From ce5268aaba8f27dcf7a118c5f2ea6b45adc54eb5 Mon Sep 17 00:00:00 2001 From: KonovalovaAlA Date: Mon, 8 Dec 2025 23:36:23 +0300 Subject: [PATCH] =?UTF-8?q?=D0=9B=D0=A03?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW3/0.png | Bin 0 -> 282 bytes labworks/LW3/1.png | Bin 0 -> 248 bytes labworks/LW3/best_model.keras | Bin 0 -> 380090 bytes labworks/LW3/images/cifar_25_samples.png | Bin 0 -> 121751 bytes labworks/LW3/images/img_15_1.png | Bin 0 -> 6830 bytes labworks/LW3/images/img_15_3.png | Bin 0 -> 7244 bytes labworks/LW3/images/img_17_1.png | Bin 0 -> 32907 bytes labworks/LW3/images/img_19_0.png | Bin 0 -> 6694 bytes labworks/LW3/images/img_19_2.png | Bin 0 -> 6595 bytes labworks/LW3/images/img_44_1.png | Bin 0 -> 12260 bytes labworks/LW3/images/img_44_3.png | Bin 0 -> 20223 bytes labworks/LW3/images/img_46_1.png | Bin 0 -> 60467 bytes labworks/LW3/lab3_team8.ipynb | 1629 ++++++++++++++++++++++ labworks/LW3/report_team8.md | 587 ++++++++ labworks/LW3/requirements.txt | 6 + 15 files changed, 2222 insertions(+) create mode 100644 labworks/LW3/0.png create mode 100644 labworks/LW3/1.png create mode 100644 labworks/LW3/best_model.keras create mode 100644 labworks/LW3/images/cifar_25_samples.png create mode 100644 labworks/LW3/images/img_15_1.png create mode 100644 labworks/LW3/images/img_15_3.png create mode 100644 labworks/LW3/images/img_17_1.png create mode 100644 labworks/LW3/images/img_19_0.png create mode 100644 labworks/LW3/images/img_19_2.png create mode 100644 labworks/LW3/images/img_44_1.png create mode 100644 labworks/LW3/images/img_44_3.png create mode 100644 labworks/LW3/images/img_46_1.png create mode 100644 labworks/LW3/lab3_team8.ipynb create mode 100644 labworks/LW3/report_team8.md create mode 100644 labworks/LW3/requirements.txt diff --git a/labworks/LW3/0.png b/labworks/LW3/0.png new file mode 100644 index 0000000000000000000000000000000000000000..66b1688814dcb58cc287bd67b8ffe737b463199c GIT binary patch literal 282 zcmeAS@N?(olHy`uVBq!ia0vp^G9b*s1SJ3FdmIK*jKx9jP7LeL$-D$|SkfJR9T^xl z_H+M9WCij$3p^r=85m^SL71`s>Bm%{;CfFN#}E(iw^KF>9#-ISRTN!p$d+6o?3SS8 z1q80?|9*Bnlxf~6Vi}j%ld{+Ae$vP69>aUpN{`g{FShErX7$=jZskph?_xs!_LEFU_yIhN!(z0T2#vPVommT6$vZiRMob&Hv)RdNwDW55RZl%u4 zntdMXPyRNDSH~Z5E3!Da^XP(-$wh~~-@lwcp<8y2Q)IB(j%M!n3k)xRu`|;9C#`sI Y8Had-r@!G>pwk&VUHx3vIVCg!0O8|mIRF3v literal 0 HcmV?d00001 diff --git a/labworks/LW3/1.png b/labworks/LW3/1.png new file mode 100644 index 0000000000000000000000000000000000000000..b9df4354a0cc2592ebddf35bf0950c388879fdb8 GIT binary patch literal 248 zcmeAS@N?(olHy`uVBq!ia0vp^G9b*s1SJ3FdmIK*jKx9jP7LeL$-D$|SkfJR9T^xl z_H+M9WCij$3p^r=85m?+L74G_w9y-&V6Uf(V~B_M+esUF4=C`k1WH{?U~x-jc1vQl z^19KmXUh6!-I*>Ei+JBZ`8I~MN&54>aAAc*d qoKrg@5&Cs$&P~l%!GG^OzQZY38G5VUDKQ4Y9VBouO&5JII|lcJqsCgSI`xGKlj!@GX8zZEhPrvUg}P1m3keL^qQ1^E*e%2*%riK|H!wimSXF)I zbX}e4I_lc0>I{{qONd*Tr$=ADo{rwEX*x#JbPY{(b&PfNjCE(JZ?*ZGu14>BJ64q|M#-* zbs6$4>H`EJe<5(0-A57{?B*Nbw)T6Yp}`wH`&bU$6x7$)7WIGHotYg&Y7^-1>%Qq9 z^ylRt=oUItPkk%XaImMhZ%C+Tu&2iWzX2Ql{h5LgAGf~Dz_os!?x8NeeNgG@>&((K zFfh{7(bqAYsn=KC-)$3vFjMCAcbrY{FJq|w7LSDiK^sG@`YQg3zqM|m?mjL|$KQwQ z^n;PvhWe|SCI$ddA7H+Z#UQufkUmtr-26lOPzrYQ_WnMp0~rGd`}TF|@|__D;(t7D zrsQ8AhnZ&p(|h0W{(ee5`pR4wNn(os?@wpnfHwyChW1UAu8t0qa&r&$4RZ_aUm794 z-s=OIDefa<*k0@F)<@YddW=*Dc>25eGW8h|_T9`(+rJ}+)BmbG-C|4qvOek%|33SI9O@pCKxTZ5)=fBo;X zmH!a()qmOg|M7m$ko-dn?*D_@V486cTp#4?@A=niCNL<}cl|$9_di9LW0(r}^!4@$b@A|YciZ%D zD%9QIHz=Ubj`)jG_4W^3>*nwB_XT}9VQ&5#`}*itz2@_u(Dv z=Hbh<=i=t>zHvQcIrLdtE{vTW)Mr@r6a7t>eMVV;XP+e=7{-u%XYC&w1$`xb-7}Qx z?hJz7fx*5EBQEZYbrZt$8ypz)-T42`;tvr2x?|5!hP*Gsi7^D-HwL>g!|Ic^AC%0> zVa`(h6#cvgZwzqpbo2HM_U{8=0J!f1atZPbcJYkxbl=!-PUFjLH%~=fPK>Gvl z{%WlDAKkMg2Qq%X|DQs@(tMsx-+&$ZN3GfaZt9n_{v<1mIjr`5|8Xp4vHr4u_7e=q zsm?%!fASV#4f-4TmFbsX&A~q^y7t%qA;15&KK?Af|D>Cr#s9+*__O>D>|+W2``W

zCYbO_DBA}KJ9bp2V({M1*AJ@yzMlhn>(Aqp`tBL+(_G>#IYvA6Szvvm94jL79rHfie_;3n zu>m}#nEZtPJ)|$sV!pN2_p<(p`fEC-nDy7*%f9r$wl^>j1Fo=s`2V6O`|}ON`YJKc zpXg@~Ow&L;#&Y~Y*#8+c;%|~a6F(97iNH?;ej@M_fu9KcMBpa^KN0wez)u8zBJdM| zp9uUX5co%a@<01${+XX#a@-Fl2K+ex36_3V{cniCpZ$!g{bLaJ`}YQh^xZGSB>MeB z{cpW~UlogGI6(L>zWAL?EWX&{}2TJEWZPO>-v8A z85rikJOt%RPyW%8#l8?MC#c^Hu-lCjXx#9Jnw0GhYAE z`?9`$dEmaR@9wMbzU}**^iPZkOY=LwuRq0#82Ivk<;}U5O@kJ7lZ011 z(zzlWg08l*3oCC^-I_G~aIpXdlp4qN1Y=|U7`VLSBLR!^h3NgHmAbEE?+I+Z1)N*#>)pZMyL>58S#4ogkUj;GO z)PU3V**MbgA(3f6&F0QkB?}+gV14-l5Y(nO4xX)x9ix;x=$ zOgtVuI}|T|I7)M?3Q)&u6S!X7Pn?ad@%$i5jBVm#WJ?WZPN;%&KEv^_sT{`x?gCeom3Qluuh0pj?aDMELe5 zU*$#y=Fh!Hv%juJnND32&{GJ)>qTtRkd9M>#c)k=H3&z_!$jvfz*;em6kAzBq*@WR zY}-LuhJ*2(1qTJ)NsXtY5;5F&5lTKXhGsn(kgQgM%Tm>(ez+)oRK5Wn#WXN-!d=?a zn+qvx7DM~aayBuoAPI@9;G3`rWVWlpK5ITr@RT8{R*T`+;A(77vS9NPH^aH6bYw+t zG2$4R7>EBdAJfLILt%UbM8IhxsG;o6@kQwKSc@LsJs$-3m%$~`87T9s9IT0#gl9{g z@cBeGMnvwRtu-=K;g2iSdC3sSR~bs5p3ldm^Y;6OXC`cV(3bM%SSb;1g3 znXP2WNl;Tln_+@eGvq$h@rgC>&d#t@pw&d zA$r|X!FIJ|IF~5_tQo)4H$ml?0`Vk0HVrv4VKnHd34D=Wfr9ia#xuw8P~a9%95Z6T zL5v5EAus8(77gA0< za+6{B(+ZRf>9@$ytCJ3fc%h^4c+@j;Mavl>`3O~(yK@br?iJ&Uv90_ELn3`jkXFBp?f}l2cIJ%~7gwPA~ zL1vi&EL&ZKnlgc?I{heV-~21zG(Q?b#ki0@GZ%+k$wybQ>HL_dLqT4|0ylf*LrN|W zbe<}KV7C=t)o2p1e1aN>&rN}r2ZoTpcM%ZlDzf6TE|PQl(C*I6qjwpu`I3N+TB#sI z9uu>WopfI~7td8pfx3g^;YmO!JQJ71)uN`T>UD`ENpkVE&MpWX>x*$g6QEA-8T}mL zf%N)jQ0dA8=Sv+_`CI`xaWezED>Dg4L>D}!`=FM6CMryeN3)U{c)cVMBioM?VXY?U z`>LbrV+WAa^TV^!CV22E7up9;q0jPP(?=Q>SbVe$Th~$=es?0;-OGf~oD?)`zDiVM ze`lu+9|~3{=E5zNLMU$ALu|J3K;c~y_(`S%hqs3ag)U@GLk7gX&V{QRN8fS3Cem-gQks1D79=R zu=ZB+zf86T&XQypQ{{rP(XVL!xLjCOp^TQ>}3%DQSu_53neK}|dxUOsA zH?yOm*nb~k$>#6{P;IOwK`?uV7o4t|28L#BEc0V82y|BI|b#aX)ucX;#-AfXMOoSMnZZ{W(UfsWRseQ8K9rEm&knJKv$6o9(5cI zWxZ$lWph)>-qHCe+Y|?>k8LosLlO>u%OQ8h5friIVO5m{T3T_C^(hFKwZ~wnR|y`U zyc1)7b%k0NZ5(9I#=2x{s6ro*AC`o|>MYt?ydIt1Pmrcq3y|vGL(2BLLh-gOV7iEh zyrMbS?Ei>Z`elGrVLXzsz2xl&KQwcU#jaCYC}a7JeQysBk1dzPAjwde`X~#Rp1({# z%f({MFG(P%&?XON*x>LhfZA7(25c@OqWM(kYB~wn8;yo9-&0nbE4GLqp;hDZsLB3YWbw|q*v57O`{NT( zsx+P`&*z}<%5qFdTmyC05ty{c9A)0lf#%;uLG{sSYFW9JvYyu%$q&s2o%weNi(_~! zr(+&ozn_XMo0aUtx?4avi-nE*N8y+9=T!5v31un8L2KwJm?+Hy!3hDOjBYF$wF}SG zd!o$YPwZCTnaH~2g>N55;mc#Y7<=UxcF6@m9^Zks4T*()-!x$QtDR^9()@Fo#Tc~O z7w$x*pxxP6x-aY)mDz0rR@v5|A|(TL7n8}AokghN@CPxmJi`|&vc_s#6BJH!A*|2U z##y8a(@$;1Cb2oRyj=}@^_7shUR-X1}c_u{{egKaH{5K5a#toNRO* zdX&$SvL_?~K=6DC&Ff_0x%dpY2Me&bbUx-6c|(j83nicJ#50~e94?mwbqf_Cw5*rp zznl(F&aMERCCO;^K9O{aEhaM4LTSoMbBL&5Fm0JYIMsEHnvWD<;r0Sl{Z)y!^43$C ztB;80q)OCYex2Okl8;il?kLWz3D-mAx?RCOZ9ZmESR#47b z@5ZK9XFR;t80_vjfwJRlFk!_SC!H5k)ASv{iB{uFeHeiqV%5mYccPZMqO@V164BuB zz^?icEeyzn^I`E=)v*z-PB=!FDs4so`3LF!+6?SWn1!;HgHYlN7oNSYpu%m-!BWnV zlr3HeEg#+!!HY6{J3|qx&bb21)`ZSDP=kudtZ@T1biPzXUdJtmAl7fh=b#F)F;65O zBe;;iRU7WU8jWVJGC*Mg2jZM_v7jRr12+0${wO2jYV8CL;h98A(g2Ddo+g)23KQfP zQ)Q*YWR83)8klP1b=%SKc4Y=yngl^vjsaAyOoVWwY@Bn)3R#+V4fPs5Y`ZP$&`{Y$ z%x2m`u$d2jQW4T-91JrjMWPSS6FJv~B;RB?ocB}1XTBX&#(60f_H+(uKqfk5;g-cffZ}(UtJaCBLEwLROO4+cs=@nIWdq);Tb3rv! zgs`m79}fzMB7y=l9KJjohUdq?%Uh`+Wu1Uh6OPgaDOKPV5Q!<52?RSiVC&r}B!BWW z%%5(d>p6U*I(sK-aUmnDs3O4J*zNR~>uMn3@IxpD%p%Rwdwclu%`#STeL> z1gyAMfc~qBNd2_+7`=NuT%O_%6L0)VwvDa=DUTv594m`0iBag$x|gbcEMbq2l*F>q zB6_R$9!+qnr*)FqIHAlDU#|>?&ZC3S^lCY_L@!|!0zvI#dBmza9-24JrE`TlvHNr| z$mma^+=T@Y(G~=(s7~r3(nIR=cM!YbFG!hU1BtV*#I~ALD!F|lRZp0NT3@5k-!>AY zM4~~*vy2#e7^08uC>rF(C8o1^c*e&H@~e)MHS5#BP9YcSNA}X!EAol{q3v*EK{amD z8;ktXSmcHcBlTqg_{DrVJW(npuj|hfa_}e--(rTGxzR)hlrYrZ05m-_k-IRFZFh14 zZqBs82Pge;`tETse9mCVY|g<&%Y5;R)+6G0AqlyX_5A#xRnXL_h!5i5(K9Vu;BI0U z?P(|i)@~u+B)bF^H0IMb`Q1dOXE~!MO3_hT32MqMYa!liu87vbdA zm7!qrN=PHD*tGU~2BvA;q`zD*K<>9Qq_fHs&SYLBmm4pV$Ss*rrfWw(xkaLmY9ibD zf<8F=7SV>Wx={Rd77D)Vfyu=)eADH-z@*g^ST-vBvhMwS+uB6D{DzC_SBgQXtwOTB zO<~K%nW!mJ1PX_|Nkq|DBBMWuYK^L;gANX%*+>}&k_+T+%XS?TOJTsiKEnTX$iCz8xZ9+2Z>o}J5jyHoDV#g z;<>}3jLcckGr&XPjy&Yqap8DG1=bsdz+@{C9KJ#valunFu3aGwbc( zLeOCBHHDk@#QSk6dS0(awIm(}mDy3%nIfp|(Lrrg{He|T+my9q0)MnvIX?VqhISTR zK^`6h#WNUwY>%n>OE<$d$v#5l&D3dx6jt}77^>0;Zo70|7F(ouQb4$@4=V9c3# zu=gv6b89!C!;2Zv`uaEeYj`CZ+#CWaPe#DuFB#aepcH*xT_lNb^HK5C4iGfy)0QLK zq4NRS)KN(dvF=wx77GVBRjT~KUMt(n6Ltgq+6I0RA*m+_R z&C7Rzg~oAU?Y10uEvvxinSgg^t{^?!Y;3t$&%Rx-k&JOH1<@~J^wYa?5L`S&jHg!O zQppi0npp;wMZ0jnb|jSSNx*M+MU7p(C*%GKdD#A72oW_;1PR+{Nch7WuIU!S{I}9L zU-*Kq_nQW`cO_xXxfOKY0Uk`*Rma~3${6!u2ktO=#h2ZikNd`}VyD<+<6NgyPQtD1Iw~-8b^^S3x)MG`DX;}43#q%8a?qAqTJiZj0kMXN}oe_V{v}8H_RgOdONLG5NtWa!QU%v_z7S-ywm< z4h3ZVjLS4ONfEuJ>PW}UVn|ld0dPH*vwfOppk)mCTY=7v!)^wS$sB_@ss_T?kz zRxG@0wIOwWyI}C374R##k{5g9$RC~e*;}@KC4u8FHqPDAO-E0>MrKOp67HQHFf*Rf zZR*(#Cu_W^`qeu$E_W?mX4*!TGy&RX$AHc!Qy6xy2@ngEKK2LiUS(om<17Tn`!&HY|7IJz$e?6fYs;A#An_v@K2Y;gxi}5w_qgx zqF;uyRq`>e@;AzvEzf^9Vmz|8I^pY z?Xg>FDC48^S=hwriCNHoW*q5$C@_5Jza(`iIl z+#({FB#PR%%%M}GghYmfLg*8ut-o3WS~=jp{Z^=RcOSd;p(TjjP{y*)I&kLBebQMR zMdr*B1^pRK2e+Jj?3c)y;#*dP+K%P$lAYq@B%C7Q-|48gb=2@uI2i4Cib$(mb( z;ZxQmq-xPfwgmxK<2tP`18Oq70vf0kN-vDV&a;K|%=I-e{pA!89(_jqE2_{-Fdvl< zd?36mN37be2iaE=iO<+y2jT26e);iP;rv5K2qZp?j^dC) zZW12m=MfoCYiJ&_fS4Sd0dJecu~l~`wp_0uby3Mw$v7Mnb~3&ynHV%HvVefH7~t#~ z2T9STAUsnJJX1}~j!=fqylvQOKbg2LpT?IGZ=h=*MWI|&9^Lz5Cr0vO2ru3p6AMzY z?cfR0GR*_dypKkm?tIW0$DHB3Z6K&;6g7!V!Z}aHn6qpF2+!#fg*_plzl94{S{`7v z<#%Gh--4V?JoePP3@-=tK;zY5XqO(uuise7=(9^idD~l}bt48AK4#9grs1$Xl8rUj z^FTB<54Vk9jAoDPiLiJN-%8~Mv2>ILWz%txcrFFCjxENHsmsuCkR!C@55q47ZREJs z5M)_7f@HH5vD(J?tEG2RR;N`w_5De8Ozo_P5jmBPD zrn(GtvV0)>QVvSCPobRR81`%PdBE|V4HNJ0B4O^yz|ja}b1toA_xbrF>TuY^) ze%N!ie?=(}tFvm4Vu4j*+}it5L&V8$!>rKyc}`v8rbjN~ymk(efd< z z4m3|IASs`GK{cg;J$!05NS+KwJ8ys(vp-0i!EwrpR6o8n`W97K>4dMl9}uxe&6Fi3 z!!LUo&aOMp0V!?_EsnoN@^5aTlN-jPo%S2jo|VgQ{c?&Z)MS$Bdsm{^A~poY%|o7e zB0l#DMje+8xO3Aw#?BcB&8IH1=crZU<_mH7xG)_fev1ITi?fioA_^l%ltF#?B+B|y zPD0=8qOr#+@Y_xoOyd=y&DqC%RaIY5EIdQ&3(wMBuSa1`&vE+gSPs`s-J~gZ*4ESRIBA@&VLi@=B0;k%0Moq~YFN5j2i{N83`EwXLR0B#-ET z?3E1g;3NW9@RF@FaTyI28vfw__+`aD`h^>`D&-*Og=5Q?DH zIVH$GSORVxOYl)b2C~W$8@biD*@I2Iahyp8?q50$d+r{g-OrX_ws0-DOxcRXWogu8 zNdz=cS0PUtzmaIcTRJgB2C}zSk?h|$;PWlwczCZN=%{>UeBN`7nk+VhOi(*7#58SLY;|@ zpw()N4%VwFZ7m_+;vz99%@X2Vc%U6;4&M^a(Z-V_!C-7Pp1Jmvd`w~E#9C|M*4R)7 zz73oiR7=)xaz&3YXZXsr$0?Z7=ofy7o+r~$Qre0>Jj6k*NwO%ID9#o-X7k%P%zaPs z5NO((fGwCv1TRJIQzhP9Wce>5^=-HVwaO5vjP;a3E2olyqv-fOR+mQiF6o+F%Of6w4 ze=$1JR*AfaS;WDvmwcKPf6Z61IA+$!8|VTri~3TS)v zBW3+Us3uDu5_SM6UqPHhpCWnVM~YH^}-VklTh1lGg=;;j?4DsqEvb=`b0D5 z=HV6m(!?C>aLodXxl6F#aRpc%X6`B%7Q>=+z(8@S< z!eSJhd_z34l2PC;1FWG%#|@pgLYd?wn19wBn}@of>j4Q;&r*h@&1tao@pwoGx=78; zj!_?HTPS?D3%<>W#V<0O;j+g!Vo@^{V-)g5TeqOiOFwj8Aq_0+VA`vh4f$`Q z7=Ka*2`M(iRuebK)_6s0b(CO=Y8uXBbcp=2DPYkNg|6GmK_M?3JgVbq3oeH&NJo=3 zQ&7o54L>cM44kJSjrFw^*nHC&WYalt*f#-m>WYD}(7~-l5feh}XhqvDXg~ge*Cs&{j{uf2-`%&8hC$92alR4aO6nA5c82}GkG1gS$~`8 z%uOTtv)4dEsvOl+zD&vnW#PnE5ujl(6@(xCs8~llIjETmHZ7;vtXPE;V>B0&9jTpxRy*Xv`eKy!_a7$ zU^*Uyc6E?(hPD!$ zTX{6%`ejO^HL-ByVcLFwIbU$?7A;txjFRb*M74PtsLC#ZV!xYY-*e`E<9ZfuTagOc zT~feh7tx3bxoSx4$eG1v}w07?BQ z(r}~(+<>JB+fdCZ~po9EEw!ZEmD-5f?AGcvK!1su(j@%3Of>UZfwkfIGeGjb6Y zKYv1!i9Rl^%m7XAGHRBSM^s)9htQVs@b<=7xb4d5FP$rV&8Y$+7U%+{m6^aBE04T! zGtps-9k|wxV7Fe01D5uA<9xe=M1}A$t~no6KPs_PE*vCsrr;QpY^w4383Xl_h zy^(X_9p7@^1gLR6OY<*G0qrY1qIHl9x{Pg>X~o52vjzC_Q4u`YIu$xz?SzHDrC=vl z8m4Qz7R zEe+?;uILdkuYs}ie`zsp7?wx!Uk6jyL5nC?E`uFr*FY!SF~T(-rP!3koW--|K)`-~ z)I2f+O)YX!p!J&XzqJN93h&t*5<BFbPOVQ!}Y_sthJ}86fMfE0J54Ksv8x5SdXvbiRZcHcjTzR?%+4 zA|<4iw9zu56%+^Tr8aNGs7Fs3;amx9^cpb@#6&TZPii`enL#E|mKu%%tD|h8VLGk<@(0^$OFgNrOahZtU-$`250HcVxL~#* z4SQvVlUkCGWiFX))&cuQamJ^YsmrIApPIvok6Caq#vTKjlfnH;7AkX+DEE0HRT3$} z*OvltbI?ipWoA5_6pX>L=W9Xm?l@^VKMPauIAKta7ZME#C?u(1m0J#>CS_oDwg}pN zGC|g`2A*tQ1Ikf{$^AbCkI< zlb+qT1?$7(_{LSyF#lo&-me>s53&`Yy(pjBY?;f%Z9U-gbC;lVtv~R>lCY`nAV~|` z0e5;7F@NkeqH`b&Y*?>|s%tQq$d(~VP6M0q>eO|z9SBC;r|PHvpwY)ZQRQRB)C3+h zz74rW?=+6XPlpF%_qcK)O@sGsEPvfTWp!DciF7#)4{bk8EQK!;bHlDR1K4$ zi@HmoO-%=iAKxX-$Dfjm68mZM6A4gHeM5Da^Nd-E9EcrVi7AgxllmPY#6iUqUf4=w z(1uW=%F4z9hiufXPekW@W=~IZ0!e8Z8gzL)xbD~q`hV;MpYb{%n3e+dmt%-W7#BPF zA1QB#H8~d;ffL*LqS@2dPQJGGL{(umz5} z@GNjJNXTcwYsQ~)W@|R67ixmCs2}z+HoisWSoC@YOrpSMQ-jBK4*&}TTWsHM2>1C!_Le{v6?NYsh|y#ZIlR# zM#C)cjc6zwK|5-)L3G6${P18FJ{em=Wfip0pi2zyGyCvx*L2h?Ph-wiQ^3cjg18*-DJ^@o~PY2Pm={NyX6|^35Kt=5gZPaGsH~lBlh|(#fbLU7H zx?v@f5F5x?D~DXGCcc#`k7RGk0?jsO@Y!KTU(QGdlP+y|eP0*+_eY|}rYwvOR)Gdi z5%jK_L@P?1Fk);d=on_wgO6vS2@`jChO-cw_ihK4ks7;v%2dqnk_2v|FD@Ieg7t%% z**els*y%5$(cx?n`KY0TCw9exz_*njw5E~oQ(^?|PI}Z%+zRJRsz%p~n~1`_7>o$k zVC=vl@Nh~Awt1ML!Hz`ms567!UyX^*d2cfDtSY|rD*(X-7PA(SU)!0A2}ktkm)AAa z_0R~u)yWDF)SNUH@iIrRJ7OTdx)?Pdogq)m$3TQc6ftp_%dUQ4h%I}IXiY{nt(zMM zP4e}G811}ftd>)6YNmc;V}tu zl*4Tf3DD`W2x9aO6V8JX?1*AR^uKYN+?o@BdMcxkRh0#miA?-#{dIcbnFjW9WXn1mdfTh;QpsvG?}~>oqM`S$F&%gtL$9K{1plKwl5VN4@bfEYDeT2 zSkNinY!oDZB8%oNMb7(B@CXe@gRAPGT=jxBPvEhyZ>oT_<;A!(x*SftP6W*x`K0xL z5qTh8241gDQp;UxMDf}ex^ct~ti2h6K1y?;dtwyf`Oc?7+mj*tWF4veEfXUjJ|QtT zH=xX=1^Bz9430lpi48+IWaZtB==%06)mGUFQiF#fgxuV`s>0&H|0jm=^f5LFY5rTfZ(b!mw) zOU9HPx#b)ad-0pGaQ6+`+cpE*Y=kubN;O`-qK@@rR7sHRMe^kS66|qfY~FFR;OVI} zY%W`kbV4+GBnyexT3N8ElpzhT1L(?IBk{#k<{oGMN+woi85mAw&ikfm7`KUwESY$S z7*<7^v_{d0Vil6W8AWfo>7cCAHJW*24VKBuvdglQfi=?|X+bG$pSS~scU#y^zMHAx z*sZiIp@PITOopXjE1^Df2fto#EUk|;0mH(bpfl5sPRc9A!96-C?!&{}S{d-4I0i%? zCZMuGGnKb#qD$8+pvLb?jLb0cJwo|L&TcmUL5&pHck7_)qf4aGb2=CVNicEi>-ZNI zB%|SOLYhuS!E3SEaCCY+bia><=G}AX{N0KuSa^xwnio!#hB0xaoh2AFyqw-#$icc_ zzLA9RZA>h5CH=TyGS)J&sp)TrV(@4Qj9=u(+{5Jny_-XN&BCe2nLw~vT1+fw_>;24 zW%S9rZE!*<6AgyMK<~nFME&t#2183o)VE@M_@+#p)dmRqBZQ2)Jpm)$F2K0nG03ae zBd+0#q0!eJm)ibLWoFL9_3UA&vsaSL@softGh=W8c}%sAR)A^RV60AeN8<-OvHtQ( zlc5kV6gIXT1cGV{RPM-jm6rs z1Juea6YC$Cq2#W3)CnplHtthM^y*ZYE{MQ}S^iXPUo<{yRY1i%Z)wxI$;4UyBdI;j zqm4Gxpq;so{=(={sgGC5HhngheUoPQ{H6-qL^tA7X3Xy=Ibl2F+h)y+F*c}>f`f-M z(9YHi0wS(Z?!zPep5do&Y<%g2 zFMl<~=d!Wru|Ns-E`QHwd3fNf6$Lm$-vb46w~?YbqBw^m#m~!A#YtFuLOH+6MQ5uqEn336U#}sqd9aeEr*M{!lBZd2M^NY(f4HqQ9V+LJGGPW>YI3c z5p{&5mHHxYNjXkC-^QO|!Njwvc;cHO!;jB>ww`p&OsD$`o|5-Hx!`tT@$t{>B#>m?|klVZnQ{vZSms%e9CL54KgMH+Yl@VUJkb%?u_R-7twnJ-MJ_dB; zkqfm&)J|+asi9+N&2>u*Fb`(@s3(mVj+8@#XNp)cMVx%(hf?3)!L9SZ z@->n+;oXX4oLRpHj=YS)cYD^u`xhq~EtvDCr$ZiWvMhw`L~nYeaUCvrlm!=5b0B=^ zbRu%xoy>}DCDw6FT+zJ{_{Fk-v>fSZSKO>tjpd=0?S_ zlfXuN3mDp$P)}AiIrd^A#AY_p?5L5r@X%F~oM3=ivQ{8vn~oK{d+b(zC5GE90uSmB zLnJ5Qyub=PI$i~?zfXnO?TnvMSPJ)l&7iT-bD%msh-_)BrpG-q$-axD@vFgHloJ0+ zHaut~vdOR6(xGv)Lc@-Gf7C=knqp;&hCVtt<#L0~sL~rZq!G{qW(BD0a6o^m7 zSm`Wq?Ph+1(dCPG1wAD6W)2M;dBfP_ehlrh9|qlFgXqam)zNE-;_ZAqmY*F^@3kzIiRW)2Pfq-AgMA2uCL|6=g?zxidPw|rtvUd zJrlQv8ewy^BFLuP;eWJur6NAk&~Zxw-Wmv~oahwT%}b}hhZK?pp=RXz*cGrxHXC+r z<*~b?V?gbr5=?WAf|1vD@ZD1YyU!gV%?Vt5^|2I7zm~B_o!E(wjK@J!$SVG4J0K<1 zw(PB|R4`Iy7!D3dGYR|@w;=GIBD!Vs^Y>y3;k&PJw*%SS8IXNG6_o8 zEAktIBcS>r6N6)6kBRmw{7ceT$lmaDyfySOQR0_D+wB-QR~!k_YQ`}B*KBk?%|T=7 zkEA<_5aVtRReGlZ&D)(If0HIo)s5$~7w)IZ-s?!#Y9YJWe-)kCHU{sUi$-DnSo*mk z0$gpy&;ef&>p#Yj+8b@uY>O?r85WSy@0B2rk%?>0Wwc;>ILh;h3TO~@v)x) zPEpOq$(a>!L`#P#$ob**x$*EMX9?W<YG;hIUM4a3Kbkb*a6C*sl!Y_4 z@jyzq1go!D<2dP+Fsq>$dl!hJu5=!n^&~QJa{I`=D0S>jtAQCunRDXYFgPxmf;Bs; zNnq+^w10lyIO|v!+wp-P(9a&YaY7p0P>RGkx{g$>&IcVC|JkGMo&21axo|A}J=@EK zV|4v-4i(*fldQU(1=ce4bdS3|B>f=@rUm=hXIjSK(e4@$|2CVQay^y2&J08Dn*v0+ zTG+2vM;2%I7$qJ~$Fr`v)No`v6Ejl59)3{*j3p}35-yUoNv%Zi_O0cov?XSj)G%HUm$aTjHX3 zl%||u!HVh&q_`oKEh#%2Klq#>uLCmhQer6WJQ<4?H{#*-WAQ8%7Dp#6Lcf%8cP~u%?m(cPHSgZ6-J; ze>Uh&W^l^yr91CufFSz|4f4_kiHp@JS3DmqesxCOM>8-=$_UfnSHaY6im1=^qnmE* zphb73h@!9rJ!XxDdHyMMjL9yrb?TzxGTC@#)>M$X6pl}wbznq(C64fyBO2@O)6AjU znKihIKAN74MSZSa*yhoEWF?8lC|v||?s z%N28s@!J*h{w|O1IcQ2JF+S^O0fXRq=SsYACLLDVO^53vWyse}60mBh2vNT)4hb=7 zST7kzdJ1y!+SyI0wVs2E=LHkT0CTcEcqKn({4NZe&1Vl;>x|djnBRXKY9j}2^WhMk z2i?r??DD?05ue^zQu-Zm3i~<=aOm)4EKF4=F@hbipnL+Ft?@G!PppQPPGiVOWc(@YS|B0` zaO%QT5|t4EHDTRUF}$9is~p9|q$IMpN2NfTUOvtfD`Y#{m4U~ML3lwV3WKCZ;fK^@ zc(ivWHfUu-N&PZ-cZvCJ${K%Uc|@UkV+u}`P(_vljkY9ci z#rKDXBad~e5S)>Z)+BXvR#9|!r!QIHc&;%B(Zl)%)4v_S05roAJ^vkF? zm@MpOk5Scu!*8q5;Nwv$b0Hf~?`b7hyDSK&`vYm+SVzZ124RKl2jX;RAr7AxM1w{j zVlQ1Bg)m8hcAtMlLvbDZ&e1UNxU>^DF#x?*gNxTcTl;<`}x}fGt|D5Yil- zBm6Me8jP*(WIuFD0wdNF=C_w0NhO0##(^pPhNBC~?Ct&-yCwn!2TxIdRu)7)G{Wa8 zTVO=RQ@T^3m#`f8bnyrzs~Tg;(e0*?qdOB#<>Rpyr{a?cWuo0yg{OC2p@}lZc<91> zY!x*GPn%B4(Hf3}^jAauS`B==G!1&r2SM(m-5^+;gylSQym0jdy|X$AmZ+%1RI-O; z#ohQ{44sERmTeTrRT83sP*GAc%E;!vjuj%aP*!$Dl&lgdd+)thMhTe}&vn{ETPbfE zG-;@4(tPiKpq@`X&wZcq`+kq^y&PBQIld5#b6yj(re+Qb=^*ZB^S=A~iJWpU_})*V zKbxy{-}yLT!(3So|Dr|EBpOWXwpKxjtus(I&+9&GE4J4Jp!8aRzrk|&_U2MFmOO$& z!D-}gbt0Td5@H_RN(QfPKYY7q1GZgNCTeG!$UT3S;R;~c&DNh}X{#;j=X@m&Pjqm5 zd@IQ&UNEc>je3>NSaLF%<(z*Lcj2!TrK3T?hl?hKCc<`sLVPbW6J)i5q4>2JZhZHL zMxL>NqJ~i1+BwA8#qonb$=0B*-HIJKG1xV&is~AP5(4rpH&PoMpfB+p{qh{SX@I{4XR z-&8jIy-V@5-XCV4GcV=^QSw`XkImO6l9P81z&jCMYVL#NX>cJ*olqqv7jj@$xBxt@ zxIzUX5H)E7ULUMPwTqwWlIMD`c`6>)A6N!EuIrGcdt=~|q&L`~d)q50-$-sMNucxz zXKab{hg#W0e7m}^yE$%0=O$@0NONKvvU9exG) zJ75VcT^L4r%bt+EH(iN+*&dv7V(aV5rZPhyMLXc%}S7+0PDK zhLe!bB_6s`N}y`LCJ4+t3}UbT>eei+#sC97EJ(>AHXnCz3K!0XZodBBp78a+6x3oN zR}#uE+=Q8HxFL^63iPk~!(2y}Pt`O5L18(tJYkInE37aMG+BPCnxm#2MhmRN@K(G# zN?bI@(y_)U$p#g`v5Zj|Blg;;u|+a0s_2x9yfVSFdw3NGfUkbgdozF1`mj@u$&!woh|I-U%F z3Z+0kRu7f0%_shIbcoH)H8^p$0OxC7Wp{*WxP;vuyV|+nMfkvZ^d<=^|7DRKQwvb* zTq`F*Zx#OS%%hdbAL-Vqa7Z|+0Lq^4Xya%AR94qP(W61qGqHq}mT5C#UVvrcdCcU$ z?I3)3EpfdQhh_eSa5^gniL=*)u|bhbhj zy(l&pu1!`$-f02oIy6Q+v`yhptOI0(KclNkTkyrVc_6UU5;Q%N>B~Y7bpN>#HHG-$ z_yaj2xJeB4SC+$w%~~pY--?|5vWIvGlb)KWGreSS0bK7jfj?JLka1 zkzYiB?naTZJeDPPro39#Fk@&Betzo+^;S{vx2K%ev;A^x<0f$M{!Pwi)X>7UHMpU%$g9E68<(?mmA z8P=Q3!6IEz_`qdE>_eNGan^@$J7Oy_!Crc)EfbTzR`n|9X~H$bWSDij7R=@bK*y(R zWW~#iBqHuLr}}putb6&DQFX~?`5Yw(WVzVg!XK$%P8O*;9gAaC%Fwxg7TOAoGDUZe z;G0VyY1k#!d2pu+jXv1)evhD}VO9~i|C^#>>nzZ~$PK(J3-Ma356H2*?#(qZ_*&r; z{aJR2SZ~-4+((+o7yH*VQ+qkfZzh1TYZ$dYy8#8~wQwrbL*e&9Gb;14fgToO@bZcP zSdzI9r)v^%nqy8@pXwvp#fF$aUj>_DeQBh13>xNEa8%DeCPR8LkUZoGlFP2qk2m?@ zr;rKQpDo1KXNobcwE@(n|Iqxu?Ii8I8eTV%!R>xLXn6k^7@}atvEcpdNxd}HA4B=Ei%0F712;D0GuqfdX$0o9UGdh1m+t~j5~dB3|1)4AT$j<11eG%icT55DDa2YBFLE=f>&dWsx< zyns5$gks48G32Sa!las3lIO2(&?|ra@JDY2HnlGVAx{|){$YvtIz!n0ECr>{sY7|! zI(R(XP1JaT&@y{3t-2NjD;jSSqpm*;SF|Nl&pIm%Y})u%*{(s?d&UB@v$a zI1ngEZG#R#RlNsz2v*T0!~3DRM*v$-a$%=!7@pizjtuLs3I5DWUM*@OrIYNx^*1N% zJfw^FD`sL~O#`_zBMm?HEJ5WSCycv1ADoL5aoa&X&ViTPIW+!Z3PxQk2JV&!9QK`0J#N&1ndv;JOFfK^5D(8|$H||#0m|d110CnD zF+6M*JZ<$sShr=0b0&0z!9;#o?c|5EV|UQWjSF$f-8{n8;RQU(Ja}wC4k56ZaJeoc z%p7?Vay%8s)m!PUnEmh~IS*x`vY}DvI~ifQw2PJ7U~Ie;cJJ0gMVIANDL9+R)urRi z4KCmll7cm2s&L9-4GF6C#loFg9A)iAc&|1A+PB@H1#-oR%sl8_Y)bZ@t^=MO5@7hJ z0J`=@?}m__7wHJa~O_accoj`n_&vSHK0K@ zIGR^Lsr?t~BhPZj{1?fr6Hz!K&qacRw&1S&^3V`l1SLC9(JL&^Xq>tZxkR+__=aSh zYk8svyq7`X1wFVZCX8wS7NgqQa{OVz=K6mQkwxlpz~#>&K^Y13{P8c;TC$Qn;}^p4 z0B>0CzaK}we;^-@6>}nzT!2=5gwj#o5Nq5OE-4r5$n|joM_GM zp!F`5cHN(cug+J{1n%Bu4!%8wNrH@y}X&=vbl3Lp5BA9yM#c~cnunDsmHx# zzQ}!&i+G++=43e3QCW6=J|Z?BA4q>CSt*N2_ZL+>+SdRM0Yzy2$rLokt6U?f1M3~0I?3qH~tM7w7)PbC#g}B#J6TWtzArUi%NG{t0OWkVW z9Oq$skM;ZD#DyoiUm7#;#;JHZ*5pqf5A9&0POpP6V(HAORRRzbUqwh>=lA?Px1 zWi00T;V1EXbmt{mV)Nh){c<||)OouwkXg0`g`1Qy+3yC?4L*d9@kdTu2Dm{57t6&C zN8umOIGEg^Or%uJXx4ByGxtpp=XZ-QlSSjm?G1StH@ArOSE%DV36_^>@r2D;S@eri zB*~t-MkF1c5kB@eo?YBXKDd{n;a4-{1Uutl9xiO2;Ki614XDqrkaDj)JftIk?Yut^kfF(zCZ~}D(Y!k zQyy4Vl*8TwR=AYSg0E)D@!*I+D5wd;6G!%8ap!fq-a(lLJY|STx(KF@G~j}zLA1|} zod^2v#YUOs!2LHF`l`g>q@XA?Mb?3ylmG;uD#jeXXwY4Es(10aYs4dBI~*t!M$gcX zoI}4wFl)IIEId*VA0E$x_o^CX`(QbJcSsYx?!>_(pFR@#k>yIYx~Sk}BING>j}ufC z4S)G-P-#^e2FM&DSAM*q_Sc6=%A7!sW|4kxE=LYVj(L;I>#}f_P!V|Vctftm*wg2H zhH&!oVOSHN2NP`0EK0+e%HMlMBTAC-pWFtVQI!k9OM^I?hO^|*oTdzR&2y?+7^kHXia5|FT(gZEE@FFEvSvL3L3i3zkH~+80YeqWKri z7TZCKza50G?>Quo7^8|zGvhix2x6!5!Am0-emHO;?XRZy8?)eE=>_V$dWiVU%15~o z9TNT8huF?%vsQcu$$`K|G;f}XPhP0Q=P76WbUX%q+pf{y$!E#FdkL^5I2snLc+27S zu0}^YemMR35)rAkfj%ieGOm+LAI4`=)4U`2vGW*ZH(oTpG!D52&yZ+MN9g0pC%$L$ z2)&+&u5ypbRxcUs%5J7Y8%pt8+)>v5*Grxl9YiiWb!tDX20n34aJ@PktJm_w@7*jn z!p?SvMjOyT<~@@NwfOPEdiL`H_8%*xazFKfEAC>?mdGmj$zKUwF{;>K|B=L-lwyC( zA!2)`mo{6-qqg)_@{n(odaVUC`y)@J`o`!)tOkAZY(AuKD5G^J|4?}!vDnJU1FL+|5ix?EE@R4u_ZHT^N#~93x#p>NxIoZFnnLVMuX@qejNVTXi z#ra!d!r2fc2Hn8eKbn5#Bx1z44!*J+CQX0q@Kr)JB&!5K`>y?XPD72kQoaqlPI^H^ z^)QuiiXqiDew=exVwr=p`bnziQZ(S%%NdTULKVr^jHCP?Qr#Uw3)9chGd2al75{{( zE=|IK@qg5DnK8^7X~g0y3-J2rbt(`~P|8z)v3zxp9;IreW5*(RHO~(YCfC5%v1H7i zF~q61&V`xo|7i7seCCqFD7o)l1iW8Vh=|J%`tf}nZcK2(H~OqQPWl>^+U-QzyhX{$ ze_~LbJ%`P^tOY606sF!V0p-@LA@80zqQ|HrsI70n>S%pf;8w~>FLYwLE?s==CWHoU zdCbw8ERy>q35Gv6pmE0)GR|!YUoF+3?cr83=`V}@;qDL~K0r(^&cVmKSf7Y8yWhMh z14F_auwRmO!)%VmRi-MyRl#O{6c^A;on+)PzSnE`dL|mgWWqaxT$sx}1M^vj&G=+4 zu1dR3D_;)NXu6NN!g}?l79YjL4BOA<5}g%#O_f#g z>%d_MFZw}_gs#GSLd6hxdK2<8`tWyuIYfWe!0PZZ8l63-S5hDWtGS2heN82(PO~Gm zmp)U@bRJ$eV|_K_GwHHQHfI`Jha%SL^t0(K7`>f|QggiE*CT(7emzKX2KX@9(;rk_ zQjsn?M|7uC!SRAKTzXIl8zYXu<&eWj))bMts7&hdg5}&k#6h^xMSAqDBH4RLj)s3d zKr=;Z!F6*YdIal0c&;CLveW}MxvF5uP(6~dG4iZmkyHAs5HHkKf_QQ`EZEh+nbEbl=6v0;uWhl5aA2)C;F|@Xl-V*7=?r+Q1xN|jIub+n_o(FFLw>y=EM5f znj%^DtO{IJ0aSyFpgCcLDo7_{-M%3b%WOvRHVfifUy4#T}+XG$hQlOn1OfuUOpz+5lRQYa;yiQs~?EXe{ zOqNBjj(p&LJQM!jse_{|$9MFHKM@gQxzLMMH2*gHp4!6hqAjB7oHshywlfWG*Jt75 zrE!?Q^DHet5C9^fYeBA~nc6-IB*Ayy($Ou#aIT)v+so>y+^q_7+BE@adMUVGzd#11 z*c#QKl!`1|4-ePL(0Q9zA(hz-)dyJ?QppxI7d)a9x{L8(bv@zyr;5B^1wmz}JGInE z0uLrK?V+!DW_DI)8`<$J?c#xbzrV zU8#)w9(tj~s2=39oJ_XuRbuH|Oio|TBVK&fV1C30uSCbfIV*q8=Tu#EZ23u6JQZU( zPSM^c3v57~KNESzxZt2+6SX!+F%^I9Mywy_ zu--CFH2o+G+6oo;aK91kkxd7#<{ijYBHYU>tw?o`I-=CoOsejo0R?YkvE#EhnlW}t%bnPuDF~HT$*3N^9WvcB;Dod$BnY(7T$}my#vK#XmEwY6X))LtC5!P# z=K`;VAK}_`jebd91{~pUOjJcZs`tmk4Owk?e%Atjytjl`-upo4OF1X(%}(mz1|*_K z64uD5V8%NWbl$pwdB9nTQUP7-0lYd z-Z@b##U*%`bq1uV8^Y7>aHi>YDyXdRh8-&MXu-FLvu(*H_<2!++*no!Gg#-uy{-V} zUrZG8o3T5uj4ASJcN-n=HbmW72Py4$!^G89_*y~(3ab=Rc2zJG2@qP5Xh<_y=Is8T zRtB~^;oeWiq{v%?em*-z{dWk1y-+sx9mxe@hjdWezK(pf?@%tOGSm;Q#}t!NwOrbeScO)LCRm=V6ix4$0F(#eaMc5{YDF#FH4%Wx zH00(E#TyVeL{)R92AxotltJ=uUOZ+g&g z>8VsQp^c7u_R+dgw#Qd)z=8KmSg%MF+!vRi6<1iNH|xuLwDmFB(zOjetqVDx%Ic75 zsg9fPm*as%5vIG?4J5Brpm$FgKCwJP?j|NeOMD9Ki1ekl>~2NI;xxIe*-YX>wvh$7 zf5=I`E%cOQJ?L7eQk(aeISS9UK%VO%xpO?4ImP;IN8EI%(p5gpPp`tRH$L?Ih4a+& zXbwztT;e=pJ*7eJ^+?egl)hKe$v45UFI^B0g=FH)_D95eQi|PKRHB2+N(wg7ush5c zmE{AO`}$h+O-dX)W0L~wXm5C`orpU}h_1>3Z|r{p@YT(j@EEcV+^RZAepyU~6<1c2cb$U)U6qnHyH0paz24k8y?_2~x_6^(5rmscU;c0rudm}958lrny zzlr(jYeZFV4j8A+L?fRW~Qq*V&q2iW3IlWzJ^QW*6= zF9yqLZ;WV^fETTqP%a#fV%uNSAIffE^zQ;^!H^?3771fU_**7a+6E6CYh_#64ESJa z4~O}ba22m8Y2=p&fjg%tJa>lKF?sagFTlKyemI}~ZB(};(zh?Pu~kzAmKw&BC*SMQ z=(8y`4jQG6MOi5O@;;-iegIUzt|YQX%faa3D>7tqmlGs>mWs(3L*+hsY-T-j+nEmP zP{(qpjs>tc@F49D|3TXio3I{mAX%gQ*i?}QA%3o?AR0iz&ahtZpfnO}kxq@3g(2y5 z1J0CpqzhCxf^A_uqmWbpUYB>`ll}^lb*&tpXWPTOusi@u4LIi4h;e4Jbn6Dzaa|_{ zU-gDLZ<>qI_&Qt9u1n_3Gq(W8!X7HU!y7lU93A(hE%lDE1}_I;RO!fqY4P32<**VC z+;$|LR~=E!;TZ8dQ-FSr{>U53?pU7RqpI2oSUebl*BvZSY*7vzu3kk_3v}U_gA84` z>^fD{-%lbtTp)Sk0MW~_0ZTR+R@_{Q78zP|HKuio~Dq_ zzE||gMO}E6@s%FBD8c5_v{CYfI4YT*CLHTc5SDfT#1kZO!k+a$+r{8{w>8)&RS3K9 zIKpLR9!O<>=Z5C7DCQ6ePC*_d*_!p14@`3$EX#@Jr%)99F9L&Z3WLD(T}n>c;n4az ze8H450=6yW-nUTtD^eKeb2`c6+-yAaFOFVZqC##Q+=37E_Tq_URj|OiotDiWAgh`` zF}7dlV^0Sg0sK$BCxI&)2dgznkqJoQW^wSRGV`Ofz4&HQKhJkDr zyHZ^T&;QlNv1R$x#)KQpUzET+D=9o{$$A$gN2p16HlAR!%C=$i(fznS?&``V)*sTT zP=qWsZc4_^tQtHqx*pzScF>r~5z6YJJ8 zJLjQ`=0n=#c8f?}PQ?PV-PA@yh^|Y@W*vi_^zPygGB_Cmx!WYkHHk9tUhD)FGRxSU z!b?sfpBC^qy&_HdD`|VN7`*73jVm8*f**sOjL*;lw7!BQ_2Dlf=TXf}{I>xM3iClm zcm`%QYr)&WbSi(4_3C?UM%mTQ@LDtnw=7|E&8~IeeRDlrZHi_zjXP;$uLJzajU|C! z#^|yAYe*{o;;6n*`%ae*DCcl_Zumj5SH*xkntV2h3ZZf^b4352((0zGxE9|xtqK3Sy z&}n}tm|02Sa;bXYPG1QZyDadz<2=e66acHE)986lDE!Luq2a~-G%ygZ3Jy&yy zz*9?1*fdE854|LcO6_E9Q8&If;leSiGSI*C=(LOKG1%99nn=6#(W{$oQ0GB4ayEM| z3b%%$R9iml#AauIy&35FiOstm-$cYb$}sr(PjW8302cmx&X{d=<*xGieS`R-Sctu?faOm4xMNrk2gp#i1Fm&e$Ib@v&_MN++Ja(8P z=qX0d)aigVdxJrqWfFY+dEsZ;3Q&@hfGW0D87*lf!_DQWbF!I`t_oaq$N&yB9|KRz z^Q7zOYDj8aULQAR<9pJdK}KW2STgsuG*9N$VFT-v`M_dJTm_q$Gzr|*`+gXraW z^5lLP-g2K9D9S>$uPpgI;}j|2=Hbk7OGD>h2KYNG8}x;D5|6t^5UsSB9#m_C4^8TD zr$mh5?^};zD;J~AaXHwbR18mRQXtsh8Eu-5(zNmh=#;fa^%a{@kE(4=D16DO#s@o_iExGJa|c~ zLaM1?SuLD5=^)(K^~mP`^ohd6O0@m#1W&qEd)st=hn*%vq&Mj`=X=RK zkhqu%*Y6xdw?PR|35-NpeN$9=WQ8Z~Z85_-7Q!|R_Xhv&!hTCX-2TXnR@|=vH_=t# zU|mnYexD|nhGOvXspr z3(tm*9SKy=X$g(8cLaYohWwTeCExa>p~t%(X2{!sE?&gWDp#xH$^>!B&v1y?3p1=* zB1QZBCTPiMH7xW8TolPN;xcELH5xsb_hl1~2HD`E`Ca64)dc6%ni%-AOBqh?3&T$L z1;8!nhR1EP$ytYkm`ar}y7~^i(65Eh27`%w2Y|MSFX%ek!s5;t6dW$c7p=PI1j5imk;f)r! z7odn=w6=q3NEa2le3BEi_Y`yB5HD7~l7T3-qoBXWn3H`lmrnOsz~Dv&aH(yUymFNYrHnH- z*;_cH-#4>6U3--L8^iI~a2n-3r)daZG5#4(z*o`UEVs6p#sz8PPRlTkcbF-}*hG^X zKVzY5DulGSIKqnCH|e-#02Ni(!p+6-TBimENnpLfyF+Lg58zW|NIST3xJxK<6ryRr*O*reu?X zs5_+YusrM2O~>#*mAI_sIcd6d4u<9fW24{2-V?}yzdQMQOS-nf@ZopZXKD)8PoL9U zfiYWxOOGq)Ki(F&PkFQ zMyx=yLyF)zBZCOBxv{9MOjzT^fgSIhKrYx4*O@*eB3n1$!g990Fpog-fpkvX?g7q` zvTeZkvYwq&lz`#Ex72IS4rtmfg5T^nVzKrM&ZYO?sF(U8{80Rj?x~9B=(eWe-N`^0 zz#&+5hKGbL*aO9$;>0xC6?*$vr-if?C`u=xmF!`>`7sF|t+t2DxuG1_lLvA5kvZny zU{Lp68}rF14Q@tkgdfko;1%EZ3=vGm5YtVVPM?voC_VzWtKpQ(WscZ#5fbCjg_~U( zu%SGfqpbohTC<hGw(wB{4{`Kr`HXeQ{t-$itCqZJe5Cj|!f$r;*?0)cG?_IUo;4-2{d-t=B zl1SJ;5>TaSS9r=ltAs}0#LL{6}XnMcQ0m$ z!{#<2%#-HDoxGJg>pb^CQg0T{5jCJrpFNmcHxHmU%V)3lNrXlpFOt++gp)1e;Nfk9 zLOt5FxBDYCEnS5ZUH|E>uX==*#+{hCs*LtM=Eb;ZXFR*o9hB3Wv85scqn>WXtdE~) zUz#{+UtNc`(KDE1b&aGZbuYOQTSt$IE`skoj`&$ffx0dTLu!z+&leC{Zk8ICR4^_XC8!3fq~1Fo>QG)8g|^fjAk zMsylEI_&^8>CQN?y%x<V&}jz!w{1A-U7QWuBQiovc1WB z4qble4v}f|fc+b+Fl(n2j4nC=&5KRom536|TXqx}RZntesQ^s8iwAyZeTY4v18F-( z*!PS+rh2F0j*}Yjhy9M%%&~-1$9Lh0fz@z0w}ZA=sdBFWmrfZ)J6u+^lg@AdMMTcGvZXN7@IBqcdTN&blEc*=Vyw4_ zk5eP402QB>z`4{!qD1e_xJ)R~?=x{g0qwdlBmUR)G*-GIjWR6qCGm2ER0`(~zY}GOPr&nv1SV*v5rj#~;*V%Ey057PJG7u`;X5W;aV{=k>$1Iu21F(36KOy3j2PNAlc#*W5T)Kg zf4|;^pU5_N`ffJ}*+|g-SuaUdQ3aleE2nDq>v4*=8t3}4ny7E4g7 zeS_1?cdd>bR!)<1QU+wi;ueGrszSV}EX#|jg3yLm5^q)p|L!U< zPvwq~sxf|jSo6+Z1nc$tr1zc?35FqFZ7q_+2qW>K5 z$AMfja=i!&JbUSXl1uRdw?Dd9mQtJhVd(O~2)3L!jXX+mIQ`=>abKB1SL)oS0%U^J z)m^2R;(f`T3S;cyPX}>%_B%k+Xyo~ebobq@Xp(jmfAaVM&$Dn0_2WgSWn~aHEXUr_ zdPLv6-2j|h$8p9SJ#h3|0X+Lg2~Sub`Ntgto6>iJG}{|2_FPD39k;-NCp@^R*q*(A zvKoDVpQjhUMxd|lFsyfLWIXp}!LOoZ)D_Yqr>wki>9R(6x4{U*+F0N1+$h>C*g%?c z&%uTZRq*|CA~>#!>RtY*2=)eZ!K}|-7(!y9PH8q+CriQ{&rVqGHAYVRnZtD33F`4@ zDQt>Iod2GmXEb zIcBb23K@vyf(=|n^t}FG-ExUfGC>ne=%&@ zTL3`?ictP$w(jbE@lc-_gI^<#W85S{zF9I}Xzs+{hs;2|+8D-P7ehj2FTMt2^wtZ7 zcedAE|S|jcXiJ?myZ_ra)UXmLlet0$Y0p(=3AcjQa$166RD{Q}e&OZ{x z`ZqIoTcmN8O$t6?T}e3%dn@jwAf9Nm2y`^`0Qs6U$Ii00xq(-b1^x)vWVt|6a)$iue2zeH}{T6#jg zm-a3Dk7S%$gg)*QHXmiSMznw@>!;s4=E2mi+YVnRBdS`9G5AAGc4Pq zm7a`eNf{pN^TKaz1~>caazysN>qhR)cqCMY2qy|+zrY`|bACC_{x;1R?e!ufUz1Re z^=}?+-2^`0c5)0O{V`Y53dSR~FvLj~E_TMyUDN#NXeEs8n`e^SS#ls^|5P{eb}bf& zmw>Lz4`y3+5H94~0y}OlMfN5s<9^ivIvk_P2gzS#m3IJ|@SY?d)ACqh90AIiGW4BI zGAELq{V#cA&pLM5*^!44#=o5j!54(d<8Ickf3X2I&7Tuq-rF=`t~0olvG;u+iqayU zSQ=_l4A+8WLG6Jy8Rxo2*6*zXNtHcBe(Ppkp8Kzu-76=^F=-)MG$4zgtHzlH0}HU4 zy%Sc(FG^OcH)2#(8SuR`W`usbL#K%iU3nu3K4r7@RX`nV9a#wf)>Pq=)>4pdio;^D zG>}}r1#ef_qZxk%oYA|%To!gip|gf)-2IK=)^dfL`)|=dEK_o%pa}M_hyy!)mIcbo z#jZ=Y$qWBsI)`Q7n8UA#tl46+#H0!XgHmv0LkAu6tD@5>j6AbKrp^-!#bkPsw+>PunOPyq^yMBxNohPA#; z(BsV3l50$1b!aWTFD=5h`}`2#vl80pbK{t686M{p!{2*R@S9}~?1su=I5!0aKRcsY zkUtz8K8)383gGH5KAc$BL}go7fX<>`BK@WSYrZ#N_M1%Rz`!V(@x6s(5HZ5Y-aZ2N zo?IoB85LO0`t)K0*AvH;cS*~`-Goa)fD~^@M!t?*lCbyyjCNMRIFAQjHP6I-ovcUG zj=iCEUl7LzMX^057mim}Kwnx0F4JCt%6X%ViPmpYvEl@2-xI_B-;092jSk#cIEyLh z6oKxm<~WW*K-MgU{qIV!>aQl=t(;HJ*{!0NH$0>f*%Bzfn;TcWDTf*F=W`6BgLIig zql}%II;L#jO;*n?1I}~;Sn}$??vNei8-Fo**D}o!i(LRNA7{`FCpO`dd8PEf?RE?o zn@Mbmn$Ud_nhIHt3UG#35#zF6(CeeyA@>zQn}oZxP~bc%d~}3<3$r5?BPnRRwTZ}2 zw3FTuEwu8kW=uB}b1Yu=(e;~0bO#zF@OZs66iJ10-Yh@DdDWcqlk#N=y4$$K6lUVDIM^X7ipDA~>6Y!s0lx%vuNsU#8;yMWy7} zT}}L{A%bj+Fg`q61=<-)F~vNGiXY=alP?8upPfa88O#9R?1z*mX%Cn*i^2=7gTzl`4tD&u z!HkQZBzm$8OpBYLCQS|w&u95obsO6B+rC$PS01NlaUKY4DnycChCjOGvD9}V@tiA4 z4}~SOw|`g`(>@Wx{wAZ?H19TUUQvo*cSK3kwX*$$tyhJi)W9Gas0 zg}%fMf-*ontQW(f*`$1Q22%58O#hd%4;38uSRX)Fo z&yi}VzUc}F8h1hw?|jaO_D0y=;11`)>hQqNQ4+kr1bldZaB_nZ@XSL?T%zp6G5!T$ zp7ENhO%{;E9JU8J=}BHos?#o?HALdl3T!lU#ftq9Xx;!t zhK?xP(oDbIjwO+=hUtk%y~OO#b<&W78hI-hRs1d zUx>?>@WS`l95`~^7U#0hY^UjMFuKl}_^jLkDT#6DA9+uAgLnZ>FW3&3S848?-W?|5Gu$D4&3f1(9R#ui)g%?f ziLP)sZSYA2h2|oR^IVOauO`8N56W=9*&!V8=f^*8%dt#484A|Bf^(%c)X%P`5z=Ql z=j^T#s-mQi1*6M=H}?+LyTu)|XU4#%#W5(GE69GoK=|e44F_kc;;R`! zC>l}2YmvQAPA%>v7X7)9QK`$$w6|Lxyl{c0W_yer-iL$tIo`71O`z$r25*YaWNeFt zxbB%RDi7Zv^Uuq{IW|A8x7Ww-n$5&m#T=X7snBKPQP{Gw2y}P+BdQy;@X>8Y#$GH=YMfO;O3hR53qu=}6~eZZFo z?WxNlVw~kAqr8diLsKlNw50|q%ZS-LT@bkzj4!LR(XAjGdi%2QTc#n#{h9$bjyaHY z)DSCk_#uYB9JKZw#EI!PQCJg3#R zKWK(t5orvF1}6_^w90Y-LCZ=~_ag=sUmWBOGY;U6>FeNQ`54{g90ApYc(LC$L$ym$p3I>2@|Jv^$-R|;-$7#(9jaKALBLFaLOOdDnXzU4M> z`<@m4i^*WVM8^NvJ{8>p(#a#mFU+si(Ohz1K5yB>7B2d)3}#8K#DLQpsP>h)(I>jY z$O4uVPL-s;5`|%D(ZaINf%R3s-oCrO-`|yU04u(8aqXklPpf@oEE22DLe%Dm! zR}TYU@p7;*wZx!ly$5tw77&vqEgVm@<{CDPRWO&|5? zT!_ykpHiI(g*abC7W!iyaAAcV^Pb-{5^pV}GXslp)9sz`XV483wwU0H{BlUkR);r< zWpH{$C@*DJCh7l|2c0bjU{Gv|d|@+NUai%Dk_|09)dQRH^P50mfFa=1E^Br;ScJap z%+W%RUr>xUHr$~4x&`xN~peO zgAS$l>5GUJbem`i>pK^rq+l*D;9~)v@N-7K9rF!yMx)`2M;hZuo+I4>h4knSc|0Va zL!V8QfIjB9J$h>joIbmVEb~|i;x%3L|p&_*Bwr&{o6wHRtTMm=mM!S*7pC|sh%zvg7O6|cEBcjqk#Ic^t+0Q(? zrnd0PMH$uJ9RUsRH1su%#S(QpdfPk<%rBJVi%*w$OARBTsA(oBeyAcjZmo3iy$|xy zX6|&71L-{fnsGC&3|>hb2CKcn@Ht8YGK$UMv=9K_h%RR}A%kaP)l+zi1C+GFSNK>SHT(9anruL3`%TFxo$Z_ zcy6)_)x2dW<^82clrvDA&F*bpbUNE1WL zkE8geD&(FfwiK5bL$z4|P8Zn=Yah-eaoc0)8+L~ ze4LyQ?=oU=+$|Ne1{Ol0e=wx`v-F#0KUw3l6+$;&Chy(WldYwJr2F?$!0U@yhwD5q zaOF3nZHxC|`I3XAtK0=0cQ0d}kcIHzLo7~_v&U=qvq;*E0{ANw4+{0Mq{?bn^ON)h z+y<**{jo6eL!5ae&d!Ib!!v-F-9x+1uY$>}zbJRL0EZIUOtW+Yu2`8$t2z)P4;FGY6D!$Xi7?s0Vw5ZWwWs=R*WhM2Fyf zVrj7gTt*79_J=S=UCafAtXLYdR}^d}t77ksmn6F@os4|yBfA`uVJh?3HEmSJHIFJ$ z>bDJqS%xv+z?8}^D+xa zKwAmsuaCm`zDoT2T9mm^S+DGd9^Ab&8TGff5+g}x5YxL%2l|AuJtzvt9Cx!^)E=;_ za6?6(Z76nAjffXSlbTs-EMGni474wi&a`m!KamOWQ{PBOVG5a(;D!?}_z{tK=A)jv zoJTd5OYTQZ-c^{cc{tS zaQcuMkb8Oa!10$dSQ!;T(%#)9DyJN`ZkvdOeHHNgTP=v*t>k#=B0s&SI=>F=Chz6cO#I#bZGy$65@WGrlu)>$wjX>)aTk_5`B0#S_$uh z$)}8oH{pSb$`w+moV~3y7T&v@Su5G#=58?%)pfZ>Ir)V-(C-wus9kb{3OiB;qOE_0a%U+DXCp zv!98Nh6?J3q=LDxGW_W+qMAY#;5jl20`En^{>$B@`)&>x{8olpUmAD{*&n&{I_y2f zc(qB<=}@(21^sw38uxYVLoxH$G_o$0{2Bd1RxOK19_ym-oOc|jn3(`08^Zacdw^TN z5Rw(m=+N&-9{-wt=1uA2T=E#+VU9a2our6W*QKzwvVkU;@o>Vsd}_qr!?OSGlP-f( zz^`F}9iQXqrnp!zU~{ZFi=NQZ0CxV#5@!@@e;W8Uik80&1!cxPsT%OXR2xq$P4k15 zJ%Xfk4omtB@aWdfZ@C7Q*)XkXANnsUfuHN*=)5`=&|jiXCN%m$UaJ(qb6vC@j)HwJ zOo>H|0$EkM7v3gE;qhq|a53~Ce*PSSXU-LY*?D`2_~k=h_nxB%6|^v?e;%Ibeo7sq z>~LT-1&iGT*{m)fa^%H$2lj2Hne}V&ci1bMyE6wr226*^)~Cq$(~rE`Utv&Ul7_EK z(uw2FY2evffax*MV+Q?Tx0 z2szrj9A9^^`%!}f4zKsZNxuM8y%TXwxes#8f2tA?g>#*qAZBVTb1i%0nl&t=MR(#s z;Ub)VEuZLS4{+l)apam%7)CzMhf`hIIA#$5GS31)I5nI|YCon@t^-6`PlkMrse|!l zQ*mTfELZp9Bwn_!r#W&W=)P?Q3}%JmhQSK#?_7-^7RF(VqZ~BUrh;qa26$d+1Wuuo zv2$7iI^`cl>jqb7c-l(c{qNJ#8zQ)+d_Kz7heO-HWSIOn5pyQXLb`w<^UkeB^VKpa zp5Vn*XdA=#RSTh7zL7@I2~<@^jN9&?0G+4@&yn_- zqZhEWfh#w$f^!G;P-0RL95~01Un})tPmK&GM4r$wzFfRB#)Dit=A=vrr#X*eV5$%E zfgEG`PZxVw(*B9I&Go@CW#+U93E*VzXM=e6G{RffLCt65|>?8xVmb@Y%4{(`ymzsO9?4YYAZokvQYi8f|E|w`TQVk^$ zM>TMDcskZ=?14jqdY~94h_^@o(FR*P*#Fy>xBjOUS}V;)4P{^OH!|lOgxF4)b(+2~ zmf99!D;S-t1^kT1F7@jZo#dc`9^2P}&!%$FKFVCS(i&vC5)al^O+wMwWTM_|jV~QF zs24K#)`%}?{bNqhnFcU&pq;citHOooWcqY@2^Bd$YSe30k8AWUlN09F^XTA>bacHlhv=Q0#w7|g&}WkqTO1}8!I{bCcyz}SxcgHB z_ibK?U4=3{-J}Y~}PG*Fx&RI&+>!?-0W)RcIYp z2XU+;o?MkkgxP12*7SoWsrjJo)fiB2-_#=Lo=AIV$-wod8L-My6nC=x@}FuOv^_AF zj4Ak|+HD~?eB>`_{$U7jgI@DC=`>T7$qqd8zxA}bjrAXGHbL&FJTzBdrRGIJRH5Y>P+mr8OCa?s#-9RWWp*t*{WJ;xXyh1U;(oA;CHd*YbCqn4Zv zb|B7cHnd!Eng`$aB*OA*;dK0ZIr<$70}a(MkgGccW^3CaWlM-1@>AHAwv7Ds zN@^iL(s4*z5$iS%aROpb$%Hd0#O=p1Fw_vlW6XPIBqG9DEO+FLe?B7K@wT|SGafn_ zbC4WSfnk$8{I4hv!me&dqtpsodBF?LJ0#F%w|YGLMv89ktK%MbN8tv^WZc92LeI^` zp+?glV~Ua>?QIF@>Tib{Ip(a2>};`@4+q^zhe<(cJj~xBhhl+;@bQayoH3jM-N*gF zvMUfPje~h_N2Ot`H<8U(ta<(!yP(o3h2>+Fu}7Qv_4eoUL~{J-(^Kcs>id0MdL^2- zE<6c2msEKAcL@pq-asEqYT?mM{pe?Wi^y$dzuR^zoVVx|fsu7BTQt{#Xp{vl*z1oz z@yuZpA%QcsJ$bojmf{1)YN)Z4!?rprh@u89p_(i^xNQ!YE>UC-nH7-qAq%9h>)|3n zinrEUVPS(UOd9`A!XHQSYGt%R^V~bK;o3sj?LUETp3eAYI()!?sDWO8vYqU#W-hbU z^C5LL>#6cxs^yYoJ&$>TDm2NEekW`dW;=7kKI&K@4mxMzF*+m{ zXND{zowMfCEB~3`nuc1U@Y^08+n3Y#hYFyp;Re~*YDshqFOUoS)?<)9yQ>J9k{x+w zuwp4I8&a<<06n}0PV(ZCTx`t4{)b}#Qz_zf5D+JjMUlHX$d6C{93cNF09AWIUr=`_@@%qMMnv5?!_0GoyqP+?UN4V*EAEE++fA9->cAkShN?9Go5k7mT;! z^JFvpfE&;|R{_%Qd}I-26Ksvo!}Gb=c2$t6 z@_;>R=De2;$t^LGw~UURW3FK>8#r-nGG}w=79HFjjVW((c$$&h$fEHNkkT{;vRnXq zL~nuYgHOSYKc7Cb_)Iokx=L4WP=n5+sc>f~8f$vYK;q;MbpCk;?4L2`_t$4c@cR^A zl#c`FZP~;V%gyChtrCJDmm1Wk{qUskIyoniOK+T+2{Ml?;Q7L6Ox4$erHAUtm}eTu zyRP8%E^2`HvTMODaS!G{NQ1kTBGdv|kLig!gam%$hTO%BTlOw!Y3@15t977cVcI^} zR&$j`e6qx-Nw2AZfjX8xw`gA4#O?qMrLfuH7B+pI12xy;X;5wf@1N!|O#A7KKQb+e zQMxj=pKQR!NO3gVA_j-%sH5_C_E~@aLu!ly@k_sG>*2goOzda7w@o|X*YgpG&Pc=F z2aUw*&1+h;E1m9PXRg5PO{mqD$U0eUUi;7lzI+;M;jhVpn7i!EquxutNQC3wZ4+?i zlM9?|$q|T+=%8>q0bK)4L35c4UhAF<+{!@+)HG_zy!am1O1bjxwh*9Sq{!bE9`EL@ zL&S@9u=On^sL9DDIG~&dN~w=<@&Q#kcV{jJ4E!dmSZ=#@!{^p({QNV37<-w z#vixu!J~ydl>T!cS3Z|SlfriN?$yAFkz2T-stk;E*Z`*^Uc#fuIx=t9b9(hhE_O84 zV~-tFyfPllOQ<+9}YT8WUC48-u;eF@V<%Cw=F=g{3N$3vI?dDi^LVBpRvs}8oe)lC1x?AaJlb3 zrVG!f`B?(S&$lnZ@1{;LtHy=K2V4Vx-wD`1f#7wI6ZBEmSED!sd9?eLirbZ>a93tM z)wv%C6W2$8>slRh`TSf6cDe{B7}LY+$~`RICrIj76p@to$}piPj;fv>CJ&`|(Wz03 zP~oW$IsYXIb^cujFEpWx0@!XPRRCny&xUU!_4Ie~RD*Z#zcJ^54lj5OA2cqy0M<7P zK+z`^HjOB=S=9`jmF9vfQr%p$f+ZYJ)CH$|u0&f_*7#m`IcN&cgo{$<1pl_cts9B7 zyh_Z-0)*)Ho_w;Z{T+VMJqx0%lUd%&3VlA#!S)y045+EVuCzV#8ipK`efh+r5Bzt@4s=tM}RjaY;HzD8mv00x@ z5=h@>EX?8e^Z~o)XuUf_5;t=#E5FYqJH#`%n1SPr#~sew?`H$!rHeVm0>oA8B=BH+ zIu3tWOe|&3kyC|>q4)D5^gcYj`LAy~@oZm@3es{|&t`{z5+_2>lwf)+T#~E{V_xxf zH86vog~zHK{wfy1I6OgQV+OJCZx6nX)`955r@8MpZlKJz5Eyoig6Ewt$O1VjV{5-c z?y0gEmZ{djbh83beq#alIqM+hW&|BxRs@!PXJDpuIc%F8L7H-=gPPbEsKphittktDs4()UclJ zejG{aww$CsN7LY@kw~jlmnnRmW`*z59>SpVGTPj>6YV5p8HYXtUF&L5%W)T)e-FpL zmTp`XU(E~Ya)sA3lIXt7TH?9qC{dDIhi`8$<~82Q;+h=$$?N1q?uPFn*j#f2dRor6 zwC)rqy0%+U(<>dHsE!kB6oh~uM}dDVfl4_%V>23gcz&w|RX2Pl!oxYJf1r%G$bI3t zNvUwhdt;C~R>IbB4es+X8(6=F-+0lAD>&m4V&m;YuzaUvD>>zXzE%lf-JyZSvfoH4 zW3LJ{ZfHqn=N`#J5%BqTJ?Fng7Z(H{;9T$gBbxtt*}s&|@5+NIEL%Q$)&{ecq7dT0aLtv&ycH$-aM9`@Rz3G)BC8Y#OpJwc zo8#bdsvc(l*o9-S>WJ@;LUL{QTR8Nf3I`9EHNTeD$J8wYMoZiI$>V=ZaPMsg2q>D& zX*lIz$=X3|+}aLrJEEZ~ESuh}M*JZvfKH!oz%Q#Z%)7Y$=XO>W4uw&;$Jv ziXimXATH8)$i=SQk5!_I;QcNXBR;U*_~R(7ev?2nKjh=JfhE`>WQ4PpMbVEj2aOu* z2dL--eq8gj9m&F6*nDF?Et$R$g#!hNghw@g)0$~~Gi;oDKH>@sBN!LW<{~_MxdKLV zM={6Gi!mV1a_N?Cbnk)&d=|6_4?N0%p!>{lzh)uPRF0x`k$1_Vx9sd68wvX)Wiflk z4?6NJiuriTXw3PIRHD}wp50QwZntuBWo|acBrKuREWd)u^M}Oc^INV>Z5oV)W}$rb z2^_*42;y#m{K9(j{6a3+u2lvub0=EVJCOEXHnWPWq3#PMdB@sL5r_R^I514EacPwQRGzT zTppG(R*%+{7`!%L0dG3Hl667?sJ*n9toWiwbRgO2){H_L?;;4o3BEk3RZ=*#vx@78 zi$(dntPgLv0bTBGCf%!(Xt2U^FdJI|YbE~B<18oW_~RZ?+muKv=GMXHJ5JCTe+%vw z%?Hotvha1&KI~`w9p%=awES=vb}qezrTi)|6kP|o;@`-5$vJd%S~ip@vHk;NL5z&b z;6Ap`n-{zn&o>t1hiombizeaF`lBpkdI(!TDB%TBQ79ie!5w6rhGz}_NE05CU5XXB zGPIo7Etkc?B?B<$tvor}5&~&y@-)hkLvX8u*oD97y9vS|vn~q{Ht!_cw~52*pk#WZ z4UwaDISRI9oA6;m0Y!~ioGsLCZWxU+&i^2WT8C?H4-bgF<3h~2Z+_4{rNV9tc z4N%j^S;dD@i)cfi*kQ>3(?(i2=Ksp_<*thrfIsU$#@MbaJz(1i&c`Y_iL!#IwR=09}1?^*W#5g-FR7!kDcA) z@N#1Y8cQfZ>AF17`I-pA-@>6z#}$+6TIr0^NAUG}2U#q11N`Nglh|-C)ms&TBUe>n zhrk7xxS|lHw>_t$nw2=aeLnQ9y-7w}WNAV3Qf^n*1dwprib4DT?~2Yt{yHysqjd~E zXSh(m!^hFI>^btq_YjdKW>`_G4IAUih<)!>`fBfAI#0_T?&a@*TMcS(;e;bv9GQ*x z#MTi0&Oo}PMToq)y#&<@7jWuk+RzAfthXvaX76;P@0vc5FV$kW{pmW!u~0_ct}P(> zzL)M&sR8XfF>q_@3s~`WgzPO9boa7955pkp#jMoP-4(_=AOJf)rvp7w?x2g+~| zC&H69VRTBYcyn_)sOJ~vI5if6l9C4f871~)t6L-7c9()hPKwaFQ5C*D z)keNQvvKndic^cVvHVjA zR?u(c*-IYAr8h%PSvmZ8u8H}X%c=WiU-aF582_ruV#KoqNLMqa#{F`jWU5M2dnZ9$ z^)pg*tsZJ60)Y3qkat5Yid6Yc0<9~I5u3?F|1+~G$G@2Td;gP8a88A{-D3D8K@PWc z#PJ?ZRHhBlt5EdQU8-?Y31=^JhEjY3J`qvFh9+Sn{bezE-0DaH@6J7fk)Q)0krml^aGFgEN#bKJEj8+`0fqt2L+adPZZ z+;vZbZnBiZ1KM7^5FaHBo~?x{ox8}HVg>y4u9I%F&4nH32xPZ~f#v5F^rmDWW*MJ{ z?rurar)&tv6l#g(F%$01JUR5T59b`h+0U8e4|e%H>^c4)eI0!V*Dx;2`~%ZqSbhRI zG+{ILjy)s2?-Ou4%UEpOQVlB4rof(x^Q3M_4;tH?VPaw`RDX`b1>U0AH75z%J0CL_ zksy6Kx`xQG0%b*(I{i51IO^TWM5DTF+BSOyN#4zvF>yZd8vs(Q1u@Os8M-4CAi~ri zw76)_2er8_k!-5II|^SVoh5dxtCy{Q2@Dh6VUg_+y{Xdz-ZMACg{^KNaxxPncZARl zoe{_{nT>(7OYmQdJak&^gr$ZNMzP|jalcw9uF&v-fbs_F$~(t--7?2kIYAJAc7{;3 zNNR4gl8B`nk>lD=Xbzjlb6gVKeWi&a+ZN&d6luuBl^_@Rm8*@fr(xSeP%o?+8ZRA$ zEgKV{FfN#SRV-#Xuw;yS|C)o7{p7>bRH%D76^zd35}i1ITrhnG7O}l|`rdWGk6FCo zi=nVBF`pKnZo?>f_BqviQ498*K5?ZJJI>g_8h$a99-apSXPrsxVO6#R)kmSTMVL|* zg)_W$aL;8`JkqxTJQbgV$BjaG9U+evCM>`BzMea!auFJ{rjS2RZxaqrg8rQhEKfg$ zH^XyDLMA_kiR^*r8|1MR3xGJ=!h)j_)bIhv``8f=3x|J^Au&godTB0Me5?Uam;I%i zud9L?Uj_Xf631K`X7KDn1WxTBc)7<7)gNwT4kL52_hugn^O*+QW@Ul##}pWFuEv_E z3-pJAGVD3z0pDhO;Fga%;Fao6Oe{>$|ECQIcLH1z-wI;RVJPLK2JLd^NwpedzCaAj z3DCn^9phxdybw%h{U$w=1E%|&|qGTqaCk64!QL59ja=Bm~LaWx&BtTYRkeD5W%G&gaV?w!M->#?9? z-H0!n6UoQ!`}7B!D|iX^aHIKC$$ouVlB=ExvU$mHNP-`p<@np@ zA@M9Oz&H1q8?`15{BqT~G44M3HI1Ks44V!8ucpED*%mlskuz-HkxEU>vT<)R%i>IA z=MnYC)X&JBxonE@RbVxdc%g`I3RaPtNE7sWqzgKx+|*O{dqzWU*X*8a$nR0-`4>!R6#+?D!V~(OVp`sxAw(`qhYC zF3XraWtmnxNnYZI-(<ou$#o+wL3= z(&Lploll9AeAvO;HOl;?!WpFfT{VroaR5V_c0#;QELcpKfJeeIQT>h+Y55!pHCD;w zztt5G8HVI|!(v=}y@rnSN8?1Fy&&b_3z0_~aL49UH2iF4*fYZ1sRitN_(Y9$#NDBz zVlw3`X#iXOVid`Y$1J$UjZE_buk-{srMH~%!lUWl#{=BziN0VL=!s4)^WgOrV}k|R|osZ(qY27QQyl?RwtaAq=`@pr_Y8CmSJDZ}yO71+Bj4c8vZ zhyT15@Pa zyGR#`d(wxDsos2}n`p)OkZCrmbQa51IIodH$pc0B@r*HE%3`x2s|cLALrs1njHtL`O^!L4ds-3_W@uo~rL(+OUT%zyx(yuV<8kQfMBo%W z*!?r1IbSInFRj18t&XuqV~zFD^D6>A1m7|8ulL2NVa1?a-rKVKg#mVY`M|lq`Se5Z zbkc4ihhI-tLY~BQbQnKRf;MHNPMH{P2rMOsox-uhV>$QA)s-%PsRg@sz2+jGjv5&~ z_l2SB+4$mz5=K}vp60z3==;zH_f%ApaLKduRHg#z_V0sCy9`XsNChc97Zi#Thcz;9 zXxmnO-eN0*=9?OwL`(1xuU=;%*oP|^?HSPHH5XcwjUPU6((F56J{}4k6T}(1F^;sV zXJBMx6i#}rM)xk!;rSlcL(#`&^!$kiYUQj+#ca!n-yL_TJre{r1|?YCREo@W4c^Mf z==KthXq{s3hzv3K>X-xq=_M#ID-!1c>#*{LgJ)tTY|3pTt54+obs-ZyUnJzKkq>c*}Is;dZRw=@w&^8~nhXd-TJ-GIW4FQ~)!J(#Telq}Dz zf}OtnAQaNxa&?Imc*Y0e%spr6kE>J2L|-9L+8l>2+h_6o{1f4)VH}YWa>dIze7JPQ zCobDx1#hcQ!mcrQB05w;rl?NGPgmL8yr+!#yv(9a6B!@knH~XuF%;Yi5u09_Os1M}0EcY-3=4c|N>Sy9rKub&|iE199PGSu}W3%~@~y zuSMw)>s3@~BVG%{=?C^>LZK*42>e9%Y&~W)uvP&5uYcfDgSXQoChNd-u>n3mqRabv zcqu9@KMWTq_X#*OpPvACSuZ=DagJ`^SPNkXmX zPjXo>iMPiygZO>SnB#l0C3uXnB&P2{E2ju3VEMgh0eeteYz*-_G7xVo z0e@}`@`-^pnDZMsQeGoITv6D3CjKymRPS-O$UoEzrCvNJ1b``R!} zNv-8MDsASTyV>L7dOZ|o*-XB`o6Tmc=VRC0JRJGPvdG#oJc;vpaC*W9DACU0jeQZv z9rn3oM@<-ZAFU&K?(y)oO$v53=AcbU3|9Lm1D}jZbIhC=;;woOhn^&p87%jZ(VYk? zCKgzCVh!?T-Ds}3TSf9kwqeF_9I=|Wl05U$0Qv0^(0+C=nfGiG4DXqbt)jW8q-KvN zoupt|YB~Dal!5Nd8gg@iHpHAx#}{L!wD#K`Gzf_!gEB4DTi%Xktykj9N7JxUx&Z1# z1VL(zC)&R^ME~6^cb*-_IDTQ+ZxoEZeRA0DZ33_F=pbn-p#djeQocXWo8@%#v3lb| zVvxU$?%HgN6=FWv_dFk7JS~LNMz49qZ41a1M}VCZ>r(^=V7v1Z5^6mcyUSwG;?for zI$r_5&L(2X#7NjYpZTKx9*2<1M@CWB1rYJv3DndWOLg&fC`sK7K9h9OO5_+WGvqjt z35%fUz%o3z-vJ}|b7;ydNBY8W86=;N#R@I}1cSS2mU0S&Y&b%Lq%)92b(1BHaTww_ z1JXX#(YoieV9#x7Jl`LU?a9Z9%tsX>G9>`Eb;Xd7PyWQ}WC`badJDEEn8B)qe`F!A zgeXq&;1b%7<9F8Wp5HeG-55_)bACH5dYyqoFBy+k=Omf7Ul3gHCPR-!4b|0=K$ioJ zBYV2FU;-V=&?2M!CftMUAJpc*d{l{iPAs%n z1NVG3*!#*bCWQ*!Z=r*u^MY`_dmc`*8Y9{V_F?AhWR&2YA&++`;9+N3oG^Vik$w4$ zw=_K$OHOx_Rn4Y&q0a>xp9sN9_U<`<+nK%}@MeEQ=Q#bh|7g{*IbdGCA1q})(Bwdt zVR~(jwz8!#mwzf_#f88k4XgwE(mo09 zOz0)|(s zWKsEz)A06PJ36Mk4Z~H~bL5r~KK$=0IlM;tNrNp+mTF8 z568@EmgPMs3e>NSUb{%ZI7J0R9lw!6%V$O>YSKZ#z7*#(2D5Ix3u)qG4xM0rs>IHr z+kMpFlZ`LR>`{TGI}Q*VM-{AJaTuK0{j}p=EsfnQ2-eFUQp4yJwAkQDrFJV5IRR-b zzi9?Nf4t#sbszPekbzUTq=S595_}LEqea)^&@Hk$&-xrE|Zmj{)hD`{pqoh8+ z0B%{Vf+OrX?5#b->$`b_(>zv8xh*;%EWIDNJ&~C9;yL*}aF$Ls<3rsWf-n%C4GE?S zI4mej)d#omp1Rm^d$+NUs7(eYMSpFv3RncD3&ZIS#Y(cI?+%UhWVwd?SO_zoPn^B` zIpg(y?A;lO^+(glJ%c5%uyiYNNzue-yBX7iIi=RWa3j;Kr;?AhmiYY1ZqV&6!@U#P zJ3G9AH(av<^0{zGj!B{ZFSBsnf)H3EU5pW5##%Q0bbxbI3N&9G$IA=sVG;A{1ZT(6 zk9Tu%kAW1NnO#Z4suIA@Uyj7dszZvu8lKj0BEX&t^?Vg5;B3m7lu1Lp=XJW-(*yLk zxWd%y5x6pBCe%1Troj%+iH@=*+|LWAy8_O0KmDv>=vob}{<0n#FbcYiO%azwa&NyU zZ98>zEhCKdjDhwgnn5o;#3l0Pp~K=_FMo5CaRWSUC0I1bICA;`v(0p-z9BI8vYjgbY%_nUIqQ%2Ka8~+o|VdYxf65hu8dJVM0 zP#H_MxnuF;4D>5b!`~NN@O#A%Qo-2FpLX-1`Dt6|3%7xje^>HMXKRocNlTu=s}Ee{ zDaNMFWM{)eQ!(?XJsxq5f$^EI>Dnj>jEsFi6MiRv(%}gFeqsST>u&&X-ivdU)=-C? z6dS6KkF`lqc4|5uvfB=;rFKB&mmt((&m6yHqEObym^HVKK>odb z^xrIBlDD6q-dg#b+tjazT}n?{#OGVkKNnO?P>_FVW<6 z-z!eVeE}NwY0;wcaGIv4$o9VV*mB<&d)v~npllIt2pFf{wkY#~o5!{fjkk+fO2XI{C)||%GEzxZn@jS{kEMnBw+`ht_XlBjE5$j z6Gra|M6tNuLJ&D^gbD&Bc#+i7f7ckVpUrEPzPa!gv0S|8svB@mFoceI-J!W@b8%1b z8cdN4K$VgXcy!v9`cBq@m=BBSvJe4w4jCa1KiS{bT7TT@WsEONUEs^oO(3)TFuB4Q zovL2_L{9$?@5uRN5bezXrF}|RBAySt^>#QCeU-|dJ&vIR6Jhm_3h<_VbjLi_#hew6 zuTF-6nXNCl?=&UvFU>%~^BIIW?_`QF1hSHnJb@Bh{fuCRI%F}rmg=%Crwa*S?^vDn8(GGDf-f4qd2F<)$rWBbvj>^cHh8!~52qzo zEuO1O-`SOcktQ;R~e6s=U7TLPjeV4 zeF1VVOoP7{%4k$XG@YlRNP7lOBX=(!58SY!d7d43PdA?4bBl(*5r&X8u0w`V6Q1PQ zV}T+N&1u4TZTDIFXT=QcJ!XTyc-bh=Jf_NX{NS9yB;0s~5BYqTVlCfP5P2QW(>1X| zcTz)s|JaC=mIu*2AB;dQkFnfqib<6G7@2%Q7KPg_VX+mPHCqmmu}{*lMl!R-q4F*5 zJ%1QKU;97@CBDKE5kAI4J4!wrI!g?uwL)Ev7>eo?(@5qxBLCHp^vD8yC%F@J)f92* zg+I(EFrRY%Y52`K81DVPjr#9$m>2L8#Qz8&I=2_&SbsgHO+3S$$X z)WIy^DRDeeNJlU3Au%$1FnZ}J&iFD)Pizik`?QnHS1E%JwvOUvhcPfKIf%h}72tAU zIj*%hkKt?%xOd@aa?7UxgMXi-yrd4A=Ar>_7VN;=-_~M(WHlz7=mPsu60@x)Y5f)n<}pIS%=%R{|?fh`!&QnlWJ_c!3%Ry$V4fFXi4`@&|5nt~D>R;be+ooTz zesD6b3SB`!Fe2rw61(E*t5m-NaBP#!U2mD?~S9 zJEon*l^-+kr*vt@F+U3|Ef`yVI+p6&od5bJ^*UAT{P(HbX;`d2!6Oc9j-j; zK;Ml2Navsx_i2VaZ~XgV-0!{u>UUm(sfD2+ecy_fHu2-#JbvS(yyG+=ZYpT0KERsI z{3KAV2emf!!M92ud=+0n=ZXikn5I1-ZFxc{G%}B?sy<6Sy|)72U_4QdlSG+A>sbz7 zg5)3CKyCMEw8k9mBpt$|VCp;$O5W12UiUkBe5{N5_}k*#&N3Jgs0HC|$1qh%%y{3M z#hANG79O?yAD182oKVX=GFylr9m;aKMI(NY=q=Q$W95drRAfNp_TSQEX$<~r6#=UAFsvetYy5U+Xa_cZg&v`;*f6Bq99U*v? z^$%MvO2ZH93E=fW9!A!@0N(Z2o#OtdM-_T6&0^~htW`dfxhp%>xwXFlT=`>9ZTDU+M1 zkc>vQGf_m+75{wmL-VDd!R7Npa@RJU4Djg_>nZb%#q|4V=Fh7kBh@RR^ zkZCg_s#0m{jAvNs{g*~o6d?cZsm7DFl_1Ezo8FS{pmTpJ8Bb_0gv^X_F0C{QEnbTo zTjkf#cDG+f4WWxcTPccso0x=ClEeU|WLk?#=C-bSwwY69oS0=ZvRkHK>Bh~b0{ES| zXs_NMCt6b?VeQ-@!`1nG#_yvap1U7EVQ?yC-5^nsX6T=5)c8O_p32egW&VZU9#m9VW9pQm#J@_c@;(JoevhcKTq5eWKO?n&qKRXv9V(0)hf<0X@Sl+w z@7~i~DDcciTO(^aSo?{o7n_A#gPo`(PT<|+W;$CnmkM$#?xH1o7XMqQAQ-)W82oul z;kD#dRD7O=hjZAEcw{V14*J;5NOB9K@UL2BO|hA|s`oa3nn z*P8s{3&+`fYb}mGRxQ-qQeIGHnnz&j4%oYN3g)NW05RY7a7io}yyx8l^#uix{Cbk$ zOGqv3xAK8L$wr8|XH6_D%21@r2(orb@`enHL1;DiE?s?*J@z#e%(cRB&3}`4t;hQ4 zoFg@8=y46x21I#%OfcF^T!DpRKUm?DIiPz*n#Vi!08cziK=s7axNe;gs{d>zI)*HE z9=Qouq+S!_3(h#Pqmc80PvFg+^OH^VihvBaSemy?4o#oW5qugfXMQ`Rk*5h;QO$0I zt^-f>&6rHYw>^R~pUc!UzJ;GL#7FXQKhrn93c8nR2=4q96BzqS;5(s(GlDwi4w?;;g0GX*@AX<(%u#oqH|xj%0XHkC?YLS_t(ot+D* zgCi)>oWsQGAEwV=zrot#KbUm2n*HeRhsPX`qW!t6FlWY0!GXJ`yjQ-r!AHgvqRL8$ zTgeCbt0yJcE3^cL7;bOnAWy$GJFv$Go?(glKT_3v18x__!qpjvVb{Jw;x|~$2q_B* zB>r}R^sQ1{6(9oM0ZC|iWCNRa!~$UDyU zFcN&W6 zbFBxfp!y7FytjZ+NiC@GIte}5S8+4Ly~~`&^AC{cjMmj2vLj$W?7R5}_AU@$UXnPE z$<-xaM^d4qQdD5}u>kLuzfcia#AU504V$1zX5*^w}f?I>oeBKuDT^InaYo$Ou z_a=N0O^4VApJ>)*Qseydd^toFiMl7_J$?lMjr;{F~L#%Iy(138JCVeH!i_UqMu6 z$&o{9e5ea~K|k*0xEm=_sQ07EvL4QXqf;k!&k4o4Bf1#jswxOsiR`wGTA*cf1>GP5 zqP;diveRvFv-wE}>!o<>UUJ<%aRoRbos8-gXMt~Q2sXJl$a5nbINAM;tUPia6rR{I zOOIKDMjOK~F?xxcz0%>W&JW_V_y&x1%}4bBAr!PchW2P5d|{h|Vp~S3>p&^YAHN&& zEfgUbxZi*L5((|Q&bpdLGKVdHG2RX3V6~;2C~auO=t2$Nr5g{}mvQ5uHZzfCdg-(D z(L(Ifk-#jI_27D0j>**4fqMIF^mRxe&2IsI3*yOpOA$;7{Y`fU+mJD~nzFoWXgg$v ziGmH#R$5K3-|Hq*&wXP?jlZDQrFjruY)Su==UPNhx<^vGi{KOY9_(M0hC7;yv2kcB zF&uZFKIFyVP>m99tTDm#=RcwLWf$Z;QKkluqH)_6Z&F~P1W%$rp3x z3JsfS$A$k$*~DQYqLhM*-8bXoO9l|}X)(lw>*LI2XUKff1Y(&uPVh?bjTBy)OOCcD z(6=9znCbm{;FZTWF#i?{gPOl!sLB(9t#*LWu2*zGeT0dMia}BL8qDjVaJ+2|*!A9E z7AbDPsg>GP&Z-Dnp6o_xlXtYW%MZ0&XQ1IOC1%&+Lzv4y4PP7AW4Xj-X!k#hpGERu zO5c(ix9z2d;gOOs-X_-VAESh`)-$XgVzk*s!cz74w-PfU?ogbRpkI;pS`>;;*8x0`)z+ez&=<7`e~(-{)J)Fh?xa%#-XM2dWVq=heaG#V{=YNQO*o5L&3wYDTZ8$8 zW)dE8onuUN5)GkHHaxVB%oh=3zIVByrH&c);|BceVTd<`Bv4PFNQ}09B1)@%!t;BR zV4Hs~-4%bH;}ri#t&+r{b!!B?G@1^c9MAK`pJZsL=klw`SYGn>s_oRcU-? zQ^<6WRN~v6iA1_E5Z6ki(y?#x%-VSdXi*zW_E?(3x1u$8H-{zr&R5~UpN-h4s6@_* zG~kF4pPGwv8R1|4G$l0>YywXb=QsASS^FXu#6&^LzC?DiEw=~S@fi-EpGNMkkc8SZ zG3@90ws>`p1`IjL)1)p_)Njfr^NlaV<)9uc`ymhE+g$O3Jm1p5*#*^~bmH{6UF0Uu z1efkhgU8FoA>K_IeH^cm;uS^k#d|uWWOvfJa+)~)cM`0h;)H!0t`pS)F;sq83{KDp z&GaC&SID5|A}KW3%crK!Qt*DxOAvo=0(Q&tse$hbsD6|Oy%zDHe(MrEZYjfMGp*3r zrx%lwC!j^3CW-J=#&Gdgvf@txlZ4Vx_P895ItJ375mQ`Tbpv)Th=M0p_esU=^$@3` zjc*@+0f%l;BECuj>mNDeettfR{>Q*{j$!$VV_F!b^b_vBK>yyBRKEf)E3nhZeXn1WXpnZG<)rs!t_p=R_Dh6{5<_+}8skL~- z!4`&&JS95QR6#-NF_WUF50O=BsF;?E3&UbT@jyCZ-+5x=%p3G;n>=iCC?wm(-+^0t z0KB-i0hc|=Aic?p;pNt36x;ot2IeHeM{9rlRri$tEmIV4ep`XDYxd$HjV99f@;lK> z<2bXfPtZAQ6z!P6L)+=|#tSC|=-bz>IfhGP^7&5B{a@whyIN)z!* z_(n%t9Ef7OD$JHS3~9?6sESStjfy>oTBrILHZPVgs!>OWuFdqJSS)?wKS~zTr{1?1gW65?H)7YpSFK5ScZn1l zy9>yiRjI@_CM6o}4KdA=pLLqC+`u@E#O-pA3Jvxl_$(GMbHA zI_RfuPPkZ7hLM|D#@#1B zkU1}((+urpm{Ma!?333*QvY>!IHMfTA5N|Rcf$ZabotQFPJCFl&>30=yh&mDB{Kav zx1-k%BA>bCM?QZCEPXK-qy0~#OZX_8E;&M)Uxwn)YoLRXJj^g_Bs!n|GPmm9Gk?ve zaSVZBnvoT)_5y)|UitBB|%*}&+ZOhz)On&OH~y!@&J9B=aA z4b8=tU8>Zw>o5r0>EObBkE!wfE421)3H-e%1P>?Ap!Z%!z_3IJDo5vVGx}9<&%ptn zSJuJgwX!%r&VWetxnK{+Zspt`}Fyu5sY6r1W{Xx=1n=D3lQ4s64!UuK{t zo(-#~rO^qaE8+TGFT}%9>>Y=_I5VgP+B|<#G&-OL#b^EnsAqg>R8>?8-fg2`X2Da@G3Y3i6NjX_aoK&pHL9^M>` z30E`dv~f}Bo)!%46Q*Hp%oKDUo=(!aEKJx5En2?l2yAFyk1w|$L+|KvjL1#LJ(Z#m z_MVa-g_H29usjWN86s!nOBtcediJ+$E_T=s(?ch?XY0=&q<@k&`F>l3I(9EYgD87k zax@McIhJK_>Ja0aG6kb0JE*YncwprCl-Cyqn^R?A`P3BLt9Akg!iVT6SB~*N`yYL^ z#1oe$jCWxDtU+i>5-i<_XZ2_J!~!ZoV!z9oPL-CYN5G zV?HIugU!_mFx_Dvdy#*J<7S#-7OuqY^cX~4xkHjK3#go38=!He$`G4WU) z%{=;nY+tks`u{A4y41axu_~6_usa49wbDT)#sT&#h2rYXn;>M7KW_WC3{SKfz`4p) zXxYo{hcdpCG{gD$yS0V-E{cX1hVwv?;~jJ?8OI#0iGu-uNfI8y^-}L7g2x&W7@?6Q za|zcOus;Z26AWSPNDR%nvzP|xo!cESG;SmozZrz$$HU*qnePqsl>Py{Rp@|^mT~u8t#fE~ z@eMQn&=gR!;CR~J)l8|uX`B&kN?7?+T;nGTA3k)m%7+)DWXe{E5a#Yb^ABR_B}pu| zPvIO>dtmx?Ik23{12cOMocbvOtkX_`eDWqV%aJ0-j3bzjuY0-vkv@QNG`y)!#or&t z=tr(MbUfn#PGDvbuYi^0kk(h)y1*TIOdj`s)&;%lGx(D2rqAajz_CY4pfc$YY91a|%M%8_!r zD9iEqR?H?i>tsIYt3G3c#n*xE#%XxOUWS`jCUeh-9Z+=YBgqX~hW#UHpz|pO-kg|3 z{MemXeozW~*L@oE(gWQ@WWLHRgey@|ozqya+1I z%;2{~B5Ym~4WAl0e|PZ~Fh7)mlG!}8c-%>zWF^f`dUZw8iN| z=+7O{4i$8r+zPCjXo+eLqEM8y9N%3l!nRpaBVog6?Wq%Ow zSsIYGS&L|1)=x%gzOQ9TKpc*~bHbAXS0Ej!&^KrS`{%u71ox(6Lt;8JX|*bD3RgrK z?sGDCY8c2(35AA(fgq>!nEEktXeCy~e{8X6HuA?ka}y_`{?eu(l3jORp56)=LBi}2;sILas*VU%fXk8Td4!45qZFSU6T^R<9 z)ZqT)3L55?3~!5HlYzA@)Ve(c#+=2Vekd8pCmXk$>Zq!#iyw6v`5r9J{0a|`oV|H(`YoKi&07VM;ec& z;+rB7e13+@xer|=y-nxA%g~i*b*JEDXKUgUnTz=jp)e+w4{?{bL1jf4y>&kw^hQ!p z>k-GxXi0(|Q(ep!=;Dsm&FpdQccipY9QF@vg{K^UvfkkpO-NS-)pwcD7$ydOt6!7u z4+lxt7aRD#{xtlz<}>^CgcDp0K8-uS?*c3K2CWfX9}fO{dK_R9SVEMYvVCnMh3dPFHru;mqTT&^oG#mxdW8 z)_Xp&d@PO8i(itQsCW|9`;*w)bddAyVw}r>d!CdwkfuuyndvH1ktx+DXAYi&Ze|q* z1|NaFXBU80^+t%bEkr?qIqtpkg{1l&!LE;74(Nz6E?mEac$Zc%xw0$S z50MMVaCR(>^w>*OSuWFVmrAv*58-YXNjfR_7Y!{g#wS`_*NEZMKh_ptZRP+MPDet? zuLHR2fFT`uk&hoXjROrmB^XK-!svye;7T7ddzZMuM8i!G6KqB%F3Ew>nVf5JOBk8G zKndkg8AM+khB)I$NaXskuh1TJ&z>f>!~5`gZ!A&hKaB^v7USFE@AMwWJ^$qwg=1+t zobN1*49qb{w`^6ei}#YMJ{q)~dUF{_UD*fYulwMXJ{`oMM8zX7AwgxQp1A z-=olJSOD`rD3Sh1Gg4$BASyUU6b{Q+-p6E+v(JZ1rM4I(G)ThNEP`uCgQ; z774JO08d7$U`>q<8fr)3jAk*A=lW`2m{_{&(aV&~9B8Tl|y-iVzxi^p+srbC$^5&L6ANzX_Imya@qtPnlS zxTAtw%}U^_Qz%`ncpkngm0{ct1PD&*Y9 z4TmAYq>hva=F@knTKM305)SHb#ezQE3mVh_!A&;P&8A200{j;Xl&m_L{m?9>le~ z;{ZY;VQGd2$}hQ#kzEWiDB8QKR_gAKQT^Ic*F_t_Ty#P#7Ywrv8m z&v`+sr%xqWqeTQNRzcj_Fzi_ng}YdW?p}8bi}|v6LRpc1%nX8#?qs^7<{jmopG*Dr zJZF`Yye#b6B0KWg*jql#I7a)(}hK`FJlcEZ{UUM5BH#L%4hVpFDDO{ zy5Q_IMNBf{&ZNWR(PU*2dn%YAAKIMA;#3K^zkCOIsG|>Nm09>lz5`;LjWPOc1a72m@^<$8ij)ib|_iqiaHHPasBlM^090yaZ5Wyg4!R_fcp}lmCilG z7nx#fmkw$j--4}^CK0v3Rm_cbv!T5xACiO(p*21M?h4N#x1_hDwN4&XwLAd5BV{zF zt{C(<7kb8ZUnXj18ei?SEK_yWnjBcz3=x`{OyPq0c;7++bGJ9ajec{oZ*?u+6ATl_ zd=(%EHK6opAxgOU!0VD|tjY2Mqoz?D6VF2bb}y*%qU2=1BmFeshilGU1DBBzW^HUT zZ5(|@tr|^Wd*e;gC?NyiotERMEX%ogxlBr{JTw=lqlxPRY>TS`pX0vx{+t@VS})AL zwU(q_!`b+K;00N7WG4(3&wzpV^RTLon=d@gCj%?m@yq?U3!Sl#&viIC`rSoY36ugP9;iJ^s#vtb5VL_E73SQUeLsgg&z?df2B7MYKI#zyYVRM>RE!) zB~KbJn?(-$UnDsfo-(oB^(g6Ah3Z!F_#&bd*G);VJagC{q>WY3;pa}8>??rNUh^<_ zQyWH_{iC<958;Xp?Rcg3GIR3hdU|Z8A^yHZ(5ihJK5djCm!FrirH)Z-()dy0wl9yS z9AmM%y^g)T&H^>t1$16iH(dX53Hnr|P`o@7n%5h_&c;S~Q>e%FuAO0bu@AZZSC8t< zE9BUQkvQkED16m@NR#Ks0^wKym+dC-&Oca3Paob5%769A>bl){CcGLyd5(}EgSV(3 za*F@wpe+5keLh`su7K{ilfiY^q+yj&7#!)bg?PtP%-oM5#3{oC*+WfqPK7v%n)t!2 z&23;bxS6imzlNULIt|{{)noe1$N1MN*Pew*0nk_XEQVi11qKG@%=g#DfFn3$Z*2nP+Zo2`(hSVe%h=n#F`cLL_w&W2xp zF|aaxF;1*&!@Q9(@}n7nytwhOgRiX`30mal(8$*DaW+^gbr{x5U7r+6jVt zA1c9S{64bzp`PH@>KM#4il-twZ_?e{0qN9RT7zOjDSw(+9DaE#K`a+DP~x)}KX;f}dbzv6_P@h0 zhugDl3bx0+#y+s_i;(5|ohA5(`O4}B8bPQ8$F7f$gk4i8<}6bO!6AE`nR}GnS6EN7 zOY=dy+6&M8aAm9#meGEjYOH_8haHbBK_gxZ)K&%wn)^18jLWBJ{GBSY=NQ5Qjn{CX zI1WSdcBA5&WP0`fX}olI5I2!&q~>Qo#=9hMOg!+&~FmTvg%`aSNuQv=HV*%Tb?{ zNSx(sA((Ka5~|w0@rtpuV0>^GY`?Ec>J+`ear;@i?eHorJDqH~qPmYQyB7(^{bf;n z+G~EsWMP5(B5hWE!6rOuz8&2EJb`Bi&T+HS_r(8vI)4AkW0KAu!ml#7N!Y#u>d|+F znC7F)pM-oDt)@ zp!eP`a>n-wXx-ce?RUy?=5-zTa;J$**&l#oA0>F}e=Cz9uKz7yNBIsHRA5o)1cBt> z7j~*n2dP()#o{0z+>@k&MJ{gS>mzlJY3GcWrU%1D$6v(9?K3`B{0}Tjd+9%&a$>Wu z6tZ+9$v5-m;IT`W*snLipC2cIXuB+1D{_%eN$Ep3W(inw@5i@>A4rXXCiLWT=Yg<| zH0Z)FGH%mD_`16Q3OCIbxI+j`{8f&6`)1>tOPzFStE!-R-XW5HBm@U`G_od|2}CjN z8<7%8gwh2=eEE$Wx1cuxpNW~`7tJ}uB2^0We#*gtnY#G))df}~?g1+o{ub*N=|S|j zQF!e&%DG{-lh6Oj(OR1YaLr{iZj!D8CS?MC+C2r19*-aR*Ykwl;ewQ>Y#3? zf(l<7Fz3*75K+#-3w7QQci|IxG5HV<`OFfetvpLlv@QoWI0aFk?qHvv|XA*8k80tlSz2bNWo6G;J89sEOdu z+HLF{t0A1u-LrLH=#wt3I<(v6&Arz%!KXqO)MNW-I9mzp>@?waQ#rY{V2xmNhaE4R z^95({XT!}|J+S@9XUmMNBCNh9MrPYqLnB&}W6IUU$?G)+y}L+WRlbK`atXNU>~g%m zAP0oaHHc8!D4kdy0!u@B;E|m)Caf0`ILRSdU?Pia=67PYSr~RU7$C1+j8_#8{Bxj% ze?US|^ZgC1vpGhV1#&KXtrxgSvy9}O>fr8P1u(d(g{HsD0!8C##N|RG^>%%LnRbgY zpb4p7Su~U%Q-H`_ne2_r61=?eXCbQ42PFe0LP|_BSs50OTeK?KZQ06X>cR?q5_ z3v&{jRtu#uy%qGP)GusQDWVhgLrKc$Sv-+miR(9RpaWK#?5t;P=vdZDY$Y7{T_-z1 zY=M@*sB%B}yeXp}LWH0-?keV_?8I$(LFi#J0R@xR;O?En#A9DAbk#cGtY999MDG>6 ze=EUTaCRKph_8TYq0OXUZZpg)1Dp`I2=BO;QbxrM*sl?!(Lo(uHJ_q%%~jZ*BtSZ{ z2&dY+(39ha$++zfsLruZRaIWH<1Aj#-RE4QU(|Qn7}jC z4aN9%TQNr}jOu!gkiT0cpyss=h8m=i=+o(V?xZG3jx{7|Bel#>sWEsapTS?cb3wwn z7GEtbU6;K<=rQytGb(*AMi)BQ!yY-$B_~+VOJ*XMXiyg*pQ?l z`19EYFV36>iN9mn@t}sn`w_+r5$!JPP%YOX5bgYqcXo2j4@p<}ygC4z)FgR%+$`!! z$4xl*!a?B6o@e&HUX62mCSh5_UH$=&P*Be?L*X#arMTrXYVKs|hKtwGr;cNMHZ34) zW94~cF4}@f@idh7+)JE)e_~pE(#<>K34FBaTXo+%6 zQ#(Nw*UgmM#Q8x=D6z3Q4NtD_MxpK=Djp|{Zw@vwyeS1VX|_3dZkaD|8@!LX3P0H3 z<|kOUWib)=PlCS<8);bAbm-gF3{RWP$f8#!$lIHSwzii*y7B}T&evcE`F&*9e=#8H zJAoJT3Fz%Z6-W;eFv?!Z z1NG~#aa)RuVB1guN-Jl;`M6Z{eSU||l3I<~=>=dKC~-ynRu^S_RRmIgu~2k-8p!8L z!{t@AFmxk~RlGBd^QYS2ig$mh%WXNBw|)gK-G3SlGlBt^*02T}^*Oe%H5fRr5xCS! z!0=obhCEZ_O>;Vqmz@luY)BHFH(aDgKb*rrMHzwHl*1U)nuup24`bT1X6hdmg3Asx zlE|NuC==F+?XfH2tV|Ty8##%0-eNWgjb3NFUq}<CCO&Mj)Gv%>AxRqV#o<;(K)5HfMr5poSs5ZoqwYiv6DkP9vI0uDR3Bdwu?tWAf4#_G9G2b(rEj&y}%EQy>!&l?w zTU!Xc6*B-cPQle^Nq8|^hbr9M0ma|`k@F&BaNlbQe*P1QTTTj-70N@n|B)EElzrCn z*q)gJ(GL~Sc*h80x$bJmcQc-ZRumP_cnD>+Q+esf|Bw@tdg!sP5;EoeCPr(+6kf`t zD`@F9hla& za?p=!g&|%Jj_5dn#=LPL?*Exho5g)DzcrJ(D;!6ze=#QPQ=+`-a|Hjb>wqPTfNtld zWB1wdf?rAzxF;&lL+IsbE>mj_+jj{Gv_p5{uiR2tVN-z% z2B*;=y>{DDZ)koSt3 zw=qzzZiubZt4Y9NJ{nY(pl6#g*)`P}o$CI9%JEZ>yj>0FUE^k2QTa5@=q~x~Q%L{( zjDR^^D`|Ow2vu1oDu|nJ$`coT1-(BuK*YT%f}rKgX$pIZPL=2Uo<9*o2A7fBz9A?i zB#k|ZLv*HbDdb6Lu%E-r;dE;j;k&Itqsl?XM7fV_=o048zJ$~VLF7NFC7I#>5_sS`<{`s1W`ErViMdtE-vtxFU5N{ zl!!&Lk`R1G8qF6uK_AJ3|JIqXH}vn);<6Z2dyK)yP2{Vm4Yb%V5-fXC2!>gFVpaWt+)cVdFLZ6f$A&qS^|=BAx8GpCYA}{Z zi(sDS3JjClNc$i5pjMQY;4d$R*j%e71?MHXF1;r3U4EfUyE?B(ES$|`ydXI6DyIH? z0>`t>ajB3xFLclwmvD@v74x#m_(h2jV{-^=*<|utfkN!3f8>eFWC3JVKrFKkfA6!v zfMHvFZ_|grnIwoD@^?!4Z7+R*hE4onoE)6+x~{ zO<>fJ3K9ktM9?siSWlJ_JjuR=3BuZN{@Y7_NQw)-Y~6+b2}fazR~E*)ZXq!)7oo`U z54};4NS=NAK*Xm8k%A7EF3T){HF_ba=e88PR(lfodkg}45^&Ip5p~)GeGY zIJoH(K4>t-`O-=-`Q&&;ceg#Mxs{4bj|9WqN2@k+|AROv=QRKAvYBcX{A>nxs$*N0S&%Kp%hjjTv{j7M*jt&R+ zH?iDdb~bk}9H0|pq}kOZYiU&-;HJ4}bizQXF zbK&P1@JszKJVj z@xTXAQqQ6F`)0y|+J7|kM?Cn=AgI?Wg6z&9(5ExuMNkfweU$^F_)4<;DPr}lIs!OvU=W+Rk=ILG_;MQ^sLqBH5G(P7#BNu>9c{gkWOoO8&R-$d9k0^sV~wOL)slXm zHb#?46e#~&h#jhzVMI&`N=~-I*UvZbSA!moMNMT52Op9J{dSmr#sU9jJOF9UY8u9C z!lPMt;r--%XiLZes$-8!<^B>sk5Fc{&||8jwGGV=guv~qa&X6sp*!Wk# zF~u)oO#V#_s+178e03%o-y#S*7L3_;((vT)E3}h|#&p|iW>zuBhSOJu#nnOv@CD5}a>)0DFV*z10U`g5G2 zc13wEpKJ-gS|p+U^ASuAxCK32UPP)&ns+s3H>8}Ljf&SAL1*V%c=$z_Df;)wa>tMe zyof4;TNCwh$e&P4rzUXx$z|j9AF-95VYuHwj((PSOf}?B!1IUviiUtRh;HVO=Tbx1b62$4;gfHORBt#7JEupk`3`Qe5nNMBWSo-NI%t*ctm*ZS% z@A(*L**?VApI*S+`)@jl3#);zL6PL@BoQ!BNJP6Ir{S`5GuaSu3HDDY#dOK_Wu$eBXoDZO1o*H7^GjT`^6vj1X^LSIgyn{AD1-Y_i zIUJq)g;6>23vuj zE)NBN3aRSmA7uTVqug`Ej2sW=7U=PkKn~b~w$5>GKADPpH$S0_pC_%^<_?}W^&oo? z@mF3yP3+!JZ7Q^B4N;|^QZsSf>uY4|-V4yr5?1uCJigp{7OxHslAxCF zmP#Kt(9}6A-s5fa`GL5Dg8p77nXndA)m*T<;*y>@zdm0RI zyRV6KbGeKB!~mp1+&m!s7O}ES$F*;h;C%Nm9e7@fTFD;d_rz?lzb7qt7&rstiw@F{ zae9L99myP1l)D2qHG)stNi^>L1@EM1!l<@2guWi3^miP2RAoz3S9Md%+%9T!*%O<$ zzec6+lk2rRSr~eEhd3&5UsCURC>xc8Vai^Fad*P6hl^n0Dr2e{qQspmvuMe$)v(Pj z3C23AiPrg3Xpz=SCuxLoU3gPcC8)MY&QykjnVRI45a$us{z$u~oB=t`oj&<+H$AQr zjwjD%VPW7rc%&7`e%d^YclnXnxOy+*98>s|eHK>uoP@}yN^n_69y@1?qb}9J6OL7+ z;BPW4y`4uYywj<$WG?;5b08_sKiT8keDTp^7c>Yx35yOya@l1O_H=L)BOSMuJ-f9K zM3SuO>vv7iZ2N?!m~(lz*G#y9pD~aj5eByHYZ1c z_}`()a}((UF5CI#?;qxrWD;bH_dtOQmupkfArhY1Fz_HA4S07zChr2SpKV9hUGm4} z4Z3*kr4f}qXF`+t?})qDBf2c5lbe}xPUO8SKzR8T#v@V&FYlfTPby3;J6E28<qpiu%bB(TpX0K;PZGON9W_n zhzquJ=VQZi8LT^q)J496s(PA3>ijTjy!{k$9kIqCCLiR)6qwN!jqHEmh8b^8qS;P6 zy5anJ@@h~LnC%-OYN(l>x_A!%Nhi`Ng>LxS@CPf^(!(|nZh$Glbu?w<7+!R~OSW^q z%hmr((b2=4Pj_+b#I0F4xG4Y=X3FBi=}zESat3ym=YyA=7yf)Tl|3Pq#_@U0&pxJ|%kHr2C3oS=mgW4NQgM9!eI{h^pcbqi^2Iy1cu?USLdp&I zf#;wp?0zDNW$pPQ<=DyU86DBNFS@N_IznC22w_ z{4yyMdOR%|GKbCZrgko_(cS`gOzfzT!B-~hU>sM8Ho=$Y6hW2C&<{jT#|2m8V9I(o zP+YqYhf5P+l_HmYxO)H#)Lk)lsVmlsR5B~~JR@V4b1`kpd?@S}CC~fL!U?SsdV z?%`aM+IAd2VjFCev}T0N{fXZhX?S7zh!t8FjZ(|Ez@IhQB>Jl`%zGY9g!4tXv(H+Z z)lf)Ho3ruN=XE&Zq6E9jpIG#MkVUQGFvx!4h$5G|>8T-O%LqRooX2I2vqet9!9Wkf z&iG79<1SRLCLzC8KOQzQj#sm!{qbCGS=Wl_5D30U! zG=QxPGK97z>F9&XkeKfUOyoq2ophhH{NcDBQBh2F;b|Q2Ttj8NUXy%jR$1b+l{sJ)pTO&#T#gGeGXV#pN#xOX z>Kc$r*LxgeiUjmkBK%fhPhWk}B%@eC*dqK^)zsY0k!|0W99JHF>@OF2|kgr0nFvl<(rA^0)oUtG}Jdeau zg;b0faLNO(8|~`191tw+>6fmX}Uez30XiL zrG>G1cNE&_AHsACHMGV*bk*zNTkI~IPfio_lZY1HPxM|H#pRa-gC<;8c2>Y6os70{Vg+gUDHA)&f`F zfb$K;W{WIs%hpCGLDplfsSTY#SN72S z_64xLClXZ$g{Ym@Hgr@AMx~@oqPk@_+_@Eql?`q5Z*e@@_RPWPxh))(=LzIog*ukc z*$%fPR52;f7rGyZlE2(l@Obbp+v&(5-|`Q_%nnyV*}QzWSI3 zlbG<4<#Xs9!7JXS(E5VyD)oh-XjK8q>g2-UF$wr0840-;^I)78ii&Qo&8w^9o1ZEQ zz^?tp=|Mw+zj+xzXQd03Bz@!tdq#0-C{-fOlKYA)GkP^eX{Y`>n$Y2 z))364)lq%3I60vnNlu7pqKnpk@Vg?;W<2hZXa##*B9#y0XID88u z5u1`>>#IOC-8TbV!Ym$gX&rQGA(Sg^x=F@PTL{%#m0`>HcKg+!F=Ur}62QwCdcj$8}Y_m-dPN>I{Hmc8h4U#0e5p7>{MsW9g-jBUH#xi~JR6 zAm4AOfZvNPXkV9r8$Ew<{)%hx4*dvYv!}&)?OG0%X%&Y{>>lhpC^gzJp43O z@*iSk&)%cj!xkXd9tl_GN5ZtWlcac3D&6+{8dbjO3Ym{8aksTGs9zVsoMXChuSXB% zgOB11vmjVFIfFdA8;>d%tYF4!md$hdBN_DF36JuXz~N>9tV_@Z+e$I?)<$~p+#T$( zo(`KY+M%9KIPRUg1v50N*}2qg)*(o!4BH3Smt(y?U;8)@^dr!B`UZS#;S54k1HjV0 z0ZbjsSsrf|-r?*9f2myXxs(g5ck5#Ut-##3({S802X%K;(cyo$=(CX1c+h@=*HnBA z;@F(k2hV$W_gx9+;-)~jx5f*sb8momp#(f1XlKN2yRrUL78LvmW{*r8LEqFJtJbRH zGT%CQZn_wnp8uw@EW;u4ehAMwHWYe=!qMMw9=gpRP7xKaoj z`vo)mcm3lj|CK{{caY|3Kcer~>LNU_C+?bRP$6$g`|adlxNbjv9l)OFUr1o!qvue1 z>l7Kk*+GQUY%%WcBpAqc#aW8IR9K*kr?|KavL)*1^b3<9ZukoRO?AT>>vzmnpEXc) z|i@HzwIi0K9WQ)_H}{XAwDLL z&8NQlw`jd4J42e*N!u%6z_#V=jJ$n6Dz0~jpSzV{E^`4MY^$WMYlCV3 z4L1;Ob>~@qiNc2pmSlWk5sj*Tj02}@NT|39NglooLveCM#McEBPV5DPV-ze>KGTwd zK^pe*IvD9Dpw9LZn!B@+uJm_@d0yG5cO{!fAAAFSX-QCf{soydnVnHjo&^i%OQ0bn z;s%y;H4-j@20?ycIfUpqYcf~(V>Zj!Vb_0`LOS~X0W7K6NH$bFWUd_6M8RFF@bt3H z^g)^wd3EYHCab1m!E+5_WfjS&y|jbpZR~SbXAl0{JE`Q%f6OGSNDQ}XC08WA(TVCi zv`1Tl-^4kL=lpIktw+>hyjd1ctQmnM^y?9#1sW@1 zM}RT**=5p$<#izKxfL9D^z)XMo^XjoV<{Vz*T=%h z*;AJwXDn#4Z>z?er~DfuA6KAHtvhP85eR>ffUCmAVf4m*(!Am` zGZC}|w}dCdsvWMxVWv5n9ID1uyQAqS&VoyC$7RCbMm z>T})b^GF3X#gb^&K^^>h?gen9HHiEcHgha`6gT{=CYq_ToJ*s^+gEP@-=me}+`ar}CrqfvqSXYLFG~8p?xSe-$$-wn%WL3B(jJy)X z6_&B0%`jT|t$wL0`2|6+>0ixG35Ex`n?B_1Pg)IvhmGxSn*62g} zST|Z)l{)0gUxeo5yJ$8;5UZB6nfcUt{F8B~(8|6M)nqteVAw&no!W+1Ji5pl-b=dn zf-+H9*9jkzvhdN;MzSKQ1ZQo{L4l}rav;AEZnVvY(H$Dx2JU$#?yUkACcdF(8rfVq z%gI<(9{|9v>+%QQKw`TXd~a(Y_vK0$xq}OEt6>Yd%<)5)jt4O8K8N0~MN;Z;icY;& z3GXyAFn&)I4*b$WRbv?#O8-QZA6#blpRIJG%2LQ&;Lr14w-~p2ZNiwAZy3zZn)*38e7zJ}`eY z8@X>hvCD5JaC|>CHQp>C$BHk4!WY(o%)TFW1EVp%#TigXt69q7IXVs6a;19gA?oxm zmR-MxXER$H3=TWsf{{lU;{KTuuLHbguXZsTWQ^hF-Xw5~kmhO?TtF0=M?FK2;vV^H zVAOqyJPVr5W~e?gz8^lav(LGF_Lov-JOsY5v-?-AJE?4=9lzXv1|D0w5axfa#?E*{ zl$*rzME9J6whtoQ>tlfXjucakU4EE`;+zU_ViaKpC|jo4}>P4ru?6_aAlJ{IJ`)w;cn546r0&~oAQuU zJR0SVYrW%X#44cQ*%n;qAwfPk)ZzZJVS4h*9=2mw&zn6@l3du63(FUuM}tpKX~UNp z{2Q<1@av36_;_p+dDb)+c7`?*V~Y=jCz_3?G$ZJcQ9bQ;R^^B5biuZ~1Tv$1Ba!zF z#>{g%U{-Y!yE;p7$YvjDPF)C6FJ)13WisS7s8HK39?#l*5?(ww11_#EgzRxYRPBxC zIur@RtHs_ZKGF-tg@SNkMmq$DuEDv*EbF%~2A3Pw;+K2hiH>nLOzc?7ozZa;wT}9c zTw`erNXUb(o*tMUItA<}Z#KPTpU)eYQsoCt)M4##AcXGLGhN6-J8KSD)M>~E+VU4kK^WL*r&7zGAXJP0QItvm$x?9TB*-u}j--##Ejwqc_(12ScAab3n_nrrER4F^Q{jwvglSw9&h zR&2&AE61^a;wU?B66K$dPRB1%%OGGGJ9}GOMblbxfW?mDb!{hja%~C8)_e)S4rS2e z{wDkj6=K|({8mVHIfY_Fxo~#z4Xmz;hMII?zPHOBeBUdAb8DBg?28vD`Dc*cB^j*l zqZXAv#xhlhS%<-_48!7MG@`=1T;7qhO&ZYh4sHP$CK!QoGn zF@h79Shn~rKAXj36Efp|ygk}apk#C^H)O2}_37~fk3GYzD{Y{8<{oh}Y3d;5WkoYz zld>2to2{JDCxgY?EwD7FoL*Y84k|oepjoOuH~p6kuKu^2?O!0wixj~|Q)6tstPX1> zI%!f)IT@I}kER${vCr~jUeLQn+Us_UCVd?vzfEh1M%qK(!k=46xpz~u->>KNi|1@| z1#tMCg~ zo02ttp9ub44l-`5`06(|^Q`;7$2zO^0bZcNsCC5e{x2 z;z37#38dEN@>eVcu45|8-|LxyRO>T*^>Z{Ws7-^b>(u#niZifuc_fFGJ1p z4BnaK8@S^2Tog8#i(RR`&DCqf`9seo*^W;s@Mtlq(W=FgWwz8Rc#s}3)uhW$yMS)l zNgUfH1yy}vr1MK4zP#yA(mox89jyB$&LS0ZS6VdRb{6JdmyIP!C$w;G=wlc%3m}fu za>>_KHS~J=ENqpG#vqr~n7!Q(BNR)vnjjeJ_kt{v(XN7yeBj%8KK0kp+B5 z6%7#ebU~%IUg#?jC=Wwt&VsAA#i67>3O3lf^Q+j*WkGW%`ZXz&fLB9A2?pV8j2;I6OC^7du3%78 zB<6j!;(o$H67%&LdB%_D&yw2$Hgz{y*U4ml@SP%Xc_F--R!)1Chk?bjCR#dR zLOc@f&;)bw)6jLW8=sFm{|fRO`0q(FdzY_xW0*Gd%Ar#`>!J$HC1-r|c(#3uFnoATRm4L%1A2pjR_cYD^G7m)KGVr7i^3JU@ z=Eknbx%qoB_ws8cuIYh8{N~atXsi4N?cI)%>EoL*xZa88-djYj znhcVEQ)Nipk{y_2BFddm)*@*dcJMuB1Aq1tTi|UUh7sqdSh8Ln)^B}&vvB0+F|SSKxmuO2(9`zartdg zQZh}F@4#k)4oVrI{I|p4+EfH)dRsUJ4UTw`{Vw0G@PO@GT;OxUb==r?5yZpNl&+ioGj;l@Pt1plz zr;c!-Z6t{aja0^8_as^F8;|C$n#!NM-xrK4j3DopDevw6BG_D~jg2geX!lb=uGKMJ zywCDSUEBLG@bWAA_}3_zI;oq!pK_6B-#$!YPkg6u@;WiN%ZQ)6M}WWYupqa|d@gr) z(RtXWSc)z72{KFYKY<6I8qvE(6LVt`#4=ln&CY0;tnq~My6kbPnl9gxzXC?_I=f#w1s|Dov`uS< zx7&&^dU+>D;Y{EFsujn&09nM;`8p;B*fw zqMw#No>yYsx-vVVL8TAH&aQxnuA6X6shBmjk*EFF0t4c%!yfT+Bu9(z{&7BU zr#kC7xFCU2^3M48kOG(_eQ&<^cmsNJSr%@*Dz|Zt>M zYbe6kdLIrSx4Wb2A}?@iKM#GER>AUXGx46a1ivaf2Wn?3k&s6Rze8yQeZn87`xS5DRT*RyWI4%#Znp5?qG`O`x$!J-N`!1Y^j8GCm& zueutyZ2QbBbPj@=L+LR4a2?!`6@bCdiDZ4UBLtn;jO)%1W7$YIM9dn7Ud35Z`9Y1p zJUfZ%2(>U%v&4wWhiXXwJ&ZXSnxHd@;jQPh|Kov`pvn72C&i91mn`_ip-2RItjFj` zT{cKv6#>hC1P`2R0+aJ{sQaCVNqu$rRbwqvCy)ToSx%|_)FQfYbpUqzT&J@qdgw~2 zdYm%5o_whg=KuMb5AkLI-8-)GhUcD!oVp8WVR8jmof$-94+);|SP5)-5lf4N!pNxp zX_%0mi3@gqG|_t%hGkcU;h={l<{G^tv6+XUcA5n?+05bcCKY3!tv7!1dIv#f`yqGg z2EO%2wzE2Rla?y$LY`qfzSojq-Ee1`-}v9etER8fKfeSe3)wU9Bw_B`#aF4ln^!yjFQ2p|6O9a&uZBIV2o$%eg~xT%|LespR~m;hX^N67;@T8 z7o|o*c-wR6*^mN_>FuZ{E(1Rg-C#Y3EwEx+0V*_dFxzmbdEM&}T9njIQx$f@xHJd6 z72dOVMi)`ABo2eiev+AKpWyqmy}(J&M#q9rv{C*t?Bh&kUFr+qdzuzn%7vh1#(i?; z&_%E*{=^&EH;O*9L$Q-ziR+-1TE;Je=dAmxAbm19*Lt#f_;V^wo+pXkSEKQjstnF6 zljL%qs&dz>%%v`yO6k93b*^$vH`#S?Ewi$|7Q&TSFL*{Or*xwTyKlWmy?rcE=lL}5 z?7y*erbs4gD4bxTH#v%KWilu(9Ve|f*nMSOI8AsY04=5Lxu^ajYWp^l5v#>e zk#dB7?