{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "oZs0KGcz01BY" }, "source": [ "## Задание 1" ] }, { "cell_type": "markdown", "metadata": { "id": "gz18QPRz03Ec" }, "source": [ "### 1) Подготовили рабочую среду в Google Colab, создав новый блокнот. Выполнили импорт требуемых библиотек и модулей для дальнейшей работы." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "mr9IszuQ1ANG" }, "outputs": [], "source": [ "# импорт модулей\n", "import os\n", "\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.metrics import ConfusionMatrixDisplay" ] }, { "cell_type": "markdown", "metadata": { "id": "FFRtE0TN1AiA" }, "source": [ "### 2) Произвели загрузку датасета MNIST, который включает размеченные изображения рукописных цифр. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "Ixw5Sp0_1A-w" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", "\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 0us/step\n" ] } ], "source": [ "# загрузка датасета\n", "from keras.datasets import mnist\n", "(X_train, y_train), (X_test, y_test) = mnist.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "aCo_lUXl1BPV" }, "source": [ "### 3) Выполнили разделение датасета на обучающую и тестовую выборки в пропорции 60 000:10 000. Для воспроизводимости результатов установили параметр random_state равным (4k – 1)=31, где k=8 соответствует номеру нашей бригады. Отобразили размерности полученных массивов данных." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "BrSjcpEe1BeV" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of X train: (60000, 28, 28)\n", "Shape of y train: (60000,)\n", "Shape of X test: (10000, 28, 28)\n", "Shape of y test: (10000,)\n" ] } ], "source": [ "# создание своего разбиения датасета\n", "from sklearn.model_selection import train_test_split\n", "\n", "# объединяем в один набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# разбиваем по вариантам\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 60000,\n", " random_state = 31)\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "4hclnNaD1BuB" }, "source": [ "### 4) Осуществили предобработку данных для подготовки к обучению сверточной нейронной сети. Нормализовали пиксели изображений в диапазон [0, 1], а метки классов преобразовали в формат one-hot encoding. Продемонстрировали размерности обработанных массивов." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "xJH87ISq1B9h" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of transformed X train: (60000, 28, 28, 1)\n", "Shape of transformed X test: (10000, 28, 28, 1)\n", "Shape of transformed y train: (60000, 10)\n", "Shape of transformed y test: (10000, 10)\n" ] } ], "source": [ "# Зададим параметры данных и модели\n", "num_classes = 10\n", "input_shape = (28, 28, 1)\n", "\n", "# Приведение входных данных к диапазону [0, 1]\n", "X_train = X_train / 255\n", "X_test = X_test / 255\n", "\n", "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", "# размерность (высота, ширина, количество каналов)\n", "\n", "X_train = np.expand_dims(X_train, -1)\n", "X_test = np.expand_dims(X_test, -1)\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X test:', X_test.shape)\n", "\n", "# переведем метки в one-hot\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "7x99O8ig1CLh" }, "source": [ "### 5) Разработали архитектуру сверточной нейронной сети и провели ее обучение на обучающей выборке, выделив часть данных для валидации. Представили структуру созданной модели." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "Un561zSH1Cmv" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\Admin\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, { "data": { "text/html": [ "
Model: \"sequential\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d (Conv2D) │ (None, 26, 26, 32) │ 320 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d (MaxPooling2D) │ (None, 13, 13, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_1 (Conv2D) │ (None, 11, 11, 64) │ 18,496 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_1 (MaxPooling2D) │ (None, 5, 5, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout (Dropout) │ (None, 5, 5, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten (Flatten) │ (None, 1600) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense (Dense) │ (None, 10) │ 16,010 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 34,826 (136.04 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 34,826 (136.04 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# создаем модель\n", "model = Sequential()\n", "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "q_h8PxkN9m0v" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 85ms/step - accuracy: 0.7738 - loss: 0.7503 - val_accuracy: 0.9435 - val_loss: 0.1959\n", "Epoch 2/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9429 - loss: 0.1898 - val_accuracy: 0.9670 - val_loss: 0.1182\n", "Epoch 3/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 72ms/step - accuracy: 0.9603 - loss: 0.1322 - val_accuracy: 0.9743 - val_loss: 0.0887\n", "Epoch 4/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 74ms/step - accuracy: 0.9678 - loss: 0.1057 - val_accuracy: 0.9760 - val_loss: 0.0762\n", "Epoch 5/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9719 - loss: 0.0902 - val_accuracy: 0.9787 - val_loss: 0.0687\n", "Epoch 6/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 71ms/step - accuracy: 0.9749 - loss: 0.0810 - val_accuracy: 0.9800 - val_loss: 0.0622\n", "Epoch 7/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9775 - loss: 0.0719 - val_accuracy: 0.9820 - val_loss: 0.0575\n", "Epoch 8/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 70ms/step - accuracy: 0.9790 - loss: 0.0659 - val_accuracy: 0.9823 - val_loss: 0.0524\n", "Epoch 9/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9812 - loss: 0.0627 - val_accuracy: 0.9827 - val_loss: 0.0525\n", "Epoch 10/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9815 - loss: 0.0574 - val_accuracy: 0.9837 - val_loss: 0.0480\n", "Epoch 11/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9833 - loss: 0.0530 - val_accuracy: 0.9845 - val_loss: 0.0454\n", "Epoch 12/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 72ms/step - accuracy: 0.9838 - loss: 0.0521 - val_accuracy: 0.9853 - val_loss: 0.0438\n", "Epoch 13/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 71ms/step - accuracy: 0.9841 - loss: 0.0498 - val_accuracy: 0.9857 - val_loss: 0.0436\n", "Epoch 14/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 74ms/step - accuracy: 0.9857 - loss: 0.0472 - val_accuracy: 0.9865 - val_loss: 0.0413\n", "Epoch 15/15\n", "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9859 - loss: 0.0445 - val_accuracy: 0.9873 - val_loss: 0.0396\n" ] }, { "data": { "text/plain": [ "
Model: \"sequential_7\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential_7\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ dense_15 (Dense) │ (None, 100) │ 78,500 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_16 (Dense) │ (None, 100) │ 10,100 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_17 (Dense) │ (None, 10) │ 1,010 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ dense_15 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_16 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_17 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 89,612 (350.05 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,612\u001b[0m (350.05 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 89,610 (350.04 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Optimizer params: 2 (12.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model_lr1 = keras.models.load_model(\"best_model.keras\")\n", "\n", "model_lr1.summary()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "0ki8fhJrEyEt" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of transformed X train: (60000, 784)\n", "Shape of transformed X train: (10000, 784)\n", "Shape of transformed y train: (60000, 10)\n", "Shape of transformed y test: (10000, 10)\n" ] } ], "source": [ "# развернем каждое изображение 28*28 в вектор 784\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 60000,\n", " random_state = 31)\n", "num_pixels = X_train.shape[1] * X_train.shape[2]\n", "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", "print('Shape of transformed X train:', X_train.shape)\n", "print('Shape of transformed X train:', X_test.shape)\n", "\n", "# переведем метки в one-hot\n", "y_train = keras.utils.to_categorical(y_train, num_classes)\n", "y_test = keras.utils.to_categorical(y_test, num_classes)\n", "print('Shape of transformed y train:', y_train.shape)\n", "print('Shape of transformed y test:', y_test.shape)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "0Yj0fzLNE12k" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 3ms/step - accuracy: 0.9440 - loss: 0.1897\n", "Loss on test data: 0.18974457681179047\n", "Accuracy on test data: 0.9440000057220459\n" ] } ], "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model_lr1.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ] }, { "cell_type": "markdown", "metadata": { "id": "MsM3ew3d1FYq" }, "source": [ "### 11) Выполнили сравнительный анализ сверточной нейронной сети и лучшей полносвязной модели из лабораторной работы №1. Сравнение проводилось по трем критериям:\n", "### - число обучаемых параметров модели\n", "### - количество эпох, необходимое для обучения\n", "### - итоговое качество классификации на тестовой выборке\n", "### На основе полученных результатов сформулировали выводы об эффективности применения сверточных нейронных сетей для задач распознавания изображений. " ] }, { "cell_type": "markdown", "metadata": { "id": "xxFO4CXbIG88" }, "source": [ "Таблица1:" ] }, { "cell_type": "markdown", "metadata": { "id": "xvoivjuNFlEf" }, "source": [ "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", "| Сверточная | 34 826 | 15 | accuracy:0.987 ; loss:0.040 |\n", "| Полносвязная | 84 062 | 50 | accuracy:0.944 ; loss:0.190 |\n" ] }, { "cell_type": "markdown", "metadata": { "id": "YctF8h_sIB-P" }, "source": [ "##### Проведенный сравнительный анализ, результаты которого представлены в таблице 1, наглядно демонстрирует превосходство сверточной нейронной сети над полносвязной архитектурой в задачах классификации изображений. \n", "\n", "**Эффективность по параметрам:** Сверточная сеть содержит в 2.4 раза меньше обучаемых параметров (34 826 против 84 062), что свидетельствует о более эффективном использовании вычислительных ресурсов благодаря механизму разделения весов в сверточных слоях.\n", "\n", "**Скорость обучения:** Сверточная модель достигает оптимального качества за 15 эпох, в то время как полносвязная требует 50 эпох. Это указывает на более быструю сходимость алгоритма обучения благодаря индуктивным смещениям, заложенным в архитектуру сверточных сетей.\n", "\n", "**Качество классификации:** Сверточная сеть демонстрирует значительно более высокую точность (98.7% против 94.4%) и существенно меньшие потери (0.040 против 0.190). Разница в точности составляет более 4 процентных пунктов, что является существенным улучшением для задачи распознавания рукописных цифр.\n", "\n", "**Выводы:** Полученные результаты подтверждают, что использование сверточных слоев позволяет эффективно извлекать иерархические пространственные признаки из изображений, что критически важно для задач компьютерного зрения. Инвариантность к сдвигам и способность выявлять локальные паттерны делают сверточные нейронные сети предпочтительным выбором для работы с изображениями по сравнению с полносвязными архитектурами." ] }, { "cell_type": "markdown", "metadata": { "id": "wCLHZPGB1F1y" }, "source": [ "## Задание 2" ] }, { "cell_type": "markdown", "metadata": { "id": "DUOYls124TT8" }, "source": [ "### В отдельном блокноте повторили этапы 2–8 из задания 1, заменив датасет MNIST на CIFAR-10, который содержит цветные изображения объектов, распределенные по 10 категориям. \n", "### Особенности выполнения:\n", "### - разделение на обучающую и тестовую выборки выполнено в пропорции 50 000:10 000\n", "### - после разделения данных (между этапами 3 и 4) визуализировали 25 примеров из обучающей выборки с указанием соответствующих классов\n", "### - при тестировании на двух изображениях (этап 7) одно должно быть распознано верно, а второе – с ошибкой " ] }, { "cell_type": "markdown", "metadata": { "id": "XDStuSpEJa8o" }, "source": [ "### 1) Произвели загрузку датасета CIFAR-10, включающего цветные изображения, распределенные по 10 категориям: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "y0qK7eKL4Tjy" }, "outputs": [], "source": [ "# загрузка датасета\n", "from keras.datasets import cifar10\n", "\n", "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "wTHiBy-ZJ5oh" }, "source": [ "### 2) Осуществили разделение датасета на обучающую и тестовую части в соотношении 50 000:10 000. Для обеспечения воспроизводимости установили random_state = 31, что соответствует формуле (4k – 1) при k=8 (номер нашей бригады). Отобразили размерности сформированных массивов." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "DlnFbQogKD2v" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of X train: (50000, 32, 32, 3)\n", "Shape of y train: (50000, 1)\n", "Shape of X test: (10000, 32, 32, 3)\n", "Shape of y test: (10000, 1)\n" ] } ], "source": [ "# создание своего разбиения датасета\n", "\n", "# объединяем в один набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "\n", "# разбиваем по вариантам\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", " test_size = 10000,\n", " train_size = 50000,\n", " random_state = 31)\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "pj3bMaz1KZ3a" }, "source": [ "### Визуализировали 25 примеров из обучающей выборки с указанием их классов." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "TW8D67KEKhVE" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRlV33ejX/PeOdbt+aeR7WkFhqRZJAlIzDEBpIfTpzXIbx+lyEhdoLtBOJkQbJsHMiwFq+HZTt2krV+OCvYjuMhdmwSxzh4AFmAkASS0NQautVzV9d86873jO8fVV11n2efrurCt6sZvh8WS/29wxn22Wefc+o+z36sNE1TURRFURRFURRFGSL2jd4ARVEURVEURVG+9dAHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDx72WDyVJIpcuXZJKpSKWZV3vbVK+CUjTVJrNpuzZs0ds+/o+r2r/U5id7H8i2gcVRPufcqPRa7ByI9lO/7umB41Lly7J/v37h7JxyrcW58+fl3379l3XdWj/U67GTvQ/Ee2DSjba/5QbjV6DlRvJtfS/a3rQqFQqIiLy1LOn1v8dRRF8hp9obDvrqRdf41Byo6ZvJ8YizXWkKT9Z4WdiC5caxTGtJDGWCW9nqM1S2ow43mId6aalJMYrIjG1jUN/VbDpK/z5OMX9ygqET8TBmr4TJhv70Wk15d1vvnu9P1xPrqzj03/5iJTKZRERyVNnGC3gdhQLeWM5loXHjnuP4+DpYFMb83GxfGwvEZHYw9facYjv03nDfx2yHfx+3vOgrnJnExGJ8TgldGyDFPtfI6BtCHEbnaBvroPOG4v7aETfofMo9H2oUwv3S0QkjnDfQpfGC2fj+LWaTXn4rrt2pP+JbPTB//fwqOTXxjqXjlWfxobTPbMdT7axrXO7dkG9//jtUI8fuQ1q7g9pxlgRhT2s20v4nc481H7chrpo4zZWPFxHyTP7fY5e8unY+R6Nmzaea2mKfVKExkwRsSzsU47FYxzVPPbTIgNepYh0unjMmh2szy20RESkHybyC3/62o73v1/5lV+RQqEgIiI+nVPFYhHql156yViO62K7e9SfLl++DHVM41ertQL1wuKCsQ6+F2g2W1DztefQwYNQW/T9mZlLUJeKZWOdpRK+NjY2BjW3zcpKHeqExsiFBXO/nn76aajvueceqJtNPI+effZZ3IYCbsOdd95prKNWG4X65ZfxGA5eH6Ioks9/7i939Bo8mXM2rot0/vk5PN+8gjlOiE33Vxafo3gcrJiWKdhf+ZouIuK6+JkwDvD9PG5DHNE1N4fnVZLiOdCoY70KbkdK33Fcvj+msYqu4X7OvH9JqC18Pwe1ZeF+9DrdjO2EjTBeOnDwCNR/7e3fA/Vd975+/d+dTkf+znv+3jX1v2t60LhyM1SpVKRSqYrIt+6DRvot+qARfT0PGnyzmJhX5p34GfXKOkrl8vqDRiHB41ApYmcvrV2MYTn2zj9o2H/FB43CdXjQSPlBI+AHDbxRXf3QVg8aODgP40Ej2ORBY307duhn/Cvrydu2FJwrDxo05tHYkMsYyD0aFz063jk63nm64OT9a3jQoMEgomOTRrgMP8Z+X6DvF+lBo5jR7/NbPmjQB+hcS43B3TyuxoMGX6yNP65s/qCR8bwkkuCH+DqXpy/tdP8rFArrN838oFEqlaDO582bFX7Q4GXkcnjzEsfYh4MQP88PKiLmvYDn8UMl36DiMs3vU3+lbc56jfeD26LXw/f5QSNrHQ6dq/wZz8MbWt6Prb4vIpKjtuDj5bhmp93Ja7BtWQMPGvgZvl5m3gPyaxbfE2JtUe3QSrP23aF1JLwM3gaqHRrXeRuu7d528+/wpYE/b2xjxnY4fD9jXcs9+MDnM953qX/l83ielEr4sLy63q37n5rBFUVRFEVRFEUZOtf0i8b6hz1fvLWncOMvscbT1dZPOVl/VR+Ef1vgP+byE56ISEp/6Tb/4rf5OoX+6sCfjjK+ntDTrGP8cW7z5zluh6zfVGzaEuN3G2M3cSkW/VqR2fYJ/aJh4V95HGdjmbG788+ovuVKzl7965ZL/avXJ7lIbP76wn8ZK+bxV4+A5Bsd+jXCtrF9IvwDloiInH3lDNT1xUWoJ3dNQ334CP5UyV3HTeivtIl53AI61izY6ZA0qt/Dn1RLCf20HJk/uRb4r290+Pt8vnv4C5Pt8V9KzXM39rC/hdT+MnBMs47vTuDlXPHW/uLlOfxzOdaFxPxrr9vF7fZIQlSkXzBK1Ed9+ouTSz+fi4ikVg3qfrkK9fwsHsszF89BvTiH8pluqwG1lfHLpk3njseyCvqFg6VWtSr+paxcNNuuXMDXRug7rXYH6m4ft6nXx/Ok3TX3o9nBc6FNv7Ittle/E8Wb//J9vQjDUIJgdRtPnz4N71WreJyzDJrNZhPqw4cPQ81/dWfp1OIS9jf+vIjIygrKq7rdzSUcZ8+ehbrTwePI9xJZ9xYjNdz3bg9lTL0+1jMz2Md5mfxLgojILpI5PvPMM1BXqzjmpfQrSUCSxtm5GWMdrofbsdLA60du4C/M/GvbTuC7gz8AUP+im6Nu07xA5krYri6NC7xLKf3CaPs0xmaME/kcrqPZxnZP6A7LuK7Thd1x8fOj4+Yvhb0ubme/xwoU/qUKPx/HuI1Z92f8UquFfdqnayyf/4YKKeNX48uXUKb4xUe/APXC0kZ/7PczboCugv6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dGwJBZrbdpByzAF8KxG2UsYxCHvAs+Wk2a6FTZgbbqISC9C7VuXtLTtCOtl0gRapKscCVBvWvUzdNclnEovsdjnQbMgkDQupbZkXaKIOSuc8YTInhljFgT6uLEGEbFYu0jrHFhGcAMye2LHknjNAMPqQO4JXs58hmZfSSSoPw5ptrCQjkudNLVffORPjXUsXcDpCAsObtnlOuoq77jvu6D+3r/+d6B28jiTTC/jxArJrxBGuF8paU5rNn6eZLNi26bu3yY/QsAzqlj4nX60uZ8lyfRYkA+Jz5Nw47ywQvMc2Qm8Qk78tbYoWKQ3phM7H5jHyuMplnmmJGoXnsI1JC9S1kDr0Qw7xTx6GXJUV2uTUPdpP1o0pWSbvBAiIjHPMhaSP6KNziGeOrvUpWtDaup/PQv79a4pPDeKJfQ/8ZjQI41yLzHXkVDXjx38Tre/OlVrZN2Y/nfo0KH12aVqtRq8xx60iYkJ4/tPPfUU1M8//zzU7LkIQ2yjCxfPbPp5EdPvMDqKU7ay/6Hfx75RoBkDZ2Zw3F1aMqee9Ui7P0rTxPLMVsUiniM8U2SWv+X223Hq6YCmAX/kkc9DnVD/Yg/X3Lzp0Wi1l/EFi32C7sC/d94n5Nr2+uxSKd2FRDQm2xk+TovGFjvF/sOz8lk2+UTpWlUomLewjoPfKVdwHQHNstdYyZjOfXB5NLaNjmbNSIbLjEI6Ngn7QPC45vM085pl7hePONyf2NvEM0hFdG9cyJh+OCY/59zlWaibrY2pqnl5m6G/aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogydbXk0xEo2dPzsK9giE0PETI7kEG+blpEjHe8M6ZO/MDdnrONyj+YzNiLu8fMXaYrviUWcX3t/C+cVft3UiLHOyVHUOPsFnNNbSvgdp4D6UNvBOojN57+E25tTINn/QouweMezck6szTWf6cB2eUZYyA4QdkSC1W0IKaHXL2Ibj/mo3xYRCcgD0KG5/xcp8+KrT34J6jMvfh7qpTMnjXWs9HG7inTs775tCurTX/ss1C9MYV+6/w1/DeqoZ+rjbdZ70n75BTxWJTrtORNgJTY1qxb9TYLzalhrG9Gc6hz/YSSLi4hN5zsnNw/qqJ146/HmeuA5lnhrc7/zPrbp9OmkpoaVfUJODnX1MZ1X3fYS1C75JfwMHTTP2c4JsR7piUsF9GzEo+NQWy4ub+YyjpEiGbr7APXp9XodavZwVCu1TbdZRCShfprm8Bwfmd6L20T+AZ53fmkJ23Z1u/BcKlcwG6G25jcIw1Ce+NrTxvevN2EYrm/jgQMH4L3ZWdRTxzzmi8jdd98NNfsjzp7FTJV9+/bgAizyufTIMyTmvQBvB9d79uA62Hvy2GOPQf3aa68a62w00dvAy+C055EqejgOHbpp020UEel28Gbh7nvugnpxCe9HvvCFv4S6TRktQWjmi8QxpbsX8dwbzNWIb0CWi2M54lwlGZy9phbfhIiIS7lBHMnDXgffIz9Eiv2Vz2kRkXIFx8hSGZfRXcJlcHJ9jkJ+bPJ8JKnpL+R8K86fCfrkjyhSfxzBe8alJcy7ERHp93CZxWIZaosOCJ/b7Dvi8VREJKLtniePRm4gGZx9eZuhv2goiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLDG7b9rqhxAzsQ7K84WwdsTnkj8wqbTJFL4ZY5/yasY7JPO5SPUDjDuX1SdxDM9G5gUASEZGLK2h2ezY0Q07GltF0c5AMhPtzaFSrkL+Jw4OKBdNw7pXRJGZRKFfCh5La3ydnbZYZN2FnFn0mHjB3sbluJ2guflGS3mqYU7l6DN4rltFk7WREEnJnd6i/9ckImiMz6f4JDGaM5szwxsvLDagvzqHh9O6b8dgWXeyQLz3+aaj3jmCC2OFDrzPWmcsIlxqET9WYzGydPpoUu1FGgBEHQhpmXfyOlWL/TCmwKGvyCPZfprSKwZC/hI7VTrFspdJba9DlAMeGy2T4m88YA1tFDCMr5/D49shU2O/iOvJl/DwH34mINFvYB7tkCkwoENTP4zKrZI70imgW52BVEZGIwvAaDdwGPteEwqSKPEFGRp/udtE8ywFVTVpnjto2pbYql80JI8olfG3vFJ7z1loIW6/fl983vn39OXfmzHqgnXX4ILw3c+ks1O0WXodERCybxrT9u6EeHatBffY8msMPHUHT9NEjR4x11Fcw5LbTxmvs3NxFqFstNL5OTuJkBPfe+3qo44zJKi6ex32fu4xheGzy9300uXY6uMyx8ZqxDocmavjSY49APT+Pk4mEFNqW0rjr8WwXIpJyaKngZwYNvFlm3utN0A3XJ/WpVHEso0xESWxz/xKaxIbPYQ6dTG02ZtPkGRl9IQjo2kChf/y+65oBtfg+HwPz3oKH4VwetzNJcJ2OEaaHfYODW0W2nmSBx0yeoGOr5a29iOug7Ro8lxM1gyuKoiiKoiiKciPRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ0tufRsGyx1zR2rsP6LgoDETPwhr+yTKFN5+roj1ikgJIOhbnMdUx93mKnDjWHaFVd1Nc1SPeb5DE4JVfCet4z9XzLJEW8QDpLr4U661HSak41UKdY9swgqXFa73gBBZEjxRzVqKtOfQx3cXOoiRYRYVl0YrHvY9Cjsb2sx2Hw0st/IYXCqvbx1mPoK9gzcRzqJCvIjDw/ZMGQqQnUBu9/8/dA3VnAdfy/T71mrOP1N+Oxf8db9kEdJqj5/vJzeNy6SxgQ+fSf/jeore/6PmOde4/eS+sgDSrJPfnM7LGmNQsyepj6TFoJv52SXj5jfEiTLTSlA5rk9Abok0VEPnumJd7aiRKwXjiP+n67aHoAvCq+5o+gZycmTXJEcuA2+WeqGT6DCr2Wp3GW9eoR6YE5wDFH4XvXEnTHeuESeR8CWiZrs7M8Gvza2BieSxXyxrFHw3HYJ2T2oTJ5aKbK2CeDxqqfwLdx+3eKF55/TnL+6tgfBni9bLfrUM/Nor9CRGT/AfR11MYwIHS5gf6KNmnoxwW9cPx9EZGxyV1QLy3OQ92ha3S/jx6Odgc9G6UyXsump8x1Bl1siz75ztiX1Gzhfr300ou0TvP6ODmFIX+dDm737Axut2Njn7bI12Zn+BzZPxD00Xc0qLuPM7wC1xvHTuXKboxUsY0KRTy/gsQc4ztdPC79LoX80S7ZFPBXLOD56dvmcWp18Tj06dq1exddc+kmsd7AMTaIcL9yrjnmCgXIejTWhBT6xwF+PQ9r9veIiNh0beAxMwxwuyMK8nUMz4zZfxy6b4rIBxL2N5aZ5dW7GvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZZo6GtT5/fpqgvsticV2GfHCmhRqyr8zVoZ5toV+CF5EnrWY9Yy79dhc1ZZzNERvZHaSJpsn7c6Sj9DyzyVyaGzqlOZIDmqe+SP6GNs1V/CrNnS8iYtGulvrYViN1/M64jTrFqoPzhu8p0qTXIjJeoTn+89je7oDPI6X8kZ3Ad23x1zSEheI0vJdY2MaBKQ+VhHwEMWnXrR7qdnMx5WrQvOd333GPsY6bJ16F+nWT2OcvN7H/HdiFeuPTc+ehbs/gnPN/+Ue/Zqzz6HfMQX3r69+EH7BRS5lSVoNFfZ61xCIilnE28t8ouGY9KGWOcEiGbG9e7hvF5dLIeoaMT3r+fB5rO8PHlJDmOKZ2Sy1qN5qc3i7jOhLP/FtRRO3o8JjFxzeiZZAu12fPWcb87DwPPGdecM1zuPN8+kXymImIjJCf5eDBQ1DnaZxlDTz3rzDDm1TJYftXHBxXO8nauJrcGI9GFLXFtle3+9VXT8B7XRqT2aMiIhLQmJecOgP1zOwC1A55Awukkb94EccnEZGpKfRxFAp4LMfGJnCdM5h58fzzz0HdpxyYVqNurNPIhvGxj6Yp9oVOD88Bz8fjXq+b6xAL+0+esqxiul6U6Fzt0fGxMv7O2ybvCPfZanXDhxTfAJ9arZYTZ238KBTY84jn9FjF7H+VMl4HopA8GyEelyTG93M0dtVy5liU9in3wqZr7ih6LCLyt55s4TnQ5TyU2PQm9MkvzP6JKo1nTbrH65IfmfNuRERium6zz5E9pxbd60YRft+xM9qO/CwR9enB1rfUo6EoiqIoiqIoyo1EHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2WaOhiX2mhcjIV+CS3rY5a4pkv8/i6g/XKL5iS3ScnqkU9tVws3tpaaOLaTsB590aOyxGEtx/u3LpBlkjSrvt4iIZfhAUEc4Rt+ZcvD9OmndJjPm3z9PHphJH2uX5HKnaJ76NERN4NcWTR9ImebHnyC93uSANrvb3nmPxpGDD0qptKqLrYxjdsQy5Qs4kZmxwtJKL0X9YTHG7+SoTi3sv+/5G7gNIiL5PuoiGzNfgjrq43Fr0pzdEekuE5fyJzo4z72IyMtf+DTUQQs/c9sbMA/EL2LeQLqJDvPqr1Jjplt5NGg8sEx9Mdu8eJ7uQZ+I6RnZGXLVirhrYtg8ZdF4Ps2bn7GNPKYVyAdVraIPYXwcPTzFMubh5HxTB22zZyzZPAPFI39Fn8YOztXgvAoRkZiWyZkXrsuaedwm30cvSpn2U0RkchLbIk9+AfYk5PLkb6E54oMMI1exg36nYoR67TRaXvvvNWTPXAfqzTnx1/TfC6cW4b2YBjjOLhERSU+fhfrW47dDzcc2X8BlxJS5kuVl4ONQKmEfHx9Hf53vvQL1yy+/DHVE43ASmmN7FLBnBs89zorpB5wlw3pzc3zqdel6QD7VlDyAvo/9s9XCZVoZY2BIHpocebQGT5ttSOSHhuM64q75JNg7k7dxW4t502dVpD4ZhnhOLizhfUUc431K1MO6XMO+JCJSG0WPUJ2vmT08Ll6E2zlq4Tr8CP2ubcf0Z7l0A5bLYd8YGcH99vI4Hi6vkKe2Zp67bbrn6rYxY8XwWlIHcSnXxXMzfCB0LeAr2OC1g8fwzdBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwalrWho+a59sl2IC/TfNAiIifqOJe6QxqvJELNLGdzJEI5GguoURURWU5obmeaI9kK8P16jNsUOKibZBWlzULyjNfSGNdRIr2e5+B+1lI8DDzvs4iITVrGKdKHH0DZoXRj8qakqPm7lOGhOdNF3epJypWodjbaKuia+r7rzcjIcSmXV/fDdrEvRAlpcDO+76XYrjlBrWWBtOhJSH0jRY2kE6G/R0QkaKCmm2S8styYh/r5V3CZHh36kPqnY+N+iohMVHE7Xn3sD6Hu9FD/+eDb34sLMHxHWfOzc7/fwiPBwS+0zKxvO6ShTyP+zsb7GVEfO0IxX1j3G/Bc6Q5NZJ7l0SiRr6BarUI9UqthTdkR7NHwHMonETHsM+zJaDRQ29tqYf8JKJ/IJi1vhbZZRCQkbS/rd1m3H1NWB7+f5QPhbA2HfCCc78HXD9a/9zqmz8xp4vkrOWwrx+qv/dc8D3eCfr8pSbK6n2GEWvJmA8frMCNnamISNe187NtdHBOP3DQK9czMZainp02NPGvJ2UdUyOO16K47MY/ohRe/BvWJl7G2YvPaxT6kQgGvjxXyPVap7wQ09i8vmV64HmUdcM3RB2mK2xnT/U0UmuNDyicvMZhXk9yAHI2gF0q8NvjaNAgXxvD89F08BiIiDt1y1io4liQJNmI/wnEgpDZbjsaMdUyV8LXxcbo3iPk8wf45UqYxt4XX7NGM/ufT/RiPfz3ys/iU1xOT76hcMnPOci4e716XvMER3ZPTtSGle2MeD1ehPklj/6AvJ9mGR0h/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk628vRsFf/LyJi0bzTloP1c8+/aHz/i599EpfXRu14v406tWIZ9cz7bjkAdWkK51UXEalTNoc3PYHrFNS+BWQu8WiuYduhJsrQhrMej9sin7CWGLV28/T5SmI+/x0pkt6OlnGqg7VLvg+XfSF502MxSju3Qp6GxN/QYCaOOX//9cZ1q+K6qxr1HGcB0GfDjIwVh/wOUf8S1in2Ddbcp9TnwyhDK9xp0Cu4jLCHGugmZZdEKeomd4+jhtXNmL5/mbI4ODvm9DOfh7pS2w/13W94GLchQydsCes5qX2NOeF5Q0mvm5oaVD6PUu5/6cZ+xqmZA7MTVCqVdW8GewZ4+0Njbn+RQhHHtHwe28WlPsf+CmOsyTCr2Fv8/YgzLjpdPC86HdQwFygHgbdZRGRsDHXRnIvBvhBeB7dljbwqIqafheEsJ4c8NEL6b9/F/RYR8VI8Zh7n2qy1d3SDTEK2nYi95uGrjpBnhfa/vozXVxGRSvkY1AHl/sxcxDGxTddozup4y1veaqwjjtBHxF6RQh6vHaPUd9708JuhXmkuQ91YJh+NiHjO5n2e/To8wvHRzMpx6bQXqcb+Ux3F77DXyciasczrB/u+eMPiAd9Hku68R8Oy7PW29ChjTOi+JcrIqUkp3yoln0nOw2VYfg3qTgc9Q+dWzOPeoGvN5C7056Q0jvQT9IEkfTyuRR+zdarxBWOdZfLhWuR7rNexD6cW+fmoQwaB6TItVLB/xeQ7iiLOtqJ7j/Dqnscr9Gm9DhuPKhvrjOJETtfRs3U19BcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUoaMPGoqiKIqiKIqiDJ1tmcHFknVzUpygaWRxCU1jjZdOGF+vnXkZ6pVZNNnEHTR4dskY2Z15DWp7xAx1imI0YO151w9AXTlyE9T1Hu7HHBklrS1qEdPIk9ALHGxCuSpC/l/JOaYZd7KAh+pgEdum7OJCIzI+1ikQ5kLPNNOWKZwlb+N2xPHGhprm4OvPfP0l6YSrZtp9DpuN8bh026YRstk5C3Wjjv3p4OhtUO8ZP4IL4OPsUEqiiHRifM2PcDtHS9hue8fQMHe5QQauJprFS2zCFpGujetsOBSeRuGZT/75p6EemdoH9ZGb8RwREYnIxMdJhBw0laZsdqMwNcO+L5LEuN2cI2gnG8uwre0NXcMiTVNJ10ydLk0UwZMHcKCciIjvoUk6ovCnOpmmOfDRX8EgsawAUTYi+h5uZxCg2bFSxWNRraHhkrqwpKm5zgIFEdrUFr0ujjdJDvd7dKSGy8ub51a/TxMpNPAc59DYCoUA+hQcl7jmuVTw8TWX2re3dkBSPjA7RKvVFs9b3UY+zp6P5+D0rprxfT4O3UWasICCF5fmzkBdKOI1t9PC8UlExJqkSVqoDWO64PkUrvf6+x6AOqAL5v/+9O8Z62zU0SDOgZAcLlcq4X6MUkBkjc4BEZG90xhuePbcOahbHQ5QxP6ZUKisnzfHB8cjUzH10XTAQM6TZewE5cqIuGvjWqVS3PSz7ZY52UKZDMwjFNiXL+B1pt6hEFc6rnFqXgdsCqrz2KTeoLBfwWPdbuM44Xm4zkKRJ3wRmRjFcb1F11wOAez1sS+MFPC4N2Pz/qVcMicogGWGeC4HfdzuKk2uxNciEZFGE68vMZn1fX+jbcOM4MKrob9oKIqiKIqiKIoydPRBQ1EURVEURVGUoaMPGoqiKIqiKIqiDJ1tCZ0de/X/IiJLy+ivePKJJ6DO58xnmL/3nndA/V8/9ftQX2yiri2JNzc3tBdMHVvYQ41ZRB4MxyPteEghW4KatCBBHZqfGWZGukoOX6FlFijIp8o6bA5JEZHLpLfzSHPKfgo+sLzdo46pzxvN47dm+7id/YFlsB59Jzj52uekUFjd7sszGAi5uIL62Khv6kMbPQyjylH63a4790LN++glqO202UQgInEBQyWX5tAHMlJCPfLNe6h/kqEn38NtXFo29aEXaV/zVdSc5qg3dJdmoX7yc38I9eTkB4x1lMkPFca43QmH7cVsRDKE/sY6+O8enJU5uBsZp8iOEPT6krqr52JUQE1sgUK+vAwPT76AfYj9W0vLOH41O3hsS2X8/q5dU8Y6aqN4rDj86eIcepVSQe2556JG2SUNc21kt7HOkMZqyiYTj3T4I6OozWbttlcy287J45hVm6hBXfJxHX4BlxlyoCJfX8Qc7y2fAl3XPBzeDdDHi4j0+z2J49Vt4OBFrj3P9JHML2LYWL9LvjxqdstCLXkY4Di7MD9vrGNycg/UhRIea4sukGGEJ3q1inr2N77xQVyeb4bFPvv007QO3PdJ8o0cPnwY6ulp7NPlsun/5EDExUUM8Hvuheeh/vSn/wDqk6fQo+rnzP1I6DrNIX+53EZbJUZI6vXHdZz1YMyYAmt7dK9VLZjn8AiHbtI4XijiOT4xjssoF/A60mbDq4iM17Bd8ile99Me3ruWfbzul6ZxG6mUxorpL5xbwDGU/WAu+eTyFAxaLWGfr2T4MTi81SJTmh/huZmWyN/C19cMn2NK4YUpjYfOwEU5K7D4augvGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx6NdrsujrOqE3v66Ufgvf/zp38KdauMOk0RkVsoQ6BQQ01tbhafe+IIdWzFEur3FuqmXj2hecBZGyeky3XJLxEuoX5PplC/l8SmLtJi7ZuNn2mQFLgX4Qt90srxvM8iIvOkh2uR3niS/AR5wf1ybNbTmftxiTwZPM33VG5DE9jL0EZeb1566TXx1zSqS4un4D2/hPvXj00Rf3UEX7vr2EGoKyPTUAekVU8tml87MTWo1YnXQ91YOQn1cg81zcf24XGILdR/Ljax/41WOD9EZLJE+QAe6ixPvPwq1ONFPEfqF78G9XNf/qyxjjd+z/+FL7h0rnbJa2KzPhTfT1NT32nbeH5bJOBNB/t8emP+RpIvFMTzVo9RTDr9Po09rJkXEXE9muOdtLxeDt8fm5iAulxB34HN4REiEoaUo0KZJsU86tUXFvHzZy/PQN1aOQP1m940bqzTJ+/JSA2FzYUy7mdEY3sQoj9vecnU/rcj/IwTYvsf2n0zbhONZ50ufr9BXhURkREPP+MVyU+wdkyzju1OkCTpulY7pWtARP0vScxzLGCrFF27+H2xcBlk95G5ebpeisj08jLUlRr24Xwe+wJfP9uUQeDROXPXnfcb6zx+y11QhwH2L851Yf9dQDu+smJ6/DgrZqSG/qiH3/QWqHfv2gX1b//uf4P6xReeM9aRIy8T+zBSGcjRML59/Tl4cFp8d/UaXCIfVb6Ax3WUMjJERCbG0IsglBmW0LjeaeNxyTmY25LzcTwUEYkpJ2h5ETttTLeEkyX0xe2q4Ta1li9D3aPoGRGR+Qa+mM/juDw2NgY1++JC8mzYnnn/ErRxP1wLr5eui30njsjTQb6loG/eS1TJ1xan5H0dGA44O2sz9BcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtj8b/+fP/vxSLqzqwzz3yGXhvYRE1ZXFizkN98kXMFOi0UHNWpnnRx6v4HHT0ML5ffwznRxYxMy2KI6iNS3iPW5jF0X8RNfX2JM6v7Tnms1lKeQouZVx0yA8xSx6McfJ0LKTmYelb2L4FmlN5rIzLrJCGPqW8kCQjA2KRYklY42f7G5o+20Y98E4wkork1nbjPGd8+Lh/hSLqFUVEHNZzOpgPcL6O86K3DG076ks9MddRzqFut1K7DerFua/i533SmU9iu87UcT93782Ym5y0wxdmUN9udVBn2ae8gRr1ndee/zNjHbsO3AT10TvvgToi4Woc43bbdN5k5WA4Nm6X43j0/oYmNTBjYHaE3fv3Ss5fXfnKCmp7eyGNZ1lzoZOvw/dxH4v0nZA8ZHPzC1AX8uZc/Pk8tmNKYR05H7XTe3fjOidG0RfUauB+2hkH70qbrG8DeUf6PdyGlTkcbObPY75D7Jj+gtoUjuW7duO5tmcveq56AZ5LDcqPmTuL3iURkdtvwjEi7+Lx6a7pkq0bopBf9WVc8WbwvPrcV+LYPEliyrdJ6DxNOdiA4ByN2cuzxmeOHG0b24w1bkNMh5r9Lz6NV1Zq+pJ8H8dAs21wfOr2UMff6aEv5OLFi8Y6AvJ9cBfIU87LyAieV2/4jgegPnP6jLGORhvPtViwcWxnY78SDuHZAe656zYp5Fb3M5fD/eUxPu+aY1OZcoA4t2xxBcfQUg6P/S1TR6GeHDf9Yss0Rp4+jV4sr4LXfdfF+61777kb6meffQbqSmj6dx6cRt9bna4NnDnSoePqUt9p1fH7IiIp3Y9xFpXj437EMfmVaSxjT5eISI62o0e+tsWFjfM9CE2Px9XQXzQURVEURVEURRk6+qChKIqiKIqiKMrQ0QcNRVEURVEURVGGzrY8Gl9+4v+s5xh0ujgP8PgY6mOjXsYc3qdxzu3WJZyvnSMvegFq0s6FqP2U0FzH6BsfxBcmUce70kTNWc9FTVo4hvplL0Fdppsxb30SUWYF6Vxtyt64RI93fZrDeyFDJ5uSlrFJWu9nF1Bv55CO2iNPRZ4bW0RC0g12yccxE2y83w/Mtr/evHiyKd7a/NInz+NxLI3g/hw5Zm5fj7S95y+egfrC7Hmoa1X0GRV91Hb6vqlBPTa9D+pD43hedDroK/ID0ugHqFUv23iexR1Td33hDOqkF2ZQ5zpZxO2eb2Nf8HfjflaKpvby7MuPQn3g5luhzuVRI93voZab5623KS9ERMQlTwZrSgdzNVx3cy359cJyHLHW9oWTaEISm3s5s38Yulaa27xSQV23Teep59F4xbpxEelS20ekT09p7GA9O5WSp7nVe31znTnKZnFp/IlooT3SF996971QF6umx0/4mFMmUp3G9voSeq66K5jvsLtm+p0mK9i+BQ+PT32ttHY+RkhEVjNS0qtmyOBGpUnGOUJjIGdt8G5ZlPHkUns0mhlZVnSsWQMfUM6LRTVnWvSpv3kZ166tjkdM52ZCOT4FyiIaHae8BxGpr9RxGbRMHq+4rffvPwD1nXfebazj6WfRwycOn5sbbbOa6UXGyutMueBLcU3Hb9E5zvccBd/0MFqCbdQmr+ViG/v2m97616DetQfz2dIo4z6E7rfu5/5D93yNHva/5T6dNwdwTK5fNH1JOQ+zYpYdHGuWG5j/EdvYDqNF/H7Xxeu+iEiS4nZyzlzUNr0jgzgOnjeWw1cwEemTt6mDfbgbbbRFEGUEilwF/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo9HpdiWKV/VreQ/nQ251UWt35lyGjo3k5cVpyrggb0JA+QC9cZr/eJ+p4+0evx3qhbnLUKekJbdJg+pVKGuB5sb326Z2LqD5ilOam9wjPXJAutg5C/WhnkdeFBER8oaEpLOO6JnRTlEDaFu4jYsZXhMh34VD3pN0QAgbdDK28Tpz6nJTnLW5uuvLuK0zs7g9i5dQpy4i4ns4N/WB/XisK1PYn2oTqLMcrWJf8vyMNgxxzu7JyjuhHhu/A+qg+RzUVRfb/HgT53NvBabuP+dRfkCK2x01sM/WfNQfv3IS9aN//W24PBGRRgu348KZU1Df/DrM1UhZ+02aVNcxMyZsyoqxSHg9OB9/eoNyDHrtniTh6rl35b9X4LqboZktk/eg08d+uriMx+7QoUNQc1aC55lelxx5Q7gdHZrvvtvF7QwCHPMiGs/OnT1nrNNx8HiUi3huRV3OVaE53+l4Rpnaa5qLvoPb3evSdjdwPv1xB98/egivJyIiYxVqX5u24wZ5M65gW976ecJ5EwnPq5/h9WOPoU2ZTeylsmgdPFd/t2/Oxd/r41gcRdjunEfB2n4+t3m+f85vEDF9IKbviK6XtExuS876EBFpNnG/XOrDOR+XEVF/5XXcevMtxjouzZyButPDsTuKNvY9jjM09teZy7MXJb+W/cMxDBb1N981x3jLw7EpKeJ4OLX/dVDXdh/B75coIyg0+59F3q1qhfo0e2K7eFz/6POPQ/3cWRyT5+vGKmWlgf5jHmM5S8alvuEL3lu4Gb8B8Cuuhcef82U4U07onjEV02Ph2ng9KjuYU+LGGx7mkM7rzdBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwag/g26r1WRmpQp+9EbbqIyAP7JqH28qidO9FFvV0nRR/I/jHU843apj7vTIBauO4F1Ja7+/dCHYWo881HWNukY/MSc512TFo1i+bXJillGOB8756L2+xnTAre7+JnwpByCizS59J8+6yZz2fkEKQt0tb2sC2iAZ1h1N18zubrwb7dk+Ku5WiM1nD9Cc31nzTN4xSRhnv+Evk66qjdzF/GNjp+C+oVRyfM0ycO8LjEgsssVHAu9ShB34hH2vY91LVOn0QPiIhIh+wo+193FOpaHfvwzKXTuA0r2B8zohlkhKxLs6dfgProLXdD7ZN3ICUfk+uYWR2JRZ6glLwGAxpgy9r5HBcRkWazue6LSEn3zfr2ThfbVUSkWkN/DOu2Wy3UZL/66qtQVyo4BrLePeu1AnndJiZwzvZ8HnXPtRHUVrs01l8if46IyHNPPYkvkCZ5bHwa6ptuuxNqy8ZzKQxM/Tlr0vt0vSjSuTZWwfenyf80XTbbzqJ9pd0Qy7bgvztNP4zWM0k8ym2IqT/6GX9GTEhYz94FU9dN52SE7/f75nFqk4+x2cSa/Q82tSX7J/p9HAS5v4qYHg32JfF5xrkarKHn7A4RkfpynbYDzyvOuCGLozQpx6VSwvsbEZHduzD369wFHNyT6Mb61ObrTcmt5ZiMVHEcGavhtu/ae8j4fpezRyqYW/YdD70F6tIo+qiiBBvV9U2PmiTYLnGP78/wffbW3H/PbVDfcjtlz4Rmu/fp3qJQwD5q9E/qwjb5PV3LPHl9umXL06475L+yaBl8veJzQESkT1lEzXm8z2oubeR8dXtd+ROM17oq+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62zODddiJRuGo4yZXJ1FNEA2GXgqZEREq70QiZkpm7s4BGn/k+ruMwhbvs8s3QuE4Pn51Gb8eANIscNDNn0Ri7cuoVqKOkCXVw4GZjnWkDTV4JGZaimJ7n+miwod2UVmoatftkaOqSid2h4Jq8RWY2Nr+FphEoofCwbh6NWvaAUTLsX3tYy7A4dtNB8XOrx++JJ16E9+65G43a+/ftM75fyqGjubOCbdQjo39Kx36ygqfL7mk0v4mI7JrYBXW+iuF3IQVk5SvHoI5C3I/cLpoQITID+6xT56FeaWAA3+geXMf4IWybcAWPezNoGOsYw1NXGi0MbVuexcChaZp0Ie7hOZL2MUxNRCRNKBwsh/1PBsxtlpjBmTtBv99fN9A6ZDAtlXEM9DxzeO3Reez5aCAtFikIlczhyxToxyZXEdOU3mjg8eR1lMs4SUepjO/bFAx1/DY0S4qIJGTULpdxrL773vtxmSV8f6W+CPXC5QvCNBbnoS66aH6crKI5d3eBrgVk1vXEnJAgTtlUjMZPe60P2hlmzZ0gkVSsNRNwyEGx/GErI7CPTKlsvDaCxSh4zPHwOLueaYrnPvraa2egLtN5ks/jceFzpNnEcXhsDIN+Rcz94vPC3G889s0mniMzl2eMdfB+7aNrTJLg9aSYx7G630OjrZvRhXg7l5bwvIgGjMhs5N8Jzl9eFG9tIpl7d98E700fwOtMcRTN4iIiBXI0+0Vso+UVDL7rUXjolclg1r/vmGOsTZMNJHSeWDRWFWiSiHtvQgO6TeNGLuu48YQGtE4eHyM2rNP9WRRkjE00QQFPotCh+8omXTsSWke7kxEoW0SX+uwK3g9bEg382wxFvhr6i4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2ZZH45ZbDkhuzeNQdEnjT5qzFz7zJ8b3/4D0hlZMGnkKafJ3Y8jT9A/931A/9gqG8YmIHCL9+ZiDGr+ZE09DPfcYJo4s/NkfQ90cR5146cBhY53ty6g3Dymoy8mhDrF1YRYXQGFz09/9DmMdo6QHLVDwV+Kits56DgO0unMYsuWm5qEPKYgm947vh7q2f8OTEHTaIv/xF4xlXE9WwmXx14K93Co+I184g16bvXvNZ+hbD74V6j37UDee0nO3k6IG0QhvtM3AJYf8NbGD+s4kZc036srFwb6QeujZGC+b3pN88WtQv/YK1pcWsG3ONnCd9QZqNbsdDBEUESn6qOOvFVGDeuHU41CPjn0X1LNnn8D6gqnBn55G7f++m+/DD9jpwD93Xp8sIhIOaNp9CtxifXWpRCmHItKkUMylJfTTcNjeKAVWzc7i2NHpmKGAvB2saV9cxHE4CHGd5Qpp6Dl8qkDeGRG57W48Vg55GHo9XIfTQ7+Ft4Ka+N2R6eE5WMbzsZLDc81z8JrEwachpWRZlhn25VKwKZ/zltVZ+++N6X/VkRFx1zTy8wvYRi7p1WNOGxQRmwL5ttL5+z72cfZVksVIRESWlrGPRrSOyQn0b9VqpIknf0W7jedM1jZziJ9D3pIowuPaaOIYd/bsa1C/+CJ6AEVEYtLdR9G9UE9NoWcvTx4tjwLVOBhTRCRO2DuJ+7Fv34YHMIpiOfOaeZ5cT5bbvXXfzlefOwHvnTiJY7pXNIMVHTpn+Vi22xQsnMP7nBIF2vY6pp+wQp8JaewpkS+E+2OJ/GWFCo4TKyumP7BYxj5cqdWgfvm1l/F9D6/Bh/dgkO/LJ9AbISJSX6pD/fa3vw3q105juOtjX34G6qnp/VCfOn3GWMdtd7wO6t17a1DvPbyxne2Ma8/V0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBq7KwelUFgVZQYd1E2O9GpQl3umfstqoTa4UsHvxF2a17eEGsYTF1DXu/Clp4x1HCqj/u75L/4F1DNP43duvwd14bf+PfSBdMm3MPfKWWOd51bOQL1rCnWFno+awWdPoB40ofmm97z1e4x1+JOo/wwpq8N3USwbz6Anw7uAdbFE3gARSfO4r/4IahXHB7pLf3tdZyi88sy8OGv65NHdpAEP6DhdMj0Al6roIyiVa1QfhTqxKLPCQc1pZJlt4FC7uCluZ0Ia3Jhnv7exzzs+bmNom9kdhaPoZdrjoYa+8/JXcZ025yyghrXdNjNSnn8Vz90H7sI+myygJ+jJP3oG6lBQ57r3AObbiIjs2XMIapc09IORBtyuO0Wv35MoXj3G5SqeH14Oz0HWpouI5Ghu/S6NeezZ8DxsA9aB8+dFRObncZzkHI3paewvnKXQJ59InrwohYI5dnCaQqeD2QetOmYQFPpY3z6B65wqm23n0LnCUUAx+XasiM49wX4fueb5m9AyuJeFa/0uvEH9b7mxIs5aAANnDCTkKYsc04NSyeGx4/n7WTNPtgTpdPAF3gYRkdRC30Czg8c6n8fr4fg4+r8CWma9Xoc6q8+zL4m9Tisr6MlYXMJzZHYWrxcdvhcREbL8yHPPoxfu1ltvhXp6AsdI18b+O1I1z6OJcdT633IL5nZVyhv3FmEQisizxjKuJ4vLnfX8oHwR70GWyGc1PlEzvs9+sDTGMfPSRfK7BpRPEVLW2twZYx17d+3B7VqoQ12p4Lj9xjd8L9SWi+NEO0DP0YtfM9t87z7MFLnt9a+H+tGvoBd4chy3sXE3tsMrZ8jHKyIp+T+b5DnrudifAvJ3vjKL40N56oixDtvDsb5YJo9yeeDcNSN0ror+oqEoiqIoiqIoytDRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ0tiW0X5m3pJ9bFWYlMeo/HdJ9j996u/H9YD9lACyhHs85hDq30uFDUHsRzl88ttuch3rp3Dnc5ldegLq1gnpR99jdUOduQ+241ydNfWjmg3RI7+nnsFl5NvPpA6iRjqldcj55A0SkSNrZqIkemPYSZiWMpDRv/VgN6sCcYl0S0tyVXkYN6tTAMno91PvtBI2ZlXV9aNjEZ+Sp3djmVt/cvjMXnoe63a/jB9KDUPYj1EBWa6gtrpZQAykiMjWxG+p8Hs+LPPkOijnUQLo0v3ZCmlRxTGFkq4t6+Jk6ae57qP88dhi3cff+Y1A/8xJ6iERETp1CDfPFWdRR332MNdLYdjfd/39BXSqZWQx2RBp72ndrwOfhUrPsFO1OR1xn9ZgWi6hn5cwLPyNkwCKhN9ch7TP7JzhjYO9enANexMzNmJlB7fQC5S80WziuVqt4bNiLwtsgIpJSZkNK2n8nxv5STtHjxy3lZfwJzKH1+i5/iLaB/BZpim0ZB6YOn4X4Cf0tLl4bh+Mt8ieuF0vLTbHt1W1Mk4xBfADXc4zXInoppkGfr+PdPrZZo4vjaq9vtmFk0XYZmSp47aqN4rg6c7kO9fMvoMcszGh77n/9Pva3FmVxBMb1AffTc822270br9PsX1mcR139TYcO8UZC2cvof3t3o3Z/tII+j9ZAdkG/j9f4nWBifGo9x6VM+v1yGfdvcmKXMEnC2SI4hrZXMAuCj2N9Eccy3zaPU4m8cvUY+4tj4Xb3Otg/K2Pose2voD9xZRmvtyIi5SLeV87PYF9YnsV7RCvC/T79Gu7XxARmXoiI7NuL9yfLS9gBkxj3a2rqENTnLl6GOp8zc04mJ/HaUaZMEX/AMxh4pgfsaugvGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx4Nv7Asfn5VlxWnqMEd91FzdmT/YeP75+dR++YU0WNRG0dN3217UPN8exW1d48nJJIUkXaA27X3AGqYgzbOKT+/gvrkadLoxqTrPXjQ1ETnWjgf8ZmTZ6C+9w3oV3lWUDN4eg7176/+xieNdbis5aZ56RvLc1AfHUO93kgJfR88X7yISKGMx3A8wbYp2RuaPtveeY9GtWCL46w+G1t07EkeKiuXzf1bWMI2XFpEX0vYOAl1YxmX4RVRS1zwTY/QSAFPKfZolBzUPHZ7+Ky/axpzEspFfL9FmQgiIpcuYv+ZIX2oxLhNt62gxnRsGvv0/a+/21jH5Dj6OqR3Bks6Hrk8aaTrqL3183ca67CEdP1Jg97f8K9ESYa+fgeoVqviZeQviIjMzmK7c+aFyNYeDc6o4HwAzjnI57N0tphLcODAAag5U+DixYtQLy1iTkFjub7pNomYGnmLxpeig/1jvIL9wxMce5yMjBqbxk2bxzCbM2l4I7F0Mv7MZuRI0CrWfR8Z4+dOEPSSdY/GVn0p8SloREQiB8ftmNo0sXEZrJFvtimrIzLX0e3j+OJSnsfFi5egXiSvZhjiuT1z+TzUWc6UIEBvE3tobNqvnE9eOcq38XxT+z9JPkdb8FydnUV/6KmTmF11yy234DampseiYGO/L/jkaRjI5Or1dz7LqlYbFc9bXW8+j/s/NYXjTr+X0Tc62J9Saue9+9G/GnTx81EPx65m3WwDj/pbSveqbOsIEvTvxJRPYfs4UIxPmN7M8XF8rVbB+69jh/B+eGoPjsm33IL17GX0dIiInD2DfuNjR98K9fwc7sfiAt4XvO2774f6Dz/9u8Y67rsLvSElyrLb3BV2dfQXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLZHfvlsaUiyu6t+ay6gvfHGhBvWXAnO+/xr5CgqXz0Bd34UeDTdPGvg86nhnczgft4hIq4s66e+8+x6o0ybqR3M0FXC+ijr8pVnUuTXITyEi4jo0fzvNfb9nCvXtX6x/Aer6GdRypmfPGOuo0lz209M4v/btN+P82wcOHoJ6nObWz/OOi4hHelCXdKxRuKF7Ta2df0YNk1CStfXWW/Qezdufy5tqwiRBffF4Ffe338E+3evhMvIF1A6XSqZH6CxphQuk/RUL9chBD9f5umNYHz1CutfQ3K99+++CemovajXnG7jOqT3oybjldvRLlGqmBnWS5vWevYT63DDCPjzi4X6ffv5RqHuh6W85cBDzPBLSf6fJRtvEyc7PIS8ismf37vV8DPYlzM+jT+rCBXOsKJCnwqc539n/wHWljO2Wy5mZO1n5HYOMjKBXLkefnyKPR5N8Qf0e6qZFROrk+4j5PMhR/scYjmdF2o0s/wRZEMQV8tORDt84U+j7VpqxEjJlWHSMN7IQvl618l+NOI4lTa/sCPliaEzOippxSjimV0mDHdM42m3RGLeCjehmeGnYK+LauE72fcxcwvOmSJ3h0CH0QPoZWUKFHI5HOTqvPOrjxQLWJfLCFYu4PBGRoI/i/lYD22qOPBrPv/AM1OOTqNsfH8dzQEQkcHHfZhZxDGkHG+dZEJjXn+tNu9Nb96jlcng/duutr4P6qa9+xfj+HPkGjt2EY/7f/P7vwy9Q7san/8cfQ91YwWudiIjl4rGL6TT38RZP7rzvKG7TreilEYfyeIJ3GOscH8V7vJFRuobaeDbmi9iXRun+7Hd/9/eNdXz5sSegvuW2/xvqRhu9duGzeF7deiveM9Y+b3poSiU6T8iXalsb3+HzfDP0Fw1FURRFURRFUYaOPmgoiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMnW2Zwav2LVKyV41a4+M1eC900DTizFFomIi8rowmr+l9GMj3pQAdvufnKMinhUaVfb65+eMWGn4bCxg+Va3VoD7z9DNQn3gRg8VOPY7G7d1F00TNQXcr87jOR//8Eahffw+apr7zgXuhHqFgIBGR8Sk08hQLuE7Pw7ZJEzQKssmPaxGRIGAzNIXyeRsGppTDsXaAPfvy4rmrz8YeTUYwQwF9cd3cvtEKPlffvJeMT1Nobjo7j8tc6eD3+xlhVcUaGRlvQWPtrccPQT2Sojn4dTdhX5jYi0ZIyTDhF3Jo7g0DNFs2OmjAy/tolivl0bjGJmcRkQB9jOJRuN5LL2IIV9pHk159aRHqJ//ADAv6f973o1CPVLDtBudYiHfeBykiIp7nieetjgGdDk5GkdA512ya4YrLizimxbQj3PZX1nWFbhvb1ThHRWTXbjQmFos4VoQhGhNDmrzCIrNtqYxje5XCqERERslA7kS4XSMxTsIxWaZQN5cOqGWeW0YgXerS+9RvqU7ZwJ3Rz3kZtkXm8PWAuxsT2Hf02H5x3dVxmNvDcdBgWiyZEwWMjuFYUSmjITkIcVxN+Tw7RiGBtjke8QQF+RyOcd0Q2y6k6065jNe6B7/rO6BOAtMA7NP1z/CpGoca+5fvYp1k9I0mhfv2KDM0pokEwgg/MDeHwYO2g5PfiIi4Hp5HSy009LajjfEjDMxz5HozPjYp/tqYVKN7qfk5HONt25yU4uiRW6F+/b14vTt44CDUFy7hMu+6/yGoJ6fQyC0i0qLJTw4cxc8cPHwI6nvuvRvq+97wBqhzNDFAVthxGlMKYIp1KjSBRop92KPZL3ZNoTlcROTwwX1Quy5ux67dNajvvus2qAt0LXnzg99prMOncMLLly9DHQ2M652uORnT1dBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwa4cohCcNVvdp8B3W+M6dRy3Xopa8Z37/URr3d+SX8zjIlq4QF9HCcjlE3uZQRSZREGBx1mgJHhLTDjUX8vNioezxQwe8fOIQ6ORGRfQcOQF0l3WulghrV6V2oiWc9acLJUmJKTMMI973XRQ1gkpBnIWINtLmOHIWJjU/gduYKGxq/dufa9XnDYn4xEGdNy+j7pBWmFuL9FxFZCVA3eXoW92H3KGqLoz5qh3Mkw4wy9MleAU+pfAmX4TmoTR+bQD2yV8ZjkJIW3HXN4xb0cT8sGzd0pIKa/ZSCysKQg/FM7a9DGtJ9+1H3uriI5/KX//J/Qs2eoGeefs1Yx/gkhhS9/a//LahzA0lLkZg67Z3g/IUL64FV3S5qsNnj1M3QsCbsh6DDyZ4M1t3PkvetlXEenqegQA7o278fwxctCrrrdLBtO+QLKedpTBWRIvX7sSIucxcFOFZzOF5RNmhmGFTKYxr1KZu/Q6cny+7ZUyMikpDOnr1ucmPz+uTe+24Rfy1s1XWx0Ww6jnZqXt4d1o5To7A3webDQGNDhpVBjCBBm8ZiGm9iWqbt4DnSbeF9Q5LiGCoiUqewVdNnhnVEPiWbxtkgw/8wc4F09TZeH3k8YL17kmKf72f4q0K6B/JK6K/KDQTY2RmhyNebQ4cOS37Ng8NhovMLeJxuveX1xvcjylk9fvN9UDfq+IGTJ3Es69I1vBeZbWB52GapjdfUlTr2r06bxz9cnkNjVzcx+5+wl4vGKpvuK60Q19lv4zYdPYL+ChGRsRree549jb7IxSW6l01wfPhff/BZqHs9+ryI/OUXn4S6sYJ9dGFxfv3f0TaMkvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkcjdUuSuGv6NxvniJ+fxfmerQXU1omI9Do4D3VrDr/jxKibdFx8P01R5xblzM2vjaKvY9cE1rt3T+Pnq6g3nqB5xqtj+P1czpwb2nN4O/D5LU5Qy8b60JDyGOI0Q3tp+AFovn0XtYueh3M/FwqoU/Q9Mw8k77n0GazdAa1ty9n5Z9RG3173CuRJ65nLk+8gow2DDr52so36wzDG99lvEfXwuJXMJhQh2e3yEs7p/YqNOt+LszNQzy+dg/rQvuNQ10aPGascK++F2qP+l1D/s4w5vilzhbTEIiIR6apdH8+T192O85ufOnES6q889Tn8fs5svMe++EWoKxX0Or3hwY11bGcO72Fy6eJFwzdxBZvOUc4TEBGZ3rMH6gny6NRq2K68DNbQZ1iRDO9CRDVnb5QrZahHaQzlrAWJTGG+Ey5DnQ9xHaM53FDH2txTZmX41GzBdmdPQkrz2ycR1cnmtYjpyeCtuOIdyfKQ7ASvnT8h3lqekUP9zSHNvG+b/dTJaNdBeL/4OKQ0tvi+eT00fC3slaHrZbtFvoQF/H4oqP0PUlNbzmMYH1s+BxKqfQfHoyDj+rHQwD6+ewIzL1K6JubpAjE+jfkzBcoXEREJ6R6nVMXvOMnGPVTQ3/kwocXl5fVjblGmU79Pev4FvLaJiMR93L9XXnoWavaDtVbwPtN2sM1cMbOKRkfJoxFjGy4szFGNvrdFqsMEr/vtwPRoNJp4b7tSxz46M3MRPz8/D3Wvhfu9tIx9TUSk08Zr3uwc+iIXl/E8uXQB30/Jf1Yum/2v08H2TOk86HY3jnFW1szV0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBqxiMRrWshCAT0Ab7j/TqiP33zY+H6bNHwJZUFIvLmG1iUfQm0EtXciIpUyei54XnrWI7ukF2UtOs+NH2fMHdwNUG/Mc3gbc5XT853tolYul6EB92hO7mIRtbHFPB4Pj5bhOai1c4wJ0kUs0q3GNOm1PaCBtmMySewAtp+K7ay2JWuJbzuE+7+cMcd4xcf+0qUohjbNKz0+jW3YrWN99qzpZaiRjnJyHL8zUcM+nUtx7vV28zTUr55EvejY6Fljnc5N3wV1tYSeDYf0xwn14TDEbUiyQgLoXO02UH/r+zin/BvvwznU5y++gJ93TZ31UgPb7pknHoV6cnTjHOh0d77/iYi02u11L0ae/BNV0lMfPHjQ+P5NR49AvWsXesZKRdQXB+TnajZRHzw3hx4gETPjpkjLZC8Jz/8fRtw/cBv8jO4x4eLJVHJxrM+R9tzheedT9gJkZQnxa5v7VdgqYFoyzL+zsfWCM2XitYVk+Tt2grnlS+KsZemwRJqPq2WZB4p9juw3MqJIbH6f15FxHbHYO8PHCZdRcXdBnfPxmnxpCTN3+mndWKdPQSzxFvcS3DaOjesMOuatkWVhWxTLeP5blO0UWHhe1buoobdzeF6KiLRX0NvaCepQx+nGuR1mZH1cb84N5AjxcV5aWoL6i4/g+C0iMl6rQf21Z78CdbGI13G+djk21pOT6JMREdm3F69FlTLmBs1cRr/EY19+BOrlJno4+jwe8n2riFy+jH6IS5cw4+LsWbxus3+qTGN01jrYexcG+JkOjfvNJvotSpTJkmacu5UyegRrtVGqawPbGMn//PyfG8vIQn/RUBRFURRFURRl6OiDhqIoiqIoiqIoQ0cfNBRFURRFURRFGTrb8mh0+125ItHk+bjL5I0YHa0Z32c9KGtKt5qV19CDJqZGMSVtG+vaeJ5mQ2ubsiaVdWzmOvkjPJ85+0QsF/0VuQJq56qkUxQRKVDsgGXhdpDkWSzBF2whH0nGFNzJFvPUD7bVjdAol3yRK5Ya9tLQVNeyfzqjN7m402956B6on34RMywuXka97J3H0UszOmWePrOXUZfbauF5ceY8Hodaldp4CvvGeI2COUL0cIiILM2Q9nIK369UMLtBOI8mRb8Dz88vImLRHPFpgt9pLL6E6yzift97531QP/rEY8Y68jQnf7eLGtOzJ5/beO8GzCEvItJut8VeO+Fj0u5y5gX7u0REWuThCagf13J47ueL6CmzSNvLGTwi5vjDGnkeE9kfEdEy+6QFHsmb/eMAbqbspiGM7HWShpRXwZkYYo4vcbrFd6i22U9AfTgzR4OuQuwLuaJrztI37wRhEEuSrGV50LYl5DsII7P/OdQGuTxr4KmNqHuxx8PO8BOG7Gukdo7p2FdquMwyXf8650l73jNzDFzajpg2nM8B47rOfp7AzAeZHj0EteeS3y6H40FAPsZzZ85DHe0yPRrzS+jJ64XoZRvss3G089dgSzayZbgNSyUc83slM+voMmWnNeh+zLznwO93O3g9zMpxGfsq+j54mZcpu6pQxuNweR49HBSvJZ5ljn9Li+hPaZGXrkv+ifLUblwm+XWKZTNnqt/De4f8ON6PhCH2P/bzlegenX1JIiJF2o6bjh7F+thG3e111aOhKIqiKIqiKMqNQx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR6NULK7PyW6ReC5NNp+3WkQkig3BJ36H3o9IA82q+yQyddoWaTNZx8uGCpf0zLbFYmJcq+uhDltExM+hTrCQx8/wPPblAn7eZl1wlvaS9su2SYPK84Sz1pH0eKxhXf3Q5lruZECfy+/tBL5libt2/DgHZHkFvRGHjpBoXES6MepBHarf+TD6CP7nX6DGdo50mMePmBrb/btQW1mrHoC6SRr9VhPb8fwFrBst1KR2M/TJnd7L+EIe574uFHBecdZp85zyYYRtufYtXEUV5y9P6TvtzjLU+4/g5/fNmPOfz8yihpn1t4Mafdbr7xQjIyPrOnbDY0bbtLJiZoWcO4c+oHq9DnWN5pnneeJZF93rkYcnYzt4jONzN43o+FPekVCfK+dNXX6JMgR8j7wNlGtgZABcg/afPX4uaaU544j9FoYsP6MP8XXravWNytFwkoI4azkURqYFeTYcBzXZq+A+95vov0lT8vZRH3fJX8h9S0REYvIIUX+zyRNULuDc/S7dltgJatH7LfPvo7HD2v7Nz00jkyWlZUamB2fsII6jywvzUAfdFi6SLaV9vDYU3IqxjiREj0a/jccjGsiHitk8sAMEQbDe9/n+jJmYnDBeY83/3r2Y+cSZPQsLmD0yN4fts7SM1xkRkZlZ9FgUKfNtchKPI3u3lpZxnbki9j8/bx63iVFcZrWEnwn66K/wi5i5NLVrH9TspxAxc0qOHL4J6ojuG0+fRj/n1BSaN+tLdWMdtQrux823Yj7evn0b3pJOh4LINkF/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2ZYZPApSidZCajiwy+IQsMQ02nEQlMVmvJQNghTARIZmDpoSEbEdCiCipCg2/rgufj7no5E771PAUQGNQSIieTIbFVx6fmPjdMwGTjLLsVFNTBMoB1qlNhnr083Nl2weFxGx2EDHnxnchoy2v94UfE/ctbYtTOBxnUGPrVy4aIZV3XILHruVzmWoDxTQmPb2N90O9V9+6QWoL8+g+U9E5MgxXMf0FLbTnonvhDoMsM3rK2huWyFT9SyFCYmIeDlcxu4AjWdsGqWuISH1xzjC769+ic7FFPczofM9iCkgUtAEf8tNFCIoIkt13DeHzs18bsNgl6aU0LhDfOcDD6yb1DsUwrS4iCbCLKM2f4bN4Pw+r6NAY02WGZfHCjZtspE5JqN2wcFjua+Gx/roqHlulXM0xtFkFWzt9ngc5cC0LLM/G3qNEDZeBhu5N/9+1mtXq7O+uxNMjhwW11s95maYLJLlV48o1CuiENOIDPVbpejaifm3SofaPaXxpFxGo+zBPbdAHXTx80GLxgF72twODi/cwtTOYwvvdkYmmwQdfDGkOTPKeZy4IeEJXBJc5+Js3VhH0a3hd+g8SXMb5/vq/RQahK837U5nPRyRx6pGAwNW7Yz+OTmOBvEVCpXzPBzPeJmtNl5ze/2MiUt4Ph+a7CSgeyGHJq4oldCoXRvDyVVGyliLiBQo6M52Nv8bvl/Ac2B8Avt01kQi/QD79MgotmVEQZijY3jtqI6g0TtNzbDDyXHcjlIZ28IeuJ+2OYV1E/QXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLY/GcnNFetGqPtchX0G7TUFiGWEy+VyBXkHNmeNyiA6WIYkiPQ81jyKmbrVaQI0Za2srIxgWVMqjbq1aIM+HmEF1SUJ68YD1obhNrP9M2e+QqR0m3St9JmZPBgXfcEiXnSVCTVCoavNz6MA6LRb67wC9fiRuvLpNJTr0u3bVoH7l1ILx/eo4tkHex8Cl+PnnoH7LQ2+C+h1vwxCdJ55Ez4aIyPkZDBQaGUEN7dg4ajMrJdRZhgFqJCPS+bJGVUQkCvBYT4yh/8GxsU/3AtymOMbvWxxaKSIOeZ9YE23ZFGrk43nX6+LxGK2ZgYo3HT4E9YmXX4M6HdCXp+HOB0aKiCwsLmaOOyJmcCfXIiIha+QjbPseBTvNzs1BzR6NnG+uw/Nx+3za3mKpRDUei6kqruPYGF4mpu0LxjptC/0o7NnjUEgr5aA4ofeNVWSErrF/wvjC5p83V2GOq3G2nyWOb4xHY2UhFmftcCS8bTRWxFnBr7J5kJ3hY2Gv5eb5t2vfoZA5uhdI+rjM86dR6x/TtauxRNcul+8jjM0yPBkJbWjcw/cjOp5JaPqQXmuhhyyl62VMbct9xCU/TKeF57aIiNDYG0ZX9xnx8d8JfNcTd02bP0L3ThyoyQGSIiIJvbSwhMee71u65FHr0z2g45i3sDXarnwe/RNBC/tToYjj4R233wX17n0YphfH5r2TR0HOPAZ3uzg+8vW0QGNwjwNNRaRaw+NdLON+Bn18vzaKAX2lCl6TLcu8dlSp7Wz2GztJ9r+3QH/RUBRFURRFURRl6OiDhqIoiqIoiqIoQ0cfNBRFURRFURRFGTrb8mh87YUX1ueQN+wUpNlvNdrG90tF1KFFIeqRK2XUyk1M8jzBqJtst811dLuo6ZueQs17Ql4F1i8f3IO6tjtuPQp11pOZa5Om3WHdK+ntjEwMhP0UIiIp6T15bmj2aGw1z3uWtjZOSXNKOuuF5oaest0xMwKuN6WqJe5ax+s2UMtpW+hdqI6aOt6lRTx6e/fhMi5cQA3uxQuYs3HbLXdAXczVjHVcnH0V6slRbGjXQS1nGPAE7tiXWIPve2aOC2NTf+z0UAebpJxxQRkZRuqBiEU9n6XbNuU5JD1ch83dMcMjdOTQQdou3I78gF60070xORqtXkfcaHVf2efEHoAsHJ7Pn3wcfFoGpAMPyAvndjNGJPZr0VzzldoY1LffcQ/Ue/ajJnk0h2OqtMw+GEc0nz1nWFDTsG4/Ip9a1vDFbePzXPVGTgZlB/EYmZH1xEN1TJ+5Iou/AfJ4ERGpr3TWtfDGdYXI0vDztYpzWDhjZavrCLdx9mfwyHVb2FdOvHwK6l4X349omxwOvRCRmD7DGQ7s3WTvjZnJkuEv4Mu44fnhZZBngw4He1VERBLygAbk6Rr8Bh+rnWB6fHLdo+bncRyoN3BsymV41HzqbyF51GZn0bfikZchFfQ4lshfISIyPoF5EUmE7bxCmU5jo/j5WgVzMsp5XEe3b157bPYusYeR+gJfB1zqf8WMtrPK6DUpU8ZK38L740opt2ntpOZ5VMrjdvk29jF3oH86oh4NRVEURVEURVFuIPqgoSiKoiiKoijK0Lkm6dSVnxWDYOOnGZ69ln+WDgLz5yXXxZ92YpJC9QP8maxH8osoos/3zSno+gG+xtNFsnSKf17u0DRkzTb+zJbVYDyVHk/ba/zETb+zJSwzCM2ftLYrnWL5FU9b6PBvfSIS00/S/LP4oFzqSjtt9dP6MLiyjmhgqj+eQtG2cFujyNy/MMRtDQLus/j5bhdfaLXxJ/1OhnyMv9Pp4Ha02vgdliDyvJ48ZeC1tLdtYy+1LTyuW0mnnIxeznIslkLFJM/p0n5GdC5nSRMi6n+dHo4hyYBU5sp7O9H/BtcTRRvb+PVIp1IaKyyu+QtZGsfB5WVNU03jz+A2i5hTSPIY2SHpSjvGOu7i50VEUhqbhX6W5/6ylXQqG1yIz2MYS6eE5TEkpboG6RTLUzr91f3qrv13p/vf4PUr3Uo6lbF/PCsvn4fbl05dQ59PuSZZCX2et4HrTFkTy4i2kE5ttZ9Z6zCm9t1iumRehjHUW6b0JJEttjPjvZ28BoeDY4nDU/HSOZ9xj8Gdgaf35msA38fwOR1lyMx5O1g6xetg+VafxsNuD69lvSzpFF0fHdquXo/ufWmqY26pXt+8t+jTa2wT6Pd5XMfP+z1v0/dFRLo9vPZ3uii3cnMbbdlZm3r4WvqflV7Dpy5cuCD79+/fcmHKtx/nz5+XfTTP9LDR/qdcjZ3ofyLaB5VstP8pNxq9Bis3kmvpf9f0oJEkiVy6dEkqlUr2k77ybUeaptJsNmXPnj0Zv+gMF+1/CrOT/U9E+6CCaP9TbjR6DVZuJNvpf9f0oKEoiqIoiqIoirId1AyuKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRB4zpx5swZsSxLnnnmmRu9Kco3MG9+85vlQx/60FXfP3TokPziL/7itpf7sY99TO6+++6ve7sURVGGyVZjnaJ8I/G+971P/ubf/JubfubrvT5/u3FNORrfSrz5zW+Wu+++WzuH8k3Bk08+KaVS6UZvhqJsycc+9jH5wz/8Q/3jiqIo3xbo9fna+LZ70NiKNE0ljmNxXW0a5cYzOTm56fthGIrneZt+RlEU5VuNIAjE9/0bvRnKtzFbXZ+VVb6tpFPve9/75JFHHpFf+qVfEsuyxLIs+dSnPiWWZclnPvMZuffeeyWXy8kXvvCFzJ/NPvShD8mb3/zm9TpJEvmZn/kZuemmmySXy8mBAwfk3/27f5e57jiO5e///b8vt956q5w7d+467qXyzUYURfLjP/7jMjIyIhMTE/LRj350PW2Tf5q1LEv+03/6T/Kud71LSqXSen/7xCc+IdPT01KpVOT973+/9Hpm6qeibMVmY9pHPvIRufnmm6VYLMqRI0fkox/96HrK+Kc+9Sn5+Mc/Ll/72tdgbFWUQZIkkQ9/+MMyNjYmu3btko997GPr7507d06+7/u+T8rlslSrVfk7f+fvyOzs7Pr7V+Sgv/qrvyqHDx+WfD4vIiK/93u/J3fccYcUCgUZHx+Xt73tbdJut9e/96u/+qty/Phxyefzcuutt8p//I//ccf2V/nGZ6v+83M/93Oye/duGR8flx/7sR9bH/NErn59fsc73iGFQkGOHDkiv/d7v7eTu/MNybfVn+1/6Zd+SV555RW5/fbb5V//638tIiIvvPCCiIj8i3/xL+Tnfu7n5MiRIzI6OnpNy/uX//Jfyic/+Un5hV/4BXnooYdkZmZGXnrpJeNz/X5f3vOe98iZM2fk0Ucf1adgBfi1X/s1ef/73y9PPPGEfOUrX5Ef+ZEfkQMHDsgP//APZ37+Yx/7mHziE5+QX/zFXxTXdeV3f/d35WMf+5j8h//wH+Shhx6S3/iN35B//+//vRw5cmSH90T5ZmezMa1SqcinPvUp2bNnjzz33HPywz/8w1KpVOTDH/6wvPvd75bnn39e/uRP/kT+7M/+TERERkZGbuSuKN+A/Nqv/Zr8xE/8hDz++OPy2GOPyfve9z558MEH5a1vfev6Q8YjjzwiURTJj/3Yj8m73/1u+fznP7/+/ZMnT8rv//7vy//4H/9DHMeRmZkZec973iM/8zM/I3/rb/0taTab8uijj67/oeY3f/M35ad/+qflV37lV+See+6Rp59+Wn74h39YSqWSvPe9771BraB8o7BV//nc5z4nu3fvls997nNy8uRJefe73y133333Va/NIiIf/ehH5ROf+IT80i/9kvzGb/yG/N2/+3flueeek+PHj+/Ubn3jkX6b8fDDD6cf/OAH1+vPfe5zqYikf/iHfwife+9735t+3/d9H7z2wQ9+MH344YfTNE3TRqOR5nK59JOf/GTmek6fPp2KSProo4+mb33rW9OHHnoordfrw9wV5VuAhx9+OD1+/HiaJMn6ax/5yEfS48ePp2mapgcPHkx/4Rd+Yf09EUk/9KEPwTIeeOCB9Ed/9EfhtTe84Q3pXXfddd22W/nWY6sxjfnZn/3Z9N57712v/9W/+lfa55Sr8vDDD6cPPfQQvHb//fenH/nIR9LPfvazqeM46blz59bfe+GFF1IRSZ944ok0TVf7l+d56dzc3PpnvvrVr6Yikp45cyZznUePHk3/23/7b/Dav/k3/yZ94IEHhrVbyjcxm/Wf9773venBgwfTKIrWX/uBH/iB9N3vfvd6nXV9/kf/6B/Bct7whjekH/jAB4a/8d9EfFtJpzbjvvvu29bnT5w4If1+X9761rdu+rn3vOc90m635bOf/az+hU/J5I1vfKNYlrVeP/DAA/Lqq69KHMeZn+e+euLECXnDG94Arz3wwAPD31DlW5qtxrTf+Z3fkQcffFB27dol5XJZfuqnfkploMq2uPPOO6HevXu3zM3NyYkTJ2T//v2yf//+9fduu+02qdVqcuLEifXXDh48CIqAu+66S9761rfKHXfcIT/wAz8gn/zkJ2V5eVlERNrttpw6dUre//73S7lcXv//v/23/1ZOnTp1nfdU+WZgs/4jIvK6171OHMdZr6/0183ga+8DDzwAffjbEX3QWINnDrBte/3nsysMavMKhcI1Lfed73ynPPvss/LYY4/91TdSUcTsq4oyDDYb0x577DH5wR/8QXnnO98pf/RHfyRPP/20/ORP/qQEQbCDW6h8s8MTV1iWJUmSXPP3eexzHEf+9E//VD7zmc/IbbfdJr/8y78st9xyi5w+fVparZaIiHzyk5+UZ555Zv3/zz//vHz5y1/+q++M8k3PZv1H5K/eX5VVvu0eNHzfv+pfigeZnJyUmZkZeG1w2sZjx45JoVCQP//zP990OR/4wAfkE5/4hLzrXe+SRx555OvaZuVbm8cffxzqL3/5y3Ls2DH4S8pmHD9+PHMZirIdNhvTvvSlL8nBgwflJ3/yJ+W+++6TY8eOydmzZ+Ez1zq2Kgpz/PhxOX/+vJw/f379tRdffFHq9brcdtttm37Xsix58MEH5eMf/7g8/fTT4vu+/MEf/IFMT0/Lnj175LXXXpObbroJ/n/48OHrvUvKNwlX6z9fL3zt/fKXv/zt7c+QbzMzuMjqLAGPP/64nDlzRsrl8lWfTr/7u79bfvZnf1Z+/dd/XR544AH5r//1v8rzzz8v99xzj4iI5PN5+chHPiIf/vCHxfd9efDBB2V+fl5eeOEFef/73w/L+sf/+B9LHMfyN/7G35DPfOYz8tBDD133/VS+eTh37pz8xE/8hPzDf/gP5amnnpJf/uVflp//+Z+/5u9/8IMflPe9731y3333