From d5a3909506181d0b70499e4a55eddb7a0b0ca23c Mon Sep 17 00:00:00 2001 From: KonovalovaAlA Date: Wed, 15 Oct 2025 22:18:29 +0300 Subject: [PATCH] =?UTF-8?q?=D0=94=D0=BE=D0=B4=D0=B5=D0=BB=D0=B0=D0=BD=20?= =?UTF-8?q?=D0=BE=D1=82=D1=87=D0=B5=D1=82=20=D0=B8=20=D0=B4=D0=BE=D0=B1?= =?UTF-8?q?=D0=B0=D0=B2=D0=BB=D0=B5=D0=BD=20=D1=84=D0=B0=D0=B9=D0=BB=20.ip?= =?UTF-8?q?ynb?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW1/notebook.ipynb | 1 + labworks/LW1/report.md | 35 +++++++++++++++++++++++++++++++++-- labworks/LW1/result_0_90.png | Bin 50585 -> 32250 bytes labworks/LW1/result_1_90.png | Bin 46220 -> 28063 bytes labworks/LW1/test_12_3.png | Bin 0 -> 9310 bytes 5 files changed, 34 insertions(+), 2 deletions(-) create mode 100644 labworks/LW1/notebook.ipynb create mode 100644 labworks/LW1/test_12_3.png diff --git a/labworks/LW1/notebook.ipynb b/labworks/LW1/notebook.ipynb new file mode 100644 index 0000000..55c2875 --- /dev/null +++ b/labworks/LW1/notebook.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"mount_file_id":"1rkqfarLj6ifkuN5TNTLXkRcXDnAympL7","authorship_tag":"ABX9TyMraAHqc0NUPlIIBo5l7p+l"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":2,"metadata":{"id":"Ii8A-dUr0VQw","executionInfo":{"status":"ok","timestamp":1760550796144,"user_tz":-180,"elapsed":6,"user":{"displayName":"Любаша","userId":"06263774933254808696"}}},"outputs":[],"source":["import os\n","os.chdir('/content/drive/MyDrive/Colab Notebooks')"]},{"cell_type":"code","source":["# импорт модулей\n","from tensorflow import keras\n","import matplotlib.pyplot as plt\n","import numpy as np\n","import sklearn\n","\n","from keras.utils import to_categorical\n","#from keras.utils import np_utils\n","from keras.models import Sequential\n","from keras.layers import Dense"],"metadata":{"id":"PdxPpxlY1D08","executionInfo":{"status":"ok","timestamp":1760550796157,"user_tz":-180,"elapsed":2,"user":{"displayName":"Любаша","userId":"06263774933254808696"}}},"execution_count":3,"outputs":[]},{"cell_type":"code","source":["# загрузка датасета\n","from keras.datasets import mnist\n","(X_train, y_train), (X_test, y_test) = mnist.load_data()"],"metadata":{"id":"jAmcpO471HqB","executionInfo":{"status":"ok","timestamp":1760550801689,"user_tz":-180,"elapsed":422,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"b75ff0ce-8cf1-4049-be9a-246deb30a1a8"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n","\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"]}]},{"cell_type":"code","source":["# создание своего разбиения датасета\n","from sklearn.model_selection import train_test_split\n","# объединяем в один набор\n","X = np.concatenate((X_train, X_test))\n","y = np.concatenate((y_train, y_test))\n","# разбиваем по вариантам\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 60000,\n"," random_state = 31)"],"metadata":{"id":"5d2Y5C7X1LgL","executionInfo":{"status":"ok","timestamp":1760550884763,"user_tz":-180,"elapsed":453,"user":{"displayName":"Любаша","userId":"06263774933254808696"}}},"execution_count":10,"outputs":[]},{"cell_type":"code","source":["# вывод размерностей\n","print('Shape of X train:', X_train.shape)\n","print('Shape of y train:', y_train.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"IiPnue1p1fbG","executionInfo":{"status":"ok","timestamp":1760550886724,"user_tz":-180,"elapsed":7,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"90656913-e487-4fee-8dff-58a92b856f52"},"execution_count":11,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X train: (60000, 28, 28)\n","Shape of y train: (60000,)\n"]}]},{"cell_type":"code","source":["for i in range(4):\n"," plt.imshow(X_train[i],cmap=plt.get_cmap('gray'))\n"," plt.show()\n","\n"," print(y_train[i])"],"metadata":{"id":"BTm5iP601naa","colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"status":"ok","timestamp":1760550888642,"user_tz":-180,"elapsed":423,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"09236c70-a822-4668-9e86-5b517a862773"},"execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG+hJREFUeJzt3X1slfX9//HXKTcH1PbUWtrTSoGCIptInSi1QSqOhtItBpBs4MwCi5GAxQzrzVIzRN2SKlvUuaBuZoOZiTdsAoEtLFhsmbPFUWWE3TSU1FEDLRPlnFKgIP38/uDn+XqkgNfhnL7PKc9H8kl6rut6n+vdy8u+uM519VOfc84JAIA+lmbdAADg4kQAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwMRA6wa+rKenR/v371d6erp8Pp91OwAAj5xz6uzsVH5+vtLSzn6dk3QBtH//fhUUFFi3AQC4QG1tbRo+fPhZ1yfdR3Dp6enWLQAA4uB8P88TFkArV67UqFGjNGTIEBUXF+u99977SnV87AYA/cP5fp4nJIBef/11VVVVafny5Xr//fdVVFSk8vJyHTx4MBG7AwCkIpcAkyZNcpWVlZHXp06dcvn5+a6mpua8taFQyEliMBgMRoqPUCh0zp/3cb8COnHihJqamlRWVhZZlpaWprKyMjU0NJyxfXd3t8LhcNQAAPR/cQ+gjz/+WKdOnVJubm7U8tzcXLW3t5+xfU1NjQKBQGTwBBwAXBzMn4Krrq5WKBSKjLa2NuuWAAB9IO6/B5Sdna0BAwaoo6MjanlHR4eCweAZ2/v9fvn9/ni3AQBIcnG/Aho8eLAmTpyo2trayLKenh7V1taqpKQk3rsDAKSohMyEUFVVpfnz5+vGG2/UpEmT9Oyzz6qrq0s/+MEPErE7AEAKSkgAzZ07V//73//06KOPqr29Xddff702b958xoMJAICLl88556yb+KJwOKxAIGDdBgDgAoVCIWVkZJx1vflTcACAixMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwMtG4ASHVTp071XHPZZZf1yX4eeOABzzWStGnTJs81sXxP7777rueal156yXPNhx9+6LkGiccVEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABNMRgp8wc033+y5ZuPGjZ5rLrnkEs81Pp/Pc01PT4/nGkmaPHmy5xq/3++5prS01HPNZ5995rlm+fLlnmuQeFwBAQBMEEAAABNxD6DHHntMPp8vaowbNy7euwEApLiE3AO69tpr9dZbb/3fTgZyqwkAEC0hyTBw4EAFg8FEvDUAoJ9IyD2gPXv2KD8/X6NHj9Zdd92lffv2nXXb7u5uhcPhqAEA6P/iHkDFxcVavXq1Nm/erBdeeEGtra2aMmWKOjs7e92+pqZGgUAgMgoKCuLdEgAgCcU9gCoqKvSd73xHEyZMUHl5uf785z/r8OHDeuONN3rdvrq6WqFQKDLa2tri3RIAIAkl/OmAzMxMjR07Vi0tLb2u9/v9Mf0CGwAgtSX894COHDmivXv3Ki8vL9G7AgCkkLgH0IMPPqj6+np9+OGHevfddzV79mwNGDBAd955Z7x3BQBIYXH/CO6jjz7SnXfeqUOHDmnYsGG65ZZb1NjYqGHDhsV7VwCAFBb3AHrttdfi/ZZAn4llEs5YJhaNhXPOc83zzz8f075+8YtfeK658cYbPdc8/vjjnms+/PBDzzVITswFBwAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwITPxTLDYQKFw2EFAgHrNpDiVqxYEVPdokWLPNdceumlnmtefPFFzzVvvfWW55p169Z5rgHiJRQKKSMj46zruQICAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJhgNmwkvRtvvNFzTSwzR0tSenq655r9+/d7rhk7dqznmmPHjnmuidXNN9/suWbgwIGea9555x3PNUgdzIYNAEhKBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATHifPRDoY7FMjBnLpKKxmj17tueaWCYWnTVrlueaqqoqzzWS9Mc//tFzzSuvvBLTvnDx4goIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACSYjRdL77ne/a93COQ0ZMsRzzTPPPOO5prKy0nPNvffe67lGkt58803PNZ988klM+8LFiysgAIAJAggAYMJzAG3btk2333678vPz5fP5tH79+qj1zjk9+uijysvL09ChQ1VWVqY9e/bEq18AQD/hOYC6urpUVFSklStX9rp+xYoVeu655/Tiiy9q+/btuvTSS1VeXq7jx49fcLMAgP7D80MIFRUVqqio6HWdc07PPvusfvzjH2vmzJmSpJdfflm5ublav3695s2bd2HdAgD6jbjeA2ptbVV7e7vKysoiywKBgIqLi9XQ0NBrTXd3t8LhcNQAAPR/cQ2g9vZ2SVJubm7U8tzc3Mi6L6upqVEgEIiMgoKCeLYEAEhS5k/BVVdXKxQKRUZbW5t1SwCAPhDXAAoGg5Kkjo6OqOUdHR2RdV/m9/uVkZERNQAA/V9cA6iwsFDBYFC1tbWRZeFwWNu3b1dJSUk8dwUASHGen4I7cuSIWlpaIq9bW1u1c+dOZWVlacSIEVq6dKl++tOf6uqrr1ZhYaGWLVum/Px8zZo1K559AwBSnOcA2rFjh2677bbI66qqKknS/PnztXr1aj388MPq6urSwoULdfjwYd1yyy3avHlzTPNlAQD6L59zzlk38UXhcFiBQMC6DSSRbdu2ea6ZPHlyAjrp3aeffuq55vLLL/dc8+6773qumTJliucaIF5CodA57+ubPwUHALg4EUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMeP5zDEBfe+655zzX9OVs2LHMbB3L97Rs2TLPNUAy4woIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACSYjRdLr6uqybiHunnjiCc81R44cSUAngB2ugAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJhgMlIkvUceecRzjc/nS0An8TN16lTPNVu2bPFcwwSmSGZcAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDBZKToU0VFRZ5rRo0a5bnm2LFjnmsk6cknn/Rcs3DhQs81f/jDHzzXfPbZZ55r5syZ47lGkrZu3eq55ujRozHtCxcvroAAACYIIACACc8BtG3bNt1+++3Kz8+Xz+fT+vXro9YvWLBAPp8vasyYMSNe/QIA+gnPAdTV1aWioiKtXLnyrNvMmDFDBw4ciIxXX331gpoEAPQ/nh9CqKioUEVFxTm38fv9CgaDMTcFAOj/EnIPqK6uTjk5Obrmmmu0ePFiHTp06Kzbdnd3KxwORw0AQP8X9wCaMWOGXn75ZdXW1uqpp55SfX29KioqdOrUqV63r6mpUSAQiIyCgoJ4twQASEJx/z2gefPmRb6+7rrrNGHCBI0ZM0Z1dXWaNm3aGdtXV1erqqoq8jocDhNCAHARSPhj2KNHj1Z2drZaWlp6Xe/3+5WRkRE1AAD9X8ID6KOPPtKhQ4eUl5eX6F0BAFKI54/gjhw5EnU109raqp07dyorK0tZWVl6/PHHNWfOHAWDQe3du1cPP/ywrrrqKpWXl8e1cQBAavMcQDt27NBtt90Wef35/Zv58+frhRde0K5du/S73/1Ohw8fVn5+vqZPn66f/OQn8vv98esaAJDyfM45Z93EF4XDYQUCAes28BXE8o+Kv/zlL55rpkyZ4rnm17/+tecaSVq8eLHnmq9//euea5YuXeq5JpaJRTMzMz3XSNLGjRs913z/+9/3XNPZ2em5BqkjFAqd874+c8EBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwwGzZidv3113uuaWpqin8jvZg4cWJMdTt37oxvI3F0ww03eK556aWXYtrXiBEjPNf89a9/9Vzz8MMPe645219XRvJhNmwAQFIigAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgYqB1A0hdR44c8Vzz6aefeq65/PLLPdcUFBR4rpGSezLS999/33NNrJOyPvbYY55rli1b5rmmtLTUc82tt97queaf//yn5xokHldAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATDAZKWLW0tLiuea9997zXFNeXu655sEHH/RcI0lbt271XNPV1RXTvpLZU0895blmypQpnmumTp3quSaWyWmRnLgCAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILJSNGnfvvb33quiWUy0ltuucVzjSQ1NjZ6rnn66ac91/z973/3XLN7927PNUOHDvVcI0kvvPCC55pvfOMbMe0LFy+ugAAAJgggAIAJTwFUU1Ojm266Senp6crJydGsWbPU3Nwctc3x48dVWVmpK664QpdddpnmzJmjjo6OuDYNAEh9ngKovr5elZWVamxs1JYtW3Ty5ElNnz496g9y3X///dq4caPWrl2r+vp67d+/X3fccUfcGwcApDZPDyFs3rw56vXq1auVk5OjpqYmlZaWKhQK6Te/+Y3WrFmjb37zm5KkVatW6Wtf+5oaGxt18803x69zAEBKu6B7QKFQSJKUlZUlSWpqatLJkydVVlYW2WbcuHEaMWKEGhoaen2P7u5uhcPhqAEA6P9iDqCenh4tXbpUkydP1vjx4yVJ7e3tGjx4sDIzM6O2zc3NVXt7e6/vU1NTo0AgEBkFBQWxtgQASCExB1BlZaV2796t11577YIaqK6uVigUioy2trYLej8AQGqI6RdRlyxZok2bNmnbtm0aPnx4ZHkwGNSJEyd0+PDhqKugjo4OBYPBXt/L7/fL7/fH0gYAIIV5ugJyzmnJkiVat26dtm7dqsLCwqj1EydO1KBBg1RbWxtZ1tzcrH379qmkpCQ+HQMA+gVPV0CVlZVas2aNNmzYoPT09Mh9nUAgoKFDhyoQCOjuu+9WVVWVsrKylJGRofvuu08lJSU8AQcAiOIpgD6fH2rq1KlRy1etWqUFCxZIkp555hmlpaVpzpw56u7uVnl5uZ5//vm4NAsA6D98zjln3cQXhcNhBQIB6zaQILFMjllfX++5ZuLEiZ5r+tKnn37aJzVpabE9ZzRq1KiY6ryKZZaU0tJSzzUtLS2ea3DhQqGQMjIyzrqeueAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACaYDRtJLysry3PNz3/+85j2NX/+/Jjq+oLP5/Nc05f/e+/evdtzzW233ea55pNPPvFcAxvMhg0ASEoEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMMBkp+qWBAwfGVDdp0iTPNRUVFZ5rJk+e3Cc1K1as8FwjSX/605881/zjH//wXHPs2DHPNUgdTEYKAEhKBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATDAZKQAgIZiMFACQlAggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYMJTANXU1Oimm25Senq6cnJyNGvWLDU3N0dtM3XqVPl8vqixaNGiuDYNAEh9ngKovr5elZWVamxs1JYtW3Ty5ElNnz5dXV1dUdvdc889OnDgQGSsWLEirk0DAFLfQC8bb968Oer16tWrlZOTo6amJpWWlkaWX3LJJQoGg/HpEADQL13QPaBQKCRJysrKilr+yiuvKDs7W+PHj1d1dbWOHj161vfo7u5WOByOGgCAi4CL0alTp9y3v/1tN3ny5Kjlv/rVr9zmzZvdrl273O9//3t35ZVXutmzZ5/1fZYvX+4kMRgMBqOfjVAodM4ciTmAFi1a5EaOHOna2trOuV1tba2T5FpaWnpdf/z4cRcKhSKjra3N/KAxGAwG48LH+QLI0z2gzy1ZskSbNm3Stm3bNHz48HNuW1xcLElqaWnRmDFjzljv9/vl9/tjaQMAkMI8BZBzTvfdd5/WrVunuro6FRYWnrdm586dkqS8vLyYGgQA9E+eAqiyslJr1qzRhg0blJ6ervb2dklSIBDQ0KFDtXfvXq1Zs0bf+ta3dMUVV2jXrl26//77VVpaqgkTJiTkGwAApCgv9310ls/5Vq1a5Zxzbt++fa60tNRlZWU5v9/vrrrqKvfQQw+d93PALwqFQuafWzIYDAbjwsf5fvb7/n+wJI1wOKxAIGDdBgDgAoVCIWVkZJx1PXPBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMJF0AOeesWwAAxMH5fp4nXQB1dnZatwAAiIPz/Tz3uSS75Ojp6dH+/fuVnp4un88XtS4cDqugoEBtbW3KyMgw6tAex+E0jsNpHIfTOA6nJcNxcM6ps7NT+fn5Sks7+3XOwD7s6StJS0vT8OHDz7lNRkbGRX2CfY7jcBrH4TSOw2kch9Osj0MgEDjvNkn3ERwA4OJAAAEATKRUAPn9fi1fvlx+v9+6FVMch9M4DqdxHE7jOJyWSsch6R5CAABcHFLqCggA0H8QQAAAEwQQAMAEAQQAMJEyAbRy5UqNGjVKQ4YMUXFxsd577z3rlvrcY489Jp/PFzXGjRtn3VbCbdu2Tbfffrvy8/Pl8/m0fv36qPXOOT366KPKy8vT0KFDVVZWpj179tg0m0DnOw4LFiw44/yYMWOGTbMJUlNTo5tuuknp6enKycnRrFmz1NzcHLXN8ePHVVlZqSuuuEKXXXaZ5syZo46ODqOOE+OrHIepU6eecT4sWrTIqOPepUQAvf7666qqqtLy5cv1/vvvq6ioSOXl5Tp48KB1a33u2muv1YEDByLjnXfesW4p4bq6ulRUVKSVK1f2un7FihV67rnn9OKLL2r79u269NJLVV5eruPHj/dxp4l1vuMgSTNmzIg6P1599dU+7DDx6uvrVVlZqcbGRm3ZskUnT57U9OnT1dXVFdnm/vvv18aNG7V27VrV19dr//79uuOOOwy7jr+vchwk6Z577ok6H1asWGHU8Vm4FDBp0iRXWVkZeX3q1CmXn5/vampqDLvqe8uXL3dFRUXWbZiS5NatWxd53dPT44LBoPvZz34WWXb48GHn9/vdq6++atBh3/jycXDOufnz57uZM2ea9GPl4MGDTpKrr693zp3+bz9o0CC3du3ayDb//ve/nSTX0NBg1WbCffk4OOfcrbfe6n74wx/aNfUVJP0V0IkTJ9TU1KSysrLIsrS0NJWVlamhocGwMxt79uxRfn6+Ro8erbvuukv79u2zbslUa2ur2tvbo86PQCCg4uLii/L8qKurU05Ojq655hotXrxYhw4dsm4poUKhkCQpKytLktTU1KSTJ09GnQ/jxo3TiBEj+vX58OXj8LlXXnlF2dnZGj9+vKqrq3X06FGL9s4q6SYj/bKPP/5Yp06dUm5ubtTy3Nxc/ec//zHqykZxcbFWr16ta665RgcOHNDjjz+uKVOmaPfu3UpPT7duz0R7e7sk9Xp+fL7uYjFjxgzdcccdKiws1N69e/XII4+ooqJCDQ0NGjBggHV7cdfT06OlS5dq8uTJGj9+vKTT58PgwYOVmZkZtW1/Ph96Ow6S9L3vfU8jR45Ufn6+du3apR/96Edqbm7Wm2++adhttKQPIPyfioqKyNcTJkxQcXGxRo4cqTfeeEN33323YWdIBvPmzYt8fd1112nChAkaM2aM6urqNG3aNMPOEqOyslK7d+++KO6DnsvZjsPChQsjX1933XXKy8vTtGnTtHfvXo0ZM6av2+xV0n8El52drQEDBpzxFEtHR4eCwaBRV8khMzNTY8eOVUtLi3UrZj4/Bzg/zjR69GhlZ2f3y/NjyZIl2rRpk95+++2oP98SDAZ14sQJHT58OGr7/no+nO049Ka4uFiSkup8SPoAGjx4sCZOnKja2trIsp6eHtXW1qqkpMSwM3tHjhzR3r17lZeXZ92KmcLCQgWDwajzIxwOa/v27Rf9+fHRRx/p0KFD/er8cM5pyZIlWrdunbZu3arCwsKo9RMnTtSgQYOizofm5mbt27evX50P5zsOvdm5c6ckJdf5YP0UxFfx2muvOb/f71avXu3+9a9/uYULF7rMzEzX3t5u3VqfeuCBB1xdXZ1rbW11f/vb31xZWZnLzs52Bw8etG4toTo7O90HH3zgPvjgAyfJPf300+6DDz5w//3vf51zzj355JMuMzPTbdiwwe3atcvNnDnTFRYWumPHjhl3Hl/nOg6dnZ3uwQcfdA0NDa61tdW99dZb7oYbbnBXX321O378uHXrcbN48WIXCARcXV2dO3DgQGQcPXo0ss2iRYvciBEj3NatW92OHTtcSUmJKykpMew6/s53HFpaWtwTTzzhduzY4VpbW92GDRvc6NGjXWlpqXHn0VIigJxz7pe//KUbMWKEGzx4sJs0aZJrbGy0bqnPzZ071+Xl5bnBgwe7K6+80s2dO9e1tLRYt5Vwb7/9tpN0xpg/f75z7vSj2MuWLXO5ubnO7/e7adOmuebmZtumE+Bcx+Ho0aNu+vTpbtiwYW7QoEFu5MiR7p577ul3/0jr7fuX5FatWhXZ5tixY+7ee+91l19+ubvkkkvc7Nmz3YEDB+yaToDzHYd9+/a50tJSl5WV5fx+v7vqqqvcQw895EKhkG3jX8KfYwAAmEj6e0AAgP6JAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAif8Hd/XpOEFwMAUAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["8\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG29JREFUeJzt3XtwVPX9//HXcltBkqUxJpuViwEUOtzaUkgzKNWSIcTWkUtn8PIHdiwUDLRCFYa2gpdOU3GGOjoU+4cDtZVrFai2MgPRhKEGkAilTNuUYGrCQJLClN0QIDDk8/uDn/vtQgDPspv3Jnk+Zj4z7DnnnfPOx0Nent3DJz7nnBMAAO2sm3UDAICuiQACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiR7WDVyptbVVx48fV1pamnw+n3U7AACPnHNqampSKBRSt27Xvs9JuQA6fvy4BgwYYN0GAOAm1dXVqX///tfcn3JvwaWlpVm3AABIgBv9PE9aAK1atUp33nmnbrnlFuXl5Wnfvn1fqI633QCgc7jRz/OkBNDGjRu1aNEiLV++XJ988onGjBmjwsJCNTY2JuN0AICOyCXB+PHjXXFxcfT1pUuXXCgUciUlJTesDYfDThKDwWAwOvgIh8PX/Xmf8DugCxcuqLKyUgUFBdFt3bp1U0FBgSoqKq46vqWlRZFIJGYAADq/hAfQyZMndenSJWVnZ8dsz87OVn19/VXHl5SUKBAIRAdPwAFA12D+FNzSpUsVDoejo66uzrolAEA7SPi/A8rMzFT37t3V0NAQs72hoUHBYPCq4/1+v/x+f6LbAACkuITfAfXq1Utjx45VaWlpdFtra6tKS0uVn5+f6NMBADqopKyEsGjRIs2aNUtf//rXNX78eL3yyitqbm7W9773vWScDgDQASUlgGbOnKn//Oc/WrZsmerr6/WVr3xF27dvv+rBBABA1+VzzjnrJv5XJBJRIBCwbgMAcJPC4bDS09Ovud/8KTgAQNdEAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwkPoOeee04+ny9mDB8+PNGnAQB0cD2S8UVHjBihnTt3/t9JeiTlNACADiwpydCjRw8Fg8FkfGkAQCeRlM+Ajhw5olAopMGDB+uxxx5TbW3tNY9taWlRJBKJGQCAzi/hAZSXl6e1a9dq+/btWr16tWpqanTvvfeqqampzeNLSkoUCASiY8CAAYluCQCQgnzOOZfME5w+fVqDBg3SypUr9cQTT1y1v6WlRS0tLdHXkUiEEAKATiAcDis9Pf2a+5P+dEC/fv109913q7q6us39fr9ffr8/2W0AAFJM0v8d0JkzZ3T06FHl5OQk+1QAgA4k4QH09NNPq7y8XP/+97/10Ucfadq0aerevbseeeSRRJ8KANCBJfwtuGPHjumRRx7RqVOndPvtt+uee+7Rnj17dPvttyf6VACADizpDyF4FYlEFAgErNtAFzVixAjPNUOHDk1CJ1ebPn2655rrfQB8PeFw2HPNli1bPNccPHjQc81nn33muQY2bvQQAmvBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFipGhXffr08VyzcOFCzzXTpk3zXCNJw4YN81wTz/fk8/k816TYX9WE+PTTTz3X/PCHP/Rc8/7773uuwc1jMVIAQEoigAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJhgNWy0q1/84heea5YsWZKETmw1NjZ6rvH7/Z5rUv3vUjyrgh87dsxzzaOPPuq5RpJ2794dVx0uYzVsAEBKIoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSNGu4rncUuwSvcrbb7/tueanP/2p55p//etfnmva03e+8x3PNe+++67nmniuh23btnmukaRp06bFVYfLWIwUAJCSCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmOhh3QC6lu9///uea5YsWeK55uOPP/ZcI0nvvPOO55o///nPnmvOnTvnuSbV7dy503NNey1Om+oL2nZV3AEBAEwQQAAAE54DaNeuXXrwwQcVCoXk8/m0devWmP3OOS1btkw5OTnq3bu3CgoKdOTIkUT1CwDoJDwHUHNzs8aMGaNVq1a1uX/FihV69dVX9frrr2vv3r269dZbVVhYqPPnz990swCAzsPzQwhFRUUqKipqc59zTq+88op+9rOf6aGHHpIkvfnmm8rOztbWrVv18MMP31y3AIBOI6GfAdXU1Ki+vl4FBQXRbYFAQHl5eaqoqGizpqWlRZFIJGYAADq/hAZQfX29JCk7Oztme3Z2dnTflUpKShQIBKJjwIABiWwJAJCizJ+CW7p0qcLhcHTU1dVZtwQAaAcJDaBgMChJamhoiNne0NAQ3Xclv9+v9PT0mAEA6PwSGkC5ubkKBoMqLS2NbotEItq7d6/y8/MTeSoAQAfn+Sm4M2fOqLq6Ovq6pqZGBw8eVEZGhgYOHKinnnpKP//5z3XXXXcpNzdXzz77rEKhkKZOnZrIvgEAHZznANq/f7/uv//+6OtFixZJkmbNmqW1a9dq8eLFam5u1pw5c3T69Gndc8892r59u2655ZbEdQ0A6PB8LsVW6YtEIgoEAtZtAF1a//79Pdds27bNc81Xv/pVzzXhcNhzTWFhoecaSdq3b19cdbgsHA5f93N986fgAABdEwEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADAhOdfxwCg8+vbt6/nmpycnCR0crXdu3d7rmFV69TEHRAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATLEYK4CqbN2/2XJOdnZ2ETq62devWdjkPko87IACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZYjDSF9ezZ03PNd7/7Xc81kyZN8lwTrzVr1niu+eSTTzzXnDt3znNNqovneli9enVc5xoxYkRcdV699NJLnmveeOONJHQCC9wBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMOFzzjnrJv5XJBJRIBCwbiMlvPbaa55rnnzyySR0kjg+n89zzaeffuq55v333/dcI0l1dXWea95++23PNY2NjZ5r4lm48wc/+IHnmnh9/PHHnmsKCws914TDYc81sBEOh5Wenn7N/dwBAQBMEEAAABOeA2jXrl168MEHFQqF5PP5tHXr1pj9jz/+uHw+X8yYMmVKovoFAHQSngOoublZY8aM0apVq655zJQpU3TixInoWL9+/U01CQDofDz/RtSioiIVFRVd9xi/369gMBh3UwCAzi8pnwGVlZUpKytLw4YN07x583Tq1KlrHtvS0qJIJBIzAACdX8IDaMqUKXrzzTdVWlqql156SeXl5SoqKtKlS5faPL6kpESBQCA6BgwYkOiWAAApyPNbcDfy8MMPR/88atQojR49WkOGDFFZWZkmTZp01fFLly7VokWLoq8jkQghBABdQNIfwx48eLAyMzNVXV3d5n6/36/09PSYAQDo/JIeQMeOHdOpU6eUk5OT7FMBADoQz2/BnTlzJuZupqamRgcPHlRGRoYyMjL0/PPPa8aMGQoGgzp69KgWL16soUOHxrXkBgCg8/IcQPv379f9998fff355zezZs3S6tWrdejQIf32t7/V6dOnFQqFNHnyZL344ovy+/2J6xoA0OGxGGk7iecOcNOmTZ5r+vbt67lmw4YNnmskqampyXNNPPMwcOBAzzXtqba21nNNPIuypvrDObt37/Zc89///tdzzZ/+9CfPNQ888IDnGkmqrKz0XBPPf6f2XDS2PbEYKQAgJRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATLAadjv561//6rlm5MiRnmtefPFFzzUvvPCC5xpJam1t9VwTz2rdL730kueauXPneq5pT/Gshp1if1UTItXnobGx0XPN7373O881ixcv9lzTEbAaNgAgJRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDRw7qBruKzzz7zXBPPYqTBYNBzTTyLisbrzJkznmv27dvnuSbVFyONx6FDhzzX7N+/P65zjRs3znPNqFGj4jpXKlu5cqXnmpdffjkJnXRO3AEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwwWKk7aSxsdFzjc/n81wzZ86cdqmJVzzfk3MuCZ20rbm52XPNpk2bPNd89NFHnmv+8Ic/eK4Jh8Oea4D2wh0QAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEyxG2k62b9/uuaawsNBzTSgU8lzTnk6ePOm5Jp7FSHfu3Om5RpI2btzoueaPf/xjXOcCujrugAAAJgggAIAJTwFUUlKicePGKS0tTVlZWZo6daqqqqpijjl//ryKi4t12223qW/fvpoxY4YaGhoS2jQAoOPzFEDl5eUqLi7Wnj17tGPHDl28eFGTJ0+O+SVeCxcu1LvvvqvNmzervLxcx48f1/Tp0xPeOACgY/P0EMKVH6SvXbtWWVlZqqys1MSJExUOh/XGG29o3bp1+ta3viVJWrNmjb785S9rz549+sY3vpG4zgEAHdpNfQb0+a/7zcjIkCRVVlbq4sWLKigoiB4zfPhwDRw4UBUVFW1+jZaWFkUikZgBAOj84g6g1tZWPfXUU5owYYJGjhwpSaqvr1evXr3Ur1+/mGOzs7NVX1/f5tcpKSlRIBCIjgEDBsTbEgCgA4k7gIqLi3X48GFt2LDhphpYunSpwuFwdNTV1d3U1wMAdAxx/UPU+fPn67333tOuXbvUv3//6PZgMKgLFy7o9OnTMXdBDQ0NCgaDbX4tv98vv98fTxsAgA7M0x2Qc07z58/Xli1b9MEHHyg3Nzdm/9ixY9WzZ0+VlpZGt1VVVam2tlb5+fmJ6RgA0Cl4ugMqLi7WunXrtG3bNqWlpUU/1wkEAurdu7cCgYCeeOIJLVq0SBkZGUpPT9eCBQuUn5/PE3AAgBieAmj16tWSpPvuuy9m+5o1a/T4449Lkn71q1+pW7dumjFjhlpaWlRYWKhf//rXCWkWANB5+Fw8Kz0mUSQSUSAQsG4jJQwdOtRzzYIFCzzXNDY2eq6RpL/97W+ea1i4E+g6wuGw0tPTr7mfteAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZYDRsAkBSshg0ASEkEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATngKopKRE48aNU1pamrKysjR16lRVVVXFHHPffffJ5/PFjLlz5ya0aQBAx+cpgMrLy1VcXKw9e/Zox44dunjxoiZPnqzm5uaY42bPnq0TJ05Ex4oVKxLaNACg4+vh5eDt27fHvF67dq2ysrJUWVmpiRMnRrf36dNHwWAwMR0CADqlm/oMKBwOS5IyMjJitr/11lvKzMzUyJEjtXTpUp09e/aaX6OlpUWRSCRmAAC6ABenS5cuuW9/+9tuwoQJMdt/85vfuO3bt7tDhw653//+9+6OO+5w06ZNu+bXWb58uZPEYDAYjE42wuHwdXMk7gCaO3euGzRokKurq7vucaWlpU6Sq66ubnP/+fPnXTgcjo66ujrzSWMwGAzGzY8bBZCnz4A+N3/+fL333nvatWuX+vfvf91j8/LyJEnV1dUaMmTIVfv9fr/8fn88bQAAOjBPAeSc04IFC7RlyxaVlZUpNzf3hjUHDx6UJOXk5MTVIACgc/IUQMXFxVq3bp22bdumtLQ01dfXS5ICgYB69+6to0ePat26dXrggQd022236dChQ1q4cKEmTpyo0aNHJ+UbAAB0UF4+99E13udbs2aNc8652tpaN3HiRJeRkeH8fr8bOnSoe+aZZ274PuD/CofD5u9bMhgMBuPmx41+9vv+f7CkjEgkokAgYN0GAOAmhcNhpaenX3M/a8EBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEykXAA556xbAAAkwI1+nqdcADU1NVm3AABIgBv9PPe5FLvlaG1t1fHjx5WWliafzxezLxKJaMCAAaqrq1N6erpRh/aYh8uYh8uYh8uYh8tSYR6cc2pqalIoFFK3bte+z+nRjj19Id26dVP//v2ve0x6enqXvsA+xzxcxjxcxjxcxjxcZj0PgUDghsek3FtwAICugQACAJjoUAHk9/u1fPly+f1+61ZMMQ+XMQ+XMQ+XMQ+XdaR5SLmHEAAAXUOHugMCAHQeBBAAwAQBBAAwQQABAEx0mABatWqV7rzzTt1yyy3Ky8vTvn37rFtqd88995x8Pl/MGD58uHVbSbdr1y49+OCDCoVC8vl82rp1a8x+55yWLVumnJwc9e7dWwUFBTpy5IhNs0l0o3l4/PHHr7o+pkyZYtNskpSUlGjcuHFKS0tTVlaWpk6dqqqqqphjzp8/r+LiYt12223q27evZsyYoYaGBqOOk+OLzMN999131fUwd+5co47b1iECaOPGjVq0aJGWL1+uTz75RGPGjFFhYaEaGxutW2t3I0aM0IkTJ6Jj9+7d1i0lXXNzs8aMGaNVq1a1uX/FihV69dVX9frrr2vv3r269dZbVVhYqPPnz7dzp8l1o3mQpClTpsRcH+vXr2/HDpOvvLxcxcXF2rNnj3bs2KGLFy9q8uTJam5ujh6zcOFCvfvuu9q8ebPKy8t1/PhxTZ8+3bDrxPsi8yBJs2fPjrkeVqxYYdTxNbgOYPz48a64uDj6+tKlSy4UCrmSkhLDrtrf8uXL3ZgxY6zbMCXJbdmyJfq6tbXVBYNB9/LLL0e3nT592vn9frd+/XqDDtvHlfPgnHOzZs1yDz30kEk/VhobG50kV15e7py7/N++Z8+ebvPmzdFj/vGPfzhJrqKiwqrNpLtyHpxz7pvf/Kb70Y9+ZNfUF5Dyd0AXLlxQZWWlCgoKotu6deumgoICVVRUGHZm48iRIwqFQho8eLAee+wx1dbWWrdkqqamRvX19THXRyAQUF5eXpe8PsrKypSVlaVhw4Zp3rx5OnXqlHVLSRUOhyVJGRkZkqTKykpdvHgx5noYPny4Bg4c2Kmvhyvn4XNvvfWWMjMzNXLkSC1dulRnz561aO+aUm4x0iudPHlSly5dUnZ2dsz27Oxs/fOf/zTqykZeXp7Wrl2rYcOG6cSJE3r++ed177336vDhw0pLS7Nuz0R9fb0ktXl9fL6vq5gyZYqmT5+u3NxcHT16VD/5yU9UVFSkiooKde/e3bq9hGttbdVTTz2lCRMmaOTIkZIuXw+9evVSv379Yo7tzNdDW/MgSY8++qgGDRqkUCikQ4cOacmSJaqqqtI777xj2G2slA8g/J+ioqLon0ePHq28vDwNGjRImzZt0hNPPGHYGVLBww8/HP3zqFGjNHr0aA0ZMkRlZWWaNGmSYWfJUVxcrMOHD3eJz0Gv51rzMGfOnOifR40apZycHE2aNElHjx7VkCFD2rvNNqX8W3CZmZnq3r37VU+xNDQ0KBgMGnWVGvr166e7775b1dXV1q2Y+fwa4Pq42uDBg5WZmdkpr4/58+frvffe04cffhjz61uCwaAuXLig06dPxxzfWa+Ha81DW/Ly8iQppa6HlA+gXr16aezYsSotLY1ua21tVWlpqfLz8w07s3fmzBkdPXpUOTk51q2Yyc3NVTAYjLk+IpGI9u7d2+Wvj2PHjunUqVOd6vpwzmn+/PnasmWLPvjgA+Xm5sbsHzt2rHr27BlzPVRVVam2trZTXQ83moe2HDx4UJJS63qwfgrii9iwYYPz+/1u7dq17u9//7ubM2eO69evn6uvr7durV39+Mc/dmVlZa6mpsb95S9/cQUFBS4zM9M1NjZat5ZUTU1N7sCBA+7AgQNOklu5cqU7cOCA++yzz5xzzv3yl790/fr1c9u2bXOHDh1yDz30kMvNzXXnzp0z7jyxrjcPTU1N7umnn3YVFRWupqbG7dy5033ta19zd911lzt//rx16wkzb948FwgEXFlZmTtx4kR0nD17NnrM3Llz3cCBA90HH3zg9u/f7/Lz811+fr5h14l3o3morq52L7zwgtu/f7+rqalx27Ztc4MHD3YTJ0407jxWhwgg55x77bXX3MCBA12vXr3c+PHj3Z49e6xbanczZ850OTk5rlevXu6OO+5wM2fOdNXV1dZtJd2HH37oJF01Zs2a5Zy7/Cj2s88+67Kzs53f73eTJk1yVVVVtk0nwfXm4ezZs27y5Mnu9ttvdz179nSDBg1ys2fP7nT/k9bW9y/JrVmzJnrMuXPn3JNPPum+9KUvuT59+rhp06a5EydO2DWdBDeah9raWjdx4kSXkZHh/H6/Gzp0qHvmmWdcOBy2bfwK/DoGAICJlP8MCADQORFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDx/wCPA/n6Se6B9QAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["2\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG85JREFUeJzt3X1slfX9//HX4e6A2p5aSntabguILALdZNJ1KOLoKHVhcpMNnH+AcRhccVOmLN2mKJp0QrYRF8CxLDAyQcUJRLM1w0LLNlsIFULYTUdZN2qgBUk4pxQp2H5+f/DzfD3SgtfhnL5783wkn4RzXde715uPF315nXP1U59zzgkAgE7Wx7oBAEDvRAABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADARD/rBj6rra1NJ0+eVFJSknw+n3U7AACPnHNqampSVlaW+vTp+D6nywXQyZMnNXz4cOs2AAA3qL6+XsOGDetwf5d7Cy4pKcm6BQBAHFzv+3nCAmjdunUaNWqUBg4cqNzcXB04cOBz1fG2GwD0DNf7fp6QAHr99de1fPlyrVy5Uu+//75ycnJUUFCg06dPJ+J0AIDuyCXAlClTXFFRUeR1a2ury8rKciUlJdetDYVCThKDwWAwuvkIhULX/H4f9zugS5cuqbq6Wvn5+ZFtffr0UX5+viorK686vqWlReFwOGoAAHq+uAfQhx9+qNbWVmVkZERtz8jIUENDw1XHl5SUKBAIRAZPwAFA72D+FFxxcbFCoVBk1NfXW7cEAOgEcf85oLS0NPXt21eNjY1R2xsbGxUMBq863u/3y+/3x7sNAEAXF/c7oAEDBmjy5MkqKyuLbGtra1NZWZny8vLifToAQDeVkJUQli9frkWLFunLX/6ypkyZorVr16q5uVkPP/xwIk4HAOiGEhJACxYs0JkzZ/Tss8+qoaFBX/ziF1VaWnrVgwkAgN7L55xz1k18WjgcViAQsG4DAHCDQqGQkpOTO9xv/hQcAKB3IoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCin3UDwPX079/fc01FRUVM5zpz5oznmrVr13qumTlzpueazMxMzzWhUMhzjSStX7/ec01NTU1M50LvxR0QAMAEAQQAMBH3AHruuefk8/mixvjx4+N9GgBAN5eQz4DuuOMOvfvuu/93kn581AQAiJaQZOjXr5+CwWAivjQAoIdIyGdAx44dU1ZWlkaPHq2HHnpIJ06c6PDYlpYWhcPhqAEA6PniHkC5ubnavHmzSktLtWHDBtXV1emee+5RU1NTu8eXlJQoEAhExvDhw+PdEgCgC4p7ABUWFupb3/qWJk2apIKCAv3xj3/UuXPn9MYbb7R7fHFxsUKhUGTU19fHuyUAQBeU8KcDUlJSNG7cONXW1ra73+/3y+/3J7oNAEAXk/CfAzp//ryOHz8e009xAwB6rrgH0FNPPaWKigr997//1Xvvvae5c+eqb9++evDBB+N9KgBANxb3t+A++OADPfjggzp79qyGDBmiu+++W1VVVRoyZEi8TwUA6MZ8zjln3cSnhcNhBQIB6zbQhcydO9dzzZtvvpmATmz5fD7PNbH+845lEdMFCxZ4rtmzZ4/nmtbWVs81sBEKhZScnNzhftaCAwCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSNGphg4d6rnmvffe81wzbNgwzzVdXSyLcPbt2zcBncTP1KlTPddUVVUloBMkAouRAgC6JAIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiX7WDaD7ysjI8Fzz97//3XNNUlKS55rOdOHCBc81v/nNbzzXbN261XPNxIkTPddI0po1azzX3HrrrZ5rVqxY4blm3rx5nmvQNXEHBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwITPOeesm/i0cDisQCBg3UavMnTo0JjqeuLCoocOHfJc8/TTT3uu2bt3r+eazvTVr37Vc81f/vIXzzUff/yx55o777zTc00s1ypuXCgUUnJycof7uQMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgop91A7A3e/bsmOo6a2HRtrY2zzU///nPYzrXmjVrPNecPXs2pnN1ZYcPH+6U8/Tr5/1b0M0335yATmCBOyAAgAkCCABgwnMA7du3T7Nnz1ZWVpZ8Pp927twZtd85p2effVaZmZkaNGiQ8vPzdezYsXj1CwDoITwHUHNzs3JycrRu3bp2969evVovv/yyXnnlFe3fv18333yzCgoKdPHixRtuFgDQc3j+BLCwsFCFhYXt7nPOae3atfrpT3+qBx54QJK0ZcsWZWRkaOfOnVq4cOGNdQsA6DHi+hlQXV2dGhoalJ+fH9kWCASUm5urysrKdmtaWloUDoejBgCg54trADU0NEiSMjIyorZnZGRE9n1WSUmJAoFAZAwfPjyeLQEAuijzp+CKi4sVCoUio76+3rolAEAniGsABYNBSVJjY2PU9sbGxsi+z/L7/UpOTo4aAICeL64BlJ2drWAwqLKyssi2cDis/fv3Ky8vL56nAgB0c56fgjt//rxqa2sjr+vq6nT48GGlpqZqxIgReuKJJ/Tiiy/qtttuU3Z2tp555hllZWVpzpw58ewbANDNeQ6ggwcP6r777ou8Xr58uSRp0aJF2rx5s1asWKHm5mY9+uijOnfunO6++26VlpZq4MCB8esaANDteQ6g6dOnyznX4X6fz6dVq1Zp1apVN9QY8ImioiLPNRs3bkxAJ+gKvv3tb3uuOXDgQAI6wY0yfwoOANA7EUAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMeF4NGz3PmTNnYqr797//7bnm4Ycf9lzDSsZAz8QdEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMsRgrt2LEjpro///nPnmuamppiOhdiEwgEYqrLy8uLcyfx09zcbN0C4oQ7IACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZYjBRqa2uLqY6FRWM3ZswYzzUrVqzwXJOfn++5RpJGjRoVU11nOHz4sHULiBPugAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjwOeecdROfFg6HFQgErNtALzV+/HjPNRs2bPBcc++993qu8fl8nmu62D/vuGhpafFcM3fu3JjOVVpaGlMdrgiFQkpOTu5wP3dAAAATBBAAwITnANq3b59mz56trKws+Xw+7dy5M2r/4sWL5fP5osasWbPi1S8AoIfwHEDNzc3KycnRunXrOjxm1qxZOnXqVGRs27bthpoEAPQ8nn8jamFhoQoLC695jN/vVzAYjLkpAEDPl5DPgMrLy5Wenq7bb79djz32mM6ePdvhsS0tLQqHw1EDANDzxT2AZs2apS1btqisrEwvvfSSKioqVFhYqNbW1naPLykpUSAQiIzhw4fHuyUAQBfk+S2461m4cGHkzxMnTtSkSZM0ZswYlZeXa8aMGVcdX1xcrOXLl0deh8NhQggAeoGEP4Y9evRopaWlqba2tt39fr9fycnJUQMA0PMlPIA++OADnT17VpmZmYk+FQCgG/H8Ftz58+ej7mbq6up0+PBhpaamKjU1Vc8//7zmz5+vYDCo48ePa8WKFRo7dqwKCgri2jgAoHvzHEAHDx7UfffdF3n9yec3ixYt0oYNG3TkyBH97ne/07lz55SVlaWZM2fqhRdekN/vj1/XAIBuj8VI0SNNnTo1prq3337bc01nXa8sRhq7CxcuxFT39a9/3XNNVVVVTOfqiViMFADQJRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATMT9V3ID8bZy5UrPNY8//nhM5+qsla0//vhjzzX9+/dPQCfx09ra6rlmy5Ytnmu++c1veq4ZPHiw5xpJysnJ8VzDatifH3dAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATLAYKTrVqFGjPNd8//vf91yTkpLiuSZWL7/8sueaffv2ea75wx/+4LmmM/3pT3/yXPPd737Xc83cuXM917z55puea5B43AEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwwWKk6FQbN270XNOZC4uuX7/ec82aNWs817z44oueazrTpUuXPNf85Cc/SUAnV9u1a5fnmoULF8Z0ro8//jimOnw+3AEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwwWKk6FRf+tKXrFu4prfeestzTVlZmeeacePGea6JRWtra0x1q1at8lxz9OjRmM7lVVtbm+ea7du3J6AT3CjugAAAJgggAIAJTwFUUlKiu+66S0lJSUpPT9ecOXNUU1MTdczFixdVVFSkwYMH65ZbbtH8+fPV2NgY16YBAN2fpwCqqKhQUVGRqqqqtHv3bl2+fFkzZ85Uc3Nz5Jgnn3xSb7/9trZv366KigqdPHlS8+bNi3vjAIDuzdNDCKWlpVGvN2/erPT0dFVXV2vatGkKhUL67W9/q61bt+prX/uaJGnTpk36whe+oKqqKn3lK1+JX+cAgG7thj4DCoVCkqTU1FRJUnV1tS5fvqz8/PzIMePHj9eIESNUWVnZ7tdoaWlROByOGgCAni/mAGpra9MTTzyhqVOnasKECZKkhoYGDRgwQCkpKVHHZmRkqKGhod2vU1JSokAgEBnDhw+PtSUAQDcScwAVFRXp6NGjeu21126ogeLiYoVCocior6+/oa8HAOgeYvpB1GXLlumdd97Rvn37NGzYsMj2YDCoS5cu6dy5c1F3QY2NjQoGg+1+Lb/fL7/fH0sbAIBuzNMdkHNOy5Yt044dO7Rnzx5lZ2dH7Z88ebL69+8f9ZPhNTU1OnHihPLy8uLTMQCgR/B0B1RUVKStW7dq165dSkpKinyuEwgENGjQIAUCAT3yyCNavny5UlNTlZycrMcff1x5eXk8AQcAiOIpgDZs2CBJmj59etT2TZs2afHixZKkX/7yl+rTp4/mz5+vlpYWFRQUaP369XFpFgDQc/icc866iU8Lh8MKBALWbSBBzpw547nmk8f8ezufz+e5ZuPGjTGda+nSpTHVAZ8WCoWUnJzc4X7WggMAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmIjpN6ICuDGxrAr+0ksvea5Zu3at5xqgs3AHBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwASLkaJTVVVVea65//77E9BJ/ITDYc81L7zwgueadevWea4BujLugAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJjwOeecdROfFg6HFQgErNtAgiQlJXmuqa6u9lwzZswYzzWStHbtWs81sSwS+p///MdzDdDdhEIhJScnd7ifOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAm+lk3gN6lqanJc824ceMS0AkAa9wBAQBMEEAAABOeAqikpER33XWXkpKSlJ6erjlz5qimpibqmOnTp8vn80WNpUuXxrVpAED35ymAKioqVFRUpKqqKu3evVuXL1/WzJkz1dzcHHXckiVLdOrUqchYvXp1XJsGAHR/nh5CKC0tjXq9efNmpaenq7q6WtOmTYtsv+mmmxQMBuPTIQCgR7qhz4BCoZAkKTU1NWr7q6++qrS0NE2YMEHFxcW6cOFCh1+jpaVF4XA4agAAegEXo9bWVveNb3zDTZ06NWr7r3/9a1daWuqOHDnifv/737uhQ4e6uXPndvh1Vq5c6SQxGAwGo4eNUCh0zRyJOYCWLl3qRo4c6err6695XFlZmZPkamtr291/8eJFFwqFIqO+vt580hgMBoNx4+N6ARTTD6IuW7ZM77zzjvbt26dhw4Zd89jc3FxJUm1trcaMGXPVfr/fL7/fH0sbAIBuzFMAOef0+OOPa8eOHSovL1d2dvZ1aw4fPixJyszMjKlBAEDP5CmAioqKtHXrVu3atUtJSUlqaGiQJAUCAQ0aNEjHjx/X1q1bdf/992vw4ME6cuSInnzySU2bNk2TJk1KyF8AANBNefncRx28z7dp0ybnnHMnTpxw06ZNc6mpqc7v97uxY8e6p59++rrvA35aKBQyf9+SwWAwGDc+rve93/f/g6XLCIfDCgQC1m0AAG5QKBRScnJyh/tZCw4AYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYKLLBZBzzroFAEAcXO/7eZcLoKamJusWAABxcL3v5z7XxW452tradPLkSSUlJcnn80XtC4fDGj58uOrr65WcnGzUoT3m4Qrm4Qrm4Qrm4YquMA/OOTU1NSkrK0t9+nR8n9OvE3v6XPr06aNhw4Zd85jk5ORefYF9gnm4gnm4gnm4gnm4wnoeAoHAdY/pcm/BAQB6BwIIAGCiWwWQ3+/XypUr5ff7rVsxxTxcwTxcwTxcwTxc0Z3mocs9hAAA6B261R0QAKDnIIAAACYIIACACQIIAGCi2wTQunXrNGrUKA0cOFC5ubk6cOCAdUud7rnnnpPP54sa48ePt24r4fbt26fZs2crKytLPp9PO3fujNrvnNOzzz6rzMxMDRo0SPn5+Tp27JhNswl0vXlYvHjxVdfHrFmzbJpNkJKSEt11111KSkpSenq65syZo5qamqhjLl68qKKiIg0ePFi33HKL5s+fr8bGRqOOE+PzzMP06dOvuh6WLl1q1HH7ukUAvf7661q+fLlWrlyp999/Xzk5OSooKNDp06etW+t0d9xxh06dOhUZf/3rX61bSrjm5mbl5ORo3bp17e5fvXq1Xn75Zb3yyivav3+/br75ZhUUFOjixYud3GliXW8eJGnWrFlR18e2bds6scPEq6ioUFFRkaqqqrR7925dvnxZM2fOVHNzc+SYJ598Um+//ba2b9+uiooKnTx5UvPmzTPsOv4+zzxI0pIlS6Kuh9WrVxt13AHXDUyZMsUVFRVFXre2trqsrCxXUlJi2FXnW7lypcvJybFuw5Qkt2PHjsjrtrY2FwwG3Zo1ayLbzp075/x+v9u2bZtBh53js/PgnHOLFi1yDzzwgEk/Vk6fPu0kuYqKCufclf/2/fv3d9u3b48c889//tNJcpWVlVZtJtxn58E55+699173gx/8wK6pz6HL3wFdunRJ1dXVys/Pj2zr06eP8vPzVVlZadiZjWPHjikrK0ujR4/WQw89pBMnTli3ZKqurk4NDQ1R10cgEFBubm6vvD7Ky8uVnp6u22+/XY899pjOnj1r3VJChUIhSVJqaqokqbq6WpcvX466HsaPH68RI0b06Ovhs/PwiVdffVVpaWmaMGGCiouLdeHCBYv2OtTlFiP9rA8//FCtra3KyMiI2p6RkaF//etfRl3ZyM3N1ebNm3X77bfr1KlTev7553XPPffo6NGjSkpKsm7PRENDgyS1e318sq+3mDVrlubNm6fs7GwdP35cP/7xj1VYWKjKykr17dvXur24a2tr0xNPPKGpU6dqwoQJkq5cDwMGDFBKSkrUsT35emhvHiTpO9/5jkaOHKmsrCwdOXJEP/rRj1RTU6O33nrLsNtoXT6A8H8KCwsjf540aZJyc3M1cuRIvfHGG3rkkUcMO0NXsHDhwsifJ06cqEmTJmnMmDEqLy/XjBkzDDtLjKKiIh09erRXfA56LR3Nw6OPPhr588SJE5WZmakZM2bo+PHjGjNmTGe32a4u/xZcWlqa+vbte9VTLI2NjQoGg0ZddQ0pKSkaN26camtrrVsx88k1wPVxtdGjRystLa1HXh/Lli3TO++8o71790b9+pZgMKhLly7p3LlzUcf31Ouho3loT25uriR1qeuhywfQgAEDNHnyZJWVlUW2tbW1qaysTHl5eYad2Tt//ryOHz+uzMxM61bMZGdnKxgMRl0f4XBY+/fv7/XXxwcffKCzZ8/2qOvDOadly5Zpx44d2rNnj7Kzs6P2T548Wf3794+6HmpqanTixIkedT1cbx7ac/jwYUnqWteD9VMQn8drr73m/H6/27x5s/vHP/7hHn30UZeSkuIaGhqsW+tUP/zhD115ebmrq6tzf/vb31x+fr5LS0tzp0+ftm4toZqamtyhQ4fcoUOHnCT3i1/8wh06dMj973//c84597Of/cylpKS4Xbt2uSNHjrgHHnjAZWdnu48++si48/i61jw0NTW5p556ylVWVrq6ujr37rvvujvvvNPddttt7uLFi9atx81jjz3mAoGAKy8vd6dOnYqMCxcuRI5ZunSpGzFihNuzZ487ePCgy8vLc3l5eYZdx9/15qG2ttatWrXKHTx40NXV1bldu3a50aNHu2nTphl3Hq1bBJBzzv3qV79yI0aMcAMGDHBTpkxxVVVV1i11ugULFrjMzEw3YMAAN3ToULdgwQJXW1tr3VbC7d2710m6aixatMg5d+VR7GeeecZlZGQ4v9/vZsyY4WpqamybToBrzcOFCxfczJkz3ZAhQ1z//v3dyJEj3ZIlS3rc/6S19/eX5DZt2hQ55qOPPnLf+9733K233upuuukmN3fuXHfq1Cm7phPgevNw4sQJN23aNJeamur8fr8bO3ase/rpp10oFLJt/DP4dQwAABNd/jMgAEDPRAABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwMT/Awtw2hF2VPx6AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["2\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHAJJREFUeJzt3X9sVfX9x/FXKXBBbC+rtb2tFCw/lEV+LILUBq0oHW01TpRt6kyGi9GAxUyZulSn1bmkk2/iiEun7hfVTFDJBkw2cVpt2VzBtEoY0zW0qbaGtkxc7y3Flq79fP8g3nmlgOdyb9/t5flIPgn3nPPueffDSV+ce08/JDnnnAAAGGZjrBsAAJyZCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYGGvdwBcNDg7qwIEDSklJUVJSknU7AACPnHPq7u5Wdna2xow58X3OiAugAwcOKCcnx7oNAMBpamtr05QpU064f8S9BZeSkmLdAgAgBk718zxuAVRZWanzzz9fEyZMUF5ent5+++0vVcfbbgCQGE718zwuAfTiiy9q7dq1Ki8v1zvvvKP58+erqKhIBw8ejMfpAACjkYuDRYsWudLS0vDrgYEBl52d7SoqKk5ZGwwGnSQGg8FgjPIRDAZP+vM+5ndAR48eVUNDgwoLC8PbxowZo8LCQtXV1R13fF9fn0KhUMQAACS+mAfQxx9/rIGBAWVmZkZsz8zMVEdHx3HHV1RUyO/3hwdPwAHAmcH8KbiysjIFg8HwaGtrs24JADAMYv57QOnp6UpOTlZnZ2fE9s7OTgUCgeOO9/l88vl8sW4DADDCxfwOaPz48VqwYIGqq6vD2wYHB1VdXa38/PxYnw4AMErFZSWEtWvXauXKlVq4cKEWLVqk9evXq6enR9/73vficToAwCgUlwC68cYb9e9//1sPP/ywOjo69LWvfU07duw47sEEAMCZK8k556yb+LxQKCS/32/dBgDgNAWDQaWmpp5wv/lTcACAMxMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAE2OtG4C91NTUqOrGjvV++Vx88cWea8rLyz3XHD161HONJNXX13uu+f3vf++5pqmpyXNNNHp7e6OqO3LkSIw7AY7HHRAAwAQBBAAwEfMAeuSRR5SUlBQxZs+eHevTAABGubh8BnTRRRfp9ddf/99JovisAACQ2OKSDGPHjlUgEIjHlwYAJIi4fAa0f/9+ZWdna/r06brlllvU2tp6wmP7+voUCoUiBgAg8cU8gPLy8lRVVaUdO3boqaeeUktLiy6//HJ1d3cPeXxFRYX8fn945OTkxLolAMAIFPMAKikp0be+9S3NmzdPRUVF+vOf/6yuri699NJLQx5fVlamYDAYHm1tbbFuCQAwAsX96YDJkyfrggsuOOEv3vl8Pvl8vni3AQAYYeL+e0CHDx9Wc3OzsrKy4n0qAMAoEvMAuvfee1VbW6sPPvhAf//733X99dcrOTlZN998c6xPBQAYxWL+FtxHH32km2++WYcOHdK5556ryy67TLt27dK5554b61MBAEaxJOecs27i80KhkPx+v3UbMZecnOy55s477/RcM3fuXM8111xzjecaScP2tup//vMfzzWffPJJVOfKyMjwXJOSkhLVuYbDvn37oqr761//6rnmgQce8FwTDAY912D0CAaDJ13smLXgAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAx0mESzff0j3/8Iw6dHK+9vT2quvfee89zzfbt2z3XvP/++55roulNkhYuXOi5ZvHixZ5rollodtasWZ5rhtNdd93luaaysjIOnWCkYDFSAMCIRAABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwMda6gTNFMBj0XHP55ZfHoZPjffjhh8NyntGgvr7ec01zc7PnmqKiIs81w7ka9j//+U/PNVu3bo19I0ho3AEBAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwwWKkIxiLhA6/Sy+91HNNeXm555poFiONxoMPPhhV3W9/+1vPNZ2dnVGdC2cu7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSJKTi4uKo6jZv3uy5ZtKkSZ5rPvjgA88169at81zzq1/9ynONJA0MDERVB3jBHRAAwAQBBAAw4TmAdu7cqWuvvVbZ2dlKSkrS1q1bI/Y75/Twww8rKytLEydOVGFhofbv3x+rfgEACcJzAPX09Gj+/PmqrKwccv+6dev05JNP6umnn9bu3bs1adIkFRUVqbe397SbBQAkDs8PIZSUlKikpGTIfc45rV+/Xj/60Y903XXXSZKee+45ZWZmauvWrbrppptOr1sAQMKI6WdALS0t6ujoUGFhYXib3+9XXl6e6urqhqzp6+tTKBSKGACAxBfTAOro6JAkZWZmRmzPzMwM7/uiiooK+f3+8MjJyYllSwCAEcr8KbiysjIFg8HwaGtrs24JADAMYhpAgUBAktTZ2RmxvbOzM7zvi3w+n1JTUyMGACDxxTSAcnNzFQgEVF1dHd4WCoW0e/du5efnx/JUAIBRzvNTcIcPH1ZTU1P4dUtLi/bs2aO0tDRNnTpVd999t37yk59o1qxZys3N1UMPPaTs7GwtX748ln0DAEY5zwFUX1+vK6+8Mvx67dq1kqSVK1eqqqpK999/v3p6enTHHXeoq6tLl112mXbs2KEJEybErmsAwKiX5Jxz1k18XigUkt/vt24DI8jn/8HzZb366qtRnWvs2OFZnzeaxT7r6+s917zyyiuea6ToFj7ll83xRcFg8KSf65s/BQcAODMRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEywGjaG1aRJkzzX/OlPf/JcU1BQ4LkmWv39/Z5rPvnkE8816enpnmuSk5M910jRfU/f+MY3PNdEu2o5RgdWwwYAjEgEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgpovbYY495rvn617/uuWb69Omea1544QXPNZLU0NDguebgwYOea1555RXPNcuXL/dc88ADD3iukaSFCxd6runp6fFcc/PNN3uu2b59u+ca2GAxUgDAiEQAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEi5Eiahs2bPBcM3PmTM81zz77rOeaX//6155r8D/f/OY3Pdds3rzZc00wGPRc893vftdzzR//+EfPNTh9LEYKABiRCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUgDHSU5O9lyzbNkyzzW//OUvPdd88sknnmuuuOIKzzWS1NXVFVUdjmExUgDAiEQAAQBMeA6gnTt36tprr1V2draSkpK0devWiP233nqrkpKSIkZxcXGs+gUAJAjPAdTT06P58+ersrLyhMcUFxervb09PDZt2nRaTQIAEs9YrwUlJSUqKSk56TE+n0+BQCDqpgAAiS8unwHV1NQoIyNDF154oVavXq1Dhw6d8Ni+vj6FQqGIAQBIfDEPoOLiYj333HOqrq7W448/rtraWpWUlGhgYGDI4ysqKuT3+8MjJycn1i0BAEYgz2/BncpNN90U/vPcuXM1b948zZgxQzU1NVq6dOlxx5eVlWnt2rXh16FQiBACgDNA3B/Dnj59utLT09XU1DTkfp/Pp9TU1IgBAEh8cQ+gjz76SIcOHVJWVla8TwUAGEU8vwV3+PDhiLuZlpYW7dmzR2lpaUpLS9Ojjz6qFStWKBAIqLm5Wffff79mzpypoqKimDYOABjdPAdQfX29rrzyyvDrzz6/WblypZ566int3btXzz77rLq6upSdna1ly5bpsccek8/ni13XAIBRj8VIAZh58MEHPdc89thjnmteffVVzzWS9O1vf9tzTXd3d1TnSkQsRgoAGJEIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZYDRuAmXHjxnmuiWZl6yVLlniukaRZs2Z5rmlubo7qXImI1bABACMSAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEyxGihEvKSnJc81ZZ50V1bl6enqiqsPwKSws9Fzzl7/8JapzPfPMM55rVq9eHdW5EhGLkQIARiQCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmxlo3AJzK1Vdf7bnm0UcfjepcCxcujKoOw2dgYGDYznWyhTRPZMwY7/+uHxwc9FyTCLgDAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSDGsioqKPNdEs7Aoi4oiFqK5Xs8++2zPNaFQyHNNIuAOCABgggACAJjwFEAVFRW65JJLlJKSooyMDC1fvlyNjY0Rx/T29qq0tFTnnHOOzj77bK1YsUKdnZ0xbRoAMPp5CqDa2lqVlpZq165deu2119Tf369ly5app6cnfMw999yjl19+WZs3b1Ztba0OHDigG264IeaNAwBGN08PIezYsSPidVVVlTIyMtTQ0KCCggIFg0H95je/0caNG3XVVVdJkjZs2KCvfvWr2rVrly699NLYdQ4AGNVO6zOgYDAoSUpLS5MkNTQ0qL+/X4WFheFjZs+eralTp6qurm7Ir9HX16dQKBQxAACJL+oAGhwc1N13363Fixdrzpw5kqSOjg6NHz9ekydPjjg2MzNTHR0dQ36diooK+f3+8MjJyYm2JQDAKBJ1AJWWlmrfvn164YUXTquBsrIyBYPB8GhrazutrwcAGB2i+kXUNWvWaPv27dq5c6emTJkS3h4IBHT06FF1dXVF3AV1dnYqEAgM+bV8Pp98Pl80bQAARjFPd0DOOa1Zs0ZbtmzRG2+8odzc3Ij9CxYs0Lhx41RdXR3e1tjYqNbWVuXn58emYwBAQvB0B1RaWqqNGzdq27ZtSklJCX+u4/f7NXHiRPn9ft12221au3at0tLSlJqaqrvuukv5+fk8AQcAiOApgJ566ilJ0pIlSyK2b9iwQbfeeqsk6Wc/+5nGjBmjFStWqK+vT0VFRfrFL34Rk2YBAInDUwA55055zIQJE1RZWanKysqom8LokJmZ6bkmmoVF33vvPc81QCysX7/ecw2/SvLlsRYcAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMBEVP8jKiBJV111leeaRYsWea7JycnxXPPmm296rpEU1Srub731luea9vZ2zzWJKC8vz3PN/fffH4dOhrZp06ZhO9eZiDsgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJliMFFFrbm72XBPNwp2LFy/2XJOVleW5RpKuuOIKzzUdHR2ea44cOeK5JhFlZmZ6rpk0aZLnmscff9xzjSS1trZGVYcvhzsgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJpKcc866ic8LhULy+/3WbSBOJkyY4LmmsLDQc000C5hGa8qUKZ5rZs6c6bkmLy/Pc020+vv7Pdc88cQTnmsOHjzouaaqqspzTXd3t+caSfrvf/8bVR2OCQaDSk1NPeF+7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSAEBcsBgpAGBEIoAAACY8BVBFRYUuueQSpaSkKCMjQ8uXL1djY2PEMUuWLFFSUlLEWLVqVUybBgCMfp4CqLa2VqWlpdq1a5dee+019ff3a9myZerp6Yk47vbbb1d7e3t4rFu3LqZNAwBGv7FeDt6xY0fE66qqKmVkZKihoUEFBQXh7WeddZYCgUBsOgQAJKTT+gwoGAxKktLS0iK2P//880pPT9ecOXNUVlamI0eOnPBr9PX1KRQKRQwAwBnARWlgYMBdc801bvHixRHbn3nmGbdjxw63d+9e97vf/c6dd9557vrrrz/h1ykvL3eSGAwGg5FgIxgMnjRHog6gVatWuWnTprm2traTHlddXe0kuaampiH39/b2umAwGB5tbW3mk8ZgMBiM0x+nCiBPnwF9Zs2aNdq+fbt27typKVOmnPTYvLw8SVJTU5NmzJhx3H6fzyefzxdNGwCAUcxTADnndNddd2nLli2qqalRbm7uKWv27NkjScrKyoqqQQBAYvIUQKWlpdq4caO2bdumlJQUdXR0SJL8fr8mTpyo5uZmbdy4UVdffbXOOecc7d27V/fcc48KCgo0b968uHwDAIBRysvnPjrB+3wbNmxwzjnX2trqCgoKXFpamvP5fG7mzJnuvvvuO+X7gJ8XDAbN37dkMBgMxumPU/3sZzFSAEBcsBgpAGBEIoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYGHEB5JyzbgEAEAOn+nk+4gKou7vbugUAQAyc6ud5khthtxyDg4M6cOCAUlJSlJSUFLEvFAopJydHbW1tSk1NNerQHvNwDPNwDPNwDPNwzEiYB+ecuru7lZ2drTFjTnyfM3YYe/pSxowZoylTppz0mNTU1DP6AvsM83AM83AM83AM83CM9Tz4/f5THjPi3oIDAJwZCCAAgIlRFUA+n0/l5eXy+XzWrZhiHo5hHo5hHo5hHo4ZTfMw4h5CAACcGUbVHRAAIHEQQAAAEwQQAMAEAQQAMDFqAqiyslLnn3++JkyYoLy8PL399tvWLQ27Rx55RElJSRFj9uzZ1m3F3c6dO3XttdcqOztbSUlJ2rp1a8R+55wefvhhZWVlaeLEiSosLNT+/fttmo2jU83Drbfeetz1UVxcbNNsnFRUVOiSSy5RSkqKMjIytHz5cjU2NkYc09vbq9LSUp1zzjk6++yztWLFCnV2dhp1HB9fZh6WLFly3PWwatUqo46HNioC6MUXX9TatWtVXl6ud955R/Pnz1dRUZEOHjxo3dqwu+iii9Te3h4ef/vb36xbiruenh7Nnz9flZWVQ+5ft26dnnzyST399NPavXu3Jk2apKKiIvX29g5zp/F1qnmQpOLi4ojrY9OmTcPYYfzV1taqtLRUu3bt0muvvab+/n4tW7ZMPT094WPuuecevfzyy9q8ebNqa2t14MAB3XDDDYZdx96XmQdJuv322yOuh3Xr1hl1fAJuFFi0aJErLS0Nvx4YGHDZ2dmuoqLCsKvhV15e7ubPn2/dhilJbsuWLeHXg4ODLhAIuP/7v/8Lb+vq6nI+n89t2rTJoMPh8cV5cM65lStXuuuuu86kHysHDx50klxtba1z7tjf/bhx49zmzZvDx7z//vtOkqurq7NqM+6+OA/OOXfFFVe473//+3ZNfQkj/g7o6NGjamhoUGFhYXjbmDFjVFhYqLq6OsPObOzfv1/Z2dmaPn26brnlFrW2tlq3ZKqlpUUdHR0R14ff71deXt4ZeX3U1NQoIyNDF154oVavXq1Dhw5ZtxRXwWBQkpSWliZJamhoUH9/f8T1MHv2bE2dOjWhr4cvzsNnnn/+eaWnp2vOnDkqKyvTkSNHLNo7oRG3GOkXffzxxxoYGFBmZmbE9szMTP3rX/8y6spGXl6eqqqqdOGFF6q9vV2PPvqoLr/8cu3bt08pKSnW7Zno6OiQpCGvj8/2nSmKi4t1ww03KDc3V83NzXrggQdUUlKiuro6JScnW7cXc4ODg7r77ru1ePFizZkzR9Kx62H8+PGaPHlyxLGJfD0MNQ+S9J3vfEfTpk1Tdna29u7dqx/+8IdqbGzUH/7wB8NuI434AML/lJSUhP88b9485eXladq0aXrppZd02223GXaGkeCmm24K/3nu3LmaN2+eZsyYoZqaGi1dutSws/goLS3Vvn37zojPQU/mRPNwxx13hP88d+5cZWVlaenSpWpubtaMGTOGu80hjfi34NLT05WcnHzcUyydnZ0KBAJGXY0MkydP1gUXXKCmpibrVsx8dg1wfRxv+vTpSk9PT8jrY82aNdq+fbvefPPNiP++JRAI6OjRo+rq6oo4PlGvhxPNw1Dy8vIkaURdDyM+gMaPH68FCxaouro6vG1wcFDV1dXKz8837Mze4cOH1dzcrKysLOtWzOTm5ioQCERcH6FQSLt37z7jr4+PPvpIhw4dSqjrwzmnNWvWaMuWLXrjjTeUm5sbsX/BggUaN25cxPXQ2Nio1tbWhLoeTjUPQ9mzZ48kjazrwfopiC/jhRdecD6fz1VVVbn33nvP3XHHHW7y5Mmuo6PDurVh9YMf/MDV1NS4lpYW99Zbb7nCwkKXnp7uDh48aN1aXHV3d7t3333Xvfvuu06Se+KJJ9y7777rPvzwQ+eccz/96U/d5MmT3bZt29zevXvddddd53Jzc92nn35q3HlsnWweuru73b333uvq6upcS0uLe/31193FF1/sZs2a5Xp7e61bj5nVq1c7v9/vampqXHt7e3gcOXIkfMyqVavc1KlT3RtvvOHq6+tdfn6+y8/PN+w69k41D01NTe7HP/6xq6+vdy0tLW7btm1u+vTprqCgwLjzSKMigJxz7uc//7mbOnWqGz9+vFu0aJHbtWuXdUvD7sYbb3RZWVlu/Pjx7rzzznM33nija2pqsm4r7t58800n6bixcuVK59yxR7Efeughl5mZ6Xw+n1u6dKlrbGy0bToOTjYPR44cccuWLXPnnnuuGzdunJs2bZq7/fbbE+4faUN9/5Lchg0bwsd8+umn7s4773Rf+cpX3FlnneWuv/56197ebtd0HJxqHlpbW11BQYFLS0tzPp/PzZw50913330uGAzaNv4F/HcMAAATI/4zIABAYiKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGDi/wG8wig1LPXWrQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["3\n"]}]},{"cell_type":"code","source":["# развернем каждое изображение 28*28 в вектор 784\n","num_pixels = X_train.shape[1] * X_train.shape[2]\n","X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n","X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n","print('Shape of transformed X train:', X_train.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"CVknkYD91-90","executionInfo":{"status":"ok","timestamp":1760550892317,"user_tz":-180,"elapsed":101,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"b0d863dd-8dc3-4098-efef-1a54be826219"},"execution_count":13,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (60000, 784)\n"]}]},{"cell_type":"code","source":["# переведем метки в one-hot\n","\n","y_train = to_categorical(y_train)\n","y_test = to_categorical(y_test)\n","print('Shape of transformed y train:', y_train.shape)\n","num_classes = y_train.shape[1]"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"XPJsH1tR2ECx","executionInfo":{"status":"ok","timestamp":1760550893996,"user_tz":-180,"elapsed":9,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"9edf4ea5-336f-4fa3-e1f0-6a0be711fc03"},"execution_count":14,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed y train: (60000, 10)\n"]}]},{"cell_type":"code","source":[" #1. создаем модель - объявляем ее объектом класса Sequential\n","model = Sequential()\n","# 2. добавляем первый скрытый слой\n","#model.add(Dense(units=300, input_dim=num_pixels, activation='sigmoid'))\n","# 3. добавляем второй скрытый слой\n","#model.add(Dense(units=100, activation='sigmoid'))\n","# 4. добавляем выходной слой\n","model.add(Dense(units=num_classes, activation='softmax'))\n","# 5. компилируем модель\n","model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])"],"metadata":{"id":"OgcFcLg-2Mni"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# вывод информации об архитектуре модели\n","print(model.summary())\n","# Обучаем модель\n","H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)\n"],"metadata":{"id":"k96XYeR46OYU","colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"status":"ok","timestamp":1758184710459,"user_tz":-180,"elapsed":239569,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"34496db6-0bf7-441f-aea3-cdd5f75ff084"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential\"\u001b[0m\n"],"text/html":["