$Ct_nKrV(unFsr-lc!{_E1TeF`m_w0@&<&kxmoxpc)CKpvx)a*~PzZ{+zZO z)z$uyr>09Fn$24ut&4)puR0hpSF1Vcy*6sPq|rNO;$&p#3i*&) zePQ*4xJ%fO$BJcO&pd=b0u5-|_le9nB*^`HP?QWQQYyFFjI$_C7tglT5R0>6v}S83 z=LWCG+Y&Aueoo{1<}jl>*tuk9M)TUcJ4xqZ zJL;CZAD#|NVz0UYM&68ut7Ack!_rC{^m9(<81iKT)L_OuPw^Q8^q|yuVVpknr3w((8 zT?RA?t)8i7>H_$^KGWIF#m3~(((X#Zo6s}T->e=whzQ{`rHfXKI;%3a#Vng1x@r6 z%Qp(H@uRoBMo|7k46X~Rr)TtBsPlpmCc8S1O!57IjaA}UDw+;yVX?Sa`ak%ZHO}Nr zIz=j+vvHM&0B#faA?>fS(B{b^x_@m1+&5#r<>!R>P5PlMey5-jnM z<_0)!fS;%UdZz@Nw%iouC;Tg+3n#3w&;12WRqn?to$F|V!&UsaW*>A-&csuK(?S2~ z7^;=V!Q6*?!O(XbnY~#UEY38-$sH4%tjj~_e(Vo^Q$7Nh_=T{0*Luj;xdy8inWKkS zG8}a;BkxLjc_sS_iGY7BtjKl6AG7Z2Gz zH@JmXQa8;?I?eYN*%H$Uio4cPxy4>!-ottak9I(Z_zql;gu`k^h)i!?hKaQe zFn;(k^=@Z<&QDV?vpf&?E%*dV`gJ4)&Y)4rFyL#p>jft;Of4RBJ}SZ9ctspw?;qpb zq`AUh6rg)@6R`=3f)l#WIk%Vh(#LN$|BjAr zFt85z5B};lz}?Vk$O)*2Uq{#DJD86iuafbxcRzidyc@jjGQg~SDep|u zTk4P%3g1#r!2-)f^7NrB>DaXbHbsX}6Y7ZF(^cU7+D7p8tU&H!6|Q5-X7a~!H&!+q zfDX@zo|qSi^Vl`Kx!Dds?^}z19=*bOgk5K!7{bXn_hHsa1C%>{6MCb!G^?F$M5~yk zkfZSrf@5-F&CCqu)f8iLu1l7`Q}7*6E$a%EXW#8>oqL(nMPaC^--$ayCev0o*0G?u zgoY-uJT6QJsB*wS2bM?wej4QZ?L}$tKHlQCHE`i}36#9ZC3QCsqUe!NM19RCDBZ)l zQ6fX|k=-uXu)2XH8ogp<)*Z*V&lNDP&_QpUKZ3l?HAL{YGS4l}2G)r!Meltsc<6l- z4qhsR#@*w4i1C=9YWB9}$skXc(vItO-w zvEDN@-cpAii@!0KgKF`>x?ALlN)<#cE+?kO&miST1G%lq$0b3Ur0>ui5Dz#7X>D$> zyUPSOtP28BQI-|9p@eGSbznzXm^J-0=_{y5L*a9D7~>(G^+kxBGQr*@`+%!54&JoUR#NO`huzcFFR0mkj0KkHSjj37&^XokOj-k z*=J4wpB?_d`SDPdc@f}>Q;tRB-{C>x84-qiocuxP+A=UGO$6HomtehLA0Fy(Ml+rP ztuZ-8ZX{IF#X`1V9Z`az!h&ee)dkBsbrf!|M-p)i_4`gi(cBWaA`yv=QCg5KZU;XU zLvYHlJt;SGK-uq$AcMVovOYMm&dKSca9>PLZPoW8x4za=ezT8=~^hrAD<0+$E9FwWj?tcV-LEj>Zrngrz?Z!(HxiW zrZaLMQ#(q#HOy^5ZGkW3EH zG;*9;!!fqY`{%)a){o8J$*$dwZvvEQZSF5R^jU*i?*7DkoU4l8T?6p%Od%|Is7sXU zVu3Sf3OJv1!Ie_ynJFfe?rsc1C%YWX&SmF1fd`oXY$RaIiep$*#4sN}$%412FK+*L z6i(K*0G_N;$QI}qJ_is+cr7Lq782bUQ}!=B%w*fA>(zvLw2d24HE zvD-%THn?J8k{o6(n?@)5KB4X(lu^E17vm3DLtNzvD!)DlrCx+W56j(^3d^CzQM=&L z3)Vr+vi}p4@=ztuoO;LtC~cBwthX3~`c^gOn{6R+UYbngGqy65ujOIMQaxypUqcHo zErFy!B{WGqgkOHDVr5%0T&Y$?t52)&x6^MbH+3KLT{4=?%q}FKcNQ_vf=~0hU+l!M zU93Ysr;Y|U9e_M9J3N!oOILqhf*+Oz(4}uCIL78NlU!adjNiZNMxVM zKrH$x1~b&f;g@m}1f90WjV;-1->8gS9!Wusz&SYm;}I|`{6t&tEJoe-y;RX$2~Nqn z;aFuMD43-(vQ@s&9=sHLZtO&lCid>NN(seo&!@^icF>hEiLh_>B6N+5M}L@(Glvpz zOmmdR#3sRiEVmjxI`&VfzOFRZXNjQp``xfpCIBK2 z$>8s{2wWeW0pZ7sc$>=(VL+HKX_>A8zuByulUoq)zGq%zc6%HQu^|tPx4o zT#w%TN#MCN825$9g7kt!=sa&uqo>EP_r5#O;68_>pEw2|#cqkDY=G09A z#l{5k`e_8{Jj(#9Bfp5Rl_XuPoBG`TRG7)`cip!!a(KN*XZGU6~T3OhITw#v*x=oB z88lI3In2>G3D%jr*`8K1ejg3PcOP!klMk$5K#u@#;3V18|AD^y>xa5?wzAK|6(aMO z7m% zMh05Abo#aKs|B3Jg82+XMfqr@s4QdtWt|1*JYvKjOZdv2TKn-0MT{CGsq84cF& z$DBR?h|kk$kYt+zYN8{&8u=jPO9x?NZ4uj-DMSSpcp%4i;TpBF*!9yFKJI!!^}Q^q zrs8`V%FY69YRaLgKa_?nCNNNEEq8)4xE)Z9CXW4k4p$mU8zxbSmQ=a7a!4UR&0Z za$)AnL{u*)_(p{Fsj-Y=x9Un5&)LSZ%uA4;F9h)eZDced8STw<*sO3EEzOU>O%vj9 z_L1B58dFj~8UpK(j0mdZPu~@6Ka$ zt;b;KP8i+e*+8(Mh)%*fFff;4_YL-N_IefC>Xl-&WjwF?xDJ&}Jx*n1)lkJv7PCLH za}Hf~{98L23 zV1lQCXZ}5BHj%BgNt+86UI5FgcR{)0wPwk;l|1WpfjDI43;pjJF=g8<7gS=2i^I4xU8?uMn{H(_)6xC*j&1 z(ag7WG3c^d#Ja8waCvho9;)w#(Zj_=+_#-)u~&yKH@ioqQXL@h+Fd;7ev27=ej3G& zgy7WvLL!*wMC*bhNbzr5yt^TU?bM0luIom)j{W=nz5#4m6NE8F*{B-78A9)g;kBds@aO1PG}Kv& za@CP=H*19Pdy@@gv5}~K*B^UFr$Zu#3mq+wNNBnx5#*aPQM^x#`70jXBo>J+13c)H zu_c*_FNo{ZJK$gxh?|V6h=xfmcz(Y_dS9xO@Fr#acqx>u3_5~Jte5qf_b?T<&qRlF z5#&GCu@@Y?6ULtvLjdO_yN9^|QRi>q1@BZie&QVJczxzv*H)tQSD%J^?^v#6(E_ym z)=0PQ*n|Z)qw!YsHk>|OiaX67pkGxuE?Mz`POsa5ezj$A${+?GX|KR*o3DWO?_NN9f63pP4l z80td7qv0YQOAH`k7d$|CJP*>n5q-=5!PXTOwCVd=Mx(Bu$YsTW(wxoM@4K9KZOT9+ z_h@o-Q6V~ev=DB|W>Qjd5)_`vlb#nJcn4=)BliNEWd9 zyhr;s@;*o(#yRD&kkVg_8;{M0C;r*krRoU_KAS_kSZ}k}C1KPdR_uMC5Y%^nB*v0o z!SwhEeAw2(i(1!7ZH_i$V_XbGR?gtAxbYr@J?voozPbCg=@;13U$ zTjf4T@8z0N?;TmVSau1wM%n|6oU*_jI#Dn80!Y4YhUxu_;1IN;C{qs}N^1PF6jzhUK@VBUNU0pIEL~AK>vej^v!Dk{OTtoC0oyCri^0+C#r%|=L5;YzQ z;*5>A;P!qGPSkWiw0E6~o1D^NVMQ;`DC!ERJW;|s?>B?W>1Am4#|Xv^^x$G#F5GyM zM)Ur=gjR#XMA%~y9X+FnBhNQMM)Cw5eCmhyUp^R2tg;jdAj} zgFXL>;Ql0e42^Td!-aqTwm)WX}Sci=ngT^7NZ6EB(k!>q$(c|E9Is-hRy zz9mcNh~bgzC8Y6oJ`r*xG%qfR_#}x^=EPOVzt51ztF}S%`DauyO_=|wNE>$d1mVk- z7nr@C7ih+=G}@mi%hP@R2;>$&1!cMU=zWD{c^IT&$Dknhi+~>7aTkMjo*61k@q(O> z_4rovFO!AeN$ijv9cw>~%kE0^PiUvpcf4%SGOmV}zpXU%?<+j@ZHU-+uvt@HF4?4z zi0@oXVb$}+z+qWI4`dg>wo=d>~&g+BH0T3dJ_wjX$<8xg!|*ai4I(A>;zLz ztjG3}0wnkx_6i;3tdnN5aZ1-<+SF;-lKcqAkBjgweT0R^tWInDmF3MLNMc+{0{^cmc}#qfH)_mpNNEEQ5;$*JP9<#Y% zKRVOo2L4L3!8_CpI{HlLPvLuXDRqPQ3e&lAFW!-EjSpnn+XyJF`w9gm;rQ$OB!24c zE0C#2&@9#;dwPm-zGfO^j=X~v<2xZ`ogf@Ex(y${vTO6nFjU@9!+BH6gU(q~LE!KV zJZ`{tKuTM&U}yt)u1dhA4#+r9IfnsDkCIJ39hk@Fm!%pt_`*)BnY77wsD@+>ePbL> zMBe66MXM3&Yiml%R&R%OQ(xiYv{dZ<_Y+3`8=&R0FOUGEm$;)+nA^mCfhnPRc=4AH zgvK_3@l|sWi!_3l-z8yX+%(>x))Xq^tjV3xCrWo-O-8$naPHyYVrqMJjA$f3gotS@ zZ%<-76I*g0lPX?Rhy&P{|SX>-`2;s8I2|AEmG4(xZVL&fwr$SsN?JKKEW;W<65 zpZ1BI);FT-?%%@+w)e&_NrRXyQ~tjP*<|%JE&hj92T{Y$21JjIQ`J2;u`E&vcU~H& zcA2cp=k#O3nR&PQvv3M#XTK#f-Z89$_dF^t6v0S)5w1}BJGf+>1&94pNw$FqW-NTe z*hE+0>I>IM{`nG;p}CJYH8Tq2wBEy~M5K zcm6=8H?_JG3iD^{atF3LAg?HyJwi3h*193AZ6Sml%#z zl1oQELrb0s-)%`X8JPZ)Ui6*DIrBvTV>r?nCT&8p^CyFziXL~_-Fz@#B*d>SE5PSF zW1#7#9pqhNNbY(uyjyb`ZZBNJUzD;Kg@@u`+-WuYvlY>09rr5d6QNvUK92j`K!v|G z_{rxh&&Dzi3bcQM(o#N|IuH#rKm0?Fb&pBx`*{6#C7G{=RHXyH`k6Zr!C3LR*{N&qczEy=<4iUIKl`N0`$hDKL3#1M~dm z5`L*(K67IKIrLEqfI~kUdBjMXtGoRTw4@c#%p_wx_&1um#>#R%!@je3BQbP9Wimfr z&Ys)6rJMK!P2zj(t76YO^%xgd22&K}`IalQaDRae*_>GiQ@&*5zgMv!Cb5vKe_oUB zjF&?nZAoazPsGF1^nvbW`Q1U^FjnRXX!}c(rn<*?QvEk19}UB;scT{S{SmBpo`q+= z{B8~{T8T533Gw4nWAL5F2I4Ax6^5p@Vt0%gwr(>+!(&Cv+tWonZhtr3Q-q*?wgZOc zc(`n_J@K5`0mYmBq3_v#lDM#i{C1G!dbLEOulPy4=Vt<0m%Yfc#6AfBssg<39=cw` z9B!sXfS5%n%4)TNz^!Chv8Eo(Uv7YjaCtW8?MaW!Y9S$8N3e92CLNzYpRRr=0{(fr z{6lkIL(j;2Y##(7FUg}XZ(hf%O0^ii!V>pp)=|HePK zRMmt%Z#EH!%I!3=?FBEp;37|})Cvs8gz?XE0dDl`s77(MdU|V94KuGQom?8w=ATXP zp`XuBWvY+VaDE(qi;upx!pa^KOtvt^CXGz&Yp6#3(oisUH^Qh&qSmnZNBo4s|FPAB>qAHZ1W5@iN@VZ+{TTyS?ixJBg<|M4cQ_#w~D zZ_+@&mB6o@)q-~=%y^gOR+3GL{~+@66mF2rY?$|XoTeUrfKP9H$3wm+IhTdYAbp)A zcT!g|wD0*uOz#|qb7jK(+tZZ)r|7)HdV1eDp3+{bZzUCqL}}2V&T}6PGRuyX2FeHt z5ry{9roH!)%4~d|`yiB&QML+^GD|X({Lb(Hy1M#YpX)i#x$pP;_2MQj4S<+KQy{{m z2{k01(!k(BWLgoFHxAP3zH8u@YYMWf>`B@Cbez#Tif<1dVQbU8=-L-7`*K|~7rCzz zl163%y61DArc0UPg+rKk=o;?|GAFsqT&R=OB`RL?5azGoU7QwUup~{IeehKUcFli@ zvun?zawi`VZt zRlSKDx-f_HnoHR!X?}jLl5-lb1T~W8NzK&Ep&HG%|AJRPd{HxTJeT2h7%KPNg7&grEWI8J zUg5EDHr$v5ibRvA$*TNRDV+ZHoj{Hq@TI#03qbs>5~~}+_f`K0K*Q!DCQXy&4o--I z1AA}453#$rrST^AxEOL{yl#+gc|H7~;07`eo{(!o4=i z^cEPHw=km0neV$2R`aZRZeW9pZ(=%VU#V|HSH%^7rg*q8I{s~ zvW3{Y>J$E0G7%Fz4Y^aZWx1+t(@2A|Ec-e)2W*-6AGTz>Npgr7Z!&EJlK zbmM)DZH`AfBN4h&wg-}B#9^G@V+eSnj-nrC2}BP{(=v2NWuf;_<1vBb+Zde9m`q%f zZwBpaPT{oVV2Db(2QR&f=(6k?I5O!mwFJ?1aLP5F|1Q*4~xjKFwsg z#|N!gOFo~q(C`^_45o68-BGZ|<|yd8|HoNZ`@`l?!a3Q?lFL(6A!5e|qLjG^w_K<2 zRQod1YBULL@A3KT#cAj!@&)@2MiIN;Coy33HoE^U7O2eMPdDDPCR(!jv`Q%o(_FOB z*VqnM-mr&%>G#QoXc=5Fp_hJcUC$9dVwqgK6ijpOgJ#zq;2VlK<$@T#nIp+U{1sAmS1_NG=s9{+$Hf z90^8(~x~bPN}s zEy|VbiXrzcQX%%iDeB&T6IQ&60+}pHm^@Au9v%z?QN?i>&+&byMQ7=rp_`Df`8(PD z!UAOFHDMq;hvxN2bK}P?VYAO0v*9sD+<|wI^p}PKx5T&`+L}kGPtPW>%bo_&r)tT- zPyo-huSXxlRhD5MRM~+BYkqp92TWDLBNMUf^D-q$>hyWBJ~%w#*M%Z?gy&VUiwn>wiRZ9d1b5db_;swama>0j&Ik?DcI~?Y=z&RO~ zi`!^{i|#A~;T%(pyckZmN+U+RyN3g-1=uL-4Eb@>(V?1m4Q+df7p8mQGPD06KHm~Y z108YipQj|BpK*1J%fff2vw;05Nejkb!Rxs*q19H0o%-oC&ad1fC>7Pi&wSR!SiR7~ zedb=U*kQ=7AGXJV&7Waj=q!937EJeCL%6Jv0`FvU(a`)7%=bKt8X;>zMBNM!J z$O7}~E;hUFgxUGGVcfWr5Vmdr@~%wSb5@9vwBoBsq$eK{yjvSE$iy~FR5o?%0z3Om&&iB9M_ z0lw++sIT-Mo%1_r3a1Ejm%fH80bL~eOfrb-Wy9_57l84op`*D{81MZMcULK~UwZto zCA`lf`Q9i|yz~)1Esla9j|yx*r4DE9R-x*&1n9Dw%npt`px%>baP}i_(c{SvG8(QU z2uZ61?sXm6ooyx98Yhmw{$`Q?Xcjm;_s21j-vnI2B%Ie4M5HSl!T=s@9aa|5$ucC>O`T=j3ZxfB$D3TRiNyi#@M@GrDx=Vu(EIfWK$7lhu+5FL^(dw z9EbYiIww%7NTZI*vSYR%K-&krmzn?m4!n2>)6;qG>_K60o4W{Ze--DnyGvn4`f*Zs z?JkMwEyTym28mo-EX2g?(01cgW^b+;8fzWE6x%_nB9TM&L^WB9U#t0ivlZ`Q<={j} zI@7Uq37+J;4SCb9;o`wiTv^NEO|5yX{L!hzZjT(i*)kQ(<^g}lRAzd2pMdo~IoM>L z18?lf}#CrSa1VPyg5i(7t(maJq3Jxo`ATGpWvR81v%EU81MD{ zz>#<}aFQ4VQ_V6u^0Eax7mdflBqY12G~1%(K-?UiFs)Myq{KBLO)nO<(?dWUCX>&} z;@pZV4d&T!5+3XD1CK+;1XKQokY?4FmiPbV!IL0q2%VOL#|rr~v7{cZXteNiH8V`m zK96zIX7;Fx=2gOjB?<*KDnhLhNCy=&X!t8#{6R`70 zFKP+?Y@_Z#$2evjQ{yvwRC z6YWoI!d9w=Q->ZyDK`^+&i%rPgCcnT@<$XmJ;u*6E?usuc3=*@MROk3x3 zaQ||JUX@Xzp3S>)nc_8Ef4vp=PjbfMlwu8IziV?eg%2NsAL!I8Rn z=HMD>~hU)a{v0^m2DcrE)TQ7}}EQe&FCv@&9P26bwf+WiYLVJZcXlNIr zfqoELpUiCxy>t<$PMXMN%z1z=Tl#3G%O;xb_mUhG5~0~$kz{9BE;@;4z;@|(aNxN# z`^Z6@UQW>_!toYpI^_^Z{`a0-wX+B2TPtI-AT0o@7eWx!Ahp=w$L%J$C4_D7I z)uFW-a&ajZ=t}wTD1fX4pqU9(Lu7GizeuyB)GJ^pXa@PCOb`1&?8qCjBd)XYU?TH z3B{u6I9+sp^b#E=aLj6%a(Mq&7BzQ-;>DZWKw^0mQU5BD&R)dOovth>TYZ zf&8Op+=a1epgt`OAAZ(=s~=NQmnjFG#kIKY@h>3SyGdKAC9S%q$YuELgulm48YTzN zWjFBqLJO_4qaTA}Mph7W6q4KgBSshSEPw&jd;5jZ>oz)9hRy%`y6F&!9Pyv-U z)xfYf1f(|UW5nGin*8kxbNEvdA^jA8%APKy?l^ym_Y>r6V+h!Q!VM*H3@4p z-KcNjSAoy!XwW`A8z#*jhYLklp|z$K_O6y<(}E<(g!)`!GA0KqJ;UkxzLQj{&4b>q zeuG?Iq*6Ke_n3E3eR06-!&NnrdLqKDI37grkJRW4HDFPn6mai z{Ao(^4azQ@iNd;efbb5o)($ZbR;wVJI184IT_FfL{2#8r^aAW=l@Vr4AMBnIOxFt+ zLgJM(sI`0)>gMxY?&o^!_@B>EZ_om*m!A=Y4|q}I%nmwDW)j;t8b=IG-$9t-Sk7Ph zKi1;)a(d#uB%A$k4*oVe4fZY~#Pjqov}s<2W$XD~^u`aMA#@!FKJy*zi~Knk5Ks5! z&4d}_ym0s1op9ks4$oA*go93v_=umO-3YJ)c_9%HPIttP9$)?*Bn4BU_kwc%@t zl4cP$7Dr>?D+AoJeI@usB%pvZz>{k{aKq#za@TMKQcPEpuzv>l&B_Q8t!pv!LJWEA zz_S#4pP~17KW5D{P5gQC9F1FKga(ZzD48;i7TGl;v$hiFo@>NIm&ej-K?BrCn&5-A zGholZJT%ePK=*8aOHIu&m>MPyC1UH~Q-~}LciM@&?;62HuNq<{u^*gYzk{w29h8yi zBAVB#V8M7l!SzESF#kb>;9=Yd+4IAh4qn@cg1i67%!~^3vd)6`>(7YVA$P&Gom!ai zDhHK6UV_gnqEXtuLNHfx3*78iYFP0>5h{l+@qE}wszIL8q;WBV^3!Li%hFQ3r@M_j zJUT3qzy{bUaI`oj} z*yf>C#Y3FSp9KSMUKX7?XXw1Hz4**~1u0z=Mjbz`!_u-$T)N^F6~AGOr*uwo z#O64txttWN-hYW+)#16r!^i2KzXW`jtiwAt?Sf4qi}6(76-Kgm5$tTTKo34M=2lrr zI!2b@<2_Z(J!K&ndUz3^e%k{-WD59uaTG0e$;RHlNwnY71}I*}Q5# z$c@<0>JuGQ=&>WLahM9P_od*4Kt(jU+(eG;^G1#D#i(*S8|=zl@W|~~bv6!(5WM3& zEYjSE&GQ#yQO|K4eV~VB_a)(5tu5xhiNFN|Ux?WYVN6&(1ui590nHDmT9;CBo27|m z#Fl7~_12^XpSQv8`~(oWD2d6M2gugMMsm6_3imGcB(ji7V$wC?Y+WT;!1EsO4W#19 z4{<2wQ;bXRB*CXI*$u+SYVn6sU*qCiiga6)9Cl_R^(ab1{jhjYxnTiM$~>4cXEK<> zQ#`@gtzV#JC`ShreWBKWBW6xdgGoUPz;X9D)C!A*Ns*?IwM7oL%Z<>wosl5N@Oi=u zsc^u0E^VEwiQLikaN$7=PV!BH%WiLJk46W1H^mt4Pf~*)$@=8vSwiOW`=X!5HX!TD zf{M30xIO*IXqYdBgZ6PS7R#$@IekvbO6TrFJ)PFd!VW-%QeJxOFd|Fn<~!3pHnL|^z6mq?Ye zj>5i1PgMV&2IX63kp$J*)c@HV+V0ar&fetnzj+b(cnY6COW%xLtCE@KrsJSvc#C98 zex+L$bTLD7Hd0-lp?zk$6j7VKfh_qM2JK^Q!MAS{#OdYoxy4OXQ{Y8Jo%O}<6K4#|sTx=I-wUY?9km;}uB8waa*Wa5IJ zZjxp_0UFk5Gmv8l^Nv0hxTwsqwAW9@3f&Q664+}|DcMEF?$3a&BpfV?Pry1qOJe&z z1A`;Q@j!zY?o@4p%^>Jv|{>9v3 zi@@hlET-Q(MS^O|fTmuhLmlsFPJszM5wr`%>|$ZR^KuwKS<+KcPVe*coz~84%)&8q zpn=c$GXhtvu;w$DZDKggpS9`H$*8q795crHV(poyMCi>&di;6;5|>=?N!$&y5*86_ zi?Lu!L(pDzJ}xAFetbX zOoCnA!2iY=!Sp4WFfZ_&;GCxy#@}(kHTRb>&Z610cTYLJ+fa!3tCmbQ&x7m74nlZ( ztKdUyJDoMlAFAZNv8m-a3f@-=5|^xQoIWiZ6OJmOMe024b+QGm9tSx2-z{=$RFtf8 zcuKuaq%&o2$J4-YLwru$a8FS)oh{$ayjd8Ffmw&JkY}}cL?&SCVsT=5Hxj?Bj~0AA zyB*dPC&IxqUj%!b&(n9a{IFFepI*%hf{`QIxGcAm_;~rzYmz#6=E@HA-4jWCHkt^w zY;mQJi>#qUBAia&(ISwJbpdzQm|WkM2`D25tBXUx=JsS*a)zJ9L@Cpbo+)^wRgKT- zrGk8GDy_@Uf~^Z=VY3oLhnv=7O6xZ4Xp00jNhe~t%L^MAIrtP14uNjbG|*-$`dv9m zm;byb2(Q0N9ykf}81(Ts4bn2xO7|gS>D)z^q z$Vev2`f6`nQumpVHFI%unG!x#xk%fyobhaA z8|~K90JEQCh@|{aVsPpY*>)_7$=PK~WYCy|I&_k6YTxO*jq{kiQ+Cv#;2IgnNHgxs z?CF6QThQ%W1bS#z6QNm8nf?^KqRL*~GLTQ!(l-^Y^;*5+q4@S#JI zMDE-K|Gw`*-P5}G<)#FrmHB{%`!KD)8j1AvAldTU7}lScMj`&po2HqC*fAXrPG5lI zH>Ke5+;*C^MHr=LCc~N?#Y}4YQ>t8e9FNzBpy&-}IN6{{#+v8h;Lb4g+MrIx$|RxY z=MqNHA4BRCj#JyKd=Dr<7Ztlc5y{#U_&bxuSDvQ?a*6X$+WIJ2`CA>5Y^UP(qSnTm zZ*fqnaGR{l(+2YwpU6~ZE96xsV8$|Y=vB#}G1GJKCcdLqO1kJ{(?&d&5F8PyAt!1* zNy&~VQ2fN_L-@>5*i|+9cg}O-m|cZQcWvOptP0FMDohg96;Z8k53YGpL66w=(prZS z^3ilL23(1OH(8-nY~Ki7@mm$%JQhQXGkIj)cPSi`5CQF<&(rN1Gho-AQf8=iC0K7t z!1v2-$^N{f(D8EtJ+$I3y{uV>0ey{-zdsD*ORVUGk9)B;Hinu$PJ{hqHHdu8#Tgb} zjJ+%GCs{ZRIBh+w-xS$+UeX=~`zy#j=lN8)`Um5@(FNAsIt>f_Md)-BQ4+Fu0(pDn z0{-cng;8IG1s9zB!PGbzv*#Xx7cac2OJf~v=d(59>jp5&;0SEp&hKP+#|A5OQs8Z? zgq-VMR0!DzNx4H{^G^u7m9zvQk4<2U;u5U+kV=MZV@OENM7F_38AY~ifhJ`_ygC|) z_K#h3CjCHWTK~jZYlT^zeOI9V%X640=%;b+R^Y7ZfEB)L=&}PFXxw=Ns9JXjcXlC) zte7Ua*1a2C*=RT*?g{s-QmA6MHGV37%4}kCFtalhWjy-OeS5)xgTz{rO>rflVGRKR_5E952SjzD;4aErd1lh1>fplkmhkaA?+0d zSC0pS;*AEu_}P3H=A$clJ0S<_C-UCA#RsrmB$gECDuY3?351RCve5|yE*s^LuB$Ov z>=On12b<}}2OSvq`ZdaVOTpkeDZF}48^^ZpC9e=7b#XRlmtt+71a^gMW~e(n}D(3ikUpqZX9!Qq=7dba%naF z7|r)fJggfaX`5?sG_6thj&g5o|$Qrg=^hAO(~{nTn`?JW^3 zQC7pV{ShcSupSLQ{-alq%QHz0s@PeWh6#@1*zmc41{TkQnju0nXzf!8a9u{gFWT zv%Bf{2c>-8upYWbm7s6ITFjDBVASmts$XU`K=w>LyAd)?n^#v zbCtB~rND62HM&hi2wue826OqF^iSR*G}|r1c212Ky!LD*?)Og#S}OeDv{XD24WY&j zyM}R$+!TDGu0;Bm-o+C~m*GU!QW%s@g9+b~DGWwJ z#Q*=ThAer02bH_-5+C{5;A>xr-(QZ<$b03eIiXmPJ4J-MweT0J%B=2g3|utNfa}-$XlutMvZebPr1@^f3acE1Q^m^A=*r)1z?Ect16k{!8Ne2_^qNkZ*}^i2cP{tn3e> zM?&4Og=e6Bo^3^^FPTZ5`XtER1Jy*d{2nq6ck`U->2}EI``S88(7d6{o$QZBJz}p$eFko;4oj>>)d%k=n zN~V$Y}$O?rzu`q{1%PHJ&-iXROw3oW{Ocw{DG<5g@nscx}bwj-;)VL!$bJumneO) zu#@h3p}>Ys)h+!x0J{XuFybe5j1KSsWb|AR+Iw&8@90}%W6Kkk&X0=Qu? z&Gm3bKXpR)NuI!fjm`M?qz%1ot3%fsJ)uVXmXIEP?iX`Dh+bJ2g_|~Q<0`MovBg)N zIK$sVc;)+L+`Qm9j63FycK!)u#_}9`$*2Wxwn(t}+=A_hn+1WP=P)&ECTsdwguA^} z9oHUuMC@MfqyL|=&Ru^D*W9JBVAK@1UpfP8|MigLtTY?XO0lM&BC-6#RxD4u&hsGC z=q@>PlC>~^l+SvL-K%t2`AI9eiA(m;7vkcqkyjyJ_bv8ss_q5>sH}bktnl=4(i*O2GiNQs4GF6Xv52ZKY`8N;v%-h$-7rITLF*%(&DJ$dc z3nysy{#SHNq#3EdX`DGI9pY7r-owb~V+zAq-tV^K= zYZCD_GY85o&j}QLPLoaZnrVS>Hrhw=yCoqT{<(LBD(KXZ)`_OrU49C5PVvthP2M#j z!ePxoIrzJ(&`ReMcuq8kTE}N$9WlhCJ|#FSYcKu!^gn2xx)h5PO2FIbB>!CU$L;Cn zoc(xlHm;=~-}^Dt_o5jHt07DX6%{mzeHYxF6D}AQ85MZ_%m#0hWzeC`@9pdCI8_55 zHrMnZwd?(ZZic$-gJ&W5?Lh`uRl8%@$7L{ZvIQPll!3a&V#wL9LPkwOp|s;Atva2F zO;ro=>g-6OZ4*L#Dnjs3W;S)ad5F<1)kRBpEn@q~51uGC^PI3UOc^N^JUa6lqW<~9 zIFnPjU;Q!KFFJ%>XXP<6<{}*H3nWK(973C$&zX{IHlVvwj7zgK!rCpTXq}2LdExzs z_U37z)JU6BqNj8O=>TvU|WnjcIsrJ_D%;hnDm*XZIVI$ zQ9$tJ0nU2sd78lYo<^I;;^pF3^h4A^^f{$~`?ohYV6_z6{!SWWQ$sPoqX#y09EJtA zx8S-Mea?8ZG^=jO;mPMuaW&6Bng75SYZgyr$Ise^x69lhUnZD3I-0}S>jltSIY{y& zO*r=&M>c@kqw8&bF4yigtQ%uZceS16^TR*!j4r>cfB%?Ux53}8JH$!#3-!{tgLyh>*dU*T z+3{1k&$ooxD_2)xam_kRKf8b&U2B4p#i=;^aUzyG@h+!;llV#Q9{)L)!0L}YFK$#A z(vR4|i>bkQBxWf$GGBsJivH$jI2Jfka)!#+I|^()RoL=EUo^3fC;O+U!zll|E>nb9 z-qQ!`+Tyv%SPfYdM(|V0GyJ`Oeq&971lLqD2R8VMbBBIz09u;{dCF;E6dghe$M(Y3 zl{?tqKYo&iKaVgk{tUjCU5=MdpJTM$S3^+O7fjZ-Mj5N;FhA%Q>1n%8#a<~uy{!d| zzZ#4c?jM<)yW6Pt|9LXT3%G)vvw04OB`g}hlza@CNmu^fixGT}#`eBGdpjZwXT2*W zO)FMI;tvz>I6q1UtoCB-EJuMQ&pb|WsU&06txzVp8s;qihc7g|aNn(VxVlP=HYWXo zqA4NZsJRcyE3Sg$y94mCfZ;B!JdFC@d!grM8_?Zqus))h{B8dySkU@{X0T1Dd3G+k zyp6{4GrP#Jj;A1`szDG`W<(|}y^V9sjM3(w40omaIwnS(MU|%!P?wznmA@yGmN)M} zqFoGw=g)=0y5Dr;WN{Qd;J~e%I@I`$-*elj57Sre^U;3nOiZ4f0yi(TWAWK6jISYB z(B{i(CH3=t_j}+Ovz;?jzJd-7xn6r~ex! z$G^p+rmQwfyOxumdKNhLSur^|vz4^@&*7RDpTy+TZuDE(3*vC{6vXw_ps(LOL5_bC zj2OmYon$5qpG4A=-O`wl@EWJ~tcG!cQ(^M)%VhRZCwwsJImrzUCSsq;akkqN6p_0G zzFE)lmHj#B`A|cboQ_8fSOMMIFF<9~3*|dyaKeEzm=Kr%uMX) zxGB??ecJHox)7ZE%Bp%yC6$F+85Lj62PB;2%D-dN(5#1j4sy%%(w_I8&J0CYA-eHZ?+H)g*4m z^b>Hx-ybKRj>F`^vk>z-0Dr%CWCr6b*vMBDB&;vP@#=UK9L~bPD;nJPtiQy4PZuF0 zR&2v>RW^a|@bygHM4a1W=zXw2idk;VchjEk!bX(9Da=r=WyyprtkVf6w}Ru zV_^>9nD`9sE@Yznq+@U}A_80Jai}9 z?)sz7Y=E=(_oKDdZtOq#i@7Fcg;np9V1si4V>U+uKh#afkdvxhp-%{AsojPPYC`z@ zgDdtWRHKoJE$-6Y0uvSvVq~!!=&v|M6{d&4g4sHpY}b2|T_wpG>3wA2$yp3+{Rks_ zLo5w_HM!~E|DfVa-IKQC0SE7Nv?ErJ(ieN(LKNN!RU1o8vG4q%hNBym4reNgjM4&?^JqbwH#-a zdJ@%w1K@A(GB*C?J#g~-1`qZf0u5b%a8`MS6PelU-(`yIJhjc3WxguPtze*&xil{(go2 zT5H28mNkNQU>zuA+VGunF?4M4qWOn=nfK{m@V~MJ>~?W~AabhEe^d)!zLI8C9aiDU z=Ljm^8A5w>sPg znO+LDWUP$wQ-Bm#dZLu(_Ifj0uKS?UYcB{JKTIb&#?y}BG2FFP`@luQ0pbEwcnE57q+r-&>{vxx%zx4gLi2xP zYkoa=&WHt@wIXa$S}pTr_8Xi#P=dUA9_txZmb;k*DV{fpg6kp-S571!=OOIV(5A-z z8L&36AIIORhHZAwz?e(HZ5OqGQHh2>_k=KVq#g6S_26<&J)~_|!+UK0(iu+CaBF=y zR!G}0jmY!GO?j7Af-5Yp`fTYF)PW-xf774RJeMOl75$64c;?M7qPJ!kCG_`W@Z?a- z{)9JB^4J+Z)k%Z&Q%fv=y%&vYJE;1K8al@_obSEYL1t+(e0iD7J4??qmH*VhqQ=y6 zqUuy`8W*=#_{Fn%< zBr=3+R{bK{ynpwwlRW!0!5StdRgp!nMDa*R9DV8;3|^m>uv?e)()T9casIO$oWV9i zvG6mZBf&GI$4}r2EE36_e}2%-&&@V zFg+a$w@gI01uSZ6a}fFc6vp;16YRaF0q?u@cuKK&noWz4pi!E0@M&cj^PGVbV*#{Oba; zTaC?5<9ROKag@7yi5yGI0_*g2`sZacGua$qMe_i@I_wJO%K50aC=yFk9LR`?JhgNf z%Qp8#lhwvrtj5=V+ULTb`BR>v;zJQIP3*^%-G3nUK@n4%JCpP%FNCsj(Sp|-m2qGH zRlMOL3elE!BxRQr*S(P9W{n&;`cDQQ(RffAaMwr{oq~L+{x8%vKMEc$FIW4?J;qdVsc$WSd zmof&J^u-GIypUxlESBYj*_Bk&pbWpJ-Gfc>r15y?GaO0r#4SdjaF%omt@-m4epIbM zdCbS%uSBq&uEt^Q6EMMEn*B47O%L6X!FJP4g1@hNN#pbqD9AsGCBh{*ZFv)JIIK&@ zhFHM&nNOL#>kXK=U5WQareV_q2WC`_kdKl7vG>lO1CP0yti<|4p4ae8FnT{7hlRti zzKn0O{rLepA%Qr3mo)cQb0T?9jnRSUhK*mi6g~Wm7;EQRtQQxfYYSb_=II`gUHO-M z@v5Ps+aAG1{dfqJ_)eN>I*56nL4!wY=@OZK$aDQA*rm*8(jtnnLudo|{>^}agypf<`#Ci7D9Hq z0sFUG3747>{G*f${U+V`P5m^?dShvMsv?&D_qUzyke^Em8q(oW8P@xkPKA9IVys|v z8qw|BfmOeSV0rr!8XYFY)=18$(F1%YU^I)SX=IZTyAIO-X(jF!GRD2Fy)?3m=Vxf1 zv2-_hg_7!HA@6n({_$Imj>lGEcfA(7#m*SNy)43Ru~3LCNrB?oqk@6O^(4D>0{J!L zN8{G3W5LJvG10jt4U%8m@xo1xdXBk8PAM7SxqcHyEYB7uMfZ_kN-rUHk2x&c7)$D9 z9^*vbUl1cd5w@2M!O;gfyp!Ht&_07_g6WImPTd^1_c;S3*q>mxtBA}u{6Z}J590YQ zc`#d}09UQ+1^sI6jp+}=1%WsOJ00KAp7;I&xvUwO==vHuPT#|rgg!FN-z#LS?vpyE z6c*>1;;)077*(FR9=}SR1_wN#elp{b3^~wE&dO}sQUx0Peh7;T2dQLqEG{YL$o_rr z1pbZB!DGEC>!;!jts!EZe^5MqTOLBTDdoUQ$!5Xf&$m%*ae3nw@d31X{~QuGU*mg- zYhgHKHhYOPhZ{n9Xdr%{v7DJsjhx?;BjOwI#B~>}+&hgl&5ou)wq>X=;{+xqkH@CR zS%SBE4+T0BsW4OK7YZe)!oYqG`&_4Rp4-nrXTUu6_bqYU{M#7)=G=ompWj4&S0n`O zks}K`qj=w8EpeH%6_4>5gY4MNpd2EL;hn~Goym(vna8K7kJt)qd{+qFs(+!gX%lE& zY=B+43AkmS5@)V{n`hPsK)=K@c$9ICDmb0RV}FaW!D$M7;&U%nsyE?}h!q)AqzPiF zVsO;;G_hZ0g10tRgI00|*_KfRe-CD&X{k2;^=^kposmd}%jxq`OY$V_67GwafpuL+ z@X-e|_Qrq&>*$dI?RHW01%G}_)y;-e_OFr}Xk)8{ZI@hhW;AeKB%TAJWV`aE9wurd54e`5`LKuJNE8cai!~RKy7_n&#j$X5& z#bPm-#-G8ubLX;M_6i_-r<&QF@|FhXDd3OLFR)T%J;u86yM<#%F?U4N9F zc7y5A8!5pu=jXw`1*)9N#4bEI`7=a1i?GW3ep1ULlbO90zv%&mt0dr66;$IB@Epm9 z>&}^w;U0?xHs{IGlM>w5jMKb#L4>pGwqh5_pBEIwigGV>7sI5P!T4J#iJA(VLgQ^! z%ztwQO!Cz@iS7y*RuW|w`T@K6pRz!0s|S{>Ie^I#Vq9HWJq=&H1FS0cfD;wwROY47 zoZROqcu-2`n3_QOZXNEXif_Zdq-Y`=Ka+C{$;Mpo5m?>h!UQRGk_neGp<`?x{U}m| z_piN#mH~O(@uUH*hRoscA$fNE!#VJ1f&$&!_?+xF_(ST-)KF(hKJL?hkM=qVxHQZJ z&dBe^@utC0HF^#|?eW7Rw^Z~#iZ~E*5xOVynHKLSq`GPx*R?(zCOgk#O*|h#+NFoY zoR=HlTW3H-YQ}O)qOZ{srC5AtRtWuiHdH;U0dB4RKx<`#1Ut8kLFLQSFi5Hi8;{O| z-)5R@^YMkOxYP>V9&F6E^4WkA$Mu*W>V&dQePo4m3p}t}*x2!7CywF9V5v;#E7i#jq z^PaXy_&DV+3ME~E1C75h)7hMz?4-wg#S~c29T(xjyN}H5d$l;}`fbFttpcO-Utq1| zPne~bh^Z^{cm{MP7VV5>zJ6?m8x|G#{pLL|uN7qBLd$8zE zxNYUQY_B3bpG$Txfu>|VgTT;$SW*R-SbT80Up?(Sov zD&Nu0vRv4@IMtY z#;XeFiJf2$ua5<@%{Azmqy$PWoj4;~1!i0SB*i{IAaS}J^ZjTRehNQs7ylFJ>BD#V!Y$!nZ7en# zZ>LdD>X7>|8@HwfqwgGlc=_Q4S-avKuI%Ug;XiMHR7@<2PONJTUu%g|tn+cwt?zV5 z@R*2PcckZ&kOq{jgvHjAfcAOenrC&y!SOV+Y}G~DYIBa~$aV`pAJd1~aeO}G_c*9- z(u0T&5mfpw6o;yUAn0c+MD|5vsA?mgDG%Z~%g!LWw*|OMsjzUlBg9M$!3k46@Z7pI zVx5^tM$a=m)7^yX(@?T2yvtI|cqtip$C2)hyDd$(?ghPtZg|jm7bc%Ir?caeVFwLi z3{URE#Nl~Z=A(e)v~28rS31MZuPVqx`;~zGWuK9KzdA)htaGAE&JruHabzlI(1>0q@ER z3>68%{eDXHs%{-k3{e0t|6@4g(*T`rZ-d9Pc4I~NRZyMih~723;c}K1L>nCA-wTwe zn}j1wJe`NCK|-+Z<~qT={MU?Qnlos&Xj!zWD`EVSO0YY4magM@A0H|fU?k7T{<^n^ zvRY=OdwT-L*~yV82VJ<=d`e(cUk2rjIN6~tj)r=AnDfgUFXv6i4h;n`JXTDUJKSNB zJwIo?l7h}(Bk=P>-t(7KL;HP?@p&EKa z%WK5HXd|OsRzT)|+Dqnqu!Mxl4EXtB1|(bwf=yGN(@BxfX}^OaHu&X%Um~BSj&nkf zXC;&yp9iwvr=!8V6zDl0j2E+mAui=LU0x!flNYAI(|&6(qj|9Uh$4n9PQmhhYf<<9 zRdVM0Asi)@q(wCj?zAT311U4iy>*&i7n(>O4W?p(vjp#IIEXKJZla#Lbc4na#%fB+36*Krug9J{WKMg|8WRc(rC&01C5sGG1 zVE2=i@W+_vBlIWX47W(AcPbzr#jT_&?j_ms?GB@`MV3w-O@ldxJZHAc4=c-~P^~K( z-s|=WB0m<=qoXVFKi>_|#OJv$P4uR1Es0PZl}fbIq9AKoF)oYQAlQGJ&kw?Jun{M) zXr&9fyw81%b`)BQv=Nnxj3Rrl zlw@Q^q$nei_qmUDTKb77QD|#ZO7nOA0H4qMdA;X6&wXFl^}WciAA@wig(gVW#$!Kk zFQi4y0oNDCur!m)3WuM>U5<<3;b-p5&P%|i>sRUHSxHpz;u6ZAt^yue$<$(P0hdE` zqN~jSI~us>e`YKW`EuGvj~?lnpN}_(8%g&%1M+Un0xa%Z;@h=(AaJ)BGo=sVbz5fy zsVls9GdfA?)jpaqB21l@n$p@!N3nizHlCK@7v%|HA=i%x} z&X`tdL!&Kr<3LvfneKL-?0(Wl1jJ9F+tHnryhlZgS+wBzB91nd@Q_}^nfmeZUdqVvFAnG>(lf;`XxScV{Qf1G)cMcAiChQX5|Inkd^8ipO1k)^Ulp+}lfmS+ zW2m--o81Ralg(l(uA>{Gz@e! zm&8wOnBpxMP!4}bojm?5-c^Wp>Ws=)^9il zKYKVI_K#5P$!B1tnKXWg>>^C_G17BtKJ;_Lzh5@ThV0hEHzKE?`sOR*{4EO>t#QU@ z*R{Yca3@tf>xp{(e(3Su0L9fgek)7KQq@(MdNPrhLbkwF{sf-p)<9I{=3k-i4E)D2 zv9EZkW5|jnV7^EmWl_(7K4J{Ln0wO0Y6DP!umzFP^Fv< zRLGQ=bY+9K_jKH<{)Il~c+N*mYKYrRXKWCb;y<~z68CFKkcEBvXgxHUG)n)YY414x z^T|N4yD18n`!7+g)oZb8%Nwe%yAq~7k%X*ed+?ja9h>ila;RPzL}yuQp#SqVL|U{Q zx5jLRP64jZeyA8;TkWIjrH9efDF^;*n+6_L?}$`RF+JIz3Mba&;-E)9@!lzn#+N>l zRtU!ePG{M+L>wCnbD>sd4S!jg%0bT_(>c?t~f{7*Cfxm8z~3NOL3H2Gg&#xc24-H5#>qQ(!T6;-+;u<#Mx#ve{q|tIn%+fLjW6M0hq9yu>XLb$0G8ttK<73DyI@o?w05bPP2xK|50=^6Gj! z&E+)R&-5X&;r!H=^CrOA+r|)|-i(O@2K3g7aaugNjCSyEVa>va#K->toNkTAEq({# zd{7}i>s7@215vOP6re1}jy{U@f`+%DdxzEQbD{EjYcU7D6uzL3+V`c)4#0 zn!n4SzB@%x;ejr$h#bar-)q>SmfX4*{J##@AX)MbfL=IO7G$H8 zMGEJGwa0a<7hvGxL`X&g*=}}_9#O!zT)@IJ$tq~vG6{;;ac5qvC~R9d3;ch3z)DOY zfevRuUQh(&IOaga-GyZ3+a|K1YzCoCHM+U-T{$XWktbq=goi z5S+0bCtok5_u@xTm+NHKR~MruX}_sX;5l;hKnJec-Olyou7nFa1i>Y}fNrmDwekOw zLBH+2M)JCA(Q+MP_)H0SE|iE{7R=}RrglK~(|SBID#M&!??){EIl`xavn?H(e_?gs z1-`}J32elt0(c(xh7`q$;&bkQcW1K!&2rO0-TX$I52Y0#wDA!*E|>-zucg2nF%u%V zXgXo9I6*=?*H-OT^)w+Cxn<2`CFiiX+R|%Jyzo8EimG^ zgu!k%`4eI!*tQfs{`LTWP(C|C2LC<6qXR8O@0UKb_9TMUu`-gS-Hv_F_+Xc)%@!IM zLz<)n!!`_H+VN6aTA|I`{!@`!Isq{s`3(VKH>pjd9$@8B`gO`q(soLflsvV^SQEko zi{9hUOfI~5N>-3=<8sUH>a*FpFMQbRkp`QNcHt}ouJ7}nDtpG@ImCOd04oE|u;*Nd zLsg&g?}dJ{n#;cxzsSVPV}DWTS0fzR8--_550iw0;k;>^eBMBDCbt-u zZQ6o6GIzqh@gTTo%)^L&VbW!Ep{X)C3}9q3RnPoQbhz%g1r2}T=r=={){sMIzB6af z`zt`78`o3pl#S~jwc)?DpZRCGcWs7NBCfh6k6Y)@q)lu4h+9=O%<{g1GX^gHYQ<(kqT=)-v>)fWQf82Yb`F#1^9q?p!eTl=z1;5B+gn2bqnv2y91WPae*mW{9f3av8L(l}Zn`C+v}IRRGqgOLit_Uw&~dvi zQqJ>*A9ONvb;}Z16=sgNYAet|c>u1;t!4iNDA8}MBv+}f$KLfm+T!RT$c}S<+ut=W z>1x9YQg156_N3b2Xzx>8c`OQEyURdIp%#_vY=rOPTX2#6Aouxe>FtF}@mSFmU|xHH zpVK1jyrBw1i_H0te=LN5T|M;Q`#sQZahKk0QN}5ItLd@J23U5m9jsSZgRajS7+RnM za~G!K)zz(dqBIec_e62on}4ADvzz|d8%H88y3?+yrQq{#3C5-Kd0`7L60zZEaEltJ zhqo4x@p542mW<+U=`miYjtXwDh~iZ#&f^~n%)mFCS3~%usSSd*|6Jp0D>)~05J)6E%3F=}KVMKH}d!MG#3X2@_ z>GXAY@}9fbwouX`?}ppgMB!ksDy-o6y5F30VL6xOI;!sh)x*ExdPV`x^fP| zE0?eFhpoEa_)tKQ9onl&SfA|>b5oBgYv=BflV`xWEGbxUD;3XuiN&T%23#j)HQE_8 z!R_#2yi{@ItIeqaWB>0uRLOon5Ftm>yp<1wJ*lt$K98~{HZf{O;1Lf%`# zSX{T^cwRT~ne|NOKwSu1Ch?jY?s9D*uPb=tqBmfLzbfl~^9Xn@h^3B##!TCl4D^`% zi%g2HA*vB^G^Fo73ck8ce1w9bh|4)Ui$*}JTn7g1YlNlZEXnzlhPLJ$i&p*%M%vuI z_$%H7gD3u=Zf%@jCVMYTony#mtrWylCo~z0sC7i=`E>BPbeK*!`37c=b-}}XFL0|| zJXzim$xAt&irO2~@wbFBw(oL<-NUEBP_UdN-F}T{Y*$d*S(Mg_L^PYuP@!=h-uT*Q zKJ)OzG??cif$8!h5WY`N2y{UsqI7&LY z0`;^;QLELg|y=_v|hpzjDG7fWc_iT(MeS% zeD!C3teOk%pQ(kGK7(}7YZF|{J5Br*masKZqU@*l*$_H28tOIFAn>6fEnS_&sFe#a zpY$A1TjnFZ_VfrXOe!FbM?O;_ z2Q{)cN|NcCb`9Qq)uwa0Zo|((8**fSDEq`HAB~5Hh~%TCOtak~^pJQ=^38(b;DHjX zS+< z`sl+v1$BJXwG$-P_;GzVkzjq&0yRx;V=H%7f0{6hdbzt&cY!2GcQNE=>1#0j*g)dp zR?6+GGjY^o0^@LAkSR|{!t;g;SaS!KM-ODMhqp|opIap9nMZqYQDZ#l4;bOp8I^pe z1LJu9{T(2$Yf%305AfDn0VY;KkYbm^TXFF!nn}uX9=^kPYk@B4%4Aaysed*H+Fruf zo*H`aD%V5N7)!m?9Wk``KX`OzCFq!4Aoko05r0RGy}#xcy<2R~|GDi1S`2^Ud(Ts0 z=bSswj8{p5gXu#$_|+fPPR-+3)4e>h?goB(8O8GxQh~~=VsL4mH2!yAmEG`nEr>sz z!P=TDAnXsNGAXz5d(Iw?t7-^4et(2Jeo=5*X&U6&u3~LC28m+NJZwEt4TFj4gztL+ zsoYu;9hrjSWm0U&ll%B2_67ZEE(0NFCbBtpQXtg9z1szX@U5{NO2ip9?Nm11Vm`F#0B6z ze@=e#PvX0qKSAGiCRGwVf`e*HNo3Gw+_~`tt~$%@t4asR?hC7!u~#24>ZcY~P_E0g z#sc?hwDIrNx-x@F@=V~GiHzIgOAuM~0Ti6$A@lG}8mwr5za)fkzrZB;lX(|YA7sKG z-Mh5=I>+)oAj7X3;j{`X1$_IT0&X2hWjgCupi)33v~(9>z!f3(W%?6xp5uVEF7m(u z`L*me!%O^yMs9HMtQILemrgqZ-^0>Pb4cyvWRM(^VZs*~GtJeO%zv_koo67xd{mwU zO1YMd(Zx~xSay@X{}#{^|8YOWPx_8;zA7RAM>lL*Cj~*y6_~Rw4Od3YWP(oiW3%)f z?6j5wf4LM4J6A)$Z*D=q0Y%18ww)f|Q-X&cZ-UKNH=t436HqE%!+z9|hMXgxFxBWb z>2|$M7jkFX%(fA{`A~v=Xf;5Za{I{VS=aE~*)ycDKc4e;O5?X^YYaU*i4n0BpbuT= zpj6;>?pavE{}Mk6#sQBoaJwxpCF}}%FD;=vTz-P%z)_-LcN`ZLMlkEwzaU3#+F{z1 zANZjECLT4d;+U=n&~d>nwCA0NLj5Sl+Rll&ed#4J+Oz|%S_P8VdTZ#*%R#v7#cK4H z;Lf^LyOW29%I zI$Kd*)pAQo1!mPS%*}~ku&}xSH@vgt=7lNDH(NFK#(&57dtMCE(UtD>+v}GQa8@0* zh(EXaEK-UuG+)wnX)&}l%n9boaQi0C8(_b3CVm>;4f;Crpk^|kCwc1`&M7x!9?E^; zGEm>3_CNtD$EBiO??*gtpoDGj7P7ZCXs|l^3Zy8WAnU2X4wem3>koU`yuJohw%4*g z0+TM}`lh+tj?gZ!et->wS>|l6s8pH^EBu7>TG8gCAFkYd4y!66)-aGjTAfa*s z=5FtXrD?B-&jgNNeLM$uFS-Z5@~>f~<`C#kOo5VtUi8zNgnyXHY{~IST<>-=earPd zigLQTPVxJe<7=gvls~y7Ty`=LPzS+vJ?Lb(8TRe)sMP%BAb`dtWWtcAx9s*SZSIn*N9*1tMN|OWzuuB6t!36)4eMU z*k?V~On%H5=~^=gr^^ROVq_@v7fxYEBj57kip1EJ@1yDD(+qwJtH!OH7NY!GPMiIv z!vzs+dS<-F$^LBphyr=_!<0=ZS;$BQ2rx5` zQ93sFD*VY7VtV@<_#*C)c*ES8-lo*W56W=Bbzc=&fr5vqDAU97AbWwRJtA7_v$4%j zficq5VPj?Y@+Zti?fo-g$<`3qoHrXUUsvb!>k*zxTRuH0exD{> z{AE-4E&*JJPvMnQCTKZHnhoo{0Z%zC;~-UK9tBFU>yJK1@575gq&kfHch6)lZ4*M> zxZ##JQU?4!(-s(6KZP+*Z>O5B4BAO^o_v!;%$Z&RqA{}c(C%K)6}&|jCL1$04EN5} zvqI^vax$x<6t$cL8G2QO8T-&p!V?$a-xp2zr7;k<|5=5XHmpM@Y{Y+l(J1uvbW7aL z(`Z|4hd;E>(vB#5CRQ;N^yeCr2ZCHa*r}6d4c$~3h8K@3Ax7bY(p-m4NyEhp$3G!lBmpQd44n3rzxSY12Mtnm@7C1 z#yd6Hg%Z=?ZSgCvzmf7^zR80rPOo56QyPdb9!E;taqhz9oc3DNGS#xOB|z>n#s&DG z*o93iS0oKv%W!T`3NKvhGcK7@3eSEI!ZO8B95-vhx!Fxbugo2iE(EY8To*^~ zvbC(_zgv*KF&j?BZ$Y+6gGmb$fXyCn(EY3em^?TLzm>j$|5zm`E_jHWyf{XbfHW)N z@E2s)%rK|klR%{&n^y2363^8Wn;m^3?;ULQH{YJKW zX=BKP2f)82gEvej!|c9ZZg;*9b>1q%t_fqGO(h6MbRp~435 zxP$b-4t8sp6EXTc2@R$OaXiFDjPTL`X70Ll3QtUl;Dajuu31$Osx;@~0|>@p)mXgr zjO)#kzRCMKB87PWFsi5{-5`*F5!bq4g0e0vvMh}b9%_L*WzzV&;XK3%e*v?UEDSm@ z158Z+!Q?aYsBzSQ8P$!!$Pa3$`CyoT_{#@!a+FVz%V$X>>eIIa7huIPZGPgt%NW*t zh2UOOW=Z=L9N(qPOsk?Oq{#W;Y;NG2HKy>q*#RkP2to_1IA<7S~%I;VHG; zB>A>yFso%PD0mqV@$X1;y3XNXwhU@}F!*9+A^ca-36_T5yvBJkbW6%l`ntCo|Mnny zcSVA1o(ru?;rLD4r-69rJJ=KvPXmsX(%c_uIJ)oyYLEu_DlkSKPTs=lirLn?=d5q} z^RSYCEL@be`Q3++MM7+$i77K~vLB8HN@Ar$9qg-I$oqX&mOWm{d2XIM{lMvJ{0k!}uFO5RHHt7jrW2y_G9hAyD061w8!kt8g|58qi=!4tIbL`qo^;Zu z(KTXp7_)e0HiM+f_yIc1?IR3#mN~AAM(>bi{CP<#>~57L_*}~4dj8JgCzG>qe?W=3 zb!-p+{&p^NJ-!waXU*U(bQ$OL&0W~+yon4=wWDLA^U-=lf>FFN&MSMWz#eD2sox2% z574iPch5eITy588itEl*OyRZ-^6pQCVfgI&wg5@ptD zk1%W1uXfQpausgfT|s+aa~u`%`5Ys>nw}Grz}#{>p2W1fxNL3$U6^y0v^LqIlWZnD z{4Wn4@~Y6e>~l-l>@%MF%%a)T*p_f38`B4pH z$DUw}d>3c!i+i{ zw&DWUMbsX}lvf<)mns&Mp1O6A)Z%D!X6ph_{e76b$F^hA`$(*BSp;V_&j3$DkkNl6 z&UX0^!=t@MbM0l-FuWxm@7A@#`N{HdSoAjBou&gf4j#c}P6Zg&$L+`Ny1;c8WoFku zgtvROSV^rxl$U4d^4G#3JR^(e(A`MeGxiWM0XH1GUV&Qv+F*Vo3m=uu22 zO|jhlMVQ$7TSIZ4FzGY-h0ES1@Qbqx_>c4QXjDl!d|cWOYv;{jtpDT#(fB~UZjbZ3 z{CgiJ+%JDpAAxctNICd}NDShD-rPJA#`i`m`(g15On7>lic)A}JEnyDRt8C5QDMADvP z6VKrlYrN-x1AocZ)sJysa3yZ^Z6H&er!n&mdBXaFUb=9iACqkHokp*(!w!z+Su*81 z`1V|YT+7?=G9m)=FDSD@-^Pj7EG|zwpul{-m=6C`?veMQ@9|Lb8a&1vqu1uA!P6O< ztP`&aUj2TBS$8hsGR~hNQm~Cq(VN6>joS)q|B143^VWiyxfBw^a+tW+k+yLD<8Rkh z$;OIIwCV}L!5z2JIKqNH+oZ&CSB06$4gHu;kKp4w8*psvEc&tW9626h%D!9O$P@H$ z1@-q+vE=entP(7PtriBLVRqL>I3odEbb{zj?(QFx)lK$a6vEQVg~VG{lo|RJ&zx{K zU^eR?hVfH^_#i41KGV)V-5vd-5F~V5gyL&My4@pq=v>*)sVCpQF|`>9aCg^1E=YzO&REN zde%8(Rc6{*9)v_sV(sI9;aN{%P`%*6*KQI<_qW@yZ~k;L7H0vMl1!MV@)A6v_Yl?W zoEfzoJ?2-3F+68IFiOD?es4{{DyE0VkBOnTn>#id#gPhEa~!N+g*u;iV^a7caxjr4 zs$q3h{&y3Xff<04-Edbg1BPiUP2zM_2=C#^K@t)moLCU=oD*SKbn#ZH)cQz4* zA|7DmQ%*On_v9TIiH1y84qHuauvBL@xa(M+)UR_0c}+RdNhV4V~dY6yW0KL^vvuPl}aA znGrp8dZw!me5_o_-Wyr8zsG}!%$|V{w8hy4SI&Y&Nhv(us$?^ew-{nhtFlKrtnrb1 zIYivmWd(%8>|h!8zX(m#CV-{oUHIG=4J7a5Dt! zyE%|AzmxaQwu=9(!5mE=Mx*SoEgb4Sy2a&&o~2&80C^T7DVX-eUj<7k_Ih za7@R98LeP8!1dfNtEA=OA<+LN1U@z>fYJR!ICIG>dhrqRM)i(Cf?y`x;UA~#xIO{% zpv5pMxryU)hCz+yJG$?0Hm75?;;H)<;Ia52S$TetS2=qRJ#G4&*e=e3PusMi;{~m@%X~p6Pu_utw;R&7@IIn2 z(FflN?%}BN1~N0Kregm-+7;FIbYTr@3)2COT9h}VaqmTw35n$l^2V-j5INW?{Z zr=v@AE(G6M0Z%0^kWq;wykMUMDmt=ohI`j5mjflGPMJ9Fuo_$$*;;j@chfk(ZnbJ33^D0GExb)|7`m^G|_R zY#tF4F2v$BJpN%32U49Q#`Hu=tLAb3pu`~PIqNgl}jq!C< zs6ZWc%PO(vfFoY$iovJOarnV$G1l^BXngWl-r_~Scw6NZ|Fu)NSE73H`4C zq#Ez?XK4E1*o-{>F5jb|V;%w8s!25di#8fv@ZS;2Wxk1l~7Lo?ukhb+p4J7VsZuVl(r5BQd51L_?A z$f7BzWxO{BW3AHRexM5W+QeYY8-1S6pAcZ|TydlAbhLi90hUdOLLKuB5E562b(~jC zXgnQ`TFi!94-`OsJOJ{;3?SOa2GndgHl)rx(7k)K<$(?ZFAs{LNxds*7M|y=uad!E zB?)-tzd%SCC>1Ya>`5R@N-&n4#JKk|>%1+2h15RYsk*J0P-PX~HCiL!qonIu+Bf46cT zL9PRVKFh+3Ln2s9-JoPe6)E0(hPDbSgJa_^`0>*dy*@f%#R)4oWSj(lU&Nuv6{MAS za-g!jgv)I%0MF_ZIBpb=DBg(bff*oM`jDEna-XGqH;pLwpuF-+Fznn*-YTBLWomaw zo~%3lwJVcn&}oRbEPQE!;TS#I?t?B$`s8O&CVZA|A-YFmP)=|^RV+xyH~q$Ft}@QI zG;1RrGk4>3mm_F9^$=d!uo8ng9>LD|3DA=*1H}S0aNu1mY}+hE1}Ab}7{L?7XkslW zR_=!@U3;MT`U0G3c#ep2yhV3&C+L|YL%p^bKzVvJT;i|7({I!GN4EXpjT@vBt4#}t zjd82Z*H0X~N7xBERlT8_(-}$oAbl1pO*+IUqvYWzj*q$+-Ru4E$lWNAP0R+i%oyws zdhs?GyCU!DL=+Pv-^F{Z&8TP`J_!v2%wdK(YFUNDAJP10B+KLz}P73m`NAez0& z9am((rVVk2^t*Hw)*MzMPp}WX3h1@ly-_PRu0qI^k!yTEn~gP1mj9)8%T1d1{rsDV6FC-Cokt`- z9?ZgG*XiiqeVrcsxdOs9lhAb4H~L&cpV-~Mh`aJFP~qk@+*jR!1NZZBxUrSW`#&dL zm0lQWo`Ju@pYoorn*v9&im+qFD`czmRo8tpE_MY_`be>XeGwNq83 zwDLX4xcZ7VsM(?X$IGPP+zgynkpr)$S@Cb2Hlvve$(T3gDooN4qi0+S;oX8G&`|Gy z9~b|F{|3~-IKhYfKBIuk#8<=qtyLtkp&bm3xy)yq2DtG9p=i*6$hgk{Kk;7Pn9g#* z8C!FCR63a1L)0x+KH3VVWRd5UNgN=K`!Fe_hR0FCo#pe{U?%IHlHkZJw z3k!JWIZtu-iE>))sfqlDTB!I)5+tl+x#!|Pl=RPl8m`Cax8r@%C7BII3JD~2)()zE zh7zCPtGrT+8Q^nQA9GF^;GKy&ASSgQcWN~8MJ0E`_v~5tQNJ4;BCpV%PtABB&kYl+ zi|ADeRp_U7WYO$jL~q7^ly3{e&`kwsy!skWTaZfnZ}-sf>3iWzi97AI>?6S%zF2#) z8P4`~a~%K#r>i&9ux7%Kwm1*bB@tk!SpgmjuSvigb;vT&hP}S=@J`W#_v(}uo|l)y z57Qr^nrt%&JTK<$?Te;wD^H-Ieh6f8y|MD?)lfBk48tEuqC>wM-0GS}zfE$(wATT! z>C$KZb>BVsWb0v)xzUd7k&J`PX?}R_-3SfJs)C^_X`tbji4TtZLFD$uAf)jS*zm;= z1g>y3#*N57DW{LKR^x^=5w2^p2z`I1fz{dfv@w+c-A)i$XaDnJZJKS)W%NX@&+w*%~l0+ zt4Rf?Y)>N_G9Q!68r&>1;SSzhwt)=GiqXNHSLn#h08BG}$gzixlEZD`@X99^1hdxh zzw4+#%}pWJzi%bn4j9D@_q*usk&gGb6=SO3bBqX8;m&zs-0U+4rmnug>5iVDZuyU| z>1RPDeWx<-MSF2~*HoA|=OBzX>61BU{?N(B=ZOBs`=Gt-E#(dSftlD8{sWcQFuaJ% zarlVC&RShOdM}T6&)OHNQv%?bQX?q7;q%Tr=K!_-4>PZi@>ZQrCj+%s^w;1x8JPE! z4y-svAF4+YH34m6DzKSo7p9`5upgdJDS|Ibcj(=KTzvM7W6Nb*QN3hWYP7SMzeA#d zTsbly3eS~NVQGr~{@t`Jnd>gUng|*%qtS6+H+0VVPRE|^;aPfSbJ??_;3?~E!>gwx zv}Y#--B}06Q~goI^9UT;VS|dB^H9rC68=g4A!4|bKKP)H(m9t&_<1Co7mn~Wl|NvU z&t3XV!WV3sLizpel!la6!F@kZFuly8?ff?=$@RxBds9Zco2p2Vz!*IkR)EsQBV>5> zF;H2VOiQ%q!gHQJ+v{bHlP_Da1+^@u85E*fKsj`7GQ({r&+(E)tMJ`w16*{k43c&a zz`cDZ!A!l9|I_dUOjIW9bxv2D+V%m~)$~%8r!)E2o8veJy%e16=|}k&-yyiE9@G6l z!{cY8I5&PKXdDqiF=Z*JF&HLC!t~H0KNbSRz3~0d8<3jq!D=5U=LbuigRY`BJjeMb zq;=A9xym#!mH$Vb!mkjM@BJ;N-(1jXM;P(+nF#vJe$stsR^w=YB6DwJEAK(>%Rt@p&-*dCam>T9~et`g=xfrG~1Bykgu**OiGY{3n zpsNPF=Q;`xkI#cCW-c`Rm8{K}ml%F8lEIXY9td^q#L&!mNO)_(|8b-OEF6uAtX?w@ zcZk5$`cAs(^fr!J z@4)KL&CqJ)Kx`g}phjjVoZg+u9(TM=a*FzB*bFzY&w2;SOLd^$PMEQ1`-CSpzK1jS z-eUQ!Ml!ZP1y3wBBm!C~Sf~1u7I$p`{m7CQPd5X6JT#5|xTgVHFp42tr_=L6cWCox z6ZT$W3GS_RYaxaQxwe4|*rFH&QNgP*aYT;u)1Af6lM~Q=G#U1ae&TZ?En^_N3sxBl zur|@N$Vy`+w6fhtK9tMA-CzHqfnE*q<#a>dD^Gf~HJq=$_a7Jy7U4C?Sesw+lI*qM zhjjN(Z#cPY352R1gy)W`jHvy667gmhuITompFHjYk)O?c&Z)*HO9|=cm(YT)eGrqp z5)VAvgMUTaaN?1CPV1O}>1H-iVBCeLo>ao|=t_C`CS->~_UU=y23zTe` zixs2#)K#~gzTa5Eb1-ZLP5Q7pGceTpd0yuY^sRr?J`gHIye`4<_NH28V9k+t;Ef|;>4z>I{Vad6{l$DiA+UcHoaI&V|`i-;?d@&2ZzVUCgj> z2|xb*dt9Z^gANxxL3{iuz6|Ct&r)_Io%RB~bW zRj`>ZjlaGMvOc0is5GyLHeKAtj^x+Dx%OJzpb^X0cy5ex5BH$5oEH5wX$f@>-B06& zXQGhM9Sj)u0`skhA@+|m+PCwmVeTf3Zd3uw1xv~J=GmNP8H^`vU(xt^WhkX12a6{( zLD3IF7j_+oterwk)4V~@jaA@1D=}f;2F-z-oH};Bng$k##?s&Qk1+4)At+N`MAZf| zVf3Iao3CiZY?WAmfBmJHB_+>r6_-a>e$tInsg!5x(!l?zau=4|x{U*m*AlsGU-C5e zjg3-n7yUkKJ#+`SU~+*p)QM)0r4DCF?j1A2TcyohIkJ_`w!chg^?&ETf2RrCO&#Er z&k3wBzsMAhzTltrpNTS->DW6<8W%oE$7#EcfJ}P?+U^jBdV`zL^j{PRl?>q8XZQKD z_fKR`nmI#I!3&bKZ#T`-m#g$mCaDmZ2&75>5!z<9**t)88wPN)3~*X?8>+sFyhLIn0r%5`0y&+$n{<*IQ*o6 zO(nEQ=Lbl`Vs_6BZ~AP(FPjy59gr;I5Bv6=h9glcNonwq&C6+uWcRvkkK$s&9KvTi>k4mRDZz$;TMC4@E(Z@VS0yo3(xtC|tf!aPZUW7dj%Yqb4Q7*ixU$HM z3ANATnWUbkm8J91&*d7)D1MJiC9k7Z_a+Qh=lENiiL6MK6zI5~A$u}zPlvCu4jN{G)#y0b%{IPR^XFJgN9Y}RJYS71zf#Vw3+RW2 zZ^Jb6Y&6+8-G|D|y9jx#+nOmFad%;H-S(ies7prh{)H`N=%^)s+GeX4L50em&Ah@8?ixp%)3@B{G-d*p} zjjXe|dP5I(UG~NB*ckAQFvEujhG6o_SzMQ!7wWE#;XAKg2)y-511yKL$x?opi%W{j6an^ZoYVrG94)(J@Gu|te*;reN7;k zs)MpN%fV;mTPotqVjdtKnmh{Uj#+?;vkM+ObA>L-EQ5MMakLRykE?Wq0nQu4Y27FA zW|t~Xs8gY)nhR)rY#NSDBH;2Y3@-kDgX=jB`(eUuE(chJpRzUs+Le-R){EHo1DjaC z{as-HGz@+Q)#A)N6?A?g&iIL0Lf_9-Y~ZVN5MnBYaibgHUWqOVUUv#s6h47DZR)K0 zw^i_U&UgOxHxA6HfpPqn&4ZWXWAM8zg(ompKpQS=^2+s(!IlsLold9umq)GOtNL_C z;Zz778@Y>X9yHTKztRu*O?p18 z%iP8W^l5?o*%BgXy8=5!v@rLF4+iARF`3NjnfZJm1n`KwiKupj{sFA zJM{K^g--vv>ICB=(|Uzv-?_|bHO_y<~WA@>Uxup^l9h3vk8R;ZbOpf_r*$Ksj`yD@P%Y`9Ad!Nf z@od#qRQ?tY$Mov3?feY(^U-va^ZN-GI#-aLS3I$W>!xU~w#M^z9k8u$DmV^JU>06} z1Po_0WWpALyJ$8>uJqQ%#ws-AU|= z<0mkuXA=7)^%og2FCz2%dr-0TC%5DIhkuny={fI@C^qpK`hV)jFWGUdeU8mV)~+8F z%7vIdc~96BIhAc(ZBB~U-KR4fyJXGG z+3GE4A><_(*;&>tvPmk4R&=ddt;64P}ynrROcWBfw(@qV@;<9+Ubiq8C@ zrmqX*&6;RX8bn2rl2j_)yVp@FN{BKPAu<=fq^Klmo(ByYQE8G!G~B(8C?bTCLPbJm zkul*t?;p@F-Fwg3d#&gBeBOZU!d2vUaxgaE`i!NkgWy9=9$v^!r7qQqj7Q5mXyy1< z!nHGT*L04fJLE*Hf8Bt$KYRo=SI|$P^BT?&3>4WiS(1FXH zAMo1?9a9RR@}L?k-#woB)Y4BjgbU-MA3ludszSk5|4{fnF9Zdtk4TdJDWam$z!MsN zh!=m9;{Hon5OXLN3C9F$iHJwX^ap6Z?hhE4b)&4pG-j5lBaHug4XyI7lhBuP>^jlA zknu>9=X&fb|JhrHTEAPu7{3>ze?Qg2)Ah5_MA3m!Jm!cB)d~FB6Jzo9PA+FW<1scr z6G4~R#wZkj12=q-Vcbl6AZ+40jEcSkpWy?@ezU|b4=wob`V{OdpUapj#G_Dc5V!Y< z07$q1Uo8vJU-vvFtN7x+(LT;)orXOj<>1tLkDMBlVUqtHr&ak+Ky;Hdb8tZ-nr58D z<9Q}11$AV@k_tNTBoaOshSFi7DuHR18#&x14#BEQFn`Wns0LYfOb`w;;(6r7{&9@0 zo*DeUb(5Mpr{S`FrLZPSoL$wK3jY5I;f?||wj`$%PQS<_2JUC!Q~D~nk!+1~6E9Q2 zg&UVlaA9Bob0j$(GwtUyvH9=0&v_b{D7xc? zvN*JPYsQK$<2v0k@lY=|oxTf7r&BbzJ?7ybeAT>pz_(YR3dU~W7s4>9T4%`5=MzvZ z;24HmYcun1sP5acR^sN&-h()eNqbLp8o1|0iF5)4!LjchsO znD8)WZ)wBVi0625pA&n#QIa{BcNerxrZ9-{aaX_=$Sw7v!sm0c)usN{%mwUO2pvpR~G!VQnv}G%m1_WR4X)@D~bkJdgnT*fwc4!vQqmEti@Q&NJ zHDyRK5;B??^kX>{8jZ(K-V^z}vO3Ittp)G6&UDMy0_@9AL7(L@@MQiTc5D-OmL7ME zy8+^bj+tkq@@o~*+4zx%nKcp(@KOkutXy{6~(*~6oq$}IkDCQeJe>5Fa) zxKaBM z8iK1hcIPu)c4@c;hNtw>u*3B@t*#q)JWe7XmnxBwh-=t&R}wdc&cYN`GxlTeB<50* zD}7*i2i88@P4t^NUTdTgu6sY7brgR@`QeGQ@}MoT&A2TP@vv=J)L?+KpX{fLYvRc< z`U_VaNrB<3Qp~j`d4Zw)d^-D>0GD5%iLbrv*;TPqG2&D?HW$q2p22gO%Pa2T57}nO zUG@&lnq&eW*NbGD`A3CFx}*|gcaW3Pmkt@v0=MYz-`Y1vf`}=*ly{77afP0 z`vzgiA&kITN*R~>$S^^b`@v7Sm-BAL<4tbvJhtE|KlTZi!}C7{?M_qKRD-5E=f>@@ zHqeYc6Ol^C?H6WF%QoQSz^CNk+P@H!I}g{LO~-R0ip+?w1)N+xN^U;3)$@sKO5a>E`Yk zju?1@2vW@x;Gq6vSbJ>=gmC?+m;17D|B6kh(Ef)n8MYkfrbcnyMIqSuVg@~-l*7Be z`L&=aRuUiWU(94CR@121HW)fLLiWx50SV*s(RzCZ%1Nc8@GoQf5zhmCJP4mZCqnJy zb|}367++Zmv-jSnpis><@+s{LM0%Zsh+1D<;jd@Ds49IRUY`Y{>4S3;>-*S z6KH5uV6(0cL;XiH=G}k_PS)f4pV$8hMkd5T<)TI8TnLZtG5kw?tz}qEmz#ps2^GZu z@OQ!L9m!m8SpaWZtB4>nfWJ85GwCzZrV5RzRHmr_4EXEGe?q@uh3^||y`w;H=!v3} z&@r_Bb`@Uud;kq)X?A4mS%KB~EdI;mYPiwc8+5%Kn8Noq*f8ff=j7(N?_=6jbzPO< zNyZ~8|4x^DxEz2!b7jf#oev;zNQNoz>_!!F8^%5VBMJHR2xB31!@DulqPU(;v;vxMzFJ%d_Clo4&$`{4e(hJM(cOnbOI zq06<+a5dZy$G1O$om^JHE0OD*a5Pva_=J7a!UE`TN;WS!%;zQ#f{fk6iigTn)b|5Q4 zcY(E9C5{~X0QTIz$H>41H(xYlUaw0dT1FPEh@BIxPCbofJ5phm;$BGnS4=e}xE%PZ zyBM;c%f>qT!|aA87(I9f-ZhQDmCrd4-d}^$r~#@kd=2u=#aLKnjZfrL=t93rI91ex zn;)pc@cD0Kg%H7t*HiFQTrcQOFQs49z3{csLHPDmft~0Q3>Te68C6;9#;H{T{QOp# zapg~f-#esHYfCHDm5M^uH{uYd+($pzo&*0WicDi)GcM6E1ECqqvHy!Otr5<`kTdek zMDGY(J3E5RwQt0=AFt8hKO2y@K?F+OtzpC}9TaEAkb&pG7Jd|G?eE^hJTY!3b?*Y_ z0}w{KHjzHgHvre|+XO?W-V^P*1ahuW4qSE=plHxIqJI4$VI#uC6dY#+HdrMDYM*mBtM`ffH`}%-}u#Rx|Y$is=Pr%5c z09=-v4K+@6IL~4N>@kbv&v&cDUa>k(532%>s$6&O{4|jDI}8td9I#QoNZ{cc3x8eL zLyq_`HonW@tG!F7(`o)*JC2A^S$S=FhfF6f7u+RqZOHpK|K&}T11|GlZAvLP284- z{2gjB$a52CKdwHDsY6duJkO45Xo-*j9d+2w%};JFswAddU+wt0UV+HgQIzh^2Dcw^ zRFgaVt9w+_by^|xiRfu6yyYcCZ=A-Ghgb3Hw;EXQ>IiL5*Fm7=g2pD1Mo4N^W4UTJ zEcG9Sv&>73Jot?adFwJ7`)wgo=_!6)*G0bhOu~B{n&xYl2HDal%J_vuLE@KBL~*GZ zv019iTFwg*h&fJx1gCzu@TDDgwKapocwNRqJsx)~yNrvvGKj#Y1s*<#=3gwiL;r3y zVA~sS5SuW6a5S8PC&!*q_y5YtX5~pF@lp(~xwRB08zhsmCtT)ta|C_zQ=fd`{9!|L zP1(s=$z;-!PI%sZhWGraEc0pF1h!A@BbjnO1P^$9g*OxRv1{*H7;I?b&y>H14w`{z zV)p@s?P~B)y%KzQ4vbWPG1*@%g3lxx(QNg3%(gq`UcdY>-r1Gx>xbjoy{1FZ>p#nwU=?u=c7fsI2hz|-}9&xFdXay zBfnT8s-r^f7F43ys!#kIMUJRXCNj4Ame6Y@i?!=zS+8GZq~<~;+UN^21bp#T3!q8J6c2K_PB|$kHphRGGBfm${x&4Bj$& zPKkpNtEA#f?>lP1_O52wq+du!%$p`mb_b%IAd3b0`H5aDlCq`6lX;#v3xiuy84mw_B3`4GW(P7j%; zKZiHEjyu0xyou}0u42ZZ0@@co1MRzhFeC2-ue_raoBqxK?r@9Sw%b!Fdl&HDewZ5e zo1$p`UoJ=Li}t$vVPm^6#x7fc9T{)PoXcU5ZkR|jZ{*YO#Z7{rMn|EUeBny0=g66! zGBp4C3>_@y3#={}2zVkUSaZJw+jyt=N`BAbGTnjUKWcz6V9`3`6$$;Eiy_Z@VR>~K z|BKfdsNQ5lzrIqI{j*^}E(~}Vjrq}oT2%Yn6sS|z$D3D=@E*m9g4g<8 zq&;Rf%7=@R%eN2m?dCM#oJe>@x^ue&$16mN(3acw+uR0rwZn_1ws^E0hI>_;>1MsmC6QrOI&NMxPIGorz7iR!P- zf)%G1!=DWo;asy8ZfWH_qM622f2{+Fwe&^OYfUeBw&<3p9tXtJ7$4VhUVQ+6fcZFXtJ*tc7_4&ERfvpWdkBgUA@?VKHkaCVm@G z@1P-d80SRw$b9^9+n)xducv?Ky5dra3j&M3OEKtfHI%%|=DKEUNa3Lqu&44b@g3NV z^3P3a)ZHSQ?OlnM4dO5}H5X#LgkkR=Ls;}8huU&|ySzCp{FgNWM%O37sPRg{Z*9)O z&MQFu#1nipwZPnhSaeSIq*I@SVMK{EOfwF~4;6~gYIY3uuX3~Kt{m_=?M1SLIYx*3 z1KNFB16L$+XZ?>d*ejlbW=p&H-JD-yZ@U}WzK6RPA9LWdCF6+#mmw|B`9oz=mcw~h zI~4o=lmw|9$1ukRdRBZHEm?S)X1;YrC8aDl7j8*SduQTc%tFEU)K((Ni6SdDN8p!^ z1E{+#59fLNgVo=&SQaFO4@WX!xx6s^U4MhV49+CUmrlVuKL_}FL>Cv|55SPPuf+D1 zGF~xQjvF(lk&mVpkn}tXC(aw7Vx!i0H!hw$N{u2PwjTywMmJT}ywBgyu>(IRxPU`) z9vc62hlr=?kmZKt#9VQFxGIE%I+fAu9GghaFCUlQ;o*YJS43^wFFH6W81`>+g^wL4 z@chvnyd|-l%8T-`7*g=gnhmrj!<%IJ>=r}>exW0}T$h>axG2P}gH>1n@8u%Mf?KwD zmh(pVONZguw@xz7;4mpXazW6yOA^sP4rlXham|rA+;1lv?G;q;KieJLK2;6RtG;dY zvTLQ={TD&Z(i)O?^bP-sjwY2(a)yrMN5RbY4^>}t?z-*^nMD9$&R8ECy_mJEV z3x|aT+i;zGD5S5E0>RhKg#Fb+x2ox&^5JxplW~UAdotv6X*_Dm$3eYT$X#TAPqN#1wh`U82I$cf$aGFQ=t383#Pi9=bQA-qte9% z2;Z~t+rkpam_Cst|4l^M%2dJ0yl*6=_$r;=Jt!D%55T37!SuzdV)(8aj}0dk>4gYo z(koZO?fixCz|0)vIY?q}syEI!m_{`$w}5l$0}@Dg04$ByeWh=8Gw2JBq69F)7yAa8deMxH-}Ib!1IQWsCg&$5Ih#SLij)C|W2 zuj%J_P3&y>PXEhFBqg^q!8Se$KA$^;k6SCrDW?x)qWYL%n48a@Qr-hb)8^3|$7>q( zZ`IH&B|en3T%poy!@;IZ4qUIkq=P3zAjHEIW*mG-FPXg{EPn^;teDR4P*R2|k*Uzh z`H+Gh7f||B3OgT;Bat@`&~aX`iT$<%Ah~KMIe$_gB^(doWTCC7p_GR~B?dGu<^jD@ zSqXYaW$3i9(T43sZ>ZtVRd_}Bsa97-Y^ zw;BnaaV+5P%4smk@&s-Q%z^ph!Qe706Vx~E2FoK{uKmBs;H(snz4J@(&GA&2@3*=k zx$2ByTLH%%>EB_wIAJeZn^|JQid>vv*-vx$^I@*mTjG3zXCL3O7kp~EQ)%!*OK%v0v%!ssP(cc&A%DZ7y5 zN*;&qzqW)wP7`n6<cE%<^wLq}!sG^}m+I0K9UVhfOIWY3L9@LFYV8Ov$Sn9ff zs9raPo2!aZXM+w{IR{}GX~K)4Kj)oEa1)m&U3t8V?37jP1& z_>D0gzuXGntX4*ce{pD8(L)aAm66X{cAQHu0L9(UK*Hr%Dkc&8~v*}yg*Wekf@p?#JXusYElh3s3=T|5%AbO-tNE56X3At@vUC{+H*0poyW zpr0|XaY$Si4TK}OKJ^Tkzc5s=jvj}%3u;j6Pd#Y~R3rh+CYX67m7Lt$OB#DUc@l9h z5G;0?F8!28%H>SJqH-a=<1+0sGUuqO`2+Bip9SNu6k#g~htwfY_$}!Q_UjXH&VzVV zC?26}ZPvpBO&Myu?ke$*j|HJ$$^4rx(V(<=s4>*Cn`{`3Atk~U=#o7be<;Kt>5sr! z4RdL^Ni@u>%%N+7BeBsm1K!LCB!f4CLBC#t95@(7s!A`w&ceS$UP2s|eyYMO)q2#i zEXGGinrVD_3Tzv%h_YcaXrd+p7h6&wR#Kk?E9m02@4GQhBN;1qn&GE{LcBHWI^CZB zhnB3e0BfENy;3mB->z>$+#OrUmfSle^3GQ5kNrfh4xR?f6EWP`aT0MDIEW67X22SA zUF>vS%-zm?#$ufRbBz)N*;$hur%_U&QcOjBW6<5s8eLkgxD1p5UVp^pIZLG=zPgBL zOYXsnTd><)qB$TMmUa}(HIw7g45Y}+#PlTAKgEPYoi(= zr0^o0HQfg@=jp<eB=#2gZ%woYmj_CMlFmRF!RC`SU2Pk@WeL@KNw1|eN8=rVcnNl@a7k_ zSS*TDJp1tA#5QvEHB!L}RR3Ds`GTS`GsK5rckkyGx%ER zB5+LdJ4$l@Yh4FVtiM>y+k2yvOx06_Y|%~pguq1jz4anIYCemVRg|@z z-ivX9G3s2LhaV-*`UC{+0)@x~Muq3d-+%;&vtp z^#0;&xI4Fr&WhYc8p#wkNWT=r%w}T!E>ZTq>NNZSH8f&b7&vp?|6TuDxpPz@-W++4 zajDnPJ5<;l`I~=m*w!kmd0_<(NO_PP>P*`;`N?E?ijN6H&Wa&={l`yw zqBRVI3kuMyd@tW%(L2E!t#!DFZ5It+ipDDKx&VWxzZ)7b05)Ti5=Rf|ia%#t7)^6Ub+ zw&DRySN+L9=3@!9@4|_^UIlFXtcNS^Cvf-5R>I>I;-1dcs9RP@j7xH;mZUoLynauP zKb;Nd8YUBO5fxTF@gK49x`D%SkMQdKYDS!$QJg)8Kq6IV=aS{7%5P z^lRAmsTsN@3V4U@=MbN9uhl7rCj4+a@1~ozCeYoKdA;@xyfMFE&&DYO~m$5G{zKA z(sJD%ug=|qH*Sw|Oy7s7IxZRxe(4d6eN$ylzKBDQ^YV!DN=)Of1K{c_N&Cf4p;TeT~o{63tHD+{^g}eR0LvowO%*3!9?*kUuzU zDvI}XLQvpqI)8B`ylH=kffiBFyY)DjXNa+?y@fdJd>nd`qN(Ms0Qj{}4L?=-W4m`X z8r>9Q5@%hbDJk~+{OiKV%unEYZHR~3evt*9*O_g7=6G+eA}iZ_8vpG~ppNH6*yBol z5c>QN?XB{|ZVNqNmY$+f3WnI|JD$;As7PaiHo~8cL-^R=gsfBA2(4=pK)&1%D-Yzt z^-g=(Ru)NYrKXX!Pt%Fh!z@lDkW?3)3Mkl3Nq>?kQ7}<6aTk@huVo4u0Dk= z39yAN9FJ~?jWRh>JegF;ok7pDs;ss2AXZ`;c+OL2xeX{9MBT?+`JZHDeFf$|mt+2` z5`oNf7iq^w?%nMcfjaGy>`&Dg?0M_~HSZJYQd=2jByo>m->Nnuhq6q`u?XnNdxtu= z=D~&zZa$Uvf}Iz;90o!jk+vsBIQaT7$;-5b48s?&GW!Ut$QuWioxkyKfdJa_r?TmH zd@yZ79W4)|Tt?**`E|+*!dDOD(xhjCj5Bk&=Z`YxPw1kT6;_a)Ush5d&H4Osak0od zB8d`i!Z<@olc~6%ON{+&uzk~hlzYH~Z?i6Q?YP5mbjNGPc8M_idxT_)SoJU^v$8#BpK>GJ^Ac*)~Ah8lE?7;PnU=!a^^Co{=Y-#UCX#T0)2JArM9LKsl!fvJ8!NcourGzntSb@?|4S^tHWoL7ax)A!-Z zGI6HWc^tdMRt)Nrtx4YeyR1nqLK(+o*}XM~V?3o}=}0^nEqPBas=2cIYi2PT6CaX( zrz~8(X$5<8za)%a6ebrNF7w+KT)~|~?_sPp8wUy}LO{U)jjOr{>k97RDj5;lb$=_* zAfN=D`GZK)D9spu2&A~#34Alc$DG4?=B0Qfrx?gec!e=d%Cy$$9P{+~SKL0Y9KQ*& z$u7}}Z?;HjU`M{9f{H^o@POPGl>Q*bMtlhc<%nNsX)r9n|< z$LNj<0ePiZPOPC3zh3X7Gn4L;n*E&PWm5)CSfIelx7tz#)9+-z(>}c5>?C;1USS5* z!?7(Z9-=)%V2Mr$J@};)E6jFLX6bJJv3+9f&Wn-Y{V$T6i^#D)(bK8Z`{aXa9J}JScu{?S%GLp!A&*v4Huy|Fr z1|&_6WBJ^8TKFoEW<35Q2r95<54>_hvue)qusj!ngB($Nr2&p#$L*+_gjf{^BPROy zC~5nTyZePW!SoO7;Lh(<;!}AH4Wi53HbR@GJgan+?@6h9vWhBHOY- znb~1?5__kArs0;qEISk$Xwbz{3|=L{bgs)sX3j1)ul*F1X}+a~?jPxHnN=wFNS(=% zkB56ZrPw`VPpR~jICMCuL8lh)WhJvTpfI-+KKwk1E}q%Ab80L|B$qZQ_1Qyfn;$n1 zz6}AR0Qe4Tm2{K<2@VOQW{X6Ys5=@-?#8$tvEYW&;*gw&XHH#ea=rylWZ?lApYw&(LJ96;pJC9+~!(| zwW}j=)I|?x>6Sp`nLOOOWDyCwu7-2&J);Zv-XRVzi_o`Tj#;d+3+nphF>z4@QE9$` zk2ky`@ild@)3qO#hgRcMxf9UiwvvfH769o(I>2__M77`Qq_#2=tK9F>PBA&WwqXv~ zAI>H*SI^<>^m5WrvX!0mmh*$Uy@Bo(-#L$;Jveijwdvoq*%xhJ@VluLs3iu&gxl}& z;pa%~Qs2$EhlyeQT6^}LdokE$tj5g_s?65baJFPe5|oad0*PiP*6YJYc$Kgk7uw1( zhMGRarlT3?xo2PyE&>u4O5iA$_ZupzCVi9Vqno`5GyQEGn%4}&@081+O%|{!sq@&G zUo+{IH`0vTKT)RV&SB<3MkqTwTAF!a6(!J^B}D&;E77V1Q}#^>$J$fOXM1nVfNN_q z;BaOw$$66jK5f4-E;0>F%k*F}(+0$tVao=thOqu9&>jn9LUXqk8eoWE_Pf#6_0gdrXaQc%gs8~OQ2{Z2D z8Oa-%^6M&Oq>g8pW--?KqyT?EjbmdTPr=RwbD61YO~|t$9+TTNALz`xIKOEb{j~2g zOx_3y@1hY4#Mpxp=_Du9hi43g*o~>n$~y9mH5M%I$b;Ox9MB6_K<%?ajNG%2 zP~VAD(k@yX5r@_kwBGOV5G}2j!$!p<_$*7(~W-omq%{FdAm*=@-|?ULg%25 zK#X}I7R{xJl4xD_EY@r8T}%7q2PmB73Hk>Lnb#E_;4BCgjN5h>j!*M~fp5d)zXx~7 zSw@q!wRlS!9-hGsElv1B+JI@-U(O^1Ol3R!c=+z{dibcNkAwa<;q$IfWc1S&*z`yj zeB!m)SxPdn=vg34%j-wSkdrhjp$jWDH5!*aFcq9!@{|m(PsB%8p9(z2))SF%FZN4C zF>GoRSmx74p6bbuPHgdZ1FfTYvPP2m$$f97hsX2ZwS56=-)bWCTY+uA ze*+|i7t+9LuPk&Xy2mDl#%4T<8jZ z&X8whH-uv001HMZHVQWKT(Ge|27=}x>U{GDhxF~NP(U-U%TSmN|KUd0C`@HnNQZE{ zH!0?|MmTWhQl@i;By&{jA`W)u5mPq>HuJO%Qzds&pwrQg+smdh3tZiqtQU_V?~WlU z3^>uax_tmPXuILl8#%Cq)dh#KS@dIz6CT~^bCCB+D=;h4}xsfQ#3rVoYmj*9Hu*{F~|IW;hxiFeDOK?+`Z^>V^*L9 zsC=v<**08G^=JefubM`ly}C;kAM`^k*I#yhCy$wCE%cPxHk3Ri&U~=mNN)IBK0rkq|*W*ZpryO-x+<=$U(;nYSro^pkxZvRILe~iO`1vPYndNU;4twrgI zja+B4g{UM6vogl|_`AbZ;FoF(4H~&HL8}W^j+@EObuFM~y|u9MEDzMn6!DhzIQF=< z8FNUY8UF5ngzslU_E{HUgH#I+c@9whQ%lL$Wh@zTc}=SP z=M&!_-INzLLT2)=!Kh6VtyXtoMoud-D>k|c_5^y6RG%`ucT%5OUH1(0^=r|6*;$y+ z6JkWw%E9u_Ly~#ma^s@27m0*Z7smR3Mv37Da=11ICyUlVXYvv}c`uFp)v97sjMp;L z<)Z{U=4lf}UOYHNdZ6^2*BIM$huqVdh@nm~_>g&oQ_^p9UI%g78~2_+y6`Zru@`VN zs`2n9v4iVPXOd@uh47;EA1>E>Me96-n5)eMrX<}V1)?sn1#hD8g za}N;a9LRy+PECR!o3At_w~sbhrE(lZb0*lg7mT(P!#}0_g1uEqkAgJT9YHejMp91-0v%0B)&N-h=`!Vj$tT)(Og z*I4i8w{eVw>K|fk|KW4wUaK~<=JZ|cD5o^}DVWvile)_`*eY6! zndhpA_11?(XMzs%g1-rrUNpmr!Xg~b8pVJ~wfsxt)8Ov_!}RE@&JvQfCHl67(lRc{;!=}cy(mW3pDAaBSnTmV#kZCnu zAv&-Y){>$9X(aWp8Y3Een`XPL1&L!9V2AH+yyhK2vL3wzZ_OT@tuhw&GkzGffJPjJzVrp(7+sek$%=d=1zQdtj_Ep6WJVLa{B+ z$v+!UTnS@jX6+N~(hnwQww98_W>Hq|x+cdryG0V`DZ`NG7itzJ#H@*&jhi1vqIXd} zOn(`GZkKKmLCGzVF~M^hOou^A#Q*4j|7x_1kqLVV4mA*=BI22 z=tWsF-$Eb2RlDDC_f{_burL}#ZV0m(`>W_|xq~S8Ar-Wz2r$^MU$Fh{0W^u6#yUN@ zPpc+svv%{2K=Y^uTcQ9QUqh3ot4q^aU+l1d_%AN5Mkp2rKt(#%`qOJt_` zC#X4-OYYyZr>%dQ>7;y3_S8upnmP$FoeS9c|}&YRUGSj(;zitCN!#abG+O% zSjtO-=RGlWY@a%=75;{UE4)}@mqq@wl7(vqry*)?8{KLDqH*+m0&%lEh0o11@Su+f zdrtQTHh79LMXm;@HKNC{O@hdWk@>K3^qHWqCYj!;4}pKW6G6`32J2fK`6D&mmV&d> zS%>ATu=U^3Cn(-6T24 zj_$<^!iHcuKNvH^(}~$dE4KK4EsmU*A$Rr7(7~n@O`fLGe=m&KA3hVAN%scmiY1il zHFfj2gEdLbSAu7eulXG%hInn`cPz{{!psT1ka+VRm$Rq_uZzVr(pVei#dl-xjXiYP zuQO!L;iH0g9rZZjfDsco&JpLZMYzeEy9Yn>!TRCra8}U*VuW^KZCVPL%g`EOY_`}?Tn*Ka=NwUBR8&kpM;A;?X-i`|f zf6*}JJbFC8%&{Kwz*2M=XD?KT@Io(e<916IjQnubHdRm_YvWv?lVS5Tf}b3(V3{II zuW2l1d-r@H-uqX=9~)Q9zW<2$?g#^6!896FWsg5rnL)Fu3|5(mvWqk=*t&rOv}WrO z__a(L*BQD%L+NU8_n%F=q=w;rCf959dXLSLn_+|ZC7N^i1FbSL$J8C}5Oa8t+~|y= zJ7Yr;^*Kh?xonW*-Y1JM?xjUF3)soq-r)A?LjEKoL*jAL>FhpBHx<=?9vdVwQeSdFa8FVP8rsI#Sbj16Jysz z>q3&~EO34*#2lX{$NtuJg12k3@m51B9WA!U|2&e>O-+{eOi^bv;zii&)}I7YSH8fy zubd0;aX%RTrw{vj#TkiASNN3lhvV?I(O@ZYHX*2%X0RbpP@4or%O+8i#kr)y^A$Yb z8w%y_R|E+I^6bI?s&H;(mEfyK5Q)4b#Lk`h2$XqocH&!^&)QqD_UejaZsTSD03Hgd!7IWZ9Wj9*$iaL!wI zpnme$lQfCV;d~Fi32U+E!eQuop~%=w)yJ@h=OOpZc$E0@mKxoTz?KXlNXZI<`^ROV z;btfOaBw%qO!PthSCP2iQ43zSFsS`Ui|O(HzvJL0v?a&jbZc)Mm&;`^&dB1fhTBBl zrvc^!O@l!h74V$=5eC0&VpWk1QJs`YT_uZ2*_~@-gQE>8=f5CduHC0S<;Uq%%ij=O zDh$&Pz5~IS2PgzR!HV~j@M6X3(9E!oN!o<0E;^^LF-czPO+)wh2(BQ_d9?11A#oyYZt)vXf9)Kpoe$D zljxb!hmF?~Zo!1z-Td2XTR<-2H_e28URLC0x;w`mZVSC755GiXP7=owkW9x_h3%yK z+7%M++rxPUD$&Pk30f~bj~!okV7Jpecsm>SivuM(MzoC$T_(h$1#tkyx(1^;W~Lks^=pFM*H^Tsu}foWGDnDbvNUy zQZuBUjySQx9~49<;8CxB`r5P#C$8X8uLsJMIgkt`Z`Z@-`x1f~b!DjQ#PZkwZXm1Y z{UR+~Z(iIx2}D2$HM|la=J7*Z|7Jet2jzStT&`r`7oxM#8-d~@N%VJ*g7!(r;9`3f z&tyv)dP!%Xg?=;ne3K>pU*D6U<0>S0%^^VHceKzr9yVlufKOVQSiQ0kwnS!-TYn?y z%7!Uma9A8OgBB5)OXs12<0lks`wtUZ!f{Dw7Fvv~g>MNXf?zQodfL~+Ba?GP=)EZ} zGSP(1PahJF>kQF%ImgC~Hv)TeSD@A&RCb&(OsI_`;?DzU<9Jo-N(1r80aYw&^q}oU zmr&(>7@hIR6t_irVKI$?zaRZ@MMNt8Sip7p_8G#glE=hhBpvfBW<$x<5Na5?0{7NC z5Ysv#9CTO)`Oj4W+8kik(J+j%;`pW6TweX>X;iMVhMtQOc*ob1{<(7$J}Mu^9ghD& ztEm+~W4|;cg*j98?=w(oNg>{D%YiFm$8m1yA((h*8!YfTfi1D>P|fQj3xj6TJHH*! zFz&kG-}?-Becu$8KAwi-eM_K<{YdRnQZch?2H9xl08h9|Zy1-4n{1y9%0JK2#8b&2 z(FH{7^;8o2ejdsi8=>baPlz5(LGAV-LGQ$6IB?)7oH+F#oZozaY#j1w+^4k+Lyu{q z%C7-(x$h^De983|jZ$!-!xXfM<~V+0@i#fMDfI@t<(37rqa)h}#doZ$2 z61`VUK;HMoFz#R=iCn;g;PXYWT5UO|Ip^W4zv)ERRs}w^hY{t@JA7;3Baqy-8@Dfu z#fmda;rqeGpr^GDgo5KiOte=}Hk>SM@60cjh^@&OJ&( zoGn1^P%c_Y9>G2Ga|B8g*HGz|&4ReWBOH%C28J^m`KBB4=}p}X=>B>DCkp$)iTq3S zpZk0q$xwk!-$gi<=yY`1mq|&uLtL-C;TKdo;eQfg*r?G@TwWRS zbKWYzpKY_Dztp;(^f&au`5|+&u7rbj)MK$JF!>+~%P`Aj0k;^B@rG%&S?Z@YWC-2XKFz+<>brs-~ zq7)41QshSu8zPL zxoSd`_>V@2n~X^=Hn5jt%)0pO0@;*c*!Cd<9Jx+gP^SrgF4aSwEmx^h;BO*k5saU; zb1)^Z5Vn2Y1>b*hf2*4bN8FF1&AlR2&*1o27pqBJRc`Lv}Ssh}eD@LNbRq#)#JTcbK0()00yyp9tF1->39BUi5 zwS5vi9^4PZk=(g!V;eGC-p{U46wxXiaF1wWMnUR&59g&9p zKKF@2Wi~X0()zWFw$$(Z>*~66@jB;u?)&@wd?rBTn#u5e$4OePn}qHyr*O)MG<<(` z5UE}`R?1j{U|c5raE&J`MmY9=N*nLhr`t3vxCnm*g^`!P1t5E2G^Fe^Kq&2sxq&n_wZ>O?fLb0{-F?p4^fVbV=4b2vuMB{ynplf9X<%?{lG7I)#xVJp#?$(7! z^Sjg}PzhBg>Y<-jII&-FnRh_w2;qEj^z+tGawW6|_pdX-!Du;HchnY0-$~q4y%|Ku zR}-yrdBV>x0XLmUESMk+UAdBYW>P-2lmYHuI3I3VbBt2oZFsKS4JFm2VVcJU_~Ttq zBHajPM1L}_V5Fhf<_Oxot)SvZ?$GVqebH7Rim(B#O=Gu0@wI&m8K@P1a@FaD)G(OI zJ?o>E7c}k)-HLJ}JJD&DJsL5K$lt8BWbKieu;i^PE@~=<1-o*os{9(->7s?htJm`D zoR8wow_Q}h*oroPz-1F7IbPTaEcwaJRihSS$+t9`c=J8!Hn~m| zMa-e^pcy~D&X-R9T7m~H7sFwd7^-8Zjw?CG)mNFdm~~wW-UZpiR>3KhL)1{-<7R4K zCQZ`Y&X5H%3z3Kwk)pO%A&Y(L5eg+u;vEn=@92PV7_xHdQ+HudbsTb-w=r(*_2 z37L@P_qg8c%hNb_Q#bu$lm}ZT_Ct|g9Xjow53Bxg{eZ`@u>M3Y`H$O!XMJA|?3_r@ z>KDL9)4kN|Y%bRWsUeRKPUe`;Y0&+*7E~P4QL0m$JSsGSp4}6mA$A|fW=bNzrzxYt z!{=bGQ{Qx3Qy#muQ{i{J8El_42{o%t;W=2)UH`r1`KoTjv+v_!Gqt3(-JE-4`Xmgz z)XtkboCv1A8~87ZPh+v8C^+i*qUp3tWD57}+Vwt(oOSs|okgdTNag#mUof3&y@)j` z9JPh#Rvx%hEgtP=hk~g>98K7I5t4lNW5R!2ek@6j_%WJj5Vj9DOsa!of$6yR!e)BR zLIYoiax7-orHJPa@UPky5PZ;&EpKe_QmZCyo{XY2wFqCw(!~(8serX0FnSC*+8SMdT zZ#l2>&th`7IiB88RWmj}A_xsiGr{MR9)48`MXe1Ys*bq13Dh{IveMBH@eB2Cv;0Dbugnq4rP=O}WOrq_zVptS2Q4IF?wT1`HQ^BzHQWl9 zwp!t|a+dDnGEhI6<*+xg4YxfE!LtX-(02M|ba}0aqu*?BQ*tt`;n-FZHW!SKe=Vf$ zR^?#&;6D;~KMXePE5IKfcJx%>X7;-65HT1tfVdM2@vroM{3?A{NJ+m9soPhv-t8yI zlgH)!E2~z4*!@s!_$CO0x875!pw}e5J_S^#X3?g&J$UbB3#^phfDhFL@Uv1WeIC3D z{BIn9^jVg;pz<3AOjpL+veUri?K2~j`JRxkw;CL-ClJy36PQgiEb!-->A2T%1g;Bz zLtFO(bUIXzw&zaZ{6n=w`Bf&|_SlI_=bgZVJ~2?bIS$`sSCaD?2H>;Mo(liYdH2#6QHu&kBuhI0O**9U25hZg!)iNgZVVgB`wRLERW2OcG{kUTLGzirxwzF~9uB?|)4 zEK7k5-e@38I6lgc-;+>dVm{cF$H5o|8+`!VTe)tv@Ev$O zvl@fe&LLMmDL|V($0fPfV>CWAN*dgFu*KS*&DeE~Oq_oKqJyG9M=S!gb2H$N*Hc(9 zuErYF2Eda$pLlOu4#AWA3)z)5clnQ(&Y@>qrqccTseJlIfYwF6AxZZx!0ajcJgf8? zO!14ymAcee)Fl^N4UXVnuNkPUCJRO~ky!TR8+rcK5_1;#bk3?3!QETmNoCbw3Yd zrk;eP7tu8ScNQ3OcQ}`hU?|HAClj8ZhMbTXu()LbzA@LD;w^sBi`iN9kwgvhuOG+T zA<}HAVLr+I{fO3T_u$QMr?B>-Iee&8WtF3iK<9+eY=Lct|X(__GN6J%)n=(xBUB!}DI&$#sNvaAf`&Hnf9tMota`(^n!m8ahnk zwSPHvxxz$-6!|Nb%#m+nFfhyA#0wi4s-ISRuAiRe(J%x=8I z`9WrsleGEraBkXZW~KBZwyJUo>VCe0Mmm)0tGuD=;>L9A=5C^vGJ`b>zW}z~BJe7G z2b%dLr7~;wK8bW?rars|n3hS_WE9?uK#b`=?;Jz+M ze(G^Kps`dKPW9%Mtv&_XT)yT@(h3xlpUC>1yG>84OaZB+mpEzJI+(os4af~jv8A+w zS0uiGC^c(@%m zRt-PR|FL^H9%@>HIc)dCP)E5Hf29^;;iMe3cSYTH;O?t1W?f1t&mhZUL;Unv4~d+^JI39@?*bsQ|X#`_&Ik6Ln0ID++!-NYLp^$-&DlU4F-7P!VLDv5qolS{4dRX z+{aTj-h!z^f1&Sp1-6{$p3nN`P`=<3dMd2N@Mashu`UtBhotdh$pZ9yD}ub03BZ2( z4J#eFKIe)RxcHtTRVnEv=LVf&g`p*?<%KXWPfM^rEbDRM^)MVLJ520CZ{YT6r-_;B zDac&J$9GeUnoL&I({CPA;d_7r=sa$qimSKN@OyXBIY|kBa`_AuH7}@>%)yn%V_@+9 zUGjqKsHKIK!w_VU*ou|(atRBfbH3{nzn6f#Eg4NZ0uYe zxZb0{cAPi|X-!=aEq)l5rhDVAQ5TG#+{>4mCPwuBDzLh#U&$nQQMy@tBhN(sFF7DJ zNUsWtF&^Jk*)q>Huzb4!n>_Rsl9mL++$M4MY`Z;^QYOROX46To-h4$BIcM>&U@3fR zIhXnLcm@sx2(g=P4)WKXT}o0%^g;W8942=sFcX7YVdX^=OiW56^S*O#D&ruu(Qd;G z&cSA=Gei=9uYy|-)}Y9jMWpt?L;R)ahdZplL%D22lWJct?%(W;NA0{It@Q@otA8KQ zH_stC5`W;6zz4AM)FDX=m$3@7N;vvMH z-Un8uV(g}Ckyt!+jGvr)3fB2ACB2^_n|9a$dtPOnelX&=pw&xxtz&X*>}O@DzaYUR zieKX$lKw}`)^j~T_esqCo;%p^eKXxAm&}vrIALpB&%uhbnrwVj3X>Cz@DBxv*C{^E z=Jq-fI&pZ(C5x%{cES|vD9ouDhTiTh_;j@smPEUtO=SkNQeZJn-L;Ipx1CQNw5~(j zQy*H8nu0e1PSLBU^)P03AfArom}JjQ;4jzD3vnr=UxOc!^=tBo?tOVS^!yXz!XJR& zxgF>}Um5#9O0$ApeSp$am{VuwF&~%pVasoMcJ4U}3Hu}9xY7go+1d$H0wP%Ubr^aL zPk|%*;_>dxdQ9!w0#k!ZA=&IU{*mcIr5a0oWK>Pk)SX~dN(_94gR#;`x~Qb+ZTim)g{hdoy1g(CY_vJ-?P*`&+S&};Au6{k#q zmA|(_@WgR)=c52yk3=Pb=&Sh~cj)M5Q8p>u{P0*?oYHKRto{ zg%RvRRUle98(zVRgj5 zwT?JAF_Lc+9>o6TGFm&UMj$Q75t3~;6GgRWs8Om(TMTbO{*8W+yg3^j`R_=U{U}@u zuZP9FVrj9~`=SoQe?uJC=avYwS+@;rBaJYE zNU%HEM)Ge>2ON5u%G2z&!)R$;;>qno)V_zZO<|!#?}`~!kd~u9++6C_0x!%t-4F4_ z_c2H<1zomGU{`%&*kz|a!Ho|ynE7eNaak#jwOZi79*ZBN7OslSS{nkIC-Xre zZ#tuBA_Nn99>L64Qg}C&a}$ioF)qej7k7sq1gMKKBZkL-NNmMy|G&6gGm_ahcQ$kV z^Fy#yV%SYn{=$tRT?o|=AXUBZaF1~a{yJ5T?hRS&)KFR6{oDipO#f=E?|2fPf0Sd} zo{RzS;$0eLsm3gwww4_zR-*%5MW}pN3N#`nuvdc_a5`*-1{SvPMvGxnzWL){#Ygmg zp#!TisSi3+KH`i@RXh;?6Z|9rWWrZ6?HA8ru}Lg=zF&`!&BH&od33i_3>9^F1IMe| zY0tPAr!T&N^;-4hf@(N3bFhuNjUQsArm8^5@*UXn&jq0&^6ZZ(Uo_exW)e^z;tSuohugB&sq;H@*aecz1Tn%3JvI zupaaJq97wBHHXp3CD@g>gPB(l2C6-miPR%mBv;1q$N>fdh1A&hDg&r2Z3IUWW)smy zVWz0>9Xij?2D2J1<6&ntL=1>J2|C<6UZ{30Be0%x11gI#{&RIPL_?LW{hEZo zUw(##WIwT3X@q|}@)*-%W2|g?!oTrRfkv$ogL63qbn-b@&gB5i3pZrn$@s80Zf#-D zEPV)KD_t1ZpHDGk|2i^HDxR8(9w9<+W*s-FP(l1Nd zi&{2K1M2V4>1-}v>Iug`>)3(G>PHC@|rR{}`7{m<&pRdtmxIYdr5I#vK0p z5wi35vXea0$P?2<*mz%``D-P_TnjHHwh615p@Svxv`ULjFENDnt=X7=ScP$!k%sY$ z9ui(?FB~pa#J6!SP&dl;K*AE>ujvMKSkw*&ojAXP=ylYZseqG(E|P?lLvS}sgxPs9 z7=G5RqRR`@@R7L}JmH8a>o!SZbWS5!B#y!)ZpS*Wv>VcDSUe-oV^TGjgL+dR7}V=S zol7hhOI$#M9S88ga|1+fj|bb@ONb@2cmJ$@7XYW`(JpKc!oAlOvg`83aQ~CQ&8~aI^0YEX*-!k z=2;4({Rc(XUa1#sqBimbnktA?b1|I$5=IVQ?!}JGJ}|o;kMav0*hpbbbYlO&)X-@d z98Pez*-e;4hWSRTmobm?>TqhnPTUmz+*n*?8aupd8mXE(6<#l%$_hN5!xlS@k{w1D z@z~pV2#tQnIjGIqYk@yu*+yADv%3U*byXP+nuwFH&1bUTjDkE_#fEJwf>UBOc(>n% z*_Eq{maWnBj@ny(wu~AT-t7QI=Uce{gac08GL@8=gu!~Jskmna=UbUrg}RTUp{Ak? zdj3sedcB1i@l--**=w+O&gwD-rnktw3j)yNYRtgl6-2b}9qh>)!RMd3j!2XbvAXVu z*WN8P_RQxd(R@iPc)tRi=7-}^uQ*(B;~49%a~JNL?}P`3r?C9+rR>a1ag1>9p>qo3 zFf^x;{(W}xZubwne*0QlA(tnTg; zSb3twc*s-H}Z(Of?&n5b%DjkxtUg8Rq zJ`6GHp#ejS;das%rg&f!3O}8pzqUr9M8Hhu?gRxiznlOYBhrXma1c&3y9DLiuA)Gs zKkxdsH2$P$F7Ku}9aMD9$i;Wt`0hI^Nc+t@qR_BC4jeb#=Z%!4qW%d3zP%;q7GLj&u^P7_ zh0FLo_IrgVulI7FtBc@bz%i`zN^vyKj9yi?#mp*U2njg_dVNyN=}K2j@y^7*q6Fr0 zJFSmjW$A=~CpDlG#Vs%z+!f#tOX~Fq){?CSRx<~ysZdR3H9Fih=w`aU1Lc5#5QL%&0Afq%UC zb#8Zw!>?{k-_?)$fwkx(H5uf?&jPre<9NoRc(yT&9=Ih9!cXHc#q$)oIne|b+=>C4 zne~t|EJkNo+Csw248Bs~ZQh=vXHg|G9qw5f!+=6IJQp;<+r5(HQMNWa-~R?wNp^$A z8+&wqM@I&lkn#FKkDTGj9vSGD3P3mre#U+irW>_1^raDi93XFE{AD5N-1k4 z%&I0GHD2?6IX)j&qp_LMDD&zU30$&=tSg?xXbB$$1)WLE=+*B~F>)6yDqi8f)ImD6 zW+uD+Pz(NhXp48$zHKkxWc(<6_BhAA(^i6dtTt{EHG??Nr`C@?^PD=5^V%Qz zpyC|vIT-52qDee5p0*mQ5(Os3vF7s5I;@IcgL){N}IGA&bDD!U#pN@mc6{VgasTMu5S z?uGTf=jqs-Jy7vT7P`bmp(yJrI)sTax0ih5^0{L~j%}jqS(i~t^d6~pzeaw9p<}S|$*N5utKKOxuCkryG zmJLzEwm52$wmk|bvRXWteMyC>aJtERe778@&gg>9Q>Wv#UWT~_{MmVeHE(DXrX&U9urad?|kp-Hk#1r%!cYnpy0P?m>hkD{!+|EpAK!9 zCif6Vj$R^`lODq6D;yWp_!OMpI0p}W{6;OUCo?HRX>{6^a5P>hL<=6IBlV1fsP4NNUYIsT*|v#xO#GsFBU+4uJm zl}!1G8D_?;`Pf06RpbFZ`FF4=Ta&J?*M%w(T}G7S8U1&olG|;sVJmMrLC}c-@VL1c zhwK8$>D%%=C%+1~{OK`Tu$Q6T*%7qVr8(yITQZH?eJ=8Bgm;x&H%n$7g4S_1UcNU;aMPhu1JN|5y02-+INVBn-Ulkm3}Tx;et z#}|n}NO(0UK3t3Qx}~8aeH;($OeU%mBB=3pGsabCFYy@Hr|y>{K+L3>AA0W(k9L*f zo!hBR<6TSHuwSd$QZa3&vTh|M1M69FHCfhUuOc^T(uK|$%h>8MZE!Z_Tn2-Wf%lVh zS#`gsWjY;1K-dRMe;I)9-=$!(Ldq_5EGm2g_jBrU6LpHhc6Sf)gRs5@Y zmf}}QWzi*a;guq}e#VA4gdGRf$dgn%W-f?oiy@SVKu610>>3NijNcn!9XBJem36=taF8j0?^i2+=`q1Ch)&rGO< z@lgf(@p&`H{5Qw4U!6F?_bL>8lxULCoW;%@l%tkfG3c;T5Yi?^p`b39D1L~qa(Qssb%FnaYefFjtD$I>q7S z%pQ<(YJ#Q5I6{<>q?ze&`1XAcPsR>Qt)x!~a8io0$qp;!aQz&y~%yvmu-TR9+l{AA4hInzm9LS4v}|;PbsEz&XrmHG|lb;v>#J| zy?f6$*=KHnb3dFR_wRN%?H&r|rxn0)ZY9<7>fjl2dnvtM zDYqXQJ$&}i@bxieAX$YV?$}3NFTbFR!ou-VR1EMOS7O|$a47mMi3R~})OE=*+}l58flqtFtHk`!t%?nsZF05Cd#hBB>hR?J;>!trtC!d&ysL% zMJ_0;Sq_T=f06N#KK?2$`?9al4^KhZ}c$t~pZfE&0T zU&eoJT?|>xS->yQLzO>{q-m-b#>J@f4E5!qk(j}V=t;bxZ-CcCT;c6LCvL`{kDMBf z-hU&8FGEAXI(8R2pW08`FGhn>MlJNTIZ;~cii2y9VwnA65_>iYKb>C!rJQ>$c7Su2 z{1O2El&v^#$~yeBp#cw{xJCHtF{J!S6>5vk!^aA-^!TX*(A@6@CwnOAxhqSaC0YO) zrPDvU>O6fxJ|<>s;-<#EkY%V03U~5x&$JayhpZ=J@b3GxVJr-@W_p7B&~)^E7>Qij zjjuh)A3NXsbL=xc>{u>TbK_`An z1;IDIu`(B2<~?aC-ZA;P z^^J=;MxPw@7IY;s%e460r3%q_a}+TFF`gTh!(S?AQ9U&W=4NEU)(c1R)H#%fIXb>gkrU?ee)p$I(GH~!CXeVBDIT@<%ceU%?ZmU3 z(`sJjViavHrN(yK!L@uR+OApyOO{3v;rm6DjQTp- z;k-cs@UKbZ+@u1~5|Kb3ZCr?d9z}!HBO3_dvcYRE-X;qqqv6I(ae8cNDY$>uf@^6y zuq{(a>gF4d?~EeK^DK$~3tPO|s(|kg`4QPWhrqtY9wL^=VuDd2=)TSd zd%d6Z;EAL7y0w(}&(@Psa2-lZzyAEf{}7D15s zJrO-<3`UWeyydedU{3scj9OBFnFaNvO56pd<#!;zRs`3$BtqV;XQbRr6b#=5;cQ1) z92LGyHoCWvQN=sPzqAtRffyMGY0bvtl1o6F#z84}-aj}&luQjvCZGK>n>sRF;h8`I zon7w$@)HVRu8cd>d+5W#sxm5@RD$p0Oz_8Z3)G%!f&co=@%3^;lokpl18J|x*NvsH zD)uqmHC}5xQN;tYy~C;N?-a=UZVFXKzF4pz0()MWu@X9p__sXf^1}>K^G@J|fW_}^>L)YP;b0W6< zh=r3cBSGUsC+QOHr2qC@Cd=~narcK47=?|p_9r7xTlvps z6=Lz@JQ&S8!+$aIj@n$bCm+AH(9t2z2h`lg_i!zNHxv8Fy}w7vT5D-iW2+7&`nEWp zmIk5`7DUTU36otKXn;rvaqrQ>;^|}5-~ImL6MR%bVwcLy)8+HyUY^IPEItID!xje<;RfJen+Zf^{FY=q?H!R zEQF%+BUn3$PXwpuLD`J=bhp6@Y;>Q4tIur2fcK}+^Rhb~I2#6zpAV7owJzwP6N5BV z1I#D0#4K?G_rAT(Td;KpMrsc6J{&(pHw@(Adz1UT;iMvj+dgpby&ek6N`qo{Da7;? zz|8SgxOlS^^h*G5P3s0|h?j*o{Dm;uxCIRyXG3N}98Q!a=Eb9pLA%&i3{ zVvO%Ue4zhk-s5rw$d`+jDxZ=^1GwEEf5)ddPD8E{cCwW8)ckalC#wmVS zdte{tjK8N-dvhWE+T#Sc z)HU1KqH2m*`GX!&-R`%T%Y&MUBtqxxB zeOC@qDh?)9t54HZDF@o=U4)PRt>XHB4{3eKPTs*0Yp#C?R6_a^@+5L`{?!D$ti$rX zr8j}`<~CZUKM!zuCAFSiMIQzmz|}1a$>d#8Mj8LM(lqfNEGXUspRHR#c25^39lOUj zT$KQ48xG>ajk93o&t9;bk^`3ySK=NEA3XBkBqEy2r}=GXu>I?Lv^$jzdTRoWqwn{F z&c2Vd@0$+xnR!Cokp?o{&#`=ZCh)iJuE1k~J=A&fBc9O2Xi(dnj;lOQaJ$Y*h?+S8 z(pTqlvphYR}NC%a20qcrMJE*8&3jZ1J2= z1ku^Hh3bFJq9M~;pu*jCSTGZm!YroVv}g&3lq@{;aM%D}|f`E*Nn z4>@c)lPukqL4KZG3&%^6U`S&Ne&?7Q|9loh(3D*IanKdlxnCqFEOSwGZ5ZZ=%hHtB zX=t>2BXhRw1-+nDkINj^8?XL6oAmJ{x&CGwo%`Pz;9ncUC|Lp(gU3+&YbaE5@6+&g z3@CjZhiP`gTy|hJTG6X?<%7AHE2hgf?tVtvEhMqmI2ByXH`1X)!!Y*b33{(gZF*#P zxhabYK-GWkxOmfPFix((&vR;M*21%V;rX7p@7NM!qX+I-uX~T$H-D#RN}kfqLt2ns zD8cfU1mSk;bxeQx2)$5v2A}>Z#>&BO^n>*vD31uCi}zHfC2k5kKcR_gZHb^(6_!}~ zbOM}x_=tRs&&H3hI$-sJ5*R9*1uDDu=0@x?*w+=Y*g<&kHbY`biSq-rX*xi#E4=i7=L-TiB$E3fO(W7$hZZ zaR0ueSlWCQZA_vVmb>%*_eTjP*U9r&`|dSbmhm5E{E7qr8MXW=-yGPr`aL-B$VI9i zeFhE=KW}n&dkz;Xx`_7Dcy{~S-w-4d!exLXQF^X7o5*!!jxIQdbL`Z?rn~_=qQhY7 z(zocNE5;Zt@q_!BqUiQXkd>TX&bff&$U?n#k}3F_|6FD@+CNo+DT)_CT=ot1oIMZR zhn4un64%N6D~Szq^G5hEkj`AJ6Jp!^nz(swBTu%DQ=aMgq}~b+)UpSw+@V>%7l~ppH%pKX>cjzol`vMI%eKAv z$(t2wgj-{ah>nXIK0hvGoNI2y$URyI9Z_7C$aM?n-JFCQ1G=$7_!+z%aR%juhuHv2 z6I$VBOR^vL!yBA~m+YgN)7n4j)Yt3T-7*#Yd%Migk02Ge1#5t`39T)bGT0P9AHcg7;#M-_7;Bx2aiQz(xV(~Q=WsrN9qBmP3Cnv zZ9)h0dBk_G9q%gVFb%)c3|)4I`9rTuFlp;-!#{H_lh^4N$*z^#X(;EJt6SE|vy-j> z)7|Un5|d6y|Ih_fgI%a=nLR3qmZ8w1{n+_v2;_p4As{rF$1D7g&OQDL2gH}LgItEb z!0DuMmu&;+vDS>?3|%J3eHME_U?(j8`4cRZ05eZ1v93R70VwadM$|8&jpjBEimU<7?i42qsE{HA z+ljoE$?Vz&itB!IyP-5+ddDgmo;xWsl~V7TcBM{d+uuck*H;xPNaDGlix`_*5RYxv z&G>CHL;Dh1XvVX67_{)kB|fup?;l09YQKd+UjJcImjNjn@Ic4L5|q7j5`SJGD5v8~ zWzr;=7k=+a$la$nT$hY{FS-&&{4@EL-9rcU3Xbp6O#FQf zndJFx+&rfaJ5>_Mt{ZDepGYJ1{uxgy&b#64XGi!uUj9RkhZZpAdx6#@&!RNZp0A#E z4Q?sO5LF- z5|533r~CT9!v1fv^t}B|5TAJ*1MKpk$hiuhKMtVL)%wh|9ygxJ_j=5Yi^n=2A(nFN zBcXGjp>NT3^zA=Kn0@ZlL+CEA#ZHo$xF`iaG!`+FH-}*ER3X;kO9m{E;kr#iNhExH z80j}|?_6hwb0imnO+pO{c`>+8LxXKFYK3RtYoIXnKB~5q^TdaAY3$Dzpd)n)4|lKO zDMhX$zxuCpwz3FNTx<{j*}cPmLd7JU%kkQ93Vi0chzz4QH*t~8DL@jUP z=`9jtPpinG^!;)?lQ2fMym>-59DW79wb~%L{tU#W)Pqjj40cr1mx*!w108GBShETj zcFtxAR_=ogTTt%AeEFe(uGi-fx6OyZC99a~d{G@a?aRz?C}YU9~@Uwrb= z6C8(Tu+d|e(K}-oTHTMtS&j=~STPTE_H+|wo;Dg~eT3B^d&$66aVpg*-i)o>yr?&49!S4^N&K}f;cVqk?(a#6 zO?KadyDSf)#w8_IJUJJx?l2>rj5WR)6=rL_oasrYb~yREn#S(yf`ZW`EU6xb;EUlf zMP@eMiC1Ux?sZ|s@pq7aPmD$e=g`6T)3{vyTBurvI4^Au>+886+g+O}_z2?ZcWc=^ zF%wd^FWrc=```z=L_91a#=f2Dit0U^$W-?(;?SqdtR3&h%7q`uIXO9^CR>4XsT!a6 z`2lq5@@df(C)!zCjf=K-Q=OOA;Cyln_oz3*+*?;*Z}T~lWuwYvzAW%ogEe!-G7p5h z)L8z76t*pCG0o6bWLw^yV#)fP^Nv9cb}XTD*?m=E19IE}Tw{1BYnWSGekUHC_09(qkw zVaS5*#H&Gv)m09|_Kyab>?pyAWwl|F_XS8b(8iwH*Sve4vY^qv38E)2w z*)5MQq1-7g9IE%hy&b|Vk2_OL?>>XiGQC-W*f}_l?ZmyG>iDw_9XQT1$6EEQCexp_ z!=HdrSlL7AK)_Vyl3)N)=#OuDJR-~TqzXBYMm-2^UjoN$hOowU2Aj<{VSUq-*gq?~ z@!pUY>*g4YUCWfw%|suVt%>;cL=+p{Y=9H*_mEH3&Di$g6*we@piF01Q^xTe*koaZ zMIG@R1LrRsF!X?Bm1lU3a+^uMULpp6(_?B+f5o?-B^a0Kk0Ef<5J|t+gGF))xHoYU zqbpZPQvDAjobzOlEzP5m>~=D6ZzW?YGZBx!;#{2R(#*fc9$4|8djzZ<^yC6g^i zwPcZJGHCMGg3b$NmYwRIr*wgK$sJDG6SN}N5St;*{94`HaFA;_A_(ihvjpt_dF zbcrU?qk=8mip`PHmVJ-E^bt%8rLbN8G3ftQWzz)AabQ53SD@LzKWn9pS;f6*urH4H zPs5Czz%g^uUhHAt_vWMg*Xv-;a*SZHRZVApzrla=`cQ3gAPoNzVLO-aX7)Fg(G%r2 zA!uO+uB|Ia5sty2`$3LTcoPZz-+3faxnsFz8YSp4>SL zi?n~?!53ek!R#MKToz@|d_ITMRC@5$z+q-f%oRBMaylD$H5KIbIgXLj4hXB0VpcU- zk)};I;Gp4o^j)BP`r^3~o^d9!tFfaV?aSl5RAH`LfppBkL6y9^Dk z*^=mMj?CKqXEAAa8k9fTLE>X?QRB5fbX!6WrtbYpk8~;$M<*jT>a8j9wiUqC5GM#I zHDvcQkyy3G4xHMPsmuOwx}z)sB|>`f+wT#0S-6z{o~kl7$1mYzj=6R}Rv51ud_mJa ziQv9H4CEd*f!`!wn!q_&a#wJfKyztEd&5QSZz}-R(re&;OojQ9t_ef=i`mECud%tH z50y{KF%P4@!ydm%G&yR3HFHJTx{O&oeYd^iD zD@tt+NHDQCOZduuLGTST;KBhR+~d@BKW zYbX$DskI~^xgHXah_QyuPe>G8%bfkqovETWGIe8IS12YIwkTXN4*8{wdjub&rIRm^ zr3~{$QWs}0c!ba^%XBICfR;)Gmb{69oI-u(mDe>$Z~TGIQ&zFO^-nOvJQMQ&Yy+XK z-0$AO8vOvN_+d5X?qPklH&+lHc-wj2qr0&2X*JcEIDs|!qe3p;dymf1eE73yHZ!OZ zfQ3tL^0Lca*&vw{?7Oj!ij4ujY9{kiQ)aW$z|hUeig*I|b&+sTqv=wuS7r ztm7b<9)i19&u8~oH^Z8Yx0tzBoyc0sGncoBV9REPb%YDpoYG7aA4Rc_7YX-^-pTpQ+S(hi*Jl#_WxEQOsafKc zNJlmyOp-Y^+lJANe2xAKq=|$72e6d;&UI_DL9vgy?3dRy3f4w}r-+`M^tjfio zQWIeAHy>c$mg4dVF7K*;63z^6)*qee@#sBD(>$e(PPYSY{({o_- z?{QkMbpUks9)j5i*03H?d}2P91!wLY!0-Qabf)1{y0k-mkuJT>I?3pS6C!``!Yq z725)8hh^9=FU#EJLRd7BP2dm$`0{%b+>c3sc#vCj`SD)F8_ro|in7$mv z`wjzhf|&n{^9B7ZE9$zRvv|e@lP~UZ@Vjm=$fU&38+s-@c$kGg+Q|^_d1g|BdTG$kfa83lDhl4o1-;A$+REClIa*+J86NYk9jpuEy zz_xA9aN^}EqM9xc6=B;0I~+7Owi19xTPPUk61Iusn&)f9!zQ-~ zP;FnvT4c{*(u|u(%`ru+F1KR!?gmwbFMj|w=l%HZD<4!&3KM3p{?x~Q{EhpCD#_O* z833VJ8rb!oS93{~5m5$QB0Yyx$N;(3e;3mpgi=#`J&vPy8XHt>@yW>ye#VMFaAm6s z$5-lPm+X*2K_P+EP@?-x5#HO~z@(zv!+Tc{I&DhZO8k2k$cx^jb(P zC{-Q7=v_PE^jI9JxilGrxUNC=hZ4~1Z^a3g*U=@K6ED2t7{S}QcfvcGtR9;L7UBP)-DEyM8aHRVI}O%&U!aPGTA0qw zL*jSO#{`i+j$0fIQwoj2tu$ss z6%xT9S{34INd9Pup}y){?5q6)se{hAX*-tzm?H~4 z-J|55iZ~na&;pi35sYt$B298z*d2!Vh{p?V2R*_^+ZEDKY$eRjeQkit-df?2ncKm- z;+n4AP(@bg>CqeaqE*eN~fkzRJ5W2pIuXE@iJk+lSmqpyX$U>L5^0_iv*iME1 z2M?*j&|F@3>m68h1aY*y%{=YWO^*3;91rF$=U1(eg}y^=IMd=NsIAWhW~7XehPfd1 z%o9$ZPviYQ)J#ut-0xbiTllcVmQMB3K#yJ?