPT/AUBAAB4CeYsAAAAz2PGAgAATmP7O/sAAAAAAAAAAAAANA1lHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBL2Vr2RUdHy8fHp8bXnDlzat3+66+/1k033VS134oVK6xdMAAAgEswZwEAAHgeMxYAAHAiW8u+bdu2KScnp+rr448/liRNmjSp1u1Pnjypiy++WEuWLFGXLl2sXCoAAICrMGcBAAB4HjMWAABwIn87w8PDw6tdXrJkiXr27Knhw4fXuv2QIUM0ZMgQSdKDDz5o+voAAADcijkLAADA85ixAACAE9la9p2rtLRUa9as0T333CMfHx+PHbekpEQlJSVVlwsLCz12bAAAADdgzgIAAPA8s2YsiTkLAAA0jo9hGIbdi5Ck1157TZMnT1Z2drYiIyPr3T46Olpz587V3LlzL7jd/PnztWDBghrXjxs3TgEBAU1dbr2Sk5M1dOhQ045vZQ4ZZJBBhlsyrMohwzkZZWVl2rBhgwoKChQSEmJajtsxZ5FhNm+5LWSQQQYZbsmwIoc5q35mzVgScxYZZDg1hwwyyCCjuUybsQyHGDNmjHH99dc3ePuoqCjjL3/5S73bnTp1yigoKKj62rdvnyHJKCgoaMZq6zdhwgRTj29lDhlkkEGGWzKsyiHDORkFBQWW/F53O+YsMrwhhwwyyCCDDGtzmLPqZ9aMZRjMWWSQ4dQcMsggg4zmMmvGcsTHeGZlZWnjxo1av369x48dFBSkoKAgjx8XAADADZizAAAAPM/MGUtizgIAAI3ja/cCJGnlypXq3Lmzxo8fb/dSAAAAvApzFgAAgOcxYwEAACex/Z19FRUVWrlypaZPny5//+rLmTZtmrp27arFixdLOnPi4z179lT9//379ys1NVVt27ZVr169LF87AACAkzFnAQAAeB4zFgAAcBrby76NGzcqOztbM2fOrPG97Oxs+fqeffPhgQMHdPnll1ddfvzxx/X4449r+PDh2rJlixXLBQAAcA3mLAAAAM9jxgIAAE5je9k3ZswYGYZR6/fOH3qio6Pr3BYAAADVMWcBAAB4HjMWAABwGkecsw8AAAAAAAAAAABA41H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUraXffv379fUqVPVsWNHBQcHq2/fvkpJSbngPn/9618VFxen4OBg9e7dW6tXr7ZotQAAAO7AjAUAAGAO5iwAAOA0/naG5+XladiwYRo5cqQ++OADhYeH69tvv1X79u3r3CchIUHx8fF6/vnnNWTIECUnJ+u2225T+/btNWHCBAtXDwAA4EzMWAAAAOZgzgIAAE5ka9m3dOlSde/eXStXrqy6LiYm5oL7vPLKK5o1a5Z+85vfSJIuvvhibdu2TUuXLmVAAgAAEDMWAACAWZizAACAE9n6MZ5vv/22Bg8erEmTJqlz5866/PLL9fzzz19wn5KSErVq1aradcHBwUpOTlZZWVmt2xcWFlb7AgAA8GZWzFiV+zBnAQCAloQ5CwAAOJGPYRiGXeGVg84999yjSZMmadu2bbr77rv17LPPavr06bXu89BDD2nlypV69913NXDgQG3fvl3XX3+9Dh06pAMHDigiIqLa9vPnz9eCBQtqHGfcuHEKCAjw/I36UXJysoYOHWra8a3MIYMMMshwS4ZVOWQ4J6OsrEwbNmxQQUGBQkJCTMtxGytmLMm75ywynJdDBhlkkEGGtTnMWbVjziKDDGdmWJVDBhlkkNFcps1Yho0CAgKMK6+8stp1d955p3HFFVfUuc/JkyeNGTNmGP7+/oafn58RGRlp3H///YYk4+DBgzW2P3XqlFFQUFD1tW/fPkOSUVBQ4PHbc64JEyaYenwrc8gggwwy3JJhVQ4ZzskoKCiw5Pe621gxYxmGd89ZZDgvhwwyyCCDDGtzmLNqx5xFBhnOzLAqhwwyyCCjucyasWz9GM+IiAhdeuml1a6Li4tTdnZ2nfsEBwfrpZde0smTJ5WZmans7GxFR0erXbt2Cg8Pr7F9UFCQQkJCqn0BAAB4MytmLIk5CwAAtDzMWQAAwIn87QwfNmyY9u7dW+269PR0RUVF1btvQECAunXrJkn6+9//ruuvv16+vrZ2lwAAAI7AjAUAAGAO5iwAAOBEtpZ9f/zjH3XVVVfpT3/6k379618rOTlZzz33nJ577rmqbeLj47V//36tXr1a0pkBKjk5WT/96U+Vl5en5cuX66uvvtLLL79s180AAABwFGYsAAAAczBnAQAAJ7L1z4eGDBmiN998U+vWrdNll12mhQsXasWKFZoyZUrVNjk5OdU+CqG8vFxPPPGE+vfvr9GjR+vUqVPaunWroqOjbbgFAAAAzsOMBQAAYA7mLAAA4ES2vrNPkq6//npdf/31dX5/1apV1S7HxcVp586dJq8KAADA3ZixAAAAzMGcBQAAnIYPBgcAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXsr3s279/v6ZOnaqOHTsqODhYffv2VUpKygX3Wbt2rfr376/WrVsrIiJCM2fO1NGjRy1aMQAAgPMxYwEAAJiDOQsAADiNrWVfXl6ehg0bpoCAAH3wwQfas2ePnnjiCbVv377OfZKSkjRt2jT97ne/09dff61//vOfSk5O1m233WbhygEAAJyLGQsAAMAczFkAAMCJ/O0MX7p0qbp3766VK1f+/+3de3BU5f3H8W+yIbsLGAQUXJIQIMglSIk2iCEolSK0XGRquVjDTejFwnAV0Ax0AqJ0oM4IVFGhEBQx3ggdKhigDCAIEhREGoSQi0O4iB3KtUggyff3h7+kLMludk/OXnm/Zs4fOXnOfs7ZLE8+7JPdrd7Xtm1bt8fs3btX2rRpI5MnT64e/4c//EEWLlzo03MFAAAIFXQsAAAA36BnAQCAYBTQV/Zt2LBBUlJSZNiwYdKiRQu5//77ZcWKFW6PSU1NldLSUtm0aZOoqpw9e1Y++ugjGTBgQK3jy8rK5NKlS04bAABAOPNHxxKhZwEAgNsPPQsAAASjCFXVQIXbbDYREZk+fboMGzZM9u/fL1OmTJE33nhDxowZ4/K4Dz/8UMaNGyfXrl2T8vJyGTx4sKxbt04aNGhQY+zcuXNl3rx5Nfb/4he/qHW8WfLy8uTBBx/02e37M4cMMsggI1Qy/JVDRvBk3LhxQ3Jzc+XixYsSExPjs5xQ44+OJRLePYuM4MshgwwyyCDDvzn0rNrRs8ggIzgz/JVDBhlkkFFfPutYGkANGjTQ1NRUp32TJk3Shx56yOUx+fn56nA4dNGiRXro0CHNzc3Vrl276rhx42odf+3aNb148WL1VlpaqiKiFy9eNPVabjV48GCf3r4/c8gggwwyQiXDXzlkBE/GxYsX/fJ7PdT4o2OphnfPIiP4csgggwwyyPBvDj2rdvQsMsgIzgx/5ZBBBhlk1JevOlZAP7PP4XBIUlKS077OnTvLunXrXB7z5z//WdLS0mTmzJkiIvKTn/xEGjVqJA8//LC8+OKL4nA4nMZbrVaxWq3mnzwAAECQ8kfHEqFnAQCA2w89CwAABKOAfmZfWlqaHDt2zGlfQUGBJCQkuDzm6tWrEhnpfNoWi0VERDRw70gKAAAQNOhYAAAAvkHPAgAAwSigi33Tpk2Tzz//XBYsWCCFhYXy7rvvyvLly2XixInVYzIyMmT06NHVXw8ePFhycnLk9ddfl+LiYvnss89k8uTJ8uCDD0qrVq0CcRkAAABBhY4FAADgG/QsAAAQjAL6Np7du3eX9evXS0ZGhrzwwgvStm1bWbx4saSnp1ePOXPmjJw4caL667Fjx8rly5fl1VdflWeffVbuvPNO6dOnjyxcuDAQlwAAABB06FgAAAC+Qc8CAADBKKCLfSIigwYNkkGDBrn8/urVq2vsmzRpkkyaNMmHZwUAABDa6FgAAAC+Qc8CAADBJqBv4wkAAAAAAAAAAADAOBb7AAAAAAAAAAAAgBDFYh8AAAAAAAAAAAAQoljsAwAAAAAAAAAAAEIUi30AAAAAAAAAAABAiGKxDwAAAAAAAAAAAAhRLPYBAAAAAAAAAAAAIYrFPgAAAAAAAAAAACBEsdgHAAAAAAAAAAAAhCgW+wAAAAAAAAAAAIAQxWIfAAAAAAAAAAAAEKJY7AMAAAAAAAAAAABCFIt9AAAAAAAAAAAAQIhisQ8AAAAAAAAAAAAIUSz2AQAAAAAAAAAAACGKxT4AAAAAAAAAAAAgRLHYBwAAAAAAAAAAAIQoFvsAAAAAAAAAAACAEMViHwAAAAAAAAAAABCiWOwDAAAAAAAAAAAAQlTAF/tOnTolI0eOlObNm4vdbpeuXbvKF1984faYsrIymT17tiQkJIjVapU2bdrIqlWr/HTGAAAAwY+OBQAA4Bv0LAAAEGyiAhl+/vx5SUtLk0cffVQ++eQTufvuu+X48ePStGlTt8cNHz5czp49KytXrpT27dvLmTNnpLKy0k9nDQAAENzoWAAAAL5BzwIAAMEooIt9CxculPj4eMnKyqre17ZtW7fH5Obmys6dO6W4uFiaNWsmIiJt2rTx5WkCAACEFDoWAACAb9CzAABAMAroYt+GDRukf//+MmzYMNm5c6fExsbKhAkT5He/+53bY1JSUmTRokWyZs0aadSokTz++OMyf/58sdvtNcaXlZVJWVlZ9dcXL14UEZFLly6Zf0E3uXHjhs8z/JVDBhlkkBEqGf7KISN4MqpuW1V9lhGK/NGxRMK7Z5ERfDlkkEEGGWT4N4eeVTt6FhlkBGeGv3LIIIMMMurLZx1LA8hqtarVatWMjAw9cOCAvvnmm2qz2XT16tUuj+nfv79arVYdOHCg7tu3Tzdu3KgJCQk6duzYWsdnZmaqiLCxsbGxsbGF8VZaWuqruhKS/NGxVOlZbGxsbGxst8NGz3JGz2JjY2NjY2MzYzO7Y0WoBu5PtKKjoyUlJUX27NlTvW/y5Mmyf/9+2bt3b63H9OvXT3bt2iXfffedNGnSREREcnJyZOjQofLf//63xl9E3fqXUBcuXJCEhAQ5ceJE9fFmu3TpksTHx0tpaanExMT4JMNfOWSQQQYZoZLhrxwygitDVeXy5cvSqlUriYyM9ElGKPJHxxIJ355FRvDlkEEGGWSQ4f8celbt6FlkkBF8Gf7KIYMMMsgwg686VkDfxtPhcEhSUpLTvs6dO8u6devcHhMbG+tUbDp37iyqKidPnpR7773XabzVahWr1Vrjdpo0aeLTXzAiIjExMT7P8FcOGWSQQUaoZPgrh4zgyfDVkx2hzB8dSyT8exYZwZdDBhlkkEGGf3PoWTXRs8ggI3gz/JVDBhlkkFFfvuhYAf3TrLS0NDl27JjTvoKCAklISHB7zOnTp+XKlStOx0RGRkpcXJzPzhUAACBU0LEAAAB8g54FAACCUUAX+6ZNmyaff/65LFiwQAoLC+Xdd9+V5cuXy8SJE6vHZGRkyOjRo6u/fuqpp6R58+by9NNPy5EjR+TTTz+VmTNnyrhx41x+qDEAAMDthI4FAADgG/QsAAAQjAK62Ne9e3dZv369ZGdny3333Sfz58+XxYsXS3p6evWYM2fOyIkTJ6q/bty4sWzdulUuXLggKSkpkp6eLoMHD5alS5d6lGm1WiUzM7PWt0Iwiz8y/JVDBhlkkBEqGf7KISO4MlC7QHQskfB5XJERfDlkkEEGGWQEJgc10bPIICP4MvyVQwYZZJARzCJUVQN9EgAAAAAAAAAAAAC8F9BX9gEAAAAAAAAAAAAwjsU+AAAAAAAAAAAAIESx2AcAAAAAAAAAAACEKBb7AAAAAAAAAAAAgBAVdot9c+fOlYiICKetU6dOLsf/7Gc/qzE+IiJCBg4caFrGjRs35IUXXpDExESx2WzSrVs3yc3NdXsdp06dkpEjR0rz5s3FbrdL165d5YsvvnA5/syZM/LUU09Jhw4dJDIyUqZOner29o3m5OTkyGOPPSZ33323xMTESGpqqmzevNnUjJt99tlnEhUVJcnJyaZnlJWVyezZsyUhIUGsVqu0adNGVq1aZWrG2rVrpVu3btKwYUNxOBwybtw4OXfunKkZr732mnTu3Fnsdrt07NhR3n77bZdj27RpU+vjfeLEibWOz8/Pl1//+tfVxy1evNjtuRjJyMnJkZSUFLnzzjulUaNGkpycLGvWrDE1Y/Xq1TXG2mw2UzOMzCXeZoiILF68WDp27Ch2u13i4+Nl2rRpcu3aNZfjKyoq5E9/+pO0bdtW7Ha7JCYmyvz580VV3V7/jh075IEHHhCr1Srt27eX1atXm5phZC4xei1VPJlPjGZ4M58YyRg7dmytj5UuXbqYeh3ezCciIpcvX5apU6dKQkKC2O126dmzp+zfv9/leKO/qxAcwqVjifinZ9GxPO9YRnPoWfQselbtvJ1P6Fh0LAQePYuexXNZ7udFehY9i56VbHoGPSsMe5aGmczMTO3SpYueOXOmevv3v//tcvy5c+ecxv7rX/9Si8WiWVlZpmXMmjVLW7VqpRs3btSioiJdtmyZ2mw2PXDgQK3j//Of/2hCQoKOHTtW9+3bp8XFxbp582YtLCx0mVFSUqKTJ0/Wt956S5OTk3XKlCkux9YnZ8qUKbpw4ULNy8vTgoICzcjI0AYNGph6LVXOnz+v7dq10379+mm3bt1MvQ5V1ccff1x79OihW7du1ZKSEt2zZ4/u3r3btIzdu3drZGSkLlmyRIuLi3XXrl3apUsX/dWvfmVaxrJly/SOO+7Q9957T4uKijQ7O1sbN26sGzZsqHX8999/7/S43bp1q4qIbt++vdbxeXl5OmPGDM3OztZ77rlHX3nlFZfnYjRj+/btmpOTo0eOHNHCwkJdvHixWiwWzc3NNS0jKytLY2JinI757rvvTL0OI3OJtxlr165Vq9Wqa9eu1ZKSEt28ebM6HA6dNm2ay4yXXnpJmzdvrh9//LGWlJTohx9+qI0bN9YlS5a4PKa4uFgbNmyo06dP1yNHjuhf//pXtz8TIxneziVGc6p4Op8YzfBmPjGSceHCBafHSmlpqTZr1kwzMzNNy/B2PlFVHT58uCYlJenOnTv1+PHjmpmZqTExMXry5Mlaxxv5XYXgEQ4dS9U/PYuO5fmcaDSHnkXPomeZ17PoWHQsBB49i57Fc1nu50V6Fj2LntXN5Th6Fj2rSlgu9rl78NfllVde0TvuuEOvXLliWobD4dBXX33Vad8TTzyh6enptY5/7rnntFevXh7f/q169+7t0YOuvjlVkpKSdN68eaZnjBgxQufMmVPn/W0k45NPPtEmTZrouXPnPBpvJOMvf/mLtmvXzmnf0qVLNTY21rSM1NRUnTFjhtO+6dOna1pamkfHT5kyRRMTE7WysrLOsQkJCR6Vo/pkVLn//vt1zpw5pmVkZWVpkyZNPL49Ixm38mQu8TZj4sSJ2qdPH6d9df28Bw4cqOPGjXPa527+Uf3xP3VdunRx2jdixAjt37+/aRm1cTeX1DfH0/nESIa384kZ99f69es1IiJCv/32W9MyvJ1Prl69qhaLRT/++GOn/Q888IDOnj27zmvw9HcVgkc4dCxV//QsOpbnc6LRHHqW9xlV6Fn0LDMz6Fh0LJiDnvUjepZ7PJf1P/Qsz9Gz6Fm1oWeFZ88Ku7fxFBE5fvy4tGrVStq1ayfp6ely4sQJj49duXKlPPnkk9KoUSPTMsrKymq8xNput8vu3btrHb9hwwZJSUmRYcOGSYsWLeT++++XFStWeHwNnjIjp7KyUi5fvizNmjUzNSMrK0uKi4slMzPTJ9dRdcyiRYskNjZWOnToIDNmzJAffvjBtIzU1FQpLS2VTZs2iarK2bNn5aOPPpIBAwaYluHqsZWXlyc3btxwe+z169flnXfekXHjxklERITbsUZ5m6Gqsm3bNjl27Jg88sgjpmZcuXJFEhISJD4+XoYMGSL5+fk+uw4Rz+cSbzJ69uwpX375peTl5YmISHFxsWzatMnlY6rqmG3btklBQYGIiBw6dEh2794tv/zlL10es3fvXunbt6/Tvv79+8vevXtNy7hVXXNJfXK8mU+MZHg7n5hxf61cuVL69u0rCQkJpmV4O5+Ul5dLRUWFV7/fEPpCvWOJ+Kdn0bE8nxON5tCz6Fn0LPN6Fh3rf+hYCCR6lmfoWbf3c1ki9Cx6Fj3LjAx6Vpj2rECuNPrCpk2b9IMPPtBDhw5pbm6upqamauvWrfXSpUt1Hrtv3z4VEd23b5+pGb/5zW80KSlJCwoKtKKiQrds2aJ2u12jo6NrHW+1WtVqtWpGRoYeOHBA33zzTbXZbLp69eq67wD1fIW5vjmqqgsXLtSmTZvq2bNnTcsoKCjQFi1a6LFjx1S17r8+M5LRv39/tVqtOnDgQN23b59u3Lix+m0HzMpQVf3ggw+0cePGGhUVpSKigwcP1uvXr5uWkZGRoffcc49+8cUXWllZqfv379eWLVuqiOjp06fdntv777+vFotFT5065XZcFSN/CeVpxoULF7RRo0YaFRWlVqtVV65caWrGnj179K233tKDBw/qjh07dNCgQRoTE6OlpaWmXkcVT+cSIxlLlizRBg0aVD+mnnnmGbfjKyoq9LnnntOIiAiNiorSiIgIXbBggdtj7r333hpjNm7cqCKiV69eNSXjVnXNJUZzvJ1PjGR4O5/U9/46deqUWiwWff/99029DiPzSWpqqvbu3VtPnTql5eXlumbNGo2MjNQOHTrUeR3B/tdQqCkcOpaqf3oWHcvzOdFojio9i55Fz/JUXfMJHetHdCwEEj3rR/Qsnsuqq2Op0rPoWa7Rs+hZt3vPCrvFvludP39eY2Ji9G9/+1udY3//+99r165dTc/4/vvvdciQIRoZGakWi0U7dOigEyZMUJvNVuv4Bg0aaGpqqtO+SZMm6UMPPeTR+Xj6oKtvztq1a7Vhw4a6detW0zLKy8s1JSVFX3/99ep9dU1oRq7jscceU5vNphcuXKjet27dOo2IiKh18jeSkZ+frw6HQxctWlRdprt27Vrj5cj1ybh69ao+/fTTGhUVpRaLRVu1aqWzZs1SEanzPbz79eungwYNcjvmZkbKkacZFRUVevz4cT148KC+/PLL2qRJE5fv820042bXr1/XxMREj99awdsMI3OJJxnbt2/Xli1b6ooVK/Trr7/WnJwcjY+P1xdeeMHlMdnZ2RoXF6fZ2dn69ddf69tvv63NmjVzW7y9LUdGMm7myVxiJMfIfGLkWrydT+p7fy1YsECbN2+uZWVlpl6HkfmksLBQH3nkERURtVgs2r17d01PT9dOnTrVeR3BXpBQt1DsWKr+6Vl0LM/nRKM59Cx6ljfoWe7nEzrWj+hYCCb0LNfoWbf3c1mq9Cx6Fj3LjOugZ4Vnzwr7xT5V1ZSUFH3++efdjrly5YrGxMTo4sWLfZbxww8/6MmTJ7WyslJnzZqlSUlJtY5r3bq1jh8/3mnfsmXLtFWrVh6di6cPuvrkZGdnq91ur/H+tvXNOH/+fPU/tKotIiKiet+2bdtMuY7Ro0drYmKi074jR46oiGhBQYEpGSNHjtShQ4c67du1a5fLvyyoz8/j+vXrWlpaquXl5dUfTFpRUeFy/LfffquRkZH697//vc7bruJtOTKSUWX8+PHar18/n2YMHTpUn3zySdMzjMwlnmb06tWrxvtQr1mzRu12u8ufd1xcXI3PWZg/f7527NjRZc7DDz9cYw5ZtWqVxsTEmJZRxdO5xEiOkfnEyLV4O5/U5/6qrKzU9u3b69SpU92Oq0+Gt/OJ6o+P+6p5bfjw4TpgwIA6c4K9IMEzodaxVP3Ts+hYns+JRnPoWfQsT9Gz6p5P6Fh0LAQnepb5Gbdbzwq3jqVKz1KlZ9Gz6Fm1oWf9KCw/s+9mV65ckaKiInE4HG7Hffjhh1JWViYjR470WYbNZpPY2FgpLy+XdevWyZAhQ2odl5aWJseOHXPaV1BQ4PL9bI0ympOdnS1PP/20ZGdny8CBA03NiImJkcOHD8tXX31VvT3zzDPSsWNH+eqrr6RHjx6mXEdaWpqcPn1arly54nRMZGSkxMXFmZJx9epViYx0/idmsVhE5Mf38jYjo0qDBg0kLi5OLBaLvPfeezJo0KAa2TfLysqSFi1a1Pnzq4/6ZFRWVkpZWZnPMioqKuTw4cN1/ps1kmFkLvE0w9vHlLtjKisrXeakpqbKtm3bnPZt3bpVUlNTTcsQ8W4uMZJjZD4xci3ezidG7y8RkZ07d0phYaGMHz/e7bj6ZHg7n4iINGrUSBwOh5w/f142b97s8vcbwksodiwR//QsOpbnc6LRHHoWPctT9Ky65xM6Fh0LwYee5Ro96/Z9LkuEnkXPomfRs2pHz/p/gVxp9IVnn31Wd+zYoSUlJfrZZ59p37599a677tLvv/9eVVVHjRpV618t9erVS0eMGOGTjM8//1zXrVunRUVF+umnn2qfPn20bdu2ev78+VpvPy8vT6OiovSll17S48ePV78k+J133qke8/zzz+uoUaOcjjt48KAePHhQf/rTn+pTTz2lBw8e1Pz8fJfXYSRn7dq1GhUVpa+99pqeOXOmerv5Jb9mXMvN6nqpspGMy5cva1xcnA4dOlTz8/N1586deu+99+pvf/tb0zKysrI0KipKly1bpkVFRbp7925NSUnRBx980LSMY8eO6Zo1a7SgoED37dunI0aM0GbNmmlJSYnL+6uiokJbt26tzz33XI3v3frYLSsrq35cORwOnTFjhh48eFCPHz/u8va9zViwYIFu2bJFi4qK9MiRI/ryyy9rVFSUrlixwrSMefPm6ebNm7WoqEi//PJLffLJJ9Vms7n99+FtRhVv5hJvMzIzM/WOO+7Q7OxsLS4u1i1btmhiYqIOHz7c5e2PGTNGY2Nj9eOPP9aSkhLNycnRu+66S2fNmlU95tbHVXFxsTZs2FBnzpyp33zzjb722mtqsVg0NzfXtAxv5xKjObeqaz4xkuHtfFKf6xg5cqT26NHD5fnXJ8PIfJKbm6uffPJJ9eOxW7du2qNHj+rPczDjdxWCRzh0LFX/9Cw6ludzotEcehY9yxP0LM/mEzoWHQuBR8+iZ/Fclvt5UZWeRc+iZ5l5X9GzwrNnhd1i34gRI9ThcGh0dLTGxsbqiBEjtLCwsPr7vXv31jFjxjgdc/ToURUR3bJli08yduzYoZ07d1ar1arNmzfXUaNG1fmhpf/4xz/0vvvuU6vVqp06ddLly5c7fX/MmDHau3dvp30iUmNLSEgwNad379615tx6n9b3Wm5W14RmNOObb77Rvn37qt1u17i4OJ0+fbrLz5IxmrF06VJNSkpSu92uDodD09PT9eTJk6ZlHDlyRJOTk9Vut2tMTIwOGTJEjx496vL2VVU3b96sIlL9Ia83u/WxW1JSUuvP293Py9uM2bNna/v27dVms2nTpk01NTVV33vvPbe3723G1KlTtXXr1hodHa0tW7bUAQMG6IEDB0zNUPV+LvE248aNGzp37lxNTExUm82m8fHxOmHCBLf/2bp06ZJOmTJFW7durTabTdu1a6ezZ892eo/s2h6727dv1+TkZI2OjtZ27dppVlaWqRlG5hKj13KzuuYToxnezCdGMy5cuKB2u73GvGBWhpH55P3339d27dppdHS03nPPPTpx4kSngmvW7yoEh3DpWKr+6Vl0LM87ltEcehY9y8yM27ln0bHoWAg8ehY9i+ey3M+LqvQsehY9y8zrUKVnhWPPilB18VpZAAAAAAAAAAAAAEEt7D+zDwAAAAAAAAAAAAhXLPYBAAAAAAAAAAAAIYrFPgAAAAAAAAAAACBEsdgHAAAAAAAAAAAAhCgW+wAAAAAAAAAAAIAQxWIfAAAAAAAAAAAAEKJY7AMAAAAAAAAAAABCFIt9AAAAAAAAAAAAQIhisQ8AAAAAAAAAAAAIUSz2AQgbFRUV0rNnT3niiSec9l+8eFHi4+Nl9uzZATozAACA0EbPAgAAMB8dC4BZIlRVA30SAGCWgoICSU5OlhUrVkh6erqIiIwePVoOHTok+/fvl+jo6ACfIQAAQGiiZwEAAJiPjgXADCz2AQg7S5culblz50p+fr7k5eXJsGHDZP/+/dKtW7dAnxoAAEBIo2cBAACYj44FoL5Y7AMQdlRV+vTpIxaLRQ4fPiyTJk2SOXPmBPq0AAAAQh49CwAAwHx0LAD1xWIfgLB09OhR6dy5s3Tt2lUOHDggUVFRgT4lAACAsEDPAgAAMB8dC0B9RAb6BADAF1atWiUNGzaUkpISOXnyZKBPBwAAIGzQswAAAMxHxwJQH7yyD0DY2bNnj/Tu3Vu2bNkiL774ooiI/POf/5SIiIgAnxkAAEBoo2cBAACYj44FoL54ZR+AsHL16lUZO3as/PGPf5RHH31UVq5cKXl5efLGG28E+tQAAABCGj0LAADAfHQsAGbglX0AwsqUKVNk06ZNcujQIWnYsKGIiLz55psyY8YMOXz4sLRp0yawJwgAABCi6FkAAADmo2MBMAOLfQDCxs6dO+XnP/+57NixQ3r16uX0vf79+0t5eTlvgQAAAGAAPQsAAMB8dCwAZmGxDwAAAAAAAAAAAAhRfGYfAAAAAAAAAAAAEKJY7AMAAAAAAAAAAABCFIt9AAAAAAAAAAAAQIhisQ8AAAAAAAAAAAAIUSz2AQAAAAAAAAAAACGKxT4AAAAAAAAAAAAgRLHYBwAAAAAAAAAAAIQoFvsAAAAAAAAAAACAEMViHwAAAAAAAAAAABCiWOwDAAAAAAAAAAAAQhSLfQAAAAAAAAAAAECI+j8P3cKn4IGTyAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 1.2222222222222223\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.45\n", + "\n", + "\n" + ] + } + ], + "source": [ + "#построение областей покрытия и границ классов\n", + "#расчет характеристик качества обучения\n", + "numb_square = 20\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_trained, IREth2, '2', True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UwlEb4bhlPlz", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "outputId": "9d2b1af3-0316-4723-df34-91e5392f88cd" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU2FJREFUeJzt3Xl4U2XaP/DvSZqkC20t0IUutGURENlaN1AG+oIiA6i4FdS3IOAwr4yKo4IMIihWREdnHB1XFheq4oyiI6IICA4IPwHBskgLSDcobVnapi00bZPn90dImrRpm7ZJTnLy/VxXLkh6cvIE5eY+93me+5GEEAJERERECqGSewBERERErsTkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhvyKJElYsmSJ3MMgIh/D2OFbmNz4iDfeeAOSJOHaa6/t9Lk2bNjAv6QeVFFRgcDAQEiShCNHjjg8Zvr06ZAkyeEjMDDQ7tjMzEzccsstiI6OZsClNjF2+C5Xxo6cnBzMmzcPQ4cORWhoKHr06IEJEyZg7969nvo6HhUg9wDIOVlZWUhKSsLu3btx/Phx9OnTp8Pn2rBhA/75z38ySHnIv/71L0iShJiYGGRlZeG5555zeJxOp8OKFSuava5Wq+2eP/XUU4iJicGwYcOwceNGt4yZlIOxw3e5MnasWLECK1euxB133IEHH3wQlZWVePvtt3Hdddfh22+/xdixY932PeTA5MYH5OXlYefOnfj8888xe/ZsZGVlYfHixXIPy+/V1tZCq9VCpWq9ALpmzRr8/ve/R2JiIj766KMWA1RAQADuu+++Nj83Ly8PSUlJOHv2LCIjIzs0dvIPjB3eSY7YMXXqVCxZsgRdunSxvjZjxgwMGDAAS5YsUVxyw9tSPiArKwsRERGYMGEC7rzzTmRlZTU7Ztu2bZAkCdu2bbN7PT8/H5Ik4b333gNgLmH+85//BAC78qVFTU0NHnvsMSQkJECn06Ffv37461//Ckebx69ZswapqakICgpC165dMWXKFBQVFdkdM3r0aFx55ZX49ddfkZaWhuDgYMTFxeHFF19sdr7a2losWbIEl19+OQIDA9GjRw/cfvvt+O2339o9PoPBgEcffRSRkZEIDQ3FLbfcgpMnTzr88z116hRmzJiB6Oho6HQ6DBw4EKtWrXL45/vJJ5/gqaeeQlxcHIKDg6HX6x2e06KwsBDbt2/HlClTMGXKFOs/Np2RlJTUqfeT/2DsYOywSE1NtUtsAKBbt24YOXJki7e8fBkrNz4gKysLt99+O7RaLaZOnYo333wTe/bswdVXX93uc82ePRvFxcXYtGkTPvzwQ7ufCSFwyy23YOvWrZg5cyaGDh2KjRs34oknnsCpU6fwt7/9zXpsZmYmFi1ahLvvvhuzZs3CmTNn8Nprr+F3v/sd9u/fj8suu8x6bHl5OW6++WbcfvvtuPvuu/Hvf/8b8+fPx6BBgzB+/HgAgNFoxMSJE7FlyxZMmTIFjzzyCKqqqrBp0yYcOnQIvXv3btf4Zs2ahTVr1uCee+7BiBEj8P3332PChAnN/jxKS0tx3XXXQZIk/OlPf0JkZCS++eYbzJw5E3q9HnPnzrU7funSpdBqtXj88cdhMBig1Wpb/fP++OOPERISgokTJyIoKAi9e/dGVlYWRowY4fD4s2fPNntNq9UiLCys1c8hcoSxg7GjrdhRUlKC7t27t3qMTxLk1fbu3SsAiE2bNgkhhDCZTCI+Pl488sgjdsdt3bpVABBbt261ez0vL08AEKtXr7a+NmfOHOHoP/0XX3whAIjnnnvO7vU777xTSJIkjh8/LoQQIj8/X6jVapGZmWl33MGDB0VAQIDd66NGjRIAxAcffGB9zWAwiJiYGHHHHXdYX1u1apUAIF555ZVm4zKZTO0a3y+//CIAiAcffNDuuHvuuUcAEIsXL7a+NnPmTNGjRw9x9uxZu2OnTJkiwsPDxYULF4QQjX++vXr1sr7mjEGDBol7773X+vwvf/mL6N69u6ivr7c7btq0aQKAw8e4ceMcnvvMmTPNvg+RBWMHY0dLscPiv//9r5AkSSxatMjpcfkK3pbycllZWYiOjkZaWhoAczk4PT0dn3zyCYxGo0s/a8OGDVCr1Xj44YftXn/ssccghMA333wDAPj8889hMplw99134+zZs9ZHTEwM+vbti61bt9q9v0uXLnb3g7VaLa655hqcOHHC+tpnn32G7t2746GHHmo2Lkvp29nxbdiwAQCaHdf0SkoIgc8++wyTJk2CEMLuu4wbNw6VlZXYt2+f3XumTZuGoKAgx3+ATRw4cAAHDx7E1KlTra9NnToVZ8+edTgRODAwEJs2bWr2eOGFF5z6PCJbjB2MHa3FjrKyMtxzzz1ITk7GvHnznBqXL+FtKS9mNBrxySefIC0tDXl5edbXr732Wrz88svYsmULbrrpJpd9XkFBAWJjYxEaGmr3+oABA6w/B4Bjx45BCIG+ffs6PI9Go7F7Hh8fb3dvHgAiIiJw4MAB6/PffvsN/fr1Q0BAy/9LOju+goICqFQq9O7d2+64fv362T0/c+YMKioq8M477+Cdd95x+JllZWV2z5OTk1scX1Nr1qxBSEgIevXqhePHjwMwB6GkpCRkZWU1K3Wr1WrFTeojeTB2dGx8/hI7ampqMHHiRFRVVWHHjh3N5uIoAZMbL/b999/j9OnT+OSTT/DJJ580+3lWVpY1QDUNABauvkIDAJPJBEmS8M033zRbpgyg2V8UR8cAcDjR0JNMJhMA4L777sO0adMcHjN48GC7585eeQkh8PHHH6OmpgZXXHFFs5+XlZWhurpakUGF5MfY4V6+HDvq6upw++2348CBA9i4cSOuvPLKDp3H2zG58WJZWVmIioqyrlCw9fnnn2PdunV46623EBQUhIiICADmpk+2LFcktloKZomJidi8eTOqqqrsrnBycnKsPwdgnaCXnJyMyy+/vEPfranevXvjp59+Qn19fbOrt/aOLzExESaTyXpFZ5Gbm2t3PstqCKPR6PKKyQ8//ICTJ0/i2WeftV4dWpSXl+MPf/gDvvjiC6eWfhO1F2NHx8an9NhhMpmQkZGBLVu24NNPP8WoUaNcNWzv4/lpPuSMCxcuiNDQUDFjxgyHP//xxx8FAPHJJ58IIYSoqKgQarVaPProo3bH3XHHHc0mBc6fP18AEOXl5XbHWibdPf/883avp6en2026O378uFCr1eKee+6xTtizMJlMdhPsRo0aJQYOHNhs/NOmTROJiYnW5+2ZFNjW+Pbv3+/0pMDp06cLrVYrDh482Oxzy8rKrL+3TAr817/+1ew4R2bOnClCQkLExYsXHf68b9++4uabb7Y+nzZtmggJCXHq3BacUEyOMHbYn7M941N67HjwwQcFAPH22287dbwvY+XGS/3nP/9BVVUVbrnlFoc/v+666xAZGYmsrCykp6cjPDwcd911F1577TVIkoTevXtj/fr1ze77AuZ+B4B50ty4ceOgVqsxZcoUTJo0CWlpaVi4cCHy8/MxZMgQfPfdd/jyyy8xd+5c633o3r1747nnnsOCBQuQn5+P2267DaGhocjLy8O6devwhz/8AY8//ni7vm9GRgY++OAD/PnPf8bu3bsxcuRI1NTUYPPmzXjwwQdx6623Oj2+oUOHYurUqXjjjTdQWVmJESNGYMuWLdZ717ZeeOEFbN26Fddeey0eeOABXHHFFTh//jz27duHzZs34/z58+36HoC5T8Znn32GG2+8sdnWCRa33HILXn31VZSVlSEqKgoA0NDQgDVr1jg8fvLkyQgJCQEAfPjhhygoKMCFCxcAAP/973+tzb3+93//13oVSv6JsYOxw5Yldvz973/HG2+8geHDhyM4OLjZ8bYxRhHkzq7IsUmTJonAwEBRU1PT4jHTp08XGo3GerVz5swZcccdd4jg4GAREREhZs+eLQ4dOtTs6quhoUE89NBDIjIyUkiSZLe0s6qqSjz66KMiNjZWaDQa0bdvX/HSSy81u8oSQojPPvtM3HDDDSIkJESEhISI/v37izlz5ojc3FzrMc5efQlhvuJcuHChSE5OFhqNRsTExIg777xT/Pbbb+0e38WLF8XDDz8sunXrJkJCQsSkSZNEUVGRw0pHaWmpmDNnjkhISLB+7pgxY8Q777xjPaY9V1+fffaZACBWrlzZ4jHbtm0TAMSrr75q/fNAC8s5AYi8vDzrey1LZB09mi7nJf/D2MHY4Sh2tCfGKIEkhMwzs4iIiIhciH1uiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKYrfNfEzmUwoLi5GaGhoi63Eici9hBCoqqpCbGwsVCrfuMZi7CCSV3viht8lN8XFxUhISJB7GEQEoKioCPHx8XIPwymMHUTewZm44XfJjWXTtKezfkBgsHJ2ZA5e/yy0oYMQ1du80dr6y8LRa3BfmUdF5FhtdTWevz7VbhNDb2cZ619+/BmB3M2dyOPaEzf8LrmxlJMDg7sgMEQ5AWrv+FRkbNWie2EVAMAUFIiSc+eQlJQk78CIWuFLt3essaNLFwT6UFJGpDTOxA3fuNlNbUoJS0eeaS9Oa3bitGYnZh48gZqT5+QeFhERkcf5XeVGybaPGWz9/TVf7YCo64X8/HxWb4iIyK8wuVGQlLB06+91wQeQduwIdkV0RT7yAYBJDhER+QUmNwpVMzkThqx5GP2zDhG9+gAA1pUb0GdYP5lHpnxqYYLWZIIEIfdQZCEgoU6lglHiXW8iZ0lCINBk9Nu4AZhjR61KDeGCuXhMbhRMF6xBXA0QmlsKADAM4n9utxICibXViG8wQOVDE2XdwSQETgboUBDYBfDzPwuituhMRgyuqUAg/6qgVgDZIZehTqXu1Hn4r52CbR8zGNjyE+JDgnHm3AWIuqmcg+NGibXVSDbVoVtUFDRBQYC/BioB1F+8CM3ZM0BtNQqCuLKIqEVCoNfFKkTotIiIjoak8tfAAQiTQHlJCXpfrMKR4PBOXRgxuVGwlLB0bB/T+Dxj6zFkabUAkxuXUwsT4hsM6BYVheCICLmHIztNYCAAoL6sDCdFCG9REbVAI0zoZmpAeLcoaIOC5B6O7MK7d0dNcTE0woR6qePVGyY3Cmc7yTineh5EXV/k5+dbX2MVxzW0JhNUkmSu2BAAQBMUBJUkQWsy4aKayQ2RIwFCQJIkqDUauYfiFdQaDVSShAAhUN+J8zC58SO6YA1mHjyBkjNnAAAb4uJYxXER6yRA/60oNydZfvHfCZJEbWHsaMJFcYOXU36kZnImsit2IOLsr4g4+yvG5eTg+P5cuYdFRETkUkxu/IwuWIN6XQXqdRWIqwEMNdVyD4mIiMilmNz4mZrJmfg4pQ8+TumD7IodrN4QAKCspAQLH52La/v3Q2JYKFJ790bG7ZOx/fvvAQAfrliB22+8EX0ju6NHoA6VFRXyDpiIvIK3xg7OufFDlknGuycBGVuNMNRUc5KxHyvKz8ct/5OGsPBwLFr2AgZcORAN9Q3Yuuk7LJj7CHYcOIiLFy8g7aabkHbTTXh+0VNyD5mIvIA3xw4mN34sJSwdOdXzMC5HDfUpcy+SLZf3A5LkHRd51pOPPAxJkvDNjh8RHBJifb3fFVdg6rTpAIA/PPQwAGDnDz/IMUQi8kLeHDt4W8rP7Z6UirOnzJOM+55HsyoOycdodP9nlJ8/j63ffYfps/9oF5wswi+7zP2DICKX8UTcALw/djC58XMpYenWScanNTsx+nA2GsoNcg/Lrx0/CowaGoD4EC1GDQ3A8aPu+6z8336DEAJ9+nHPMSJf5sm4AXh/7GByQ9g+ZrB1knFcdQBXUMls5t0B+O2YudnDb8ckzLzbfXePhWAPGiIl8GTcALw/dnDODdl1Mc4zLcToww3YFdIFARE6AJxg7ElGI3A0R2XzXMLRHAlGI6Du3D5yDiX36QNJknA8lyvmiHyVp+MG4P2xg5UbsrN9zGDEVQdgzNFcjPrpAGpOnuMcHA9Sq4HL+5ugVotLz8Wl5+75vIiuXTH6xhvx3ttv4UJNTbOfc8k3kffzdNwAvD92MLkhO+YVVLvsuhhzDo5nrfy0Ab37moNU774CKz9tcOvnLfv7qzAajRh/w/VYv24dThw/hqM5R7Din69j4qjfATD3sjiUnY28334DABw5dAiHsrNRfv68W8dGRM7xdNwAvDt28LYUNbN7Uip0Ww4gPiIYdeeKUVveC/n5+bw95SF9Lgd++KXBrSVlW4m9euG7Xf8Pry5/Ac/Mn4+yktPoFhmJwcOGYfk/XgMAfPDuu3g58znreyaPNW83//d33kV6Rob7B0lErfJ03AC8O3ZIwttnBbmYXq9HeHg4nl/3MwJDusg9HK+1T78WADByywFow4Zi1zXXo88w75wV7w2CjfVIvahHXGJPaHSBcg/HK9QbanGqoBA/B4Xhgtp+x+Paqio8PaQfKisrERYWJtMI28cSO57NzkVgaKjcwyGFYOyw56q4wcoNOWSZZLx9DJCxlSuoiIjId3DODbUqJSwdeaa9GH04m3tQERGRT2ByQ22yrKBi9YaIiHwBkxtqE6s3RETkS5jckFNYvWmdgGT5DVkIyy+SvOMg8mKMHU24KG4wuSGnWPrfiLo6HN+fa32QWZ1KBZMQqL94Ue6heI36ixdhEgJ1KoYZopY0SBKEEDDW18s9FK9grK+HSQg0SJ1Lbrhaipy2e1IqMrYeQ2zfgQCAl7qC/W8uMUoqnAzQQXP2DABAExQEvy1YCHNic+7sGZwM0MEoMbkhakm9pMI5VQCCz52DKiAAkspfAwcgTAKVZ8/ivCoA9Z2MG0xuyGnm6s08oKgYADCuLAHbQq4CkuQdl7coCOwC1FajvqwMqk5edfg6kxA4GaAz/5kQUcskCb8FhaJLTQUuFhXJPRrZ1Qrgt5DLAFZuyJN0wRrkXTAnN8m1sZyDY0uSUBAUipMiBFqTCZKf3kQXkFCnUrFiQ+SkOpUae7t0RaDJ6LdxAzDHjlqVGsIFF4dMbqhdaiZnWn+ft65xB3F2L25klFS4qOY/7ETkPCFJuKjmP8muwghMHWa7gsoywZg7iBMRkdyY3FCHWVZQPXLwFB4uqsaYo7ncQZyIiGTHGhh1yu5JqcBX36C/KRERAGojI7mCioiIZMXKDXVKSli6dZJx3oVipB07wuoNERHJipUb6jTLJON9+rXWHcRZvSEiIrmwckMuY7sHFas3REQkF1mTm6qqKsydOxeJiYkICgrCiBEjsGfPnlbfs23bNqSkpECn06FPnz547733PDNYcgr3oCJPYOwgotbImtzMmjULmzZtwocffoiDBw/ipptuwtixY3Hq1CmHx+fl5WHChAlIS0vDL7/8grlz52LWrFnYuHGjh0dOLeEO4uQJjB1E1BpJCCFLO8SLFy8iNDQUX375JSZMmGB9PTU1FePHj8dzzz3X7D3z58/H119/jUOHDllfmzJlCioqKvDtt9869bl6vR7h4eF4ft3PCAxha3h3MM+90SLr2oEYeEOq3MMhL1RbVYWnh/RDZWUlwsLC2vVeuWPHs9m5CAwNbdeYiajz2hM3ZKvcNDQ0wGg0IjAw0O71oKAg7Nixw+F7du3ahbFjx9q9Nm7cOOzatavFzzEYDNDr9XYPci/bHcTz8/OtDyJXYOwgorbIltyEhoZi+PDhWLp0KYqLi2E0GrFmzRrs2rULp0+fdviekpISREdH270WHR0NvV6PixcvOnzPsmXLEB4ebn0kJCS4/LtQc7snpeK+/ccw6qcDmHSiFA3lBiY45BKMHUTUFlnn3Hz44YcQQiAuLg46nQ7/+Mc/MHXqVKhUrhvWggULUFlZaX0UcddVj7BUb/qeBxKqA9i9mFyKsYOIWiNrn5vevXvjhx9+QE1NDfR6PXr06IH09HT06tXL4fExMTEoLS21e620tBRhYWEICgpy+B6dTgedTufysVPbLN2Lw/QaJAdeC0McV1CRazB2EFFrvKLPTUhICHr06IHy8nJs3LgRt956q8Pjhg8fji1btti9tmnTJgwfPtwTw6R2SglLx+5Jqdh842Dk1P3EFVTkcowdROSIrMnNxo0b8e233yIvLw+bNm1CWloa+vfvj/vvvx+AuSyckZFhPf6Pf/wjTpw4gXnz5iEnJwdvvPEGPv30Uzz66KNyfQVqQ0pYOlLC0tn/hlyKsYOIWiNrclNZWYk5c+agf//+yMjIwA033ICNGzdCo9EAAE6fPo3CwkLr8cnJyfj666+xadMmDBkyBC+//DJWrFiBcePGyfUVyEnsf0OuxNhBRK2Rrc+NXNjnRj7sf0MWnelzIxf2uSGSl0/0uSH/07T/DRERkTswuSGPsvS/qTl5Tu6hEBGRQsm6FJz8j7l6Mw+irq9d9SYpKUm2MRERkbIwuSGP0wVrMPPgCZScOYOwyGisi7gMSJJ7VEREpBS8LUUeVzM5E9kVO+y6F3MFFRERuQorNyQLXbAGB/SbAT3YvZiIiFyKyQ3JomZyJrbr1wIArvlqB8blANtCuqDPsH4yj4yIiHwdkxuSTUpYOgBg9yQgY6uR3YuJiMglOOeGZMf+N0RE5EpMbsgrsP8NERG5CpMb8gqs3hARkaswuSGvoQvWIO3YETSUG+QeChER+TAmN+Q1aiZnoqpkD2rLzyM/P9/6ICIiag+uliKvYqnexFzKu9m9mIiI2ouVG/Iq28cMRlXJHkTnliI6t9RaxSEiInIWkxvyKilh6dAFa3BasxOnNTsx8+AJrqAiIqJ24W0p8jrbxwy2/v6ar3ZA1PVCfn4+dw4nIiKnMLkhr2PpXAyYuxc/sP0EVmm1AJMbIiJyAm9LkVdLCUtHdsUO9r8hIiKnMbkhr8f+N0RE1B5MbsjrNe1/Q0RE1BomN+QTWL0hIiJnMbkhn7B9zGDEVQfAUFPN7sVERNQqrpYin5ASlo4800KMPtyAmLqBANi9mIiIHGPlhnwGuxcTEZEzmNyQz2D3YiIicgZvS5FPYfdiIiJqC5Mb8im23Yt1wQeQduwIdkV05dwbIiKy4m0p8lnsf0NERI4wuSGfxv43RETUFJMb8mm2/W+IiIgAJjfk48z9b/Zi9OFsHN+fK/dwiIjICzC5IZ/H7sVERGSLq6XI59l2Lw4+1R0AsOXyflxBRUTkp1i5IUWwdC+OOPsrIs7+yhVURER+jMkNKYKle3G9rgL1ugquoCIi8mO8LUWKYd+9eA9qywewezERkR9ickOKwe7FREQE8LYUKRT73xAR+S8mN6RI7H9DROS/mNyQYrF6Q0Tkn5jckGKlhKUjp3oXxuXksHpDRORHmNyQou2elIrulUZWb4iI/AiTG1I0S/VG1NWxqR8RkZ9gckOKt3tSKu7bfww1J8/JPRQiIvIAJjekeKzeEBH5FyY35Bd0wRpuyUBE5CeY3JBfqJmciaqSPagtP4/j+3OtDyIiUh5uv0B+QxeswcyDJ9AtWQsAeKmrzAMiIiK3YOWG/EbN5ExkV+xAcdEmFBdt4hwcIiKFYnJDfkUXrEHehWLkXSjmCioiIoXibSnyKzWTM62/z8maB1HXF/n5+UhKSpJvUERE5FKs3JDfYv8bIiJlYnJDfov9b4iIlInJDfk19r8hIlIeJjfk12z737B6Q0SkDExuyO+xekNEpCxMbsjvbR8zGFUle2CoqWb1hohIAWRNboxGIxYtWoTk5GQEBQWhd+/eWLp0KYQQLb5n27ZtkCSp2aOkpMSDIyclSQlLhy5Yg9GHs1m98QGMG0TUFln73Cxfvhxvvvkm3n//fQwcOBB79+7F/fffj/DwcDz88MOtvjc3NxdhYWHW51FRUe4eLinY9jGDkbE1AIaaarmHQm1g3CCitsia3OzcuRO33norJkyYAABISkrCxx9/jN27d7f53qioKFx22WVuHiH5i5SwdOSZFmL04QbsCumCPsP6yT0kagHjBhG1RdbbUiNGjMCWLVtw9OhRAEB2djZ27NiB8ePHt/neoUOHokePHrjxxhvx448/tnicwWCAXq+3exA5sn3MYMRVs3rj7TwRNwDGDiJfJmvl5sknn4Rer0f//v2hVqthNBqRmZmJe++9t8X39OjRA2+99RauuuoqGAwGrFixAqNHj8ZPP/2ElJSUZscvW7YMzzzzjDu/BimEuakft2Twdp6IGwBjB5Evk0Rrs/Dc7JNPPsETTzyBl156CQMHDsQvv/yCuXPn4pVXXsG0adOcPs+oUaPQs2dPfPjhh81+ZjAYYDA0ThLV6/VISEjA8+t+RmBIF5d8D1KOffq1yNiqRda1AzHwhlS5h6NYtVVVeHpIP1RWVtrNgXGGJ+IG0HLseDY7F4Ghoe0aMxF1XnvihqyVmyeeeAJPPvkkpkyZAgAYNGgQCgoKsGzZsnYFqWuuuQY7duxw+DOdTgedTueS8ZLysXrj/TwRNwDGDiJfJuucmwsXLkClsh+CWq2GyWRq13l++eUX9OjRw5VDIz/GDTW9G+MGEbVF1srNpEmTkJmZiZ49e2LgwIHYv38/XnnlFcyYMcN6zIIFC3Dq1Cl88MEHAIC///3vSE5OxsCBA1FbW4sVK1bg+++/x3fffSfX1yCFaVq9sWAVxzswbhBRW2RNbl577TUsWrQIDz74IMrKyhAbG4vZs2fj6aefth5z+vRpFBYWWp/X1dXhsccew6lTpxAcHIzBgwdj8+bNSEtLk+MrkEJZtmSIuVTcXBdxGZAk65DoEsYNImqLrBOK5aDX6xEeHs4JxdSmgKx5uCFqPLRxcTh88RS2XN6P/W9cpDMTiuViiR2cUEwkD5+ZUEzkzXTBGhzQbwb0QHLgtTDEsf8NEZEvYHJD1ILtYwZbf3/NVzsg6npxBRURkQ9gckPUgpSwdOvvd08CMrYeQ5ZWCzC5ISLyarIuBSfyFeYVVLsg6ursVlAREZH3YXJD5CRdsAYzD55g/xsiIi/H5IbISTWTM5FdsYPVGyIiL8fkhqgdLP1vGsoNbR9MRESyYHJD1A41kzNRVbIHteXnWb0hIvJSTG6I2onVGyIi78bkhqidto8ZjLjqABhqqlm9ISLyQkxuiNopJSwdeaa9GH04m9UbIiIvxOSGqANsqzdERORd2KGYqAPM1ZuFGH24AbtCunBDTSI/1tHb09zKxX2Y3BA5wWQEVGr717aPGYyMrazeEPmz4/tzMbm8wuHPjCZA3cr9kXXlBl4YuQmTG6JWlBVpsPqZWJQW6hDd04D7FxcjKqEegGVLhnkQdX25oSaRnzLUVCM6t9Tutfzz4Xj8i5tw4lxX9Op2Hn+97Tskda1s/t5B/CfYXTjnhqgVq5+JxZmTWgDAmZNarH4m1u7nuyel4r79x7glA5Efys/Ph6irwwH9ZpzW7LQ+HvlyJPLPh5uPOR+OR74caffz05qdOKDfzG7nbsS0kagFJiNQWqhrfG6SUFqos7tFxeoNkf+qOXkO9+0/hg9uHGx9zWSUUHQ2rvG5UKPobByyhvSFSi3s3p+x9RiytFqAccPlmNwQtUClBqJ7GnDmpBYmkwSVSiAyvq7Z3BvLhpqrtFrkX3qNSQ6RMtlWWkRdHXKqdyEl7EW7Y7Y4iBtXRdzd7Fy2F0ZNMYZ0Dm9LEbXi/sXFiIyvAwBExtfh/sXFzY6xbKg5LicHk06UYtKJUhzfn+vpoRKRBzSUG6x/z9OOHYEuWNPsGGfiBtB4W3vUTwes55x0ohQN5QberuokVm6IWhGVUI/5KwocrpaypQvWIK4GCL00sZATBYmU5/j+XIz+eS+i60MBAMfK9qDh3hebHeds3LDc1r7h/HjgfOOk5D+iFK8OiuPtqk5gBCZygm2AchSwaiZnImfdQsSHBAMARh++nP1viBTGUFONuBrgdMhOAOaLmoZWjm8aJxzFDl2wBqc1O+1eO3PuAkTdVM7j6wQmN0ROam1ZOGDue2PB/jdEynJ8fy7G5eQgu2IHdo9MBWCuvDijtdhRMzkTH+vX2h0/cssBpB07gl0RXYEkl34Nv8HkhshJjpaFz19RYP25baDjCioi32c778VQU43ulUZsmJTqdFJj0Z7YAQA1k9NhyJqH2vIBjCEdxAnFRE6wLAs3mSTzc5tl4Y6w/w2R77OdPDwuJ+fSyqj2JTbtjR0WumAN0o4d4ea8HcTkhsgJlmXhKpW5T4VKJczPW5gsODQkHTnVu9iki8hH5efnW7sPR+eW4uypHdg9KbXd52lv7LAkPdvHDEZVyR7Ulp9nDOkAJjdETnJmeWdZkQbLZyXi8fGX4/n/vIb+/6+UV15EPqih3IDRh7OtHYV1wZp2V20s2hs7ls9KRHzlfazedALn3BA5KSqhHk+8bb5P3tJV1+pnYlF26d56SXkCFq2aiYlJ2xAQwfvmRL7EUFONuOoAfJDWx/paSgfP1T227aXhtrGjtFCHl2Yn4vcvp+Gho1VcnNABTG6InFBSoMH7SxtXO0xbVIyYxHq7YNV0uwYAMJq02P3KMEwacJirHoh8xPH9uRh9OBt5pl+QEpbZ4fM4WiXVPbYeKjXajh0NKvz015mYOPE+jD7cgF0hXRAQYT6GF0ptY3JD1Arb4ASY75mXFmrx4gPJUAeYYGxQ2S3tjO5paBakTp+PxIVz57nqgchHWKs2YwZ3uFpTVqTBS7MTYWwwz/4oLdThhZlJACSnY0dZkQ4/jB6C6f8NwJij5q7nG+LikA8mOG3hnBuiVqx+JhZlRdpLzyS7X40N5l9tdwu/f3Ex1AEmmzMIRIadRtqxHN43J/IBlp2+O7IyytaqJbHWxKZR+2JH1xjznlQ51bsQcfZXRJz9FeNyGEucweSGqAWWUrEQUgtH2C/tfGFmIgDgssgGWKo8AHC2JhIzX/oL1j6UirITrfRiJyLZWXb67sjKKAuT0Vx1aZl97Cgp0CAqob5Z7DhfosXyWYnYlHIT8i4Uo15XgbpzP3EFlROY3BC1IrqnAbbBxjHzz8uKtHhzfjzOndbCtsojjOa7v1WnQ7Bieoi7hkpEneSqqg0ARMY7W10ReOcv8XhhZmKz2AGYqzu7X56J7WMG4+OUPjCowBVUTuCcGyIbJiNwtrhxno25TNxS5caiMRhVntXAnOw0f49JqFBxMgQmo77VzfSISB41J89h5sETyGljzyhHLLHj3afiLiUpQEuxwJ6EijOWuNH8PZbqztCQdKjUwPYxjdu7cB5fy5jcEMF+4rA6wGTtJmq5N+5ckLKwP05SCQiTBJVkREzX8zhxIJcbahJ5GUvVJrtih8OdvlvSNHY0xoz2kpr8ao45KpVAZHyd9YIoJSwdeaaFl1ZQXc9VmC3gbSki2O/9YmxQQZiaBhpHAavt21UqtQlRl5p3hcadx9JxX7BnBZEXaig3IO3YEeiCNe16X9PYYR8rWkp0WosdAoBAdM+Wm/5tHzMYcdXcnLc1rNyQ33PUY6JRaxWbtsvNJqNkbfwHADWffA1Rl8FyMpEXyc/PR235eVSV7GlX1ab12NGa1mKH+WePvVFgrdY0vY1tX73pwkqwA0xuyO+p1EC3HnU4d1oDc2ARUAcIB1dh7WW++rKdwxMW/y7+Vv8F/qvVAkxuiLyCpWpT1865No5ih/k2dGduipjjz/lS+waAlsahFtvHDLbOvaHmeFuK/E5bu/EC5uXcf/3mqHm1lGRbQm76+9ZvTU184IxdW3X9yUj84ZNpqCjUciknkRewbJAZVx2A7WMGt3icM3EDALpGN7QRN9p6LkEI4N2n4qy3uyyNQ5fPSkRZkfm2WUqYeXNecozJDfmNphvTWYKEyYhmSzDPndaipFCDhnoJEC3dQ5fQVnl55aJ4c68cU+NxRpMW+19OQc3Jc675YkTUYZYNMvNMex0u/24pbgAtx476uqZxo6mmP7N/bjKqcO601rqwwfLzsqLGpn/UOiY35DdsJ/7ZdgZVqc39bFQq89WTJAmoA0z46+zkS+Vm1yss7w5jbR2rN0Qya6tq01LcAJrHDksF5nxJ07jRmdvbjYQwLwt3torkz5jckF+wTPyzXAlZekdYgsT9i4sReWlVk0otml0xuZpaVY8xv5kbcTFQEcmjcYNMx1WbtuIGYB87GjWNG22trHSW+cLLsvEmtYzJDfmFpldYKpUwP7+0CiEqoR7zVxTgxfVHmywFtxBNfu0co0mDoznFWPunFDzZtwf+elN3bs1A5GFtVW3aihuAOXY0roh0V1JjIcHYoMILM823yZ7/4h+oPM2u544wuSG/YXuF5ah3BNAYzFoOSp2v5EiXAuR7/30SVSVdAABn8gLwwR8jOn1uInKOs1stOBM3AHfHjcbkSh1gwtlT5ttkZfo47HlpEI7vz+3k+ZWHS8HJb1iqM5Zyru3Vl22X0fDu9Whrwl9HmLuXqhAVX4dpi4rx4gPJ1p8Jo4Sy4xqYjM17WhCR61k2yPxgUipSWjnONm40vR1kGzcui3RP3ABwqTWFhMj4Oru+Oiahxqmz3XGxisvBm2LlhvxKWZEGL81uvvJh9TOxKC0yXw017g/lSgKhEY0dNFQqICrBAJVkjpSSSiCqTz0TGyIP6MgGmWeLm6+asp1sXHHGHbUCgeDQOnSPbexv0zWmzu42WUx4IaQGLk5oipUb8itNVz68+1Qc1AECZUVNu4y6fiKxeXM883LOl2YnwtiggiqgAWgAwmKqkfHWRZd/JhE152zVxpZt7Cgr0uLFPyTCZLStD7hn8cGFKg1qa8y/Ly00LztXB5gAk7mSc/Vj63Hf/ipksTGoHVZuyG84Wvlw7rTWev/avRp74gghXep+DMCkRkxEEf7+v/+AvvJXD4yDyL91pGrTNHYIIdkkNq6u8toyx42mqzeFSUJ0TwPmryhA2oCxyKneBVHH6o0tJjfkNxz1swFgEzjcyXE3Y5NJQkl5AmL0GrZRJ/KQm0+caNcGmc372dhyd/xoHjssS9IbLq1A1wVrkHbM3FqCzJjckF9p2s/GzLXLvB2T7D5Hkuw/8/6PpnBLBiIvZt/PprWtFVzNdvNe+0aj8yaa5//kXfUiqkr2oLb8PGPIJUxuyK9YVj5E9zQ46GXjziswAdu/bqJJa/bSqnhuyUDkxWxjh2T3L6e7Kzf2iQ1gubVtft3SNZnVG3tMbsjvlBRo7O6fW4JHVII7g0Jr+1MBwqTilgxEXs4SO1pu8ukOtnGqeeyw3KKquiWT1RsbTG7I77y/NBZNy8rRPQ249Y9n4P4Sc0sE1Kp6PHD4BKs3RF7KUey4LLLO5ha3HAS69aiDSs25N7aY3JBfsax6aHoFNPGBM1j5dCzcV2JuK/hJMJo02H9+J1c9ELlRQ7kBBmP7//FvKXZUngtosiTc0ySIS+Fl+5jB6FXbtK2Ff2JyQ37F0Yqpbj3qsHpJrJsDlHNJE6+8iNwnPz8fteXnUVWyBzWTM9v13mYrpiTzKiZhkv+f0fMlWm6k2YT8/1WIPMx21UNUQh2EgMxXXoCltHzxjqW8b07kJg3lBqQdO9KuZeC27FZbqmxXMcmp+WaexA7F5Ids94oxGYF5Ey+XcTTmABnds3FDPkv1ZldEVyBJxqERKYht1abh3hc7dA5L7Ki7CDx5q5xxA3AUO6gRkxvyS7Yb3qnUJpiMTVcieEa3HvWY+ewpxCQ27h2zfcxgZGwNgKGmGvn5+UhiS3WiTmsoN+DmEydQFaxBQ9uHO2QbN8wb4coTNwDHsYMayV2LJ5LF6mdiUXZpo0z5bkmZ7903DU4pYenIM+3F6MPZaCg34Pj+XBzfnyvHAIkUpX99aKfeb7u/lJyJTUuxgxrJmtwYjUYsWrQIycnJCAoKQu/evbF06VII0frKkm3btiElJQU6nQ59+vTBe++955kBkyJYVj3YN9Kz7SDsKea9rRxNBNw+ZjDiqgPwcFE1Hi6qtlZxiHGD5NF0fylHzfU8p+XYQWZOJzfFxa6/p7d8+XK8+eabeP3113HkyBEsX74cL774Il577bUW35OXl4cJEyYgLS0Nv/zyC+bOnYtZs2Zh48aNLh8fKZNK3VLDPm+YHGhmqd7sPfI+9h5531rF8TWVpSUuPyfjBsnBslqqcesUC++JG9TI6eRm4MCB+Oijj1z64Tt37sStt96KCRMmICkpCXfeeSduuukm7N69u8X3vPXWW0hOTsbLL7+MAQMG4E9/+hPuvPNO/O1vf3Pp2EjZZiwphjrAJNOnN+4rdVlkfYurHLaPGYzNN5ofvrqC6pVxadj/5ecuPSfjBsnl/sXFiEpwtL+UpzU27iPHnE5uMjMzMXv2bNx11104f/68Sz58xIgR2LJlC44ePQoAyM7Oxo4dOzB+/PgW37Nr1y6MHTvW7rVx48Zh165dDo83GAzQ6/V2D6KohHo89maBTJ/eWNbWn1ejrMjxstSUsHTrw1f734x7bD4+e2o+PpzzB1yoKHfJOT0RNwDGDmrOslrq8bfyIG/FxvzZLcUOakdy8+CDD+LAgQM4d+4crrjiCnz11Ved/vAnn3wSU6ZMQf/+/aHRaDBs2DDMnTsX9957b4vvKSkpQXR0tN1r0dHR0Ov1uHjxYrPjly1bhvDwcOsjISGh0+MmZYhJrEd0T8OlZlzyMBlVWLUkts3jaib75r4xI/53Ov68YQsuVJTjrzeNxq9bvuv0OT0RNwDGDmpZbK9LsUPG6s35EvPKraayK3b4XJxwh3YtBU9OTsb333+P119/HbfffjsGDBiAgAD7U+zbt8/p83366afIysrCRx99hIEDB1rvhcfGxmLatGntGVqLFixYgD//+c/W53q9nkGKAJiveurrJEDIe8+8rEgHkxFtlph9tf9N14SemJ31L/z4wSp88H+zENW7LyTJ/Gc+cuRIqNVqr4sbAGMHtaysSIM6g5yrpcw7g5cW2scOc5X3gE/GCVdrd5+bgoICfP7554iIiMCtt97aLLlpjyeeeMJ6FQYAgwYNQkFBAZYtW9ZikIqJiUFpaanda6WlpQgLC0NQUFCz43U6HXQ67rVB9sqKNHjxD4le0Zk4uqdz985t+9/4mvJTJ3Fo4zcICg/HwBvHwWQ04nTOr5gwYUK7/356Im4AjB3k2JE9wXh3YRzkXQYuQaUSiIxvHjt8OU64Ursyk3fffRePPfYYxo4di8OHDyMyMrJTH37hwgWoVPb/uKjVaphMLU/0HD58ODZs2GD32qZNmzB8+PBOjYX8y+pn3L2XlLMkNNRLKCvSICqh9Z4V5hVUCzH6cAN2hXRBn2H9PDTGzvnpkyysf/4Z9B0xEo99uw1dunVDbVUVtr75Gp588kmEhYW163yMGySnVYvducGuM8yfLakEbpl9ptlPfTVOuJrT0f3mm2/G/Pnz8frrr+Pzzz/vdGIDAJMmTUJmZia+/vpr5OfnY926dXjllVcwefJk6zELFixARkaG9fkf//hHnDhxAvPmzUNOTg7eeOMNfPrpp3j00Uc7PR7yD427+8pJWJeUlpc6vnfuiKX/ja9cla2Yfg82LM/EbUsykfHWSnTp1q3T52TcILk01AHGBjkvigQs83yEScJ/3nb87zB3B29H5cZoNOLAgQOIj4932Ye/9tprWLRoER588EGUlZUhNjYWs2fPxtNPP2095vTp0ygsLLQ+T05Oxtdff41HH30Ur776KuLj47FixQqMGzfOZeMiZbP0qygt1EK+KzAJlp5zJlPze+ctSQlLR071PIzLUWObD1yVCaMRj27YjMt6OJe8OYNxg+QSoIXM2y40fmZ74oY/kkRbbT0VRq/XIzw8HM+v+xmBIV3kHg7JpKxIg3efisO50+ZW6pLKBGGS54rMcu98/grnlqbv069FxlYtsq4diIE3pLp5dO5RW1WFp4f0Q2VlZbtvS8nFEjuezc5FYGjn2viT5x3fn4s//r9c7KnejJrJmR0+z5E9wVi1OBbGBhXUASaoNQ2ou6h14Uid01rc2Kdfiwe2ByHrd1d5/QVQe7QnbnDjTPJLUQn1WPh+vrV9+dliDV6YmQTPXY0JqAMEjA0qRMa3b1dfS/VG1PXlxppEHjbg6gt4acNxNNSZKzllRZ6MHR2PG/6GyQ35NUs5t2t0PTxZZlapBZ54uwDdY1vuUNya3ZNSkbH1GLK0WoDJDZHHBVwq1ng2dkiYtugUrrjmAm9FtcEblosQyaasSIPlsxIxb+LlUKlN8FRTLpNRha7RHUtsAEv1ZhdEXZ3fN+siclZVXRW2jxnsknPZxg5PNvNbvyKSiY0TmNyQX1v9TCzOnDRfgpmMnp0gOG/i5Vg+KxElBR1roe6rWzIQeVp+fj5qy88ju2IHUsLSXXJO29jhPs2TprIiHV6YmYiyIg13BW8FkxvyW5Yl4SZT415PnpxzAwClhVq8+EAyls9KbPc+Mb66JQORpzWUG5B27Ah0wa7Zi6mkQOMgdrhD0/Oa48aZk1q8NDsRj4+/vEOxwx8wuSG/pVLj0s7gciwYtA+KpYVavPtUXLvPwuoNUevy8/NhqKlGXHWAy25Jvb80FnLGDSEka7+djsYOpWNyQ37LZLQ05JJ3bykzCedOa9tdZmb1hqh1DeUGjD6cjTzTXpfckmpsAuoNcQPoaOxQOiY35LcszfxUKssVmDuvxJqe23WfxeoNUet61epcVrVxHDc8VcXxq7Z0ncLkhvza/YuL0T2uDgCgDnBn4Gh6ldf8Xnq3Hs5toNmUr23JQOTr7l9cjMh4c9zo1qMeYV0bbH7qyThi/ryOxg4lY3JDfqusyLynU1mRDtE9DbgssgGevzIyf150zzo88NypDp3BvFHeXow+nI3j+3NdOTgiakOARqC6Uo3G2OHZRQmdiR1KxiZ+5Ldsl3KeOam1WfngSRIefzsPscmt7wjelu1jBiNjK6s3RJ5gGzvKTmohfDh2KBUrN+SXmi4Dd31i03YFSJIEonsaXBKcWL0h8oymsUOOxMaVsUOpmNyQX2o6KVCSXD0psO2A1zWmHtMWuW5vGM69IXI/zy5EcKxrTD33lWoDkxvyW7aTAlVqAc8u7RSoOBPQ4QZ+jnBLBiLPsI0dnidw7rT20nxBNu9rCZMb8ltRCfWYv6IAL64/am2I5TmNTbjOnDQHKlfYPSkV9+0/hpqT51xyPiJqLiqhHk+8XXDpmbsvippWhsyf58q4oURMbsjvBWjNZWb3c1y+Npkk8z18FzThYvWGyDMst6cklTw9blwZN5SIyQ35vSN7gnHmlDvKu03vydtf4VmCokplnhzoqj4VumANZh48waZ+RG5UVqSB4aJkM6HYNvlwRcLTNG7Yf46r44bSMLkhv7dqcazNjuCu7CRsH5TMk5bNQalbjzpEXbpnHxlf59LJgTWTM5FdsYNbMhBdciLQgJFbDrj0nKufiUXFmdYuijqb4DiOG9E93RM3lIZ9bsivNdShyXyb5p2E1WoTjMbOXAcIdOtRjwCNQGmhzhqUuseal3G648rLsiXDroiuQJLrz0/kKwIidNjadwCu2r7HZeds3F/KltTC7zvK83FDSZjckF8L0Jp3Bjc2SDAHpOarpjqX2ACAhJnPnkJMYj1MRuBssbkzcmmhuTPy/YuLEZXg2n4VNZMzYciah9ryAcjPz0dSUpJLz0/kK5KSknD45DkMuewG5KxbiJrJmZ0+p2W+TWmhFu6bUOz5uKEkvC1Ffm/GM8XWfaXUAQIqtcn6M+nSfe1uPerQ0XvqKrUJUfGNV1tNOyO7a8UDN9QkMguJ74aVg3rBcMF1ycD9i4vRrUfj+cxxo3GeXbcedU3iRvtvU0XFmxMbT8YNpWDlhvzegKsv4KUNx9FQZ67klBRo8P5S8xVSVHwdpi0qhkoFvPtUHM6dNgeXbj3qkTKmEpvWdEdLFR8Lk1GFx8dfjuieBkxbVGxXzrZd8eDqMjO3ZCAys1Rv+ncZjg/0a5ESlt7pc0Yl1GPh+/nW1UpnizVYtcSyV535FpLJBGssUQcIGBskRPc0YPDv9Daxo2UvzU40x6EEA8qKPBM3lILJDdEl50vty74zl57E+ncj8eIDyYjuacADz51C1+h6qNTmgLJ8ViJUKsBkau2sjSsezpzU4v2lsYjuabDuZaVSCUTGu2dHX/OWDAsx+nADdoV0QZ9h/Vz/IUQ+QhfSBd2DL8PILZtRM7nzyY2FSt18E95bZp+xiyWWPaAsycjyWYmQVIBoMXYIqNTCWqk5e0oLdYAJwiS5PW4oBW9LEV3StOz7nu3meEVavDQ7EfMmXo6XZieipEBjt79My1dgkvVnlqutaYsau5u6e8UDt2Qgcr+msWPV4sbnpYVa/HW2uRP52WKNdTJya3tSRcbXwWRU2e19Z2xQeSxuKAErN0RovvrBZJIAm+AjhHRp0rF5F+CVT8ddmojc8vXBi+uPYsFtfewmK6sDBGISzZ2RPVFSZvWGyL3aih2Wi5uyS/Nk7l9c3GrsiEow4MmVBXji981jh6fihhKwckOE5pvhqVQC6gCTzeZ4jYRJwrnTWmuy40i3HuaSsTmANVZ3jA0q6z16TwUoVm+I3Kel2NF0ArG4VLl9Z2EcjMaWY8f0p4thMrYcO5jYOIfJDdEltpvhRcbXYcYzbW2O5zhAqQNMeOC5U1Cp0Wy1hCXp8SRuyUDkXk1jx/TFxWgpPpwv0QLC0c/M8SEmsd5rYocv420pokssG2naXh0NuLoAy2Yk4szJpg27HIuMN2DmM97Xf2L3pFRkbD2GLK0WYM8bIpdyFDva2wcnKqEOM5a4Zh7NyC0HcCJsqEvO5atYuSFqounV0cxnii+VmVtjKUk3vmIy4tLS8cbS8rnTWlk2umP1hsj9bGPH/YuLrVsltM4cOySbHKizscNwoR5b+w5AQIRzF2VKxOSGqA1RCfV44u0Cm53DHTXjujRpsKixuZaje/FybnRn2VCz5uQ5eQZA5Ecs1Zx57+bZXxxJTeOHa2NHyLqFCI25GoERXf26MzmTGyIn2AYq266kzSYNisbmWkDze/FyLt+0bKjJ6g2R58Qk2l8cqdWOOxa7KnawamPGOTdE7RCTWG/eokElbHrcAJYOxU2bazm6Fy8nbqhJ5HmW6u9LsxOt/W8auS527NOvRUaX4fhZq/Xrqg3Ayg2R08qKNFg+KxFlRc2b91nurbd0heUNiQ1grt5UlexBbfl5Vm+IPMASNx4ff7nDxp+ujh26ADV0IV06M2RFYOWGyEm2XUibXm15U3WmLazeEHlO87gB+Grs8CWs3BA5wdKFtOlVV/e4xqstXwlOtk39WL0hch/HccP8e9tKja/EDl/Cyg2REyyrF5pueDl/RYHcQ2s3+y0Zrmf1hshNWoobT7xdwITGzVi5IXKSN6186ixuyUD+KEdT5fHPdBQ3mNi4Hys3RE7ytpVPncENNcnfBETo8G2vXrhq+w6Pfq6S4oYvYeWGqJ2UEqBYvSF/kpSUBEmrRf8uw7FPv9bjn6+UuOErmNwQtZMc2ye4A7dkIH8TEt8Na4b1xTVf/SzL5ysldvgCJjdETrLtV2Hud6ORe0idtntSKu7bf4xbMpBfkKt6o8TY4e2Y3BA5ybZfxZmTjfvA+DJWb8jf6EK64Gy4GiO3HPDYZ3oqdozccgAnAg1tH+gHmNwQOaFpvwqTyX4fGF+mC9bg5hMn5B4GkUd4es8lT8YO7ivViMkNkRO8bYdvIvINnood+/Rr0b/LcEjcVwoAkxsipympzw0ReY4nYsc1X/2MNcP6IiS+m8vP7YvY54bISexXQUQd4e7Ywd3Am2PlhqidmNgQ+bZve/WC4UK9xz/XXbHjmq9+xtlw7gZui8kNkZ/bPmYwulcauRyc/ILczfxczTLXZmP//uw0boPJDZGf43Jw8je6kC441aXBo8vB3WXklgM41aWBVZsmmNwQEXTBGqQdO4KGcvbIIOXrM6wftg0cgmTVVT5dvdmnX4tk1VXYNnAIqzZNMLkhItRMzkRVyR7Ulp9n9Yb8ghKqN6zatIzJDREBYPWG/EtAhM7nqzds2tcyJjdEBMA8sZjVG/IXSUlJPl29CVm3EKExVyMwoiuXfzvA5IaIAJgnFrN6Q/4kIEKHrX0HyLIsvLNYtWkdkxsisto+ZjDiqgNgqKmWeyhEbpeUlITAiK4IjbkaIesWyj0cp7Fq0zYmN0RklRKWjjzTXow+nI3j+3PlHg6R2/li9YZVm7YxuSEiO6zekD/xtaZ+3CDTOUxuiMiOpanfuJwcVm/IL4TEd8OaYX1xzVc/yz2UNnGDTOfImtwkJSVBkqRmjzlz5jg8/r333mt2bGBgoIdHTaR8uyelonul0SurN4wb5Gq+Ur1h1cZ5su4KvmfPHhiNRuvzQ4cO4cYbb8Rdd93V4nvCwsKQm9t4NSlJklvHSOSPzNWbeRB1fZGfn+9VgZRxg9whJL4b1tT1xTVffYCGe9PlHo5D13z1M87G3cCmfU6QNbmJjIy0e/7CCy+gd+/eGDVqVIvvkSQJMTEx7h4akd/bPSkVGVuPIUurBbwouWHcIHdISkrC4ZPn0L/LcHygX4uUMO9KcPbp1yKjy3Bk9e+PgdxqoU1eM+emrq4Oa9aswYwZM1q9qqqurkZiYiISEhJw66234vDhw62e12AwQK/X2z2IqG2+sKGmu+IGwNjhj7y5qR+3Wmgfr0luvvjiC1RUVGD69OktHtOvXz+sWrUKX375JdasWQOTyYQRI0bg5MmTLb5n2bJlCA8Ptz4SEhLcMHoiZfL2pn7uihsAY4c/8tYNNblBZvtJQggh9yAAYNy4cdBqtfjqq6+cfk99fT0GDBiAqVOnYunSpQ6PMRgMMBgaA7Ner0dCQgKeX/czApkBE7UpIGse9o7MQJdePVw296a2qgpPD+mHyspKhIWFdfg87oobQMux49nsXASGhnZ4zOTdju/PxfDdP6JO/wtqJmfKPRwA5qZ92rCh2HXN9X6d3LQnbnhF5aagoACbN2/GrFmz2vU+jUaDYcOG4fjx4y0eo9PpEBYWZvcgIud5a/XGnXEDYOzwV962oeY+/Vo27esAr0huVq9ejaioKEyYMKFd7zMajTh48CB69OjhppERUc3kTK/cUJNxg9zB2zbUHLnlALda6ADZkxuTyYTVq1dj2rRpCAiwX7yVkZGBBQsWWJ8/++yz+O6773DixAns27cP9913HwoKCtp95UZE7eNt1RvGDXInb9qSgVWbjpF1KTgAbN68GYWFhZgxY0aznxUWFkKlasy/ysvL8cADD6CkpAQRERFITU3Fzp07ccUVV3hyyER+Z/uYwcjY6j1bMjBukDslJSXheLkBoTFXo85mQ01PzcGx3cRTy6pNh3jNhGJP0ev1CA8P54RionZy5aRGV00o9iRL7OCEYv+Qn5+P6hOncd+RHwAAOWcLsHtSqtv73+zTr8U1X/2M/t0TAQBrBoxy6WR+X9aeuCF75YaIfIO3VW+I3MnS1C824UYAgK4hB7otP6FmsnuTm5FbDqD/ZTegW0J/AICkBRObDmByQ0ROsWzJMC5HjW0hXfx6SSr5h5D4bvhHiHmemaFrf9z7k9Gt3Yv36dciQ3UVVqX2tzbrC+Fcmw6RfUIxEfkOb95Qk8jVkpKS0GdYP/QZ1s8jK6hsuxBbPpdVm45h5YaInObNG2oSuZNlBdVV2/fYTfi1aO9kY0fnMFyox4+pA9CF1ZpOY3JDRO3irRtqErmTZQVV97gb0N1QZPeznLMF2NfO21WGC/XWScMWZyMSuDLKRZjcEFG7sHpD/iogQoeN/fvjifP97V5v72TjkHUL7SYNW2R15RwbV2FyQ0TtZmnqtyuiK5Ak92iIPCMpKQn5gHWSsUVtl164avsOp89juFCPlam9EBhh344kJELHiwUXYXJDRO1WMzkThqx5qC0fwOoN+ZWkpKRmCf3x/bnWhn/bxwxu9f0jtxywNubjikP3YXJDRB3C6g2RmWWy8f/s+QVT97W+IesZE/B9X04adjcuBSeiDvHWDTWJPC0pKQmSVovBYWOhMVzW6mNw2FhIWi2rnW7Gyg0RdRirN0RmIfHd8CqA359q/bisuDiExHfzyJj8GZMbIuowbslAZGaZbPxDG4lLCLidgicwuSGiDksJS0eeaSFGH27ALm7JQH6OSYv34JwbIuqU7WMGI66a1Rsi8h5MboioU8zVm70YfTgbx/fnyj0cIiImN0TUeazeEJE3YXJDRJ1m3pJhF0RdHZeFE5HsmNwQkUvsnpSKmQdPoKHc0PbBRERuxOSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMbojIZQwNRi4HJyLZMbkhIpfgcnAi8hZMbojIZXZPSsV9+4+h5uQ5uYdCRH6MyQ0RuQyrN0TkDZjcEJFL6YI1SDt2hM38iEg2TG6IyKVqJmeiqmQPasvPs3pDRLJgckNELsfqDRHJickNEbmc7S7hrN4QkacxuSEil0sJS0eeaS9GH85m9YaIPI7JDRG5hW31hojIk5jcEJFb2FZvju/PlXs4RORHmNwQkduwekNEcmByQ0Ruw6Z+RCQHJjdE5FbckoGIPI3JDRG5Fas3RORpTG6IyO1YvSEiT2JyQ0Rux+oNEXkSkxsi8ghuyUBEnsLkhog8wnZDzcLCQrmHQ0QKxuSGiDzGWr2pYPWGiNyHyQ0Recz2MYPRq1Yn9zCISOGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNEXlMSlg6sit2oLaiXO6hEJGCMbkhIo/SBWuQcThf7mEQkYIxuSEij9o+ZjAOVu6SexhEpGBMbojIo1LC0vHz+KFyD4OIFIzJDRF53NDQO+QeAhEpGJMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREiiJrcpOUlARJkpo95syZ0+J7/vWvf6F///4IDAzEoEGDsGHDBg+OmIjkxrhBRG2RNbnZs2cPTp8+bX1s2rQJAHDXXXc5PH7nzp2YOnUqZs6cif379+O2227DbbfdhkOHDnly2EQkI8YNImqLJIQQcg/CYu7cuVi/fj2OHTsGSZKa/Tw9PR01NTVYv3699bXrrrsOQ4cOxVtvveXUZ+j1eoSHh+P5dT8jMKSLy8ZORM6rranGXyanorKyEmFhYZ06lyfiBtAYO57NzkVgaGinxkxE7VdbVYWnh/RzKm54zZyburo6rFmzBjNmzHAYoABg165dGDt2rN1r48aNw65dLe9TYzAYoNfr7R5EpAzuihsAYweRL/Oa5OaLL75ARUUFpk+f3uIxJSUliI6OtnstOjoaJSUlLb5n2bJlCA8Ptz4SEhJcNWQikpm74gbA2EHky7wmuVm5ciXGjx+P2NhYl553wYIFqKystD6Kiopcen4iko+74gbA2EHkywLkHgAAFBQUYPPmzfj8889bPS4mJgalpaV2r5WWliImJqbF9+h0Ouh0OpeMk4i8hzvjBsDYQeTLvKJys3r1akRFRWHChAmtHjd8+HBs2bLF7rVNmzZh+PDh7hweEXkhxg0iaonsyY3JZMLq1asxbdo0BATYF5IyMjKwYMEC6/NHHnkE3377LV5++WXk5ORgyZIl2Lt3L/70pz95ethEJCPGDSJqjezJzebNm1FYWIgZM2Y0+1lhYSFOnz5tfT5ixAh89NFHeOeddzBkyBD8+9//xhdffIErr7zSk0MmIpkxbhBRa7yqz40nsM8Nkfxc2efGU9jnhkhePtnnhoiIiMgVmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRAuQegKcJIQAAtReqZR4Jkf+y/P2z/H30BdbYUc3YQSQHy989Z+KGJHwpurjAyZMnkZCQIPcwiAhAUVER4uPj5R6GUxg7iLyDM3HD75Ibk8mE4uJihIaGQpKkTp9Pr9cjISEBRUVFCAsLc8EIfYs/f39//u5A576/EAJVVVWIjY2FSuUbd8ddGTv4/w6/P79/+79/e+KG392WUqlUbrlSDAsL88v/SS38+fv783cHOv79w8PD3TAa93FH7OD/O/z+/P7t+/7Oxg3fuGQiIiIichKTGyIiIlIUJjedpNPpsHjxYuh0OrmHIgt//v7+/N0Bfv/O8Pc/O35/fn93f3+/m1BMREREysbKDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNx00KlTp3DfffehW7duCAoKwqBBg7B37165h+URSUlJkCSp2WPOnDlyD80jjEYjFi1ahOTkZAQFBaF3795YunSpT+2T1FlVVVWYO3cuEhMTERQUhBEjRmDPnj1yD8snMHb4Z+xg3PBs3PC7DsWuUF5ejuuvvx5paWn45ptvEBkZiWPHjiEiIkLuoXnEnj17YDQarc8PHTqEG2+8EXfddZeMo/Kc5cuX480338T777+PgQMHYu/evbj//vsRHh6Ohx9+WO7hecSsWbNw6NAhfPjhh4iNjcWaNWswduxY/Prrr4iLi5N7eF6LscN/YwfjhmfjBpeCd8CTTz6JH3/8Edu3b5d7KF5h7ty5WL9+PY4dO+aS/bq83cSJExEdHY2VK1daX7vjjjsQFBSENWvWyDgyz7h48SJCQ0Px5ZdfYsKECdbXU1NTMX78eDz33HMyjs67MXbY86fYwbjh2bjB21Id8J///AdXXXUV7rrrLkRFRWHYsGF499135R6WLOrq6rBmzRrMmDFD8cHJYsSIEdiyZQuOHj0KAMjOzsaOHTswfvx4mUfmGQ0NDTAajQgMDLR7PSgoCDt27JBpVL6BsaORv8UOxg0Pxw1B7abT6YROpxMLFiwQ+/btE2+//bYIDAwU7733ntxD87i1a9cKtVotTp06JfdQPMZoNIr58+cLSZJEQECAkCRJPP/883IPy6OGDx8uRo0aJU6dOiUaGhrEhx9+KFQqlbj88svlHppXY+xo5G+xg3HDs3GDyU0HaDQaMXz4cLvXHnroIXHdddfJNCL53HTTTWLixIlyD8OjPv74YxEfHy8+/vhjceDAAfHBBx+Irl27+tU/UMePHxe/+93vBAChVqvF1VdfLe69917Rv39/uYfm1Rg7Gvlb7GDc8GzcYHLTAT179hQzZ860e+2NN94QsbGxMo1IHvn5+UKlUokvvvhC7qF4VHx8vHj99dftXlu6dKno16+fTCOST3V1tSguLhZCCHH33XeL3//+9zKPyLsxdpj5Y+xg3GjkibjBOTcdcP311yM3N9futaNHjyIxMVGmEclj9erViIqKspsc5g8uXLgAlcr+r45arYbJZJJpRPIJCQlBjx49UF5ejo0bN+LWW2+Ve0hejbHDzB9jB+NGI4/EDZenS35g9+7dIiAgQGRmZopjx46JrKwsERwcLNasWSP30DzGaDSKnj17ivnz58s9FI+bNm2aiIuLE+vXrxd5eXni888/F927dxfz5s2Te2ge8+2334pvvvlGnDhxQnz33XdiyJAh4tprrxV1dXVyD82rMXb4b+xg3PBs3GBy00FfffWVuPLKK4VOpxP9+/cX77zzjtxD8qiNGzcKACI3N1fuoXicXq8XjzzyiOjZs6cIDAwUvXr1EgsXLhQGg0HuoXnM2rVrRa9evYRWqxUxMTFizpw5oqKiQu5h+QTGDv+MHYwbno0b7HNDREREisI5N0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN+QTjEYjRowYgdtvv93u9crKSiQkJGDhwoUyjYyIvBXjhv9ih2LyGUePHsXQoUPx7rvv4t577wUAZGRkIDs7G3v27IFWq5V5hETkbRg3/BOTG/Ip//jHP7BkyRIcPnwYu3fvxl133YU9e/ZgyJAhcg+NiLwU44b/YXJDPkUIgf/5n/+BWq3GwYMH8dBDD+Gpp56Se1hE5MUYN/wPkxvyOTk5ORgwYAAGDRqEffv2ISAgQO4hEZGXY9zwL5xQTD5n1apVCA4ORl5eHk6ePCn3cIjIBzBu+BdWbsin7Ny5E6NGjcJ3332H5557DgCwefNmSJIk88iIyFsxbvgfVm7IZ1y4cAHTp0/H//3f/yEtLQ0rV67E7t278dZbb8k9NCLyUowb/omVG/IZjzzyCDZs2IDs7GwEBwcDAN5++208/vjjOHjwIJKSkuQdIBF5HcYN/8TkhnzCDz/8gDFjxmDbtm244YYb7H42btw4NDQ0sMxMRHYYN/wXkxsiIiJSFM65ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESnK/wcH2HAq68WYCwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "#сравнение характеристик качестваобучения и областей аппроксимации\n", + "lib.plot2in1(data,xx,yy,Z1,Z2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ra_vEOsPm8b8" + }, + "outputs": [], + "source": [ + "#загрузка тестового набора\n", + "data_test= np.loadtxt('data_test.txt', dtype=float)" + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE1\n", + "\n", + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, data_test, IREth1)\n", + "lib.anomaly_detection_ae(predicted_labels1, ire1, IREth1)\n", + "lib.ire_plot('test', ire1, IREth1, 'AE1')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 779 + }, + "id": "NyphycbdjJcE", + "outputId": "14cabae1-baf1-4069-ea51-83320e38254f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "Аномалий не