Model: \"sequential\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense (Dense)                   │ ?                      │   0 (unbuilt) │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Total params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["None\n","Epoch 1/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7060 - loss: 1.1734 - val_accuracy: 0.8710 - val_loss: 0.5186\n","Epoch 2/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8774 - loss: 0.4847 - val_accuracy: 0.8860 - val_loss: 0.4319\n","Epoch 3/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8904 - loss: 0.4151 - val_accuracy: 0.8912 - val_loss: 0.3966\n","Epoch 4/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.8973 - loss: 0.3828 - val_accuracy: 0.8947 - val_loss: 0.3761\n","Epoch 5/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9000 - loss: 0.3700 - val_accuracy: 0.8998 - val_loss: 0.3625\n","Epoch 6/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 4ms/step - accuracy: 0.9021 - loss: 0.3542 - val_accuracy: 0.9018 - val_loss: 0.3535\n","Epoch 7/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2ms/step - accuracy: 0.9018 - loss: 0.3486 - val_accuracy: 0.9032 - val_loss: 0.3454\n","Epoch 8/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9087 - loss: 0.3288 - val_accuracy: 0.9062 - val_loss: 0.3396\n","Epoch 9/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9103 - loss: 0.3263 - val_accuracy: 0.9082 - val_loss: 0.3344\n","Epoch 10/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9110 - loss: 0.3196 - val_accuracy: 0.9060 - val_loss: 0.3307\n","Epoch 11/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9118 - loss: 0.3172 - val_accuracy: 0.9090 - val_loss: 0.3263\n","Epoch 12/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9129 - loss: 0.3139 - val_accuracy: 0.9090 - val_loss: 0.3239\n","Epoch 13/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9137 - loss: 0.3141 - val_accuracy: 0.9082 - val_loss: 0.3212\n","Epoch 14/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9174 - loss: 0.3026 - val_accuracy: 0.9112 - val_loss: 0.3184\n","Epoch 15/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9150 - loss: 0.3056 - val_accuracy: 0.9107 - val_loss: 0.3160\n","Epoch 16/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9162 - loss: 0.3012 - val_accuracy: 0.9105 - val_loss: 0.3147\n","Epoch 17/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9163 - loss: 0.2992 - val_accuracy: 0.9115 - val_loss: 0.3121\n","Epoch 18/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9167 - loss: 0.3022 - val_accuracy: 0.9107 - val_loss: 0.3105\n","Epoch 19/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9173 - loss: 0.2992 - val_accuracy: 0.9122 - val_loss: 0.3091\n","Epoch 20/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9184 - loss: 0.2976 - val_accuracy: 0.9112 - val_loss: 0.3077\n","Epoch 21/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9225 - loss: 0.2857 - val_accuracy: 0.9115 - val_loss: 0.3071\n","Epoch 22/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9211 - loss: 0.2869 - val_accuracy: 0.9127 - val_loss: 0.3046\n","Epoch 23/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9202 - loss: 0.2872 - val_accuracy: 0.9122 - val_loss: 0.3044\n","Epoch 24/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9206 - loss: 0.2869 - val_accuracy: 0.9133 - val_loss: 0.3032\n","Epoch 25/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9201 - loss: 0.2859 - val_accuracy: 0.9128 - val_loss: 0.3025\n","Epoch 26/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9195 - loss: 0.2863 - val_accuracy: 0.9138 - val_loss: 0.3014\n","Epoch 27/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9218 - loss: 0.2821 - val_accuracy: 0.9137 - val_loss: 0.3005\n","Epoch 28/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9203 - loss: 0.2882 - val_accuracy: 0.9142 - val_loss: 0.2998\n","Epoch 29/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9224 - loss: 0.2780 - val_accuracy: 0.9132 - val_loss: 0.2989\n","Epoch 30/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9215 - loss: 0.2822 - val_accuracy: 0.9150 - val_loss: 0.2982\n","Epoch 31/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9216 - loss: 0.2843 - val_accuracy: 0.9140 - val_loss: 0.2976\n","Epoch 32/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9208 - loss: 0.2828 - val_accuracy: 0.9142 - val_loss: 0.2964\n","Epoch 33/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9236 - loss: 0.2806 - val_accuracy: 0.9155 - val_loss: 0.2965\n","Epoch 34/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9224 - loss: 0.2821 - val_accuracy: 0.9155 - val_loss: 0.2955\n","Epoch 35/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9238 - loss: 0.2787 - val_accuracy: 0.9160 - val_loss: 0.2950\n","Epoch 36/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.9225 - loss: 0.2796 - val_accuracy: 0.9153 - val_loss: 0.2948\n","Epoch 37/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9255 - loss: 0.2720 - val_accuracy: 0.9162 - val_loss: 0.2946\n","Epoch 38/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9223 - loss: 0.2786 - val_accuracy: 0.9152 - val_loss: 0.2940\n","Epoch 39/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9243 - loss: 0.2725 - val_accuracy: 0.9148 - val_loss: 0.2930\n","Epoch 40/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9249 - loss: 0.2710 - val_accuracy: 0.9150 - val_loss: 0.2933\n","Epoch 41/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9257 - loss: 0.2709 - val_accuracy: 0.9163 - val_loss: 0.2922\n","Epoch 42/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9267 - loss: 0.2659 - val_accuracy: 0.9158 - val_loss: 0.2919\n","Epoch 43/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9270 - loss: 0.2680 - val_accuracy: 0.9167 - val_loss: 0.2910\n","Epoch 44/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2697 - val_accuracy: 0.9163 - val_loss: 0.2908\n","Epoch 45/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.9247 - loss: 0.2730 - val_accuracy: 0.9163 - val_loss: 0.2904\n","Epoch 46/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 5ms/step - accuracy: 0.9228 - loss: 0.2808 - val_accuracy: 0.9158 - val_loss: 0.2902\n","Epoch 47/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.9254 - loss: 0.2682 - val_accuracy: 0.9172 - val_loss: 0.2903\n","Epoch 48/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.9239 - loss: 0.2755 - val_accuracy: 0.9180 - val_loss: 0.2901\n","Epoch 49/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2693 - val_accuracy: 0.9178 - val_loss: 0.2900\n","Epoch 50/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9273 - loss: 0.2634 - val_accuracy: 0.9157 - val_loss: 0.2896\n"]}]},{"cell_type":"code","source":["# вывод графика ошибки по эпохам\n","plt.plot(H.history['loss'])\n","plt.plot(H.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss', 'val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":472},"id":"yDwLVTzQ502t","executionInfo":{"status":"ok","timestamp":1758184721435,"user_tz":-180,"elapsed":249,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"29d19932-09c3-43d3-9708-5cef3ea955f0"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYy5JREFUeJzt3Xd8FGXiBvBntu+mkF6AQOi9aJAYQAXpKMqJJyrSPOVUONGod3J3UmxYEQuKDfF3NhRFPSkSoqg06QISQhEIB6lASN/6/v6Y7CZLAiRhdyZsnu/nM5+ZnZ2ZffdNgIf3fecdSQghQERERBQgNGoXgIiIiMiXGG6IiIgooDDcEBERUUBhuCEiIqKAwnBDREREAYXhhoiIiAIKww0REREFFIYbIiIiCigMN0RERBRQGG6ISFWTJ09GcHCw2sVQnSRJmD59utrFIAoIDDdEAWrJkiWQJAnbtm1TuyhERIpiuCEiIqKAwnBDREREAYXhhqiJ27lzJ0aOHInQ0FAEBwdj8ODB2Lx5s9cxdrsdc+fORYcOHWAymRAZGYkBAwYgLS3Nc0xOTg6mTJmCli1bwmg0Ij4+HjfffDOOHj1ap3L88ccfGD58OIKCgtC8eXM8+eSTEEIAAIQQSExMxM0331zjvIqKCjRr1gx//etfL/oZH330EZKSkmA2mxEREYHbb78dx48f9zpm4MCB6N69O7Zv345+/frBbDajTZs2WLRoUY3r5eXl4S9/+QtiY2NhMpnQq1cvfPjhhzWOc7lcePXVV9GjRw+YTCZER0djxIgRtXYZfv311+jevTuMRiO6deuG1atXe71fXFyMhx56CImJiTAajYiJicHQoUOxY8eOi35/oqaC4YaoCfv9999xzTXX4LfffsPf//53PPHEEzhy5AgGDhyIX3/91XPcnDlzMHfuXAwaNAhvvPEG/vWvf6FVq1Ze/6COHTsWy5cvx5QpU/Dmm2/iwQcfRHFxMbKysi5aDqfTiREjRiA2NhYvvPACkpKSMHv2bMyePRuAPNj2rrvuwqpVq3D69Gmvc//73/+iqKgId9111wU/45lnnsHEiRPRoUMHzJ8/Hw899BDS09Nx7bXXorCw0OvYM2fOYNSoUUhKSsILL7yAli1b4v7778fixYs9x5SXl2PgwIH4z3/+g/Hjx+PFF19Es2bNMHnyZLz66qte1/vLX/6Chx56CAkJCXj++efx+OOPw2Qy1QiR69evxwMPPIDbb78dL7zwAioqKjB27FicOnXKc8x9992Ht956C2PHjsWbb76JRx99FGazGRkZGRetZ6ImQxBRQPrggw8EALF169bzHjNmzBhhMBjE4cOHPftOnjwpQkJCxLXXXuvZ16tXL3HDDTec9zpnzpwRAMSLL75Y73JOmjRJABB/+9vfPPtcLpe44YYbhMFgEPn5+UIIITIzMwUA8dZbb3mdf9NNN4nExEThcrnO+xlHjx4VWq1WPPPMM1779+zZI3Q6ndf+6667TgAQL7/8smef1WoVvXv3FjExMcJmswkhhFiwYIEAID766CPPcTabTaSkpIjg4GBRVFQkhBDihx9+EADEgw8+WKNc1csMQBgMBnHo0CHPvt9++00AEK+//rpnX7NmzcS0adPO+12JSAi23BA1UU6nE2vWrMGYMWPQtm1bz/74+HjceeedWL9+PYqKigAAYWFh+P3333Hw4MFar2U2m2EwGLBu3TqcOXOmQeWpfhu0+7Zom82GtWvXAgA6duyI5ORkfPzxx57jTp8+jVWrVmH8+PGQJOm81/7qq6/gcrlw2223oaCgwLPExcWhQ4cO+PHHH72O1+l0Xt1cBoMBf/3rX5GXl4ft27cDAFauXIm4uDjccccdnuP0ej0efPBBlJSU4KeffgIAfPnll5AkydMKVd25ZR4yZAjatWvned2zZ0+Ehobijz/+8OwLCwvDr7/+ipMnT573+xI1dQw3RE1Ufn4+ysrK0KlTpxrvdenSBS6XyzMe5cknn0RhYSE6duyIHj164LHHHsPu3bs9xxuNRjz//PNYtWoVYmNjce211+KFF15ATk5Oncqi0Wi8AhYghxkAXmN2Jk6ciA0bNuDYsWMAgC+++AJ2ux0TJky44PUPHjwIIQQ6dOiA6OhoryUjIwN5eXlexzdv3hxBQUEXLM+xY8fQoUMHaDTef4126dLF8z4AHD58GM2bN0dERMTFqgGtWrWqsS88PNwrML7wwgvYu3cvEhIS0LdvX8yZM8cr/BARww0R1cG1116Lw4cPY/HixejevTvee+89XHnllXjvvfc8xzz00EM4cOAA5s2bB5PJhCeeeAJdunTBzp07fVaO22+/HXq93tN689FHH6FPnz61BrTqXC4XJEnC6tWrkZaWVmN5++23fVbGS6HVamvdLyoHVgPAbbfdhj/++AOvv/46mjdvjhdffBHdunXDqlWrlComUaPHcEPUREVHR8NisSAzM7PGe/v374dGo0FCQoJnX0REBKZMmYJPP/0Ux48fR8+ePTFnzhyv89q1a4dHHnkEa9aswd69e2Gz2fDyyy9ftCwul6tG68OBAwcAAImJiV5luOGGG/Dxxx/j2LFj2LBhw0VbbdzlEkKgTZs2GDJkSI3l6quv9jr+5MmTKC0tvWB5WrdujYMHD8Llcnkdt3//fs/77s8+efJkjYHQlyI+Ph4PPPAAvv76axw5cgSRkZF45plnfHZ9ossdww1RE6XVajFs2DB88803Xl0/ubm5+OSTTzBgwACEhoYCgNfdOgAQHByM9u3bw2q1AgDKyspQUVHhdUy7du0QEhLiOeZi3njjDc+2EAJvvPEG9Ho9Bg8e7HXchAkTsG/fPjz22GPQarW4/fbbL3rtW265BVqtFnPnzvVqBXF/1rnfz+FweLXm2Gw2vP3224iOjkZSUhIAYNSoUcjJycHSpUu9znv99dcRHByM6667DoB8F5kQAnPnzq1RrnPLcjFOpxNnz5712hcTE4PmzZvXuZ6JmgKd2gUgIv9avHhxjblSAGDGjBl4+umnkZaWhgEDBuCBBx6ATqfD22+/DavVihdeeMFzbNeuXTFw4EAkJSUhIiIC27Ztw7JlyzyDgA8cOIDBgwfjtttuQ9euXaHT6bB8+XLk5ubWKXyYTCasXr0akyZNQnJyMlatWoUVK1bgn//8J6Kjo72OveGGGxAZGYkvvvgCI0eORExMzEWv365dOzz99NOYOXMmjh49ijFjxiAkJARHjhzB8uXLMXXqVDz66KOe45s3b47nn38eR48eRceOHbF06VLs2rUL77zzDvR6PQBg6tSpePvttzF58mRs374diYmJWLZsGTZs2IAFCxYgJCQEADBo0CBMmDABr732Gg4ePIgRI0bA5XLhl19+waBBg+r1PKni4mK0bNkSt956K3r16oXg4GCsXbsWW7durVMLGVGTod6NWkTkT+5bwc+3HD9+XAghxI4dO8Tw4cNFcHCwsFgsYtCgQWLjxo1e13r66adF3759RVhYmDCbzaJz587imWee8dwWXVBQIKZNmyY6d+4sgoKCRLNmzURycrL4/PPPL1rOSZMmiaCgIHH48GExbNgwYbFYRGxsrJg9e7ZwOp21nvPAAw8IAOKTTz6pV518+eWXYsCAASIoKEgEBQWJzp07i2nTponMzEzPMdddd53o1q2b2LZtm0hJSREmk0m0bt1avPHGGzWul5ubK6ZMmSKioqKEwWAQPXr0EB988EGN4xwOh3jxxRdF586dhcFgENHR0WLkyJFi+/btnmMA1HqLd+vWrcWkSZOEEPIt6Y899pjo1auXCAkJEUFBQaJXr17izTffrFc9EAU6SYh6tosSEans4Ycfxvvvv4+cnBxYLBafXnvgwIEoKCjA3r17fXpdIlIOx9wQ0WWloqICH330EcaOHevzYENEgYFjbojospCXl4e1a9di2bJlOHXqFGbMmKF2kYiokWK4IaLLwr59+zB+/HjExMTgtddeQ+/evdUuEhE1UhxzQ0RERAGFY26IiIgooDDcEBERUUBpcmNuXC4XTp48iZCQkAs+RZiIiIgaDyEEiouL0bx58xoPrD1Xkws3J0+e9HpeDhEREV0+jh8/jpYtW17wmCYXbtxToh8/ftzz3BxfsdvtWLNmDYYNG+aZop38h/WtLNa3sljfymJ9K6sh9V1UVISEhATPv+MX0uTCjbsrKjQ01C/hxmKxIDQ0lH84FMD6VhbrW1msb2WxvpV1KfVdlyElHFBMREREAYXhhoiIiAIKww0REREFlCY35oaIiAKT0+mE3W5v0Ll2ux06nQ4VFRVwOp0+Lhmd63z1bTAYLnqbd10w3BAR0WVNCIGcnBwUFhZe0jXi4uJw/PhxzoGmgPPVt0ajQZs2bWAwGC7p+gw3RER0WXMHm5iYGFgslgaFE5fLhZKSEgQHB/uk5YAurLb6dk+ym52djVatWl1SyGS4ISKiy5bT6fQEm8jIyAZfx+VywWazwWQyMdwo4Hz1HR0djZMnT8LhcFzSLfn8CRIR0WXLPcbGYrGoXBLyBXd31KWOe2K4ISKiyx7HyQQGX/0cGW6IiIgooDDcEBERXeYSExOxYMECn1xr3bp1kCTpku4+UxsHFBMREalg4MCB6N27t09CydatWxEUFHTphQoQDDc+YnO4kHO2AqetapeEiIgCgRACTqcTOt3F/6mOjo5WoESXD3ZL+cjOrDO49qWf8dY+rdpFISKiRm7y5Mn46aef8Oqrr0KSJEiShCVLlkCSJKxatQpJSUkwGo1Yv349Dh8+jJtvvhmxsbEIDg7GVVddhbVr13pd79xuKUmS8N577+FPf/oTLBYLOnTogG+//bbB5f3yyy/RrVs3GI1GJCYm4uWXX/Z6/80330SHDh1gMpkQGxuLW2+91fPesmXL0KNHD5jNZkRGRmLIkCEoLS1tcFnqQvVws3DhQiQmJsJkMiE5ORlbtmy54PELFixAp06dYDabkZCQgIcffhgVFRUKlfb8LAY5WVtdKheEiKiJE0KgzOao91JuczbovOqLEKJOZXz11VeRkpKCe++9F9nZ2cjOzkZCQgIA4PHHH8dzzz2HjIwM9OzZEyUlJRg1ahTS09Oxc+dOjBgxAqNHj0ZWVtYFP2Pu3Lm47bbbsHv3bowaNQrjx4/H6dOn612f27dvx2233Ybbb78de/bswZw5c/DEE09gyZIlAIBt27bhwQcfxJNPPonMzEysXr0a1157LQAgOzsbd9xxB+6++25kZGRg3bp1uOWWW+pcTw2larfU0qVLkZqaikWLFiE5ORkLFizA8OHDkZmZiZiYmBrHf/LJJ3j88cexePFi9OvXDwcOHMDkyZMhSRLmz5+vwjeoYjbILTY2PpKEiEhV5XYnus76XpXP3vfkcM9/di+kWbNmMBgMsFgsiIuLAwDs378fAPDkk09i6NChnmMjIiLQq1cvz+unnnoKy5cvx7fffovp06ef9zMmT56MO+64AwDw7LPP4rXXXsOWLVswYsSIen2n+fPnY/DgwXjiiScAAB07dsS+ffvw4osvYvLkycjKykJQUBBuvPFGhISEoHXr1rjiiisAyOHG4XDglltuQevWrQEAPXr0gMvlQlFRUb3KUR+qttzMnz8f9957L6ZMmYKuXbti0aJFsFgsWLx4ca3Hb9y4Ef3798edd96JxMREDBs2DHfcccdFW3uUYHGHG7bcEBHRJejTp4/X65KSEjz66KPo0qULwsLCEBwcjIyMjIu23PTs2dOzHRQUhNDQUOTl5dW7PBkZGejfv7/Xvv79++PgwYNwOp0YOnQoWrdujbZt22LChAn4+OOPUVZWBgDo1asXBg8ejB49euDPf/4z3n33XZw5c6beZagv1VpubDYbtm/fjpkzZ3r2aTQaDBkyBJs2bar1nH79+uGjjz7Cli1b0LdvX/zxxx9YuXIlJkyYcN7PsVqtsFqrRvm6k6Ldbm/w02Nro5fkJjankFBWYQXnyvQ/98/Plz9HOj/Wt7JY33Vjt9shhIDL5YLLJf/v0qiVsHfO0Iuc6U0IgZLiEgSHBF/SRHJGreQpR10/1328e202m72u8cgjj2Dt2rV44YUX0L59e5jNZtx2222wWq1ex1W/FgBotVqv15IkweFwXLR81cvj3j732tWPCQoKwrZt27Bu3TqkpaVh1qxZmDNnDn799VeEhYXh+++/x8aNG5GWlobXX38d//rXv7Bx40ZERUXVel0hBOx2O7Ra7zGs9fmzoFq4KSgogNPpRGxsrNf+2NhYT9Pcue68804UFBRgwIABEELA4XDgvvvuwz//+c/zfs68efMwd+7cGvvXrFnj0+m6HS7AXZ0r16TDwvvQFJOWlqZ2EZoU1reyWN8XptPpEBcXh5KSEthstku6ltmghdNafknXKK7HEFCNRoPy8nLPf7rdrR3FxcVez1v65ZdfcPvtt2Pw4MEA5JacI0eOICUlxXOuy+VCRUWFV1dP9WsDckA595janFuOdu3a4eeff/Y678cff0S7du28Bgb37dsXffv2xUMPPYTExESsWLECo0ePBiB3RfXo0QMzZsxAz549sXTpUkybNg3FxcVen22z2VBeXo6ff/4ZDoej1nLVxWX1T/C6devw7LPP4s0330RycjIOHTqEGTNm4KmnnvL0BZ5r5syZSE1N9bwuKipCQkIChg0bhtDQUJ+VTQiBv29ZC6cQuLr/tWgZGeyza1Pt7HY70tLSMHTo0Et6wBrVDetbWazvuqmoqMDx48cRHBwMk8nU4OsIIVBcXIyQkBDFHuXQrl077Nq1C6dPn/Yqf0hIiNe/T506dcLKlSsxduxYSJKEWbNmQQgBg8HgOU6j0cBkMnmdZzabvV5LklTjmNq4/+PvLsc//vEPJCcn47XXXsNtt92GTZs24b333sMbb7yB0NBQfPfddzhy5AiuueYahIeHY+XKlXC5XOjduzcyMjLwww8/YOjQoYiJicGvv/6KgoICzxiic+u7oqICZrMZ1157bY2fZ33G6KgWbqKioqDVapGbm+u1Pzc31zO46lxPPPEEJkyYgHvuuQeAnARLS0sxdepU/Otf/6r1Sa5GoxFGo7HGfr1e7/O/MMwGLUqsDtiFxL+MFOSPnyWdH+tbWazvC3M6nZAkCRqN5pKe5u3uGnFfSwmPPfYYJk2ahO7du6O8vBwffPABANT4Lq+88gruvvtuDBgwAFFRUfjHP/6B4uLiGmU993VtdVKXenK/7z62T58++PzzzzFr1iw8/fTTiI+Px5NPPom7774bgDzgef78+Zg7dy4qKirQoUMHfPrpp+jRowcyMjLwyy+/4NVXX0VRURFat26Nl19+GaNGjUJRUVGtZZYkqdbf+/r8OVAt3BgMBiQlJSE9PR1jxowBIP9ypaenn3f0d1lZWY0firtPzt+3ldWFpTLclPGWKSIiuoiOHTvWGGM6efLkGsclJibihx9+8No3bdo0r9dHjx71el3bv4l1fZzCwIEDa5w/duxYjB07ttbjBwwYgHXr1tX6XpcuXbB69eoa++szLqkhVO2WSk1NxaRJk9CnTx/07dsXCxYsQGlpKaZMmQIAmDhxIlq0aIF58+YBAEaPHo358+fjiiuu8HRLPfHEExg9enSNgUdqMOvlMpTbGW6IiIjUomq4GTduHPLz8zFr1izk5OSgd+/eWL16tWeQcVZWlldLzb///W9IkoR///vfOHHiBKKjozF69Gg888wzan0FL+65bsrZckNERI3Ufffdh48++qjW9+666y4sWrRI4RL5nuoDiqdPn37ebqhzm7l0Oh1mz56N2bNnK1Cy+nPPdcNuKSIiaqyefPJJPProo7W+58sbbdSkergJJOyWIiKixi4mJqbWpwAEEtWfLRVI2HJDRESkPoYbH2LLDRERkfoYbnzIzJYbIiIi1THc+JCFd0sRERGpjuHGh9gtRUREpD6GGx/igGIiIlJKYmIiFixYUKdjJUnC119/7dfyNCYMNz7ESfyIiIjUx3DjQ+5uqTJ2SxEREamG4caHOKCYiIjq4p133kHz5s1rPEDy5ptvxt13343Dhw/j5ptvRmxsLIKDg3HVVVdh7dq1Pvv8PXv24Prrr4fZbEZkZCSmTp2KkpISz/vr1q1D3759ERQUhLCwMPTv3x/Hjh0DAPz2228YNGgQQkJCEBoaiqSkJGzbts1nZfMFhhsf8nRLseWGiEg9QgC20vov9rKGnVd9qeVp3LX585//jFOnTuHHH3/07Dt9+jRWr16N8ePHo6SkBKNGjUJ6ejp27tyJESNGYPTo0cjKyrrk6iktLcXw4cMRHh6OrVu34osvvsDatWs9j0JyOBwYM2YMrrvuOuzevRubNm3C1KlTIUkSAGD8+PFo2bIltm7diu3bt+Pxxx+HXq+/5HL5Eh+/4EMWPQcUExGpzl4GPNu8XqdoAIT54rP/eRIwBF30sPDwcIwcORKffPIJBg8eDABYtmwZoqKiMGjQIGg0GvTq1ctz/FNPPYXly5fj22+/Pe/zGOvqk08+QUVFBf7v//4PQUFyWd944w2MHj0azz//PPR6Pc6ePYsbb7wR7dq1AwB06dLFc35WVhYee+wxdO7cGQDQoUOHSyqPP7Dlxoc4oJiIiOpq/Pjx+PLLL2G1WgEAH3/8MW6//XZoNBqUlJTg0UcfRZcuXRAWFobg4GBkZGT4pOUmIyMDvXr18gQbAOjfvz9cLhcyMzMRERGByZMnY/jw4Rg9ejReffVVZGdne45NTU3FPffcgyFDhuC5557D4cOHL7lMvsaWGx+ycJ4bIiL16S1yC0o9uFwuFBUXIzQkBBrNJfy/X2+p86GjR4+GEAIrVqzAVVddhV9++QWvvPIKAODRRx9FWloaXnrpJbRv3x5msxm33norbDZbw8tWDx988AEefPBBrF69GkuXLsW///1vpKWl4eqrr8acOXNw5513YsWKFVi1ahVmz56Nzz77DH/6058UKVtdMNz4EB+/QETUCEhSnbqGvLhcgN4pn3cp4aYeTCYTbrnlFnz88cc4dOgQOnXqhCuvvBIAsGHDBkyePNkTGEpKSnD06FGffG6XLl2wZMkSlJaWelpvNmzYAI1Gg06dOnmOu+KKK3DFFVdg5syZSElJwSeffIKrr74aANCxY0d07NgRDz/8MO644w588MEHjSrcsFvKh9zhxupwwemq26AyIiJqusaPH48VK1Zg8eLFGD9+vGd/hw4d8NVXX2HXrl347bffcOedd9a4s+pSPtNkMmHSpEnYu3cvfvzxR/ztb3/DhAkTEBsbiyNHjmDmzJnYtGkTjh07hjVr1uDgwYPo0qULysvLMX36dKxbtw7Hjh3Dhg0bsHXrVq8xOY0BW258yN0tBchdU8FGVi8REZ3f9ddfj4iICGRmZuLOO+/07J8/fz7uvvtu9OvXD1FRUfjHP/6BoqIin3ymxWLB999/jxkzZuCqq66CxWLB2LFjMX/+fM/7+/fvx4cffohTp04hPj4e06ZNw1//+lc4HA6cOnUKEydORG5uLqKionDLLbdg7ty5Pimbr/BfXx8y6TWQICAgoczmYLghIqIL0mg0OHmy5vigxMRE/PDDD177pk2b5vW6Pt1U4pxb1Hv06FHj+m6xsbFYvnx5re8ZDAZ8+umndf5ctbBbyockSYK+skZ5xxQREZE6GG58rHLYDQcVExGRIj7++GMEBwfXunTr1k3t4qmC/SY+ZtQAJWC4ISIiZdx0001ITk6u9b3GNnOwUhhufMzAbikiIlJQSEgIQkJC1C5Go8JuKR+r6pZyqFsQIiKiJorhxscMGnlEOmcpJiJSjq/mgCF1nXtXV0OxW8rHjBxQTESkGIPB4LmdOjo6GgaDwfP06vpwuVyw2WyoqKi4tMcvUJ3UVt9CCOTn58t3Hl/iWCGGGx9zj7lhuCEi8j+NRoM2bdogOzu71vli6koIgfLycpjN5gaFI6qf89W3JElo2bIltFrtBc6+OIYbH3OPuSnnmBsiIkUYDAa0atUKDocDTmfD/mNpt9vx888/49prr22ydxgp6Xz1rdfrLznYAAw3PseWGyIi5bm7MhoaTLRaLRwOB0wmE8ONAvxd3+xY9DFO4kdERKQuhhsfM7rvlmK4ISIiUgXDjY95Wm54KzgREZEqGG58rGqGYg4oJiIiUgPDjY9xQDEREZG6GG58jJP4ERERqYvhxsf44EwiIiJ1Mdz4mEEr3y1VZueYGyIiIjUw3PgYW26IiIjUxXDjYxxzQ0REpC6GGx/ztNzYnT57dDsRERHVHcONj7kn8RMCqLC71C0MERFRE8Rw42OGajVaxon8iIiIFMdw42MaCTDq5GrluBsiIiLlMdz4gaWyb6qcz5ciIiJSHMONH5j1crhhyw0REZHyGG78wGxwhxuOuSEiIlIaw40feLql2HJDRESkOIYbP2C3FBERkXoYbvzAHW7YckNERKQ8hhs/4JgbIiIi9TDc+IHZcys4ZygmIiJSGsONH1g83VJsuSEiIlJaowg3CxcuRGJiIkwmE5KTk7Fly5bzHjtw4EBIklRjueGGGxQs8YVVdUtxzA0REZHSVA83S5cuRWpqKmbPno0dO3agV69eGD58OPLy8mo9/quvvkJ2drZn2bt3L7RaLf785z8rXPLzc7fclHGGYiIiIsWpHm7mz5+Pe++9F1OmTEHXrl2xaNEiWCwWLF68uNbjIyIiEBcX51nS0tJgsVgaVbgxc54bIiIi1agabmw2G7Zv344hQ4Z49mk0GgwZMgSbNm2q0zXef/993H777QgKCvJXMeuNd0sRERGpR6fmhxcUFMDpdCI2NtZrf2xsLPbv33/R87ds2YK9e/fi/fffP+8xVqsVVqvV87qoqAgAYLfbYbfbG1jy2rmvZ6yMjKVWh88/g6q465Z1rAzWt7JY38pifSurIfVdn2NVDTeX6v3330ePHj3Qt2/f8x4zb948zJ07t8b+NWvWwGKx+KVcBzL2AtDiRG4BVq5c6ZfPoCppaWlqF6FJYX0ri/WtLNa3supT32VlZXU+VtVwExUVBa1Wi9zcXK/9ubm5iIuLu+C5paWl+Oyzz/Dkk09e8LiZM2ciNTXV87qoqAgJCQkYNmwYQkNDG174WtjtdqSlpeHqPlfggwO7YQoKxahRKT79DKriru+hQ4dCr9erXZyAx/pWFutbWaxvZTWkvt09L3WhargxGAxISkpCeno6xowZAwBwuVxIT0/H9OnTL3juF198AavVirvuuuuCxxmNRhiNxhr79Xq9336BQ8zy51U4XPxDogB//iypJta3sljfymJ9K6s+9V2fn4vq3VKpqamYNGkS+vTpg759+2LBggUoLS3FlClTAAATJ05EixYtMG/ePK/z3n//fYwZMwaRkZFqFPuCLBxQTEREpBrVw824ceOQn5+PWbNmIScnB71798bq1as9g4yzsrKg0Xjf1JWZmYn169djzZo1ahT5ovhUcCIiIvWoHm4AYPr06efthlq3bl2NfZ06dYIQws+lajjOc0NERKQe1SfxC0TubimHS8Dm4MMziYiIlMRw4wfubimArTdERERKY7jxA4NOA51GAgCU2TmomIiISEkMN37CJ4MTERGpg+HGTywcVExERKQKhhs/sRjkG9HYckNERKQshhs/qZrrhmNuiIiIlMRw4yfsliIiIlIHw42fcEAxERGROhhu/MTzfCk7ww0REZGSGG78xD2guJxjboiIiBTFcOMn7JYiIiJSB8ONn1j0HFBMRESkBoYbP7Gw5YaIiEgVDDd+YuYkfkRERKpguPETzzw3fHAmERGRohhu/IQDiomIiNTBcOMnHHNDRESkDoYbP+HjF4iIiNTBcOMnZr17QDHH3BARESmJ4cZP2HJDRESkDoYbP+GzpYiIiNTBcOMnvFuKiIhIHQw3fuJ+cKbN4YLTJVQuDRERUdPBcOMn7m4pgIOKiYiIlMRw4ydGnQaSJG9zUDEREZFyGG78RJIkz5PBOe6GiIhIOQw3fsSHZxIRESmP4caP+PBMIiIi5THc+BGfL0VERKQ8hhs/4lw3REREymO48SM+goGIiEh5DDd+VPXwTIYbIiIipTDc+FHVmBsOKCYiIlIKw40fsVuKiIhIeQw3fmTmk8GJiIgUx3DjR2y5ISIiUh7DjR9ZPDMUc8wNERGRUhhu/MjMZ0sREREpjuHGj9gtRUREpDyGGz/iDMVERETKY7jxI8+YG94tRUREpBiGGz+q6pbigGIiIiKlMNz4EbuliIiIlMdw40ccUExERKQ8hhs/svDBmURERIpjuPEjd7dUud0Jl0uoXBoiIqKmgeHGj9zdUgBQ4WDrDRERkRIYbvzIPUMxwK4pIiIipTDc+JFGI8Gkl6uYg4qJiIiUwXDjZ1UPz2S4ISIiUgLDjZ9VPTyTE/kREREpQfVws3DhQiQmJsJkMiE5ORlbtmy54PGFhYWYNm0a4uPjYTQa0bFjR6xcuVKh0tYf57ohIiJSlk7ND1+6dClSU1OxaNEiJCcnY8GCBRg+fDgyMzMRExNT43ibzYahQ4ciJiYGy5YtQ4sWLXDs2DGEhYUpX/g6snCWYiIiIkWpGm7mz5+Pe++9F1OmTAEALFq0CCtWrMDixYvx+OOP1zh+8eLFOH36NDZu3Ai9Xg8ASExMVLLI9eZ5BAMfnklERKQI1cKNzWbD9u3bMXPmTM8+jUaDIUOGYNOmTbWe8+233yIlJQXTpk3DN998g+joaNx55534xz/+Aa1WW+s5VqsVVqvV87qoqAgAYLfbYbfbffiN4Lle9euadHLPX0m51eef19TVVt/kP6xvZbG+lcX6VlZD6rs+x6oWbgoKCuB0OhEbG+u1PzY2Fvv376/1nD/++AM//PADxo8fj5UrV+LQoUN44IEHYLfbMXv27FrPmTdvHubOnVtj/5o1a2CxWC79i9QiLS3Ns114SgNAg2279iAod7dfPq+pq17f5H+sb2WxvpXF+lZWfeq7rKyszseq2i1VXy6XCzExMXjnnXeg1WqRlJSEEydO4MUXXzxvuJk5cyZSU1M9r4uKipCQkIBhw4YhNDTUp+Wz2+1IS0vD0KFDPd1mP1Xsxa5TJ9GmfSeMuq6tTz+vqautvsl/WN/KYn0ri/WtrIbUt7vnpS5UCzdRUVHQarXIzc312p+bm4u4uLhaz4mPj4der/fqgurSpQtycnJgs9lgMBhqnGM0GmE0Gmvs1+v1fvsFrn7tYJO8tjrBPzB+4s+fJdXE+lYW61tZrG9l1ae+6/NzUe1WcIPBgKSkJKSnp3v2uVwupKenIyUlpdZz+vfvj0OHDsHlcnn2HThwAPHx8bUGm8bAzLuliIiIFKXqPDepqal499138eGHHyIjIwP3338/SktLPXdPTZw40WvA8f3334/Tp09jxowZOHDgAFasWIFnn30W06ZNU+srXJRFLzeOlds5iR8REZESVB1zM27cOOTn52PWrFnIyclB7969sXr1as8g46ysLGg0VfkrISEB33//PR5++GH07NkTLVq0wIwZM/CPf/xDra9wUZznhoiISFmqDyiePn06pk+fXut769atq7EvJSUFmzdv9nOpfIfdUkRERMpS/fELgc7dclPBSfyIiIgUwXDjZ+yWIiIiUhbDjZ+ZDXLPH8MNERGRMhhu/KzqqeC8W4qIiEgJDDd+ZtazW4qIiEhJDDd+VtVyw3BDRESkBIYbP7O4x9zYnRBCqFwaIiKiwMdw42fueW6cLgGb03WRo4mIiOhSMdz4mbtbCmDXFBERkRIYbvxMr9VAr5UAcFAxERGREhhuFMA7poiIiJTDcKMA96BidksRERH5H8ONAqoewcCJ/IiIiPyN4UYBnieD8+GZREREfsdwowBO5EdERKQchhsF8OGZREREymG4UYBFz4dnEhERKYXhRgFVA4rZckNERORvDDcKMDPcEBERKYbhRgGeAcW8W4qIiMjvGG4UUDWgmGNuiIiI/I3hRgEcc0NERKScBoWbDz/8ECtWrPC8/vvf/46wsDD069cPx44d81nhAgXnuSEiIlJOg8LNs88+C7PZDADYtGkTFi5ciBdeeAFRUVF4+OGHfVrAQMAHZxIRESlH15CTjh8/jvbt2wMAvv76a4wdOxZTp05F//79MXDgQF+WLyDwwZlERETKaVDLTXBwME6dOgUAWLNmDYYOHQoAMJlMKC8v913pAoRnzI2dA4qJiIj8rUEtN0OHDsU999yDK664AgcOHMCoUaMAAL///jsSExN9Wb6AwHluiIiIlNOglpuFCxciJSUF+fn5+PLLLxEZGQkA2L59O+644w6fFjAQcEAxERGRchrUchMWFoY33nijxv65c+decoECEW8FJyIiUk6DWm5Wr16N9evXe14vXLgQvXv3xp133okzZ874rHCBwswBxURERIppULh57LHHUFRUBADYs2cPHnnkEYwaNQpHjhxBamqqTwsYCNxPBbc5XXA4XSqXhoiIKLA1qFvqyJEj6Nq1KwDgyy+/xI033ohnn30WO3bs8AwupiruAcUAUGZ3IlTLiaGJiIj8pUH/yhoMBpSVlQEA1q5di2HDhgEAIiIiPC06VMWo00AjydvsmiIiIvKvBrXcDBgwAKmpqejfvz+2bNmCpUuXAgAOHDiAli1b+rSAgUCSJFgMOpRYHRxUTERE5GcNarl54403oNPpsGzZMrz11lto0aIFAGDVqlUYMWKETwsYKKrmuuFEfkRERP7UoJabVq1a4bvvvqux/5VXXrnkAgUqznVDRESkjAaFGwBwOp34+uuvkZGRAQDo1q0bbrrpJmi12ouc2TTx4ZlERETKaFC4OXToEEaNGoUTJ06gU6dOAIB58+YhISEBK1asQLt27XxayEDAifyIiIiU0aAxNw8++CDatWuH48ePY8eOHdixYweysrLQpk0bPPjgg74uY0DwPBmcD88kIiLyqwa13Pz000/YvHkzIiIiPPsiIyPx3HPPoX///j4rXCDhwzOJiIiU0aCWG6PRiOLi4hr7S0pKYDAYLrlQgYgDiomIiJTRoHBz4403YurUqfj1118hhIAQAps3b8Z9992Hm266yddlDAgcc0NERKSMBoWb1157De3atUNKSgpMJhNMJhP69euH9u3bY8GCBT4u4mVEuKB3lNT6llkv9wAy3BAREflXg8bchIWF4ZtvvsGhQ4c8t4J36dIF7du392nhLiuHf4Tus/FI0ccCuK3G21XdUhxQTERE5E91DjcXe9r3jz/+6NmeP39+w0t0uQptDsleihDnCQhR88nfHFBMRESkjDqHm507d9bpOEmSGlyYy1pEWwiNHjqXFfaz/wOivef68Yy5sTPcEBER+VOdw031lhmqhVYPRHUA8vZBys84b7jh3VJERET+1aABxVQ7ESXP1izlZ9Z4z2xwDyjmmBsiIiJ/YrjxIRHdBQAgFeyv8Z5Fz5YbIiIiJTDc+JCI7gwAkPIyarzHeW6IiIiUwXDjQ+5wg1MHAZd3iOHdUkRERMpoFOFm4cKFSExMhMlkQnJyMrZs2XLeY5csWQJJkrwWk8mkYGkvIKw1nJIekqMCOHPU662qB2cy3BAREfmT6uFm6dKlSE1NxezZs7Fjxw706tULw4cPR15e3nnPCQ0NRXZ2tmc5duyYgiW+AI0Wxabm8vY5XVNV3VIcUExERORPqoeb+fPn495778WUKVPQtWtXLFq0CBaLBYsXLz7vOZIkIS4uzrPExsYqWOILKza1lDfyvcONu1uqwu6CyyWULhYREVGToWq4sdls2L59O4YMGeLZp9FoMGTIEGzatOm855WUlKB169ZISEjAzTffjN9//12J4tZJkbmFvHGelhuAXVNERET+1KBnS/lKQUEBnE5njZaX2NhY7N9f83ZqAOjUqRMWL16Mnj174uzZs3jppZfQr18//P7772jZsmWN461WK6xWq+d1UVERAMBut8Nut/vw28jXdLfciLwMOKpdXyuqWmuKyipg0Bh9+tlNkfvn5+ufI9WO9a0s1reyWN/Kakh91+dYVcNNQ6SkpCAlJcXzul+/fujSpQvefvttPPXUUzWOnzdvHubOnVtj/5o1a2CxWHxePrNJbrkR+ZlYteJbCKmqig0aLWwuCSvXpCOqkYyBDgRpaWlqF6FJYX0ri/WtLNa3supT32VlZXU+VtVwExUVBa1Wi9zcXK/9ubm5iIuLq9M19Ho9rrjiChw6dKjW92fOnOn10M+ioiIkJCRg2LBhCA0NbXjha2G325G25nsIfRA09lKMTO4MRHX0vD939484XWpHcr9r0CkuxKef3RTZ7XakpaVh6NCh0Ov1ahcn4LG+lcX6VhbrW1kNqW93z0tdqBpuDAYDkpKSkJ6ejjFjxgAAXC4X0tPTMX369Dpdw+l0Ys+ePRg1alSt7xuNRhiNNbuA9Hq9f36BJQ1EdCdIJ3dAf/ogEN/N85bFoMPpUjtsQuIfHh/y28+SasX6VhbrW1msb2XVp77r83NR/W6p1NRUvPvuu/jwww+RkZGB+++/H6WlpZgyZQoAYOLEiZg5c6bn+CeffBJr1qzBH3/8gR07duCuu+7CsWPHcM8996j1FWqKqpzM7zyDivkIBiIiIv9RfczNuHHjkJ+fj1mzZiEnJwe9e/fG6tWrPYOMs7KyoNFUZbAzZ87g3nvvRU5ODsLDw5GUlISNGzeia9euan2FGkRMZbipcTu4++GZDDdERET+onq4AYDp06eftxtq3bp1Xq9feeUVvPLKKwqUquHE+Vpu9JzIj4iIyN9U75YKRO6ng+PUYcBRdRs6u6WIiIj8j+HGH0LiAGMzQDiBgoOe3Xx4JhERkf8x3PiDJAExla03+VWTEZoru6U4QzEREZH/MNz4S0zNcTd8eCYREZH/Mdz4i3vcTbVww7uliIiI/I/hxl883VI1W244oJiIiMh/GG78xR1uTh8BbPLzMCwcUExEROR3DDf+EhQNWCIBCKDgAADeLUVERKQEhht/kaSqcTeVd0x5uqXsHFBMRETkLww3/uTumsrbBwAw6zmgmIiIyN8YbvzJczv4OS03DDdERER+w3DjT+fcDs4BxURERP7HcONP7m6ps1mAtYQDiomIiBTAcONPlgggOFbezs+EpXISv3LOUExEROQ3DDf+Vm1QcdXdUk4IIVQsFBERUeBiuPG3areDu7ulXAKwOlwqFoqIiChwMdz4W7WWmyCDDnqtBAA4WViuYqGIiIgCF8ONv3nCzX5oNRKuaBUOANh4+JSKhSIiIgpcDDf+Fl05103xSaC8EP3bRQEANjHcEBER+QXDjb+ZQoHQlvJ2/n70bx8JANh4uAAuFwcVExER+RrDjRI8MxVnoGfLMFgMWpwpsyMjp0jdchEREQUghhslxFTNVGzQadC3TQQAYOMhdk0RERH5GsONEjy3g8uPYXCPu9l4uECtEhEREQUshhslxHg/YyqlnTzuZsuR07A7Od8NERGRLzHcKCG6k7wuzQdKT6FrfCjCLXqU2pz47XihqkUjIiIKNAw3SjAEAeGJ8nZ+BjQaydN6w/luiIiIfIvhRinR3l1T/SrH3Ww4xHE3REREvsRwo5Rqt4MDQL/KlpudWYUotznVKhUREVHAYbhRSkxXeV0ZbtpEBSG+mQk2pwtbj55WsWBERESBheFGKe7HMORnAEJAkiRP1xTH3RAREfkOw41SojoCkgYoPwOU5AKo6prifDdERES+w3CjFL0JiGgrb1d2TfVvL7fc7DlxFmfL7GqVjIiIKKAw3CjJPZlf/n4AQFwzE9pGB0EIYPMRdk0RERH5AsONkjy3g+/z7PI8ioG3hBMREfkEw42SPLeD7/fsco+72cBBxURERD7BcKMk9+3g+fsBIQDIz5mSJOBQXglyiypULBwREVFgYLhRUkQ7QG8BrEVA1mYAQJjFgG7NQwEAm9h6Q0REdMkYbpSkMwDdx8rbW9/17OajGIiIiHyH4UZpfe+V1/u+BYrPne/mFERldxURERE1DMON0uJ7AS37Ai47sONDAEDfNhHQayWcKCxH1ukylQtIRER0eWO4UYO79WbbB4DTAYtBhysSwgEAGw5x3A0REdGlYLhRQ9ebAUsUUHwSyFwJQL5rCgA28FEMREREl4ThRg06I3DlRHm7cmCx+1EMmw6fgsvFcTdEREQNxXCjlj53yw/SPPIzkJ+J3glhMOu1OF1qQ2ZusdqlIyIiumwx3KglLAHoOFLe3voeDDoNrmoTAYC3hBMREV0Khhs19b1HXu/6FLCWoH+1W8KJiIioYRhu1NRmoDxrsa0Y2L3UM+7m1z9Owe50qVo0IiKiyxXDjZo0GuCqytabre+ha1wImpn1KLU5sft/Z9UtGxER0WWK4UZtve+UnzeVtw+a45uQ0raya4rjboiIiBqE4UZt5jCgx5/l7a3von97zndDRER0KRhuGgN311TGf3FNvBMAsONYISrsThULRUREdHliuGkM4nsCCcmAy4HWR79AXKgJNqcLazNy1S4ZERHRZadRhJuFCxciMTERJpMJycnJ2LJlS53O++yzzyBJEsaMGePfAirhKvl5U9L2Jbg9KR4A8EraATh41xQREVG9qB5uli5ditTUVMyePRs7duxAr169MHz4cOTl5V3wvKNHj+LRRx/FNddco1BJ/azrTUBQNFCcjamxGQiz6HE4vxRf7TyhdsmIiIguK6qHm/nz5+Pee+/FlClT0LVrVyxatAgWiwWLFy8+7zlOpxPjx4/H3Llz0bZtWwVL60c6I3DlJACAZdcHeGBgOwDAq2sPwurg2BsiIqK60qn54TabDdu3b8fMmTM9+zQaDYYMGYJNmzad97wnn3wSMTEx+Mtf/oJffvnlgp9htVphtVo9r4uKigAAdrsddrv9Er+BN/f1Gnzd3hOgWz8f0tFfMP76YrwfYsSJwnL838YjmJzS2oclDQyXXN9UL6xvZbG+lcX6VlZD6rs+x6oabgoKCuB0OhEbG+u1PzY2Fvv376/1nPXr1+P999/Hrl276vQZ8+bNw9y5c2vsX7NmDSwWS73LXBdpaWkNPveq0CvQ/Ox25H37JK6LnozPi7V4dc1+hBb8DpPWh4UMIJdS31R/rG9lsb6VxfpWVn3qu6ysrM7Hqhpu6qu4uBgTJkzAu+++i6ioqDqdM3PmTKSmpnpeFxUVISEhAcOGDUNoaKhPy2e325GWloahQ4dCr9c36BrSkSDgk7FILNqMOdPewa9v78Gx02XIDumMaQMDpAvOR3xR31R3rG9lsb6VxfpWVkPq293zUheqhpuoqChotVrk5nrf8pybm4u4uLgaxx8+fBhHjx7F6NGjPftcLvluIp1Oh8zMTLRr187rHKPRCKPRWONaer3eb7/Al3TtDoOBqI6QCg7Asm4OUofNxIzPduH99UcxqV8bhAcZfFvYAODPnyXVxPpWFutbWaxvZdWnvuvzc1F1QLHBYEBSUhLS09M9+1wuF9LT05GSklLj+M6dO2PPnj3YtWuXZ7npppswaNAg7Nq1CwkJCUoW3z8kCbhhPgAJ2PkfjNZtRZf4UBRbHVj002G1S0dERNToqX63VGpqKt599118+OGHyMjIwP3334/S0lJMmTIFADBx4kTPgGOTyYTu3bt7LWFhYQgJCUH37t1hMARIq0aba4ABDwMANN89iH8PCAEALNl4FDlnK9QsGRERUaOnergZN24cXnrpJcyaNQu9e/fGrl27sHr1as8g46ysLGRnZ6tcShUM+ifQ/Eqg4iz67f4n+rYKhdXhwms/HFS7ZERERI1aoxhQPH36dEyfPr3W99atW3fBc5csWeL7AjUGWj0w9j3g7WshHduAl6/4EddkJeHzrccx9Zq2SIwKUruEREREjZLqLTd0AZHtgFEvAgASdi3AlNYFcLgEXll7QOWCERERNV4MN41drzuAbrcAwomZZS8hCOX49reTyMiu+y1xRERETQnDTWMnScCNrwDNEmAozsL7MZ9DCOCl7zPVLhkREVGjxHBzOTCHAbe8C0gaXF30PW7WbUL6/jxsO3pa7ZIRERE1Ogw3l4vWKcA1jwIAnjN8gJZSPl74PhNCCJULRkRE1Lgw3FxOrvsH0LIvzK4SvGp4E9uP5GPNvtyLn0dERNSEMNxcTrQ6YOy7gCEESVImpmm/waOf/4ZDecVql4yIiKjRYLi53IQnAjfOBwA8pP8Kve07cPeSbThTalO3XERERI0Ew83lqOdtQM9x0MCF9w0voWvhOtz30XbYHC61S0ZERKQ6hpvL1U2vA11GwwAHFupfRZusZZj97V4OMCYioiaP4eZypTMCf/4QuHIStJLAc/r30Gz7Qixef0TtkhEREamK4eZyptECo1/1PEH8cf1ncH7/b/y4n3dQERFR08Vwc7mTJGDIHIihTwEApupWoPDTqTiYfUblghEREamD4SZASP0fhGP0QjihwZ+kdch57zacPsvnTxERUdPDcBNAdEl3oWzMElihxzXOLcheOAq20kK1i0VERKQohpsAE9L7ZuTd9DFKhBndbHuQ9/pQiOIctYtFRESkGIabAJRw5XBkjPgUBSIULSsOwPrqVRDbPgBcnAeHiIgCH8NNgLoqZRB+7Pcf/O5qDZOjCNJ3D8H1/lAge7faRSMiIvIrhpsA9ufhA7FrxHI85ZiIYmGG5sQ2iHeuA1Y9DlRwsDEREQUmhpsAN75fOwyaNBtjpFfwX+fVkIQL+PUt4I2rgL1fApzRmIiIAgzDTRMwoEMU3pk2Gi+HPo4JtsdxTMQBJTnAsruBj24BTh1Wu4hEREQ+w3DTRLSLDsbyB/rDnjgQw6zPYYFjLBwaA3D4B+DNq4H0p9hVRUREAYHhpgkJDzLg/+5Oxp+uaocFjrEYXP4cDgT3BZw24JeXgNeuALa8CzjtaheViIiowRhumhiDToN5t/TAv2/ogizEYVjBDLwcPgvO8HZAWQGw8lFgYTKw71uOxyEiossSw00TJEkS7rmmLd6b2AdBBh1ez+6MgaXzkHHlHCAoGjh9GPh8AvD+MCBrs9rFJSIiqheGmyZscJdYfPlAP7SKsOB4kQMjN3bEw3EfoDQ5FdBbgP9tARYPBz4bDxQcVLu4REREdcJw08R1jgvF9w9di79e1xZajYTlvxfh6s1X48v+30JcOQmQNMD+7+Suqm//BmT/pnaRiYiILojhhmA2aDFzZBd8O70/erVshmKrA4+szsOtJ27H0dvSgI4jAOEEdvwf8Pa1wDsDge1LAGux2kUnIiKqgeGGPLo1b4avHuiP2aO7IsigxfZjZzD0ozy8HPUkrBNXAt1uATR64ORO4L8zgJc7y+uTO9UuOhERkQfDDXnRaiRM6d8GaanXYUiXWNidAq//cAgjvrJjwxUvAo/sB4Y+BUS2B2wlcgvOOwOBRdcAW9/nXDlERKQ6hhuqVfMwM96dmIRFd12JmBAjjhSUYvx7v2L8p4ewveUEYPo2YPIKoMefAa0ByNkNrEgFXuooz3ycuRpw2NT+GkRE1AQx3NB5SZKEEd3jsfaR6zC5XyL0WgkbDp3C2Lc2YsqSrdij6wGMfQ94JBMYPg+I6gQ4yuVnVn06Dni5I/Ddw8CxjYDLpfbXISKiJoLhhi4q1KTHnJu64YdHBmJcnwRoNRJ+zMzH6DfWY+r/bUPGWR2Q8gAw7Vfg3h+Aqx8AgmOB8jPAtsXAByOBV3sCabOBnL1qfx0iIgpwOrULQJePhAgLnr+1J+4f2A6vpR/E8l0nsGZfLtbsy8UNPePx8JAOaN8iCWiRBAx7GjjyM7DnC3m247PHgQ0L5CW6C9B+MJA4AGiVApjDVP5mREQUSBhuqN4So4Iwf1xvPDCoHV5ZexArdmdjxe5srNqTjZt7t8Dkfono2bIZpHaDgHaDgBteBg6uAXZ/Lq/zM+Rl0xvyPDpxPeWgk3gN0DoFMDVT+ysSEdFljOGGGqx9TAgW3nklpg8qwitpB7BmXy6W7zyB5TtPoHuLUIxPbo2bejVHkNEMdL1ZXsoLgUNrgaO/AEfXA6cOAdm75OXcsNN+CNC6P6AzqPxNiYjocsJwQ5esS3wo3pnYB3v+dxYfbDiC7/ZkY++JIsz8ag+eWZGBP13RAuOvboXOcaFyF1SPW+UFAIqygWMb5C6so+vl51pVDzvGUKDd9UCnkUCHYYAlQsVvSkRElwOGG/KZHi2bYf643njixq5Ytv1/+GRLFo4UlOI/m4/hP5uPoU/rcIy/uhVGdo+HSa+VTwqNPyfsnASObgCOrAMOrAFK84B9X8uLpAESrgY6jQA6jQKaJarzRYmIqFFjuCGfCw8y4N5r2+IvA9pg0x+n8PGvx7Dm91xsO3YG246dwdz/7sOoHvG4sWc8kttEQquRqk4ObQ70/LO8uFzy7MeZK4EDq4HcvUDWRnlJmwVdRFv0RktoNv8BxHYFojoCYa0AjVa9L09ERKpjuCG/0Wgk9G8fhf7to5BXVIHPtx3Hp1uO40RhOT75NQuf/JqF6BAjbugRj9G94nFFQjg01YOORgO0TJKXwU8AhVnAge+BzFXA0V8gnf4DrfEHkP5z1Tk6ExDZAYjuKIedqI5ATBd5n5a/7kRETQH/tidFxISaMP36Drh/YHtsPFyA737Lxqq92cgvtmLJxqNYsvEomjcz4Yae8Rjdqzl6tGgGSZK8LxLWCuh7r7xYi+E4+AMOrf8KHSMAzalDQMFBwFEB5O6Rl+q0RjnkxPWQByzHdQdiu/HOLCKiAMRwQ4rSaiRc0yEa13SIxlNjumP9oXx891s21uzLxcmzFXj3lyN495cjaB1pwfBucbi+cwz6tA6HTnvOfJPGEIhOo5B5GGg3ahQ0ej3gcgKFx4D8A0BBZtU6L0N+DpZ7oHJ1Ya0rA0+PquDTrCVwbrAiIqLLBsMNqcag0+D6zrG4vnMsKuxOrMvMx3e7TyI9Iw/HTpXhnZ//wDs//4FmZj0GdorG4C6xuK5DNJpZ9LVfUKMFItrKS6cRVftdLqDwKJCzR54hOWePvBT9Tw5DhceA/d9VHW8Kq9bCUxl6ojsB2vN8LhERNSoMN9QomPRajOgehxHd41Bmc+DH/flIz8jFj5l5OFNmxze7TuKbXSeh1Ui4KjEcQ7rE4tr2dbwtXKOpCj1db67aX3ZaHqScs1d+8GfOXnlywYrCynl4fqk6VmuQA050l8p1J/lZWhFtGHqIiBoZhhtqdCwGHW7oGY8besbD6RLYkXUG6Rl5SM/IxcG8Emz+4zQ2/3EaABBp1GKj/Xf07xCDfu0iERVsrMcHRQBtrpUXN4cVyN9f1brjXqxFVdvVafRAZLuqsBPdSb7jKygGCI6W5+lhFxcRkaIYbqhRk1tqInBVYgQeH9kZWafKkL4/F+kZefj1yCmcsgJLt53A0m0nAACdYkPQr30k+reLQt+2EQg11bNVRWcE4nvJi5sQctdVzl45+BQcAPIz5bW9TN6Xv/88X8AIBEUDQVFAcEzldrTc4hPbXR7kbAhqYO0QEVFtGG7ostIq0oIp/dtgSv82OFNSjreWpcER0RabjpxBRnYRMnOLkZlbjA82HIVGAnq2DMPVbSOR1DocV7YKQ2R9WnbcJAkIT5SXLjdW7Xe55HE7ngHM+4GCQ0BJDlCSD9iKAadVPqbof+e7eGXQ6SaHndjKu7jCWsvdaUREVG8MN3TZCjbq0C1cYNTITtDr9ThdasOmw6ew8XABNh4+hSMFpdh1vBC7jhd6zmkTFYQrW4UjqbW8dIgJ9p5bpz40Gvn29LBWQIchNd+3lwOl+fJSki/PtlyaD5Tkya0+ub8DJbnA6T/kJeO/VecagoHI9nIXV0i8vK6+HRIPmEIbVm4iogDHcEMBIyLI4BmrAwAnC8ux8fApbDt6GtuPncHBvBIcKSjFkYJSfLlDbkkJMenQOyEMV7YKR8+WzdCjRTPEhJp8UyC9uSr8nE9JPpD3uxx0cn+XBzjn7T//revVGULkx1cEx8phJ8S9jgOC4+R1SBy7vYioyWG4oYDVPMyMW5Na4taklgCAs2V27Dh+BjuOncH2Y2ew63ghiisc+OVgAX45WOA5LzbUiB4tmqF7Czns+DTwnCs4GggeCLQdWLXP6ZCfln7miPysreJs+QGjRSeqtq1n5W6vgmK5FehCDCHy57gHOQfVth0jD342BMmhjIOgiegyxnBDTUYzix6DOsVgUKcYAIDD6cL+nGLsyDqDXVmF2HPiLA7nlyC3yIrcojyszcjznOsOPJ3iQtAxNgSd40LRJioIBp0fxsVodUBMZ3k5H1upHHKKTwLFuXLoKalcF+dULfZSOQSdLpa7vupEkrvFDEHVlmBo9Rb0KrRD8+sxIK4