+iAZTLl#JrkOqzw5+#98--r;#VJ^z$ zrNHV;J6!i%7PEfOAui@-SXOWxbM{Lz?^aW)cA+0?4yR+|MoT#U+ZHUwL_q$#7~hI> zUd_;MfU}_qcrj-SipgwazJ9EMk#k`XcLK0P;V#B@&ZB-!w`l6wIn?RzHE{TA4`GLl zhVAi zhmP0kVor%KoOhOHC(G1AU9Sjl|1t?)h=Cfr?sN{C`$vGN*>uRBAW1i#WZ2cG71^T= z2K2+00a~c>2@4w8|a^Nu3gSyX_yi^Jc>2)p^w7@O&o5g{gx0vqbin z53i01CND&%g1kop2|r}QB98eEm+n@IQ3R*PwP+HNBXmGZJ z>C#N}$!YA1xup)d<7NT5jYAifsWxoQ02AJ8i&`oU~o0Hn;e0YW~9?2nP&X^&hM$fxCG<*%@F4++~@fp z3SdKZUA#4lX!j~IO^t1I`o?7tJ)8tJ zsp?3)gQ@G6?HD=l6!pm?kgB`_9<|M4?!WnqD)Jw2mP;U<^i9Q}+;e#F&SI!~G>0^Z zog?12U!vj#O%H6qf0h@fa-74Vn?=~+)sHFJ9PtW+Vlv1 zSSH{U#YEnvGuMdeOLMSsAD~@V|5Yr&;Bh`Q z`W>OAmo4C2{4O?a!U_;n2L3+jtz`ZKj`yDX04%JMmxaOx!p_pZ6iIhGZ|2W<{q4AOoRGZ`0~Zb8;x#v*S6Q1x z=G5aVAsyT~E0dadD}mJ}U^&XO!QShhs_=9BV=lNUIejf9^(~-YxXm zg#zAp*4vC6s^a%;m4+B|1HAF#Go&%+VZZuYPicqmchbz<0ksYWzB(y061T*e_WgO#aC<%bc}6H2o*E&eQ_jTC^Q#aczEU2Hr%1X+yIv&5tk}Pi4XR64? zos?(8U4P&#j+Yx%$zn?3G7K!p!Q+~uj7`)CbXT4Nuj4WJ%{CC7N-gl`>_WIWe;WHR z+5lx}FF!o&DaOthhR2R>*aYXGd9Dp}$$vh^rnJLm^`pf16N7?Hxm3C0I%xe6U=>a^ zgK30_c}~z1@~7Y`Hy7Q33D&cqVTuA{^IU{sKfHlO24C>*a{>145m#85ei0icl+jO? zb-0G>n#}nx2E*^=gQg~u3n&eBLGQ7o$^b-*CotQFV{wY*CpuUy$T75MFk)lk?AyH& zkh=Lficc*^(GU-g$tlR(`RD@a6K>M04(F>9##_n5!r*9$ry!D0FbBwX7@{1(Sf$~hg2$JlM-SG0860^r-J-SbqXB~+tV%q52$Y8i4zZ=gw_u|ZB7g6na7GJ(t3*0r=;02v=QXUga zP}L7brDmeliaY2Qe2skg-b&3EX451`SqwQOODsy{@wT}iSXt`9Z3zc3IcAJetq$CK zqak@1&+s1}46TYdFN1N`J9xK0)xhBLJz!Gvky`jh!)y0bV5DUPJ5MU$w|64oe0?ci zH$MiZJCo@CgiClY;SX(_8ewh}nFE&cobR^TjBfnHu{ocM;QA>lSW*y(E7Rg|O4C%B zy>mYf)*XcVflA=>f_6t;=$2tBUPgB6>#$Kek}fQ6)T>4fQ#&T-kpwXa6(rO z%!(ZGxF>gb)vAQV6NuqM56IHRT_jQMG$@^k1KkN*>59@4B6N5K27gclJ=TNwKwee4k_~%==jnLN)8CLzpR@hejCnZU*#d z_(L;yCVsB;k5nvLgx^97VazuIgZNLY#=`~RGneuF`7)Or`pMErE>HH&m&?=p*%6o4 zJ)ra;nICK-NfY)S0^<}u2f4XV)NeLNScJ zc||MBEwQ56kN>A)HU76-4L&d9des}cNvP5_v^}r`1Rw8%B-2EAt7?K{MQ?e9$(%pp zbOe=%2K<~CgL=x!aMjZq-^gyk`LGL;*IMJb;v#q??Sh(LN_n5EFTxLH5%Wgs4Qfik z(9;lt?w3utcN%dT7~R0#W148o8$Ea|9ZXw(f8vw!CGaL?0hHzaqbI_>DN_@RKaOYf zof|aJ>GXl{f_x_S@Au1 zMpY2Hw#6`Ic-P;kbEqtFU3E2AQ!~4>rxRhp5e3czmfGcISk` zEzUnR+k682_h6JPIk(PyW%dsmCwc{I^X6iym>0e@iG|uf7f{hJk@vPx4m&JgQ1dZO z(xVtd&aUP1am`yHT@u0Q{wvUD`-Eqnp2!26G?4ke6Ln5--2=ri?BuxPDwdfL zaO^UT`&j@>J;DJ_NAiExG|>8uO}xSWT@d4Nm+I6MQg-iA98l(&r+^=}mNk;%X}{=# z?z71M?2jiLH(+_+3~JXsNId=~(j7OZpnioA92vU|F79SLZv#P$`DhJB>lNsauA`Ww zUPm4~guwNRMQ|&Vr5+nUQ8UhQ`ayaJI7v^$2?nciStB=t$v&%XI?o?wU;72?hbgGCquo>4d9}{Ql!^&h`;Yd z=#kMu;rgo>TvAA+tX4rw(|J<7^(FuNmkXe*FpG}e*vtF0%mMDoEg*JVl88vEJ_N45 z2pVnYaPspyYS3~8KegW__T&zk_%RN5T6NK&FWJzUstb3nJ79)q6csrh43h?u>8&a0 zSo0{8SF>yzmEW9$f5XS<ffX^DA5uB4$ppLBMZk?zylP?xnI zC!ae;1>$${CuV!#xQ7cU$);n9l?*PZiUNJp4tnS!$G$zb2OcFJrb|AlLB^gu9L`&Y zK80uK$do0>+sm`CGgSk1^OLc&W)|tJ{X<4B1>y03 z-Wb}t26H|I(AU$?k?M+>v}{xu`rjE+|9O7kF2(JqQ)i>cH9Hu6v=S=)4Pk#%2`@X$ z8l~pjAep%XFTOYezJAkCZAK7jEt>@D-ic^#lL*(IFX7lYerQu^0zzAUnVWEI`^4sc zYHs9)u2-YLdOktk{6>D@zE9LsEC{ZvD&quYH=?n^9vb*mySBf*E>VN zygJ^P>>h3hx&vzr72twI7`Pnac-~xwdBMp9^Q61t)GB%Wuxd5|u6LI$CI1<>HiPrL=sQfJ*15PYK!@xSCeBO&*U!(!UhUcJb zH6>sFTI1O8ar)$HKatA4OGX+C_^l~>=*(CPbZO7TTjTcdL2?nd8w|i_)9TH|t3qIB z>|Z*qG67!~pXSbRLp0Dmnl2l^016uld42uQ$wLfBHE$QFf8xpyJ?(?rILCBXZ2$pn z8Hm#j!qMBAXqnwemk!MUmyQ^0yWP%TVe5(luhU4kZ9YlYONVA3H88<9q+nGRG{0}A zy*B=4-I9jX`Cb=2`C0}NP3M4I+f6>cb^+4ki3Q3Vz>9OszL$T%qZ|6j&iU&gcHvnR zm{~(k4dv01n>i5Rln&|h|I!-~&Up5DJUFFrbDB&wO0|}i%qA0t)+3*!Q-g*FK7z1se4K8zJA+mVrSzWMJm?I# zh<#*oS$!!ZTE%InkP77T9U zX165?v++aUbdINyNA!yfi4d2cC>4;vX#*DIDqo4zcm{)FTL3)h+l;6SSDEOm>UR3!^ z3fFjG=s|z{92g6l0dY7dKLwcug>Y{v_x&;sK}n7&dQrcMG@L$%4&Us_1y@>!QwhH|w=;6FRX$aNLB*PQFQa`B{IPlsZTbWRB znsFY|B_(02*>7^xs1U{fjq>mOPM{Bm?O~z+F6eyui+6t2AiqmSfxanUN}N5y@OW|} zomb~pak|$G7yd6CZTb~ zcz0YE0{=K*TT=#p;yfoCq}#ycqa>AdUP8YlKYv;ofN#XG8jK~$`Xdl1Kj={4A%AIbzVQI@iQ*(?=1#NwTURQ zdns=Z$H88=tCRM6aK5!m@i=#?Dn1em$21!uIxF26#(!&(h+%&cPak8CU z)nRbuQV3G;#EIeexcmMc&TFt8{d0w&yssGz5A~64BOUZy^i?wYdKQ$uDdImJ8-RjI zRybck45XhPMO7_joVN2aU0s$7`5T?6x+=%FDyJwRww9kOoJOaW?1t}`9>IawUV1iD zmmN)Ah_|)hg0{#$?A5L1IQ5(PBE}D~zvCq&?o)^4y>}q=WDPGnz7yna7C$?|9R*xmD$oKVlk#9OzCL%$<@x)uTzItlP=$9)1JZUj~igMDWtvS}CSyMab< zJ6McvnIU*=y%YT&!MU4TK0)i@Ymlqg2SGbuVQPCJj8FMUyw0jZz2hakp^*fv^$Iw> zE}7S;n@)>A?1!K^MqprUiH&nd%x{LK!)QDOo6FkFovpqcL*E90`y6K!G+Bw+UAX#% z0^EtyB+iECanGgO#N^LUzF3POyISx#@BTt=-eMw4{SOK=VKafLzcmr{t~AilTrO+x zmrj|NUA*90YkaW261Fs~#~%?IbosV>cz}5h!9ReNx-G*n(ZA`!$LqLUUnIIneX2Tn zT9p}&4TMD|TF{l$i$~WN;P1n+_#w3nk};IN8tXz`pA=MYnnuSQ-@rVd#h_nm&fJd6 zByV@iuzxC#qchV6KhA8x>8AIvX5l3K@6&wtjl~|Yoga9wk3qiC z2WqA9o*uB~dc+;S==%Nd>BvW}ALQ0Wf4auw?6K7l{o)jj99@sIx(uMVtqauMy0Do| z!N}7#FlAW_uJN0M`Fww#^a($z7B`V}r;9Ra;%4A>F$f=pC6cMUr6BtCDVbxFL<&sa#8oH&6p<0cTaU^W_$Y+<%vc|%42En_Tpr$gU1KTw-f zh7KETpsHDqsdYXCf@i1UcKOf9o0EnwL7t6YDa!;lijlu#YhjyG8dXf;TzO%s)FaTH zo~e5V^L>}Y&4^0ewJ(eAbK>&!q3hYA8V&ZkmprO*vtF-o3JYZ>2aQ<1;(w%PN)@h~IGLA`9}jM??qcm99=_!q7|Mo=iD1D}xTAjsw&)B| zqt86_EPjLunlcdRL9jn<0{b`V2wEF@fL^r%h?G5nU;1g_O65os_2emx$B^BzCPX>o z1T9J`=5pt*_+V}`zc;v_YV5d7G!%_s>}@^T)&JyQuHb`YN*pA{cEWV&yL5ZcPB31o z&i^{3&Weh+p!LJW`1RyC+B1jX{htdkNmiaxm1>+AqJ{rV@9`H+SD{Wdgqgh{0~X3n zVCT%TL%0Er8E7pOM z)jwgGgCDt~8^##-%|eHh`N$7cKzoZeF#h}>D%p&p^~5)5t6Ym}K{J``^)1-GS&bHO zJyUHS*TY+}heX^FWw*Efrm2%R@q(pVNozI_JFIrX>SCi}P+bAq|C}YG21(F;HlIG@Sg=wDCPKOLbwbBPn8e&b^!v64@J~8X<5$Dji#RCH z?1N>mgE4q@E_Jxcc`J7bvUkt9z`M~mcy6&WO>TbxFY8~@M)8%n|LsxyVq}OuPbT5- zTvO)Z@KxZQo5U`8yqpLer`&xk0Uz9+z}miQpwqU0CXP`?SUfeJB$#gnD~&}=cSb!P z95!SYh*tCC6rG9Y;<G68knRq&>W34Ghj$32-F(E0ELR$eCwT@4;U zyFeOR{#L`e1$yj&-+%BeAq`sY#-kp`ob8*|K&-;}WL`rTj=n3U>s?op)?X2DFzOq9 z)z;6=ytT3B6eWH$+DLkhFzmaYh6O!h?4ZXjj-h9d4{|L?{qlP7qoFkE=MC_DVus%S zglaDD<~q4ObX7?L9Q_L#Ak6E6OUhyYO4JO+d#t8(%Bt;gr}_Y{+3g z&RqMCKXXDBb&Z+F9Q%BcZzfv?aX&u8|Ktw1H}B$S3~Cczzn$aISBJl_^`tp%Fslo8XZq|g73Ff z+DdB4$>AdYlwVxNK=vrv>HHK5w@qYrzAZp=4Q|d^wi-*m%fkbOt@uInJ+AI-KwZr# z-0#(AzJ%vv=FKJK;LV@-=*V55iw|*~xaX+36rf7%0g2jw8j6?x;&(c{01l%~=C$mm z?yWmeXYd1-j%9*h(M-IRUCeK*dq|cD@_DDF@1XVL5qe>wK5P1ZDqic`3w3GJ(OmH- zC^Nf=`pR2)O!q3Dm>q^gyQf0Jx?r&Hl4F*~a;(G;Qs7h;MGKCL;rB#I=J>3~nEKC| zN^?5w-#>fscivT~9oGV3Ztm6=;!90CIF9dCLAKUDl@981-;X0g>@?XF$ZvB&fiPA2 z^@#3erbJ=cUPI|=hUI0L4uMZ?lDQF`ftHL|=YFyuOfsm*IEeBWJU|JyM_Ckw=5 zZ5v_i8@Qdv*8y$^`2c#S=R@`d9+UX*DcSyEB4csV5m@#G6?(7Ab)h}Lr06E<+w5Ui zr{rO8mkgP>ZXe^s-X?=18!%=XVe4eSfNg6Vt-E}f7sTZ!ww&#NcGV-;@M{#!MZQ*! z_#7p_zTAY(o(tH{)3L-_VjF1a$I^Z3$6+inNCC{&#PI+v_yiWHO)P8Bx3kBU^EuR5JZkJc)Tw?v479q4=fr9~#`B z2=8kHz+aBXj2Jw|(~iQ7A=i)fSeXyLdaIaI!zN_py&$Zd97{bchlzB@N{ky9r}xfp zq2E-wYhZUeeZX}KbEhq4$}5skUveEQAtuc(a=ihvYnzG6S0_5*_d;fvW0w3B%B0ae zX_nWQ2Y>5cz>V|50kmrZ6gwhqy&pSY;+=rD?! zd!mf#1-!{rU}4ci*!{@|ADiTJ?4bAP@6p7~hGGC-O@eoV#^5b!fsJ{y$HqOx#UmhAVKMv{52Ff#EJ&dF9`A1da6 zXW2Qp{w&yhMp6W$_)Zo6HLk7j*CFu|uWbBJ3VVS!Vq!X*R;}BXs_iV-DZx zqG9vonDW6YQaCu9X%+Q^HHA?${XYZNqhf#>EYfG5Y9_!V%a>@REx{bTG@towoQZkveX(EoA-Zmvux`<2_^y?Qf-E4{_Xb3@_FTMc%^gHLKK;&6FoFisAf%8Wi_!S4#! z5q1}6{VL9r_q=5wxhxCh_P8>V1p)A4mlA5;H^M##b9P8A9-nndGF`@dY03Ma=+esP zP2-%|4@Vt&P4gt!3u`> z0Pcfvkh4yS-MXH0qx@8Z^h;aV$ang<;nP-TjnXZewSNb$O3cGsw2OwSCKFLJS=RdF z45t59I5WfZJ8jPU0c|dGAb&g>uHVgo*h?c+*lYm%dUnHWCs)RALnzr={0}#P9<$0d z62AVGXUqQE1g1L67{|knkiE7YbsH?%<#q2VKVc8vc$dZdUVn)ic0GcPM=f!gwkEUO zQxoE<8T5%=f(ou#7!>`3{%w(G#pT|C&*roEqSOKOHC95qiyHf(UYrg@II?xM8602D znu+3g35h|Rqd9UiZ!On_F-W`5tDhbUE^Y^z>D5=^wqPeLSe<}AQxw@ccO=F&k_t!o*q}C+=+=JAdzVCisUw>U>kBZgUUejP?fl(VyepzuLtpa88C? zuE#nS&Yff8%i-FqMsjp<29XkqA?amPa2oF@-jHlV0kcmef9+jJYS;k%JB9IbxjKw_ zm*b&FTFkz#Ews!v6l31RK=H(DzmkM*p{*jjs3Sp>PRZDKtcPPDOHfk39Re$^zpp z@8kWEcJN*F0Tz6`iLaX8!=UkI=5s3NgE*H`wR~q7lz$t6r1mu+sGtT$rGq5)(JgfD zt;V3M)4@q^7*a(ws@}=;!ej2e%iL`qi+}%+iziEHuA?}+&GZYB2Mqjl*@f3DY*FB! z3A05p2Uky84_MxV3Hc1n73qfo?IC6(aM7t?n8iMEbLru&d7YY zMk3EQliROnu*Xc_L3~dKob#Upn(vQ7cyJok5p96Qm!IP28JBosyPv|@;C{H|x*yk# zPlSRLZPp@Aju*Ky9?Cu4;Df6et0f%C|8J%NBHqLxjwQ-SJ-`un&JQ*%9>{=zwR%BgCuE!Ou&YnKL&N zYyQ<$g~{GF-;jJCHWikUMMc|5p&iFzyjI3tcbfRu#SAPv)!Bb3wb*;^DSB#MMv*TD zTo?EdlHFp=yd^7Pk!>$;_`W0~vbGgRZLX68egW8f@GiXjCrn?e?qj*<8GFw04qwN; z0S9a%pkP`x)Tk=3?!_BHLbIN3+Aqp4QRpNci<_vi<9+0xaDy0a9v+wy$upW&Ml!U_ zm`3B@G|Fo(f6` zS$zmkkPkI8UC3n(bu?Z-AD*8Rg8VCO(_=+3>v=k@pV9_ydW&FNm?06iP3C936k@!WvAAwz6gQUs<@Ly}hfblRFvJ^y z!=lHyj=MWf(b~+nGks0k4>|Iz4;w&G&UD7iK^jFJ!s(F};V|V$747a5MSrnKbX$Fe zdWdIKJ?Ty+Ut29m&KGgm@Uj$6{nr5T_b0Qn!^E(A(@j2?eqguEh@eK3N3eC0KC8c1 zke8|whn8A5NrO>4)mo{-{+S&LDr&~m>)T~~|ECRBF3rZWTgOSM!$)$umCtuReGJ^c zaIWc&y>LPMH{fy&7@9bQQ+MQ(OF@c&iaeMUR*Q)|8D{#S4D+>{@4~oKJq=!Tm3&GX zBNuP>K!DC3()-v6`U;ewPakk{LLlxtUWl=8TzJ!#nvjcrg}kXJ<(Wki**KKS`KYG9 zCbgVzHn+wXvntNR$k{e3kj!<}&aA{2&XaJ`NF%0cEr438i636@kzd_S_wCt*cibkx zUXKlEy{;IFxZS{o<=2rMPo?PsA>h2^8MXHk0IL>#=vw5%91y8S_iK;v&c46o>5eKI z=5NY;HF03H?MCUex5#D8w^R-o2hzu(n)pn;msIVsV3Jq;;8h%L!_WUIFtt_oWUfRB zjVkab>+Uz9cfs)W?D z@Ygj>6na_&_tNI!SlKiF*F}Mld#Vyu#uBNzUIA`x@5R4W6PYJTbMU9y9URFVfFGHY z*`T#rOigbRJzl2_yB%|eg z##$lNoaIM@^q$ggdpXw9<`>*}Cq!J16_MP1g0LoN2z{gs@V~B;;GQ1D_v$^3SN&$Q zE``E)quU8bDzBhri7I{gRi0hcqY8@;ZHUa4wF=(}S*%l)RJ7 zDig!`K9&3zTu#o{oAb>{SJL;ZJE-r7cK)Zlg2OZb6BMGj1)`#u*p9q2o$EZqs=}c27S`H!1bwkyq=< zjkZa+@7XW(bE*KDt74$^FAlP}T!EBB0DMn(CBGXZs4*?akon$d)E7+44{)LODkGff z$T0}c*};v#xftKB3!Q0lAa=}^)@%xagvbOqX5>$H9_*k)Z$hwf(^hcr`T^l8CFX4( z)_}9?G1O43L|gwNoHMBc-Khc_dwex1E13_DcJ;8-FpPJ9&U0M(={EXqx(kmN9V4Sw z+;jf%B5GDL36ET-Wa|;Eve&4jXsX0IsZGVlBX+P!Ef{Y%e1j9V9M@=TDd=liVe;^2 zy5YkBm&?neGiFW4OD~m~i&8~oX3`p1@2(DuB~$TONHO2~$PJiL7y?m#@5z=_0FGow zC(Kf2j2*ZP_^rJ-*Jlnym+r(jI*~9)wU{w3yXno|027Fyr`9(Ef1@5-TRNLP);CIL z_IhIM_$#PVE`{k@4ElY4im(0*K)dM&xHXc5w{`q6T=4}pG!|zE_qx$njojXB-)^is zor3>~a6lb}LKKKpXXGoLQRvPF^LZYhapru^w=rM?J00A>Ygr4aIeZeHc~65?&Mt7c z(uLL?S&MdutT40I2wge0&Bn1PY9GIu=HXVzEHH&$>%-`~Zh+v8Xz18`8pD6|f{CmR ztO?*jXJrC?tl2@UoDQMnuQK|#^AO5S)qoT`e_r&0Gn7%bA`TO_;OfF7U~oRjloVq=pCF$4(`~>AGf@W zmI4#O@o5^KUMbD$tzN+E-P#P1`o+X)M?cXN5(0;mfAq2r$1l#6AU0ffDYApx6S_)^1{N2i*U)=1H^w{74)xb0EJ=BV^a1Q{00s1_ry8uH}1Mp zdG!qn3!_M>rznaw)^Hr928?ehBX;>ynDBZzvw%%WXqv}4nr0x0M=AEM*hSQw76m1d z&*T@bZo*Ea3d4+j-w`&S(YvNlze827X{(_dBYhD8_UY za-VSv=W-jAqDI!*ShBqwCoLMnWffsC;j9frEEcJ2A3mtYmVLyB}c5MN<=CD^A9Ol&OsUw?#DUyDsdnKTq}u z-T;H(6VTsf#tVsIKqoyNANYNtr~0m<_TE--J6Z{I`pQlPxIPxwI>oyX{e}GNxNjyTQK;;jHc7_Z<)XW1!x5^Q; z0)JrrlcXvSN$$+tI)Se@{RaJ>{S_9y$%0-b&dG@pBr`Dt25T~S5EF^1^SsgQy(1`S z3eiNkPA#3jQ9HsCvGcEqS=4C=SF?by;PvFwkIAgz&?S-+WC-^9ZE({59LZeM!rSol zA^(~spBQ};!q3vtXc^u~=xOk_) zz|kD=PoIi6>ZFNj^d$mcq~P1E7-+e{;XD86W41V-ALDt89G|p-U%fF8#FZn+k3Smp z_If_QC@-Iwc}_yd{*!n_-xV}%wcyeoL3n0!hR(2@2Z>4n^paaFIZh{}Ylh9DuKi{@%H=SF zLNAk=1xs+KIt&j7Rq#@poTx{p=w z7N3E)x-2~3jbz;eMQ|4P<%k73cwl!1-*~_T()E%c{|h(cIA}yp6~7@f4d>G5yOwZS z{$pTtAqB2Sp2wDkIb1GwoIYS%NxAJ@xL0ujBnA$0uC7%0cQlfS<5jS4S&ZKz&hsOE zMZj1_8vB=Bf$3&Zkj`jqsmgAAhS*$ZVXD} zti!Kq%!v>@@Q3q{JS>KHe>=&imROh+lMKrz0V=2xTwxTAP6F>p^cGWW`1zCEPzb>8 zHxH?GeiHsR*a45O#1P+rV_>Z7j~hG8c=3bzu zHs2NZX6AzMbxSzJ?MZgLPDi)>dtv>lx$ugTV^oi(P9s+&62f%RpW*9oYmacXdfj?C}!|sT%dnFkHp_Y$PVOcjfS2QDRhlZI z`15lc?_|{_3?7`zH!jNOHM(9PTLUG~(J~KB3Kn9I+DwevzZ_*phj}}C(uq=PDE_)~ z2|r{HlWV_HU{O~ni99?FTLqIbFE|RTa~ES)WCRK?|4JUFn`6aMS&WF~7y_b`spwJ< zYL~bc9xOH`@x~9ynwuVQU?dFu-(Ca*^%z=qEep#{{W-Ru5IxkBO=U0a!~+XWpuZyq zioa)r1$VX(tUgb4e3-Iy9{gEn1@)ofXm2i#!k0Vf z()s66{+k9W_-WyYkqb=!?*a(LU&gmdTu*n`eY$0L91Q(B4Mr1p!$0dSuxCp&`SgHe zfxfZE3;Nm|pEDc(mTH0Glt_$=jK@LUEbQpqh%SwBpgtv+r*z;e?|acD^VFICbSHM9=a?Al5))mOlz%TLH5k0n&OHx(3wZ<2&*Cn5glWe}0! z{HYQRWL$SH9+nFQ2Ir&C4^!MwO8Gx;aGX2!M10%B@<&VT;nKE&DuX6vLVF(3lEx`O z#5uqBp_e4dHVsYvgTU^nAk8|U3VKnOki8X*)#>6u-MGJ>^NTyo4oB=Eu<@-XbnPCZ ziv?zbifkh1)QgAUPdxl?Z2}%cIpm(kIk+Yxg*JIP@T&b1?bOcVd}21RY_=zUyS5ff z_DAx*=TCVpEA{#Ef}r(oR92eKoh@Lm5$vZHG%ME|?UFPWD|{rgUlp>At9 zmVTeu*?4g?0~36AbC3u)c=ETd+0xRq$adWn-baKXAviSEH&+spoCzSRlYgB`%*rQ*x zpWD+nk#O+OS#Q3;R2*)ltD%qdH#5tE6OekOo1fW}L2WF<$*js)e%5zSc=<{bjs@Al zJTqs?`hKO0`cq-GE4Ph*+)JmNTaDw8OY*n*m)9N^Lcb-7Sh%x_crojtWS0d5B`krH zSxiqHxNoZ9q3nkMOV0+(e9Jb6w*UUUP5+DS%)fQ;=gzF?rNpkb`3Sz*` zNi~I=vHZpwI&i4~rnxah#_=m(y)GH={mjOY)zUDhG#LI|+Ki9Chryi8OuUxUPl_LS z!}A9|fX=bF%)}M!Bi@nM`4eG9Qv{yce2osaPX^(WDG>2fnRZxtL(pgnO6=nJRi($N z=HJ8k^Ha0MWzRfP#j$iA{`kn7O`_BaXNmNzuIv8VmRHuT^k?B#=+p`68Nz$obxzyo_R5j*%+P-hj)z; zzvFq}5a)(2p>D9*x)^uwT*&bPZqd>}H&l1~O6P>6P}|j&R0{lHLUs}s$@`KiVrHmb zpN+kh>)`XUXpDSSNJH1?!N-q*cy2%#s|#$wZ9)K=L`0IJpGRPoRwtRhF$FYDbm`n$ zB(72-kXaH6pSA^qU(5}T*PsA#)qpx_ofDENtA-oSH@6!>M*!FxZ=2TUPGvOFVAl71!?oCyuA1cQ^_c_bkC^iz0GRw}Duji%_w&IP92hN*&{DVNgW^lJ+Q}R^tY2 zsPgCS*Ad4~A_F?}>|o=LOC)Jnj+VSXN}sHnPYT{h zD;xGCY{Jn}b3F0b1-|^b$DeR?1Du#)2?m90$ckf|NPg91q#ynZH4zfX)!e^y@VSbFs^b63TQ-Im`5qHImU))w;~-ie?O$RwtNTQp^Mxz zxDcOm4ZG~YV7U3Nn7A%fMo*W19M2l0-u=tXXSJ{4I!$-M(`Ga7-FAud1?P~;hq@?j zW`){z9#CNXnF{S5C3RKYZr++>>#Gw?d$AuayVgKSSuiHd;O66-t+4pRvxXS=okUR~ z17`LcaE^v>ShjNlTcdIh(!9C;xY|WXmHI>vcNoB=pzE;f{uxv+vL@eOS@RY4hXZ>x z8shhc1M_JV+!y5_>EJkzPGL}U_$dZ`_2rk(kwQs3V@NPt2|Jz5sOZ<9=$lsz!8vsn>^X{O!2uOrE>P12gJkbyj`?oB8CEtQAbeSQyu$xT`A4V2P+JyQwzZ%| zg#q*FNDCZGmIC(TO!jqF7mUo#he`Jz!Oh`mSUTSvOVX!;K>2%o^+2A<-g+72CZ5C% zN-p%OZ41`wjuCksgl;)W=I`|_Fk$#Px<;pw)(96ccAdy-EZV`^s{2sC1vS{O;0lp9 z(m-1F3IFxO-Ei~X0?-|)fR~RrPvov#+`M=yue?r`ovk~ISc&X`tZo$=XYiZcekp`| zP1<36XqJVGdND0)JOzrWwHWoxiapq7MaZ`-4BFX7HGUWTf0oDb)rz3R%;vSX$}^6F z%jsUb+2Hn58FCxS!J<4H;~(Av$@?{EcXcO?DxZLc4{n3U%IUDQ!WH{Zoq%f(+{n+i zOT@8#2Xt$A;jyhhNZY$={w}!|G;}$Kg$DUx5|D<6!!OZEg?Y#%E(ODt+Jsz+pxf3) zQtiPam!#Zkz*Dwo=FNTV&H?)e;BY<3l-x^;lYkQ@WQwq zl($d}yY~npXU4#r>bbb_W*r7M@Zh837(7!`Va|8H#!hWD_ECKy&e;{moiheOj`0BV z2kr1Zb35Mo9)kBxdLg9o2+u3}4d@#+Vy;FrjqMl07Q-y^d2=}iADqIbEF<7a~rW@yC{eU|C7dMfuDV;?O&Pd>)1AobIO)GD9 zq7yU?iqIVwPVqN5*5KObEnqTFl6`n!JEZ>MIz^@>^jgh%QuEFTEcOpWWx!Ju*eHfs z%}0oOQwOZ8pTzvU7lJlF{u1jmDjYBI0gn4@fGW#o+R6KZf-i2th2s*`^JFeYC&{6H zbtiTmsl*#!Ct$px4YcYS|Df@2m#Sl#t!Qp5-9)T_w6ubY8;M;Czo$SMAT7%}#wIfKjAT%fMW@Jv4td^kznkEB8XtB1~ksR3@t`lX!O^UiM3LPc{+X6%#zD|SPjzJ z-Ud{Y$>3ezT#H9cH=yNN8^&As6`9^sh5PK~*&o5`RLGM7ADcG3>r+i7hJS%$#67a+ zc0CCQFk`$f2cUd^E-~v0r_Tlj;dLFy&iwTW4!$U)vU!oPPl3y73v^+}G=H44q5^wX zb#eCyy;NfA8GOG@hVgDHBz=)AMrL?HxUD#vMe<4XWq;!7`Wi-6ui*6PC|;Y5CkT!| zAm4<_Nm_{s_9=M-q@Fm$kt!OjO`Ae*u;b!nOrf}OoA}2hFakg23A&quqS+o^OTB0ek}PJvXN@p8JJ)^A;OCZB|%mM8GdW#;KvyffDZ^T*W%^BAR1GH-OX&z45NcjGf zn0WtI^!D?Fz)zA`xh9L4(o(QjQNh(Lm!+5G_I7JB@$RJ=C|sk9x9)wW>D$90r_dSd zExux*xmiQ0+-gi@#TZ-jm0)GN8lrXN$WY9F_%6h!Z!_M2jD(TJnXd-ux`hG0>j;;b zIELkCJ2CsqTSW7G48Pui|IM04_8;2I{VvXB8F&!|u1ev)L_uuyT*ah{&&GlOqG0>f znHXFA4=?pk5J`%T*1RRN7#uej$JJsT|&elhc{n^>K9T zh9SK6SA{29rj8wRdT}V~1rGj@#wGuZ*w%IfdiR?V?U~1Uc%rXku=5OdYTpXh=!F*J z;+2FkjQ1C$R3AbBGG@3f8EoNbSzlTWk-$S$wgZ% z@Y4b>Z$H|pE(ykEQtVQ%B8;809t3q=2~Xuly~M{;U}w4!7qcC_9SIz-y72+3*nI+X zRXwP3D}W2iy_|RcFeWf}`9B{Z$jkn~mtQ2At=xUkwZsKXaZM8}YEH+KJ9)IcZxF?e zW3WkRIlA^vVP`3~(#s$Apu^Z}a?qud4rYxuh^&raytwn8PGJd3ozP)UM(C3MM4$p8 zS_~tkhTAyz?6e*Uj9w%T4O~zt=*lR{icVste2Bo7&l||U#J3RQLYF@u z$L1A&5SJ*(J`CSX4@GElmtTCoT&*y3Pa&CZcV7e(()1Vuo)nA}rLyaqzR?*?s~EF9 zYqb7$h)z0Uz{t0+gi*U#+Pu91bfSeA7tdK>HueXnFTReiYmDfj2cwu|#kVND`;)Gb z&!$`My3hpOjm%EvS6~yW1ltua;7A;o`x&0jWj3|pXq^|tJ@O>6~x-aSlz| z9m?MQ@tu+j+|Tpg!SI@3ENU)7)#0o3PxoRhb?{=>o9i$$Bd73Vyyclp`8ZhJ?~k&L zb8u>}1?!P%jDrJFpq639-g^2PKWF)&{9|V(KyoEtc)k_jdV6NyvfVJ(xerh7n9bb& zc!3Ytp)sKy^h>+BeOKgo;9KT(BI zYXvcSRUjy~x1qwSV-OT9z`D|dN^u*zX~iJSPh7zMNO%OmWHHR$Oggr4E@|jNZ$P&z83`!a~_sw9LK986b}cMk@FrIAU*dPZhR7n zdP|Nmy?w1{R4aq;Qe+sd)e~_ls{pDpGqAYrCfE9{}1BKJ!uwO99Rn5XYiUDyrZ@)-3kV2hK$= z{*65B(IAfg=g4UZ?vA?e9Mr{?Veedjkn4+pp?`nTWMmjSmrK$c>{sAKmN==>iCpoC z1Rrs6_^UdXDHXa!d}IvajH4vWWIlmi8EH`7c$GM%zampCtazfagW#nwP8YdzOv>_j z7}TEu4j<2vz<^K;YFNt(ir=H|DIsuqY&&d9&}AQ0ZG+cgwrK4%fxR);hRq)>$G5L_ z*kukvpjT|eP%y;s>Le^%r^Why=lpnXeAxF`hW)Cw8J4JqGe=YNKyAllESV<9Y^I9v zB=QR2>yv2L9Z9^-`$MVZINm=|2Tjwf;E#<4UbFlFqIN@^7gvw956|Js#x{;4jZ~t(6sdpHaAC3e4 z9jLS}jl6VNNp16*;f2Ib{O}}|q>CitAeWVP(HRHxX+l(2ekbU?+sW*1u0{2ZyXMzJ zZ^JtOHu`c%hiRIi%SdqyNY8=|xS_U`7F*O5vORf1=w0uKDS zgXdS<(PHJ9$VyCuUl5LazNk=-8}_gx(gTEMBw+04j)pK%A()?Y0Mp}ckekyYpup-O zZOd@LtuCS%y19wGODlrt#WNYNE45TLK@UBt4Ftb9PcO8ogJ(u72n1~+m-b}Vf6n9X zVBU!=}l1Ce<-qxMu%d;yO zc}|J7+?7JsO}&PqQ6g-Z(rozaphS}l=y!)VB<|&QTj)yjX0T7uMOfn8+ke(fn$i^9A#L!L#a?Flp?W>@?yovWdJ{Wwr&1SBs)I(>)Am|^9g3+yC;d{0(Xe68<0>+XM5-11F zamJXw<~8_U&q320%Sey498Rq>!ppB^SyijQ^b41>-R)Gwi;d5Mhim^3f$qEL@LCr9 z4iOkJ{lKrO5qgddWgTKI>thRpzin6|#?rjBXUEE%4(OUkT${_I9 zThIIu=61o$n(=6}Bq}YvgNHk&F$V{2ndudA+zglmpN9|*mZsuVM+%;%M>$8%1M=p? z4Swbg7R5d0F_+jd3%=w%+OD}3A8&ug&85je>Yl(i_wS$=@Bsdnq~gO8F~)xOPrTP5 z%<|s-!IMG4EYr#P?mH*4&x*rP?W6-{b0}B^#oy(?&D3%-x=f25t*~YSFwRf66l6Wk(Kh)0b1 zxKU38+6oEm+kBWFQib+PBe<;k{bGhuVd$8NoJbB z6n4#gS+IaaSaW*@d%sQ%kNw*T(oL7iw8_EDmwomi5-v)XSLD$4?~AFm4aec`e*=H7 zKf*HyPLOK`R&>7M;EZtm zO+#T$DDS0zCjR@>PxNeO!dIsblBX(1EDki{Z9x_<-F%LYe6E9@d=2#Ka^M}YCaXSM z!u`H0WYbqAaCth7`63+#;@`b^7HdUV(dc@@pKLZ^zyL7vZl{idNPY>?bBe?0^U%qYEMx8FRWqK zT?Kk1_!P+z@vo;(6mYGvE7+!IQYCR=rtVQ3J`x7*&cy`x$ouhqRyf0)Vhu)Gx&ZQ5 z%7R^8Cm!MTz=*mzo3Gl3d#tU9d;D~E>9wbzGA9xQmH+a^Mpoj)6@rYz>tYL<9YTZ` z?8VqUUXUOp&hEITf;-Plf;UFx=zs4vCi+sUe&8YHFmB zha>B>Nr6olF4Ww}&5$>cR4c&xjN800y~EgPA55?CUSR5lF-Td&?Snc_!yO|zM(y7? zXdTI-ef!lQ!QmsBGdM)$M3U%#kHW#-MFrMm$)NNF&Z~Aa6I17lVMk&QChNLDmlo$& zJ@yPt#b3azj|X9&T?lM=dJm?rQeuACbl|1zFPPvR0qSd4^0xbO`Ph^c6n>!%n>VO{ zqH!2m`92M-KI=ln>Z9DuHwQ|B5=ctj01bHZ9tE#X#YDM!x-!s$x$sbkalbqhnrQ-h ztIg%ISX1DDN;SN`zXOkJagL!WS@c4)F67Rf!L<2z(dAsXu4ijF#$ImWi-)}79b72R zoVkA=HdLO0h`Wk3N8t&bS!T^P^ZoJP%{D5!@(y-X5R0~fJ^Z6Z%gBgT4_|NELSW7Bj9y`Us7Sk%^Qmph)iX>I<7li81J89A@S!$)X9z2vaX!7Y(#C6Vla8;ZI z?H=xzU#u>0d6Kt`I~*i=TfN-q+k=Lm)iF2PoQ z7kM!>7sq@!ZYX2Vmo}>d=@ZYWtscjwEENN}3zgKnsv2T7JfLTeIV>(ohU_z|=)O8F zvT3>i6I7jw_1ZDewrLfPFG=G%n^LIx#1v1(^ueEP?`VhLS(t<~7}Ke>FyrvY28W<2 z%w(r{x@*7_SJf&}#m2uR5#s1;!*aZ@a2)eHZ&_#t-6M6I?_h#_D1NV=%Y<%Tifz-w zdHcBM*LCA27~|Nuhc>SyW(%gU&(zG}(>WVVyuS|ji(DdyyJO+qat_85lTQBZxB$1% z81~e9gWjQqu)HJ<>a8P4R$2_Hc$iQ36~=PAfrVJfv4=bENPxqIIIsw z@AAYN+A5&c`2y~1D5l!YKe5cd5Y?rOfN%GV?|;-6XE8=NEA}QF zuoPlDyB~7-7ad5kF@{ldH>z?-l{oM1#TZ#dT(3D3ZPzY9;W}-cF*^liOnf0*q721v z|D;bJh`^?+Mcf|tG0$AX9f{5c`oQKKDR+7RjzvrHt9t?le%^}f-i70MRS*ot?#HXs z`>FNmII!D)k@vpG5OhmZKw;=SoVI)o2OAfn$G5Abxvc|bA4Nj6=|_HS(lXwza3M%g zt3!qN(y*{A3-1o*(p$5(;`zdra5G>JI64K;2_|!axgw0olF4xIY9`WYMkpp7gAP@P z(Rzm!ZoM1|5gp}RC)Ejeb!JhEZTmmEKOA@=3gDyFLI*^-Gf4h9A~pFG4zV7zW`Q#Pn$g&BbzK0N<~9tU zjhwLIPAC|=g&~XK^sD?O0oZp#96*BhgLBN8x@W=i+0_(&feb3;krx8(Li3rvu31vj-_@cNJ< z*7Mc4zQR`AqGbyEN|u0TRV1}MERE9y_u#)QbNs`di#I#oBhIV=hjXC?6dR_lVT|PO1+ozR0`+MBJoSX9nPDI122La%_ zppiV6ts?QarQoEWD#V>z58rbpqQc}b{3x15{7k;kIL8tC1N2Z(aS^TF!g=6k8Ithh z8GN}VsZb_487?+YMR}J~pxrwG#?3cUZi{8HnF)tscLnJ73&E_b^HJwe7c~pt2ZDpi zIJD&)n6;Ke=J;tG4wMFkr`NGbLlvsdJ?3vw5QN2E>cmV(5Qb(Ip;r=x3v+TX!pa_6 zMLC~O{%l;bBn7hueW9-9CM8vC$O1np8hyTz;NunK<(@gX%dL&?dZZYinuvm8iW0}J z7KP92xs0*qQvQ~G1~}PpE^q0wMX=<3AkSs(F!|!W8f4CtL9dxVY3EOZ(Xeo|;01uU z;8ilS;~l;J;|0BL>i|(&qa?e03oX)!<(vc0>GSTpe65-+e7x%r{)!fXZw|R|arOw^ z(!U1&$;A`Fq6t5w-(R9J));z z!=yppPi|K|bQjR$qXt|%w2oNo8o}mm52#g7XTy{$he595JKa%SPmeZ>;!LA->czQ| zGqSfsoMHe7T$F^5XG0oZu8{)SrMt+u2$!Ez+zwg&;$X*lO2SH4gY*|oo??VPWN(fI z!EY+~GcXH9_N!p{^4ZkLa07fZE#zyeN6>%^(}+RgAsl%(8{L+c;LP(}E@Y!SjAmUU z!3wLP>)l*#$NrgSe@=k|>UkE^9Y?9vreau0&!B$BZj`!kmp9Nl4~i_dlCw{ovHPhw zE{>T2cQ+Q`iOY#(b;%=(?W5h~XMq4@EJ()M^lS8G{UH#B67Wktgi_rWyhTlkxMOM* z$5>TF`JFxVo_jFnx(@Nmre$DHNiZ5@rgC0-MR3o_fvI_~Nb#KGAeo>|7wvVXUcZkc zf6aCBCh{t6_&rL-{uE;Ckug%)s7rLGiQ%2`SR88D4t1%;IJ_|(W;_joquY%wM$TuG z%YPQ3U0WR9b$(7p=9QrH*m3^Z!%F-~iUM$XP#RVAj$)Z*E?$Ye#J5z4=MMx2l4ctN zcrn2YXkR?J_iG`wyt#xw$wvzoEE6QxAEd&#a57fj;v6$v_bc&8AdClZK*wL}pg3YX zDSej;q06)B38_<1W6JGccW2>&AXnSo5gCAN+(%@|(=IaBMs(9k@?_6{XoP=uAL*cVr3Y__oj|o4v!Z*u7^1UaKAG5EK z?41^d8S4X4W8oqq{&gDY1;=8{kye^NYZEPELa>8FtCVql>06tN;N7}V8nt#kK7F&7 zf8<*R&Qv^!)dxTGFIBsuOy(E*mgfhl&n0lgM2FfBZw8Uph2(KbxX^z!j0oZ_nG5?Nsmc{_z48tc!<$n0s5j|@RC=6&eKlg+x;i-d0aa^ z)-Z{Pn#DDI3@j#gUb$r3LJv@1wt{%5+mZ|amV=D1F+8j<#rtv7>46zOu%OHaT7E~O z$9We>H;DnCc0Vn@yG}57YERdQGPu4<3ZTNb&@O3y`*!Z zhRMLfbiDg%fNDHVfQ#j2$PE$bVwystcYUCK-Pg#fr4^iS6!W!74dyF1!v?sAa?%*@% zjOL>8sCrZYcDjjE?dLZ5&YnTF$ayeib^=;swP2##1mbO=M#kL2acg@sPlV%bu0L9W zX8R)WzT`0si%jO5`?vtD+=ebwwxSW2^W1oS1>}!CCRa3f<2_*qu)fN2Oe-;q4^IB* zSeAs+n@&U4X;=Ipr;57@>~QW27mVCx1`#6VM6o`c><~GEPEX6Ag>#LGd6}TbGClH4 znsZ;}71b~P9t%90is{bre9`-za;$TRLza&FP@SK0ln7TxtO7a;+e4gkQm-Nmks~r zc@S{5B0m4F6ZvO(bh=h5EUxu~P1iiYH`0LfeFdYw)FBk8O$L?2arkREoTr&^9Fi`M z(#NipufKShG#4GBh6@@oGV(m+x;dcD=PPvg!hCxF*bqt5$szahjp1tfTzFkl2-9M? zI}SB%+`56|UNfEb??#g7nH#B)e{eF!-t6a4tT0XytJk zlD^RyYj;XP=ZGjYKH1J&_g^L)oVb%TO(t+$_|t#SH!Gl2a1_mwvw(KPs0N*t%b~1q z1};9xIc95((d~K~h-=&7=Ma64m##{uSAU}ca?_x?C>pM8t%0Y(wH8|vo?yZxFMgAG z36;=Xj~k}$fk)rs$#07jSonSuL<$X4&AwQEDPAMXRZT&2^CdD|JWR$1@9-T98=>oF z2JID|&QB~mhgvoh(BDb~=Q(F$u&pk9wVw^l)3xY`2T;QA8A&mTq^8B@7@ew4J<$&F zI)#tDKF0_4r*F@k0Zk8gNb(5(ucqCPpTG{1rCzF_Y_JR>7t97H?)xq! zbUhWetcQ!8`5gatn21fDfzn$p@vr<$#={zFcs|({*XeB{;;SW4;Ll1bx1}5l4piVy z!*rg6R}%zBPXVsygwsA;#o>XW2C0Q{GWsf*$Z_ z!ZSXJTSIRy&LR@q)bQeGV|eyE5s&m-Bn2 z%Dkg#FUZ5iX0U6jDn5E`Nci_GAjYT^0uOOqQ|`_u?a)=+cH$-`oYukFXG9qp-)k_X z>LGP`{2xx2&Va^@NAv>7!-R{UAZ~2|Zc09dHfF_ zWtr8tw3*%-0hnSP28nIT_`v!hSaoskxfLliE_4fTouDlHwYC!L;%eaSc~ z(#>;v%d{5}3&4L_TwErAY{!H+Z$Ygw+GYRLuPr~rm zKVWKmGyK_ji{Gmm46XbeFmWG3na*~MOkYms@pMse-ygbPHjKDSsnWmZlkh~mHVPU& z##GBGm|m=o*;9W)8}}ZUHIj$z1;;>1YBfDIlk?kYWKcRZ6?fA#IH7zStW6GL-<0*d z}7p^b5S;+P*gSU!9AIw z=$>E({=1Es18;wT@0?)x@Hz=Z*WHH7r@zTz!o9DP-7r1h4c@E}WUE)q#xdbRNW)0X zHMb*ss>R??l>n?e@ezVVvn(|7xbIrouKJ&S^I2CZ1s1L;gLLRjc1@Q7IIhmd_xr>d zk-??3%UK+tu!~BXO(RK042pkgfP|5A^w-nhaHG1NAMj=qERe|sU6Ta(;;BxKiMe9u z>FsEno(E|@>!5zkPm9a;Tlp)hCv(1DAL>**N{E9v7(`+W_*M^7P7zZj}gvT63{OZZ|Kj7*se>Rz0{{x#5Kp7Pw; zH=!16`}Q=P*;t9bvn?6t9|bU2YKD2noHJ$Je0b$Q%5m=0SvfLqlJ)iPg8jhh_)F*tp$$_2h+mC$(gFM~AK)ON7n^@jS zz}_il%nhwfaH!)LNm_b%Sr6f>NDxN+;LdKDKQO-d2_%atW3JJ1I8#z;;s3D^Udj9- zg;Tzhnvgn}=t_ZYeaGv|m1JJbl0!$Xk1t%h7RNWrvmHlHgId8b&uUc->UV~MwN(Ru zP|X@F!vsO{_Y=$!Xd@B5FF=0gWajSUP7o3;oJ zYM}wPY9t_EX$|b!AI#)Q_2S@|8Y7Sp0)q z-gpc4+d)S*Qh5^F{OuSzctyZ+i-$b#$KrgWdmIzg=L-~aJ2Cxvw=w8YIG$7lD)aIt zE>s;xKUl@o?&FiStNVFjQzT(Q`B~n#-PTN5-A))2{zmIxO0%)nN^EJ36YhOBAD8>g zXFq6V)5RWtaMcPg27AnH6aL|s2NOA$ zVKzF+$$$sPwv_hc&T3a|h~oWc@ZEVooLw}H@wUB0?VA0Wq!qs8r?Ml~^1hSZ!eQu| zSBDo3`DFDLKWzLvkL&Pe(FY~!Y~CGJI63(aG+D*NQIUC&tN#f3!{<7iB$#m-c90=Ox zgMB~mk_5MYJY~@d7uUJav2*fFkw86IwC3?VvZq3x6+^s-)_|GM3oyQY1zL_?0X>^E zqVn_|&iyV7r(~z&?|Ky~KkWv#zGp%A(QOdkU`+MzaJ97j(uN+BZLq$50?K{7hHJAb z@$vOcXg(TDHuBEXqjEc$0g0zX_d_T&UhlxGu?6^icmY$rDHO8%EAWK5Jypq&X7wGT zaF5j&vdWpTcUv}-BUODkysVC&IeP_^{Eg=|Oz-5kJa+{h3oW|6z665kKVF>93y4@B zit?A_L0PSo>IGki)1RH;(d6TFLZBYD?av04PwQ}l{tD=@kHhIA|1rhQfnc?8BK3Y< z#IfohHk{ga5Oo4?LsH}_R`#VnH5|Q8<~wELyT&Ut<5vL$_MC*{59OEwGLh}Bvn6&X z128}1Ga3eHQ_8G@Q%jZDTsIcCY1=^Ym^F>wpvxSMc!C$xjxmNo&!O^57=~NAqiL%S zO;=KcIyZN`oAQzVf99$BeWxL*r5ZA?Pl3=U$~gP5HyBmK)6Vgi==;71hTn~n<9Btq zoc#q}QPE49_4*?X&g_7S=qUWwwgJnd%CY6^7!BF6l38pZMU`Y8Q0ub_(8LVDrV%Yx z@AOP|)s;N7AMFRXzk2w=&lem5HZaC7EI2==K0S1T$7*~j#__2N%ooija@uGSd7IkG zpRY2ReYJNjOxY@j85dgcBlrC7EZ&K$1;5oR$f=q?J4WGQ$WE+0a1!RKC6nRaAGMb(#Zdj02y3xnt3_oF5Bs%jg^`}$Ctz8*|0Y_MF74+DL} z{L)_w_&yQE5E&xDzSUP|U+rjuxSR#7P1sU6k#!0#RIZ0fuT^00F$Gv2|ATMXz6T79 zny6Ee7Zf}T!Ef&ev7b>!2gL@MDkj9fxOko(PD+AiuKRW+V;np@EKn=omAP(x4P2cf zu*B{f{!=ZZXrP4xGQw=ka!n>-dm;b5_$bd%@C*#y5Cpv|8f0tg6`p+EB_giMxeom& zkV~&#LH-(5HqtbVEV^zE=gDm}+y9ZQURc4uwoRHfEjv%-OoY+mz!FAbnOQ@3u`&h@ zT)@e#VPJKx5G@4HCwPX1}|*AGE~9uwAkt|gH*T)~|E za~o%bN+5snRtWm3iSxL-Ij1(3#A?g2U-~%8Or-$WO&G<;pLapdlU+pPq$oL=c!Bgw z-h$iq>iEogDKIW$Ftk7dwCQAMuT)0ya?XDz8Vl2kFT(bd9P_6wk-GbFK9&A#ni#kP zU-lp3TrgfF=35tJt-k^4{|52L)(Tvd_m4b1H-xuf7T?wLDztKEnlZ5%=rY3vW7Hy0 z`QtHO&7t+Q>5~<1`8^L0g=(?~2STxKhX6cv^JIH3y2BfO169?KU|fT(;I`FjQWK`c zWPHd*&%jjbTr9ki%TpAqynr<*=ETYP+@%IrD508R6_-O}kUT>Ih`zs_3!|2l=%yfW5Su~bc9%>8{(?` z`Hbz-Wcc@h!5kd{W&%tC-w9lIY?C|@Z71Lpc^9p&*<+NAG4o5(2+eW&#Jr(RhiG>I=BCMezgm!>0XfA>&!FSSAxC|_kg=3mo3)$ z1~=cH$5#<G*=F%&LgfSit2qw$D9+Y1)(6kYjJ?{bFBsd%qx)(Y*|x zAJSq}UzjnYd*g|p{Rsb^#S!-3r&oM$Up~slf5&BkdaS6qJ<#dJ;I6HN|L#2C?&kYo zC{UA0>|VjHur^_gV|AD;Z#DK#br{pWH3tKWtyn8(3k*w*;vDDwIHk58_w_lRoUj8sk{{ht95e219XW_@$Qar~02sc^=z+_Jr4&Ah7{f!Ueux%l%SpJMy z|Cz#c%)bWq_6ITL_b5nNxU$Xbl$fCzCva|CEA;DgUC#gfXx{4y{72Etag(whTwSfl z?v>7g@17xyGusDswj+q=>Tv3ZDeNLicN);*3d>)`!(`uTT)Ao`I-Hrt`t?e&zEjq- zV$1JPheT_(Uw;^;q=_;%Uq0|XX$;6*c#HL7tH3Hy3EteiN1qjb+eHDnM=!f9Tl*CJUk<@ybI^I7p+!-t1!J~poXnc4$-*yr5aYgcdWULBzt1U5ze?zImBZ{E-^)}l z{Ru8o<@kcF$+%+fez=ma$zJ?YMj9u}Gsb5QLP^IB(&Ljzedqsxwx?IseCKgApfCAI?u+>0SQcbUK1)q!GWG@VM|4yYWw?Nt# z3wHTBZ@jzY2&%M}^R`ypK-PXPPU;b7<^6PV&5BF#aa$36U3-@NE9t@bE=7>C8G{*7 zGtf3G46ZKO!=www;M%B6cs6?_IkELQ3#RBJR}N9rbK-E`v=Ys`<%1(TF<)g>-y3SryU}3ziTu2 z3$J0q+9q*fOBds732`Q1(=u#ROd{K5Zo#$5mEgbW2Pl~a;cr8I#=Ec`t-n2>_Wn`W zxnMl%1o6yPO+84MSOLTDbWzXl5L0ExJriG z?d}Gb-(SQ6<0rVY)f9f`+oAId8xWZEqhGijjPvz|#u@JL>3lF|`^YkDO5fw{Dhf{g zKJN!P1bV#NSlHH^*j*jVCFr-aR|~4Jq~s>-`>xKf1@>lSg$UC%Aj?eibAo*d=0rIx z5~SD4!75V$OH{rD8*-a*ney$lZ3h_IoT;y~5MnyF4w!s!aa++D#a`JEDj z7d)TB`s|^52)i~rW|c5E1|_{D(&p7CyDpQp#AwWc8$t>y3j6}zsLH_ z>RJggWZXV-$E%)*iv>eO#trh9zQq+n*J0~Fac;xk^|07Xlxv%=2ojgt;O4&-{9W%O zNN!|N=x7R=n=Qf=yzqf(w|K6*yao=no`t&T8}zx-8FD-*i$7EQVjC+Dh2p=VV^>4{ zx^?S7@um=lch%x!?h1za-J{1Ut1#UBG&t#;AWaTMFbZe?mW)+2YTKv zHHJBgqrt9gcw{(&zIaCI9(6UaSk{V@r@K;J{qy9vxBzWmK19F$rBJBSh+PU{WZusq zcx!kZ1O45Yvo{^-zr+2s_xwz3^)N%X#(DI^CQatl;0;{-trQ;252I;&CNQEG#$vv= zH7q!jON|mQVw$2B)Anf#S?^g1Q`)Bq+G8h@&3+%C_`n&IDLO_LdN|^g&l!=P&iQ}1g|k9T(Y|*sZb|w{yuM_Ee|!V0GF}7&?{t7vdob9$ zzr~ozQ;6?H0u__JSewTWFz}2jY*;e^^Utjlytwy_T59%D73&68{hCgFU3)l;wts~c zC%;q2SrIh(?>_uYULZNF$qc1jg8Dz3p?9|e2B>F|-x+UdL#;IE_xbVN8U-+$J4m}5 z?McHpJ~w{8nN)NRlHx7Th=cnJbXTxt*Xk9*-aQ25HZ;O2sxN5teh4SLIJ{6T;EpgG zanA_v1z6euS;r&sp{F9dK_U<1KqLDryiI;hZ0z>{t#pM+i=*I{Z8C0pRZ7LgPU6i}CjtGi zubw?T1l4icSU53{9J%x!kG4v2jk?<0t%DwX7uyFCua`jCi*~YmuLk;uk7b>A#q5%lgWGTi}hyN?+2+7IUb^!kyr^GlFDV zm%)3{6*z;Rxtl(qD0O=be$ej(`S>lcc>Eh+ci$8o7C$Fg_wFwqP@D*pMXm~Ti)=tw z;sL~O7Gg5ay@91+DzHn3_YWWMpv#s#$J>0ydYaL6=1a3OynXT=w%t|$H@}l$J6(hO zB4favIRA%U^PSI0)VY$F@PpXrxC#azoG0?d;~1$Y@l&?5 z=rP=k0!29WLYjIV+YN?SmaltO=Qk3u2WdB}P5nYml{VA`YS#CQhp?Cib@ zZV4~R%cVy!^FRvT)(>R|xeRouY{8W^eD2_IAFQ!6U=-x8!spMj=#Y4Zd@|R-HO3F& z=I~|`sb-D_D^20j){*-1&>-rpdkQ}<$zo^tn2T-|pyS#*u;j~K z+H-0PyKDDq&LCziu9i9vD(6~oKz{}+mV5-xCvFASIkEoXPX0U74L2>?-;OOWHSl3d zCNv5UU=&e;(jOeTXFEzRiktJl?~U-^o;nzMHHisG3n1E0?7(@kHqN^6naq0Cjvtpv zF!x0laKmA>^ut3VP?SuAX@V2z8qtAC-5z)(zKulcbb@=#bU1qQC*2*J4?fB7q2bSX zoP4JU)eTn?U0+S;YrQ};r8m|c9^yNNV&BR9w-gSQJD}!*iKrMm19PrwfW`(99QU1f zSUx@mVz+OT^6LgLeKa2?IOdRk`?0tpqLc1W5@qtf>d}igMTz&FU>tySvZS^O5=Q(5 zy%sVgSY;nH6mn$l`B1^qUz4GU|E_mW%O%qf#p0-+4(Yz%K*!GcK+KCC3t~Q3(F?9N zpu%$oC*5>H6D1?T_SRgU?>GV?9U?R^+lj1ReF?ny&WHQzG~B)H8N1xV3SDOZfetx& zZkmM{Q=V&qvovPV#mQ%}u(1qJWlV#^vzKpVlgKS z)sHxkvUgj+X8K_=a5f%wm3nCBfjlzfyEc(5%p&ErEAg0|60=*lk+e07)8&8Wg7d-S zM7pz-tZoRQ;=VoDYW$cks~V+muDHOP(0t7ImnZ8c?FCI$79&h4$xYz!N=gTrJ_pgZ z{uJo^tfp$AUPS5M4TAdVSQ7tA;3mw{@i{f5FEJAm4iY-3a1kvUzmf9p860cVK)%;s z1E*!mAenHU=u5?rg4BMqX*5{sMFDsZ~rX&7Vb z1e+|osb^p+@=FlpM(5LodPTUr@eh@a z@3ru3%KS^{_s1Dp=Cq)mqAV_0{2DGApMz_4>nYfp@a!xZYzyq98x6-}oLeBK@eW?M zZO!PsVFgr)eIe|hEFy9v5e>ctfTwjFtJb}nmc5CEk*nuPe11PkSSm?hSAPH*Mgs*q z9})I)JUnU&;vK+wuv$|VCoD6;!=HIaK+bH?ka2=iZ9u!cCjg&f$?ZTPZhlE4nI)lz z;WPO=u7M(u@HD~loG|+Ox-s@2RDtptm+|PkmB39_!nr(yt7=0iHILV(pXL~m~r{JBB2<*&HL9Rj> zHD6}p%jz&vsCO1DE6w1_pD?(z|E;OhH5Oqx+_N!2%MqTaMz`mD|br|0=$jaMK!xyK0b zqBUNZpU1v5_pLLqtb}ONh4H7P$@rPgaAp1lQhraJ>VGxCW7Um<g_DuFxu&(Po96Lf2`Q3eOSJ7ZS{V>Vg67bMTVn zP4=~u6K39$g=KC}*qK+miC}*#2=A?9pB{@4EbOts6NA;j@)@cp;aACQ#cZ6v-5AAN zn{iOoT2Owmh)Nuu4L+CFqLsiNUR{tS6F)qpKUODTl6eUH&=7?WxkaWQZCYS@)mU`* z8K5K6tI6b;dip%I6a&6AL(7-tc!vuSjQ{L`1p!y#PSsX$eCCLLD?UTIc@Qg|aY(RT zxfnT#L};~^rm|XjB;NZU9dhMag^4b(IbRq`UgXkA3qoOVl_M_h;k)#^@^H7U1uQgl zM9F>muw8vStnr=&L~$QpTp~+PpBWICe-46#IDYQnXM!I!E2){aH7JF;;SrB-#PY~t zm^78oXnDoJtn?AV$Ccs0)~2KRKrKEE73cf8&Ey%+;ER~$0WaLQ<19uF{LZ-3t9vbA z&#MFM+)c-Docc*@ieG{+)b`@ip*e#7=bJ%rtr$N)YNknPMbPgs1)f&!fbx76PB`ZY zA_DjfbygG|5}rw6=oel5V;gQX+=R-?{Qo{QRUkLw3|PJTCey((!HWCU)ajKx&!jqVgVu39{6I5b_yFi5Q*B?uJUWZ zaeVJ?L2PXKuBt&8Sd$YdHr&dykiF?Xk5r!DoDCC?7=Z2g0}wd^uxoNL3W<${Yx&V+ z?vvB>vq6EtcE2(Sojnz*UM_$kl|gUKQ-@62_Bm1(;a57oIOK z|Bg)BVEI|L0v_mLj?BPckdiQUdykS?}FOC|w_ zlEy={W0+u8(_WZ9-yB221L5Y*gV?p#4Rf**VA#bAyecB`-0BP*2+Ri=o}poQXPEu( zvp#Hf-wF+neiOrrEu>*{1uY9|BZG2-Y{8F%Wbu@fxR;s1pIGa8qMO@efPm_xcxL>!;SR%aTbY!saFc2OJfSpM>~q?RZ(ErXM{38 zh2WpWDf}^5O^0qw!CHtusZhfL!P^!WtaA~?@~~o@5pj_SD;A?-K`4~xdSS#aMesdkjt7nQ z;N+d!XkvMtY}=A$W)@t4UJiv+SSS|+y1$9f51xTrQG`Zwp3%~(Qru`X#QIw3z&iPS zu;{cy**l|x#$Mhlx#m4<^WO^+81a)nw%Y`cPMw6y{BLRV_XOV4xE8-Gs-k)Akz|$b zAxtj!LZ!WOu=0flK0q^c4_*VgEl0?CF<u^OPjcb6YN8;1?HEwpkG-?i?VNS0ZQMWq96M4~qgQ=hBCs7E5M zJQ@v|@4gZ505!P9#gVUkANoqnG_d;-4#pjR*wd;_q@%4v$as{HHFL4vJ{OOt z8DU&+1Y0#v9kh-_;wQiB)Vf6;cI`}q?Kv^<#Jdc>*#yv)m)h9>R&K|Ymb&a*%P2=0^Jx{LyG>1Ih9f z0>^3F$!g7Lkm0+XUel}~IcN=fe?0_s{c)gm+yNa-n%SsDHFVGK3if#w&qwS@K_QU> zShiMz-gy@a8+xrU^sXy@^LkD0wZzfwcT2#xv_|heW%4V5tNqGu36#eG!sq?^@ z$>bU7sj&6D6|5^3fyKi6Q5u#I`-i;SGrp1Dsmz0L_vsL$7sztFGbrw9Hd@K^cS9-1 ziBxfE)KN+{l!+qe z5J-Fe@xFr-J9uv?|D1W(#r(79=+V45I5uMoI)3_qI)CauwdPTR-0nP&uV8GjQ8pJl)~*C;G>OM|-BO472nnO4UQqZ`Gv?xC!l@_CHy!tcL>}tWwdameFIRz)L)dy9r36Sld4qa+? zc=N$!!Re0ka5AqH-y}?eJ9E!r(C{t#RB#YJW;}$xBRAP`7MV13b~@&Sd}C)a6T!;& zG0yGvr>6Vvp)o&;2U{(4St3RL2{Q2!IR@WD-+<7jV^DB64J@ZQLTk+pd}+sfBm#4= zd+;prdiH{jE_hB>5hoN=QKw=-A+XwdFIE=$^PTz*D9E&<`juHw6qAX=+onUU{*XzEVF)lU9jRxj*+ZttxhOMMC`h z`&dF3;}_}A@IbtbM7`-G_YeIB*U%1h$+pKW{EYBG%uiUX=>u~gO=D^g7^Bt`ZLZK{ zK3UZ+geMNpBOW<(IOYovSl*O`i~CvJvW7s=OIuKIDXee2mk#Tn=a4k10F=o#~|V-q!JoFn=;?k7oh58Z@6$}9gKwC z1^GBllr&h&zsm~Xb5J~*i0wz?WMy#gdrpE=Y}izfJboV)k2g1OCH`s>uz6kt84Qjg ziFK-U&MQ;SW{jU8(c+unOt(zkH%TM@-E9N!ew{$_Fajf+^(YgtQ?TKi6t|G?7^wLL zW9ZFpp3hlLhhq%z^q=);nqb0bZJ(Kr?8$-H?Ua?;;fXmxEW#-nJpEFh{3j{HWK5Y& zikL^Fe#d&UYBP&da{!y{QqW#~I@L=PCcm0y(FU=pT)1gJ_6r}!imql7-9M3hu!*4S zB^|NMVmCa#RmQ5_KE?MT8wE8793bh+E!bGS8dlui4`U=>fxt-=4n1jrqNYm_ykG#+ z>ih8FadpP*##b{h=UwEu=Lo(XW5m%hktkgAg3hzDCKtx3Gj=-X!E1^(bbhIYYc9XY z9}hS1&rbof1$8+2sc&tNa1%18Bgx$g z_)Cfz_}K+cX@*2`n-G>nr$IoJEZ4|0QvzTG(=6#H;PlS}a=Ro!eRDBhZ9`?r9}=o#P^ zL}I!9C|>e>1IHItK&G-W;IVXkp^`~gb!>;fo?{t4jtnk4gg zpm#?V_-y1~c<`$YlUD2{hyT5zUmnSDgPR9XP*VkS@0meBSsg8Vc^_A77ROf?$1zJ* z9*0qlTX;li2Q6xM8>OLXCl_HmlI|10bl zxlVqqyacl%n(<+W2#O8zTou7yi;L4ikn_#g>F~jp|Vr3{B4pTl>Z$iiH+m4(FQov$A+fHn!@^& zDX?t97^ZIF0JUeQz=A*HxvA!vnDKKF7CuyFtb4ZO>$&?-_4^OP&%6cwDN&4?a1}b6 z*FoFjOb8oy91EV!=7xWC!^VV}?Dj;H5U4InU?ECTlQFspH{n z`bQYpbr{@_Cd0l}A+RMn3i!wo1V+DGC}+J02bP?IMRRkIaoWqBq7t}Uvx452w`AfD zYcpOV56Rt_SLCCC1ryvS3gvu`?GMi;7?YeuYyS+>ycQum)FQ*YemI6!mmCx9pZE$@ zVh&>bLnFq@b~mOeKP6}`#BHA!#l8Jj$ZGCY0$fyxOZS$urhej_;>sad_(6cT_#FNC zyIpKt*KWqC!y3}3FM$oS`S1GIQP9#`!%isKLcNMNK&e3lj49p+IV%=|*eZQgs&HZ! zRX%~co?{pnEgkf}9>c_MO-GkIN6|261!jB;#kiSgQITmQbO!HNpX7s!UO$7a4)5z7 z-rB+c{ffc2Z6HSL3shtz;5bcn?37)`9dL2PZ>cSK#M6K=UYd_p@0ZYn?!}<>DjJLg za?Gno%TZhL3RGu2hjIVOau3%o<_5Q=gI7ZnBue$MiWYHTyzM+Y+F1o>A|}B^(g{jw zmS8Ei8LZ@vfPc6zJsuoR{%J3v4r%*&KB6&gKcNfKB?I`*(4BWSN2BhA*LbRI8xCKI zg9YM{hbvc?em@uWag=pB1&%xu{0Xbe&I^YQqp z6`0oU0Eb^>(4R92Y%@y7Q1^JI?V=)12$saS9efv3$N>EgMPX=AA&i}v%=s(z2$XxK zGC2l57{Bc#+^%o}uilFxhh({nM=Gf5;Cd=@zzdWlB+w(XhQ8Qv zAB1#61g*t)VQ@tQvgpZl^V}pypH-ZD{BDkmssxc%7RH7RqSmq!aB-{@{GA;ERvHbk z#XgG^ugexpSy6(?3o9W?W*VNpbpfiDy#g1xO_V5}A0Z|^f6e#^?X}L z$3;9Q$xRPP=dub|wlM}n!$TOUI$dygFvoKxcd4_bJ-^Rih5@6msh9glTr*Mz8cB!v z?CcByHjEMUZL?t zK%u*PxRHs7oT|qcDn)@a2hk%GN%rr%Rj&g}; z<+qv6AKU^Tv?Ga{;}i0?a2*c5*v(9h?}s!?4Jwg;7rm1ENTWp%)N~4=#8PR_ySbfg zbrOLI*J`0JY$_EOj3-jN2l33~C?I3asF!&J^R&Vn)0<=kVY9^`>Q5eZu$5y?yiR~p zN)*TT4-vl#H6~Mj0keFE1g_OHg0Q1L^ww5odhyUzuy`OMc=rRiNj%H`XmT_zGb;s` zwZoYFXDt;N#<60}Hq3kbF|eyU3P%Ll@bFQmpsM0bDlBZil?!%vnv0(W<46>_+kW|WYbB`=${^L1QVMfk0CD57VpOoM%mTC~=N@>RM zWg3pRx<_mhCUH;Xh4^`IF1)&Y20Bx>K=gKV=J-c(#y{vezWMVIl#`3$OGz)Oj5LFl zT5@1v!e@n@oCS+`hwzd;@gUwV#z! zMZ*vi$ut9tY7!+7=sSkFv{Vso*L;OTJEfRqcHKBnUX5q#tY%~niDGO<9whVZ#%xz< zyi#=pUT;f*k)`2eNXLjRi=D@bynRQfyfLpcmegbFs?NcMI%UT8;|+)~dxt-t1hei* zws7@h0ZgpO!{v7tA@`w&`knqo!d@pqzG^khb}j(lYfDJ-UQ_N!d=u}I^o8*8lFaDX zJ}4|rFk|8vh-&@`KgT2r>blo*=fB$H#b#q>*~HB-Q>6v_Yl7iMP!p~?(13v_&cfDy zF)m=5I_Ibrh|?0oaJ{TC0)14rkUnSsvOL%LgF#~tZdg01tlm}4h~$g=%U@yV6@5F2=q zo?8Eu7+eq`FDALe;hg`NNm~ucl^y3H=D%+w@4`7;Z2C`7Got}kO&Wu4dZLWUl*x?F z*zLHyM$znxQxNt}H^Lab1aN*jj%>;JOENafk*U;(YrYp#_Xa*g<_9%c2-3`4(FHKY zn4c})7Q;K?mGnZdG&V|Rz_Cl>TxVboOdlhL)0Rsz8k2rQbNXG#IVH^;K05`DkL2Q& zpJI%!RXt77+Xjv=lEC3u8LTfQ(9zfd5*j^l-&c}bm{x#IlIxg|b^GY-aSAZj=N3K0 zcg>QwI)Hna2i~2f$f=pAav^zX*t#{JKE1e=i_Uw8GON#%x$X&34|kISpvtsJ#_r{a%O|~0Mx}5LWp=jIkTjJJiO?^c>0v^&u~9%z~3-+&lQ4|M@skB#(r z>N~70)xfz)E4U0t9bA073Hzhl>GvjmE~h?~oU0B&S#|-&9-Zjc9GstGN@|pJ=ttE{xWFD5wTI5MKBAg@=dz&l?N}T>Xu|vy zpU8xsJ4anJ$Hd#+%C7Jg5CJIUur#cNoZjqlf*6Xo1}VbZi~Mpj0QylxlNx_n)9T z%fExft|q#2X*6cnT0qBe8#!D3id{Qz0eSf{kz73W5l(lOkc{;*oPSXl2|6*3OBfEs zHrF0lzjPxk?!QgikBo!xQ%|s8-W=2Vz3|n)eqz<#fb|{OB&)2F*!&j)y*<6`UiK|p z*1iq&rM2Mc_%N6B8Y zX9;A~xKh8S2*FJ@AIznBUv~K+FxY(=pY!wdxVv`T{7_@mTs}gXmH+B2zNy22#sqj{ zzY5iF&&Ji>9iW#T47yPkOy3z3Iymr}TDM1=otn82ih8d=v1lfotNM%tEeQ|)_vWUN@--P2o#ZhMdJ1APcm>pR64jPM0 z;n==KsNekpgx&QaKItQbUwlAEx9H=%xOq%zaXC6>3UdXkXTk(!1AO{bm7DQQiZSaw z&2zteAY@=X9zS>xzX{cm$8YrDlJ_N)dke53Bn0)2ir|eKzSy-g9=*Tol4VV*7+|&w zWJ~vw`wyxx*(L`%UE|=s*E;CtuEE!IOC0%ej{b9wqig>TgZMsi{(kQg9Ohy$u`n8i zFB|hth{Z7BuMuPaP>uPwdMX?r{73(N^8-`EMfmmQ7c#h3z~sJkMwWl>naxYd)R>#_ zZo>)uvc^F0(n=qzzl(Cu4*Vj)yw~w#XaRh`Xav8XZKS(i+=DfIPQTw|DQ99dldk#o z0+)Z8%Q~&B!m1llrrKj<(eAS|X#U-avsF7VhH*iMd7t689nZ+jxrD)IJIR%vvuw+M zQDlpPIFw$*0(syuf_Fp+asR>CXVvZ$8CI}L7* zgE?l2@L;_@QF88MzbNv1EEGZMhogMQ=!;3T7_`-{V?|MYyr% z4W0?*Ilf*}MUyro2beJ*Y}XYYbH4It^-1U8Di|5X|UE|0wdN~LRWsi zKr^Dl;M;?l_j!WD*OZ~J;{=|vbA^xx_L!tq4+&-}oSda0 zH|G8uvham~i`m11Y}0Mj>D_?M!prf{vMr$f@B&m^v!knRvv^iSI_U`pa9ZDwt>3Q* z9IW(MLFy#_KHCD8nzho{R!ipBnnc$9wvU;g%_Yp8y_TvB@{VA>tK=J#g$5CNsPykT zb-HE9sJiOlM%P(*a63OYR=!WFe_eo0>tg7pn|eg^{SR8Z_!C)Wegalpeuz4MDfC9S z;sR+U_FbwqDT}=WZCQ>q=F)sn@w$q+Bm*U{pT+y@9@1Fnspu$M3ukrR;gVb#|DVbL zsbAT|J--uf6m|)2u0M%P~@a9Z>3n z1)Y}MgLT=s&pZ*_TBJG00RynQ!gG2Dtg+#56uQJ71g*@|Fc1p3?T0tCX9N@ddzs`| z^c`H+I1zeu_Iqvuxy6Q}O8@JekF1jt&Ve~%uz+#J`^#o$74BV= zBMoeA#Mrabmy^kQzch3JRbO7gGPQ;JqfM(JWI9=k2cWo|$ zg2oCA(DVjjM^T*b+DBhLY=-Pu{{1@p1pZJL=IEk!yb^1GF!30jsvZVsJ!$=p4O1{p z%?utSMbKdLNcj0LoB#az7%IC(P&aq9Hp+E7-B$RAw20uiFikT{=<5FOvp- zv!n;3#o4O!`B^G<&$tO*&IWj| z_+$NDQ75k3;RAN@>;6ZF5e)4u0gFLZSmZqydWthhMcq7n*Rcq11w2FBi7D`YjXQ)? zI?}M~CD@;Q0t-@{P~}q^H55)|ukZZBYH!&D@1M$H@0tR15t#%3tX1%%>O@XRJ{N45 zf2g(P1I%2nM-6nVV2*hcF!!FL#F&SISB1-Q&FbTDkY^)=d-Q;G;7-(?Kc98E>y33K zg-CnO!W`Rj!J2Pd;r#k`HvjrvcAjA#q$!_;cHVO@cPIzf|Fq+-pWQ&CcxKrdulxL5 z|1$`m83w61VMb%^X;|X0MDQVaJmwokvg^ZSn8h2T`H59Amc4$C0~NCoHvfR9bH<~o z1V0Na)iC=Kp35dPYw4u674W29lJmUtv(7U!hW-0hnY_O2kL!z+n6j?{@M}Uc9$oR5 z=RMoN-Il4aIjI(MyZkBH5)P@2pJ2l$8%Pd*%I1WgCJ6_N(f9L5$_0I+Klros@azXv z|FISETHl8KzI(9F+m&kxyg;O%>)>fwYpz|RjJPDe2CoeV=-BlUFjG?s+)nO78wWKk zDtZ7-N3-$aVLLdtVl20t&!_8;`&}<3Pa#9^9$4-%1C`t1psM~617Dt|oU-JqxP&9K)4%e<+eP#@7nv;HWDBKle3~ls!kG-ANLCulRuC3~kc!G=hvvT?6^T zF*yFnBK)|&geDsA#EQi!7&bT)Zy3JE;w=u4?bZtiEhk_?o)47dH}LZs5zcF76Dm(U zM^B!Z3{#G_L2m9;sJtn~gkCVjrzz*aYxyH$I$%fS%f%Uw{m%qDta%pw`yfpD)&~<* z?m~CtNjUcS4bQo_i(~yLN#NI+0#9j>H$H$HLT})r-Y9(NKS0gKoFNaZeBoDGU%m2k z2JAN9hJ5(|*qGvt1>R4vd3P+vH5>zG;4M{KceZ}asa|L}IF-%VJWAi$vJh+H$W9cf zFeW)I?1`^=Aj>$Cxw_|Q&Ob43_}N5wJFA>jj8#Jg+kG@9Dj!S}Z3St)fIF|sqicsN z{`L9~xcf=)oM-cOHGcpL)m!-Vc3!>6jH9g7vT0Yo54$eoUxKXKUz$h0p1e9xYH}cR|j(zh*CU zEO5KQSt6RI4!iylNN_s`*QZ{FL_T*B@AZZ{YPmv;GS3n69K#bqCNkx+UAR3y8hhM^ zP|0a7Nb`&=;cpG~4cX(#X64hU%H4q`R*dU@mkm*Glc@f`8nQ^voLrIL0D&rpG3JQ` z({KD4HX81s{>ENV{(djYF-!2D^#u%bK0uE+&R`aOTMQ=i!|~8SC!ID^l3eNE3;%J) zpe47Dy6!e&bXPs5+KG*3Lj7i#KE44BHP&O%L<=Z?dX|mOIY%#%F5=NJ2%BacgOLZB zkWv5`x%D5t{ zQChk|ksjvX3sY9E$M0VR#EYknDGvrfmBW5y{RsA2h;m7}+hBX)e7@IbgDOs$uIMl|U7|qd22Fz%mNj4^`x{gJ@9><%ET}ykRR5dA2Ma`+gW31{jz%?J*fm&Ne$3NQ8~z3H&LBBg4OpK_*HO>KQ}(awB`hmTGjz! zywkjJ^C3L#*CS~Ea1S?h{$zV@CBnR1VO%u#G4<{9Mf=QdnzC1#scf?bx!)Ub(ta`W zDCr@*wY`oK*RAm;ufB_xBzdJMFP_kjw@a)!hbrg0!4>uAbc_zq-|@l@bnoR(aR@0wL?kt zDhZfacmbRh50U?_-#7a)T!Y4Kq4eq!0c^Xx9vUMwLF=45`ZXREocO1T+A934Or)Ep z$2fqCx)lWKFF}{oH&m8Y!BesQ^l2v{2k!Yn{i+jqCCm%pwh?|()TNJwWm#Lb7o>8V z6m>DYPnm=htVYvH?E9}6luq)_;s+|cNn|5zf3*dc_&I`A8=rrweMQ%|$*{97DAS(R z!FXn|8vU>|4~9naKr$``?`yCSpe;+nb1lh(y^ly^(+BEY*F=na=E07LeYjdo2!-b_ zgS?NAc`m*VNWT0`e!eaRRh22!R^(89{1y>d5)p$2Z6WY+#eC?B`wwmQeq)zM66oyK z!R{yC(Dw-NV1Y46`SSbXW+gbjAd$}26UDby-INAJz^alJ*ym}0FH&;N!V)X-Ld8nK z+fDu`5){KeEB7{wma>P_Qx(8Z&4|69qzf-A#bMI8KZ0)~!9c}J!EnHo&je_LdE6v4 zyd{CjM$2(`d>pJkuTQtXo`JUiqOq8bf%La-xMZ)tVCy zb2)htu>}|YP6PSGc_6tVmY&<^Pijt^&=WV;qUxv95L>tm1nXDg*eTMmlAom}O;|ZsNc^*LWiZP_=vR4|Wj8d}8$@N3X-Srr)Tx*PUR-vp6v zBP4Q%D9mY>qgV7xuz7VEG06ErzAsQDS7&}Chq4O<#~*$cEZoX>fty(xuK1KL=q$jE z&lbUpMP|@3u7O5vEu*6+X5czL-?Z}j0P(ofOmU1KM9=hx#_BWl>i!;jvtkb#k5rJb z$H90muY-7P&A`0@1w_lWl*qDQOm{x=#vQHS$z`(3%eV%rF)n}2bA#L zzCO)&FOae!hzr#n1+ncg~ji;Cp)tWS$$u+xWUz|8;Vk(s(TpS+TW2IpHks=umWbST7{|`Mc}s6J`f4J zPb+;=U~XjyoE$R=_QaZi_1-P0rS5~uWx7zhwh*4Y--$9m5=>=o?gxqEDfD`+6rNwk zpEnop!^@vEKudNde`YVi6RX)>hHq#Yb^cPXbPn*-j+`o#6H1Zh_M!zW=o%otEFJ zqVJMU5O1~jblr0uz;S%%y)+6^f4ra>qjtD$&=e#1Y);>lEX-W=f*$Xlfcg{nu>=xHH)UhnIgN!^b8-lesAv@;ohC?7#-P{)cA{Pk^5rl1RC;89p+1U}cP)&}K;? z%-H^&9{(i=3q)nGuHXYJY+(oU#hR&Nx+Cs7;SG^YBDP9A5=3-rfco+ddJW={P2EXS z=L><`(Ur8SaVcgm*juk^ABIN?hp1%z3h>qIi0+(FWvTm`< zJGsK?HW~Qz#S<1j=_BLJI%u!*W*T@Iu=}4Roo_7(TN|7Oy_dpqR&_SaA321Fc;sgq1ZGmaNXK>ENT{u>F zA=>S{N^ge?L&LgrR59Efqj_e7w0XMVJ)b?-Z&(X2o^xaqorMi&_-yLq{k;1?1cgHN zVEGn*6g{m%^Hc+{Wl{0ctC0$yUiswHB!=HO0f?K9FWX(Y(2+?om*YQNG z(9FaKJ1pRxYBH`b?=vmkv=e6)T42VLCoJf!gz_&3VfNI^_<1rvUt8&Kw)2AlL`$6` zQD0**-kV7t)WC$48Q4~51kh%W zV`j@hV_^e*Z{~q|SHe+V)K>88Z~@7VG9kH91$0nrDgKY5GYzDw?ZU7OnL{B-MI>V= zg!8P8kdlf@B&A6MQ7O%Xka?bpQ07vIC^^sCii%PiB%~BkhEi`dN%{8o-;cxD_I~zS z_kCS~Ofzi=aE0>n{d9t`2iL>k(dz0Q*t%mP9_hXecVEh2Sd0J}=DG(L`$On)_jLGZ zJ4Aw;k(en2;`b9AkFPQZCvs=1zlHYbcmE7oemaO=430qZK8qwIcJb2LIcssRL$0l zICZAs8?9VC^5#1!&=Y_&B$V5cl!A`%3EbPV7sglg@pK*>#o|Z*VAIkvw6vW^p7*WC zo4F(8iA5+*o9IJcDa^ynjY~jHubZ#f5DQ;p7eH>0BYYWWQI%N$alh*E!Mb5=T$gugPGTH6ECr43`xI$n3&%`1@WNDT^tx@R(=H{+XjkG&>?l$95eq zi{u5}#S@s1@2yCin?9t>j;CX7g7~I;Dl5I8n>X$b!-Rlk{N$oJoImgZ{mSj=71vxu zLnUW8ooIF8*^(Jxz33D9 z`703kWEm{$7^DurhN)-31RPOHhLSVN@UZe0Db*T5hts2U_)0ezIsT-#b_9Wl7Z2yv z7Nci5^0Mcr^At9mAx@2A44W6s8+yojIlQ{z*XMYP>xW-bi>3A8Ta|?tCQ1+(xf`Dt z97X$Q>iFMk6OdJ%N6wzp2KjOq82Y2j7#@tmIay(F?6Wxen>Gd`=MI5x*dRS-cm?8R z)Y(1}PvTO3jPTuOfzRC-xcelBJFi8fy2M1#_f!SH?LzGS>nDM+@WY4YrmVr9`S@{F zBS{V#ryDUM4*n^t9T{c?tPKx`1~Y_Fo5O9pAOn$6l+3&9#W1ymV~C8>L& zc&GlZ#JQ7v78uq#+kRDwrX7Uah{!y7|QeZcQ>3b1{ z@3+4P`g#DXY+mw4cu^P_EyQlrD8;LnUegG{O5z!v#JRp*SdHgtkR?|GTivvnnxaQw zx}%WPO;v`^zvbCcvsD;qD^GVd=)i0NL*9l%+-&8VD3lyM0{w4nVRGkr9Nc^XO#5<> zzg3iFZk5ofzd~?eP6O1vHpLcME;AXq3~ve5;B*5*#cX3}jj%bM$~_O`y3g?ErxxmB zxf6V|r(jPUcdsS2F!0WRiSa)}LM;0+Ir$pS89qne?ckB{*Y=ooUW~b1;!hVYh(+0= z3cmQG@A&CCB@>DjSg+%HOl5!qoZb@!H4|J|ePLyEvCl=>;(jh;jW9i^1=6L}V6K=E zYCr-HRLX?*8bL;X zb1q!X4}dhADPZw=Gdr=V3&ZwqfU_Go_n*Qb{A@h~#S^RPlKz7*)oK}RI~|0NDjv~G zM;W#v#uqLY8R6W2^~i{PB2%6hVETwKGiyYP?h2~M-p0ph5`F@z6qaLM$$4tp8^ru)O$Su$1r##%jZsspw z1MO^?XAif-)QuAK%(ok3cU1F1E5L7VK<7@Jn^yj8v( zezXLlh~jtB{a-$$2g>0A!!tN`<_$Sf!Sx(tIj5!IAuJ2v7%;b%V6acN#g&o~-dxWW z%=t)7l+@v&*x-45sH+Kwo91Fr=N_upqK8Kg2EgL_9QrR|BHLfk#Q!d3g&B(+>9w6b ze3vvS@XXc4qhhmI(cl3ru0M%abFyIR?po01Jct#o_C&^Z7E`OL#C%*6O6q#-!0yNZ zbTdJ$nCyPmJpDh&yb(zk*bUN@shLoCIi4h4+<||-eC9h|L%2IV4Mg?`u)%T%NRsOz zkRBW*S4P}n%ew2N&(I0qIe)-VH2}Az+o#*e*eGAa4+!>cw0}# z9XUGtAi~d)RJ>gAn&wyJ!HUz0kU!%T{Fb<5 z;pSHg3dz}Ec;zb&C;x{L(UHtar%Ui5Sc)~wRf1hdmcyFVG2)ld338%4iK?Cs9A-3G zw>94&+q)5VG-u=C`H!mKp9{i+@tiC3?KP^R-iyEcj}pxVFX^(OFxFHXiQ+jv$=`Pz zhMX5bos9@?9MWOBQg&%4T(DNsU@m5w4 z`PwbZKBx_1^1n4hQ8pY$7w`lc6&M%<}v)Oih0OqgsG5*Fi(zfJ1wz_kU zB*&kaFJDi!)+q9{wp21&i(lZX7l(PVAtj(>)r|7{(&)Q`jdbEy8}{7iTDYrG2x_~1 z8OO0es2ftiS~F8vwa^oEL{#X|&`ol8UkZMHBFGLVyhVLuMaEZ>>j4|@g(tWF!q;JY zCapafzAg%f7Y-Ad3#)GOZ#B$fdF3ALjb*19_kdC2S|y7Kwu6eAVtR6^J3NXj#Yq0Cq z*5VRD6;LjWrt_-OVQ=COm?eD&{0_B)gI+zgR_^7_@vVeCoJbvv1z_LER^GESJf?0> zDpe?LCwcvsF)Q~R+U>DqjyY_^V>iag#?D80DO!*Hz-xsQ{jKn&>KO*6TB20_XPVc$ zjjquWAP(b|@bSM~lD09Nv45_{$k=n<>ettB(?Mx)9(qFT*PCM0vNrVTZXt((n>E|5 zge%93_z(JWN$Dm9JPtb{GV&1mFD_!dgU;dU$Hnlbua!SGr_aL9dov3EGXRtMOW8lF znHGh%`iy;%1+$);S)6>GNH_2PP~H1$C%hzQ!Orz8Pj9*jJN1MV>k|}4hr)%Jx2}1F zi)LVR{vfFTl3-S>x(7Qu!ytN}AF)z8i*F-ES+7qV_i$4SObXeE3+LPcC({@3gxQEM z%;u2u`ci<$)uA>p0T+81WB7ql5R=tm$Kf0lq$~i3P3PF7ZDO#n!yUgUsIY7PGEk}_ z%{Z1vvA%eXzC0($$oxDAWqX2&jgB01ZI=VQ_$0)va+r&g4|5$w-3VA6zZq6ts=-Go zm0T7`74MhpVu1Mqn7`&KE^$+Uq3wiOfAS4ki(Aq6gc#{!yx8Ez^Uz?IPH1lu2F`ke z`?pTPTx&vo@@q-YFFt+sNR{TK&S3^c4(GBo*uy_WsdU(6 zoXCGfOm#RW7xjPfgduIoZA&xA3D<5u(A8p|Mc!AsEhK8Kx}qu|!v zOja)ZhKu`^`Fl6nFmu?&jQhqoVx5@?{qfUTACt4NNs(i-Yn>;%4FlQlW*b@8M z7-d0mpDYc(G#4HXJcZbqT(z_LGJf?xfoU)2V0?_@UJwI$9`yNJ^#CuZp+Bd&|sMR_6kfj`!m^2m zWX_ckP<$dmQYNO6e_1Jb*y%05>T)hjYn6cehJ|Fg?gU0oD2=bVrV#(l5o6WTbRc8d z5}ar82PN)ZA;a(N@LFv(SUcD<2eWR#UW@B+MR5s~R~6z+eijToJi^qByoPP#d+Chx zCGd~q4lJu|fz1ocA@PzR`?>NJxxYr2xu$#c)1Dj9k_{}5kA>OOF*g@ew}X+X4r|MR;@DGU&=fNVbW-fP ziok<+O8l^skKyDlQ8;%e1d?a8!FBmK8umCGl^<+p9#6}Ga#0U7Ie!HbyfSf`T08IM zf0Mysv=^HajM)+I^;AeD3k|PFVnd-0Z*-jVnAqy!343Ysv(=qx{`i|z(_+3tKsYY{ zSb{C0O2jxofN68!94uwC7~gh9yeL^uR@Cn#OkEv(djA#{aCs#yQ5JO?J)v4^722k+ z$E#I7B+B$6we?#GS~YLz-L1>mlu#+=r+_JO4sYPw^*0l}O}P--5f3HIcKmf=0uyFa zP5mX)ICf1j?VQccW}aVwNgwX=*SmbfBfkK_w``7D3;vrF<~MP z1i-Gf4|!G_Q^2*W4HYDwfbKk5#(B+2JYB?f49;;mD1RPI-Y9`H)*OZQ+wvH^*BqN!b_-hPtiz3$BH-q{ zQ2u@HbISYHq3cu=bhnp8!|a=Mpot}(M|ycNna}X8pD`rx3}EiUN%%ZDhBqfSjq29v zvXirt!IA8QY7S#DDtR_HcbD8de3v{zTz%4Jrs-Lk_kjQkK<~6 zjmBvaMS}S!a2oMT=CTvL`NBppY;{yvaj*LopqSfnZg$wd5a6G z5@>b9AdTz0h%7uNy*K{grytKbU+Ycc^Q9h~-b}^U+q$5>GM+Y6oxuw66zJplW5vpx zmp)Y$)&*Q8-?z^I%lma0dyG%K<&5|_T?u41_xT1JOX-Vu)6jZnB-#H>hsjnnM&Euv z^oUF$yR>I=S*+%2=dGL*vAhFnyrikfybM^fF$*;JKfv7jKB}bYg5A=Mc&XHgY|y;R z$F-by;DRQRwm4j=Vdr{^9WX6YNr1+O<*22a4uY7DX={>LOj-uW5=?Cbo;P6 zJ$%HOOuPMtd|aOc&$}lv^VY6sHANrN_tI0aZ0rb}+*FAwLq7b0oegBZ`Dc>l!>7*< zhmkFXwfudbX3>U(5nkZRX>igq9(*^*FjRXOwl|5>vlCR9$@_+A^~y3l!5+k2SC3*{ zs|U3)FF?h`%D8Fh6*QTOu@el};9D^<{uBc)TYszw9)A-Azvz5i+;^6UEN00JAu|-; zod&yH<}*6`lX-f_V=(e`J}8WmEzwZ-2OkS1#wckvzHSz0 z{Tzc)TGk&rj`fpw8>9Had8+tt*$A1bu?SC0c#6NrmZEl2GHB}r6B6J-E|a(P#}Z%s zR&k9^+(GcCm?xf13*z1e$H|eSrMSZT9_{eefw7yv_!q>YV90Ym?vAg-_{qzmWQ!Ah zBxAzud!n)0U4x9g8^N4VX?pyiBI7#HLUdGTRvV;KI+XetW|y$^PK+9BJTnQ_ov>zw zeuQwDL4WMk$>RLPC0H1n&vmL2(K)XT<2HEmcFyqQ>8xIY68pnwtJn!5BYB0&yZy%z z$NvM(1&eTB{$xfm-5b67-LP@16wB+H33?5b4rnbU0fsi%!czFpW;Q#1Mv$?Sy^gB??vvz1C06%v z13B$78TOq`AuA(Z^7qXSLS32pEbrki5LfhoZxMVX4z9HG_;lvT_2cB>@D$>hGZ~J1 z*`Z$HeSFVB3Um34=_@FZNOAi#W27a+wVUy1In-Bk3581=K@_(Clg;dWpwNJR*8 z*-U$Q9wbheAB*Ir-sMA%p$yoVSE4L;9X&ht2lAt9P(R`-gjjN{6C#AJ9UAQR8;JTE z-PFfhhh1Uh0@iuH*s|{=e&!s0$^&0W?6zj|#UO|D?zloq14L-X({g(1;7^?O_94g2 zPvnu}7qCF&MU`J!F*FE$f)38TQY#yeFWj%=!xMT?=jwrf_l$zc)OPGy<^i+JPf_t; zDMorzHNAACjq>_L$k9nl_!s_^@*?%@&}6wSynii&`*rUV&&dqDKe8N!np5ER&3`2F zWD<595Mxi}Z=gB}%TV{(X$a&zQP$xv@u18A%1Vaf*xpvUDn5<3^?MH(3y3lE+Nz-5 z!x9I(lF1YaBXCWbjCX@_XogNSB&E(LJ63$5i5p(gU^f?D&#Y{Y@8X9!@81&n&XuTf zVm)?<$yfyS7^9tKGVv5~rpnRn{I-l#^m#Ogx$@{DR5X|2@kbkosKPSb?-~SOAMPR6 z{{qp>!v)fwsZodb$FMmf8-Bi4Wq6;&;r$*vuBRvu7flABsWA=jD$D_Ar(RUdd%)Aw zy^TtCtr&E!i}35@SqH6jyuRfic<4X17&jHf(8n@R8axlSu9%A3_w9rS8{M%+{2APw zG7Ym9rQ(#erg%5(sUt@W^ou$rJz8l2X+DZ6Zfa_BkRD#-pl~~gj zN_c-}liywXoYU?h=&s*~>~}Zt7)?c&Yo@SnyBdDHr2t)1C&C@|3b?Xqct(#=EsvyKZO?-$pVmC2{0%DdR{1J7v8{%P<&G7%40->E*% zcLx!%R8aXN1v5{MK%CSocro)Wo!6rdW#~kdojDh6WDwuC{4iFTOoyzUQlMg6M&}95 zghe(b^mpSMvPZcD@8pc|R@p_NR<;lfR!rmiX0uRaRX7CZ7jtuABeWKo2ojAcVBe7i zf8W{>iLZBQu#-C+m{&xF_Dsgx4CmspH{}Ug9_4sGn-bnpyWmF`9HFm zo?kQ{g+}@KXe16)tK*>a?*%+L5M=RX&N1+y%VDf85rTBnKx}MjHPKjsn@?%+I;*F_ zyXox~lT@a$DaYF}gXH8$`Fy}ZpuoXrF4wCPqjdX0+ zMAo14ceg$J4%#1IVpH*JQYW!%A7SY5!Z5vr^9gOd~gxTFMmcaAs9+=cV zgi3>*y4wCAf*hb#MWf>Ab@uh7MhPpk2;Z#5hpkS9?`uY&9RZ9LSU!f5JC zRnJ%ujMQ`h<@JZ?))_&xN`%FzITjel3#Z*i(h$kzxrZZu(|#X&^tdI)>}wZ*c?+WW zKYOb%)-Dr;ei}h!>TO(d!W6$O)Q2tnZD^7m0e%AYP~^G}r-@o&QFIPGSeiGRKwjAxS#8}xHk)~%!9zE=;#>$G-VZ@ssfQNcm170FCa|o* zORU>y31xrH$;Rk_$pyKIc2w;Um&mdI=J57NM2@Ebz$9Mc>HXkepCO z7Ma#T^1nkM^<>3Z3MZS;!Ok~&RbFS_T_*C7= zvoTS`Sq4$C>-Rqh-GJ2(*6ARz)x?!?|7QSCSD50Bh^I7o*EYWF(O$CJ@iPgUe3E0igwc*%Q`nc&M3T6f`}ejn zazio@KRoxsf@TxC=S?e}H&GiTJWoMXmp*#EaYVPIBC2`e0$QAGrM4Z;aDZ6?*<)=a z=-791eeFG-fIuGdlV!-%gW}-g?~O5+9dSk2eq5%j1-X~j!DifzyY2HpTj@N0tr+I% zb6l%yf|c;CbrU7E3$QD8B9-m}SX;FMzSrg9@P!|A`nF;E-7%+HYw{Ly*?1A!Ctf0o z)6Jl*BpIKb3dPx(5%|b8m)>1Aht4rPfOjpq4wi^L?Itc@Z|_52&s665cU_0PPbOIG z7Dt@;qvYG~5**|&z-vt*sLIBZ5T=wa-a8Q&RwdDO24!@bQ3l@fxy3ID7_ClRG?RXo zGv}D;N%S_C*;3zC3XfNDXYbi3vE#iT+&r+d>cZbdaPbI3vp{_~b@c#l{houG>(roT zPbTcMPbcaB2~uq?JAJrzJ4%oEVnBr?&b&PzO%FaJy4wz+!COBvdy)xUUYSfccPxho z5eIQ@X9T^zbRoWzupoJ|ry)vmE*2$Uz{54)_{$pQN#n6K@SjXF9KY-YA2?>5VbB^( zF!Mr>*MjiQ{2xE|cmsdZ>=}@r&vhJ}8tCbVF?4A`Dy-CfNk8;%;Tz%yk}(cO(ciE?;{S55j3Fi1hHR}ja}KR5XK*p)k`z6nMmX5p;Y+2 zG6fAhBB1-vB$#w+D{9v}(u?me)BTu4^^A9bZO&D)Jj#tWto8%Gn;t%Ee@gn5WN~9j zC^=fP`Aiw36DF=``3~ z3-YVBlF!*5{AC;maBQCpjK=uUjSd`Z$|?)(IR@R#m09REYayIk70CG|=EA`#N3pih z74ANFq7D+0X#0EG~{WK=h9u8Q*WeD;#)t3=dDcN-9rn zN5i~x*z4fOzvHk3GOxRm=g((D&yTz2-glN@ziKS<2ja-r7HbqbeGb$|xV(DoAf4R% zANf%>PIir6ghz^IaO0#4CWhKl&puCLCmjmXHzv?Tw{V#J?kk;RHV^%Vx%);^7k^>a z8ye1?*Y`qz*&Vw2>GiDE%|4alSp?tsu z{2DPXSD1ndTP~o8r64># zDFsFont8jw91mAXoQuTTb=%kfxw zc>@M~kD#*C!Z2&K1k$=HzT0a%j-BQLwY6?sXLS=buo4G7X-9No*ORML6(Dng36@EC zU{CWwTq7roq6V>eRyPLXA&XO36|#}I&3#I; z1;QaH8?^dH)b13}MK8pS~BVcI$X?&=jM1R{Z#UkM^bj45Z`j1}7uMqRVLyAVEZNMAV zJ=Vfv9WVIgH$s+(3BfsYcaGc_5BYslW!>>?sA0bmE24ocnplsB4i;B^EIeSHR;eNy3ra3eoSH3ya)nM9SjY=`{(0Y1~2 zgl0Phz+C?jh)X*_#@}#I)8PL1SMKE{T$+g!1#Ccjt~^gVGzN<-ccA+@UGTiC2tNjt z;eh@UR1MX@=4p~N$7uyB7i7VvikNW>lHmSkn$J37HXnGU5T;iZPXa9(DV1Vmhe8X-Ay2qiJrnd@{6Tm?@h zBly=nW|7e~0S^h3k`>eswZ_Vcj#dI5?s~(&uKI{5ZRFJ=;f?^lR z`#38c&=-L{?>Nr2>$X zlt>kvWnpDx4s2w0L)!d_?6nokq5mL{*GjUm%F+{O&zoi;ByCxfOu67M|BJ6pOF3!wlOxo_hC_c)M5)F0#D z{k04Wu3v#Ty}9skERIfkR!gm871<|mAH%n2bD)0LbpC#B*7Tfz9X1@gLGKn%!0P26 zsOys|^t#o<^un-tb?Z zpQ{-?*Sgmt;u2EaWeI`?iX{AdCb&KBrSo>}thT$ig05O#22EcziE?%VIa>Y*`C?FO2w z3v6aE`%XDi-nU<{&qstj_08igt&n60=kG~>>kFp`ig4hjBDRkdQ77wc8X8@Su~H!% zkL)sp4c~&d`AQI{eF07T=i|b@BywMHH+t1P02T8;w^A4Ez)6#%t1~`}(Yyx1fUSlF8u;MeX$2y04eK7(lFD`4_Zh&`vW$3Q)S;%M?0Jv>~hbxbv zC)~vTqav(Kr7U~-)hSF`^^51TFqrVt9ASsZBC@voA1&9`L!OojGv2ZY5*n%@s$GK` z22{Y>*dA<26=Z53KjMpV`Qj;ZQtTATTueJ!1cUbJc=oY7+zTtiCIJoh)>c!xK6nNy zeEERxUJ0a6NJ>YS^} zGZdbBeIldW6~Fn>Fif!v#b39zar2vK@Y9&flySYuTUUR=yE8Pn)HK{)VpB}m=En~C?gmsT{~TKRR=V?89dj%6 z(-*~+6^p^q7M zr%l7dP2FhtU>=pIe#xIBw-R0*?T2qsD_OhA8z6!4hQ*Ic$km0_7E#>upv+4Me3n?S z(|>c$JXvixv!;X4rby!I8;Rus4p8&t8aeX&FIg)&gc+R|!7QrWyo<`i^@5|YUhNfK zTKR+TUw8yRwQ~&U$Ab9#r3A}Ay^Jh7KMp$E8;JeZ@3i|~H>zanQQedZm@K~>jGZX$ zQ1ZkrI(I?u_X_N|tBZTABQbFUi*x=X_|)nN|5^Ms67S!RDf4#1$<6WP-HWFJf0 z_;!Qi9K8o4=bg~FFcW&3)!7m=7kIdRCEsRWJHN8KjQ;;#DpuG-boSmSS;2~6mzEAI zUYA4Q@IyG9uATe#zamAQ$C2JYXONOmPHhKP~%5S^GzCz=qtLHIvX z`?-s1<+?D@8s*@$c7U9{=~EqYNuHR$@CNqIWAa(00#c*Dz~~xtR-@69RZR+FByvCE zvPgB7Z>)tE<`}~h5lyzIHw;c@zb59b+?;`wVx53I_)-;SZ^Clues+d5Upa+>0}0&s zR0B`CXS0W;g<+F$D9ERYvcvwiaM$PwRPJg7?`myEXQ3#2e32P*w^fNhw6F|gPE3Tc zzY=7Yy%f{=^#eMM>%i?N(oA1PB}Dx#!LpxvP+;jrMA}xu^U)gkD&WtPT$&C_lGa!^ z?uBNubMe>jZ8(t$r!B7z;)+foi07UIYxi+Ilq^q-wUA-#PN;)H(;17|1BA^gOoLfI z-}nMAC&R@#JyhX&1`aj1(~o=3<3|e#b_VB)E>}y%nssI9*CCD3t!9k%3?+6bTAnfa zdKf>ww@3eff*{#40m3*wa_;mNXqvGRX1y%|5Jf5$vAPY4q>DAOR=Gk z3mC0Ud1U2{d<>3aVTD;Z<|PJVcqD-y53Uau%(-EnT9G5_8cdg4D0D92qsGi$`k!SA zjehc&ZcXuox7X^h{AmZ3iGB}S(cUPR`+y{&?m`?Lx?$YLo-tQhO)5U^z%-pYGQVySENw}KuU~o)-|V9| zU)5mD0uk8kTYxWL&PBpkXTOJB#0-rn_%0yJ`j-o^Vs1%z&!7)-W(9-M5XYN8IE1-6 zv!NwxDf#*JCb}qdjIk|(V16PBT8eW~$JP<~1y#2cKFG4*`;koD8V4hV-@xJ56}ql! z0;4c!3|kd~@v(jZJd->^ogW^>8)L;#tl0!#`)?DsikVFKs|ZZ2Xac_@4ItxK4#8Uq z^=f;7%cfbNW#)45aFk+*uQyuMJ_XD1VW2ZQiFXNizcS+SG@C=o&!?$y=iXv=ck4G) zyr0ROZoWh_xcy7FaRt;wO=q>bIYyDXCgWly#e}EML~DWB?1|~4u>6Y-G+GF-lDvGl zk8bSP4Iw;X_Zagm8TR_iG5Yq(BIebmW?bGE&lCA_9OP3M()(XTm}vL6M02_TBUsc8 zmLN-k3Rcn z2_x5^Q8r{gTMdzD_l|RyxoEKW3Sv^wG~rjD0vlL--=N zG^WH(l*)(AMi)T(@lo<(=m?r$Jx*6MF%Yu-EG+)d8%+h`d6N$xK>N29uzk%^*cxog z6q{baQzt2m>m`vhClC_FD`4o}U5m;Eb@(Gli$A$33<@jaVS?2}jyD~R{x4XZZatHf z@8mj00jjuonJe8TWy}sAL%7Xx>U!g1u&Ol+He6bZ0iqkp9N$(*&d>nfm?`8<41=2I zhODE~8TRPCM5aA$6^J?j=L=ZK+|JvE+UUX_aJtR=8?qcWZJ7w0oOCgG&s65%M9y<| zF$Qh*^FVUF0IRuTB~1*j#IZ(U_V?8#5anvl#7L*0)8m(9S+NJx^W_~4Z{TvXb0&b0 z*H!r2yciRU3vqb)`rq|QtRNckvMxHLXo}Ll7t`ab(jqX zH{hE~DJ)EQiZDY9&PBGu?HPA)pVWW6VJ&X%bj=E4IvLIfs*1nNhIkW0KI0V07;fJ! zPrSm@7?;>6RQlrvPd+)|&0pfwr*t)}>Jq>s-1Rqy%M2LbzYlgN<}kj-CQw!yi9}og z&HlE+?%N$Oo~(;~sWVWs%Ye0BwhG#>1cU#EN96I8f7Hpz5I>MgG_wtupVS5G~%v*E+GFW6Q-jzna=fGpL6MtHpxg*CL2y< zhZ_03?z7;q_8~pvl0qZ5OTf$(^33bcIWT4}hR3$`LEmTrPQDulM{f=h!JeyNMx4On z$aQi|5=;1oG+kE$AF0XglfT{f<#)OO-L57Yq ze=ukX{m_<;67_+gBA^O)N{VrxQ4CFOo6YQs(xCsTHPCC->tP}L3D>OZqc$B+p!eAr zEIHUh?3NGU$h{0)|Lg-M-+BTw)pN1v#bLNsCChA+dP_e3m1mud^&u}-hxyuPPj_{n zLB8++2x=_E#JFGN{&`afoO%&e#>8M31>3u?|C@adlM)Kl=G!Ev!QO=N*K!(CHJ?TCJX*HApi3vw30Q2YbPc$ z`(G?21)Y=O*$i&hQZfO970$pFH#>U7qmQ=12){*rkiMcRIQirx)^mO;*~{0%OwD@y zBA7rgeE$Yk#s855n{vt0jXvz5VQYMJ^#;+JzYrIHXu}^oeY%o6++Hm6G4EX}$sCUt z$E@8dL^Mp0+Qcisjv*l?!Q2Onr-Xp}?Z;H^kT;}ProxoDzsWUpL9^wNxODU_QR6zA zlY~#e7L|*j-SZBY)uh2_m?uQexj=8XTqA-heKcg17#VEg*g{7`>DKGHXj(si(` zAecrv+~NIOc@qBnT#swCG|)ml8y}oDhYf-&FlW#hV{6jM48JC7DYJ$Anq`K)j~cO? z?4U*!V=$%|L>e#Tf$-c5_-MKzPJKEF)FsxE84YVO^vrvDXV?f<6cG}_+d=xDFK&=E#G2bG7xBEr-B;h{Li(|Cp0DvQJmxIN z#GRjviIH56a$gtEGgFh@^IQcBR!w4xN^@Y_i3RXSAdK2cY=;qr%lJs#nD41vir%M& z=#j)Ry1nZFbe12*=U1EIa-=_L2&}}jYNPz1tz|GXz!dx?TB@JAh{5|=v#@nw23x85 z8m65RXJQ+Tn0XN!>E*BMAlk7EJk6sZdr2T%))r#wXD8BqCmaFnhe&txBrx&W3Ss?5 zL?ZekEHW+t(VPWUi_3~&#yZR4fm$O6B8aiBE!vj`yJS_vtJ=|?RCz_83VL+CYuy+2M$k~ zi|;#w@Kv;>S%{7v`abuCtAh7Pa6~`OxjB_|Sy_?Gr8#+jJ;sIfAk+ zu^4zY8@1ZYa9gD@7`)TQYUkhFb0~&pb{QhuWx`GuU5X1vnqhJoOVwKcP@CwaC?r?hk zyB8d3@}kCrDJcB;EM4Sw6iUJ+Nq%%7p8ckShpwjZWp|4+m9y4^Cyb-yYD0d#G zs#AsF%;q?08{umrI(&Oh61#4ca0&jft+LyNl)iB-^J zEc&3$sQl<8Ek4S`_>35Oc)Xy0doNNE^8jM?Je+!+%Hx-;8-)dV3UGbG2dGNl0p_n~ zFmHLPaDJ-{TdA7_JJ@0R>fR`Qc_a=^q_fF&`4PyxW)3=ChU^uuBDCQf0-REzp`rq` z$?-82N%}$5=1!pIzk=YVOgg#w^?wwdhhI+b8^^Vm_Rv5nrG-Qq&wV{gl%%XkQIsSy zTOuRvT`CPJ?IbNi_1xD{N{L7zvJ#=MElCmm&hHQ4^`g!>_kCTT&-*=vyU!^f4i_mB zSI%)Fck>ABxhRhU=`*?RtDV5{!3d4oX@dI&S;Qv)Pk7y!L4L2lhlX#(@MpFReAmeZ z-h>*np!+Dlr8<~I? zoHyc?gn1xy?lmOs7G~BD>S9WTJ7-SdQ}|)t!Hc~Wi*5QI_%U4$gCCE>k!)?IY{VRN z7K>B2Jc8%GkI-(H6HIA@7w2Ga1zDIP%5uUqnKU;!j@-a&Vy|O?M~4$|i(EfRiZVtQ z{XTrw?~ofdH8`v|h&L2f!Kxu0!WLFQh6#hi9ZD!0d>DhppHmuX0`_0~u|aGacZJ4T z5P2_3zRt7Z$fifb>+feFr>UFlre~>g6~!lJry%0U5;lVw0agx%a3%dLKFtiIAvSdo zx3PylX|Tccjl1D?DFOM254>RGB9s@I!l(>wL|+p%Wb=1OdjWE zP?xO-AlK9yFaJxX7ZY`vme~d{tv8-7B=d3pQa#=SDg{l_f64I=%h=g<1u@tbgbEes zaR2#rn8M!S`?l_bH}AsXi4yC4H@yxLyjv)ikqT}_P2jg&f${pI2?qzIV1<57qrFuo zJ{jUC6eD1&$SQDEP-Lc>+dvDimq<=)h5Z^nII@R9_f71cCN3HJj_Cm3hgy8AzL=|N zaSo2<_>#o6Ye8072UNXRq1p*Su88h3dX!%gxA6HBwXSCKk0I>ew~CKmxzU2jE$sgA z;YW*r4ja%dpULFSj^q{HWU*p1>QLTBo=N*1j!bhXs0d0jSlv(5?%2|G8zx~*L@>QG z>n_rse#o<029dk`+5bZm3^Wqu4)d&ta~$hp?c9u7XGFMlHv~}m?Ofcr%pLewg%d_A zgI2J)SlybdrirtFzRo6H-qy)YhvE{JkPH$Q<5cD}eUhCQpd6oRbX1H8WO9_tN_rZSUO zuz2q&PRGeAazxYw_~uIS1iDwze=bw-$huk3&Cbey#~&kFKdi|Z%P95pPsXc1c@~DZ!jfR z2|2*|ZUf|EBMt>d^XeW>MV?nB{HlIsu{kIRlV4YH)=IWeyNAMX;M#WNefP$LUhKJ- zWn_KoF@vCWm6$wb3|~HYgyX_a)JNjIMf7rGIBa?Yl27a^su7e#uea$7Q+KuxffSLgVi=X$*t6vH2pwP7d0IpjTNRYpRO_Xv?{wt&IA z523!xiS>Rx4GAq27QIXd*M}y|izB;1+am!b+C0rl|7*ry#TVdRL#?nzZqt52JPq%`+VdA+ z_Y-sItGWOa3rtAYlqGQcC=W*_SYKt-2CCgj@y#zkxTPV1(H{n(L~#kvQEZUSZ%e?A z{MGR2!!NSvhyliYOsB)2eqzI!W_(EQsam*l}^xR4(6Nx`63B8fg+MsxoVd_4GvbjnWQ4#)Pwo1w>a{jem8 zN?ib3FE5tq$!76O9pKJ8VHzZ?Nk%C!Rc-lM)9yFEfv}U)hSB2;r%+=F_c5r zDcxlKd871*a{yR5pMU|Y86eg)4~vLC)OI#whhCk<$GmQk8(f1=q8E@;ir)C(#$sp; zh=Egr8N7B80s8LOMPeU=^p2SvnPMu1f&(M;+;t`RU@{-YznBs{nvaFv|G>g50y^6G z@O<1CPUO=->hxOxvKQZ=p50?4{k{}4b?F+k$$d&&SSW?=U2__LECEd&+F&d>n(bDs zK)y9S7T-VKLcF#KPed+;p)eh^i&%+$pP%4bs|M8Ha0ADql5xqAr=YmH3#@N&oO9v9wP`s7RBsiQS`ekPuH21tA1&gktos1S4 znBR|17=(Xcs({j>bJV@W0(OhX(Dmb;@b{TNtmA#ek?sp{sks66hZW$|nRSq^){5Mt z39u6uqDwF0&%x(ZVapiV!p@Y6-J%*EU906tc6?|wPV~a%wsUv`z8CS<(ktxDJQ_3f z8hAf_TFK$aDQKy*g+>k46VFYLXun(&xKI1W?hZUqQsM<(>Z?a3uQgy9(N4^d@IWrw zktR&J$aDUfiSG)=X>j~O`u;GRi7Na7zo%UxS3LYI2EGxVgn9!st^G=_d|iprwgS}q zV;{>ndc>)k&Y%@92t*q4NO-#pdEg+1#f<_We!QC2zc9s`wN<=dU-skH`sFZx$dGi6 zHInJ7d8n~@Dc+XMAbS=MlE*sJ@Py(?Yzp&6xErouAcJqzd>Z$1E; z(V*^PN9XL{*ywV115fRFHfFQWGpFJx-tQ5ow=VC)Gc~bjzvLUIH!T2;%bW#&wTF