yYMPPii/+Zu/KS+88IKawZVtsdmYduzYMTl37pz89m//ttx///3yv//3/zYuxocOHZLTp0/LM888I/v27ZNKpSK5XO4G7Y3yzcTb3vY2ueOOO+QHf/AH5Rd/8RcliiL50R/9UXn44Yc3lTU//vjj8ud//ufyPd/zPTI1NSWPP/64zM/Pr9/YffzjH5d/8k/+iYyMjMjb3/526ff78pWvfEWWl5flJ37iJ3Zq95RvUDbrP88+++zXtcz//t//u9x3333y0EMPyW/+5m/KE088If/5P//nIW/5Nxffdr9o/PN//s/FcRy57bbbZHJy8qoa4+/93u+Vj370o/LhD39Y7r//fmk2m/JDP/RD8JmPfvSj8s/+2T+Tn/7pn5bjx4/Lu9/97qvq9z70oQ/Jxz/+cXnnO98pX/rSl4a+X8o3Lz/0Qz8k3W5XvuM7vkN+7Md+TD74wQ/Kj/zIj1zz99/97nev99V7771Xzp49Kx/4wAeu4xYr36pcbUx717veJf/0n/5T+fEf/3G5++675Utf+pJ89KMfhe/+7b/9t+Xtb3+7vOUtb5HJyUn5rd/6rRu0F8o3G5Zlyac//WkZHR2VN73pTfK2t71Njhw5Ir/zO7+z6feq1ar85V/+pbzzne+Um2++WX7qp35Kfv7nf17e8Y53iIjIP/gH/0B+9Vd/Vf7Lf/kvcscdd8jDDz8sn/rUp/QXDUVEtu4/Xw8f//jH5bd/+7flzjvvlF//9V+X3/qt39ryV7lvdayUjQiKoiiKoiiKolwzlmXJH/zBHxgZbN/ufNv9oqEoiqIoiqIoyvVHHzQURVEURVEURRk633ZmcEVRFEVRFEUZJupEyEZ/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ0QcNRVEURVEURVGGzjXNOpUkiVy6dEkqlYpYlnW9t0n5JiBNU2k2m7Jnzx6x7ev7vKr9T2F2sv+JaB9UEO1/yo1Gr8HKjWQ7/e+aHjQuXbok+/fvH8rGKd9anD9/Xvbt23dd16H9T7kaO9H/RLQPKtlo/1NuNHoNVm4k19L/rulBo1KpiIjI6FhZLHv1aTYNy/ghC+cPro2ZTzjTe6pQnz59FupOBzfH9QtY5xzcrtGSsY580cfNcnC7ojiAOgx6UCcBbncc4jqjoG+s03WbUB86moP6pltGoK6O4DLyRax9H9cpItLt4H6kMbWNi9vdDZagtqwQ6lyuYqxjZbkI9eOPLkN97vTA+pNUlmdX1vvG9eTKOr761aekXF7td3/4Z6/gZ8aPQJ13sR+IiNiC7ZqmCdQW9WFL8C83Fs+RnfWXHYv7PR23rZZBdZLw92NjlTYpIDshLuMrC3Wq21A3I1xmQu2y9iJuRxzhNoRU0+fjCPufFWXsB73k0+m9b3yjz0e9jnz+Ez+wI/1PZKMP/t6jL0qxvPpvP4fn+dfzlz7+zlbL4P4zjHnbt73dGevkV+hUkrmZGahffO5FqM+fOQ910MP+JCJSKuL4ZKUdqCemR6E+dNNRqPccvgnqfDGr71xbW7RbDXnX/Yd3vP8998j/kEp59cRIEh6/eNvNfdmqv/GYJzYeyMSiseGa+t9W66TrXepturRUwk3fv4ZNEHFpnddwHnLb2NQUSYLX8STGAa1UnNx6HVbML9A6Nt5vNlty+PXfvaPXYHdkTKy1a5xtYxt6NB5mXEUkP1mDOuW/hIchvY/9K1/I48c75v1Yv9GFujCO918xHZe4jtdD18f+1+3i8vKjZnvv2rMLt6GP95mdFo5VfhnHMj9HfT42Wy/o4b7WZxagNq7JdB9p5fGeMY7MdUQr1BZF/I4z0DZpHEv95eevqf9d04PGlRPCsi2x1x40Er6hoitL1k8pLp3cV5a1vgijxmXwMh3HvCF3aB38oJFa+H4S03Y6WKcJbYNj7pft4Ha7Hn7Gz2Gdy29R58x1GDectN38oJFwW9KAlbUOfs1xaWAdePtKF92Jn1GvrKNcLq936kIB70ILdNNQuFEPGka/H/KDRrL1g0ZKDxp+Ab/j5Om48k1/1oMGDXzGoGZv/qCROvSgwU8VImLH+B0nR+cVDZQiO9P/BtdTLFekVFn9g8nX86Bh3Ap+mzxotJotqPMFvtDSsU3Nm0n+jEX9NE/9o1jCMaJUpjGihH/4WltqxmtXZ6f7X6Vckurag0ZMDxr2MB40eBk35EHDHLvhbQk2ff8aNkHEpVufoTxo4DLNBw3846xl/FFKxLIifoHWYY6bO3kNtix7fbv5/syoM5Zj0z0bP2ik1Ke5/9l8D5lxD2jZm3+Ge2yyxeeN+9Cs+04Pj71D10vbwfdt6n/8feHzTERsF4897yefi5az+X4laUYf52O4yTK2cw+oZnBFURRFURRFUYbONf2icYVjd7nirv2V+9SL+HNSr4V/TWp3zKe+ep1W7tWgTlOUIAn9RMpPot1OR5h+iD8vWbwZ9KSYCEqn0hh/mksj/CtYHJpyrSjAZrw8g9swOo7Pc7t24U95xQK2pe+Zf7m9fA5lTPUl3Pfdu/Fn2UTwrye5Ij0NGw0jMlLDv9COTeDPeRfObfxV0kr+6n9J3S6246w/Uds2yezoFwzjJ1kRMf4WlPKvcvQXK/6bDP8FIOsHDfp1i//izH9F4EXY5t9b8POpedyWA/zMk0t4Hj2+hH8B7NJfKRz+JSfK+Is1vWT+0kd/oRH+ayv9hSaj7aIUt7NEPyd77kD/dE1pzU5gWRvdZLu/RmQvb3vL4PezftEYxq8cm29Dxmu0zoB+JVuhn+Qvnb8M9WsnUAoZdHBMFBEZqdJP9PQn5Tz94pHP4Tjr2CSrzdiRlF8zfoG8sm7jqzuC57rirf310463kk6Z8GdYJcAqg5TGhsQYRa/lVzzu4zhWpDwOG2Mcf98cA7fCOCN4lfxDTsb1w/jFiH6BjVO6nWKxhKHWMs9TVnUY7w9sg+Nsf7z5q+LZ3vpfvSP6xUbor/L5inmvZJEsKQlwzOcfeaIGjhv9Hn6eVQoiIhbJeNuX5qD283iP5/s4LgQhrsOljUp6plyruYD3Z4sXcZ02/fo9NoJjmR1gW86eR6mpiIhLsjGLlDO2x/tFv6LQNtj865mYkq7Uo+M12D8zfhG5GvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkejXK2tz6jkFurwnkW6Nss39VsLy6gdd23UqR06Mg11qUz6MFpelDE7TpSg7qzXRz1dt0+eDItmMiFNGk83Z2XoIm1BbVyriZ954Tn0U0zvQf/ErdN7oT5/BqemFRE58XId6sVZXMe586RlDLGtfdIZFoqmtnF0HPc97+F0kdXqRneJ40TmxdRRX08SSSVZU9uyurBHPgXT65CxPNLYWvTczZrca1IG0ywZvBUpzxBF+uOENOE29fFOxsyOjzdWoH62SX2etJTcNmnIM1uZbccz3Fg0+4kV0RGhdfJkIpIxtV7Sw/W6PEPcwLmdJDfKo2ENzMCylZ4/a+aarTDmb6JVmD1q62VsBWvgaWnsMzIOpkhMs5Atk0/o0gX0ZJw9jdPZ+jSuHjq621jHsWM4V/trZy5C3Wk3oH71FfR9lMZwlim/kDG7Eev/v8GyyaI4lGhtqmjjOBgT2F3DrFPkdePxicejrecby1ovGyK45pLGGnOuNnMrjM24irdmjSTm2Z14I8y/wbJ/JyR/Qb+P10OHfGt8jhjrFNP7yJ6NwXMxyZjq/HqTpMn6ZrOfxynifRBPKysiEpG/wZhlitrIIh9STNPfZv6pfIvhj+/het0OvU8zLfH1kLdBRDodvK9kQ05K98dCHrQ63RtHdfPeqt/AdfgV9FwI33PTTKTs2ZCMGcxyEzhGtmi/3IEGT7ZxndFfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwaz3yltz6/tO+jfv/gTajtmpgysyA8StWeGEMdru9SvHyAWrgcJ8Pa5uY7PurWXJoz+fIczm/84ksvQt3toVbOcinLIyMaXmLS9EkN6jZp5p9+Bv0UrR7OXfzKS7PGKjoNSiFOMTfj8hxq6cIAj4cT4vd919TnzV9CfWR1BL0ku6cPr/87iiJ57QXUXV9vUtmQX/Zprmy7R3VG6ioLedmjwbpch5bhXMNzuWVvrtOPSdfIS+S6TfrQZ9ukBRWRp0m72efE2hj7X0QZB2mAbedwu4iIQ93FonMz7dF20Xbb5OFI+qbO1SJfR5+8T4N7cWMcGqu+nSveHWNe/a9Lz7+VzpU028Y6rkUny2PWVhu6+ftJpjcOO0hA/YPPtRyN9b2kDvXS/LyxjhdpbO5RHypUsVc0lhdxG6if86kqcu1ZKM4OJYIzzebKemq6aQnijIwMPyHlQ7ickM2eMR6vMlKRGfaOOMZ1mn0gnLmz+fKzErV5nVtnyWBfSNm3luFDimgMe+3MCai7XdThHzl0G9RhyMvM8rdQe3NS88AxbrbwPmInsGxr3TfC47VDnhHHMfcvZM0/+SX6XTpHfexvbo7S17sZbWgEmFD/cnGdLudNkLchobyeXBnHLhFOfBNJQ14nvt9eQB8u+y8yc1xouyz2VtrY/iFbNvq4EUFoXkXz5PvIp+jb7TQ2+jgn32+G/qKhKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtM/jE6KQ4a2awe+77Dnhv995dUDu2afZ0LTS89Np1qDs9NDclIYXrUfheJ8MY2+jiZ/KjaFofnZ6C+vV33wr1wiyaEFdWWlD3exk2VDLM2BYGQfUL+J36Am73U4/jOsSiIBYR8cjQ5HoY6FIuovm7UjyAiyTPVLeNxkoRkZDabvkyrsPyNoJt4m0Yga4HCQff2RSQk+HZZ/OuS6YwDpnjNrO3DE/LCsTC7YzJJM1BeDPUv15q4HE6tYKhZCIiQRePhRuRUTvC42oYtTmQKCOwT/hw0/FPyVjG5kyLzZoZRkjDM+rgedQNN9oyCm/U30gGpyTY3HCa7Re+lsC9zZZJfTDrM2xs3W5+39ZbYb5krAOPdxShUbbTwbGeg7iSwLx+sPmQT3GvSH0y4Xa4FjPutZm8r/VzwyZJovWwSh5/2KidNW9JknD/yfjQ4Ps0JvJ5n/0d3K7I2nzqhogmqwiCDtX4fpIRNBbTzrIRPk+TwnRaeM29fHkG6nbbNFr3Kez31LmnoU7pPqBYwGtysYgBxUaAn5iTiZiTmmy83+3uvBl89ZzKHlD6ZE536uYYHXfpPKfz3ilgH454QiCa7KfdMu8BebIA16MLCxnQvTweN5cM6J0OmcEL5v1ZTJ9JaeIAy8VrWUQTWdh8/5IxU4VD2xXQMvI5nFRIaJl8XcjlzNv/fpfak/qoP3DPlGQETl4N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7FncmI94OcgeTKmd03jh0mTKyIyf/Es1AfG9kI9dXgEapJoGwFL9eW6sY6zFy9AfXkBPReLl5/DzQxJn0crzXv4fr9talotwc/kcqjFtEmfHvewZp2i75lhhy6J5Mv5EtSV4hjUpQK2ZYl0ivlpDEsUEcl7qD0M+7jO+eXljffCUJ575lljGdcTSwbV4aRHTrkrZ+mvyddBWl9Dy85+ivRaYuK20G6zfllQj/zYXB3qi3OoJY4yvDUSk96T/n7AYXkWbSMHEaapqYFOSavJcneLww6pLdmLkmSsww7xNbtBOv6BYx73d16fLCKrxp01baplbTcIzwzkYq/Klkug72fJZFlWv23Yq2QEwZlfcRw8/xyXg91wQ1nvHvfwesHjnYjpkeJkty6FgdXrdag7HTzXwozAqpznG699I1GplqRSXh37TZ/ctXjIuKaAPvZWkXEqNcaKDC05BfOGIXoszl/A+4Bz509BXV9ZgLpHQY1RbPp3IrqG8o6OkVezTWPLpQsXoWZvpoiIn8M+nXi4nY6L1+RmC0PZqlW8L8gaA3l8MMIJB9vb2jo8cdikabpxXTQCban/ZXho2YsQkbfGd/EeJO5je7RXyK9jdgVjDI0Cuq74FCxIXs0+jSMO+Zr8jDG3Qf3JCMak8yhkT1pE7VAxfSDFCnow+sEKLQP3K0fek4TGuzRjHOfTOaXtCgbG6VQD+xRFURRFURRFuZHog4aiKIqiKIqiKENHHzQURVEURVEURRk62/JoLCwvr+dovHbmZXjPdlCjdtOhfcb3944dhvrQHvQJFMZRwxhYqAHzyEMQZGhsqyMnoXaeewHqtH0J6vMLqKOcX1yEmiIJJInNJmN9aOCyzhJ1iawJtMnj4ds457eIyBjpO4sF/Mz46DjUe3btgbri4zokMNvOJi0ia5gbKxtaWZ7veycYkMcbUQ8B+S3crCwIY0p40hgm7OHAt7eac15ERCJ+dsd1NDuYTXL61a9CfeHUS1D7Ifb5mw+Y59XlWezTjRWaz5x0sfbEQagTvwy16T0QI7SAm5e9Ai41Nr+fNbW+leCLQR3PTdvZ6PMxzbW/U9iy8dcZzmW5NqhdOPNiq6+zhvYaNoE9OaaKGfuskRHBxy7DpGGRl61Sxj5VpLnnkxg9Gf0unhdRhn7doU7k5dBPwbkZPC6z/yDLEPONnqMhlrvum7A4EyNlf4X5dc6XMC0W7M/hhbBfx+yxjeYy1E89/STUX3n6S1Bfnj0HdRjj+FUsOfQ+5QKJ6SuLSK8+Th4Nh8bVlPKL9lHelogRlyUX6/idKEHN/HMvfx7q/QfQk3r44G3GOiTdwncx0O/MY3P9scQWa228sGy+j8HtKdN1RUQkJJ9j0MVxoLdMvg7qXl6ePUMZ1yo+N2PyWnZwnYFNGVDR5uNM1rjhkAeWfSHsD3PYX0NjW6mCfh8RkYiuyznarog9GC1cJ1+D46yAJbqg8JA52LZpcu1joP6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dFoy0Z6wbOvYYbCXOsE1J0AdeAiIgVBzezly+grOHLzHVCXxzGro1TFz+fyVWMdt958N27HHIrMLryA+lE/xvyJsQrmT/g0r7o5d7mZ59Hrod64WES9Xb6M6ygUMTdjpGru1wh5NEarqH/ctxvbiqexX6mj96TZNXMIcjaKUC+cR+3/i69s+HKy2mEniQw9MulFjXn8RSzq7gHpESnGQWLSdvKc8akhYBQR8opY9Jm5Dr6/2MJjP0nbWCihF+e7H7rJWOWf/hnOM9+4jN6GpIPaYWsCvVFWgTSoboYGn/TAvF9C+lDW6xqugMg0aaTkh4pcXEc04HeJrRvT/2yx1ueLZ3n6ten2uU+RZn4Lz4bhybgmq9TmH2KfCB/9LWT8mS+xXrhH3qTOCvbJ9hKOy26GT8ixcMzzXRxHPfKO+JTt4bmU9ZEVCLIFVw7xjbJoiNjrWRYJ69MNzb7ZhilnHRjZJORTo+87Dn5+cWlBmD/5kz+C+rEnvgB1o4vXItdHzXy+iGstjOC1r5ARHhNQbFfUx2tZSsE+Tg7167v24DX3tuNmztRipwH1yknqTx72+WaAfrsnv/a/oB4bmzTWMVpBH4eZtWFd5d87RSobvYLGZzrnl5fwHF/9BmVYUJ8N+8aIhyUf+4wwCPbOGTlAnMFFfgpu1ZiuVXm/KIzjoLckpYuDQ9tpO1vkDHXMDJKQsqxsvhjQPRl71ixaZxJnjLHkNXG9q4+RGTa6q6K/aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogydbXk0VuYWxV7TcLo5FEWWKeOi1zP1eQ7FQ7w2U4d6+jB6MCZKqB1386RBExJmiohlox/i2M2otTx/CrWY3gV81hoZx5wC20cNfbtHQnIRqY+hvrjVQI18qYj7kWdPBs057xv6PZGgh5q9MWrvnI+NG5OWMe/hOuOc2XYhZWssN1GTmh+Y2znK0NjvJEGI+sSgg3U7Q8PfJt3jShs/041IcxrQ/Nu0SNbTi4iktF6e257nSc/vOwp17XAN6uaps1DbNh53EZFoEpcRjdJc483noA6aLVxACY+llRHOkJKulb0oSR/7k0fZHbzEJMoQeNIyYjq/rYE+n7Aoe4ewrEGd/jA00qSjNXI2SFNv5JmYfTAhbW6ccJ9knTNvA2LuZ1b/wHF0fmYW6tmLl6FuraCvKDSOvdk/mnV8zabtcIx55XGsNtaRMYZRVMIN9GJ8PXBGhvl3RHPue/4OZ0Dh+90eevseeeQvjHV86bFHoF5p4fVQyHtVKmGrFyv4foEk8YWcmTEwP4ueizDE693lJRz7b7oX93PkAPaVaGTeWEfo4j3N5AFsm5ESeoaKHnpLOsvoZ1lewnNCRGS0SjlJOx9XtSmWZa37IQ1/GedwZWR1OeSbimlA45wX9h1xJlSc4TMwxjPjJN68UY136QUjA0NEfPJ/9cjnyBk+hn+CPt/vZ2TF0G4k/DsBtR17MPhaYTsZ4wP7ulK+B9oYg9Pk2k0a+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR8PpResejZygcLK/hPqwlXlTOzd6GOeI7tiom3RzqKskyaNYDmrL08TUytmkga9Nof7zOx++BepXnz0DdY9yDho0/3uzhbWIiNtBfedoiuu0mrifAWVY2A77KczD4ka4jgJpmFOeQ9lHLb8jqF9OQ1N83Kf5pEfG0DNTGBtd/3cQBPKlxx83lnE9SdMNyWCH/BPtEDWNrb6p4W+08TPtLi6j18f9Dw2N4+aZByIiQvP/s+bZJt30xBjpzMlbs7RYhzoKTF2kRbahpIt6ZSfCWtp0HlEflzzlaqx+CivWZybcFqTtJC0ua1ZFRByOBYhZx3rVxe8cAyYN1v4a3ocMtpgl3niBvSy9Dvbh+Vkzx2BpETXxrRaONzHNdx/T/Ozsv3FIy8vZQiIifg7HmxPPYYbAyecwZymk/WC9dxCZXrigj/02oraxPBx3R3u4jm6HdPyBuY7CFp6MK54Z9s58I5Ll0eAxzJSvc84LtvGTT34Z6i988XPGOtod9CyOjKB/sDyC1/lyFdfp5nA8csj31lg2M6AkpqwE2s9SAfvGvgPYX/0qngOBg/5EEZGp3ei5OHzgMNRlH/2f3Qbu1xxdT4pFXF4231j9bHCPbPJL2OSnSDMMTgln9tAyjHAGm30gW3g6MuCsDsnKvxrAHNepbxl5NSKOTb5Iw5OBtUM5X5y7YWVk/Bg5XsY1efPrj2P4X8zP8DLizcIyruF6dwX9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1tm8GTACBnF+FXyl8qZ06ZpOokpgCtFk1iziYatJMF1WF5K76PJWkQktchg7uMy9h3ZBfX41CjUM+cxlOf0Kxjck/ZMB81yE02HTorGslIJ99OaQNNYZQzrqEfmXRER8i32QmzfYHkR6mJtDGqbjJL5Kq5TRCRso0FplAxLvWBjP7MCZXYSNq43I+xbnY4ZFtSlgL5+F+ugj98JyWBP3uRM869NRjL2Z6Vk9rbH0Fjbb+CJ1FhGU+L8LBotRURS6gs2mWaNlDeajMBdmIM62j1troNqm4yNFu2ow0E/12AGt/g1CnxKB4O+tjD03QiuyRxuvEYmaDIoL87ieX3i2Rehfu7JZ4xVnD15BupuE/tHwgF+ZAZPEjyXbAqoclzzsuH4fD3APsbGa48M5onFQV4cnScS07jK4V8cVMjm726bzeAZga9bHB9r7UwwP7dDWNY1B0XycRPJOm2wTV0Pl/3sc89C/cef+V9QL2aEzvk5bJtiCY91sYi152B/LFGgbRJj33EofFZExLfwWOZHadINus5P0oQrIwW8HtZqE8Y6XBvXa1k4ToYdvM53l/EaOVbEZY7XDhrr4IDXzSaYuJbJJ4aN4zrrRmWLjdp0bcv0sZPpmUPjjAA+zo/bYoIWERGP7nXM0NyM7RrAHMfpmPCNgIjkeYIMGlp8nybjYQ88mb+zJprhgNKYE4S3MIPz+GjbGbf/Rirg1SfA4WbdDP1FQ1EURVEURVGUoaMPGoqiKIqiKIqiDB190FAURVEURVEUZehsy6MRp7YkayFAaUTPKCHWc/Omf6LXw3CpamUS6icev4Dvj2OgzbHb9kDt+hk63hiDeMKANLYJvp9S0JRfxiYpl1AHNx+S/l1E7AjFai5LY13UxtXIkzG+B9shDEx/y+IiarX7FFCX1FG73+ugSDAkDWCzY/pAul1cb0yCXndgx260RN5JUFtsk0fD6pj9T5r4mbiL2t+IdOQclmaz1DMjuCdx8ODHrIt0cZk+aTE7dJx7pHX/i888ZqwzclD/meuTFj0mfSiFHfp5PI+iDN2rxJsHELHwNZHNPRxZGndub4u8A25+4Dtb6FG/YeHQR9qPmQszUD/71a9B/bk//lOoF8+ZGvk+hYq6LgWIGiFt5NlIOEyPvBAZTc8enJSCK30KgSyXOawMNyqKcsLEAb5WquAybPJsdGiM6/dpfMsIBbSNfsm68yuBfd8M/S9D500aeYeuTecvvAb1Zz/7v6FeXEQ/l58zx4rKCPa3cgXHxJEK9gWf/D2lIr5fq2Fyb79hHre5hYtQ796D35kYx9oPsfZa6J9wHNOjUfSwv4U2X7dxu3t1DM48fPRuqPMeJRKLSJhin/16QkGvJ3Ecr4/dNnky+LJhZ2xqSsGKYYjXZGP36LrD57iYNiSDhMOM6X0Ox2Pvg+3huBNlHAM/j5+xXfaPkZ+C+jxfD20/I4yavpPn6zbtGeVAS9giz6NjhvGVqiWo4wDbf9DHyu26GfqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkfD9nJi26vaMccmr4OFeq0wMXMM+qSjj1PydVxG/d6jnz8NdbuPurWp6SljHTkLt2u8jDrKU6+8BPUrr6IvZKyEORsS1KDsdlFDLSLSpUyRvoe6toUm+ieWz2HbtCLU4Z85hzpZEZHXXsPX9uzeD/Xh/cegDlZQ63mujvkgy21cp4ipubPJg1Ad0ESztnInsGRDyc1a1YDmxO9FZs5Hn7TnMS3DOBlIu5kY2RCmRtGm13KktUxIJ964gMel227i58nrsNzI8J5YuF8WzdmdTGCfdvKkwzT0pKYBh+crZ52/bUy/bYSO4PeNNWS8Rjk63oDo1L5BHo3BPshci346pjnYO23sDyeePQH1k49+GeoLlJGRBqZe3aW/H1kpfob9MimN1XFM/cnhY29641zqAI7HemLMGCgW2YNB+TMJzUsvInFcpO3A/YjI48NZP1GI7cD7vbZm2izD0JL9uW8AuP9ZlrmN/FqjhZ6wP/nsH0L9yknMbeH9LhTN41QsY5uNT5ShHqUMp5yPxzWfx8/X6PP16LyxzhHy/IxXMKOi6GCOhidYF3KYiWElZs5U1MF9DW08D7p97F/FHI6ze3eT7yM1z92tsAeuSba9838ntsUSa+1cZf+IW8L2ibPGJuov+TJmk7geZ6lRNs4cXh+dDD+hS77bNKLrNnlq+Tqfy+E2xX2613DM/RolH1ElHYe6Pl/Hzx/B+9Im5WN5xvgoUhjBPslnt8tZVTQe5mrUVhl5SAn5PHLkObW7G2NqEmWNn9noLxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1sejepoXuw1zVZIfovqCD6z5IvmM4xLE/v6edSQdSij4rWzqFtrdtFXMD2FOjcRkcP7j0JtHULtZj9ArXCthNrM/bvx+415mnvdPmus086jds5ycDsb8zjXfRCjxm+c9H0jpFEVEZkex+10PNQRNkLU5124jJklJ8+eg7ofmjpDnj+atfoj1ZGBz167Pu96EPZw27od3PZeaOqTQ9LH8/6lrHHkLIgSni65PGqLRUTcAvZ7x0NdZJu0mJdpfm3Lpb6UQy2xOKY+3spRTgZpTFMPdZYOaYkt8pVkZQQYZzPPoU4fMNIIDKm7uQ5DUk5ek+roRntHO28REpHV/bqy5Vt5MlhfLCLSoayac2fQI/bqC69Aff5V9KmldOzsrDwHC8/NKKT500M+z/F97vd+AfXCjmOO7dwUOfJoFChHo5DbPJuDvSwiIjH5QFgDntCc73EP92tpFnMNmiuo9xYRSffROc+OnHVd+jeCR4i3gfwXzbrx/Sb5BV88gTktZ06jF9Chk9Jx8diXSxlachx+xKO+wLkuro3jqB3jAtrkNxyt4jVcRCRvox/CDtEPYdl4/cxXcFxNbbzm2jnU2IuI5By8l0iCBtRhA9t2zz5cp1cgj2DG33ktCoZgi9CgL8I2/EPXn5Fje9YzInLkUWFfbpaG36tgf8mV8Fh7lI3G51+rgMfAc83+x9kwnBMUBrhdvI5iFfuCk9AxMS/B0vcoK42y0fYcQE9tmGCfHnGx/3ZCM0stn8e2suhcjOnaEArud75AGV+peftfoDwQi+5f4spG28VhKKZjORv9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXobM+jMRat698cF3Vud917AOo9+02fwRxpZBdmZ6GOyD/h51C72Wxh5kDeNzc/3I3at04f5wkfnUKt8E033YzvVzCb4+LZOtS7LqHuUkSk10aPhUcaQUMKF+B+jBVQnzdVxeWJiOwhj0YjQP3dYhePx6XZOfx8E/0vWXNw82spCac7nY22ZT/HTjCojw8DzJOI+1inXewHIiJhl77jox4xIe2vk0dNo0d1xOERItIXzuog3WqIOt7IwT6eBthZnDJqhaOMPw0klHPgks6V/RM8V7bLfSHNmH8/QVMEa/ItWobN2naa0zuOMvpPTOslLXexunG8ov7O9z+RzXM0WDLPuQ4iIo1l1HW//Dzm+sycRi9Vlz5vGeddRuaJcFtTpozhHUk3qUwPhySmvyslE05Ic9cnKR5LP+dQTdkvGVkuvQ72wSblZCTUf4Iubue5185AvffgPmMdR28+ArVD8/pbazlSV+8E1xfHssVZyzey6SScmb0E9WNPPGp8/5VXsb81lnE86neprwRYFyp4nHzb9KnxEJXLoa4+7+OY5qX4vtC53e7OQ132zOyOA7sPQx310IPRowwMzoKplOkanqdtErMPN5ZoTKRTc2KKxm4aVy0ry6OBn7GpNZ2Baw5n1+wE0wen1s+JKmXjdCM833Juhp+QcqVC8ouxnydPnoFerUbLM+8BXR/bxaZ2ShOs+yH2cdvGZR4cxRyq43vvMtb55Re+BPUDd78B6noX70O/9NyTUBem2bNmXjtCOt89B79js8+NukeugMcrDjI8NOQ7tajtBjOYwn4gzxpLyEZ/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk62/Jo+H4g7trcvWMTqPfavRsXNTpGWk8RyeXwuebI4T1QB33MEGg1UHR24Sz6Dro9zKsQEVmu48y+ExOoMSuVcRvmGjiPfauP2k5/ZAzq178JtaAiIvUl3NflJfRD5Mdx/uNkGbW0UasO9cIl1KSKiPT7qAe1S6gp5Smri0XUpI6MoOaUNdVZhJS1kaWb3lk2XBpJhB4MK61D7cfoxxARscvohXF3YRv26Wzok++j38XjGvXNPm6xJ4M0p16Ay/CoSdOU+koBda62xQp6868FrkvzZfPnaW5ssanzWBn+h8Smj+B3XJrT/Urezvo2GJpTsy9xPAN7S4oD2x0mN0gkP9AHjWgQeiXomf1jaR61uqdOvAz18hye+0nI3hhsx5T9EyIixmuUo0HvbhEHInGI50GSZPQPmlO/1yM9Mc0zH/Tx+sF5DJZt6vAT8ryk1LMj6pNJgMdjcR6zhepL6BkUEelTzknBxfN3PcfgBmQYiKxq9K/o9JeXsS/9xZ//GdRPPPUF4/tLdexfHnmrcnTejo/icbEpVyPOGANL4+hNKOVwnC34WLspHut2D4/TSgO3OQhwG0VErASv07undkNdLOC9RUQ6fO5bYd+8frRo/J+fx/uRqSn0pRbIw8DXaDsrj4bzieh9e8DXkWZ4PK43e/dNi7fmp2L9/jh5A13X3D6HfQUWHst+gOdfSle33XvRQ5uEZl9oJnhfyH3WcrBPT1P/9Gksu9jDvJ2Oaf+UH/y+H4I6ncU++/vnvgr13v1472tRxpztmfuVUB6SQx6YkPxUnFez7i+7so3siRSRgDwznRYeD+x/xteviv6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dG48+7q+vznlQrq3IpF1C/GEWqLRUTyNP/1WA19A46P+ruXXkQvQxyzztcUFy8u4rzgu3ahTq1Qxl12LfQh9PuoD+31cF7h+oqpa2uRZq9Oc5GfOoNz45fp+W6StJylMur0RUSKBXwt9LD9u7TMaoRek8TBdmDtnYhIRCJSl/TJhYFtiKJIThpLuL4MZhj4gsft0G7U4Nbu2m98/09OoaY56NShjmne/ZQ8KpwN4bmmSNEl7W9KbZjyvPwO5QfQ9x1DR2n2v5RF9jRfe6WE3pTJMewbl86/BrWfzxgWPMpYoewOm/S4nMliUZiMneH3cagPp7TMXLqhMbVTU8O6IwyGuWxhdui2TTHv8gL2wflLl/E7LfadkWab/DOW4cDJeG1LU8bmJo00prE8K2eFNMas/+1TUzQWMUvIs7B/cK6GiEhC+mGfdMyc7ROQv6VL4upuxxwDQ9JB5+l9i/6700RRKNHauPTMU6j7fuorODd/u4PachGRUhHHnzxFHbDH7MhhHEdXlvC4dU0rg5Q9HG/KLmVUONiqjRX0OizV8XrpF3AcCCOz9c+ex3uFXA418Pv3YRZC6uJ1vUu5VElk9o3Feby3qC+jH3RqAnNZYs5noNutKMMclbJWn8IRBq9B8Q3ohZXRivhr2Raux9kkNAakpn+sH+A1lU5p8XLk1RI8x9907PuhLvXrxjpe6b8KdbOBx+07PfQQTTTxWHs57J9Lew5BvZy/1VjnnUdvgvozF/87buf4BNQp+dxy5HdxPfMaHNE9tUV+l7SA99N9Gss46yprFPPyOG67tI7SwD1g0Ms4+a+C/qKhKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobM9M/g9jhSKq1+xbDII2puHQomIuBaaxArktFteQfMaG7tdF81HHP6y+iKtk4xkPnrAxOqiQdCjEJwzZzFQ65lnTQt0j8KnSkU0ni0sogH0/BKaaKwDR6DeNYLmORGRgIORyIxrWRTsVkBTVbmKn8/7bHMU6dM62Kvm+xvLjMgovdPkQjTNHpzGvjBrmUFSDQpYkoiNtth5HA5EopCuODB7ecwm6R72L7uBdVTBDhnbZEAnk2JWUBhbcx0yffW6eK4utLDuhLjMlNcpIpJwWBruu0XGMjYxxmT+TjPM4BwCaMW4zE5/4/2wnxFUtwNYaSrW2olhpWx+xM/2OqZZrllv4Gca2I9jNvAZqYAUPpUxOYC1hbnb/DzD3996nS6FYiXUGAmNF12ajKLp4Nif44uDiNgURFmiCTLY7JhQ+/N5wZNdZL1mGwfgxtrBm/VlkWh1bHv2a8/Ae70u9qUkMsdoizz242MUVubgeT41hRNHCJ2TSWSOswUHg+uKZAbniSEuXMDJKNpdMllPTUNdKmEtIjI2ggF9lVEM8HPzPOkGXh896tPNpjmRw+IcTtzAE+IEAbb/7Cwa1PfuPgZ1lDGpgjlvw2bn4s4H6CZRIPGaGZ8D+apVDgU2t69H9xg2hee5Lt23OHgcVy7hNfzEM58x1nHsAIU1LuIEP36Nrn8pbtP+Kt6/OXSfcJmWJyJy+jyeF9NHJqEunMB7QJuM8iGFqno5mqVBROwQt4OvL0mKbceTuvgFnojGHMPiBMfl0VGaRGHgXqHvqhlcURRFURRFUZQbiD5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtj0a33pG0v6qTLY2hri2KSIOdYoCaiEhCjzXjZdTcFvIYpJK7D0NOFhYwFHBmdt5YR65CevM8acdLqIm3Elxmn3Suo5P4+e988PXGOmcvoxa2tYLa4VruANTRHOqRozaGIEURh3aJWHlqPPYCRBRMSDpZ18d1Jhn6PMqKk1aLNHiD+tzkRkVWreI7qGlstbANn6mb+uSEfAGs2U5Jdx2R38dhBW2GlcEin4f0UfMY1lF/nFZRvxwL6Shp+Wlq/m0g5aAk0pX3KCSpQ3p5l3TacZKh8Y/xOyTJl9Sm89/l/ortkmS1HfVJl+rOQJmR2bUjWFa6HkxlUSOwZ6PXNUO/mnUcbwIK9+Q+KhTkZNGxSTM6YZpyYJ/Ri3CZxhK4j1EYI3uXxPSS+B5rr1Ej77nYz8MAz+ckMdvOoRCrHIV7pTQmuT6uc3o3BsJOTOH1RUSkUMTx3rax397owL5TJ1+RUnHVv3LxAgbb2TQOeK4ZammxV4pOpNooejJyeRwb8kU89vmM0MOcj15Mz8LrId8rdLvkWwpwmVGMfeXoTfca6xwdxWNbLaO2XyzsKz3yobVJ737qVQx9ExFZXlzC7Th8HGrPxz48Rx6NShHb1mbDqGQE9rEvMNro092OeZ9wvYn7sdjW6n7mRvC4lCp4z5FG5thUKeNnPI/DibF/OSHWizN4/WwGpk/gyZNnoB6la9NYCf1fVWrj3cfxuH7xEh7X+Tb2AxGR3R56GW6bOgz1awsXoY7pAtim/SjR2CYikiYUdEmBwVGC42Onjf2jWMVlxo55j9RnXxf5V5yBwGEn4/heDf1FQ1EURVEURVGUoaMPGoqiKIqiKIqiDB190FAURVEURVEUZehsy6OxvJJIrr+qC/NpDumY5kxOkqw5ylFTFlAWwmgRtZrVvThfdkKSxJUMobcfoi63v4S1NYk6N5u0w+KihnpkDHWUhTzOFS0icugQ6Q5t1IsWXazPPPEK1M8+8VXcJhbAi4hbwHW0SZrI3/B81OeyhyPMyICwSQ9ZLFLuibuhpwxDylHZCdJ0PawgIl3lUg/7WzMxtZsutYmQ3yEhLbt11Tn017BNpTbP5e/QcYvp2Kako7TK2B/TGNvZskztJq1SLNLtx7Rftke6X85myMhIsUlDz/O7p7RfbpH2gzcyw78gPdxX1yfN6YCuOsrK+tgBLBnsBZvnTQQ9M2Og3SbPToTtWqrgOeeT3j2iufpby6ZeuE/ZQDa1/fg06omLFRrTaLdWFnAd3baZMRDHeDwKBTz+uTyOo67h0cDztdc3+wfrmv0cLtMhXXNxFH2Ct97+OqgPHj5krMPzcRmcD3PF72IZvped4fOf+wvJrZ0XiwvoUUwSPG+dnLmNOfLOBHQo7QT7Qq+H18tcCcczv1031uFSnx0ZQe9ls4XXeY+8N26Kun3Xw++XynuNdToOrjOg6123i/1rbgm34eQrmI918sQJYx1CffzwQbyuT+3Ctgv6eC/x9NOPQZ0lcbfommI7eO4OXpM6XXN8ud7ccfMtki+uHp9cAY9boUD+14w/YzsWfofvW/g60mqQF1PwGtEOzTyl8RH054zk8bo/WsVxod1B/2pIt64O+ZYkNe8BkwRPpGoe+8b4KH7Hodyzfp+y1TK8d5yPNEHjdkwhcv1On97HtopT8x4ucvHcc8hrGfU3jo/DputN0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBpnz4tckbCmHmoiGw3U8Zbypj50927UlCV9ytGoocY07i5DHZFuN+qaWmFHUCeYt2gecBs1pylpO1utBag7TaybrTljnYUc7lfewbZI3Vmox/Zi2+y/BTWAzYbp0Ygtmt+9i3o7J8bv2Anq77rcdlGGD8TF7sAejaK3sQ1BsPP60EF48zsd3N/QQQ2kiIiTR41jHOBnbNI0uwnNoU/a9Sgx9aExCVMTF/WgTnUP1hEuNCHdbUi5C1aKtYiIZaGeM0eZFU5Iek/KYrDz2A5pz/RoOFt4IhKPtMTLlNsS4zrdltl/DM1oSn0+HRv4943RyCdBS5Jgdd2JoA+BfQoh5QOIiMSk23Zp3vzxcRwLxkZRE98lffuFwNTZcnrC5DRq3N/w3d8F9YGbjkBNlh159stPQ/3K86Z+/cK5C1AnlOVh0cnjk1+KMzCCwOyDPC98SPrs8dIk1Af2YX3bLfuhnp40cwySfh1fIJ+Wtfa3uaRnHtudIAwDsdeU7b6H521MGRmeZ46BPmmw834N6m4LrwH9Pl4vLfLFpHbGdYDG3oS8cA5lDXFWxEgVNfZlOq4OjamrC8Ht7NIYtkTj6Kuvvgb1ubNn8fsZHrKlObz2P/7YE1Dfdz96gKo19MN0u3WolxfNPpREm3vhOgPb1eub58j15sDBcSmuZZHlHMrKYTtTRlYXn+dC1w22UUaUizbl4BgwMvJGYx0J5avlly9D3SP75siBm6DuenTdqeB5dfkUZnmIiLzhGGaltSmfrVbAtnLIK5WOYP91Mn4CSGhMNDyl7Ochf1lMdWp4DFe/hdtBmVzdjetNt2Xef18N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7GwMLU+5/WlGdQrNldQkz01gVpQEZGLp9GrcNfdqEubGsW6TRpnt4y6t9F9uE4RET+Py/BHcBe7pKO2bRQF+nnUh7o0V7AjFOYhIr5LWQcJzW1vo+5y7Cjq9K3KQahfeWbRWMfsedzu/gpqYy3SwVZJEx2y1jhDv+vYrJtGbWJ7QCN9I3I0kjSVZE2zGpA+cGkJ+1Yyjd4cEZG33oWek6SB7fzopRrUYYQafPZkWKTRFxFxI5oPm/I8EvK92ILnSdLAzzuUu8CaXRFDRi7ikAg1xnOA/VUpaT1TY4EiEc94zpsR4Ptxn85N8oVIhsfCTmme7xCX2Q+sgfdujEdDGqdFktX2S8nTFLOvoHHK+HrZwj5381HUm09PT0CdJ//M6ZM4tviu6bWqTKCv48EHj0P9+ntx/Bmbxv6wtITn1nOC424/MMdA18PtyJEfyvU5ZwnbyvNx/PJCdpqI2DSm5Vysd03g2H/8aA3q8RJeT/z+aWMdidGvruLRaJltsBOM1EYk76/2idIC+SSb2Ka+b45PK3Sd7nexDR2b5uaP8TgklA1ju+Zxslw8Dr0Q1xHRWGDRNbZI+Tm7JrE/T+2iXAMR6fVwmY069reFBTz2EWf2kG8kjs1x9sDBw1CX8njuXqD7m0KJvCg2blNnxexDZG2SGmc4DOQaWPHOezQs6a6fET3KJimQ3yLomWNTsYB91mGfR4r9yyGv7/69mE8xOW3mSr36CHp7y0UcU5cpb2fsAC7z1R6eI226HvrhJWOdpfwdUM/18DOlAp0DQhkXEY0zqfkbgOfxPR15TsmXm6P8pJyN40GW7TIK+V4Wt2u0uHE9ymVk5V0N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7F3113ir+nbWk2cm9gKcB7q+QuoVxQROf8yvjbzWh3qpx5DzezUXtT4Te5DURlFYIiISI7m3O6S1nK5jRrpMfp8MYe6yn4fv9/LmF877KKurZhH3X2lihvajXAZloefL5VN/0TORT1kyaIMhzbqNWsj6FGwqvhMudQmHb+INFq4H40G6lq7nQ1NaRSZGRLXn1SumAN6HdSRN1t1qONRU7v51+9Cbbq88lUoHz95COpeWoPaJl1vuvSKsY5kCTMGEtI8JqR5dKbvx2XSHN5piOeMFWblaJC+2MbsF3FQS2w55BEKsb9ZsSneTClcgXMShDT3KelFLfp8nOE1EcqCsdrYFuHpjX2PwxuT41KUrhTX/j5j0diSBOQhK5jn2C1HUG9+x62oH+axolFHHfel13CcLRdNHf4U+ZPuv/8Y1LunUUNv09jSt3B88khPXDRPLfFpnbffcTPUYYTjz4nnUcPM/StLo1zM4XaP1bA+uBf7+S1HUN9eclB7bffMsdyAu+maXtvKyHDaEWx79f8iUhnB/Vuuk/8iI4ukWMKDl5DvrBvhMmZmL0IdUoBRoWB6MfvkrWr3yV9IGTpxitsUU7ZQfRmv2e3WirHOTgfXef4cekgvnKP+FmHbzM7g/czSEvksRcRz8Vy7eAnzFIIunv8J5QLt2oXnum2bt1/dDp6L8wu4r1NT0xvr23mLhiTtUJK128Zun/yHPt232Bn3MQXc5yTi+y08J4MQ6+lxHD8Xz5t94eUzeP2bnsCxqejhOpdX6lB7lO82dhAzMr7/e95irLMTYXaHm/C1gPabzzsbD2aQcXvFGSM5yuzq0xhKFiFJU2xLN6P/WT6HoZCneeBaEIrmaCiKoiiKoiiKcgPRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ09EFDURRFURRFUZShsy0zeKvZEa+/6lJpLKHRKaLAHN8xn2H8AoYBdZbRLPRaHc0qeTKuTe7F5eXIHCgikib4HTZcFUpsIj1P32cHDRqeXNc0yiYUamT7Bappvxdxv9vz2JZOaBpl84JmoYKD+9Ejg3l7AZfZCvDzi0tm2GF9Bb/T7GDdTzbMP3GSkfZynUnT1f+LiCScH0fb4+dNx+rCPLbBucexTeM6GeqL6MhqzaDRu3f+T8yNjNCIxuZvIZNrFKLZ19v9Zqidkf1Q24E5yYJTQpNi3hmHOoz5XMTP2xTsY5wDIsLBZZwSmNpY2w69T/03q/9YFEDkUCCenWycNzGb0XcIx7LFXTPhxQn2pzDEyROqVXMbC0UcG/IUMGqR+zjoUQibi+06UjNnxJiYxPGmUqXQtbhPNR7/PPnLb38dDrxWahrxX3zhDG7XCI/DWC9M4TbOz2HbcZCqiMjEOJqf7/sONLnf/fojUB8+vBtqI6M0I/MxyZqkYPAra/3ec25M/4viSKK1VScUdNclQ3SjYQbC7dpTg7pUwv7Y69ehvnwZ+5/johm31zODW12XJpdIsC54FCCaYh9eXsa+sFJHQ3oUPWGs07HxPHr5BE4sU6dJFeoNNHtfvoxm8YQvMCIShNgW42Xc7lIBT5ycywHEfC9hXqMcH7+TL+E63IF7HucG/J240e5KuHaOpDRpyNwitmmpZAYrlgv4WkiTerRokho7xXEgopDd6m5zMoLiLnzt5BnsC9//4Bvx8xX8vGXTNvh4H+DnzL7Rb2Mf92n8ylHYnm3RhBwW3o+Fken050DlAgXwVeh66VBAJHeXJDVv/8MYz+eYrttJtHHM7Yx74auhv2goiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMnW15NGYvz4m7JnTtd1HzuLSEATm2mEEqk2MYjlcqY5BK4mDISUSBJK02BjItNUyNWK+/DPWeg6iv69uk5U/Q2xCRjtJxUBdXKtaMdfrOGNQrM6jXm7uEOreIvACdBdQpdpfMULagidsdxCgw7qUUQLSAWv75JdaommFiK53NfR3RgCYvS8N6vbEsa10jHfVx2+w2bo+7iAFMIiK//sfYJosX8dgGfdQCy8IZqr8AZS6lYDwRiWwMmRMKeXJjCs3pY+if056C2ircBrWfJ6OSiEgRzyuL/FEehQOlpMPk8D07Q7uZklbWEtJms2bdI/8U6+FDM5HIppdS0kTHA2FhcWQG1e0MgVwZNm2bzo+4DrXlmIFGHo0/iaA2l6W5vR6+H4S4DscxNfKeh+d2lKCuOQjZ24YHJxE8lw4exs8nKXqARERW6jjuXjiHwYLs0aiNoNa/Wcc+Oz5m6rtvex0GZ33Xm+6Aeno3LlMsPD5BSG2f4fNJZfNx7cr40w+vIezvOpCEPYmt1f7XaeKYnkZ4HMOu6XNZIe+eneB5FEbs68DPF4qoNY/75nUkCfC17gqeByPVGtTNOp74IQX2lUt4PT398kljnYUcBbnNoOeivoLXVDePyxyr4b0Ih9WKiNjUN0rkIWWPBtnYpEh+mHzB9Fd5Xo5q3E57YGy3M3yw15u55Zbke6vHKxXyplKdFzOwb6GD/cui+6s+XQM8ej8J6D4oMsfY/Ch+Z6RJbThC12ifPIvkp2hSiKCfM9fZTnCcnm/ivYHvkg+O/MUxhdW2e6ZHo0kBo76DjRWTT7dWwT7t5fC6HlvmfiQWeTTIUzrY+uaV5+roLxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1sejXNnXxF7TTPneaiDiwX1Xn7O1L8utNDH0Wqijr6IFgwpTu+ButBEbZ2TJdPOob5url7HdYb4bDWaQ92kQzpDi4TjnC0hIpLzUE/Xa2OzPvvVZ6FeuYjbUHFRj+xk+R8i3A7Hxe1sB/j+DHlNFptY83zVIiIRrZdsIGI7A/tl3ViPhu3j/rcot6GT4XMha4yEJFHMd7ENg+Y5qKM26n7FNudB33P8e6HetQ89FudeQZ/HwpnP4wIWX4MyN4pZAP2lGWOdSYrb6TioSU3Zo5Gydvvr+XsDHn+L2t+hufQlpb6VmB6NhAwKqY8aZn8gEyeOzSyHncCSRKy1ffc8HIB8h7wPGedxmpr7De9zXAlpZEMSMbuOqcPPk/7c4WPj0LEjL5zNeSZlXN7uPehJExG5/c7DUD/11VNQt1qoYR4fx3Mnn8dtOHjIXMd3PoS5GYeOoFfEcSn3poWa5STBsTtNM8awlEvO1VhtS9ZD7xRJryvJWs6NTRkEBcpYcXOkRReRtEda8CXcD9uhPCwfP99Zmsd1uGb/S4u43v4K+h2WZ/E8mVtAb5znY18o7EWteZ1yNUREDh44BPXuCfyOFVOGBeUspSmey56YGvmUzue8h/c4OSNXAPej6ON5lM+ZHobU4g5IOQYDF+UkNrfxeuOv/U9ExC5hFo4dkU/SMa+PrT6N8RF5Asir4PrYph7lNcWxeT9WnsDtOrwHPYx2nvqn4DpiOq+KJbwPDTPGdY6essg/EQq2BeeHBHT/dnkRfXUiIhH5wnZP471BQO/7lJclAZ53jY7pQ+IcnVye8kD8jbbrxNc+BuovGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx6NVm9O7DWNnBOgdqtKcxfvPzJtfD9fQD/Ec8+iHj0geWKb9MitADVlhbzpMxgdR113kTIGzpzE+d4bHmqHjx6uQW17qAHshegzEREJItyuyhhq+g6/DrfpKwuobTszh5kjQdvUvsWUO+CRxrQV4HfmlnCbOl3SyKfmM6ZFeuQ0xdodkFcmCWuXdxbPJh05GUqSjqkP5ZwGzt6I+rjMJECfR0hzdu879h3GOh783vdC3aMuWpw6AvWTy+j76C6fwW0oYX+Nxdwv1hc7NDe+xJyBQUYA41By6IWp40+obyRkLnBoaOHcFd5mERHHwTnWS1UcL8Td0F3HkXnu7wSu7Yhrr7ZnifxdSXUX1FFk+kjYo2HRZPtxQlkIbRw7pqcwC2Z0HPXIIiI33Yzjz66p/VCzrp6PLR9/1g93OjhmipjekmIVx81ObwnquYU61JUituX+/WaOxk1HsX1HqH+wXjuJUIudJNQns3I0+Fyg2l47Xikb2HaIas6VvL+6H3EN96/i4f6FYdb+4Q7l6TpikUfAYxsB9d84Ntfh85fIM2bTdropHWu+7rA/McOf1W1gbgHv1/Q49hXbJh8bHeeqb3qE+DShLis5yilgj0Ihj2Ne6pjXUFb/cxaHa220RWxt7ve6Pthy5e/TPp1P3S4eFy8j46fT2Nwv2CUfVRjTeEkt5OXNNvTpuFwS7Btz53Esmpwgf46L/h6XxvE4Nferz1lUQtlDPKb28fNhgJ2r2zX3q9/Ba96C1KF2KKsjFPRAV0f24Tayp1BEynm8dnRa2FbWQJcOOXJnE/QXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLY/GwWN5cbzVZ5PLF1CvPj+LHoFG3dSxjU/UoLZJS54kOMdyYwW9C9UersMqmvNINxqofesul6F+7nGcg3t8FLWaR4+ip6NYxeWN5EztHPsF0hB1bTffhstcmkdd4hcvYzZCLyKRoYj0SZIetlC73wvxA+0eto1VQj3evn2oxRMRGRlBbeIyzeU8f3FjO60kFjGner6uWLKhHufZ21lHaYfmxoVd7LMpZY0IzeGdxHgc+bn82PF7jXWkHTwuX/mzP4Z68va3QF0aR89Gb+EE1MHKU7gF6QFjnbaF2suUdKyJkc1AOQrszcnwaFwlTmCgZK8BzU1O25QVYcCCcIvm9I47G+d/coNyNOw4EvuKbphyP3I2zzluamAN0TWZG2Jq51oVNcoH9qP3bXra9DIc2DsBdcnD7bC38GRw3Wnjfi5cMOdfP/G1M/idHmcLYb24gMvw99COhxlztAcoCk6oCzjkLyiSZjkV1uWbOQY8RT57aOy1tknZULhDjBYKUljzaBQncP9ye/F6GkamiNqhK75t4Xcsi/w77L2i9mDPh4iI65JXhMaCgL6zl+4LeBs4WyGeMvt8LkeZNj5uA3tJbLr1sS0zD4Rhb5NtYx91PTqvks09G93Q9FhYLt+SYVvZA2OMt/UmD52llRXJrd2MlOgUdSk7KQ3N20s3ov5jk/ePvAsOjUWuje9HTbOP9/u43pQyv/Ij+H6DbgNqk/j5ZnQBlxeaf5/3cxgCF0XoretRaFfcob5E59XefeirExEJejVcRhfbwojHsmid7C1xzet8q4eDqlPEa8fywD14N7r2HBf9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXobMujsfdwSTx/VQg2vQu9DysLKHQ7+xrr20UunUMvQqWEc8B7OdSDpSHqLku5SarN56TzJzHn4tIp1LwvXECdmh3hfizNo+6tWBqHeqRmehvGRlGf1++iP8DP4TKnpnm+c9QZssZQRCRJUP8Y0fzSkmBdIK2nT/V42fSB7D+E+3b3649D3VzZ8B8E/UB++5dPGcu4nqSyoVh1PNx+z8a+ZS+dNxcQYX+xQpyHPk253bFPuw72x/kFM8thufEc1PXLr0KduOiniFqkwaXjlIQ4F7bkTH2yW8X+53iovYxIn2zkaJAO2MocFsg/Ycj8eT9QMGpaPDIExrRZIX0rsTe0szcqR6PdmBUrXu17YRf3ISHjCetuRUQs8nEI69HJJJCEmOVSLlAOQs7Uydopjie9Fm0X6aLZJ8IZOUmA6yhn5Bcd2ov13CKOsz6tcqSI/dijTIGgY3o0lufnoY4CzPPwWCPPqQTG8cjKEsLXuK2ueGjC/o3xCHVaPUmv5GjEeFw8m/TsjmmE8ti3knBOAfu1uD3M/Bvmar6W9Zo8Gg6dEg6PHeSlSTMynCIhvTqdiw7vF5txHG47s2+4pPXnzYhCeoGyFThXx7iGi4hD+8H+lkGPRhBcu0Z+WLQadQmC1T5QGEUfQpRgm+XHa8b3vSLuj+/gMkYSHLu6YR1qO0fXIdf0wbXbuIxCAa+Pe47hYBXSdT6J0EvTCyhHIzSvXUGdvA0u3p9YHt5nSkS+pQC3wTYSVUTiPh7vlRX0g+aKeD9TcHAbwh7dF6QZHiF6qRfiOD64DUlbPRqKoiiKoiiKotxA9EFDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLDL6yuLweSlOgsLzdB9AkduQoml5FRJ56DI3aF06jmc+20byysoLvL9WxntiFZnIRkYQCYVbQPyhWhIaZxiJu96N/httYrWITjVRNE/XevWjs2bU3oBq3aeYiGn9aDWzLftc0GiZk/AsoACai99MIDUthC9f54oJp1n/p+WehHt1Vg/rosYMby7sBRrRBUjIyORYF9hXMrl2soQksqaN5L6qjiSyyaBkpPpeffuVrxjqq47fgOsd24SK6Z7HuYxiQQ6F1doLH0S2Z/a8yjYY4z8FlhBEaa1NhExiHdMXCWIJ9mkMBYwrbtG0KTUq4Lc2wNDaicjnoF47kxpjBg05XgisbRqbAhIybWcGHFpmLLTKd9inEq76MY97yIoaYVsqmGZL8vdLv4bGzyDTM7cxmcGa0ZvbB47fgeN//2kmoi3kKDD2AwYPnT+O4a1umGbLdxmPuoWdTUkqssmiCAmO/Msz6Dpv16RheMRH3exmBgjvAmfOXJbdm6A7JpJr38VrmuOZ5bBrmyahN/TPlwD5n8yC8rGVaPHMET0Zg4TISPm9SCvYNzXV2KcDTpTCyHJv6aXIL3u+sMDzy0UvEEzdwiCn1r4TSOPk0XH0Ry3AT03o/ox2uN6WKK7n8att5NHbFMfUdxxybUg8Hpzx5pFvzeBw7FCBXpskI7MT8W3nYpHuBPn6mSRMC+TQxju3iOvoN7AzdvnnuRyFe/0oFPG6NFb5fwoPfbdK97ciYsY5mHdd7eW4Wai+P97aTAd7vFCq4TdVR8/7ZovBpi0ztXrIxBjvetY+B+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR+PcqabYaxrBA4dQfzdeRbGdk5KAVkSE/BM26bYdi4J5YtTGLV5CnVtrBcOsRERyLq6XrAwiIet2UY93LqBAGQo/kxh1/CIiTwnqpnNF9D9M7kZtXK+Hbbe8hFq3qG+KN1MOL0tJd5/ydpIGNUJtZMLJLCISkj58uY77cfH0uY31baHjvh6UyyWpVFb72f/v+98I7zUbqHGMMjTekqMQnT5pbCk0JxFsY8sIAENNpIiI7eBrLgUMxSHqR5P4GNW4DsO3kKH7T0g3bQuFanEwj8Xa3s0D/FZf4tc4AIu0naRP5hDArFBA3lcOvBv0FnS7HXniL8zNvN6kSbQechaRRjqgEKZMrwMJs20aXzpdPFYLiw2oz55F01khb46ztREcX1wHP+OQtpol9Hzsogj75MISBkWJiDz3wmlaBx7fqWkMzTq0HzXI02M1qNlvICLi83aTJ0aoZr2xw/3JSJ0UEQp6Y4n8FZ19Epnj506wuLAs3to1mP0RHgXdcQiiiIhLwXTG6GK00ea1EXwnGR4g8oAZl6qEPWQUEphSkG9G0/eEfUi4XTka42KLtP7UtzhgUsQc/9lfZVHyII+JHMbps1dFMsY8jwJcB97uRxnXuOvMyJTIFStAhU7RJnkZzs1iWK2ISDtAL5ZHOv/paQxlzlGoM3sz2/0MH5KN19xqETe008L7RpeuRVGC9z2uj/2vmM/w3pVpHHbo3KSwvfNn8Z6xS9vUyLi3DSi8dXkGx+F8Fc+BfGkE6ojup5PYNCKldA3rtamP5Ta+0+tc++8U+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR8NNx8RZyxK4cBK1dW6IGrWFy6jFExG5eJp0Zwlq5mOaAN4iXaXroVYu6ZnPSR3S6UakjROey5o+H1JWQuixr8ScG9oWfC3oo05/ZYn0eOEifj6g+agjM6Mi4baxuK1Ib0fSupg0q6ll6ndtyo3waa5xp7fRFmm68/rQcrks5fKaR+Ndfw3e43nQM30GzJb2B/7A1utgK4OxyC1fyJpcfbM1ioiRi0Ha4S2WeS3r4EyIrZdIno2ve83Z7zcaDfmRD1zTQodKEHUlWNNG2zRxfp+yZXjefBERtm2wXj2gQ0kycNk1jbpbNyMrodFA7W4Y8TC/uZ/GcTkfBN9vNUyfGmv1a7US1GOjqJMuFNgLh8tzbVOIb1mkw6fxiXNu0pT7IL6fZOTFsK6e9/3KIjkzZaeIglisNZ8F501YnAFi+KpEYtJgG+MV9UeXug5fh7iNRUQ8+pJFmxULe5mw7zjsnSHfWhRmnFe0DpvzT/hEs3k8o+t8RsaK8UpE9xLG5ynLg/IZXN4mEWMItMjHGgzkZdnRNVzjhkwraUgYr+0H3RsV9uBnmzOmB8CJ8Rx+8bmLWD9zBuqpA+jZ2Ld/HGo3I87Lt/C+0qFMLa/IXi70wXmUSRZ7aPQ1LI4iYpOPwxPyb9JtY8HDdjh3Cb13mfdXFm7X/Flsu1yR9pPyQaZpG62GeXzYGxf1aJz+/9j77zhLrvLOH38q3Hw7h5nu6Z6cNdJolFBEMgIEskDICdvwFVoLMOaHCDICrxMstr/+rom2Fy9e7CUYh8WwGEwQQUJCSChLozQ5z3RP59vh5gq/P7qnuz+fU+og7nRL6Hnz0ot5bqVTp06dU9X1+Zxn1onY5YX71PSLhqIoiqIoiqIoNUdfNBRFURRFURRFqTkLkk6d+Tw6e+pNlgXwVI++b376MT6zzhMbU2bSJ9aoGUx5G2P6PQp5uTmdIX3ejJjOT+hTsE+fvfgzGH8q5q9kUVMGmp/S+LOpsZM5l4e8vpjyGP5YPPvz85nyRH06rzVnjjE2NvOJk6ULKp2azctDOiWyNO1v9nHyxZnpibnJVUj39IKkU/RZvlDC6ZBLFfzkXiybXXihyNOJ8rf+ufUy80mnuEwipmysVMZy8jb5Ik37TE3YjZj60+g3bZpCssrT9s4tnYps5wuUTuULpal4adtfdVb5jBGBzjeIksfytNTzSKcCY/jj7SP6QIvrHUvq81TttE+Ht6dniWqEdKXK/Q3L5qiYAY2PPBNwVJ9pTG9u9HE8NTni0M3uL0Q6RfuszKqLMxLOpRyDy8WZ+zzm4j3NM+aXi6Y0p1LEfsKrsLQd40oJ+5FyEY/pR0inApLeFQs4bb0dYrl8kmlatNOAixglnSI5HxerkkerQbmIZapSf7kQ6ZRH6QgcOmiFxw46ZuhEtD+e3raI5QoCe9ay4lRZ529/VriAtU6ePCnd3d3z7kx5+XHixAnp6uo6q8fQ9qc8H0vR/kS0DSrRaPtTlhsdg5XlZCHtb0EvGkEQSE9Pj9TV1RnGQeXlSRiGMj4+Lp2dnRFfE2qLtj+FWcr2J6JtUEG0/SnLjY7BynKymPa3oBcNRVEURVEURVGUxaBmcEVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqzuOaaa+T973//chdDUX5ujh49KpZlyZNPPrncRVFeJGj/prwYCcNQ3vnOd0pzc7P2Wcqyo/1k7dEXDUVZQrQTUxRFmeHOO++UL37xi/Ltb39bent7ZceOHctdJEVRasiCEvYptaFSqUg8Hl/uYigvYsIwFN/3xXX11lRe3Gh/ptSCQ4cOSUdHh1x++eWRy7WdKb9IvBzb88v2i0Y+n5ebb75ZstmsdHR0yCc/+UlYXi6X5YMf/KCsWrVKMpmMvOIVr5B77rkH1vnpT38qV111laRSKenu7pb3vve9ks/np5evXbtW/uzP/kxuvvlmqa+vl3e+851LcWrKi5RbbrlF7r33Xvnrv/5rsSxLLMuSL37xi2JZlnzve9+TCy+8UBKJhPz0pz+VW265Rd70pjfB9u9///vlmmuumY6DIJC/+qu/ko0bN0oikZDVq1fLX/zFX0Qe2/d9+Z3f+R3ZunWrHD9+/CyepfJiJggC+dCHPiTNzc2ycuVK+ehHPzq97Pjx43LjjTdKNpuV+vp6+Y3f+A3p6+ubXv7Rj35Uzj//fPmHf/gHWbdunSSTSRER+drXvibnnnuupFIpaWlpkVe/+tXQD/7DP/yDbNu2TZLJpGzdulX+7u/+bsnOV3lxc8stt8htt90mx48fF8uyZO3atXLNNdfIe97zHnn/+98vra2tct1114mIyL333iuXXHKJJBIJ6ejokD/4gz8Qz5vJjjw+Pi5vectbJJPJSEdHh3z605/WL8jKnOhz4BIRvkz5vd/7vXD16tXhj370o/Cpp54Kb7jhhrCuri583/veF4ZhGL797W8PL7/88vAnP/lJePDgwfDjH/94mEgkwv3794dhGIYHDx4MM5lM+OlPfzrcv39/eP/994e7du0Kb7nlluljrFmzJqyvrw8/8YlPhAcPHgwPHjy4HKeqvEjI5XLhZZddFr7jHe8Ie3t7w97e3vBHP/pRKCLheeedF/7gBz8IDx48GA4NDYVve9vbwhtvvBG2f9/73hdeffXV0/GHPvShsKmpKfziF78YHjx4MLzvvvvCz3/+82EYhuGRI0dCEQmfeOKJsFQqhTfddFO4a9eusL+/fwnPWHkxcfXVV4f19fXhRz/60XD//v3hl770pdCyrPAHP/hB6Pt+eP7554dXXnll+Oijj4YPPvhgeOGFF0J7+8hHPhJmMpnwda97Xfj444+Hu3fvDnt6ekLXdcNPfepT4ZEjR8Knnnoq/OxnPxuOj4+HYRiGX/nKV8KOjo7w61//enj48OHw61//etjc3Bx+8YtfXKZaUF5M5HK58GMf+1jY1dUV9vb2hv39/eHVV18dZrPZ8I477gj37t0b7t27Nzx58mSYTqfDd7/73eGePXvCb3zjG2Fra2v4kY98ZHpfb3/728M1a9aEP/rRj8Knn346vOmmm2BMVxRGnwOXhpfli8b4+HgYj8fDr371q9O/DQ0NhalUKnzf+94XHjt2LHQcJzx16hRsd+2114b/9b/+1zAMw/DWW28N3/nOd8Ly++67L7RtOywWi2EYTjawN73pTWf5bJSXEldffTUMfD/+8Y9DEQn/4z/+A9ab70VjbGwsTCQS0y8WzJkXjfvuuy+89tprwyuvvDLM5XK1PBXlJcbVV18dXnnllfDbxRdfHH74wx8Of/CDH4SO44THjx+fXvbss8+GIhI+/PDDYRhOvmjEYjF4WX3sscdCEQmPHj0aecwNGzaE//Iv/wK//dmf/Vl42WWX1eq0lJc4n/70p8M1a9ZMx1dffXW4a9cuWOcP//APwy1btoRBEEz/9tnPfjbMZrOh7/vh2NhYGIvFwn//93+fXp7L5cJ0Oq0vGkok+hy4dLwsheCHDh2SSqUir3jFK6Z/a25uli1btoiIyNNPPy2+78vmzZthu3K5LC0tLSIisnv3bnnqqafkn//5n6eXh2EoQRDIkSNHZNu2bSIictFFF53t01F+AVhsO9mzZ4+Uy2W59tpr51zvt37rt6Srq0vuvvtuSaVSP08RlV8AzjvvPIg7Ojqkv79f9uzZI93d3dLd3T29bPv27dLY2Ch79uyRiy++WERE1qxZI21tbdPr7Ny5U6699lo599xz5brrrpPXvva18mu/9mvS1NQk+XxeDh06JLfeequ84x3vmN7G8zxpaGg4y2eqvJS58MILId6zZ49cdtllYlnW9G9XXHGFTExMyMmTJ2VkZESq1apccskl08sbGhqmx3RFYfQ5cOl4Wb5ozMfExIQ4jiOPPfaYOI4Dy7LZ7PQ6v/u7vyvvfe97je1Xr149/e9MJnN2C6v8QsDtxLZtCcMQfqtWq9P/XuhLw/XXXy9f+cpX5Gc/+5m86lWv+vkLqrykicViEFuWJUEQLHh7bqeO48gPf/hDeeCBB+QHP/iB/O3f/q380R/9kTz00EOSTqdFROTzn/88DOZntlOU50PHTWW50efA2vGyfNHYsGGDxGIxeeihh6Ybw8jIiOzfv1+uvvpq2bVrl/i+L/39/XLVVVdF7uOCCy6Q5557TjZu3LiURVde4sTjcfF9f9712tra5JlnnoHfnnzyyekHxU2bNkkqlZK77rpL3v72tz/vfn7v935PduzYIW984xvlO9/5jlx99dU/3wkov5Bs27ZNTpw4ISdOnJj+qvHcc89JLpeT7du3z7mtZVlyxRVXyBVXXCF/+qd/KmvWrJFvfOMbcvvtt0tnZ6ccPnxY3vKWtyzFaSi/oGzbtk2+/vWvSxiG01817r//fqmrq5Ouri5pamqSWCwmjzzyyPSYPjo6Kvv375dXvvKVy1l05UWKPgcuHS/LF41sNiu33nqr3HHHHdLS0iLt7e3yR3/0R2Lbk5Nwbd68Wd7ylrfIzTffLJ/85Cdl165dMjAwIHfddZecd9558su//Mvy4Q9/WC699FJ5z3veI29/+9slk8nIc889Jz/84Q/lf/yP/7HMZ6i8WFm7dq089NBDcvToUclms8/71+RXvepV8vGPf1y+/OUvy2WXXSZf+cpX5JlnnpFdu3aJiEgymZQPf/jD8qEPfUji8bhcccUVMjAwIM8++6zceuutsK/bbrtNfN+XG264Qb73ve/JlVdeedbPU3lp8epXv1rOPfdcectb3iKf+cxnxPM8efe73y1XX331nJ/9H3roIbnrrrvkta99rbS3t8tDDz0kAwMD05KB//bf/pu8973vlYaGBnnd614n5XJZHn30URkZGZHbb799qU5PeYnz7ne/Wz7zmc/IbbfdJu95z3tk37598pGPfERuv/12sW1b6urq5G1ve5vccccd0tzcLO3t7fKRj3xEbNsGuZWinEGfA5eOl+WLhojIxz/+cZmYmJA3vOENUldXJ7//+78vo6Oj08u/8IUvyJ//+Z/L7//+78upU6ektbVVLr30UrnhhhtEZFLrfO+998of/dEfyVVXXSVhGMqGDRvkzW9+83KdkvIS4IMf/KC87W1vk+3bt0uxWJQvfOELketdd9118id/8ifyoQ99SEqlkvzO7/yO3HzzzfL0009Pr/Mnf/In4rqu/Omf/qn09PRIR0eHvOtd74rc3/vf/34JgkCuv/56ufPOO593znrl5YllWfLNb35TbrvtNnnlK18ptm3L6173Ovnbv/3bOberr6+Xn/zkJ/KZz3xGxsbGZM2aNfLJT35SXv/614uIyNvf/nZJp9Py8Y9/XO644w7JZDJy7rnn6pSjyqJYtWqVfPe735U77rhDdu7cKc3NzXLrrbfKH//xH0+v86lPfUre9a53yQ033CD19fXyoQ99SE6cODE9DbOiMPocuDRYIQvBFUVRFEVRXsLk83lZtWqVfPKTnzS+8iqKsnS8bL9oKIqiKIryi8ETTzwhe/fulUsuuURGR0flYx/7mIiI3HjjjctcMkV5eaMvGoqiKIqivOT5xCc+Ifv27ZN4PC4XXnih3HfffdLa2rrcxVKUlzUqnVIURVEURVEUpebYy10ARVEURVEURVF+8dAXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqzoFmngiCQnp4eqaur0yybioiIhGEo4+Pj0tnZOZ1J82yh7U9hlrL9iWgbVBBtf8pyo2Owspwspv0t6EWjp6dHuru7a1I45ReLEydOSFdX11k9hrY/5flYivYnom1QiUbbn7Lc6BisLCcLaX8LetGoq6sTEZGbbn+HxBJxERFZte4qWGftjtdDHEa89MYrHsR+GWfWDWNFiIdO7oY4mUhAnFm53ThGKBmI+e3bmMt3kZP7BhHrB+UqxJWxcSxDUMb1PVq/hMtdu2Acw7LojTHVDqHv4nm7U9fpDI6D8eFDTxnHGDx5ELeJ4fXyvGD639VyUf7zk++fbhtnkzPH+N+f/QtJp5IiIpKpx+O6sRjEfhgIU/V9iC3BtsFv5TzzcxDgPqP+suPG8JZyXQfLRWWoVLAtMFyGcslcv1wsQZyku9q18JgpWh5Usf3Fk1iXIiK2i+3HtzGuUlfiUQfANWVFXB++tWxq88GsbQqFovz2235/SdqfyEwbvO7K8yQ2dU3Hx8ZgHS6/m0ka+ymXKxBn6/C+DV2slyCHe616eK1jdkQbdPBaxBuyELd1dkDc33ca4rGBIYiT8TQeIGJG9M6VTXhM6n8OH+mD2HLx2qapzUV1y2VqMwHFMWzmEqd70aY4jLh/B/pzEBcqeL3qGyfbgef5ct8DTy95+3vqqaeW7JhnC+7TXq5/IefxRMSsm7mWj4+PywUXXLCkY3BDW1qsqT5nvrLalrncjeFvyRQ+0yVS2GfyM5/jYL9hu+Zf0gOLxmkafSzqM6tV7Dg8imNxfpaKOG/6qVrEfiMIcYytFvAY1TI+ayUSKfMYxiiKFAr43BjVvmazdu0a47dyCceXNbTOueeeN2vdsvx//+/nFtT+FvSicaYjiCXiEktOXvhECgefVLYe4gW9aLj0ohHHwSaZxkGYGx0fU2SZXjRcfPizacCzfGyo/KJh23jebsRnKPNFAy+uH8OHifleNBIpXF9EJJbEa+rSi4bl0YnJ0gwSZ46RTiUlnZ68ATMZLutCXjTofMiitBwvGrEYdkhMSA3Osc1b1qFy8ItGbN4XDdw++kUD7z3fWeSLBt03C3rRoOsR1XEu1UPKdB/oOtMvGq6D19Z40aBrLyLi+/hbjNYJY3g+AfeRguu7ES8aMSpXjNpknPpZXs7l5jJGvWjwQ32Cj0H74BcNLkNUtxwE2I4DamNUdRJzF/+iwefu0vXi5Uvd/urq6hb8YLlcD/CLeVgWMcv5Qsr9YkgHNl+55xtPotZZyPKlHIMt25p5UJ+nyqOKxY82toMr8YuEQ/2E+aJh9rF8XPNFg/+ARX0sxWYZ5n/RCGgbK6BjOnjt/XnqYWovEb/NYBtjwdzrR41PHvf91Gcmk/gcILKw9qdmcEVRFEVRFEVRas6CvmicYXTkqMQSk3+pWtm5DZZZoUdrm3/97jv+EMTVCfzLvk9/ra0MPo6FbcbPSRP0SUtEpK5lB5bL4k/y/KdV3sPcX0DsiNd4y8a301Qc3wpJ7SABvVHbSTyv6kTOOIbnYf0m0yshdviPjjZJbKhuu1atN44x2ncC4qH+/RAXxk/OlKeCnwKXAs/zpuvB/KuYuS7Db94szTGZ+0096hg+fTXx6S8C/EWD4b/ie/RXXAnMMifpPOoCbHDN9EeIyhhKY7zyBMSWZZYxsOiv4nWtEFct/MIUxuiLG//1PzQlYHx9XPqLtDNrH45t/jVmKahUKhIGU180uHz0Va0cmvXIXxNY9uZaeF4sD0rwX9TjEV80mrDu0014rQ4ePYYbTOAnd/5qZtl0r3nmMRMxLNfIMLaxQgFlsdyMyyVcHo+ZX9V8+ish/zU05K9odIzAx/PoGxgxjjE4iL+t2YDa42Dq2oeWee8vBbZtT98H3Je8WCRI832hmO/L8As5D0O5wH/552Ms+ggv7GvDXESd53x1MTvm/mep4evIMX/lFJn/OvFy7ucNKTH1nyIilSo9V3p8n9CXzXm+aATxgJab/XqM+vXQx21Y6eCksHPKpFkqZY5v3H9VqqiGSJCUIZ/HPjVFipWJCRz3RURSJF0bIxvAqZ6emeOX51ZjzEa/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScRYn87DAmdjCpRSuO9MMyp5SDOIzQeT/3zA8gTlsoHi8VsDgr6lEvGxYbcIfVvHGMZAL3Yc4SNc/MEBTzvBA8C5BIxAwCIWrXXPJwcM1UaRYq1zJno2hsboS4TJpAIV8IX1mLZq9x6sxZp7aeswviXNtaiJ/a/X+n/207pjbybNO+on16timeMYZnjkgkzNkR+MpVaFriKM/FbBaiJeap8+bbxmFzjQGWuiFjnlc2g/uwx1F7efRpnMp4oLcX4mIBr2Uqaba/lR1tECfqchAPV7FcQ1XUnK47B6eidhNm1zOfXnf28uWaZca27WkfDfu9AtICxyKmd0zSfcv1MFGiqbFJT5yk2eTSTTjLnohIiaZkHT5wHFeoYDlZS23eW7h+wjGn7WVvkkflbmggz45H0z1Sk/N8sw1mknRcnu42ot+cTS6H0xEX8mYftmMretcCG89rbHRymzBiBr6lIAiC5522cj6tedRvi/VD1MIHcja8JPOeO+vu5+k/auETqcX6c62z3J4cw/NozNpotlPbeX7fnYg5fpZoOvcV7Z0Qb1i/0ThGU0MzxPV1+NzY0ICetUwGx6oYecF88kmO5IaNY7Lf4diJIxAfPrIHYluwjx4bHYW4SJ62SXg8xHLZ5KXj8+Dnm+Fh8zzS5BUZHsZn8NnT7larC/ep6RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj4brpMR1JzXCVhW1WwPHfgxxMt4UcTDM/TDQfxri0ihqyVsyqMdzLPQVZFItxjFYtug6i9MxGtJO0mFHKXMdl7RzlBrcdjnPBurZQ9IWe2VT25itx3O3kxgHpLNmuXJAeTXGi2Yeg9BF/bfbgHryrRe9evrf5WJefiT/n7GPs8nY6Jh4U3NkJ0hLaOjlI7b36eJ6pDEcJZ0kaxozGdTDR81jHk9gnVVprutyGXXhHmm9XRe3D0j7noib2s1MFrfZfxDzn9xzz/0QWy5q3fuGMY/COVtXGMeoK+F5BCHmSXAdnKN74Bjmahgaw7q97FVXG8fgTKVVmg99tu6a80ssFZ7niTXV1vj6sy48Kk9LldoUn4UbUm6gBNZJmbqzsdN4HUREUpQHI5PCdhuLYZvjMjmUj6JUpf4sZdb96UHU+7oJbGNsryiX8Dzr6d6qcP4YEbFJk+x5WN9V8lzZVA/cua/pMts5yZxlcAR9Ha0tk/rvxeiTa82ZdvZC/BbL4cmYb58L8ZbMx2Jzc7CfYCH+u/nKtRSeidllWA6PRhiGz58R3LDFRHmEMDbOgRLsbFh/DsRvfct/gbixwXzOXL2qG+IqjbFDgzlcTmN0PM7jOpZxyybTV8l5NAolHFMPHtoL8be//W8Q9/ej59kPIp7PInJozUUshn2sbVMOp7KZC21sDL0mcfK6jowOTv+bn13mQr9oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsygzuxEJxYpNunmoVzZ0Dp+6DeFUnJj4SEelYib9VCmh4KY5gsiqXrNfJOjSHx+KYBEpEJAjY2IOGGMOIRtsbOZ/IGFmNMol5+FsiiUblgMzdISWram5GQ1OhivUgIlKo4DZBCuvGsijxDZ3IwDE0IxUjDOe9bCy18PrsunTGDF7Mo0lyKbBcR+wpwzBfN5sS/5RKZjKuYhGN1PkJTPjo+1ynuD0n1eG2JSKSFUqEyAmIKmgi9cmIW62giawuibdoex2arkVEMg62jYHhQYhPDWN78m2smziZhcOEmZDt9BjW3dDAKSwDJUVat3otxE4TTtyQiJmGOjeOx42RMd6afdUjEmcuBf4cZnAmKikYt7EKGd6TKew73DTWSZkSOWXjuL6ISEDt1mMTtU8JQimJlksmdsfB84jbZh8YI6NhRysmzWpvwz7uuT2Y0GqCkgxGmcFTZNLkvjxFdVciczgvT6XMds43fSbAMWZibPLeYYPpUnLmvNkAvRAT9WINxMb4yMsjjrlYs/dCjNjzLTeSxfE2c+7R5IWc18uB2WZwS/i6GWsb29PcJuJQv1GfwWR6b3vruyA+eaIH4scffdY4RiyG+9yyZTPE+TyO+9znxmn7OE3ek0yaSXN5HzEX1zn/vMshHuzHMfnYiRMQhyE+a4iI+FV6Fq3iuG/Rd4MKPWu0tuIYnc+j8VtEpJDHfs2h8+jpm0n+6vsLb//6RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmLMqj4ZXrxJIpXXoa9enjEzmIh0dQwy0isqL7Iog5qUnK2gGxE0MNbYH07E0J8z3JslA3xjJqXm4kmeFdkkfDZgG0iHiUdssjjbNLGj/xUCNfrWBc9lCvLCJisSTYx22SpHkPHUrQ14cJtYqjmCBGRCSVIG8J+T7Ccv+sf5s+krONk4iLM6WP5IRtnLDPikjUGKOkho31qL9mzX1APoAq6cgt22x/fhnXKVHMicwa6jFujON1aydLRibEe0ZExCfhq5vFumlYidfVq2K513W2QZywzfZ3nDSlew6jDySVRE3plXWNEF+0eRPEsdBMSDRRJG8AebTcWfeZXzHLuBTE4nGJTfmEWLPNmnnHMX0oSbr+ZfJeubRNnHwqZQ/1xZ4fkdgui8fwPUpmRn2a+Lg8sLBMCcpit65rlXHMdAa9ScUJ1P+6dL8mKMlpH/mI3JTpPfGpftkjZSRtq2AbS6fxZrIirk+BdM9JOkbP6GQ/uphkVWeL+bwNtfAQzOdtYG+EiNkvhsE8yTWpnOUKJznlPtX031Uo+Rife0MD6tPr6rDvj7pX52Ox3pJasxwJ+xzHEWvKo+VT0kquQ9uJej6jMoc45v7KTb8OMSeVyxew/7v00lcYx+DEuzyur1iBiTrZu8WJeudKHDu9DrVZ7scrtPyqK18F8d59mKz6gQd+aBwj8DjB3uK8TxPcJ0d4DPk2KBXxeaOhsX76376/8KS5+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKozE0kBN3ao5hq7oSlm3cdiGu7Jha8gzpthuaUWu5qvWVECdjqAEbmUDtneeZPoGEhceIs0eD1me1nTk9P+neIvJPVIqUj4HmL7Zd2mmAc+F7HtZVX/9J4xjd27bgPpMopktSSgc7ju+QLU2oSxwYOGQco2lVI8QnBlDTN94zM2d1ibSSS4Hne1L1pvSSrPUkrTr7K0REkknK02BT45hH02xlMN8E60dFRMoFyuNC7ccfw/wjKUEN/trmRoiDPHohQtfU5eapHKd6cK7xlSswp8H2zduxzHlsf4WimSMlVUKd6vo17RC3NqEGenwIPVr3/wTv1ZYt6NcSEWlffw7EQRnLlbBn7r0C5ZNYKizLmta+skeAtb1RWl6f8kOwTpbzv3DuF4f07+lGM5cQWXDEIoNXQL4Qx8UN6rLYzrtWYvtJZcxcLn0D2E7rU40Q2w6283bSSY9TofMRHhyeH79IbYA14pwfhP0EFc/0CbHzIiAd+qZNaye3rVTlwUf3ynJwpl0Z7WsBlgybc6Cwz4DWZ78Fe+Oi0tmE5F/JkzZ8Yhz7lzHqE/v60T946nQfLh8cMI6ZG8dng1KRni06MQfX6197HcSbN26EmO8zETHGB84jEZFIgncwz/LJvS50m+XwaMwF31+ua9ZhPI738MYN2Odv3oQ+3f5+yu1FlErmOMD9BOcums/DwZ6MhfTrDD8bsH8s5qIv5PWvuwniRx560Nhnhc4jlcLxp1ggbx35AX3KMRd1GmynSpEPenZM1TIn+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo1GYyIkzpX9j/Wu6EeczXrmiydi+vr4e4s6VqBlb04Y6yWMnD0JcHULtZn+P6WVYU98BcdyYHpuFaTQXPi8lIVvVM+fwTsVxHw2Un2FkCDXzvUeehTiVIs1zCTWEIiLJGOmoG1FHbZF2Vlw88cZ2rPvTT5v+lsoo6upbMngewfDpmX8Xl14jb9l25LztIiI26bMTEfOihzTvM+twHRu3YQ0saz2jymInMGdKhnwhiSqWoc5Gr0tc0JcQkkbSTmK+AhGR/lHcppzHNspaYtZqln2Mi74p3lzV3QXxaht1sBbtg5vwEdLa/uzo3cYxNuzAja56xQUQz9aXW/bi572vBbZliT3VLiwSqLMHaCFaXtYDJ6j9GLk5WBaOl0FEROIVaqfcV9eTzyNNOSuoXRdDPK9kxN+n1nWjBr5EFosq5e6oz+AxVzfhMY4OmP6nMEb5iFysuyTpv8sFXF6heegDl/YnImGRcjU1U98cTi63wuXLo3GmX3IpXxMr9oMIDb+RxoCaqEftjfMDsK9leNQcR07Tvd577CjGJ47h+qdxHO8dQA/GOGnB483oBxMRaepAz1iYwH7ye48+BPGRXhzr3vP2d0K8eiW2ZxERj/KyZLN4DJvGXMPTsQCLRmhcM87VEcz699J7NDzPn86jYVvcD2B5onOTYCW8+TfeAnE+j+1tgLxfNvX7nGNl8je8z9lnVMjjmMueDh7X2aPBfXIUvA/LqCt8flqxAtvv9a9/g7HPb/zHVyB23bnrm+/tmMueDtNnSym5JEHPH7HYTH3PbovzoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBoN9dnpPBpdq1fBsuYVqGlsWYFeCRGRtlacj3186DDEhVHUrZ08tgficgE1YScnTphlXLkOYpb1NjWxvpN1+KSJJp2bZcy0LuJSTot4Bqt1+ABqUId78bwbSdvtmvJkKdPczy2rSP9J86OzLtuqw3KPFE19Xn0J9xFW0RPjl2f26ZdMr8rZxrHt59F9mnNhR+lXQ9JJ2oaqmdYnkSN7NNyYKZD3ucGQHyJGOVQmRlCvXGleDXG2Ab1OhYI5939+dAR/qNK1pnnq9xxA75Mdx5vEjZt5EpqpHKxXFh/rfzxA7XYf3dtP78fzFhFJtuK5p7PoEUpZM8dcgP3hrBDKjMrYZ60utQ/OsyFitin2aPByh9o1N/+ARbUi4lHOkwQVo7EZ/VqxBPltbNzAJnG555l9YO8g5V6pYP9SR9fSoX60nTxnfaOYe0FEpGeY8if41HeXKMcDlTvO+u6K2dFmqLI88igEU/dWpbqISeRriDX1PxER4ZwWtG4QkYOh4uFaA4Pkp+jrhdim9kdWG3lq/37jGAeO47h8fN8+PMYhzOFEzU/yJbwuKzdthXjbRejdEhGpUt6oZAo9QPWtLRA/dc99EH/+H/8R4tdf+xrjGJkE7nP7DswB0djYCHFI1ydciEnjRU4iaU975YIA+5k4GWJ5uYjIrp1XQNzSjPl08pTTKZcbhrihAZ/ffM/0aIwM4nNLKo3jWZnynA0P4zHStD57MrjPFol63qDnSIefM31ajvfZNVe/yjjGQw8+AHEmizdO3yA+V+aGKK9GGo8ZRvjMHMpdl8mSx3RWG2a/4FzoFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyiPxpo1KyQ+Nc97IoV6vDTpF1vaVhrbO1nchqbil/IE6nJ9C/VhdhyPEfNNDfTEEOrtmhpRG1zOo1ac50i2XHz3ohQZYoemJjDm4ok4Fs27XEE/wyhpCJONqH93E+Y84Q0xrLtYEbWMQho/Q0BH5W7buMU4Rpp0rsf2/xiPGc4cg+eqXgrCcEbDzlp24zpGeDRczpNBy9n/wTpK1mbGE+Y8/PV0nbKky03QPsfKeB2HT+H87p6H12RizJy3fmIItesdba0Ql0iXPVrEtpDNNEJcCc1uYWgCr3e5jPVd9bA2481rIE6P43lc032+cYxLSZca0hWafc3DCP35UuCHgdgsVJ8ioPZRKBSMdXjufW5zZt4Mmkef5+qPqgcH+6PmZuxfsmlcnqCcFn5IbW4Y+6tSxfRJjZexHOesxf6/EmCb2rsPtf071mOellLVPK/Vnej7KxawHY+Qr2O8Sv6ocdxnXca8f50Y95sYulO5N4JgefK4zAn59EoRHpRnD6I/4tEnnoT4VC96NFasxOsYi+F13Ndj+iTTK9AP4fZhmz8x2Ifr01jV2dUNcZbyUpVLZg6noRHsF9k/R9JzWbESvQE/e/BBiMMID84brr8B4ir5o0LDv8kejbnbloiIZThtzDWWk3jcmclnRGMbp/JqbGwztr/xjb8J8YkTmGMslcJ7cnAQ82g0NGBbisfNserqV14J8Sjlennqub0Q8zjPseGbex6fKMLPJ/zc6NJyvK7NzXgPiYj86q9g3a1ejffJZ//+TyAeH8W65bRfsZj5/JxKYTlc3maWf8+yNY+GoiiKoiiKoijLiL5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcFdd0jcKeOzFaIBNe6haaclbe46sPG37nY0jB599kmIi5QD6iAZ2fwIw+AjP/sZxBUPjdiZGBofm5rQOCuUoCidRFNZJmkagerbMVnhijWYNNCKYQKYPJnZylU05bgZNDyJiGRcPNfKIBp92IhlJ/E82igpm73FNIPneo9D7BXRTJitn1UXz2OIPZs4IuJMmeEsdjYxEUa7kMx7Lhm33ThOPlDKk7mPZi+wI7LGNdhYZy02JeibwMSLaYuSiI3h+sMBGnG9MCJBm4cm5HSSklXV4eQChgmM7gnLwXoQEelYswliJ4EJ1oplrKt6Sqy0ccf5EKfSaPAUEQkdLFeF7pNQZs69UDInZVgKQtuWcKrtcXLP5iaa1ME1+8DxcTQmstGQKVPyMofqKEOJyURE4jQ5BXtQSwUyTZcwztN9v6ULTdj1CfO83BS2h0oZr8/BkzhejJGh/HgfTuJxjGIRkU46kcZ67CfbO7FNeQPYJgsjeF6ZLJZZRMQiM74X4DGL1cnxpLpcCftsazo5a0imfZsmCjhy6ICx/be+9z2I83QePHFAzyBet6aGRixPhBl3oojtaWwC23yCJtFopvFufTc+F/C9vuexJ41jBpQsLklJcJN0T2RTOCbv2rUL4tZW08jc0NQIsUfG7XHq25M85lL24Ij5SkwzuDHOLq8Z3PdEzjQ7lyYG2HnexRC/590fNrbvXoXjyA9/9H2IDx7ESSKGhjChZHs7Pq+dOonJkEVEMjT+da/G9sSJVEuUfJgn8cjnMfloVL9eV4d9z8AATqpw8CAmyeXzWrECJyfYvBHrSUSkniYS+fd//xqVE8+jvgnLGVBS3XjMHEOTKUpySve3Pyvpsb+IpqhfNBRFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwaY31DEpvSbLFXodh/GuJ43kyq09xIeuIY6ij/+QHUlN7/4E8gTlBSQDciYVqxhPq68mgOlw+hfjSTwsQoa9ejNq5jx1qIK5UR45j9faiR7yOdvROjBFhl1NLl81hmK+L1r4GSbA1R0qOxIdTyr1qzGuLVK7dCXB5B7a2IyA8f+g7E9YIavtSsJI2WtfQJqxJuTBJnPELzeDSitO9hgNcpIP/OOOmVS7i6xELUfLtVMyFWQxrL5VbQaFSt0H1BmnvW5Aekp0821BvHTFHCRyuPBW9qQ71xio45Vsb1t2zfYRyjoxt9R1X6G4Xr4j5DH/eZp0SDoZHASCRGCaC8AOu7Eswsr3rLk7DPCSf/ExFJZlDnfckVl+PKnqnj/+l92KcVCuzBoPuKdPepLGqB3YjOgnN1SoB1XUf+GJsSdW5sw2MmqP+qBmbfvv8A9j+tjejRaW9CP8SmDWsh/sY37oZ4kNq9iEgQYDlO96OPY0VXM8ar2iG223D7sEA3uIg4SRxTfME+IjXVDVcqy6OVty1L7Clxf8B9IBVpzz5MTCYiMkGJXs/ZeT7E2TRep2PHjkHsUvssjZoJRE8eRP/g+GlsG3UujvvtDTgGN6awfbILyYuo+ibS7revwGvfRp6LFvJbNNdhv5pNmN4nh7T5o6PoyShY6K/IZuhepfNKp0wvXNLh+3nhSdGWAt8P5czQyh6Tq696LcTNTeg7EDH9hK9+zbUQF+i+P3UKE0LmcnjPP/vMM8YxHnwAfbrn7DgX4nUbN0O8e/duiLkPTpEPrnMVenJFRFpbsf0lyMe2hTyxnBSQEwzHIpIChuQJfM1rsL7v+jH2VQ8/dheWKY7PkGnToiZ15K12KAmoP8uz5gcL7wP1i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNWZRHIyyskdCb1GLv2rUTlnV3dkN8+uQRY/uew6jj/urXUK/8wEOHId523naIPUE98/qN641jrOhE/dyBZ/dBfOe/fxNiK4s6yave8CqIX/GKDRAP9qJmUEQkR76PvjGs1tNjWO5UGvXLY+M4F3QmS/kbRKQ+izrB8WHUf3t5nJfZLqEeNBuiNjdeMbW1UkGNX4nmaR+ddR7l8tLnMQhlJj1GQBpHe768GiJik+7R9zG2aM7yLKWbSPp4zrGi6ddxKCdKhXwcLKkvk1chT/6dUgU1rZm4qesNad7wEp1nopHyC1Dzils0v3bc9D5x/XoV8k+w94TqKp7Aeok6BvtqcuSv2rt3z/S/l6P9iYhY4eR/IiIpyrEz0o/a9LiDy0VEOkg7fvT4KYjTafR9VKmdtzShD2FiBHXiIiJxks5mUpSrxad8EjZei1wR21x/L/Zv55+P/i8REXsA+6Mked96TqHWv1zFdv7cUVy+ZTuOJyIibY1Yd2OUk2RoCOPeAfRHtbU2QlxXb+YrctPYT3auwvPqm+qqQ2t58mgEQSjBtFcJ75dCGa/r2ITpc9m0AcfMbRtxfOMcLGnyDPT2YH4Au4jXUUSk/wCO/etXdkHc1LYK4u5OXN7VjXELecxa2ij3lYg0t2J7S9J9ZJHW3MhOEYRzxiJmaqYKefZC6ljHxyknUh/eq83kYxIRWd+FvgYe1ZbHmTbr+KHM8mhg6VLkQRkcxNxqIiJ19XhduL+rr0evTHMz+iuCAO+7c88x/YR9vdhGn3gSPRg7duA2O3eeB3FHBz5DJskLHOVMYM+F2HilYpRzhNf3yM8X8CAtIi6NwXEq1ytf+UqIv/b1f4L4X/71C1imFPZ1IiJxyi0W+Hges0N/EY1Rv2goiqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUnEV5NDrWpiQxpQtLNeE7yuET6BE4cRw1tyIiP3sAvQh7nj0OcbYOtcGncbH09ByC+NQB1DeLiNTVo+7x6KGDEA+dwnwf6QxqIp96Dj0dJ/uxzPkRM3dCF2lGN23eCPH6dahdDDah5rQ8ir6PdtKkiohkSU9c14Dn+cwwzi/d3491c/wkXo9SaF76LWvQd3PsONbV6PiMHrdSWfp31DAMp3X8Vcp5wXN6x2KmPt4PaE5yzgVCeRwSdIrxMmoagzGsHxGRHEmWffId5MdRp1uhvBkVD8vo0XkMT5g5DMZIJz1B+uK6BPo60py7w0Mtez5varubSUOapH3aDranMhXTIj2zWOb88BYpkNNp1KB2dMxo9ItF8z5cCtyYK+5Ubossza8+RrlthoZNH1SJ2q1tsyYW6ylFOlyHGnrcMe9jn/wP6Qz2FWXS//qUX8aPoW56+4XYn5Uj8sd0rcGbxSH9btHDct5719MQbz1nLe6vA/0YIiLVah7i9ZtQz+2F2KYCupdO9OQg3n8IPTUiIm0t2M/ufQrb+dq1dVNlWR61fBgGEk6dJ5cgX8D+KZYw+8CGFJ5fjLXl1DZaMjjZfpn8YNvXYH4dERF2X21aiz6Qtd3o8ekgj0ZjcyPEcZr/34pQyXPug5D6crZc2NQvG7lnIvqnkO49vneFNPQVH+N8Advv8DA94IhIZyt6sDLkA4vKD7WUxBKW2FN+l1Qcx5HeE+ixFd+sQ84dwp6MpmY8/wT1f2nqc6Pqo70D29Plddj/JZNYBj4G7zKk54YKJ9gSkXIZry3nmeJ8KAE1yIByRkUZIAy/DrXZBPld3vZf3g3xSupTv/RPnzKOUSnhc6RPPt3CrDbsL8KkoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBpFb7/4U5rgJ/dgDoFDRzog7ukh/aKIDA+hPt2OoZY4n8Plx0kqbluoCTw2YM7THAb0G+UpqE+i/2GiHzVpT9xzPx7TRU1guWyeVzZLWvIVj0G8oh21cY00l3QDbT86ljOOMTKOc0E3U/6PFWtwvuliEXX342Ws2/3kXRERGcuj6C+ZaYI4NksH65YX1XRqgm3b0/kcEpSXgbWarNkVEXFo3m8/mNvnYQnqJgMf158YwzoWEcl52Ghtl+bPLqF5wauidtOKYXvL5VF3PTZo6v5ZDxonXXWmrhHLUMXzSthYxkwatxcRsahyquTZ4DnkXap/lkD7nqlzDUljnyR98po1M7kV8gXTq7IUzG6D45SnwM7gfV2ISPVhUV3bNvkjSA9cIt29Tx6PmGu280wD6pwHx9FTURfHbdraae5+yqVwThf2Az/bbeZIGh2luiD57ilaPkQ5e979qqshfuwJ9OOJiNgx7PM4l0qVNPGWh+fZ0Yx9/4om8+9sXhnrt30j3o+btq8UEZFSqSJf/bqx+VnHdpzpfEAVugdHRnIQt7aYXj87wDuxPIHtKySteEgejrWrUf++aZOZy+oVl14McVM9tsc4afuF7omQDBMB9W9OVM4k6p+4L7fJs+HSeFHl/EVFs3+pN/Je4D4myCsXUH6iShF1/EMDA8YxSuTZyyTZP+DN+vfS+zUc2xJ76vr41P7KNLZ1Uz4UEZHTlOPiqaeegriN/Knsp8jQ2BZPmnmlYgneBn1J+Txeh3HKx8M5LRrID5sPTY9awcPf4uRt4GePahX7fR5fuf8UEfHJ8+JT+ytWchBXSth3vebaN0J84oTZx95551cg9igflj3rXmXvylzoFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyih/ekTOYnFJjcp5FGf1ZdDjZoXYO4IERHLx1wbYakfYr+EOt4ghu9BrovaziAwRdAWvTvZrGEOUbfG+SAGT6Fnw7JJ+xlRZaOnUdN3bD9qAMXCuuE5lC3S76Vipu4wm8X5pts37oC4oR61i11NeN7XvfZKiG++8rXGMR599EmIH3wEfSGJzIwG0w6WPo+B7/vi87zvU7BeNWo9m7S/IWkcbboOPKF2voAa3KGc6dHwKvhbOoPtLUtzdnPOiiq1rzL5KVzXbBt8XyQyeO8VC3it2AuVTmLbaW5uMY7BbbZCHguWC1sx1lVTXUforE3JMc9bP7OC63q88tIQBCJTOveJCarXIl6rUsUso0vnHSMvi0OenlQGr3eMfEUSM/ujso/1NlbCbTauRc/YiVPYX3W14PY/2405eFpb0LMhIuKE2IZGK6h7bmjFNnXuNqyrKt2vjmPev9Uy/Ub+uZjFuRTQaxK3sB48oaQ3IpJuxH2mWlHfffzU5DblsukxWgoc151uIyXyb3Fuma6V3cKwVpzzR3hVHFPL5F1obsJr73F7FHPMZE8Gj3cB+yWKVLc2XsdE3Ow7uG/nPBns2eC8Brlx9JyeOmnm6GJfWl8f5s3p6UH/wfZz0TeZzaLWf0UzjukiZo6Qqsf5F2Ziz1u4Rr5W+EEg4VQZue8yc1eZRoMU5cFobGyEmL0KAfkARkbwOhm5sUSkQl7KVAq9cytXroK4owP9xezREPIOyvHnjGM6iZUQD5G3Lk3eEs4fwuNhjHO0iBjJYKrkp/KpnC7ly+rtwbp7/Wt/wzjEow//GOLT/ZTrZVafaol6NBRFURRFURRFWUb0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScRXk0rrniVyWVmtQMH9yLut3Ks/shPnpyn7H9COW9SJKmNm6RHpF04IFHc2FHSMRYq2+RTteyGyG2YxiHQhp4mn/bElM7FwT4m026QT/E5a7DgnbUJXqlnHGMkfEeiPOkg924fi3Ezxw9AfHBPY9DvHadqd8tFLC+6zKNEMfTM++lYbj076glryrOlIbYJ30i60MNv4WICP9Gul2H5sIOxtCvM376JMR+xfSpTOTxN8shbWYc4+IE+pRGBT0biSbUkxarZvsbHEHPRaLCWmI8RrmAmvxLL0P/TmjTPPci4vl0H9B9FtAc3x7pcyt0vSIMGcZ94Djkt5p1/QLfEF0vCWE4U/Q0zeFepf4qmzDboE86W4f6gkQK2/GqjdsgPnUMc1gkEmY9NGWxW19hoy66OE75Y7J4bQpUhvwEHmNVHH1GIiJDeeyfOldh//K9ux7CfazE+fLLVayH1WtWG8cYGECPn+dzH0A5SqjNeSGedyJCI7923TqITxw9DfGB3ZP5hzwv2it2tgmn/iciUiL/RGMj+ifcmHkfcx6WRByvdZU8Ghy7LuUDKER44WiMHB1F39rRo6j77ljZCXHvaeyv4uQhq0b0u5s2rIU4TTl4Tp/G9nn8ON5HRw5jToGTER6NXsoBMTSE7XGA4jeT7v7m/+dmiH3f7AML1Ddznhzfn+ljSiXTY3S2sSxr2kfBuaoS5D/8/vd/YGzfTnkyOC8G+yM43wSP81HDfIzGjWoV28sY5b8aG0M/2Y4d6H/1Kui3aBl5xjhmdf1GiCfo3hwdxTGaOXkSny1Gh0eMdSaonBNFLFeVvCmddF9tojI2NjQax+hatQHi3r6jEOdm+Tuj2u/zoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMWZQY/f8dlkslMJjDasgaT0aSSd0Kc60dzi4hImML3Go8SSTlknuLkLWze5eQ2IiIBGwB9NLMFIZpsPDLfhiEZHUNOkGaacWcbtCbLgMbYMKRy2mxYJ2OtYyZBqnhYzosSz0L8m9e9GuJ7nkYD6EM/vQviI8f2GMdIJTHR26/+yq9A3NYwY8RaDiNaaE3+J2ImNrPJmBaVEM6YO4DMpDaZwf0CGrhyg5igaYJMZSIiY0X8zfOxXC0prOMxMomNeNhebR/Nckd7TZOYzSZYMl8eOoRGxyZKkuTEsY373F7FNH4FVHe8hUemU76Xo7zgbOZlg3kw6wr6y5CsSkQkkUxMl9MwylKTCyLMcjT/hfhChmbaSSIoYmzh+kkr4hg0UUP3imY6KNZdWx0ar/cfQTPuyi5ss6WiacZNNWBiu8OH0ETd24P3zjlb0XSYTGJSrZFhXF9EjMkCjAkgaIIMr4J9VKYdzdL5iL+zfe8792G5qHobUlPXftnyRQbT4wtPfMLnXy6b16lcxDqpVvCeC0NsXzyeBgHWGRuiRUTq6jAxnVB7LJdwvOREg8PDOYjjCbzPdu9+wjhmsYB9Xkszttnv3/kdiA/sx8lrhodw4o+ounu+ZLFn4D6PJ7Pg9vqDH3zP2EdXF06icN5551EZZo4xMYHPBEtB3HXFnjqvGE02MECT/fznd/CZUETkgvN3QXzRRRdBzAkiHTLDV2gigCA0r4mbwDYdp8krjtOEGl/431+A+IMf+jDEr/mlV0JcLeGkACIi/SM4+c7JHmxPLS1ogh/N5SDeuwefx/Y8i893IiLpJD7TBTThSp7M4Z0rV+D6Id53Q0N4vUREmprRQE75giU2K2GwbQUiQsmpnwf9oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJzFuXRCMJAgnBSH5qtb4Rlr3vtGyAmqbmIiOzfdxDiIdJiHj2KSQBTcdT9hqSy9zxTR8lqcT7BgHPlhVjQUDyKcXmxYJ6YxydLOuqAEkXZNp6HQ4UMKMmgiIhF22zsRO3+hedsgvi+vai/8ziRoWMeI5VFbW0yg5rmxpaZ5cUiaseXAtuyp70XrPln/SzrlychJwElA3LouqXrUINapet4tB91mCIi1QDb5OAgeira6lE73NqO+vn+Y5go6sge1JOWXdRpioh0duF1Gh/NQcxeh1Qa205AWY8m8qj1FBGpkv6YEy3F41hXrHFmz0yUh4aZSxM9n176bFGuVqf7QNfFe2iYvDFcRyIiFvlfHNLVh6SBL5B+PU/JGOuyZtI59r6NUKKnvnHU1V7egVrehgbUNFer2EFNVMz2YfmkP7/3XohbWrCNNmewvfScxIRqYplDE3tebPK7eCQoru/ugLhvGOuh/5DpI1zXhvfnKJ3qtEY5wke3FBSLRXGn/Gn79x+AZdl6bAthxN8RvQr2eUJ+Qk5Qyz6Dchn7/f/4j28Yx1i/Hseia1+F/sHubvQh9PSYmvfZ8Ljf3NJorFMooF/BonH7wAH0ZJyihHwue/4i+ifDM0qkUtg3JymhZ478eN///veNfVxyySsg7u5G/1QYztRFPr/0Hg1r6n8iIraF93D/4ADE1Yrp4xzJ4XNJbtT0+MyGfXsOPSyx70VEJAgoqR899O197kksQw79YPfeezfEr7zsVRDHWy4xjpmx8b5Kp/HZNZvFOEFjx6/f9KsQfz3Ce9LTg222nu53z8Pnt3O2boU4leIx2+xjr7zqNRD/8N5vQ1ytzOpDw4X7JPWLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs1ZlEejUKmKFZvUPno+vqOEAc6D3ti+1ti+LU/5JmjO+KOnjkI8XkGdZX0d6tzcmPmeFLJW30NdpaHzZakta/9J32eFpja3Y0UjxN1rUFd55CjOsdzXh3pkl3TabsTc+Jkk6ut6AtS5PnQA9ceZFJbpoktQJ8uaVhGRxsZWiEOLtNphbNa/Seu7BIRhOO29CHgOefIZcC4TEZGQrqVL68QcPKdkHNdv7WiH+Ce7USMtIjI2gbrUzkbU7Q7naW5/StPiJHD9dD2uwHk5REQKZcoV49N87iQtztSxF8fU+TNp8nU4lLeEPRnsoTBzy0Tkf6B7r0L3v+fNnFehuPR5XEQmc0j4Z+Z2t/Cc02m8dmGEhtXhdkr9kWVjl5wgjXxzI3oIRiLqoYNyCCRT2G+evxbnSn/y4HGIG9PY5oZyaFRY34H7ExE5cgD9DqdOo+7+qovPgbhYoXxHVc5FZJ5XnOqiQHPqN6/DfvdkXw7i0WOY26OrHe9nEZEijVENdXhMd+pmqlTn1uufLUZGRqQ6VVf3/gR9MDvOxZwLrW3m+XkV7hvwPKh5SiLBuRJQh3/wIOboEREpU390/vnnQ5xK4bMC+3daWnEcqnhY5oYG3F7kzJz+Mzjk61izZh3EA314HtyfRXnA+DebTEJk8zB8a+zZWL9+vXGMpib07E2QD2N2t5nPL71PslytiO1PthknxPPzPKwfl82nIjI+js8pPG7wOOF56GXg61Stms8h7NvgcYQ9QQ31OB4eO3oU4rEiXoOmzb9kHNOhfDNbV2Cb9SjnUoI8sjFqPL/+679hHKNYRG8d1xV7Arm9ss+Sn3VFRBLkiy6PYbmrs3K3cG6tudAvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVnUR6Nhx/ZI4nkpA5530HUuw4OkkY7RC2eiMi2zagNdoZxTuUE6dPzRdSAlX30DARVU0cZeKR5Jp2aZZOHg1+1QqwSVlnHk+a8zdt34LzhOy+4AOLGVtTK/uguzL8QGnk2jENIewfW3Y5Lcb7jkSJqFVeubIN47Vr0dBQK5vVZt34NxDEb6zLwZ45hO0ufxyAI/OfNnxCSRjcIzPVseq+2Kb9Efz96aZwKtk+L5vTOVUyN4lOH8NpaG7FONwm28VIBtcITpHOdKGPbOHgK5/wWEenqaIR4dRt6LibqULPfthLzCwjpRf0If0uc5JzssTD1oNge2X8RNU8974NjZ9Y2zgLycJwN0qmUoac9g2VzDgLTT2NxPhuLdN6kLx4dw9wc2QT1iUXTM1aXxn4ypD6vrxfnrs+TDrchiTrdDO5OBkbMvmP/cRwPtm9ci/skM1JhAnXPMfKmhLbZBvMBtqmuzahxP36qH+KxHizTWvLSnejHe09EJO7iyWYs1G/bU/45e3ksGlIoFKbvnaEhvI5HSVte19BobG9THpeQz4PaJ/ejhQL6dVpa0V8hIuL5+CzQ14fz/2/duh3ibBf2R9yrjozl8IeAjG1i+gE4d8J5554P8d7n9kA8NoY5LqLgPoxzjCRSWC72ZCQS2Lauv/564xh5ymE0MYG6fGdW/oVyJSJZ2VnG93wJpxq/T3mn6ihXRGsbem1ERNauXQsx+wzYX8H5TfgaRHkxPfL0cMz5R5J03YpFvAb33vtDiLdu2Wwcc33XSojdNOe0wXKXyV9jeNQivMDj49hGSyX0sXFuM/YIjlKepzEaW0RExnNYNzs2bYE4bs+0x0rVk/2HHzL2EYV+0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak5i/JobN7cPT2fvuui1vzxx/dBfOgwzqsuIvLUBGpmvVIO4kqR5lYv4XvQWBX1irYdMY8vaUrDgHVrqH2zLKwCllX7lJOgqRE1uyIiq9duhPj0QA6LRPq8rk7UpA4OoO6+TPPDi4i4lHPEsVHTN5rDufBLNL9+EPB5G4eQi3ah5jkex/nKR0Zy0/+uxkz9+dnG8z3xpq6H4bcgzb5tmeXzPdJBCmpcJ0ine+CpRyBuXLGKjmn6dcYLuM+fPrYfYp7H/jVX4fzudhyvfc8A+kQmSmZ+ga3nXA6xU0WdZZY0qU2NjRBzfpEofwt7LpIJ1LU6NKd8QBp7x8XlVoTHokLHGCcd/+xrXFymPBpBEEzrgvmcPG/+3DLs22CN/Dhp4JN16LWqS+MG1apZjzx//+AY+oZ6+7GNdneiljo3gX1mUsjnljLzGAwOo953dQt5G0hDb+RvYA9QhAli9TbUCx85gvmIcifQo7F+BZYhT/PhZ+vN/DHFMRxj/IA9fpPnERrmvqUh8APxp7xlLc2Yc2GMNNhRNpK2NmxPlTLeR9Uq9j82XQfW0Dc0mHXIY2xfP16nc3agR8MnT8eP7r4Ll1P7u+H6NxjHTCcwh8D4KF7rNWs2QLySfGojI3iPNDWZ3pN6ai8N1I8mk/hM1NeH4/qDDz4I8eAAemxERHp78RnpggsvxmOkZ9pd1Vt6n6TtODNtghpYbjQH8erV6AsVEWmlHCn5PN5v7OvwfdODMZsor15UjqbZcF6NS19xKcSlCh7z9OljELuB+XxWLeF5JCg3FRfJsKDR8kLR9MHlcthG+TzY08gejXwe+4eJApZZRCROiXRufP21uFxmtikUy/Llr6tHQ1EURVEURVGUZUJfNBRFURRFURRFqTn6oqEoiqIoiqIoSs1ZlEejc0WTZKbmSu7uQq3nBbu6ID54ADWRIiL7nnsWYq/cAvHqVRifOD4CMWsec2O4XESkVCFPBnkTwhB1bGfmRZ+OSdrPetMY6Z9FRFav3wrx8V4sZyqP2u26DOpJCxOo7SyXTV1ibgTP6/77HsBjHj8CseehjvDCCy+E+NprUXsnIlIu4DEKBdzH7Dmro3T8Z5t4PCaJxKRGOCiiPtEj7wLPWy0iEoS4jhXHerZofvZjR7B99ecoV0TJrINEAm+pMfLbHO9HnWQQ4jHr0zgXuW1jGbZuNefw3nrONohPHN4LcUML3lfpFLa3OOlcA8fsFiyqT56bnDWo7MHwSGsbpaMNSajPtTtbz1sqmTrZpaBSqUo4dR8kbZwXn+d851hEpMo+IdLEjuZQm9vSij6DhizGvcOmV2VwDH0eRZLiZtLY5lyqaTuO7aM6ht4HN06JNUSkvZ7rAjvSHPnvsklcnk5hXXVvXmsc41QPav2rXFekqx+jeeV9al+lsll32SzmnPGq2M7PzFVf9cx57pcCPxQ5cyuxZ+DYcfTpDfT3Gts30TZ8nVyX/Td43ybIm9VCfYuISJXGnhMn0K9Zpr46TX3e8WN4HkdPoEb+yiteaRzTbsL2M0GN3iKP445zd0KcyWAZonIJcZ/H9/fhI0chfuzxJyG+++57sYwTpkb+AhqnLYf6xFm5rNg/uhTEw1DOWGN9zuMwgfdjLIXPOSIi4+O4jiPY/pob8B5OJPF5y/fmztckYt6zpTK2R85nUleP9/z6thUQVyrUT0T4P8cn8BjlMnorXfbm0facA4NzZIiYOUNSNI5zjpsDBw5CzB4a9mOJiGzZiM/tnGOkYdb9H48v3CepXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxZlBq8UA4nZU2acEE04aTJGnbt1tbH9ORvRMB6SQZSTs+QpcVTfAJoST/WeMo5x7NgJjI9j3E/J8Qb6chBPUMI1ITP48DAmTREReXbvYYg712ECv9ERNACXyfjDSWeiDE4DdO6ne9Ew17kSzflvfAMmNdq6DQ3DjY2Y7ElEpFIh+y0nRJxdTGvupDhng+LIsFjlSTNSjExhto91NjGByfdERAYo+V3fCYwrY2huctNoCpuwsH0OVvG6ioikmtFsmSWTYnMzmt3YoJqKofmtPuZSbBrRKqNoGE+T8ayFrnUY4j4r1NxCOyJhn4d1wwkS2WDOXvyAkgKyYU9ExKE+JJtFg+ZsE198mRL2ZTIpiU1dEzaH8vwIVsQ9wgbSchX7m7oMGhWPn8L7PkNGxrKDZj0RkaF+NJm2NzTSPrB95MvYAOqbsN6LFZrAIKA+UkRWUoK+Ak3W0EmJ4nwXjYjdWzZBnOvDe1NEZLQXf0sneBIN7Fe5jQYuGdZtsw3FYtRwKazPTBpHKxHtdykolipiO5N1Z9PMJRNktD11AscIEZGWJuwLOPEl1xkbZ8tlaq9ZM2GfWHgj7N+PptT+fkxUt3kzJmnbcc55EA8OY/928oQ57vO9V6VkZqf70BjfT2PB6Bgm+ItHTHjQTAkS2Yzf04v36nEywfP12rgJ27yIyHk70aTOU5pUZhmbq+WlnxBjZSYlrjPZRlJpNFHXx3B8rGs1nzFGctiXlGjCmYF+fL5i33WMxkOenEBEJB7D39IujqkpMjgnE7i8RBMJJKgtdK40J0Cor+MEtljOPXtxgpa77vkxxDlKFlwsmNfWcTBZJpvBOfnhiRP47MsG83jCTDi8orWF1tlE8Uz/UPGjUoJGo180FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBqOOyCOO6kD8yuo76oUUY8chuY7TMg5cEifbpMgr6EeNWgNjZhMZPNmU+NYJN3iRAE1gblcDuJ9ezHR3bPPopbuxHFMFjRE+lIRkbvv+iHEG7ahHrTvxCGI05Q8qLERtZ6xpKmdW0kejGwWEyt1dqCf4LIrXgGxRfpQTv4iIuLMk1QGkhhFbH+2eW737mk95ckD+2BZJoFtyQpNn0s5xHWqMdSVt69ciXF9O8Qn+9CLEyf9vIiIT0lz4vXoKq2uXAAA2vhJREFUyQhIY5qjJImd9agXbSYd5vCAqV3vO4lazJZ61IsWKbHTSA71yBN0L4tjejRilNiLE1dW6RgJWm5x24pK2Ee/JZOke521j2VofiIi4sZj0zphn4ThMdICR50j31WZNN7HfF8ODKPu9pk92Jes7FxlHKFCuvtcDNukUyRfENXz4aefg7g5g9euvhE9HCJme2inxHfjAZapayN6+Ab60Ts3ehxjEZH6BNZVgRNOkScmTvdamdoo172IiFBCV76GZ3TO1WXyaFTK5WmfD2v+M5QItr/f7J/YI1RXV2esM5v5PBusCxcRSabI11FCv8ShQ9iPrlmzDuLNm7dA3NjYCHE2IhHcQO9piDm546OPPALx/n0HIK5W8HrGIxLzssePPWQWPb9s2oTnsWIFjtHnnodeFBGRujp8Fhgj300wy8fKSd6WguuuukiSU9r+BvJ+hRYl12tcY2z/4CO7Id53CP07GfITJqhPFYuuU4RHw7KwjTsOtuFYDMc7bsOjo/j81t6Oz17DI6Z/p3+A/BD0PPxv//pViJ/Zux9il4ZgS0wvpu/jPqOe4RZDOm16TUIf+9QYJYyc3R9Gj2/R6BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj0Y1GJBqMKkZj8VY24m7CkNT/1qpoKYsIB8Hxz7NIh3SvPWGiUBEHBu3aaS5rhvrUZff1dkN8aWXXAhxfx/qXE+exLmxRUSOHcP5yk/1sGYe9XaXvuKVEK/q6oDYssz5ibOkea4nba0xZ7yPsedh3UfN8R/4honm+eNw4XMo14oVHSsllZzUR/o0Z37oowa8qcmc3z3dRjksqG14JPkuDaPu95wm1BJfuu0c4xgP7z4K8Y+fQs/PacqH0pdDDWpHI84p30h6+L17zfa3+xn0q1x2Ac19HcO2kC+iZt+P4TFitnltk6Rr5ZZSIm9K1UetO+eKiWrjrDmNUU6R6qycEzwn+FLhe554U0Xn8rFkNeoc+Tef7kvW3a+gvCwBGd0KuQHzGFSPpQks2LGTqEH2PfQzsfY66WL7iOdNbXi2Hvt7n/qXlmb0P/WcRg9G+TTmSnCCiP6FforP4/ux2bNB29sR7dzmcYzyv7hT91LUtktBtepN+wk4j8OKFVjHP/rRD4ztSyW81lu2YH6lpqZGiNm3V6H8FBMTeN+LiFQ9XMemfTz8MPol6huwX86Po4dsoA/bSs8pM4/GaWpPAwN4X4yOYp4Cj8Y6zkkQde9yfitubx2dOI5vPwfHh5YW1MTz9RMRKZdwEGJPzexy/bwa/RdC96qVkk5O9nsu+fb8EOOjE+gvETH7SPYRTQzdBfHGNejlYl9cxTP9hC75NtiHxM9K3d14jFIJ/Tuc361YNHNcBDTeVcq4TUMDPneevxPbRjxJOX4c0wfiUh4Nm7wnmSx6l+I0PrG/qqHe9Gdt2Yh9SEBjQ3nWeFVZRB4X/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0bBcSyx3UiNo2eiXiLmoSfN9M49BjOY3rhQpF0eJ33tYk4ZLnYj5/pnQw2Oyxpl1lpkMao3Xr183Zywi4pF3pMh6dVqeSqGG0KW8GqxDFDE1pZaPlZGySSNt4z7KHuqqHdvM1VExp27GbWbVFetul4Jsa5uk05N1t60V57a2SK9YFrMO+dr7BVzH8lGXW3HwOgYWzrfdtgI1uSIir9iFWt9B0rOfzqO3wM3g+nHKj7KiE69TZ9Wc371YyuE+E7hOF+UH2XME9fCFImppk2LqQ9mVwdefNc1jY5i/JkZaY9bJipj3ouuS1nvWNnzPLRWJZHI6PwNrd8tlLC/rq0VMzbtP2l6LjAhcryXyuaXi5jHiLm7jVbAdr+9EH5Bl4bVwqNxBgHXtRPiz8pSvSNpQLxyMYJsrDw9jmWlsKIcRfTv1i3GXfT8Y23QeMfb8uWYbDFjzTV6MMx4a2174HPK1pFr1pr0C8TiOI7kc+hD201z9IiJHj6CfkPNdNTdjHoOhIcwbxV4HyzJ9At2rMbfL+Bj2m08+ibkUHn/8SYgTMex/Qrom5XKUPwuvU4I073VZ9EOkM+g74pwY7KcQEWltwzGnsRF198kU9t2cWyZGeV2i+gfuFzkHBOYSWnqPRipdL6mpPCmWTce3aWwqmPewMS5Q7pG3/trrIL7qkp24/She+37qR0RETlOb7e3D/CcDY/hs2taG/eEA+Sgfe/QxiKub0dckYvo84jSE7tq1C48xgmUs0DNjuWw+P/MzoEe5fHIjOdoHeijGKSdLuWjeR9kbroD4vA2Y+8Ww7S4Q/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0fDtUPxpbSpqz6tV1IP5lQgNdUCaWgcPnyK9uueRzpd8CX41ovgevTtZWI7A0P6i1pY11AvRpPF8+vFGnl8fj8G6bI5dy3z/sxzch0fa4WKI52mRR8NJUpki5qkPaRuLtNiz9eNR84yfbSp+KI43WQ+sj7eprF7EO7RFlz5tof/BEmqzqUYIqx62jScO9xjHOH0Cc6hUA7wv2tpwn0IaXCuGuuuWVizjipJZ75UAtcK+g/tobke98eoS1t2pASxjEJg+kEIB14lRXg3Xxbhaxcq2yRNkRXg0+F70fIxjs9pcuAx5XEQm5w4Pp7wCrJHmW4LnmRcx+5eAfAch1wF5UXyf/BKuea1Y+50gzwYfM+DJ7eneSlB/lC+i5l5EpOigptgm6XSQJ58atYcS5WdIsMhZDLuEWJxIiS4A5z2wKCdGMmYew6MOn3XO1an58avV5fEIWZYj1pSunf08hw4dhth2TB9eI+WsGBxA/frwEF64iQnMacF5NILQrAf2IHJOiz7KeeHQc0Ar+e8aKA9CO3nOREQaKfdLA/knmhrxvOvq0LORIc9GPG7WHfdxcfJgWHRvO3T/s/8iyqfG/YM5zIZzLDv7VP2ynGn67EEpU79w7PBRY/teykvGvqqmJrxuI0O4fkDPkK1NZi6Ihga8r9d2o8/gwScw79TpHhzHPbrnDx88CPHjj6BnQ8R8Bqyrw3uA74kG8gQ1ZcmrmTSfbZsbsM2WStifffu7D0BsUf4sn7xOK5sbjWNcsGMjxC49E4X+rPvfX3guK/2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dHoG+yRVGFK/8Y6X4rTCVM7FyM9ukvzMIcWzvObiKFeL+ZgTLYQEREheZ34pD+2SNbrefhDQLpw2+F51Oef/5+15mz04NUtugysvRURcclgEPNRD5kkfWTFRZ1iMYZzfFu+OQd3XQH1uCXaR9meKae/DHkMXCcmsTM62RD11y4lWUlG5Plwk3jtQvLGxBzSI1bouiRxjvlATH18YxfGCfJHlKtY7w7l+0hlUUu8IoNlGKygplpE5LlDqIHu6ctB3NmFc5dn0qg1bsCmIQMFcw7v0OK6I/17Apcn46g55XvEq5pzrHP+hvwEtelZ+vBSKeLmXwIc1532QLAHwDhHz6xHzpnDvgPeB8+9HyPdt+FTEBGLfWisDed8E7S94SOh+8Rjs5NE9Is0V32M98nnSdfe5YoR08vGuVzYM+NQn+BRPpCxUcr9ISKJBPZ5LnmR/MrkeZl9/tJQLpWnc3lwES684CKIN23aZGyfTOJ96ZKPgz1BlUp1zuV+YLbx3t6TEPO9ev75mFOgu3sNxG1t7RBn6yjnRQa9myJRnjFsT+yniDvkryDDg+HVFLONs7/A4mcFKgO3x2iPBh8Dl4ez7u3laIO+H0zfh2OD5O+hnBa505izRUTk1IE9EIcW3m//9k//CXHJwzFglLxRIXtyRcSnHBQh5YBKZbH9XHz56yHef/AIxB7lmgki2kY8jR6Mjma8z7pXoa9oTXcnxJ2tOO5HeU/SadxnmdrbY089C/Hpfnyetsmrt6oLn2dERLIpvI+KedxHLD5TF1G58p4P/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoM7jjijixSUNJ6OM7ChudqmIaBqtkhE2TYdQi040TI3NlkIO4FGDyIBERmxKepdxGXCHEU66WqdxVMoeHbJo2383Y2FghR7phIrOxDOzdDO0IIzOVIzGGRsZkPyZBshsx6VHQgoa6sGImW0nmcJ/V+kZcYbaJOMKsebaxbXu6LtmIm8+jaYxNnSIiqSS2jZDMumwgZIMgJ+9ig6GISGMTGqxSFXRae5Q0rDQxiuunMSlPqh7PY9MGvI4iIhUPDVzDQ2jSe+TxpyF2Ha4bPGY8HTGRA5mYDdMiJ+4K5k6mZjnmfWSRaS+ZxPOyZ8/kYNyXS0MYBNOmY9O4bSb5YgKfk/xZc8fUd3BfE0bUQ6VCiTeNRILU/9A+Arp2FYuXm327W+VJNPAYUcZX2J7qrlwy+yez3Lic646vT9T9yrDhnE3B7pQ5f3lan8jY+LhUpwzZPNkAm6hbWk2zp23xdZnbUG/GWKeua44DmzZtgNiiMTORwH6YE+GFPBkKHyIiUx3/YlP/whMgxKy5J2CJSrZpmL/poDzxDN+rvD7XvYjZ/iyavSaYNaHBckzI4jj29D1RX89JD9Fk3diIE6GIiKzvQhP0yATe54UxHA9HxzEeGMZxfqJg1sFEFa9TmSYjqFDfcuf37oQ4dLDNV3jSj4jJekZGsJxjIzmI9x3FMdmJ45hcl8F7oCvi3l3R0gpxy0qs38Y6jHtP43nG4ti2duwwJ4so5XFCoJAmbErMMqSXyubz9/OhXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Gmk3I2l3Ul/pCWrjSgHqwXzfTKhlSApJY5vhJHOkARstjkCcL2IyERGRTAJ1g60xTk6F+roUaflT5PEoe7h+NSJJSRBwIh6sVsPnwZpojxNsmbrDkCorjKOO3mtB/bGXxPPy6ZhWzNQre02oASy7i2oeZ51glj5+dBQ1kQvxT1TS6Jdoqsc6ZA04w3rtqKROY+Pkz6GEWHUpLFeMDDojYwWIhwf7cf0I74lXKUKcyWBiS8/B+8iiZFVJumeiziukcnKCNU5syW2cNfjFkqnvdOK4TspIsjVzLzvL4BESmdT9n9H+sw+Ik5lFYXMCuID7Bk5siP0N67qjtOQO9XlcLvZYxBN4LVkn7lIRbStKv07JVzlJIHtN6LxDiqPuRd6mWp37nk+yJ2sBCc7Y58F1MWvFefd1NojHXYlP3SepFLY/9k2xT0HE9Gjw3xrn9QyxfSKiHtiOw14F9ktYRnvC9Y2ku8YRI/w5vAL1R9x9sMc0CtM/wcdkPwUn8KRkcxH+Kva8cN2Eszym1djSO4UaGhokM9XuYhHPELNZ0WreO+vWr4Z4LI/jOCcg9Yp4j/tFrMNiRJc7mEev6eAQJhI8egIT3D7++E9w/RyOwfz8FlYins/oUpRCvG4l3sbB8xwexfPs70OvhIhIOtkLcR2Nl67g801HE97rdXXYX8QD8xm958RRiFe04LNExZ85j0Jx4Ulz9YuGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzVmUCL9YLExrcR2aJ90ljaPnmxrsYhG1b/E63IZlbKPjOfyBxML1dagfExFJ2TiXc4w0j8UCat+CCmoEM2ncJ2s54w7qfkVE7Dhq46pVyr9Asc9zdlNdstZTxNQJllhTmsKcJIHLQlnWqEYoXWl+c/Z1VKszF6i6DHN4x+OxaR32ypUrYdl889+LSMTE+xhybg7WlbMGnNcXEXFcXIc1py7ppuvrsb1V6b7hqaqrRdSfiogk0phbI5FswjIlsG5slz1FeN3z46b3yRLcJh7DyjNyxbDWnXwBqeT8OQ2qlOtltsbe98y6Xwoc1532D1QqWAZuc1F5NUL6206MvC2Gd4X7H9ZFWxE6fONa0DqcuIe05EnynlgBFqIUkeMitOdrD3PnFGD/RJSfgr0lrF/3yevm+dhHcU4Svg9ERCpFPLc41cWZvtlZgN/jbJDNZiQ95TXj/ojbW1TukiBgD8rcOn++jw1vTeR1Ij+g4VHkcJ66nCcnTxRGXg2b+zwqA5UxypvD52XkXTKOiXEsRn4LPq+IcvD9PbvNc/6RpSCZSE17n/h8DS9YGNE30bjRkMZ8EY5gmw4yc18XN8IvtoH6iTyNmcNb0et74bnbId5/GHOSDVFeqtm5TM4Qj5O/eAKfdasV7NfTWRyzmxvRJ9lUj8+xIiKJBN3fwuM6Pa9kMa7LYp6NLD23iohkkrRNBs/LTc5sw/7TudAvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsSDp15vNosTAznRVLpwILP+OUK+bUV7O3FxGJOzR1GX0KKvH0WTzPYmB+Qg3pU5rt46e4En0aDyr0iTTE9VnOFTUlHX8i9TyWTtHnP55SkIuwAOmUXzUKhusbUxuStCFqkkD+TM7SqVlShGKxOHXYsy8hmG5/s65dmT5FBvRJ1V6AdMqckZXkZfNMyclTj06WEdtswFMe0udNOyR5B0unSErD0qrJctB1EyyDE85dN7bN0hjz3uXWwtOysjTBoi14ikqJ+OTN8Gfy2W3tTBmXov3NPg7IB6s8bSzJfyLuMZYxWXT9eZ+8C8fh5VHyGPzN2Ce1B2PqbNofS6cqvD8RCW2awpTaFKtduK74RPleExHxfa5v6tN46lWSRs03HalIxLlRuz6zzZn1lrr9zZYfs1QlFqMpp6PaRrj00im+1sZdMY8Sytg+Qjo1n5qK26MpnaIpdV+AdIqZTw64MOkUt+GZ+ExbWMoxuDBrDJ5POuX7ZrksejYKPRqThdqOtXjplEPSKZ6GleWppTKO49wHVEmSyRJOERHLxt94G4/uM17OxyxH9LFc4YZ0ivr9oEwy3RietxOY7deiZ1N+jHRmTdt7pl4XNG14uIC1Tp48Kd3d3fPuTHn5ceLECenq6jqrx9D2pzwfS9H+RLQNKtFo+1OWGx2DleVkIe1vQS8aQRBIT0+P1NXVRf41QXn5EYahjI+PS2dnZ6TpsJZo+1OYpWx/ItoGFUTbn7Lc6BisLCeLaX8LetFQFEVRFEVRFEVZDGoGVxRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6orGEfPGLX5TGxsY51/noRz8q559//nR8yy23yJve9KazWi7lxcc111wj73//+5e7GMrLgDAM5Z3vfKc0NzeLZVny5JNPLneRFOWsoGOwspy8XNvfL/SLxkIu6ouND37wg3LXXXctdzEURXmZcOedd8oXv/hF+fa3vy29vb2yY8eO5S6S8guCjsHKcqLt78XBghL2KUtHNpuVbDa73MVQFOVlwqFDh6Sjo0Muv/zyyOWVSkXi8XjkMkX5RUPHYGU5+UVsfy/qLxp33nmnXHnlldLY2CgtLS1yww03yKFDh0RE5J577hHLsiSXy02v/+STT4plWXL06FG555575L/8l/8io6OjYlmWWJYlH/3oR0VEZGRkRG6++WZpamqSdDotr3/96+XAgQPT+znzFvztb39btmzZIul0Wn7t135NCoWCfOlLX5K1a9dKU1OTvPe974VMlfPt9wz/8R//IZs2bZJkMinXXXednDhxYnoZfzZjgiCQv/zLv5R169ZJKpWSnTt3yte+9rUXWMPKi4F8Pi8333yzZLNZ6ejokE9+8pOwfCHt6vOf/7x0d3dLOp2Wm266ST71qU+95P6Soyw9t9xyi9x2221y/PhxsSxL1q5dK9dcc4285z3vkfe///3S2toq1113nYiI3HvvvXLJJZdIIpGQjo4O+YM/+APIBjw+Pi5vectbJJPJSEdHh3z6059WCeBLHB2DTXQMXjq0/Zm8FNvfi/pFI5/Py+233y6PPvqo3HXXXWLbttx0000SBMG8215++eXymc98Rurr66W3t1d6e3vlgx/8oIhMDq6PPvqofOtb35Kf/exnEoahXH/99VKtzqSiLxQK8jd/8zfyb//2b3LnnXfKPffcIzfddJN897vfle9+97vyT//0T/L3f//3cIEXut+/+Iu/kC9/+cty//33Sy6Xk9/8zd9ccJ385V/+pXz5y1+Wz33uc/Lss8/KBz7wAXnrW98q995774L3oby4uOOOO+Tee++Vb37zm/KDH/xA7rnnHnn88cenl8/Xru6//35517veJe973/vkySeflNe85jXyF3/xF8t1OspLiL/+67+Wj33sY9LV1SW9vb3yyCOPiIjIl770JYnH43L//ffL5z73OTl16pRcf/31cvHFF8vu3bvlf/7P/yn/+I//KH/+538+va/bb79d7r//fvnWt74lP/zhD+W+++6Ddqy89NAx2ETH4KVD25/JS7L9hS8hBgYGQhEJn3766fDHP/5xKCLhyMjI9PInnngiFJHwyJEjYRiG4Re+8IWwoaEB9rF///5QRML7779/+rfBwcEwlUqFX/3qV6e3E5Hw4MGD0+v87u/+bphOp8Px8fHp36677rrwd3/3dxe93wcffHB6nT179oQiEj700ENhGIbhRz7ykXDnzp3Ty9/2treFN954YxiGYVgqlcJ0Oh0+8MADcE633npr+Fu/9VsLqULlRcb4+HgYj8en20gYhuHQ0FCYSqXC973vfQtqV29+85vDX/7lX4b9vuUtbzHavqJE8elPfzpcs2bNdHz11VeHu3btgnX+8A//MNyyZUsYBMH0b5/97GfDbDYb+r4fjo2NhbFYLPz3f//36eW5XC5Mp9Ph+973vrN9CsoSoWOwjsHLiba/l2b7e1F/0Thw4ID81m/9lqxfv17q6+tl7dq1IiJy/PjxF7zPPXv2iOu68opXvGL6t5aWFtmyZYvs2bNn+rd0Oi0bNmyYjlesWCFr164F7dyKFSukv79/Uft1XVcuvvji6Xjr1q3S2NgI6zwfBw8elEKhIK95zWumdXzZbFa+/OUvT39OVF5aHDp0SCqVCrSb5uZm2bJli4gsrF3t27dPLrnkEtgvx4qyGC688EKI9+zZI5dddplYljX92xVXXCETExNy8uRJOXz4sFSrVWh3DQ0N0+1YeWmiYzCiY/DSou0Peam2vxe1GfwNb3iDrFmzRj7/+c9LZ2enBEEgO3bskEqlMn2xwzCcXn/256mfl1gsBrFlWZG/LeQTXq2YmJgQEZHvfOc7smrVKliWSCSWrByKovxik8lklrsIyosAHYMRHYOXFm1/yEu1/b1ov2gMDQ3Jvn375I//+I/l2muvlW3btsnIyMj08ra2NhER6e3tnf6N53+Px+Ng1BER2bZtm3ieJw899JBxrO3bt7/g8i50v57nyaOPPjod79u3T3K5nGzbtm3eY2zfvl0SiYQcP35cNm7cCP91d3e/4LIry8eGDRskFotBuxkZGZH9+/eLyMLa1ZYtW6a19WfgWFF+HrZt2zatOT7D/fffL3V1ddLV1SXr16+XWCwG7W50dHS6HSsvPXQMNtExeOnQ9mfyUm1/L9oXjaamJmlpaZH/9b/+lxw8eFDuvvtuuf3226eXn6nYj370o3LgwAH5zne+Y8zWs3btWpmYmJC77rpLBgcHpVAoyKZNm+TGG2+Ud7zjHfLTn/5Udu/eLW9961tl1apVcuONN77g8i50v7FYTG677TZ56KGH5LHHHpNbbrlFLr300gVJXerq6uSDH/ygfOADH5AvfelLcujQIXn88cflb//2b+VLX/rSCy67snxks1m59dZb5Y477pC7775bnnnmGbnlllvEtidvzYW0q9tuu02++93vyqc+9Sk5cOCA/P3f/71873vfA5mLovw8vPvd75YTJ07IbbfdJnv37pVvfvOb8pGPfERuv/12sW1b6urq5G1ve5vccccd8uMf/1ieffZZufXWW8W2bW2HL1F0DDbRMXjp0PZn8lJtfy/aFw3btuXf/u3f5LHHHpMdO3bIBz7wAfn4xz8+vTwWi8m//uu/yt69e+W8886T//7f/zvMgCIyOevAu971Lnnzm98sbW1t8ld/9VciIvKFL3xBLrzwQrnhhhvksssukzAM5bvf/a7xWWyxLGS/6XRaPvzhD8tv//ZvyxVXXCHZbFb+z//5Pws+xp/92Z/Jn/zJn8hf/uVfyrZt2+R1r3udfOc735F169b9XGVXlo+Pf/zjctVVV8kb3vAGefWrXy1XXnklaOTna1dXXHGFfO5zn5NPfepTsnPnTrnzzjvlAx/4gCSTyeU6JeUXjFWrVsl3v/tdefjhh2Xnzp3yrne9S2699Vb54z/+4+l1PvWpT8lll10mN9xwg7z61a+WK664QrZt26bt8CWKjsHR6Bi8NGj7i+al2P6scPa3cEVRfiF4xzveIXv37pX77rtvuYuivEzJ5/OyatUq+eQnPym33nrrchdHURRFWQZe1GZwRVEWxic+8Ql5zWteI5lMRr73ve/Jl770Jfm7v/u75S6W8jLiiSeekL1798oll1wio6Oj8rGPfUxE5OeSIyiKoigvbfRFQ1F+AXj44Yflr/7qr2R8fFzWr18vf/M3fyNvf/vbl7tYysuMT3ziE7Jv3z6Jx+Ny4YUXyn333Setra3LXSxFURRlmVDplKIoiqIoiqIoNedFawZXFEVRFEVRFOWli75oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JwFzToVBIH09PRIXV2dZnlVREQkDEMZHx+Xzs7O6SzWZwttfwqzlO1PRNuggmj7U5YbHYOV5WQx7W9BLxo9PT3S3d1dk8Ipv1icOHFCurq6zuoxtP0pz8dStD8RbYNKNNr+lOVGx2BlOVlI+1vQi0ZdXZ2IiLzv5gskEXdERGSiVIR1AseBeLxQMvbjhfjW43lliNvbsxBnGnGfrl2BeHXbCuMYx3tGIS7hIaRUwB+8og+xI5iCfqKCxyxPmOe1qq0FYj8WQHxqpAfirq5OiEf7cZ9pK20cI5GtQlyxUxAP9g1C3N2Ny8MA635wIG8cY+VKrM9+2md758zyctmTv/ncz6bbxtnkzDE+8tXnJJme/Df/UWVBf2WhiZwdwW2Mfcy7z6iZoWs7W3QYUFyD3YcWx7Wf4do3jjH/NkEwXzlmdlIqjMtf/Nq2JWl/IjNt8MSJE1JfXy8iZnm5/UTNHD5fk+JtzH3OvX4U5r2B2/A+ymXsI0dHsU8tlLHvFxFpqMdcGal0BmI3jmWwqQxmtUSdF9UFxbY1zzHMhm8e1V7YvTA2NiarV69e8vb33t/fLInE5Lj4xMNYfieO16XsmddpeAjH1IkJHP9aOvG6/dLrsAN65Pt4voOjnnGMIDYAcWsWt8k24Dh//32HIbYCHHMTVMVr1+J4KyIyMoDbVMs4jq9che0zbuHykZOnILYzZtt44rk+iJ0gCXEsjvu0HaybN74B29bbf3uLcYyfPoD32gP3Y3z1xe3T/y6Vffmzvz24pGPwHf/yE0mkJ69f4JvXHojq7Bb9NWTuPjUMsf2aW5h9JheB7/iANqAheEF9Lq8T0E4sy6F4Acfg5xeL+9C5yzXf2CIi4lDMa8zeplzIyydvefWC2t+CXjTO7DwRdyQRn9ykGmCR+EWjXOUii9j0osGVfeYlZjpO0IsGHSOVMoufTOBvIQ+qHu7DpnbqUFXHQzrPmPmJiMvtx/DyxGgbPq84n7dl1l0iji3VsvE8Y7G5645fNOKxiGNQ3fE6vFxkgQ/4PydnjpFM10kyUz/12+LLwc/T+qIxSfASfNGY/mWJPuOfOU59ff3L7kUjoFHSiZv9QN1UnZwh/Qv+ojG9zyVuf4mEI4nkZL8cc+lFg8YZ3zLHKsfF3xwHz9d1qc/Hv1cZy3l7ERGLjuFSuXissmzqh/m60mm4bsR5OfhbQDGX27X4PHB925m/r1lsHI/j/jIZcwxOJqmu6FyTCXObpRyDE+msJDO/2C8afqAvGmfgOy1qm4W0PzWDK4qiKIqiKIpScxb0ReMMlmOJNfWm39jQAMuKJZT/VIz3QBEnjX8eqZJMqVpGeVDgY/H8AN+cqmXzGCL8hovrZKgMQl8TYg4u90dGIE7xnyXEfKumDy+yae1qXD/A9dlIE0ZcFjeGv41M4Kdij6oilcbPuoGHx0inzbpzHTxGKoUSrmo1jPz3UmFbk/+JmH/14jiKuT4DRsbz7jBqjRp/0bD5LzqL38fcf88+O/AxFnLM+f4iMxvz73ovPhbytzv+WmD+1cmec3mpZEo5R0ZyEOdyGA8PDUOczxdwn2Xc58T4BMSDwxiLiKQzKE1xE/hFo6EZv3i0t+P40dyEyxtJXjN5DOybkyRVSdBf+PlrttFHvAQ9rYcP9Ehs6ov5Y0/idWppa4fY8TqM7YMQx410AttfdQTHpifvxfZ35Wvxa9eBA+ZflL/9bYyd1f0QDw2jBKk8Sl/8MzjGVvjLQKbROGZHJ45dRQ/jSgXHcTfE8fGinVdAfOD0M8Yxutdhux8bwuX5MayL9ibspV77SxdD7FdNiXT/aZQ0V0Ns40+dmKm7SiXq+efs4ji2OFMPOA59JTKeYyIGK5//0m/85X/u/pD3aEf8rdz8osH7NDaZc3v+4B/VbZhqCP5CxuXkusIyRn7dN5QHc/dv8315ifoSEdJvAX/9nvVvVi3MhX7RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTmL82jYImfM8m3tbbAsnx+H2HFNfdh4CfWh2RTqePNjqP8sjOP6tuDyEWvMOEYygbrHOM2QMtSHWk0nTECcSKLwrLWxGZezAUNEygU891gWdZUNLTj9V24Ep41NJbGuHDxtERHxPdR/FidQy5lOkV45hjrXMm2fiOF5i4gEHs4ikeDZZWbrJ3kahSXizNVZ9ARRMuPvmI553/ObMiiO0lHOX47FcDZ05fNN51cLeNKWhRxhMS3qRfkXEp4RKmKVKk2XPT6O9/FIDvun/j7Utw8OoDA8nzenqfZ9vNfZa9VIfdqKFTjddjbL/gi8mA/87EnjmL392BeXPNSzh6dwylMXuyuREP15rjv/zFarVuB5XHXpDojb25rwEDxL2EvQpLFhfbMkEpOt//FHcNp0r4Jem0uuxnFmciVsL66P48BFF2HbyY3idXjkIZwyN2GZU1teeT6W494HcMzcsA63+aWrcA7+onsS4kKFxscQr6uIyOAY1kWWfB4Xn49tfGwI2yuvP/SM6X0qVWi64HlmmzxvJ7bPnTtWQbx79xPGMTZsxv7hosvQZ/PvX585z2p1GTwarjPtzQion/Hp+YH9FiIiPvWKHLOBwnAl0D6NmeRExOZZy+a9z+cenXj2uvnnwzOfNUy/hD/P8ojZ3PgHY7yZbyY/3j6q/eBW7MCaXU5/Ec+AL8rxWlEURVEURVGUlzb6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwaiXRiOvN22UO/xGhhFOL6NnMe9Nyp0xBX8qjx4jmRrYCLhxrAibGCMLE0ak55rudyEVVnacpYm0riXO2JOMZByTRQVEMsR7GIeuMMCd1SSdRM12ewDIWieYxKHvWhacrS7VKGVq9CWTsD1KC6LCIUEZ8yfVLqDslPzOhayxVz/vSzjWNP/idi5lxYiEeDp6E2PBrz7uGFeBl4G87dMd/WCxD+/5wl4gyjtdgnl3shR4hoks9LROLeJefI4aMQ9/ZifoCRHOarEBEZH0dtOOuY45Snp64OfQkrV6Jmu558CyKmJyORwD7RtskgMU/adr6Wq7q7jHU86cUfyIQxRv1XifrRUhH7nkLR7Nvz1K+W8liXW9avhLi9DTXyi3MBvTipWqPT+QrWbSC9uot1PNRvZm7uWInbdK/EdbIZ3Me52zA/yoFDlCuig667iAyfwvY2QdftyGH0IXWvwPba0o7+iMQYejkP7z1uHLNq5SAePIHPJ7FRfPZobsE8LnUBZQ73cbmIyMp6bJN91P5WJPHeveOPd0HccxJ9SpKkRBwisja9DleJ4XPV794y443NF3z59ndon2eZMJyxUZhZuueORURCUv2b4zg9A3JuK5syugdm37XY4czIXUT9BJeBc15E7cMcy4zsHBTOnb8iag+hRT4PYwtanx8lInJ1eJxzZA5falQ9PB/6RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1FmcDfhipuc3OTwySOwrFxFc1+6Hg1eIiKN9Y0QD/aj0SmVxkQ+bAjkHE5VMZPnFXKYkCigJH9stPbKaGhZ04lJdbZs3Azx3mf2GscMyRdt2fj+NkLJgcplLGPSRhNZjBPliYhvocHOKuJ5pckEX5xAA142g6bR+hVochcRKZYw8WDVQ1NeZpaJvVQ2jYZnG1vC6eQ5LyRh3zx2LLH4tXteH3aU/WpuS5ZlONXmLjib5cKFnOg88D45IVEtMJIA1vgQzlko80IolSoSj0/2Ic8++xws830s08qVaE4WEdmwfgPE6TQaXeNxNFE7DvYFQYSBbz7YzGhcjHkyQXFiu2TaTPa5bgP2m5s2b4SYcntJsYT9R57M4hMT2BeJiAwPo4l4LIcJ6Rafd3J52tDPw+OPxsR1JzuqVWvIdD2EHVgybfbR//F1vBC3vxfbW9VGE/T/+DJeh+O9OH5+63tmHQ4P4G/xNHWslKB2YjQJ8Ugex/Vxap+dnWb7GxvDyWcGy3iMtZtwAoM9j2OCP7/5ESqz+Wzxyg24j4lWrLunH8VnonvufADi557GZ40Na82/8164FddxWvHkj/XOjMnF4tJPbhCGwbQJ2DBRs3E7YqxywvnXmY0933I74m/l8+W+42R6AU9KNPeELWFgHjO05q4L8wFl7j7Zjpigg+vbN8aCuduD+ehh3rt87iGXY9Z52MYD0/OjXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8GhKzJ/8TkaKPHoFsFj0AxYKpDx0dQU9GjJLlhTZtQwlBbBuLW/AifAKkY4vHydvgkP5zHDWog8P9EO9KbId4zao2YU6fOgxxKo666zLpkcXH864G6KewYqY+tFrFbWwbzzNJCfwyGfS7ZLLomRkZMpOJVavs+0DtrD0rWY77ArTiPy+2NTsRDtXHAtLtGbLJefZhyiQX4q+Yx6MxT6Kexe3thWEk4VmKS1mDpICzy7lcfyGJx+ISj016qi666GJYZll430YlNLLtxWmU2XfAx3hhLE7bG1JtB1Htnvojx8I+jQeaZAb17Q3UX4URCV+t9Z0Qj49h351KzFM3RhuMapMvgkyQc/DGGzOSSk1ej5PHKMlXA44zFbTYTW5/E24z0o+ei2cex2s9QYleL7kClycc9BuKiDz1GI+xVE5K9ptwMLFiMoZtITdyDGIvwv85OoFxmXT0p8nzkxd8Lug4BxNh5g7gs4qISGsX+ld++YZ2iNsbsZXf+a1TEHdvwOW5gUbjGPdPnIS4ZRXWxcDQzEWtlJchAeWsjH3zeTSi/BWclNmeb1wwjFcLGbs4yR8unc/nxsU2ku9FZIu16LxMPwUlwpvHJhc5LMxTMDO5HrIQD5tNvmd+Xpm9i8Be+FikXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8GmMTY1KuTm6STKJ+P5lCzePIGM55LiLiO6jbbWhAHW4xj9rNeBJ1vCEJ8vyI9yTXxW0yGcoX4eE84l4KNahCOt9DR/dAvLUT59IWEbl45xaIyzRn/JGeXohDmlQ+mcW6K/tYTyIiqSReqvoYemIS5HdJkwZ6fAKvR9nDeetFRBJJrCsvxPotzcprUl6WPBrWLB/F4rTuIqZEmzWkxj7m04dGCUQXKfGer9iGRrImfgrW1s65OBqj3PiDsxA5/KKZOYazXFp6a6YY3NdUq3hPRM7xTvy813Mh7X6xnoz5tg8i5ngX6itcvj8F+zxb0BsQWFSmiEMYGvCwQsvN3EBUyHni5znwi4jeQ32SSEyWMZfDMbizE8fPi69qMrZ/5iCecyGPHotd23Bc8CfwuuSGcBxqSNL4KSKJBO7DI09ieweWe8tWzDdz4OBRiNNx8heO4XmKiIyR1zIZx7bRcwpjSeB5Jca3Qbyp3cyXNeSir/H//at9EJ93TivEu65ogfj0MTTNhK5Zd/v24TaVZ05D/OZf6Z7+d7HkiwjmAznbxBxLYlMeBXvevsu8l1zDJ8lj0Xx95kLGw3kKRtYCI1eE0RVRLqvIndI64dzbsJ/C6Nsixg5+/uU+d76xhLePWn9BXpEp/EV0lfpFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYs0qORl3hlUuCWyWKuCJ98BXbcFHDVpRohjocolou5qN0sF1BEVvFRPOfGzXl844m5fR0J8jo0NuF5uC4uHxvPQewFK4xjtrRibo3cBGlIbfRHxBOozUyRR0M8c25y8VH3miIPRsLFd8ZyuQCx7eDybD2et4iI42I5BgaHIC5VZq5xpUJGlCXAkVCcqevJusmIpBfzwv4HI8eFucFcoYjMnyfBJ3/OfHk1WE0feZo0L7gxfzlPv035HdyA/TbmQTh3Auv0WXMaGmWosfZ9mf5EYlkzpxKGfA+wBjbKC8Ea43nmorc5Nwf5JYKoXB1cOT+vQYbOK8JDJuTBMJo19U9cIj7PqHuRz92h+eztec4zDLleoowgc+5i2enoaJ3Oo1G2x2DZWA7PL50xcyWdHkavwqoGHEe2rMW8Dc8dw7GoNYPt7Zc3Y24JERGPvDM/+D72L/kxbD9jORpnioMQV+g5YbRgjo/nbl0D8U2vORfih5/YDzFZFmWsfALilhVmHo1TB3AM7n0a6/vH30fPRksLjqeXno+5OqpGexT5nd/eAfGaLRshzg3N1F2+EHUfnl1i4kt86l4fGMbrVCrhdW9pQc+KiEg8Rc9nAfd/uD6Pp4avILKPnRvTi4lhwIkz+FFjQQkpaNyna02PsuY+o86L88qxD2ReryXnFzHbn5EzZC6PxiLGYP2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dFIZlKSSExuEiMvQ76Kc0THSIsnIuKQ7MwZRY1hrIL7tEsoMnNJk1YhTaCI6UUIYxhbWTyGRZNBx8ukM2zEucgj9Xn0W8zBY6xbjfrR/lGc83u8hHXnheb82qkM+zrwGDHS0qUS+EO1ipUfRJzHOGlfnSTWnTNL02dzUoolwA7DaV2iqeFeQHk4bwYvNtan4/P2hqBRxBLUI7OO3yWtuqn/5JuEtZ3meQY2ewNon8HcdbUQ+4RRV3QMi37wuQzzH2JRGHOKLwfGPTBf3pUF6nvn2OfCrC5nuW4Mb4p5/fne4GbN929AouXo85xHWx34FBtOENrcrKcXuUVDTg+VJJGYPA++rasB5pv47KfQpycicuAUjiObL+yEuEj9V2sKx6ZUGnNfDZTMnBbPPYdehsDHZ4HeHlx+98NPQtxejz6RKg2HxXHTo5Hrx2eJu+7FYyQF/RKujV7L3mH0s5weNf0PdWms3127cJ3Nl3RDvGol5sQ4dx16UM/tXmcco209+jwaGjdBPDYyUxm2bT7/nG3iri3xqTFsLId1dvIE5gurFM1cXRvX47OQ68ztm+IxN+D+MOKONUY7HquMLXg5+w8XkkdjbkLTbTnnMaL3wYnAMDT9nvPv0fhlER6NxTwD6hcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj0YsnpDYlEdjYhTnmQ5oHvUoKbJD0/W3Ut6GoELzBMexeAHNm856UhGR0TzqN8Mk6iptyqMRo4K2J3D9rrp6iFMRx7Qon0dIeuMqzTufdHH5yRyWeWgC5xUXEelah3NSJ5KolS0VJiD2iqidzWZw/apvnkcigxrSGOX3qJRn9Lqlkrn92ca2Zs3zzJrwBYnX59a7z7cLntPbjVg/wes4qE/2PLxPPCMnAflAQqxnL2J+bZ+ElT79/cBnPTwtD2z2BEX5kDC0LdLUzyMIrbVrwHmxi+kXCLfbhbXjF77+C8LwEZmruC72gbaDcUC5Wny6D0rkU0ulsC+a3Af1q1Xcp0N670qlOudyLvNLgW/937FZ+UNwLLv0KqzDVRvNvyOuPgfP+fgE+gS+8f3dEBcHsc69Mra3TdtMj8ZoDsfQ+joa/1pW4gbkP3RtHKsaxnFsW7UOfQsiIj0TxyB+9jiOoVeuvxji3gF8fokFONY9d4oSbYhIXxX3uaG9EeJLLkJvyaoOzFV1+ZXo4Ti9H8ssIvLM3XgN65rR95CyZq55obj0Y3DCcSUx5c+tS1MuLnqm6Dl50tg+m8b7etWqTlpj7pHC4s4nwrM47zbz9JlGfgpa/kLGMos8GqFhcpx/H/P5++YbCtizFpXnyXg2mKtgi/Ab6hcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcFdJz6djM5JoIErHiOTtWeaSBrIWFIXQ2NaJY7GMpsN5mSoqTOSvYjU+2SE9XCbTJCCOE1m3SZKFhSLz19FuSIm4OsbH4O4RImkQkqmt2YDJgXMjJgmm0QK66pYRAN5oYTJmRwyY5ZCTO4TRrxisqHXtcngKbOMXOHSG9Es6/kNT4vIMzNrHU7+g3Adsnk0GWEmbU1j+4pTJkWfJgooFvG6lIwklFjPsWRCmEqAF3OsUKbltEdqXj5dZ64XERGLjLi8CpvdbCM5Wm15MfyFxLKwFDYnULLMUrJ5mw1+85m7F2L+XnxSwMXuzyxDLIbt0qtin1fMY/9UKaNBuK+Pkn1VzYRpQ0Noxq2UsZ13rVoF8Tj1w2vWroa4nvr6lwL/vzuaJZWabFfP7MY6SqUwbm8xx66Kh5Ob9A5gnf7Ob+I+quN4HeMNmKTtxAkzMe/DP8WxyXXRAJxMYVtJZ2lsy+F4mh3DMrWuxvFSRKRMM820J7A/yjaiAX3NGBnQG3F/u0+ZSQG9PB7jqaexLg4dxva4chWeR0VOQTzcZya0W133OoizcRwPguyMMT4IzXvkbGOFwfRYwM9KmSRe54kJsw6PH0EDfB1NUtPQgHHgY/ubb8wWMZODmrNZzNfHUswTtEQkqpvfqL1YS3nEMeZNCGuau2fDk9mYCU0lIhPv84eOJuxTFEVRFEVRFGU50RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0fDKnpxRBWbTqKVL1aE23ZowE/lkSWMW0jqWjctJUmbo9RIxUx+aoaRzQRz1oJkkJpmpT2K53RTuk1VvpwaGhekpoxZ41MOkO1xuJ8ATiyWwDC1Npg5fyI8yMobHdOZJPlWqotYzFlF3Fmn1fQ81qaA5X4pEYQbhjEZzDu3g5JqmfpCTvNm0juvGKMY6NxJ+RbymV4qouw0quFKa9Mkh+ZRSMWyfqQwu98jvIyIyMor697gz931UJm1mELFPxgo5Qd/8yX9oD/Meg3Wp7JGZvQ++FsuBmfBx/uR7i/VkvBDmO8Z8xzT1xrw/s+4dB4eSXC4H8Te/8U2IB/oHIG5oQO/A//k/X523XOyxaG9rgbiN4tdffx3Eb3rTjcYxbPYrLUs/9/wc2l+RRGKy/jN1OAYf6kFN/NHTDcb2YxP4m2Phvf/APRivXIn91fDTGH/76+Y4P0L+m4SDfoiSjb4Qi+7zuIvX1e/EZLWWiwkBRUTeeO6rILZdLMMp8ld0nYNt497H7sUdcqcpIq6N44NTj31eyyqMU3V43rt345h90y/vMI5x6YWNEJdonB8cPj3973hh6X2S4nvTifkyKXxuaaT7kX1ZIiKFcWyjRw4dgXjbNkzGmE7TeMnjUNTtSd3TfP3ZYonyY8zbrxtJTxc7fopxslFeStwn/0JJAyO2N3r2ubwnmrBPURRFURRFUZTlRF80FEVRFEVRFEWpOfqioSiKoiiKoihKzVmURyM/VhAvPqmnTNWhFyKbpnwBHucDELEEtZicF4N11zGKQxePYbPoXkRSdagTtFNYzjhpcB3Sswv5REo+xqfHJoQZsdGTUbTw3JOkQU3HULvpxFibbmrmx/OobYyRXi9B89iXKe9BmTwaUXNJs26wWECNZXJWjoiqtwBNYY1xHUvcM9ecp3um0xkfN68T+yN4zuiQzingXCE+XsdqhD60EKA2mHORVMmvw3k1+B7gHBmliqmJDuhaJimnjUvtLSCN/RB5PMIIP4UfsL5znrnIDf3n/DrZ+aW0s44Zzu8rOfuYzqAXAzYn9CAWazswcn9EzL/O7XiQvGw/e+BBiIdHRiC+/MrLIU5Qvy0iMjqKevVTPT0Qr13TDXEn5dX42te+BnFLC+r0RUR+6Zd+CeJa5yT5efHtOvGnru/AMOn3+9Dnkk6YfXS6Ds+n4GF/kl6B/dWPH8Bxh1KXSFMXjn0iIqVhyo+Vp76DcgUlYnitQ+qXhykv0HkrOoxjdq7fBvFzhzFfw2h+L8R3PfMMxEcOnYQ4ljA9jw0N6J9z4ujZ2Lwdz6O3F31ImQT6Y67aiH4EEZG+049DfPR0P8T+rEGnWFyGPjAIRKY8fQnyhba3opdmoA/PX0SkSk2yr7cP4ix5bDdvXocbWLSDiMcQznvB/fJi72kjj0bEOvY8+ZEC2io0fG6G4S+iHEiUx2IuFuJVWZBXZHrlha+rXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Go7viONPbhKQNHN8BPMHuGVTPxga87lTYUjzF+PcEJR/Ih5H7bmISDJF/ock6ijDKmroWSsX2lgl+0+cgnjviRPGMRtXN+IxE7jPBOVnYHm576MXIMI+YdRVnHT3xSJekBJ7AUiPVyyaWn/XxXNP0DzZjuXO+vcyaJd9f3oOb5t8L5yrxIvwMqQacN55izwYnodtw5z8GjWJfsR14lrx6JdSGfXJFs3XzvkqfI8PYh6U84FkkuhFSSXwugbU3kbLOSxzaP79IZXCuqvQOhWf64pyeRh7NGHNaeA9/zzxcy1bKl5IHo3FH2OxOS/m92jM5yUxz2P+rdm3USphf2TMM2/kq6AyR+Tq4HuH73n2V7z1rb8N8d//r89BvGfPHuMYvA/Dn7LMno29B0VisckylQo4rpy3CX1pu58xh/eR8iDEqTTW88HHcJ/lXhxn3vhu9BkMDa03jvF//xX9EeKgl2RlM/ooqxWs074+9PfkR05DHI+4BK+5fDvE52xG/8OBH/wEYl9wXH/tLvQCjAU8Fojs60W/RFywriZGxyG+5nL0kmztbIa4oRX9LyIi+UHyXibQ9xAmZq5xaC+9R8MKQ7Gm7oGAfHucRyOVMJ/PSqUi/YLne+wotp1sFj0bnZ3tc24vYt6zNj/jRXjMYPk8v7yQLiC0KEcZ7SOgcT/wzGvrUX9nPPPQuM4nwrnWop6fjfRUc/kw1KOhKIqiKIqiKMpyoi8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo5GKpSURP7MJac5KKAhLhKjvFxEhWb04LmrM4rEYxVg8n/wVcZrHWkTEoTwYLukYPQvjMkkxjxxBjeDTx3Gu9tEyawxFGqqoTaynuaBZ18uy+5iD5+HEzDnkLR89B/kilqNK89jzvM1F1jcHEXOsp+maUl4JL5zZR6m89Br5mOtKbKqNsA6zSufD81qLiDjkh2DPj2OI0XGfbEuJzDdBPpfQNudjx51yiD8ENuXAiLhuto96+GoV24pDhqpKEbXcdXQf2gnKNyIiJaqLKjVi28Y2HATcPozKi4B0/HNMh/7zux9qwdxehsgtFqn5N7wNC/CBzLfPxVpHeH+cM2NyHYw5d4tDPrVKBTte1h97Eceoki+H79dqlfeJ6zc1NUFcCw/N0jMm4dTfB60UjgG9o3h+F16+0tj6vp/ReDaBuSGueSV6FzJNeB3v/z75DUu9xjHqQ+xf+nLYJ6Y68ZhV6lvSWcrP0NKJB3DNthGz8do/vRvzUQQlXL6peQXE2SyWcaWLXhQRkaCKf5c9NYp+ly53LcTOEN4U3Zdie/QTjcYxYiHmfmlvwGOcHtw3/e9wGXxqoe1Mj2khjZ+pLPr4Gpobje2HOA8Z+cmKVTyn3XsOQDw4itt3tLNnQySdxOcnl54rPeonuN8o0nNPiR4SSyXT/1mi3DCFAt6bRXpeK5OHtFLB7StV0yPE5WRvrzl+0vMNPYtk6/B6iYhs374R4o6ONtznrHs1WMRnCv2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dEoB9XpCYDLBdSHZZLoyZiYML0MXj0eLl2HWvDAx/eeGOW0KHs473QlNItfR69OSQd1aiWS5R7vw7mxnzmEeTLKaSxj19ou45gumU+8EhYiHmfdPhaiTFrv0TGcd1zE1OeVSYfv0bzLLvk8HCEdvpjzNFuk9ed5umcfwl8GfWjc8SXuTBYitLBOWY+4qcvUbp48uB/iE0cPU3wU4tZG1Ol2d6BWeOMWnLtdRGQi1ghx6FKbTmJbyVfwPil5pP+kCbdjcfNvA3HSJ6eovVmVwpzrZ1NYplTS1PgH5CPqGUMd60gF69/jucrZ/mKZ3hWLhP6OYeSYOeZyqevDMJBwSqfK3gX2KUT7J+Y7wtxnZu4zMqvF3LGxi3n+3mThtXYjVuccSEFAOZES2B9VKWfNfP48EZEwoHnkyTR18NAhiJ95di/Ejot+g1TS9MIxQfB8uuflaYEjp31xpzwKXhzHpr4C9h11MfNCNWfRxzFWrYf4sZ/g2LPrQvRTPPbgCMS/+mvmOFIYx2v5Nx/HcvSexD6vaz32sy2t2HZCD69bfsIcHw+eRK/I7r0PQ+zYmONiSyfmuOgvYB/59GH0qoiI+GWs77e+9rUQt1hpiAfGRiE+vhfztjQ2PWkco63uXIgdfwDiC8+9cvrf4xNlEXnA2MfZpOqH4k6NST75qhx6DmpqwbwhIiLuKazXAuXb4XFjbBjbSv8Atr+9MbzHRUSyKbyvffI1lsgvwX6IMvWHZY/6+Yj0EUHA3jtcbuanIC8xeTtjMdN/bHPOLf5OQP2hQ2Ms+z9zw9g+RUR+dv/PIL7oop0Qb1w/k2/Gcxb++qBfNBRFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwayfqEJBKTm3gTlGOA9F9V1miLiEO627p6zD+Rm6D5jUkbXCZNYIXmLhYRafCxHH5IMenrirQPi3S8XhXPo5w3vQnVPO50mPwTjfXoX0mlUX+X97EM+RLqRUVEHJpv2qvyvMsYxypY7irN/dzUiNpbEZE05U9gXbU1S4NZKpnzPJ9tQl8knNKHhi5e15GJHMSVMvp5RERGBo5DnM+j/rUOJbaStrHOevbvhtgbMeeQjyWxTY+OYzk80lFyXpYghrrKk6dQk7pizVrjmDu2b4C4v+ckxOu7cc749vU4v36K5pCPBaa/KpbA+2JkAtvbCM3p7VJ75XwiXsQk3EaPEZj67+dfeWmwLGtGpz9PjosF7rEG+5jvEPNVFmt/GTrPqMonHXRTYyPEF1xwAcRtLegV2Lh+LcT2a19tHGIkh/cCa60n8niv/cu//AvEAwN4v9/0phuNY7zYmcjXiTMl+PaqjbCsczvek0dPYD8gIiI2ejJK5WcgDgrYf/Wexr6hcyN63/7H35h+ifwY+iEki9dpdBSvk9OLY0kihWNTMY+5JJyE2f6GyWPR1onnMdSL194m7+b/c/2vQPzFux80jlGmvnxdEst5+BSOD6cHsR4ex9Qesmkr9ssiImFXDuJMbD3E6YaZ+vcd9DcsBZVKafo5rrcHx7/RUdT8s2dDRCQgP0Setgmp/3Pj+AwSY++WZ9ZBKY/3gUd+0io9K7mU44dzXIQV3N62zcdm12bPKI5v/HzM/Tz73hIRRrh4HMfgBHuwQhwvTT8geU0i/J6VMvbjB59FX1HLrFwppYL5jPV86BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcGdpIg75c1JsfmlikaUbNw0G/t0tFP9OSxMIyZ4qYRoHEo2tuAx0pjoR0RkwkOjz+gomsRKBTQP9Y2gYculJEhpGw04EyOUUE3MRFINZP6Ok8E8JFN7nLK5VG3TRMUJ+WwLDUyZFB4zpERvbhKP0VjXaByDEw9aNiWNmbVLLyprzVmmVHbFnjJuPfbsk7Dswacw0Yw1PmRs75LxrDqORsZWmpzgonMxedLIAG7fe+SocQy/igkgOa9hKtMK8dZtaJLt7tgIcZBDA3tvj5lkJ7urDeJnj6GBa6wP2/z6El47L+iBeO+TjxrHuPGNvwqx66Nz/sRTRyBu6loDccOKVRBHp5mjPsVms9vMVmfFNL0ASqXStCmvShc3Rvf5wmBDOS01KmoBCfsM8/cinfPGIcK54whC6h+am7Bvv+KyiyHu7EST8Q03vD5in3jcQgFNxvl8gWI0K7IZvLHBHD9GcxMQ19VlcYXpul2e2QicRIM4U8kRM2lsf01UP0Gr+XfEZALHke74+RAf78P7uFpF076UsF/dus2cuGT/czhG5vLYoNpW4liVG8XrOD5GCfssMotHPLXsfgYTt62kvjzw8dnhRC+2z/+8C8ePzfXYp4qIjAX4bPHw/sdwBUo4PEzjjU1/1+09ZD5LJLvQ/Hz81AGIew7PmNRLpaVPmuvY9vTENG1tOJblaLKGUydxXBERcalvqkvh81aFnnMScXwGcTixXcSzkgTYXio0Z1DZwmMUCnjPF8n0X9eA90BzE90TIlIlw/jQcA7iEk3GE4vheUuVnr2qZttI1GGbjtOzKicF5B7KNKib2HE8Bq/kl2fq1q8svP3pFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyiPhu/lxatObkI55jhXiKFNFxEZ9VCHli/jRo6L2jjXwp20ZVAvO1Y0E3qNVVEzWqSELqy/Szai3q41iRpJu0RJoSbMJCWcrKWpGZMiiYPl9EI8r5CSXUVpoKvkgbEd1INn61BvbJPY2xGqq4hjxClZnE/ek3x5pi6XQx86MDAsqfykRvCuux+AZdU0lt0NTR2lQ/4cK4/6z74JbDtP+UchTpBnoKNzk3EMr24tHsNGHaUt6G0opTohvvdRPGa8Ca/Thbtw/yIisRSWO1GH1+3RRx+BONl2BcSFcdTSPvUkejxERFavRD3y1h0XQbylEzXQj+1/GuJ0BnXZLnlVRER8Yb0t/x1kVl1Yy/M3kr6+/mlvQLGIOtqVKzog9jk7qCzEgzH3+gvzBszn0Vicv8XM+2SWwSbtdZmS6TXUY9+9cgV6MkLSVRcLlPRNRNJpvHfq6tAHmKHxgT0ara3Y5gLfPI++08P0C9ZVfcOZdrw8Ho1s3Zi4U8m8nn0a/WDjJexrWjEvp4iInHMO1tHIKCVQK+J9fO5GrLOLLzkF8SMPmffh8DAeY3A3toUcPRxY9CwxOp6D2Elhv9C8qtE4Zm8fluuczktwhRJeLy9Ef14feXMmRs2kpV4JPT6BjeukE+jriCexnHEXj3H3j7CPFBHpfRD3ee5mvIhPPT7jofG8ZWiDVjjtU4rR88LmLTgetrdjWxIRyfVjHY5TcsdiGdtjaPEzCSWKjkjYx2NDjJ7pEpT0z6L+rFrGfWYosV06ItFdiR+vKjgmN2bxnqirN/1hsH3EpU0lsdzZNN7vnOOPd8HPhDZ7IMXMkdvZ1QVxS8vMNS0WyGcyB/pFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsyqORCESSUxK5kPJVlEmkFlrmrifIJ2DRnMnpAuraVjaiBjcWQ19CX96cw7sSQx1aKYbvUslW1A1uW4+6wn3HcB7x/tIgxA0t5lz5Ps2BPEbnUa3SfPukEeS5occnSLQqIuUqrlOqoFbx6MnTEMdpnytaUCO4aoWpESwUUR8pFh4jDGOz/r30eQyOHHxKEslJnbZj4/FjGdQSDvWbGluhthDWo+Y7qKDm/tQgajWTLl7nDQ3me/ql52F+gIqP+3z4oYch3n/nDyHOOOgbWdGAbSeXQx+AiMi5b/4tLFcr3jcDddgWiqM5iPPkG1m1+ULjGH3j2BY2OOi5WL9pPcT7TqHv4/B+nOe+sRPzhYiINK9YTb9wG7PmWLZUhHJG/colCEhYy3kfRKI8F4jvm76z2djU7i0jZ8aZMs4uB/m7KD+OmSZj7vOIOgfOJdQ/0AtxN2l9eR8Vmuw+qu5KJbwfHcpb0tSEfoIs6aKHhjAHRH7CHD9sGhJPn6a+OzGpmS+WIrThS0BjU8O0Nv7cc7E/qnjY1yQs1KaLiBx4dAXEA6dPQnzuZesgfu4IjoeHTqJn4MQxvM4iIt4YtoVrrsC+YvdzmF/CcnH9datxjC7HMT9DWDYbYDmDWn+rAdvGptZtEB/aj/2wkM/yTK6c2aSSOGaWCjhejlPupkQS98GeioRr5kq44hLsF1soHdn21a+e/nexWJV77v6WsY+ziWXPWCC463HJG9HWbuYiaW9qhJjv+wL53sbpGY/jat70clWKuA575dhZkExi+6zLYqVPTOAxRobwmVBExKviMdrpObOJ/GFuDPtg7tvYjyYismLlSloH72+Xnk9suh4uPRMG7A0WM/9HYyvmPwpm3XqLeQTULxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1EejbpYRlLxyU2sCr6jZOtxV75vCrhcmrc3T3Mox0ljtoJyXIQk7K2ImcthokLaWZrruUK6tGqIcSqFCr4Mzf9vx0zt5sA4agIHh3D+9iJpOetJO8yMjpna4ViiDo85iPOAT+TRk8Aa56MJ1Lmu7jTzgdRl8PrE47gP25lZXqnMrSU/G/zoO18WZ8rDEGvaCsuKPupnR8ewvkREqjnS4Vp4LZMx1EXalP+kQprUvYdRaywiMlh8CuLO9ZgvINaButXtjTtxeRWvS5x8M+M+ajtFRL51F+XJKGCbHg1QczpyHHMF2Elsj9WiOT/28CHUH69Yh+c+uge13rlxbI/HB3B5rA/nlBcRufQq1LWmk3Q9Zt/+8yWgOEv4vi/elLesSDl2KmXUF3sRyYQ4/Yfhh6D+ycxhwTs06yGgnBTsh7AsakMhDwO4z0qVzqsa4SGjbjeVxDYUo0ne8+N4/WM0N31Ls5lnZe8ezO9iu3geLS14r7Hf5f77fwrx448/YRzDp3xFHR3oafjtt7xZREzd9lLRNzgkzlRdbqccF5aPPphVXVh2ERErxP5l7xHcxyHqG9qbMW608L7fdvkG4xhHhvHaJpJ4H1y/Dq9baxPe97Ekjn8HjmD/1d5oPrbsxe5Jjg4ehrhhFT5LWCGWwbbxOSGVwnFfRKRE+T2q9KzhVfG+q1RwjA4rWPf1KbMv37EVx6StG9CT13dsRpefL5j34dkmDMPpPos1/oavKqKPdmz8LZbAa5kh/2q6AcfxdnLG+aWIvog8stwPz+dBC8h/fGD/PohPnUT/oYhILIb93ZYtmyFe2b0K4rEJbBulIrYl9peJiDQ2NkIc0vO0RfF85+mVTY+QT/10iXzVzixjRiU0PR7Ph37RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTmL8mjEnLTEpjTy8RRqGksF1JjZvqnfWtGIWsxKHDXYbpw09PWNuE/SBK5sNTWAgxOoD/UD1PTlx1AnOTSAWrn6ZD3EYakP4tyoqQkcGECt28ETqGN1LayrMMC4QDrDfNk8L9vBclfLqJ3LpHBO5Srp8UapXg6fIlGriDRmUWeYjOE+Wppm9JKV6tJ7NGRiQMSZrLvxCp5vQwvmQynEIyZ5TuI2MSEtu0MaR5+0nUKaVMec6/pIAduP7aI289rrfxXijatRf5wg/bvl4zUoRpxWhbaJFfDasP7zcN8J2h7bluOYf3/IZrCc9508DvFK0rI3t6EmuqEbz6NszGZu5mbhcgSzzjOcJ9/E2eLYseOSmaqL557D3CAbN2Ab9HzTo+H72OaifByLIQjM7QPKm8E5ZwLqfyzhvBp0rcqoeU4mzBw8JA+Wjk70IjU04Dacd+P48aMQ9/b0G8fYvBl1zyF5SThPRn093ou5HPbLvb2m1tqhExkbQ49CX9/keJDPmx63pSBTlxB3Kh/Q0BiOOwH18ROjpgZ75w5so+duxOtw5YXo2fjPe8kLSBru1npznE8N4XG3t+Bc/Jt3roW4owt1+H4F/RUdh/C8jh43cyRVjlEOqCRe6wNH0I9TIo9hlvxgMdf0T1TIx8FeqJiL9+LYGNadTzkjuhpwbBARqa/Dco2X0Fs5MjZTrgJ5P5eE0J/8T0REOD8P9jPsN5sEf/NZ588diWFKY4+HeZ3iceprOA+QkQGJvAzUbw8MYt6M3GiEP4tOg/NkpDPYvpIZznFDdRfhbzG8JPPksbDInMd5ntyE6TduXYn9tuHzmOUJDCNzOEWjXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Gm4QEzeY1J6lKOeFF6KuLZNkDZpIWwPqv0Yd1LqNjKOucmwCteWrVuA86d5IzjjGWI7mUK6ieK5MfohyCcvd1oI+kvI46iD9qvlulrZRvx6WUZuZqcc5kdsb8BgDMdScjldyxjEqNGd3HeX3iOPlkHgV97lqDWrmV3fjtRARqU+jrjCTxGNk4jPXtFiuyj/Lk8Y+zibxSlUce/J6VgXbyvk7uyHe12Nq+E8fx238Ms3JTZpbIf1oaGFscVIEEXEFr9ORgwcgvvce0qhech7E69vwutTHcf1EwtS9xpOotcyQbLWcxPMcLeG96QhuH0+a3pMWKtfG9euwXNQfZCjfR5WSkDz97EHjGAcOHYK4uQ7vm+GBGb9UubQ8GvlKpSzu1Ln+8z//Myyz6O82DQ3oERARiZOmeHgYPQBVmos/SquLyyNydZB21qFrI5xDgPLJ2KST9jzU3Mdc7O9ERBoa8Vzf/e53QtzRgXr0EvW7//vzX4D4mWeeMY7x0Y9+FOLutashPkI+j6uvvhpi13XnjEVELBJbVz28Hnv37BcRkWLR9AksBaf7e8VxJ+9n28Y6r49h/9bUuMbYfnj0FMR7T+B5JLNHIa7z0F9x0WbsZxvrTb36hiuw/xjvw7g+g+Of7aJfq6EBcySNPYR+sH37TW/NKy5EH8elO7G9fetfUWc/MIzjQ8tG9JhVKhHXl7xP7BOzaHkqgfdRoYrn6UmjcYgW8rodPIw5HDZvvXH63xMTZRH5rlnOs4htz9go2F7B+XrO+CkB9uEZSX7Il8e+BPZb2PMYFUQkDHgfVHBjn1iGreecA/G6jehzisJx+PmYVmDf7gLyQvHzBp86e2K4ZmJGVZl157EPlcYSe9b1ctWjoSiKoiiKoijKcqIvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVnUWbw4lhBpDxpJPTZw0O5gThZiIhIhZLM5UbR0DkwhMlphNZvbcJkQiM5NICJiIwMoxG7XEbTYSqBRtihQUzytH4dmt02rkND3egoms1FRPpHsBwrmvEYCRdNM0kbDYYNlBjPRw+2iIhkUmjAbCLzpUdJ28IK1v+abqy7lSvQaCsiYoW4j4D26cwyUQXh0icL8ooxCaeSJmUoWZB7EBMybauYRrTwFCaCGs2jcTtfwOvoUXI1n41SEQYuNqd5LsbHDlNyqofQtHikFc2ArVk06lbFTBjJiS5jHhnhbSpnSOsXsb1WInLh7ScTX0iGuSoZ0YbSaHysJLBRF4rmeXBSwHIer0c2MVPuanl5zLitra3TCfvYdL17N7bBSy+91Ni+uQUnZXjggQcgLpWwTXpkRuakWFH9rOmvxGvl2nht5vMhGomfIvJwJWnyj3POQUPv6dOY+LRawX553wGcNOHAYZwYQETkPqqrW7fjMdaswb7bJRN8ipKauo6Z7MuxsG64Lm07NvX/P1+ixRdKKZ8Q25ksVHsn3YNVNF0/e3jA2L5qY/tLJbEvePppNE1fegHek81tuM/u1dhfiYhIgNdhPIUJQtua8WFhMIfLv/V9HMNbmrHBveXXzWOetwXH6UwTjm+9e7CRezm8z3xy645VcJIGERFv7DT9gPVfrnKCV2x/jot9oJM0O9oHnsH6PfY4GuerO5+e/vdyJOzzPUt8b7L9+T6Zk6mfieybqE6EDcVGfj4yanMccQyjO6N1LE7QZ2z//AZoEZFkynxsNhLb0XLfOAgn6OM9zm9yN9z48xjnjeeViLozkgDabM6f/e8FlPHMbha8pqIoiqIoiqIoygLRFw1FURRFURRFUWqOvmgoiqIoiqIoilJzFuXRiDkxiU3pWlNxSu5GGmwnIpmZTUlMUmnUlOZPov+hoxV9BS4dk/cXRZqOUSYN9NAwalIDSoBVn0HN7vAA6TRFJGaj5nR1F+rwXarmJCV1S9fj8hUZ0z/RkEWtrBsj/aeD9Z9IroS4rg7rIfDJVCNiCAttSlBXKM5cn2J56TXK9TteJ+5UcqcmC/WtpWcxqVPDECamEhFZQQmWxkgnHvcodkiDasSmxtui6xCLocfC8fC6+X05iHtH0XvQ62DbsGzzlo0n8BiciIwT+QQWljt0yHtim+flUzkCqgvPwuUTedRvxpJ43o0N2D5FRLwAj1vy8d6LzdLPV63lSdhnWda0Fvm6614Ly/r6sG/gvkdE5LzzMEHj0aNHIeYEfidPon69yr6piD6Qpbh1GSxHPI5t1PdZK87aXlzqVSNMPORf+ud//gqWoQ77xI0bN0NcKGG77+jsNI7wzLNPQ3ziBN7jmSwe4+mn9kKcTqGvbed5FxrHkADbse3gyXd0TJarUFie9lcad6bb3zD9nXCigG1n3VozKevIBNZZMYftqbMN63CijOd5oBevvediQj8RkYSP94Hv4zEeq6BXpqklB/HlF+FYt3XzDogLJTPZ58AQehmOUTld8rpt2orJHjn54ckTpv+zjzyhpVH0kjS3NUKcI5+kk0F/zMk+sw3d8796If6N1++C2I03zPzbM31uZ5vcaFFKU0mLQ/IIsF/Cts2+icdQI+kt7TMI5vEZRBjMjIR8BPeZHLPzwHX4F9Ob4AfkzzES9LG3Dhfz+kGEEc7wgQT8DDZ3v23u03xG910a140klTP7KBcW3v70i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNWZRHo7G5XtLJSa1jpYpzOPN87xmaE19ExGLJHunsW9tQ77lmLc7HzTq4bJ2pgebfDPkxzeOczeL6pRLqMJMp1DPblqlfF8ptEHNxHZc070nS2SfTqB/Nj1E+EREpF1EPWirgO2Iq2wCxg7uUQ0dQ+5kfN+fg5rwAjU0JimfqKvSXfg7vie4rxYlPtqtcBfWtPfWjEDd0mBrbqofCyDTlE0hzjgKahz9knaUdMU84aVBZVxkE2CAD0ocW6BgxqmYnQn5aMKYiZy0nlwH9OaFgXRlzfotISB4Mn7qOKm3k0YTchQnU4I+Mmvpk9lyx12RgeOa+8KvLk0ejvr5estlJD9XVV18Ny5566imIN27cZGx/0UUXQcy62bvvvhviwUH0kHFuiKh55DkXRz6PdV0uY6OKxbB/amlBvfsoadEdx/z7VJb8Ec3N2Jez92R8HPd5zTWvhPiKK64wjvGv//qvEJ88iX1aUyPeW6NjeIx9+9CzMTqKfYaISIw0yi7lwamrn/QXFIvL0/48rzDd7+SG8Lpu34VjbuCbfeDwAK4zNoBtpW0l+T5G8R483Ydj8Pj4SeMYl+64GI85iG12/wD6js6L4Ri7cx3eN08/hOdRdsy63/ss5epYTZ2Yi+N891q8D0foPutYtc44BqVhkWcffRzi7Tu3Q4wZukR+8gDW1Tld7cYxiqfR3/Lwwz+FuHv1jdP/jtLxn20KJU/8MzlkqIp9Gtui8kzxGMo+D6Gxir2+HAeh6RerkI8t8PEYMfb6Upkc8mTEuc+1zf6vUqZj0rUx+kwjN9ECcnRxOel5jfOY0GkbeV48XkFEKnRRPbo+s+uqUjRzyj0f+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo+H5nnj+pEYrFNTGJdKod/cCc47dHOm07Ri+53R2rsB92HiM0xOooyzHzFwOmRYUUnol1CM3uo0QZ1Oo3ayUUb+eSuL82nYMz1NEJDc+AHGc9MotzZgXI26jDq5QQA2qmyExqIiENHe9RzkgRkZzEFdJL8l65ELe1DZmKVfH6Pg4xKlZXpJKOWou/bOLPS5yxu4SxPC6FMhvUXYaje3ZPxHQPN8B6RMNBSPrLO2oObxZt8j7JM1jyPOI0+YkwfcC0xuTSGB7YW8De0kcwbaTENRIB6bsX2zKB2JR3TmkrY2TFyrwnl/reYZYHI8RkMHKmuXh8CvLk8dg3bp1Ul9fP/3v2Tz66KMQDw2ZXqumJpxLv6urC2LW/sdiLi3H847S8nJeDF7Ho3wxvo+a5V27roV4x45zID5/J87tLyJy4iTmZ3jwwQchrpKnb+0arDueTz/Ke9LWhnkhqlXsq12qq2QS+4SxMewDBwex3xYRqcvivZTLodK+6k3Wf6Wy9DkMRERijiX21P28YiX6YAZP4D1W34S+PRGR4fEeiO04to0DhzAf0UUXb4A4a+N1Gx5gJ4LIE88ehfjSiy+A+PRj2Maf3I1emr7jWIad59Hc/iW8h0REurvweuQC9DqcPI3HSIz+J8SP/WQ/xIP9Zv/C/dHlF+B90NiO/eglr1gP8RNPYZlWrjQ9Guc04LPAzdf+MsSPPDnjM2Kv1VJQqPjiO1P1wDkvqJ/he15ExKcBzidvgkv9QJzGmTjlc3Jcs58IQvyNPYdkDZaAvL8W+T5Khq/E7HOjznU2Nvs/51zb9FuImP0b78SnEytXsW6LFVxeiTBjViiPHPs9k4mZPtXzIsycz4N+0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak5i/Jo+EEg3pSmrko6X9Z28VzGIiJJ8kMEpDd3KdFG32A/xGNF9AzEM6iJFDHnSBbS09mks6+Ql6R/GH0g6Qwur9qmNyHdgOeVrcdypSndB6dfSGTQ0+HY5mXJj5NmlOwprIHP0j5XtKO+uVwy/S08l3PFwznWZ2u/WQe+FCSdfnGn5kOvUF6HOF13NzTr0LV5rmqsA/ZohCykXIBHw6FjmFpL8jZQ7gheP++SxyMR0eZdrou4sQ6WgOqKNPqsoxVBf4SISMXHuiuTRtWi+y7uRuWfQbj9cfXOzgcSlJfnbySu6057YLi8v/d7vwdxpWLqdg8dOgzxGb/HGaK8CbPZvHkzxD09PcY6nBdjZAS9Iuwv4Db4G7/x6xD/yq/8yrxl/Md//ALEP/rRDyFOJNAv8fTTT0O887zzqUzm9T127CjEE3nUs1//y2+AOKTrM57Hvl0s7N8m94m/VakPbG6Z9AeUycu3VKTTzf//9t48zKryTPd+1lp7rpEqCiigKGYEEZwVwUDUVkPM6GeMx3M0lybpxDbGzmRyDEns0/1dXq2exNN9kpM2+ULypRMzfDHdSVpb21bEqKjIoIKIQFEMBRRFjXtew/dHFcW+73dRVeCmSvT5XZeXPLXXWu+71nqHtfZ+7vcenMPSfdgH97Wi5qRhIhtXiUyejjrIeAXqJfwm9FCZ0TQF4vPOwfa3/tXtRhmJRC3EL77UAvG0Kc0Qr3v9JYgzORzjZsxBrcPrm0zvjmglPiu0YSi7t2F7Snn4LHGoA2NJdBllxBLYnuom4RxrkW513hl4rf/iAxdD/PQTrxlluCTPrBuH/iBnLWwc/HcmM/o6ITcIxBkY2z0Xz5efCfgZUUTEI+8H9qRgn4wgYH0EaR0sc5wwj4mfs/eG4TvFE7/h3WH6T/j0nT2PkKzrMDwxhnkOEBGxqR6s++D5qOjy8xx9HiLGZJ1NLE7eViX18kPqeDz0Fw1FURRFURRFUcqOvmgoiqIoiqIoilJ29EVDURRFURRFUZSyc0IajZznijXgo5ErYI5qLIF54V5IHm+e1ivO5DA/tCpBYgbK+YtbmOcbcc0cVI9y94uUj5fNY15jJEo5gJRn2dtLeZAJ892sPo7rekcod82i3LmABBZ2DM+j6Jm5jYkUXt+KOHpz0KUVh66DTbHn4bUXEek4grncPT0YR0qSHfOF0ddoxBfUSSTR7/UR98krokgagJx5nxzKmbdJI8S5l5zCGHCbDkmnj0fQi4RzM31/6FxNzrNMUg/1WeAjIg5pmyJUcY/bE61NHkTYv8Jsf1Hy0UiQDiQSMxogHWG4lcPNa8V58E7JeQUhGpyxprKS+qQ/vMdFK3kGZDLow+JSHvRtt90G8bRp04wyWlpaIP7Wt1ZBfPgw6g6qqrDeEyeinovbaNg68kuXLoH4rru+CnFnZxfE+/ahtoR1RTNmYB6/iMgf/4TeB29sex3igos6NtaqvLJ+PcS9vajxEBEJPOqPNCb81/92g4iY92m06CtkBnPQY6Tfqq5DbYNnke5ARBqq0VsjRl4jkRh+nstgfCSDXiQ5z9SqeL3Yvrq7WiCurMR9utpwLkqSL9AzL+6AuKfLKFL2bcR5unkC+n8sOR9FGxcvOQ/i5x6/ALe/8ohRxqRm0qW1oJ6lqpLmkwL6nExqwmv3kWtReyIismffQYh37EfdTU3dsWvjWqOv0bBsa9CXiT2hPJ+1DyFaBpoGHJ7Phvnq26UHnWKI1tQLSPtL3hvsI8TjmU2PxYZeImQqM3ylbNY2CH3OWpOhnwNERIpFrLcTNZ9/SwmooraD42EsGqKbtPFvtkXXquT6B/zQOQT6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzgka9vX/d/TfpfT0oRAvzHApSyZ+bOrn0DFZHM4SxL5uMrETkSIJewoullFZhcdMVaDwLJNFgWBvlssIMYIjYWpldS3ENgkK8wUUEmbIJCpEaympGAnl+TzzeAzWErF3TrFgFpJOoygvm0NRVVVlSR2G1/aWHd+uFd8eEK6SMCoWoJjUtk3TuqKDbSFjoSjRuCIk2AoMAZfZxov0N8PcjI17SGjmkvGdncfYzZoifotEYR71PZ+E8wGZThaiPViGaxrN+bTYQySC55XPs9EZlhEhU8EwsRubFrHhmu8eK9PPm31/tBnOXC/CCkARmTNnDsTf//73IT54EEWrCxeeCfHy5cshPuOMM4wyDh5EQekjjzwC8Zo1T0O8ZAkaibEpoJCoM+ze8XlxzPT0oFD5nnv+BuLnnn/O2CeTwXt+331/D/HZ5y6GmBcT6OnBdv7lL33ZKGPjhk0QT5qEpmvNzU0iIpJOj037y2f6BsW48XHYJydPRQO5cQ00Z4jIlCYU+r+0pg3iLW+ged5Nf3U5xM8+vxEP6JuC0vH1OH4EZBD6+ja8xnkf20Jd/QSId+xBg77a2HijzCnVOB9cuWI+xDVVKLzOdeGiHZdeNgm3N4uQfAfe8/GVuADCCy//FOKZM3Gsnz9hHsRzL0MhvoiIH70E4vUbN0Dc29c1+O8wQ9BTTRB4g4Z3lvBchttaIc8xER46aLGeHBs/0zFsWmDD801BPPsdp2gBHzZtZuNBY2Ud+tgJGfdZL+6Q22ycFlNhY0JesCUfMgcLPUcGVIZNAvQKmrNjVGY2ZEGfAj3Y54ssBj/2+Ym0P/1FQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpeyckEYjEUsMGnVxjq1PeW3RFGofRMTIx3M4/y7A3LccaQZylL/uheQA+jbmmEWjZL7CJiZk0FQRobzWGH4eiZq5/ykHjZKqktUQu6QT8YpYR4fyDlMpM7c2Qvl1bo5yE9mEhvIIXbpYubxptsJ59akU5vz68O+Qi3+KsfblxIr35yFalJvpBqRzCTFzzFP7K5BxopF5TqZzdgSPaRj5iEiB7oOp0cCQ80XzOdKNUC6445l5lW5kaEMiJpEiYy/K9fS8kLzXLA0VUdKB5Ek7ksY6eOTUVCya+Z1snMTmdkFJ+/SKplZlrDGN7cxt6urQ3PPee++F+MiRDogrKjCXfMqUyRDzNeovA43CfvjDH0Lc1oY571OmTIF4/HjcPwi4Z5g5ynyuw8hXZNy4WognTMC8/J/85CfGPhdeeCHEV/zFlRBPnIh6Cu4HrBP68Ic/apTBGo0LLjgf4qOamN5e0wxvNCjmCoPtrJdnbzLR9UIMI5sbsD3NmdsE8dkXLoA4Fcfte46ggVyugHogEZHuLuzb1dWoC9lLzw7ZPpxn1j6/C+K589A0cOZkNMoTEUn6OKaNb0AjTNvG55HOLjTP6+vDBvvWzjeNMmZNx/F/fDMaQDpxfDaom4hjZE8f9u2nXkY9lojI7Ho0qlxYfxbEO51jJpXpyOgb9tm2M2hGR95uxhgQhLQ/yyUDWxonijRB8sjDZsixmKlzsayhNWVR0jKwsSc/a7He2NB0iGmsaszzPGbyXEeajCBkXI/FsMNHnKH1oA49r/h0TK9omo7mXbp2Q5yHH4xcqKu/aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLKjLxqKoiiKoiiKopSdE9Jo5LIZsfz+XLIYrREf0KGckHeYGK2T75NPQ8TCzznP1yetQyRuruEdi1HuOOWlkYWARANau580G5UO6iViEVOjEaV1wuPCOYB4jHwUz9ui/SvZM0PMHD7Owk8k6FZG8JgdBVxDPuaYt76qshLiHOlAsiX6gUJxaB3AqSDT0S5OtF+z4JEHRpH0FwEnkIpIhO5thNaMDnw6Bi0EHlB+aBDymm7TOuA+5bdzTj3nWdqUT1r0SJdkKkkkyFFeKx2DtQ951lsEmOfK10FEpMdFDQzrODinNE4amYhP/Swkz98bJrG/tF4e1eedAF/nMDiPdvLkxiHjEHeXIY8nYmqHpk+fTjHmgQe8Hv4wJjkh0iR5u8Y6t956C8Tnn3+esU1jI3odTGjA3H+uQTQy9Hxy+1/dbpSx6KyFEM+fj5qFurp+fUAkYo4vo4GXtwbveR/JnHKCei7fNeeRwhmoE5g+H9tb3UTUENWnZkFsCRa6aaupVWnZjvqIujocj9i76szFpAPpPkx1QB1JXTVqOkREzpo/A+J8H2pJNr62E49Zg20j29cC8f59B4wy4gG2DZ/mE3p8kT4X59x47TSI923aYZSxeCpuk47sh7h0fuC5YjTI9PaW6BFYlDH8/rbFz40IazC408ZJZ5WMmYOR7+KzgUVaggQdI2IPPU7weJoP9YAiPSc/K9DzCWsxCwWaX9nLQ0RiUX4WxXm7UMA5OU2eW9kCHjNXMDU+RbpWAd0vu+TieMNoQWG/EW+pKIqiKIqiKIoyQvRFQ1EURVEURVGUsjOi1KmjKQG5/LGfTfNkP84/v3OaioiITT8v8RKrjkMpRfQLlbF9SF3tYOjUKZeWv43YdB60vJdLP3nxMp0i5pJsnArl029xWUoZy9NSn7Zt/qTl089ULl1/h18Z6c6W3jsRkULe/J0zTz+tcVyaLlUo9l+XkaSLvF2OllG6pCmnTnmUohTY5vKpFv/UTalTnpE6Rfvb9LNiyGs6/0TKS4Ny6pTlU3v1eXvuZyGpU8FwqVO0Pf1ULHztQlKnfC9P8dCpUx6lTlllTp3yB1KnRqP9lZbT09Nj/O3EjnPCewz5aVjq1Ike80RTp45TkxPbmurNy8WmaVlnEZG+vj6IS++FSNhy03Rew5QpIpLJ4JKPxyvz6P9Hu/1BeQHfR4THARGRIo/xNC/kspQua2FKB2/vFsPGCl66k+ZUWt69WMBjFOnzAteRl3YXkXSaUlEyuE0uh+edjdNy75R+mi+Y55XNYj3SGSwzQ5/3pbEOUUr35DqJiPT20TLtESwjXXLMdKa/vNGcgwu50v5x4uU6NN/xVXaNOZWXmCe7gpDnTE6x59Qpy8VjeMOkTlk0rhQK5rOF5+G9tOmYPsUFasOF4vCpU7SivDjC/YieKwtcBj3PhZxHkZ8VhkidKub6n8dGlDIcjGCrvXv3SlNT03CbKe9B9uzZI1OnTj2lZWj7U47HaLQ/EW2DSjja/pSxRudgZSwZSfsb0YuG7/uyf/9+qaqqOslv0JR3G0EQSG9vr0yePDnUuK6caPtTmNFsfyLaBhVE258