rEN0ZCG3BIEREjU6jCDcLFy7Eiy++iJycHPTq1Quvv/46+vbtW+uxX331FZ599lkcOnQIdrsdHTp0wCOPPIIJEyYoXGq63Om0GnSvbKGZmCLvK7M5sO9kEXb/7yz2njh7wcCj00hoGx1UGXbk0NMpLgQJ4ZaGj+OpK0MQENVeXs5HCMBaLIce91gfzxigc7cL5BAknyhve17LNAASAWDtT9XKEVw570/nqnVoc0CjAyStPLGiRlvttU5+rTMCeguDERH5herhZunSpUhNTcWiRYuQnJyMBQsWYPjw4cjMzERMTEyN4yMiIvCvf/0LnTt3hsFgwHfffYcpU6YgJiYGw4cPV+EbUCCxGHTokxiBPolVEwS6A8/vJ4uwP6cYB3KLcSCnGMVWBw7kluBAbgm+253tOd6k16B9TDA6xoSgQ2wIOsQEo2NsCFqGm/0feqqTJHnQsSkUiOpw8eNdLsBRLrcK2Uoq11XbjrJCHN6Wjg5hLmgKDgCnD8vvndguL/WlM8u3yFsiq26XD4oCLFHya0skYAwBjMFyiDKGyGt2mxHRRagebubPn497770XU6ZMAQAsWrQIK1aswOLFi/H444/XOH7gwIFer2fMmIEPP/wQ69evZ7ghv6gt8AghkH22Apk58q3nByrXB/NKUGF3Ye+JIuw9UeR1HbNei/YxwegQG4z2McFoGxWENlHBaB1pgUmvVfpr1aTRVHVDoeZ/LITdjv0nwtDW/Swvh03u6srfL8/7416X5gPCCbgccmByOapeC1fVBR3lwNnj8lIfkrYy7FSGHnMYYI6QJ2U0h8uLZ7tyvylMPs4QzGBE1ASoGm5sNhu2b9+OmTNnevZpNBoMGTIEmzZtuuj5Qgj88MMPyMzMxPPPP+/PohJ5kSQJzcPMaB5mxqDOVUHA4XQh63QZDuaV4GBucWXLTjH+yC9Fud2JPZVdXd7XApo3M6NtdBDaRHkvzcPM0J/70NDGQme4+NigcwkhP+DUXgaUnZKX0ny5W6ysQF5X37aVANaSytajksprOOUB1dazF/6s2kga+UnwniWsats9oNpgqWwhspyzLY89gqmZHJT42A2iRkvVcFNQUACn04nY2Fiv/bGxsdi//zwzvgI4e/YsWrRoAavVCq1WizfffBNDhw6t9Vir1Qqr1ep5XVQk/2/abrfDbrf74FtUcV/P19el2jXW+k4IMyIhzIjrO0Z69jmcLhw/Uy6HnrxSHC0oxZFTZThSUIqiCgdOFJbjRGG5111bgDxDc4swE1pFWNA6woJWEebKtQUJEWZFW3x8Wt9aMxDSUl7qSriqdZOVQHKHnoqzQPlpSOVnKteFQPlpoPxM5T55kVx2+RrufZdI6IMqu/3CIKqFJWFqVjUgWx8EYazahiEIwt06pjPLXWw6ozyT9TktSo319ztQsb6V1ZD6rs+xqndLNURISAh27dqFkpISpKenIzU1FW3btq3RZQUA8+bNw9y5c2vsX7NmDSwWi1/Kl5aW5pfrUu0ut/puA6CNBRhkAURLoNQB5JUDeRUS8ssl5FUAeeUSTlUAdheQdbocWafLsR6nalyrmV4g3AhEGOV1uFEgwr02ACY//AlvfPWtARBVuVS+DKpc3ISARtihd5bB4CiFzlkmbztLoa/c1jnLoHNZoa1cdC4rtE6rZ5/OVQGdswJ6VzkAQLKXynejFWfjUju6BCQ4JT1cGj2cGkPltgEDtBYU/vEqbLpQWHUhsOlCKtdVrx1aMwDh+Z5Stau69wto5OOkRtoK2Ig0vt/vwFaf+i4rK6vzsZIQQjSkQL5gs9lgsViwbNkyjBkzxrN/0qRJKCwsxDfffFOn69xzzz04fvw4vv/++xrv1dZyk5CQgIKCAoSG+naGV7vdjrS0NAwdOhR6PZus/S3Q69vlEsgrseLYqbLKgFOGrNNlOHZafl1c4bjoNUJNOjQPMyMu1Ij4ZibENzMhLrRy3cyIuFBTnVt/Ar2+68zllB+kWlEIVJyFVHFW3i4vhGQ9K7ck2UoheQZkyyFIOnegtr0MEpT761dAkgdlV3bFiWrdcp6WJ70F0Jkg9JbKViWTvNZbINzbWj0g6eQxWl53xemq3Rl3+YUo/n4rqyH1XVRUhKioKJw9e/ai/36r2nJjMBiQlJSE9PR0T7hxuVxIT0/H9OnT63wdl8vlFWCqMxqNMBprPk9Ir9f77RfYn9emmgK5vhOMBiREhtTYL4TAmTI7sk6X4WRhOU6cKfd0bbm3z5bbUVThQFFOMfbnFNdydVlEkAFxoSY0DzOjZbgZzcPk7RaVS1Sw0esur0Cu77rRA0YTEFpz0HW9CAE47fLAaodVflyHo6JybYWjogQ7Nv6ApM6toK0olMcmuccilZ2qWgtnnT5OgpBDmbUIOItLbm26+Adqzlm01bYlOSTpzXJ3XWWAktfmqvFOekvlgPHwqkHhnu1wOZBpagnnLle1Qe0OOZAaguU5pC6Cv9/Kqk991+fnonq3VGpqKiZNmoQ+ffqgb9++WLBgAUpLSz13T02cOBEtWrTAvHnzAMjdTH369EG7du1gtVqxcuVK/Oc//8Fbb72l5tcgUpQkSYgIMiAiyIDeCWG1HlNidXiCT/bZCuScLcfJsxXIPiu/zi6sQLndidOlNpwutWFfdlGt1zFoNYgPM6F5MxPsRRrsXp2JmFA59EQGGxAVbER0iBERQYbGO/i5MZIkeVC2zlDr28JuR3ZGCVxJo6A931/qLpf8cFZI1cbs1LLttMuhprxQbllytzZVtjh59tnL5cHe9vLKkFVec5/TXhUcLkS4vO+O84vKCSeBakHGAZyvRczYDLBUu4uu2lpjbIaEU4cg7S0DDCZAawA0ejkQafRyGNPq5bFSxpCqpbZwRapTPdyMGzcO+fn5mDVrFnJyctC7d2+sXr3aM8g4KysLmmpPRy4tLcUDDzyA//3vfzCbzejcuTM++ugjjBs3Tq2vQNQoBRt16BgrTy5YGyEEisodOHm2HNlny3GisMIThk5WtgLlFlXA5nTh2KkyHDtVBkCDbQXHzvuZ4RY9ooKNiAk1IibEhJgQOfjEhMrbMZXbQQYtJN6Sfek0GkBjrsNxWkBvkh+z4UvuW/2r3+7vclYFm1oXIa8d1sqWqjLAVlYtQFXbthZ7B7DyM/J2+Rl5vJN7wsm6ct9ld+Zojbe0AK4EgKx361cH7jmYjCHyHXfGEHnAuFZfFYo0Wnlbo/N+rTPKIcqzNtXcp9V7T4hZfTJM93632uq5esisfo6klX9/vF5rURWOK9fVtyHJLW+ecjXeP8OqhxsAmD59+nm7odatW+f1+umnn8bTTz+tQKmIApskSWhm0aOZRY8u8bX3X9udLuSclUNP1qkS/LL1N0S1bIsz5Q4UlFiRX2xFQYkNp0utcAngTJkdZ8rsOJhXcsHPNuu1iAqRW30ig4yI9mwbEBViRFSwezGgmVnPINRYaTSAxgCg9tYnv3LYKlufiuR/ZDW6akv1cUCVY4CsxUDZaflOulrWrtJTyD+ZhejIMGhcDsBll1upXA557bTJ2+7Q5awcCuGepqA4+4LFDUhao3cYc9/5pzMAcT2AmxeqVrRGEW6IqHHSazVIiLAgIcKCKxNCYTi5C6NGdqrR9+10CRSW2VBQYkN+sRV5xRXIK7Yir6hqu6DYirxiK0qsDpTbnTh+uhzHT5fXoQwSIoOMiAoxyOtgeTu6slss3GJAmMWAMLMeYRY9Qk16ZWeCJnXoDHJLVF1bo3RGeQbs83Da7di8ciVGuSepvBiHVQ451iI5YFmLq17bSuQWLHc4ctnlB+K6t11OOSw5bXJIc1orW7KsldvV9nlaw5zy2uWs2VIGVI1lkjTwtLBUH+MEeF9HuM557ax/N6LTWhXyatR3HVoU/YjhhogumVYjITLYiMhgIzrF1d4N5lZmc1S2+FiRX2zDqVIrCoptKCixem3nl1hRXOGA3SmQU1SBnKKKOpVFkoBmZj3CzHo0qww94RY9woMMiLAY5HWQHIoiggwID9Ij3MLxQlRP7paKCwSmy5IQ8oLa1pVdXF6hrFoQc9qq1u6xUCphuCEiRVkMOrSO1KF1ZNBFj7U6nDhVIoedgpLK4FMtABWUWFFYZsfZcjsKy2wotTkhBFBYZkdhmR04Vfd5MYKNOjQz6xFq1qOZWd6usVgMclCyGBBm0SPMYuD4IQosklSHsTQX/7OrNoYbImq0jDqt5zEXdWFzuFBYbsPZMjsKy+WAc6ZMfn26zIYzlXeGnSlzr+VQ5BLy3WUlVnm26PowaDVoZpFbh8Iqw0+ISY8Qkw6h56w9+816hFa+NujYYkTkaww3RBQwDDpN5V1apjqf43IJFFXIA6HPlle1AhWVV72u2i+vz5TJwcjmcMHmdCG/WB5c3RAmvQahJr0n8MhrPYKNGuSd0OD4z0cQHmxEiKn6++7ApIdJr2HLEdE5GG6IqEnTaCR5QLKlfnf8CCFQbnfKd4iV2jytRIXldhRX2FFc4UBxhR1F5Y5qr6ttW+V5YirsLlTY5cHWtZQOa08cvGA5dBoJQUYdgo06BBm1nm35ddV2sEleh3jWeq/XwSYdxx1RwGC4ISJqAEmSYDHoYDHo0KKO3WbVOV0CJRUOFFXYK2eTloOQvLbjTKkVe/YfQmRcC5TYXFVByVoVmFwCcLiEp2XpUhl0GgQZtLAYqoJSkEEHi0Hethi0CDbpEOIJTDUDUohRB4tRB7NeCy3vWiOVMNwQEalAq6maZyihlvftdjtWWg9g1KgetU47L4RAqc2Jkgp5rFBp5VJcbbvE6qxcy61GJVZ71XaFA0WV+yrs8i3ANocLNocLZ8p882Rso04DS2VYMhu0sBi0MOvltcWog0VfFZo868pjg4zyecHuUFXZEmXhAG6qA4YbIqLLkCRJni6nS2V3ulBS4UCZ3YkyqwOlNnldYnWgzOZEqc2BMquz8rXD063mDlbudXGFHJ5clU8/sDpcsPowLAHyjTzuUBRs1MFilAOTSS+vzQYtTLrKtV4Lk17j2e9eyyHLO3DpJResTnkMFl3+GG6IiJo4vVaD8CADwn1wLSEErA4XymxOlNkcKLc5PQHJvV3uDkyVx5TZnCizVu0rrRaqSq2Vwcrm8EzBUmpzotTmPM84pUuhw9+3pMGo01SFIXdwMpy7rfG8rv6+Wa+FyXOspvbz9VoYdRpONulHDDdEROQzkiR5/sGPCPLdYxncA7hLrFWtSO4QVG53osIur8ttTlgdLpRX31+5XW6vClfuY8tsjsrjqmbndbc4FcJ3LU61Meg0MOk0nvoy6TUw6uS1Sa+FUVe3IGXSaWDUV1tXu071dVMaA8VwQ0REjV71Ady48CTYDWK12vDNilW49vohcAipMhS5PKGo3CYHpTJbVZCy2p3V3nd59pfZHJV3wXmHrorKMU1u7jFORRUXecK6j+i1Eow6udXIVNl6ZKi2XT0gGXWaykULo77atk4Do14Dk07rOa+2YGYxaBEZbFTke9WG4YaIiJo8jUaCUQtEBhlqHcDtK06X8ASeisoWI6ujcm13osJRta96YLpQkLI6XLDaXahwOGGtPNf92u6sGkNkdwrYnQ6U+Lo3rxa9WjbDN9MH+P+DzoPhhoiISCHaynmJgnwwELwunC7hCU82hxyKrNXWVod3wLJV7nMHJs925ftV51VuV7te9euYDVpFvt/5MNwQEREFKK3G3Z2ndkmUxekoiYiIKKAw3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCCsMNERERBRSGGyIiIgooDDdEREQUUBhuiIiIKKAw3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCCsMNERERBRSd2gVQmhACAFBUVOTza9vtdpSVlaGoqAh6vd7n1ydvrG9lsb6VxfpWFutbWQ2pb/e/2+5/xy+kyYWb4uJiAEBCQoLKJSEiIqL6Ki4uRrNmzS54jCTqEoECiMvlwsmTJxESEgJJknx67aKiIiQkJOD48eMIDQ316bWpJta3sljfymJ9K4v1rayG1LcQAsXFxWjevDk0mguPqmlyLTcajQYtW7b062eEhobyD4eCWN/KYn0ri/WtLNa3supb3xdrsXHjgGIiIiIKKAw3REREFFAYbnzIaDRi9uzZMBqNahelSWB9K4v1rSzWt7JY38ryd303uQHFREREFNjYckNEREQBheGGiIiIAgrDDREREQUUhhsiIiIKKAw3PrJw4UIkJibCZDIhOTkZW7ZsUbtIAePnn3/G6NGj0bx5c0iShK+//trrfSEEZs2ahfj4eJjNZgwZMgQHDx5Up7CXuXnz5uGqq65CSEgIYmJiMGbMGGRmZnodU1FRgWnTpiEyMhLBwcEYO3YscnNzVSrx5e2tt95Cz549PROZpaSkYNWqVZ73Wdf+9dxzz0GSJDz00EOefaxz35kzZw4kSfJaOnfu7Hnfn3XNcOMDS5cuRWpqKmbPno0dO3agV69eGD58OPLy8tQuWkAoLS1Fr169sHDhwlrff+GFF/Daa69h0aJF+PXXXxEUFIThw4ejoqJC4ZJe/n766SdMmzYNmzdvRlpaGux2O4YNG4bS0lLPMQ8//DD++9//4osvvsBPP/2EkydP4pZbblGx1Jevli1b4rnnnsP27duxbds2XH/99bj55pvx+++/A2Bd+9PWrVvx9ttvo2fPnl77Wee+1a1bN2RnZ3uW9evXe97za10LumR9+/YV06ZN87x2Op2iefPmYt68eSqWKjABEMuXL/e8drlcIi4uTrz44ouefYWFhcJoNIpPP/1UhRIGlry8PAFA/PTTT0IIuW71er344osvPMdkZGQIAGLTpk1qFTOghIeHi/fee4917UfFxcWiQ4cOIi0tTVx33XVixowZQgj+fvva7NmzRa9evWp9z991zZabS2Sz2bB9+3YMGTLEs0+j0WDIkCHYtGmTiiVrGo4cOYKcnByv+m/WrBmSk5NZ/z5w9uxZAEBERAQAYPv27bDb7V713blzZ7Rq1Yr1fYmcTic+++wzlJaWIiUlhXXtR9OmTcMNN9zgVbcAf7/94eDBg2jevDnatm2L8ePHIysrC4D/67rJPTjT1woKCuB0OhEbG+u1PzY2Fvv371epVE1HTk4OANRa/+73qGFcLhceeugh9O/fH927dwcg17fBYEBYWJjXsazvhtuzZw9SUlJQUVGB4OBgLF++HF27dsWuXbtY137w2WefYceOHdi6dWuN9/j77VvJyclYsmQJOnXqhOzsbMydOxfXXHMN9u7d6/e6ZrgholpNmzYNe/fu9eojJ9/r1KkTdu3ahbNnz2LZsmWYNGkSfvrpJ7WLFZCOHz+OGTNmIC0tDSaTSe3iBLyRI0d6tnv27Ink5GS0bt0an3/+Ocxms18/m91SlygqKgparbbGCO/c3FzExcWpVKqmw13HrH/fmj59Or777jv8+OOPaNmypWd/XFwcbDYbCgsLvY5nfTecwWBA+/btkZSUhHnz5qFXr1549dVXWdd+sH37duTl5eHKK6+ETqeDTqfDTz/9hNdeew06nQ6xsbGscz8KCwtDx44dcejQIb//fjPcXCKDwYCkpCSkp6d79rlcLqSnpyMlJUXFkjUNbdq0QVxcnFf9FxUV4ddff2X9N4AQAtOnT8fy5cvxww8/oE2bNl7vJyUlQa/Xe9V3ZmYmsrKyWN8+4nK5YLVaWdd+MHjwYOzZswe7du3yLH369MH48eM926xz/ykpKcHhw4cRHx/v/9/vSx6STOKzzz4TRqNRLFmyROzbt09MnTpVhIWFiZycHLWLFhCKi4vFzp07xc6dOwUAMX/+fLFz505x7NgxIYQQzz33nAgLCxPffPON2L17t7j55ptFmzZtRHl5ucolv/zcf//9olmzZmLdunUiOzvbs5SVlXmOue+++0SrVq3EDz/8ILZt2yZSUlJESkqKiqW+fD3++OPip59+EkeOHBG7d+8Wjz/+uJAkSaxZs0YIwbpWQvW7pYRgnfvSI488ItatWyeOHDkiNmzYIIYMGSKioqJEXl6eEMK/dc1w4yOvv/66aNWqlTAYDKJv375i8+bNahcpYPz4448CQI1l0qRJQgj5dvAnnnhCxMbGCqPRKAYPHiwyMzPVLfRlqrZ6BiA++OADzzHl5eXigQceEOHh4cJisYg//elPIjs7W71CX8buvvtu0bp1a2EwGER0dLQYPHiwJ9gIwbpWwrnhhnXuO+PGjRPx8fHCYDCIFi1aiHHjxolDhw553vdnXUtCCHHp7T9EREREjQPH3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCCsMNERERBRSGGyIiIgooDDdEREQUUBhuiKhJkiQJX3/9tdrFICI/YLghIsVNnjwZkiTVWEaMGKF20YgoAOjULgARNU0jRozABx984LXPaDSqVBoiCiRsuSEiVRiNRsTFxXkt4eHhAOQuo7feegsjR46E2WxG27ZtsWzZMq/z9+zZg+uvvx5msxmRkZGYOnUqSkpKvI5ZvHgxunXrBqPRiPj4eEyfPt3r/YKCAvzpT3+CxWJBhw4d8O2333reO3PmDMaPH4/o6GiYzWZ06NChRhgjosaJ4YaIGqUnnngCY8eOxW+//Ybx48fj9ttvR0ZGBgCgtLQUw4cPR3h4OLZu3YovvvgCa9eu9Qovb731FqZNm4apU6diz549+Pbbb9G+fXuvz5g7dy5uu+027N69G6NGjcL48eNx+vRpz+fv27cPq1atQkZGBt566y1ERUUpVwFE1HA+efwmEVE9TJo0SWi1WhEUFOS1PPPMM0II+enk9913n9c5ycnJ4v777xdCCPHOO++I8PBwUVJS4nl/xYoVQqPRiJycHCGEEM2bNxf/+te/zlsGAOLf//6353VJSYkAIFatWiWEEGL06NFiypQpvvnCRKQojrkhIlUMGjQIb731lte+iIgIz3ZKSorXeykpKdi1axcAICMjA7169UJQUJDn/f79+8PlciEzMxOSJOHkyZMYPHjwBcvQs2dPz3ZQUBBCQ0ORl5cHALj//vsxduxY7NixA8OGDcOYMWPQr1+/Bn1XIlIWww0RqSIoKKhGN5GvmM3mOh2n1+u9XkuSBJfLBQAYOXIkjh07hpUrVyItLQ2DBw/GtGnT8NJLL/m8vETkWxxzQ0SN0ubNm2u87tKlCwCgS5cu+O2331BaWup5f8OGDdBoNOjUqRNCQkKQmJiI9PT0SypDdHQ0Jk2ahI8++ggLFizAO++8c0nXIyJlsOWGiFRhtVqRk5PjtU+n03kG7X7xxRfo06cPBgwYgI8//hhbtmzB+++/DwAYP348Zs+ejUmTJmHOnDnIz8/H3/72N0yYMAGxsbEAgDlz5uC+++5DTEwMRo4cieLiYmzYsAF/+9vf6lS+WbNmISkpCd26dYPVasV3333nCVdE1Lgx3BCRKlavXo34+HivfZ06dcL+/fsByHcyffbZZ3jggQcQHx+PTz/9FF27dgUAWCwWfP/995gxYwauuuoqWCwWjB07FvPnz/dca9KkSaioqMArr7yCRx99FFFRUbj11lvrXD6DwYCZM2fi6NGjMJvNuOaaa/DZZ5/54JsTkb9JQgihdiGIiKqTJAnLly/HmDFj1C4KEV2GOOaGiIiIAgrDDREREQUUjrkhokaHveVEdCnYckNEREQBheGGiIiIAgrDDREREQUUhhsiIiIKKAw3REREFFAYboiIiCigMNwQERFRQGG4ISIiooDCcENEREQB5f8B6gheG+LeE90AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["# Оценка качества работы модели на тестовых данных\n","scores = model.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"gluZAYRN55bg","executionInfo":{"status":"ok","timestamp":1758184762572,"user_tz":-180,"elapsed":485,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"68ed4ca2-a55e-4be3-9e6f-44620f18ca88"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9165 - loss: 0.2995\n","Loss on test data: 0.28918400406837463\n","Accuracy on test data: 0.9185000061988831\n"]}]},{"cell_type":"code","source":["#1. создаем модель - объявляем ее объектом класса Sequential\n","model_100 = Sequential()\n","# 2. добавляем первый скрытый слой\n","model_100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n","# 3. добавляем второй скрытый слой\n","#model.add(Dense(units=100, activation='sigmoid'))\n","# 4. добавляем выходной слой\n","model_100.add(Dense(units=num_classes, activation='softmax'))\n","# 5. компилируем модель\n","model_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","\n","# вывод информации об архитектуре модели\n","print(model_100.summary())\n","# Обучаем модель\n","H = model_100.fit(X_train, y_train, validation_split=0.1, epochs=50)\n","\n","# вывод графика ошибки по эпохам\n","plt.plot(H.history['loss'])\n","plt.plot(H.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss', 'val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","# Оценка качества работы модели на тестовых данных\n","scores = model_100.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"01wkeKTD_w_5","executionInfo":{"status":"ok","timestamp":1758185591728,"user_tz":-180,"elapsed":334061,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"d985c0e9-18a8-4fec-bbc0-be4bf17f667a"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_2\"\u001b[0m\n"],"text/html":["
Model: \"sequential_2\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_3 (Dense)                 │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_4 (Dense)                 │ (None, 10)             │         1,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"],"text/html":["
 Total params: 79,510 (310.59 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"],"text/html":["
 Trainable params: 79,510 (310.59 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["None\n","Epoch 1/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 4ms/step - accuracy: 0.5408 - loss: 1.8881 - val_accuracy: 0.8193 - val_loss: 0.9683\n","Epoch 2/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.8315 - loss: 0.8472 - val_accuracy: 0.8612 - val_loss: 0.6255\n","Epoch 3/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8637 - loss: 0.5878 - val_accuracy: 0.8780 - val_loss: 0.5065\n","Epoch 4/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8750 - loss: 0.4923 - val_accuracy: 0.8863 - val_loss: 0.4451\n","Epoch 5/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8874 - loss: 0.4305 - val_accuracy: 0.8917 - val_loss: 0.4081\n","Epoch 6/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8900 - loss: 0.4001 - val_accuracy: 0.8977 - val_loss: 0.3835\n","Epoch 7/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8981 - loss: 0.3727 - val_accuracy: 0.9022 - val_loss: 0.3661\n","Epoch 8/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9003 - loss: 0.3590 - val_accuracy: 0.9028 - val_loss: 0.3525\n","Epoch 9/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9050 - loss: 0.3418 - val_accuracy: 0.9062 - val_loss: 0.3416\n","Epoch 10/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9081 - loss: 0.3291 - val_accuracy: 0.9072 - val_loss: 0.3321\n","Epoch 11/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9084 - loss: 0.3257 - val_accuracy: 0.9092 - val_loss: 0.3248\n","Epoch 12/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9120 - loss: 0.3130 - val_accuracy: 0.9127 - val_loss: 0.3173\n","Epoch 13/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9125 - loss: 0.3081 - val_accuracy: 0.9137 - val_loss: 0.3112\n","Epoch 14/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9130 - loss: 0.3029 - val_accuracy: 0.9133 - val_loss: 0.3068\n","Epoch 15/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9166 - loss: 0.2955 - val_accuracy: 0.9155 - val_loss: 0.3016\n","Epoch 16/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9149 - loss: 0.2942 - val_accuracy: 0.9160 - val_loss: 0.2975\n","Epoch 17/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9161 - loss: 0.2912 - val_accuracy: 0.9188 - val_loss: 0.2927\n","Epoch 18/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9204 - loss: 0.2797 - val_accuracy: 0.9192 - val_loss: 0.2886\n","Epoch 19/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9218 - loss: 0.2758 - val_accuracy: 0.9202 - val_loss: 0.2853\n","Epoch 20/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9227 - loss: 0.2716 - val_accuracy: 0.9205 - val_loss: 0.2811\n","Epoch 21/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9244 - loss: 0.2680 - val_accuracy: 0.9215 - val_loss: 0.2782\n","Epoch 22/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9251 - loss: 0.2627 - val_accuracy: 0.9232 - val_loss: 0.2748\n","Epoch 23/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9269 - loss: 0.2604 - val_accuracy: 0.9243 - val_loss: 0.2705\n","Epoch 24/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9261 - loss: 0.2604 - val_accuracy: 0.9253 - val_loss: 0.2677\n","Epoch 25/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9258 - loss: 0.2574 - val_accuracy: 0.9257 - val_loss: 0.2650\n","Epoch 26/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9292 - loss: 0.2498 - val_accuracy: 0.9253 - val_loss: 0.2621\n","Epoch 27/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9298 - loss: 0.2452 - val_accuracy: 0.9277 - val_loss: 0.2592\n","Epoch 28/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9287 - loss: 0.2478 - val_accuracy: 0.9282 - val_loss: 0.2562\n","Epoch 29/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9309 - loss: 0.2459 - val_accuracy: 0.9283 - val_loss: 0.2547\n","Epoch 30/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9329 - loss: 0.2370 - val_accuracy: 0.9300 - val_loss: 0.2511\n","Epoch 31/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9334 - loss: 0.2355 - val_accuracy: 0.9302 - val_loss: 0.2479\n","Epoch 32/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9331 - loss: 0.2340 - val_accuracy: 0.9305 - val_loss: 0.2457\n","Epoch 33/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9327 - loss: 0.2344 - val_accuracy: 0.9308 - val_loss: 0.2439\n","Epoch 34/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9350 - loss: 0.2279 - val_accuracy: 0.9318 - val_loss: 0.2414\n","Epoch 35/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9357 - loss: 0.2247 - val_accuracy: 0.9323 - val_loss: 0.2385\n","Epoch 36/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9379 - loss: 0.2203 - val_accuracy: 0.9328 - val_loss: 0.2367\n","Epoch 37/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9376 - loss: 0.2205 - val_accuracy: 0.9332 - val_loss: 0.2335\n","Epoch 38/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9370 - loss: 0.2208 - val_accuracy: 0.9338 - val_loss: 0.2317\n","Epoch 39/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9395 - loss: 0.2140 - val_accuracy: 0.9343 - val_loss: 0.2296\n","Epoch 40/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9394 - loss: 0.2125 - val_accuracy: 0.9342 - val_loss: 0.2284\n","Epoch 41/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9379 - loss: 0.2143 - val_accuracy: 0.9355 - val_loss: 0.2253\n","Epoch 42/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9409 - loss: 0.2079 - val_accuracy: 0.9357 - val_loss: 0.2233\n","Epoch 43/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9414 - loss: 0.2074 - val_accuracy: 0.9367 - val_loss: 0.2213\n","Epoch 44/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9435 - loss: 0.2002 - val_accuracy: 0.9377 - val_loss: 0.2196\n","Epoch 45/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9444 - loss: 0.1993 - val_accuracy: 0.9375 - val_loss: 0.2179\n","Epoch 46/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9429 - loss: 0.2023 - val_accuracy: 0.9382 - val_loss: 0.2154\n","Epoch 47/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9435 - loss: 0.1967 - val_accuracy: 0.9398 - val_loss: 0.2141\n","Epoch 48/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9447 - loss: 0.1931 - val_accuracy: 0.9400 - val_loss: 0.2119\n","Epoch 49/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9435 - loss: 0.1983 - val_accuracy: 0.9402 - val_loss: 0.2105\n","Epoch 50/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9463 - loss: 0.1900 - val_accuracy: 0.9395 - val_loss: 0.2090\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY8lJREFUeJzt3Xd4VGWiBvD3TG+Z9AqB0AktFAUDiCBN0CguXgtc2u7KorAWFndlVynuKoqKWFAsi6zXgoqCuhQJKIIISBeV3oKQDskkM5mSmXP/OJlJhgRImTmThPf3POeZmTNnznz5Epd3vyqIoiiCiIiIqJlQhLoARERERIHEcENERETNCsMNERERNSsMN0RERNSsMNwQERFRs8JwQ0RERM0Kww0RERE1Kww3RERE1Kww3BAREVGzwnBDRCE1efJkmEymUBcj5ARBwIwZM0JdDKJmgeGGqJlavnw5BEHA7t27Q10UIiJZMdwQERFRs8JwQ0RERM0Kww3RNW7fvn0YNWoUzGYzTCYThg4dih07dvhd43K5MH/+fHTo0AE6nQ7R0dEYOHAgMjMzfdfk5ORgypQpaNmyJbRaLRITE3HHHXfg9OnTtSrHyZMnMXLkSBiNRiQlJeGpp56CKIoAAFEUkZKSgjvuuKPa5+x2O8LDw/GnP/3pqt/x/vvvo0+fPtDr9YiKisK9996Ls2fP+l0zePBgdOvWDXv27EH//v2h1+vRpk0bLF26tNr98vLy8Ic//AHx8fHQ6XRIS0vDf/7zn2rXeTwevPzyy+jevTt0Oh1iY2Nxyy231NhluHr1anTr1g1arRZdu3bF+vXr/d4vKSnBI488gpSUFGi1WsTFxWH48OHYu3fvVX9+omsFww3RNeyXX37BjTfeiAMHDuCvf/0rnnzySZw6dQqDBw/Gzp07fdfNmzcP8+fPx5AhQ/Daa6/hH//4B1q1auX3D+rYsWOxatUqTJkyBa+//joeeughlJSUICsr66rlcLvduOWWWxAfH4+FCxeiT58+mDt3LubOnQtAGmz7v//7v1i3bh0uXLjg99mvvvoKFosF//u//3vF73j66acxceJEdOjQAYsWLcIjjzyCTZs2YdCgQSgqKvK79uLFixg9ejT69OmDhQsXomXLlnjggQewbNky3zVlZWUYPHgw/u///g/jx4/H888/j/DwcEyePBkvv/yy3/3+8Ic/4JFHHkFycjKee+45PP7449DpdNVC5Pfff48HH3wQ9957LxYuXAi73Y6xY8eisLDQd820adPwxhtvYOzYsXj99dcxa9Ys6PV6HDp06Kr1THTNEImoWXr33XdFAOKuXbsue82YMWNEjUYjnjhxwnfu/PnzYlhYmDho0CDfubS0NPHWW2+97H0uXrwoAhCff/75Opdz0qRJIgDxz3/+s++cx+MRb731VlGj0Yj5+fmiKIrikSNHRADiG2+84ff522+/XUxJSRE9Hs9lv+P06dOiUqkUn376ab/zBw8eFFUqld/5m266SQQgvvjii75zDodD7NmzpxgXFyc6nU5RFEVx8eLFIgDx/fff913ndDrF9PR00WQyiRaLRRRFUfzmm29EAOJDDz1UrVxVywxA1Gg04vHjx33nDhw4IAIQX331Vd+58PBwcfr06Zf9WYlIFNlyQ3SNcrvd2LBhA8aMGYO2bdv6zicmJmLcuHH4/vvvYbFYAAARERH45ZdfcOzYsRrvpdfrodFosHnzZly8eLFe5ak6Ddo7LdrpdGLjxo0AgI4dO6Jfv3744IMPfNdduHAB69atw/jx4yEIwmXv/fnnn8Pj8eDuu+9GQUGB70hISECHDh3w7bff+l2vUqn8urk0Gg3+9Kc/IS8vD3v27AEArF27FgkJCbjvvvt816nVajz00EMoLS3Fd999BwD47LPPIAiCrxWqqkvLPGzYMLRr1873ukePHjCbzTh58qTvXEREBHbu3Inz589f9uclutYx3BBdo/Lz82Gz2dCpU6dq76WmpsLj8fjGozz11FMoKipCx44d0b17dzz22GP46aeffNdrtVo899xzWLduHeLj4zFo0CAsXLgQOTk5tSqLQqHwC1iAFGYA+I3ZmThxIrZt24YzZ84AAD799FO4XC5MmDDhivc/duwYRFFEhw4dEBsb63ccOnQIeXl5ftcnJSXBaDResTxnzpxBhw4doFD4/89oamqq730AOHHiBJKSkhAVFXW1akCrVq2qnYuMjPQLjAsXLsTPP/+M5ORk9O3bF/PmzfMLP0TEcENEtTBo0CCcOHECy5YtQ7du3fDOO++gd+/eeOedd3zXPPLIIzh69CgWLFgAnU6HJ598Eqmpqdi3b1/AynHvvfdCrVb7Wm/ef/99XHfddTUGtKo8Hg8EQcD69euRmZlZ7XjzzTcDVsaGUCqVNZ4XKwZWA8Ddd9+NkydP4tVXX0VSUhKef/55dO3aFevWrZOrmESNHsMN0TUqNjYWBoMBR44cqfbe4cOHoVAokJyc7DsXFRWFKVOm4KOPPsLZs2fRo0cPzJs3z+9z7dq1w1/+8hds2LABP//8M5xOJ1588cWrlsXj8VRrfTh69CgAICUlxa8Mt956Kz744AOcOXMG27Ztu2qrjbdcoiiiTZs2GDZsWLXjhhtu8Lv+/PnzsFqtVyxP69atcezYMXg8Hr/rDh8+7Hvf+93nz5+vNhC6IRITE/Hggw9i9erVOHXqFKKjo/H0008H7P5ETR3DDdE1SqlUYsSIEfjiiy/8un5yc3Px4YcfYuDAgTCbzQDgN1sHAEwmE9q3bw+HwwEAsNlssNvtfte0a9cOYWFhvmuu5rXXXvM9F0URr732GtRqNYYOHep33YQJE/Drr7/iscceg1KpxL333nvVe//ud7+DUqnE/Pnz/VpBvN916c9XXl7u15rjdDrx5ptvIjY2Fn369AEAjB49Gjk5Ofj444/9Pvfqq6/CZDLhpptuAiDNIhNFEfPnz69WrkvLcjVutxvFxcV+5+Li4pCUlFTreia6FqhCXQAiCq5ly5ZVWysFAB5++GH861//QmZmJgYOHIgHH3wQKpUKb775JhwOBxYuXOi7tkuXLhg8eDD69OmDqKgo7N69GytXrvQNAj569CiGDh2Ku+++G126dIFKpcKqVauQm5tbq/Ch0+mwfv16TJo0Cf369cO6deuwZs0a/P3vf0dsbKzftbfeeiuio6Px6aefYtSoUYiLi7vq/du1a4d//etfmD17Nk6fPo0xY8YgLCwMp06dwqpVqzB16lTMmjXLd31SUhKee+45nD59Gh07dsTHH3+M/fv346233oJarQYATJ06FW+++SYmT56MPXv2ICUlBStXrsS2bduwePFihIWFAQCGDBmCCRMm4JVXXsGxY8dwyy23wOPxYOvWrRgyZEid9pMqKSlBy5YtcddddyEtLQ0mkwkbN27Erl27atVCRnTNCN1ELSIKJu9U8MsdZ8+eFUVRFPfu3SuOHDlSNJlMosFgEIcMGSL+8MMPfvf617/+Jfbt21eMiIgQ9Xq92LlzZ/Hpp5/2TYsuKCgQp0+fLnbu3Fk0Go1ieHi42K9fP/GTTz65ajknTZokGo1G8cSJE+KIESNEg8EgxsfHi3PnzhXdbneNn3nwwQdFAOKHH35Ypzr57LPPxIEDB4pGo1E0Go1i586dxenTp4tHjhzxXXPTTTeJXbt2FXfv3i2mp6eLOp1ObN26tfjaa69Vu19ubq44ZcoUMSYmRtRoNGL37t3Fd999t9p15eXl4vPPPy927txZ1Gg0YmxsrDhq1Chxz549vmsA1DjFu3Xr1uKkSZNEUZSmpD/22GNiWlqaGBYWJhqNRjEtLU18/fXX61QPRM2dIIp1bBclIgqxRx99FP/+97+Rk5MDg8EQ0HsPHjwYBQUF+PnnnwN6XyKSD8fcEFGTYrfb8f7772Ps2LEBDzZE1DxwzA0RNQl5eXnYuHEjVq5cicLCQjz88MOhLhIRNVIMN0TUJPz6668YP3484uLi8Morr6Bnz56hLhIRNVIcc0NERETNCsfcEBERUbPCcENERETNyjU35sbj8eD8+fMICwu74i7CRERE1HiIooiSkhIkJSVV27D2UtdcuDl//rzffjlERETUdJw9exYtW7a84jXXXLjxLol+9uxZ3745geJyubBhwwaMGDHCt0Q7BQ/rW16sb3mxvuXF+pZXferbYrEgOTnZ9+/4lVxz4cbbFWU2m4MSbgwGA8xmM//jkAHrW16sb3mxvuXF+pZXQ+q7NkNKOKCYiIiImhWGGyIiImpWGG6IiIioWbnmxtwQEVHz5Ha74XK56vVZl8sFlUoFu90Ot9sd4JLRpS5X3xqN5qrTvGuD4YaIiJo0URSRk5ODoqKiBt0jISEBZ8+e5RpoMrhcfSsUCrRp0wYajaZB92e4ISKiJs0bbOLi4mAwGOoVTjweD0pLS2EymQLSckBXVlN9exfZzc7ORqtWrRoUMhluiIioyXK73b5gEx0dXe/7eDweOJ1O6HQ6hhsZXK6+Y2Njcf78eZSXlzdoSj5/g0RE1GR5x9gYDIYQl4QCwdsd1dBxTww3RETU5HGcTPMQqN8jww0RERE1Kww3RERETVxKSgoWL14ckHtt3rwZgiA0aPZZqHFAMRERUQgMHjwYPXv2DEgo2bVrF4xGY8ML1Uww3ASIs9yDnGI7Cu2hLgkRETUHoijC7XZDpbr6P9WxsbEylKjpYLdUgOzLuohBL2zB0kPKUBeFiIgaucmTJ+O7777Dyy+/DEEQIAgCli9fDkEQsG7dOvTp0wdarRbff/89Tpw4gTvuuAPx8fEwmUy4/vrrsXHjRr/7XdotJQgC3nnnHdx5550wGAzo0KEDvvzyy3qX97PPPkPXrl2h1WqRkpKCF1980e/9119/HR06dIBOp0N8fDzuuusu33srV65E9+7dodfrER0djWHDhsFqtda7LLXBlpsAMWqlqnR4QlwQIqJrnCiKKHPVbSqxx+NBmdMNlbO8Qevc6NXKWs34efnll3H06FF069YNTz31FADgl19+AQA8/vjjeOGFF9C2bVtERkbi7NmzGD16NJ5++mlotVq89957yMjIwJEjR9CqVavLfsf8+fOxcOFCPP/883j11Vcxfvx4nDlzBlFRUXX6mfbs2YO7774b8+bNwz333IMffvgBDz74IKKjozF58mTs3r0bDz30EP7v//4P/fv3x4ULF7B161YAQHZ2Nu677z4sXLgQd955J0pKSrB161aIolinMtQVw02AeMONk1uSEBGFVJnLjS5zvg7Jd//61EgYNFf/pzU8PBwajQYGgwEJCQkAgMOHDwMAnnrqKQwfPtx3bVRUFNLS0nyv//nPf2LVqlX48ssvMWPGjMt+x+TJk3HfffcBAJ555hm88sor+PHHH3HLLbfU6WdatGgRhg4diieffBIA0LFjR/z66694/vnnMXnyZGRlZcFoNOK2225DWFgYWrdujV69egGQwk15eTl+97vfoXXr1gCA7t27w+PxwGKx1KkcdcFuqQAxaqTuKLsbQU+kRETUfF133XV+r0tLSzFr1iykpqYiIiICJpMJhw4dQlZW1hXv06NHD99zo9EIs9mMvLy8Opfn0KFDGDBggN+5AQMG4NixY3C73Rg+fDhat26Ntm3bYsKECfjggw9gs9kAAGlpaRg6dCi6d++O//mf/8Hbb7+Nixcv1rkMdcWWmwAxVLTciBDgKPeggXt+ERFRPenVSvz61Mg6fcbj8aDEUoIwc1iDu6Ua6tJZT7NmzUJmZiZeeOEFtG/fHnq9HnfddRecTucV73Pp9gWCIMDjCfzYibCwMOzduxebN2/Ghg0bMGfOHMybNw+7du1CREQEMjMz8cMPP2DDhg149dVX8Y9//APbt29v0HYZV8OWmwAxVPmDtrJviogoZARBgEGjqvOh1yjr9bmqR11W2NVoNLXaZmDbtm2YPHky7rzzTnTv3h0JCQk4ffp0A2qoblJTU7Ft27ZqZerYsSOUSunfPpVKhWHDhmHhwoX46aefcPr0aXzzzTcApN/HgAEDMH/+fOzbtw8ajQarV68OapnZchMgCoUAg0YJm9MNm7M81MUhIqJGLiUlBTt37sTp06dhMpku26rSoUMHfP7558jIyIAgCHjyySeD0gJzOX/5y19w/fXX45///CfuuecebN++Ha+99hpef/11AMB///tfnDx5EoMGDUJkZCTWrl0Lj8eDTp06YefOndi0aRNGjBiBuLg47Ny5E/n5+ejcuXNQy8yWmwAyVIy7sTnYckNERFc2a9YsKJVKdOnSBbGxsZcdQ7No0SJERkaif//+yMjIwMiRI9G7d2/Zytm7d2988sknWLFiBbp164Y5c+bgqaeewuTJkwEAERER+Pzzz3HzzTcjNTUVS5cuxUcffYSuXbvCbDZjy5YtGD16NDp27IgnnngCL774IkaNGhXUMrPlJoC84YbdUkREdDUdO3bE9u3b/c55A0NVKSkpvi4er+nTp/u9vrSbqqaJLbXdTmHw4MHVPj927FiMHTu2xusHDhyIzZs31/heamoq1q9fX+18sFue2HITQMaK6X9WdksRERGFDMNNABm17JYiIqLGbdq0aTCZTDUe06ZNC3XxAoLdUgHkG3PDbikiImqknnrqKcyaNavG98xms8ylCQ6GmwAysFuKiIgaubi4OMTFxYW6GEHFbqkA8g0oZrcUERFRyDDcBJB3fyl2SxEREYUOw00AGX1jbtgtRUREFCoMNwHEdW6IiIhCj+EmgLhCMRERUegx3ASQd8wNZ0sREVGwpaSkYPHixbW6VhCEoG9W2Zgw3ASQkevcEBERhRzDTQBVjrlhyw0REVGoMNwEkHcRP465ISKiK3nrrbeQlJRUbQPJO+64A7///e9x4sQJ3HHHHYiPj4fJZML111+PjRs3Buz7Dx48iJtvvhl6vR7R0dGYOnUqSktLfe9v3rwZffv2hdFoREREBAYMGIAzZ84AAA4cOIAhQ4YgLCwMZrMZffr0we7duwNWtkBguAkg395S7JYiIgodUQSc1rofLlv9Plf1qGE37pr8z//8DwoLC/Htt9/6zl24cAHr16/H+PHjUVpaitGjR2PTpk3Yt28fbrnlFmRkZCArK6vB1WO1WjFy5EhERkZi165d+PTTT7Fx40bMmDEDAFBeXo4xY8bgpptuwk8//YTt27dj6tSpEAQBADB+/Hi0bNkSu3btwp49e/D4449DrVY3uFyBxO0XAqhyV3CGGyKikHHZgGeS6vQRBYCIQHz3388DGuNVL4uMjMSoUaPw4YcfYujQoQCAlStXIiYmBkOGDIFCoUBaWprv+n/+859YtWoVvvzyS18Iqa8PP/wQdrsd7733HoxGqayvvfYaMjIy8Nxzz0GtVqO4uBi33XYb2rVrBwBITU31fT4rKwuPPfYYOnfuDADo0KFDg8oTDGy5CSBDlUX8xFqmdyIiujaNHz8en332GRwOBwDggw8+wL333guFQoHS0lLMmjULqampiIiIgMlkwqFDhwLScnPo0CGkpaX5gg0ADBgwAB6PB0eOHEFUVBQmT56MkSNHIiMjAy+//DKys7N9186cORN//OMfMWzYMDz77LM4ceJEg8sUaGy5CSBvuPGIgN3lgb7iNRERyUhtkFpQ6sDj8cBSUgJzWBgUigb8/361odaXZmRkQBRFrFmzBtdffz22bt2Kl156CQAwa9YsZGZm4oUXXkD79u2h1+tx1113wel01r9sdfDuu+/ioYcewvr16/Hxxx/jiSeeQGZmJm644QbMmzcP48aNw5o1a7Bu3TrMnTsXK1aswJ133ilL2WqD4SaA9GolBIgQIcDqLGe4ISIKBUGoVdeQH48HULulzzUk3NSBTqfD7373O3zwwQc4fvw4OnXqhN69ewMAtm3bhsmTJ/sCQ2lpKU6fPh2Q701NTcXy5cthtVp9rTfbtm2DQqFAp06dfNf16tULvXr1wuzZs5Geno4PP/wQN9xwAwCgY8eO6NixIx599FHcd999ePfddxtVuAlpt9SWLVuQkZGBpKSkOi8wtG3bNqhUKvTs2TNo5asrhUKApqJGOWOKiIiuZvz48VizZg2WLVuG8ePH+8536NABn3/+Ofbv348DBw5g3Lhx1WZWNeQ7dTodJk2ahJ9//hnffvst/vznP2PChAmIj4/HqVOnMHv2bGzfvh1nzpzBhg0bcOzYMaSmpqKsrAwzZszA5s2bcebMGWzbtg27du3yG5PTGIQ03FitVqSlpWHJkiV1+lxRUREmTpzoG4TVmFRMmEKpg2vdEBHRld18882IiorCkSNHMG7cON/5RYsWITIyEv3790dGRgZGjhzpa9VpKIPBgK+//hoXLlzA9ddfj7vuugtDhw7Fa6+95nv/8OHDGDt2LDp27IipU6di+vTp+NOf/gSlUonCwkJMnDgRHTt2xN13341Ro0Zh/vz5ASlboIS0W2rUqFEYNWpUnT83bdo0jBs3DkqlstEtJ61RAnBxZ3AiIro6hUKB8+erjw9KSUnBN99843du+vTpfq/r0k116SSX7t27V7u/V3x8PFatWlXjexqNBh999FGtvzdUmtyYm3fffRcnT57E+++/j3/9619Xvd7hcPhGogOAxWIBALhcLrhcroCWzeVyQVvRFmaxOQJ+f/LnrV/WszxY3/JifdeOy+WCKIrweDwN6rbx/uPvvRcF1+Xq2+PxQBRFuFwuKJX+41br8t9Ckwo3x44dw+OPP46tW7dCpapd0RcsWFBjc9mGDRtgMNR+VHtt6Sp+GVt37ELJMU4Hl0NmZmaoi3BNYX3Li/V9ZSqVCgkJCSgtLQ3ITKKSkpIAlEpen3zyCWbOnFnje8nJydi+fbvMJaq9S+vb6XSirKwMW7ZsQXm5fw+IzWar9X2bTLhxu90YN24c5s+fj44dO9b6c7Nnz/b7pVssFiQnJ2PEiBEwm80BLaPL5cLSQ5sACOjUtQdG924R0PuTP5fLhczMTAwfPrzRrY7ZHLG+5cX6rh273Y6zZ8/CZDJBp9PV+z6iKKKkpARhYWG+lXibinvuuQeDBw+u8T21Wh3wf+sC4XL1bbfbodfrMWjQoGq/T2/PS200mXBTUlKC3bt3Y9++fb7VGb3NVyqVChs2bMDNN99c7XNarRZarbbaebVaHZT/wfAOKHa4wf9BkkmwfpdUM9a3vFjfV+Z2uyEIAhQKRYPWp/F2jXjv1ZSEh4cjPDw81MWok8vVt0KhgCAINf7d1+W/gyYTbsxmMw4ePOh37vXXX8c333yDlStXok2bNiEqmT/vmBvuDE5ERBQaIQ03paWlOH78uO/1qVOnsH//fkRFRaFVq1aYPXs2zp07h/feew8KhQLdunXz+3xcXBx0Ol2186HkbbnhOjdERPLhIODmIVBbF4U03OzevRtDhgzxvfaOjZk0aRKWL1+O7OzsgOyjISeuc0NEJB+NRuObTh0bGwuNRlOvMTMejwdOpxN2u73JdUs1RTXVtyiKyM/P93VLNURIw83gwYOvmNKWL19+xc/PmzcP8+bNC2yhGkirlH4ernNDRBR8CoUCbdq0QXZ2do3rxdSWKIooKyuDXq9vcgOKm6LL1bcgCGjZsmW1aeB11WTG3DQVlWNu2C1FRCQHjUaDVq1aoby8HG53/f631+VyYcuWLRg0aBAHcMvgcvWtVqsbHGwAhpuAqxxzw5YbIiK5XG6GTW0plUqUl5dDp9Mx3Mgg2PXNjsUA84YbttwQERGFBsNNgPm6pdhyQ0REFBIMNwGm8Q0oZssNERFRKDDcBJjO2y3FlhsiIqKQYLgJMN+AYrbcEBERhQTDTYBpqmy/EKiVFomIiKj2GG4CzNtyI4pAmYutN0RERHJjuAkwjQLwLrZo5f5SREREsmO4CTBBAAwaqfmGWzAQERHJj+EmCIwaaeFnbp5JREQkP4abIKhsuWG3FBERkdwYboLAG2641g0REZH8GG6CwKiVuqXYckNERCQ/hpsg8LbccMwNERGR/BhugsDoHXPDcENERCQ7hpsgMFTMlrKyW4qIiEh2DDdBYNRynRsiIqJQYbgJgsrZUmy5ISIikhvDTRB4F/HjVHAiIiL5MdwEARfxIyIiCh2GmyDwjrmxcswNERGR7BhugsDAbikiIqKQYbgJAiMHFBMREYUMw00QVI65YcsNERGR3BhugsC7txQX8SMiIpIfw00QcFdwIiKi0GG4CQJjlangHo8Y4tIQERFdWxhugsA7WwoAylzsmiIiIpITw00Q6NQKKATpOde6ISIikhfDTRAIglBlCwa23BAREcmJ4SZIDFoOKiYiIgoFhpsg8bbccH8pIiIieTHcBImB+0sRERGFBMNNkPhabjjmhoiISFYMN0HiW6WYY26IiIhkxXATJL5VitktRUREJCuGmyDhgGIiIqLQCGm42bJlCzIyMpCUlARBELB69eorXv/5559j+PDhiI2NhdlsRnp6Or7++mt5CltH7JYiIiIKjZCGG6vVirS0NCxZsqRW12/ZsgXDhw/H2rVrsWfPHgwZMgQZGRnYt29fkEtad0auc0NERBQSqqtfEjyjRo3CqFGjan394sWL/V4/88wz+OKLL/DVV1+hV69eAS5dw3j3l7KyW4qIiEhWTXrMjcfjQUlJCaKiokJdlGq8LTc2DigmIiKSVUhbbhrqhRdeQGlpKe6+++7LXuNwOOBwOHyvLRYLAMDlcsHlcgW0PN77uVwu6JTSzpml9sB/D0mq1jcFH+tbXqxvebG+5VWf+q7LtYIoimKdSxUEgiBg1apVGDNmTK2u//DDD3H//ffjiy++wLBhwy573bx58zB//vwaP28wGOpb3Ks6UChg2VEl2oSJeKQbu6aIiIgawmazYdy4cSguLobZbL7itU2y5WbFihX44x//iE8//fSKwQYAZs+ejZkzZ/peWywWJCcnY8SIEVetnLpyuVzIzMzE8OHDEXamGMuO7oXWaMbo0ekB/R6SVK1vtVod6uI0e6xvebG+5cX6lld96tvb81IbTS7cfPTRR/j973+PFStW4NZbb73q9VqtFlqtttp5tVodtD9gtVqNcIP0nWUuN/9DCbJg/i6pOta3vFjf8mJ9y6su9V2X30tIw01paSmOHz/ue33q1Cns378fUVFRaNWqFWbPno1z587hvffeAyB1JU2aNAkvv/wy+vXrh5ycHACAXq9HeHh4SH6Gy6lc54ZdUkRERHIK6Wyp3bt3o1evXr5p3DNnzkSvXr0wZ84cAEB2djaysrJ817/11lsoLy/H9OnTkZiY6DsefvjhkJT/SrwrFHOdGyIiInmFtOVm8ODBuNJ45uXLl/u93rx5c3ALFEDevaXKXG64PSKUCiHEJSIiIro2NOl1bhozb7cUIAUcIiIikgfDTZBoVQpfa42NXVNERESyYbgJEkEQfF1TpQw3REREsmG4CSLvoGIb95ciIiKSDcNNEBm4MzgREZHsGG6CiC03RERE8mO4CSLvzuAcc0NERCQfhpsgqmy5YbghIiKSC8NNEBm4BQMREZHsGG6CyFgxFZwtN0RERPJhuAki7yrFpWy5ISIikg3DTRCx5YaIiEh+DDdBxDE3RERE8mO4CSK23BAREcmP4SaIKsfcMNwQERHJheEmiAxcoZiIiEh2DDdBZOTeUkRERLJjuAkittwQERHJj+EmiExabr9AREQkN4abIDJouHEmERGR3Bhugsg7W8ru8sDtEUNcGiIiomsDw00QeVtuAHZNERERyYXhJoi0KgVUCgEABxUTERHJheEmiARB4LgbIiIimTHcBJl33I2N+0sRERHJguEmyLwtN1aOuSEiIpIFw02QGbnWDRERkawYboLMqPFunsluKSIiIjkw3ASZd38pGwcUExERyYLhJsi8+0tZORWciIhIFgw3QcaWGyIiInkx3ASZb8wNBxQTERHJguEmyAxc54aIiEhWDDdBZuQ6N0RERLJiuAkyttwQERHJi+EmyExattwQERHJieEmyHxTwTlbioiISBYMN0HmnS1l4zo3REREsmC4CTIDu6WIiIhkxXATZCatt1uKLTdERERyCGm42bJlCzIyMpCUlARBELB69eqrfmbz5s3o3bs3tFot2rdvj+XLlwe9nA1h8E4F55gbIiIiWYQ03FitVqSlpWHJkiW1uv7UqVO49dZbMWTIEOzfvx+PPPII/vjHP+Lrr78OcknrzzvmxlHuQbnbE+LSEBERNX+qUH75qFGjMGrUqFpfv3TpUrRp0wYvvvgiACA1NRXff/89XnrpJYwcOTJYxWwQ75gbALC53DAr2RNIREQUTCENN3W1fft2DBs2zO/cyJEj8cgjj1z2Mw6HAw6Hw/faYrEAAFwuF1wuV0DL571f1fsqAKiVAlxuEUWlduiVl/kw1VlN9U3Bw/qWF+tbXqxvedWnvutybZMKNzk5OYiPj/c7Fx8fD4vFgrKyMuj1+mqfWbBgAebPn1/t/IYNG2AwGIJSzszMTL/XaijhgoD1G79BfPUiUgNdWt8UXKxvebG+5cX6lldd6ttms9X62iYVbupj9uzZmDlzpu+1xWJBcnIyRowYAbPZHNDvcrlcyMzMxPDhw6FWq33nn/11C2zFdlx3wwB0bxEe0O+8ll2uvik4WN/yYn3Li/Utr/rUt7fnpTaaVLhJSEhAbm6u37nc3FyYzeYaW20AQKvVQqvVVjuvVquD9gd86b2NFdPBHW6B/9EEQTB/l1Qd61terG95sb7lVZf6rsvvpUmNbk1PT8emTZv8zmVmZiI9PT1EJaodI6eDExERySak4aa0tBT79+/H/v37AUhTvffv34+srCwAUpfSxIkTfddPmzYNJ0+exF//+lccPnwYr7/+Oj755BM8+uijoSh+rXlbbrhKMRERUfCFNNzs3r0bvXr1Qq9evQAAM2fORK9evTBnzhwAQHZ2ti/oAECbNm2wZs0aZGZmIi0tDS+++CLeeeedRjsN3MvA/aWIiIhkE9IxN4MHD4Yoipd9v6bVhwcPHox9+/YFsVSBZ9SyW4qIiEguTWpAcaOW/ROUm/6JXhesAEb7vcWWGyIiIvkw3ASK2wXF8Q2IVUdWe8vElhsiIiLZNKnZUo2aOREAoHUVAx7/Fhpvyw0HFBMREQUfw02gGOMgCgoo4AGsef5vVbTc2BzsliIiIgo2hptAUaoAk7Q1hFCS7fcWW26IiIjkw3ATQGKY1DUFi3+4MXnXuWHLDRERUdAx3ARSRbip3nJTMaCYLTdERERBx3ATQL6Wm1L/cONdoZhjboiIiIKP4SaQ2HJDREQUcgw3AeRruSm53JgbhhsiIqJgY7gJpLAEADW03Pg2zmS3FBERUbAx3ASQGJYkPbFkA1X2zDJWdEs5yz1wuT2hKBoREdE1g+EmkLxjblxWwGHxnfaucwNwfykiIqJgY7gJJI0RLqVBel5lrRuNSgGNUqpqjrshIiIKLoabACvzbpxZct7vvMG7BQNnTBEREQUVw02A2b3h5pJVio0arlJMREQkB4abALNfruWGa90QERHJguEmwMou03Jj4P5SREREsmC4CTC7Jkp6Um0hP465ISIikgPDTYBVttyc8ztv4JgbIiIiWdQr3PznP//BmjVrfK//+te/IiIiAv3798eZM2cCVrim6PIDitlyQ0REJId6hZtnnnkGer0eALB9+3YsWbIECxcuRExMDB599NGAFrCp8YUbaz7gdvnOe8fclHKdGyIioqBSXf2S6s6ePYv27dsDAFavXo2xY8di6tSpGDBgAAYPHhzI8jU5DlUYRIUagscFlOQAEckAKjfP5ArFREREwVWvlhuTyYTCwkIAwIYNGzB8+HAAgE6nQ1lZWeBK1xQJCsAULz2vMqjYNxWcLTdERERBVa+Wm+HDh+OPf/wjevXqhaNHj2L06NEAgF9++QUpKSmBLF+TJIYlQrD8Blgq17rxLuLHlhsiIqLgqlfLzZIlS5Ceno78/Hx89tlniI6OBgDs2bMH9913X0AL2CSZK3YHr9pyUzEVnGNuiIiIgqteLTcRERF47bXXqp2fP39+gwvUHIhhCdKTKtPBK8fcMNwQEREFU71abtavX4/vv//e93rJkiXo2bMnxo0bh4sXLwascE1WWKL0aKk65obr3BAREcmhXuHmscceg8ViAQAcPHgQf/nLXzB69GicOnUKM2fODGgBmyLRG26qdEtxnRsiIiJ51Ktb6tSpU+jSpQsA4LPPPsNtt92GZ555Bnv37vUNLr6m+VpuKgcUc28pIiIiedSr5Uaj0cBmswEANm7ciBEjRgAAoqKifC061zK/lhtRBFC5txR3BSciIgquerXcDBw4EDNnzsSAAQPw448/4uOPPwYAHD16FC1btgxoAZskb7gptwNlFwFDlG/MjY0tN0REREFVr5ab1157DSqVCitXrsQbb7yBFi1aAADWrVuHW265JaAFbJJUOkDvvzu4d50bp9sDZ7knVCUjIiJq9urVctOqVSv897//rXb+pZdeanCBmg1zElB2QZoxFd/Vt84NAJQ53dCouCE7ERFRMNQr3ACA2+3G6tWrcejQIQBA165dcfvtt0OpVF7lk9eIsEQg92ffWjdqpQIalQLOcg9KneUIN6hDXEAiIqLmqV7h5vjx4xg9ejTOnTuHTp06AQAWLFiA5ORkrFmzBu3atQtoIZskc83TwZ3lHti4SjEREVHQ1Ktv5KGHHkK7du1w9uxZ7N27F3v37kVWVhbatGmDhx56KNBlbJrCKrZgqDod3LuQH/eXIiIiCpp6tdx899132LFjB6KionznoqOj8eyzz2LAgAEBK1yTVlPLTcW4G7bcEBERBU+9Wm60Wi1KSkqqnS8tLYVGo2lwoZoFszSDrKYtGLh5JhERUfDUK9zcdtttmDp1Knbu3AlRFCGKInbs2IFp06bh9ttvD3QZmybfQn6V3VKVm2eyW4qIiChY6hVuXnnlFbRr1w7p6enQ6XTQ6XTo378/2rdvj8WLF9fpXkuWLEFKSgp0Oh369euHH3/88YrXL168GJ06dYJer0dycjIeffRR2O32+vwYwWWuGHNjKwRcUvkMGq5STEREFGz1GnMTERGBL774AsePH/dNBU9NTUX79u3rdJ+PP/4YM2fOxNKlS9GvXz8sXrwYI0eOxJEjRxAXF1ft+g8//BCPP/44li1bhv79++Po0aOYPHkyBEHAokWL6vOjBI8+ElBqAbdDGncT1QZGLVcpJiIiCrZah5ur7fb97bff+p7XNmgsWrQI999/P6ZMmQIAWLp0KdasWYNly5bh8ccfr3b9Dz/8gAEDBmDcuHEAgJSUFNx3333YuXNnbX8M+QiCNKj44mlfuPG23HDMDRERUfDUOtzs27evVtcJglCr65xOJ/bs2YPZs2f7zikUCgwbNgzbt2+v8TP9+/fH+++/jx9//BF9+/bFyZMnsXbtWkyYMOGy3+NwOOBwOHyvvRt7ulwuuFyuWpW1trz38z4qTQlQXDyN8otnISa5oFdLvYCldmfAv/tadGl9U3CxvuXF+pYX61te9anvulxb63BTtWUmEAoKCuB2uxEfH+93Pj4+HocPH67xM+PGjUNBQQEGDhwIURRRXl6OadOm4e9///tlv2fBggWYP39+tfMbNmyAwWBo2A9xGZmZmQCAPiVASwCHf/wWJ87ocO6sAECJQ8dPYe3aE0H57muRt75JHqxvebG+5cX6lldd6ttms9X62npvvxAKmzdvxjPPPIPXX38d/fr1w/Hjx/Hwww/jn//8J5588skaPzN79my/LjWLxYLk5GSMGDECZrM5oOVzuVzIzMzE8OHDoVarodi0E9ixA6ktw9Fp+GjkbDuNdb8dRUx8C4we3T2g330turS+KbhY3/JifcuL9S2v+tS3t+elNkIWbmJiYqBUKpGbm+t3Pjc3FwkJCTV+5sknn8SECRPwxz/+EQDQvXt3WK1WTJ06Ff/4xz+gUFSf/KXVaqHVaqudV6vVQfsD9t07vCUAQGnNhVKtRpheKofN5eF/PAEUzN8lVcf6lhfrW16sb3nVpb7r8nsJ2dbUGo0Gffr0waZNm3znPB4PNm3ahPT09Bo/Y7PZqgUY70adoigGr7D15V2luGIhP98KxZwKTkREFDQh7ZaaOXMmJk2ahOuuuw59+/bF4sWLYbVafbOnJk6ciBYtWmDBggUAgIyMDCxatAi9evXydUs9+eSTyMjIaJy7kV+yv5SRe0sREREFXUjDzT333IP8/HzMmTMHOTk56NmzJ9avX+8bZJyVleXXUvPEE09AEAQ88cQTOHfuHGJjY5GRkYGnn346VD/ClVXdX8rjgYF7SxEREQVdyAcUz5gxAzNmzKjxvc2bN/u9VqlUmDt3LubOnStDyQLAVDF2yOMCbIUwaqT+QivDDRERUdCEbMzNNUGlAYyx0vOS874VitktRUREFDwMN8Hm3WPKks0BxURERDJguAk276DikvMwVAwodrlFOMs9ISwUERFR88VwE2xVpoMbNUooFdL2FAWljit8iIiIiOqL4SbYqkwHVykVaBtjBAAcyS0JYaGIiIiaL4abYPNNB5fWuumUEAYAOJLDcENERBQMDDfBFua/SnFqorSf1eHs2u+RQURERLXHcBNs5soBxQDQuaLl5jBbboiIiIKC4SbYvOHGXgw4behc0XJzPK+UM6aIiIiCgOEm2LRmQC0NIkZJNpLCdQjTqVDuEXEivzS0ZSMiImqGGG6CTRCqTAc/D0EQfF1THFRMREQUeAw3cgirDDcA0DlB6po6lMNBxURERIHGcCOHSwcVJ1YMKs5myw0REVGgMdzI4ZLp4N6Wm8NsuSEiIgo4hhs5XNJy413IL9fiwAWrM1SlIiIiapYYbuRQZWdwADBpVWgVZQDA1hsiIqJAY7iRg29n8GzfKW7DQEREFBwMN3Lw7S+VA3jcAIDUBA4qJiIiCgaGGzkY4wBBAYhuoDQPAHwrFbNbioiIKLAYbuSgVAGmeOn5JXtMHcktgdsjhqpkREREzQ7DjVwumQ7eOtoInVoBu8uDM4XWEBaMiIioeWG4kYvZf1CxUiGgYzx3CCciIgo0hhu5+KaDn/ed8nZNMdwQEREFDsONXLzdUlWmg/tWKs7moGIiIqJAYbiRS00tN4lsuSEiIgo0hhu5XLIzOFDZcpN1wYZSR3koSkVERNTsMNzIxVx9leIoowbxZi0ArlRMREQUKAw3cvG23DhLAXvlGJtO3CGciIgooBhu5KI1AVopyFRtvUnlHlNEREQBxXAjpysNKuYeU0RERAHBcCOnK0wHP5RjgShyGwYiIqKGYriRUw0tN+1iTVApBJTYy3G+2B6ighERETUfDDdyqmE6uEalQPs4EwAu5kdERBQIDDdyMlfvlgKATtyGgYiIKGAYbuQUVr1bCqiyDQPDDRERUYMx3MjpMi03lTOm2C1FRETUUAw3cjK3kB5L8wC3y3c6taLl5mSBFXaXOxQlIyIiajYYbuRkiAF0EQBE4LfdvtPxZi0iDGq4PSKO55WGrHhERETNAcONnBQKoMMI6fmRtb7TgiCgUzwHFRMREQVCyMPNkiVLkJKSAp1Oh379+uHHH3+84vVFRUWYPn06EhMTodVq0bFjR6xdu/aKn2lUOo2SHo+s8zudmlgxqJjjboiIiBokpOHm448/xsyZMzF37lzs3bsXaWlpGDlyJPLy8mq83ul0Yvjw4Th9+jRWrlyJI0eO4O2330aLFi1kLnkDtB8KKNRA4TGg4JjvdGfvHlO5bLkhIiJqiJCGm0WLFuH+++/HlClT0KVLFyxduhQGgwHLli2r8fply5bhwoULWL16NQYMGICUlBTcdNNNSEtLk7nkDaALB1IGSs+rtN50rmi5OcQ9poiIiBokZOHG6XRiz549GDZsWGVhFAoMGzYM27dvr/EzX375JdLT0zF9+nTEx8ejW7dueOaZZ+B2N7EZRp1GS49Vwk3HeBMEASgodSC/xBGighERETV9qlB9cUFBAdxuN+Lj4/3Ox8fH4/DhwzV+5uTJk/jmm28wfvx4rF27FsePH8eDDz4Il8uFuXPn1vgZh8MBh6MyLFgs0pgWl8sFl8tV42fqy3u/q9633TCoAYhnd6C8OAcwREMtAK2jDDhdaMMv5y5iQLvogJatOap1fVNAsL7lxfqWF+tbXvWp77pcG7JwUx8ejwdxcXF46623oFQq0adPH5w7dw7PP//8ZcPNggULMH/+/GrnN2zYAIPBEJRyZmZmXvWam/StEFGWhYOfvYCz0TcCAMyiAoACq7/9EcVHuEN4bdWmvilwWN/yYn3Li/Utr7rUt81mq/W1IQs3MTExUCqVyM3N9Tufm5uLhISEGj+TmJgItVoNpVLpO5eamoqcnBw4nU5oNJpqn5k9ezZmzpzpe22xWJCcnIwRI0bAbDYH6KeRuFwuZGZmYvjw4VCr1Ve8VmH8Cfj+BfTUZ6P7aKmb6oTuBH769gQUUckYPbpbQMvWHNWlvqnhWN/yYn3Li/Utr/rUt7fnpTZCFm40Gg369OmDTZs2YcyYMQCklplNmzZhxowZNX5mwIAB+PDDD+HxeKBQSMOFjh49isTExBqDDQBotVpotdpq59VqddD+gGt17y63Ad+/AMXJb6GAG1Dr0KVFBADgaF4p/+Oqg2D+Lqk61re8WN/yYn3Lqy71XZffS0hnS82cORNvv/02/vOf/+DQoUN44IEHYLVaMWXKFADAxIkTMXv2bN/1DzzwAC5cuICHH34YR48exZo1a/DMM89g+vTpofoR6i+xJxCWCLiswOmtAIDUij2mjuaWotztCWHhiIiImq6Qjrm55557kJ+fjzlz5iAnJwc9e/bE+vXrfYOMs7KyfC00AJCcnIyvv/4ajz76KHr06IEWLVrg4Ycfxt/+9rdQ/Qj1JwjSgn67l0mrFXcYjuRIAwwaJWxON04XWtE+LizUpSQiImpyQj6geMaMGZfthtq8eXO1c+np6dixY0eQSyWTTqMrws06YPSLUCgU6Bgfhv1ni3Aou4ThhoiIqB5Cvv3CNa3NIEBjAkqygez9ACq7pg7ncBsGIiKi+mC4CSWVFmh3s/S8YkG/zgnSDK4j3ECTiIioXhhuQu2S1Yq9e0xxGwYiIqL6YbgJtQ4jAEEB5B4EirJ8LTfnispgsXOlTCIiorpiuAk1YzSQfIP0/Mh6hBvUSArXAQAOnC0KXbmIiIiaKIabxqDTKOnxyFoAwKCOsQCAFbvOhqpERERETRbDTWPQ+Vbp8fT3gL0YE9JbAwC+/jkHOcX2EBaMiIio6WG4aQyi2wExHQGPCzi+EV2TwnF9SiTKPSI+/DEr1KUjIiJqUhhuGgtf15Q0a2pS/xQAwIc7s+As51YMREREtcVw01h4p4Qf2wC4XRjZNQFxYVoUlDqw7ufs0JaNiIioCWG4aSxaXg8YogF7MZC1HWqlAuP7SWNv/vPD6dCWjYiIqAlhuGksFEqg4y3S84quqfv6JUOtFLA3qwgHfysOYeGIiIiaDoabxsTbNXV4DSCKiAvTYXT3RADAf7afDl25iIiImhCGm8ak3RBAqQWKzgB5hwAAE9NTAABfHjiPC1ZnCAtHRETUNDDcNCYaI9B2sPS8YkG/3q0i0K2FGc5yDz7mon5ERERXxXDT2FwyJVwQBF/rzfs7zsDtEUNUMCIioqaB4aax8Q4qPrcbsEhTwG9PS0KkQY1zRWXYeCg3hIUjIiJq/BhuGhtzIpDcT3q+5XkAgE6txD3XtwIAvMeBxURERFfEcNMYDZ0jPe5eBmQfAACM79cKCgHYdrwQx/NKQlg4IiKixo3hpjFKGQh0GwtABNY+BogikqMMGJoaDwB4b/uZ0JaPiIioEWO4aayG/xNQG4GzO4GfPgYATKoYWPzZnt9QYneFsHBERESNF8NNYxXeAhg0S3qeOQewWzCgfTTaxRphdbrx2Z7fQls+IiKiRorhpjFLnw5EtQNKc4EtCyEIgm+38Pe2n4GH08KJiIiqYbhpzFRaYNRz0vMdbwD5R/C73i1h0qpwssCKbScKQls+IiKiRojhprHrMBzoOArwlAPr/gqTRomxvVsA4G7hRERENWG4aQpueUbac+rkZuDQV5hQMbB40+E8nL1gC2nRiIiIGhuGm6Ygqi0w4CHp+df/QPsIBW7sEANRBOZ9+QvH3hAREVXBcNNUDJwJhCcDxVnAtsV4fFRnaFQKbDqchze3nAx16YiIiBoNhpumQmMARvxLev79YnTVXcD827sCAJ7/+jB2nCwMYeGIiIgaD4abpqTLHUCbmwC3A/j6H7j3+mT8rlcLeETgzx/tQ16JPdQlJCIiCjmGm6ZEEIBRCwGFCjiyBsLxTfjXnd3QMd6E/BIHHv5oP8rdnlCXkoiIKKQYbpqauM5Av2nS8/V/g0Hhwevj+8CgUWL7yUK8tPFoaMtHREQUYgw3TdFNfwOMcUDhcWDdY2gfa8SzY3sAAJZ8ewLfHM4NcQGJiIhCh+GmKdKZgdsWARCAPcuBtY/h9h6JmJjeGgDw6McH8NtFrn9DRETXJoabpio1AxjzOgAB2PU2sH42/jG6M9JahqO4zIXpH+6Ds5zjb4iI6NrDcNOU9RwH3P6K9HznG9B+Mxev3dcL4Xo1DpwtwjNrD4W2fERERCHAcNPU9Z4I3LZYer79NSTvex4v3S2Nv1n+w2l8deB86MpGREQUAgw3zcF1U4DRL0jPv38JN2f/Gw8MbgcAePyzn3A8rzSEhSMiIpIXw01z0fd+4JZnpedbFmKWdjX6tYmC1enGvW9tx96si6EtHxERkUwYbpqTGx4ARjwNAFB+twDL2m1BaqIZBaVO3PvWDnzJLioiIroGNIpws2TJEqSkpECn06Ffv3748ccfa/W5FStWQBAEjBkzJrgFbEr6zwCGzQcAGL9/Bl/03IVhqfFwlnvw0Ef78FLmUYgidxEnIqLmK+Th5uOPP8bMmTMxd+5c7N27F2lpaRg5ciTy8vKu+LnTp09j1qxZuPHGG2UqaRMy8BHg5icAAJpv5+OtpP9i2sBkAMDLm47hoRX7YXe5Q1hAIiKi4Al5uFm0aBHuv/9+TJkyBV26dMHSpUthMBiwbNmyy37G7XZj/PjxmD9/Ptq2bStjaZuQQY8Bg2cDABTbXsLjZx/Em8M1UCkEfHXgPO59awc32iQiomZJFcovdzqd2LNnD2bPnu07p1AoMGzYMGzfvv2yn3vqqacQFxeHP/zhD9i6desVv8PhcMDhcPheWywWAIDL5YLL5WrgT+DPe79A37feBvwFQlQHKNc/BiH3IEbk34tNfaZj7MEbsP9sEe54bRve+t9e6JwQFuqS1kujq+9mjvUtL9a3vFjf8qpPfdfl2pCGm4KCArjdbsTHx/udj4+Px+HDh2v8zPfff49///vf2L9/f62+Y8GCBZg/f3618xs2bIDBYKhzmWsjMzMzKPetHxU0becj7ey7SCreg9YHX8Y63Rf4Mx7AjuJkjH3jB0zq4EG3qKY7Dqdx1Xfzx/qWF+tbXqxvedWlvm222m8rFNJwU1clJSWYMGEC3n77bcTExNTqM7Nnz8bMmTN9ry0WC5KTkzFixAiYzeaAls/lciEzMxPDhw+HWq0O6L0bTLwH5b+shPLrxxFrP42PlE/io9gJeCJ/CN45qsRDQ9ph6o1toFGFvKey1hp1fTdDrG95sb7lxfqWV33q29vzUhshDTcxMTFQKpXIzfXfxTo3NxcJCQnVrj9x4gROnz6NjIwM3zmPR9o/SaVS4ciRI2jXrp3fZ7RaLbRabbV7qdXqoP0BB/PeDdJrHNBuCPDVQxCObcC4kn9jYNQOTLr4e7z8DfDVTzmYe3tX3NQxNtQlrZNGW9/NFOtbXqxvebG+5VWX+q7L7yWk/zddo9GgT58+2LRpk++cx+PBpk2bkJ6eXu36zp074+DBg9i/f7/vuP322zFkyBDs378fycnJcha/aTInAuM+AW5/DdCEoZXtF2zU/x2PGf6LvIJ8TFr2I6a+txtnL3BXcSIiappC3i01c+ZMTJo0Cddddx369u2LxYsXw2q1YsqUKQCAiRMnokWLFliwYAF0Oh26devm9/mIiAgAqHaerkAQgN4TgLaDgS9nQHlyM6bjQ/ze+BXedg7Hsl9HYtjRfDwwuB2m3dQOOrUy1CUmIiKqtZCHm3vuuQf5+fmYM2cOcnJy0LNnT6xfv943yDgrKwsKRdMZB9KkRCQDE1YDP30CbH0B+oKjeEj5Oaaq1uI/rqF4Z+NorNzzG+bc1gXDu8RDEIRQl5iIiOiqQh5uAGDGjBmYMWNGje9t3rz5ip9dvnx54At0LREEIO0eoPtdwKEvga0vQpdzEH9SrcFk1QZ8XDIYT71/G97v0AVzM7qgXawp1CUmIiK6IjaJkEShBLreCfxpKzDuUyC5H7RwYaIqE99qZuL2U//EAy99gGn/twd7zlwIdWmJiIguq1G03FAjIghAxxFAh+HA6e+BrS9AfXIz7lJuwV3KLdh7rD1WHr4JixJHYtygHhjZNR4qJTMyERE1Hgw3VDNBANrcKB2/7QG+XwTxyDr0VhxHb8VxOPLfw4ZP++Bv/x2ObjeOwf/0TYFJyz8nIiIKPf5rRFfXsg9w7wcQSnKBg5+gfO8H0BYcQoZyBzKcO5C78VV8smkQyrvfh4xhQ5AYrg91iYmI6BrGcEO1FxYP9P8zVOkzgOwDKN/3Acr3f4J4VxF+jy+Bg1/i4IE22BYxCBE9M3BD/8Ew6bgYFhERyYvhhupOEICknlAl9YRq5NPwHF2Pwm3LEXluM7orTqG75RSw5T84/1009kYMQFiP29B1QAY0uuDs5UVERFQVww01jEoDRZfbEdvldqA0H4V7V6F4/1dIurADSUIhkoq/BLZ+ibKtWvxq7gt919FofcOdUIQnhrrkRETUTDHcUOCYYhE9aCqiB02F6LTh9J6vUbD3CyTnb0E8CtHFshXYvhXYPhs5unZwtroRcT1HQtfuRkAbFurSExFRM8FwQ0EhaAxISb8TKel3wu32YP+e75G7azUS875DD+E4EuwngKMngKPLUQ4lCsO7Qd1hCCK7DoOQ3BdQVd/slIiIqDYYbijolEoFevYdBPQdBLvLjc0HjyL7wNfQ/7YNvVz70VqRh/jiA8DuA8DuxXAqdLDEXY+w9unQJvcBknoCYdV3iSciIqoJww3JSqdWYnDvVKB3KkTxYZzIL8WK/QdQcmgjEgp34gbhZ8R6LIjJ2QrkbPV9zqGLg6JFT6hb9pbCTmJPQB8Tsp+DiIgaL4YbChlBENA+LgztRwwERgyE1VGO7ccLcOinHfCc3IqW9sPoLpxCO+E8tPY84MQG6aigMMShnyoJiq2/AMnXA0m9AWN0CH8iIiJqDBhuqNEwalUY1jUBw7qOATAG54vK8OOpC3j/xG+4eGIvoi2/orviFLoJp9BeOAelLQ8JyAO27PfdQ4xoBSGpN9CitxR2knpysDIR0TWG4YYaraQIPcb0aoExvVoA6Ic8ix07T13A+6cu4MDJc1Dl/4o0xQn0UJxED+Ek2imyIRRlAUVZwK+rAQAiBCC6HYS4VCA2FYjrLD1GtwdUmpD+fEREFBwMN9RkxJl1yEhLQkZaEoBuyC0aiH+v3oTjCR3w+TkLTp49h9bOY0gTTqJHRehpIRQChcel49BXvnuJChWEqHaVYSe2IxDRGghPBkxx0kKFRETUJDHcUJMVZdSga6SI0UPbQ61Ww+MRcarQiv1ZRfjhbBFeP1uE/OwsdMAZdBR+QwfhN3RU/IYOwjmEecqAgiPSgS/8b6zSAeEtpaATkQyEt5IeI1oBkW2kmVsMP0REjRbDDTUbCoWAdrEmtIs1YWyflgAAu8uNIzklOJxjwaHsEnyebcGh7GKY7HkVQec3dBR+QxtFNloIBUgQLkJRbq9s7amJ2gBEta08ottVPG/H4ENE1Agw3FCzplMrkZYcgbTkCN85URRxrqgMh7JLcDjbgs05FizNLsHpQiuUYjkShEK0FArQQihAC0iPKepCtFYUItadC4XLBuT+LB2XUhukVh9zC+kIr/rYEjAnATqzfBVARHQNYriha44gCGgZaUDLSAOGd4n3nbe73DiZb8XR3BLf8WNuKc5etEEsl65RoxwthXy0FnKQIuSinTIXnTX5SBFyEO2qCD4FR6XjcrTmii6ulCpHG+kxohUHOhMRNRDDDVEFnVqJLklmdEnyb1mxOctxPK8UR3NLcTK/FCfzW+JkQSl+KLDB6fQATuk6FcrRQiiQNgxFIdpoitBeV4xk5UXEiQUId+VB47IADsvlW34gSC0/3qBjbiG19oRXtPqYkwBdBLu+iIiugOGG6CoMGhV6tIxAj5YRfufdHhG/XbThZL4VJ/JLcbLAihN5cThVaMN2ix2wQzqq3gt2JAqF6KC5gO6Gi+ioyUcrIR+x5dkIL/sNSncZUHxWOi5HbawIPC2AsCRpdpcpDjDFA8ZY6dEUB+gjGYKI6JrEcENUT0qFgNbRRrSONmJI5zi/98qcbmRdsOFUgRVnCq04XWiTHgusOFGswwlHC6x3XHpHETGwoJWQi26GC+isK0IrdRESUYgodwFMjlyonUWAywoUHpOOK1GoK8JOXMW4n5ZSIApvKY3/CW8BmBIAJf9ngIiaF/6vGlEQ6DVKdEoIQ6eE6qsj211u/HaxDGcv2HD2og1ZhRWPF8pw9oIaex3h2GsFYK1+Xx0cSBAuoLO+BJ2NJWijLUaisgSxKEK4pwhGVyHU9gIo7EWAxwWUnJeO7P01F1RQAmGJUtAxxgLGGMAQU/EYLR3ec5rwQFYREVHQMNwQyUynVqJ9nAnt40zV3hNFEUU2F7Iu2PDbxTKcK5Ief7tYhnMXy/DbRSVOO7U4bUvEetvlvyNc40EXswOdjGVoqytFsuoiElGAKHc+why50NrOQ1GSDXjKActv0nEVagCjlQaospKkFh9vV5jvseJ5WKIUiNglRkQhwnBD1IgIgoBIowaRRo3f9HUvURRRXOaqCDxS8DlfZMf5ojKcLy7D+aIyFJQ6UexUYHuBHtsL9ACiALSqdq9InQKpZjtSDcVoqylGktqKWGUJIkULzKIFetdFKMsKIdgKAVsh4CmH2m278hpAXkptZRdYeHKVbrGWlYOjNSYGICIKCoYboiZEEAREGDSIMGjQrUXN3UR2l1sKOxWh57eiMuQUlyG72C4dRWWwOt24aPfgB7sGPyAWQGyN9zJqlIgP1yExUYtWBhcU+YcwoG0kktQliMZFRLgvwugshMKaB5TmAaU5gDUfcDuACyel43KUWsAQVdH9FQXooyq7wvzORVa+pw1jICKiq2K4IWpmdGol2saa0Da2ercXILX+lDjKkV1kR7Y39BSVIcdiR47FgZziMuQU22Gxl8PqlNb+OZlvxTYAQEt8kAMARgAJvnvGmDSIC9MhPkaLxNZKtNEVo5XqIhKRjxh3AcKdudDbzkNRch4o/k2aDu92ACXZ0lFbClVF0ImqfPQbGxRdMWYouvK5xlD/yiSiJonhhugaIwgCzDo1zAnqGgc8e9mc5cgptiPHYkeuxY5zF2z48eAR6KMSkF/qRK7FgbwSO1xuEQWlThSUOvGrX07RAUiuOCSRBjXiwnRIjvGgtd6OlroyJKptiFNZES2UIFy0wOi2QO24KHWF2S4CZRcA2wWgvEwaI2TNk47aUhsuaRHyBqGoygBU9bw+ElAo61qtRNSIMNwQUY0MGpVfC5DL5UJy6SGMHt0TarUaAODxiLhok4JObokducV25JVIoUcKPw7kW+zIL3XA5RZx0ebCRZsLR3K936KpOCL8vtuoUSLOrEOMSYOYOC1iTFok6EUkaW2IV9sQo7AiSiiFWSyGxlkMWAsAW4EUiKyF0nNrgTRjzGUDim1XXjuoKkEhBZyqs8a8M8YMUYDGKAUmtUFqFVIbAbW+8rmm4mD3GVHIMNwQUb0pFAKiTVpEm7TogsvvmeXxiCgqcyGvxI68itDjfZ5f8Vx6dMDmdMPqdONUgRWnCmqYDw8AEACEAQiDQdMaMSYtYsO0UhhKkMJQrEmDeF05ElQliFGUIgIl0DkvQLBdqGgVKpBahGyFleHIXgyInor3Cyt2ja8HtUGaPRaWcPlHY5wUlthKRBRwDDdEFHQKhYAoowZRRg06J1z52lJHOfIsUgtQQakDBSUOFJQ6UWh1IL/EKZ2rOOwuD2wVCyZmXbjC3PgKWlU0YkxJiDJqEG3SINqoRUxilecGAfEqG2IUJQj3WKB2XNISVHZRagly2QCn99Faca5Meg5Ren3xlHRciaCoaCGKBUyxUuCpeC7oohFffBJCVoQ0hkhnBnThgCYMUChqXfdE1yKGGyJqVExaFUxXGBDtJYoirE43CkocyPeFIKklKL/U6XteNQg5yj04V1SGc0VltSpLuD4M0aZoxBi7IyZMCkBREVIY8oa1aKMWUUYNIg1qqBSCFHCseUBJrjR7zPdYcZTmSo9lF6RWIu8YokuGEakA3AAAJ1+6pFSCtPmqLlwKPFozoDVJU+u1Jin8VHsdBugjpH3JvI9qXa3qgKgpYrghoiZJEAQpCGlVSIkxXvV6m7MchRWhp7DUiQtWJwqsDt+5C1ZnxcBo6bnbI60pVFzmwsn8y3WP+YswqCsCjwaRBg2iTe0QZUxFlFGL6OgqgcikQZROgNZZJE2ht+ZLR5XnnpJcFOecRoROgOCwSF1mbicAEXAUS0dxAypQpfMPO/qI6qtS+x69M884loiaBoYbIromGDQqGKJUSI66+tRwT0Ww8XaFFVaEoMJSBwqtTl84KrRKQaiozAVRBIpsLhTZah+GTFoVIo1qRBm0iDS2RZSxM6IMGkRGaBCRoMRJ90EMu/EGxJr1iDRoEKHxQOmo2FneXiwdDgvgKAWcpRWPJZe8LpWuKSsC7EWV44rK7VKLUmlO7StRpZNaijTGK7QSmaQB2d7tPIyx0qGP4j5mJBv+pRERXUKhqFwpun3c1a93V8wau1Al+FywSkFICkFOXCitfH7RJrUMlTrKUeoox9kLl+smU+LfR3b5XgkCEK5XI8qgqWglMiPSECOV1SB1jUXGaHzdZJEGDcL1aqiUVcboeDxSAPKGHd/jxeqzzWwFla/L7ZVH7bLbJQRpALUv7ERUCUfGioAUJj1WDU86s3Rea5be43gjqgWGGyKiBlIqBMSYpFlaiL/69R6PiBJ7OS5UBKKLFSHogq3yeUGpHafO5QNaIy7apO6xqq1DdWHWqRBplFa2jjSoEaFXVzw3IMIQjghDe0SGaRARLwWiCIMaJq0KgrcLSqwYJG0tABwlV2glqnhddrGie61AerQVAhArZ6HlH657JQOQxhtVBB1tleCj0knT8VW6iuc6QKUHVNrK8/pIae8zb7jSRTAoNWMMN0REMlMoBIQb1Ag3qNHmMuOFXC4X1q5di9GjB0KtVqPc7UFRmcsXfi7anLhoc/nCkbSGkHS+qOJ8cZkUgiz2cljs5ThTePUZZV4qhYAIgxrhem/gkUJPhF6NcH00IgwJCDdoEG7ynlMjwqBGmE4NpeKScTketzTt3ju2yJovBSCn1T8YOa2VYclZKgUpRwlgt0hrFkGs6Iaz1LfqKwnKKt1mMVDqo9E9txiKb/cBhnD/EOV7rPJcpWl4GShoGG6IiJoAlVJR2TpUS+VuD4rLpIUTiypCz8Wqj2XS+YtW6bV0rRN2lwflnsqVp+vSDyUIQJhW5QtDleGoIgQZWiFC3w4RYWqYK0KR99CpL7PmjygC5Y6KsUaWyoBjt0jhp7wMcFXpNnOVSdd7z7vKqrQm5UvdcKJbmrlWKq0oqQDQFgAKNtbuB1VqKgOPd0aatqKbzde9VrWLrabXFQtCakwMSwHGcENE1EyplArfIot1YXe5/YJQka2yZchSJnWLFZe5UFTmRHFZOYorgpHV6YYoVrYUZV2oW3k1KoUv6Jh1qorWII1fAArX6xBhCEO4PgXh0VLrl1l3hWBUk3JnxfiifF/3mduSjeM/70H7VglQuqwVg7VLLjksUvccIM1c83azBYJCVWWFa0NF8DFKU/71kdIYJX1kxcy2SP9zGlNlV5xSzRltYLghIqJL6NRKJIQrkRBet7VwnOUe3/T54jKnb3xQUZkLxRUBydtaVHmdC5YyFzyi9Pn8Eml9orrSVgQj8yXhqGrrUNXnEQYjwg0RCI/uAr1aCU95OQ5fWIu2I0ZDWbG9SI3c5ZVdZr6us4oZa1XP+brbrFW62aq8dpRIQcntlO7rKa+c4t8QgkIKOWp95Xgjta4yKHnXR/I+117y3Ps5taHysQkGpkYRbpYsWYLnn38eOTk5SEtLw6uvvoq+ffvWeO3bb7+N9957Dz///DMAoE+fPnjmmWcuez0REclDo1IgNkzaCqMuRFGaOXZp4Kn62ttadOk5i10aaO0o91Rs61H3YKRRKmDWq6AoV+LfZ3cgXK9BmE6FMK0aZr0KYTq19FonhSazXg2zLhxmfTTMZjVMGhUUl44zqi23q3KVa6e18nDZKoNT2cWKo0h69M5u8752llapTA/gskpHoAiKKmFHX7m3mm9/Nf0le6wZgIjWQK/xgStDHYU83Hz88ceYOXMmli5din79+mHx4sUYOXIkjhw5gri46nMwN2/ejPvuuw/9+/eHTqfDc889hxEjRuCXX35BixYtQvATEBFRQwiCUBEg1GgZWbfPejwiSp3lKK4IOlIwKoelrPJ1taNKUCr3iHC6PRVjiwTk/Vb3wcrecUZhOnVF8FH5wpBJq4LJ+1pb/ZxZp4ZZZ4TJFF59IHZtecck+cYeVX2seO5d78huqVwfybtWUtVzLu9nbNK4JEAKTN7Wp9pqef21HW4WLVqE+++/H1OmTAEALF26FGvWrMGyZcvw+OOPV7v+gw8+8Hv9zjvv4LPPPsOmTZswceJEWcpMRESNg0IhVASEK3QlXYYoirA53Sgqc6HQUobMzVvRted1sJVLU/UtZS6UOMpRYndJ44jKpMcSu8v3vqPc4zfOqLZbe9TEqFH6WonM+srWorAqQSjMF5T83zfr1DDpIqDUB7D7yO2q3DfNt3+aTQpNTltFC5H3uc1/37WI5MCVox5CGm6cTif27NmD2bNn+84pFAoMGzYM27dvr9U9bDYbXC4XoqKianzf4XDA4ahsprRYpFTucrngctVtrYir8d4v0PelmrG+5cX6lhfrWx4aBRBnVCFSo8OpcGBQ+0iorzTm5hIOlxsljnKptcgbeuzlvgUaS+3lKLnc84rXdpcHAGB1umF1upHTgJnuBo0SYdVai6TDpFXBWLFliUmr9G1f4jt00nmDRlXZiqQ0SIcuuu6FucLfbn3+vutybUjDTUFBAdxuN+Lj/Ve9io+Px+HDtVvk6W9/+xuSkpIwbNiwGt9fsGAB5s+fX+38hg0bYDBcfRn2+sjMzAzKfalmrG95sb7lxfqWVyDqWwAQVnH4aCuOGpR7ALsbKCuveHQLKCsHytxVzwtV3gfs5UKV54BLlMKIzemGzelGbj3GHvkVVyFCpwJ0Su8hVnkOaL3nVJe8rnhfrwSMtciIdalvm60O6zTV+spG6Nlnn8WKFSuwefNm6HQ1j+qfPXs2Zs6c6XttsViQnJyMESNGwGw2B7Q8LpcLmZmZGD58eJ2SP9UP61terG95sb7l1dTr21nukVqFfC1CUiuSt3Wo1F4Oq9PtazXytixZHe7KViZHOVxuEQDg8AhwOKvuzVq37q5uSWaseuCGy75fn/r29rzURkjDTUxMDJRKJXJzc/3O5+bmIiEh4YqffeGFF/Dss89i48aN6NGjx2Wv02q10Gqrx2W1Wh20P+Bg3puqY33Li/UtL9a3vJpqfavVgFFft1lqNXGUu30BqdRR9dHl99papZvNWqWrzRuSwnS1q8e61Hddfi8hDTcajQZ9+vTBpk2bMGbMGACAx+PBpk2bMGPGjMt+buHChXj66afx9ddf47rrrpOptERERM2bVqWE1qSs88KPlxJFMUAlqp+Qd0vNnDkTkyZNwnXXXYe+ffti8eLFsFqtvtlTEydORIsWLbBgwQIAwHPPPYc5c+bgww8/REpKCnJycgAAJpMJJpMpZD8HERERSYQQL/oX8nBzzz33ID8/H3PmzEFOTg569uyJ9evX+wYZZ2VlQVFl59Y33ngDTqcTd911l9995s6di3nz5slZdCIiImqEQh5uAGDGjBmX7YbavHmz3+vTp08Hv0BERETUZCmufgkRERFR08FwQ0RERM0Kww0RERE1Kww3RERE1Kww3BAREVGzwnBDREREzQrDDRERETUrDDdERETUrDDcEBERUbPCcENERETNCsMNERERNSuNYm8pOXm3YbdYLAG/t8vlgs1mg8VigVqtDvj9yR/rW16sb3mxvuXF+pZXferb+++299/xK7nmwk1JSQkAIDk5OcQlISIioroqKSlBeHj4Fa8RxNpEoGbE4/Hg/PnzCAsLgyAIAb23xWJBcnIyzp49C7PZHNB7U3Wsb3mxvuXF+pYX61te9alvURRRUlKCpKQkKBRXHlVzzbXcKBQKtGzZMqjfYTab+R+HjFjf8mJ9y4v1LS/Wt7zqWt9Xa7Hx4oBiIiIialYYboiIiKhZYbgJIK1Wi7lz50Kr1Ya6KNcE1re8WN/yYn3Li/Utr2DX9zU3oJiIiIiaN7bcEBERUbPCcENERETNCsMNERERNSsMN0RERNSsMNwEyJIlS5CSkgKdTod+/frhxx9/DHWRmo0tW7YgIyMDSUlJEAQBq1ev9ntfFEXMmTMHiYmJ0Ov1GDZsGI4dOxaawjZxCxYswPXXX4+wsDDExcVhzJgxOHLkiN81drsd06dPR3R0NEwmE8aOHYvc3NwQlbhpe+ONN9CjRw/fQmbp6elYt26d733WdXA9++yzEAQBjzzyiO8c6zxw5s2bB0EQ/I7OnTv73g9mXTPcBMDHH3+MmTNnYu7cudi7dy/S0tIwcuRI5OXlhbpozYLVakVaWhqWLFlS4/sLFy7EK6+8gqVLl2Lnzp0wGo0YOXIk7Ha7zCVt+r777jtMnz4dO3bsQGZmJlwuF0aMGAGr1eq75tFHH8VXX32FTz/9FN999x3Onz+P3/3udyEsddPVsmVLPPvss9izZw92796Nm2++GXfccQd++eUXAKzrYNq1axfefPNN9OjRw+886zywunbtiuzsbN/x/fff+94Lal2L1GB9+/YVp0+f7nvtdrvFpKQkccGCBSEsVfMEQFy1apXvtcfjERMSEsTnn3/ed66oqEjUarXiRx99FIISNi95eXkiAPG7774TRVGqW7VaLX766ae+aw4dOiQCELdv3x6qYjYrkZGR4jvvvMO6DqKSkhKxQ4cOYmZmpnjTTTeJDz/8sCiK/PsOtLlz54ppaWk1vhfsumbLTQM5nU7s2bMHw4YN851TKBQYNmwYtm/fHsKSXRtOnTqFnJwcv/oPDw9Hv379WP8BUFxcDACIiooCAOzZswcul8uvvjt37oxWrVqxvhvI7XZjxYoVsFqtSE9PZ10H0fTp03Hrrbf61S3Av+9gOHbsGJKSktC2bVuMHz8eWVlZAIJf19fcxpmBVlBQALfbjfj4eL/z8fHxOHz4cIhKde3IyckBgBrr3/se1Y/H48EjjzyCAQMGoFu3bgCk+tZoNIiIiPC7lvVdfwcPHkR6ejrsdjtMJhNWrVqFLl26YP/+/azrIFixYgX27t2LXbt2VXuPf9+B1a9fPyxfvhydOnVCdnY25s+fjxtvvBE///xz0Oua4YaIajR9+nT8/PPPfn3kFHidOnXC/v37UVxcjJUrV2LSpEn47rvvQl2sZuns2bN4+OGHkZmZCZ1OF+riNHujRo3yPe/Rowf69euH1q1b45NPPoFerw/qd7NbqoFiYmKgVCqrjfDOzc1FQkJCiEp17fDWMes/sGbMmIH//ve/+Pbbb9GyZUvf+YSEBDidThQVFfldz/quP41Gg/bt26NPnz5YsGAB0tLS8PLLL7Oug2DPnj3Iy8tD7969oVKpoFKp8N133+GVV16BSqVCfHw86zyIIiIi0LFjRxw/fjzof98MNw2k0WjQp08fbNq0yXfO4/Fg06ZNSE9PD2HJrg1t2rRBQkKCX/1bLBbs3LmT9V8PoihixowZWLVqFb755hu0adPG7/0+ffpArVb71feRI0eQlZXF+g4Qj8cDh8PBug6CoUOH4uDBg9i/f7/vuO666zB+/Hjfc9Z58JSWluLEiRNITEwM/t93g4ckk7hixQpRq9WKy5cvF3/99Vdx6tSpYkREhJiTkxPqojULJSUl4r59+8R9+/aJAMRFixaJ+/btE8+cOSOKoig+++yzYkREhPjFF1+IP/30k3jHHXeIbdq0EcvKykJc8qbngQceEMPDw8XNmzeL2dnZvsNms/mumTZtmtiqVSvxm2++EXfv3i2mp6eL6enpISx10/X444+L3333nXjq1Cnxp59+Eh9//HFREARxw4YNoiiyruVQdbaUKLLOA+kvf/mLuHnzZvHUqVPitm3bxGHDhokxMTFiXl6eKIrBrWuGmwB59dVXxVatWokajUbs27evuGPHjlAXqdn49ttvRQDVjkmTJomiKE0Hf/LJJ8X4+HhRq9WKQ4cOFY8cORLaQjdRNdUzAPHdd9/1XVNWViY++OCDYmRkpGgwGMQ777xTzM7ODl2hm7Df//73YuvWrUWNRiPGxsaKQ4cO9QUbUWRdy+HScMM6D5x77rlHTExMFDUajdiiRQvxnnvuEY8fP+57P5h1LYiiKDa8/YeIiIioceCYGyIiImpWGG6IiIioWWG4ISIiomaF4YaIiIiaFYYbIiIialYYboiIiKhZYbghIiKiZoXhhoiuSYIgYPXq1aEuBhEFAcMNEclu8uTJEASh2nHLLbeEumhE1AyoQl0AIro23XLLLXj33Xf9zmm12hCVhoiaE7bcEFFIaLVaJCQk+B2RkZEApC6jN954A6NGjYJer0fbtm2xcuVKv88fPHgQN998M/R6PaKjozF16lSUlpb6XbNs2TJ07doVWq0WiYmJmDFjht/7BQUFuPPOO2EwGNChQwd8+eWXvvcuXryI8ePHIzY2Fnq9Hh06dKgWxoiocWK4IaJG6cknn8TYsWNx4MABjB8/Hvfeey8OHToEALBarRg5ciQiIyOxa9cufPrpp9i4caNfeHnjjTcwffp0TJ06FQcPHsSXX36J9u3b+33H/Pnzcffdd+Onn37C6NGjMX78eFy4cMH3/b/++ivWrVuHQ4cO4Y033kBMTIx8FUBE9ReQ7TeJiOpg0qRJolKpFI1Go9/x9NNPi6Io7U4+bdo0v8/069dPfOCBB0RRFMW33npLjIyMFEtLS33vr1mzRlQoFGJOTo4oiqKYlJQk/uMf/7hsGQCITzzxhO91aWmpCEBct26dKIqimJGRIU6ZMiUwPzARyYpjbogoJIYMGYI33njD71xUVJTveXp6ut976enp2L9/PwDg0KFDSEtLg9Fo9L0/YMAAeDweHDlyBIIg4Pz58xg6dOgVy9CjRw/fc6PRCLPZjLy8PADAAw88gLFjx2Lv3r0YMWIExowZg/79+9frZyUieTHcEFFIGI3Gat1EgaLX62t1nVqt9nstCAI8Hg8AYNSoUThz5gzWrl2LzMxMDB06FNOnT8cLL7wQ8PISUWBxzA0RNUo7duyo9jo1NRUAkJqaigMHDsBqtfre37ZtGxQKBTp16oSwsDCkpKRg06ZNDSpDbGwsJk2ahPfffx+LFy/GW2+91aD7EZE82HJDRCHhcDiQk5Pjd06lUvkG7X766ae47rrrMHDgQHzwwQf48ccf8e9//xsAMH78eMydOxeTJk3CvHnzkJ+fjz//+c+YMGEC4uPjAQDz5s3DtGnTEBcXh1GjRqGkpATbtm3Dn//851qVb86cOejTpw+6du0Kh8OB//73v75wRUSNG8MNEYXE+vXrkZiY6HeuU6dOOHz4MABpJtOKFSvw4IMPIjExER999BG6dOkCADAYDPj666/x8MMP4/rrr4fBYMDYsWOxaNEi370mTZoEu92Ol156CbNmzUJMTAzuuuuuWpdPo9Fg9uzZOH36NPR6PW688UasWLEiAD85EQWbIIqiGOpCEBFVJQgCVq1ahTFjxoS6KETUBHHMDRERETUrDDdERETUrHDMDRE1OuwtJ6KGYMsNERERNSsMN0RERNSsMNwQERFRs8JwQ0RERM0Kww0RERE1Kww3RERE1Kww3BAREVGzwnBDREREzQrDDRERETUr/w8ghpKqMpGz6AAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9381 - loss: 0.2127\n","Loss on test data: 0.20470060408115387\n","Accuracy on test data: 0.9412999749183655\n"]}]},{"cell_type":"code","source":["#1. создаем модель - объявляем ее объектом класса Sequential\n","model_2_100 = Sequential()\n","# 2. добавляем первый скрытый слой\n","model_2_100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n","# 3. добавляем второй скрытый слой\n","model_2_100.add(Dense(units=100, activation='sigmoid'))\n","# 4. добавляем выходной слой\n","model_2_100.add(Dense(units=num_classes, activation='softmax'))\n","# 5. компилируем модель\n","model_2_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n","\n","# вывод информации об архитектуре модели\n","print(model_2_100.summary())\n","# Обучаем модель\n","H = model_2_100.fit(X_train, y_train, validation_split=0.1, epochs=50)\n","\n","# вывод графика ошибки по эпохам\n","plt.plot(H.history['loss'])\n","plt.plot(H.history['val_loss'])\n","plt.grid()\n","plt.xlabel('Epochs')\n","plt.ylabel('loss')\n","plt.legend(['train_loss', 'val_loss'])\n","plt.title('Loss by epochs')\n","plt.show()\n","\n","# Оценка качества работы модели на тестовых данных\n","scores = model_2_100.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"549sXnQLCNmN","executionInfo":{"status":"ok","timestamp":1758189304250,"user_tz":-180,"elapsed":379270,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"7de6901b-aec3-467f-90ac-405e412f2199"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_7\"\u001b[0m\n"],"text/html":["
Model: \"sequential_7\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_15 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_16 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_17 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_15 (Dense)                │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_16 (Dense)                │ (None, 100)            │        10,100 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_17 (Dense)                │ (None, 10)             │         1,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n"],"text/html":["
 Total params: 89,610 (350.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n"],"text/html":["
 Trainable params: 89,610 (350.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["None\n","Epoch 1/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.2102 - loss: 2.2695 - val_accuracy: 0.5102 - val_loss: 2.1087\n","Epoch 2/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.5495 - loss: 1.9930 - val_accuracy: 0.5872 - val_loss: 1.5403\n","Epoch 3/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.6757 - loss: 1.3754 - val_accuracy: 0.7538 - val_loss: 1.0207\n","Epoch 4/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.7764 - loss: 0.9373 - val_accuracy: 0.8162 - val_loss: 0.7629\n","Epoch 5/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.8251 - loss: 0.7187 - val_accuracy: 0.8405 - val_loss: 0.6221\n","Epoch 6/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8504 - loss: 0.5963 - val_accuracy: 0.8548 - val_loss: 0.5365\n","Epoch 7/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8644 - loss: 0.5199 - val_accuracy: 0.8715 - val_loss: 0.4806\n","Epoch 8/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8744 - loss: 0.4686 - val_accuracy: 0.8820 - val_loss: 0.4421\n","Epoch 9/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 4ms/step - accuracy: 0.8842 - loss: 0.4335 - val_accuracy: 0.8863 - val_loss: 0.4144\n","Epoch 10/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.8911 - loss: 0.3984 - val_accuracy: 0.8918 - val_loss: 0.3920\n","Epoch 11/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8962 - loss: 0.3795 - val_accuracy: 0.8968 - val_loss: 0.3753\n","Epoch 12/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8981 - loss: 0.3651 - val_accuracy: 0.8983 - val_loss: 0.3618\n","Epoch 13/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9002 - loss: 0.3543 - val_accuracy: 0.9015 - val_loss: 0.3498\n","Epoch 14/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9038 - loss: 0.3396 - val_accuracy: 0.9048 - val_loss: 0.3402\n","Epoch 15/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9070 - loss: 0.3311 - val_accuracy: 0.9065 - val_loss: 0.3328\n","Epoch 16/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9085 - loss: 0.3183 - val_accuracy: 0.9097 - val_loss: 0.3237\n","Epoch 17/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9108 - loss: 0.3115 - val_accuracy: 0.9122 - val_loss: 0.3166\n","Epoch 18/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9125 - loss: 0.3046 - val_accuracy: 0.9137 - val_loss: 0.3106\n","Epoch 19/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9173 - loss: 0.2943 - val_accuracy: 0.9162 - val_loss: 0.3046\n","Epoch 20/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9160 - loss: 0.2932 - val_accuracy: 0.9165 - val_loss: 0.2994\n","Epoch 21/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9176 - loss: 0.2840 - val_accuracy: 0.9180 - val_loss: 0.2929\n","Epoch 22/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9194 - loss: 0.2821 - val_accuracy: 0.9193 - val_loss: 0.2882\n","Epoch 23/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9209 - loss: 0.2753 - val_accuracy: 0.9202 - val_loss: 0.2835\n","Epoch 24/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9233 - loss: 0.2659 - val_accuracy: 0.9207 - val_loss: 0.2791\n","Epoch 25/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9235 - loss: 0.2660 - val_accuracy: 0.9232 - val_loss: 0.2740\n","Epoch 26/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9222 - loss: 0.2663 - val_accuracy: 0.9227 - val_loss: 0.2706\n","Epoch 27/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9262 - loss: 0.2537 - val_accuracy: 0.9247 - val_loss: 0.2665\n","Epoch 28/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9272 - loss: 0.2536 - val_accuracy: 0.9260 - val_loss: 0.2629\n","Epoch 29/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9279 - loss: 0.2523 - val_accuracy: 0.9267 - val_loss: 0.2594\n","Epoch 30/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9271 - loss: 0.2486 - val_accuracy: 0.9273 - val_loss: 0.2556\n","Epoch 31/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9303 - loss: 0.2405 - val_accuracy: 0.9288 - val_loss: 0.2517\n","Epoch 32/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9322 - loss: 0.2385 - val_accuracy: 0.9303 - val_loss: 0.2479\n","Epoch 33/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9315 - loss: 0.2341 - val_accuracy: 0.9292 - val_loss: 0.2465\n","Epoch 34/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9330 - loss: 0.2303 - val_accuracy: 0.9300 - val_loss: 0.2424\n","Epoch 35/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9365 - loss: 0.2209 - val_accuracy: 0.9323 - val_loss: 0.2381\n","Epoch 36/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9343 - loss: 0.2249 - val_accuracy: 0.9323 - val_loss: 0.2356\n","Epoch 37/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.9369 - loss: 0.2221 - val_accuracy: 0.9337 - val_loss: 0.2321\n","Epoch 38/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9365 - loss: 0.2212 - val_accuracy: 0.9330 - val_loss: 0.2301\n","Epoch 39/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9386 - loss: 0.2146 - val_accuracy: 0.9348 - val_loss: 0.2276\n","Epoch 40/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.9381 - loss: 0.2121 - val_accuracy: 0.9360 - val_loss: 0.2251\n","Epoch 41/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9408 - loss: 0.2070 - val_accuracy: 0.9350 - val_loss: 0.2223\n","Epoch 42/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9392 - loss: 0.2117 - val_accuracy: 0.9367 - val_loss: 0.2204\n","Epoch 43/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9398 - loss: 0.2047 - val_accuracy: 0.9372 - val_loss: 0.2169\n","Epoch 44/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 3ms/step - accuracy: 0.9438 - loss: 0.1981 - val_accuracy: 0.9382 - val_loss: 0.2137\n","Epoch 45/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9441 - loss: 0.1944 - val_accuracy: 0.9390 - val_loss: 0.2119\n","Epoch 46/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9441 - loss: 0.1907 - val_accuracy: 0.9390 - val_loss: 0.2095\n","Epoch 47/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.9449 - loss: 0.1910 - val_accuracy: 0.9405 - val_loss: 0.2068\n","Epoch 48/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 3ms/step - accuracy: 0.9446 - loss: 0.1940 - val_accuracy: 0.9410 - val_loss: 0.2046\n","Epoch 49/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 3ms/step - accuracy: 0.9482 - loss: 0.1818 - val_accuracy: 0.9408 - val_loss: 0.2025\n","Epoch 50/50\n","\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9460 - loss: 0.1875 - val_accuracy: 0.9405 - val_loss: 0.2009\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcRdJREFUeJzt3Xd4VFXi//H3nclk0nun96aAorJgA+m4KJa1sQqsq6vCqsuqP9nvSrFhxbKyomtBVxEruKuCBBRcEVApAlKkg5BAaOmZmczc3x+TDAwJkIRkJiSf1/PcZ2bunHvnzEmAD+eec65hmqaJiIiISCNiCXYFRERERAJNAUhEREQaHQUgERERaXQUgERERKTRUQASERGRRkcBSERERBodBSARERFpdBSAREREpNFRABIREZFGRwFIROq9UaNGERUVFexqBJ1hGIwdOzbY1RBpEBSARBqxGTNmYBgGP/74Y7CrIiISUApAIiIi0ugoAImIiEijowAkIqe0atUqhgwZQkxMDFFRUfTr149ly5b5lXG5XEyePJl27doRFhZGYmIiF110EZmZmb4y2dnZjB49mqZNm2K320lPT+fKK69kx44dVarHtm3bGDRoEJGRkWRkZPDwww9jmiYApmnSsmVLrrzyygrHlZSUEBsby5/+9KdTfsY777xDjx49CA8PJyEhgRtuuIHdu3f7lenTpw9nnXUWK1asoHfv3oSHh9OqVSumT59e4Xz79+/n1ltvJTU1lbCwMLp168Zbb71VoZzH4+GFF17g7LPPJiwsjOTkZAYPHlzp5ck5c+Zw1llnYbfb6dKlC/PmzfN7Pz8/n3vvvZeWLVtit9tJSUlhwIABrFy58pTfX6SxUAASkZP6+eefufjii/npp5944IEHeOihh9i+fTt9+vRh+fLlvnKTJk1i8uTJ9O3bl5deeon/+7//o3nz5n7/6F5zzTXMnj2b0aNH889//pO7776b/Px8du3adcp6uN1uBg8eTGpqKk899RQ9evRg4sSJTJw4EfAOEP7973/P3LlzOXTokN+x//3vf8nLy+P3v//9ST/jscce45ZbbqFdu3ZMnTqVe++9l4ULF3LJJZdw5MgRv7KHDx9m6NCh9OjRg6eeeoqmTZty55138sYbb/jKFBcX06dPH/79738zYsQInn76aWJjYxk1ahQvvPCC3/luvfVW7r33Xpo1a8aTTz7Jgw8+SFhYWIWg+e2333LXXXdxww038NRTT1FSUsI111zDwYMHfWXuuOMOXn75Za655hr++c9/ct999xEeHs6GDRtO2c4ijYYpIo3Wm2++aQLmDz/8cMIyw4cPN0NDQ82tW7f69u3du9eMjo42L7nkEt++bt26mZdffvkJz3P48GETMJ9++ulq13PkyJEmYP75z3/27fN4PObll19uhoaGmjk5OaZpmuamTZtMwHz55Zf9jr/iiivMli1bmh6P54SfsWPHDtNqtZqPPfaY3/61a9eaISEhfvsvvfRSEzCfffZZ3z6Hw2F2797dTElJMZ1Op2mapvn888+bgPnOO+/4yjmdTrNXr15mVFSUmZeXZ5qmaX711VcmYN59990V6nVsnQEzNDTU3LJli2/fTz/9ZALmP/7xD9++2NhYc8yYMSf8riJimuoBEpETcrvdzJ8/n+HDh9O6dWvf/vT0dG666Sa+/fZb8vLyAIiLi+Pnn39m8+bNlZ4rPDyc0NBQFi1axOHDh2tUn2OngJdPCXc6nSxYsACA9u3b07NnT959911fuUOHDjF37lxGjBiBYRgnPPcnn3yCx+Phuuuu48CBA74tLS2Ndu3a8fXXX/uVDwkJ8bukFhoayp/+9Cf279/PihUrAPjiiy9IS0vjxhtv9JWz2WzcfffdFBQUsHjxYgA+/vhjDMPw9WYd6/g69+/fnzZt2vhed+3alZiYGLZt2+bbFxcXx/Lly9m7d+8Jv69IY6cAJCInlJOTQ1FRER06dKjwXqdOnfB4PL7xMQ8//DBHjhyhffv2nH322dx///2sWbPGV95ut/Pkk08yd+5cUlNTueSSS3jqqafIzs6uUl0sFotfCANv4AH8xhDdcsstLFmyhJ07dwLw4Ycf4nK5uPnmm096/s2bN2OaJu3atSM5Odlv27BhA/v37/crn5GRQWRk5Enrs3PnTtq1a4fF4v9XbadOnXzvA2zdupWMjAwSEhJO1Qw0b968wr74+Hi/UPnUU0+xbt06mjVrxgUXXMCkSZP8ApKIKACJSC255JJL2Lp1K2+88QZnnXUWr732Gueeey6vvfaar8y9997LL7/8wpQpUwgLC+Ohhx6iU6dOrFq1qtbqccMNN2Cz2Xy9QO+88w7nnXdepSHuWB6PB8MwmDdvHpmZmRW2V155pdbqeDqsVmul+82yweAA1113Hdu2beMf//gHGRkZPP3003Tp0oW5c+cGqpoi9Z4CkIicUHJyMhEREWzatKnCexs3bsRisdCsWTPfvoSEBEaPHs17773H7t276dq1K5MmTfI7rk2bNvz1r39l/vz5rFu3DqfTybPPPnvKung8ngq9GL/88gsALVu29KvD5ZdfzrvvvsvOnTtZsmTJKXt/yutlmiatWrWif//+Fbbf/OY3fuX37t1LYWHhSevTokULNm/ejMfj8Su3ceNG3/vln713794Kg7dPR3p6OnfddRdz5sxh+/btJCYm8thjj9Xa+UXOdApAInJCVquVgQMH8umnn/pdZtq3bx8zZ87koosuIiYmBsBvFhJAVFQUbdu2xeFwAFBUVERJSYlfmTZt2hAdHe0rcyovvfSS77lpmrz00kvYbDb69evnV+7mm29m/fr13H///VitVm644YZTnvvqq6/GarUyefJkv96U8s86/vuVlpb69Qo5nU5eeeUVkpOT6dGjBwBDhw4lOzub999/3++4f/zjH0RFRXHppZcC3tlxpmkyefLkCvU6vi6n4na7yc3N9duXkpJCRkZGldtZpDEICXYFRCT43njjjQpryQDcc889PProo2RmZnLRRRdx1113ERISwiuvvILD4eCpp57yle3cuTN9+vShR48eJCQk8OOPP/LRRx/5Bi7/8ssv9OvXj+uuu47OnTsTEhLC7Nmz2bdvX5UCSlhYGPPmzWPkyJH07NmTuXPn8vnnn/O3v/2N5ORkv7KXX345iYmJfPjhhwwZMoSUlJRTnr9NmzY8+uijjB8/nh07djB8+HCio6PZvn07s2fP5vbbb+e+++7zlc/IyODJJ59kx44dtG/fnvfff5/Vq1fz6quvYrPZALj99tt55ZVXGDVqFCtWrKBly5Z89NFHLFmyhOeff57o6GgA+vbty80338yLL77I5s2bGTx4MB6Ph//973/07du3Wvf/ys/Pp2nTplx77bV069aNqKgoFixYwA8//FClnjaRRiN4E9BEJNjKp8GfaNu9e7dpmqa5cuVKc9CgQWZUVJQZERFh9u3b1/zuu+/8zvXoo4+aF1xwgRkXF2eGh4ebHTt2NB977DHflPADBw6YY8aMMTt27GhGRkaasbGxZs+ePc0PPvjglPUcOXKkGRkZaW7dutUcOHCgGRERYaamppoTJ0403W53pcfcddddJmDOnDmzWm3y8ccfmxdddJEZGRlpRkZGmh07djTHjBljbtq0yVfm0ksvNbt06WL++OOPZq9evcywsDCzRYsW5ksvvVThfPv27TNHjx5tJiUlmaGhoebZZ59tvvnmmxXKlZaWmk8//bTZsWNHMzQ01ExOTjaHDBlirlixwlcGqHR6e4sWLcyRI0eapumdjn///feb3bp1M6Ojo83IyEizW7du5j//+c9qtYNIQ2eYZjX7V0VEzgB/+ctfeP3118nOziYiIqJWz92nTx8OHDjAunXravW8IhI4GgMkIg1OSUkJ77zzDtdcc02thx8RaRg0BkhEGoz9+/ezYMECPvroIw4ePMg999wT7CqJSD2lACQiDcb69esZMWIEKSkpvPjii3Tv3j3YVRKRekpjgERERKTR0RggERERaXQUgERERKTR0RigSng8Hvbu3Ut0dPRJ7x4tIiIi9YdpmuTn55ORkVHhJsTHUwCqxN69e/3ubyQiIiJnjt27d9O0adOTllEAqkT58vS7d+/23eeotrhcLubPn8/AgQN9y+VL3VF7B5baO7DU3oGl9g6smrR3Xl4ezZo18/07fjIKQJUov+wVExNTJwEoIiKCmJgY/QEKALV3YKm9A0vtHVhq78A6nfauyvAVDYIWERGRRkcBSERERBodBSARERFpdDQGSEREGg23243L5arRsS6Xi5CQEEpKSnC73bVcMzleZe1ts9mwWq21cn4FIBERafBM0yQ7O5sjR46c1jnS0tLYvXu31ogLgBO1d1xcHGlpaaf9MwhqAJoyZQqffPIJGzduJDw8nN69e/Pkk0/SoUOHEx7zr3/9i7fffpt169YB0KNHDx5//HEuuOACX5lRo0bx1ltv+R03aNAg5s2bVzdfRERE6rXy8JOSkkJERESN/vH0eDwUFBQQFRV1ykX25PQd396maVJUVMT+/fsBSE9PP63zBzUALV68mDFjxnD++edTWlrK3/72NwYOHMj69euJjIys9JhFixZx44030rt3b8LCwnjyyScZOHAgP//8M02aNPGVGzx4MG+++abvtd1ur/PvIyIi9Y/b7faFn8TExBqfx+Px4HQ6CQsLUwAKgMraOzw8HID9+/eTkpJyWpfDghqAju+RmTFjBikpKaxYsYJLLrmk0mPeffddv9evvfYaH3/8MQsXLuSWW27x7bfb7aSlpdV+pUVE5IxSPuYnIiIiyDWR2lD+c3S5XGduADpebm4uAAkJCVU+pqioCJfLVeGYRYsWkZKSQnx8PJdddhmPPvroCZO/w+HA4XD4Xufl5QHexq3pYLkTKT9fbZ9XKqf2Diy1d2CpvavG5XJhmiamaeLxeGp8HtM0fY+ncx6pmhO1d/nPsrIAVJ0/C4ZZ/glB5vF4uOKKKzhy5AjffvttlY+76667+PLLL/n5558JCwsDYNasWURERNCqVSu2bt3K3/72N6Kioli6dGmlaXHSpElMnjy5wv6ZM2fqfwwiIme4kJAQ0tLSaNasGaGhocGujpwmp9PJ7t27yc7OprS01O+9oqIibrrpJnJzc095J4d6E4DuvPNO5s6dy7fffnvKG5iVe+KJJ3jqqadYtGgRXbt2PWG5bdu20aZNGxYsWEC/fv0qvF9ZD1CzZs04cOBAndwKIzMzkwEDBmgp9QBQeweW2juw1N5VU1JSwu7du2nZsqXvP8o1UX6n8ejo6DNyFljr1q255557uOeee077XIsWLaJfv34cPHiQuLi4069cJU7U3iUlJezYsYNmzZpV+Hnm5eWRlJRUpQBULy6BjR07ls8++4xvvvmmyuHnmWee4YknnmDBggUnDT/g/aEnJSWxZcuWSgOQ3W6vdJC0zWars79U6vLcUpHaO7DU3oGl9j45t9uNYRhYLJbTGrxcfhmm/FyB0KdPH7p3787zzz9/2uf64YcfiIyMrJW6l5/jdNv0ZE7U3haLBcMwKv29r86fg6AGINM0+fOf/8zs2bNZtGgRrVq1qtJxTz31FI899hhffvkl55133inL//rrrxw8ePC0p8ydLo/HZM+RYo44Tl1WRETkVEzTxO12ExJy6n/Ok5OTA1CjM0dQ5/GNGTOGd955h5kzZxIdHU12djbZ2dkUFxf7ytxyyy2MHz/e9/rJJ5/koYce4o033qBly5a+YwoKCgAoKCjg/vvvZ9myZezYsYOFCxdy5ZVX0rZtWwYNGhTw73isJ+dtpM+z/+OrvZo+KSIiJzdq1CgWL17MCy+8gGEYGIbBjBkzMAyDuXPn0qNHD+x2O99++y1bt27lyiuvJDU1laioKM4//3wWLFjgd76WLVv69SQZhsFrr73GVVddRUREBO3ateM///lPjev78ccf06VLF+x2Oy1btuTZZ5/1e/+f//wn7dq1IywsjNTUVK699lrfex999BFnn3024eHhJCYm0r9/fwoLC2tcl6oI6r/EL7/8Mrm5ufTp04f09HTf9v777/vK7Nq1i6ysLL9jnE4n1157rd8xzzzzDABWq5U1a9ZwxRVX0L59e2699VZ69OjB//73v6CvBdQi0bu20f6SoFZDRKTRM02TImdptbdip7tGx5Vv1Rl2+8ILL9CrVy9uu+02srKyyMrKolmzZgA8+OCDPPHEE2zYsIGuXbtSUFDA0KFDWbhwIatWrWLw4MEMGzaMXbt2nfQzJk+ezHXXXceaNWsYOnQoI0aM4NChQ9VuzxUrVnDddddxww03sHbtWiZNmsRDDz3EjBkzAPjxxx+5++67efjhh9m0aRPz5s3zLXeTlZXFjTfeyB/+8Ac2bNjAokWLuPrqq6vVVjUR9Etgp7Jo0SK/1zt27Dhp+fDwcL788svTqFXdaZ1cFoCKz7zBcyIiDUmxy03nCYH/t2L9w4OICK3aP72xsbGEhoYSERHhW9du48aNADz88MMMGDDAVzYhIYFu3br5Xj/yyCPMnj2b//znP4wdO/aEnzFq1ChuvPFGAB5//HFefPFFvv/+ewYPHlyt7zV16lT69evHQw89BED79u1Zv349Tz/9NKNGjWLXrl1ERkby29/+lujoaFq0aME555wDeANQaWkpV199NS1atADg7LPPxuPx+JalqQu6FhNA5QHokAMcpVpDQkREaub48a8FBQXcd999dOrUibi4OKKiotiwYcMpe4COnUQUGRlJTEyM71YT1bFhwwYuvPBCv30XXnghmzdvxu12M2DAAFq0aEHr1q25+eabeffddykqKgKgW7du9OvXj7PPPpvf/e53/Otf/+Lw4cPVrkN11YtZYI1FcpSdSLuVQoebXQeL6NxUt+cQEQmGcJuV9Q9Xb1yox+MhPy+f6JjoGs98CrfVzp3Mj79d1H333UdmZibPPPMMbdu2JTw8nGuvvRan03nS8xw/a8owjDpZ5DE6OpqVK1eyaNEi5s+fz4QJE5g0aRI//PADcXFxZGZm8t133zF//nz+8Y9/8H//938sXbr0tG5dcirqAQogwzBoneT9pd12oG4Hd4mIyIkZhkFEaEi1t/BQa42OK9+qu35QaGgobrf7lOWWLFnCqFGjuOqqqzj77LNJS0s75ZCR2tSpUyeWLFlSoU7t27f3LUAcEhJC//79eeqpp1izZg07duzgq6++Arw/jwsvvJDJkyezatUqQkNDmTNnTp3WWT1AAdYqMZK1e/LYcbAo2FUREZF6rmXLlixfvpwdO3YQFRV1wt6Zdu3a8cknnzBs2DAMw+Chhx4K6O06/vrXv3L++efzyCOPcP3117N06VJeeukl/vnPfwLw2WefsW3bNi655BLi4+P54osv8Hg8dOjQgeXLl7Nw4UIGDhxISkoKy5cvJycnh44dO9ZpndUDFGCtkry31lAPkIiInMp9992H1Wqlc+fOJCcnn3BMz9SpU4mPj6d3794MGzaMQYMGce655wasnueeey4ffPABs2bN4qyzzmLChAk8/PDDjBo1CoC4uDg++eQTLrvsMjp16sT06dN577336NKlCzExMXzzzTcMHTqU9u3b8/e//51nn32WIUOG1Gmd1QMUYK3KLoFtVwASEZFTaN++PUuXLvXbVx4qjtWyZUvf5aRyY8aM8Xt9/CWxymZiHzlypEr16tOnT4Xjr7nmGq655ppKy1900UUVZnWX69SpE/Pmzauwv657sNQDFGDlPUC6BCYiIhI8CkAB1jLRG4AOF7k4XHjy0fkiIiLBcMcddxAVFVXpdscddwS7erVCl8ACLCI0hLhQkyNOg20HCugRmRDsKomIiPh5+OGHue+++yp971R3WT9TKAAFQUp4WQDKKaRHCwUgERGpX1JSUkhJSQl2NeqULoEFQUqY91EzwURERIJDASgIksO9I+e35RQEuSYiIiKNkwJQEKSW9QBpKryIiEhwKAAFQUpZD9COg0W4PRXXYRAREZG6pQAUBPF2CA2x4Cz1sOdwcbCrIyIi0ugoAAXS5gVYvvgrzQ8voUVCOABbD2gckIiI1I2WLVvy/PPPV6msYRh1fgPS+kQBKJCyf8K66i2S838+ekuMHI0DEhERCTQFoECKSgMgzHWE1mUBaJt6gERERAJOASiQolMBsLtyfbfE2KYeIBERqcSrr75KRkZGhZuCXnnllfzhD39g69atXHnllaSmphIVFcX555/PggULau3z165dy2WXXUZ4eDiJiYncfvvtFBQc/U/7okWLuOCCC4iMjCQuLo4LL7yQnTt3AvDTTz/Rt29foqOjiYmJoUePHvz444+1VrfaoAAUSOU9QKVHe4A0FV5EJAhME5yF1d9cRTU7rnyr5A7sJ/K73/2OgwcP8vXXX/v2HTp0iHnz5jFixAgKCgoYOnQoCxcuZNWqVQwePJhhw4axa9eu026ewsJCBg0aRHx8PD/88AMffvghCxYsYOzYsQCUlpYyfPhwLr30UtasWcPSpUu5/fbbMQwDgBEjRtC0aVN++OEHVqxYwYMPPojNZjvtetUm3QojkKK9Achemk+reO8vQlZuCUXOUiJC9aMQEQkYVxE8nlGtQyxA3Ol+7t/2QmhklYrGx8czZMgQZs6cSb9+/QD46KOPSEpKom/fvlgsFrp16+Yr/8gjjzB79mz+85//+IJKTc2cOZOSkhLefvttIiO99X3ppZcYNmwYTz75JDabjdzcXH7729/Spk0bADp16uQ7fteuXdx///107NgRgHbt2p1WfeqCeoACKTwB0+INOnHmEeIjvCFIl8FERKQyI0aM4OOPP8bhcADw7rvvcsMNN2CxWCgoKOC+++6jU6dOxMXFERUVxYYNG2qlB2jDhg1069bNF34ALrzwQjweD5s2bSIhIYFRo0YxaNAghg0bxgsvvEBWVpav7Lhx4/jjH/9I//79eeKJJ9i6detp16m2qdshkCwWiEqFvD0Y+dm0To5ixc7DbD9QyFlNYoNdOxGRxsMW4e2NqQaPx0Nefj4x0dFYLDXsP7BFVKv4sGHDME2Tzz//nPPPP5///e9/PPfccwDcd999ZGZm8swzz9C2bVvCw8O59tprcTqdNatbNb355pvcfffdzJs3j/fff5+///3vZGZm8pvf/IZJkyZx00038fnnnzN37lwmTpzIrFmzuOqqqwJSt6pQAAowMyoVI28PFOyjdVJLVuw8rB4gEZFAM4wqX4ry8XjA5vYeV9MAVE1hYWFcffXVvPvuu2zZsoUOHTpw7rnnArBkyRJGjRrlCxUFBQXs2LGjVj63U6dOzJgxg8LCQl8v0JIlS7BYLHTo0MFX7pxzzuGcc85h/Pjx9OrVi5kzZ/Kb3/wGgPbt29O+fXv+8pe/cOONN/Lmm2/WqwCkS2CBFuWdCWYUeHuAQFPhRUTkxEaMGMHnn3/OG2+8wYgRI3z727VrxyeffMLq1av56aefuOmmmyrMGDudzwwLC2PkyJGsW7eOr7/+mj//+c/cfPPNpKamsn37dsaPH8/SpUvZuXMn8+fPZ/PmzXTq1Ini4mLGjh3LokWL2LlzJ0uWLOGHH37wGyNUH6gHKMDMsgBEwT5apWkmmIiInNxll11GQkICmzZt4qabbvLtnzp1Kn/4wx/o3bs3SUlJ/L//9//Iy8urlc+MiIjgyy+/5J577uH8888nIiKCa665hqlTp/re37hxI2+99RYHDx4kPT2dMWPG8Kc//YnS0lIOHjzILbfcwr59+0hKSuLqq69m8uTJtVK32qIAFGi+HqB9tEkuWwwxpxDTNH3TB0VERMpZLBb27q04Xqlly5Z89dVXfvvGjBnj97o6l8TM46bon3322RXOXy41NZXZs2dX+l5oaCjvvfdelT83WHQJLMCO7QFqnhiBxYACRyk5+Y7gVkxERKQRUQAKtGN6gOwhVprGl60IrctgIiJSR959912ioqIq3bp06RLs6gWFLoEF2LE9QACtkyPZdaiIbTmF/KZ1YhBrJiIiDdUVV1xBz549K32vvq3QHChB7QGaMmUK559/PtHR0aSkpDB8+HA2bdp0yuM+/PBDOnbsSFhYGGeffTZffPGF3/umaTJhwgTS09MJDw+nf//+bN68ua6+RvWU3Q6DwhzwuGmdVDYTLEczwUREpG5ER0fTtm3bSrcWLVoEu3pBEdQAtHjxYsaMGcOyZcvIzMzE5XIxcOBACgtPfDnou+++48Ybb+TWW29l1apVDB8+nOHDh7Nu3TpfmaeeeooXX3yR6dOns3z5ciIjIxk0aBAlJSWB+FonF5mMiYFheqAwh1bJmgkmIiISaEENQPPmzWPUqFF06dKFbt26MWPGDHbt2sWKFStOeMwLL7zA4MGDuf/+++nUqROPPPII5557Li+99BLg7f15/vnn+fvf/86VV15J165defvtt9m7dy9z5swJ0Dc7CYsVR0iM93l+Nm3KboqqMUAiInWrttbIkeCqrZ9jvRoDlJubC0BCQsIJyyxdupRx48b57Rs0aJAv3Gzfvp3s7Gz69+/vez82NpaePXuydOlSbrjhhgrndDgcvvusAL51FFwuFy6Xq8bfpzIulwunLY6w0lxKj+yhWar3JnK7DhVRWOwgNETj0mtT+c+vtn+OUjm1d2CpvavGMAwMw2DPnj0kJydjs9lqtOyIaZo4nU6Ki4u1bEkAHN/epmnicrnIycnx/UyP/92vzp+FehOAPB4P9957LxdeeCFnnXXWCctlZ2eTmprqty81NZXs7Gzf++X7TlTmeFOmTKl0gab58+cTEVG9+7ZURU9bHBTvZO3SBexMLCXUYsXpgXc/nUdqeK1/nACZmZnBrkKjovYOLLX3qVksFuLi4sjNzVV4OYOZpklRURG5ubmVjhkuKiqq8rnqTQAaM2YM69at49tvvw34Z48fP96vVykvL49mzZoxcOBAYmJiavWzXC4XObteB6BrqxTOungor+5cyvqsfJp3Po9+nVJq9fMaO5fLRWZmJgMGDGi0Mx0CSe0dWGrv6jFNE7fbjdvtrrDoX1WUlpby3Xff0bt3b0JC6s0/nw3W8e1tGAZWqxWr1XrCEFudlbDrxU9w7NixfPbZZ3zzzTc0bdr0pGXT0tLYt2+f3759+/aRlpbme798X3p6ul+Z7t27V3pOu92O3W6vsN9ms9XJXyolId47v1uLcrDabLRJiWZ9Vj47D5foL7E6Ulc/S6mc2juw1N6B4XK5KC0tJSoqSu0dADVp7+r8XII64MQ0TcaOHcvs2bP56quvaNWq1SmP6dWrFwsXLvTbl5mZSa9evQBo1aoVaWlpfmXy8vJYvny5r0ywldjivE/K1wJK0kwwERGRQApqD9CYMWOYOXMmn376KdHR0b4xOrGxsYSHewfD3HLLLTRp0oQpU6YAcM8993DppZfy7LPPcvnllzNr1ix+/PFHXn31VcA72O3ee+/l0UcfpV27drRq1YqHHnqIjIwMhg8fHpTvebwSW7z3SX4W4F0MEbz3BBMREZG6F9QA9PLLLwPQp08fv/1vvvkmo0aNAmDXrl1YLEc7qnr37s3MmTP5+9//zt/+9jfatWvHnDlz/AZOP/DAAxQWFnL77bdz5MgRLrroIubNm0dYWFidf6eqcJT3AOWX9wCVLYZ4QIshioiIBEJQA1BVBqEtWrSowr7f/e53/O53vzvhMYZh8PDDD/Pwww+fTvXqTInNOwaIgn1gmr7FEA8UOMktdhEbrmvLIiIidUmLzgRBSUic94nHBUWHiLKHkBLtHYStcUAiIiJ1TwEoCExLCGZ42WKPBd5xT0fHAekymIiISF1TAAqW8rvC55cHoPKboqoHSEREpK4pAAWJWR6ANBVeREQk4BSAgqVCD