_Z!e{}@5Yc1xjw^V{98O6N$pHj&2 z-~1?9Y=sXk8CuqP8q;Ts5>MF#&gs4+PL`@Xs`AfezipE=S|9{pSQg;c7!$C)^B*0% z_k}uaX(r3fu90m^&XGO7?0aBf6U$CU8WI`9_T?+!Y{C)LNnU}K;u^&2ekGZ$H;ay! z1R-}rF`M64#e&o@ycDt$lQqYQ2ag|8E3WX|*f}i!Jj7iwgW%dw#569%4&>4M zd%Wncd3x}7X&mxD*b2FxmE_N<66ym<(4PK}`kpm_Co!#!|DKkTPweh}ipEl+c(sFk ztT)2SF;TR=AP=?EWbhU0f|KTDoS53pdFWfxkY<*Ml4Yl0>*Oi;-1m~IRdZqVT{gT3 zvWMI!BV;^uIN*5Op#V{54bF+Zg^Ct!*SEjL8scja^D= zpucz)&FYH4n?CXMO<@ypsEfvVCytQgtS{9>W(xYgnt}Gy6v;nX4d{3FhQi$~D6h`tAZbGH#8bUZPmIJCcUv?8eyliS(DBDL5;{LefHU>LBTc=$QgK`)6@{PK2XV zhZjcY$KxM&E{0{Z?8bo_dQ0Lc$LpmoIkAiF=Pigt|7U)%HFGsxD;5eORT|iRJ)Z;_ z=Hs6!I&gKpEJ+7_Ue+!dwpSa8W2xDgbio*9uC4^vJOO+`(%_-&F1#k^4recm;);-L z+9Ea=Yve>ww)LX9sq+-ycv<0$o3^=e2Vbx zgcnS4H>GyNCB(Wl1Nzj|$dw!!tc&-?tQjVBzH}fS@)08$T-N(+UCA*r;fK$aIv5lf z4+q$J%OT&nNJ2a5wJuH4InNvJ8t1~7<|y`^kO6jolVRzD!?5~o6i#*$tTz{@?-V%b z=j4j}j=AEB#1vR%*g*z)x*+plh}>U%9GblMQH@_*&U1F=S7MWgO|R^E3GyyrRNc=r zw8@3iMs{;0tpalDee|DRCdQcBk(eze)Jy0dk=eVS)_a?x*TgwkwlS4u>mTNg1jOK; z{#B@KSWBNg|3mivNW;cfZMa`>jWiiA1^zSJvD3Di1j|U#`xa$9BgT-{46*&viC{2d zxyWbrA~99sH64o!gIbAX9Aop~e*0tCTpY{RUK)xr!!HQ2>LxK_1EjuQpKj+a!>ZUh z@MN%_e*T(;mLKbRQ^b?;H#Z(Mw9`Q0XCgW9Hoxdn58D&?IF0!D9)ND8c(l}0Z#q(;gg8Y5q zSaUcL(iV(Uj>ZS65s)uaW3YmV(;mD3aHk2dQt?;P9yw2n)WzGA~Y{AAc=*w%r=L zd)8x%j01AaK9h7=1KjJX5A#Eu;qA?tICMM>w8A4Wt-2WW-*17^{qgwof;X(+vlEkJ zBIulnRKhcEBvs)l#CWA6+>w$Zf-f_mb8$R+uX)AO6)HFH9*AW9;^Fwq(t+hiL}2LI zBoOgDMPm3=agppkvLL4n9zPO5-^9hVYJmiB_Z7kN^+j;=TO_3Ji=Z2B+~7HUm4M;A zO)wyGhV#P07|O1E;7NOD1Lr*-{IEzzQAb%cEIfdZXCPg(s*tFQ6_EW~>S-l^EUukg ziEmaOM5Q`Dyqx`!?72A)_uie4U-oW*p*%Jtyd)P2^|sPyo7BmzZYAK`u@|SVDWvJ_ zF8rosF4UQ+<6_llFrTH4qkhxyYR`ANt;PkoTNbf*mO$WWd6Sa$v!QqF4qZD@i1&;3 zfPSzM7u z=&JI2yxRT~_~Fzkyk_JKm4O*_OK%{XwM>9t3tCZOy%dPOuBWDkVvw#eR zEdr&LXW>^qQ(Wc#1Z^*Kpkh9QhE5r9@^&&kxco2W?_C0$7P-(DS_g5HPYrBM3&PPZ zWsupm9*(em)FP!WbT9eMNig_GlNJns06T*?QD2O8S*5_ooTefnXQ-s%TWX?_2GMn| z>7(>qaxW>Fki{~bxyA}mXkdY&9$Hl5&<}F=P!i8e=o#JVexFu`b@O7ht1zneCz<=$ z8TLjVK#i;p=+rFXtev!^mrQ4arB5L2{}+J)y*#R;7K}6W#koB$q9o@_Domy&({Xsf z*}$iZwJ~#PN2d(#FBjqJWJ+?L##(W>gX}q3h|Qt3rK8SLXF68v1%GryNNQvl9MLeq zAJgB!<~L$Ex?qsxZ)_qfqb7MW=!w7<(~9q!$~&kA*G}w(~PDkS_`x1l);}NeFgy zhhqBo+bC1Dn%M6?3YPuvsYS*N@Pthm9lIUZCpi(NhNGYyCCKP(Dk5Sfs;I7&2bNQ> z(S!qSP~tz1Q~#(j;d`fJhnO`c^XcQgLMM7nJs$FK8D1~7#fyigatrz{KyREsO0z!? zqm;XN@(Krsb$^lOMtQD#rUmTX_znD3DH`dz(h4Uhx?;Kz#wxEw-9>X4r<;v9Up$!_ z?rOF$dvFJDZ%csWi-8S(uHSj_ks{o#Czp_$v6VCZbqp-(@W5TJeNZI11k@Bl;fzgJ zqyL%~u*lvEw^!VydzK_X)82=`hzc=>Hg-eUgOm75Wf)SzB6+9g-L!CgIUC##PhnPg zjL=Wa;__+{7P7Tnc7!4;6kzCH7qHJMo$QGo!dw>>`*O-+-wq zS&&tAn((HDK%iU%26hE>m?jTerO?web{W6 zcQL2`pDoYf_BE1b`kc3969MI4(PY%CjWU^sK%1U9+^lefvo` zck(be={%xjSRIzi{-FHn9`t>y0aLf@Dts<6g!v$(SE8)^8t1E;r{(`l`OOla;Q;vb-n>Q%KgLY5yy!nLsFZ5%JtdgU#TDXR_z2&t2C6INWfyV zIpl8QZ{j_L1Kx|Zxp7JtF?Y`%@abo>V%ptcEuFyf<9IM;IfD`KeuairSK+Ep5B9qt z$|*}Ql>+(X_x^mkYpxRfW#^!0y1syMTm;5m`2jngeS~w}Y>t=nAD%rK3PJ&9JP4d5 ztL9$Cz-1>f>hT%sE@uyWGEP%@BQt0jJ_Yu|%i!_L&5U+aEU}ciKo-q2Cu#T9;9K=I zI4$1}t|}YwTiGf)ny1d4dT9iVic*2QLWnjW6XUs`Gb1V~Gq@kp!f>ulG0e5yNbc(j z;LGK&VU8Rh__3K2znUnxMDyW#f)Mju@e68t=D_~adEnj14+rl#nBB>_^RhH7GLFXt2*UKFMD5G zF*HQK2fQUTNQ?XBrXCvl)@rpKQR82fn#6haDCFsfE69V>e9K)lk6ULrl`gJ zwEiKlx9K02Qs(Xvu-w80QL=QvxZAnIR-(D!05&)y3eXt}-8@@&lP`hzw)SD0? zfeq)dM8$Hy?>6}TUpTC~^qs?F??+Kq<(U7IeFok;F`ti!0e60M1815# zc3roCEBC~?)5b@^e-A%tzmPzDr>_Mq8)t|yR>7X51!Rf4gvCRL4^%+uIgtqcjGJB# zfZp~{$m@QDWs6uo=)?OQoyt2j`Oj`BiIt}Jri4;26>FqS?=qEV5{wRP^8Z_`-$9J>8(3W5h?)CA;&5hdhg3d~A z|1#F&vp^QTCzleJ@NW?9q{a1``-l8DUzD5G?}1&T%i-;oGTutt060lX$lT66Dt7b< zUcJ2){W2A}zwhLtzvD4ncsrflO$u{N1Ew+wfvX|DVg!@4;>pEh$($?PN1!;j8am27 zF?Z%2I2WuplAK!0+ zKkX;`*m;+2tsr+)%?U>Rzrl}P)0pyu{OJ8G3ydNpxJQm1LqmaV(2yDc7Tb*#pRPm9 zj9{#Jn8ndiVzc{Rt=MCG5|@+`k}mFqxq=G#ewgjM?0iKv%tD!8EZ1Vy9fY;!IlSlo z@}QudNe||qqc?=sXe(-SPm=Jx4Kn0gH4 zkcV?ExDlPlKid_`KvhxElo`ll>W$^Q1Z5XQ$!CIYZRmB8MK~NOR*O z0^s7I`J~E~aDv}cRA3@~WxIy2yr6_pI8`n)dpoz!X4)8xE=F*z=B#8eM%=r~c*Xjx}Whb7p zoUCrR`%Vp(D`|0cMH{h@`;82qya)%6Mv#`%qD)O(JS{J3C+_Qgaie(w9+|P7DGeAx z-wXS2B!YEtys&})Cera{ZV@z0mQ%Gv9ZU%b1sf4dXg7XIg14mPZA->&n-m z=Po~3c;gyu9hc{Jk4luX z+9j@yZe#PfrypIT(4#W9uhj$I%uu##ynle!nY3YCK?TluGe*xg-v;T6 z)g0^hZ_rfpESc=aC3_$?Y~_b`R*6U>Ie;m1}0}g0o!-wSLl#&xA}Fzm12uUK>xtuu3uJ7!JS{ZxP1%=Qx%e zu7i6cN_g8lom3g8VP5h&?lI#J>@zWj5~-<>TCV%yLo!%&0y(i$6QsBVBBV$!tX;|Z#ju4lPi6N)6O|0Q(DWTMtsKkN|OMpc00(_26nurqSiJyVzfp?X+fc@uQq7Bdle47PN0 z@q~&4V_9^ESQqlMEKE}}*C++YO3k6?>}ISt7{R$R$|yDaC8o~4PGvVsGbgIq?(h~p z++=qY7A)g(9r8?wpHL}CcV5Qcp6~3ubR$t&l>_!B6`bnW97ymOA|JFKf}6TMbg`X{ zzy2*817}s{S?XHseb2^^ZU>Ujasr#iN6c=0;iaiO zMNO|n@z;6xLuq0T4AaAE=u746Y<+K%3lY^l=}72U0vD{LLR$B_!hD z(z9Suxq}nAWG41H^K*NWBB*NF2+Uqu1_~cyQC!{=yL!6mRk2}!Fiq&)3r|>Ppuog;Dp`_Goi}a7lzXx?q}#NyQ~3-!&uc=fpNqNrxi@Ljb63va z=fiN>G7U%m(`B@DT43nUSNMn}L^uBu*6OD4coWUorhOQq*gLk}SUev61+Zn}Emn_u z;`RUs*vq{Np8M({_ir=&nYD~?R1Tqk?GcC{nt_|gzmeMZc%I%i){h=3#R20`qILTb z9Fi!*h2xGiZt-8dWRXM^OUAKZoaIS&_rZ7u2d?FcV$U&0V# zlZj{iW$~3jFFn>7hi@#Uxb5Bi%-{|elsi>~uU0JN-mzUnLh43wx>*mgPHe{ma$n)t z`viJkFbFnJEyRHA30kyPiJBI8!OR$W-0QdoCVmMqm$M!cn|>*7+3wTuuJjWK=Ujx> z5&YcCZCCJ$YbR!uNaMrA0@}NC3E5KIN-A8o6URUCjlpf#(U)I_nVHJq(oj*ZfI%qF zbayQ3uGPaH<)w^4jUjWP!WDXluXBu}(`oeb%{Zu61--pq^v;nv7sK>H^Ja3ADP_poYeh^z=eS&pk7l! z!#t!Jd#fEB#pz{)XY!0Q)4CrYvAw}y$uHE~;3CIITb;W^9N@LXVQk4;4r5Pd!<(}? zD9dI6noL7+^!a-d<)nk|Khq()_9Go$%(A>*|Az*Fxw!bcDm#1CqY*dX!hdY%XqE@N zE3-e3+cz$T%BK}5m|aEq&LzUi1J8IjS$6C(S5cDQ_J!qc-M<0#2L!oF+bnV3rgGfrwhqA45QnBzp^Hrx)G98g z2@5~dl#6b(#n}-rB&~;bt*6xKV<`FHX^QK8kKwXfHRkKk8HhN&n%m%h2OJNiaS8?m zAUGx)c7|@l{iT#>#Aabhv?%u!|4O)mwm8tW4m)bBvE<23jQi?u-tVvp=kEAQX9`Jj z1Acr$|G91C(835*555Sl`UY(NT8uIM&`V9vKcYUj`e5h!eEc%~vV}#^ReE7-AIxs( zq{GGRUc9vy>a+yGcvP9IzO)Tr-S^_1e3M2lM+@Q367C2+}`x4f#S>Ab?D(p(vpc<5?-0ds%$ z;S*;8?(Wx@S+3P2JaasQI{xQyr}|GyeV2nnXEAJyKMr3e6(Fv3H=XgHKj;;uK;(;T z>=OycX>y4;HT@Uep7)jG7b4Hh@YJCZAL?;IF6+v(>%(UE^{inaoQ6!h%sEo=0-|;w zC$&i#XyVR+{@xp;^!j3m(sRVQ^+$M_kEFPsd-_24!6GO!bVgZQigj#7@`d~-G!-6c zn8!Z5J?Cp6W19&&&6K9kEUI`@kA0*?7o6A(x+Js7TAn7b=j%rtajxXdy^Q*Qcj_$CLCLAgts#6n6>LFNlwHeBHS*=-K20I!$wrV@8eT;c2r3HH61wnHebSyTrnoG z>M1fEQ$aDF-FbZ-1=W)>Q1wBMtDUhKgcsO>@+k%0rQ|TYDrN@G#ZpX2RThi}Pa^?J zYp`XshhAFJgqm(fOdDRsy?SS%hn-2;&9y-_buR9zw!#ti-F{{0I_!8Ffl`w#w4-@+y?8k$&n+Njwz~+Uu^rFFS3r4@0eS0Z$>~m9jyl!u z(7VP7ZdeAR_xVQzuPah{@5?xCjULrjO($-%j9}niA@9BZ^c2x(B`$josD(3YkzTRB!uxwckdw5wik$G- zz zcV^0;=#X;JFkE-;65Z+%izep}Fz~My=Jx56Va2K37a7{jd;9sIZ61Sa?9WC=unhO* zHSylgl4BNkOyGh2U&)vl5HZ8~U_rR|9U~t7+6(rUr6_H;B@!Y}~nJ1?np(lSg*tboU!u zPE6lZ9Qo7*rdv<2ex3{*=?o-BHdDdeA{E|FnGcEUBEaC31>Vn_i>2G*(MQ09IDIXF zs@hkyTOb;DcVFPu`O1?*wKjI=>djF&VE}4|`^l({3%35AMTg^~$++QF^!OVEXScH% z-IJcQ-P;=l`bBY%V-$$JD1}1_!@w`;O6-Jh!&aMn^p{a6c*qTs)kgiWZOM9IjdZkc zZ8F_te++l6>q6%^399#Q0URE2z?;v`TbTZL6eR|SVZ+LPPL=~7o|zwwZ7Pk}_rQ|8 z@tci8vNbT%x&@84Erkh@;~15Al$VgMMQrWcaF@zd?qI$%OdfNEeLFv4>ZMWYtdx$+ zH=ZG*6*n+P#tnOyA7?_2`(Q%#O#JwCJ9@2^h26n7VcE)W5dS3b{d}b9OJH^CCinQv3_;~HuNq< zr@lz2zupEMMFmFCR}=Uu7D8PPdp|gTjh9m`4)as9>B!~>^x?n_4)D(;r8i!a<|I8# zw$%XlB4Mu7i(KLvE(P(%Y~ECm2b0@JvFqFl-l#~KxoJ&4swmZ=KYuh*-!h(bsxDKN zX$@CT#^B{2^4z$pCK7KdN#^WMhEE3TV1Ta`uB(LMeAlhq0LABM=E*uuK3pO_?Gf@MQ6&1v!$TY8i$9cQPk64|~qgDQ5Tv-=kuIsA*$Q(Hvyc1eP z_T_5Bzav_V{q}dPgZeg3k$c&=+OVHS$%I?%e>;=<8^5Ew4VTkD9fHj5k+X2_-T}1S zzm;`S1R&qQSxhJ$;zeDiVA^m7MS_mQ%$HekBZGZDZ4OYs&JR#N6oJPXW7gfOht3fl zK%NQ^v)9omcKHJPJN*(ahsN_x1@pjdrXr>#m4M@aqRf+48Svh`951rZBX`L#di^Mc z++iLq?&N0#@0O#dWGsA&V{^hAYH-qwXEFD3I0@Le98M>$Bmuz*_+8>Gn@bX41h!uz zk7w(^mAN9^ond-dl@br-x}m&J4PH=|T!9xqchIun9$xjpClsj`gT2xnWI<;abcbZX z^0x~3MYj^(^>;PyWOv|h>B*!_eUKcezl0Zr+VR2o0=yrz9A6B?VY6fy%@mD=qu=kr zW7#4+n>B*Y5>n8f)(gE-vfSA^!PIc}cj}j{!lY~;r@K%E=9-M&GU z)3H#LSu{fei?<}fau*3EtVWz0yg~^3&F0Vrdg=7~#~-BWRukcUSP0n_CK#T$4TlC) zFg7QRddld-Gp-Gp2-fgzL++ezhVi*c<95@a3|2?B|^^_AETe(4>ma`p{4B{ZgI{f5`G_f zPhw@bA)6g}obQ`S&H7UFv-u|Qh|LHDEW1I+%L|C~Q87mTuP&ojTuh%VT#1v-@sMT7 zpljzx*zL?R2*10d(nJy6`5${9b!djom*SwyT>PFNL8ij_iTSN_>+$E@0UEjP z9$E6Kjosy%lgoW+*vIEaY_l&xoq929Clr%(jVKyt(FV4Pb$F@aDx}HXA)js))0zVV zsQY3DT6R39SF#$gazzNX46=@IRV}bg_(7jHE(ejb(#+_12TznIOv``EqG#DE)T~T~ zV?p}plafT$ZyB&zz(vrkb`o7#rq_0{5{_%ZEvSDHggG}H$%>#=z^N4EntD9Muhxbr zuQU(u{@~%ub;3+g$wH7*;=|+iAMxeQWW-EiwANFEsadkn>Usi28;Wsny*^G)pTQkF zCtNG@K{{Kp0gViUIKK1%=iTH6wFNyb zOH%Mfm)gIX0{XJ=*-XtoG>|vOoh@wM?3gV6x3it5Oy3RCGbFKg`xHiD%_VYck2Pqz zeuFa>?KFCX-JKU?l8pH{uqKzC(``dR??~v?_rO`R2;SOy znevs~N6TFea6SJg=hwtl-tQ4<_-PRbl3Sxu*=7&)-FwfWKWF0% zYK@g9;h=s`8xpfvW?G69eU6Ffad;0+`r?I3r>)WEu`Iqlkpw}PGO)1R4G%b_b25iz ziMj1@Y-V#TTGzC3Y@m?$tu_Tbg)igD=&6u(XC3skCZc`*M|%9@0Lf=}|Avd764)@4 z^)}0(S@b%r7nzSn$5V+_I|ts~55wSBHAMSfC>+atwACz6Hi6rE^@M6Uz5$pPC;hbTYCAm7wWL{67IirD4Y72$oER% zjB7e{TXrVz!=O0MONv9M;WEx9?{wVvM*s~fTyTj(7}+sc};VhP)jlL0F4i)D(raFCyu?;WSj@pGz|yoW}3JbSPnc?N2XhK)O2H z&02Shc)NTcXBMr4yjzXr^!?LB)bBKhnbF^P%qoQ1U9`l=^k-yQfHd^W8sevBcWU!0 znrwUhjI{611AXgM3^XhuFE@%)k45pc_(d^X-=~I~mac{dyG5{jdm_Hu=?|fcLUF^r zP2jr2hXxK_faTN7;mzk1IK4NFhaqQBVe@X-n_g1iDKVRM;;u%k;_GxUn|+rZDdo9V zY{Rt0XHla*3Fo<=#l-)F@tcr0&*NYM*>`dk@pl~Kefi=;NZeskA(DoAW@S+G$PE(S z@w26ka7h4G$zJoc*$WL*{j$cvzsiYGE^IaDPw7kY*Y;Lj5-tB|nAJ?t*o=HFx5 z(`ikwR<49DmSgr>cqjDzodKa=kJ7q;EKrMGiZd3)lGd>GbmzRaux5HRS)JhotLj`K ze%=Q7cU&LRr5O@BvJSMv{LxK8A5>*`LeNDGqWoAKmIpY~4P8divT-j6vpnDPVG3C2 z`i-8c$ieXOL@0Tbft#Og!8+d=7_BA9OYqLdp<}tY@$g^XrEhnrr-?Xzs1HXm%WU+y zrvO!vEOVRAr3hcMr2yb$0$i^eaVEiMRm_1Vl$0Y}` z>8c}rcOn8M-`ymEYIg7}AR2N<bNM*9x`A0W9W@YVm*`$J@1Ce$@7|EFtUu= z1g{|;v%+BZ%1NqkY=OC^$6(C1o19cTi0kAAsX}lQXU3sYXwEGLaZ^Kf-*_1Bc!XVJKqXVK_&D|shni`Kq!jfJvL8@(rv!^iJu5u#GSq@V;QeIsCw z)qYO%4tF%>v(4hdPw%s#L2zzcPyNo77qofesi#jI*9?N zAM@6{uq6+3qM)SsIDTKW756*WHD0n}nRiQT$+9I_}w(OX$y|5=;7mNy2Q zC#;J})t%n6n*+Wsg^>UKF{$iW4cu`Nn%g^0Z|DmUri~wky>^3Xp9rS2vxbCwMZ}l? zA>BD;HLR?gif32{7GG-?n)~E}3ttJSej2tI@3D0?uFKQ@HZy ze&B!go3|xT12T>Y;{Wreg*GgoXFLH`CU`fV-+KuAUKL?}b_`8ASwnL|6dSkpn8LW} za-uYpkL#|mj)&dP$i{2z_bMiwEp4En%+;{}-0*H3KuZ83sdOWq$1 zgZA2du)ZS*vyb;ueBDCDo`&FM^CZkrU>Vnej`V2t0Nu7N26bQWg*W$-Av1Xsyo%UF z&zZ@?tOif?4Von8Z7bo)_Y@kBDV&2W6Xwf{Jp4hN!S}v1xYX~(zrBfI7*I?c*>{nj zW;cy<>gI)U<4AUIFbLcE;f{s7F>FQ#Xon=AzHteppP!1?E2@dw?`^yTHX7_5ND=v+ z9*`5YCJ?=&1R}H+ldW1-q}EOW+Cxv_TDH&eW%ww}A5R0#m-Au61|!z5&hSe37vPN0 zOrUG*@yS#}9F(WL2clk7D$;|tSLM-fJ*lX9Wk1GzDuSQRt{8J70sgJq1o3m(oNuxT zV*G2;A2W@kEzIV564Rlt$eVS2&!*Gdz3B_?X}mwk&UbVRC?i;ey@zB$_FNkFZwSXyb8MgE1bulf?6drr^j)yUoAY=q7r&vz&K3IFU7`d{F5dX^@cc`4??cNt`kt35%Wq%lQl2<3d z%NAi8#&&gn&N_qqjv4TKi5;~#8i&O!LuvG3C{(Oyu=w~Z7TY(Q;-11nkYD(R98%v4 z*18d>Cs|BP@AKhVUNnj5Gp5H&#PQ~|May;CYGs5IZcBl1LpOTG-$=2;d)SS)HxMh}eBsLVn zqKN`(d0d}kuBwk+7tCqX{Q#J?T?dLYUs4(UIQXWhMqaQv`VeV<9NaxZ?_Y~UgRi~R zXvm7)b6$jjskY!``aF!geQmKzOCo5 zBFPi=cN4X*eTy(REM6=z~qJ|S_k!?u~&0bM0zY)^rY=)1n zXOfM-Gw5ldO0>Qy2in5MtotFFbzMZD8^dkfGJXmjcU>YQB@1w1UnCAmo58-67uq%9tuy#31&KO$HGB!I;avDwj=>{q(C()`H9R^8 z^X(moq1rL9yeNv-&O{LXAOT#tI|$~@tAfF@JeZN9O~UtlLDg|t^!<zy!Vz?37u@f%4Wq%ablgx}bo*WdkP#3<1Rgj^YHOGrYU$AWBbA%;kI?uE;Z#ds&} ze-xc}Jk|df#|c@LgoI?4q);e)-sdVMT3V9OL@Gi|6LyUKHSgyyw7=^=d+rq5*ut7kEbua`-_~&zWqgHpRl3Hy~Sf6c*P#;U?V9 zSdub?q>SK`Yr>rEr#F%DJvu<#O0ei`8CUAkHZJc$0ul#ZSWsSp@BM^9qDq1Yj|O7Q z+*LRvHUPIacEFV@#wgAHugT4`0SP%(x;`(sasQ#O*!KPhLGS&{Wa1UH`Xda-whl4o z@2#-bP7_W4EDQ%uNPb_GO))vGA!RqFo=HL z(hFyfw}GhPDA8L!&i%c)f@G{;-k9L;Msov&;T_AbZR|J0#2HGKE!AB>Oaz}r2!Xz6JR18kNv;M!)C>sU!+hGJlCUMzO>-K0al?7YfN zj&)WiGTU#)vTlG-5~}`~?mOmAR5Qcr{5PeTeTc%z@_0~swigFx&LbtMF3Erx2# zK)5X*M11r^@M69i(c1r*#=IH?D<36}nTR8-oMD7EZ$vnL*P3vD0>jSmvKYx64dku>XXk4)LH-FErSU)srXc^E6bShNB@ z8_2@^H36_O!h_h!Pa_l4l<3gOa3VUh60F09u;uGzh;c~(tq&n+E5K${HETd6shT@_ z{sMS^or;{{a@;hm#PhSsgr_6Yq-Mh+bTVXMkgt^7TAzd-9q&P1BM#;txB(Hn$LJTo zwGd;iMK`;b8ZX}Z71uC`Kx8{ zxMe?MS*lpC?537MD2e%?G<5Pe7B+f8FuU#rg3Yn7#kiVQ*e0cm0D% zG~kt?(DV1CviTsi7He}=4xJ!ln=hc4tS$1qcJS_d>_GQzx9E`*bu_NC2o63>hl*QI z!O?dsl2v}NV8t|8#y6GoyuAzFABiC5!tuDHBnhO}{)F7?Y=2jwhATG0&$*Q(gA?sp z;Bc=WQZ$qC+3FAQZA$^ka6o=~@jPxze zql2O!)LC3X&-a3yxx7fKqkMzvaBX?#cCp^%zBhPiZwa0?`3gQ+k@VxO*_=-iEJG{j zD|+-5Lea`}>`Iu+`P^gyL;G~7QRYs(kUT`gi?5>erj=l}jP2uWnMWEf*uw%d4(Tt| zX!O)P!z5jCgP3kUc*VI2CyyHAMz*JvpqGK=WgA&`YXWgwr~pk*q;cy%9X$K%6?1yU zX53=40Gq~hNdmj~tZ{D^+?_fTwO=gdZDn^$pPH`)zaA~%d1QcOe=sgyXN`0a4S< zmHGz6vQ^+l%UTrw`;)|o=YUmI1aQ_(L0Nw_-my+E6bQ4xymgnDmv5>;ufr8jpIpg# zqqiNqp7BHKGf^7d(9c-T;N#p^Y#~{z+!a&f=WkdxgBz%Y@8tLl~1G$<-3dfXOE}pm^hT>SI$+ z&R!SeWSLf>1@|MB+sD=-msc9AB)nrCs{$yg{1naZhywSqFy4NC98}ub-KlT4$lZMp z>DK+yxVvT*@?ISz!-=XOwWkqp`J~Vg-x{_Lp#(93(GXu11B-TTAobs#ZL zUS$AGS8)aB1>(THtbn(nq4TxSU>2DP^6&=fF8Gp4~GWgaZL`*ztOR3A$KB68Q(vhl{ zx4@!>3~3%pgG>ghw=MRJ`ocOm z`11zc_uUcmZ@z@D1_0hgPobr#mu}E>g;S>{A*xNDv-VN}o)}z6i<2$@GaG4tMJaqe ze1opun@if%d60j2HEzkNMU7jVnPn3N===OXVC2}`KY^ujEs3Z1m&7-! zjC}#aTTz%A-wK0fHmJDb0o_^j8s&lq==znygg$rR&Rn5_MFI8bA;(9P7F}cPXKRB{ z=^4!3$?o6jD09C5)q)4UAz)}=f^9bLpp)Z58m@WbM2`<$5M4?aE)e9%=v`(`95QAk zFORTUdr8hxizVRSeGN|O20`i6>BLZ(ODm=?#S1)@2;uv^0fp; zmM(@&uYHa8F$SNX6X!I)w;*4q+(cK8shsjxJ=opYjwS5-n4!>2e>ZqRk;!bH_yTVb zNcM-205i0fHYGMzQTX|)9sZ7xJdb93AeZUpQ z#6=vwJIv!GlJoT?uP>0)g+r7~$kCnE*SLkF(wKYK6c6(&v+TwMm}6PZ-oFnr{v~(0 zEB3BMkz0|lFVGoWwserFQFHirQw4J8Ww7_rDZI;DwRoXdvSAPJE8X_xD;Bpe;>ni^ z1IMli+DJOM;l33q$j??ty@5XD+t^n0Xzv#^NJGkSF z60hB99h}(n4hl?SpkaeFNuLy@8JcmV(Af#BtqK}r|INTw>tOi3c{OOwXFY_o?orQ8 zg=G1P5aV{u3%Jp9C6s$f!Mm(fQ1|U8#-CYF=YJ_6HJ%Kv>oU>yqMqELC3ihI2Pd+) z<6FdGd*2@Dn->Jz=fvUhF+GlY$}4u3uSDwwdN3?^6C5x~g->OPY;Um^EKk0|TaF>X zwVc5#>v#>0`inrZu81*f<&o9ZDF7SmNzqaTm^52ML39_D=~kzFsWb4N%oz%&#F3A~ zqjFa)c?&1Cad(6bBc!;HBi}E?(Vo(cLY{Y^P9qbf^dFLP)tS7^BV|{=9o}If0iOL?9qik<8}6)|#;G{pfn|x(oZgx^)C&~i@EOUWO`bcHZ1f=9@HXPn zd5lCIT#R$hye0+9Zqt)98xi?uah5yf6D>P&&{>@c_e0g`>aDvuE|2DuuX}88!~O^y zkdmdHC0o$m%7M%ae?{F!3{c*0KS&8#(;2d#abQsoXx0XhUx%%D$s^M^?(0|cPP?q< zeFq3JX@T-rIKFZ^I{!l9o)42npC-q z?epf{f=#x?#=j&tl4AL};2$)~%#1yXEAqrS^vom|Ot=BlS+?eB z=OQv_{e-s6Re`|*8ycqO#hYmUj2}Dt7?(5dL_I*1!~Ic+dC8tIXpw-r-X@$gqvmMS zod2|QV;}oqR*)ID zCEyTri3#xrm-Lb*ZYotWWi!xe?;-K`8+1K<5*BYeM5nA$;siYuVZ8`fa6@}7tee$} z-|lK~&VBuW7q7GRpF#*ddZP%rb??ZZJ$H#x{T{sX`6WH{L3^zGYq**tMSuH7%nyN#}5-;%#h{48)NS0`R`f6Dyv{@|Jf5 zQMI?r;Kg%sUajpUX=HQv;Q_xC}{_}9)u|H2M9`(g^_30q2!z;^kXf zso_SqnB0LG9@0ELlmFQLDPio^VZi%)CO%^OCO&x*s3V?hd2PTKvp2@0KD%+Mw*LYXJu^0~2eI3Ou z*Tp$@k?E}0MVa&O^<^r$I+O54ghB7row)tnZ94I4Z*6_b4Cp%CM%8S~Xlxm~JFzQ< zteXA{eplwgO&wocq+AGpuDwT-tU)x@^&kRW^3-2|fuGsoAU7_=+f@1h9fiK(msSCc zO-$wX+Md9>!tcl>tq$&@1N)eJ-yh<%=L0yoECAB00Ux$d7{VrOO z+;3wfEY1*zZtf>72AA->8k=4Jkjn0E-ym-!QsKpoP`1}PiCQ*nAMbo6oi>o%ID70k zu3uP%(nkkLmqH@u?J?ykoD`%Iz9n4yE#`RIkb}>8*H}L8??$=oW5BEo2G{(3D6X@S zne?k5=`a)Ac7CN`7Mb_Nwo+t{Ag zHKKCFlB|wlEu<}JczcC2j521RA>ocOA*tNy8ih3BZ2|sBj>oc3q!FK(F;cthsZClK z5}9$F6db>`rb zNMY!Y4Y_I*jHNcB9FyV-u5RXRIJR6K6I(i9*~TUK>hw`KGrk0ME3@H__B)LI76nI5 zpAt1*F!hycA%@@TkzU_JZ2uF)fh8*F@@+BN>y=T1aCahOV+IReP3PRp`G{wmA5wkG z96a392C~Y&_$pS0=WzTcI6wBr3qKH4KL4if0Sn;Li~AT>kb-XW>v7XT9cHw33a^;0 z%k1>K@z&oY$YcG>-KwDwmK6bY6BVc`dkLcs9fu!Zf^jNuKiGfWghyXTk$|R3fIrf_ zWgJ7O7Lg>~xz0 z^@D3*;n-W!8O-*JBsk1{7h^Qgn@dXzztcxTn@HZ5zjW5jU$En$Fz1({D!iDU4{3|e z;abr~_^A61h1SW#-L`eu@=cH@>-mr#VLgvaOoDKuB0sOo;0&np-^QzNpFj zRvL*zC;V{gQAN>zgax3eVz2* z6iGO7X)Wp}F2V~&$yn{3glB#Ec^U6KG26-xd2=+F5q3UM7UfLUPpIO-{v7a{oW|Qw z@(CU(g|X{1uej?Yq#^D^E9u^G5Uvw_rb}{+iIhl08_C=B)yRAlxXOV+>!mct?7BRFv2D(rrSSaq+R`^zs6 z*DVm^h#CoEq~&9*Z#}}+oV`@O=Pf?0O2((Y!Pr!n$Gkbp-XT*2h=Y6^Jw@V3Sg-&* zUb=+$Bu$khEZzq?=Qq($62f@joMkNSG$l2cm2k-cYqDi;6V8!j=c6m{VpJ}dyc^^L z4+}F?Y&?x2cUj)e?MdKOtMN>Oj^V8@Vffsx6?@Jt;9c5!72aN(N8ilu$A8;ZkxxY# zHqXvr%8Xf7;`nO}PcP&u>@S6^*OtA!CyX}TF59J*48r? z%XrT`ug#&IUh7~oTb-x$?=YA}i1H@--hq}~4O({wpo8RTkoSH?4y`{86}J-9L%&`=;X;I|Gz7`}g@ugt0+8qxW zH{;zhYj`ft&Wiumg5c3AdSav+?weWTcR^i_OkO%S;C33s1`6|*{>RQZ_pq7T;2gNV zN*XrYVlje@I_dHk9t2m9w7t7&`U%$Xp4h|z8k-e7~8x6)v}(ryx`brMhPkf95kOz~?B z+ZU|8MwL=n-ke%K(<;6gpKeeZw|Z?6v_a9BFOLJNz7WU%g0U){WAeQ&XwXr*vqVkmLAv3^5b7%ZZ}dYvgoY!!ze! zaHY<~p-8PL$_{>JR@Ab6r9ZC;jeJI{c0`gbH$))dnH!&1a)Fcn_UkH*3-r^W!ct=vXF7pieP7GHY4q~7tV@XF&TIsBgj zd$!4-M06+}>^lKBPR@a}{n8+Fr;L)LZ00ca4rBIWi0rUi(|BySn2xzu!$-OaCD*LR zl?(V_){|pU`8og(FRs9m)Ni!fsG4~!!jKt6nBBXn!9ORi(=x+11Xd}7qPjNA^_IZk z`FylZJc6s-f6`AMa>%Jis~QP zj!WJ&)5MW+YSkeCyB?=PKqNn$%#eclF@fytJQpgRF9V1DJR~;Ok?c*YfC)^2?P0#K z@}?-{dMAUZ@O~IeN#(9Bmw<{^A2>I(0$=|0hJhhxh_(=+zLgh9=%P`mHPb{Hj|=26 zo0}+aPy_At#`rzc9N3TsxA^OJdUQYqPVZgJm7dK$ORwaUCH-7rFUNTHP#`eJdzj&! z=TW)pEZcYX1CIYy9C;rBr{e@5%ufklsIe~Y@0notMFEa47@)tsS?_C?J*ruGkg&8) zQYE;bgp4I)a|!G7vp)1U1X(g$rdr_s=0*z!-@wB-hOf(KsS6x3k>Tb-< zp&v+$-ZQ+s-4%5cb!klIPog5S5f20|!YS+wlcRfxgsr;>y8}~U*C}uEBTyeqOtc~R zm=a3rWs)&r25R*4;b~Gf3_ssU3|a5pj;dGW+}dE=7MBlkLVxJh7fVs_@hUQ#FM^I- z$s^0({H0e7^|3!9lIYfJ!-E;xH1M4ceH51g;s^ecT`bQ*ee+WA+!%pNv_k2`f^#sb z?~WpwBV14A%P^|)nQAC)qLV}Gx$QIMkpE>l*`}8To3$*#g}u|nJO#KBvJJs11(mI08CsRgWIQCLIW!9gp`j%X}u^gIw?ldW8Y(nmPk_dnV&e*~Ms7k&o+rXSEq5pV<<9hhKs%XIq)WahyP>^!41S+XL&tv^ zu=XE64A}V72dy4(<0gCmGn0fUnV&S_aSGlO420o8IVk?N7Chrz(JrWgSvwdGz5BD^ zWA`3hxm}#CQI_NKqAc!+wkKZkx5TN2Kt%_NP<=>%zS2&Hyon~lm&xv%=I=lS@5PjJ z(GU7q__g9}mhXM=Gx^q@277ziGnv1O(%q?eRlpCdmBomj_$lLD4I{WvQ%BprO+gc- zZM1T@mTbNw#O@)tQuR-nEXQVobaGBIm-vj3+)Xx)u}j2L?ge$H$VLzuc)~3Hc^aR% zJ|YImnOM+b4GZnUA)~mPzRy{XsY_%)uuBgkjKzqu3YV<9d9pF-qMPxSym4-}PBLbT zB%?m>A33{z0lK;{u)pL2#2zxhWd((_`@%=UX=izKT~i2&I)RHF{bASgSmI_aNjI-h zgSHD*j58*Z#U(Q!{n8nHFaT6AxENgxq=}khILvlP!&y;Wa$95pp6p%%BP;c|c~)Am zbX*t&rz(Tj!DN`w^2CMHr=xvIIEI*=#AIQ6MslANxg4&8H{$$Y4V!(xeKY`-4hB*K z^LgaI#s&CX+?CpzhLKT|a4#%wop&~v@G=E!?i_;3 zp%845a)9S`^2Bt$G+J+uq3fqagJ(|@U0|XE#d}@gR=FGA_gaH`lR~87IqPDzvw^>s z33zt25Y}EVC56*8**nr2{Jz=@j=71#@?)!M@finb%_yNiX72$1(OU#64q)>JOZwJ3 z1$F;U2jeD3Iw3iS-WJ=6g(o)9e=G}OO-c*X`eQm3HI;-Nvw6gzBNu9>zo6^pt2iL;lI<-xp`NNUox z8gqSGNQ9^XS85*nKd_*W8~-2~^z^pk=%*%faFZp7s>kD|J_oROoaC-jW*seaFJQBG z7#OV|qH64GM4RFuPHP@+FOS2a4@)8b?KZ~mQ!XU2_jkKWwpa6WHA%=wgbZO#Y*rjG ze!@H<+t;cQo1FKo)0fTu8YE$NRypOx+M#;4Da|)M3L=p{Fk|O+GS9~yr`lvg`Bn{> zaY`Cn^A6#!nv?Wsc|7`lGKMKXDrG|Cr{hu01fRdstf7#@mh z0en~*wT#d4$P#Kc<@e9Zko%{v45ce&$8#CzuJqeb{?%}<)R zPZSGewXtu3ELaG8qs!ZcxZqS0?7h1V7ltQOz48D|2zts@J(PiuN&?Aw5j)7)YKZp! z%it?}o-6XRUN7}9`aUcbzHE6-?uErd5B{cs>`eD@o*!MhY&xcyvES$ZPOik#7i7`T zZsK?w$Z{9J7gJ5Sx7_!F?C)dHr=Ja_qN$LjHIF70i-V<20K4Om4~NHFX=_Cot{1yU zzOubqj%hk<@VJCw#nI%to-ed0*uXA5N(Y>U(EsWtvg^D9z1ZUlw-rOd;F&Sp{) zEztDr46NPb2#czAkcRL=c;pp8UJqFqKHhc-6(_gB-JmS)Ns|)l)H)N)kDWy6sx~_&j^FZ4IxHA(FXb5W}{2?3J}^=2+2)+czm@q z-dP`m%Or!LsX7B)B6fg%>=C@NbQz4@=_894xxo+lJ7nq?KG-olMm{){!pxsVDD)x~ z)-6xQK=!q}l-OMKE_3!APlNZk0<{#gaAL+2CQa|L;hzWL(CV82x1y6kK6(~i5-JK7 zO758T+Y~0-7sJ7oKk0tS6#C9KiQE?}fY9Ax+#9b0(IB{&^4v4AtG9#OXSfZ2ylte< zS%>tfXDjor^)%Laq(b2VRTQ~0mrlReKr#!0fE#}S6aNIF(3ez9y|tKBy0Dxd_b~K- zn~T%44e`}_KJ3ZyBKfZb@SlMi-h1i^17|aF-qkXyD+{zpD-DI6eIfhdRNQ(-742`f z5t#~IHq-W$@v&~FQ6=l~TvjAp*lGq!oIqk+x)nS&rJ#|^qQ=4>c@VF+3?xJH>4u^Z z$Qe6GrrN!rzum;pe8WZ%`kuq`8ZDu#%ZD=RcjzFg8;xT}sapV>Tf%25oINWmOy zci4Tfh#GpbF1w?TxtmgUg5ZINjNLgMRE*g|{H`8{9WiX4`fD1s^cTT(Q%*t87S^-0 z)*rb>^>h|`;l52biTU$O*cw#cXzkZS)-np<{!^PgnV&~XynBzLdTKe`|8gc)#nsn&Tgp4VM+*n)#)A>$wvqnyW>Ed#{ zaBwDySnq^S*;jGWHiG50eZZqe2eHku7?hUh;ytfJ*u@-yosDPcw8MHZx$GU;a%u*Z z>Y9R!)KuW+8-7OGZV&LEuf?t>8hB>DDz>ar1+`3bbY9v-j$M057B;KmOhMMa)W9R# zW1mppA9YkbKpo3(pT%urBE)g8DhM2&L7xqNfQcpT@R0EbArpBNw2Fhg7sl}C^d1cQ zn*#mM(#&)lZQIr?xBo7H4M)Z_!xq&OGkmOmvOb6aRvNIy8T-14RBW_V!T zX(-yw$C<1Rg@rTtpv+En`i8tOvg`2^fM(E^*<8DqxZ0(xn7A$+h;$L+w!u}sco+3IVN zxp)a|*W891JNi-FJ_-{SN0E}xz2w=wZOEN>1=P3x;}!(68LOxycy{y|{U;QP>vsJi z`{_0)HJyhB)1pY>6J6X5-mssy#z^>EFk0;q!iefk_`T{gIPQE&=fzLKwoR$jLNyg^ zZq0;EOVil;y&IleY2&bpBHY}GC>Xj3(mm^N*@g+SY0YYwrWk-fwPQ zyRl980a%_|!m`xHxilpl$2I1Hs9PR>@es!11NX5ZO4v5ae%9s{wPwV(-? zqC}4wL?wM98V90ag<>x^{81{_{e4bkbp)vUkA-AWYXN=WHW$iNT+z%(h=$4T!zJ<# z@Y&%v_hj)jjvzbVO&E&?-Q%Yq*e0EHyC{Rs$TZyZ=Rcybssw5u50mKo^+v|48X;Gx z*Lb$fQe6FR9q!9G3{B}}Smf-F!(lZr_~8IPXkCZqY^KmfVIi>Eb)udwg7alm!9+?1 z6QA~wvp!Z}Ywif?%V(lM+DA0e-i&FXrl`;Qj??u5u(f^}AUTgB_fg||MYlK;w z>%quiD_XO8KeGW{^wy=2CBBUJR&y9scibo1+it*`vZe5&ErvebxCU-79>*ExYGmdq z0j_IgG>rYuXKH`#29@_tc<^ix>$lD_Zhn59jM<8E{>~6!g7%Jbs#)7ZcX1NIb)_5n9lFaf3W_x2*lIXZ z5==IA3W21MERHYK~X84O)Av4)4x+ z3)ddc#_)?ajJQ-Q{qw68;`**|pVW+VMZ|7E%qmZ^FU=FTFPFlw`vc7I5kp$-_5oHF zso-Ay=Tylq0ThEOU~qgnj%_MO*Xrp!4 z>TmowYz#eKq2%;nAT6720Y?n^INp2-Wd7R~%#J`2Gzzx{DT`g$)Y=8XOb8XrdCA@P z^CHYhG=%mOEbD*xJW;vg0gJk$;2B2%K==Vh`}u;YkrSBqU7(_u=0Kj>K1P3TH@JN8 zL4B5Kd4}1Bk?c9ty=gm)b@^aLmKjf8Jpgi?&2UvDJBONM3af(-qSb;w^s?duN~ZqB z{}Qe+t3~=~`WVaaJF5n_Yih}}(W%g%&(D!~VFmLLiT$G*ytz;SZpa@-hXE-lJ9`RB zmbOBjb0+EF+Ecsee)_dL12zS*SxZkK--1VJmvjPgt~W<5l^LA1X`Xas%%9CrF*xVt zYsNb;9=K7(*s1Uot1kD##+G?-^VKqZ;FOM6-m^@eh&3qxhV>K3*+9PRX*l>#3{9TI z8*^=qk-yX!ULID%R!d)S|29IC_lom;qX{o@hX*%HJPLctfwq?|p=woTxF}W>gAORr zUv8{-SVkDfR(7IF{B?SA^d0#vCc&|dN@r_~gvR&wHfTK_L-?&jG1$q6()7!i+8e?( zm@ADhw%wt|<0Eij%Uqmo=f{4o<#Me{6#IokO_(3Lco?v1|A ztP4u!E;#*-G59Ns=6NIJs+~Dh9oUbN4dbY8A8&?y20lEh3Q@o6@YM}D z&^Xk}SX+s5DnGQ*!(R-@p@dSpe*OiRh`RwfUHb4|TLH|~Q{Y5QALHrv1in^0#d(Kf zG0kZ@?5kJ;M>EUG+jB>;>G>**4|9YEuac;9$S3aMwHF)H!)I`$zw^_!vle*E)dw0Q zG|B6t3(z_99())0ME9`POtB$nx?3>jVB$A3xT<}N0_5#joiHNZ`k|8 zb>f)zmR>w~g!<_hCfyE_f1=OV)gHA}a+2nV(_B zWJKX0IBwKKjTbr%QI9Ubxl1R(DK7we|Cm}=}gOMfp*qE%l%Vuh+A zRC`xqSW_%r@3sw}3SNNIE)nGWnFgjwa0cpBuZ7GzcOXS5kk&YulS9fB`#*(afK_GV ze@Y>EG_?`GOZ_4Cq5%C0Avm|i2$q+;!d*3wVMc@zJ(zr%xz`_wU#>oee@#=-@TDxX zy08fp@2-ZcxdEVm(}Q-1%fZ;$N_3Epf)3A@q-*CCIGdva&t^YmXT_`WuW|zDi{B-6 z`}T5G7*#k#*5Y4(NpSR-i9%tc_{+ix`i8c`z=v}9q-g?y(UMTYW*)Zuw;5;6pN)C( z*Wm^0xZ>u_L9 zAxDG{r|%8K3_CWHetbHuk%_>kpaKKaB+<%23BNb9tVN1ep}+)iEPc;?cher_y|+>ykv}w7 zC5CIsFAV466(Ar!4w{de0e@i$UOG1u=V|<=*II8vH~Z|}^PSBjuy-g9n@RX_J&lb2 zISvE5fmp^lNw*2FhKTOD&|vX}#&$#K3_?~6F^Xm&C zf;*4XrSP5MAAU`b>R%^!Xd>Lyv_)epSNLnyif?ww(0`M2Io0(*h^=lBl;~6n>`2fFGvJQnS$OzoMzzm)7#`~q>yeWS+kS3$KuxHz9l<)dW9X_Yi z>#|w&@$RWOp}Yfs3U}f;zQ>I+Wdm?UhmXg%MvS*Qq8v*LJYe-_N7P@w4F4<)V?B#o zFmi&x6RWc@&VQ5W*(H#WQBkVR&S?GT*FkIfK1k{xCO1#|QY-d;)_d2I?%Kez>>hri zHNg)dY;8H}&Av%4JlTc$n@7pTJ5%6>eI*pfKE#{u=9Cw@kGg1!aV}4LMq>)zlh^mf zur*}^noW%&m3_YOd2A}L+-i(2Xb|GG-@1##heg=g%w_g_FUG4*%iz}W&7|*{S9DnU zHC7%xhw{pH_$|Bx_8gDK?iP1Eaq9=!`%#Q@Z%l>v`t3X8du*P_>4!b0r`X^eucuh* z`~ftV`tuGarNFFpzuDgMuhZ?v4}qHT3`}SD1FxB?)8EG5F;(*yO=I)S zo~vr8OsoViO7J_;`gW2=D((g!l{|?{mDs>$Mb)?6|@_$ZkNbU3!qsIz;Zq>;>*f zKA1Sx!!e;)j3M6Cbz?4#SzSi;(w~6quczc^@VI`f~zOGoN)edb(h5_ksI+Row_xi?|t(@D1P#WHNTeZbkB$Zb+fX7_DVq1~qp z{+Wg`qFSejNOb^iV&^(H#2wgYBLcPJ4|@`!Y0!=GSy$3 zw@r8!rngNp#^YKvGiMdMi%W0|%l8@n&lVC@HscP*ne>WK3+f!-2eHrYp!lH@l3y#x z6Lw@dJ!P5Xz|R!){T2@k%MW71{BQ`HY=E)q1(+FLjM>&J*(}~l*u4HCZeJAu&krr< zU3CnGHqT#B(Jc$?#EW?8_`z+KF;zIniJsnh1DMD}>e zZ%3l%&R|qln?kMy)sY99?aYo>LHOjVDs+Yq!q4YpjJWs)7#lvyls)Msea;c6s!~tl zAFm@Vrn2}~x`kZP52eNDqaA^oQsJI_SWQGB2E*dXe0% zXoXW3Ug1k!C-`@%1Gt|3Ta%H8&BfmnQg7WeXe*%fWwwx3K4l z8wt71`tjBAUNOKyti zR8itrV|(^ATzF6l=APS!d;1b0P_+}i)YHkpR!K~72!Sb53*ls9KmBd93l=s^LUA)Y zOPSF|AG=(@-c6(2v7~4?*SZ6mE!h2!E$UoNUlr)vR0V%77GmXtt0<6P08DZK{!EeL zZW(vRUrO`PdgDy|oRUZ9KMTQ47v@06qFp$?HxR@>cGH-JiO|?lNOrS*4vWGcFj&@( zhPt9S^?g2f!l@pwJpD-w_nKnIr()22D*+Ntwy0&Xjb4c`DtTQM6=rkCJcX& zr1@#MPs)>inz(>oA->S_O%n9l9@8QdC;UVoVe3f;aJH8PE4Pn$b&)96RW}%WolmBG zBUeyep37V*4FSjI0F-aG!!LzOoF8igsNsqvBK5WxZZCdcjfFPCci5woizYo27>8GP9Vk^k3qRw zA=-4bl5^V+P}9s5~!3wSKK zpK@ID(DT?be0zC0>s#=v!WjZ2_%ZI$3a){I3o%&5{;r@e z^zV=c&K;`6H$S+fN`DBKZE^%l`FJpOX=B!JVOg%-*)a9Sb$GV*G1usFHOAeIL~{Ny zt~+}hgZjtGs-ycbz3?46+zf!Xxew{A52lF+9QSSR*#ENE|pqST>EprOXc_p4R`OW4CF}7?k9vSjsU2`s+>LklrWU-|7|{4H(gznc41ms4 zK90?NeojSVC(gSdWR!j;A8Oyd!5L3g$?+75v-oeq^V}GC@gosU#6qx6Zx2@f@W-|H zBzQS=1`;V_lyhw1w&mo4{j6T{k!9dH`)|T~dn9?A4ko~q54vzF+Y68U+lSX#o~uC< zkGk|n;N-f8+}X3<5Iu)XaQGdFYs&ADYZczco|!$gW`8+c)wm1?Ht&Ux`r&9|$d4y) z_RA$#wTD4|j~ z_jM4`(2`1%zA2@YG?ntZe}DH^Ugvq9`@XKv=lyOfb)v(i6Coth1vEDb!^(3d{NG=y zhCmmla@k>~usB16 zS8%BUL=BmXJZUoh9!Tl?hlMaU@c?>0PQYt*o=`Y%1|7b40F>gd;#c`Y+?AiVf#7x{ zoN<@MqVG?r{QPV9pY}r%%)3K)dyb$;*++Ql8Vj%9mXTWmHNlu#FXx5x8Ipa=16Tg- zrfqT(f`>OUScmL7ZL@g7z3nW7rfsKjd*4BRRq;1$(@TfyY35YJ&6d;Mvj#u;+k%;2 z2mNp9834P#RD-df^yb{5{&Ak1UePp|I3~?|u`7hM`A!F~Wgl>bZW&*0rX6nG{}rFH z&a`aob~;j1fCHWjsL@PmoI5Ox6)i0|$#|SV`9~FB;@vnJ6j6rm&-77zNhPTGUcqq> z=b&|76PDkx1z9;o9Gg5F-Nx?%r}8v_jgMi@iDn{|*99f-TCiB!1Px??*o~8eRW%c_ zJE{dVY%DQQe-ba=^g5Y%_9FBpo`t{u-F&`;8g00>27WxR2H7htODnBR+-w(uz3C_N z_vv`v>?!V?-Dv@!bT$j)#x2Dp^+DXw`yV;}x1IYZ;{y6*l!Ny;WB8GiiE0<_;$Ht@ z{C9s6CjLmEpN;ex6IB;D>4pN2&1%#xYC7tqwbMzb)f<*fnaHbos0aN!mkO3S*3fCu z)9AnM=d@{TJL#PCnsfYpBIjl81dNU@gO!Gj=xn|o$L$dpj7)!v(`RupQR6g}cox7| z>H?JNlLU(d5t!^)3KElLQK!cZ?kkRmjKnZpy5=-Kx*F1uv9g~Wi4H@avL>ky{S3YSTtuy1iLm#mJdM4113fPWflGcP zIlz3>qm~Wk!p}nK_peD1)uI8fSGC~Ch2!i!=t8Tr|G*NR#~3?TnrFKl@!D2)#(7>% z)vr9DoBCU*M#%+eZ&Js1qh|bMr7M_+7nv(Q17;ofqAOim$t_+M<5%P}kIgsEDe{nbX_vzOG}@_*YE%1U(3xP-D5_? z+I%yo(X0=h8ZV>U+-)HB$rwxQ?~|(^#tAOm4#mrZS-4{MTD-*a@4^3mP{sKPkh9HD zAm(@lSGt|&itSuO%*z64(ccujys{9A4-~+P{Zi;VQx}qBeW2!C2LFs~6aG1_i>eNF zbkUnJPTsXxD9Q}Lj=2N$C9Q>DhtJUEzru(Ub;Y0ITX6KV3r>|504JlCtFtJT^_17+ z*q(S=AK-%%jN++6-WsSso{iAIi4VVe(U46N|> z)J&W?%-F9lN^tXnBFJ|`>i^>|B#efUjPgnxIA{rVAfP|xvxzXvwr?F9A~y~95T*Jc z@IJBur?;$Rxe{4mNnBVoS&fXp{Egg6F`+^};bdJ%4aO!M!*}1_fk+DLdu-i~)l-Y% zP}dHWllsgJKcoRteawUUq5?kT`a$r=NqBm4Kk`oukQ&pq`04aouF(1uWF)Z&4m>FW zztC9%*IDx5&w9%_!&m6FT?G)TbsTuz4N#dJ%Y8B@0^8#aVRFV|co2CUYwq5}Sc_~h zWHSx9+T*yA7l7YbUhe3(I!GUkK(EzV)I;B~o$2$jPaYdy$*}wG+d7hX|_8k=Gmi-LI9pf&ej6oVyns36gtszj> zevzzFcY;f|WNG)hWDH7`f|NoY7G<~7ny1S6X1x#kt-Oi9t549kb2oFn_NH)u_+0{l zX%Lx}Rm?gsVk9)f67DJsf#TFz7^WGVVn=&l-NV#FBBc5n+xxNOg`a9Qw?%0o z1}=|<_7O=z|CB&%t6xAX0M^HR~b zEs%DkdxFQ{y@n6HYsfW)uiRkYWRUkZz^4Iy^yG_Z{-LL@`KPa@z^+Sw$?4Bz8bKGfZzri;o0)4>8;d08l0qn) zY|R3xL0!CYDH}G6MS)>n1#+f26UT=uNa6mo{H4KSc(=}!4tLZM@9S0ECyM0|*c45E z+BK4u@7?&0YVSzgk1SAg^}z5j=JM$JNr%!{m+s*wV%55OWaP z7i+53>2Y|>@*D5=sB^ zWrl0)+?abik!BtCf`MBL@mW9wnP!uR=Uv@ED$JPQW3mr>ou}c!&hgAae~x|+3Bg(S zS3oj*+XkkELR{!vyvyeDzTd{d;U%%yzjg}RYwn?g%uTuMKoY;PE*Jv;TA;XL9WnT& zNbd$}Q9$nMV%JK{^*aoo`#$s2(+RXRwo*aMMqKzlk?L!NVu#QfJXu-* z2FVT>Z<7PtPRr7l>w4+p1uIEw&_lkx-A}rCiVI1VnE;hMZIJxUC+Y{oP^0fS@cG(k z+&)4d&Imx|^H)%}F$8}e4@Z&04EQ>*7v%#AP^>ozh`KFUD#B;=mvq_B4RnXYAZNR%BwREQ!kse32=cpd zvuQJNIc$f2MUGot_3oa7p*l|cq*}iM608SY<5yR#%aC{U8KN^Z~hT~2Wv{x8P&R^nxyyc6JuD_)- z+Y8W1_yGLjX~4Ae3!n+CU_rDfzdvvz7`;p*|8ml)|GPA}!7>_lo&{9sk0w26nGXt6 zx1hu~2Z(8Q!RH=5m)+T_{o*vSkACH5n-q;qh7CuX!pyA^w z?QfbvtgptChDl|xz&r`s&*~7DbzX2dYYmTw-!Q&?>=L(yhtXZ1{&J&_Q+Vn8)^7G-| zabo{oWrB})Wy9BCQRuPuLibu>2(Vd)YI4cobvhOGue5WE0*1)+idh&L%@|gG`S{?( z87iqZpS#y~HO9XMoVevR(Z8?=_|K-Zxw{sv9pJdcx)s-o?**M3 zzX+8t!UQiiH|H9I#K;~L6kMkzGo`8EN)mU+41Pn{w59m%rZVmrVm@i_QTj1`KUcfE zj(%@Y2Z^=?-1vZ-L_rWv-+VoQQNtEcQMUp7_DtojG8&K1f5c-m>(kG-+K=w}t)w$= z7v}J5$(HO>$f?nQ&5LZ|i)kqaO6Gt|+bJ;KK1{WB6dChA5EeNV;eT3-0gALq8|&^J zU0&U=eL)#rIX4OQ12ySW4c1AlC;`5C5|(P%1OLAoE<7@YCL3+|*L;35@NUhve{X7z!={f<@S{?F`)E8KcGL%iI_XLn`#-J7?O! zEUx>*YW|RqAGNt-i~G4d@W**!uoxf3xtAV8_y71!GruZ8r&%NhE!+ql^G=fUE5FjE zatUPbrBx_2IE@x)XJe+WH(HckZHRhdk0s8fG-mxg>SdA%i$@Dl_FWBsC?gZz)@B0l z-a+)`nc(c;NI1;gz)ArcsLm#vuV&tYz!16cTB8rMu# z5#9#%(2H{N7?G6<-tHVMEVklD1hD+_!DtLgn9a9XRzM0jN^^TJ?*rYrx!B2L-}|gc zcD{?my@A#sZn+#@>U!Y6Q@td6vkl}}$5HuiH4q)nhb?_4(T+WX=N>8Gt2y)WweDK1 z(D9~bi#GAY(k5b_t}^Z^WINqK8H|p&)1Y2E4;Dw-ym-(DZk!B-{=X%tlFIHAZxTRuSqb)TipLh`L^$jo1nQTExEea4aJ9=29ln>q zOUYt5a$JaW3UWZiay%+*oQ4UZv1EqUYV;cSod0w*kACY-p;lWFklMi2c$$7eXb1)cPm=CwI{v*kr$N7;x?(}271zr;5 zQ2w2V#Oli)2$EkzBQ~4?*QNhaJ1cQGmu?HUoo3^d_Y>e~c|RRDxB!o|o#R(NUxR9| z*Q3snIMBkJwAM24v-C(TH6XCc? zZFYlYXCHOGZ3*VWx_J9T1-WuJ6ZH~R$&#NN>D$~@Ft@Ru^){uTt6?u{UyEya%^*&_&tV`*2aRCH$Hnjj{6W zbU3${3bX#vzXQ3LtYAm@>MQAPnfdVaq7=76@;Ch#T}xgmL}5*oKi;(u;c70;fuApL zQ!C39NN8Yl)Lvx_IJg3ak7>Z9(p;ij>jP8f^>Fv~^zuj8NF%~#J&1k%MkBbz@GfyD zRu+V!L3t9KFJc+I07Vo?Gv?C4czCWqm0!y^UcsMw$X|u0RAx&N=KI)^`mz-KnUeyM zU!PE$1`nuT%W!~tx2VqIJg)B}8}dX$f_ybjWV;;;ShdHM>Uf@lYc!W`pHv8fO@|=$ zUOOe0J#_Sq0tP%;h->vuVHxv09lVo>d1oc*0$U~MJo<{hh)uz!myw{&dOI)dSAo>I zbdWJvij5}oIGqnnVc*A{^|A>$T=p+PKi96UztFsN#fUj29${pS^a2 zV%=mYl}o_+3!UNlzAktz9gR1ucH!(}*>rx^Ts#uxL!_cIsB(r7j`BtMAMW|0e91CY zz3~G4bDk6RJ|n`Fm`HcdO(DvG7WkEQNzP1>#v=C3aP>$h17|nD&Rc76j-?OijQL^t zl2&|RISso)bzoVGJ(+kb66Akvgi{YBb{Ya6_}wGoYHb&%41OYx&mHTT&S4N@>F$K7&mDIE--3iYkQ6(xCH3t2C8&n1@^8zg`N|d=*gQ?@k@aRO#M{NE!3{3w^a`D zGd^a}Jdd~Z-z|0q&D#m3O654o;1V8E@`qQBFX_2Qk@P|16qxdUDyC}-*m7FFVgsC108SxzQ-g}{rb4MPNXBu-;x9t-3tgP| z@E9yA`oiC*8A|dlE#k^aUxEN(H=^!x7!>@@prZc}%^j-6&@@2t#3h)`&a(909bDII z0KU^dlHLkCtUcv~BVXMiZg4qjR87N0sdF)X=PvM&FvlCwFG)w*FW53~s$ffLEAW)6 ziHrCI;_)yZJH3ri=Cd03k}T*|VywsAzsQZ>zG!<}6TfUPMuR)n++UXo71t|-m#J6q z`)N_4@-CUCKJvtjncbY-clKbnzaxY*=d1_YEj3QQg%K~#k`uy9`7_ltaBk~fm^WLT zOuTS|el3fI`w&Z32PT4PzAD#ldKumKnf1K3wc?bA7to!*1N5?0@ZXDVP;dB;b&VBK zp7~?a&F|AW7HrPpA_AKI!&FTy3YVWtATM)u(d2MAw&i>yv**s{N!IU!yL~;_87&4D z+fwk+`tQ`pN*8ntC(vKpW}s=_HdL*f!`l?U3ES%fuur9k|7cPa^E$1j$M^d}{Dh}) zE29}ESIEMBBQL)Cy$QUhS)cglq(J$Ur*07-IujJLO)1jAY_ za{BNc^yuz`_y1YJeVr}b;#q_BRsk%F-jINUduC(%X(Nt8TRW*aKM7OAd0^4p$9bTX zgpLaTfoWVm@YXFP(aw>43A;SFI8_v9>4=g){TIofj&{Nec85+eM>=(FGXL6kZ`4>D zz?@pO@XT^1$!k;vZI`)l>@IWPI2EGd`;RnTqz|TEEWsmX`k14gi|d{}gGZ;0;M`9? zaGcpmo;jSL-8prn{nh|fpFINVmW}XH)dj!5YoQ0{_u!WDrO-W5nQ~q0sE`KRncUaH z6Z@0kh^G+mRm}=?_hVV01ZDW4(nj{qs%#isBtnZ@)-iUc5?+6n0>MwekRBUFp7oLp z9BloIJJOEgPzpPbEN^7)@HO~Pcr$Q&zTl3OHJE996()yh(os!mnDpTlMxKZxmah7! z7I+#(J4JY#eQHU1|9RLvX&z3_ROVGWloR6(Rq#7t2;GLy(up_XQLx?}%2K}a#pWHt zx|}oc^Jg3wdaWfnYa2o7umQ0Wc!JST9hAO!$St2%$<+!fCCZWwwBy4!dZT$Zefc^G#>)q2|$i7&QtC*!I749sx&)-imfyR zkBfUyRcr^H|NTlss~5Y!Y-4OQnv6GFTw(N7EZd2#gvw4Yj<%x)nkt8Yh{hTuoP)6a zwm4+W`9L-1{73WmJ^`tCN2tB=0J>+MfM0FTiKW8^%sLZ+Yu#edB_s}N&vfD!mrxj- zP>D4I&q-2=3~wGM4p8g~)vXf;>vbKB@#&6Eqj?S6CwJqvtD0O(#@zk-L5SX~NQ2zA zJQRd4HV-pkJ9XncEOGL}hebplALJ=k@L4 z8iiirdmr$JnJIf9+&q)a81AN4dyGJCK!hQfWB|@ACNp;h!>@cv6si#wJR5(Fdt{z6 zN?$3br+S~##z!-0_4<77H0~fh&CkZdJ#Uy3>J5MYLupJgI*a!lE~4X=)5x9lU&H#j z1$0d=rH#uqFw3e0-}ZOHq&aIb=)^O;zWD*nx^WC>|g<;~M-?vIyI>s_$y!v8wIGkHg_`#VG)u_r%h#6PU|6ISnuG86%hH7_)o# zOSED8$u0YJA!znB$V&Z4m0Fg;Sm868Yw;N2%~8e^nh2XpPScZ0R_t$b3V&ap&(CLn z`)_ME;)L79Q2Eabwpb^i#`y}$%NGWvDoMITgE2(crJ>uT3Vi$f4n8`*9t{+D=v5Vi z#rGqi=(YgVw*MqIyN=L-0p@VKW=9>eY%r}gjav3zpbs@y;^K#^>2{rB)R+59*H&s_ z>d&1dY&eCF*5ObUGXWl!rE??4(lAQu1Rn2F;LV7TXS2o}!ZT)mnTJn-9>2%UpEntd z%a>u*2Ty8PL&@C+73$m-#&_&o3AYxmAzu?;5SI%SUNoOTy@uWYcM1sXRS$uVM<4zP zsv?e?B={4=K9J?&%;PA31ot0$%?;ingSM3fvYle^fuuiPaw^6tC$Ex6soC7@#BeNl z_Z-H#Y{8k4j(FWHmG-KXkd~RZ`78D#N6&T~iuW*1z1|#NZ0Sb!9Qo4b-J9`T*+KsB z5aWN|j6gH|Ky&vz17n$eurDbW7k8;sdzA!e(*A@Q^{TwdnqyEiD+&axyA|m6jGnJ< zp^umMlYOhNV%R|~D#7iCV+XpqUiPy|Md&N8TEPUty^d|4C&xbAqKK*=aKO(EY-Ilu-QYA*aN7Z&?#d*`FHYlmtecHBZw4txj5$ai zwvvt}HH^vQP|ln;_;Q{ocYdG*+!Q}dmR)%Sv)#pcTScrPa0=_A?Awob&l{41wg!S8 zn|i$S=`uP`{0zDa%*Z(TbYj#02w%+)ht;Jk$dnB&oJ3bcOuM!QYlimX?uMOseQ*x^ z^!k7ejo!HM_Hj7tLveM82-w}yYna_UNDgfmgN|$S;OFmTQvRzLXL0p-^}+Q}bHoDj z-ai9>X(P;zc}o)wVqnV8RLqNVhUVpKaYVunQtwa4>5t1e+dP#72|gcTf~z#Ib?g;1 zMc$+~Zc>77HO9&cN~F`~HdXRxI%}`(366 zor^|M;=vY}xYvoi2`hqNoiHjh^E>E1@n^F&XTFvL%UiH+|JNW5%zHfybjt^R2kVw> z-)Jm2@E{r;ZZ1NH028jI>0IzRn1gR-$_RRLUX!p34fPkMjnGp)jIXn`kt>|?k9cXZ zb0FIVSUT=Ug zo;Z0K5>~7dSSsx!@ATDCNFk29_P})#A9Mi=^B>^Fu8G+3Kv>`~E`rFa^bzm#&xrf` zVr)}znD{L#yQkWtGqQ=bgjoDdY6XNJeHt#v zjuTjU=%D`2S~&2$4sPDKNIGVAQ7Q4u@ay#iT<~%>mNDPJ$jDis`E9gLLJbp2j)R|R z7rjzhOqT>&g1@37uk55I8Fr|`HL1daD8)PU&(u;pC3J(#e=)?(Xx|1STLWNo@OZ&8 zQidnmyHPtMkHDsXRCqxpm-G82Dkf+(tb18V#Ztt1vlmMXqE;-1`YSouOUCiwKQnxC zb0zFKw~yR5+6)Z|3sHy74?KK-p=){u<+ARk@v+tL;@1xv8_|eUUHtLO(A9<&I%8=6 za0KVx4I*-1esTS>`J|&?8xG0brxLsZs7>&u_x+hS_O@t)spCa_^HCLJ)LY?~T?aZE zrNi?)3mE^<5T8z$;YGAtfa2F5L}#c18(%MEZ*V2tKCX^5HF;C50)2QnB@8{6$7uh)_5c@3)_OJd(jhB7Iwk?u8-+#mSIPeg^YPuRv{y1|u$}Yf{j_1)R#*7&M zX{NJcN5QbS90!Xx!reF(xP9mnWO#XFp;{4ColS*9Q(7SQ^)3un`GMLKe89%c5yfne zpyT9Uw59qsO_H1{$aBnRtdl|bAitWN{2+&?D@v(lZ4B*w%6c-X5&WPZhPdIdH<_Az zk~`oEC?i^iO@4!TsVD=~_3N=kTfp?RJbZ0Xh;xO5=(d4(@KX39{tf_WGIb&uN49}M zwJR3=ya6|X?XRVp>9M0bp=N@FVABy9!T9OnxbBA#=yLm0>tq6n z*2LO3i$0#NP3sGjiAP@==`#*T>3b)zclWqe**{`GNw{z#tVveHj(Do zyAAhx&yp-T3EuC|^98|G9R5(SIV6OvBi}Bi!V60goHqO!!kd-BR%SXq>LVfWxM$8^ zI_(POFxG%fVj^y+Rfi1LfAexF;TQ*K!O9rP&jOk1S!$?_S*gIs54>yzBFbs^l#Ka(*^^do9~ zQ51B&a0D&ScvNOR?s-E7@Ytk^ zoyhKxvXF2o5q4%&;Dh?dBsh{errczB{JynRXXp?P?n{G5o-ug4iUX&oe1SEi3OH@m zRXomTIg?FgC}ZRUFMhhfk;U5us$ZYdc^~Tt{j7#Q3jx1;pT)YaS0GU12zT@NP;{*x zz~#giUdoTrpJh>WiM%toJ;`ArGiczy~XvAQYU4MXBK+Qh6H7QN4L&+zMa+qXj2^z2g>YaQSN=TBqiQVaBA8G5X|~Uv!zz>?ZSoe;qVUB^qPem+5FQ4 zD0=7AqNQFL@!T4Y?&fh=x?mgV?fb$H<}fzTHDgo=*#TcBw2~%;0-O^bP5(0A_qN2_ zkP+!cOYsfyOBtZa!(4cAAdX&lX@sWYcPd4$T;H9YHyI(#5}ztugR@3{mwcU{DqphEBoxliV3o#nqZiXqQy z(#_L1_+WYBC!#NT8;!eKNmj)SIL^D>P?mU{?g%x4u(EA1e=vnwX0PNHU*C`CN`Dfb zdMJ0cQv>{7?*%J=3t;k$oBRhyr1={s)*utG;aKcn#wjo&m22BDqH#G`R3wn$XEkKu zMdqaa{0V>j%>@6f22%Or0v>dj3L(jDSaWABxE}Y05y=r6UMmLvd>Qz*u1!UZ8Lj*b}O=-Gg9u)T`+X0n?Bu9Ovbj$2!w;` zaG$m!ZoV6Z88P{I_E{=O9O6LnOGkWQ{FLR9H2FKL?_r2p7rFG1X()DC!V{}6M9D%9 zN}f!?_jRlJnc`=0kH;xo==q16`Thcttq#W&V_jIXrHoExnWS_)!x zCP&?)ZFQNLKkx!AhU36xt0>XhWR9G?TG}Sz1vjLaAADLf7D^tct`1c&!z3S%vFv5i z^JR<=o547cdGMfpIW5@4<(+<7#Zk5%A)f~8xdRUbEVtZ2OIfC&%d(K(x#`H6l+E(l z-32gTTnk@i4B^!8uUU>>m1k!@nI~Cy4D%{R=%=B7)N0o^`h3?hI>csbH@7f$lS~}l z>HL%YHg3bF$6@4(^JEz9jpp*)$AieOOzzax4P0O8BviSkM`kTLhszn;sqYI8>dgMrS>;`Vf*VXD(Hc!@;u`gh+3=ek`3Au1Zh&?7`tLR9iRP*Zm8b`V#c$H!E-Zm zxj__WN*l0Q`4qmG=rh{R?m{)QMY!T!jSwH|1Jk!&K&|+TBtfo*-j=N+Ssi?c{KC%g z1&qPqKZ*;!DZmbo$vE6vOJx;1U^Hi<;9f!NP5Hhxt8Jm{bq;W;e+v-88P+!Fv8FcE%T7$5^bz1^6~Mm7{cC5Ke`AaeA|A?@xTO}Uxm4MvDR1B>sz^7$*I5JbDVNsPRSIk2XY!+T7 ze^$Q$d71On{N`3%6RwEizb`X?VG0>{V>f)8vYK@FS>n&sbXa%v0$E?s%JSELh|LlW zqH~sy{gDDv68nxiON)YUaVL!oaE4!h>M+O31*&%FHC!)c=ULTKIHg*Ih5F67ZE+6i z|CfYM%HMKU&rie_{xdWT6fPOMx4Wm=W$OP#sR9z8E zn-U}FoC;aYkne*@o~KB$`$2U0@SLPy?4d1EPEd413Nrob;ayWc5x3L8CnpJh{=T26 zZvV{}Xv-6sz!vz$9VCs66T0*62GCV{$k?P7>H6!6m|+-=>$}f@hetBFU(y5d)=>V=5J_eJ_r*VCBcyRqp zH{Efz3bxNNCpoHYzPXm=pF7r(6ZhtlbB6EerD?mdXa73x?p{%dyLJfUL_Nu?lKZF> zzYb^rj76)NieS}jgXyzoVfgJj^854(u&z#m;L+XCKRW|9IdC~QczkHk-j8j~S@^|U z9!?*dL7!i%;T!ylVDs=+nB;Vjcy^?-Jh46Q&+X>tWcE-d??Hzn)4>0=8JS(11LK`D zpnJa~E~pqL=?mVnXZjf0%zMwRZH>V>^Vj1hp(wOFbQFss_TmLa4#fGm;KRqch>B`Z z^}~v2DrcaZ+A0WbGlQdIx4A=eX2SZ%;oOvC(_w^LMmGhW!1pI~k$4M3M{gA!sgp(5 zEwdp}@+G}fy%@vaM?m5C49pBogfGOJ?jEZ|6(3LTe{J6M+s1D0`%cCW>NdtN3lBhD zlQbkh2&KiM+0g%DAJ$|kfysvLus=2zqxf}1D_xlW&JF!*Ta&6Og_zoBp&v3F@a@FmK==;bRI#ooW2|#qQjR zIXuYr*N4mc6}U9&ELY?K>#JNlPpeax(x%QZoa~*12Xu1bh&ba(XXb*6SsI$QEaBSf zbP${TUb4)vncv+n%zW4((6Ijqw8*gj%Z4P}mwbitj@n{dus&+LEC%B=W4M(!MCD%h zl9f>dwCBnR?kr^!dZWw}RZNrc^8VS_uegam+SN*|6>gDnvo@pjFK0+J8xOYXaqzdo z2+zyTf$U{sU|K&NtLDsx=pA{uY)d^?bzUkybCAK9NJX&j4}e>*6LFQ{aa7V`cM#Lr zuxP_xNbIYJW!tpdfR`{VhwW| zE1L+t9x=G*m^)l8&OqnfG_>vvBfeA$Pi3SrX2>V%c7F-#U0Dhjr`@6^Z&${$u44x*^`%>#TF^AUPld4#Xsu8#c6 zFR8NradN{f4xTkB!t#~5Xq9Y_4(ZykA~6!SKI6f*eN)jsnnSY-WwHN?964gZxbO-r z`+Z~)9j!DW6XHVXqM-S>X#WF}CS^bj)xDs+aX!o2L_*=_wfN}hX&CtZlDyejfNkAz zFkkf~O3R6{wJFPiYLvq#17(!tuBLLIW}?lD3HZp(1@0&$6YupFc>U@PZgf^I|I{sU zzUicDnv$)GF4ZxdAsr1|e$@&tmnD#}mRXSeK?PR?J*C%AX2XeIf6iRy?NBN>OyzVX zN$x2%;(Von7;KNk^k4DlIyDc9LX_e70|T^qJsD3t^FYx)1N!=}9P+k?f|^}A^ro5e z-;HykeeNu~ocGr}@uMM)DGY`6W#SMLrqVD}?+&eh+|c-{BD_-+hvz?g$R}rKl+}yn z*Byx@_YRJcz62g@%}T>x$`|SN#CUcdYp3>dS|F<(0lQp}kP}y;@aEA|sKw^1R*Z!q z@@JSh=9NO`u@2&1Gt8gmErNF@ra*{7B$&-ihC=0e-0T^`;IVflUJ5KFvi7@3>0E+Q z#^E3#ehRw&#=v#E`DC@7J^X$y4omxXf>xF#P7^DF!nun{Ty+{u8I3`Sy?L-sx`w3x zK8ZdLf(Um;9wwH~g^+nB5HnMrdg>UXM8O9l@0twmVfJ*Z4D&-v-KGjp>{008E@Gvz z7p7Sml3`OFaOw=l?ZvLJUn7)!3$=si_ns0zg%e=1^)*f9X3-fp%V}$$0~m!&LZLk} z=rTzGcg+Z;R$7c#eTebDJv7k2SRJ3Uv-ZMv2h6NeATwTOL+hMWtcdc%?jyqZd#MWZ zu7?wc<#Omg8p>V0*9O*w#G#wgDxAL06AyPW4(Gc_7;5~@?Kfmudl5JIR{w-H&C=(0 zn7Bg6wjHQ+Kn1*xmSU^sD){(kA{+~ig-=^!VPH4wF@11G`Lm(uRjGg$nNv~jUMg!Vgxm88yOF@CVrz;1>0KoZwLSBE?34WEGe!&)d)G8cQf`p|36dJLx@(`$93^vt;< zFlxgA@e%{l%K~W0j@1xQABhWkN+30O2UxY0LENYhyz7miGcq&rUV16ZRF;vq zC$^%^&(l!Ha?wpj=QwfOmVnuYiL|LM04$bl=7y=HL#MqM>TYmHBh1IEFXlj>)_6Sk zV>#rAtw51i2jJw@li>bbnv9=Nh|5i~@U2!DJa_v;R#%%qp?5to(iI^?pGxpstTgCu zpN2jornELE28FJ%+1ln7YN6Y}6{+|_Lf*K*c13lFi9d`%@#8?=EF2Ph4wGFAchI&U zML3#SPyQK~p;x*U-Vx2k%d1(wla_#iUnvgV@F1ByAsWHgfla0==v;Y;eAIJ=d%8um zBupIb|BR6cGsa_ga{!Cdt6ZB-T@)I^dY$Xx@NU@-A`}(}m&cgjQ!^G1%PgY$6_RLw z`YQ>r6-DOSq>BHQ(RAGm*zYfc>*k+jt&{{NUyB48tJZvH@Cp9_S^?xN7b}*tM0sWoPpvcbYa|%T< zEnXdW9NvMmM+0$xz5h{}Ur*_qDT?TKQy)pgF^q0$BWukLg6gUac=WLpR=T_)TRhFFfszqfyjql- z|E36Ky`!;piYzw1LK1CejDZ{4$vZ z_hG}!be4ZGT@TLhrh$}w3QX4m#d(D(?QW863se^3|_zh0ybh;1xT_&uNbU)h||zm%J1nH4Kt@-{fK5 z+XVVkM46b``NM?i>5#f0gt5Cra8&mouDo`Zir$IAxXl?**7S*{Dh1%hAUl+iOF^p( z+kjnLsf6$f_Ko{O-)zZ&;>;Fmmp>W(tL$K*PCNOez86yb3*hp#7#PRgbho#uU=Z^b zB)90}%eq9Y*uW=y4d%ne6XIaM@(p>Sx0C9rJ)xKUQ^|^LRhZE^Ov2o{sOXInnjUF_ zPDkP(^tve26?nm@_ZyB?$W^wxccY(lmtvRWK1fO$2a9FO;qzb-IBM8H6>}jZtT_s` zM^AEp9xvbv!Ve&P%prSw*?auREMm3p7X5E~0g7MChSO?%vNDxbXtvm6$1VkY8Cj0m zI*Vy^`ZT&}XB7BR1?+7Pfs_l3KljuU3)7on$2TV;=oP1_M@?b2|52Q?)g13Sr_h1c zm;7>zg`BeR2I~1C7d1bqz|Chj`J$O2U@o%>WMLj(`pI8?yoJiYW_}Ru z7?3v91KzheBd_J$jGo0kyiX6-|Jg~JOooW=r|UGkU@4N-jJG^#K8E(M!N9B6 zp~G-ID7`uhzS><&5_k$>7*MhiblKd0X;&(- zoqHMHJxYcx9%}IZgds?NvrIutJX!~DjV|R#3^)`KNk+~uECLekBFN{5GiO` z%++C3;)*wp|D)(U{Hc83I4+ftQAVV!R7$0280WqY4Gl995eiK!O)6#Yy~`%EghV*c zeVvdZ7246DQV}g*4MqK)-yh)RWt``^@9X+}-fw*IIfXxRD=+wlj)J#Yul`s*3`wvm|?lM2Or-EuC%lm{@<-f|u;s%6(r7j{KU;&-O8e z!6Pq7F6$E#_E(~D??mz1qI}q-s1LWyHK5kxE|swV|E^97MK;=@ztu`uRKLIekFYNY z=xIRBG9R3MNu4Xu`WG@+vN@EyDWtWjli}5SzzW_4>SmISuanop_pGnj{O%m_8JG|4 zN5{d}^%^GsA(;GeCEQx^9G@%;(tp;s0VbkSFyvYwZkRF^9bWd40F!p)>o3E90vepC zj zO{U8tI-pFC%^Lr=5^s#Rvd(vXNSj;+5@yr*`!9(xmDy>~el8WcPG^~CH)Qd0`FD)$ zwSfTPLK>?r!2Qq~$k@!wgams#D&nUIB|~%YbmMfGttXD|MJCY8U&OKmZ=-YQCr19b z9BguGBhT($M&^bLQ7n_-1_wW+XP+0+%*73~Ct4W9?Vk`?FSdJ~Oo{r|44nHk5wZ9q zUYg@d+m6h|9=~s-rQaV%;u#QK%7vL%<>BF#y_h(X2UVv;G38o0*?gOIo7L=~%A4IV zFDZt~bclohh9mg0QxrQIQ8JczMrn&dQx}C{r7R zH#N^g;tpBvp)uBx=zRenY_-6gd7n|+j9~uU~;D^Zj;QY6RxnU9yx9x&hF3eAQ@KqQ-5tO3Z`g}4pCXT(`y~Ned1Ke5{ zVNK%^dUSp$Ie4rdJh(1Uc~b}De@}sbB0Y2!%cr`g<^@NaRN&jJ)l~K1Q4Vj81kL{< z!S`}GN3|xM0fW%fu>3|fdH1panU!<7wN>HpUBL$hdw-G53f<(FU>)Q4<^ZReuRv3k z_3;ABhiJ1dK<%r?c+(eD@ZMQx;LX$exZr^$sgGL#feqhCK23qH@^tJ_9LD*?1m@0_ z#1npO_eHap{W>$OP>uvI(cfq4o?)cs<0JpR%;7H*yh@9JiAv@T)VA363 zArR*O{F+ENviC<1pKf?{z6zHgNW||_(?MUd8ZGn+VL?a&sLe1%w-^6$`~ou>o#qM} zpZ$XEEZ5O)tsMQvdQq@Z-bpOR=isQT0xB;Jp~^f0%RB&r|0r@3U9I72%opmuToWHj z6p{>f?sIkXXOhusj58H0^$#Z1=x+@~Oyf21gzUrN-gYe*WcLkA%|3I6En;DdbOL@7 ze@pZa+wn$k9HVR2oW{Si-@>}=bMV13ns>GAD%yMc;?bBZjCpt?*xZnTGfTATDNi=5 zvHlI2vrw9U`?n_X<2RDaDL3IqtTVRHK8_A-*X`BuSpCI~D^Ytu4o29|m)g@#szjpE zd}A@4kQP9{QP!)bw+Xc}&f>%U9DFAnLf7buqw+Q}cDEG65j|B3(P9kC(oukli5@H( z8R2lUqe#jL$uD zY?3UJf)KQevP8vgpW*e*dDyyHg^1=9a#j?~#J8DQ^k&in5;kouZhJ2XeF2dmEYSu0 zIAOT_?+7RLuodW>lH(ifl7iCKE-Z**c}`3}HUC=8)EJ7vY^npT&*wve%u&qAS&0un zmXNZy-sI?%1{4=+ph6GAsQ20-u-n>C+=blXcF8DJ`y5MEPEJPM-pzE8h7Q@TAWdg* zp3qO%x8v8CRuoN}jxj+pc)Tnc1tyJxwp=BeJ7m(57wsTu`hYXY&J+$wDpRBONqnxV z9w)sh9QOn+g(a##QSz578b9fyd0KbLJOc)4-3-*e_LDT;>lokJGr4AJ&5&^a zKl)MX63wJ>cK{wTRBhqSFV1H9j$=3a&6()syuSyhXH97tA&@jWn_VtCNsOp z2-j_k2UVkcwDZ|h@;3J_&Z}ynR7eV3=gZ;G{r}*PSw9GknUL>7PdM8Z&Vb#MeZ=rA z`&n)FMQx*4_*Ht0>>RvKr51N$s<}U&Q_Z83-tL0LVk4~o(+KZMhG40JDN((d3^j2a ztT8O53I}Gvmp?Yh(pBjc+KrF5vqQZKy*_TjSKiBE z;p==@<4}sH&(6lf{UWIJgM*&Qi(y7z4)*qzVV#a7{$9KeC+k}?PxtR(mfjY_DA!6D z`(y#}^YU<|x;3b=&s3GN)lh$K1HZ$-7>&eZA-HTU>2`>PCn<7lN1_A=7TuuF#~09? zHdS=mA44>szr_L5K*;S6;~e=o30-29x$d*gVE^)DoZP>jw&|w9#>RVab)_J;xH}s+ zo*0GwI_~h7b*20pWcTaJJQNe#11&cw?rEG(mTViqssu0i(t8$XO}E5{o1H-H|4hQ) zFKEi34W3kTr?9C60v_F`En*h zA&&H>LuSe`X4qAQ{Ai?@w0;KP;6Ik-VLA!TjO5-SlOhk?cHxEgsr-jqDTy_lAT$4V z-<-qGr z(7E~{CxsIRQ!Vz;CriJR>`g29cHgAXUFQ;x8gNKXydnMy7w3d+zCs$`*wd9lllhyX zcZ29vD_(7I9Eh_Stcy;!asM(YuFcT_QY-g|tXF#u+ccZe30Y=fJz#}__;)%Utt)=QJlqJ4pQLk8WKTX~b4PtOtBhAwl<+u2| zky8y7*qL}1gWq=$IhH50X}u;ru>C3ij@bsrO_xzQ?wZKp8zQN-)YbW_+#>G!E&j_cYo*tQyfJg7I zHn{vekFHOrz|i4w-hL<}Eo}pslSJX_Qc14&^;ldeti-3rB77&_Zmdt9gnb)zL9!!W z|L=Yoyu)M>XIm}!6A^Zwanof_lTH0m_}ttX1-MtKZcjF{Lq}XO{}$OC$Fc_^ zWl%%c4?n6Tf~KJ}8m$_m4wJRvY0n5|x22&_T{((S3B0rZhJHKC@*T=LhFcCqf&1Qh ztUFT$ZKdC0eDH$$>1tinfm>YJ>_SE`?zg*&0*d)y``^b6SURfHRVW-{Es0MK4Gi?H#1ysa0EC1w4L-|H&!UcM9$JWj_J{V+70 z&>}PR&cX42VYq{xZU6R+g=7sC_{-*f`&TZ8^$a|DS^(Ta8p!02kLg!`Y3%&( zFBxhU;#!4$;@Dkb*_gd`(3__PPaALGaJT^9W;xs6+Wdyoa4?)~9uG!QyZum8rUCnY zyFzrC2jPe)%ft^-~)x>*NbxxQhvek5aW5j$67d(Iu3rRhDj zi@-e=LY=$yA>mFi)jK1P8-`+8uMEphYhMMaJNPt^bt@Z&gmYfp%|U_hdr@RZEXPk= zgmsKx!`~uraYRcAbC2xARfj`})5`*A-f$G$jr_nfFM`JTzUOSy6XU0XAl_Le!(VY? zE-YW@&BWIPa5gB~qLkeOq9;5D$5fMG>c(?)QCRydIYl}qE?jebbAEuj|b4*A)Sz7a)1hVHj&)R9=P$& zCiuL57S7kdiOlypdTJ<+NBI8GWH}e_-tZ$oTzbd{oymOdB1N3L>NMyTp2lYzzS2?N zMe4wEhX?MuqG^x>*|;s6jES>;jtthDS87NcK9oWB;b5@((}JTh86fa!39xr16xz^0 zWFvcs@y<)+VZtY3Fl`&^o>>5e8}BkNvQ9vBx-RfOvsv;dTxfd!ly$I#a5(;h^m_Y2 ztRFbXn5!s*lkft9o&BUa*pmI-9DtU~gEV$lKc`hB6`JW4x+IiR?d6>y?3;tel2hTr=`mcG4>B~k3%#Hs;Z zZLiXV(UWk}zm{3040ylEg!HbRijrS{u`ae~=HHf2I74hUtY1}vv#LkvMdv6|t`LgX zbvjX3H5>m(vKK&^qa25e8CZ1F5o|xG;!H4x^6M0+<*Xa55(x$)7|e9LTv%rnBzQ6Sfy%SlW>@EhmQB7z)!9UsiKYosj@f zPfxm_YAdNmV@&HbhL(9v#7OZc6}zw>LYj1Oy2>JW#Gd8igyT^5i6?IGNXJF5Rlve< z8#?<|QSkvYRQR0;AQ{ZEOnso!(gxO>FUO^V4^VdNIm~~XjmKgF>6E@~C|6p_@w~|H zOM04U7vss9{q72Gr-8U#A(r~?b%G|cjZTX_gUveDP%=3e!u3pG{&OLk=kgQ^N}{Og z6H)&4z4tjDZGyPgv4%u+JR&DI-NL0MH^FpKF*H^z#Dbv_*dw-rq`zt*>x!#Ur_m4H z4?V?ew%2e9+e!CxeFQVrH^Y`)Gsv`ta(ey!YmcHs(}LnZE-^h)JK_BdMeMr18GKwdai5zs1g>6(4c!0m7MnAed2bRf zeHq-a)2Iy3O!MZXjaGm<+ThcYne}u@BT;t~q$b;*F$WaQafZ=4%ov{p`=@lp7wD|> z#Dqyp^jjk@<9Go3o`|ky8Xb6GlFY?1&Kc5ra0z1+o=W)ZPoh<2AdDB+a{lGIW8}do zy5Q~|OiBqOLG?c{t+x=eKbPYDGYi4;+8^41zlgn=F}(0uLg&tjXle+T`hd=#c$lttT-7<#+%GQF5Hz?bhg!z*Uh{9n*7%lg8;`e07t5|q8zPluQ_&CqUM&V@N}Ckr%GxWk=_vo>uvU9&WS?UKeQbji$ZZrlN~)UFCS$OY=%>D zO62wJZzRM$7av?*3-7EmarfgbIBCQK9`qN$##^o+F|z=B*}Ozt$P(-fRR>Gsvuu8I z8(KbW#@_+E0k?m~O{#^Qk>wX@hhr6-mro*M{4Bgu#&$>I*U^Iy=X3n(r$gQO8|0yB z7oGpUksPgNwLPK+SeZcdU)b>r-p+$@4k*+}e!JS{aXfFRq66YXZ1@VI1i{ z-AspEGqA466hfk|K!B$yz5GO;33w%qS5|~z*3D^ne6Avx%J$Gfr_*TNcn&klLh<2) z*^oD$g+pmku(Ko_vON`1cZWIHe;s0ql_s;@h!~>q!;5BbdQXn21<==TjIrglIoO=} zK@B_}VSsWO9P3>O@wT%-;!8K4#z6h;xieszy+2%i$-2aCRKfC-H;tLGnJ8ftoq5HH z`t`Wcn^^)-IXnZicU&F0~y(Es1FAH?Nk?EA3;wlPPF*BO3LDVo-a< z9I!u8fKJ1osYuf=n*IABRc=3ttK6*ctos3QSWrVS^)uP|!4=uC1bMf&2(B7rkwu;< zz=T{NOTE=FbLuwEkX{tY+_4g-T28?V6&8OZg>!!Ih|$!hZ-WU5#r zIX~=&&B;kbGHDZfI;w-7{X*6LSNq1^<=(dx`Y5no#BsF7# zI%|1>(##g3@3b0jbjO0>@+g1{2^fB?jLnmH!e*`%jUTM#6eb_WuAppea}ng=*WKV+ z<4-nx4Fr?sQBo0Dg@vi7@k>)C%RUXkwlb~R3%~Etqi)q zF9MrxXmKS^;(Hw zr2}n0CQk%YJ&3;7R;Yg&4108pK-#qk14E{uU_k|r#r~pC*%?=ZBnP<9^HI3@Jo-lI z;@W|1FjYZnBw7yV^}sHO{bI?gHpfcLAYmRk-bBEZwXe1n;8^?Rx znB@2-0>`k7>RLE}Ok*6@o+YUGMHatGCBvy@yE%E2o#Am>F_f@b*#w(Wda=otPR@%& znH91mK1UVhPc;z7%mbWHCX)DC`7=FZ6pwlPRB(>OJsQyI&GrTtVTQyGn9>|fGor?5 zOlC4wl=GyyBBRWxi6Z_`wgd6B09+%v4jsC6(QtSs7FjFvw*2Gb9ZmrrknN|ED^!SV z?q3qr6++j2Qi6iM>6olg&AFPC4_m8R$y%4AczAaJOuexiKL40QD;k%OE1IjwS$P92 zdv>1~{5-_T7Pa8zi49O^w@fI%8-Z%8j%MAL&bWF3-!52Epq|^bPCv)Gd5YJmSKz*5NXFu4w}HJ42|Z znhUzAhf~q$3&`CPih)Y8*k)c%`s02zNU{Eg=i}_X_og$MY3fd&{^IG!#7eUFFj27h z%64l$_yDlorEfQ;ps2+>va;Sg1~EID}RF3$0ZSkLy!7vi9Y4;_Bw2(oKhNx)m^ zcJkhwR|8AGSO{c{pi(j!=J#Kv5N-z3&$z(f+p2AIY&CoIC0fuVs~?C zyOMD};bgs%gYnF%yt zy(e##@p)P`{Tb)3Et~0Cw+5PTrGU5YVX`A;f~>e5$}#M)$Hp}&ynrS7oPkCMRFcYs z-RC`t%2rL{{YVG}@Pht;u0P7yEPYG@p4!)7b+8s%_YT`8LpA3LUd4H&3_(zU)^c-l2QpMC0O8ATAO9?m4BLYdXykzMD z>^oD;$jb>*d3gia@m7}3I2}X!KKr9zWImxhRgh_oV&}P@F!zuoNOh*+jAIqdz~C`* z%)uGfc~q zB3iQrx0=py7`?d-Zp{$~l68R1^xdUfPh`=I=3;155Q6#A3Dk4jar||V^>+M@!j)0s zD6nM<vb@6X+B`Kc7$?vzuCs|6B;Ml9o2OD#{$%_&W2z6S&Ml7 z1e3ttL$>zYvaE*l_+(KS>xg7?X*o%t;y=!*Uv`z)KQO_<2l=2Mw;p{rm6KETE~rvu zO})R^5-~eN80BoiMwy$8VO};Jwzb02Kr>oU7={NL&cX@{dsw46i@jrs!5Nm>HVSb> zAp8$6e}MsRbzo;iACfUo;yebpq`|DWQD_vzcGYPR7O$_NcP%X8+Wg(<)gJ_1+F6_* z>S>U*Hz%{P(U`3Mw`5aV1|GFH()}iItw@Z&&?qqvT?~n}2>!HAh zsroBC%9#hh!l30U`?s7Cge|KdkTfw>u;$H#HT*)lTV*YICY6lQmAPp6I+nN3iS>YO zuOL2hzo#8;Mt;7Ss{(2k;#TNF%d-nPBB>Bp9MZm z7m3lHB2497=e^UeBi3`jlA`j9lwB_o!7p(nEHfStMn>YIe?jy=n?9boFRSRH(3rO4a0%BZpNb%uZg;4hyEfDmgoAx3(9qZAlUReP5QT+ zbM_sZy|rCT&2tZtqvJ6kQIw9GqQc;r=u&vB5zdLNP=FNVyAu?~H;I6=X%(E4R=vJ2obLD5k3Q_>aB{cD|+a_=}3Pr=4>S)PsPoB%MxnYSQ z43rLrtOZACY~Uiii*iuIx&zb~XTaE#nZ9*q!#u} zM8b0@0Y`RLwyo_1%=cXloo`~{cwQVXbg3dPOJ5R|`vEZP_k8F+>I)uiz;@ry;H+gT zDBG$IrVo-ZQE3WBPsC#Tq9Tl_8l$CG!r9#0G>H5zjHcTJz=08__qG=>6R%Fw)&Mj7 zxOWL0LoNJsFdWoA9e_8hSU#O#K7QMk1-cfZSnqWnUd8emSCvXS^gIvjWq`-6zC$Op z#9?acWb(~C5Fcs(C8=5ybZK!OXh&{lbPMwFQsH5`$IOKmztq96Tt~1`?V_ELmvF^F zJ-FVznd*Jb<4j5n2APc&kT0J@(Z-MtasGO#kbWDM#EL0??DtqoJc`3{;KUf6#Ac~V zDh{Kp@D3=pJ5Kv|orBM39Z~6pJK1DAnVwC%!$`}_gv9^S>D(W$sgy%9Bk{lf2Y3Guk~awNz_hNCC@o{@RKgMN8t0H5}JB5R(< zkk`W(h=JlHdMV^1SyC^{XntnjUxuf!{oyi_b7u_(ytE=O)x_aWdm^oNHN@5<<>*ow z$yf!t05>oYcJ-?g@A=B~?^b_2ZM*~j#7xk(p$B@A3R}TfY${swzEI`ol2{P@h}g=z zLDfhBZMA&ENfX$HJ_AB9%SIate-6>-f7jr-OiftwKo+L`kpM@wL$3XNF>$cni{XNo zP_R0d%J$?z_4V~++D&!1RS*kT4{n2$1!u6Z@GdDoH67cBK9R{Iry%EIImrGy5Bu%S ziIdbEy!&x4RxF$ahwkseXL-9I#gLN6LaJC~R|1MRQ^4q_2ORX;g{Ny%@Rz_&Jbqyz zo_($l0>$r%j#MY*E2)5Q-68xow}v<3-2??+&CzLX3{4#phF`B@p|nQ@0%h%4K5sJn z-Z_W|*sgZi@EcNdy`1eA-RF$F35WLid+?834t|yVMUFHHp}EHsx^TV?IU96=kl6L0 zv55mMB9_dZ^h&(mI7H-)P2kEd0XlDGBFO#I0eW1Dr0)oXk+*jGp_;XDZGRS)G$R^c z%S2a;Ep+RD!@OOmW$8!zy|idzIjA{a!lUKRSpM4vx9AtL-cH1ATW;bn?@CUpy)Jw) zW6w|R#-zbWA2x*9!-k5voD2V%;-%5exY{=#R-Q@&L!SV+mpv7yPklm%d#B)x<0*9S z+o$xO;w5}d>xf94GJ5?OCd%;G60GFmW z~U$w;lBQ2W{$}F92L`N*;XwNPi#GW4rOO z1s13?5eR)3s|gc!0P5p7aQ?0n03OWD!-m<_j6%~>eA<-@&i}STN@z0;-yaEggw$byRu&#TU4j41 z=V85I5IvXYhGoBYLce_(&dycDPX0v_$(}W*sl-FIlrwm+ehklm%^ZPCopf-m1~vz6 zz&HM;sCp?Cin@D|ALD{+9V}sIKn+w#6kyZh6q<48J?Sz(N7hT-0cPqWdf8qGghYgh zyGaWvJyk`23h~j9XtJWJ;DYv5G%eh9YX)4%PnI00&R zIg%_R&-e}>n{Ga(b@tg9v2cVq6syx(?n}ylRS{R6YuM-dh$`;g!0cKZ1k*w{0Tu^h64GyklFQw){V4d{Ek_~`GgKw{4|5wcPy*>Y&7OSjlgSt zGx%K(Sr*{ty$~nErzL+y@K}8tuJlGqL;F~^gbs{Zg+aW=ada}^;r8Jr)`UJer-gj`QJW28fU5;hkUF(0QtcCeIruJc*6GlF-L+ zaEBTd)>?txYs$&$c1_~* z&Jx_u*Fb%DGr2j~MvdGu$PNEid>ku-lXgBNQm1RdO-YO@1vf)mrvm6aJOz_Bu7uy; z_F-+)f1nWamiP`%1Cw2nSjFD?KRlgG63Y5%UadIc@Lt1~VH;d_2*8oOE2T!<#>Dj; zSZFkf-}O-wUHayb-ssa%1IfG} zAbLiTJ-dX1Mea0~jlY^SY1m+NNjOL7odz}rFCGaY}v(8231xHxwOJQK0vv_(2X!Ti@gHotyJE}1`t?uR}^>C0V^kKYPg z3E|jJVY%kZjkvcL#W8;}&eG$3|8QMLD`)>T1uF7#kpBME$gI0(NxP2pP&My*T-mgT z<{n+d@*|(oeYZQ4m|T?=wcR?%Az;!teD9S+_)1^W9h;{tBYnI7layt1>mK%kbnQJ6}YKfWcaUgIbpZ5 zAR=6W>pBp_8N68ze-32oXNEl^`?QyE;!Js%y+Iycd^hIbKixw#*C|86+zs5jxi&oC zuu*)^bD|QtLiojZ4%d!<19Z+t!1iF)g%qF2_7E$<>U}cmXjQ?8!F<+3DGT50hZyBr zZ%)teS&(5r0Z}Vg5vu}KX2#!FFvYSDtQXaiqKn_r?(YZ6+yINSj%@5mE!$%l?v#Wx>q5)u-9GO)1Iyv6%1S(~NY_HK0BV zxr$@cK+xeJwaR!%8Vphqyk>E$zg>r#H&ygQ#}xKnA4*@oWZCq?Q8?>O4HPeSAu%5l zAoX`Vy|q+=RP0HlCMyF-gvk}GHAuspklZO zuge$`70ZLLVfJ}c{*j2SyW){EHWv=X{=}ItPt$J(g}85(3_fxm$Kh$yQSP4=_Jz!3 zPT%b(Ic@jh)OQc|`zWz}*EQgk>4dLe?T0-lIdp^UO2{&c$KJ$MO!Q6{Dm*3yg?rX8 zOob;YTs4)ZUiV@4l!$Pz*ekMguUphD{3Pu!VS62JWq38Y6sq<8$lFEh$fWidRJ)#p zA$n3YNHPPqUlw9rNyovjN&+1c($GaS1M=EW0dG3%d-`~ewj5jy-4BZKgKig={jkM> zmKc3>w1D|u&NyFNitAGy3i%%j@u`~~(XCj)3tJP49Nz=9BTSg@eg7S?nXSbCGwU)& zO-qKXEFG?jdj{%@>M?~IZerq}MoceJ&=Ft^Sn;I-##Xy#{oUXPg@yc3fH7q)M-i1Up4u|HS; z!d=iMd<&h#Mak97-B`zHlf`jSaD(lgKfY)NGb$ADh5?cjU$$e1Lon?AdIB$u&&P;| zck$TYInZoVM*oe9;p484%#nx{RO6y4oZ7JuV!5SY_>#c#$;nw{!4&cLzN&X^1X( z>jkpEMEIwq?qg>_F){~D;K)E9yzl%-MV)6uo$ObTv%CVArbfX5uS6VeO~T{eJrFc5 z!oSG`ld&CsaJ}(ADC(LFs{ijeiR+PJmqb+Bo~hq?>NhF>JW4JmKft?FpMkS&7LL3O zL&?J{U{~7-Caf+1W-2`(ONZ{knV=L@xbqXNjzuzSKYWDDFYjSzZ!^T1rhu#MA-p~O z0tWmAu-8i-r6w;XH#7S`bL03ViNpKe}fbAHSxvY1hCWTg~=zS z_@=kcp=0|W!f-2KlX-;x$H`VOrLqTv&2!ieo*s}o6})Qh2Y2ONp<-Vcwk4O+RGq7M zt!4&B&Adxzl}zO)goQCTF1MkZoHEGCE7MJ81Dw}#HgK+NFEuLNhWi|?*(?q_KlKuZ z)gvpYtf~gg@cszj3P4l83APMMi)KmyN?FFxk7I$UZ%(PY~Xk`H&E4QE1_EJF9bTKqb>~sMVEeN>n&ye z#ENf(rZ(eC@dzw_c^>5811x))1PzmZl9M(4%=Q*<*0rs~9UahupuN)gELWO8FX|B6 zX&GX>Pj7KhF9(LdT}C>oj@f0CtUK$dFq9fxp}UHzDI+lrU9>;bR-@gVcYWF<{iQ3h z{uzeV1|oFr_Ik)(cngwi?qd7JYcR~U#XN%~`uO8FTHxSCWUtSJpW0LSLFzB4z+NGE zuG6Uz#l13@{G(2>83wkeF08_OsU{-JtxX;Q&BV8$o^)jL!x%qfe zE}q`rDGF!QD!@(s93E7cf&cE*a@JY1Os8NmGN(}pcYHp98s!4u(p5$`dUtWYT0i2* z>m`8FnE;Nda}_FId5yVoE1@bU6x<|C&`o?X@TJsnk%TcACJ11WKo~J1O{5`i2fj$H z=UkR9Cx@+UiRG#dy#JmIU|zWrdAl}&hFL{JkwrZiw$H}>Q&>)EG!2LF@oc{(<(&WD56WTjFNac!>x@A3_#rTGhSeWA?%I8zBuX50q-gTC}+N*Wsp%gbq#b@ zilf+_TKXbg3m^A{)9|vdWC7@cPf!`YussV8Q%XsN_FfSG6$b|<2{Jeqz;+?Ops~+F z#xLP0CbjLu`MnWr-Z~1e=+n8rQlkmUSx{xWb1R82puzI-= zSlfRh-b32+oo>GKy4{LZOPsI4EcLl(f>g!-TJ`-=&IAQ(0>o|6; z8{Y(X;D_BOfyra%EiclDWyy9bov;jow|3D#Y3D$}(F?}L(+Qu=`y8tlgZaJ^|sM}f5YgkDZ%(mQ-E9e zSOZVayG&u;Tk{jOX~Yd3_YibAb% z0OKOg!!ITA$d_lcSffew(6e+noS%e^_B<>zbEnD9;tg(JQ*fWCAGMdcgi%AfU~(Se zuis;mW+29m3O|p#b}iuj&Ah9B(%%vvB$nXwU27nNb=7@$n@Q7rdg&JZI&3`~NbQ|I zgVb-9eaa|OzlUl#UN()*l!)@q_kei8_G?Z4Vh+F?VWyGZLkzhQjx4n;>^mGImSk!uMtVD7GdYqtB>=_&z~c zvRnh`xDvc9(u0fJoY4L5HY~Aa&sb+8(Qj}Uj-55fMaS8hMh3xlS%iRPS0Fym03+oh zq35U#w*M4@^`l>jHFX55?%Vk4c{?w$;2}!7*<#M)96+}BbmWCI!7LNzj8GYl*Z-y0 z%bsvX4O#wH)L!s3t)d$^dN2+0VC+jVNy;yv@fZGbiff`U>HBIZ`6`Xq1A#iS&+$KI zdtmYwO7D+trW2pv(Fw)V@JQ2*7=3%fOrOzD7w&MTUw&26<6e_t$C0y~s<#g0(!djH zKI8`io4??SRU+JtI-ni=XaywmZuL*62ktk%h8B4RLpv0S<yNwXw8^ZOKvN3ccH5CuJrP`o_#v-Tk+wF>I z+G}z0qv9x@DV0X0dqtRsTj0aL$K>>yF|vDnDe5<7;S}HVFmr1upKL0Z4 zNcX4HtY6Ym!PV%J;Y@aZb|ODNWnzg^A)P7P3|Au0!oQcE*vq?!w$2B^&u}yKFZ2a_ zzt6O3x;m)r6rp<2X7o#9GNX2JoGAzl;+VFIlLgz`mU+odJi}| zb<*excbqizKZ?%7pX%?A<1}PtMMe~|vyy~+-cnRnQ7J@5LuDmorfjnJ%HCAcmV4f% zWi++4OOmuz`fBn!zyIJq?!BM$Iq%o|^?JSxOu}}#;JIUhpefae8DWWNllzS-Sc${n z=1atNiaI29n8Ck4{NxLtD#z$qI%+)mO{cBSK#BCn?IW>Y$?sBxHInZs0dE zT{dY&J_arUuI@3C_bVLV-1$WwiWSm{l}pLZ>8|jvK%Lqy_(Y~Xio?=WYZMq4N6AV# za$dHWJ6chRtG1@lL$3R=t?M{MoBbvChZ8aSw>Kx#{~^KVHmKW{ zCsrLuAb+i{aF>flLqgeIrrB-5)8|b)^y*j+`iVY%V4jz;ZzpkzO#})p+snFSB=LM$ zC2Z9?!d;xtA$PU9$oOwPc<9|u#uuKYqT!vKx~_6m9#uerY#}_?$yT@G&8KHh?>)}|7@)JjxVF2Sef-N1JtkE$K+e8i?PAA<_k5HoUv?H)25ht`C)9Bg^XdKr^UCAks z*YT825jc-&;=5T6st)Y$2VqIOH22KALzo^!uu<6tr9GI}IC?qkc2a~ig<@>}5d$X~ zBh)M65-B?42?j4b-T4`MT;mdH8+H? zJGOXJPKmRR<(GIg!|~pS6I91cA8YcH&n?Q71>uk!+}&OUzT@90H!KrWFDJ4*i3!QS zv=0vZ4$)52U{pMkhAmk=L?rql=Y6*;PF?7QMySHz$;FKn!_oX8H{=7x`}5%Fi39P3y;T_ zQtRRK9nSAGVaMiL`cAfxKDrkMBl$h7FRP7v&RCW0z~|tyZ|g9+K!Faub>YtJHNaod zr%CIOJ+wBh$2ZBzQ12g!N9MRA9Z%r=`|d~VR-B~QZIofU#C%vCc8{#B*Mqk{c^Kr) zix&lL!NREy$8A$VwBr-~)p-D#0v=PxKe~HxigvSA-993Cayra@?+G zgC%Z)IsWP7+CByDgG?XzXZ(h^TJPoZOG}ZjTcRK|L;fK=REEm-{WpIm-=EYP=3pmN;PE6?;-O8jDYc;#n@fk8qkj z!8XSgtFAwzjor*+B;2!F@DA-+>3z_>dSy;}=` zv;QtG@3K zIzjZme6QDlz&2T!3~cNm)1G`FVu8)X=7ty+%!q+quKPhwFOB4M zCDPUJcj42(-OwtVNML{XcUu1U3)9AT=SL`@m0a<-$`iL zDGqsC?yxS47Al^c2@Ox`s99+WIeWJP7TmZ+cif(eb9@`H?cXd&ygmoV+qZC!E;Yxu zyFxI&n;(2i50f8TG{7^f0=T>0&>2cwssHAKWP1M$P*L5B=e4!DpF_Q&SHc_pwr>OT zWrgf6lueJMFfZ|F8Cd+wCl@{$L(ksKj_3_@Am3>-?i*HvFS3VlW0npm?HTzONQ9?&#+X zXCCBQoS5LcTP2{h|20nS#TKe*AOKre#9+2C4>{zx5;t6}A&#Lb*m@+KgtNQg5&_n` zzKnI+q&1PED;4CqR~h}=SBOUS7ii8IMf_?agIXc^sCV2GTFUb9W|%WxZU}}8VofOY zWh$CYmqLZvnW!g^Ky`h$Zs|;2kZONrQf9Bu?6DRKZ3)+}EUO+Df*HDj; zC~kv>7aAPUKwhPEc+_i8_)`a{#}{fUF560Mlh~g8y&jxUj>rDzh4fNb7FY=Gz&ML2 zoc2=;w&-MnlZ_0#+BZ(D>ipnLSQ38R?gMu)AA^T7VPEDfbRNxz9M&IFY*3Bj>pWn# zSsBh)u@61TMwXMDh4#i4Bx-vasK+LvnYTLLw&|yCd2Z-z_=F5(73016vDE(5N;>6% zDjIoj2GhxBWU1Z|jXbW8q0jO`O{5WnrMk(-?`m-Hi5gtYJxXlVv+%!&D)^>c#ZkPf zio1tT(4z{8JIQ9I*6_3V{mZE9lFiHjIKLygEY!*F#W!b<%_E#I9b2D$ow;oT%YTU zIy7v*6JCB}dLro=S+(vZ(U;L7V^1sSwVq`hxdcVnzNrx3P23~f4GU3*Wv4!LWD!@t z_3+Ou2R6#hfyF<-j+^mGFoM;d9_X?a}c!K<`5ulDL=^f57 z_2}A|$epogCEB#8!uA=~SVXqs-3=^TlU$ElKlh%)RhS+{p1 z{Kv}&HX=DVTCk2($y3h2ENf!*v74yODntH#=@68~81G8V+au~kEsdU#zB^IGy!{>N zPm9B1&t$rj?-h9-Qj7`4gG5eQ5XuJM6W1gI92<(o5_M5D?6L-DwqqCCl!JXonxL~+ zpCnlqLSXw4O^;lJA%As1@d!V4e?LU~9-ZS1AGXC!j7J_cQy71qdqq9pG0yGrL!65x zD^a6pIr-^lNZX5wnK#)5%I43&XKLrk?cNAHvo;yhm-xf7)^e=>Zvo!BU5;)dCGc}Q z(<;ZG)78n#FdMm?&ZfH^Q{^?0=dLcdt-F=<++9OQdb6O*S_A@%`#Hw-;h29q44s$h zVcfo7l!rGNtcVQ>_gn?e0i8sD*&cfCXBJwWuE*~iS76zeW2CDr5w$f%1Ry1o!Sl;7ba^qzyjk_rwEhQg&g!4?kR1 zl1KguWgIwLiTXb~IrfHW7#Vq+{Wk(Z@>oBy+&mL_L|GcL$Et&DJm{~#0h*I4YM9kMQ7o^&=v@kH|7k6aG9-{Gf9ysf(Qip?oxQ{!l@x8Myp3%-gLHQ^=!M@LH2Pz=D%N?r3 z)6h8L05vvhBk5H)$gTC7V5y$~x8_D6d9V~i{0)FFRu&|4B``aTpJ+1=;CEh8e5PIx z?LkGTIND0cy<~6$8%Uj94zrgPfSY_Hkvy3NZl_o$L|QZ!zpWyz=E*4bSQs6f*I}@# z81pL2V$fnsJb%j>$K1}54xtg6EpmHx%xCk@4Tr0@<9W?`ymg=u{`q%w?ZPE;j)+(w*UN+Eg$Olz_owb75c6Qp{dIhg9+G z;+n5(;mAcz(x+^67c@FTQ=ea_=Z6%)ZR9?=FhvMGe+6=QI2xu+4_CnM^D^j=v<_qq za?#J_HyL@OODoRKfb2(iiRXnMoXZtzsQT3u`$y+WAeR|4QJ&UlX*2GFy@0779TI8=_ApYubzrQHS<8ly9$Sd zE|5QU)kru=P_@T`<&ONxC0ReT@F_#OS^(;PG?20D@sMBhkR16|0OsVWY0s8V)XZNO zt)jO$Imt))>&=ohDa(I)7)mdx1@v>6ijZG+wfQ#g1mld~+d6gssN&~ikOeE*b- zPb?GR%5tW|@xCTTZS@Qt@{OEf*{kv`Q?R!&0{&~~!TioL=pAG|21PIE^KJut_EQSy z>7=5^pMDy&NC`!zXTlrTt!RBp1NF|BkV_Z@cTe)-i56bS4me9+xYyvTts7vIlqznY z;es2VPlwQ-m6&`#3r}u}!F8Frcs^hkN+xcDd#5ho}UQ0CE`;y%ETR<*` z8^hNf)$m(E2BfkN;MoHYxsHDv7+>i)w_he3*4f999osUgx0ED3*{@FOXe>E!RTwY0 zs$djf7HmCHf=gdmfrNlAjl7=(D>V*cU57oc7Yw9kQ+P0x&jO-*oVnJe>cqXtm86)6 z(Eszrxr>rfTsI4xM1Io~rE}@DyP7!I1rQcr1ixSNnVufWgYW%S+}4gBvTJGp{FWOa z@}^^)u=)XVd%iecJYhrb@O&W0&m4p>#$$WwX^6fW)|fHp6j>OO2662!u)%c^Mt6nL zoKze55-35u702kk^_S^4$#|4LEI~OjB@jKl1U4&Hg1=56zUE29tm`hAUU!I&+s2~M zyEu%_ywB+p)xjy5TIBxza9pDDmnIK0&-0Gy*uT++Gq;(a8r+B`{FkHP(5ur#%1i_e zeK};jKATgOnn8Tu+$HYbM!2yx58BiuVEm&3&I$8?tk?gagZBey-Jwb?-teQ|g1QbF zk(a-H>D*1yxI38b3CofYg8u7}T+wK{^OOVQ2kU|QU=6-Ga{!)6Hj=jjS+s3U8hIOb zz*ISIE57?>1MW___~pd|&V|_)^rt+_VHUeVm{k#ek<9{?%`dsSL*`hK5relDSa3fM zj#HK6jGNu*1nbq_(t0_5h?h%&DD5I}UgHn>e^Owfj|qx&d%;nm9k8)4ha^PSnJl;# zgJs`phV_5GwIl9{m$3=5V(UP~zU@)nSQ<6mjR#aLW4eH%PWy2H)*8wXF% zx!~QbB6J{5_@tk)c}ogm!MmM|Lzs?BtB}~bF>l@eLU?4a2S#c9$jQioO3Rl-VGr{i z%@2jAId^F3v;=HZR70zSDkc)vrr@{Rm)tq0fm0+}INi`huQBE=kAFFcp60{3rEc)U zI0oNDnZeTsm$>0%HCCOM1QB^HJX-aMjx+{C-^VggoMjESd&2SJF+~(8j|EO-Gx3|! zPnPh=$;)hV;~Ye%i1=6u$QqV4qwx zuKgzn4b5-46H*l*w}${vuQ?|m*#lxfW#dn64G?wN3V#32kPcpREdKq3zH0eM4y(pN zwuS?^{z?V6-VNY>lhCAn+b}9nk?WY01nvPwIP=?Xxas_yp4^bkJ?>UVvl-7dHfui! zzMBH;W<`uvJl|}|ew&3-RRk%i44@Zn{Q{m%^)W+j6ndO~}@>SNbgm(!o zaE}4u{BCME14YSG%e1Om@~r=CiN5I1{>++g2dk=7}AzcUpMryZpki^kaVWQAte zu;30&{vD2iyan(iJ{`1whv4;R zVz72gA~Y9%B^Hb0K##sAjR$6tfWwodyKaaoNbLqI%R7YUk{;T*I6x%tcI?|7jve|F z#NfdJSez(?GWmR*mt`(+q|_Hm+fp&HwGzCg8)(W#NqCYM&v`7JfdjANFfmsgr@mc@ zC4Y0sE{l~|GqQ;sRnCXyefG#VSD9$-S%=?77sIR*|H#;+7%twt2Ygq>L6G7iaJUnJ z3JQia$VU_75*tv$q0aQ;@-~{<8-;>=2Jm;1`HUlEu%nNi@vXA(@#HFaCb1SZAHE?= zx5eV|FI^nRC!Q$gEk|P3^%0W>d(`I2;ZPTwPe$u->dYfxVO0ySw&bIxPA=7}mj#q( zz1l+M_?vld?@y+pcxpOsDLV}Bt`w4tf;r&LxWu&zedh*~8VD9ICQ*C`us3@OuI)~O z)3ImBf1xYMGou=~H!(`>0syTtX5z=wp>W~S5E+j;Pp=#0!g%Tmc$&YJ%+S0}M`yQ^ z$lvi0xoR#%Jt%;+DHT+_l>?r~Uvt#19L5il+rad+FHQ|u2Tx36>G1DIsC~?r6gGyj zuDMt!-d;}))AwQ0^FtU8TOcL(GqKqo2m{T0Sl?q#kM5dI>g03b8@n%LjBvPa%9)t9 zKM*_v^w30;bql(caq7cQk&tWkupzAypD(tCzwF+YmvM(=kNZ;Je8#ad6NWN}X!yAH zFbV|NV9`s)K-kMiG&4MyZnU4QG|0mR({gBKaRaBap#(jHBXOklBzg03I_hm&MXw*< z#`q(>#3WV|9hNndm(iPX=gf4Rec&iJIlP&K@jAe!XHIZ-rX()A>49c;4bY}&1_8nX zARQxw6PaAPd0sqtwJoP<>HVZ@RWf6_B;oYnrEui+QLMBYni_4Wc0Us8n0J2m@l3QUE<~4}jUau!5*Owg!BWU&d%-f4 z`ejX)9M6I;RlczBJ@aVCIZ^R%%T1K4Ptw#6$07IX4A}a^0XI~b;2*P67_TmYl1M?A zm#hKG}id0L*3UBa5!njfp9Fy=R9;;4a|Kfb2?7J0aPtnFXi}TRV z(;uuwuA_Ba5LByqpwRLF+GK%;NBtyYzKhT?Dg_iajCS-qJb

b5jN08BPT8 zi92M9x(gY-7>%lX)iGsR2`szE`e3HoaLV_e<`nSGfR~Mmu(I0;H$)Dx13z< zYo><#+rUFf1L8XJY3TV`V6{daU(ESLc)r(x*XjkR?%qzS0w|`sr2$pGMg3g1WBcZ1 z$fGg^1O_%@xvLYrlTL>b-;1c9?M9UUgd)FC9yr!GU?%S}_-k+$&iW|P|NaYM8A@YF z(Y1k)p{wM@qITH3VK;RsOM+LX_i5_iax$=dCD_%@Ceqvtxb4sjfh9TQQingc(y^L~ z47dZ|hZ?Yu9p#AJIz<)YPodYHOk&y~!Wo@sh5^N_Q* zkKhzrZ;+lVPeLMi&bRx1quwq|-%HE`Z3Z zT#U4aq4PqpL30N>h1@6Y{#u}%o5OhRM@+{g_*h@y9ID;S-p>Xbi7`(Crp|1{dvoT~ z>cUT^(We=w;gcQcIk!>%9hvm~v^*?pT8$O^@6zKxQizgVB#d?cqdS|NF?`1K^LsC7 z0kO9xA6XaFi+`%PYWysj)!dF#_WJ^#zZsHP8CW0?h`sGE=s*YKZ!J3tpFiby=u2B+ z>kS^9zA+ts`M-gJ8YR?suY$4~AG14a>vliC&yclrq~V+ylx5 zIn>*2Htv;6!xbxxaLuNpSf^n`3L*_rVKfM~FE#|lJ*VKX-(B*}c`A7o-4+TS2cTE# zmk!;@1H^p$B%T@i2jxe%q6gD04$YCEqdpE~-hbVMxAQ5^yk3s0D;YaMMG)uus^ju+ z)+oiPM9&c;wAi0{9cY7GegAiG5!n zr+7^*Mu;uI)w@J-PqGjAT?_{P=z6YG%OiXnwi@;@U+bc53l!*H2TRLDQBD0AovOJK z?^XRFo6i;ziw$|WFNJZI1z0zIrvaXGSHkp|^<1x!Enw%!a<=cH$Oc1xXkOinI{u$P z!Qd2>ECzad+4S>%$tNgOJ9hY`FX!ksi<1ODTc#ADnE4{2KwrMJUWKWQmrSxUj}mo2pG1Hk)z>R{vJgN2IEiPTPa zRDRY>Cd)2^hQV`utDZ&WCaTGiiemULub1r7x<=RZv~b>Teaw8}mE^Wv30>Q85|@wv zCg$^x;*N9&PMN?%ZtJamAiYi#AFp~ruB&SzZ^I_~a`GNY4L8ImWe=cEs1mwc4}rve zZDORR0#`lbP@g{^c(rbV8FxSZ-VqPN!Eq$wxh7g}EXFB!xi~r?3uDde;ZqkELhBcB zm+@%>qq^b!{&0|xIYrak6>*EtJ$h{GMSNAJ3=-ALh}DT#FrIi2ezLy##y_**gJvG` z(H^+@qaEfMm!idZ0&Q+mLP48vRM5NXxd|>io}*XP9>Ll>_wh#QZ`vAvo%#(@V(OBMtEyCq zUd}>vdUPL`PhC!2p8TNc(lRjTq&ga{eTHkuQkv<+^!CmhSpK>Qy;n3q@#Q`E&!7wo zESKWB1Gpfz$&o#%%@|C_v=)J_ zTpaAbyb)j6O{LD2C-L+dNs?$i0^iINv0hsc2AkjFk)Iw&ZR1chhZiE}U7@C7*I;YL z5fo)!cy0m*rafhhbl=l>GDYJ2yc${Z?MpH}c4Ir)P(6>BE8hohsVaPERKrZhBEEUP zk|-AywL|>p8E6{^N2_rDG}g`SJ_9CxT_>r=D{$JGY${xIhNI0G9;3;B zDYUhNo1i}RG(sYz;Rvsp-;+PZ7WK=+;pd!mSmr4MCqkR)&4F+z5A`FT!*x;H^*OpE zw}K&`E6WT1AhR{5kj2H9=v0Ra2u#!@&27E(@|rj_nROc09;_nYILm?KQUbGnD$}-4 zNEEyDL3B+5oY3|(ejG7@L(z8FWE+JJtFM6V%BA3R^eI`G$vXFDq@$A8adIJ80Bw89 zQ6wT2PIo0@|Grwh6ucHzRfLhNd)ASqPZyFSG7IS6_$KJ+YKIk8N9lRZd$jcM0vd5y zhZx3eq~$9ZYw+$VdRkA4`LS-3#?V9b#X}BE>}Z7kzl(`s*;n$i#~5NX8t6Hv62ggV zX5M5i{BZ9s_g%9pk-n{s*My|;>KAEL4Nr#uBq^RcABeoqjPQEgOgtPmL{BtU;;mZN zfx&h{0#|;6$92XWh^d0GdEOXe)d)88PNGu80P8@OBf~wrxj(XJQw#V?K1FiyG`nBy zRK5uM#YHgn?l9TAevB+$Aq>wrp*U$&$WeIGMI{7mG4`bqT3gFu-#c@7%X}yYza$bj z5gqQ$f>`urjIAvRE%>vNaj9#s;G84(Nw`=QZXaJsd;jL){{6S;i>2x8eBBF|W?vv* z%q1azM*$|RS&XOm>EjHGDwxhRv){k!;ZD|lddzznjO%pZLgh}f{h%>@c<3w6m!Ho1 zB#*!z?x}|3nV^AMOFCfpQ9s`f;E@N1{SDQl)PlHyo z3!FU5%S5f)3f`$yf#cHxY<lJ(=woyGV>c_RwnYiO3KpXH+DzKikVlseFU6YPT$FA}hj{+Q zU>dxE^Y?%Y^v0-?_)o_8#`qT0e<2*{}S14We7X6B+&oZH0}c(_KYiMkpSlP-O950AFh;w z#@lU>RK@sWb|>kKGEWQ{i~~8ZR;uUN$FaVdK%Zt^W?i|Kcx`3{XtlQDvdRXWh}@20 z9l>CyHxt{MLs0IoGhSGHknCa}#y^Rv9dh^bA#c|L2hd|M@qZT-sbu%3A1 z%PJDLn)#%j@nLRPBJ8`>1?Mc+;y`U1c)I`&@{3ZdjXJnY^CljQ&`rmO}H zy?QDfTgW|QRY?*q+hVqS1YI#V5rU6Rk|aTKJnUN!CHX%1yJrFQQOkv)e`#>-vm^Nx zM_}*QLGtS6dydnOM`Vp>(Ak2Io6%x04L_n2Ogu~GB*9r^KepC z5yncTQBG0|`K}Jp1NvK`^uH8TiQY%+Sq6q*E|#S4Z6P{Iw)j2!AqB-aay4oL$K%3W za(Trj+^4mazJHqpJ3Yg(bm<&CdDIy^-&R3PnHbz!F$100elM!%EVjN00M9%zxV+;u zIrcCOFKBK@=f`iTh}v{~ER_zyj&hh_sfdO%RN)#=BVKGVMz5=Ts7?`k?=!abu_a!3 zLHHHV7+IL;)p3FWvum5XXKyy4(K#yfwj1Nuq!oSRQonSZ8}l#R5J zpk2=7zw;J&Y<&h!+H8lZ&$e+xHm0Hv|25(q+CbcwwVN)Fkb>D04%kth$SKO-28Eh7 z9N8u3>Eqe^@v}f49G+VNiIp16pI-_$F3ONUOi!Nfb%t^t9)`@78Qe9Gv>{MT1~jdY zVB7Op7@CMhy>9Pz;@fipkXNrFEtyW z)P9V5zVL#kt9(cld^ufa3E+3y15=pi&h`+X(!E@k2VkA8k2EUW)sai)I@V7^x+um#8{WJ z63!nhg=5({63SM4u$Lgzl5cuwZQI6C$gh7h~CK#H3ULp5ppw znbJYm%CT;gQ$DDDFC7njNGFd?x3bJk1^mt};Hahez=nf;z02Gxu5JlG&47 z2R&ZSe-TX>r^ExPj7isec`;@$yHD?I*$z^hi%g%@rf?o;tU(12J#aZy!g*uyke0-r zrN&!g5tB>FE|(*w2XFqQk6tX~JUw=se7tE0EHH_eAGL5J9B1GuiAJjXM;zlB$G%%X z7~UE&Hs6(_tlzksHofP-q0x)3y>em6!~34pz@CAk<= z!1=c*mZ%Kb!1SClI3&28#`LYCa|;$hT3R7K&*KGy@?LtKG0fDKo5Oz!@wB!&1@epa zs0#DGeaVgn<+H_L7gl4cy33y4ZQnrdIkEZm<3-M6)k>n)bOe4ajHJE8c97clkMmw^ zH^<*q2h}9%Fy=-8%p0o3uF)zoQ{@ zQ|wJO#8Iaya78*5zBHx5W!7=dN$cR)v`Ov*mwxU_{`n}b z+Ddpb)3`Ph<~TS{2rBEvs)U*E(iEe-`O_LEB;xLgJ%}Z#NbRI zo0-Q|@bfj+!*T#-vETf)r~_6n{6NHiO5>lNGIT1rPRG8+;nw{5@T95$M-OZu{1sue z;6B;hJKK-8Ty@N;wo{R>s_G`SA?%cjA? z6kS+YR)^?28*1;q=Nvqv33iGx6lL=;TBH!)lrM+8l64(lN|xcA9VvL}Yc_grD1{vV z1X?coi^_ZG<3iuJRv3!^g3ym6~wR{rj~*vU!jS{1Sl&FC^d)RN`UDGBgW~r_ZDL z@#$f4EdTJBo)hYz%286>@NKJM$+ir*R^N;(-o4-+-n|Uc-+1Apj#s2kv>GjUnV@%} zDz-d-O2jM@IWoTw!jI2iNY%hPuJN}9yc)QQ zZ2~yB2_Aa(lZJcqQDVTG?1o6zWJ2+g`p~yCWXPL(|Fjnp`Np-$%3a%V4~DC(NrCB1#v_VDN%5 z>aSRXvvjAyKg0E8-$h;Uo3sMg)l-Sp2OW+8^P1n&i^qLmHlc*gQ|cpkmnfbe=X3|% zA=7Lx(uwhI@@=yhY}htP_LzF0^2ucwGDRB_UnXMLFLi2qaX+n(uOMpN|2Qjrmt#kQ zKXvDy4Wpd`&=a{56&{r0ED}%WSe4Qjd!o^{AON3shmz0x>_A$y6bsLPZ(pc7M)$fs zrG-!HNa0>Bc=38Q-Ww^PJAZLW7Tc39uGWNceJ}J4For+3t0CaE9o%H+$cvpHsES%X zu2CwY&MXfE=$Gy8%W_YN+}oANDM97_e$4lke3aB zDxD_cFyKdHGBrrH;X9HoFh*2+*_j_lY15`9WSQPh{B0JBoA(m@x#k%eePltyFWC~s z{gEW5@&Os@l0+E;Z(=#G81I&4LH4Cb+>E8n8zojiuklRKksVX;kug6VaNNOh7#FA6 zcURGYU@2O*Bplv9*@h#UdN8_qh&W$yqSDgyu!7C44s+r$X41RknR6vEKO0JKY_fpB zUpuh#Q;BJLLN<G$>$0@ z+YC@<^cAgWEk%7j3#ibp#=bgVv>TR1{mUP@#^!smMN%4X$D5-}j|1rwSWM0LsBi*T z%)}UzF|L-uciMTp$W+)Yg&1drfDfCcuZT-RS#Sz82+KjGF!NLvE7JZh0Wg%S2A}yp z*n83vKj*n)+l3fT&*jTx=j)lo`G*MF`{v_~3l5NQ>nDAxYm6q-}WOVYZu5r2O; zOvU!CrajLz$j$^w7`t-_PFaSd#i}?go0SF;Mr^i{+Qe!5DM*v`!_ZN&5ZW^~K~;VL zIebzYh2?l)cxw$9Tv~xV`$M?>+-}+@xS1ST^@z4#V|V%DsStSY2A4nl7D;EnqhdI6 zI}KAiw97Vv-!9hiGW?oq=FY@ZAvSR1sWY^#Dx{-*yl_6vnel8CIN8_4VU2Yb43s_N ziY@Ko_|FJM%V&ust&#Pq{c|B=-jsx#OQDm!7HDpn!aZdZ2t2R6Oovv-z^Q@+@}PAE z^4ESO^WRsX!^&V{xSY-P|AO(OT{($)X+rA+a>(^mSLNTXiVG|5Qouz$ddm+6b8-6RZu2Nb6Z5fuNE#nO#AMGLg zX#@yoyFuhNb=;=85F%x#LC@DGBu`x$+et3$3)V#KtNczW-!-K0-Ib#bT>(dIVu9E%Ci)CT8&}YDjl}XwF75=EjqAr zDmQX!DP+fmp?R_t{a86hs%}TZ!?|TR&`|}>Pae|F@GWp-Z7rJLQw5EgB{XFuifRc~ zGVP^@8Zr;`wrIT))=>Q#AO=&N(ZGAl7qVm-~?UQNpK zU(oh%lAtwvF`nAG4M^Tb?8-2~+&y(5v&NF>U?x_DGars;)w$(ia-gg}k8vNK6P~%Z zIXu}q=d2tV)9F$@dwzO2ePR<-lHDC8)!o5{`-@I67Sxr-H?%X~7CIeP0gvi-kV}XK z$pa54-;81y3EoBoA3mqqug5uUA5EcAJB9hYSr)u)9?BZTVW{U!9C_1D0t16^o9`fL zvy11-Ps_v#{aE-Zl!*ln<@hMejy_sz55h&l;Ce9!B6-Q zI{!+C7{>ogpHolsgTfeJDhw?4*rIvRCb(AWj)eiKFxnnOLr%s+SKTbwPsL#@cM9^b zekIwlDE#av3U_~N!jQlo82jV_f1{q#nDoD#++{IvJy-JmcaaY_^$!3%*&;nQ)+0sS0$aWng)t%F0+}s25LQOnEqh}SGo_c8W{p$Dr=hN?3nI1Uvn@I*3;(>CrHuj)8AT8_Q?cUD*eGrAb(}@;XUxC_w*+ zJj|AgMP&hLxbJ8TL36WEch4a(%K~I{DBua9-0X}5G@Y9OYnNr?P7W_Pu$`lrVk-%> zQ-WV_m!sk%5$-d#C$HPh508$%C;huxsA6;_M}ArjDNYlGzh_u(z3VIK510v7fvZT* zbQ7lA*b+&xEnp<5jw=%ysIk>PII_SFWU^I2yLu-Si?ePU=_YXCtKpb`vZ6dP-{_-E z9ujbnOFM^JIiB58_$)FX_HKhoghU&`gGH*S9J&W@?5U&ggVMpS+6Okr?m}Vjb>NwDnKUeTNJp+5rQtWr z=+J~D$fPR3v|Ud~yuo~Yv?>%lbEk6t-gg2Uop_uKFU2pC>|7NU;A($;L+^@C19_zq z#{Fgak-PDraeFTHG`LP`>Lf5$!UUf>(CyRHO3UZ?>cWnt5#tW)%i??K?XwG{HoDpB$M z9nvH3gUXY;vCEoexKzy99&0fk6!U}M`(wbvAfJvqg}`+09$H%4Lg!E2g&#AFaKKxK zjxL#ls!XruKb=XxX(iEvM-7?An28T|&Vad3`JlgJ5yUda?%ddT(Akwrq#3>fRAd^4LIF*3*H zyJx`CJE{0(1>*)Z4iPeE1{lQJLBT6Q9OTJ zj6Ew|ijf-ov2)E1u&aAbXD63n;HNme6QhaU?~*}h^A5CqumQ%LL}4F~2$cpc@tqt`*}@S@s{_GjK_KnjMQa|$ z!H&RG{CB8~h71~`Ca)Xlnij#$+?!n4M`G}O`ZIR_wx%u3Q?cvpG4cUxX?QQo+?zJw zW6fH8;a|s1D9pfHA&2PqOKRZb8-aoDm9+h`6IW(qAhWcpj%@ZBL;w5mgK^l0Ox5o6xKT<3sji>!z)Bl)eaqz`{>?%A) z&#Fx$Nv`FvQZxqF^Q)0VLh<->=oR;)dnfyRwfH#YI~{h-fT|mXkXJ7WevePm3*JS* z7s))yU8l+6vNdo+-x~|QSfYoJ2P*QH!H&#ooa8gaTLE$4C18otOVfpkGaiD>u}YR8TdnA zjr9%YL*vrvWM`>1z8hYT^#{^1thpKWrMWykL|`WKKwaLA*IUi;L%AurD(XU=IeHNO zYaf-Lca%C>Gd43jixwFTo4#yn!1IO@WWii@xCrL(@^mE>D4O96wGdK2IY=M8O5#dA zUj(|HIK17--k-zypz{1I zG2p78QFAqYa5Eh*dl#}E5pR^LcfnbHg|K+r1Nuu+lEc3*1D~JX1`?M=;MkR2c-Xs= zh)W+LlDG2Fa&RTsM;E}Gt9H(1_?dQ&n` zf%$DEd)2r%7v`9rX5P=fNHLD#@?FqpFO3T=4A7y;i{>t59e%kbxJF?SG1$3_LcO;Q9M3w=;E?H70JlWCkSr}{{y>1D25Ln8Q=)zGquMW`3AK?AGnal%2H z6bR^HWcX^lwxpLtFB3+i$4#_9u@HWZU!ao~<*4gRY5&&;l(#|^E)P$kpBWeQ+k8KG z&h&+UT4QAW0wxrZFufWS1SCmN44@*2B3Z=%Dgu&|fRZF9K}AH&Os_Uz7IVgoSy5ClB6{}w zz3+RfzVFtlTlM{M>)w0LRL$(!VfO6Z)3dwx>h=7dMUlZIzVRW;daxCe0tB3Zu?th% zWG<>`p98Z^6vSKAOW2UTwrFf24=)0d#zJUE?*Nt;(9yW;1-R;Y)*t4QoL z7$QEfek-VnQ((@rkx0I%GWk_&5Q}oKS6~T5I>kZB8XJgQ*jLo3`$Aw2L}7-v5fseJ zf;Ri1pfzZo=$N3hw(VI7zP5QVOj1#F@OU<}oLedmZ_Z<5gtlIi5|}tP5pHT1LR^(H zIPbh@epZO}-R?;y@;h6^MR#LhX7vviRj$Rf4)kGWlNN%HaG&L{!Cd@sTqwCcITd^Z z%b|anz)fg3#k(14_~>;MmN->HNmUHyc5D{n&Ff+K{mEjdw}PjQFvdFjW-?qWGQ<^2 z9N0yp4S42a00u586#A~4K|S}b*rZ>%*sdjkNxR1gaoq|$a##h!D`Vm7&N(n|-#7C3 zayqs)KReQ;u?kQAs6xpv@7TBR_7Lm7gUkt!N9UYr*so+O4ti+Bl4WPIdp>j7t%E*L zHs}v|e$N`){U5V64}P(O%|U|R`4bsDD}Rv5(W>gsh-5 z60}%)Dqc{~W6Jivs$v}-Q^;z^edP3*Ld1i)*mKj0byTJc{S;#uyFr6o^DSWx)4eez zp<2j$iX-!Nf?(&SqinU@3UDR+n95ai=+?3W4I>FwdmxLwXdZy%@t5O=OS4? zB#Y#|+>J7B>QLUT3ML;%7*?Tr&{7a4coveUvk+Ngpd{ z_qv%_*8>lfMMHwQJ-DP4lUpjnJxcc)w8N=jvZw+A>*qn^<2l$n%nuKEZNd7Pc__7a zhWN&~VmK0flf+y=Q-`(lu=@I5afMtM<~x|=yuG^$7g~;o#V7oM&oB_Y@a~BwWJhE8kCo7wln6Fm zg4b)yd*bv)S3CyfNl z5+AUAy^qjn!SkzhBwEaohY|J%S>a~urjeu0vD_vtcs(7(yV47A@VX7q?&$-4b$vm9 zdM56(^TRneTw&uwP4Im4koYy3VaR6>EEBZ853!B;So9Xpo9qYq@3z5=(g5uKqKny9 z<6(i`I&k`(0bXxy@ss8%oY&t7*SFncvlnQ=&#w6>d3^_HAIKFON&0}&;aO;`UxO>O zQpxcI>=dG-*Cw38xB!m^;>p{0-(F%64tUy=HK zf@kY=e_Y`jLUwIh3I~rTV9(>z;%bd;=+L6fygcLC`7isK(X&9TT<#+H$jO82!bI#? zFccb(6p{5i;?d!c2}~8r%u~J+ZWsE3WI;MEU1o=YFD^Ds@2mu>kOPqkC6Kjr73v&x zhwp!a@qBnYJN_pTb&`@qGNOD~x}k)!a3rSG!7>o7w)l|R^rEdWiat! zJvmT>LQy78mt_?)OS$h(-pQsVpLDUCKnVy$>mqt`li@-X{@nzKdf- zJK^xaDp>JzJ0!D>;sD79=BpY*(N560PKw)%GwR3U&;f(M$X^`;1>Mu1WlluCn~wc>Z7}*0v_#G`}P~Z!sP^THdfX zif*L#auH;jtYxZiG=Uy$Wgn~zn3d;8W;h^)>J}0~BYH)~0Nrj+$WY5N57qDKLzO zW(qmN**Ia=E;u0g0PPCbg}lCMC^fB6^x~Bxw!X>1V|6>>@rfq3Vq||@>nHHELj3xF8j8{(i=kogavHy*nfB@LW!st`7vm zKZ{6n$}IdaDFrT0zC`AC#AB&#D#VBm61-ChHzPK%8#gmW9${)^c1l0|M(#836GL$R zy*Ma0seq+FD2ZQP!Xz`6LDnfr@RG4Y@x(Nkp_&g78V>OA6%wN%8bmfQmVA9Y1!TS( z;y_J5Y!+fz_XlN))%>@!D& zf~4atSY&MrBkJqeHI;1EH82yGo!$Zi_qUL94Y$O6=MJXounrf5$Y9jQTkLmy5G+2Y z3~xR(5SODqFlM_ku_y||g9eT`K-LYMGOTer_<-FxfK?Z=ao4%uBzsUaiJUwUzTL@$ zwdNV7*+*hTPa?L$tH<|*+|EKa$|DpUUbwaCi@Z06ntaV8i zaZ+3hJ(v1oFR6XdeK6Tv;%5XoJ3kc{s0o_g_X)WC=25|qZ$4HF?5P2do$-pmEx7V4 z8&VsL@zwVg5L=OeW@SdKevT$CIaWcO_itj>0Yh=3T`=Ce{F`aS+6x}j<=FYW7{+!F z!1G=vXxD2aY!b%AMp-ywg!foj5;YT_lvlwXV@=$7^#JP;#t@9x&%&3!wfIRgpLG`W zf>A00fBCcmY&%`XB-Ha^-luQuy1)q9J?{#6cqj($-diR*XW2<|6b-O;a5dz)>!VcU zA!e{46IGqI60<&|;R{|D_q6{ao4WH+qeh5R-wlTGKPKbmQ6I=3t0`i+-?{9Zv8y;> z{ZIDgY$%kR5VVpKl<0pk!=A9o&=NBX0()x3Rn^uwy7DHg(>2AH%gewwLO6DlFcRZl z2nuJ)&=@Dfz-kdhl`D|C)yeSu=}uNB!_D|NL08`%hI@j}ixme;pi^%}@bi4cl1r_c zw)hUjYoiCF?3l-FQ`T@We>eqN{ckbqy$!zDnIW_H2JO;1IQHYEc+!GObnF@kODAZH zb~tPS`f5B}`mtS9E0KczA1#Nn=)b%PG(kZ{3S4x<(R5WOtIAysx+t?7{aNm*erVDT=I6X*5dnkX$5J_# zs8bAA`t4%#E0^N!!ey}K_af9xvc}1~<^wwIAKLkG9r<1Y7 zdD3R|jSWP(>aFMt^KelAwQwx-9CLD##OX6mGC4C}tnQcr`McZMa(_WP@p1rarsZR5 zzzil;7YP>@^@tbCc`)+|!COW>2VcI+AY(E-VX|y6dVXDmH=cYU-UZ1p^S-NCX-)|q zT5Sw>6(14h!GfNz|1%=r^CU8wwAGA%^p16%O(#3r)*!Dy&D*g$S=i^KBS`KbS134b5n z%_?RL$NtLh7&zM&8VV)R@qP`A8a@SLzsJGiKFcwwS2TLBTo0$4F0&f3Up_nlv)8Q4s1ZBDTSiw5#{NSmO?{+S*L z-W5N{sXu}6^lcB>wr&$9zbeLS)9tV!Digj)))76;GSXu8l&tLKF24M;lg&C~a5Q~Y z7+Wqm8W-#2fXe3p%u$*R;UDVA)YJC3Ln0YR6`Ui!R<4*g&j#p(UYI;b7w=vj&H~p5 z;e|7TKe0$h@E_NN;@r(>P%J_j>&+l>ZxgE<767B%m!S8<;aJ0Gf@XmMEGVGp!oRXR zSN4&eZClCX!ynn9GXWT2wia3oM&Zj5Pl^9J2b^Tq8%(cTfZ@E7rj3^BP<){e_PbvQ z*Hx@wbn|<%Y-p0WG@uG&6Vr%W&_q$-_aX4Er#E}8RD*$8viL=z3Y0$wk-PSxtjNF* zO|?B>{Of2uBtAmwcDmv=p)dL4yr7v}dRa6g3X&F2A@6(MlPJ4KVpppq%sP^d zJ-PGD!s>{tP_l#Y>o^Ayp%U?u51bb%NK4Tg_lkBMiDjNmmr5q~S~VV5$pU`M+x zdPwcS?UQz}wJGaRb@fabnlO*JFdOt((@wfqxS-x;FX)@J#k{7^5wov*Env~0da@%S zmzlc6V56)H%#(6JPn}NkB>1|hbKH9L+rNt?Sq#9ZPh(hsU5hBG?xT28(?YyZA!y`` zrh&(j4A>m3Vzw%C8Ho`OMTJG`_^9_H>@pe(;RZR17mMgXJ3xAt@~yqg)L|{smp+fb3${6xK|Bh}Xih#nNE!