обнаружено\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAALXCAYAAACO8q7KAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdcBJREFUeJzs3Xd8lfXdP/73SQhhg8iW6cKJqCxHFSeO2tI66mhFe2u9q96uX2ul37r1tkvrrHetVWyt1bo71Ip7IUMF0boVXAyRvUIg5/fHaY45JDnkQJIrhOfz8bgenFzrvK+TDxfhlc/n+qTS6XQ6AAAAAAASUJR0AQAAAADApktACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAsJ7eeuutOP3002OHHXaI9u3bRyqVyi4zZsxIujwAANgoCCgBgIKMHDkyG8Jdcsklte5XNaxbeykuLo5OnTrFNttsE0cffXTceuutsXTp0vWqodDlpJNO2vAPISL+9re/xa677ho333xzvPXWWwXVD5u6n/3sZzl/L3/4wx8WfI6Gug+k0+l455134s4774yzzz479txzz2jTpk322P79+6//hQMANRJQAgCNrqKiIhYtWhTvv/9+3HfffXHqqafGgAED4sEHH0y6tDpZunRpnHTSSVFWVhYRET179oyjjz46Tj/99DjjjDPijDPOiA4dOiRc5fq75JJL6hRCbwxOOumk7LWMGzcu6XIaxYwZM5p0mJZOp+NPf/pTzrp77rkn+/cpSVOmTIlOnTrFdtttF9/73vfi+uuvjwkTJsSKFSuSLg0AmrUWSRcAADR/o0ePji222CL7dUVFRcybNy8mTJgQn376aUREzJs3L4466qi477774lvf+ladzz106NAYNmxYnfcfMWJE3QuvxT/+8Y9YsGBBRETsuOOOMXny5GjduvUGnxc2BU8//XR8/PHHOesWLFgQf/vb3+Loo49er3PW131g6dKlsXjx4vWqAQBYfwJKAKDBnX322TFy5Mhq6ysqKuKOO+6IH/7wh1FWVhYVFRXxwx/+MEaNGhVt2rSp07kPO+ywRu/l9+qrr2ZfH3fcccJJKMAdd9yRfd26dets78Q77rhjvQPK+r4PbLbZZjFkyJAYOnRoDB06NN5555244IIL6u38AEAuQ7wBgMQUFRXFySefHL/85S+z6+bMmRMPPfRQckXVQWXvyYjM8G6gbpYuXRr3339/9utrrrkm+/pf//pXzJkzJ4mysnbZZZd47733Yv78+fH444/HlVdeGaNHj47u3bsnWhcANHcCSgAgcaeddlq0atUq+/Vzzz2XYDXrVl5enn1dVOTHKair+++/P5YtWxYREQMGDIjTTjstBg8eHBERq1evjj//+c8JVpfpObn11lsnWgMAbIr8RA0AJK60tDS233777Neff/55gtXUrOrEMVWHqJ588snVZgiubTKWpUuXxvXXXx+jRo2K3r17R6tWrWKzzTaLnXbaKc4888yYOHFinWqp+l6Vpk2bFmeffXbstNNO0blz50ilUjF69OiCrrFyVuRLL700u+7SSy9dr1mQH3zwwRgzZkxsu+220bFjx2jVqlX06dMnRo8eHXfccUesXr26TjW9/fbbcf7558eIESOiS5cu0bJly2jVqlV069Ytdt999zj55JPjjjvuyOnVGhHRv3//On2v6mMioPWtsSbl5eXxpz/9KY455pjYcssto3379tG2bdsYMGBAHHfccfHggw9GOp2u8dhx48ZFKpWKAQMGZNfNnDmz1pmsk1D1+/Hd7343UqlUfO9736txOwCw6fAMSgCgSaj6HMeVK1cmWEnD+Mc//hGnnnpqzJ49O2d9WVlZLFy4MN5888246aab4vjjj4/f//73dX4GZ0QmPL3iiitizZo19V12wV5//fUYM2ZMTJ06tdq2Tz/9ND799NN4+OGH46qrrooHHnggdthhh1rPle+6vvjii/jiiy/i1VdfjXHjxsUJJ5wQd955Z31eSp3UZ43PPPNMnHLKKfHBBx9U2zZjxoyYMWNG3H333TFixIi47777ciae2hjMnDkznnnmmezX3/3udyMi4vjjj4/zzz8/1qxZE6+//npMnTo126sSANg0CCgBgCahaq/Jpvi8t2HDhsUZZ5wRERFPPvlkvP322xERccABB8R2222Xs2/V3qAREffcc0+ccMIJ2RCruLg49t5779h6661j6dKl8fzzz2ev/6677oqPPvoonnrqqZxh77X51a9+le3xuNVWW8WwYcOiTZs2MWPGjCgpKSnoGr/1rW/FTjvtFJMmTYrJkydHRO2zI9c0C/Jzzz0XRxxxRHYW5JKSkhg6dGhss802UVJSEjNmzIgXXnghVq5cGe+8807sueeeMWHChGqfV0TEddddl9OTs0uXLjFixIjo2bNnpFKpmD9/frz99tvx1ltv1RgOjhkzJr788st1fq8ioqDZn+uzxqruvffeOOGEE7KPD2jdunWMGDEi+vfvH0VFRfHuu+/GhAkTYvXq1fHyyy/HHnvsEZMnT875u7L99tvHGWecEUuWLIk//vGPERHRvn37OPHEE9fr+urbn/70p2zvz+HDh8e2224bERE9evSIgw46KB577LGIyPSiFFACwCYmDQBQgH333TcdEemISF988cW17le5T0Skn3766bznfOedd3L2v/HGG+ulhoYyZsyY7Pvffvvtefd9//330+3atcvuP2zYsPR7772Xs8+aNWvSV199dbqoqCi73//8z//Ues6qn1WLFi3SHTt2TD/44IPV9lu5cuX6XF764osvLvjznTVrVrpbt27Z40488cT0559/Xm2/2bNnp7/1rW9l99t5553Tq1evztmnvLw83aVLl+w+V111VXrVqlU1vu+XX36Zvu2229K/+MUvatxeyPeqEPVZ4xtvvJFu3bp1OiLSqVQq/aMf/Si9YMGCavt98MEH6b333jv7noceemiN5/voo4+y+/Tr1299L7HebbPNNrX+Hf/zn/+c3datW7d0eXn5Os/XmPeB22+/vUl+pgDQXOhBCQAkavXq1XH22Wdnv+7QoUMce+yxdT7+kUceiXnz5tV5/8suuyw6d+5cUI0b4rLLLoulS5dGRMTWW28djz/+eHTs2DFnn6KiojjvvPMilUrFeeedFxERN910U5x77rk5zxOsSUVFRfztb3+LffbZp9q20tLSerqKdft//+//xdy5cyMi4qyzzorrrruuxv26d+8e9957bxx88MHx1FNPxfTp0+O+++6L73znO9l93n777ez3dK+99ooLLrig1vft3LlznHzyyfV4JXVTnzWeddZZsWLFioiIuPrqq+Pcc8+tcb8tt9wyHnvssRg2bFj8+9//jkcffTQmTpwYw4cP34AraRwvvfRSvPfeexGR6Vlb9fsdETF69Oho165dLF26NObOnRuPPvpoHHHEEXU+f1O/DwAA+QkoAYBGV1FREfPmzYsXX3wxfv7zn8ekSZMiIqJFixZx2223xeabb17nc02ePDk7HLkufvSjHzVaMLFw4cK45557sl//8pe/rBZOVnX22WfHH/7wh3jzzTejoqIibrnllrjqqqvyvsdRRx1VYzjZmL744ovssxV79OgRv/jFL/LuX1xcHFdeeWXsscceERHx5z//OSewqhwiHhHRtWvXBqh4w9VXjdOmTYunnnoqIiJ23XXXOOecc/Lu37Zt27jwwgvjuOOOi4jMZ7cxBJRVJ7859NBDo0uXLjnb27RpE0ceeWR2vzvuuKOggLIp3wcAgHUzizcA0OD222+/nNmDi4uLo3v37vHtb387G04OHDgwHnrooTjyyCMTrrb+vPTSS1FWVhYRmecTritwKSoqiu9///vZr59++ul1vkchvU0byhNPPBGrVq2KiIhvf/vbdXp25vDhw6Nt27YREfHCCy/kbOvTp0/29dNPPx3vvvtuPVZbP+qrxkceeST7+rjjjqvT7Nr7779/9vXan11TtHLlyvjrX/+a/brqrN1VVX1W5t///veYP39+g9cGADQNelACAInr3r17/PGPf1yvyUouvvjiuOSSS+q/qHrw2muvZV8PGzYsWrRY949ee+21V87x6XQ6b2i1++67b1iR9WDChAnZ16+//nqceeaZBR2/YMGCWLZsWTaw7NOnT4wYMSJefvnlWLRoUey+++7xve99L771rW/FXnvtVdAM5w2lvmqs+tk9/fTTMXPmzHUek/7PRDMREZ988knhxTeyhx9+OBYuXBgREZ06dao1qB85cmT07t07Pv3001i1alXcfffdcfrpp9fpPZryfQAAWDcBJQDQ4EaPHh1bbLFF9usvv/wyPvjgg+yQzDlz5sTXvva1uP/+++PrX/96UmXWuy+++CL7ul+/fnU6pn///tnXq1atiiVLlkSHDh1q3b8pDIGuOgP7Cy+8sF69+hYsWJANKCMi/vCHP8T+++8fc+bMiaVLl8bNN98cN998c7Ro0SIGDx4c++yzT4waNSoOOOCAKC4urpfrKFR91Fj1s3v00UcLrmHBggXrXX9jqTq8++ijj6712ahFRUVxwgknZB8RcMcdd9Q5oAQANm6GeAMADe7ss8+OG2+8Mbv85S9/iUmTJsW0adNil112iYhMGHfcccfFBx98kHC19adycpyIyAnf8ll7vyVLluTdv3Xr1oUXVs8WLVq0wedYvXp1ztc77LBDTJs2Lf7nf/4n57mdq1evjilTpsQ111wTo0aNin79+sWtt966we+/Puqjxg397NasWbNBxze02bNnx+OPP579+rvf/W7e/asO/540aVK8/fbbDVYbANB0CCgBgMQMGjQoHn/88WzvyqVLl8Ypp5yScFX1p127dtnXy5Ytq9Mxa+/Xvn37eq2pIVQNVa+55ppIp9MFL1V7jlbq3r17XH/99TFnzpx45pln4vLLL49DDz00p0fpZ599FqeeemqcddZZjXGp9V5j1c/ugQceWK/Prim78847c0LUfffdN+d5tGsvO+20U87xVXtfAgDNl4ASAEhUt27d4oYbbsh+/cwzz8Q///nPBCuqP1WHX3/88cd1OmbGjBnZ1y1bttwoAsru3btnX8+ePbvez19aWhr77rtv/OxnP4tHHnkk5s2bF48++mjsvffe2X1uuOGGgmZxbio1NvRnl7QNDRjvvPPOqKioqKdqAICmSkAJACSucmKRSj/72c8SrKb+7LrrrtnXkyZNqtNw3Jdeeinn+LrM6lzfCn3P4cOHZ1+/+OKL9V1ONSUlJXHIIYfEE088kdPj7u9//3u1fZP4/CLqXmNDfHZJXfPaXn311XjjjTeyXw8dOjSGDx9ep6VyQqlPP/00nnzyyaQuAQBoJAJKAKBJqDoD79SpU+Nvf/tbcsXUkz333DM7IcgXX3yxzp6hFRUVcfvtt2e/3n///Ru0vtq0atUq+7q8vHyd+48aNSobKL300ksxbdq0BqutqtLS0jj44IOzX8+ZM6faPoVeS31bV41VJ4V64IEHaryGQiV9zZWq9p7ceeedY9KkSfHyyy/XaTnkkENqPA8A0DwJKAGAJuHAAw+MPffcM/v1FVdckWA19aNTp07xne98J/v1j3/847yT3tx4440xffr0iMjMaPyDH/ygwWusyeabb559/dlnn61z/y222CI7+Uk6nY4TTzwxFi9eXKf3qqioyJntPCIzM3Vdh/V+8skn2dfdunWrtr3Qa6mr+qpx2LBhMXLkyIiIWLFiRXzve9+LVatW1em8q1atqnEW706dOkVRUebH/C+++CKRkLK8vDzuuuuu7NfrmhxnbVX3f/DBB9c5WRQAsHETUAIATcZFF12UfT158uR47LHHEqymflx00UXZyXLefffdGDVqVHz44Yc5+1RUVMR1110X5513XnbdGWecUePEMY2h6pDkxx9/vE4zTV955ZXRs2fPiIh4/fXXY9iwYTmzN6/t008/jd/85jcxcODAuOeee3K2Pfzww7HtttvGr3/965xnclZVVlYWN954Y9x3333ZdYceemjea3n44YfrHP6tS33WeMMNN2TbyPjx42OfffaJiRMn1vre7777blx++eXRv3//GoeFl5aWxjbbbBMRmaDwoYceqtM1nXTSSdnJaja07VU+hzMiM+T8uOOOK+j4b3zjG9nnry5fvjzuvffeDaoHAGjaWiRdAABApVGjRsXw4cOz4czll1+eM9SzJlWDkLpo06ZN/PKXv9ygOgux1VZbxa233honnHBCrFmzJiZMmBADBw6Mr33ta7HVVlvF0qVL4/nnn8/p3TdixIhGrXFtw4YNiz59+sQnn3wSs2bNiu222y4OPvjg6NKlS/b5hkOHDs3pHdqrV694+OGH47DDDot58+bFO++8E6NGjYotttgihg0bFl27do3y8vKYN29evPHGG/HRRx/lreGDDz6IH//4x/HjH/84+vbtG4MGDcr2Ppw9e3a8/PLLMX/+/Oz+J5xwQk4P3EqHHnpotG7dOlasWBFTp06N7bffPkaOHBmdOnXKXsvBBx+cMwy7ruqrxp122in+8pe/xHe+851Yvnx5TJw4MUaMGBFbbbVV7LbbbtG5c+dYuXJlzJ07N15//fU69QQ98sgj43//93+z7ztu3LjYeuuto6SkJLvPr3/964Kvua6qDsveZ599ok+fPgUd37p16/jWt74Vf/zjH7Pn+/73v1/r/vV5HzjllFNiypQpOeuqfh8///zzGDx4cLXjbr311hgyZEidawAAqkgDABRg3333TUdEOiLSF198ca37Ve4TEemnn366zuf/5z//mXPsE088kbeGQpeOHTsWftFrGTNmTPZ8t99+e52O+fvf/57u3r37Ous77rjj0suWLct7rqr7N5S///3v6ZYtW9Za55gxY2o8bsaMGekDDjigzt+P7t27px977LGcc9x7773pVCpVp+OLiorSp59+enrVqlW1XsvNN9+c93z52nFt6rvGdDqdnjp1anr33Xev82fXv3//9GuvvVbjuRYuXJjebrvt8h6/tqrtul+/fgV/JpXmzZuX03Z+//vfr9d5Hn/88ew5UqlU+sMPP8zZ3lD3gfU9byH3OQAglx6UAECTcthhh8WQIUOyPZguu+yyOOCAAxKuasN9/etfj/fffz9uu+22+Mc//hFvvvlmzJs3L1q3bh29evWK/fbbL0488cScWZ2T9PWvfz2mTJkSN910U7zwwgvx8ccfx9KlSyOdTuc9rl+/fvHEE0/EhAkT4t57743nnnsuPvnkk1iwYEG0aNEiNt9889hmm21iyJAhcfDBB8fIkSOzE+xUOuqoo2LWrFnx+OOPx4svvhjTpk2LDz/8MBYuXBgRER07doxtt9029t577zjxxBNjhx12yFvTf//3f8fOO+8cv/vd72LixInx2WefxfLly9d5LfnUd40REbvssktMmTIlHn/88XjooYfixRdfjM8//zwWLlwYpaWl0bVr1xg4cGAMHz48Ro0aFXvssUetM3Z37NgxJk+eHL/97W/jn//8Z7z11luxcOHCRnke5V/+8pfsUPrS0tI46qij1us8+++/f/Ts2TNmzZoV6XQ67rjjjpzJtACA5iOV3pCfzAAAAAAANoBJcgAAAACAxAgoAQAAAIDECCgBAAAAgMQIKAEAAACAxAgoAQAAAIDECCgBAAAAgMS0SLqApqqioiI+//zzaN++faRSqaTLAQAAAICNSjqdjiVLlkSvXr2iqKj2fpICylp8/vnn0adPn6TLAAAAAICN2ieffBK9e/eudbuAshbt27ePiMwH2KFDh4SrqX/l5eXx+OOPx8EHHxwlJSVJl8NGQJuhUNoMhdJmKJQ2Q6G0GQqlzVAobYZCNfc2s3jx4ujTp082Z6uNgLIWlcO6O3To0GwDyjZt2kSHDh2a5V8A6p82Q6G0GQqlzVAobYZCaTMUSpuhUNoMhdpU2sy6Hp9okhwAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDEtki6gOSovL481a9YkXUZe5eXl0aJFi1i5cmWTr3VjV1RUFCUlJZFKpZIuBQAAAKDJEVDWo8WLF8e8efOirKws6VLWKZ1OR48ePeKTTz4RnDWC4uLiaNOmTXTr1i1atmyZdDkAAAAATYaAsp4sXrw4Pvvss2jXrl106dKlyfeYq6ioiKVLl0a7du2iqMhI/4aSTqdjzZo1sWLFili0aFHMmDEjevfuHW3atEm6NAAAAIAmQUBZT+bNmxft2rWL3r17N+lgslJFRUWsWrUqWrVqJaBsBO3atYvOnTvHzJkzY968edG3b9+kSwIAAABoEiRT9aC8vDzKysqiY8eOG0U4STKKi4ujc+fOsWzZsli9enXS5QAAAAA0CQLKelA5yUxJSUnCldDUlZaWRkQIKAEAAAD+Q0BZj/SeZF20EQAAAIBcAkoAAAAAIDECSgAAAAAgMRtlQPncc8/FEUccEb169YpUKhUPPfRQdlt5eXn85Cc/iZ133jnatm0bvXr1ihNPPDE+//zz5AoGAAAAAGq0UQaUy5Yti1122SVuuummatuWL18er776alx44YXx6quvxgMPPBDvvPNOfOMb30igUqrq379/pFKpGDduXHbduHHjIpVK5SxFRUXRoUOH2HXXXWPs2LHxxRdf1HrOtY+tbXnmmWca/gIBAAAAKFiLpAtYH4ceemgceuihNW7r2LFjjB8/PmfdjTfeGMOGDYuPP/44+vbt2xglUqC2bdvGUUcdFRGZWdFnzpwZEyZMiKlTp8btt98ezz//fGyzzTa1Hj9q1Kjo0aNHrdvzbQMAAAAgORtlQFmoRYsWRSqVik6dOtW6T1lZWZSVlWW/Xrx4cURkhoyXl5fnPX95eXmk0+moqKiIioqKeqm5oaXT6eyfjV1z1c+p8s8uXbrEbbfdlrPfm2++Gfvtt1/MmTMnzj777PjHP/5R6znPP//8GDly5DrfN2kVFRWRTqejvLw8iouLky6nIJV/D9b19wEqaTMUSpuhUNoMhdJmKJQ2Q6G0GQrV3NtMXa+r2QeUK1eujJ/85Cdx3HHHRYcOHWrd76qrropLL7202vrHH3882rRpk/c9WrRoET169IilS5fGqlWrNrjmxrRkyZJGe6/KgHDlypXZAHjlypXZbZXrKvXp0yd++MMfxhVXXBFPPPFEfPHFF1FaWlrjuZcvX17t+KZo1apVsWLFinjuuedi9erVSZezXtbuoQzros1QKG2GQmkzFEqboVDaDIXSZihUc20zy5cvr9N+zTqgLC8vj2OOOSbS6XTcfPPNefcdO3ZsnHfeedmvFy9eHH369ImDDz44b7AZkQnZPvnkk2jXrl20atWqXmpvaOl0OpYsWRLt27ePVCrVKO9ZVJR55GmrVq2yn2nl51X53Mm1DR06NCIy38vVq1dH165dazx3mzZt1vl9agpWrlwZrVu3jn322WejaSuVysvLY/z48XHQQQdFSUlJ0uWwEdBmKJQ2Q6G0GQqlzVAobYZCaTMUqrm3mbp2Jmu2AWVlODlz5sx46qmn1hlelZaW1tg7r6SkZJ0NZM2aNdnJXSpDuKausjdjZd2NqernVPW9a6pj6dKlERFRXFwc3bp1q7XWjeWzLyoqilQqVad21VRtzLWTDG2GQmkzFEqboVDaDIXSZiiUNkOhmmubqes1NcuAsjKcfO+99+Lpp5+OzTffPOmSWE///Oc/IyLikEMOaZZ/UQEAAAA2dRtlQLl06dJ4//33s19/9NFHMXXq1OjcuXP07NkzjjrqqHj11VfjH//4R6xZsyZmz54dERGdO3eOli1bJlP0kCER/6mjKUhFRId0et3Du3v0iJgypVFqqlQ5i/ctt9wSd911V/Tr1y+uv/76vMfst99+tW7r2LFjLFy4sJ6rBAAAAKA+bJQB5ZQpU3ICqcpnR44ZMyYuueSS+Nvf/hYREYMHD8457umnn17nTM8NZvbsiM8+S+a9a5D6z9JUzJw5s8awdNiwYfH4449Hx44d8x4/atSo6NGjR43b1jXJEQAAAADJ2SgDypEjR0Y6na51e75tiaklPEtKOjKfUyqVyh9UNlLdbdu2jaOOOioiIsrKyuKtt96KadOmxaRJk+K0006Lu+++O+/xF1xwQXLhMwAAAADrbaMMKDdKjTxMel3SFRWxePHi6NChQ6SawOQyXbp0iXHjxuWse+CBB+I73/lO3HPPPbHPPvvE6aefnkxxAAAAADSY5JMpqMW3v/3tuOCCCyIi4qKLLopFixYlXBEAAAAA9U1ASZM2duzY6NmzZ3z55ZdxzTXXJF0OAAAAAPVMQEmT1qZNm7jwwgsjIuLaa6+NBQsWJFwRAAAAAPXJMyhp8k455ZS4+uqr44MPPohf//rXceWVV1bb5+c//3m1Z1hWdfzxx8fBBx/cgFUCAAAAsD4ElDR5JSUlccUVV8Rxxx0XN9xwQ5x33nmx+eab5+zzr3/9K+85Bg8eLKAEAAAAaIIElDSaGTNmVFt30kknxUknnbTOY4899tg49thjq61Pp9P1UBkAAAAASfEMSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoaTf/+/SOVSsW4ceOy68aNGxepVCpnKSoqig4dOsSuu+4aY8eOjS+++KLWc659bG3LM888U1CtlXWddNJJ63exAAAAANRJi6QLgIiItm3bxlFHHRUREWvWrImZM2fGhAkTYurUqXH77bfH888/H9tss02tx48aNSp69OhR6/a1t6VSqYiISKfT9VA9AAAAAOtLQEmT0KVLl5yelRERb775Zuy7774xZ86cOOecc+Kf//xnrcdfcMEFMXLkyIYtEgAAAIB6Z4g3TdaOO+4Y5513XkREjB8/PsrKyhKuCAAAAID6JqCkSRs0aFBERJSXl8f8+fM3+HyXXHJJdnh3RPVnWM6YMaPaMcuWLYuxY8fG1ltvHaWlpdGjR48YM2ZMfPbZZxtcDwAAAMCmzhBvmrTFixdHRERxcXF06dJlg883ePDgGDNmTNxxxx0RETFmzJic7e3atcv5etGiRbHnnnvGxx9/HF/72tdip512igkTJsQf//jHePbZZ2PatGnRsWPHDa4LAAAAYFMloKRJq3zu5CGHHBIlJSUbfL7Ro0fH6NGjswHl2s+9XNtDDz0Uo0aNiueffz46dOgQERELFiyI/fffP6ZOnRq//e1vY+zYsRtcFwAAAMCmSkDZSIYMGRKzZ89Ouowc6XQ6Z7hzTXr06BFTpkxppIoyKmfxvuWWW+Kuu+6Kfv36xfXXX5/3mP3226/WbR07doyFCxeuVy1t27aN22+/PRtORkRsttlmccEFF8Sxxx4bTzzxhIASAAAAYAMIKBvJ7NmzPbMwj5kzZ9YYlg4bNiwef/zxdQ6jHjVqVPTo0aPGbW3atFnvuoYMGRI9e/astn777bePiPA9BQAAANhAAspGUlt4lqS69qBsDG3bto2jjjoqIiLKysrirbfeimnTpsWkSZPitNNOi7vvvjvv8RdccEGMHDmy3uvq27dvjesre1SuXLmy3t8TAAAAYFMioGwkjT1Mel0qKipi8eLF0aFDhygqSn4y9y5dulR7HuQDDzwQ3/nOd+Kee+6JffbZJ04//fRGr6spfDYAAAAAzZn0hSbr29/+dlxwwQUREXHRRRfFokWLEq4IAAAAgPomoKRJGzt2bPTs2TO+/PLLuOaaa+rtvJUzgq9evbrezgkAAABA4QSUNGlt2rSJCy+8MCIirr322liwYEG9nLd3794REfHmm2/Wy/kAAAAAWD+eQUmTd8opp8TVV18dH3zwQfz617+OK6+8sto+P//5z6s9w7Kq448/Pg4++ODs10ceeWT8+te/jgMPPDD233//aN++fURE/OIXv4jNN9+83q8BAAAAgJoJKGnySkpK4oorrojjjjsubrjhhjjvvPOqhYj/+te/8p5j8ODBOQHl5ZdfHkVFRfHAAw/EQw89FKtWrYqIiJ/97GcCSgAAAIBGJKCk0cyYMaPaupNOOilOOumkdR577LHHxrHHHlttfTqdXq9aWrVqFb/4xS/iF7/4RY3b11VX//791/u9AQAAAPiKZ1ACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUNajdDqddAk0cdoIAAAAQC4BZT0oKsp8jGvWrEm4Epq6yjZS2WYAAAAANnVSknpQUlISxcXFsWLFiqRLoYlbsmRJlJSURElJSdKlAAAAADQJAsp6kEqlok2bNrFo0SK9KKnVihUrYvHixdG+fftIpVJJlwMAAADQJLRIuoDmolu3bjFjxoyYOXNmdO7cOUpLS5t0CFVRURGrVq2KlStXGm7cgNLpdKxZsyaWLFkSixcvjtLS0ujSpUvSZQEAAAA0GQLKetKyZcvo3bt3zJs3L2bNmpV0OeuUTqdjxYoV0bp16yYdpDYXJSUl0alTp+jSpUsUFxcnXQ4AAABAkyGgrEdt2rSJvn37xurVq2P16tVJl5NXeXl5PPfcc7HPPvt4HmIDKyoqipKSEkEwAAAAQA0ElA2gRYsW0aJF0/5oi4uLY/Xq1dGqVSsBJQAAAACJ8fBBAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDEbZUD53HPPxRFHHBG9evWKVCoVDz30UM72dDodF110UfTs2TNat24dBx54YLz33nvJFAsAAAAA1GqjDCiXLVsWu+yyS9x00001bv/lL38Z119/ffzf//1fTJw4Mdq2bRujRo2KlStXNnKlAAAAAEA+LZIuYH0ceuihceihh9a4LZ1Ox7XXXhs/+9nP4pvf/GZERPzxj3+M7t27x0MPPRTHHntsY5YKAAAAAOSxUQaU+Xz00Ucxe/bsOPDAA7PrOnbsGMOHD48JEybUGlCWlZVFWVlZ9uvFixdHRER5eXmUl5c3bNEJqLym5nhtNAxthkJpMxRKm6FQ2gyF0mYolDZDobQZCtXc20xdryuVTqfTDVxLg0qlUvHggw/G6NGjIyLipZdeir322is+//zz6NmzZ3a/Y445JlKpVNxzzz01nueSSy6JSy+9tNr6u+66K9q0adMgtQMAAABAc7V8+fI4/vjjY9GiRdGhQ4da92t2PSjX19ixY+O8887Lfr148eLo06dPHHzwwXk/wI1VeXl5jB8/Pg466KAoKSlJuhw2AtoMhdJmKJQ2Q6G0GQqlzVAobYZCaTMUqrm3mcoRyuvS7ALKHj16RETEnDlzcnpQzpkzJwYPHlzrcaWlpVFaWlptfUlJSbNsIJWa+/VR/7QZCqXNUChthkJpMxRKm6FQ2gyF0mYoVHNtM3W9po1yFu98BgwYED169Ignn3wyu27x4sUxceLE2GOPPRKsDAAAAABY20bZg3Lp0qXx/vvvZ7/+6KOPYurUqdG5c+fo27dvnHPOOXHFFVfENttsEwMGDIgLL7wwevXqlX1OJQAAAADQNGyUAeWUKVNiv/32y35d+ezIMWPGxLhx4+L888+PZcuWxQ9+8INYuHBh7L333vHYY49Fq1atkioZAAAAAKjBRhlQjhw5MvJNPp5KpeKyyy6Lyy67rBGrAgAAAAAK1eyeQQkAAAAAbDwElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiBJQAAAAAQGIElAAAAABAYgSUAAAAAEBiWiRdAMkYMWJEzJw5M1q1apV0KWxEVq5cqc1QEG2GQmkzFEqboVDaDIXSZiiUNkOhVq5cGf369YtXXnkl6VISI6DcRM2ZMye+/PLLpMsAAAAA2ORt6qG2gHIT1b17d7/VoWDaDIXSZiiUNkOhtBkKpc1QKG2GQmkzFGrlypXRvXv3pMtIlIByE/Xyyy/HI488EocddliUlJQkXQ4bgfLycm2GgmgzFEqboVDaDIXSZiiUNkOhtBkKVbXNbMpMkgMAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkplkGlGvWrIkLL7wwBgwYEK1bt46tttoqLr/88kin00mXBgAAAABU0SLpAhrCL37xi7j55pvjjjvuiB133DGmTJkSJ598cnTs2DHOOuuspMsDAAAAAP6jWQaUL730Unzzm9+Mww8/PCIi+vfvH3/5y19i0qRJCVcGAAAAAFTVLAPKPffcM2655ZZ49913Y9ttt41p06bFCy+8ENdcc02tx5SVlUVZWVn268WLF0dERHl5eZSXlzd4zY2t8pqa47XRMLQZCqXNUChthkJpMxRKm6FQ2gyF0mYoVHNvM3W9rlS6GT6YsaKiIn7605/GL3/5yyguLo41a9bElVdeGWPHjq31mEsuuSQuvfTSauvvuuuuaNOmTUOWCwAAAADNzvLly+P444+PRYsWRYcOHWrdr1kGlHfffXf8+Mc/jl/96lex4447xtSpU+Occ86Ja665JsaMGVPjMTX1oOzTp0/Mmzcv7we4sSovL4/x48fHQQcdFCUlJUmXw0ZAm6FQ2gyF0mYolDZDobQZCqXNUChthkI19zazePHi6NKlyzoDymY5xPvHP/5xXHDBBXHsscdGRMTOO+8cM2fOjKuuuqrWgLK0tDRKS0urrS8pKWmWDaRSc78+6p82Q6G0GQqlzVAobYZCaTMUSpuhUNoMhWqubaau11TUwHUkYvny5VFUlHtpxcXFUVFRkVBFAAAAAEBNmmUPyiOOOCKuvPLK6Nu3b+y4447x2muvxTXXXBPf//73ky4NAAAAAKiiWQaUN9xwQ1x44YVx+umnx9y5c6NXr15x2mmnxUUXXZR0aQAAAABAFc0yoGzfvn1ce+21ce211yZdCgAAAACQR7N8BiUAAAAAsHEQUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIlpsT4HLV68OCIiOnTosEFvvnTp0njqqaciIuIb3/jGBp0LAAAAANj4rFdA2alTpygqKorXX389dthhh2rbP//88/jZz34WqVQq/vCHP9R6npkzZ8bo0aOjqKgoVq9evT6lAAAAAAAbsfUe4p1Op2vdtmDBghg3blyMGzdug88FAAAAADRfnkEJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRmgwLKVCpVX3UAAAAAAJugFhty8E477VTrtsrwsri4eEPeAgAAAABoxjYooEyn0/VVBwAAAACwCVqvgHKfffYxvBsAAAAA2GDrFVA+88wz9VwGAAAAALApMos3AAAAAJAYASUAAAAAkJjEA8rly5fH1VdfnXQZAAAAAEACEgsolyxZEldeeWX0798/zj///KTKAAAAAAAStF6T5GyI+fPnx29+85u46aabYtGiRZFOp80IDgAAAACbqA3qQTlz5sw466yzYocddoj27dtH586dY7fddourrroqFi1alLPv0qVL4+KLL47+/fvH//7v/8bChQsjnU5Hly5d4oorrtigiwAAAAAANk7r3YNy/PjxceSRR8ayZcsiIiKdTkdExLRp02LatGnxxz/+MZ5++uno0aNHvPjii3HCCSfEJ598kt1viy22iB/96Efxgx/8IFq3bl0PlwIAAAAAbGzWK6D84osv4rjjjoulS5dm17Vt2zZatGiR7Tn57rvvxhlnnBFnn312jBo1KlatWhXpdDoGDBgQF1xwQZx00klRUlJSP1cBAAAAAGyU1muI9+9///uYP39+pFKpOOqoo+L999+PJUuWxIIFC+Lzzz+PM888MyIiHn744fjud78bZWVl0a5du7jhhhvinXfeiVNPPVU4CQAAAACsX0D5+OOPR0TEiBEj4q9//WtsueWW2W09evSI66+/Pk488cSoqKiITz/9NDp16hQvvfRSnHHGGdGiRePMy/PZZ5/Fd7/73dh8882jdevWsfPOO8eUKVMa5b0BAAAAgLpZr4Dy7bffjlQqFaeffnqt+5x11lkREZFKpeKss86KHXfccf0qXA8LFiyIvfbaK0pKSuLRRx+Nf//733H11VfHZptt1mg1AAAAAADrtl7dGRcsWBAREVtvvXWt+2yzzTbZ11/72tfW523W2y9+8Yvo06dP3H777dl1AwYMaNQaAAAAAIB1W6+Asry8PFKpVLRv377Wfdq1a5d93aNHj/V5m/X2t7/9LUaNGhVHH310PPvss7HFFlvE6aefHqeeemqtx5SVlUVZWVn268WLF0dE5lrLy8sbvObGVnlNzfHaaBjaDIXSZiiUNkOhtBkKpc1QKG2GQmkzFKq5t5m6XlcqnU6nCz15UVFRpFKpmD59euywww4bvF99a9WqVUREnHfeeXH00UfH5MmT4+yzz47/+7//izFjxtR4zCWXXBKXXnpptfV33XVXtGnTpkHrBQAAAIDmZvny5XH88cfHokWLokOHDrXu1ywDypYtW8aQIUPipZdeyq4766yzYvLkyTFhwoQaj6mpB2WfPn1i3rx5eT/AjVV5eXmMHz8+DjroIDOqUyfaDIXSZiiUNkOhtBkKpc1QKG2GQmkzFKq5t5nFixdHly5d1hlQbtCU2ieffHK0bdt2g/dLpVLx5JNPbkgpOXr27FktEN1+++3j/vvvr/WY0tLSKC0trba+pKSkWTaQSs39+qh/2gyF0mYolDZDobQZCqXNUChthkJpMxSqubaZul7TBgWUU6ZMybs9lUqtc790Op3dr77stdde8c477+Sse/fdd6Nfv371+j4AACRk9eqIN96I9jNmRCxaFNGlS9IVAQCwntY7oFyPkeGN5txzz40999wz/vd//zeOOeaYmDRpUtxyyy1xyy23JF0aAADrY86ciIkTI15+OWLChIjJk6Nk2bLYPyLinHMiOnaM6Ns3ol+/mv/s2TOiqCjhiwAAoCbrFVBWVFTUdx31aujQofHggw/G2LFj47LLLosBAwbEtddeGyeccELSpQEAsC6rVkVMnZoJIyuXjz7Kf8yiRRHTp2eWmpSURPTuXXuA2bdvROvW9X4pAACs2wYN8W7Kvv71r8fXv/71pMsAACCfdDri009zw8hXXomoMnlhjfr0iYqhQ+PTBQuidzodRR9/HPHJJxHl5TXvX16eCTnzBZ1du2YCy9pCzM03j6jnRxMBANCMA0oAAJqg5cszAWTVQPLzz/Mf06pVxJAhESNGROyxR8Tw4RFbbBFrysvjtUceiZ6HHRZFJSURFRURs2dHzJwZ8fHHNf+5aFHt7/PFF5mltuent2mTfxj5FltkemoCAFAQASUAAA0jnY744IPcMHLatMwEN/lsvXUmjKxcBg2qW/BXVBTRq1dm2WOPmvdZtCgTVtYWYH7+eabumixfHvH225mltvffYov8IWb79uu+DgCATcx6BZSXXXZZfdcRF110Ub2fEwCARrR4ccSkSbmB5Jdf5j+mffuIYcO+6h05bFhmqHVD6dgxYuedM0tNysszQ87XDi4rX3/8ccSKFTUfW1GRGWb+yScRL75Y8z6bbZY/wOze3WQ+AMAmZ70CyksuuSRS9fz8HQElAMBGpKIi4q23csPIN9+svfdhROb5jTvskNs7cvvtI4qLG6/udSkpiRgwILPUJJ2OmDcv/zDyefNqP/+CBZll2rSat7dsGdGnT25wWfV1796ZIe8AAM3Ieg/xTuf74bNA9R12AgBQz+bNi5g48aswctKkTI/JfDp3/qpn5IgREUOHZnowbsxSqUwPz65dM8/FrMny5fmHkX/6ae3D3FetygyL/+CD2mvo0SN/L8zNNjOZDwCwUVmvgPLpp5+u7zoAAGgqyssjpk/P7R353nv5jykujthll9zekVtvvWkGZW3aRGy3XWapyZo1EbNm5e+FuWRJ7eefPTuzTJpU8/Z27WoPMPv1i+jZM6KFR9EDAE3Hev1ksu+++9Z3HQAAJOXzz3PDyClTan/OYqUePTI9Iyt7R+6+eyaYY92KizNDtXv3jthrr+rb0+nMZD75AsxZs2o//9KlEf/+d2bJ9/75emG2bVs/1woAUAd+dQoAsClZuTLitddyA8mPP85/TMuWmQCyau/IPn02zd6RjSGViujUKbPsskvN+5SV5U7ms3aI+fHHmX1qsmbNV8c8/3zN+2y+ef4As1s3338AoN4IKAEAmqt0OhNCvfxyxIQJmT9fey0zhDuf/v1znx25yy4RpaWNUjJ1VFoasdVWmaUmFRURX3yRvxfm/Pm1n//LLzPLa6/VvL1Vq68m86kpxOzdOxNsAwDUgYASAKC5WLo0Mzy7au/IOXPyH9OmTcSwYV/1jBw+PDN8m41bUVFE9+6ZZdiwmvdZujT/ZD6ffZbpbVmTlSszzyWt7dmkqVTmWZf5emF26lQvlwoAbPwElAAAG6OKikw4VLV35PTpmfX5DByY2ztyxx1NmLKpatcuYocdMktNVq/OPJ80Xy/MZctqPjadzhxb+XzTmnToUHt42a9fJigvLq6fawUAmjQ/jQIAbAwWLMjM2lzZM3LixMy6fDp2zH1u5LBhEZ07N069bPxatMiEhX371rw9nc60wXwBZr4evIsXZ0L16dNrf/8+fWoPMPv0MTETADQTAkoAgKZmzZqIN9/M7R359tv5jykqithpp9xAcuDAzHpoCKlUJvDu3Dli111r3mflyohPPql9Mp9PPolYtarmY1evjvjoo8xSm65dqweXVV9vvrnJfABgIyCg3FQtXJh0BQBApblzc58bOWlS7UNnK3Xt+tUw7REjIoYMiWjfvnHqhbpq1Spim20yS00qKjK9LPP1wsz3c+sXX2SWV16peXubNl/1Au3XL4q22CJ6L1gQqXbtMhMMbbFFREnJBl8mALBhBJSbovLyaLHFFnFI69ZRvPPOEdtvn1m22y7zZ9++nvcDAA1l1aqIadNye0fm6yEWkRnquuuuub0jBwzQM4yNX1FRZjKdnj0z7bomixfXPJlP5evPP6/92avLl2d6H/+nB3JxROweEXHddV+9f69e+Sfz6dChvq8aAFiLgHJT9NFHkSovj9Ly8ogXX8wsVbVqFbHttrmh5XbbZda1bp1MzQCwsfrkk9zeka+8ElFWlv+YPn1yw8hdd/VvMJuuDh0yjy/Yaaeat5eXZ2Ycz9cLc8WKmo+tqIj49NPM8tJLNe/TqVP+yXy6d/coBQDYQALKTVFZWVTsv3+UTZsWrb/8svr2lSsjXn89s1SVSkX0758bWla+7tKlUUoHgCZtxYpMAFk1kPzss/zHtGqVGZ5dNZDcYovGqReag5KSzM+o/fvXvD2djvjyy4iZM2P1hx/GW489Fju0bx/FVZ+N+cUXtZ9/4cLMMm1azdtbtlz3ZD6tWm3YNQJAMyeg3BTtvHOseeyxePyRR+KwvfeOkg8/jHjrra+Gv7z1VsT772ceTF5VOv3Vg8offTR32+abVw8tt9su80OZ4eIANEfpdMQHH+SGkdOmVf/3c21bb50bRg4a5Bl40JBSqcwv07t0ifSgQfFhy5ax3WGHRXHVv3fLl2d6O9fWC/OTT2r/u71qVeZe8MEHtdfQvXv+XpibbeaRDQBs0gSUm7oOHSKGDs0sVZWXR1QNLqv+uWRJ9fN8+WXECy9klqoqh4tXDS23395wcQA2PosXR0yenBtIzpuX/5j27SOGDfsqjBw+PDO5DdC0tGmTmfV+4MCat69ZEzF7dv5h5IsX137+OXMyy6RJNW9v2zZ/gNmrV+ZZtADQTPlXjpqVlNT8Q1o6HTFrVvXQ8u23ax7Clm+4eL9+1Z9zud12/uMGQPIqKjL/vlUNI998M/PvYG1SqYgddsjtHbn99kYSQHNQXJx59MIWW0TsuWfN+yxalD/AnDWr9nvIsmUR//53Zsn3/pWB5dohZt++Ee3a1c+1AkACBJQUJpXK/Aa3V6+I/ffP3bZkSe4w8crX771X83DxGTMyS03DxWt6zqXh4gA0lC+/jJg48aswcuLE/L2hIiI6d84NI4cNi+jYsXHqBZqejh0zj2wYNKjm7atWZSbjqS3E/PjjzC/3a7JmzVf7rD1iqVLnzvl7YXbrZhg5AE2WgJL607593YaLVw0wa/rP35df5p9dfO3nXA4caLg4AHVXXh4xfXpu78j33st/THFxxC675AaSW2/tP/tA3bVsGbHllpmlJul0ZrKefL0wa5rgstL8+Znltddq3l5a+lVvy9om82nZcsOvEwDWg4CShleX4eJrDxlfn+Hiaz/n0nBxACIy/9ZUDSMnT87Mtp1Pjx4Re+zxVRg5ZEjmGXUADSWVyvRy7Nat+i/8Ky1b9lVPyqrBZeXrTz/N9LasSVlZ5pcxtf1CJpXK3Pvy9cLs2NEvZgBoEAJKkrOu4eLvvFP9OZfrGi7+2GO52yqHi68dXhouDtA8lZVFvPpqbiD58cf5j2nZMmK33XIDyT59/CccaHrats38LLv99jVvX70680uZfL0wly6t+djKzgOVv9SpSfv2+QPMnj39jA3AehFQ0jS1b5/prTJkSO76yuHiNfW6LGS4eGlpZrj42j0ut91WDxmAjUU6nfnPdtUw8rXXMs95y6d//9yh2oMHZ/5dANjYtWiR+QVLnz41b0+nIxYuzB9gzp5d+/mXLIl4443MUtv79+5de4jZt6+ftQGokYCSjUvV4eLf/OZX69PpzA9TNT3n8tNPq5+nrCzz/LHp03PX1zRcvPJ1ly560wAkadmyiClTIiZM+CqQnDMn/zFt2mSGSlb2jhw+PDOEEWBTlEpFbLZZZhk8uOZ9ysoiPvkk/2Q+tf0iaPXqr0Y21aZLl/y9MP3MDbBJElDSPKRSmSElPXvWPlx87R6XhQ4X79y55udc9u9vKAtAfauoyNynq/aOfP31zPp8Bg7M7R25006ZHj0A1E1paWYSsK23rnl7RUXE3Ln5e2EuWFD7+efNyyyvvFLz9tataw8v+/bN9NAsKdnw6wSgSfETO81fvuHiH31U/TmXtQ0Xnz8/4qWXMktVlcPF1+51OXCgISwAdbVwYaReeikG3n13FN98c8SkSfn/gxuRmaxh+PCvekcOG5b5ZRIADaeoKNMTvUePzD24JkuW5J/M57PPav+F04oVmc4F77xT8/bK59jn64XZoUP9XCsAjUZAyaarpCQTLG67bc3DxauGlpWvCxkuHpH5AWntoeKVs4sbugJsqtasiXjzzdzekW+9FS0iYrvajikqyvSGrNo7cuDAzHoAmpb27SN23DGz1KS8POLzz/P3wly+vOZj0+lMwPnZZ9U7DlTq2DE3sFw7xOzRw78fAE2MgBLWVnW4+H775W6rOlx87dnFy8urn6vyN8XrGi5e+dpwcaA5mjs3YuLEr54dOXly7bPIVuraNRNCVvaOHDIk8x9eADZ+JSVfBYc1Saczo5fyBZhz59Z+/kWLMo8Fef312t+/T5/8k/m0arXh1wlAnQkooRDrGi6+9lDxt9/O/IC0troMF68aYBouDmwsVq2KmDYtt3fkhx/mP6ZFi4hdd401w4bFay1bxi6nnRYl226rpznApiqVith888yy224177NiRf7JfD75pOYOBBGZ9R9+mP/fp27dIvr1i+LevWPw4sVR9OijmedjlpZmwsvS0tylruuqri8p8W8dwH8IKKE+VB0u/o1vfLU+nc7MMLt2aPn225kfmta2ruHiNU3SY7g4kKRPP82EkJW9I195JXMvy6d379zekbvuGtG6dVSUl8dnjzwSu2y5pfsaAPm1bv3Vz981WbMm83N4vl6YNXUkqDR3bsTcuVE0eXL0i4h48smGuIq6h5mFBJ/re7xJ5YAEuQNBQ0qlvnqI+NrDxZcuzQwXX/s5l+saLv6vf+Wu32yz6qHldttFDBhguDhQv1asyASQVXtHfvZZ/mNatcr0Oq98buTw4ZmAEgAaUnFxZjKdXr0yvxCryaJFuZP5rB1ifv55psNBQyoryyw1TdLZ2IqL6z8MXd99W7b0nFDYxAgoISnt2kXsvntmqWr16sxwk7Wfc/nWWzX/lnfBgpqHi7dsmfmN8trPudx224i2bRvuuoDmIZ3O3Isqg8gJEzJDt1evzn/cVlvl9o4cNCjTyxwAmpqOHSN23jmz1GTVqiifOTOef/TR+Nrw4VGyZk0mTFy58qtgsepS0/oN2XfNmsb9PNasyUxOVNsERY2tpKRxwtC67Gs4PjQ4ASU0NS1a5B8uXtNzLmsaLr5qVcQbb2SWtVUOF197yLjh4rDpWrw4M3lN1d6R8+blP6Z9+4hhw3J7R3bt2jj1AkBDa9kyon//WNKvX+ZZmI39C7d8gWhjhaRV1ze28vLMsq6J9RpDKlXnMLO4ZcvYff78KL7vvsKfW1rXfY2UoxkSUMLGoupw8ZEjc7dVDhdf+zmX775b+HDxmp5zOWBAg10WkICKisw9omrvyDffXPcwth12+Kpn5IgRmXuEH5ABoGEUF2cmymwKk2Wm05n/VyQdkla+rm0CpIa8/pUr6xTUFkVE74iIF15ouHoqh+M35jNKa9u3ZUudXKgXAkpoDvINF//oo+rPucw3XHzChMxSVcuW0WKbbWJIx45RNGlSxI47fjW7uOHi0PR9+WXExIlfBZITJ677WVedO38VRI4YETF0aESnTo1SLgDQxKRSmSCqZcvMCIqkVVRkRowlGZJWXVdR0bjX39SG47ds2bjPKM23rkULgelGSkAJzVmLFhHbbJNZahsuvvaQ8VqGi6fefDO2iKj+rMu+fas/53K77SK6dfMPAyRh9eqI6dNze0e+917+Y4qLM8+KrAwj99gjYuut/R0GAJqmoqJMMNWqVdKVZKxenQ0sy5cujacfeyz222OPKKmoSKbXaWNbtSqzLFnS+O+9tlQqucmdalpnsqc6E1DCpmhdw8Xffbfacy7T774bqZqGUlTOfFjbcPG1h4z3758JToH6MWtW7nMjp0xZ92/Te/TIHaq9++56QwMArK8WLTJL27YR7dvHiu7dM///SWKiwKrD8ZvC80uTGI6/YkVmaQpatFhnmFlcWhpDli+POOywpKtNlJQAyNWuXeYh4LvtlrN69YoV8ey4cTGyR49o8d57ub0vFy6sfp48w8Vjm22qP+fScHFYt7KyiNdey+0d+fHH+Y9p2TLz97lq78g+ffSOBABojpricPwkQ9K11zX2cPzVqzPLsmW17lIUEV3btWu8mpooASVQNy1axLJevSJ92GG5vwlMpyPmzq3+nMu33645OFm1KjMZx5tvVt/Wt29uaFn52nBxNkXpdObv0IQJXwWSr72W+TuUT//+uc+OHDw489tZAABobEVFmdnMW7dOupKMyuH4TaF3aZXh+BUlJbGpTz0poAQ2TCoV0b17ZqltuPjaz7l8772aQ5bK4eKPP567vlOn6j0uK2cXN1yc5mLZsszw7KrDtWfPzn9MmzaZyWuqBpI9ejROvQAAsLGpOhw/ael0xKpVUb50aTz1yCNxUNL1JMz/7IGGU8tw8Vi9OmLGjGrPuax1uPjChXUbLl4ZYBouTlOXTmeC+qq9I6dPz8zImM/Agblh5E47CekBAGBjlEplJ9Ip79Ah6WoS5381QONr0SIzQ/DWW0ccccRX6yuHi68dWm7IcPG1e1127264OI1v4cKISZNye0cuWJD/mI4dI4YP/yqMHD48onPnRikXAACgMQkogaaj6nDxfffN3bZsWcQ771R/zuW77xY+XLym51waLk59WbMm4t//zu0d+dZb+Y8pKsr0hqzaO3LgwMx6AACAZs7/xoGNQ9u2+YeLr93rMt9w8crQqKrK4eJr97ocODAzVB1qM3duxMSJX7WrSZMyz1/Np2vX3DBy6NCmMcsiAABAAgSUwMat6nDxr3/9q/XpdMQXX1QfKv722xEzZ1Y/T77h4n365IaWlX8aLr7pWbUq4vXXc3tHfvhh/mNatIjYddfcQHLAAG0HAADgPwSUQPOUSkV065ZZahou/u67uaHlW2/VPlz8k08yy/jxuesrh4uvHV4aLt58fPpp7nMjX3klYuXK/Mf07p0bRu62W0Tr1o1TLwAAwEbI/6CBTU/btpkebbvumrt+zZqIjz6q/pzLt96qeUKT2oaLl5Tkzi5uuPjGYcWKiFdfze0d+dln+Y9p1SpiyJDciWx6926cegEAAJoJASVApeLiug0Xrxpe1jRcvLw8M0nKv/9dfdvaw8UrXxsu3rjS6czQ7Kq9I6dOzTzTNJ+ttsrtHTloUOb5pQAAAKw3ASXAutRluPjaPS4LHS7esWP10HK77SK23NJw8fqwZEnE5MmZILKyh+S8efmPadcu0yOyau/Irl0bp14AAIBNiP/1AmyIfMPFZ8yo3uuytuHiixblHy6+9nMuDRevXUVF5vOu2jvyjTcyvSbz2WGH3N6RO+yQ6VULAABAgxJQAjSE4uLMcOCttqp5uHhNz7ksdLh4797Vn3O53XYRPXpsWsPF58+PmDjxq96RkyZlAt98OnfODSOHDs1MegQAAECjE1ACNKaqw8X32Sd32/LlubOLV/757rsRZWXVz/Xpp5mlpuHiNT3nsjkMF1+9OmL69Nzeke++m/+Y4uLMsyKrBpLbbLNphbgAAABN2Eb+P1WAZqRNm4jBgzNLVZXDxdfucZlvuPjEiZmlqqrDxdcOMJvqcPHZs78KIidMiJgyJRPk5tOjR8Qee3wVRu6+e2YoPgAAAE2SgBKgqas6XPzww79an05nJnpZu8fl229nAs21rWu4+NrPuWzs4eJlZRGvvZbbO7KmYe9VtWwZsdtuub0j+/bVOxIAAGAjIqAE2FilUplZpbt2Xfdw8aqzi+cbLv7EE7nrK4eLr93jcqutNmy4eDod8fHHub0jX3ut5pnPq+rXL7d35ODBEaWl618HAAAAiRNQAjRHdRkuvvaQ8fnzq58n33Dxrbeu/pzLgQMj2revfp5lyzLDs6v2jpw9e93XMHToV2Hk8OERPXsW8CEAAACwMRBQAmxK1jVcfO3Q8u23M8Os0+nc85SXf/UczLX9Z7h40bbbxqAPP4wWl1ySmdhmzZr8tW27bW7vyJ122vgn9QEAAGCd/M8PgNzh4l/7Wu62yuHia/e6fOedvMPFi594IgbU9n4dO2Z6RFaGkcOGRWy+eX1fFQAAABsBASUA+eUbLj5zZvXnXK41XDydSkVqp50yQWRlD8mBAyOKihr1MgAAAGiaBJQArJ/i4ogtt8wsVYeLR0TMmxerp0+Pl196KYb/8IdR0rlzMjUCAADQ5AkoAah/XbpEeu+948vFi2ueNAcAAAD+w/g6AAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQJKAAAAACAxm0RA+fOf/zxSqVScc845SZcCAAAAAFTR7APKyZMnx+9+97sYNGhQ0qUAAAAAAGtp1gHl0qVL44QTTojf//73sdlmmyVdDgAAAACwlhZJF9CQzjjjjDj88MPjwAMPjCuuuCLvvmVlZVFWVpb9evHixRERUV5eHuXl5Q1aZxIqr6k5XhsNQ5uhUNoMhdJmKJQ2Q6G0GQqlzVAobYZCNfc2U9frSqXT6XQD15KIu+++O6688sqYPHlytGrVKkaOHBmDBw+Oa6+9tsb9L7nkkrj00kurrb/rrruiTZs2DVwtAAAAADQvy5cvj+OPPz4WLVoUHTp0qHW/ZhlQfvLJJzFkyJAYP3589tmT6wooa+pB2adPn5g3b17eD3BjVV5eHuPHj4+DDjooSkpKki6HjYA2Q6G0GQqlzVAobYZCaTMUSpuhUNoMhWrubWbx4sXRpUuXdQaUzXKI9yuvvBJz586N3XbbLbtuzZo18dxzz8WNN94YZWVlUVxcnHNMaWlplJaWVjtXSUlJs2wglZr79VH/tBkKpc1QKG2GQmkzFEqboVDaDIXSZihUc20zdb2mZhlQHnDAATF9+vScdSeffHJst9128ZOf/KRaOAkAAAAAJKNZBpTt27ePnXbaKWdd27ZtY/PNN6+2HgAAAABITlHSBQAAAAAAm65m2YOyJs8880zSJQAAAAAAa9GDEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABIjIASAAAAAEiMgBIAAAAASIyAEgAAAABITLMMKK+66qoYOnRotG/fPrp16xajR4+Od955J+myAAAAAIC1NMuA8tlnn40zzjgjXn755Rg/fnyUl5fHwQcfHMuWLUu6NAAAAACgihZJF9AQHnvssZyvx40bF926dYtXXnkl9tlnn4SqAgAAAADW1iwDyrUtWrQoIiI6d+5c6z5lZWVRVlaW/Xrx4sUREVFeXh7l5eUNW2ACKq+pOV4bDUOboVDaDIXSZiiUNkOhtBkKpc1QKG2GQjX3NlPX60ql0+l0A9eSqIqKivjGN74RCxcujBdeeKHW/S655JK49NJLq62/6667ok2bNg1ZIgAAAAA0O8uXL4/jjz8+Fi1aFB06dKh1v2YfUP7whz+MRx99NF544YXo3bt3rfvV1IOyT58+MW/evLwf4MaqvLw8xo8fHwcddFCUlJQkXQ4bAW2GQmkzFEqboVDaDIXSZiiUNkOhtBkK1dzbzOLFi6NLly7rDCib9RDvM888M/7xj3/Ec889lzecjIgoLS2N0tLSautLSkqaZQOp1Nyvj/qnzVAobYZCaTMUSpuhUNoMhdJmKJQ2Q6Gaa5up6zU1y4AynU7H//zP/8SDDz4YzzzzTAwYMCDpkgAAAACAGjTLgPKMM86Iu+66Kx5++OFo3759zJ49OyIiOnbsGK1bt064OgAAAACgUlHSBTSEm2++ORYtWhQjR46Mnj17Zpd77rkn6dIAAAAAgCqaZQ/KZj7vDwAAAAA0G82yByUAAAAAsHEQUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIkRUAIAAAAAiRFQAgAAAACJEVACAAAAAIlp1gHlTTfdFP37949WrVrF8OHDY9KkSUmXBAAAAABU0WwDynvuuSfOO++8uPjii+PVV1+NXXbZJUaNGhVz585NujQAAAAA4D+abUB5zTXXxKmnnhonn3xy7LDDDvF///d/0aZNm7jtttuSLg0AAAAA+I8WSRfQEFatWhWvvPJKjB07NruuqKgoDjzwwJgwYUKNx5SVlUVZWVn260WLFkVExPz586O8vLxhC05AeXl5LF++PL788ssoKSlJuhw2AtoMhdJmKJQ2Q6G0GQqlzVAobYZCaTMUqrm3mSVLlkRERDqdzrtfswwo582bF2vWrInu3bvnrO/evXu8/fbbNR5z1VVXxaWXXlpt/YABAxqkRgAAAADYFCxZsiQ6duxY6/ZmGVCuj7Fjx8Z5552X/bqioiLmz58fm2++eaRSqQQraxiLFy+OPn36xCeffBIdOnRIuhw2AtoMhdJmKJQ2Q6G0GQqlzVAobYZCaTMUqrm3mXQ6HUuWLIlevXrl3a9ZBpRdunSJ4uLimDNnTs76OXPmRI8ePWo8prS0NEpLS3PWderUqaFKbDI6dOjQLP8C0HC0GQqlzVAobYZCaTMUSpuhUNoMhdJmKFRzbjP5ek5WapaT5LRs2TJ23333ePLJJ7PrKioq4sknn4w99tgjwcoAAAAAgKqaZQ/KiIjzzjsvxowZE0OGDIlhw4bFtddeG8uWLYuTTz456dIAAAAAgP9otgHld77znfjiiy/ioosuitmzZ8fgwYPjscceqzZxzqaqtLQ0Lr744mrD2qE22gyF0mYolDZDobQZCqXNUChthkJpMxRKm8lIpdc1zzcAAAAAQANpls+gBAAAAAA2DgJKAAAAACAxAkoAAAAAIDECSgAAAAAgMQLKZuq5556LI444Inr16hWpVCoeeuihdR7zzDPPxG677RalpaWx9dZbx7hx4xq8TpqOQtvMM888E6lUqtoye/bsximYRF111VUxdOjQaN++fXTr1i1Gjx4d77zzzjqPu/fee2O77baLVq1axc477xyPPPJII1RLU7A+bWbcuHHV7jGtWrVqpIpJ2s033xyDBg2KDh06RIcOHWKPPfaIRx99NO8x7jGbtkLbjHsMVf385z+PVCoV55xzTt793GeoVJc24z7DJZdcUq0NbLfddnmP2VTvMwLKZmrZsmWxyy67xE033VSn/T/66KM4/PDDY7/99oupU6fGOeecE6ecckr861//auBKaSoKbTOV3nnnnZg1a1Z26datWwNVSFPy7LPPxhlnnBEvv/xyjB8/PsrLy+Pggw+OZcuW1XrMSy+9FMcdd1z813/9V7z22msxevToGD16dLzxxhuNWDlJWZ82ExHRoUOHnHvMzJkzG6likta7d+/4+c9/Hq+88kpMmTIl9t9///jmN78Zb775Zo37u8dQaJuJcI8hY/LkyfG73/0uBg0alHc/9xkq1bXNRLjPELHjjjvmtIEXXnih1n036ftMmmYvItIPPvhg3n3OP//89I477piz7jvf+U561KhRDVgZTVVd2szTTz+djoj0ggULGqUmmra5c+emIyL97LPP1rrPMccckz788MNz1g0fPjx92mmnNXR5NEF1aTO33357umPHjo1XFE3eZpttlr711ltr3OYeQ03ytRn3GNLpdHrJkiXpbbbZJj1+/Pj0vvvumz777LNr3dd9hnS6sDbjPsPFF1+c3mWXXeq8/6Z8n9GDkoiImDBhQhx44IE560aNGhUTJkxIqCI2FoMHD46ePXvGQQcdFC+++GLS5ZCQRYsWRURE586da93HfYaq6tJmIiKWLl0a/fr1iz59+qyzJxTN15o1a+Luu++OZcuWxR577FHjPu4xVFWXNhPhHkPEGWecEYcffni1+0dN3GeIKKzNRLjPEPHee+9Fr169Ysstt4wTTjghPv7441r33ZTvMy2SLoCmYfbs2dG9e/ecdd27d4/FixfHihUronXr1glVRlPVs2fP+L//+78YMmRIlJWVxa233hojR46MiRMnxm677ZZ0eTSiioqKOOecc2KvvfaKnXbaqdb9arvPeG7ppqeubWbgwIFx2223xaBBg2LRokXx61//Ovbcc8948803o3fv3o1YMUmZPn167LHHHrFy5cpo165dPPjgg7HDDjvUuK97DBGFtRn3GO6+++549dVXY/LkyXXa332GQtuM+wzDhw+PcePGxcCBA2PWrFlx6aWXxte+9rV44403on379tX235TvMwJKYL0MHDgwBg4cmP16zz33jA8++CB+85vfxJ/+9KcEK6OxnXHGGfHGG2/kfZYKVFXXNrPHHnvk9Hzac889Y/vtt4/f/e53cfnllzd0mTQBAwcOjKlTp8aiRYvivvvuizFjxsSzzz5ba+AEhbQZ95hN2yeffBJnn312jB8/3qQl1Mn6tBn3GQ499NDs60GDBsXw4cOjX79+8de//jX+67/+K8HKmh4BJRER0aNHj5gzZ07Oujlz5kSHDh30nqTOhg0bJqTaxJx55pnxj3/8I5577rl1/ha4tvtMjx49GrJEmphC2szaSkpKYtddd43333+/gaqjqWnZsmVsvfXWERGx++67x+TJk+O6666L3/3ud9X2dY8horA2szb3mE3LK6+8EnPnzs0Z+bNmzZp47rnn4sYbb4yysrIoLi7OOcZ9ZtO2Pm1mbe4zdOrUKbbddtta28CmfJ/xDEoiIvObnSeffDJn3fjx4/M+swfWNnXq1OjZs2fSZdAI0ul0nHnmmfHggw/GU089FQMGDFjnMe4zm7b1aTNrW7NmTUyfPt19ZhNWUVERZWVlNW5zj6Em+drM2txjNi0HHHBATJ8+PaZOnZpdhgwZEieccEJMnTq1xqDJfWbTtj5tZm3uMyxdujQ++OCDWtvApnyf0YOymVq6dGlOIv/RRx/F1KlTo3PnztG3b98YO3ZsfPbZZ/HHP/4xIiL++7//O2688cY4//zz4/vf/3489dRT8de//jX++c9/JnUJNLJC28y1114bAwYMiB133DFWrlwZt956azz11FPx+OOPJ3UJNKIzzjgj7rrrrnj44Yejffv22WeidOzYMdvr+sQTT4wtttgirrrqqoiIOPvss2PfffeNq6++Og4//PC4++67Y8qUKXHLLbckdh00nvVpM5dddlmMGDEitt5661i4cGH86le/ipkzZ8Ypp5yS2HXQeMaOHRuHHnpo9O3bN5YsWRJ33XVXPPPMM/Gvf/0rItxjqK7QNuMes2lr3759tecgt23bNjbffPPsevcZqlqfNuM+w49+9KM44ogjol+/fvH555/HxRdfHMXFxXHcccdFhPtMVQLKZmrKlCmx3377Zb8+77zzIiJizJgxMW7cuJg1a1bOzFEDBgyIf/7zn3HuuefGddddF717945bb701Ro0a1ei1k4xC28yqVavi//v//r/47LPPok2bNjFo0KB44okncs5B83XzzTdHRMTIkSNz1t9+++1x0kknRUTExx9/HEVFX3XU33PPPeOuu+6Kn/3sZ/HTn/40ttlmm3jooYfyTpJC87E+bWbBggVx6qmnxuzZs2OzzTaL3XffPV566SXPH9xEzJ07N0488cSYNWtWdOzYMQYNGhT/+te/4qCDDooI9xiqK7TNuMewLu4zFMp9hrV9+umncdxxx8WXX34ZXbt2jb333jtefvnl6Nq1a0S4z1SVSqfT6aSLAAAAAAA2TZ5BCQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAAAAAJEZACQAAAAAkRkAJAAAAACRGQAkAABuB/v37RyqVipNOOinpUgAA6pWAEgBgHU477bRIpVKRSqXiqaeeKujYxx9/PHvs2Wef3UAVAgDAxktACQCwDieeeGL29Z133lnQsX/6059qPE9SnnnmmWxg+swzzyRdDgAACCgBANZlr732iq222ioiIu6///5YsWJFnY5btmxZPPjggxERseOOO8buu+/eYDUCAMDGSkAJAFAH3/ve9yIiYvHixfHwww/X6ZgHHnggli1blnM8AACQS0AJAFAH3/ve9yKVSkVE3Yd5Vw7vLioqiu9+97sNVhsAAGzMBJQAAHWw5ZZbxl577RUREf/6179i7ty5eff//PPP48knn4yIiP333z+22GKLavs89NBDcfTRR0ffvn2jVatW0alTpxgyZEhceumlsWDBgjrV9cgjj8R3v/vd2HLLLaNt27bRqlWrGDBgQBx55JExbty4WL58eUREzJgxI1KpVOy3337ZY/fbb7/s8ygrl3HjxlV7j1WrVsVvf/vb2G+//aJr167RsmXL6NGjRxx22GFx5513RkVFRa31nXTSSZFKpaJ///4RETFr1qz4yU9+EjvuuGO0b9++4Gdh1vQMzb/+9a9xwAEHRNeuXaN169YxcODAOP/882P+/Pm1nmfkyJGRSqVi5MiRed/vkksuyb5fTSq3XXLJJRER8fTTT8fo0aOjV69e0bp169h+++3j8ssvz/akrfTII4/EYYcdlt1vhx12iKuuuipWrVpV589i8uTJcdxxx0WfPn2iVatW0adPnzj55JPj7bffrtPx77//fpx77rmx8847R8eOHaN169ax5ZZbxkknnRRTpkyp9bi1vwcVFRVx2223xX777Rfdu3ePoqIiM40DAIVJAwBQJ7fccks6ItIRkb7uuuvy7vurX/0qu+8f//jHnG3z589P77///tntNS3dunVLT5gwodbzz5s3L33AAQfkPUdEpG+//fZ0Op1Of/TRR+vct+r+lT766KP0dtttl/eYvffeO/3ll1/WWOeYMWPSEZHu169fesKECekuXbpUO/7pp59e52df6emnn84e9+STT6a/+93v1lrX1ltvnZ41a1aN59l3333TEZHed999877fxRdfnD1fTSq3XXzxxemrrroqnUqlaqxlzz33TC9dujRdUVGRPuuss2qt+ZBDDkmvXr26xvfq169fOiLSY8aMSf/hD39It2jRosZzlJaWpv/617/mva5f/epX6ZKSklrrSKVS6QsvvLDGY6t+Dx599NH0gQceWO34MWPG5H1/AICq9KAEAKijY445Jlq1ahURubNz16Rye7t27eLb3/52dn1ZWVkceOCB8dRTT0VxcXF873vfi7/85S/x8ssvx/PPPx9XXnllbL755jF37tw47LDDYubMmdXOvXz58thvv/2yPTR33333+N3vfhcvvvhiTJkyJR588ME499xzo1evXtljtthii5g+fXrcdttt2XW33XZbTJ8+PWcZPXp0dvvSpUvjgAMOyPbIGz16dPztb3+LKVOmxL333hv77rtvRES88MILccQRR8SaNWtq/TyWLl0aRx55ZKxcuTL+3//7f/HMM8/EpEmT4g9/+EP07Nkz72dZmwsvvDDuvPPOGD16dDzwwAPxyiuvxCOPPBKHH354RHzVQ7AxPProozF27NgYMWJE3HXXXTFlypR47LHH4tBDD42IiJdeeimuuuqq+M1vfhPXX399HHrooXH//ffHK6+8Eg8//HCMGDEiIiIee+yx+P3vf5/3vaZOnRr//d//Hd26dYsbbrghJk6cGM8++2z85Cc/idLS0igrK4sTTjih1l6Qv/rVr+LHP/5xlJeXx6BBg+Lmm2+OJ554IqZMmRJ//vOfY4899oh0Oh2XX355XH/99Xlr+clPfhJPPPFEfOMb38j5HlReNwBAnSSdkAIAbEyOOeaYbC+xt99+u8Z9pk2blt3nxBNPzNn205/+NB0R6U6dOqWnTJlS4/EzZsxI9+zZMx0R6eOPP77a9nPPPTd7/jPOOCNdUVFR43nKysrSs2fPzllXtffbunou/uhHP8ru+7Of/aza9oqKivQJJ5yQ3ee3v/1ttX0qe1BGRLpdu3bpqVOn5n3Pdalaf0Skr7jiihrrOvjgg9MRkW7RokV67ty51fap7x6UEZE+8sgjq/V+XL16dXrEiBHpiEi3b98+3apVq/Q555xT7TzLli3L9pAcNGhQje9VuT3+0yO1pt6hTz31VLZn5dChQ6ttf/PNN7M9Jy+++OIa286aNWuyPVPbtWuXnj9/fs72tb8HNbUNAIBC6EEJAFCAE088Mfu6tl6UVddX3X/p0qVx0003RUTE5ZdfHrvvvnuNx/fr1y8uvPDCiIi49957c55fuHDhwvjd734XEZmek9ddd12tz0ds2bJldO/evS6XVU1ZWVnceuutERGx4447Zp+xWFUqlYrf/va3sfnmm0dExI033pj3nOeff37ssssu61VPTXbffff46U9/WmNd5513XkRErF69OiZMmFBv71mbNm3axC233BLFxcU564uLi+MHP/hBREQsWbIkunbtGr/85S9rPH7MmDEREfH666/HokWL8r7f1VdfHT169Ki2fr/99otTTz01IjLPqFy7F+XVV18d5eXlMWTIkLj44otrbDtFRUVxww03RGlpaSxdujTuu+++WuvYdttta2wbAACFEFACABRg1KhR2dDvz3/+c6TT6ZztFRUVcdddd0VERO/evXMmpXn22WezwdNRRx2V93322WefiIgoLy+PV155Jbv+qaeeyk58c9ZZZ1ULxOrLK6+8EgsXLoyIzEQ3tb1Phw4d4phjjomIiH//+98xa9asWs95wgkn1GuNxx9/fK3hbNXw98MPP6zX963JQQcdFJ07d65xW9VQ9tvf/naUlJSsc7+PPvqo1vfabLPN4pvf/Gat27///e9nXz/xxBM52/7+979HRMSRRx5Z62cXEdGpU6fYeeedIyLyBrzf+c53GqwNAgCbDgElAEABWrRoEccff3xEZGbGfuGFF3K2P/nkk/H5559HRCaQKyr66setqr3ZevbsWW0G7arLTjvtlN139uzZ2devvfZa9vXXvva1+r24Kt54443s6+HDh+fdt+r2qsdV1a5du9hyyy3rp7j/2G677WrdVjUsXLJkSb2+b0223XbbWrd16tSp4P3y1bzrrrtGixYtat0+ePDgaNmyZURETJ8+Pbt+5syZ8cUXX0RExNixY/O2v1QqlW2vVdvf2gYNGlTrNgCAuhJQAgAUKN8w79qGd0dEzJ07d73er7LHZETEvHnzsq/Xd3KZupg/f372dbdu3fLuW3WocdXjqqoavtWXNm3a1LqtajCcb/Kexq6lPmpe1/ejRYsW2YC26vejPtrf2jbbbLP1OicAQFW1/+oVAIAaDR48OHbeeeeYPn163Hvvvdnn9S1btiweeOCBiMgMMd5hhx1yjqsaOr366qu1DvVdW+/eveuv+PWQbyhwXRkGXH/W9/tRtf1ddNFFcfTRR9fpuLZt29a6zfcVAKgPAkoAgPVw4oknxo9//ONYuHBh/P3vf4+jjjoqHnzwweyENmv3noyI7GQyERFdu3Zdr+CxS5cu2dezZs2KAQMGrEf161Z1iPScOXPyDk2uOgS4tucwNjWVvRUrKiry7ld1gqKmYs6cOXm3r169Ottzsur3o2r7KykpyXmMAABAkgzxBgBYDyeccEK299idd94ZEV8N7y4pKYnjjjuu2jG77rpr9vWLL764Xu+72267ZV8/99xzBR9f1953VcOriRMn5t130qRJNR7XlLVv3z4iIhYsWJB3v3fffbcxyinI1KlTY/Xq1bVunzZtWqxatSoicr8fW265ZXTs2DEi1r/9AQA0BAElAMB66NmzZxx44IEREfHII4/EG2+8EU8++WRERBxyyCHRtWvXascceOCB2WcQXn/99dVmAK+L/fbbLzvk9oYbbij4+YqtWrXKvi4rK6t1v9133z373Mg77rij1p6GS5Ysib/+9a8REbHDDjs06HMx61Nlz9N333231glp5s2bF+PHj2/Msupk/vz52dm4a3LbbbdlX1e20YjMcOzDDjssIiIef/zxeOuttxquSACAAggoAQDWU+Uw7vLy8jj22GOzYWFNw7sjMhPFnHnmmRER8dJLL8W5556bd4jxnDlz4tZbb612jtNOOy0iIl555ZU455xzag06y8vLq02MUjVA/OCDD2p979LS0jjllFMiIjMz9+WXX15tn3Q6HWeeeWZ24p7Ka9sY7LvvvhERsWrVqrjhhhuqbS8vL49TTjklVqxY0dil1cl5551X41DvZ599Nm655ZaIyITMQ4cOzdk+duzYKC4ujoqKijjqqKPi008/rfU91qxZE3/+85/z7gMAUB88gxIAYD1961vfivbt28eSJUvizTffjIjMrMZHHHFErcdcdtll8eyzz8bEiRPjuuuui2eeeSZOPfXUGDx4cLRt2zYWLFgQb775ZjzxxBPx6KOPxs4775wNCitdfvnlMX78+Jg+fXrceOONMWHChDjttNNi5513jpYtW8ann34azz//fPzlL3+JK664Ik466aTssX379o3evXvHp59+Gr/+9a+jd+/eMXDgwOxw9e7du2eHP1900UXxwAMPxIcffhiXXHJJTJ8+PU4++eTo2bNnfPTRR3HjjTfGM888ExERe+yxR/zgBz+ox0+3YR1++OHRr1+/mDlzZlx44YUxb968+Pa3vx2tWrWKN998M66//vp47bXXYsSIEfHyyy8nXW6OXXbZJf7973/H7rvvHmPHjo1hw4ZFWVlZPPLII/Gb3/wmVq9eHS1atIibbrqp2rE777xz/PrXv45zzz03/v3vf8dOO+0UP/jBD2L//feP7t27x8qVK2PGjBkxYcKEuO+++2LWrFkxffr0xCdqAgCaNwElAMB6at26dRx11FFx++23Z9cdc8wxUVpaWusxpaWlMX78+DjppJPigQceiGnTpuXtedihQ4dq69q0aRNPPfVUHHnkkfHcc8/FK6+8UlA4+NOf/jROP/30+Oijj+Kb3/xmzrbbb789G2i2b98+nnzyyTj00EPj7bffjvvvvz/uv//+aufba6+94m9/+9tGNaNzy5Yt484774xDDjkkli1bFr/5zW/iN7/5TXZ7cXFxXHvttTF//vwmF1AOHjw4zjzzzPjhD39YY9tp2bJl3HHHHTF8+PAajz/nnHOibdu2cc4558SiRYviV7/6VfzqV7+qcd+WLVvmPBYAAKAhGOINALABxowZk/N1bcO7q2rfvn3cf//98fzzz8cpp5wSAwcOjPbt20eLFi2ic+fOMXTo0DjjjDPikUceqfUZiF26dIlnn302HnjggTjqqKOid+/eUVpaGq1atYott9wyjj766Pjzn/9c42Q9P/zhD+P++++Pgw8+OLp16xYtWtT+O+v+/fvHtGnT4sYbb4x99903Nt988ygpKYnu3bvHIYccEn/605/iueee22hm765q7733jldeeSW+973vRa9evaKkpCR69uyZDX7POuuspEus1SmnnBLPP/98HHPMMdGrV69o2bJlbLHFFnHiiSfGa6+9Fscee2ze40899dT48MMP49JLL4299torunTpEi1atIi2bdvG/9/OHdQADMNAEHS5RCYUciEYHCmHquo9OsPA39XJ3V1zzlpr1d67xhgfXQUA/NV1nnxnBwAAAAB4gQUlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMQIlAAAAABAjUAIAAAAAMTfgqSmwgbkaeQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE2\n", + "\n", + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, data_test, IREth2)\n", + "lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lib.ire_plot('test', ire2, IREth2, 'AE2')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 900 + }, + "id": "y-l-u36prEdL", + "outputId": "b220f526-47b8-46a9-d58b-71775058aafa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "\n", + "i Labels IRE IREth \n", + "0 [1.] [2.34] 0.47 \n", + "1 [1.] [3.46] 0.47 \n", + "2 [1.] [2.08] 0.47 \n", + "3 [1.] [2.68] 0.47 \n", + "4 [1.] [4.99] 0.47 \n", + "Обнаружено 5.0 аномалий\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlYlJREFUeJzs3Xd4VNXaxuFnUggEElrohCJNaYoCYgMsgCAqJXwKKh1RUFDsxwLYUI9iL6FjQVGqKCBFEBBQUEFAioA0qaEkBEgySeb7Y53MpBEyITs7M/nd17Uvk733DO+ERUyeeddaDpfL5RIAAAAAAAAAWCDA7gIAAAAAAAAA+C8CSAAAAAAAAACWIYAEAAAAAAAAYBkCSAAAAAAAAACWIYAEAAAAAAAAYBkCSAAAAAAAAACWIYAEAAAAAAAAYBkCSAAAAAAAAACWIYAEAAAAAAAAYBkCSAAAgGxs3bpVQ4YMUcOGDRUWFiaHw+E+9uzZY3d5AAAAgM8ggAQAAG5t27Z1h2yjRo06733pw7jMR2BgoMqUKaN69eqpR48emjBhguLj4/NUg7dH3759L/6LIOnbb79Vs2bN9PHHH2vr1q1e1Q8Udc8991yGf5cPPvig189h1feBw4cP67PPPtOAAQPUvHlzlS9fXsHBwSpTpowuvfRS9enTR/PmzVNqaupFfAUAAEBmBJAAACBfpaamKjY2Vjt37tSMGTM0aNAg1a5dW7Nnz7a7tFyJj49X3759lZiYKEmqUqWKevTooSFDhmjo0KEaOnSowsPDba4y70aNGpWrkNkX9O3b1/1apkyZYnc5BWLPnj3u11yrVi27y8nC5XLps88+y3Bu+vTp7n9Pdtm3b59uuukmVatWTb1799akSZP022+/6cSJE0pOTlZsbKy2b9+uTz/9VHfccYeuvPJKbdq0ydaaAQDwJ0F2FwAAAHxbly5dVK1aNffnqampiomJ0Zo1a3TgwAFJUkxMjKKiojRjxgx17do118/dokULtWzZMtf3t2rVKveFn8d3332nkydPSpIaNWqkdevWqUSJEhf9vEBRsGzZMu3bty/DuZMnT+rbb79Vjx498vSc+fF94ODBg1q2bFmGczVr1tQVV1yhihUr6syZM1q3bp3+/vtvSdLGjRt13XXXaenSpWrRokWe6gYAAB4EkAAA4KIMHz5cbdu2zXI+NTVVU6dO1YMPPqjExESlpqbqwQcfVIcOHRQaGpqr5+7UqVOBd+n9/vvv7o979uxJ+Ah4YerUqe6PS5QooXPnzrnP5zWAzM/vA1WrVlX//v3Vp08f1a1bN8v1uXPnauDAgYqJidHp06fVo0cPbd26le8DAABcJKZgAwAASwQEBKhfv35644033OeOHDmiOXPm2FdULqR1P0pm+jWA3ImPj9fMmTPdn48dO9b98Q8//KAjR47YUZYkKTw8XGPHjtWuXbv00ksvZRs+StKdd96p+fPnKzAwUJK0d+9effrppwVZKgAAfokAEgAAWGrw4MEqXry4+/MVK1bYWM2FOZ1O98cBAfyoBOTWzJkzdebMGUlS7dq1NXjwYF1xxRWSpOTkZH3xxRe21dawYUM9+uijGb4XnU+LFi3UvXt39+fff/+9laUBAFAk8FM1AACwVEhIiC677DL35wcPHrSxmuyl35gl/RTSfv36Zdlh93ybncTHx+u9995Thw4dVL16dRUvXlxly5ZV48aN9dBDD+mXX37JVS3p/6w0Gzdu1PDhw9W4cWOVK1dODodDXbp08eo1pu0qPHr0aPe50aNHe72LsMvl0uzZs9WnTx/Vr19fpUuXVvHixRUZGakuXbpo6tSpSk5OzlVN27Zt05NPPqlWrVopIiJCxYoVU/HixVWxYkVdddVV6tevn6ZOnZqhK1WSatWqlau/q/zYaCevNWbH6XTqs88+0//93//pkksuUVhYmEqWLKnatWurZ8+emj17tlwuV7aPnTJlihwOh2rXru0+t3fv3vPuBG2H9H8f9957rxwOh+67775srxd21113nfvjPXv22FcIAAB+gjUgAQCA5dKvn5aQkGBjJdb47rvvNGjQIB0+fDjD+cTERJ06dUpbtmzRhx9+qF69emn8+PG5XgNTMuHoyy+/rJSUlPwu22t//vmn+vTpow0bNmS5duDAAR04cEBz587VmDFjNGvWLDVs2PC8z5XT6zp27JiOHTum33//XVOmTNE999yjzz//PD9fSq7kZ43Lly/XwIEDtWvXrizX9uzZoz179uirr75Sq1atNGPGjAwbO/mCvXv3avny5e7P7733XklSr1699OSTTyolJUV//vmnNmzY4O6KLMzSh7iF4d8eAAC+jgASAABYLn3XY6VKlWysJHstW7bU0KFDJUlLly7Vtm3bJEk333yzLr300gz3pu/mlKTp06frnnvucYcUgYGBuv7661W3bl3Fx8dr5cqV7tc/bdo0/fPPP/rxxx9zNRX0v//9r7tjsU6dOmrZsqVCQ0O1Z88eBQcHe/Uau3btqsaNG+vXX3/VunXrJJ1/d+HsdhFesWKFbr/9dsXFxUmSgoOD1aJFC9WrV0/BwcHas2ePVq1apYSEBG3fvl3XXnut1qxZk+XrJUnvvvtuhk7MiIgItWrVSlWqVJHD4dCJEye0bds2bd26Ndvwp0+fPjp+/PgF/64kebV7cn7WmN4333yje+65xz29v0SJEmrVqpVq1aqlgIAA7dixQ2vWrFFycrLWrl2ra665RuvWrcvwb+Wyyy7T0KFDdfr0afeahGFhYerdu3eeXl9+++yzz9zdm1dffbXq168vSapcubLatWunhQsXSjJdkL4QQG7atMn9cWRkpI2VAADgJ1wAAAD/06ZNG5cklyTXyJEjz3tf2j2SXMuWLcvxObdv357h/g8++CBfarBKnz593H/+5MmTc7x3586drlKlSrnvb9mypevvv//OcE9KSorrrbfecgUEBLjve/jhh8/7nOm/VkFBQa7SpUu7Zs+eneW+hISEvLw818iRI73++h46dMhVsWJF9+N69+7tOnjwYJb7Dh8+7Oratav7viZNmriSk5Mz3ON0Ol0RERHue8aMGeNKSkrK9s89fvy4a9KkSa7XX3892+ve/F15Iz9r3Lx5s6tEiRIuSS6Hw+F6/PHHXSdPnsxy365du1zXX3+9+8/s2LFjts/3zz//uO+pWbNmXl9ivqtXr955/41/8cUX7msVK1Z0OZ3OCz6fnd8HTp8+7Spbtqz7z//vf/9boH8+AAD+iA5IAABgmeTkZA0fPtz9eXh4uO6+++5cP37+/PmKiYnJ9f0vvviiypUr51WNF+PFF19UfHy8JKlu3bpatGiRSpcuneGegIAAjRgxQg6HQyNGjJAkffjhh3r00UczrOeXndTUVH377bdq3bp1lmshISH59Cou7Nlnn9XRo0clScOGDdO7776b7X2VKlXSN998o/bt2+vHH3/Upk2bNGPGDN11113ue7Zt2+b+O73uuuv09NNPn/fPLVeunPr165ePryR38rPGYcOG6dy5c5Kkt956S48++mi2911yySVauHChWrZsqb/++ksLFizQL7/8oquvvvoiXknBWL16tf7++29JpjM2/d+3JHXp0kWlSpVSfHy8jh49qgULFuj222/P9fMX9PeBUaNGudf0LFWqlPr06ZPn5wIAAAYBJAAAyFepqamKiYnRzz//rNdee02//vqrJCkoKEiTJk1S+fLlc/1c69atc08Xzo3HH3+8wALIU6dOafr06e7P33jjjSzhY3rDhw/XxIkTtWXLFqWmpmrcuHEaM2ZMjn9GVFRUtuFjQTp27Jh7bcPKlSvr9ddfz/H+wMBAvfLKK7rmmmskSV988UWGQCptCrckVahQwYKKL15+1bhx40b9+OOPkqRmzZrpkUceyfH+kiVL6vnnn1fPnj0lma+dLwSQ6TeX6dixoyIiIjJcDw0NVffu3d33TZ061asAsiC/DyxdulTvvPOO+/Nnnnmm0I5TAAB8CbtgAwCAi3LjjTdm2H03MDBQlSpVUrdu3dzhY4MGDTRnzhx1797d5mrzz+rVq5WYmCjJrA94oUAlICBA/fv3d3++bNmyC/4Z3nSLWmXJkiVKSkqSJHXr1i1Xa1deffXVKlmypCRp1apVGa6lX09v2bJl2rFjRz5Wmz/yq8b58+e7P+7Zs2eudqe+6aab3B9n/toVRgkJCfr666/dn6ff9Tq99GtVzps3TydOnLC8Nm/t3btXd999t3tNz+uvv15PPfWUzVUBAOAf6IAEAACWqlSpkj799NM8bQYycuRIjRo1Kv+Lygd//PGH++OWLVsqKOjCP1Zdd911GR7vcrlyDKWuuuqqiysyH6xZs8b98Z9//qmHHnrIq8efPHlSZ86ccQeSkZGRatWqldauXavY2FhdddVVuu+++9S1a1ddd911Xu0QbpX8qjH9127ZsmXau3fvBR/j+t9GLpK0f/9+74svYHPnztWpU6ckSWXKlDlvEN+2bVtVr15dBw4cUFJSkr766isNGTIkV39GQXwfOH78uDp27Oie6l29enV9+eWXCgwMtPTPBQCgqCCABAAAF6VLly6qVq2a+/Pjx49r165d7imTR44c0Q033KCZM2eqc+fOdpWZ744dO+b+uGbNmrl6TK1atdwfJyUl6fTp0woPDz/v/YVh6mf6HcxXrVqVp668kydPugNISZo4caJuuukmHTlyRPHx8fr444/18ccfKygoSFdccYVat26tDh066Oabb7YtAMqPGtN/7RYsWOB1DWnrEBZm6adf9+jR47xrkwYEBOiee+5xT+GfOnVqrgNIq8XHx6tTp07aunWrJKl8+fL64YcfVL16dZsrAwDAfzAFGwAAXJThw4frgw8+cB9ffvmlfv31V23cuFGXX365JBO29ezZU7t27bK52vyTtvmMpAzhWk4y33f69Okc7y9RooT3heWz2NjYi36O5OTkDJ83bNhQGzdu1MMPP5xh3czk5GStX79eY8eOVYcOHVSzZk1NmDDhov/8vMiPGi/2a5c2FbiwOnz4sBYtWuT+/N57783x/vTTs3/99Vdt27bNstpyKyEhQXfccYd7uYiwsDAtWLBADRs2tLkyAAD8CwEkAACwRNOmTbVo0SJ3d2R8fLwGDhxoc1X5p1SpUu6Pz5w5k6vHZL4vLCwsX2uyQvrQdOzYsXK5XF4f6Ts/01SqVEnvvfeejhw5ouXLl+ull15Sx44dM3SE/vvvvxo0aJCGDRtWEC8132tM/7WbNWtWnr52hdnnn3+eISRt06ZNhvVgMx+NGzfO8Pj03ZN2cDqd6t69u3s91hIlSmjevHlq0aKFrXUBAOCPCCABAIBlKlasqPfff9/9+fLly/X999/bWFH+ST89et++fbl6zJ49e9wfFytWzCcCyEqVKrk/Pnz4cL4/f0hIiNq0aaPnnntO8+fPV0xMjBYsWKDrr7/efc/777/v1S7IhaVGq792drvYAPHzzz9XampqPlXjnZSUFPXq1cu9UVBwcLBmzJihNm3a2FIPAAD+jgASAABYKm3jjjTPPfecjdXkn2bNmrk//vXXX3M1XXb16tUZHp+bXZHzm7d/5tVXX+3++Oeff87vcrIIDg7WrbfeqiVLlmTomJs3b16We+34+km5r9GKr51drzmz33//XZs3b3Z/3qJFC1199dW5OtI2bDpw4ICWLl1a4LWnpqaqb9++mjFjhiQpMDBQ06ZNU6dOnQq8FgAAigoCSAAAYLn0O9hu2LBB3377rX3F5JNrr73WveHGsWPHLtjZmZqaqsmTJ7s/v+mmmyyt73yKFy/u/tjpdF7w/g4dOrgDo9WrV2vjxo2W1ZZeSEiI2rdv7/78yJEjWe7x9rXktwvVmH7TpVmzZmX7Grxl92tOk777sUmTJvr111+1du3aXB233nprts9TUB544AF9/vnnkkygO2nSJEVFRRV4HQAAFCUEkAAAwHK33HKLrr32WvfnL7/8so3V5I8yZcrorrvucn/+xBNP5LipzAcffKBNmzZJMjsC33///ZbXmJ3y5cu7P/73338veH+1atXcm4u4XC717t1bcXFxufqzUlNTM+wWLpmdnXM77Xb//v3ujytWrJjlurevJbfyq8aWLVuqbdu2kqRz587pvvvuU1JSUq6eNykpKdtdsMuUKaOAAPMj/LFjx2wJIZ1Op6ZNm+b+/EKbz2SW/v7Zs2dfcDOm/DRixAiNHz/e/fmHH36o3r17F9ifDwBAUUUACQAACsQLL7zg/njdunVauHChjdXkjxdeeMG9Gc2OHTvUoUMH7d69O8M9qampevfddzVixAj3uaFDh2a7MUtBSD9leNGiRbnaqfmVV15RlSpVJEl//vmnWrZsmWH348wOHDigt99+Ww0aNND06dMzXJs7d67q16+vN998M8OamOklJibqgw8+cE+RlaSOHTvm+Frmzp2b63DvQvKzxvfff989RhYvXqzWrVvrl19+Oe+fvWPHDr300kuqVatWttO2Q0JCVK9ePUkmCJwzZ06uXlPfvn3dm8Fc7NhLWwdTMh2EPXv29Orxd9xxh3v907Nnz+qbb765qHpya+TIkXr77bfdn7/xxht68MEHC+TPBgCgqAuyuwAAAFA0dOjQQVdffbU7fHnppZcyTMXMTvqgIzdCQ0P1xhtvXFSd3qhTp44mTJige+65RykpKVqzZo0aNGigG264QXXq1FF8fLxWrlyZoTuvVatWBVpjZi1btlRkZKT279+vQ4cO6dJLL1X79u0VERHhXl+wRYsWGbo7q1atqrlz56pTp06KiYnR9u3b1aFDB1WrVk0tW7ZUhQoV5HQ6FRMTo82bN+uff/7JsYZdu3bpiSee0BNPPKEaNWqoadOm7u7Bw4cPa+3atTpx4oT7/nvuuSdDB22ajh07qkSJEjp37pw2bNigyy67TG3btlWZMmXcr6V9+/YZpknnVn7V2LhxY3355Ze66667dPbsWf3yyy9q1aqV6tSpoyuvvFLlypVTQkKCjh49qj///DNXnZzdu3fXq6++6v5zp0yZorp16yo4ONh9z5tvvun1a86t9NOmW7durcjISK8eX6JECXXt2lWffvqp+/n69+9/3vvz4/vA/Pnz9eKLL7o/r1Spkvbu3auHHnooV8/54osvqly5crmuAQAAZOICAAD4nzZt2rgkuSS5Ro4ced770u6R5Fq2bFmun//777/P8NglS5bkWIO3R+nSpb1/0Zn06dPH/XyTJ0/O1WPmzZvnqlSp0gXr69mzp+vMmTM5Plf6+60yb948V7Fixc5bZ58+fbJ93J49e1w333xzrv8+KlWq5Fq4cGGG5/jmm29cDocjV48PCAhwDRkyxJWUlHTe1/Lxxx/n+Hw5jePzye8aXS6Xa8OGDa6rrroq11+7WrVquf74449sn+vUqVOuSy+9NMfHZ5Z+XNesWdPrr0mamJiYDGNn/PjxeXqeRYsWuZ/D4XC4du/eneF6fn8fmDx5cp6fT5Lrn3/+ydPrBAAABh2QAACgwHTq1EnNmzfX+vXrJZmuoptvvtnmqi5e586dtXPnTk2aNEnfffedtmzZopiYGJUoUUJVq1bVjTfeqN69e2fYFdlOnTt31vr16/Xhhx9q1apV2rdvn+Lj4+VyuXJ8XM2aNbVkyRKtWbNG33zzjVasWKH9+/fr5MmTCgoKUvny5VWvXj01b95c7du3V9u2bd0b2KSJiorSoUOHtGjRIv3888/auHGjdu/erVOnTkmSSpcurfr16+v6669X79691bBhwxxreuCBB9SkSRNFR0frl19+0b///quzZ89e8LXkJL9rlKTLL79c69ev16JFizRnzhz9/PPPOnjwoE6dOqWQkBBVqFBBDRo00NVXX60OHTrommuuOe+O16VLl9a6dev00Ucf6fvvv9fWrVt16tSpAlkP8ssvv3RPdQ8JCcnz5i033XSTqlSpokOHDsnlcmnq1KkZNqsCAAD+xeG6mJ/OAAAAAAAAACAHbEIDAAAAAAAAwDIEkAAAAAAAAAAsQwAJAAAAAAAAwDIEkAAAAAAAAAAsQwAJAAAAAAAAwDIEkAAAAAAAAAAsE2R3AXZITU3VwYMHFRYWJofDYXc5AAAAAAAAgE9xuVw6ffq0qlatqoCAnHsci2QAefDgQUVGRtpdBgAAAAAAAODT9u/fr+rVq+d4T5EMIMPCwiSZL1B4eLjN1VjD6XRq0aJFat++vYKDg+0uB4Uc4wXeYszAW4wZeIsxA28xZuAtxgy8xZiBt/x9zMTFxSkyMtKds+WkSAaQadOuw8PD/TqADA0NVXh4uF8OcuQvxgu8xZiBtxgz8BZjBt5izMBbjBl4izEDbxWVMZOb5Q3ZhAYAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZYLsLsDXuFwuOZ1Opaam2l1KjpxOp4KCgpSQkKCUlBS7y/FrgYGBCg4OtrsMAAAAAACAQokAMpeSkpJ09OhRnT171icCPZfLpcqVK2v//v1yOBx2l+P3QkJCFBERofDwcLtLAQAAAAAAKFQIIHPh7Nmz2r9/vwIDA1W2bFmVKFFCgYGBhTrYS01NVXx8vEqVKqWAAGbaWyWtIzY2Nlb//vuvJBFCAgAAAAAApEMAmQsxMTEKDg5WzZo1FRgYaHc5uZKamqqkpCQVL16cANJiJUqUUFhYmA4cOKCYmBgCSAAAAAAAgHRIpi4gOTlZZ86cUbly5XwmfETBczgcKl26tBITE+V0Ou0uBwAAAAAAoNAggLyA5ORkSWaNPyAnaRvR+MIaoQAAAAAAAAWFADKXCvN6jygcGCMAAAAAAABZEUACAAAAAAAAsAwBJAAAAAAAAADLEEACAAAAAAAAsAwBJPJFrVq15HA4NGXKFPe5KVOmyOFwZDgCAgIUHh6uZs2a6ZlnntGxY8fO+5yZH3u+Y/ny5da/QAAAAAAAAORJkN0FwP+VLFlSUVFRkswO0Xv37tWaNWu0YcMGTZ48WStXrlS9evXO+/gOHTqocuXK572e0zUAAAAAAADYiwASlouIiMjQGSlJW7ZsUZs2bXTkyBE98sgj+v7778/7+Kefflpt27a1tkgAAAAAAABYginYsEWjRo00YsQISdLixYuVmJhoc0UAAAAAAACwAgEkbNO0aVNJktPp1IkTJ2yuBgAAAAAAAFYggIRt4uLiJEmBgYGKiIiwuRoAAAAAAABYgQAStklb9/HWW29VcHCwzdUAAAAAAADACmxCkx+aN5cOH7a7igwcksJdLjkcjpxvrFxZWr++QGqSPLtgjxs3TtOmTVPNmjX13nvv5fiYG2+88bzXSpcurVOnTuVzlQAAAAAAAMgvBJD54fBh6d9/7a4iA8f/jsJg79692QahLVu21KJFi1S6dOkcH9+hQwdVrlw522uhoaH5UiMAAAAAAACsQQCZH84TjtnJJcn1vw7IHIPIAqi9ZMmSioqKkiQlJiZq69at2rhxo3799VcNHjxYX331VY6Pf/rpp9W2bVvL6wQAAAAAAED+I4DMDwU4hTm3XKmpiouLU3h4uBwB9i71GRERoSlTpmQ4N2vWLN11112aPn26WrdurSFDhthTHAAAAAAAACzFJjSwRbdu3fT0009Lkl544QXFxsbaXBEAAAAAAACsQAAJ2zzzzDOqUqWKjh8/rrFjx9pdDgAAAAAAACxAAAnbhIaG6vnnn5ckvfPOOzp58qTNFQEAAAAAACC/sQYkbDVw4EC99dZb2rVrl95880298sorWe557bXXsqwhmV6vXr3Uvn17C6sEAAAAAABAXhFAwlbBwcF6+eWX1bNnT73//vsaMWKEypcvn+GeH374IcfnuOKKKwggAQAAAAAACimfnIJdq1YtORyOLMfQoUPtLq3I2rNnj1wul/r27es+17dvX7lcLu3ZsyfHx959991yuVyKi4vLED66XK5cHY888og1LwoAAAAAAAAXzSc7INetW6eUlBT355s3b1a7du3Uo0cPG6sCAAAAAAAAkJlPBpAVKlTI8Plrr72mOnXqqE2bNjZVBAAAAAAAACA7PhlAppeUlKTPP/9cI0aMkMPhyPaexMREJSYmuj+Pi4uTJDmdTjmdzhyf3+l0yuVyKTU1VampqflXuMVcLpf7v75Uty9LTU2Vy+WS0+lUYGCg3eV4Je3fwYX+PQBpGDPwFmMG3mLMwFuMGXiLMQNvMWbgLX8fM968LocrLanyUV9//bV69eqlffv2qWrVqtneM2rUKI0ePTrL+WnTpik0NDTH5w8KClLlypUVGRmpYsWK5UvN8E9JSUnav3+/Dh8+rOTkZLvLAQAAAAAAsMzZs2fVq1cvxcbGKjw8PMd7fT6A7NChg4oVK6Z58+ad957sOiAjIyMVExNzwS9QQkKC9u/fr1q1aql48eL5VrfVXC6XTp8+rbCwsPN2hiJ/JSQkaM+ePYqMjPSpsSKZdy0WL16sdu3aKTg42O5y4AMYM/AWYwbeYszAW4wZeIsxA28xZuAtfx8zcXFxioiIyFUA6dNTsPfu3aslS5Zo1qxZOd4XEhKikJCQLOeDg4MvOABSUlLkcDgUEBCggADf2TQ8bdp1Wu2wXkBAgBwOR67GVWHly7XDHowZeIsxA28xZuAtxgy8xZiBtxgz8Ja/jhlvXpNPJ1OTJ09WxYoVddttt9ldCgAAAAAAAIBs+GwAmZqaqsmTJ6tPnz4KCvLpRk4AAAAAAADAb/lsALlkyRLt27dP/fv3t7sUAAAAAAAAAOfhs62D7du3l4/vnwMAAAAAAAD4PZ/tgAQAAAAAAABQ+BFAAgAAAAAAALAMASQAAAAAAAAAyxBAAgAAAAAAALAMASTyRa1ateRwODRlyhT3uSlTpsjhcGQ4AgICFB4ermbNmumZZ57RsWPHzvucmR97vmP58uVe1ZpWV9++ffP2YgEAAAAAAJBrPrsLNnxHyZIlFRUVJUlKSUnR3r17tWbNGm3YsEGTJ0/WypUrVa9evfM+vkOHDqpcufJ5r2e+5nA4JIld0gEAAAAAAAoBAkhYLiIiIkNnpCRt2bJFbdq00ZEjR/TII4/o+++/P+/jn376abVt29baIgEAAAAAAGAJpmDDFo0aNdKIESMkSYsXL1ZiYqLNFQEAAAAAAMAKBJCwTdOmTSVJTqdTJ06cuOjnGzVqlHv6tZR1Dck9e/ZkecyZM2f0zDPPqG7dugoJCVHlypXVp08f/fvvvxddDwAAAAAAAJiCDRvFxcVJkgIDAxUREXHRz3fFFVeoT58+mjp1qiSpT58+Ga6XKlUqw+exsbG69tprtW/fPt1www1q3Lix1qxZo08//VQ//fSTNm7cqNKlS190XQAAAAAAAEUZASRsk7bu46233qrg4OCLfr4uXbqoS5cu7gAy87qTmc2ZM0cdOnTQypUrFR4eLkk6efKkbrrpJm3YsEEfffSRnnnmmYuuCwAAAAAAoCgjgMwHzZs31+HDh+0uIwuXy5VhSnJ2KleurPXr1xdQRZ5dsMeNG6dp06apZs2aeu+993J8zI033njea6VLl9apU6fyVEvJkiU1efJkd/goSWXLltXTTz+tu+++W0uWLCGABAAAAAAAuEgEkPng8OHDrBmYg71792YbhLZs2VKLFi264DTnDh06qHLlytleCw0NzXNdzZs3V5UqVbKcv+yyyySJv1MAAAAAAIB8QACZD84Xjtkttx2QVitZsqSioqIkSYmJidq6das2btyoX3/9VYMHD9ZXX32V4+OffvpptW3bNt/rqlGjRrbn0zoiExIS8v3PBAAAAAAAKGoIIPNBQU5hzq3U1FTFxcUpPDxcAQH2bnYeERGRZT3GWbNm6a677tL06dPVunVrDRkypMDrsvvrAgAAAAAAUBSQwMAW3bp109NPPy1JeuGFFxQbG2tzRQAAAAAAALACASRs88wzz6hKlSo6fvy4xo4dm2/Pm7ajdnJycr49JwAAAAAAAPKGABK2CQ0N1fPPPy9Jeuedd3Ty5Ml8ed7q1atLkrZs2ZIvzwcAAAAAAIC8Yw1I2GrgwIF66623tGvXLr355pt65ZVXstzz2muvZVlDMr1evXqpffv27s+7d++uN998U7fccotuuukmhYWFSZJef/11lS9fPt9fAwAAAAAAAM6PABK2Cg4O1ssvv6yePXvq/fff14gRI7KEhD/88EOOz3HFFVdkCCBfeuklBQQEaNasWZozZ46SkpIkSc899xwBJAAAAAAAQAEjgES+2LNnT5Zzffv2Vd++fS/42Lvvvlt33313lvMulytPtRQvXlyvv/66Xn/99WyvX6iuWrVq5fnPBgAAAAAAQEasAQkAAAAAAADAMgSQAAAAAAAAACxDAAkAAAAAAADAMgSQAAAAAAAAACxDAAkAAAAAAADAMgSQAAAAAAAAACxDAAkAAAAAAADAMgSQueRyuewuAYUcYwQAAAAAACArAsgLCAgwX6KUlBSbK0FhlzZG0sYMAAAAAAAACCAvKDg4WMHBwYqPj7e7FBRy586dU2BgoIKDg+0uBQAAAAAAoNAggLwAh8OhsLAwxcbG6ty5c3aXg0IqJSVFsbGxCg0NlcPhsLscAAAAAACAQiPI7gJ8QUREhM6dO6d9+/YpPDxcYWFhCgwMLNRBU2pqqpKSkpSQkMCUYAu5XC4lJibqxIkTSk1NVcWKFe0uCQAAAAAAoFAhgMyFwMBARUZGKiYmRqdPn9apU6fsLumCXC6Xzp07pxIlShTqoNRflCxZUpUrV1axYsXsLgUAAAAAAKBQIYDMpcDAQFWqVEkVK1aU0+lUamqq3SXlyOl0asWKFWrdujVrElosKChIQUH8UwIAAAAAAMgOqYmXHA6HT3S5BQYGKjk5WcWLFyeABAAAAAAAgG1YHBAAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZQggAQAAAAAAAFiGABIAAAAAAACAZXw2gPz333917733qnz58ipRooSaNGmi9evX210WAAAAAAAAgHSC7C4gL06ePKnrrrtON954oxYsWKAKFSro77//VtmyZe0uDQAAAAAAAEA6PhlAvv7664qMjNTkyZPd52rXrm1jRQAAAAAAAACy45MB5LfffqsOHTqoR48e+umnn1StWjUNGTJEgwYNyvb+xMREJSYmuj+Pi4uTJDmdTjmdzgKpuaClvS5/fX3IX4wXeIsxA28xZuAtxgy8xZiBtxgz8BZjBt7y9zHjzetyuFwul4W1WKJ48eKSpBEjRqhHjx5at26dhg8