5A3AG3VJTAREZE6pwAUJObxAahsKvyOg4V4PNVfol1ERESqTgEoWKK9t+woHwTdND4cm9WgxOUhK68kiBUTERFp+BSAguRoD5B3DFCI1ULzBO+d5zUTTEREpG4pAAWLbxB0tm+XZoKJiIgEhgJQkPj1AJWtiF0+EFozwUREROqWAlCwlAeg0mJw5AFHp8JrJpiIiEjdUgAKFlsE2GO8z8tviqpLYCIiIgGhABRMx40DKu8B2ptbTInLHaxaiYiINHgKQMFUPhW+bC2ghMhQYsNtmKZ3PSARERGpGwpAwXRcADIMg1ZJ5TdFVQASERGpKwpAwXTc/cBAM8FEREQCQQEomI7rAQJoUzYQWjPBRERE6o4CUDBFld8O42gPUCvdFV5ERKTOKQAFU7T/DVEBmsSFA7AvV/cDExERqSsKQMFUSQ9QUrQdgAMFTkxTd4UXERGpCwpAwVTeA+TIA6f3kldSVCgATreHvOLSYNVMRESkQVMACiZ7DIR4L3mVXwazh1iJCQsBIKdAl8FERETqggJQMBnG0Zlgx1wGSy67DJaT7wxGrURERBo8BaBgq2QqfFJUWQAqcASjRiIiIg2eAlCwVbIYYnkP0IF8BSAREZG6oAAUbOoBEhERCTgFoGBTD5CIiEjAKQAFWyU9QMnqARIREalTCkDBdrIeIAUgERGROqEAFGy+HqAs3y7fGCBdAhMREakTQQ1A33zzDcOGDSMjIwPDMJgzZ85Jy48aNQrDMCpsXbp08ZWZNGlShfc7duxYx9/kNESnex+LD0OpN/CU9wAdLHDi8eh2GCIiIrUtqAGosLCQbt26MW3atCqVf+GFF8jKyvJtu3fvJiEhgd/97nd+5bp06eJX7ttvv62L6teO8Hiwem9/UX4ZLLHsdhilHpMjxa5g1UxERKTBCgnmhw8ZMoQhQ4ZUuXxsbCyxsbG+13PmzOHw4cOMHj3ar1xISAhpaWm1Vs86ZRjecUC5uyF/H8Q1x2a1EB9h43CRiwMFDhIiQ4NdSxERkQbljB4D9Prrr9O/f39atGjht3/z5s1kZGTQunVrRowYwa5du4JUwyryDYSuZC0gjQMSERGpdUHtATode/fuZe7cucycOdNvf8+ePZkxYwYdOnQgKyuLyZMnc/HFF7Nu3Tqio6MrPZfD4cDhOBo08vLyAHC5XLhctXsJqvx8x57XGpmCBXAf2YunbH9SVCib90PWkaJar0NjUll7S91ReweW2juw1N6BVZP2rk5ZwzTNejHK1jAMZs+ezfDhw6tUfsqUKTz77LPs3buX0NATXyI6cuQILVq0YOrUqdx6662Vlpk0aRKTJ0+usH/mzJlERERUqT6no+vuGbQ68BWbUq9gY8a1ALy92cKKAxaGt3DTN6Ne/IhERETqtaKiIm666SZyc3OJiYk5adkzsgfINE3eeOMNbr755pOGH4C4uDjat2/Pli1bTlhm/PjxjBs3zvc6Ly+PZs2aMXDgwFM2YHW5XC4yMzMZMGAANpsNAMv/1sM3X9EuLZrWQ4cCsHruJlYc2ElSszYMHdS+VuvQmFTW3lJ31N6BpfYOLLV3YNWkvcuv4FTFGRmAFi9ezJYtW07Yo3OsgoICtm7dys0333zCMna7HbvdXmG/zWars19yv3PHZgBgKdyPpWxfamw4AIeKXPqDVgvq8mcpFam9A0vtHVhq78CqTntX5+cS1EHQBQUFrF69mtWrVwOwfft2Vq9e7Ru0PH78eG655ZYKx73++uv07NmTs846q8J79913H4sXL2bHjh189913XHXVVVitVm688cY6/S6npXwtIA2CFhERCYig9gD9+OOP9O3b1/e6/DLUyJEjmTFjBllZWRVmcOXm5vLxxx/zwgsvVHrOX3/9lRtvvJGDBw+SnJzMRRddxLJly0hOTq67L3K6ostmgeVXdjsMZzBqJCIi0qAFNQD16dOHk43BnjFjRoV9sbGxFBUVnfCYWbNm1UbVAiuqbM2iwhxwl4I1hKSyxRDVAyQiIlL7zuh1gBqMyCQwLIDpDUEc7QE6VOjArdthiIiI1CoFoPrAYoXIFO/zsnFACRGhGAZ4TDhUqMtgIiIitUkBqL44bhxQiNVCYtktMA4U6DKYiIhIbVIAqi/KxwFpJpiIiEidUwCqL3w9QEcD0NGZYApAIiIitUkBqL4oXwsoXz1AIiIidU0BqL7w3RG+srWAFIBERERqkwJQfRFdNgbIrwdIawGJiIjUBQWg+sI3CLpiD1COeoBERERqlQJQfRF9zCUwjwc4OgboQL7WARIREalNCkD1RflCiJ5SKD4EqAdIRESkrigA1RchoRCR6H2enwUc7QE6XOTE5fYEq2YiIiINjgJQfVI+DqhsNej4iFCsFgNTt8MQERGpVQpA9Um0/2rQVotBQqRmgomIiNQ2BaD6pJKp8MlRGgckIiJS2xSA6pOTLYaoHiAREZFaowBUn1S6GKJ6gERERGqbAlB9ctIeIA2CFhERqS0KQPXJyW6HoR4gERGRWqMAVJ+U9wDlZ4NpAhoDJCIiUhcUgOqT8h4gtwNKjgCaBSYiIlIXFIDqE1s4hMV6n5cthujrAVIAEhERqTUKQPVNlP9iiOWzwI4UuXCUuoNVKxERkQZFAai+Kb8rfFkPUGy4DZvVAOBggWaCiYiI1AYFoPrmuB4gi8UgMVKXwURERGqTAlB9c1wPEBwdB6T7gYmIiNQOBaD65rgeIDi6FpB6gERERGqHAlB9U9kNUdUDJCIiUqsUgOobXwDK8u0qnwl2QIOgRUREaoUCUH0Tne59zMuqsBq0eoBERERqhwJQfROT4X0sLfatBq07wouIiNSuoAagb775hmHDhpGRkYFhGMyZM+ek5RctWoRhGBW27Oxsv3LTpk2jZcuWhIWF0bNnT77//vs6/Ba1zBYO4fHe53l7Ad0PTEREpLYFNQAVFhbSrVs3pk2bVq3jNm3aRFZWlm9LSUnxvff+++8zbtw4Jk6cyMqVK+nWrRuDBg1i//79tV39uhPTxPuY5x0HpB4gERGR2hUSzA8fMmQIQ4YMqfZxKSkpxMXFVfre1KlTue222xg9ejQA06dP5/PPP+eNN97gwQcfPJ3qBk50OuxbB3l7gKM9QPklpZS43ITZrMGsnYiIyBkvqAGoprp3747D4eCss85i0qRJXHjhhQA4nU5WrFjB+PHjfWUtFgv9+/dn6dKlJzyfw+HA4Tjau5KXlweAy+XC5XLVat3Lz3ey81qj0rAA7iO/4nG5CLeahIZYcJZ6yD5SSJO48FqtU0NWlfaW2qP2Diy1d2CpvQOrJu1dnbJnVABKT09n+vTpnHfeeTgcDl577TX69OnD8uXLOffcczlw4ABut5vU1FS/41JTU9m4ceMJzztlyhQmT55cYf/8+fOJiIio9e8BkJmZecL3OmQX0BHYvX45PxV8AUCkxYoTg0+//JqW0XVSpQbtZO0ttU/tHVhq78BSewdWddq7qKioymXPqADUoUMHOnTo4Hvdu3dvtm7dynPPPce///3vGp93/PjxjBs3zvc6Ly+PZs2aMXDgQGJiYk6rzsdzuVxkZmYyYMAAbDZbpWWM1Yfg89k0j7PRZOhQAF7fvYzDv+bRvut59O+UUulxUlFV2ltqj9o7sNTegaX2DqyatHf5FZyqOKMCUGUuuOACvv32WwCSkpKwWq3s27fPr8y+fftIS0s74Tnsdjt2u73CfpvNVme/5Cc9d1wzACz5WVjKyqREhwF5HC526w9eDdTlz1IqUnsHlto7sNTegVWd9q7Oz+WMXwdo9erVpKd7Fw8MDQ2lR48eLFy40Pe+x+Nh4cKF9OrVK1hVrL7ytYDy9/p2aTFEERGR2hPUHqCCggK2bNnie719+3ZWr15NQkICzZs3Z/z48ezZs4e3334bgOeff55WrVrRpUsXSkpKeO211/jqq6+YP3++7xzjxo1j5MiRnHfeeVxwwQU8//zzFBYW+maFnRFiylaDLj4MrmKwhR9zOwwFIBERkdMV1AD0448/0rdvX9/r8nE4I0eOZMaMGWRlZbFr1y7f+06nk7/+9a/s2bOHiIgIunbtyoIFC/zOcf3115OTk8OECRPIzs6me/fuzJs3r8LA6HotLA5sEeAq8i6GmNhGPUAiIiK1KKgBqE+fPphl97uqzIwZM/xeP/DAAzzwwAOnPO/YsWMZO3bs6VYveAzDuxbQoa2+AKQeIBERkdpzxo8BarB844C8q0H7eoAUgERERE6bAlB9VR6AylaD9vUA6RKYiIjIaVMAqq98Aci/B6jQ6abIWRqsWomIiDQICkD1VbR/D1BkqJUwm/fHdSDfGaxaiYiINAgKQPXVcWOADMM4ZhxQSbBqJSIi0iAoANVX5WsB5R1dDLF8HFCOeoBEREROiwJQfRXTxPtYsA/c3jE/yVGaCSYiIlIbFIDqq8hkMKxgerwhCEiK1kwwERGR2qAAVF9ZrN7FEOHoWkDqARIREakVCkD1mW8cUNlaQLodhoiISK1QAKrPjl8LSLfDEBERqRUKQPVZ+VpA+d6ZYLohqoiISO1QAKrPfD1AZQHomB6gk91EVkRERE5OAag+O+4SWFJ0KAAlLg8FDt0OQ0REpKYUgOqz426IGhEaQmSoFYADBVoMUUREpKYUgOqzY6fBl13y0jggERGR06cAVJ+VB6DSEig+DBy9HYZmgomIiNScAlB9ZguDiETv8zzNBBMREaktCkD13XEzwdQDJCIicvoUgOo7rQUkIiJS6xSA6jv1AImIiNQ6BaD67vjFENUDJCIictoUgOq7Cj1A3sUQFYBERERqTgGovjt2LSCO9gAdKHDqdhgiIiI1pABU38U08T6WrQZdPgbI6faQV6zbYYiIiNSEAlB9F1PWA1SSC85CwmxWosNCAMjRQGgREZEaUQCq7+wxYIv0Pi+7KWr5XeE1DkhERKRmFIDqO8M4OhC6bC2gpGhNhRcRETkdCkBngvLLYOVT4dUDJCIicloUgM4EvoHQ/msBqQdIRESkZoIagL755huGDRtGRkYGhmEwZ86ck5b/5JNPGDBgAMnJycTExNCrVy++/PJLvzKTJk3CMAy/rWPHjnX4LQIg2r8HSGsBiYiInJ6gBqDCwkK6devGtGnTqlT+m2++YcCAAXzxxResWLGCvn37MmzYMFatWuVXrkuXLmRlZfm2b7/9ti6qHzi+MUDHrwWkACQiIlITITU56K233iIpKYnLL78cgAceeIBXX32Vzp07895779GiRYsqnWfIkCEMGTKkyp/7/PPP+71+/PHH+fTTT/nvf//LOeec49sfEhJCWlpalc9b7/lWg/auBeS7HYYCkIiISI3UKAA9/vjjvPzyywAsXbqUadOm8dxzz/HZZ5/xl7/8hU8++aRWK3kiHo+H/Px8EhIS/PZv3ryZjIwMwsLC6NWrF1OmTKF58+YnPI/D4cDhOBom8vLyAHC5XLhcrlqtc/n5qnXeiBRsgJm3l1KXi7gwK+C9BFbb9WtoatTeUmNq78BSeweW2juwatLe1SlrmDW4n0JERAQbN26kefPm/L//9//Iysri7bff5ueff6ZPnz7k5ORU95QYhsHs2bMZPnx4lY956qmneOKJJ9i4cSMpKSkAzJ07l4KCAjp06EBWVhaTJ09mz549rFu3jujo6ErPM2nSJCZPnlxh/8yZM4mIiKj2d6ltdtcRBq+7GxOD/3Z/ncPOECauDMFimDzb043FCHYNRUREgq+oqIibbrqJ3NxcYmJiTlq2Rj1AUVFRHDx4kObNmzN//nzGjRsHQFhYGMXFxTU5ZbXNnDmTyZMn8+mnn/rCD+B3Sa1r16707NmTFi1a8MEHH3DrrbdWeq7x48f7vgN4e4CaNWvGwIEDT9mA1eVyucjMzGTAgAHYbLaqHWR6MNePw/CUMuTiHpRGpvPI6oWUeuDcC/uSERdeq3VsSGrU3lJjau/AUnsHlto7sGrS3uVXcKqiRgFowIAB/PGPf+Scc87hl19+YejQoQD8/PPPtGzZsianrJZZs2bxxz/+kQ8//JD+/fuftGxcXBzt27dny5YtJyxjt9ux2+0V9ttstjr7Ja/2uaPTIXc3tqL92BJb0jwxgm05hew64qBFcu2GtIaoLn+WUpHaO7DU3oGl9g6s6rR3dX4uNZoFNm3aNHr16kVOTg4ff/wxiYmJAKxYsYIbb7yxJqessvfee4/Ro0fz3nvv+QZhn0xBQQFbt24lPT29TutV53wDob1T4VsnRQGw/UBhsGokIiJyxqpRD1BcXBwvvfRShf2VjaM5mYKCAr+eme3bt7N69WoSEhJo3rw548ePZ8+ePbz99tuA97LXyJEjeeGFF+jZsyfZ2dkAhIeHExsbC8B9993HsGHDaNGiBXv37mXixIlYrdY6D2Z17ri1gFonR8IG2JajACQiIlJdNeoBmjdvnt/aOtOmTaN79+7cdNNNHD58uMrn+fHHHznnnHN8U9jHjRvHOeecw4QJEwDIyspi165dvvKvvvoqpaWljBkzhvT0dN92zz33+Mr8+uuv3HjjjXTo0IHrrruOxMREli1bRnJyck2+av1Rvhp0fnkPkPcGqdvUAyQiIlJtNeoBuv/++3nyyScBWLt2LX/9618ZN24cX3/9NePGjePNN9+s0nn69OnDySahzZgxw+/1okWLTnnOWbNmVemzzzjH3Q+sVVkA2n6gIFg1EhEROWPVKABt376dzp07A/Dxxx/z29/+lscff5yVK1f6BkRLLfONAfKuBt062TsG6NfDxZS43ITZrMGqmYiIyBmnRpfAQkNDKSoqAmDBggUMHDgQgISEhGpNQZNqiPZfDTopKpRoewimCbsOFQWxYiIiImeeGgWgiy66iHHjxvHII4/w/fff+2Zj/fLLLzRt2rRWKyhlfPcDywbTxDAM70BoYFuOLoOJiIhUR40C0EsvvURISAgfffQRL7/8Mk2aeAfozp07l8GDB9dqBaVM+SwwtwOKDgFHxwFpILSIiEj11GgMUPPmzfnss88q7H/uuedOu0JyAiGhEJkMhTney2CRib5xQJoKLyIiUj01CkAAbrebOXPmsGHDBgC6dOnCFVdcgdWqwbh1JjrdG4DysyC96zEzwRSAREREqqNGAWjLli0MHTqUPXv20KFDBwCmTJlCs2bN+Pzzz2nTpk2tVlLKxDSB7DW+gdC+S2AaAyQiIlItNRoDdPfdd9OmTRt2797NypUrWblyJbt27aJVq1bcfffdtV1HKedbC8g7Fb48AB0ucnG40BmsWomIiJxxatQDtHjxYpYtW0ZCQoJvX2JiIk888QQXXnhhrVVOjnPc/cAi7SGkxYSRnVfC9oOFxEeGBrFyIiIiZ44a9QDZ7Xby8/Mr7C8oKCA0VP8I15nytYDKbocBHDMVXuOAREREqqpGAei3v/0tt99+O8uXL8c0TUzTZNmyZdxxxx1cccUVtV1HKXdcDxDolhgiIiI1UaMA9OKLL9KmTRt69epFWFgYYWFh9O7dm7Zt2/L888/XchXF57jbYQCaCi8iIlIDNRoDFBcXx6effsqWLVt80+A7depE27Zta7VycpzyAOTIBUcB2KN8d4XXVHgREZGqq3IAGjdu3Enf//rrr33Pp06dWvMayYnZoyE0Gpz53rWA7O18Y4C2HyjE4zGxWIwgV1JERKT+q3IAWrVqVZXKGYb+Aa5TMRlwYJN3LaCkdjSJC8dmNXCUetibW0zT+Ihg11BERKTeq3IAOraHR4IoJr0sAHnHAYVYLTRPiGBrTiHbcgoVgERERKqgRoOgJYhivDeeLV8NGo4OhNY4IBERkapRADrTlN8VPv+YmWC6JYaIiEi1KACdaSpZC8i3GKJ6gERERKpEAehMU+liiLoEJiIiUh0KQGeak/QA7TlSTInLHYxaiYiInFEUgM405fcDK8yBUu8d4BMjQ4kOC8E0YefBoiBWTkRE5MygAHSmiUgEayhgQkE24F176egtMTQQWkRE5FQUgM40FgtEp3mf51UyE0zjgERERE5JAehMVH4Z7Ni1gHxT4RWARERETkUB6ExUPhD6mLWAWvnuCaZLYCIiIqeiAHQmqnQqvC6BiYiIVJUC0JnoJAHoSJGLw4XOYNRKRETkjKEAdCYqvx3GMQEoIjSE9NgwQL1AIiIip6IAdCYqvyFq/l6/3b5bYmgqvIiIyEkFNQB98803DBs2jIyMDAzDYM6cOac8ZtGiRZx77rnY7Xbatm3LjBkzKpSZNm0aLVu2JCwsjJ49e/L999/XfuWDKaa8BygLPEdXfi6/DKZbYoiIiJxcUANQYWEh3bp1Y9q0aVUqv337di6//HL69u3L6tWruffee/njH//Il19+6Svz/vvvM27cOCZOnMjKlSvp1q0bgwYNYv/+/XX1NQIvpgnYIsHjggO/+Ha3TipfDFEBSERE5GSCGoCGDBnCo48+ylVXXVWl8tOnT6dVq1Y8++yzdOrUibFjx3Lttdfy3HPP+cpMnTqV2267jdGjR9O5c2emT59OREQEb7zxRl19jcCzWCHjHO/zX3/07T46FV4BSERE5GRCgl2B6li6dCn9+/f32zdo0CDuvfdeAJxOJytWrGD8+PG+9y0WC/3792fp0qUnPK/D4cDhcPhe5+XlAeByuXC5XLX4DfCd73TPa8k4B+vOb3Hv/h7P2TcA0DzODsD2g4WUOJxYLcbpVbYBqK32lqpReweW2juw1N6BVZP2rk7ZMyoAZWdnk5qa6rcvNTWVvLw8iouLOXz4MG63u9IyGzduPOF5p0yZwuTJkyvsnz9/PhEREbVT+eNkZmae1vHpRwwuAAo2fM0ivgDAY4LVsOIs9TBzzlwSw2qhog3E6ba3VI/aO7DU3oGl9g6s6rR3UVHVbwh+RgWgujJ+/HjGjRvne52Xl0ezZs0YOHAgMTExtfpZLpeLzMxMBgwYgM1mq/mJ8s+BF18kxrGHof0vgVDv+J9pW5ewJaeQlmdfwMXtkmqp1meuWmtvqRK1d2CpvQNL7R1YNWnv8is4VXFGBaC0tDT27dvnt2/fvn3ExMQQHh6O1WrFarVWWiYtLe2E57Xb7djt9gr7bTZbnf2Sn/a5E5pDTBOMvD3Y9q+DVhcD0Do5ii05hew6XKI/oMeoy5+lVKT2Diy1d2CpvQOrOu1dnZ/LGbUOUK9evVi4cKHfvszMTHr16gVAaGgoPXr08Cvj8XhYuHChr0yD0vQ87+OeigOhtRiiiIjIiQU1ABUUFLB69WpWr14NeKe5r169ml27dgHeS1O33HKLr/wdd9zBtm3beOCBB9i4cSP//Oc/+eCDD/jLX/7iKzNu3Dj+9a9/8dZbb7FhwwbuvPNOCgsLGT16dEC/W0A0KQtAx8wEa1M2FV4zwURERE4sqJfAfvzxR/r27et7XT4OZ+TIkcyYMYOsrCxfGAJo1aoVn3/+OX/5y1944YUXaNq0Ka+99hqDBg3ylbn++uvJyclhwoQJZGdn0717d+bNm1dhYHSD0PSYAGSaYBhHe4C0FpCIiMgJBTUA9enTB9M0T/h+Zas89+nTh1WrVp30vGPHjmXs2LGnW736L707GFYoyIa8PRDblNZlq0HvzS2mxOUmzGYNbh1FRETqoTNqDJAcJzQCUrt4n5ddBkuIDCUmLATThB0H1QskIiJSGQWgM13T872Pv/4AgGEYtE7WLTFERERORgHoTOebCbbCt6u1booqIiJyUgpAZ7rymWB7V4HbuwR467KB0FtzCoJVKxERkXpNAehMl9gWwmKhtAT2/QxAK02FFxEROSkFoDOdxQJNenifly2I2PqYqfAnm2UnIiLSWCkANQTHLYjYMtEbgHKLXRwu0l2LRUREjqcA1BD4ZoJ5A1B4qJWMWO+t4LdpHJCIiEgFCkANQfklsIObofgwwNGp8BoHJCIiUoECUEMQmQjxrbzPy6bDt9JUeBERkRNSAGoofJfBvAHo6EBoXQITERE5ngJQQ+G7Map3RWj1AImIiJyYAlBD0eSYFaFNkzZlY4B2HCzC7dFUeBERkWMpADUUaWeD1Q7Fh+DQNjLiwgkNseAs9bDncHGwayciIlKvKAA1FCGhkN7V+/zXH7FaDNqleHuBVuw6FMSKiYiI1D8KQA1J+UDoshWhL22fDMDXG3OCVSMREZF6SQGoISlfD6hsQcTLOqYAsPiXHErdnmDVSkREpN5RAGpIymeCZa8FVwndm8URG24jt9jFqt1Hglo1ERGR+kQBqCGJawGRyeBxQfYaQqwW32WwrzbuD3LlRERE6g8FoIbEMI65Map3PaDyy2BfKwCJiIj4KAA1NE39xwFd2j4Zw4CN2fnsPaLp8CIiIqAA1PAcNxMsPjKUc5rFAfD1JvUCiYiIgAJQw5NxLmDAkV1Q4A08ugwmIiLiTwGooQmLgeQO3udll8H6lgWgJVsOUuJyB6tmIiIi9YYCUENUPh2+7DJY5/QYUmPsFLvcLN+uVaFFREQUgBqi42aCGYZB3w66DCYiIlJOAagh8vUArQKP95JX+WWwrzbuxzR1d3gREWncFIAaouROYIsEZz7kbALgorZJhFot7DpUxLYDhUGuoIiISHApADVE1hDIOMf7vGwcUKQ9hJ6tEwBdBhMREVEAaqjKL4OVzQQD6NPh6GUwERGRxqxeBKBp06bRsmVLwsLC6NmzJ99///0Jy/bp0wfDMCpsl19+ua/MqFGjKrw/ePDgQHyV+qOSAFS+HtAPOw6RX+IKRq1ERETqhaAHoPfff59x48YxceJEVq5cSbdu3Rg0aBD791feS/HJJ5+QlZXl29atW4fVauV3v/udX7nBgwf7lXvvvfcC8XXqj/KZYDkbwFEAQKukSFolReJymyzZciCIlRMREQmuoAegqVOncttttzF69Gg6d+7M9OnTiYiI4I033qi0fEJCAmlpab4tMzOTiIiICgHIbrf7lYuPjw/E16k/YtIhthmYHtj2tW93nw66O7yIiEhQA5DT6WTFihX079/ft89isdC/f3+WLl1apXO8/vrr3HDDDURGRvrtX7RoESkpKXTo0IE777yTgwcP1mrdzwhnXe19XPm2b5fvthibcvB4NB1eREQap5BgfviBAwdwu92kpqb67U9NTWXjxo2nPP77779n3bp1vP766377Bw8ezNVXX02rVq3YunUrf/vb3xgyZAhLly7FarVWOI/D4cDhcPhe5+XlAeByuXC5anesTPn5avu8lep6E7YlL2BuzqT0wHaIbco5TWOICLWSk+9gze5DdMmIqft6BFFA21vU3gGm9g4stXdg1aS9q1PWMIO4Kt7evXtp0qQJ3333Hb169fLtf+CBB1i8eDHLly8/6fF/+tOfWLp0KWvWrDlpuW3bttGmTRsWLFhAv379Krw/adIkJk+eXGH/zJkziYiIqOK3qZ96b55CcsEGNqYNZ1O6t0fotY0W1h62MLSZm0FN1QskIiINQ1FRETfddBO5ubnExJz8P/hB7QFKSkrCarWyb98+v/379u0jLS3tpMcWFhYya9YsHn744VN+TuvWrUlKSmLLli2VBqDx48czbtw43+u8vDyaNWvGwIEDT9mA1eVyucjMzGTAgAHYbLZaPXdljJ+LYc6f6FD4PW0GvwIWK/kpv7L20/XsMRMYOrRnndchmALd3o2d2juw1N6BpfYOrJq0d/kVnKoIagAKDQ2lR48eLFy4kOHDhwPg8XhYuHAhY8eOPemxH374IQ6Hg9///ven/Jxff/2VgwcPkp6eXun7drsdu91eYb/NZquzX/K6PLefLsPhy/EY+Xux7VwM7QfRv3M6f/90PWv25JLn8JAYVfG7NzQBa28B1N6BpvYOLLV3YFWnvavzcwn6LLBx48bxr3/9i7feeosNGzZw5513UlhYyOjRowG45ZZbGD9+fIXjXn/9dYYPH05iYqLf/oKCAu6//36WLVvGjh07WLhwIVdeeSVt27Zl0KBBAflO9YotDLrd6H2+YgYAabFhdE6PwTRh8S85waubiIhIkAS1Bwjg+uuvJycnhwkTJpCdnU337t2ZN2+eb2D0rl27sFj8c9qmTZv49ttvmT9/foXzWa1W1qxZw1tvvcWRI0fIyMhg4MCBPPLII5X28jQKPUbCsmnwy5eQtxdiMrisYwrrs/L4auN+rj63abBrKCIiElBBD0AAY8eOPeElr0WLFlXY16FDhxPe0Tw8PJwvv/yyNqt35kvuAM17wa6lsOpduPR++nZM5qWvt/DNLzmUuj2EWIPeGSgiIhIw+levsegxyvu48m3weOjeLJ74CBt5JaWs3HUkmDUTEREJOAWgxqLzlRAWC7m7YNtXWC0Gl7bXqtAiItI4KQA1FrZw6HqD9/mKtwDoW74qtAKQiIg0MgpAjUmPkd7HTV9AwX4ubZ+MxYBN+/LZc6Q4uHUTEREJIAWgxiS1i/cu8Z5SWP0ucRGhnNvce5PY//60N8iVExERCRwFoMamfDD0irfA4+G685oB8K9vtlHkLA1evURERAJIAaixOetqCI2Gw9thx/+46twmNE+I4GChk38v3Rns2omIiASEAlBjExoJXX/nfb5iBjarhbv7tQPglW+2UehQL5CIiDR8CkCN0bllg6E3fgaFBxnePYNWSZEcKnTy1tIdQa2aiIhIICgANUYZ3SG9O7id8NN7hFgt3N2vLQCvfrON/BJXUKsnIiJS1xSAGqvyKfErZoBpckW3JrROjuRIkYsZS3YEs2YiIiJ1TgGosTrrWrBFwsHNsGspVovBPWVjgf71v23kqRdIREQaMAWgxiosxjsjDLy9QMBvu2bQLiWKvJJS3vh2e/DqJiIiUscUgBqzHqO9jz/PgaJD3l6g/t5eoNe/3U5ukXqBRESkYVIAasyanAupZ4HbAcv+CcDQs9LpkBpNfkkpr3+7LcgVFBERqRsKQI2ZYcAl93uff/scZK/DYjH4ywBvL9AbS3ZwpMgZxAqKiIjUDQWgxq7zldDxt977g306BtylDOycRqf0GAocpfzrf+oFEhGRhkcBqLEzDLj8WbDHQtZqWDbN2wtUNhbozSU7OFSoXiAREWlYFIAEotNg0GPe518/Dge2MKBzKmc1iaHI6eaVb7YGt34iIiK1TAFIvM75PbTuC6Ul8J8/Y5gmf+nfHoC3v9vJgQJHkCsoIiJSexSAxMswYNgL3sURd30HK97gso4pdGsaS7HLzSuL1QskIiINhwKQHBXfAvpN8D7PnIiR+yv3DvD2Av172U7255cEsXIiIiK1RwFI/F1wOzTrCc4C+Oxe+rRL4pzmcZS4PDzxxUZM0wx2DUVERE6bApD4s1jgipfAaoctCzDWfsD4IZ2wGPDJqj28vXRnsGsoIiJy2hSApKLk9tDn/3mfz3uQC5JLeXBIRwAe/mw9S7ceDGLlRERETp8CkFSu992QdjYUH4Yv7uO2i1tzZfcM3B6TMTNXsudIcbBrKCIiUmMKQFI5qw2unAaGFdZ/irHhvzxxdVe6ZMRwqNDJ7W//SLHTHexaioiI1IgCkJxYeje46F7v8y/uI9ydxys39yAhMpSf9+bx4CdrNChaRETOSApAcnKXPABJ7aFgH3z8R5pGWfjniHOxWgw+Xb2X1/63Pdg1FBERqTYFIDk5WxgMnw4h4bBlAXxwM79pHsWE33YGYMrcDXzzS06QKykiIlI9CkByak17wIgPvCFo83x4//fccn4av+vRFI8Jf35vFTsPFga7liIiIlVWLwLQtGnTaNmyJWFhYfTs2ZPvv//+hGVnzJiBYRh+W1hYmF8Z0zSZMGEC6enphIeH079/fzZv3lzXX6Nha3WJXwgyPriZR37bju7N4sgtdnH72ysodJQGu5YiIiJVEvQA9P777zNu3DgmTpzIypUr6datG4MGDWL//v0nPCYmJoasrCzftnOn/+J8Tz31FC+++CLTp09n+fLlREZGMmjQIEpKdCuH09LqErjpfV8ICvtkFNNvOIvkaDub9uVz34c/aVC0iIicEYIegKZOncptt93G6NGj6dy5M9OnTyciIoI33njjhMcYhkFaWppvS01N9b1nmibPP/88f//737nyyivp2rUrb7/9Nnv37mXOnDkB+EYNXOtL4aZZZSHoS9K+vJ1XbuyCzWowd102z8zfpBAkIiL1XkgwP9zpdLJixQrGjx/v22exWOjfvz9Lly494XEFBQW0aNECj8fDueeey+OPP06XLl0A2L59O9nZ2fTv399XPjY2lp49e7J06VJuuOGGCudzOBw4HA7f67y8PABcLhcul+u0v+exys9X2+cNqGYXYlz3LtYPbsL4ZR7dPXfz8NBHGf/fLUz7eit7jxTzyBWdsYcEPV83jPY+g6i9A0vtHVhq78CqSXtXp2xQA9CBAwdwu91+PTgAqampbNy4sdJjOnTowBtvvEHXrl3Jzc3lmWeeoXfv3vz88880bdqU7Oxs3zmOP2f5e8ebMmUKkydPrrB//vz5RERE1OSrnVJmZmadnDeQklrew2+2TsW6ZT599udwfcs/8+EOO7NX7eWnLXu4tYObKFuwa+nVENr7TKL2Diy1d2CpvQOrOu1dVFRU5bJBDUA10atXL3r16uV73bt3bzp16sQrr7zCI488UqNzjh8/nnHjxvle5+Xl0axZMwYOHEhMTMxp1/lYLpeLzMxMBgwYgM1WT9JBjQ3F3H4B5gcjSM9bxZTU9xn8+6f584cb2ZZfystbo3n19+fQLiUqaDVsWO1d/6m9A0vtHVhq78CqSXuXX8GpiqAGoKSkJKxWK/v27fPbv2/fPtLS0qp0DpvNxjnnnMOWLVsAfMft27eP9PR0v3N279690nPY7Xbsdnul566rX/K6PHdAte8PN86C927AsvlL+rqK+O/IZxn50V52HSri+le/5x83nUOfDilBrWaDae8zhNo7sNTegaX2DqzqtHd1fi5BHaQRGhpKjx49WLhwoW+fx+Nh4cKFfr08J+N2u1m7dq0v7LRq1Yq0tDS/c+bl5bF8+fIqn1OqqU1fuPE978DoHf+j1QcD+KJvNhe0jCffUcofZvzAjCXbNThaRETqjaCPUh03bhz/+te/eOutt9iwYQN33nknhYWFjB49GoBbbrnFb5D0ww8/zPz589m2bRsrV67k97//PTt37uSPf/wj4J0hdu+99/Loo4/yn//8h7Vr13LLLbeQkZHB8OHDg/EVG4c2l8Ed/4OMc6Ekl6jP7+C9hFcZ2S0ajwmT/ruehz5dh8vtCXZNRUREgj8G6PrrrycnJ4cJEyaQnZ1N9+7dmTdvnm8Q865du7BYjua0w4cPc9ttt5GdnU18fDw9evTgu+++o3Pnzr4yDzzwAIWFhdx+++0cOXKEiy66iHnz5lVYMFFqWVI7uDUT/vcsLH4S6/rZTIpaSs8L/o8xPyTyzrJd7DhQxLSbziU2Qt3HIiISPEEPQABjx45l7Nixlb63aNEiv9fPPfcczz333EnPZxgGDz/8MA8//HBtVVGqyhoCff4ftBsAs/+EceAXhq75M990vpGrNg/m2y0HGPbSt0y+sgt9gzwuSEREGq+gXwKTBqrJufCnb6DnnQA02/oe38VNYFDMTnYdKmL0mz9w+9s/svtQ1acsioiI1BYFIKk7tnAY8gTc8h+IaUpo3k6mu/6PWS0/I8lSwPz1++g/dTH/WLiZEpc72LUVEZFGRAFI6l7rS+HOJdDtRgzTw2+yZ/J95F94IelTIkqP8GzmLwx+/hu+3nTi+7+JiIjUJgUgCYzwOLhqOtz4PqSdjcVVyJUF7/ND5DgejviAvIPZuiwmIiIBowAkgdVhMPzpf3DDTEjrSoi7iFs8c1gWcS//Z5vJivW/MOC5xbywYDN5JbrfjoiI1A0FIAk8w4COl3sHSd84CzLOIdRTwm3Wz/gu/F7+ar7NOwu+p9fjC3nks/X8elg9QiIiUrvqxTR4aaQMAzoMgfaDYXMmLH4C+54V3BbyBSNDMvncfQEzl/Tj0u86MuSsdG6/pDVdm8YFu9YiItIAKABJ8BkGtB/oXTtoy0JY/AShv/7AVdYlXGVdwmZPE977+TJuXnMxHVo157aLW9OvYwoWixHsmouIyBlKl8Ck/jAMaNffu5r0bV/DubeALZJ2lj1MsP2b7+1juOHXR3nl3+/Q/9lFvLNsp8YJiYhIjagHSOofw/AupNjkXBj4GKz9AH6cgX3fWq62fsvV1m/5Jb8Js/57Gb/9rCdnderMFd2a0KdDMmE2a7BrLyIiZwAFIKnfwmLg/D/CebfCnpWw4g3MdZ/Q3rWHCZZ/M4F/s35TCxZsOIe3Q86nWZcLueKcZvymdSJWXSITEZETUACSM4NhQNMe0LQHxqDHYc0HmGs/hN3f09myk86WndzNHHLWxfLVT+fwoP0CEs4exMBuLTHNYFdeRETqGwUgOfOExcIFt2FccBsUHoDNmZi/zMO9eQHJrlyuD1nE9e5FOFZNZdmKzmw1zmJ6bhHtz7mQ3u3TiQ7TnehFRBo7BSA5s0UmQfcbMbrfSEipE3Z9h3vjXBw/f05E4W4uta7hUtbA9pkUbrOzymzPnthzCGt7MR179KF9k2QMQ5fKREQaGwUgaThCQqF1H6yt+xAx5Ak48AslP3/B7uX/oYlzM5HufC4y1kL+Wlj1No6VIay2tOdw8vlEtu1N626XkJyaEexvISIiAaAAJA2TYUByB6wXtmZ9bmtaDhkMh7dw8Oevydu0mIScH4j1HOYccz3sXw/734Lv4FcjnX0xZ2E0OY/UzheS0eF8DFtYsL+NiIjUMgUgaRwMC6R2ITG1C4mXjQXTxLF/M9tXZFKy5X8kHVlDU88emppZNM3NgtxMWA9OQthjb0dRSneiW51PWvtzCU3tCLbwYH8jERE5DQpA0jgZBvbU9nQc2h4YA0De4f1sX/0N+VuXEZGzmlYlG4k38mnl2AC7N8Du9+AbcGPhUGgTiuM7YM84i4TW3bGldYGE1mDVHykRkTOB/rYWKRMTn0K3vtdC32sBKHGWsmbjWrLXfwt7fiQh/xfamLuINwpIdu6Gfbth3wJY5T3eZYRSENUC4lsRmdaW0KTWENcC4ltCXHPQpTQRkXpDAUjkBMJCQ+ja9Ry6dj0HANM0+fVQEau2biFn22pKs38m4sgvtPLsop3xK5E4iM/fDPmbYdf8CucrjUzDmtgKI74VJLeH5I6Q3MEbkixawVpEJJAUgESqyDAMmiVG0iyxG1zQDSgLRYeLWfzrYXZu3UThnp/xHNpBvHMvzY39NDf208zYT5RRQkhhNhRmw66lfuf1WO2Q1B5LSseyUHRMMAoJDcZXFRFp8BSARE6DYRg0S4igWUIEdG0CXAbAoUInG7PzWJadz1tZefyatQfn/m2kurNoaWTT1rKXdsYe2hh7sbsdsG+tdzuGiYE7Kh1rQguM8stocS0gvoX3eUwT9RyJiNSQApBIHUiIDKV3myR6t0kq29MNj8dk9+EiNmbnsy2nkP/lFLBjfy7FOdtJd+6knbGHtpY9tDW8W6ThIKRgLxTsrdBrBGBaQiA6HSOmCcSkewNRdDrEZBzdotLUiyQiUgkFIJEAsVgMWiRG0iIx0m+/aV7MwUIn23IK2ZpTwH/3F7Atp4AjB/Ziyd1FumcfTY0DNDP209TIoamRQxPjAHZPKeTu9m4nE5nsDUPRGd6gVP547D57jHftJBGRRkIBSCTIDMMgKcpOUpSdC1ol+L3n9phk55Ww80AhOw8VseRgIbsOFrHrQAHFh34l1pVDmnHomO0wacYh0jlIqnEYu1EKhTneLeunE1fCFglRKRCVesxjKkSnVtyny24i0gAoAInUY1aLQZO4cJrEhdP7uPdM0+RwkYvdh4rYfbiI3YeKWX64iN2Hivj1cDF7DhcR5c4lzThEalkwSjMOkcZhv31xRiG4CuHwdu92MpYQb69RbBOIbeq97BbbFGKbefdFpIJp1ll7iIjUFgUgkTOUYRgkRIaSEBlKt2ZxFd73eEz25Zew53Axe454t71Hill9uJi9R0rYc6SYAkcpYThINQ6TRC7JRi7JxhFSjCMkc+SY195Hq6cUcnd5t0rYgGGGFWNrivdGtZHJEFH2GJlY9li+le0Pjaz0XCIidUkBSKSBslgM0mPDSY8N57xK3jdNk7ySUvYcLiYrt5jsvBL25ZaQlVvC93kl7MsrITu3hLySUu/58JDMEZoYB0g3DpFhHCDDOFi2eZ8nGvlYTDfkZ3m3qggJ9w9EvudJEJF4zJbgfdR4JRGpBQpAIo2UYRjEhtuIDbfROSPmhOWKnKVk55Z4A1JeCfvyHGTnlrAnv4QVud7X+/NLcLlN7DhJJI8EI48kI48E8kg08kg08kkklwQjn0QjlyQjnyQjlzCcUFp80l6lCiwh/sGofHxSZPIx45VSIDLFu0+3JxGRSuhvBhE5qYjQEFonR9E6OeqEZTwek0NFTn49WMDcr5fQouOlHC4uZX9eCb/mO1iV72B/vjcolTg9vuPCKSHRyCOJPBKNXN/zJCOXeCOfBPJJshaQaBQQSx7hZgl4SqFgn3c7JQPC4yEstmyL8fYghcUd87xsf3g8hCd4e5rCE7yvFZ5EGqx68ad72rRpPP3002RnZ9OtWzf+8Y9/cMEFF1Ra9l//+hdvv/0269atA6BHjx48/vjjfuVHjRrFW2+95XfcoEGDmDdvXt19CZFGzGLxzmSLtVvYGW8ytEcTbDZbhXKmaZLvKOVAvoOcfAc5BWWPx7xeX+Bgf56Dg4VO3B4TXEePt+MknnwSjHzijXwSySPZyCXJODp+KdXi3Rdv5mLBA8WHvFtN2GMhIv5oIAqPh/C4YwJV2fPK9mm2nEi9FvQA9P777zNu3DimT59Oz549ef755xk0aBCbNm0iJSWlQvlFixZx44030rt3b8LCwnjyyScZOHAgP//8M02aNPGVGzx4MG+++abvtd1uD8j3EZETMwyDmDAbMWG2k/YogbdXKa/ExYECJwcLHBwqdHKg0Pv8YIGTg4UOsgucrC/bd6TY5TcBzYKHePJJNPKIpogYo8j3GEMR0WWv4y3FJIQUk2ApJI4Coj15RHgKvCdx5Hq3wzuq/2V9vUuVBaW4sucneAzR31cidS3oAWjq1KncdtttjB49GoDp06fz+eef88Ybb/Dggw9WKP/uu+/6vX7ttdf4+OOPWbhwIbfccotvv91uJy0trW4rLyJ1xmIxiIsIJS4ilLYpJw9LAKVuD4eLXBwqD0mFR4PToSInhwtd5BQ6+aXIyaFCJ4eLnLjcZYnJ6X8uK25iKCTeKCCOAuKNfOKNAmIpJMYoIsFSRFJIMfHWYuKNIqIpJNIsIMKdj81T4j2JI8+7nWqhysrYIsrC0DG9Tn6P3s2wxRBbtAOO7IToZA0QF6mGoAYgp9PJihUrGD9+vG+fxWKhf//+LF1acen/yhQVFeFyuUhI8F9AbtGiRaSkpBAfH89ll13Go48+SmJiYqXncDgcOBwO3+u8vDwAXC4XLper0mNqqvx8tX1eqZzaO7CC3d5xYRbiwsJonRh2yrKmaVLgcJeFIydHil0cLnSVPTo5VOTiSJHTu9ZSkYs1Rd4yrtLKQ1M5G6VlPU2FvsBU/phiKyE5pJjEkCISDG+ZaLOASE8B4e48QksLMDDBVeTd8vee9DuEAH0ANk3wfifD4uttMsPjj/Y82SIwQ+xgtYH1uMcQO1hsmKGRZZf6EjDLL/spUPkJ9u93Y1OT9q5OWcM0g7dq2d69e2nSpAnfffcdvXr18u1/4IEHWLx4McuXLz/lOe666y6+/PJLfv75Z8LCvH/pzZo1i4iICFq1asXWrVv529/+RlRUFEuXLsVqrXhdftKkSUyePLnC/pkzZxIREXEa31BEGhLTBIcbCkqhsBQKXYb38bjnRaVQVGpQ6PI+d3iqFiIMPERTRKxRSByFZY8FJFoLSLYUkmgpIN4oIN4oJJaCsp6nQiLMQkLNEySy0+DBgiskEqc1CmdIFM6QaO/m9zoKhzW67HUULmskGJZar4tIVRQVFXHTTTeRm5tLTMyJZ7dCPbgEdjqeeOIJZs2axaJFi3zhB+CGG27wPT/77LPp2rUrbdq0YdGiRfTr16/CecaPH8+4ceN8r/Py8mjWrBkDBw48ZQNWl8vlIjMzkwEDBlQ6SFRql9o7sNTelXOWesgt9vYuHSnybrklLvLK9uUWu8gtKvU9P1LsYnuRiwKHdw0mPCc/P3gHiMdQSFxZOIozvAEq1VZEbIibqBA3USEeIqxuIqwewi2lhBmlhFnc2CklzCwizJVLqDMXq+MwltJiLHiwl+ZjL80Hx6nrAGBieC/hhUb6Hk2/1xGYtsiyWXjeGXhmWOzR52WPhMV614iqRz1Q+v0OrJq0d/kVnKoIagBKSkrCarWyb5//dNZ9+/adcvzOM888wxNPPMGCBQvo2rXrScu2bt2apKQktmzZUmkAstvtlQ6SttlsdfZLXpfnlorU3oGl9vZns0FkuJ2Mah5X6vaQV1LKkbLLb7lFLo4UO8seXRwscLBxyw6iElPIL3GTW+wir8TF7mIXJa6y1OSuWZ3tOEkJKaKJvZgmoUWk2opJsRaQaC0kngLiyCPak0ekO5fw0lzszsOEuMov4ZXdXqVMzSOMAbZwCAmr/LF8C406JmCVPQ+NqGR/hP/zkLAaBSz9fgdWddq7Oj+XoAag0NBQevTowcKFCxk+fDgAHo+HhQsXMnbs2BMe99RTT/HYY4/x5Zdfct55la1x6+/XX3/l4MGDpKen11bVRUTqXIjV4rvdSWVcLhdffLGNoUPPrfAXv6O0LBAVu8gtLiWvrMcpr9hFXkmp7728ElfZ81JfgMorduEwQ9ldGsru0jgorPTjK7BRSiyFRBglROAgxuogMbSURJuLOJuLeKuTmBAnsRYH0UYx0RQRaRYS7ikkzO3tabK58rE68zBMDxw7Hqr49NqyUobFv7fKHgWh0WWPUUdfh0aCPQqLNZxmBzdjbHCBPdIboELCwBZ2zPNjAlk96r2SioJ+CWzcuHGMHDmS8847jwsuuIDnn3+ewsJC36ywW265hSZNmjBlyhQAnnzySSZMmMDMmTNp2bIl2dnZAERFRREVFUVBQQGTJ0/mmmuuIS0tja1bt/LAAw/Qtm1bBg0aFLTvKSISSPYQKynRVlKiTz0g/Hgej0mhs9QblIqOhqTcYhf5JaW+4HTs87yykJVbHMZBR6l3SYLSsq3aTCLxhqgww0mi3U1iqIc4m5s4WymxNjfRIaVEh5QSY3ESZXEQaTiIMEsIx4HdLMbuKcbmLibEXYy1tBCLqxicBd4wVVo2U8/0ePc5C6pUKytwLsCuV09d2LAeXQbBb52oYzZ72WKc9uiyS4LR/vts1f/ZSdUFPQBdf/315OTkMGHCBLKzs+nevTvz5s0jNTUVgF27dmGxHB1Q9/LLL+N0Orn22mv9zjNx4kQmTZqE1WplzZo1vPXWWxw5coSMjAwGDhzII488orWARESqwGIxiA6zER1mo0lceLWPLw9Q+SXlW1lYOuax4Jj3ChzesJVfUkqBw1W230KhJxxM2F0ClJzedwq1WogKCyHKHkJMlEGivZREWynxoS7iQ1zEhjiItTiJtpQQRUlZACsm3CzC7ikm1F1EiCufw/v3khwfhcXtBFeJN0yVb64S761dTA+Y7qOLcB6uYaUtId5xUCH2skt/9rKeJvvR/SFhZZf7IsEWWfEyn99lwUhvsAqN9O6zRYCl8Q5YD3oAAhg7duwJL3ktWrTI7/WOHTtOeq7w8HC+/PLLWqqZiIhU17EBqqZM06TE5fGGJ0dZOCoPU45jwpMvOJUFq+PKFjq9g6Ccbo93TajC42fLWQB72VY1EblWIu3eMBVlDyEyyup9tIcQFWolzuYm3lJMnKWQWKOIaKOQaLOQCE8BEe4C7OWX+0oLsbryMRz5UJIHjnzv5sz3fpCn1Pu8/HVdsEWWXeo7NkCFe8ORb5xVZMV9x4/DCgn39ljZIo4GM2uo97nVXi9vK1P/aiQiIo2eYRiEh1oJD7VS8Z4AVef2mBSUlFLg9Iai8h6mAkf566M9VYWOo+UKHUffKyzbV+rxrhpT5HRT5HSTk1+VqXEhQGzZVtn3hMjQECLtZaEqJoQom0FiqJP4ECcxNg8xVu/lviirmwhrKZGWUiIsLsINF2GGi3CzBLtZQqinGJunBIurqOzSXtn4KWcBOAuPbo58oGwFnOMGrNcZw1oWho4JReffChfdW/effQIKQCIi0mBZLQaxETZiI05v1pZpmhQUO/j0iy/5zcV9cLih0OGmwOGiwOGm0OENTfklpRQ5S337vM9LKXK6KSgrU+RwU+D0jpMyTbxhzFHKidcasACVD4SvTJjNQpQ9hIhQb69UZKiViMgQIuKsRNitRNgsxIa4ibE6iLU4iCoblB5huIi0OAjHSRgOwnAQajoIdZcQ4inGcBWDq9h7mc/3vOToc997JeB2eC8F+hrQfXRAezlHHfZsVYECkIiIyCkYhkGYzUq0DVokRJz2NHjTNCl2lYcit6/H6ehjWahyesNTecAqLH/udFN03L7yHqoSl4cSl5MTLldeqZCyrfIxX+U9VeGhViJCrYTbvI8RoSGERZQ/t/rejwgNITLEJCrETaT16BZhdRNucRNuuIhKakrkabXi6VEAEhERCTDDMIgI9fbSEH365zNNE0ep52hYcpaHqfKeKDfFzrLgdMzzYufR94ucpb7Le0VObwgrdrnLzn9sT1XtuP2SRP42tNZOV20KQCIiIme48h6qMJv1hOtG1YTb4+2pKnJ6L90VOkspdrrL9nkDVFHZ6+JjAlSx82jZIqebIpe3x6q8bKGjlIjQiremCiQFIBEREamU1WL4ZrvVRk/VsYJ4K1LAO7JKREREJKCMIK+UrQAkIiIijY4CkIiIiDQ6CkAiIiLS6CgAiYiISKOjACQiIiKNjgKQiIiINDoKQCIiItLoKACJiIhIo6MAJCIiIo2OApCIiIg0OgpAIiIi0ugoAImIiEijowAkIiIijU5IsCtQH5mmCUBeXl6tn9vlclFUVEReXh42m63Wzy/+1N6BpfYOLLV3YKm9A6sm7V3+73b5v+MnowBUifz8fACaNWsW5JqIiIhIdeXn5xMbG3vSMoZZlZjUyHg8Hvbu3Ut0dDSGYdTqufPy8mjWrBm7d+8mJiamVs8tFam9A0vtHVhq78BSewdWTdrbNE3y8/PJyMjAYjn5KB/1AFXCYrHQtGnTOv2MmJgY/QEKILV3YKm9A0vtHVhq78CqbnufquennAZBi4iISKOjACQiIiKNjgJQgNntdiZOnIjdbg92VRoFtXdgqb0DS+0dWGrvwKrr9tYgaBEREWl01AMkIiIijY4CkIiIiDQ6CkAiIiLS6CgAiYiISKOjABRA06ZNo2XLloSFhdGzZ0++//77YFepQfjmm28YNmwYGRkZGIbBnDlz/N43TZMJEyaQnp5OeHg4/fv3Z/PmzcGpbAMwZcoUzj//fKKjo0lJSWH48OFs2rTJr0xJSQljxowhMTGRqKgorrnmGvbt2xekGp/ZXn75Zbp27epbDK5Xr17MnTvX977aum498cQTGIbBvffe69unNq89kyZNwjAMv61jx46+9+uyrRWAAuT9999n3LhxTJw4kZUrV9KtWzcGDRrE/v37g121M15hYSHdunVj2rRplb7/1FNP8eKLLzJ9+nSWL19OZGQkgwYNoqSkJMA1bRgWL17MmDFjWLZsGZmZmbhcLgYOHEhhYaGvzF/+8hf++9//8uGHH7J48WL27t3L1VdfHcRan7maNm3KE088wYoVK/jxxx+57LLLuPLKK/n5558BtXVd+uGHH3jllVfo2rWr3361ee3q0qULWVlZvu3bb7/1vVenbW1KQFxwwQXmmDFjfK/dbreZkZFhTpkyJYi1angAc/bs2b7XHo/HTEtLM59++mnfviNHjph2u9187733glDDhmf//v0mYC5evNg0TW/72mw288MPP/SV2bBhgwmYS5cuDVY1G5T4+HjztddeU1vXofz8fLNdu3ZmZmameemll5r33HOPaZr6/a5tEydONLt161bpe3Xd1uoBCgCn08mKFSvo37+/b5/FYqF///4sXbo0iDVr+LZv3052drZf28fGxtKzZ0+1fS3Jzc0FICEhAYAVK1bgcrn82rxjx440b95cbX6a3G43s2bNorCwkF69eqmt69CYMWO4/PLL/doW9PtdFzZv3kxGRgatW7dmxIgR7Nq1C6j7ttbNUAPgwIEDuN1uUlNT/fanpqaycePGINWqccjOzgaotO3L35Oa83g83HvvvVx44YWcddZZgLfNQ0NDiYuL8yurNq+5tWvX0qtXL0pKSoiKimL27Nl07tyZ1atXq63rwKxZs1i5ciU//PBDhff0+127evbsyYwZM+jQoQNZWVlMnjyZiy++mHXr1tV5WysAiUiNjRkzhnXr1vlds5fa16FDB1avXk1ubi4fffQRI0eOZPHixcGuVoO0e/du7rnnHjIzMwkLCwt2dRq8IUOG+J537dqVnj170qJFCz744APCw8Pr9LN1CSwAkpKSsFqtFUau79u3j7S0tCDVqnEob1+1fe0bO3Ysn332GV9//TVNmzb17U9LS8PpdHLkyBG/8mrzmgsNDaVt27b06NGDKVOm0K1bN1544QW1dR1YsWIF+/fv59xzzyUkJISQkBAWL17Miy++SEhICKmpqWrzOhQXF0f79u3ZsmVLnf9+KwAFQGhoKD169GDhwoW+fR6Ph4ULF9KrV68g1qzha9WqFWlpaX5tn5eXx/Lly9X2NWSaJmPHjmX27Nl89dVXtGrVyu/9Hj16YLPZ/Np806ZN7Nq1S21eSzweDw6HQ21dB/r168fatWtZvXq1bzvvvPMYMWKE77navO4UFBSwdetW0tPT6/73+7SHUUuVzJo1y7Tb7eaMGTPM9evXm7fffrsZFxdnZmdnB7tqZ7z8/Hxz1apV5qpVq0zAnDp1qrlq1Spz586dpmma5hNPPGHGxcWZn376qblmzRrzyiuvNFu1amUWFxcHueZnpjvvvNOMjY01Fy1aZGZlZfm2oqIiX5k77rjDbN68ufnVV1+ZP/74o9mrVy+zV69eQaz1mevBBx80Fy9ebG7fvt1cs2aN+eCDD5qGYZjz5883TVNtHQjHzgIzTbV5bfrrX/9qLlq0yNy+fbu5ZMkSs3///mZSUpK5f/9+0zTrtq0VgALoH//4h9m8eXMzNDTUvOCCC8xly5YFu0oNwtdff20CFbaRI0eapumdCv/QQw+Zqamppt1uN/v162du2rQpuJU+g1XW1oD55ptv+soUFxebd911lxkfH29GRESYV111lZmVlRW8Sp/B/vCHP5gtWrQwQ0NDzeTkZLNfv36+8GOaautAOD4Aqc1rz/XXX2+mp6eboaGhZpMmTczrr7/e3LJli+/9umxrwzRN8/T7kURERETOHBoDJCIiIo2OApCIiIg0OgpAIiIi0ugoAImIiEijowAkIiIijY4CkIiIiDQ6CkAiIiLS6CgAiYicgGEYzJkzJ9jVEJE6oAAkIvXSqFGjMAyjwjZ48OBgV01EGoCQYFdAROREBg8ezJtvvum3z263B6k2ItKQqAdIROotu91OWlqa3xYfHw94L0+9/PLLDBkyhPDwcFq3bs1HH33kd/zatWu57LLLCA8PJzExkdtvv52CggK/Mm+88QZdunTBbreTnp7O2LFj/d4/cOAAV111FREREbRr147//Oc/vvcOHz7MiBEjSE5OJjw8nHbt2lUIbCJSPykAicgZ66GHHuKaa67hp59+YsSIEdxwww1s2LABgMLCQgYNGkR8fDw//PADH374IQsWLPALOC+//DJjxozh9ttvZ+3atfznP/+hbdu2fp8xefJkrrvuOtasWcPQoUMZMWIEhw4d8n3++vXrmTt3Lhs2bODll18mKSkpcA0gIjVXK7dUFRGpZSNHjjStVqsZGRnptz322GOmaXrvSn/HHXf4HdOzZ0/zzjvvNE3TNF999VUzPj7eLCgo8L3/+eefmxaLxczOzjZN0zQzMjLM//u//zthHQDz73//u+91QUGBCZhz5841TdM0hw0bZo4ePbp2vrCIBJTGAIlIvdW3b19efvllv30JCQm+57169fJ7r1evXqxevRqADRs20K1bNyIjI33vX3jhhXg8HjZt2oRhGOzdu5d+/fqdtA5du3b1PY+MjCQmJob9+/cDcOedd3LNNdewcuVKBg4cyPDhw+ndu3eNvquIBJYCkIjUW5GRkRUuSdWW8PDwKpWz2Wx+rw3DwOPxADBkyBB27tzJF198QWZmJv369WPMmDE888wztV5fEaldGgMkImesZcuWVXjdqVMnADp16sRPP/1EYWGh7/0lS5ZgsVjo0KED0dHRtGzZkoULF55WHZKTkxk5ciTvvPMOzz//PK+++uppnU9EAkM9QCJSbzkcDrKzs/32hYSE+AYaf/jhh5x33nlcdNFFvPvuu3z//fe8/vrrAIwYMYKJEycycuRIJk2aRE5ODn/+85+5+eabSU1NBWDSpEnccccdpKSkMGTIEPLz81myZAl//vOfq1S/CRMm0KNHD7p06YLD4eCzzz7zBTARqd8UgESk3po3bx7p6el++zp06MDGjRsB7wytWbNmcdddd5Gens57771H586dAYiIiODLL7/knnvu4fzzzyciIoJrrrmGqVOn+s41cuRISkpKeO6557jvvvtISkri2muvrXL9QkNDGT9+PDt27CA8PJyLL76YWbNm1cI3F5G6ZpimaQa7EiIi1WUYBrNnz2b48OHBroqInIE0BkhEREQaHQUgERERaXQ0BkhEzki6ei8ip0M9QCIiItLoKACJiIhIo6MAJCIiIo2OApCIiIg0OgpAIiIi0ugoAImIiEijowAkIiIijY4CkIiIiDQ6CkAiIiLS6Px/yrvF2XCu/ZAAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9384 - loss: 0.2003\n","Loss on test data: 0.19404223561286926\n","Accuracy on test data: 0.9413999915122986\n"]}]},{"cell_type":"code","source":["# сохранение модели на диск, к примеру, в папку best_model\n","# В общем случае может быть указан произвольный путь\n","filepath='/content/drive/MyDrive/Colab Notebooks/best_model.keras'\n","model_2_100.save(filepath)\n"],"metadata":{"id":"uy6BM2lJ58rG","colab":{"base_uri":"https://localhost:8080/","height":176},"executionInfo":{"status":"error","timestamp":1760465221070,"user_tz":-180,"elapsed":37,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"c3149d24-89c4-4146-baef-3e1e5d4328d6"},"execution_count":null,"outputs":[{"output_type":"error","ename":"NameError","evalue":"name 'model_2_100' is not defined","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)","\u001b[0;32m/tmp/ipython-input-2416422355.py\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# В общем случае может быть указан произвольный путь\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mfilepath\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'/content/drive/MyDrive/Colab Notebooks/best_model.keras'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmodel_2_100\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mNameError\u001b[0m: name 'model_2_100' is not defined"]}]},{"cell_type":"code","source":["# Загрузка модели с диска\n","from keras.models import load_model\n","model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model.keras')\n"],"metadata":{"id":"he2hu7zo6AV9","executionInfo":{"status":"ok","timestamp":1760550811329,"user_tz":-180,"elapsed":53,"user":{"displayName":"Любаша","userId":"06263774933254808696"}}},"execution_count":5,"outputs":[]},{"cell_type":"code","source":["# вывод тестового изображения и результата распознавания\n","n = 123\n","result = model.predict(X_test[n:n+1])\n","print('NN output:', result)\n","plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n","plt.show()\n","print('Real mark: ', str(np.argmax(y_test[n])))\n","print('NN answer: ', str(np.argmax(result)))\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":517},"id":"KnaLelmS6Xcn","executionInfo":{"status":"ok","timestamp":1760550901071,"user_tz":-180,"elapsed":230,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"e752eae2-b4c0-468f-d70f-c8689c3211df"},"execution_count":15,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step\n","NN output: [[4.8947215e-05 3.4176528e-03 8.6587053e-05 9.2398334e-01 5.9264214e-05\n"," 5.0175749e-02 8.9853020e-06 1.3068309e-03 7.7676596e-03 1.3145068e-02]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG0JJREFUeJzt3X9s1PUdx/HXFeiB0DtWSnutFCygsonUjEnXqYjSUepC+JVNnMlwMRJYIZNO3bpM0c3YjWXOuTFcFgKYASpmQDRbF622zFkwoIQ4t4aSbq2BFiXhDootpP3sD+KNkxb8Hnd935XnI/kk3Pf7fd/3zcev9+J7d/3U55xzAgBggGVYNwAAuDIRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADAx1LqBz+rt7dWRI0eUlZUln89n3Q4AwCPnnE6ePKmCggJlZPR/n5NyAXTkyBEVFhZatwEAuExtbW0aN25cv/tT7i24rKws6xYAAAlwqdfzpAXQunXrdM0112j48OEqKSnRO++887nqeNsNAAaHS72eJyWAXnzxRVVVVWnNmjV69913VVxcrPLych07diwZpwMApCOXBDNmzHCVlZXRxz09Pa6goMDV1NRcsjYcDjtJDAaDwUjzEQ6HL/p6n/A7oDNnzmj//v0qKyuLbsvIyFBZWZkaGxsvOL67u1uRSCRmAAAGv4QH0Mcff6yenh7l5eXFbM/Ly1N7e/sFx9fU1CgYDEYH34ADgCuD+bfgqqurFQ6Ho6Otrc26JQDAAEj4zwHl5ORoyJAh6ujoiNne0dGhUCh0wfF+v19+vz/RbQAAUlzC74AyMzM1ffp01dXVRbf19vaqrq5OpaWliT4dACBNJWUlhKqqKi1dulRf+cpXNGPGDD3zzDPq7OzUd7/73WScDgCQhpISQHfffbc++ugjPfbYY2pvb9dNN92k2traC76YAAC4cvmcc866ifNFIhEFg0HrNgAAlykcDisQCPS73/xbcACAKxMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAE0OtGwDSXUaG93/HjRw50nPNww8/7LnmRz/6kecaSRo2bJjnmqamJs81d955p+eaI0eOeK5BauIOCABgggACAJhIeAA9/vjj8vl8MWPKlCmJPg0AIM0l5TOgG264Qa+//vr/TzKUj5oAALGSkgxDhw5VKBRKxlMDAAaJpHwGdOjQIRUUFGjixIm699571dra2u+x3d3dikQiMQMAMPglPIBKSkq0adMm1dbWav369WppadFtt92mkydP9nl8TU2NgsFgdBQWFia6JQBACkp4AFVUVOib3/ympk2bpvLycv3lL3/RiRMn9NJLL/V5fHV1tcLhcHS0tbUluiUAQApK+rcDRo8ereuuu07Nzc197vf7/fL7/cluAwCQYpL+c0CnTp3S4cOHlZ+fn+xTAQDSSMID6KGHHlJDQ4P+85//6O2339bChQs1ZMgQ3XPPPYk+FQAgjSX8LbgPP/xQ99xzj44fP66xY8fq1ltv1Z49ezR27NhEnwoAkMZ8zjln3cT5IpGIgsGgdRu4Qi1ZssRzzapVqzzXlJaWeq6J50cU/v73v3uukc59mcireBZlffrppz3XPPTQQ55rYCMcDisQCPS7n7XgAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmEj6L6QD0klvb6/nmpycHM81u3bt8lyzevVqzzV33HGH5xpJuuuuu+Kq86qzs3NAzoPUxB0QAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMCEzznnrJs4XyQSUTAYtG4DSDk33XST55ra2tq4zpWbm+u55sCBA55rbrvtNs81rKCdPsLhsAKBQL/7uQMCAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgYqh1A8CVKJ6FRf/61796rolnUVEpvkVMFy9e7Lnmk08+8VyDwYM7IACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACZ8zjln3cT5IpGIgsGgdRvA51ZeXu65ZvPmzZ5r4l1YNB6jRo3yXHP69OkkdIJ0Fg6HFQgE+t3PHRAAwAQBBAAw4TmAdu/erXnz5qmgoEA+n087d+6M2e+c02OPPab8/HyNGDFCZWVlOnToUKL6BQAMEp4DqLOzU8XFxVq3bl2f+9euXatnn31Wzz33nPbu3auRI0eqvLxcXV1dl90sAGDw8PwbUSsqKlRRUdHnPuecnnnmGf3kJz/R/PnzJUnPP/+88vLytHPnTi1ZsuTyugUADBoJ/QyopaVF7e3tKisri24LBoMqKSlRY2NjnzXd3d2KRCIxAwAw+CU0gNrb2yVJeXl5Mdvz8vKi+z6rpqZGwWAwOgoLCxPZEgAgRZl/C666ulrhcDg62trarFsCAAyAhAZQKBSSJHV0dMRs7+joiO77LL/fr0AgEDMAAINfQgOoqKhIoVBIdXV10W2RSER79+5VaWlpIk8FAEhznr8Fd+rUKTU3N0cft7S06MCBA8rOztb48eP14IMP6sknn9S1116roqIiPfrooyooKNCCBQsS2TcAIM15DqB9+/bpjjvuiD6uqqqSJC1dulSbNm3SI488os7OTi1btkwnTpzQrbfeqtraWg0fPjxxXQMA0h6LkWJQysiI793lJ5980nPNI4884rkm3v68WrZsWVx1GzZs8FyTYi8lSAEsRgoASEkEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABOefx0DkA5+85vfxFVXWVmZ4E4S56OPPvJc8/LLL8d1Lla2xkDgDggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJFiPFoPTUU0/FVTdq1CjPNffcc4/nmszMTM81Y8eO9Vzz9ttve66RpBkzZniuOXXqVFznwpWLOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93E+SKRiILBoHUbwOf2pS99yXPNVVdd5blm9uzZnmuefPJJzzWSVF9f77nm61//elznwuAVDocVCAT63c8dEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMsRgqkiYst6tiftra2uM41cuRIzzWzZs3yXPPWW295rkH6YDFSAEBKIoAAACY8B9Du3bs1b948FRQUyOfzaefOnTH777vvPvl8vpgxd+7cRPULABgkPAdQZ2eniouLtW7dun6PmTt3ro4ePRod27Ztu6wmAQCDz1CvBRUVFaqoqLjoMX6/X6FQKO6mAACDX1I+A6qvr1dubq6uv/56rVixQsePH+/32O7ubkUikZgBABj8Eh5Ac+fO1fPPP6+6ujr94he/UENDgyoqKtTT09Pn8TU1NQoGg9FRWFiY6JYAACnI81twl7JkyZLon2+88UZNmzZNkyZNUn19vWbPnn3B8dXV1aqqqoo+jkQihBAAXAGS/jXsiRMnKicnR83NzX3u9/v9CgQCMQMAMPglPYA+/PBDHT9+XPn5+ck+FQAgjXh+C+7UqVMxdzMtLS06cOCAsrOzlZ2drSeeeEKLFy9WKBTS4cOH9cgjj2jy5MkqLy9PaOMAgPTmOYD27dunO+64I/r4089vli5dqvXr1+vgwYPavHmzTpw4oYKCAs2ZM0c/+9nP5Pf7E9c1ACDteQ6gWbNm6WLrl/7tb3+7rIYA9G369Omea7KyspLQif25MDiwFhwAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwETCfyU3gOSIZzVsIJVxBwQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMCEzznnrJs4XyQSUTAYtG4DSKrc3FzPNf/85z8914wZM8ZzjSR1dnZ6rgkEAp5rUuzlBwkWDocvel1wBwQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMDEUOsGcGXJzMz0XHP27FnPNQO5yOXQod7/N3r55Zc918S7sGg8qqqqPNewsCi84g4IAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACRYjxYD6zne+47nmgw8+8Fzz9ttve66R4ltY9Fe/+pXnmltvvdVzzUcffeS5ZsuWLZ5rJGnDhg1x1QFecAcEADBBAAEATHgKoJqaGt18883KyspSbm6uFixYoKampphjurq6VFlZqTFjxmjUqFFavHixOjo6Eto0ACD9eQqghoYGVVZWas+ePXrttdd09uxZzZkzR52dndFjVq9erVdeeUXbt29XQ0ODjhw5okWLFiW8cQBAevP0iWttbW3M402bNik3N1f79+/XzJkzFQ6HtWHDBm3dulV33nmnJGnjxo364he/qD179uirX/1q4joHAKS1y/oMKBwOS5Kys7MlSfv379fZs2dVVlYWPWbKlCkaP368Ghsb+3yO7u5uRSKRmAEAGPziDqDe3l49+OCDuuWWWzR16lRJUnt7uzIzMzV69OiYY/Py8tTe3t7n89TU1CgYDEZHYWFhvC0BANJI3AFUWVmp999/Xy+88MJlNVBdXa1wOBwdbW1tl/V8AID0ENcPoq5cuVKvvvqqdu/erXHjxkW3h0IhnTlzRidOnIi5C+ro6FAoFOrzufx+v/x+fzxtAADSmKc7IOecVq5cqR07duiNN95QUVFRzP7p06dr2LBhqquri25rampSa2urSktLE9MxAGBQ8HQHVFlZqa1bt2rXrl3KysqKfq4TDAY1YsQIBYNB3X///aqqqlJ2drYCgYBWrVql0tJSvgEHAIjhKYDWr18vSZo1a1bM9o0bN+q+++6TJP36179WRkaGFi9erO7ubpWXl+v3v/99QpoFAAwePuecs27ifJFIRMFg0LoNfA75+fmea373u995rvnWt77luSYnJ8dzjaS4vlRz++23x3Uurw4ePOi5Jt53Hrq6uuKqA84XDocVCAT63c9acAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAE3H9RlRAkp566inPNcXFxZ5rVq1a5blm6dKlnmuk+PqLR2trq+eaBQsWeK5hVWukMu6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUsQtGAx6rpk4caLnmqefftpzzUBat26d55rq6mrPNadOnfJcA6Qy7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCY8DnnnHUT54tEInEtcomB5/f7PdesWLHCc83XvvY1zzWFhYWeayRp8+bNnmv++Mc/eq7p6enxXAOkm3A4rEAg0O9+7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSAEBSsBgpACAlEUAAABOeAqimpkY333yzsrKylJubqwULFqipqSnmmFmzZsnn88WM5cuXJ7RpAED68xRADQ0Nqqys1J49e/Taa6/p7NmzmjNnjjo7O2OOe+CBB3T06NHoWLt2bUKbBgCkv6FeDq6trY15vGnTJuXm5mr//v2aOXNmdPtVV12lUCiUmA4BAIPSZX0GFA6HJUnZ2dkx27ds2aKcnBxNnTpV1dXVOn36dL/P0d3drUgkEjMAAFcAF6eenh73jW98w91yyy0x2//whz+42tpad/DgQfenP/3JXX311W7hwoX9Ps+aNWucJAaDwWAMshEOhy+aI3EH0PLly92ECRNcW1vbRY+rq6tzklxzc3Of+7u6ulw4HI6OtrY280ljMBgMxuWPSwWQp8+APrVy5Uq9+uqr2r17t8aNG3fRY0tKSiRJzc3NmjRp0gX7/X6//H5/PG0AANKYpwByzmnVqlXasWOH6uvrVVRUdMmaAwcOSJLy8/PjahAAMDh5CqDKykpt3bpVu3btUlZWltrb2yVJwWBQI0aM0OHDh7V161bdddddGjNmjA4ePKjVq1dr5syZmjZtWlL+AgCANOXlcx/18z7fxo0bnXPOtba2upkzZ7rs7Gzn9/vd5MmT3cMPP3zJ9wHPFw6Hzd+3ZDAYDMblj0u99rMYKQAgKViMFACQkgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJlIugJxz1i0AABLgUq/nKRdAJ0+etG4BAJAAl3o997kUu+Xo7e3VkSNHlJWVJZ/PF7MvEomosLBQbW1tCgQCRh3aYx7OYR7OYR7OYR7OSYV5cM7p5MmTKigoUEZG//c5Qwewp88lIyND48aNu+gxgUDgir7APsU8nMM8nMM8nMM8nGM9D8Fg8JLHpNxbcACAKwMBBAAwkVYB5Pf7tWbNGvn9futWTDEP5zAP5zAP5zAP56TTPKTclxAAAFeGtLoDAgAMHgQQAMAEAQQAMEEAAQBMpE0ArVu3Ttdcc42GDx+ukpISvfPOO9YtDbjHH39cPp8vZkyZMsW6raTbvXu35s2bp4KCAvl8Pu3cuTNmv3NOjz32mPLz8zVixAiVlZXp0KFDNs0m0aXm4b777rvg+pg7d65Ns0lSU1Ojm2++WVlZWcrNzdWCBQvU1NQUc0xXV5cqKys1ZswYjRo1SosXL1ZHR4dRx8nxeeZh1qxZF1wPy5cvN+q4b2kRQC+++KKqqqq0Zs0avfvuuyouLlZ5ebmOHTtm3dqAu+GGG3T06NHoeOutt6xbSrrOzk4VFxdr3bp1fe5fu3atnn32WT333HPau3evRo4cqfLycnV1dQ1wp8l1qXmQpLlz58ZcH9u2bRvADpOvoaFBlZWV2rNnj1577TWdPXtWc+bMUWdnZ/SY1atX65VXXtH27dvV0NCgI0eOaNGiRYZdJ97nmQdJeuCBB2Kuh7Vr1xp13A+XBmbMmOEqKyujj3t6elxBQYGrqakx7GrgrVmzxhUXF1u3YUqS27FjR/Rxb2+vC4VC7pe//GV024kTJ5zf73fbtm0z6HBgfHYenHNu6dKlbv78+Sb9WDl27JiT5BoaGpxz5/7bDxs2zG3fvj16zL/+9S8nyTU2Nlq1mXSfnQfnnLv99tvd97//fbumPoeUvwM6c+aM9u/fr7Kysui2jIwMlZWVqbGx0bAzG4cOHVJBQYEmTpyoe++9V62trdYtmWppaVF7e3vM9REMBlVSUnJFXh/19fXKzc3V9ddfrxUrVuj48ePWLSVVOByWJGVnZ0uS9u/fr7Nnz8ZcD1OmTNH48eMH9fXw2Xn41JYtW5STk6OpU6equrpap0+ftmivXym3GOlnffzxx+rp6VFeXl7M9ry8PP373/826spGSUmJNm3apOuvv15Hjx7VE088odtuu03vv/++srKyrNsz0d7eLkl9Xh+f7rtSzJ07V4sWLVJRUZEOHz6sH//4x6qoqFBjY6OGDBli3V7C9fb26sEHH9Qtt9yiqVOnSjp3PWRmZmr06NExxw7m66GveZCkb3/725owYYIKCgp08OBB/fCHP1RTU5P+/Oc/G3YbK+UDCP9XUVER/fO0adNUUlKiCRMm6KWXXtL9999v2BlSwZIlS6J/vvHGGzVt2jRNmjRJ9fX1mj17tmFnyVFZWan333//ivgc9GL6m4dly5ZF/3zjjTcqPz9fs2fP1uHDhzVp0qSBbrNPKf8WXE5OjoYMGXLBt1g6OjoUCoWMukoNo0eP1nXXXafm5mbrVsx8eg1wfVxo4sSJysnJGZTXx8qVK/Xqq6/qzTffjPn1LaFQSGfOnNGJEydijh+s10N/89CXkpISSUqp6yHlAygzM1PTp09XXV1ddFtvb6/q6upUWlpq2Jm9U6dO6fDhw8rPz7duxUxRUZFCoVDM9RGJRLR3794r/vr48MMPdfz48UF1fTjntHLlSu3YsUNvvPGGioqKYvZPnz5dw4YNi7kempqa1NraOqiuh0vNQ18OHDggSal1PVh/C+LzeOGFF5zf73ebNm1yH3zwgVu2bJkbPXq0a29vt25tQP3gBz9w9fX1rqWlxf3jH/9wZWVlLicnxx07dsy6taQ6efKke++999x7773nJLmnn37avffee+6///2vc865n//852706NFu165d7uDBg27+/PmuqKjIffLJJ8adJ9bF5uHkyZPuoYceco2Nja6lpcW9/vrr7stf/rK79tprXVdXl3XrCbNixQoXDAZdfX29O3r0aHScPn06eszy5cvd+PHj3RtvvOH27dvnSktLXWlpqWHXiXepeWhubnY//elP3b59+1xLS4vbtWuXmzhxops5c6Zx57HSIoCcc+63v/2tGz9+vMvMzHQzZsxwe/bssW5pwN19990uPz/fZWZmuquvvtrdfffdrrm52bqtpHvzzTedpAvG0qVLnXPnvor96KOPury8POf3+93s2bNdU1OTbdNJcLF5OH36tJszZ44bO3asGzZsmJswYYJ74IEHBt0/0vr6+0tyGzdujB7zySefuO9973vuC1/4grvqqqvcwoUL3dGjR+2aToJLzUNra6ubOXOmy87Odn6/302ePNk9/PDDLhwO2zb+Gfw6BgCAiZT/DAgAMDgRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAw8T9m9LQZU1mDqQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 