^`3<&tOZ;9 zbo9Rclg&ILFwsHKC#WRg_A7B>i&lNsQm_@qFL@!J`%@i`EE1E?_d7|QQ5+;I3d?6w zV82yCt8X=F+cF#$4l%_631cD9UJvDdWMHnv5z=Ym$y80UP;~jXXhnP`$Tg^-kJlc^ zDv=@|g)x^%hiois2_qZNZ9+1k2$$|p0wRp*Y>X32Z-e z{ZueYOBcpFgGs-xgCz28Jb9-2n8ha^X4Vhm&~Qd9M0(}mH3$&7fBPXCSg(YgERF?m zfHu1KmkeB&*C<;U3m)CF++NIOfp?2cIv^Ts_ zP5&&CYdjvVRm5QF{0-n{dWM;fONTEj6X2e4F?@`2h4N=#*mF@9a}OJV8+Q(7`=4c! z8xy4Q@at#H@|F=^&^jyLIO?XkmEA59WCbj9ql$2!-Umhu-2%M#JRrI@{#m<|?Hn)zzTe!8ul+OOW_SSmVRD77Y;wl84!23+q%^!aBNCq7S7wN=O!81aSaE%OJ7FmJQ_SBp_*-6-ZTRmcbO zea|ihCZp5V3bYjRrD;t(OcnA5;(oZ|8kN;p7P1ho3vuuF?<-J2;(@4RqL4>^XgYdd zPGo(ebwEL321p;+LkwpKyrfZ*%<{~mrYBNe0GWV`gk@JXVq=;w|q3_I_}@_P!P+Ba4h3iei?h;g=+Y{0KoXpt!JNjFqO(&qPMgOGEe8LdRK8_egbHDotoc1z2 z5>*K=z2i_pp;UZ)?`*O3;xITRcb1eL=p{O!>nG%|O=hi8tt>A2JG1*^0}7G>Q1U83 z;Gpa$6}Nsf%P}Q5G-erSw>%U)QjDSQK?+ou6@ckpf{&5~{~K9bSa`AoJdS4I&%Dw2 zSy#x*bJ#%|d_S^w$YzFm^I`ILM{vF~9d)cLasDY2tPOI4){s&Ro6<@)Q z1aAi2`gG7$*8+{^Au#vp3Kn+fm)Oo%9yhEz#LmqPUL=lg1J3CEY#==990bpk67hKD z5;1k(%OAC^wY|rPcR5L*i$^Qb5cslJJuFE0j#~0@y)L<6 zD1l4*{Up*V-q74)iKBaRFymSP-mNhuP5DARq_;PGEh_-oeHqYyaWyKaXp=IZgW{$& zPuTL_)oAKZ;gQlvs6AFrUguPRsreARde0c5&Bl@bZ_+Tqv=44=<*1Rk(NRXId~kQ24cl&rIPB;=r7V~(E#Ai5;P{H}~E+ej)= zH%)`Zku|;w83d0ebEj4 zhY!H8*kOn1D3G)KM5Xp&4S~84x*xsmblbL8V0X=%pOb@G(I1GiIsJi zfOpL!k@mz=BxRf6+#Gr4{as!3!mA7`uRCLl>v5KU;yCkl$iW}`k}=KeDC5&ALE^iu z*^?Z3^6HQ;mRZ(_=t=`v=iq>(#TcIpF#=25A>!!88O&N{CA`y!!~s$dSf97y=#-I+ zxzWL>cR`A^dk=%Q<*`uJXDPHE%Y@8x<|MOAj(9ge6lov)Mn0}s$quAifW!t{QG<~4 z)+nbAFQWuKWmOoad@#V4WEp{}u^6LfRx_WjSdd*=2^ClB*#O4^u#9;qj{fC`dXdRQ zM_~M|^R9*YLQcE!hze{b zFMmx2|3^VcO8&iI$v?&N?^H@y|JNEtZ7qqvOHx}xO-4d((?8qw7JiYx*7xew>pylN z^UwaIB(*#K-ahm19sjevghbN+eE0u`H;bIEh$9?{DA2w}U`&rDd0TgranpO#p?NFd zk3to*{-A_s2FVfiP&vj#)?nu$2L>db^!QccfdDOt8#Nwhthqv5o9400W8XmXD`%WC zSCQwPs}YN>SFu+GK`>zA6P#fo1x==1q8dqObougL)UB>gUMJ*{>P5eaZlN-KZ0tt{ z>TY3sV}^o4>KPX9BnKx<%W?JMUZiFHBhl*Tp)mN}K}c}vAay4#*^Rfg#2{)q$lFZC z{2M#qxJ?zVy~*+0R)0)>uZ|m>w?bd>R`Jvcb%Z9=VdJtT4qEn+JNWV2Vhwz17jOj;s`h$1CD@a?l`@N4sC`xiTi zrCO~(dYBM{c>O~3A)=inwndZijz`%8K})oKZXIdc)&i13ZThRi{9P-BdMEMsKl$#* zziZR?&wo#6xlNz`SMB}tUmpL~DZ{USZ};!@;@{=}XZpWK3D`}a>hjl_&i&_f|7{Nj zcm7>3{w;+yi&w7t>;1nMDZ77H{5PkP5>o%E{wn-af7gBc`+L3r+3){d{ng9q{U2NY zd))uc!}&iS`~PSO{MY*X@AdHRm;YRU4gWd6iT_Oht;d%C&GY`dpC$P}`&nWC{9pdv zZ~i~?NB+xk{5QYu|F<9ex83@$BTKTKID<&ed}et#8$y3qgn>%acj^Y60$ zyXE?~-2a+O>MOhm4=LgKf9=QV{l_}Vzq?@)Oa5a{;(s~)@AvCofB(A%S{D8D75_}u z{pZ>Lhv!z`H|HQ%Px&H0Dt~i2e>`Rnb$rW%MuZ!a8nRDpX%PzQl z%_{2H|1PPu_26ICHo>6T+u_W_vHa}zrQEPciT85u%NzFIg=+_5Xr$FGmf`#r`llX+ zb}dczuHil!ZfnL;s|W0Olq21uAS<5IM-}fmR6-*Z^QO^z@Z0dyc=@6UylWVWnq$uM zt43M0_UmY#^4Oc3$=Bm+JxyNPUy|nEXoK>B4jk79vAR?5!PV*$++6tpQXDD0@OmC4 zjkmEt97aP0t*yPSH0`cc;4!o3@EVI+xU#Vw<+(7{?~dev9p4o2plw5` z?}E3ecP^K25XPk5S;atKwQB;2KZcLlWz09-+RaNGzG1fKZB{rbiCf)Xz`trF@T3M# zG=F*Ew3Nr9F@ZvP`Fl~9mT2m8_Y0fSG8BBf1*Xl~Fg|X4Exi@fO+L2lqzj*Q5mmWc z*p(g2jZ8n{u)>XS+cF(THA}IVvog8*mTIst4WsD=+H~gQZ9HU1GVR-4M(du9;V1WQ zc2f0ukt5jamP3TFRME=gMP2||e zPQ3q50jm4-vIst(O7%mRKvni2ezE!uIz<);o@XBPes(;K5I9*aBcr*YnvbC0D23;v zO!$y44gTioNP6UQE!kH%N8mAp@*9`asr{=T5d65~DD9s~=lRIci+g&3QSxYNSX4GEy84znrllW6Yt-KaPFDNa3J!=_vpgSqtyRu>~My``*a*wiu5zS5Q7 zRa#GveN5u}?EWmO3ow}!* z@UshIX!?lP5Z~FC4lP{Co9FDsv!&xiM<-_T!m$t6fLG!tEG@Ux=SAXNyFFY z>nU4%9r7NHq{f<=e7N6T=vBe_;y%CFu(WABE`K16Tc%4Z-8JZ;_owid=X#j>>>OKT zZ3@-7voU0iJpI1w9oqL%$%a*$vo^_Jy|ww1WqoIAq%`F(Jtpa{^(aDgic7|QAw)=o%cpM?}jP2`j84w zRE;2c_duRAF$<%LdVrjm&DSce;!5vR_~jvcvEMuyihHH_)P`EV#q$JYFIvNgHEyPl zPHDjOUlXZ&jWvdtO*9uw+M&O)3A?>JgeotQ;Ds%Q@FlPfCsoVf!Eevt%}s%4pIy!0 z>THDXPtV~5_x04xc_hE+Kbq&r4C31K6!eQ<1OA5wpx7XdPJ0s18wc7!pN-4m*yn7% zP}z`H?Gv~VTSiiy&_86&p=jEgcnp60QlZgP+n8FA3dq!XaP0sudaGWDnav+Z-}(>Z z6(xdJ-uMxOShk}4lx9ecXoS0G=hOCYI&^UPD&98L9xWH$6d1VC_^$RXypd56+cvJI z-ii0%sICjmO>Adw1D>;r`9b{2V{;l4)`kJH6EM^~lMk8nl3jD$NO5B^H*~av3b#@G zyQrM@J1~*29C{juZdKsbHOHXz{s@jwgQ)BxEjmHIfbJP_j9cBG3R4H>^2lcQmB_LaBI_>H}gd!r_tKT{=9mv6qT2+q8dR}v@IbP@6TF6ha4%RC#I@!N7q_tcRPle zL!#M+hpYG@!;fsBnKNCJyMbGnmD4wm+gL|kE?pEoh?b~b;pfL6;YUl~!@+6|YNnMS zcy8^0^U_9;=21b7H22_Fv$vj>L-iB5u}R!skvwnCsxd2aWE> zbt{zUug^>1Nml`GTl59z?v$h>%%<_fnzDTL;aU8`(PC7ybY!3P!sr-F&YxSA(tdi0 z^oq;?T-IwE@A#-rb(ZYoG1BgMHR&@>>)(S{ZS(ncfqSZ1_ZGewYw~#${4h_igoDC# z%J2OGhoWhq?lcpfgR-f^nrbwui6@@t`%}*&4%{v@m7nR=h)<8%qg>4^9Cy794UcNj z5WPBRxhut|Y;&Xr7iaL(KVRVKgQYlsg)z0ed>d3hj;8Y_mT-e}i}|7zH~6+OHr%>u zH|&^j4G+`^&>r(aT$JoeAFMx0?Mn?gkADc{!)}~BejDARJc-*YrwUw%YMQZZCB19s z#y@#fz!zH^dQ~f)Ce0pz`qlz}ch6gKjGH?@+pNONc6ic1!wrc{RR|5Nuc6;okA(hR zu{7YC9=1O^V*YT@1-9WrG#9AF>{t5}{8q7qNV8U~};?_ev4oRc- z!(+e>CsJSeThMvw5IHDgL!E}cM~jcqbojxaaL_H6(_{KH|K~K?^kXJn-`xQ}V(;K8 z+mSSS|9*IRGMhfgUyEZ^^V!rj-yp$t3>vD9$B~zl=|;zX0@qlNKYIK`^wMgBpj9&C z`^;DIGl#V3K8tdmI=BgrOz~l#bvm2$tIIgz4{D3ce{*-_Ud!jPZ!DL&i&-TUCwWRtAqrdaa>ftYReNv@+)rggO67Ro7Hv<5x-0Va9@juWeg#eQQRYftJMme_c!ZcHO3R1y zZpZDs!BUK(T1B6blAlD5LJHi3eao$zi{Kx-_Y;mEwnG*iz-7Bp{egA_%knE z$ZyJm{!WzoE?3~469}Du){hL9Ie{-T9*Z{3sspB>%GXK$V3OAd@MDLsAULd`Phv*$ z1p&!Cf0+eObDfVzJ1Orx6iYoHJw*=}D|&sM9QR5ypff5i)0Dz_{N}D(^sCWj7^-m! zH#RKgnJ-R3gpCLN*>nS~Yvf@_Rsj7PvV&i(FrquP*FgR)7k+h?piw@q&C^f%(3L9! z_(4epN}3+wwD@pR^k6DYnS7tV-F^jMtTW-U;ZyjI#D4rth6c42orWX(>T%EyQ&=3{ zDvs4jg1n}6^o>$)`lBI_&d>VYw7=>;stBGWL6g2>{sm`V+>^~~4s4-*o${1SQllk( z*MXvtXIJxHfqv;7&-W~I5xB__klJfGpKpDIjSLT?l~X_9%4tu~@TDS+3QiFij&NfXday{8j~5wKgA(gs;)^V zx;w!70xdqt|1I;^TsI-ht+#P947 zn4ZSEbkU55*flPLU(cJs>jMuHTf0Lb(RT~n^(QFNKbxx$yu>t_GI!paO*?$2iK<86 z=j~rAdBEZfYWCb2N@jWS&q`jTAZIHrFlOkJa6=?FB!H&ena*!VCh;=gEM7YQI^WZ& zh^e!75#?X4uwm*g+#{!KG0f9~MqWLPQ7Km3Lp7i8Iq?as&nnT`5#2Od=>|+I34vGU z5;S=KFXYz-QuX;*R3V+l{0`CyS1lfUr??r~f&^g2wA(&qb@eZ+dx0sL^NBA=F5 zM#oF^rdgN7bYEjORvjKsgF|o9(1%wszhDAQEv%*MeTVZ`&J$tMH3Pm#|0UU#V*ytU z;(6(h4v;X?=7ZeoQRl!SwA$T;p4R{~#d`eEH4$Ii$AG2&bm56{%{Xt#N0E#CQvTG6 z)5E8wxNPeq? zR$$|Juq{cS!^mjRWKRc>$i~NKaM=&ss!I27{Xg+l4+aKO1gce z0}Q!$iLAO83x9etVW&bNwLSKlX+Vr9uk8fP5ZaAfQ7^^uy<>3Hvv}OBv;j2F zr?H`~6Jh`T{q#kkH=lLzJsi={!Su%$@s#N;vPDx@6goMWYOIc++%1|Lw`Ai6MO8X0 zT!PjwsfL%~j`YwZ4SFMMG%gTw8oR7cLTl6*4VM=y9=AQ3{@P}61+jSR=IXR5RANmZz z_bu>pf{9oHhtiNYbFkvjL+E(!2)k$8BMx`IXwf2zx4SB-~+8}hVns{@s(Nur+~So5}B-E82! zW%THF;XgUxCMwR9o zkh8fVlkvWU3Vq%k%mbw7@$L5x;+9TZzC5f39}-hu{bdwyTbG1S8YT&K`Y4b4Sx=p; z%6PyGQ{fcVwdZ6GZplb!o^b7cbx$Wq&$bcT58%dv9?&RlZEJAmS z-aOlW6piUtrJLWy(Ksf_%iPECjtk1PU~Yd}w)`7ypIgR_qWV*Nhm-VJod<~G*YMhJ z-n@^Xm)Rh{52H@!(BNiDdo{I_2p>6%=DnAotMda4-%*3&*(2#n*KOR#bs2A|r?h6X zGQdu7O`mhw`~M8;R!rZB&hG!FH7;81ycJj%*%CP1rTC7#Kw9 z_3iks$d&8152S@92bkJ^KhoBa!oL(>g^30iaY2_p{pAuw4@<12%D+#*O|v}uMfC{X zb!8J*yb;8mb}yz`_Y(Mhtv+<5gDF=SSdXjit?BC{0eB#DHD=c*@aXb$TsAh7cV&OT zfK$Dh+}RtvZqq9kB~GQa85j7`nacckR59E$oPrA#o%q1A5%l%OL7WU;fmb}2(+b^q znx`DVvri{r4On1f{3GtBw-(Z@WBAEAsxjZL+%C0+7VP+h$tlCQ{1s&jYlFL>vnL+bdS0Pyuq98g8-)YEujRWnT+zC>9CsXa z9HuH3V0viwf`qJ=o1mN9?!(2$4U&xh^b zr*oA*w$%Qt3pZAequm={!=6!9L^vzPSd#dT@uEpP@qgc#OrFB_b9 zN($2KO?iyQAnH+sK$m4hly5F>aM9r!-SUKf};6t*NZL;v9Kid^yozXG8aHt;LmYra4uD^w|>pfwl<3l#w z0{F2%gZPL8(rDH^Nz{LV2{%}#&I2bYVZ2+TSiwpmG$E{3tVWE;Wg^r zk%;%D7m1z~E6_kG2bxkchmR1Mz>Cl0csN|hv^ z`_YXaT~bFko-qc!!!G<}-?{Am?3>uTUpGtA8^HUeO3*?G;vGrnS^M;MT(H%NHjb@= z{llM9MWr$bQQyjE?{mfReec6*k_uBo5AhqrdNE(GW@@@|F0MJSlO=@N;uR@5ddhbkE0a%#v2I($);OQecI`zC+6RgGi0OQtMI5yif5LBHe_`8& zEuynW_t5)pVyw^@%45<+bnDT_cqwZ;9%$Mq=nrpz?S4n|qs^1q#vpfiquopu7aH*| zh2#14TZeE{Vk1qNqD3V%1^7Lc@TeUK9XBUUW2#q zDw?MJ9E4{kJ%-a`F0+$6#&g^2vh>ZjAdzo+Bz0R}LErf_LrT;*-ry$|**C@GiKij7 zebrVr`c@JSIO0j`43=`8GvoRExlG`)_Tl@7+tOoeLTFd>dhV-g3&k7rsEqe4re`do zUqhGjqWA9f`imi$oi%{}cJB+lQ-V?AfIh8P)2Bl-=ThTwCqY}y1P{w(^8u~Ou-w84 zgVOKNw3r@DcsZC)Um?eDb;Z!bu_?5$E0s%c0Dfn^Jskj ztr&&b_xtdiZ@uW6}))lI4*ywh>MQjX86F0D)rd} z8@ok(k^cs|J);vE;<8BDDm~`kJ3>5h+IfsC{{u#ooN0&GY3yv&=8apb81%2|lU2XI}o7J9D5gXg1Q;ddNJ zzZYxJOE(f>;JZP~m$Y7DOYp)Tq(Z!sUok7Gq&bDS#shlL%;#MV`L z;8m&!w@n4Tjouj4kG17TtdBz{*QM*MKcn7|K3u0UjW(sL@g0Xy-~cz^rb}1FQO$~U z_zh*8kP`~=w!a|1<14u7_Td>y77!Df%JSNVP-96WE>_(N^M)SAv9E^nwlR+U_0>et z)j&OZ-5vPNxkCHX`W)Yg3ZTz~iID0)29HaqbLYzs$f`az@T{yF`^rl2(LDosy4hqt zSILBDg=?c_FCPqb{7F zjLf;4QzzC0=VQMGb3k=g6}(l9#rNyil75wQ=>UBPy!);UV|Qv(Mc9S~pUm)Bl0M!3 zaxO$4bfYbOrC5H4G9Q>W0T((YVp&)UeRfxs_m4V-cCi|0vTG@y>*h{}AG(bD@7U7w zbB6KRGLhtcm^9xUB}<1-9meCnm}8`k6}gb}0P>IjB#ZT`c-6!Ny1-~7A7QA)H`VRt z-#RsDn`$e4dhH~}+Njbfjbgf(XwYT9xA859hS5{8;rJtC0=?WRFlN&}qs$X`>ie^l z%C`O?&E;=V^gfmr?3qZDv@YJtlc@MGp}n+sP`jpK^u)^+X1!30 ze}B-6&cb&vD`YEda|os96rR%RDeHK0wJHCp7)Ad?gzylh?|gO71P~{N^8@`4bHD17 zu%WY_&Qd|>^v2o#Ioym6nON9NQ_aJrl)5Za#5EzeyZP2 zs>^-ooxbmJJsHf7Z3>0sp1Sne4>vS^tcS6^Ra z2aU9;uG=@TDw#=R!sYSEXLnv;SOO*&40xSe4sL&`h2NgV&>lU1A->_lto!MSzZBIq z-MrY)q-n4~yz<}>`n$I@6vt2FQrqXs&N&-m{;EoLeDqps>DPr}y9d&jcDGrj z%>x{#RK<1;6md_>SZGo_K`NFAF)F)FGCePV z?CAw13UL|8GS7xkbm=VQOpmgF(ADT}Tg6s42hrQWN_;wK3!Cw08z=uWk10BipxAr; ze93&CS=A`eumhFszNHji>aM223j%Ta+IR}?_`~LFjz&$#Qaaf%o=zvdB+bYq`jGS< z_yeKPa#WR_DGDX)vp?WpRx{HaXiM^IH)Fk!^P4<3h2Gtgq*Ebh&~4Xen3MDZlAgEY ze4lCjoQS>r$+1B=abpwwi@vr;(PE)5jgyuU@Tn9Nc&+TUA3)eWHpn| zX_KKJ+WN4@?-f7ybrpsksE3`cLht>v3oxa76@JOtN`IdY!l)e^sL-+sI(Cnzu?8|= zsbYd_Q)h}#ANvUk%Tg%r^EwbL@M!z1OsufagT}~BB)zp~a9`g=;51!ugyLs@YGW~r z2+_x&?kO~?csj~R8?u(Pp|G(rmp>?5OcTb1q2|$I_U`2#Qoe1-e&;FT-hU0O+2$X3 zy#6M7EZh!lx9hNKd(QFeOnXw7SWF6Y>KHa?P_nlL6-Eg+unCS-J@SrITY@2*_Amyk zUfh706Jv38dL8uq4ChB{>|vELM?_x>^>LHdDSZ0N6t_Ql%D2j7!sPht@Fl4L^_mvL zpE@PnJu->y$=t`im2^Y%=X0pTKO1_^^>I5NG;+N39tz*vyB%G;Pv0mftd!&F+87X6{i3 z=Vc83nk|G|pB(6je>nQh+)GzqR0%yiPhrgs9(G+B0_``Su`RiseCC@>TzuLCZXZ)Z zl}bGfEVU%P(nIWm`WZ-FTmqtj-Jm1CfS=d;gW>HKSYa`a6Z1uE^x=MRxc5!$IiLau z3flE};d#YkCXnB!a<)2dAGkmAMEQ|IR^3}m%x!39Lw^my22B@Mvv&-XhQDMVLvopq zI>LoGJ$w}_LEZKXSwi>$JTsvQI`q_0`q?J-K)8qficF;9BonZCnTbEW%V5`naU^Ql z%0)fQV?p()@NJXeZ~8a{sh1eY^$*el#p{Y&ihWqCz_AUoFeu)=uwxe0((oobt>qBd_Yf-ge zE8(~#e$7)oOjfnzl9TjlkB%XhVGb$}UIxk^BagZ6iA7h&~X;A0JKrVU1 zKViz+LX)S}(~*E=ns+jjy?9W=ZpE!+5v}d)TBjfSg&(7P(#UFgd-^&l6_-!F&1O~? z!Tr*UO}Xl}u;T6qXoIBU(PRZH>N*&MlcQ_lsz`WNbe+LC`^n_|{22~C`IP_lCyQRT z@5hhE#yEc6W>m4BiV9o+3wi60++RDkM7#tPtJmSRyEQ1`X-JzZ&hs`gcd_c2DXHjs zkO6t(t%6*({&f;QzNw6hP7bA>UH93DWCQrp6osQ7>>}q_pzZf&;ex$q>COik{*KN@ zxOS+PeR?^7PSp_H(;0^M3+3q8k}k9!(hXkAi)o>mFPPse!O-Jl(XCRR8kXN?sw&O! z`0^cSzGi~?Q|6#~7u-aLj)XLzn&HISAzx`49CO+CRBQE4z`XiWoPUhD06F@0;wyWJ5&gQuXB zFdNh;8eo`bEd&h`@p={h%>LUZw&Bi2r$;rT`6CN^zy)E4;UZ5fxV8~0^N=|l)v^bdu%(3_4xF|RS7Tf zz27c)>3#4?UOii4F9xsKr`SUJ2)WIZ@EbP@sy_MfQTxTP+EdU*vc_Yrwi#`k`iC3u zF@Ru@3?;1$z%QzfbV_bf zVb9DAFk9rzZtYLSwu#sIoYe_vk)Dhyi~Vq?+9XDUo1w!c6=FxFlU7~;^PBh;91SPo z<5fr#epf@!-zTE4?<=rVOAZGoC$PD~+^U+XLTTAHq zsBUkrqa{-8Fzq5!P&`I8Do?ohP0q|MB$#A3?&TrO0=#;~Rp_3?S$PP!DZ%a}0mOi^#I}w||524K( zQn;b(2zgCg!kW~I#lDw>+gjRfuKSKO2Hkqfwq46aGo^S~H^UstqgDCu(Y08W6v5p( zxq&~l@ek{}FZ4c)j;2@og7zfzN-iibrn_Gx$T6oFeqF7lN40Bct;rTF`~lE7{s33D zIu$NHya%>gnrLF$%C0%>fn5@tDBSZD)L1&e-jL`R*m3YiP`y==mfHTWq^1M-YUz_`>}#>OeJ z9pb&@-lB)^XYIrnQ6Hh;KOMZtd!e#r8WxDssA+B=Sgp@w=eDgz_O*js`)Q%*x{f?_ zb)0~q3rk@9d0jrvPN)@Bc*o9-Da3O@#xzjLpL32e!T|~itSvL0_$i@SGOvWVrN=?W zcPHCf)J)xj=ioJoQVO^D3Ezx8N%g~GdR%dX?Van&?+sKXttxB$wDTn!Z#tAdoK+xg;ut%|%jC5G&NXOc?aRw`b-9~<2=C}WcZ1$V|`-nr_gJq5WGXr6#c zVKcdLVJBJrRxOwy{~0P}jWArD$F89LP;&xd;^|O)w#5n5&km-u;h7-*8peM4+HfoU zYOy%31>XMf!t#}i{aGHecZ0K%@8Z^%E{cD&t0`9)?fII%{{ywFB1Eu&3|MghiCqu=Bezf1gkBd`89Ju`++=(|LyBDqW$K8SQXANYp z*0+JJohRij4@Y_OWkGW5uyAJqrFz)l_}z<8xpz5*D=VOmxg)AYmazTv=hO5zTI7Cl zE+q&zjJTXLw83i^o2Oqc^sBxQUzOcL24$bP8=V8${c+pq;GredG4&o7)oVy~EgQWY#Umy4U@Dr%#x$7y6@K;w#X-avn_8pNT_; zH!>Zka8b+nt2FJ`Xsm7y#oSrXVYKmfe0z5=?Hz813S-C9s4GrFKSMAZwssKt2F_-F z+rlw@kttfgH)R&zIX-yXD3%gji>;S*`8QvFGIRH2JXLxWujZ-ZDvcL#DWnP7egfQm zzm&CWNaORJ#uzQ+#SI$~MNMkU(PMxT<+}1P@o_Xn9d@G2ibt944mbAmW+MGpqDacI zeav~;T>7-^A0IgCB{+H?5jxmSamwNXxbYztllH{ZhvTQ%+9OB#!Me6gE%AXU|F*fn zJN)5|kG^D6ZVS)Qlj=A#G>{e+`wJOz?i6mjg1X;Yv7nwq?A?@;AY-}|Udw8r&0JOX z_|O`Pyii5gzv*DE!#*}Hc{{)Sjtf0bRiF*xO_;mC4x4=}QFJ?%EjvAh4vv$?Qo$QB z+3*Z}*C=HHx4gl$@H{5?Hi2uuCbcF{BM-F$+?ysjrlO*au@h#Y)`fFi#M#TBUi*v1 zC_SV49xqfCms0nUBfMsj6Wl2KDsDS?7M^Sh=DyM_ifbB2tIQQ}Zg3TXkqs@qt3fi4 z&tr02CP=(_#9@3k?zh^&PMIHqWVfx<5&Dex_Kjv*Q^R5J8#l^xvS+8SPsA5K<1yTK z7^=I-p#2kpp^Po!o)?V8`V&vZ)*8Og^e|g(zoOAe%5A;n^?s4 zWkm}+bOz|%GsW`AMv!vf#fn|$P~IU$G`_Kg-IdwSx%^9G1C~YMCg}zk*T0^Y?+&0l z)826Iv0+rSNronrH^7pCvGmFEGS{ZCi1M6&LZI<$m~$2HdBH7=o$u27qxMO zL=@%!Sp@M_92vK!v%e0`w9G_~{`G}`{u@oA*ZR1+L=$f=b7D_Me`JzxBjH1wH{UQ| zJ3mh<3B85g@=(xy_!1(EM;;%>2d*orqo$YD+RbEY0-xg;p^Iblv}l_vM|&Jb^HC;a zaapxHbxkN?p~m;YaOPF^dF3DR%bo8aQ#YMmSvMNTwavn(!+M}a;J?~G$z$k#Vuz+_ zQJ4HX7VuYwxy0Us%-5#aR6T)Ow~nTVKbNsXol{tHYZ`Wqe$MWxXM(5KQNAa{4!SPf zq?oulv?MJXWfQ+b>|O(09dC_iPwYV1-*aeaUpq9lyW-_YX^PAE4He9kzCRN~aC-`# zyo4mXMa&+hx4?&&9W1Kw0XO}rDIRH=L>~g1Sf@)aF4UQXjVf-Cepa3jF|@~kPII^r z5)L~vGC_6tW_q-8J%9Y^A-r@y1QRGwzKTn0tl z^CnB-yK1wVhiSKD=)}k(vQOJdKDBMkGDqm2t~3MN-aTy4aCLexa6cTIvz@oww3Beq zeu`;joO-P!g+!iY-XEvZm+u2;(KUajVYe3U54a~@va(1kSNV z{e6wp>w5uHG-T**m!Pvqeg^Xx8BF@`H-Bu)V%FPkLf#(@Fz1~dCT6w5Ba2AV+A7~SPx+~&!q(u zGsyPPeCS&B6~aD@AeSNbnBbj6SKg1toU+OEyTk)N+YO@kg%V8{PkOST>j8MlwjR$t z>|(bbOc#Fpx8RELO6=W$5~?=phL1XH`O^VKZ1si<(D`@|Rh<%Yi>{0!PGKa@zmbi{ zFK=X5k_KXTs~?`(`46^orL0!yG0D5Q0u!#DVxvL6v(dxYW=s+&^sz9cVh@uWG!uK7*LNTLDiJ-d=_{)N>V|oDb78( z57p+KU{TXY(4nIv`40m%nQu3u_4-isH_)a0rf%M+mcwD&CAmcdw}F23Kd|;u6m%## zc;`3?925>>d$ASp_r{`u>tH4sw$169_YO+7_W;8%d-`qM$oxZG@ZuMM$l82icGH7- zyUoZf&4#3oX5*spvG`)$7@Wp$rYrlbs0WA8s{t;!rRM;~SPtNPGKS!CnFctwY9n)h zCrPWwj;X#aqO+MPpyQv8S{nK6R>5?pAoQKP7-`b^(b>q?1yW^D7;Jd{hn-j!3o)-H z=<%X(bltFz6A2lLk>^#Jfz?XNj2VnQ8rJwtJ`}f&2%`DUJ7Gkw3J%Iifk~r`Xu$Ux zHsN;!IrX{12w|QwH`v3q7Y5^o6KPFW`y%1I>M?j3ZH1Np33_RRB9tqwW2=8I2agLK zY~r<*G=AGZwrH_AxP~;d;lKP6ki_iC+URb`*q1Y}n5@1VyrwCzYLGRp zFIvb>&wRjzKQ_nP|GZJTe?t5TTDgvD(33q~uvFR&Zu#<8CR#*(yN4SXAANp&-eao^upP+)KhB=`AX z=J5;AQ@0QAKDkc4mG!Lj^lYrTbOnY9bNyD|foL#rHNBWp!n`+3qU=1O|4S>5xSAB2 z_0*Ei%sdK3=O%(h(^e|Ix(VGh53(5xRoU|sxpeVjyWq!s2wow+EHonyT~}XZkDIip zqQDMsd>w~+Wv^I%jxH`Pa6z3YP0Y?$K=W`53|}3{qBqZH1MNECi*y>Sm?}aKUn#nN zxDH<`#_E0M#e>eY+HkP3 zgq1dJV9_rZk>R49FfnTzUA-=c`lXei_)xejdt2k+5#~Z%^A$++iD!kI3gP#h{WNJ) z7B|+|5?-D5W!Ek~VrdtK()D}G@UC_=F4)rtyS*%NU4=A`c%zEZGCdG5OW@u-yij`3 zAY6IpFZgVqj0q2%QPbrs%owXozn-1Mq@{}qdq$8!f;p?fBXZNf~*W&?Pc7MtJ3fRj!&iT@v4j24< zdlag*Twx8jSCQCk42yedPG%mr#Lw4#73F{s=cc zU$T9xMT<%`ah$SR)8~^%IFAJx`0HUhZ(w+m8?Ln(_Iy19QAN?%$7HGKSu!@ST7@pn zEu2G-9mz&@HFXY7FqyoF5H>=Bi$%#Wd`D|9qe(iB&vIz z6fLoiqsDAAvJH65Draz{*me>qb}GFppNUlqBFTHV3bxlbvA0Kt@GC3~@bjsoRPkDj z`<{Q{tS^}%OFzeQlCp5vkQLZzw5`T$j^km zsi+0boCxY&dW)4*xROZto`wWUQr`JAaVjTEeXTD!bg1H2^hu*qbcx7a_5|CJ?k(^q z-mtzki?-;i^9LsvP9rFn0m>y(T`_jo(S&ioVchJ7vgQS}N z0D~Q8L8||EPUV{f%|GhG>JP^;zcK4D_NgMOe7w)udAO0MqzJMOe;}KWOX;r59kBVQ ziX;B|VRn@bz8l#9vVHroNV$Ug?d>7uO&`~`y8$Y$pQU9-k5T)~R~VvDi=ycdxWV=p z;4R5xhU8{iC*<=#&k|U!n8DEh#tavSRkD`%OX=s@0&vUtBNm@H#-EkxV^O_hapjTc@qO6` znEh-THh(!HNS@CfUY5V_*+YkRqvh3K8_VS zE<;Q}vUURw`8tkd)R&`L+YHt-)}1=Pes|h-uaLRUe9c}h- zFw5{Gr#mBpeHz?>OVbxp^MhO(d3GS|?H_|p<2YC(bCn%1T+jc?(xJ=n7>>zq=NG>f zd}|ixVaKEuV$TC2eB!*6Q}l3PW~(+sb*KSnu9bxC7JI?+{dIoRT6L;iF_-X26wOim z!rUKN^NIC?xPs-jbaVV<3h^@lJ-@9eN|B;Hs#;(%y^8JGDnYqbL)i1}LMP$D#ms(e zgrN8Iz&k@bbQ?Px&*l1qndKB>H5{6=0J7Kerw=y}zFbtFKtc50F7kQ%o2u>-<;kfImm^3bqPnc22&Z*Y(S2Pd6sX6CZbkH{TP`II5 zj-1E(9J;{zyBCbxDReyVk%aI0jqtqeI17$#huIqtoBkdVZR}EpBa1{(BRT>T8&tq( zVlwUfjAT4I6Px6g(c8;w=*RUq8Xa)Sarj4poq05#il2@``}D`6KfX33t*XOTzMVwN zLjs|5Q5N>f?%{&2uEoQ~>Y(vX5lXCMD93FyGl}lw4O^_K@wOS>IOjz5zx6RZd)rG}2g_k}PWl?@SJ})sldBd8GnJ^MiSvFQCtw6Y!_+ z2D-i~l9Vk&Xo39zth}y353;qWu~iGsw3I^W-(tFY`6ievi0GZb-Ki=GjOAq;_%OCq zB=Iv7osG2dTZRhd9?rzVZEEQM?mo9Kcq{!)O%<=Lau)BgX@XNdCou$fQ`ataDljR5 zMSbI`<#{Vjo~uF-2(F_xQ2f1m5qEB14^kF$vE@w|;CJ6IxzWE#ZW|G{Mb zX2O&}Bb;v+hTI+#R3CiFY59yYO#Sc{c4@378MktF)At|D^C;pX4$`AsW3q1QQjy*x@~;VyES^=!a=5*uIt~yOeTxJ7F?k zQ)SEi>jiyr`B`>r-(dD;ZZVF1q)UdnsZ?b;^RgREfxl)D z9?leNx2}Y1tA?|*h-lW)vyGikEfbG51%B-5^Nh>8%3R7CVRltIML&#SPTN&kjqDVm zK`RgD*Xy(8-w(5c7C+dwn>V2Ay&g-J+{zk1El0h@vG`FG#$K9NkW26_$kz3xlF$3G zvQrKJ$vHskmrpF}V-}t^I0+#`OYmayNqXN`$g*NWaHLBSdzJW}mF`k@I<{3rn@($? z$4ygsE!?3lYPCRh$VuoNszn>kC8=k8f{em+_1KA7~DM7%}u>=24b6|=$#3ctDgBP+y@!qS-X;bm-BT@n-qt8>reRMFj_ zlzn`g0~6gIvb9r2p|*Jz4bRlWp1po}>xTpj%Ci*avI%6@Yfb;z`D5KbZAg3(%I$BL z;~!l4$CuBqVUd&aC~C4k^$$#;A5M|DH8~v>bShx*k6^r~m&i6-6=CkGRMeVK4%grj zd~EP!pJOI5WyJ$H_*Nfp@->GIoO_i&E^mv|R%G#aJ63R+2D+G8E|0M_yh!hk6ybWo zKcBiBmpF`OI=2RaQ>lpbh5zyO`sH}&Kc3o43~;zE(u4b}=!*~_-t_(|-(ea+MzR^O z={83x*IJ;j~=sir(Is1JS(`sQklbd^oNWzL693E>HpK!Iog-V}}Pv ze1YlLpRi)(tr+tvlFIHH<4~1antk{ix3=pJ!}iV0zu%eO9KXTx8#VFz%K6l%Zi7Gm zDv+Ki1wHp{#;T12>49oBm3d8}Hi0GQzh|-?QtP2t0dYyt9Bz^32O;ZI53?gfxh|`r zq@rMe7DEq!Ra&LEN&Y*$N`KAdFM6P#*-1z^kcjG2o5U(#7vSeN!yz`OmwBGa<((3> zD6Q!t%QIVzzW1NQ$frJda@{vL*{qG#XP2;LuFGlo=>d3S+7Y(3`ah<=d>dsyj7RbA z3(PU>3+rEVg#~yWXD6d$xVBBc;2GQiCx;}!%F#j=keLX#U?tn89!#~vy`d`TDOQUSRzbs_r}Bomcg0h#q%hx{UIpi7D6+D_L!sJiAUr%HbfC#D z!HT!a0O^+C5g~)~m)o<^X4BY^cW+^5`x1DY#0lB5L+Qe>XW&?TgHJ!+%wMguYxuhfe+BMkiKtVeM>biBGpHi@ z6?f?FcTW9BBFfEt%&yLCpp8Bh~O_;BDBayNR;m1)@E@3KtR;Gjv&O%^sJ7IK%*PbG_r{m^)9 z2#Oye-BnsakIGFsw?VI%!980viakQDm2)sQZz|iVvKkL^(e&i{Db~8G13a^$sG(IG z?-&^1)q7H?Ic7N}`uu{OLwE3cn@@t_8o|yaa|~2w*Wt|Md^X2Um4eRg#8ZXp@KIlr z$)GC62N}ZLQSC!WLpcrO}dcbbh{x`Sz- zImaotkAzU?mC)mtjLAYDeRF>#q}BxR&36x@*WW}47&8D~#65t;QBBK-ak!8uGB3vE-2@b$9uOl!3pf9P91OcwU_ z(|h+*vi2q#xo$U=*(=h}XZP_#hTtb?v|!!t67f~ zK`lJ8vBugtXGwD6a1;d*d+{R``a>IGNmf7Bua=*%Z=o6vUwN4Q8EJs}A4A}d)o%QI zY$5H>6g-g$r{Mg#EpYeu7S=TI1ismI1Wgr=lKJ6Ou!$+gdljE)?`)2^4N<)Nf93Sv zt&M5LchdeAp?5KMFb;Is&Tm!NOaC4XVJq8f=%;Q5dlz$>)+=nr0m9sS+~t`##m1Y^ zCk1{r4ZyoXF1q=swM}1ti0Gn~4&7C|%g$_(Y2G(Xmz7D)K<{yhm=(4Nxqf|$vx~?1 z4rN$pvY!8TEC<4irl5FSCdMU{qG?4Y-qh1#%YxrB(XxN=T{D%aFNL&DPoo=KI68h{ zEG@WU!R+V(ycn>R`Gza=)4mzQ`??a&p?;-UQneS1KK_9p4JFKV?on#LJ^^+#YSYNI z7X{6E7p%CN0|)G$11P-`Ssp#dC4P{nUfv8pXLmzK^&C9jwvn5y=}Rv*9On!du7)Ae z8w6DJta#6;>##fG1e3F7u zz=B&5Q9<=b-azfbb1-7#WM=PqUYsa(jZcdnNVBR(;;WE!be$n${rl}`kIOD>=`mt~ zgI$GQz%)E&Je>Sj{}HDx z4jt3&=5^k2^f~#G$cY#B0k1-g>zYn^HuaqB)<;aIX)dSoIu|4?$HDB_5^S^ZMKjk{ zxMOo3-n+epaLt!+Ym$}adizj{M&=D zEFbl5NTAO@6|^h+!a8qiu{|r*=+^;36P_APb&nYBEiO?wSlS9TM-V$y&cWqX}g zFH6Qh(w|_`bV*#}?oQRar%<)K9W2zn4E3}3^E0fxVT6needzOotF{6nZ=fJ1c2pemRAX-leE^3*8 zV}BafEL{l|3-7VhdH_%N>4Dfs3O!Oy0YPEj;pC)Ep>I3amKnAUrv2-5sp;t$vP+L8|3zgWB`pS< zu;Y*?dlVW|HqbqRS$>mQ16%ZD>Hf1PkiW>BiYEvRVn#aFx4VIkgWx%7*vR?xPXkR+ z3Ms8nViJ23AaIxkKk4pScA}=6sRf8|V9-v;0%A>*d-(Lr8( zQV}=le`NC<)JV&F5cxZ*;OF$;Qh+oXNn|i_5B> z$n=kDVV=1fzEHl&>n=F~FUplET%0V4G?;x69s?Ji{W&kIG_9NUB*xS<;#vrnUR6&b*9}I z$L#N#(~S%V`Y|k>+Cwh$mD#3Ds_G%=DW71g4vxaV)=o4cSf0*?2BAZRAw7N=EbK3% zD0rPdvr3T0mt8{jYo7-C$Q%&43AunX6icAm`3Ea9wxzf15RQ_!#9{+0aw~rVhBI{V z>a0rM>iAIRI^Tj0EttuM=FY)it`Q{tVlJw^Z)MggV{v4d9=~x-gOK%TOkZE`q|xms zpu8-Npx=O<7&#DZ3?<07<{}K8phr&EU4)!NZyJ^7Ok*PL*{Y|DQ8DNnTkg>VujC^r zDKnPTSE_+kUNw7pJ%=i8onr4F2T_z=CA4`N()-L^)cPZU!ops$Q=d%fUCc2W8D~#R zCwjvsS8q(+as$$@*0OW^+Hj{Zlck&QrdM*0xaVe_;G$>+FCUpxoWO-U6>8(4fSGvh zS0bKTtAKvl=H$6P8{P}P>UGT^b9V_h-}n{V85u|s(d)3W z%@rHBRpY0diFp5bm3ZKRIQHL^TndQWjqXCWP3qH82%6{wnu`}oT!PD8BWDQ=i zD^?~L7&3yI%G#Jwg*3F}?trr1rKJ0zfypGfgIN5DdwKUfKe|-lYi3Wu$>hRXV$OhB z^C^}t+!^vmIN?{PFjOyeBLB)C>|Bs0&i;cU|HFm2E=~%MB?OUv#~^O0+C#__GVp8D zcTkjjDgLY2!(T8BgEL!Y2)0hcF`ou=w~A${Iz>d4ojJIr@;%ExE06J!tN4^SX_WAh zXLo9&#s5XcAU90Rn;dV1s8d-mf4Lqd8yBJ8e@n0}dkFg%9*>_o&VpCBD;tvZk%O?|YJ_}7W`h(#7z8mpkHe>c!ken zp^u6%HfAX9$oD@TH~_m5)=!lKCeg3#X7s(}_XCRXXgh0Zv~J zu-%=E4OniC(LdgCPtWhd%57#KHTNlJEV>Lc2d|?Nfs2Y7w}>-25WrMFIN*N+HK@g8 z3pC4&pxQzWp=b68$}U*Q_eSjHb|OWzJ_e40y!0Brp??bwOFqsINqofaH`5V_l!J!?t9fzLX?>x?2f+8<=rN>@Zd$8Yfq@5|AlHBD@>&vbsBS{HA4 z>nFRNbBaATFvqu@QM78{2_gSD6GkbX;Ia#=xf3fin1e5^mQ|i5N;Nd zo(q_+3&5Xp1+47uXAjbOsEt&{N&9C*bcYWmC@wLMj7Gn7|x#yYeM8ueR3u^K9Ixn>%z&vP6V$K#qr-<=)h_QI=bY)*OucX@pk<|}D{qH|0K4L2PLk&pgqZS@3ETE)~ za(J>khn1(uQKo(-3-)dlI-O_Zyd8e%Q6x0Dnx&)q?oPMp!)Ejg@YR<06M_<9n1A(hqxmrscSejz=Zap}ao! zY4c2!-LM_|+}y!?ss?okK}D)#Pk`GCS?pA^rGwUM+54@3*xCGawoPghxdq)5wWj{y zUzjSRxG@^!R}H1gDRX$=9&qaXH54a*%@!xTQ^9S%Zh{6>ODojt;citnciKsc))^@< ziAlM*q2(ddZ+r=Izs!g)UeA6n$>Hxb$dXe)IK5o|2~77I;RKIT?(U8Wxb?D_`;|F` z4WIcMl;dB)x^rIiWKk%YYe~`3@&tS+u^+}*J%ZtqS{S)sp9-Dh;h4Z;xQu(jZf9D< zf^~C9%25{IE2!b#a4Fh;N|u?&r-K6L!HQyh>4NfRwy{kOqn;hXp<%DNfP;c}mtR1m zKL2AOhcAKgM?={8RgOMh2*kq+3TfQ6JRRlJ1 zPZNnRulVF-H&p1@b&RFM!6sPOe_7BtCX=tHGCI854z{N(Y4{gi`dpR;kHS_%)(?9; zs-a0G^3s^!--=6xECAmqSyJtJ)YMyjj#n`+;!FqafX~4Oq_tlM)H}-IuaJQuF;?KX z-c6)&id*=EJJq23`7-nltVNl#>3Ato@Ms@gfsZw1(Dt?yB@XIjVacPoF*#(Lqs z@I3^-wpBup)Djx};}MI!b`;V!pJ&Do0V2w$&`*-lVypD`0`xFr)_Yhfrk9w#mj zK#%HO?BDBLc3`nUr1c_X(`+_bll}yA^nT0grs};@@<^%4)Zn)m6iXKB|q2%xB%;J3tjJ9cH z1HT>y$zxsI>R*yv#EO+{()UfmP4SYD0XLl-dLz(6y^Eh=V1jw=?)Y^X)%QxfX`@S^Wa|al_(+2DW zjQ%_pHPhGfFIxlXe8+IA+pC4yvWMA{Av4%2mQ1Qwvmoh6gXrB|TRPS$;4=wEC|#<6 zP5J7;#(R@!VjZ_nG?iB9snc2QQ2uP~LCg$YL{}~Ufaii#yj_|{K{o@DSxh3AoS&SM z`y!m(?}kJE*t7Hj&mh5M3=UXi$SJEGfT6v)qJnZQmfii2)nrv8SMdzuHo0Ttk^}hO zK?6URi{b2u1e})fAGJv}4@-TlLVR z{|l~X1VDg#38(6x!$ft#w0Yy2>c-FB8~!UGhHm8SL|a z!*x3uEZ4WDX1-ta*ZCit@+5qt{! z`z}@UMjLIY{megBR%Jw0YyjSu>tSt2CgG?M3;fU`>~o=3e9uc+Jh4WJ%vDBWbWtMh zj^Bpm+5<7*?@at^oPgs#3x32q4@LHwy-=Xq&2qV?yy>gCxMoX=@PD2H_Z3m>;N&Dx zB~4-ZlU7jO!kOgzu$*gc4}*-PY~Js0BHQbk08#7zV>u%i!m-M2kQ6o=M5{)jiqkfd z>Rv#}eJgp}3_Vh4dCI;H%cq+6BXHr-jkw@%675L0W&d#>L?`0E^4+&zv3*uv?622y)EU?uP+A8 z7YEWFH6eH7YYznOmS$(RI@1Ph#PO%X3Q=hRf zu?dv;^&YGb8p34U)}U0R9?mz_qSixuNH_&D{#iNgS0ByWJ^Kxs3$2*-;0Q>XY)A!R znlv``B`GGb)N%46o03 z&bd|hySM7q{r-6M-n)0IVE1%4J=2@r-D|J)3!P4dv?(W$H45Aec6@#I&V>Ntu|*DF z<;fG}rHAQj+c^Auc{@p61XQuX3T)1r<0mt3Oqyd(t2_$H`K{6ju?@tp>>QOlyM})L z)lPCfLIsC!R4@`tw~!+X=7QRzYGTi6%N<8T)A-Lx^}t?1iPK}Uy6Y7k*aD<<>mPPl zPLyD5pEB&eZH4e8j~DGV16K@F$1Qdx%p`|V=-l8!3eQ$Elj_CcqzyVic`CvAq(dgjxm`!MaA~sE@0vJv$}2L3t9xAs6HM&w zCf?fIcwViDMSYv_!Nn@NI`$zo3)_ILpFJR~j+@U~&7vU})Ht2jb>zHaCcURDPP@FW z(BBi+vAJBV?j>=6>Ho5vnecE1$H}OrR%?#Z2lI}?t-231LTMpUlT(Gx`yyC0mj`B`flGsF!D2Kn8U!s>FBLzM?#wz zRPXi&*9s|)Yt|+wsY?G#~sjy_BeRxspf0XK2mnbgE-5%PK4EV=o%? z)0Xp&uuA$1NnD#nOrLKeJJgL~ecnWvF=;hd6S&37%*&>|S~7Ur{{Xd`m4=5+q;dA@ zLTu!3f|=JO$X5PaLFc-&OyB%+nh{rnIvR^Hcx?>qSXWOf)Fxr0X+80|d7J(I{Ie?EhcyL-sWF+(IG#tqxN zt#DvkuOQ&Vc3Qgj3{mB{r&)?-P?pN!Oe?IZcg{63=J`x|xo8sA^b~`OTwjPh4um58 z$uQbopB`RnO=bwgsO#4Ubj}_gUG>cj=j4`s@ z(ae`qYw*wEGIr+00H_##fd2USih5j0|u9-5Lr z(aK=J)ow?{%%ueZA{Zi?K^hi>5Np}#M9pO;&A2fYg1dMm{`pl_jHd{)>T7Y$T|L}$ zjq{mS`$pHCG=u7lW>Td$65Dqs|EOPI&>WxRgxAuaARc zzCPG}${Y{5sX&2)HZ)DL#93J(Wc;rd(lzHDwVgQ}HmGW2&UY2^`>PDpe2vAAk1I&C z-$E{)ZYMittj2Ttj#M>l4ftJf!oH3B@U>?%@mrBcFWr~JpX>Sf=lmM<4B|AA#8Sxz zMPm+cG?zJ`%uvzwN%VunHM%5Bn!WjP6()RGhi!*)$o9cpq*LV4F~$zNQwYi}%%e`* z4LMDdn}YMa$@t>iOdNLB7Q{Tt$)Rst-NVcUa|6f0u+kh(yYL2iY|_Gfv%XGz^8DC+ zzr>&`IFa`5wCC~YXjo4k6B_c2xF}bW%jYcc`^`JVZp%`zzHor9zQiMCx6aV>FAU-B zYrxHw-6VXufVgE;(AaUAwAFAKmd!RJzkYim&u$tHH$Fg@$#D4b{fEHm;AJ*p`!py^ zUWVxj%CyUqYkv-r>Ti13A2A+J38e6{swh;34?}S^HMDHmO#5fdhS7$5AXdTv-rqPc z_`W)XXg}Lcbbgdk=Lsg5tow{ay}CoF*$WyIbAksR+= zh@$jYuCHt88R?&7Sd$cee&rSssnMZ*#qPN3nm=_9uc5M;br||-IdQLD4l?#%*}P@3 z;GZhaSlju5nc)O5zLQ8L6g{OV|@`8?B;kyKR8a>iZ4`e zM>usCGk|BQdsumutK|I(FDlvQhqZls!O-Rj=N~hJ)6^OPdkwzQrlKk~@^TV&>XAb5 zPyj^>eO&p#f!#M|Bu)r^Ovex#n6qs%30yc1AerNvRb6Gq?!8UT6rYkmx(qm3BeUjJ z4f(MDG$}0LxL~*X$;n-N$w7UV#ywD_mDQo3bWaywf0ZR?b~%IQ(`?2u@CprJwv(`5 z+93bs7;{fn96s#7N3(Cg5gdPYkJ8>DQkYmpw;er71;?_~ zj|E&hg{Wf-xqoggFr%bEe)V#4Yj8KM+Ez*W40K@T!g6YN_zE>VJ`ass`e;WuOOj>G zK+iRW8QiRoGoS8Z+j^{t%lG}{`ZhVZ+#*e5#Y#z;xdPstTuz+Ut^mttGT{C`3x1^` z9pFBEm-N?ZX!=H5c1Pd4w6^w6J`oOg_b&S!)(@^J=McZd3Vt|(~`Jw%t zI_%j;F7DZeA2UXyL+&hSQfTMprH_N`?tJoasu*rJs%HjXR?^@DzRbvdGT@y4n)O%` z&!|sV#n*~kK%J+72f1lf?U{TwzTcQM+%lxvR(FW`R5j?W?_td(S+?rq$=a+tTHt9u zl6qYq1v7V9zz%b5Fcov>w8-5A6D~MH>3Ub(A-xP!|IC5e_j&C8W$RIa!&04X7$R>( zZV7y=Z;<9QQBaa}ol0ChN4spE)6BCBEX{QR+q*)#HYT4e5DW)J@0T<`Tm`o*Nx_&? zV_-N}*9^TB43#5~vnx1#Id9%cxLOkg2X~6#evxLn{J;;!TdspHp65n8Pm93miF5JE zYf-QyxjubwZG}i%)M~gSU|I+a_EDjBDk*i0z6WkgrDM~nICPOCYkRB4r^`(61oe? zbJ15s&vZ8=4RzwP_0u5KunI4E>!Qp1YIxI^OqZOA0L3Sr)YD27%k;$9YiG9sS5{{> zrDU+vB@-|RTU!h{0hjea2x*RWqq*=vHLT zsgrM790$iEnp}SxL|jxOVcx+Ol*NekJGlHwd=ve<@71a(By-H=c zdiyHP4}8QHG@QW~uL^PBvi0=tfE`+meoX4OYZK<+0MGB0ImvT#LHWm{AUD^AxU8Ot zH^&ds#=V^8i0c+IOC%d>n}1NFPf9rPr8utHOXyiYdt@)#Lzm$v>gd`?g!{RgTHhRS z-NeJeRe-Zo1awDZF4*X9#q$dnq04b=Y%}a*UP{eG^#={at@Mh(KRtm4x6Z{;9<#|_ z_h7gdyqmcwC4hvYTkKd)hhXXMOx!-^GL=!dLYeLJh`eV!r*nCWzF52yA3QOD+FV0& zc}E__k0;q7C zro4mPGiqWy9lUgrDBtqK<_A}?b~O){2L$6D<}p*ac^6jQk0(;no^~0l%2-pUdGzG8 zoy^s5HmHBholY{%M^W}9J)`D{0jpAR3FCvZ=Huv2o(%GKKcFw_R^tK*Jy6RiK$F=O zaJ)?!lvcRYGgj{O!6H%Ed^QND{!zigsphC?Sx3xdLs4(bXox#-pXSU-Am?nnNHSM8 zy{#V2$}Tj6xvMkS4-GQR1QSEJw5O4->sP~$2@PbyeH&<5r%n1x6zI?NA+k8-BC{n#jdLZT?j1nIXQ|J&78tKcOdXiGf6S zEM7Qa1k)2r>D`l$h?(vzl6&+6v#a45@3lq`o49To=c^WjdGrHiGnV3_OU=~Oje!?8 zvZ<7nAL&!$^iRVLF||R!?yQ~){>fR?cG6nBki^h?3Y>0*c_-O@NrAw%G~)X(8a=*` zf;=B@Y_Ppdm87K6J7tiz|8mDEGd_~n??;eL(GuWisSIbHF9*FhWlW>pRq}{wA@u=O z?BtpibZ?(21P~W&b}yhE8---fWi9AmzLRvP&4Yw3?vTSaljqKk_$*igqC>>c5?sOK zQYUMotw8;pM?xQ?4c*Vrv&Z!#ado{jX=zzZlzmQ-ub&PJb{QGtqV`zWQMi!jYZgIF%9nyl|h7>47vq|Qo-Hxyd5W-;l<1>Sh#UMEiw5(mis@$k1pECTdYBv zK2=cviUP2DV2}JQW{IdYICyb&!FpZtINuz? zj<(a5^gbe0r+JnhaZDhqV`$qO#>W;Ag(3Cr$#ma@Rm- z^qxOMi}a*T#M%5w7;&PI&7I&5mX1!4vGxFc#5V<%Jvn&f&>Qv=$A6i>+?fcxJwb8n zVmgX%0CB3LNyXy*w84ECUh7I^C8BbPjK~XmA})}OkIN*(?#qL4Y%~tPejfAZj({Jd zuMwvo_sDix8Mql%MgF+%Acd?a8f}k+r-C5C{aRnxYITXto;E-$PjGdsoDjV5rkyUo z!o#qpla$vG1s*jixMgq?BgfOn39oN5lbyqvqF*!6ofy-fb$JZhoPrS=>bSvQnJAp= zBdfQW;QdkSF+Io|l85=hSfv=Ez4jFuFEvQUy-OmM9Pg&si}RH7-a(dg{wKV!V_4EG zPH)`3ODblj(EgKgaO6ik^*Eajx_%Q`hd42+ujo}4Yh&BFK$@>sgd@HA0ZLJEFE{Vi#jf@iM6VuZiXIGv> zTu8Ai3dJ#^g~HbBJFxqHAx+U32?g8pP+^q@WEwmt>*G=(CNGP)KfXuHxENV!x;kt* z{gw0>MWBjIIT5dTLx&ZazzUmfsG;qLy=&8HQ*Ru+5HrQd_*e!mYC@LQE_%TE6vB0L z&JReQtQX6NJD-f;Y1;-=Pm3e3cdP;NsR`hG_!*s%QO)FXb&F81P2i-$aj7O*z?IsC zIHK2^?TodiUzhMWO^yk$Zlf49Z7b(=LIS|=wi(Xaqm0|%l+Y;k^_*7eWIQ8LL5Fou zB)fdd$cnNDR4mL7zKyJ=R!MhB+3QC3tp6givm+CdCl%5w)ERe9RV4R9Lg{=uD42I~ z9PYH}BPTi)K)Y54Uoz5U&4l@&aPb43I#(Wg=51wim(D>wW6sC5IFWq+AcilLo|6rW z5>a~ibMoTCuR5Q(9(Xrq6y5DEi}n+hAh}T=#?lVrQD}`}tq9`d8uf?(pyN{4-XU9UMUl>@~4aalVlH}+#anK)(BG#>1umU`p z-L8a&KHzeo<@@M__!!9b8I1|_G7T-__;U{q5bxy`WWP^74SKc{FUc3fGO0k4%zaK| z)Le*{f5R^QahD|1)tGdvfL=3`gPB1G*hI5xcCJzY#^@jCNyu-cgK^Dl={r>rb#|bl zwL75v(QVpwGKoxGIvZnK?&6**9r&!=No4{avcYi!BrPG1>~)MHf<7q}O;V;|;atu9 z@=C$1{&uQ&JcMkpdQ}^H{UlXY&4tT7_i3bM5jI=}=El#XL>SslCdp`HyOR-)4?08F zo#k{)wId+)s0lp!G6iJx6p6=_1UkZrt4V&aWiJl?qQiw;9e-sq9R9S8!v#9PuwfZg z!9E|}SoZTCuNVbKCnaJ}&NeRJ!PPF#O~kF{T&xnCK`L*u_=Kw`&oL^e^GtuS{_QEy z&~=Pny`>IkXD_Ft+UH`+k{EJyb2R&s)0AzMl4EVt5>O!TNWYrxB(Fo}f!T~$oUA^J zYyQt11h}YGs2??Jih0*w36A|DG5eN@7yyEyC*auSvbsWzu$L1U%&} zLq)MTFx%jcK}UP3laUQQ)Vm!eR`+ulTSauwx=bq#UomkBvdAnwjh{;H(cgwbD)l54 zi=-5AvRxX6T`Pc-oIZ>C*d&sWaD~&u$)(kWqM-4`8!dx->Ah8oWLU<0_`NC;UU;dY zlXx|`u6mX(=d?LP%Ir9Als(iWUJ=i~js{g>0X$06!kqkRres=TX$wGh|ibPGA& z#rF+N?{;^hKas;psV~Nq)J|G{(~M3iJ3=Mj?pYwS1jGu$0hqGb&6c=)=Apqk_f6&&YvOZfM&h5B{SBw>D>F0X-<>LrU)>=jAI~#DkG!;hdxy^uJFMCUKH#Ch- zg;UWYIA?)649w*bkLp~aZ0dq%#|*I`(nv~goFtZ z-H#$yY&5}2JOedfY{3r?0gHLN=(v%?F?%e75^YH^q4yNo;`<^2877`+GG^J>W|U zjQRN8)DOCCGVryU5?nbjf?jrbM7o@FFhnkahH&^`v9JiL@@65ct2D%olP~lar^6Z> zrH}K*yAep z519l!w#pDDcF)6eCFSf9tvsUp=_$R*X%M7{oCc2|DKhfYSPa@@4B@8F*oKb1^hEMJ z`t#@9DFbtDq1MF*Bcr!N_Ny4)h6FCp79fTTw=50NFt9?kK;G)X$Xs@z|7ISl;O}=RR zOpK0Ac}e|l0iNd)E@{W3;AhPY7|IJ^KM3vccwH29*x2HVVryKna4t;JmSns-`{;v4 zEm*h7om{Ms2e+?l*;8u2$yT%To@y$@E4G!aLa7AQI&P%8tLIQZn|QXI z>7lzmmC_883$(4lfIj8NkRSV1KqG%RS_~Ew4YM$CwG2iNhjN@TY&QJ4r%1|1ceH&%?re8`3$Hp<}`KJbDA%nUxB&!VQ$Zw;_pKWsNsqxYfy|kG$$X}$djNRdZtuaV-6f&h= znSufJN>=0ZH=?>diAH-Yhqhz0u-(xCOy;#RDyB-P!kuras3}0{1?uTrfC}QHY0tM_ z5@TgeCv2~wg>R*as!QG7`hv{f}y&rgN8^oB8rSH{qwyE3@%y)tHZFUPzu38=4Y!tAn{ z2wSFb-d;zdA=0jwjg>qHTGe(~8fb|yJm=Sz?G!N}>ahD&5*gXAi{+Q! zlD8l2Vcz)DBw=zouKCl>J1iYT=a^PNSNlGY`J;n7Zyv$o#3S7Ie@K>AZlj^zMf9Ri zJMEeLfJ`}Jj3;gdLj|X6)qUEY9(e9Tg2O|}$DUgHTW=l|96x}gyeHz)+mx(aYze<- z#$mNd9bB6pj0uyoh*NV#_H$z-0(Y2k{kx-cLqR*dnUTMj)DC7 ziQrbF3|{g(XzZOP=8kU!W%rK*vzIP#NKi|i&({%W=~(=7%m6$W_u1*r&Bh&PPtiH? zW7yq&4Y+`}1+yDc;nijVu`xYLzeeU@P{~vBOm#Sj*BW6Ve;+&EqKjmi-e-Ho&9KPo zJkxM>J9K{>MGjm~VU{i9gE1WrbA2Y$<4!V+XO%jP`NnCLdr3l6aw=p$D4;i8)TvL8 z6-ncKWPG9x;oG1Yt9yJ3R7SZ#d}%xxS?!OrMe1l#CdVOdwZkjzkEmE`H4M&I$Cy>4 zX;tc5w)}lGJiR;x#zjw^+ViHC>hH^hD9Ys>?EPWQbbWZZ{u6n0Lr4?!wg5Veq;UpD zIN3r2udDiE=!ygEyL@{Hh}n#xyCqGlP;;W)c;3 z=J+%sN#y05#n3P)gCZx($upai;Cw_2Zs@GQujvwWf0Zlrn5Pm4F&B3Fh_f)nH^#KH z64=Sr`o?stb2*wOa^3D0-pbQse~j$23rf9BhQAEM;UZOFdsvRK5^tqLzpQ9Q^(Qi2 zX(#GsRgn=%4Ol9+gzSvI1nxnh*ve@nv+IA-xQu9+q2WaGEUj>QV?DEEpqbq!@rp%d z1NvrOINX`Elss=}0J#%p$OeqY$e|TrVrT(RM*M;N`b1Vfn5(7SjHc?fJ}}{s4cJe& zMtwV>KFpgqF7hUmT@Jux#cpahN0oIaO}KvX3Hm}dhK5Hv(Vfb2;JZs4>sNG=(6AWL ze5Hqdr)9~N?tIMheu9qoo$6c`?8805ck$Ad7+^YHGLssou(FF|*ph`aX+Wn5#A=7p zobp#xViyv_-)eN72Ez1$2)J4$gk-69dVTXT@O#)tdlytPDTfldoQ@hR8Y)Duf7MZghO_8-qRi?)7cm9q;h${f@L%%Tm{y|DG^qFxKot5>L-W#))I+}Kq%;|tjoNJ@MC2g37)iG4!w=d`8E{^GUkw#t-gP^M!Ty8Ci(uzMMgwu_W ziu_1g^6nAe+$d_2@R~SjUZZ51CkQJ1*=dJ45u4@3=r%u=Mm|o)QBhoN*h`!CFPZ^e zt*dcHlo-Za_!Id9BWX1M6l?wF6A3sJ1M{@acuQ(`W7#ev!3l-kz|3uB+Fgo?%7n?J zB=!Ium2ivPKO@QMyt<(6WIwc;7)*FdJbK#G9A(S%X^l=Bd%6NKsHdHtwTXrf^9^X- z8A(G9e51{I`%!;D8~x`fpgSXlcCLG{als5QP}hbjpSk%!;yr4)(t$;hDw4M)7~KCuyB z^j(Sqq}w=CVQ3QE*tCh3Y-}aY?HAcSng_TVkRRE(=o=gOb~ydHDIUI5n9!^r@leR| zt9MvQVfda2`24pX>!&XVE0Z!|=Hpg6?z1K}NS=)ALO!#KQy$WTOXTTwiILPM>oe(- zItruJ-jT=I^>C(fh9Zn({6gFMT||q=#7sqv=C*z5OVjGBx8Dv2XDri0ZLpV zIX{Mh#&K!RD^Q%icG%DE&)EXu-?Nz2bt>2sZ-7|`^RQ;2J@Iz!Dn-Zgad@&EClnX<`jENdR*1 zqERwp6=~^sM26OeaJ;;2a5}XLf_So!V$b#W>o|Jz5a*LTTLItOodL^xefWD<8jZ9c zMdz#(g;BuyjK?a#h)rRr&&~U%It|Cc{I~SUuq5hgF$)eln35KyiFDlaEu^q|Bd*k( zhv%Q3V!lQWGPC4b={Lnj`cPH^PRJQy>$HPp)z&0Z`!EP!8zh33-Zc~`3^23zA11pV zZ-DH8NXWD0^h0Z=;lc?TV4|RpFuV*WX`4{r%cD@gBNPUfKPNr0A4z;i6+13IpPe@O z3n~{&!?f%mcE_L}{KyW*=KS?|tUn3cigLJT^E?J5YN^XTH^w-po)jKkjOuE0iN3rj z`06f(lcAlcySx%|GTO<2K|7rtbRSy6edtfQXy~Ko$Wr%05C)#7=4WI`U{A3f?65?+ z5Lw7{;W!KF3_N@j3U4pTz?}!TiL(DYl4$se`NPX%#eOdkxcYk19h}}ZvA#w}m`O8> zh#sC8(ND*k&%!&$due8J1sM@82IFQQr<;$M5QUi`_|eq^dY+dO5;_Ct*6@MM)gXSd zeq6kClvyL6!ip_4znB zlgHiTcfbtwa@r{#MBHrFqE?3nq)eN{gq4)gGuP9|xD{)u_;Gdi2s<6`SzRDKN!pm` zBMEGP1ZsqBqunwYbpNItGD<6#dXITYH+^rV;O-4I;m_$T*8}vtkvj^id_io^G-`Y> zf&RX=4r*s{dO|&EG&y-33<}0T8UHXGdCbK-)!saV3B_=3-$&ZD)&T6C3$Z7f!v%TN zP`mUcu<>dPtP>m}neC@*bgB$Fg_Sf~<*I|RJ%5->z8qg}!yEclWeoXn`5Kvge+?$A z31{o9n%TFb7gFAXbit*k8?Z-397^eEd?Cw&I}7aTLRVx;f^^|h*-=(?NCLfDqVYob zE;d+xGZtvxCg#R3iR7Pl>bqS8zyI#y9k`N--VWlJn>!D_#cP4wrF`C6G=aMZ3G4S2`DiQYSqMIAXL2Y!0SCcis=w>=@m~b4M_MaysPid3ce&xhp zUJRd~I)iNwy}|7d4~HHshuUpT#CeK0bmTj-%^$@(Lyd+E3@UqzvU3YM# zd_1fln@p#B97Ma`Av)F37%+b=zS+5f>YvW6m26TcE5cWjmF|z|QTu3kKIn}WYvTm< z<0RqW#yl>kGYh2o*C{Vn3v0BJAtq`G)|tqG#EeJ?8j%Vrhwd}4s_$dTKowLbJfmqV z*P!ud4$oQ91+nUCY&g*6c=~$DD3b#Bi`Q+YEJ=)Zu}}MzCKT3t<{R*@qS-C3Xh+HRd03hQP&%yq}NSGrk;V7bqY{9VpJ%efJuk< zV1|Dh^*`B1=1-kLR&jH;qlyp7ua>!7{;`;pXst)9OnL7t2m`O3~CM6PWPU{yPOUW~uMCTpLBuA1I zSaq!qLX}le#jlKh=Zis~MmW%T8l(d25O4QiZ?=6GRunI5Yj zIkvVS}ubfSK~aj;uQE%eJqoCy&in z`AnRptU6=am7|TuYhqh)+C$xGIg%(gmZz zVWhvhgi49{(|4JpiDzCN9WZ=PYhI}0zWVW4lryF`dox=e#o&VR z@^D73kTfKP0Oa>Fq754K?x<|?Xm~uDcRFKb_zpCPP$O5#S7wpfBD(EQoM4COBl3{R zBO^HcgK)qT)~OO`Or4F56|33vN-JTnyasOFdW>|R^rCYl7>?hy4+bvC!tNGNV1A#a zeUFY4-zie;u1HbA@AlgydS?=hcr*bf-ZG&N4jg2R4@=|m@f^SYLomjlQh}wboMCEn z3{_fUkL}O>Ii<2`BstC#=Qv*{2j2cBk~!Nkev}hjJGYn0aTtji0ncfy;%j>JX%MF? zbDFNtETCSB$#`h_ez35tBKcBFuq2n`ibN=)>UgfdZ;HXu$XNX2R!MzblOf&2kp|7z zVTaKN#CCfzq<0@fH)$QJ?$A%a#@Im5kR!uCG8-$8YC^T;UXEj)1^33L(%U1pA}75_ zF|(gge=o53riO0iad1VU6mmGu(5lHp)TxrChqE5jb87We&F_PN_p+Mc)QNESz6qY@ zx6_2QLriO@99}CdC--i>Ce2C_^w^AAP-N{CkdHczZ>2dJRE0t{Bbc@`R*^Zqhw&1xZ0d+c_lWjAq$&i%|#+>zo zIGK%{Hn%4-&bvW$F~=o(wA?nu^$6BG)Il;=cMSa$19M*`;(b$1-rV!kq4iok778qB zN@^Tz@?HT_t(ug*a|DT?9E>>5neAl(PB!7g^w%Bqg>@q}DBB6{{n41$p^xKdyP+?y zfQ;VMLR?qLaWVERDE?Jvn||RGl^J&ejvbE!Nx3{CdB2I)z1&OqJuK}z{24TjWpPAb z3B9g%g_@daa9FgXB++dNU0`Mbk-U-6)IJ3tntmV>qZK*tspU-B9z9$g#QE2(%)~?d z8oQeET`*#57bC7NWJ4!hB>f%N;Z|cfeVMicjs2v_s=@gXsFlo4IO>Iql}B+}>1W8& zo%`{}z!bO@G#fwFHq+xL2L!KX=i>Rjr(o~0Fx;zuo_^@PPMX%t$DOko61*b^iH)<^L%=cpcW$;+dg#(2O|zgm(ZJq^4f9GT5e zmcSD^6LR?FNPO!a%!HShF>j7(lI>g^d-ySdhqc_jP;7u&mW9HY8X2Hz%KA=)W1>`xgrR{FFJEIaH^l|v(GRgfk`DqN-o6;<%IM2owojqqo~ zVl>|%P37NDfR9}M+RgniiQvZj+O9Iz@r4se`&YuawQaQKd_1hH8Ud0k#**4^gxrh~ zfGD#cM8`iNl|>G)hMSZ9GB#u;CX9rdCnuS+)xmVzi)2vdZDmf{UF20fa)wH^bM)QI zXsY#QE`|nKfmb!967PMP+eVj(ujMSd_Q!TSP^F4rV@5M+vtr52d!g{WYCN1=vkoOi z=W+bA%j}TvGMwrq3OnS7(RT2|sjo88=}rsXv2g|4d~qahe`ts*!IBsgePgEqpBEgnKNz$hME;QG(;# z%W6o_gSsK%z)X&r&NG4f75gb~P#x3~*TYT`UziMyWSvJm6=gWIL+g3MlthtD!xLd8 zodD`v=|7oD_+ZQ3t05z~$s0JfT?*pK0=S8?-pz$dqNgWxtzO(3{ZCYxi-bOUJLnL*)hd zwf7}+O>Qf@;kQ54RN%bDOmFgJj+7A3K0Y&Y%P7)Zm=4ZgA5!PY-K4g!ir&`BAvrrY z)9G#1H16P6+TLageY4-w%KhUBPMSt?Z+KH`^pZaAImcAECV)!oZe0KQ5ZbYv7l=~` zIq)h9(;m&IuHRZHyIvVTU$Oztz7P`CcS6tWJ<$IdN%ISPpbK_$m}fuqzEukkItv6# zMXi`fIYYu1i-4gkX}C`HAolyrfE;~ov^I($MeCoE1D*%S2ah_sA*c$MB;)}vTmml+ zZiG1gariBoicG>L%o;L+F>_bZVELKESA)YGCL6$!Avc=-+lfw>EkmaQ2f>K4p284gY^ zr^|0;Q~RnYcq4zA#Fk29#XN1Q{A)9*8K@$sU67q|Lkv;)eyTkD9{80AD)g!Q}X#w=@9l)}{1vqcE#|%*sF%fBzzh50+ zCH`6ZpErvCtPa~J`9I&`f77+1B9bDaf1Ue({Q9d=`;VRw75#g~@_+i}-&UO4{?`^I z9c_`ndt66ERa!)K*FXD7a{rOPwu_00{l@{M|2dwxXjJasJ)imaf&bZGL?r3IE&ab? zq2|+jM)#fw89QSq8GU*!{h6UaJ3pUf-rBEX!xtPAl*FzUjMliqJld?lG-;k--i^M% z*sqZ!zZ)cI+?OfDvd56Q86C&YyrRz=N}5KUH%{O@o=37x{5-*q%~)%n=EU?TJ2HMg zI^=`9COu+O%l>HhV}}*lv3%fjJ}gHCCaI_Fx@2V8d5)Kvv$wPCN><9UZP}yP_gP0- z3kf6ku*F#7JmNe1+2pujSjR=C_*eqdTXvdt3zZazoe_F=;`QW$iC_4&F-u%Y22yQy;;t6IK6VBjcCJbD>c zCaj1R?P}z`a(`H3J4}oDqTRq8xYEz;tu$m;j*MWQy;{dv9gN^9ZW~2ZQu%_1LTO@Z zAY^<7_AzQF-f|vQOK5J%R`#8rDNlXhdq$KSO@9rTzegoE?nM5+lBeeXJ(?C5{@u=> z>*)B`=>7AbUjL4%%!7aL_wW7U-}V2e{okVpoE@im{&l8{|2f@%p9kUpjGupdVat*Y z8~V&;CE! z1OIva{(C>1`p`&#nL5UveV$|8eer#bGL3FNZE!yW+1E>RkNw*R}rF&)v5g);lJ-pMGF5M`kyBJzkmDx z@Vgu02e9y&m~fv?EPk6F!HSRh1Bcr=FQ?M)Fmm7phuIw`47fg<|297d_I-Gd@yE;I z=bIg%(3^$F2mD}zq=K-jsT@X6lNOrxe8-~|V*K_pmXJd4TgV(f!}|97@eggy z$KPCiOvPJ|aZ1U6$LsZlCTCvJGrPV(-za_I1Z`u!A17$eUOSAsCk=$DZ|34DK;bRDWtCDJqm%{}qpS zS%P!1CZzsU!PGA;C^>@g8x#NFbY3G={?ufCsL1mtk2DlcIJ7{RGus~bCtK1lo1P0w za#!+OMnvP3;it&m(rsY$Y6W;do+LbNJDIOmt{{9{DM^fm=99H5c66?wyiB{FIB6XzAT*Hck=taA;Kzq=H2 zi^uWB3fw^~Qii|scs)KbR^V@^fx`LLp292FwfK(~+2hktK7Y#QIl}d4?!Xf%ReqIj z4tU)d!26BsgrX6?{K{;3;nd+;{PoZB@Uz=hxFoUxmORrF?#k!9Jpbg7dNCuuPHO;G zJUoR>z7<&7rN%E5xk??jRN>lysX{@xE}ihpgULh62% znvK`sKU+7Fzte0L)mk`1=->Mi5?eO0Av!8#x@xcx%)NyQpC<8*W=LayR2vEUIu<0D zBRDkXumJAJVq=mf|9X2fT~Ti*9OW~E|ER~D|0VGg1`SSu%}bw?%WF0HgNLpV=O0Ui z%3SW_nMwsdbDhc;ewM}`kC%X6(JG)o0JFEs3j^QQAbvW@W`{+6_ZU`DaT7iiE2VfTbM6+Z`QerN`zcWgk|F~+VP$J(%*sSv!t-88lA*an$GIRZzDKviW zd3RBwks&pxkunv1sdP;=e3S2(>#o)^t8dntwZ3o7`ex2u`|N%8+3&e~zvn%B@AW?K zyEiUQQl@n;tZ7HoFfunJ1s23R5)ai~xX3nB+&-IP>y8>su{{r|Y%csVQ;x(7)#)2Y zE6l8$OSYe1O`UU0NPgB}D$#YK2Aw*X5Ma*w7*lp^!YA;o+Y!dkx50YD1TgA64%rc^ zWE1}qT*=_%DK8)Mtc`Hk6h2MVI0!2%l2J>28zZl$N=Qzq_^r}#svX0l>PiQhgAdxk zaphPtF>^3`vTzq&>LrFL_xQy6cqxS1=HU$8Z{U~eG*nYlCeB$ojD5jQvde!o9{qd> zZLxUD?hG^&@9+&rZ*L`9^|S;Z4Q{~Q#Eis&6Q&P6Rk-Pz6GmLz1Njmg659P3UncM1 z{F;|RnEo^>(0c$$&B+j@mX2v7IQyJ&YUGOZVaWD%pavZN`<wA? z5yuh{cDFyl*}hNN7G*WEVe$+bp?{RMsMm&rHe*Q}^K6biTMfl8y4dFOWn_8aZJh5v zf~xRCAo>-dSUsI?X?}{OM{THjoH}{uu#aS!-Gy;}Z{eiKoR+M+g80fu} zbQwny6(NB*-dz+;7eVVCZr`mo9dU8A5jC2rLd%s4n7pPTG_<&wy>d7g`MTG^%&8I< z+H!Unq4&VCirZ&mLpxdpp9d4|aWu_33_|Sf2}$fg4S66ua|`s0RHcz$52kN;R-B*v z4D@hlXHRaq50G1m%U0EbqgFPvMQ{{a+l1WaBg4ogyPBdMK@U+$@(RXIBV_gh5p{JL zK(n8(!ZYQu#AcET{pR9cI1>H>i;pcM0Tx4OkNXPL`>IxW;kZ5R-hK%JDvjv2i?fK} z=zVm?Ca{m)Lq3^z4x0yilJuId(M`jg_7n(cLJ+q0E8)ihutGmQG@fLi{8qo3W@V+@YIoD_-QAuy)lh+ z=kH>UtlP&9de_LjKH?{|cTgoBIn`j-qlq?AO&~6B!S(-=CtciHpIfh`K-oe?@}NQ< zl9E^~^vx<#QZIt%rcIcks!j2cCUGsQV73kqCA>=#%oPdY^v+bY`d*c`f8~TmD@@2r zzcUysIK+mpY=)DE^TUWj_j+~Zw(*^rS&>w45h@>k5Dr`nUMCJw5TQrgS4^*JX z&l!_>kqPV#mkFfaMo90ZjiUfU`ybx|dW|~}vf;17e;?2g4c1^msTq*|n3TgZV1#&KY8lCd_ zm+S$f{b-uYtrM9qpn4Pck=V*=JfUb!yc(()yCFw$VXPSy=?JK`;uz#DIR_3Qlc?GI z5}}#CKj-Ju3ghhUKw0+$lZqXMZJoR3@;}d9E^%_f8t7bTu=8pp?7xb8l1tFD zcof-^7YkuUlZa?vD!fY@%aoRMvF8`QgZ%c_IN?f#n44(h#mL3Dt%pzDVpU0h{BCxl zREzL2HGxd;X?*!Vm-`s~|7-ql^*&O~pbWp0>3d}HAJ_9({DLAd}r*`cU3g?ooalJ=d%kY+bX?d+p{x!P*&1>;?|% Qy(`cCE_1Qu+g{%P8`(>HcK`qY literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/cifar_25_samples.png b/labworks/LW3/images/cifar_25_samples.png new file mode 100644 index 0000000000000000000000000000000000000000..4ea213da7a1a5bdb3d5cb8338a02106efb3c8833 GIT binary patch literal 121751 zcmb5V2T&9J`!A}ZqDV1{^rAtU2uLUNUZjIkq$vSHhtOL<=^X*3SLrWE5$R1@LhsTc zK!89fp@jgU9DeuwPn)^t&UR$zn|w*o=9y?Wik>vl3TZKk*TUE=-#?T zM0c}uKDd8#Cb&XT=jI3Gu4w44=WOln^~u%hmc}P{7YAo|2V0Bho>s1Iw$4rhJR&@N zublBoD%GZt~DY#mMc}Es9V7*>9If7u(*tee0I0g6uo* z%$-Z0Z&n7drP#m`Z?tj!Mz(To0To?>V>Dn6NISuEu+t0?&LDnctgwfv~A2(YL~5Dv?sHW95;;ANIo&Q0~2piS@ubWwIZU%?__v?Rf$Rk>lDOgp3DLkf$ zZwrCRR;E}--L{7+6YtW8igspelpP4?Qk8bsdZ}4EfxtQ9X9|QI*ZeX2Dp!_S&FkhO z;#jp5p1!L~LijIee?1j?Bqs$%I5C~}u({T&fNLI019pSo3eR1CqmMNU{!ZUld)#jC zJ6iJY6%cqhSyMc9&8P_Q56iJ}5Z^APHb-f@<`+4$!+}E{1)S1GD-erEDRe!2KVR}C zKXita4C&6rh%Q+$ZWR^2gmVG;YGdUC-&bvMU7U&bT=tWMXmxj_w>@Q}Cydz&tuH#a z`L#-$XjPP>CIZhQzV%xH0DXE88t!FJ%11t6P;w|D&MzLdy!BC!{s>y_@4yR4nCY6H zgGOK{e7XV|e=%MJEFI-mxI&%+A`e7a-5r7{3Fa)hjt`*pS-H*?!Nc^?1RDip-Vw(! ztVHh-UQOX;oC{Je1^x(vI;~CD@Hwq$_AI!LbU5y~#_yM`O~b`f;@;=L!zLta7`5uE zf4Vh$%C=sg?rO&~H$*C}DjG6XiYu0xZt#aBJp_ zDKc@L&DmXC1%R!}HlW;=Wocs>`0 zZ#O^tZk`~Q_Z$e6%F^qx0ANzgeESUJwk?|dCUbbq+ekgsQ3hqTcW|AnLDl4K)HcG# z+DEnM(T-qke<==ple0S&ns^AC>1k-$A(uVXriG&kXjX!ol#kOZ+v(vws&XdFvP?|YqGNhFs!u^DDoTNpWtmx%1;fNW zHz5~X+kNwOl$l%FNVoN?v%WIeR-lMr4&wqfElp08-;Q{8k zSn4g={M0e*k+GD`DDkF=T5QLnLEpO z_~7{;(_Q$Rr?+P$&nmm19qFR~uoVBZjTe}hU$=}}Z?G<2?6a?OG$Nv)JEd(ivtA-P zw5LKowQ$tg9erDKvY6-bvW0Z%{y&U#(?0YSyGx!&*!{vU(#{TGxTmPUG}v@N^7Ic{ zV9BdAaQ(os+OjupM;$Bj%WX4F%z3Uj)tFyOPaUT7Q3K$tKk!Wr?fyuf$y0^ z0*#lYHx8d>N2t6F+!DTCtv?eBy~6y-iQ{j}9-Sx$UqGFX&>*Mqa^yRQxhE(udawwT zlj`zA!tBYz%O9Us%zYRj;I!)Iqmh!f^|!-jm)pr|mu1uJjVcaT=beGHTpI@l@t@b| z8PA0}>#AYE3!>zRh)mcz=_Ia4v4q`ALmqbe;ObqUDMDkj@^_@q!X2@x*E3sR1^+>I z<-AjSc=?+lO}dflw9?uAl;Gdycls!4_rUz^kekR!ReR{<6~BvmO&nHpdEMk->S}cz zbm0b?3hlnIubl7MJyDT+S783;?W8j7JUU5DIwv}!K%Wc~&`5&2c+E5*Ks_ScDjI&6 z=2UjO_WQv=kp?;r@r&dg~^|3rA_glp2Qd@=K9iU#8JVb5I%pl z!!1vv{TFwgLHpC5jO#;K>w_-sppPE(S~*f=*!N}LnKh*8L)K3*UEvh+LxCQUt;y9V zCn8rZ5xxB+{bfyyL#zytk?hc>i4IgR{)rKuibZGv??hpx-YPXEATWdQNxM)Bisjww0Zhc?U1-=QWp`gQah2U;oI+cbaIC z*?2os!4vzaMUC^a(}o}jw~l#w#!!(z3-{F8Bp+y~m-TGM7ODcQEIoW|X_x8(`X4PoAUtsTyBqv!nJrn-u*c73{E4OQ$^85Gh zgKewvyB`Y57#?anf4~X2PqSve<*lAU%ho*qD#%kqVh5Yn4X3#Phz-cWrX zP;J<(vdv(qg_QC<#mNgdhMSDm# zX}LcF{}`TT1^jNzVeLCM{7MlylH`JFsggTln0?qHr+HCZ$6;6?QuI`uITg{5;!O4_ zdTB?U-6`~vS9eNgdyG`PN5YrZ^__uzk~ZE}`h#GhWk$kpGB!#NpfrFoAs|7NuAB>pBmKXw%81C4yMH zESP@aFV4oPG)upo=sq0O?*V4BNa$H6x38bfLor*Qi*5(5C5*^tX#t*(dAqWRS;yGr9B7mVaI zaACYX^lRF%FLfB^;v-lW8)rSF5;hPcCno%mAhX}FaU^(@ZnZ}pFS?L3Gv6(sqUi2y z(wiC}$|j9oST`!k_!(RJkB?7AUi-gjx3V041iRk~yI<^Z%>bXucdN&(J$BAWPGDig zl5QonzY&3yqg>-R1cZTm2S?PlQP@buOmn}$N9bn(i<1%6!+koFqJ(>y6UJ{(8H+!k zYtMIxMGT?aL*_H|p3h#(MOS$vYFstThlFyr{&@N*8TOJt_EZS^>-c~(Z<^PFKK`r( zNdUVd41S;+$->MqxF_E@wDH`ve=B@;S4xl_Hxd?l5X2UaBTk1!18Z& z!Yf}gdx2}er6mgm0p%AVg|kT3KhR=I6Iv^}IrgO*#?W+S?rudtc=V1a({Z-lc< zax@sUYQjpJ*;+(}42g(PYm{Z^>oOxovPdgLU49?21thrML-gv>ri__(TDiEw;^YDx z4*g%2Zt<@9a}DP_JYS3F&<$kh@Pik!4mJY-TX>hW9t&E#Xz~X+^E=|J2k#VK{@BfC zk5_VfPMZn)msR+GH2n?(q)ziEO?lm#cP$m3xI(;2 z+Hrjk(pdzyt{#$F$7~Gl!v_Y)N_dC!R*v^F4rZuKcfRsUUfGu5<30w>tjJdiOr;Gx zNTCbS`kOlFkR_E)*{q}V89*#YXKi{B_ub-JowJI={_w$xdC~8vj<4+@aepR6US-8;qrzgGdX0WSbhgKI7#K_19LE{nTDDE>0b zxZ@}rD)h(qfP{$7eLAv*`%=>(odr=6vPw!hd!Azw1GnF6e1OEw2^ZGAN*Q{{($DJe zh^5Rvn)>j-xDuIy6lsH9g1j~ceRH!sPM^1kxNW_j+@&%LS5SDJ0snp3oX5miCJQ@} zNbjOxl$|&pV^NOrm^65^RyP5+-&t5tEHUO5Y}3?SwY-a8BKVe|V)|b3WFufX%`u<6 z9S-p@!A4K9hQaEC^lI{OHoMbtaJ-D9bbL}|2<2Szc*FLA12r(w)uwbAa-Xcl$a-m8 zW0Y)~9as7e`Z`}-LDj+S`bm0s*vKdHEOkd=>xng5TG)#Rn{zUGffsGt>9=c7rI?A1 zmV&}pOql8gR9&*-07c=j;9z6Lx@^lY2=(k-aM}9L)`;!gT{?-Br$WJ8|HUy~S^n?1 ziyo_TsGb(|tmr!DAt3???1#1gQqR*sV>aUr3qB{3hc*s+sKb^liphn-ZQh$sP7A5v zGuHS-Sq(aUmjrPB11}X@WW>}eL&dgr#_cqPw2KW-2A`KgKVZFY-%DWWVfb58rU@hU zg1VJNQUN|0xm#3Y!K3-rt>uVM`{M(FFG4&2IXRdDZ*t8DKp8MExq4$Hq%AwXmOh-k zj}1J+%PboG@wjN$YPBv$;Y3i?fe7OhSw^;!v#Ucl?}a8cn#X6yIaeYjKe6Xh;4HuR zCAID6WUu-p&jxp@i-aEW`=*|&e|XrQm1rgf_E$;b7Az!6Upv0PnWU&7lJ2(`M!6nL;be)$k2~=IR(q>+s7W0@Hfxh8^2sd3EOTW?zOsHzyJx=eWu#H+{5yV zdG_w@@l0`^#FF%d{AL41#e*LAO&y}8&W2}FCLLA+T93!0e`_9{i-JO51ZI&t;de-# z>cQZgy54DP$SK3D^yA|(FTs-Lc!8EX)AR_<^?s+Ach#{ZiW2QX-3%ykQwg3+p3sXi zo>|I$gV)PvTk{)GJC6g=-?Kj6>l+rM<$LAN zWG~)@`1W-}w8&G9+fF1sbBPBf_GIM3SVv)Zb3e5QA@alOE6+4!#0Y+|BS9enF>@Jm zYdG>hS3FFOjEMP~v%cIRuZ_0Nv?7zhSH9`Wc-QxdV8Fm&Al^6EkiI|@uS8kfQ)f_5 z_-ml`$Ip~5X*M4Sd@`Dvk|{=n8{D}wN$x}Rs34);8-QR3B$RR^BeILd45|A0PURE5VF%UmMVu$0niM0qM-V8p%8c#Dj|f`XzsfC|%)V`!?2a8& z^Ir|mvtb|LXYD+?!YPrraz6Y_ehP8C;Gmp2ia;M5_Ur_H=Qkt%@l}HU1yjmPINnXr z^RMfM;kOe`d}opU9*6I1;9-5X!wP70UEWWqP|0+AylXPm97v@1~zBB6;oQc=c z(IwI*Kh7e#$6b93^yc4p4(%2e#c>zx5a+nt>{QdJL9ccP3TQ23Ut#MbBCJkjw3S7b zkZG>_mtwYyYyuldX)UHyRc8B?HP>RB>~lc{jpb=74Q7?J4MfiK)}^)2!p-wbKJoB` zV2Zb;zyFE;83Xq0=3jp#nvhoAIsTSc@$wTN9J^Mc$-UE#J)>_R0|L*aFhF_%^B^${ z3Ti)|xd_d>Ju|FvvOb-w)GBffVZ90LjmRTBpvKWSp~U2A~_tj zMV!gn@m67`UP2zJ~{AJDGPOA^J;EyUy=?p%-A@d-+6|sv4 zmlckPV@RVrQS!hiBn@rH<;kHa6Hn#W;yUZ>X2&Kprj8HXv;RSt7|J=_<0jz$+?{)w zYi7AN7_mPzYW{y&=>B&g9|grE%u|Y%WLQ2c9FjYXnI5N^)&aI=qn87wbR|e7ur(18 z8Xw@CXUp@*=tpn-m5q*S+}e?yEFB%ZzX!{m#S8MZSgwZQ1X>+t zaXCJ7Lp=Sy$ribWW%l|QM?z)pho5qix@DgKPZvfeV4D zyquPx@CpiO=T!aGl=CU%!=W`1V*3pX#LnW0(60Z^yeY%e_ys`{+~A;9NpZ18tb~2v ztn#~FRPAPkIA8o`D0TaNTx3dhoyE~yk5qx&?aKIPhm!iG*t>!!yu4{<4NO*yE<<=L8>6!}l+aO(pIFf#i#>Q?EpmUp^GJ zknV&&FAz44gU5KNf8Vb?fHsLloJn+Cfpm-b>O-e@#$v9}6PGmcfs%(cr{AWZCSglV z_}zwGd6=+fDJ>m<#iWVa7lnRcCJKW*DOK=wE-(9Rn6gUX*#EnY@PB~r{J>b1!S#Qz zv1KAT80R+9ZsUI)odbK4GOe`h-5x7eYe9<}BshU?dDxPm-%|rh^@PJkB)@D^PPW~% z;TRydMF>GG(`C)&DQriO4eu;{TZyXEcgg5EVQ{Wbzy=m%S$g?{<+y<4x zVnHiD@~V{?>2&X;;&t}|x8MQr(lnx)r|({U_i(=Nci)>J4|WPnkOLro`!mh=6iOkk zNWkTNZ^~wjFD@elc*IO4c*Phe-%xW9f4L#KmJXyIW0}z%ZI8`}>#bs2UIB}8LRVh1 zhf4^`ojW6YE~x+qx)Rn*=(+M*FZW<|xw@=~){T|2xUZ1VllHclX#+sQ+cTQU+v`_@ zCf$718q+qz81Dh&CA)H#xKZV9vjjP&O2+(2uchPtj65@29{EK>Hs;s}@8Jzt_NACa z=fT)uKXmIibt(KxkFf_^HQm>nUOl)?Olb4&TD^@_PTXrz?)tTZt2^cZt8cck_V<>m zaw1=`=BN&LSs4b9VKj*)<lRbbDWcocBB?uTFeJ|-K%b!^*8P9Oh@emiDWL34Vn z#zW|s`v0fRmF1Y$(Ua)mrkj~-YYBa*0gg@4q%p6|@}b3iHxiufW)$@H?4y~@@*%VH z>n8PxvJm{Z>oZLuV+wM8I*DW2Lom>?{^Yg;O!Ov=K4Nf?YkVblW!?uWqV@XqIUMs5 zFkiH@D#yYvHO2XOLvBQHBAGLj)fwg4eE<(j-&o!r@xNr<3MsRmgOO*%9yGYm7Xg0F zf*yI~$6anMZ#rsYX{Cc6Eu(g{-~Nbjx9}f|cM(@sn{o0(jK1+|l)YcUmfoZ0&`Fh0 z5xeamN|~*+lBRWaR-DI_Hb;z0$T(mC03v(45vm~!g5QfAJoDcOb+z#(b~h|$ve>ZG z4^;i!B{S^;YUrs>t7q|OP!OO(h&xpGdV#X z=gwB^_JDPM=B*?)RTY#r4&S*4n46?(<%ttfCCB@@7laKAWT5riwVrYc?lYiAXGlVC zol`QTG;B1!+dmLWnX9k&l+l%XBd$>Pmukd#QAuhzJ087!T#hdP{N*bHkHM>z zfEZmF%h=)DfP~fw8Yl0Q1yG4GBe{0>Rho85d5#Ez7{Q{)hZ}SMBQu<2wR3m9Kcc}N z^`TIA;kafu88j=GMmoqsIg`S>>`}Co_t-$J0%~VQ>_GC*(M-WoZk2flc+m+Zy5iF? zESJFU4@jfwfwn46n~>k$!Bz9dQ0_N~fRC;UP59Y4K3j!(^AN)p_FidJbWZ~T2}(~Z zdHK?Cu)uuBu9)S{vVW-vKFnhD!(9V`Y6F{<-iMLwH^$8%B()u%?Im+*E{!8-n>+ld z;Eog#5&2E6&S*R%A8Vw*M2cY9^;UUd9F+e1xh!LP4z0CP(_3=$JS!@W-r{~S2Xa+F z!aza&k&0V?0Etvp%VK_9=?MK0s@|H=kahXRs)`B5E_ybHF3>hy+#3*}dC=GpbUst! zjFG38B+c*FIbW<0$IA^7Hd#w{f6ppB2SRVlv!-l}67%cINgfXQl>{c{u_L=2O+EYE-x!qNRAvQ4Dwpc7`CgmN!WP~ z$Z`A7EQ>b3k#;TzySh?LhCX4kkLLOMDTLj(Hp=%zr0qb~B-=TxM~ZMf@tb@BuX-5E zAmvYk*|Oc4SpT(ky(ZJ$qe!~%w-<`eyE-nuzJ*CD9?i#~2QO7N#fDx4HZCX`vnr`z za0rh~+{eMxJNAC=mG8Mz(fbd=oyJAYI95SYd~pLD)ca!N)?H;0G1FD1hn!~k38tmy zWLV2yN)eR4^cy^Ci#OBw58t=Tk345>q}`sFO{wkw$<=qN|wN}f;t4WligfiwoO_rPaRe5!sNWjQ- zC~t#%g=e3=MU50CQcF({X*=&7VEl4fgP7p&3%*iH6^T&XSs-ZYC&M0g9$i2jfG_K1hmVVJp&{FD5O!(`n0M% zZ_LA8&95)Fn)JmB?PU}$c~uA9UVkj3G;KbGRlCqy;u9Kun#`hlj}Q4Lztf$p_%jji zm`l%plU*JIxlL!`>9-{U228cXZ=diEdwjY!l@V|IW#M}v%4J;;c2yFNJfcK=xsu1)5ZU(Da61tgr^Z%Z9P zHAws?F+f4_KXDrgm5P>hbwnM8#P96eMoq$Ox$}Z_|%wUpoi|S3pPG& z8PBxcOV{%$j~OWc8YWfP^7SPPkwt=qsv!zOpih^YSCZVARwhVz{2b(_gBJ&l#CXxMm~mPPaMBvjf9JCvG{ z`MZnSS{v!)p$(ZWZuvro%bL!<763CglP}!GjfrEwhyhpZ7*L+`?n{>IA4P?oQc&K< zS7B^IZ@?ctLlz16x5MV9XZ<90ets`vAx3U_NtIoAD0B32)>jEjx1&ee)Q1};7iSW6 z;J2R`LCm!ieqJascBL`uNxS8MIa*@u+l+E&A|K^*$%U}*AO?qx5pbLQPU=g=F*wrC#|SyetB0pw@=C=T=-Ztq`ZFVBY8+ksF(=vx zmDd%M~h+J9>2r6Yu#hSgY44Q^b z_Yi*iVH@c&kQ~^3%v+mtFQ!Z-q;XaSSte*a4~5Z1+WtKt0D+u~@ldMoC{#c<-`RKD z*I=!b2$i_HeC4*fp3vAM$p;$oh`;}ugqsJfUYDb3+?zxx_D^Xr;CwSU!%{JHcz235 zvoec?*Y~#F_;6^+<+o82#3ns+H#M6MqIq0l$Y?}S+)4>)MxE zynk^n&0UPMkD#EhW0$WOK-Ny?@xNQqyxCvQJ9m6a?B5^LK7&nqp0}0CN(#49VB}HW zX6|B}T!%#Co5UsWdFQ>edl>b+U@N4Uf}4Uxiy3wAW;=t;_q|X7`cXwEhdTrDaZy~^BpbOW8GfLeK$<4~ z^!XNDS<`wAbSZkwyQc{X*wUR>F3{4l-T5df{ynj{@vk4uEeq6d4Yj?9w8@hkr$+kX zTeYdniV#|-sd{X>S@4tdC%zR;T&dWqX6y4THm;kmmm*#Z_Vc%=l#+^qzJTs{nRV~7 zQlTmwBnN&Daol$@`gX9U>nE5_Yoza9ZbZbaJshnl1o?1W+U`R;UGXzcSsiUH2a>wi z52Rx(ZXpJgR!%}`f2%W9HvGh6rElSGa!!urs4d7?7dv@Q2EAiV`j#TRe_OqASq-Xz za2^8<;~DNDkKcRUm6T+pm+SO_}J=hl*zqI#eWe5bQs7V+wx?MGQipUP@v_VJap{6HcZ0eV%OGt zZ2KFYJIl$O-D-uVUwh}2qIQ|u88M-a1KPy}to5qFnD-p^UpC-?37E(|Xx0yDksY7IA+z=a0YxeX7GE{yk$zA3Fy*q#1ftVY{ zRWGx)v1xmt;io`NgJg7ycJWRA%TH7U_vO;NoJ(&e$L?uK4Z}|h^TUf6VN&SuUSGd> z9us{#5hnMHVe&oo{Dt>Zw43w2qCIJ}PJm3*Jfl$6$dvyibGz#kTz=rCV}ry^%l@by z)tRQJjl2*W{HtO_&`5tb%_qR-&>vN;;w>r49OxVDO6t3t{c;7<=(XN%u-uf9m&Toh z&z(R7G&RH^_D1vMZ}21too1H8;3MC_$e508yNUFW-eEWb(v1vfNkYmep!?q6qP?9I zO^4s-fsk9?N@;WU>CtV$^NZW#o+2(%mr!D)wC{sTb|4V^%+5Tc4t3v0pyH$P(z#Ek z&(nt^WjQN2aD1Ldn#NAyFB?V)gTQ*{;U45R%8)^EW-n8@V=h3d-lr{a*!eLZ?0FG3 zq9WzDx|7=Q`D1{sFtptS(*|X@M+u)u#t8_XOs5Uh zP_wotUv}}4QsG39LJ04Hu4+!sRd3PSYY**dPv#D63I_{^AR$L_>8D-jxuBm#v$x6h z=25)-<$@7I5_%i{%Bt|o6_^POQiB(^tvp&XZlG@Z!)==fR|$oEjb!eHk>a2A3br)@>KsI6umLc#%V>f?2pZkp5K9} zlPqCZA)Q}cNnVem$NdTAX(N!e#|7NuQzup2KW=Aznq2fB-q`MFTTEK5ShtCpa=Cms zgv${eLQy7!`CUCZ6T_4&4w}P-#R48-o++~rPOy{jH*^OLyng4xgX54zMkvpnNKV#j z<|t4^M5u)Ca1hMBC@~)x3HyVE6AffsGt2@%Xe~p^)oO~(Kc8=Md&%!6c|B)kPTEd2 zVvJPG&i&SMpNQ_`z}y)FH6X#drg1M?MHN4EexgY||6ZZsgM1+AcAYWzq-Fa#rcB%5 zmFWFnOOo5QcYGGv*j$EB{FyvPY5|k_&4N?rz`(eOUN7L%S2HG+NiznRpc1iKov)$>J6vDNv1om?n!`;UAs8lAh6V?MCcq3hT9(soy zkZ|srRYx?!HQewbI$w|zQK;KVpa&!@How7dFWh5TNZN#-Pi|~$^!;27*3=cFOJF*WunOX=Oanwe-id&6@ zSU2OhmVRjek+M71!gLCsNtzBw_`sU11|}-R*V=#C(E7Koy2&UMXc;LC`LvAK@i?ye zd-$22J&l=ediAe7!~auCA6#Da1nM-{iS~W(o77Vv`jiq>q@eJ&dF(-2Vp?;}XQiAo zsS4Da(B_@Pq0t6SikvJZXT)d0Xa+$6$QVttE9O~Ae!)Wzmt|{kmMxKn*+bgoAF0{s zbDOHX#c%p{bhQLa8%$#4V%~Cki=wr#aC>MGfFp0e%84oV!^vkI{vC5a!+|PM&k5NB zw=x7alHDu>zt>0~J4e9p3bdK`=jAun+yD(re&Aa~z^|a!ELS!H>6)n@lE%(-#gIF8AX71Z-%wX}a_b=(tH8 zjkA0H-D?*m+7)j|*WzwWx@fmXkaw z(DF9I5&@dV>K|Cx_5jzp{-{%s3Z2K(WD}5C{sZLY^`+vT^E;Ex(@> zbF|h&S6NX%_{7Ch6|Y|E&>|ev!{I%6urJ!2Z5xG_I-j$Lv(T| z@B28_j!gxZYb24qbk8;v)PH7^7~$tEN7ST&QsUWeI0(7_Ta$^IMYw$8(umSBMnh2c zw$_i)JVHO4srZu*%FRgt4r7Is^Bs~U3gaha7xScwZU55ePF6-G8~Q?`=i@Mabvhps+e0sK@5C|1B~n}Zge2@BGJ*kkd6pVX*PixNOI{LB!xs1Y zVwPEckwH1jd+X09aMtcXi3kN}$v|Hod9}wUDr%WeZWG8$axi0l0Wr7szQO8`x?x{( zqTfw!G{4r1Hu5MqBiQh9*zl&hz^1g}vyE#k4o3WJS ze_*fOenK*pLRIBBEbNknyKg7d%t#8L1aO|0pemo~1pBT`qO{}VVAPW}keol~L8Toz z*-E?DZ5h}uikYoH(q3jcuYpgtyHVO`HOKZz(ERj4vvWwQ6f=a?}n=BmP?cXtnidA#ebjl9dTBbQJYd1G=Izi;<7E&SY_0=QdQchr-j9JFe{7tJl zR9;xy(V+n}OBnq+H>`G1SU@*B@Y%>B@m{A?#_L@6%|2=0`xtF)bQAv8#(YG?&aB%5 zyA;9W;Dq}N72=AO$RrLkN%;D!Y-Tg^5!tDt=!i8Nr%Rq#pPku#2?wI7FGpxag$*<` zbB!VPM!4k7EF5LeQOR!M2n_;xx}?h$2hS4!6tjLzd2Wc5`m&w*D#H;y+SsWh!*}Lc z9x*K05y0HIah5U4-;fe&f63D#d+FR*4IKV(iwHvca*Z>ZVIo+!Z>1V_Mlcf4s=K@8 zzJG7&J|JOI4k=R;j1bE~Y_FV(p10rmVBKmKE><>D!yDPE$;GwVXK2#tX6Z>)NzK?s z4FLSQ=ye;(r{0?~b`JIRy@ODhhF^*63XSAPLMP9Wu8%f6-}lqwsXjf9>aBtESFlG9 zWZ^Dy{Q+3nw`2E1iM(m)a>FHD z#GiLEIU1!PE;BL~Z7wkHkChsvY~00FhM$jB=2CmRGSpW?Me4e^AiW4KAm^EM#u{k5 zaVF=^p;sG!G)mqF6H!e*-&Nga$QJMFv%Db0;$9K;@1p0dzs=L?3v!H~S+nwCq#4Iy z@krn1gUgT7R<~Z~F^zyi#OlXaF=QGpDfFweNWTGZ1?<1t|dHa z>Y?~6u(tHk6W<601ZAABUuV)+M{Co=tFSAf7S3jT;S%Oo=E9vn(dlifYOv(77MELx#o z=It;O-8ugpn5b(l|8_2r9e$;&Ifg=TuUlO_9L&R=^8`lJeYv2rjdG+VE+WqfJ$-n| z&0|I%j^aLKub@^N(5T-1>!_X-BkO-_+AU@p=*w9on^TEel&Ukzk4D*5I@f)&9P^}2 zd*!|RPwZ-gm|G(`?ua)R@p{n4Z!hpt>ZG2^3VIigyN#c48>*XcrLUaWF*nLoHoepc zCqGbsc#dXX)zI2uAUc*PShHY3di-mKoO%$0^((N@+2f$P8}gW-{n=7!ll zehOTjmr|E>d(+)_t<7%Mh52Ya`+(Za?Iaq!y&dN9B$~%8Oe{yhO_PoNU{0q<9T50O zfX2Isc;{dH0%Yw~uLA0rd`xOrM$e?k$^XdS`^33S*Zcpd-q+ij$T`}ze@MhZ4;yUdGtfad^qyA?u+}(kWaC}+WK5vLv6FnCz@Vc)i z#?&ZbTd-ZyiaYY6+pY?6zf=ugLhe^8sD`x#5SQqety-<|Mnnt_TQs|Eg!WD`kqwtD z``;P{^`dLs>r&NRmjB!?0qHH@sF^nzOAAd|aAVt+aAYc-Pc%H`NAM-MCFrv2DT7~T zOblHHTq6VVCPTp1o2A;F|7y^BO=a}e6pWb`h1Pt0oahk`*N1T)aM~y+0ErR1sdIwW zP}=eY=Q_?Z7XIn6UDWBSZZ@JPIwjZaWu-OEYNMpvnZ%^g@VDnO&QJYp9Of!Bwah^M z^#}fX1Zh<%W#fI5tSrUA&C;Y)Q;z}e`eoswBE*l6;C9~AHCvkAH4M&6YTzGz`e!4? zrp{9F1ZkmAlxBO%n26X+j;D zTXvhV;pY_6m(6goz2--)FIfA3%`ZIj^!S%%KmxMOm`?X~1qPWuP{QjE&AX3Fx#QM$ zO?O5@k}@J=iVS5U6VakOmB4sI+(en{BUH+w#kR051g4S+HjJ{H;4_!DD6xw|qsd00 zUac3vRWZRp@gZ0{gao&1ULJTGb51+yS_B!P*)AD3IhmLcZ9mx+L0!xflQRYRW^PQ4 z9K}UPDEn%sxR>iRGY!q>3}o1KzLbR>ct69}BRixPw^#TN z?@f}Yye(4Rd~F;0sNnM1BV4a6#q?Pd*pOLLu4#I7p%O;G2Kn0Y+6kfQ8-`0IH~Sja zJ&)DC*%jUQNZi0>w}zZAyy=vZSX~Lo3AoZJ@ypwC2Dv;wl6W#6Slp*H-`zJn@`4xm z3xeOn`IDZo4vysCu;hDgo_2H;==v&bu1Jz*03DG&nF`D|I*iCD1+ZnFaxdzP>*q}-0 zQISg4%IJ$@nR8krxlo2UWsq2<1P0Y}XNvW(^I7zNw7cB+)hm6XdAm3Xx{>yM(n(ZO z$viVN;)d71bb%tRsi35`#Pn#R$Enjf+ZxRi#`uzTS8r+0?Vpvw=cSbaJ*QU;XZPb4 zL%>(aiz{pwul63i_!@D;ZVWr@vmzqaSF5A91n~z{T6-;64yTEqn}vYzL+>Cjnr#N= z9>10Zou;rkZ{dyTnG~h1s~xXEJU-UL|E!ulw{5-dnjWJ>-|D$i<88L+%e5phCFSgE z^OjXit2f2Ym>#)uv}@D^hm8hsN12vzzHYim41QPBm^KcbO(|MPFI)X}kkc8)h7xJOem4!*mnIH52k z>&11{Fsyui0VpvKq)0DnJNn|6$CUT+IUwPHQ}B@TQG@14SDorpL6Tp6@%Dg(=N|EE|C{X(+vszYT*fF0_r2NEskoQew39Y@Ecz;|EN(mhlAI zPw#u^Xlb2g!Mi^Z6ta?uKR~A*BA?7tXQGu<`rfQiyV~rL5eXU#i`o1cAlM{xt&cUp z*&u*~TdFdH3- z{uy^Wi(FGFVH7m&kiHT%5G`8N^P6Si#9+!J)QNunuc)%3<+PI^8&$NZe#i^Dr}F77 zoxmE$(ipJc_s$Xp1*JZjJ%t8S7Cy~RKBFRSkreV0t88PX=cbr(!lZMl=Io!Wu@N8I zI>n8B+~;Qcr!!v1GXc=WztGhAF6ijT53kdn-iwJ_G1TGAe*t;`HPJYe5LbHfr4Gb& zaQEIBLmYJR@jOq#wr1mv(nQ?8EuO1+XX4h*1a4%%lrEf(kbMoELD}>fI{tz5INVnrDR{+jRY+guQsQmm4_#qfd*Rp=X3a!v6urZ?BaeLs;6s zU*aanC!;?DrPCw%80GOw@QYFuY$kt}*Ha@8WTLRP-vQHZ=5az)EDDui+qQ*E9=UV- z90en7%e#tQItNmCI9cgwUS5+Z5a*{5sqR=w*1zI9rW>|^3r$O{Xy-;Hq$p^>p#%bpt~^mOf> z=sBEEmqh^IV~EDUCZXV25!LD?HNfbhwup}}75)>R!!9~s$}ZgPWmgRUai7_3ty2Go zDJ!574dx6P$zKL=@Yh7D1&<*V)iG51HNA*?K~VbTx1j#cufYfEyOr{E<1m5_zNsMs zeVB567$`TCoeRkh7&1hhz6_&my{x?EE^#ALRZB<}+s#_O2z|8u<^3X$UDYgVa%i-Q zZ6`dpt1p{$YH=hH|MNSPDZ4mVhJ16rowahS5zYb@&I=O<6&exU*PJlpehrb@xV-8|* zo_1zSj8k!X`Bfqv8(lJB`LOS@G0$Z);1+bw79WasmqFu>D=_)QRhm~o-QueE6Ob?u z1u51H`0Vqp>o;y++;PHY%svtyTm2F(aD0Q8gX3BHjU)q(VA>*>(=SQv(AV4JLM_y3jvswytV?63C%=oGRBC1* zq)oEr!3H9Hgq*6BX!xs)J+7aRr)Ql}!iu)BncU zdxkaDbzP&k1reo)pmZW#rAhBZq)7)+=^)ajgOpGb6{Q#Hoq%*{(mN3;p@V?*9w7A4 zLkJ;f`<(0jzUTdMu5X3kV_Fn z+2&mpb>8u$8$0bveX`$>IKWNIHobdzcW9Fk9wogPQ7xi7ESMQ|KGKHLom7coC}HNs ze3{9;Ox7hrE!$`W6f>#ZS#qW3bdfW2`nEP_<4*0~b~?}0k7jwO|MafchHmyQ zl{Kue^d5fQxn7Y8W?L}Mid7^GvJJMlrW3|{?I#s{5oeNlqIG9&5INBR{++~}ZJTE0 zw$CIN(1%3?su%huLss-46M53R-vddJxerk1l_Njp+x)MJ2)=0IUf;YbBp-znA?X9k z2V|S9g)h4>lD*w>FGm(}Pjb4})=sQk^a}J50PuyRr7kSAGjI-JVD5MS-Dyzm>wWn# z?;nGvLe=3as=c|?R!jnX1A0+y^~&Enu2~lU60h3NSrj41NV1dVC!NmEtDap2 z06OBjux-3#;RO?>Luwo?*!BVLqm_B`;@a$9Di7-yKack)=8gA0ZN#w9nwecML6xiv znpdOxAX(p$vr8@27@$5!=hv;SJWfZtihd`q2a=TtVSPX?f+~34Z!JhROa!USf!&xc zBKL%rS9)K1xR(ycp3W^p(E6uWt!>B-9MkcyrXIgB79K!USDt(lv0178VvUpW{?xdp zu~KTY`9mo!ro<+dG(0eRM?(19b0;W#GS;1?atZ)RktOT7`zT}{9i#;~kcs%5JIosv z>L~CX+{fOX6OWGCCYN3>i?y*dq3!p*G)dT{HS{(A(_EBO@9AqE9$I5CGCM=IrHkC` zZe+2w4m5QgqFB9o;BIbg{OLR*X6cL{0Ed+*5NhoZSG_7jC*9k;rNk%V<2T}|si*7d zDwGq2*KZ7(svtUn`swwpHEuu2b6M8Iz>-kYwn%8GM)DKX%8pTsOEv7frq%li0LM&s z<1Cdj3O~qw&aa-(8)uu*3@nxFj5L$&n!L0u>=HXQu5L-z-~2$Mh=hL@%dxX&i?vTnewmM@P8V zc=a9nd!9Z}jMv@yV6*J~b=8Qkoz963q}EM4*L(kHoT~0m)X2l+fLPun#?#S}my=a6 z>0F7%hA~&j25S)DH*RWlNEs`J$(1j5gU)H zpU?I)$g;1WbudC$X{JHczlHI6B&@yZ1k^t+1v>?7kvm>-!3hTKsq}B71>Kvve2VI( zb)E)Fil_#aKij$8_|0)>R04C|@{UGasSRYLj%!usCPy_Ak2D=f!&q_NSv{bj?3X{Xw~=4kSbhIo}t1BC_`^N~N7$o7V?O`+HZbf5+O z6XPS}D+jdwGvFVe%loD#KWhH2+l_LAu*xyhR&Zt6M8h;9Hgp_flgl+O!w$z?Ou2Dh z;Wi?600oMF$c5xW%xAV!@aa+F25V-Z8auo4OmuoQYuEXd%KWa^pZ`L{DgJ*V;*wNz zU-Fd?_qxRT3TTPL>y4E-!ztQ%pdkw}&#w)B$8!pM&D?hoF+%nS-%36nsOx(B*0f|h zhtfo;b2vx)$5-U=zU=ARRp^4PnOo9n+-ZNET2SB7=jw^rW8YFsfRkt4c+dJNydSfB zz0D@9+51A0)EYw4N*xmY)!tO8NoY%fV^SDr3C+4DMkTBt zn$#ExuW4ovE=Wq5_{a0SMUHzj7y8ehv7*}qXx+@+CmfD44lO@BH=gpFD&Ip3>TJsF z4hfIrW0ug^!IUHT@W8j=)RX!k#=wbf3@rx-$F{V0hn31~P1Rf5FBvi+^4Wf^lwMKm zsc6WG5#9WDYzU8)jBg~$QzB~POn)I(7tV{;GJ}Q*Uk`|Bp-6CiWBre5&?#IFD&UYW zg$gCy59R~sQXP10zdMQQ`|TF@Nzze@R;7RhBF;=IHeIqLk4@h|sOcY`>VbTEEqVeq z01)HhO+8q3FU?DVr8$DYe9{!zyWe>JBTQ~($IRv6uog!=SH6u(0jb^2gXrA;+ef;j z^Y;bf`11o>#A)ZkE2BA;VpI@ONDjuHknm~QAJ?uc{8+%^E+bP@GM<=Q4H6exQ*fQB za<^}%$O%h?>{i!AP69oksYb_!w2zLQJ?_SE_}3>Txo0-ApMt@zto31frna@80pf#= ziv5U`M$uYF(D+W_9U)KkXy!JutNKA;L`eO#Pr%sP_Xmw1xXC^|Ul;9+Dd8i!*GG z4GtzdvC>gjPCZ4!8Rmi`fo?n60G+woI)2S1_e_PDGSde8;8*h=w^^GLhirJycYC{4V?{9X ze4_~BlISVg{oDGU)9$G+^V-iEzG^U&U(_9O^BYW!5=7{Pqd`e^TQiMjH1qvQ6S;NU z6u!7MgP4coyx;DOg_56`W#*RH+Zjl7hSioS7h?^fcGEc38$YMHpXr#~SwOv6_ml(xf}?avm%UH&j} zq{xh^qxY3cpJ7BO?Zb^BZ*d}1o5fGhHvw1i?S&W83Yx_&xmaqYO1$&;lt930w%V<4wxWKf{kosxVf!pk*o6ny0! zC&wtRO68Rj=dFE1oyZ(wdu62#_Uc@LWH-iy+4vDVB?N9r<2+6KZWRTY++I1LFH8Lx zF2N#y9e^-e1WB`uBo{6Zk*b7;^6?4SM$53&DsQEc&|BsJ)^J@-=hW%Ccf@9arzTnDbStiSGG% z!@yCY-Zp5gwxm*NQXm<_5jiL<%RuIAKi7ffkj_%GKmTg(m=nU6zip%G+#lG<1=cM5 zg02e<9hqWMF~Bk$94wLrOw#yhrGuYgwV8{0uf(ylleO0T_>9cLm^7{GZI8)iqX2dx zv6=D!RsxN}ZM=R?C~BFdev#y4FOa@~4!PbMuc|O4d&8$$QvUFy=Bbri%r!0LJmU_O z86OIIBQO9V9)2Y-|CV_?e}9Yj%i>+9QzjX;Q$+pKf92a|5A6eXztByfze?=T=1seb z&2(cml*ewN&cBY3$#6N%0XQ0Pwkz=hW(T3#I@Bt)up$;tOsXR%?pWKEtkmu z&b4QZ+!ojEcQDy7D~e8&UdUIL_4CIr3k#S&rP%Abol@;S%kT5lY~W9%muW`ey{%q7 zCm`SBx1-;`zBiR@7=-b+jlONA58FA`B~8!Ea93bpP}%wzsw@Z3pA}z|;sm-X2Iqx3 zINq<0D9i}VMPGa{uNi9vY1A9vVP!W&KiaXFb5dl$h$_>a~tg~qQZIV z_}la-afW`pe$kz3-2XI}8zLHF^}S|5o?cZHE@x+`JNCl`%nmo6*za;i9hsh}Xy33Q zJ)lpGJ?T{R(u6m%Me?%{_U ztDB4$H$WwsZ~Ov0=5v8VdFCPsH>W-u-|>JgS2oDFt=;eXmDpsqd&iPVJr->2!tx&> z)M}r1Tb`wATjieNj7dC&`yi&O^{(drPNxEuA+hIIEl5qbU|o@Q)qNXckMz6M7k}YV z>W}IjcJtODFZ)p5IPp^kWu&;eSAB+ap|h~BJ>Vf|2M0tV#x|F{Yi7<^k{%qkWXakr)z;KITM5?k z%a)s{6=p=54|(t+G#wKmQzBJ(vVXK_rQ;1(&I^msHmrksN$?^)qLuQk;%@pA}joe0L zfm!t*w>6Du`a|o!YCG4$jkcc@oX)>(vNjJE8aF98=8Wa96G63Rw%iB_vI^_aKNyvQ zyT`O=ek{bUJN~nX+?Qgp=^22?7)p0-zrnqRcXzl@RoJxhZPJ>7SZ2!2WA*|azFWBz zn=iK1Z;UxQ(QIHLrpRHuoa-1?S*b~`<Duy5E`cIXuz4qfo%K;Q=0t zS@f{%s|WpuqE&SG_{Z+i3}?wPAU4S9c44=w;|V%S`0P&r&#Q~5AH{1I&e{K5_&1VB0U|tzTGMhYj)R?Vq8>j!40}5HDlUL zWI_(L+T(TPALYN;RB;Xd=G2RnKNZ4tfG-pYD1g0a@&3jMZsx4ce`G3LREsOx%H7PF zajjcKN~&=aZ%H4HhNMGP^k~;iq8{Ar#1fcV8T#slOw8bkuiDD;^fCU6_|;fd)>w=4 ze2csNRh?CQxbZ@Ht|XgYJNYAqM(lz=S8{(Z9l#zo03Vb;&Y|i}U%Xg9kyg8lONHYY z8aE5lIe{Ml>}9Kqgl1TB`CwC9}cR}Dj%Z2mndOjVRjlC zn#12Q(D!oA@vyX7K8?#U*tyPOxlgNxdj6;%4ByEk&o(wT_M-UZDggsS9Q)aB6@GK- zvbCB~l|Q6z#I2|28}jwVa;UE6f(RRaeP@O8Cy#JvNU(qferEEG)2jr9IL=rq*jb0L zxHxyS_ikKF;EvTcCR4^oyA6YH)9G8QdRg)cCj&!cdUkep&hZAT*@*KJ#N!YuP*Q-r zAUit(>yO~^nR5@Jy+y(R0wveC?m7dB_9OyZ0{qb9;>^7ledMuSR^JD^h#|ToPYrP0 zb|sfbo?xtJl|RKNCCCJHq*M+Kgd$}Y*uFedh-Q}h&#mj@n~x}Z>;J%aVVlWN zHFL4?YL1 z@mj=!aIv7+YowGtRK$HMJLshq2%i$LLIeM5anWT#JL$CsoDur0{r&VJgt!k{%?V+R zTRe+e{0bvth^@?09@ZgPC7i8YwNTlM;-0@#KV5AXBa5B$JOtKc$KSWs0lNIrf}h7E zq2Vy|%T=9ArOTb+OHJV1N=3zGwfy1Yhl`mCLfS>A&c$ch%QMtpBD-Gv0#+Wf-%h$# z<{G$tuGq~HBg?Kw+Z#ieis@}$B)H%%&|t(RA)ZI44@11f^b^lOL`7y~Y-%b4WY~X! z1AHU`=74Rx68Ig&(+@XtW6Fs+>k_adiM2x5dEuG?bj@Hj%YQGn5Dqnlo`t{+)$`+8 zu&tO@g|h5`+#j!qxH+^uPqPmuX*h7t)8lYe4T5c6DKn(7)2{Ot3^ zs30NkqTBT%_+lP`_gQO1XT_tCF_>|eKvXO={b0X?st|OsL^`?s_eRB`c`)E&J~RCJIWYPHU=~cqLRkGC zmQ8MV%-vfv`49qvO3FbmeA764&mBRy9@SCcv4sw41*BB0ny_U$s3k#;S`7@?XuB}0 z@6yL(RoJoWa;-$mGR3Bu&%D=soe6HjszfLXHw`CDA20Z0%qoa~5a$Ln=!BBPzr&`I zJHFH6O(b9o|8x6c=xKE^N^-N&6Fsr$zx;*n1+^O7cO^_z%K)E@hHTEw&7Iq|o&TvQ zV2{g^^5pi+RE=TPBF@6_uKP0xoCJ|OaOopyaIHz7gi!hk91FO*&GsPDv4`Ok7Wj{# zvyaE~7%0{+(<|^&mAC0OO-4ahZ2sx=4i|Gaj%RZ^kOj7){2+x%8K$sip}3;$He z0bg`1>aLljm37xF;xZRwNkIX+-n%ngYaT|>twN}}O?F>h!_kmT&O)ny{lMU0Zx{`a zHSv;A1tVUbU|pJb#f$&E^H}K&JDH?pmAx7Mp?R-K541??_e>nRS(AB);?~ZPL`6b4W&BO#0%Hnsb|Jn-SkHibT&YhBQ zVRCV%F;@Q_AzVA?LIHx7S$qV%au}x$m{4;8*j*k_=m;_?3aIX&F)&QxQj0S^!a{aD znN=^3b%-zJk5Y$woa^Vg5f}XkzWOAJ_aJOTGB1-op?0K=e!S~`mWy{(g`IqzBLbm(Li z-+z1v3Pfy>B^-~f;M*>Msrjg>qtl-y=f7GzX&#^M(nNL%JKJC0Zq?|MAT!toTL=d1 z5)P9Q7rVQ|UtL8+8hW<)uEc;Z8#1IkRr=NrU%|Bz_-2F&^wbXa8cLXinE~c?1y?~l zLG&FBg9QQK7ZVz~dISM%Ql1@jxgXMn4g5O}8z|J=+;^GeuLq{;KSu&SOM@ACC~?`n z_;om7UF2{?k;)89c-aP#^x4b!k3YQVfSpmT6&Gg3SzNAJB*BR|IAR?G+YbUI0M07V z18_&ZK~(Y&5x8{3qrZV7tv%7XayrEum`JI=H#v1B*3H3)ghK=oOB5IA4xwa;8!Oc5 z7a5l2z@P5M13dYSrh7MbqYeia*IcD!eU}vf2U<&c(`J5D)0gYN`@WkT!uwPM)u4uUV3k0@rQ{O0m@0q z$!k2&6&~+**aTNy@on(1Jbq`gc7S-fNNk=1JnG;7-RpX}?%GGABg;m_fr)4~SDXah zqBp|+;s|y*+~v;PxLY@C?cs6woe_m0EMO92pvSp~%TzGKJp>W@*TpM>j}`Y*|MT(i zcB;OZi=G(3Jb-I`DzJb2F|7teS#rF87jQZ1KJVgpQ)f;8$>s$vBEY4nk2?Sn z-5c?H&1)JK01Egx7xV>lxeFNi+O8|Cxn+&tHMX}`4Og~!UdB{I*C)XQ?57IB1P2Bd zmPCoxO|8Sa`c|#~>;{fx5Y?O5?|;5utXW*?qakfi0*5etJq%yJHY9^duppjT zBm+ZOoH;aTboDAth`RYdk_x6Gz=%MAZO}6~E$#)(68GE80@nK$(&dqi$9rH@p1xcp`ofnv>WS2)T2_Gt# z27)FZv5)R9LGu7fhltsEilpqi(mPwG#cb}~G zNdr-{FwfL{*9UfHSFvQ*9rHBPrxFBkMSj{%D#tgZxysqM4fs#A6sRpw>!&o9T&sGE5BJ)0fU*444i zRv<18tF}f5T+)Dla1eB?bEz&Das|~ZTh3jQL_By(ChxCOOZ&(Y<=rI!}hAd z#>=?IRE8ppfIa1+VYn2P*GR`D!2kAm<;*&trHH3MHAnvam|hX~Z>c*#s03qbVp3y5 z0huI(__Pq^usy`D>X4Jp=XY5VzO#dY)87#XDLmq=J)Pewm($J{UvKAan{7Ea)x7+r zwTKATy5sJUIqAmgF*`L*tM+N~fV2Bb*~^SMKbF@6f+N!63$EfO9%m~Il)Fj(rbv%A#ANN1YV0C6jElLV2JqrrRhmD)K2CD|ji<<~;EVoVA-Om;;?|lz)SUboPiXQM% z;vK)Qd=V`&BJRMfL0Cgq6cf$Hg1QrFepT^TPO^&LZOi$_t1+STNFa00AgQ+PW^T95 zzAy{2h0VvFQ>OpXa`pEq9ENSqF!N_D5QpH7Db`#V*2p`-94 zrFdHMRy&+Gw6| z&0*)85A3Fu_A7WA+2tshC^&>)bRb5ewU&keA@6HAt zIf}=KTIlkA!eNESF&*z^IysT#!8R$yxmN^nWdNqUq&&60XtIA)44F&1b}t=+CwVj`=mV6?BnQ4Kn28`iapcjx#qi!ula`vHcvR>3 zm}gCvuo64GEV(_!Su!{kn_wXV{n%3Ff+~^ugl<|XBbh@K zuUxTaAiIZ>e4Qst$z;V0TV%dg|4Wj?H}L}C*gokv>k5T_jM8t)d|UZBXF_;b|FsuA zhRP`jW72GAhLw;Rz+1XgI)t6S{s_j`S3 zlh?CPk9=d$cu9flY~>yKQR;pLrX`IZuyzr20NRLfE+_uUDwXAp$xxPRG2q@cs)QmE zMCy=uWyH4;@u`dL)RegL@m!SH6j%gG-T1GehqzNDEVV6>FY9F*Z*SlF?4c-YcC{l{2f?$s&)i6=u_7)RC~W*OQv!Qirfmt;PbK(v?A||QMNRc^1QGD3F-_$u?ht}+ILbc|j9Vbn) zigQ03GdU&taxEzaepV%BfgRV=%ATydetVT7_io$9iNtZq!C^;4n6luxX7yM8c%6+= zl4I)(xu~(}bJ22E=_UYcP-!J;fOoVLcsB1Kkqte$cO00|?UwWi@l~jqdYg!7uj>6K znPBhy-5w=LPcvoKQL4Y{g*pgB=9ZzE`i%vd*c;a4x*0vo#XWf=2OGlcZKF8Xr!##y z27pUpJe;t zicR=T4?F0E=Gda`WpO~natvnKZ=SMMM}+_2V>OB`affv{^ag>pjCIKDqEDl``>`~II-9nT1nQ9a-R7@$XsF_R*Edg*-QV87 zy=PaKpPv^D{b9FIg}3Mg`MX;&GnTYv@-DDgnG-5Bh7pNFiK4UJ(&frL{Zu4d)MSZwh|dh4rW_ZY{>XJm?gwoA^aki;WS#Z+bb>bK}KUW?y&l9EhN*#uJ?__ z^XdAeWyNrNa{t`{vZ7|Q@nw+Id!