frk8++UR9+vTJcv+oUaM0evToLOenTZum0NBQy+sFAAAAAAAA/MnZs2fVq1cvxcbGKjw8PMd7fTKALFasmJo3b67Vq1e7zw0bNkzr1q3TmjVrstyfXQdkZGSkYmJiLvgF8lVOp1OLFy9Wu3btFBwcbHc5KOQYL/AWYwbeYszAW4wZeIsxA28xZuAtxgy85e9jJi4uThEREbkKIH1yCnaVKlXUsGHDDOcuu+wyzZw5M9v7Q0JCFBISkuV8cHCwXw6A9IrCa0T+YbzAW4wZeIsxA28xZuAtxgy8xZiBtxgz8Ja/jhlvXlOAhXVY5rrrrtP27dsznNuxY4dq1qxpU0UAAAAAAAAAsuOTAeSjjz6qtWvX6tVXX9XOnTs1bdo0jRs3TkOHDrW7NAAAAAAAAADp+GQA2aJFC82ePVtffvmlGjdurJdeeknvvPOO7rnnHrtLAwAAAAAAAJCOT64BKUmdO3dW586d7S4DAAAAAAAAQA58sgMSAAAAAAAAgG8ggAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJYhgAQAAAAAAABgGQJIAAAAAAAAAJbxyQBy1KhRcjgcGY5LL73U7rIAAAAAAAAAZBJkdwF51ahRIy1ZssT9eVCQz74UAAAAAAAAwG/5bGoXFBSkypUr210GAAAAAAAAgBz4bAD5999/q2rVqipevLiuueYajRkzRjVq1Mj23sTERCUmJro/j4uLkyQ5nU45nc4Cqbegpb0uf319yF+MF3iLMQNvMWbgLcYMvMWYgbcYM/AWYwZeSU2V64MPVOOff+Rs187uaizhzb8Fh8vlcllYiyUWLFig+Ph4NWjQQIcOHdLo0aP177//avPmzQoLC8ty/6hRozR69Ogs56dNm6bQ0NCCKBkAAAAAAABFQOiRI7ri/fdVYfNmJYeEaNk77+hslSp2l5Xvzp49q169eik2Nlbh4eE53uuTAWRmp06dUs2aNTV27FgNGDAgy/XsOiAjIyMVExNzwS+Qr3I6nVq8eLHatWun4OBgu8tBIcd4gbcYM/AWYwbeYszAW4wZeIsxA28xZnBBLpcCxo9XwFNPyXHmjPt00ltvyfHwwzYWZo24uDhFRETkKoD02SnY6ZUpU0b169fXzp07s70eEhKikJCQLOeDg4P9/ptGUXiNyD+MF3iLMQNvMWbgLcYMvMWYgbcYM/AWYwbZ2r9fGjBAWrzYfcpVs6ZWDxiglg8/7JdjxpvXFGBhHQUmPj5eu3btUhU/bGcFAAAAAABAIeVySZMmSY0bZwgfdf/9Sv7tN8U0bWpfbYWITwaQjz/+uH766Sft2bNHq1evVteuXRUYGKiePXvaXRoAAAAAAACKgoMHpdtvN52P/9vwWNWqSQsXStHRkp8u+5cXPjkF+8CBA+rZs6eOHz+uChUq6Prrr9fatWtVoUIFu0sDAAAAAACAP3O5pGnTpIcflk6e9Jzv21d6+22pTBm7Kiu0fDKA/Oqrr+wuAQAAAAAAAEXNkSPSgw9Ks2d7zlWuLI0bZ7ohkS2fnIINAAAAAAAAFKhvvpEaNcoYPvbqJW3eTPh4AT7ZAQkAAAAAAAAUiJgY6aGHpOnTPecqVJA+/ljq3t2+unwIASQAAAAAAACQnblzpfvvl44e9Zzr3l366COpYkX76vIxTMEGAAAAAAAA0jt5UurdW+rSxRM+lisnffmlmYpN+OgVOiABAAAAAACANAsWSAMHSgcPes7dfrsUHS1VqWJfXT6MDkgAAAAAAAAgNtYEj506ecLH0qWlKVPMVGzCxzyjAxIAAAAAAABF25IlUv/+0v79nnMdOkgTJkjVq9tXl5+gAxIAAAAAAABFU3y8NGSI1K6dJ3wsVUoaN85MxSZ8zBd0QAIAAAAAAKDo+eknqV8/6Z9/POduukmaNEmqWdO+uvwQHZAAAAAAAAAoOs6elR55RGrb1hM+hoZKH3wgLV5M+GgBOiABAAAAAABQNKxeLfXtK/39t+fcDTdIkydLderYVpa/owMSAAAAAAAA/i0hQXrySRM2poWPxYtLY8dKy5cTPlqMDkgAAAAAAAD4r3XrpD59pK1bPedatZKmTJEaNLCtrKKEDkgAAAAAAAD4n6Qk6bnnpGuu8YSPxYpJr70mrVpF+FiA6IAEAAAAAACAf9mwwXQ9/vmn59xVV0lTp0qNGtlWVlFFByQAAAAAAAD8g9Mpvfii1KKFJ3wMCjLn1qwhfLQJHZAAAAAAAADwfZs3mx2uf/vNc65pU9P1eMUVdlUF0QEJAAAAAAAAX5acbNZ1vOoqT/gYGGjWf1y3jvCxEKADEgAAAAAAAL5p+3az1uMvv3jONWxodrhu0cK2spARHZAAAAAAAADwLSkp0tixprsxLXwMCJCefNJ0QRI+Fip0QAIAAAAAAMB37Nwp9esnrVrlOVevnlnr8Zpr7KsL50UHJAAAAAAAAAq/1FTpgw+kyy/3hI8Oh/TII9KGDYSPhRgdkAAAAAAAACjc9uyRBgyQfvzRc+6SS6TJk6XWrW0rC7lDByQAAAAAAAAKJ5dLGjdOatIkY/g4ZIi0cSPho4+gAxIAAAAAAACFz4ED0sCB0g8/eM7VqCFNnCjdcot9dcFrdEACAAAAAACg8HC5pClTpMaNM4aPAwdKmzYRPvogOiABAAAAAABQOBw6JA0eLM2b5zlXtao0YYLUsaN9deGi0AEJAAAAAAAAe7lc0pdfSo0aZQwfe/eWNm8mfPRxdEACAAAAAADAPkePmk1lZs70nKtUSYqOlu680766kG/ogAQAAAAAAIA9Zs40XY/pw8e775a2bCF89CMEkAAAAAAAAChYx49LvXpJUVFSTIw5FxEhff21mYpdvry99SFfMQUbAAAAAAAABWfePOn++6XDhz3nunaVPvlEqljRvrpgGTogAQAAAAAAYL1Tp6S+faU77vCEj2XLSl98YaZgEz76LTogAQAAAAAAYK2FC6WBA6V///Wcu+02adw4qWpV++pCgaADEgAAAAAAANaIizPTrTt29ISP4eHS5MlmKjbhY5FAByQAAAAAAADy348/Sv36Sfv2ec61by9NmCBFRtpXFwocHZAAAAAAAADIP/Hx0kMPSTff7AkfS5WSoqPNVGzCxyKHDkgAAAAAAADkj5UrzUYzu3d7zrVta6Zc16plU1GwGx2QAAAAAAAAuDjnzkkjRkht2njCx9BQ6f33paVLCR+LODogAQAAAAAAkHdr10p9+kg7dnjOXXedNGWKVLeubWWh8KADEgAAAAAAAN5LSJCeftqEjWnhY0iI9NZb0k8/ET7CjQ5IAAAAAAAAeOe336TevaW//vKca9lSmjpVuvRS++pCoUQHJAAAAAAAAHInKUl64QXp6qs94WOxYtKYMdLPPxM+Ilt0QAIAAAAAAODCNm40az1u3Og516yZ9OmnUuPG9tWFQo8OSAAAAAAAAJyf0ym9/LLUooUnfAwKkkaPln75hfARF0QHJAAAAAAAALK3ZYvpevztN8+5Jk3MWo/NmtlXF3wKHZAAAAAAAADIKCVFeuMN6corPeFjYKD07LPSunWEj/AKHZAAAAAAAADw2LHDdD2uXes5d9llpuuxRQv76oLPogMSAAAAAAAAUmqq9M470uWXe8JHh0N6/HHp998JH5FndEACAAAAAAAUdbt2Sf36SStXes7VrWu6Hq+91r664BfogAQAAAAAACiqUlOljz4yXY/pw8dhw8yO14SPyAd0QAIAAAAAABRFe/dKAwZIS5d6ztWuLU2eLLVpY19d8Dt0QAIAAAAAABQlLpc0YYLUpEnG8PGBB6Q//yR8RL6jAxIAAAAAAKCo+PdfadAgacECz7nISGniRKldO/vqgl+jAxIAAAAAAMDfuVzSp59KjRplDB/795c2bSJ8hKXogAQAAAAAAPBnhw9LgwdL337rOVelijR+vHTbbfbVhSKDDkgAAAAAAAB/5HJJX31luh7Th4/33itt2UL4iAJDByQAAAAAAIC/OXZMGjJEmjHDc65iRSk6WurSxbayUDTRAQkAAAAAAOBPZs0yXY/pw8f/+z/T9Uj4CBsQQAIAAAAAAPiDEyeke+6Runc3HZCSVL68NH26OSIi7K0PRRZTsAEAAAAAAHzdd99JgwaZDWfSdOkiffKJVKmSbWUBEh2QAAAAAAAAvis2VurXT7r9dk/4WKaM9NlnZio24SMKATogAQAAAAAAfNGiRdKAAdKBA55znTpJ48dLVavaVxeQCR2QAAAAAAAAvuT0aWnwYKlDB0/4GBYmTZxopmITPqKQoQMSAAAAAADAVyxbJvXvL+3Z4zl3yy0mfKxRw7aygJzQAQkAAAAAAFDYnTkjPfywdNNNnvCxZEnp44/NVGzCRxRidEACAAAAAAAUZqtWmY1mdu70nGvTRpo0SbrkEvvqAnKJDkgAAAAAAIDC6Nw56bHHpNatPeFjiRLSu+9KP/5I+AifQQckAAAAAABAYfPLL1LfvtK2bZ5z114rTZ4s1a9vW1lAXtABCQAAAAAAUFgkJkrPPGPCxrTwMSRE+u9/pRUrCB/hk+iABAAAAAAAKAx+/13q00favNlzrkULacoUqWFD28oCLhYdkAAAAAAAAHZKSpJGjpRatvSEj8HB0iuvSKtXEz7C5/l8APnaa6/J4XDokUcesbsUAAAAAAAA7/z5p3T11dKLL0opKebcFVdI69dL//mPFMTkVfg+nw4g161bp+joaDVt2tTuUgAAAAAAAHIvOdl0ODZvLm3YYM4FBZlOyF9/lcg64Ed8NoCMj4/XPffco/Hjx6ts2bJ2lwMAAAAAAJA7W7eaTWaee05yOs25xo3NztejRpnp14Af8dk+3qFDh+q2227TLbfcopdffjnHexMTE5WYmOj+PC4uTpLkdDrlTPuH7mfSXpe/vj7kL8YLvMWYgbcYM/AWYwbeYszAW4wZeCtfxkxKigLefVcBI0fK8b+cwhUQoNTHH1fq88+b3a4Zk37D37/PePO6HC6Xy2VhLZb46quv9Morr2jdunUqXry42rZtqyuuuELvvPNOtvePGjVKo0ePznJ+2rRpCg0NtbhaAAAAAABQ1JU8eFDN3ntP5bdtc587Xa2a/hg+XCfr17exMiBvzp49q169eik2Nlbh4eE53utzAeT+/fvVvHlzLV682L3244UCyOw6ICMjIxUTE3PBL5CvcjqdWrx4sdq1a6dgWrdxAYwXeIsxA28xZuAtxgy8xZiBtxgz8Faex0xqqgI++kgBzz4rx7lzkiSXw6HURx5R6qhRUokS1hQM2/n795m4uDhFRETkKoD0uSnYv/32m44ePaorr7zSfS4lJUUrVqzQBx98oMTERAUGBmZ4TEhIiEJCQrI8V3BwsF8OgPSKwmtE/mG8wFuMGXiLMQNvMWbgLcYMvMWYgbe8GjO7d0v9+0s//eQ5V6eOHFOmKPD66xV4/kfCj/jr9xlvXpPPBZA333yzNm3alOFcv379dOmll+qpp57KEj4CAAAAAAAUKJdLio6WHn9cOnPGc/6hh6TXXpNKlrSvNsAGeQog0zZxudjpy/Hx8frxxx8lSXfccUeuHhMWFqbGjRtnOFeyZEmVL18+y3kAAAAAAIACtW+fNGCAtGSJ51ytWtKkSdKNN9pWFmCngLw8qEyZMipXrpz++uuvbK8fPHhQ/fv314ABA3J8nr1796pLly7q1q1bXsoAAAAAAAAoHFwuEzI2aZIxfLz/funPPwkfUaTleQp2TnvXnDx5UlOmTJHD4dDEiRMv6rlyY/ny5Rf1eAAAAAAAgDw7eFAaNEiaP99zrnp1aeJEqX17++oCCok8dUACAAAAAAAUeS6X9PnnUqNGGcPHvn2lTZsIH4H/8blNaAAAAAAAAGx35Ij0wAPSnDmec5UrS+PHS50721YWUBjRAQkAAAAAAOCNr782XY/pw8devaQtWwgfgWzQAQkAAAAAAJALxeLiFNirlzRjhudkhQrSJ59IbLALnBcBJAAAAAAAwAU45s7VjQ8/rIDYWM/JqCjpo49MCAngvJiCDQAAAAAAcD4nT0r33aegHj1UPC18LFdO+uorMxWb8BG4IDogAQAAAAAAsjN/vjRwoHTokPtUaufOChg/3mw4AyBXLqoD0uFw5FcdAAAAAAAAhUNsrDRggHTbbe7w0VW6tH4bPlwpM2cSPgJeuqgOyMaNG5/3Wlo4GRgYeDF/BAAAAAAAQMFZvNiEj/v3e87dequSP/5YBzZuVFOasQCvXVQHpMvluugDAAAAAADAdvHx0oMPSu3be8LHsDBpwgQzFbtaNXvrA3xYnjogW7duzfRrAAAAAADgH5Yvl/r1k/bs8Zy7+WZp4kSpZk27qgL8Rp4CyOXLl+dzGQAAAAAAAAXs7FnpmWek997znAsNlf77X+mBB6SAi5o4CuB/2AUbAAAAAAAUPatXS336SDt3es61bi1Nnixdcol9dQF+iCgfAAAAAAAUHQkJ0hNPSNdf7wkfixeX3n5bWraM8BGwgO0B5NmzZ/XWW2/ZXQYAAAAAAPB3v/4qNWsmvfmmlLYxbqtW0saN0iOPMOUasIht/7JOnz6tV155RbVq1dKTTz5pVxkAAAAAAMDfJSZKzz4rXXuttG2bOVesmPT669KqVVL9+vbWB/i5Al8D8sSJE3r77bf14YcfKjY2Vi6Xix21AQAAAACANf74w6z1uGmT51zz5tLUqVLDhvbVBRQhF9UBuXfvXg0bNkwNGzZUWFiYypUrpyuvvFJjxoxRbGxshnvj4+M1cuRI1apVS6+++qpOnToll8uliIgIvfzyyxf1IgAAAAAAADJwOqXRo6WWLT3hY3Cw9NJLZgMawkegwOS5A3Lx4sXq3r27zpw5I0ly/W/thI0bN2rjxo369NNPtWzZMlWuXFk///yz7rnnHu3fv999X7Vq1fT444/r/vvvV4kSJfLhpQAAAAAAAEjavNl0Pf7+u+fc5ZebrsfLL7evLqCIylMH5LFjx9SzZ0/Fx8fL5XLJ5XKpZMmSKl26tPvzHTt2aOjQoVqxYoVuueUWd/hYu3ZtRUdHa/fu3Ro+fDjhIwAAAAAAyB/JydKYMdJVV3nCx8BA6fnnzQY0hI+ALfIUQI4fP14nTpyQw+FQVFSUdu7cqdOnT+vkyZM6ePCgHnroIUnS3Llzde+99yoxMVGlSpXS+++/r+3bt2vQoEEKDg7O1xcCAAAAAACKsG3bpOuuk/7zHykpyZxr2FBau1Z68UWz6QwAW+RpCvaiRYskSa1atdLXX3+d4VrlypX13nvv6fTp05o6daoOHDigMmXKaOXKlWrUqNHFVwwAAAAAAJAmJUV65x2zy3ViojkXECA98YQ0apRUvLid1QFQHjsgt23bJofDoSFDhpz3nmHDhkmSHA6Hhg0bRvgIAAAAAADy186dUps20uOPe8LH+vWln3+WXnuN8BEoJPIUQJ48eVKSVLdu3fPeU69ePffHN9xwQ17+GAAAAAAAgKxSU6X335eaNjVhoyQ5HNKjj0obNkitWtlaHoCM8jQF2+l0yuFwKCws7Lz3lCpVyv1x5cqV8/LHAAAAAAAAZLRnj9S/v7RsmefcJZdIU6ZINEABhVKeOiC95XA4CuKPAQAAAAAA/srlksaNk5o0yRg+Dh0q/fkn4SNQiOWpAxIAAAAAAKDA7N8vDRwo/W9TXElSjRrSpEnSzTfbVxeAXLmoALJfv34qWbLkRd/ncDi0dOnSiykFAAAAAAD4G5dLmjpVGj5ciovznB80SHrzTSk83L7aAOTaRQWQ69evz/F62tTrnO5zuVxM0QYAAAAAABkdOiTdf7/03Xeec9WqSRMmSLfeal9dALyW5wDS5XLlZx0AAAAAAACm6/HLL6WHHpJOnvSc79NHeucdqUwZuyoDkEd5CiBTU1Pzuw4AAAAAAFDUHT0qPfCANHu251ylSmbzmTvusK8uABelQHbBBgAAAAAAyNGMGVKjRhnDx549pS1bCB8BH8cu2AAAAAAAwD7Hj0tDh0rTp3vORURIn3wide9uX10A8g0BJAAAAAAAsMe335qNZo4c8Zzr1k36+GOpYkX76gKQr/IUQL744ov5XYdeeOGFfH9OAAAAAABQCJ08KQ0fLn32medc2bLShx9Kd98tORz21QYg3+UpgBw1apQc+fzNgAASAHxEaqocv/yiKqtXS82bS9Wq2V0RAAAAfMmCBdLAgdLBg55znTubjWaqVLGvLgCWyfMmNC6XK98OAEAhl5IirVxp3qWuWVNBN9yglm+8oaDatc071MuWSXw/BwAAQE7i4kzw2KmTJ3wsXVqaMsVMxSZ8BPxWnjogly1blt91AAAKm+RkacUKaeZMadYs6fDhLLc4nE6zWPj06VL9+mb9nr59pfLlC75eAAAAFF5Ll0r9+0v79nnOdeggTZggVa9uX10ACkSeAsg2bdrkdx0AgMLA6ZR+/NGEjrNnSzExWe8JDlZqu3b6JyBAl/zyixzHjpnzO3ZIjz8uPfusFBUlDR4sXX896/cAAAAUZfHx0pNPmk1l0pQqJY0da7oh+VkRKBLyPAUbAOAnEhOl77+X+vWTKlWSbr1VGj8+Y/gYEiJ16WIWCT92TClz5mjzwIFK3r1b+vJLqW3bjM/3xRdS69ZS48bSu++aRcYBAABQtKxYIV1+ecbw8cYbpU2bpEGDCB+BIoQAEgCKonPnpDlzpHvvlSpWNIt+T5mSMSgMDTWdjF99JR07Zjoi773XrNOTJiTEswbktm3SiBFSuXKe63/9JT3yiFS1qpmavWYNa0UCAAD4u7NnpUcfNW9S795tzoWGSh98IC1ZItWqZWd1AGyQpynYAAAfdOaMNH++NGOG6Xg8cybrPWFhJoyMijKdkKGhuX/+Bg2kt96SXnnFTOH+5BNp1SpzLSFBmjrVHE2amOnZmcNMAAAA+L41a8wbzzt2eM5df700ebJUt65tZQGwFx2QAODP4uKkadOkbt2kChWk//s/6euvM4aPpUtLvXubnQePHvXc7034mF7x4tI995hdszdvloYNk8qU8VzftEl66CHTFTlggLRuHV2RAAAAvi4hQXrqKRM2poWPxYubtR6XLyd8BIo4OiABwN+cPGnCxJkzpR9+kJKSst5TrpzUtavUvbt0881SsWLW1NKokVkDcswY6ZtvpOho8664ZKbmTJpkjmbNTFdkr16mCxMAAAC+Y/16qU8fs/xOmquvNkv8XHqpbWUBKDzogAQAfxATI02cKHXsaNZ07NtXmjcvY/hYsaL0wAPS4sXS4cPShAnmfqvCx/RCQ80PpatXSxs3SkOGSOHhnut//GFqq1rVBJG//259TQAAALg4SUnS889LrVp5wsdixcybz6tWET4CcKMDEgB81ZEjZmOYGTPMtJaUlKz3VK1qplNHRZnpMIGBBV5mFk2bSh9+KL3xhtngJjraTMOWpPh4adw4c7RoYcLIu++WSpa0t2YAAABktGGDeYP5zz8956680qz53bixbWUBKJzogAQAX/Lvv9L770tt2khVqkgPPigtXZoxfIyMNLsO/vyztH+/5/7CED6mV7KkWQPy11+l336T7r9fKlXKc33dOmngQBOiDh2a8YdbAAAA2MPplF56ybxZnPbzWVCQNHq0tHYt4SOAbNEBCQCF3d69Zj3HmTPNFObsXHKJ6XKMipKaN5ccjoKt8WJdeaXphHzzTbMJTnS0mZYtmY10PvrIHNdcY7oi/+//pBIl7K0ZAACgqNmyxXQ9/vab51zTpqbr8YorbCsLQOFHByQAFEY7d0qvvy61bCnVqiU99ljW8LFBA+nZZ01Ql3Z/ixa+Fz6mFxZmAsbffjOdkQMGZNyNe80as75l1arS8OEZFzoHAACANVJSzM+aV17pCR8DA83PouvWET4CuCA6IAGgsNi2zaznOHOmWVMnO40bezodGzb07bAxJw6HCVNbtJDeekv6/HPTFblpk7l+6pT03nvmuP56E1pGRUnFi9taNgAAgN/Zvt28Abx2refcZZeZrscWLWwrC4BvIYAEALu4XGYay4wZ5tiyJfv7mjWTunc3R1HcSbB0abMG5JAh5gff6Ghp+nQpIcFcX7XKHMOHmx+O77/fdIcCAAAg71JTpXfflf7zH8/PXQ6H9Pjj0osv8sYvAK8QQAJAQXK5THdjWui4Y0f297Vs6Qkd69Qp0BILLYfDrAF5zTXS229Ln35qwsitW831EyeksWPN0bat6Yrs2lUKCbG1bAAAAJ+za5fUr5+0cqXnXL160pQp0rXX2lYWAN9FAAkAVnO5zNo4aaHjP/9kf9+115ppxN26STVrFmyNvqZsWdPxOGyY6X6MjjZf28REc335cnNUqGB+eB40SKpb186KAQAACr/UVOnjj6Unn5TOnvWcHz5cevXVjGtzA4AXCCABwAqpqWbDlLQ1Hffvz3qPwyG1bm1Cx65dpWrVCr5OX+dwSDfcYI533zVrEUVHezpLjx2T3njDHLfcYroi77xTCg62t24AAIDCZu9eqX9/6ccfPedq15YmT5batLGvLgB+gQASAPJLSoqZpjJzpjkOHcp6T2CgdOONJnTs0kWqVKnAy/Rb5ctLI0ZIjz5quh+jo6VZsySn01xfssQclSqZH64HDTI/VAMAABRlLpc0caL5Oer0ac/5Bx80b+KWKmVfbQD8BgEkAFwMp9OEXTNnSrNnS0ePZr0nONh030VFSXfcIUVEFHiZRYrDYULeG280fx9Tppgwcvduc/3IEWnMGOm116QOHUxXZOfOUhD/SwQAAEXMgQPmTdmFCz3natQwgeQtt9hXFwC/w29bAOCtpCRp6VIzvXrOHLP5SWYhIVL79iZ0vP12s2YhCl7FimYNo8cfN39n0dHS3LlScrJ5t3/hQnNUrSoNGCANHGh+6AYAAPBnLpf02WdmPe3YWM/5AQPMhn7h4fbVBsAvEUACQG4kJEiLFpnQ8dtvM/6glqZECaljRxM63nYbP7gVJgEBUrt25jh8WJo0SRo/Xtqzx1w/eFB66SXplVekTp1MV2THjmbKPAAAgD85fFi6/35p3jzPuapVpQkTzM8/AGABAkgAOJ+zZ6UFC0zo+N13Unx81ntKljTTd6OizA9sJUsWfJ3wTuXK0n/+Iz31lLR4sfTJJ+bvNyXFbB703XfmiIw0HZEDBrBBEAAA8H0ulzR9ujR0aMYZPPfdZzbzY8YOAAsRQAJAeqdPS99/b0LHBQtMCJlZeLhZyzEqykyzLlGi4OvExQsMlG691Rz//mvWOho/3qyFJJmdy0eOlF580UyjHzzY/H0HBNhbNwAAgLeOHTObysyc6TlXsaI0bpx055321QWgyOC3KAA4dcqsgdOli1ShgtSzp/nhLH34WLas1K+f6Yw7etTcf+edhI/+olo16YUXzJTsefPMFPq0oDElxaz12bGjVKeO9OqrZuoSAACAL5g1S2rUKGP4eNdd0pYthI8ACgwdkACKpuPHzVqOM2aYabhOZ9Z7KlSQunaVunc3OyoHBxd8nShYgYFmSn3nztK+fWYtpIkTzRqRkgkon33WdEbeeafpirz5ZroiAQBA4XPihPTQQ9KXX3rOlS8vffyx1KOHfXUBKJIIIAEUHUePmk62GTOkH380nW2ZVa4sdetmplffcIMUxLfJIqtGDTP9+oUXTOdrdLT0ww9m/aTkZNNFMHOm6Yq8/36pb18zlQkAAMBu330nDRqUcdZG164mfKxUyb66ABRZ/GYNwL8dPCjNnm1CxxUrzCYjmVWvbroco6Kka65h52NkFBRkpud36SL9849ZJ3LSJOnIEXN91y6zoc1zz5nwevBgqW1byeGwsWgAAFAknTolPfKINHWq51zZstL770u9evHzCQDbEEAC8D/795vOtBkzpNWrTcdaZrVqmcAxKkpq0YIptMid2rXNGpCjRpkp/NHR0pIl5prTaXaWnD5dql/fBJF9+pipTgAAAFb74Qdp4EDPhnqSWdd63DipalX76gIAEUAC8Be7d3umxP7yS/b31K1r1ruJipKaNeMdYORdsWKeAHvnTk9XZEyMub5jh/TYY9J//mPuGTxYuv56xhwAAMh/p0+bnzvGj/ecCw+X3nnHLBHDzx8ACgECSAC+a8cO0+U4c6b0++/Z39OwoQmAuneXmjThBzDkv7p1pddfN+tFzp5tuiKXLzfXEhOlL74wR8OGZq3I3r3NVCgAAICL9eOPUv/+0t69nnPt2plN9CIj7asLADIhgATgW/76y4SOM2ZImzZlf8/ll5vAsXt3E/oABSEkRLr7bnNs326mO02ZYnaglMzYfeQR6emnpbvuMl2RrVoRigMAAO+dOWPWoP7wQ8+5kiWlt94yb3jy8wWAQoYAEkDh5nJJf/7pCR23bcv+vubNPaFjvXoFWyOQWYMG5heAV14x4zY6Wlq1ylxLSDALw0+darpyBw+W7r1XKl3a3poBAIBvWLXKTK3etctzrm1bsxxM7dp2VQUAOWLXBQCFj8slrV9vOsXq1ZOuuEJ6+eWs4WOrVtKbb5qdidet89wPFBbFi5twceVKafNmadgwqUwZz/VNm6SHHjILww8YYMZxdpsmAQAAnDtn1nps3doTPpYoIb33nrR0KeEjgEKNDkgAhUNqqtk8Jm1Nx/Tr2KRxOMxGHlFRUrduUvXqBV8nkFeNGknvviuNGSN98430ySfS2rXm2tmzpmth0iSzQdLgwVKvXlJYmL01AwCAwuGXX6Q+fcwyL2muvdYs98Ib8AB8gE92QH788cdq2rSpwsPDFR4ermuuuUYLFiywuywA3kpJkVaskIYPl2rUMD9EjR2bMXwMCJBuukn66CPp4EFz/7BhhI/wXaGh5heINWukjRulIUMyBo1//CE98IDpinzgAfM5AAAomhITpWeeMT8np4WPISFmFtCKFYSPAHyGT3ZAVq9eXa+99prq1asnl8ulqVOn6s4779Qff/yhRo0a2V0egJwkJ0s//WS6HGfNko4cyXpPUJB0882m0/HOO6UKFQq+TqAgNG1qFo9/4w3pq69MV+T69eZafLxZOzI6WmrRwnRF3n23WWAeAAD4v99+M29abtniOdeihVlH+rLL7KsLAPLAJzsgb7/9dnXq1En16tVT/fr19corr6hUqVJamzaVDUDhkpQkLVwoDRokVa4s3XKL9PHHGcPHYsWkzp2lyZPN+YULpYEDCR9RNJQs6VkD8rffzO6VpUp5rq9bZ/49VK0qDR1qNmYCAAD+KSlJGjlSuvpqT/gYHGw2t1u9mvARgE/yyQ7I9FJSUvTNN9/ozJkzuuaaa7K9JzExUYmJie7P4+LiJElOp1NOp7NA6ixoaa/LX18f8pcl4yUxUY4lSxQwa5Yc8+bJcepUlltcxYvL1b69Urt1k+u22zLuAszYLdT4HmOhJk2kDz6QxoxRwFdfKWD8eDk2bDDX4uLMcgQffaTUVq2UOnCgXD16mAXoCznGDLzFmIG3GDPwVqEcM3/+qaABA+TYuNF9ynXFFUqeONH8jOBy8XOyjQrlmEGh5u9jxpvX5XC5fHO7zU2bNumaa65RQkKCSpUqpWnTpqlTp07Z3jtq1CiNHj06y/lp06YpNDTU6lKBIiMgMVGV/vhDVVavVuV16xR87lyWe5JDQnTkqqt08NprdeSqq5TiA8EJYCuXS2X+/lu1fvhB1VatUlC6N9QkKalkSe2/8Ubt7dBBpyMjbSoSAABcDEdKiurNmqUG06crIDlZkpQaGKgdUVHa0aOHXEE+3zsEwA+dPXtWvXr1UmxsrMLDw3O812cDyKSkJO3bt0+xsbGaMWOGJkyYoJ9++kkNGzbMcm92HZCRkZGKiYm54BfIVzmdTi1evFjt2rVTcHCw3eWgkLuo8RIfL8eCBabTceFCOc6cyXKLKyxMrttuM52O7dubTTjg0/geY5PYWAVMm2a6IjdvznI59brrTFdk9+5S8eI2FHh+jBl4izEDbzFm4K1CM2b++kuBAwYo4Lff3KdcjRopedIkqVkz++pCFoVmzMBn+PuYiYuLU0RERK4CSJ99G6VYsWKqW7euJOmqq67SunXr9O677yo6OjrLvSEhIQoJCclyPjg42C8HQHpF4TUi/+R6vMTGSt99ZzaSWbBASkjIek+ZMmYDmagoOW65RY7ixX1z0VnkiO8xBSwiwuwC//DDZhft6Gjp66/d/wYDfv5ZAT//LD32mNS3r1lLskEDe2vOhDEDbzFm4C3GDLxl25hJSZHGjpWef97sdi1JAQHSU0/JMXKkgrP5HRaFA99n4C1/HTPevCafDSAzS01NzdDlCCCfnTwpffutNGOGtGiRWRw7s/Llpa5dpe7dpZtuMhvLAMh/Dod07bXmeOcd6dNPTRi5dau5fuKE+YVm7FipbVuzg3bXrhK/yAAAUDjs2GHeLFyzxnPu0kvNDtctW9pWFgBYxScDyGeeeUYdO3ZUjRo1dPr0aU2bNk3Lly/XDz/8YHdpgH85dkyaO9eEjkuXSv9bjyaDSpVMsBEVJbVpI7E+DVCwypaVhg83nZGrVpkg8ptvPG8SLF9ujgoVpH79TFdknTp2VgwAQNGVmiq9/770zDNS2nrpDoc0YoT00ks+sbEcAOSFTyYFR48eVe/evXXo0CGVLl1aTZs21Q8//KB27drZXRrg+w4flmbPNqHj8uXmh6TMqlWTunUzoeN110mBgQVeJoBMHA7phhvM8c47poNi3DjTYSGZNxTeeMMct9xiuiLvvFPyw6kgAAAUSrt3mzcDV6zwnKtbV5oyxfxMDQB+zCcDyIkTJ9pdAuBfDhzQJd99p8A335R+/lnKbm+qGjVM4BgVJV19tVmfBkDhFBFh1oEcMcK8kRAdLc2aJTmd5vqSJeaoVEnq318aNEiqXdvWkgEA8Fsul/TJJ9ITT0jpN2x8+GFpzBipZEn7agOAAuKTASSAfLBnj9lEZuZMBa9ZoybZ3VOnjid0vOoq02EFwHc4HNKNN5rj6FHTYREdbTowJOnIEfOLz2uvSR06mK7Izp1ZSgEAgPyyb580YIB54y9NrVrS5MlmnWYAKCL4DQMoSnbuNFOrZ86U1q/P/p4GDaQePcxGMpdfTugI+IuKFaUnn5Qef9ys6RodbdZ4TU42nRkLF5qjalXzi9LAgabzGQAAeM/lkiZNkh59VDp92nN+8GDpv/+VwsLsqw0AbEAACfi7rVtN4DhjhrRxY7a3uBo31vbGjVXnqacUTOgI+LeAAKldO3McOmQ6MMaNk/buNdcPHjSL4L/yitSpk/lFqWNH1noFACC3/v3XbPo2f77nXPXq0sSJUvv29tUFADZiETfA37hc0qZN0siRUqNGUsOG0vPPZw0fmzUzAcO2bUr+/Xdtv/tucz/hI1B0VKki/ec/0q5d5pekO+/0BI2pqdJ330m3327Wh3zxRfMLFQAAyJ7LJX32mdS4ccbwsV8/afNmwkcARRodkIA/cLmkP/4wXY4zZkh//539fS1bmvUcu3eXLrnEcz5tYwoARVNgoOly7NjRhIwTJ0rjx0sHDpjr+/ebNzVefNEEkoMHm1+i2IwKAADjyBHz/8e5cz3nqlQxsww6d7avLgAoJAggAV/lckm//uoJHffsyf6+664zoWO3bqznBuDCqlWTXnhBevZZacECs2vn/Pnme05KijRnjjlq1TK7Z/fvL1WubHPRAADYaPp0aehQ6fhxz7l77pHee08qV86+ugCgECGABHxJaqq0erUJHGfNMl1JmQUESK1bm9Cxa1ezoQQAeCsw0HRsdO5sdvCcMMEchw6Z63v2mJBy5EgzdXvwYOnmm+mKBAAUHTEx0pAh0jffeM5VqGA2euva1b66AKAQIoAECrvkZGnlSrORzKxZnl/+0wsMlG66yYSOXbqY3W4BIL/UqGGmXz//vFkXMjpaWrTIdEUmJ5vvTzNnSnXqmEX3+/bl+xAAwL/Nni098IB09KjnXI8e0ocfmhASAJABASRQGDmd0rJl5hf62bOlY8ey3hMcbHax7d7ddB+VL1/wdQIoWoKDTUdH167SP/+YdSInTTLrXklmM5unnpKee84s+zB4sNS2LZtbAQD8x4kT0rBh0hdfeM6VKyd99JF011321QUAhRwBJFBYJCZKS5ea6dVz5kgnT2a9JyRE6tDBdDrefrtUpkxBVwkARu3a0quvSqNGSd9+a7oilywx15xOsx7W9OlSgwamK7JXL1vLBQDgon3/vVn/OP2MpDvvNOslsx4yAOSIABKw07lzZhrjjBnmF/i4uKz3lCghdepkQsfbbpPCwgq+TgA4n2LFzPenqChp506z2+fkyWZdLEnavl167DEF/ec/urJVKznCw+mKBAD4lthY6dFHzf/f0pQpYzaZufde/p8GALlAAAkUtDNnzM6yM2aYd1Hj47PeU6qU2fghKkq69VapZMmCrxMAvFW3rvTGG9JLL5nlI6KjpeXLJUmOxERF/vSTWa+2YUPTFdm7t1S2rL01AwCQk0WLpAEDpAMHPOc6djTLkFSrZl9dAOBj2KoSKAinT0tffmkCxQoVzALV06dnDB9Ll5buu0+aO9es+fjll2Z9R8JHAL4mJES6+26zlu3WrdKjj8pVrpzn+l9/SY88IlWtajasWbPGbGgDAEBhcfq02WSmQwdP+BgWJk2YYJoICB8BwCt0QAJWOXXKTKueOVP64QezxmNm5cqZXau7d5duvtn80g4A/uTSS6WxY5U8erT+fOEFNVu3TgE//2yuJSRIU6eao0kTs2nNvfeaN2QAALDL8uVSv37Snj2ec7fcIk2cKNWoYVdVAODT6IAE8tPx42ZH2E6dpIoVpT59TAiZPnysUMFMPVy0SDp82Pwg06kT4SMA/1a8uA60bauUZcukzZvNDqLpg8ZNm6SHHjJdkQMHSuvW0RUJAChYZ86Y/z/deKMnfCxZ0uxwvWgR4SMAXAQ6IIGLdeSI2bV6xgwz3TAlJes9VapI3bqZKdg33CAFBhZ4mQBQaDRqJL37rjRmjPT112atyLVrzbWzZ80bMxMnSs2ama7IXr3YgAsAYK2ffzbLguzc6TnXurXZeOaSS2wrCwD8BR2QQF4cPCh98IHZybVqVbM+zJIlGcPHyEizxtmqVWbdmLT7CR8BwAgN9awBuWGDNGRIxqDxjz/M99e077N//GFXpQAAPxWQmKiAp54yTQJp4WOJEtI775jmAsJHAMgXdEACubVvn1nPceZM8w5pdmrXNl2OUVFSixaSw1GwNQKAr7r8cunDD80u2l99JX3yibR+vbkWH2+6JKOjzffWwYPNJjds0gUAyCunU46VK9X2sccUmH6H62uukaZMkerXt600APBHBJBATnbt8oSOv/6a/T316pldrbt3N9MFCR0BIO9KlpQGDDDH77+b0PGLL8y6XJJZG3LdOmnECLNhzeDBUtOm9tYMACi8XC4zG2nTpozHtm0KSkqSu+8+JER66SXz/xdmLAFAviOABDLbvt0EjjNmnH+6X6NGpsuxe3epcWNCRwCwwpVXmgDyv/+Vpk0zH2/YYK7FxZlNAT76yHSrDB4s/d//mWlzAICi6eRJs9FZ+qBx82YpNjbHh6VedZUCPv1UatiwgAoFgKKHABJwuaS//jKB44wZ5oeU7FxxhQkcu3eXLrusQEsEgCItPNysATl4sOl+jI4207TPnjXX16wxxyOPSL17m/v4JRIA/FdiorR1a9agMf1U6pwEBkoNGii1USP9GRGhRm+9pQDewAIASxFAomhyuaSNGz2h4/bt2d/XvLmn07Fu3YKtEQCQkcMhtWxpjrFjpc8/N2Hkpk3m+qlT0nvvmeOGG0wQ2b27VLy4rWUDAPIoNVX655+sQeOOHRk3f8xJZKTUpEnGo0EDKSREKU6n9s6fr0ZB/FoMAFbjOy2KDpfLbGiQFjru3p39fddcY0LHbt2kWrUKtEQAQC6VLi0NHWp2zl6zxgSRX38tJSSY6ytXmmP4cKlPH+n++80vnACAwuno0axB45YtnjWAL6RMmaxBY6NG5jwAwHYEkPBvqanS2rUmcJw50+xknZnDYTploqKkrl2l6tULvk4AQN44HNK115rj7belzz4zYeTWreb68eOmW3LsWKltW9MV2bWr2WwAAFDwzpwxwWJayJgWOB49mrvHFytmltlIHzQ2bixVq8a67ABQiBFAwv+kpEirVnl2rz54MOs9AQHSjTeaqXldu0qVKxd8nQCA/FWunOl4HDbMdD9GR5s3oJKSzPXly81RoYLUr5/piqxTx86KAcB/JSdLf/+ddVOY3bvNzKQLcTikSy7JGDI2aSLVqycxZRoAfA7fueEfkpPNL5UzZ0qzZmX/DmpQkHTLLSZ0vPNO8wsoAMD/OBxS69bmePddaepUadw4s2aYJB07Jr3xhjluucV0Rd55pxQcbG/dAOCLXC7zhn/6kHHTJtOJnpiYu+eoWDFjyJg2fbpkSWtrBwAUGAJI+K6kJOnHH013y5w5ZppdZsWKSR06mNDxjjuksmULvEwAgI0iIqTHHpNGjDBvVEVHmzeqnE5zfckSc1SuLPXvLw0axPq/AHA+sbFZOxo3b5ZOnszd40NDTbCYea3GihWtrRsAYDsCSPiWhARp8WITOn77rdnxNLPixaWOHc2ajp07S+HhBV4mAKCQcTjM0hs33mi65CdPNl2RaRuSHT4svfqqNGaMeeNq8GDz/xCm+QEoipKSpG3bsgaN2a2nnp2AAKl+/axBY+3a5hoAoMjhp2oUfmfPSgsXmtDxu++k06ez3lOypHTbbSZ07NhRKlWq4OsEAPiGihWlp56SnnhCWrrUdEXOmWPWEHa5zP9zFi6UqlaVBgyQBg6UatSwu2oAyH+pqdLevRlDxk2bpO3bzRJHuVGtWtag8dJLTVMAAAD/QwCJwik+Xvr+e7Om4/ffmxAys7AwM606Ksp0q5QoUfB1AgB8V0CA1K6dOQ4dkiZNksaPN7+MS2ZNs5dekl55RerUyXRFduwoBQbaWzcA5EVMTNadpzdvNj9350Z4eNadpxs3NhuAAQBwAQSQKDxiY6V580zouHChmW6dWZkyUpcuZk3Hdu2kkJCCrhIA4I+qVJGefVZ6+mlp0SLTFTlvnukOSk01HfjffSdFRpqOyAEDTNcPABQ2Z8+aDWAybwpz+HDuHh8cLF12WdZNYSIjzXIWAADkAQEk7HXihFnLccYMs7ZjUlLWeyIiTOgYFWXW7ipWrMDLBAAUEYGBpsuxY0fp33+liRNNV+SBA+b6/v3SyJHSiy9Kt99uuiLbt2dNMwAFLyVF2rUra9C4a5d54yQ3atfOGDI2aWLWbgwOtrZ2AECRQwCJgnfsmFlra8YMs4t1duvLVKokdetmQsfWrdkEAABQ8KpVk154QfrPf6QFC0xX5Pz5Zp3IlBTz/7I5c8yu2YMGmV20K1e2uWgAfsflMt2LmYPGv/7KfsZQdsqXz7pOY6NGZkkjAAAKAKkOCsahQ9Ls2SZ0/Omn7N+VrVbNTK2OipKuvZY1tgAAhUNQkOl2vP12swPshAnmOHTIXN+zx0zfHjnSdOwPHizddBNdkQC8d/p0xjUa09ZpPH48d48vXtwEi5nDxkqVmD4NALAVASSss3+/NGuWCR1//tm8e5tZzZomcOzeXbr6an5ZAwAUbjVqmOnXzz9v1oSMjjZrRrpcpqN/xgxz1Kkj3X+/1Lev2XUbANJzOs1O05l3n96zJ3ePDwiQ6tbNuilMnTq8iQ8AKJQIIJG//vnHbCIzc6a0dm3299St6wkdr7qKd2MBAL4nOFjq2tUc//xj1omcNEk6csRc37VLeuop6bnnzJIigwdLbdvy/zygqHG5TOd05t2nt20zIWRuVKmSMWRs0kRq2FAqUcLa2gEAyEcEkLh4f/9tAscZM6Tffsv+nksvlXr0MKFj06b8AgYA8B+1a0uvviqNGiXNnWu6IpcuNdecTmn6dHM0aGC6Ivv0MeuxAfAvJ05kP306Li53jw8LMwFj5k1h+H4BAPADBJDIm7/+8oSOf/6Z/T1Nm3rWdGzYsGDrAwCgoBUrZt5s69HDvDk3frw0ebIUE2Oub98uPfaY2dQmKsp0RV5/PW/KAb4mIUHaujXrpjAHD+bu8UFB5s35zEFjzZp8PwAA+C0CSOSOy2V+sEpb22rr1uzvu/JKz/Tq+vULtkYAAAqLevWkN96QXnrJbMIWHS0tX26uJSZKX3xhjoYNTRB5331S2bK2lgwgk9RUaffurEHj339nv6FidmrUyLohTIMG5g0LAACKEAJInJ/LJf3+uyd03Lkz+/uuvtoTOtauXbA1AgBQmIWESHffbY5t26Rx46SpU81UTcnMKBg+3KwXedddJoxs1YouKKCgHTmSder0li3S2bO5e3zZslmDxkaNpNKlra0bAAAfQQCJjFJTpV9/NYHjzJnZ78TncEjXXWdCx27dpMjIAi8TAACfc+ml0tixZr3IGTNMV+SqVeZaQoIJJqdONcHF4MHSvfcSXgD5LT7eBIuZN4U5dix3jw8JMZ3LmXefrlqVNw4AAMgBASSklBRp9Wrzy9CsWdKBA1nvCQiQ2rQxXY5du5ofsgAAgPeKFzfh4r33miAkOlr69FMpNtZc37RJeugh6cknpZ49TRjZvDnhBuCN5GRpx46sQePu3bl7vMMh1amTdffpunXNGo4AAMAr/N+zqEpOllasMF2Os2ZJhw9nvScwULr5ZhM6dukiVaxY4GUCAODXGjWS3ntPeu016euvTRi5dq25dvasNHGiOZo1M0Fkr15mp1wAhstl3jzfvFkBGzboyh9+UNALL5glD5KScvcclSplDBmbNDFdjiVLWls7AABFCAFkUeJ0SsuWmU7H2bM9u3KmFxwstWtnplffcYdUvnzB1wkAQFETGir17WuOjRvNWpGffSadPm2u//GH9MAD0uOPS/fcY8LIZs3srBgoeKdOZexmTOtuPHVKkhQoKceFgUqWNKF/5rUaK1SwvnYAAIo4Akh/l5goLVpkQse5c6WTJ7PeExIi3XqrCR07d5bKlCnwMgEAwP9cfrn04YfS669LX31luiLXrzfX4uPN59HRUosWJoi8+246teBfEhNNB2Pm3aezWyYoG67AQDnq188aNNaqZZYVAgAABY4A0h+dOyfH99/ryg8+UFDv3lJcXNZ7QkOlTp1M6NipE9O5AAAobEqVkgYONMfvv5vQ8YsvpDNnzPV168wxYoR0330mjGzSxN6aAW+kppoNDzN3NG7fbtYoz43q1d0BY/Jll2nlqVO6fuBABZcqZWnpAADAOwSQ/ubwYaluXQWdOZN1CkqpUtLtt5vQ8dZbTQgJAAAKvyuvNAHkf/8rTZtmPt6wwVyLizMdkx9+KF1zjQki/+//pBIlbC0ZyODYsYwhY9p/0wL1CyldOuvO040bS2XLum9xOZ2Kmz/fzO4BAACFCgGkv6lcWapZU/rrL0mSq3RpOe6802wk07692XkTAAD4pvBwsxbk4MGm+zE6WvryS+ncOXN9zRpzPPKI1Lu3ua9hQ1tLRhFz9qzZ3T3zWo1HjuTu8cWKSZddlnVTmOrV2QkeAAAfRgDpjwYMUOqmTfolMlLNn3pKwawLBQCAf3E4pJYtzfHWW9Lnn5swcvNmc/3UKbO79nvvSTfcYILI7t15IxL5JzlZ2rUr6zqNu3aZnalz45JLMoaMTZpI9eqZTREBAIBfIYD0RyNGKMXp1NH58827yAAAwH+VKSM99JA0dKjpfoyOlr7+WkpIMNdXrjTH8OFSnz7S/fdLDRrYWjJ8iMslHTqUNWj86y+zWUxuRERk3RCmUSOzPBAAACgSCCABAAD8gcMhXXutOd5+W/rsM+mTT8xuwpJ0/Lg0dqw52rY1XZFdu7JeHjzi4rJOnd68WTpxInePL1HCBIuZw8aKFZk+DQBAEUcACQAA4G/KlTMdj8OGme7H6GhpxgwpKclcX77cHBUqSP36ma7IOnXsrBgFKSnJ7DSduatx377cPT4gwEyVzrwpzCWXSIGB1tYOAAB8EgEkAACAv3I4pNatzfHuu9LUqSaM/Ptvc/3YMemNN8xxyy2mK/LOO1mDz1+4XNLevVk7GrdtM2s45kbVqlmDxssuY5d1AADgFQJIAACAoiAiQnrsMWnECGnZMhNEzp4tOZ3m+pIl5qhcWerfXxo0SKpVy9aS4YXjxzOGjGn/PX06d48PC8sYMqZ9XK6ctXUDAIAigQASAACgKHE4pJtuMsfRo9LkydK4cdLu3eb64cPSq69KY8ZIHTqYrsjOnaUgfmwsFM6dMxvAZF6r8dCh3D0+OFi69NKsu0/XqME6jQAAwDL8JAkAAFBUVawoPfWU9MQT0tKlpityzhwpJcVM31240BxVq0oDBkgDB5qgCtZLSTGhcOZ1GnfulFJTc/ccNWtm3RCmfn2pWDFrawcAAMiEABIAAKCoCwiQ2rUzx6FD0qRJ0vjxZv1ASTp4UHrpJemVV6ROnUxXZMeObDiSH1wu6ciRrEHjX3+ZbsfcKFcua9DYqJEUHm5t7QAAALlEAAkAAACPKlWkZ5+Vnn5aWrTIdEXOm2e67lJTpe++M0dkpFkncsAA0yGJC4uPzzp1evNmKSYmd48vXlxq2DDrpjBVqjB9GgAAFGoEkAAAAMgqMNB0OXbsKB04IE2cKE2YYD6WpP37pRdekEaPlm6/3XRFtm9vuimLOqdT2rEj66Yw//yTu8c7HFLdulk3halbl65TAADgkwggAQAAkLPq1aWRI01n5IIFpity/nwzfTglxawbOWeO2TV70CCzi3blyjYXXQBcLhPEZg4at22TkpJy9xyVK2fdebphQyk01NraAQAAChABJAAAAHInKMh0O95+u1kfcsIE0xmZtgPznj0mpBw5UurSxXRF3nSTf3RFnjyZMWRM+zg2NnePL1ky687TTZpIERHW1g0AAFAIEEACAADAezVrmo1pXnjBrAkZHW3WjHS5pORkacYMc9SpI91/v9Svn1Shgt1VX1hCgulgzLwpzL//5u7xgYFSgwZZg8aaNf0jiAUAAMgDAkgAAADkXXCw1LWrOf75x+yePWmS2dlZknbtkp56SnruOalbN9MV2bat/ZumpKaaejMHjX//baaV50ZkZNagsUEDKSTE2toBAAB8DAEkAAAA8kft2tKrr0qjRklz55quyKVLzTWnU5o+3RwNGpiuyD59pPLlra/r6NGsQeOWLdLZs7l7fJkyWXeebtzYnAcAAMAFEUACAAAgfxUrJvXoYY6//zZdkZMnSzEx5vr27dJjj0n/+Y8UFWW6Iq+//uK7Is+cMcFi5k1hjh7Nfd0NG2bdFKZaNfs7NgEAAHwYASQAAACsU6+e9MYbZr3IWbNMV+RPP5lriYnSF1+Yo2FDE0Ted59UtmzOz5mcbILNzJvC7N5t1qC8EIdDuuSSrJvC1KtnNtoBAABAvuInLAAAAFgvJETq2dMc27ZJ48ZJU6aY3aUl6a+/pOHDzXqRd90lx4ABJkw8cMB0TKafPr11qwkvc6NixawdjY0amV2pAQAAUCAIIAEAAFCwLr1UGjtWeuUVs1N2dLT088/mWkKCNHWqgqZO1W0hIQrKbdAYGmqCxcybwlSsaN3rAAAAQK4QQAIAAMAeJUqYKdf33WfWboyOlj79VIqNlaTsw8eAAKl+/axBY+3a5hoAAAAKHQJIAAAA2K9RI+m996TXXpO+/lqpEyfq3I4dKtGsmQKaNvVMo77sMql4cburBQAAgBcIIAEAAFB4hIZKffsq5Z57tGT+fHXq1EkBwcF2VwUAAICL4JPzVMaMGaMWLVooLCxMFStWVJcuXbR9+3a7ywIAAAAAAACQiU8GkD/99JOGDh2qtWvXavHixXI6nWrfvr3OnDljd2kAAAAAAAAA0vHJKdgLFy7M8PmUKVNUsWJF/fbbb2rdurVNVQEAAAAAAADIzCcDyMxi/7dTYrly5bK9npiYqMR0uyjGxcVJkpxOp5xOp/UF2iDtdfnr60P+YrzAW4wZeIsxA28xZuAtxgy8xZiBtxgz8Ja/jxlvXpfD5XK5LKzFcqmpqbrjjjt06tQprVq1Ktt7Ro0apdGjR2c5P23aNIWGhlpdIgAAAAAAAOBXzp49q169eik2Nlbh4eE53uvzAeSDDz6oBQsWaNWqVapevXq292TXARkZGamYmJgLfoF8ldPp1OLFi9WuXTsFs3MkLoDxAm8xZuAtxgy8xZiBtxgz8BZjBt5izMBb/j5m4uLiFBERkasA0qenYD/00EP67rvvtGLFivOGj5IUEhKikJCQLOeDg4P9cgCkVxReI/IP4wXeYszAW4wZeIsxA28xZuAtxgy8xZiBt/x1zHjzmnwygHS5XHr44Yc1e/ZsLV++XLVr17a7JAAAAAAAAADZ8MkAcujQoZo2bZrmzp2rsLAwHT58WJJUunRplShRwubqAAAAAAAAAKQJsLuAvPj4448VGxurtm3bqkqVKu5j+vTpdpcGAAAAAAAAIB2f7ID08X1zAAAAAAAAgCLDJzsgAQAAAAAAAPgGAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAliGABAAAAAAAAGAZAkgAAAAAAAAAlvHJAHLFihW6/fbbVbVqVTkcDs2ZM8fukgAAAAAAAABkwycDyDNnzujyyy/Xhx9+aHcpAAAAAAAAAHIQZHcBedGxY0d17Ngx1/cnJiYqMTHR/XlcXJwkyel0yul05nt9hUHa6/LX14f8xXiBtxgz8BZjBt5izMBbjBl4izEDbzFm4C1/HzPevC6Hy+VyWViL5RwOh2bPnq0uXbqc955Ro0Zp9OjRWc5PmzZNoaGhFlYHAAAAAAAA+J+zZ8+qV69eio2NVXh4eI73FokAMrsOyMjISMXExFzwC+SrnE6nFi9erHbt2ik4ONjuclDIMV7gLcYMvMWYgbcYM/AWYwbeYszAW4wZeMvfx0xcXJwiIiJyFUD65BRsb4WEhCgkJCTL+eDgYL8cAOkVhdeI/MN4gbcYM/AWYwbeYszAW4wZeIsxA28xZuAtfx0z3rwmn9yEBgAAAAAAAIBvIIAEAAAAAAAAYBmfnIIdHx+vnTt3uj//559/tGHDBpUrV041atSwsTIAAAAAAAAA6flkALl+/XrdeOON7s9HjBghSerTp4+mTJliU1UAAAAAAAAAMvPJALJt27by8c27AQAAAAAAgCKBNSABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWIYAEgAAAAAAAIBlCCABAAAAAAAAWCbI7gJgjVatWmnv3r0qXry43aXARyQkJDBe4BXGDLzFmIG3GDPwFmMG3mLMwFuMGXgrISFBNWvW1G+//WZ3KbYigPRTR44c0fHjx+0uAwAAAAAAoEgjtCaA9FuVKlXinRl4hfECbzFm4C3GDLzFmIG3GDPwFmMG3mLMwFsJCQmqVKmS3WXYjgDST61du1bz589Xp06dFBwcbHc5KOScTifjBV5hzMBbjBl4izEDbzFm4C3GDLzFmIG30o+Zoo5NaAAAAAAAAABYhgASAAAAAAAAgGUIIAEAAAAAAABYhgASAAAAAAAA/9/evUdVVeZ/HP8cuXoBr4ggijImpoEWmqL1Q9TytpyYNMtM0NKs0ZXolC2cDM1m2RprzFulY2ql1mhqlwkzBEFLNCFx0MaaiiwLIUMNKBFh//4wTgfORQ7LwyXer7VYa7Of59n7ezjf9SzX12fvB3AZCpAAAAAAAAAAXIYCJAAAAAAAAACXoQAJAAAAAAAAwGUoQAIAAAAAAABwGQqQAAAAAAAAAFyGAiQAAAAAAAAAl6EACQAAAAAAAMBlKEACAAAAAAAAcBkKkAAAAAAAAABchgIkAAAAAAAAAJehAAkAAAAAAADAZShAAgAAAAAAAHAZCpAAAAAAAAAAXIYCJAAAAAAAAACXoQAJAAAAAAAAwGUoQAIAAAAAAABwGQqQAAAAAAAAAFyGAiQAAAAAAAAAl6EACQAAAAAAAMBlKEACAAAAAAAAcBkKkAAAAAAAAABchgIkAAAAAAAAAJehAAkAAAAAAADAZShAAgAAAAAAAHAZCpAAAAAAAAAAXIYCJAAAAAAAAACXoQAJAAAAAAAAwGUoQAIAAAAAAABwmUZdgFyzZo26desmb29vDRw4UB9//HF9hwQAAAAAAADAQqMtQP7rX//SvHnzlJiYqE8++UR9+/bVyJEjVVBQUN+hAQAAAAAAAPhVoy1A/uMf/9CMGTM0bdo09e7dWy+99JJatGihDRs21HdoAAAAAAAAAH7lXt8B1MalS5eUlZWlhIQE87lmzZppxIgRysjIsOpfWlqq0tJS8+8XLlyQJBUWFqqsrMz1AdeDsrIy/fzzz/rxxx/l4eFR3+GggSNf4CxyBs4iZ+AscgbOImfgLHIGziJn4Kzfe84UFRVJkgzDuGrfRlmAPHv2rMrLy+Xv71/lvL+/v06ePGnVf+nSpVq8eLHV+e7du7ssRgAAAAAAAOD3rqioSK1bt3bYp1EWIJ2VkJCgefPmmX+vqKhQYWGh2rdvL5PJVI+Ruc5PP/2kLl266Ntvv5Wvr299h4MGjnyBs8gZOIucgbPIGTiLnIGzyBk4i5yBs37vOWMYhoqKihQYGHjVvo2yANmhQwe5ubkpPz+/yvn8/Hx16tTJqr+Xl5e8vLyqnGvTpo0rQ2wwfH19f5dJDtcgX+AscgbOImfgLHIGziJn4CxyBs4iZ+Cs33POXG3lY6VGuQmNp6enIiIilJKSYj5XUVGhlJQURUZG1mNkAAAAAAAAACw1yhWQkjRv3jzFxcWpf//+uvnmm/X888+rpKRE06ZNq+/QAAAAAAAAAPyq0RYg7777bv3www968skndebMGfXr10/vv/++1cY0TZWXl5cSExOtHj0HbCFf4CxyBs4iZ+AscgbOImfgLHIGziJn4Cxy5jcmoyZ7ZQMAAAAAAABALTTKd0ACAAAAAAAAaBwoQAIAAAAAAABwGQqQAAAAAAAAAFyGAiQAAAAAAAAAl6EA2Qjt379f48aNU2BgoEwmk956662rjklLS9NNN90kLy8v9ejRQ5s2bXJ5nGg4nM2ZtLQ0mUwmq58zZ87UTcCoV0uXLtWAAQPk4+Ojjh07KiYmRp999tlVx23fvl29evWSt7e3wsLClJSUVAfRoiGoTc5s2rTJao7x9vauo4hR31588UWFh4fL19dXvr6+ioyM1O7dux2OYY5p2pzNGeYYVPfMM8/IZDIpPj7eYT/mGlSqSc4w1zRtixYtsvr+e/Xq5XBMU55jKEA2QiUlJerbt6/WrFlTo/65ubkaO3asoqOjlZ2drfj4eE2fPl179uxxcaRoKJzNmUqfffaZ8vLyzD8dO3Z0UYRoSNLT0zVr1iwdOnRIycnJKisr0+23366SkhK7Yw4ePKhJkybpgQce0NGjRxUTE6OYmBgdP368DiNHfalNzkiSr69vlTnm1KlTdRQx6ltQUJCeeeYZZWVlKTMzU8OGDdMdd9yhEydO2OzPHANnc0ZijsFvjhw5orVr1yo8PNxhP+YaVKppzkjMNU1dnz59qnz/H374od2+TX6OMdCoSTJ27drlsM/8+fONPn36VDl39913GyNHjnRhZGioapIz+/btMyQZ586dq5OY0LAVFBQYkoz09HS7fSZOnGiMHTu2yrmBAwcaM2fOdHV4aIBqkjMbN240WrduXXdBocFr27atsX79epttzDGwxVHOMMegUlFRkXHdddcZycnJRlRUlDFnzhy7fZlrYBjO5QxzTdOWmJho9O3bt8b9m/ocwwrIJiAjI0MjRoyocm7kyJHKyMiop4jQWPTr108BAQG67bbb9NFHH9V3OKgnFy5ckCS1a9fObh/mGViqSc5IUnFxsYKDg9WlS5errmTC71d5ebneeOMNlZSUKDIy0mYf5hhYqknOSMwxuGLWrFkaO3as1RxiC3MNJOdyRmKuaer+97//KTAwUCEhIZo8ebK++eYbu32b+hzjXt8BwPXOnDkjf3//Kuf8/f31008/6ZdfflHz5s3rKTI0VAEBAXrppZfUv39/lZaWav369Ro6dKgOHz6sm266qb7DQx2qqKhQfHy8hgwZohtuuMFuP3vzDO8NbXpqmjOhoaHasGGDwsPDdeHCBT377LMaPHiwTpw4oaCgoDqMGPUlJydHkZGRunjxolq1aqVdu3apd+/eNvsyx0ByLmeYYyBJb7zxhj755BMdOXKkRv2Za+BszjDXNG0DBw7Upk2bFBoaqry8PC1evFi33nqrjh8/Lh8fH6v+TX2OoQAJwEpoaKhCQ0PNvw8ePFhffvmlli9frtdee60eI0NdmzVrlo4fP+7wXSaApZrmTGRkZJWVS4MHD9b111+vtWvXasmSJa4OEw1AaGiosrOzdeHCBb355puKi4tTenq63YIS4EzOMMfg22+/1Zw5c5ScnMymIKiR2uQMc03TNnr0aPNxeHi4Bg4cqODgYG3btk0PPPBAPUbWMFGAbAI6deqk/Pz8Kufy8/Pl6+vL6kfU2M0330wRqomZPXu2/v3vf2v//v1X/R9ce/NMp06dXBkiGhhncqY6Dw8P3Xjjjfriiy9cFB0aGk9PT/Xo0UOSFBERoSNHjmjFihVau3atVV/mGEjO5Ux1zDFNT1ZWlgoKCqo8vVNeXq79+/dr9erVKi0tlZubW5UxzDVNW21ypjrmmqatTZs26tmzp93vv6nPMbwDsgmIjIxUSkpKlXPJyckO35kDVJedna2AgID6DgN1wDAMzZ49W7t27VJqaqq6d+9+1THMM01bbXKmuvLycuXk5DDPNGEVFRUqLS212cYcA1sc5Ux1zDFNz/Dhw5WTk6Ps7GzzT//+/TV58mRlZ2fbLCQx1zRttcmZ6phrmrbi4mJ9+eWXdr//pj7HsAKyESouLq5SUc/NzVV2drbatWunrl27KiEhQd99951effVVSdJDDz2k1atXa/78+br//vuVmpqqbdu26b333quvj4A65mzOPP/88+revbv69Omjixcvav369UpNTdUHH3xQXx8BdWjWrFnaunWr3n77bfn4+JjfSdK6dWvzqunY2Fh17txZS5culSTNmTNHUVFReu655zR27Fi98cYbyszM1Lp16+rtc6Du1CZnnnrqKQ0aNEg9evTQ+fPntWzZMp06dUrTp0+vt8+BupOQkKDRo0era9euKioq0tatW5WWlqY9e/ZIYo6BNWdzhjkGPj4+Vu8ibtmypdq3b28+z1wDS7XJGeaapu3RRx/VuHHjFBwcrO+//16JiYlyc3PTpEmTJDHHVEcBshHKzMxUdHS0+fd58+ZJkuLi4rRp0ybl5eVV2Xmpe/fueu+99zR37lytWLFCQUFBWr9+vUaOHFnnsaN+OJszly5d0l/+8hd99913atGihcLDw7V3794q18Dv14svvihJGjp0aJXzGzdu1NSpUyVJ33zzjZo1+20R/eDBg7V161Y98cQTWrBgga677jq99dZbDjchwe9HbXLm3LlzmjFjhs6cOaO2bdsqIiJCBw8e5P1/TURBQYFiY2OVl5en1q1bKzw8XHv27NFtt90miTkG1pzNGeYY1ARzDZzFXANLp0+f1qRJk/Tjjz/Kz89Pt9xyiw4dOiQ/Pz9JzDHVmQzDMOo7CAAAAAAAAAC/T7wDEgAAAAAAAIDLUIAEAAAAAAAA4DIUIAEAAAAAAAC4DAVIAAAAAAAAAC5DARIAAAAAAACAy1CABAAAAAAAAOAyFCABAAAAAAAAuAwFSAAAAAAAAAAuQwESAAAAqGfdunWTyWTS1KlT6zsUAACAa44CJAAAaNJmzpwpk8kkk8mk1NRUp8Z+8MEH5rFz5sxxUYQAAABA40YBEgAANGmxsbHm482bNzs19rXXXrN5nfqSlpZmLoimpaXVdzgAAACAJAqQAACgiRsyZIj+8Ic/SJJ27NihX375pUbjSkpKtGvXLklSnz59FBER4bIYAQAAgMaMAiQAAGjypkyZIkn66aef9Pbbb9dozM6dO1VSUlJlPAAAAABrFCABAECTN2XKFJlMJkk1fwy78vHrZs2a6b777nNZbAAAAEBjRwESAAA0eSEhIRoyZIgkac+ePSooKHDY//vvv1dKSookadiwYercubNVn7feekt33XWXunbtKm9vb7Vp00b9+/fX4sWLde7cuRrFlZSUpPvuu08hISFq2bKlvL291b17d40fP16bNm3Szz//LEn6+uuvZTKZFB0dbR4bHR1tfh9k5c+mTZus7nHp0iW98MILio6Olp+fnzw9PdWpUyeNGTNGmzdvVkVFhd34pk6dKpPJpG7dukmS8vLy9Pjjj6tPnz7y8fFx+l2Utt5huW3bNg0fPlx+fn5q3ry5QkNDNX/+fBUWFtq9ztChQ2UymTR06FCH91u0aJH5frZUti1atEiStG/fPsXExCgwMFDNmzfX9ddfryVLlphXwlZKSkrSmDFjzP169+6tpUuX6tKlSzX+Wxw5ckSTJk1Sly5d5O3trS5dumjatGk6efJkjcZ/8cUXmjt3rsLCwtS6dWs1b95cISEhmjp1qjIzM+2Oq/4dVFRUaMOGDYqOjpa/v7+aNWvGTt0AAMB5BgAAAIx169YZkgxJxooVKxz2XbZsmbnvq6++WqWtsLDQGDZsmLnd1k/Hjh2NjIwMu9c/e/asMXz4cIfXkGRs3LjRMAzDyM3NvWpfy/6VcnNzjV69ejkcc8sttxg//vijzTjj4uIMSUZwcLCRkZFhdOjQwWr8vn37rvq3r7Rv3z7zuJSUFOO+++6zG1ePHj2MvLw8m9eJiooyJBlRUVEO75eYmGi+ni2VbYmJicbSpUsNk8lkM5bBgwcbxcXFRkVFhfHII4/YjXnUqFHG5cuXbd4rODjYkGTExcUZL7/8suHu7m7zGl5eXsa2bdscfq5ly5YZHh4eduMwmUzGwoULbY61/A52795tjBgxwmp8XFycw/sDAABUxwpIAAAASRMnTpS3t7ekqrtb21LZ3qpVK915553m86WlpRoxYoRSU1Pl5uamKVOm6PXXX9ehQ4d04MAB/e1vf1P79u1VUFCgMWPG6NSpU1bX/vnnnxUdHW1eYRkREaG1a9fqo48+UmZmpnbt2qW5c+cqMDDQPKZz587KycnRhg0bzOc2bNignJycKj8xMTHm9uLiYg0fPty8oi4mJkbvvPOOMjMztX37dkVFRUmSPvzwQ40bN07l5eV2/x7FxcUaP368Ll68qL/+9a9KS0vTxx9/rJdfflkBAQEO/5b2LFy4UJs3b1ZMTIx27typrKwsJSUlaezYsZJ+W+FXF3bv3q2EhAQNGjRIW7duVWZmpt5//32NHj1aknTw4EEtXbpUy5cv18qVKzV69Gjt2LFDWVlZevvttzVo0CBJ0vvvv69//vOfDu+VnZ2thx56SB07dtSqVat0+PBhpaen6/HHH5eXl5dKS0s1efJku6sYly1bpscee0xlZWUKDw/Xiy++qL179yozM1NbtmxRZGSkDMPQkiVLtHLlSoexPP7449q7d6/++Mc/VvkOKj83AABAjdV3BRQAAKChmDhxonmV18mTJ232OXbsmLlPbGxslbYFCxYYkow2bdoYmZmZNsd//fXXRkBAgCHJuPfee63a586da77+rFmzjIqKCpvXKS0tNc6cOVPlnOXqtautPHz00UfNfZ944gmr9oqKCmPy5MnmPi+88IJVn8oVkJKMVq1aGdnZ2Q7veTWW8Usynn76aZtx3X777YYkw93d3SgoKLDqc61XQEoyxo8fb7V68fLly8agQYMMSYaPj4/h7e1txMfHW12npKTEvMIxPDzc5r0q2/XrilJbqztTU1PNKyMHDBhg1X7ixAnzysfExESbuVNeXm5eWdqqVSujsLCwSnv178BWbgAAADiLFZAAAAC/io2NNR/bWwVped6yf3FxsdasWSNJWrJkiSIiImyODw4O1sKFCyVJ27dvr/L+wPPnz2vt2rWSrqx8XLFihd33E3p6esrf378mH8tKaWmp1q9fL0nq06eP+R2Hlkwmk1544QW1b99ekrR69WqH15w/f7769u1bq3hsiYiI0IIFC2zGNW/ePEnS5cuXlZGRcc3uaU+LFi20bt06ubm5VTnv5uamBx98UJJUVFQkPz8//f3vf7c5Pi4uTpL0n//8RxcuXHB4v+eee06dOnWyOh8dHa0ZM2ZIuvKOyOqrIJ977jmVlZWpf//+SkxMtJk7zZo106pVq+Tl5aXi4mK9+eabduPo2bOnzdwAAABwFgVIAACAX40cOdJc1NuyZYsMw6jSXlFRoa1bt0qSgoKCqmz6kp6ebi4sTZgwweF9/u///k+SVFZWpqysLPP51NRU88YyjzzyiFXB61rJysrS+fPnJV3ZSMbefXx9fTVx4kRJ0qeffqq8vDy715w8efI1jfHee++1W3y1LO5+9dVX1/S+ttx2221q166dzTbLouudd94pDw+Pq/bLzc21e6+2bdvqjjvusNt+//33m4/37t1bpe3dd9+VJI0fP97u306S2rRpo7CwMElyWMC9++67XZaDAACgaaEACQAA8Ct3d3fde++9kq7sLP3hhx9WaU9JSdH3338v6UrBrVmz3/4pZbkaLSAgwGoHasufG264wdz3zJkz5uOjR4+aj2+99dZr++EsHD9+3Hw8cOBAh30t2y3HWWrVqpVCQkKuTXC/6tWrl902y2JgUVHRNb2vLT179rTb1qZNG6f7OYr5xhtvlLu7u932fv36ydPTU5KUk5NjPn/q1Cn98MMPkqSEhASH+Wcymcz5apl/1YWHh9ttAwAAcAYFSAAAAAuOHsO29/i1JBUUFNTqfpUrHiXp7Nmz5uPabt5SE4WFhebjjh07Ouxr+Siw5ThLlsW1a6VFixZ22ywLv442x6nrWK5FzFf7Ptzd3c0FWMvv41rkX3Vt27at1TUBAACqs//fqwAAAE1Qv379FBYWppycHG3fvt38vrySkhLt3LlT0pVHgHv37l1lnGVR6ZNPPrH7KG51QUFB1y74WnD0qG5N8ZjutVPb78My/5588kndddddNRrXsmVLu218rwAA4FqhAAkAAFBNbGysHnvsMZ0/f17vvvuuJkyYoF27dpk3jKm++lGSebMWSfLz86tVYbFDhw7m47y8PHXv3r0W0V+d5SPM+fn5Dh8dtnxE1957EBuaytWGFRUVDvtZbgDUUOTn5ztsv3z5snnlo+X3YZl/Hh4eVR7zBwAAqG88gg0AAFDN5MmTzau/Nm/eLOm3x689PDw0adIkqzE33nij+fijjz6q1X1vuukm8/H+/fudHl/T1XOWxanDhw877Pvxxx/bHNeQ+fj4SJLOnTvnsN/nn39eF+E4JTs7W5cvX7bbfuzYMV26dElS1e8jJCRErVu3llT7/AMAAHAVCpAAAADVBAQEaMSIEZKkpKQkHT9+XCkpKZKkUaNGyc/Pz2rMiBEjzO8AXLlypdUO2jURHR1tfiR21apVTr/f0Nvb23xcWlpqt19ERIT5vY2vvPKK3ZWCRUVF2rZtmySpd+/eLn0v5bVUuXL0888/t7vhy9mzZ5WcnFyXYdVIYWGheTdrWzZs2GA+rsxR6crj0mPGjJEkffDBB/rvf//ruiABAACcRAESAADAhsrHrMvKynTPPfeYi4G2Hr+WrmzEMnv2bEnSwYMHNXfuXIePAOfn52v9+vVW15g5c6YkKSsrS/Hx8XYLmWVlZVYbj1gWCL/88ku79/by8tL06dMlXdnZesmSJVZ9DMPQ7NmzzRvjVH62xiAqKkqSdOnSJa1atcqqvaysTNOnT9cvv/xS16HVyLx582w+ip2enq5169ZJulJEHjBgQJX2hIQEubm5qaKiQhMmTNDp06ft3qO8vFxbtmxx2AcAAOBa4R2QAAAANvzpT3+Sj4+PioqKdOLECUlXdgUeN26c3TFPPfWU0tPTdfjwYa1YsUJpaWmaMWOG+vXrp5YtW+rcuXM6ceKE9u7dq927dyssLMxcCKy0ZMkSJScnKycnR6tXr1ZGRoZmzpypsLAweXp66vTp0zpw4IBef/11Pf3005o6dap5bNeuXRUUFKTTp0/r2WefVVBQkEJDQ82Pk/v7+5sfT37yySe1c+dOffXVV1q0aJFycnI0bdo0BQQEKDc3V6tXr1ZaWpokKTIyUg8++OA1/Ou61tixYxUcHKxTp05p4cKFOnv2rO688055e3vrxIkTWrlypY4ePapBgwbp0KFD9R1uFX379tWnn36qiIgIJSQk6Oabb1ZpaamSkpK0fPlyXb58We7u7lqzZo3V2LCwMD377LOaO3euPv30U91www168MEHNWzYMPn7++vixYv6+uuvlZGRoTfffFN5eXnKycmp942QAADA7x8FSAAAABuaN2+uCRMmaOPGjeZzEydOlJeXl90xXl5eSk5O1tSpU7Vz504dO3bM4cpBX19fq3MtWrRQamqqxo8fr/379ysrK8up4t+CBQv05z//Wbm5ubrjjjuqtG3cuNFcsPTx8VFKSopGjx6tkydPaseOHdqxY4fV9YYMGaJ33nmnUe2I7Onpqc2bN2vUqFEqKSnR8uXLtXz5cnO7m5ubnn/+eRUWFja4AmS/fv00e/ZsPfzwwzZzx9PTU6+88ooGDhxoc3x8fLxatmyp+Ph4XbhwQcuWLdOyZcts9vX09Kzy2D4AAICr8Ag2AACAHXFxcVV+t/f4tSUfHx/t2LFDBw4c0PTp0xUaGiofHx+5u7urXbt2GjBggGbNmqWkpCS77yDs0KGD0tPTtXPnTk2YMEFBQUHy8vKSt7e3QkJCdNddd2nLli02N8N5+OGHtWPHDt1+++3q2LGj3N3t/39zt27ddOzYMa1evVpRUVFq3769PDw85O/vr1GjRum1117T/v37G83u15ZuueUWZWVlacqUKQoMDJSHh4cCAgLMhd1HHnmkvkO0a/r06Tpw4IAmTpyowMBAeXp6qnPnzoqNjdXRo0d1zz33OBw/Y8YMffXVV1q8eLGGDBmiDh06yN3dXS1btlTPnj01fvx4vfTSS/ruu+/Uo0ePOvpUAACgKTMZtXlDOgAAAAAAAADUACsgAQAAAAAAALgMBUgAAAAAAAAALkMBEgAAAAAAAIDLUIAEAAAAAAAA4DIUIAEAAAAAAAC4DAVIAAAAAAAAAC5DARIAAAAAAACAy1CABAAAAAAAAOAyFCABAAAAAAAAuAwFSAAAAAAAAAAuQwESAAAAAAAAgMtQgAQAAAAAAADgMhQgAQAAAAAAALgMBUgAAAAAAAAALvP/IaSKX8WFetYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, data_test)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "hV9C-XrkrrrL", + "outputId": "c65029d4-d0f9-4944-dc7e-6bf8d2236db2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU2FJREFUeJzt3Xl4U2XaP/DvSZqkC20t0IUutGURENlaN1AG+oIiA6i4FdS3IOAwr4yKo4IMIihWREdnHB1XFheq4oyiI6IICA4IPwHBskgLSDcobVnapi00bZPn90dImrRpm7ZJTnLy/VxXLkh6cvIE5eY+93me+5GEEAJERERECqGSewBERERErsTkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhvyKJElYsmSJ3MMgIh/D2OFbmNz4iDfeeAOSJOHaa6/t9Lk2bNjAv6QeVFFRgcDAQEiShCNHjjg8Zvr06ZAkyeEjMDDQ7tjMzEzccsstiI6OZsClNjF2+C5Xxo6cnBzMmzcPQ4cORWhoKHr06IEJEyZg7969nvo6HhUg9wDIOVlZWUhKSsLu3btx/Phx9OnTp8Pn2rBhA/75z38ySHnIv/71L0iShJiYGGRlZeG5555zeJxOp8OKFSuava5Wq+2eP/XUU4iJicGwYcOwceNGt4yZlIOxw3e5MnasWLECK1euxB133IEHH3wQlZWVePvtt3Hdddfh22+/xdixY932PeTA5MYH5OXlYefOnfj8888xe/ZsZGVlYfHixXIPy+/V1tZCq9VCpWq9ALpmzRr8/ve/R2JiIj766KMWA1RAQADuu+++Nj83Ly8PSUlJOHv2LCIjIzs0dvIPjB3eSY7YMXXqVCxZsgRdunSxvjZjxgwMGDAAS5YsUVxyw9tSPiArKwsRERGYMGEC7rzzTmRlZTU7Ztu2bZAkCdu2bbN7PT8/H5Ik4b333gNgLmH+85//BAC78qVFTU0NHnvsMSQkJECn06Ffv37461//Ckebx69ZswapqakICgpC165dMWXKFBQVFdkdM3r0aFx55ZX49ddfkZaWhuDgYMTFxeHFF19sdr7a2losWbIEl19+OQIDA9GjRw/cfvvt+O2339o9PoPBgEcffRSRkZEIDQ3FLbfcgpMnTzr88z116hRmzJiB6Oho6HQ6DBw4EKtWrXL45/vJJ5/gqaeeQlxcHIKDg6HX6x2e06KwsBDbt2/HlClTMGXKFOs/Np2RlJTUqfeT/2DsYOywSE1NtUtsAKBbt24YOXJki7e8fBkrNz4gKysLt99+O7RaLaZOnYo333wTe/bswdVXX93uc82ePRvFxcXYtGkTPvzwQ7ufCSFwyy23YOvWrZg5cyaGDh2KjRs34oknnsCpU6fwt7/9zXpsZmYmFi1ahLvvvhuzZs3CmTNn8Nprr+F3v/sd9u/fj8suu8x6bHl5OW6++WbcfvvtuPvuu/Hvf/8b8+fPx6BBgzB+/HgAgNFoxMSJE7FlyxZMmTIFjzzyCKqqqrBp0yYcOnQIvXv3btf4Zs2ahTVr1uCee+7BiBEj8P3332PChAnN/jxKS0tx3XXXQZIk/OlPf0JkZCS++eYbzJw5E3q9HnPnzrU7funSpdBqtXj88cdhMBig1Wpb/fP++OOPERISgokTJyIoKAi9e/dGVlYWRowY4fD4s2fPNntNq9UiLCys1c8hcoSxg7GjrdhRUlKC7t27t3qMTxLk1fbu3SsAiE2bNgkhhDCZTCI+Pl488sgjdsdt3bpVABBbt261ez0vL08AEKtXr7a+NmfOHOHoP/0XX3whAIjnnnvO7vU777xTSJIkjh8/LoQQIj8/X6jVapGZmWl33MGDB0VAQIDd66NGjRIAxAcffGB9zWAwiJiYGHHHHXdYX1u1apUAIF555ZVm4zKZTO0a3y+//CIAiAcffNDuuHvuuUcAEIsXL7a+NnPmTNGjRw9x9uxZu2OnTJkiwsPDxYULF4QQjX++vXr1sr7mjEGDBol7773X+vwvf/mL6N69u6ivr7c7btq0aQKAw8e4ceMcnvvMmTPNvg+RBWMHY0dLscPiv//9r5AkSSxatMjpcfkK3pbycllZWYiOjkZaWhoAczk4PT0dn3zyCYxGo0s/a8OGDVCr1Xj44YftXn/ssccghMA333wDAPj8889hMplw99134+zZs9ZHTEwM+vbti61bt9q9v0uXLnb3g7VaLa655hqcOHHC+tpnn32G7t2746GHHmo2Lkvp29nxbdiwAQCaHdf0SkoIgc8++wyTJk2CEMLuu4wbNw6VlZXYt2+f3XumTZuGoKAgx3+ATRw4cAAHDx7E1KlTra9NnToVZ8+edTgRODAwEJs2bWr2eOGFF5z6PCJbjB2MHa3FjrKyMtxzzz1ITk7GvHnznBqXL+FtKS9mNBrxySefIC0tDXl5edbXr732Wrz88svYsmULbrrpJpd9XkFBAWJjYxEaGmr3+oABA6w/B4Bjx45BCIG+ffs6PI9Go7F7Hh8fb3dvHgAiIiJw4MAB6/PffvsN/fr1Q0BAy/9LOju+goICqFQq9O7d2+64fv362T0/c+YMKioq8M477+Cdd95x+JllZWV2z5OTk1scX1Nr1qxBSEgIevXqhePHjwMwB6GkpCRkZWU1K3Wr1WrFTeojeTB2dGx8/hI7ampqMHHiRFRVVWHHjh3N5uIoAZMbL/b999/j9OnT+OSTT/DJJ580+3lWVpY1QDUNABauvkIDAJPJBEmS8M033zRbpgyg2V8UR8cAcDjR0JNMJhMA4L777sO0adMcHjN48GC7585eeQkh8PHHH6OmpgZXXHFFs5+XlZWhurpakUGF5MfY4V6+HDvq6upw++2348CBA9i4cSOuvPLKDp3H2zG58WJZWVmIioqyrlCw9fnnn2PdunV46623EBQUhIiICADmpk+2LFcktloKZomJidi8eTOqqqrsrnBycnKsPwdgnaCXnJyMyy+/vEPfranevXvjp59+Qn19fbOrt/aOLzExESaTyXpFZ5Gbm2t3PstqCKPR6PKKyQ8//ICTJ0/i2WeftV4dWpSXl+MPf/gDvvjiC6eWfhO1F2NHx8an9NhhMpmQkZGBLVu24NNPP8WoUaNcNWzv4/lpPuSMCxcuiNDQUDFjxgyHP//xxx8FAPHJJ58IIYSoqKgQarVaPProo3bH3XHHHc0mBc6fP18AEOXl5XbHWibdPf/883avp6en2026O378uFCr1eKee+6xTtizMJlMdhPsRo0aJQYOHNhs/NOmTROJiYnW5+2ZFNjW+Pbv3+/0pMDp06cLrVYrDh482Oxzy8rKrL+3TAr817/+1ew4R2bOnClCQkLExYsXHf68b9++4uabb7Y+nzZtmggJCXHq3BacUEyOMHbYn7M941N67HjwwQcFAPH22287dbwvY+XGS/3nP/9BVVUVbrnlFoc/v+666xAZGYmsrCykp6cjPDwcd911F1577TVIkoTevXtj/fr1ze77AuZ+B4B50ty4ceOgVqsxZcoUTJo0CWlpaVi4cCHy8/MxZMgQfPfdd/jyyy8xd+5c633o3r1747nnnsOCBQuQn5+P2267DaGhocjLy8O6devwhz/8AY8//ni7vm9GRgY++OAD/PnPf8bu3bsxcuRI1NTUYPPmzXjwwQdx6623Oj2+oUOHYurUqXjjjTdQWVmJESNGYMuWLdZ717ZeeOEFbN26Fddeey0eeOABXHHFFTh//jz27duHzZs34/z58+36HoC5T8Znn32GG2+8sdnWCRa33HILXn31VZSVlSEqKgoA0NDQgDVr1jg8fvLkyQgJCQEAfPjhhygoKMCFCxcAAP/973+tzb3+93//13oVSv6JsYOxw5Yldvz973/HG2+8geHDhyM4OLjZ8bYxRhHkzq7IsUmTJonAwEBRU1PT4jHTp08XGo3GerVz5swZcccdd4jg4GAREREhZs+eLQ4dOtTs6quhoUE89NBDIjIyUkiSZLe0s6qqSjz66KMiNjZWaDQa0bdvX/HSSy81u8oSQojPPvtM3HDDDSIkJESEhISI/v37izlz5ojc3FzrMc5efQlhvuJcuHChSE5OFhqNRsTExIg777xT/Pbbb+0e38WLF8XDDz8sunXrJkJCQsSkSZNEUVGRw0pHaWmpmDNnjkhISLB+7pgxY8Q777xjPaY9V1+fffaZACBWrlzZ4jHbtm0TAMSrr75q/fNAC8s5AYi8vDzrey1LZB09mi7nJf/D2MHY4Sh2tCfGKIEkhMwzs4iIiIhciH1uiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKYrfNfEzmUwoLi5GaGhoi63Eici9hBCoqqpCbGwsVCrfuMZi7CCSV3viht8lN8XFxUhISJB7GEQEoKioCPHx8XIPwymMHUTewZm44XfJjWXTtKezfkBgsHJ2ZA5e/yy0oYMQ1du80dr6y8LRa3BfmUdF5FhtdTWevz7VbhNDb2cZ619+/BmB3M2dyOPaEzf8LrmxlJMDg7sgMEQ5AWrv+FRkbNWie2EVAMAUFIiSc+eQlJQk78CIWuFLt3essaNLFwT6UFJGpDTOxA3fuNlNbUoJS0eeaS9Oa3bitGYnZh48gZqT5+QeFhERkcf5XeVGybaPGWz9/TVf7YCo64X8/HxWb4iIyK8wuVGQlLB06+91wQeQduwIdkV0RT7yAYBJDhER+QUmNwpVMzkThqx5GP2zDhG9+gAA1pUb0GdYP5lHpnxqYYLWZIIEIfdQZCEgoU6lglHiXW8iZ0lCINBk9Nu4AZhjR61KDeGCuXhMbhRMF6xBXA0QmlsKADAM4n9utxICibXViG8wQOVDE2XdwSQETgboUBDYBfDzPwuituhMRgyuqUAg/6qgVgDZIZehTqXu1Hn4r52CbR8zGNjyE+JDgnHm3AWIuqmcg+NGibXVSDbVoVtUFDRBQYC/BioB1F+8CM3ZM0BtNQqCuLKIqEVCoNfFKkTotIiIjoak8tfAAQiTQHlJCXpfrMKR4PBOXRgxuVGwlLB0bB/T+Dxj6zFkabUAkxuXUwsT4hsM6BYVheCICLmHIztNYCAAoL6sDCdFCG9REbVAI0zoZmpAeLcoaIOC5B6O7MK7d0dNcTE0woR6qePVGyY3Cmc7yTineh5EXV/k5+dbX2MVxzW0JhNUkmSu2BAAQBMUBJUkQWsy4aKayQ2RIwFCQJIkqDUauYfiFdQaDVSShAAhUN+J8zC58SO6YA1mHjyBkjNnAAAb4uJYxXER6yRA/60oNydZfvHfCZJEbWHsaMJFcYOXU36kZnImsit2IOLsr4g4+yvG5eTg+P5cuYdFRETkUkxu/IwuWIN6XQXqdRWIqwEMNdVyD4mIiMilmNz4mZrJmfg4pQ8+TumD7IodrN4QAKCspAQLH52La/v3Q2JYKFJ790bG7ZOx/fvvAQAfrliB22+8EX0ju6NHoA6VFRXyDpiIvIK3xg7OufFDlknGuycBGVuNMNRUc5KxHyvKz8ct/5OGsPBwLFr2AgZcORAN9Q3Yuuk7LJj7CHYcOIiLFy8g7aabkHbTTXh+0VNyD5mIvIA3xw4mN34sJSwdOdXzMC5HDfUpcy+SLZf3A5LkHRd51pOPPAxJkvDNjh8RHBJifb3fFVdg6rTpAIA/PPQwAGDnDz/IMUQi8kLeHDt4W8rP7Z6UirOnzJOM+55HsyoOycdodP9nlJ8/j63ffYfps/9oF5wswi+7zP2DICKX8UTcALw/djC58XMpYenWScanNTsx+nA2GsoNcg/Lrx0/CowaGoD4EC1GDQ3A8aPu+6z8336DEAJ9+nHPMSJf5sm4AXh/7GByQ9g+ZrB1knFcdQBXUMls5t0B+O2YudnDb8ckzLzbfXePhWAPGiIl8GTcALw/dnDODdl1Mc4zLcToww3YFdIFARE6AJxg7ElGI3A0R2XzXMLRHAlGI6Du3D5yDiX36QNJknA8lyvmiHyVp+MG4P2xg5UbsrN9zGDEVQdgzNFcjPrpAGpOnuMcHA9Sq4HL+5ugVotLz8Wl5+75vIiuXTH6xhvx3ttv4UJNTbOfc8k3kffzdNwAvD92MLkhO+YVVLvsuhhzDo5nrfy0Ab37moNU774CKz9tcOvnLfv7qzAajRh/w/VYv24dThw/hqM5R7Din69j4qjfATD3sjiUnY28334DABw5dAiHsrNRfv68W8dGRM7xdNwAvDt28LYUNbN7Uip0Ww4gPiIYdeeKUVveC/n5+bw95SF9Lgd++KXBrSVlW4m9euG7Xf8Pry5/Ac/Mn4+yktPoFhmJwcOGYfk/XgMAfPDuu3g58znreyaPNW83//d33kV6Rob7B0lErfJ03AC8O3ZIwttnBbmYXq9HeHg4nl/3MwJDusg9HK+1T78WADByywFow4Zi1zXXo88w75wV7w2CjfVIvahHXGJPaHSBcg/HK9QbanGqoBA/B4Xhgtp+x+Paqio8PaQfKisrERYWJtMI28cSO57NzkVgaKjcwyGFYOyw56q4wcoNOWSZZLx9DJCxlSuoiIjId3DODbUqJSwdeaa9GH04m3tQERGRT2ByQ22yrKBi9YaIiHwBkxtqE6s3RETkS5jckFNYvWmdgGT5DVkIyy+SvOMg8mKMHU24KG4wuSGnWPrfiLo6HN+fa32QWZ1KBZMQqL94Ue6heI36ixdhEgJ1KoYZopY0SBKEEDDW18s9FK9grK+HSQg0SJ1Lbrhaipy2e1IqMrYeQ2zfgQCAl7qC/W8uMUoqnAzQQXP2DABAExQEvy1YCHNic+7sGZwM0MEoMbkhakm9pMI5VQCCz52DKiAAkspfAwcgTAKVZ8/ivCoA9Z2MG0xuyGnm6s08oKgYADCuLAHbQq4CkuQdl7coCOwC1FajvqwMqk5edfg6kxA4GaAz/5kQUcskCb8FhaJLTQUuFhXJPRrZ1Qrgt5DLAFZuyJN0wRrkXTAnN8m1sZyDY0uSUBAUipMiBFqTCZKf3kQXkFCnUrFiQ+SkOpUae7t0RaDJ6LdxAzDHjlqVGsIFF4dMbqhdaiZnWn+ft65xB3F2L25klFS4qOY/7ETkPCFJuKjmP8muwghMHWa7gsoywZg7iBMRkdyY3FCHWVZQPXLwFB4uqsaYo7ncQZyIiGTHGhh1yu5JqcBX36C/KRERAGojI7mCioiIZMXKDXVKSli6dZJx3oVipB07wuoNERHJipUb6jTLJON9+rXWHcRZvSEiIrmwckMuY7sHFas3REQkF1mTm6qqKsydOxeJiYkICgrCiBEjsGfPnlbfs23bNqSkpECn06FPnz547733PDNYcgr3oCJPYOwgotbImtzMmjULmzZtwocffoiDBw/ipptuwtixY3Hq1CmHx+fl5WHChAlIS0vDL7/8grlz52LWrFnYuHGjh0dOLeEO4uQJjB1E1BpJCCFLO8SLFy8iNDQUX375JSZMmGB9PTU1FePHj8dzzz3X7D3z58/H119/jUOHDllfmzJlCioqKvDtt9869bl6vR7h4eF4ft3PCAxha3h3MM+90SLr2oEYeEOq3MMhL1RbVYWnh/RDZWUlwsLC2vVeuWPHs9m5CAwNbdeYiajz2hM3ZKvcNDQ0wGg0IjAw0O71oKAg7Nixw+F7du3ahbFjx9q9Nm7cOOzatavFzzEYDNDr9XYPci/bHcTz8/OtDyJXYOwgorbIltyEhoZi+PDhWLp0KYqLi2E0GrFmzRrs2rULp0+fdviekpISREdH270WHR0NvV6PixcvOnzPsmXLEB4ebn0kJCS4/LtQc7snpeK+/ccw6qcDmHSiFA3lBiY45BKMHUTUFlnn3Hz44YcQQiAuLg46nQ7/+Mc/MHXqVKhUrhvWggULUFlZaX0UcddVj7BUb/qeBxKqA9i9mFyKsYOIWiNrn5vevXvjhx9+QE1NDfR6PXr06IH09HT06tXL4fExMTEoLS21e620tBRhYWEICgpy+B6dTgedTufysVPbLN2Lw/QaJAdeC0McV1CRazB2EFFrvKLPTUhICHr06IHy8nJs3LgRt956q8Pjhg8fji1btti9tmnTJgwfPtwTw6R2SglLx+5Jqdh842Dk1P3EFVTkcowdROSIrMnNxo0b8e233yIvLw+bNm1CWloa+vfvj/vvvx+AuSyckZFhPf6Pf/wjTpw4gXnz5iEnJwdvvPEGPv30Uzz66KNyfQVqQ0pYOlLC0tn/hlyKsYOIWiNrclNZWYk5c+agf//+yMjIwA033ICNGzdCo9EAAE6fPo3CwkLr8cnJyfj666+xadMmDBkyBC+//DJWrFiBcePGyfUVyEnsf0OuxNhBRK2Rrc+NXNjnRj7sf0MWnelzIxf2uSGSl0/0uSH/07T/DRERkTswuSGPsvS/qTl5Tu6hEBGRQsm6FJz8j7l6Mw+irq9d9SYpKUm2MRERkbIwuSGP0wVrMPPgCZScOYOwyGisi7gMSJJ7VEREpBS8LUUeVzM5E9kVO+y6F3MFFRERuQorNyQLXbAGB/SbAT3YvZiIiFyKyQ3JomZyJrbr1wIArvlqB8blANtCuqDPsH4yj4yIiHwdkxuSTUpYOgBg9yQgY6uR3YuJiMglOOeGZMf+N0RE5EpMbsgrsP8NERG5CpMb8gqs3hARkaswuSGvoQvWIO3YETSUG+QeChER+TAmN+Q1aiZnoqpkD2rLzyM/P9/6ICIiag+uliKvYqnexFzKu9m9mIiI2ouVG/Iq28cMRlXJHkTnliI6t9RaxSEiInIWkxvyKilh6dAFa3BasxOnNTsx8+AJrqAiIqJ24W0p8jrbxwy2/v6ar3ZA1PVCfn4+dw4nIiKnMLkhr2PpXAyYuxc/sP0EVmm1AJMbIiJyAm9LkVdLCUtHdsUO9r8hIiKnMbkhr8f+N0RE1B5MbsjrNe1/Q0RE1BomN+QTWL0hIiJnMbkhn7B9zGDEVQfAUFPN7sVERNQqrpYin5ASlo4800KMPtyAmLqBANi9mIiIHGPlhnwGuxcTEZEzmNyQz2D3YiIicgZvS5FPYfdiIiJqC5Mb8im23Yt1wQeQduwIdkV05dwbIiKy4m0p8lnsf0NERI4wuSGfxv43RETUFJMb8mm2/W+IiIgAJjfk48z9b/Zi9OFsHN+fK/dwiIjICzC5IZ/H7sVERGSLq6XI59l2Lw4+1R0AsOXyflxBRUTkp1i5IUWwdC+OOPsrIs7+yhVURER+jMkNKYKle3G9rgL1ugquoCIi8mO8LUWKYd+9eA9qywewezERkR9ickOKwe7FREQE8LYUKRT73xAR+S8mN6RI7H9DROS/mNyQYrF6Q0Tkn5jckGKlhKUjp3oXxuXksHpDRORHmNyQou2elIrulUZWb4iI/AiTG1I0S/VG1NWxqR8RkZ9gckOKt3tSKu7bfww1J8/JPRQiIvIAJjekeKzeEBH5FyY35Bd0wRpuyUBE5CeY3JBfqJmciaqSPagtP4/j+3OtDyIiUh5uv0B+QxeswcyDJ9AtWQsAeKmrzAMiIiK3YOWG/EbN5ExkV+xAcdEmFBdt4hwcIiKFYnJDfkUXrEHehWLkXSjmCioiIoXibSnyKzWTM62/z8maB1HXF/n5+UhKSpJvUERE5FKs3JDfYv8bIiJlYnJDfov9b4iIlInJDfk19r8hIlIeJjfk12z737B6Q0SkDExuyO+xekNEpCxMbsjvbR8zGFUle2CoqWb1hohIAWRNboxGIxYtWoTk5GQEBQWhd+/eWLp0KYQQLb5n27ZtkCSp2aOkpMSDIyclSQlLhy5Yg9GHs1m98QGMG0TUFln73Cxfvhxvvvkm3n//fQwcOBB79+7F/fffj/DwcDz88MOtvjc3NxdhYWHW51FRUe4eLinY9jGDkbE1AIaaarmHQm1g3CCitsia3OzcuRO33norJkyYAABISkrCxx9/jN27d7f53qioKFx22WVuHiH5i5SwdOSZFmL04QbsCumCPsP6yT0kagHjBhG1RdbbUiNGjMCWLVtw9OhRAEB2djZ27NiB8ePHt/neoUOHokePHrjxxhvx448/tnicwWCAXq+3exA5sn3MYMRVs3rj7TwRNwDGDiJfJmvl5sknn4Rer0f//v2hVqthNBqRmZmJe++9t8X39OjRA2+99RauuuoqGAwGrFixAqNHj8ZPP/2ElJSUZscvW7YMzzzzjDu/BimEuakft2Twdp6IGwBjB5Evk0Rrs/Dc7JNPPsETTzyBl156CQMHDsQvv/yCuXPn4pVXXsG0adOcPs+oUaPQs2dPfPjhh81+ZjAYYDA0ThLV6/VISEjA8+t+RmBIF5d8D1KOffq1yNiqRda1AzHwhlS5h6NYtVVVeHpIP1RWVtrNgXGGJ+IG0HLseDY7F4Ghoe0aMxF1XnvihqyVmyeeeAJPPvkkpkyZAgAYNGgQCgoKsGzZsnYFqWuuuQY7duxw+DOdTgedTueS8ZLysXrj/TwRNwDGDiJfJuucmwsXLkClsh+CWq2GyWRq13l++eUX9OjRw5VDIz/GDTW9G+MGEbVF1srNpEmTkJmZiZ49e2LgwIHYv38/XnnlFcyYMcN6zIIFC3Dq1Cl88MEHAIC///3vSE5OxsCBA1FbW4sVK1bg+++/x3fffSfX1yCFaVq9sWAVxzswbhBRW2RNbl577TUsWrQIDz74IMrKyhAbG4vZs2fj6aefth5z+vRpFBYWWp/X1dXhsccew6lTpxAcHIzBgwdj8+bNSEtLk+MrkEJZtmSIuVTcXBdxGZAk65DoEsYNImqLrBOK5aDX6xEeHs4JxdSmgKx5uCFqPLRxcTh88RS2XN6P/W9cpDMTiuViiR2cUEwkD5+ZUEzkzXTBGhzQbwb0QHLgtTDEsf8NEZEvYHJD1ILtYwZbf3/NVzsg6npxBRURkQ9gckPUgpSwdOvvd08CMrYeQ5ZWCzC5ISLyarIuBSfyFeYVVLsg6ursVlAREZH3YXJD5CRdsAYzD55g/xsiIi/H5IbISTWTM5FdsYPVGyIiL8fkhqgdLP1vGsoNbR9MRESyYHJD1A41kzNRVbIHteXnWb0hIvJSTG6I2onVGyIi78bkhqidto8ZjLjqABhqqlm9ISLyQkxuiNopJSwdeaa9GH04m9UbIiIvxOSGqANsqzdERORd2KGYqAPM1ZuFGH24AbtCunBDTSI/1tHb09zKxX2Y3BA5wWQEVGr717aPGYyMrazeEPmz4/tzMbm8wuHPjCZA3cr9kXXlBl4YuQmTG6JWlBVpsPqZWJQW6hDd04D7FxcjKqEegGVLhnkQdX25oSaRnzLUVCM6t9Tutfzz4Xj8i5tw4lxX9Op2Hn+97Tskda1s/t5B/CfYXTjnhqgVq5+JxZmTWgDAmZNarH4m1u7nuyel4r79x7glA5Efys/Ph6irwwH9ZpzW7LQ+HvlyJPLPh5uPOR+OR74caffz05qdOKDfzG7nbsS0kagFJiNQWqhrfG6SUFqos7tFxeoNkf+qOXkO9+0/hg9uHGx9zWSUUHQ2rvG5UKPobByyhvSFSi3s3p+x9RiytFqAccPlmNwQtUClBqJ7GnDmpBYmkwSVSiAyvq7Z3BvLhpqrtFrkX3qNSQ6RMtlWWkRdHXKqdyEl7EW7Y7Y4iBtXRdzd7Fy2F0ZNMYZ0Dm9LEbXi/sXFiIyvAwBExtfh/sXFzY6xbKg5LicHk06UYtKJUhzfn+vpoRKRBzSUG6x/z9OOHYEuWNPsGGfiBtB4W3vUTwes55x0ohQN5QberuokVm6IWhGVUI/5KwocrpaypQvWIK4GCL00sZATBYmU5/j+XIz+eS+i60MBAMfK9qDh3hebHeds3LDc1r7h/HjgfOOk5D+iFK8OiuPtqk5gBCZygm2AchSwaiZnImfdQsSHBAMARh++nP1viBTGUFONuBrgdMhOAOaLmoZWjm8aJxzFDl2wBqc1O+1eO3PuAkTdVM7j6wQmN0ROam1ZOGDue2PB/jdEynJ8fy7G5eQgu2IHdo9MBWCuvDijtdhRMzkTH+vX2h0/cssBpB07gl0RXYEkl34Nv8HkhshJjpaFz19RYP25baDjCioi32c778VQU43ulUZsmJTqdFJj0Z7YAQA1k9NhyJqH2vIBjCEdxAnFRE6wLAs3mSTzc5tl4Y6w/w2R77OdPDwuJ+fSyqj2JTbtjR0WumAN0o4d4ea8HcTkhsgJlmXhKpW5T4VKJczPW5gsODQkHTnVu9iki8hH5efnW7sPR+eW4uypHdg9KbXd52lv7LAkPdvHDEZVyR7Ulp9nDOkAJjdETnJmeWdZkQbLZyXi8fGX4/n/vIb+/6+UV15EPqih3IDRh7OtHYV1wZp2V20s2hs7ls9KRHzlfazedALn3BA5KSqhHk+8bb5P3tJV1+pnYlF26d56SXkCFq2aiYlJ2xAQwfvmRL7EUFONuOoAfJDWx/paSgfP1T227aXhtrGjtFCHl2Yn4vcvp+Gho1VcnNABTG6InFBSoMH7SxtXO0xbVIyYxHq7YNV0uwYAMJq02P3KMEwacJirHoh8xPH9uRh9OBt5pl+QEpbZ4fM4WiXVPbYeKjXajh0NKvz015mYOPE+jD7cgF0hXRAQYT6GF0ptY3JD1Arb4ASY75mXFmrx4gPJUAeYYGxQ2S3tjO5paBakTp+PxIVz57nqgchHWKs2YwZ3uFpTVqTBS7MTYWwwz/4oLdThhZlJACSnY0dZkQ4/jB6C6f8NwJij5q7nG+LikA8mOG3hnBuiVqx+JhZlRdpLzyS7X40N5l9tdwu/f3Ex1AEmmzMIRIadRtqxHN43J/IBlp2+O7IyytaqJbHWxKZR+2JH1xjznlQ51bsQcfZXRJz9FeNyGEucweSGqAWWUrEQUgtH2C/tfGFmIgDgssgGWKo8AHC2JhIzX/oL1j6UirITrfRiJyLZWXb67sjKKAuT0Vx1aZl97Cgp0CAqob5Z7DhfosXyWYnYlHIT8i4Uo15XgbpzP3EFlROY3BC1IrqnAbbBxjHzz8uKtHhzfjzOndbCtsojjOa7v1WnQ7Bieoi7hkpEneSqqg0ARMY7W10ReOcv8XhhZmKz2AGYqzu7X56J7WMG4+OUPjCowBVUTuCcGyIbJiNwtrhxno25TNxS5caiMRhVntXAnOw0f49JqFBxMgQmo77VzfSISB41J89h5sETyGljzyhHLLHj3afiLiUpQEuxwJ6EijOWuNH8PZbqztCQdKjUwPYxjdu7cB5fy5jcEMF+4rA6wGTtJmq5N+5ckLKwP05SCQiTBJVkREzX8zhxIJcbahJ5GUvVJrtih8OdvlvSNHY0xoz2kpr8ao45KpVAZHyd9YIoJSwdeaaFl1ZQXc9VmC3gbSki2O/9YmxQQZiaBhpHAavt21UqtQlRl5p3hcadx9JxX7BnBZEXaig3IO3YEeiCNe16X9PYYR8rWkp0WosdAoBAdM+Wm/5tHzMYcdXcnLc1rNyQ33PUY6JRaxWbtsvNJqNkbfwHADWffA1Rl8FyMpEXyc/PR235eVSV7GlX1ab12NGa1mKH+WePvVFgrdY0vY1tX73pwkqwA0xuyO+p1EC3HnU4d1oDc2ARUAcIB1dh7WW++rKdwxMW/y7+Vv8F/qvVAkxuiLyCpWpT1865No5ih/k2dGduipjjz/lS+waAlsahFtvHDLbOvaHmeFuK/E5bu/EC5uXcf/3mqHm1lGRbQm76+9ZvTU184IxdW3X9yUj84ZNpqCjUciknkRewbJAZVx2A7WMGt3icM3EDALpGN7QRN9p6LkEI4N2n4qy3uyyNQ5fPSkRZkfm2WUqYeXNecozJDfmNphvTWYKEyYhmSzDPndaipFCDhnoJEC3dQ5fQVnl55aJ4c68cU+NxRpMW+19OQc3Jc675YkTUYZYNMvNMex0u/24pbgAtx476uqZxo6mmP7N/bjKqcO601rqwwfLzsqLGpn/UOiY35DdsJ/7ZdgZVqc39bFQq89WTJAmoA0z46+zkS+Vm1yss7w5jbR2rN0Qya6tq01LcAJrHDksF5nxJ07jRmdvbjYQwLwt3torkz5jckF+wTPyzXAlZekdYgsT9i4sReWlVk0otml0xuZpaVY8xv5kbcTFQEcmjcYNMx1WbtuIGYB87GjWNG22trHSW+cLLsvEmtYzJDfmFpldYKpUwP7+0CiEqoR7zVxTgxfVHmywFtxBNfu0co0mDoznFWPunFDzZtwf+elN3bs1A5GFtVW3aihuAOXY0roh0V1JjIcHYoMILM823yZ7/4h+oPM2u544wuSG/YXuF5ah3BNAYzFoOSp2v5EiXAuR7/30SVSVdAABn8gLwwR8jOn1uInKOs1stOBM3AHfHjcbkSh1gwtlT5ttkZfo47HlpEI7vz+3k+ZWHS8HJb1iqM5Zyru3Vl22X0fDu9Whrwl9HmLuXqhAVX4dpi4rx4gPJ1p8Jo4Sy4xqYjM17WhCR61k2yPxgUipSWjnONm40vR1kGzcui3RP3ABwqTWFhMj4Oru+Oiahxqmz3XGxisvBm2LlhvxKWZEGL81uvvJh9TOxKC0yXw017g/lSgKhEY0dNFQqICrBAJVkjpSSSiCqTz0TGyIP6MgGmWeLm6+asp1sXHHGHbUCgeDQOnSPbexv0zWmzu42WUx4IaQGLk5oipUb8itNVz68+1Qc1AECZUVNu4y6fiKxeXM883LOl2YnwtiggiqgAWgAwmKqkfHWRZd/JhE152zVxpZt7Cgr0uLFPyTCZLStD7hn8cGFKg1qa8y/Ly00LztXB5gAk7mSc/Vj63Hf/ipksTGoHVZuyG84Wvlw7rTWev/avRp74gghXep+DMCkRkxEEf7+v/+AvvJXD4yDyL91pGrTNHYIIdkkNq6u8toyx42mqzeFSUJ0TwPmryhA2oCxyKneBVHH6o0tJjfkNxz1swFgEzjcyXE3Y5NJQkl5AmL0GrZRJ/KQm0+caNcGmc372dhyd/xoHjssS9IbLq1A1wVrkHbM3FqCzJjckF9p2s/GzLXLvB2T7D5Hkuw/8/6PpnBLBiIvZt/PprWtFVzNdvNe+0aj8yaa5//kXfUiqkr2oLb8PGPIJUxuyK9YVj5E9zQ46GXjziswAdu/bqJJa/bSqnhuyUDkxWxjh2T3L6e7Kzf2iQ1gubVtft3SNZnVG3tMbsjvlBRo7O6fW4JHVII7g0Jr+1MBwqTilgxEXs4SO1pu8ukOtnGqeeyw3KKquiWT1RsbTG7I77y/NBZNy8rRPQ249Y9n4P4Sc0sE1Kp6PHD4BKs3RF7KUey4LLLO5ha3HAS69aiDSs25N7aY3JBfsax6aHoFNPGBM1j5dCzcV2JuK/hJMJo02H9+J1c9ELlRQ7kBBmP7//FvKXZUngtosiTc0ySIS+Fl+5jB6FXbtK2Ff2JyQ37F0Yqpbj3qsHpJrJsDlHNJE6+8iNwnPz8fteXnUVWyBzWTM9v13mYrpiTzKiZhkv+f0fMlWm6k2YT8/1WIPMx21UNUQh2EgMxXXoCltHzxjqW8b07kJg3lBqQdO9KuZeC27FZbqmxXMcmp+WaexA7F5Ids94oxGYF5Ey+XcTTmABnds3FDPkv1ZldEVyBJxqERKYht1abh3hc7dA5L7Ki7CDx5q5xxA3AUO6gRkxvyS7Yb3qnUJpiMTVcieEa3HvWY+ewpxCQ27h2zfcxgZGwNgKGmGvn5+UhiS3WiTmsoN+DmEydQFaxBQ9uHO2QbN8wb4coTNwDHsYMayV2LJ5LF6mdiUXZpo0z5bkmZ7903DU4pYenIM+3F6MPZaCg34Pj+XBzfnyvHAIkUpX99aKfeb7u/lJyJTUuxgxrJmtwYjUYsWrQIycnJCAoKQu/evbF06VII0frKkm3btiElJQU6nQ59+vTBe++955kBkyJYVj3YN9Kz7SDsKea9rRxNBNw+ZjDiqgPwcFE1Hi6qtlZxiHGD5NF0fylHzfU8p+XYQWZOJzfFxa6/p7d8+XK8+eabeP3113HkyBEsX74cL774Il577bUW35OXl4cJEyYgLS0Nv/zyC+bOnYtZs2Zh48aNLh8fKZNK3VLDPm+YHGhmqd7sPfI+9h5531rF8TWVpSUuPyfjBsnBslqqcesUC++JG9TI6eRm4MCB+Oijj1z64Tt37sStt96KCRMmICkpCXfeeSduuukm7N69u8X3vPXWW0hOTsbLL7+MAQMG4E9/+hPuvPNO/O1vf3Pp2EjZZiwphjrAJNOnN+4rdVlkfYurHLaPGYzNN5ofvrqC6pVxadj/5ecuPSfjBsnl/sXFiEpwtL+UpzU27iPHnE5uMjMzMXv2bNx11104f/68Sz58xIgR2LJlC44ePQoAyM7Oxo4dOzB+/PgW37Nr1y6MHTvW7rVx48Zh165dDo83GAzQ6/V2D6KohHo89maBTJ/eWNbWn1ejrMjxstSUsHTrw1f734x7bD4+e2o+PpzzB1yoKHfJOT0RNwDGDmrOslrq8bfyIG/FxvzZLcUOakdy8+CDD+LAgQM4d+4crrjiCnz11Ved/vAnn3wSU6ZMQf/+/aHRaDBs2DDMnTsX9957b4vvKSkpQXR0tN1r0dHR0Ov1uHjxYrPjly1bhvDwcOsjISGh0+MmZYhJrEd0T8OlZlzyMBlVWLUkts3jaib75r4xI/53Ov68YQsuVJTjrzeNxq9bvuv0OT0RNwDGDmpZbK9LsUPG6s35EvPKraayK3b4XJxwh3YtBU9OTsb333+P119/HbfffjsGDBiAgAD7U+zbt8/p83366afIysrCRx99hIEDB1rvhcfGxmLatGntGVqLFixYgD//+c/W53q9nkGKAJiveurrJEDIe8+8rEgHkxFtlph9tf9N14SemJ31L/z4wSp88H+zENW7LyTJ/Gc+cuRIqNVqr4sbAGMHtaysSIM6g5yrpcw7g5cW2scOc5X3gE/GCVdrd5+bgoICfP7554iIiMCtt97aLLlpjyeeeMJ6FQYAgwYNQkFBAZYtW9ZikIqJiUFpaanda6WlpQgLC0NQUFCz43U6HXQ67rVB9sqKNHjxD4le0Zk4uqdz985t+9/4mvJTJ3Fo4zcICg/HwBvHwWQ04nTOr5gwYUK7/356Im4AjB3k2JE9wXh3YRzkXQYuQaUSiIxvHjt8OU64Ursyk3fffRePPfYYxo4di8OHDyMyMrJTH37hwgWoVPb/uKjVaphMLU/0HD58ODZs2GD32qZNmzB8+PBOjYX8y+pn3L2XlLMkNNRLKCvSICqh9Z4V5hVUCzH6cAN2hXRBn2H9PDTGzvnpkyysf/4Z9B0xEo99uw1dunVDbVUVtr75Gp588kmEhYW163yMGySnVYvducGuM8yfLakEbpl9ptlPfTVOuJrT0f3mm2/G/Pnz8frrr+Pzzz/vdGIDAJMmTUJmZia+/vpr5OfnY926dXjllVcwefJk6zELFixARkaG9fkf//hHnDhxAvPmzUNOTg7eeOMNfPrpp3j00Uc7PR7yD427+8pJWJeUlpc6vnfuiKX/ja9cla2Yfg82LM/EbUsykfHWSnTp1q3T52TcILk01AHGBjkvigQs83yEScJ/3nb87zB3B29H5cZoNOLAgQOIj4932Ye/9tprWLRoER588EGUlZUhNjYWs2fPxtNPP2095vTp0ygsLLQ+T05Oxtdff41HH30Ur776KuLj47FixQqMGzfOZeMiZbP0qygt1EK+KzAJlp5zJlPze+ctSQlLR071PIzLUWObD1yVCaMRj27YjMt6OJe8OYNxg+QSoIXM2y40fmZ74oY/kkRbbT0VRq/XIzw8HM+v+xmBIV3kHg7JpKxIg3efisO50+ZW6pLKBGGS54rMcu98/grnlqbv069FxlYtsq4diIE3pLp5dO5RW1WFp4f0Q2VlZbtvS8nFEjuezc5FYGjn2viT5x3fn4s//r9c7KnejJrJmR0+z5E9wVi1OBbGBhXUASaoNQ2ou6h14Uid01rc2Kdfiwe2ByHrd1d5/QVQe7QnbnDjTPJLUQn1WPh+vrV9+dliDV6YmQTPXY0JqAMEjA0qRMa3b1dfS/VG1PXlxppEHjbg6gt4acNxNNSZKzllRZ6MHR2PG/6GyQ35NUs5t2t0PTxZZlapBZ54uwDdY1vuUNya3ZNSkbH1GLK0WoDJDZHHBVwq1ng2dkiYtugUrrjmAm9FtcEblosQyaasSIPlsxIxb+LlUKlN8FRTLpNRha7RHUtsAEv1ZhdEXZ3fN+siclZVXRW2jxnsknPZxg5PNvNbvyKSiY0TmNyQX1v9TCzOnDRfgpmMnp0gOG/i5Vg+KxElBR1roe6rWzIQeVp+fj5qy88ju2IHUsLSXXJO29jhPs2TprIiHV6YmYiyIg13BW8FkxvyW5Yl4SZT415PnpxzAwClhVq8+EAyls9KbPc+Mb66JQORpzWUG5B27Ah0wa7Zi6mkQOMgdrhD0/Oa48aZk1q8NDsRj4+/vEOxwx8wuSG/pVLj0s7gciwYtA+KpYVavPtUXLvPwuoNUevy8/NhqKlGXHWAy25Jvb80FnLGDSEka7+djsYOpWNyQ37LZLQ05JJ3bykzCedOa9tdZmb1hqh1DeUGjD6cjTzTXpfckmpsAuoNcQPoaOxQOiY35LcszfxUKssVmDuvxJqe23WfxeoNUet61epcVrVxHDc8VcXxq7Z0ncLkhvza/YuL0T2uDgCgDnBn4Gh6ldf8Xnq3Hs5toNmUr23JQOTr7l9cjMh4c9zo1qMeYV0bbH7qyThi/ryOxg4lY3JDfqusyLynU1mRDtE9DbgssgGevzIyf150zzo88NypDp3BvFHeXow+nI3j+3NdOTgiakOARqC6Uo3G2OHZRQmdiR1KxiZ+5Ldsl3KeOam1WfngSRIefzsPscmt7wjelu1jBiNjK6s3RJ5gGzvKTmohfDh2KBUrN+SXmi4Dd31i03YFSJIEonsaXBKcWL0h8oymsUOOxMaVsUOpmNyQX2o6KVCSXD0psO2A1zWmHtMWuW5vGM69IXI/zy5EcKxrTD33lWoDkxvyW7aTAlVqAc8u7RSoOBPQ4QZ+jnBLBiLPsI0dnidw7rT20nxBNu9rCZMb8ltRCfWYv6IAL64/am2I5TmNTbjOnDQHKlfYPSkV9+0/hpqT51xyPiJqLiqhHk+8XXDpmbsvippWhsyf58q4oURMbsjvBWjNZWb3c1y+Npkk8z18FzThYvWGyDMst6cklTw9blwZN5SIyQ35vSN7gnHmlDvKu03vydtf4VmCokplnhzoqj4VumANZh48waZ+RG5UVqSB4aJkM6HYNvlwRcLTNG7Yf46r44bSMLkhv7dqcazNjuCu7CRsH5TMk5bNQalbjzpEXbpnHxlf59LJgTWTM5FdsYNbMhBdciLQgJFbDrj0nKufiUXFmdYuijqb4DiOG9E93RM3lIZ9bsivNdShyXyb5p2E1WoTjMbOXAcIdOtRjwCNQGmhzhqUuseal3G648rLsiXDroiuQJLrz0/kKwIidNjadwCu2r7HZeds3F/KltTC7zvK83FDSZjckF8L0Jp3Bjc2SDAHpOarpjqX2ACAhJnPnkJMYj1MRuBssbkzcmmhuTPy/YuLEZXg2n4VNZMzYciah9ryAcjPz0dSUpJLz0/kK5KSknD45DkMuewG5KxbiJrJmZ0+p2W+TWmhFu6bUOz5uKEkvC1Ffm/GM8XWfaXUAQIqtcn6M+nSfe1uPerQ0XvqKrUJUfGNV1tNOyO7a8UDN9QkMguJ74aVg3rBcMF1ycD9i4vRrUfj+cxxo3GeXbcedU3iRvtvU0XFmxMbT8YNpWDlhvzegKsv4KUNx9FQZ67klBRo8P5S8xVSVHwdpi0qhkoFvPtUHM6dNgeXbj3qkTKmEpvWdEdLFR8Lk1GFx8dfjuieBkxbVGxXzrZd8eDqMjO3ZCAys1Rv+ncZjg/0a5ESlt7pc0Yl1GPh+/nW1UpnizVYtcSyV535FpLJBGssUQcIGBskRPc0YPDv9Daxo2UvzU40x6EEA8qKPBM3lILJDdEl50vty74zl57E+ncj8eIDyYjuacADz51C1+h6qNTmgLJ8ViJUKsBkau2sjSsezpzU4v2lsYjuabDuZaVSCUTGu2dHX/OWDAsx+nADdoV0QZ9h/Vz/IUQ+QhfSBd2DL8PILZtRM7nzyY2FSt18E95bZp+xiyWWPaAsycjyWYmQVIBoMXYIqNTCWqk5e0oLdYAJwiS5PW4oBW9LEV3StOz7nu3meEVavDQ7EfMmXo6XZieipEBjt79My1dgkvVnlqutaYsau5u6e8UDt2Qgcr+msWPV4sbnpYVa/HW2uRP52WKNdTJya3tSRcbXwWRU2e19Z2xQeSxuKAErN0RovvrBZJIAm+AjhHRp0rF5F+CVT8ddmojc8vXBi+uPYsFtfewmK6sDBGISzZ2RPVFSZvWGyL3aih2Wi5uyS/Nk7l9c3GrsiEow4MmVBXji981jh6fihhKwckOE5pvhqVQC6gCTzeZ4jYRJwrnTWmuy40i3HuaSsTmANVZ3jA0q6z16TwUoVm+I3Kel2NF0ArG4VLl9Z2EcjMaWY8f0p4thMrYcO5jYOIfJDdEltpvhRcbXYcYzbW2O5zhAqQNMeOC5U1Cp0Wy1hCXp8SRuyUDkXk1jx/TFxWgpPpwv0QLC0c/M8SEmsd5rYocv420pokssG2naXh0NuLoAy2Yk4szJpg27HIuMN2DmM97Xf2L3pFRkbD2GLK0WYM8bIpdyFDva2wcnKqEOM5a4Zh7NyC0HcCJsqEvO5atYuSFqounV0cxnii+VmVtjKUk3vmIy4tLS8cbS8rnTWlk2umP1hsj9bGPH/YuLrVsltM4cOySbHKizscNwoR5b+w5AQIRzF2VKxOSGqA1RCfV44u0Cm53DHTXjujRpsKixuZaje/FybnRn2VCz5uQ5eQZA5Ecs1Zx57+bZXxxJTeOHa2NHyLqFCI25GoERXf26MzmTGyIn2AYq266kzSYNisbmWkDze/FyLt+0bKjJ6g2R58Qk2l8cqdWOOxa7KnawamPGOTdE7RCTWG/eokElbHrcAJYOxU2bazm6Fy8nbqhJ5HmW6u9LsxOt/W8auS527NOvRUaX4fhZq/Xrqg3Ayg2R08qKNFg+KxFlRc2b91nurbd0heUNiQ1grt5UlexBbfl5Vm+IPMASNx4ff7nDxp+ujh26ADV0IV06M2RFYOWGyEm2XUibXm15U3WmLazeEHlO87gB+Grs8CWs3BA5wdKFtOlVV/e4xqstXwlOtk39WL0hch/HccP8e9tKja/EDl/Cyg2REyyrF5pueDl/RYHcQ2s3+y0Zrmf1hshNWoobT7xdwITGzVi5IXKSN6186ixuyUD+KEdT5fHPdBQ3mNi4Hys3RE7ytpVPncENNcnfBETo8G2vXrhq+w6Pfq6S4oYvYeWGqJ2UEqBYvSF/kpSUBEmrRf8uw7FPv9bjn6+UuOErmNwQtZMc2ye4A7dkIH8TEt8Na4b1xTVf/SzL5ysldvgCJjdETrLtV2Hud6ORe0idtntSKu7bf4xbMpBfkKt6o8TY4e2Y3BA5ybZfxZmTjfvA+DJWb8jf6EK64Gy4GiO3HPDYZ3oqdozccgAnAg1tH+gHmNwQOaFpvwqTyX4fGF+mC9bg5hMn5B4GkUd4es8lT8YO7ivViMkNkRO8bYdvIvINnood+/Rr0b/LcEjcVwoAkxsipympzw0ReY4nYsc1X/2MNcP6IiS+m8vP7YvY54bISexXQUQd4e7Ywd3Am2PlhqidmNgQ+bZve/WC4UK9xz/XXbHjmq9+xtlw7gZui8kNkZ/bPmYwulcauRyc/ILczfxczTLXZmP//uw0boPJDZGf43Jw8je6kC441aXBo8vB3WXklgM41aWBVZsmmNwQEXTBGqQdO4KGcvbIIOXrM6wftg0cgmTVVT5dvdmnX4tk1VXYNnAIqzZNMLkhItRMzkRVyR7Ulp9n9Yb8ghKqN6zatIzJDREBYPWG/EtAhM7nqzds2tcyJjdEBMA8sZjVG/IXSUlJPl29CVm3EKExVyMwoiuXfzvA5IaIAJgnFrN6Q/4kIEKHrX0HyLIsvLNYtWkdkxsisto+ZjDiqgNgqKmWeyhEbpeUlITAiK4IjbkaIesWyj0cp7Fq0zYmN0RklRKWjjzTXow+nI3j+3PlHg6R2/li9YZVm7YxuSEiO6zekD/xtaZ+3CDTOUxuiMiOpanfuJwcVm/IL4TEd8OaYX1xzVc/yz2UNnGDTOfImtwkJSVBkqRmjzlz5jg8/r333mt2bGBgoIdHTaR8uyelonul0SurN4wb5Gq+Ur1h1cZ5su4KvmfPHhiNRuvzQ4cO4cYbb8Rdd93V4nvCwsKQm9t4NSlJklvHSOSPzNWbeRB1fZGfn+9VgZRxg9whJL4b1tT1xTVffYCGe9PlHo5D13z1M87G3cCmfU6QNbmJjIy0e/7CCy+gd+/eGDVqVIvvkSQJMTEx7h4akd/bPSkVGVuPIUurBbwouWHcIHdISkrC4ZPn0L/LcHygX4uUMO9KcPbp1yKjy3Bk9e+PgdxqoU1eM+emrq4Oa9aswYwZM1q9qqqurkZiYiISEhJw66234vDhw62e12AwQK/X2z2IqG2+sKGmu+IGwNjhj7y5qR+3Wmgfr0luvvjiC1RUVGD69OktHtOvXz+sWrUKX375JdasWQOTyYQRI0bg5MmTLb5n2bJlCA8Ptz4SEhLcMHoiZfL2pn7uihsAY4c/8tYNNblBZvtJQggh9yAAYNy4cdBqtfjqq6+cfk99fT0GDBiAqVOnYunSpQ6PMRgMMBgaA7Ner0dCQgKeX/czApkBE7UpIGse9o7MQJdePVw296a2qgpPD+mHyspKhIWFdfg87oobQMux49nsXASGhnZ4zOTdju/PxfDdP6JO/wtqJmfKPRwA5qZ92rCh2HXN9X6d3LQnbnhF5aagoACbN2/GrFmz2vU+jUaDYcOG4fjx4y0eo9PpEBYWZvcgIud5a/XGnXEDYOzwV962oeY+/Vo27esAr0huVq9ejaioKEyYMKFd7zMajTh48CB69OjhppERUc3kTK/cUJNxg9zB2zbUHLnlALda6ADZkxuTyYTVq1dj2rRpCAiwX7yVkZGBBQsWWJ8/++yz+O6773DixAns27cP9913HwoKCtp95UZE7eNt1RvGDXInb9qSgVWbjpF1KTgAbN68GYWFhZgxY0aznxUWFkKlasy/ysvL8cADD6CkpAQRERFITU3Fzp07ccUVV3hyyER+Z/uYwcjY6j1bMjBukDslJSXheLkBoTFXo85mQ01PzcGx3cRTy6pNh3jNhGJP0ev1CA8P54RionZy5aRGV00o9iRL7OCEYv+Qn5+P6hOncd+RHwAAOWcLsHtSqtv73+zTr8U1X/2M/t0TAQBrBoxy6WR+X9aeuCF75YaIfIO3VW+I3MnS1C824UYAgK4hB7otP6FmsnuTm5FbDqD/ZTegW0J/AICkBRObDmByQ0ROsWzJMC5HjW0hXfx6SSr5h5D4bvhHiHmemaFrf9z7k9Gt3Yv36dciQ3UVVqX2tzbrC+Fcmw6RfUIxEfkOb95Qk8jVkpKS0GdYP/QZ1s8jK6hsuxBbPpdVm45h5YaInObNG2oSuZNlBdVV2/fYTfi1aO9kY0fnMFyox4+pA9CF1ZpOY3JDRO3irRtqErmTZQVV97gb0N1QZPeznLMF2NfO21WGC/XWScMWZyMSuDLKRZjcEFG7sHpD/iogQoeN/fvjifP97V5v72TjkHUL7SYNW2R15RwbV2FyQ0TtZmnqtyuiK5Ak92iIPCMpKQn5gHWSsUVtl164avsOp89juFCPlam9EBhh344kJELHiwUXYXJDRO1WMzkThqx5qC0fwOoN+ZWkpKRmCf3x/bnWhn/bxwxu9f0jtxywNubjikP3YXJDRB3C6g2RmWWy8f/s+QVT97W+IesZE/B9X04adjcuBSeiDvHWDTWJPC0pKQmSVovBYWOhMVzW6mNw2FhIWi2rnW7Gyg0RdRirN0RmIfHd8CqA359q/bisuDiExHfzyJj8GZMbIuowbslAZGaZbPxDG4lLCLidgicwuSGiDksJS0eeaSFGH27ALm7JQH6OSYv34JwbIuqU7WMGI66a1Rsi8h5MboioU8zVm70YfTgbx/fnyj0cIiImN0TUeazeEJE3YXJDRJ1m3pJhF0RdHZeFE5HsmNwQkUvsnpSKmQdPoKHc0PbBRERuxOSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMbojIZQwNRi4HJyLZMbkhIpfgcnAi8hZMbojIZXZPSsV9+4+h5uQ5uYdCRH6MyQ0RuQyrN0TkDZjcEJFL6YI1SDt2hM38iEg2TG6IyKVqJmeiqmQPasvPs3pDRLJgckNELsfqDRHJickNEbmc7S7hrN4QkacxuSEil0sJS0eeaS9GH85m9YaIPI7JDRG5hW31hojIk5jcEJFb2FZvju/PlXs4RORHmNwQkduwekNEcmByQ0Ruw6Z+RCQHJjdE5FbckoGIPI3JDRG5Fas3RORpTG6IyO1YvSEiT2JyQ0Rux+oNEXkSkxsi8ghuyUBEnsLkhog8wnZDzcLCQrmHQ0QKxuSGiDzGWr2pYPWGiNyHyQ0Recz2MYPRq1Yn9zCISOGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNEXlMSlg6sit2oLaiXO6hEJGCMbkhIo/SBWuQcThf7mEQkYIxuSEij9o+ZjAOVu6SexhEpGBMbojIo1LC0vHz+KFyD4OIFIzJDRF53NDQO+QeAhEpGJMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREiiJrcpOUlARJkpo95syZ0+J7/vWvf6F///4IDAzEoEGDsGHDBg+OmIjkxrhBRG2RNbnZs2cPTp8+bX1s2rQJAHDXXXc5PH7nzp2YOnUqZs6cif379+O2227DbbfdhkOHDnly2EQkI8YNImqLJIQQcg/CYu7cuVi/fj2OHTsGSZKa/Tw9PR01NTVYv3699bXrrrsOQ4cOxVtvveXUZ+j1eoSHh+P5dT8jMKSLy8ZORM6rranGXyanorKyEmFhYZ06lyfiBtAYO57NzkVgaGinxkxE7VdbVYWnh/RzKm54zZyburo6rFmzBjNmzHAYoABg165dGDt2rN1r48aNw65dLe9TYzAYoNfr7R5EpAzuihsAYweRL/Oa5OaLL75ARUUFpk+f3uIxJSUliI6OtnstOjoaJSUlLb5n2bJlCA8Ptz4SEhJcNWQikpm74gbA2EHky7wmuVm5ciXGjx+P2NhYl553wYIFqKystD6Kiopcen4iko+74gbA2EHkywLkHgAAFBQUYPPmzfj8889bPS4mJgalpaV2r5WWliImJqbF9+h0Ouh0OpeMk4i8hzvjBsDYQeTLvKJys3r1akRFRWHChAmtHjd8+HBs2bLF7rVNmzZh+PDh7hweEXkhxg0iaonsyY3JZMLq1asxbdo0BATYF5IyMjKwYMEC6/NHHnkE3377LV5++WXk5ORgyZIl2Lt3L/70pz95ethEJCPGDSJqjezJzebNm1FYWIgZM2Y0+1lhYSFOnz5tfT5ixAh89NFHeOeddzBkyBD8+9//xhdffIErr7zSk0MmIpkxbhBRa7yqz40nsM8Nkfxc2efGU9jnhkhePtnnhoiIiMgVmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRAuQegKcJIQAAtReqZR4Jkf+y/P2z/H30BdbYUc3YQSQHy989Z+KGJHwpurjAyZMnkZCQIPcwiAhAUVER4uPj5R6GUxg7iLyDM3HD75Ibk8mE4uJihIaGQpKkTp9Pr9cjISEBRUVFCAsLc8EIfYs/f39//u5A576/EAJVVVWIjY2FSuUbd8ddGTv4/w6/P79/+79/e+KG392WUqlUbrlSDAsL88v/SS38+fv783cHOv79w8PD3TAa93FH7OD/O/z+/P7t+/7Oxg3fuGQiIiIichKTGyIiIlIUJjedpNPpsHjxYuh0OrmHIgt//v7+/N0Bfv/O8Pc/O35/fn93f3+/m1BMREREysbKDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNx00KlTp3DfffehW7duCAoKwqBBg7B37165h+URSUlJkCSp2WPOnDlyD80jjEYjFi1ahOTkZAQFBaF3795YunSpT+2T1FlVVVWYO3cuEhMTERQUhBEjRmDPnj1yD8snMHb4Z+xg3PBs3PC7DsWuUF5ejuuvvx5paWn45ptvEBkZiWPHjiEiIkLuoXnEnj17YDQarc8PHTqEG2+8EXfddZeMo/Kc5cuX480338T777+PgQMHYu/evbj//vsRHh6Ohx9+WO7hecSsWbNw6NAhfPjhh4iNjcWaNWswduxY/Prrr4iLi5N7eF6LscN/YwfjhmfjBpeCd8CTTz6JH3/8Edu3b5d7KF5h7ty5WL9+PY4dO+aS/bq83cSJExEdHY2VK1daX7vjjjsQFBSENWvWyDgyz7h48SJCQ0Px5ZdfYsKECdbXU1NTMX78eDz33HMyjs67MXbY86fYwbjh2bjB21Id8J///AdXXXUV7rrrLkRFRWHYsGF499135R6WLOrq6rBmzRrMmDFD8cHJYsSIEdiyZQuOHj0KAMjOzsaOHTswfvx4mUfmGQ0NDTAajQgMDLR7PSgoCDt27JBpVL6BsaORv8UOxg0Pxw1B7abT6YROpxMLFiwQ+/btE2+//bYIDAwU7733ntxD87i1a9cKtVotTp06JfdQPMZoNIr58+cLSZJEQECAkCRJPP/883IPy6OGDx8uRo0aJU6dOiUaGhrEhx9+KFQqlbj88svlHppXY+xo5G+xg3HDs3GDyU0HaDQaMXz4cLvXHnroIXHdddfJNCL53HTTTWLixIlyD8OjPv74YxEfHy8+/vhjceDAAfHBBx+Irl27+tU/UMePHxe/+93vBAChVqvF1VdfLe69917Rv39/uYfm1Rg7Gvlb7GDc8GzcYHLTAT179hQzZ860e+2NN94QsbGxMo1IHvn5+UKlUokvvvhC7qF4VHx8vHj99dftXlu6dKno16+fTCOST3V1tSguLhZCCHH33XeL3//+9zKPyLsxdpj5Y+xg3GjkibjBOTcdcP311yM3N9futaNHjyIxMVGmEclj9erViIqKspsc5g8uXLgAlcr+r45arYbJZJJpRPIJCQlBjx49UF5ejo0bN+LWW2+Ve0hejbHDzB9jB+NGI4/EDZenS35g9+7dIiAgQGRmZopjx46JrKwsERwcLNasWSP30DzGaDSKnj17ivnz58s9FI+bNm2aiIuLE+vXrxd5eXni888/F927dxfz5s2Te2ge8+2334pvvvlGnDhxQnz33XdiyJAh4tprrxV1dXVyD82rMXb4b+xg3PBs3GBy00FfffWVuPLKK4VOpxP9+/cX77zzjtxD8qiNGzcKACI3N1fuoXicXq8XjzzyiOjZs6cIDAwUvXr1EgsXLhQGg0HuoXnM2rVrRa9evYRWqxUxMTFizpw5oqKiQu5h+QTGDv+MHYwbno0b7HNDREREisI5N0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN+QTjEYjRowYgdtvv93u9crKSiQkJGDhwoUyjYyIvBXjhv9ih2LyGUePHsXQoUPx7rvv4t577wUAZGRkIDs7G3v27IFWq5V5hETkbRg3/BOTG/Ip//jHP7BkyRIcPnwYu3fvxl133YU9e/ZgyJAhcg+NiLwU44b/YXJDPkUIgf/5n/+BWq3GwYMH8dBDD+Gpp56Se1hE5MUYN/wPkxvyOTk5ORgwYAAGDRqEffv2ISAgQO4hEZGXY9zwL5xQTD5n1apVCA4ORl5eHk6ePCn3cIjIBzBu+BdWbsin7Ny5E6NGjcJ3332H5557DgCwefNmSJIk88iIyFsxbvgfVm7IZ1y4cAHTp0/H//3f/yEtLQ0rV67E7t278dZbb8k9NCLyUowb/omVG/IZjzzyCDZs2IDs7GwEBwcDAN5++208/vjjOHjwIJKSkuQdIBF5HcYN/8TkhnzCDz/8gDFjxmDbtm244YYb7H42btw4NDQ0sMxMRHYYN/wXkxsiIiJSFM65ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESnK/wcH2HAq68WYCwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# загрузка\n", + "test = np.loadtxt('WBC_test.txt', dtype=float)\n", + "train = np.loadtxt('WBC_train.txt', dtype=float)" + ], + "metadata": { + "id": "mg4dX_DpD2gz" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# вывод данных и размерности\n", + "print('Исходные данные:')\n", + "print(train)\n", + "print('Размерность данных:')\n", + "print(train.shape)\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cJ_s40rIERiK", + "outputId": "6a56ab0d-ca23-4284-c575-62de15b977ef" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходные данные:\n", + "[[3.1042643e-01 1.5725397e-01 3.0177597e-01 ... 4.4261168e-01\n", + " 2.7833629e-01 1.1511216e-01]\n", + " [2.8865540e-01 2.0290835e-01 2.8912998e-01 ... 2.5027491e-01\n", + " 3.1914055e-01 1.7571822e-01]\n", + " [1.1940934e-01 9.2323301e-02 1.1436666e-01 ... 2.1398625e-01\n", + " 1.7445299e-01 1.4882592e-01]\n", + " ...\n", + " [3.3456387e-01 5.8978695e-01 3.2886463e-01 ... 3.6013746e-01\n", + " 1.3502858e-01 1.8476978e-01]\n", + " [1.9967817e-01 6.6486304e-01 1.8575081e-01 ... 0.0000000e+00\n", + " 1.9712202e-04 2.6301981e-02]\n", + " [3.6868759e-02 5.0152181e-01 2.8539838e-02 ... 0.0000000e+00\n", + " 2.5744136e-01 1.0068215e-01]]\n", + "Размерность данных:\n", + "(357, 30)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# обучение AE3\n", + "patience=2000\n", + "ae3_trained, IRE3, IREth3 = lib.create_fit_save_ae(train,'out/AE3.h5','out/AE3_ire_th.txt', 100000, False, patience, early_stopping_delta = 0.00001, early_stopping_value = 0.0001)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TT3sX_tDG6nr", + "outputId": "8b71bc06-dd6e-4514-e093-e9ee49d677bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 21 17 15 13 7 13 15 17 21\n", + "\n", + "Epoch 1000/100000\n", + " - loss: 0.0012\n", + "\n", + "Epoch 2000/100000\n", + " - loss: 0.0010\n", + "\n", + "Epoch 3000/100000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 4000/100000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 5000/100000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 6000/100000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 7000/100000\n", + " - loss: 0.0008\n", + "\n", + "Epoch 8000/100000\n", + " - loss: 0.0008\n", + "\n", + "Epoch 9000/100000\n", + " - loss: 0.0007\n", + "\n", + "Epoch 10000/100000\n", + " - loss: 0.0007\n", + "\n", + "Epoch 11000/100000\n", + " - loss: 0.0007\n", + "\n", + "Epoch 12000/100000\n", + " - loss: 0.0007\n", + "\n", + "Epoch 13000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 14000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 15000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 16000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 17000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 18000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 19000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 20000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 21000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 22000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 23000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 24000/100000\n", + " - loss: 0.0006\n", + "\n", + "Epoch 25000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 26000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 27000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 28000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 29000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 30000/100000\n", + " - loss: 0.0005\n", + "\n", + "Epoch 31000/100000\n", + " - loss: 0.0005\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE3, IREth3, 'AE3')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "RR8IZLAJN3m8", + "outputId": "3a1ecaf3-3b89-4c61-e9bb-bbc8f7243752" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTYAAALXCAYAAAC3lR+RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcU/W9//F3ZmGGYUeEAQRRseKOFqFWRVQUa22r1VaotyqttreWW/vDXiv3WvfWpWqtrcutraK27lVrlaqI4lIBV3DDBRTZh31gmGEmM8nvj3CSb86cJCfJSU5O5vV8PHiQyWRyTpLv2d75fL/fUDQajQoAAAAAAAAAAqTC7xUAAAAAAAAAgGwRbAIAAAAAAAAIHIJNAAAAAAAAAIFDsAkAAAAAAAAgcAg2AQAAAAAAAAQOwSYAAAAAAACAwCHYBAAAAAAAABA4BJsAAAAAAAAAAodgEwAAAAAAAEDgEGwCAIAuZfHixTr//PO13377qVevXgqFQvF/y5Yt83v1uqSZM2fGP4NzzjmnqMs2P38AAAAEC8EmAABdwIQJE+LhzeWXX57ycWbIY/9XWVmpvn37au+999Z3vvMd/fnPf1ZTU1NO65DtP6/CrieffFKHHHKIbr/9di1evDir9QeA559/PmnftO+++2b9HJdffnnO+8IRI0Y4Pmc4HNa8efN000036eyzz9a4ceM0ePBgde/eXdXV1RowYIDGjBmj888/X6+88kqe7wIAAKWjyu8VAAAAwRCJRNTY2KjGxkYtWbJEjz76qGbMmKE//elPOvXUU/1evYyampp0zjnnqLW1VZI0ePBgHXnkkdp1113j1Xq9e/f2cxXzcvnll+uKK66QJF122WVpA2ygVI0YMUJffPGFJOnzzz9PGeT55Z577kn6+aOPPtLrr7+usWPH+rRGMf/4xz/0ne98J+XvN27cqI0bN+qtt97S7bffruOOO0533XWXhg8fXsS1BADAewSbAADA0SmnnKKhQ4fGf45EItqwYYPmzZunlStXSpI2bNig008/XY8++mhW4eZhhx2WVRDwla98xf2Kp/DUU09p8+bNkqT9999fb7zxhrp375738wLoGrZt26bHHnus0/333HNPzsHmkCFDstp37rLLLhkf061bN+27774aOXKk+vfvr2g0qrVr12r+/PnasGGDJGnOnDk68sgj9eqrrxJuAgACjWATAAA4uuCCCzRhwoRO90ciEd1zzz36yU9+otbWVkUiEf3kJz/RpEmTVFdX5+q5TzrppKJXFL799tvx21OmTCHULCHnnHNO0cfWtESjUV+Wi+B59NFH1dzcLEnq3r27WlpaJEkPPvigfve736lbt25ZP+fee++tP/7xj3mv2+DBg3XJJZfoxBNP1JgxY1RTU9PpMe3t7br33ns1bdo0tbS0aMWKFTr//PP11FNP5b18AAD8whibAAAgKxUVFZo6daquv/76+H0NDQ164okn/FspF6xqTSkWAgBANsxu6L/85S81aNAgSdKmTZv0z3/+06/VkiQdccQRuuqqq3TEEUc4hpqSVFVVpR/84Ae644474vfNmjUrXoEPAEAQEWwCAICc/PjHP1ZtbW3855dfftnHtcksHA7Hb1dUcAoEwL1ly5bF93GhUEhnn322pkyZEv+9fezNUmZWrEejUS1cuNDfFQIAIA+c1QMAgJzU1NQkzQi8evVqH9fGmTn7sBk8TJ06tdNswzNnznR8jqamJt1yyy2aNGmSdtttN9XW1qpfv3464IADNG3aNC1YsMDVupjLsixatEgXXHCBDjjgAPXv31+hUEinnHJKVq/Rmm3emjhIkq644gpXs8ufc845nV7/li1b9Pvf/17jx4/X0KFDVVVVpVAopC1btiT97bp163T33Xfr7LPP1iGHHKL+/fururpaffv21ahRozR16lQ9++yzrl7DzJkzU66jZe7cufHHmEMkvPDCC5o8ebL23HNP1dbWapdddtH48eP1xz/+MSnMTsXpc7EbMWJE/DHLli2TJK1cuVK/+tWvdPDBB6tv377q0aOHRo0apf/6r/+KT37j1uzZszV58mQNHz5ctbW1Gjx4sI466ijdeuut2r59u6TktuzVMA4bNmzQDTfcoIkTJ2rIkCGqra2Nf4b777+/Tj/9dN100036/PPPXT3fnDlz9J//+Z/af//91b9/f9XU1GjIkCGaNGmS/vjHP8a7btstW7Ys/trM926PPfZwbMdz58714uVn5d57740PW3DkkUdqxIgR+v73vx///b/+9S+tW7eu6OuVi+rqavXp0yf+87Zt23xcGwAA8sMYmwAAIGfmOJU7duzwcU0K46mnntJ5552ntWvXJt3f2tqqLVu26IMPPtCtt96q733ve7rzzjtdjzEqxYKqq6++Wh0dHV6vds7+/e9/a8qUKVqxYkXax91yyy2aPn2647o3NjaqsbFRH3/8sWbOnKljjz1WDz/8sKtJT7LR1tamadOm6c4770y6v7W1Va+88opeeeUV3X333Xr22Wc1YMAAT5f9xBNP6JxzzlFjY2PS/R9//LE+/vhj/eUvf9Ejjzyir3/96xlfww9/+EP99a9/Tbp/7dq1Wrt2rV599VXdeuutevzxxz1dfyk2i/bUqVOThmiwWJ/hhx9+qL///e+66aab0nZXXrFihc466yzHwHHNmjVas2aNnnvuOV1zzTV68MEHddRRR3n5Uori3nvvjd+2As1DDz1U+++/vz744AO1t7fr/vvv189//nOf1tC9DRs2aP369fGfS23meQAAskGwCQAAcmZWaVrjzZWSsWPH6qc//amkWDXZRx99JEk67rjjNGrUqKTHmtWnkvTQQw/pzDPPjId3lZWVOvLIIzVy5Eg1NTXplVdeib/++++/X59//rleeOGFpO75qfz2t7+NV1jutddeGjt2rOrq6rRs2TJVV1dn9RpPPfVUHXDAAXr99df1xhtvSEo963y62eWXLFmin//852psbFSvXr00fvx4DRkyRJs3b+40zMDq1avj78uee+6pfffdV7vuuqtqa2u1ZcsWvffee/rggw8kxSoqJ06cqPnz56cc+y8XP/rRj3TPPfeooqJC48aN06hRoxSJRDR//nx9/PHHkmITRp111lmaNWuWZ8t9/vnn9Z//+Z/q6OjQ8OHDdfjhh6t37976/PPPNXfuXLW3t6ulpUXf/e539f7772uPPfZI+VxTpkxJmmW7f//+mjBhgvr3768VK1bopZde0uLFi/X1r39d3/zmNz17DW+++aZOP/10tbe3S4p9QfGVr3xFI0aMUE1NjbZu3aqlS5fqvffei0+Wk8rixYt13HHHac2aNZJiFbCHHnqo9ttvP3Xv3l2rVq3Syy+/rG3btmn16tU6/vjj9a9//UvHHHNM/Dl69+4d307vvffeeAXhWWedpV69enVa5tChQz15H9x69dVXtXTpUkmxSvXvfOc78d99//vf18UXXywp1h291IPNaDSqiy66KL79Dh8+XIcddpjPawUAQB6iAACg7B199NFRSVFJ0csuuyzl46zHSIq++OKLaZ/z448/Tnr8H//4R0/WoVDOPvvs+PLvvvvutI9dsmRJtGfPnvHHjx07Nvrpp58mPaajoyN64403RisqKuKP+6//+q+Uz2m+V1VVVdE+ffpEH3/88U6P27FjRy4vL3rZZZdl/f6a70lVVVVUUvSnP/1pdNu2bUmPa2tri3Z0dMR//stf/hL9wx/+EF25cmXK5160aFF0zJgx8ee/6qqrUj727rvvjj/u7LPPdnzMiy++GH9MTU1NVFL0sMMOiy5evDjpcZFIJHrzzTcnvd8vvfRSymWbj0tl9913T1p2jx49ovfdd180EokkPe7999+PDh06NP7YqVOnpnzOP//5z0nLvvDCCzt99g0NDdGvfe1rSa/Zi+3nlFNOiT/XaaedFt20aZPj41paWqJPP/109Mc//rHj75uamqL77rtv/Lm+9rWvRZcsWdLpcY2NjdGf/OQn8ccNHjw4umXLFsfnNN/rzz//POfX6KVzzz03vk6nn3560u9WrFiRtA9YtGhRxuczt9Wjjz66QGudEA6Ho6tWrYr+/e9/T9oPV1dXR59++umCLx8AgEKiYhMAAGStvb1dF1xwQfzn3r17a/Lkya7/ftasWdqwYYPrx1955ZXq379/VuuYjyuvvFJNTU2SpJEjR+q5555LGpNOik1ANH36dIVCIU2fPl2SdOutt+r//b//l7ZKT5IikYiefPJJjR8/vtPvvKxqzEZ7e7vOPfdc/fGPf+z0O3sV6Q9+8IOMz3fQQQfp+eef16hRo7R27VrddtttmjFjhiorK/Ne19bWVu2999564YUX1LNnz6TfhUIhXXDBBXr11Vf16KOPSpIeeOABx/c6F21tbXriiSd04okndvrd/vvvr//7v//TySefLEl65JFH9Kc//UlVVcmn3B0dHbrsssviP//4xz/WDTfc0On5Bg4cqCeeeEJHHnlkvBrXC6+88oqkWFubOXNmp/fQUltbq5NOOkknnXSS4+9vuukmLV68WFKscvjRRx91nJird+/euu2229Tc3Kx77rlHa9as0R133KFf/vKXHr2iwmlpadHDDz8c/9kcV1OSdtttN02YMEEvvPCCpFjV5o033uj6+T/99FNNmzbN9eO///3va9y4cRkfN3LkyHiVqZPBgwfrgQce0NFHH+162QAAlCKCTQAA4EokEtGGDRv073//W9dee61ef/11SVJVVZXuuuuurMZQfOONN7IKan7xi18ULdjcsmWLHnroofjP119/fadQ03TBBRfoL3/5iz744ANFIhH96U9/0jXXXJN2GaeffrpnQZtXamtrdf3113v6nH369NGpp56q22+/XWvWrNGHH36oAw880JPnvvbaa1MGclIsfLWCTauteuHkk092DDUtJ510kurr67V27Vo1NTVp8eLFnV7zM888o1WrVkmSevTooWuvvTbl83Xr1k033HCDpwHU1q1bJUl1dXVp38N0wuFwPASvqanRHXfc4Rhqmn7zm9/EJ+H529/+Fohg84knnoi/X7vssou+9rWvdXrM97///Xiw+be//U3XXXddpzA7ldWrV+vWW291vT5jxoxxFWym88Mf/lC///3v1aNHj7yeBwCAUkCwCQAAHJlj4KWyzz776MYbb8w4SUqQvPbaa2ptbZUkDRgwQN/4xjfSPr6iokI/+MEPdOGFF0qSXnzxxYzLyKa6tVhOOOEE9evXL+u/W7dunebPn6/Fixdr8+bN2r59e3z2aCk2nqNl4cKFngSbtbW1GT+XQw45JH7bmsncC+b4ik5CoZAOPvjg+IRTy5Yt6/SazUl2vv71r6tv375pn3P8+PEaPny4li9fntM62w0bNkyfffaZNm/erIceekhnnHFG1s/x5ptvxmcBP+644zRw4MCMfzNkyBCNGjVKixcv1vvvv6/Gxsa0XxqUgnvuuSd+e/LkyY5j4J5++un66U9/qubmZjU0NOjZZ5/1fZ/4/e9/Pz5B0I4dO7R69WotWLBAmzZt0l/+8hfNmjVL1113XacKVAAAgoZgEwAA5GTQoEG69957HSepyeSyyy7T5Zdf7v1KeeCdd96J3x47dqyryqsjjjgi6e+j0ahCoVDKx3/5y1/ObyULINt1+vDDD/XLX/5S//rXv1zP7J7N8APp7LPPPhknWTIriK2KOy+4CWYzLXvhwoXx226r78aOHetZsPnd7343XiU6ZcqUeLh5zDHHuAooJWnevHnx2ytXrnTdnXrLli2SYpPYrFy5sqSDzdWrV+v555+P/5wqBOzZs6dOOeUU3X///ZJiYajbYPPoo492nE0+X+ZQB5a2tjbdd999uvDCC7VmzRqdddZZWrZsmX71q195vnwAAIqFYBMAADg65ZRTkmYf3rhxo5YuXRrvQt7Q0KCjjjpKf//73+NjCpYDq8pJknbffXdXfzNixIj47ba2Nm3btk29e/dO+fhdd9015/UrlGzW6dlnn9W3vvWteGWrW9Zs1/lyE4aZwac1+7cfyw6Hw51+b7axYcOGuVrubrvt5upxblxyySWaO3eu5s+fr2g0qscff1yPP/64JGnvvffWUUcdpeOOO07f+MY3HGcll2Khn+Xdd9/Vu+++m/V6bN68ObcXUCR//etf46H93nvvnTaE/v73vx8PNp988klt3rw5pwroQurWrZt++MMf6sADD9SRRx6pcDisyy67TMcee2zSlzMAAARJ+oFwAABAl3XBBRfoj3/8Y/zfAw88oNdff12LFi3SwQcfLCkW4k2ZMiXtJBVBY00aJMn1GHT2x2UK8Lp37579ihWY23Vav369zjjjjHioufvuu+uaa67Rq6++qtWrV6u5uVmRSETRaFTRaDSpciwSiXiyrumqYQvNi2Wbbayurs7V3+Q6FqaTHj166KWXXtJvf/vbpFBeik1mc9ddd+nMM89UfX29LrroIrW0tHR6jsbGxrzXw8vAuRDMbuj/8R//kfaxxx9/vOrr6yXFJrcyx+ktNWPHjtVZZ50lKVY5+7vf/c7nNQIAIHcEmwAAICsHHXSQnnvuuXg1Z1NTk84991yf18o7ZoC0fft2V39jf1yqKrdycOedd8ZDrYMPPljvvvuuLr74Yh1xxBEaPHiwunfvnhT+eVWlWU7MNtbc3Ozqb9y2Rbe6deumX/ziF/rss8+0cOFC3XLLLZo8eXJSlXZzc7N++9vf6phjjukUbpph/s9+9rN4kJ3NvwkTJnj6mrz05ptv6sMPP4z/fNlllykUCqX8V1VVFR9XVUoORUvR8ccfH7/973//28c1AQAgPwSbAAAgawMHDtQf/vCH+M9z587V008/7eMaecfsku12TENzcppu3bqVdbA5Z86c+O1LLrkkbZd7Sfriiy8KvUqBM2DAgPjtlStXuvobt4/LljXZ0X/913/pgQce0MqVK/X2229r6tSp8ccsWLCg08zdgwYNit82A71ykW8wOX/+fH3yyScerY33zG7yGzdu9HFNAADID2NsAgCAnJx66qk64ogj4tU+l1xyie8zAXvBnE379ddfV0dHhyorK9P+zWuvvZb09350lS7WMs2xFTNNpNPR0UE1mIPRo0fHA+IFCxa4+pvXX3+9kKuU5JBDDtFdd92lyspK/fnPf5YUGzfyF7/4Rfwx5niTr732WsYJs9zyc5gBS1tbmx544IH4z/vss0/Gmestn376qTZt2iQpFo7++te/LsQq5m3NmjXx2/379/dxTQAAyA8VmwAAIGfmzOYLFy7Uk08+6d/KeOSrX/2qampqJMXGk8xUiRqJRHT33XfHfz722GMLun6p1NbWxm87TVjjlYqKxOljpm7UTzzxRFlW8+XL7IL99NNPZxyv8tVXX/Wl8vWb3/xm/HZDQ0PS74444oh42Ldy5Ur985//9GSZxWrH6Tz99NPxKsaqqiq9/PLLmj9/vqt///M//xN/nvvuu8+zcWW99tRTT8Vv77vvvj6uCQAA+SHYBAAAOZs4caK++tWvxn+++uqrfVwbb/Tt21dnnHFG/Of//u//TjtO5B//+Ee99957kmKh349+9KOCr6OTXXbZJX571apVBVvOnnvuGb+dLshev369/t//+38FW48gO/HEEzVkyBBJsTFqzTDMrq2tLalSMl+tra1Jkxels2LFivjtgQMHJv2upqZGP//5z+M/n3/++Vm1O3tQailWO07H7IZ+/PHHd3rt6UyZMiUe/q9YsUIvvvii5+tn197entVkTrNmzdLf//73+M+nnXZaIVYLAICiINgEAAB5ufTSS+O333jjDT3zzDM+ro03Lr300vgEL5988okmTZqkzz77LOkxkUhEv//97zV9+vT4fT/96U87zTJdLAcccED89nPPPefJrNVOvvGNb8RvX3PNNfrrX//a6TFvv/22jj76aK1YscL1zPJdSVVVVVK182233aZf/vKXamtrS3rc+vXrddppp2nBggXxKuJ8rVmzRsOGDdMvfvELvfnmmykfN3v27KQZ7b/2ta91esyFF16o/fffX1IshBwzZoweeeSRlFWKGzZs0J/+9Ccdeuih+u1vf+v4GLMdP/LII65e08yZM5Mm8jHHvM3Whg0bNGvWrPjPZ555ZlZ/P2TIEB1zzDHxn4sxiVBTU5P22GMPXXrppfr4449TPm7z5s26+uqr9e1vf1vRaFSSNHLkSJ133nkFX0cAAAqFMTYBAEBeJk2apHHjxsXHCrzqqqt04oknpv2bWbNmacOGDa6XUVdXp+uvvz6v9czGXnvtpT//+c8688wz1dHRoXnz5mmfffbRUUcdpb322ktNTU165ZVXkirKvvKVrxR1He3Gjh2rYcOGacWKFVqzZo1GjRqlE044QQMGDIiPW3jYYYclVaPm4uyzz9aNN96oTz75RK2trfr+97+v3/zmNzr44INVW1ur999/Px6YHXzwwZo0aZKv70upOvfcc/X000/rH//4hyTp+uuv11/+8hdNmDBB/fv318qVK/Xiiy9qx44d2nPPPfWtb31Lv/vd7yQlDweQiy1btujGG2/UjTfeqP79++uQQw7R0KFDVVtbq3Xr1undd99NCvK/9KUv6YILLuj0PD179tSTTz6piRMn6vPPP9fatWv13e9+VwMGDNBXvvIV1dfXKxqNatOmTfrwww/16aefxkPPVEM2nHbaafq///s/SbHA96233tKhhx6qurq6+GN+8pOfaK+99srrPUjl/vvvj3eB79Gjh0455ZSsn+PMM8+Mj6H62GOP6bbbbot/UWL36aefatq0aVk9/4wZM5Jmr5dioeVVV12lq666SkOGDNFBBx2kgQMHqq6uTk1NTVqyZInefvvtpPC8vr5eTz75pGehOQAAfiDYBAAAebv00kvjEwe99tprmjNnjo477riUj3/jjTf0xhtvuH7+Pn36FD0cO+OMM9SjRw+de+65amhoUHt7u1588UXHrqVTpkzRn//856TxAYutoqJCt912m0477TS1tbVp7dq1uvfee5Mec/bZZ+cdbNbU1Oif//ynvva1r8XDr8WLF2vx4sVJjzviiCP00EMP6c4778xreeUqFArpoYce0jnnnKMHH3xQUmx2arOLsBQb//Dxxx9P+iwzzUSfTnV1tWpqatTa2ipJ2rRpU9JM93YTJkzQAw88kLLyds8999Sbb76p//zP/9Sjjz6qaDSqDRs2JI3haNe3b9+UE08df/zxmjJlSnzyngULFnSaYOnkk08uWLBpVliecsopOVUcn3baaTr//PO1Y8cObd++XY8++qjOOeccx8euXr2604zzmZx77rlJwWZFRYWqqqrU3t4ef05zki8n3/72t3XLLbd0CkgBAAgagk0AAJC3k046SWPGjIlX6l155ZVpg82gOPnkk7VkyRLdddddeuqpp/TBBx9ow4YN6t69e7zL6VlnnZU0Q7SfTj75ZL355pu69dZb9eqrr2r58uVqamqKdzv1ype+9CW98847uvXWW/XYY4/p448/Vltbm+rr63XggQfqe9/7nr773e9mnE2+q6upqdEDDzygqVOn6s9//rPmzZundevWqV+/fho5cqQmT56sqVOnqkePHvGZtiW5nqHbydChQ7Vx40a98MILeuWVV/TWW29pyZIlWr9+vdra2tSrVy/tvvvu8ereiRMnZnzO/v376+GHH9b777+vBx54QHPnztXnn3+ujRs3qqKiQn379tXIkSN16KGHauLEiTr++OPTfgnwt7/9TSeffLIeeOABLVy4UBs2bNCOHTtyfs1uvf/++3r77bfjP2fbDd3Su3dvfeMb34h3pZ85c2bKYNMLvXv31saNG/X888/r3//+t9555x199tlnWr9+vVpbW9WjRw/169dP+++/v8aNG6fvfe97GjlyZMHWBwCAYgpFvT7TBQAAAOCpI444Qq+99pokaf78+SUTpgMAAPiJYBMAAAAoYV988YX22msvdXR0qFu3bmpsbPR12AMAAIBSwazoAAAAQImKRqO64IIL1NHRIUk69dRTCTUBAAB2ItgEAAAAfHDppZfq97//vTZs2OD4+2XLlunUU0+Nz5xeWVmpX/ziF8VcRQAAgJLG5EEAAACAD5YvX66rrrpKv/jFL3TggQdq1KhR6tOnj5qamvTRRx/pnXfeiVdqStIll1yiMWPG+LjGAAAApYVgEwAAAPBRe3u73nnnHb3zzjuOv+/evbuuvPJKqjUBAABsmDwIAAAA8MGWLVv0j3/8Qy+88II++OADrV+/Xhs2bFBHR4f69++vffbZR8cdd5x++MMfavDgwX6vLgAAQMkh2PRQJBLR6tWr1atXL4VCIb9XBwAAAAAAAAiUaDSqbdu2aciQIaqoSD89EF3RPbR69WoNGzbM79UAAAAAAAAAAm3FihXabbfd0j6GYNNDvXr1khR743v37u3z2ngjHA7rueee0wknnKDq6mq/VwddCG0PfqDdwQ+0O/iFtgc/0O7gB9od/EC7y93WrVs1bNiweM6WDsGmh6zu57179y6rYLOurk69e/dmQ0RR0fbgB9od/EC7g19oe/AD7Q5+oN3BD7S7/LkZ5jF9R3UAAAAAAAAAKEEEmwAAAAAAAAACh2ATAAAAAAAAQOAQbAIAAAAAAAAIHIJNAAAAAAAAAIFDsAkAAAAAAAAgcAg2AQAAAAAAAAROld8rgJhoNKpwOKxIJOL3qiQJh8OqqqrSjh071NHR4ffqdBkVFRWqrq5WKBTye1UAAAAAAABKEsGmz9ra2rRu3To1NzeXZHAYjUZVX1+vFStWELIVWWVlperq6jRw4EB169bN79UBAAAAAAAoKQSbPmpubtaKFStUWVmpfv36qXv37qqsrCypADESiaipqUk9e/ZURQUjFxRDNBpVR0eHWlpa1NjYqGXLlmm33XZTXV2d36sGAAAAAABQMgIdbN5666367W9/q7Vr1+rggw/WH/7wB40dO9bxsY899ph+85vfaMmSJQqHw9p777114YUX6vvf/378Meecc47uueeepL+bNGmSnnnmmYKs/4YNG1RdXa3dd99dlZWVBVlGviKRiNra2lRbW0uwWWQ9e/ZU//799cUXX2jDhg0aPny436sEAAAAAABQMgIbbD700EOaPn267rjjDo0bN04333yzJk2apI8//lgDBw7s9Pj+/fvrf//3fzVq1Ch169ZNTz31lKZOnaqBAwdq0qRJ8cedeOKJuvvuu+M/19TUFGT929vbtX37dg0ePLhkQ034r7KyUv3799eaNWvU3t6uqqrAbrIAAAAAAACeCmwJ3k033aTzzjtPU6dO1X777ac77rhDdXV1uuuuuxwfP2HCBJ166qnad999tddee+mCCy7QQQcdpFdffTXpcTU1Naqvr4//69evX0HWv729Pb48IB2rjVhtBgAAAAAAAAGt2Gxra9Nbb72lGTNmxO+rqKjQxIkTNW/evIx/H41G9cILL+jjjz/Wddddl/S7uXPnauDAgerXr5+OPfZYXX311dpll10cn6e1tVWtra3xn7du3SopNpN4OBxOuw7hcFjRaFTRaLTkZkI3RaPR+P+lvJ7lzGon4XC4S1X3WttQpm0J8BLtDn6g3cEvtD34gXYHP9Du4AfaXe6yec9CUSu5CpDVq1dr6NCheu2113T44YfH77/ooov00ksvacGCBY5/19jYqKFDh6q1tVWVlZW67bbb9IMf/CD++wcffFB1dXXaY489tHTpUv3P//yPevbsqXnz5jkGSpdffrmuuOKKTvfff//9GSd6qaqqUn19vYYNG8aM10irra1NK1as0Nq1a6naBAAAAAAAZa25uVnf+9731NjYqN69e6d9bCArNnPVq1cvLVy4UE1NTZozZ46mT5+uPffcUxMmTJAkTZ48Of7YAw88UAcddJD22msvzZ07V8cdd1yn55sxY4amT58e/3nr1q0aNmyYTjjhhIxv/I4dO7RixQr17NlTtbW13rzAAohGo9q2bZt69epVUrO1dyU7duxQ9+7dNX78+JJuK14Lh8OaPXu2jj/+eFVXV/u9OugiaHfwA+0OfqHtwQ+0O/iBdgc/0O5yZ/WIdiOQweaAAQNUWVmphoaGpPsbGhpUX1+f8u8qKio0cuRISdLo0aO1ePFiXXPNNfFg027PPffUgAEDtGTJEsdgs6amxnGMzOrq6oyNtqOjQ6FQSBUVFSU927jV/dxaVxRfRUWFQqGQq3ZVjrrq64a/aHfwA+0OfqHtwQ+0O/iBdgc/0O6yl837Fcikqlu3bvryl7+sOXPmxO+LRCKaM2dOUtf0TCKRSNIYmXYrV67Uxo0bNXjw4LzWF7kbMWKEQqGQZs6cGb9v5syZCoVCSf8qKirUu3dvHXLIIZoxY4bWr1+f8jntf5vq39y5cwv/AgEAAAAAAJCTQFZsStL06dN19tlna8yYMRo7dqxuvvlmbd++XVOnTpUknXXWWRo6dKiuueYaSdI111yjMWPGaK+99lJra6tmzZql++67T7fffrskqampSVdccYVOO+001dfXa+nSpbrooos0cuRITZo0ybfXidR69Oih008/XVKsAvaLL77QvHnztHDhQt1999165ZVXtPfee6f8+0mTJqWt8E33OwAAAAAAAPgrsMHmGWecofXr1+vSSy/V2rVrNXr0aD3zzDMaNGiQJGn58uVJXae3b9+u888/XytXrlT37t01atQo/fWvf9UZZ5whSaqsrNS7776re+65R1u2bNGQIUN0wgkn6KqrrnLsbg7/DRgwIKmSU5I++OADHX300WpoaNDPf/5zPf300yn//uKLL045DAEAAAAAAABKW2CDTUmaNm2apk2b5vg7ezfiq6++WldffXXK5+revbueffZZL1cPPth///01ffp0/e///q9mz56t1tZWgmkAAAAAAIAyFMgxNoF0DjroIEmxGcg2bdrk89oAAAAAAACgEAg2UXa2bt0qKTa8wIABA3xeGwAAAAAAABQCwSbKjjWu5oknnqjq6mqf1wYAAAAAAACFEOgxNsvemDHS2rW+rkJIUu9oVKFQyP0f1ddLb75ZsHVyYs2K/qc//Un333+/dt99d91yyy1p/+aYY45J+bs+ffpoy5YtHq8lAAAAAAAAvEKwWcrWrpVWrfJ1FUI7/5WiL774wjFwHTt2rJ577jn16dMn7d9PmjRJ9fX1jr+rq6vzZB0BAAAAAABQGASbpSxF6FZMUUnRnRWbrgPOIq13jx49dPrpp0uSWltbtXjxYi1atEivv/66fvzjH+vBBx9M+/cXX3yxJkyYUIQ1BQAAAAAAgNcINktZkbtzO4lGItq6dat69+6tUEVpDck6YMAAzZw5M+m+xx57TGeccYYeeughjR8/Xueff74/KwcAAAAAAICCKq2kCsjTt7/9bV188cWSpEsvvVSNjY0+rxEAAAAAAAAKgWATZWfGjBkaPHiwNm7cqJtuusnv1QEAAAAAAEABEGyi7NTV1elXv/qVJOnmm2/W5s2bfV4jAAAAAAAAeI0xNlGWzj33XN14441aunSpbrjhBv3617/u9Jhrr7220xidpu9973s64YQTCriWAAAAAAAAyBXBJspSdXW1rr76ak2ZMkV/+MMfNH36dO2yyy5Jj3n22WfTPsfo0aMJNgEAAAAAAEoUwSZK2rJlyzrdd8455+icc87J+LeTJ0/W5MmTO90fjUY9WDMAAAAAAAD4iTE2AQAAAAAAAAQOwSYAAAAAAACAwCHYBAAAAAAAABA4BJsAAAAAAAAAAodgEwAAAAAAAEDgEGwCAAAAAAAACByCTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBsAgAAAAAAAAgcgk2UtBEjRigUCmnmzJnx+2bOnKlQKJT0r6KiQr1799YhhxyiGTNmaP369Smf0/63qf7NnTs3q3W11uucc87J7cUCAAAAAADAtSq/VwDIVY8ePXT66adLkjo6OvTFF19o3rx5Wrhwoe6++2698sor2nvvvVP+/aRJk1RfX5/y9/bfhUIhSVI0GvVg7QEAAAAAAJAPgk0E1oABA5IqOSXpgw8+0NFHH62Ghgb9/Oc/19NPP53y7y+++GJNmDChsCsJAAAAAACAgqArOsrK/vvvr+nTp0uSZs+erdbWVp/XCAAAAAAAAIVAsImyc9BBB0mSwuGwNm3alPfzXX755fFu6FLnMTqXLVvW6W+2b9+uGTNmaOTIkaqpqVF9fb3OPvtsrVq1Ku/1AQAAAAAAAF3RUYa2bt0qSaqsrNSAAQPyfr7Ro0fr7LPP1j333CNJOvvss5N+37Nnz6SfGxsb9dWvflXLly/XUUcdpQMOOEDz5s3Tvffeq5deekmLFi1Snz598l4vAAAAAACAroxgE2XHGlfzxBNPVHV1dd7Pd8opp+iUU06JB5v2cT3tnnjiCU2aNEmvvPKKevfuLUnavHmzjj32WC1cuFC33XabZsyYkfd6AQAAAAAAdGUEmyVszJgxWrt2rd+roWg0mtQVO5P6+nq9+eabBVyjzqxZ0f/0pz/p/vvv1+67765bbrkl7d8cc8wxKX/Xp08fbdmyJad16dGjh+6+++54qClJ/fr108UXX6zJkyfr+eefJ9gEAAAAAADIE8FmCVu7di1jMqbxxRdfOAauY8eO1XPPPZexu/ekSZNUX1/v+Lu6urqc12vMmDEaPHhwp/v33XdfSeIzBQAAAAAA8ADBZglLFboVWy4Vm8XQo0cPnX766ZKk1tZWLV68WIsWLdLrr7+uH//4x3rwwQfT/v3FF1+sCRMmeL5ew4cPd7zfquDcsWOH58sEAAAAAADoagg2S1ixu3M7iUQi2rp1q3r37q2Kigq/VyfJgAEDOo13+dhjj+mMM87QQw89pPHjx+v8888v+nqV2vsEAAAAAABQjkhgUFa+/e1v6+KLL5YkXXrppWpsbPR5jQAAAAAAAFAIBJsoOzNmzNDgwYO1ceNG3XTTTZ49rzXDent7u2fPCQAAAAAAgNwQbKLs1NXV6Ve/+pUk6eabb9bmzZs9ed7ddttNkvTBBx948nwAAAAAAADIHWNsoiyde+65uvHGG7V06VLdcMMN+vWvf93pMddee22nMTpN3/ve93TCCSfEfz7ttNN0ww03aOLEiTr22GPVq1cvSdJ1112nXXbZxfPXAAAAAAAAgNQINlGWqqurdfXVV2vKlCn6wx/+oOnTp3cKH5999tm0zzF69OikYPOqq65SRUWFHnvsMT3xxBNqa2uTJF1yySUEmwAAAAAAAEVGsImStmzZsk73nXPOOTrnnHMy/u3kyZM1efLkTvdHo9Gc1qW2tlbXXXedrrvuOsffZ1qvESNG5LxsAAAAAAAAJGOMTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBs+iwajfq9CihxtBEAAAAAAIDOCDZ9UlERe+s7Ojp8XhOUOquNWG0GAAAAAAAABJu+qa6uVnV1tZqamvxeFZS4bdu2xdsLAAAAAAAAYgg2fRIKhdSrVy81NjaqpaXF79VBiWppadHWrVvVq1cvhUIhv1cHAAAAAACgZFT5vQJd2YABA9TS0qLly5erd+/e6tWrlyorK0sqwIpEImpra9OOHTvoCl0k0WhUHR0d2rZtm7Zu3aqamhoNGDDA79UCAAAAAAAoKQSbPqqsrNSwYcO0YcMGbdu2TVu2bPF7lTqJRqNqaWlR9+7dSypw7Qqqq6vVt29fDRgwQJWVlX6vDgAAAAAAQEkh2PRZZWWlBg0apIEDByocDisSifi9SknC4bBefvlljR8/njEei6iiokLV1dWEyQAAAAAAACkQbJaIUCikbt26+b0anVRWVqq9vV21tbUEmwAAAAAAACgZDJoIAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBsAgAAAAAAAAgcgk0AAAAAAAAAgUOwCQAAAAAAACBwCDYBAAAAAAAABA7BJgAAAAAAAIDAIdgEAAAAAAAAEDgEmwAAAAAAAAACh2ATAAAAAAAAQOAQbAIAAAAAAAAInEAHm7feeqtGjBih2tpajRs3Tq+//nrKxz722GMaM2aM+vbtqx49emj06NG67777kh4TjUZ16aWXavDgwerevbsmTpyoTz/9tNAvAwAAAAAAAECWAhtsPvTQQ5o+fbouu+wyvf322zr44IM1adIkrVu3zvHx/fv31//+7/9q3rx5evfddzV16lRNnTpVzz77bPwx119/vW655RbdcccdWrBggXr06KFJkyZpx44dxXpZAAAAAAAAAFwIbLB500036bzzztPUqVO133776Y477lBdXZ3uuusux8dPmDBBp556qvbdd1/ttddeuuCCC3TQQQfp1VdflRSr1rz55pt1ySWX6Fvf+pYOOugg3XvvvVq9erWeeOKJIr4yAAAAAAAAAJlU+b0CuWhra9Nbb72lGTNmxO+rqKjQxIkTNW/evIx/H41G9cILL+jjjz/WddddJ0n6/PPPtXbtWk2cODH+uD59+mjcuHGaN2+eJk+e3Ol5Wltb1draGv9569atkqRwOKxwOJzz6ysl1usol9eD4KDtwQ+0O/iBdge/0PbgB9od/EC7gx9od7nL5j0LZLC5YcMGdXR0aNCgQUn3Dxo0SB999FHKv2tsbNTQoUPV2tqqyspK3XbbbTr++OMlSWvXro0/h/05rd/ZXXPNNbriiis63f/cc8+prq4uq9dU6mbPnu33KqCLou3BD7Q7+IF2B7/Q9uAH2h38QLuDH2h32Wtubnb92EAGm7nq1auXFi5cqKamJs2ZM0fTp0/XnnvuqQkTJuT0fDNmzND06dPjP2/dulXDhg3TCSecoN69e3u01v4Kh8OaPXu2jj/+eFVXV/u9OuhCaHvwA+0OfqDdwS+0PfiBdgc/0O7gB9pd7qwe0W4EMtgcMGCAKisr1dDQkHR/Q0OD6uvrU/5dRUWFRo4cKUkaPXq0Fi9erGuuuUYTJkyI/11DQ4MGDx6c9JyjR492fL6amhrV1NR0ur+6urrsGm05viYEA20PfqDdwQ+0O/iFtgc/0O7gB9od/EC7y14271cgJw/q1q2bvvzlL2vOnDnx+yKRiObMmaPDDz/c9fNEIpH4GJl77LGH6uvrk55z69atWrBgQVbPCQAAAAAAAKDwAlmxKUnTp0/X2WefrTFjxmjs2LG6+eabtX37dk2dOlWSdNZZZ2no0KG65pprJMXGwxwzZoz22msvtba2atasWbrvvvt0++23S5JCoZB+/vOf6+qrr9bee++tPfbYQ7/61a80ZMgQnXLKKX69TAAAAAAAAAAOAhtsnnHGGVq/fr0uvfRSrV27VqNHj9YzzzwTn/xn+fLlqqhIFKRu375d559/vlauXKnu3btr1KhR+utf/6ozzjgj/piLLrpI27dv149+9CNt2bJFRx55pJ555hnV1tYW/fUBAAAAAAAASC2wwaYkTZs2TdOmTXP83dy5c5N+vvrqq3X11Venfb5QKKQrr7xSV155pVerCAAAAAAAAKAAAjnGJgAAAAAAAICujWATAAAAAAAAQOAQbAIAAAAAAAAIHIJNAAAAAAAAAIFDsAkAAAAAAAAgcAg2AQAAAAAAAAQOwSYAAAAAAACAwCHYBAAAAAAAABA4BJsAAAAAAAAAAodgEwAAAAAAAEDgEGwCAAAAAAAACByCTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBsAgAAAAAAAAgcgk0AAAAAAAAAgUOwCQAAAAAAACBwCDYBAAAAAAAABA7BJgAAAAAAAIDAIdgEAAAAAAAAEDgEmwAAAAAAAAACh2ATAAAAAAAAQOAQbAIAAAAAAAAIHIJNAAAAAAAAAIFDsAkAAAAAAAAgcAg2AQAAAAAAAAQOwSYAAAAAAACAwCHYBAAAAAAAABA4BJsAAAAAAAAAAodgEwAAAAAAAEDgEGwCAAAAAAAACByCTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBsAgAAAAAAAAgcgk0AAAAAAAAAgUOwCQAAAAAAACBwCDYBAAAAAAAABA7BJgAAAAAAAIDAIdgEAAAAAAAAEDgEmwAAAAAAAAACh2ATAAAAAAAAQOAQbAIAAAAAAAAIHIJNAAAAAAAAAIFDsAkAAAAAAAAgcAg2AQAAAAAAAAQOwSYAAAAAAACAwCHYBAAAAAAAABA4BJsAAAAAAAAAAodgEwAAAAAAAEDgEGwCAAAAAAAACByCTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAAAKHYBMAAAAAAABA4BBsAgAAAAAAAAgcgk0AAAAAAAAAgUOwCQAAAAAAACBwCDYBAAAAAAAABA7BJgAAAAAAAIDAIdgEAAAAAAAAEDgEmwAAAAAAAAACh2ATAAAAAAAAQOAQbAIAAAAAAAAInEAHm7feeqtGjBih2tpajRs3Tq+//nrKx95555066qij1K9fP/Xr108TJ07s9PhzzjlHoVAo6d+JJ55Y6JcBAAAAAAAAIEuBDTYfeughTZ8+XZdddpnefvttHXzwwZo0aZLWrVvn+Pi5c+dqypQpevHFFzVv3jwNGzZMJ5xwglatWpX0uBNPPFFr1qyJ/3vggQeK8XIAAAAAAAAAZCGwweZNN92k8847T1OnTtV+++2nO+64Q3V1dbrrrrscH/+3v/1N559/vkaPHq1Ro0bpz3/+syKRiObMmZP0uJqaGtXX18f/9evXrxgvBwAAAAAAAEAWqvxegVy0tbXprbfe0owZM+L3VVRUaOLEiZo3b56r52hublY4HFb//v2T7p87d64GDhyofv366dhjj9XVV1+tXXbZxfE5Wltb1draGv9569atkqRwOKxwOJztyypJ1usol9eD4KDtwQ+0O/iBdge/0PbgB9od/EC7gx9od7nL5j0LRaPRaAHXpSBWr16toUOH6rXXXtPhhx8ev/+iiy7SSy+9pAULFmR8jvPPP1/PPvusPvjgA9XW1kqSHnzwQdXV1WmPPfbQ0qVL9T//8z/q2bOn5s2bp8rKyk7Pcfnll+uKK67odP/999+vurq6PF4hAAAAAAAA0PU0Nzfre9/7nhobG9W7d++0jw1kxWa+rr32Wj344IOaO3duPNSUpMmTJ8dvH3jggTrooIO01157ae7cuTruuOM6Pc+MGTM0ffr0+M9bt26Nj92Z6Y0PinA4rNmzZ+v4449XdXW136uDLoS2Bz/Q7uAH2h38QtuDH2h38APtDn6g3eXO6hHtRiCDzQEDBqiyslINDQ1J9zc0NKi+vj7t395www269tpr9fzzz+uggw5K+9g999xTAwYM0JIlSxyDzZqaGtXU1HS6v7q6uuwabTm+JgQDbQ9+oN3BD7Q7+IW2Bz/Q7uAH2h38QLvLXjbvVyAnD+rWrZu+/OUvJ038Y00EZHZNt7v++ut11VVX6ZlnntGYMWMyLmflypXauHGjBg8e7Ml6AwAAAAAAAPBGIINNSZo+fbruvPNO3XPPPVq8eLF+8pOfaPv27Zo6daok6ayzzkqaXOi6667Tr371K911110aMWKE1q5dq7Vr16qpqUmS1NTUpP/+7//W/PnztWzZMs2ZM0ff+ta3NHLkSE2aNMmX1wgAAAAAAADAWSC7okvSGWecofXr1+vSSy/V2rVrNXr0aD3zzDMaNGiQJGn58uWqqEjktrfffrva2tp0+umnJz3PZZddpssvv1yVlZV69913dc8992jLli0aMmSITjjhBF111VWO3c0BAAAAAAAA+CewwaYkTZs2TdOmTXP83dy5c5N+XrZsWdrn6t69u5599lmP1gwAAAAAAABAIQW2KzoAAAAAAACArotgEwAAAAAAAEDgEGwCAAAAAAAACByCTQAAAAAAAACBQ7AJAAAAAAAAIHAINgEAAAAAAAAEDsEmAAAAAAAAgMAh2AQAAAAAAAAQOASbAAAAAAAAhfLOO9LatX6vBVCWqvxeAQTHmDFjtJadMYpox44dqq2t9Xs10MXQ7uAH2h38QtuDH2h38INv7a6lRdq0SQqFpPp6qYL6sq6k0O2uvr5eb775ZsGePwgINuHa2rVrtWrVKr9XAwAAAACAYIlGpTVr/F4LoOwQbMK1+vp6v1cBXQzf5sMPtDv4gXYHv9D24AfaHfzgW7vbskXavj12u18/qa6u+OsA3xSjYrOrI9iEa129vBnFFQ6HNWvWLJ100kmqrq72e3XQRdDu4AfaHfxC24MfaHfwg6/t7ic/ke64I3b74ouliy4q7vLhG/Z3xcHgDgAAAAAAAIXQ0ZG43dDg33oAZYpgEwAAAAAAoBDa2xO3mYwX8BzBJgAAAAAAQCEQbAIFRbAJAAAAAABQCHRFBwqKYBMAAAAAAKAQqNgECopgEwAAAAAAoBDMYHPjRikc9m9dgDJEsAkAAAAAAFAIZld0SVq3zp/1AMoUwSYAAAAAAEAhmBWbEt3RAY8RbAIAAAAAABSCvWKTYBPwFMEmAAAAAABAIdgrNpkZHfAUwSYAAAAAAEAh0BUdKCiCTQAAAAAAgEKgKzpQUASbABAUbW3S6tV+rwUAAAAAt+iKDhQUwSYABEF7u7T//tKwYdKTT/q9NgAAAADcoCs6UFAEmwAQBB9+KC1ZIkUi0lNP+b02AAAAANygKzpQUASbABAE5je99m99AQAAAJQmuqIDBUWwCQBBEIkkbtu/9QUAAABQmuzBZmOj1NLiz7oAZYhgEwCCwAwzqdgEAAAAgsGpKIGqTcAzBJsAEATmCREVmwAAAEAwOBUlEGwCniHYBIAgINgEAAAAgsfp3J0JhADPEGwCQBAQbAIAAADB41SxSbAJeIZgEwCCgMmDAAAAgOChKzpQUASbABAEVGwCAAAAwUNXdKCgCDYBIAgINgEAAIDgsSo2u3dP3EewCXiGYBMAgsAMM526swAAAAAoPda5+5Ahifvoig54hmATAIKAik0AAAAgeKxz97o6qV+/2G0qNgHPEGwCQBAweRAAAAAQPFbFZlWVVF8fu02wCXiGYBMAgoCKTQAAACB4rGCzsjIRbDY3S01N/q0TUEYINgEgCAg2AQAAgGCJRhM9r6qqpEGDEr+jahPwBMEmytuOHX6vAeANgk0AAAAgWMzzdrMrukSwCXiEYBPl68knpf79pa9/3e81AfJnjrHJrOgAAABA6TPP282u6BIzowMeIdhE+frb36SWFmnWLGn1ar/XBsgPFZsAAABAsNgrNnfdNfHzhg3FXx+gDBFsony1tiZut7X5tx6AFwg2AQAAgGCxV2zW1SV+bmkp/voAZYhgE+XLPIjQdRdBR7AJAAAABIu9YrN798TPzc3FXx+gDBFsonwRBKGc0J4BAACAYDELbKqqqNgECoBgE+WLik2UE3PyIIJNAAAAoPTZu6JTsQl4jmAT5YtgE+XEDDNpzwAAAEDps3dFp2IT8BzBJsoXXXdRTmjPAAAAQLDYu6JTsQl4jmAT5YuKTZQTgk0AAAAgWJgVHSg4gk2UL4JNlBOCTQAAACBYmBUdKDiCTZQvgiCUEyYPAgAAAIKFWdGBgiPYRPmiYhPlhKAeAAAACJZ0s6ITbAKeINhE+SLYRDkh2AQAAACCxd4VvbJS6tYt9jNd0QFPEGyifBEEoZyYbZigHgAAACh99opNKVG1ScUm4AmCTZQvKjZRThhjEwAAAAgW+xibUmKcTSo2AU8QbKJ8EWyinFCBDAAAAASLvSu6RMUm4DGCTZQvgiCUE7MNRyJSNOrfugAAAADIzKkrOhWbgKcINlG+qNhEObGH82bXdABdyyefSKNGSSeeyBd3AACUskwVmxQrpLdlizRmTOzf5s1+rw1KFMEmyheTraCc2MMLwgyg67r/funjj6Vnn5Xmz/d7bQAAQCrpxtiMRqXW1uKvU5D885/SW2/F/v3zn36vDUoUwSbKl3kQIQRC0NkrNAnrga5r+3bn2wAAoLSkmxVdYpzNTJqanG8DBoJNlC+6oqOcULEJwEKPBAAAgsGpK7pVsSkxzmYm5nlOW5t/64GSRrCJ8sXkQSgnBJsALHxxBwBAMDh1Radi0z2CTbhAsInyxYUfygnBJgALxzcAAIIh3azoEhWbmRBswgWCTZQvLvxQTgg2AVjM7T8c9m89AABAeulmRZeo2MzEPM8h2EQKBJsoT9Fo8mQrhEAIOvvkQbRpoOviizsAAIIh3azoEhWbmVCxCRcINlGe7KEPF34IOto0AAvBJgAAwcCs6Pkh2IQLBJsoT/YLPS78EHR0RQdgoSs6AADBwKzo+aErOlwg2ER5IgRCuaFNA7BQsQkAQDBQsZkfKjbhAsEmyhMVmyg3BJsALASbAAAEAxWb+SHYhAsEmyhPBJsoN0weBMBCV3QAAILBafIgKjbdoys6XCDYRHmiug3lhjYNwELFJgAAweDUFd2s2CTYTM98//gyFykQbKI8UbGJcsOs6AAsBJsAAASDU1d0s2KTrujp0RUdLgQ62Lz11ls1YsQI1dbWaty4cXr99ddTPvbOO+/UUUcdpX79+qlfv36aOHFip8dHo1FdeumlGjx4sLp3766JEyfq008/LfTLQCEQAqHcULEJwEJXdAAAgoGu6PmhKzpcCGyw+dBDD2n69Om67LLL9Pbbb+vggw/WpEmTtG7dOsfHz507V1OmTNGLL76oefPmadiwYTrhhBO0atWq+GOuv/563XLLLbrjjju0YMEC9ejRQ5MmTdKOHTuK9bLgFXuQSQiEoGOMTQAWKjYBAAiGTF3RqdhMj4pNuFDl9wrk6qabbtJ5552nqVOnSpLuuOMOPf3007rrrrt08cUXd3r83/72t6Sf//znP+vvf/+75syZo7POOkvRaFQ333yzLrnkEn3rW9+SJN17770aNGiQnnjiCU2ePLnTc7a2tqq1tTX+89atWyVJ4XBY4TKpoLBeR+BeT0uLqo0fO9raFAnaa+jiAtv2CqSyvT3pm6j21lZFeW88R7tDwaxcqcpzz5VGjFDH7bdLoVD8V9m2O3N/0NHayvENOWOfBz/Q7uAHv9pdRVubdsaZapdi5+9VVfFr1cj27epgW0ipsq0tfs4TaW0N3HvF/i532bxngQw229ra9NZbb2nGjBnx+yoqKjRx4kTNmzfP1XM0NzcrHA6rf//+kqTPP/9ca9eu1cSJE+OP6dOnj8aNG6d58+Y5BpvXXHONrrjiik73P/fcc6ozv4UpA7Nnz/Z7FbLSc+VKHWf8vOKzz7Ro1izf1ge5C1rbK5SvNjRoV+Pnea++qk2bNvm2PuWOdgevfenhh7XvCy9Ikl7Zd19t2XvvTo9x2+6OXL9eu+y8/dknn+hDjm/IE/s8+IF2Bz8Uu93t+8kn+tLO2/PffFMbW1vVfd06nbDzvjVLl+pNjuMpHbZypYbsvN24bp1eDuh7xf4ue81ZVDMHMtjcsGGDOjo6NGjQoKT7Bw0apI8++sjVc/zyl7/UkCFD4kHm2rVr489hf07rd3YzZszQ9OnT4z9v3bo13sW9d+/erl9PKQuHw5o9e7aOP/54VVdXZ/6DUvH++0k/Dh86VENPOsmnlUEuAtv2CqTyppuSfj587FhFx4/3aW3KF+0OhVKxM9SUpCP2319R44vUbNtd5a9/Hb+95/DhGsHxDTlinwc/0O7gB7/aXcXLL8dvf+WIIxQ98kjJGD5vcN++OonjeEqVd94Zv923ri5w7xX7u9xZPaLdCGSwma9rr71WDz74oObOnava2tqcn6empkY1NTWd7q+uri67Rhu412R08ZOkikhEFUFaf8QFru0Vim2MzapQSOJ9KRjaHTxnjAuVavt13e6M/UFlJKJK2iryxD4PfqDdwQ9Fb3fRaPxmVW1t7Pjfp0/8voodO7hOTcc45wmFw4HdZ7C/y14271cgJw8aMGCAKisr1dDQkHR/Q0OD6uvr0/7tDTfcoGuvvVbPPfecDjrooPj91t/l8pwoQcwgjXJjnzyICUOAYDEnIsx3+2XyIAAAgoFZ0fPD5EFwIZDBZrdu3fTlL39Zc+bMid8XiUQ0Z84cHX744Sn/7vrrr9dVV12lZ555RmPGjEn63R577KH6+vqk59y6dasWLFiQ9jlRouwXelz4IegI64FgMyYb9DTYZDB6AABKl9Os6JWVUrdusdvMip6eeZ5DsIkUAtsVffr06Tr77LM1ZswYjR07VjfffLO2b98enyX9rLPO0tChQ3XNNddIkq677jpdeumluv/++zVixIj4uJk9e/ZUz549FQqF9POf/1xXX3219t57b+2xxx761a9+pSFDhuiUU07x62UiVwSbKDcEm0CweVmxaW7/HN8AAChd5jG7yohfunePBXVUbKZHxSZcCGywecYZZ2j9+vW69NJLtXbtWo0ePVrPPPNMfPKf5cuXq6IiUZB6++23q62tTaeffnrS81x22WW6/PLLJUkXXXSRtm/frh/96EfasmWLjjzySD3zzDN5jcMJnxACodzQpoFgoys6AABdj1PFpiTV1UmNjVRsZkKwCRcCG2xK0rRp0zRt2jTH382dOzfp52XLlmV8vlAopCuvvFJXXnmlB2sHX1GxiXJDsAkEW6GCTbqiAwBQutJVbEpUbGZCV3S4EMgxNoGMCDZRbuyTBxFsAsFCV3QAALoep8mDpFjFpkTFZiZ8mQsXCDZRnqhuQ7mxt2HCDCBY6IoOAEDXk6orulmxGY0Wd52CxN4VnfcKDgg2UZ6o2ES5IawHgo1gEwCAridVV3SrYjMalVpbi7tOQWKe50SjXAPBEcEmyhPVbSg3BJtAsBWqKzrdsgAAKF2puqJbFZsS42ymYz/PYZxNOCDYRHmyXzQSAiHoGGMTCDYqNgEA6HrSzYpuYZzN1OznOQSbcECwifJEV3SUGyo2gWAzu5kRbAIA0DVkmhVdomIzHYJNuECwifJEV3SUG4JNINjoig4AQNeTaVZ0iYrNdOiKDhcINlGe6IqOckNYDwRXNEpXdAAAuqJMs6JLVGymQ8UmXCDYRHmiKzrKDRWbhbdxoyrPPVf7PPBALIgCvNLenjxObj7HJPuMoBzfABRTOCz97GfST39avjM5d4XXiOLJNCu6RLCZDsEmXKjK/BAggAiBUG6YPKjwZs5Uxb33apSk8PTp0tixfq8RyoVZrSnlF0ba9wV0RQdQTP/6l/SHP8Rujx8vnXGGv+tTCE89lXiNEyZI3/mOr6uDgHNTsUlX9NToig4Xcgo2t27dKknq3bt3XgtvamrSCy+8IEn65je/mddzAUmo2ES5IawvvLVr4zdD69f7uCIoO14GmxzfAPjJOFZq1Sr/1qOQli9P3G5o8G89UB7M43SF0WGWik13qNiECzkFm3379lVFRYXeffdd7bfffp1+v3r1al1yySUKhUL6y1/+kvJ5vvjiC51yyimqqKhQOyfm8BIXfig3BJuF5+Ws1YDJy2CT8XYB+Mk8VjY1+bcehbRlS+I2IQryZR23q6qkUChxPxWbmUWjBJtwJecxNqNpxh/bvHmzZs6cqZkzZ+b9XEBOCIFQbmjThUewiUIpZMUmXdEBFBPBJpAd67htdkOXqNh0w+l6h20SDpg8COWJik2UG4LNwjNPlAiL4CW6ogMoF+axcvt2/9ajkBobE7cJUZAvs2LTRMVmZk7nOJyjwwHBJsoTF34oN/YJQ2jT3qNiE4ViDzbz+WKCrugA/ETFJpAd6zhtDzap2MzM6RyHbRIOCDZRnqhuQ7mhTRcewSYKxWxbEhWbAIKLYBPITqqu6FRsZkawCZcINlGeuPBDOYlGO1dsEmx6z7xY4/2FlxhjE0C5INgEspOqKzoVm5k5neOwTcIBwSbKE131UE7soaZE8FYIjLGJQmFWdADloqsFm5wPIF+puqJTsZkZFZtwiWAT5cm+EyQEQpARbBaHcbEWIiyCl5g8CEC5MEOFcg02mTwIXmJW9NwRbMIlgk2UJy78UE6cQkyCTe8xxiYKpdBd0aPR3J8PALJR7hWb0Shd0eEtZkXPHV3R4VJewWYoFPJqPQBv0VUP5cQpxKRNe8+8WKPrGbxUyK7oknNVNwAUgnms3L7dv/UolKam5H0qIQry5aYrOhWbzqjYhEtVmR+S2gEHHJDyd1boWWkvuQaKwWknGIlIFRQpI4Co2CwOKjZRKIWs2LTu43wLQDGUe8WmWa0pEaIgf266olOx6YxgEy7lFWxG6fqEUpXqwq9bt+KvC5Avgs3iME+UCDbhpUIHm+GwVFOT+3MCgFvmsXL79vIrHDDH15QIUZA/N13Rqdh0Rld0uJRTsDl+/Hi6oaO0peq6S7CJIGLyoOKgKzoKpdBd0QniARSLeayUYpVmPXv6sy6FQMUmvJaqYrOyMnZt2tZGxWYqVGzCpZyCzblz53q8GoDHnHaCBEEIKio2i4Ou6CgUexBQiK7oAFAM9v1ZUxPBJpBOqjE2pVjVZlsbFZupEGzCpTLqN4CS9/DD0kUXSRs2FH5ZXPihnBBsFgfBZmarVkkXXig9/bTfaxIsha7YpMI4vW3bpEsukf7yF7/XJNm2bdL//m9x12vOHOnnP5c+/7x4y0R5cQo2ywnBZtfw7LPSBRdIX3xR2OVEo6m7okuJcTap2HTmdH7DOQ8c5DXGJuDaunXSmWcmuoNffXVhl0cQhHJC19PiYIzNzH7zG+m226T/+z+poUHq0cPvNQqGYkwehNRmzpR+/evY7SOOkEaN8nV14u66K7ZNSdJXvyrtu29hl9feLp1xhrRxo7R+vfS3vxV2eShP9mCz3GZGJ9gsf+GwNHly7LNevVp65JHCLcscTsppkj9rnE0qNp1RsQmXfK/YbG5u1o033uj3aqDQVq9O7JiKUSXAhR/KCUF94UWjVGy6YVU2bN8ubd7s77oECcGmv5YvT9z+7DP/1sPOPB9aurTwy9u8ORZqSsnvCZANe6hQbhWbTB5U/pqaEgH2v/9d2GWZ5+vpKjYJNp0RbMIl34LNbdu26de//rVGjBihiy66yK/VQLGYgUExdtxUuKGcMHlQ4bW3x8JN82d0Zr4vvEfuMXmQv8z3rJSqy8zzIXuVWCGYy6DNIFd0RUfQmZ/pmjWxCvZCMfe1qcbYlGJd0c3zUMQQbMKlondF37Rpk373u9/p1ltvVWNjo6LRKDOsdwXmSVAxxhBh8iCUEyo2C8/LyV3KmTmuEWMcuVfoik0+i/TM96yUQhjzfKjYwSZtBrnqasEm20r5sQdjixZJEycWZlnm8cepK7pVsRmNxtarpqYw6xFUTtsfwSYc5FWx+cUXX+hnP/uZ9ttvP/Xq1Uv9+/fXoYceqmuuuUaNtjL+pqYmXXbZZRoxYoR+85vfaMuWLYpGoxowYICuLvR4i/BfsSs26aqHckKwWXi2k6QQFzLOCDZzQ1d0f5VqsOlnxSbbL3LV1YJNQpTyY/9MFy4s3LIydUW3KjYlJhByQsUmXMq5YnP27Nk67bTTtH1nl57oztLpRYsWadGiRbr33nv14osvqr6+Xv/+97915plnasWKFfHHDR06VL/4xS/0ox/9SN3NDRrlia7oQO4INguPik13CDZzQ1d0f5nvWSmFMOZFrH1cv0Iwl8H2i1yV+xibBJvlz6lis1AydUW3Kjal2DVyv36FW5cgItiESzkFm+vXr9eUKVPUZBzIevTooaqqqnil5ieffKKf/vSnuuCCCzRp0iS1tbUpGo1qjz320MUXX6xzzjlH1dXV3rwKlD5zB0RXdCA7BJuFR7DpDmNs5oau6P6iYrPzMth+katyr9hk8qDy51ewmW5WdImKTSd0RYdLOXVFv/POO7Vp0yaFQiGdfvrpWrJkibZt26bNmzdr9erVmjZtmiTpH//4h/7jP/5Dra2t6tmzp/7whz/o448/1nnnnUeo2dXQFR3IndPkQbRnb9kv1AiKnFGxmRt7+8rniwmOb9kLQsUmXdERBJFI5/1NKU3I5QUqNstep+GGFi/ufJz2ittZ0SVmRndCxSZcyqli87nnnpMkfeUrX9HDDz+c9Lv6+nrdcsst2rZtm+655x6tXLlSffv21SuvvKL9998//zVGMBV78iC66qGcULFZePaTJPYXzgg2c0NXdH+Z708phTCMsYmgcQp/SunLAi8QbJY/p3O+Dz+UDjnE+2VRsZkfgk24lFPF5kcffaRQKKTzzz8/5WN+9rOfSZJCoZB+9rOfEWp2daVQsUkQhKAi2Cw8uqK7Q7CZG7qi+ysIXdGLMcYmwSby5RQolNI2la9o1HlW9J1zRKBMOLXjQnVHz3aMTSSjKzpcyinY3Lx5syRp5MiRKR+z9957x28fddRRuSwG5aQUxtgkqEBQEWwWHsGmO4yxmRtmRfcXXdFjzPCUNoNclHvFZkuLc5DCFwHlxSkYK9TM6MyKnh8qNuFSTsFmeOfOvVevXikf07Nnz/jt+vr6XBaDcmKeCIXDhT+hpqseyonTGJsEm94i2HSHis3c0BXdX0Go2KQrOoKg3IPNVJXTBCnlxa+KTaeu6FRspkewCZdyCjazFQqFirEYlDL7iVChd9x0RUc5oWKz8Ag23SHYzA1d0f1VqsGmvWKz0N1dCTaRr3IPNlN9wUCQUl6c9n+LFhVmH0zFZn6ooIZLRQk2gZIINgkqEFRUaBWe/aKFkyZnBJu5oWLTX6XYFT0S6dybpdDnRgSbyBfBJsqB0+e5ebO0YoX3y2KMzfxQsQmXcpoV3TJ16lT16NEj78eFQiHNmTMnn1VBqbPvgAr9jRQXfignVGwWHhWb7jDGZvY6OjqHSIyxWVylOCu60wVsY2PyRa7XzNCmo4MJUZA9p0ChVLYpLxBsdg3m59m3b+JzX7RIGj7c22UxK3p+CDbhUl7B5ptvvpn291YX9HSPi0ajdFXvCkqhYpMgCEFFsFl4BJvuULGZPacKp2g0VrFXkUPHGYLN7JViV3Sn86AtW6TBgwu3TPv4gbQbZKurVmxyvCsv5ud52GHS7Nmx24sWSd/4hrfLytQVnYrN9Ag24VLOXdGj0agn/9BF2E+Eyqli8+9/l2bO9CdoamyUbr5ZWrAgt79fsUL67W+lTz5x/zcvvST94Q/enMjOnZv5ubZsyf41vveedMMNUkOD+7955BHp7rtLMzAst8mD2tqkP/1JmjWr8+9efFH6/e+930e89550443SunXOv7fto0Ju9xfLl8e2oU8/zXMFPfDuu7F2n+o1eqGcgs2FCzO/X62tsbb6r3/lvhx7N3RLrsckp20/yJ+FtQ0tWVK4Zdi7opfC+afTPq6QEwi1t0vbtiXfF+R2k4tNm6Tf/U7KUJgROF98EduGli4t/LL8CjaXLYu9xs8+K+xyzPDf/OKJIKWshMzP87DDErcLMTN6pq7oVGym53ScKsb2+PnnsX3O55/n/1yffaaRjz1W+P1XF5dTxWbE6SIbSKdcKzbfeks6/fTY7f79pW9+0/tlpHPNNdJ110l9+kirV2ffhe0nP5Geflq6/37pnXcyP37jRmnSpNjnuX27dPHFua23JK1fL33ta7GL/qYmacYMx4dVXHddLJDq2zf2Gs0TACfRaOxzWLYsFvTce2/mdVmwQPrud2O3d9ml+J9jJuVWsXn//dKPfyyFQrFAcK+9Yvdv2CCdeGLshGXrVulXv/JmedFo7Bv4L76IBZwzZ3Z+TK5jbP74x9Izz0gPPyy98Ubeq5qzSEQ6+eTYlxXvvSfdc4/3y4hGy6crenu7dNJJ0po16d+vv/0t0VaXLpX22CP7ZTkFAdY6dOuW/fOVW8XmeedJzz0X+5Jw/vzCLMPebtvapJqawizLrVQVm4WydWvn+9rbperqwi2z1Fx5ZeyLswEDpFWrctv+StEPfiC98IL02GPSvHmFXZZfweYPfxh7jf/4h/Tqq4VbjrkN7rpr4gtygs3yYn6e++8fu7ZoaYmdD3gtm1nRy6n62St+VWyec4708svSU0/FinryUPmDH2j/115TZOnSwu6/ujgmD0JxFLtis1gXfosXJ25//LH3z5/JRx/F/m9szK460fLhh7H/zdeRzuefJz5La9m5Wrw4UcmU5r0LWb/bssXda9y2LRZqSu7X8e23E7ezqV4tlnILNq3PNBpNfr+XLUucrLz4onfLC4djoaaUaPN2uXZF/+CD2P9+bP+mxsbEoPdut+ds2dtckKu9Pv44FmpK6bd5ax8SjeZeUeh1xWa5BZvWe1zIbcj+/pTCxaPTeZC9q7iXnELTIG/DubC29Q0bYtWb5cLahgoRytg5BQptbYUPGqzjWqGPteZ2MnBg4jbBZnkxP8/u3RNDgGze7P2yMnVF3223xO1SvAbxm1/BprVfzfecOhpVaGclcKgQFcGII9hEcdh3QIWu2CxWV3TzdflxgWAuM5edvPU5tLY6d3dO9Xgp9cW6W2vXunsu8zW6WaZ5Yej2PTHXpRQv9MptMixz3c3PyLy9cKF33UXN5aXa99iDTbfBsRWQ+H3RY7b7Qu1f7dtGKW4rbpknl+n2K+bnmus2R1f09Kz3uJDbkP09K4Vgs9gVmwSbydtcOb12a9vZvr3w5wapKtALPYGQ9RoL/bnZKzbty0d5MD/Pbt0SFfz5Xts4ydQVffjwWK80KTbGJ5KZ27zVwyASKXyBh9VG8j2nbmpSaOcXmaHt20vj/KNMEWyiOEqhYrMQO0DzdfkdbKY62UzH/Bzc7LjNxxcr2DRPPtws0zwpdfueBDHYDHLFprl9mp+ReXvzZmnlSu+Xl2rfY28rbttBqQSbZrsn2MzMvHgIWrBZbhWbxQg27e9PKcziXOwxNp2qQYO8DeeiXINN8/hVyKpf+7JMhb5Yt5ZbzGCTis3yZQ82a2tjtwsdbDp1RQ+FpIMPjt1etSpWUY4E8/0zu+0Xepu0nr+5Ob9CC/Ma0+lneCanMTavvPJKr9dDl156qefPiRJSCmNsFuLCL+jBpvk5tLRIPXq4f3y+B3+zW7mXFZu5BJvmupTixU65TR6Uqt3aP69Fi6Rhw/JfnpuKTfsJkpv9RVtb4rVEo7HPxOmktRjMdl+oL47s70mQwzS3FZteTJZEsJme9b62t8e2o1DI+2VQsen83EFuN7noCsHmli2xscKLsSxTob8sKFawaQbDBJvlK1WwGQ57fy6XqSu6FAs2rXEcFy2SjjvOu+UHnT3YtLbRtrbM8y7kw9rXRCKx27mOyWwPMhsapJEj81s3OMop2Lz88ssV8vjEk2CzzBU72CxW113zdflx0mMuM9tgs709+QTRzWfiR1f0YldsluLJa1es2JRi4dPJJ3u7PLdd0d3sL+zhSKFPstKhYjM7Qa7YLNeu6FJ+Fw/pBGWMTbqiF1aqYVCCLBpNfi2FbENS8rGyR49EoFnIbcoKFqTY/4X6AkRKfv8GDEjcLpf2ghhz32cGm1KsjWc7GWs6mSo2pUTFpkSwaWd+VmYBTiG3yWi08zVyrucm9vkhqNgsmJy7okejUc/+oQuw73zKpSt6kMfYtIcfbj4TH7qih7INNs1v2+mKXprcjLEpeTfWUKG6otsrVPy88DHbfaH2r+USbK5dK61bl/g5aMFmOVVs2kOZQm1DpRhsOn0BweRBhVWOFZv211HorujmNtq/f+J2Ibcp+2ss5P7O2k56907+opJgs7ykqtiUvO+OnmmMTUkaPTpxmwlmkvnRFd2+z8nnvJqu6EWTU8Xmi17OVouuga7ohZFPV3T7Z1COFZtuDnrRaOl3RS/nYDNTxabXy2trc+5m5FXFpl/s7b4Q3eLLJdi0tyuCTf90dCSPXVWobagUu6JTsVl85Rhs2o9dxazY3GUXacWK2O1CblNOXzxak4h4zXr/+vRJXgbBZlkJFTPYdNMVfb/9YudsHR1MIGTnR7Dp5aTHTl3RURA5BZtHH3201+uBclfMyYOsse7sCDaT2T+DbCs2cxnT02Tu2NM9V7bd7bPtir51a/JJTCle7DiNsRnUIENyP8bm0qWxi6WePfNbnv29amnp/Jy5jLFZqsGm5Pwa81UuY2zaLxpaW1N3bfSiKp+u6KnZt5muXrFZ7MmDgroN54pg09vlmWN5FjvYLBTr/evbN7nrKcFmebHPtG3viu4lN13Ra2ulffeV3n9fWrw41t4KMSxLEJmflRlsFnI/4GVPU7qiFw2zoqM4ilmx6RQCSYWfFT1oY2z6WbEZiRRn8qC2tswz2dkPMKV48tpVKzajUem997xdnuTc1nO5cCr1YNNr5VqxaR9LyeRFxWaqfTMVm/4Fm11xVnQqNstzjM2uGGwW6rNrbU2cZxJslrdSq9iUEuNshsPShx96uw5BVm4VmwSbBUOwieIoZsVmqgs8KjaT5Vuxmc+Bf9Om5M+jUF3R7X/vxP5NWile6HXVYFPypju6fdt3auu2ZYfsXWSdlHKwWYh9bLkEm07dvFLtW7zuim6elOe6DRNsZq8Uu6IzxmbxUbGZv1RjbBbyywL7fqFQn525/RFslrdSG2NT6jyBEGJKIdj0coxNuqIXDMEmisPLbz4ySXWxWIgLv3KaPKiYFZv2nbqXwab9wjDT+2I/4JTixY5Tm45EMgdvpSpVu3X6rLw4uculYlPKHDyVUrBpb/dUbDpraZE+/rjz/W6CTS+6opvDA3jZFZ1gM71S7IpOxWbxlWOwad9mCj15kHmsLNbkQcXqim5uI/Zgs1zaC2L8CjbTjX1uTiBEsJlgvn/FmhWdis1AIthEcZRCxWahu6L7HWwGqWLTvlMvZMVmpvclqMGmlHrYhVIXgIpNSZnbQikFm8Wo2CyHMTbff995uylWxaYXwabT35XifsuNrhxsmhdKvXsn7vN6fDeLU7AZxG04H+UYbHbFrujFCDb79KFis5yZbahbN6mmJvGz313RJWZGN6UaYzMIFZv2CWql2HVnUAtTShzBJoqjmGNspjqAFLorelccYzPXHbNTsJnquQodbNoPOKV48lrMcWOLIZtg87338n+dbio2nT73TPsMe9e7Ugo2qdh0lqoKIkjBJhWb2SvFrujmhdLgwYnbhaq4c3reIG7D+WCMTW+XV25jbKar2CyX9oKYUuyKPnBg4liwaBHhl6UUuqLnek69eXPn42xbW+Er67sogk0Uh18Vm+Y3cFRsJsu3YlPK/aDiNL6I03NFo1RsSqnbblCDTTezou+6a+z/5ubY7Oj5yLViM1NY1NUqNssh2DSrIPbeO3G7WF3RzW5UTB5ExabFDDYLFUzRFZ2KTS+kGmOzHCo2GWOz6yjFruhSompz0yZp5Upv1yOoSiHYzPWcOlW3c7qjFwTBJgqvo6NzAFPIis1UwSZjbCbLt2JTyv3g77RDd3iuUCSikPmNJcFmsqCGGamqZszbY8cmbufbJSfXMTaDHGxSsenMrNgcNy5xO0gVm3RFz16pz4pe6IrNSISKTak8g037NlOOFZvFmjyIis2uw/o8Q6FY2FgKs6JLTCDkxNreKyqSP6dCbpP2fUyu59SpJgoi2CwIgk3kr7VVevBB6aabEv/eeivxe6cdTyErNs0DiLkDTHUR+fHH0hNP5Hai5GdXdHs1ox8Vm+bBf8sW6YEHpHXrkh8TiUhPPy29+WbiPrfBpv0zy3SyEY1mP3lQUGdFT3d/qXPTFd0MNvM9uSvWGJt+tR2nds8Ym51FIom2NHx4cphUqsHm5s2x/eqGDYn7yqkrulMXLa9Fo6XZFd28UBoyJHHbClfee096/HFvPttt25y7NZZSu1m5UnroocKGzmY7KMVjfS7sxy63wfj778fOfe1tYONG6f77pfXrMy+PrujB0NIiPfywtGxZ8Zb5/vvSk0+W1j7GELI+z27dYuFmKXRFl3KfQOjll6WXXspqtQLDev+qqoq3TRagYrPF3F8yM3pBEGwif9dfL02ZIl14YeLfuHHS8uWx3zsFBn5UbDpdDG7bFgtQTj1Vuv327JflZ1d0++sp9hibUvLB/8c/lr73Pen005Mf8+ij0sknS1/9aqJLsdMO3WH9K+wnRJleY0tL588h24rNUjx5Lbdg001XdLOaLt+KTTcV47mMsVkqFZtNTZ3HYaVis7Mvvojt86VYVYR5IZNqP+H3rOg//GFsv/rd76b/uxK9eMyoGJVYTmMUl0KwaV4o1dcnbm/ZEjtGHn649O1vS3/6U/7LShV2lco2HIlIxx4rTZ4s/c//FG45jLEZs3Fj4tz3L39J/t1ZZ0lnnhk7r8+0PLMreiEDaSYPys/ll0tnnCEdfXRxjhUbN0qHHSZ961vSvfcWfnm5MINNqfS6okvug83XX499thMmSAsWZL16Ja8Ugs1cz6mNa8zGESMc74d3CDaRvzfe6HxfR4f07rux204XjH6Msel0MF+6VNq6NXb77bezX5afwWa2AZ6d1xWbVpWu/X20QqlwWJozJ3bbZcVmp2Az08mG0wl9uvclEglGxaZ5YW6eFAU12HRTsTlyZKxiQvKvYjMowaZTuyfY7Mysetx9d3ezoJqvMdcLQrNtZRtsWsfXd95J/3dB+ywsxeiK7rSfLIVg09pGu3eX+vVL3L9li/Tqq4mgyIvZcc19RIVx6l8q7aa5Wfr009hts3eH18qxK7r92LV1a+oJBy2LFyfa32uvJf/O+vm115yrfO37s+rq2O1yGGPTfA09e5ZPsGmFXcuXd+5VVQgffZQ4puZybVUMVhtyCjazvZ7KJJuu6LvvnrhtnrOkY+4zzXOFcmF9VtXVga7Y3LrHHo73wzsEm8ifeSJgfsNr7QSKXbGZTVf0TDMyZ+LnGJv5duHzomLTfM+sz9seEJg/WwFVqQSbmzd3bheleLFjtmnzoF4OwWaqMTZraxPfXK9a5f4EL9PyJPdjbGZqC6UyK7pTuy/G5EFBqxI09x/du7ur0PC7K7p1fDXXo5y6ohcj2HR6b0oh2LS20e7dY9VhlsbG5DDTi23Z3EeY3eFKpd2Yn3shP5tyDDbt20w0mvjCPhXzPTbPx1pbE22lpSVR4Z5qeTU1iX1aOYyxaZ4b1NWVT7Bpbv+FHoNVSj7meR0SeqVUKzbNL1zdvnfmthfkdppKkCs2jeIZKjYLj2AT+bN2qKGQdOSRifutnUCxx9jMpit6qlDFLT/H2LQvrxgVm+m6olu/6+hI/gzMxyxcGPu9U0hVqGAz3efidGApxYudcg42U325UFPj3SDqVGx6IwhfAqRj7j9qaoIbbJZzV/SuFGxa22hdXaI6XYptz+b+zott2dxH7Lpr4napbMPFCDYjkeRKxlJ57flyOnZlGmfTfI/NXiv2Hizphg2qqopV/xYj2CzWGJvmuUFdXaIatZDLLAazPRRicjI785hXqu9buopNP8fYrKxMVNW7fe+6UrBZrG2y0BWbjLFZEASbyJ9VtdSjR+yfJV3FZjhcuFAmm67o+VZsBrkrei4Vm+m6opu/M+83b7/7bmxn7tRNyotg0+mELd374hRsluJJQapgM6hhhpsxNrt1K1ywWW5jbDq1+2JUbAYtGDD3H7W1mS9kotHk11jsMTbb2hKPaW9P7DcJNrPjdK7R3Jy5u26hmRWb9mCzkBWbpR5sFmqsRns7KMVjfS6cznEyVeWZ77F5HmQ/J3I6R7KWZ51f+xFsFqNis3t3KjZzFaSKTSsoczM0Ta6y6Ypurovb987cnoPcTlOxzm/sXdELefzyeIzNaHW1murrFbU+fyo2C4JgE/mzTmZ69oydCFisnUCqHXOhuqObBxCCzdS8rNjs6Eg+CKQKNpuapHnznJ/baVZ0+2v0uiu60zdmpXKhZ+qqFZvm7JD5jDOXqWIzGvVmVvRyr9jsasGmV13vzec2v/zLNji31sfa7s0LpKB9Fha/Kjaj0cIOieNGqorNzz6TVqzo/Lh8mF9+DBiQuF0q7aYYFZtBrzhPJZdg03yP169P7FPs50TZBptOY3J6oVjBpr1isxyCzUgkefsn2Iwp1a7oUvbBZrlXbFrbexBnRbf2qQMHxj77gQNjPxNsFgTBJvJnBpt1dYn701Vsmr/3WjZd0RljM/XPdu3tnZdpHfzTdVG3nyA8+2zitnlh7scYm0Hpim5WFpVbsJlqOIhu3aT99kucBBayYjPVZx6Uis1ijbFpfz+CViWYbbBp/zzzDTa7dUvuRpVr+7L+rlu32BAw+ayb3/wKNiV/u6NHIoljk71i89VXkx/rdcWmGWyWSruxV2wWopq2XINNp20mm2AzEkkMD2Q/J3L68tceCFnBZiG/LPBjjE17xWZQ28u2bcmBM8FmTDGDzUJXbJZ7sBnUMTY7OuKTdUUHDYrdZ/2/bp3/vUbKEMEm8pepYjPVjqdQJ0DmyWumyYPMdcu3YrPcx9h0+rzyDTaHDUv9OPk0xmYpnhSUW8Vmpq7oVmBTWyuNGhW7b/Hi3D+bTBWbqbadIAebVGx2lm+wmW9X9Nra5IuaXCs2zZN86/lKJaDKll9d0SV/g037JCXm5EH2CVu62hibUnG+mCmV156vfCs2pcS5UC5d0c0q9EINI1DsMTZDodjrK4eKTXtbINiMBb1+VWxmE2wyxmZMqq7opV6xuWFDIrysr5ckRXf+r44OaePGPFYQTgg2kZ+2tsTG36NHaVRs5toVPdsdpL37qt8Vm4UeY9Pp87IO/unG3rSfICxfnrhtzhDnxxibZjWCVRlYihc7Zps2K76CGmxm6opunrhY3dHDYenDD/NfntS5rafa9tO1hWiUWdFLcVtJx++Kzdra5G5ouQbnZld06yIpaJ+FpatWbNorw6qrk8+fTF1hjE37ehTis7G3g3IJAPKdPEhKBJj5dEV3el6vFHuMze7dY+FmOQSb9rbA5EEKRSIKWVWspdgV3VqnXCo2S2Wf7qVS6IqeyxeM5v7TqtS0uqLbfw9PEGwiP+aFfamMsVmsrujt7cndO8o92My1YjPdepnBpsPjOgWbmV5jPl3RhwyJ/V+KJwXlVrGZKdg0t1svJhDKFGzmUrHZ0tJ5PLFSmjyIis3OzM/ZHmw6tYFCBJv5VGzau6JXVlKx6UYpBpv2sfyk5O7oJq8rNkt9jE2pOMFmqbz2fBWyYjPdrOjlHGxa22RlZWK4jxIM6FyhYrOTpGsLuqKXvqB2RTf2n9GdgWa8S7rt9/AGwSbyYw82S61iM1NX9HyCzWJ1jUkl3wvCbLuiZ1Oxab436U4Qdt897eOKNsZmt26JKpZSvNgxx2HJVIUcBJm6ohc62PSiK7rTBVy5V2x29TE2i90VPVVFsHmSb1VwB+2zsPjZFb1Q3WbdsFdsSqmDTS+25VSTB5VKuyHYzJ0XwaZ1gZ1NV3T7GJtOz+uVYo2xaW1r1jZpVm0GNTDyI9jMd/6CAkuamLSUu6ITbMb4EWza9zG5HIfN/afVBd363/57eIJgE/kxd6ZuKjZ79+78e6+lqtj0Oti071Cj0eJW0AWlYjPdCUKGruihQgeb1sn8oEGJg2VHR+kN6FzOFZttbYnKR2ubShVs5jozeiEqNp0u4Py6UGaMTXfswabZzgrZFd1qX15VbNIVPTulXrGZKdj0smKzslLq1y9xf6m0G/vnXojQuVyDzVwmD7K/v267opvnR35WbBYq0LBXbEoEm7kIesWm1+uc66zo7e3urkfM7Tmo7TSVSCTxHvg5xmaeXdGtSs0oXdELimAT+bEHm04Vm+bOwTxxL4VZ0VPNyOyG04GvmCfK+QabTuNipjuAOn1e1jKzGWPTUleXXDnitmLT3v3XlM3kQR0d0vr1sdv19cljV5baBU85BZvRaOoLTKeKzUGDEt9wLlqU/vNPJVPFZi5jbJZixWZFReLknDE2O/NjjM1oNHXFZqbttyt0Rbe3oa46eZCUPIGQqa0t/329tY/o27c0j3V+VGyWSwDg5RibTl3RzWOuuaxy7Ipur9iUCDZzUeJjbDoGm5m+6MxHtl3Rsw3vyrli017tGqTJg8wviqwu6GbFJl3RPUewifxkW7FpVgoUqmLTr67oUrCCzXQVmNk+PpeKzUGDMgYLnYLNSCT9BXw2kwetX588W515sCyViz1LOU0e5BSeW5+R0+RBUmICoU2bpJUrs19msSo2/Q42+/RJhCRUbHZm7mNqaorTFT0cTgQDhajYpCt6ZuZ7Y87gXOoVm2ZbyXd7NvcRBJsxpfLa8+VVV/Tt2zvfHw5Lmzc7L8sp2CzWrOiF+Ow6OhLtsJyCTb8nDwpKxWYolGjTfk8eZIasbt4/gk3vOVVsZltY4VSxaY6xScWm5wIbbN56660aMWKEamtrNW7cOL3++uspH/vBBx/otNNO04gRIxQKhXTzzTd3eszll1+uUCiU9G/UqFEFfAVlwh5smheKTmNsllrFptfBZjEPKPZl5Vuxmeq+dL/LZlb0oUNjFWWW+vrsg80Uj4vLpiu6/Zu0UrzYs5RTxabTe9vaGjthcKrYlPIfZzOLMTaj5vsblGDTulDp27ewwWZXH2Mzl9drX6aXkweVY1f0QrwO8302z0FKrWLTHmxaX+hI+Z0vRaPJFZvZtMFiIdjMnVeTB6WqHjIvvs1lWcfKYnxZUIz9hNM2KQU/2PS7YjMowaZUnGAzmzE2pczvXzic/JigttNUzG3dz67oHR3Z73ecxtgk2CyoQAabDz30kKZPn67LLrtMb7/9tg4++GBNmjRJ69atc3x8c3Oz9txzT1177bWqN0uAbfbff3+tWbMm/u/VV18t1EsoH+ZJTI8eyV0h/arYTHXAclOxmc23MU47VD8rNrPZwbe3O69rus8k34rN/v2lL30pcX8hg03zG9FUJwX2A44ZbJbaiYFZ5Rj0YNPpM21rS/2FhOR9sJmuYtO8SEu3PTtVpvjRbszQok+fRKVJsbqi5zI0gF+yDTbtr7fUgs1y6Ipe7MmDSiXYzFSxOXCgtOeeiZ/zOV9qbk68B3RFT73MoDJfh3Xuk0uwmeoi27zfXFa5jbHpNKGXRLCZi6AGm9Y5gd9d0bMJNlNNMlguSqViU8r+OGztO2trpV69Yrf79El8vnRF91wgg82bbrpJ5513nqZOnar99ttPd9xxh+rq6nTXXXc5Pv6www7Tb3/7W02ePFk19gtmQ1VVlerr6+P/Bpjj/8GZvWJT6nxhXewxNu3ddq0TvVSBiimbk/xMXdGbm6V//9ub8Km5WXrtteTnyqcreqqds9cVm/bx5cyAKpeu6CkeF7/f+p01w7mU/BlHo7HP5JFHpKefTtwfpDE2M1Uhp/P559JHH3mzTrlK9QWDUxc3i1m59Oyzsc/v8cfdn6BnMyu6GWwGoWKzpSXRXr2s2GxsjG0rZqjutF1k2wbb2qRXX/XnYsfvis2aGrqi2xW7K7o5jmU23WYjEWnePGnr1tzWoa1NeuUV5y8DncbYPPjg5HAln/Mlcz9ZDsHmwoXSmjXZLyNTxeannxbm+NjQIL39duf7w2Fv9oXm31vnPtkGm5s2SStWJH42J7gwL76zHWOzpSXW7r18jVJh2q25jQWpYnPNGunNN1N/yWhvC+a5sp3VVvP9wjJdsGntC704B8jxuUJeBZsNDdI772R+v7Ltip5NeJfqPMEv0WjsPfEqtLMHm8UqQnF67lTH4U8/lZYs6Xy/9R7U18eGOpBi/1tFdk5fJn3ySewfcuLia4PS0tbWprfeekszZsyI31dRUaGJEydq3rx5eT33p59+qiFDhqi2tlaHH364rrnmGg0fPjzl41tbW9Vq7Ey37jzhDYfDCpfKyWKerNeR6vVUbN0qaxfdXluraDisqro6hTZvVrSlRe3hsCqam+OP6ejdO3G7qUmRArxPoR074g27Q1JFZaVCHR2Ktrer3ba8ypaWpHQ/vH17YueTaTnbt3fagMLNzfETrsrjjlPF/Pnq+H//T5HrrsvptcTX03qu6dMVufba2PJbWpKX39amcFubu/XfulXVDneHt25NecJY0dQk++E40tysjnC40+86tm+PfbbhsKp3BiORmhpFDzxQlQ89FHvMrrsqUlkZXw/rueLrEg53nhVdUnjbNud13LAh/lzRXXdVaOcBI9LSEn/eit/9TpW//GWnP23fZRdVVFXF24L5OZaCynA4vm4RYz3bd+xQ1O16Ll2qqv33VygSUfurryo6dmwhVjWz5uZObS/c1CR1755oC9XVSW1BI0aoqrZWoR07Yiexr7wiSYrutZfa338/44liRWtrcttta1N4x47434Wam+PbUrSuTtYW1NHamnIfVdHY2Hl7aG1NXu9iWL8+8b717i1Z+7TW1qTXmJVoVFXHHKPQO++o48ILFbnmGklSZWtrp29Dw83NyQFMBpU/+IEq/vY3RU46SR1PPJH9uuXB3N+HKytjr3Pn8cHcT1jMdiFJ0ba2TseQjLZtS3w+3boposSJV0dbW7x9OR1rK7dtS3q/25ubY8fY9naFJEV3Du0RkhyPb0FQuWNH0muM7Njh+TZknhNE+vSJL69j61bX5yAV11+vyksuUXTvvdX+3nvJw6q4UHn22ap48EFFvv51dTz+uCq2bUucO1VXKxoOq6JXr8T50YEHStu3x39Oedxzw9xH9Oqljmg08XNra8bzvGKoaGlJPodobHT8bEJPPqmq009XtGdPtX/6qbTLLq6XYbYDSYq0tSXa2uLFqtr5BVrHa68p+uUvZ/8inGzdqqp991Vo82a133uvopMnx39VefbZqnjgAUW+9S11PPJIzoswtyHr3Cfa2Kj2NOeDVdu3y/6bjnfeiX8GkYMOUsXzz8fuX7Uq8Vk0NXU6TodqaxP7NNvnVnnWWap49FFFvvlNdTz6aNLysml39v1EumNzzozz4khNTbxtVFVVxfaxuez/C81qX42Nar/nHkWnTOn0kMrNmzsftzdsSO4Saz3XPvvEnuu++xQ944ycVyvp2iocTro2qfyP/1DFI48ocsop6nj44ZyXIUmVZ54Za19ZPFc4HE4qmuiorIy3paqamthnvWNH5s/afL/++ldFv/vd1OvZ3p4494hGM+7LK6urE49vakr/+C1bks6pfTkPNYT+/ndVTZmiaO/eav/sM6l37/yesKUlsV1WVqojFEr8bO7DPWbf50g7r5HtRW/vvafqnceL8NtvSwccsPPBYVVv3Bhbz0GDkvZ3lQMHquKLLxTdsEHtLS2JL7zffVdVhx0mhUJqX7AguRioC8vm3CRwweaGDRvU0dGhQbYd8qBBg/RRHt+0jhs3TjNnztQ+++yjNWvW6IorrtBRRx2l999/X72s8mGba665RldccUWn+5977jnVmd/2lYHZs2c73v+lt9/Wvjtvv/nRR2qYNUvHRSLqKSnc2Kh/zZql/RYv1t47H/PpunWyRi797P339eGsWZ6v6/B33tEhO2+/t3ixDgiFVCVp6+bNmmtb3qGffaZhxs+zn3pKYZc74QHvvqsjbPe9/PzzatptN4U6OvTN+fMlSVv/+U+9fPTROb0WKfbNYtJzjR8vSRr+1lvx12l55sknFal2iiyTdW9o0AkO98974QVtXr3a8W9GvvOO9rfdt3bZMr0xa5a+tGhRvB1I0ifvvqtPZs1SZUuLTt5534Zt2/RhXZ2ODoUUika1oKJC2157TZNsz2Xa22Fn9srzz2vbp592ur/HqlWauPP2+ooKWfUGDcuX6/Wdzzv273/XYNvfRSor9cK2bdp33bp4W3jp+ee1fehQx/fBD4etWqUhO29/sWaN9th5+80FC9SQbiZ7w7AXXtChOx/76e2365MNG7xfURdqNm3Sibb7Xp0zR219+sTbQsPmzfHPzDL2wAM1+I03ku4LLV2qF++7Ty1mdYmD/T/9VCNt9z37xBPq2BnIDVmwQIftvH9re7v67rz9wcKF+jzFPmrkm2922h42rF6teQXYp6XTc8UKHbfz9sqmJnVvbpZVr/zsP/6hDrMq0aW6hgYd/847kqQtTz+tV486SpJ06PLlSftLSXpu1iy1ZxFsTpo1S7WSOl58UbOK/F4dvmpVfL/w7EsvqaN7d329ulpVHR1q2rBBL9rWZ/D8+TLj/6bGRr2Q5Tr3XrZMx+y8vXzdOi2bP18Tdv78xdKles/2fOax9rAlS+LbvSS9vWCB1lRW6ls7L8q2NDVJ0aj6SVI4XPT30wtjvvhC5p52/erVmu/x69h10SJ9deft1U1N2s26/cknetvlsg5/5BENlBT69FPNuf9+tfbvn9U6TPrXv1QrKTJ7tmY9/bT2evtt7bz80Tsff6zVs2apT0tLvG3M79dPg5Ysie+35r/wgjblUqUoqd9HH2n8ztufb9yoT156SV/b+fO6NWu0YGebS3WeVwx7LlqkA42fP//gA33g8Nnsf999Gikp1NSkN2+9VevGjHG9jP4ffKCjjJ8bN2zQyzuXMfz553XIzqqrpTfdpI/OPDOHV9HZLu+9pyN3Tr6z4v779a5xfnnCc8+pu6T2OXP0rzza/Ph169RPUjQU0gZJu0oKdXTo2cceix/jTKFwWN90qEZa//zzsgbrWtqzZ/y8/bPXXtOHe8d+6rNkSWL/tXat3p01K+ncq2H+/Ph5XKijQ1//xz8kSeEXX9QzKV6jm3Y3fv16GQNZaeVnn2mhx/uJPkuXJl7b+vV6d+fzj29uVj9JobY2zXr6adfFD8Wwywcf6MidY2yvu+MOvWFWfe909PLl8XMay0tPPtnpHLf/Bx/oqJ3Pteqee7QwxbWvG0esXi0z/jGvTU6YM0fdJXU891zex6wTZ89WjbLfhnYxgs3PVqyIX4tOCIfVR7FCi0zrZr73K/76V71rVi7bHNHQEH8/nnn++YzXaQc1NMTP8//9wgtqXLYs5WPNbVKStq5fr5d8PBc48L77tKek0Natmv9//6dN+9vPlLNjXq+uXr9eb82erW/t/HlLQ4NeKdBrHbtyZafrxVeefVbbdt896b49nn5aB+28vfiOO/T5SSdJkmq2bIlf66zr6Eg6zn6lo0ODJIWiUc1+7DGFd7adEc88o4OjUSka1ZKbbtIneXy5UE6as+ixErhgs1C+9rWvxW8fdNBBGjdunHbffXc9/PDD+uEPf+j4NzNmzND06dPjP2/dulXDhg3TCSecoN75fkNRIsLhsGbPnq3jjz9e1Q474op//zt+e8yECYpOmKCqAQOkNWtU3d6uk046Kf6tryTtPXas9OCDkqQ9hwzRiJ07AC+FjJP/A0aPVmW3blJrq3p3766TbMurvO++pJ+PHz9eGjJEboQcKqHGH364tLPSwtK3W7dOy82K0c2gr/EaKhxmhz7x2GMT43iks3ix491fHT1a0WOPdfxdxVtvdbqvvl+/2GdstANJ+tLw4Rp50kmSEZ4NGDpUR0ybpo5DD5Wam3XYccfFuj9Zz9W/f9L7FA6HtfyBBzotc/zYsY7VFCEj9Bqw337xsRgH7VxHSar8wx/ij+m46iqppkaR8eN1zKGHqvK11+K/O/rwwxPfupWAyr/8JX57+MhERDfmkEMUddm2KpYvj9/+Up8+sc/HD2Z3t52OGjdOUeNb0EHDh3feZr7yFbU//rhC27Yp9Oijqtg5YdwxY8dK++2XdpHmPsgyafz4eLe90M5vVSWp1+DB0mefSZL232cf7ZvifaqwhaySNKB37/y29RyEdn7pIUlD999foaVLpffekyRNOuqo5GEZ3D7nzotRSepXV5fYfmz7S0k64ZhjYuPnutHRoaqdFwJV4XDR36vK3/42fnvSt74lVVWpskcPaccO9XLYT4ds3Y571tZmvc7mfmnYl76kocaXXLsPHaphO5/P6VhbedttSc916AEHKHpi4muBPgMGxLp9LVmiUCSik048MetKQr+Z+zZJ2rVPH8/bhXmsHrzvvvGK76G9e6ve5bIqr746fvu4I4+URoxwvwLt7ara2Zaq2tp00lFHqWLhwvivD/nqVzV653q0H3KIFA5r7LHHquKyy6Qnn5QkHX7wwYpOnNjpqd0IGd0aRxx4oIYb57sD+/XT8ccfn/Y8rxgqPvgg6ec9d91Vuzt8NhXPPhu/fdjw4a6Pf5IUMocZke18yjgu7b19u/b0qA2Gtm2L3969vl67Gc9btXNbrW5ry6vNV/3qV7EbNTXaZa+9Evv/ceOk3Xbr/AfmLOeGQUa3yD1OOUXaWVG/V8+e8XP1kNEzbvjee8deT0eHov/93wo1N2vwunWJ1/LBB6rc+eV0t46OTq8x0/VF0mu85JKkn4cNGqQhXu8njHPA4aNGxT+ryt/+NtbVVNJJkya5GyOxSELGUDCD1693bEdVF17Y6b4Jo0crethhSfeZ+8lh3brl9f6a+0tJOvGYY+KVe9a7V93crJMmTEju9p+NaFRVOwOP6u3bddLXvuYqdA6Hw1po7H/3HDUq3r4rf/1radkyVba1ZXy+kHGs3b1376Rt267y+uvjt0/8+tcztqGKOXOkZ56RJB152GGKjhuXej1efjnp5z4O17rFVPnYY/Hbhx96qKLHHZfm0S4YXbyHDBumQd/4hqI7e9r07dGjYK/Vfv4lSeMPO0xR25dp5rF8/6FDE9cMH38cv3/gPvskHWdr77orPjzJ8UcdJQ2ORagVxmvdp6XFv+u0ErM1iyGASmfv7NKAAQNUWVmpBtvYDQ0NDWknBspW37599aUvfUlLnMZM2KmmpsZxzM7q6mrfTg4LJeVrMsaJqrLGbtp5kArt2KHqysqkEvpKo9tQZWurKgvxPhljnVQZY5qFIpHOr8HW1bk6EkkevyMdh7HlqqXY3xtVdKEdO/JrD+ZztbUlnsuhUs/1+qco665qa0v99w7f8Fe0tqqiurrT+DaV4XDsszXeo4q6uthjzepVI4SNP5f5/A5d0ava253X0QiAKwYnvmeraGtLPK8xbk7lxRfHgg3rDqOyLf45lqBKYz2rQiH362lsq5Xr1hVm28tRVUdHUnuu6N69U1vQoEHSf/5n7PaKFdLOYLO6tTXze+C0rYTDib8z2mnI+Na9MhpN/T45jGFZEQ53Xu9CM9p9Zf/+SWP2VKfaVjIxQoak7SfdPs+NTZvin0Wovb3425m1n6qsVLVVybRze3LcT9vaTSgczn5fbrxnlXV1qjQqqCojkU7tK+lYaxsDsioSSbrQqrBdHFVXVJTsfisl2z6+0NtQpRHCVzQ3u1/WzkBekqo7OrJ7nzdsSDovqd64Mel4WtW7d+L5zC8WjX1Rlbm/ypZxfK7s00eVRpBQ0d4eb2++nrva9i0pPxvzfVu/Pq/2HjJeu9kOK957z7s2aHy526lt7/xcQm1tqo5Gk8fVy8bO9yRUU6OQ0b6rt293fn9SjEcYWrUqfrvK+PK4Yt26xHob+8TK7t1j+6/q6tgX+gsWKPTZZ6puaYmFWMZxJNTSouqqKsegyFW7s51/VnR0eL+fMJZR2bNnYt9sXOdVR6OltY81jv+hJUtUvWNH5+IGh/FWq5qaOr8O4/y4oqEhv/fX9nklXZsYy6netCl5bOFsGENGhSKR2LmgyypT89oi3o6lpGF1Mm6T5vu1dWv698vYbqprazMHsOZ5fqbrOtt4oEn7NT8Y1XUpr9eyYZ7zdOsWe5+7dYsNu1TI8wWH62THa2Tjy6vKbdsSbck4f6vo1y/pOFthHIOTzieMZVa8+27xrydKVDbtOVhf7Uvq1q2bvvzlL2vOnDnx+yKRiObMmaPDDz/cs+U0NTVp6dKlGjzYXoiMJPZZ0aXkb9927Cj+5EH2gYbTzRqbz0yL6SYPMp8n39dpPpd52ymcdDuAthnKmBU+6SYcSTd5UKpZpu2TddiZXwzkO3mQefJmdk12+iyqqzt/Y1qKEypYzIu+XGdFN7dVP2fiy2XyILtsZ2F1ep/MNmu2EbezopfK5EH2iUG8mHDE+AY64z4nm23F3u7yneAoW+ZEZharrRVj8iAvZkVPdXyTSm+/5UaxZ0Xv1StxoZTNDM5GsJn1jLn2dt/Q4Dwrup1XkwfZz9NKsc24nTzIfO+zPY6lmzzIXP6KFUm9SfJirmO6tp7NRFZ21rGzpib5HDvVBELme2s+3hIKSfvskzgnMie4SHWcNseC21kxavWakRQL9vOZLKYYkwdlmhVd8n9iFjtzvyQl3ntLNOrcDpzu8/Ic0b6PtN43c0LRfJdjf+32n9PIOCu6lLm9mu9XpmVby6usdDeUQTazopfa5EHm+ngxu7y5rVv7pGJM6OV2VnTzszdv28/NTanamfl+ffZZ7pMVdmGBCzYlafr06brzzjt1zz33aPHixfrJT36i7du3a+rUqZKks846K2lyoba2Ni1cuFALFy5UW1ubVq1apYULFyZVY/7iF7/QSy+9pGXLlum1117TqaeeqsrKSk1xGIgZhnSzokuxnYC50Zobd6Euas2LmMrK9LOi2w8Y2Zx4OT3W2hGav8v3dZrPZd522um6XX/zIsnsRpru4snpdVjLs//O2jlnCjbNC3Mvg80BAxKBrdNn4XQh2ZWCTaeZ+IrFTbCZqXIl22DTaZlmW89lVnSnC9FSCDbNL5Zy3feYF6Tme+P0fmQT9tnbXSkEm+lmQS3FYNPc5u0zhAZxZvRiz4peXZ3Yxt2GSfZwINuLNXu7X7vWeVZ0Oy+2ZanzeVopthn7MddNsJntcSxdsGk/dzL3gflIFQrag75sQnY763m6dUuufksVtpjLMoa2iRswINZGrLkMMs2KLkk7J16SlPhizP4e5tOG8ylCcCvTrOiFWm4+7AGl/T3fvt35PNFNsOly/HZH9n2k9fm1tyc/bz7novbXkCrId5BxVnQp837efL8yLdsMNt0g2Eywf5krFSfYdLoOdLpGNj9787a5/00XbJrvkf39sn9RgYwCGWyeccYZuuGGG3TppZdq9OjRWrhwoZ555pn4hELLly/XGmOcxdWrV+uQQw7RIYccojVr1uiGG27QIYcconPPPTf+mJUrV2rKlCnaZ5999N3vfle77LKL5s+fr11zGJ+sSzEvDKywwTwhaG5O3in365f8u0JIVdHidHD3Oti0doTm7/J9namCTaedrtudvHmCac4qmmvFpv13boNNKW3FlNOs6CkPlOZBpE+fxPM6fRZOF5LmxZ7fJwZ2qYLNbC5KSyXYTNVuzfc8U8WmGT7mGmyabd1oI1GzbaR7f0ulYtPe7vOt8mpslD7/PPFzpn1ONl8C2NtdoY4BqVj7DrN9ZRNs5vKFRz7Bpj14s1dsVlZm93ylqNjBZlVV4lzFbZhk73mSb7DpZ8Vmz56xiiHrArtUvsTLpWIz32DTXKb9fM6sWs9HqmCzvT1peIK8gk3rdeRSsbnXXp1/bwWa1vBe69YlzkFSfQFpVmxa4Zr9PcynDXuxL84kiBWb9s/Y/p6b5wdm7yyn0NtsF+FwyrFYXUkVbNrv9ynYrDDbj/n5ZuhFliSbYNPaftyOz0qwmeBXsOm2YjNVsOm2YjNdsOnVcagLCdwYm5Zp06Zp2rRpjr+bO3du0s8jRoxQ1DyBcPDgzgltkKVSr9jM1BXdvuPKJth02uk5BZvhcGzZuQ44nk2wmUvFphlsZluxmaorejbBZm1t7ALey4rNvn1jJwb29peuYtM8uSmViz2L+Q23FxWb27bFPutcB23Phx9d0QtRsWkut64uabynovK6YvPdd5N/9jLYLMWu6Nbt9vbO++lSrNi0n+SbF6ultt9yo9hd0XMJNu0Xrfl2Rfe7YlOKfZHX0VE6bcbvruiFqthMVe1oX54XFZtug03zCxOnYNMKNK2AMxKJjRU6aFDqLyAPPDAWmEejsfdu7dpYIGrysmKzEO22HCs2zd/vtptkTSKZqWJTirVd8/ogG26DzXy6oucTbPpVsVmIYNPpC1A/lXNX9GwqNr0INr06DnUhgazYRAmxdmDWYL5S54pNc+dgjm9VjIrNUuiKLuV3QpeqqiCfruj5Vmxa4Y8XFZtpKqbyDjYl5zE2M1VslsrFnsWLruj2kx+/xtn0Oth00500U8VmvmNsWictpdAVPd8qL/uJVKZgM5+u6H5VbDoFm1Lm7o75BpvGZHYZny8Scb5gSfXFXa7r5zd7myp0xWZlZWIbL1aw6dQV3c+KTSn9F75+sH/uqfbrQe6Knmq8dMm/MTYHDozPVh1nBZvmhKzW+UKq43SvXomQ9L334jP+JsmnDTPGpjP7Z/zee8nHCPP3I0ak/jup8/4wn2rKVGNslkrFphfBprnNtrSkbxvZdkXPps2VWsWm+b50tYrNVGNs2ifIomKzYAg2kR9rh2oGDekqNmtqEr8vVLVOPl3RCzF5kOTdN9VtbYnuS35WbFpDCnhVsWl/7E55BZvWgc96T6JR92Ns+n1iYOf1GJuSf93Ry2WMTWu5dXWJNlwKwWa+VV72C3rzNTm9H/l0RS+lik3z9xY/u6K3tCR3VbXWxx7SleJ4idnws2KztdXdZ2rvtulFV/RSqNiUSudLvFwqNhsbs/ss3E4eJMVm9M63LXZ0JFctFqJiMxJJvI5cxtjs0SM5wJQ6d0WXEm043ReQVnf0lhbp0Uc7LzfXNhyJpB9GwCtBrNi0f8bNzZIxf0RWwaY9XM/1HDESSd0bzstgs9CTB2VTsZlp+XRFz10pBZtO18ipwkwvKjbffz+76zwQbCJP1g7MDAPSjbFZU5P4faGqdbLpil6MMTalwnxT7dcYmxUViW/4M1VsmuvuVbCZ6jPKNMZmW1uiS3eQKzbN9cwn2PSrYjNVIF/srugpxtjMOtjs2bM4J1mp2L8Vtn+xlC37N8TmYP9ed0UvZsVmR0fi88w12CxmV/RUY7imq9gstf2WG8UYO88eBmdb8V2Iruhm2091bPSqYtN8jdb+rRyCTSm741g2Y2yGw9JHH7l/bicbNyZvr4UINu1dw7Ot2OzZMxFkWuxd0SXnYNP+BaQ5gdAjj3Rebq5tON2wT14qh4pNKfnLSfP3u++e/u+8+vLb6Rzdus/+u3Lpip5p+cWcPKijw78wLBot767o9nNq+8SCW7YkvpBON3lQqrFcnXp7fvqpyxWGRLCJfGVTsWmNB1bMis1CdkV3O8am5O3YQtbP+VRs5hJsmtWO1meYTcVmqrDKOpFwWPesJg+yBzz2YDPVSaullMfYLESwWUoVm9lOHlTAYDNp8qB07cAKC/wONs2Tp969O3+xlI329tg3xHbp9jlBqdhM9SVLNl3Ro9HsZ4q1B5vmhU0uwWaqHgmZnq9U+Tl5kJRbsJnNeYKUflb07t0Tw/PYdeWKTfsxwWJ/77M5jjlVbFoXoU6fab7d0e2hTakGm/aKzXRd0dMdp80JhJxeT65tOF0RgZdSVVEHLdg0v5w0zw+GD3e+3+LVl99O5+ilNnmQX8FmMSo2Jf/26/aeJtkeK504VWxax69Chrhugs2Wls6V/1a78aJiU6I7epYINpG7aDT54t6SaoxNa0dd6IrNbLqi5zN5UDZjbHo5G6RZgehmnZzk0hXdHJ/S2ilbVVBejLFpTd5hyKkrel1d7ETFHmym6mZkKeWKTStMqajIPcgo5WAz24pNL2ZFN9tDqjE2g1Sx2atXrG3kU7H5ySfpL0qc3o+gjLGZal+U7kIm3zFFpc6Bqtvt1ylwoyt6blJ1RZfc7T+8HmOzoSHx+aYaX9P+u642xqbkvA3kE4w4vVan2b4t+V5Q2tetEMGm/bjpRbCZa1d0s2LTSa5tuFjBZqpxb4MQbJrrm6pic+DAxLlvISs2sw02M0zum1IewWZS0YR5DC1UsJltV/R8xth08zeFYl+XQndFlwp3veamK7rTZ259aeDFGJsSEwhliWATuduxIxG4uKnYtHZEha7YzKcreqmPsWk+t58Vm/adshdjbEqd1j+nYNM6sbfam9WVNlPFZhDG2DQrkM373aArerJ8uqK3tyfaoRls+tEFyN7u86nYTHUClW6f4/akMhyOdc00FbNiM5dg04sukMXsil4qIVU2nILNXC90U0nXFb3QwWZrq7R5c/J94bC0Zk3sdrpgsxAVm9ZzlnrFpuT82XjZFV1Kfc4m5X9BaQ+G0k0e5EWw2a1b8gSdbmZFd1ux6SbY3G23xPjrlgrjMtPLis1CnKOlOkcs1XNDsxvsqFGJc4BUwWbfvonHFDvYTDV5UEuLtG1bbssptYrNdGNsFrIreqovQf1Q6GDT3hVdKnywaS7Lvg9z+sytdmgW25j7EImKzQIi2ETunKoApNRjbNorNu0XaV5J1RXdqRthEMfY9KIrer4Vm/bxQbyo2LQ/XnkGm+Y6trVlnoW2lCs2vQg2vRoYPl9eTx6U66zobiYPStUO7BeGfg5jYG/3+VRsmhdE5vvgRVd0cxINSykEm6nGOpKcLw6yDQ+97IoeDqfvil5q+y03vHiPM7G/Z9lWfOczeZBTu5cSbT/VxEGS9xWbdXWJ9heEYLMYFZtOvWys9rFwYX4hezG6otuDRnMMdLeTB3k1xmYolNwdXZIOOCBxu9TH2HQzeVCpbC9SbH2tc8B+/RLv/apV0oYNsdv2qrFsgs1cv/xON8am074z1+X4PXmQff/kZcVmvl3RyynYNLc5p4rNQrzWaDTxvGa1pZuKTXuwae+GLqUu6LHer+rqxJdEVGxmhWATuUsVbKaq2LR21PlObpFJugs/Mwhymmkx6GNs5jJ5UP/+zven+ht7xaY53IB9Hd0Em2mChQqn1+h0oGxvT5xkWAch+4lBplloS/XkVco/2AyH8xubzEtejLHpRVf0VGNsuqnYtF8Y+tVVrbU1sT1Y7T6fik3zm+ExY5KXI+UXbDq1N7+6opvtK9uKzXyDzVAosQ2n237djLFZjl3RU92XDz+7omfazxazYtN83UEINt1UbOYbbDqds1n7vo0bpdWr3T+/XTZd0d18QefE6biZLryS0ndFr6xMfNndq1eifVrhU6aeFfbu6IcfnrgdpDE2g9AV3V6NaYbKVhhif4x1nrB9e+f30Ksvv7Ppip7PcgpdsZltoFhKY2z61U7tbagYXdELPS63GWza92Hpgk0raM8UbDpVbHbvntiXrlmT+gtSdEKwidzlW7Fp/T6dhgZp3rzEP3tXRifmRYw9CDJ3VvmMUZnqsfmOsbltm7R+ffrleD3GphlsplrP9vbESZA5xqbUuZudVPyKTafZ5+wnBrlWbEYi0hdfdH58MVltuqIit2DT6aIpyF3Rq6sTj/FijE1z2eb+yU2w2bOnf13VnNq9FxWb/ftLe+2VuN+LMTad2pt9/dauTd7fb9rk7rndKJWu6JK78Q27Qlf0jg7nyZi83ob87IputnunC5x0FZs1NYluxfkEm05joWc7xmZjo/Ox3itugk2Hcbg964puHgMOOyxxO59qGT/G2JSSg02nitN0webAgYnu46FQ4nfWa8n0BaS9YvMrX0nc9nKMzVz2ER0d0vLlqX/vpmIz2+WaE4Xlul6p2ENLM1S2vqS0nyOY+6CtW5Ofz94G169PfY65dGniOD1/fvJrLESw2dKSGL7D4tUYm+bnm64Hh10hZ0XPd4zNYnxhFY1Kn3+evI/xY4zNQpxzm89pbjNux9gMhxPH3VyCzdpa5y8qnCxcKL3yivTee6XzRaWPCDaRO3vVksV+YW2fPMjthfdrr0lDh0pf/Wri35AhzrP2mtxWbKbrLuGG12NsrlwZe73Dhknvvpu4P9XkCl6NsdmjR+KzSbWe9m+ySy3YdJp9zn7gy1SxmSqcOvlkacQI6Te/6fw3xWJd/FdWpm7P6Tid+OQzaHs+vJg8SEpcpHtRsWl+3ubFf6qTBPuFoV8VHU7tPteKzXXrEhcYBx/sXDFQyIrNl1+O7fvs+/uPPnL3/Jl4FWzmU7Fpvaf5BJv2kC7IXdFTbSuFDDa9mBU914pNp8lV0lVshkKJ33vRFd08T7OOd+3tmY8D1rnJkCGxCcYKwU2w6XR+41XFpjme2iGHJH6fz/hm9tDVHIO5EGNsWvsXq8LIft7jtKwePZKDzVQTCW3c2LnnR6aKzWHDYu3G4nfF5gknSLvvLt18s/PvrfULhZJfW67H9xdeiI07OnJk6u03GpWOOy79eqWSTcVmKBSrwE03uZS9DUYiiS7tpttui70m6zh9+OHJrzGbMTalzF9ONDdLX/pS7L185pnU61/MMTaj0cJOHhSEis2f/ETac8/Y/6nWxeuu6E5jbBbitZrLzKVi06nowOQm2DT3pemCzcsvl8aPlw46yHl77WIINpE7+zhzllQVm9aOyO2F9z/+0Tm4aWuT/vWv9OuVLtg0f5fvt8Bej7H5+OOxis3WVmn27NTL8XqMzbq6zDPV20NBc6fsVFXV1hY7Kcoz2Ix/q2oOQO90oHSqHk7XFd1txWY4nGhvjzzivP7FkKorutuQxenEJ59B2/PhxRibUv7BplPFZiiU3B5Tvb/pxtgsZrBpVlz06hX7P9eKzRUrEre/9KXOY9RK3geb5vo99ZTz0CDPPuvu+TMphWAzm4pNN7OiV1UFuyt6sYJNe5VrtkNZeBVs2qvZpPQVm1L+ky12dCT+1qkrupS53Tz/fKw97tghPfdcbuuRidN+xM1FstdjbNbUuK+UycRp3VL16vFq8iApOZx06m1iLatbt9i/QYOkwYNj95mhrv251q3LHGzut5+0666x2xMm5Dc0isWLyvmtW2NBoyT9/e/Oj7HWr3v3RKW0lPvx/amnYtvf6tXS6687P2bDBumll2K3n3jC/XNLncfP3G+/xPmhPdjs0yd2Hp0q2Gxrc35PndrwP/7R+b7Vq6U33ojd9rpi8/XXY1+uRCLSY48l7ncKNl1+WZ93sGk/FkvuJg/yOth0Clit9Su0Rx+N/W9uT+VYsdmjR2K59n1YqsmD0s2ILrkLNvfbL3H/0qWp19WpwKELI9hE7tyMsbltW6LaLNuKTfNgd+yxiduZTo7cdkXPt2LT6zE2zRNoc0dXyDE2Q6HYASLTxZO9G3emik1rPc11z6Vi0/osrdDGel47p+5R6bqiux1j01wfv7puS/mPsZnqosmP15Sq3WYzxqaUCCe8HGOzWzd3F/zpKjaLWTXnVIWc64Wk+Vj7a/KiYtOprZnLNN9Tc1w2L06M7c9DV/TS4EfFZmVl9uF/PpMHZQo201VsSpm/dMwk1RfQ2UyWZ77eQl0wu6nYzHfiETdd0bt1k/bZJ3EM8jrYtJbjVbDpdNw88MDEfU7rbx9ztapKevpp6YYbpGuvTX6sfWb0TF9AdusWq6q7/nrpxhu9GVPfi4pNc/tJFUCZ48ibcg1RzPaa6vM120i2bcBeFVZbK+27b+znDz+MvW9msGk9zmIGIm7Wz2K+LvNYbT2H18Gm+XtzrFf7c4XDrvfNSeP35xJsOr1fqSo2I5FE4Or1rOg7dhRnOBen57eGhmtsTLy+cgw2010je12xaX3WtbWJL5uk9Mc5ax26dUt9nd2FEGwid26CTXOjdxpj022wOW2au7+R3HdFL7UxNrMNNr0YY7OuLhZuel2xKcVeQ6oJO0xpBuuOf6tqzfJpPa+d/SBkX16uFZvmstaty24Wci/lG2ym6m7pxwRCXndFb252PrFzWqZ90itz+dZy3XTtLZWu6E5hfa4XkvZt3L79RKP5jbGZqWLTfE/POCNxu5jBpn3/6WfFZlfoip5qfQvdFT3bSXm8GmPTqSt6oSs2U52nZROIl3KwuX27+0DITbBpHQOs2bw/+SS3iX3CYedugV4Hm07HzUxdGK3XY1YuH3KIdOGFiWpLi31mdDdfQB56qPTf/x17Li8mwHI6r001Pm8q5rJTBVDmebGpVINNp0ot68uT9nZp8eLOMzOb1WP5BpuhkHT66Z2fI12w6fRZZvpywlwH63aqcNpld/S8Kzad9gmplm3/MtINpx4zbtcj0994wZzMJhxObF/l0hXdfk2Z6ho5VbCZqYrSaSzXaDS5YnPgwMRj0l2rmdu4WWneRRFsInduJg9yCjbNC+90gZ+1IXfrFhvbyc3fSO4rWgo5xma2FZvt7bGBfy3pLiS86Ipu/2a6EBWb9mAzl4pNc8Iiqzu622DTXnGWqWLTaYxNc1kdHe4mryoE6wQ+18mDUm2r5RBsRqPuv+zo0cN5Mg5zHOB8KzaLGWw6hfWpwttM7Nu4PdhM1da8GmPTfE+tWXkl74LNVNXjxeqKboaQXgWbVGy6Yz8ncHsOYrFfvGRznmC2+1GjkvcvUuErNlPt+3Ot2CxUeO70mdsv2lO9726PY077MKdgU0oERNFo5nHdndgngbRYr9P+enOdFd3puGlWBjuNEWqv2EzHrNhsaMj+OJ3ttuYk1eeeTVs0l50qgApaxWa6YFOSFixIrK/1ezcVm2a7cAodzfDFaSK2QlZsWrdTfYbFCjazqdi0fxnphlOPGbfrIRX+PNT+mVmv3e0+OxtBq9hsbMwcbDq1s3A4UflaUxNbrnUunG4bSTf7ehdEsIncZVux6TTGZrpAwjqgDhqU3be+9oNINl3RvRpj0/48mU7oPvkk+fnSVWx6MXmQ/Ztp6/9U3RrSTR7ktmIznzE2a2oSj8ulYtM+iL7TxWSmruiSf93RveyKPnJk4rYfr8frMTalzBcE1jKrq50n4zAvat2MYWqffKEUgk1rGzYnHPGqYjPV+FtS9l3RzfFyU1VsDhiQuB30ruhm1yKLl13RGWMzM/s5QTbnE/Zqfym3ruh9+sS2S7MCTnJfsWn/7N3yOtgstYpNyf1xLN0Ym/ZJLp1mmM5GqgvRQlZsWseh3XaT+veP3bZXbJpj8mUbbNq7orsJNr2o2EzV5rLZF5vL3rbNeVvyo2LTbLv5BJtWJabZbufOTdx2CjbNqkczkDLPEdNVbGYTbKabPChTsGm+Rw0NsTZcisFmqipSp2AuE7dd0f0KNu37XOu1l2NX9Opq7ys2ndqZ0zmqdb5gtXu7SCTx3juN5dkFEWwid6lmRfeiYrOjI/GNd319duPG+Tkreqqu6JlO6Ownzrl2Rc92jE17xaZ92RZ7tWOxKjatz7Jbt0T7cVo/p/Fysh1jM1NXdMmfCkcpOdjMd1b0vfZK3Pbj9Xg1xmYuwaZZrZVqjM2KCkWt8K3UKzbtVZaWXKq87M9lrxjIN9i02tpuuzkvs9AVm6n2RU5dgixeVmx6FWyWU1d0LwILN/Kp2HS6WM2lK7oVENlnnXZbsSnlFgyZgYXTrOhSMINNs8ud2+OY2zE2pfwnECpWsOl03AyFEuu/Zk1yt9GWlsQFcr7Bpr362EkpVmxKyRPvSbF9hPVeFqJi081wQNu3u578RlLmik1rUiIpuzE2cw02rdfotmLT2oZThTZO69Da2rkiztwXpJvAxxAqZsVmvl3RSzHYTFWxWa5d0c3rBrOtejl5kNM5qrX/bW52/qy3bUusDxWbkgg2kY9Ug9KnCr2yGWNz/fpE5eCgQdmNG+e2K3q+Y2xmM3lQphM6+4lzrpMH5Vuxaf7OZK92NA+6hQo2OzpUYbUBc1Bkv8bYlEoj2My3YtPvYNPrruhS5otC630yQ41UFZuSIlawmerCqVRmRXeq2JS8r9hsbU0dwrkJ+nbsSJwADh+eqNo0l2m9p7W1yQFMqVVs+hFsWp8FXdFzk88Ym04Xq27b5PbtsQsPKXGBkmvFppRbsBm0MTbN/U66i2RzYoV8g81otHNX9IMOSjwml2DTrGgyj9npgs1sQi3780nJ712qYDZVe0jFbK9mV/Tq6uTq+1QKNXmQlF1bzNSFNNWxVCpeV/T29uye32mCkoEDE9vGmjWdf+8m2DTPEdN1Ra+pya8rurWe4XDq6wip8/bd0JD82s2hytxWbKYKG/MJNrdtyzwOuduu6BUVifVyG2y6HZfTC8UMNp0qNp2GDvNSqjE2OzqSrwus192rV2JbcDN5kNMX6umCTcn5OMeM6J0QbCJ3qU6QKioSG2WuFZvmwTSfis1Czoru5Rib6YJNr8fYbG9P/K1TxabTurqt2LRXflqvwzxI26WqmLJXYWYbbHo9xqZUel3R3QYZQeuKns2s6FJ2FZvWZ59qjE1J0UzBU1AqNrO5kMw0xqbTt+aSu6oZ+/7cKXg1u0e6vbjIRqqJzEo12DTDc+uENRymK3ou0s2KXsiKTbPdWwFRPhWbuVS8BaErejSaeF6rC7WU/iJ5xIjE7Xy6oofDsfvNsc2k2DZnLWPRouwmqpGSL0KHDk3cTjXGppuxop2kOm6mmkAon2DTnDzIzTFaim1v1vGxlCo20wWbxRxj0952s6ncTRVqmKG2/fduJg8yh//KpSt6umurVNtwui8n7O/R2rXJ67777onbboNNq+1UVydXfKabTNCU6nOyVwJLuXVFlxLtLl2bM9fD3HcWuyt6sYNNp6HDvJSqYlNynoisb9/ENuZmjM2KisRrcNo2nIJNp+McwWYnBJvIXboTJGsnYJ4MOgWbqU7kzIOceSGc7m8s+XRFz2WMTacdrP15vOyKbh9j0+0g007rkmvFZqpgs1+/5HUxT4BSzdaWKliwH1jcBpvWBVshxtj0q2Iz38mDzJBkxIhEpUWpdEXPt2Iz08QLTl3RrXZuXlRbwWZQuqJnqtjM5kIyU8Wm+bmZy3JzUmnfnzt1lS9msOm2YtPptWV7Ep1vxWaPHom/zdQVnWDTmT0MLlbFpj3QN/+3+FWxWUrBptlucwk286nYTDcMihUQbd8uffaZu2U4rZMZvKSbHTqX7uhuKjbN88tUQxOkUlcn9e4du212RXcbbFrPIXkzxmaugUamis10X3xn+0WeJduKzXSPc2K9hlAoVjFmSRdsuqnY7NUrsZ8q5Bib5naRahvu6EgeSsF6rLnu5r4g2zE27eO5pxuaxpTqnNNp+bl0RTfXJd11nbkexQw23VZs2r+MzYXfY2yaFZuS80RkZrDpZoxNqfM1bboxNiXnbSRTZWgXRLCJ3KULNp1O1p0mD0p14W1uwIMGxce+S/s3lmLPim6eHKYaYzPT7O/2b2KyGWPTafnpOAV8+VRsmpMHmQdWs2IzVTd0+++8CDbLfYzNfLui9+kj7bpr7HapdkV3c/KX6xib1mdvTcbhcFEbsd7jVBcxpRJsZqrYbG11X2mUboxN++RB5vbjJkxL9UWVXxWbfnRFN/dH2QSbZvtymjyoXMbYLOQ2lE/FZj7Bpr3dS527ovtVsVlKXdHN5zS/HE0XbLoJRexSVWymmrgun3E2zXO64cMTt9MFm7nMjJ5qG9p338RnnE/FppQ8gYXTF/qZ5PJFm8l8r8zz3XwqNu2V2H5VbHoRbPbunTwsgFmta3EaY9N8D+ztwvrMN21Kfs2RSOLnfGdFd1N1vXFj5/PchobCBZu5dEU391lOFf65dEWX3AWbflVs2tut9bqd9mH5zoxeSmNsSol9hVm8Ywabzc3JYXw+wWY2XdGZPEgSwSby4aZi05RPxWY2M/2m64ru5eRB1o7PfO25dEV3OmE2/z7TGJvm8t2sv1PAl0/FprljNQ/whQo2w+HOYU2hxti0v5+l1hU9l2CzZ8/EwTLToO2FkKlqpub/s/fm4XZUZdr3vfeZT04mMp2EKYTRQBIgTAERgcggjSCiqChDKw4vvA7YaGO3oo2++InaKmrbttLOOLSKrQYEmRQIUyAMgSBDIAQyzznJmev7o7J2PbX2WlWralft4Zz7d125ss8ealy1aq277ud52uzuXkmlxYMAv00YJrUNE4oe59jUv5NkWVE5NuXyk4aiyzA31dcMDQWvpUNRrTsLaiFsDg4G37c5Nm3Xn03Y1N0LIyUUXV7PeefYbGkJzkGejk39AS1Ql47NQly7kddg3pNI2d71SbI87nvvHS4+4oKLsGkL505aGV2ee1dhM0vHZlsbMHu2/3r58uDYpRE2VZvdujUQMKrp2JT7mLafqMSxmfb+LrfbdG4HBnzhTpJG2NSFkyjHZnt7cO5sjk05RgTCIo3cJz0fdiXCpu3hhOnajnJsJi0epAubzc3BGNtV2JQFEavt2LQJm3k/5HQNRQcqfzhdr45N3S0pr8OVK4PXNsFRFzb1awtgKHoKKGyS9MgOTB8ImAbrpuJBrjk2Afenvq6hepUUD5LJ5mUISJriQSZhM0mOTbn+pKHoWTg25cRcd2y6hC0lFTYBe3i++q6+zqxybI4Ex6Z8Gh+XtD0P4kLRXSdMlTo2Ab+tGxybiULRx4zJP5G5jTjHJuA+mUySYzOpsBnn2JTr7upyDwdLQlbCZpIJg2mgCoTvSTZHrYuwOZJC0fMUNk0TS9fxRN6h6Hk7Nm1FHuspFF2/f6vtjHJsdnUljzywPVRLWoDHBbVNY8eWp+iR/0uyFDaBYPsHB4Gnny5fR1JhEwiKYSURNrN0bJrG2y7UOsemycm2fn35g60krl0lrOiCxoEHlpsJ5HdkyKxpvbqwqVclV1RaFd3FdW16f82asKiUJsemTdgEoqPDFEmEzZGYY9M1FB1oTGFTr/FgmiPrbkkpYL78sv9/W1t84dxKQtEpbJZBYZOkR3VgHR3l9vqsHZuA+1NfNYkpFv0n+nkUD5KdXh6OzSRV0dvbgzCUpI5NdS4qcWxKKnVs2pwhurAZJUCYigc1eo5N2aZtOWOjiHoaX+19igtFz1rY9Dy7Y3PnTuPE0DkUvanJ/009OzZdJ5O1yLGpCnfok6qmpkB4yUrYtImMtv5H5l6VJBEPbWJqnBg5OBhsS5xjc6SEolfLsamubdcIEFvxIBenexah6Fk6NqW7qp6FTbWdUcJme3s4D6DL+Ujq2Jw5M8gvmTYUfdo0c7Vi03HMS9gEgu2vVNi0rSsKOXavtPK7abztQpKq6NUKRTeNvVzbgDQO6IJGczMwZ074PfkdJcBEOTZtgop+Dba2BvcgF8em+r9YDAuCNte16Rjpoei1FjZlcbA4YTPPUHQ5/8pzHLpzZ3mRpDyFzXoIRTfNkXVRUV5j6jtRYqM6v5WEojPHZhkUNkl61GTUNDjKOscmkDwUXd1s8ygeZMv5Yxu0RokLKsSppSU4lnHFg6RY09LidgNUmMSQShybkmqEouvfM30XsDs2ZRiixCXH5saN1RcPPC+YDGRRFX3MmPjwhjwxPX2VwqZr7i5XYVM64pqayt2MholhbCi67PsKhfrNsQmkd2zmlWNz2rTy/sY02XaZXCQhqWPTtl9JhE2bmBp3DesFPuS5kNvIUHQ3TH2OqYCVCTl5UedQ3n+jqOdQ9HrKsam7Y2yOTf16Use0v98tBNUmbNryVBaLwNy5/uuVK8P5xKPo7Q3aTXd3+VhE/i+pVNjU752myuiV5NiUpHFsykinJMjzkzSnvCIux2Yeoeh5CptxufX0cHT5HSWAbNsWzIlcx4j6fbRQKL9eXYoHtbcD06cHn1cSii5TPdSjY7MWoeh5jkNN50RdT6b2W2k6oXoIRY9zbOrCpnzfhmxnnhdub+rcT54cGJcYiu4EhU2SHhkqp1OpY1NdwJ2dwfJdJyLqJmISNrNybMpOr6Mj6HiSOjZ37QKefdZ/PXt2EGYT59jUJwIuIQumbTE5Nk3bmsaxuXNnOMm4DZuwoD+lq1TYVPtgc8hIscEWiu55fvhQNdGFuUpC0Zub/eMTF96QJ/IaVJMU6ZpxnTCZcjvFrc81x6ZrKLrqm9JWaq0Um8skD8dmVjk2p04tf7hVS2HTJhra+tK0VXGTODajcrjK88lQdDeiQtGT5NiU/aZLu9TbPeDf423Xqom8igfVs2NTCiXS4adP/JJGHiR1bAJhgeiJJ+LXAZSnIMhT2LRVdAfMldFtDt4oTI7NNMWDgHTifCM6NnWhwnRuTUJFGmHTJGjoBYRMoehAkFogrWNTfV8uQ35H5cHVQ9Hb2/35guqHkoaiq/3v7PTPl5o71VrYjCselEbYHBqyj/XrRdjcssXfRtMxa8RQdBdhMyrHpnzfhnxQOjBgvraamqJTrrB4UBkUNkl6ooTNSnNsqgtYFQ4Cgo5FhS/aUJ8pAcjmjqkkx6Y+EFY356Q5NpctC25Y8+aZb6imHJu66JfEsWl6Mh0nhOiih02olDdW2emnEDYLungblXcviWPTNpEsFMrPo+mGbBuA6RWLs0IuM62wqTsMaxmKLs+rSZxME4oelZdKHxTp/U8loegmYbNWjs0siwfllWNzjz385daTY7NQKA8JAuznsRqh6FHCpjxPWYai9/XZ833mhS2lSzVC0dM4NmW/6dIuVbufPDm4txQKYdGgDooHJRI283hwYxM2PS+8z7ZQdCC9sBmVYxNIV0BId+rK67fSqui6YBa17ZMnB2Gyjz/u/9aWczWKrELRgXTifNIcm0ND8VFTWRQPiuoDBgfD/WkWjk2ZAiNO2HRxbMrluKYrSipsqvOlC5uqSKTqC11C0dV61q0LcsOrfVH/OxYPqljYlNdR3qHoQLjdyT5RbkeUsGnblzTjK5vAZuu/otaxdi2wapX/Ty+kpWjEUHT5vg197msbL0YVe6VjswwKmyQdQ0NB55q1Y7O/Pwj5sU0Aogb4lYSiVypsqs5QX45NjJV5m2zCpsmxKTvdSkLRXR2bUYVFJNKxaQrhM2ETLLPMsSkdm1ETSfWbKGHTNAB7/HH/qdqhh6ZPkG8jC2FTF+LqJRRdnou8cmzGOTZNxYPUMTZds55XP8KmatN6OHyaiaT6XrFY/iAhqxybqj+PcmwqsdskNlaCbdAo/66FsGm6hpM4NrMIRX/0Ub9PmDcvuyr0LtQyFF31A0ND0W04rWPT88rbvUL2v3Rs2oVNIDxZjhI2Xe5jlTo2XfNsRjk2K8mxOTgIHHOM7/697z7/vahtB4Lt37IFeOWV2oaiA/k7NlevBvbe28+7+Mor9vVW6th897t9sfDHPzZvs94/6O5jIJmw+eCD/nmfN8/f1jhBQ6VQAPxjJu85UuQ0CZuuoeiqDcicuLrwrnLUmhybQLCedevM90K5brVPg4P+eZb7YsobamNoCAUlOlcjx2baUHTTA5Gf/czf17e9LTwWBezC5rvf7beRn/88vHx9Wa7YhE1b27Udx3e9yz//e+/t/5s8GfiXfyn/Xq0dmy0tyYsHyfdtJBU2+/vL2xeFzTIobJJ0xD31jXJstrUFodumjnDduuC1bQIQNTiqJBQ9TY5Nk2PTtBzTNj/3XPD6sMPchE093129OjZdhc0scmzq7k6gfDIR59gE0js2v/99P1/Rs88C995rX34a5KCoWMxG2FShDUD1Q+vlNWjqO/IWNh0cm5HC5sBAcNxVW6q1Y7OzM3C2y+0Ckjs2OzrCLkagPBQ9SY7NHTuC7VT9ea0dm/pkppbCpotjU4pQsn/WHZtphc1f/crvr596Crj//nTLSEMWufNcME0sXQVD5QDq7Awm6UB8u+zpCb6jwtAVs2f7/3d1AZMmRS8nK8emKnSmqKccm1HCprwW9Osp6X3MJcemfv857LBgvOoqbErn0eTJ2YWiP/YY8MgjfviwEilchU3Ad5zWsngQkE6cT9JP/OIXvui1Zg3wpz/Z15vEsSmvlf5+3y14003+6//+b/M2m9IY6e+ZxHib6+1nP/PP+5NPAn/5S3zRkHHjAiFw//3Dn0kDgmqrar0qtdXkycF3NmwIXkc5NoeHw/nSpSBkyrEJBKL58HB4PQo13m5vBw46KHhfCXG6Y1NPL2TCllNXIUPA49IRtbWFj1Vejk21Tz/+sd9n/fa3fuVteT3LdqD2cds2v6329QE//GF4+T/+sf89tSxXbKHoSYTNrVv9a1Xnm98sjxwxCZvSuS01g6yotmOzr88+XoxKHab6gaYm99QiIxwKmyQdcXl6oqpOFwrRYQOmSqKA++DINRTdJmy6PLnSOz3d6WdatmlSIvd1zz2DzkyKJ/WQY1N3bJqEykLB/CQYqI/iQS6OTd156ypsyhA1vVpgpeg5NpNWRTc5DOWgwCX8LUtsoeiKrIsHpcixWQpF97zyQZZpElxrx6be31bi2LSJtWlD0U39ub59pgdlemL1StFD4CRJhM20OTaTiEppQ9HTCpuyz0qT5y8tNsEi63DnqKroQLRgqO5j48dH34NsvwPCQgIAfP7zwMc/7k/s4kLRKxWF9DQkinp2bNryJ+sTv6T3MRfHpn7/6egADj7Yf71smVvblNtpSush/5fEXXvycxWKGyfS6AWE0gibujBvW5eNajo2bWMxfb363CPKsSkjIvr7A7cgEJwHHVP/oJ/fJI5Nuc7HH3fLrffDHwJXXAH84Afh901uTH2MaJsTRAmbajlSvFTHLc6xKbdFItOSmQR2XdgE4sPR464ZXXAyIY9X3LorzbEpt0O2aXk9t7eH263aR9me9LYl/3Z9aAOE261qJ7299lBy07Ug72UzZgSV7XfsAF58MfxdefzUfeuQQ5I/cEpCNYsHAW6OTaC8z1DbMGFC+bh2lEJhk6SjEscmEB02YKokCrgPjlxD0WXHJQfILgP3pDk2AfOkRA9ZMt1Q44TNajo2VZiqaTDQ0RFejmuOTZfiHbqwaXKx6suT7W379kCgSuLYNB1PffA1PBy+sWYtDESForsIGb29wb6rCaOrKJgHpuJBElcniHIWAvk5NoHyyVNc2oNaOTYllTg21bKyyrFp6s+TODZdK1DHoU+oJHHCZtIq8Po69fXGiZH6/dUmbOoPOtIKgvL4pxEe0lKL4kF6jk0gWjCUE4ckwmaUo2qvvYCvfQ0466zoZQDZOTb1vrZehc2WFnfHZtL7WJocm0DgeuzvB5Yvj1+Pvp2uOTbj9kGef9Uukzg20wqbra3haBzbumxUM8embSwWF4oe5dgEwsKmHAPaQp+zFjblOnVh0yaeHHEEcMMNwPz54fdNQoneTxSLwTmWxyapsCnnJjLth0nY1I/HwEDg4pw2zV3YjAtHN+VslLj081LYlNd4HlXRgeAa0MVIuR2mcahs9/o1IP9OK2yqhz4A8Oqr5m03HUN5TZ94InDJJfZtkedLppJR63766ewfhro4NrMqHgRULmyycFAJCpskHXGDo6gcm0BwsW/ZEp13Jo1jM00ouhwsuYiDUTk2PS+5Y7O52Xd16OKd55mLB9lybA4MxBeAMD2Zjps8STdXoeD/0wUC3cnpKmzKZeWVY1MONirNsanfWF56KagsCWTvgKw0x6bpWnWtKJ4HWQmbxWJwLvPKsan/HqgvYdPFsekqhuiOzaxybOoPb/TtjRM2gWzC0SsRNmU7rXYo+pgx9hybzc3Z5NiUfVbWOYKjqHaOzaam8mKEgP0aGRwMzkVSYTOr3FdZ5djUx2mu7UYfz9RTKHrS+1iaHJtAuesxDn07s8qxKc+/q7B5wAFBW9dD0ZOELuqiUq1ybEY5u/v7fZFDEdWvbd0aHitHOTaBsLApx4A2Ec1FuFb3Rrk+WxuQ63QVNm1Iw4jNsQkEfU8ljk3VTgYHw8vRQ9GB8rG1TC9RK8emi7ApoxCzDEU3jStl+5DXs03YlO1evwbk366F0YDwmO7AA4PXq1YFr2WKlbhK6e3t5SkzJDbHa9IHTkmohWNT9hm2UHR57D0v/OCVAKCwSdKSlbCp3+wA80RYX6aLYzNJKHqlwqYUxGyTBNOkRBYXkE9IAb+jM4kGelioXugjbuJhejIdN3kyCSi6QKDn3pSdftwgWP3ONoGqNBRdbkvWOTb1iU41HZsuwqYtzDcqz22exIWiJ5kwqf3Jqyq6/nugvoRNF8emqxiiOzZ1l1HaHJsuoej1Imyqh0mA3bGZNhS9GlXR0wqbI92xqY8JADfBUHdkpBU2K3FTVCIKmdKQKES7KUS1m4GB8MPnehI2s3BsxuXYBKIn3SaihE3dsSnbZCWOTX1soGhqCnItvvCCOYzUhUqEzaxybDY3h69BvS0+80y4f47q14aHw5+7OjYHBsLHcNs2s5kgzrHZ2xucQ5kD00XYfP75sIiUVNTQHWDDw+GUFQrV98hjYxJfXIRNIBxG7eLY1McOpiJWevEgIN6xWamwOTwcHBM1hnUVNit1bMqx7uOPh89btR2bkyaF01RIx6bMO5pU2NS3JU7YBJIJsy4kzbFZjeJBQPia2LkzmANS2CxBYZOkI07YjBoYANFhA7ZQ9KQ5NpNURZdFAZKGore2hgUxmzCq31SGhoInkqrjinqCI9eth1IkEVYqcWzKc2BybNrExCjHpvxcduy6eOsqbKpzYduWSnNs6qHoeQubctCcpniQ6VotFILX9ebYTJK7y2UfUuTYbIhQ9MHBYN8qdWwODgb7qZZVLAZ9Z1Y5NtOEogPZCJvqPEcJm0Bw/mwO1STioe0JfCXCpl4VPetQ9JHo2NSjOAA3wVAKm5Xk2KyVY7O/P2hfUY7NqHYTda/NiloLm1E5NoHkldH16z5K2JQh3nHRHibHpjp2UfdNuf3K0djZmcw9pgubtcixKcfaQHm7jRqLma4deY3GOTbl2FDe0zwvHLGjiBM25Thy1izzdxQ7d4bX4XnhIpVJH5zoQsmuXcHDi6wdm7KdxAmb+thaHztkFYpeqbBpOl7qHOhOYCC/UPQXXwzadaWOzRdfdKsP4HlhQ4487lJsTypszpwZzMOjQtFln5XUSZ8Eff4Z5djs7Azm4XrfEXXv141MSYVNVkQ3QmGTpCMrxyYQLWzmWRVd3tyksOni2NSf8LsIm/pNZePGYFvVhD+tsGm6AdrIy7GZNhRdfi469kKWjk2Z4D3KsRkViq7Okf5UWX9SmLdjU6UC0D+zYbtWXdyOeZBVKDqQTthMmmOzXh2bsg+s1LFpW5bMj6UP9FQbTBOKHuXYVG2iFo5N+b1a5th0FTazCkUfLY5NedxdBEN94uBSVML227RUIgpFjdMaRdiU9yd5zPVcnC73MdP90iXHZnd34ExaujS+mFkSx6YUNpM4NtX4Si0n6r4phU2TgOWC7pZL69isRNiUY22gvN1GjcVM65Vj1LQ5NgGzkGa6Z8k2Kpex997B8TS1Y1NRnZdeCl4n7V8mTgyO49q19n7C5Ng03dP0lBA2x6ZpThAViq6PHepF2DQdL7V+6ZJXZFUVfWjIfv3o4wR1bbg6NgHgiSfit2nHjuB33d1hUV06NpOGoheLgbN85Upg06bgc3n/lgVykj5wSkISx6Zse/q1mDbHpjz3tlB0CptGKGySdMTl6XEtHgSU34TkhVuJY7OaoehpHJsmAVfv6EyTiKgcmy7bn5djUw9Fl4P/NI7NWuTYjApFV1X7tmwJv1/tUHQgmKBnIWzWKhS9WIx/ABKH2gddeJOkyLGZOBRdTraqJWzKPrBSx6ZtWTZhs6Wl/FqxYernqu3Y9LzKhM20FbsbMRR9JDo2TaHoLoKhPnGIK4ggiSoelIRKHJuNKmzGVUVvbw9HHejfs5E2x2ahEEyiN2wIV6g2EVU8SM+x2d7ulisaKHdfSVE26r4pnU2KpMJmVjk2KykeFCds5unYtOXY1JejiBPEdDdi1HjMVGRIktSxWSiEH9TbisHKitdqPB/n2Ny8Ofiui7CZJBR9/PhyIbLS4kFZC5um9ad1bOr9RtTDG1fHpjo3nld+TbiIg/o5cXFsmuakJhFP9lNSZDU9mFTrT/LAKQkuOTZVe85D2JSfyQcRNscmiweVoLBJ0hFXFT2JY1NP9Kwu3HHjwsvJuip6Hjk2AfvNR7+JmJxMaRybeo7NNI7NqIGnKUxV31b1mW2wWwthU+ackhMalxybnue3FbWeYtGvZKtYt87/f8uW8JNzoDrCpvo/K2EzywFBHPL6NA0q0wibgP26y7oqumlQPBocm/I4SmHTNcdmsQhMmVK+jp077XlgFZUKm/KcmPoik2BVr1XR8w5FH4mOTVMoeqWOzWqFore1BS6VpOdGtiP9AbSrIK7vp55zMwuShqKr85A0V3RaYRNIFvYY59iUBZna2twfMurnf+tWN2Fzzpzy96opbFbq2FTtQx9ry3bjeckdm/IaTeLYzFrY7O6ObgMmx6aiqyuZWCbXCfjpsOQczOTYBIL9iRM2VRVz9blN2FTvjx0brCcqFL272+8H9XaYonhQWTSYTtbCZlY5NqP6hzFjzA/Y9Xav+gtV6FbikqdSF+TlfleSYxOw58xU4xq9gn3SB05JiHNs6oUFFXkIm8WiOWKQjk0jFDZJOqqRY1O/gSWtip7WsVlJjk3AfvNJ49g0iZR6vrsscmzKwkVR4Qpxjs1iMX6gYEIKKOpmGyXeRgmbcuBgGny7ODbVMuVEavr04DN17kyhG9UUNl1EFpu7Wl23g4PVLXgjhU3T+UkyYXKpipskx2YWoehpxaWkVMOxqfZLf5ginYKuoeiTJwft1sWxmcQdF4dtwGh6rx6EzSSOzaxD0enYDKgHYbNQMIeEupCHYzPu+2lIK2wWCsE9IImwqT+4ihM6gGSFKuKETX1s4yps6ud/y5aw6Gdj7Fi/OrokSUV0oDwUPW2OzUocm1E5Nl99NRy+CgTH01bU0+TYLBTMxzJrYVM3NqR1bKbtW9ScY3g4/HBetgvTnMvktHMVNk05NnX3qMQUvafPC5VTrV5C0U3rzyoUPap/6OoKmzlMjk35t+k6rNSxKY9rpcKm3BabY1P/TZYFhOIcm3r+bdNr098SV2ETCD+IUHPCrKJCRhgUNkk68sqxKZNk6zcwl4nI8HAgjMU5NlXH1dQUvoFXkmMTCB+bqAGdqahGrXJsytf6dtpCdPTBn/osTjgwYcpdpofbuzg2Ze4/0zbK7TShC1RyImXKBWQaCGSds1IvHgQkc2za3NUuomAeqEGK3m4VaYoHAfbjrocB6dekoXBEQ1RFr6Zj0/QwxSUUXSaal/25LcemFHGS5DOMw5a7SNFIoeh6js1KQ9FlhVeguo5NeSyrnWOzmsWDKg0TU9taDzk2476fBpvQB0QLm0CylCqmYmsuOTaBZPnc9P5GH5/p60vr2NyyJSz6RSG3H2gsx6ZLKHrUWMzlwYXqA1WaAx11fIeHg4gdhckhmDYUvaenvPiM/K5+3tL2LXI8+/zz5uWb+sgkjk3dYWvLu6/a1saN4XNqmiPpAruaS2ZZFT1uPmVywketP6viQXHCJhAW4AG7UcV0TTz5ZPwYQhfkbYJaGmHzsMOCOY6rsJlXASG9jbS0BOvfudP+4FK+1iPEdPQxbpSwqdr90JB/nQB0bFqgsEnSkcax6SJs2vJr6su0DVRMNxDbxE8OlpIIg/p3ooRNuZ/6NruEoueZY7NQCN/UbZMnmxBqcmya3re9Z/vcJCzooej6Ptoqg1bi2NSFTVP1RtMTwkYLRde/kzdq4JqFY9NlH6JC0S05Nr2iuDW6VEUfzTk2owbC0lEUVQhOnbuurmBSmWUoeqWOTbm9aR2bsl0nETbHjAn3a3KZWYSiRz3IypuRHIqepZvCVJ3YBVdhM0koOpD9+Unr2AQqFzZdQ9EPPjj4LGkourx+o4TN3t7oe3raUHSgtsJmNXJsRo3F9IdBCnmNqmNrGx/Kc6iH8GYRii4fnkXNFU45JfxZpY5NAHjhheC1KccmYHZsmoRNJbqoz+NybOrbIkVjdYzGjg2Oj0soeq0dm7rQnUUoukuOTSBe2IxybPb2As89F71NuthsE9bjhE3ZB6rj3dHh97MAsGxZcH3bQtGB/AoImdqInCO7CJsTJpgfkihsjk19XAeYc9FS2DRCYZOko1LHpu3plq0iur5M2+DIZPmPC0XPQtiUN0d5bCZOtG9z2lB0U+hUGsdmR0e4003q2DTl2DS9b3vP9rmLsGnK+6W+JzENWlxybKplqmOpC5u6Y1OGLzWisFnNyuhZhqKnETajHJtpQ9FNIUB5Uy85NqPENNdCcOrcycldPQmbtQpFV3loTQN69Xmloej6dVOrUHTdRZcltQxFLxTCqW7SkEcoetocm8DoFDZbWoBDD/Vf//3v0efCVPFXHe/+/vKHaa73Yn2dmzYF+xR339QLCCUVNidPDtxULuuTuObHNzE0FIxzonJsSlFDrU+1CblOOY4zOTZt48MoR2yaqug2xyZQ3pbld08/PfxZFsJmpY5Ned+uVNiU+6rGD3LsYBM2s3Rs1ksouv5AxBYNKLdDjQdsoehRjk0gXhyMCkWXJK2KrlD9VH8/sHy5/zrKsXnwwcFxyisUXR1TeR+2PbiMyrepY5vvm8aoJmMNiwcZobBJ0pFljk3ZQUQJmy4uJNOTsbjiQa2t5TeQOFxzbEY5NuNC0fUn+xI5QEqbY9MmhlSSY9P0PhA/CDa5MfXwNNdQ9Lj1ps2xqYeiDw4CTz3l/33QQcAee/ivG60quv6dvMmreJCrsCnbkSXH5nDUpN804AHKn5TnTZRjU9/HtMuS4XfymnPNsWnrz6Mcm4paCZumVBhy4lZNYVM5WG2T6uZm+4M7V/TrplaOTSlaVCMUvVrFg8aPDwtCacjbsRl1DdvyfGdJVFV0NdaRBXdMwqb+wNeEagfy3Lvm2ASCSffwcHDvN2FyasuHRPr40TUtTJSTL2/HZlNTUPzNZX0S1/z4JkwhoQpTKHp7OzB3rv9aRRrIdcpc6aYcmy6OTR2TkGa6bkw5NidOLBe3o4TNN70p/FlaYVOOZ7N0bCbNsalvi9rX3t7guMqxg/xuW1uwHFngJaZ4UNWFzTxC0Y87LvzdSkLR99sveB0nbOqRhjZBLa2waXJgRgmbLS1+CDvgu02zejBrGufL+7CrYzMKm2PTNEY1XSN0bBqhsEnSEVVtEyifaLe0hN2BaULRXVxIWYSiuwzaXXNsyv20OTbb2/0K8GpZCptjU19H2hybtvDV3t5wjh+b6GFzbMblsDNRqWMzibCZNsem/sTs2WeDYz1vXrIiBkmQbTpNjs16EzZlWEmWOTZdhU29GIchx2YoFN3FsSlf14NjM2nBkTjHJlDe57g4Nm3Cpq0qel7CpinsSZLEsVnNHJv6ZEWnqck/10mKidnWpaiVY1M+oKtGKHpSx2baHJtZTDjUtvb1ufX5Clt+ZaCyHJt5C5vyelPt0+aqTBJ5UEmOTcA97FEdM1nR3iZsxolaEv3alGG7cffNvfcOt8WkxYOAcB+etnhQUnE+Ku2Tarc9PUEI7WGHhcWWnp7wOuOEzTSOzUpybKp5jouwOWmSXwQqqliJK/JcrlwZvM4yx6aehsEmbJrcaKZUXfprfd9V+45zbOqmCZ00wmaUYzSP4kEnnBD+rrqe9XuoS/GgBQuC13GuR9UWi0Xfxa3314C/j/J4pBU21bbIvPwm1G/iHjglQR0/qV3IMbXNLZnk2kwibJpczSweZITCJklHUsemPli0CZuuoegujs24UHRZTbKWOTa7u+155WwTiEqEzTjHplq3aburmGOzkJew6erYlHkFTY5NObE5/PBkIXFJkCJzpVXR60HYrGUoujpu8smrKcemXjVXUi/CZpRjE0jm8nIpEKa7xF1ybNoeVMl1bNsWHLN6cGxmGYpuE1TjhE1d6I1ybAJuIrONenBsNjf7EyW1n1kXpzGForu4yPSJQ1rHZqXIbU1yLei5WiXiXleop1D0lpZwQUe1D7ZrOMl9TE6QVVtwDUUH3Cvwmiaoqm1XImzq16YUNuPum4VCOBw9qWMTCI/Jq+XYjBprq3bz5JNB3st588qPp1znjBnBa3WNDg0F68nKsRkliO3YEfTx6pja2oDnhUOyC4VwO8wiFF2OMeMcm6Z7mvyNrExfSSi6i7Cp77vqa5MImyaxrF5zbMr1HnxwECUmtyONY/PAA4NluYaiT5kS9KH6Pa6ryz6fNL1nCkWX2yLz8puQv8kqHN00p6ylYzMuFJ3CZgkKmyQdqoMtFt2ELH0QNG5cIOa5Cpsug6M0oeg2YfOHP/S34UtfKl9PpTk2BwaCJ5tywu+SY1NfR1yOTc8DLrjAP1eFQnDTjSo4Irc1qWOzFjk2bcJmJTk2t28PXqs2om4e990HXHhh8LkcTLuExAF++5o+HfjKV6K/V2mOTZu7uhJhs6fHf8pbKAT/9t0XWLIk/rdZCpumkEXb+tQ6gaANvPAC8JOflK3bORQ9C2HzX/7Fn2zdfHOy30U5NoFgH59/3j8/zc3A5Zebl2UrEJaXY7O1NXAfr18fvD/ShE3beqPCxz0vmWMTCNr14KD/+7e9zQ8ve+yx8Pe//32/z/n614P39OsmS8fm9u3A0Uf7/aM8zwrpigDKr6Fnn/UnXWeckc6NqqjUsanuP6aUBdu2Bfuo7unyoWSWjk0g2flxzbGZt2PzmWf883jmmebzaOpT9QeFtocErmHcw8OB+CVz06YVNqMEAFPIvFpuXI7NJI7NJKHoQHj70wibehiwK1k6NvWoGiAsZsiHzEC5Y3PKlODeo8bCso3nmWNTnVuTaGdrA9u3B9uvvpu1sCmR11OaHJtSJHUVNk1htqZUXfprfd/V3zt2RN4vykwTOnFjD9OYOo9Q9Kgcm2PHmq/nNI7Nzs5gWatXhx+YSKTIHiUwd3WVRx/q2MZG3d3A1Kn+66VL/XVGhaIDlRcQGhoC/uEfgP339x+SAOY5pboehoaAT3wieD+tsKkfI+n014kKRc8ij/cIgsImSYepiq1EFzz1C7VYDC5EebOzPaUD3AZHaULRbTk2v/IVf3s+97nygX9Ujk0piNkcm/LGIffTVdiU69BzbOq/eeop4Fe/Kq/kKJ9cA/bjWyPHZm6h6K6OTVPYzAEHlP+mWASOPDJ5MZ6vftW/QV13XfT38ioe5DohNHHLLcADD4TfW7kS+MEP4n8bF4qed45NoLztA37b2f0gomqh6P39wP/3//mDSSk2uRDn2NT3cWgI+M53zAJTUsemnmNT71sUNmFThsrLvrBehU15reQdir5zZ3Bdq3tknGNTCpuPPQb89rfASy8BN94Y/v7115f3OXk6Nv/wB+CRR4AnngB++cvyz/V+W7+GfvxjX5j/85+Bv/0t/XakzbH52mv+/3vsES4QBwTn1rSPWTspXPKLm8gix2YWwuZPf+qfx1tvBW6/PXp5urCpxjqVOjb1+4B0B7sKmxMm+A/wAH8CLUUcicl5E5Vj03XsUEmOTQA45pjgtekeGIcc/+ipoqJoagqOdx45NmXxm0MPjXZsjhlTHrJse7AnybJ4kEm0sz2kNd1D5Xnce2/7dkWhu+rk+4q4HJuqzTU1mZdViWPz5ZeD92T6gBkzgnXp+y6dg3L8rpNHjk3pnnz11fD38whF7+oyX89pHJudnUGeSsBeGX3z5uCaixM25f3SNI81tSPFnDn+/xs2+OuMEzZVTl0gnWPzrruAP/0JePFF4Ec/8t8zFaS19ZmyHe6zj/l9E0kcm/IaeOkl/3/V74wbV3ke7xFEgkcHhAhMxR50OjqCC9V085gwwb/52Byb6qmNIqljMyoUXa+0aMqxqdwXfX2+c0R2/GlybMobiU3ATePY1AUifdIhb7J77w3suaefq+ff/i38PdvkqRqOTdOEMaryu7wpel6588e0XH07Tch2KsVjtf3//u/AF74QDNCamoD3vtc/h/pgWrp1Tah2v2mT3xZtA54shU2bYzNpVXQ5aNxzz6CNbd4c/9taFw8C/IcWX/xicB6bm4FLLvEHCAMD1QtF37IlOIcyN5ULcY5NuY/PPx8sf9u2cBEIwD6xsznRpWMT8PfBNOiMypnc2em3O9mWZPuMe+KfhDhhM67/ycKxKY+lLYoACB8zdQ90FTYHBsL9vT7hVtfnhg1+v1ko5JtjU7ZpfbIHxAubcb93QTr1klRFX7MmeAigqmGbJrymbcxa2MzDsVlNYVMKGkuX+s5N2/JUG1DHbetW//xlLWzK6sGuxYMA3x308sv+ulas8F0+OkmEzaxybLrcN9/xDv+B5MAAcO658d/X+fCHfdHjwAPD42EXOjr845xHjk05Vttjj/LjqT+4Gz/eH3ep69T2YE9iCllua/O3L6lj0yRW2