#Тема 4 <Лазарев Данил Вячеславович> import os os.chdir('C:\\Users\\Dannyan\\OneDrive\\Рабочий стол\\python-labs\\TEMA4\\') help(round) Help on built-in function round in module builtins: round(number, ndigits=None) Round a number to a given precision in decimal digits. The return value is an integer if ndigits is omitted or None. Otherwise the return value has the same type as the number. ndigits may be negative. 2.Стандартные функции. 2.1 round(123.456,1) 123.5 round(123.456,0) 123.0 type(round(123.456,0)) type(round(123.456,1)) round(123.456) 123 type(round(123.456)) 2.2 gg=range(76,123,9) list(gg) [76, 85, 94, 103, 112, 121] a = range(23) list(a) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] #значения от 0 до 22, шаг 1, границы 0 - 22 2.3 qq = 'Lazarev' ww = 'Anisenkov' rr = 'Fillipova' ee = 'Jalnin' ff=zip(gg,qq) tuple(ff) ((76, 'L'), (85, 'a'), (94, 'z'), (103, 'a'), (112, 'r'), (121, 'e')) ff[1] Traceback (most recent call last): File "", line 1, in ff[1] TypeError: 'zip' object is not subscriptable 2.4 fff=float(input('коэффициент усиления=')); dan=eval('5*fff-156') коэффициент усиления=5 dan -131.0 2.5 exec(input('введите инструкции:')) введите инструкции:perem=-123.456;gg=round(abs(perem)+98,3) gg 221.456 2.6 abs(-36) 36 pow(2,2) 4 max([1,2,3,4,33,3,2,1,5,0]) 33 min([1,2,3,4,33,3,2,1,5,0]) 0 sum([1,2,3,4,33,3,2,1,5,0]) 54 divmod(7,3) (2, 1) len([1,2,3,4,33,3,2,1,5,0]) 10 o = [1,2,3,4,33,3,2,1,5,0] def f(x): return x*x*x list(map(f,o)) [1, 8, 27, 64, 35937, 27, 8, 1, 125, 0] 3. Функции из стандартного модуля math import math dir(math) ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'exp2', 'expm1', 'fabs', 'factorial', 'floor', 'fma', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'sumprod', 'tan', 'tanh', 'tau', 'trunc', 'ulp'] help(math.factorial) Help on built-in function factorial in module math: factorial(n, /) Find n!. math.factorial(5) 120 math.sin(1) 0.8414709848078965 math.acos(1) 0.0 math.degrees(36) 2062.648062470964 math.radians(2062.648062470964) 36.00000000000001 math.exp(2) 7.38905609893065 math.log(100) 4.605170185988092 math.log10(100) 2.0 math.sqrt(100) 10.0 math.ceil(58.3) 59 math.floor(58.3) 58 math.pi 3.141592653589793 math.sin(((2*math.pi)/7 + math.exp(0.23))) 0.8334902641414562 4.Функции из модуля cmath import cmath dir(cmath) ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cos', 'cosh', 'e', 'exp', 'inf', 'infj', 'isclose', 'isfinite', 'isinf', 'isnan', 'log', 'log10', 'nan', 'nanj', 'phase', 'pi', 'polar', 'rect', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau'] cmath.sqrt(1.2-0.5j) (1.118033988749895-0.22360679774997896j) cmath.phase(1-0.5j) -0.4636476090008061 5. Стандартный модуль random import random dir(random) ['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONST', 'SystemRandom', 'TWOPI', '_ONE', '_Sequence', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_accumulate', '_acos', '_bisect', '_ceil', '_cos', '_e', '_exp', '_fabs', '_floor', '_index', '_inst', '_isfinite', '_lgamma', '_log', '_log2', '_os', '_parse_args', '_pi', '_random', '_repeat', '_sha512', '_sin', '_sqrt', '_test', '_test_generator', '_urandom', 'betavariate', 'binomialvariate', 'choice', 'choices', 'expovariate', 'gammavariate', 'gauss', 'getrandbits', 'getstate', 'lognormvariate', 'main', 'normalvariate', 'paretovariate', 'randbytes', 'randint', 'random', 'randrange', 'sample', 'seed', 'setstate', 'shuffle', 'triangular', 'uniform', 'vonmisesvariate', 'weibullvariate'] help(random.seed) Help on method seed in module random: seed(a=None, version=2) method of random.Random instance Initialize internal state from a seed. The only supported seed types are None, int, float, str, bytes, and bytearray. None or no argument seeds from current time or from an operating system specific randomness source if available. If *a* is an int, all bits are used. For version 2 (the default), all of the bits are used if *a* is a str, bytes, or bytearray. For version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for str and bytes generates a narrower range of seeds. random.seed() r = random.random() r 0.7602265821504725 a = random.uniform(1,3) a 1.6506391388455899 