}*Ap8kQudR>3d7e_yZT%g0JU}ijhdo4 zPursTQ;+~&P}tMdzM1dz^~}^In~C^&1GR#^x$@B}zNc_wc2`vVT#{$eHTYj)>i%2n zteRistaBqz($V&Z{~n&w*A=^9rYlqDaQdEKwB>llt4KypRDz4`%eLN`IZp@u?8b`S zVXnO~C^PHR`H2sJMES*+cE{kgu`br1LHwogz|{R43MaSEGS9ENVD)2A(w*NP092ek zBddP&8!rUD;hJB_eu&^4epw&Ytxg^Lb;boJT;6dg{>gd8nf_xrDH-YFH0{^;UwgW{#%{Db|ZT^2Nirp#u4W4mfWRlKjm1nvn$ZWd|`^!llg^uM_()T z^&!U(oin$w1D#&O?sd(G!88Vy=N%$jOOSC2i5cNruH%c(ZxnJ)&AFxR(zPZ1Y#mHe z3w*LI;^Z{%0$rRiv23$0y%ys`o1<4Z)?S$v)DZWx1^NT`RmZ*Jd7$vJcf);=z1q~4 ziWAQcZnbYGKh#-aQ$?9#u4-{^#NM-!CA=v2Ap}lfnJe#^3D^n_%&I z{@73zwY*OJulL5jgRKFO8(ZG9qQ=-qJJ|8Y!W`{Q`E0|VjvkevSGrU_z*FMGQsUD9 z_MzRq7KVV6j6PP~b8Bs%t#x`9pH11qqlHIrK+(R>9;EFQ&I@C%K&t+k%)Nb^VWd@- zRU(;uBatQv=L;)&^#Y z(Bzr;^CGa@aDw%9ZF7o$OMp{p=kZo<3H<;fT;QXH3Q>#aWfz7W@QssppFWfG^1c2p z&YtOt#>rY!Wpp*2;L||J6*;QU5HqXuWi{;fn^Yqwd^JE>r7q1ZnJ4L>%1yHYpeQVliIjk%aIW!Z}GEaHk5ZV|g1zYu>3 z{b>og@616;T~J*7QCqE~*TW~GgR+=^IwH=xw1e_MtXV<&@}m_i_CJXClI~0~=kGSo z5;up*SKn6jC23@1?0T(@UL%~RO02K9r&_o(%MzKBgXY~7jWDd(eZO{8X6R<@igmrf zmydt80V`sWo%|K~^LqxGsUna=uQ)01g*gje3qDut+tX0+LH_i0toviJ?r?H`DUzdL zHb1^0i=X%po@gBfGYg{+O{xk}dQRs)>`lRk(b2I6)mm2l`M2qEY+VaNL*YPksc%DO zbj0MU?QO;B@2^?}dl;`l0-pRLBb}X{k(PCz%5!LPHxs?;Tuij_wV#f-6ItmaIqvVh`>|;S zCC&L{c8Hsw-7$rUm&w>D3**m2{}sukM|B0qKUd0k(@NcUl%9KM`DcB7nx{Dc7KC~u zy+mbFv^;?N^0UC@aSdHO+bJ%cDh2&#&1h#V>R#G##{0_CPK6>G1bOYI+#QaZ59!IR zR|Ukx5pc2Ew#20f1(sp0+3AfVp}|^&{#4b$B*TzRqj-^-ZOSRi*Qqt=DTb>s+~;}(!}4PA>YIZ`ir)Y&UO zsbl%It6`hG5zi~+wOJ`by8k2`Mx5#`B!yBZbJ1;|Wj<6Gyzmr+v2GDaN8Edfj-3WGaq{TsZJ9!D&? z$w;A++?QR$=)+f5EcFWk5-v#Q@Bx9A59fN|?u)R>TkAS!q7_Y2K8>m9-`hD04Tegs zW^Iw%4{3!Ytn%LNP2Plvs+1JL=IWVd!wV}digU4f(_)@CJ;cLx1v6B4i4he}XC75E zmONqPa>AR+QIHE|zOB70o79iG72b||A7&gBv%R6EJ`6WJPHm)YLrnd$0;|m$KFpy* zH-nmb4cFk83_~J|4Ur4Mc|kLlj#pdtUVjuVatXcxKmOTb@$6i8Vw8W%ZI5J~al{<_+OW0j*OgM?Xce9Gbfbt-!%06^z+vq;o_87%r z+jQ_FI~MwB&Q<+fj0`0d>h7SB0>;IIKb=?dwEg3i8!^c~sX7?Y7V5|!xl~*6m70}C z*U4ZU>1d?hF0V~_vfX^TB!;a+*$$1rExdBlr?#cTdWy6C0Bz<$oFcMWnbJikgp3tH zA*r>NW^0Qw%8!{^KXuzlqmz^OnJox6Yz%eb6!`AY5H1it^2yE9AqJ_Z8STo@TP}Z6 z%3nbc4_WMfBp3N&|Z!$WOy zK`T>(MYXc9TeT?*BmonQ49JYDv#Jz<&8p8lsEcEA+8X{mjS46Z#mCy|+!&O?FrCZA zW{0G;3cbT*#6&U0CkbJerBNBv-fT9Gd=h%`X`qx@slJgZ45vcqd1rQzmyBY^BKJH> zoe4Y^_1u$jHZ#Sdw**>B00yUEW6^NXmsl| zIL#|yuwd6M60+uADn1b_6s-617sc`006906V4RPV=bry1rQOqI{5-249yovzjPwfF ztW?c5cUV5r?eTy0*s_F<_YC@x^WaNHs?ZZ~L{`L;&h7a%E@r%I6CKub^`Fy3d+P;5 z)r}Ro!PP5H>9KeHg2P$;G^G1C?2OERc>)?eHR@7oG9ZK6M@cqics2?c1KQ2T+DmFR zJ>20bDueEn#hv?Q#L)b|Vx`#nN81_ki5o2fFHR8f~ zA#KeZ3MH}f1ebCtIjMl$S;yX5#w}D>0Y_}@J=kp(l5Pca5KYDcN z-V}g|@+>Oh?9DZ#eAhqLIo>y&_pw4N=kiDf)JC#p0GGSw72`q4C`$CN{!$wnI;#+f zwh!N~No#;#u`!&Y#6KG7SW#(+zUq*opQSjh%8%eEvd~u4511>&<*9a$i0IQZnGt>N zTtCc5f+UjM<#3yd?9Yyf)$7yT z^T(a^n*+Tj)is78(zi6t@|5dx@*@0fczzkryl2$|CCje8D}~ju0W-&0lFT67NOSpX5&*$G! zOaAxH$iGhOV<$hsk}ZV+9Vbe=gGs%DY z%xUorgnH|(Gx@vp$T-~Na)A5DDObTEfn1~YjTN~1s*U$u@p1`{9h1yxhWq3BAKIXF z+u1RTWW8^67FIQnDzsFDPwn!pPwS8)hO@3qVdI7>`YRWFjQl`f*w$_FRNJToiL}U{ zW+_3^Gjh)5LBM08?(Y_LD1ay5+^9bjyA_~L8q`+zmMjK<7S*EP!1(mCo$p#Lx<3qft<+h+Z@8}NFiO!hq%-=NmxH8* zb>baOx3nqKq@$6fb}&oJkWcafqtxq8o9IbO#_gpKlY`tT4N1K`!BHsbZ55k{sG0Z9 z{l}H@o2iPZ$baOAVrJidx=&3Vv*$H1G8efEEGOh<%6`;`&{fDMaz^6-I5*0YN;VZy z&7HRVVKjy2bN!Q`qci(ihI*pPB#ofL239Q+l1#)0SwSG zb}N2ob9ak}74ZQRW0gHvIeYqa_nbj`fj-Fh*9Xx$vNrgOkpzow?nlYGq!OUGOEaaN zn_ce&G_1_VyZ`jW3$>BXvXN`T`d8TB)#7P&lgIU%7q_#YKjEZ!Q*Cwrw8_lWRr8a% z&l{vmjnaaeu8C8;YR6UzK_~4jwIO0=G4%Z^bCPZKxCloBkNf@-vNYnod#b#Hkj(oG z|2!{Z#IUSwsfdRzF?Bosz8rVp!!Io75ZRb-7;im_r+od<(Q2aeOz24TCTZ3 zmt;&f^bnTIBdRkoskcRR!T3KF3WP@RrG63Ja4I8C{!4h107)n#oAc`Qb4ksZmOBhu z!>kzzpLhdredJ4)DkYbA9PaU}^Ge(6?@Pi?hfeS9Be$^*0sS{gYNDXMO-H;R0~g5& zf{JJ@Mo37x7Fw|7#)%ymkH|4MRRSl&MUdfrH&5#UvC7WaTc;%O3%PvuHj5HV4_AaG zYklLF2wluV&|)e*a)zq%)OZ8##ypm*cMK>Wi(AyYH~V{$56K1`yA&O z@O!3E!Q;+c5i>6i5k9N3v~zl=-X3llI%#c%-Dv7SH>8Mj27T^`+zg~dT492Amm6qo zn6H6j;FV^lF|qJZ=du=5&R~wnv^IczRD73V?Wx8T`*5yR@Im5tt|HVwv#=3l-)@hf{Gmm8yh=w+%xSjdHgDZH9vnre$TA6c>Y1CMF3%+uNm70Fx-9NKIcgqww$eDA76$`g-9Dw z$4;7eOrGv6P@OCjklB>4b+;kq(YOcw&ZdQ-#f{ayLAop>O4W59JU^@zdk2mGd|2!y75YQ(xoqy`QC95VjZ>tXInZFP}}qxWxvCvsn; zC8%RN@G;MvS)T3Mf}fVTm3^KWAT%G~qabPi^YV_RV?(*#LmqB2Oh=NFfp>DdT{DgY zIr0F#u2fd!?t9sBYVl{|XtRdMR4$(3te_@PnzUjTIIZ@a<4^3zVe@8rjNhG8x7j9^ zxl?odt$4*zB%o_j>b}YsdN)g;QTAPgveMkuQ-7qQnRR+iO0omgxj(-xL6N^wvOs>J zPfz=XgQh-}R}!T|82@3Swas;UI}reb2YNDklf1aOky7!6wt4*4hKj$cj4Sos*gu4( zsx=dcu%QJX`)E#Sny1|e$LZGXil>2>ua1lJ-|y^{%97q59(_@o+I|M7xuu<3xnjU%y;{V2t6r=3eTk`q7belV4+!C>sc4DHNq``IW^9)&7m zL0z3$m0&Jg5i?cdbj=0*qWn!|IqgdrFmN-~a&B3lks6-@2=tg+lAnLNF>ZNn)_Yjq zw9w!|%$x2-2>-3%HxVP*g1^Ks6er=aR{j$r>>jInmKH8a!HXqtV7-a^hW-gr-Dr!F z56GXMgO|wZCmA%fHyX@ZqTk-be~KRw5)y15#XjVXs``D({8Yy|3zvA+wFXeivc;%yJSEJ(rHeu4PfJ|{ z&=3TTJl&2QACVQxWJcB5fRWlyiejj)4aA4y4GYb7fPK1UavLg_Rfui3B3@N1SJkT% zP|+Br8`^p>|1MN|p{HFw>&BE(hVZ*DxshNB&IHe;xS>P>jjTake<0gn3Jk2Ef8Ftr z-#B=1#yf3HCR+GhM{}Et->0(4z2)2G5EdLe=qYL_Jlsgh&K_km?uEFJT|XblP!W8U zEbq#IHd9#-b2HH|h+Jk-lPK1t3gIk3@N&^;KlhyEdBmy#M(b)#3o;l90Gs}H?lo)9 zao8sT7j)w!z!QmGlDA?}b(Ozbt9W#7;wbgP0CRnk4q4S@)GtxB$(fPbdi}&oNA_I+ zG0~tBA(rGWyX8|{aov#av2RAe>~ZnIoy7i}a(N6YWj+6_ZKQF2Z%EPXbYLg?S~Ha* z%gIR4?_6^7p-;sLn~Yh7&UdS+B$Dhk^YlI6hIhL#8u0V>=YE7&7K>$mbfmPK+_^qR zS~xKr_SgpXoGA6JjW=0!kO};gWAgj%0 zX9xNRCfB%*6<3k&mndt7+8VtQ%9CGQ<9XqL$WIYztwzzKwMQip%Hw%J3bmdf_Q&XR zLTzk*`htsg?8LM9Ms*x9=s z6LJ+WF4Uy#?xARfIO}7oG=0P*hn&!$2{bJ&tMUd^!;ul50H<<46D zWlLj&0njDaA5v@YI`WZ2F5R%E4=sInT(NPSoLnhL=z_|FWRAF*zGQ^ky_U#pk8>Bgk2RC>K)thvxz(Ts1Y zRar?oV9&&Iu?1RVe*uRh@qgu7^Y8a`{G7Cx;f)DC3flnmF>;g8jds9!I9 zOSqJTTr-=TlMe|bxzE}U{eZSmH>jWY|E-w*+1A3I+ZVthPk8*$(a|R!JMcA6b+lwg zI}j5<7j2+V(wTtH5+2=l>;IwbEu-StqDI>jCAhl<2@)*0H4q$vLlPW}hyp=m%as)208Cz6o%qU`KnmciVADdkZ1r6D&QLPcObR zj>ii%RF4-Ck++QrI$|uMB$dO{IQT5gYfUSS&KdH>iapxSOy?9p`$9jwu+>?;4Joj& zh%zpfcZh=U`8up8?A};MSEc5#?VXE@g}icSIxo9#tQs`;(~0S7cm8&m79=G`shn`$ z=kIM5lqn@oBvaRdVoY%D13mm>J+U%%G-u=fs34z_%eym?5n;A;9}9Y)in>~#D>eG= z(B_j>;#t!j+9txED^gKOv&+_4@k*P7b_W+o-LYij@)t(gNZ*!PtoI{iV6oFt4wcYnU`%zK#-Kktsca2F!d1oXKRkk z+8(eB{X%q1czf3)^r3NFOo?uEuI_wLB_Hm&$H2qw)#y8Cj~S(m359^fNz0%Iy?P{) zs_`dvPI3&su>vGE{me$6d1iix11uWG$y3)|d|MKLiEuHJ4t4X_LgPGvU+LkA?5#O9 z%hZ3CHoOe)1~=8_vt*Gwnm>0?*B>_dHD65ENfKA_71DwEx>WcSb;mz$H00W17Ow<4 zOU>~*JJ+j-e1$Vk-t5$VV-gDlU3NTxXE0yv_wecLwjw!IdP5KSfn0q#j#D)^-UEn? z8=7!)YU`xhcA6xxSC$?Bk>7gz`sD=u&4T^LcRK+X5y_}PwYXXuuwy_ri16bTNh!%OZ$+Njdh z5rz>FH)`V#Ns>HN+)@_Dgc%CDwsq}g3jfK%NM$!+RoqW9kwbQj?8y5h&XLZx+xLLKMe>qnI@^&yZExTOQm?l|8};TD{DAgq_Jd3-~J zV~8xZr{#l1lCUx=l3H|7c+Cu$1WhdSX9>>-H}D|MF4-kZqqo!Nb~M6y!;iEv`d<|Z zG#yCUJT4ksN|>w4j{NEdV}S(DXj?U+qek%_HZIm4!v}fx!4;C{rrmXe@?PurWf08I zwJ+4n-cQX1>*ZK_c8vglY4s9yn-vqHnMeb!6T*TYID&Dkyg#b_>*w!4oy*IvY0Uom z?Rmif|aXJx1HG*_aq%rDv`^<-#b+)XCEA z(qg2|t(o~Uhnfv)8Vb5xH^BM2wE`C8^v9NblNKXw7*Y8O!FNBz@bz{u1+!LLAKjcb zo4SIWsP=n3fXu?>^UNbo3FX8A2HJhCLoTp4K9tKF)wxC@ztD!g_VQWH;{hYl#MP1D zYo}P&0v}$RPUG#hVT2tTrMIWagpe0EzrUcp;;Jo`ydvQ8->zp~tmSbbQDt7`yz63z zuuj<>{NvBby!KMaGrYu$-g^Au{ZcEhBg8f-o|e-77L<-ZE=iNYoZ9C0F(vGb!vD7` zZ*q>X*a1eZZz+p(h!r%Z;rdm2P!CDx+Dqu>s8X_+-il7f@oz#crT-^t8A}`_X!;-9 z?n2lc|5syUij=5bimGb;9m5o!QNk1=<(sDeBN^!0k(}#B6AO4}1liHRj6@y}?*opl zu`{q@T_WNN1DQc(@`G!!w2UE+C0Q}oH^=TL7d?C?ELnIp)jo5p8b|+3jFRj{WpM?( z6~_#84psx3gD#(o;mAtysZT?lXb5jX{UI@5LpfZ0Zx=Qs#J?7=@#mXaR+phd3Q}%2 z{M?@v&B{xECyiQ$>bUPveG4S!6Enysc%``SPzYotU~W|B3{ zDcYLsL}K$C>1sppJ zF87wNa}`$l017Wzj>Whd;=S${^YumOX`SaO7TGkgSNH{B=^%3@v`*mzvK@iYe8lea zncRE2(HR=bXc`fNSCyMF!uBkQ6mTB@Y= zH!{o&Z8vdCRzA9jw_iyGPZ6)f6tg;cvYAKMStPnE4ke?OJd?S$)vuZ}n2$T9s&g$f zz||1NDb^n}jLSr6zk{)hW;GFtr(HAxIz^fo5j_2}K!ev78l>6gR3)9gYK|#Z?9CjwCD(|F|SJ3 zI_lDwo2|3;t-ylnH0{vtj}pHA{@a;njD!cTQnuw@3a}geTBI3~_dC@1y~4X4vm}sN zf2%o=t5c^i`;n{q{+eSiI24y?+_d&9o-OHOO%f{x)CGj}3iMD9ipVNi9c_bEPjkZ& z_LJ{Pn8zu!9qe#Cd}@~-`0~-o1c8JPm>pp%x$#8Yz~KZ|*(kZn!|2Nq~Np&1L6o{)-3wx;i? zksQM7&axEt_wtY>XibO;jEvd-bitw5g7AVnBC<1gU+!PK*-S=4wW7*$$;>HmzzUf`DuHOXAt*}fo)bw0q9-bM{Q)` znYHDp!ey}AKf*3Be$s{IKfvpdq~OZ|1=0I{Sgz-NM?JD4ZS1DrXy1B_ZV3Aa zpSA;E5R1Fi?ZN37^#sDDp2s{BJR?1w!vQ7QlT`ODB)`CiOV?x$?`UTn3s+tHU8MQxJw_v`ViNPNYIY>P~z)+kBDhH`DL5PV=elQ1Af z+$`J#kf)1O@U33&lwU`#j*A5=V5b`#V{lMV(<*^+PBlHG_-k8@eJ?{?#J5K$HqYl$ zrm`HMoP%u&FLhZba~BlVR{we7B(25peYskrB`@87pO#kkp;~bJB8PB-flE~}Mu5{> zLlHA7G;g%fc6u>iCWWZGL5|3zHmsp`)T2%w6H_R1;6&0EzcD+j#tP>Zu+A9Rz@b`3 zg|kIL*&?HkfH-7jlXYZ&K(}{Z+%KH33pO5AgC2kvjvkQA4VcE-ze;11R!s4Tw(idq zrAS!myM3hcpt9$P=7=+tt0ejA=M1mPryX2o9lkI(Yx06FOq31{Berc$d zJqmbIsgluC&Olga%`-mR(qnBS{IQK~$=aBr63lBq-*EOg{J8%@ZziB(;7y4+;xe3q zxdOL?49lJQO9enXPO>xh~nQ{w@2fbiExRQuO}T&F+pcrRSln%5Qth!DroC=mYfQbmw7j z6nXyzuL*B^+{%pCohjs`hP^ zvqtKMw~?k?NZ~M3>jmcSg>6ze-({`;E6^pT$>mQQ>WCq`%eMAT#e_4LBb{IH6p`R2 zIxcG!lkNjiL#t>a6CRWeBDK?DHx9<#5(uV1KMnoQWy+l-1C{b09#eV{$&mX2iqhkU z=0pWnUaPH7&9`q{-3G)-R1)ZIOb-5GhE0;CQ&}~T-LAefNXxk+RUElEVb6J<_CkaZ zA2Xc2;D-3e_Nf3VSiUbICF?FbHGEw-{*VpnMhCCfqN>hLpx?-FQ~Tey&+pUPYo)vM z8gi*AGf1{%dpF4WsyLXuk8CYmFb&eZJTlRtg9)99Yq=v)B|`CUfD|oaYvCw*%Dz6F zXqWZYoi(tb-;=y`c_2}j{~)uZI8k!ZBPWD-F5H$dJ`lnZC-*2eEG}T!mx&U{wZ~~e zwWCz_`&zbsf`+s;h(n`}JpA>ZMq?VPoEc6MA=WhHb4lV0SJH_nZcV5BbtRR?o9SZ_ ztA?htFLdNW;5U0Z8oqNh+BOa60L#n}k^ME+7>Fht?3jBDH5wyXG7H)c!!_PC{n;|p zbAWHBC}YXHfr(V!s$NdNBulU5?SSRSaYer?&UEXZy2^>!?^8ZEgSWaH?h)BZ9J8(* zTY@wFAZRc;6a8|7f+2BxhDlP<#uHkcPrg;2sU%5yl`{>jxZul?KH%KM0GlrfCK~gU zL~X`r#%gWd&!iNzI24#p&C&p54Li`G)<=T3l{yFS8Dz4w23MUUC(8uu@ZmSWIhS?p z72T|^2Fn+IH0~zr%=h=&&S6?UNyU{3+wV0?Vjd}}LbKI6d=q{i7ZI8>VCe* z8gdsXxL7+wc*Xi^VViml&IF?M#n|7qBN4(MN%2_S1SX&<>22i&JF9#Ns(XrVvBzA_ z80>5)juv%M)--*jepv?brVwY_8;tx6MVv>kXEsj;m&$g7Yxk! znFn6czzEs;ukRfD7yomMWW@jd1Bl(Fa2B()bx+xhF=LcIvyEh#6{2_dJm8sA{3zqO z2I)UeBy$(=Kdp)#VZk>;CFLbBZeCXF`12B|M7JKBv>u@dLh=7H@R_uPe#YB(P^6yK(& zS*8NmfYI-7fTe0}_SJ60%e)U=eb~RhI1nR?10N(fAIziRJUdEnQbG^;l-W(X5)->l zbCq-cRM#nRl0AZM25h`Y(V74;-KnnoDvI^=o5)Tz7THyH8`M{&vD(alhnXE&CX{CY4$Jg%-zg`kkm_mfq`*!#Ne- zhR+=jGyBsSE$)PH$a*GW?KHcurgj2Nf>ar^3(nhQeR3V0o|ZCYNl{lE0llK}@>7uO z%}aSkl{{(OJyZ@i-Ig%pQ$LmulvsWQd0+>b-A12_Rx5lun@-29~ zk!`=eORF0_`c&r}k%;HD>q2 z4Z;KD<;NA`QyA`DlhHWWwF~*m_F&7XjREZ<&n@zx{? zzmG8>h){iR@blB!w_a&6Z|Y*M*KACjvf*l_z=pJR-~7`3`Rq-FKl2z-5o30W_^R)x z!kli02__iW^QTi90j*F_(?4miCg`0L1{G_51<#Xq(S10|!TDJAL*wD*-Bf(HpW8(Qh2jTD5e~g%O zzJV}V`9)3dU|$-uO|;tytN3qtWt&}>(Ht<6TKzK!i9o= zaV6x`H;#NhpQ_$vkD_fP*}(ng4rGRUyq}gQXCxf z{qz$EE}ndtHd{+fmvABJEZKEXr#MbeTLI%p9PGD^;D_XMM#8t8s1Z-9kC4(4s3wUf zhWOI2DPCR1$+!pz+@DE5eFeO#ANsYO+2S+(nLBcTq;R$QP2glm(98t)rwt0D$k($o z*;1Z~?(OHQV4Vo_1$nn`mbL8eWz#A3oADcNg-{0Evs~pgeD*S%4Bz{KOn9N7_6v}! z5aNy?9UFA!j?U90TiS|8WZD!03f;&vRSxt^+ztZ~bg z%#wbV)#4kD8>3MBwO#OV^Q3`HbIX$&56sc4!Z&lf6}P?jufy36Cc2nza_rmSeBaPl z7doE96Rpfuf1so0nGr2PcqsJp$KDNp#H`X{-i;4uv{;wuK%D}vEjg1#7qdnAL__`7 zQ<*3zqhX2)(-sDmg78U`44wL*c||*=$OFS0a>@lXX!oHd!u10RSPm~m4dy-xV9bjX zEZ^$$zknMpsznAIu0Pb$)n>%3I#5`I`B5tk0&_9nE#CYru079gu5ICEhdZ~7rD}8m zylov}2(%+HMBMb#cxAd(;MflcUy+jhyxaMWW5EkrXzQ7qQR zh=R_Mn1_W`gY`eYN>r6YkIX>82;`{7PSp^Hfs#afMgJu<*mLJNUf@woJA zLB9+7)e{Cr{8H_*qrb}aPu`?%FXxwI?`c#*r>%=+hVumm_@ns$b2{ zAzK_js!CGh^Uz0NSgISr0FQG)iHNwKTF=F#Hq~{Jght<#r~QY?HIQ94z!Tz3q^% z2|*ytIsGEHcT@E9eWCCx&`YGqV#s6>``8Vyd6Oc-3e~)5&J)GKg zvqVg09vDehB5dWB|LnkjhaKR?Q!bSB6PVwkwW8JTG9c$$@v{deQ3=mav~pFIZQ|x1ly9lS^G?ZpAz|rS{G$zx0v{c}EIACaD6KIGzSEX= z!kZu_EEm&HI3C>_~FaOGycY^4CX73hosvOVT5m$i1e}zw_}J zha@gV>*GR)izj9;wWo2AMTAKdgLU_JtXtJ%5?aH6+_dgCul3}Ij*&S&FS## z&=b!%2bmAYHMKU7+o4{SuB|@!>rFkZqHXT-=|@Sn84y3aSmxoHUWFy}vKx;(H_($> zv>cTQv35cxt-e`5JDxu0xx}5PAtxr?{%zyxcg>N(%)r}E|1DC4BGN!-FL7G&>!Sl+ zpamc=x3oICY7m^U-#i`{OjB57Cc|f;TF)DwSzwuYNB)Ii+(nvcV{?e>e78;u>wwr{ z+m10g^{rP#=mS|o&nXY*RpE&GXOUS^Q10a^Oz%fp;XLrG<#vlDpNR}-xb z7*1B)%K-yg$&%V@_$&roA}o|q8A0dL(PTA>jmyZVFAm9S!oP?J0O;fVZfs0KLSd^l zwxLasmz@EBF*P1*o@+~qT15ug_Uyd6q*>rrkH7XoCB0Gjo1xXTE*FxU`n#D^U?DG? z6vV81Qz;bSdUjd+QJY9|M8anEnJ?{?}+ zB#|35m%-3twfdbg^p5|aIrH+{NMKOVezdAzkI#>m%7i0i7h)bwigY%(JF{dGm!S0v zH)+d;i*hD*bU!_t7%KyECjq|F=pg~(#Xsk2YRt>gdYZE@48m$JXwcJg;&A(l7sFzA zaGdD*=~0K~Ww4M#Y@7ECFLq3ui$k{v23kpRM(!q)-TL~*od*?vjqHP zFUXYx!E=1^o#K5ZQ`Lox7P0NgC6Ap#Y)nK~PAv)i`HmoHg=yLWlikq1dtspOZHRCul6HF7qwTEhgeJ=p4G~;a^cutRwDQi;FRy*}d5x?W6wbm$<3StcWHuJkd8t zA3@uUXNA9;IZN9?$SeJ0pUz|hpL8ztVu3QEQn1)QJLrBUOV<0Bfh$M+_I5_Z^Fi2& z8r4X_%bwHTeyon^y5bTS(~gJm(>G2U0@9@$rd=*tpp^522s6L4nc8Su`DgIzI)TAE z;w|%*_={u^5n37+S|sU4jx;-4DkViTUs@>IF@B02i8X(vO85=rbv(NFYuw68kM>6Kc_O)l7L5dA!0Vfko2Tphs%X zFF8#yecoO@Ul%6wtTfUsV)YyDn3G`eADMAvI!P*yQf=Y1CRFAnh#J|F$tSUvoPTQD zxv;*7tqGDH$Kjs)ZiToAso2^QcaSaOXA_c9xEA2A@d(zTN^1)I*9&;z#HoUfO)lIeeCeha@ZG3&87#l)!e^`YR$GNiM%vWEeAZO zIf!Ts?~v*Kp~<`&e}gKchdh0==3_SHwR>ZdLALnC_jae;mw2G@nM9SaG8-E&-m6R8 z!4mDF3`E9)EHKOOtYAh!1WzxR0P)aefZmwUVY^oax)fb3Rm%q}-a>BQG5neE^+}%5-6K+Xm5Jl=_YF+;C`lU=G+~ zkGl$GkphJ05Qh3Y^La3bb2sY+DU>8d866=H1kTokxsdSVyj9KZdvnlrrwN|PcJmhW z%$3G|e#5~Uak$2Ji+X^v*aAM1q|kZ%^a^Ahj@zQ!;k#@#)_mBTSRP?aI_(Cw#xrM$ zysC+Lwseg1zD{mZ3HC6Xd14kSd#F>v`kH^KI@0^!W^=DE6y(lW5VgMuRP^H35id`R ziT?3b%{HJfmXFmej2s;HX+<9Xe=_)-yvtt(XTm0tPDH)0Bd-(pnH7; z-0t+eKK#NeW4(necHmvX=dbYD$7A^Nn`2Jme7i6LunDE!$bON#X(a1 zA6eoh`5t%8P>hC^^4Z;x+W*^Yv`&w?ufU$*-OAKkry+=L7C%-x?f!oxyjWszOMy8 z#`(9cu2T-$r9OaFXNy(sWF16Q?LY7|FROP+b~HgW-!e%4XNgifXFuaB^KR0JH0ju` zM0PlK`arTEx$;+$o$}HyKp2MS&a{&y?`0Hx?y^ehDfsIqpNc(;a>DBC$z6;+&oK`T-WwOU0MhKVfT1F7=MZI&^ERIjls9P zmr1ubS<9o6GbAV~RCsQcDIUzUzakq{oFJ7RUg|b9d(2IQdJ~1NH7*kP3B&1~+PK6# zhaC`3HF8;U$Hc6$D$^18B`VEkJIfi~pvg_ekTLr4(3;@%Lu);x$Bvi$<+2T@EQHA7 z!lD{$!XPU@h8brDIdH(iN+rlfJ-ajSG}ysC0P%WjkxR^+JhIHjHLRIknaUWEsq)2ucqT z7Kw2$S4>jaa}nBtPf0va>qFIq8~_RZi=Ek-S}ziFZmQvd+LM;C3|XeqULEH1c5tjT zo}1}8Cu0PqeoSO1_LYs(9AZcj}gnT2YrVXTrH=#Ki$%_ZedR z3)9qx#~JuBk4(wgFuB+J1$X|yq@&&RRL(KeSVb|m=PxTh_9D)o;A$X$*b02Z_Pi9E zv8MH*B)A5jMd#ohL11?ofh>lwh=>%OOcn?4h@-;x{OT4`t58E;qYy-8@9mMJ%nlef z77Dh`QOT1}Q<=QDNi~@Yp4s$=Pn?GaWd28v52xgR19l2{k)!3)Za{o)dvfuwPCiGr z*m&Nu3RVtd6RQ}H(N5(P%7TdvZUvCQ^}J~m9!p_~!wNepWeSkyYjy&!_gkfgN-D3D zA!FB-1?4fk34u*5iDv{4Y9KfamUJfO!B@&@62Z#F1q+VJL4Kc>JTxH6_pXBD(B{(a ztUGBpxW4a;)YZ99w#vDBi(<#_PZ`|14IRc5ZI_JR@!+%Chx!XPm~>v9EM=}`(dQof zGp-v-Ik>FcOnBn$_zt&KvPeb$_~kHDT8QN~a;*F&a!!GZ*}SgP*PAd*?_utsXy{qh z1WYRLxxw}NA=T~2(0x*wJ=o{NDuuw>Jd zQy1Gjv_{BZz5kLn(@Ige>YjceJfgkdz9R9m_7_01{LfUd?qC0nc{7h_`LA$^vctK! z=zkuRoW(*^S+|vJ@q`M0w8s}!^0ba16L=5MEdgeF{erlX4z=lHZW94wr{dDh@b^y+ z4waYc{S{gFhKHlT#neTruvKuxlUAR2nJk{Cp=SWVQ`6PW%?KJnI-pH0u4LZpgLO$? zouOPH1tQZu(x+q5@A!bTeAVrAG4)wz!PF~v!Uu3iN=r%xYI)vlMh#S_(YH!9k<7ye zE<+^*Aqh`7&x+Y1M@PrrCvdl#4s*h$FZtcCB8}=#Y)N5FYq+I9-Hz%Jrfzl>yxyy7 zJH=%y)9)S~#Xs?qqer&$5=yljzy2j?TesX87nGJJd~bmPDm(N3&{$3Ddhw&?E1jGD z)&~oKLeDr5{qz+2>hbOXZ#o8UAJEk=l;Z%5_fy+dK12Ujk>$PpQ7^sFy2283q88u1bST~sMlJj zQO8JQV&2S6x6o{-yOjV>X=Y{?rP_Ks`3L<0V2Ar!&ezCA_hnlyHhg(FI)1S38&(C| zIRKLHzm#HVBsu;-h2h~`wfzw1bg$bIjO;Jjytug7e$i<KOVNc+gBARqjzuQ})sf`= zZj$QVv|lw!(8g<7Cp~`S=H}M9w6t_0DRiquM+w*f)9@cw5QN?UM-!l-qWaso&Chob z+caU;cs<>jj>pC1_-PwOf*^D)yaV@i zdAQjQRMi0+T?16|0Cd6YZ!Q1{T*M6yu#T~e*^*A2O5L=tuh%030d_i?o2#qHv{R>o z$DYd5l{@m%UEkjwm2Bz%YvTo<@8qNHd0b@-+drf^V{_I1-Q-2>}V4 zp*`2vE(DR#&Qi~d!tqvApnwZLzyDk3Wc<#IjwG}or#&3Y?}ydX0RZdyVfq6~=gE|& z4eBy5l60H__+OSPD}F}2P(1>9uCgbtugQ&NYyy_5t_LTIyU@dFq$nohBcMHaF_m&G zZeVH2C`*ks&Vo0XgdhI&&rO$e7M%>GO>Bdk_SGQV&38Rdj|tcS;!ftf@pVZ&uRF=n zp3u*J5$k?H^M~kM9#oD5P+|$*opb`%Y%%T9XLV8cI4Fk#RUAnsKm;B{CFb&bJY#u$ z-g*yE-ql@ZjS?pJs$vs(AP?txPo*IX1#Zs?Xame@+fNFBPA1J7KVb~n$IICfPp(1Z z%8X<9>dcH9L1=e}*W;BJL??YEYz!%G+%1) z0+{a2hW(P5>6XjtGmF+si?N9b>Kk_*G*Uk5Cs{=k&;t{fdVrK+Q&XM+liy9T^(P(3 z6idKeX*tgt>8nqj+o)>U`OC`6_V&fl8W|dj0o-OS`@VPM1H?o`xll)Oy>njMT^IEh z(?Mugmmg0ARiwaWB2UDNfr{CKbG|2tIK#2Wv0M0|YN?LE{jn^KgEMmBok-hZSB({7 zCx&O?*TV5fogJCZi)me!r@pcQY;R6#+WS&^dxQMDDLc4ZA44<#oiGNYi<@;`#Ck7a zxex^dko^syw|d_lE7H(D@(HX!$&Gu?-mH5rnd3Qlk>PEee%0svq5Mn>(#= zADt=F^95SZlR+YvxU;u6=wP{3x1{CPe74#m;ktzd=ydjzUsT19)_stfe*)vRJeT!C zU97mO&RW;H-KmGy(#71|+(wc~y7zLr`&r*ELbqHB7oc2;{>#OGxU3aA_Vhfy@>BrG zAHSys$koq_x&72T(IA1$bUu>jq-;Jx< zi>s_~DjZ3{Ta+ zUU8#47dztYs-+#J9o9)Agw}4L}A@%zb_-p{6 z=l|uBGdG_r|20uOjXUpR`g$Ek1ZaisR?#=T?jj${2Tk&u)YKcDi=XPo{(MKN&$w~~ zKE0vZy!YkoG}23}%Sz|18|B=W6Ns(rgn=2uabFxTT2GCrfXz<#R9iKM1+KJ!ci$2vYfGD~E^@|rT#-qI-FP9%up8Obb0RgYU zi~BmXfGB~?<6Mc5kT7cArq!cBUI82oJNn+L`ClG^W8m=(ms>o}fbmz%y7k_<+)8tA zZ*RlO#x3P<=`JiVK9%m%pDpKK*T-e13Iii?1TYcm$6C zB`Ygye4zEjpQZO{_!#(W{wPq%%dW2e@>JgSs{zDfhRXZy$IVy$u7z3Z1zX>+k3HD{h4aj=5g+TjwFu%s7}=RXn`J>g8kLc zkUyT119w`W;PGkcqU3uYD)+)$;BEf*iGbe4Du7y<`2iTUIn*eS+j0NSt#vv8Q-S)^ z2?5CiN6Xp!kP62p%l}C7I16omLh`#^9mUBo*NaI=O8!;B1O+X)tcMS1v5AAhz>NEE zptEV?=E>Ca

lLG2`pFWIUn$$L8i57P^&V6FA?eDgQ?dG-qpOK>MHnoY;Gw{`v1& z{{MYqU-?Tt&*$yW^mHgaifo>CvsPuaC{n@}^0{EHe%j^x`Y-gH4G)V_13h z+h-Y+RirZJ-ZSlpXXWKdHZ(R`DD!OMhho#pOR1_(s|y6w2yNb|h5Y^O2$qAZ)5tjm+oWD3SL;U{UVP99bwST;e6u2_ox{7Ys`Iw&G%h#<#vpsiai$s8m)c<+Kt~xIxBX< zStrplj@Q7AD$~0t5x%FZq6&mi0uUIZHhA^otm)hB@}#}e11#nkVohuk!w$V(hTJ1d z=K;#T=mO|^Lped0C&3$)3y&bC_L_E^O%TihV?{9Qp<=z~B;H;dVL;p{|8p7B2dx16 zKCMniaV_$eYD;ridyy5A zf9Bogyr-A+9Hdv4xap`LM$P3U2Zi>0BV}$)ktTxECoo``?4PutY8NHE4RkAZbtyJ* z79(~%(dZ(sz^HX{{0EBXkhs%; zkvaRbZdS`JtUR~TT%NExFN9kM3}Bma^Bytny!ZBv{qhS17BJimm@UK~B$^-}jq8+n zQEZ=zbrq%5$45p+4!pwGD$6#o71h)zDiAbjshEqeUkG2d>BA8mf2TZSa>fo>|JJJ4 zxTQPxBDBYh$b)f@z3|Hc4=BXI&NDuQ$L6*`qsx=(ja^tV-U-1Zo1n!zEP5D04_ycj z()9wtWQ%d7^C8iCtvw<%fwO8DF#B*@ELPlkJsxl4O+4V8XWHdb1-)Ctl9AWB7DGaS ze6Ar|d(~`Ocb*9ZyJ?bogcFHL$yE%KbU3u!uPe>kD%~yf?=tn~U6!o7Oz2?ZFIY;* zI|GAnbU3i+wRFX(O#zF%&M}zyuP_RrQqU7JbOG|Hh#!kq*FQUV-SY z5S92&Pq~c#vS6WHgI{ZgO(7b%2tK=t^4V|1WFcaGuNpRIn0l+OGrYOQCedtqBI@B2 zDGXo1M`afMTubtDCgO#;!DlBd2mHs(_U)swi?vOe#Rp(C$GiJhuZ4aR3Rc5o9k>zc zzt@*S;L@$%CRWItQtv$j7AKhIlfjCRy#B0^?ntg0Uxw3AKhb-?n@qjSa(6A5xbNc+ zaSz6BW5O-3(Kn{V48IKcTn_KSdwS+9n5{$Khz;5o_9ep=$gb`uOlV@RN#0hJUFQ9d zrGR0d7SmKc$Bq0htQfBXjoEtCc=ZfPixjW>BmM`Bu1UnZfffa?;$jrR2!E@d5ozpm zX&JHX5+j88fi;D*ySy(;oeR1j4}zv$26}48Ka(sYNguv_)~qxy4JzFe8|Dev*1M+} zXP|Jtj*Q@vw#>I~{94Q%!8-T-`C7)qJqCV{!feV2?o1gY$Hk<@ues?`rFs+qtS1;vgICE@+7@}1frZKKk&UO*@*E7C`0rH2|IaGW ze2aM9ekj1{!k#!5OLngmKW>G6ZQuzbTx?nR$h~ij0Lxhhha~Ng&2?6HgK}Z zF3j-xmEJHG=g1%i4y*|Sg#1&g3*|Y5`Lx!Vt?kffGrafHY$jQzmeziCvdJGQbl>Qz zhZ>jK?G38u)udM*RRB)~#sh};1YW_D~bs4KA%{tEx*1SU_n`p^RYty$Q5t8Eq z$}uqaN>t-$N3HZDuFU0BIp)A|O#Cxr@)`pM*XifPBNmp9_9-9qU$^AEedDv8R%0(% z44$wFy%3$~K(Oa(qK2jO?;maN3Yo8B7j)k`6jv^!lXSvN2j@&{ROZ2+%V|Npp7Ex9 zSGb317&d^QgGWL|l)dZ1>3U)2&yVzK+1JqD1mJe}GwFzpfN+C~<<*&BDhzVL3Iu)4 zvPd#wQvW)s^crawP?!DeM$S5HWjke64+a|Bz$GN>F*%tXKl)mTd{wafucj4rkpcVJ zT~4%|9ba*)HD5qIQS8{3aO^$|-hcSxMYJ|XXWpmDmJfAcJjXRuX6j*8tJ&cT9cLvP zlONNQq<0`qsB(xUT5#qadA&C)I)>+Fq%xma40WiDAwbBkG_JS*2#&8;al1lvyy##LZ?+Svu17lT68IRdQi&TkSt#9tQQ6h0(>pqV`ws)FTw*@BRhCC zRSBT^46ERm6kF1^q^VhMD+F8S1Vo(;%?DppiJ>d9IbV{|J!+1UVKR)k>D$4alT+8X zmCT^`3NmqXI1qngW$Rxrr=*h_D$B=RNX5jIV-cugI-H3^^-|W^cw-|oKj%C!8cp5r z3Qxcr5G@TXOX(6$K>NE(zil4~Fw3Q54!~;5U(U2#t%aE9URIa-zXj$Z~Cio(t~G>)X*X&2m(eRmQNf|7$`D1XA;$5M+ zwS=fjM##lmO6B|&E@7noo(j5C)U@6!da;u^KCOkMKW z@(VwMk^=a+BcS0?tV_urlT=tH%ujBRP&(-YK|BM~me&>!$GZ~$!xi`Qtqt|dt7 zkCmKZ}sa?fzY@-Dv z?xafTz{8@DGw3|b?LpJVYOHU0wxs8~t8Bm3H2Y682KI$MYFE#7?*LUqy;|j!NZ1UF zi95Rcl*{30bi+S&dcb?u*jDDcfzX0@etdyuO|ex8(r)N#2i}0>!MvPOzCbgQwyG+EYz=`cB&ChEgQQ0 zp30HqhL(j+9VaHY8|M^`p<4yU?kfKyE5)HiZSxPfYC-)fNtbn?4yS9)E?DlyPpxt& z84P9hpp$NRFgnwzuaZl3e{Y0-(Vb2nHNzYVJrVe1Ea8!ST?Z;FlSS;;uPw2Nvm11L z-7MXWIPuuv*h)j!XGVS#v=F;1a9ZFwOJziDRrrlqChyd^g0e)x+i^siPhw=pP^cl% z@QX?4O%rPM3C7^I)i)czpjnoHc2FN@LFy(FE$^n__sgWLf@4c5$HqXxPx9_(z z@6I!`|7SAE%yrLopT~I|zoTp`#q5A|y@n}G-=+TR@h3_Uw1|Ky_1SjjYO373&@eQz zN-bp6p*mAiR(^d3c%Ww#m56$`^0dZ$!s)H&d;sg{3(FggMf&N{DxDef@tQE^4_7A)#Yj%2bdv_%1$=Vndz{wJSD=0AZ ze5!ERX(C)sFnP@1lQ!D?UF~gklfIcn_JLA`Zqi}Pn;p7{quq5?;bcnFHyywb<7ds3 z=-*@;-?9BaU)ta_?0O*r2qLWRreQ4QBzeuD&!7g%Fy|1!%ACd4qVD!qbRmN+^y)S( z=7^;75XjDQQJ~`js{LlP+^Tlk?eV6-oMGFAAc-{H^K%8}?WjY`oq)yM!ST=~%dP~m zKpSRUGI#?I%^Q&S+wfu&U}F}HOJzbkgc!tUJ&^+A>tQVeSUS?h-9uA$g#qBsyZxMi zc=h+bf|!G@CIPSXp|ZEkL6UFiQ*#PDh;T&fESqELkV0{{$0 zt=pLx&Jw_;QdrZ&oJ8p4o<8DuH6pyar~4bmMwXauZF^7jut_Z|OyU!;&yz$n6bS61 zUoT?PS96Q^c?pr(@AN6f4e6y{Cw22|Y`hZkV{P4APYtF^w%~j{?z7am4Frm?8b=!ah9W=uOIU*k?<@BqTYeD`dQ+`w()U|0Q1jJwKPZeaK z#k$RGMxB!oG11MuGmw$#JNwQ|-W3nGL(=yEgA>A206|VdlWb;`87*@|5dBLDh34r1U4(dP~n8h(!*3jVSp91hkI# z5EV6?W!4p_ZCmcigB4hM@LE#yorK&YYl-iCn^vT@9eYSrQEulq%&ew6)HD;Y#nTCj zo4+W8G4HZGqv(`yYF+GGyGspl+IWUBN%<9Y5P*`qy&rGEyg74t;;Y!`|ER_R54t`0 zZd>I?n%)U%AF8|+t?CF7?jHg4UYrgFh{#~F`}3?{O;K3Eb3GHR9yOke&k(}oP}^>A z8!g3-aT!p%1Mx=8xP#H3#gv{ba@H|?tq{V4rjeqjh%Ye6tdekY_qaSbq!RP`5^c=x zGhM%#zPtU;Cx;xgc$r!_s>TD|Jv+3_vgwmk{yq) z%P^Xk7`J|3p~XX2Oy60M0OD(2W}py(Yl0nN`orHcWoqs&co2wMgFw0|c942u=kRu!9iZPgNp{M3*Z~4%+GccSkUPmvFUKC zv|{E`)#Rcq(MgLVaP?8bA{d?1sF(nlGj7j_Jlad=sdq=&$0i zso_0w-1CT-5EaLZC)L0O{r-g8w0V^bS7w#B&)r<7esROr zK|eBO91wXa0Se0b4k-tqvti$49yHM>>HdqIsPO^&qVF;XJhu%`Uw&yoYAm@RMUUkH zfccDvKinzfLvj}8&4@yl3fDHnumvY-FPY%ZH$jW^cjFf80t08|WI8!|=au{P4jwfM z@QJ&H`Aw>ddm2C&$B zF!eDI1gWv8q6>7=3s`=C3zsUvU<0p5{wd2eel|52bMAGJIK-RG6keA@kUblSr$WS# zE_iA^j$JfOJ;)%VSOgFLkP8s1!#s@ipZUD19+54KFpE1K7d39_mgrQXkh=xrjuzLQ zWtTHv3Fj$SWkfNkp7kqtvTvD#to_Gn`>+0zDjrm4nkXNaoG2y$80Oz7 zvQGDE;w9sxwCPlM!9w!E?F|pagJWwSW)$F1hwP|>a$`Ghpc|JxZn0hwY}fWXHiPkPXyARpwKgZ(<-GoYTt?fhRb8G%!KFnkRe1fEJjNsnQ@Rd4bj(r@9NxOF5(@Q-zXdS`9z+E^ozt%ksMuBmt~cgL!9Ta3=j}I(>s-z4&`8_(5GS$@!5cfHl#9 zB3FK40F)JaX7tow$E*R<@%wvg;cQl~)qKeYvTyrDdF6cMp{6@~7r+}JR-Alc_x_J?oO zH&Gr+U@GU+16Z?p+AyHYskK3m#V|3Caq|1(2msHC=<`>IdzE>_Xz5{T~PI2Ar}+mWi+ zuifzxiD5;YXdt5#i8k07#xL)+&vDA*7&>SvVzH_8jBM#?emTiL`~tjCHd!BCtq1(7wzB4{v(YZ;_Byf0WV| z?SOX5x9k^m7${OUT>`kEojT9&BL)Vj{`}AzAiz*NEuky-ygQ*DW&gB-^LwW#*2Lk7 z*rT=dUmej-(Reo7{6#wfBdkdfsE{7Pz2x=rrUyR)0$T_*_L|1A0d? z8f8~n;;&iy1BO1QEF5&)qXCex@EeEiBs{n8Z+b2SvNO4_IGOb3>o&{-v%;M=+$xIu zwGR{F{yy-5*YH3nVuMF1vI~DXi%8xHc&>FvNGDmae+bd?<$(_NnB=f=il!z)lc5~b znjm2j6Q6VG$ELdgi?IR3>q^CU`fq_Ir7LydL|ELMlSqF#VV=e{rDvG%s|s5ub z=N@n@*mp;W%hByMHLq5JVxh!|`~n&pZxX!pYz-y2cPFYJER4P!`ZM)+_+F)2=QeC( zGC^j=;A9SYuBk0t2ksXrXP7!w?iZ0x<|f9%XMR(*tWL9u)$Ce?{o?{SLLezvJ2Zgd z;et7~0n&2inNpEmAMi82$hCKQ=SfGTkyc`03TXe&D)`*dsKvrK0)hE;OZV%WJ$CM{ z|5_mN|G*4^g`PM62kOf8m z_6mn0l&I1NT`P@quy}RNZ$|s;(3HCW0{sTh%{jqv;>^vQ9=q;ygJ9}39y)Qg(!;O<;-lN&bw`5H$1p}XkyQ|a9sZGqbr&I zU|uE1@Ikp*730DPU#%j9Rbl%Z@(%^u1$oEud&cJBQm)vf>LZd8DtB!v2N}gfKat!Y zyVh^Vc-e3ICDuP_)irb|4hQ~xAJN#D9wMKM**1&$91RpPPpHPi6*2vrIn=a zX&wryVl3QQGQm+Z`36_`gI_KDUOFD&>Mf}Pe0Bd4v+ z4HQy{w7`tRx zVH^B|NuA{F>!TESu>^qPvf7IluQ$e?mtX!;ir|>>nejo&D##vQ#BRnyOV^aIrrtT6 zDg>^!1XJ7aMN4&+%buIO~^xq!cmE*<-1E;-@d>s3ke?DiUcj zzZ47v@^)7W527ZH>Oy+(bX|4nprbQhehL5t+`{E?!Dsz-b4FVrzkRN!^dZf5(s3Xl&@I-)7n+!0 z>v(T*hTur8x>`&TV*GlA&tnLy=Tp{pxRJi`RmlZ@;CNesr}c+1$!@YDL-{5)blr3O z2LZa*jR_XG$jt9_Kzejy6?E$-a!g-2|K?WQ)uyqJ!qjlh{e>M}$jnGA>;b&jY=Y^+y*F>e&gjcP_XOKT+H;L8Ey=25d7WeM?X(faz>lGcoH(5;|3E z^DL+Lz|m^mU`c_2xns&12=qSoGp}nYDOW4k_7uM0dw*;9rzZw~tPxFE)oed1S$b)o zIWcM9th+F^yK+k0T@RR-wXHB=SidheiJqZjr++YXd+bku0I$76h!=bFftljGp` zXO`FaF8TtR6MXU<*8Sw+nICJFQZOJ^|KAAJ87goQsnG&1@RtW#qVv+-^VDkq2^h0z zEf6RlaI5KFK$a{ytcJY0wGdW$bj1ArY?xqJJQ_JXlDD(JmJ>ork=Yi=wod8{%=Raj zWdY$Td(Q#FzKV2Cs^V@l_x3Nmi_A&Ia#nuGL^Y#)2J!T2TMa$P*xS|fUcvsS)3YdV z&r2=~l!2qg#S@pmzMfkWqa$l)F|4%)rWd}$f~1AsmoK{Et)Bj98$6(&!co_w|BfP@ znaV3_U&xs;1YC;mreoGfLL9Ixq4f)2A zdo+JvxtwafTX?t*n^EM%H@7P8hnu`AQjiEn|0(b;H2acbo%Dp(Zt&&;U%P_JareiC zVY5GR9-zIxwWj~(xN;w8_m~M78=`zI>+oc!oal-k2pn-{T{upEj@ibKN`wu`x<^aw zGr{*{Me)b_2^O=1xIcM5QSEJLXUbX~NKZ_qn+Zy0xBPX@nn9X*D@!6~qDn_*lA`MazAto?hEuXGf_*JvlpIX*aV`&$~Q#LOxu0)IhMqPnqf+ zfER@yc4V7ojspwDc`Aq- zUZZGT-ZZb<0K88Z?Mf%Fmhja}3_W>kPg9-VONeRR-Atkz@p69eHaT?8OqH1Yt~#xB zoE89coOvyuGP!C^vcXNnHkM7_F7*)51;;wNC9hxva^S5cxjsWt)&V`s`o6MajvLpe z6pSEq?}9Qw&-34hnpl%gZN^$UKxL7~*QN0}$tClz!AZ|>S;d}Y8qjPm#6g;yJR`}q#9nVhm@z|7Ux5{{rPlB2~)Bo@4ND3PrBNn}4M zVs(5V25}R`eYopt!LV72;G99F*Ob%XS=Yrt%d3XUb5pcW#(Lm0+J?JosveZJH7OSI z(!ZoDW!`P`aeebsXN{{a(Z6YSN=WV5piQ%+@WI8o+F zs(_7)v*GJ*ks5D9Is8u=N?csPd-31b#aL$A#@x) z179^}KjC3ZlHIhh+wK0hIzZ0VI<;ivZ*FnkCH?G?WTn_NI;)*~06-5K!em{{X44WX zHNzght56m_(a$cZ^7mnr^mwT?xqfZuIXkgljzjx*4IG2MU0$L7kguz}^R3@)4fB$T zPX>3t*c9vtrvE-Km=xc6TbILH9c`}TH#63BqKSOnd{B*lA3_{yAlU+MBRC>^V~B^y zljKnEc5w@bjk|^w7NX9w=|5UHoS5Aj$YpYTn%^=`^(kvB^9#$M9b61vp?!_ zb-BDbSKj$ZwbSf!{amgHO6PlTPmL;J8+|8b#IzNe^CuM_(A4tF4vlbb&Fi zsQ?;KzIZJgrq0&Zp5zSy@KJ<-Re2DpbO_yzi)Ev6pRb zVr42AY@{L9(z|-@M1C?>($DPG-zpB^LMS#|m9Hqk-SM}W_l{U;$>ZtrIOt5vh|rbl zb$!b3dYZp3RJ9eXGCBF;z>n@7hypYHS;Xb=lGyV1b+Fle=CMq7&PNBYVeYAApQhU? zUS=Gs`MqE^>{&8*bZ>Lng$2-f_S)(ZqkIW)kD`of#VpXuQ(Mw?uUBOlw#MfgiR)oU z8CgT=u>$kLc?6)&S)J zdH4Qm3{)!e6D37_t$@x9RX5Ny+PY-LdaX95qn-2t`J}wBSi9LutC(XX!c(3i2Jx zW$o{Mh9CKV$$-Vg@3SHg^FyZVf}V6>m}Lp}TV+v7jXs&hvrlL$nm2`FDbYj1yI-v9 zj&_S4l|SxJ499{Hz)dBxmN4YK8`TE$h?O?-&cEftK^I&dLBEfRwU_qAdpO+enHLvs zUnHvDk!6bH9!_{zVvl2DR=}v_wwc+;sMfztyVQEBbffDyBy$Q}IQL@vi+K2#d6sqE zlh3OONXpQOn3GtlP4m7YoTW5>N@6WxcqGy{Z}H{&ak}8-XFaJ`5f|^3?@#W3jh$qd z^CtB);i9sa6|t*)Woex!&>*3E4*l-ucHb!c@-{2<1v5ew2vmY^WlI@b-yAgkWNkx~ zcAOvdyeN$rae2vvrl)^~%3k$kdnTz_)CcFt@&zh#w)jj-A@!JL$@bq(C!9yfJe}b4 zsUa!61_2F#H_A}X3(!;woXwLpNtwCa`;!bK^G|_gA|7SGdB+%L7M0nFfxIHzj>$L) zY}aY4d|`>BMD^%rx>#wLgpQ=2Zg%Gh{8C~@O^qC?`z`^%8f(!_02T?|hP_=7PuRI$ zxmmSGB4)RU9t?|nW--rZuR}E-4MDwX@U*iDwbuHtR7>)g*Qdc&uCuyuA&IBNI8KS# z+o(hR_Q06VSZCVF9{S}LMkXcs@i>;X;N!<@wT=w%P6>POD^(*r&l9n0|2gyzRsa=6g)Int-6+pxg>y{Y?6!sW6I{>0?cd3jtZG zL~Ba&O%E10(I@n1^+(`=$@1&&@@G?{g3t~#a!xZxookQ{w^&tI%EM2T{VCFKd-KIo zTdxQi>pVhIK0CeFwgUp8DwlnSm5?XArHf#p$XGwDg&SL+hgyJ6LP{UEiI63$RH!PN zTl3>mM`bK-%Hp?3&>bV+#xS)4!{+3?#yQs&yAZhG=KYJF52bkbN4&On@{nM+LBa!I zuZPG@*qLIu{e%XP$HsO3LW6ICUPNE%G|FCzXVm-^3uE~yn}YC8w}5Namt3b#9Z@Tr zpY0KUm8T~|PWvTa4S1z!+ZcR{x5hh2W4Z`qNZ1|Ula{|n7!|Pe4W1)gst~)Rl*v4!q(36FTQfGTPTXtu3%n3F?+ zs^(5ELf8T^ST$oh-P||$>s6n@J`N0ihq>5)Cr=#Tv-K^r&-}cbjXsfy#`pq(>s)d}cSPnjvwG(<`Hbf-IA(m6 zl>C~MmDAD&p6Q;yeAAxd|7J3X14QtM$YZVH%jWYCvoD)|KiIre@Z-m=$)!1V|Hl&> z`qEPqaTn*;&=j7HKdi$EN#?^&QAm7EkvAh-pF*!igc0MU?lV&q_d(Gy4WRhrbqe*9 z--{;3r7(Mpc49<$sus0uw#9|3e%Z@H+_SOY0gfq+V2BzJ`0(74d2l2m|J~CML9%*X z^qb%92PIFMW1r_1Hp7NTEN0%B&4d#Vix`(+6?BYxPpr@LuOP?c;`tEHidR)G~>I^j;) z-r9}(yFRe)m<2T5KY=R-De6A&kqhx)z+K&(pf+O3E+|WRQfNS6ds9jhy-vBEP;>~f0yTmh0u1{kT`1}?h z`_7K)jS+qSu!>yE5i6O?243)}2|ImrGk2?FBx-$;xoh52!+rSZtT!AHKrYK)xr;Af zzsFO|CVRAv*wNruBEPaaoe2={C~w?)L5Y4P0FFzo+;7$_+#eTB|1F^aMVHSWl~4xD zwgn6hg}BvZ?f7EaS8F|M-0_R>1@Pn+w7hXcl=5b8=Cu;!TknQadl-)E-zrsk&x@mI z(}(5!<(l(C3Hn23u+5{`<|lgR+>ZTcd4+L`G8PJ%b_kY@si~CnESm2xXO+yqdeUA3;yXKEB9)?lOjx^)wrFhryd7#SvE6jfj~sr$@J0Zir1((wMQgKzS*FmI zdF=JJW5gNgr#|OD1tsqqhWk~Ax5@F1RKc1<3tVrmykyIM!6lWI@7s0LE)E6ma6RcC zuB1Z`p9?!3cuOSKhRQN*#f;qnr4fQ&lxz>V@&?^=*WpbpP*+2jARQ&f&B>OnWj#a7|!q zJ=ODw;63)0H2{FuFxU&9sa49*oUbCp`I?!*nDO`5N;vV9#Zqs^wXnp}rb(4OO9v6c zk98_r1^(+yJY8GS_E0d;Woz7|C8!A&Q^1WkhJB!b`qZXko;K-yhkQeB>(wxTIt~wI zO4*Y83V}j$aTs11_dSVu_?q3^rqQ=F49C{w94u5;f$Ug~ z6Da)3*ed;)XVu`n%y+P}Ow09V3trncQGU%bMjJp_-}D{xG22^3nQAFo0A*cYQsq(m z#{FCU-~WesIQ+j1ZfpOcvO4Iq#zwG>b4D)Zlf!2fhJTWie^ixLev*a!Q`1*O<`WLn zUB10Obf_}?_7mcW^!5uwH3q+YICo~6T|z{NWwl}{)k{-!!b)S`r0-ngy!6w$TML~p zhr6%W1bSO28R23vO6mc3N2lYoV9ks1KxbOxGS?8lZL=dUn)@rqrnNz29bl$Sp*@E< zYiX@)H2b~F)xK=JH$?ni@3E_Yc@1xiaqogc(z%t~g1} zz5zjX8+E>CCJ%H{!teg-eEWh`ZERSF(| z#~rf9F3{HLre?NiL-w~r%L zhJ;@xcLoXN%axbYt(IXD$ZI(wrKU-Dbct1ao1r%_W{R5EkZ2s2uz@w9HwJuA5Lz=% zd`M7JT-H|vlMnjJwou8+KV)_=n7M`y&{O8xS?IFoAAUV)cr6(K=VvtFp()tS%;9K^ zQ`2~5G4|Kd^|c{u@&`=F1n4v`jPSzS%xu6CKc=0Z@#B4ihc~aM8(0=x=}y$9O5$Rc z_affLxY=9~NcgtFSFqsdvh`f&j8Pd5mOVIn z(|fM=(Q7(NrIGk_2B(Cqbsu+S_C$q)3c-x8l$AR@O~j?e+}=sJV}77DM-r|g*o001VL|`l-Tlv#`M=;J(FcyMGgGp% z+0C1|qnG<=yo|pl*k2+5JQ%+1Y~N%+zMvVu^783?z+V&El%suq%=oxvm@W{(Hd*LvQDgk(--o#zfw^^|%&lo3^zPd#guK#F zCDSfRq*y05meMmQo+tQ0fWSwR;c6+7!oX*Y0qEb$FGJC}ifDQe%gvSx1X3V_CwFLX zzCX{9d3`-4v^8lJdnw^Gm*Blt{Z(s`c;u@oN+$Sbj{YLtA6FUcPVg3Dsr=8GzhY9nMSN_@g+Y-WV z?-@W+Ml?2;@70sO;#c!*3em1bn`P~wY2Lf?f0S|4; zrwI2qUeISt$Pt2FSUsV25aoO$4n1NxbsMF(tHX*)cAUlp#(#)@JzGWjW%=y={e265 zhsUUi?FP~fjR(|4+x*Eo<~HuPF`L&o)?ZLodBRFOQxG46e;Rr=;i4aaA9n@j!1wP= zp|>PU^1Ln`(*0z(BRld{C3te>1~_*KF|VHBndWtIv}pet$Dk9aS_R^G75~h4m4+x2 zzAgqIOfv7PW!h3MfH#LE=<3~|3^neet9vv4{bKm>dgcL4>A{TgI!#Tj#5#lsz4eg) zt6o-mhG@}N>z=v`)0aFljUr67^efD($Ei}|Up^ZYYf5;tak*vSJ5T~wO_cMyU#|BCI$^uDk>?uG9p z6Ux&_dh+3?AS~=?o$Tn8aZ-FhEHD$2d?oHT%l#*PL=k}>Za;NqQG@=Ln-(-n=^$qI zp?<7tdY@IVyZJ1fn1|fkPJ|U=XMm{1I8XdI+-1d(>p=p`MxUO}bE@Gb+*6@E*J(_9th!wL z@Sf9^{xL3_nW`^BHER712F9q<%ZnOXO5?}Fddg?=XwV-0vXDQY`N_(_Nd{4fr!6u? zQprFh&ND8Z=q|ZpFDv5-G!p4Lj>K$dK=Z9fuh>ver$EL3?R5U9eeZwIQFg@TG(?f( zhV~hhIucGos+m8%t1GW0nFa(|KPn_9R4wtsjAn18QRy9L3B|#-up}`k=#*a9KJkSI zrQY*4Q4Zm=Jwa|A008c@YmJm1vnFgA0Epa5?mBDNaL6UqCGy(AXG#Uf>Z$t9Uk4I# zi%v9~Ye?M2CDuyI*PaQOw~h(%OF{ z->7H1C$N|2u!=g8#inT69@-l&ns7}oC=-ajtA~&;AOgSx(^Z( z&)o}-4yKwM)*rha9LS+WnW9QSbyj75apo%x))?1^)O_APpR?z_^H~s7s$4wRy#@jo zdJ~L@KhmqX2G_vdPj{STm%E5?R;JwV+`8`TWNS%wcz*>Cf2u8qM8Xi#9U$CaeANA_ z5sB2(@LV`vd;F~oa_iQ_nTE20QP(|nXj&duWae=Zof|jH%HG>z^Ihpkv)&|seEl46 z<&Zl0@gHihr_p$btW6>|n%el~Iz5S*J8Uva6RXzpC?P)}vl?aR7=-^(ozNjE>+H~Z z@F1aDCg<#nRFN5Upd~qJ-p)y?EH=4x3u4Edqu79hkWS_sa#>Q29L^VJhtx@ijFmM5 zWSN2X0gi$SsCDB(+`6Y`sS`Y7O-ST(MdRjh z2e1ASy8}m~?q#QJ3YTl)#CtU@vs>9%P9tMuhf?A6a~Y=62Xp|9fqO{k zrOlnVfz_-C3;gn_K`QVeJ?E^BU=O-mVzG{XTkcaa`#beUnOTKo5kSZVT_c@t8!w0nDA-r42oOdQ6dowFdgF!=2y<&n%K zJ|y%4nLYlK%_ceAN=y4`!S145Ue^3WB`G(59Yr?WF#V&LjA=Gi)a!wNYf)7drT^e8 zSj>R>Z8918^S+Ydjal*M0)BS3yJ)#SAj@Fmad_l2WoD*Yr~LXdrcM3i*^zOw{V&Oo zd$3@(4TxS=M}4J=avV$hdAHtig+1%BPjd6ZC(81TjknnEz2}it`S3E3+c&U7BdT)M zdRnb-pY1F>a^-yS&AcbiSQIS_-=j|%!)g~I4nb>q#Er#W8MCs}s*?OgZhlk-7~{+cCIBJQ>PU35g! z!{Ls@V`>0z@*7GUy}m7vt478vI>pnkpFZm9o&*S-pIlNd=25Rb1%PqtCjcE%e5|2U zbZyzj67pO4DpcTH3>(pb(VU+4i!mU%lFpd@W+LJVxh*pDqPtEXlM6R;sYtGD(gWEU~q5cf21RwQ#VXDkZ_ivTc3WyfJuK}my z_*ycuzDVN`A&gRpSrIRz;iXfHoDDEZ2-nI)o?oZ_ZHIpEO!ZDmC3TJ+E4LJP;0G?m z`{w`g_cqJY%nASdrIE2zi3TkCB?&91>$=(rtaG`sroBaswrhD>x zSC{nsp#<;RZ?vm5HR|Oi539(}CvbNl=mY)aSFk-P;)ngU(=~*m^*~@bHq2~RVXz9H zc&Po=H+KQ+Mt#qvE;n=-$(U_2>7JLPuG6JkzB}%D`*<%5=8LvlEJnSNW`?GZu{PM3gdd(P-j()Hvb>uFenFExmK<#lC8mB^#=>!8OjjC-A0J+cmu3?Z0Tq&k-Vv7EOtvX)RKa9zCdmO|QCvHknimELxwdj!kp^_};mUGie zurAJF32tA98h#H?xOuWffWQ6dAH*6-oXXuA99R&`r*2+q-6 zt!aOQYIM4ofFDYkBKJX&U@TJKf^6(}o!Rg1nl5Tv6+e+Pi=)68Xw?Lyj`SZDbd{W< zu#vDde&yBs)l@n#F8OWXU5+sVxPD;vB~=;xn+YzH9Yf3}JlD0oKBM_OIPq!jiiL9i z+UEi+_qx{yP&Q+A1l6*Gdc_}8(x0Iw8S0S&w^n5PtKvB@sxt1QET=Hoft88ZYiX~WsvBT; zVdqtdWN)}9zckM1>U)OM#g+oEVauDXJ$)$7qFbx8`D+1pqdTWkUC=Ykhi^Le0?2UU z#_}^(ypNd065^8XZi9q>Z6idh z+0`qqM{^@j8c0i<@aCf~E6PKCic~Iy?QfM#8*sR1;HzfIyT0ZG$90b;)W)-T3tLFx zq!18yrLfdE!Mmt^-o_Q-AnLP#P#5Fflq~=@HYT~#yKET+-<_vHCuZDvHlSiBCGI8)4P8; z$f{<4W+s91u*v`WJjL+y&j7LxH@9s(wuom{g}5mlsGkLP)!QmWN-veOw};G+&{V}% zwftIexbv8(7VU^4W+O_DsM^_Hb_{7|)1HlhhAi#oWIU`NN~yv_^oHNbQbs(Sd3|%D zcS8c}Y6n{-HtKT(c&Ky~GShG@ztyy>yn+OtZ*t58@7?QQT}~qbPN>Snvc|;OH)0x$ zbIKicd_f(V-z0X_;Ch2jQx2&UlTba`2m9+mfmtEVAkUAQx z19ku)ohs|glq!Uy!>}x=cdqBNwU=>zYW3wo-UarCUIQz&J7;ljjtplL-VCbJfIt z=xuOiw+&$j?b?LoAl0GNjHL#&US)7Z zEbSL^_^^~Q$=J)Vfa8f$Q^+B!|x85C9A1qEhYNfLj};G zIydff8^Y{_OH)tuu=Hu%s+C#NHRzFO80*`wF*G{$Ca zltF}WpsK05jLo=mz2U3wiunwk)}2JjV7OWKAM9D3Q6cHL%=oSJqE}`*RfTT*-l>z% zUw4`mmbt_crHi?}#pZ&A<9`LEP|t_SFx+PY0u5PiYz%MOsM$M8>p@nLnl(--E$g3U z_DN?;8s+c<&GSzL>nY85f1C%H)p2 zgY}e`y~BI~IzlqEMB|CmaOWBf1wEJ%taK#xbN)oX|VSh`Tu0)xF(FW8Qz1G#f2UEACIO?F)?thunU?d=HQJqPnhKZW*Fy zzdsi5dM(uHcB_9E^?WMbGY6nb9lpvQxUQl=CZwuZdlJ^Y#S!beBCp6c8}fcEksre$ z0w*RN)P7G)K|2NjH$Kf4-7aHE4fX(?wMM0=yd9O90<%n9mfm-e3js+#cD2Me#un@8$RgNkWtM6PFGrc!g%yF%kmk(d! z;V5eciHeQxk7hbs51CniA8zd`m4_nLrN$q?SYngQ<_>k#sAo34y|I=ZM28Gbs~!4C z;~#TX%D=NEQHrp64bOkMqrTT-!msTDV@U%|KZ?y;O=sM)0aU-7h@gHGI?ukp?|fU>X$s^bxk$bdq@uhf;k@|uMR&`yN{pwEq51bw z!;WE+Boo85whXR!J&LBIMXEgJPC=e0-bN+DbVUuMo_^@XN+*_+?oWKy(dr!? zIC>9v^3hLK#2I7w&SwZDLbOm|yTLT~t%ttnJ;x9=|I_GXn{Vmo6pAzT#bbHJvl3y$zQCcoa`4j2@d1yL;-x zMHMe5bz>Tzg!_i!*hW=e0i*&K&HhSd)J6PQ(m2R6A$XWe6Tb-jvFbwMxk_Voqnw!i zzUfh^MGWPm_=G^!S4={T9kM4!Oj>Fuj_OXfmxkuZMMpa*j0 zNRPcM*`Ix$*YRK2Q`L0>vd;p^o|@1Ph!4~aeCP}W#95`23wc`7iMKtid3O;h6Pw!p zYG5;9zJ3yaztMYsB-6L}I$p2cPl-xs@gvOkE}`8T8!~0CN@p4XjT@mbl|cOUJw4mD zC?#8N3oh%i$%^Hdt;Ht=KK{@l#`Ng)yS85s{rBB5zq*w7%AsSWpl~LwRw3a7`Nc%O zm0{y5yp1|iTEv?HasToDk*N&E#wtjWY~3(zd$F*N3c*P6_$X4Ojaxt;p0Ym0Et^#TjB&wiFsYwnew>>HDDi6_IhK; zZ{x*B)jn~SV)c%C{hxAGeW}Mu4Oe|hY*j{&9_H~D=1r*99S!m}k9L}aQB>VnIYlYa z?6j!KJl@P)UT@2{UQwxf~$ss3M}YE-2DE3_6De2iz>j+0pU3@C=?$0>yW=*k%TW9NcrL# z44fdQRsJ7fXlhG!cm|F}mo9=)I2Uogj%$7}0wP6D^{RIzjXnoe(8N?`@*j z=+POSG1_2wk9$4O@BKc%_kGs7*Yc00oY`mXbM1YueO;f=0{2lww+z=-L==(VL7?lT zu_vb|?_+srvNJN>vlrBICXYF(Y2j>YYWfK@+pTfM9zObfqdv&q-S29<(F~|60u+6F zp@zAxSC7};w`a+Q=H}$caslA^-)r$I^2;c%RX%x)ye#6~dr=IK80H47lK_OczzAT5 z-{7wS;q>7GC+zlx>SS=pCdx{SbX|EZ8?NO`+-*ey&q^F6vn17`77lHsZSAdn= z^3`K|;)WBQF7DZTgW?A1b@WCA_<*^E7knx$D)n#B{hEG%gmuD`3_yDLTcrj_@7S)K9+>beJxyAw@TK1dE z1L#`s{U!j?ou~vD4x*z8F@aKNcYoji|B(W`#amRRp$$}b$2SqH!X`I9o?VDImuJcx z>f5bZ;DUqC3+Fs0jm>AP=iJBCN$<5a&YA$mhktm!Tie@tH8r|`IN~3-15Ayu^yc?{ zwhb3zGqF2Xq#;>G{@7#fAA`Bs+>aj~3j3pl4}tdyC)b;qA$dB-1d#dT{z3fi`<*r% zYF-~{9s*ssr_KSO`h}LWh?Xzh{+K>jz$%~$V6qo32NsN+(=XRdukw5_eWnRRzI$$m z035y-7kqFV3S5;Ps7KrXe45o*Te}i1z6yL358#kf4*?YNOMog&2L(zT3KEAVOK*7D z(8-2*7Qh#AvD(9y`E{~!UGNa(j{^01i1n(%Zfb!N;J!PM(LaA!fT?@Bq2Bc~|0|?FxTy@FMjPK;4Kq>G z%<>Ny8#vhv{7}+(G|W3Chgi&$oz3h~{fQ0cX1IU<{*AQ2?|k#%1`7?S5PtvueRRl{ z;l=nk<^aIQ-%z*R-{@@x-eHn_{098Za z*!Ja(PU6NDfI^`*7fJy{`GKeZsVAsu0hiv#`D41I_el_d)d$GjH~&}>d>G@5984eU zTR5q%2^OCBf>4B*>9NNH7<^jrLF-*-4FDK!cV^gfZ1|{1W=;OTJOTx?O2A(a55G!M z$!iB52;WDxx;Hny!}My+Gz8nc#_7a6)0{1bx{*W}Ray?X``p+U087MYkE;WsYaRef zrb=NZQJ*){M@K~kSLktE-b{wgwK^j%wSuvwi}};$O5caQq*;*i=(fJF z>Xt;y3vVs|5fSIbPnQ!;*n|?(7877nz6W#}0A>I33#;(ZQ2u;(vlH z%1qSbxL@&JKcq7v4qD=I^YzE_}xAO(5?*ge;r#b>S_7WRXfZI z{SXCrU{4pgJv=;a9>(p-vYUbKI=Z{N*VDe>mUPD#8sYWY96qr+)OPUao&iPW=d<2O zR&MMSi8K;kuWn=tb=Z^Hg2c?CsTtgF|z-G}5>7M}D#|Ae5_8WlzeO%nUSI>Uu ztEaAZQ#*b21l$ORW0_a4KkUzQI{9uJzW?+6&5iY?`Ja(i=&Ah!JqKh0s}%^kxEs|B zfM*}YQ8vEezu(~3eHQQ1f8qAsRCV1LX1EDHYd6tvP1W>#^buFXPah!g*Bwt7t^tCN zFAe+6h8fUxO2C|A*jdfyG!R@>d;_^}zWBS}TL37 zo6w3mLr8&}B*-IrZo*>ke3SQDBYH6I`fA}?y#Es;pXhdL!~8K96rH-j0oW%Fb^VWZ z85s|QxqYN>CjJete)VS`R~)dBXjs6OqV(-6I4oL#MHLK)0{U)lN#D)m06bGb^u$O# z0(WNu9*>^P%bv{NH&LV)mdtlT`yK%DobVF*~0PEN8(w}_-bU15bENh_1H^pyz0Evn*^lT~g zJrMT}OFf%Z9h;8dVgPr^%BIK7s@rp8CJ>%;4s1OCQB4sEaA~@BO4Tr z0@fE1>v>aGCC(=`&hlD*3|sA~19Hbxq-B^QW(LVK^M209*tHYusOd#7yET zCufoUItZxf2=Hor#doq2d^WKHeGi+Rtt7Uha>*<;4)F4reYiq_@K#{pT4Kn3-Adn> zO;o{@^w}@_GlD}i3Hj^$4;*tT@|Qlgxwy-vr5Z5B3ztlr7Y;N`F+XICDs%vd0fEfi z->ANhTibrlPn~EWYbqr}elu3y$o@mu>9`im+)(~(_w;H%FZl2ek~ul!Qutcyy|n-P ztgtlNHit;x{)VB# zj3|rT@0$xpzb`MsxBMlS4*G-BRV_Hg+aKaY_s3+aiAP9?wHT1E9G;xcFD!6`b*|Q) zb$00au|-ej?Icgycs)Rj1Mul<12I%Rc67V^?#I;&ujas<4425KLbqJ($ZL9p7DfE8 zeM1?l@6foBz3#G`T=sgw$jA3-_H~~~beU1`F2Cc_VN6`X(`tUpS+C_fFf9Eko(o6x zMHOvHs&Mn|*@;$iYF-A-sWw*uquCrK* zX$(i)r)7%gi^x=4bYdX-PPf;Q|6%LZ8-%RbP!c8#*0+l|IPA2h2A7Fs*1VrEW{l?i z^AjZjsi@nIHWgT|fI(jUMTs>USp*QBNwEPWd$mbrJ{_s!+2y{rp|SI9UgZN)pOK`i z_hI0bOi>MAUu@r=JkvL=(XdqP%fGMF(-^RiuCjTXhFBc^!-9ZXaf=ojw@vxLZpsBd z1UsT@fd+SI(xYey(V|P)2lXZ)iHKg(uJbDSX}=YUsUNkeb?k(So*BO6O`QF8CgJQm zo7_^SZ%+eXx#FXA!`EOfD%~)O!*fdo@bqMxCCvOSQ`}U3-?*u)7R5PjQ-iCd1Os3E zS9_(l8~Ks^3Vs44Oz=2=VQTnRUpULx>(`N|FG<*<{OO8f)rt%hpsyAosLNXmY2V+Y zDHtz9BDO6G@nuZO%n7+p6&0RppfXuHeTwsmxPRL0+8Rl<9#1QgDHxFphqOegEf$!= zzca>n57h^RB9saS>fLB16xf4FOKk-sFHg124CAiDlKhXCMZ)XAcNMzPdpx#LRQ@C7 z7;dqM1;m{H5Lo`-=- z0e9C;zqVim|pUWbiY08dzn8XVyVa$Z7ff;qJo2P5$;5xvH{YY z&*Blld#Rr^YoMoYU&HX0M4YhhIhN`!6!DN1ZO${P(WDoLVbh{+PSWZo3c=N_O+UTBQHukYxMdN~U{l zwZ5HC!SAo|S6sJKC$uj#?3|Qj)akZAHsjdoEoc9~tPn?APcd5cA3E$hlyhX#hfcYu z`%Zb`9cN8H-tt023a>dLSI(;!4@vC$MHKh~>JcIXU--sD4b<7xUZyE!AC&y6piHd1 zEer5aB~JCoJ>m&CMXRY-C&MkQih%|$Q-8`OMJy8-IeTq^dyePN=kJk_pe&dnI6fP(_@ok)(w)>;xI}`py z-f|6Dm?4JNPHneZyxn{-(wxEn!SRt)>SNHHOw;6n$>ggf}yKbU<{ zCUq3K>C67cx_%LAnJVGLRy~w1{#F{`1CasXPW$ewrR=_8EA+l;rs$BZ2c-m6DgW-k zgThSICMEz&&d3Np4yUOMXm@5A21g~Y%5|>m_pLV#A?eb+PU>}5%JY^ z8p|?%&aWx9L~jN~n04%ss@(EC3-b3;4)N)Ux!YU%)<$Xr%m+{9unhDmX3RRVYBXKogP0a=MZ(X zJW{;@vR_|h2bMO#@H5*_grp~Tf14dKc$BrC%#21~!8$2EiW2QhI?`0yu05rb2pD3k z(DFI4c5IX2^0@t;@YDrBN%nrUkMkYBddrNOZ(4zSO3%5G`l`g{%F!_X6lx;W4O?>i zvp>(b5;Xww!JK$nXIdrmq*Z7o>DMEp<>h3wv8gK}l6PGlU!?NY<618Knp*1rZ7heq zml)t?BDdQ?(-*lz^LQ}5h0&HMOCC%Fd1R1D&%)^H;g#lQL1=3GT2g}kUlDfyGec>m zW$7%u6rP$kw|daSR9<2v?`B$0M_|Ip7Vyh`-ve@(KD!c<=?Un4&jA@#Ak&W|TML6ZWwi~m zFGKTs?wO{&ylWy9m_Ks<#M%`^0uX6X@BYZ@m{=x+HN6&!3bCR#Y~NfJs%tKYwf{l8xjX#Q3fqep4eLxXT*d0&(Jc@;@L^znkNi^ zq>P3G?aMLN8*i;aPBLBYceis>fXaBqMLkP#Q9G$~ zynB+GD&!QDWP4Y}nSLn>}P{#_q8&Elje}7~5 z+g&n|&dlo({kWs5^SB?)P~`{z`Se6DSFXe3oj#kg!)`>`}c0weYaFB@G4iT~^uN zdp@_8kr~}qQ3Q4aEohV4CzCD)s8#s!U}R6%@~EaGaY$Pg-V~2krHi24XhM<{NzW z7!n~9(5ddbW9WZftxQ@8K;~ky;dBA^WK3pvQ*N!wFL7#=YC z+{uMRAbMsOzg)S|2o?r*V2Srt>_fcE{WJ*fDxUe_HI~Ol^OC(?DM_=5jT9)Fj78EBT{DZhNx=Z=9 z2YO=G%M4mBOG4!EYG!A2?d}GfF)!(dtLg{leyZ%NGxBE$LoAcR)jxjcs^2izv()!m zP+$@Gx!Yy)b=tEP;bq35F-xuOfUC8ean6Kj2S?$iSlmC}B^WmiCc!iPahy&Jhnp>= ztMuy#D^N$;#&LgE`{H)cP0b&xqHY3@LphfLFZMP&r9;=BY5}3vpl&cEva6Zod{43vfwxKPu=!$ANsfHbijA z%+?7PE5l(*cA#@zKTOC6*erEL`~v2O4zZ_G>snoa!V1NyW?E3~`zI4!t;7BDKfWe1 z++Hh*^hHAjvM-;ceVxv5GUAEUeMH$H(nHUcK7{P<5{liIw}|+)(WoYc!_uCLUJcZi;9%In&Giw?*p^GKhAmhGVQ+wx3k8%)rWTia{tB)zs z&U4OzUOR1*1PQ7M4*IU;sy)Vhxm3a2Zt(h8r~;lG=s7B*3?Rb%Wc7PEF)>&tLX|Uj z7FbCvdYPRp8d7Ow@X;=xVs7$vv6rUYAWGx1ang-p*RLWY5>rjYxb6kodSTQog>xZc zI805f_c|XYOF?x|F4H$K_ww~`=rU6DAObco>l>@2mcX0X!CPBNh8T({v*oMyUw@k6 z#sH^_FrIZbI$%4fUk!1lu~iy9dk!2~?sYI}ntS6Wc=x^S7j|1*)Pjw<9D<^kpy9B{ zm`OfLMD>W8bIev!T>F;OvN3U?8Ye-}B;R zNhsb*L-umrbTi}1vtl*k!TMd%*-jc&a~(Py@A>Aw#zdnIwjRickMFuncL(&L!o(dW z-Jp>tT3p4y(?`XY=4Q(?+c#zzy9xcS*1(?46+ty{1Al3gnCF-B?(zR>ZQ&TriAnT& zuf3SiV_y0o(+B6n++*iIc~lJ1q0bT`>I(mIfL_VHMQKSOy9b~?D`9oMw0MVN0zymB zS}rbn>LKYJoEMRh>MC=`sJVMKN)AVgon(arYB7qk5^j#JD6P{JMk0mwF3)b)x?2^y zi--1-88tB2in-|h`=L*{-dL8pMT8 zHa7o3AE=<7Iz2Q+fV-C0UsSV29YZ_!2`jWNE#i4+`$*r7it2q~#ffk7m7KXge*tNT z4^jDjq25PrR4dT+>>5#FTnx+SLL*uuQK>TNkii%2vaG9ZJSl?5nnsM^p+fJNp}$#} zon7c4KYpD_cH~pHJ@e_!4eRv59Ia}^yJi9P5ujLnx-eYQ;KDY~~`voCo#*+>ro;YLD!$m;f~e=QhZ5K{K^Cp?{cEF#RT zHH`mE3nGp8+zF^oDNxzb8Qdp8DoAcNO0XNvGI#11HUM@REW&t!jv$J5KD z0n{+lbmob4e$_E6H|=niR>BS&=f>@ptODlgjQmbJG-c*Y z;NTc`g3vCPv7DG~gjHC>UKfNJ2TNKSWzsiqc2t>0Cx|8TuqjzEZg5T?NOYHNv}IZE z6!E0}2yg>UtY~r^B+n(NsDz~@g!ptQs~y1CX%5S!oTwsRdyY_#4~O^G9~D0yFfyi| zT&euB-M^c<%qzTj#j_kOs31;P9Leb=dO-w=RfIUoj5&xRd9zR3!diI*uo>w6k+b&z zP^e4d?$*D=ohxu;e3|;H2r++*OeVCZJAU^3r|j5qjrM%VHyQLjM1|Mwfz-i|Kugnz z#FlUe^A@{9Zw^V$=V~@*Y-#;Rm<|b|>RG0u(#I9{0r5zM$^lN;Byyr* zsOC||*ld)ZRNJ;lq2`H1qoxEC+ilECnG!2*b3cd7pm;DA+iE2#!AWF)a!(%fg{O*h zbbN^E!H-{dtWNfVbyV}pxl`tF zkBi^T707F;%yVz2PrH-$#s$l4OXdekUT)S-Pby z6wC9sef+|3L?$FX!$}=rN~TXv>#~|imQ}fAoO-?!_P_DK#BVH#G|~5QFdp{*^&;3# z89Dv()3Ou_U@suf?Jg|5YePR&b-1`b=5L5XN2kE4-4`GKeAh65?8US%53;paitG!a zkCGMq9vT4o555Qqsw^|tG=F+D=3<@t;Z!AgJhI12D5>~e!~ylcni&6WeFbvufME~d zkh6i)BL|hg1-zhRiu+}iqD1vuPa7l)F<^=A=1V15w*6*wePFFzSgwppevRc_R-FFGB-T{9huh!vCyXh!_z=eMKPxC(Tp{RtJIG-Gv8hg^i~u*zq$ zK72-ws{b0v{8ewL!a^oVG!m7=W)*x0HR1SAh5Ya1V?{ zMpo9k`^VRcbk83KI4F_h4!eocklKv%^Ta#XE#fHvo6TN#Xs26DC6C9^i5F2C9vYW= zMEEZKYS3vJ{C&lXc7-4*cefLdpLf4Qs;i>MW8_wvnwg=pm5qJhl2;0C2j8#KZj`oM zt{VS96qD!qJvRKwWf5|b>eNrp z8yA>Tsoy_|(C#Ozl4Jg!x=`4prwZ-lT~~i#m(pO>5jUNLr_RDiwvP^tX5G>GuM(U0 zqW_uu_@8aRYa<7}8EINLmScr^s(-SC{-*GdVJws(UygKwLS-Eb~ zG{@hPnOT#IG|lV&KHiIa<5X}zBzW_A4!PHON3OV$BU>w31WP$Sr+Pl2>2Ek6UkJi| zT^ao5d-eoBxt1rn&9N_$V9_^G({MSn`%94uZiKswt10<@U*a04tD?8NpLL4~llsXw z=Ie$RHW0AaYNs6aFkrrF^V(+?;d7n--e&@G_~GZLwfv{PuUQ=|i7Pa_ABsvZT=w`| z6QSt>J&JZ>lADN{$@>D54_vNRy(5k-8j07%yL}J>$K8!mm3y?fp|M6>xG3QklsXLe z9QUcC^~?QM;1JI=y~b##!rI9$pf(C{VffQ_I(;0A>gKgSdBLeFb$UrNV;Uo8{_~38 zL*zdFmbCii$QVKQ354t{6|&TH-6}}|ba-O_9E?%;Uu>_7NXcBK1_k=TVxyXgBlgg> z5tD!RJ1u@CMBv?)mz($6D}GvS%+c}uP}e;@&|zgBvDZcGTJW5)G-@SK2kvXq#~!KU z;Wgjjxsv2N#=XxI?XnphMVx4zMo$9F5oL*f`UURzAYWsero+5UfFz6(ez4RR?o%xzg&0R}Gt;dZ~`K z>j-qALu8Bzw={Yx@%g@VvILcun{uUNx!%jD_pWcFVc%MScXv6?ELD&X?tBAh|CAr1C?kVel3ZBs|(op7w7ljdS7_dGsh*I6< zd>Vx%hDx+QkP4Mz&d zGPvvYrO{r>dr=zDzbQOzzU=K|(0J7XK$675KOXByN)neDj}f@At^GNhnQXrAqWWm- zNM6owGtm!k*#OCmfueTBPz9y?tvs8j7sJR{jU-?9dcvWCMKk|clK|`=IDM;2sCJ@~ z4k+4}kulG#7am{G9O#O}V(#@rb}KRTIrlL1g;*ryL+QeOlv^mTX@|8Rcc-T$8oyJK zFg-{lfkzTfK(LYNw!ASt)kr&(Qv>o4&-6M%<9)rvJ9Jxz%UX@4}=oy88 zc^=5+OZeg)23OZ)Ct7|Z8Zwp3RZ;(0RztMR0ks!)G6|*Ds|ti6hzGsfu!rXRHcW7Z zPO%dSOw64bb^#y9kR|SH8l|rYb1w4bH~L?6Ek3RVmlgkSQ|3Rz&Og1{`>+*FN763> zZa(+WxV7(fq$sG+bvkBBXwb?W@mGIFI>p^Om=d4-RVee;vkrFK4gD9O89kN@&9u*6 z`(Z#1nOawPnU}0~=-!&uJ80d04(Mq+*lhewn)_)NqsbRi@7qdnU5*q3|H&>l&0&e@ z=(WM~Q$FiNU;mGUPN_cJX~mrp2Yk6y00A#Tf+8c-p(E{*N-)f?(_`5HwUMYzdE7%j zFgb`}_kk0c(|tt;Sj29~E3+Kb-yfe>=o95|v%bPI#JATM4~sp?+zxkzQg{oP4cIJ7 zUQ3|dI1SlNlz@F4J)}aEd;Qe9AIZWy1iAV#U8BWr=5Nu@@3dO{jZblPYtcJ&A9|wO zc>JS<0JU&kHYD9>HAJ^U(MZ&h`LjPGstH%#yrPFM{-H=|S`D7BO+zMc=xNO1)6OD+ z33MC6Idjc~#%lh|@rV+i;D>ND%K!QamSp)`qQ!gu^Jm3RO2(SON2jZb8nQI-+IwYn zKH{B7dxh(c0Q$>&=BCa@{<~a9cOr2l$YDF%@-1>k<)y3&2!`f$*P~ebU3)<1^90My z$cT|XG+`Y+C1wTQ5UshJ6gwWuR^;ymeDd*5Q)G(g$sAJ2W5j+&0-CGpbRd^Sou0ny z=Ex0zEQF+1URdZtLZ%k<4f>Y(3lTg%@{0zF&{Y<}t{vNJNHj$XTA zc*b+GZmI)-FQCfuf1_1#^yb8b=dqATRpQwUsyut38dM0JCNt=}BZ> zK5rKz>3Pm&C24U^7MA1dlsyTCu3{hzgUmtz!Q@s+_P=1=)c% zh=7T#hQ1quLtrB=nf9t-{le1V#9<*M1d;9vle#Cg)(We2tcHI)1Hhi)vLWA9NPf+E zxYN(z^$IgGvV4zV7c`&k7NWT~2afEG_~d@+rWSgIZlJeqn==Xd%}HK_5pE=SbP&*A zGt_0E=;fcr4{@c96!nad1^-gP5jUBj_a;FU#&U=5Puj+xhHVQA3Q8M2A{rRwXI&a! z!2R(!`gT)}mmkQad35T$IdjBID4>p^6w2}u#Ha2>yMGPF5U4hF^KQxRn4Y^%vE_@Q zlHP0?j_UUg4UdN5IuBHnRHA02nyArQ_gIXYi=a52(;Nvdc@Z~V_us<(6D0-1{Svu6 zIXef5=O6z~H1|Ft1J+7&hIKz1r&dTB-JCFX-G(We zo=_Oy{NVZRt=9^9T7$8i1>?j6mksSy4RgaD-2?D*Xzq0`UJb+r?R3{=l&zq!Nk6_l zZQDvmFaP!E_!;gh(-x&H?Y0um_QFbC@AQ><^8AyCpsQ%J)g;k%*P`tXo-fWS1-rx=`(1Zq&-+bqU)`J%X%FnED_?RA%Vc zPD4+WAy@W$uZc)@XDVsMT$OFTc7yvJJ?6;l=sVzheP6O)0~99{*XY^6aJv;4z|A0Z zwSbVM4NcCEJtG*c|E=XmLrt#d3oB&rNuaG$i0Ry|&}EG%WiaMD%|}98+qOmqM#jD8 zC6jm7W|v$b_7t-!*SD%$ns^%#@;9A+Wxj`k3BS49{9t^?q3_}67}ybsbn85@(_Jrk z%FPQEhwzU1+q(^NUTM6tAK&5RY73b9LMt*hv?cXkv zJ?BBd8EvW;*;mM?Bhxn%))6q-`q}!A{ZcWh-!M_i)JCl8?}FF4$VqGtDro$acsIAh ztB4}p8%>@J<)jHW;r)@=b5FV?i#pygRnF7$Pdu%_$B=Hx%gfQEIL#CvHug~<*!A|< z2e5PFuo**=7=bm-cgDX2RRi_elhG2H4l<_9X``VbTqct-VKklbeCJR(IfeVtK$$|$ z)h|Mp>e%Xv!H*~VAyd@6$S-h~3UzoiL{wr_%he>|X-IuBnSndcPXBuVG{NK>dy zIftD>fs|%+1kPT?{fnf1V)PqwJAX>Cp~7A^T6Z0w@fT#|e7n4F>zf&eVa% zoH_LLj@=KoL$5MyU(4mAPJr9cvT&3S^a?jlCI6lb<7YWL0fKmmoA`X3qUJlPr+}*R zBcIBe)lRrv*)4 zg#anxi7+JZc*Nv9>;C$+8@BA_Wmf~eK(tnVvyU-pAN1^TG*JO=1sxq?obIR1i<3S^ zMl)T)Wi@-r&dreI^HbU*VGf*l6`OO>(i&Vu%ZS$aB@hVZn4e0?WmMx8UAwKE;gdr4 z6RakrpTkcB6#YioC12EiT?utF3VJd(Up;`ZoU|Nz7VUKD(~p(7m?tGssP&>jEZ*}j zm!aWSmwF0SXS~da2Wrf4Gv!US`bvzR=Y7UR9{c<&T*?2PNl4FyiLVVPS77qO6~5Zf z2~c0SSLt9yIn&s(SvY{pr zA!GXbO1)oBo512KI<8HES;sr=XWeUuF}W^0jQt}5wdBWi{JC;Yj->Dry-91J1c=B$ zh$Sldmnt{A-GF}n>knNSe2$VQJ8|VZZ3R3dk%C|g`~6r{iCDBk_uG`T#cVfT=;-fT zjtkzag)aCl;doC)%gorv9-<~3tYdfg0LIK0*}L9O@MH_NhGK$cD|l9bT?x_bHq}4ErYu*9pP_?6$_Gcz+IM=v;A+ax&)eTspO4T zJug!M2`ijp+TY2FatgBB-p0GYN1rmLqq`Z}>sB7fY|*ErmOHg9|BPVR+mVYy5ePSe z%`?5`WNxc>V|)V41z!B5Y^-Rbky3CYBcA;8-X(am-Z*3WL7H5kh)xd)zm2`W`fDla zVvJ{}#T`V<-Wi6Ne!t_Q)GB*rg`dp6RhItbXC5@}*14PoDDk@E|aQv zlSM2+RpT?7zFW>Jjhm%Lk5#g>;jGg23KXVJxk%hETTQgunkeIF#BTn}RA|WlT34}# zqm1afh%PKk9YjKT{3-%YL?`CF$~iA zTt7{7KF$Z4&y^@kFUG^eQFNKBa8TL+V37X^B>W{%r_GbSqIm&7A8N+47uUonGH86U z`j+Ds=Yn76$Vu0sK%2+8;qWX^jG_5dOTw}duWT&1!TFkzvEp%pxK`-o?ua6NfXMU* zoX%jE@lo(G^G69efB`5cc{o7}l5Wf+6C8%`0**HK`ySI=H90-bO!RCo^#$8HLaLl&A` zaX#|NjJ^Rq`g)`;H)_-9xwSQno0NqLkfi$YV`}}*f&{#ItmEj>#2ep^Af)UcFfM_1RM>sf^$j#X&Inv&p^EL7ur>%g}nyE@?`==OC^5xVLc zh#@IS&oP8HTE`V(PB{y)M)BhT_0LLE2#9QC#wO|4qoM4p5`%7E%V!nFVvHlkVf1C} zBCNuesEop5VXRrXZ)YA*>NPhlFu$J$RHU>G1qpdS?dp%2o&JO4qT1Il$VvX&iVyeS z9qj=xEf3^kbx7;J9KQLgoJ(%7Udr~H?cGRP&*q)2nYTjO_l3!2O=V2y(>fYRWoZqb zhwN+jyd5WSG=$f;`y!m_P*eU|P7d7{^TKyMrpUu{L}BPvYW-grnH37(l__!|k&QaN78}XV3yrM( zl>@&tWOD@>Iv55MDAQAKai*?Z*QDmEIGL=v zllca@a4`+fq@t5qA$w?;815j;xYY0?7hxM;DE*U^9q{)(6_!SN+Frxa@gTp?9Glsp zAw0Npz?MUW}n2L8pjXS?$!9Ej;>;MnpnLx*amY16r}B9;jcMNFb~_VVROPunuWgY4E-YL`iO zK!(p~r%(Qr-JCJ&#e45vB~-vG!`=_+J+0k#>7gE(a9n4!ak2$0;}>@@^WB@2@D*)Y6%KaSza{g;Y$cuHUhn9aoMnLb4|8K9?|Fgh}E~;KnK^xVhUh=Rx z$70(>x7q1otx-yiu%_EHgfgW1v#U`M^Ue=ga-UhY%#41@cAZRpl`YJLJ@{cW{=l^p zLTz`wRmAoVZm9Fs38RhZwz7DCWOVY(l3q3;9GESiG*?IBTB(pZc;j`YdjjZy@%IPk zoh!9Ov&s4v{Grm5$(* zo0uz&8_txnJ^W9$sMN^;!#I7JUMLb=kNa!B&cz;%z;%X}5Fx*UNa~K*$A9I=xl39u zT%lRMiKw16bI*URDNz#r!2W(55M##SqjCYpfT&Q43+2p&i-$X$5n%KW_B9>p%0>;Od>OJ>_UZ zx{zA4Cty`QhJ?0ilqitTasje{au~_)M1nT!n8}@Vx-`v--?0gf5WEU0W6y?vu)pL?XthgbxVEjojX-^H?Z)K6nqd+@=ZJ=o z(vN=o`@Fjb!!*<7t^v3RM+o+B0%t0N$#m1hO973mXpLVn1GOw49zIIN*?8d z+>BR;f6>Ichxz;&QMx_IW20D^z1yh?jx0L6%A}vnpLCB|HqdxK(%UQaZ zTF>^OiC}opzk9bgwN2FO&XzyNQX`f7kKRJ425Uc!1T#@Ww8jympunO~n&-+H>ZZ{2 zh#E1~Na-=e096*zRPdFYkEo+L>1%4rpP0!aqokIF%a|^#dVLv6rK`z%s*_0U$xc5! zOc5=9`xr%*lYieENob#gbnM)AUJKrsJ{$7xd89O$s^6zzY%RFg-H>o%Tp8+ z>6)TU^;FLG#3V&!9j;M{!-k@KLOP{)pi+rJ!Pj;BTIx_0vd`)^O$wNu#2+7~b2xZ0M$c3szVsG;>OM z;yNJ~%lwm7dZoQmeR193K~|K?8yfG!k8g2idokhwD032Gd!|W`aJb|f=uuBGWWZWm zo7uZ)-y?CsDI1Fk#C_U)N;g_);!4-KJ$q0;j&Q-swU0M-#})qS|6>0utrJbdxzx1z zz>!`vWj>CaeX{#_yWD7;-s0JUVtniu3G9wEprJx>L(*WRFlNRcpfHsst#(-DN1O6js8m+=FOVD&Oh=hMPj8fANQ7|x4V z5X<`hnf@1VVlqC5;v|KtgU76&sRnXf#7$ebH?&*@Go!Rg?sEwhK)JdRggUO@Lx-!p za-R%*`k^nd^|nimq9=?CLPxpez;30q4XS8*%jmka%SL9Z6jH}dITA8z?Nh>Bt_2ET zhdOJwy3&;?3i0af*+QZHwLmxG7~aK{dy}_tb(<=8)A&?#9S+-juf+h|r(E&n>K`o> z)^qi=uqB&iopx(8UJmPM2CA@3#zSWon?tzUptS7%=2+5Ml|h>ybm4ZIz*4JO8pTVw zRq*#>!@JYX^GxE|WRBO~Y<~ma z2pCIwd$mqA+d?i>St_`_&TRzLO+VhAj~j5P9oqXdWf}%k`ZQ@K5sW7@n}RYk;|c9+ zIrgRLFifdvYg(HefMnF*AU4&=qMe$&%VWGn8;5*cx1--U$KEF)aoQ2UemXWSb^WYs z?;joE`z=mDddL%>mQ?j|`iaGWljDjq!*)^&HG&Ab6#T$^ zwr(^o_&MS^9vm9OR`%DI_pM1{EP8$Hg-B;dTo*(hux+eJ4m!CC&z+$ukWt8ZSUrF2 ztr`2lOzb|+S5&_vd1L;6cY5~T`OmY&|GR_%CdwP8zG_rfoC+ zbseyfX5~Eb#o?ljI|a$7L~F4U91Zi>YTs4)^d?h!VDI48rhq)NWzM?02WacS`1?9D zi-+pu%Hb2rF{zO+@;^$bnXmf7(eaNwE8ZfV4r11Pz)LKRmjLK+=}w=0Pzto|%M_2e zFmJ^X@8Rutv*q^ageU;>o(78~!`vfJ5O@FWZJvr;(-FP%{n1eS8X0ulsXNwdK8oNb zwcL0MZg_~Aj~Eyo(*3cfJY}UnQALia-!^&FcYa>(wAidDx7vv2kzN_eQDj)Z=f|d* z?bp=XTm%Du$*c9Ciuw2op0Y6NA{ zm@;$Yr2YGQz?B4l(JdbtuA(OQKTkyo_g~KP`#M^s&RJ`z=qN|X9zG~HZLc0^4nw?R z+T`5jf3S|Cl%wd64Dz{mnoLuPZuK|=jioN)t`6~%9#zy3g3#yEK_r6*0rxKPg*;mv z_Qre^PK~K1qnP9QFP?$O=dX_bLz?qH)Fl7eXmn$MsHig;?NR;#$qRQALHq1erjVJ+ zb(;6kZSEM(zS^&|@;A40PR?-HR&+|yPc;cRq^Uo#}nSy#9h}~Rh z69x8_N2l4w3h4*nT42CT1kxfhU|$qBXP>=Q5!momR`JzEGQBWzalP?YlsaCx)fW3v zq95UY*xrk-FwN>>Bb?(OlE*p3!tO~_v)@D8e+#UUDY-@8NePv*NYA6?)fBOLrLRkQ zZ|dpY(NOXY3f}LQY%+cZJo$`PoNS4=v7%Y;j49pxB9xTq@H6Y9*&S9#g64wp#uwp{ zDd!d^MirA5@4VKV4~qNZ6my!JO@2-*6aD$4Yf8|U@p0?_q3o@r;%dG=-zbDY@Zj1I zB)Ch^;2uJPyA#}LG(j60cPF?63Bf&thQ>X(yF=5s&f%GN=6&X_b?5%>pS@0ZpE`A_ zcI~RY_vgz9;j^1FwekB$My_!hU5Lgb*LvH+Cmf!9IVu7JSrbw-{t%x0L3ybo8j4i}$N- zzU`Y!5orX4(0qu=(Zz+_DpArwJrS@owRO9HbQL)WT_$RBCSTxF5e?i_b?a|jyk=hC z(NxMvhOT;_Yd2%bY>Dh@)(rBa^^c7k!Abxjmiy|fN4>f56NuKu_A(~R|G4&GOVSQ3^jY3@JDnM%MpTz zZf4vthSVf!`9vN$rl0fzf-rNq@|s)HRRZOJlEbYjPsf^YQVQH_+iCb`myo?Us!Lepu((9 zT?e?ZqelF0dsR1*i2Z3%oMEBG$J=>1efq8h8t3*?nW#1Xzd$~4#o2Wyf=;Y7Fhrmim^G4;j4 z4d)wOfl_tR+rw$0tF2t105(PcM*&^BLfelY=*AOwKvD|}92q%!?4*yO56|`HXpKr; z*J~;d@__;Do&FYJE6Q5-(wBr4J|3jE z_gA9%~ z5LSrCq)}-HeXXk>%5I|05Jh$^92c4*@)rr}Pag{SPxteH!tX+SLAku3!Gs$^w+jT4 zJC=Bs$LG#CBE4uR3Nw*9!GLiUh2nE;$`Xu@P3KirL?`9>5&2MUW3X1t6!1~cf89(d zgFEFj&Z8C@$eIq1El+Kj^+d&)$L}$gej6GU(WuUCZP4YsWf4kp?(7hlu&{2^LT$yT z&G2ogFpdZ4o=g!ByJ6r=U|5Ez&%rcNUPxq@#N480_w!$&*hl3aTqKC0?8k~_0 zy>e)MC1&E+oiOgJ(%jeLegLSk6W+)aC;d0)n)N_>Jxjd)*70<35EW1_-?XPK-&OW9 ztZ!~R_i96R%s1X~!y*^NKoGaViF2CKs-~O4TrdDQ(IuEpXkz-T1+>Su#Ct*7hSL8!mvSn=F&!=1U4=(b_JU4y1h7;<}Kw|e?znXoaR*f`$H_s98oT;3e>a@snx>ae1s z?(hB(F;$G`_)-yG`W@#ouRB{0-Bmv?7091l>Ln!!)l6z1Hcfbj)SUSqoKvKCjQUKW zp4a4TuXBFTd-=Yg?W-x>C6~$qTgbuC3ZZ7PX0T#)%$N(*6m-M;9t(~Ng~oW!+4f* zW0(vhzc7CTF9X?S_L&n*gKO-f)o;a(QF(bGZgc z{^$2^0OZw(WaMMXkwGJqmN3F`IogrKQ=Ic2rW{$4uj$|{vfh+BIT~0)Qu-evhcryN z!YG+xXrMEfkKdNA(qNV1N32t=B^nT>RT}7%W7I5OnG%KMRNEgLKh@(A*=S5!TrLtS za-;f$jsbwZdZgR~eojr2URm%f_9{;lNV{MHqnL7TbpR>{C$@F-D2QsSv2adpZEdQ% zi8^(0?+f-F%#xCy3wZQ7nb29wDZyifB-U>iF&e#`=tQlx}z0$3}X6m5^{+KwTrU3uoC`8D4&^Gjkk;+|Zk zD}MQ7eI5e{c7Z^@EEdHf?t3!xN=oyU)~njN6(c`wtcR0Ag|mgSYOtuaQBqOJGKYdM zcV_cZGmIe< zCyV(fC)wC+{SJ%@biOt_o5LJhWP`Y{Ry)p0yciIg*Gtw!RjnYn;^*&2%yClR4DA#9 zUU2x+7=1BwWr6Xcy+l68$2IS!eJg3rSWJYrekp|Xz?i_TbXTr4B#2ecWnfE_Q2qSb zOpZKw@+^^jvHbNS1$KEX`&)wV$>X(3V~sfhw$vus3?ua*+NqZqkCUdmpeKACbKwzQ zvX&dMh>Q&Q)Ici87bPnFjO@{oQOlM*3Mo@ znnqB$oO(#XG&Ypx<5x{QsLS@}r5H{Mmjx#5L4cN8!~uq77$>^{*#mMA1*V!?ofb2WWT{F`nYy4-$frk zEX4FCYj83l-qv=z+ub^w&oqO{YOoTvN@`$%^}v7<2o$RvrF7kAafQ-Zk8qpF}@GstaDNu-JbGFDUuB3c!X$+HkP8()>per~JOpOtG)7c$>Sxl(X;k zZl3|;Nj#u+X38VCpYbn0rEY_<2#n`5L-U~Pat?WtJ}+7wA2iwXvF7QYzNV^Ht7UvMkep|f4-sQ zL`4^tLHQJ{^yK7aYL&?+b6!*NtS7=#n^0yH(X-3YYSCMO6ZJo97vg{YD;Fi6+~>b# zBKOjxrD<>!Fi2b-Bg<64wj=moC?#RtaA*E|*57k=WL79n@ofh|YmcsYHMYmM2(0oiT#V+l!u21)07E0##CeEs^fis>1r40gf|@+eEdSM zQL~}hs`d}~v>1Qm=IZD$8tNBTdA1GK$bLHrC?5G8jg&$Pj7EH5tzS(6C)k-6+HvWk@^)kaI9k$^nE_ZzrR-kTH$`P^OZwo}_=a2v&GU%c^1{1>cmOaV4H@*iO z$+N@uG~$o%MF-{kxrtzbL$w0MZyq-ubD}TmEs_O#y~{hgHB9H~wITG1zngEeZr13# zLIFzmS*HeLqomnK=* zbB>(8$Djd(7=#B>W}hLZ30c4LzlQI7MSlOLTmIFP3Mb}(b#M0X-y-yBg(1vok#vg* zkv8;|2IMfe!-gq$F940c;xCA>7o$;}?E*ACSh58R<=K9rzO-;6qA!-OtjyL*fDY`T`qQd(xgu8Rmeuv)b5 z%~Kr``Y>+sDi~>F@-BGTofxTQzJL@8r>w)Lny;_i+;3O{#QD3*vJ24LH_qZ%)lG9T>C{_ zd2^@xi>M5TayUCZ+C7=5EbcH)MFRF`NMLA^zD$DFu6&sss(Qe`o*xtRRr0BJQx-RA z0_M&eV;r?yoP5_mtA7N(dW3u956$M>GEH+y^plAU{!yXbQkOnTCV#FgA+nKN*IM!m zcZFR~u9<#h^;ZoDe>yj}DU!Jg^O%2*>mmL}7VG@xj*; z`#9BZOmInLz0O%#cvEX8UPb#vHp%p@9BsF%J`;IB4HkGp=UMV*@1(e79$e}b#x6g9 zA-6I~3Pk0WnRaNAl&-R^TA$+YX2v6fO?Lh$x8t=g>Q!v_Bq3laC6RMpBr*+J7W}I>G9SsE^;rV-oC$| z=B~DLDB^`Rd;M6KoJB%-N!t|m{!$>r14)o`# z2Ge~KlE$jO1fAff55ENjlrnXupHOgVu=9vWHL5?JXKPwp@#wG=H)_MNFaBSHi}U@z zy*;j+@#0*@#|<}?SxQJ#(LvER=hQF=L`jqlf%_v;f>G)OJ)zP^R&U>MYn(ADu`OcC zg`&DSNkJ5h;LHGR#M-34TpzP{)RHIe8~d15YkQZsJ~s4;RnITPfOvZ_ap4_K%=?9# z3@#PXGDqE1*3S%Q21zk_&}O~JMAgPT#zJLqd=CE9#&I#h{kT%GT4s!()b;F1m2tPV z;Jsw8LV(jw{JNUgDcI}4g1T6(-Jw{mTKM)8v-ke{kA>cBDv04?HHv&?Ei>heW7Lm@ z(z&+@iDP49CO7-ANasIZ7?)O>JL91gNJ+KANVPb;+0>nZzRm(GEkLKcwN(V7a2O;z z;=q<&Q8tXE!Jt`1*OZx zWW5fS&3LWxHE>`i87r7dV!fY5g z*&bU5$ioXo<1(ts@c@+;fH?zXRQ`$2s>*mSnCi;U*U6yLoP12(5N~dPrM-z5RbZ2o zlIqmdkPsNqtTYZv_c@!siY;O2_40qfomyMRAy(m0uAdj;w%AB=WwQ-QUNQFej1CV| z6@U5y+`hT*g}<2YBzO47_%ZT~fW3d~0wJ~jxl>kI)KE?Lrar5x>kh{-4 zj;tLkR7tu=h~9-f(4s%;>9IUOePve1oGI~FSDp|1~=oe5iY1fNY?NT@wKXhte)RT_61?p?S3!%pqb6xLZm)GMa( zD%}BiWY%h%A>>-3j$I7bAispRj*iN**4x6Tf~ZXE{}52k`V!@AZOg_dC;J|l=m2vU z8;8qvXS*;9lN{NK%sA`@dV%Eu>zrR)EcdZE9sq4-MIRg-#J#Pn-g}6k9^aj}82}fU z^_w*_{qDg0gATTrE*rwvIf%a%zMm&bwP@~-+3rD6qIdN|wtlF@a+~eEJ8{JCMfLSK)ig^zg{*XS4PpP7l0k zt!9r(o2j4T>SfwIC7VUfRS!di)UICKu3?>Ey3zH=KQ}`}`RPV#&kCK6t3CWDc&E5< ztx)t9Q1fch20B%EjYFeM`^}`jSDDRBwVYiuLi!(&sZO08c~F(AGAf1lk+{|`(@^gX zuB;dU5)9mg)aB;(YO;+LKyg>t%r|}}VA1BzS@l^ZU5o~hAJ z_6w$7+1X<&g(Hf*x;j2cr*ZoO@x8sx)y3smk16NH3Sk@3-a^Ye2QvDpI(y1Jci_gT zix*vd{!}mgb?jSsF7_-$(X%S_ns|TOzUwxx632cf?(FP*1O&xT@UtSE8h`oTUWrNi z19N({D$TxCz|zhRQ+Ja5W)`5R6F#uQ0~{Z|KY!@!&Q1`s>sh(ZN0 z%pWWT0IK#&Nm|V&H(Q5?hW911paVeFUhvyqtFXcL-r|Cm7Gdm|B_NzYP6p+*nZkb7 zj(|5mfMUO`^0xzEU)1}vt=uS-T3b{A6qn+AjzJs>J~2yAvst^3J^+FesRJb>;)9 z?O8Bh+ZkE_MjAX+(YW&#;bY*oKf~iO2aI(;7ZqgzTTNix>H>iI2TRcdblE?AX%{y) zOkdxP6pOG`{s2e7Gy%kI%We}^tzR(6Dd8(K+Vm~W8rNNQ0JiG{JU3RuJn*im0KhPy z`{!6(Tnv8q`P0H1z?R3S0if!>hl>v;WoPG0iil4mq&wOw)yURlrrHXya`EjRJ+W_A zu3G_g^}cO_&K1+c4FNEpx5#L%cVo^E<)GooN&3ju?yJ+?WpNeBykEbZ9Mb-Q{J%S> z@0e=iW)ahP{xLFSmH!xqr_${_BuxJ>yKg!~Zvy53^zJXac|jbUQ0d&CEoNF0cNnD% z_NWv;Y-TAGSKrAOOEaV>MsC$JX_Uuj-QR2;-ynzj01WZj8BT zbCnQ4Zs!Can*yCkz^co?_T%(wzqxWj-gkqX9&0p&?SYrr=-{@P5tY zl07i<$kN$2`%`FoOh0CNAIn{y6pH%Ht$N=fvyy_)3423CZ;UPh#5OI^7(Xxi@9Ad` zFDVWXEO?-cKRjT-{yJb{g^NvUYHNG%Zm-Rb*Lpysq9HT2!WY)F#SG{33yF(yY$OQ@ z2~N9Zb-fyGSD%Y3Dw5Ff=(^|K7g=iOv*dW)4|E$4U8L(kb7N5{Jj4bCHp#5)?UU%U zygvf=iI(za33VMXv9VCLR!zIMTepXHvb=u%`j=TB0T^H~uTcU55AX|>2b`e!3@4 zMT8MxP3J2nvx`rZ>Co@*?{oUyc?0LmNI7yOU)yCwy5HU9FPmx3OCS<#0S43o)*q1m zDc0rbgNj)qdJjJWWGg;uX@TbqdRUwGI2!|5hPJ59Go^G6pJSS#A@8s|KB%N$DCyqD2ez?r(v13bsT)a?bDtb7T6d#DSz z5xqV2j;nb<5brRe@lr+Dl=5y=aX+_p}CBS2!^F|K*Bd(yL5;f-tCqE8V@qSOI zlr+>^e!d0`hIBu$qJ4aPjvz{mg1fW}W04DlJG=DK*_P+r*0JoYMu}-O~fM+lygbaT`na5>j zQdrs9B|f|uk)v-|-N0h@BTjJRK_B8_`Fqg2cyJNg0N%b?yZ>{u@&+eCWI~0v)Prt^ z)=$H407m_?N5vPnasIQ0-kTrlW&iY6Y~T7nEBk|lhQ80~-*(%FwI@bavh}pgz6Tge z`IVKbBIgZ5K@^9B?+)=7&&}3*6ON}$q5#H=@$}!=in{ldw;!%b!E%2zAW6Z^S=q)g#`aTlCk{n3uZEY|2nJr zS1Qqec+v<-Z}(YD0x0_mpFbyPCc2jF=B1+mLIQxg#e)^8+*iA9E!kHwlCHW9wIuz7 zZR^*ond|(MGcjHE!Ex?-=rO>SGAF1l=m7!>G6l*Rp7MReXN6=@BbE>9Gzks>w%a5E zSZ6djW6$_<2qQ{L-s0di>^o;Ac?hwBK*~?*iqixsR=gK@BI6*m)V0Q#FbXYCNzg^& z+6EH){N#klY^`w&yRGryHN=D<@p7Zq7O3Qzlpu@fq#E4#i3tM56)Jw?kNFJ+NM+)X zsJtd>3Jtxdj%v5ha>G5CF&&lW`62HF-%-_W3t`pPNeI~=kmZK&yab9$59YCDOyCCw z*_!bN!pCd?CE}A)b$Es7k##7&8UT;>qOdWUK4DQP62`FWFz7#G{TAeRWc8GO4N6`y zg^Fl@`i{!Z{@pV~GZ;!$UXlWVBacL`j11^9jtCXke-37w5D~`l7Dn0j-JqEAD`bt@ zk2+0<&t0#pgv(#!2~42q=$y;Cy4FCFO}?q@zuBvG;Hqg*I>wx%yL9erHt!IiL2Nd7 z{rKWQ z2BB{#pE8h=%;CnAd=j4PXj4^FGZg}EhDr~}Xeu0~46qn`A$-WJg*+1tKlU)dLIbtT zzs;zL9})jt%BRZYxVC}R9l$KgHZwgZN+Hn6UYd0Y9YUZ?fa|1mXX*ABEQXI}Wv?ln zvz9WC^~7p-n?&`WaW~RM9tDqTu^iTolU)g_+51WOYKAVj6A6`$*XIu7R@g*0m%wz= zw4?Pmle9WoM`K^%m*|Q#!CV-zbm>ms{S9Z|k-dgOU|aT%o{v|CE~RMX&5i)2c{Irzd>zoiL*1oj$iQKoe)9=z>cB@g9LB0e?<;oU^><&|GJgQwq$0-1BV)dSs5# zSRZZFUz6#(V{mDo*QHc|0W*N?pZ(LcEM-#EmXMZfCP}Vi{FIG^!&3w*Q&dj9&E3&r z3Cn@|{oJoWZL>_aox{CJQ?#||A1$)=IO$5S}e)(TaeK(6p9ZtXhJ=~T5(h&_3l}f zezs=hFrfwhlNHs^p#c(fA$W##SzNtErP&5bIa6UbAOey?14<#!*;iX;1x=`nB)}j* zMP&N`ORgtbwZz9p-d0V_wKhDPhLpJA zV}=X(A4d3I5(ri8!?kx2~zp0u@{HkDk^ZuDG6W zDdg+}F(}{d{L?Ou3f)%xm0~p#YUMWwQsLG~8O!jwzYC20t-`2OB4Vf7j*ssI`K>^A zf_g3pn3olhMI@lu20_L2A?7_=8A;-8TO)bp-A2{AXi&Smtbi?=I+ZA(exxqlMt+dp zZW(Dbiz*=rx?_(z-S`mT=ZJ2uE>4{m#4neE_8u9;vGGbPR~1%7DBPUX@7yYSWn#$u zmh)n6--Hq}S~rBYg9L#bub%&5Tk;7VVIy($e8h%-lrn^#f=YIU%arhEljzQ0@cUjG z1kuTHKv`Jd20B^C;9-Ebi@H#B87vW`a}bK!A999y*dj?UP$1U(R!gj6%%qLEW}kV1g98`H&VJ87mU=C#nbHx~u5gNBQk~ee>$QTp=7sct zq2mUwS5$qCLhAb9I!I}Dh*xf=2nI~dC*Sv>i~dY6rjPhRnEzH)c6X#@rfG3}@pD86 zZ@0EUNPO?(^}88?8==JajujBuR~2NEKYG@}no}`Y`hP=h))X_Iqc8j54&bA7jkuuH zkmUy1&IZ_i4ccZ#!P0SPAGSP#cgS-GPhbQk;0#}Ir7u9?^i_(^>D}gzHKG%vzdj_^ zV0HWzhxIp!BB(7dID^%o@f6gidZ}v4Qg7cP9^=$+=BjsPw|@Nm&BPx5s?R7)d8jkwf4`;M8N zkzUMXtyK5>)9a1i=kXG0(*c*;l`m3ihDrME+D}FxFFft1Oc#vRGG~@)WT?uEyF8s2 z>UV?JYeueMc?L_(U!cb?)96=Ik=Hq*8#3c)&QI6b4S*YefmvfR>#OWpD40FH|LYQ z&5tURc$_;d2HxL4g1393#H041*cj2pcR1$IsTLTe^*E43xIaP2ep-pS)AgHBaoDia z#G+CfRK_{gq9Dv=kw0DAL4MF2hMnE%2A?lIy~L>0K_8F{JqVX_F2vAydk_8*r#zv zm(%5%y{)ao3JTK9aNJH~s!n6}i^GpLoU);T<0B-4i@{elMuEMJJ<)=x3uM%!k0q`z zju6KJ&GaCU%*-rxWIsKN4tqG04&#)8!xv`&YDg~S(XxzD`$)Bmj?c*gsRTc0N zo9%%RJ}OxHho-ol65AO1yRvx%D>ejD-5}64R?hdu(3OTnlJ?gUQiwwv3}gy6HSv4& z$I&H@E7j9o6odswsVx_OR--Bn!+-zsSUyY2MuaJG(u^NIlvcc&S<9SElUAeC zXQz>0nS0-kulq|tA8q&J<5TEB5k2$JP-Lk#g6o64oR~kqhahBrQ;DSQNBRkqoKV+6D zfkUVD!zW!`Rmqjcax?Av@yHgx3Jg@@BFQF6yB=AEqjAM^@sKpXS|=mf_-y)hHEkw1 zwTl>=t!YOP!q<8t1WVHwAIp&add`yx^ZH24g^Zik<`YXFT5ic|+j;_l^C$+?Z(-U? znt3>A*`x<%WxYhUjB=`sv;Wj}Im^%IAO42r`dyle0y;WjPAQlF0U9lDn2B5t2%(}d zh`M^o6lo@OFGM031}XJgegk=0GPxFNndyEcMha`v0rJ*mm+rFfA~83};AG>PpJ)+6 ztFJA?5=zB$$2I4;$7bu7KSQ)Am%Ne#ZgNA^C2m?@CyAvGq+QM zBjfO&iN&(u^B7vus1GSZgn{7(wUtAm+xQVQ!SO~Tw=XoYK9r2S;DEjR%kM@tDAojx z!R-4LJYjHh|7unt{EF0?Gbax(VoVc1B5f$8w8}WvbPL`X<&n-4E-RH^OzFH$%=#T| z1g!|`!_WC@0;s`n@0^)N;6IDDJ)U$H{mY7kd1f$J2>=z zca?CU(r*a%hg8z$0=0u?y{U!ogy}njxIrH;@ATETGLKXmjf`imF&t z5m4`|%L03+!!gvD=FPJ)_^yv(^{<8l%T13OorJEQ&z|pVsFYTlW0hlg<)3i_j5cZR zj?1oeYvwg~%z`%bpbUxu@o z!~+jY4_F=hk*4a79kq0;_wy0bflFXqz08Xk=>TAU&e{C@J&c{XU`Z?nD1hQI7j>k6dSu?IP7Qu5_3k48yjeA$?cH#q|=e`+A&a)Yy_Ky zE-F{3^SGW^Qr23cQBKql>j`oiWH^K};aE>p)f@?DdgsDG(q(Ou?ClmQAtNTJ5j9vd ze%Qej*_!m3)?C5#dxn6^q3w>}UONbc3te?prgJC{oym*&C0i8(oBGwyF){Q#k|U$b z));MXHHKm0-JkQ6D=n$sbV@zK3MpzC+jvSYJrTM{vlw|bgTHAVV3Ea8xffN!~~+^#<$t;!>@ z(of~_wAxKDwxKXjVi_l?(0u+tyPu&{N{_lZg2bfw)U~-oZ?iz z=<^9uGx#t6_PGo1#}zczI-XuiLwI~p6Y*JbT~ePJ(-Zoamdrh>cJ}sNdm$-83u#qD zO)plooPQ1s6!`jWq(G_kZ^!NlS1hu8x){cCII9GNhPXRxRx5=wnut#E(s=E-dp#Ck zCyA3~lO1XBWiOcR*rW%f7UmMc1$y1~&Torm$>$4&7ak{%-oAK9?4S)hZ$}*vSb#bsw90eXZ-1~TGM{v@qh>J#NG`WeBMN#&Ny9+zBAk`wwv;rE# zmQP+AWnoqH7&5>oj3YuClsy8Sd}#b9TXKD{U~KjtxGOCz@2K?o37z?#av*!*e@za| z0|&XXIz6um+^*|tn;$tgBEPD3-8|nE7iu*^fz<}>vr*ZG*_Xn}c~3CrC*=Q0t zHGgG*xA2DE;RERm@Om&WObys4DNE*YhV669h@fbN4GC|OK|~RLKKLt(cgqIhoUGTw zs6YGVb=B^h`5flvZhEC5ls-42)C+B-a6X)vhzk3l`j8s?>AUOoi1rJ5&_{;GShkZW z#%ZB5FM}eiU>Ewjud6XK+JTnoU8Kk8l|Fm$OpC$xZRT35!S&4sMvC0ZuaPP8IcJPI z?0wasdL@ylS$?f>K;Z*8cna4j*zh;Aq`3Brmj33Gf?*HBK@*w_Ib{arI}dL8sgONu zeI|ZE*6)}cSycz!U^{dA3Ap2#5nBsQm7clbwaU!7x9qiWmWnnMM+u(V422;HgW?TF z{_=OV0viNQ7tGc&4&h3)KO^XivrbP|&U}c+C?$*7y6`lkTCRsDZDwwqsauVoU(vT5 ztuRUBWaxR6xgCn%I$Fi?p6E$@|4*~ePR?B9O@BWH$q1MR36(P~Gj5ci5{PyZy+|Rk`)MzgrAqWlc{_s0BNv0ujwgIRI_ig zy}!&9S>KnjeC04`^ctt905Owar5RPa-0}_01x;J0vE*e16e4R+GI=|s7HQTC-6jd5KHLV|7}z(T3Bh&^z?ds86fI^p+Jz#)N^)P2Y{-&T1pvV0#?#X*xr{iGT+ z+iZV%O)WAEs6H%{+lx0FJ-xC6xHUr=sEEW#{gC>)!o~BzTSsYV4yCN4n8xz+DO9I% z^&8{lC=`A7H1B-PxELDBlCRZ_Mz`$mJwv~88-YhzJxbrbU8xFEkRm(ay|sEdo;jt^ zWiDFw0!%-wIe5o&`#jt*g>XLoF+{Ze^J$#13$Q$l2$wdGKI!#LCqmY z5Cx_UexDtHsv50r%E!df8S__8s1rJr^3;(v>d&uRQz4Iu94&0rR;#?@8x(xX{Am@4 zqz;1UC5;{~yg?rVi3${Z&Pm%F^OIS6Fi<4)Vg*MnB26~C@}t;Fjq!F3ISq#$*hu0H zLA?o?>k&z9U3UE^$+f>psy8id>#t^>%&IW^pC`PU5<(|@?64QFYEBmb(#rNCt(1Et zKMx4_d5v>~1i4_HwJ4EJip?d-m{d(yjW9Ei6bDS5E2+Ml%nfh6|24AkO9l67SHdpE zJ=R5ksNucV86hRdS=-(hZo$$Y65`JB1pbC&Kgd|jN9Kc86M$VN##pn^OS)A|{p;F! zFKSFw|lFTJF1; z^N={c=*Ii-MSV|->k19n9TBnS_;1SG+HKF<`%s8!Phezco!#6G1&7o;>+;fNr)825 zV=9u?LwR~bX!LLBx!aXCt2rJrjrPv0o;Dg;n+k$Lcf7o1#2s77);dNhB{mk z-qXn((!gPz>`dq7(6XaH#r&r*EhXZ2g0mQJy?wR}-! zhP9zQ6W_G2YDYtQ{*3wxb#OiEV>%5D8}xXSP7#JoABR*zy0Z`TOX=4?Cv9xLvT!?B zrlkrXK7$!OC4q92=+reoL0l1LviCZSO-b7}PCjm#MSWkO5}%jGX1HMHo|KZLqXvZ+ zDH_jB%h}S)gYSK&WIi&gq5g3>|1R)>4(e!6e-?U)&ibvs)wjU0|A|#fKb_nAj=zl5 zc2cx<=LSQ8QKv>);;yb`m3~sM?*=yUO(|!gR;i)4H!tQ!~GN*ogPF33#+qp<&~jAT%2V zip^nYcl#L)cH2)Jp4VujhTPE1a_Vuw`9#p^N%!xe$mn*aZ7rc8@2`k(ftP&@_>uE%?;*>J#a-vO?Ho`ZVjdoz zu3E)PS@X`k(}?JX+@vmNMfD}3VNH|Tpey-3RJ|6VieVUK`*kXHTq8Lug81h;cI|7N zn387{&Q8KR9R&TUz+R4Vm0DS{dpPQqofNFL=LOf&b(Bxj+erA9u+yWJVy-U{oaN2N z&ky1{J!=kxfvPH`nSBzN<F-}WT1!mCv_uV@H&5g+pL^t*x=J-70;1NH7ez}A!!T3jfPN&VrroE z@}XsiuE1nRm<)r3U?vPmQ8SHkTm59)%v-B;hfYz}rnEqYin*G43<9;JVCyNN)zs9y zfm7bze5f>qExa^J)5?4NQ#P-C_kGoXg6;E-#~NLT)=&tU4V={5(M@p6yWxkmN(ein7AC-ySe5+Xy@Dr2<*QDDsgJK5^Mf+pvazR0tJ7~Sg z@*f>@3+Sx%zZq7S?sy?XTH(9-L+Jtf6tB_xtwgX5uYdLk7X3hnE8@i1ec?hq%O0fp zjS(s&1OZ};wP$Nwob^Gl^1+BlyJ~^GVGsR@uS00N z4bo7>_Sc~&b;R`YsWMnK7>pdQthG@9AK{3^b$!b`E;zRfRFPl59Ws{D&QZ}q3NQ5d zYFp1I(TFvAXlkh&ITIJoiRGfE@B1x_{79(z$-<;A+hE8hn`9dcPE7CH=FAif5mJx5 zvXk6oHOhQ}8H#U&udPWwXz~Mu7nxjDK%C(1ildNd$OgoF;e-s2^iU%H$|2l4$J^69 zylEwaR$yetC(D<`puQDS1e)MXzXI(BnlG-t6o)_)=GBYlX{U z&QVha1mYNt^`H>dS-Mb{at>AdZ9*{>LIQv{x~we3Ztm6(13U(1OhhE4CKHt24VVOG z|ECUT_5M2$ke;NWndkk}5+CdDq{YUj*=RkM7sphWbrg>z?Mm`HqTPnV>uv-8lE3l| zE*jp3)G%l&$Km-j;R1VaI=>Gm%%UOL{i18b7JE}p)Mz@{ix8UJP=iByPw-(c_Kqre zJ8o3s3QD%=EAMw_#@LKmtFwZ}K}QlnMTEbj*|Aoq-I^jX;H4Rly4@6it|D+&W$`_j zYQs3P9H{lXd+j{t{JeiY99BfY(Yz5U1^(@m?5+p!4r0SiysB)PCoeIqP>qvkZqkSSmzY5ePdrh?6M^_SddekUmW23TH8JmBWkbl--FADw<+I<&LL|yfyG-TjPBn;}J zNA4N#P*nhb*{AcAaQ096(<%DnUHzc?@-rdGP^$1OL#}@{t)5;HU#-=hBglhA?L=s7 z(o96Lx-Pr*u=En0N;&Cbb^RE8*^#;#{{LsdQtl<>79#*!h@z3NX13wRk#i=WNnS8k zmCp!IU$?4Vfz)N@tGJQt?-jVGI89i_tn)d~ldG(?%u{;sC!8;x`oZPpUHf(Wk`+M* zcKr#^z|s-@@1Hac*x9lY(fEWwZ<&g5ZE&eUIHS$@FZU9hnCp0%+fF{2%+^jlbv3<( zh<9HSCnd~igrDFxFmHHQ%-(=t_BNbIyr^U>kIv>OqgsE!*>m zxiODnavjEV&af=6=h}z!76ZdayG=SSncLokFaddOVHe26pQx1c3Ys9#K)rE_O*Vaw z3wwISQqGr($#cv-rhesn{Xv@@79715%IcFO*IpD0P)m%ECEy7J4tCo;RstIzN_ZC9 zo?8I*jN!