tqA6R56wQXAgw/6bTrNeQT8vr+722/DEtccmy0tYTFlzJjycxuVY1O2Vzk2UPsrnXeyrXV2At/7nh/hcs014fVJ19qOHWGxUZKHsNnZCcyc6YtOTz7p33fU8cmqeJDc7q4u3zW4apUflq7uUWp/VPSGi2OzoyM8JrSF8ttctPo9To3j2tv97U7i2ASAvfYKXq9eHZ9jc+JE/4HTyy/7DxjlsXdBiqHqfm4yy3z2s/7+qDZaKPhOz9mzg+/Mnu2Pu595BvjQh6LXK/dbuoxNY9SxY33RdOXKYB/VfZVh6CEobJJ0uAibnZ3BRMo06Jowwb9ITcLmpEnlnVhrq9+ReF7lVdF1YdIUyi23a+nS8M01KjxGikS24kE2J1NUjs0xY4Jly3XEhaLLdX3qU/ZwVNvkqVaOTT3Bt3oCqN8oh4aCiWulxYNszlu1fa9/ve86MZE0tFse123b7EKodIVUUjyooyM8sa8kFF0e/499DLjqKv+1i0AaF4qed/EgADjxRPt5RBVD0WUfE5cXSifOsSn38f3vD9y0pr7TxbEZJWwODpoH7KrvaW4un2TEuUVMYb9pSePYlP1PpcJme3s4siGifRVMD73iQtFlvlPZ3+vXhLo+h4f9z8aOzdexaXtoqYgTNuN+74JtUhn3oFROdlSom6mdmLax0RybeefYlNtsctSY+lTlvhoc9M9PXsKm7ti0TZ4Vhx8O/O//+q8ffzxa2JT9ZxbCZpRj0+W+2dwMfPOb8d+zMXmy76JOQ2enPxGvNMem3E/VbvQiWVGOzY6OsGNTF39cHZsdHb6L6sUX44sHtbT47SxNKLpprtDSAtxwg3k7k5BE2NQdm/p9tKur/OGsq2Ozs9O/F23fHuyv6icKhXIR/T3v8f/puD6sz0PYBPz7xEsv+et+8cXA4ZxFjs2+vvByurp8MfKnPw3/Rk/V4OrYjAqlV9gMOaYcm4B/HLduNR/DqIKOctnygWbUsXN54GRD3pPUvpuEzUMPdUsZ9elPu61X7rft2pDMm+drJtu3++0sywKFIwh6V0k61E0jqrKibYKsUBejsmB7XnBTM+V/KRSCQUelVdH1wZJ+A9HdknreDtfiQTKXqLyR2J58RTk2VeV0fR1xxYOiwvslSR2b+jnNO8emXKfcx6hBimnQ4hqKbhI2o0ga2i2Pa5SoZXJsqjadRNjUJ7aVCJvy+E+e7L6c4eFAqK1lKHoMkaHotoqa1RY24xybkjgRx+UatxUPAuyOL1n5VX+CbtrmaoSim9pX3qHo+jqjhHPTRDZJKLrs7+U1MTRk7nP066a31x5imxTZpuV2KZIIm6bfu2C7/mUBGZNYqBeHA+KFTVNS/yyKB+WdYzNvYVNusykHWpRjE/CPp4uwGSVmuAibsoq5jbgCQtJdaioeNDwcbm9tbe5jB/3cy/1Nct+sBaoN5+HY1KNS9ONpE3EGB/3PXBybeh88bVq5QCqR7VWNkUyOzbiq6FF1ByrFlE7AFoquOzZNwqaOPreSx9kmZq1Z458XVd36oIOi55kS1+soTtiMK8Zq61dNhW+A9KHouogfVQzO9htXx6aLsGlri6ZQdCA4x0kdm2mEzUoKCMlzFSVsZk1SYVPu4wMPBG2TwmYICpskOf39wYAizrGpMA265IB/61ZfSFKdnS1/T9zgyDUUXc9xpOeo1Dv2KGEzKsdmW5tZjE0Tii7DLJLk2HQdGLk4NqNC0fN2bMrvyZti1CAla8dmFEmEQt11nFTYTFMVPUthUx7/iRODyaBrVVqgNlXRXYXNNKHo0jVnyzmpI897T08y0SzOsSmJC7u1iaQuOTYB83YPDwehkqb+PIljs9Y5NrNwbEqiHJsyvFQdN9fiQQMDdsemPsGxCZtyuyulEsem52Xj2IyaVEY9KJX3fCVmqertQLRjU6+mXilpHZu2wnFAZaHoSavWy23++9/LBcishM1Kc2y63Hts4oVC7ostz7w+RnTZh6hIJX359UicKcGGS45NXWhydWwCfttK49js7g6WMzRU3qZle500yf9/1y7/u5WGomeFaT4g9z+pY1NHd2zqn5m2Zds2/7pS16R8kBCHa1+QlWNT5goH7A89sgpFj3pQpdCFzSwdm66h6JUKm3LZr7wSvI5y06ctINTb64eNK+pZ2JT7eM89wWsKmyEobJLkuHSugLtjE/AvahcBLm5w5BqKHufY1Dt2VZ1Nfkf+3ubYbGszi7Guoeg2YTNJjk1XYdPFsRkVih7l2Iy7OcQJC+r45i1sxuXYjCKJUKjf6NMKm0mqousT26yEzY6O8gq2NmyTS0k1qqLH4EVVrY4LRQfcJ/76eTeFtNmohmPTNcemaX83bgzaZ9wESlGvwqY8JjkLm86OzWIxeKDgEoquX5uq7Zmum6zybKYVNj3Pbzt5hqID0Q9K1cS0pQU45BD/daFQfg+qRih6pY7Ntrbyfa9mjk25zZ4XuLFMyzMJm3o4Y5qq6C45Nl0msTNnBmMx0wTatp3yviZzDerFg2z70NcX/cCs3oVNea25PvgDkjs2Ozujc2yaRJw0jk0pbKrlSEzCJuD3t5WGomeFvrzOznBkRaWOTT3Hpv6ZRIpZf/5z8DoPYdMWdWPatqgiUGPGhI+XTVzLKhQ9jbDp6tiURqOkoeh5OjZXrQpex4WiK5IIm08/HR4jVFPYbG4O5nLymCcVNrOIChlBUNgkyXEVNm1FKBT6oMDlBh7n2IwSgYDgBhOVY7O/v1xgWL8+vH367205Nltbg2225di0haLryaJlKHqSHJuuT3yzcmzqA+zW1vhEzqZ8erv33WtqCn5fqbApJzQmsnJsxuWa1NtvlKAV1aZlYQzbb9W5zMux2d4eTC6zcGxWI8dmDMOVCpuuE399AJkkHL2Wjk1Tjk2duP68Xh2bWv8DwD+30hWZdL1JhE3XHJtyGTIU3VXYVH2O6brJKs+m7NfWrSsPcdcrj+rXkPx91qHogP1B6a5dfsFAwM+rJbdLvwfp2zg8nK+wmSbHpmmc5hqKbgrFrCTHJlA+8TQJDVGOTdkvZZlj00UcLBaDKrwvv1xeMC+psKk7Nm1jh7jznucEPAvUteZ5yXIm68JmU1PwQEe1Q3XeldCkH884EadSx6Zajmm7C4Vw/vSenqCPLhSCoi22NlDNUHS9n4gqHpSXYxMIC5vSIR1HtR2bullg5sxgnpZFKLpN2Gxqsh/Xajk2XYRNtY0q1ZwkKj1QGmFzv/2CB05JQtH1e9HWrf68SY1V8u5XVVtzETZnzQqOrRqfAHRsalDYJMnJw7G5ZYubAFepY9M1x6apY5cdoBy06GKZ7thU22yrii73Va/Om0WOTXUzGjPG/Xxl6dh0EQUNA4mC6YmZSdiMevqq/x3nbJPnUU4+snZs2sJCTUQVD9I/j1qPfu5d3I429Mmbq2NTnqsscmxKwanWoehphE1d0E7r2EwibKbNsamfuzjHV1x/Xk3HZlSietu6bMJmEsemWm+SUHSTsGl6GGMSNgcGwsddXtc2x6bpusnDsTk05Lt4FcPDwb6ra0fuZ39//qHotgely5YF/aruGIpybA4NhastA9mHoqdxbJru+7VybALlk0m5PNWWdfGpGsWDXO89Umx54onwZ7btjKoO7bIPcee9URybQDJxXh+rFwrhcweUt/NqODZljk2g/N4tBUA92kr1ZZMnB+3d5jxW/XmxGM5nngW6UKr3E3q/Y8sfa/qt+k4aYfP++4PX9RyKru+zfOixcqV/LwCyCUWXOTa7uuy5gPV7aJocm7ZxqM2QozsGZVV0uS0SdVxlrmvTsqWwGWVK0Y+9/sDJhi6C6tEBccXkKkUdIzmPs8035T5KKGyGoLBJkpOXsJnEsTkwYJ5gxhUPMoWiu+TYBMIdoPq9qtYdlWMzyrE5dmx4QJNnjs24p722yZOrYzNjYdMYCiAnleoJYBLHZpwAVK0cm/rAPm0ouv65TtS1mrTYkcQmbMYJpFnn2CwU4kXVPEPRZXuptmMzbSh6WsemxCXHZhrHZlRfWAmVhqKnETajJoEujk3p5jFNvmQbrSQUPU/Hpt6e5baZHkjp4o+8l23YkExUVkRNKm0PSuW9XncMRQmbgL+PeRYPysqxWSgEbShvYVPfZn0yKe/1asKedY5N/T6q2trgoL3Il42oAkIujs00OTbjznu9C5tpxXnT+E4XNtW4wyZsxok4aR2bUeG7su+X2yMrf8v7Ylwo+pQpydx+LsQJm3q/I/OH6/c0UzGbJMKmFLNUPz95MjBjhvn3JhyjpgpxwqZ8L4mwCZgfemRRPKivr7ydu/wmD8dmS0vYhRwXig6UH0fb2Ajwl62ucVfHJhD9wMmG/pDN88IPYKvl2Ix7T2FyMFPYDEFhkyQnTSi6S/GgJDk2AfNAL03xoEocm+p3Lo5NKcbaxMYox2aaHJt9fcGTq7jE45U6Nm3Fg9IKm3qYovye5wWfJxE24wQgW45Nl0lDXo7NqKro+uc6UdeqbDeVCJtyYibzlZnIWtgEchE2GyoUvVCIH3y5Ojb1ZdmW6+LYjOvPGynHpixa4Squ2YqIAG6OTenmSRKKLq8DVawCKJ/oVduxCYTdpKbrSO6nLKIE+H3++vXJtyHq+lfXxdBQuA2bCgcp1LlU92aTsFkPxYOGh+MnwrvbdKHajs0nngg7VEwPMfWJts11XaljEwiOk+skNqqAkG07bcJma6vbQ0Y6NsvH27pjUx3HesqxqQubr74atHc5Jje1Y88L+sysw9BNy4xzbEbdRyvNsWnav3nz7M5EE1lVRTflUlZIh7dpn00PPdLm2NRFyihB1fSbHTvKI7psjs2uriAiLC7H5rRp4fRiWQubhULQHqTzMu7YRT1wMuF55u/JsUfewmbSOZDJwUxhMwSFTZKcqEqbElsRCkWaUPS4wZFr8aCkOTaB8ABW/V79Tu6fzCUic2yqbe7tDZav72exGCwrKhRdX4ctFF120CPJsWn6nv5doLqOzSQOyCwdm1FCS9xDCNcQch2bYxOIdm3q4cwyf6qiDoTNqoWiZ+HY7OyMH/y7Ojb1ZUU5NuNybNoSzSvicmyaKlCnJU7Y1B8oAZXn2Ixap03Y9DzzQy9XYdOEuh6r7dj0vPL7qC1PtUnYNImYacLRXULRgfA9T0529ImEnjdM38e1a+ujeFBUGhKFiws5D8fmjh3AihXly7MJm1HFg1zvPVHCphpPud57Djss6Jt0YbPSHJtpHZv1nmMzS2FT7Wt/f9hxq46jPhbTx7BROTbThqJHCZtye55/Pngt+/iOjuDeq9rA5s3B/SYPYTNpjs00wqbtmorKq6hIEoaub0MlxYMAu7Ap+5g4YVP1DWlD0YvFoJ+SwmbUvFvuj2kea3NsFovBHNM0Dh0aCuaTertxETb1SMI4l7xJA0gibLoUEFq50nyM5Nij3hybpmuCxYNCUNgkycnKsZkmFD1ugh4Xil6JY/PZZ4N1Rjk2JdKxqbY5bsIvb6i24kGSqBybSRKP2waetjBVm4CZRtiMEhayFDbrNcdm2uJB+uc6cYOwPITNJK4ZwFxsKglqkNfTYy6kVIuq6NV0bMaJ9fp3TP2mbVmmfrtY9P8lCUVPk2OzUAjWn6TYhIlahKKnEDabd+5EQe2rPGauoegm1PVoKx5kEoOyEDZ7esr7ploImy6h6ECwz54XhLHtvTewxx7h36hzOTDgH0PdEaOHotvu20lI49h0eQCtO99M5OHYBMLisele75pjs9Kq6BJXYbOjAzjoIP/1U0+Fj18aYVMVxQHchE1TMcZ6d2ymDUWPc2yaxjhRoehxjs20xYOicmzK7XnhhfAyFMVieRHGuHtopXR0hPunKGFTd2zq7S2JsClTTihM+5ekcJC+Da6OTdu9M62waXrokTYUHQiO3/btwXJcHZuuwqY6z6o9m8ahGzYE9zp9LqkLay6OTVv+cYVpvhqX71IeexfHpk38rKZjM6mwOWdOef9Px2YICpskOXnn2IxKkh3nXMgjFF0l6x0e9gex8vcuwqa+zXFio7yh2hybEldhM25gZBt42sJUZecrnzZn7diUx9alerFE/ztOBNLDOEzrtVFJVfRKige5hqKbJrdZCZtpJ5dAed+Q1rE5NGQWwOo5FD2L4kFxYr3+HVO/aVuW6Vyo67HSUPQ4xyZgn1wkJWpCpr9nEjZlTtE0wqa+Touw2S77AXnMTO3W1bFpEzbzDkU39WmVhKLrv3clqWPzpZcC4cnkjpD3AtP2SGFz7NhkDh0baRybLuM0l/QKeTg2AXMEjOxTXHNspr33mCasSe49SnTp7w9XqLVd91FpblxyRcvzbhrL1buwmdaxqUdXAWFh09TO9bGYLuLobStvx6aLsCm3W40f86yIblquPkYsFoNjnsaxqc+tbL8FgKlTy9+rpWNTOvMlcWPqjg7g4IP918uWldeDSHo/UNsn8z66Cpume7Aeit7SEmyTas9bt5abBKIMOVmHopvWAcQfu87O4IGTOvZRSPFzzpzgdT07Njs7gQMPDL9HYTMEhU2SnLwdm1FJspPk2MyqeNBJJwWvVUcoiwcB6R2bpgGqTdiUOTYlevEgORCMc4dK4hybUWGqLk7OKFxD0V1CRiWVODbzLB5UaY7NLIoHyfd6eqKrq+voecTSDCjVsZbnSHcCuhC3bjo20zs2TYM6V2FT9T3t7eaHMnGOTfVbIP9QdClcmvofUyXeStZpETbbZD4p2V+b8qjWeyi6qS0ncWyahM1qODajCgcB4XNp2h4pbGYVIpbGsZlE2MzTsTkwEJyDPfcM3jcJm1E5NqOqjavfVerYTDKJtYU9Ji0epNYZV4BPnndTQZV6FzazcGzq421ZKRoIjqF02EvHZlOT/1vdaZnUsTl2rP89W/EgmbNXHx/JUHRbKLjapyTj97TY8nwqZIG1rHJs2tLBSHd8aytwyCH27TaRVVV0uY36w3KXflU+9Fi+PH0oOhBc17J9ZenYlGM+dV3095f3+1EmGf08m6qiy+VFFVa0rQNwO3a2B04mZL/9xjcGr+vZsQmUj0sobIagsEmSk5VjUw4KNm8OOpOoG3iccyFtKLrM59bXF74hSGFTdYRROTYleo7NShybNmEzKsdmkie+cY5NXfTQHZuKNA68CGHTa5Qcm41WFR0IP3FOImbIQUpra2Wh6Dbh2pW4dacYVEbm2LQ97a9ljs048nZsmhxfqu+ZNs2cAzSuKjpQPWHTtC5dbKlCKHqbPP/6wF7v2yoNRa+FY9MmbKrtz0PYdCkeBAT7HFU4CIgXNteuDcYPWU048nJsViPHptze2bODcUxcKPq4cUG/ESVsAm6RB1mGogP2QhVpQtGBZI7N6dPLP693YTOPHJs2x6bugJUiTqFQuWNTjaVtjs2oB78vvVS+HEW1Q9H1bTD1E+p4xDk2k1RFdxGzZs9OLirlIWxGOTZt/areN2QRii4dlJUIm7pjU475bEI9ED2X1K+pOMfm4GBgpMgyFB1IVkBIfd7RARx1VPB+vQub+riEwmYICpskOWkcm6bOQXaiK1a4JcnOqiq6KbxF/d/fH+7U3/CG4PXjj/s3GF3YTOLYTCJs1lOOTV30kJ1vlo7Nvj5geBgFda6SCJv6eajEsSkFsayLB1WaYzOLquj6e0nC0eXTVjmJAJIVcADs4Xqu5ODYrPuq6IODQX9ZqWMzalmmSYnpgZFJ/N2wwX/tki8ZKHeeA9ULRZfrUv2n2qcqCpvWUHS5HaZlpA1F7+83t9V6cGxWo3iQaTyRRNg0haKvXBn071lNOBrZsSm3d8yYILXPypVBxVuTsCmLWejFg2z5/aopbNoqo2chbJpyRcvjaBI26714UDVybMoxmDyeuogjTQKuOTZle4kTNvW2Kq8/2Q5toeh9ff6+VTsUPUvHpoq+SSJsym1JGoYOhM9/1Dg0SY7Nvr7w9ZhU2Hz88Wwcm5K8HZtA+f07zj0s5/NxwqbLg+Y0oeiAewGhbduAF1/0X8+ZE3YL13MoOlB+bWSRx3sEQWGTJCdNVXSb80f9Pio8w7bMuBybqhM0udtMgyVZqEJ16mPG+KHx++zj//3449EDLUmh4G9DWsdmX1+wrkIhugBAU1Own3L7XCrNK7JybGYRim5zxSV1bFaSY9O2fVG/Ve0gS8emDBHPKxRd/65iyRLg+OOBa68Nv6+HkaRxbJpC0fNwbKZ4Wu4Uil4ohJenC5uvvgqccgrwj/9oDvPXJ2VAuB088ghw3HHlxx5wm4hJoiaVUctKm2Nz/fpgMmCbkOnXoi2UDXATNh96CDjmGODzny//TP1ehpzHrUsXW5KGouuuHUnSUHS5HQrZ9lyETb2tbd1qn/xl4dg0TapqkWMzalJpGk8oF8eYMcD++5cvL86xKXPoVcOx+dBDwLHHAl/4Qvj9rIRNU95i12sAKHfD6YKgfFCst3E1Wc7DsVlpjs3ubn9sCPhtRvV3USHzCtnnqnWq8d3goFk4Hq2OzbgcmzKyRrZz6X7URZympkAMWLIE+J//MW+nxOTYHDs2cBXL/k7v+21j96iq5D099SFsujo2TWlkCgVzeiEXMStp4SAg/HBU9gU9PcBb3uL/6+kJosFkpJ6OraJ3klB0APj2t4Fbbw3+TptjU+JaFd0lx6Yc80UJm3HuYZNj05Q6TH+dVyg6EC1sPvlk+Ddy++vdsSn3sasrmzzeIwgKmyQ5ro5NWQBIryyqUJ1J1FNMSdzgyDSJUVV85XpMeXvU/1LYVNunnpBs3x7O22GakClUUnjdbfHKK8HfUcKm5wWDNlsSbqA8pDdt8aA0jk31njzXlVZF7+lxEzbVduWVY1Pisg+AezEek2PTluNStmlT8aAoB5lrVXTAvM3XXw8sXgxccw2waVPwflphU55Xk2OzUmFTTnIUlebY1Cfxeu5FhS70/eAHwF13Af/938D995evRLp2FHJydP31wIMP+sded6+5hM5JovpNU3VMRdpQ9Lg+zrSuKGFT5umz8W//Bjz8MPC5z/misiSuAqfcHnXN1HsoehaOTfmeHNjn5djcsCG4nqqVYzPq+tfvzbt2BaGipuqjQLywKdeXlbApJ7KyHwb89v7QQ34/IYXxuCIXQHWKB+kPTpRjEwCeeca/rpUoqLdxWaXXJQy2p8fsdgSyd2wWCsG+rF8fHHsXx6ZpndJFGOW0AhpT2Mwyx6b63/PCx0reQ6Icm0BwDAcHww++bHlxJ04MXiujg3QV2xybeii6oqkJmDQp/J4ubLrcRytl332D10qol6hjpvpHhYuwqdDbpu0+rI4rABx5pPk7cZjG4DffDPzhD/6/H/8YBduDFNs2yvbq0q92dwftS6YUa2lxG69J8nBsel68Y1P/bZzIrvZXXkNZOzZdQtG7u4P56DPP2L/39NPB67lzG0vYnD49OD559QsNDIVNkhxXYfP004ELLgDOPBN4+9vN3zEN/F1D0V2rosvXthyb8n+ZY1Ntn3xC8uCD5b+NGiTrbosnnvBfjxsXnwRebYde4EjR0hKIKzKUXqFuRhMmxHeWJlfI0FCwPP2GXCwCX/6y75L6l38J3k8jbMpB3rp1drHSJNDklWNTkrWwqQsHw8P232SVYzOqKrr+XcXLL/v/e1540qwGJrrbxLYcRVwoeprJmZyImAZyaULRpaBhc2xGuYP7+4NjB5gFEJPwI9+Tx37VqvD3kjo2oxxf8m99WWmLB6k+DvBzZZnQ1xUlbAJm55jk0UeD1489Fv4sLlE9EEzqtmzx12UTNqUQE0WlwmaSUPQ0OTYHBsKCuaxKm3WOTbWtnhesM4mwqX6fdSh6VDTF3nubl2cLRTf1LVkVD2prA2bO9F8vWxY8BPM839kN+O+p9A9A+PjbBFa1zS6h6PJ6TZtjs6MjLNhv3hx9/1bbrec9t4kqcsKuk3XxICAsTKmHakmFTbVOef2ZRH15HBuxeFCWOTbluZPjEpOwOTwcnBu5DV/8ol+cZs89/X8zZ/quZ1su+9mzgcsv93PuX3558L4U3xUuwua0aeUPTvSHtOo+Om2a3RxSKeedB7z1rcDZZ/v/68hj5nINmj63pZjR+dCH/OP7gQ8AJ54Yv+0mTGNw2a8/+qh9DCeRfbd8CO3SrwLAv/+7Xx1dtq8vftFtvCapRNg0jTGVYUbdQ1wdm3Gh6P/8z37kwP/7f7UNRS8UgnuM7Bt0ZJvYZ5/GEjYLBeDrXwfmzy+P1CCgf5Ukx1XYbGkBfvGL6GWZBv6uoeiuVdHVa+n6icqx2dMTuHZ0xybguyP030YNkuWN49VX/dxSgP+UKM4Rom6oNsemXK8UZhXqZuSSeLxY9JfR11eeh0XfD8Xll4cHefr2m/620d0NbNzo33DkPsjzaMo1Vg3HpuukIa6yqcLUdrdsMedKqUZVdP27Cnnzl9ucRSi6qXhQmkFE1FNm2zpj8CzCEwB3YVMeuzgR0/Se/L0u6CR1bLa0+Ps+OFi5Y9Mlx6ZM2m7LlZXEsQn4bc52/a5bB6xeHV7/P/xD+Lf68nTkQFo+XLE5VOPcA1GDd4vjul0NxE1uHn19rqHotqroQFgwnzIF+Pvf/ddZOzYPOMCvDgv496QZM8yufHkNyeOnfq9E5yQiTpKq6C6hnzZhU+6jIsuk/vPm+W7SHTv83GAHHOBvrxSn5TGXfaFtO3a3qcLgoFmsHxwM2ue4cUG/U4ljUy9QYYvO0LdbHusoUWXHDnM/kXUoumm9gD0FRZxjU47R1q4FDjss/D15HPfYwz93Uceu3sgjxyYQL2zatuFtb/P/uVIoAN/6Vvn7Eyb4DyG3bPGvoULBXdjUkd979ll/PAykC8t2paMD+O1voz9XSLd4Ho7NmTOBu++2b4sLJmFT9otLl5bnzzZhE/lc+lXAN/VccEHkpjqRVNiU14Ytd79qV0D4/LoUD2pvN4v/CxYADzwQfs9F2LT1i11d/rbJfs815Frth4r+M43V9GhGeS714qh5kiQHrSSr9jUCoWOTJMfFiu9K1o5NkwgkX7s4NmU4q8mx+fDD5b91dWxKt6dtwi87NTUpTSNs9vQE++JqV5dhJ0ByAQVIL2yqgd6uXeEbr82xqbYtanBfzRybQHwBAIWp7doGIdUSNnUx1vPCN3+5zVmEomeVYzPqKTOQXyi6fs1HCZumc2va1m3bAkdglLCZ1LEpv5fEsZk2x6bMbSRDT03bozC1T1tRNB09l5L+t4uwKSeaa9bYHZuAWzh6GsemaidTp5Y/9EoSii7/tjk2gXDIfp6OzUMOCV6rtmx6IGUTiw8+OHidNM9mkqroLsKmbJPy+3IfFVkLmwrVvvV2LvsZF2eRON4F031EXnPyoVsljk39QVTUg0k50ZbHOk7YNJF1KLptvS45Nk3rlO3N5EzW+2n9nI5Ux2ZUjk0gmbCZNAzYBXUe+vuDc+8ibJr6Fzmfuu++4HWaQjpZIe/T8ljbCngpooTNPNuqNBeoMbjsF596KriW0gibro7NrMjasQnYhU2XHJvd3eEUTFHYIm6i8o8rCoXya8QlFB0I74cp5RNQfq8fM8acg991nWkx7X+99+V1DoVNkhw1gGtrq/yiTypsVuLYlJ9H5e2RqIH1fvsFN5OnnnL7reqc5MBg8eLgte0prK2jM3V2Jreb2re40AET6viqG3+Um8tGJY5NhXK1AuF9rJVjM6mwGRUSB9gdmyZk7k1Tjs1KhM2oEPLt28MDdLXNnleeszCrquiVhqJnJGxmEoqexrEJ+AOxrVvtRcCAdA8cZBEASdY5NoeHgxC6ffcN5yYzbY/C9JDM9sRfJwthUxcWqiVsqut3eDgIRTf110lC0VXYMhAtbOqOTUUWjk05mZTCZJSwaSuUsOee5b93JUlVdJd7ps2xKfdRkeXE11QUQW/ntgm4LSQ+TtiUbTitsKk/hNEnzy6h6ED4WEeJKvUkbMbd21SBSSBe2NT76UYTNvPIsQmExTZTVXRJnsImEPR5et/f1lbe95j6F7nN994bvM7TsRmHPGbyWJvG+VLwSuPYzALVBuQYXEsTUFB9SaXCZlapRqIwbWOaHJvyN1LYdAlFHxgIfpMkp2Mloeimdbk6NuPMDkB5Yd1CwXw+6zEUnURCYZMkRwkXlbo1gXwdmyZh06Uqumn7isXAeSSFpqSOTemQcXFsKqJybOrrUxOFJIWDFFGOTVdnWBbCpkyaHufYrMccm0C0c9HUdm03YJNj0ySMmKgkFN0W/mx62lpJKHo9OjYrDUXv7Q3n6TFtl82hu3VruZBZK8dmmhybK1YETvEop0nSHJtRwqYMfQeA558Pt0M9J6wJ2f+8+mp5QZNKhE19vaZlbdqEorqWXYTNqFD0Aw4IXrsKm3k6Nk2OS1dhc8KE8PFI6th0rYquh6Lb7pmyTcp2kLewKa8l1d71dp/UWSSORzEvYTPKsZlE2FTHuqWlXCTKSthMOok1PdBLkmNTFqDTQ9F1RqtjM69Q9KwwPVjV20ChUD5figtFX7IkeF0vjs2oUPRCIbz9sj265tjMAlNfYBtbRxlzbLnbG8mxKbdbprZxcWzK38qx7EgRNmX9CXWMTeeTwmbDQWGTJEfdLKI6V1f0jqSlxe7wAZI5NqNC0aNybNq2z/TU1CXHpklMKxbLcygpkjg2o0LRa+XYTBt2Igd6wrHpZenYTCtsuu6DaxGdJI7NuFB0l6roxaK5XSURNtU2mwYllYSiy3NWJ8JmyLEZVRVdIv9esya83jjHpr4P+rGvNMem/F7eOTaliyzKaZImx6YN3bnmecCTT/qvBweDa8g1FN3kGI8KvTeRNBQ9Lgw6SSj6/vsHr9X1aHJS5+nYVO27UAAOPDB4P6ljUxc2K3FsRuXYdA1FN7WhYjEsJiuydPTMnBmIiy6OzQQ5NoHdeTZ18nBsjhsXiHlJhE1F3H3MFjFQrRybSYRN+R4dm2bSCpsm40Xejk2bsAmU39/iHJvqumhrAw46qNKtTI+rYxMIb3+tHJtZCZv14tg0XddRpiLZr8l0WDZh08WxmcYkA1QubOrrSppjE4gXNuV1SGFzREBhkyQnS2FTvzEoS7iNJFXRs3RsAuanpi6OTdNT4oMPtg+yKhU2Bwd9V6nLJE1HbWtvr7+MNI7N5uZwfrgsQ9GTOjb1v+P2wTbZcc0pUy3HZtJQ9K4u8z7Um2OzXooHRQnHLsKmbL+27ZLnW4YOuwiblTo25YA3SiRNk2PTpXCQ3B5FWmGztxd45pny99V2pHEHmBzjOefYLEhXhGnykCQU3SRsxuXYlBOfLB2b48cD06cH76cRNvX8p0lwrYqeJhRdoe+jIktHj4waWbkSeO01v8CIxDQBb2629xGi3cQ6NmXBiEocm8VisKy4HJum4xc30a9mKLppvXkJm/pYTB8713vxoCwcm6aHTLV2bOYlbCrmzHEXdPLA1bEJ1K+waYmO8aKumbjiQe3t1RGgKnFsSlwcmzZBMM1cEsjesZkmx6ZpXrVjR/AAjMLmiIPCJknG8HDQIeTh2IzrNOMGR3Gh6ElzbMY5Nl1ybJoEzKgJv03YbGoqn5jZKkr39aV7yia3tbc3nWOzUAjvQz3l2Ezj2Exyk3HNNWlqu3kWD7I94Y0SJPVwuCjHpqtTtUFybFpD0T0vnbAZ59jUhU392GeZY3N4OCxERomkrqHo8hhJF1lUP5eVY/Ppp4NrYNas8u1IM4g29T9Jhc2oBPlZODZdQ9F7evw2a3KZSsfmuHHBdmaZY1MXJus1FF13bMrQfImpDenbKN/PEnk9/fzn4bQ4gDlkcvx4+4O5JDk2TW4yF0z9izouumNTv/+aHFFJIw8U9Vg8SK5v/PjgO0kdm/rD5HrE9FDaBdU+5D7KYynFtloWDwLsOTZN2+MqbNYyDB0Y2Y7NSnJsViMMHagsx6Zkjz2C1/KakWM+6cqX+5wm+g+oj1B007zKtj/MsTkiqPM7Iak7du0K3D55CJtxApxJ2JK4hqK7OjZlR3fYYeWDx7SOzagQTVuOTfm/wuTYBPzBYCWh6IB/fNM4NoHKhU3pmJL7WGmOzTTFg9IKm1k5NrMoHmS7VqOEWJtj0zQoaW0Njl21q6K3tQXbkXfxIHmso4RN2X5t2yXf23ff8Pt5ODZtD4WiRNJCofyaiHNsKkFx7Fi/6JqN1tZwf5pW2JRC6nvfW/6+SwVOIHzvMTk2cw5FL8T110lC0ffdN+gjduwIX5NyW+Q139VlT1eQFM8LC2tdXcH5TerYHD++OqHoMsfmpEnJ8i2rfdQfIGU9+ZXjhh/9qPzzpBPwuByb8trp6AjOTyWOTblNeYSi1yrHZhrHplyfrAJsEu/VNdna6l/b8tjUexg6ULljU+5jvTs2TfMLfXvicmwqai1sZuHYrNccm5UIm9UIQweq69hsbg7c9FmEosttr2Yoepxj07Y/9eLYrHf3fZ1DYZMkI64YSVIqcWxWEoqeJsdmZ2c4V5j8TdIcm2kcm6ZttAmbumMzaSg64B/fNI5NIJ2wKW8w0klkC0Wvd8dmtXJsZiVsVpJjUy6r2lXRgfBE2WWdMYRC0aWI5Zr2QLZf23bJJ8lS2Ny6tfzYb9lirlAPuF+XtjQecSKprfCNKcfm5s3Ayy/7r+fOjXYRFQrhbU9bFV2Gvr/+9YFr84kn/GvDdRDd3h5MVkz9T5ah6CbhXK/SqZMkFH369OB61IXNvfYyb29Xl73AVFJ6e4NrRV2bap/ShKJL92RSYdPUfyr08YQ6B1H3S5tjEyg/b1lPfuW44amnyj9X/YznhR2zNpLk2GxvTydsmvoqtU19fcC2bcHn1RI2m5rqL8cmELS79evL+xh1TerH0LbsekOKyWlybNqETTXe0M9ptRybLsWDTNtj6mNM98BaVkQHkjk25fbXuio64LeNoaFwHyOJEpBMxYPksqrl2Kwkx6bEJccmEOyXHJ+OtFB02/7Ug7Cpio2R1FDYJMnQHR6VklTYjHNspglFdxU2gfJBRh6OzagBcBphs1AIF4aIQhcO0zjDgHTC5uTJwYRfikm2UHSTY1M/D0lzbFbbsSlvYFlXRZfhp7ZrNSqE3CUUXbY5KaTYMImMtnQKSTANxqLWGYM1x6arsKk7+pI6Nk2OHZmDMY2TOo1jE7D3OSYH4xNPBO+5TMjktmfh2Jw3L1jvzp3ACy+4D6KB4P5j6n+yFDYLhbJ7UmLHpi0UvanJn8TYhM099zRvb5aOTVNhLLVPW7b496ckwmZ7e7CcpKHoro7NtWuD/Y5ypUQJm/K8SYdjVpiiRiTquKsJvdw2E0lybEph08WxrDD1VXKbZL+Wp7Cpjw2zDkU3VUWPe2inv6fanef54qZEtU3TMWwUh4/a9iwdmwo9j3i95diUY622NvNDD9M2q7y6tUIeM3ndN0oouk3UBJI7NuWyaiVstrdHj2MrcWwCQbts5FD0uPRUtv2pF2GTVASFTZIMOWiMemrkiql4UBStrcHgJc6xmUUout7R6U5L1enJiaq+XP3GMXVqckeIbRujcmyqzjsqrE5HFw7T5PID0gmbTU3mvGaVODaLxfB5iduHpiZ7ugEXklZFl4Jz2hybNpHF5SFEmuJBcY5NV2Ezq1B0ILhOt20rF3rVOgsF5zxkw5UKmzrbt5dvlxpwtbeH+wNTKDoQfq+WjtEXzGcAAHtmSURBVM2oHJuuhYMUctvjhE3ZZys8L1jnjBn+9STX+/jjyYTNKKdklqHoQPnDtqxC0adO9du56otcHZtjxmTn2DQJm3qeTdMDqag817rj0xXX4kErVgSvs3Bs5jHx7ejwCw9K9t67PBWH6fibSJJjM0vHphz3SQFPP/+NmGNT9VPNzeHr0sUhGpVLVndsymPTCI5NIN2DE1NOa5e8g/VcFd1WJFXfh5kzqxfybCNJkdN6FDbluFrvO6PmRZ2dwfWrzqtcVq1ybMbNu7NybO7aFfRlWVdFN82/TVQ7FL0WOTareW2MEihskmTUOhS9UIh+6pumKrpr8SCgfLIe9RRZipFyEBM34c86FD3JE7ZaOjaB+BDMOMdm3OTBZR/085inY1OJEED2oegu12pHR9A2swpF37EjXHVbIgWhPELRgfIn9KpPSFJZVAqgaULRTejbJXM16QOxOGGzlo7NqFB018JBijjHpi1Hk2LlymCyodYn17t0aTrHpiQPx6ZcnubY9Fpb3QbYsg+QfZbaB3k9yoccM2aYt1c6Nnt7ywvTJME0AdTzZCZxbMrf6/sTR1TxoJaW4Di6ulKiHoDGuT+yQL+uDj+83LEu7yVRwkhcjs0shM1KHJuuwqYefmqi2lXR9WXF5dgEonPJRjk2G0XYTPPgJIljM+pvuf4sSVM8yNa/6Ntc6zB0wH7M4nI/RuXYzLO96mNw2RcuWBBuO1FjtkKhPMWR6wOjLNGPVdy821bwUeXOBKIdm6b2rPqisWPTzwPTODY7OsIFjdKEopsMI/Ucit4ofXkd07DC5re//W3MnDkT7e3tOPbYY/HQQw9Zv7ts2TK87W1vw8yZM1EoFPD1r3+94mWOWrIWNvWBq4sIpzpi0+AoaSi6rLQYVzwIsIeiA/YwaD2XXNxgJYviQevXBzePJMJmLR2bQLxTSTp2XRybQPi4uOxDJYnOXYRNzwtPUqLyQwLpiwe5XKu6s0uuU044gXjHplqO3D+dvHJsRoWepBE2C4WgMrqrYzNu0KVvlyzuIQdUmzebw23le9V0bNr20+RgVMJmseiHzcaRxLFpEjalkKr6Vdm/JnVs5iVsmtq1zbHZ3W128+jty+bY1IXNwcFw0Yfx48OTBYXMsalvf1JMwpruRjOF+9uKB5l+70pUKLp+b1YkDUU3bWNeE199/DBvXvoJeNIcm+r7WeXYBKKFzZaWcodSVo5NU1vLsniQy4TVFooOhCffntf4OTaBdI7NLIXNenFsugqbtS4cBDS+Y1P2hVOnAq97XfB33PWuh2W7PjDKkqTCpuna6OgI39vlQ3abYxMI9tcl97QJ3WyjSDsmYyg6caAhhc1f/vKXuPLKK3HNNdfg0Ucfxbx583D66adjnT4R383OnTsxa9YsfOlLX0K35cJMusxRS9bCZnt7+EJ2sbm7OjZNoejDw/4gUQ3Mo0SV9vby96ZP93NBmn4T9VRS3jyydGzKdcrPVq4MXicJHcjKsZlWrDJcn568UUvHrhro2/JxmtbvMrDNyrFpc47Im3pHhzmnjSQLx2ZU+Iqp6M/mzeXhtq6OTX3dkryLBwHZCJtA0A5swmZcPlcduV3Dw354OuBvuxyIvfhicE7lea4Xx6ZN2BwYCAqaHHSQ23ZVmmPTFPq+zz5Be9Adm3Hty9RXxlWBt5HEsTk4WArJ9Wz9tWsouvq9PJ6y7YwZUz6Ab2nxl5+2crFOXCi6zbFpmpTZfu9KVCg6YG6n9RqKDpSPH6SwuX27v7+uIZNpc2ymFTZNbsOoUHT9u2o7dGoVih7l2NS3M2koumzj/f1BFMRIcWzaojp0TMKmSyh6tRyb8iFRklB0E62t4XZZD8Km7ZjFXYdxc6u8iBI2J0wIH9O4MZt0wnte4zo2Ozvtc584x+auXcH9JMlcEgin40jj2NTX6TqGl7pCVCi6Xn/CdE5dXaJpobCZOQ0pbH7ta1/DZZddhksvvRSzZ8/Gd7/7XXR2duLGG280fv/oo4/G9ddfj3e+851oswwAki5z1JK1sAmEO5M0js1f/hI491zgkUfiQ9EBXzQwDZb0tmHq5AqFsGNC3kRsoehym4F0jk2XUHS5LZ/5TPC6kRybUcKCvh2ujk3puHK5SeUdiq5P9KTbxjTYdxE2770XOO88YNEi8/qjrlVTbkyTcOCaY1NflkQKQqa8epUWDwLKQ0/SCpvq+1mFosvt2rYtONcTJoTzOf3978H3DjkkeF3vOTaffTY4Pq4hdJVWRTeFvhcKwetXXwU+/nHz8kwkdWx+5SvAu98NvPZa+e+SODbXr0dBtQdTnmG5HQpb8SDdsQmE205XV7nbRH3X1kaSElU8SG1P2lB09XvJz34GvPWtYaFbERWKDpivn7TCZi0cmzIUHfD7FtcJuDgehaEh4JlngLe/Hfjv//bf1NuwSdi86SbgpJP8MM8FC4CFC4Hbbgs+N40hKhE240JgqylsNjcH7SFO2CwU4kNyba7kuGPYKMWD1LZ7HrBgAZpOPBEnfupTaDrxRL/tfPCDYWfX0FAQsRI11gbK7x/Vcmw2NwfrqtSxCYT3ox5C0U3HTM9dr6jHquh6XyiOqecqbA4Pm0XSapCFsNnRYW/7+phPdzumLRykUOc6rbCZxrEJRBtG1Phh8uTwMunYHBEknOnVnv7+fixZsgRXX3116b1isYiFCxdi8eLFVV1mX18f+sRNeNtue/fAwAAGklSNrGPUfqj/i9u2QU2nBtvb4WWwn82TJqGwZg28ri4MtrfHumGaOzpQAODt2oXBHTvQ/L73odDTg+FNm+C97nWl7RvwvNKympqaSir+wK5daO7r85fR2opBtW9NTZB+Dm/8+NJnkuLcuWj6y18AAIMdHaVj0NzSAhlAONTcjGH12bhx/vra2zE4a1bkPhaam8suTLWsptbW0NOI4aYmDKntHzMm2H7h2Bzq7i5tRxzF1tbg/G7fjmJPT3DcWlqcq6E2dXUFv3M4p6X1T5kC3VMz1NQUamfNnZ3+sdy5E4MDA2jq6wvWVSiUrat57Fj/+5bzqaOfx+HW1tIxjqWtDWrIPbxtm/l3W7cG39ldHbMIAIODGNi2rWyg0TQwEOzf8DAwMIBioRCcp74+FD/2MRSXLIG3ZAkGn38eAFDYsqXUjoY6OqxtoHnMGP/47NhROj6FVavK2uDwzp0YGhhAYefO0meDLS2lc9PU2Rls55YtxnNe7OsLthuANzCAQmdnsJ2dnc5tNbTcsWOD5W7YEG4vQ0P+/jU1OZ3/Ut+9e8DjDQwEx0Xsu7y+/Q8LiJLNQ9u1fn3QBsaOxdDgIJonTEBhw4bQxG54zhwUly3zX7/2Wqk9NcnrsrnZ6frSr+3Sedu5M3JZep8zVCz6++15wT709WF46dLg2Bx6qNN5bBo3Llj3mDFl65Z94VBPT9kym5ctC/rVmTNLvy/OnYume+7xv/Tcc8G2jxkTuV2FyZPL+96mJgzr11xvL7xnn0XLVVf535kxA8PXXRfetl27/G1rbsaguBeVPm9u9j8fHMTgqlXBsZw61dhv6Pen0nkAUGhvD47T7v5eXo/Dr71Wej3Y3o6i6nN243V1+X1pW1twPrZtS1b9Wm7rxo3Bserq8q9zcWyHVq5Eobe3vN82XEOqXRSmTAl+//LLwXns6UHz+9+PQm8vhnfswJB8uANznyNR44nQOvfYw77vTU1l21jax2nTgm3cY49UfVkskyahedo0FNau9c/b3nujaezY4FiuXx8+/mPGWMdpxWKx9L3C0BAKX/gC8D//A+9//xeDZ5+NYk9PsJzmZhRbWlAE4PX3Y7C/HxgYQPMHPoCCJiZ6L7+MwaefBhD0L15zMwYB/1yOGVM6Tt66daXjP1gslm2r7CMAy/24pSW4frZvN18//f2hdoBCoexaHygWE7f55q4uFHp74fX0YHBgAM29vf513dZWdr9pbm1FQYjCwy0t4W2dNCnYD9HfY9u24P32dv/9ri40F4soDA9juKvLfYxSQ0Ln8sEHUQSwh/zCAw9g8Kij4F1yif/3li2hsVJprCvarWK4szN8DFpby6/T1tZM5iw6zRMmoLBjB7zNm/1+VN5Tm5r8Nj92bFkfbVzWxIkobNnij1f33DN1H5wZ4tpSeO3tGDSkriiMGxeMDUW/o9+7BpubczkPAMrG4N6mTaG+EPvvX9rG4fb2yD46ND5Zvx5FuazdfX7eFIrFUD9V1s7LflB+D/U6OjBoOI9A+ZhPH0ujpSVot1OnJr6nNbe3+9dGb2+pPzRdHzaK06cHc/q2NufroXn8eP8euWVLuB/2PDSvXev30dOmhT/r7CwffxjmlGnR9RQAZeMJ2c+RgCSaWsMJmxs2bMDQ0BCmac6uadOmYfny5VVd5nXXXYfPf/7zZe/fdttt6Mwj5KGG3H777QCAAx55BIfufu/RZ5/Fam0SkYa9Tz0Vs197DS+cfTaev+WW2O+/vrcXkwAU+vtx/3/+J07aHUI7/NBDeLW1Ffvu/t7f7r8f23c7aY7fvBnKcP7nP/0JC7dtQzuAXUNDuH33Psx64QXMEevZDOBvhv3rPPhgLJgxA7v22AOLt22Dt/s7p/b3Qz5L+/vLL+Pvuz/b+5RTgn2UbgYD459/Hm/U3lPLWrB1K6SfZ9W6dXhs9zo6u7tx3F57YeyqVaXPt+2zD+6fPBl9judp7+eew5G7Xy97+GHs8fzz2Hv33/c89BB6XnnFaTmT5s7FkXffjbVHHoknlixx+g0A7Ll6NY7S3lv69NNYI7b/lKEhjAUwuG0bFi1ahBPXrSsNjhfdfntZfrq9Tz4Zs199Fc+ffTZecDgOCwcGIJ/9r9q4sXSM42jbvBln7H699oUX8JDhd2Neew0Ld79+dfNmNPX1QZXzuPO3v0XvHqGhPg5/+eVwm161CvstX465u997/NFHMWf5crQCwKpVWPTHPwLFIva8997SsXx65Uq8aNmH1/f3+9dTXx9u+d//hdfcjD3vuafsPGx+9VXcu2gRZj36aOk6WfrMM3h193IPW78e++9+f/Htt2Ozoa3Mfu45HKi+8/DD2LR74nz8wQejqa8Pi8eOdW6rkpmrVkEFGD3x17/iFeHoeNO2begE0Dc0hD8nWHbf8DDaAezcvh1/2f27icuX4w27P1/x6qtYJpbX3NODs7RleLsnnvp2jXvxRZy8+zsrt23D44sW4dSWFujP4p9pbS31t5uffRb37l7fCa++CpUQ49a//hXDDk7kfZ5/Hkfsfv3UQw/h5d1Pp09YtSpyWcdv21bqOwHgxVdewdOLFmHM6tVBO375ZWy9806orJqPbd5cahdRTD78cBzx179i7dFH44mHHy77fOKzz5aO90vLl+MpbZlnrFmDNgA7x43DX/7859L7XYccguOmTcMY4TbYOnMm7u/qQn/Edpn63uUrVuD5RYtw8IoVUP7ZhxcvxuDSpThx999r77sPD2vLPXnjRoyDL4AvMqxzYX8/xgDo6+nBY3/8Ixbsfv+Fnh4sN3z/gBUrSm0BAF565ZXS8WguFHD8gQeiODCA+/fYA/2LFmHO+vWYtfu76554Asr38Mjy5di3rw/TxbJ2eB7uXLQIczdswH6737v3ttuwbfdDkqS87rHHcNDu1w8++yw2LFoUuj62/u1v2Dl1KlR99rvuuw+7nn8eLdu3483asv7yyCPof/55TNy4sdQWXrnlFjw+y9+7ic8+izfsdoAM3X8/Fv3pT6F7wEHPPAOVVe3hRx/FOlkYDMBJ/f2YoK3zjmXL0Pfqq8Z9K/b342ztvQeWL8fGlhbA83D0ccdh/IoVeGj//bEtg/GRiZlvfSsOvukmPP/Wt+KFW2/F3G3bSuftvkWLMG3JktI+L3nhhdD9U3LQihWl7xUHB7F96VJMhD+2+ttNN2HPp57Cwbs/f+iJJ3BwT49/r/A83PLHP6KlpwdnGhySwy+/XGrzp6xb59+vW1pK701+9lmcsPu7Q6tXlyYiS59+uqzfOLa/H9In9NLatXjSsD9ntbejubcXO9aswV2Gzw977rnS/en+hx4ChodL7Umh2mESFhaL/nW8cSP+vGgRzt79QGNrXx/u0furQgHSfyXHbwDQtGsX/mH3641PP437d38W6ms3b8aju9+ffc452Ouvf8XjRx+NtTm1tSyZMn8+jrz3XrTb0u4AeOU3v8ETu13rezzzTKmPXdnSgsd37+O+y5fjcP13mzdjqXYMzmptRbMQkv/68MPYnkN6sZNaWzEBvki/6I9/xDEvv1zqX++47z70Pf00mtvacML++wPDw7h/3DgMWM7XzNNPx8G/+AWeO/98vOgwH8qbjvXrcZr23kBTE24xbH9ze7u/j56H+9vbS/t40Msvl/oZAFj82GPYVEkO5wj0MfhWzwvu2889h3VdXTjm6KMxbuVKPLTffpF99OHbtwdj7z/8ATMefji8rCpcc9OXLcMx4u9Xt20rXf9GPA9vKRSCCBAAW/r78fADD5SdRwC468EHseull0p/7/PKK8E48d57URgaKo2tlw0OYkXCfT7N89ABoHfLFty2+7dHvfQS9tz9+Z33349e8fBZZ+wBB+CY7m7s2GsvPPjaa85paE7E7ocm27eX5kQA0LxjB87abR5Y39SExXIMv2NH2Rj+jr/9DX27zQVZofQUoHzesH77djzQAH15tdmZJILIazBeffVVD4B3//33h96/6qqrvGOOOSb29/vuu6/37//+75kss7e319u6dWvp3yuvvOIB8DZs2OD19/ePiH89PT3ezTff7PX09Hj9/f3e4L/8i+f5gSTewB//WJNtGjr11NI2DH7966XXHuANHX986XX/448HvznttOD99eu94QkTPA/whg88sPSdwW99K7ys005LtF3DhxwS+v3gF7+Ybh8feyy0HLmsobPOCm/jP/5jpsd24Kc/Ddb55S97Q+eeGxy3l17K/dwO3HZb2b7v+s1vwsf58MP9c9fS4v99xBGhvyv9N3zQQeFj//73u/9+48bg3Jxyivk7Dz8cfOd97/OGLr44OMZLl5a394suKmvTgzfcEFyH3/lOaHv7d/c/A9/9bvCd//xP+/Ukr4116/zlf/nLZedh+Igj/M/+3/8LlvurXwXXz9VXB+8vWmRc1+D//b/Bd+69N7t28+MfB+frK18Jn8899/S3f6+9nJal+ryh6dPLfjdw++3Bev7pn8K/3bq1/Jjtv79xu0LL+cQn/PMwf37Z7wd+8pOgr9p//+Cc7f7ucKHg9ff1uR2jH/0oWOfXvhYs66ijIpc1dMYZ4evhk5/0P3vuuaAdn3++N/iJTwTbfdtt2Zzbhx4K1nvZZeHP+vq84ZYWf9vnzctmfStWlPe911/vt91/+7dg/37zG2/gD38I3Xf0ZalzPzx5snFdwwcc4H8+aZI38P3vl5bVJ85N6Nq5/vrwdn3845H7MvjJTwbbt/sce4A3cPvt3tCFF4bvI/Pn+7/5yEeC7/31r6mP4+AHPhD0KQ8+GOzzfvv5+zxmjDf0lreU31s2bSo7/v3bt5c+Gy4USvtTWte3vx3+/nPPhbdFjln+9Kfy9n3CCeFrtlj0+nftsu9fX1/5Nj70UDbtL+3x/qd/Cl17g1deGfx9xx32333xi6XvPfDP/+wN7b138Ls//zl8Td9xhzf0xjcG+7xli9f/97+H+oChE08MPt+2zT/nM2f6x3XatGDdDzxQdgw9wBv4xS/Kz8873+nU7oenTvXXs+++5n398IeDbXvgAW9g8eLy8/jyy4mP/fDs2aU23b9zZ3SfMGNGeF8MY4vhMWP85R1ySPD+kiXBcjMe89XyX2l+sXp1sH/HHhucs29+MzhWN9xQel/2l6XPr7ii/FhOnhw+v8uX57IfQ2eeGazj1Ve9odNPD/5eu7bmx7mif6+9Vnash2fMSLSMwS99KXweHnggv+0V95ChU04J39PuuSfc7nbPa63b/bGPBb+96y7jsvL+N/D738f2Gfq/4ba28P39xBO9/lWrjH1u/yuvhNd3003Buq67zhu87LJgn+++O/H2l8ZBkyaV3ht685tD10sex800r+nv7/f6n3giOC7vfnf4d729pTFG6berV2e2TcZ2t317+FydfXZV2lWj/duwYYMHwNu6dWusztdwjs3JkyejqakJa7WqmGvXrrUWBsprmW1tbcacnS0tLWjJO+FslSntk8jH1jxhQv6JdU0IN2yTVrm+KHJstcgqniKPRkuhUAr3LLS3B+dKc9kWJ05EMcn+abk4mjo70ZTm+IwdW/ZWaVlanpRiW1uybYxDJEJv6usL5UJpGTcu//O9555lbzV3dqJZrnf3eSoMDPjnUoVjtrZmc91Vch5FfppiT4/53IgQnmJXV8hd1NLTU36MPS/4XLVpsY3NWr/V0tMDTJoUvlbHj7efO9HeWvr6/O/JvGe7Keza5R9fGebd1RUsV+x7c2+veX2iwnuzvD4rRRT0atq+PXy+dh/vQnNzovZR2P3dwuBg8Dux/U0dHeH1aE4wACgccgjwwgvl2yVcTk2TJvnvG/L7NO+1l59jaMsWFNasCbZj93VZ6OxEi2sOIO3aLm3L7nZiXZaW86epvd3/regvi0NDoTbTvOee2Zxb0Tab+vvDx3vnzuDanzAhm2vf0P+UzrO41zcDoZQBxbVry691dY7kPUay+55UGBxE84YNwbJmzAj3dwqt729qbY3ul2RfJFxKzRMmABMnhr5aHDvW336Rv6u5vz/9ORRVV1smTw6WM28esGIFCj09KDz7bPCdMWOsFbBb1DZNnAgccADw3HMoPvUUioWCfwyffDL0k5Zly/zvKUT/aexztPt+YcoUv5+Noq0tdP5D+1gLJk0qvWzesSMoTAagOWrbRJsuDg6iIO4lzRs2lPf14vstnhe+BsaNC+XebOnp8a/f3U6LQkdHcB3IAoyC5s7O8m3VIhis9+OuLmDdOhR6eszXm+i7bee3Rd7PXNndRxV6etAiQzo7Osr7BG2+UHYPAfz+/oUXUFi7NtgPudyurmzHfHVAy6RJwH77AStWoPjkkygWi34OYXFtNx15ZHCsDOevady48mPZ1QWIvjW3MayYJ7Zs2hTuG8aOrW3fUCmyONJurPc0G1ofm+o6c0Ubg8t7kd4Xxs7VRd/TvGNH5LJyQ7snGtu5TmtruG/u7PT7ZwMt+txAjqV37ACeeKL0d/ORRybf593XaqG3NzjW8j6R1/UhxtMtPT1BkaBNm0rvF2fMKO9Lx40L5cMvjU0yJNTutLyhxc7OEde/Z0GS/qbhige1trZi/vz5uOOOO0rvDQ8P44477sCCBQsiflndZY5Y8igelBQ5wdNzoEq7sq140OBg0OlHFS5Jmhw6ZhDrjOl3LsWDsiCqKnoeidd1oop3KOQgadeu4CaZVZLnSooHNTUF22eriq4XAoiq6A3EFw/SQybVTTlpVXQg2GZNLAVgroou26OpQqyOrbhXpeRRPMhUFV3L4RWiqalc3JTFf+R2maoWm/qb7u7gmujpCY6rakNJrklbxWv12rYsvc9Rx1Eez4GBypPMm5DXniwqAbhXfk5CS0tIJAJgLx4UV2zLVkREIYsHyd/bjl1UVXQTUcWD9OOlvptnVXQgXJFWCJvWquj6dqrf9/YGuVNlASnT30mroru0Xf2cVquQhA39HuJa5EIc77Zt20L5H7Fmjb0qOuDfd+U9Tm9X6vpU7UgeZ9s2me7heqEr2/VkKoInyaN4kFwvEJo0G7czrngQEBRQ3Lw56POqPQ6rBaqoy86dpYeBpWu5UADmiERRNmE77r28jp1e2CyucFwjYTpmSQuc6O0+zwIpxWIwFq204E/afjVL9GPnMu82zZlcq6LL/nbjxuDhwv77G003sZiKB8mxXF7Xh21eFTfW0u83eRcPKhTSF9slRhpO2ASAK6+8Ev/1X/+FH/3oR3jmmWfw4Q9/GD09Pbj00ksBABdddFGoEFB/fz+WLl2KpUuXor+/H6+++iqWLl2K50Uunbhlkt3Ug7ApB8grVti/ZxM2+/qCp/dJq6JHkZWwGTUg1jvZrIVNW1X0QqE6A7SJE8v3Sd9nffKdtbDpMvmIIm6CZauKDpSLckC8sKlXZFY38aRV0eVv5M1fbV9eVdGzIEocTitsqmMsJ8RRVdFN7x18cPBabpd8rQZSNmFT5n5W4qFJLIjDVvFavbYty9bnyPM3MBC0mZaWMkdgaqKqouc1ydAHuybRbWAg3Mal6KxIKWx6Wq7vsu1QmEQ6ibweZbsdM8YubOZRFV06RWxVftW+FQrh46xvp/z944/793HhKCm9L0laFT2NsGlxw1QNvZKtqX8xIY51+8aN4c/Wro0XNvV7jKkfNj2EsR0v0z1BbwNxwmZvb7jPVujCpkv/7YK8zuQxNG2nPpYwrU+2P+W0ltfiCMvfX0I+9Hj8cf+6tYkqLlXRgfJxT17HziZstrYaIzkaimKx8qrm1ayKDgRtoacnPKaO6gtN1IOwmbQqOmCeM5ke5rS0lN8T5X4tWRL0PfL6TII610NDQR+srg/9fp8lLsKmaayln9dquCcpbGZKw4WiA8AFF1yA9evX47Of/SzWrFmDww8/HLfeemup+M/KlSv9UIbdvPbaazjiiCNKf3/lK1/BV77yFZx00km4++67nZZJdqM/oa8Frk9d5cRPvpaDxCyFTf1mklZoixoQuwyMK8Hm2OzoKCvKkwuFgn+zEQWQvCjH5s6d9eXYBEohcVZxL6ljU4TQlQbJcjCiOzazFDZbWoDp0/1lmhybNmHT5lathmMzK2FTfV+KsS7Cpjw+LsKmzbHZ2uoPxPVJ0/7719axaRI2pTg3bVp2fYVcdzWFTZks3sWxCfhCkLwG1PbaHoyoe9LQUNjt6ipsxrVnm0u7Go5NNZkcOza8nbbJkWxLra3BNWdzbALA0qXA/PnlfY1IRwMgvs9JI2zKczpuXLzInDf6wzF1bRQK0S4bcdw7RMgugHjHpi7ud3WFj8OWLf53lLAs79sq7YB+7kx9alJhE/CXq4sYejvQ24JKbZAUm7AZFXkT9R29v99779Hh2NSv7Tlzgv3W+w1TO4lzbBaL+YkU+sPHuIdajUZHR2UuO5d2nyVyDK76wubm5MK2Pq5U9zVDWrDcyErYBPz9l0KvaR/kPj/6aPC6UmET8K+Lrq7w9ZHXvNJmGImLLJK/a26uzoOJKB2CJKYhhU0AuOKKK3DFFVcYP1NipWLmzJnwRJ6lNMsku6k3x2YUNsemq7CZ9Oleno7NaoWi62HecW6uPOjuDgmbZfuYt2MzC2ETcHds6m4bnaSh6EmFTVMIubr5d3cHn+/c6eerq8SxmZewGXUMKxU2K3FsylD0pMJmd3cg9CuycmzKNhh3jbsIm729QY7NrMLQgdo4NnVh0VXYVKKz+lxdty6OzdWr/Zft7fZrtZJQdImrYzOLUHR9PTNn+kKgyFWGpqZwf9baGgheUcLm44+XuzMB4MUX/eUrV6Cp/5To7d7lYbY8p7UOQwfsE/Dx46MnZqINGYVN3UkS59iUfcWWLeUP8fRtTiNs2sZV+v0nTtg0jdfSTLLleuUxdHFsRoWiA8HDIn3MMBLR3dhz55o/A9KFond25iei2BybI0XY7OwM32/r3bEpx+DyXpT0/Ms+RD4wGj++OkYPIBthU/UZHR1hkc/Ul8h9lvdOW7RFHHo6IV3YzIu0oejyd3mHoSvo2MyUBvfIk6ojB7K1enJsWu/06eXv2YRNOZiuxxybzc3lE7Ba5NjcuTPezZUHtlBQhb6NSmzK6lhUKmwqIdAWEpd1jk19QqoGLq7uan1CKAvBTJsWHO/hYd+Bk5WwmWXb7egIlpeRsOmZcmwmETbHjPETlqvlyAGlSZTTJ+LqOtAnTYODgaMtrWNTtUGXZbnk2Fy9OnAWZylsRjk2KwkxiyJNKDoQHjDbrhGJPH6700n0OuZDBJAsFF3R2ho4gSWqzzK1kTTICaCkUIh3X8m/9d/vtVdQ0EEXNuUYQIan5+HYlOc0y7aXFlvIZNwYJkkoeltbtLCpC+bS5Q+YhU2dShybcTmeXYTNNMj1xgmbLmlu9P4eiBaIRwr77htcS/q1rfcZrsKmPDd5HreRLmzqx65RhM3e3uCaTPMAKm2/miV6nxGVL19hM4PoQqbpmmhtNb+flWNT/p9nO7CZHShsjngobJJkqAHjmDG1yx1jesr03veWv1frUPRKLOV652bLsZl1x6s7dtI4wyrF5phS5F08qNJE53Eh2Vnn2NSpNBR9/fqwSKWH/meVYzNLx2ahEBxHeQw9Lzh+aR2bQ0NBZeUkwqYKyVbbJQdXJlFO72/UdaBPmtK6d0xuPJcQR1uOzaamwLUgHdZZpm8pFoP11zrHpu7Y1K9tGeKUVNjc7WDsi9qPLByb6r08HZt9fcFvTfsTJ1LI/dR/L4XR1auB224LPpNjACmKxAmblRYPqjfH5ubNdmFZR4ai68KmS/GgqBybW7dG54Z0FTaTFg8C3ITNrMZSlTg243Js6g59YOQ6NuW1vWoVIIq5ZhKKnudxG+mh6Pqxq6R4UFNTtmM/E/K8b9/u/1+psLlpUzBuq2afn7Vj0/S+jr5/EyYA++wTv14TtRI2bYYR1ac2NYWq3peQ9xsKmw0JhU2SDDVgrFUYOlDeOXd0AOefX/69SkPRK3VsVtIp6p1brRybaXL5VUpSx6YSy+otFB0wC5tZOzZ1TMKma1X0HTvKc9Doof8y15I8NrWsig6YBcS4wiFR6EIWEBY2TdeefE+1YzVQShOKDpRPmtK6d0xuPJcJc1Sfo17L45KlYxMwV9UE6jMUXWG7RiSG9lhzYTMLx2Zctfokjs243z/0kP//uHHAOecE70thMy4UXb+GGj0Ufe3a4HpM4Nhskg+dAP8Blx7dIq/9uKrocY5Nk+iaZY5Nnbwcm9UIRR8Njk3AfG1PnOjnGZWkCUXP87iNHx+cSzo2y5HtvBrHxNQWKhU2X301eODfaMJmEscmYE4Bkzb0vt6ETZkL3mTOomOz4aGwSZJRD8Km3jkfdpifaFyftLiEotdjVXSgPoTNHTuCCVK1c2xK9H2U26JCp4H6FDZNAl+UY9O1eFASYVOfkEZtb09PeahGlo7NagibW7cGx6yS9enFcYBkjk3Vjk3bZUpobxM2s3JsmgrDuEyYbaHo+mtFowubtv5H7mvWoei76YuqJl9JVXSFeviQp2MzTtjUc3XZHMGuvwf8fHxz5waTL1lAaDQ4Ntvbg+P28svB+3HbFtUnDg8HTmxV5CHOsamH/2Xh2EwjbFYzFD1rYdMUij4aHJuAOdzVJKqkqYqe53ErFILzNhKFzUodm9UWNk1tIU3KkK6uYMwt+9Vqph+pB8dm2jB0oD6ETTUmGR4O1w+I+101KqIDFDYzhsImSUY9CJt653z44X5n8LrXhd+vdij6SBA2i8VgHZs2Be/Xq2NTTqIbRdjUxSRZtTYPx2bctapvrxRoZI5NwJ9g6XnXbMsxIV1BWbddNdgcHg7WX4mwqQtZQGXCptwuU0J7Wyj6lCnBd3RhM8l12dIS7FPWjk3TdmdFrYVNU45NW1V0RUphMzLHZhZV0dU1qk/MsnRsxp2XQw8NOyUqcWwqDj/c34cDDvD/fvLJ4NqXfYCLY7MRhU2Z8kL23wkcm0ZUm1b7myQUPascm3mFouvXTxbCpgznz8KxqY7/aHFsmh5amN6rN8cmEJw3lZ8cGDkixWh1bBaLQRG6JP1qltSDYzNt4SCgXNhUufr1z7LGZBjZuDGYT9nGqXRsNjwUNok7g4NBiF09OTbVREef8MhJTJriQUmfyuWZY9MmbObR8aqbnRyk12uOzTyEzSxzbLo4NpuagsGTq7AZJWqoY5KFsKk7NqWwqRe5kt8zhQIC1XFsAsFxzErYTOPYVO3Y9OTYlAPPVjyopQWYNMl/vWZNtAsqDnVtV+LYjBM283JsyvBuIL/iQVmEoqd1bCYRNuMcm1HCZktLuO1k6diUfZjpvHR0AAcfHPydpHgQ4D/A1I+dPgbo7QWee85/HZeOQu5zS4sf+hpHvRUPAsyT7QQ5NiNJK2xm4dhsb3cTRuLuu/p9tFAI7381HJsuY8T29uC8jTbH5qGHlvdrpgcZ9ZZjEzDf9yqZA9QTWebYbCRh0/a7agqbeh+dpWPTNubT7xuVODb1ApAuaXqywFQ8SE+zFfc7CpsNCYVN4o4UK1wqs+WFybEp/wf8J23SFZI0x2ZLS/InvFnm2LQJmFFhe1mhboJyglqvjk25jY3q2ATMhW8UaR2b6nqNGwjpuTGjcmzKUHT9uDQ1BW2nlqHoQHAcayls6jk2Af/ceJ45Cb0tFF2+riTHJhCcnySOzag+p5rCZrUcm5Mnmx2F1RA2k4Six7XnlpZot4c8ZtV0bALhe3VSx2ZbGzB7tnl5cgKm8mwmqYquCn7FUW+OTSDdBDxLYXPMmHBft3VrNo5N/btZOTaB8P6nHT8kqYru+mBahjUDo8ex2d4efugBmEWVNKHoeR83031vpIgUo9WxaftdNft8PQVIlo5Nl1D0pqby+20SdMemLeIrazo7g35ejUniKqIDdGyOAChsEndcqyznjd4Zz53r/y8HQLrwkzQUXYaIujISQtEB8wCwRjk2vWKx/Fzm7dis9DzGFdExiUmmwjcKmWPTVdj0vPwdm6YbsFqWSyh6nOMsKXk6NtV2y+1PGoqutmvHDnMSepnPSf5evu7r86tBK2rh2IzLsZl1KLpaf29vUJ0eCF8ryvGcBU1NwNSpwd+mUPSBAXNVdLV91XBsurRn/dq3CZuqz6pGjk0gfK9OKmzqvy8WfaeX/r5J2DT1OXKfXUX5kSJsmtqQadzj6thsbg7amB6KntaxqX/Xdj3F3XdN7SBrx6aMcjEtzyUUHQja4Y4dfj8zWhybQPihR3OzWVQxPXw2tWXZJvI+bqb73kgRKfRjl/RaobBZGer4FQpuAn2ljk25f697XWXnLErYzLMtyPQsFDZHFRQ2iTv1ImzKznjWrCBHoZzU6IMc+fevfx28jhI2kzJShE3TALCaLoGurtL6huMcNvUein799cDb3w584hPBpMfkYlHtTb/xA2HHpmvxoF27ApElibD5t78Bd94Z/K3n2IxybMplqb7iySeB//t/gQcf9P9Wk8vm5vRVFm00Qij6li12R1uxGHY8yYmSfH3ddcHrajg2k4Si6zljs0C1M88LC8vqOI4dm737Vx5vV8dmX1/QH7m4EirNsenyYMBV2IxybP7kJ8A73uH3Y29/O/DhDwMvvhhe7qpVwBVX+J9/61vmdUiyFDYPPjjYbimKqAJCcaHoumPThUrHCnlgCjtP49g88MDy91wdm3I79FB0l6rotvGM3A/b9STb9k9+4rfF//N/gBUr/PdUH67C0IHw/mQhbMaFWboKm3qezdHi2ATC1/brXmc+Rq7huXRsZkOWjs1qhOeb2kPalCFpUnxkjTpmY8a4jZuzdGxWEoYO1E7YBMoj4WQ0Wj3l2Kz29THCyXg2QEY09SJsynXLTnfqVGD6dN/RFJXLSOXeAsI37NZWX1wYHnbLs6Uz0nJsSqrpEigU/PP44osYamlB2W1cbks9hqJL99gjj/j/1HK++EXzJEUP4ZPrTCNsbt8e/O0ibBYKvnAkn2h2dvqfJXFsqsmt6ive/37goYeA228Hli8PC5tZY8qpU+2q6PLaMTk2t24Nu3r0AfLEicDmzf5xlOdt+vTgtaz4nLQflo5Nzwu7DrPIsdndnb1grQ+M1XE3hfNnxfTpgeNPrT9O2AT862fChPp1bEoHk7zHqT5LbuuuXcDzzwMXXxx2ygJ+yK18QPi5zwE/+EH5+m33USlA6sdHtkOX38sxwF57BdfQU0/578X1AfIYuTo2bcexlmQVij5vHvD3v4ffU32ALmyq/kM65iZMAF59Nbljs6XF3nfIY2wbi8j77vLl/j/A346f/9x878nasSlJm2MTCLfDV18dvY5Nm6iiH0dbaizZJvKes4xkYbPSHJuyT69G+zW1h7TjhDQPjLJGHT/XyJRKHZuyv81S2NSLj+Z9fciHbJ7n96UKm7Ap971a1281neWjADo2iTv1Imy+7nXA8cf7nfL/+T/hzz72MV/0ed/7wu+fd15QgEMxdSpwzjnB3+p3LS3lv3chyxybeodaixybkmq7BD70IXjNzXj5TW+K3pZ6rIp+xhnAvvuWv//MM/7/UY5NoDwcXQmbUsw0CZtqUjg4GK7MGZcPt7UVuPTS8vc//OHy0BdXx2Zvrz/pXbLE//uFF/yBhZpc5tFu43JsJg19T1MV/cIL/eNy9tnAPvv47+mC67Jlwd+qirPiAx/w13v55eH33/3u8gH2tGnAW97itCsl1LU9NOTvk8wJN3my+TdJcmxmnV8TKBc2FaYCTFnxvvf5633LW4KwdLmvO3eG24JCPRhIIWx648djOKoPSyNs6te+vG9fcom/beeeGwzyi8Vge3fuBBYvLhc1gaAvUzz9dPl3Dj0UeP3rzdvV3e236ZYW4KKLwp+95z3+Nrz1rfb2dOKJwPz5fnv+4AeD9wsFYMYM//Xmzf7/cX3A4YcDxxzjH5uLLzavT+ftb/f7m8MOA044we03eZNV8SDTRNbk2BwYMKc7UduxcyewbVvwflyOzah7wqWX+iLgeefZ+6kjj/TPo45yF8cJm2nHD0mETdcH0wcdFLx+6qnR5dg86STgiCP8vusDHzB/x9WxOX++/2/cOOCd78x2O3VGcih6pY7Nri6/v29r8+87eTPSQtHf/36/37JdDzqVOjbPPtt/uDttmn/eKkHOuzdsqI1jc3jYv1eph51AuI+V7LEHcMEFflt1HQ9Uyjve4d+rjzwSOOqo6qxzBEPHJnFHuntqKWwWi8C99/phP3rH+MlPAh/5SPn7hx3mP62Rgs/UqeU3gO99D/jmN9N1uCMlFN00cK72YPqqqzD4oQ/h6TvvxEz9s3p3bE6c6At5q1f7k6n99vPf1wsBtLYGE22TKKcwCZsmUWOffYCXX/Zfr1oVvO9yrf7gB36IsxJr2tuDCaQ83q7CJuA7NdW2Dw76v1UCYR6OzXoIRT/vPF9QseXg27IFWLky+FsXET71KeCjHy0/tkcc4bcfKUROm5b8+pfX8a5dYYeu7Ql2khybWefXBMzCZl9f8IAgj0nG+ecD//AP4XXLfTXlwgWCUCeXyp9Jj13WoeimfQT8NtLb6x9f5VoFgJ/9DLj6ar/9ynYDBH9PmOCnnwCAPfeMdu/+7Gd+v6Ov37ZdktZW4OGHzWMAtY87d/oTmrhQ9KYm4IEHzMuyceSR/j63tmbvUE5LVjk2DzjA7/OlmBYXim5LcRCVD1jftqj79zve4T9kiDo/6jy+9povxh90kN+G1bi1HhybrqHoeq5Y1dfJMcNIpa3NfyAadT26CpvNzfZ+Imvo2IzG1t/nwUgTNj/7WX9u63rsKnVsTp8OvPSS39dU2t/Icc2aNbURNgF/zKbGM5Mnh6OgdH7xC387q3X9Hnecf2za2upnPNHAUNgk7pjyKdWKQsHe6djeb2vzQ9XiSNuZycFWsViZeCO3QS6rVjk2a2GPt52Hes+xCfiDAdXW9tgD2LQpED3UJEUe0yjHpio0E+fYPOSQQNiUIReuDyFkwRSJPN7btwfbEyds3ntv+LMtW/INRc9Y2PTSCJtA+XHRt0sJP0A47M72e/m+S/8VhS5SuyRTTxqKnjUmYdOlQE2W6wXC7Ud/+KCoxLEZd+z0Y11p8SDbtnV2+uL8zp1hYfOUU3w35MqVfjqFgQF/mzwv6NumT0/WRpPewyW2MYAam3ie39e69AFR4wkb9ZYLK6tQ9O5ufzKqclMC6YXN114LXsc5NuPu365tYs89/ddjx/rnX22j6d6TRY7Njo4glUvc9roKm6ogJuCnHlEi80h3ayrirkdXYdNlWVlBx2Y81ToeI03YBJIdO1Puc8DdsQlkN5+S45q1a2snbC5fDqxb578+/PB4AbHa1+5I6SvqAIaiE3fqJRS9XslikKyQnVxUYuFq5dispwG1rSp6ViJvls5bILixr1njT35MkxRTfkiFchzJitm6sFkohIs+JHVsRiG3U4V3AvHC5n33hT+rhbAZ59aKIk2OTZftUjky454a54Hu2JTJ1BtJ2LQVYMoTua/yOpBCXgXCpvXBgmn9pt+biBM2Tcg8rKqtTp3qn1t5ftUkYceOoE/L4/wnRe7jjh3hPmAku92yKh6kn2fALGzu2hWcd/mgW25HlGNT396sxzJ6Ibu8HJuFgvlBfyXC5rhxfmFMwH8Qplyn9TQOqyXFYvharof5SFeX24OjRiQrYbNajLTiQUmp1LGZJbpj0yWaJSvkubvnnuB1pXlDSV1DYZO4Q2EzmizyNSlkhy+XVascm/WU0FjejPMORW9urlyEU5PEnTv9ayipY9Mlx+bkyeHcY1kKm3I7N20KXscJm4sXhz/bujUIRc+j3WZdPCgux6brPshz++yzgSA0b171w05sjs2mpvIcxIokOTbzDkVXg+JqODZ1bKHo++8fvFZCcR6OTT0KoNJQdBuqjWzaFKQ+UM5iuY2q7bi4fquJLmyqPqBYHNlhXqbrIK7YRCXCprwGXELR9Ul0W5t9nJMFSYXNStZvuq5cigdFrVNNvnfuDO7n9TQOqzXy3NXLfES//9W7AOhKFqHo1URvD8Vi+jaii5iVLKtaVJpjM0u6uoIHP9UORZfnTgqbpkgpMmKgsEncobAZTRZP/xWujs2RmmMzCrktUrjKQ9jM4sYrB7tr15odm0lzbOqiRnd3+CaeJhTdhs2xaWrj0rkiC0cA1XVsmooHVSPHpgl5Xh56KHhdi8GVLcfm1KlhR7AkSY7NWjg2q+WesAmbsgBUJY5NF1FYtrlKq6LbMPX1SmTR3RdA2PWbh7CdFJuwmUefU0/owmZXV/w+6+J6e7svhtoEGptrOY2wqX83a2FTtfXeXr8N5OXYBNyFTVfHJmC+P9TTOKzW1KOwaXsg0Og0umNz/Hj7+CYOvV+tZFnVQh8nqD6vFo5NIBy1VqtQdDn2pmNzRFPnVyepKyhsRpNlKLpNzKxGKHq9OzZtCZbzyLGZxY1XDnZXr87HsTltWngZ0rFZaT7ctI5NnbyFza6uYMBZq+JBcdslf1+LwZU8lz09gSgVJUgyFN1Htgcp6uyzT/BZnjk2geTCZlRVdBumvl61VT1fFlD/jk1T/zkS0a8Dl+vC5LguFNwcm/JeYBM2ZX9nald5Cptym3p68suxqa8ranlJhE3T/aGexmG1Rp67Wuf8V+jXTb3l4U1Lozk29fZQyRghTb9aa+S1Ic9dLRybQHBdbNkSNm7kfX2Y7kWtrX49AjJiobBJ3KmXquj1Ch2b1aFQMG9PHo7NLG68crCrivsAdsemS/Egk1POJmzWKsemzpYt+YaiFwrBMainUPRi0ewqrIWwKc/lqlWB6JOVsJmHY0+uv15ybMp2MG5ckB/TFIpu60OS5tgEwn1cXqHopr51JISijzbHZgph01PXr82x6SJs2hzU1XZsurSDWjo24wpMmu4P9TQOqzX16NgcqaHopjQS9UxbW/j+OJqFTXnuauXYlNeFnANV07GpOPTQfOYfpG6gsEncoWMzmryETebYLMe0PY0Qii4rzcp9qLR4kC5s2sIE09Aojk0gOI55OzZbWpLl6zNVAK7FU2N5LmVbjBIk6ynHZjWrouvY2s+YMYGgt3at/yDCxbGpXcO5ODYrybGpaGsDDj7Yf81Q9PpFFxRdrgtbOgSb8yypY1NiumfLba6FYzOrHJuuxYOixnI6++5bfk7rbRxWS+pR2BypoeiN5tgsFNwetrig/7beCwcB9evYBICXXgpe10LYZBj6iIfCJnFHCpv1EvpRT+RVPIiOzXKq5djMOhT9xReD166OTddQdNuAq54cm3mLDNKx6XmVCZumqujKuZm0rennZvbsfNJIxCHPpRQ2kzg2bTk2x43LZ6Bcj6Hokq6u4PgNDQEbN9Zvjs00js1DDw3W1Qih6HJs0tMzekLRZcoLwG0CbnNsJg1Fl8fcdD02NZnHKiPZsWnan6ixnE6hUD4Jr7dxWC2hsFk9Gi3HJuD2sMUFvQAbHZvJsUWtVbN4kIKFg0Y8FDaJO3RsRpNljk1XYXM05tgE8nVs5plj08WxmbZ4kG3AlaWwqfKDApUJm3mFgqhjMDjob2teoehJ25p+bmr11Njm2MwiFD0vt169FA+ytdmurvICYWmEzSlT4rehGqHoet8qJwImx2a9CZuj1bEpU3EAbhPwQiHcjrIIRTet1zZ+qLWwmVeOzfZ2s6M/ibAJlN8n6m0cVkvkuauX+chIDUVvNMcmkJ2w2dwMjB2bzbKqRb05NuV1QccmyRkKm8QdCpvRVCPHpp6XiY7NgHp1bNpC0eU+tLQErpc0js08hc2WFrMoYDo2upN7+vTg9caNweu8HZtAWEhNs86oUPRKhc1aPTWWbU66h6NESb2PsQmbeYlajeTYBHyhr68v+NtF2Jw82a0vr9Sx6TKR0ftWORHo7AwcLHooerHoJs7mzWgVNoHkwiZgvoZdhE3ZxuNEBNv4oRpV0QFg+/bqOjZt13xSYVO/T9TbOKyW0LFZPUazY1P/faMJm/Xm2Fy9OnhNYZPkAIVN4o4SNpubaxNGWe9UQ9jU/2aOzYB6FTanTAlCBGVRH30f9PyQClU8KC7Hph4yo8hi0G863i6OzZNOCl5v2BC8Hu3CZj04NmVbjBIlC4Vwn2MLRaew6bNmTXLHpuuxS+rYlOJOZ2e4D7GhX+t6W1Wil+7YnDy5PsK9R2tVdCDdBFy0w1IouhSwAbOwKYnLZ1drx+a2bcHrRhI26di0I89dvaTGGqnCZiM6NuPSYyShkYXNenBsyuvC84LXebcjPT3LPvsAEyfmu05ScyhsEndUVfSurmSFM0YLeeXY1Jcl/6ZjM6Behc2mpsDJpERKoHwf9IreCtccm01NZnEzi0G/6Xi7CJsnnhj0FVLYzCsUXS/ClFWOzUpD0fXJfq2ETXkeZVuME9bU/haL4YFitUPRlUtMpmuoVii6vu8KPRQ9jbDpeuwqcWy6PuDQr/W5c8N/q7aybZuf7kE5NushDB0Y3Y5NeS24Xhe2a1i+TiJstrWVt3nb+KFaxYPkPTWP4kGuwmaS4kGAn99W3uvrbRxWS+rRsTl1avjvRhAAXWi0quhAdsWD9N83WvGgenBs2sY3eV8fxWJ4TkS35qiAwiZxRzk262UQUW9UI8em/LtYzMeFoj/F0x1b9UAj5dgEzDd2fR+UsCkruAJmYVNOzpqagEmT/NdJ3DJJMC3D1Cb0vuHII4P8RA3m2PTycmzuvTewxx7Jfp8VtrYQJ6ypcx0Vll4Lx2ZnZ3WjB0xtSFZFB8I5NgsFu4ifxrEpl5WXsCnbyL77ljsc5LYuXx5cE/UubNKxaUa0KU/2A/J8JhE2Tet2cWxm/bBLbpN8ECLbQZ45Nk0kdWy2twOHHBL8TcdmQD3m2GxvD7fpkSJsFotBe21rawxjy2gORZd9qewzmpqC68aWYioPaiVsAuHzxcJBowIKm8QdJWzWS9hHvVHtUPS8XG+mp3r1NpBpJMcmYJ702xybQHgiFufYnDYtcJLpg64xY9zCT+NI49gsFIA5c4JtqnaOza1b6zMUvZZPjW3XTdxgvV6FzWpPMkxtSA9Fv+WWIJeurYiIvqy8QtErdWya2qqcpCxdan6/lthC0UeDY7PSHJt5CZu1yLFpEzbzCEXXx8RZCZtA+BqkYzOgHh2bgPm6GQmottco+zSahU2bY1P+Xc2+RBf8FdUwzNTL2JtUDQqbxA3Po2Mzjmo5NuMmGZWi3/Dq0SUwEhybUcKmDJ1TIcM2x6Zctj54yOpaTZNj84AD/Amf2iYlMAAN4djMrSp6vQmb3d3xDy7UuY4SNqsRiq7Soajro9phYS7C5rJlwPr1/uuo/iPNsbPlOrVRqWPT1Fblvj7+uPn9WiJFptEWii77mYSh6IPt7eFjZxJobA9TdWEvjWOzFqHoeTk2bcuKGtfZ0It3EZ96dGwCI1fYVG2vUfYpy1D0NP1qLZF9iy2vZrX7EtMYp9qOTQqbowIKm8SNvr5AmKinQUQ98brXAQce6IsEZ59d2bJmz7Yv69xz/f/POaeyddjQb3j16BIwbVNWDtbZs31Rrlis/DwqTJN+W/EgIDwRU9edXjzozW/2X7/jHcH7eQmbro7N9nbg9NP91xddZN4mID+3cZbCpi6QDA0FInPS7V+40D8XLS3AO9+Z7LdZYhrMughSqq/R+5w3v9k/rlOnAm94Q+XbZ2KvvYLXf/+7f07VQ7ZquydMwm5rq3/tLlxY/n3VV5t44xv9NtHaCrzlLW7rV8f/uOPK87mZGDMGOO00//Vb3+q2jlNOCbbrggvKP693YVP2eT09o6t40Fve4u9ndzdw/PFuv9ndpl494YTw+299q3/P6e4GjjnGf8+WWkG/z+iTf9sY4sgj/XQHxSLwD//gtr2uuAibZ53l/z19erCPla4LsE/Yx4wBTj3Vfx3VN0jOP98/fh0d5j5mtKL6zBNOCHKY1wPnn+//f8IJtUs5kwfq/uHabmvN2Wf7feGMGcCxx1a2LNWvZrGsanDkkf64qampfA5Tq/NoGh9UQ9hU+3v88cCsWfmvj9ScUfAIm2RCS4s/idmxo3Ge2FWb5mbgqaf8XIIzZuS3rC99Cfjwh/0Kb3lQqwTTSci7KvqyZdmcR0XSUHSTsKlPzP/wB+CVV/yJoUKfUFbbsQkAf/qTX3FbbZdJfMrLPaWLwzJxeFJhQz8fyq0JJG9re+0FrFzpO99rOdkxXcsubsGvfAX4yEfK+5wTT/Tb4Pjx+fUT06b5/9au9e9BMqy01qHo8vq69VY/NFu1kzFj/FQMNvbayz92nufnsVSu4Cje/37gjDN8IcY1Pcgtt/jXo+v9Yu+9/bYKmCuI1nsoukqdoqJMRpNj841vBF591e/3XK/Hf/93DFx+OZYuW4bQ3e7kk4HXXvNzJMv+v6WlvK2mzbHZ1gY8+yywaZPfprNEPpiyCZtvfKN/bSQ5XiZchU0AuO22ZNfjrFnA6tX+MZ88Of02jjQ+/GFfDJ8xo75SJV1+uS8m1dt2VcoNNwBXXZXfvCNrFi70r7MJEyqfs77pTdktqxq0twPPPef3e/rc41vfAj75yeqfx1oJmx/5iC/izpiRTVouUveMgpEeyYSmpvLqqKSc1tbsxLCoZUkxK2tsoQv1RJ45NtWysjqPQLLiQUAg3nie/w8oF+aKxfJ2UGvHJuBvZ5TYClQvFF2ew6TFg3SRtBJhEzCLRNUmrWOzULD3OdVw6h1+OPDnP/t5Wp9+Oni/noTNpiZg/vxky0uz/dLB6kKxmHwSE9VW5fmWglG9ODaLRV/U2rED2L49cFmPBmETSC4wFwrAzJnh6ypqWa2twM6d4ffS5tgEfHEza1ETcHNsAtkI8kmEzTTXYyOEv9aCvfeu9RaYaRTxLwlRY4B6Jct7Ur3c31xpbzdvc63Oo6mfrVZR2pF4PRIrlK8JIWEawbGZt7CZNWkdmzIvpYvj0FQ8KAuSCJs6tQpFr7R4kJxMbt1aubBZD9hybNY7MjfS3XcHr2sdij4a07LY2ks9tSN1XmzVsEl69L6vUIi+lwG1GUO4CptZrwtoDFcXIYRUC3180NpKByXJBbYqQkiYYjE6+XQ9kGcoeh645Ng0CZvKbQSkEzZrEYquU81Q9CxzbOrLkuGX9dzWomhpycexlDdS2LznnuB1rYsHZfXgoJGw5fasp3ak+r28Ba3RiN73dXWVh9y6hqLniUtV9KxwrYpOCCGjEX0OxD6S5ASFTUJIOdJhQcdm5bhURTcVD5KOTZenm/UQiq5TTWFz3Lhgkl2psCnzc2YRil4v6Oeynpx2Ng4/PHh9//3B63oKRR8ttLaW54ltbq6vQhlKaJIh0xQ2s0Hv+0zivmvxoDxpawseBtKxSQghtUOfA7GPJDlBYZMQUo50WNCxWTl77FE+oXJxbCYNRa+H4kE61QxFLxb9YhdA5cJmU1Mgbo4kYVM/l40gbB50UOAi37UreJ+h6LVBbzPTptVXWJnpvDAUPRtMjk2denBsFgrBtsk+g8ImIYRUFzo2SZWoo5EoIaRuoGMzW4rF8ieWUXnJVOhcpTk283Rsuib+rmbxICA4Blu3ho9fmnWqZY0kYVM/l/UUQmyjudlcYZyOzdqgT1LqTRw3nRc6NrMhjbBZqzGEyU2aRztobQ0/9OCknRBCAihskipBYZMQUg4dm9mjC0h5ODZHe45Nub5KHZtAIMqOlOJBQGM6NoFwnk0Fhc3aoPdl9SaOU9jMj0ZxbALVbQdyXdWq9ksIIY3AlCnhv9lHkpygsEkIKacRHZt5hTdnhS4gueTYrLR40Girii7X19sL7NgRvF+JY7O3F9i2LXi/kYVNeS7HjGkccc4kbFa7eBBD0X0a0bHJUPRscBE26yHHJlA7YZNuJEIICWhpASZPDv5mH0lygsImIaScRnNsNjfXV443E3HCZnt78BQzbfGgauXYLBTcxclaOTYBYOPGytYpl7V+ffC6kYVNeS7rTZCKQhYQUtCxWRsaUdikYzMb6Ng0Ix8ictJOCCFh5DiBfSTJiTpXAgghNaHRHJuNIDTJcM3WVrODSOaHBOqneJBJhFXVx+OotrApj8GGDZWtU277unXB60Zobzbkuay3EOIo5s4tf6/WwmZWjuhGg6HooxeXquj1kmOTjk1CCKkP5DiBfSTJCQqbhJByGs2x2QhCk3xaaTumMj8kkFzYbG0NLzsvx2aSQYmqLC5pRMemFDbrPe1BFI3q2Bw/Hthvv/B7tRY26dg0/11rTGIbQ9GzwcWx2dER7iNHg2OTwiYhhNihY5NUAQqbhJByGs2x2QhCk7yp246pEmq2bfPzaybNsSmXAeTr2HSlpaVcaKhGjk2gcsemdH+OlFB0eS7rTZCKQ+bZbGur/uCYOTZ96l3YpGMzP1yEzUIh3A/TsUkIIaMbCpukClDYJISUQ8dm9sgwDNsxVUKa5/niZtIcm3IZQH04NoFyZ121HJsMRS9Hnst6CyGOQwqb1S4cBNCxqWjEUHQ6NrPBVdyX12etxhAm5y6FTUIIqT4MRSdVgMImIaScRnNsNoLQlMSxCfjh6ElD0fVl1INjE6idsNnTU9k6R2LxoEZ2bMoCQtUOQwcobCqmTAk/aKm3dkTHZn64ODYBOjYJIYQE0LFJqgCFTUJIOdJhUY/CZltbuHhNIwhNSYXNrVsrFzazKm6StWMzz1B0m5OPjk2fRs2xCYQdm7UQNhmK7tPU5IubgN8XmPLo1hIKm/lBYdOMvNe2teWzDkIIaVTkeJN9JMkJCpuEkHJOOsn/v70dOOaY2m6LiUIhPFlqBKFp3Djg6KP91+r46mTh2DzlFP//WbOAvfZKupVm9Ilp0kGJLjZWy7FZ6Trldo8UYfMNb/D/7+wEjjuuttuSlJkzgSOO8F/brqE8YVX0gIULg//lQ6Z6gKHo+eEqbKr70MEH1y5VQTXbwcknB+tUfRQhhBCfo48OxtRqHEpIxvARNiGknNNPB554Apg0KXDm1BsdHcDOnf7rRhCaCgXgzjuBxx+3C0q6sLnHHsHfrhOyT3wCOPFEf0KZ1SSuUUPRK12nXNamTcHrRmhvNs46y2+DkycDU6fWemuSUSgAd90FPPkkcPzx1V8/Q9EDbrwR+NCHgKOOqvWWlEPHZn7ofZ9N3P/Up3yxb/Zs9/zQWVPNdnDOOcDSpb6IO3FiPusghJBGZcIE4Nlngdde48Mfkhsc6RFCzMyZU+stiKazE9i40X/dKEJTVxdwwgn2z6VDUHdsuk4OCwXg2GNTbZ6VRgpFtwmbaURe27Iapb3ZmDu31luQnvHjgde/vjbrZih6QGtr7c5DHNUsGjPacHVsFou1d4RXW+CWqTIIIYSEmTat/ooNkhEFQ9EJIY1Jo4Wiu5BFKHoe0LEZZqS0N5IMOjYbA4ai54ersFkPUOAmhBBCRg0UNgkhjYl0EY4UoSmL4kF50NISnhDWs7BpK2RSaY5NyUhpbyQZehvSncykPmAoen40krDJdkAIIYSMGihsEkIaEzo2q4s83kmFzWoWD2ppyc6p09JiFq9GSnsjyZCh6J2dtb8miRkKWvlBYZMQQgghdQiFTUJIYzISHZt6js3h4eDvWoso8njXc45N0/qA9BNa07JGSnsjyZBtqJ4FndFOa2t5H1Pr/nOkQGGTEEIIIXUIhU1CSGMy2hybtaosq6jEsVnNUHTT+ipZp2lZeQuzpD6RbchWDZrUB7qoRUErG1yrotcDFDYJIYSQUQOFTUJIYzISHZv1mmMTyNaxWW1hs1BILwzTsUkUdGw2DrrgRkErG2Tf19JS330hhU1CCCFk1EBhkxDSmIxEx2ZnZzDxquccm21tyX5b7VD0LHN6UtgkCtluKWzWN/r5qXX/OVKQfV+9XwOsik4IIYSMGihsEkIaE+kgHCmhwYVCIKSNpByb1SweBGTrEDVVRqewOTqhY7NxYCh6PjSSuN/cXP4Qju2AEEIIGZFQ2CSENCYj0bEJBEJaPTs2R5OwSccmUVDYbBwobOZDIzk2AbYDQgghZJRAYZMQ0piMxBybQCCkbd0KDA4G79e6eFAljs329vBvql0VncImyYJGcquNdhiKng8UNgkhhBBSh1DYJIQ0JiPVsamEtKEhYNu24P1aT8wrcWwCYYGQjk3SiNCx2ThQ0MoHCpuEEEIIqUMobBJCGpOR7tgEgI0bg9e1FjYrcWwC1RU2WTyI5IFsR6bCJKR+oGMzH2Tf1wjXAIVNQgghZFRAYZMQ0piMVMemFOXuuy94XeuJeaWOTblfjRSKzuJBRMFQ9MZBF90oaGUDHZuEEEIIqUMobBJCGpPR4Nj81a+C17UWNhvJsZl3KHrewiypTxiK3jhQ0MqHRhM2KXATQgghowIKm4SQxuTII4PXRxxRu+3ImmOPNb8/b151t0Nn/nz//+Zm4LDDkv9e7Vd3NzB1anbbZSJPYbO5ufaFnEhtOPzw4PXRR9dsM4gDDEXPh4MOCh5yHXVUbbfFBQrchBBCyKiAd3hCSGNy6KHA/fcDO3cCJ59c663JjvPPB/74R+DZZ4P3Dj8ceOMba7VFPuefD/zpT8D06cBeeyX//dVXA3Pm+AJpI4Wi68saSe5gkoy5c/30EL29wIkn1nprSBQUtPJh4kTg4YeB554Dzjqr1lsTD9sBIYQQMirgHZ4Q0rgsWFDrLcieYtGfMNbbpLFYBN785vS/b2/3xdFqkGXxIH1ZDEMf3Rx/fK23gLhAQSs/Zs/2/zUCdO4SQgghowLG0xFCCBlZ6GJkJZNZOjYJaTwoaBGAAjchhBAySqCwSQghZGTR3h4ucFTJZLa9HWhrC/6msElI/UNBiwBsB4QQQsgogcImIYSQkUeWVdjlsihsElL/sBo2AdgOCCGEkFEChU1CCCEjDwqbhIxeGIpOADo2CSGEkFEChU1CCCEjD5lns9LJrFwWhU1C6h8KWgRgOyCEEEJGCRQ2CSGEjDzo2CRk9EJBiwBsB4QQQsgogcImIYSQkQeFTUJGLwxFJwCFTUIIIWSUQGGTEELIyIPCJiGjl87O8N8UtEYnFDYJIYSQUQGFTUIIISMPCpuEjF6amsLiJgWt0YkubBY57SGEEEJGIrzDE0IIGXmweBAho5sxY4LXDEUfncg20NwMFAq12xZCCCGE5EZDC5vf/va3MXPmTLS3t+PYY4/FQw89FPn9X//61zjkkEPQ3t6OOXPmYNGiRaHPL7nkEhQKhdC/M844I89dIIQQkgd0bBIyupFuPTo2RydsA4QQQsiooGGFzV/+8pe48sorcc011+DRRx/FvHnzcPrpp2PdunXG799///1417vehfe973147LHHcO655+Lcc8/FU089FfreGWecgdWrV5f+3XTTTdXYHUIIIVmSl7DZ0lLZsggh1YGiFunoCFyabAOEEELIiKVhhc2vfe1ruOyyy3DppZdi9uzZ+O53v4vOzk7ceOONxu9/4xvfwBlnnIGrrroKr3vd63DttdfiyCOPxLe+9a3Q99ra2tDd3V36N3HixGrsDiGEkCyhY5OQ0Y0UNhmKPjopFoNwdAqbhBBCyIilIe/y/f39WLJkCa6++urSe8ViEQsXLsTixYuNv1m8eDGuvPLK0Hunn346br755tB7d999N6ZOnYqJEyfilFNOwRe+8AVMmjTJuMy+vj709fWV/t62bRsAYGBgAAMDA2l2re5Q+zFS9oc0Dmx7pBIKY8aUbnDDxSKGHNuRqd2FltXc7LwsQlxhf5c9TWPGlJ7eD3gewGNrZKS3veauLhR27IDX3IzBEbqPjchIb3ekPmG7I7WA7S49SY5ZQwqbGzZswNDQEKZNmxZ6f9q0aVi+fLnxN2vWrDF+f82aNaW/zzjjDJx33nnYb7/98MILL+DTn/40zjzzTCxevBhNhqf91113HT7/+c+XvX/bbbehU1bjHAHcfvvttd4EMkph2yNpaN26Fae1tKBpYADPDA7ieS2nchyy3YWWNTyceFmEuML+LjsOa2/H/gD6xo7Fnx94AB7TSEQyUtve8VOnYsqaNdg8aRL+xr677hip7Y7UN2x3pBaw3SVn586dzt9tSGEzL975zneWXs+ZMwdz587F/vvvj7vvvhunnnpq2fevvvrqkAt027Zt2HvvvXHaaadh3LhxVdnmvBkYGMDtt9+ON73pTWjhpIBUEbY9UinejBkYWrYMB118MQ6S1XEjsLW7NMsixBX2dzlw3HEY+slP0PT61+PM+fNrvTV1y4hve4ceiqHf/AZjzz0Xb541q9ZbQ3Yz4tsdqUvY7kgtYLtLj4qIdqEhhc3JkyejqakJa9euDb2/du1adHd3G3/T3d2d6PsAMGvWLEyePBnPP/+8Udhsa2tDW1tb2fstLS0jrtGOxH0ijQHbHknNwoXAwoVIk12vrN1VsCxCXGF/lyHTpgH/9E+13oqGYcS2vQMOAD71KfbddcqIbXekrmG7I7WA7S45SY5XQxYPam1txfz583HHHXeU3hseHsYdd9yBBQsWGH+zYMGC0PcB3w5s+z4ArFq1Chs3bsT06dOz2XBCCCGEEEIIIYQQQkgmNKSwCQBXXnkl/uu//gs/+tGP8Mwzz+DDH/4wenp6cOmllwIALrroolBxoY9+9KO49dZb8dWvfhXLly/H5z73OTzyyCO44oorAAA7duzAVVddhQceeAAvvfQS7rjjDpxzzjk44IADcPrpp9dkHwkhhBBCCCGEEEIIIWYaMhQdAC644AKsX78en/3sZ7FmzRocfvjhuPXWW0sFglauXIliMdBtjz/+ePz85z/Hv/7rv+LTn/40DjzwQNx888047LDDAABNTU144okn8KMf/QhbtmzBjBkzcNppp+Haa681hpsTQgghhBBCCCGEEEJqR8MKmwBwxRVXlByXOnfffXfZe29/+9vx9re/3fj9jo4O/PnPf85y8wghhBBCCCGEEEIIITnRsKHohBBCCCGEEEIIIYSQ0QuFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTUIIIYQQQgghhBBCSMNBYZMQQgghhBBCCCGEENJwNLSw+e1vfxszZ85Ee3s7jj32WDz00EOR3//1r3+NQw45BO3t7ZgzZw4WLVoU+tzzPHz2s5/F9OnT0dHRgYULF+K5557LcxcIIYQQQgghhBBCCCEpaFhh85e//CWuvPJKXHPNNXj00Ucxb948nH766Vi3bp3x+/fffz/e9a534X3vex8ee+wxnHvuuTj33HPx1FNPlb7z5S9/Gd/85jfx3e9+Fw8++CDGjBmD008/Hb29vdXaLUIIIYQQQgghhBBCiAMNK2x+7Wtfw2WXXYZLL70Us2fPxne/+110dnbixhtvNH7/G9/4Bs444wxcddVVeN3rXodrr70WRx55JL71rW8B8N2aX//61/Gv//qvOOecczB37lz8+Mc/xmuvvYabb765intGCCGEEEIIIYQQQgiJo7nWG5CG/v5+LFmyBFdffXXpvWKxiIULF2Lx4sXG3yxevBhXXnll6L3TTz+9JFquWLECa9aswcKFC0ufjx8/HsceeywWL16Md77znWXL7OvrQ19fX+nvrVu3AgA2bdqEgYGB1PtXTwwMDGDnzp3YuHEjWlpaar05ZBTBtkdqAdsdqQVsd6RWsO2RWsB2R2oB2x2pBWx36dm+fTsA34QYR0MKmxs2bMDQ0BCmTZsWen/atGlYvny58Tdr1qwxfn/NmjWlz9V7tu/oXHfddfj85z9f9v5+++3ntiOEEEIIIYQQQgghhJAytm/fjvHjx0d+pyGFzXrh6quvDrlAh4eHsWnTJkyaNAmFQqGGW5Yd27Ztw957741XXnkF48aNq/XmkFEE2x6pBWx3pBaw3ZFawbZHagHbHakFbHekFrDdpcfzPGzfvh0zZsyI/W5DCpuTJ09GU1MT1q5dG3p/7dq16O7uNv6mu7s78vvq/7Vr12L69Omh7xx++OHGZba1taGtrS303oQJE5LsSsMwbtw4XoikJrDtkVrAdkdqAdsdqRVse6QWsN2RWsB2R2oB21064pyaioYsHtTa2or58+fjjjvuKL03PDyMO+64AwsWLDD+ZsGCBaHvA8Dtt99e+v5+++2H7u7u0He2bduGBx980LpMQgghhBBCCCGEEEJIbWhIxyYAXHnllbj44otx1FFH4ZhjjsHXv/519PT04NJLLwUAXHTRRdhzzz1x3XXXAQA++tGP4qSTTsJXv/pVnHXWWfjFL36BRx55BN/73vcAAIVCAR/72MfwhS98AQceeCD2228/fOYzn8GMGTNw7rnn1mo3CSGEEEIIIYQQQgghBhpW2Lzggguwfv16fPazn8WaNWtw+OGH49Zbby0V/1m5ciWKxcCQevzxx+PnP/85/vVf/xWf/vSnceCBB+Lmm2/GYYcdVvrOJz/5SfT09OADH/gAtmzZgte//vW49dZb0d7eXvX9qxfa2tpwzTXXlIXcE5I3bHukFrDdkVrAdkdqBdseqQVsd6QWsN2RWsB2Vx0KnkvtdEIIIYQQQgghhBBCCKkjGjLHJiGEEEIIIYQQQgghZHRDYZMQQgghhBBCCCGEENJwUNgkhBBCCCGEEEIIIYQ0HBQ2CSGEEEIIIYQQQgghDQeFTRLJt7/9bcycORPt7e049thj8dBDD9V6k8gI4nOf+xwKhULo3yGHHFL6vLe3F5dffjkmTZqErq4uvO1tb8PatWtruMWkEfnrX/+Ks88+GzNmzEChUMDNN98c+tzzPHz2s5/F9OnT0dHRgYULF+K5554LfWfTpk248MILMW7cOEyYMAHve9/7sGPHjiruBWlE4treJZdcUtYHnnHGGaHvsO2RJFx33XU4+uijMXbsWEydOhXnnnsunn322dB3XO6tK1euxFlnnYXOzk5MnToVV111FQYHB6u5K6TBcGl7b3zjG8v6vA996EOh77DtkST8x3/8B+bOnYtx48Zh3LhxWLBgAW655ZbS5+zvSB7EtTv2ddWHwiax8stf/hJXXnklrrnmGjz66KOYN28eTj/9dKxbt67Wm0ZGEIceeihWr15d+nfvvfeWPvv4xz+OP/zhD/j1r3+Ne+65B6+99hrOO++8Gm4taUR6enowb948fPvb3zZ+/uUvfxnf/OY38d3vfhcPPvggxowZg9NPPx29vb2l71x44YVYtmwZbr/9dvzxj3/EX//6V3zgAx+o1i6QBiWu7QHAGWecEeoDb7rpptDnbHskCffccw8uv/xyPPDAA7j99tsxMDCA0047DT09PaXvxN1bh4aGcNZZZ6G/vx/3338/fvSjH+GHP/whPvvZz9Zil0iD4NL2AOCyyy4L9Xlf/vKXS5+x7ZGk7LXXXvjSl76EJUuW4JFHHsEpp5yCc845B8uWLQPA/o7kQ1y7A9jXVR2PEAvHHHOMd/nll5f+Hhoa8mbMmOFdd911NdwqMpK45pprvHnz5hk/27Jli9fS0uL9+te/Lr33zDPPeAC8xYsXV2kLyUgDgPe73/2u9Pfw8LDX3d3tXX/99aX3tmzZ4rW1tXk33XST53me9/TTT3sAvIcffrj0nVtuucUrFAreq6++WrVtJ42N3vY8z/Muvvhi75xzzrH+hm2PVMq6des8AN4999zjeZ7bvXXRokVesVj01qxZU/rOf/zHf3jjxo3z+vr6qrsDpGHR257ned5JJ53kffSjH7X+hm2PZMHEiRO973//++zvSFVR7c7z2NfVAjo2iZH+/n4sWbIECxcuLL1XLBaxcOFCLF68uIZbRkYazz33HGbMmIFZs2bhwgsvxMqVKwEAS5YswcDAQKgNHnLIIdhnn33YBklmrFixAmvWrAm1s/Hjx+PYY48ttbPFixdjwoQJOOqoo0rfWbhwIYrFIh588MGqbzMZWdx9992YOnUqDj74YHz4wx/Gxo0bS5+x7ZFK2bp1KwBgjz32AOB2b128eDHmzJmDadOmlb5z+umnY9u2bSE3CiFR6G1P8bOf/QyTJ0/GYYcdhquvvho7d+4sfca2RyphaGgIv/jFL9DT04MFCxawvyNVQW93CvZ11aW51htA6pMNGzZgaGgodLEBwLRp07B8+fIabRUZaRx77LH44Q9/iIMPPhirV6/G5z//eZx44ol46qmnsGbNGrS2tmLChAmh30ybNg1r1qypzQaTEYdqS6a+Tn22Zs0aTJ06NfR5c3Mz9thjD7ZFUhFnnHEGzjvvPOy333544YUX8OlPfxpnnnkmFi9ejKamJrY9UhHDw8P42Mc+hhNOOAGHHXYYADjdW9esWWPsE9VnhMRhansA8O53vxv77rsvZsyYgSeeeAKf+tSn8Oyzz+K3v/0tALY9ko4nn3wSCxYsQG9vL7q6uvC73/0Os2fPxtKlS9nfkdywtTuAfV0toLBJCKkZZ555Zun13Llzceyxx2LffffFr371K3R0dNRwywghJH/e+c53ll7PmTMHc+fOxf7774+7774bp556ag23jIwELr/8cjz11FOh3NWEVANb25P5gefMmYPp06fj1FNPxQsvvID999+/2ptJRggHH3wwli5diq1bt+J//ud/cPHFF+Oee+6p9WaREY6t3c2ePZt9XQ1gKDoxMnnyZDQ1NZVVjVu7di26u7trtFVkpDNhwgQcdNBBeP7559Hd3Y3+/n5s2bIl9B22QZIlqi1F9XXd3d1lRdMGBwexadMmtkWSKbNmzcLkyZPx/PPPA2DbI+m54oor8Mc//hF33XUX9tprr9L7LvfW7u5uY5+oPiMkClvbM3HssccCQKjPY9sjSWltbcUBBxyA+fPn47rrrsO8efPwjW98g/0dyRVbuzPBvi5/KGwSI62trZg/fz7uuOOO0nvDw8O44447QrkjCMmSHTt24IUXXsD06dMxf/58tLS0hNrgs88+i5UrV7INkszYb7/90N3dHWpn27Ztw4MPPlhqZwsWLMCWLVuwZMmS0nfuvPNODA8PlwYqhGTBqlWrsHHjRkyfPh0A2x5Jjud5uOKKK/C73/0Od955J/bbb7/Q5y731gULFuDJJ58Mieq33347xo0bVwqzI0Qnru2ZWLp0KQCE+jy2PVIpw8PD6OvrY39HqopqdybY11WBWlcvIvXLL37xC6+trc374Q9/6D399NPeBz7wAW/ChAmh6l2EVMInPvEJ7+677/ZWrFjh3Xfffd7ChQu9yZMne+vWrfM8z/M+9KEPefvss4935513eo888oi3YMECb8GCBTXeatJobN++3Xvssce8xx57zAPgfe1rX/Mee+wx7+WXX/Y8z/O+9KUveRMmTPB+//vfe0888YR3zjnnePvtt5+3a9eu0jLOOOMM74gjjvAefPBB79577/UOPPBA713veletdok0CFFtb/v27d4//dM/eYsXL/ZWrFjh/eUvf/GOPPJI78ADD/R6e3tLy2DbI0n48Ic/7I0fP967++67vdWrV5f+7dy5s/SduHvr4OCgd9hhh3mnnXaat3TpUu/WW2/1pkyZ4l199dW12CXSIMS1veeff977t3/7N++RRx7xVqxY4f3+97/3Zs2a5b3hDW8oLYNtjyTln//5n7177rnHW7FihffEE094//zP/+wVCgXvtttu8zyP/R3Jh6h2x76uNlDYJJHccMMN3j777OO1trZ6xxxzjPfAAw/UepPICOKCCy7wpk+f7rW2tnp77rmnd8EFF3jPP/986fNdu3Z5/+f//B9v4sSJXmdnp/fWt77VW716dQ23mDQid911lweg7N/FF1/seZ7nDQ8Pe5/5zGe8adOmeW1tbd6pp57qPfvss6FlbNy40XvXu97ldXV1eePGjfMuvfRSb/v27TXYG9JIRLW9nTt3eqeddpo3ZcoUr6Wlxdt33329yy67rOzhIdseSYKpvQHw/vu//7v0HZd760svveSdeeaZXkdHhzd58mTvE5/4hDcwMFDlvSGNRFzbW7lypfeGN7zB22OPPby2tjbvgAMO8K666ipv69atoeWw7ZEk/OM//qO37777eq2trd6UKVO8U089tSRqeh77O5IPUe2OfV1tKHie51XPH0oIIYQQQgghhBBCCCGVwxybhBBCCCGEEEIIIYSQhoPCJiGEEEIIIYQQQgghpOGgsEkIIYQQQgghhBBCCGk4KGwSQgghhBBCCCGEEEIaDgqbhBBCCCGEEEIIIYSQhoPCJiGEEEIIIYQQQgghpOGgsEkIIYQQQgghhBBCCGk4KGwSQgghhBBCCCGEEEIaDgqbhBBCCCGEjFBmzpyJQqGASy65pNabQgghhBCSORQ2CSGEEEJy4IMf/CAKhQIKhQLuvPPORL+97bbbSr/96Ec/mtMWEkIIIYQQ0thQ2CSEEEIIyYGLLrqo9PqnP/1pot/+5Cc/MS6nVtx9990lofXuu++u9eYQQgghhBACgMImIYQQQkgunHDCCdh///0BAL/5zW+wa9cup9/19PTgd7/7HQDg0EMPxfz583PbRkIIIYQQQhoZCpuEEEIIITnx3ve+FwCwbds2/P73v3f6zW9/+1v09PSEfk8IIYQQQggph8ImIYQQQkhOvPe970WhUADgHo6uwtCLxSLe85735LZthBBCCCGENDoUNgkhhBBCcmLWrFk44YQTAAB//vOfsW7dusjvv/baa7jjjjsAAKeccgr23HPPsu/cfPPNePvb34599tkH7e3tmDBhAo466ih8/vOfx+bNm522a9GiRXjPe96DWbNmYcyYMWhvb8d+++2Ht73tbfjhD3+InTt3AgBeeuklFAoFnHzyyaXfnnzyyaV8m+rfD3/4w7J19Pf34zvf+Q5OPvlkTJkyBa2treju7sab3/xm/PSnP8Xw8LB1+y655BIUCgXMnDkTALB69Wp86lOfwqGHHoqxY8cmzvVpyhH6q1/9CqeeeiqmTJmCjo4OHHzwwfjkJz+JTZs2WZfzxje+EYVCAW984xsj1/e5z32utD4T6rPPfe5zAIC77roL5557LmbMmIGOjg687nWvw7XXXlty7ioWLVqEN7/5zaXvzZ49G9dddx36+/udj8XDDz+Md73rXdh7773R3t6OvffeG5deeimWL1/u9Pvnn38eH//4xzFnzhyMHz8eHR0dmDVrFi655BI88sgj1t/p52B4eBg33ngjTj75ZEybNg3FYpGV2wkhhBCSHI8QQgghhOTG9773PQ+AB8D7xje+Efnd66+/vvTdH//4x6HPNm3a5J1yyimlz03/pk6d6i1evNi6/A0bNninnnpq5DIAeP/93//teZ7nrVixIva78vuKFStWeIccckjkb17/+td7GzduNG7nxRdf7AHw9t13X2/x4sXe5MmTy35/1113xR57xV133VX63R133OG95z3vsW7XAQcc4K1evdq4nJNOOskD4J100kmR67vmmmtKyzOhPrvmmmu86667zisUCsZtOf74470dO3Z4w8PD3kc+8hHrNp9xxhne4OCgcV377ruvB8C7+OKLvR/84Adec3OzcRltbW3er371q8j9uv76672WlhbrdhQKBe8zn/mM8bfyHNxyyy3ewoULy35/8cUXR66fEEIIIUSHjk1CCCGEkBx5xzvegfb2dgDhaucm1OddXV0477zzSu/39fVh4cKFuPPOO9HU1IT3vve9uOmmm/DAAw/gb3/7G774xS9i0qRJWLduHd785jfj5ZdfLlv2zp07cfLJJ5ccofPnz8d//ud/4r777sMjjzyC3/3ud/j4xz+OGTNmlH6z55574sknn8SNN95Yeu/GG2/Ek08+Gfp37rnnlj7fsWMHTj311JID8Nxzz8X//u//4pFHHsGvf/1rnHTSSQCAe++9F2effTaGhoasx2PHjh1429veht7eXvzLv/wL7r77bjz00EP4wQ9+gOnTp0ceSxuf+cxn8NOf/hTnnnsufvvb32LJkiVYtGgRzjrrLACBI7Ea3HLLLbj66qtx3HHH4ec//zkeeeQR3HrrrTjzzDMBAPfffz+uu+46/Pu//zu++c1v4swzz8RvfvMbLFmyBL///e9x3HHHAQBuvfVW/Nd//VfkupYuXYoPfehDmDp1Km644QY8+OCDuOeee/CpT30KbW1t6Ovrw4UXXmh1XV5//fW46qqrMDAwgLlz5+I//uM/8Je//AWPPPIIfvazn2HBggXwPA/XXnstvvnNb0Zuy6c+9Sn85S9/wVve8pbQOVD7TQghhBDiTK2VVUIIIYSQkc473vGOkitt+fLlxu88/vjjpe9cdNFFoc8+/elPewC8CRMmeI888ojx9y+99JI3ffp0D4D37ne/u+zzj3/846XlX3755d7w8LBxOX19fd6aNWtC70m3XZxT8p/+6Z9K3/3Xf/3Xss+Hh4e9Cy+8sPSd73znO2XfUY5NAF5XV5e3dOnSyHXGIbcfgPeFL3zBuF2nnXaaB8Brbm721q1bV/adrB2bALy3ve1tZW7LwcFB77jjjvMAeGPHjvXa29u9j33sY2XL6enpKTky586da1yX+hy7HbAmN+qdd95ZcnIeffTRZZ8vW7as5NS85pprjG1naGio5ITt6uryNm3aFPpcPwemtkEIIYQQkhQ6NgkhhBBCcuaiiy4qvba5NuX78vs7duzAt7/9bQDAtddei/nz5xt/v+++++Izn/kMAODXv/51KD/jli1b8J//+Z8AfKfmN77xDWv+x9bWVkybNs1lt8ro6+vD97//fQDAoYceWsohKSkUCvjOd76DSZMmAQC+9a1vRS7zk5/8JObNm5dqe0zMnz8fn/70p43bdeWVVwIABgcHsXjx4szWaaOzsxPf+9730NTUFHq/qakJH/jABwAA27dvx5QpU/DlL3/Z+PuLL74YAPDEE09g69atkev76le/iu7u7rL3Tz75ZFx22WUA/Bycumvzq1/9KgYGBnDUUUfhmmuuMbadYrGIG264AW1tbdixYwf+53/+x7odBx10kLFtEEIIIYQkhcImIYQQQkjOnH766SWx8Gc/+xk8zwt9Pjw8jJ///OcAgL322itUrOeee+4pCVbnn39+5Hre8IY3AAAGBgawZMmS0vt33nlnqSDQRz7ykTIhLSuWLFmCLVu2APALANnWM27cOLzjHe8AADz99NNYvXq1dZkXXnhhptv47ne/2yrqStH4xRdfzHS9Jt70pjdhjz32MH4mxdzzzjsPLS0tsd9bsWKFdV0TJ07EOeecY/38H//xH0uv//KXv4Q++8Mf/gAAeNvb3mY9dgAwYcIEzJkzBwAiheELLrggtzZICCGEkNEFhU1CCCGEkJxpbm7Gu9/9bgB+pfF777039Pkdd9yB1157DYAv5BWLwRBNuuemT59eVpFc/jvssMNK312zZk3p9WOPPVZ6feKJJ2a7c4Knnnqq9PrYY4+N/K78XP5O0tXVhVmzZmWzcbs55JBDrJ9JkXH79u2ZrtfEQQcdZP1swoQJib8Xtc1HHHEEmpubrZ8ffvjhaG1tBQA8+eSTpfdffvllrF+/HgBw9dVXR7a/QqFQaq+y/enMnTvX+hkhhBBCSBIobBJCCCGEVIGocHRbGDoArFu3LtX6lEMTADZs2FB6nbbojgubNm0qvZ46dWrkd2VItPydRIp2WdHZ2Wn9TArKUUWNqr0tWWxz3Plobm4uCbvyfGTR/nQmTpyYapmEEEIIITr2x7aEEEIIISQzDj/8cMyZMwdPPvkkfv3rX5fyEfb09OC3v/0tAD8Uevbs2aHfSbHq0UcftYYk6+y1117ZbXwKokKWXWG4cnakPR+y/X32s5/F29/+dqffjRkzxvoZzyshhBBCsoLCJiGEEEJIlbjoootw1VVXYcuWLfjDH/6A888/H7/73e9KhX50tyaAUpEdAJgyZUoqwXLy5Mml16tXr8Z+++2XYuvjkaHca9eujQyhlqHKtjyT9YZyRw4PD0d+TxZuqhfWrl0b+fng4GDJqSnPh2x/LS0toXQHhBBCCCG1hqHohBBCCCFV4sILLyy51X76058CCMLQW1pa8K53vavsN0cccUTp9X333ZdqvUceeWTp9V//+tfEv3d1+0nR68EHH4z87kMPPWT8XT0zduxYAMDmzZsjv/f3v/+9GpuTiKVLl2JwcND6+eOPP47+/n4A4fMxa9YsjB8/HkD69kcIIYQQkhcUNgkhhBBCqsT06dOxcOFCAMCiRYvw1FNP4Y477gAAnHHGGZgyZUrZbxYuXFjKsfjNb36zrKK6CyeffHIpNPiGG25InD+yvb299Lqvr8/6vfnz55fyYv7oRz+yOhu3b9+OX/3qVwCA2bNn55r3M0uU0/Xvf/+7tVDPhg0bcPvtt1dzs5zYtGlTqbq5iRtvvLH0WrVRwA8bf/Ob3wwAuO222/DMM8/kt5GEEEIIIQmhsEkIIYQQUkVUuPnAwADe+c53lkRGUxg64BfQueKKKwAA999/Pz7+8Y9HhkKvXbsW3//+98uW8cEPfhAAsGTJEnzsYx+zCqQDAwNlBWOk8PjCCy9Y193W1ob3v//9APxK59dee23ZdzzPwxVXXFEqaKT2rRE46aSTAAD9/f244YYbyj4fGBjA+9//fuzatavam+bElVdeaQxJv+eee/C9730PgC9OH3300aHPr776ajQ1NWF4eBjnn38+Vq1aZV3H0NAQfvazn0V+hxBCCCEkK5hjkxBCCCGkirz1rW/F2LFjsX37dixbtgyAXyX67LPPtv7m3/7t33DPPffgwQcfxDe+8Q3cfffduOyyy3D44YdjzJgx2Lx5M5YtW4a//OUvuOWWWzBnzpySwKi49tprcfvtt+PJJ5/Et771LSxevBgf/OAHMWfOHLS2tmLVqlX429/+hptuuglf+MIXcMkll5R+u88++2CvvfbCqlWr8JX/v727CYVuD+A4/ruZOeOlsUAmY4okNkTJW5Sy0MhCmSEbb4XyklhSxHrUSKPsJOycWVjMRsRYsJkmiaxmWMhGykJR6t6dHuGp53Yf7rn3+9nNOfOfzplm9Z3z//8XF+XxeFRaWvo6rd7lcr1O056bm1M4HFYikdD8/LzOzs40MDCgvLw8JZNJhUIhHRwcSJLq6+s1PDz8D367v1dbW5sKCgp0fX2t2dlZ3d3dqaOjQ6mpqTo/P9fy8rLi8bjq6up0cnLy3Zf7RkVFhS4uLlRVVaXp6WnV1NTo+flZkUhEwWBQLy8vstlsWllZeTe2vLxci4uLmpqa0sXFhcrKyjQ8PKzm5ma5XC49PT3p6upKx8fH2t7e1u3trc7Ozr59AysAAPDfR9gEAAD4QmlpafL7/VpbW3s91tXVJYfD8ekYh8Oh3d1d9ff3KxwO6/T09KdPOmZmZr47lp6erv39ffl8PkWjUcVisV+KijMzMxodHVUymVR7e/ubc2tra68h1Ol0am9vT62trbq8vJRpmjJN893nNTQ0aGdnx1I7ZBuGoc3NTXm9Xj0+PioYDCoYDL6eT0lJ0dLSku7v7/91YbOyslLj4+MaGRn58LdjGIbW19dVW1v74fjJyUllZGRocnJSDw8PCgQCCgQCH77XMIw3yxcAAAD8LkxFBwAA+GJ9fX1vXn82Df1HTqdTpmnq6OhIg4ODKi0tldPplM1mU1ZWlqqrqzU2NqZIJPLpGo85OTk6PDxUOByW3++Xx+ORw+FQamqqioqK1NnZqa2trQ83MRoZGZFpmmppaVFubq5sts//Hy8sLNTp6alCoZCampqUnZ0tu90ul8slr9erjY0NRaNRy+yG/qPGxkbFYjH19PTI7XbLbrcrLy/vNRhPTEx89yV+anBwUEdHR+rq6pLb7ZZhGMrPz1dvb6/i8bi6u7t/On5oaEiJREILCwtqaGhQTk6ObDabMjIyVFJSIp/Pp9XVVd3c3Ki4uPiL7goAAPyf/fHn31mBHgAAAAAAAAC+EU9sAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAyyFsAgAAAAAAALAcwiYAAAAAAAAAy/kLzRh6VldIxQgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# загрузка тестовой выборки\n", + "test = np.loadtxt('WBC_test.txt', dtype=float)" + ], + "metadata": { + "id": "7i19AqpiR_c2" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# тестирование АE3\n", + "\n", + "predicted_labels3, ire3 = lib.predict_ae(ae3_trained, test, IREth3)\n", + "lib.anomaly_detection_ae(predicted_labels3, ire3, IREth3)\n", + "lib.ire_plot('test', ire3, IREth3, 'AE3')\n", + "\n", + "print(f\"Исходный порог IREth4: {IREth3}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "cx-m58ZkSe-t", + "outputId": "fe23e45f-f4cd-44c3-f870-ea30398c115a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n", + "\n", + "i Labels IRE IREth \n", + "0 [0.] [0.21] 0.24 \n", + "1 [1.] [0.94] 0.24 \n", + "2 [1.] [0.28] 0.24 \n", + "3 [1.] [0.64] 0.24 \n", + "4 [1.] [0.5] 0.24 \n", + "5 [1.] [0.92] 0.24 \n", + "6 [1.] [0.43] 0.24 \n", + "7 [1.] [1.1] 0.24 \n", + "8 [1.] [0.31] 0.24 \n", + "9 [1.] [0.46] 0.24 \n", + "10 [1.] [0.42] 0.24 \n", + "11 [1.] [0.81] 0.24 \n", + "12 [0.] [0.21] 0.24 \n", + "13 [1.] [0.47] 0.24 \n", + "14 [0.] [0.23] 0.24 \n", + "15 [1.] [0.77] 0.24 \n", + "16 [1.] [0.39] 0.24 \n", + "17 [0.] [0.21] 0.24 \n", + "18 [1.] [1.4] 0.24 \n", + "19 [1.] [1.05] 0.24 \n", + "20 [1.] [0.3] 0.24 \n", + "Обнаружено 17.0 аномалий\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTYAAALXCAYAAAC3lR+RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8Y1JREFUeJzs3Xd8U/X+x/F3WkqhUMqmIPOKbAQFGYIMZbouKg5cgON6Va6DKyr+FEFRVAT31esE9eIWHAxBZSpDlCEqe49WdimjM78/viYnpYOmTXJyktfz8eiDz0lOzvmkPQ3pJ9/v9+Nyu91uAQAAAAAAAICDxNidAAAAAAAAAAD4i8ImAAAAAAAAAMehsAkAAAAAAADAcShsAgAAAAAAAHAcCpsAAAAAAAAAHIfCJgAAAAAAAADHobAJAAAAAAAAwHEobAIAAAAAAABwHAqbAAAAAAAAAByHwiYAAEAI/fHHH7rjjjvUokULJSYmyuVyeb+2bt1qd3oAAACAY1DYBAAAQdejRw9v8W706NGF7udb5Dv5KzY2VpUrV9YZZ5yhK6+8Um+++abS09NLlIO/X0OGDCn9N0HSl19+qbPOOkuvvvqq/vjjD7/yB6Ldww8/nOf38vbbb/f7GMF4HUhLS9OsWbM0ZswYDRw4UG3atFG1atVUtmxZlStXTsnJyerRo4cefvhhbdiwoZTfBQAA4IvCJgAAcITc3FwdPnxYGzdu1Keffqpbb71VjRo10tSpU+1OrVjS09M1ZMgQZWRkSJJq166tK6+8UnfccYfuvPNO3XnnnapUqZLNWZbc6NGji1W8doIhQ4Z4n8ukSZPsTicktm7d6n3ODRs2tDudfNxut9577708t3300Ufe3yc7PfTQQ+rfv79Gjx6tzz77TKtXr9aBAweUlZWljIwMpaamav78+XriiSfUrFkzDRs2TCdOnLA7bQAAIkIZuxMAAAAoyIABA3Taaad5t3Nzc7Vv3z4tXrxYO3fulCTt27dPAwcO1KeffqrLLrus2Mc+55xz1KFDh2Lv36lTp+InXoivv/5aBw8elCS1bNlSP/30k8qXL1/q4wLRYO7cudq+fXue2w4ePKgvv/xSV155ZYmOGYzXgaSkJDVv3lyNGjVSpUqVlJmZqS1btmjJkiU6ceKEcnNz9corr2jt2rWaNWuWypThzzEAAEqD/0kBAEBYuvvuu9WjR498t+fm5mry5Mm6/fbblZGRodzcXN1+++3q27evEhISinXsCy+8MOSjCn/55RdvPGjQIIqagB8mT57sjcuXL6/jx497by9pYTNQrwNnn322Jk6cqD59+qhFixZyuVz59klLS9Po0aP13HPPSZK+++47Pf/887rvvvtKfX4AAKIZU9EBAICjxMTEaOjQoXrmmWe8t6WmpmratGn2JVUMntGakpmGDqB40tPT9dlnn3m3J06c6I2/+eYbpaam2pGW10033aR7771XLVu2LLCoKUmVKlXSxIkTNXToUO9t//3vf0OVIgAAEYvCJgAAcKTbbrtN5cqV824vWLDAxmxOLSsryxvHxPAWDCiuzz77TEePHpUkNWrUSLfddpvatm0rScrOztb//vc/G7Pzz0033eSNN27cSAMxAABKiXfVAADAkeLj49W8eXPv9u7du23MpmC+DXV8p9IOHTo0X8flwprUpKen68UXX1Tfvn1Vt25dlStXTlWqVFGrVq00bNgwLV26tFi5+J7LY9WqVbr77rvVqlUrVa1aVS6XSwMGDPDrOXq6TI8ZM8Z725gxY/zuLu92uzV16lQNHjxYTZo0UVJSksqVK6d69eppwIABmjx5srKzs4uV09q1a3X//ferU6dOql69urc7dc2aNdWuXTsNHTpUkydPzjOKVpIaNmxYrJ9VIBoklTTHgmRlZem9997TVVddpb/97W9KTExUhQoV1KhRIw0aNEhTp06V2+0u8LGTJk2Sy+VSo0aNvLdt27at0M7gdvD9eVx//fVyuVy64YYbCrw/3NWoUSPP9pEjR2zKBACAyMAamwAAwLF816mMxC7DX3/9tW699ValpKTkuT0jI0OHDh3Sb7/9pldeeUXXXnut3njjjWKvMSqZouvYsWOVk5MT6LT9tnr1ag0ePFgrV67Md9/OnTu1c+dOffHFFxo3bpw+//xztWjRotBjFfW89u7dq7179+qXX37RpEmTdN111+n9998P5FMplkDmOG/ePN1yyy3atGlTvvu2bt2qrVu36sMPP1SnTp306aef5mnI5QTbtm3TvHnzvNvXX3+9JOnaa6/V/fffr5ycHK1evVorV670juIMZ7///rs3TkhIyFfoBAAA/qGwCQAAHMt3lGatWrVszKRgHTp00J133inJNAtZu3atJOmCCy5Qs2bN8uzrO/pUkj766CNdd9113uJXbGysunbtqsaNGys9PV0LFy70Pv8pU6Zoy5Yt+v777/NMzy/M+PHjvSMsTz/9dHXo0EEJCQnaunWr4uLi/HqOl112mVq1aqVly5bpp59+klR4t+mCukovWLBAl1xyidLS0iRJcXFxOuecc3TGGWcoLi5OW7du1aJFi3TixAmtW7dO5557rhYvXpzv+yVJL7zwQp6Ro9WrV1enTp1Uu3ZtuVwuHThwQGvXrtUff/xRYFFx8ODB2r9//yl/VpL86qYdyBx9ffLJJ7ruuuu8yxyUL19enTp1UsOGDRUTE6P169dr8eLFys7O1pIlS9S5c2f99NNPeX5XmjdvrjvvvFNHjhzRu+++K0lKTEzUjTfeWKLnF2jvvfeed7Rpx44d1aRJE0lScnKyevfurVmzZkkyozbDvbDpaSDkMWDAALqiAwBQWm4AAIAg6969u1uSW5L70UcfLXQ/zz6S3HPnzi3ymOvWrcuz/8svvxyQHIJl8ODB3vO/8847Re67ceNGd8WKFb37d+jQwb1hw4Y8++Tk5LgnTJjgjomJ8e73r3/9q9Bj+n6vypQp405KSnJPnTo1334nTpwoydNzP/roo35/f/fs2eOuWbOm93E33nije/fu3fn2S0lJcV922WXe/Vq3bu3Ozs7Os09WVpa7evXq3n3GjRvnzszMLPC8+/fvd7/99tvup59+usD7/flZ+SOQOa5Zs8Zdvnx5tyS3y+Vy33fffe6DBw/m22/Tpk3url27es/Zv3//Ao+3ZcsW7z4NGjQo6VMMuDPOOKPQ3/H//e9/3vtq1qzpzsrKOuXxQv06cOLECfeGDRvcr732mvtvf/ub99zJycnu7du3B/38AABEOj4iBAAAjpOdna27777bu12pUiVdc801xX78jBkztG/fvmLv/9hjj6lq1ap+5Vgajz32mLepSOPGjTV79mwlJSXl2ScmJkbDhw+Xy+XS8OHDJUmvvPKK7r333jzrJRYkNzdXX375pbp165bvvvj4+AA9i1P7v//7P/3555+SpLvuuksvvPBCgfvVqlVLn3zyifr06aPvv/9ev/76qz799FNdffXV3n3Wrl3r/Zl26dJFDz74YKHnrVq1ap7u1KESyBzvuusuHT9+XJI0YcIE3XvvvQXu97e//U2zZs1Shw4d9Pvvv2vmzJlaunSpOnbsWIpnEho//vijNmzYIMmM5PX9eUtmxGPFihWVnp6uP//8UzNnztQll1xS7OMH43Vg586dqlevXpH7dOzYUZ988skp9wMAAKdGYRMAADhCbm6u9u3bpx9++EFPPfWUli1bJkkqU6aM3n77bVWrVq3Yx/rpp5+806aL47777gtZYfPQoUP66KOPvNvPPPNMvqKmr7vvvltvvfWWfvvtN+Xm5ur111/XuHHjijzHwIEDCyxqhtLevXu9a0cmJyfr6aefLnL/2NhYPfHEE+rcubMk6X//+1+eQpdnKruUv0FLuAhUjqtWrdL3338vSTrrrLN0zz33FLl/hQoV9Mgjj2jQoEGSzPfOCYVN36ZA/fv3V/Xq1fPcn5CQoCuuuMK73+TJk/0qbIb6daB8+fJ66qmndNddd5X4GAAAIC+6ogMAgLDUs2fPPN2YY2NjVatWLV1++eXeombTpk01bdo0XXHFFTZnGzg//vijMjIyJJn1F09VqImJidFNN93k3Z47d+4pz+HP6NZg+fbbb5WZmSlJuvzyy4u1NmjHjh1VoUIFSdKiRYvy3Oc7+m3u3Llav359ALMNjEDlOGPGDG88aNCgYnUrP//8873xyd+7cHTixAl9/PHH3m3fLui+fNcC/eqrr3TgwIGg51aUihUr6s477/R+3XjjjTrvvPNUrlw5HT9+XHfffbfOPvtsvwqqAACgcIzYBAAAjlSrVi29++67JWri8uijj+Zp4hFOVqxY4Y07dOhQrOYiXbp0yfN4t9tdZLGrXbt2pUsyABYvXuyNV69erWHDhvn1+IMHD+ro0aPeQme9evXUqVMnLVmyRIcPH1a7du10ww036LLLLlOXLl386hgfLIHK0fd7N3fuXG3btu2Uj3H/1YBHknbs2OF/8iH2xRdf6NChQ5KkypUrF1rg79Gjh+rWraudO3cqMzNTH374oe64445inSMYrwOVK1fWyy+/nO/2AwcO6Omnn9b48eO1YsUKdevWTV9++aV69+4d0PMDABBtKGwCAICwNGDAAJ122mne7f3792vTpk3ekU6pqak677zz9Nlnn+niiy+2K82A27t3rzdu0KBBsR7TsGFDb5yZmakjR46oUqVKhe4fDlO1fTvaL1q0qESjCA8ePOgtbErSW2+9pfPPP1+pqalKT0/Xq6++qldffVVlypRR27Zt1a1bN/Xt21cXXHCBYmNjA/I8/BWIHH2/dzNnzvQ7h4MHD5Y4/1DxnYZ+5ZVXFrr2a0xMjK677jrvUgaTJ08udmEzlKpWraqnn35aycnJGj58uE6cOKHrrrtOGzduLPJ3FQAAFI2p6AAAICzdfffdevnll71fH3zwgZYtW6ZVq1apTZs2kkwRb9CgQdq0aZPN2QaOp2mQpDxFu6KcvN+RI0eK3L98+fL+JxZghw8fLvUxsrOz82y3aNFCq1at0r/+9a8865JmZ2dr+fLlmjhxovr27asGDRrozTffLPX5SyIQOZb2e5eTk1OqxwdbSkqKZs+e7d2+/vrri9zfd5r6smXLtHbt2qDlVlp33323zjjjDEnmQ4x3333X5owAAHA2CpsAAMBRzjzzTM2ePds7mjM9PV233HKLzVkFTsWKFb3x0aNHi/WYk/dLTEwMaE7B4FuMnThxotxut99fviNVPWrVqqUXX3xRqampmjdvnh5//HH1798/z6i4Xbt26dZbb7WtiUtpc/T93n3++ecl+t6Fs/fffz9P8bV79+551ts9+atVq1Z5Hu872jPcxMTE6IILLvBu//DDDzZmAwCA81HYBAAAjlOzZk299NJL3u158+Zp+vTpNmYUOL7TxLdv316sx2zdutUbly1b1hGFzVq1annjlJSUgB8/Pj5e3bt318MPP6wZM2Zo3759mjlzprp27erd56WXXrK1iUtJcwz2985upS1Mvv/++8rNzQ1QNoFXpUoVb7x//34bMwEAwPkobAIAAEfyNFzxePjhh23MJnDOOussb7xs2bJiTRv+8ccf8zy+OF2yA83fc3bs2NEbh2LUWlxcnPr166dvv/02zwi/r776Kt++dnz/pOLnGIzvnV3P+WS//PKL1qxZ490+55xz1LFjx2J9eRpt7dy5U999951dT+GU9uzZ442rVq1qYyYAADgfhU0AAOBYvh2NV65cqS+//NK+ZALk3HPP9TZK2bt37ylHoubm5uqdd97xbp9//vlBza8w5cqV88ZZWVmn3L9v377eQtSPP/6oVatWBS03X/Hx8erTp493OzU1Nd8+/j6XQDtVjr7Nsj7//PMCn4O/7H7OHr6jNVu3bq1ly5ZpyZIlxfrq169fgccJJ5mZmXnWD23evLmN2QAA4HwUNgEAgGP16tVL5557rnd77NixNmYTGJUrV9bVV1/t3R4xYkSRzYBefvll/frrr5LM+n3/+Mc/gp5jQapVq+aNd+3adcr9TzvtNG9TGLfbrRtvvFFpaWnFOldubm6e7vGS6fRd3OnHO3bs8MY1a9bMd7+/z6W4ApVjhw4d1KNHD0nS8ePHdcMNNygzM7NYx83MzCywK3rlypUVE2P+NNi7d68txc2srCxNmTLFu32qpkEn891/6tSpp2yiFQiHDx/2qxnTI488kqer/eWXXx6MtAAAiBoUNgEAgKONGjXKG//000+aNWuWjdkExqhRo7xNhNavX6++fftq8+bNefbJzc3VCy+8oOHDh3tvu/POOwtsqBMKvlOnZ8+eXazO3U888YRq164tSVq9erU6dOiQZzTbyXbu3KnnnntOTZs21UcffZTnvi+++EJNmjTRs88+m2fNUV8ZGRl6+eWX9emnn3pv69+/f5HP5Ysvvih20fBUApnjSy+95L1G5syZo27dumnp0qWFnnv9+vV6/PHH1bBhwwKnr8fHx3u7dWdlZWnatGnFek5DhgzxNvEp7bXnWWdUMlPjBw0a5NfjL730Uu/6sseOHdMnn3xSqnyKY+7cuWrZsqVeffXVfMV2X5s3b9YNN9ygZ555xnvb9ddfr9atWwc9RwAAIlkZuxMAAAAojb59+6pjx47eos7jjz+eZ0pqQXwLKMWRkJCQpyARbKeffrrefPNNXXfddcrJydHixYvVtGlTnXfeeTr99NOVnp6uhQsX5hlN2KlTp5DmeLIOHTqoXr162rFjh/bs2aNmzZqpT58+ql69unf9xnPOOSfPaNQ6deroiy++0IUXXqh9+/Zp3bp16tu3r0477TR16NBBNWrUUFZWlvbt26c1a9Zoy5YtReawadMmjRgxQiNGjFD9+vV15plnekc7pqSkaMmSJTpw4IB3/+uuuy7PiF+P/v37q3z58jp+/LhWrlyp5s2bq0ePHqpcubL3ufTp0yfPdPHiClSOrVq10gcffKCrr75ax44d09KlS9WpUyedfvrpOvvss1W1alWdOHFCf/75p1avXl2skadXXHGFnnzySe95J02apMaNGysuLs67z7PPPuv3cy4u3+nj3bp1U7169fx6fPny5XXZZZfp3Xff9R7vpptuKnT/QL0OrFu3TnfccYeGDRumxo0bq0WLFqpatari4uJ08OBB/fbbb/rtt9/yPKZLly76z3/+U+xzAwCAQrgBAACCrHv37m5JbknuRx99tND9PPtIcs+dO7fYx58+fXqex3777bdF5uDvV1JSkv9P+iSDBw/2Hu+dd94p1mO++uord61atU6Z36BBg9xHjx4t8li++wfLV1995S5btmyheQ4ePLjAx23dutV9wQUXFPvnUatWLfesWbPyHOOTTz5xu1yuYj0+JibGfccdd7gzMzMLfS6vvvpqkccr6jouTKBzdLvd7pUrV7rbtWtX7O9dw4YN3StWrCjwWIcOHXI3a9asyMefzPe6btCggd/fE499+/bluXbeeOONEh1n9uzZ3mO4XC735s2b89wf6NeBGTNm+HWMsmXLukeOHOk+duxYiZ4fAADIixGbAADA8S688EK1b99ey5cvlyQ99thjuuCCC2zOqvQuvvhibdy4UW+//ba+/vpr/fbbb9q3b5/Kly+vOnXqqGfPnrrxxhvzdMm208UXX6zly5frlVde0aJFi7R9+3alp6fL7XYX+bgGDRro22+/1eLFi/XJJ59owYIF2rFjhw4ePKgyZcqoWrVqOuOMM9S+fXv16dNHPXr08DYe8hg4cKD27Nmj2bNn64cfftCqVau0efNmHTp0SJKUlJSkJk2aqGvXrrrxxhvVokWLInP65z//qdatW+u///2vli5dql27dunYsWOnfC5FCXSOktSmTRstX75cs2fP1rRp0/TDDz9o9+7dOnTokOLj41WjRg01bdpUHTt2VN++fdW5c+dCO6AnJSXpp59+0n/+8x9Nnz5df/zxhw4dOhSS9TY/+OAD75T/+Ph4DRw4sETHOf/881W7dm3t2bNHbrdbkydPztNkLND69++vHTt2aPbs2VqyZIl+/fVXbdmyRYcOHVJOTo4SExNVs2ZNtWnTRt27d9fVV1+dZw1XAABQOi53ad6dAQAAAAAAAIANaB4EAAAAAAAAwHEobAIAAAAAAABwHAqbAAAAAAAAAByHwiYAAAAAAAAAx6GwCQAAAAAAAMBxKGwCAAAAAAAAcJwydicQSXJzc7V7924lJibK5XLZnQ4AAAAAAADgKG63W0eOHFGdOnUUE1P0mEwKmwG0e/du1atXz+40AAAAAAAAAEfbsWOH6tatW+Q+FDYDKDExUZK0ZcsWVa1a1eZs4ARZWVmaPXu2+vTpo7i4OLvTgQNwzcBfXDPwF9cM/MU1A39wvcBfXDPwF9eM86WlpalevXreOltRKGwGkGf6eWJioipVqmRzNnCCrKwsJSQkqFKlSrzgoli4ZuAvrhn4i2sG/uKagT+4XuAvrhn4i2smchRnmUeaBwEAAAAAAABwHAqbAAAAAAAAAByHwiYAAAAAAAAAx6GwCQAAAAAAAMBxKGwCAAAAAAAAcBwKmwAAAAAAAAAch8ImAAAAAAAAAMcpY3cCMNxut7KyspSbm2t3KgihrKwslSlTRidOnFBOTo739piYGMXFxcnlctmYHQAAAAAAQPiisGmzzMxM/fnnnzp27Fiewhaig9vtVnJysnbs2JGviBkbG6uEhATVrFlTZcuWtSlDAAAAAACA8ERh00bHjh3Tjh07FBsbqypVqqh8+fKKjY1llF4Uyc3NVXp6uipWrKiYGLMyhNvtVk5Ojo4fP67Dhw9r69atqlu3rhISEmzOFgAAAAAAIHxQ2LTRvn37FBcXpwYNGig2NtbudGCD3NxcZWZmqly5ct7CpkfFihVVtWpVbdu2Tfv27VP9+vVtyhIAAAAAACD80DzIJtnZ2Tp69KiqVq1KUROFio2NVdWqVXX06FFlZ2fbnQ4AAAAAAEDYoLBpE0+RKj4+3uZMEO481wiFTQAAAAAAAAuFTZuxniZOhWsEAAAAAAAgPwqbAAAAAAAAAByHwiYAAAAAAAAAx6GwCQAAAAAAAMBxKGwirDVs2FAul0uTJk3y3jZp0iS5XK48XzExMapUqZLOOussjRw5Unv37i30mCc/trCvefPmBf8JAgAAAAAAoETK2J0AUFIVKlTQwIEDJUk5OTnatm2bFi9erJUrV+qdd97RwoULdcYZZxT6+L59+yo5ObnQ+4u6DwAAAAAAAPaisAnHql69ep6RnJL022+/qXv37kpNTdU999yj6dOnF/r4Bx98UD169AhukgAAAAAAAAgKpqIjorRs2VLDhw+XJM2ZM0cZGRk2ZwQAAAAAAIBgoLCJiHPmmWdKkrKysnTgwAGbswEAAAAAAEAwOLKwOW7cOJ1zzjlKTExUzZo1NWDAAK1bt+6Uj/vkk0/UrFkzlStXTq1bt9aMGTPy3O92uzVq1CjVrl1b5cuXV69evbRhw4ZgPQ0ESVpamiQpNjZW1atXtzkbAAAAAAAABIMjC5vz58/XnXfeqSVLlmjOnDnKyspSnz59dPTo0UIf8+OPP2rQoEG6+eabtWLFCg0YMEADBgzQmjVrvPs888wzevHFF/Xaa69p6dKlqlChgvr27asTJ06E4mkhQDzravbr109xcXE2ZwMAAAAAAIBgcGTzoFmzZuXZnjRpkmrWrKmff/5Z3bp1K/AxL7zwgvr166cRI0ZIkh5//HHNmTNHL7/8sl577TW53W49//zzevjhh/X3v/9dkvTuu++qVq1amjZtmq655prgPqmCtG8vpaSE/ryllZwsLV8e0lN6uqK//vrrmjJliho0aKAXX3yxyMf07Nmz0PuSkpJ06NChAGcJAAAAAACAQHFkYfNkhw8fliRVrVq10H0WL17sbSrj0bdvX02bNk2StGXLFqWkpKhXr17e+5OSktSxY0ctXry4wMJmRkZGnuY0ninQWVlZysrKKjLnrKwsud1u5ebmKjc3t8B9XCkpcu3aVeRxwpFbkruQ51RSvt8nz7/btm2Ty+XKt2+HDh00a9YsJSUlFfq9laQ+ffooOTm5wPsSEhKKfGyguN1u77+FnS83N1dut1tZWVmKjY0Nek4Ib57XllO9xgAeXDPwF9cM/MU1A39wvcBfXDPwF9eM8/nzs3N8YTM3N1f33HOPunTpolatWhW6X0pKimrVqpXntlq1ainlrxGRnn+L2udk48aN05gxY/LdPnfuXCUkJBSZd5kyZZScnKz09HRlZmYWuE/FGjUU81fhy0lya9RQ+l9F3lIf669i34kTJ7yFY8/SABUqVNCll14qyRSZ169frzVr1mjZsmW6+eab9fbbbxd57H/961/q2rVrofenBeg5FMeRI0cKvS8zM1PHjx/XggULlJ2dHbKcEN7mzJljdwpwGK4Z+ItrBv7imoE/uF7gL64Z+ItrxrmOHTtW7H0dX9i88847tWbNGi1atCjk5x45cmSeUaBpaWmqV6+eevbsqWrVqhX52BMnTmjHjh2qWLGiypUrV/BOP/8cyHRDJkZSpUAdK8YsA1uuXDlVqlTJG0tS9erV9f777+fZ//PPP9egQYM0depUXXDBBbr99tsLPXZCQoL3mHZxu906cuSIEhMTCxx9KplrpXz58urWrVvh1wqiRlZWlubMmaPevXuzhiyKhWsG/uKagb+4ZuAPrhf4i2sG/uKacT5/Bpo5urA5bNgwff3111qwYIHq1q1b5L7JyclKTU3Nc1tqaqp3KrLn39TUVNWuXTvPPm3bti3wmPHx8YqPj893e1xc3Cl/eXJycuRyuRQTE+Mt3qFwvt8n3+/Xyd+7gQMHatWqVRo7dqweffRRXX/99UpKSjrlMe3iGZHquRYKEhMTI5fLVazrCtGD6wH+4pqBv7hm4C+uGfiD6wX+4pqBv7hmnMufn5sjK2put1vDhg3T1KlT9f3336tRo0anfEznzp313Xff5bltzpw56ty5sySpUaNGSk5OzrNPWlqali5d6t0HzjBy5EjVrl1b+/fv18SJE+1OBwAAAAAAAEHgyMLmnXfeqffff19TpkxRYmKiUlJSlJKSouPHj3v3ufHGGzVy5Ejv9t13361Zs2ZpwoQJWrt2rUaPHq3ly5dr2LBhksyIuXvuuUdjx47Vl19+qV9//VU33nij6tSpowEDBoT6KaIUEhIS9Mgjj0iSnn/+eR08eNDmjAAAAAAAABBojpyK/uqrr0qSevTokef2d955R0OGDJEkbd++Pc/U3nPPPVdTpkzRww8/rIceekhnnHGGpk2blqfh0P3336+jR4/qH//4hw4dOqSuXbtq1qxZrGvoQLfccosmTJigTZs26dlnn9UTTzyRb5+nnnpKkyZNKvQY1157rfr06RPELAEAAAAAAFBSjixsuovRKXzevHn5brvyyit15ZVXFvoYl8ulxx57TI899lhp0kMYiIuL09ixYzVo0CC99NJLGj58eL6GTt98802Rx2jbti2FTQAAAAAAgDDlyMImosfWrVvz3TZkyBDvyNyiXHPNNbrmmmvy3V6cwjgAAAAAAADCmyPX2AQAAAAAAAAQ3ShsAgAAAAAAAHAcCpsAAAAAAAAAHIfCJgAAAAAAAADHobAJAAAAAAAAwHEobAIAAAAAAABwHAqbAAAAAAAAAByHwiYAAAAAAAAAx6GwCQAAAAAAAMBxKGwCAAAAAAAAcBwKmwAAAAAAAAAch8ImAAAAAAAAAMehsAkAAAAAAADAcShsAgAAAAAAAHAcCpsIaw0bNpTL5dKkSZO8t02aNEkulyvPV0xMjCpVqqSzzjpLI0eO1N69ews95smPLexr3rx5fuXqyWvIkCEle7IAAAAAAAAotjJ2JwCUVIUKFTRw4EBJUk5OjrZt26bFixdr5cqVeuedd7Rw4UKdccYZhT6+b9++Sk5OLvT+k+9zuVySJLfbHYDsAQAAAAAAUBoUNuFY1atXzzOSU5J+++03de/eXampqbrnnns0ffr0Qh//4IMPqkePHsFNEgAAAAAAAEHBVHRElJYtW2r48OGSpDlz5igjI8PmjAAAAAAAABAMFDYRcc4880xJUlZWlg4cOFDq440ePdo7DV3Kv0bn1q1b8z3m6NGjGjlypBo3bqz4+HglJydr8ODB2rVrV6nzAQAAAAAAAFPREYHS0tIkSbGxsapevXqpj9e2bVsNHjxYkydPliQNHjw4z/0VK1bMs3348GGde+652r59u8477zy1atVKixcv1rvvvqv58+dr1apVSkpKKnVeAAAAAAAA0YzCJiKOZ13Nfv36KS4urtTHGzBggAYMGOAtbJ68rufJpk2bpr59+2rhwoWqVKmSJOngwYM6//zztXLlSv3nP//RyJEjS50XAAAAAABANKOwGcbat2+vlJQUu9PwW3JyspYvXx7Sc3q6or/++uuaMmWKGjRooBdffLHIx/Ts2bPQ+5KSknTo0KES5VKhQgW988473qKmJFWpUkUPPvigrrnmGn377bcUNgEAAAAAAEqJwmYYS0lJYU3GImzbti3P2pceHTp00OzZs0853btv375KTk4u8L6EhIQS59W+fXvVrl073+3NmzeXJH6mAAAAAAAAAUBhM4wVVnQLd6HKu0KFCho4cKAkKSMjQ3/88YdWrVqlZcuW6bbbbtOHH35Y5OMffPBB9ejRI+B51a9fv8DbPSM4T5w4EfBzAgAAAAAARBsKm2Es1NO5naZ69er51rv8/PPPdfXVV+ujjz5St27ddMcdd4Q8r5iYmJCfEwAAAAAAINpQgUFEufzyy/Xggw9KkkaNGqXDhw/bnBEAAAAAAACCgcImIs7IkSNVu3Zt7d+/XxMnTgzYcT0d1rOzswN2TAAAAAAAAJQMhU1EnISEBD3yyCOSpOeff14HDx4MyHHr1q0rSfrtt98CcjwAAAAAAACUHGtsIiLdcsstmjBhgjZt2qRnn31WTzzxRL59nnrqqXxrdPq69tpr1adPH+/2FVdcoWeffVa9evXS+eefr8TEREnS008/rWrVqgX8OQAAAAAAAKBwFDYRkeLi4jR27FgNGjRIL730koYPH56v+PjNN98UeYy2bdvmKWw+/vjjiomJ0eeff65p06YpMzNTkvTwww9T2AQAAAAAAAgxCpsIa1u3bs1325AhQzRkyJBTPvaaa67RNddck+92t9tdolzKlSunp59+Wk8//XSB958qr4YNG5b43AAAAAAAAMiLNTYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNi0mdvttjsFhDmuEQAAAAAAgPwobNokJsZ863NycmzOBOHOc414rhkAAAAAAABQ2LRNXFyc4uLilJ6ebncqCHNHjhzxXi8AAAAAAAAwKGzaxOVyKTExUYcPH9bx48ftTgdh6vjx40pLS1NiYqJcLpfd6QAAAAAAAISNMnYnEM2qV6+u48ePa/v27apUqZISExMVGxtLASuK5ObmKjMzUydOnPBONXe73crJydGRI0eUlpam+Ph4Va9e3eZMAQAAAAAAwguFTRvFxsaqXr162rdvn44cOaJDhw7ZnRJCzO126/jx4ypfvny+gnZcXJwqV66s6tWrKzY21qYMAQAAAAAAwhOFTZvFxsaqVq1aqlmzprKyspSbm2t3SgihrKwsLViwQN26dcuzhmZMTIzi4uIYvQsAAAAAAFAICpthwuVyqWzZsnangRCLjY1Vdna2ypUrR3MgAAAAAAAAP9A8CAAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4jiMLmwsWLNAll1yiOnXqyOVyadq0aUXuP2TIELlcrnxfLVu29O4zevTofPc3a9YsyM8EAAAAAAAAQEk4srB59OhRtWnTRq+88kqx9n/hhRe0Z88e79eOHTtUtWpVXXnllXn2a9myZZ79Fi1aFIz0AQAAAAAAAJRSGbsTKIn+/furf//+xd4/KSlJSUlJ3u1p06bp4MGDGjp0aJ79ypQpo+Tk5IDlCQAAAAAAACA4HFnYLK233npLvXr1UoMGDfLcvmHDBtWpU0flypVT586dNW7cONWvX7/Q42RkZCgjI8O7nZaWJknKyspSVlZWcJJHRPFcJ1wvKC6uGfiLawb+4pqBv7hm4A+uF/iLawb+4ppxPn9+di632+0OYi5B53K5NHXqVA0YMKBY++/evVv169fXlClTdNVVV3lvnzlzptLT09W0aVPt2bNHY8aM0a5du7RmzRolJiYWeKzRo0drzJgx+W6fMmWKEhISSvR8AAAAAAAAgGh17NgxXXvttTp8+LAqVapU5L5RV9gcN26cJkyYoN27d6ts2bKF7nfo0CE1aNBAEydO1M0331zgPgWN2KxXr5727NmjatWq+fU8EJ2ysrI0Z84c9e7dW3FxcXanAwfgmoG/uGbgL64Z+ItrBv7geoG/uGbgL64Z50tLS1P16tWLVdiMqqnobrdbb7/9tm644YYii5qSVLlyZTVp0kQbN24sdJ/4+HjFx8fnuz0uLo5fHviFawb+4pqBv7hm4C+uGfiLawb+4HqBv7hm4C+uGefy5+fmyK7oJTV//nxt3Lix0BGYvtLT07Vp0ybVrl07BJkBAAAAAAAA8IcjC5vp6elauXKlVq5cKUnasmWLVq5cqe3bt0uSRo4cqRtvvDHf49566y117NhRrVq1ynfffffdp/nz52vr1q368ccfddlllyk2NlaDBg0K6nMBAAAAAAAA4D9HTkVfvny5evbs6d0ePny4JGnw4MGaNGmS9uzZ4y1yehw+fFifffaZXnjhhQKPuXPnTg0aNEj79+9XjRo11LVrVy1ZskQ1atQI3hMBAAAAAAAAUCKOLGz26NFDRfU8mjRpUr7bkpKSdOzYsUIf8+GHHwYiNQAAAAAAAAAh4Mip6AAAAAAAAACiG4VNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA41DYBAAAAAAAAOA4FDYBAAAAAAAAOA6FTQAAAAAAAACOQ2ETAAAAAAAAgONQ2AQAAAAAAADgOBQ2AQAAAAAAADgOhU0AAAAAAAAAjkNhEwAAAAAAAIDjUNgEAAAAAAAA4DgUNgEAAAAAAAA4DoVNAAAAAAAAAI5DYRMAAAAAAACA4ziysLlgwQJdcsklqlOnjlwul6ZNm1bk/vPmzZPL5cr3lZKSkme/V155RQ0bNlS5cuXUsWNHLVu2LIjPAgAAAAAAAEBJObKwefToUbVp00avvPKKX49bt26d9uzZ4/2qWbOm976PPvpIw4cP16OPPqpffvlFbdq0Ud++ffXnn38GOn0AAAAAAAAApVTG7gRKon///urfv7/fj6tZs6YqV65c4H0TJ07UrbfeqqFDh0qSXnvtNU2fPl1vv/22HnzwwdKkCwAAAAAAACDAHFnYLKm2bdsqIyNDrVq10ujRo9WlSxdJUmZmpn7++WeNHDnSu29MTIx69eqlxYsXF3q8jIwMZWRkeLfT0tIkSVlZWcrKygrSs0Ak8VwnXC8oLq4Z+ItrBv7imoG/uGbgD64X+ItrBv7imnE+f352UVHYrF27tl577TW1b99eGRkZevPNN9WjRw8tXbpUZ599tvbt26ecnBzVqlUrz+Nq1aqltWvXFnrccePGacyYMflunzt3rhISEgL+PBC55syZY3cKcBiuGfiLawb+4pqBv7hm4A+uF/iLawb+4ppxrmPHjhV736gobDZt2lRNmzb1bp977rnatGmTnnvuOb333nslPu7IkSM1fPhw73ZaWprq1aunnj17qlq1aqXKGdEhKytLc+bMUe/evRUXF2d3OnAArhn4i2sG/uKagb+4ZuAPrhf4i2sG/uKacT7PjOjiiIrCZkE6dOigRYsWSZKqV6+u2NhYpaam5tknNTVVycnJhR4jPj5e8fHx+W6Pi4vjlwd+4ZqBv7hm4C+uGfiLawb+4pqBP7he4C+uGfiLa8a5/Pm5ObIreiCsXLlStWvXliSVLVtW7dq103fffee9Pzc3V9999506d+5sV4oAAAAAAAAACuHIEZvp6enauHGjd3vLli1auXKlqlatqvr162vkyJHatWuX3n33XUnS888/r0aNGqlly5Y6ceKE3nzzTX3//feaPXu29xjDhw/X4MGD1b59e3Xo0EHPP/+8jh496u2SDgAAAAAAACB8OLKwuXz5cvXs2dO77VnncvDgwZo0aZL27Nmj7du3e+/PzMzUv//9b+3atUsJCQk688wz9e233+Y5xtVXX629e/dq1KhRSklJUdu2bTVr1qx8DYUAAAAAAAAA2M+Rhc0ePXrI7XYXev+kSZPybN9///26//77T3ncYcOGadiwYaVNDwAAAAAAAECQRe0amwAAAAAAAACci8ImAAAAAAAAAMehsAkAAAAAAADAcShsAgAAAAAAAHAcCpsAAAAAAAAAHIfCJgAAAAAAAADHobAJAAAAAAAAwHEobAIAAAAAAABwHAqbAAAAAAAAAByHwiYAAAAAAAAAx6GwCQAAAAAAAMBxKGwCAAAAAAAAcBwKmwAAAAAAAAAch8ImAAAAAAAAAMehsAkAAAAAAADAcShsAgAAAAAAAHAcCpsAAAAAAAAAHIfCJgAAAAAAAADHobAJAAAAAAAAwHEobAIAAAAAAABwHAqbAAAAAAAA0WLVKmn9eruzAAKCwiYAAAAAAEA0+P57qW1bqXVradkyu7MBSo3CJgAAAAAAQDSYOdP8m5kpDR8uud325gOUEoVNAAAAAACAaPD771b8ww/StGm2pQIEAoVNAAAAAACAaPDHH3m3H3xQysqyJxcgAChsAgAAAAAARLpjx6StW/Petn699MYbtqQDBAKFTQAAAAAAgEi3bp21pmabNtbto0dLR47YkhJQWhQ2AQAAAAAAIp3vNPRBg6SrrjLx3r3SM8/YkxNQShQ2AQAAAAAAIp1vYbNFC+nJJ6W4OLM9YYK0e7c9eQGlQGETAAAAAAAg0vl2RG/eXDr9dOmOO8z28ePSqFH25AWUAoVNAAAAAACASOcZsRkfLzVqZOKHH5YqVTLxO+9Ia9bYkxtQQhQ2AQAAAAAAIllWlrRhg4mbNpViY01cvbr00EMmzs2VHnjAnvyAEqKwCQAAAAAAEMk2bpSys03cvHne++66S6pXz8QzZkjffx/a3IBSoLAJAAAAAAAQyXwbB51c2CxfXho71toeMcKM3gQcgMImAAAAAABAJDu5I/rJrr9eatPGxL/8In3wQWjyAkqJwiYAAAAAAEAkO7kj+sliYqTx463t//s/6cSJ4OcFlBKFTQAAAAAAgEjmGbEZEyOdcUbB+/TuLfXta+Jt26SXXw5NbkApUNgEAAAAAACIVLm50tq1Jm7cWIqPL3zfZ56RXC4TP/GEdOBA8PMDSoHCJgAAAAAAQKTatk06ftzEBU1D93XmmdLgwSY+dMgUN4EwRmETAAAAAAAgUhXVEb0gjz8ulStn4pdflrZsCU5eQABQ2AQAAAAAAIhUp+qIfrK6daV77zVxZqZpJASEKQqbAAAAAAAAkepUHdEL8sADUvXqJv7gA2n58sDnBQQAhU0AAAAAAIBI5Ttis1mz4j0mKUkaNcraHjFCcrsDmxcQABQ2AQAAAAAAIpHbbRU269eXKlYs/mNvu810UZekefOk6dMDnh5QWhQ2AQAAAAAAIlFKiuluLhV/GrpH2bLSuHHW9gMPSNnZAUsNCAQKmwAAAAAAAJHI347oJ7viCqlTJxP//rv0zjuByQsIEAqbAAAAAAAAkcjfjugnc7mkZ5+1tkeNko4eLX1eQIBQ2AQAAAAAAIhEJemIfrIuXaTLLjNxSoo0YULp8wIChMImAAAAAABAJCrtVHSPceOk2FgTP/OMlJpauryAAKGwCQAAAAAAEIk8hc2aNaVq1Up+nKZNTZd0yUxFHz261KkBgUBhEwAAAAAAINIcPGimjkulG63pMWqUVLGiid94Q1q7tvTHBEqJwiYAAAAAAECkCdQ0dI9ataQHHjBxTo704IOlPyZQShQ2AQAAAAAAIk1pO6IX5N57pdq1TfzFF9LChYE5LlBCFDYBAAAAAAAiTSA6op+sQgXp8cet7REjJLc7MMcGSoDCJgAAAAAAQKQJ9FR0jyFDpJYtTbx0qfTJJ4E7NuAnCpsAAAAAAACRxlPYrFRJqlMncMeNjZWeecbaHjlSyswM3PEBP1DYBAAAAAAAiCRHj0pbt5q4eXPJ5Qrs8fv3l3r2NPHmzdKrrwb2+EAxUdgEAAAAAACIJOvWWXEgp6F7uFzS+PHW9uOPS4cOBf48wClQ2AQAAAAAAIgkweiIfrJ27aTrrjPx/v3SU08F5zxAEShsAgAAAAAARJJgdEQvyNixUtmyJn7+eWn79uCdCygAhU0AAAAAAIBIEqyO6Cdr2FC66y4TZ2RIjzwSvHMBBaCwCQAAAAAAEEk8hc1y5UzxMZgeekiqUsXE770nrVwZ3PMBPhxZ2FywYIEuueQS1alTRy6XS9OmTSty/88//1y9e/dWjRo1VKlSJXXu3FnffPNNnn1Gjx4tl8uV56tZs2ZBfBYAAAAAAAABlpkpbdhg4qZNpdjY4J6vShXp4YdN7HZL998f3PMBPhxZ2Dx69KjatGmjV155pVj7L1iwQL1799aMGTP0888/q2fPnrrkkku0YsWKPPu1bNlSe/bs8X4tWrQoGOkDAAAAAAAEx8aNUk6OiYM5Dd3XnXdaI0PnzJFmzw7NeRH1ytidQEn0799f/fv3L/b+zz//fJ7tJ598Ul988YW++uornXXWWd7by5Qpo+Tk5EClCQAAAAAAEFqh6Ih+svh46cknpWuvNdsjRkgXXBD80aKIeo4sbJZWbm6ujhw5oqpVq+a5fcOGDapTp47KlSunzp07a9y4capfv36hx8nIyFBGRoZ3Oy0tTZKUlZWlrKys4CSPiOK5TrheUFxcM/AX1wz8xTUDf3HNwB9cL/AX14z/Yn79VZ5yYvYZZ8gdqu/d5Zcr9uyzFfPLL9Lq1cqeNEnuG28Mzbl9cM04nz8/O5fb7XYHMZegc7lcmjp1qgYMGFDsxzzzzDN66qmntHbtWtWsWVOSNHPmTKWnp6tp06bas2ePxowZo127dmnNmjVKTEws8DijR4/WmDFj8t0+ZcoUJSQklOj5AAAAAAAAlFS7CRNUd+FCSdL3L76oI0UM2Aq06r/+qi5/dUY/Xq2avv3Pf5QbHx+y8yMyHDt2TNdee60OHz6sSpUqFblv1BU2p0yZoltvvVVffPGFevXqVeh+hw4dUoMGDTRx4kTdfPPNBe5T0IjNevXqac+ePapWrZpfzwPRKSsrS3PmzFHv3r0VFxdndzpwAK4Z+ItrBv7imoG/uGbgD64X+Itrxn9lzjlHrlWr5I6NVfbhw1LZsiE9f+yAAYqZMUOSlPP448p94IGQnp9rxvnS0tJUvXr1YhU2o2oq+ocffqhbbrlFn3zySZFFTUmqXLmymjRpoo0bNxa6T3x8vOIL+OQhLi6OXx74hWsG/uKagb+4ZuAvrhn4i2sG/uB6gb+4ZoopJ0dat06S5GrcWHEVKoQ+h/HjpVmzpNxcxT7zjGJvu02qUSPkaXDNOJc/PzdHdkUviQ8++EBDhw7VBx98oIsuuuiU+6enp2vTpk2qXbt2CLIDAAAAAAAopW3bpBMnTByqjugna9FC8sx8PXJEevxxe/JAVHBkYTM9PV0rV67UypUrJUlbtmzRypUrtX37dknSyJEjdaPPArVTpkzRjTfeqAkTJqhjx45KSUlRSkqKDh8+7N3nvvvu0/z587V161b9+OOPuuyyyxQbG6tBgwaF9LkBAAAAAACUiB0d0QsyZozk6T3y6qtSEbNhgdJwZGFz+fLlOuuss3TWWWdJkoYPH66zzjpLo0aNkiTt2bPHW+SUpNdff13Z2dm68847Vbt2be/X3Xff7d1n586dGjRokJo2baqrrrpK1apV05IlS1TDhuHSAAAAAAAAfvv9dyu2a8SmJNWuLd13n4mzs6WRI+3LBRHNkWts9ujRQ0X1PJo0aVKe7Xnz5p3ymB9++GEpswIAAAAAALCR74hNOwubkilsvvaa9Oef0qefSkuWSJ062ZsTIo4jR2wCAAAAAADgJL4jNps1sy8PSUpMNFPSPe67TypikBpQEhQ2AQAAAAAAnM7ttkZsNmgg2dER/WQ33yw1bWriH36QvvjC3nwQcShsAgAAAAAAON2ePVJamontnobuERcnPf20tf3AA1JWln35IOJQ2AQAAAAAAHA632nodnZEP9mll0pdu5p4/XrpzTftzQcRhcImAAAAAACA04VT4yBfLpf07LPW9ujR0pEjtqWDyEJhEwAAAAAAwOnCtbApSR07SldeaeI//5TGj7c3H0QMCpsAAAAAAABO5zsVPdwKm5I0bpxZc1OSJkyQdu+2Nx9EBAqbAAAAAAAATucZsVmrllS1qr25FOT006U77jDxsWPSqFH25oOIQGETAAAAAADAyfbvN1O8pfAcrenx8MNSpUomfucdac0ae/OB41HYBAAAAAAAcDLf9TXDqSP6yapXlx56yMS5udIDD9ibDxyPwiYAAAAAAICThXPjoJPddZdUr56JZ8yQvv/e3nzgaBQ2AQAAAAAAnMxJhc3y5aWxY63tESPM6E2gBChsAgAAAAAAOJlvR/Rwnorucd11Ups2Jv7lF+nDD+3NB45FYRMAAAAAAMDJPCM2k5Kk5GR7cymO2Fhp/Hhr+6GHpBMn7MsHjkVhEwAAAAAAwKnS06Xt203cvLnkctmbT3H17i316WPibdukV16xNx84EoVNAAAAAAAAp1q71oqdMA3d1zPPWIXYsWOlAwfszQeOQ2ETAAAAAADAqZzUOOhkbdpIN95o4kOHpCeftDUdOA+FTQAAAAAAAKdycmFTMiM1y5Uz8UsvSVu22JsPHIXCJgAAAAAAgFM5rSP6yerWle6918SZmdL//Z+9+cBRKGwCAAAAAAA4lWfEZvnyUoMG9uZSUg88IFWvbuIPPpCWL7c3HzgGhU0AAAAAAAAnysiQNm0ycdOmUoxDyzxJSdKoUdb2iBGS221fPnAMh17xAAAAAAAAUW7DBiknx8ROnIbu67bbpMaNTTxvnjRjhq3pwBkobAIAAAAAADiR0xsH+SpbVho3ztq+/34pO9u+fOAIFDYBAAAAAACcKJIKm5J0xRVSp04m/v13adIkW9NB+KOwCQAAAAAA4ERO74h+MpdLGj/e2h41Sjp61L58EPYobAIAAAAAADiRZ8RmmTLW+pRO17WrNGCAiffskSZOtDUdhDcKmwAAAAAAAE6TkyOtW2fixo2luDh78wmkp56SYmNN/MwzUmqqvfkgbFHYBAAAAAAAcJotW6SMDBNHwjR0X02bSv/4h4nT06UxY+zNB2GLwiYAAAAAAIDTRFrjoJM9+qhUsaKJX39dWrvW3nwQlihsAgAAAAAAOE2kFzZr1ZIeeMDEOTnSyJH25oOwRGETAAAAAADAaSKtI3pB7r1Xql3bxNOmSQsX2poOwg+FTQAAAAAAAKfxjNh0ucyalJGoQgXp8cet7REjJLfbvnwQdihsAgAAAAAAOInbbRU2GzSQEhLszSeYhgyRWrY08dKl0qef2poOwguFTQAAAAAAACfZtUs6csTEkToN3SM2VnrmGWt75EgpM9O+fBBWKGwCAAAAAAA4SaQ3DjpZ//5Sz54m3rRJeu01e/NB2ChRYTMtLU1paWmlPnl6erq+/PJLffnll6U+FgAACAOrVkkbN9qdBQAAQGSLtsKmyyWNH29tP/aYdOiQbekgfJSosFm5cmVVrVpVv/t24PKxe/du3XTTTbr55puLPM62bds0YMAAXX755SVJAwAAhJNvv5XatjXTodatszsbAACAyBUNHdFP1q6ddO21Jt6/X3r6aXvzQVgo8VR0dxFdqA4ePKhJkyZp0qRJpT4WAABwCM//+1lZ0uef25oKAABARIu2EZseTzwhlS1r4uefl3bssDUd2I81NgEAQOnl5krffGNtL1hgXy4AAACRzlPYTE6WKle2NZWQathQ+te/THzihPTII7amA/tR2AQAAKW3fLm0b5+1/cMPUna2ffkAAABEqn37pL17TRwt09B9/d//SVWqmPjdd80a74haFDYBAEDpzZiRd/vIEWnlSltSAQAAiGjROg3do0oVU9yUJLdbuv9+e/OBrShsAgCA0ps5M/9tTEcHAAAIvGgvbErSsGFmWrokzZ5tvhCVKGwCAIDS2btX+uknE3umBUkUNgEAAIIhGjuinyw+XnrySWv7/vulnBz78oFtKGwCAIDS+eYbMw1Ikm65RapWzcQLF5qmQgAAAAgcRmwaV18ttWtn4lWrpPfftzcf2ILCJgAAKB3f9TUvvFA67zwTHzgg/fabPTkBAABEKk9hs3JlqVYtW1OxVUyMNH68tf3ww9Lx4/blA1uUqrDpcrkClQcAAHCinBwzYlOSEhOlLl2kbt2s+5mODgAAEDhHjkg7dpi4RQsp2usyPXtKF11k4p07pRdesDcfhFypCputWrVSbGxsvq8zzzzTW/Qs6H7f/QAAgIP99JMZmSlJvXtLcXFS9+7W/RQ2AQAAAmftWiuO5mnovp5+2ozelKRx48z674gapSpsut3uUn8BAAAHO3kauiS1aWNGb0qmsMn/9wAAAIHB+pr5tWwp3XSTidPSFDNunL35IKTKlORB3bp1Yxo6AACQZs604n79zL+xsVLXrua+lBRpwwapSRN78gMAAIgkdEQv2Jgx0pQp0rFjinntNVVo2dLujBAiJSpszps3L8BpAAAAx0lNlZYvN3GbNtJpp1n3detmFT0XLKCwCQAAEAiM2CxYnTrSv/8tPf64XNnZav7ee9LNN9udFUKArugAAKBkPE2DJKl//7z3sc4mAABA4HkKmwkJUv369uYSbkaMkGrWlCSd9uOPci1danNCCAUKmwAAoGR8p6GfXNhs104qX97E8+eHLicAAIBIdeKEtGmTiZs1sxrmwEhMlEaP9m7GPPecfbkgZGz/LTh27JgmTJhgdxoAAMAf2dnWiM2kJKlz57z3ly1r3bZ9u7RtW2jzAwAAiDQbNki5uSZmGnrBbrlF7ipVJEmuefOs7xcilm2FzSNHjuiJJ55Qw4YNdf/999uVBgAAKIlly6SDB03cu7cUF5d/n27drJjp6AAAAKXD+pqnFhcn91/vQV0HDkirV9ucEIIt5IXNAwcO6JFHHlGDBg00atQo7du3L9QpAACA0poxw4ovvLDgfVhnEwAAIHDoiF4s7p49rY25c+1LBCFRqsLmtm3bdNddd6lFixZKTExU1apVdfbZZ2vcuHE6fPhwnn3T09P16KOPqmHDhnryySd16NAhud1uVa9eXWPHji3VkwAAACHmu75mv34F79OxozWSk3U2AQAASocRm8WS6/vh+vff25cIQqJMSR84Z84cXXHFFTp69Kgkye12S5JWrVqlVatW6d1339XcuXOVnJysH374Qdddd5127Njh3e+0007Tfffdp3/84x8q72kuAAAAwl9KivTLLyZu21aqXbvg/cqXlzp0kH74wawJtWdP4fsCAACgaJ7CZpky0umn25tLOGvRQieSklTu8GHz4Xp2tvmeISKVaMTm3r17NWjQIKWnp8vtdsvtdqtChQpKSkrybq9fv1533nmnFixYoF69enmLmo0aNdJ///tfbd68WXfffTdFTQAAnGbWLCsubBq6h+8n5gsXBicfAACASJedLa1bZ+ImTQpe3xyGy6V9rVub+MgR6wN5RKQSFTbfeOMNHThwQC6XSwMHDtTGjRt15MgRHTx4ULt379awYcMkSV988YWuv/56ZWRkqGLFinrppZe0bt063XrrrYrjlxAAAGfynYbev3/R+9JACAAAoPS2bJEyM03MNPRT8hY2JaajR7gSjcWdPXu2JKlTp076+OOP89yXnJysF198UUeOHNHkyZO1c+dOVa5cWQsXLlTLli1LnzEAALBPdrb01/sAVa4sdepU9P7nnivFxEi5uayzCQAAUFKsr+mXfWeeaW3MnSs9+KB9ySCoSjRic+3atXK5XLrjjjsK3eeuu+6SJLlcLt11110UNQEAiARLlkiHDpm4T59Tr1eUmCidfbaJ16yR9u8PanoAAAARiY7ofjmanCx33bpmY+FCa7QrIk6JCpsHDx6UJDVu3LjQfc444wxvfN5555XkNAAAINzMmGHFp1pf08N3nc1FiwKbDwAAQDRgxKZ/XC65e/Qw8fHj0tKltqaD4ClRYTMrK0uSlJiYWOg+FStW9MbJycklOU2hFixYoEsuuUR16tSRy+XStGnTTvmYefPm6eyzz1Z8fLwaN26sSZMm5dvnlVdeUcOGDVWuXDl17NhRy5YtC2jeAAA4nu/6mv36Fe8xrLMJAABQOp7CpsslNW1qby4OkespbEpmOjoiUokKm/5yuVwBPd7Ro0fVpk0bvfLKK8Xaf8uWLbrooovUs2dPrVy5Uvfcc49uueUWffPNN959PvroIw0fPlyPPvqofvnlF7Vp00Z9+/bVn3/+GdDcAQBwrN27pZUrTXz22VKtWsV7XNeuVsw6mwAAAP5xu63CZqNGUvny9ubjEG7fWUM0EIpYISlsBlr//v01duxYXXbZZcXa/7XXXlOjRo00YcIENW/eXMOGDdPAgQP13HPPefeZOHGibr31Vg0dOlQtWrTQa6+9poSEBL399tvBehoAADjLrFlWXNxp6JJUtark6Uy5YoWUlhbYvAAAACLZzp1SerqJmYZefA0aSH/7m4kXLzZT0hFxStQV3WPo0KGqUKFCqfdzuVz67rvvSpNKkRYvXqxevXrlua1v37665557JEmZmZn6+eefNXLkSO/9MTEx6tWrlxYvXlzocTMyMpSRkeHdTvvrD7WsrCzvdH2gKJ7rhOsFxcU1A38F8pqJnT7d+4lodu/ecvtxzJjzzlPsr79KubnKXrBA7r59S50PgoPXGfiLawb+4HqBv7hmJNevv3qLNzlNmyo3ir8XxeF7zcT26KGYzZulzEzzHvT8823ODsXhz+97qQqby5cvL/J+zxT0ovZzu90Bn6p+spSUFNU6abpcrVq1lJaWpuPHj+vgwYPKyckpcJ+1a9cWetxx48ZpzJgx+W6fO3euEhISApM8osKcOXPsTgEOwzUDf5X2mnFlZ6v/rFmKkZSZmKiZ+/blbSR0CnUqVNA5f8WbJ03SHzk5pcoHwcfrDPzFNQN/cL3AX9F8zfztyy/119wXrc7K0nY/3oNFszlz5ui0ypXV/q/tzW++qT9OnLA1JxTPsWPHir1viQubbre7pA+NGCNHjtTw4cO922lpaapXr5569uypatWq2ZgZnCIrK0tz5sxR7969FRcXZ3c6cACuGfgrUNeMa+FClfnrDUaZ/v114SWX+HeAs8+Wxo+XJDXevVuN/JnKjpDidQb+4pqBP7he4C+uGSnm66+9ceurrlKrjh1tzCb85blmzjpLmjhRktR4507egzpEmh9LV5WosJmbm1uSh9kmOTlZqampeW5LTU1VpUqVVL58ecXGxio2NrbAfYrq6B4fH6/4+Ph8t8fFxUXtCy5KhmsG/uKagb9Kfc3Mnu0NYy6+WDH+HqtePalJE2n9esUsX66YrCyJ2Q1hjdcZ+ItrBv7geoG/ovqaWbfOG5Zp3VqK1u+Dn+Li4hRXv75Zl/SPPxTz00+KOXFCSky0OzWcgj+/645sHuSvzp0751vDc86cOercubMkqWzZsmrXrl2efXJzc/Xdd9959wEAIKrNnGnFJV0f09OZMitLWrq09DkBAABEg99/N//WqSMlJdmbixP17Gn+zcmRFi2yNxcEnCMLm+np6Vq5cqVWrlwpSdqyZYtWrlyp7du3SzJTxG+88Ubv/v/85z+1efNm3X///Vq7dq3+85//6OOPP9a9997r3Wf48OF64403NHnyZP3xxx+6/fbbdfToUQ0dOjSkzw0AgLCza5e0erWJ27eXatYs2XG6dbPi+fNLnxcAAECk27tX2r/fxHRELxnfhkHff29fHgiKUjUPssvy5cvV01Nxl7zrXA4ePFiTJk3Snj17vEVOSWrUqJGmT5+ue++9Vy+88ILq1q2rN998U319RpxcffXV2rt3r0aNGqWUlBS1bdtWs2bNytdQCACAqOM7WrM06xL5FjYXLCj5cQAAAKLFH39YMYXNkunRw4rnzrUtDQRHiQqbjz32WKDz0KhRo4q9b48ePYpsXjRp0qQCH7NixYoijzts2DANGzas2HkAABAVfAub/fuX/Dj160sNGkjbtkmLF0uZmVLZsqXPDwAAIFJ5pqFLUosW9uXhZNWqSW3aSKtWSb/8Ih08KFWpYndWCJASFTZHjx4tl8sV0ET8KWwCAIAQycyU5swxcbVq0jnnlO543btL774rnTghLV8unXtu6XMEAACIVIzYDIzzzzeFTbfbLIk0YIDdGSFASrzGptvtDtgXAAAIUz/+KB05YuK+faXY2NIdj3U2AQAAio/CZmD4LGfIdPTIUqIRm3O5CAAAiA4zZlhxaaahe5y8zubIkaU/JgAAQKTyTEWvWrXkDRxh3oPGxEi5uTQQijAlKmx279490HkAAIBw5Flf0+UyIzZLq3FjqXZtac8e6YcfpOxsqYwjexkCAAAEV1qatGuXiZs3N+/HUDJJSVL79tKyZdKaNdKff1IojhAlnooOAAAi3I4d5o2fZNbWrFGj9Md0uaxRm0eOmLWOAAAAkN/atVbMNPTS852OPm+ebWkgsChsAgCAgvl2Q7/wwsAdl3U2AQAATo2O6IF1/vlWzHT0iEFhEwAAFMy3sBmI9TU9Tl5nEwAAAPnROCiwunSR4uJMTO+YiEFhEwAA5JeZKX37rYlr1DBrEgVKixZStWomXrjQLOIOAACAvHxHbFLYLL0KFaSOHU28fr21fikcjcImAADIb9EiKT3dxH37mi6SgRITI513nokPHMj7ph0AAACGZ8RmhQpSvXr25hIpfNfZZNRmRKCwCXhkZUlffy1t2mR3JgBgvxkzrDiQ09A9WGcTAACgcMePS1u2mLhZs8B+yBzNWGcz4vCbAXiMHy9dcokZmn7woN3ZAIC9POtrulxmxGagsc4mAABA4davt5brYRp64HTqJJUrZ2IKmxGBwibg8eGH5t/9+/M2zACAaLNtmzU9vGNHaz3MQGrbVkpMNPGCBZLbHfhzAAAAOJVv4yA6ogdOuXLSueeaeNs2a1QsHIvCJiBJqanSr79a275TMAEg2vh+uHPhhcE5R2ys1LWriVNSpA0bgnMeAAAAJ6IjevAwHT2iUNgEpPwvZrNmSTk59uQCAHbzLWwGY31ND6ajAwAAFIyO6MFDA6GIQmETkKTvvsu7vX+/tGyZPbkAgJ0yMqzXxJo1pbPPDt65KGwCAAAUzDNiMy5OOv10e3OJNOecYzrNS2aQE0siORqFTcDtlr79Nv/t06eHPhcg2v3wg/T661J2tt2ZRK+FC6WjR03cr19wO3C2by+VL29iCpsAAABGdrZpHiRJTZpIZcrYm0+kiYuzPmDfs8f6XsORKGwCmzebRYMlqVUr63bW2QRC6/ffzbSQ226THn7Y7myiV6imoUtS2bJS584m3rbNei0GAACIZps2SVlZJmYaenD4TkdnnU1Ho7AJ+E5DHzRIatfOxCtWSLt325MTEI2efdZ6A/fGG9KJE/bmE608H+rExEh9+gT/fExHBwAAyIuO6MFHA6GIQWET8J2GfsEF0kUXWdu+I5cABM/u3dL771vbBw5IU6fal0+02rJFWrvWxJ06SVWrBv+cFDYBAADyoiN68LVtK1WubOJ586TcXBuTQWlQ2ER0y821Pp2pVMmM1rzwQut+1tkEQuPFF63Rmh5vvmlPLtHM98Mc39fCYOrUyaxzJFHYBAAAkOiIHgqxsVL37ibet09as8befFBiFDYR3VavNh3QJbPGRpkypkNajRrmtjlzTIdgAMGTlia99pqJy5aV6tUz8fffm/WFEDqhXF/To3x5qUMHE69fbxZwBwAAiGaeEZsxMaZ5EILDd53NuXPtywOlQmET0e3kaeiS+c+jXz8Tp6dLixaFPi8gmrzxhnT4sIlvuEG6807rvrfesienaHTihLXmcK1aZnpOqPhOR1+4MHTnBQAACDe5udbSQI0amQ+BERyssxkRKGwiuvk2DurVy4p919lkOjoQPFlZ0vPPW9v//rc0eLAZPS1J77wjZWfbklrUWbBAOn7cxP37mw95QsUzDciTBwAAQLTasUM6etTENA4KrpYtrdma8+dLOTn25oMSobCJ6JWZaf0BXbu21KyZdV+fPmbNDcnqEAwg8D78UNq508SXXGLWEEpONrEkpaTw4UKo2DEN3ePcc61CKoVNAAAQzWgcFDoxMVKPHiY+fFhascLWdFAyFDYRvZYskY4dM/EFF0gul3VflSrmD21JWreOdf6AYHC7pfHjre0RI6z4llusmCZCoeH5ECc2VurdO7TnTkyUzj7bxL/+aq19DAAAEG0obIYW09Edj8Imoldh09A9fDsCM2oTCLzZs00RS5I6dpS6drXu69tXqlvXxDNmSLt2hT6/aLJpk2ncI0mdO5sPd0LNd51N1jYGAADRyrcjOlPRg48GQo5HYRPRq6DGQb5YZxMIrpNHa/qOmo6NlW66ycS5uWatTQSPndPQPVhnEwAAIO+ITd/l0hAcTZpIdeqYeOFCs2QdHIXCJqLTkSPSsmUmbtLEGhnmq1Ur6/Z586wFnAGU3i+/WKOmGzeWBgzIv8/QoVax8623TIETweFb2PQdrR5KviN258+3JwcAAAA7ud3WiM3TTpMqVbI3n2jgclnT0Y8elX76yd584DcKm4hOCxZYnZYLmoYumRc4z6jNjAzW2wAC6dlnrfjf/7aadflq2NBa63Hr1rzLRyBwjh+3pt3Uri21aWNPHlWrSq1bm3jFCiktzZ48AAAA7PLnn9LBgyZmGnroMB3d0ShsIjqdahq6B+tsAoG3dav08ccmrlFDGjy48H1vvdWKaSIUHPPnm+KmZKah+y4JEGqedTZzc6Uff7QvDwAAADvQOMgeNBByNAqbiE6ekV8uV95PZ052wQVS2bImnj7dTA0AUDrPPSfl5Jh42DCpfPnC9730UlP8lKSpU6V9+4KfX7QJh/U1PVhnEwAARDMKm/Zo2NB8SebD9RMn7MwGfqKwieiTmmp1Ym7XrujuvxUqSD16mHjHDum334KeHhDRDhywRl6WLy/dcUfR+5cta43ozMqS3n03uPlFI89o9NhYa+q/Xc47z4pZZxMAAEQbOqLbxzNqMyNDWrzY3lzgFwqbiD6+Q8uLmobuQXd0IHBefVU6dszEN90kVa9+6sfcfLMVv/kmI6cDacMGaeNGE3fpIiUl2ZtPcrJp6CaZhds91woAAEA0YMSmfZiO7lgUNhF9fBuQFNY4yBfrbAKBceKE9NJLJo6JkYYPL97jmjWzOmb/8QefoAZSOE1D9/Css5mVJS1dam8uAAAAoeQpbFarZi3HhNCggZBjUdhEdHG7rcZB8fFmhNKpNG5sjSD64QerSx0A/7z3nlkKQpKuuEL629+K/1jfJkJvvBHYvKKZb2HT90McO7HOJgAAiEaHD0u7d5uYaeihV6eO1LSpiZculdLT7c0HxUZhE9Fl82Zp2zYTd+lSdNMSX57p6Dk50pw5wckNiGS5udKECdb2iBH+PX7gQGua9Mcfmzd+KJ1jx6R580x82mlS69a2puPlGbEpsc4mAACIHkxDt59n1GZ2thnUBEegsIno4hmtKRVvfU0P35FMrLMJ+O+rr6R160zcvbt0zjn+PT4hQbruOhMfOyZ98EFg84tG8+ZZHR/795dcLlvT8apfX2rQwMSLF0uZmfbmAwAAEAoUNu3HOpuORGET0cV3fU1/CpvnnSdVrGjimTPN6DMAxTd+vBXff3/JjnHLLVbs6ayOkgvH9TU9PKM2T5yQli+3NxcAAIBQoCO6/Xr0sGLW2XQMCpuIHrm51qcuSUlSu3bFf2x8vNVoaO9e/tAG/PHjj9ZUjpYtS15EO+ss6eyzTfzzz9KKFYHJLxq53VYztDJlitdILZRYZxMAAEQbRmzar0YNa3mmn3+WDh2yNR0UD4VNRI9Vq6T9+03co4f5Y94fnnU2JaajA/7wHa15332lm/Ls20SIUZslt2GDWXNYMh3nK1WyN5+Tsc4mAACINp7CZsWKUt269uYSzTzT0XNz+YDdIShsInqUdBq6h+8oM89IJwBFW79e+uILE9epI117bemON2iQWW9Tkv73P7PeJvzn+xoWbtPQJalxYyk52cQ//GAWcAcAAIhUx49LW7aYuHnz8Fn7PBp5GghJTEd3CAqbiB6+hc2STLs87TSpbVsTL18upaQEJC0gok2YYKY9S9Ldd0tly5bueElJ0lVXmfjwYenTT0t3vGjlu76mb3O0cOFyWaM2jxwxI+4BAAAi1bp11ntmpqHbq3t3KeavUhkNhByBwiaiQ2amNYy8dm2pWbOSHce3ADBrVunzAiJZaqo0ebKJExOl224LzHFpIlQ6R49a07vr1jXrnoYj33U2mY4OAAAiGetrho/Klc3a/pK0erW0b5+t6eDUKGwiOixZYk1Z7dWr5EP7WWcTKL6XX5YyMkz8j3+Y0ZaBcO651hu+hQvNJ9wovrlzrZ/LhReG71Qn33U2Wd8IAABEMjqihxfPOpuSNG+ebWmgeChsIjp8+60Vl2R9TY+OHaWqVU08e7aUlVW6vIBIdfSo9J//mLhMGTMNPVBcLkZtlobvNPRwXF/To0UL6/V24UKzgDsAAEAkYsRmePEtbDIdPexR2ER0KG3jII/YWKlfPxOnpZmmFgDye/tt6cABEw8aJNWrF9jj33CDFBdn4smTzXITODW322ocFBdXutfDYIuJsUZtHjiQdyQDAABAJPEUNsuWlRo1sjcXSF27msEZEg2EHIDCJiJfWpq0dKmJmzY1a8qVhu86m3RHB/LLzpYmTrS2R4wI/Dlq1JAuu8zEe/dKX30V+HNEonXrpK1bTXzeeWbt03DmOx2ddTYBAEAkysqS1q83cdOmVkEN9qlYUerQwcRr10q7d9ubD4pEYRORb8ECKSfHxIEYndSvn7UmHetsAvl9+qlVPOvXT2rdOjjn8Z2O/sYbwTlHpHHKNHQP1tkE/Hf8uBn543nvAwAIb5s2mYEBEtPQw0nPnlbMOpthjcImIl+gpqF7VKsmdepk4t9/two4AMxU5/Hjre1gjNb0uOACqWFDE8+eLW3bFrxzRQrfUea+o8/DVZs21qjSBQvM9QWgcDk5Up8+Zo3aRx6xOxsAQHGwvmZ4Yp1Nx6CwicjnKWy6XHk/dSkN3+7oTEcHLHPnSr/8YuKzzw7c71xBYmKkm282sdtt1vVE4dLTrVGP9es7441zmTJmjSNJSkmRNm60Nx8g3H38sbRokYlfflnKyLA3HwDAqdERPTx17mzWPJUobIY5CpuIbKmp0q+/mrhdO6lKlcAcl3U2gYKdPFrTs2xDsAwZYgqckilsMvWyUK65c60mSxdeGPyfTaCwziZQPLm50uOPW9tHjuSdtQIACE+M2AxP5ctL555r4i1bmKkZxihsIrL5frLSq1fgjtu2rVSnjnWO48cDd2zAqX79VZo1y8QNG0oDBwb/nHXrWmtF7txppqSjQK5vvrE2nLC+pgfrbALF89lnef84lqTPP7cnFwBA8Xleu2NipCZN7M0FeflOR6c7etiisInI9u23VhyI9TU9XC5r1Obx4ywmDEjSs89a8b33hq6j4623WjFNhArmdivGU3QuWzbvm7Rw1769+cRcorAJFObk0ZqekexffGE1pAAAhJ/cXKuwefrpUny8vfkgL99ltShshi0Km4hcbrc1BSs+XurSJbDH952OTnd0RLudO6UpU0xcpYp0002hO/eFF0rJySb+6iuzFiPySNy5U67t281Gt25SxYr2JuSPsmXNGkeSaRBFkyggvy++sJbe6dhRuuwyE+/bZ625CQAIP9u3W7P/mIYefjp0kBISTPz99zSyDFMUNhG5Nm+2/gDu0sUa8RMovXpJcXEmnj6dFzlEtxdesEYF3XlnaAtncXHS0KEmzs6WJk8O3bkdoubPP1sbTpqG7sF0dKBwbrf02GPW9qhR0hVXWNtMRweA8MX6muGtbFmrkeWuXdKGDfbmgwJR2ETkCtY0dI/EROuP7a1bpbVrA38OwAkOH5b++18Tx8dLw4aFPgffEaJvvskHDSep5VvY9B1t7hQUNoHCff21tHKlidu3Nx9eXHSR1cn188/NVEcAQPihI3r4Y53NsEdhE5HLtxNoIBsH+broIitmOjqi1X//a7rvStLgwVKtWqHPoXFjaw2cjRspfvk6ckTVPKMBGjaUmja1NZ0S6djRGiHPzxawuN3SmDHW9qhRZh3wSpWs9z67dknLl9uTHwCgaIzYDH++hU3f5sQIGxQ2EZlyc60XnaQkqV274JzHd+TTjBnBOQcQzjIzzTR0yfwx/e9/25cLTYQK5Pr+e8V4lgno39/8nJwmIcGscSRJ69dLe/bYmw8QLmbOlDwjstu2lS6+2Lrv8sutmOnoABCefAubzZrZlwcKd9ZZ5gNDyYzYZGZY2KGwici0apW0f7+Je/SQYmODc54mTUz3OklauNBMyQWiyZQp0u7dJv77383vhF0uu0yqWtXEn34qHTxoXy5hxPXNN9aGE6ehe/hOR1+40L48gHBR0Nqavh9cXHqp1R39s8/4QwwAwo3bbU1Fr1fPLHWG8FOmjNS9u4n37pV++83efJAPhU1EplBMQ5fMHxCeQkF2dt51PYFI53ZLzz5rbY8YYV8uklSunHTDDSbOyJD+9z978wkHbrdiZs0yYdmy1nR9J2KdTSCvOXOkpUtN3Lq1+XDJV40a1u/Nxo38IQaESm6u9PbbrMWHU0tNlQ4dMjHT0MOb73tofrfDDoVNRKZgNw7yxTqbiFYzZ1p/KJ97rvmy2803W/EbbzBC6bff5Nq5U5Lk7t5dqlDB5oRK4dxzrdFnFDYR7U5eW/ORR6zfD19MRwdC79lnzfuRXr2kJUvszgbhjPU1nYN1NsMahU1EnsxMa5pi7drBX6uke3ez/ptkCj10HkW0GD/eiu0erenRurVpNCNJq1fTMGPmTG/o7tvXxkQCoFIl6eyzTfzrr9ZyI0A0mjtX+vFHE7doIV1xRcH7DRhgxRQ2geBzu6XXXzdxbq5ZIgIoDB3RnaN1a6laNRPPmyfl5NiaDvKisInIs2SJdOyYiXv1Cn6jjHLlrFGhKSnSihXBPR8QDn76yfynLpl1NS+91NZ08qCJkMWnqVluv342JhIgvtPRFy2yLw/Abr5raz78cMGjNSWzZpun8daqVdKmTcHPDYhmy5bl/T2bM4f/r1A4Rmw6R0yM6d0hmeUDVq2yMxucxNGFzVdeeUUNGzZUuXLl1LFjRy1btqzQfXv06CGXy5Xv6yKfacRDhgzJd3+/SPhDMNqEchq6B93REW18R2ved1/hf1Tb4eqrpYoVTfzBB1J6ur352CUtzfvH1NFataQzzrA5oQBgnU1Amj/ffElS06bSVVcVvb/vdPSpU4OXF4CC1/d+9NHQ5wFnoLDpLExHD1th9Jeofz766CMNHz5cjz76qH755Re1adNGffv21Z9//lng/p9//rn27Nnj/VqzZo1iY2N15ZVX5tmvX79+efb74IMPQvF0EEi+jYPsKGyyziYi3ebNpsOuJNWqZTXsCRcVK0qDBpk4PV36+GN787HLt9+apmaSUtu1C/7o9VA47zwrprCJaHXyaM3Y2KL3v+wyK2Y6OhA82dnSRx+ZOD5eatTIxN9/b30YAfjyTEWvUUOqXt3eXHBqNBAKW44tbE6cOFG33nqrhg4dqhYtWui1115TQkKC3n777QL3r1q1qpKTk71fc+bMUUJCQr7CZnx8fJ79qlSpEoqng0BJS7M6hDZtKtWtG5rz1q8vtWpl4mXLpL17Q3NewA4TJ1pryf7rX2Y5hnBzyy1WHK3T0X3W10z1rE3pdFWrmjWOJOmXX8xrPhBNFi2yRok0bixdc82pH9OkifUeZfFiaffu4OUHRLNvv5U8g2wuuSRvgy9GbeJkhw6ZZcwkRms6RbNmUnKyiRcskLKy7M0HXmXsTqAkMjMz9fPPP2vkyJHe22JiYtSrVy8tXry4WMd46623dM0116jCSR1i582bp5o1a6pKlSo6//zzNXbsWFXzLBJ7koyMDGVkZHi30/76AysrK0tZXOS2cH3/vcr8tZBvTs+eyg3hzyGmXz/Frlkjud3K/vprua+//pSP8VwnXC8oLtuvmX37VObtt+WS5K5QQdm33BKe/6m3basyrVrJtWaNtGSJslassP6wjwZut8rMnGl+TvHx2t+6dcS8zsR07arYX3+VcnOVvWCB85sihSHbX2dQqNjHHvOOSsh+8EG53e5ivQbH/P3v5j2KpJzPPlPuP/8Z0Ly4ZuCPSL1eYt991/r9vPpquS+6SGUef1yuDRuk+fOVPWeO3J41+uCXSLxmXL/+6i3G5DRtGtK/W6NBsK6Z2O7dFfPRR1J6urKXLJG7U6eAHh8Wf352jixs7tu3Tzk5OapVq1ae22vVqqW1a9ee8vHLli3TmjVr9NZbb+W5vV+/frr88svVqFEjbdq0SQ899JD69++vxYsXK7aAaT7jxo3TGN9P4v4yd+5cJXi6ZCOkWr39tk7/K/65cmXtCeF6l9WqVFHXv+KUd97Rz1WrFvuxc+bMCU5SiFh2XTNNPvpIzY8flyRt7tlTa5YssSWP4mjUqZPO/OsP+e2jRmmN7yjOCFdp61b13LVLkvRny5bKiY+PmNeZOhUq6Jy/4s2TJukPulIGTaRcM5Giyrp16vbXz+RorVr6rnJluYv5PqdS9eryTKA78Oab+rF+/aDkyDUDf0TS9RJ74oT6TZ2qGEmZFSroG0m5s2frtIsvVvvnnpMkHb77bi168snIWBrGJpF0zdSfM0dn/RX/7nZrM30agiLQ10z96tW9P7f1//2vNhw4ENDjw3LM0xC6GFxut9sdxFyCYvfu3TrttNP0448/qnPnzt7b77//fs2fP19LPVORC3Hbbbdp8eLFWr16dZH7bd68Waeffrq+/fZbXVDAWo0FjdisV6+e9uzZU+goTwRXmbPOkuu33+SOiVH2nj1SKJcSyM5Wmdq15Tp8WO7KlZW9e7dUpujPDrKysjRnzhz17t1bcXFxIUoUTmbrNXP8uMo0bizX3r1yx8Yq+48/pIYNQ5uDPw4cUJkGDeTKyJC7alVlb90antPmgyBm/HjF/t//SZIyx4/XzDPOiJzXmZQUxf1VlMk991zlzJtnbz4RiP+bwlPs3/+umL+WmMh+7TW5b7qp+A92u1WmeXO5Nm82r987d0oBfK/KNQN/ROL14vrgA5UZPFiSlHvzzcp59VVzR06O+fvkr8E32TNnyh2qHgARJBKvmZgHHlDsX0Xv7Bkz5O7Vy+aMIkvQrpnNmxXXrJkkKff885Uza1bgjo080tLSVL16dR0+fFiVKlUqcl9HjtisXr26YmNjlZqamuf21NRUJXvWPCjE0aNH9eGHH+ox34XXC/G3v/1N1atX18aNGwssbMbHxys+Pj7f7XFxcRHzgusoqanSb79Jklzt2imuZs3Qnj8uTurbV/r4Y7kOHVLc8uV5G10U+VCuGfjHlmvmrbe868e6rrxSceHeZbtWLWngQOl//5PrwAHFTZ9evPXoIsE333hD14UXShs2RM7rTL16Zs3A9esV89NPisnKkpglERQRc81EguXLrXVz69dXmaFDzfsOf1x+ufTss3Ll5Chu1ixpyJCAp8k1A39E1PXiaRokKeaGGxTjeV5xcdLo0d73H2Uee8z8vcCozRKJqGtm3TpvWKZ1a/9f01EsAb9mmjQx/TW2b1fMjz8qJjfXNAtDwPnzc3Nk86CyZcuqXbt2+s6n+3Vubq6+++67PCM4C/LJJ58oIyND1xdj/cOdO3dq//79ql27dqlzRgh4FtOXQtcN/WQXXWTFTCdAJMnJkSZMsLZHjLAvF39EYxOhw4elH34wcePGUrgXoEuiWzfzb1aW1TAOiGSPP27FI0dKZcv6f4zLL7diuqMDgbN3r/WBYr16+Qc2XHml1LKliRcvlmbPDm1+CE+ejuiJidJpp9mbC4rP5ZLOP9/EJ05IYbwsVzRxZGFTkoYPH6433nhDkydP1h9//KHbb79dR48e1dChQyVJN954Y57mQh5vvfWWBgwYkG+qeHp6ukaMGKElS5Zo69at+u677/T3v/9djRs3Vl8aEzjDt99asV2FzX79rE9gp0+3JwcgGL74Qtq40cTnny85pct29+6muCeZDz82bbI3n1CYM8cUoiWpf397cwkWT2FTMl0pgUi2YoX05ZcmrltX+uu9rt86dpQ8H9bPni0dORKY/IBo9/HH1v+7gwZJMSf9iR0Tk7cr+qhRkvNWg0MgHTsmbdtm4ubNGcHrND17WrHv4CrYxrGFzauvvlrPPvusRo0apbZt22rlypWaNWuWt6HQ9u3btWfPnjyPWbdunRYtWqSbb7453/FiY2O1evVqXXrppWrSpIluvvlmtWvXTgsXLixwujnCjNttFTbj46UuXezJo2ZN6Zy/2lr8+qu0Y4c9eQCB5HZLzzxjbd9/v325+Mvlyjtq8+237cslVDzTVSXpwgvtyyOYune3YgqbiHS+ozUffLDkU95iYqTLLjNxRkbe1woAJfe//1nxddcVvM8VV0itW5t42TJ+/6LdunVWcbt5c3tzgf98C5tz59qXB7wcW9iUpGHDhmnbtm3KyMjQ0qVL1bFjR+998+bN06RJk/Ls37RpU7ndbvXu3TvfscqXL69vvvlGf/75pzIzM7V161a9/vrr+TqvI0xt2iRt327iLl2k8uXty4Xp6Ig0ixZZ033PPFPq08fefPw1eLDVyOudd6TsbHvzCSa32/pjqVy5vAXASFK/vtSggYkXL5YyM+3NBwiW1aulqVNNXLu2VMCH835hOjoQWJs3m/+HJKlVK/M+qSAxMWatTY9HH2XUZjTzTEOXpBYt7MsDJVOvnrXU05IlZgQubOXowibg5bPeqm3T0D18R0hR2EQkGD/eiu+7z3nTZZKTpUsuMfGePZH9e7lqlXmOklkywM4PeYLNMx39+HHTWAWIRGPHWvEDD5gPLEqjWzepalUTT59u1gcDUHJTplhxYaM1PQYMkNq2NfHy5dLXXwcrK4S7P/6wYkZsOpNn1GZWlrW2PWxDYRORwbew2auXfXlIZu1Bz0jfb7/ljwY42x9/SF99ZeK6dZ3bVTxamgj5Tm2L1PU1PVhnE5Hut9+kTz81ca1a0q23lv6YcXHSpZeaOD097/rkAPzjduedhn7ttUXvz6hNeFDYdD5PAyGJdTbDAIVNOF9urvVikpQktWtnbz4xMVZB4dgx/uCGs/l2Qr/nHvNHsRP17WsKs5IZsblrl735BIvvaNRIL2z6TrOfP9++PIBgeeIJq+gxYoSUkBCY4zIdHQiMFSuktWtN3K2bWSblVC691GrAuGKFac6I6OOZih4fLzVqZG8uKJkePayYdTZtR2ETzrdqlbR/v4l79pRiY+3NR8q7zibd0eFUe/ZI771n4kqVAjNayC6xsdJNN5k4N1c6aQ3miHDwoLXOV5Mm0umn25tPsDVubJYZkMwUoEheOxXRZ+1a6cMPTVy9uvTPfwbu2L17SxUqmPiLL/jdAUrq/fet+FTT0D1cLmnMGGt79GjzvgTRIytL2rjRxE2bhsffrvBfrVpSy5Ym/ukn6fBhe/OJchQ24XzhtL6mR+/eVrOSSF7PD5HtpZespiz//KcpbjrZ0KHW+qBvvRV5f0jMmSPl5Jg40kdrSuZn6ZmOfuSI+ZALiBRPPmmN1rzvPqsQGQjlylkfwB44wMwSoCRycqwPH+LipIEDi//Yiy6SzjnHxKtWWQ3CEB02brQ+UGIaurN51tnMzZUWLrQ3lyhHYRPO57s+VLgUNpOSpK5dTbxxo7R+vb35AP46ckR69VUTx8VJd99tbz6B0LCh+dBBkrZsibz1cHzX1/RtYhbJWGcTkWjDBmvdvqpVpTvuCPw5mI4OlM7cuVazvgsvtJpyFQejNqMbHdEjh+86m0xHtxWFTThbRob16UidOlKzZvbm44vu6HCyt96SDh0y8fXXm9+vSOA7nf7NN+3LI9Byc6VZs0yckJC34BfJWGcTkejJJ60ix7//LSUmBv4cF14olS1r4qlTKaoA/vJtGlTcaei++vWTOnY08Zo1VqMwRD4aB0WO7t2t2WCRNmDCYShswtmWLDENeiQzWtPzwhIOWGcTTpWVJU2caG3fd599uQTapZdKNWqYeOpUad8+e/MJlJUrpZQUE/fsaaaaRoMWLaxRMgsXUpyB823ebK1tXLmyNGxYcM6TmCj16WPi3bulZcuCcx4gEh0/Ln32mYkTE6WLL/b/GC6X9Nhj1vaYMdZyMohsFDYjR9WqUtu2Jvbt+4GQo7AJZ/NdX7NXL/vyKEjz5lKDBiaeP19KT7c3H6C4Pv5Y2rHDxBddFFnTZMqWlQYPNnFmplVAcLponIYuSTEx0nnnmfjAgbzTuwAnGjfOKm7ce29w1zZmOjpQMl9/bZbskaQrrpDKly/ZcXr3ls4918S//27efyHyed6rxMZKZ5xhby4oPc90dLeb2UM2orAJZwvHxkEeLpc1ajMrK+9aoEC4crul8eOt7REj7MslWG6+2YrfeMNq0OFkvstdREPjIF++09FZZxNOtm2bNGmSiStVku66K7jnu+QSqxvv559HxmshEAqlnYbuwajN6JOTI61da+LTT5fi4+3NB6XnaSAkMR3dRhQ24VxpadLSpSZu2lQ67TR78ykI62zCab791uoufc45kblWY7NmVnOvP/6QFi+2N5/SOnDALMshmefWqJG9+YSa7zXKJ+Vwsqeesjrl3n23mYoeTNWrWx8MbNok/fprcM8HRIIDB6z39LVr5y1qlMT551szD9atkz74oHTHQ3jbtk06ccLETEOPDOedZ31ISAMh21DYhHMtWGB9qhlu09A9fNe6mzGD0RAIfyeP1gyndWsDKZKaCM2ZY60tGW2jNSWpTRurucqCBbzOwpl27DBN2ySpYkXpnntCc16mowP++fRTMxNLkgYNsgoaJXXyqM3HHrM+4EDk8V1fM5KWeopmlSqZwSCSWWbAs+Y9QorCJpzLd2p3uE1D90hIsD7J3bXLGgkHhKOVK02RTJL+9re8f/BGmoEDpaQkE3/0kRkB7lS+o8GjaX1NjzJlpC5dTJySIm3caG8+QEk884xVLPnXv6ymWME2YIAVU9gETi1Q09B99ehhviRpwwZpypTAHBfhh8ZBkcl35Pa8ebalEc0obMK5POtrxsRYbwbCkW93dKajI5w9+6wVDx9e+lEI4SwhwfqD5Ngx5079ys2VZs0ycYUK1nS2aMM6m3Cy3bvNer+S+T0ePjx05z7tNKlTJxP/+isfDABF2bbN+j+mWTPprLMCd+wxY6yYUZuRy7fJIYXNyOFpICSxzqZNKGzCmVJSpDVrTNyunVSlir35FMV3BNX06fblARRl2zbpww9NXK2aNHSovfmEwi23WLGnqOA0v/wi/fmnic8/P3oXoWedTTjZM89IGRkmvvNOs/ZlKPmOzp86NbTnBpzE90PQ664L7HI93bpZM9A2bZLeey9wx0b48B2x2ayZfXkgsM49V4qLMzGFTVtQ2IQz+b5ghOs0dI9GjaxP5JYskfbvtzcfoCDPP2+tWTtsmBnRGOnOOks6+2wT//yztGKFvfmUxMyZVhyN09A92re31jNmxCacJCVF+u9/TVy+vPTvf4c+h8sus2KmowOF852Gfu21gT++76jNxx+3lqdAZHC7rcJm/fpmPWVEhoQEqXNnE2/aJG3fbm8+UYjCJpzJMw1dCt/GQb4809Fzc6VvvrE3F+BkBw9aIxbLlTMjhqKFbxMhT+MOJ/Fd3iIaGwd5lC1rvaHcts18AU7w7LNWh9zbb5dq1gx9Do0bS2eeaeIlS8ya4ADyWr3ami3WubNZizzQunSR+vQx8ZYt0uTJgT8H7LNnj3T4sImZhh55fNfZpDt6yFHYhPO43VbjoPh4M/Q73PmOpGKdTYSb116Tjh418dChUo0a9uYTSoMGWaNT33/frLfpFPv3S0uXmrhFC6lBA3vzsRvrbMJp/vxTevVVE5crJ913n325+E5HnzbNtjSAsBWMpkEFOXnUZmZm8M6F0KIjemTzXWeTwmbIUdiE8/gO7+7SxUzdCnddu0qJiSaeNcua8gvYLSNDevFFE7tcoW1aEQ6SkqSrrjLx4cPSZ5/Zm48/Zs82H/RI0T1a08N3nU0Km3CCiROtD1P+8Q+pdm37cvEtbDIdHcgrN9daXzM21nrfEAydOln/p2/fLr3zTvDOhdCiI3pk69jRqkt8/731Hh0hQWETzuO0aeiSWUzYM7Vk/35p2TJ78wE83n/frPEmmT9sGze2Nx87+DYRevNN+/LwF9PQ8+rY0Vq4ncImwt2+fdLLL5u4bFnp/vvtzadVK+v1f/58kx8AY+FCaccOE/ftG/yZLaNHW/HYsVZzMTgbHdEjW3y8GXQlmdeLTZvszSfKUNiE83imoUvh3zjIl2edTYnu6AgPublmfTePESPsy8VO555rvcFcsEBat87efIojN9eM/pbM4vNdu9qbTzhISJDOOcfE69dbBXsgHD3/vLUEyC23SKedZms6crmsUZs5OdJXX9mbDxBOQjUN3aNDB+nii028c6cz1wBHfozYjHxMR7cNhU04S26u9SKRlCS1a2dvPv7wHVHFOpsIB9OnS2vXmvi888yIt2jkcuUdtemEPyCWL7dGVF1wgfmUGKyzCWc4cMBaAiQuTnrgAXvz8WA6OpBfRob0yScmrlBB+vvfQ3Ne31GbTz5pNRmDc3kKmzVrStWq2ZsLgsO3gdD339uXRxSisAlnWbXKTOWWzAtHbKy9+fgjOdkqxK5YIe3ebW8+wPjxVhytozU9brjBmsY8aVL4L9Y/c6YV+zYni3asswkneOEF6cgRE990k1S/vr35eJxzjjVydPZsK0cgms2cKR06ZOLLLjPFzVBo184qou7aJb3xRmjOi+A4cEBKTTUxozUjV/v2Vl+NuXNZZzOEKGzCWZw6Dd3DtwDhW5hAYOzfL336qXnzgKItWWLWjJLMGyzfpRKiUY0a5g8WSdq7N/ynYfq+frC+puXcc6WYv97aUNhEODp0yBQ2JalMGenBB21NJ4+YGOt1MDOT2SWAZNYi9wjFNHRfvqM2x42Tjh8P7fkROHREjw5lylgfsqem5v25I6gobMJZnNg4yBfrbAZPTo5Z0P3KK80bhjlz7M4ovPmO1rzvPqsYFM2c0kRo716rAVmrVlK9evbmE04qVZLOOsvEv/7KhxwIPy+9JB0+bOLBg6WGDW1NJx+mowOWw4elr782cc2aof/bo21b68OGPXuk//43tOdH4LC+ZvTwnY7OOpshw1+ycI6MDGuEWZ06UtOm9uZTEu3bS9Wrm3jOnPCf7uok//uf9PPPJk5NNV3oH3hAysqyN69wtGGDNHWqiWvXDv0IhHB1wQVWkeGbb6Rt22xNp1CzZ1tTWxitmZ/vOpue/zOAcJCWJj33nIljY6WRI+3NpyDnnWet/TZ9Ouv6Ibp99pnVkfzqq81orFDzHbX51FPSsWOhzwGlR0f06OHbQIh1NkOGwiacY8kS6z/zCy4wDT+cJjbWKkSkp8u1aJG9+USKjAxp1Kj8tz/zjOkWvXlz6HMKZxMnWoWxu+6i8YxHTIx0880mdruld96xN5/C+E4PpbCZH+tsIly98op08KCJr79eOv10e/MpSJky1rp+R48y+wHRLdTd0Aty5pnSwIEmTk2VXn3VnjxQOkxFjx5t2khVqph43jzT/BhBR2ETzuH0aegePutsumbNsjGRCPLaa9bouj59pAkTrEYwy5aZqTwffGBbemHlzz9NcxxJqlhR+uc/bU0n7AwZYk3Lf/tts8RBOMnJMaNJJbM4eZcu9uYTjrp2tWIKmwgX6enm/ybJvMY89JC9+RSF6eiAadjjmUZ6+ulShw725fLoo9aAjqefNh86wFk8hc1KlcxsKUSumBipRw8THzggrV5tazrRgsImnMPpjYM8+vb1Fk5iWJi/9NLSpLFjre2nnpKGD5d+/FFq3NjcduSIdO21pvtsero9eYaLV16xphbeeqtUubKt6YSdunWtDx927DDTvsPJTz+ZJlmS+YCnbFl78wlH1apJrVub+Jdf6OyM8PDqq9bv7qBBUpMm9uZTlAsuMB98SdKXX7KkC6LThx9as1uuu87emWKtWklXXWXivXvNezk4R3q6NQCjeXNnzjqEf5iOHnIUNuEMaWlWs4xmzaTTTrM3n9KoUsV07pXkWr9eCXv22JyQw02cKO3bZ+JBg6zGIe3bm6LGDTdY+77zjrl95cqQpxkWjh2z3gzHxkr33GNrOmErnJsI+XZD9xn9jZN4pqPn5ko//GBvLsDRo1bDNpdLevhhe/M5lXLlrGaHBw4w8hnRKRymofvyHbX5zDN8aOck69ZZMdPQowMNhEKOwiacYcECa0qok0drevh0R6/laXgD//35pzW1r0wZ6bHH8t6fmCi9+6758ow+WbdO6thRevFF65P4aPHOO9aIoWuukerXtzefcHXhhVJysom//NKsaRUufAub/frZl0e4Y51NhJP//teMspJMA5JmzezNpziYjo5o9scf0ooVJm7fPjxGWDdvbj7Al8x7uZdftjcfFB8d0aNPixZSzZomnj9fys62N58oQGETzhAp09A9fEZaUdgshbFjranl//iHNfX8ZDfcYEZvtmtntjMzpbvvli65xPpjM9JlZ5vRrR4jRtiXS7iLi5OGDjVxdrY0ebK9+Xj8+aeZii6ZZgJ169qbTzijsIlwcfy4GV3lEe6jNT3697cay02dSvMDRJdwG63pMWqUtQ74s8+aGW0If3REjz4ulzVq88gRib/3g47CJpzB0zjIdzFeJ2vd2luUqL5mDYuAl8SWLaZpkCQlJEiPPFL0/mecYdbd/Pe/rdumTzed66JhisDnn1vd4fv0Mc8bhbvpJit+883wGN3raRok0Q39VJKTrRE2y5aZZRgAO7zxhjXqe+BAqWVLe/MprsRE83+FJO3ZIy1dam8+QKi43VZhMybGzHAJF02bWoXWAwekl16yNx8UDx3Ro5PvOpvR8LemzShsIvylpEhr1pi4XTuzRqXTuVze6eixWVly8WLnv1GjrIYG995rTR0uStmy5hPuGTOkGjXMbXv2mFHADz8cuQ0S3G5rfTeJ0ZrF0bix9Unrhg3hMerPt9kYhc1T84zazMqiKAN7nDhhOhh7OGW0pgfT0RGNfvxR2rrVxL16Fe/9ZSg98ohZJ10y72kPH7Y3H5yap7BZrpzUoIG9uSB0fNfZpIFQ0FHYRPjzfSGIhGnoHj7T0V2zZtmYiAOtXm19ml6tmv+Fuv79zTF69TLbbrf0xBNS9+7Wm9lIMn++tHy5idu2jazfo2C69VYrtruJUE6ONWKzUiVvAzIUgenosNvbb0u7d5t4wADnjZS/5BKrgPL55+Exch0ItnCdhu5xxhlWY8xDh6QXXrA1HZxCZqa0caOJmza1XlMR+Ro3tpaNWrTIXAsIGgqbCH+eaeiSVYiKBBdcIHfZspKkmJkz+YPBHw89ZH2/HnpISkry/xjJyaZQ9PTTpvGQJC1ebAp/n3wSsFTDwsmjNT1dNVG0yy6TqlY18aefSgcP2pfL0qXW+Xv3NuuAomgUNmGnjAxp3Dhr+1TLpYSjatWs5X82bzYfCAKRLCtL+vhjE5cvb94HhKOHH7YKZBMnmgInwtOGDVYDXKahRxeXy5qOfvw4s4eCjMImwpvbbTUOio+PrFFKFSrI3b27JMm1Y4f02282J+QQCxeatTElqV496Y47Sn6smBjp/vvNp2iNGpnbDh+WrrrKNCOKhHX5fvvNmsJcv7505ZX25uMk5cpZoyJOnMg7iiPUfLuh+4z2RhEaNLCmfC1ezCflCK3Jk6WdO0188cXS2Wfbm09JMR0d0eSbb0zHcUm69FKz1mw4Ov10acgQEx8+LD33nK3poAh0RI9uTEcPGQqbCG+bNknbt5u4a1fz6WkEcfuuk+cp1qFwbrf0wAPW9pgxpvhUWh07SitWSIMGWbe98YbUvr3zR6g8+6wV33svI/38dfPNVvzGG/aNrPYtbPbrZ08OTuQZtXn8uLUcAxBsmZnSk09a26NG2ZdLaQ0YYMUUNhHpwn0auq+HH7ZmHD33nGkmhPBDR/To5lvYpKdGUFHYRHjznYYegesC5voWKHwbg6BgX31lRl5JZjrHjTcG7thJSeYN7dtvmy7rkvmUtUMH6ZVXnLlUwK5d1pv0ypWlW26xNR1Hat3aFL4lU+S2oziWkiL9/LOJ27SR6tQJfQ5OxXR02OG996Rt20zcv790zjn25lMadepInTubeM0aaf16e/MBguXIEemLL0xctarUt6+9+ZxKw4bSTTeZ+MgRMyUd4YeO6NGtQQPpb38z8eLF5oN2BAWFTYQ3zzR0KSILm2rcWOmeIsUPP9i7hl+4y8kx62l6PPFE4BfgdrmkoUOlX34xa21KZp20YcPMOkue6UlO8eKLVqf322+XKla0Nx+nsruJkKdpkMQ0dH9R2ESoZWWZ/588nLi25sl8p6NPnWpfHkAwTZtmFR2uukr6ax38sPZ//2fNxHnhBWnfPnvzQX6ewmZsrGkmg+jjWWczM1P68Ud7c4lgFDYRvnJzrbUokpKkdu3szSdIUj3PKydHmjPH3mTC2fvvW+uQdu4s/f3vwTtX06bSkiXS3Xdbt33xhSl2OqU4kpYmvfaaicuWlf71L3vzcbKrr7aKwlOmSOnpoT2/72hu3+UrcGpnnGEahUlmLd3sbHvzQeSbMkXassXEvXtbox2dzLeBCtPREamcNA3do359a8mc9HRpwgR780FeOTnS2rUmbtzYGcVyBJ6nsCmxzmYQUdhE+Fq50lovpmfPwI/OCxOp7dtbG6yzWbATJ/KuUfbUU8Hv7B0fLz3/vJn+Xq2auW3nTnMtjh4d/gWS1183xU3JTNmvXdvefJysYkVr/dX0dKtjaihkZ0uzZ5s4KSkyiiSh5HJZozaPHJFWrbI3H0S27Oy8ozWdvLamr9NPN8tgSNKyZdKOHfbmAwRaaqo1uKBBA2c1K33oIatg9tJL0t699uYDy9atZuaXxDT0aNajhxVT2AwaCpsIX77ra/bqZV8eQba/RQu5K1QwGzNnmpGqyOvVV60mUv37551eGmwXX2yKIZ7Fn3NzTdOi88+3cgo3mZmmKOvx73/blkrE8F2fNJTT0ZculQ4dMnGfPlajABQf09ERKh99JG3YYOKePU3Tw0jhOx192jTb0gCC4qOPrPff110nxTjoT+R69awlc44elcaPtzcfWOiIDskMLvH8/H/6yXzQjoBz0Ks2ok6ENw7yyI2Lk9vz/PbupXPvydLS8o6AGTcu9Dmcdpr5JN93Xc+FC83U9HBcb+zDD03jIEm69FKpWTN784kE55xjGglJZvFvz7IIweY7DZ31NUuGwiZCISdHGjvW2o6U0ZoevoVNpqMj0rz/vhU7ZRq6r5EjzUwjyTS8TE21Nx8YdESHh2eATE6O+RsSAUdhE+EpI8P6A7ROHbPmYQTL9V03j+noeT37rNW059prrelwoRYba6b7LFhgpilJptnT5ZdLd9wRPl3u3G7zPfMYMcK+XCKJy2VPE6GZM624X7/QnDPStGxpOtxK5veXUfEIhk8/tdZSO+88qXt3e/MJtJYtzZq1kvk9YrorIsWGDWYUlWQ+sHbilOHTTpNuu83Ex45Jzzxjbz4w6IgOD991NufOtS+PCEZhE+FpyRKrUNSrV/DXU7SZ27dg4TtCK9qlpkoTJ5o4Lk56/HF785HMuksrV0pXXmnd9uqr0v+3d9/hTZVtGMDvdFNGy2zLKkP2nmUpApUylC1DtgrIUBEVBIHKEgQVBRFUQOBDEJCpIlgKLausAgo4WAVE2jJLW6Az5/vjNTlJm460SU5Ocv+ui4s3yUnytj05SZ7zPs/TsqXtVvHlZu9e4Nw5MW7VCmjbVtn5OJLBg+UVEevWyXWTrCU2FjhzRoybNJGb4JB5XFxEoAkQdZsNV1AQWYJWa/z+FBrqeJ9bNBp51aZWC+zapex8iCxFjU2DTHnvPcDLS4y//FJ8hiBlGQY2HXyRDuXB8GQn62xaBQObZJ+cJA1dr0IFeSXiqVNAXJyy87EXc+eKekGAOBNdrZqy89Hx9RX1mL7+GihSRFx3/jzQvDnw1Vdi1aRSDGsrvfuu4325VlKpUkC/fmJ8/771yxDs2SOPmYZeOExHJ2vatk0+sdWmjfHKDEfCdHRyNJIkBzY1GrlRoBoFBABjx4pxSgrw0UfKzsfZSZJ8IjUwEND1UyDnVKaM/F3/zBmR9UcWxcAm2ad9++SxMwQ2AaB7d3lsGNBwVleviiAhID4MTJ+u7Hyy0qUmnzol115MSQFee02s5lTiDev0afks4FNPAT172n4Ojs6WTYQMV28blqsg8xmeKY+MVG4e5HiyrtacOdNxTyg1bw5UrCjG+/YBDx8qOx+iwjp5Erh8WYyffVYsNFCzKVPkE+4rVgC3bik7H2d265bcJIZp6ATIJz0liZ9FrYCBTbI/iYnAiRNiXLu2+j9k5JfhiizW2QRmzADS08V40iTAz0/Z+eSkbl3RuXr8ePm6rVtFnaYjR2w7F8PVmm+/LTc6Istp314EjQGxsvzKFes8T0aGaFgFACVLAkFB1nkeZ9GoEVC8uBgfPKjsqmpyLLt2Ab//LsYtWwKdOys7H2tycQF69xbjtDSWziH1c5Q0dB0/P/nzaGqqMg03SWBHdMpK10AIYDq6FTCwSfYnMlJ0DAOcZ7UmIOoh6hpc/PqrHNRzRmfPAhs2iHHp0sA77yg6nTwVKQJ88YVITS5ZUlx344ZIf50zR96frSkmBti8WYzLlgWGD7f+czojjcZ41ebq1dZ5nqgoeTVU586Am5t1nsdZuLnJ9Wbj4uQVOkSFIUnA7NnyZUderanDdHRyFBkZwPffi7GHB9C3r7LzsZR33wW8vcX466+BmzeVnY+zYkd0yuqZZ8QJQoANhKyAgU2yP4b1NYODlZuHrbm6yl2PExNtv9rPnkybJo/ffx8oUUK5uZijVy/gt9/ken5arfiiGxwM/PuvdZ978WK52/Prr8upSGR5w4fLgcZvvxVfjiyNaeiWxzqbZGk//yw3+Gra1Dlq4bZrJ2qFAeI4pWv0SKQ24eHA7dti/Pzzon66IyhXTnwOBMTK6g8/VHY+zood0SkrHx+gWTMxPn9ePv6QRTCwSfZHF9h0cRH1bpyJ4ZciZ03xiowEfvlFjCtXlguhq0WlSiK9YNYs+axcRATQsKH1usjeuwesWiXG3t7AuHHWeR4S/P2BF14Q49hY67xWda8BQD7hQYXDOptkSc64WhMQJ3V09ZsfPxYZJkRq5Ghp6IbeeQcoVkyMV64UWURkW0xFJ1MMmwtGRCg2DUfEwCbZl7g4cQYDEGc0HOXsaX516SJ/MXLGOpuSBLz3nnx59mzAy0u5+RSUq6v4khsRIQKdgOii3bOnOIuekmLZ51u+XHzBBICXXxbp+2Rd1mwi9O+/YuUvII6D9lpfVm2aN5ePJ1yxSYW1d69oPAKIGq49eig7H1tiOjqp3aNHonwQIL5rONpq6zJlgDfeEOP0dK7aVIIuFd3PTy5TRWQY2GSdTYtiYJPsi+EL3JnS0HVKlxa1NgHxhnjtmqLTsbmdO4Fjx8S4Xj1gyBBl51NYTz8t6oXqmi0AohZnq1bAX39Z5jlSUoClS8XYxUU0WiLrCwmRuwP//LNlSw3s2SOPHe3LlpI8PIDWrcX4+nXxj6ggJEmsytdxltWaOp06yc24du1y7prgpE67dgHJyWLcr586T6Ln5e235dfpqlXO951CSffuAXfuiDHT0MlQ27aAu7sYM7BpUQxskn3Zt08eO1PjIEPdu8tjZ0pHz8w0rq354YeO0dW7VCnRJX35cvmD82+/iZV4q1YVvjvzunVyjZZ+/YCqVQv3eJQ/rq5idSwgapuuWWO5x2Z9TesxrLN56JBy8yB127dPPglXv76or+xMPD1FTUIASEhgOh2pjyOnoeuUKgVMnCjGGRnAvHmKTsepMA2dclK0KBAUJMaXLrG5lwUxsEn2Q5Lk+pqenkCbNsrORynOWmdz3Tr5g0CbNnINQ0eg0QCvvSbSFnVnbh8/FunMgwbJ3a/NpdUCn3wiX3733cLPlfLv5ZflVVqrVsnNmwojPV0+wVOqFNCyZeEfk2Sss0mFlXW15owZcj1lZ8J0dFKru3dFKQlAZF4YnvByNG+9JRqWAKLZ4dWrys7HWbAjOuWmQwd5zO7oFuOEn8TIbl25Ihe3btfOebs6N24MBASI8f79ztFxNCUFCA2VLy9Y4JhpffXri+DmmDHydZs2ib+5bvWPOXbtAi5eFONnnxU1BMl2AgOBzp3FOCbGMiklR48CiYliHBLiGKuW7UlQkJwCxDqbVBAREcCRI2Jcpw7Qt6+i01FMly5yFsL27SLrgkgNNm8WKxgBcXLZkU9MlCwpgpuAeI3OnavsfJwFO6JTbgzrbDKwaTEOfCQn1WEauqDRyKs2nzxxjhSvL78E/vlHjLt3F7UpHZW3N7BiBbBli9wc69o1EcyfP9+8VX+LFsljrtZUhqWbCDEN3bq8vYEWLcT44kXRsI7IHIad0KdPd96TD8WKiZMvABAfD83x48rOhyi/nCEN3dDEifLnzXXrgMuXlZyNc2AqOuWmVSv5xGB4eOHLkhEABjbJnujS0AHnbBxkyLDOpqN3R3/4UK77o9E4T+fGfv1EY6G2bcVlXY3Rzp2BW7fyvLvm6FGxug8QK0EZBFNGjx5A2bJivH27SHErjF9+Ef9rNHLQgCyLdTapoA4elE821qwJDBig6HQUZ5COrtmxQ7l5EOVXTIz82alePaBhQ2XnYws+PnJjycxMYM4cZefjDHSp6D4+gL+/snMh++PlJZfcu3FDHJeo0BjYJPug1cppnL6+QNOmik5HccHBcrrkzz879pmcRYuA+/fFePBg5/iQqRMYKL4kz5ghp96HhwONGuVZX9XFsLbmO+84Zuq+Gnh4AMOHi3FaGvC//xX8sf75Bzh3ToybNwfKlSv8/Cg71tmkgjIMCLz/vvOu1tR5/nnAzQ0A4LJjh2N/ViHHsGGDPB482Hk+O735pkhLB4D164G//1Z2Po4sOVnOQqtb13n2MTIP09EtjoFNsg9nz8rBrWef5ZeF4sXlVUXXrgF//aXodKwmLg5YvFiM3d2NU/ychZub+Ln37wfKlxfX3b0rVu1OmgSkpma7S7F//4Xmp5/EhQoVRI0oUs4rr8jjlSsL/uV+zx55bNhEjCyrTRu5phrrbFJ+HT0ql8ypXh146SVl52MPSpXSN0HQXLsGH646IXsmScZp6M70Gi5RQpwEB8RiEq7atB7D72xMQ6ecGDYQskSNfmJgk+wE09CzMwxsOGo6+pw5ojs4ILqGV62q7HyU9OyzwG+/GXeDX7wYaN1abhD0n+o7dkCjC569+aZYNUjKqV1b1EgFRPpRVFTBHkeXhg6wtIA1lSgBNGkixufOySfViHJjeOLt/ff1KxWdnkE6ekBBj31EtnD2rFz7sF07kTXjTF5/HShdWow3bDCuA0mWw47olB8tWgBFi4rxgQPMeLAAVQc2ly1bhipVqsDLywtBQUE4ceJEjtuuWbMGGo3G6J+XrmjrfyRJwsyZMxEQEIAiRYogODgYly5dsvaPQQAbB5liWGczj7RkVbp8Gfj6azEuVkw0YXB2ZcoAO3cCS5bIwcozZ0RphrVrxZtefDwq6Wq8FS8OjB6t2HTJwKhR8rggTYTS0oCwMDEuXZod7q2NdTbJHMePA3v3inGVKsCQIYpOx6707KlPtQw4dkzhyRDlwnC1pjO+hosXlxtNSpJzZknZAjuiU364u8vNcmNjWR7CAlQb2Ny0aRMmTZqE0NBQnD59Go0aNUJISAhu376d431KlCiB2NhY/b/r168b3b5w4UIsWbIEK1aswPHjx1G0aFGEhIQgJSXF2j+Oc0tNlb9YVqgA1Kql7HzsRc2aQLVqYnzokGiy40hmzgQyMsT47bdZT1BHoxFn1U+ckF8Ljx4BI0YAQ4fCZeFCuKani+vHjBGFyUl5/frJf4tNm4DERPPuf+SIqMsEAF26sByHtRnW2WQ6OuXFMG1z2jS5BjYBAQH6Jggl/vnHcUvnkLplZsr1Nd3dgRdfVHY+Shk/Xm54uGkTcOGCsvNxROyITvllWGeT6eiFptrA5qeffopRo0Zh5MiRqFu3LlasWAFvb2+sXr06x/toNBr4+/vr//n5+elvkyQJn332GaZPn46ePXuiYcOGWLduHW7duoUd7PRoXceOAU+eiHGnTiyyrKPRyKs2MzKMV7Wq3ZkzwMaNYlymjNytkWSNGgHR0cb1G7/7Dq5LlwIAJDc3kYZO9sHbWzQiAER5Bd3+nV+Gq7KZhm59utIBAAOblLvoaLkcTKVKcrMwkhmko7vs3KngRIhyEBEhVkUB4j22VClFp6OYYsWAyZPFWJKAWbOUnY8j0qWiFynifOUOyDxsIGRRqiwQlJaWhujoaEydOlV/nYuLC4KDgxGVS32f5ORkBAYGQqvVomnTpvjwww9Rr149AEBMTAzi4uIQbFDf0cfHB0FBQYiKisLAgQOzPV5qaipSDRp7JP63Qic9PR3puhVVlCeXvXuhW5uU0b49JCf63en2k5z2F03nznD7L5Cl/fFHZPboYbO5WZPre+/pz6pkTp0KbZEigBP93fPNwwNYvhyaDh3gOm4cNAarADP794fk58ffmz0ZPhzuX34JANB+8w0yX34533d1270bGgCSRoOMjh0t+nfN6zjjlEqUgFu9etBcuADp9Glk3L8v0vQIAPcZQ66zZsnvV5MnQ6vR8Lib1fPPw/3tt8V4+3akT5mi7HzI7tn6GOP6v//pX8cZAwY41XeNbEaNgtvHH0MTHw9s2YL006eBBg2UnlWeVPG+lJoKtytXxOe5WrWQkZkpVguTIux+n6lXD26+vtAkJEA6cAAZqalyc0sCYN7fTpWBzbt37yIzM9NoxSUA+Pn54a8cUmBq1aqF1atXo2HDhnj48CE+/vhjtGnTBhcuXEDFihURFxenf4ysj6m7Lav58+djlokzXQcOHIC3t3dBfjSn9PS2bdCdNw0HkOKI9STzEKarrZeFS1oaunp4wC0tDWm7dmFvz56qP+CVOXcObX/9FQDwuGxZhFeuDK0T/s3NUqwYvBctQrNPPkGpixehdXPDwVatkMTfm91pX60afK9ehUt0NCK/+AKJunISuShy5w46/3eG/0GNGjiUS73owsjpOOOsGlaujKoXLkCj1eLU55/jdtOmSk/J7jj7PlPi6lV0+PFHAMCT0qWxz9+f71c50B37XE+fRvjatXiiS3clyoUtjjEuaWnosmULXACkFymCPW5uTv86rta9Oxr8l+V4Z/x4nHzvPYVnlH/2/L5U/Pp1dNRqAQA3S5TAaSffz+yFPe8zLWvWRMCJE9Dcu4fDK1YgsUoVpadkVx7rmgzngyoDmwXRunVrtG7dWn+5TZs2qFOnDr766ivMMaydZIapU6dikkEKbWJiIipVqoQOHTqgtK7rHOUuMRFuly8DEGe2Og4dqvCEbCs9PR1hYWF47rnn4J5DzS6X4GBg9254PXiAbuXLi0YyaiVJcJ03T3/RY8ECdOnZU8EJqcyQIUjdtg3H4uLQ6pVXctxnSDkuN28CEyYAAJ65dAna/8a53uebb/Rjn4ED0a1bN4vOKT/HGWekefRI34m+ZUoKtBb+vasZ9xnBdcAA/dhj+nS+X+VCOn1a34ykU2IitEzZp1zY8hij2boVbv99OXbt1w9deve26vOpQocOkHbvhiYuDuWPHRPfLxo3VnpWuVLD+5Jmyxb9uHzHjvDn5wpFqWGfcblyRfRVAPBMRgY/i2aRaEbPAlUGNsuUKQNXV1fEx8cbXR8fHw9/f/98PYa7uzuaNGmCy/8F1XT3i4+PR0BAgNFjNs7hQO/p6QlPT0+Tj22vLx67c/Sofom+JjjYaX9vue4zL7ygr7/n/uuvQFCQDWdmYdu3AydPinH9+nAbPpxNUszh7o70AQOQsHs3jzP2asgQUb/q8WO4btgA108+EXWWcvPfCmYAcH3+ebha6e/KfSaLDh30Q9cjR6z2e1czp95nzp8X71kA4O8P1zFjuI/kIr1PH31g03XnTriydjblg02OMZs26YcuQ4fCha9j0UBp6lR9rXb3efMAlfSUsOv3pUuX9EPXBg34nmEn7Hqfee45/dD14EG46sq6EACY9XdTZU6rh4cHmjVrhvDwcP11Wq0W4eHhRqsyc5OZmYlz587pg5hVq1aFv7+/0WMmJibi+PHj+X5MKgCD3zcM6puSAcMzN7oGBmqUkSG6yerMn8+gJjkeHx+gf38xfvgQ+OGH3LdPTZUbg5UtCzRrZt35kSwgAKhRQ4xPnJCb2BEBxp3Qp0zJ+wSFs6tTB0kVKojxoUNAlsUHRIp48EBuzufvb9ysw9mNHg2ULy/GO3eKRmlUOOyITuaqV098/gdEk7OMDEWno2aqDGwCwKRJk/DNN99g7dq1+PPPPzF27Fg8evQII0eOBAAMGzbMqLnQ7Nmz8euvv+Lq1as4ffo0hgwZguvXr+PVV18FIDqmT5w4EXPnzsWuXbtw7tw5DBs2DOXLl0evXr2U+BGdg+4LvYsL8Oyzik7FblWuDNSvL8YnTgB37ig7n4JauxbQ1cBt21bu+E7kaP57XwEArFyZ+7aHDwOPHolxly6qr6GrOu3bi//T04Fjx5SdC9mPP/4AdCmF5cqJAADlTqNBbKtWYixJwK5dys6HCBAnF9PSxHjgQJ5QN+TlZbzg4IMPFJuKw9B1RHdzA556Stm5kDoYxkASE4EzZxSdjpqp9hvUgAED8PHHH2PmzJlo3Lgxzp49iz179uib/9y4cQOxsbH67R88eIBRo0ahTp066NatGxITE3H06FHUrVtXv83kyZPx+uuvY/To0WjRogWSk5OxZ88eeHl52fzncwpxccCFC2LcvDng66vodOyaLggoScCePcrOpSCePDH+wLRgAaDRKDYdIqtq00Y+U3/wIHDxYs7bGhaW79rVuvOi7J55Rh4fPKjcPMi+zJsn3m8B4N13ATaEzJdYwwynbduUmwiRznffyePBg5Wbh7169VWgYkUx/uknuVwUmS8zU/68V6OGSPcnyg/DleQHDig3D5VTbWATACZMmIDr168jNTUVx48fR5BB7cGIiAisWbNGf3nx4sX6bePi4vDzzz+jSZMmRo+n0Wgwe/ZsxMXFISUlBfv27UPNmjVt9eM4n/375XGnTsrNQw0M09HV2GFv2TLg5k0xfv55oF07ZedDZE0aTf5Xbf7XvAYuLkDnztadF2XHwCZl9fffwPffi3GZMsBrryk7HxVJqF4dUqVK4kJ4uCjHQaSUf/4BIiPFuFYtlnoxxdMTeP99+XJoqHJzUbuYGFFeCGAaOpnHoOa7UXyEzKLqwCapnC4NHWBgMy9t2ojafYBYsamm+hsJCcCHH4qxRiOPiRzZ0KHy2fq1a+VUOEPXrsn1mIKCgNKlbTY9+k9goCj3AQBRUab/TuRcPvwQ0GrF+O23gWLFlJ2Pmmg00OrKN6Wnq7suuNJ+/BH45hvxe6SC2bhRHg8ezEyhnLz8svw++MsvLMtSULo0dICBTTJPzZpyvdvDh/lZtIAY2CRlSJIc2PTyEjUXKWdubkBIiBgnJKjrQ8eiRaJ4OyCCPQ0aKDsfIlsoWxbo3VuMb98WX1Kz0q3WBJiGriRdnc0nT4BTp5SdCynr8mU5dbVUKWD8eGXno0KSYV16pqMXzIYNQI8eorbra6/JZRHIPOvXy+OXXlJuHvbOw8N41SZrbRaMYeMgg1J3RHnSaORVm48esSREATGwScq4fFmkiAAiqMk6pnkzbLajllUQsbHA4sVi7OEBzJql7HyIbCmvdHTDwKZhuQmyLaajk878+aJOGgC89RZQvLiy81EhqU0bucPrL78Ajx8rOyG1uXQJGDNGvrx6NbB8uXLzUatz58Q/AGjVCqheXdn52LsRI4AqVcR4717g6FElZ6NO7IhOhWFYZ5Pp6AXCwCYpIzxcHgcHKzcPNenSRU6jUUudzdmzxSooABg7Vv7QROQMOnUy/qJw44Z8W0qKfBwsVw7IUvOZbIiBTWMxMXB57z08tX07NJGRQFKS0jOyjZgYYN06Mfb1BV5/XdHpqJarK6Bbtfn4MfDrr4pOR1VSU0Xn7uRk4+vffBM4dEiZOakVmwaZx8MDmD5dvsxam+bTpaJrNKKmK5E52ECo0BjYJGUYBjZZXzN/ypUDWrQQ499/l1e82qtLl0R9KEDUKDNMcyFyBi4uwCuviLEkiZU3OocOySuZunYV25IyatQA/PzE+PBhecWeM/r5Z6BpU7h++inqrV0Lt+eeE/Wd69UTK3qWLQNOnJAbJDiS+fPl+tUTJ8p1rcl8ffrIY6aj59/kycDp02Jcs6ZcCiEjA+jXT27CSLnTakU6PyAC7f37KzsftRg2DKhWTYz37WMw3RySBPz1lxhXqQJ4eys6HVKhKlXkxRBHj4oFEGQWfpMi29Nq5SXWvr5A06aKTkdV1NQdfcYMOUDwzjtyahqRMxkxQg5arl4tvyYMX7+sr6ksjUaus5mUBJw9q+h0FJGZKVboPP+8qONsSJLESpS1a4EJE0Sjq+LFxYm2ceOANWuACxfUHRC+fl38HABQogTwxhuKTkf1OnYUv0dA1BdmI4S87dgBLFkixp6ewObNwGefySf/b98WAWN+2c3b4cPyyf/OncXCAMqbu7v47K7DVZv59++/cnYD09CpoHSrNlNTRUNLMgsDm2R7Z88C9++LcYcO4mwq5Y9hnU17DmxGRwObNolx2bLApEnKzodIKRUryick/vkHCAsTY119TRcX8cWLlOXM6ej37on3ltmz9Vdpe/bEmQkTkDl6tDj56OZmfJ/0dNFoaflyYORIoH59caKyfXvg3XdFUCYmRj1NTz76SO4+/cYbQMmSys5H7Tw8gBdeEOOEBCAiQsnZ2L8bN0Rnap1PPwUaNRKvu02b5FU8J0+KkwlqeV0phWnoBTdkCPDUU2J84ABfu/nFjuhkCboGQgDrbBYAA5tke0xDL7imTeWUyX377PfM/bRp8njGDDZgIOdm2ETom2+Aq1eBv/8Wl1u3ZhDFHjhrYDM6GmjWTNSABUSgfeFCZG7ejBvBwdB+8YXYJikJOHZMrCgbOhSoXTv7YyUni9/dxx8DAwaIlMZy5URgPzQU+OknID7etj9ffty8CaxaJcbFiok0dCo8pqPnT3o6MGgQ8OCBuNy3r6hJrlO6tFjNWaSIuPztt8CXX9p8mqqRlgZs2SLG3t5Az57Kzkdt3NyAmTPly6GhDKTnBzuikyUwsFkoDGyS7e3bJ48Z2DSPi4uctvr4sX1+Ad+/X24WUKUKMHq0otMhUly3boC/vxjv2iWnvAJMQ7cX9eoBpUqJ8cGDomSKo1u9GmjbVqRhA2J1fViYWHGpa1Sn4+UlUtBff1002PnzT7ESLzwcWLBABGMqV87+HHfvitXJs2eLFXz+/kBgoKgXuHChWBGUmGj1HzVXCxfKqdITJohAEhVeSIgcjNuxQ92lCqwpNFTuQB0YCKxcmf3116iRcY3miRPt8/OfPfjlFzlI3KuXOFlB5hk0SG5+c/AgAyz5wY7oZAkVKsivvRMnsjeSo1wxsEm2lZoqF6M2fPFS/hnW2fz5Z+XmYYokAe+9J1+eM0fUiiJyZu7uIl0XEE0gFiyQbzN8PZNyXFyAp58W4/v3jdPKHE1Kijjh9MorchOgoCDRtMSwK2defHzE9lOmAD/8IAKkcXGipuLMmUCXLqaDhDduAFu3ivt17ChS2OvUAYYPB774Ajh+3HbZCLGxwNdfi7G3N8umWFLRomIfAMRKXdYLyy4sTH4/cHMDvv9evB5MGThQ1CsHxPvIiy/afxNJJRimoQ8Zotw81IyrNs3HVHSyFN2qzYwMUS+Y8o2BTbKtqCjgyRMx7tQp+1lpylvnznJdUnurs7ltm6gBBQANGwIvvaTsfIjsha47OiDX8vP3Bxo3VmQ6ZIIzpKNfvw60aydKIuiMGwdERop6sIXl5ycaEM2aJVZO3bkjSi9s2gS8/bb4HRctanwfXTfZdevEitBWrUTjmebNRUru6tXA+fPWWfG3aJEc3B03jk3uLI3p6DmLixOBN13A6MMPxb6fm/nzgeBgMb59W6yUtteSREp4+FCcWAHEa/m555Sdj5oNGCAH6I4cMc62o+x0KzYDAnI+OUGUH4YnmA8cUG4eKsTAJtmWYX1N3YczMo+Pj/hiCgCXLwMXLyo7H52MDOD99+XLH34od4MmcnbVq2dfDde1K0/u2BNHD2z++quo0xwdLS4XKSKCicuWWW9lvUYDVK0K9O8vam9GRorgw7lzImA5dqwIYLq7G98vPV3Mc8UKcVKgQQPx3vfMMyJAummTCJgWZhVRfLx4fED8LnSr4chynn9ebjy1bRtXfelkZoqg5u3b4nLXrmK/zotuVWfVquIymwkZ27ZNDvQOGJC96Rnln6urcVf0mTO5n+Xkzh1RdgXgak0qvGeflccsA2EWRh3Ittg4yDLssTv6mjVyQ5Snn2aKLVFWhk2EANbXtDeNG8uNziIjHedLnFYLzJsn0oLv3xfXVasmMiiGDrX9fFxdRRf1kSNFE5STJ0VzouPHRSr6sGHiy2HWoP+jR6KUzaefirTc6tXFqqyuXcWX7h9/FKvg8uvjj+UMktdekxvzkeX4+sqf9a5fB86cUXQ6dmPBAvnzcEAAsHZt/k8Ely4NbN/OZkKmsBu6Zb34oqg/DYjmcbomc2SM9TXJksqWFSdzAVEiKCFB0emoCQObZDuJiaIQLiA6qpYvr+x81MwwsGkPdTafPAE++EC+vGABV6IRZdW7t9ygxtWVaXL2xs1NNNMBRIDs8mVl52MJCQmigcb06XKg9vnngVOnREMSe+HpCbRsCYwfL4I8f/wh5r5/P/DRR6LZUGBg9vvduwfs2SPqOffoIYJElSuLFF1d8Ojhw+z3u3NHDgZ5eoqGSWQdTEc3dviwXL9QoxHBOHNLILCZUHa3bsmrm6pXF3WDqXBcXIw/23PVpmnsiE6WpquzqdXy2G4GBjbJdiIj5RpZTEMvnDp15C95kZHKd01buhT4918x7tEDaNNG2fkQ2SMvL+CTT0TwJTSUdZjskSOlo//+u0jz1tWc02hEAHDnTqBkSWXnlh8lSogP95MnA1u2ANeuifTxn34Sr5+uXYEyZbLf759/RABt6lTxWcPXV5xMHToUWLJErDxasAB4/FhsP3q0eE2SdfTsKZ/odPbA5r17ouO0Visuz5wpf4E118CBckCezYREir4u6PbSSzy5bil9+oia+YBYXW8vWWL2hI2DyNIMS1cxHT3fGNgk22EauuVoNPKqzfR0ZYt6P3ggCtrr5vXhh8rNhcjejRghVpbMmKH0TMgURwlsrl8vGpFcuSIulyolmvlMn67u2sflyon3vg8+EF+wb98GYmKAzZtFjcz27YFixbLf7++/xe/kzTeB1q1FOjsAeHiIwClZj5+fXBf8zz+NVzc5E0kS5Rdu3hSX27cv/PvA/Pnyyn9nbybENHTryLpqkx3Ss2MqOlla+/byZzU2EMo3FX+6JdXRBd9cXIwL41LBGNawVPIM6sKFcv2PYcPkejxERGrTooVYWQuI1fBqk5YGTJggVifq6kc2ayYa8YSEKDs3a9BogCpVxGq1RYuAiAjxfnT+vKg9OG6c+JtmbU6k88orlukGT7kzTEffvl25eSjp88/l1dNlyohAnKtr4R7T1TV7M6GxY50v8PTXX6IWHSCOd7VqKTsfR9Orl6hBDYj3Et1+TIIusFmyJGs1k2X4+gJNmojx77+L8jmUJwY2yTbi4oALF8S4eXOmYFpChw7yF/Ddu5X5IHvrlviwDoiVL7Nm2X4ORESW4uEhVvQBotnJ9evKzsccN2+Ks/zLlsnXvfqqqOlXpYpi07I5V1dxgm3ECPG7OHFCNCc6cUJcHjFCFOYPDuZ7lq307i2PnTEd/dQp45XBa9cCFSpY5rFLlQJ27AC8vcXlNWuMjwHOgKs1rUujMT5WctWmLDFRXoVtqukdUUEZpqOr8US7AhjYJNtgGrrleXvLtZn+/Vec0bG12bPlVUHjx5tu7kBEpCaG6eiHDik3D3NERIiVSseOicuensA334h/uhNgzszTU6zcHDdOrOT8/XcgLMz8pi1UMIGBYv8ExIovNZ0wKKzERFEPMz1dXH77beOMG0to2FDs1zpvvaXuUhrmkCRgwwYxdnERv2uyvBdekF/DZ8+KYDqJ1cI6TEMnSzKsv8w6m/nCwCbZhmFgk42DLEfJ7ugXLwIrV4px8eLAtGm2fX4iImtQU51NSQI+/li8r96+La4LDASOHBGrNYnshTOmo0sSMGaMXOu2ZUvr1SHv319eFZqRAfTr5xzNhI4dA65eFeNOndgIzFo0muy1NnVNsJwZO6KTtbRrB7i5iTEDm/nCwCZZnyTJ9TW9vNgx25IMz/rbOrA5Y4bc5f7dd013pyUiUptWreSajPac/pOUJGpLvvuufCzu3FmsiNOtrCGyF4aBTWdJR1+1StTABAAfHzH28LDe8334odxM6M4d8TvXZdU4Kqah20737mLlOwCcO+c8r+PcsCM6WUvx4uJkGCAaIN66pex8VICBTbK+y5fls8Zt2zItzpKqVpXfSI8dA+7ds83zRkeLLrSA6FL71lu2eV4iImvz9pa/vF28KGpE25s//xQfeLdula+bPl3UWy5dWrl5EeWkdm3588rhw0B8vLLzsbbz54HXX5cvr1wpN/mxlqzNhE6dcuxmQunpwKZNYuzlZVzLlSwva63NDz7gqk12RCdrMkxHZ3f0PDGwSdbHNHTr0q3a1GqBvXtt85zvvSePZ8wAihWzzfMSEdmCPdfZ3LxZBF51tb18fIBdu4A5cwrfZZnImnSBJ0kCdu5Udi7W9PgxMGAAkJIiLr/2mkgNt4WszYTWrgW++MI2z21rv/4K3L0rxj16ACVKKDsfZ9Cli8hqAERT2C1blJ2P0nSBTW9voHJlZedCjsewgRADm3liYJOsT5eGDrBxkDUY1tncvdv6z7dvn/w3rVYNGD3a+s9JRGRLhoFNe0lHT08XjUcGDAAePRLXNWwoVmW98IKycyPKD2dJR3/jDTlFtWFD4NNPbfv8ppoJ2ctxzJKYhm57WVdtzpoll0JxNikpcn3X2rVF8yoiS2rdWi5fwjqbeeIrkKxLq5XPMPj6Ak2bKjodh9S2rajDAQB79lj3A4YkAVOnypfnzLFuvSgiIiW0bSt/SbGHBkJxcSLjwTBAMmQIEBUFPPWUcvMiMkfTpvKqpvBwICFB0elYxcaNorYmIFZxbdoEFCli+3kYNhPKzBT1eG/csP08rCU5WV71W6qUWElItvHcc+I9EhArFpctU3Y+Srl4UU7FZ+MgsoYiReTeJDExwLVrik7H3jGwSdZ19ixw/74Yd+jANDlr8PAQDSMAUWPzxAnrPdcPP4jVQQDQqBEwcKD1nouISCklSgBNmojxuXPy+5gSjhwRASFdgNXdXXyRXLdOTjclUgONRl61mZEB/PSTsvOxtMuXjbNYvvxSrORSyocfyp8PHa2Z0I4dIuUfEEFbnmS3nayrNt98E/jsM8WmoxjW1yRbYDp6vjGwSdbFNHTbsEV39PR04P335cvz5zPtgogcl2E6+uHDtn9+SQKWLAGefRaIjRXXVaggApzjxokvl0Rq46jp6KmpokxEcrK4PHQoMHy4snNydRUrSKtVE5ejo0W9T0doJsQ0dGV16iRKo+i89ZZoJuQI+1Z+sSM62YJhAyGmo+eKUQmyLjYOso2uXeWxtepsfvstcOmSGD/zDNN+iMixKVln89Ej8WX9zTfFyjZAfLg9fVpu3ECkRm3aAOXKifGePXK9WLWbPFm8PgGgZk2xWtMeZG0mtG4dsHSpolMqtNu3gbAwMa5cWU6LJttatEgEM3VmzRIBTmfplG64YpOp6GQtLVvKx+8DB5zr5IGZGNgk60lNlbvJVqggPuiRdQQEyPVLz5wBbt2y7OM/fmz84eWjj7haiIgc29NPy2Nb1tm8eFEELzdulK+bPFl0ANYFhIjUytUV6NVLjJ88AfbuVXQ6FrFzp1hdDQCenqKuZrFiys7JUIMGxs2EJk0CIiIUm06hbdok15N/6SVmDylFowFCQ43T0D//HHjlFfmEnCPTBTbd3YHq1ZWdCzkuDw+gXTsx/vdfeZERZcN3ArKeqCi5lk+nTgyEWZthd/RffrHsYy9dKqdC9urFFUNE5PhKlwbq1xfj06eBpCTrP+eOHUCLFsD58+Jy8eKitvFHHwFubtZ/fiJbcKR09Bs3gJEj5cuffAI0bqzYdHLUvz8wZYoYq72ZkGEa+pAhys2DhDffFIFzXYB5zRqxv6WmKjotq8rIAP7+W4xr1OD7M1mXYZ1NpqPniIFNsh6moduWtepsPngALFggxi4uwLx5lntsIiJ7pktH12qBo0et9zwZGcDUqUDv3kBioriubl3g5Emgb1/rPS+REjp0AHx8xPjHH4G0NGXnU1AZGWLF4IMH4nKfPqL+rb2aNw8ICRHju3fF8UZtzYQuXwaOHxfjRo2AevWUnQ8JI0YAW7aI1YsAsH078MILjlNqIqurV0XvAYBp6GR9hnU22UAoRwxskvWwcZBttWgBlCkjxmFhlvuisGABkJAgxsOH8w2ciJyHLeps3rkjahbrTiABognJ8eNArVrWeU4iJXl4iKAHIAL5al2BEhoKHDkixoGBwKpV9p2d5OoKbNggNxM6fRoYM0ZdNdvYNMh+9ekD/PSTXA8wLAx47jk58O9I2BGdbKlpU6BECTFmnc0cMbBJ1pGYKFaaAOKAX768svNxBq6uchOh5GS5vmlh/Puvcd0owzqbRESOzjCwaY06mydOiA+sugwHV1dg8WJRX9OeavQRWZra09HDwoD588XYzQ34/nvA11fRKeWLrplQ0aLi8v/+J3/Os3eSJAc2NRpg0CBl50PZde4sXhu6FdlRUcCzzwLx8YpOy+LYEZ1syc0NaN9ejO/cAS5cUHY+doqBTbKOyEi5sDdXa9qOYTq6Jbqjz5oFpKSI8fjxovskEZGzCAgQ9bMAEYS0VNqmJAErVogGRTdviuv8/cWZ+IkT7XvVF5ElhIQARYqI8Y4d8mdGNYiLE7Uddatm5s1TV+3xrM2E3n5bHemNp07JjTPatwcqVlR2PmRamzbie6Cu2d3vv4vmJ9evKzsvS2JHdLI1w3R0tWY5WBkDm2QdTENXRkiIXLy7sHU2//4bWL1ajEuUAKZNK9zjERGpkW7VZnq6XNutMJ48Ec1Gxo6VS4a0ayfSQg07sRM5Mm9vOcvkzh05pdveabXA0KHA7dvickgI8M47ys6pIF58EXjvPTHOzBTNXuy9mRDT0NWjUSOROVapkrh8+bJ4n/vrL2XnZSm6wKZGA9SsqexcyDkYNhBSw4koBTCwSdahS6tzcREpCGQbJUuKM6WACExeuVLwx5o+XV5BMXmy6BBMRORsdOk/QOHrbF69Ko7Ra9fK102cKM6+BwQU7rGJ1EaN6egLFsgn7wMCgHXr5BPKajN3rqjvC9h/M6GMDJHuD4garf36KTsfylvNmsDhw3Lg7+ZNcaLwzBll51VYWq0c2KxaVV55TmRNDRrI38UjItSV5WAjKn0nJrsWFyfXfmjeXB01hxxJ9+7yuKDp6CdPAj/8IMZ+fuKLNxGRM7JUnc3du8V74tmz4rK3t6iluXix3EmWyJl07y7v+9u22X9DhMOHgZkzxVijESsIdem2aqRrJlS9urhsz82E9u+X6zR2787vFmpRubJYudm4sbh8545Y8GKJPgBKuXlT7vbONHSyFcPFYgkJ8mdJ0mNgkyxPt1oTAIKDlZuHszKss1nQdPSpU+XxzJlykXkiImcTGCjXF46KktPH80urFY3Xnn9e7g5bs6ao2TlwoEWnSqQqvr5yuaJ//gGioxWdTq7u3RPNanSrZGbMMK55plYlS6qjmRDT0NWrXDmROtu2rbicmChKOOzZo+y8Cood0UkpTEfPFQObZHmGgU3W17S9Bg3kguoREfJZxfwKC5P/htWrA6NGWXR6RESqo1u1+eSJaGCRX/fvi4DmrFnyKqjevcWq+Hr1LD9PIrVRQzq6JAEvvyw3+nrmGRHYdBT16wNr1siX7a2Z0OPH8r7h42OcmUTq4OsL/PqrCGgC4r20Rw9gyxZFp1Ug7IhOSmEDoVwxsEmWJUly7SEvL7neI9mORiOv2kxNNe/Ap9XKxeQBYM4cpkgSERnW2cxvOvqZM0CzZsAvv4jLLi6iPt/WraIhGxEBPXuKzy2AeG3YYxr0kiXArl1iXLq0SN92c1N2TpbWr5+craNrJmQvXax//BFIThbjfv3E9wtSH29v8Tp68UVxOT1dZC2sXKnsvMzFjuiklNq1AX9/MT50SLyGSI+BTbKsy5dFOhEgut/xw4cyClpn84cfRI0lQNTDGTDAotMiIlIlc+tsfvutOLF37Zq4XKaMWK0yZYocxCEikab69NNifPGicdDAHkRHA+++K19euxaoUEG5+VjTnDnGzYT69LGPZkJMQ3ccHh6itvQrr4jLWq3IDPvkE2XnZQ7DY1Tt2srNg5yPRiOv2kxONi+DyAkwsEmWxTR0+9Cxo/jwAIg6m/lZAZGeDrz/vnx5/nz1dvokIrKkGjVEIzVANBDJqRtlaqpovvHyy0BKiriuZUtxwojviUSm2Ws6emKiOMGrWxXz9tuOnQZtqpnQ6NHKrqK9e1de9V6hgvHqeVInV1fgm2+ASZPk6955R5R3sMcV24YkSU5FL19elEYgsiXDOptMRzfCqAVZli4NHeCXOCUVKyZ3TvvnH7lLfW5WrRIrbgFxX10dHCIiZ6fRyKs2k5JMd6O8cUOsPPv6a/m6sWPFCs9KlWwyTSJV6t1bHttLYFOSxEmKK1fE5ZYtgQ8/VHZOtpC1mdD69cDnnys3ny1bgIwMMR40iCfcHYVGA3z8sVglrDN3LvDGG2IVp726c0fUzgaYhk7KMKyzaU+1kO0A3x3IcjIz5ReYry/QtKmi03F65nRHf/xYNLfQWbCA6ZJERIZyq7O5b594zzt5Ulz28hLNOL78EvD0tNkUiVSpcmWgeXMxPnMGiIlRdj6AONn7/fdiXKKESJ/VZcI4uqzNhN55R7kv0ExDd1waDTB9uqhhq/PFF8CIEXIw296wIzoprVo18Z4JAEeOiEwhAsDAJlnS2bPyWawOHUSqASnHnDqbn38OxMWJce/eQFCQ9eZFRKRGpupsarViFVdICHDvnriualUgKgoYPtz2cyRSK8N09O3blZsHILJc3nhDvrxypfgy6UzsoZnQtWviizsgVsc1amTb5yfbeP11UbtW973xf/8T+5+unIs9YUd0UppGI6ejp6QAx44pOx87wsAmWY5hfc3gYOXmQcJTT4m6cID4YPjggent7t8HPvpIjF1cgHnzbDM/IiI1qVdPpGkCohvlgwfiRND778upc927i2YjjRsrNk0iVbKXOpuPH4sgnq5pzmuvyV2cnc2cOUDXrmJ896443j1+bLvn37BBHg8ezEwiRzZsmGhgqlsVvXOneD9NTlZ2XlmxIzrZA8N0dNbZ1GNgkyyHjYPsj27VZmYmEBZmepsFC4CHD8V45EiegSQiMsXFRe7efO+eCHTu2iUuazTA7Nnisi74SUT5V6uWHCg4ehSIjVVmHm++Ka/KatgQ+PRTZeZhD1xdRSq4rpnQmTO2ayYkScZp6C+9ZP3nJGX16iVKZ+nqu+7fLxbK6LIB7QFT0ckeMLBpEgObZBmpqWIFCyC6Ftasqex8SMirzubNm8DSpWLs6QmEhtpmXkREamRYZ1MXeClZUpT7mDGDjS2ICkO3alOSxIotW9u4UaSdA4C3N7BpE1CkiO3nYU+yNhP67jvgs8+s/7y//SYHmNu2BapUsf5zkvKCg0XNal9fcfn4cfG+q9SJjqx0+2SpUkDZssrOhZxXpUoiMxMQr5FHj5Sdj53gJ3CyjKgoOW0nOJjpIvbimWfkD6O//JK90+CsWXINm9dfZ+deIqLcGNbZBETDoOhooEsXZeZD5EiUTEe/fFmsRtRZtgyoXdu2c7BX9euLGog6775r/VVCbBrkvFq1AiIjAT8/cfn8eZEtce2aotPCw4fArVtiXLcuv+uSsnR1NtPT5VrETo6BTbIMpqHbJ09Pud7pnTvAqVPybX/9BaxeLcY+PnKReCIiMq1JE/GlCwBeeQU4fFg0CyKiwmvcWF6Zd+CA7VJQU1OBAQPken5DhrD5V1Z9+wLTpomxrpmQtQJNmZli9SwAuLk5b41TZ9awoXh/DQwUl69cgVuHDij2zz/Kzemvv+Qx09BJabrAJiDeL4mBTbKQffvkMQOb9iWn7uiGDS8mTxZpFURElDNXV/FlKz5epKw6e5oqkSVpNPKqzYwM4KefbPO8U6YAp0+Lcc2awJdfcjWWKbNny82E7t2zXjOhgweBf/8V465dgTJlLP8cZP+eekq83/63clrz779oN22a/Fq1NXZEJ3vy7LPymHU2ATCwSZbw8CFw8qQY16kDlC+v7HzImKk6mydOyGle/v6iWD4REeXN1RUoV07pWRA5Jluno+/aBXz+uRh7eoq6msWLW/951cjVVXQq19V2O3sWGDXK8s2E1q+Xx0xDd24VK4pAd9OmAADPpCS4PfecuM7W2BGd7Imfn2hiCYiMTF0jYCfGwCYVXmSkSBsBuFrTHlWoADRqJManTgFxccB778m3h4bKdTiJiIiIlNK6tTjhCgB798rp4dZw4wYwYoR8+ZNPRDo85czXVzQTKlZMXN6wAVi82HKPn5IC/PCDGBcrBrzwguUem9SpbFlg/35o27UDAGiSkoCQENNNUa2JHdHJ3ui6o5coAVy8qOxc7AADm1R4hvU1dfUcyb4YpqNPmiTX4njqKVEnjoiIiEhpLi5Ar15inJIC7NljnefJyABeegl48EBc7t0bGDfOOs/laOrVy95MyPC7QGH8/DOQmCjGffqI7vREPj7I/OknxP+3chMpKeI48f33tpuDLhW9aFE2WyX78PrrYtHS3btAixZKz0ZxDGxS4ek+zLi4AO3bKzsXMs0wHV1XkB0A5s4F3N1tPx8iIiIiU2yRjh4aKneSDQwEVq1iXU1z9OkjarUDol77gAGWaSbEbuiUE29vHJ86FVpdMyndyYmvv7b+cz95AsTEiHGdOjxWkH2oWRNo1kyUCSEGNqmQYmOBCxfEuHlzkaJC9qdVq+zNgZo0YadJIiIisi/PPit/nvzpJ9G13JL27QPmzxdjNzex6qtkScs+hzOYNUs+cW6JZkIPHsjpxX5+xl1/iQBI7u7IXLcOGD36vyskYMwYYOFC6z7xxYtyLVmmoRPZJQY2qXAMu3AxDd1+ubqKejSGFiwQq2yJiIiI7IW7O9CjhxgnJVkuzRkQdcaHDJGDFPPmiZO/ZD5XV7HCskYNcfnsWeDVVwveTGjrViAtTYwHDhRBZ6KsXF2BFStECQSdKVOAadMs38hKhx3RieweoxpUOIYfNtk4yL4Z1tns2BF47jnl5kJERESUE2uko2u1wNChQHy8uBwSArzzjmUe21llbSa0cWPBmwkxDZ3yS6MBPvoI+PBD+br584Hx48Xr3NLYEZ3I7jGwSQUnSSKdBwC8vIA2bZSdD+WuXz/g+edFx8/ly1kfhoiIiOxT585y45idO0U9vcJasED+3BoQAKxbx8wVS6hbV/wudQrSTOjmTSAyUoxr1BDlrYhyo9EAU6cCy5bJ1y1fDgwbBqSnW/a52BGdyO7x3ZwK7vJl4J9/xLhdOxHcJPvl6Qn8+CNw5owoNkxERERkj4oUkes33r0rN/opqCNHgJkzxVijAdavB8qVK9xjkqx3b2D6dDEuSDOhjRvlNOLBg3nynfJv3Djgf/+TG6h89x3Qt6/onG4pulR0Dw+gWjXLPS4RWQwDm1RwurPeANPQiYiIiMhyLJWOfv8+MGgQkJkpLs+YwcY01lCYZkJMQ6fCGDJEHCM8PcXlH38U+2JSUuEfOyMDuHRJjGvWZO1XIjvFwCYVnGGaCRsHEREREZGldO8uVkgBImhRkMYgkgSMHClnGD3zjAhskuW5uBSsmdD588Bvv4lxUBDw1FNWnSY5qB49gF9+keu9HjggFt7cu1e4x71yRU5tZxo6kd1SdWBz2bJlqFKlCry8vBAUFIQTJ07kuO0333yDp59+GiVLlkTJkiURHBycbfsRI0ZAo9EY/evSpYu1fwx1yswUbxiAKBzepImi0yEiIiIiB1KihHzi/OZN4NQp8x9jyRJg1y4xLl0a2LCBK66syVQzoU8/zf0+XK1JltKhg1h4U6qUuHzyJNC+PXDrVsEfkx3RiVRBtYHNTZs2YdKkSQgNDcXp06fRqFEjhISE4Pbt2ya3j4iIwKBBg3DgwAFERUWhUqVK6Ny5M/7991+j7bp06YLY2Fj9v40bN9rix1Gfs2dFag8g3kR0dU2IiIiIiCyhMOno0dGikY3O2rVAhQqWmRflLGszocmTjctXGdJqRbAZEN8lBgyw/vzIsbVsKRpRBQSIyxcuiF4QV68W7PHYEZ1IFVQb2Pz0008xatQojBw5EnXr1sWKFSvg7e2N1atXm9z+u+++w7hx49C4cWPUrl0bK1euhFarRXiWrn2enp7w9/fX/ytZsqQtfhz1YRo6EREREVlTjx5y5/KtW/Ofjp6YKIJkuhTSSZNEajvZhqlmQjEx2TbTHD0K3LghLjz3HBs6kWXUrw8cOgRUrSoux8SI4OaFC+Y/FjuiE6mCKnMx0tLSEB0djalTp+qvc3FxQXBwMKKiovL1GI8fP0Z6ejpK6Zaq/yciIgLlypVDyZIl0bFjR8ydOxelS5c2+RipqalITU3VX05MTAQApKenI133QcpBuYaF6aPi6c88I39wJLPo9hNH31/IcrjPkLm4z5C5uM+Quay2z/j6wvXpp+ESGQlcuoT0334D6tXL/T6SBNfRo+Fy5QoAQNu8OTJnz+ZnVVubPh2up0/DZfdu4P59SL16IePgQcDbW7+fSAZp6BkDBkDi34hyYPYxpnJlYP9+uHXrBs2ffwKxsZCeeQaZP/0EqXnzfD+v24UL0ACQXFyQUbUqjyMqws8y6mfO304jSQWpxK2sW7duoUKFCjh69Chat26tv37y5MmIjIzE8ePH83yMcePGYe/evbhw4QK8vLwAAN9//z28vb1RtWpVXLlyBdOmTUOxYsUQFRUFVxOp1h988AFmzZqV7foNGzbA29u7ED+hfXNJT0fXwYPhlpaGJ6VL49eVKwGNRulpEREREZGDqfrTT2i4ciUA4M9Bg3Axj3TlymFhaLJsGQAg3dsbEZ9+isf+/lafJ2XnlpyM9pMno9h/NQ5vPv00oidNAjQaaNLT0eXll+GRlIQMT0/sWbMGmUWKKDxjcjTuiYloPXs2Sl6+DADI8PLCsfffx70GDfK+s1aL7oMGwS01FckBAQhfvtzKsyUiQ48fP8ZLL72Ehw8fokSJErlu65SBzQULFmDhwoWIiIhAw4YNc9zu6tWrqF69Ovbt24dOnTplu93Uis1KlSohNjY2x1WejkATGQm3554DAGiHDkXmqlUKz0i90tPTERYWhueeew7u7u5KT4dUgPsMmYv7DJmL+wyZy6r7zD//wL16dQCA1KgRMk6ezHnbCxfg1qYNNE+eAAAyNmyA1K+fZedD5vnjD7i1awdNcjIAIHPBAqS+/jrOzZuHoA8/BABoBwxA5v/+p+Qsyc4V6hiTmAjXPn3gcvAgAEDy9ETmxo2Qnn8+9/tdvw73GjUAANru3ZG5fXtBpk4K4WcZ9UtMTESZMmUcN7CZlpYGb29v/PDDD+jVq5f++uHDhyMhIQE7d+7M8b4ff/wx5s6di3379qF5Ppahly1bFnPnzsWYMWPy3DYxMRE+Pj64e/euQwY2mzdvjri4OFG3KClJXFmyJODAq1NtISUlRb9qmCg/uM+QubjPkLm4z5C5rLrP3L4tp4D6+5tuWilJYruMDHG5aFHRpZuUl5IC3LsnXy5dGplJSXBNS9NfBo83lIdCHWMkSTS+TUmRr8vre6zhflusGODjU7DnJsU4y2cZf39/nDp1SulpWJwuvpafwKYqa2x6eHigWbNmCA8P1wc2dY2AJkyYkOP9Fi5ciHnz5mHv3r35CmrevHkT9+7dQ4Cuq5qTi4uLy9ZFHg8eiH9ERERERNYWF5e/7R49Ev/I/hgGOU1dJrIFc77HJieLf0Rkl1QZ2ASASZMmYfjw4WjevDlatmyJzz77DI8ePcLIkSMBAMOGDUOFChUwf/58AMBHH32EmTNnYsOGDahSpYpYeQigWLFiKFasGJKTkzFr1iz07dsX/v7+uHLlCiZPnoynnnoKISEhiv2c9sTf31+c7fqvTg7c3AA/P2Un5QCc5UwSWQ73GTIX9xkyF/cZMpdV95mMDCA+Xow9PICyZY1vf/JErMYCRN33cuXE51SyL/fuGa+YA7iylvLNYseYhATjkx4lSgDFi2ff7sED4PFjMS5bVhx7SFWc5bOMP+tIqzewOWDAANy5cwczZ85EXFwcGjdujD179sDvv0DbjRs34OLiot9++fLlSEtLQ78sdXZCQ0PxwQcfwNXVFb///jvWrl2LhIQElC9fHp07d8acOXPg6elp05/NXp06dQrYtQvo2VNcMXYssGSJspNSufT0dOzevRvdunVj7Q/KF+4zZC7uM2Qu7jNkLpvsMw0aAOfPA2lpwMmTgC6j6vJloGlTebvVq4ERI6wzByqchw+Bli2Bixfl68LCAIOeCUSmWPQYI0nAtGnAggXicmKi+F47f75xQ9y2bYGjR8X48mURACXV4GcZ56LawCYATJgwIcfU84iICKPL165dy/WxihQpgr1791poZg4sPFwem2ioRERERERkcX36iMAmAOzYIQIRqanAwIFy7fchQ4DhwxWbIuXBxwfYsQNSUBA0SUmQatSAplUrpWdFzkajEUFMX1/gvffEdR99JFZyLlsmavhKEvDnn+K2ihUZ1CSycy55b0JkYN8+8b+LC9C+vbJzISIiIiLn0KePPN62Tfw/ZQoQHS3GNWoAX35pvOKK7E+dOsjYtw+Xe/RAxqZN/HuRcqZMAVaskPfBr74SJ0fS00UjMl39zTp1lJsjEeULA5uUf7GxwB9/iHGLFqyHQ0RERES20bAhUK2aGB84AKxZA3z+ubjs4QFs3my6Th7ZnyZNcOHll4H69ZWeCTm7MWOA776Ta/J+/z3Qu7d8wgRgYJNIBRjYpPzbv18eMw2diIiIiGxFo5FXbWZmAv81DAUAfPop0LixItMiIpUbNAjYvh3QNZn5+WfgpZfk2+vWVWZeRJRvDGxS/unS0AEGNomIiIjItgzT0XV69wbGjbP9XIjIcTz/PLBnj7zq++FD+Tau2CSyewxsUv5Iktw4yMsLaNNG2fkQERERkXMJCpK7oQNAYCCwahXrNBJR4bVvLzIUS5c2vp6BTSK7x8Am5c/ly8A//4hxu3byUn0iIiIiIltwcQGGDhVjNzdg40agZEll50REjqN5c+DgQaB8eXG5bl2gbFll50REeXJTegKkEgEBwA8/iFWbzZsrPRsiIiIickazZwNPPQU0acLPpERkeXXriuZBW7cCXbooPRsiygcGNil/ihUD+vYV/4iIiIiIlODpCYwapfQsiMiR+fsD48crPQsiyiemohMREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqQ4Dm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwCYRERERERERERGpDgObREREREREREREpDoMbBIREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqQ4Dm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwCYRERERERERERGpDgObREREREREREREpDoMbBIREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqQ4Dm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwCYRERERERERERGpDgObREREREREREREpDoMbBIREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqQ4Dm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwCYRERERERERERGpDgObREREREREREREpDoMbBIREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqY6qA5vLli1DlSpV4OXlhaCgIJw4cSLX7bds2YLatWvDy8sLDRo0wO7du41ulyQJM2fOREBAAIoUKYLg4GBcunTJmj8CERERERERERERFYBqA5ubNm3CpEmTEBoaitOnT6NRo0YICQnB7du3TW5/9OhRDBo0CK+88grOnDmDXr16oVevXjh//rx+m4ULF2LJkiVYsWIFjh8/jqJFiyIkJAQpKSm2+rGIiIiIiIiIiIgoH1Qb2Pz0008xatQojBw5EnXr1sWKFSvg7e2N1atXm9z+888/R5cuXfDuu++iTp06mDNnDpo2bYovvvgCgFit+dlnn2H69Ono2bMnGjZsiHXr1uHWrVvYsWOHDX8yIiIiIiIiIiIiyoub0hMoiLS0NERHR2Pq1Kn661xcXBAcHIyoqCiT94mKisKkSZOMrgsJCdEHLWNiYhAXF4fg4GD97T4+PggKCkJUVBQGDhyY7TFTU1ORmpqqv/zw4UMAwP379wv8s5FzSU9Px+PHj3Hv3j24u7srPR1SAe4zZC7uM2Qu7jNkLu4zZA7uL2Qu7jNkLu4z6peUlARALELMiyoDm3fv3kVmZib8/PyMrvfz88Nff/1l8j5xcXEmt4+Li9Pfrrsup22ymj9/PmbNmpXt+po1a+bvByEiIiIiIiIiIqJskpKS4OPjk+s2qgxs2oupU6carQJNSEhAYGAgbty4kecvnggAEhMTUalSJfzzzz8oUaKE0tMhFeA+Q+biPkPm4j5D5uI+Q+bg/kLm4j5D5uI+o36SJCEpKQnly5fPc1tVBjbLlCkDV1dXxMfHG10fHx8Pf39/k/fx9/fPdXvd//Hx8QgICDDapnHjxiYf09PTE56entmu9/Hx4YuHzFKiRAnuM2QW7jNkLu4zZC7uM2Qu7jNkDu4vZC7uM2Qu7jPqlt8Fg6psHuTh4YFmzZohPDxcf51Wq0V4eDhat25t8j6tW7c22h4AwsLC9NtXrVoV/v7+RtskJibi+PHjOT4mERERERERERERKUOVKzYBYNKkSRg+fDiaN2+Oli1b4rPPPsOjR48wcuRIAMCwYcNQoUIFzJ8/HwDw5ptvon379vjkk0/QvXt3fP/99zh16hS+/vprAIBGo8HEiRMxd+5c1KhRA1WrVsWMGTNQvnx59OrVS6kfk4iIiIiIiIiIiExQbWBzwIABuHPnDmbOnIm4uDg0btwYe/bs0Tf/uXHjBlxc5AWpbdq0wYYNGzB9+nRMmzYNNWrUwI4dO1C/fn39NpMnT8ajR48wevRoJCQkoF27dtizZw+8vLzyNSdPT0+EhoaaTE8nMoX7DJmL+wyZi/sMmYv7DJmL+wyZg/sLmYv7DJmL+4xz0Uj56Z1OREREREREREREZEdUWWOTiIiIiIiIiIiInBsDm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwKaZli1bhipVqsDLywtBQUE4ceJErttv2bIFtWvXhpeXFxo0aIDdu3fbaKaktPnz56NFixYoXrw4ypUrh169euHvv//O9T5r1qyBRqMx+ufl5WWjGZPSPvjgg2x//9q1a+d6Hx5jnFuVKlWy7TMajQbjx483uT2PMc7n4MGDeOGFF1C+fHloNBrs2LHD6HZJkjBz5kwEBASgSJEiCA4OxqVLl/J8XHM/D5F65LbPpKenY8qUKWjQoAGKFi2K8uXLY9iwYbh161auj1mQ9zdSj7yOMyNGjMj29+/SpUuej8vjjOPKa58x9dlGo9Fg0aJFOT4mjzOOKz/fq1NSUjB+/HiULl0axYoVQ9++fREfH5/r4xb0MxDZHwY2zbBp0yZMmjQJoaGhOH36NBo1aoSQkBDcvn3b5PZHjx7FoEGD8Morr+DMmTPo1asXevXqhfPnz9t45qSEyMhIjB8/HseOHUNYWBjS09PRuXNnPHr0KNf7lShRArGxsfp/169ft9GMyR7Uq1fP6O9/+PDhHLflMYZOnjxptL+EhYUBAF588cUc78NjjHN59OgRGjVqhGXLlpm8feHChViyZAlWrFiB48ePo2jRoggJCUFKSkqOj2nu5yFSl9z2mcePH+P06dOYMWMGTp8+jW3btuHvv/9Gjx498nxcc97fSF3yOs4AQJcuXYz+/hs3bsz1MXmccWx57TOG+0psbCxWr14NjUaDvn375vq4PM44pvx8r37rrbfw448/YsuWLYiMjMStW7fQp0+fXB+3IJ+ByE5JlG8tW7aUxo8fr7+cmZkplS9fXpo/f77J7fv37y91797d6LqgoCBpzJgxVp0n2afbt29LAKTIyMgct/n2228lHx8f202K7EpoaKjUqFGjfG/PYwxl9eabb0rVq1eXtFqtydt5jHFuAKTt27frL2u1Wsnf319atGiR/rqEhATJ09NT2rhxY46PY+7nIVKvrPuMKSdOnJAASNevX89xG3Pf30i9TO0zw4cPl3r27GnW4/A44zzyc5zp2bOn1LFjx1y34XHGeWT9Xp2QkCC5u7tLW7Zs0W/z559/SgCkqKgok49R0M9AZJ+4YjOf0tLSEB0djeDgYP11Li4uCA4ORlRUlMn7REVFGW0PACEhITluT47t4cOHAIBSpUrlul1ycjICAwNRqVIl9OzZExcuXLDF9MhOXLp0CeXLl0e1atUwePBg3LhxI8dteYwhQ2lpaVi/fj1efvllaDSaHLfjMYZ0YmJiEBcXZ3Qc8fHxQVBQUI7HkYJ8HiLH9vDhQ2g0Gvj6+ua6nTnvb+R4IiIiUK5cOdSqVQtjx47FvXv3ctyWxxkyFB8fj59//hmvvPJKntvyOOMcsn6vjo6ORnp6utExo3bt2qhcuXKOx4yCfAYi+8XAZj7dvXsXmZmZ8PPzM7rez88PcXFxJu8TFxdn1vbkuLRaLSZOnIi2bduifv36OW5Xq1YtrF69Gjt37sT69euh1WrRpk0b3Lx504azJaUEBQVhzZo12LNnD5YvX46YmBg8/fTTSEpKMrk9jzFkaMeOHUhISMCIESNy3IbHGDKkO1aYcxwpyOchclwpKSmYMmUKBg0ahBIlSuS4nbnvb+RYunTpgnXr1iE8PBwfffQRIiMj0bVrV2RmZprcnscZMrR27VoUL148z7RiHmecg6nv1XFxcfDw8Mh2gi2vWI1um/zeh+yXm9ITIHIG48ePx/nz5/Os89K6dWu0bt1af7lNmzaoU6cOvvrqK8yZM8fa0ySFde3aVT9u2LAhgoKCEBgYiM2bN+frLDU5t1WrVqFr164oX758jtvwGENElpKeno7+/ftDkiQsX7481235/ubcBg4cqB83aNAADRs2RPXq1REREYFOnTopODNSg9WrV2Pw4MF5NjvkccY55Pd7NTkXrtjMpzJlysDV1TVbZ634+Hj4+/ubvI+/v79Z25NjmjBhAn766SccOHAAFStWNOu+7u7uaNKkCS5fvmyl2ZE98/X1Rc2aNXP8+/MYQzrXr1/Hvn378Oqrr5p1Px5jnJvuWGHOcaQgn4fI8eiCmtevX0dYWFiuqzVNyev9jRxbtWrVUKZMmRz//jzOkM6hQ4fw999/m/35BuBxxhHl9L3a398faWlpSEhIMNo+r1iNbpv83ofsFwOb+eTh4YFmzZohPDxcf51Wq0V4eLjR6hdDrVu3NtoeAMLCwnLcnhyLJEmYMGECtm/fjv3796Nq1apmP0ZmZibOnTuHgIAAK8yQ7F1ycjKuXLmS49+fxxjS+fbbb1GuXDl0797drPvxGOPcqlatCn9/f6PjSGJiIo4fP57jcaQgn4fIseiCmpcuXcK+fftQunRpsx8jr/c3cmw3b97EvXv3cvz78zhDOqtWrUKzZs3QqFEjs+/L44zjyOt7dbNmzeDu7m50zPj7779x48aNHI8ZBfkMRHZM4eZFqvL9999Lnp6e0po1a6Q//vhDGj16tOTr6yvFxcVJkiRJQ4cOld577z399keOHJHc3Nykjz/+WPrzzz+l0NBQyd3dXTp37pxSPwLZ0NixYyUfHx8pIiJCio2N1f97/Pixfpus+8ysWbOkvXv3SleuXJGio6OlgQMHSl5eXtKFCxeU+BHIxt5++20pIiJCiomJkY4cOSIFBwdLZcqUkW7fvi1JEo8xZFpmZqZUuXJlacqUKdlu4zGGkpKSpDNnzkhnzpyRAEiffvqpdObMGX0H6wULFki+vr7Szp07pd9//13q2bOnVLVqVenJkyf6x+jYsaO0dOlS/eW8Pg+RuuW2z6SlpUk9evSQKlasKJ09e9bo801qaqr+MbLuM3m9v5G65bbPJCUlSe+8844UFRUlxcTESPv27ZOaNm0q1ahRQ0pJSdE/Bo8zziWv9yZJkqSHDx9K3t7e0vLly00+Bo8zziM/36tfe+01qXLlytL+/fulU6dOSa1bt5Zat25t9Di1atWStm3bpr+cn89ApA4MbJpp6dKlUuXKlSUPDw+pZcuW0rFjx/S3tW/fXho+fLjR9ps3b5Zq1qwpeXh4SPXq1ZN+/vlnG8+YlALA5L9vv/1Wv03WfWbixIn6/cvPz0/q1q2bdPr0adtPnhQxYMAAKSAgQPLw8JAqVKggDRgwQLp8+bL+dh5jyJS9e/dKAKS///472208xtCBAwdMvhfp9gutVivNmDFD8vPzkzw9PaVOnTpl25cCAwOl0NBQo+ty+zxE6pbbPhMTE5Pj55sDBw7oHyPrPpPX+xupW277zOPHj6XOnTtLZcuWldzd3aXAwEBp1KhR2QKUPM44l7zemyRJkr766iupSJEiUkJCgsnH4HHGeeTne/WTJ0+kcePGSSVLlpS8vb2l3r17S7Gxsdkex/A++fkMROqgkSRJss5aUCIiIiIiIiIiIiLrYI1NIiIiIiIiIiIiUh0GNomIiIiIiIiIiEh1GNgkIiIiIiIiIiIi1WFgk4iIiIiIiIiIiFSHgU0iIiIiIiIiIiJSHQY2iYiIiIiIiIiISHUY2CQiIiIiIiIiIiLVYWCTiIiIiIiIiIiIVIeBTSIiIiIiB1WlShVoNBqMGDFC6akQERERWRwDm0RERERWMGbMGGg0Gmg0Guzfv9+s+/7666/6+7755ptWmiERERERkboxsElERERkBcOGDdOP169fb9Z9//e//5l8HKVEREToA60RERFKT4eIiIiICAADm0RERERW0bZtW1SvXh0AsHXrVjx58iRf93v06BG2b98OAKhXrx6aNWtmtTkSEREREakZA5tEREREVjJ06FAAQGJiInbu3Jmv+2zbtg2PHj0yuj8REREREWXHwCYRERGRlQwdOhQajQZA/tPRdWnoLi4uGDJkiNXmRkRERESkdgxsEhEREVlJtWrV0LZtWwDA3r17cfv27Vy3v3XrFsLDwwEAHTt2RIUKFbJts2PHDrz44ouoXLkyvLy84Ovri+bNm2PWrFl48OBBvua1e/duDBkyBNWqVUPRokXh5eWFqlWrom/fvlizZg0eP34MALh27Ro0Gg06dOigv2+HDh309TZ1/9asWZPtOdLS0vDll1+iQ4cOKFu2LDw8PODv749u3bph/fr10Gq1Oc5vxIgR0Gg0qFKlCgAgNjYWU6ZMQb169VC8eHGza32aqhG6efNmdOrUCWXLlkWRIkVQq1YtTJ48Gffv38/xcZ599lloNBo8++yzuT7fBx98oH8+U3S3ffDBBwCAAwcOoFevXihfvjyKFCmCOnXqYM6cOfqVuzq7d+9Gt27d9NvVrVsX8+fPR1paWr5/FydPnsSgQYNQqVIleHl5oVKlShg5ciT++uuvfN3/8uXLeOutt9CgQQP4+PigSJEiqFatGkaMGIFTp07leL+sfwOtVovVq1ejQ4cO8PPzg4uLCzu3ExERkfkkIiIiIrKar7/+WgIgAZA+//zzXLddtGiRftt169YZ3Xb//n2pY8eO+ttN/StXrpwUFRWV4+PfvXtX6tSpU66PAUD69ttvJUmSpJiYmDy3NdxeJyYmRqpdu3au92nXrp107949k/McPny4BEAKDAyUoqKipDJlymS7/4EDB/L83escOHBAf7/w8HBpyJAhOc7rqaeekmJjY00+Tvv27SUAUvv27XN9vtDQUP3jmaK7LTQ0VJo/f76k0WhMzqVNmzZScnKypNVqpTfeeCPHOXfp0kXKyMgw+VyBgYESAGn48OHSqlWrJDc3N5OP4enpKW3evDnXn2vRokWSu7t7jvPQaDTSjBkzTN7X8G/wyy+/SMHBwdnuP3z48Fyfn4iIiCgrrtgkIiIisqL+/fvDy8sLgHG3c1N0txcrVgx9+vTRX5+amorg4GDs378frq6uGDp0KDZu3Ihjx47h0KFDmDdvHkqXLo3bt2+jW7duuH79erbHfvz4MTp06KBfEdqsWTN89dVXOHLkCE6dOoXt27fjrbfeQvny5fX3qVChAs6dO4fVq1frr1u9ejXOnTtn9K9Xr17625OTk9GpUyf9CsBevXph165dOHXqFLZs2YL27dsDAA4fPowXXngBmZmZOf4+kpOT0bdvX6SkpOD9999HREQETpw4gVWrViEgICDX32VOZsyYgfXr16NXr17Ytm0boqOjsXv3bnTv3h2AvCLRFn755RdMnToVrVq1woYNG3Dq1Cns2bMHXbt2BQAcPXoU8+fPx+LFi7FkyRJ07doVW7duRXR0NHbu3IlWrVoBAPbs2YNvvvkm1+c6e/YsXnvtNZQrVw5Lly7F8ePHERkZiSlTpsDT0xOpqakYPHhwjqsuFy1ahHfffRfp6elo2LAhli9fjn379uHUqVP47rvv0Lp1a0iShDlz5mDJkiW5zmXKlCnYt28fevToYfQ30P3cRERERPmmdGSViIiIyNH1799fvyrtr7/+MrnNb7/9pt9m2LBhRrdNmzZNAiD5+vpKp06dMnn/a9euSQEBARIA6aWXXsp2+1tvvaV//PHjx0tardbk46SmpkpxcXFG1xmutstrpeQ777yj33b69OnZbtdqtdLgwYP123z55ZfZttGt2AQgFStWTDp79myuz5kXw/kDkObOnWtyXp07d5YASG5ubtLt27ezbWPpFZsApL59+2ZbbZmRkSG1atVKAiAVL15c8vLykiZOnJjtcR49eqRfkdmwYUOTz6W7Hf+tgDW1GnX//v36lZwtWrTIdvuFCxf0KzVDQ0NN7juZmZn6lbDFihWT7t+/b3R71r+BqX2DiIiIyFxcsUlERERkZcOGDdOPc1q1aXi94fbJyclYtmwZAGDOnDlo1qyZyfsHBgZixowZAIAtW7YY1WdMSEjAV199BUCs1Pz8889zrP/o4eEBPz+//PxY2aSmpmLlypUAgHr16ulrSBrSaDT48ssvUbp0aQDAF198ketjTp48GY0aNSrQfExp1qwZpk2bZnJekyZNAgBkZGQgKirKYs+ZE29vb3z99ddwdXU1ut7V1RWjR48GACQlJaFs2bJYuHChyfsPHz4cAPD777/j4cOHuT7fJ598An9//2zXd+jQAaNGjQIganBmXbX5ySefID09Hc2bN0doaKjJfcfFxQVLly6Fp6cnkpOT8cMPP+Q4j5o1a5rcN4iIiIjMxcAmERERkZWFhITog4XfffcdJEkyul2r1WLDhg0AgIoVKxo164mMjNQHrPr165fr8zzzzDMAgPT0dERHR+uv379/v74h0BtvvJEtkGYp0dHRSEhIACAaAOX0PCVKlED//v0BAH/88QdiY2NzfMzBgwdbdI4vvfRSjkFdw6Dx1atXLfq8pjz33HMoVaqUydsMg7l9+vSBu7t7ntvFxMTk+FwlS5ZEz549c7z95Zdf1o/37dtndNuPP/4IAOjbt2+OvzsA8PX1RYMGDQAg18DwgAEDrLYPEhERkXNhYJOIiIjIytzc3PDSSy8BEJ3GDx8+bHR7eHg4bt26BUAE8lxc5I9ohqvnAgICsnUkN/xXv359/bZxcXH68ZkzZ/Tjp59+2rI/nIHz58/rx0FBQblua3i74f0MFStWDNWqVbPM5P5Tu3btHG8zDDImJSVZ9HlNqVmzZo63+fr6mr1dbnNu0qQJ3Nzccry9cePG8PDwAACcO3dOf/3169dx584dAMDUqVNz3f80Go1+fzXc/7Jq2LBhjrcRERERmYOBTSIiIiIbyC0dPac0dAC4fft2gZ5Pt0ITAO7evasfF7TpTn7cv39fPy5Xrlyu2xqmRBvez5Bh0M5SvL29c7zNMKCcW1MjW8/FEnPO6+/h5uamD+wa/j0ssf9lVbJkyQI9JhEREVFWOZ+2JSIiIiKLady4MRo0aIBz585hy5Yt+nqEjx49wrZt2wCIVOi6desa3c8wWHX69OkcU5KzqlixouUmXwC5pSznF9OVLaegfw/D/W/mzJl48cUX83W/okWL5ngb/65ERERkKQxsEhEREdnIsGHD8O677yIhIQE//vgj+vXrh+3bt+sb/WRdrQlA32QHAMqWLVuggGWZMmX049jYWFStWrUAs8+bYSp3fHx8rinUhqnKOdWZtDe61ZFarTbX7QwbN9mL+Pj4XG/PyMjQr9Q0/HsY7n/u7u5G5Q6IiIiIlMZUdCIiIiIbGTx4sH612vr16wHIaeju7u4YNGhQtvs0adJEPz5y5EiBnrdp06b68cGDB82+f35X+xkGvY4fP57rtidOnDB5P3tWvHhxAMCDBw9y3e7ixYu2mI5Zzp49i4yMjBxv/+2335CWlgbA+O9RrVo1+Pj4ACj4/kdERERkLQxsEhEREdlIQEAAgoODAQC7d+/G+fPnER4eDgDo0qULypYtm+0+wcHB+hqLS5YsydZRPT86dOigTw1eunSp2fUjvby89OPU1NQct2vWrJm+LubatWtzXNmYlJSEzZs3AwDq1q1r1bqflqRb6Xrx4sUcG/XcvXsXYWFhtpxWvty/f1/f3dyU1atX68e6fRQQaePdunUDAPz666/4888/rTdJIiIiIjMxsElERERkQ7p08/T0dAwcOFAfZDSVhg6IBjoTJkwAABw9ehRvvfVWrqnQ8fHxWLlyZbbHGDNmDAAgOjoaEydOzDFAmp6enq1hjGHg8cqVKzk+t6enJ1599VUAotP5nDlzsm0jSRImTJigb2ik+9nUoH379gCAtLQ0LF26NNvt6enpePXVV/HkyRNbTy1fJk2aZDIlPTIyEl9//TUAEZxu0aKF0e1Tp06Fq6srtFot+vXrh5s3b+b4HJmZmfjuu+9y3YaIiIjIUlhjk4iIiMiGevfujeLFiyMpKQkXLlwAILpEv/DCCzneZ/bs2YiMjMTx48fx+eefIyIiAqNGjULjxo1RtGhRPHjwABcuXMC+ffvwyy+/oEGDBvoAo86cOXMQFhaGc+fO4YsvvkBUVBTGjBmDBg0awMPDAzdv3sShQ4ewceNGzJ07FyNGjNDft3LlyqhYsSJu3ryJjz/+GBUrVkStWrX0afV+fn76NO2ZM2di27ZtuHr1Kj744AOcO3cOI0eOREBAAGJiYvDFF18gIiICANC6dWuMHj3agr9d6+revTsCAwNx/fp1zJgxA3fv3kWfPn3g5eWFCxcuYMmSJThz5gxatWqFY8eOKT1dI40aNcIff/yBZs2aYerUqWjZsiVSU1Oxe/duLF68GBkZGXBzc8OyZcuy3bdBgwb4+OOP8dZbb+GPP/5A/fr1MXr0aHTs2BF+fn5ISUnBtWvXEBUVhR9++AGxsbE4d+6c4g2siIiIyPExsElERERkQ0WKFEG/fv3w7bff6q/r378/PD09c7yPp6cnwsLCMGLECGzbtg2//fZbrisdS5Qoke06b29v7N+/H3379sXBgwcRHR1tVlBx2rRpGDduHGJiYtCzZ0+j27799lt9ILR48eIIDw9H165d8ddff2Hr1q3YunVrtsdr27Ytdu3apaoO2R4eHli/fj26dOmCR48eYfHixVi8eLH+dldXV3z22We4f/++3QU2GzdujAkTJmDs2LEm9x0PDw+sXbsWQUFBJu8/ceJEFC1aFBMnTsTDhw+xaNEiLFq0yOS2Hh4eRuULiIiIiKyFqehERERENjZ8+HCjyzmloRsqXrw4tm7dikOHDuHVV19FrVq1ULx4cbi5uaFUqVJo0aIFxo8fj927d+dY47FMmTKIjIzEtm3b0K9fP1SsWBGenp7w8vJCtWrV8OKLL+K7774z2cRo7Nix2Lp1Kzp37oxy5crBzS3n8+NVqlTBb7/9hi+++ALt27dH6dKl4e7uDj8/P3Tp0gX/+9//cPDgQdV0QzfUrl07REdHY+jQoShfvjzc3d0REBCgDxi/8cYbSk8xR6+++ioOHTqE/v37o3z58vDw8ECFChUwbNgwnDlzBgMHDsz1/qNGjcLVq1cxa9YstG3bFmXKlIGbmxuKFi2KmjVrom/fvlixYgX+/fdfPPXUUzb6qYiIiMiZaaSCVKAnIiIiIiIiIiIiUhBXbBIREREREREREZHqMLBJREREREREREREqsPAJhEREREREREREakOA5tERERERERERESkOgxsEhERERERERERkeowsElERERERERERESqw8AmERERERERERERqQ4Dm0RERERERERERKQ6DGwSERERERERERGR6jCwSURERERERERERKrDwCYRERERERERERGpDgObREREREREREREpDoMbBIREREREREREZHqMLBJREREREREREREqvN//i8iarJ0DeIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходный порог IREth4: 0.24\n" + ] + } + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file