3\n","NN answer: 3\n"]}]},{"cell_type":"code","source":["# загрузка собственного изображения\n","from PIL import Image\n","file_data = Image.open('1.png')\n","file_data = file_data.convert('L') # перевод в градации серого\n","test_img = np.array(file_data)\n"],"metadata":{"id":"FB5RrBDm6izP","executionInfo":{"status":"ok","timestamp":1760551030397,"user_tz":-180,"elapsed":509,"user":{"displayName":"Любаша","userId":"06263774933254808696"}}},"execution_count":17,"outputs":[]},{"cell_type":"code","source":["# вывод собственного изображения\n","plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n","plt.show()\n","# предобработка\n","test_img = test_img / 255\n","test_img = test_img.reshape(1, num_pixels)\n","# распознавание\n","result = model.predict(test_img)\n","print('I think it\\'s ', np.argmax(result))\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":465},"id":"A0v0uCYH6nOe","executionInfo":{"status":"ok","timestamp":1760551031722,"user_tz":-180,"elapsed":160,"user":{"displayName":"Любаша","userId":"06263774933254808696"}},"outputId":"0fc4af30-de08-4be3-98f6-a38fd70a77a1"},"execution_count":18,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGJVJREFUeJzt3XFM1Pf9x/HXqXDVFg4R4biKiNpqUivdnDLi6ppIFLeYov7huv5hG2OjPZupa7e4RG2XJaw2aZYuZt1fNcuq7UyGpv5hoiiYbWhTqzFmHRFGB0YOVzO+hyho4PP7w/V+uwriwR1vDp+P5JOU+37v7u1339xzx309fc45JwAARtkE6wEAAA8nAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExMsh7gm/r7+3X16lVlZWXJ5/NZjwMASJBzTl1dXQqFQpowYfD3OWMuQFevXlVRUZH1GACAEWpra9OMGTMG3T7mfgWXlZVlPQIAIAmGej1PWYD27dunWbNm6ZFHHlFZWZk+/fTTB7ofv3YDgPFhqNfzlATo448/1o4dO7Rnzx59/vnnKi0t1cqVK3Xt2rVUPB0AIB25FFiyZIkLh8Oxn/v6+lwoFHLV1dVD3tfzPCeJxWKxWGm+PM+77+t90t8B3b59W+fOnVNFRUXstgkTJqiiokINDQ337N/b26toNBq3AADjX9ID9NVXX6mvr08FBQVxtxcUFCgSidyzf3V1tQKBQGxxBRwAPBzMr4LbuXOnPM+Lrba2NuuRAACjIOl/DygvL08TJ05UR0dH3O0dHR0KBoP37O/3++X3+5M9BgBgjEv6O6DMzEwtWrRItbW1sdv6+/tVW1ur8vLyZD8dACBNpeSbEHbs2KENGzboO9/5jpYsWaLf/OY36u7u1ssvv5yKpwMApKGUBGj9+vX697//rd27dysSieiZZ57RsWPH7rkwAQDw8PI555z1EP8rGo0qEAhYjwEAGCHP85SdnT3odvOr4AAADycCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgYpL1AADGHr/fn/B9ent7UzAJxjPeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJvgyUgD34ItFMRp4BwQAMEGAAAAmkh6gN998Uz6fL27Nnz8/2U8DAEhzKfkM6KmnntKJEyf+/0km8VETACBeSsowadIkBYPBVDw0AGCcSMlnQJcvX1YoFNLs2bP14osvqrW1ddB9e3t7FY1G4xYAYPxLeoDKysq0f/9+HTt2TL/73e/U0tKiZ599Vl1dXQPuX11drUAgEFtFRUXJHgkAMAb5nHMulU/Q2dmp4uJivfvuu9q4ceM923t7e+P+zkE0GiVCADAOeJ6n7OzsQben/OqAnJwcPfnkk2pqahpwu9/vl9/vT/UYAIAxJuV/D+jGjRtqbm5WYWFhqp8KAJBGkh6g119/XfX19fryyy/1t7/9TWvWrNHEiRP1wgsvJPupAABpLOm/grty5YpeeOEFXb9+XdOnT9f3vvc9nTlzRtOnT0/2UwEA0ljKL0JIVDQaVSAQsB4DADBCQ12EwHfBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwkH6PTp01q9erVCoZB8Pp8OHz4ct905p927d6uwsFCTJ09WRUWFLl++nKx5AQDjRMIB6u7uVmlpqfbt2zfg9r179+q9997T+++/r7Nnz+rRRx/VypUr1dPTM+JhAQDjiBsBSa6mpib2c39/vwsGg+6dd96J3dbZ2en8fr87ePDgAz2m53lOEovFYrHSfHmed9/X+6R+BtTS0qJIJKKKiorYbYFAQGVlZWpoaBjwPr29vYpGo3ELADD+JTVAkUhEklRQUBB3e0FBQWzbN1VXVysQCMRWUVFRMkcCAIxR5lfB7dy5U57nxVZbW5v1SACAUZDUAAWDQUlSR0dH3O0dHR2xbd/k9/uVnZ0dtwAA419SA1RSUqJgMKja2trYbdFoVGfPnlV5eXkynwoAkOYmJXqHGzduqKmpKfZzS0uLLly4oNzcXM2cOVPbtm3Tr371Kz3xxBMqKSnRrl27FAqFVFVVlcy5AQDpLtFLr0+dOjXg5XYbNmyIXYq9a9cuV1BQ4Px+v1u+fLlrbGx84MfnMmwWi8UaH2uoy7B9zjmnMSQajSoQCFiPAQAYIc/z7vu5vvlVcACAhxMBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMJPzvAWH0PPPMMwnf59SpUwnfJycnJ+H7ABjY/v37E77Pyy+/nPxB0gDvgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE3wZ6TC0tLQkfJ9Zs2Ylf5ABXLhwIeH7DHe20foS00gkkvB93n777WE917Zt2xK+z3C+ALaqqirh+/ClscM3nC8IlR7eLwkdLbwDAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBM+JxzznqI/xWNRhUIBKzHSFv/+c9/Er7Pl19+Oazn+ta3vpXwfYYz33j8Es7hfGnscI43YMnzPGVnZw+6nXdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJSdYDILmmTp1qPcJ9jfX5AIwe3gEBAEwQIACAiYQDdPr0aa1evVqhUEg+n0+HDx+O2/7SSy/J5/PFrcrKymTNCwAYJxIOUHd3t0pLS7Vv375B96msrFR7e3tsHTx4cERDAgDGn4QvQli1apVWrVp13338fr+CweCwhwIAjH8p+Qyorq5O+fn5mjdvnrZs2aLr168Pum9vb6+i0WjcAgCMf0kPUGVlpf7whz+otrZWb7/9turr67Vq1Sr19fUNuH91dbUCgUBsFRUVJXskAMAY5HPOuWHf2edTTU2NqqqqBt3nn//8p+bMmaMTJ05o+fLl92zv7e1Vb29v7OdoNEqEAGAc8DxP2dnZg25P+WXYs2fPVl5enpqamgbc7vf7lZ2dHbcAAONfygN05coVXb9+XYWFhal+KgBAGkn4KrgbN27EvZtpaWnRhQsXlJubq9zcXL311ltat26dgsGgmpub9bOf/Uxz587VypUrkzo4ACDNuQSdOnXKSbpnbdiwwd28edOtWLHCTZ8+3WVkZLji4mK3adMmF4lEHvjxPc8b8PFZLBaLlV7L87z7vt6P6CKEVIhGowoEAtZjAABGyPwiBAAABkKAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwkFKDq6motXrxYWVlZys/PV1VVlRobG+P26enpUTgc1rRp0/TYY49p3bp16ujoSOrQAID0l1CA6uvrFQ6HdebMGR0/flx37tzRihUr1N3dHdtn+/bt+uSTT3To0CHV19fr6tWrWrt2bdIHBwCkOTcC165dc5JcfX29c865zs5Ol5GR4Q4dOhTb54svvnCSXENDwwM9pud5ThKLxWKx0nx5nnff1/sRfQbkeZ4kKTc3V5J07tw53blzRxUVFbF95s+fr5kzZ6qhoWHAx+jt7VU0Go1bAIDxb9gB6u/v17Zt27R06VItWLBAkhSJRJSZmamcnJy4fQsKChSJRAZ8nOrqagUCgdgqKioa7kgAgDQy7ACFw2FdunRJH3300YgG2LlzpzzPi622trYRPR4AID1MGs6dtm7dqqNHj+r06dOaMWNG7PZgMKjbt2+rs7Mz7l1QR0eHgsHggI/l9/vl9/uHMwYAII0l9A7IOaetW7eqpqZGJ0+eVElJSdz2RYsWKSMjQ7W1tbHbGhsb1draqvLy8uRMDAAYFxJ6BxQOh3XgwAEdOXJEWVlZsc91AoGAJk+erEAgoI0bN2rHjh3Kzc1Vdna2XnvtNZWXl+u73/1uSv4AAIA0lchl1xrkUrsPPvggts+tW7fcq6++6qZOneqmTJni1qxZ49rb2x/4ObgMm8ViscbHGuoybN9/wzJmRKNRBQIB6zEAACPkeZ6ys7MH3c53wQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMJBai6ulqLFy9WVlaW8vPzVVVVpcbGxrh9nnvuOfl8vri1efPmpA4NAEh/CQWovr5e4XBYZ86c0fHjx3Xnzh2tWLFC3d3dcftt2rRJ7e3tsbV3796kDg0ASH+TEtn52LFjcT/v379f+fn5OnfunJYtWxa7fcqUKQoGg8mZEAAwLo3oMyDP8yRJubm5cbd/+OGHysvL04IFC7Rz507dvHlz0Mfo7e1VNBqNWwCAh4Abpr6+PvfDH/7QLV26NO723//+9+7YsWPu4sWL7o9//KN7/PHH3Zo1awZ9nD179jhJLBaLxRpny/O8+3Zk2AHavHmzKy4udm1tbffdr7a21klyTU1NA27v6elxnufFVltbm/lBY7FYLNbI11ABSugzoK9t3bpVR48e1enTpzVjxoz77ltWViZJampq0pw5c+7Z7vf75ff7hzMGACCNJRQg55xee+011dTUqK6uTiUlJUPe58KFC5KkwsLCYQ0IABifEgpQOBzWgQMHdOTIEWVlZSkSiUiSAoGAJk+erObmZh04cEA/+MEPNG3aNF28eFHbt2/XsmXLtHDhwpT8AQAAaSqRz300yO/5PvjgA+ecc62trW7ZsmUuNzfX+f1+N3fuXPfGG28M+XvA/+V5nvnvLVksFos18jXUa7/vv2EZM6LRqAKBgPUYAIAR8jxP2dnZg27nu+AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACbGXICcc9YjAACSYKjX8zEXoK6uLusRAABJMNTruc+Nsbcc/f39unr1qrKysuTz+eK2RaNRFRUVqa2tTdnZ2UYT2uM43MVxuIvjcBfH4a6xcBycc+rq6lIoFNKECYO/z5k0ijM9kAkTJmjGjBn33Sc7O/uhPsG+xnG4i+NwF8fhLo7DXdbHIRAIDLnPmPsVHADg4UCAAAAm0ipAfr9fe/bskd/vtx7FFMfhLo7DXRyHuzgOd6XTcRhzFyEAAB4OafUOCAAwfhAgAIAJAgQAMEGAAAAm0iZA+/bt06xZs/TII4+orKxMn376qfVIo+7NN9+Uz+eLW/Pnz7ceK+VOnz6t1atXKxQKyefz6fDhw3HbnXPavXu3CgsLNXnyZFVUVOjy5cs2w6bQUMfhpZdeuuf8qKystBk2Raqrq7V48WJlZWUpPz9fVVVVamxsjNunp6dH4XBY06ZN02OPPaZ169apo6PDaOLUeJDj8Nxzz91zPmzevNlo4oGlRYA+/vhj7dixQ3v27NHnn3+u0tJSrVy5UteuXbMebdQ99dRTam9vj62//OUv1iOlXHd3t0pLS7Vv374Bt+/du1fvvfee3n//fZ09e1aPPvqoVq5cqZ6enlGeNLWGOg6SVFlZGXd+HDx4cBQnTL36+nqFw2GdOXNGx48f1507d7RixQp1d3fH9tm+fbs++eQTHTp0SPX19bp69arWrl1rOHXyPchxkKRNmzbFnQ979+41mngQLg0sWbLEhcPh2M99fX0uFAq56upqw6lG3549e1xpaan1GKYkuZqamtjP/f39LhgMunfeeSd2W2dnp/P7/e7gwYMGE46Obx4H55zbsGGDe/75503msXLt2jUnydXX1zvn7v5vn5GR4Q4dOhTb54svvnCSXENDg9WYKffN4+Ccc9///vfdT37yE7uhHsCYfwd0+/ZtnTt3ThUVFbHbJkyYoIqKCjU0NBhOZuPy5csKhUKaPXu2XnzxRbW2tlqPZKqlpUWRSCTu/AgEAiorK3soz4+6ujrl5+dr3rx52rJli65fv249Ukp5nidJys3NlSSdO3dOd+7ciTsf5s+fr5kzZ47r8+Gbx+FrH374ofLy8rRgwQLt3LlTN2/etBhvUGPuy0i/6auvvlJfX58KCgribi8oKNA//vEPo6lslJWVaf/+/Zo3b57a29v11ltv6dlnn9WlS5eUlZVlPZ6JSCQiSQOeH19ve1hUVlZq7dq1KikpUXNzs37xi19o1apVamho0MSJE63HS7r+/n5t27ZNS5cu1YIFCyTdPR8yMzOVk5MTt+94Ph8GOg6S9OMf/1jFxcUKhUK6ePGifv7zn6uxsVF//vOfDaeNN+YDhP+3atWq2H8vXLhQZWVlKi4u1p/+9Cdt3LjRcDKMBT/60Y9i//30009r4cKFmjNnjurq6rR8+XLDyVIjHA7r0qVLD8XnoPcz2HF45ZVXYv/99NNPq7CwUMuXL1dzc7PmzJkz2mMOaMz/Ci4vL08TJ0685yqWjo4OBYNBo6nGhpycHD355JNqamqyHsXM1+cA58e9Zs+erby8vHF5fmzdulVHjx7VqVOn4v75lmAwqNu3b6uzszNu//F6Pgx2HAZSVlYmSWPqfBjzAcrMzNSiRYtUW1sbu62/v1+1tbUqLy83nMzejRs31NzcrMLCQutRzJSUlCgYDMadH9FoVGfPnn3oz48rV67o+vXr4+r8cM5p69atqqmp0cmTJ1VSUhK3fdGiRcrIyIg7HxobG9Xa2jquzoehjsNALly4IElj63ywvgriQXz00UfO7/e7/fv3u7///e/ulVdecTk5OS4SiViPNqp++tOfurq6OtfS0uL++te/uoqKCpeXl+euXbtmPVpKdXV1ufPnz7vz5887Se7dd99158+fd//617+cc879+te/djk5Oe7IkSPu4sWL7vnnn3clJSXu1q1bxpMn1/2OQ1dXl3v99dddQ0ODa2lpcSdOnHDf/va33RNPPOF6enqsR0+aLVu2uEAg4Orq6lx7e3ts3bx5M7bP5s2b3cyZM93JkyfdZ5995srLy115ebnh1Mk31HFoampyv/zlL91nn33mWlpa3JEjR9zs2bPdsmXLjCePlxYBcs653/72t27mzJkuMzPTLVmyxJ05c8Z6pFG3fv16V1hY6DIzM93jjz/u1q9f75qamqzHSrlTp045SfesDRs2OOfuXoq9a9cuV1BQ4Px+v1u+fLlrbGy0HToF7nccbt686VasWOGmT5/uMjIyXHFxsdu0adO4+z9pA/35JbkPPvggts+tW7fcq6++6qZOneqmTJni1qxZ49rb2+2GToGhjkNra6tbtmyZy83NdX6/382dO9e98cYbzvM828G/gX+OAQBgYsx/BgQAGJ8IEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP/B0g2+FXPppZ+AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n","I think it's 4\n"]}]}]} \ No newline at end of file diff --git a/labworks/LW1/report.md b/labworks/LW1/report.md index 0e87231..6787ee6 100644 --- a/labworks/LW1/report.md +++ b/labworks/LW1/report.md @@ -81,12 +81,18 @@ for i in range(4): **Вывод:** -```bash + ![5](train_4_5.png) + + ![1](train_4_1.png) + + ![0](train_4_0.1.png) + + ![0](train_4_0.2.png) -``` + ## 5. Предобработка данных @@ -327,6 +333,30 @@ Real mark: 7 NN answer: 7 ``` +```py +n = 123 +result = model.predict(X_test[n:n+1]) +print('NN output:', result) +plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) +plt.show() +print('Real mark: ', str(np.argmax(y_test[n]))) +print('NN answer: ', str(np.argmax(result))) +``` + +**Вывод:** + +```bash +NN output: [[4.8947215e-05 3.4176528e-03 8.6587053e-05 9.2398334e-01 5.9264214e-05 + 5.0175749e-02 8.9853020e-06 1.3068309e-03 7.7676596e-03 1.3145068e-02]] +``` + +![alt text](test_12_3.png) + +```bash +Real mark: 3 +NN answer: 3 +``` + ## 13. Тестирование модели на собственных изображениях цифр @@ -334,6 +364,7 @@ NN answer: 7 ![alt text](created_0.png) + ![alt text](created_1.png) 2. Загрузим, предобработаем и подадим на вход обученной нейросети собственные изображения diff --git a/labworks/LW1/result_0_90.png b/labworks/LW1/result_0_90.png index 3932fd5dd2fdbcdc673df219238a2590da7635f1..20359181888359fccaddbb3a134e4be06e586d4f 100644 GIT binary patch literal 32250 zcmeFa2UJyAwl$1pDV8Xd2^0|&DMdvvppt13#RvuzP!IzcKr%=MGb)lqRFt5iA|fCl zNDfj+lAI(72$FM#OZexySk>M2`gOnm>+Uzc_l-A3b(^^Np0m&1Yt1$1T2T`0?!4eOp;rLS5KK zPfo+1e=^*uW`Z9zrTg~irom;6>`i{ouo=M8xpPc}|yDh-~PzGcSGTtB(8 zbRH5gbA2Lz+gM)m?r85uDXEn}r$Z!D{)Uy|1SQ!mEV*mZ6H#FyJ!AEV!qc({TfDk6pP}a4|?ofu}MPWb*ZMkhU{o9hgnNeK+P$nAho99z+1Y+B`))3s^XD@( z)|{OiuJ~j2Jbc(r0nrT`p85FjM!bLDI@Db!ak1^8GoNhm#Rmp7cDx#@8;TQ znS9vh!hP*;Iq~02chj3DXMTw&h-|O9H-|UVwO2~1uCA`7t*uBmB>tuEc%T2sm%#-8 zPMbza=5G?mDiVuB?E2Se#9178Z%}gcdEq;(Vs%_h0;#-*M zv1XHuOtASEO9g}Y{`(^%Blq^M=rz9m3%!laQI5mumOlQWq3g}e%>x4i_bgw&{I)!Q zd6bc#k5$Vm>9M}T^6;}R7u!BR&CJ|g6=Sx?+uJ+lV*8^T4i0#DR|9{4fK%*@Io^&UqWR0lgP-lFp@)1&hhY7(rQ(W81DYQ5zmosRKfAI8N z#GJDuxZJ%28bYhJx(P2sP4Z=1ob-5iGr~ zj?U^RikU1?XF0Z~YrEY4W$vxY1EKo`pW}pX_sbu&o$;hjEP7?!O7~reIZci7i@6q3`r02P60{?tb3M$kf`f`^CZC0&{Pt)tNiV z^FLKy-G6!O40?;fuN_yCHEgOU@@}$SmwWx@P0?}}sb{(Nz)GRj1mG&<$FRximFRk&B7G1_Q^EyJug^HXdm$P`!TPH5pDvMRJ@_8U>Jh)XT z>!6WQC^t9vJG0g!?PcK#xiXA4jnmZ$w&h{kj+vR6R|4sME?E!kzviW_7N&PB|D3Yh zP66{6Eq=HC{B9Q2u30%}H!NB(e|~*J$JJ|c%dV%K+|EA-`zIhO$|6T_)haxAH-5Kt zhEFE*7!9^OT{W{J^6>usPq55*Zkb_1`xF%uI;#Y2t5r657GX=wy>)FS8{6R{M=q9D zt-TtS{80MJgC%9U?O`clZ)zU=fD6L1o|6+^taknSbu5Uoz})=w^qbRJS#dxbg<36r zUi$kNS67Fq3cU;q+kiKE{p87s9AiGNDYQ+O^6@@$E%Ywr%gW4rhtuov;DIjAze=!r ze$cV^ri=l-)KlxL5^RrcG5Au{-&(p!N=hiVS6M~HUpwpmDsHFgDwB6owT;Wz!-IL) zbaZrzDk=gI)?WGfZL6xnv2DFiu_eWUgQB#bpWkX>;gZ*f1K;TsuU^2##rhZTfyFxd zUf;XqjhY{>7N6}cYkxe=c}Zbyii25S(*bWO%Y)mtZ9@tuD38!BuB?31(xS7S-|hE< z{7Nn-ObAzUKKs!otG3WIiryn5RvIy;yF%i6ZXdTB){gJVT!ZL#1P^1NqbiW%{OsAY zR|^S^=EWXiuIN}#-gR|R?!$)`D?fPLyLWE5=UaK4 zW%$L8$^a}Cu4uP&oniP~+9PaNzA+N`Y>YyCZ8f_s)aT8c$IZuA`uX$2uia7VrPP2k)Gm-WXp5gnAlIx0eD+L^GQF@c zyKqnFa6-u56@G}x+Z@=NYm%=5akqy0?7(}1>-XQXo3f|($IH_Cy(-gIRH(zIU1Y7vprlAvS# zArt+HC8Y@i5#n{#6Ab$h*|9>|;zA|apci`{Ojlu6ARLw3<{8JBv^=j9TfJ&k{_O>8 z-szSKBY4Sf@v$9Hvu)VuoA0h96M#Gt`24xRB;v5B;eGu*C;|GdUc2`2_U)-&2aX(h zSx|5gIg#7kM+m{`l0yno45|shC@n2{q?PE!Pt*ZSRYHyz=jFNL`faL9)8aYy4)pCS zHS@^OGEOn860fTZ=EAF4&R8QcpjJ4z3eY_uK3+p4aWpJpVyv?@l}oe8#eVcOZfDHh znMeHDmoLY&KYdC!tEyQoph`#!Qd*2ZPHluJYZ*Wi(&qiO$6iu)dGTVq^GeEr)`G!qSu(Q1I66^LVq2c&zv6eh zNl*(J9;g~P>~(nfA-sOi17QLJ0PeDVp2j$AILkoo#l^)s=g#dnF$q5sbkt+2{w($5YFUaMU4Tj8y1YmZirBzzwhFb!k-e<>BEe`j+*exUkUg)~%n)B7|x*H$2LzQz5Yfr^vQ&V1RNMf*`f{Tugjk>nBwvN7j2?Bz$vhsX&X7MMr z4%G|*o<_XY;r8}+38SyqoOz{R;}tFGZp(G_^bVsW#daj%ip$Zh`{)E@Sy1p|5AgEO zzrV-!^j!xfyi0(T=_0Df2i}jwCNd<)+N;Nd#s??Ht4AE{hgg@$+Np2cxRKZcnTg@t zRuf-_7x&`Dy;e?43Z*^;cXVGn;MJ?0h>TRCoj)HibLLEA7rvYF{8VP(WcD}txzLV3 z7J1=-w)P92wAvNS8{wP}ZbNqH>nV5X2xCLT{S^As>UR4VMk}z1Ir{-EV#~e;-~%e9 z(=W!8leMw>zY6#qu`7+v)=JM`<}bPao2Ad0iQMdQaqD082DW|ZwVdzF1bWL-t_b*CI_S{^zYz;{*@p>HKCJ{%;lzuJnEhy z$m!Ue_jH?tMb{HlaaSCts9r+&5tw@b4~O4vr=f%a{s@$=rsj!fb*0eqtlE8{teFY3 zPF(JhQVMRJu9>qYw^wxIMn4b?C}?X;zaTQBdY0#3-#Jln=?O@lF~(qP(&ee(Y7QVO z>s2JDa*BeBT3XLyf}I}|Bcb>C?N%KB-IG^+*mfLf0j&(Yst+%xGk;L)-5HnCGSTIlw2&(;kedla!q{L=_ z3dBYmUBfIA{xwYEzjF8deFF3jvnHD}j9)f*-Z>TekbQ~7^Q){JuY-ctMlHPLk{l)k zu;p?8{_456e)RACXv7nAJpQPX%Zrs2lQoaA;>(^6j z)xzWv;KjVn?`tE~)MT-63YMCEiwSP%)q4!ChL2B0Q`7h5%a^#C2a5h?-CwuIj}27B z*o|4?AOVRWf=-`4T~u0niPy(%w_Q`Dm(^byHQ`an&dx^gD~;n@1#ZxrYRr!xKjLGx z{B9@x(DkG;WVyW>&=ErT$Tt!D0Bl}XES{MLZuAvS0-_<^Bj>hsqvNw#PNQhuFDM$4 z64_pP{$`nMZd$sXEI)hF)q7PT(+3aqiih!?$SzIqIJR~mMD;t+`qwho|Bn5}jQ{*S z_yw#sQrZ#;)19mwyvoOp9Wz{?bPkXKnf={6B8%{R0N(mrimiGwRz_SX3&TnxNqqdc zqy2N}HriL`SyYv=KXKlH#}&V6NO&JHH-G=dj-gi-XStCXVOjtTCCpmxf#kVbXt8tq zUlIhAFD_KD3r9YgV>~!znS;Y+y$U3>!W**}D<3|*z$-@*+xTMp(e|oXmB~O5DzxX9 zUw$F#NR)fF;?$&PUl|GNrNv_w)=ic^-=j)*cQ-Ed`N37*5@x#-hf+m~ii;QgzE8T= z8UA^n@Gi>&v)5V@RG47PDEj<)Ax=(KnDK04ZA%MX zIOo4l^Z2KB&ZJ;c|A5JEqB4{)ZE|Jjm3kE!8Ci2GDekS%9-R9ZFJ1ufA+i|pD4-lD zp;`$v+cf{)93vjE(K;Z)UIzsHq_{X^&^CKexD5aQ=@TNe`Ym~W?5s&n-^%JJrJ~sj zfe=Bborh}D8)F|Kv}fA1X@ozvZry5Fjzo))uY;crP+pBq1%&9p!B?VW*E0_pU^D)v zY^(~!3Bh)5w!Na<#p7cPvznwS5%1m!&b^fmJz`P}`PtaQ^+LrF4Gr(j7d}5hh??Bc zh!{GZU*ds~@sz!_)ld%-XnK}^&aix^Ph*Bzm8Fw-sTm3tGul#6eQ?_lHy{8IzrSL| ziYtYe@_Evzi0u1(+9e<|k}e9IIf5ajwEIG8bG=rW+yC=h;URk7cV=m%fwRxy~ zv}RUI_U%{d`lEAt0Y z@8d()J^qD{Akfs*JQ3DRc;oEMPRwagP!Pd&s!(tvK>T(!-uYqXx+oh}5M&g6WxN?9 z^HwT0wUvca2voTmB&Yc_bp-la+Kn%6}a2pr@9_>{utLVvUVmcw{0{Ur!&<+Eq8LnK}t@>hfsvj;VKrpAd`^jU1z z*Du3!FKB)TNV$Fcb%J7e&N>KVt5>hitXkAQ_6#Zy5#fzF-i4v3(~3$;UIJF?mA~7i zIrM?6Z>4?DN~;FXvk0;;u(t8t9~WBZ{UCADIrBBpEy(=EJ%p7Y+sTtr? zNviu=jy}mm^}_e-a3(^hLH)$ORu-Ip zP){!iiWY9{;W2*@PC`P;mX^^t`3szOkmTs*Hs{5`fST8xU-3GL1m)E)v^I#J)zZw; z+Q5wDmy}XpxiSRs$bqXjNlOQ5ZCC{@=D>lcSYmO79-*weAiwag*bYEw_#sds9WiWY z^4b~;LF6_6dTXA9as5tx9vK@|#LgqSx`8pVu~?G@>dezp8NPi9$*d@3cwI;V@09{8 z0=feE8mIlNWmXud8@x47+JOz8pKPlfuznCnbPNni*M!79;n?jqSF@HjQ9GMswDI* zu&rBM{cvLf%7NBE&9T=$)*a&5ywg?a5wQ$j$ahd5*s+2z@XT-eyYEWNan)NM*UyR6 zBayvcI5}-O;>dq0qeZ^jCTz{Eee&c}tbyFq{T+{@<@vi4=p5e7c&=W0cIa zc47WnJN~weRxl|(>Ev^5M^&AwymjkkAQvE6rm4$uJ4Et=Iq!7snYWs+6BgEzJGp#t#b zOHue0l9RX2W@py{%Z!xQY$~y3i2BsA3ylTnkpIa%{T#~ z;^G0{Jq({iPZMh+tRD3QrNJtX-2u?R9&a%yLA~%z%o*sEG9Lx%@5e(zLP8WLlh_=T zGsK?Z#D1tX>{1|g>Jlr`mSb8SqE!Km2Yrs3qjL7WTkQRON9$LPv>Vt5f?@(>4Ty+1 z%yfGAPK-8=FcK%Mv90D_#KNa9~1A`FywBE+tR=5R79*3rf{f#h1aZtMZ*Leh8 zGPAN4+>-x6HaqQs^s|MIsisYN%a%x4><4L(oO;P}4!c9d`N9=rx96;Fa?jq(*SCaD0EsG4RJ{3?({o47$4B1|N@q zP0(HRglL*kQBl!zjo6Eb*fPLIll;TlwQG+?UQjcX2*Ex^D2;lRvjc!C#+y21tCP$Z za4V_bC^SKl?od#m5DjJzK^M-R+{b}98CcWZd-g0~cj)c;v_+1c15^()`!(8+HzHXc zn;BA&Ht-Uqiy}-*KPUHW!u6_)-&c^tR6J!MbU?-*l)U< zZUievx=i9|R$>v*CqUpvhPj|`qAc6x))?4o%=_$Ro)?}syLhpszf`jn;2A$s7ZZ#q zQJkOuw6?akrZ4VceBw0D$2E*Q!#`t(=v8dC?RL~8ViG%K-puRDnwlX5CBW9=>cNMD z_rkLmck#)54=KXD+Ezs*zVGg2k@Z9PLb;AYKK&S%Ft-IZH3JN%wrx>Y58T&K7)Y)v zGt-{ySlYxUuE8?vzeXS+tIr8>)VG_F4Yw^okccIsiRN# z3{)o%^9*X1X5U}@vB$QWBjM&~kF6$>DeN;2>`Mxg zud*WJajMUH$OX4YuIxly!f>_$Xy9MOoLp)ksUaj|n~;?V^)VhHfI-mvF9k3|(ZP)g zhPp!_6tS7re~Qqb0IUf5#hQm8%+W)hr2UANW72+$K_dL(z6+-Z_AEMko_kxew^SE# z*mX@sp|o1eY1#^IC!LA$F$u$(OW^h9-;&p=xM&zU&B-;EV}`iY&TEza?ipI9?d6*y zA|qcXCdy*(2Dg&5M8TR#8Ccda5}=o@Sh=#XfA;K4qd!5G0yslv+P!->E^6K_`FGZX z`ePOL41)+1pf&IEk&aimyTP0m5VuQUu2p+PX9t$=>t(zV zicoF*1vmNE``GmOaDvFiu}f+w8j-H$o({*Z#vQeU`;NUC@3kM#wfcH%<&{Fm4>lbP zT%%p@k%JKC6&I721O>(i-%>Pj;elqA0_C<<&yf6Mv88Ot~tbZYu#? znux>Ir()l)0{v&UVxvbV!{#nqjqu+f%S%EuL&&+a=E$2FigapFl|pNU%WnGQsqr@d zlJ8>I=Vv)q!!aDXP|o?#nkhBgwCXZ@<1G2)c`k9BQoAqrG%t?5B67jZ?vk#;6SB^X zTh&Jh2K*1F98VmFXGnTtw08swLBRd{_iIFDPQ5vW&Dlg~un%?zu_&=bX zz=8i2?ex6_j*pKAP6c7J>%~DlsA57^IXO9WJpZ1g(zSGsu`l~F)|#uI{~)b^??R$2 zMyU%a|7Rv)sC@9?Gvs4<4{P3qf)6DiOWGjHNBUs@LMBGB9n@g5qE6FpFd6GVe*{R? zhK4hUwYpzi?!lj>NKg-@DHB9wj-4IIb=(Tb1|NmpSgR)CHR9bgRB&$+)&p-4wrSH6 zZA}tk(n_u0cZ+t#fESavPE4I|1a~F&o~6&0kgIjeqkR8w*VleiNN~-vL;o3L{WrG{ z!ogyLxTl@Aoz@bTJzA470t@(E#b9CEkC562GK1;-@06Y^w3h6nlb zbtXOl*!>-5O_Z2>k>Mee^hrRv5t>n<|Okf1tfnaF0 zu4ed*XW0*nm^)33Xifws490ghPmKCb_*KJCj_S!foO%jaRA=0oAzl@2QVBMa>1#3j64Il%2w3Q5L%;JIU|wxAROaBlL>)1KrmjD_428lo2jQB`S={!;CZjn z(xilmQrRy5J?if+;q$?%ot*dLk3k_m0E|SOoqeytxD&ikA>TgQ4{=OvwI4WZ|5A3u zPqtv5lGM{*_T2yRyCceL{W30g2lAAZmmdw%h&@6+(j0Heh?6PPAvI3tve%rHhfuQX zmb}UDsEUoSpBS&SKo>!TdFOHI@u51LrXxm1MurP$HM)|(io&V@ZUVJ%d5l@$#m+B5 zMD}IfUrQzR$&)9$_Q>o9K_g5vF2_AZe-K(P@SLfifNUD(9bPdpF{a?{ot&Lld+fHY zS@no-1>?!CNzc`C>+(hg@9{}q=EF@_Sa|k4-7mNWY?`)Oaw-|B9(j5)y~S;x*N^r2 z%N7qNPS}ohImi|-cGSc3+`^~F4*G*a0EB6e@wm<}O=jZ2sqc-Z=}o^BA5 z4}VEz>W|bnF!v{z^kaAMyA6Hzzd+o|pYkRRE+Ab4j|3GoWIv`2NcuMHa7RN=T_^Dd zYt&505CQuhDu~{OeN|CL+fq_ez z2n3GTjXu_7E&Sc?4_`V60I)*XL_`4KIl)J-jO_*2_NFacT8ZF(v`H5{C>T3Y&{!aC z)_5zjs)#Feb_znl5V5EJSV->N;38?Kop^W_P4F&tBO zpMyImWkW0dd`WLJs5T=0)YYZV-n(}X_Ntw3JFhhs5`j6SEO;AMnerqUv+917$>~Se zO$Kq7e(+~4cCLfQRXHT)!gN$!S}Lbs;&tH&*s8ef&X9<3rI}Vgh2{?PGM2eJ@~=tJt1I#m7yaB z${mCS4(vhN)2mm*-E~!#X}6GC_wkxnqa`e*;Oh#SnqHxlgSzkv9xd?P>ThryDTU&3 zL0!$AcFf*Bk#;!6M(Qr&;rX=In!>w`?a`39{5r+r;1ilH>jTD4&sz8731u3#0e-C?uC?dsVD^DxL9tpeA zC<@LvVofk~(I3G*_;qyXV|(J+>-IKeQ@m1BTcp4&(}V;+UQ-83g_)CnP;>Mv*U00< z;l*S1D`oQy>>0;M$bsh!XLaO({V>$*r&*;(Ji5F`GQ_+vWupMrzOjkmP77o%?JhbToZ%z`(% zjiRk{rbg-o#>5;Ys2ZtP@eX_(#C~#7fZ)sYHulWWLURdiHyjfpIpM;zs&`W$ausb3 zSw>z-O1<6ME`lHbU=jG6fD5L!R7bA3~a`p}|RyYPQPP$aO{O}U) zBv2{TyM<36N&=LZE#qQ**9SJZU-S&Q`Ide6*jV+w(yxkvv4KcXcr}}=%&Uu;^ozw# zSRg!+Kb9Nv^`B#?2(iG-OZ zDV)D_R=pMcy|CDWgv&PR$4Rt{C*>?iHIyH;kgK9Uv38mhBc*WN>M-HqVXQpKu0-XD z@*af#dnam#a8^ujUPsN;_tgekd>_1RlgtP1?MX8-K0OeY{B6q8HL;zcde&bQx~9Ic zaVcZSpID!z-`OkPCfT{TDgSxCmi7 z#_dOxCU&{VjGV(lf(Zd>MB54;P_NBsjXSW~1IB8irBD*0u@9YR)d3+PA^_abZeWc7 z{4Ain&aFECLPZJ8cJIKDuhocwRfTZ>gW1T3MA$ti8~g@1`bjq2q&BI~nk}0&wr&;0cy zg5CNjCUeu)yN>lcF9=DCTBT$LqjR&Z({W7XNSuM*VaUz$Hc9%Xt2LwjeSg6ok>i?E@=6`B;{{w3etWnrp1m1wG5m4O6WF!HiOFPj5d7o4lb@ew_ zu3V`RWf5A9jgU|shS~~g6xz!wPDhlr!VuO_Mp458BslVr-rnK&w>m_qsTpbmfHq-b zY&E2!Ns9Te$g)O_KWxM)Ck`O%1-IttenR+$*Ru)T$&>a~xX((^-_h3*+t~upNRMWY zan#CdJiMatbe&GPmU5CD5WbAc#-hqf9=OXYB8!2U+biA&!XO|vo5k@qRZuEEjnn*l zAS96x8Im|2gHjon2C0{XP^g5k?X&t{wu}Hzr(1u?;S!>@l1ZZpQM+klV#PC9cvqC! zi*%Hp;A6Kj{-++-f8UG$zTxygNOI<7o$o zfda`Z`nzX}>21U9MhCBfb=C5?;c5feGqCCVM_NN#afBx0Feo}I?Yp`R4Xut>x-5T` z#Q08?^n8Q_>0dZ_n)c0f15p;KbA!4Q+?5mAgD0wI{y(yD;8X@JyJ^#T2>KA7$tn(u zXHZZv76|>{cWXp1IXvuSfZ77#B2%sS$20BJ8pF-YTLR-aG+17*>6{*akF>os3X+)o zp~1mum_0yBF|!@{CB>}ymmJhLH#E4TsE1zw4A|Fh3uF>t)4xy;RFx;~cMti%fPJ)y z)vRV^`Qm~LloA;-{!-<#ZW`wg%pF2>46~D=vh7C-{l8DJ;OqN8Wte9sI|87pA68WrL_^HXY`vnk=x?y(gYTtciRoi}XWGbaQMQ;H9Vk== zf|L*`{nb$C7ktoLL!ldo)^M3(FRH2vQWaVO#oSy2&lg~v3KcYb z{RPVb7(osS_~Iz8l4iJN3ryXkZnUH|myhLdoFlE!!~7Ne(TiiaTlQ`zPDbo(-G*VHFi!YGEV(3a!fV)`Kn0{=Ow-cKdan z5^1D}eR+W3X5*ulaLJsrvXbC30ig*i4)OC?FoE3OqP)B(3VgQ8)Px4NaUZ=D-fGyM zXx0HJ&P}4C!1ltWW>;mo>HekGu}Rbe=)faK9f@Pfe502kqP_zeLeCV+8dTU)(Ae(` zs%2<$NTi-Fx()H6WLZXEn#N)>+n~%qZaz;fN$1b!wmNuqcpX2_9ETvyeq!L^5+zWl2>Hl8unL2?gP9M0 zv>01PBospA5~2p-{6p6{)5iZCaf3=b@H=Smy89fMuG$2-N(5A(qQA%P7Z~-?c&AO* zbMK`5*%cr(W1 zXa~!)O6H%mHWYZbcJQR311U^sO;n5er|Y2mOTT0VxRyEC`7^D1l@V6q3TU02EO6rO(O0=5)@`NNHj)Sj<4Hj_5{^LW{qXk{kV~YZh*VK$uP8ddWi&B4QBKwGQY2 zI=<9ZbocJv%2F+tBys2ERkxBjVy(3XKCS{(AU3Vn%?N#2DA^$GJ%JFX11ghd9vZM@|W1&2#YA6~g;@!ryfplID0PhHAb19dT+i~ux4M(XVeS9BMGACtOg)m0ws zej(F!53I9^i?E=eV7m9S;RDzlC~N)}W7@N-m)k%bG# z7BmA0bDw#;$t4eN13hMVJNO3iygFkRW84W?P@=BE+QAHgtq7*pM4?w^_rQUlesdE( zifbEswcLh2sp}-MXl_xb)0~-%1e$mSb}32s-;;saSqDK1AM&_YY)aKnfjCA`I;nvN zJpd5FfvD(cK&0rnc4~48h<U;*3-2~ExdfH+52U!{MXE$Ov5=O5S49iW(uVi2$ z9T;2`s3scvgpomH0;iHUwt7qv93^vR5qM7gD~M#s4;aD%Lj4?^+~mE3l8n;Bw54d( z5^-aB92n{{g`jb7r@(Ik6$CbH)CrBcOjfeS?(OJctXbU;ZhKes4^$X1`^Dk^CVMBm zyhyz8i|xgxG10&9Rm>TNz5aT4B{GhaYy<-D$R#x1^@B-)|De#VH|8Of9MjSUBw(s^;bQM(f*RfA_8n9H_82t(*c2s zsy*7()G~&y9x)zNr~q4A!b(4Chqz=>6FR!=A@%SA%1Dni`O&;3YzolXxFDhysCxs? zmD$XFCYu}NWv&_reZJ6-^hszZ142Q*W2&7Aj`(D}Av~4X(~!Cz#U^Ak2OpvR9Z!z> zQ{d_cO;O1QAA<8y z&30PH+E))!CMo-N*2RX|>u~A%>Gg0r$ySQy!o;D$@p=4ht(c;4{THRpePJ9OIlAR7A{P?T4`c|Ww7+S>KpAvC3MaVIA&~$IM+ZwbTJOSPrWqfA za_HGc2iG%jnCfk((G>VM9G5r%Nwz;@rkVYO-4ZdwKf$Yv7l-LdMt!~#iL_v*0YRws z!*w>IeL*8(G}RjbN62gl`2Z+1`-r3(nh*w!i~i=xlcn!{P|N}Q#Sb?;rZIYONuwBQ zuo2k>%nV##3{c*ezTBlLG>!KVAe&*Ri_@Qb?Ab<&c2^GqewxC(54$e)dK1BncOhVo zE1*&kxtQ2vYBjsKFBy-hF$)U>&&sDo2$0{0282xZ>}zf1 zbK3(J8nq4$SR?I=rpLi14d?;dkW?2GHz-$h(FlOqU*!q5u?gtRBwU7D0n~%Dg|spn zhX5^wdQhJ}-AdC7(9hn%xGuL0ah+NP@Q*M>AKJAm!^^kXz2+vVfNu>A<@J5EL(~E> z`i@3*(M&Xyc2sH6&=)G$Zmsmm1Lr{F%WxU3xNGi(3-kK=`ZP+DzYnKE<8tB4eO4_2 z{_n`uFce?Skd_{e@} zX#gg(!2y1b@GDxLjs&X*JbJ{9VJVFrLTdl9@{-Pd94>?XzxxHrw0OKU7Ua7Vg35OE z2;c%S|lre3Sb$k=5)f3}`Oh)|M1I-c)1uKH06dD@pvP2yUvzZ3z$*2l` z8xT0G+ByxNap}o4K4U)eK|yH7%oNnElHFhC9s2Hs*uath8o8BQ4G*4kB@LQ^`>Hwaep zx7m1+Pdbkd9{>ylrs`{WY|v7l!4y-`e%#kNUX@q~;Z%A5{-qU>U~o)_d$gCJdx{)F zlV%lQ`_>qe6@Zt3)1ZDwph2BXFf<1eJBD{O(i|>5DCl%D$}1{}9{|Ysq_)DkF%zZ> zjYK<*P}K|H2fbX4JtDI-+~rrYWz+t|6gG4+M4%Z1h3pz`r-tzjKpCh&shNXd7`6LT zYd!7n0DqqXvg*)JA3h9g>(M1kmJss@q6_8}jneXX-wUspev4b*i?gW4ekReuy1wTo z)tbb@V1OpATVt-T3gDnjuV-#kz5-t{Y!C0i)>ZbP=yuzQSr?F=(36x!qg>V^w7R4b zHU=TgY&0`zxC17u?<|Z)R-@f%Cg!1|OUvH!@bczJzmc*ydIlID(mA!wWND5c#P~kX zjdZMP#tBok(VU{{nF&$*wL`Wqh8>JX1i^ko`~;9IsjM_^Ge|S>I9MN(aelaU&{2n8 zLc|&p+fbYD6hN?kjX?w0KNvSfK4p^BI~fEX0siS{48^1x&w8Tmm;&%5vkZ?Ca4 zjx*dVnrmY-8F1 zMB1Pzsajy9Ru-$CQ0*HfoOxl)r?m^PR`$1 zZq0qxkVXr$bnUVU`x>1artlRmnwQjc0U6F+K)S!^&`8@^*+80D^yW?5HYNK}5Fylp z4Rnm2M)(gAv=PQ>4B@XQ7s@BmK1z2Oou4V?X=|Q|s)=SNJ`mPG4kcG5Xu=4z@uQsI zWv(xH7j$S$Fy?jHH=e95D->YGB!@{&o;nH86^qSFeVOg;hvC)GuZ&u@i=qPdBNnew z%7y7L;eGdiRO3nK9s)ImCc9wG#9(TzB_?!oMyna-N5Xp7g2ILp;uo9Vebl%Lf(iQq zlr@d|S}9Y&l&^bFf{;RGfuK&NJsLY3ZM+?g*5G7_e1l_)rsa~I#5|GVO~Xr3fi}TM z5Pe7>T%n$LNjUvTlAsC|B_Rf#&iT!uf^>_Rrd<(9#S!XGs8eThdYkBxomi%tm+Q7? zg}W7rkY61|TF}@=iYjDR+Sr(w1+H7XGz8EFmg3*i7mgzoS?b4wVSw6wN$VHx0{1OA zKeNi~IW`)+>3KLO6vDvqZ7?ry@OQISwfLJ;9))f+rmt;UPS(D+Z}$_a2U7tJzNMZX zB$F)ak!9Yw)#dPv&W z4+EFVKJ%_yTru^`Y3rm57dT9`CniAf<@veDyv7)}EMhOAnG2;EU2zmScdgR)E3;o1 z9-tRMC;-z)A|MVq#=fDw9GF@Hsq?sX`z9QNR*vx+j(3>s44$$g@~Y;Q?RVOzgojF> z*c{3F=_B)l$L+Dx6<@po>V@x%ND^yJ{kd2JOq2p04#fqBq1JF{`Id*6--vR9PX0)@ zi~Sp%3fp#F&B8ht+2EZ5J#LyVsn`Gb?hQ;_xC1oYBrF}uo4ST=0hSSLH)DRyadz$4 z;6NCu;s?rgt(spvP)0X;;*euv9-0PuGd1HJmi)df51p8A{>ei+e#88kU|LU449+uV zgYXBBeY9pA-*}e;X$+UAveF1#Od+ew`Ifpe?T^dr_`q{`*md}c-$lMY3C{N%Bi0j7 zN<*V;^QsxF@y@C3SI57|Hkk?O^YsmmZw)zZ#CVc8$YHgFjqi`+2JAm%TL`2rE2#aNx{=-SDDd1+U9|9X3(*`l}6qJ3VO>me`MJ zi))7XIWZNmo{@l5hxr|m7d#2Rqg~r>m{;xs$M;3~{yg7`bq`IMiXBQkl#2_rl*u7U z_cUW1=Kpaag=DUIEgO~O5H5OS;@#bKin;gx{C*Cp*S}BMHw>Rg2jjoW&G5>;Wq}xo zih0tP3UGoEmYKa$RDaE%PxHTlsHh}H?IO4AkxeL08%SWxO(Gl&>JZYA@CvFwkyJ6gWsSfuLl#X%Z|Vyg)`pXh9wi^j(GO-#{n0sazlD7`0iS~TDS zprcL!HOrj1Sqya_07)Rt=(D}he%~|JT}*9}gdecNAasG%8{Wv$5L4tPjC)|RcQBVY z)=bG5mvkMIyn|0);Z8em@JHvmdb^OUtSplXxvs%-YL1~+0hGQdN@y4*M7+CT4Zh3B zGzJlfa{kP2uh3}%niX&s(KSNc?~s1k8e@|1phN1cFmfFh3fy%x>&?@(OY1q8mYPwu zjjDyzTGZ(%J)w+H0f<|t0Y^k^65|U_aya$qHFRhoFPcIUB?N*Jjz+kof-8rvg&(2j zYHHZPD-Ij37cxY2f=GqvL>lOIHZGcI4SkDzTA(V(&;v9|Unu~Ik~zzi8!|f?BvB&7 z7}j1v@j}o5G2;7-W{|Noj{2SPx6De1t*WXr?E|ipZJHDx$=5kK$z*+_^-fa7@bDl4 zyo2YFCN-hLOit~(6!j1E>EA|+P>jUrrB?+71+jJ^lK>5%$84nUJn;`S%NxxUfGR}8 z05L!`Y9YP@vM840LWNH_uawwuIWOE77-`XuI*y87_}?Iac=pDdHg5Y0v`tI{Q%j=x zJczwf3wf6^j#ZD8yuTvyH5q#dPa0b;#`xQ9LT=$_bE#gC_>;XBzR~Z|Sp9#?A_6XY<02fyj^M z?+zyhEh1>d&;P>%rM24F2HZ)uq4j4$`toxvQlgaJiIuq_aB zANGdVBts`8UWnwf+7HucV_?6TIH&K$8Mts^FQmq3zYQq1qB$(qW@RpU+CDkBl|BJ- z2n}DM!|LNx0?8Ni*6!_oK}Uw!qyMl%wkA2Nbf6|Cn8c9x)pp0o9zdlg;5O92y(>1J zo!Adn24{jwlD)C7qgHt73isXk*6KX&rQ#t0TVA-)_NOMLt zhT}(L2mnb@nUbovtvlR^AVZr$^t;#}DV!juxcls9+F<>{GrTH4|5vX~{8H1*r z^^NoT+vbeX_#HH|rrutFL!XshmyDqK2ae4|I51sn19>QLw#k!>6RcOAph1Ro`dSFg zg@jOzlZ{Q*_+cCbB-tCWNXU8uy8xPLwmd2#SWWwe>RfcuJA!|iiRJ%OPlPmPsG%>r zrE|QalQtpl3&s$=vas!-7@|Az{RHF(gdB*xh%?n;oBLz()s#8W(*zhh-r$BnJRu^H z5>B=WVk~eKa8hD~1x;%rN)f3BbSD@t%;^H5z^cNw4I!9Tk4_&LIy?lDsVYr!$wGvP zSL_vv(f=f6MMXW_Qa?SD*G*}KJ8}knr2x_m{GlC%g>8#NAo(D=w%EEP@gQg+)RDCT zAMRt*vx^yTZT(j7 z*mswGt}jigK=Fs}cTV~$2;5C>`(msbN%!O#2zEIwsfsV4nI>SpFNMCF01Z)ef)H+) zY$r-S;*6klQ6>gE1Hl<$GQvA-cQ$$B#jyHQgXi7BFz%o;_I&`On z&jZG_AoQ1-PrXMPGXfpy>gZVQWPH7Fexvrp<(w~;?*amLQQ*c17fZ`whlE?1`h3`* z(YDF|czo4Cv|pjKMj7ETn3E$9%X$R^^E#|z@oh8|e(+Qefw!PXjp^N$-upt|{+WD^ zJ{J-YkYPJ?5Cj9Zer2SaQ)FA!tpC*MBX0iu1$vyY!wPYb@zobX5RjQ;#~)V6bk*3F zw!cU+b zrpjxv=e3T?qmejVU`+AEzkeys=X~LVWlP#We|`wYm6}Fc8PyXB$8EZ|j}4{CmXL3( z89hE^MniC^9E`rc?vvY?bgpw-=QwMI&y@%9ZW%~qFjNqs!n6>55N9}lkbLh6S{Yr6 z==v37xJ+xS)92VaY3iZu37MVgWM^{WDSYGmnS0v2}y{c2-9%UrRne!eZsyQnRJ|y~{Cmdp8TG5e~kT4!RwoQ~f+q>UAUa<$^ z;9BJmz31OMl#NQdEKB#v?*2OzeC5d7w?7-RU4tXUzYwrHT5>kTgFrkQ#TvB(CEkvO zboy{85NSZ`e)E}jH5CK8fpP=D{^HL0tWdn7dv~U&@0)OY|KjI0ijZE=xML z34ntEX@`Onz#8D6kUy}6N&O1O^e4!&_%nPJKnQ0hLU(@WTQT}&@F7zABCu=CIDsUL z(Lf^1PNZH$Xf^cn)hB8P}+BWlG7e} zFkswJ`h$G>T9z_DBNQ|lk{lOjL5zS$p>L{B?cJ(c2{Kg$SV-lp3~;;y4?$dSWyrqA zo0~WK4&OO$Q9F(4DP$9gdji7)jh;a9O!FAgHc5S1uh2;6DakSGS68iNY-pCyLw7UCXI^BZ^23&QJL7SIo|W2KUKu;0BHn{AL4u4oS6cvv1DOeYU9?YlK#8O%sXU$T|AhY7Snsdzs-ydawv_Fp|7^0=`l!h zIaN-1Mmz+ys0e{-(cyJbiU(#T3GW2miQ39&F=;%=Zv$)FWI6ru+<}F_rNaQIM+P1r zyOHz1f8iFe1#<3d=!F;^1B8Q_bSn1tvi|25pBQj^0IW~Q8MO7$XyX@~^(!Arnn^Ht zm&MxeuNm9cr7W3!JGyOrnYUuNy=sk2&cG8%`!uQ=F}9f3e$$^LpJh_2Xd?l`n%;iN*M8iR zEUU;&-<{3k(|#!M)@wTcc0$z#0uKrdvU&l+H|i^WK^TjbtOBLdH`<%43$hq>EAwj? zDx)xJ=_Ew8n$_JC5$68Vdg>ZHNfVnbl0UBbc;i|syX5+Z`~~|Ty*wCb7h-eU?(V?h z;@3Kx&;9(WSBd5MrVmj6r2-v z-6_z;=uE5wv=kE)yOezH-zr3EqTIx8xIb&W-L}AYLW1{>PX0ZV&3l!U zPTSbQ>!mQ|pCAu|+7eyBK5m@7c}kN7~RGaMH?(8&%;s z0|N(vU1HMGsl&tK=6zD|zY0}T0+Rx{pXGqbGo`$%Pzn<;2_94YF_+o{`Rde4qg`6CHNq#sj2BwVRQZKk(HUBmGATDoJiE~ zQGEX(L+eVFz61Wl%lz^$3G8weXqFq@U-UunoAIK%0#6SHB%KLgZ)fxD-A|7>W#4(L zf8-d8)^F4{H|Ih#5jx6KpswFw40iej2DWBaS%sI)@-O_!A!UkR{>|MluIyc5qHVV< za7@rK_1R~${72U|$~0v;+;NzYlU!9Il~|+il@M3Gau1*P(*U8U($?##r?#&4kmGlY zGL~1ouZ@T9<>j^XarW)g7te$bf9T9_U%4eBDE*u9E9KSeJol<^9lN%0*7O5szO-LV z(SN_~zP5n-E&=xpw(f0~-bijXJsy4L6_fyNu zL)a~47dUS}yP05ohhwBCp{{n~g_8rmJ`n#M4O-Fg>gX}H0#>`Z5~q~2lG$g?O8REJ z%yTd1B=K`P-b%8vvvW>K*@mG3b$xyF!-V|&{aMXBDlZr7#E&LE=Y09f$wo<0(a^@` z4jO6ejm7hIvGeft1T|=L`q0rKEU-%s7Q?1R{RvaN^qrq=HV!J*Idvt-V|HmrkaFPR zds*Msbe>PE$BsXV&RkQ|YwhiNzt$P$3rczHK6&;mD}%vEKNF7CduAk7=P(}EY4NI9 z2mhrv_VU|d;#hsJ0(Dz$ZV;2fl!34e+QyxV?#jQH+Dn?6KDY!VU? zIc;sdc>2{T2qO<4J^Fwu|6EPb;Y9r}YMan%DB<1I(sCuYaViVm;*^OAhJgK0cHxMP z?*%=*+L{`cVx0xZzF+l!nI~>Ll-Km6e<&+k6#4#r z_t#W5dZB`X!i*n(uoxX$4~w|?BHgXo?iY96b6%BxS}%^e*bEyhMRp&K3@?OmA0huG_-nIqAcP`7nY&)06T zBPuFJrltbNLyiPKYwpC2`bb;fz?Cg^&p?3sicG$6(W1-QXX=8z*fCK3*Hi0-)~>BZ zE4QkK#x#~sIXR~=90%YP12!&6oG(pS`Q+n|?L$H=JMRk2eXqRw`oRDJ=VNEW)iA}x4++d2T{#Nr?5v4`evZo46ZvpJMp8R zpP$u5&jbz!SwR*xx=jg)F+rO%9!?|_%|~`K-7x?X8tHAC$$K1 zH#JFuu9JhTs&?f)Zh&&R)JJdz29AIeWna0XMNAx(a%L1{N5KYnvrwr+4JYECA3->H5(VXSV;3f z+{ssfy8H-(ph&W4L3)#;#+fbVvehB)D8!i$J3J}{ZYX&4 zNN#?9-kSOd_pw+~%9f^Ew>pwllw=nx#aT}wm&F*~-&n0^=2-f?yrO~y$dI>L&asS&bn9$cj$1N%Inw-Q)_SsP^vwz{HTS!HD` zhqF{Ao;o`>2e0JjxXs1ppO_{`GGR5~?zPyIa zj^0O(0Y68GA9VWkuP1V~WvKUVcqk9ZPTJjCOY80JZNNf*d2KBRSd!ee$SN$1A{ixt zi4Y@mbIzW%(Sw77@@o4F=6ZZgFlRy%;n$k(3!lLwkJ@|I2ts*4C&Ydk+1V`!so?9k z6X^*CZSHA7AtCCPpJ!LhzkjdUW(;w06BBdEa^V&v$PMEF{4p{!WB2trw|90nBY+0j z`TF_>&kNPjfuy$aeZ@|#ca1Xb+*3?VOk%M}B?`A7JoWLsrbsd-A^^sj^2gc;(Z~`2 zMqFBme|eXOaU)Lm@~haT21z2eArOgY`C}u8yW-$%T+e)7IdtZ$IX-s;p}AG`L2koA zW~IV}+f`NCU>DF?ycZ`MyOU8fp!VR2Sf^*kZH1GQxkXO(XX(97?&UB!u|47Gn0Q0A zAHHf;(@18-=td0#Re3n&vg&F!_@O$5LIG$d_2i|~n|>dtB@ze??d=MfS~c9Zjm-5= zv0&KP+bH;Cx)t`wRrDDUAEJSm=*~Cu@}#1yBrv4GQ^QdiG0q065z~XlY#z*JL@2Zi z@AKj3DZG_tCh}Q87Er17j*g=Us&8u!2OrzO=3S*1Yk`Tpe7P9L0w5Q={0=YH&^sFk z2gRQ^suejEic;o2guj`bY;9#bYx(42jCvB0VDE9EPvs=8py^*eEn6d5d0#Eyvfp+p9 zw}1devNysQRCsosJvRH}&WG1_abIk0SY2WUPJAc}k$!HL~2^ z>&t;gI;lvsw!7fK^2TRAmFPg+tCAu^Cgr$(KF|h~<$zw?!Oi*l{$7=yv2EkaQ-hx@ zxv=U+R$ji%1n_Bpfr@)MK`ypw+_lCkUK*YuqMl@$wUkZ2_z~lOfq+%!Bv188AItSs z0*}EF2IKylrwiOA#q5)Z4ynDJt0sF~-5_&Z{(Av07qqEuJeohIoXXUh`v^0zcW_YV z?AD}pk5`o%5)=T*VtyN1i;K~}@AK}Yi#^)){iEa)m2~M#f(&pAXuT1UK$;!Mnn!(siGm3dN36%i7MKB8Sm2HzI=7~G^`frD@vM{I5o-_Jr;O4*UfDIlKSfP zLUreC&S>*EsXGUwU-F%l;IEDx3ZM1GC|O%eeE1mkZ_@qu%I@X)ZwFmr#rAJSJk@4v l?zf`+R>S{p_}^Chq&V=Cr;KP(LYjCXmPWO=F4^f8{SU(Q8tDK4 literal 50585 zcmd?Rby$@9x;Ku?T3Cpbw2Cwg(n=}_C?hRBfYOb0gGmag#Ly^6NlD2JsRGj7ErYax zLpQ&BSZlAd_j&g|=e*~7&-v%ab#d`9^W-<~`~JlD2~<{;J9~=e6cG{8*}Hdcs}d0% zb%fs+zyC%=bmaOpT@`$B#8FjFiYT|0ZWjJIW_C;A77z^cw(5&4_r>8Gg#+0>-eiqT2yNyp z_wS#d+MSWK>0BSK=WR5`I5OMR;&AI;cA9XFiJ@S{ zWdvE)>{6m)ki5*8@N{T!CG4>z-b~joI*$%r&5qlEjS+dk**;SZpJTsrTRTLM*D#QxdhrD+~ z3SP+~xAVJSuCJk%m$j950iM1P8BlVcX<6Pq|GAs1;Q71~7R@ffu%;+(GP}3y@jRDD z_0HDJ8wzSG7<^doc^Mq+xR)ni9!oo}Q^Qv>{;fyYAALn%Gt#_yhGRIxjbbu)s?>RY zd3iZrae5f*Sm7&dt!L0e!KtB@)0>^0UF}bjrCXDQC3W@|90}BPWU86xX!0hlZQ5yV zynst!(|AEdk@vL6>7k(A%Y!^q!$4c+8u+f8@LiOuRJm4dO;*NQPxh17PS}*^Zmf+L zcr_o=1T?>gq)S8S!(M~Szzy&aR~!k<h8`#4-+zD9lIe!*`RskQR`k9)j+-#j?Fb{?4Y`JcFgZvWI)om`96QF=#Y8KHj=;z`?-*fxE3EG8S8o6np(r+DX1yANl&VnSnMqX)j0%D`im8DF$qez3ozB!;hngVOd` zigHa24RIeIR@dZ27HDzdSd?=0D+be*811c&KYjL$LWZ48eeF+1ejXdb7Fzn^yyC<5FS}+1E}l_Lcf>tA+nuL= zE*!uASy{U9?KcwV^E{d@@-1nZ87D8!35FXB4z2DFDlZ*L?;5bJv2;cTZ?DBGnkkpC zE2cNJmpgYfaeta;ZjN3p+kWw-J!8g~ws?0f$6qhK_spJeI_EiiB(HQz6fSKp{h%kJ zVXfz$(suP)#LcpYeI$!ZZB% zSYuzf)D~Ctul1k=biDjNJPbc6oo;YImRtIL+ma?kwr}uycAsQNles{Ym%BGR{R{Uw zm%hv!wpF>4#%9F2yA0S_WOiEH#|VjP)$MyPkkpKfc|Q1slChw?j`6g(;iPzkFS}-r zPO6XnkNVel!&w3~k1imoX=&qPVlsUyytW+hmT$e;kw)xIwW`}^khA<;sehjBU;p#6 zH`Qw@#w=G~eN3lDHA-n-l_RLYw1pB}B``EAWAtpKHiE)a++ zK>cxUraskDiQg>nxY}GM-(cY-Cey-!wb#cbwzycM-lVR^`XVNuU&syPbiUr`tLr4# zz&5^pr}yz=BD}uGm0HzOKb7*-Sls>*w2B^(u2ie7 zC~jSrVPy-KvXLH6@0}ZRxv1RTiNy;SF4(TRi1V0q7>IwXmAQTU=V-;yPRWPf+0-JP z98uRruOF}FBzAuCJD*n5MzkSkTjNs6^Rl@5mTSL#8=XlU&hTgSaWf&t`;b>@eQ#92 zzoB@*t}UOpwFRx<Y>lVk=va}84CW^SsJg5h*)LM?K8kh^5q zK@Pr*VAe1Ajf)vMD=29ok00*ITpmL?9~jArxjGxNd;6uXMpzCNFwdsN)lp;Z z+|=wSvyPs0ANq53yIU(2zF8mKdQ9MU5!wY;xww7~m?b%jKU4KqyODM~PrqVcMXEfA z!@fe93yv+5zn3JTSAI%Kj3>2hPFKDUxx>rLn@dcQmn@Hxw1EWIw3d=~stQ{WVe&B| zacf-F(kt?VAJ%6uz;#3RV}y*Bd{W1x>Zoe6dX|PG5)uiMd{y`UePT#V0kQh>Xcz{4 z&x7D&ul?NPQK|>Xfee)tO(bSi|Bp0N-`eU@q46`ED#*%)9hudDcTz}h8!P^-S`eYG z9*1=Q_5D_G?He>Y-ABU3nJd-zS9yeD`U<{|acQ7%8uA?BX&G0_BPu-B3I?npZY`Cs zgqFU@V9Y&;(j7$+!Bjkya1}OrH#ZEX*bwfD(P#4=riV;M zMM_$_Hisfw%zgPeFItSu3jCNI7{laed>Y@JP1RP^fA z+bR+I6&``<>X*dC$_=V~MoOI>!wwu?`1!f~?C-EG*;pDg5X<=uy2bw-{akNO+z!dS zgN2^FTg_jw3#BWMT%YWHrv_nsB5ENjgf{w0Voutm{=kxx79^}M4<6ZAt5)Tgnta(f z;Jr8(LgH(_`N3*qb)V&IPq=D)tDk}nc>?y~-n^zJQ?62KX~YK|gT}ATD~e_vyjqG& zG1^ndJUd9b*gfOfJ%eM_R(ca!5#BoDCRJS)Zf~7q`1`W?#=dLI8qFSbziV+a>e$sGQ}2!Ku7M>4<^dGeSM1Q{GZ$FXUm_YtM7hZ%M^%; zl~3s~Z*CNtB;Tvz6u8%q>RL-t)|Nc{6&Zf0ujxlSBPn*I8gi%}{ zfPMbbiyuveK=qe8Tb=pdpd`6xTjP#`eQ{JIls_kY8g%XNE}PwaO!zb;HuR21guO6scaVOqEq6gRURz^SSh-P9PM)`03IpDN(P-RDCKzQC5JK?=p4 zQH;I1_{^Y*BkX#5M+YGd4XPiVTBey&rE4%e-18-tT&^JcdStW78oTQ;G$fW$qw5LN zBh4}Va;SDofR^Y;()2gjY>DPn7s3&hS1JwpAAW_VU9d$hHD<++*it1i^Tj10+H5+b z=S}B(b8w;RH|-q(U$Tw_1TPAXHBUmqN>farq0(FpBz|_1Bs3(1{@R0^rlzK|E8V@Q zpf59e0#Tyq>L#YqutENzkad!$PUu&!E-hLL{>-+U>YR1T)h$6F5Uu6{vNAFh-pB4( z|4dKv`H*gjaCf4PSmTB_9}UNR5B3HM%{*6U2vy_n)0sKt*BC>`4Rfk z$tc~$M@);mA?NKrTQ!@Q)MOeXI4}L%;Tku~kL2;9Be#O%;_NC3hgc3{@;9&aKPSeu zYCiUvrN!-G02gfqJB(evwCHs_8aZ};sV?MvUX#H!bRRFec+$Z3%9SfMR9{TnC|xUm zo1L948x9bj6(kG==h^U!FGnk+Zz|=5S$#qEQrdIGG<8Nd4PH?+8Hs7??(W85FvG*B z^e*?G{rQA(TvvB`x?=(r$Tj#TIMv%=e}$# zqtYF2xq->X(N~ZX2F7+QGOMT5ur??`)Kw=(V-1t7maZu7v+Fjy@(NunGn@sDlv+8Z zdRn|Sb+fNqTO0B%E~9t!i|VlZN{unL=8CpjUd^Aw%^2Y=Q_d(X6)!*a2D?gu|7fC_ zdoe^7->QD8t!002rw%)NDdfn}69GIE=02CxKZ@ZDxSi*FKd5us2WCAvXiME>8>t^l z=wZk4T(7O^$!2e6&LxF`j){f2Q6q@ELrJDtn6`O2RCvOdYN86isNQ7j@w>s6>euyM#5J5?}s;S{y9q6c8vfstaY3 z3w07ns0(9U>dhH?di?bB!q@2b){~Bzq>jW3|4Fty8(fQX5+R`% zDS{;T{Q0qQ>t^Pnl`p6dot>QwzPt7SHd5rm5PGEq`0O|FRK>q}qq=SV@FyiU4oQ{OGngVrVxOgC zPewDl&Eh472GBVEC?L)&B(D8VmGJlkR?Kw~<>ggAU`?s?i!{8UD7`<1->jyq+_YE+ z8rS1TJ?WaHQi4da?}5)+$dO9bZ5Cizy1lV(_+&Q;o_KLjAt51+3Pl+eMVRB?KOZR@ zK_s@FPPMzj$|^T>5y!{ehfN^W3O>*dy%@Ew&n%@WMM~^;s z&F;=+<#jvz{>-ndadcCt2qg5uOgo_~$t0}1SOH(UOg2WAjQQw_f7QNy`?=e>yi8$I zMn*ve?8@y<`WWf0fH?iCZ;F<)Q6`}pAHWXH=%i4=eqBTwO9ouLqQ|C z`>PuAl&H(kXnr$ADE*C%-^0U1R1&XMXG4CQ9*XP7*iUfgl^f=3(VeRUYN-;sW@Wl< z=hN}1%E0*e_}$&znwr~VK1X*P5JwCi{?+;^4pRja(j-Oa5^&pXW;A`A+mimN7S$e= zUMx3D7(6~=zdX?L;4=_=_x#=SuGyDKYeiok%!ti6;_p5En(b{W)9>P&wf;4#G$kJE z6w8NlbpIYM=YULvBt**6JlSeTJF?oWFjrOohKFO{b!aUwsjO#h%~$E?^mggOP+!~F zopQ`j)%2o+w|Cu2U&+||=o+W>qEDv$en_d$i-Wc118gP3&d!>i;=s;$gp7gM`Bk@$ zehQlTo~){aHU|l99bPjZ_pcrclGg4E`kSq@0u{wgw&s)(1sm1L138*)ZhPm~*49&&37O8FB-N}m{wq>g0@XEe+noJOb7_r<+Pe; z%|G5gOA`~ETf6mONMbH#APm-B|Fqf;s*ZAU@NA$++ekX__jr*iXxm<6 zE?_Gjb=lfA5V7x_?0d8DVN-Zb*LR+xR+EmUcVGJS*ECMzs}*Hd#BXPILKg{UA z&2Pr$)ar21v|Qo$4k=% zA3t8>;<~q2J>6&Et7j7hWgX-_T*y(1UwbH#gjR^6W~QbHt&b02D(8mm()qje@Sz(T z8p6ca`(IM?%i9?v-su%Ln_#1n=5;73*=A;Ah*tm4|NPj&3dG#=3`)4+n6~ONb%9WL zD#c&N4?DJ{rln0yO+}5iLXaG5n@sZEAAqO>VU6zkqnjgN?X~SwpebY+1G3mCgPFy| zP)#;^%K#b)0NXHj6m@|NZ6 zs2)p+wT@kcy?!W7PZ6zUe_RDs`KmRRA4HBh<3XAevY2bPCxYHKTIWKk`a%5u}H zXTBNY#AWdYC5f&~xu${-5P4)vywOcGETP7{c!p=#?1zN3|1Un8Q(GLH30SISV;P+| z6|ls@7dL^!CAzHCGldPa_ygWb`wD=h}sJG{fh1zah{=Kpz&?R)A!Yt5My$ zZHnOM=Lc9j^!@t-sKkK2{qpRj-9Ui}Fruk#)u`U6Qc*OAGoosHE(?GxjPE)I&wC^K zQ2Ux7Vw#e%kTXbnn9i)vcFFzu>HH#!Bj`<1(gA!!MNSUIol$H2jm*qUz_oD7HvFKf z>ogxASuruOt5@FxfDKB%7sHpTnWt}IVUgOVrt1jTN8))qb~D(5aF4=gOo9Fx87{Ky zkuT>gey@@un^$_*H9S0=Y0>xis6$ttfh1m|Vj>RPo&0I408WF`>u9zu2_7&P3f5LR zYoT&fqjaFcvjlTMaXzU{%-08Q2Y1%ZADex~Q5!)hOF14OnwX*UwX36>90Cbw=Gs&N z>Q9Wqg(e`Bvn!?uM@Prn>E{>7YFVEfd&u7@%e2+V)8~epP#xyd`UutZ5)99~ckY}o zwBLM$Ke0M{P8bMXvJHbmC=UaLzth9mZ%&nMo;+*xU%DPp_y<(NxU)0in^a0Lw6zOv z4Of1EBC!*OK3)C>rfhg*gqbh;u;zd1XS-|37=(i|Mib-m?PG# zjR9Y1Z1tnd*n1vGA}W$wSzDKiCK-6NyjYtI_8nGQgo8`w=*OB(W+w`!CMOrz(->?% zuDaLI=8=vzPeR13ZQK6vT4`sQ+fL){FqYizEzPDW0?CLLgsL?}c=V2fLQ7j4k2k|q z!6&!E-?kHxks@fhP`cUnchyE=;x4=%!c#ZqvRoRbWcM&lS>Yuwb zpc-!yz`Xdn6=AaQod=ZT7Pc1)Pndc}pF3=GDwI?6rECg@R^&ZfP<6;A`yRt>~qbN&V#_JQv8CSl`$WUByYPZ)l>$wpoD}37gx4Yk_3!7 zwGu~^#xPq_OX@r(TR#8g%a`@_ch;^R)&+4`E^k!t-^%|Q$Pn49?wdExEdXbh8rD<_ z!y4K-1VHKAw{QQ})ZI_9&t3lOwU3}M`o)VEHiJdPh~5kproO(O=YZ8(<2KuT_nFQq zy92092>^`j?d@}`c2^@ih3)@hEP~CJpEeka zXf+$=Ur%TS%B;V?|NZ-`crX3)wz&3p(w^%-2??QXn%>W_lCdDaPPl^<(; z22@Jxq-%Elec9S8fOmt_x1Nd!$fodea5T<3ef##!XL~jst~(Kn^sj!$)(F~)_m1>6 zNy#d^u}aw#d}k`M!gB*W8vs+aD!s4(P%*Y&i>dfcn}6Bp{u=l{N^odq2Ou{9@wQ3q zSoh`X;VkqEb#gd0viq@)={=U-AWRh$6o58W2!4p*!=_f=Fq!Ml1fqkgO;g?7-5qoe zc}2xf6sJi@+8P?%rxRSg`m^Q7p8q}lz(rTwh^&ln`tjojOaSX|FR5|FmHfcS&&SD@AUyt0n@+Q#)HA%Q%zYrE+Sd)}r8<4)1Ey?JIC znpHo3zTh{^0byx%5P#y?sCS1M}{phZR}qRzJls8{2C|A#NX5GZ7@cRf(^| z1g(BJi6jYKw7$Xal3wUM6CpKGdrql*PNcdsoi@who?HLN$+l!+Y4S-E`3_IfpwW!T zq)%mTUulcXt(xv)wRR;wJa$ovLJdl)3!&Mo6m|r6wsk)aPZyk1r84U|P4bO`axcBw zlwHm9{tIop#d@_WugZnJPdMiL)1BI4=()R9c{Eu*9iQ4XbAv@FYL)ZcX9*NYWtrCk zQn$5OSgy$3DQf-#p!+5(Nr|Ao!3P9v3 zotk^fIJW)bo&K|xZ&JF7@)IZg+AC8~RCrAsNF71zoW$oe@fz)^eG%8mbFaLP5i9ns4WG(<() zqQX1Nw~nF}e`Z!GEBZm3 z?nfPzdo6EsHtNE0YP0F3-HFc3po7uc#GOTb|CDR#@n&Y<f7@0?vpTtB%jBDJigOxsUwCR2QpL`rRxK*mVr=f;IvU`amey=s9P_JZ`jw^;%68}zHy@t^;J2XU>vW+xx+Su=Z~vZznS6A;yVY7K4vo;` zSY#t|lRIe-_9aR#t@D(WF3UgeIyXV2gIbsO;n!n*?%+`R1(fy+@_ERhU1Dx{%nrx)eH|a_lgji?=h1T~(|mXFb$X>vTSZ#%9h79~ zxH!(lyo>h4Z$)O95Iv!g3wz917hKAcQIfaI9%GKdfn?}GQZ&(rqxQr^vFFi5Z;AgG zHv-S$mcu0XFN!$LQ~|a63+QoYcyL6@#vM_A66my6?zWG$Irh4WbhE=$c_{_&0N&hOiCERL?kF!y!tO2 z7O6(g3?