#wTB=G{f?0z!O1sNhv*R}L4O=Ej65h)}MSfFllr;{2-((7bKxHgNPm3$y zNPL{)oL%tR3;nc!{jH#A#T*S8sW%(^hf@t>3^a1KN4;18C+AwW?Op*$#7~+KHrw+n z2^FY?q1=d)p~F$ABg8aC2V?F(2U0u+#YZ2!Ml4WLV}1L?qtAvDqf2mY9=~BYD>Z-( zhUpn zoCyM%a=`+pBISh|yzRF(bJfI!aN;DJ+ahl;EJxBwRgx!%9lua152ss86_w@v^l`&K zx)N#{IdRXcGg*7eDMHgS*cz!1F_;dUX_m6k zH;u=E#w}vh(9^dMkz9bOLwpv|MjFoCR*1A!zxirzvWT47qzz*3H>rpHr~WC+8N!hH)p9a?E`<@@`S>+Dq9|qd-DNspDipzk_>B4gU3-aXdrG&L(gwf9^I?WIW#$pWS`V?Py`&cU393 zzjvRXwf3Nk1Ci8rbx+lL5o_l0C}hH8D9!e#y$(9;`aFALzf@}T{oF#xB&)>kO(D{} z{Qf|AEAEq8==thOe$ojgQ{4Y(?5xA0>e@&Bnuv4@3^lZXbPpg6N{UK@Fm!iF2?z`^ zw6q{0sI;_{NVkLxFbKlXJu`HkJ?}5h_nqtd&h_#i!?1JhwVu7!^W1mZHTFaG`R869 z7{KTZ>y*{A5+IA7m}Uh_j+@*&)^ngAL`!1c~Jvg7F8^FUJm^th4i3ht`4_>t+<<;^o(p;*xq)lrSP8`>gTC z9&y$CV{RZ-P_L6d7@SFX`t7aVU%UisHE&uXW4z2Qi}Gcvh}P!JFq!0J{@3gh30)gf zdou~W664Xmz-%0ve^9(btd8@d#c@vj8}*}&()rn_c_!!ItBqzz2;*R!PGK>+Jfk-_ zeQ*q$0IhHLqvQ#0Wbk$p?tL$M;wrAh8uSl21YwyYX&}94I%eV@kE1@G({DW@F=k|V z>wE7<{F^<~yhj!+F#W0do+wpakpI5~Z5AYuJ)-TQ09)1J!rzmW#Mi$k6+xq6_J44%qThNDhRek$MM+2_*aP8Sgk*i zN_c_(gYD67-gr4~41rtVkSh(DySi#3hg{a<{kC7-=m(#ER&=d){ZIzV{E;js6`} zfHY&6@Fd|IBocP?KaYESe`pmNR**fycoBGAaY-u9r^0fy$a_E6$1CGz#s?bZA8RAo zH>xQTHG&|wz+JVIIU3sJaVQgBn*|5PNV&qget^l(G2kk-`pZUYTj^vf40 zK|ToLnfr;sgCn8{i$65=bT{gV#J?YJ_Y1Eov|vzqZ~cY~+e7`8S+7fzGqCvWf}{%z1y$#$U2#tAM|9@^6}uUo3DSIYG3HaX0fsUw1Ysh+!MXEx!c zI(5u!?PyXbS0iEHg@yv5x#4Y4Y++xkcP}w4h~!1TSagSDZ+5Ip&UIV+o5q+pt%;^9 z$L#)00{OVR6|U;;uRr~|_*?G>`)vPL20%UQ-Qzx;*PH5w!DM7 z;7MD?TZl#P5cs#0pvi?7sxGxfBNWVXZcrG-?i#<{q_~PBC2WFIbR5l0&E9pF85X9= zg?rY+`Wh)?ntAlNx{mBwlCn5JOrsg0P~Owie!Z=I!zW5bs0|vH-FzWlq0PGW8CJTE z^Q$v@yHrka^6n2ubmlci9#%4i3cD-D$NPsM`d9{QD3%6$HgtS2En8n{>8AYOm6biD z|C$H?uj%eUE@u zo{`WK+XPpU0WL~GS5dl>i{Hs}t~`^xXiAFPi&}~K8K>wQh?$4yBvTyyTD z=VfddKRQD%Ev=}#dY;{A-_*;_6}TauAuvA_Eo%^toJ@(Pr|<7B$S@x2iAy4_>7*Mc zj;riF5{D8y2+$P|g`Eul#$)l}5l{ud(G?c=yFv$pnhqAASO)d;d6{HJfw3*;1-v}X zOqH|fPoL|aaOmhK4qM#ZkKZw7F$-ilLei$n4N2C4!FLAaMycEaxsxLcV}_`0M>2@r zzuiElbo!rzRm|_JK|5^B%04f-OA{i0_<-C$@#|(Y`$te>?H>7l>YNk+LEdJyw()Md ze8G!b@F;rmfG^O!i>WV(KQWEvk>8K#j2TtTBmzj5dMV$NqdQ)AGU>CVu2)F`x1?! zDLNB%*D<&e?t47$T~p=U|$%+d+ z?tUA7%eR3s%+CfjLwb%s9--6jWr{VNT6NFS;3hbQVqc(ddpZ0gev3an9egZGl-5G> zO^)lMqOm`ad14GmVlu)%1?8Z_?{3Gmx*Y=>a_IrBiZ{51OJwIuoo0miUVQ{!o(;_% zQ+3Cp{3qdhKd}Y*H&K_Bz%0_|dldw2ZenTNU`&tJkYoaz8~p0IdTyKld(~S{1@x{@ zZr5iv?tJQCE$?gzKHR<>La0*PO)^4nd*yPaQIVm%ly|JtH5Fu|+b)oBUHN& z=%{tP%`u^hAvGIe<}bf=%YXZNG~s2ZZOv+d)(Q$yNCNbF=N6M+w&z2eTD`sfeg_|+ znB;T%m;4UI%PkX^l&vn#t!%rZ` zgmmGgx?N!4K=u@Kd|GAJEv5n|9K?%BdeaJ_n#0i7NnzlqMJ zo@~0EdQ2~|N{6xZ(|MJd3qNLOE)QLS&RfeqJ>6$H?f)g3(b8|mICgJpBHD6J0{@c7 zM%&yfbxZ(1NHFI)UsrC#X>N|3kzs5byM4``!7 zLWNJ6Z_X@w{x=`#o*WGIhGMD45-o)md3j#6A=G2N=#JcOj}PBrQJ^DWJnw(0a1$fg z7iITgbtIbvU9T_x_+m}w5;0{B@8?ST1XHtoO#dgvX8cfqAL0<@m!gEGyIUl>G4d*2 z?3|q{X8AXn2kk>OY`3%20JbIJxSKsFf#wxU8q`4<>Ry(vs5!~{TlHZKqF5-@J4RKZ zhlc#d;o%2aW);MEes5{k!|{;_KX$LKhJNujaNKXq0@DgHV9padpAddyzhS{ zN&JtxK<;dnaL?6Y(A=U0(Osr+QCeXByGQU_vwQg#WW|PVt4{BmsVbg}T!@ql>C=pK zC)+J8V9r^DcBx-@4E3X=F7J2`C>G$WbP*hwZXm%{(D3)S^CMQvUHhXI~x;h0i0y zPzR2cEtaW*0aGB@Z^G9xAbY^E23=ugOXgl?f6$k*JNzeuvAn}^olPSz(u@WfY2F2L zTIk-&C55P1gL;Po=ZCPXM~lw_cq#jk10AED%5>6Phy`MQhkom-R>|cc=F|kns*MBrVj|J&!gyJ<2iw5XEdZXq>((o{(M?amEK?Hkp0PnK>m zvd%>XjgOyHeC~uYrGe_GjwEY%w{68_ZgD)^XN19)P3NNOj3H~Y7eUhAK(-pi(!xus zj%p6|-l2M5c@vpx>Lr&=3YU4O5Kr3=#B3_E^3@My>8)xeWeW^S6sXt0WJzyEhGWJB zpVU2_??dMOqp6>P;xP$Y&7Nq+aKxigt074JVxWjb=}_Nc$wf=enmB3=Aow{AW>?D3 zrFYNGFi6)!Gfgv)a*k4If;IMGx{(GM^vJolba7cybCB$wx$evffNQw5P$nMpU_pc^ zw#YlV`E`7G^|pKb)+a?HdTQ&pt4Tnnsy!1y<&5N-`3>~R>lXg&)8%$LYcJ3|o;yUv zzx8=}MtIZvmp45PNa~>UA)9hNwAR#^3`Hqxp?Y|<-lw2p8JeXh<5rX=!q++1mapgb z85JGtAq%{P?n3qLH&dTEm+Qq( z_3Z6*%%Q_4gN=N$r4oVH_aKqTGZ?p?BlCRFUxQ_!D7qSryT^N55WBR@@959#dKIo9 zWYeHyRd4m4vZ4*gl=w_)*(mK|^liq8!kneH+L=fx>HRsI;jU0o1R{j7VryVZd`K$S z!6`b1?{fCTgG^=6#*gaGa)Gsn2`x$mK#k22A9Da@f53Dwk7SgwQV(MB!HaiY=ZVMe z8Z}FPgmMb6`I+keN@|q!VdIsuAxqni~ib~ z37*j~SRzM{`#xkzWPXLfOYW1_OW1UD@AD`T!H%$vf}3(7UU{^+CtEXXqnoh!e;RN|qFIJ|U+V z*vQbm==24u+xq^^+XS)u_dNY;h5*dMV@S|ZCaG<#-+Xz1E^KO@owo}@XJ)z57_RE;#|>SmONH@i$rEAD?%@I zC)+XaSD|a$l33>5kAizT(piAffY&&fy35qmYBII6`xY@U`pvXD;&tsrxj9J&$kG9c zGdTf^fcE$iC@+VL7NS!1zFC>_ReY&(2LNoySKJ}Ro-h^d&pHS0c*8ttDgQ!DX2!aB zd3im~(fBj%OjIj9$dr9V)4#$l#9UNau=;|bQ|bjrm3b`8X(q-7P9`)9(uaqQcb%X~ zZ9gTvDZaEd84h$1mP6@;bd!0$GJ!S+V`kwjZXUSve0fz*<} ziq3_Wh#vg-DsLVaXUR7x61R+gl+-0Qps;g~Pm44b8sM#%t7u|0^mc8IE4pdMDYZl> zk2))w6WtaAv$Bi-tseX2psQ+O8RR7W?!d`I!ci8<2noXuPew}w8(MK?KCzIAeKag{ zF~nA^`|3~1hnD500e6)v!cYIC?Y>W$va1RX^Q`LRqMmt%Z=u+>H~^w8W5|byb_kVz z5wLZ;wiw!(LqtlpfWa^Dhav{OmIO)kzO7yTbxm3$IDcf5t=khf;}_)lXm#A%+oH{6 zG*k=5!(q{yy;i`Tj$2N=WPccrad%9x*X~g$)Lo*olHm71R?U3Z?h;r3tm4({cb!t5L0&jM2;1nb)i0w(SCzaKAedZKNu{&P&!QS9vf5v8w zubGvKP&c-)S^7Lp@(9gsjU7F4`*EM`-?!XtZ{#7!17ufgBVO zYP1e-lQ4Bebhizx27C@IjUA5K2#%zexyn*Y4v>u|!KAAq#aDEV z#8yYo+A^73Q{tJaIz72o1x7vAh)trd>xM_==Ys7jbt9D#?BEQ}OqfNmts?7u`bLew zXdq^?sZq`!5U`w3GYa3UdS|>Gs=M&!6oY1~U$_hyzR)q#4j51Ud?H!yJW7{Kc4)e3 zOuZ$soh&q$e`r<`^H}M}vK$z!jCt&?2q3qX-e4SJm0MiyNR6t)KUGdQ(;rfS!PlpI z86*%3^37nEv!ONSwr$jO@R?enqUrEH7+BWdFWw~jTF(m|{h9cHE$ziDobPN9#C{S!Nng08UaIeuU@C4NKD=T$yGrhDF#uKCCt<#a z|K-{5?|i*`E93eR*khl0iYL7nI{E7Z^_$DOt{=IX{rR@Qe1feu&D6x2AW6c8)TjJU z&Y!x$dc~2&(s0DW$ByF3iG077&~-}7Xi{`_ezdG41oNDXy^fpX%mdgb zV2jt@(^S**m^-<#(-YC&%`nAa=3Ga!W6BLLPSFp=?&i`CK?DamiE%$`T>6%)ZN=?< z7oreChM|Bm(e&OZUlZ@B3YhF0HPv!AnP2ab`*u=7=s$fCg0eBvlr{Ycl1Ru#nAkAI z3%vj9-2Y^|@)b1KNGKvJPJL6u66N?^so*h*kdIRa(Mf=k%;~8yB zWs7VJOzmyGJu)2eYNDs^;M4~eMB_33Wz4dm9cdIY3Xo8-k6=sfq`AVx+dt)i5mk<0y zi1=uh>(@$L5~}$Z4i6v(3(2&*3^fo8=J$qEMD;ukv<)TpV34YbZkQu9X@Evxu10 z*$~Ld-9Cr+k1~TQ>P3*~W`kMqE;r2ai-yc%?(a{YWJl1Lq)1jRY<%Zsq^K%Vp#b(V;-$qmEn-ZZ@xmP8!(fe~e4i5IQ zQ0v!epS2}^8B7VnBNZ*n{UA@OH^c?!gc-NkEvxSZ#amO~FHU$0ju_R~l~NIjlp>9- z)zW%9u)GCYLhI3XqBnnZOH__#MqCM-L=pOTZqK?n>|KEB$8P(3DO(nWpwUgjPjXp< zSfof1y<4>GJJvUHt$(ThFSA!r=|5$`;oijYC$tG0(qtXQhP*Qc^&jPld+PYVw=Oh$ z9sy!N?UR-HKE~f^WpN~FmTjy2H9lw|3MAI3NYq15?x*Ukowe7^pB^EN`>pZ1^|2bTja;m6nv!+jFQW5jK?fXZlz%P$S0h7Y1rBME3$k0}CPQahItNOue%Ij3yoho9sT7t3Ht7Xol zBYZYHw;1^pUNey;aS!{MF+`Eb&wT|VK<`5eW|xe&xp*$qCx3{37r(lAaJdT9EJxdE zEZuVKC@I(`dE;LHsv>1HSn&p2|Hj6fqq>5-g=&sJ*3N$P+;`IRCqW*f60V4szBmjG z^8d`p7)DJe_h&M4Y?zsFwqfu2<9k~$c+k$xe>ByfTi2;C(F`<9a6J|J!fM zBpNm?CRXM|JoxF$hIwgl85br42XlmIjO)NkOv zan3yd>+7ART$h$nFgP{%krv^gfdq-D;)Jb;;&xK}#&E-Ymr(PNn7JX`xozD-PTKD; zZ`Ri38jF;LB>q*RBlVO&N#fAx4qI zVk(}uc^?d875mtPuLNbw3E_iB2>6@Mu)89iZlv|QybGta%xS8QEV%wG>VUAR-GGHtCgFw zy+uC-tq&KJDBIrkjP>-t0MebbU$yOoY7O-wzj-os1+}i%ERJPuy?jenlI<({b>>wmD#s;ln9&3Y?$LEuoUG8 zjfH7AOWj(sx>IquH{-`7W7LTxF-Va|NY)P5+_SBe2IXP1 zYJy0q)sHQTBx3K)n5lg$C0M!+_$6MYK^J21SErd$KDCqy7ei-Z_1v)ngz-%x#Ew>~ zH^V!Wnt@e;uD$BQ3|qAMpDuo?(MKqA`cfX9JrB#GLzlnAJrL1**vHOj#CTU)2`ZVJ)|DT|Nz zw#8!o^s{CqhR4WA)=Z>iEbI#Xc^TZ`on0M#~drrOzH@*1v+pLI;Z zBFot}Xa<_*kLeEVZ`UMALH(ng$$x*n7V2#C_#P&$xa~`B>4tyu`+kB&%E%DA^6iJpKt7^<|0TD z2yO8#yRoGkUPN&50P+B1D@Mx1H#{157~I-F1fUF@zJ*tvNN>;61;O9ipd5bc2+7iP zyYMypTDDvg6~?V@__d~}Z{vL|*@#O5&BZHq(UMa2ehzjws$!uNJ~se|BG^^$zU0la zt!`AjX(whuPPVbF0BsI(=At`-P@~^<2E|iv{yB%DAE2uu|sDFPO|n)h9fAKUZsbm!9D3DmbYtP3%-{?w%Bc@XlAx{XJQ(5rAghLT6?veGOxvip+l58U61(lxfyTblG#sgogo zlt{5r_?3@l_)>QT7y(6>P9ad%E>D|6NdxagK?WF8GN-iEZI6TPnR{a*9zuIm3+7W) zN?Z-c`xYX_2M{MY`Bzy1)Ui3X(zR%N$!(IEpYDx54Efl4yRvG9wp+sS^5F(?m@G{h zf>mGakwr)igHSu@Q`nmSxUveYQ2sohIGXd!o0?lFuB<{qQ>BgM@BtX?L+E|Su=6>2 zCh!H+EzoeCKr1^ zrc0+C!*UiCd6&2FE48Sh?NBbh`#bnfx%Z$CY^xV8KCsS}n9sS=*Gt|TpE;a$eEeLG z7Y2Iw!6!-G5~y4K_=S#0LsbV$`?_7Ni?{QzaiOXLzNwy73p(r!gb8|uUiI{Ri6Bpr72VeR zFF69GwZ^|Dz5F|Mga_W!FYiB2T}jJCNGntZUtfsA7Dtti3wYlve=E04o#Vrx^ByvQ z7+f8`kU}y@nYT=uTkr;o#E{tv@CTfQb??vM^;(SV2w$W3dai&qoyRRFa|A2^gDqU5 zN+4mJM8aI8EUnkrH{?%-*p~mg=K$wQ;A@`cuQe~RlIZHhjvv10d5-mO4YeQmRrD)J zmX0c3!UFm!6qVTWdfGDMEa~f0L`n5uSjc@T?R0NcJNprNSI@ZSWN3y|+d1bh+R@mU z`N(rU%G*ZoR@b{pVn9K=*(<;Od{Hb~N-Dt!V)Km#yP%kr=SK@U25snp(NJm0P=5w3 zQUAS+_=3dlYEG7-(1%$&{Kl_jZYNNP&?J$(V|tYt&rlFvh#uh>zT+t7M+jFEtap0d zMzC?dO+}$pJ>0`OjrT0tqD88}<{Z0`8M}6KN~qdgO)PeYe<MlbX=s3qiUH>edFr~am!^s({rXZ7`m{{xI~+d**w?B<*uGygrofB;7psfo3PAd`RM@Ed16nGO4D-kQw2GG%KHF& zRzXfLHR+E;yhfJDMq?hHJag`vI$Ia_OI;Ou=Y)X`1x3Y91ATejR0}`t60M+3y}V=` zn|6G5_94J#2Z;C9-7!=iII#J9-+68TR-ay4@$HF{5)Oe5C{*$RYP-FYQ!0+fz4UGO zPxb47fR!G4*VLGp`?$~df{&ZOT6W)W!j4Gyu5YJ~{bxXX#4-SArv@1EW2#K=fUj!< z#COQ~b`1tcT^*4y;RSaPeZh7H(TP*AIhdpDK9(Ok&?i^-?PlSBP~Ir;V@I?!2D-{0(>Ya{QT zKV-)NuV0kDB&zQPj&KkM*Uc7l4y%6QpU`dxIr$Tg5f8zN3wduo$ARM0&0ec3DFvTR zT-@f5Qr zcWroeXny@7*KY~mu-T`)1%TQ^y&VR)QnX4|o|>N}w_IQbG0Q31G0sR#bwZFv;DX$) ztoijBVg*q0yel_u7${JVRZ?0mZ zWm#ohC2f}VY>E^du>Wc31ISn+!QTTy} zw6M&y`DL+Y_RA^kGcE1e+1cetdY43FmnLNZjQ&tt?y@%U0>zYGDEmWO<}h^|I3k?7 z^>jl!p+bFL@(}X#vK9f zaB(DT41kQ+S5m5Izj}R&NpI)1&GldXGyNJMvL~#3Zt=V~52#d|7l^X5v++UteE8@yW+9 z99h2Pj55`i8DLt6!fsarm$J$cQ2`L`iRi^{1GIbKl%6w#JN81Z1E$xI3s*jWB($o0 z_vSm=WdH?es54UD*w`3=;=5so#qpR<`&3n)yO7=vx4vFim7|+mJw%w3D6vg{^LE62 z2OxIe#TgL2pt`9s(^6Z83B6-?2YmeMiR!? z>-j%D;_F-M91(ZZ&4c}`oMyg$C@n3`DJjTVEi-SIB~AM9@niSN_G-2(F>pz4A-wUf zeSUi*?%){Iujc0FK)9>L5U0#`GPfp+*W0vS5F0ica)n)~Y{67O8wKGwB6k?jd$pie~{Hev58tjZnSQLYt{eA2S-&*eRv_0R&$%ztIU`!kh>jPSh)#2tZfE+G)vVg-~17lZ(X>+8U|B9)+ zK>#QQczT`yr9y-J?SXwexSgq&Okhq>2~RaOhmoHPFpr=>$A+Wi4;tFOXUCZraE)tx zW=8S^n03wNjzNx=itj&d{BZ%ZB0@dJzNFvI_Mzc)b8~Q zbMw5574xf)fb_wAA9v#YM>|MsU?gyDjvv^#(V&W~$I~;2f0o6Rr@^7>HTRB3e*kF2 zM5c)afVV^&f_{th&3=8=aq~1P>5t9L6Wiyu=Z^MDNOQby^?{UOks99II#l+ zXMt^A85Umv#cn<<)KFE80;B+%ZKuPo11ss~kFaZ_QLZamZ>OeS&a{VIzq$aVZ!l+M zetZ18(z$;j>5E-WP$A}nx-13J5ZCD)Iy$4OUIJ*Tf5HBaGGD>csTK9hts6axlE*gwA zS7d-*V-}|x7#<$>IR5QBc)FIy@3}gZ^t;)&Q;e0tc)@Y~EQ0kLB`$b~dq-))JkfBxb{KXAsp=9ioLA1f-fI5aYtaqgAwdS|tUXY=pl=*58) zg{_smtBt%OfS?XYQ&zTsPFkITCrPaj_n*fLA?-lt(gzq}Sn^J~I2F=+`ShE7e|x8! z1fskDjsO71h&|3G!)ILIN1+X2xjsp__ItLL-{OfAGT<5yV5kJd3Yf+PQgfdfYY*V2 z^^XQ03FBlV7Z+=C>41|&6Nm99+i)$#Z8~tr(LBX~mjl;AkB)qBqKcI%W7i01&?133 zDIj^ta;!*FWeR$p#%Js^FskRjRs(1l{4xEUD}Zq&6{idM=Dk(a+G@Hwn#Z3l?kf8k zdbKLvo&+=xbKrkCt}jNfdHLH;3NB812Pgxlk;FmU_*0h;sQgQDE!hIS7D z8W-&#Donoug)5m--d})gst#dfDy;Ee18_8PZ@Be}``Ry&?frmnfGd`UKW#K<*Yj_E z0pJc8?r^?ZyS~W#YSmBPw3_9(42ZfDaSn!yQ!Ie5kFywlH}<{W8MjO8%d^9;Zi@=1 zTkThlxc*9O(*PG`B!pa`zIv=YX#xgb>#+i5%q7rWr=~UAje!koY~U?`NyKC0WBP#P zS`O>N*;IoSKyv2vCLWN^#;JamB;t7usvZN)G(H;|`0Is!|Cbk~%Z}#fStf2BcgB%O z9zYUA;Z)=B>*3!6(cfFRx;XU!t~rx<)D-~JPYu{@Qhixr!aXW;Y%(+YRPypuMMWAg zVyWOh#6={o!Psof_gf@=cmVT1MfQJb|GY-EYQaY}dHwt$r%wU6zdWsDc}uqBe8v$F zvl(2SRbCt6TCF4y&aD8CL<$hnbhP0FH6{S!|8Ln2aNNu3?H4N#-giqA@cdyj`N&%| zVV@~v9fK1Z^)v*;kVk%tc^FfW0|DYvKxSci(#{nle!vm08Jn{8y zxENlzfWu&bbcKl)mBsyEoYH}HAdI(OzB=E-b~*9u))@PsR7esD$y&ComC8PHkR(f% z8M~~*3?s}K4CeVw=iJ@r+}n9Q=YIZq=4D>P_{}xf@4CL9&*%O9Mj9Dt^YZNDfgp%i zS4YbPf><)ZGj$6mc*m?WR|>o+d7r)LZR&o_+t=ZSBXq&R+r!1(+XZ<=)W`9L7t-DB zq|9jEaN zvMKk_;NalEU4uQ^V4*fE2A;p6y1L*Oy*d1=F^=S_dmopzstBUkfh7dc>>xAx>vCfN8-@Hh|msslQMPb)^ zN}NZq7+SR)3)JD2twcznZfD5u+4hM+O_`q_Ofq* z>~H;94gCLK)Bs16)GQ}=c6J_oCwKKj10Cp4x7hF?c6vNUy_k)QZ+%{OO?-m+?$Mtd zr@L}vg4FB|V&x&xv*Hs@2&c9bQ0n*y0Wr$@Qafq3uQZjspXZL?Hcqiq5P}#L7<%vC zJ+n)fUSR0U$d-g-&d$!Aj||mbNLvzdqBMO;d$|Bl6t&r7WyYRDd;9aQhba_$N>LX2!Wgd=VBF39!IfIR$xn z@0IeV@z|zuUCJJCEQ!%tE^jK)T;bFyDRp)AFNPeD&OuN9jwo4dUUKrj4f+TJm(Eys zf-ikONgS#wOT#Sp`Kj-ML?atFtUL(q>G;xiwF13F8RWOGbpd0Ml4h2cxpiS&P4pMc zYccA6Cc@(Qo_IXzEsPEN_7FyqU@zw2`j<}eXH}xJ!qu6Hiryo4kf=~#QFL#nVsUZt zneEON!kG){YH*^$E8D9y_Yk^OH|q84*UxOd$b%Jmc>O0Q4uO9udrj$gqozJT*-1?f z*&x{&muL{bZu>8ax6`^Xk=Nj%{qe&kcoh6x*~{x+p5@_PhAI_^3a}VSqQd(j;6K}` z$#}aEILo7qsx9oSpFV${rFgdeMHK-jMGzi{sKcnq?P~O+LXjT( zK?n9XJ89edw}^;PMuhW=;8K*lCTR4>2?;qvRleG)Bs5mC7T=cf~+hppr1&5 zH54i+fDY~N@0WM@h27lD%zI@e=fYFU)Khn2QQ2^3teCdE{d=f2SwZi#+o0dH0}J#* zjA*EJ?AS4LBoY}OqeOV)zjUo;@so72if^&_%v>4MuG4(xhl|ce?S>D&fkNX2@aZfH z3JNc>v(FwnbZC@bZCk>Wrj^yeXtL4aEc@eoUa>$XcGhg&zzTFfwX{T)tINvDuJ;as z-zTX7^;Q}h8mdfZH=UZlWmV>u%6b#wr{YUap#tg3Y{x^ZL29}tC={w;qo}B8w23^m z;0I*7_qW5EUA%ZWy*)QSKmQx1&fZA-!2x4WPfyi!9_Zo3vtXgYo&w9Bj*jivq3-T1 zVDnNcDps1|d_BaT0_vmmb*<;;qD>qeGHo$b^VN;u)~Bas)4bTAIO}c}Ck2L80p4bgXp0y54acP=bu++ zthSq*nm+IBG#SETs_Hjd{$9b=%nH`@WWY0kGVU-`-3Aq-MbvG@v>%wE(QmJPPV#Ku zB;ks>`ro4Jf6E(~=%{-=Ozz6<8#iurcXV`&j>BTK0X+!pXP%rYf|(WBdWrGr>FLwC ztdMwYUM+_&mDm$e`XnbuB30Gjq_3~gaGf?e|qHr0M|IfOGr9wq=* zsNrw1{RXoC=C=QlcK@&_vOGlmbSM|V*NA`%M=jqK7ZgM>{hFz!BDQCBKV0yS+W6CY zkBVjG#DcB*HZN^Epm;n7jak!TSk^nGV|I6WWfI2zVyx8xxeNL%j5Q|V?wrX~G-Mr& zI{6>K{tsLI2l^Kh<1pzh!%~ZqaJ(>8MP@Xw2>xCT`4Av(RA-j%r;i_v+}w%*t>&(+ ztwmtm2Fo*FzdpgcPhJO5Rrf89t=;|o`|z18P_t}4)YILaS6HZzMx*;{Lu%cIDzl%Q zbjmL(I#%5d2%oY^pGOheQuAND_;P2fkbKDIdO1HIq~m5>!|eb#SD;K9i%9yn`KC`_GMr?&vWd=79qSdJ&JTkE`NK~nT z5|szQr*pU_5WVuvfp_l-@u1pvLKm=kQ1z1$r5QM!#cB|iuQuU3;YB)v=3z$^aob0w zT=N18B)-^2+3#Bh&(^JCuyjSwXMhNR4}hSdQmM*;%Z2x%qQ+0kL86DW(41x#7CGR$ zAluX6;1+FRST~WV`5}x=5c-#at>B7n3T9_r9Iss?-Vw4j^7NFO4`qY2BBT&j?_6TV z;nZ$Z0h;?zrMX_h(OB_~#l%{(65E=Ovgq z6nD~uZOCei-IdFeth6V{0)$88(+R@p~ zjnDn*Dc5_X4k&a&sORbS<+%YN&#Kq2O)4rXlznEC0HE#0GGeu1vF(JY_S=B4C`RgR zKzVUlv$L}i^bvo8@Z`kA_1WH6mjNsl+f?CZ@LTSj;o%JX9vqG9r)HOzeTr;rE}P~W z^z^>ET2E7_4SMZ6<&v}>Tx*c3oSkSFdv-DiPxt{8Iw`3c$jX;k^lnSk&F@)IeanrMC$m$kmWo&-uHD<_Zj zk9so#-MM)4uZnYaap`{NIzXXx8KOEeG?dZAcwFJ7=g6)cl@rhVYvP(JL7+O=lpTS!8*_KuyGHrrqKsvj{_-Ql{Y5ufszTJ64zC84Tah$cPPXjJx~x8^J+l8 z@HLKQr3dxG2f|ep`FuSNkYB3t*-czUR}PhZg&;T^Q2;BZs>EQvZODx^>ZkU0OUCAgxrxcMlTK~D+nyr$ zmHB|dRuHIify*vW9d>3_S6e@lxL|Vb+}#^qUJCBRsy%qT_N>?V2j0hzA0t8e>{Il} z*nRXOGbx@&?i`Og5T2VBKup8e-`gd9UxIwmgnfF*ccce!-CKuxPGR+6>zxw%9fg-l zy%)yLlD$pTN#>9Jo?jiZO!!2Ol%0WS0ITr$!T2E7PR_-%ESo@CK zhhA$<&fb68&3hp$lA19tstbVjfgi?Y1Y5IJQokCE7{H0WC@waj)8_F-R%P;_PY02D zhX!~rdN_oEnH#Jy1twJKF?wsNJ>6Xqy^e_mhXF&9C_lJM|C{FPV+Q5o$Nd+7wzRO= z4Jdipl|ZB0fOH)-vvIG#%j*Wlf4HkjaT7js{kyQBYRExq>GVd~U;*s>;$%zP_(J*I zK-qr%UInrmUz<{y-@=vCzGUl1{)N`neqVHNfG=;WP+^ckUqtdD5AGc%h%i>dA58!g zEc&2dUKJDO)rMJmI^sRT*rd(fU1P1>*xSL3nQ>MQFKWE}Mb>fjB5dbzw{+F*?*y z6WN&7mICdyt7{P$V7kI>2j7;Jp#an;E2Hy2JP?+iX(Rmvhud7bbV-1ovq;K(4sKmL zoR)HzcfUmKNC~j?naM;u3k;@aIB*_bj}$}Gq0taf_w^w#_26pIdds`?9^WAQ)^>Gf z>+woz`ZDJ%-_o0+_vbE*H=!mz#^x6nW0xlK~6kp7SH2*#)yBKq2Y6%aO z!~}wo(-|ctr6a3r7vDNRUM3F}fR_7gP*BwG*lWX-O6}G^8(=jCGCn*0wR&P@^sRxwv{UcNL^OP3v^3T)#q=8}_>2h%qx zl9nbWW1w#vY>W~r($>oZUR%CX(t!C?)Fnrs9`=wlNbwNCP-4B>D$+M*on)k?Tju&o zn?Tp~sWnvvziapIN-$O4ZwRxasqlfxzNaj9_J8rn$j-Y3}RQIx}8eG57DqR zI4xTi(+pqyC`Nwbl;#NrV?LUa@53I{_mw&gy+L+a`}n+D@>3;$(H23guaENEh;Dx= sye<=TfDMpp8G{)g3IhN8=4*57scT601C~B#An?#VYoJwp#{Sm-03A2R;2=kW|rl*exB#|JkR%Y`~KpsElsy= z*|!CPplxt7V_OK~$pPQ&&HUhseRrWe_@xzOayrP)-zzA@efFrLSn;(79f_9_<`-@!FMPDk5n-*Y z9e?45fA)zmG#C=CEBQ`lLXY-hHjMo(z)g>djhIA}w0NM-7TZ#B2oki|AObaR;MoAF z9EW(IUqlQcXy@Nw60Gt2bemXL7d+jsT2N5%j>b4s!w1d%rd61jD0KbAPX+l47;Mih z?|A>y^ZN`iFM`FPn3DHHL#2UV-YydBhhJ_?PfPQn@;I!^Cr&E&yRm$(8zVxvR~!pwv~-uJoSdAzoSY2`H6uM35*#eIBmRvb)c7fV4q{DLk%QJ&!#uscTaJ)PBnKpN zN_x=I-dj*3~&75D4(Z<_p}_*xS;t zRa_c1S3LX7Y^rOd6tH9I?-HDMK zU;U~JgWT_$wR#)I2}?T2irQi@^}Cgvi+(muTp*$x9n%lpGiwJB!w3lHyncNG;o#s) zBV`ZN2IggCWCVdROY-vaT4ogFG{Jvp6-s$U29tDMkOrrjTV65dYNsIKl*-2~!y{p2bDQKO; zlnHl)Vt9^>_`j0S3%6$uM>kkzY34pX-!l1p(66UHihb&^#3S9r)i2&GA(h-#ez8(%e(IDS$(I^N%f=#ElaC*L(~e?2qh+jfW~1TbQh{7bA;To2R|8+O8yjEk{dc_f zPpIyXOCe1saq>z^OU?|M!Mc_}cE5JSQYkGXEiFwdC|T2Bbwn7fcDcm>+|cLbABJBU z&r8y!n0=#OS5eyZ8U3(m%%kSA@Hqg(eZ>Z<`$2zLA$_O8u^sgoFeZ2{t&T zGrsIgOHu@0;Q9&fiosFqQofFkhT$jL(o1^^ts?O6$YiE71CT^Ge(&b*_$UAHUNn`7 zi^*43R_anj_w0$luds*L>4d|sr_z-cozc`_3YeKrUvlnA|4g`-Po^=P8QrIp!|-8C zAH4M_X59&U)xZOejfLak@Na860lFqg-FemYK zbX!@`WHPPiIco4+pAPMrSI555uU}II*j|3s z>1BBJ>ydz0>cK-$VuZ zfmG~r*&T2EEP5RS#+AOrg(!)E2#~SD+8Y@eEd+wf5IUe+l#n23@j&HxTe>o(Jeq@~ zhJLxz+Sb-%XQfwQEt?<47?ZB_hZ-T8R*cYo%^V$i?a!>x(bm-De3RR|pHx=bmN=Bz zdV3chz$|-I*VIgL5l_n23GRSVr0__nF@^?=!_;9V@F;+>o^-5NfkEuz=YEum_tV}vo>`f4F916lsE4{f2V!CqYlhsiJqK*?1$4`VYx&GwC=h6aUr-LMR8+reei3H8T2`7}$7bbcH=x_Rl2sAa;Po^mcdekZ^i_kx+b?2Z~Li-4~6Cg=lQ_q1M-ZDP)7pUmQjFGZS99_dq09aTZ{urRJ z`%+U=CstP&dVX#;Ho1leMI-=qS_PegVlc8J!+b=rg^vuZvb7OCk1cxM#P39aNj_A0 zyH#?4$E&_H+B*KlOzOmDo<@&{aqMCF|I`o_RYpaY*07{=PZ|`Uajo)>}tat)MDu`}*^6Z&CS)X0H zii!SA!)d~A6DhRc*#1CJgb*$tSKyVjEuuwv%I(xsZWMQ ztyonT6f~nd-ai56;8{&g1pZayD{2J~#M$w$1n|!Q57el!vodn!5*ZfF>cQz!bOG!@ z$;ufR45K@08aOkxOT9Qy0s!T2AI;rT`%$kONz(GBzG?pMZp0ovw!+Z~USzBu7J2f{ zzEQ$qY;-X$az3864=%5$xai!|-!Dd~R|)-Y$gn>=^$jNtNGf)CHmL+(S=r6y%-t41 zJL`r=n&R{*Z_su&aISItQq1?_(;pZVH3a9Lp?dyCcX#*w)YJk%_D|~T^}RCHyh%kb zUO1nBo6r?ZaVcD3&`Qe66mu>3Abx!-9(y~xy!rV{GlMl&b(d$l322)A*|WtY5@}pr z!J)J>)4%?S#>Y@2K%d%|rytN?GCy9^5Q4<|bzQDiplPHBEdXNxw6-oT*|%=r2Ek|% z$iEL`tb;`lX;6RzCP}Gh^_Ke%*GIAXYU)#KNjwnW03wQCR47gwzIX55Chyd-Zwwm7Cco})E;+xi&*9E~E!#ZPq{I*E zIyz2eWo3H$RwgFbd9N4-B}f|Re@p|>%4~?o-qjT^Y_Muw{&Hym0jmgK^u69RGJe6& zufCYZ2MG!WMr{xNQ0Y1F^nBbBomv7yt4aE%*yGuH5e_pmGpgRlQ7F_F{#ZTzbZ{u_ zQ?XFYmA0O}chQz@X^K64Wlq%*Ouy05(dJT|eiZR!f>>^Gaq)O1ixn=Rb;;Po#3X(~ z3{sH|)#j5|R;G+~WL8J9F9W7EF`x)+;5E0fKpYh5{M>vSFpjzBufNLb>A587&fmOs z>sBqV5G2xM2cd>)ZIX{6`$`{-W~!sQV}-uWKg(i;Qjv>8=8)oeXnZXHoPh0d_X0x5PD>TUpHp>oKqL{Re^Y z=9Kay-Y7Xm#SU}_IH;Y&X1ttH<>+tDP1$9t{Q-YXS$~G@zwbHx^{#9GkZL(*$B$p3 zWe|x(t`FDJ(!wJ3ISV~fLA+8{n)@BX!^6v`wD^87*>dAzW9l39PLh@WiWEL-l{q36$Hg0r=V~OpvW#NDym(*%BusI z;oEypr5%A^=mF(Nwu5@#zvsf5y)@HQr4?6Isd?4K9SAp5R8;JG>PIDB zQ{M)OE$ebj-UE!i)y0>V0)0&bDbn8AdA|#0rkWxzCV2R<5!9Fyguw9t_JZ4h-=U*2Y2t@ZJrE5(6PYJ zZ%*|ASzh6+g${t!>yG6G?J3g(Va851eu&`UYT%^tr_pntj>By&EiIk5@k0DEfc^kA zbYyBE!8U@JYKKIYNXdz8=H`q$ckT?l2&<}RzMS=Gf1t`0VTaPwxt~9uv&d9elw0Qk z7QD5Mraw6vRS&Lc(Xw>hBw{?`Eny<$m=|@_+ogYwW(=b@Kz{hLv8mIfxK8{ zmk8XTgwEw(e0+T7S0YuXfDFD(k}Mw^^8&U_X>9l#H@L~ zGTGIaXU?v0FjEe{s0!~<`Th~i4;v5J^AiN!xWN+)h(t{H@0(a+Dm>3Tn)s;!P1}fL z8A$unr;C^$Bgn)8eda=sRU3`boB%o?PBp1P|HP<tKs z^4nYSF4P(Wx2_4tKY!j=+>y`ztgA^I3aMvEFhO@^0JbQ-!2XkVZkdO-x{#!PDag62 ztC5P%wbrJI`=9!~0|qDMtdkSi7Q=&}2lx7?utpbH6|C(V;o&M^a z5#abUHQtY^s}afJy88NV8up;f96{BV1EzZ4-(TdmHlHr9pkRkWm4Wm3qPo5g4hcc7 z%#RWm`YD8;Nbb^lBF$1{*2BP@Wk**#}=ao;T-PDSql@uYTZ(r zqSGA^h*aR11a+!H=D)&W>gw{KyGz`q78Vu;tea|!snm|HH4Zy&^;_V=xJ|ZZ;5lmv zNs<$A4t+-f(`|tE6=nJIPyB9I3YsaZ2cgh z7Xs+*iHBfMr)S0i_r?VNziwdQEamkIe-d%9Y<)BCa zI6XXdx5GoTT; zeFArW03=6e=ZiyOr99gW!Lxzh-$&42dIfBEcSn|154eZRu{G|mc+*o-zJNCz6ZnR; zaPHrf&Q5o#L-)*wsuno$*CPP;S|KC0(}mdZR`7mBr(t*&WT~0SsVP*Z<<+*1rYClV z&OSa*#C0y0imRTx*4EJxEDUHUhb>)JxQ>DQfr#FPvc&1nV3w+Ig!0Hy1^NK8JQ!?O z64J-#DN*%I%de?ra{Jl(kxE84- zRp0W_*N+We&xGGtrDS|U7AVd5O!n*<8Ju_E=V#5?3osF`5G$O_3^YN#7u_sfG=7X# zj^Xk1q!C*55s_?sNte8&VaEgU@rM>RZ}~4h>eru!B-1<;LMHdMQc*312d|HW)aB8j zuZ+@xu;8VsRh*d&{I=p1Eh2b9#-nci1YQ=Ge&K@`a<%xlDcBwD!Vj-(*Ur6+!76hSkw+tR&*so>G@D#GgOsyy1O@MCrO zggNeD{yqh?3gem4P%toMe*vb?nxyKrbNqxg?u?!SxP%stCphZA=YU=RJ$>|U1yPtv z;fOjuHO23tM`;N*HmxedpXF@ttc(c#nWJv#q(o^odh?;*p5^Y&{GOe~$321GDwQ{B z9j?{@*%8?2(&s-KU%ZKhc^P3m!A<=+ z<^H%)Ess1)nR&dgqXpmW9-Zl~^CyZ zsCuXIo?u((TnS4}l=aD!@~(4DZ$FPQX`2kCHtb%`iLr2g8RUhTKtZ2%wC713j+W!b z7Yq@&%8JcSTQT$AV&AavPE7N)xiXZoaHE8{-bD#1=06@o3;Xpl_lO_SnR@nOX|4^S zCBk-FEOVxI4O{(j(cmUi&7wg6!?hJmjT80gwyzPH*oGB{>OvL5wwjKn7`kZ??bREr z$5*9fmp{E!vcDgqW?5}`+<$2_BES6PRi0qmqu$CGz*;B$J<}k5*U6@gcOgE8rN8QU zZU?#T%(8JAUiDzQe@;@C65%%9UwCNJ6)t+bT%?QgfY1zXgV-`xDN^(|p&XKH)16Vi(B^TP8q z3diVjxxVfsI$mV?;<37o-6denm$}Hb8g^bHJ3TjZO5#O=gOmISLqL| z#QK42Y&@F!cGrkqC(|c0Nxl~U;$&EcK){1{I890y48v|`;+x0q)wgfow8tG7sAPKx z<1{Z}ED-%l)DviMUtNadc}TtZz{B!=bvEu`k~oAbVMAY?!?vD8!q2~rPa@|SF82Kb zv5Mf8M*B?NQ17hJF-GgooZF&9LSV9XzX9o#9j!wLfBu`k3vO|$#djsDe%pxaKRH!j zl?-nW(Y=B_PBeTn!OE_fg$IAU-fwuaF&O-m>pO?}RDoXS<6u#W{o3;c_36`t_sH97 zO?e_-*s0qE(TfMlbHDbPWq)L*ti*=~K4Wl=eDKKL9Lpy%k-W^3eEV?|S8?r8P~9tq zfH8H!ebbMagg(94hTH}fewIH8AVe#7=GR;*76`u4PmB8LzCrhac!f7r?z@Yl4*s!( z3kbCae{WDqtku?MU5}@u?8Q3wBeI#?p9*Sf;?=7in4ORGws~{kOC<8UPn4N|j9BgN z>Y|~metE$pAaGAw?zv32dGm@Z7}KRSd5{(?eaa+*pWfcM?Va=wDGU1KQ@aQBJE3)4j)fQF}%Eru3U@crK+(G{8G+Yt@9Ah+ByptUPVPEy4Rqo zsmW|Dz|ZfnozzoN#iK8tt0$T{rEU5=h?!YW=><+JVHawtlV7aLy&is@91cEQkI^hP zTwKI-&Xa+X_!9L9q*CUV;8Y=DmAbJs`=75Q0tN-^vyO`Gqoo$^%Xg6w;ySElOC;>MMH3OO9$R~R$70YRE}6g^Q&Ypc{p0(0 z`IOU{kcS#c23b|=01I~vcPCBBV$YTXXga65n7#BuuSzc7`>ck zRvE~+rG6EhC4lbj<1@Hv_bWYpx<^JvhMKo#Ytz-GmZY|BE#*SSoWmRLu5fh)VrMu# zqjj_V!pK=n|6C|Nz*hVzp7fh?dBWRlUxm2f_>0D%M$**xd;RS~**wRS+|>9!^$##D zQR6hxsB&yk79rht#^Vl`ZYnRI;Qq3@;G__D4W8lPe&RFObR`2vT-GnajNkjFO~Xh8 zCF})to;k{cN^TYfKE=+J;QVmCECNHGgm{LqVgo|1OL`uU19H|;co|F9TFdTK;V_}J z8NBp&Byx_542ZnEycVLs5~a+pmtOcd(w&UrX{MegP!%0;jFH_l6{ z)eGg3B!=wuw|%Op6H()#@ZpnypI~9dzn^$`RU0AtW*oKt%2m2kC6yG@cOno-+L3 zBV=D}r@%x@i(fi28oQj@&*ckpc!j+n-E*o$iToV|`gf~({a5G_qH-g(zlPEiJ-QAS zn^mgpXq7eH*->%nwNAH2Z@{iqYI}U6?%~1j;o;#{k(>BW%Kbo&NQa)@~-V=?Xuqk+^TXZTch`-8T{TG39ftOtgPX98ctp% zC2ZXGTP;=g+l(s6P#}_Qk)eSG6HLrgCSCOaK#y4jZ@wp7yXTu7zHnFdm2`y-!ZhKVdLNo7V3)OGN{@OuCMpTwKw^psuby= zOqW}>cXtPYC@rVzvZ%@lzF@h*3;sD3RguH4D)io>nRRpe*VosF%Plo^baW<4P4V(; zjvfxD%NR};>6doBm_-1ie#3BcOXWPOPVCt52^J0iZb!MyVcP0vb^3<#04%Xr{DhwUF5j0vDTkxslcWd_!p6!%|tEaFQX?XCm$Ri7fai&^<>&dF1Lq;M@EW* z=$UhTb91vXS6h9WS36y1-aJ1)uZj$FvN?>D`@Z{ZcRIIQ&2_ib$w{r^jeWhx?b~5b$w>kgPe+^bq;w7DGPuJ=_BFDXR?c9$a*l~1^#?}(J)>BhcVbxCZYS$A1h@@a+ z8(DMa5)zVI6ms1E00CiyChYfac*AgUb;VK9jU~b9^&652`aH-bR+xpT zI^Ffv+}n-M9UNG(u&|gVaK=dL85&O0+ZLMN*psr8{{eTh%DRYKLS|<4i;Ih969tXj zAPXe!PM1F+CB=O0=EhrDS-CS++FjLyDRA?tRVT^yd~Zx2EE|Bae)cgfEpJrI%v6>c z;f%n(+jj_UmP(o1{cyim&FVTDDl1Yi3IQ(>Rh&K8=pk(=Ovn`N6%usx^eY>KDP!&J zVWfupbF~PFh>wYhdn>G$oi%3JVJ*A>0ui9dG^72;g3CkL7O8*9)YGg&A~y zr&Lr_eCe?B!5@S8ou1xvnDbdjQdWZ=t&t2l$yl~8x7X*#ZA6v_SKImHFHC)CpdkLU zM4=~)_HJM`gvW8H+R<`*86a%a-$*o z*h3=dlv%(xS=1bgmZ&l~&R8R%;xU%+@2{`7U!87?zkT~tB8m|K3F){Am1$(FLyI1O{w15#m0%Q zOj*_rFi;8#hT>#UVAwtR4TmGUE9yV(UZIz#iv4-mlIq&g)WrWn=sr!Rg`;uHiq=p6 z_}Je)YarrN8Cgz#cMamj?+v2nJ=q8AYw!nbzY(TnfW{CtZ;?Tr!eukKp!nY?U2XDL z+)o#IG#DRIJ?r%p0t9~$V>ddd`#GN(=MV1f?p?PA-PaIzeRCHr8lH_g+p~5->nP^W zr#Wb(Tg>^0^G3TaltVqpX=xRkur=ai6xUHT^?qOA%7LY53AdjH=lYT7aR0)le&OW! zl?*&cMab#lr}(wKYOWHDy6eBDZaHCQ1n%fDdCgsedVZw1kksYbL(Jw$LS6QshwGMZ zYjmiG=?~SoGYc+Kr3sAqns47Ic2l%pL?nt&w6B7B`5(Bs;-o7|RyBtbBsE>b#JY{+ zY&^fCQCD)_JDZ1=Iefv5MvIl#vGN+KTso&}u|)kC=I`{(2*6)@aw6Ja#po@JS`Tte zUz!;s)2;d2Itp=jd))X$3Gj(VZKLk=-78byy?j}s@Nt{XiYs-@({8Pj zuWk(uAN$$gGc?b4GJC8VWYMDH_0d$sciMFFsa1kx`Ts=aF<1ZTcD+IiC9-V+^pz1T zcvNckw467>^{&Oca}MQ15Am64LlQiV(O=2PEp&SZSnY=!pKK(`sKv=As5pJM-P|*~ zJ;ob4+rPE4Rlw)DW|QmfGMdcvrCv)g=)S)Z=i7sQEtnU2zApOmFhpU-%9Zh(RM!_% zg?DcCZq>*45tC?KF?(aQ0%EtKlwx&`-#ZH(?l!uwkDukVSFwK8z3J*zR9I)?*6Rmg z@+u1FpW*&j*WK(41KYlA&t5P8nDf7Y^G4mUwDVWUVxQ7Dw(7d`rK-_rWwda04NL~j z@WNW&&)e?m743{1Da@NK^oBht{twt4?`+o>O+PZ{NDygU)#J0sZ=W%ShUj#wl$r|A zm67NT#ZjYtp|3xAhw*C-%rhYsS6hCMB*>SlXdokeiqdfTGHp>U6>)ow7&}-gXpy$d z^eLX66HZ7HW7g3@bd~>B*eq`BM)*Zezx|HVTj?~OduJZsKpS)bc;@1Wjf*{|#4)i^ z-HKiYi)l!%Ug}fRbXe;i4Wudl81H?+ayPNunk^&3x_XyZ!&S+=IH+H9){4bj+hbpJ z+nx0Lj!3{A%}AD7-_0SMNuozw?P`_EzJD*Oq7rjz?cp)Y;l~q4#UK$=u<*RwfNiOk z>)VFiLm$$vXJo&cT(%v8;L;v4g!M|6hCYd|xj;B~Fl)E`Si7l;q>JQm=d@Ti+m7jc z)J{S{Y9Y{3>SJ@c7fx1P&g46_g71iq%l4t-hEyC{q~~SmX#K_3ePvOJxy@#9_w`C8 zu#HqUEX3DC2>$Q)SUHCwKMPQ=`+M!uji(=PFB4hxuli5hc6Qn|YnA*QY*_CW`uv%; zcv9LfNPe69PSC&&Udnz>$x1`6jtD%uZ#ZbHPns~2e-D};3_4!2RQp~XmB^yI0p~PI z>R-58XZ%bOM>X`u;+JhcYJCDbp`Uc^L#~SM!t_pGv8X5bs*MQ@b7RgT4^;0abbr}L zCBNuK@{K+?DJnRm^PD-w&8sT2$q}5ki0Dq>Pb+7POH82S&H}yAj0)I}bUGasAdA3&BrmAm!e#7_-iWDH_B%=3oracdAXP#Fp;9}_lEwoE|%v$%ZVFC6_b%#jd~-%B3%vWh9$4` zex0%g8BN5I&NHScig}*Sl@Ew1F&z`A@Fz_v;Hms51Rm8M#W0tCXpnk4B(tz zSH1^}+knO4LHtScYYY-~8rCD7XP2L-75rPj$LZfQc{kS+IIr~?jI~RobHXj8RTqQ3 zhV4kL2ZG>gh+#5K&-h^3N37!aRLj~GRuS31YDM|o7~+SXF@(fL9JbV8U(Lkm7AJl| zl_|1QrOcL7|j2N0ZFk%VGxcuv)k2ur+6jcJ|p^!B3Z!9nxZpXb9;YW}F8S>>&_TxYmpUF^Eq{-sE;&7eci0-QeV1#DsC7~#u{n_6{OK=@~HCk;RvHY7?Y@&S2DfkZ_ zY(-RL)U?7g2AcOx-l#&MN(I6LbX=Y`G#VQd=$BaQhyR~zVhk`9g->B+Ih}N1l~O1c zRyY?+Fg<@G)#)zXLfOF(oc)KdjM6GQ&hvvt1HwH`=r}$Te*04t2v(tF{o_4?L9L;P z)=;tz{ha9u6lI6J{mbmVXN%r7+A23xH~jl%GF`-feD3Fj^SF>m-fJ4@b^YJ{y>V8; z9)}sT4(Qtc1s)=W`SbHbpYoj;enWWQAW)ZR4Sc5Gb7S*qc=V(biO>1^QuO&Qd)D{W zgu=~}8m_Pm1N|RSCR`Q69o5CpUb*)y6u3wJ|0M)zdPj?NwaI8d24g2!H?s~%nk7D~ z;)@8GYhNmu*{#B}8P|IkI%+7M;jY{;1Y=U^N2A%k?9CLk zlEbiH9fv}g_RJ+;t8tZk{OFoBl^&!dCxX-!_2$qtha}r^x=3~{CEP=j&u7r2%{h*S zS7Zb95ntjnJSTm5FlHM!eM>`= zcnB@s;K2Uej!Uog+z)N*=Xn?_E86hTH8fXa(+;6CnoDXSzh;dvd3)CvcVXCv&ohTJswGpzY7{Nve9Ms zV5TB$j~Z~l;gY^t@M~T9IsvnDGZ=NgE>bZ1#Ulogg@B$la7`u!OvGxBHD6|@%ln>? zpCxZ4vKd9PR$$k8>mbY^0|3&Ah|}UZIk}gn$E6>rQ(nAyu`ylFBqDNpj5+WRs&7XZ zl1@W-W_Fe&6}9BjX+^717ok}J;6Q-cybfGzPT^gbK!5MguVvj&TH&ZYkDBtuADD`X z7S*^u;jd0%1|;>Jb+!HjZr&OOBlQf5E`l)XPDNMM+$MV;+W{hmr&E{x?UfZp@%3;? zd`>t;@gJ!76Pz6R=z&_Mds%L4$ zfC3PS1UK3*zRhNHq(thOPL|Sq;t)Q5`h8M`YZ*F;dE(iRadWr=1LlN47Q_={UmU?| z4;jTem1#p$?9cQlUtLx5a0bPh#>r(-5ldGWquYm-_4RQH#?oL2?>gvtJ9!U_|jtLmCM zuGl0x80E@Z3~mqCt8ybmuW+rHv!3}%>yRM+lWjq#fmRis?>C{#P~@Fk+Nr3 zAQTkkPcyamM?GNG7JL}s$@;ydy~8|(l^LHQ=YC~L9Ve8-!Qlm9_q4A%KD>Kair}l5 zV4|e>Go@yPxpX?SS5&q^pe(*7e9tV7DA-f&0mFXAj{oL~72}uXrY{@s-=%m)Seb-> zdm`Y(e37E~v*^(W)*`Gld34UYSW%Ir$iSv9b0WB2BVyJwET2J1y&XT?po0vXrKw2S zuh|r=qlLM&qt?HJSWic%;pCwYW=tlDlS|yD`$tA%7i^Z*x>rg^pKM9y`=T>BR`UEt z6-w~|5d;|Jc&54w??jKQFB20JF8u|E+b}oYJ-n}&Lq0)M4Q~t!edG+i{Zs`~$Sb6V z>_pPynER~?n#amKYd%Faue;BbeP|?Yn-?sp@-)en!}`lOj@wTemZk^@c2o!(B4Zja z+TRcC=dwMkdLN3{!D~deT;9d#qvRetVdgp!Mtxwu6Mc;O(T;vGqMxxwI;`gvd;^G` zPP>^#0XxU?K&JuOWtr4WXQ@d6!9SLUalrcKs~7EgYoTj+f2y*>Bg5Z;i{9s=cK8R9qxr79BmT#K9zbz(U!EoP+wcNZpb z_sVoEM=*QTrk&XF0I(nnySwU!D(r#D8Dkh{6S`rACZjLvuD0j^XJZTjG)6%Bda4+d zds_yS#wl8x)UpooNa@MOw-ghx3>|CRc8p+bp;rR`2CqUZmzFR01E(L0E$!J~GT`Hg zth!kb9}yZt_*^-F2C{y8KA&zrUA8k*8UBqzjKy?}KEY`T1!k=e(hVM4r~BJ;Kw{}{ zjb!djmxuWvVd}h8yz3x*sRd)$pP;`vlnP~cY*yZaFxi%+l+Ac;dC8;n5fPV31FZpQ zR+g-umq)9?_{_<7@Bob&6>L?;FtIl{<{lZkK0q_pG8VQpM1c3 ze{&4}jQdd=5g5hX*!+Vc{xSPM+#nAi2H~~9e;3!+A5mdH@w;FB95tD&b9aT@N=Y++l7(_TY_9uE zRvxn%G}FUU=~8iRfI`fszuzhD|DKpAll?w-VABq$CkDN-tp(c6FmEL!;K}Iedkkv9 zXtr&Qjg5W%r{>mMdwW9~8eVU+*bDyUi}I>afW&MDqPb(_^wwy$N~H}YxLPuFd1kAl zte4xc01*n9ZYG`pinqU2?-B3(e9I8TN7C`Hz8NOEM}kR$8vr*eoxs}(mJgrb?G@k& zVSr-s1Pe=Bor#YRA`Rh&eMCYcEh_5Y>mWt-WO8zH>~!0ESk3M&bZozl8Q{+(OXbwm zg5R57vu6))7JPV-e@sF|B;n-r3TOod{E3N){eUk05*CI;#?PNHGouC)qrUoD0I3HE z{R6eG=iTnKSzrIa*QC0BDttDhN5uxc&$zi`p~S6WKM5di`-L(25I%{fXwOtw*PIMV zuvyN{xR_`Iicr`e4fdz~_Snh(eBxk=STWG%02sjMaiA9tz{o9TMS1;4`6r)qJC;h5 zhIHwM@rjCxA_7_QX8!(`6j0^f_A!PD&i={C&)R|sge@!>Yh6yE?DCi?8cdE_<@Z9} zcAMo8PE{uE605}~?%u2|k$@daJmM^_%8jp&ng~YMMFK3Y*6w%eHe{E2C5U5{7=~DY zJl;e}GvT=2NOu-xi~f5BnkYL$0<)+Mp&THvB>aWe#snD&*zk-^1W4Pxymi96$V!qS zyJ-#xPpmktp_*<4d2vNr)F8V+4 z{$DU1`t5>|dCkA^e<79yZ{{`VUTi{pNhm!nmEO-$YOusZv)uqV^ClSTC2 ztk)sfdQMjRLlh;Oai;DXati_D6qA?Y$f=hWZyXsG#$u>Z0vU=K72>m(J%@GQPA!Ci z3~TTjgR|c1VQtidPw~SfJ@sk25$<7^H)L{$LN|{XLSnzKr#uizSFwq@?LD z6I^G=or?QSwJCCpiEz?UaZAD}(Tk{ks(+#D(NG=x*<7yR7zh7|<7V-Vaqkr$M1$OS zZA=+L5xg;mv(A-AiUuuVI((q z_ruduO7KKk*58(Cu>KQ9qo~67Rl7^#Zohv}bT|B3nwYu3N?y0?9otDY=f?=%=_j`n zhdxY(q1)n8W5qfa2&p2fs`i=Hn!^lv{VDyvic=@uxkvHI4Q1y|6&5=xs^`6wHTEcu zH4gFKc9Si`wrKc*$>-N(K@8lE*TGemp2_{2tgsB&Dr zcHeA&))_D#;+7D-#+Ekhl}*K7xFhb-H-DF6`347hH-_*97*$&c(J_#AicQBE9rk8A z(K%-t78-rHtQJ1S7Amf;StL0J=r~xO74|7$qq}lk52Q)V-g?)n{TmkFRARdB5g$~D z-V_|xa2|6;)MO3e!TDY^P4wx<>>R$E6x){7B75L=OqeKY`uWtF8dnt;ljCj+k7MbQ zY_cb0)o$(FVrNIuV|JlCpS})ln0#j<6pYDaSJfav8?klu(S9YXM8=jqF0GEnv)Y-`ZWLlh2-C^ zj71rGa&GkZiOq^)_HoRL_?4qKL&xW1qwOsgHa)coFjM^Q6r{0cQy+!kV&tJNEZ>{9 z)k=g7U8Sj2+j4KaI?gUUjV)zbJdBIWj$F)NvCraSzn@hXkMX^YH-Jf+G+Pt6zr+*~ z5ou{}*R+e_vR!)#v=A3*DwzMS=_m6e)WAudxV@Uas<3W<2G;b_S;Yy|{Czafi{iyJ zd7D>~tQCJ$-aJY&;o9C_3BKQpXI78`q9tMF#(+qs1{yT=UtBo7laM$(J6j84s{1Jw z$APEraJ14HOe!#U^$JK(85tQ@fvQY@#C=koYr0ot6K|x`Tr8u0tNJc5|1Ro3Z?C_b zBaf)RKrNm*K&d_0uBYh^IpCli(+}*M3`Kt#_w)I9Z`EDv8~Yba6OmN}D7(S?>ctq8 zKuZ2_GONAK3n41GSH>z2?OBSXA};u_bq+7BkshmXJU<)pBQp)VwXYb3@L&@G_&gXs zmgxb_YGrlxaQ^--YOy(>7$njlTm-0YuaPg*b)}m%V6);#0dd9oAY(o9#|^NJBlse{ z`gIDdW7ySY6xJgpf5*36odVa757(nSjlCj=U28WTJgH#hlyT%^_eHn(DMF@{&v;1Z zw}N!M+8|k^Gj?Y`2h$n~fbGZ8mD80q%@H-uS*AWgs7nqWXc`%352*8pS2O!P9obid zW8Un7S$1-A8pu&$g{iXJYzigjaRT}2LzSIz?asUw+Y^G17Vb|;l%&L#q1${Tdf^)}TxE#?lhpgp*h8IBQ_7+#mkH8hHdNrC zinfcWzfAQ0Qonw^n9OePA(lB^ke|;s+{A67mVb>~a^D?>q3iy;K)ZO!qmme9)tpqa z^sSq#=lR2_qrc-Gs03_UMiqcRh$pC3hxP5ipz3cR9;!krz_N@60~D2o()8qQhIUQ! z8*Z3-GFD7!NeZ%-H%G8CX=p)|oZYuWbUdFt3%&s66ARxYx#D&Ep)exwHni_a*>f&k z_3$&zRhLJc9+opH)ty21JC@Fr!)$x+Q|07xR=3w7 z7>uiX-|~xS_CT2@2B!>oL@BChZKJw-yGUn zo>v#{P$ZH^Qbhr4OqiOQ?P{F|H;y9RO8v>K8Xn5Ul@-Cit~DH>euOEO zuiw5k`e5>ROcomg$~6VRB6dauC|r=^1X9(U`?)&1BNIR?ejSqtqqbFlvOk3)F8oAN*nWk2mBAUZG@B{uZOhwG6vq z&@1#`xBYe_{uBOG!u``a_}4|4W!=VuAT2(Z?cn>upw(WU$J^*_33us}33+-gIUe7y zzxh~GS++BDxF5eU%2F2T!mP%TbBA#0~Nb3=HH(QJO~#=~(I$V?{<|{^m9iUY==fFkKJ;+^S9@gXGv_DVke`1Cvgt34HGuo9Ca~6(aQqYveA2?0a1RU$~e}|zgQ7C z8EoIK9RrTF%Fv9P&$5pqONC%HRTX28?PxCtS(=nJ<2zFP@r8rGBp_(5#wj)dK`SKd z^k7)5wQ!f`zMekmV8OTeq@EMiQh*i7(W&^LlBVye@_sFLRQebLy!lj#_VHS;(%Sub z{e3DB6YL*n@vHxLQCL2|03>Y06u%XC#5tF|LKA|!ygJSFd#TW+i~c#Z1kdk-^LK)3 z`Ec*~27+(c9I+qVUB9L0O6RRGHDp)!~-24 z`^D5xE~`l;3=cXa=i;CChWn_>tLEsRiHTW{^K23r4YA1Pg8czC?C7?K>Vp6PoK^hy zH@2c-B)vH*#ZHTUc#J$9-Awhtf2yCT+K_JR>uCD1+=qI%>0a^NI$Ddr+I~bBZ8%yw z)UH{bN%DA}tO8lf%-(zK)A81^eHP8=K|8mnMYLVyMs^UgnS5XA@({9-eA`}xpdRUX zcvX84EGyl|hu%wF_%Dyy(pb=u#x6dV+m6<*f3B-SzHeK7Q$n{`b!gZruq`-e9Jb|X zK@D7EAhc3g+mlga5<$%brpw7FrfP!67?gi$TJqsO(p#tdh__{V$Mqe>4~0eb4-T8G z%5u-wFUTp5+t|rza=b}yZMM0L(INGwfI)><+SbuJSZD;J_TR6+Ct+e@(r{XQfI-aN z63cE{v6&XfNY?^#9msRE#N2ijIj2lfan*in#DSBwlkMCxa%?-3JHl~{t*5cAF|1rE zR~`_0D)c}VpXqsz!-`FYUppslYI%kH{4yyIAOTIAkU6|r1LwlX`FoB+{unhP@5`FHyb1kQrB9e+0?hKdVQ4a>=D=d^@%@!lJWBK z8PC`8@i^|40LR3Cb6$n)?3nqZ6Zz-oGu_?Y1rxFd0wWW5ud~WHLB(3E>03$3=M)q^ zOG`RsW|Knmb?!`buYqs|wNgQ;ATqKA(kKQxItl@Sd4r;WKPFLwDGW$QrwvGQdgEn8 z@>GV3^ZDU()kU73-5(dRe^qNUH`g)2znxtc(e@`21o~$P{d&9dGn&p}ZN~8edvTfv zhI}+V1-%u=&17q(ru}rg+*W2OOy}-aXpjKiDN@L-(~uE1NzAvdJIxS~mlb(JGyEF9 zcENFQcF!7kSfs_Bav9p*;kJR||66#taDM`ywWH%YU`tj3Y_B<+GUb@J2al}oVv`@e zN|7(H94)V|iU6OKS>7_M*~CkXr>|b?=sW}5j6UGJf(cmD@-%Q8LWyv80ks4&6l}yY zGJrNVD$~G-qqWfB1z3{+U;)@9je@WmVgO4}Mb0gTbVQ?6DcOd~(P=whbQ_Df)(4&bQ9oPmi6 zk0YIi{zJj1^+eBvMjs^j2*VveV1ET3JQlkRS?IO}JQpxXA^~6SgN0ts`4!+&TN_o@ zq-0?k3KiJ!RxL-1=XZ}a&8zg!&aaE5PIUVY{jr#>8q8K^l1}7T&o*~I>ZIP8tBnJ| zeZ=UpGn_g+D#{SrTwp>pFX~Z-QH*kPe}+o?8$NS$+S#>9_Pq@mrzJ~^N8;z|YPqdH zzUW7C+UTZ;mLj}KdC`yX*+{c#Al7|tU1>oe}_I1_a=-kXDFKpI+Y43HNU7kBpctqmjzg9u6D zaj{5fNli)V2c0os<yMbFKMQ&px`>Rj&2-j{G z0V@{;yCyYe%7aANCzQ_I-#IUbmZ+vRQ4lpzH3SWc!d$H!5(~SIJ(VU;G8z>v#v>ZD zSL55m|AWm>-C}yNcrzsJY{fX+yEeh%5@$S``5BmB6eZ6vw~S!4-@Oa$#T*8UrD^Bb z+1W|2Q4Ik>ythyNNGiTL`%hv;4xZEfwb^`W65WOVdW=ed7! zeMw^i=o}U^9b>s4jVFsz?KQe18JvO5u@Zz0lNt!vSAfN8R8m&ghZu6iL1h4dY;g7U z^*Qj^ZGQZB5#ag2;&t737J^`dXZJRBZcd6^*5(p49i!i3vikC?K+Fs^KZ1P#azO|G zVxxZ)5!Oh_k5I=1_=N#Z4}AFE3(?5%Z+c{ht!*V0v|$ydF9hgq!9-Z)3RsV0YoW2p zeO>Dtqtvb-qGzj~t2<=6ZnE>9H=yu_iH|$dZZuLu{yS zK&}uJ+FEmzh)OX{8k3+Jqis)?A7a_GRo)EvD_*X1?72Dv3~=GD+ujTsh4hT-U)+SO zvI@ZeTVg!iW}pEW^h-cD!ysc~B9Q@3_w#4uZI;c=O}nj;&MHYLv&$j*Pi9wC&V-Zy z2!tb@vzfI{1KX%f#HYcN+WU&)0Td3pd>FOx0}`B0!G7!ujv-{0QfAGS>p z9G9kjF8Ae%nbJ8Qco?E_#>ID$lgS6U$7$oC-f8+oXzX$vx3ur`RDQ$Ygq6F#s!2R3 zFaNHq0?#D=wC;M3f|9azO~_q_?-UzYiw(h@(*z0ulJ^Ofz`@I7VG)rXCrLFkGvl<8 z6tMFGYQ;bfC_HZxELA(tOixG#jDJr8UtINmU7V)pZG?VzWTDw43(U6P8OS)4K!TA5 z7FvMnp@I8KeX7dd^y+-SAGlnhTMYz0VCROC>0>J7Fzob*CRY-(8UnW`3bi|80RN+A zty_45n10xbr}+}JXK1(`isi_NFT5Yvg<^?=#T4 z1tw+!Kx1>xIZ>$QM)K@c`1qmXO&ta(Ds5Z989tjuNX`@I^fEe7tBljSlf14*X_K)B z72kw?vbC`>Eoc(sI3}DzeGaM|uZ;CbFFNtu05@D59A;p81zv!|qoZeJWDN$7q3Xx? znbHE)QbxoC=QRQlS&;y@6|9lJ4mc1_kZM8S+jpR^G++_OK}TO76(b`?##7R-5Orsn z6Q~c@csQ*}iW)4%$hTuIT3fAeF05fxOHEpVsNvOx3-9T9&y5a!A98!P zJu_53^0?mRgh_BeQvrT--$tzku!K5GEnn*_^&3yat44q}94y4Hv_JIUCXtDIey%GSXx+x}mUk zGYO^ATW};8#nf_D6MwsLKl`^{PLV=qQtWG_m&sq_(1a_FU?m*X6+})*|EH;r5V&?# zqefW@oR1Cm>hC?4mY2n)q#i6ZV+!bjL|{)S4IM744cC$hC_^v6Bfc@7PnwXBurpa4 z05pA=qobo}K34|_5;k--bitdT7VHmT&+gY8W9;qija~A&p6P*BtH0Nxvq4?n8g=P; zEieCgT*K8o;u7>itgNk#iBN(0N#5(kLC#j%j`RYi^H35#RsFk2hL4|vg0jP9p;H6_ z!og@3SR$7bqXf4j@iNQ#P|=h{&=m<4QBa;x9f0J={VWAK#-|x$vk3kC*YqHK6Is@L z1L!xe_DuD}g%A3ugY|NJBN{-&_AH2pw3qB9pmGFd<~-`K#9c$acYa}=J<`I3C*>9U zpvVRDZ*6pqY zVu1A4c=zHK%@xWzV6%~E)w~lPahulP3IrV7f3*>f9>L78azGL|*8!g!d?e3+F%}ABx9rw1vA(e>29N$?K8x~9 zmso0UcyWB*+C8Q3VvZmf7f1?D+m&ru`WMw0hax#DSUnXVV_BVzo^o^gO_EZloGb3< z`GB^j(Lg}qY!~If-dJ1|jN>q`0KzGtbL(=;ZaN zklimHI~R>ntnH`2sJ2y@IlX}yF}Dgk^ZR|&35(p5rX+@(5!iMSA$%} zJ(xd3+r0Evjku$;84=nHI#prRM5sJaBmBiACjQX=v3&~Ia6oJ<;}Fz7JMSd3|2g+2Zeqf?JG_x)n5VC4p2;CD~t8N@*5 zPatMr@vunR`Q^;Nq*AAiK*4CB-a@N%M5OI#M1S<(gs9bl6Lthe#BhpEMxOu*hy(&H>?dk~c3S zLkrN+Q0obxqR06^#SsC4mR+?hC#T2d8^tG}LaXlY=exo8Zp@Hz4xi~mYr-rQ6?Rju zNWH8|&^7p>V2y^v1(i}nRpaTXuY%afwoLB+IIWQ{qC}Ga3Qtdjxf?FBvt-bGFJ2&Q zJ_(_l#lQkdX3|oLP}?(9TA66$BDDa~^d#QWqhSWyOuvFd)fozQJx`;>5qwsu`hlcl zTS>tMD8UID+h~a)6Oh2G61dkXow)3#eh<7aBvWa z1AiUOW7m(+hc|UyNUAd*h?267&wOw9<&I{l`Qc{1 ziWMsCyCcEmW^xzq*wQbhWQ{s&=0ORl=BMOee7Pl>gt?p^&p z@jM0X(pRp^A9W4W9}j2!NDp9B;0ZMPxs{^}1?AA5q3lua*=k2afHOcQ4h4dnEl5du zm1~3#A3kKPx>@NA@9gd_mZqhpbr2#&1MOq{o_?Yo?sg$9rrJZ?+yV@(f;GAIxD8P+2|W~sNQ6e2gqVI+LeAa6%;1j=FYisZyWfO_~dBRUL|*LpSl3m(45LO`bEjp%h|W<8hC-2A)-kN`9c_b z^6NjiI_)l@t&Fn!nxv7cd?wy}dtBO@v zMtyc}=ItC8wV$s_`sScOnBktuJC{I>-Pg*zl~1itO>S*h&!#QQopWd&LLDFguYt~= z(Y%*{2PrWcTuN4cW%s|zl!7^yw`o&E|Gg_QeNXA-_Obm@ov84bEAC8_;Jl*nCh5aT zI))3(yqm}6*mQb~#S5+}xayB0bP?wY7O<3@b75g1<%st@Y!a)2*k{3!J*~Jy8f992nKz~To&o+}2R%LHjFNVcf90_2GQylcI=G7R|0-5$ z#K-717{He)l9F9B_DLQwVVA9iesD70`$JUxVXf(ZDQ2oJ@TtUz*p{BcDZ7~Ewq zC%;w8mB!lpJvu@WIg^#*$H$+FD|+8jbfk%RwdFJ*PLN4D)kP)fo zRiMhwh-lCg-AEC}+XReR8y&n*gq2|ke%+U7XEkd-&P5*#y)X>`qb{X{uP7Xbq zJ{IKF?Dws&gK!xbRUYXXX4`tYLT^tkK@|rcVC@W>2hc+pmfk@-J+qaVUxJ|nv`!o$ z0=~fN=_Xai`;dHAvgO~sqyCv=e>4x}=fFhrJ|qY>sCB91DfC{1JEOg}xaM~Ud>?Vd zA7XgvVo+xjCk5&=ERBSc#Y0Na6tl<9e;?8Cruna#-3Rm zLj5BD;U>w0`p*A0pZUlm4ePsrg&8zr3nt?1R>Ip3sYwqu^bAb02^xY=)vA%;^o|-6)wzRTxo0^0G0o%s2 zUnBhb^(T7|&`Ypicg+ZOwD}WRK>PgYHS6MYKb8ZmRu5C)aqEIX!rLK6>iz~)x%j}o z#%kE72aZ_y5f!DmmThJI`%Dolbo&vhuZfA4tPv3rO4Z$9h=>?Z--6arv$cItZ3G5B zjJwQLErlAHfGG>MzqT3Nlwd1})dnmC|0_b4{4Yr^}^NhO$9M-SYRF$YpQ*x`j%j5o0$|xqp zylVCU=Hb4Bwc?OV-SThKqJ}I0@22D#i_dX6DghP>ibyZ^mS3mUItoRgd9DWov<4m5 zU&~Eq`>7F|)v)>`^t=n-I)+!y6ANG6En*)F^ zbe*`|ibOdBs#RQ4vPDaF|2B(uv>FAdY?WY7p*(!pG&~#*Ol-wKdvck+-_g8+$Rw^)c;#z+f&tPvD(xA9o#e zU*dXJ6|sb;o4oym>!MZB>R=g_G(i>ff$rx??#)~Jv2{C=30}hkPFo!xJcfOm*S1`c zGWM0NeRU~trimgQ*oq6=+or7QIrz{PYXSlSHTzMeipt8xwY4_z$f#6Uky}_;`1<+D zX=q4WSmgD(00zi6AOIe?`!rT}ypO~BnG}?P9&BS{voTpr4XQ)8>)rCFyiQ+1CD?25 z)sLdG@*`*ih@OpOVpDk$=+77DZZw=)p~3RGdpUR?!fJ3u2XJy#BiA3CY}3I{4?VNP z&Skpn14M(|eB4h{%+Qnlps`-(qC``dLk2aCE&VDi8F-21BC}Ili63Beq8-hR{wS`O zW|x;q$C(4B2B?_?pmx=CD8~nMgYEn3>gr0#=U{jCxG} z@slUO7?lb4DU%Uuh?T-4m-rCmozS<3R?Df750al&rvwb2X(RIYi zm@+0|=}02E-lyYFX?NCtj|a|ZD9iVOY3Nc?xvc!J)mAyFSN1K;y^$ny549l@leZ2q zcT%heXdJd?xts*9r{HK6n22Tg*b|1Pa_a||=`)x19%S?UPx}@|4F|TeELb-M_}TW9 zyw4NW(L%}g)q7t-?K5s}ZbsvIkX~M(c7X_)b1W7@*m`lejDm*NGCm#!bv}a;-ks)q z!VZ8Idhi%F!(;L`)Hojlr|2?B$<*ZJi^;iIXR@XG3;&gOhnPeq0-Oyh`LWG?pI5$* zlpy?R>xFTu2Q3Y2Ik#ldD3M&&IDK&}6k%*_msm86$5=FNRJcg-oA#7Jm$c z_HKAF&>7h%FyBU{eXHzmnA}yWUwJre7eBWo-d+84{KZ1g)^)AvMjs}iagO(> zu|b8lRfGM*0Lm7(yUX>lb$f1NpbUtl4`Y#%_5(X{Kh&83vhIg+LD@=uGLX0d-e&c< zaRP@Za5?NuG(M5x^$G|;0)%dU5fplZ17d2R?Ur@w4+Q_{AHrt&YuJy>o>334w!i0Q z2Usqi`N^k0$Ai>A`%fnk_Hf-G6=E*0gh-)(pb$fwEbF`gLE!(_*LlEmy|#axgo;v; zmC+)5kL)NaWQ0PZ?7eqJTFNYY?@dOsR}`{-$V#@KEqm|(^~HHk=XpB+^Lq68W`;u+1&I%hlZ&G#oG3{J{fVblhmsZN%M%=QBSG2s>@}t#|{i3rgwMMa= zVnJ49M|nZ-qo2x97PkdY-J|o*+T?HRHOhL>7+<2*N;Yu zrMMK@NF3&0sQ$_fz#~CP?k$$A{)(b^bUV4OkYoSFw^i$N4bIBfide8z^`$(<=T-T!MSSYni&40bO_6qtX)9Zr;2Z zD0&)Bw6WY~;q(IhXjVMks^>(f_H?fp$c`FtK!bcG`e^6F*A<-mbdbVg#osysQx`*b zN8lOA)%iCn$auDMlJV+M>}^fP+M~wN&_G490(3EPx4&c-9C0Nr>{ED+L zHKeiSyMCOyE|A-Fz0$x=wL^i#t<;ViZH!1JkZDUcWN*pUllAlSGajQ9b_#(%92@?{ z;lF|kHu*yd>k%aFYFV>}>gL$M4G$@tCvuCW^}w^H5Yc{I?`-j_f5d7skW~RNB^nxd z33N>-%PK;D0GmWe`1}U}<;HiBBb7s}PIRm-n)uwUg?h&y)sDt&J-oY7>*{>GB#me< z>D;M?%?GeIdF7VL10ACIe}=WMmTx z%=L{83!xVlZEBdfai>py4f#@sxbIc)Y+Ttr8?^2*tiR3r2DizQ=>q=o3dWzlVcsb8 zVsi~!aPY^uzHtih5~ul)O>}-Zui>irN7?eYamqWd zk24qaR>7}0TYRV?Pevjo+seLMCWQoCM^YcTIf!Y3$T39Lj1-1W#K`U_m9GlMHEGgxR;^iRNJo*|1KIc#p2}!M3qk3Yn$E} z_p&>tW?|?FZ2{6VeNtd?=IhgQOX_#Akor$xa$oK|sH~2ID?*5j^LN77Z~vC;WKrq> z)jt7bWm-rWWXK# zyW~>(|MWrYC{9XQA5_4nzF@N;uCWneR!h!h!CjPS@p3~xLRzTa*5}DQk$g?#)>0<6 z;I%Efp`1jed?op$q3TM?JA4yOUS?~j+w#9{_GTG9SIJFbpR9{oKdNMop3m*wzMa;$ z0mX(E#Ra<32>Is7#GaEI6DNsL5iLtU*Y$n2GiMhRF9U&%IoOP>aJG}8Mq1!Y{l?Ih zWh2o=QLNniG-wjVm4;>|P9X~`sn@oKMv+mJKZ%|-8SN<6VZC$cj9k;b#g^}iM@8N8 ze86Q@cXN^O>!*}WH+2pEuOvCT;%sPB0~Gi|Cwhr=T_e2u+cH#X&CAhst)cZEHa83C zN8Ez_SU0zMJ#6vs)*$cbC}t+4G6wp7Ctc5opbbM;DgY;EniF~=a1NB z?uiTchE1vLCrPLGDC^c3Fa1KfMsZT1`(0?qTpf<)-ube$R?A*&#~4&bdgn=$OdgWU zKQ!rT#@z9z)#nOhP!JOnE7K|b7dQ0QcgB+2Nu|cTmK=Q_6xM_tBKT%2=Xy$&>aenf zT74-+)-A^hquRBF7{?^!R1*@Fg5v-ubOF-X?+f|g`MaOILcKhaXVLnSJ2S??{cHz^ z+Y<5}x5wI@vXd4R58fS56HKPd-tCj<-LyaPV5Nx`#PN6y5owv%xFub<-Ar5XW`7O* zY8F!PdC-mOY`!tk%Nu^4>h@)>Brh4>F*dd#t^p=fHNE6G0W`bIniiRMn1$1sB~vRSWb9JINJq^`ck0C-~yk25*QGcVvtzqe3RL9G9EF^mH|D zcDNbdiv3@Y^_i8eaZE1qSGRN%KJGoZeAQo2sR0Sqg@rD12w}|Q<(q7-on*Pn+D4hO zy|6Zy9NxCI%cUtm>=$}(rJ-ymk1xZK-RH%_ZT*hRzFvelon>t)megcaFK>1r$Q+!PrRlsr--ki8x<4f%; zVYQ$U0l=XrkT+S0klt3Ri0%Hh-WvSN+Ac5Nd^04f*3{6gwYHJFV1#|hTS208&5`gTm7n48zbdP{y}r;{ z3&$6bfF7+1FYQyTF093QTzgH1J+(P-ivcf zxq@#@6}m}W&C^A0*=;SF=SJ~NqY4uV7jAHn?rfgnA}`!3BJAaxJn9fiwSM%z`MjPh zhFILR>9gouN_01wX@sEh!#4>O+%3~%f=Y{TiqTwpgr!@vB?vp@+qZ9q!L8FP08{!Y zy~+l8&&87WsIn6oORz5Xi4{_jZQ2p+Z4SXccO4x3w}52_hc^U#=XxwdggJuz#F#O`S}(Y-X{J4}6F@JF ze3OPu$ah&a(&YDnnu8;ltff15k8(4_&!s4KGI?Dpy>q;>HPLC;5FaykRIQ`H@`9S& z9?VA_8&ZK?lCL9>dIKm6%HGR$SB5Uj z)g~m?H#yh9TZCEQoYhjc6_dS0Z#)&FPp)G;uVQ+LYg zE+%Bu*Jl;RCrFn6EToQu1^ipgnLrKNzeP?(i_eLiRI)ye*4uW}WBqOYo9k#2#tOlw z{h_Fdja!8qt%~)M)=bg8Uc*kjs@6^8lLTw%CnSDSggOUpv#4 z+A_O6&Ij8x5cpVyDH^`%HFFrNksHucF@<)%p{_9ZX~wqL;PQwwP1VX#e&g*uiYS@j z70c`>{=G^hYf?;0)s;(1BR3CZo*M8_c-ZbESN&!}9jeCqI$=D7HAS!C_qUPaD}ntP z-n9m5CxbLP9f-hR<4RXmG$UJwUIw4d6cK^Y^1Gk%ATV-iLrIjU$cnSMI^$XIjqo5| zN`a{!D!z+TFVw7401$;#ODBmFEy2=_BY9ZzffCqYz`_qU0*i*4feb9;LK8W)(8}}Bz2T2bUW)e6{Q&Uo6%m&JVgQpVgFqN8& z_#gH*nq7YsT3pscMGPTb4q-E%aI$OW7r=R8+*cg9HsBh4j`99Hf)DF%IC4<0wo4*8 zQ>{ZsVecP!0aAzJB*X!RL7c>R40gj$rhQ=u=)iSnS|dZFA_|hVi*R=)Bqo*sfii^8 ziq@a@uIA?QB&0&x>jthIqyVcn7*GG?#DpDuXnb5R67CEN@jK(AqnM{jNsoO7K?PDc zF-V$K2iz9o*4A9mMA}cYeli<~Lei%kJDV$DJB`M|J=I>_aOB|2e;|L0mjR;hm0ew3 z{9BqIj=1XOD3kJsseqUq!RXoBbVql<4;=T}zp=y41$0l@*7 zZn+S##ZCO^dk9A(_uOe4MG~B#6pVrbk^mW;&JFmXpuhTuha2TOIXd#g-*)Qky4Y53 z)Q$(I;vFvD6(=6II6B0SgXG1jUDn;84-h_HVm&B67mKdx?n5HL04xVu4XJ~XJjA7szIsAaNY(P1*nR{kf=_Pk0%9Kt(%)0 z94m|KXkUQpHCODeuwuXyCIvln`$0F{5MDDX$nYXDW%yC;`Wa$(50_c{60;Y{e+QqB zJOe`wB>)B~?RrI3RLI~9K+hBmIxg|$moWv+0LVZqpKC8ck6j^Jla0#_g##+i#=0& z?reL`k!Nv=l(++{m$XW76IJ-}V|6ug0>5wWooMZ7N*!1FHzNf_?ic?11HqT?8)lbQ zK1QgHUEd)R=!-d@)atWt~f1r zthr{|jc1$Gy(n9+^!EniOXUe>D=}NWYMU;B;>yjIJiCA*b}EUzJ{Hv^eRc@ z^LMX_wNeP#vEXo&&Hb`UKjofQ{jA$q7sB#iYifokC+~m}8uEF%-f5}Dmj7z-*8zk7 zpEI2F#mn`lK7sb%A5Btu|LW%Gj8`ZIbT$3^`Rks)^``&UmP%PW>9eqj(q?$o_7;a< zn(j)%Lu_Go-JjmfUj=?P=J+x`yrgMLPm^(ruU}qwJ1iV|Gv{8ZF8cLiz9~$KNY@)D z?9a6fmEa9%wbVY7`qrk)ciZmY?nBUmkm*>$sA7DZR{a@Tb}FUz?1()TL3cvT0irOz zyaP_T>Z@~q#XHO8?lAtQE2|w3-IYvNDl|1ewFQ=u_%hZyGf>&bvA*OuYS2Y2co`d`$J1tljeLzwR@vY(_UR znQWy`77)wXHGT$vEt#M_8|-sOk*lK<7{<0CDn#wyHu>o)>*2GqN1Pj7~_I9(*ph_!D4dBmZw-&YYGflHZS1O?{S)&W(oAS zl7#g(Z>Nk0A9o3nc-J##J^>?F1MzHfwDbpuv zLO@Y)T%M?eF4r}ubvBHOoz?RX^NpVXO_k&kf@0?Bdg0^Yk=9(uGIIc9d43g#M{fqV zQraF()Y{ZR$$5c=`7q$wo71`<@VuD(-Px3iE_*U)$B+bINI%Sb^9J*WX1%^6>iist+K}$K5+lUwu$|e?nzjD}~JG#-$-$*-8kWz{f>7h8j5(92SWejz6k61`}&~}0oRXx-M97Go(|XP!x$)4*<@9~ zr!IeLVS>TdaMkvw7co!{Ug@EAO(}z9hOvUOH-0udUNXxle<&vZSI|R5;uYjpx;{U& z;y1LUQz@>fWzU2(z69R1$nlKe9gX9m5;DRKKGaU%q*p$-^+>~IVzMRv z9q>-T*d>U7UyO@ZEPfM|!CHP!uR-x%Li+dUhkqqJM~rI=$wR;A+sDui5*j7VC-@9# ztW;j@y!p$7Cd7lALTySszF&t_tTABJkgvG@_MKv%6qmq0tLjNr7e}_!S_z>(%|voR z&ar3b@rxQgCp4;lbf+$tGrLb-)}p6xKYMy{oSOjgYDn_72TFHn#uOHke&}4q_&#Z^ z%;dxOj#U@kg}II$>R_%(j){yAu;uuWCmRKgrJ9=h@d~f`pK?UGv9K9fZcAkS1J=C8NSic z)LopUyxxw~mjF7)?z4F>zjmtA#xA*}`0;-W(5A*~_@>1Tb3fTa8-8TFM%~Cw6YmIe zgPqzxRUvs1Ff-uZ5(P{4-kR%PEgoxWj4l&s%~gqj>4fq-`*GzFVkYGnT||J+{M;}4 zjANgIQdo6|U5=S-mmaPWh1dS_x9Y^G9@cG^hEM*J)dX(dKM@p}qHqa0@E&AV#yzX? zVYQa}!i@8`c#CxUxdFX*_#-a;V!}Z}qOru@LRTdOZe#7fQVfomIpu~ConWja@Z9_P z5xkra9WoaW(xJae%O{DkOTsosjgP>q7voYq6prbF>g#|QL3e=Nz#-$5WB%6w4$o^)7L!R)oCaG;{OfW7iP+mQ4bWr9pAa)0r z*W?Lyp+f|>f}A~He3XDx!TH73^Gp$Z zvE!f`QfxdbTRRmoZC^ZE$%G?p?~|Qki6KKvro7=u3Xwr28d+y;{$)>AqaX>(Z96kd z4nh0PNRf$7k)F-cxX-TYp2P0GU+C)FT0cI-jMu$Nc;=yDZe-v2BkRVZS~8Rz!%yV& z`-FUt&(UJay+hYL^o8*AMb;CRee);NVvGiiU(4{nYOPhf>gt|yo<&GE=7!T5qx(lW zXM@J1smR??cb}}*)=da?2;7cjC;V(vFvh0)lk7f<;A*S}o*w~uNFD=OMa+qgL&w0O zhgCqYVPr;6b2s=FTR4}Xt1CtP(*n(I&-X-QK$;kZkmkRU@|M3dYQ%<0N`3nJiA8fn zs*c2Yce>hJxj^u_yB;+-l;q)?RU|EnYV!$B$%P1Cf=zD;4bMCFf-d zKOJXv2o`ZX?8Zk@BTk1m~u>on!SlHOu2=5xXka&6F zBOw)VJc|~X_JKC5@VcAoU6!|}?#eC}Ph+QXz0>V^x`UbtD_zWFFA+1B)s6u(?b*&afZhh{*|8w|p2ZcURq zbCn>yjbVI3I`ZlG_aeJl@n{92_0_&(rcbxI9&L?cyvrUuwr8irYwJRC+qZI@Eqrjt zAP4{H?iF7ArtHj~Lh-jNdu2OK%g$_lo7WO7$asZ9YQku|L6TR|ZoHlcO;7vvA$Raj zj3C~0Fl;T)^aMl7>s?q_nj{tLK)uEQcG1+X;U=Trw~@c9z29LTIfg}F6L-?hsN7w7 zIdmp1gm+9tJj;mZ>>BM>Nc3&-ZVLFvKu%zAtKuDXUL32 zLqp@V+O6lb((wR+xnm$~E^edFY~XHzQ!J5TIv_Am{{DSk=ZI(xJKO+?`1x;MimQ8u zBiep?ktSVKD8D-17BAFEOHLDlU|X3@ zA}@tNX6Zd=ArD;jYcjXd9GxtlBh@86i<>n<_P8M#)6CNPDAbBuK=9PW_p9OTOFsPD zW`%U%zRXiJB4Z1c2DTJFP7hWOI9Pygp=KQk?x{gU4*>A}6jL)CnO{FK=%C`+ZSwCv z<4juPi9da$76?AX$mgCd zUTqp0;;X&A%@z@1-DA>)C!V@(<67kJMP}{=#`4qR^7`#5XB^9-AgyBwGh*U8)CGgo zvuZ&vfqda_K|&i3HziaE@~ZwcU4(G&*WfAExUio*WxO7YmoF>5A{Z8VL|^MKfi+8o zS{c&N2o;NOm?vP?+aq?JE*(BXd24O6WjL*VjXB@>%&a4xo*%3AlQ0G@?Z{5T-onjU zs?lcRS00wZ!l6x*DVw>OkiS7RE}&iki}&rDH-pI73YJV4838f@fx!NPQ8s67CYo2O zN5mLhna`b@pkq}Uziv|_jq$sez!$M}X|ky*@4e;UL1FA;jxDFrzcK%mB0Gun8kRQ% zVoP^Bp1c;0LM3tUBK?7;FQ}YBG8wL7q$Ve{a1l$`H2?WcUpoR-RC3GUxGFmeE zbH|M&$P5@K9Z3+1rcB5k_zRNn&k$Vg}`lJ7*$zlV7MnWUcy=N$okMJ zi*onl)a9S+d>=^i_V_WtFMRedNS5&XbgQhjlX4i(0cu61v8;o^CFS49ea7EOlQ$&> zZ{YTAjj%6v=W=;4UuLd;(H#70aV9NBDr;SKYEbJ-s84dTx)hkRkNoWko)V8e@G@j& zOG7DxJ@}bNL$|*#vwo?oKeSRSi#ku;TK`KLo5xb0em8TpyDkkOncb7d=c!^}YFTgP zjxL?9m&)UsR{Qp%&4;k#~;9qqNk<*J=E*xf&0{DPdBhqo`OZ+{gDQ8bUF~k0&_o) zS-)4wR$@i(3^UHl!b?9?@UOjG+J1dH&$^t{oEWB;;VP9JNAgL64jf?XrDbD#hXmXp zLe`OT8j++8#lcYu4NY^vp;*DMbTXL1^3qd|iI}KqG@6R;a4t%vpZ`~gQWfHWF*fMX zh9HjVO@u`Ps0>8nKBSmsippaM;9&9$24Nn;)2icQeze{lyxBF8Zgp6MdSGv<;v5V? z6H|LF?n&GVz(IT*EC>UPgD$5eaPQo~?>z1yp7S*A12};K01C)y@{`MUuKzALA}7If z4=%J*>v*iuhp$F6$2Bc+V`-cdQc)5<6n8)vL=spM@$c9ApEhH<4vv<@)#67`H$I80 z%ACG^Y^WE&(Q&gxMAsfv*oi*TiP|KM(3`V+^|tX^HU>Fab5A=t;-eMW!l$^0q9-*2VaArWkJk^~KmMTzC zjql{{l~ncggv0EYa0g`W7Kq47K~44bRmMCZFY9uOFfnEU~+nTnrm+m=4xIQ5YDb3mi!h_Sqp>m>1vuPIFKeHgDJ+ z`IH8H|M{NC^cqJpW{bwDI5;^S0L%dvym;s)KuRRDK1M9hAmFuAjt+8lQ1kOTocFQ6 z3SbrP`%Vs>!~4?+Bj#59U@d62#E8Nt6xXVcjJ8o~0;e$rbOm1f`VxRG8lQ~gWkSLg zB~E6DkONUbnbq+usLWt~PB%=dc={icwM-s9Ow_p*-}*xu#Fcx@%?_!lslBdyJ4dmx zhd^3{%YAo|RkEQ&7?;7lQJe4jT%bm$1l1YyaN0~MLK<~pc{u^zGJtGy)ia0oWFhH- zX!_u6LuLqp#R;rBNf|=cyHgng}gpu zRfO=ZVnchOg_gR@h7RyiBpCG&;JUXpU|1^$pHKjV`WfL3 z*8}GuS#V>-KTRi;$0Y1KOiJolb!CU1%st1IsYF{Z*X0p^Sq8AADnZ`SkPJGSDT2!_ zH+YszD|T#kV1+W!+zWsRB-kS9q34ko>e`|7fLPlpGxRsGXP3AkD%)-s`!rj|(BsjXMD~&LAu{Er^>!A00k=TL0s@-D;!cdk`~C zE4X%it8n?;v8)7mQFxx!RWRfS@eYGSO@X@s8Y^#neUm?ZA~G{GD_IfdJ1i*xX19}1CrMY0nheSb= zDhn)W7Mz)eAZXk*>n2m zeC|h9?0WoaiA7F_tF*MQJJKI;8n)9Zai}m67u(L%!#l#9=q=*hTAR~@xkk{>K6E2| zjxA{a@D_f1E+nPze^3>NUAr5?Gw2%c%SiXXYZ6xMNUS?moP4~*gf)L=@f5>s*_t{$ zLI9=Sf4P~+2mS)Eq=!?s6vqpE$|>NJ>D0LVsMz`moJ6HSI$(NK3`lsOYQwJmB0aOX zp1;|cC)c2jw%>7@xxT(0$g^qM0?h*h(coh>U!IWf-~ivKBK;550@Ee{#3tQ~!$a7x z(8+8D$VsLx5v@$bHxO|f0K$Q(4_TnAvQgTgE(4Ao7Pk((1K39)*C2cI=FzoYD*{-3 zX*y?DttQ#A9(3{jfU3`!lymbaIsG7#S5z_K=`EJfT{UcOlB;D%LA4l8`KHb{FHF)XE8WnL^)2;Ba%I=lOnLGATv7= z-zYq33e1Fx#QqJzta>2C78a%MwO-S2xd7pHq(=)HpAOJ=kZ~IBRF1bh)CQc_C_Unk zMGKMa`mb*Z4LZ^S+xq+-wEO)`=DhX-lsg4@SNCClUjSeoRN>6fP;6R4`-(7J4>W-P zL)u7@GVyhla;G8&2O@EKD#wY7G_^&YPV39&#Fvg6B1Dl+Uawj9U^`8&FuXJ{fjM!rKY``91*3LmA8fIK}ef={(}- z!0b@(FDsmS^VTg!oEM^RJw0Kc3yp)Dc52u(M6Z;Fhlh!PkwzmZs0QpGIZG=mrKT&t zt`@Kn!||>bA?3S&vc5bxSR4NLV1@Jd{~PmLC39KA3mIY9S&P66V9lnlQ2?!hklgz< z5F)@Qq|fC99};)}7@QN6?Wz8ciU64G2J|ghn6@UjjtyPAhyMo0;Om<+FdvwU+KRHsZ3oK7|L)03vN!tBS#jvi^&UHK8XN(6dq^* z!q8wqex=uWtq<_iFj(aqLQJ(7erXe~n;QysDSB>BR!;78v)~fGYeiY@K*@1<=0ms) z&dSTnPpmk?_E!VTw&5+|)rr0mUJS_f!TSLR7^Y&ss2M!fhiysNOf~>jXOtUlR=)8X zc8WnLDBzOwfGbNvT@W}L#PUc|QIQD#DMHkM!zz3n*-6`g zn*miI6ez>c)6TR3=7J+Auq^Ok`NM}WjXrsv=UqU+%>yn}VqDyFNJ$N$(O=-0MZ$-W zKTiVAN9T(A(;04Lw%gOWvRWVzK+qn+jIP)2z>vTfNb`Ts;C`q1BL;4ZspD zg8PFFzA%Ia1y6b?zYPOK&Rsq%9lNL)xA=(gmH8V;b~A#Z<32olP#yS%grvZiqXYTM z&halWQq>f9Ysj6N0S-w;_}4b-kX?ahaVmm|gr`aJ=FOKJX8nTGOMoGfgvI<}>mE^0 z4>6FD=%2yQvTuzTH+vB2@2?g4Kvgx3)LTLal5#u^KIGhzMX(c{6PFJFfrSyVJvg|0 zPq?F$zhd`n5l|(HTic9TrE%7i->Wz6;pp~|Nmc+Pl}Y3pe0dD2AMQhdG9!-8<2%?j zbvn|NczR&nCqZ?Z1y4DJh>IF#060PvOEfONEY@y(rk~xJ`N*@NfEQjTY|OJIbHYio z(WcH&C9LwGk0MA9*uOk{eSMp30UZm`4^p^zMhHC(n(Zrj7;R-`6%R*(Qt=5?51f@y z{e!nPv!)0N6-f&VcHTZ~|E6tNM4+zXe})>+*b)N_9$og-Na~o>sQhQd50qp`taZ?D`dcldy4)?Ta4ybcPL@HFr&xobm@W5<+yfWJt z4#5;O&=8=iGBwS2FM<146B?3*2!R#)e(A=H5Pki~0rhgHBV^shFm{1f*zI)u#^|*- z#UG*GKq81hIzw{Va0hdOv>5_Q%R_CV1m+a!WvuxhMe3Xry9U?TxJo#+;@~pOt-hO< zo;eKLA`KVUr}`}P5}ai}%AEy}OpV+Io_$y5BP47Booe_T;d4bQaY!Jh3A&c+z!mP{ zc%DHUPMLZ$^ls8jyQ;Imp&11qpy<4E#(N z0d!Lg*aImzj*jEuL0#ep)fl{i`{_G)7bD#9FAxpOLg)7KwQC`OKFb9{i4V013NFOJ zwi2v_yC|kTygvunM>pVFvjL}#{jZ$b-34;YyJ1{NgAu8Jk!`lqBvZYN{2AnkxyVn# zH%tSAQ{lq{vkh{1A|N1mUW8!}LMB2Z82?UD2VcR(W4C-Lo`BSFg@y(hdjPwEe0oKJ z!_pWM2}4Ru__}id*6w-gH5Vy96pRsYi|}p==Usvqh-eCgR8*%v!?zIv(I}YvI0B%2 zBx?pCF;3UrZPiiu;*rUWyV_jj2v-Xz1<0m=7_nfD$g8Rvn$X+B%5ngY55mody#cyk z<~=3_J7`<5^)v#yuMQ#2gN=(+$dL>7MGP*(_BUjly7RD`oFyi%fr1tjv2HO* z@}mJ>wN$aU;|rdpn2*$ZuxX(okeUGR1%c=RzqM;>u56|AA>u$o{85qoHk$A_Lw6ys z-V#n%!tY$Ur literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/img_19_0.png b/labworks/LW3/images/img_19_0.png new file mode 100644 index 0000000000000000000000000000000000000000..5427c4ca71152231f732403fb1bbb1139c954812 GIT binary patch literal 6694 zcmd5=2{_bi-~QXOB~pnx4VB|0g_6i#5u+s8cXC8ohAhKaOUD+?iNvu>_GO3~OZM#` z`!cePh`}(jj4?Chd*+!I9dH(||r>C2Tf|QiYp9>@r4;-Y%xH!VVO*q}OOg$io*Ou{O%2my|2SGxy zaP`XuKFP}yh#PT~o!wR3DzD~Pqiwib`pcJZs|GvH=R{SUmx-ts(BJ*h-4c;|&)IY2 zhGlg-f0pF+dFR(>Et5&DCrph>WrY$GTh#TW$Lg~U?A~8I5w$NWxFCWcB5>g|b>cH_ zeK{{3rW8iG^x0oDO}*R8G8rj_`MmUS=BKtx1Xig2RFaJ{1ljnXP=lZYtQ?TdBZvvQ z!6yO*b276+(wBoFNQ{FIs&5u0GSxb}x!uAQTk1b}@LCCmCd)&?9G3`#0|S{$OU^n8 z(%Z!33hv%FPPpf>v3AOPps90So}P}aQ9@0w=xRj6_don#j)tJ{M_~cVXw%@$6+Grc znS)cubMcOz9$c7k;Fea~s*4;XcoeotRuW@Et<+G;JqR}q4GiXI(5gmOR;iIso_Ouh z$R^YY*t8X6gGVmA`NCZCYKaA6!96ckkVsKI808Hx(f9=7;#e=moJofByVc%ag+eZ{J?r7@3+%zwhK^cuJHs+EL9W$$si`cjY)aiiToRVU7Ka(m6sRIiG zIlC)xu~okn2>N*Eb|^entbK*jHm%PBwT35b@15_6lj!K~9!|dGv9Z=ERZvqCFcLtg z(+}<4(9|BwY>W`JAjU3zM2>T${+$Sg`uPIg4ILg82S zcyHaimsh*Hv*OhEQscCwoIBG&MELHJPF2jD$Kx z5m{No9u<0_nVDJWIEjp!C8HSZ73pr?#xqS+d0j6mD(dLyh$QPXLHt_a)6$5Tg4$ZE zH2<}TFRSPv$F4-#M0xj@R;Yz6N7X}+$U}`Cb2np*)zEdRnpa2VTpei}3$$TuZB}dR zHJvmSfp($yj)R3V`EMK8~5)ohNp68I+eTncj)N0U39(11%+S#9|Y;2 zoi4c0%iH_uynG#AcozPW@awaaCly==vUTpA`>;wsMZE@A7P*cm~WaUEMLA;#GEK2J;u!j&|{5LQfTnN4> z5d^14#N+O6GPfZ$ixUhz*v~#cUg=@>=6)Q|)7e!Y&!v&llI8A8%OA=#O-)S`6}<8z zBO^U$JK`L>xFNxlC-&V!ATVodYvn<^Uyfr}#<038@7AC0gDK^%6MBg4KcpGByO+{v zG?adYdX?gUac#}Hw#YTxzjbyQ7pRTb@-ih~HBTZ~C&#dHdp zDuk9uHBCD@oQY8r`CMPunfqmLZc&krrKRQR)2F$V=hmsu)6y`Zp`pjo3o9$e(t>-< zq2N-fe5S?4#Te1ADlRm-X&)CC2Lv%AE;jZ+*E0xm@7T6g%&r=7($! zs>`Yc)>+34{vqK=$FX?d8mp{VuO6R;>PHR_L9=sn9V?XIuGUVtHihzZSNb7ZCc&D{_wPNeFt{R<(neW1In^}+!DS?~?yuVt zR>PA7&{2#~5_eyRbFcdAxG9V7`)2a|71ZB=)PHOq{yh%;pS_)WGm`?6lx$RFmIaK7 zuM+H-qW2kRdTaDi0O&>|I2>L+#|B01-_M?l#Txti`i|BG?UvBNbj~d+lPS+HC=hni z0w*pb-p`_a{kox<8Ld9xofQU*^zbl-Q8-5xx@BpZa{m1J3qfD}T_&mwB+@1>KzY^-{1cnK)1$^av#Y58hz)!i_4I1 z5KX@;Nlv$=rA6=9chJvM7LU7Am5HJg*o)31Q?B^hWusz?g>2n4l9+Dl(%r7a*^7wD zrK+kb7S)DudZsM3h~h zQc1e#61kO-pPxU^d;V$jx@f7{S>CFu?IeNZATt8dgHzwnl zyqk?ds^$?tWS^wCcqxoYP~gv@{=Y;l(9+Rru-Z4p|9$pIDgac^9G#WxdhfyJ`UFBF)`tTTSa)L?Xs(ae*f0L)%_72?4NOh*zQ6wB)TK+NLPA1j zHK;dATU39I}l z#Q-UJlarIZDvI7qz3jsN>6x17d_WJ7Ee1y4IAyBHLn5Ub8)A=v=Lrq40OltuYOk!U zY+gypt%quALEAIJUR$4S0|<)vXQIaxJhiNM7LA8SMsg8>>q&h{0G+)sqJtV(8UuhV z2ETv*e*Z)@5(J5ZqYe#^*b*;!WFI+lBy{^bKqz39f1^gUyjn;|$Y^aq^^3FS**|d~ z){X(_WmxvX!NHOM85xbj3W7+=18*;8x} z6ver}hWWIF#K6a>x40^}Jyu?}g>9Db} zy<^!2@rk{J02|a|%KfQpC2hRN6kY*^(2fDSiFa&#%xQ*oO`*~0h87lu_}woQJs|-| z+S})^Nkio6(&!tBX}gMt3o{>EUxtUOiKK(gv&DKyft>i)F!?Wm_@|?pavgz!6Mp+% zq5joz|NEE!XGEO+dcojW-u&3k4~|6Qr!AR-KnjU9c92Vfcc@IlB77>XyqEteCINzqMJ654b( zG>ik|2q5)UV`F3QjIPq^~3XUerq^pUDz`-oz_S>F7;tf%#DgjB0+_kj_ z6SV<;BRze1JjO;^@GS(*1Ru=+0hm&=63}zj{Oy^gRn_f}yd)4XN&Q*ZNj*Vd%KT^x zITMMpPN6$WhYlV3J!-d(Fw}hM*Kn3{`%VElr{OcWzP{D^9gtR1L~;H7=Ra-M)~X!- zBQ$TnDm6JHKwQN&F(2&f3048*xR@gEeg(wefhZvvSOp?5uvRoLD@((J&|QP5#u4Li z#AEG(P%x{29v}s3`3=rMUq7>|N&%2UWh3FqVJYpH*RNk+yC4GDI7gmRv$wZb@ZTzV zDy&-k>C=y1US9ARpq|+`Q}Tz0jgG1Ko8WgyNLiQB3zk)$aG*lBY;7|H&YB&J-Gv~v zN0FZhDo5t%{$cx$J?OrKo17$ZadTUmnI!^~>N@$(mlQ2G=`&AZsyoHUkr0HB0bPR$ zx(>Ga2EV@B#4q<%s-fVvgI^_?1hV(v+LZqv1n);OJ?J+5vvR41$Qv6bUw@@k$osXQ zlb6qR!WD}HJ%^!xa5k3~G`M;5se*z65QsY$GL*ZUl#|2!Fj7R=`c$&Mt}YsQ zS6SP}&lnG}=;<5iAAvpqMQdfD0AD49J3K=8efdYF@h0DjHk#6we{C4)022R*1&ZQj z1iBL$%%8|8Lp{CY7@U)Gr1;;z3H;SM9};l|0!ul`TpU1V{#r%xi>c8mD>&emW$il- z&Jqa3CSKKY*uB9T>Ri&AkCLqukoRG`79g{P^7})l?HwFCXIAG&O6_dNQanb>9MAwI z3_S$MT>!kg*wotF)ZGNE;YziNwzjr&X!JAS&CZ&>R&Q@_@A&oC-o>GUq4DwW-s)Og zr-2lF0boX%JgCo*M4;NyVo#$rFYy8%*R7yNUfVzEYrc9t9IByA`Z1&yq?C=-Hem@V zDTZ&V3f!q8J7zL^0euGt2ge;y@07vB=TLrraq;mvJ9G+fWdOc507XbadVZd|oT3_J zrK>`H1zN8m98Rtywsp9vJ47_@`SZt?!eAI>%G)l1KLF2hBRV=-!E5n3X|kpuPQo}J ziQefxoTUUh4$o4-0EIFgH&Ev%0aEH?1dUdwbj6H(+pRNE|3F$e_64B6F{qRvzNB zJE!?Lv|_;c6NT&O=l~<)Izle7X<+UG<;x9gUTYQJG(XA&GA=c>7>xh?cke8)2>e?? zgo!&+reBJ_F`z3eEuH@U{ri$O;0DMmLAzs)r;k#pRNz$mx2fwuoAZEaUi|5>Rqt$P zd|Yy}vvO)gaj_))$Qo_Sf6Pbk_U)J87*5N{8G}xRM(qhI?(e@1dPv9V=7`}LjR~;1 zZxQ%n`_32lJ~sXoL$c%rq|(;W;Tc1ovF5#+!Vaf>*GE}9^%C*3w0iAv^8MGU~82+KL$6?!3?5Z3)R4O42_fq4@ z1tiG=0O?*! zE%)8C6&o9#I?3{@wa8LWB(igba#ZJ#@NIp4@={q(epXfs>Yz-THH(EXB}vBNY5%}L z+b44AA42cYlgdLUp9N`~aXSzznl^yY{Jsm{D12y1cw>w}|o?@fGXj!xTDkYyChJFSb&*Y{Tsp04Gj#; zNLo}(F}^21rEf-73GiUmPre43X#c%Djk1gmtO~NTI}~rM*RC zSVY+72cSPmz}hN$%tg`XGtm~8FF%wxbxJx}fd=!2fqHLTDsYvX(x)k02^wf5u!wSi zM#d&4j!M22k2!w!=mtZv&I9a}CxD$RLlH_#`%tg+uz@?M__(;)n3$OH0bSMQVT|<( zxLsjeWM!E{j{=-h#B=nbJb_em$d5vrkd%=b0KEzJP74=qeB4>lbFb38(s*saSdm3# zKj{A^bW)W*fX=WJNRaRQ9o^AeyE`%C8CS!u(ET?*IFK||Y0u~##kT3B53X@jz4(gFqyGX6LXf=x literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/img_19_2.png b/labworks/LW3/images/img_19_2.png new file mode 100644 index 0000000000000000000000000000000000000000..4d51d679b56dcf995bdfe5e6aaf4cf14a2f7150c GIT binary patch literal 6595 zcmd5>c{tSV-v3FKB$Nt8)ALZ-vLqo4+VBX;ZmbDe$G#g{kSHQclA-K-cCwYSXUV<{ zSw}-NF~%4S@2%(LoaZ{{Jm)><{o}m9%Ut7{>z@0%m(TaJd?)ONhVlWXV@wbP9Z*%d zaub4RQo!paBR%*;=X0hYc$0CzYT&Mow08HhaJ7QeE!>?QknRq)w@!Lmxw_dRog_r0 zM8t(p-f?$#cDpDl>bN^V1nFucI?BWt3MSd-tYYW}L97-#FPbccOj`)z5>vgRq~o3R z4HI}>mrQM58YD4Plm~}Dbgnvbu&h5_Z$QTCL+r51-im~E%dmy@&|{Xb8?A98XGOF| z9rwLZA4v}{*-)#<8|l1#2M0U-=-zP11)~UYM3|T`Ck;XZe^pqY7EORTkw+0qwa%hQ z5jj}v83A%~V}PIMWECyeRIXFz3$AA6ma#yiIS4T(AdBR+5p6`u;@KK>weKF1&0(qknO@pZmKw!Jj z`l_m`Gv(rzO<8GaSIWxD$PO@;&?8L2uZ}|IGvR(g@a;`E(#i_ItgI|!B*LdOk7u*~VdbDXF%d1o$G47Qi2ya!^wTUpP-FCn3A+5AM;&(E*#8+evC zsALBM$#<6IJH2xj3E>-DH-7u=(cGsOnK?N*Eso$U!TU`uEv*_D*iG7@Wevui-6l%f zuY5wHwD%ts?nVY~AUr%gY%$dyVcyb^;-TMEg7gYa^Sj_1*JZu%Itavzx-C-S!q6K_ zvT*_gan^!cwUPf2AAIQ-ia&fo9D?p2W~PsgiyI(N!NO^vYiD+El#vZ;*!!=p{l7lw zRuTzna4tqp)FqG&E1XRBoTj-3@7zJ;f3UO@*rbvZQ|*^hqx|7$5+`Rm{qpRWCGSIG z`=U1Qy-WH0`SW@$TH+_}50atUt@VXvZ#gad)y3f@6epw@t=0ld^IQL#=`r;oY&$T@ zWfLO{DV9EXW-(Uj0`5F)tq%%1`0FqAwAKEU;yrhRGBnWz@ut42pFVw}IvxK5*qHY3 zFALm8@yL2!_aozVwY6iC{qQm#o}Q~!KOr|eH`nCH2Q`R2`#wnH;qJ~aDyoUBCB+RC zngw=IC!Gx@ou!vu_z(YjNvv@pC}_>6dm-o$%0toDw>sGuCm?zL{EAQg;6m)+g8B+4 z6l8IFvXHjghnR8f`0?17n3(y{JrLj1N{0D(A9EO@)i%njRldl=CUBqkcm!bUc>;|GU<}n4qW+-V!&zsDUFb z3f$iM{kA$bpwilajdA z6U3BGojL`8>lVu{k0|$G{+KWMl+R-WS@) z6nsf*KP0yNQBo0%h)!EvT+A9RDJkJ42k8EVGI#Lnwu4_Q)RD2(Z=*+;>3MV0(?9xx z&)6Q?2W_J2`Lb(k<#DUvX$dd`3jt(xvN=L-FG9@B{S^ecjT|~JqRVu^;4ceU)Y>bT`jbVbRrmig zNP|ue1CIDmqiJGd(y<}8u~;Hbpk=m6qWL>D|Ff#w6$nty=20v#I5!b)KUna1gIlq9 zlKCIIgMT&OyBAOQ++W!wb|E4mzEivOeWiouV!(Q7+*w41;>nYd&2C*2mki%}=F6SX z>=P6c3LmW5A=5bsXka!_f4|kmuU;h#JM@`V^>gx*$38|G>fBKxE{=$8_=`pI}z~5k3UeU_RYP}b|m6nqu zNS%|a*8)5kCt{M5oSY1=D9p-=>cWQSjg5_YNA86^;8H_<(td>;xt~v z<#D06uP<#shX_9}?`1A7F5l_LQl)nNf)pxB^1=mNrUEtFx-%&o=vgHT3#8&C&M-e# z<)%dlD03XWp!ykDj8ZRxsY#8u)(+eE_w=MHo=iEV7B?SXznNZRirmbghxlrhOddor zg1UpFyL_1=Zqia*hpIj7J2q;ltE1wC#;c4f7v?yAfuL@VUC8_^9Q?47yMw-9itdVX zwZvaWAP^lJYg8Z_lbE8X4&G7@P(#s`e_!M|ZRDY-Mf&BYS3EpCOR&8v=l&1aZ)o@s z#-6VXb-3&j_U_96%qi~<0*ZB42{%9g&<9;zU7bMoSsk{q9B1I{l&1Y@w#DhPUcI_R z#CGZ1+2s@$7Xy-V?H?RecI?Gq@|Txg)f3OFMk;Jo>g5}y1BR?*0sMsmU&_e1Hak0e z(QPi`2~42?Siw83(Wh`Y+#`n)j|IJewaL(n?(lyUCz1c>hoxMFN9~rQ47cKFF z@D8~1nco2FE*2He28_ZXBHZ{v&~5gg_VWHZ&kZroXM9$-Z>vOiq7@3ks({PpEB>@N zTq5a#)9D`=Sf$9kpDenRdgBMcX<2RnVJdeReigi*!>%()COWOW{6czK8o#`}yxr*U z_M1fU5fl`hAyR%7l9KXD;iZA1TY_kHOic^a;zhnv$rG?XXtV+eoPI=JTwI(|031?u ztaqir?XK`^E`ldct!NckSVubn1 zLjgr#`eOOc8kO?nRs%LxZNH6_MWF%Igih&1@aAqe5 zZc!4**}1vlKCsAUb|Sn%rIG7D%nHEz)y=#Q-ao(#y{5NO{O9rV&z1~qAZMD8eu2Rs zwBz55E;U>NVk#601*}9h?5`GII|!ibeBhRUdPW9N9JTg%QT>2`fW8aiN6$t#Plp*D zmvV|&=!Sx3IJAR6J?#Kb!lrY6ZE3pN4f`Zc*zi?BK|$8H3l2jm0|NssBei~B#-V^c z>k~vSNqa6D^fhmg3Ho|^aXTe3H8s`pEfT(-wTTM!KfM=Eakhs^<)KxN8 zVS8A9=>xmd$45t~sAQA3o-(S!N5elJvk(H_q=J{0r5iYR6I0V9?aa|UDe|Pzggf+YNTZ8$ zXLd=6_FY9q%chmUWCJ248cTx z0qq~!omi!k1NqdN0vb{?EgbYctPSP{BVD-hQ_^Fx*PAVdOdfz115Y##m_RYtKemUW zPw%+1o>JT1l@{K}tfHbDuz;1PB$dl}(x6%VP9c@pbd{eFn$$qU^R3$B1lSl`rkCcw zPc~|iWwE7hSPfuu?!14n4+M>#+4gwH5cL!Wo>0(C8Ygb@3kj8QT~PWbm5RY&1Vu#$ z(^O+t)}|xv`*U>dkVvUSY4Hqp~x}HnexNokxV5;1d z)#8M;^!4>`zsN^a;2K#K`cf~4>S$}f2JYH+wkz*Jm>RP~#z9-mSV`$Fi8F(*s;#Z9r5SXTItk>rQWO3X zt_Wr2P@-=w{>!`j^z1B;3r{d$lXlXM-()by^|?2$)OC+Dt-t|DWAR%^1=Oau*L-(s z%Z2Ur!TKaVeFVZ@()xV>Nm?2^=2b`JAy31$hn%uP#TL7QoF?k>fnmu7((XE%Aa1F1 z^X99O5u?Ud2je<_Lx92FOwBDMe}6w%@8>+j z5&)Oem`ayM-?Rrz^!KCFK!8*IOd(=Du$?cnu#LYPhrWYU|23S;8k#)rr}_N(^F#@o zC*{bA0z`$AVZ>me1=%{yj6}hrb2BrQL59<+u(7dOh|z?LC$?R)ut;4cOcWZHSZ9}& z=^|^ELUvj#Ce`k$+1c3x)6ehN+sCBA(Xj2e$Wnl^-nLkwSTwq@sp%SZ6RR-zIbBT` zfyjMh*=!Wa;RVijq}VDPP;Zuu+nh@EhQErcs+O;>Z(lhth0;Cf5|suBIkc_4UHc?k zH^`Bs5;XNXi9}joFx$41b}Y4ko!qPkN#)v>AAYP#P*@nKN%GcmeEl8Z6hdMwq}SfD zqSz<|n`EDBZrINL2rda76O()}({YVBPGI<|-M@a$T9coru6S{qqA0U1feOS9iMH0( zo~e)F{eVHaB&?Z92?57e74Efnbo7C~Aff6}`VX@+aVKZ;7kPOTO?lF@W59 zu~1i}pE??D0*;k;nexVmXw4(x7*BHje#$NPUPFp4tU*pkI$mFI-7>wkfRamI+=0<$z3zwUhUYP|hBKmwyGV6f8 zl3WCNB5(q5RRw6Dk-Gx7dTTeA+ePH%F`!>-7|15FCPHtu3|r**&UG4!0YBuAZjLc zVco#I1!ZND#ZH*&Bg57pdpd!>1AeA823)^eK~`1^aFSdaJb{2b4jedu=cr!`2Cg~D z-p$4HI}WNnUv-?00Lip9&V>E+|&F<}{52OoxLIauK8ro(7 q+HvmS&lc++^Wfi0wpaRXmSUTDw;5DyoXAt!B~Mu_G!*Cq+@T_NY;t)JV+GR#7ub z%osI8R8k{SLVTC!Ki>EIj&HnuKgW^lCa&Cfu66#--+BHb@7~d7IdT331Oj2vxut0Y zfgE}VUYW;^fOkv=3a@~Rg1?r9zp-^116&wz)%ey(1g(&F;s zQlfvl`1^bNDN0B{|GR^@m#?z~{=~5eaFgTSx9<5tAguNWuR}#@g{}~YgrSb6x=CQh z>ST!b5G9qmh9zfY_$9m+y74vf@L|Iut)(Q>v`Unj#go2kmZ>~YrRq_bzyGu9t^j=1 zpc@P>RFUZlRbtz>Fh@&kS;3>G6w50dj>F+kY%I9k@C!%e#MBcYPn0v~mG?<%bvk6> zCF;}XUT3C|snQz0;uXPRtORSqe8z^(sc?H?2t>T{C7BUi44D6fJm&bnH(JdcKW$&! zQ16K4F@E%@{^_4TF&7|@4LQTlb8_Bwbj;(A-%!J*dNVAIRyw-5xvgWEAs@AfOH2J_ z_p194dvz@DVz}jrR?|C44Gj%74?53;?9--4SmY;u=IkSznyeFQ7I)$lgE4v5h>H4hMzCN?t8F-liV~PTZbeR^sftF8 z-J!bRR(BHxxUi)eQinvmiujiJTFMWO4hf#1ZyR7TB#mp#mzm#Jt7F9 zkBQ?|d{E-$Q39*L5XVdPF@>h)iX)2~=#3ArdmE{J4b#|@tc9D&c8@&f>AS)04w-q%qmzTkI#^l>pWHq!|o2qRGt(fRMarNu)o&CCG+Lm$}snNi0XCT>s6*WRkbHGYIX>QLdJD}_ppYk)usnx*)z3mIgYsAiknOfF6D4G#?!mzJ)CP|C~8 zOUlYF)c-tk7*eMkxPPHPoP`@VG9vH0yyP9G&IXZu6tkUv3TyXSJ%XX*xR94 zHU^Z_f5q)v$WM4b%L?6b6-?9#S=O~XAIEnTlJXp^$s}yVM$u>XId90OAq)mvcI2a_ z*dkU@RE*Rii1+sST7l=Vm0{P(1{lZgzF&QlwVKgTw*US-eEespoz87d1BH>rl7iGA z?dS=$8Ed)8fTE}~B)))XF4dYVIzH~08QJEPwbqwf;jD`6%zTS)@@M?J>gC>cr3DE^ z3>NJCIooV^C+mkaMfF$M6s$reG^ig(n=~dx{?Vck_yyPa<#n2rm|NpsPqRZoakH<} zGe4;5vxEJROCmtOyf*t&r=InzD+1a7^RM|^pH@SMX^r0@kYu4Fryw7h{>3KRCwjKt zBK|3xk6v#llT7uGV^kcN;Vr+Y6LGRuX{3M&{WT}S zHGE?@i9hedcRC-@+0LFA(%VrXJ2cXlPO!EzvGpWoV!0jC|G?j2UI=Bl!s&KVDmM@U zIm^j#4Dy}vcbc~6y-!O^GI9dr@$2CRTMAUM%lf0krGH$pSogR&jmSC0<6KZ>LM@}XvwX+$*WVfG1d5@oUjp@*UEOk(fp+&;;o zI8q>u4zZBDz~^pe_u#9_MK4RA$YN?w$qB-EL3@xfS;3ExLM+6l%vf`aR6Ue9a+-<{ z&AER}`wd%XqcctGMAF7{(QA;8hua~4KmtGgi;a|hUf>l%k0C#a{hkkT)0Nt;V|DoU zL;XrW=pbLOETtlCm3P|E#6J4ei8CZaWpz;};-viRt3xfc3WQ$or)T7}Ab3DSN8jdV zUB~BJ1Iwz^U+Hvp{3F?ns&YZ*$&1D}>N~VEXXw{tddB#32JTT^Qf5E0Uz|(X^1UhN zNX(Sfyr*NNyclYJK62F4OWmbT>?j&`RQ(fX*xQydmcWL641w56{&u4`Dq5GOU|y0x zDi*Q&g&azrs3mCDy7I)&f_>-W8d(fK1)JVWwYN$d@@_%MjaAxPiI3&9W)|#B^In^^ z#t#j75qS*i__F(d1(x1_X~M)m%q(tPFR&5j%^ptTwv@!(Hv00R`>a;`E~*F-doN%# zX~_I*qcihuBhH4SgD)8I0pX9RyBNuy)F2LK_s&MLC&4o7&>=_@=f4%qzHZM)}p3I~Z~G9T;^L@&fq^>LDzRRQR*f*P?MEYMHK zO-)r8gbH!r-3V4bGYyT_z zGjC^?pr$sgb^;<98MBT29?Ppzf(@f@5SN#~^`uHuIt@aN8Ut1b!0-AY1tY^HHDAQW zoo>Qn{H9eMnQztzFIuPfjs@{;PwG&|W5tchi6Nx;3mpb{htLMZ5q-)YgDYYD&zI>z zLQ&Yg#Uwv@d6bzdxtY~(tgL)Hua5AF}J?k^2Ll-wO<{3Q#_S>*V``o{nlrTt$H7^97KCE<+OYJ44UgaIo8OP8gk}2 zx~Y{OYK6AbpHg{NUQ_oOr*yiGOt}>=cI?AzxSILrCItDx)n$_o>HjzP`d^sYS-B{o zx1GW-8??S;^wf1Y`9FY4393vo^r5!Jsg^oKgNBZ;7P&Bi%WvUvmoKL{*yew<;5$#$ z&=Bo;fr~RIuUU8O(~i##E3o^7U9bdHf@ou8NwnrZg1%Km&rzq&K1Jjw2{2Y^QQss9 zWVnlTi$L9_F6>xT7Nc^*i}G(Rg=R6ItefOmXZ~G0{~P?ADSJ$DUaV5KU0rv0&Y1?z`sVq~EN|>0@hlRO&FP_jW*K?p^j2bu71dVkQZnRp8 zuDll2CU{_Ij&1xM%x%?OQIiZ`&bztkVVDf5V!ewV+wSon_t5uj92-l!Df?3O6F}-ZDReC+Kx(C-D1X ze?)0{Ji6Z&d6h6euztmu>{3j#G+MSdCeM62L>SLgK{J1y+4sf| zQ*+Z*SFF?TqKe_T*SZ|C^X&`Oo(jpz3?LfW^Ilg9_|Xrooh$&*#i;%+**3@(N3rK5 ze$(bN)zEl$`}XY`hqe7Q^xZ1uc`)+G10B|(dwy1L#r%TJqa8(bx4~VB9J=*zN=tPUOw7&Yi8Rpv;t0n4pJBBA07e(~Y`nSUJnq`rO@Do#m)A;70JQ02 z%E@;-J3%@|a5%My42Q$xtf{tSJcHO^SxkVWZiuI(VeUK8?B?jvp+i@iHt=FPbet`^hC zEp`|TW@lbVt$4&1q2JclR*)?nauao1S2xoQY2#n+H~neKc2F@Cwa-HsZ&t@UXI3d_ z9FCQ05S00{kn#*xRxJI*UhIh&yKn*=DKBnisL>QFSfH8kv}m=!+*?;J{y}tLf`Hb< zh>@*ID{kj(w&kL=5~g7Qhj@ooi6VSy6w<@!YEWHxbkca0NY+-T6`Y8f!SHN9X#P^1 z9%dtFCh!PJXvX`>iitDtb@}PwjiXcbU<(Ol1>P`FUVDy`g?zs{3+5j3xclty@VOTX zQ3RvNHpeKz**hp03xRITN~pR&b7N3ZQE9?2J=_T0RO}(XYR%2*+bMAQj1Q8P2`y81 z!=>9jF{gR-wY;E?IlEAXdv~|49!5IcCN$`pGm+=Ai2RU{F^MLaUde;?9}Zb12V~J$ zb+fRQo>V+`!rdu7NPapH;|In4vQWC)Zi4iuMvP>LsqCp03>U@$PV00BzrL9puH5A^ zv6sOT5s^U*1ZmCBr-y!{ark_5jZJX2&rmtii2Cwvg6p8(N(!t^lrVl4^Q>U1^9_Q{ zfOCA-^lAU=i;l%_O-xKYN{|))(*!1Dkrbu5xl4sNzapm#r3&g*B&F6GONIUo4gV@p{YO73`|9scZ^b`-iC^#PF3q6H z$<#SF>KLu3{Y4nJAGE9zT6LMl;htFn!R;3NV?x{QtIC;M39;}1#gUUIPo@MVCyhHecR7*( z0(-|5Q)|vp>oS%HyY(?5vm}ZX-t~Q84?D}*bV8`-kXf%hg?9-FuMm?Ek*0_<2V5IL zw+y-yZP@(cW{*zlydCJlLSRN&RJhZmBveHof)YAK8+w-tJ73xIZpT}<6n3Y?~nyoNG^iD4xdZTv< z1#}kZMBQ4GY^hnfk+U=5>%ul6yQN6$4@d#;M*1l;q;2_7sd?Caeg62nAs8A{IylkT zx~3yFA+&&@;bFH=PZ@)LemXidIOsPu{?G6X`0G%K>COymSP=lxWj^{0A8vTK0NgB_ z3XSKw?;0`j!W{s^NcgT?hI( z0NUS+oTXP+SI29;vO(}MwXrGh;0v>MA1*Tt3BjD?Q!PUVFNmb6g*BU1SSu7T9fjz5 z{xe?h{8*89AE_7u1imJ0KXh+HZNEAQffyPcEwb{$n1<16!