b = random.randint(1, 19) b 8 c = random.gauss() c -2.8896415965159985 d = random.gauss(1,0) d 1.0 d = random.gauss(1,1) d 0.05266125395944099 b =[2,3,1,2,3,4,6] e = random.choice(b) e 2 random.shuffle(b) b [3, 2, 2, 6, 3, 1, 4] k = random.sample(b,4) k [3, 2, 2, 4] p = random.betavariate(1,2) p 0.48596997669197367 p = random.gammavariate(1,1) p 1.2802780104125937 Создадим свой список с заданными распределениями f = [ random.uniform(1,3), random.gauss(1,2), random.betavariate(2,2), random.gammavariate(2,3)] f [2.247730869060465, 3.871209301585315, 0.39715861559850196, 3.959028762460888] 6. Функции модуля time - работа с календарем и со временем import time dir(time) ['_STRUCT_TM_ITEMS', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'altzone', 'asctime', 'ctime', 'daylight', 'get_clock_info', 'gmtime', 'localtime', 'mktime', 'monotonic', 'monotonic_ns', 'perf_counter', 'perf_counter_ns', 'process_time', 'process_time_ns', 'sleep', 'strftime', 'strptime', 'struct_time', 'thread_time', 'thread_time_ns', 'time', 'time_ns', 'timezone', 'tzname'] c1=time.time() c1 1761161531.581906 c2=time.time()-c1 c2 20.391149044036865 dat=time.gmtime() dat time.struct_time(tm_year=2025, tm_mon=10, tm_mday=22, tm_hour=19, tm_min=33, tm_sec=7, tm_wday=2, tm_yday=295, tm_isdst=0) dat.tm_mon 10 dat.tm_year 2025 dat.tm_hour 19 dat.tm_min 33 c1 = time.localtime c1 c1 = time.localtime() c1 time.struct_time(tm_year=2025, tm_mon=10, tm_mday=22, tm_hour=22, tm_min=38, tm_sec=57, tm_wday=2, tm_yday=295, tm_isdst=0) c2 = time.asctime(c1) c2 'Wed Oct 22 22:38:57 2025' t1 = time.ctime() t1 'Wed Oct 22 22:44:33 2025' time.sleep(2) t2 = time.mktime(c1) t2 1761161937.0 7. Графические функции. import pylab x=list(range(-3,55,4)) t=list(range(15)) pylab.plot(t,x) [] pylab.title('Первый график') Text(0.5, 1.0, 'Первый график') pylab.xlabel('время') Text(0.5, 0, 'время') pylab.ylabel('сигнал') Text(0, 0.5, 'сигнал') pylab.show() X1=[12,6,8,10,7] X2=[5,7,9,11,13] pylab.plot(X1) [] pylab.plot(X2) [] pylab.show() region=['Центр','Урал','Сибирь','Юг'] naselen=[65,12,23,17] pylab.pie(naselen,labels=region) ([, , , ], [Text(-0.191013134139045, 1.0832885038559115, 'Центр'), Text(-0.861328292412156, -0.6841882582231001, 'Урал'), Text(0.04429273995539947, -1.0991078896938387, 'Сибирь'), Text(0.9873750693480946, -0.48486129194837324, 'Юг')]) pylab.show() a = [1,2,1,3,2,4,5,8,5,5,5,2,2,2,2,2] pylab.hist(a,bins = 6) (array([9., 1., 1., 4., 0., 1.]), array([1. , 2.16666667, 3.33333333, 4.5 , 5.66666667, 6.83333333, 8. ]), ) pylab.title('Гистограмма') Text(0.5, 1.0, 'Гистограмма') pylab.show() marks = ['BMW','Audi','Lada','Reno'] cost = [20,17,5,10] pylab.bar(marks,cost) pylab.title('Stolb') Text(0.5, 1.0, 'Stolb') pylab.show() 8. Модуль statistics. import statistics dir(statistics) ['Counter', 'Decimal', 'Fraction', 'LinearRegression', 'NormalDist', 'StatisticsError', '_SQRT2', '__all__', '__annotations__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_coerce', '_convert', '_decimal_sqrt_of_frac', '_exact_ratio', '_fail_neg', '_float_sqrt_of_frac', '_integer_sqrt_of_frac_rto', '_isfinite', '_kernel_invcdfs', '_mean_stdev', '_newton_raphson', '_normal_dist_inv_cdf', '_quartic_invcdf', '_quartic_invcdf_estimate', '_random', '_rank', '_sqrt_bit_width', '_sqrtprod', '_ss', '_sum', '_triweight_invcdf', '_triweight_invcdf_estimate', 'acos', 'asin', 'atan', 'bisect_left', 'bisect_right', 'correlation', 'cos', 'cosh', 'count', 'covariance', 'defaultdict', 'erf', 'exp', 'fabs', 'fmean', 'fsum', 'geometric_mean', 'groupby', 'harmonic_mean', 'hypot', 'isfinite', 'isinf', 'itemgetter', 'kde', 'kde_random', 'linear_regression', 'log', 'math', 'mean', 'median', 'median_grouped', 'median_high', 'median_low', 'mode', 'multimode', 'namedtuple', 'numbers', 'pi', 'pstdev', 'pvariance', 'quantiles', 'random', 'reduce', 'repeat', 'sin', 'sqrt', 'stdev', 'sumprod', 'sys', 'tan', 'tau', 'variance'] a = [1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1] statistics.mean(a) 5.2631578947368425 statistics.median(a) 5 b = [1,2,1,1,1,2,3,4,5,6,9] statistics.mode(b) 1 c = statistics.stdev(a) c 2.8253240770486627 d = [1,2,3,2,1] v =statistics.variance(d) v 0.7