$cUIRiQ7u~nb!v#FN21L-)? zrE)d8(^ayl?mTT9P|J*A8IdU0MaU1sk zuWd=a$J0v@yq1ES(5_rG=h1?n4fBo7Ke{fB@(!+oN6gDk#eH{bPqv2nHjULpfk{(M zs=oou8tuWFnwo$YgrN#r?N&6*X;SD95 zPFLwSpl# zM=U=-zq)vK7+Z)r=By9=+@^G%SmoZW3_U5Sr<-h1a{F=`$(VaeN(SX__DiD`x)4I% zN&9bZx;d9M7!Lxa`1aPbukce{Ef+#VK}Dt65Vs%DyM0N~mjFhi>@#&r zY!f&U{Cs?)AiYAJ)!ck33K1)0!?Boga0PJ- z)q7@O0_uJqt&eX(*8)tYW+2>O>Fo*SA)3bkp`U%M>LofDvuadh((;N8ar*RWxWEPs z#H!U!B)Ct!=5tDVv$Y+;jracjdl2FZJvSDiAGg0hBk@@OdBdcUJh=9Xe&sQHZ3M0} zj1(;>os7AkoQc(me)Mjt?lcsGHIf=Z|em& z5v(CdWhQ}dsow_Kd<%aaB>`PW{;bQ=D7QraC_c`$kPKZahmvB#bs}q07fI3W0hrYb z(DgOU0#^vrXpX_2I3xhcL;Cl-^=P1g5?A&TR(2Ptlny94+4ES}7CWhU_QaWsmn8c2 z)daMlFWkbIrBQSGHnpi^%TwwKe-1u2Z0wV zvuFod70-|oH4IhvSpm2Gt?Am6L!#&WQ&XAdz|tL^X`jo6Cg5Zrk+8hU`x9&>S907)FN|fB^FB@cb}ZE)n*FZs&(x zvT`uPOieJMCklqCUaVpxuKK39RQO4i3xi3>5%L|9rN6$g!iq zsWKD`9<4EnRM$jBO&zi$R2ME37}cG_7hTxp(}%Wl@9sTw9<4rQgQBFQ+$Ug1DjuKN zR5Xo{^(K@8IogF&z$4@Fc$frJ5Rf&pwRpk*LQsb{Mm;sM)XTkyaRsL5(aRY*)Rz!h z%|n>`O)16XaV>B?av7DR2qzm-9t}$97%obr-wDZsUB`$MM~)o9h2C1p=a1sjz9Jze z_|+~n;oWPL{VW;uBq83@{2A{f+8yxwj+y5PQ(~JJr^<0Sb0CaGoFdGeR7NI5suW@7 z%+>`U|8ckDCr-5XJRmqzUXQK@Nr${w~Y%lkW2Lm1Ub{N`dQZ8Cl&V!ACU32?oE z0A_0{t~RrW6-L%?zx`Ho)H$+l`sC8ns!j&9&&s|d%uE=y5=B*Tu)Y6Q4Gjp*F$|mFxi{}QOX_}jDxEs7NSBgMGf=eymdZqPfQ3MCVIC}PYIFZ?{ZgWjc;4dYy9i}>^Owkw;{04^*@XZ|r-VFib%KyiGer-l z5~NdSe@GRCbeg(&IIf@Hncx+b*!mGJ{;HZlTm_#1iF+aK7O;vnF*kW}7l;I2Gb6$n zB_%-M1BmSUv!7Q)#G^TycV~S;P4XkVu&^s+8K{rWfq{A$y8;x*1v0YQCNvbv8RwuD z-gbW?&l}z#;Jd&3>({SvR;Ac`X)jJw`Mr2SFXD7ZB?3qu7=&q{xl|qOmpwZB?~5=l z`&qC~mYBB0$}xJc0?DXM&dknkF^sVX`}p(uGgZ6GNJ5_B(pKG81xuM5w7cc3$%9t2)!2hvE4h_fYZ_Tbp{ zWe$tDSIh|dbNUAK?DHKDw@{_{Fc*?uEU}h=wO0j0{U>hHqi|ixHjJxjOKYksOpUakuoYj zUCLCOjrm%VBqhbfcENoQYy*_X!9hVDAW9IzAH8T)Z0v_`8K1`=^#{eYOr;{xL87OK zMqv=?fu#eI{0daiJ`gMc(Im7+L_`34#}2XtKobKmybMsIV{Q{?gTWX6U+zpQC4{L^ z92K_?ISmbrQkBCfck5~=HQ-> zpQw|Qk!gt)L~|Oe_f9b_t2vKL4-k@c$6% z1Tub0tu-9~^_j>k7pfbu!-8us5Qc-3hysfm*h4hfLHJ&oY6%VvRlIwby+Y5R|Fru@ zs^yHBihB5IZqEME{#y8UGR7%=-*2%Rp~v~h_w5tV94NttA=$0|oa+?x&`f|`jJyfD6d^9FPNIdZpeH^<*l z6AO<3d4`Hde;5V~CASXja9Kh^f5etA1_p|ddHY*94V(;A#M;_g_g&-HgQ^|+bYgBF zq3VR;qsfSdLB)f@D3^bv3;h>igi7pRMUkd=Zz}pLJY8W_(hA#VOHdM)jDQ29wh1ZS zi5dQ6qibyZ1M(NSjQw>wxMD~^z#l9oHUR{Se+u&&8daMG;_!XeDS)7T7s3Z#ni+tG(1`uzEGXtT;qTrdnK0B~5Zt%4$@B=#V~lA%aLmT-&x z-7WA2vnnNmKL8AM2D9 z1&TJ-e9%L&Pg$6lCO{+!3k_{;ZoaP+5*D^JRI&urGMD~6zSIq%q0>@RZN@6a5r{=F zeuFPHASj4N(DJ^%exe(1%#X=QLRkRDgFRd@54p@;d3hRP+hH;#v2l@Vo~qqWz?96$ zs0eJd@$-sDA_?s5?2>z{YEn{P0i+O`2P{oh_;0k7!7}CV>5N}OxbWE=_kZ>3m4VNe z%*X{=+95Ddfz$WCSe6f45F`nLAfHX(XB7-npMCoW_^@FP=>4~o} zLXt!U1Pt&{yeY5E0IK-^8n{@L-Nbql6b=AVkkAQYJdovJQg;CMX4G>@{6-RM;J-*T z_KyE7(db1g2vID^z%mjD-02E&pUV3;@e`n)!Qf?{)~}~U=T3`uhp}rWZJuwtEDklw zPM*(iWz9;B7&3|5qs|8}>SW5JjiFiS#SvfkG?zZkd%jyWde>F)=sMlp9@>}ZeJGOX z)v13?+XRx}mgmNA964em6nP-)eN!p4h35QPx2ip-aQ-Lb&ymGH6~4OA-p4&8&SdKx9(SQH!$j1c zbB>6_-aUjpWf;RHz|tptQKX8B(>g4Ubcz?Tk!#`I*6&&4n|ILzYe(nVR#kV<B%77gx064 z{C+366{+^_2FzMKyZmwF^i;O-voF7z3*I+XRrHBi>vWJRz3CP5V#Bm+?3Ua;=ij40 zwN&Gvx-Mipu(&-I5zS9aO@olo)7oVW%IQwJ6Geqy*RF^w@-&g|5aejw&)Y7VyAEsi z1|3w-oRGemuELTfZLc-DWca(Mh1$SrDWwk#X!%>RM$g{aB<0E5-M0utT0PW|)%V-v zk>s!QHqw_ht;9?YRz0P&N8+nc;m}M5$2H$*znZV)W#VBfyE&}73VSwr8+C|t*|`QS zzEc@ieK8^s=}W?iVZ}vR4SDCsQM*qrDC*1l9QQpF<1%9M|8NQV}|8erY07mj!-cQEw?CW2>IY(`*uL+oUuf9g- z9r!IWpe?z2vwRi6;x{MWKQ*|nI`%uer=%B~oAT^wDFd+@6Vv7G$M6$HLJfTWTHLW? z$8I|vWXv4%9GwU`gR?_?DwhjxrT_JyYx{(Bg+Jg89sl`RbCX}vh4=sv|cQdz%j5~iT&Fp~7O z#Z*PkuawYjX~H5!X^8=~xu1=>vk5ff-L?l?Ug>IgCBv^h^iT=rDkV9~5Fkt`uJ_8t z&^u+DgpTdiwq3Hy4HA3pBSS^M{5DRyocC=#x~+B{|K$X~VbWkgF%LoLrJrbzTsqKuQE%fMsed3n3cUFvv29`cIR_wixJ&-Xi2 zp9#^hblWQ;ACl`>Tq07(p%rOMD&x^_9r9|ZZ8up2@?$#X))y|GZ=V|==?zLh(oRfb zpUL5qbekVP5^4LUFI2^VGH)y+h9-AhrL7FNT+kw5Vt)VT_i9G#U1{-yH7>-;Z>0;t zb-zgjsfFgmTsVKe-R5?O=v0s}ItZz|A5Q<^u z*qL`{&p7WuH_uSzvU=j@qq%dvV|9qFS|=Zhi<~%itmxDtpXfUdyJw>U`(Hj)RNb%o zWWwrsU~5TK{1t7V2_D*BTdf$SC5}qB6q&l7670a}Y5p^M_7%Tk_z+Rtk3W%!QdErG z_8!<8Z(mNTmxWL4iME;8m=3P8hAFn$tY$6fa-_Pm>SbBk1<{o! zCxaJtU?qMWP!ju#S-2Yl%0Jzij-F9qH18;wln$X4(03ZXnt1dvgIfTS=y4F{7?A>O zv_FT9wt9J@UoW%&aaGM4JIUmd@9`93yzN3xK0M*q+ZLuoY*BHowAB79qP) zugOM=q?%N6?M${tfGc2Ab>t-4Y&AI8?jx+dwp{x%&7f(d0Vce}L|{^?zyio1;dNbH zydv32vuyxu+i^snU4eiP1wb)mEyU|&i*hzerSauAYyAo31{hT!(-SauLz>U->fBe4Sauj+J$Lv-`*7C z)FyuGF>{Ht#dPJ>WocNb>^=S!IEYiHPMtVQvzm0U%gR2x?SGSvP@DFkv%vWeFsBCO z9v(QTu%H0QV+p9)Qu1fi401H)i!8df*B5r`82coSYpO&5^$I0dZB30eEP(?w1n*TK zbtNY%zvM}H`1p7_Iyx~x@#W=Wf}E0|??YkF%EIzt8n{<5EGz+kcqjk+_wNMVg@C)M zoL)sjkqC_fOpL9fVrXn6p+yD?(>XbVCH6WD!Nl9Z;R3#h&!2DF%N_ZAy1)!5?B=$% zrOwo*)!8mE18z5K1=sRD{Q4YfOju5+BgVNz{hP8loZ0gFIT`^ru+*@!PPYN=9~zn{ zWTT^_6YHj-fAZwvF6aD>z|8?_n%mYS8VDgt0Eh4cbX(+3nsULR9HjBVE`J!hu&_;n z7FK#0)&xN9AGtFn4_^y*$Z337P!;d?Z!yi9A)#xKC+fK^ter^;y&&=`lIT0NHZf7+ z>;FG&#QY@84!|AjOJh~(w+Wh|Po-Ps1!Dpv_S6`({shZTg{*qHu3h^G?F-D#%vjaI zY*%{iO5`O@0MzuxlkqnkuP`wY96Q~H)YQ}joN7RP*b8zRe*XS>TKNQr8Th#B8yW!3 zeH}Pt^*6+TxdU3CUD4u-ijR-aCM=ge4K_u>OnLh(o2$i` z?<{cpQ1HX>##z(?l2THdE~Y1{WIminZ{ECl{rVwa47@r5gv5&s3=&4)Uaqb>;j?Sq z=;>}czY^z!scDwvy$-A1vO#|6NS2ZIKeqrLI4>_R89Ul5g!UXLRP}Ca|Ni9}l>HuS zbAlF~?*XWG^8EZALSqj+?tO!)PXpE(Sv|1MePO+GiPAw%0|+^h`bJtQ!iF(3k(;c> zZ;#FXYa1VM1gj%(!v~WMRR?=ZZ{NOkp~+zE47BW#eFnF7Fm|vv2F(1?zzXIadH|sjC&15qsGK$Y zGB9TTKv;z34J*`G-Iw9YF!u+upX``9el6*?3*k(>%FJ8=kh6ovX|{6`+&+}7)xNJI zGfow#y4K6{{O@eBNlzSk4$QAG5a$Dl&2hp!H*O3hAJNtxA(v@rZEgK^RZwsZfGAzc z7eJjrUvM#a*N2SJg$88brXD1@qzIP-^Q}HCTRxYY2LhX7!3zj_ylM)WSP>&CJ8q+zE0OSaxigD z%KT4lSv~po%+OryimWpodG)&|BeqKN^4n_9fP)4SYvC3<@N*T9#=lZ1sj8`QQwD>+ zduvZ0iT?raIT)n}6AcwG6NYR`0#~@n3RK4g7|5k3NO?a@yuC;nT>JB`t?eSD*2LZi zo4>}PMGjnP<+qj&_LutfJ#BJXVS(4ig3_%>TwtwX44+A3c;XobvCV_Mssq;6l6&>? z-d&qb&fNQ^IlP?dVB|+VgWLx^K?RPZ+ooj1Wr(o0-QfJN7cj1{3IJEFwwHaF%4<$` zhU|uA-`0+ai}M5vI>ZC8Jc7nMU@hcawp~;Y=K(bW6sk9ok>DVyIgP%=*(9T}&0A1l zTK^^z(&fSa9t5MnmoImxB@eb5Sd(C#rr-`xB&)5WOSk3Z{GUH}S{QT&#tRm{QS2q& z(TEDpUNtf%sJfhBRNN*A;83q{>wek=nzuU}URFWK`S4;D@H~LmViz8y*k;HD_&f@6 zq{6=)&dk{p?RcFIY@ty6Y}vtD)6NAw7c*Jg#kd$V2C7L9$m? zeuYW#3CcdEt<4YRUL<&oO;VHDfO4}0(msfS6NV^QC?7r?NAgsx{w!=u6m@NNCY4cv zVMnk8l93UX5(rxL3RraB9#)Z*(RiAjO|5DMrk?AMzTX591nNWUVx1nlatL7Fu=o=w zEEl~R+Y(4Tm9RA8axJ`_1`5ThAkn$>diht8g3{~RVqTk%fQS{g?pM~*%J7*`h`#o) z|Kr2dLe-JP@bDBL@@YtxyAw;tiY{^9(&#;tS*WTK0X|2d%HWHsA3rjZzTNQJ`~@#- zfH)V3=1OCe_wW$OTY%UuDGLV#7N~kZWMyJXfxNI(xnt|#07SJ=%snt%`YvLpLm9+l zVF-W%(%#;#U1(}zW(F+&xB2grS2*`BLQ@$x$jhj}3wBC<_O=Py3kW4gPn?N{b^x9a z21haI98f3`9vQk?Nqp@-tPq8>>U0csG&DNAj`Vp6%~W6v&2;D9J%XFHy1E+Pt^@C1 z5Otngh4(q2D!m2_^Swaiul73&gf;_2cvytJJ#2!V)6uZpmB4S2@)j|YPe3^sm`DdJ zov_o1^J%y4-|rrA9plcG8gT&`2lC^lx)O^*tP{LO#_4Q#pNe;_X<^E5vBcli};(+8Yjr(UZrH z1&Fec1r~I&&OOioYi&>#_ySB*qYQE<5B8c!hJAJxAcE-4Ho)t$rdP68!>UnlBDZBV zq?igik;bW&uOr(7vR5x?XWAKqH-NL^w#FQ-HgU*d!uo%*o30IE^g}&D7Dn|$7P8ZI z59PCj91O+8KxQIA+65$Xfzgg9W9$ukV!WhpB~YBWgeYRTr{c&+jjT0jeG0ihV!!lS#w zLf=g{P050SwAYb>&$7GW@oE2f{Lt*x6Nisq#Kc)~>+tax>gDZT9k!C_e{(muamwIH zsOu=ho{alFGpwH=lqxVUXxuupwGUm$VI{6mZoFfK#f6{+kuDVx!faMfwm@79NC9Ld zk5w2BO%WcjhScv&%=d=*yec0&P6m%(|E0qP$maoy%?|+pggmv=;1*rdx zex=n8B)C-|cJ85B*XDYl1YNdP0(%!aDvCv7R3B(te-g&g$p(;QVukGxi*bbKW8!?b z_x2*-o)S-3LP0J=3jGc*s)M3jaDz+9@N={B*g!pDZW-O&KM>t2VA;D=M!TPsaQS@w5=|rgL`r-&D!_n%HHjQ=rlJHq!dqZx>GeYJ!J$#LwjQ68^&l=roaL|FmwUZ1Pce4 zvtVvO9G#o6hc|P8Aw!&*5b~6jFX>|l`K4Z-V5)c(sXnEyAwm}lvmuO{pM{Ta8DKZz z{Ue3~G(D_-kg+=<_iMl{*o{eCz53$?l|BX*#JX)=fGl~5^UwgIp%GJ}O;{XAP~71~ zP3GWZ0df1j2q&TN0NY%*p=?V2n=&NC`hr8Vhp|bddt~HXrzl-0Ao})p<;$F)$5jI1 z4_O|9&gArTnWRh(TM%e@6i6iU^r=%9T)UNedN+u**~127j}#O%mbVZR7-IQRMz1`c%1`?X?lgG3Lt#c(66Z#uX#&pG^TtqeVmpkY#0M&4R@QkRtOtl0Q`{{nhdsdfM7L@B%I9D0l@4z#esc zkzr8s`}FjcK}BaM7zys0!^X|5{22cFHNidy0ZAC@a%&;ooL=Bx;B7U0F|a-XXomq< z?7y`#Jv}uQbeJ6>RQ>Jl^a*hk(z_m5fk3nAf*ysXBh3IP!P^FowtXmWDq#sHP#$e@ z!b`9QYNji_4P@jIgHxJ^LGSO*^e>YnL9m@_jsg3`JPb}qJELIAf<%M%c_?=ix<0FC z8%nU3cw-nTu*R1%EMweH+B#zXFC=ysk}Ir!x+)>n(>DGHvZx!H6(Y0MXgL;RCvp|3 z@qyP2-V>VIzu?kG%bKH+)nckv5`gA<0TVeW+1Sj?%nb^mWsv)VuDB1OoU$ElF_iIZewNHO}1E^R0dN2yZ6$G zD@Fs+r4sv!)j-hTzlkt7p!ab6Py3jCyY)LHmJVf)8X8nU666lFN6S)TYO7(a+wM2&2k^V^rDteKr0xGp|7KA%*#sh6$w2v2sYevp z9ZZTbLXFn`TP0sb-K;VaL}1Ci6^^2*@cLEj{fl&@L?^e|N?nW5Z}$X;Yi;iMwhC9Q zPYNy5KjMT`QxN_#o_FU7^T%$x&E*adiQP=HK*_UtK3@_+%N*V7-!mGzM%heUt!bkH z%StR`yPC9-h+Uy1Yvj$fsOT>u*jVb8l9l}cnKLdXve$Cj zg8Mz~3_zB?pJ9yy*|}bOJEe=_D(k%pE137w_XyvSnL-cis}G3gM#jd1yD27B3Od5U zr+M&T8-x}gKYkn@$0Y*Wd$6CQQ8x?lSu`ufZ6XOoyrud4;%QiM0AQ%-tLwTL z^3sD*38pnt2>eVySeW))w|6wGmS#Gd<02#X{sQ6*VtpV<0X7J@0Yq}8pzsq3A_##? zW0gDu+6d-gN<+c>=&20S{&$@j!0`700ieqWJJ}(vK+Yt3wfAm^MOT)o^2Li65xhEj z0w<3TcN~Zf(#eMc&7hK9feS%$bDZ47M!S3WLUYNID$yWtOPoMOL1uebEA3O=lN1`mi1y=5c-SHP|N7$*lt z3nwQhwhc%v1iTKY0yMa}=@C&d;jn9b)D>@~5X`Xhitpi0+|10-Y2<{29^OB?0eon= zAoz-w-`Uw&kWZOTT3tk7L6kKhvj9!0QFdg@;KQNpvebVso3pv=WRkpAlCgr@5uU5% z87rGMFlB;<*hD~(UmnY#A`?3B|BJt{WdIL=pclxpGy0I!fIux!Lg9WePZ6a$c@K3I zOoMx8lu0V|{)NCx5C}Zsu_4s9y$pd-Hi$&PlqD27X)8DL6xPBO0Hj5ewg@lpHR#-- zF4L{*zk%M^3LG3D}}EgfJA8p=+|TvaYVK{XVSTe*XSh zAmqTl;d#)}u%eAeRGYq4z$#XU3kyPa0F|={{;Ow)LJPbJ{VkZtpPx$=6%`4F>Ax4C z5_iMOK_ig|;16_~2+$wFYQ;`%whI72C@HyN(D>&bCl6&XlcE_vx?Nf7GY`la1v2K8~yfYxJp6R<+mSK<3~X)IjtB1TKDlt z&~Ni8L+uWF$DEvnkm9nlL*IPG`}Y?RiUU$|1Ifv|Q@?!h^UBFVvUE`Pu>yirgr08G z9rgg3+o5?m7e0)f z_J~E2cwox4cmk+%{KZpq9=jB!_UnhE-W5F%;6PtZL*qoba%T3em2XoD4|^1na1GzH z1U>}@adJ>2C!Nzi%BeF<`E8pMGf}R#Y=1F2)>G*neJ8#jSN!WgDY;ag&L)g=_v};ue*%p2 zI#=OIP>T3_#F%CLtJ1IztGCTcc6_q=s}0hUTent^zM@iC4(EdFDZT*uGX5yNOlN4iJQa`f$&3>QKkcp&4VKxjghDg8Ua5BfCxoG;E55~ zzwh}s(WJMSBgwo1+Av%*{1=#&wYYb}`+R?dP#lsE%OEhLuDCo~kTu6iW`j+&6;gM<)erjhRx(FG3lFkxkOpgReXU>t4b`}ehF5v=IpP%c0a9)zJSuEsO4SJ84+S62tPlOIcq(t?29kDYt=@O-(al0j#t zc5mmA{rmQvcHxBLCQJLefV(8q6QM*!52bX31+3mm(B1|K7!ZgkYOmcSmN+9r2ZtFz z?-WqK!jHr11-o71l2fFH+{%iG%z$(-&<0=*MbJsYW<;$Q}s@be(zs{%E)z1WB6t*AlZz(gQ0Ej^-(yRrE(tmTmgc zsLY$jtdxh7(-~bhg!TZT6d2?$)nBCWuK!;EE&}{+PFz)Atf1>%fPy*033FCf))`=^ ztJkb?LpyG^2gviVyK;~i!};%KF;sHo0sRyVZuoNOt~3B3!5RvqevPA7FA~qA{m(27 z+ZTUhX?TARd^{)k8TdZj<3n5#k@`MX);>J+Sfir6*{Obiya#fM-6oAmjX)Lw7JTf_ zy1J~XRP731)DU_ES;xIlMydK&h02RJ{GZ^J1Z7gw5 zu6dZ}>IuDI6ds(>JyY-Mmeih^kpOFfR9z7ZdqIUM& zIW#!PRr4p@(Rcv&1K|Gr`D%azDAyQ&c>FLtoI6}qWI$#=&L7}A2SgBvYG9Vj4d`KA zuGR?K!^Yzlk=a2GTYBE{jD(Y3wg%n~x?T~OK==nzXy~EnMY|O`!*z;t*!~Cdk-(ot z`vZPRAPND)1eON<5NFT61=@y&)I~h|`&n9RLh7?F7*s11%# zw22p~n)?@wiNXaZ$esYGBhRwfr5&I8wCzY<-7*9}$ zW^4JMt$Xd+&?t z*%AFWu=30cH%a`H!eRp-8y%{o5~A(4{6AW(ec3QBgug^z8W6mycVw z*gX9LAuEd5TH@Tf`}D`zp`_X>oMggtK0-wJYVQXa8C$d{f&mZJ`Dz4`JqxRh(l3NN z4d=l#{_5@kNe#jSoElk@E@sC?McohrtRbiP(V9I7WB~0%ip`I1C?y*301YH6)ktH} zPXjj12wt9$(-h}OTA?2Lx{$FvQ$uT{@zv4y7P$p>rx#R$D z<2`le+({$S=`4COM(b{uZ~olv9lzDk<2(=jSxp`3ceIoZY3f+44D*V$vuC(aH5&AJQ(GTf(2gaM9@ErjDb_L5`a0&3Ohaj#J}#e#ao*O@8am}2cLOxs&3V&EEA2}$!8Ve5lt_2KFaNqIMbUDlVar_DPBvij)4e3CV@U1En8eYZ>w z>+UK^Rdf-1eIt4ZiKBz#;+knbMYlk{ja#;-?i+j+N3LOS2i+F)YXMD;lcCP`i6&nM zjI|9v(>FhfSh84H^kv8~V^k>7`^ue`qRjWUYQyI6=Q$njRRc8IQtk=rC-PGFt3J} z;Qp7!v1*~IaHlw4x?E~)uc)B;x9QXEeCOMvm*&66_jJB?6PZjzC&2La9=A7KWy|cX zRoutkfatGtJj<@@1C(PfElu6^SrPvo`I$APtL!) zSK~>$Xrr_{5DHJr?;frfbGLUDG3GT|x_+_k>LXsmSfvMbPhDS^8Fz@DlO@fm#N@ab zC6Y`J^J-tM%dk~C_3`DDhX?;Y&t7YZ??;y7AL@O6l{t{rdgawShnBe8e2zx5G|g^@ zo-NjhT_JDXEn%#_+irexA5Xk`Z!BYC7w_Rlt%)d&oFB|$MRB3tqMuG$oP8YS`l!(> z&%66W;qzRbM=xzeqIL@?PNrn_=$INDzP6KRDWSnXU{;Dx`0AtilI8GEH7;Kv5=1>K zbzs_;Pk6p-{j@JMgPIe@suw=U@yRWST2~(9>zHWQemKk!k=K9kdl}b2Nn0n!G*f5O zh%ml`|MraNte_b(YRe@$CC+vmYag#kz%bm+wu5GZ#Zey4B*3aZQao z%B}X}lDHmdZEc$w8C|`T?*Qkwp)T){*V%Q8rp}>rRT?gtlXo4i$7k;SYW|w`ip+9D zjli@rjH;9G{M(`7fJXu6j6~}MzHv40>ZCk25w3oXL!!v$ef{Oo&BquR=$~;9$JfRr z8TYir$}`Xl&BV9WIB=2rRd(;XzH4~-=w_P^KBI4j-yUbS<4u9ksh-|yYU-{#j#@h~%)ibn5k3E=r!xeE{E!3!JZlAVr$^A1& zjB^rnEzhRRq^AbErC2mXwoFk!nv0MikrpZ)+V4J(4!R+27~B0kq9rq0?vhy1dS9`M z;)*PLM~B;^p)!`%0s&7Nj@5{?zEw!m8IOD*np$F|a$b#g@|=5=>qhs|+S!kn2BrqP zHb_iA{n9-i%R?@lXr`u-`I=$pErDW^W2m&UTC~Nd8Kp~N?zCRL(XWgugh*W%O*;DB z2M=+0vmJ`P4{0lEtHs=|P0W_zpEwg9{q#!MbuRF@S#3Lwe}J*!#xeuhO@|wta%cFi zPO8tp-C8-Dn3h43yS%jHr&YYYHiO6ygAL1jizlvEr#W*+c08}wREf>34{>R!jV#-E zpNH|ZT7Yrvb=gx7X{+dWq4R=uE+cG?-KaGxZR`3`iPsH_y6E1>GM`nbtNC=c3auK^ zx-X`f`3B-{W$h??ZRK|ARHc#c00X_~wf!X~M%^NP4GX2T16d7xJL$8xOg-4=LE@s{ zdCVD8b>(oAV7_rx|luVtPt$mlW4&|4g; zQ7CM2_QGKJ9@?_>js?dcBTD`y4@#bN=y=@TjryzELvH{ z(!v>;c3nK&uz5%@X@+lfe;miVw_E$PCg$zkJr8t-L|jgaYzUC-6iSpjCHN&+Y?805 zKJG^%Gl$&AvqGJPGwb5i!W{P$Uhwmmu%yXfTCW%MXfSTwTACu|7p05OL>7l5pQ%Kt z{s`P7vXfi(1^?jK)1@%)a4U!BuM2(28~f04rB+k>qAx5~P6KjTr@yEw^vU#)NX1Y5 zi`KjAy}EzBd*hAH4VE-x&yLoppZT5y@|jF=-D8%ez3Z>N*LfTirpanCxjmykLWPB6 zm5JW59)s_y>f2&G|1HR+@cXA9GQi)ShpX3lj59=Frj zi|Rt$COwST`*$k6n$n|t?c4ds3F+=uN+ya84ks5z*91vfoC*>$Fsu_~^L;xs^2b_R zhYk~7qwiYFuiI>B7LPc@1irFX;3$`lS1zxtW`FK5vpF}(FjiU7CL`lR?DDr){U6Ze zLD}`$VlvaSX`iK!W>IX4Q*6~DSHTmRN};*&cE`yP-5^f1KP(6t#3uFCXrP-;b6xKT zKhgDR)3w?3t&SZ%(aH@eg^mV8uUD-a$`>6G(DzBs3S7z@MNf;}_KquY$?|qCC!gE? z%zty)m?tcte{}Pj)orSC!K-q3m zarngTs5&t>>HtOjk65N{g4nl5i} zWc{<;96qWOf-_=Q!d2XAs`CofXJ{NIGxgQz=|%k?t2;kFbNT$8sJf)?*D*uXWTP+jGB=-uCAi{(2UZQ>!+utl9^{GyJkoZ{Rvb$MzP2E`Xfsf z(oDx`!^n%wQtFeB2IUmi6-rzyAP>o5T9Sy;E|=?&S6l7)G(H8Y?lZMxbo4oW7pW-+ zb+=n)DhZRRH#Kq`3m;NRbM?^`F3eE9cXym)i>K!v%aRlky#!$+5R?W1AJ@(kp+W|R`L45 z^rj}CvSwIE40XxrT5R^@m9&Ua(hOCIQJ!#%v`tH5Or9Jol>o^df}W9OYpR&cmanzs z9$r;TPDx5ERvGFZT?~+*W)VH4=@LwGVJw_@m`Ht_i$inq7-MW7NHgj>&f!YN3N=@U zq<5cCwwua^V9@PG6JA;sD(y0!il9K{x%X|}2M!4)nH6-I|QfLMYs0sIpZt@6vJqMY6T&}@`hH#7Z18P`3Pta zMIh^R0Um{acf?4JPKU3)$Sd1xH9lhLZs^oa|qo^f?(T2ydpj> z4hkLs-*JD{A;&pTzTUsT8}09103;k8^BrhtB1stYTNFu}yAjO__z)1=oqPA7QsM%= zQDoD0pbs_gLVXO`Dujju&}jjEh#x?TP!E<3PG*f`^{z4kX#{QkuXHt7SXj8UUOXrG zl54Qsd$)$f<~Ec(&$H>NfDS3Zsy+1d0!Zlb{5{{ky{Nu~$tJt`$DrRWN~o(iO*y0S z1%-B$E^xeL}9KW__;w1f|>+k9Ks8}e;Vggnf>`vp%IKZ|_WHMTnG;(xTM7YxqwXgzE`ArqB+OAk2TZJd z2QYTjviG2E2MVp$<$f%Xli<8M>pe;*ga_p@2`tvjY(c#*8BO@GyiCaefGTzZZ*ideO!Zm>h0vPW??+`lcr+>6u z#ajWT0_rgg+J+%4WMs9QLt=lJ1pd11jF{g$tm5A9Ut<ⅇ@k4dI|cuR!BBkP@ll4 zLN}Zc?MjRU)WpV#fT{|CmII^g_Bj5h@o}s)%7he&K29T0YDx+UjDH%$*pgzdbm!SI zz>-9P51bq@lmGr(GFJit&F$j1F#y+bX*^;X>*qFj0WDi~tPL@xTj(Nf<0fQCA^B!8WsOZ#r%nMQC`T+5r~im<*05R6aCbSm_aR zPk)&m^oyYz0X-Zaz_c&YCs;#xDA+cBz~&+@b7%pB18-fB#Z+Biar|il%?p0vpwJS(uqsCM=*Q0%wIn00SM}G%6~tx)n*P$&jSsHTv)v{2Fh{ zz3_s(CV`C*mBNX|{coY??SlyCE>y(<>H^wEH)8Y(N4CYhN$G>pRTPE6yadrhD|28Dn$1Md^N=^az_Z-e7l39o8sh$7=r5fN7q{=xce(=dnYMP(HOmrvp) zp(zq|eF--j9sWNr`k!yPejdUQ*-Dq`4!Z5z>uTuMQ|z9p;7I!bpq+eA3uLBHW}Dd& zX-q^jc!h9Nlh1fCm*ZQQeP=%~_y;2pKT861ZQpr4e&@EIn|Wng>Nvm16C6jhg$Tj3 zK63s7R9_2nEhxiOiRfo*fNVA+x1rBFn$;+iADTGcJm{ji(pfl*>cHKpFsw5406TF{ z`lnv<)N&f0%ltz$inO}X*T}0?BGaF-ifZW(qm3$jAuMKeRZ4ceGBZ0uSQI);0u!`< zU*06}lx++t+OF<@@0Z1gR%Q}{;Bn{99oJ%_4vQWPg64I|g{Yarbg;9sTFu;p#o*f) z$%h%k;JeO2U|(8Fir?z<%d}$9`Npv<6T=;X@9Ds9X+&QDAsD-br-5q4(267%qD|k;n@*} z3$R|=XEWdUMw8$viA7#Ja5RL)f_i0j8@RE$L3NzgF(!fVsKlz?%)e{o#qjH0WcwIx zY%t`NX=nX?KfE%L+%cr?vnz`)K7=D-yQ_+d&-;Ji(kAwmXhcAagD85@*|;|HG(pIR z>zAK$BUuzZ+GPpDAdyn}$8*kY}9oU7j7H|pT9H)8}L4l~5JW)Bq;qmAWJpF*8Y`=&QBZI=fEQ6N~jO?VL0$bI`tO?bV#xQ;?O z0PM(vx)`9mgle3Q^Jtl*F435P-L||mUE-s+wQ6O7=J>iqDld>n=w`JI5iORRK`Q|l z4vc|a!-8;lgz_MIGC4$ko?=6fq~@tpFTrInntuiMex_k%Ah_Y91!eN2XHDprz#H@G za#ejboihFV$3tR+OagzdfnCRI6w9PW;TRMJ&?bpt3`Fx3C|Yw3%JN_aAy7!g9OQnpxc3!0!Id#gaN3O_;=7&6pW1G%JjE$$0Ab2yDAdT z{9_M%p}P?qLrCoVFIG?E;y`$?M|4c=K@iXgw|m-s{c+4PJb7{^=Dvuxj}OP<5=}ve zE6R27ZnB{#p26LNYv$4upe};Y81Xxy62^4YKoWiu#e9&q_F$UWD;UDv_m1X%-}o=C z4R5*PjU7--&MbqI&qNshS%0_+gC?xtTA)jM7dl~xDA1E0h>~D^2H;np`Dw&%Eh6l^W!MCA~ys1iQC=$j=15`7x zY2dXWb76}#@W&7H$y)YkK}|;39z2 z@sAf%ZQx|2IH#u8Gy={aG|iy4Dgf0rG}}nZ$RMe^rro5U{^splv?UiKTL3{9f)+J+ zdgb0$8At(uUtg_~=f%)9dsQ4mJ;l4V=f_Cw$ zDx@{$T3YRdLv&$7IEKZk1G5Q&t*jz9YWe?ZhfbtK8ztJ6A{Qj26v5H=0&_3hOcksv z^uQ9&Mnr7j84$k*u{R>10Gsk?vrb?%EBpW|u`(dH`~?e8?K#!AyQ*FW&TdsmEFX?V z6vz=ZE(aAeSF=|_YY+vSn?ua1}GV!;!T zX~9w@CbnQm8u%~JH$kqwWY?^1--rMYHUejR1YJCr(~5GyLPrFQAd-mjIt#DYKb1m> ze-LLLxh-)fU=(9wh=`vc)Zib0$oy*LKgc1mVyOS&@!6E9%b5vHPXwIS5k3*yX7%vOACC74H%GWa*vgGBR{rQ0Uh!`5fUqqr zpYN@hn7`R_Y~LIB3jXN)KjsGqG%~@ohe24vx{Ho^pv_STtRyh?md8BchDQiK2KaJi z^h$AL|akA1?WmNq0>h?sF)OJVR>coR`0?C&Z@y={Wsw z{h7~L#5{1HAmcMP`wDXnI$`xo8F)~%SvQJYj8Pg5*;Im)5=piJ56g(kUgY)vIkwRqrXMp#6Kdt)H zc@tS4_V(IS#P(J?@#hw%B3s$TEi17-5q|$C|A40UpEHV8XULt@Kj(q6V!1cI%=cB+-_YA z%>WG*WIx<@MY|uiz_MDiYcxtY_O@JzV~A`^sf%RJOV6WQ?3_c4FQ?_!+Np&&3~iA9 z2-GJ>y4yK zSs~IX1oQ!H$c&^*B%qpldQl)<@(>NuP(TM`9k4zTxoK(7d!5N#+uoSH8|4n9e#QZO zGNDy=V3iXc$}mqTj1coHu>+i+LP!inskUP^Lg*5Cf@`4D!8<$;=@p^%jDBal z5F&w)WJCBxY>T?+vaY2mzR^{GR5xZvu=2{h)Yh&p>^K4j- zA3rWEER2b?92^|@J2>ai)R2NNB8e*la}f=LPdb)_rZId(+?4-<5< zsWV%igoI#%UOoB<|MlHx8zr)Om+4E%$!X`9lP+Ai00c#J=CeEA3qUk)<7d=vrC+-S zTIHz`Y^0|4z$zevtJKSFLke7HA}cK|@L!E;33UK>T?@#-KtgODJ#?rs+1QN1OAu;g zfD(Xu77-0L8rk$h4nN^|!Pn)a^>J_th$hYD=1=YLK=hM*nI9$!hUnqzFPOS1Eh|d^ zUm#DTbCMXr3Au}s#UV=~q9d5p(pCT(3m8W zG0eLl$~)88#mHIFz2|-ZehvCw`fBXiQ7W>u9XhnBipom8*#;RMBDDRJsy|XvQqYNk zj>WXaX4UQh?fSgZA4humCTkT1rF0d z*ECoV@XrzFLXTjfkq#LkAt{a09Qo`S+&R)92bAr+DXBj9{)6klvlHB0B)-ZEo}vlzy+OuL8qZ?@{VjBPkZ4`({>Lvj*J>;SA6&{5a)Mv>(zRO@ISwy9OCnUBNR1P{Pu4^=Xc0!wt2-d z{epFVM@HgTkg~z$|3Z|A&m#a%;9B{S-?-B6@a=!@+|r z-j~*rsbZQZ;%BrmUGL&Y)flC1G*^_J`a>5vDRKrZ6q&(au;l+&|0l*3^%e~0C&R-~ z&Yd}R>J&7(i0nCLgc!z-6NiSU-Ew3ZkkVMe;fMw}FE0e2&dmVL|8@e_Yx`N0lZKvLEyq!QCQDp@ZOQ5?1 z;28NA_)XxAyfVOWiLxjGH{SRQMJFIm>|db2fOS_8&c6_K0^mHANr1P1;+ub=>;LT+ z8zyux(8EX1Yw|O41Z=(u*e=xBMCV=s2z&D2!9`wrfVTrDZofv)0$1_HqrvB&oJ_}w zzVEDu5)D4&te{X^;{5&ZBK#w-KGUt-aJ1d*)OCgMRqHBPhBEI8mE8GzJen+oWdVUA z9)1PAUIXwD*$zq*D_Hl|NYX0;NIbXlgsYF=FxprGj0mf^0%rdweK{Y8VI+Sr6=9H2 z-vK0oR=_UQ$zmbnc5ari_&_t7QG#)seFaRwz6N0-VsL$4G7u+-x3W?m|Er+gV~ZXb zetv$~OElvVbxxp4iO^y+`=jJ$x2gAg5rEZ#wY{ANA9UrZiAq zWCBD>WOG1uAdN(4skG*Ib*#r09SSDAfJ?iftO!3QgDL6ga6zS`q9PxdD4IW^7}JFR zgEkua=^&q_qn!a13?VrRClYRj9z-T?!q3mX?^z^4o_X!vcQZxof zz4)~LDg+v@#MbyNSHwhU&qoxm0l$szE{sb-dkT7@h-S1Gz=JS{k%TxEZG{l_f>(`CY&q$6pqJZp{{jO|Rjn*Q}<$U|*&6b^qF?-1d-$w>hgqfYen(Qd5 z|3!%DMLGh?$$FUKKMT_Pvz1ddvZaUo0Xv4_K?%$dDHdkjbGy- zu0hW>x{h$xQk5I0&tXmyxIv@nvq4yR5uJ*`ZR3BGdCun0ri=4G@w8JXO|DC$Lj!j11tNp>dhO z2Cr#m$p~SQqd7613 z%3$FTt!#ly%uJIery+%abOj^8p$}y&n~oZZE&L(uNj0=4iUh||75qgUgYm^a#}W}{ zcZDBBSnFTKd)Vp!_o4rbm!NX+hn*9Q9uj&aL^`OW5nZV}4@aWV1D(sAh&d5Cddm?5+{{V;A=}zj1jOOZif%X z%@NV?^77O$Z&Kprkv%gmqwSL=gHxtm*_VaWUa_wBmfe4A@B3}1?(Em7y(Pv$ll5#( zw8Z6Sx4IqHJv-)YV#um5Be9mcboEiQb-Vn753jqqWy`LU<$22iyI*dLBdhbAnkQYq zWRoH97t!LJIW6*iftUHj3AiGD$jZdU#pULzTL(#>${5rME%Cy;6l@rWZqs`2f03sW0x;qUhn>8a8PEebGWG662gjS&z`-$^km0gDZjlNq7>eLAD{pB(?RIq zqwDBkBzl2YgYQX}uoai^5|4)KymM!RsHiA@ALz=$g0o13yo=7-(<-W}5)u-OQ1D0D z3b6tN=uV=~7->InRv#aq+qVfh68IcV4Grqhzyq{Cp&=po7dl$n9J?WnL;Uyd-Ltc^ zLuF_gDsa@BK?Ws@Jn?|@(3x%GSFT(^4G;dQ?^=Ft?lk-W=&qm4r+%JbmKvLNruAt= z9R;249UWCYHZA6Mct$k6Vh0>D4p!C|sDd%_ zqmLS21wXO5sY#6!WGAv4t*0_}Go0RLYio-{09%bz?3|aIYmYz=G7Ns>ttv{?8`jDm zJjTvmfeXKV+Y2C&hK5FnN#0tSpIHi^$F05Vzin8%n%2j5yjKpZ{?{VPNT|eNKvn$F z9{3criY}rg9T-UaQ1Yp4+*3(rD()anMMZ0H)R0OG3Kl?lME2_j>)oYma9^40{CYH1 z;-2;vqd&K!y&X~j4<0{;U~g+@XJ=z$S>TsZ2fPk}cFn!pu3fw49}v({;wB2UY*gsB zZrzHs98ZLog!0CgEnD!3tc(mOcZ4ns$oA|bC{QoWZyL-7DzM7R$Xq(SlhAo1-{brf zt{-ZA=<}|quC{2|W^DW&$sp=}7+Ub8%4m9e`dIJ>#4wfV=3Y{g;9pm2Wb^~elF#vn#Uq}Bq6V+|^b2y52U`@8do&=A%Q(O)2bQ5V+6n5?0sSqJ6 zbvok-#q1>)j6{w0Oy0fp`@)nBXIvtQ?>LA);EZ3hEZF$BoBH+NM#%koc)iNH!^6XW zb>JgJPbw_bdZxy|@NDI)e_oE3oFvepqQt7QpS{biwR$eReth_fJdN(5=0) zf5^xhSIqst{PPKY`i1t+&Lse8;B^q{p5S}x=;#pg7X!&@C^&%Rp`od{ZuQOXkEdea z=wrI4td!J7O3LZ+@vDsBGF(CUjnqfPZOK_%JFNSWo(413#{2J*Q&Z2&%iq6q=M#`s z#B`7^rI(klL8ay(!J`0-fqv7w-XP!$#f*DfwD29!e-Iv|>FZ=Wm4 ztmHr|Yo3(7cSCesTrc2K9PG)_QN@{JPT=#nVWd)c`9?>B4@|B7y2GaoX&h7zVC+BT zT1J$Vl-$36KPV^&|G%VU8Ff!O5a9s0U$eDkTc8Y*WL|wUGCyD7*IY_G3NnW5prB^t zegsxPXjS2M)6yuvmnwEnm>oeiL`TOJt{&bCR>EV%qo82^tuF)6?hrq}`p!-feYeBA zm}Ly5nEg^yQ&E~h#&O-zvA%x-1rmh#5@*li|Ig0PJ2^V0UP#wRPzxpclcG(665GUK zO<)*N5il_|?H?F$L_!tesSq?ksI7w(gc8W_CH5(+sI2ty@&dEqB1TvMe#OGX$Hp3( zngahShgi>vP~pO&3!E0FrchehymhNBOrNc72RxA1jzf5}ux@>WgOwK#H>GMjLA?bS z^R2yBO_V)y*|f+6K|>|<=s?sB3k!pTL)!VRga_prEG_CH-$or)R@+M)HxDX9QAvp# zatiQ00Qb6~*NYH>6S(%irUvbw4o*(UcJK};by+<2-f3-Z#j=vGTZdHc*@g7|kj}j; zD=B#gAAm>3q#k5#t+ln0FJyMUn=so)mYpcc~Wlc>d1R*lP zb*5)osiDU>KR^Gme*zsI65`_E0A91RL)*c@N3*D^piM(lQxnw@luBY#Qnm!2y{`Oh zT>vM9T(dw@va}pQWeDbl-B}ki5pcSSc`6=BGMk?$Ku80`y|_5MOyBzClkjjRirXJQ zeVV~Jg&;6ys?*U0LGa(xbG_M%o0UBW4;@O=$R=DNunZs}NeKykfkdc;9tgY?RGZaP zEOhjiQR*_9H$VD4h|Cn zlY21S5iuFk)?J;an5jTu!J(`C`0*+dZseoc+1Up|$QpMsWloHb0}q0@>#{;|HEijnckrAwELjqOqD zs;^h#4w4am$Xt#Wg5(yFoj_PIjuDz%dV7t^7;n_SOyIb zqL%>7hpmcEn!$mA!ylum8r()aJw1`~BgSiOYeU0FGCm1c{`w0s_YufVZ*MQ&I(9Zf zy4T6^8*V`u3jYheS#ap!RRf-drG&T0VW!%D*P1*K2~%Gb?KX*F|5Q z@!_2)KqV(6?5x|AK#`qvkc(>w==eFqY8)aU;z-oV$;p*Dj0%g2FmKm$kfTuWYwRvB z@iU9-P*Q!Gm&YG=ei>Mapn$+1XTJQrDzRVD)m20_1vnKV!_PsVWbdkP-gJCTC=zcF z+%WGHy!9tR1iK#`Hz6S*_#0v_7HEdBfnMUbwuc07^MV;N1Wy)F9aaF)2wJL~MRf5r zIXTc>gC=3~n>Pk9{1|(>>8swEsKe-8LlNqlfD5WV;A&o&71;5$@z&frSTt2tRVe*q z`#^{W<;kmfzj%{CmLTSt|Kf#%g9CJt1Vu!OV`C-KO&@Rb>-i?>_icO@MjZ61Oz@7g zvwgk2l`b3*MWGst0|GP-8%)PKa&p3~o2*kYb~y1I5kOJVB0M$#kjfrJ?M)3028M== zaP&aDTUuse@;TYqO3f=kxeh}Lejyi>l6LP#qy=i{g7=Y!k`R(3)T~gmfk6fq zm|k4$Dn59a=4+$AQbR=vs%9qvfPVS}h>DqmWAm}+%GeBeICMgU3p)k!=nfAJF>c@f zFf5EqG)S7!9#XLAk6Q(NcfC9DkJ~nUGgkTIj2^rtJaxsg z*6-=5y+Ha=*bEE|M3#&0w#0;lml{^Y8p!P3h6sIrX6EF{lklQqdWMfr?RA*wdl(S` z$)u0q-Tl-Yuh~!Qb6rRW-IwmA&$F|)Qcw`wWcVlQT=!j}d#mo0=~LXsEI0A^k1!5m zVq!h&cNI;0!RSN!H4BdcCpz=FbPcV~@o3w}-W$!1tTGFu^eMw)1|l>I2xx>u93LCY zFDRhl^RQOnKPVy+UU7tQOlbNb+yfHNrY{Ny43KUkNrj34OfW#m2c;JgLKmc_QXG>WxrZ>p1T#x>y8ui-iilXAo4gz+3nPGi z0iFbm584u+1N;S}`pbb;dY*6e(@*V;`_MebI&`#i1@d&6*;~gP~?}T^i?5ysw zfp=U+t@-CqD@#kubLZX>eTO0V$Ay-V-Ic>b9(0=6Z(MAmg-3SB@aLg#_14=0d9t|o21WpmDG0Xniwa*C;*@Bh0aMqKPk}!{oYWMC!{jyECAAzu8aAkk|C`3OS4!)z46BZBL zXW%7v_VzK`q^UM}fF8SL{Z~}gXFsEq1D*kX8Xa#4waS;Zff>mFsso^sSoiKrD?&#X zj5fk+Y-tH@{RA>WN5>-g_xaXe*Q?!@FIOS<0CrHKVH)ZX7Z2~mQa5y=NA#c5`0ghr zA8#1&A8#OS!Qo}+;J}$fisz3hjsTwF;}B%!WM_YA-8izUQIH7eF?w52a2{@{|0w)B z@G-=@Ah2|FbexG&nBBGQ@y_E{E52A^HL(JI0{5VoEDGAT!;{C%<;YXuQUGT!U`C`$ zEFu9En>1FQ(TiTreJq=mjV&=P?fa+$ehxOD=zNBL7)E|+Xwa+P0pMnPR_5D9K?H^sSfnwzJB&vGT` zRl+yJ^kXZ7`-KkeiHU1T+u*4YoEsbsE-ETI8PS7ajsVJTnEmhiGl7-lx3(mE=6ey- zTO}XHzz9yYc73h==Vi{`38wXp)4OQl#w*XP*nWe0b3yW+CyTGnx8}?$1wFGTd1KOM z7oF6G{K}CCN)1C}uECqKbghRMrn^2|8l%Z|R$tpuCDmp)&lC~xdhFwYd5Q8j?kek{*V^n- zKLw@TItwbCi=)Et^@6`m%h|cD`9#KcvKgoSj)KzF&v+X?I<`r?udC(N`a$j2nK;AQ z_~;J#iz~-3C8at{F}J#j$T=1F3~)@kxB0xda-WjB?qk#O!#cKyi=P&|cXTxBXzrX} z^ZG_y6n{;{qDs1?9^D8{OP8ws_-5^)S)amc^&Q^#&(qX>RI_@e(|UdWZS?s1nZeN0 z8O#z-;?6nI)|+TJj_=NqXs>jl&DLp(;0WXNc+%@%G|p?vEBD%C;!@388%n7;0UaGJ znV7n)t#^efm;AN;=3Y~owgIZzEB3Q>?A|BS%DHt1d?xE?7WW@v8w!>@vMe_gqu@l! zZ{W-9ieM3SVB6JqiMCUqzog^U8aLVdX_*O~X zj%`Y3HXv_npVZAL$>cU#gIE8ecGzIMZA4_jY|v0|&IH%!q>HwP;!QiFx3n@H?yh=E zL4AYl`AmH#=7m;XZ8-^aE@NEforlu0Kdbevw=eK;j{!auSUud?#vS;a=7j2AmpVO} z?B0+ISkfyu5PAgzbdy`rP=t{Nya# zCr=pYc4T{-wY_oP?y?x3%+Kl3x=lF6PmBXe`}ocDSixw+o+ z4f=g_pGQpAm-`LuURShuhGbtoV&=W5zp32jM%$EApHlyY*IGN0h1uG-3#a_3aTjms zs@(Iy&U|g!v(JyY0Q+tEV&B-cq;w)8$};EMsou};L&V=CyIpH&`*g9o_GDaE&7GiF zy67O)o&5sp=PYhX+#8suWsmB=n_F$XWg#^#qBycH%a^lRf^SP#z|VDZ$}*Lo+Kr-y zs$T@Du8UVU?Hj1JjTQ{$8uMXKU_1Gh#pUflUu&t_(*yT%iyN97LoQ`Ch_V+XZZjb;tncq`EcdcQ^xu>i$CIy zG{3Q^Dat9;JM8CwXXC@jk~H1KnfNEA7o;BDTj*eL`ew=O6*+I)t==n;#sAhPmnDZ% z*j+l1cj!8;j&Y?pm1)83mlF*_@*5*|&+Y!^q`fcny4&s4Yd!g5Ce;m|!|T64e7ls* z({`h(@X+P95Bq+2`Q^#wwfrniU;penEz@@$)_Xn0*Ilj%`<`evHW03DbF0Gd+Wleljh~kWMWJH25jGWJ0Dfuy1X-lM=(${a%P5AGSKb*`$@j*p~^m5 z%JXi=FL(8B@new_6LYF=j}p%t=zATJ|E|UtKPG!i|P-)u&!e;gttv8{6ljIIs) z{3=!5%avM_d!?6!KkcF@>q+CdV98oduC8`h?AO@E>ac`LLz{?1X4cVwT#oR-U#9BZp* zzqs33P%iUE+)2VAUQoSr^25ZoOYHm27#^pd^lz;_uy_5j;A><*9+;cvcz$_hcqpRM z{#d<)(4x?J^~;w`TPI(K{)oMLNTrtdxs{L*@4*u;V(Ch7D?Aptazc9!43DrE(OgVS zJ5c3+n<;zrcIV6IrYx1Gnb~MJ&N-g6Y#nr!KRFdU5oTsmog01I_kx4Kow?Gq*l%fz zr8(E1@NwD7yNdLRw%hgfQ7W_;unm5jtV)?Sy!-elu#T~{?))y%25fy6`QzDfS!5CS z9k-Bm=1o80G`#F^qNeU?oxwTAVx~slds|V9p!PZ`x68@kzytb_xy?hl?+W{<%d2mw z`9H5z)SVj)7%*NRw3(_XES9gh)0ubQ`2B+?f+|Fxz9@<5&fO-+u2FGz(5R_M(v4sD zXG5&1RM2c;_+B-oV4FHEMn^$UiD9mIJA4z(qBdt4^-b`|u zw&P^K!x6HCcKqhWAik*Wj8&ia-Og~gdn-KfU_W2u@zgq(O=JsU52*GPa4$|suPLiO zP0t?dHDuq^wnqG06Tp9&t`9@E&!y~omgUUA!KD`F#O9Xa^YCd*NPL*VIVw{Vlfhlp zeDqcIokM?I>$V>##}2Cz9pY8*vO;a3?pD<6OuC&_$7(+|o#36`Qgc1##a+cIciqaD z&MkEd4=LIFxb=ist~eDxtXu7oW4L{Gn(vaYz2ANdfFk$AEbaS(z2A9064#v{k0{P~ zz!-E)JwMD`te>KnVW39WWZZDU>b9tg+*Ua*;n(Zn^e8CK1K-$ux3_SfV-`V z52_B?-&KEW%Y1{mdV0o7=-;KY6*rg(qL)>2c7^mr#zJ2EivsgP>`aY)~wTB##(yDE;|w?x)__X1}}-Bv%u0f z?p7{E5GqC+N*%y)eyUxI;s7vxbQB~ z$11qCaq&F;Ioev%3!6x3Xlc)xXJNlCvS88+#Q^{SfNIPrS;`x_)|Lv=q&y`fqmrAw z5AQ2kDvjuAD>z{<{cL=dPL?80%fk?3l~?nf7~r+#gxTq6=$S0up4`?yc=-)dBH}WO zqt_eIGz=^p4`)$Vi3R`wfOkqQlO?~aDR#08l8=mT!^zU((~FPp1TU2iUTIR>X=rNC zHMd)HrdU2(j4|3eZYmv2X8LB9!FQgX{nTh=+j{19Ya&bJ+8#4mN(9~2cfVdVS6geY zi9_(Ob$nu)S05XEF(V9LL0HZhZ*a76-}3Mk<2c+N;keg(lL*)~zXUHeGMqa{TXSfn zQ1+?JF3xb*Z6&BMBJ8#-<#327g(;l-9+6b5%KCDhI`L9 zn4_a-Xuf*udTZ%NwDf3!;&TB206^9LTFFux=WaHQh;EbTDkYPpG(yFUYJ2qXM|we&rO#96|$RBgDq$p8k+j1)~k14Nv~z|6}Nfk28Xw$ zC5Wx>ZGC#t&(c6oSI@|9%k_e`K9Pjq)fE5bq#qFg005}QUoBaV+HCS%rDU=kqlF2R zrID$}k!zv$G@8a76Ps;G%yB1`r|nNpma^eVv5?2A&5b>>g<+v9oe0;^($zCGTjH|o z=BxK|+zi2M%RO!*+p&(W_MG|Vo6hC8a)m zq50Aig^CZprH08;b|*Q&V-`oPH_*_~F}C$OU98fyHML|Z{Rodw@Da`&NfIJHoB1Ms zhp}{Nqy3ThG5;*-dsB7UM|KqZ=D4Ygm6 z$)WtxS{hA5*T{PPncT*{F%R-p*JLTXha`GhOQJU!&@?pXS~z@thbiC23@Di_sqiKJ z2zBOL`~D}FIrc|5MPfluW7du9zZSe|XLG3rNr||py*xG2&x{IlsqZJukpo=jlf#a( z1BYz=&iu~o6OobuZgWAxZfAWREqybm?=m}8a5^af005ZOjFRPK2Oz5`WlB#V(^`7> z#70MB1Fhl4$38ZER5~0h7Y>HM@r`I_tQJPJGg-2fAtl1Dng@p+X*3P(`PQCCvd2E0 zXcChiH9tF8|}>u-fld`$E7qepZn@==%$sn=5LFlsik9TzbY^?;aO7; zbp+M>LXu(uyQ%coV;k&^rL*!hP3<`rEBue&f7PkNL#6-#0ALa`N|pcs0002PkSqZJ z002NWkSqZJ002NWkSqZJ002NWkSqZJ002NWkSqZJ002NW{y!Fg_EY(+q?!N#002ov JPDHLkV1o0@xAZzB{CHA@b6Q^zPb1IyL z=BKnGux9(AChdJSjdu)P-`-cQsNb;dYSsQ}pDfF0H3u9%}rL-W=kXWt=qjwTelWv2LoqcAWOraT1|$-T8VVdv5>4(#85+|^b0!uH#S0{UrrvlaDQB?1(clrlU9 z?AdH~iDf$f$)&mH_*1{~+li0&4+!A-Oms~oO6w)9UgZDo$u_#8>+x6R_9$O7xNk|%aou;vGWtuU0+j@s(RM}>Vf()i3JMy2d0wn9(`O`e*e`!@ z=2(^FSm1a^!1!*T@phl2iT;-H@MfP0uLB1TtO?v5t1nZlLYw-mo$V@L!y?v9){)fM z(_51|J5SJsM0xgH`hM50jFgmH_(Qz1vbOm9`=2;@Qll=(q`Ic&nr57~p!ozoK_o@o zHpjfoGW|wG1e?#v6ckLC?5IsNa#W0P9~0EMjE|lf-?7Fs;Wa{)v9Ab z_Al<=X0vtLde7XUJ9@}U<)2#{q0Z}WEzb5BNRm+XPQVqJ^IH0c19UmLH5gDl~Gq1H~H(dwkG45jj%DcW|lH7vx)6+P7E}ze?y1R>A zSI2nw&fdkvMW@xSCC@9Z!S+U2Sk>U*{dx1}Gu?JhER{dmDQ~C3#z>=-7*C$jsAO zJ-61b=tyezDZ>@`yt9cZcIOfu%`%K-8F+~LGAlDViErLmPCZ}XGGLmbFM~yz;ag~J zZLOJQTw7ZD^PEe+F&^u#sO=egkk*iZ%Xr?|m%TQqWOaCXyuQqO4xLu>YCER6^xPSx zmg##L)unBYICe8GY_EL4%qq7GYU$GZ`g0AOz^xK`iV@>A=4I`@hNh;qVh4&*)K;d~cHyi?seV^eyIUxPGRwk*-v*wruFJ48voYoMY(?ku&5c4@*u{ zl4Dkar^-YaV|`MtRyNMQw>@8X$S}i9jNUKb$oh;WcgL~GsK{z(NO5abbFPO#knCg9 zGBG|NP|ELB8Xjwz7~}SPB-DHma6~y?;UBL3Vyv+UK$ zC!NlCX37~lk0$Si!&)PT8_#KyWmK<8u9FTei?)?#Vz+2Z32L|j7q)M^v}1esY2$f* zJH7KK!kBxKGWr*>tW0ur8&r5(=&Q}|+J^VU%JjW*R{Uzlg}Jk)1(#TCR8>trzA=9L zZH-*Z#I!rFpFh8f&5p%pKYNB_c+gfDk>y!Bxd=#EP4*cX8F7h;2ZlUN5lP$!-`~dm zpL=P?z3lAx;s8k=&XfD-VCtMpKYskfSw%%fZ8I~uoF>zed&2Mk)$S`>_p}>Ft*jXR zd=3NWHpi`tJ1pQWl8~tV?YAE#R6Jt~3by4AG<#(GOyup2zS`K>c+Y3Td();(I>|o5 zL{)8E0Hsch9Cy zc9Xok)RNgY1Miv?ojZQHBB`2$y}@rtZ_kq6K|A5>37NLW#n zcIT~)Q1vkt7Z*pkFyjjH;#mA^K~460>lV}?3iXvrCwIIq3HlHuBNU_a@>KZExkf*H zcUJ2gS{B=V9C=}eH)kyS-^ld;Bbe~dH~%9++23omJ!KJ)beS$%3VubJBgZ~^8NCD0 z^6Y%wOPj*WS)JkR(z3ZCFL!?`BBC7;l?`rXXZ zScud3(A8>5#t{P_DV5fzQTUiL*t z4k3ON78Yioe05IN^g--}3m5)C)gLP>E4%X&Go1mnT%4ULy&OrcQL*K4m2P;EBS zSQpR9a%y*e^K_xOil_eCwQC(WFUdGaF-(N>2vK=Yn!XJ18v8(BPxp>7hnapvY zOwQVzro7w1xd&D*qaT0!IWhsD9FWwVs@Rn)S8m+6@mHo^vi0%fyE7eHC@tyg>RzjC zuQMs@Un-S3YxO)oskt+Fz`^=Wd!se^3<~BCFLGQ905OBr8OT-9Q4^!>!)5uS`^Gw> z#^byP3njU$REI8k_oqj7BJ&v<8fs#RUYRq0GgOJvlMmNf8FWZ7!Zh>P`h~zuU-=cy z_co!nMdDW86S%iZROl9D~g)`vARXcbbXK6;fh zJTgMbQ0ntfpID|V4{Vxny=SL;>2lE#_xCS-@et>b_^f& z-G&Vtupo`;Rsnfqd*ieQc-NG(XwjnQ&z}8)mA$6UV2+fvrD3(7 zcisbVxOeZ~ubwLT?}X^YR#f-W#><7TG}P42_rGgm-rW_zeHylbvQ^jytG;1gG7rhi zou5%x)7+f2W9jYG)Nip>4mvqG?Oi^nGWXrnBdJgDvd#eDMO_D2pbGHhuxhrjbhT`d z-(ZX5(O}DR7Y!>q64+!P%C^?Qag_>w4n+O#Mb_PkA=L>6tr>lHc*|(al_gv5T)8qE z}e2fo6OWUyG)Kn=8@C{)=E z4ROjI{l`&GVT-f1HUyPe@T+Na)PF2jwh3Qz?MZv8z6|@;%xUL=(4~U+Vma75cdP7c zbKVWK=v(*=quRi~AS1l+)i3Pqqj`4p=2@)P(!wLD+MzF!W!MvUYE29K6Kv|F77Ocq zb7@;;slCpoG$h{zv5PG z?&ml(j~_oqUBon&U4>#UCT8W3rwW$7kuin7{jOcO`M#AwRKQWKNwELRFTZ4u+%7LK z?*vTG_8dy{?)Eb~?&(Q*7L`UzUIQjxeO0@%PqkjOw6uIZFv8|=n30hZSlso6!s^JV5zt;L_*%Io?Q5I5 zq)vwFSe$p?UCGYmiQ!~np)%1vF)FF--bdw}!-MXN=E{-&cUCYM6}2d2qD)1%(`H`UuOHhq_@FC!II zX>EXGMPVQGIKStfO@`y2W7Za>x~gR79yJU%7HcJZJqVilF30!pC~O_1I_f z6<-OT!2chh#ow8x`d`BZ|5$eIpO^i2+1sqGKnad6(!|)67Drhvixifl`vK7oHO=+g ziM)-Ii%eY9dJ4%Hp$U&WbvEdW?$~r(M|o4bnh^tvvCejG-4l7u^9gx#;Wb^6Jr4lLw~{&73(iLyW#V zWvaWodta@QL+9vFFSn!Pm+Hy*^3443>z}-8*5EPhe ztWv-EEKZBz{PN*P04pV(&Pg6uz@&gm0O>}oo?BNlyR|qVc>hWe0Xk-8$)L8xm0b6G zd3jme+lSQgg3B$92DX|_`Ab+~F&HWGd*ZY;kxYS75OVtlyN@C`+aNP6TeghibAA2w zkdP2?M%q%rwO-yRWr1f2k}OuR?`X`hStKc0hxY>E9!b4UydD8c{P`a-9D#bvPGa94 zvhE!#(3K6eXTUt-ZZX%gV|CAR03rqO!BIYieqK1sES5 zb_Zv%YowpAwQrvvc&?>^KUrE?Vf$j^T1O493Fb_}?gyXbVw9?%VE?pM_{B5u#b(+d zEEFSjH!i}H(z>mo0lv}3hIy{Q+-2%+A(LgQ%wIouMx4fK?fEOtm|Ex@SsPU;9bPU4 z9y3BcnFCrAyx7l0OVfprMLwcin6T9u*qB%yd@7M7GcF*R#t&Gh1MnLr65t;hBOEl( zk3EvBELV@y6A~KgGBNHYI(s&^r>!j8x$}88Kf*Blf1aDG?;`1*Li>)I+^X9_G+_2bi>!BY({$uMfOsr5FY3#&i=csfV7+dY?H zP~Ny8nK#lhk>}m+=DjO_VkFv)M?gw#apH6BklI`(Z~ z>D!Pf~0Zl}RCBhk#|Wb8^@%Ey?LtmE0FuPCS-E^J%r>E8K4an1yr~SY{a3nWW?B;r!EXK4WLtb|VuI54Bq+XY8p>leLbz?>!D5NEHtP zeDguO*}iwPpM6H3V7s!l?Cu;Bm8gT*kJyzs90*A$inE7X8;=dOcHjTK`#!eosP{xR zd%0>^qfLFJ3*YdVM_{`U@yV6_)Ds)A!Uz&VNo)7&&p*WrRjiamfDNKs)$x1o+@pZ= zD5xe8J$5SgD?p>Ciew;Fq2`>1w4dXip8Wu6KSQWq5wr(IH21AODzNoo+IUF?qc#gh zfl%45h3$&>BO;;t5xjq;23=?MoJ+@#9owm;rIqd06^SAS=Kw5cGK(b-nTZ=8NVl3| zVr!7nS#so?PG>{l;u}#>b#LD$kcv>H8zyd~um5ax^Z|k)rGRov6bBH7;vhXBgET!j zqot;%wrKHUQcondp1vifI;zo?H?U|_#z;JmxIy2j__U0+3TbA6CpRa6 z;LIK7GG|QrSnl5XQCEa%DiQGERD(uM3`GgjqsI12dcOa`zWG5M>d&2b58)YURH|60}G+^oQR}5h4@&HhsH>1!f&Sx@lMg26k7t{D@HdfMla*xv zaIX@ToGp`I-HC^(33i&|JQ5%iXxh%s4h5RV(W7@MC_*6uXVLloRiU+wO;A}|W1#A0 zdf-Y?(W3_YHrn6PjQbTx9@S}4Q4x2If7E09Og%kc+vCT7Y3T}WvQL)fn1u!IV^kwN zfuUe8NJvhG4)Y5>DdjnsveNe6Mc~3O%$)Ds{rk>8$%q}DomEB-xzWAtmCU<$kE&I~ zZ>S2H%5mK#EJ5C!HaKTjrhZ8X?LAfgAA^8t5Rn}D)4T6s_d@1;_3E(6{gd0~%bC_Z zdbFKic=o{IRQ=j9IS~=LyNT`%**a#^&D8%L->uY>F$ZGor}A6<*w(=)bqinB*L?CL zhp&rA2Mz*SjkTM@YD6k#aEY79*)5Z@Er)82{VVcttigY*^yEhK00#c%3UW*1zv zItAfPSXYBg%E(dJk0e+Tsm#PqpZf6+jZKSV=G=14@!BQv9=wy*`Y>e8Ye9+DjpwOkcusihniKPOuGyKBx@vweZ9NE*rUCVr} z9aZl*$qDbW4W0-oA9uh>$Y^*7&MhiJ_cWvs^J z+^WUqi}r;D4sHMIsJPJS^i~N{r~tT;cU%W9rWz*V!QmCYNNKjO8o)2o53(!%>V&Or z&806_(UHc<#-qehE#tdlE0$O{-579^I+Xn-*$z;M?~QIWS&W)nS|UI?Y(E6n+IP(- zk-YI)2qEFa=^$M|I-x!YA68Dd?3BsLjhj$zJlwjNqXyiAjG`FPe6>|gHnbW{6VNSW zSlV*?R|-0+mLV{&2`|S-u9KFQCa{a}3xs3iR=DopQMUG6US2Yp4nAf1S5;NrCQ%9u zna1k5@lCmhkvzc_Y?Y{t$1-aY}(_RSBmJ&#_rcH3H?)rCq6RC8dW zt5FJ^7<>U)#`an*(f&n8D66epwF=T8j>~3nH(n$CCqPFz<}}g%2MY;_5R7kdWjnU` zg5)}8ZLRKP89}$8WaoL*WB1A+#P8>C-@c8xc%TTF{^G@p8`rN-i~B)q^<1!k_;7iF zXvC!0eR^wN+($qAZ=+@DcFp6vn1%?gX@wh7le+-D(D9`RfV{+C)j&5UoclqP~gv6fAqv;AF;bod{ z6!;f_>;Z&D#l(1zF3ik6-F;`?ym{7=7u%1clu*bYI*>a)%tLs@#<&bR6?GvjIPC1P zme3Rq9~c~@d-!n6(ewtCw{0gkvtD1Yn>+$w+9!`dtH7P=5m+5az(6>4y!oWPH+*>M zN}xKBf7k$}7VGi(H(R>ufDs7&5F6XHcx8CG^@$UEfFOrF^YCO(hcVoLl~>i&8BY65^KCc55cGxZ;=#d3kNos3r!?jy7^L%uf6o8Az3+mVW>5R#(%fw1P zEaM*gj8*Qz6xK=aqd))0xyAmQspqWSE!4JnX-n~A6MI@R8d%(s%&*MO+qJUF$IsYd zF-6|mhOGBFV7mLS3+oSK>N9LY$BXg@=To5#IEsjPeG*~AJ_I)io)i(*R8zVO;_>LP z(CIoYszNF28*uNCJOL%1v^fG}fRzX6!!vuT>+c|P+JK%?VrKL6q26|ORTVh;tYs79 zb8O{)GB4CaeG{9Jp#u;c6-e_5;2fN*dfm$Vhbvxkdsy$)tA~ZaGt6 z5v{og65xgHhqa1_Cco(mTYX=10_jh?0TUcP5mFo`=Iaur2UuMK?)DGW6{tU@T0u;p%R0A7($gEFOUU z6%@z}*A%NQhMf`-8kxTOQ*z z4~8(vvg8S=^BJoXL{0Si)cTAiPh@0|g--OC^+`^&`qa4P^@{Ubh#F-6;dwHuPcu(9 zOhn{_-wXCJT{E*NBDYZL#3m;4FPty8Oo!7<9c2lODAoAFy#9=2olGj-VLpMAt*I~k zwNR3@Y)ms}KD~^6rfpSwMO-NcnLI8p&(t+1w_i&o7$_Mwu(GzR#jSyLJRK902rifV zTHp@9$!o_fi}VKhzOB0I=~Pmr1mj*O!3B^s$#1ABnYpVa|<(BAT)1lPew{IWS ztq9W20EAV#1(qrW@wnzN z1B@Ws!?6S2jR9BR9;_BlH0>^9;~MO)H|_0ht~oAXV#m12GqXMr-XviIzK)iI?p4A8b*S!+``2 zQt&dL`6Ijl0|Pv^o|(?qpVzh}Ywc9!*TU2~w4feOGbgn#YUcVCl}6yFJmienI) znMph-Jz@g`64S4iymqppcm3z)J+r~QQ}oE+?}TjW5m`FRV8!o{(mFRc%I>U18o z1pZA6=0S$f&**d||t3%?D0v(p_acby;ca&b#q*%q!hJ zC&^NTSa49Xp+PvC#jOpg(vRtz>l-N8D8$GLvp?y(_v2r@R76DrE;4Mt6kfr5CwWQY zzE7RPcGn^!2C%`>Kn;AN%)DxVUfPDhK5J!VORX~iCDtsNUB(l5zd5&zzQz2`+L`i+ zVN+?(PR2z%GJSs*UgKC zVBi9ySy9^>BD|U%&npXePcA7Ya_6aelg(FbZ~d2DWrf zJgpDuG(u$5nQH0jg<_3}{)W5Q?;~(tPMX5DGQg5&4gH_y?jnw z#V^W!*u=%Hhd|T=Mj)XQ5A3)#t(SAUNdg8wEcqOVKhUwUhd=GX#IXM=UJ zvJW1U`#n99*Sl5d0l)rKv-x%Qq#y9-;#RySjs2)At}cfU8OCq~LF79mKKR`5Cn!L? zBKQ6TO$#eNPHZqn)B1UXnjpHn2y{@lZ`!`e2R4SXOzMUH`VGA?{f~fk* zlb;AyG&C3_CL}<>+jkYgknke3jY3~BCbBOQJzRLmZA_JeC~0nMJfniVB`+~t!GVkN zo^aU8pg{2OfNNwCC*TsSXL<;w2AN-WO!||^$ik8{TVEMi*0yoOhP!Zr!H8vj>Qt&? zH6S2Vl|Jxlpe=0BhoWHr;u)-P$kW+ci=DD=Qil2i`~jefNvhO9hQ3)qm44{ zJ4uWN3ojHSMzei{Yj686D$B1h%tJ3e?&zoqC2M4$s}ALc%kRH^21r6;F|;i(c}N4# zkq`k$U}6UrM85z~)?7F(w{A@kQyKiOF4?ROw~vBB7}L?d0=yrx90}tD@+{2YU@Jdl zkA%uZ$MP4y|9)qZNxNgQ-rx_%&({#BVWCXU8;<|@hlg6B+WfiUDutGr9MbJ8D%5j( zN~Ng@fqG&)68L8vpkwX+iNXR{4LLuuB3kC!i15F5OQ0(p7+aRWE14q*)fXDwt zS97kS*YG{k)*)U~$q2Ma2xn*A*rodbWPkXMi~~(gO^x|J`Pj;khwcH6 zK#VGC?dHZ`i;8w^Ji1~|9elT`*>*cdiGY9Dizttf2N8Fh95E2wrrLp2Ed z^1|Oqi?M)-hKA0N0RVLYHY9F!(rtoD0l*m>3GdQnX1G_%2NY|Wq~*_X$4`N~h652? z+VGjmnJmaIsN0+Jearyy$$bZT;hw!mdxRTRat96`Odnp3dpmnzAb1+ygr=c79CvI+ zoVB^Lec83OF()_61Qah*Hh8WYp$<<0ETqtwpODPF;`-kE!iJz|Zf9_1_!s|$ZlH*- z$OSB7o1F~&yTPWlwUrJgL>5n#D0dGJGDjlT`4%3^J?x4nnPnU@NzpagPt+_vVnm&S zu6s1`H*wnT_UOHmG>30Gy#dv2yqOhW_tI~T8dTt(_3wZCdxHfQ3=SE$cQ2|ux^fwu zOb5X0SaQ^%8bQG$7h1ML`Lj5~NWmq%++qyM+$cq0khEMs+GPNLeA%<_|f$PtlA z)CIo8kt2@{N{PrR;gdB*(Gi2ppIg(D_JPM`vzM%$SH_4`G+;XB--l#OWe@};MO<|@ z-(R8mS?bYZROo0DGWd(BVIvF&2~Al}yY!Nb$@Gu`p(`>{B6sLbIGGtYFA1scOqdpe ztvX2ufI&@qt#6={=DIQwq-JOtUL~-@@LlzecBN~p`zHK$_*islWBIF-p4_IJ52B0g~UmF>&Y=q7BH z!cD)$`TCSg7X>ydwmXfhk`33ZsiARl4Wm$v?7XB=*sj9-#oeSzdQK!^nM2Wvgo`YN(2`EcQPC*~#N-aXqVb4G*Bm;5ct zd(+-trIMJaIi1dml+@IGXLrJuPFWJ(teO`u5X;V;OA_ZX8$Z>T=LOGtC1z>5=<%wirHqa%MbNNTAt?JQV43?4z6x47z zBWuub3DW{-7CcH+m(cnkJFufi?pDR($zd}Q+F2+cRjD`jqExwB{?5IyKNV{3Dg3#A zD%8d%3C)M|)&8%SvZ&bnhqkK!v)cP-wf7$mLukBeP8k^~QrU_5c0#7o<4Wa-Cv8#l z_502QG0_()JFSJ#6Y2lN54Y; z03_3lyZ1(VY=XLrxm@(?!Zm{YiEdCE$^I-rhQFfC3R@dy_We6;DM`}x=L2FaR4(KO zwy@YCCb9Jy#1rZ#QfI8#BN4C*)F}7u+nQH}zSJuLNp^BRf=-kb$`NYXqE-#c1khYB zY=0Fe`7@w2%u*nwoVhh?NO}QB#*^sXDO3k1Jy?BOOHp%y10=#7=pNLgu2my$lsvx5 z?!Ut9L$=Jv{)?$ce`Sz?+uoz{;q0eRFT({vJ!#;stkIC4W&AFTp(fNdTr)d2*rMrZ znBg#JMo$mGDe?D6fzFDFCraAPxy;q6OXzL->b83 zfw7x#41kF3DwNZ}?`Wm2bITtw@#+n4sR>-Rs|H=n;IOeXVo{iYf~;*ww<6(uQVYbQ zg8x;{Ncjoq7l;Jl5kmaG)pgK?MA_*6>#}(NU9?N<_v72(N~b{uot<$P4MF-iEcqg?B8x7^S|4Bu}Tx1K^4vISJy0W*Y9vwVW$eXCj zUc4}Nc?^JLLsT?MH1a2eddB=83nOWWu)+x$BDS#y%vSWI!!ty;GB(gsM^yySU}KDj(|osIyeT09Y9w3evZ3 z+`yC7f{PQommv7b&G9YHz)1j(1kwpSp~;Rm@&>Dlj=s)n!bfOZk_Pt;^h~ByxXVE} zRX&)Pgc>VO_V^KD8HHdJ)hIPH?Coy_w51-(n3c>zfk-nd$Y?Y zM@Br{`7rfEFV%rSwPbd2b|ureuon0YH3XC_X?Tmf20-GQ(&@lYVeLTWzzU3riO)xo z6RA|Fn`LI~=H|9(No9mmro9JT0?q)u8JU@7oz9bUQ?M)6in8#4KyH9D>A-F#uK+%z zrn>sBLW`%?*w`3!IkVU+(h4>9wzlXr4O&i}B*fH(waXTneHaL#trwrrgj|qNyLOC4 z*zoioJA*Sd6$$>AFRw`RHA9E)(@I>WVX4CFnVTo8-H0kQU}OPD9_%d(bxM)PBW#sLYH@XAC_q)B=rd zOO-m(7;0+-BCsC#F9;Fr7Kqc}XWXMQ=mBuqOnN`{m!NngQOnvoUeRMMIpB7KvzrM%a^yPOvCUSR6XP(!11Ck6Pm@dFI0BYza&2dSOLco1u7>Lt)YKZ%}R#Aw=Iw^b7APMLaNj57^x zSj4X?)LG6wulLZG!J#-ANwr}hz}ys z-~izOK?E)=cLxj=z!ar#(4dSW416T4-&h~f99RE^#F(LNy=)dIW;#cG+rJp6kH$pN zN{cMMB9tcoSz!F58!MyKvW!g!^644mDYiMDDbD|XRlSNYm;%gAI67Up|4g)x*fH`| zGOxMy_%uz!PJ#rT?KQ#@Htb4{zmf!%tUr=csl8Ae=HhvN(XI-n>n~4FC_4Sn@WU^@ z6IK)BW5eSE`N=|S9Kb6iiiFw-1<9Ql83ty7B@Q1Izh zfa|RLMP+ftqd%<>t(SiCoRq7$>PZ)nwIu84=eAK=D;lL*SnXqu+TI0dMih{#iIzWa zq^XPBG8*o47oiK5;&zqkuCqTZ#~+JR=x)*^FJ+4Vc8{fjz!3-fufU> z^Rn#h(A@$uW#TF4BXg@iKPkGj2QNNMSNQEQ_!APtR|bKs)IxJX|Jw!(I>>3&%P6Q` zAg1rveKzASzsSj*v-1PYLxULN5e?8mN3IYP0Wq5$xSQa_`&sGMD`#4)ZIs z``gFwsJ8l_o_+mQ*{IAG@3*s}HcgXKsjTcue_YglM#6KGy!BSk+Rd?orIpj2zOW5n zj=B|&l12XX3f#Rqv~17SKWb2nje_9-Cb5&72Uj%yfEB|CYT!2k4B$Ng;|c5tzac6c$bwipfJ3?l2x{pK zo4prwlwI+K0s^)V`IyRWs1Mpwi6e`yg5<|f{l$Ffj@{Yl`$}4KNa=HM&oINnh+ftf z?=$mX7vv8&_#{sbsc_7?2~luq;BJ@w|6Vaw*%b4h&57;)rNn|nEI2a3U!#@GNWAnvNSqJ6>6boJ!d;+9)9MAw%DyZSBSZ4;{Jg=kbE_wMd6J>B} z<844Kl)f%Ns$`(UkHYqJF!z4aZ;g3gBYkhe9k_xzGYl3m9$0W)E~w=AnKK3f63WjZ z#}M!PAG;?bXY>Mw{+FA42f1Di-6?<7bXhF+*G-qx%p(4Fo&h2t!HaA-C_VqV7`&>=@)!R_V!ge+g!uaa-*{jy;2&fw^kXcZC#Vd_X;I{;BRwxE$-e2R zxe5n#_n0esjf(I@!C6DuqKP-uo(zb^%)bou2+a&H01Dtn;7OIJ00Wjd>fR1aQOQ2j z8$+{e;0VR`<4Qg&Rf<8b8MYt6!y%ND)%32BasCyy4sM2epfORBdXXXbPz{1FA*}q} z*SAn#gP~9se18CY9oQF6rfJisQ)vfy2l$J!8!hG7Q@Bc@av?bYM1zBMMe^cMTI)B9 z{H?K*NUcK@Mr$DYF_=EmQpI8bKq%TkYmlHMth8*J@~4_%pkxfP0JV41c0qjxnpoIg zi~e#?7uE_)4m6e}SVc?4JBQ{B>}i^ZNr-uJj7GfGdy8}fR3^A4WJK;$W*x6h^zeDx zn$!Al)PW5Uzzt>%Pz<<9STpQ?X?FoM55PT)MFgQ8^AcQbe zfp{_)7aEUp@Su&g^P74t+z~1PSza)R& zv!Qz(W}Z+bfI5#R?jUT=mQ+d5Gd**xNeR)&1RDy>J!(pn7_YDGKK~TGk5S{DQ5!dJ zUJa%QkB#sxPeA^>d48m)(8Z%mt&zhK(BVgaF3Lsr{Ff+zv%SZ%RmKO8Qh5#xY+_l`rN-ngP(KiY%fb13Z>z;h?@B3flz&`d~eB`3tc^%V}6p=vvAXC!F z%+6{CE>>8Xqf`cr!DGWdhoX%l0qwIe7yn)pBfcEO2He(E?-?3it>dwI$@xjiK4Uy8 ztF5f8TsS~6@CabmU6@@{j8xYZ066N7$K(XCU7*9#)6;RVG2-AE)&p8|f6e7mDE1`l z6clVjtqP^N1MFKhO*QCv_6=IVQ1c@bkgwbj?XH-|;^E;TFmY~v|7~%oxEM-9GJe1o zf`ba>&ISBs#1^OTA@C(gC?WR~nn5f@p|OEueI2L}>Nw^rk$^@bAjkkRCV-RBZn511 zJEnq@5vrWYnX)=&U&^dq+eu;^>P4#b;VB>|-sV%=>CHfPeXp-xhEE2^95Emcvk4^v zd=;E$bssBMYa38nbLX-lm@280kz3L&&w z00s9K7=#n<-|Bl9u3TKNi@YrkCcDKTs&W;67S<2wyWDV60zsdJo-4QoDjjnop^gbK z_|Y1~HvUTSOwX@0aFGn}03fhBU=!i+(H7L#*T8Nt!rVvE!;c^9b(LM24yzQCZ79mZ zjD-@^09jdC?t3mEoJvSqn;ET}##-fVy%@q9%mByHXpYT@0vC&|si&vsvMAfJbT23% zK`8a1g9N29NIcCH(12~+QXiymBC`+~DYC;+K)C>+jja>8S?i2PyzxHmFae=>9B-Pq zi7xuME^FO+U+!K$hq}gldK_K8xB(jv_6b~<==wJG=zkj*d4zv*Ggzqjt{A7$b!GF# z#WJu6h!V)ABsEi9#5~Nz$dW@@6@gLtVX(f_H-K`2W#ErWyuDXPugk{9hB#})3=p1z z8*JEc@PZ|W02OFuOuM>$`?eyuwjnv;D2yEU87}Z`fue+qUd83Y5!