y1ugcrIwlJ9L+RvSioSiKoiiKoiiKciKoGFxRFEVRFEVRlLKjLxqKoiiKoiiKopQdfdFQFEVRFEVRFKXs6ItGCStWrJA777xzrKuhKPKpT31KPvrRjw65zfTp0+V73/veqNRHUU6UlpYWsSxLNm7cONZVUU4TdA5WTgXlHItGMjcryIh8NBRFeefx0ksvSUVFxVhXQznNWLFihZx99tn6kqooynuCpqYmaWtrk/Hjx491Vd6T6C8ao0ihYBoNKcrJ0tDQIKlUaqyrobzLCIJAXNc0jFKU0x2dg9+bOI4jkyZNkkgk/Lt1HfNOLe/ZF410Oi033XSTVFZWSmNjozzwwAPweT6fl6985SsyZcoUqaiokIsuukiefvpp2ObZZ5+VSy+9VJLJpDQ1Nckdd9wBjrbTp0+X//E//ofcdNNNUl1dLZ/97GdH49SU04jf/va3ctZZZ0kymZT6+nq54ooroA3df//90tjYKPX19fJXf/VXUixxkefUKcuy5Ac/+IF84AMfkGQyKTNnzpTf/va3o3k6yjucT33qU7JmzRp58MEHxbIssSxLVq9eLZZlyaOPPirnnXeexONxefbZZ0NTBO68805ZsWLFYOz7vvz93/+9zJ49W+LxuEybNk3+7u/+LrRsz/PklltukTPOOENaW1tP4VkqpwM6Byvl5LHHHpNly5ZJbW2t1NfXyzXXXCM7duwQETN16umnnw4d877zne/I2WefLT/84Q+lqalJUqmUfOITn5Du7u6TKre07N/97nfy/ve/X1KplCxevFief/55OM5wbfl05j37ovHVr35V1qxZI//yL/8ijz/+uDz99NPyyiuvDH5+++23y/PPPy8PP/ywbN68Wa677jq5+uqrZfv27SIismPHDrn66qvl2muvlc2bN8uvfvUrefbZZ+X222+Hcu6//35ZvHixbNiwQVatWjWq56i8s2lra5MbbrhBbrnlFtm6das8/fTT8vGPf1yOWts89dRTsmPHDnnqqafkpz/9qaxevVpWr1495DFXrVol1157rWzatEluvPFG+eQnPylbt24dhbNRTgcefPBBWbJkiXzmM5+RtrY2aWtrG3T8/frXvy733nuvbN26VRYtWjSi433jG9+Qe++9V1atWiVbtmyRX/ziFzJx4kRju3w+L9ddd51s3LhR1q5dK9OmTSvreSmnHzoHK+UknU7Ll770JXn55ZflySefFNu25WMf+5j4vn/cfcLGvLfeekt+/etfyx/+8Ad57LHHZMOGDXLbbbe97XLvvvtu+cpXviIbN26UuXPnyg033DD4K8pI2/JpS/AepLe3N4jFYsGvf/3rwb91dHQEyWQy+OIXvxjs3r07cBwn2LdvH+x3+eWXB9/4xjeCIAiCW2+9NfjsZz8Ln69duzawbTvIZrNBEARBc3Nz8NGPfvQUn41yurJ+/fpARIKWlhbjs5tvvjlobm4OXNcd/Nt1110XXH/99YNxc3Nz8N3vfncwFpHgc5/7HBznoosuCj7/+c+Xv/LKacvy5cuDL37xi4PxU089FYhI8Pvf/x62u/nmm4OPfOQj8LcvfvGLwfLly4MgCIKenp4gHo8HDz30UGg5u3btCkQkWLt2bXD55ZcHy5YtC7q6usp5Ksppis7Byqmmvb09EJHg1VdfHRyLNmzYEATB8ce8b3/724HjOMHevXsH//boo48Gtm0HbW1tQRCEj4vHKzcIjo2DP/rRjwa3ef311wMRCbZu3RoEwcja8unMe/IXjR07dkihUJCLLrpo8G91dXUyb948ERF59dVXxfM8mTt3rlRWVg7+t2bNmsGfxDZt2iSrV6+Gz6+66irxfV927do1eNzzzz9/dE9OOW1YvHixXH755XLWWWfJddddJw899JB0dnYOfn7mmWeK4ziDcWNjoxw6dGjIYy5ZssSI9RcNZSSc6Fi1detWyefzcvnllw+53Q033CDpdFoef/xxqampeTtVVN4l6ByslJvt27fLDTfcIDNnzpTq6mqZPn26iMiQaZphbWPatGkyZcqUwXjJkiXi+75s27btbZVb+itxY2OjiMjgfD7Stny6oqtOhdDX1yeO48j69evhQU9EpLKycnCbv/zLv5Q77rjD2L80LUBXBVKOh+M48sQTT8hzzz0njz/+uPzDP/yD3H333bJu3ToREYlGo7C9ZVlD/gysKG8HHqts2x5M4ztKqUYomUyO6LgrV66Un//85/L888/LZZdd9vYrqrzr0TlYOVE+9KEPSXNzszz00EMyefJk8X1fFi5cOOQCAOVoGyMtt3Q+tyxLRGRwPh9pWz5deU++aMyaNUui0aisW7du8CZ2dnbKm2++KcuXL5dzzjlHPM+TQ4cOyaWXXhp6jHPPPVe2bNkis2fPHs2qK+8yLMuSpUuXytKlS+Vb3/qWNDc3yyOPPHLSx3vhhRfkpptugvicc84pR1WVdwmxWEw8zxt2u4aGBnnttdfgbxs3bhycMOfMmSPJZFKefPJJ+fSnP33c43z+85+XhQsXyoc//GH505/+JMuXL397J6Cc9ugcrJSTjo4O2bZtmzz00EOD7eXZZ589qWO1trbK/v37ZfLkySLSP4fatj34a9upKPfd3pbfky8alZWVcuutt8pXv/pVqa+vlwkTJsjdd98ttt2fSTZ37ly58cYb5aabbpIHHnhAzjnnHGlvb5cnn3xSFi1aJB/84Aflrrvukosvvlhuv/12+fSnPy0VFRWyZcsWeeKJJ+Qf//Efx/gMldOBdevWyZNPPilXXnmlTJgwQdatWyft7e0yf/582bx580kd8ze/+Y2cf/75smzZMvnnf/5nefHFF+XHP/5xmWuunM5Mnz5d1q1bJy0tLVJZWXncX8kuu+wyue++++RnP/uZLFmyRH7+85/La6+9Nvjimkgk5K677pKvfe1rEovFZOnSpdLe3i6vv/663HrrrXCsL3zhC+J5nlxzzTXy6KOPyrJly075eSrvXHQOVsrJuHHjpL6+Xv7pn/5JGhsbpbW1Vb7+9a+f1LESiYTcfPPNcv/990tPT4/ccccd8olPfEImTZp0ysp9t7fl9+SLhojIfffdJ319ffKhD31Iqqqq5Mtf/jIsYfaTn/xE/vZv/1a+/OUvy759+2T8+PFy8cUXyzXXXCMi/fl2a9askbvvvlsuvfRSCYJAZs2aJddff/1YnZJymlFdXS3PPPOMfO9735Oenh5pbm6WBx54QD7wgQ/Ir371q5M65j333CMPP/yw3HbbbdLY2Ci//OUvZcGCBWWuuXI685WvfEVuvvlmWbBggWSzWfnJT34Sut1VV10lq1atkq997WuSy+XklltukZtuukleffXVwW1WrVolkUhEvvWtb8n+/fulsbFRPve5z4Ue78477xTf92XlypXy2GOPySWXXHJKzk85PdA5WCkXtm3Lww8/LHfccYcsXLhQ5s2bJ//rf/0vWIp7pMyePVs+/vGPy8qVK+XIkSNyzTXXyPe///1TWu67vS1bASfhKopyWmJZljzyyCOG94GiKIqiKEPzne98R37/+98P+m0o5eE9ueqUoiiKoiiKoiinFn3RUBRFURRFURSl7GjqlKIoiqIoiqIoZUd/0VAURVEURVEUpezoi4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzoicwX3fl/3790tVVZVYlnWq66ScBgRBIL29vTJ58mSx7VP7vqrtT2FGs/2JaBtUEG1/ylijc7AylpxI+xvRi8b+/fulqampLJVT3l3s2bNHpk6dekrL0PanHI/RaH8i2gaVcLT9KWONzsHKWDKS9jeiF42qqioREbntc5+XeDwuIiJOArepmzoe4nzeNY6TiCQhtmIOxB5ZekQi+Jbk5vMQ9/T0GGXkutMQv7ruFYhjFpb55rZtENfV10McjcUgzuawDiIik6dMgTiRwItz4OBBiI+kuyEeV10DcVP9BKOMeCwOcU3dOIg7Ojsgtuk8D7a3Qzxv7hyjjOoKLGPX7t0QR2PH7l+hWJRfPfIvg23jVHK0jK8/8GuJJ1MiIuJ7Hmxj2fQtS6g9DG7DX8zwLoGFf/BpAyfkix2v2AfxwQM7IG5vOwTxvHmLIK6qmYjH8/A++mFfJp3wF0zlsM6hYxgXkzanj23L/AZkOEuf0m/SctmM3PvlT4xK+xM51gZbW/dIdXW1iJhjgU/tJey2cDO1uU3yDtwm+XPLvGbDOSPx57l8EeJ8AeOAvq06OgeUEqPOYFN7ML/xws+LAfbngucbZWTyBYy7cRytSeH8UjeuGmKfDumFXKd8EeetNM05Ead/yuzr7ZXzFy0Y9fa3Z8+x9pfPZ2Ab26GdLP6DSMAtjMNT8G01H9EO3l4ZXmC2jdY9eyCurKqEeHw9Pp+IP3xfHRO4ItRZS+9PT0+PTJs2Y1Tn4I/Nr5eo09+Xq2pwHIgnua7YX0VEojQORAKMo3Fss7W12Id5vItGzUdYS/CZzS1ie/F9HGs8epZgUskoxImEWWaB2lNB8Bmw4KUgnjH7bIi37sRnreeeetasiIvXyiPlQ1sXjoeHM/Ss6uD98nlAFAlpb1hGouSZ3Q8CaevpGlH7G9GLxtHGHY/Hj71o0FyTSOKFteywFw3aJobF84tGlF40ijRL5wtmQw5yWG4kgmVEafDlCTDiOEPGjmMO3tFodMiY68DHMOpI+4uIxOhvcXoB4s/5RSNKZfD+IiIJeoDgY0ZjZr1G42fUwfaXTEkiWSEi7+AXjQh23lgc23yUXhjjCXw4Onp+g8fTF42SIswTHa2f8Y+WU11dPfigF429O140YvSiwS8exotGwnzRiJf5RSMf8qLh5HC8t2mirKIXjaP36Sgn86Jh08skj9Vj2f7yeazLe/lFg18s+OGH28K74UVjqL+Vm6NlRB1bYgMvGjF6PotHqK4h6TTDvWjEosd/sO2vB79omG3cEvybS9eHxwF36PcMSVIdEnHzsdmh9uTQo7Xt4rNTKoljaIKerSKOee0sulYWvWg49tBjsDFHj6DdcNvCedsP3SaMEb1oHKW985DEBh5QIwk8yYZZkyA+uHefsX9tZR3EPN449OJRVYmDQyaHE2AmnzPKqKyhX02i2Ir8IhYap18fPHrbDehlprsH3xpFRKIH8aF98uTJeEwXJy+eQ4909UI8rgJ/rRARKXhY75oIlunQT0xHjuAvHAl6wLVC3majNnaWmgo8ZntH5+C/i0XzRfJU43ve4AsGfythcWMKe9oapkMYD7oU+kVsC3v3bjeO8frW5yA+dLgF4pSD962nG/vJorOXQTx+wgyqhPmy59EAZDxgWHyvKabzDnvgNy8dv7QZM+TQ25vzQ/g3LMc5gu+NfvsTEcl6rkQHyi7SZQ+Ge3MVkYjxxoUHoS4YMllg6PshZYRMvqXwA7bv4nX36Eui7btaIH7ppfXGMa9cvhTiqVMaIU4l8Rs9vtdHaIzc1d4pzL49ByA+QPVacQH+OjhpIv46XXTxxHtpPhEROUy/iAcOfRk28OLRlza/5BoNfL8gvt9ftuvhSxA/mtiWOVbwVka/He6hwWiOYdsHQ0Qi/jCP9eZQg39xC2ZWQSGbhThJmQlC84Ux5g1Zo1HEqBc9vJfMc74/+mNgLCoy+NztYx+I0rfPCerzIiJx+gXCL+B9idEvGnF6AC8U8JnPC5kHHPoSK5XC5xj+gjqg7JuI8cUx7h+nuL8i9OUMNSjHwT90HsZf4BacMRc/b+8yinht8xv4B+rfVpSe8SyXYupHIb/kmPM4jtOFkmvHX7wOha46pSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnZOSKNRXV8l8Xh/jnnOxVy5TB5zJANWPYpIND60kK6zC/NyWTBqkUDGiZm5yJU1lAtsYR7amztbIE7EUdMhJNQuUh5b2IornNPe2toKsU3XIqC86izl/u9rw1xkEZEJk3A1ol179uIxi5zriPUs0v05dLDNKKOYwX04Ay/dd2yVr6I7Bjnylgwm8A4rQCqDQM6m9pbtQS3N1o3rjH0yfXjv4pTH6rp4Hw62YT96PocrqZ21+BKIm5vmG2XGbBKQU5azKZ4kkfsw2ggREcc5oaFCONOa+0hYmcOKwUv1DGO0lrvre+IO5HvzeMQLEoTlr7OAj/NcfRJwRVjDQbHnmTqD1t2Y/8sLP7CcqSeNqxelKlFI69G92rvf1N9VjcM2yFo5h5TKAeX+2jn8PJZCca+ISA2vHESryeSKvJoMLczAi2zkTJ0FC+F9Es0UBsbRdAa1HKOFbduDbYCF6SwGD1twwdBo8MfDSjSG1gyFlRHQ+DOc3ovHJ7NMc5zIZnG1P9bSslCWtQ/D1UHEzLs/8SFo+DKGU4uUHiFkXZpTTkUqKvEBEbjno1bGob5SVYFjgogYSmyXVjfha5rjVT5ZDB5yESpSWG4yhc+EVi/O4/x8xv0q8Ok5IBuibYjiMaK0OEaMVqpKZ7sw7sFn34uXXGCU0dGN9d7Zis8aEdLhRqM0N9AAMZJ5n5+zghKt04nomvQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzQonXU5sbB435WvagDqGdnKkra023wFQV5soFlEOb2YP56bEImbXQGsxuwfTRiAh6b9hk3mJTntrhI0cgrqnGenPeuOuG5bXR+sSkX+C8aovyCpsn45rz+3fjtRUR6e1D/45JZPluUR5sbSVe68YJ6GESIm+RTBrzjn16D43GS47pjI2PwWjCOYyV1bUQn3vuEmOfzS8/BXEuh+0n52IucY7cfY8cwvz31za8ALGXNXPDZ81C/wDHwXoGlAfLBmxhJpTDcaImUaZhm8lwGo13AvFIVOKR/lx/1k9w5m5YDyErB8NjJ0J59Xn63KEyXfYHEJEMeQqsf+UViHfs2AXxgYOHIQ6oDk4UNR5h66f/8Y9PQDxp0gSIJ0xAjVl9HXoFxSpQkxFzzfY1ta4GjxHDenbsxXHT82ZCbNNa9rUVpM8TkcRU1HF09eG17Ojo768eG56MEsViIMViMPjvUmwySImE1NEazt+G+rVhhMq6yZA6mt4cIRsBQ/v48PHyObwnIiJH2tshjswnLVswjCtbiO7DhOs5gl1O4Hj99eB68jZ2ySejPwdXV8YlPmCqlyP/CYd0V75r6sd4TmXnaYfENQnyOYtEyHwvxLwxRcadpnv40KZ/KdJ0eOTInQvRdiXoWTXCZtQueY74uH0PzfvJaaZXxwUXngPxoc41EPdlsQw2m+a5J2ze5/vDfbHU8FM1GoqiKIqiKIqijCn6oqEoiqIoiqIoStnRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TkgMHk/FJJEaEAaSjqSjC0XVkyejWFlExC2gOKiDBFzFAopZvCKKvXs6URAdhL0n1TZA2NeF4tmKShQduiRI7+1DsW5VFYrLk0nTsC9PpjI+CTSjZJhVIEFvlERUs6Y3GWXsIvF9Tw9e72QSxUPpDF7rSKQW4mwWRcgiIvsPoqDfieK5lhrBFUNF8e9sDPOZECEZQgsBkKpx4rTZxh4XpvCavfjC4xCnu7BNux62BYsMItOdByF+dQP2ARGRvh7827z5F0JcUY1GZ55FBm7cmUM4UaE2X+uRiMFPpA7lON7J0NXVNWgEl6Hxik0yI9TvRUQsEg3a5J7Xm0ZTJl4wI0ri3ELBFFyyOV5dXT3ELS1o6PfKiy9DnC+QQJ2MoOwQ88b1z6/HekZQVF1Tg0Lu2tpaiKtr0WQrmjCv3YzZ2N96e3HxkIP7cIw8f+E8iCdNpLmht8sog8X245Ikfq7qvxZxMQWho0F3V6/4Xn8bcF2cdyw2M4uYKmz+C4vDI2yKS4LRSJQXVzH7oSEGpzbrs+CcY5aZkog/Q3O0iEiWFjKRgEWtFBt6dZ4bjCLEkL8aGw1nAjjM8UTEWEKC5yir5PoHoy8Gj8UtiQ+Y00VjvJgCzl3FApntiWn8yvc+SqaaVVX4vMZi8UzI4iiej9cl7uAx+Rkul8c5OU7G0jZt7/rmmGsI80nTX8iSCN6nucLH82jfu8MoY8qcMyFeuuQ8iJ94/BmIe9PYVws5qndIIx+Jse7xth0K/UVDURRFURRFUZSyoy8aiqIoiqIoiqKUHX3RUBRFURRFURSl7JyQRqOUaY2owYh1omYgFjEPnaec5hTpCvriGB9oIyMpyoMbV4P6CRGRQgbzAnu7yRCtuwtin4x8OrswR7pIOfNTp6C5nohIXQ3mEWYyWGaO8qzJo0aKRaxzRTXmM4uI1I7Dv/VQnqpNeYnZXozXdXVRHU3To55uzBMc34A5zbES8xzXG8YAaYwJM5QzNRq8DeUcGuZVZIDjm9qGmsYZEC+76jqIN770PMSbXkHTnUiA9zWexHtSGTPzk9taN0Ccz+G9n7/oAojHNUyDuOgOb0RleHBZbJyEn58K873SMk/UMLBcdPalpTjQgQ91oEYgHovS1mYfSaVQi5BKYJ7z4YOHIB5fj/oKK45lPP88GjqKiKx74SWIA6rX5IlonnfwQBvEu1v2QpxI4P6h/o4O5hzHHNRYVCTxPOMVaIqVrEGj1FjcNNPbuOFViFkf4HuYg/yjh1ZD/L4Vl0CczZv53fEYzkE26QuKA2WkWRMwSvR2dYsM6OMsMuSLRMlA0uX2KIY4waY2Sh6IEovTzfaH114FNI7a1GAC1n04w2g0qM5e0dTHsJapSHn3kSQ/j1CZPBeEjF+2sc+J6RSNI4aUYdH9CFgPUKrRCDHEO9U4diDOQLuLkQ7LsobWX/T/DdtLjPobazKipBON01gUjZvPmayzYpJk6Me6j3icNYxIRaWpH3PpGS6gCdEJqA9Q00k5eN/9qDl3pHtQ03ze2Qsg7qDn5c7n8LkgTdq7MJktj3f8jHSy87r+oqEoiqIoiqIoStnRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TkijEYtGJRbtz0+b3IRahdpKXKvftcwcs1g15saNb0CNRQXl6R4+gP4A4yoxv9kJWUe60Iv5m0UXc8zayCtCbKqnj/l3nT2k2XDNtaGnT54CMS1nLp09mMvNmYtVOVorOmz9fdIHTKivg7h+XC3EO1sxz7qbfDXmzjvLKOPVV3At/MlTJkNcXX3sfhWLRVm/cbNxjLHC1F8Mv0Y0w/nGnGss5HdiheSqk9xBYslxEF/8vg9BPI50MC89/SjEExv2QfzJT5htY8du7CdPPIv38c/PdUI870zUbEyfvhBiW0yvGN/jte2H1khwLi5f+nCNRfl1HeUmFlgSH8hbraAc5TitEd+XNceKnIPj06ubUXcQj+D9XbAA83AzOdRWrXsZ83BFRH73L3+CeGJzM8SXLV8G8fRZMyG2SF9xuB29XNIZHM9ETM+jgNZfPyycEEz32sZrmYijhkNEpJLG/2gU68ltqrYC55uzzsUxb8GZ6LMRVi57Ih06dKC/uvZJyxvfFplsbtDHxPDNiJH2IRKShG1oNHCbAsVxF/txhEQc0RAtJo+jPMXyuBlESGtDukk/YA8C89kiYM8G1nG4GLO8jscrO3QoGsZrY5h8do5DR0A6V4/OtdTvwyuOvpdVJGZLZKCdOXTvbep/7MEiIhKL43VOJnCuidqkkbJIs5HE2LLMMdbPoI4xncZtYgns45Eo1jvC95n6WUXKnB9dF69FIUdtlB8zXT4mjmWRSlNf1ZvDeT7fifP68ovfB/HuAzhO97yxBeLAN5+ffWrD3C9Kx21DSzUE+ouGoiiKoiiKoihlR180FEVRFEVRFEUpO/qioSiKoiiKoihK2TmhRNN9+3ZJYiCn7q3uN+Gzrm7Mg5uzeJaxf08B1/mVKOYYJqtRs1Ekz4C2A+jVUREz11rf89Z+iPN5Wiec1mV2Pcwt5gRSXg+5L2uuXb19N65DH6W8tizlL0cjQ+eDRqJmfh5rNAou+X90Y/5esYj17O3Bz48cxvX6RUSap2Mud4LWvq+oOJYjXSiYa5mfaiw5ltd6Mtn8Ro7ssF4MnGPLObEh64RTzDnenL88Z95ciNtbtkPsWHif2jvMMz/cge0lk8Hcy0IG9TqbN6EHQC95y8yZdbZRRlUlaoJcysH36VryetxM2KU/BdYbZceygsHc+HwBryNrW3p7Tc8TN4tjQdtBXBt92mT0JwpoLMlRbm9vxuyHmTzem7PPuwjiWXOwzc2mfn/mmYsgXv3T/xfiZ599xijTojKzOTzPNMW147E9nbsY9RObNm40ynjfFZdBHKEc8Fc3od5l6mycg5qnoxalr9f0EvrDHx+HmPu8P5D7n6PzGS1cLxB3QC+Vy2P9owXST0TNuSrK3gfc56hfFqmfxzzuuGYZMdIY8nRm04QXuOzVgeOXRbqRYsEsM0H+MoFL+ec0H9o0nwYB+1eEaPyM0Z2/p8XHKd/QaJDWJGT+8MncgMdEv+TaFItmjv2pxolFxRnQaCTp+cCla+77poYkWUn6CAu36erAZ7xEBd6n+Hj0ACoIajpERCSK98Hz8Nn0YA95U5EXR5T0h1Hyp7FD9Ikx0piJj+OyQ0KlqEP6vgSeRyHEI4V1SO1tLRBPm456zw9fcxXEnVnUdLS3dxllZLJY7zTNLyfb5vQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzQhqNDa+sk2i0P2fu0B70l9i7F/O/PpL6oLH/wfRuiHOSgbh2Enpx+L2YC7f1mW0QFzNmvtjhvV0Q5zOYA8jpdT4nqXJO5AjUAPkC5t8Vec14SrQskv9HN3l1pLdjnr6IiEu5cVFKfE3GMS/W8ITwcP99e1qNMiZPQT+Qnbt2QRyPH8tBdz1zLfNTjWVZg7qK4fQVYZ8Pr8lgKMfWYo2HuU54hHJ9I4LXvaN9D8Qvb3gS4r0tOyBeOBdzNwMx88rH1WPuZoTOM5/FevsWdvu3trwAcbrzgFHG/AXnQTy+YQbEtoXtLyBtim+sxx029Azd10rv34nfy/LQkemUvN2fP9uV64LPnASOX9EKU0PmFnBs6O3FfOHqWvRdoaFF3CL+wXPNPOiJEzCPuaebvIAox702if4UU6dOx7h5NsRT9qAOTkSkMortNEc+BlmKzz3nHIg/8X99FOLf/uFfjDIu+9AHsMxKXFP/vDdw3Nz8ykaIH338PyHevxvHNxGRja9vhbiHtW/Z/vvljcH4JyJSKLqSL/SPKdk89ntfqA+GdCe3gOORR1qEaJzGG/ILsX3sx55nzsHpLLZpzuXnuSkeo7GAjplKovYpWzDLtCK4TT6P2zhZjHk0oiqJY4xXpuaCZWge+3+QRoF9mQxvIhEJPNyH9SwipXPO6H9PHAS+BEH4HMxxmI6zt4vmL/ZysNjXhZ6N6N67sXqjjLZOLKP9MLbHLa+/BnFDNbadS89DX6nmKTiuO7Y55hZy+CxrR3CMTSSwjSepn/X04vZ9GdMfRKgvxhNYj7370Nds2vxzIb5iBfonvfDiK0YRnV14rXbvQf1xaZM29F1DoL9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilJ0T0mj09nRKZMADIkc5ZIU8riveununsb8Xx/wv18Ycvt6OLojrkrgu8MSJEyB+Yc16s5K0lnhVBebx5rOYSxdhPQWtdxxPoBYiVzBz5F1O1rQw5y9C+Z4+5e1HaA1wzmEVEcmm8dqls1iPrOG9gQl0CVpbuqoKr4uISG8a1/3PU45luiQP0fPMPMVTT6mTxtuHfTXCSivFob9EIiHv6XlsX2+89jzE6195DuJ0Hr1lbFqnPoZNSSprTI+VPfvxb709tAY3radfIC8YO4Jtae9ezGEVEentw3ouWHgxxE3TMK9VpAqigPUsprxlWN4JGo3NG9YP5pyvXfcsfNZQi+NVshLHKxGR2QsWQzxpMuqiauow57hQ4HuH46wfkgddW4maiz+veRri6ZNQB5Ktxvg//h2339t6EOJYzBw7hH0MIniDOSc54uPnu7a0QFxdgXUSEQlIB1RRhdu8b/n7IT7Q3gHx4R1vQbxhA/puiIg0z50H8ZbXXoe4t6ff94T9cUaLoh9IcUBX4QXYB3LUVvximI8GXnebfKVYk5EjH6qAtClh/TBCeomANGF50i54rDsq4rOFS0Uc7jb9aQrUnthLxmY/rQh5J9BYzv41/RUj/QBpMlzSXvL0wt5CrLcSEbFpYLSoHuC9EYz+GOh5vngDc1Qmg/OG4RMS0jb6+nD8ipEXTmUNnm+iGu9TXw7L7GTNh4g8+SJqtdrayTOM5tiDnV1YZmofbh/F8bShzhz/olH8m0eatKJgbLkYZ3LYV8PaX4zGWMshzU+uB+J9rVsgXjQftXbdnTg+iois/fPLWA8f61XqaWOdgJuZ/qKhKIqiKIqiKErZ0RcNRVEURVEURVHKjr5oKIqiKIqiKIpSdvRFQ1EURVEURVGUsnNCYnBHrEEjm1gU31FiMRSGtB8kQY2I2Ak2ZyExSRaPeSSGQqGDB1GQWmQ3KzHFkdVJPMWLz5kDcS6PwrL9ZDx41qJZEAe+aaTy/AYUH6XZT4hEW/EYCiNdEse5XoiIj4RABTIkypGwLEbOhD6J+OIRU42bSKGxUkDitWLptR0jMW55YUMlFrhjHHXwGra3obhUROTVl1H8vb/lDdoC208sgveVDdg8CxcBcOyUUWYmgyJZoXsbsUkASt3OIpF71DGHhXQP9r1NG9dA3JdHY7PZs9EsKBqpg9j3TVE716OMuv+y0d6yTxIDxpXrHv8P+MyJYP9Z9hcfMfa/7Go0OqyrQ0FzlBaCYNOrHC1m0d2F45WISJYM07w8CibjDl77tt17IX55w5sQuwG1H4dWKBARiWEbjFEbsmj8yfTheextxfmi6Jpju+NiPYoZ3KbPw2sVSaBAc89BFD/mQozfXnoe+69XxP4YGVjUwB+jtul6/f+JiGTJhI7Ft27c/B4xRd0u4eD5xWiXPCma8yR4TtnmPNLVifd232Fso8UCjWkknE2SuVmG7uuWbaahbYLE3Jk+LDPmYPusrMVFF5wIzskVtHiBiEjTVDTCrK6heZwWeYmS0JlF7+KbYlpuV0Vqf/mSNstmn6NBoVgUW/rPw3XxfNmYMUZjgohI2sX5z+Fxggz7bBKYSxHF5F2HcaEKEZEjJBDvzWHbSCaqIc7msIyXt+B42E7tecrEWqPMxgk1EDfU4rnXVmJbyeZpEQ+6DlHHvHYRelbgBVWqK/EP7d04Z+d7ayFeeiGapoqI7N2LZqyHSShfuoAOG1gOhf6ioSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnZOSKNRLAQSDOgJEinM062rw/y8bK9ppCIZzOlyKf+4ay/m73V37Yb40CHKRzZTbIWkCRLYqHeorMZ6nzEB8y5rE60Q2x5qOC5/39lGmW1taAizZQ/mTtqUu+1RbiMb9wQh+gfO5Y9SnCMjL4vy5yZMxPOc1IixiMih7l6sJ+VVl+bnDWd2904kIIMZ9sRhAxqLNBpbt7wC8foXnjDKcNPYRm261wG92wdCpk+UpJsvYN5ld5eZl1tTi8eoTGLc2UltJ0p5/33YR1IpUwfCdPegOVAmi3FvJ/aJ+Qsugbi+fqZxzAJpmcwmdkLD1SkhbkUkbvdfz4SP9WFZQXV1rbF/RRX+zecUZB/bi2maif38CN0HEZFDh9shjpLYpXYc5hP3Hu6CeCfp68bXovFgJGnmD7OxoEMn5lBfKpDW7XAa62DFzBx5N4fXIk9lWpQTHqFxt3U/5nOHXTuvD/9WncR87vTAeVl840aJ3nRevKC/3XkBjiU8J7ghQ3QvGe1aFjVamouK1OciCWxLHufQi8jB9iMQv7ARNRUJ0mA0kB4iFsfPO10c8470mvNjUyNqLoIYtnFPsG3sO4jPJ5ksasxs19RJVpMRZjKF9fTIwM+OkMEr6Vk8z3yA8Yw5CssoFI7dv0KI4d+pxvf9wTGLNRk1NTXGtkyxSGbFpPWNkLmjl8ZzTFbgGNBYY7aF+krsB129PK/QxB/B+5ohk7odB/EZsOUQthURkaoEHnNyPerDFsyaBvH0KeMhTkTI0I8NbkXEtskIM+D7j327Ko7H6D1yAOKpM2qNMq68YgXuk8V6te49dgzP82Vvl3ktwtBfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOCSU9Z9OeOE5/DqHnUr4s+zp00zrBIlIoYP5hjvKN8znMjWOvCM7ZjoR4QVRWYX555TjMv9tJeorOA5hPetH5UyBOk89GZxfmuYmITJqEa+HvaMNcOdfDikcoZzqexHw+L2SRduNUbbw2tk3+Cx6tv03eHAcO45ryIiK9mRBdTQm1tbUlxx/9/FCxZMTeCmGbWaQBsEikwetCs81LbQXmAVfG8b6JiBxsxzW4xcd+UChil/OjtE6/g3mvrk91dMzrXlWD/cgOsIwi5f16HrZPTqXNZnDdcBERm9aEd0gMFaVc7UwX6gR2vLEO4r5Gc/3zyc3zIY5EqqieJdciJDd8NPCtQPyBtd45fzpGebWcbywiks1gP8ySJqMihfnqCcrzrqvD3N4LLrjAKOPg/jaIz1mM66XPnINeHhUJzGk+EGD7sMk6qKsLx0wRkW5qMwf2oc4joPFnXDXe2ylTmrBOlbVGGY/9gfRPCcy7b5iEurNEBD+PCulInBCfiVocy9M9eF7WgM8J67lGi0zBFYn0txknSppHD7UMKTF1LraPbdT38Bp15ehmk4ajxiKvpbjph9OdwTGvvRvHp3iAbbg3Q7oP0u9kaFyO2pOMMg90U15+gZ8d8Dy8At7XXC/Oh+cvRL8tEZHKKryemQw+G3ikrfSjmFMfpTnaHoEXFWsaUFg4+t8TR6NRiQ7oKuJxPD+H5oh83vQcExvvQ5T6cIx8onx6Zoy72JYmVpnXoCZKug6ayHkus2Lk/+HgMyMN85IrmM9JvV2o7Tp4CJ8T29vpeflcPOjiM3DccVhHIiIx0pJ4Hj9b4PhWRXOJU8BjHtiHGmgRkcZpZ0D8/uXvg3jN2mM+Q0XXlU07zWOEob9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilJ0T0mi07Tsitt2fV1ikfLBoFA/V12fm52XSuA97MdjGa481RCTimDsY67mn+8hfgqrVSrl0V3xgIcSLmjHv99kX3jDKnDh9MsRnuZh3+MbmbRDnST9h2Zh7F4uYubURG/8WUOyS/iCG6ZPSQ/qLHOd+Sn/+ZSm8DrZb4gkxJhqNIBgU6ljD5LdavplDzXtYlAfpu5T3Tzn2s2eghiDmYo6uiMgf/hVz03MFzN2MxKgWMbzmjkV5wH2Yd1005ROSjGN7s2y81/kMaQdimNtJMhLJh6x/zn3VIT2CS2mrXgHPI5fD9rJz11ajjDMO47Wbt2AJxNHKkr7IHXmUyPu+WAP9N+vhvaygnOyIbeavG3qYPrxwbfv2Q1xdgTnL06bhWPPhj3zEKCNBnT/Ti21oKnnqXLIIx7yLV2Bebsd29BbatR19EUREpAFzjDds2gixTXqoOOX2d7Sj/iIRN8fAGOV3v/7qBohfWItrup+zaBHEc2dOh/jic1G7IiIybRqud/+Ln/4cYmugs7iuKy2tZhs+1ViOI9ZAjnmhyPoRnPtc35zeYzRv5LKk8yB9YJS0WIGLcZoHDxE5fATHPJIhSSGLfTdgrRzNLUUae4KQp5ZijguhaxGQ50oRnwuCPhzLJ01G7xgRkYoK8grL4T4Bj4k0B3nkzeF75jgbIS+UAs3TpVOUy/PVKJBKxiURGzhPi3Sh5D/BfVxExPXwukdsbE/ssZKl9pWl9rlvP3mricj+g6ghswKsh836PoqLdF0depRws6bHCstbAxfbwq4D2Cfy616FuK72PIjPmj3bKKOCtCRdXag3tmn+cSJ4LVP0PNPXZT5MtLehvu+s+QsgTpf44+XyefnDmueMY4Shv2goiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnRPSaLQf7JWjqfGcI59MYX5YoWDm8HOeN2Okhg+zfdE1y8hRbqZF+Z4Nk9H7oK8S9RG7D2Iu3aIFmLNrWWaZyRTWc/lyzHmursbtt+1Er4XubsyVi4Ss0V6gVFhfMC+flgk3PCIqK6kSbBIhIhHSvBQK7JVyLLc2LL/0VGPbttgDdWT9iEHI+RmXldpXjPQSuSzmfK/b/CLEb2wy8xMDobXSHTymS6nEbh6TOwt5bAs1tM54Vb3p3fHc03jQHVsp9zKKn3sFWu/dZ83Q8Ou7W3Se6XwXxDlKWj10iNbCj5n3ryOFeoRd1B7nL14x+G8nTKwyCkyY3CzJZH+u7MyF58NnMcqvTlbXGvt7Ht6LaAyH4O5uzDnu68F44oS6IY8nYt6/BWeeCfGMqehZUU36Op/OI03r4Z/b1GyUuehjl0N84YWof9i/H7Vw1SWePCIirS2oA6mvx/MUEami63nkCF6bg+3ohZBMoldHRSXmOO/YudMoI0lt8MoProS4+0i//0s+n5eX1j1l7H+qiTm2xAb8PxwLxwYhjUBYP86R/1WEHgEilJDuFfHeHyEPgVQ1Xi8RkVwW+2aU5mDbRc0QizMt8g6K8rjNog8RCUhvRzZT4gRZ+hyfE5JJfH6ppOcZEZEc+XzlyeMhiNEYR+ZXAWkB8nnUK4iI2HQPeZrzSjy5fG/o56NTQTwRk0S8v478DGjRnBtPmNfQcWogTtCca0WoraSwfXYU8Po8u9H0cejJYJtNVGA/cX1sn3F6VmJdTJAnzYYbpv/EY+QDMj4jvc6+jl6IX9mK2rxFZ15klBGLk98MtScnwc8a+Hkhh33fCdG59nbiGFpRgX5Y5y0+9mybzg7tu1aK/qKhKIqiKIqiKErZ0RcNRVEURVEURVHKjr5oKIqiKIqiKIpSdk5IoxEElgQDfg2cn5dJU14br1UcdjyKh88MR8J0AhYdJUfraxcpV3PuAsxX3tvaBfHWzbju+AVnzTTKfPUNzBM8chjLbD5jKsTjGidBvHsbrktfETNvy84WzOlL03kVyNekyJYQlDMYC1mnfjhNTKmPxrAaiVNAqUbD9GDBd+ZQlw/KaY1QTmnrjtchfmX9f0J8pGMXxD09mL8oIlIs4H2xhHM1KQfXwftmW5jX2tGBeZfPPm32ku07MPcyUVMLcQXlHxdJexOQB0sQcm9zlKefSmH7YUsbr0j5ujHcoGF8vVHG7JnoUzJt3tlYRiRV8m9j91Fh8tSZkqro13VddBnm7yfomsyYMd3YP5fDfmzROFlbSxocH1tyZyfqEvIhebIVKdSdTW5shNil3P2OPtSldRQwd9x28N7tfuNNo8zK7Tgutu7GMfGXv/r/IL74kmV4AIfWeM+bbbBvWwvE+/eh1u2sRedC3N6H1y5D6/yn82au/+496JNUU4n34+Kll/QfK5OW//OgsfupxyuIeP1jgsM+U2QwEYnT2CMiOdJcCPdTahvRKI2rdJ88FgeKiF/E8SVK2/g2jYG0/1GfkMGYxu0gTJfkYT0j5LdAw4845AExjvQ7VtH0SuglLWWBtCIetdlCjI5B55GMkcZGRPI0f/AjjltyjLHw0XAcRxzHbFciIpkM+bqEaAAsC+ezgLyGinRfYqShPbAN59xe8pkSEXn/JTiPxOk679mPxzjSicfo7cXxL8s3wTa1J/y8a9w3uhYu6ave2ofeH23d5rhe2zwey4xQo6bxrZjHfpfL0fOPY7a/eBQrfrgddWwzx501+G83RCN9PPQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzgpnOlhxTUlBeN6X3h6X7G+suD1seHYR3CMKOgO9OLuVqtndjPt7CcZibOaES9RMtezB3rqoB14EWETnzjNkQv/pqC8T5Iub87X4T1yqeWIt1WHQG1kFEZNIEzO3e1YoeD7FoLcSt+7CMDsov9UPyLONJrIdH65+X5mZ6Y+CjEYip6zke7CMiYuoI2HwkGsVrku3Da9535DDtT+YmImIbl4X6CbXPWAyvueNjzmr1OMyjnNxodtnOI/i3g4cwD7voUR4s5R87IxA8JOKYl5pMYu56Ion6BM4/ntSAOoGzFl5glFE37QyI8zYeI+8eu3b5cBXOKedQR5cks/33fe9B1EtE43gdJzRONPaPRrA9FHtRH1E3bhzEMfJ12Nu6h7Y3tS5XXHUVxLWVeIw//Nu/Qbxx40aI41V4b1M5vNZBb59R5tp/+jHEDq2hn8viGPjqpk24fQSvXZTW1xcxPQUyaRzTdm7fBrEreIwI5TR7npmHP2PmHIjrGiZAXFvVf17RtHkNRoOiVxjsz8Usjj8p8gtwfMxvFxFxSUeQJj+aQPC+1cXxGKko9vPObtPPxqdh0bbwOpNVgvh0n3iez5HXkGWZc1eMxrAYGWkko6zzwH5XncR+V5U08/BjpC3xKEc9m6UGSiGP/YWQOdT3sJ84DveDY+fJOszRIAiCQX2kS6ZQPK/09uL8KSISp/ZkR/A6xxM4H/Zk8ZhvvoW6rLPPnGeUccniyXjMKDaoyPnYx9sP4zPh3r2o4Wglb7VtrTjui4ikC3iuveTl4VAbt2h+bO/B7X/9x8eNMj644jyIZ03BZ1Evh8+qAWnrIhHsA75lNqA4zU8O+V319Rzz+8hkSe81BPqLhqIoiqIoiqIoZUdfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOCdteHdNzDy3LDTNrefuMQArM5mOCopvOHvx8/679EDctRiH24SwKnnZ0mAKYoBdFwufOmwGxE6CgaddmFDTVJlAgNanOFKLV16Pwp6ICRXn5NIrIZjahEPXpP6MZXWcGtxcRiVZV4zEtPNdScfhYGPYNhWHgF7YaAbUNN8D37Mkz5kK88uOfhHjNo7+BeOebm40iYjYL/rD9RGNYhzgJiA3Tpzybp5nnFaFjpslwKEeCugiJGm0LRY2xqGnkU1NVBXGCRHvVtdg+J0+dBvG0qQsgntC8yCijm3y4fDrVUlNGe4wc+5qamqSiol8s3dqO/SObR4Gw75mC9Vc3owj6hSdQ9FdFBnErr7vOKL+UZArvi4hIXwHr1VhVB/Fza5/FOqzHOl2y7BKIdx/BhSXitinG7dqPAkkWitq0z5HDKLgMyPxMQgxfWQQci6PIvXXHDoh9D1XJNonBa8ebi26c/76/gLiKjE7Tuf5rm8mZC0GMBq5vSXFggROf5tiii/28qxsXDBERCWiBhWgV9uMiTdtF7oRkEMmCdJGQ627heGSRCWWURdY+3ieL5pqwRwvbpoVLbDb1w2O4LtYxWYFzcDJlCukdmj9iJBi3yQyR/fQK9Ac7Yo5hNontC3m8p/ESM9+w/U81hUJenAETWovuW4TqE/6MEAy5jRPB9tnW2gZxPc0zF56Nc7aIyLgUirsrUyjE9mkhkZomHB/PmIFjLPn5yVPr8FlKRKTj6Rch7qEyLDLqtejZIxrB+/76G2iUJyKS7sJr8Zn/8kGIp9bjggY2LSzgC4n3PfNZNpaIUsz39Ng+tq9icEVRFEVRFEVRxhB90VAURVEURVEUpezoi4aiKIqiKIqiKGXnBJP8guP8++QYTsdhpNlTjmTY/gHlYlqCOY7FAr5b7TuIOad7O1sh7sthnlusw8xfjxSwjK1vtkB81mzMV7/uQ8sgdlJYRlUKcwZFRPYdwBzoM89sgLjlDaz3gkm1ENfGzoH4Z49vNMooFDFvNRqn/N2S3G8r1CzxFBME4U6QoZj58QHX2ca4QPmiqRrMeaxvnArx3j1mHqVtY/1iZBbExlIBv+pTm54wATeYMN7MiT5Yg9vUk4kbG8nFophbzMaMkRCzwxrSDoyvx/Y3Yw5qMBqmzIL4zd0HIXYrMEdfRKSuYQrEgct9ufTfY/MdSfvePZIeMNHrbd8Hn02ZRvqJqKm1SiZQV5DNYQLwju1bIV58IfbbGZQ/zDm1IiIFyj/PFXB8KZKGo4rMFmfOmA5xugHbk8N5+yJGXwpIY8FmXqyp4nE7DNvCdhxxqC9RmyB5hRTzaC53qMPUMBw8hJq9vizqbqoHjN9ypFUYLXxxxB/IkS+QliEueMKJmNlH8tTXo2SYVkHGnFHStfjUduJJU68TjWIZuRwZnEXIpJTMYwsutmmS+4hjm/pCi/QpFms2YtjeMmma62KY+9+TDslfp64WjZKWROiYdF4uGUR2d5uGdhGHTSYxzpa0u2xu9Nug73ty1GeQz88mfSLHIiIWjQsR0g3k6Zwi5IB78bmoyaiJmeMGa364jXf30nWzsG3Ea7B9TqzDMXvpOaYu5I03tkN85HAXxDZN9Fae+hHNC2xkKCLScQSNA3e3HoJ4ZuPZEPsJ0oVQv3Rd81nW5nGcTCkL+WPzVfEEdGr6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZeRsajdGHNRlhOYCcby6k0eA83g7yHDjUhXmT42pQL3FoH+bsiojMbsYc5je3b4M4m6E6+Zh/d/6lmHddWV9rlFHRh3nUjVPQ86KhAuP9r+Oa8qkIrgu+cDaWKSLyxk7MOY8kcI3+VEmevnmdRwNLMFP/+AS2mbvukQbD9jFX8/B+vG+vvPwMxC0tb0HsxM3uw7Ihi3Ie/QDrFVhYB7YPYE1RMmW2+YDyXO0o3msrQXnWpCNJJjEntbai1ihjMulTps6ch/s0zIQ44mDO87QmPOaOljeNMhxa4792HPa90r5rj7AdlJvXXnlB4gN57P/Pj1bDZ7Pmok7l49ejD4uISPth1Krs3oG5vXV1eN1+9uMfQZzJ4nj1yf92s1FGjpsI+RYUSHfmkVdLpg/HwDxtH5ab65FfjMdlFnAfjxPvKU+aNR4iIjb16Situe/xLnHK/Se9RTREQ9M4Ecfyzo4uiJNHPY+csWl/fbmceAPzXixK1yOO18PJm1qGcaTBEMpnr6Q+WKRc8kwe72MqxG+isgKPkekjH5Yk9muL8tFdKpP9QmzL1E/49LcceQi4pMno7ka9TtxhHZs5tvekUdNTQf4MDrXhI11HIGYfDQmZo4oF3CYWM4SqJduO3MegfBybg33SanF+f5iGtpK8RypIY5YjbWXzlAkQ15LfiZclkwsRKThYRi/eavECbJ823XufzsN28QATq822seKixRB3d+E+nd14r+wAj5EizdqEpmajjCR1NZ/Pw0YdZYqeFSLkm+G75vjX24tjZCGH96N03PZy7FVzfPQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzghqN8sJrqXNO33CajEjErL5PefhcBr9a9WYxb61lN+ZVRppxfWMrYr6b7Ww9DHFFBebK1TVi3q94mJe49Q3cv+2gmds4e85CiANaK7+iAnPo4+S30PryixDf+LG/MMr49R+x3Dd2tEGcqjqm2XDd0X9HtaxjGojhPFjEN3O8LQv/5vqYY9jS0gLxnhbUuQSU9xs45hryYnhQYJmejfclIK2B5WPeZT5L+fAh+cnVNZi8yV4e0QjW04li3DgJ/StmT19klNEwCX0xnFQtxJ6F+Z6cP1pZi74bU5pQOyUisn/vboiTlHOeqDymX+B84NEiHi1KfGD9fL8X1zFvfxPP6dGfmevcH+7Cvp7uRj+RVBzHhtbdeyF+9smnIF559QeNMlp27cJjuFiPrnasd5za8d7dLRDvP4jjgBPis2LxOvE0Vvuk6TLGZeFx2+y/joPtIUIaCx77yVZCAvIxyIdoGObOmw/xtlc3QPznPf3X1mWNySiRqIhIYkAb4JNm0vUwLzxqh3iTRPEaBqQ16c5gjjb7JRWK5N0RchkqSPPFbTrK87yP98UlfY8XYCGWY2pFY3Gsl0NN1CPdRyqK16YygXWKR0LGFxIB9fWgPiBG19Khx6uaKtLOhXgldPdgX+3uRu+ERImmIaz9nnoicrRjsT+F4cEQ4o0Tp7Zh09hj+UPPXcU8Xp+wsShfwGMUAmxPCapDjPzCYjG6L6RL4vssInL+Qhw33Cy2+UMHsV/Fo/iM2JvG85o+B5/nRETGN5JmltpsJIbtK/Bp3i9i7Aem1q5QxPaWy2PfjJXcD9sKef45DvqLhqIoiqIoiqIoZUdfNBRFURRFURRFKTv6oqEoiqIoiqIoStkpm0aDc+bNHNzhYQ0GH4M1GbW1tcYxurtxres85WYa67VTul1HB24/fzpuEEuYl2xn606Iz1k0GeLJM9Hjwqe1n/fvxVy5La9uMcrYtw/zrhcvxpz5CXWzIa6ZMAniLOU2Tq431z+/6rJLIT7Y/ifcoCRX1gpG30cjEGtQ08DNiyUbfF9FxFgzPkreIudf/H6IK5KYZ/nKy5gf39eHbU1ExKHEcHNtccplZz8Im3UklKNaxHxSERGb9BGJGO4zjvURU9HzYvZM1P9U10w0ynBpbXKXyrQsyv2m/PEi5dyPb0BdiIgISWhk9+5WiKfPnjP473xhLPKTRRomVkky0X/uTQ2kIaHvbXL7UXMiIlLo6YR4PHnmpHswlzeVwLHjyEHUV7TRNRIR8clrY82T/w7xgVbah3Kt4zFs91On4r2K2GZurkVTSZE0DOk+HPOi5AExbhzmH3P7ERGx2HeAOnmOxvqqKsyD3tuC4/Rrr7xilDF71hyI3Qx6ihxpPyAiY+UjJJIp5CUYyJPuzeCYHq3Ba+gkTJ+GXhfbhl/EHGzfxeueEDxGZRzHzHzezPPm9uFSeywUyNvKwc9zRRo7KNffDnlqyWWwvTnkfSCUjx6w6YpPPhxZ2l9EHAsLjkZJv0ltNpHC69B5BPvu7pY9Rhnjp83FMkgvEJQ8vwTD6RRPAbFoSuIDHiPch33S0viuqcNjH5YctRX2ObMs7Gc2PQMmKvAeiIjkXdyHtVs859r8fTt1bUNLE+LfVhXBsSZJx8y2d0FcPbEW4m7qE27ebH9zZ6AOJEY+QbEYPhtks9Q+olinQhbnIhGRgM7NitIxSrVL3sjbn/6ioSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnbKptE4GU3GiR6D1y7PZMw8tuF8NDirzMj1p/y8s+c34+cJ891sy5uvQdyXxdzZHTu2Y5ldmNs/azqWMbNpglGGWJgb29yEGoyaOtw8m8bcxZnTF0P869+sN4oY3zQNi6R1krt6jq2x7HGO66hDWhsWZYTmkdPN9mkfC6/ZOedfAfH4erwv//nkvxpldBzeB3E8Rnm9VK2Yg7mdVgJzWA+1Yxt/6j/GGWUW8phDOmUyto2JU6h9zT0X4krSZBRcM/+c/2J63PAeQ2u2PN8so3Eytr8C5Yu3lPiaFPKmR8Vo4BYsKQ6cbIzWY59BffLAjgPG/nH2BCCtU47Wxu/twdzxg9R+WnabOpBYDK99NIb6iClTayDefQDLrByHGrNMBvfv6zxolpnA8anoU65vHNu5y2uwx7HvRUNmJtY32ZSszxnhiQQe06Oc4r602YY6O/DcZs3EgTXX138eruvK1jfMOp5qbImKLf3aoBiZRRzpwrHDrTDnKo+8RKIOtmH2LSB7FMl72H4rOYdbRMbX4RhVlcT7kPdxTLPieAw/QnovH7UAkbg5diQsOmYOj1n0sK2wxus/16yB+LmXNhplpLN47oFL3hs01s9ZiOPu3Kk4f9SEfM1r0z0t+jzPHZt3vTI8c504lhwd23M5HJsCGtucEL8J1vRYNE/HydOC+3wqheNMMmlqNALSavGjisMiH7qM+RzWMZEk/xPyohERcRysR5YEh6+8hYNFxUH0U0pU4XlPmY9ziYiIkCbGcfA84jTe5Qt0P6hOVojYicdUhzQxpR5dIVKV46K/aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLKjLxqKoiiKoiiKopQdfdFQFEVRFEVRFKXsnLQYnMWgIzHsM4TZtE+SxJW8PYu/+/rQ3CoMNmMhrZW4JB6PkcLFLqJwu7sHBTYiIjUV9RBHLDRO6usmE8AJKL6dVFkLcU/GNIKrb8Br03mgB+I9u1HEOGMqmrRdvfISiH/1x5eNMtY88yLEBRJLxyuPiY3GwrDKcQJxIkfbxPFFciIiYpv1M9ss3mvfx+5QKKBQbcbMpRB/bBxeYxGRf/vTP0N8uB3F4WyqY1G9nYCEjzYKCHN5s8zmmWdAPH32mRBni3jerXtRiNboJSCuHkcrC4hIQG0hILE3L8LAOA4bGZrfcRTonk6dhuLwva3H+l6eO/Iosf9At8Tj/ULSt/ZiP41VkCA6ZAx0SWxn0XVggefsOfMg7qUx71A7moCJiCxbfhbEXV1k1JTDxQMO92Bf2b1rB8Tth3BsOXs+Gj6KiJx74UV4zC4cn5woGTxGsJ27RRRgjqtFwbqIyKFD7RDz+B+k8NptfO11iHMZFADX1JmLbnR0dECcTODYbQ20O8sfm/YXyeUlMiCkr6LmVR3DOlUmsF+LiGzZimaNETLaHFeNgtLE+PEQZ6iPViZN49dkVS0eowLvZaYX71vUx3sfJcF6sYDtM0ptSUSksgLbUyyGiw/09qHxouXheLThZZz7untNQ1CLTEsDF9tGqgKP+fKrWIcPXfkxiJecjQa5IiJpWvCGDeukdBENz3wWOdWk+zLiDRjCskFfjIxiLcs0jOTxLpHENspC7QgtThCLY3t1Q55DXFrMhOfcKIm52WyUpzKfFpqJJ/G+iohkaI7dSYtK9MSw3+QcbDuV9GxyOGs+2x48gvPN1Ik4fllkKJlKYT2LLs09/MwkplFg4JOgvOS5ynFG/gyov2goiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnZPWaLB+gnOwwygW2VIJYUO+4cocGawdoTw1wTKrqjBncP9hzO3c14Y5vCIiVQnMhct04jEPU7rn/gD/ELMx3vZmm1HGjNl4fXMu5tJ1dWG+XM+BTogrJmG9m+eiKZeIyB/+/SUqg/Jxa49pT8ZCo1HiFWQ4L3LbsNnAT8Qw5vEo/9CivP8omVEd6dwP8fa3thpFFKiNx+OUw0y6EMvBPMnKKsxnbpqK+fDTZsw3ypw4CTUatlMLccpiIyVs4wfb0FiuUDDvbf0ENBAKKNfWNzQzQ/dV1nj070M5voLXpmlq0+C/s2QiN1oUA1+sgTzpNKW4vr4d83LjYo6JMRvzlpOUI58r4liwYPE5EHe2o76m+wj2cxGRns4jENdRnn0iihqcA51o+tfRiboPn/LEj/Sh/kJE5Mk1/wnxiy+hBmziJBxvll6K+emVFbUQe0WzfexpQb3Tn/70J4jnLcC+8b6r/gLiVBRztZ978j+MMp5b8+8Qb3udTMkG2uRwmqRTRSbfK/5AnnSKXA2rq6oh9sScT13KBWcD0Vdf2wSxRTnx0+eh/uvIQdRXiIhMGFcLceN01BklqrA9BnQt3QJe875ebG89PdgHRERa9uGcmaE2GmE/Vxq/qitxnK6vN7VwAZtMkhNcLo9j0oFu7Jurf/ELiBOVZhlzF+G14nMvNcHL5UbftLToFgeN3yybx3zWPJp9JEqmcxVkwFcgkzk2BXRpfnUipnkeu0yyma9DY3Akgtobn00ShU3sTO1TN2nSduzdA3FnAZ/XEjGsQ20F9t0de1BLJSIysQHbyzQyuGWDvjhda9fFvsrmfCIi1dW1EBfI2DJeckiP3TyHQH/RUBRFURRFURSl7OiLhqIoiqIoiqIoZUdfNBRFURRFURRFKTsnrdFgWF8Rtk4+/41z+HI5zAfj7dkHIYzhtuHs8yjl5aeqMI/3pdcwfz3qmLnnjRMxv67zIOoh+ihBNMjhWuWpSrwNXmycUYaTnIJ/yGI9Oroxp8+lHOcJCfTu2E5r44uIdNH1z2Yxzpesbz4WOcoRz5GIO7CGN+VRWjbmz/q+mR9vk44gFcNzKOYwz3LnDlyH/7XNz0HcfmivUYZF1yUimCeZiGF+Z0Mj3pfpszDPfPLUubg/ebaIiPgWHjMIsJVb5IFR34D58vEktt/9e838UF5Pe9KUqfg5rW3PGp4R9V3qWxbrOOySMtyh9V6nikBEwuQ/IiJF8kBxQ7pInuKA8mqLRbxuBTrPSY2or9i7G/UVIiL/+e+YDzxhEup+bvrM5yC+7OPYfvpIo0NdzfAiEhF5YwvqlQ5hFWTOPMw9nzob2/WLzz8PcUcfHUBEFl58AcTjmnBMrB+PfePMhegnEvGw4lvXrzfKaNuHOqyqShyrIwN5z4ZvzyjRY/lSGNDMFDhHmvL5c0VTaxWrR31EbQXpC4uoM/iX3/8W4rbDOB+mu831/h36/pLHvFgcr2mR8sCDAHPJeW3/7gOY/y4icvAg1iuXx2PU1aAWgP21xMKemcmhZ4uISGdPF9bT5zEPj+k6qKGobajFIlOmhqY7jdffpcGm1NOheLyB6BRiiTU4ltv20N5p0aj5eBkjDwveJx7Ha+rSIMrzSiJhenXYFdje8gWei9jTiXW7iEN+IJ5rXvcU6XQnNaCmcV87an0L9JyQjNCzbsjksWc3aXffh9cyWYH9yiVdCM8tuSzPRiIRuhYV5MUReMf2ceyRj4H6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZKZtGYyQeF6y54H04j5vXXGYfjjCdAPt5+OyvYGOeWjKFmoxMDvMmezq7IJ7ZhDn1IiJ1tG54hnJlfQ/rHYtizrRljaM4JD+vFY/JOcxFB/P1YuMwF3fPIcyDfeEl0wPCJp2DRZ4P2eyxnNOAE7dHAdt3xBnQXphSGbyvvD68iEiEtmnbg9dg08a19Pl2iH0XcxqjIffJpjW2qyoxp37WnFkQz1lwLsSpmkaIXcHjuYHZZW3ya7At1q/gfaTl36WiqgriWXNmG2Xsp3W9d27fBvHUGTMgjlZgTrRP6eKcxy0iwjIO9too1eWMkY2BOJYlESv8+xnuEmFeIT5diO4uXGu/qgrHgoP7MR+9g3xXWt/aZZRh2zgWNM1CPcR//Ry2yboJtRBXFPFEPMoF90L6/gWX4Li4cDHqKRxqkzvffAPiSZNw/4oq8p8REbZqamzEdeXzWcyJf/mZZyBm7dzG9egbJGL2HdejPh/vrwR7P4waniOB1z8GZEgTIDQ2ZPrMHGxxaZws4EUdR+NVfTXqt15+7imIa6pMPeGe3ahzEfZjipGGI07zjsP9hjVnIfN+DHPJo0nyOnDwWaKd/GjyRTwm+wKJiLj0LBGQv4wTx/Oa2tgE8RVXXQ3xlCnmOJvx8Nwramppi2NlepapTzjVWNYxjYZDYq14PEqx6Tcx3DMe6yVisQh9jmUWCqaPSyKFz1dROkY0hjoQi7ROToTK5Osc4vFTGcPx6sLFOK/PmYX+M1yHDHnD7Npuau/8HLbRBHl0RWKkf/HxuTNKniN9IToQ18frGSXtZQGeZdVHQ1EURVEURVGUMURfNBRFURRFURRFKTv6oqEoiqIoiqIoStkpm0aDCdNPDLeWPms2zHWZMVcunzdzUHmdZaNeVIUcHePwEax3QAntvSFrD7s+vq/V0xrKbgH3cS287PvbuyDu7EQ9hohIfT2uEX8kjcfsKWA+3u42POaO3bjOeNYzb30qhbn6uSzm66HeZfQ1Gr7tiz+Qox4JUEsTjeD16DpsrrW+ZRPmZLfuRg1GNnMEd+AyonifK0LykydOQq3CzFlnQ9wweQ7EsRjmk3qUZ+2wDiS0C9F65qxtEM4tZu0DHi1Ceh8RkSnNeF4dhw9B3LJrB8R19RMgbpiEngdu2PjgDd2mYPwY/eYnIiKJaEziA2vBp6LsD4BxtmCuk89+QwGNVwHpgPa1ogajSGvC5/rCxgpsU3kP2/Xjj/4O4qpqzMsv0JiYzePYksmZHibpXlwnvvMIeQl1YR1yGdzepVzr7u5uowz+W4Y8B7Kk0ShSPXndeNZciYjYNjasbA7LqKrpX6t+rCQa41JxSSb786YL5BXkU9uYUIn6QxERh/SCFaSPiFqoyVhx6fsg3tWyBeKebrzPIiKUfi5ODMtYOA81Q9NnNEPskY7pzbfexDK7zDZfWY1tvuhhPzt4AHUjveSzYZPfkS/mDfZJk+CRX9HMGTi23/jJ/wJxc9NMLNM3x9kIzTE2PX84JZ97IV5lpxo/CAa1cpy/nyBdTKFgjhPROJ4ze1rwd9+Ow898rNM1x1ixeVymfkLzjM3GQKQTsR2KQyZh1o4su/AiiB3ScFSP42cHbEuvbd4iTD6H24yro3G7gGMqS+mi5GFis+hNTP+ZGOmpSr2tTsTFRX/RUBRFURRFURSl7OiLhqIoiqIoiqIoZUdfNBRFURRFURRFKTtl02gMp78QGZnXRimcz8xljKRMow6UuJannLRcDuMk5V0XQy7Z5m245rFFuZt1Nah96M2ip0VnBnOLc3n8XETET2C+7YFOzMfbunMfxH296LPh0ZrrVoQSaUWkihKPPcplLPUxOdF7WRasogRWfx1yaVx3evub6zHejrGISHcn6grYDyFG2oRoFNdmr5uIa/3PmIFrY4uITG06A+JkBa7179l4Hz1aw9sPWJNB1zm0zbMBBeWg8j503oamg+sgZi5t3QTUIcUT2E/2tGCf4Pz5ydOmhZSB+bhD+eyceM8vD9F4XKLx/r5TQR4DqRS2l2TRzB9mXVk+R32f85qzfRAWSfdhpDiLCNleSLqrC+L/e9U3sEwaf1gAw15EoRY6XCgdw6Ox3PdCPB6AkDxoGTrHmHWBFh0jQhq/sPxu9pjh7+Lyuf56j8n4JyIVcVuSif46dexvg8/cPNYpWWOO8ZWV2E+jEdynowPnlQmTUT8xe+Z8iNc8hb4aIiKJKM6RFl2rDa+/BvGbLS24PY1Xvb3YBwIxG31FN853vovzeFea2jjN0REP51w7ZAx0KF/dpa9pp83FMW3JiguxjoZ/Q8goRrqbgkdakhKNRl/f6H9PnM3kxR8wqUqmUHdQII1QXx/eNxHz3sXj5PVAHio++b4UyeMnTAvc14dtOEGb2PTsk4ylcIMIeXuQr4YToo0JSNtVOw7nhkRFLcQW6VucJD4XLLlshVGG0HziF7FtWNT/jUcJmvcTIT4nvsteHNgvisV8yb9ND5Pjob9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpeycMsO+csCCO0PsdxJicAn43QqPYZPOzCVFzd5DZOomIoUcChttMlmL2FQGVSESwUIrK0icJCKv7jgIcTqDZabJXI+NbiwSZ8Yd09iwVOwtIuIaQqxjYqQxEUN6gVhuf7nPPfMkfLT19WcgjiXM+vlkimNFUYBVNw7F3lOb0IBp1tyFENfXTzfraNHiAXQNjTd7EntbZB4UkIArTAUdcL+ge+NYbLqDsPg77N4afY2EZuNq0FAyPhfFbi27d2K8/Q2jjObpeL2TSewHpafpjJEc3I5ExBkQFcepfnFasCEaM/tYIoHXJUcGViyaZ7G4QwJoNmESEensQmO7fW0oGvY8FvGVw32OFurg+2PxGEgmWKRqdxxzamLD1giJNvnaGKJ2n9u5KZbmdh4IL0gSDH4yFqRzBfEHDF996tfxFInjQxb8ONCJoulYlBb8IEdby8f7cN7Fl0P8+mto1Cki0tOO5rAWmQR2Z9Hkr7OjHWLbGPNowQwbF1cREenpRtEqi8EtEvzaCYytBLXPkPvr2dh+klU41u/twMVG/v0/USi/5JwLIK4mMbWIiEvtjUXGuRJRe5oMK0eDdNYVtzhgmtuNY5PVi9cnzE8wT4tZZGghCsdmI156lorwgiHmPMCLCLkutr8ixXGa7yL8EMhjFxv8iUhAY48TYdM/mtf5GDTeRWPmuG45+MxX8Gkcp3ncJfF4gRceCTG85mvHc0XpMXnbodBfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOO1qjwZyUJsMwM+P8TzI54Tw3F+Ni0cy7ZiMUn97fXN6Hto9Sndy0WQYbC7LmIpHEfE/e3nMxHy8SYvSVzXKOJW5Umso4FhKNuONIfKDiC+ahWV7bni0Qd3dhXrqISEUV5vZOmNAE8eKzl0E8rXkBxJaN19iTkDxKC7uUIQkioyibElk59ug+OyEXPvA5vxhxhDUauL0bYlzGsEkR18KnOiQTeK3PmHcWxHtadxllbH9jI8RzZqM5WHX1MR2IH5InOzoEcvTs2QjRNHIy7xXfX9YVRCi39/BhNKb0PGw/QWCaexaLnGc7tPFpOewP2dBxuHYdofO2aKyxQr4DM45Bg1iM8ppNPQvmd/P2YX+zHTK/HKiC53nSRUaIo0H7oQ6JJ/p1FikyjKyuQk1Gvg/1GCIidgx1BVnDVBKv2b4u1FO8thv7bVBt6iUqSFfg5Ug/QXMT95s43YN8AbePRcz2OnkCasQ4z76zF+c/i/QRURpPiiH6h4YGLKOyFjVZZ8yeCXGVje2tdct2iOvHjTfK6CiQoSflyMcSx46ZzZr391RTLIgclaB2kUliJIr3paoaDUxFRBwb7y0bebLkwrZYy8XjivkIy/Mbj5m+x894WIdYjPs8PQexhkhELNJYOJHYkJ9HSFvHer9IxCzD9bjfsK6N6kmatBz1w3yIMXSB/sbGqoUSkz417FMURVEURVEUZUzRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TiuNxslBedIWrxkfDBkyrI3o34fzpoer0jB1CK2EP+QWnHYdUJ08ytfL5s38OtsdOl+81F9hLHw0ihFnMC97+oLF8NkHx2HO7TP/8e/G/o0Tp0C8+NwLIa6sqoM4sDCP0g84XzSslsdbd3/gmDbreehzyiflfHor5LKzVoBz7rkMobZgehyE5KDarPMwtqCYtU+4/8yZ6JkhInLoEOY8v7n9TYgbJx27f7nc6Ocni4hUVlZJItGf515NOfLxONY/CPWnoH5M96KiEo9RUUE59bQWeqGAa8KLmH4Rww1q3HxORgt3ohoNzifmOKwN8t9Yc8G5/rx2Pa/BH42GeHXQNpyOfXTcO5E15MtJMVMU2+u/Vu196D8RmYQ58bGQwcJ38d4m6Lq3tKAvRleuD+L2rlaIe8kTQ0Qkn8a+mYxiG7aTNRBXVWE/qqvDcbhI+sKGBlNbs/jM2RBPbZwG8WtbWyD2c+iHdWZTA8SV1A5ERBrqx0HsVOE2iTo6j1o8ZroX899Dmp94GTz3HOlTIvFjOzmBeR1ONXnvmI6ikMWxJyGkgSqa7S9bYD0EjxM0F5EPlR9gmY4dooOj8c4mzQVrNngMjUQxtmx6vgvp++wVE0SxzcYj2AdSiWG8OqJm+/PpmYvnAtYysV9INovtL8yHpZjHY3oe9uViic4jk1ONhqIoiqIoiqIoY4i+aCiKoiiKoiiKUnZGlDo11ikzp5axPx++pmHXeLjrPpJjnGgZQ8VH/z0a7eFoGbnssZ/6XIeWbsviT35u0UwpKdDSgTlaHtBxcHnIwMJjmKlTw7+nc8oaL983dMLRyFKnTjjRhe8rfRyetjJcKcOlTuGnTsjyynw/CvQzbmm6VH7g36M1Hg22wZKfjvkneF5GNhhJCiS1D/553Fiakbc30qTGKnXqxPYx2rWR+jn8+GS0U6NdYzxcmSLm0pjDpU6NdvsrXZKyQGXnstip/BGkTnHKWj5Py1lSzOMqt9+wv3F7DISXG6V+5A69PLPrmuMTL+fOS3kWKK3Ep/PI8ZK7nnleGTqmE6HzyGC6SzyK41k6g9cyGjEfvzKUEZrjtB7v2P3KZEdvDDxaRqFkuX9OI7fICiAWYgWQ49SpPKdO4faeT2lMtNx0aOqUR2OoTSk+NrVpoSVdKWW66FEKuYRYHFBbKNLSxgVaNtqlmJOQYgUzdSrX2wtxpg/TGnOUCtVHjSlNz0iZbMjS6PSM5NHytsWSdKmj6fcjaX9WMIKt9u7dK01NTcNtprwH2bNnj0ydOvWUlqHtTzkeo9H+RLQNKuFo+1PGGp2DlbFkJO1vRC8avu/L/v37paqq6iRN85R3G0EQSG9vr0yePDn0G/Byou1PYUaz/YloG1QQbX/KWKNzsDKWnEj7G9GLhqIoiqIoiqIoyomgYnBFURRFURRFUcqOvmgoiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnff8i0YQBPLZz35W6urqxLIs2bhx41hXSXmX0dLSUra29alPfUo++tGPvu3jKMqpppztXnnvMZKxbvr06fK9731vVOqjKMrJMSLDvnczjz32mKxevVqefvppmTlzpowfP36sq6S8y2hqapK2tjZtW8o7ghUrVsjZZ5+tD2jKac9LL70kFRUVY10NRRERke985zvy+9//Xr9cId7zLxo7duyQxsZGueSSS0I/LxQKEovFQj9TlJHgOI5MmjTpuJ8HQSCe50kkxClWUUYbbY/K6UJDQ8NYV0FRlGF4T6dOfepTn5IvfOEL0traKpZlyfTp02XFihVy++23y5133injx4+Xq666SkRE1qxZIxdeeKHE43FpbGyUr3/96+K67uCxent75cYbb5SKigppbGyU7373u7JixQq58847x+jslNHksccek2XLlkltba3U19fLNddcIzt27BARM4Xk6aefFsuy5NFHH5XzzjtP4vG4PPvss/Kd73xHzj77bPnhD38oTU1Nkkql5BOf+IR0d3efVLmlZf/ud7+T97///ZJKpWTx4sXy/PPPw3GeffZZufTSSyWZTEpTU5Pccccdkk6ny3+hlDHlU5/6lKxZs0YefPBBsSxLLMuS1atXh7bHsNSVO++8U1asWDEY+74vf//3fy+zZ8+WeDwu06ZNk7/7u78LLdvzPLnlllvkjDPOkNbW1lN4lsrpxG9/+1s566yzJJlMSn19vVxxxRUw9tx///3S2Ngo9fX18ld/9VdSLBYHP+PUKcuy5Ac/+IF84AMfkGQyKTNnzpTf/va3o3k6ymnOUGPaXXfdJXPnzpVUKiUzZ86UVatWDbbH1atXyz333CObNm2CsVV5j79oPPjgg/I3f/M3MnXqVGlra5OXXnpJRER++tOfSiwWkz//+c/yf/7P/5F9+/bJypUr5YILLpBNmzbJD37wA/nxj38sf/u3fzt4rC996Uvy5z//Wf71X/9VnnjiCVm7dq288sorY3VqyiiTTqflS1/6krz88svy5JNPim3b8rGPfUx83z/uPl//+tfl3nvvla1bt8qiRYtEROStt96SX//61/KHP/xBHnvsMdmwYYPcdtttb7vcu+++W77yla/Ixo0bZe7cuXLDDTcMvijv2LFDrr76arn22mtl8+bN8qtf/UqeffZZuf3228twZZR3Eg8++KAsWbJEPvOZz0hbW5u0tbVJU1OTiIS3x+H4xje+Iffee6+sWrVKtmzZIr/4xS9k4sSJxnb5fF6uu+462bhxo6xdu1amTZtW1vNSTk/a2trkhhtukFtuuUW2bt0qTz/9tHz84x+Xoz7CTz31lOzYsUOeeuop+elPfyqrV68e9uFt1apVcu2118qmTZvkxhtvlE9+8pOydevWUTgb5d3AUGNaVVWVrF69WrZs2SIPPvigPPTQQ/Ld735XRESuv/56+fKXvyxnnnnm4Nh6/fXXj+WpvHMI3uN897vfDZqbmwfj5cuXB+eccw5s89//+38P5s2bF/i+P/i3//2//3dQWVkZeJ4X9PT0BNFoNPjNb34z+HlXV1eQSqWCL37xi6f6FJR3IO3t7YGIBK+++mqwa9euQESCDRs2BEEQBE899VQgIsHvf/972Ofb3/524DhOsHfv3sG/Pfroo4Ft20FbW1sQBEFw8803Bx/5yEdGVG4QBINl/+hHPxrc5vXXXw9EJNi6dWsQBEFw6623Bp/97GfhOGvXrg1s2w6y2exJXwPlncny5cthXDpeewxra1/84heD5cuXB0EQBD09PUE8Hg8eeuih0HKOtr21a9cGl19+ebBs2bKgq6urnKeinOasX78+EJGgpaXF+Ozmm28OmpubA9d1B/923XXXBddff/1g3NzcHHz3u98djEUk+NznPgfHueiii4LPf/7z5a+88q5juDGNue+++4LzzjtvMP72t78dLF68+BTV7vTlPf2LxvE477zzIN66dassWbJELMsa/NvSpUulr69P9u7dKzt37pRisSgXXnjh4Oc1NTUyb968UauzMrZs375dbrjhBpk5c6ZUV1fL9OnTRUSGTBE5//zzjb9NmzZNpkyZMhgvWbJEfN+Xbdu2va1yS7+hbmxsFBGRQ4cOiYjIpk2bZPXq1VJZWTn431VXXSW+78uuXbuGP3nlXUFYexyKrVu3Sj6fl8svv3zI7W644QZJp9Py+OOPS01NzdupovIuY/HixXL55ZfLWWedJdddd5089NBD0tnZOfj5mWeeKY7jDMaNjY2D49bxWLJkiRHrLxrKSBhuTPvVr34lS5culUmTJkllZaV885vf1DTQEaAvGiHoKhbKifKhD31Ijhw5Ig899JCsW7dO1q1bJyL9iwkcj3K0s5GWG41GB/999IX5aHpVX1+f/OVf/qVs3Lhx8L9NmzbJ9u3bZdasWW+7jsrpAbdH27YHU1iOUpofn0wmR3TclStXyubNmw1dkKI4jiNPPPGEPProo7JgwQL5h3/4B5k3b97gFxyl45ZI/9g1VDqqorwdhhrTnn/+ebnxxhtl5cqV8sc//lE2bNggd99995BzvNKPvmiMgPnz58vzzz8Pk+6f//xnqaqqkqlTp8rMmTMlGo0OajxERLq7u+XNN98ci+oqo0xHR4ds27ZNvvnNb8rll18u8+fPh2/lToTW1lbZv3//YPzCCy+Ibduhv46Vq9xzzz1XtmzZIrNnzzb+0xXX3n3EYjHxPG/Y7RoaGqStrQ3+Vrps45w5cySZTMqTTz455HE+//nPy7333isf/vCHZc2aNSdVZ+Xdi2VZsnTpUrnnnntkw4YNEovF5JFHHjnp473wwgtGPH/+/LdbTeU9wFBj2nPPPSfNzc1y9913y/nnny9z5syR3bt3wzYjHVvfa+j6hSPgtttuk+9973vyhS98QW6//XbZtm2bfPvb35YvfelLYtu2VFVVyc033yxf/epXpa6uTiZMmCDf/va3xbZtSLdS3p2MGzdO6uvr5Z/+6Z+ksbFRWltb5etf//pJHSuRSMjNN98s999/v/T09Mgdd9whn/jEJ0KXxy1XuXfddZdcfPHFcvvtt8unP/1pqaiokC1btsgTTzwh//iP/3hS56G8c5k+fbqsW7dOWlpapLKy8rjfEF922WVy3333yc9+9jNZsmSJ/PznP5fXXntNzjnnHBHpb6t33XWXfO1rX5NYLCZLly6V9vZ2ef311+XWW2+FY33hC18Qz/PkmmuukUcffVSWLVt2ys9Teeezbt06efLJJ+XKK6+UCRMmyLp166S9vV3mz58vmzdvPqlj/uY3v5Hzzz9fli1bJv/8z/8sL774ovz4xz8uc82VdyNDjWlz5syR1tZWefjhh+WCCy6QP/3pT8YL8fTp02XXrl2yceNGmTp1qlRVVUk8Hh+js3nnoL9ojIApU6bIv/3bv8mLL74oixcvls997nNy6623yje/+c3Bbf7n//yfsmTJErnmmmvkiiuukKVLl8r8+fMlkUiMYc2V0cC2bXn44Ydl/fr1snDhQvnrv/5rue+++07qWLNnz5aPf/zjsnLlSrnyyitl0aJF8v3vf/+Ulrto0SJZs2aNvPnmm3LppZfKOeecI9/61rdk8uTJJ3UOyjubr3zlK+I4jixYsEAaGhqOm2N81VVXyapVq+RrX/uaXHDBBdLb2ys33XQTbLNq1Sr58pe/LN/61rdk/vz5cv311x83h/7OO++Ue+65R1auXCnPPfdc2c9LOf2orq6WZ555RlauXClz586Vb37zm/LAAw/IBz7wgZM+5j333CMPP/ywLFq0SH72s5/JL3/5S1mwYEEZa628mznemPbhD39Y/vqv/1puv/12Ofvss+W5556TVatWwb7XXnutXH311fL+979fGhoa5Je//OUYncU7CyvgJFylLKTTaZkyZYo88MADxrd7ihKGuooqiqKcPJZlySOPPGL4vyiKMnZo6lSZ2LBhg7zxxhty4YUXSnd3t/zN3/yNiIh85CMfGeOaKYqiKIqiKMrooy8aZeT++++Xbdu2SSwWk/POO0/Wrl0r48ePH+tqKYqiKIqiKMqoo6lTiqIoiqIoiqKUHRWDK4qiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpezoi4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzv8Ppj5Li1B2VkkAAAAASUVORK5CYII=", "text/plain": [ "
Model: \"sequential_1\"\n",
"\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential_1\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d_2 (Conv2D) │ (None, 32, 32, 32) │ 896 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization │ (None, 32, 32, 32) │ 128 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_3 (Conv2D) │ (None, 32, 32, 32) │ 9,248 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_1 │ (None, 32, 32, 32) │ 128 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_2 (MaxPooling2D) │ (None, 16, 16, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_1 (Dropout) │ (None, 16, 16, 32) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_4 (Conv2D) │ (None, 16, 16, 64) │ 18,496 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_2 │ (None, 16, 16, 64) │ 256 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_5 (Conv2D) │ (None, 16, 16, 64) │ 36,928 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_3 │ (None, 16, 16, 64) │ 256 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_3 (MaxPooling2D) │ (None, 8, 8, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_2 (Dropout) │ (None, 8, 8, 64) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_6 (Conv2D) │ (None, 8, 8, 128) │ 73,856 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_4 │ (None, 8, 8, 128) │ 512 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_7 (Conv2D) │ (None, 8, 8, 128) │ 147,584 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_5 │ (None, 8, 8, 128) │ 512 │\n",
"│ (BatchNormalization) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_4 (MaxPooling2D) │ (None, 4, 4, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_3 (Dropout) │ (None, 4, 4, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_1 (Flatten) │ (None, 2048) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_1 (Dense) │ (None, 128) │ 262,272 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_4 (Dropout) │ (None, 128) │ 0 │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_2 (Dense) │ (None, 10) │ 1,290 │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ batch_normalization_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Total params: 552,362 (2.11 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 551,466 (2.10 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 896 (3.50 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# создаем модель\n", "model = Sequential()\n", "\n", "# Блок 1\n", "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", " activation=\"relu\", input_shape=input_shape))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.25))\n", "\n", "# Блок 2\n", "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.25))\n", "\n", "# Блок 3\n", "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", "model.add(layers.BatchNormalization())\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Dropout(0.4))\n", "\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(128, activation='relu'))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", "\n", "\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "3otvqMjjOdq5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m87s\u001b[0m 115ms/step - accuracy: 0.3052 - loss: 1.8713 - val_accuracy: 0.4752 - val_loss: 1.3957\n", "Epoch 2/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.4705 - loss: 1.4488 - val_accuracy: 0.5730 - val_loss: 1.1992\n", "Epoch 3/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m78s\u001b[0m 111ms/step - accuracy: 0.5626 - loss: 1.2235 - val_accuracy: 0.6470 - val_loss: 1.0268\n", "Epoch 4/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 107ms/step - accuracy: 0.6261 - loss: 1.0727 - val_accuracy: 0.6940 - val_loss: 0.8987\n", "Epoch 5/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 106ms/step - accuracy: 0.6678 - loss: 0.9739 - val_accuracy: 0.7042 - val_loss: 0.8850\n", "Epoch 6/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 104ms/step - accuracy: 0.6986 - loss: 0.8855 - val_accuracy: 0.7360 - val_loss: 0.7630\n", "Epoch 7/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m74s\u001b[0m 105ms/step - accuracy: 0.7183 - loss: 0.8263 - val_accuracy: 0.7624 - val_loss: 0.7084\n", "Epoch 8/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 110ms/step - accuracy: 0.7344 - loss: 0.7800 - val_accuracy: 0.7724 - val_loss: 0.6707\n", "Epoch 9/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7575 - loss: 0.7222 - val_accuracy: 0.7818 - val_loss: 0.6691\n", "Epoch 10/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 112ms/step - accuracy: 0.7705 - loss: 0.6802 - val_accuracy: 0.7970 - val_loss: 0.6004\n", "Epoch 11/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7839 - loss: 0.6496 - val_accuracy: 0.7932 - val_loss: 0.6760\n", "Epoch 12/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7897 - loss: 0.6216 - val_accuracy: 0.8122 - val_loss: 0.5603\n", "Epoch 13/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 119ms/step - accuracy: 0.8016 - loss: 0.5895 - val_accuracy: 0.7936 - val_loss: 0.6226\n", "Epoch 14/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 120ms/step - accuracy: 0.8129 - loss: 0.5600 - val_accuracy: 0.8160 - val_loss: 0.5553\n", "Epoch 15/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8173 - loss: 0.5403 - val_accuracy: 0.8282 - val_loss: 0.5158\n", "Epoch 16/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8224 - loss: 0.5228 - val_accuracy: 0.8338 - val_loss: 0.5143\n", "Epoch 17/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 117ms/step - accuracy: 0.8313 - loss: 0.4944 - val_accuracy: 0.8190 - val_loss: 0.5393\n", "Epoch 18/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8374 - loss: 0.4780 - val_accuracy: 0.7674 - val_loss: 0.7332\n", "Epoch 19/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8427 - loss: 0.4673 - val_accuracy: 0.8398 - val_loss: 0.4830\n", "Epoch 20/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m85s\u001b[0m 121ms/step - accuracy: 0.8463 - loss: 0.4508 - val_accuracy: 0.8292 - val_loss: 0.5125\n", "Epoch 21/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8526 - loss: 0.4341 - val_accuracy: 0.8374 - val_loss: 0.5082\n", "Epoch 22/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8560 - loss: 0.4201 - val_accuracy: 0.8382 - val_loss: 0.5002\n", "Epoch 23/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8617 - loss: 0.4127 - val_accuracy: 0.8262 - val_loss: 0.5137\n", "Epoch 24/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8676 - loss: 0.3964 - val_accuracy: 0.8400 - val_loss: 0.4983\n", "Epoch 25/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8669 - loss: 0.3931 - val_accuracy: 0.8416 - val_loss: 0.4823\n", "Epoch 26/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8692 - loss: 0.3839 - val_accuracy: 0.8462 - val_loss: 0.4897\n", "Epoch 27/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8740 - loss: 0.3722 - val_accuracy: 0.8338 - val_loss: 0.5208\n", "Epoch 28/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8764 - loss: 0.3643 - val_accuracy: 0.8480 - val_loss: 0.4734\n", "Epoch 29/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8812 - loss: 0.3498 - val_accuracy: 0.8514 - val_loss: 0.4512\n", "Epoch 30/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8820 - loss: 0.3463 - val_accuracy: 0.8432 - val_loss: 0.5021\n", "Epoch 31/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8874 - loss: 0.3368 - val_accuracy: 0.8486 - val_loss: 0.4834\n", "Epoch 32/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8866 - loss: 0.3299 - val_accuracy: 0.8424 - val_loss: 0.5011\n", "Epoch 33/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8880 - loss: 0.3268 - val_accuracy: 0.8398 - val_loss: 0.5170\n", "Epoch 34/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8909 - loss: 0.3200 - val_accuracy: 0.8482 - val_loss: 0.4952\n", "Epoch 35/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8911 - loss: 0.3198 - val_accuracy: 0.8516 - val_loss: 0.4742\n", "Epoch 36/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8956 - loss: 0.3110 - val_accuracy: 0.8588 - val_loss: 0.4497\n", "Epoch 37/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8966 - loss: 0.2992 - val_accuracy: 0.8512 - val_loss: 0.4598\n", "Epoch 38/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8999 - loss: 0.2949 - val_accuracy: 0.8478 - val_loss: 0.5029\n", "Epoch 39/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9016 - loss: 0.2857 - val_accuracy: 0.8632 - val_loss: 0.4740\n", "Epoch 40/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.9013 - loss: 0.2915 - val_accuracy: 0.8578 - val_loss: 0.4687\n", "Epoch 41/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9038 - loss: 0.2822 - val_accuracy: 0.8588 - val_loss: 0.4607\n", "Epoch 42/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.9054 - loss: 0.2767 - val_accuracy: 0.8594 - val_loss: 0.4645\n", "Epoch 43/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.9067 - loss: 0.2722 - val_accuracy: 0.8628 - val_loss: 0.4632\n", "Epoch 44/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 113ms/step - accuracy: 0.9073 - loss: 0.2697 - val_accuracy: 0.8656 - val_loss: 0.4409\n", "Epoch 45/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9101 - loss: 0.2590 - val_accuracy: 0.8668 - val_loss: 0.4596\n", "Epoch 46/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9082 - loss: 0.2638 - val_accuracy: 0.8522 - val_loss: 0.4907\n", "Epoch 47/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 113ms/step - accuracy: 0.9149 - loss: 0.2519 - val_accuracy: 0.8600 - val_loss: 0.4572\n", "Epoch 48/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 113ms/step - accuracy: 0.9154 - loss: 0.2475 - val_accuracy: 0.8542 - val_loss: 0.4735\n", "Epoch 49/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 116ms/step - accuracy: 0.9126 - loss: 0.2498 - val_accuracy: 0.8628 - val_loss: 0.4717\n", "Epoch 50/50\n", "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.9165 - loss: 0.2455 - val_accuracy: 0.8586 - val_loss: 0.4725\n" ] }, { "data": { "text/plain": [ "