+ljB?)UYN$qjh zrxg|S1Q0#hHcN`JU*H4=D%6bYdsMvSy01Cs>tH`6=`#M~BdOd{lLGUTO*zdWtM)nh z79OT^U@U8M>{#^h%nK3l%1fcNM?4XhMWH@Jp~DyktTp!DSGDG#ch8q&Z>?0xFbr}@ zJNL-~xq#9^aNlStKw${$Ia|v@x|pV=js)?70mNwM?_5|M5W!4aP~OoI>pff@#r0Jk zy*>W6a(us!K+h*Se<(b^O3u4`Ca^rpK5y>x=5=~)qPeAf32c7sGUznelVC`Ic+r3e z0J&lhBop+38@YL=G}uz%03QI5931^jMhnv9<0AR)2i+QrG3Z(ybP(}8G?OoX&@cZP zwZnhtsv{Ea(xpq*_j-qqcr2}#-`ytOV=HfDBKjOrZ0-!5N^vt9dH~)8hY|{KS5d)7 zE>`GmMG1(e{a9nPe*TMG6sJi?Sw+Z$9?#21H zsR0j?Kf`|Wp- z-mwmp{xE;AkC#8r8|Jr++l}=*Ot8Gi>U>PdApZ5|&)`vNKGQBf)~Y&wmrOBxqfej8 zJD}a1A`YiHOd2Sa1alip1@GK@ma2SkOz9+hBqc1kKd;!A&)fM}ZN)QbhOPwoz?Q+s z3Vn-l@$A+@(uIg4M3O`*CWk$>f)gOcFh4mzyR$fEFfs`RnA`56R{@Ed?0w#R#Kvqq z;Z!_5M*f)}@_IKfnN5}ugkHow_Mg~)loxeKJAy`=Wa0>sD`|$!ji+Vrr(X?mvESs-@J1?j@3}P=vSO{OJ&?03bncpL7w_ zQ@az)F(kl|a{@sPL?6wOnCwKr%-+*)GET1JROffruWwsbm#b5gx4N)j?~LyQ7&Pfh z0p>x1l2eeHw`hb!UbnwP2d8D6MX4P@u(Pw1yL9=@Y>@{K5IzA=m}TBwK#>T*hY&L1 z+a!es4cINusTUTYV-045AZ9_EWE;3&Cw>xD19}w*OS+)20j7s7u>%l}aGLSKcO?S} zb<^Z}j*RS-_+*1;WVgmE*BtD2Su$<1N0Kq7lLi-K_zpF+3H%*A)js*;6To$%MPZFa z)m^$Kjq`Z{YnxQpX}u5~7UE{`-l*XU-8S)ba7>7R#X*ZLRe29D^Oof}ci3p;itb17A@d7VVH3hXNwt7ZAZTA3%9T0Gs!tGQd_a3+VDOwD7c;>?s)(56ofXJkml75|G8 z7_rXqxQwH1Wbi)J^w>q$LYbXn^oQ}8SS_K zrBv<$NEpmW!CXUh$c&D93NFUjnEll5NYdj8^c^92AaelnEzxkhm7zM&_^Gt&mJFIq z4?2!3HBHR<#&M|R6bII&VuW$uir0Onwm^vsOz z(?C^IOXJLMygd|%gTg!!BcpK8y3pzV7|#X$gJ!D%_|fQdvcMzo;pAgH5uIMRwAeZk zDI2sOjp7i~$>nmbH$8<*08z2;B}gHt=aAHKKkjBdDGA}j?4;LeATps_bFGJl3?m+_NWh%kpil=Od zKzUPrRcp~YGmEX-6;A+J$t?*E5EB8JGY`N7OQ91b0=X7dhC7y_tpPDe=rDwbA4?u~ zY{L$?6##vy-r?R2PoSn6iNO3QJl)+@WK~F+tcS8?rnFMaC>mh^QTx#%3WinC{O_W(Z=N>r58=>_s@4Kk*@M@5QJEcU+gUc zl&IqAU%nw98ckvYWBLBIdvxhjYHAoVcK20?81aSj@rKy0e2@)gW3RVf10NHkTTf(Gdd>))t$! zQ{-v!EY38v`vX1DRt1JQZvkI-WFyT>Aoc8JGGNKk z!%g@X7mUEnK6YRFD8^<`v5B_;{9|8J^AIe4Fj1>> zFc+axB;t(xJ-BKzAsjv0>NH>KVJ&P+_;+-u5gBb6LRnBOYYVC2gx6kwwC3ZV3r< z5k`Z3(rkSoQXxMpMkM7qaghvDCE=}d%vvBv>vX%v-a}@dk=rPuDEn+CrXuDvfh1ry z7gu$^ep9+`7seFA@q$3Yw9@yS*B-=<;qiD(hnM<^wOs47LYvdQ>?b>5ic~0kg90ha zXrb5=$){im&!aaNIZrX77BuLcgZ4j~=sPVFlrDst&2aa8@1D!sF3Fks;os~^C$rH1 eb8WA~6CyE=npWZQrz%Mb-Lq4DN78olbN?SpDVkvb literal 46220 zcmdqJ2|Sg1yFRXg1{unZkSSqjEEX~+p)wVjr%INY%rix%gi6RVg)$GBXDcC7i_9}2 z%S^^)Tz>be{qFrv`<(YZpa1#&&iVJThpgdwp6_tq*L_{r{SCUMEKhcv?l=(<5!sFF z*Hnp!4pqWGK}Qb~5gqvSB4`?3IAE_Tf0Zbw_3RA%<*#MHW$;a$j@&s1J_~6j{Uw+aQzXCW`%X zYOadaU*&q@r*V`to03|Gg}d;omZ{(SFURjCp8j~1>+Nm6HMF`#$J?MyerKaZZPTs1 zFN}>6q;cWl;Zad0JFoqmnk7iB+!xVVS)a{|sA*_|Z4NK$OvlE?Y8rZWZ(O2Uc;!w# zaFTT4mw)>Ge}CcY`lbc_XK86K9R0XF(O^*=XmhxOMu+lAPqr?TsKa&2CrL@?3<3?9 z(n+m~baac%9p`$oV`INq>@=n5{! zr3Y|Qmm9Z4dgqQWEg9ZY@~Gl0NJMS6cKP~wU4w^5y#G>?5ft{zlc!Igu6CPi3~fZU zor~^HQP+KcSNdiVO1*SHqBIRVK+R{sT`jFCPZWWs+BD35w- zQ^e?)`!@0CI40%zZQNC*DX*;Dt*0^k+}QZlZyLwpm}sT4OX_o%KYGngg6~>xSeIYV z-1=~ZGumlkV7fioO82#C>RVn1eeOcFznhi6AGM#CIp>&YGh80={Q2D?9hKP2_Xa;+ z6=QQuB$n>0bX`qRia9L(D-X}4-}L&6@-OY}?UR#}%gf8Ow6yHuK|wii^_*Zor>B3m z5dQv>*Y&5vr0_1YUFqB0EV%ScO0!vm?@yh$hJRcS>E zi{YPNrZNAEq@<+PKw-KFSw!$ai4EU~gW*7VP>t`AV9nWT#>y{3QGABfHg3Xh=08z&9tKg0KXdU)X1bG^&FB7=7xnk8b81vPii2%5jz^w}wQ zn0e`Ge&iWwOiMcQ*meHNy^jwv`t=?x8x zN0S>E@Kjb-j*!phuiP3p;Tq9){HBv_ME}YqQL4{NhmADOBA<8IHE~77%-kx+QgT#@ zseHl#IVok0zhhsMw%B(3>g19Lho|E$$|pqu;iziUeYO{LE|v~i60zq;y55L8C3a&+ zuBv>u&|bA&$knKLSK}$G`%&unNh{l~)m%(n3|-z4zO{kc8xf=^DzAM%FYFAqh*!qy zTEOq2C*lJq*JE`JpH+1sx{#^1gc8r)1}XgQU3w?+jXs&GAm3GW>%n3xIXQpkqdT~z z{oy4qj%wmkiNIfTvUPGJmu#Jt4G-Y#hvzBq{ z(EDcJBNRDXwX7Qb7lgC&3IF-|U4MF!pD#QwY^LGWd#}aan`_8-;XNZYfMI)#Gf3Ec0=rP?pNtZ7X@s`zAEwD*&tK@8KTx*(%kDfHR0oLHq<3O zx7V^cofn5rGF>=2l{tyU_GFd1q-IckL23krg(Yb4yc>w*(X~`~Z`2UFqZbr>oRrk6 zxAud0cG6B%(^9+4o-?Q7vC77 zy$&2WpslT4%mZ`wQlpIb-x%12Fs2fn?4Y0^h-trlzJJ4RSGUA^eYQLJ=fE7SH6R@x1Lk1{>M`LV@>?&Jf6>9S)c2rqM{mgonnZuM@!wvJWEAo zl&5uA+O#u;EcXIE|7p0^|i~ZD{ZvOMj3{^J6EUhmun~hd`V$$RF z+EbM1ms5_k_bBywWjt*6)$C^%6jZOAspd7T<{nvNj<=;!E-P<-{_&kU{;My=i1)td za?j39Wo0LcvitY%UzL$bRgM!i`gCI1c)hRCES&kMu+50WvIaS$`1HhtfXC){$f&`5 z_UvL}V!XVq_w(MSq?Ef*;l?^RORNTqv2FSKC2s5H%PHG_{{F=ly^9+QgX5&LFJ8Yk z-TB(Uvb3vV&*{w*$emDl03?X0)1j zq|URnu=#nQy2fuav!QNK=A?$~J~GyHI?s9Dgxmaz7vHqk_QPxV=v+t9IICb~;VYC+ zYHt{e#x0ha=!griB_lBjIsItAs3_*6ZG~yO-T^&)$9=x47s;|MV(e0wwHD_y9q-lB z4)4v_)2E^oQ@k~D?Iy1ZFXZ7H1@#5Ir73kZc-$=gzZ9-l;pyGjld(qXESFwEY^rJE zobuy4efZwO*!gARb*)lXjmq@qSKR>++%k8v?JAlqEQHu2j*1RfEeUxVmeNECu})bz z?V7Ze2<0~m#%A#kh5q(rwDG=X{!K8 zH|j0L$(eyn?zhCMUw`-_Dk_RIrQcErCa&l1#Rta5A#{Sxke*T~XPxZYjVn8<6S3wg@V%m2+^t)F?_4sfBcx{sod zV^>1$>M|&y5GR*Xr4{XyYY|d(DcT{gvGS{wot6l?Fa|MdYHFvAdF_S;xNd5sS!+wn z>hkhTXKGu#guA8g36fg;-j4IaK)rkEM_Kb|q;Ji0xcj)cVMv33u}}*Setay4qVq)W zCCvA;iUQ(CI#0CKAZqO|{-=K>6T!fiA1tx)UaqHsK*TQ~u(!M08Y|LSWTDxBqeY^| z%Kc-JF#sPm@7$RmsoMGIM;c*sL&VMD-aQr*)&^G7Ml(QNhe%FLk5sv%z4mS@D4_A% za|aHQ43*l}+A`(S=2$eEIT8Q$-RY(O0Fao`QS=+~Escyzebt^j{y!k0*ZH^iP+XTV z$M2$|k?;@-aoEmOmC=la);O{8!G|eHN#h<2Wo2dK2b^8&3JMAYEP@GPx50;)RCTs5 z-#FNm+-bg#1uw3LR~*WG|NhomS<|Hy-utLHBb0s}Lh5izw3$;}fXXV3p~tcnY+EZ* zdubOJm-`GeGc&Y~PXYphLqncEX}lR* zC8>xBgMktK^o*9(>-;ZcW1YK=01E2bHE%tf>0q0dVM=tKFr_GufCxnc*E?unLoAQ zH^g9{!DuYZH_V8X6dK+zP;4(`C!PiKlG&}Js@jpEo;fr$w6e0|F#RPhEzN6hTbnx)FiLxK0f7|A}-(Gber$Z7qlHbc#xl;|16Fr=Eu6yyoh3tU&Rq%^#5Q&VBnbdQei zccrTpFT{qNrO0GS6%iG6gG~)<9$8TK_U+sE@4sU)F>zwfLNOS@o#&W``ZCG|Tz|gD zyCgB8HBg2gA;8K1_a(wbgbj7285pE-Tn5x?uYRUM&+_LAV{o`*Vw z#8=uQ`hkdu$jOr@`}_NgcTUmLx-O5);znp1Vgkd$C`d`goaSFo42ml}K+qW(8L_gm zTBT}arlkc22425@opOoe@iaTEe;NoByPLM*P3K3{ZLMRF!Sx-*R=QON2`^rpJay_^ zb)OPIkDg4;TmaUQ5fMRr_5pQubzi>R@~!y-ZwzmGg+htCZ&)rXcl23brF>E{;+ARB z7GG0S<5p!*8IFML14V?atn9*I3BZA-rlthXjc6ARGfUxnLNN`Y41)zGZM}xx!y$&@ zVV|u!xsQGow<1T z15BRN;*jgt4+oaLPF)_kcJt;lb(?wFUCH?GeVG0jf+VjZ1w%l`b;skUHe^;j_&eXYNWdV#6^T9N6UGyDw2)2L$V z!z>=dF`{v;_v~4Xi|$Nk3{AO;#pOgpz4;}HiCB7ibb~gRx~*=+>q7yxKmeM1?yTtY*d5ApA51`bEgkn>dXJvaw@&XYa+PytX-T6m ze7N{JzC6{CvscVDUXYJ%woIDz$&)2sgJTIB#(iH}%a>9pAWJsPe2y$X5D~m}Uo*K0 zj}tSgjyK==`gQ!Pv#`IWRE?(%YRX2+?BW>@!!*5ps3`zY#eZ_*}p~gClgn zA%xj#XIJ?=8Lyj4Sf@jHni=;^$)5kEpJM2{*ZZib-u@WkV((V^ISbwID{Gy=n@p*4 zmPpO5Th8U|Sy+>X)^(mR?M+rJ=(o#7=!CHKPmYtD@%QXlOr7QudMd1*Plv&cB8yr5i~Nbyit}lzY1@8)GVG-z+2)v(w;jUvC-d6skUXi}R?0@6K_bBJJQD za?QKFB^kT@8#IO*O&8ZYB~m)>FC&i-bD%%-A6L_0I%W7suC3dQdc4Hob4f$0mB*lx z!Q7_Gjsx}yM?_zWwyEH^Lk(Q-)1$F1qnKYGHg1|n=yDU^PPM2Ch@nyxn6=}_Jd*q8 z`80q&WovP`q5^1!L*k9F{sH9IANnRqA&j|j;lkM17%}liRDEAveSMJ1frDMFA|m~^ zE<(HjrH4;2P4iS67LpVdwY3 zegojhjeqsnEzKCE5+~~T{q7`J$cV=(rm|9ea3}s%WMsU!tLpBBL+iI%5Tj-GCgXKM zuCA^lBO?&w1P9IN9>(dUz%pJ!?^i>K03?9ZP$S}BhBE&#(E06EtlSihBf_lXT4lJ< zB}_=`1P~iGMH2YUiSf9?ATw(RKs&XF%#)qFrmvBL_fbq_omp~Kd+oVtY4x=y%ai%**d$}%9?he%W%g6-92`?qQ@YtjBe!3h`OkInV_G74=DIU` z8(*-tG&fu7UZxjejMPc#$9B9^fZ$i``5AK0dw3rZEAQUD6N754+OuN92}MGHR|feH zf)Wx&fz!G#6vI#=05hPIQbtG~4gV5i`l~?mpTn!ado!S|-_w8(^O=xOjg5`LG<K;(SQ&8FrQ~<_xJawJKo^A;6YfF(HJZsx;6lDPA37P)tWb&2}LW~+S-nK?O4gm);~IM z$a=WE$bPCd!5iOi%LD@hiPK}gFK#>&>07T! zPr)Ax*yuWP46wDwS!+K6i=kLFv%Xy^TD^sh$(_Bfq=d=f5fog%%V1_^mgB*G++_*w zCu^bvy_daNbL$C*O2IETZrn)vUg3_*`8B%@fFW#izVc#2{(*t5n`Io z=c1A8MyR+I(F<> z(l7yy)})AtiS2x?@r9)hs}Nb>3b^FOix(3OVemM%Lm?18;5)1Ub9i`oz+M5K)TT(s zW~g+z-z1^`=PrV$B=Nlm7_r29m=mDOmqgzmM1Wqgr8edrVaVRqq-g&{DG*JC&YYkQ zeg{Meln-;gxnUt8jzb|S2YLnj5UKCp^()H)`}nqZ4k{I(B;ozmd0Jh0g3gM@_GjUNMHRg0wS>^4a_7#SKSsqtXaxdKRAi*rTDv@C zIp@C&g;;z@WmcADPnI@NHp7*!0#&qOSv4vBvVRs={;Z5m+%T(tIObDQQW6#xR#Jka zQW3wmqs0zDyvvmelAd`2mJX1;TB>qVZ*Vz{@YuPw(x8CJRbSeP{N%}DiwFSTR2<5$ zqN0Lv;UAXSIiXI$je~GBzDMUX__shn4Rhi65EloB$=45$A$0=*G2U{Xi;oXztsNkH z(t76v{<NSE>nfO-ijDMODuv2T-;Tbr9}Go4Tv zNQ}1(y#;~DtqKpD3cl2b8F<#Lw6yC`EELByHaEL%O-2D<5XvaQIU2-iKKU!kHe03&a00h`Rv)4ZvT3k59!TZ%2!p+Qw!n zKc9b@c=0ZM5imLMUDA|K01!ak^VIp}Cnu`nFeP?1DA_IWGt_W91hGVm8>oFi38BnK z@p$}VwxXc$y&V&%VPb@=u1(onP{P#!0Vu{^zQo7ZHaMu8vLr_0%fiRUCni=Q6F?3j zWIXs?o=!FtKiN7(%@|A-)Q=TQ)iL4Wory9>d~2A0jy4P%h%s(%+fw^mD#FwS)6>(0 zGAk-727}$)+&s;t0a3|eai~8e8S6p?-{$A%2mImuP+0*zS3j%$AcEBA`yOr-H`lwg zGTAatI&>bU{QK9M-0E%fn>U|s@;9xy?Lle=T5lxR5DirnEH+?vKUASh?J9!+HxeH{ z{ESgTl#5HDGT|_+=3=!sXGI+v&5OJ?`b~iR1u1HL@BG8cASi5sfQKU4AjNv?{g4Re zO6~nW<*Q`GF-8?d9W&d#yQ?w1hfX~`oZ0`jbEbz;IituT8Bwgl6{jq`ot#id(-pX% zB|$WDF>6=0Jh_^0`kLZfTJu@hc>ZIu%m6cE) zV-ztj8YinL`T=WxhsBM+LCTW<7-#!6xy=$3OOz z9C3Gbb#(EpvMTu^9MCW6QfvmxB-euNW23c!lA|d6e{Pr_O;)5yyl0+kLGzJwb-C{} zS5spIjlaZEsn~ZP9!wRPY77`O>ab*j%B{lIMoMV$(x7*CN@3d8W}A(~?bYS|O#GXX z{S@c)t<5rRT(Okk-pJ|V*9KE*JG;VDBd2FS?G`b=~T08$BaYf#wXD|nWT{gym`h@qJ9iD=5P%NKG;XZVpn%{j*E;%`%n(0 z8gEXzqrX@)>_#m3rikj7jo?usD9d=nn~+3R>_`i7L@)Evj~J%#p{;Z0+HBEgcwO~_ z{ata`Pd9M5cAvXN#`cp5brE&b11cw%&L1Uikg8H=IqaBrqRVF@Atm~7gITd_@$AhL zwxeBMdBtX9p?%F}UhUPJHsq`6WuJvGX6{qX>qkz~aiFl7>Je=%EnL?xvXL2&txdx-63J8~?OH$=fq=(m-i>v9)@+x8rI^(mjck(E-W z{i4$-@`CMX%^^3~8K>`5UCveS6cTKx-t=xOSrlr-Qz*D%d?-BMS#gZ!ZKRA%I&QGn z&c}vZ`kVL1kj(ytourV!$jM|&?QGfAM}_VeUP8s~E4`CV(6_W(Is2$4+xzAdxt1mb znn`C%py)bAWsyoR&6-f$*<>USe=8DXqF7j=RC%KllHMk@FTAYrwLL||WozV7XassL z<7{1qiGh_$^+@)`IlM@}5Jq>D(POyD?BI%1Y_XKg36mo~WG4b?Gu6X9QZv z-TevkQAL4RJ4aN^tWLk=Lt|8GmLww4kgF=(-@^u#=|#qZ%-K%f5K>1gqbX8ol|`bF zSCan$7ZKfJNTMaW6JSb0)XjoAaK*9f6hw_6aXNK?R^?5B` zJaYormumt@hN; z6=qaDz-+JGXL=xFCqu5}W8XucRJ~1U>K9Zz; zDv9>d*+Art|EDh|dI8t(3U|K0Ak7E_D)9e-6mo}H2sfMPb*+HqJ>3AsxuDHqvP38`Mc=-C1I;}Za{122LU3rPvZ5k4 z7guJ5D0OiCo%*{M>pp!tg&`UWHqChl-irDD0sst}xdy;=n?8K_J}j(lYjq0N3`P=? z8RXfS?#!qkxXT%`D?FX;a{0kWhp*XJWocO0+2zBs$v18RbX`ZIIR^6xQ)JQ9+>Da) z#!n@9SDSUFK$cuv8uf-s6KbV(9?JF;@GyjjC)_QJ3(>bL2!*SNL(dQWT( z0V4sjpYZ*DlmP1lV2mHtJ`~)3Po4m!i5VOeV`jcP)fxwa)A&T@NqF!t*OSZS zK!yZAj#ay5kq)0>^-#K6DjB^HfJj~LNSI+)cXt2=2CrKGe)g(q2r3Sc$fmtH`mpWl z@1Hz8281!7{RAN^9l$LZmj7@DSF22cA%MvT=68QHn4wi1a!fieJ|C3pe7(#!??yB-L|SFU{c))Y>F zn4<@Od&YkK|HAeR3&MKuVVS!6hco-p?c@e+xiziM}Fnz27+hD|A=;_ z%Q6%MEO`D~RD_Mxe<6vM%+J*N;k5#>lbG)(uG#ytqK1P^{Y{ur^k>`Wm9GhiA8H@^ z8i;g0hZ>^|#FF&(C2t9%x0Imb7nQsY^HTxvcTd_4w0DD86$(eca70MZ1{ zoG5mtcVS*e-2}rB884WFV91p1YJlkg6|9BnZDApT0Ntg*HKVUbz09zx2Xr_AzNxkj zl{<2Yi;K@ogJiom;=WY1#ccHH+17%MHy1uh6>k3}$un#!&>jHAOBlbwWFiZ+cU`42 zpll^DAl}abbPf&a*+w~is@fZPz;A3~Vj_9n!($h|OBh2;O3htrH+i$!SFg+t#5SJs z`x-zKh=IOWuW&2Cz4zLr9(NgPx@=LFu;IjH2|vB?6F>;3PEQFxIS>{o2>WpU7s8Jo zO}ie`Z^H^BTgIDICP~=41!{yJd;M$no)FRKE~4n40JpBH`tq{EY$-^u?-Ziy9xr?b zPH+E^HG~}qJl;=jQpjm+oS~cvpkSg-_%0{7u{4Ud9u{3b)ipMb`cME78BuIX^5&Tw z9R~IzL`wQg_v;k+s=C1T_2tW#r%#VdQ-W#*QeS75b^$qqsKZRhJBX=F9^a*HZSyua ze}r2^hiMLI{e9(*77eEHmu>Igz55lETLNjjFd#VSbTYX9zF2Nf&E3F|5H{3-QW#Dy zLbymuO1f`k1POC{wM~iw>MNB5NswNERlq)nG89BLLMheI&;XfSDMkp!vD8KXz?FkZ zWf};ve4T9IfEdJ_Kx{Q~buF7#rH}tY#2f&R!X7@ey*>wt9|odYIhB;0+yD|Y6e*w> zLZl}csbHbR)ty2Z4F8&w{;CKSFK3sw8;DlPb z_$p8J)1NE*lc^Ky|H#Sx_t9Pe3^W)X3H`u4sg8^5`rqCo%qLMIcx$J5w;g0Kn`6cLtemb9sW|>}8mC z_f@P?a{I56a+KWE!Rb$b-|(8rp~xx&rjsWx{k|H&kNfiF%kSU6mzI_SWCz)FW3Jbx z@i_~yiJ_!-w6sbgvl>*n0VU(&?p|WniCu1BqRHhVx(;xmAMjgU9f1)5><=2#{k%Y2 z8fO<|aRNGj`1MiET}neeKMn*@W8x*bRY>iJ4j$AgG|htr0LBN;{XLu%JSHfzz)rO$ zNTKi6_;hD#0v&2w<3n8Kwhq9pI{OwRhC|O~jGiHd&;7T;?K(>#drnUx>t0x!Z{MCz zo#N6EQNLEOP}m9!6Zn*O-A{vqRpQ0_L7RZ#XjmBdSapkH(a-Hydp>vtG&8WCUbZg0 z!qcu7wV)jeUM{n>sgv~Zj)#0*wE~NNSzYw7I|PM=aWM5iXtqLM_e91a()I7p+*!ER zQH@>RjzWaLjg!J3No_px%Gd9fEO=5{0ju^PONr^vg#7@ z^J|!KN1*Ni@4*_~1*2NmmXV_qIE4BOj*y@2gXz*Va5e6Ge-H2;K#puz`WZ2VXKM8G`p_jq@lXbv0Cqdqg$n=` z0Zvs{SA!CzG1aT$36BQ^e$wok>mTif$D=yX4nys;HzycJ$~ODX(2%wIEm8 zj8vK-=;|8~8X3XJ@TOmAX|-3s_E*nU?`;g$`jfR_FsGNY?*k%+91UKca<}zaU=hK& zvotYb5AF=Is#gt{x}f@$k&ziJvY=sNvT=`?hRyd0xLw#gK0XJRUzneJiUkf1B6eS2 zAIOUM-PJbu@;PuLL8*f>+|KBo1C#h4d-=~JyLk>@k~_=MtDpjb(@0NG@BaO90CYR+ zbHWcApFewc!byw92Pa~e{fS_1L(U?$ri9?cGEF2jRKDi8GgWD$?61&jH2Ra z@S@0Ey=q?V{ii8opq%Dh@c|2nY%tO%NPIWPKgm0`Te?Sn2N@a`;1qyM9B3tEOp+dT zfhR#=9oRNNMMMaKdJW0Y1E^mvjjZWW^nPESQD;X-mp7l{zh5n6wz_{?GXQ>@osA6> zFR|0YhlZFm@sdr!!_zZWDJG?rsS#Wt5)ekId33lTqyZ;9>b<|GBDF^_j1=_8Mn#o? zK?EFWeA$FH1vT03lxlZ~jJEjQEx^WE5K|{Ug#bvN1|fNOYqi^z?^Wt2Q<6t=p}+Gl zko^CilKJr~&7^*F#PqsbawnSWJyy1`VKtTS5KIqNzt#@m4$iGxlX! z-h32SSS}JVyrbZp*?m8)+^*!a?pTmYOflpB2eg9_ZOCG&;8(9jdQ6FvRCcGJ1zr)d zhhsTDdOVo82GzfsE4tr5I*4B%_~2BYf{9-?&-p>ko?3eL$prICT2#NYq?bWB<|)Ve zeyVcnAY;tEipKkw`jdL@A|#ln$I+cLBwY+>KO^^z=+(G|iEJB+-gVc(^GA{4?Us3{ zXC%Ju+*&*&RU_Y?C$k$F+fYtcC>b}I&f3?GEyeO6cTCcR``mAI<6fT_rE%Edof_n| z-Hg1uPyWpXc)Lk*q}pVNmx zqO>7ChHd2j&Qkh}vQ%xVj$&@ba$ZBqzCq=?S@iZI)?0TRvnNPBo&M8k4{Myk76@P^wZV5)&iXJww9t%V8EEjg@=( zu}*$>FU9S+?y00&2ZlM`p~XbRTlcT*Eh(R|G<#jVudQG4_EgP%UdH8{nUS7yPS)vz zwxX-h8W1Bi7p=bW2SG{hkm_t!Km9mb28@|ZQWu;2(ixShUgll)A z&Q9Otx~H`BujxJO*F5<1qDL(UMLL_?yoc}fZngk0 z?`>MXBksH!UK%W3JWHM|Lu5AT7ExL_Qj&*Qe7ncHg6y0jBZ}!Z_KnVN{EQ0alXonh zvhGx0LiENd3arK~I)_ZmZPn}4i?HtHin@G~9gmB))5GS*EOdn|iZ8D{v)T!Y2nSM? zL81A=b&=u8t(0Kzv>^i<1P#aTd)$M2x1$XV%lDJ>FesctrkBsXvDfhhCGmEZveJ}J zyWeGQBJWME(nR4(%-ZL7)NnrT+i1~ZI)qs2+bry{kjh3CSO`1=bov^JeAm(V)+`mP zCWi4|J3RJiRn0Aw{n+GGjA#CoPc07-&VJw2$$Ipot*Cy%>%no8IU>w4Py4>_?<(qb zhu>;gkT8Bq2HtUfYj?5STa5iG~a7}dLXAr(Vrq+E)piEmQPdVk_s z4v2Q!-P>6Z{HST@Xp)=;5Z&ZGj9z67jxd zLG90+M_GIjnK5>@$PPz zdl$sDPQL)NkNzaANqHkxt^S0v=Ry`iyk*HmwZV`$O+04ccKqU(3}8- zpe28FT~IP{Mj#eaKQtpqkq}w0<9C*#B1e|8<}=ug5H!F1qF3p1NnCsvh&Mu6cjm;n zLV_D6x<^~VS*hX73x!Hx+()hiwl|)9+SW|Yi0My22+zUieDBL9oT4N zQ;0lFObk_Xhb>bM$UT#ml z2|zsFZT7-)(!oavpva3kel>7kC;~^qU@^$B_8_lIK~%tiF{BK}ukfaU0V7}hp|4Kx zUT{HVmyFN}n%@EX)T#x9dVsDJjN-qJ6dgyC945#MmVo|zNyrBBjTOASymWL1-rfiY z!00{Me0teS{U@tg59FXEJQkEFU|32mKw?(b*8!E<%<2ACKyv_4MgV{XW{3hn6tD(_ zjys7A0zLY_n*090K;z#+6S^rr5|7t@dGk{|8O`-t&-Avh;q%^7Sbkx8`NvKCQz3;F zRTM~|HvP9xVsx$%Xhxa6KqSw(|DrDQ$JgzxM4@+!NH5pE$oP8+Lr=lldJ$x}+Kjl% zw&x@y^ee*;{h(2>I?&$q1&C3T1kYlH(_oE&j;E*2c2|BVA9^hSzPE8pXs84$Iic|f z4CH_F$*)sW!eD9y^B~X$pFb;tA$*|0ya;+C)gpjSc>bL7FIxb-sIY3?!KJZ7;E`=c zVTVE~t(~pW;0dHO5MLX2j**cq3|Ex=wl5>WzzwaQ2Bi8bIj_&ABK%OH9ca(mlQf^*%Ph7#WR$_b}}em%h2I&6G=HsFW( zZ40|WhX5f!Fo+`9+2uU61-;0Q{*ba@mn*5LKuaGu#jBxKOS_$X_3Bl4kh&dp)*qBZ zjxmHmaIoTq)!9|zhoH#^_={na$3Hing$Ohzz-HXt+dBe50SY)UI)SBUS(*Ij8~!Ki zg#W-({`*wc{}jpd-+L4~GelHG#4yxzK!L)vDqO$*E7&>8eg&H^RG6@0p|u)TD(F!~ zp;;jy?GngrNDR7#rY}HYOxWL@g2EPD!Gpz9lamC`&gkeUaO1!*Kz0J!Dx=%{G?U?9 zJ_$9dJ8&lz&NjDhJvTytyLJP#Zm@JgwjjiENRpD<)5+uG_m`J{^1W}{^^AZI7i@?2 zEE8yj0(BbrCTU9O#L~5?614k9@a&2*-Y?Pt!YTdcU#GP#1B40mlAXCUzECpSioq1= zZ^Nd5oVW?KcWA)R%r>8X-=hDwP2t{7@M*qz^9G7iprZ$P!Eq^b>(&=Y4-6DRAt4Yr zl2jrfXNa$Nsr~+$*vLpBU=G0cM1A^nKd*j?wLW|Xda)TOF2!I#ZhWT>-9V6>_zdn4 zJ@+>SeGnW`RP2f_3q`#^Y8;k^Hd@H-W58%7B`4Phs894h`XNCAi3oBd4GoP73SkBn zJ`Hr~b8!hoD?&4nEs&g0QIj4&4wiQzP&kE0Txuh`l>ee$0<#UoIZ!2wkUn8%K?5v> z83B(n{5u4!%w1`>!En3<^A6NUi9603tZb6ibOfLQvf>grrGSB4B!?}2mWIZpNC#SB zVEkv6mZX3dgSODfSFZvooCrZuhBXA~{NJno*BK>kjp7$Z@d>2(?Oyc2i0d34Xueq& z4XG=a76yuTVo1IAcSeKJBzOExBMI*&h)wuKACN$4O0Oid5>o&dTv0;|VmhTaS=xyo zO4=(q`Qwa_{vAnD9#KKnexmIPLilo0e_SBag(Ru0<|JnE8lqN!5co*m8~^xE zzEaO93=0iT&JK@3x8FQ`vGoMtvpQnXH=7?4w5ujT>R{Q*lvA%2*?mbt91PbBkBie^ z^Z|Q_1I;g|PX{fb1s3(GA_%^1J~avOMABn@fa%#)qA9c<*4aJ%jvsO^*%=IB>rMK= z;S$RnJT*Y2wN@}g^R3?7xv`Nk_;9mBjq|9dFh&rreA8B1OY3!Mga{Q44M+8UYpJu+ zo!0u7nL+V$27hRNe-RV|k*S0qY^#(tVCo$_kOcinGQ1CMcKQe!ahyPzF zng8*H%|4hiN_uRT@IsFUVPH?iirBNa6BA700*u`g05_pq5esdT{)Qh4v3n;DhbK#0M)5Ry-oD=s9c0V-G=uQy^_(zBGeWka><)_35A>pLB_pgHGsH{*xA~G zvnS5;^RECw2q2|Mi#tgsOCz)2GRL(c`45zpZ3_O@-Z#>|23}i}5Fo*``L$C;N=ZrS zG{eidIEIra^HOh`nwo+SqCWUIQ3upYNm~#if$s-HIHB<;fXS;5ydK~L&A>)I5dyOn zc!$^0L41lzjd#0AsN2X0YB2+Zc5sj!K5}G~&|6ypcaoO&Yxc{iC}FQ%m)}5NRXdc4 zgbtzG$#QJx&j<2le#$*?pfT}<98i=O!1&6`8xPGofhSpc4Jx%XG>`~7LLV(ZKNxqw zTtL|3l$002jIg%m@K-5OOUs3DF2vSxQKxwThaX{&LkDzV>&^REwIXGW*UHJyaUx=L+pwUAO1%hlW$lG9KTS60xWy07y(ft2J zX#C%a&i)pKf^29HB@8UXbF8eOjWE*F$Hd25^G93K0GR*$`7?+i0RaICqK=#b0-c~g zhB^Pp&PLC$u+u=9EC-@s7~ncIv%? z|KvvqUU*j45K>I=aoLB#&k^7HxmdFaxWPzQnrye>Qhyp?iW-X4j> zLPt6@QiYxsId}A`o?a~UoIzYND5!<93eJC^qotj3x%1EJsZN(_U`1#u*z=5lrZzwY z(v%--YYC5i>eLD-mC%87gqWB?!tIVn<&TmWWOeWLZp~o}0?J=dQBY)8b8*?U$gRQx z`n&h>3FMX^^5I|B*MGMd{XfZ4`tQ|Of4hVK@3>=O_NK5{gK~!pkSxIm0SOEY4D8`e zPPcV*bif>=RU}~23auqU|5||91g(`&DZm*Gc?uD5xB%ESH2zpA1j`C^x<~;B0+b*q z$)G&%waYU_KmnB`^6RgJOzWx+o&Z8tclnvs!NLNnC&FuY6A~@*!Gpe}{s<` z7UtD&Zfh$kGLwg8ZYdO#@#@v9Cr_RP(wruGYc}5=`~3Mum+xOGBsbqc>kH)*Z~?6Y zs{`8uY7+9}$8}(zfR|_bUx@|x2Z5e>2tB&+{V*hzJBt8P?-1x2g14mHaW39{vFy>KN4aqL#||f$l;D2AQ3jZ9_j@gcFt{hpyE7na z61KgRm);+f`TMrN4fx~6jV6H1;IW#SnxX*|0z@g;5LU{OM9mgp!;C}A7kfgB!irhGL>3*g5k zfg5DhV^s-K0fD(cO)v;6+`M`G`0<+zu&qLvr0`(nqOt0w{^@p+iFSwcOAIwM*hA?< zZh^Ve*!`eRh05uEaKaEQFY&f~4`dN7!GGg^DKN-QfV4f^ok`d?{0ngDBe<&);u8jq zHvv=%#SpBFTPwyO4^%6PmD0@Cfd8hglqO%*265<0GT4OvO7{r8nOyef%~xn607eJg zQk9N#k>E#KN_2x&0ag_9Oefd{1c<4eaR*iysPTlRFfk`?7M7ajuyin?5RfP%BO?O? z*ifv(o9@hA7ffF=cz{GgHP9>03zY$!rZMi@%>srVfXc9uAu~Y(CXk7_+7E;4Uq(l} zf_)a;Rq)NmNMyza&J0&Z11lLkCW2x0&~gAQNnL}mhWRrrYz!Opo)9zhhrz+Yh6WS( zAT%&)E_~~r0<#cdS^#cT+*!uqq~I_U7Y=pc0tUdT1ls|ur~A%;Xu-5uyZ}#^sgb>c z!{IhIfCrg_LJ+K-=0!U74Vf~YxcdMi2%bLt)|6FP3(zG%!PXtgtcA=f7sfbDAWy)5 z2i;nD@+T$1{+_*tMU}KZ@s1zNVGVp-!AynhwC^U8F26o&5 z4iZ{k4vC;k-U7x6TzocF>pj2|0Rz?vUoK*gh4ZyED-+5YEE z6HusfFw8(qBOxIX_1F1Xu@Lq;EIzCLd_t2eljquPg5%Z2F>T2J3>L;;-bll*izIl# zUY_A;wg3){La)7TXe@*Z#R%*mV4VUq!NXvBF} z-yQ|WkUfxCP(N9P$-*_vnMfzoe|TbGlmUyKWni${nF93+K$UX5_=OSmVIa}}o(dP- z-(2bfg3014#uNeEojq_)V2}mx)d_z%?!*H6dLi1MVoKo;#eJm4KoJ5o*u4i2zCoh{ zWR1)qrbeiN2tJ@6O4BpA*w1*$2Ig+cC%e15pjbh{l39GY_hBVXvFQfjB!GwT4S>m3 zR#(+`WL~e_p&|4TH@~{T!omVQfQ455aQq4&BH+#HDl&8d*#PlIs1^yw$t?^zgZmR$ z!~v9e!!0lb(}DXK4or!QiLt0y%gn8&6L)=}^swfZNgAE54pMh`- z&%F-^ID)f_7rf~nibn6sO?kPw&k9@XVQ}h$_UdqzzGABw7fnY6B_#={;{3qhZ&*z@ zi_>AY%dF`o8;BI+dv`ux>Vjj|0^=RUt=;jn>b*HR6#~_S9-I&gB<%wIJ;2LA_5K}R)}FfnV$1%dGA3T*B)IVl7oaF`1)dWeLRN$Mz)OLef`=S5u3secyG~IBO~jl0 zr|nM^0X@kgD)srccgcmPNH`T!7G@C6#}SlDO1}jjyr-wRNXXBY zdhR$4mOO_+fXTzb*_7$7oJg>QgVa(WaU@OIamg>x>H}0M5#iyi)mgVy^%2m(K{#y( zE21P#38f1CnKNnlqoov3%zzma)WT17b%A_pml|#XSBAQH?;{{zq`McCR34jS0i0on zVs@?-G(B)z#R$uX(7_3%%+-nvAmD(fegaO~@_^G01*LMqx=Ie90G2)M#^Na=6AVfa zm{SxVZIP`T-!%Y4Rw{3L9rERr!PB*K!#3C%r+4<818rR2>U z<_i}H^s!ClvOiC{dgDwLIQt-4Lx(EJPcW-Cy~}_3a^LbX zy&}kR->_KgzV~Cb6jB7|8yxWEPr(Ey2{^#uaFZ(v4Q*&Bbz$0ztFE>_;P(p%KyM6Kz>@-LB@PE!nUBU6g4s@06`H{! z0WofGZNXE2hI21qHY;<={BI`H6443#ZL=egMgP=n_n*Ft@hnE8;6`q5%;(lolJSCL z_;RGA@M0BNa`)XYb7Zj;^iGi(TkUgX$Y6DkXbVL-nQp;85rdHa2U(To$ulQ&%c5|2^Gm z?v}H;b{S48^|H5x9D?8ZW29z?N(3^FZ^ZKzjw)L6t=ej8!g7Wadu_GEY;coOjMT#9 zEG4Mh_LRnt}K+9kp zqy2fI`P6L>b4RtfoUP6_goQF9`DM|XA{=7Xzq*%8LmM8Jy=I=_?)JfF_M@5LK*e|8 z!L>D(IO;{pumnNRQNtLa;Bx)-Rc+V%G`T6d$*P%NrULM!x@9@@T_i@BB3&M&`<~F5 z*%53i)o!Xc!{YlytUy;x#)!z5jfsgdwuwRI-DZQY3|^vz`wzc9#ApQHut6M)SjyLN zeO#|I#r}AEm=9G@ixx$_=BV?Y5=UkG?di;TjP%{wv+3j*oxe!>5o}4<1UN~t`IK?W zC3CyO&11h-j})jIJBBLdp2&{&H7M^*8I-!K6DzkGS|W$He_BOZtm+tX^)@Xtfwiw9D&(NG*k<;!TVVf$E9L#c^^Dg!t z>o;+T<2a4tQoFp=r>c+c58o+qP4UwVHbKpaq7ANIt~JI5BP-mJL}mg?9LiIQ`NZXO zuC0D>RS}2w@?|*fYqxCilWka$+kSdEJ=h-m_Jz0F9EBx?7SpLa=d3-z+lZ#IN#D+e zbHaZ7I&VLoeMEI@G?o`Ek(U?qcq9O0w8 zxz$B>EyGT5kcHbMZhn-&6IdX8_{hMjA|7Nje53Z^l zP04~<+LK4j4fvl}?iREXvTIu8(oGpm(!M@C)m_MMZb&OEEK)W7SjDt2y4hPxJV#qi ze|n~wBPNw%MtmzXK`QRsXr*!Poa?72Je?LvB0|ZW)Li@8TOxf)B6}YKFsNCBxPr2@ ztVMfL|3@226b2WnOKM(@q#74Q>Klfr@SWN_SZR%*Y4CX0xvn7C=f^`kYPXiUVd}K` z_-;>Qj+zF8oj7G_nEW%O%#bh~jhcB#*(+}0CL;NgmW1owNxprQRMn1NB*;RiuVh`RIQialH*M{B--qk20el$%O z#Z@4|0S88gMhNTd(7dGGp%Ge5&`*8vTBu5Dv5dM6(LEE1cgRCp44dYdH()H=Jo|R7 zUWJ?DFZS7d)VwC3w;tHOThkY>qf5!@T+I<|c#pKeLr@o>>7CP&v zj%L>Dsmb;#GrsxhA!eG_o17a&T0NsYJhuBu*dfl4uSDK$a-&~YWmpPj@tL8&HgZWw z?T~?;4!@=9#%FNNKG4`--IS+t@Eyr5YUpM{%?=pwP!c5!?TO0P)lY# zyISfIIbjQar`{3M+K|n5R2tun+%rDuy0_oX{dIVq&G;QXl0?v5@{PHBRlA4j6mGex z->s^edG)2uAhmsQT)uwrWNS5Aa8)H!pZ{s@*#Q~`LscEuOs3FPs}UPzrBtD~(V@b0 z>%Df1(A+PthtS>j!}1&^k<%>-MoykvMh^LV*2O2T^Kc5ES<@Y*AF7-T6t{Idv|etA zu!#|D9!o8}8SE{tzZE|7d8|CeV0?6cGS-x5prWO4$FnB!_QmW3iIpvrDjnwq?+v8% z`u}O~E5ou}*KJX!ff6Rtmf>Z>p}wqxA;i+R9c;RZnKKQREg3VbH&8o;CTCoFNb}|W~_4c zEX)3&nl}|Rts-s7)h!D;RW7)Oy1V@)-JMO3b~!bwt4rg;)bd|n#>eM{+?Escfsbu^rIYdvZr}V;d7ts=u(yqr0a8g z%9RI_%^SMh+EbRl3vn+xa__dSjaIAfxp%Pq%`GP%CxfqLeSRPMeS23tqDV)wv=_>? zU8SQZB`irL(dLWQj9g=gf$4EZeOk( zjFo(%8$CXs6Dqpzh>D3%etb2PoXI^}sA)GdL>GAjKuY2(}c6>y~s4_6X zG*u-aw=dX^os+jIb;aj1+v^J)=^QWlS>qS;$g?euwA64@HOSF|INdY(N~l~wi&1^9 zK5dG8<<3SEn9nr$2da;H9UAMHGKljS?pGr

@`THY&KQlo`HQ(v%;%_b&;^~DP`O-xb48WDIjuj4 zbFk80P@-jKL^e7;#(opI%30SQEfWvNjJ83(&Nb(A%$<6LWer=cEV~nr6Wmwcp z;}?}%SaC6>OO-dBHir8zguibo*pvwdc*fXlyj^CS3J!a1ie3WEd(&xtl7G&G*1K8f z_3vlA)7C7At-dq=Uc~TLI=D!0l&r9IbJR^F*8woscMayU{Ju14GZzV9<6 z+2p>9bJ8Sdvunib$P7x1E(LXnF>j2gyYmJ1%40O6XRtFwOlzvJBwR(W#;qrIX42wP z8yLfyQ^6A>0!Fc-){)aL>;~I%HS>3e%GnD+cP3Vt(xGC3nJeI%Nt;~#WZ#Wtn|9-D zr^B6u6b13NWOvs6vy<~57{Zv2LVZks9lkN&siMHQqhyhE_-0Ke#gA{JWZt^?_H7j# z3Ew`fk@sIkMs{a?sK6ThCtjEX1|Yp#Au|8Kz(ANB{N)OMA_zf_(s*Ex20{S^M(f^& z2{b_-5ac>QG~DX%UZFro^sueRulm@;d`1R~WFi`VHS66<@I=+fq`l%O_4!<$l zGSW+rViRCY1_lPyaWGI|j2Ev|(FTB12P?u(;-8i$qa~I=W1{)nC-M0q--X&RnAPIOjs z0v0%o+>a7C68a4ZO-T|d{x+90G--g(CTM5V1Du7%-kMsXr5-sw)&$M7%fnW=+y3@J zNva^vVLwF4_(8I`3F$7&rbV*^glor}cUMpkidIH9fGibn=|O;xVb3bI@RBm^vVBW@79gw`yZ#H?{CvZ%|UcJqHz*@c1YBn z0E9VkKtGB&o|Iv@>Z_3rh0~IE!E8K#_UvJYc?%^UG!_CIg-jr70d#JKkC=85C%s~$ zRPwlhnt%5XW1x=n#2ne+PFRF@&Q-6EN+mN9W_KOLWHq;MrU^cwayOvv}m*f9I`Ti*W7re8a~T1LOD zqy&xcAAmD~@7{^3a3O=qO&n^K6cn}=QB?*l9rYhVk^LWEsHz_fkPq5>tJkc7ipWzy zp9-gSppOLUEmXV2s|3+9l9d%m9Ksq896~pr9s=q^=>uGcW{H)#atP3%Y~oJKdj-^C zf-DPFNazAU+kD9`xz<21fP_>9XeFfi($%5a3Za-&r}BaA1>29G8@q}5X|IUK1XBZa z6qP6Rj4#2pJ?GY027}lL<`={YqE-Q2CRFxNQ*yp{4^<~mKR=VY9~xby(fA_B)iJc5wcD8J^0^moJI_mC!~om1nTt(3;WF zX=_^=w(4m3jf_m5k}zV5{sUJ<$y*3U>`z;bdO-IVU(D-4h5fNrysjvk{sS0Mn*o9g zYY0xAb~Ulau2^F(AKfPX7pD(gh04Xcdqg(^F^U74RPbmhc}<`&{QUXzx+Am458J_x z{WP13{?Gw{MoAyaVAK+#Es$hFNvjes>kYOuhJ}N^8tfM$D8YrDJ9a?TBOVbe z%DhC5fd3;ef%C{V>;8;xg}u9Wg(5~rBg8DcDp;>1-HAM^&A$#EK-z_+KxLb5>((l~C&8XWl7e_K zwf0Jr3*>0Mh>jI}0oJ4T zdB5M-h6g7|gs;c+K^Q(OEseU>%+uW`5%HotorOXsSdJn&mUAEl!Ctb6*;=3!A7GMW z1AST)-qh>0b zTqh^|E#44n3G}%B|7>=FaEXT&rBG`0m0>?2yD0M)jB>A!bq+Y6k$+t zD=aKTg?-LVxb-_xPaJMhd9CXC^r`%X3*&EY82(5$h}b^yqg3)x`2v*6h{1YB znV}GwJwyeeMiYpxm^dwHm`>(h|Lg5WR+dLrCL~s>u~~96@8#yMK+_EhO$y(r5GUT> ze&Re@6NfovXub?!1vbyR>iN@`zV6+be*I7(Q!ntN5mTK>!n3{JwkPK65K zCqJ{uQ3f_Ut3k z$$|Rvp-4jKs%S$((&v-*{97L87HHbG8NP)NLg_tGBW>7xrU85>i0gsG_*@i0K8C-5gt0V8 zh3B1%KoLah+1*b241%|v#Xh$M@f5uG-`AgY2J6fcJRAaQ=^&&9^=e~lbynu($J({ z|3Win;>}V5(MWLP2;E5PxxES#fyXw^YS}DQH(CChY-oPgaJ4j4Pb{A6Iw$pFL zaYlB~b}IxN6erkmV@?uSuMObQp0T=Rr*AnDcx*q|WLK|TNi}YncUyqS(c`MYk3aDo z!Lq8wfVRam(bXv+)dqKWz>D4SnOIKy(4PJ@fY7=h!jqNlf@eXhQJt zB-V0$grFs6tyD-Xwo`Y=EqSKTERR1UV{cxl+BH)~PBs+&2UInEbC}E18^af?&@TF? z9SbI9?|)WBQIG7c`0gLzSVQvrv{M)S+m9fQ6#3J3*$K@&KPv@+QGG~7|G7KMds?@i z!?X+do33Mjn7zS3xxO2>{QYuKCkq-Y_?L5`noq@K0uc z;%WcFMW*OgUV*s=4ajErsgKWXBB0!PDDZX&jxShT`C8YDvuDzPab#sR-xSgq9fcw` zvSgxX(6N~1iCyn+cP#%j@OG(fi#@{dIfn2w>#eN&B7NbZ>#>`h(#zYHr_+e&HFtR` zu^?oAuj$AV(WnKtp7G5S{Jp-AmBr}HsDf4VIutRyDK4GTr zQG{tAvO>^s;V>b;g-$fccx~UZMFG-i1J5-H-}D2P#M=`RY;ZO7cLjEwOCwe0CtyUp2Kze~$%$4i(esTc2Y3MFLyBUDh|Td6 zGC+6+y>#quY*GwQ1RW4x(WHrxgou)6*hwIWQBhC?f^-PcHt6|+qBmI!akP?am_CtW zTzLKe7}?_uK(!oz;`t`-EI=2J2&8E3TB08s?0rD<1UP^*r=6JVWRj{L51HS@dUVM9 zpn{>of#OX`$&<&AX~Cce(U3h@764A|PZV4P-VXg12-D}@ea5pVsscb}2#5i9_0WcYsh9%mj!Y#C|KtRa=x`7+1$q9T&<#dy zAZRr27$;(ji~u}N#FN-}4P_cPgaTx#pkfDWh50{#rxJ-xVsHjXR)*9B${r(% z{)XrK2h%I3DJ&p$hhh?r0?Hp>3E2q5ObOeKB?HBPeg6Q?k?8%1>VbHjmy?sj9ZE?Z z0dR=;42(#+&6`IdatHs7{z;H3b+2ECE^AbDGiI>BcG9&LshKklO`0eMl@&Np?v!BBnpeO+*AW$l>n*pE!--8aZ z16Zx7!-0(`K5B11^S6Va687&>!jHn@f1kYMe{MNPPzH5``ZW+7;S-UpE zG?Z5fc~WB750J7{DkeroMtXWkXI@7)?aQYD0d|w$D{(0>*6BFkpwdD>zW`SK;%il2 zSXWSV0Tx)b+8jVVnJ9dC9r{uF|B>#ml0xqe&aj-6R0i-d`~i}J;0@Li?Yr;^PGFIP z<^Im3%@Ixq?JxKUL8bS=G|(6Z3DkN*unO&>_z5W5SO;|8!`CkL1el;CB6_=D0NDo6 z5RCZnmth^FZ1Y9&fSWs-umDp?OA=Q}nLEJlP&P{LK8i%1}RV~aDA}BAt!qa;2KeOr&PkMkpHYR>SqS*H(cH#U@;6t+iTlC4ik>4xkQ^Of>30BXHK7n z>peUykGA1|rJi0tN?b#uc4F4Gl4l=2978n(^U+ui-`WMjdtyE4!%9lqckY~lU7wws z1H)P$IUu0MaE|xD|4`i^w2N>FkVrax<_yiwoi5W!y!38p?*o46=I)O6jnTUXz!TdL z1)=)^!oE&3nQc#gfqRCmv$GnHm$CyWj*x?O64!g7;9|1S72p=|3$oREP^`CoS?L2Q?4J~mn zzvB-r%+C`Ab!6A*USbDCDRT9pTgkP9Y-~ufDX6H7@$^xLfkc3>zrTSUbEBR>Pj4?8 zI`*Jyg@_GJ+6`!RA|=-(bPfWE`vHL)-l>A1E74*FQ8@}IXQ4j}w0QJ05pf4FHFR6U z>jE@HKNq?j5TM;G7e>nk6d$m*kmCu*O@T(SjK>bCI8%5vh-Y!<%wEBJqOLZ8bB(Wn zaZi_@%yj;<)}FPFjfDIMAf{dWgPoXG`DA6Wd}Z+qhOVGA2c&U2(pS4*J|24tzXJes z1xsmEPB$<$k8T#kkVtK;(SQUWJ&kTKL@CI5&_BS7M~P?$FslF;7wHnuW0R`2zfdm0 zWBPy<;hNn6Nhst3VMqM?qh7?<^n?%hg?C35MpUvSoWxmKd$62ng~Mr;#p#Er4vD|I zBfw(SU!bRD7-r$vPK?;IJ`Oy78B)m(hJ_a zy0Clq?m-|Naexe~m(g|@2cqhH{NB2347fq7*8-&30nTK^H6o*fRoTMA65{1`6%w7o zeXIXUFGB@zU=a}j6GZp{*G#j0JF4F>#64)4N0x@(Us{-J0JvyT!aP&cnPDvr@>HLm zkIFqDAz|h_@F4^m4j3wNNq`=jV;Jw#7HkOOoQ;hLam-(_0F$7UN3k816LWJ9B*m~Y zAfk~1MWE|)LCGJgEEvR9jnO1%BE{t{gA4$c7?DgPFhQej05}B`r4|nV`C5{qv_7&` zL<>l=tl@MK>hPm6k?8+M73s{&N}-MDg~iAf?e}KgNMR;1R)|1KiF6g#6GSO~Ft?ED zQ2<6l3n6-hk&V&lWTHIyuP_<3^L%yVYW;r(P=x3xb_<*kWW!NC17i@h3teG!4=X8o z1J=S)0>uJY08A5qL2knc+93P^b_^QvQN=;=f{mTsbaC$qNhq*Fln(vSu&=lgad{&& zG6LIBdv6wr_QVm#8PUI(8L-~&0jxT zpeBM4k{FBDXqbp0n4?%NLg3L*u*qhiR5!Wg?#D}z^>=e~qa-J97yQA91S(_rg7EI} ztI4(35n3R&8b+)GCyiijD*Mp;p20GA1~@)+J!T`gLp+C?k1j$@;LqisKl5QeaHiPi z8|8ox2*#H-!c+hrXo3S#?i!+7+&o|k4eUqI9#F9X&VjzrA5}+R72q-o3YUcfpauZy z3fwG$JZ!HW=+0(gaZ3J-xD^X43Y-zmh!_QJir@nEwp;f5-x1*2UtT;g@F;$1r?z$b zlLNuC@TKKHhA6-h6I@5zzDTNC>>lEcz$$6WvPnkEp~R2Au@L+55~69=rrQUhWn*h| z1ORgkEkK})LyRED2v7LTnL-Ec7p5%#DQD{9fgVQS?8?H*a;{E#D1<*e#HLk29?Rc(%=9Qt|HrFg%zu1i zo=~;M8)>HV?A{&r?wxnlYYM64AP}wmWMFoHR3TC(hDdnEqfToEZCPy$`$(WTpVo@i0wVf%l@1 z6&b=Cgu@t+3v*6MO`VJBz#lK&B9xwxYe-5;CZbe<6A#mY-GHQn2@Us1NntjFKz!HK z1SgHjQU-5S!-dT8S@G4wbn=PjwB9=#|@@v(kD-ggSW>TSwhx>w^UTJ^C^6O-Tzf#yC)=ekU##Nj|0{4Rzy;N+=U_2^t+PNgEp# z&lSnx9H^P-<|gD1K>0=^`&COzp%J|)dFJUPBxheyA-hk$4Ip+cC@>&f&H$;1o3llB zI0AYNtTZOF0da`eII&b!T`g?XI5|I%NI;fx45#*YR%|*oHj7%hpiAtkn_g?9?XCH2pWcA&LQ}4D?ClCU0@(%@P>PP z@ic%h5FmL|aE%{&>+ySF@NA03KI;X_jOY|8Av0np#9#0?=%_DHStXq0(}SN=(emuV zY#_v#slB=|iId83M3s77y)?oY(*@!MEF9{3KzHyJP%cniViIgWjbL1@EizH$mY6cl z4Kh7sKYlWh!0s%?XlqDwzJL5!h7oLXm} z^fgCYhIN|`H#Go^=;-JJ`}c#hkH{byOb|phuzrwU!Q&(VF@jE%W+DN;37#Gv5`FCA z%211q{5Jj8^`lGXajgzku~GdkE&j1B=MQ_+ZMmMVbd2Y)^J+7;V&09vJMa1&_BdnX zo`d0R?l0Y)o%yu)vX!!N6mPhvxpB`fUq{0Yrsw7_#QCKSvX0iU^;WL^6 z8?Sq;O;L%d7~Hpc>(*zUp3swFpW4qSB=oR+?b+jc7w^Q{#Ky)V4&X!EiIr8ZMc*?e zP839tnVVW!S>3vYGTQo$Yg#!D3c$M*fj4{dWFA1p#>U2v9|^uLdg2e955#)t85qzr zGUm?>FU2GzKr*DdveI*-f#xCKl55BUFhQA1^$j6rk0{E}*f{D6@05OQTpXk_-X$fO z-oEYT>RMV}&O%H3ba@TW^>O#L4>po;fCc#Y{NW%#ba)*f&&0$8>hfkr#zlw*0I*L@ zOY5Bf>iX^0;g*&bzV?E~>LmIWvg5}kvz-^Q$! zBA{sL8xzxqW*U$PzI^#oIX8Z&i)qtXMHYy@T3TB8v~AnA85$1YbVH)%;lqd8IrgCN zrKhFs^blXgzJavS6%i~2#rEyn@$>$^KBJZlL1?IKU(E*5KOAXvVLU>wO=ji-KodJ# z+kNVH{qnBy;Q;%;cwr6m4EzL0S0M%;78arml3!h24Fd-@T6Hx)J9|ugJY{s&%qeYo z20A)@0|Q7$g?%~>%^H3E7&b80hIyy2`)`K|p!&g}tPS2u=6}Kb$})Boex&ZB8o=C|{x3 z2~=QUV7+Jp+Hv{JsZ)4f;dLzey9GEtbekQ zIr!K7HNTZ^w>fTPZJiz#wwsq1=R`qAM*@g)c=(Cf`V|nh!O+8OUo+H!W@f-#92yw# z(qr=8J)$a~u6f9%00(EdzaNkDGM^tOOptG?5#gl&N+?$_2<_s>20 z-zMg;^MGeV9}&$=Z{EFwaJvccL`B7Iw>e)OT!G)yKr};)APte;C1d57^ z?%e5%3R!no*RBNFd!Mcz4@-E0`?r7s%k=bx5EtAoQ1#|qC)7WyuqkS4a1>C&HM?|) zERA!`+Ay_M{h!pZ6L5XO!NKT{f{QzO@?Oo_3ZmkMlL@y14~M-E2}&QmwXG7Bkt?9` z;CeDLG5`UCMYSPYaO7TAs1QUJaasWwU}UJ6SoXJX-!LC6roS{QDhh%m=@}VEL_~n3 zjzE4Js)gaVtc1hG936JH&a$dP$l6nf9|avxl|W*bXb^~jW1s&CYvJNLDX}(d0nK;m}*wg zs}C4ND2uB`GXj*ad^1uhLiq0M7GVE6IEd{i2n-BF9Rm`vMOTteT|N2xbIg}y-LuD8 z{b0++QpU>Qof71~_pe5PVg&!z(J>Akv8x|KXCh)_r4GJ=;dv~X1b+aj*sm=uVuubT zWM$dw={-Jj=B7|4_SiduU>hFEBR1~-pty_L<<0+;wsY?V$;vh;~5ns--ix!=Q1 zyuP&5_3`63DJj=^Xc6(ssP%YoQeT#DQF)%`rE`a<8J*?HMS7U*m10aURi{`viU5&?S zJ3BikCnw-n7cbU9=@4892zlycSyz7js;aDfnsP@L@Fx@uKnI@06{Dt7G=y2a4toJ= z;1ssj)L39|Abk8%R+f;MXaajZI2iH!WmV3);^GapMJ1hM{{H@$s8^3}w#%2>2M6sT ziwblZ;WG|jptwV0US1w9tF8`d&U5+;XLM`UuzzOWMD?h;tqpe_0>^?4=HsKRpn!|| zT2TS|5HW`of59?1%jP`x#!W zKNGovEA1M++2Lo_j80FdrldqN*Il}D<*LV~F@PK85TJjmn7ugU>Tz4-?74tPYF{B%B zfjRad9Pi!RiOB2w)nM$L3=|d-$vHwa&S?o?8#)qyhHJ=JZ&e<~gTP?nni?eq5taaw zv7sSctf*lDM zUgv0SZ7qoNh>H-0VtOLj`Ve^K#B9m&M(oPNBNuR#07-$rf)@ipJ$$A*v?l5M@GvtiE#aHd#)}psG#%k% za0bP>kz&|kM2MA@aAAOA9rg_hTbN-#nXpq)US3{HOE$>;Rg3hLFz_?n8$v6jI55Ed zlgh}{6ctZW?l@Y|uMx^-$4PjPM$k2)uzPVr;U|#l0!&0;3x&ZP`#B7#H?gqT9nu2WCxO^eGeJhxErQ zYP8(<`C3RF>YgY}KiT4=U#Wd@KDi{7(*EjjJ%v=lZ)72y;vS;S>d!5OD*71W8w|S6 zolrJ!Hw(EcA!aamd197@b3|E_+(Kw;Aldado1|@<4^FKXH@TUf%{FKK;b7iea$n7Y z_KwX<=6!LFWg{$#bMaQxH#MjCI~25X*pL|eB0ska^tSvynR0u>`#?1pFJUtK<|qdL zqICl!Ax&4ZZwblvZ@SVS=GPXo6jUx{h72t_nA}DXGEnFhOK!0qW9Da;Q?$I zJHqc_qpnYWo>E|kvfz~3zT1L3j<_A+;7u*MmQB03i(HA;f9R7})UD~xWR8S&qFfhW z#+0T}W{esdwH4D^rN<98YO54#9&uCsKC!gaTS`5idYyqQ<9nLzD%qlmo9a8HZNsW; z-@4nVmG7TS%a7>nq9kK^-}kUbm`VRp_Qg_V+-N`J6UeHd!fxW)RR6-uBEP8el=R68ZrRQB>YL(I8Pok0 zTg38r2!;vlKf#~d(^F<5+xIR}I4E0%-S6DoQf|;>Y8~r_LihB+b#Hfu^-G1icqY{M z+3lzm*||8hvn(ox-b7?#U_#tjy7j@arU&%*`#+^@Vc$P=b8H)%lPl?F>H96i`kBWR zE8Mugm(8kwHk6qEmcWzB{J8NHsgX0h){ zgB;_VOuBOuX|ikw(v;vuCh)4(_# z;Wy5TlXL1x;d@0BwLa1{bIGWj@eNkq@%aIBNcjEAtl`oqMc#V$!t^dz5$b89F|( z(1?mZ5nWyU=2hC9jIE#|tv`km>m1wXHZ`Ic2v}Nj&tHus`91{ zB+3ILN|WRa3=Suzw{3fu_rTG>xS9j>?Ubhwda#BBAVL0#*Gj(SVgftN!u(*hIpBM&pV7oJ63$zne; zrA96JrtKj^wY!mOm~6EEVHR1(#{G@HpDH+K*UKx^S~aX(ZIz~ZM2eMjv(QP9eYvG4 zle<^IO==NnYb>e!`V9HXZsC5j`~o((zPH_#osL}WgK;8 zG-SD*TTF5IoypkFyZs@u!Q6K9r-UZVuXL{1AHu&!G_TZ3X8LV%%9?y5J-=o_NK4H# zxX#(jIcJ1=CRTlb@4T&gzo(UCg|gCA%id4-G>2m7JC)ndJ?J8jIWX{Dci_FVT5Qj% zUcTTN_osfA7hVMg#}0_r^A=uB=lMPE!tFhU;?Y&H3#XVuK3T_)*d5A#Sio>qVMH@1 zAyz+W>B>d1xUQmOtth2vR|7OsycOzFnn zk0rH!X>dE)#$I?Z@MdC60+n>G|h#%Lu%@d=y zN5I8+|MrIkV>+wfo|p&_&T8-Xz9sBp)0q?`zvSOe3Mb8vIkg#cZ8 zYuEZLJ)VuEPT>_FPm!}rF}v#W}ey&+?%)%*1fsam#f zH<95GknXUo>(y)=Safrze;@WdGqFohTi z2zO+ocG7}+YZnt61u6UponP?)*+ui1MC!h~XRg^u>-DH;QCslt-jElcL~ZbBpYJNN ztN{H-x@NCMKF)q#z2A2+=v7>pP*}aW_Qu|gQuD0ZeDnLtOtLsnT9yQER&zL7X=ymW zTTc3*fL(}e{P)P7D`X0H51C+b?LeRJwbdk?-hNWmEqAS{YRa!z?Z#^Qa3nA&lH!YL@z$USafF z1-5Oq&MM&%pW`!9t8XVAl+9!9l4_0H(ys6Ny4cZD?aeZ0eew2o!F2umy5b(ftXh_z zdMD<`&)YTiKO0-Bv$o&KHRMD)Bx}jHUh_hQ=f_?*1tS;1^Ql1`Hy6Iek0o5JuqR~ zN*}}Rzu#Urn?H7B`mSOE&`{aWuO@Rzg5peCsW~n4(qZ zH_fSXQAsLDi>W#H-sF&2lwZic7rA@&CSVu z9G1SJP*eNrkr+9%^ZvkI>)BLS$=HLD2c!?vMt3D&h?Er-$nE2FrMBd&t5SPEaKW)t zCO?mQyMG%+eVg0Y^b@@tdp$a>K3|u3=(6YR2XpczF5W)HR$=A()mp`m#ORIPmZo0X zZsiK8x9+{u^fvLn9H-rgB;<0)#F?t8Ngel-lsn!xRPV1-{%X528nwg!{@rrFnsMeQ z#y6jwKZQNqJCPo!prEt2A@5*I6WdD`%6Mk` zR&KU&U}IbQ8*?XR>#7JUha^hx+)Zsm@5!?6jvHnM(v(M4Dl4tEJ9Sn|%cwGS6CK}7 z_d?#l7ttZ3IO&k&o{FK4>7?H|?w0+?9(lZ$t;5t@&ARD+a}zJJSJ5mx6|{DtZ>_|m zwZC0X-7B7X+_J@_Hf87`8(Gvo8fG8cJa3A!9kL6LQr#mkVe>N4 zNv!9xNXQu#twAU8WMkHi#|qtYdDX(yN-aL~M}_uBAKSUjxne>jWZ8aQKoHgPrS>_l zxJmuwix0H84Ynx7{>WlK$SiPgB=I>Xjs~ZuohoF1s7uFH{9TELRMTX}+E+*26y#d- z{a|760YwhG)(e(L#d1yb9IMSn9`|mPeY;J=CCO6f#6=rX^Rt$`r3?8tR5UkPYQIjn z@_xpkm7`Mpj2_75cl;h!EQ+5u{BydB0O{g-pAp@(nHV zH>MBT?I|zwQXCi7b{h13dw$y0WOUzRp@v;EtpQ%q@NVN1+o5OD%Z3ysj-%C992sru zIh5ERJc3T674{a%wVKYiHe{;R9L&D;iG@c%k^fO#!pL&nH5#{yH%(5F-=>OXrazq* z6j-sm$uHvA9J}U;Nz()VdrhO#kDG+Mxb9y*=h3#Hvn_G-`94miojc4J*5;pA`aop* zGI^6HlV@qS$InpPsT*v)FZ+Ee(D#!KKkwt!nfpFEx$Sn_m7~2h^0l(PMP_1uklbrru@0rpC>gWTC%(}6xu4wBj_0i z4eg%WmgZfM3re_>JTm`Mr6Wz-@e&)s-nru^v{b<ki|%PZ@?JWw~+ zb)olV6x+Knd(nzoeas@Bm4|FHp-lx==CT;eWl&=hdCB>3iOaoNjikI<$0fJdrxL^xTH2H#Gsm zH?CZ#%QXC~T1(wQW!B_kk7?t}05eRsF+{o~f|R^6?wor0p6bDq=v^wa(8Uw5CxE5^Df=-BCC zFxUyb%i5+e7}X>2n~$Id-%LC|7XkiI`J3u$!m3GU=3y`%n4Y$Vc?i{FzMr?b#rSKf zx`2@AS2PoGczKqug$>~t7k&QcB4bXKQb=~g*t^``7i(=R`;FjPvDqKisPqJkjz{*r zwN|^q^W8Mh=yE#EV?XT+9(ZOXJ#&-%)!%G6wTQs1`H0~BfEH3dsURn;SA|lrtHeE` zb3Wd1;M|g2DHM?imUV(@Q?o z-?nF6<$+Nltjo;xGa-kt#aHq1@z&xaLqk8u+zVNhg_?7WOFU@c;2tvVv%z`n-0F_t z_X3qLQBl#U&>vO3Y6mT?t*zzd-v^2eXiVySIEdR*R@9m>>P)u}jCN*bX729pBR7Bo z)zwS0S&o-5-DluDNC7Gl?Cx{|cd<#~)Zk#c%s7*Ya&6G!_@u!EzO%E_pDa3^cU%LH zd%=U`q&9_b4O=)Z1FK-H2eX?$rx1MW)N#Td{@We!k6UXqaUZ1K%lpU^K z?FUwxFDX>Kn;Co;a($VZ4USKnIBQe+-T>ao18g9T;E`uDPo$+n+|Ym#J^GJ60LFJk zs$--}8JVb&eOMTF@W}}QDk{W#aLle(1cl%{k7%giB|03Jsi~3oz@iV2^bNrV>8TOM z$rtaz50!vn(={F*$~px{;!gSS(1Pnnso=sfqUU*GR1!d@#JD;mxPBZgI%?qz6tM*| zZC^$UfMa9>i;kDSjfKHq0+}yw9MMz%|BC)!VA1Oea9J=FJE9hsC4rCcu*@G7 zP2lg92Pb;$xa31dF6823OxYBNKeGa~r+O->|NT%m^ z`Uds{H>aj&0!zCZ41$1Zk@+{yYy>3)9wH#Z2@Wef}7a$3J=Uq^<P5cRd zetzTp#v0WBC{6_HFIM^M0-*?>wdEXMl!#vgf-Jq)ue#)E%BU0;Y8O^imc#FExxAy zM-lc?c;mz>uG+wa(Vdu;k9Q>MyXcnoY`k@D=+9&%K{FV^@|dV>@(9>iMm9P0?OssA zbMkMVxq3s5{6@Ksy-oLHI+9(yQP9W7?_>l~>KH`zv*^{;>u?Icp(cw^6oj;!{&0_w z49&=-?$Q3)sn&nPPL(Mi1y?v~1FwcO3R++&%g$c-(Fa{;srylO@Z2*W7{Nw3t`Y3T zOJ%l-v&p|D=jzAqd*>JG@XM=tFdA?JSS@ro+YKj*#P;?x((=eBV%{*Z6XQy(Ty5#7 z;8t`JF3UQYcle86;&>bGFsS3h;hm?mLFna-ePXQ8#0XM<-Mj}7nb#v@@&XEH*QRZy z0|Q4{Gu((Ut_Zr9;s-F=@9dj12x44g*o>+y6578O}@eM6pewYOD4KI}?>0r$6 zUsIceBkdY?DQ24plJLD)+N7vQjgogHwxrUHU%fE#-cK8)OR^m5)xcaWjOrUsgET)$ z$I2j1{mC`qomFWa!DrYTu`1 zNR!+SqgTgJwa=YZ1EH&S_LAUHY_fjI-7+R3+u%nSod$+VeGZ`pjG^X{%SBJjnY#A% zyB6l%D|2TJgfX9;X4jt#Co3z2m3j5z-AEji;!_pdj>N%BV>5thK0NcX^@h9K>b^mn zB#$!gnaG-KD6P9K_cEfVXZ>8~5Ty6`_`0*_39on>t^`?K9Y7ePLQ(^Pi%AN2hX_J? znEm~IuaU~Ks;XDw6(uE|1$InKOj4~s2e35s*Gag>o3kGWOH54K%zhQl2aJ1hDsx9t zBP91!hN`JeuoLxu`#*_g78&fF0IUavB4h&{rsW#O~zD6UX>UZ8MG$}BW@dI zgk&CInf4fmx1&=DF)oY}U7DDb=w%?=ZZq#Vz{ze=@qFWTqod@B>#pi>cUScAsaZXY zi;GK)nq*g9Q&ZE?W5;?6)%+$lQ#q9Y0}2fbOXE};86W?cmRP#@m$k7j=GwgZowc6= z4Kc?U<{plZj9i}x+B_CP=`G|=?y#)3yY+oYgu?o4$*WDf=gsM!EQDlkM3(IT=_<8Px7DFz2dv_-qY;Kh5ES3&HZ<(k6f zMm;A7-C8vt>rL8TeDIuHUMxgZ+F?}3>}+0I??&S0PVlL8t<9?`noSWX(p$_2?Oo?c zd{}yyPfs#s3PEuGMgFdXX?rYi?*afNcH6-t{PKfJ-kK2zQmmwC85L24NP2vT!-CUa z<_dvz3#~ClVt`9Nx8A;9HYR+Co-5t8ja3`X+^$qQ8j68*N*!xH#+9hPH+eA^Xbdb?NZ=s=Yb zs`nUCCmi-s%5l{1m2>2eQ|l8U8YT~0MHcGQog?$iRIe0dsKbbQQS5i`9iHWr{=Gi) zL`ZW`^fTjOo~zFZpu|9vhNCDxkTh_8kIuHz5=A<==iY#1H+VY|h5M~Ca6t=L{Q{?v zt}TK@71L#U$SJHowv;xq63eE2Uzh#yf_MLWUSKK`?U-D3sdhuSc0+1kCv4yj54xiC^m(MKQ$yTa6hI!cy4?O{xO-^A8#8V! zy-AH`x(Jrus3OILnaD=|0?}(@h%%J7?O?$*$%Rm`K>798tBwFh9sgonPy^2D|A-!( zmx1u{k4K1XL*4hXu#o1II_ID+Mlnb*SAn4# zxU;=zd5uuiu@_|4?ME1qAX=8>)d)Zi;n53yR zj*pMuJZ7CaJTM@=Z9ILuc+i8gZ>RNIi3(21e@ul^ru8MaMWE|_KQ{;0pfPF6YwzPe zY%JE3Po0{Wk;KY4JqQq^BF>MX1h+#NC!am?u7_;VX#eHkpXlKw&$g~}CqdmyHBNzb za4Q=d8#6QiUX`tYfPnDz9y#C6yJ=~Z-;r`ThIGYUK1ifM6a?4EiO6FnE>5*J*Vk{2 z*1D*ur~vv&ejsSzJJpgyY0&1ocG0HX%m8HF*_sdYrf^EY*dK5nC)_6Z58{1Pi5}8a z#l_K(;i9)*pdKsEXJUAGxQ6gMv;e|MZ7VfA2z}SX2ha#1_;vZdWP_`;g3tKNsVRq& z{!N;w34?~b?&t({vN z_;-7gs>;`bkT|OJXJ}di6PhWq=70s=G%YR54R`l+f9jA0JeN{W7J9q4Nx14~a%F?R z;n8J(GK}u0I)lsE_XPF2*s6p8YOmIa%IV4Ma zWCLx?K|U%t_CD+omco14h})?dQGXYl8i9-mR317oK*^~ep;NBWn zu9M@zq51_>Xkq#nTc6%Mgy$j+U{Z}9aRM{kN>!;~CwOnTw2^bNBYrF1W~&5+TjJy+tO4KkVZw?r_*oZdf<(o9EAtWviFaLn%_!XC zyLZEF5Rz;BE8H+d>iKi&Al1I85wwhh^x^Loc>!tF95~zP!6)Aso>-j(1FYGh!XE|F z4G$X`1Qhv7yaEzS@4xjv!jl@|>v<6s3Lvg@?7k=qQK$T~8A~!$%=ad;ftIHMv(;O& zfWn#Z&^~1Yv1_9>^ehG>8;bcD*qwL#<2!(d^$R`NOMG4Pc7&x?@ON{mi?dhm=uR0| zwJX@8^gJV)nhIcwez%_$5*K^QgPD=&F?8G%1(ei2`34C}(E3APqjc};&%2cy60 zA2JV4Zod1;E*zWeyR2oafTj2Nn(^!|l;K3_TLVh1jp;1w!C6}i5?Y+$tZPS)=Bi@p zndK602?JP{Nil}QS@Rt@OhvFV&+bQOL_^fXZr=s%TL4_v3(Fc&C|qM}poJwb{%s^WJXfsc(_P0qRR>JyF9cW75clTMHT`HxgkTgD z-cc5O?mWSQrvdwsX&v1>#gA-UK-$IHrb2YN1{fw{+-e%#p$mQNW+T!zRYE?9>h4;z zozqyeB(>2uC_4>*T3@~fr;_2qK_pJ?j24RKAGb*|YZYV(V7rbuuNlCt`s}cI2+5S& z7m;?Sn=P-C5XOCOG=5qbx77TBP9)BBkI3~;i8M-8zj5)<-t_6Dv;Vy9@#(b|0hApV zGTo7{0XxSysg1d|_aYi3w%M7w_J^>p$0BR#xWWnTv#?bqdQ4O#s%qZD@lns!fh9W**X1{681RHU0J)sUH)xwN#zBy4;} zB{X2T++sCkZ~T>)O>|&Dz+~j^;<1xwPM)qL_zjv42{eFE(mJ;t$yg74c{dbEOoV8mWWMbCt zXY>9^YFH)zxfC~>&NS|NpWWBdM>5^)TSH~tYeST$hKC=9<+PsW<~A{@c9kw;K*h*t zU=So|Rnj__0o&y&T>&}+ZQ-{@?3UYheRXu=%-jt!#c!>4u;wcrv>6L9(l9xjaUD{x z8KbO%`w>VxU0q$k*#Vc{QP`+R!QaHCA*~~xlmSV~MH~;QJh(3~FtEg=FlbzK*C?Jr^%qaGg0gbA9NUF?xkD)Jsr(}bhJk~h>+YP$? zj?wf8hU8_FQ%TGYs#__TXi#uQJ7tC=u>NQUq8?WhCRP_S{mpDu955;|Ro?p%ti+tY zP+$zhY!_Nt9(md;M;H=;>W~&|>JgNk{EoS@0l1oEa@m!vgAsbk1voC#oVDf&gfaEd zYc0UQS%3A#eN~6ErmC{^G7@7(ZP4B zUWau=|D6jm1G2NpO`r?LH&?Glx9iiFOqx8T(%jCG&040qhzeSOzk2-2MbXgYh!&>c z(#MPhpin*#`M;)+063m#27CFF+W#kQx5R>G3azns2Hcshh4xG-KhWC6O20?1+b?Wm zb0RjI9F(~2V_bH;k$f3c=COD_`T7mRZ(_0`prxYBKg0tAYO$w0P8H#i=WI6hG(Id` z6lGA2+~7!W{5KqFN}>eu;K_QJ^N%|#-;wCS4$HroTj;5T0UdmX8u2<$=s?<8a~Mv| zf^0YYU~pamUScNqUWXqPF;A~&RV5fiwh2&z>>?Vg?h2CVdwfAV zuaj!@8clt~?&iC9?-cy!hK7b-;_)XL7$(xaI+9q7Z|NI9C=WqF+I2_)vQqR&? z7ZnvXH}AepWYSIJvVY}iq0B`HTC}xv60@wl;pay<*I2B`@2&)=7)a4lQz2$h+4`!M zBvn4vEGb94cm;u=Cfq&jdv985_xudc5CoB>0iHfAj(0`&TgsZ|kROjPO68oIqUtB~Bf`i>(aBBC>u zGmMfS{Qbv|PgUrwFtOnKmj!UQFn`n!21}}+K7IQ5F>j9H+{|o?JO+w#vjHtqlFG=*^$H^xe#NP8WBs|wpFjIdY-Tw|j!jM~`%Sf2 ziwAwO5B8aAxm7N6GgS-Yo4o*xGDT}BSU3=QQnI9cO%jRQy2MCDjl_U5&sXU1ay;;k z_zMrD!TdxH`0(}ilVE6v0M2xoU*yRD!#DP6V#>@vB5@gDMDsT&Behvk?dB zoS{V8#y^(1ER;_3ilr2i&M^c(MW!B|A8n;_3>7!qgY{T;ex^8Rm$R0ci{=hi%pTlVwTM|2U2m!!Vwq(+4jXHBQU z^eigsZ$_1P6pY`r!T1dj=x8we1YC4)R__8Bn*9wo_vqj}kQ7x177RZ>v9q%~*IJvI z4T3r0oSzR-+dzPkL=I{M(~KB}PrD-jbCXe+731vur6|k6_PG_UY`9{-WQk%~gUzPsyQaO*no#TV|qkw5!&LEL7C8Pq59SyWor zwvQ#36henZSE=n+00k|KUbV5=2D8?aCr(t^HwX1U(UJ3=yq9k{wpvpDq^fH1zAjgecUPPr zVIRN1@2WOBFfj1>bHtaoiBEOYs%>A1a-}&o2T6q8(ADh(1$!j)IvRYAaff5Z>fGwm zMU*1%i&|D%_fJg~{Lr~az&|s^7#SG>7G?A3UsGSnyqfZ3Oo?y7XsPCVfFmi84n)5* z5ld6kvZjCWrs%_@4(I0J<;_{1G7X%?DE{-v2xvKqZfLU+r5xM5Z7gr!CiqO0nR|k& z7l2yi<|C=LU+s03pn!fa|B0MU67`;NsCDjG?^Rn~Mq&FiXqP~loUIzsv@Z5kxFE!N zar_nb)(?L)-~DV^FH0Yv#V0z+T(|dD*D3x@DlcI$`0>Mc0eXL==Q#-(%i>hRM(Qew zMB?O&o}M1iYOq@>!n2Y@>#!97hsw%8<2FoDQL$}%j>AVLSSV<&o2{!Zm0QhsVl(>4 zG4ZaZ&<)R}_^jrNaD~;O z`^k~R2YVl_xhM=fr9imRI&OolW%Bam&`Q(a`C+T(B7GUOR{s7gZr@r_TKYk~)O?XN zk!@Yj)4_$EgQMPi>_L6mwm}J$vdt))b}KM&1GKmc>dS_^{ylSKS)3+l2U^`16At@p zaa^{m4rsErDcEW*BtL=A%grr_*c|h|2HdNyO*Mt=in(~*+uM6-vazOZr`+G{z^eqR zBfE|^`nz9T3{d18@ROFW6;A&EIxZWVn~HK9jRo1+-xd}sD=NBn6LAZ2Y^uMY81M2o zZ{8^0PQO+zx+V`?qchVDG+1UA4MNLIF=3kvi5<=$L^eO93m1ldFDow>&A;94UVan| z80iyEaE%^1rzT|jJgK&})+p~Hr@~EF(9k;gz0aV$@*1?Nsul^g*8x5}eE1MN{^LGR$HtFO zFP;wc_oLD})pou;1wmM(CRugqeNMNzMM_GFH%Nz0PEG*l>tccEh#^ z@}8J_LAYu%OoA6S+ zqN=I~zqr7#Ln>5LJC$5z*SI!RW;WIPfc3Ex%cmO0+h9E6<>?7Z!2Z6zzNx9|^@HHK zKw@1bC^E%s57&VLXQa~R$4FH(W*V#ffQ#S6qT@eF!wRBm$0(??XyRz9}V+tM~Br2aw2Z>l0@FD-Vr6IM%i-iBfylI}QUMJso51YE38X FzX3iD?PdS~ literal 0 HcmV?d00001