%8(jt046g210ZgU2B`l zJS3MUYG3Q74##5~MmT`9!?rlkhl+m+vish$0JR#^L62?2u{UDL;)4h}T)lb3dkUSY z{sJLxlY-79F$hhDsh{$R`$MUk-HI*a1fvEiwGv)@gD`Hr{-&53ub~Z%mijP{S^!(W zPOm*_BnjJq1UR?QLt(8$E||p8LUIInRsvd}TPzLJa!ic1iT%otJ)5_kUd(J8jE>la zO^%;|cysYHo&4R*J7r(xUFDfL4v~1_fU*GWqb_Za)VublU`W}%4N1udF(A79rKA4E z*Ci%SJCBA?|+eX53eSxm@X-{Yj`SP7IfQctLO6a`!cG}Y`A|f)~k0zq0?%~DFWfrrL#)b;LxWXc*^t6Xutw#plJQAgcy0wd?-R{rr+xrqRfLqzSZbjxbMoS%Zlt;XjY zKO^C{@%vmdlvof`qo9B9kFM{Jp_85JRstqhG6O15n#XjE6jyB3WZpy86@ zWkEFHa-ju>4nQp_iG6h(rR&wS7G5=0=82)03GTN%nAYZfq={@=kFpJ3(?X$8%Ru;U z*yvO02%dpF?(E&{-UZ|iiW^Cn_cDV*%eP3ArRkmxIw2t;L0e4BjO>mXR|pQ-!echp`wFWijYWy1QQz@F`e;7I1)VCtjt2nsM>qx#sL*o zf|Hb;MDPvA$WIk%MYHQ90Ii)ZuEW&SRJH_NQE|t{#)j}?aD2R^ ztE($s*VuUQg*Z?aBCUTy++1D1DUqAl; z%B^beAe(ne0)C9<+^cqq32td_woTQ$3CL_-79$J}FKuq7XJF1mK0kAOE`lE@xLK>x z8TLg7((B4_dC*FEtqhzrVK^dT(_m6*p@&C9xwogl8u-tDJuNFQAJ-do2x9znnd`2u zZZz6sEH~LM^xne4!bRkYiJ4hRe!k}0w{IJ$QwUV(UXZD|d1-F$4OW%S*JUgMf5u)LV=#Y@>cm{{tBU!1_Q()4yLfBehgvU_=8zTS$M6OXF>`jjHd4v~bV z9J$LG8fa$h<5MZ;IZ*^m3frH#0+)~VSzjoH#<1MbAm6x;Fwk}>s>NBZFg+1t5|?R) z3!44N8ZjHZ`;b`v6!8%snTW3al}+ODwG00XB&a7ISuIYk4Hjm)M>GPtaU;B}S<|Po zm^vG`9}hIXx8`X<9djfkPxiIY30!0UkZTE+r7qj5IG^@NP-nRb5o>eTjY;{{`B~~` z>%I`47f+3O?s)_Ai1YeyG~!EGDeDuAFRpwQ6XN%Nc}!8n?t|9a{Nx$IKHT_#1>5-` zjtOJQzOuGcEQ#G*>(?Gcd&cLd{MG#4sh}K=pw;j9&(t^JLq6jgt2lj@|U* zVmMZZ%2{ANjLx*-(av;loQ5HL7km}#8)+IVzt6P)rsWQwojxrvg?q?quv?3}cYp7C zIN^sn(LVJ^Bh(_`+CyR{?``1X473(Z=Ij<)#9KA?q@jM2;$#(N~1B=`B& zolCF(oXu*HFZTdS6L7WspgNHVr*{GiET_XO`Ke7xI#J02dK76QG1Gm6(Q3;<@nK!I zq|=!#N``O6s>0gLn5Xl57o5`9hHUfUj`2!<{3A}530j1`i*+=D96U9w z7!#wqBys&C1M92h z+(VGWY|t5nDt`Z7>p%tN_G-%UkSjglfSvP8cE*$N=@84%PR?zgzPCd(Zz*9odUB~yZEsnDRs+Vk*1^}({}2MXRLsPCT}(_Yh>!{21WK?k zj!JIXr^koc!6#vEE-wA+3*E3^KkaQ`L#E`FYJmFXb}gavD|C7&_*OPcRRF`kFtWS@ z2);aIZZ`x{4;etFS<7tD9;pJ$2P*W1>p)tG)SSJMbO@62MUO$4Swm&BUt_!hR*LqT zuBi7Tgf8um0X{BJoRc&2l>HbaB~6c^2u!RM+T&ZdL`xZn$3WlFNdVE;)W|5eHG zJ4tNkhqGEKm$Z`$7-7(Sytem-I&@ z2g=F*n1B~eCymG{OMah1d>vMD{0i6o``~SDUK`ok+Dr@L;F4}UPv{A#C@-rH2^CHA z#-3-&MJFqZjhUy`&=iDq3Jo%^4#8n?g^?}JSd4%c%RR@3=gt*O9oNXRok(eM(rFU8 z5(R*tAC1!FC#AZz3tuxvPkVQ%a2O{TxoTu(&1`+Q)ct)in~9FNJ|{MoY$E;^UebG# zJ2&u%hmV4e21YhYXeewPLtXYXCOx`?O}OZ*H?{ZDnfX2(({Y z&mu8tN-RfX$5+ii@Q(HB8eb9xVDLu1ebOA-516e=Beo%{H;l;%t|XeWw?TEhz`2fz zIarhfy0L+OZjD)k+E(b7bn36m3O_=F6WWEdJla=P&8k$aIti2Lc<0{jm^CAo5sBpLqe}D+p6{Bfs3U)xzHS|PW6!2>0>`;?CCJ9lDq+a2D4;Ru>gr~=b0dr7 zDdMF?-W4%7C#xp~ii^JPt@(+%^#(BMQ|@UrTZt1w@o(}?F0D){d0D|-j(ul(Pz384 znERVp{)_(Xe^?L4FSHGoT8Pe=r0dpeujME16~LIc8nnM}QZGnTc<%t1KN3EATBpP< zWzJd&F$3xy3PcEL#M072rI954YOS?5ZyGW$Ca{TBX+3U}3{F|yiP{LPMxQ#>?lb)Dx24La3RKD8sx#x&xtDwMsoK?6- z)iT9A#d80fkXJwjG(~B03rE)eIID9-#19)=U7^I>>QnqSKe$h2T1?U@e}M^&IvoD4X4b*#`VWy?^;>wjPxQU6f?EPKB#gW4Q9s6JWPxcSM zPE=)kKJkEmZ~Yj{v+}Ihs+|sP4BcC?(@o%gG=Cbi-X#*W*2V!ciUP-u*yTPY@`dCV zfWXTSO89#=5;L^rT5G?pMAeJBQKRJ-QCmZ1_ zpN{h3#!>E+^y%HjryT!NN>IlExxX$Mc2bx(&Yiw1oy~o(!M~Ue)Dq+AJrW!!Jn+kj zokg{^a9s5}63KIDWF))R4oFP=GxSGHK;8HLmd$X5?ZoZEK}+yKhsqQ*6ffsH`Hxh< z?nfN(Riz4?uLF6%pEy)1i`epDVPblK zxOsXm@&I9)D#h|{t|M**OaFnzjg1v|b=^KNT9GaE2Ku}KT{B@blN_uae@pW~98%02 z?s_XidB(T<{VBVgjO4pq{#uKqp6|!0&4t+g@RxpDyd=Mh-fk63?F1*BoZ?6yCIA!) zG`#?o2+@W0+LZ?f2ndGTO;-5{0xxo)eBq4LrFd(X=*yj4K@mC7Y&MSM6k?tsm9Bn& zqR)ExZn``L{bgm|mqdv4U(BqlD3j7VJ*VJ#P5DX`XV@B>Pm4Y?SL}NMP(k$Q;mg_M zCplxtHP_WyaLaq*+GDuIpobvIe^q_|4Z}WV@IwcFZ0V%2^2@)7f@IFq zYe0XrNNn<0<4J-!U*$3;<9>edE0@x`sTJ;WN~ep9*xJwDk=yUB9D{d_oW0Bm&lR-P zu4?0Jn? zex5tg!GTwRS)arUS7sXbT6j4BqvVY5RI}ntC?iLtrmDAtnTd(s^0P4Zf9l-k>HP5F zLd5XTONalfzAe!SB6#Mw%GRjkZGkh*$yX~z`-1X1Iwj1l*~U{|gkvu_i78 zY`^bj4*}%^_y4;|kzsI|YmaFFXWrD>y6jCecI&I;XH9B4)IM) zS#*_S$H~b6JQR3C;O(I0_sKVH_`-7z3Y27JWQss8D`HmG|LNJ$J<%=x;L(67KdcH_ z2@Pc0_3BY397xeukS(?#`7J3g9|Go54j_21N_5^E9VF_nxTHZsTmaZjQDY;1FiPT8 zcfeHeMlV?@i&gpOAG@$Axa@{Y`Fn*OOZ|G5OI6{}7ThM$`b~-I)UC!a3{F zO<zeP(l7opK|JW2t2@To_I9j5qtk3xY1lARYzFg8$GaBbso zIzZ0#P9YSiSz8^e)~=oKjrMHW3)tHkX-V=w9{2Ft@d@u%7JFUY?yn=;!Kxk}9?Vu& zRw@;49tW#ElOU)YEa5nD>qM>Rq~ba(=kBqUm6cYnkQJ+o(<`g1EN3G%f9-By5f(F} zf#iU2d(H}*M!BZFEj*^ox#@yhsPY>&Gz#^?K5%ig&7tyV8;9M6;_X$hFz(wYfTpqR zp31R`!E=S%|5`Q(Q{3%t+0_k;J})#_Xu!I^#<#zgz}tO%pIJDu(}g^Rv8;4x`$`3h z1Q2v`GL_&#)?=eefj{4!=jN96noJ|7c)*r4`|*MX50MP%DU3d?S;$LiWbOJ z$T|pArlxsrLK|z!BLTMuIGTSl_NGc}$Hc^pw}iDc?+hV{AZ^s|kzekPRr8TTn7y}DENy4rIq$>wjMgy+9>HfijG>6bY z9b{qHc5>J^5Iq4e2+$dkoC#wz2Tq2I%uX}>zW?7!+0Oq0*+-Gt)MNV!AiW(ZWe_HU?!$Z#y60@OY(?&?;W+29!`Q zYK7KIxHP%;s$=fJ*hmt$DH$F%6T4TXc@T>wmMb%UG91L|<$?F(Ak2QHo_O&TTniQ# zo#I5e?Vde*cCa$%&z}#Lcxc^|sbmg>zr0xYu&@?j`m4N;EA?MQ(ziA@^-3JM!*c+i zCO@fdgUKu>qDu(Rco9zG4<1I+IZ4HLa?XX40`?4W2i!y!l=w z$#Ews+-DtB?mUmwBqu3(su>*28N62u&+QW}d#hd%UH}Px(WduRnOh};0ZJU) z@aICZ-AO8Wnr{jeB+P&>+d4C2j}@uiez$solk-^1?t(-F5K);Ao&!8?>0MCR%L^uZ z$o|UPb&S6=tLm@&7WeLPc}_R0{5VMVnORt3aLPYFGR*uKt8T5G3KE&9b~YHDn7AM( zFORTBO-4WoIT{h4flbc;_kX6Qc$;_EyJvup^%-ctof}=y<}DQR1r!RkM<5V&Vf*x- z?shaw&co`zko!AGdrsR1M}^Bkkqn=qw(ReDgR^U|%**OkHxuqXQeo4aEK@)Nd+$R| z&R<};XU>^hpPmA2YX&?uSYjm?)TXr@6U30K0#?T*nXyghXx!7kZd#a|b6h$T>Ak(a zFasFYuK3O$!TkXzSy*0xA-G@jTkMf!kA49z$H|~jLx=i(*%~i&IT&QrH{HS`B3fI1 zMYkL)G|1*nN=gdPrcDq&gM%Ly-3$TCtQ~vdxL3n+!H0$hMLmHtGrQXxtu6GGmXoxd zon7&XCG7q#wpGDz@%dVya)yGRQyp;o;%Cl=CzCAJ37mko==~Z2m4?Q@RYmZR64JJP Z#$z+rB)lgfwh-{6qjg8K;>P`_{{y-Wwm<*? literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/img_44_3.png b/labworks/LW3/images/img_44_3.png new file mode 100644 index 0000000000000000000000000000000000000000..f33ff2edefde68fbdf8e3ed5002966b6a7961ca3 GIT binary patch literal 20223 zcma&O2|QHq`#0VqOO_Tz)>2UzM0U|4sf3VqEZI%NAdIXPAqf>m#+G$t-$#ul2_frP zXN)yu8M0>g+=o7&@AG?pzvut_n^$EybM7H+C58!V+{Q>Y3a{eVB@ZWwHZPgq5a$C43_w75g@6OHZ51#C&#xpu~j(ytcael@Y z`R2`c#h30!Jg<~|xxREn6``V{k`t{5|7drHkMGZmW;Yi~^LSx{>AU6umnvn^!`iCZ zKRQV*mn_pro=A>ZL`kVml0hwp`Ht#SXOn?Hl!-h1@4FV8y~lsd`4k0?v9HSwPIwHM zB{Pm3bl(SFLtLJ8u7hn=?Au0V2cg$>dX^n}Cpss($^!R&ej9bZ$a(e}o-aJlhJHKl zy}^s_Oqt^hp6#i4|Nj2{;Beai$KjRQ)$#IfkG#D%dkZY<=btM)1FuUb-G{)pqoboZ zjd<<5>%u4dS69nePVZfXjt^a3eSK@x5I0Nx!dR1SGq%L08Edw)-qU#X7WoQ#=Dh~4 zsH^h{7E8a0R#3M^3ajDC>colV1jP#8BWku;5!GG&4eetnbMva(1Y*l^yV8zT9(9yy)iA!t7u!;daEN^&38kzF7qi^cNq!Y=I1h`xk9tr zzji!AJVfMXr4@9&H{i_5vilLJjmi9a06Q`R!Y&?LW1em3>qx1 z6PK#hZ$am4`HA5^&V9V!mPfwN?kfw;pQytq3I0b&0LoHjKr4Z)`1Hr4r#U+t3B(ecbj9|I<2cMnb0fi}0uruh*Pxj~up#rtfmcr1=r zY|IjdKZ`t=lK1zN`*SMN*+p=rw_s}=!_*B3&S5`V^5J*doM@QQ3 zjlU+}Cxizmep5L5JAY}zSh9lmf?7BsAib&U$64;x`=Whxmr2+h*nU;k&{mZ7JSkgp zHvJY`+VWSKcnmEDvo6m@_!L<8NTN`ZBMZSPBy8~Lu9_W_$0y14C6kHYAH;-9ezRY5 zx=Xz7bhl41RKWg*Q{kKep`^2?9bFWQG$0tN-y)&Z>mGHZn4?Y>Q=oSfI2IoB$+|^a zj*@kJ?sV^8tLbrG`kX2>*HQsaTVNzCyDTA<;Uu zD0Ey{&1p#t-ljyJa7YW5G@u`}4Pv6?vSGsX=+t6~b!`^N(cdyM?N1!kVKYqT65($P z&0cKXDUa~pzm?@6ux1$BcavzBX(NtdBSuaxB9;s}+LtrfXfCX>_~|r;mB3ZA{0m|u z@NjrYXlZO!3_iA}``c#*=y#>D1;y`6;W0|5{d832q$_!T&83Z!!L@M>29me@T7L3_ z&xcsI6p?FqR#$2Njw95UgJ;m*CZfacs{jq|qW;=?F(D{d^Ut!YvQy)$s9epB@|@u` zyHsRkMq%cgA(|3|8t|ZvC7I;HtHOv3N_~RA4yStWi=m&dq8z>?-PBE&OKX3jzUPn{ zTy6fASz2R^zeq0c5_Rv2c}l{}A2|y&1Z}5n4%q1lfqRwqlirez5ndRAR_&9pjz;b^b|aR;0__NsHpZ{`w=+=6fTQ%$j`yoj`lE{#za$wC^VY*;*s zE;R4c+geNH2WJ^WgE(ep$;P08fMz|lgQ36I#VYJ`rHH-AM+T8s&x?8!wM`l3*BgdOl2c>j`EaJJIe`tC2JW{Oo3b=={ zbwW~-K8VQ!`EuZuSfS4ubR(x=3;P4gn^kVW}F zQ*mwmPg`v;BC(EXYXgC9us{9VKA3mq_pse{@@(N@T@0eZ-E(pEZn~psK1$yD zW1l`s#x&!Fb|c|qtmSBIN^V%FBe(+jN-6bOneF!ZW{YgSU2i*KB3-KF^BEtWtC=`8 zyBnDY`KlW#b-Gi5A73aPZu4h-rQ;BMT=zSQbR4?7{ExmN4jzxY;&lI(v^gt(CigFJ zNMUR#Hh<+KC~XcF2GK~;SFwLxPxfe#i&JCbq(HcO0FO0M zz4zu3jhBv3-d*PyxYBjT~Z-bS@BwEsk2)jf{>Lz}{aCADe2@YqKACa#_t8%@*48 z$lSR*)^0}18ph%x7+R73qW*!!ME(Qzw)euX4253ZMJ%{17)lU}?9kMHm7>vLp7v#! z5Qwy4CFE;g+*Z)ji*km9w9TbsBvc6d`FwOpi1m#0Rnfo_xHq>W{?Ot?JDRXwcru$J z?N}aD3I}T{t$uKO zMTTA@*WgfmgW7rU+urpP3>rMY%D{hN-JR@-Qm2@DOx!8#$l1dT8l~ifXLR5+#n*yp z*xeXVD>Ho|Y$8Sl7PU1;u5PZ79h+V$cr5&!Z@mg&xtl!C-3QlQKyaq3Zg@mQrx)F% zR6X7K^5sjDSe5tCm*-rlGCpzfd4S9NiPldcnfdGDi=&n(o95eoor|5K1iPWzUx(l<1-(A{I9nTTd%` zE(Nfgt`7XEWIug+XTWQYL7UO+29#cKSN4NX9Lg}86vS&(Y}fuH=5jR5aG_24NX2qD zd{{mr?*h%lqUN}v@Q9Qq8ePCdw<(zt?*OZz`eG~gi#2^11XYK7;nI^>!(JQ@Z~3$| zruRJ~V!Son`qQsu8mzS%dlAgE@R{}Y<|(WPyLar^l$vOIgBqpIBCjRwqwrk|#7EMd z(d@f6&RqDSCz%n5saFz)g*q+>H1&r~L(6wu!`)U~-=}lu8hN|?hFTu*BJoO95hd_& zJcnO|bv?;p;Lu)F_&SN|*v) zxv9hyQ^5HR2~<*yI$1=)zW}c1sYHVddu;E`MYT^EB?Ei{(A+^&`AX(>%F#H9=7M>L z`FDp3+h6d|YfOTKlq-gNNXMV4jfQUEn8JCmQSHlu$K${o=r;dixscFLZydffC!SW5 z84~?`@j61%oRvXi1z1j>`$es;Fvw(co~axG7TWH=A#qap?t{n-qcYa7*vG*%K{P>p z%HI~xE^!=-%xGL)88X2q-HbZOlb+FdEl4o){lZ?fc)57?-#~Jf2m)LE$l0{g-#%dX zW#jx=Q~J*T4L`S?hUuP-x$u1rPT8W>?G>+f$hU@(zu&n_bY-G-nLgR9) z{WT+HA#$RIm}^Cs_%POM$xkqc=3Nlu7rrh0h*e1ZS*@OB*q<)R>18bulJbZylpqjQ zYfGx`Kn+~C%=vE9(ArJ3N*^zNenK46Fk6oNEK-Z{HDDk691#~3JKL0<4HoraI77TlWzpO zo?W9^j~|vk!Zoo6Td?`NSUZTfAIBpvSID3M z1%0Fa!n^1iM0k*$Q*EF-9oL=2a0X*1fIy^%JR+ zf65FzO*GgvEv3}A!!`_OD~2Vo(|N`}3hfaGnnzYWU_GYgk=ECZnVQSX7!8lJx1@N? zB)Gu>U!QJ^v{L#uk}+_HHG^Dhslnjn+Kp>3yC(-5e|H1BSngGCVpidT(wHYK;}vA6@?T8-6!AQF~XPok1S zqC3#=qwF;#2h;w5VhUK@lDg8XI1TDB3EwZIob!u(BvjZ`d^u$bU4UkMuVY7W>&6wJ zU1A>F5n|L18xqEFW8ZJFqU{LQR=@bl=(WN^94)CR(Mq|#Rp}YWq){?&BCDUy`rf`a zR08KL3+_0{puzF$&CpMf6aHAIvyk5GSCr)gZpK%QIFt=J5)@^F*A8Ab|Mfecl@@ra zFW9<94EX1<8jGUrGVG+z139Ak_Yd|B;GgfV{q!f51I2WFHO8y12Me9Rk+i#G$`1lN zdY|05ESR2gOn~X4*15P~9ZcGAEL2rJI!FIW;3WD!0E1ggO!;v=KcO|DSD9FX)0a2b zmHq$}C@YZ6a}d)SK(8PxAQ6)gyUMvV)aFm*eSANG@tAbfTlL;=Z}uw(W+?n3&!MmO z_1(Ed;{Cuey|C!inyl0{X>Fcpb!tJ@fcA<8Rx~=a)-cQVqlowGI-^y3wdOFm9jaX5 zt@ZUA2bwzq7!8g`8-FXbpI4Do6MJQD_~|U>R@D|7gDnrTn+iE?=^U$V=PjjRU>p@* zMDtp~PJWtbxVda7sXi71JJe?=IZ0SRpl4q0S^-0)CAE935bRR-6oSyjrUbYZu%rVX z%Y)BH6XvluNhrqS$AJ-;lszkfj~uT76I+%>0;XZ2N+nswJ?9q`Yb>5%xAbypHxb6e;{3{ z*fpuL>&y`I0&RR}fRIUISSj7=dT~=L3&$B*>kkp30yEbDkAazkh!YU={~)|r_%jPF zRDy-{voC6my*kM+bhk5j*dGGpH%ud<_dwss{$ma~Jgn8==F|RDUtO|#>1|3=e-rrj z4Fes~G2rrNfI&eoA7>?v@5lvE!toIh0J8kuXO?}V+;QH&*e8Y}>qneeGu_BqjBoj?^HB>W{=joC}TPihK`A!;VIV-5c9V9}Etc05_2Y19U z!t5=$JI3YD#$KfrzKVXkWHMu;|0zwXBC0aJV20skR~FLip2d zaV4c(;v^_UB!hM<6>W~bJ&5NLHDvl^_z)lpqpLRgt%~V*pA1#gon{g#Vf3&5ps;ul zECqeEL(ziKz;0!lK^4R5Dj@b2d~m*Ml}ugh_y$m4zOc={!_0AGr#kwgmhz5BAX6c! zmSdk!uSVH~!>Q32N)~ z!bt)9WV#?4nL~r(!xg;h`bzQt<1%?R|_8GA6G!Khl}H#aP^Zd=aBy0;m;im-d_0Z*CM64?bSGGMiCRJvb1FwLwEKp|q?0UeRm zY(d5N4gy@Ee?ioWiq;)b0VOb4)&W0fdL^+0K69u@wyN2hiZ-;k;(*WWKV5`gj74{# z7av?GLc8eBSpXZqn?_~3M14pdmrCnEUuI9uM;Ga)0$%`Efi606;W{Xj>+A5~(*p=9 zJ!>@z&*N8aiz$CG6bV9_)!;6@Axn=+c2)7yp_PXKD?p1p(!O+1AaU!o{_jam(Y&|E zMkP3t$@Le+GAn{OsC-1@hbt7?NSoIo3tSokj02xP_uwU~`!awzikxQ#`L41#K148c z{X0E`D{;7=ksz6{{wJn!vj#sI0r6|iz&N#&tumZ9j(Y^Egf*CujZ&UY!_^|LyAVe3 zQ7UUyV$jAiru1WU@An%L-jKFz%X^M7i*W)W_9~T%P^F(3zUQ`lC-W7i$6& z=_1>4M}-qRPi~$6oS+ggL^B9F2l={%=%Sdzb_CriJlIFcpY3SjrYA2;$l)@1Al5Bg zHyILgOk%#197dn!e4v)vZwF*kptVUT=f&|tbjYXQ? z!vSm~4){YMZ29O| zE_P+Ih|=thZd5@*5rV)k3JRK>$L_}+@YhUekuu;4kTO;L;RUgBQ6;ghW$~qOkX=jQ zI%BNG6r)hVVhXsBznk4^cD)`i?s$xA@D|1T|5l+$0B;vOz@wjdwmO(KuuU8kl{a2O zv@r3o!9T?c>mr@!*Wci#-hHs^=`6tS1>ujO9nnw_@B=jk4yrxCCVB&cD-4i~8C+m1 z8&?BCjWKvhMYm37Y3LhZAmfhq-%tag;cs=~bnpB~u-VekPfO>w+VE8+U`H<@I|5G6 zstjx*sguq3IaIU!Umd<5w~KpT+eR258FHIUOMBqTzwKk+jte>-YI=!_OixjYNGp*D zPEX+rNh?x{1<=EGzRNoQiAap(@<~CMOs?sjqRBv{0dLhGHms`j&XJ}++ZzNB0}5XV zh_1k4^Yh}8&WjVjf5fw@zFQ#@4CG-5$>&(fg!QF;Y9>a{QgcM3__fCmQ}s_=sUDF` zZ>RZzkQ5msr%eA-r9P7bPMRkQ+_mRj11YESEU<&nEd4?>*|kQhm;x=_jS9ElKHZHP z+?bo|0A$!Z{%p#KMU@IL1f@Vc*}D$q>@ty$R@;~~DW=H7BJ$ztoQ`-1yFULc*^P2= z`^fiJK8XxAfMV#3>?dQ;S@Mhh)eIUEdVhiJRCI&qZt?1+0mXP= zDc)ea!W;o_JxYFwI{_sEU;r$xrz9>OG)e8dVRu@YcG>*c`s?pS4!2fbf7cl}y#AV= z23HKczmNh9g9NgI3UkPD2qZrkDSv4kaTs8Z@47;POjAN9`7Kt(UjL&7$dvd7cn)Q5 zV1q9iqmti>?o~c~bRdA#F_Mle)9%F@ydAg16Rr?XBVmRWgCaZ6N0&WjJ}I8xug0RO z?E5UWDWSE)wl$f#^NblY2q`(?P1_pqV?58mY#;Ei!fUJ^zNPdqJv$ zp{C2Ax_*K8#6p_nqUA*Xw;yY4&Ed0^Z~5;h-X-c4MF6u3O-tePPcIS-s@03SYuOwB z!y>Qo!+eizo1{L!YEOz0)T-!49aN9Wrg&z*rff3HWmCYSfcM;~BpVWZo>JV3DIL6( z{w44`jp2p_>z!YsBoqSPU4$mgrDxd@e8B1;71V<$&vtnNo=x#}{S#VDIk5aOn?ibo zE(DvWnL_Pue^X7$0hdu4n#Zyogiuxu?EqR2dm>*tEq!kRT&v} za|0EHLns2Z)Lm(3wf^dM(vp!Ks~>A;y2x%nD&#>{Be1LVGt~i1{ER4o@{(E$*&&Xs zWCB8=TFHm!nH6QPJCGLo4~q&22=MU@zY@;9t)a2KF}NeDF#EG1qWCS5OT z9ct#QW_U!zKn0iX5snu$J!G`GRZxBPp?p?gAWzo3;o}Tq8eZT$efsKL`Qj~A)f$-qNZ`}C$n&UD?%q$@?atV|k zfz$UY6OP8EWz-wqxirk@AIn?vijiKk!}>UYB8mBz?T(?@5qU@BT(?Z{75_i zU3LT$*^L9;s92fYbZWP~hBe5l@4f-Z(`Yqg(_~GRe%K1U!tOhO!V$m}@)43)4 zdH+P=i8IxL!g`Szk858Y*EK9izR4W^D$&&P`|q?SU8t|!?yr+B2azeU?{kF!p9V3r zee(PlJX^k-)OwaIhzhw16qsIJ|5S=_Xt5)exr+YV14a4tW zu9u1VG`e>d#43&v@=BPLY1a(m?uQCR?{dnZ&^m0eE7t(k;|d=g6Gx=3P)l_K^iP2P zM~DbYnBT;_=>fJ2Aur=H<*Ksouwcp9#jWn+e(jh8SlreaY%4*6lOPyds}rqEv?dn0 z8Wh@njx97;=kb8~tQccW;i76E1QY9wS6MMX6}sE{S13&eqNdm{kH?~-JNiGbTs1(I z&uU|P%lcsKEivjv=;bb0TEHF2lLQ?DPoukrE9*;=2Swyy73ynDp@tRQ2b=pOw_3ch z&-l;%2mhiPEvVgd-$9_VouGCjn?T)S*Jw+%5#3~Pz=LH0vqL3B7oZ7G5C}u>`W7)&VFL3pz5O5-Jn>>_|EZ z;os@}-^`$S`?dpQA30*uP3Au>lJ|fGKt=aS{><*A2&A^T>R-Yxku3+nBVj!zj-Mcf z0rJNQajX1Ru#lCE!!CPI!;Xj((meTshl%5o)t5KV<(V)1Lj_wrV%(ttyBLSQ31!&k z+x`K+eV8~v4FqyA^imj|2aQ|iBc?j&9R9Lbem_VH6q>D-vsf+s^D#j)hUWKKFRk;_ z-lP-tzH|({SGyd8I{`M@a7C8Ujuz`)*4yg`2wc$i`g{3uLm8jQz<8 zQSQiA!M}bF(dvI{*JL5U-1uF<9(p%lwYo$>u-M+don!gd0Jzrb6DM^#gYN|aAUp`R za}p-tPRviZ;rzJx)GYBJ{)a8*9QL9~98PRSt5Ys^_Y_dJf}7Pw*bT?B$gw)4UOwzqcv5gk zOwGHphrG>S4~fGVMPH>DmR<_u7alX`43dkjwYY6wfU$0KRS1PC?`Lc_fGcWx&7W#` zgL{!)gE?&ig>*kCqDw6RA{_)~X6fjBG?x<_5xv+2@abhLRE`WE=`IAoCQ!|gKzY)9 z7&LuHEDZ>?wLg-m7_c%DAHZl~M-VA{i6<8ZfIdy3Hm?on@Pdl9=#;h{Anqi<3JL(- z1Rh`;KshWI17TeVg23!?_spKE>X|NRyns)CdJww+HE{R(ZYz7e7yluFyZXR|KPdY} z9OMDbtBJ$5<@dNGKHNNcW3R`O5CJtmz=p|)KmBll$tx$|qE-|{V#u{YbtWin;*Smb zRi8N?_l8pZH>jo}{2@*siuTG!!sKCR|2ph0F|q5fem5aR44O8y++o4=e+>vSf_Ue3 zecsr^yJnG0ccE^Nx|JRApoNSDko$b1Q^$=>eI1;G<3A*&zq09tH%N@YlKP0+UpnS` z)rr*amXnU6$&;nO4CSX>3_P)FgJB_HLaavIt*`Z1xQ-*l)xxC(%1^qb4|D5 z;?1UxC)J}XWIsc#)Lps)EJ$#JQucJgcmbL`DwIYY&%9?z)m!@|0#fzUryxJm$>dm2 zSHQ}k3FEeA(T$qUHM~ovmb&Q|py3_}z*!0F!z`$!+g1AQ=%%}B7F0cO2_RFa5z$=B z?1gBq>5MdLH|3Efh~LOms&t3mJ+ea{e#-uktt6*@j*(mSA@=j<&)fGEj+OM7GU_Ir z_E~CgiB}jM85#c(<1*;;2T~kDgl+Nhle^^UUax<`*eO=p;V{jCyz+%cN8iO*h1s%m zpzrQ~M5%2vDlV=ZoY9}|2(Oa&6Dp}>x;sb5Q>2(-7gOGLy1Od`0T$%rUdkYvihFoz z74*d?T|X-au>fHt#Mr(Uw{&v4?^QkbbjJ%&tRo>}fmNnuPyv8Z0^G`uWe`)2mB<-@e@psXcD=i2Z_Q!j7u6PtKbUg@ln!Nr#Lw~q|LmjQUHns`R+O(1Xq6^ zJWC3*mo%TS$7Ki#3W|%1w_e@ZR7ia44d5!a6I>E2D{G?H?5CQbBZI&DRLk~{fgYzd zVOfTKPs`@ur{Hqq_oUEKdb@=Vmi4;2x|RgR4RGImCgR<#J_Z1q`6%$Mi{Yy`oQMKt zPRj9PB?4vMKFYyK0Utgmhov|5eV3T}n8JY)&tK|eM11B^f%)fhVxP0Is)eh!c9`G6 z6`Z{C!@_&U2K!1?I^XK5w?cDn=LG`^ZG1uYP7A-}pZ?86n1XL%%s56@Ki}TShgrRj zm2B|1un58V+5=XTa08?D=i8iWxU2ZjY%7kX_jW6*O$LG9){DSEz;^P=J#zDEZ!^FvynWZmA{)b??4#cG@hgGfnvy1=rmI{Ska#cD zwk8P$T|fz0Br6v%fQV(OY>Gre?=7;(1%=oWxW9OK2{|8k>0Qr_jciI_Tog!;iUQpz zug%vKa2>^zb$ICC_H{}=fa;0OP8fMK?&c(lzwVwC(Lix#pO;fMdU zpVWVx{>4y}fdgGF2@oMK(8(`B456Z|_}DHpyhsQ2uK*Sr;Q}=iL;z8q0sOR!dm#cy z0yLw9>hNtv8L|Rre*y{O|6lg!A4c$f@-5GV>wWHwgReikIC&hxj6A+@JvixYot~{V zhf_C^Nm_GL-fARy(C{vC0@{~eJKBDAnAepkSUfX_qzYUn|0n8GVEXD?xWT=?t7+oV zsRf;E7Yb&)tV;WP+P`C#Zt^8t`;GfI{8TSA%|UyzyZtJMFBH&w49C4Ih1)9ABJs&NTy}&pux1H- z{v5syec5^^vLyD?`Op%$gEL_A;=}E&pr|R+jwZ){iUQJwt!V@y4F$@f*ovRdB$S34 z9}=HC4yvAm%^t-RPb@%5%SJ97guX&UP)h;D)HG5W1ZKyN&xSg+!st;+n(gyBgNBWD z_)5*weV~zZkcZ|UIf71fmaC8aQ1%hS*JaOkJJuk}-FA9)t-cF)+iA*%oBXV(%aBj@ z6X;oHW*cZFH$s9F=Ns}dCDJNDgmTdclsbCZfa*Uf48U;hD@cUEO4NnmiUSSbZYo4c z1gm>9|C=)7q+QBEBU)-;?&Z$2sAUwU^SzsE5B(vs=xr)n zrP!}~rh9@VQG*M-rDFE5k9PbQVJ>YC^x%f_@yn9uDmgI~v!2*vnu<-W@^HI^$wxLG z9r_ItL*G-JPh4%(j_^GanqtQlk|*F_XA<#sB>S!fn2m68lL%=l52-6(WWjWJ<$jpw z;EMhuW$B088$aT#K+|Ep`=09TbQJ*du#lhE`Xg zIrZw$ze9HT@)l6_TALR^UwX;QfFSp(6tro&tnw`$_kgaAiynW0Sx^ZaEbAZ>?ZJ+e zS!_|TBSa0j90HW@usI2p@?5(cbuNLDO`*ju0!UOkV?&i55ww{Z7cr+wkBk1CfwE_( zF3n!;d&^tO)tfv$4smk{VUAa)?SWQ1!SDap^Z7`yUlIix1)vKDgzm}we?*A_<42ZW zBoPh6kLyAVKY&%>plblbzMp`kM#XEpt?ggc4D&$523pVGKcKzW+F8l#mMFn-7JWRvexsb(cdsixb=V@*!T{pyK| ziM1w)YQzVahLOCcl*vcm%_r@DSWo8vY;%v818NqCG-=(wcMb-0c!&R zWBCqeH!9)lY0%JvKQ<(IG*4zz4wMk=2+Ia8XJiXD<9>K1-wXht;yf4y0XbGuwI08+ zZhv0ZEvK;?=Wogd?43$9NegnmdH6%s(#1EuN(RaN5)4gl{oys-|l{kAZ0C*ve|Bv+oc5`q~ zk#KBcS6aSIy!>TGaPZw@E}zC8J;&-3x_$3zWxxoZZijsc`MD@oI!YRom%py+C=iJ_>`!;*GlP>AxUISvITnsBORL{a6h`aqy2q- zN00Vx;@riD94L{r`DmrD+RIIG^8PNNwp)n zEgujc2ULjn3-@S?n}g11u9(Aw(9b}IKy~OMqLKKYptaV0q63XAnlvOFngRjYO>!Ix z$bz8XGk5U=WDSj^X0vr5SIMNywWN*6?9sRk=^Rhc@zu?~4fO4AKv0Nx@MD}5JjGP`XTS>(qispbeAU)gRxhfa zRqo+hs3GvTD+G~}A5ZlE2ipeH0QKnAr`wxAVLP?F{&Z{FtZ+yJj5BR6hR@G~IWM42 z=-f3t+jI1LeI-9i`Ug7p$K4-waMF$g-lL&1foNmVp63VY!nox+y1GiN8s2%$Rmd!T zYzwG3NU{l7w&)>^M5TBv_VbhZ z5t)G}%4j{i3HGYh01cei+E}!*!oneN6o_&#jS}_0V@o6C6H7zd+S(Qt770(c*IG6G z%NK`(P6NOXh}x{=#ji29A;DK=s4lnork>>&w%i)B*E-Zhh9#V`F2$u@(wMN;ODfh8fbvl|7L1dzyWF)f?I`FJ*o+D$G8 zs8`<-pdmILz~^;inYvMxpYM@SU~Qy~t(!a;ypxM6g?s6+?5T7w$8rI_cPV5``C@c+iBA{3|Tf`Fozlrx0%`d_n zukYy`AUf#6t)e@*yN&R*g91+tGsz958}bROK(ss$7f1cjhi!0CP4w7g3qm)DS-8}#=urr4=6~{^>@incG;R;?i|H`Cr8i$>T&Ab$wxFm-+H&2)aR#cTw%_|~-zwM3c zsQ9c!0h{8jh{c*6^S-SbX31^r35;UyS!~ky4GhYQS1nO0HXY~7uI6aT8(PKZpOz&U zUuT`0j1UqF`%CEoChlNVHU+HK27#DHlEa6R_XTjvW1tls@f<|2l=mQxrMxMDgGEc> zANaycV(ZI7N@GiYiFc#qu5O+tp$JdQo|nW{34q2Yul_M49;^;h;R=w{`gGfOqZF5+ zgeMI+hD8}G0BRrI#Q}mq|F3SP@R0(~ASW^th%tXj9F~uWJ{s2nW<`Kn0dRScyGG`M zPBV~Ug2Lpy?AVFteVu_oDH(9|e?&3;{m=hT6mtqt{{NIDZ-)M>)V9<7*grjR3j>|K zt!F(CF?<%Ugd_n{z4@;N0ONU0tXk-O(5nSahk){^?ym)0@P$gLhp&W!{&GJMa29t| z-!f8jqD>jJnpEKWp?(l1Fnv_L#O+z_!$;{KbHocJd)V5TJ~bKmc5Brx7~_M-V>He+ z5x0e~2dTF(=8kgePm$tk1P2*4xQ~6QeA*kEPF)FxyQ(H96idA^ zrGfV_N^ntiRUM^}=J%R9`Z3iVb2%TJ-)Bp@(YpMnWc?`$gtJ9qLL^kHTdV;=k%&m8 zt`t{+4$X7)IR`vg5{cjL1{4pqlu}F~VHXSuYttPFkODgZVb=)=9Wq&4mVp39G`QTN zKufY~K;LUm|8ew=gw+{&_6MuW`#Aiab+0`2^KvlY*c|DsIVl~ntzT^CZgAtl4y zb`Gc`5I~P&MF1hZ7?iB9IN6})v%{Cn>^lMKyPW(9sgdVkkJdVG@5+#l>#~4g8^s4I z;8P=eNku8~!o}7t(CA6n&}Cu!Dgz1{^Lan?5w>12hT!{isrws9y{#+g`ED^M^DZ(LYj|aa7VE>a3_G`Ngt7fRg-CG7v+-!u(YQP%XxTR^-nJwc zVkkdz2XJfGz^q_56=e(=BQtKAOY%3!Ye zL4VRO2xWUAuZA0qiFdoRKENv23H_kLqLxjVLMx)UZ;|(f_6@X-*v)r5p-No|l`;*hNRY?k z6fzAGm>!5fVb*;7+M~(NlUoH=5vGmN%6psMs`X8x&G`1BtJg_2LfXspg2ETI7O=S-6wLtmPEai_q>$+9{(DQ(4@R9f#;<}mXb4izJuCE>n7RZ!>2bTWFl1;c)y4W z$k4(Z1jE<-*%W(-sMw}ebijk9vndI4;_YY!$@@T^zm^1~jg}M}5^A}QVk=yR!C;Vi z6)Rs`mAZ3H2v2u>bIxr2N(o2L_H(ea%h!$?EUn5@b&<91jM4F{_M+{0pQK!#RG;TACkU3lVwctB~=`6&eXZTyVT z^z`xq*SI#7l?N8Ok0Vy>Y;W)d@CyhS!7yzSuFeZT8%7hKz77wcc9oCJ@EZr{j>Rve z^ED(AzjxhF;qlM!U;@4c@S;F74CdtlmpnT=8*|w<5XQzttDk2YpO|>MGR5S-aJpas z@g-2$Kxzk_GiBjdw^y5G2CsOp=9}h)hlf91?$W;?27(pjRR7_PL3(;o2-M7|!AhS6 z{zt1%!+7KDfe0%ST_b+14|UsVLZ~`GZE8H$ap1FC)*h*=v`j+gfuP8pgr#oX{TSc~ za1sy5s|sL3zt7ngo(yn3Ai#ORz}WY<=R7O6%NJX`#$#-YEzbrA2e&Hz=^w5Ma$KD` z*YDqmJYVLN7my1{8I%JNToU%=QirvLG4L#id$(`*mN}=`;2&Pf;8_X{4UJdyTB-Om zu+gG0cQK8v@*_iTMtMm`zs7wnB6=mVt603VG}<|`$F1#wv}?hGo;5^2nyaa@#R!8V zzm~MzzJ)nR(Zk{n-om`?K8`h21@W;c&bm|Q&gJneD~|cdj+sR+15bxE$((Tsw!GSF z#A%qd$LFF~WB1LZg68j^u4(;RyTTXzTA>vJ=Z zW&RkvO{QMMM*%O`4^kpn5Mb9ZkP?+!9s_oUcK~Hsd6xtj8bH%*Y|@fY6{X-SurLW_ z8uA?YQxWKB6XSK`D4B)?o~g?n=nX@Ba0!{$42&XK8j4Qf@6n6ih#Vb(8#(~g(>N{P zyQ;1Lm1I_JxNkCVRviR@$VtlY(2YVCiULfL=lvUvu= z@&bTGQComii4+041@JHkPbX@l;Z$Gvec|3?LNx5=$(fNxs{#O1ARa%DmAibCk%S35osHm1 z+wE1gZ0K1nPIN6REWm|@bC#nH&vt&)0Z(B875B!b?fcU`kupk3yrkf9#&WXD5~Vs+ zQB`JTb>4A%=NqWWrInO?r#e4Qvd3+*6c^OYkJgWAstmIXQ03Oshw2hixPV*lgb$MQ zB&!<+Yj;N7%_{kH$`++Qp%Q-$MIX0v!u^~xfO0787Iru_D~>-->ILYfxW#3+?G83-O^GDlsS zBm(zgWEb7+##fd&kJf?m`P|Y+MET1l6dpz4^o@{lAW4QgYHy^3-Wtu+%@Qpe@_X^( zg$TT~e1(Ke!l!PLew3A!$+?X8yAS$+hoYc<=@8wnmy?;fq+bk@p~uSf#4>Gt5)l#U z0hCBUqEEI70ll-mMZ%@8)M?;`*4Ni1z)AoMJ880eX6C^K2YIxsJg4O^V_#?uV23|-&|+{YyWw5QdnvIR|?|k z#M=RCcMjYUNZVTH<`p3JAbl$bMJg6NN)PUYaMfC~<80Yz7YK;EYC z@FP=-<{`TFwhbd&cCulo+dwUR>9n0tIrt_*y4Gd&0>t5@ddZ=uK zF6cb5#OXL8yR+}8t9NZ1#>u-qnjfhZh(M5bqAm_TtA1EE`*}Jt@l|HCQ+2$OkLU2$ z05>-`k^*?}Pj9wi5y(*~6U;$Xf3u&URt_)dRb#FG+w&eXLG)O zBJrv36UAkawFi9uP-a5kW7vUN^cC5Pff3=_S0}+p^l!3bm7<8F|CVx1)O^s@&Fdgj zE_J9S?L69AU!I(tOd2aTdr<{fcLGg91_lOwV`mkRzXx}={~(?Q4Lc5j{MI??TD3)W z^sgS;V|F&?s!n@ex3EaAwO|mzZJphuJn{<(4^IS)Q)86yvgcOS_HrJ0caqHSh6{;H zD=XkpGmBmNX7LML3J!i7i-|kgpa;9wWEQxc;Njr`?kjQ3QU|^uVz5SeO7}Jp>kiBK; z=WPR&kiMn<$Z-fnj#wE-Xqu?R+THyRn4PW}Bu{l^EiNwBxTnt>JpuQ*ZR|0RtkV$4 zrY0sPY8cojz`Wt+sR7%+z)8V7Ccu1lcyMqZ-qGyRskj9$#_E9C6)UlUr#oApTqXd9 zY1pPS8=n3eHDAJNyz0|2GEvm3#8oL5+5_2OwAhiYwgSPO!QsyBt{3jY-p(TY(BSsh zZT+gv)zR=l@5N@&jGbOyUtL|*H}i38bet(>n4Q*5K0LVb&saGpX4r3o6qWIn8N@_K z2Zxi=IO`a|jk!*CT-}}zPrB;UDEzTaUulDJjdIv*5o)hby3(<5A6>z@e*zJJO2%vM z+RlF-D1=`I_Xd30U=pA5>Yr^e6I4)8pqC}(efe%~%^@5!$JF$6$shFQ>iosi5-$d8 zfc_H18An%FN$1}+d}M!U;eix?)~doZP01o44;sQ|Dz>dU+g_yv(t8aZY2jlkeQJo>%IEBJw+A# z5&QJ>9hmzH+6f{)&gq#x!Xxjx^b0b)U(4&@*38A&CbWkI-y05%*8mT0x=x@Zyniq2 zGX4WR!D(|!zY2@tQjEE}^xvlV!5sJ5O$RVeb@j;AI-pS~1tFS=w#2`Zkq!19ytgit z%M3_UfA2i{oEtT_0-knI4$O!3_;H&b?+d)w7C?NpTiro_HR+mkeSYm4!I9+A+1uL- zV!!)5Vij2f>j5P_D2qCdtZmXv-@=LsBy9Ph2KiMnQD{e znv;&N+Wa9X(It<8@7fpQ|JM%u232-5K3Ovy^!=%ORQw2#*D(#qb3I+o^d5A&Tf(XL z3@qkPw~NFJ0C@^g?-*Fbb?FVdQ&MBb@00F-) ARsaA1 literal 0 HcmV?d00001 diff --git a/labworks/LW3/images/img_46_1.png b/labworks/LW3/images/img_46_1.png new file mode 100644 index 0000000000000000000000000000000000000000..34be88fe0b6a572a7dbdc5d5a81476f1d3e8ab9e GIT binary patch literal 60467 zcmbTebyQVb+dd2;pdet7QYs+b-3Zbp-QC@tigXD`mvnb`cXxMpcYPB*=lQ+wInN*O z_{LxlHmtShT5HyQUvY2WFJk-%aBtxtARrI~1wKncKs@0CFUn^y;6EWBk?+ATW@}z~ zYbi5bYdZ}~9SBhkYja~WYhwe=ceXl~Rt9FKv=odK)MW4Ut*yMcIWJz-<)AK9*KvR8;r1Te&Z(o z$nU2MdnM#2ug=%f+IT!%Uhjm>kUTUc1B+Adc2_Fljs zkbIDv)-ds6Cmd~c-|}MBQZ&J7|K={CS)cChEAD6SzrQ3h!FGT7_^$3ptH9$wlB4kX zejjPWr+)qThUlYj$m1EGsRaYRKfdu3)Wm;$BhlM54*B?z=4v=NxIx1*)PvOoc=J{(6YNKM4sHVGON3Ri+dq{r6+FJ$69m z*Hb<`$CR~cNCnHe2z->s`{ee~l>FTphVQn*WjX#d!HpdDyG;ow465WvKM9OKr~Hrp zs`~j6e0G#;__EshKL>v|m<$sNiPJ;)&&GLmx{fKY>xRD74F{kqmGS2B0rWZtOss?NSI(0si%dB(} zT%z*7Ow#%074)sNz&}&>?Bic^hXy?yos20cNc%QWTTkx|7FK|y zLG)X%`OME|O%{KaRqH0_=J8t3_wU~)Szds_s@NP(6CTZy>KNA;B??8qgRQEmfjXRU z<(!?}CDd}OGGSEm{u0rI*fB*lt)_;UqH4DDvb(rL!X}Md={;O{_xSrs_V^+n&a;JZ z=S29OkjM77*Jv3T3HJBT!_b+DuuQPI72sHJEy`NN^7%aPu=vw<4@<&YGr5uB1OrIA zL;K#pAfi&AI+No+zce9y+^96({JnY&oK@=o-_!oyEk?QI%sv=(@q20w?L;$MeLUNl z=xA&6gh6@&vGV9IoLcP9&m zeaw_5Idx<|*%;7kbcck%|M>CA%a9%%yX!NkUphSzt*xzv=1bf#NH`+u>hB-~1qGi% zLxwL`UxoCzb0R&l%Yg5EdqNaN!-TY~5UL^B*lxOKkB*irnpurPuC! zNkc<3S*#-*-l|Iu%}i2GmesSQ=G-M_k!tF%eBB?E?rJ0z+0MgxQ@k_6r5RKc61&vd zn}{S;;gCPYazBaQSZ{Xc%f2M^DG168d%?fG#Be`j%*6i`{Xf`Rb8cXbJHP?SVI1fFXw5H7TiCqzcA~ZSF00V zXEi!yW26rXnj1Mf91pPYJ)B=cZ?+3T*0$H(QAbIAN`Ya&IozwK(V9`WzYQ>*lEusSd+?toP#i@)ke%`60)# z=4FpJGKd-&k!Iu7$Z0-3dsY~auZY+z(o7L=Bhfv- zfB*60hkIgTVjfRXv`rZ1Yd6J~LKMA2xWVI#iF-1)bZDz`+-BArOh;;>IEjiOT2ZxOGYi>V3X6m_lb_wA0hT3^H^;Ug5<2bD{k63P+|KZe*0Tk63=UYx|d7t7qKFpT2ZDY|N!=Y$&$ zS&=qw#*_(`x`quf1OsO*GxI!M3R>^3Q)wHV_gjo|D5vQn+=?sitYuQh9YB`~S*Mna zRk+k?VZEc6j<(YqBX}LTLyAber8-<=FoxKw= z8UQk~IviNWorqh= zRY7cUS?efj5T(Aqt>Q#N5=gg*RrV*~d&SD`JE?H5_aicIc?>eJH@%Lvgo4zKi8oK3 zyel$Kj(&LOJ^PfaE7k{F`g}z~+Pk-!0YQlV zV%7@jZJ^h9o>HVWeXZfe{+#vJFf z*VQ=eT`O|1+J7r^iL)7vMQRnzUAp}~HZc6NGgekfp@|B;wD06HU@(F{jS zERE0{bVHTZMrc%&z^6};4R`05fp4P|Z?7&d52y4JL*nB_b#*`H$Q88r_2o(4tZ_!8 zudT1sxZc`-`0!z}-h~xJy$&3w+*L&#hjg*{ZcMYbIK!`+4P zTy;2@`zOutl(WaS8RCikt-f!VEmxlfzNJrgd$`}UW`XEWr4{}NTwvbAgVBfrZwLO-T zC6j|15)v}ei?z`o-vfojrp}P}>z6x7#H4C$O&X=QcR+$897#cbVL5wNJ_GWq(5*Lw zVq_R|R{e3zbY}B$RvZ08se*4%DU>_iA)(O0b_21rw3Mq{6`HS7b3E^K5FP%aK(W&N zz14beRg)_5+3YcGZY*+t>iM2TcEG4f2+s{iS1VS5vaAV$)_VKPX{N;I;`AjpM2x4M zKk#G9`_{@fnyX$PeD+723UHVkZQne^nUM{YM&wIxzzlqXXC_`?G-mQ}5<2EdgeHbP zUZ|mlZ+FqZ7%5sW8`zdGHRGC%lB;t%YoC5*#wC&DlE{O5*AtJ1W9*j^9OQkSakyPG zR6CpTJUVNfbINFvCX$1vfT~La z5D=i>F)*CR6kKfxM9YokDOKPTKaujc^Jr?^8p$v-sF5R;|PVt0C>z>;$H5lpa?Im+iuD0HaIe62^S?VsRhO@CJn=7lRKM<=im^q|M7=ZBo+A#exqeSonJI1Q#s>2C$OB0{ zpwP7@z)g}F-QjFb|JKMTn&DT7Ob+i_SD)oO3Pn+K{iz`{USg$#3@`GN!~C?B_`HlO z;`L{oZCFV*8Oqmek6_oCGE7lyXu`>gctb-rd=DtoL)+6N=KOx>jy`s?|>6gjF z(-lKW=^9r^scVK}e_O@=x9m-4rN$54_Y`x}Z@{zT)y!d76gcqvJnzx0vYwBooImPN zFI+J6;WoH-D)rn`yRy6#Kk>Rd;biYQFL0SW_jEb)Dj#R!8w=cPAjpw7G$aAr#(GLH zM>1F=9t};X7Xs$IbT5j9W+WQ= z`*&oCtNs+uRquW_!Z=tvPD__{_nE(=R~6Mgl4lg$5DkQ7H!?UnrF`=4#1AjJOH8>+ zzq%C7t{X*GgnTgq-}o6^X<}y?wS^O3K3*=OfE1IX;VD zq{2x{1v##mh4PhU!@>-rTc#CK7+IZ=UJ&EwD&S0Ekc3j^FqconZ>RYe^L4Ioi)p1d{c=yz=$&=h+{{i^ zh2rq)zp^C6|8Sp&V6Bi(&rs!MGCF-aLCLQ1{Ke4gakhn1h4z_r76Y>zVoo{UUV{^_ z7H9{d;*lP)iqswK6@@L5>xQV#g&8)%nq?pF;GlVr&?9)F zNwvI{kw{VDA|Yd9*Zq@t)?p()0Gl;pBhd{B38oncH==dHZao8*i?O_C z0^-su+gU5+-ct6~k}nX0(rI(?W}M|&lS2A!12f&&;;P-o8!UM>_6-8H$L z5Ra@iy%!!Bydpjc;U~?xC`q4asM`8Db(;2Or(`cj5#kif-1F-SMP&cYhwNS&nLLRc zWmGeYx&Ri-h^^4Ia!MBk7U}>`N(S}KRi=*(D1kMRL8KOj<8=z&xSVAoZ0S+Q^0#f# z!%?dKq`q4tYoDxlO}BZk<|!p~3u14r@q+G5;`x?bKk;L9tNu<$w0KV_^@vL1 zml~r}-hSkmnoO>1%10X+ex8InV=6O(8NNv_KUTC_O}@o>ftDdnGF58uhO+MTHMwHx zFN>A-#}HsTS1seHf`G}edenit0WkGP0NhpU9FIVTq-b3OLbB#WzKTd9M?8f}wL0Bf zgTY^r0I=p+-%eQaA0Y2kZ0Apur(4_xaMhZQU@5bPh9>4BDLSF>Al2AKq zwpej-@!{#|s(dQvBOg)}{H$SM{QXaz!j_f=`#lW;85 zuVoGdImEvS6Rn3T z;osz2B{iV#9w`$P0Mly}Rr%fkO0Ko%TN zHga<1Zf5s~L`I3tGaVwVcw_A52Kjo^Bu0`!r9$i<1QRBL|KeQ%2lwah0ipdjBQXS6 zfKp|bR{bU$CCRe@#owg%lfOwdN94^S^#VHhe84~dlVGM&EZ>Mqib32V_$Qa^;pvq2 zNS;cwr=UL4n1v93Ukwr(2L2rDA6+KxIi9c5Q)#i%+1XjSP6KjoU4Wplm@S{WzvuD# z0pKf`0lBZWcwb;8HkP~z?M+u<$ymS27bP$6tHmPNL4`e<7)a1gWf}bCz>%UBoMI8{ z3=t8K(^F3A+^ag0uY?NE;ZNa!W2f53UjX~Yp%FzT!!Fysh z=4&{PGV9O$)rb250C^`DZ88+39Zcf0aK;G=v~WKX4S00UG@L$_C;be*u)lb{u@W5L zM;}HwT*7Qe-6<0}RX9$QCAbx542WrFqdPIRE0qqccZEDp*JAnQ!`y;dd?9xbdZna= z`17VZ7;SXP4fm-6X)oq5CdwxHBx&E{;2Ww?E7sVOtE#G&Bc@1x6pQOT-XWyYxKosIA5OP;Q(Z>c&atM?K)orwuXE*1@zY4Py;i} zLfXn5*z;J{kM9&Y+t1+i6dR~OvWM!76FALl7G@6-M-P)M&T?{|V`GfUr!|ws(#oo3Vq#)kWA=wC5{M!M z!MWBw1ZbXDaNxAI6WZ7M4tf-2J4Oz+nje~yJZ}r@t<{)WFpiEU!r5l)gc_dFO3AeH zv!0wzl76Qr{bd^!v5`*rC8}U~nYbrjkb~ocXI|pf;f^k@<^W5Hr4TmU3CihaqHd9i z>cAY2X!HkS)k5!pm3<2&~h-k_@;1uoVY|y}uyLx)G=BjPJdwDJI?ez&$)_qr1 zyIyfhIa4ju=|OF7X|b@iO$SseNM*CM=RvA$Fp}O!f8pDtuD;al2{<`i07?}rO#2@0 zFB)QJTNn#$UC0x$*_x&sK13Ijcquk1`kM$B$f*yKnoDB#rsu>X#LXVa9^X!?GA5W# z#c9~lYpjj3Xs2Zftvg(9W{v!EU#LG#dMECy3d?DF*ajlDS`=asOtaFO#isa0r~zNf zw-&eRkzADo-f{(ne4O+ZMphmh4+0}pr`uip^jNKfj><^2S9=G2tC4+W#@K$D?_xjl zRaI35;BqGT_&h5&TL_ZOS}p3pX;G(|JuG|VVgX*Yx3>qB6&E-6699ysitO0})OiWw z*<_6!C0|O2H?C_`a`N!7nW`!d0RP$}>7tKFGoID%cv36)XhfXz@l~YJ0>g2+2vw4r zn!FRw>Ba$=V!eR`c0ecqrnmv_APnGxV%IyzdAA3bM^2iwptia3E7Vk((FDDkl)Sva zBS*X<8^^NS9V)j?*Yh)*-V`RLyl1Thrh&fDf?-S9iMbuR8zaCqsyJhdOn$-bWS)SRJNz9C8*o3Sl>aq zi*BHv&MlS>XLCNy#CnG}RT~qLum)%-Mlo-eU1AkcAd2e1OgXEH1n_`x!C>FE4NH#k>=p{vd=qVWM*= zNHBi<{P{gL7PBvgeg(*^8XZB{r+YIMk~=Oy0(d0HA$G>|QoxJ^Bz+>-($p^4QBYBf z)tjEU-s~~5*zP{#l9xvZ*nSF4bO_fPl?M5D<< z%Fr4oy~Cc5J<2d~wIp6TD?7)%CgfkT1L%yS`78KGn4Nk@8%t(VFbI0a%@n!rbgy1) zO$Gn~W~f{kkq@u-&Jery)|%{Y9ZReqrrdSE$B1XUA~@&XBw}@me3E5tl=8Wj?yv<9aUwseT}aLl2xpn(B_^D_2Qoov|=6nRj5@ z{bVy6PJIsc58WQ+9>BbG_VlcLg~e$E{K{&P>)myzaKKtLgUQ?I=xBmqH`VGKxGDw2 zR^FWFh~&A$XZKR(nGpnPi7PW!9hY>=_&KgD{`mr*zSJF8U`UJm1DM@|HU@z;wby>X zz!r5r&l^)QKu{~gK}iwN(lym-_ORV2D^olyy=k*}RzRy~#)-YvRlaw~tm}$}jnk=l z9EKnuXkKhUcHW7@$?BVBncYG?e;Z`X{T8**Cd@^Zj}|ppOFPTEC`LBGI0pS}e=fGP zl#b(i6Az4Y2atFmfILnVo<11RK3p?+2Z(|^OKWR7r~EHO-SM&^J&rO2gdL-Kw;i}{ ztDPZu1i>H+*eR!#%ozhKJ&HX$w1iLGoSoc24$G|ekld`t-ON2`_XP^9ox@-e|5YS( z7$s|Hcz$!og0%?pdTbEdT0@Y2TC;u;CdRhk&p7tf)QjmJd^$I_s75Ts^u^- zXgPz#kaTITvS9F4Bxi^aZ*+qb<6EUA#x~I13e9Nrf($BO>dY*meqNg-TN4)*T|3?&+7?#CMPEH!BGL(2N(XL!M#S+Rb zV;v!k9_@aAdI~dH)n+--iDz4_MaM1R!M#k$bab>+_S`_8>!Lnub%W%}+TfktS#RTv z8hS2~n}F&INaT>{=&l5Ir^CZT z^~1#`Mr=2oOK248y?Fmhr=2bltHo7Ux%M;D&$=;dh>^2oC`PC-A)$*tHIWJZNP1M( zhEEWKeobIhy1W4>M&6$L1$xrMOc=FwYrs~cdxghaKrafD#6sJUf@$* zJ9MwA)mNB4crw(B{Daz~(=l3o$q(}&1x>WpxOTtRPL;2(mQ9%Fk%W{#F1t#bAXwq< ze(}SAJWz4tWL+-pC?LiP!~HjY46kPJeZG6}S1NYImuIO^du82q5>g`4hgR;g)idm? z0Rhw{IJn8H_`Og?3oFq1#Nk3f$7=P9HE~k_-VT1f!>3#Xp09PTu#3#`+V*#XT8#j-q~J62EVxx z07dOZb*8o$Xp<9qcHynoF6ZWC*f%pCusd@Wb2_f~vx$kE7ZsA989Rox5M(AS0+8F? z7?xi>JXcUquy=GE7Cj}NtUPYzhi%4nwEny1)4lIuNuhO z6xR0m3hw#X%1wxZ@*|uUc&ila9n=GP=RF9z>V^Tz1GbcD^zZ`5@v2A2_nwUFk09=& zX-O>l+h3E9*s9+Jb$l?>ZY0Cd0b3PP62x6uj|IeW-bOch_ zTp~MH5I0xa1GQ!=Ey5KKKwdHhauNO@tg1Ei0-eT9eVBlHeTKbZXau~Q*{cGAz+RUN zqKbv^_8rO!?SmjiRR67o@jI8$#vjFYvG=BVxCbHyQfo6a_wKM)kuo~z6FYKTJ<(UI z?Iga+%iP!RVP7ahm+g}zx8*ow-U%Hb{=~@oU>FULK`2f1^W`bmtGzVbNLI_Qb<&`6S7>0SHnX7DER4sVN{ z)C@jcMsu1CWSWIU-RITboi2_%x84aCY0+iYpFL%>;pew3$-4<>H+OzAASOT)Yr7Q} zvr)rPW{CALYG?d99=9JqRU>KZBw+Bc>-ODpKdZ1vxHgx@&>x_V?;8@1#bgd4H$igE zTk7t=p&ZRoE81mMSHBB+x7jGnKpI$oYOeJ&dpH%ZR1nh4m}MZ5(_T^A$c?@7r>z{uaW8NCr*MB?W= zP+Bg4g)$`$!Re;zkI*9=w%hz<2YIxhEOE3S2JwEYuZgn`gJmgMMw57;O{!mHZ{pW# zm8#whZjCIq)s<@=u3nJ-7iM$}8v3u$iTt#+Mp`8UCFvdbrV03bvXVLDXE~%GBW7Y@ zQ6!EjK4pR4%Gx&SM>2}*Tk)VgvTT@{s?-Wb!K3XGq2-jm2@+jCh9(T!vnlC3ALUrT z@Z@+X!i#yyUT?Q4aMkm*)}BD+KGIX`XnlsPb1gDRHFekOmn=WFAS<>66SqHx1CgJb zno@m44{oqSC}vo&5qk@H2a}clo05&5kDf)u%P*J6EtxGEq1+Q0uOfRJUKi-j6~COn z*b$WUOWjdM+*3>TTG+}gbV{Mw(8etnaJ5+Xv}sMVVjH`QW? zObqud^H`pwI1vI4UOF{HKHboUd}3N0Vj;f(fve{nLpE@0;nYz;ynN1Xq(Kz-rS7@& zR%Nxb#WMa<-Z6900L=pI7}wM>7*8x6DRBSDD?9bKu2IR_~;iNb)j1 zbv8EuNi85xxx2YI8CNnZGM=L0xW8O6qTmEX0glrybr3FRztsSH2b!956W9b53e_P& zQVDE1kA&{Ld5x#1r?!qxG&{-4sfBn%pMHDqkcqvXs@4-jkTFbqRO(wpyhyZ;$V^GN zts8MP@ypK`@rbT;*t|M}$IUUOJhJ1ro`U1XA%EJKQ-&B0AE&tejRV)(;pJI6JYU_n zX6=#0pK9J8;G~e_)biSYL7Sw1%UnxmAonDedC<%Ff{wvV>lOCOv^8!hs&9vx%C{gG zSG}j}ndw1H)9EMCK@^33@rQlyg26%sM5D-Xlf)GjVc`&2iS#@X$85ZL*NBIvx^dU( zt9V@h4o3BD_jKnYSE>v4nC8^A4f3}=XXjycOg59@1O=ly*Nrf_F|yu`)t&&xkx}GF zh`%M}212)?7#rcakq@&;ysZ_ZW-zr%&zPz~gtIiiC2<}cFuN2wUs)oyePXChdm#f#c_k_rNtr#gThVcU{D)a(f#4f0UY4(y_t ziq!|SfohBEN?4OGNCmnR%zP#e;62z++q) z(v2h<8HAiIWP{1*rfOMhugEiv!aqN0@As=38ntRw|KMgT+Xp)>@-5}(D)a3^FNB*9 zRW)`n4aUcH{iJzXyWi}$>50{wQxHtBg`PVF2ucUx^T}-XvmSg-BI^6WYP;JBERI7v zJ)AYwcjq&G3H-dg)P|!(B?j26w%P#nPyCit(K%h6yH0X*$pC3Ug6ZlzYs|l_MfcQu z_08J^o-YC%YWr6s#?f+-*c+?wDbo>a_R=e?Xn{&?wi~ns+{YB0&6GU^Y-pZa_Yjy!r zxQG-pm;Vgy7W*O%ZGzd?l(1KFcJT^hoii1k%X?0yrHS`jqpzfDe*AKb5DWl+UYAz) zEC;Tb@tH3G9Im>)C9xJlmI{-P57)X1(ASu^d)d2U1~ZJ0SGA;&v}fx*t| zB{nw_bu2;~x@>w2mH!0-&fGftIvb@iq@fOdZiY?4Ri_DKIho%1$^tv|%_y<~O6gWq zQ-Ydkhxp#L!{r18{Sy;CG*av@a#6*pC3hU)=?K%?ZH zh7fBW;lg@X8M+u?Motc;=F|R5uJB|7qIfvI+r&IRZc#+C)}|nl6#20uRw^i6sD9GM zammoWeYcNExP3a5d^@4mon{ti4nMN8YJz{42}Ouj{gNT`WyN*c*e`g@vCGo2q+xWy ztDca~GzvNw0$l#!Y(b&+-a3H_e#vOo8YZ`-JYdm++@yQd#W=e}Nx9-}kkd9B>cR@n<#d6X^0`Rx*#agxuw zDt_CEp-A&)=qBKlYYTr$&m282DB?8`uyJ6LpzLea%J`+D4-P<3c=S(%w-d+YU|A;;#>@M{zVKmK2#xWwRg#JP|d4TEc_N{Uv~BikxzgV&|VznAymlm^VCy2?!*2xL_gScaUMTe9zX`G77#uAzj!1&g z>Rl7-fh&;#@EWn=7=T4@p#U;x$yK$r;G zj|NYT6dA7mY8?~DdTi#U{!idTN-YUh12-zffciPWF+jy*?aj{ zY2qqhVvH{Ed~ez`-)mlHsr&#~jAu!kvtvkxFVDpW6ZU3S{MvZug~u1-;}R<#7OhvT zR}sCvB5Z8g<$kt3v z@HPSLH`sp{VepZ~rpQj5PPi(0K9-Jf%SZoJRRC%PJfY2UvPPaWvu^m`w*MjhC5wRUEiS%)LEFdl4_MiIe}wse(%`=clblrhdc0v8Xbg}xMZ+}9 zx8h?b)Jc}_G(SI$SG73npqE%Z9{O#F|EV#$1^!TgbGmsYC%xcgC~ftZefbAK$9irV zhri1t82(tdL1_u7NcazC{_D)aG2qv~$_%)?w1+{&@+l~wq@bWEHJ%Ff@$qqMHPRl> zRR9^(((-aM*sKPoO7!~1Ln0#Dftw0&L5)2<{vaO+36rW4d-bQm=5!$0Y|U2D1_cG( z0-oeEA73%xr)ul!gd-Gc?H^f`RnU?iu;5l!R}ZJ~Bf-H5IrSl;Q@Mu`iWi&AFt}bW z!GgRFi7x#L==1u6J&^J)M3iq*2sb zFfP}pkm|so{q*V6LZJEpODR9F);(GqfjBV>xO9kI#WKG~4TL~A;w2WAa+3UCBj^t- z<}^;osHhPN>wu$K0S@?$tc--_g@r`mw?7`@#|`goFkgBCT;{WG4|fD3{|8t5@1iK5 zx0~Bcd=btNz#zG}wWV+@UumupEuWl{;s8njo*^M^M5?)J0M}LR>9BCFQU#)WYwKr- zCr^4|Z4sV5BZ`iUit=e_Xqa+_g@tu?b{2}rdiH1DKJ%}#-g=FLgF`SdW@rd>-Z4)hYspY z*bhJNCM_7uk|IPUlWzplQy-8Gt`1v}9$%1Oh>(FrI0$SruW)e0z`#D1VKg;0v0ZPb zxMww=0$P*C`O^GRh4S;a^L&Z6 z_ryImBS=rpH$^3q%n%waG1KUukT>2Cxjc51|2pz518NYDzrBv)r(blQ;dtwW2UVVlasNM{9MAZ^J@l%e9?J zUvxQ^9&98pWOzQo^P46a9hsG&w|LqZrOS2Wig*phi*EHIQ;~J~v>3DdM{#1)Rx)v0N&KTi z&B(rIrXB|^Fz9QG_|Vq=Q?@#IUyhY7SW-pv^U*PC$$%Hm_jK%z9gEwlpGT>2=M{$i zdMr#)ef9niw2<#cHtJr9gQfKACE&wDAkyqVL72SBk?XqsTA-Y6bU+9CPeM9%an=IC z2yJ5h^p%`{`0wrX<1qi86#ie@jbd6RP5&3fR7mHxD*Py zfbDv8N8Rk#Af-umJsMzv4Vo0iAD_?G7!c#eQ^lUZt0!;GO3tc%atGtqk7dQX1;In8 zs(F7s5@7#}!1Id48LIU18trK4+e^)X>P0oB9{&@{#W%ln?%|hE1NX8s)C7_zerZPp zz!R(o&@SbjL>1C`%^IUD=o1S||Y;X#VGqES1wh(43MFB{h9UQp_1uUNOE6L>3u%8vf+$2@-NX zoFBu66cxvt$TJQi<=&M+muPVr!f;|=v0R1MLe2s3aL}_4`mamoeKmKrOnlh&u8(dV ztROID$4MPTHR{(2HXG>9o}D!pE6`jp3`>sAj^G7dneFMEx;qJoS}b)zZfxFZ)AekW z5m0|>DQOWuxh`(Npg+X%D<$!7wLXd?9r3Opc5pqjzs}%?RW07e?vAI2q4-=4`~qsa zF32jnuF9pf2mRT?+_`VdO1^e@5fm+s(6ZUt!2<_Z-fJz(Z+JOqPhYux3gm`FVheBI zrANaUse47O7iU)c1m1pYshvnB&Exz#1My;@=*HCvtaxmzl*WVcGwrN1Iqm}0y3Mhi z3Hl9?IIIJ&FK|K^R0RYFBPF_=E37fxQi9;3`@+B&a44x%47h9}_C3mCyBF`)1H2p_ z1l(V1#w%3de;4fOPm#u;{(0i5Iu< zG|5rEcWS*K)3_rwV|AQKTt6Von8dSzkK?-g0h7a! zJ24|=sy6?X+X3Pe^{pL~smnV`>)p^!+!-S!{Cp#9aXC-={`I4#Nc*aVJ>%J;jt|tg zO08nzA8b``I-LJY5dk6fbVVOqeVPBaO?sm6k9(FT5$HPU(GNe*v141;;Ki_JjH3Ng z3dszdO*DWDw#^@Hq)>xr)R5k0XI$t0_6kBIn#Pka@NLqN{xf*^M{WukCAzx^=+HVK z0${N_B71Uw8E))8}z4IC4v~_>Ft;@*ZfrjXb zzAHZ>tgZY(K(1{a8-wwUhq&u(ODZ&BCW^ja+fWw-A2jduFejl&((9B@pH9j#WXfIU zaLBvcgOGc>@h?J6 zJ}Flg-SF9xb{xH<7&e9I`u>)Sr>NUQpVI=aX6L1UX8akdKP1k9rs zznS&iYFEVnE-mo=1g>5t&SDt&HS^hyN`DOwEI-r*M?ybktV>b5j;q93s;0IEKz%E~ zqN{mzyf$kyp@NT(Z@xWB3;~KP6@b$T#5yca*GCp+Wq-dPRCa95R8SI%#i;`->=xuG z?gl>xjzQKE6Nn!Z9xk(QiIN0(CVId#!Or?HOWjAtd)vLbQ>*PAh$WkuUrJMhDmj>5qHWR z&sLV?DviBFraE0K$;1kdJvc6?f$4 z*nzLO3QX^;g zOfjVbc<<*?%y35*#I75rJ#`Xk$=t#XZ?*x1X5hvv+QGu>MHg zXgn0u^JUrYT42q)V3d{EJLplLop-~;Zf$vK#INl@} z%I-S{#wJwd47_w2_Y{|tUw_Txu)iPQUl*Kq)IRw|v%eDf`EXKnJ3?YsflDDLMp$Oz zO;Ja|BmLIAwStp-=fJ4qh<~)hSf)Ugg`$;_xE!KKp+QG9Sw`<(60(nuFri?egTXa5 z37PRK{kS$e1kVfJ(RyJm_B9?X^tJzi`l;=CPXvv(?-+Kt> zC#DATd}|h)qxff*xAQmhafn6at-ZRSlwLWhwhXBK#OXmBs0@wRZN=OXdx;z>-b@g= zlY2H!=5WW*F3Q^MW#-0PAZ5NEKkof+-ym!ozt51O(D1PW~!w@O1&D4f5p(KK?lg4o2c(i7A@_cRP}t)(GXi&2A5>%sp?4(t^Mys{OedEW$rEdCGE^^dTVfZ1qfp zT1kAVm&{L*dAWFaCt_t3g;>yszV5(^a87@eCYHm4q9i*mK`$ey8tSEVL1VJ7gk~+N zREI6!UM|l{HXi#}G_e()Ky5B@7P7+)a%h6$b<6gel)$ON&Z#vGw)op`Jjc%w2Hq3l zCsJPA8kG0u^aNQQ|3H)Sp0f=sljql{_xp~H@|+qlq?n1jEKMGFl9RV$KgKi%QHZOY zhfb^FS@V-DV%cz9IHJR)NFM6s!vDiw7Pzf=?zwM$ERIkCUn>B{qpDK*#@`jx1-}3Q zklAW|5CB4etsdRlplTuS)OOU+rV7tjHZBBhy>&3li6!iYk$^aVx0=q>alL?*H$=8; zcWFs?&mi~Ho+go$3-u-nk@2Wd{}eC(7Xh4x2YuDPo^C3FpLsJGOKT~4!@}>oBZAN= zwtCYsD7GY?{+xRb$Eb7UjO{hTg5@1Ot;U2nxH#E!o6F)Rz#^ulB4Jb9n?~eY>_jYP)SiwQM1i2_yjbn!%08uE`H+l?^@ z2?_Jo#QNf{WDW)29`CB0<&~tRA>6IXD zqedrl!@dG++Nl$92_sM9EV1BzTri`gGpSojKc&Y#KwAyY(U(FC^g`ct@gX8{CIr9AU>SWw7is(a`8+1 z_KDx+34f1D%w0v&$ZMv<8rH5OvC7J=s*R!-iZU8F3t-Fn{hkehc&Sl8oG7O{{D2+tl z#i(@jMqoJ08HFyBFBq-QMZbTMU>#iqPqDP7_jd6pL;P;CvYCcc`C%RHOXp9<&nu#A4TI}O4p?PnraX=I z!gZ|s9?XVD?rGcJ#i37;7UP?OVqZ#bZ<@> z_9**+(%5#8vMJO#(gWr3bayI@^`JHkFlb>RA&^myu?S$t11?bTR}(M^q0?x0B2+|& zhkIsZ5ME>^wtv##M1Tn7t;VF()*(^5xp{4M-#z~7XZS+NVmrJ-^zgtv2dkEC5Fklg zerUwPtWRi-PA%9$!rf$>ZU*q~(wV-er9DZXPEZ{fTksha*G(Rk&u^-JU*PWFqFT}E zRERGaaPI-QP$ux*7<{i&{6cW?;$r}U3L+sP(k-c!C?FluNJ>k0mx@Stw@P<+N;lHd z(jeUp-`x7V=bZPP^N#WT!5EIkcJIaBYp?sB*SxOZG|V&{131dRYouf*{~|*E{m4gn zt?8;z;;k|*n-IRhYe7D(x}oHH_y}QM+HHM=a2*k|qm=#5a;$IC%Fk%ka7`#F} zA}(f!dHH4bhIdX+X@3VQu&I2A0b8?AYVyDNJ>Jl1s`$6lks!lPvXrM{I)N53O?3mb z*ymH-e*=*6Q&7nT1D~C|^-xHCMfH7kJx{C@VOzRrPJfJG>lmiFM%{io1k_==I>=J)RGh z%H)2IkezQDWms#mLR20R_W(P*g{37;^wigvXow~^4Z0*EdU9W@xFHEY(^{(-%-4uW z+4Wnv??hAJag{bk;6;{C`SwS`mQ5MQZEkIaIa5x)puzK8M^-uk5Z;*i8Yy?( zy|~P3aG?_Ztbh3zvLO!goqsA?7bR#)hfV?&d9jz4Shi;SSv&R#M1)dHL@R?Roln+7 z`8TrF@9~{o+pWrYVi4Q?6UBnnAk_WE?WH8uXr^+Mu?7|5qp8oH?pf6whw%>_+G$uX z9PxP*B*t-=U)^(~6wKaRJPXX72bZ}ut4x*yiJhNRYn{!P(Mm15a`P=hvwlggFES5M zDwEz3ZIVw~`XSMC>g*1tlQpO;&OK0STGP~AJ8#a?ab5E4U*UM{v8CW(Z@-E+S%cCS z978i|>u?fKYkabXuX?^Vp;SZlv3$9|x2LbY-V3k5dOh4HDKyyK&3@+~`xUbc0X=4D z4dL`i|5tttshS|rFu0ws+H|=xgw?3<*L!iUL5OPEels5e35UU zI=d*x$prU^`+z8+c=n740=lpV=!P8c>pE8+-m@)ta;D9|4)!4mEvwqamiq&5;v}MX&2X@F0=JQrdE0 zZLDH1RlfCq$xgn*TjEOxdY!z3Pl72wHDhgi9SV}ueo#_9Y5UA%SORC?}f01x&F%X6FiAr-62Tt_y)N2av zp{_?vqvP8y^gZ}j`zYg&7p#cYRb2Wq$7>_z{}NJQy!q(j1HK0`kv)z7s1XBmsuQVJ z&kwU+6OX>V{P~ltBvDF1XhzHc#z%i+0$3}R%tpg>rd8|gwU-x8MD{GZZ$FKLGHMN6v+ANz~k9!ZSpU^(@K@7>$&O&vJTI6E#PzUB}i zGNFfIqIKXr3hLQQf=AUa87MKLdgO$9yk^Ert~ejNnzvhC=2A`iBsUuJZT6;Y@EjwR zkMvn=+<1~pAR9?HkZ+eeYQ$L^)3I{t5MAWN3{`NghaNA-lJvRXFrsysJztOWeoZmMsl%8rE6m|Q|wmyJ>Y(2vCx6Nv$OL9 zU=(0H&-?XbP1)3x0ea{S-QE75KR=9MP%~t&%g+z;#-fw~W`L@i8X|AOWw*hqqW52D z6!hnJQP9yB;6|)N>$6@k#w3Y}EW z!oAK==hDlEzPy3S$LpgbDiSGw71NWs=Aq%?h)3GVB*h7Hrc=ysoLNSW7?Btj-H_aH zbdHT;;7X2@3yqzB$7e8~^{iy{dj$jUZ8WlVKV1gA(WH=GhQ_^7kFvJLzV^16$&^+F z)nYV}ZAsRe?j1L~1AAvh9K>0=^h?86z*1t`LzvdgSHfgDk!t03ZNG z-52sVLMbE==~rh+r~p@K_g7Y)X|7(bhl9B~nZ7l(WopApWEiKY%#{^7Cvr%4+ZMPCC8X7en9nU~_ zM@MGip~Ffw3!Lq(c!JgrMSg_n^ux+~5OsKVE-$BWUG5W~rp{oTz2w@+9jnS;nZ($4 z$EYH8V*_TB*@F_(X7`ySym>TA=|ux6vAlVf_~bZvX(B%Vi|dN18S9=5QvJKgxnp}x zHGqFi9NMFzJrQ8~^+iFxUogA7?N%{|Xsvxd1}Zl0zIiL{%12(Ui#fs~{>B5vv%Uq| z?}PojTQLH0zKlt_YRoR^gsKbO@dN$ld1_4sL+Z}FkE3eq)Eh=u>v(o*5$D>4D@jCk zzE*8y(08Avt(*PQr$^YLsVZWDv*O3wruMe6mm1(C+_cRo%j^ha4#qbRG2N2j$HKu@n5QGK z?X+1FiGoF;`Xm8@UCjDD1isaZHInVCNevFVeb+AR_Um;PCJaG-Dg?sG2q8*RjzOZJ)R~B)iA02D0jUqW|DtS83+@3TUTKGph1%DTG5O=OD zKKK4w-gY>!bYXm|L66iURN0>@OEH;P*)aBGb!x}9_j10YVsopcL20Xn7i^7k(~G0>v$e-Jx{ z4l*r4jk;8lpuaf+qp>zt;tQa%tLA&l(y*U1Vy}bjA$TQ#jP|N1OxCg$_vwUK0X;cxKCEo{mwz;J%FsbqCYjM}YE7U0R z(^J0$tzU{_YN-R6|-$;S>cgu)KqfjzrUzI~L-0O!o0A!oHw{)r9Ez5LEfLsBp0I47M2 z7R`B1kL^Py1>c?dZJ^C5ZA=4irwVDA%y{s9G4Q-#7Vh(b94KB%L* z)^xI;#X)i8fku)-)=>ITgp|yVPv^9WnC&{iI+^+wv%r^{<4MF#VX|d-|?=G569a$oqmhH5b=ieho7I ztY^a?SB%Jg{+`cZD(Lx_`A;Tje%HSnN$7{V(xXaq;I)S=p>{Y7=zZwhgIw_?%y;G0|szok!dIlEX=Sn%MzAb zj(UHmIQC1xMl{Me_R{uSF!26qqMBc#5*vFxub1`x{=|trH#U>b*~>>4TZ^I}@cpw^ zEcvnyqPuX1t97D3R~{Falls0UjnUATkk{^-@U?a#3$Gx>k3R5D%$N;{U4J#9r2b8j z_!^VBDmRX#!BgUuj`KiD*|ZnWc3VFxirm`YXrJ41nkv7xvW3C;h`ir>&WPLKEO})| zQ99v6!RDMvMUbK)c{Wm_!lq1QEmyRj15 z5qEcH!PVAb6yt2?CB0ym7dcns`)UGg#;yQ}#l^mKOn!e3Tld-QJ}lL`;!0fHujJVd z&k%Hyxg3p`*Ks-N-(Rh(3MJV5=o5o3ltdA)YjPrMFHhP(($^3xgz;ti4RVH9A8V_sf>6y4L}FT#&nM~ zyNiVr|E*O+%(V0>j-*i(Q#Oa^B@JO~$|;seGFc`^@p$L#_8z|dwRg?2U%OHn-NTDjK1S7 z$yYzWdLdYhrC)22_E62Es4PL59&P3PHS)8W6iOvKNy(QP%!S%A^w!rz&s1=}Te%<` z_GTK`Po~=tnYlWY&L5|bZX=zYc-$6i^|V~N8ZE9$B+Gm`bjX05ulf36B16`Rb`79T zdN;Zy7R#iSISZbR`|wuXR?qY8yU8-mrNUW1*X5`?EHA%?*n0lWAlZB`Z6zLg;ySt3 z-LGg`Gda<{_1~qTNs4VbAn$ghJjOTU9*iw3d*b6(T-@E={W5J}=I5J^tlW#~p`maH zes;bz60)?k#D(w}0*?mveetNr?}^>c3UuaIzkYp$Fja$X$vZHxwYN7Ap%)=Eao|HD zVGum62h+{ypBy)|mcEynX{fvG%hwO8xk2!U9KD#9hL#phN=j-&n%CdG!L?(ug>TjG zt}LFY9oN}xVWY|_w;NqQ2qxQ_p_v&FEcHk_FY%U9db3ufqT6<1_9Q(I^?#Y_4yQpm z3QEaKvMx}aGv{}`5=qfj49Zb52qUnw$l5{$Ymc+o6>k+vZ|PedK#r$aY6zSRn5aNm92Nlj5YAUMdS!|mJD)EJUAW3{}LHN?-S2nm2 z>2^Y{`)+P-uutDUIAC`|h#q`$is6!e6jBLYn{}5xuvPI?&RGOKR1ccZumLRsDFmu1 zc$^na>SN^#X+rrEnK7^%^}-vuGMw{(-xC8?SO!+(A3?yiD}b~%s3vc`pL!rph%UDu zI|)9Rh6ZtWL}edl-CMVsTZN#jX0mf4UR~)^A8MdsIw&SeN=ofD)iJCF4UjOn5=A4T zXhuT|kGKgh$;pJzX-x%-{IxeA%U199a6RSX+68aZV}t%=n%l1se@KHe&1B0mWGbnT z5zgP<4B51&_FE4jAD#^GS9$z6#0h<5o7{Pv16$`Lb)L@2Iw8b=l$Uz1>l7g0EA2-U zg`1;VQP@E146C0hCobXyZ>nUz(kga7-a*X~|ME&$OGn60nZD&0XVAy+v)#ouThioT zn~Sbl&kPORTBQfBIwC~1m7W7TZoEqyJ7f!V+e5X_`ObL^c*m8h*rI;92Yd*W%f}(NoP41uE|NXXIWc|_61_fl8Xd?dsH2xccvX+XO#Cv%b`u^&T zelUW~&dpu0<)K%`~i z{$4ELhdAkUt%wZ{1vRG>xGrRMr^q^V-l~8|6>Xz+wZrbUH$f$f8zOcJH*2&-WZLM9CjES*LA94fGhR5jw<2u@}$IuUf6}F09{<*+$;(&nYN>cFF(IQU-&xBSR@W%>ly=`t6V7^+Y>EMuy1dv}(49@env>Vn ztSgUudN`jsGuRWpUWgw52=1 z%)e>s{>?nT-i)1s>u8Op;eQcjl})O!`(Tykxsi%VXfU~%9IGc6g@DSlL8ZG4FpL*p z$`4}C;dW?7{ZP|Ms?OXatWy%M`!XHne)1A@(hn}&UOm-i!4 zM)Q4XJp~5*+80yWnUCnz%()U>cCiRIMSliPubP{?A>BB<5mx<(>05Z-6a8KDL^Syj z+-}_dA8W_`BAUj}?4!0KD&l@@zUab3-@Vv|SmJ6|B{_+>vMo_cht~_YRgGkfsl`>{ z*GBaP7;neIB^jTZkgdyJ-G7q)be#WkQy%HF<&7J>oz4Zl1Y=EW$A$2uK2HVgeN`n1 z9uv~?n(Z(~yOFDRSL%{f9}ZXmfhXjS%6@A#kFzcI-GatOz3|ypXplwk*xsV0@ce$6 zBB0_)YWgB&wZUYp_zP$NAf-ML0z=GM%X z^LhO%7C5Y`-iiao5~cE5Xtz2VTg!q-Zy1G(cOuMHVNWDt)6{lta&tK?3o|z?r+Ez~ zBt(R4TS|JrsZQEJc7$%H(U6WgWIyz7-m{JnEKdH~;G-2s zZAZiJ`rcMt$09$aE;>6;w(T1@Z`Z-p0tHHGv8Yl{oc&}iGqwP2_D9{Md!w6zra@o- z?{XiIQnk(w6$8Mxk&u+^p}!$FDG|f!tyX2by5vf|RvC^+GlS6SjP%{DkWqDrInYNeR_WFN*;8TDI7?P>1 zTM`Pm3IOCZq$Rp`fFb8bJ#?PZWm^Z4HVyfTLHz=`>#ur9;vi@jfIQ>gAC&#=-zReP z0y!7?d%83!C7w|MPwfh6aN$Z&M+pS*$HGKNM^jxa`#xItp z1e=)w?2;_!QzX1;e2dlO`hp1RFYQyh4-el3=lAALtLF}H_4od$@J80I4IV_l?tG$n zuFtEt@sjVs0@L(3b!x#8uk#5YQ2%r9tm)SBZd0yM2SDoA!sZFUs@7Em9DQsU zTvT)JomX+rFQ~mr^_icG?R`LdLG~;8Hf>~B&b!G>oJG~-#u_|?E)v#MxH;V{-&9idM3!qNnB8>y6;H38`dslBwOh3}*8>Nf>;{<;t!qDo|!$WMrp~zCc%4@#%v)!1MsNDIoyW z5)f!YXFR^y`3fO4$&Wnc+<8X}K7#JlAq?7i(ds!ibY>^OtAYl4mVA*gU2DX1SLfy}D)p6E;zJP9O z7hcO-M{q-=S&(@ilF1k87TyyN5APR1@>*BE**Bk7o(peD@w^Ge?--kdv@#fSq0CL5T$w`Yw=i9jd80Eq6K@d0othO3H-{hw{ny4n?X{Ww&2_j&v>o)6*`?oV$DB1@7(+^vPP>`VKf{9&Tli&`JB2Wj=h;J>>(kwdTEY>R*cJeEFe$fvad0b?oSsulm5$KAXW=Qa?_9SLKvqxh%y9#;q;1!JWPI&bMe`1V2{fbuFS=b%+xu{r~W6 zP0DcoRh^QJKTkVT#b!$DZjGR6lMRVix2;Skq6x=c*?0VeK`07$Rw%V=x6ur7pFDX2 z1mG5!bg{L+-wfF&=rAYA#q?xCV+a0u8v)}70$Kg!WIWWah<+LXhOXB8GS;?D+D&&C z>UJ(qRy{#XQGn`i*Tz#g-B3TkFzVFV<&&huoBDDAOh%6F3!@S+9j}k!I2^A;6*J!_ zb|Z8crC|`@U^$O|jB&2X%k%u%exK`HOj~_8_UtHA%!9v-iiGJm4Lj%B1I&7 zs{!hw6*05hTE|Dd1Pp~!jELZV}-)onMFk`Kt=;9;l4lHCEEWf7{QlI-St?v_H=`*Sef2# z+T{tzf{(bXt(}9wxZ(xUQBXvLAmF{rA&%|mN z3->O>mJag!O3Xx85O98=%OcJ#m?jQa&7^(=#CP9oqzD~hH7Gc*Q!#^GaCnWG0dYXn zB>Y$SaJqET0}3Gng9yT0b@-2W8f4(B*B#B0*3~xhTi>|E4j1(Usmc>#ekoeNtw$xo zdBv9U<^I9NjEF&NO>Sx_PQM*lUr!JX+bnY}oyWLzc%JYgBpC7O)Zahgt~#f(xn{BEb%4+pS`Y ztNV_Q2W#F6Sqs3u(t==dwpvxh>mogQ!_&VrrCIx2T~^n)%{MGz;B*1n2C9 zigy6}pBG>Y?nAx(kc{jvDXHF&R=`>0;q^nH6rr$#kXSdm2hArLIXNBn8jx`YVVFgY z(;;%c-KM&7sjL#{$rrT-hfc(}Q{Fq3wGTk4Ha zr@-?tv$kej@tNlNACq1~Dh3fZV$@Lidg(a873+bJ0>w)K_}U2w2yWiI`8;a~X545V zR3;~rAz!_E<>swhbOU1Rzjm`at-C*G(w6(dV|u4EZsv*C4J>>X$Mr9zkcJ58yB{6A^Rtxs#`CDyNs zQN+GF{LGLm8WC9Ad(-l>h20nBVY244#?+QRka}otkQV62JGjX4hcGHuPq@%t50Lsf zin8d>$`~)Z>pYTre_YQsAf$KtmgckqaiI)B#`L4eCD>nU#;PK*Gv+jIY&wh7tbKG3 z4bG3K;AT0-^f&EfQtAD+uI^k>jlm?1PY{pJTE*ggWrxBMGXRd)*wjc&Z|+v}vI z--fsJ=Iq%*U1|t!P-pyIfm*YIPaP~0i=sNaYf{5PTU4}caM#4UxZAstB zyZyFdyejbLic#grz!b5Iy_+R&ueg7T?h+lKtqRiAO!F6FM>4e;rt|jay6&RGhsU2v zk^gh|?I$}EW7`Rp(4v;-dm{R-#}l3-3L3>Cw?_K^p^lAjEY1!KYstMt1X6(b2uNQV zyIO^;=JxjX4(Z7_gc4Re{7)t9wU*9m)PMTA!W44;5UDn;0)DK#Y?91dWssFif5VZQCVw$xd>fClTfBhO@Wz3~Hh`%G$WTt*r zNb*jfqP1^<>svX48qMXJ==y(%(R;vR(fQ^+WoQA&gRhVQiVB@oq&$MR1=&%FWFM+jRi|j6g)t zv-Q+8lA-apUJngW)_zFSFhs!w^opiri;=5A@dmD@7QLj@puM#@@e*sdB`Xc~II4Wq zPaTRMHRiOB3UuS``Qd>!)m^c18cu~l^16s{E`$^LF_q$_sx8E(# zr@Y@q_fXPNd2hZ%Nn3)y+MU*mbs~a`fyv=7UMk>H zrr84MRo~|qR}sEn=mvuCcNP!@i1iXW6frzb2S|5_iF+Gw151L0UkQw%X_E0;M_V({ zh+;vYv|9p+L7{R&(4b*icmuaM~ezc|jzhb5Ug*xAM4$?*Wl6GN5B_A&q}d@8?P%O16qjtkl%anS2ZlPdE?~#h4-8WBL3s^khMwngOj)@XM?3Fl&fGqqZxIS~d#oy3o%Aq(cB=)ZlNQ z7Msy9P$!%x*BMpIgJ5?qx8mf(mAB||1OJP~$UurB1=h5WZvPy*NescLn7H<$I$5za z5mq8Q@#D26i3{?}y8lJ2Vy}?6tr0hr%*VVj3P1etVG zxIWX$K*X|o_Ks6ev~mf(9rdc9Wf6gwuL2f)$L5zL_s{K- z<0VC&PxkjBIvwe*B>rOykM#^#MZ<&Fn^DRl-R{1bN^O%iA^U7f(!L$B-u>iXQPJr{ zCgeFOnw{L$Ml1IEs|Kz<9Ef2?ZzriEpY^6}$#&fh6FsGmRb3C)YZpQc-bJ&tDUm$I zDN$C-kmfP_#CIh?^1vocG!LKBRI`^i^trM-#= zfOe0UQ@4~lC7tg=zk`0Qed{zuWOj27WSkI@$__;h7mvQTbQ$>TqeVC1YlH|dfl&e| zF@V;52RCixAV3TQMy?#bDmnL;z8jzr98Jd0+f%Ae>;Y~0dJgBpn(KRo6yhjfj*jS-Lt&W2)Nh&P%o%m-!Rrj3d6($AvMME_a%W z%X+QgS%eNNt(?llH>!Ev+g)N+^>gHnj=JnGrWV`7p9+DOpPP&1O3f8p)9u=AU$g$1 z_=Gnfe_p>vrf#iwUR^n88q{0k5=z}ByED`=HnIJjQ~io^;Q+yCCBwU70ZPsT=6!_$ zNU%P8?A3qr?)Nx78;$1flLZtO156z z`!`=w?aEQ%3(NS#ESiDE%!g7UwvMAKwnD((6~iQ@b)50Qfo#V$1o;`Z@d$V~V%RE- z6(CBH@dofS)H-_o$s&l2I&?q4sryMLgSF~R&p_RklOo5jxm80*z0?Oyx<}lN!jIqW zM{b!%j`lD430LjyR4Rn1;;{{)3Kfma_fjj0Kn#hd*GZHd-@GSPTz>5J?2mg+X8tRI zIa0a|2+Wx)Uk1%WTF<4DfByPHN#72k3CBWL0~4R(h*Rk*b#XDuPunAmQ`s@zYrb16?nyE+vLw*4!UDW1+O zrp)zt_S@@qkP{I2+y)!7zX~>6+1IRbd{yYn^~cQCaR7r#^3#vV4{aY?F144 z&bCT9x~2#`Vk33&)eniZM9U+bU8amrLM%vNTt@4o@#^5ey+Zba-4(a$^I~gWpNOi( zHj!PZ+!IVHh*`8g(1ocC*-8Z;d~q0&zvrkt0Sk2_AWpg>#!HNFz-2uPTN`+4e?q+WdFvWf~=jSXc(^+@bJ~_GjDMbgEVz0)^vXbK0$Yzr3od2!0W=1j`ykmpp;X zA}61YkRZyhi}Ljt0}LI)mjA&XFQfVstw5N+Usd&ZIcN@c9_7n)^Rq`OlMQWE#k~{%6V!C}96UZT(Nm z4SF~X{~y5U7z8H!Z!P9uCb$2u3EoMo%V2E+MMD!VuTqTWugcbKiy6`);C*O)lJ7Oz z*zn`j7f3xlw^IhJ-k<_xrP2xOD`}3C{%);y=<=C41qnJDqHO&K_E<&tR4Ona z4S`MixDZ?F))qhH%jZ@1Q>Le1a548;H{m36G#7JR&A2lirfjc1=E^8<@HtW^`g811(PNjsS`6&Yo2<8Ym#!r`zdRW5-DN=B62OmuYAG*3WU0OX zwX*4DWErDbJkLhj4pq1yqO`4T9oRZxe8kolY@%_pGph3b-PevX{qKzj*d-i=&4Ft= zLfpv369)pQht>9YFSi#_t-{X=sXn%uOwFfo{UnqTP9yQQ#tl*}OgK**nq9W5ReiQ1 zsu|!DEp&T!_DkN5ecmrNDvtzr8I+rSkV6}b_V2vv^H`bwid`up^SMCcYS=+3JrKD0 z_h6tNg1*m|kC}B0ke-L9K;Vk5_B>*}=-8DXNk5?Cs|+3pCbm{dlIUM<%~!qtVt<6wxA*=Qk`HPa z>#rD*q}=GU!l%g{b7y7$XCz8#NnmAqg4>2}+%f_tjIe0G!NtqK7|hiWmP}o!ixn6O zh1~&2*OHQwFwx1+i!cEy#p=Z~7;cCh7H2Wu0CS1-dLsj}I&ml^F{fw}u}&x8jg01x zjpET@r}mS$>v_{GxYPS;ihic1gq4Gq5;Ehy!8iTW+bXQ7E_JbrUx(@QgnIQu-u6?( z{;pWACv57*U%Itw;gyt#gz1nN$duW#RL*yy_c`JAPF?Q$YfOh`=( zGpVOHIwXC$Zjv5zscwB-??SD_R{BoO^_2c(wcKvZq%@6kz7Ac=h=4p5X8M(oF^U2? zA5fpkP5eyj-#mWou%iRqHxTV~fNMp*i;!KR69Ymz_z$)~yb28qlVf&+-ywWtfxH({ zASKVO8J{GbPhVaLL378#!s6S=NF-u9{lr8+V;$l#5KW$4TN8)X#~udR1l(o(s(Z&PuVN3)#$=mg3aptqR`OAdXv&GJd!{SEv7h5t$5;eA1X86^U$%E zQiqhGB3|;Lac_=Y^zu$o9x^xhv&R=@sMR68%TIM+tt0ikI>KR4fxU0qxp+o&Tjs08 zv=~Y-gDUq=$t2V0OC<`=^mTO|3QjH7hU1!zWL0yDYO#oyTA6f+7ksvo4g<9wshR=7 zx1z|20%ngyU3|O7PR#R-t1fQwi@uD>{lIcI8K%njV1QwQDZ5ZGw8G43JZ7Dn2u>aJ zMrcKRKyLPsOw$Hc5iy+sjz?5qAcpPk4=FmI?~lM>c}z^q<>@+JSfm$Wq!KACz|g|N zO6m(!HiKdDAVzNkZfBs>Lj$qonP8R$EN>@?SB_ z(YDl2#xB~Tnd1D+Nf*TpPT${U(L#uX({-;?C8Qm|2~fD^JNGmLeSRs!{@jD2DWNEk z9UVat=ea?_WGo8o=Iadcc6ukDDVBZc>=N{Pflv&bk4^F*xixhaH`}t@%GpZWnHXAIZ7sWpR5ZeNUFYZTC&ICfboI{dNkGolY7&43omzOhNEkE})kfM6Up-j)@l6%%X`#OI~b8MPL!Lyy{*x}$g zSI$eMgX5656C7djS;jxA+aez6&MvcXc+Klv^DHyiaNbI3N-ys6Zd%3?4X0^_mJJe> zYWZWtRsmujNZ@UDr<6+gIUhEhcL7(iY@v<_gL<_vtb6Z^H;O>yCw%bW0TPT1;u94` zrB^9!8Xd($0#5p|Jr;%d8|X~~%@Xq+@-d!ZDIUWrg1-68X(#4@ zU`Y$*mdVD~@VUd-v#_(5v$(^hAFH!1Ys^Iz{hP81R)tEt9A8NJEsqqlQs`yK*|{}- ze|;ObZ@bEPJ1KE=DQx4%hN>!$$@>xs%pAw-ERNe(Kb2C8ScW);B(0rsq-2ef#Z}Tb zM9qXJzB?7XM}z0N)bwzwx_@r#K=rk2^@G#wic&5d6P#xarRLn<%KS&Un(?g0bvjB= zul=0hR6)**`R*{}Lbpq?v-bhdO|mVp!i1S&sKoBd{k^t#wbMA?e$a*E`;+38Zs9em zRKBI>kXf#GUlq)b4<4pJU5;Qn_NCa;UixkvkBbtG<=saaMk7ztXyxSOq+aLR4c`WH zOUsbZNAEDnMc)`0w8Me!fGDpn}+EEA`m z#pf@|{YFQmC`{jas!Dtk*Wdhd6%!|?(>LwY#QqcA@u5yR6WkVWo{Aw%Dcke7sUfR1 zt5Uj>xu!$|-ejpw{9sBm%=H@eOmZg9r<2|>3E#p@F|WTVz&9k8F5fb;*Sw00PEFs{pogaq|ZOQ;^m;iCJa|JXm{;;0{B) zACE=v7D(c_57N|Xav|&l*`2zwNl#o{+&6Ew(C?kNV0*jDCdv-+gv{iq6~FpH)u*q8 zB>&(eyg8WFs2%p06O|JQ?kdL2bSf5G*Xu5N@#;t;@O@>zkbX(KJf7~&KHTo5WOI3>n&Li+wPj|6DIfQ2b>0{jei+n=KOB~(3La@^ zxQBmnaW=5-OYs!DhAyu?*3^XVYI z>E?mL5hDzf_LJd9?`HQKIBEy4hY@aTh#yf*Hx>^CX1Yzi*L1=|q zk9;y3d>K71S)syy7b%Dx!mnSV(0)UVNT8;sMl6c(!AXDN^SEugw6xS3Oe*vihTS^s z%zuLzN>I=p9~?%EdhmrH!btb;--l8#G%BhM+MAFi?ftG65$+QfpnXt!W5=r3yZ6e| z;-Q!d{vFwcQ{hkDw}Uh;b&q9{hI@8>1oX%yo` zzZo);ShPZcWF=H-Zm&Pw>w7ivA}$2e<|tQ-wY#dWX^=bI>lKfwI;*zuDyBfKv=n9t zA#Yk2-Ge28kr~FVnEPJ38^tI@hnK;z=xA$$memwkSGVGq+7jn>uy!d-KD3Gws>|Bd zqdCMM_!4iA&q6!N$nJ>FF3)$eqH z$U&Qrj0Md6hZ#xDueZO3KQJVU`dCMr=)Bp3e&*A%t{xpHbZ}Cx@Bcnq+40B)x_1|>5*5BJ31==LH@L9cJ(7Ch11XxU9 z_wq_5jl9ywcrYwWX4<&?G9uv1fncHYccDs&5(>7{^Yy~HrDPwe@3uELqYswjO8M=3 z8L!b8aD6t{x;}h0p(eBySCfwCsWUH{bH|@n7pZaxBahl^X8}*e--j?(Qo^-@j z=PsbNcMLz#@beme9N@>`5mP@=UpU3h4-ap01Vyz{S!pdAy}0w&i#s371bl-Z!tr?l zEutiG@B5_xcKG?%7AmW+&BBNW|20G3r$zSrNrKavI>O#EVIq#cuoo-FMS-X0!yq&C zW2RL0`+fAz6ehhO9Q_c4<&6(d4e)L8CsL-?HhU$6pTtFl2jMRjLBBm>d$Yk!guQC| zzE1CHh`+rx|2RptzHMLO7zW8zkK_;cOoW12yqkWXfMvQ_35IaIfdB7PzS*Gi_la3P z5)pMux4N8u`1kpJ*oydbavuqVyR^eN{^M{Q;xP4p93~L{^5=;j{l~B3ga>hTMgRPv zA0Aed|M@FPZeZ@>>PnIc8iHHl3CsZ9+TK3?$qC72g!daR0by;6^8qs_$v3M(TT?qV zD)CCsivHT5N6uIv@)Ikd@{^D?P|0E_U~U!Buk!rID_+x8H?%Dd2MyjD=x%Ko`xZgMAN}$2+p(|cEFcs6{w`MAlSgeY;TkcRJ z_(fPn|I%E@bfdT!u90&kmUhWcw^kJfR{PfsnPMh2C z9{G;{BIczXPmNJq`hf?O7u2XZO~F0im73>NKAn}c$Dq{l$e(VXDUAKB>x&`QyAfPv zj?8F=Ti}*VdR;FgZ1X@+J@0w(Z7+G0l7KagF3j z`8-^=a1E+t&kS336VK;zA6-8!B+T18%QqFD>AKHQgBH+DX0EohfSeAH=;YB`(x<+AbF z*|^5Rw;^S=VnshQJPJwq0CnM~AS}-!VyQU(*2yw8RQR?xwO27!a+<UpuWw+A=5o@yS!)`m$&*rxDjORne)wfDlDRq}=GN`ov9h_H z4=RRMjMO+yzopC(n{sf~a?M>E%ae^W-`x6y+&s6<8|rdV%eN@7ZFB!etqT|2fN}Bg zf@u{Q0Cg>8Y@B^|631bcUsgt`n5()6<8>h4dt7pMyjuj*Uymz*staUTR>Q%Yq@<*% z_vsJ=uh|aNt!?B7k4bQ+Cj;Ku<|&*8xYT=uR&4QJZYw;D#O%9AL)7>s{s7-+&4rT_ zvn0kt`%U(2Ps&=KY677)@?$2cYY#d3oN``PI?|v<`pk7uvp7VPQI|V*_+c*072j8! zLKZQucE;K)D#NRIiUgaooaV3S4xP<+&4=d@-}x-$=UHBt&Ilk~4}{Weu-_e}0coJUOJbtYkpqlw^fX@Rzf*uYhl# zA}R((D#SCpV%T8DqVgR=!fx=D22HV(5OLYwg8Bq@j4fcqF&N1u)a?lS0vQeBi6uZ- zAYlIhT+;#Ed$HMc0tEG5RogF?TnFb683jd0FU*;}*gwsXSz=2~r3P@tR^DMSwjsNt zhuAjm^-|iycAE#qsEebd+8ak%c?UE6J2<}j-x55RAEbK)4rvw&xhC*@H(eLE^`nmG zBbnh?;dsJ`i)G%sJn$ghyTXP>RL$#VyFKcy+e6Lmv_5at{n}=h)_FuzFbDE?=1DVN~2#HeRGEX6iGGva-8B3DNJgZQq zQXzBZl29^6qB1LzjG2dboqON+?|F{*eUA5d?tk`ix7%FT_j{h7VXgI9AKEm^S;IBmusW80r%f#ZsdjJWdE>(THwbq3>z~hGdYGW{mFaQ#`)Wty z=OSw@D=%J7xVAaGNbA|2H-qe|f`S@5ruBjiC3bW0=r8trZLTyNI<$8E`tYzY8G`jV zJFk1)+IrUO`-cyAvE$&877w@f3wr70S-7F^n=?0RfuzZ8YH-zSFx1fanvVCr<2|3x z`{^$RC+kt)W%n-~G2dO8l2f>Gb8F`|iz~%z+=AU|V&YRMD)Y13e9BJp;SGF!N{OR#5Mu`as%K95g*FEzm1HHT*E<< zn;H7?W4dz^rIg1-8#19C8X7vmDkwN+Sh{C#vFisdx3>qGs=f0(wYl|K7@vQ8&)eyI z=XhIC&d-jk3TN*oTU7u2UFf`Te_Z)jv*$-Qym>AEE>t>Cb7$B;?c+Mhl1m>uhNdM8 zZB9=fIH-4r{aE#yMqA76k>$Zgr-x;H*A08SQH$K&q#1U9b=1mJ&8!b`GOqH|uM7eL zo7o4mR&AZj`{a|drP}O^db_Z1uQE#(_kH>IyLV^}9{4b~iz(w>?#JkWP^V2jtJaN{ zIvW>@$VR2TYFU^`A6(HkDhcbRI`zju#B|wzF*%jT&X(!fxR{he^XtC75y$JPx&%S} zVf6vz5%TcS&0ePHVF`s0Ev5{YfUTd|rS$Jm;`?c8**9MK{W8(yo?S$HH>=j5eEXko z%qA#-&S96lTDqPHmi<&=tr_mfWsD=NxOroM<_UxZ4Dr!?=S2_6EHU4b>0L-|5YIj; z@T?`kjN`ff9o+$i%1-WdE|GFYn(?a&2IWWCICzG4hRupySbgB~zVwLgPflr>R1Hke z_0DFa8L049TWOYte>=g<@!I;YNfAQjF{WUBQC;`Y0-f0?cts8 zo3}G1-HcT3*rscp8i;ZqR8sd@kct_>SEJ_c~053#r5h{M->8?C2mH-5D~&%v&F zxZ=EqJyf>XM8F3vuTuvW)@&WAU+A<7)LYw}HN!eL_d;Y3RgCobv8|)mygijI8hhCv zXVSc~mpvwJ5>=>4UpC0_`I-hK8x#FO2aUaWY9hlgCv=Lff7jAKvMB7}EcM}~M?EvA zM}g%}+x2$6s)u;(Q<_a@6<=6uxO&w33+>;$eaEx7AGf|uzYj2&rxSjz#q!p%(CLlu zN#(oS8B$9>Ifgcmf9xEe>8f*R-b}UCCd=qgw+E0rx19!dZe@IBef$00!$sd1$4+0; z8cERhdZeb{`%Sq2v&tdbL?^+zaGB*_LM`+Yn=af8D6eQMI2T@^&s(_3)KkYKRO9N$ z4mU%uPIsA(hYDq1?Xw1>J;Zh?Jn|Yo8go8n`~JtZOIB4hRu>|!FLdm+WA>1`#panL zENHqDQkhFYp!EywZ^5VtHnKx#5}_xKt@k)?-pIVTv?T7eC^okIu?J2QDa4X~;}JkCfliF#nu#aDDBwJNDTcqLS}| z|J(hj|IPp4okqtUYs`JjKOms;o21pxFol)CrxR~Y9RIc){c)BfhX1o04UF{0&)qPkDyWL@+#Otr}PrD~@koKPruja<-K=mJ$cAo#! z?x~BiDwL7NEl_Pn|5VptL+t-`dzY4+ds|{=Wy^p1J?0Iz|LG%Z?f`K9KQ)z`S|oXt zJ&Uyuh0-tGPAS_c_qee>u0l8|w>D{Hdne}=mP003pD}C}d$#5*X$P$uxovKToYcy_ zyZA15|E(Wn&>!%r{mh>WFdulTm&XHxo@Dc;#0d$A#AxWKs06=N<$qQj93j( zD8XZ)m%J8-EkDFA48AW_n2f|VTMHaK!jSA{$KrT4Ec(O0&c=uY)-W+hdoAwqq3X0K%46t^FCt-MPg#&EATpI-ux{8 z>FI5-NFL*~Axxj1sICmoL--9#By~i0G6X|qQ08%`tV}8@DvIHAUS8e+Mhqq-Mmf$5 zWj-mNE0}yQGBe}MoJ262F;Mj$ariGP zzZE3uajZ%UC9Gd*AFaz5}#}(2;Wb8>#o)DO=-xL#_eJ}-vDeNkETVdSwsO!>v zUP%yM@sA%rBDmChbBuRfupo#9v-w$s&o8g8vcgKE3aigDHfFzk`MRbCYdJPUDMGN; z&!0cXJb3V_+}r!xw{K51QZ`X-VLbBa^c`A9Nb3lXH8G$FJ3dAHAgOlG8UE0JArh5j zw*|GI%hI3l(N;ahhxHr4evcIRQ&3^cJQIch01!rA@~L)IND0HEXnvx~gkK;iB=i`6 zPbpq=5_H=Zo&Raw^R#SD!j>F(<_zla3s=f79_HB?b} zN}J*HRr@>D##-AmB9qjADM-3stf5ogBV*v!c?l@`UNe{R(?|2^BKpcGi_ zJ7FAs^os=hs_k|SAzLPG3LQT#?mYj@F#O8n+&`0yRuAY7bcq_Ze<}GkdGxaa??{P( z`p9khhx)V>g~py~cH_@Vd7OixkF|Sm{GRh{mQ@0fZ5kcfxJ+0GW_UuBjD6FEIo#`zvnLqpxeyoaj|Idd*!_#xLF~v(;Zv@jY zG?j6AGDey7v8)fHZJqhc&{E16$JiRqWL&~SZ8z_Ke4QWnqHWXKkc*DxA83Y${4(P2 zjyv!ts+s>`Gd6$GJI;41YO!~AC{l#&SQQ=Zi)!0XzsKzbWL9L)ymGFJ0Cv%<&vx?p z)mBSJmCTI-Uj!S1ytdpMo6SF{c~q*3MJHRkmwRA$?Sav6G?w}?O(UBVTOwofhlJM2 zrs>^TpZ#-&vR5db-oStO3GbNR?DfLind;9juhEoTEMvG! zXJwU8=!z4sO3Q=X{M&oB1%|K1B(Sy-_TWlEHU+J=wiSM}X z$%mb`wB#u&>gtqp8+yea9dzDn>~F@~1c&h$cB|B5?`wS$(q?!>d032VRfjWzU3Zv& z3_SEXB7L92fd#R7moycR7YC>&IU+CD_MD2y7+be;udtQzd=b#DoHNg>i_!OZl`&-g zC^hT&^s096-N<0}?y_mUQ~wKlD5eY~h6bUTJM(tyCF=`D3wP3UI%9&?3QHy&<6=5* z+nH#W=6Yp5)>867O?(%pa&-h<=FP5U{eamKe)ealsT-Zmw?}U~f7QH{Z$xg5M(G)I zKbs<@4c&v6&#(SN-=}x{?qMeuE=^7uukWA5L-z#xi05`j@%ODhGHu}7z^WG@bqagq z#jf_QLHB(6vDzawuCeK92$$`;U$6QQEf9R;#wv7zskrt>Y&#|2PUAFv5IlNQA;k!C zaqKL)c=6(iGLJcE?=4fSRghkOCU~bpO(^L;trR$V*a2mGO3@BUZ=;%)uF13+d*$Kit z$kVnIOZuRle~lzWByXakqOpGjgoHxz$AtN8i7tD$E&F4fPgdI9d{3WqM>z$oE{mx@ z)@JL|mNGF}Nc=XYxe|FkQcplgM7d|IEH`zs_$VJmUak52Fn_tgp>>gtMRfv zZuU;;#*UD3UCGVUlBc^)obh6CVkGun=AMvUbJAWo+PW6z|}9 z-(=VQypwFg&V4o?(}h(%45WnmU+W!{2;P-`rae?XKcdJR>~dj-X33LXa|gEvyA=WL%&X$y3n!S?`2~yQ}fde)Tt{P zL0+s^nsY}q*&=;*mTiS_I!GZd=hdbaJ)kY~UWRLobF?gv1etuPFr%>@N^I@tIyU*g zDE$$&HLtCDsH3(yy~&YT>li`1w(MStUXEJ)x7p&>9FtbA%PUTCPX#XoS?8L1C9o)c zb)dfYjUhbgj2ys!oxqw<+bqCCegIlypz@U3~SC0_xY5>iiqUY>nX}rOnlG3ar@pjpUM65A5_8oo{Vo9-=AH% zwfx>J;m+S!4yxRqHD}k(fB$h*Ge&Z5`O1YON3<{LFt5UkOZK3leiq#`_(L*x%v$o(b$*`>}@K#8d+~{TQRazPEH(Sb$RRaH?}2}ZLPw) zW|z)Wj@fTAGi6eis|)0F={-3-Jv}uvrH@;GuB!5TaMbp)?vK&Y;CO?M!88nj8k?9@ zqCCSZtzJKaYtBUKOQK`P;^wDkpMP#Ey%8*UMCIMVl`b7AXO%m2ygTF^eZxZbtg|+> zXc%M*;<<2;{*P!X{ndppba+{cLW7GBu^IfL8PWhXa;9=3Q6!a_x<8 z<(EH}KCj9hWbk>Mb@$YR^gP<&w%ngB7CY)I|E%>7ZhG^9W5kC?RF9(J?FKC;so~1LwKgpe|0EN;>FPQW>C6dJ&vv zx+!w+t)@%;!j6C0w9+gl>FT~m-5#{N@bQHPmzIPd<=B;8ts^#J9jJ(0=UV)uRRhOf z#ANYav}%0fzP3e{kbeg~>-lWf{^=@L1+G=-Ji<6WK2BP;Ki`XYVs}tVim9Iyr&7#o zNK7d5^4&<;9OB}!XzuJV?aOTQY8h?Mxjf5V0tO|oJ39}+APSxVaYG;5h>150@b*c% zh5$VCI{XCZ6pV*sWw@ zViFZ4_qwZmN8X{plR7${)XW+hv|?VDp6PYolpwULJkE(K8@SjLTa^QNESZIhW=Gg% z+aE0|{?id0bl)!WFHuX)&9?Ctt_Bm?W6kkwDP)jtpDXqLsb5U50*_a z{m=jT-#AmwFty32NB)lJ#eth=)MK^9;ic1O&h+&6pGH}gU%2X#|Inm=j8yQy|4`MgVx!PDH8lY$F;RD{ z_(^-G$vY${Xe&l$&gDxxI80hQ^invD<|SED8(9DSNBCKxwDc6NxJ|P&ZS@HSE4Cr@ z|FY}<2jbZy1jQZ{a<8$v_v_=D(@F_)m0;!n{Rb-9ifB!FBi={&O2uBd@}yhX+EqYURr7 zsyI5f!SVrX4&M9z>MC{j^FNx=kzwKCtK^lHTkYAHqT)~c-M(!lvNe*YZ+~6RDfDYQm z6Id9UTd35w`P{sjxBGUGN(c8iq@ect9m`Trs$uGV5Q@R1R^9BJZA)>vOEU|c5LiHU z3vs~M4t%}r2sFUw75;RV)?(wi>sa@VsHFKwht~bV_upr=W0u>cUB|9NHudS%RpZ~ke;+we zU7UV+d3jkY(;yDs2CF(0gE|9;a8q5cUCT0WVu_dXd^WC|UF_0uOaK#yV=Foj-rE=% z8TtK0g-U{DiPw_eA;h(LzLPC;v%5_*bCSoD!`UchMR9_cRs%r5CXslu^?TcakJ#p| z#uKR*beNSAhNa8DzZDYiP9rljIVB|;fK)Uv?jo9zre!i)FK*9PRaJ!%koDMUh%)$5 zD)yIGR{G*e3)}b0yUqNmgR!ys_aYHI^mZO`IA9_b5cC5rMgv^y*;bT~416CQfnm%m z_ZfaaKR?J-65vk&xR`C_l_gJxi}8Kb;rL>p^ZbAS!I6_5{;H_Gn&o*D!j=p5i=6{e zgAsyD_a!rMo;F>Yp@dfC>-GX$reG%NR1DA%rv@p{dGp25^~C?4m`7nbEE`dtYzGaz-64 zx`)!;(=u`0Ll@V!b3Z8-kZV(gPy*4-S^Y|B`fOhq}I!(dVnZr-8BP!V*Dx zX=*2S9vegFJ>ho$?xEwU&<_%AIG~Z+@Sq2YIsjGj#|KA)tAm-W*rHU`@fyEm-GrY{ zHin|n>&WBS&BFSk)$6y*`Btx`zdFdU)lk@;E3{{qkdSy`P-I> za&g?DRofXD2&l%v!O_mjt-utST3>w>p<5W%?QbzQ)kcq-AG zZ{!UCOFGf9>#|#E9fT)fcDG`9djMD$ne~Qj6!w7fR0bukTjrmNFyaB|sz0}W<1=O>Z~y{MJ72)Rve32C(rG{S zrzYdoD=``x8ZPz3HFftz2o!z#^l37w25JCNfwXpT9kG~Vi}QK`%4~9R&Ve+`$xfF< zESh~`UHj5=!MRZEtY#K>qyoZ{g1PzAl8;SIJMg=qAFg|SgL+^zkRwbKTY_w@2>^H(06DS+MD95eu2|> zQBe`mHz0=L5>f&gMQ|KUUSD4o!GA$7$w?T=3|ntLm0WWmViHIwh&+>u_;2Aum;kY{ zKm07{%VEWQ6m90s$s0k+F|6B+;XCyVeQ`vNYJAO>sBf32y(tJ#$?`k$t=lWGwxS7U zfo9Mw828%8Jap45K9WqsHskuHCVHJ9D`tSs1;bm#t&Q(I#$*srI|RXkKf=Pef>HW&)H{{aP&c-2`o{;OCy91o;exg2lPL{ zdGeObn*{G=3fRmvK(DN_0k83VKx5<>S8o*;XN1JN^|=nGm{<%5hDlhYnOf{ixH}Gp z-Cm~^jU>I4hZx2jE`b7|dSO@|kMRc~>>F|(?Ti~p_*9$}4TBo?V1wpQpOS#wlavQ6 z>MG7YRbo=oMrdbnFTopR*>*_*XURE|;j$ut>Lw7s&0%TYiHZnCVaA8=-VcTd9$ew~ z?|;A{W)QKY!)Nnj1+T8?&Q?v031aY5;Od!6#9GRck0HDV9jk0}2WXVQiEz4GoPWvi_eH|G4Ye2?OVqWzRH(5RFKlv&p!;2>6st!}2I(8@5=a8yu5xfL8qC;^Gvju&&uA zpeP7KnTMZtK-!CU7q`Y~y;8S4{NG&5R-X4A9eS`f3Z<1H_JeM+<7?4g<<5LBTb73 zCSGP5t(mEWl-IT)g;*Zr?uMKzbn=beYlcZb|12W@l$V^Gr7@k$fBrB&~^=_UdXmRD)sn z?%iv_EL9p#wML=+KyqbeC2w#KaW!FPU}RLly^oBS_KxonLG8^AqFV#=&&eR@%z0D2 z?*;@!P^Edjxe?~xv%}K8ML7{MntP25Oca?1%HTa%^>-2ZHO&A-KG&D71 zv3MKN(+C$8V?TEgh%nl&DlfkQ3mB$;wQjy};X>e627wDjM*sv>ff2`n3^{6RuxStf zNBD=QRx=3n#q(7Uue*9j($ zR-jsm%azyioEgq_zgSN1re(#H)Kq&=vB*=WAoj+)>%$?4__$+byc00T(Or}5p9{6B$zCixL*3WXRA3bI3J4Y}wxt=qb9!*x)WU`8igG~$|z zPkPS}abiUS1$n%G_K8xgjJY`%hMvFC!-RaUbM39%h}mn5!4p2vnH{P;K*2%M1Rbg7qs@8X1@=^LqncUyi6>md@+XLsWCF1ij_DMRzqE} z%_)j~!^4VDO*SD+p?qhY`|8PNDN^vu;{l)SCd$0_*P=Bx5_a8Gs_~LI zH>{#Kfrb-+fH8hL#%iGW4@^trCO-&h4yqPJ;w||0xz5F5xT+3A&Fm`ik`$E4L_mOS z1kPc8dgLDBJl4#gR8{5#09?ndA$2Iq$%n8>uJqqw-BlKco1vMmmq)X( zVbdlf#429HvWEaUFcf5#<0H9#Y1j8X+PG;$er1j)-3ohZa+KD0u6%D(W5$F zuV&wWDnwhRi%J1+w5qmN@xWRZ3N5Y>n2P(T`Cvd@i2|$Zt9H19OUc4pODn5;*v^aQ z7q#9kT!&gdIedHaL=nk6?F{i;&EU91&&Y_+zcD$_jyN+R9%MQERKc_8|BIXd0p-pI z^g}SDGmC;WVbtbleH`vA9RdK>T-=O}Wq`B;OMvyL(Ms8mbch5UIR5N&GS`v=X~Q5oKpW@7a^^14@Pey1huJSe-y?KW@U~FHn<7q$ zIC5nY-1i~gMf(;Oo=E)q;FyH(LHbZqljG5nS`1?;f>@Y|4=*Ppvzo|PVQ~FIzc38( z@G^aRRAjSs!c@f{d`HM^`rVgH&yOwjzu$>%j|%Wj!zg74aEmB z)dj}HaP-Q)T|8P;&0&vFyJSPKgRoH#?Bz?L11C1VyzS_asO_s!a?o3x`Wx0>^7Heb+kG=7g&pn8L4-6oYBFKx-#Vl;q8Epr zb$-RD(%Q(z2=?55E&8v4v(@-qEK0&MpgALtigiuQ!@=p6A`xbOWk1EXxKfv zndnM@eUW~kASXXR6;7_?Dk8>upH)goRO9-RYq1j{-`CGit`!l~>^3{N0HUr! zZYk%z^aWHGU$RX%Bl#x+7b6b_UrAhi(}oSNo0~O~vO3GX6VR)y_71+@fxidjTq{FA z7T`qlv$Ka_Zw*Q-1p=2vOdf;&7Q{uwi92j#?_Ka$2DCY9WBetQia5hLj##h9vkRXJ zmG*7GWfx6Ml0SFc!1W?Hrc7aPM%9syaIE0})YwbYfNByNQgc(OOuj z47H@~Brt;e%pbBK5ap^`meCo~u3)%}pfb?{hN-B}pqW3UnEB`|&o2CS$!imWn7Sp1 z6h25+Zm!9P2<}|-CLcgvr0bol9tJ{V?-Q#Mmdu;B`Ow*CbYyF=WP$3uIh(Dmt+kC! zntIYYbarGhB!+p3w?5i`F;KU_++++5rQa?qDJhjnqy|$~_;307*<=4aa)2Uo*SR7` zZoDE0qHZB0U_l2?2|G?Alcb?X8v5jMY&v_1x|u^M<~qO%(j|TWz8`aJ1P#Pd8ko;S zr<{Wj=`}a7$MW-wI{>*M>_YF+hZ4RZ{@Gig8qk6520mkgLWVd4BB(Y2L_sRN6B@b$ z&`x(b6xJ{0G)j1`F2UnPP~DIm*ZpaflI!-@Qe0d? zmE*`+&3;r2C}Z18t_h>1GVLn!JYw}ZfNaxv{=624;VImjKi-QuQUr zOf|J`IgIVS^h?{$5~SX3P?Ql)3tpyNhGmifoKoxuK2Q z!HM)5eUZ%LZs4d~kqW?7DJm-3?mk6WXNB%=;C>wPCrRvuh2lu|eMl|jWRjwg2>aEz zj!c&lNEB1pENCzZAB}>Q0H~Zw$e47zx*_P7km?HY1EaRl5Er3i&cBJ4YH)DyB|Ka4 zeC6Pb>puNEbVUl|0hjP-^Zsa6s(=vv*yuk?*6? zMbZTk5p>#_26fo!rGnOn6f=;!S%1wBL~KKpqd;atFKVqD<@oOM+QO=ucEu$T*;R^| zu^a0Oji~7ZUzW&e0hr|9(M5G0A)A42>1cmf^6lbKf+W;Io z!V@9d^jcYRAspyjJ}2@vcp&u@gU9A__dbUeIvI3GgGj zKn~Fc5p0Ekf~ZTOM3hrdxLdXP2exXR(%0XIulu&La?LH7(4LhK(327b4QydQ_Wqs= zqeIUq&fS5kF3+kh)q7NBY0egZUHm>7Bq3FRxAOkNOW;^j zNCVhVKaScFw_Wb^={3Z>2=zIUiIaBaK{6LLj@rX(ESAJ8@&R23p$`1QiPOQDG>zlUJ5Ty_-?4vyq-0 zZW0sI(^0^z*mm*is{KOo@A#{QyRNjU04N*l5X{t3A4FgI_UhpGGSBmjLPowO78cy! z3mxQ)uc9)NvHX-8s0F|LA?$4@Uj;Kb2hV2cpW{(`biDd3F- zXEvj>SBVxW(I-`~w@d+rScJa5elns@NkO2*4=$9Z5n3g#SKnjWCp$Mc0>L^NVkSk@ zJ{q{F$#}h`1%X9I^R)Qt%{b$1d-m)}Llr-b|^=){AmLgU#Fd}Ehk7;>vE*zX(7Pe3a z?$&;$#e)EF5}PZ455H+_+@7NG9<2v%;ERr60SYbHtHGh6t8fiL0Vj(SixiOrh=jP5 zb$55uB&7pD!=LRHgLi$@EX$``~9iXdB=G!jSDFeMcYkQdW?@3`j+iNwq2Q%)r;))h95`sT4rEPYZ{NZ1}8n<2oQMk%|uO^qDlR z4^FHotVVZbF9X{i&;?AfN5G&TMnud~QU+di-@ZLWQAeD+kq`o(KR<*#V%+jnosr1~ zneY_KMp9AYN0}mAJQTYs!%9(?IDY(i{*~_^&<^_h`*$NY0x1r|B^0*)B1pIC)K7hH1;;KZ7$R!ZK_>9=Q((;YKyuSr z@&m=lL4L}#bLU&odBjZ~2eTzj^EOgDu1{yNc)CQxG4$|#)xkt|4z)f={&*4PHF7b1q{12Wmi-mI z#I^_(e&K5&)MIF{k}@+_I(=R5hk41&%*=4&lOijTX6(l5wJ}&Yi$V*IBm|eY|5;xL z@V^iT23cXHzpNI08FU|HUm?naH(gzZ2Qq9fUAl4eCN)X6SjB*U`)n@G>mmLGT{ENf zm3g%R)v`4LsI3x>@0Ge)cP3ZXbby>$jFogluZhEdG07{JD zU+5+Yr-(c%1o-a665m7o2_nQJ90qjAvB%v-2_H&Q5>`i{3>S2pGDou`4}7;}clB++ zQ6L6R!u~i0n$x3@*KtZnAqr}+9o-m6t&3>8zkK;( z&RgcK9H3Aefw*^=Y?DM$h(e8?BuK|rT-Sjps`Ka1;}~!u2S^@_=dhg|&wzR2CxkH! z8Nho32>(`+qe;huBZORjuHedk06PJDj|SlPb!xWD${A>TVC*Xil~m&>|s}kWhutUjuD>+)9s*_arLbfhZY3z@VXX4>unY z6^(*>`(gYY(wrm2UC&jI1bW>%xaR37;WeO4u-_qky}VqStSUve!IVG(O1f*b)firW z&KCtNS`c9o;OqF*R6l&1o&Y)pF}eeT%(&)!nGaeiHkTJRZ`kk%MI}m7LGVO46s*B+ zK!^LlDH)@OMDARThE4R!H!hcZmv!uQ^bAxHsE!+s*Eyx!spPt?xN^zW#dR3p5G64G zn>TOB3^iWZDz)d@e0Xs1)1<~Yh<=HydiuepdY^yw9I)P(wD=;unzuE!7 z(=+Y#yWlktgr4Bn=%vL`W_sUk29T`+rb)!If#>pVmCd#e?kHiUfX5#3m~m;W2BC_r;|j3?{lMEU>&+eR6U4q7_MHhO-zwj3E1cM zTw2I2YvO@o07kF2MoG)fA8R3way}Y=1~jO|@j_ z_Q`$E@D&Jnf|MsdLA{{OjiPWCN?5;J4A?zjZIH1L2pKJ*-R#&UC|3I$s=&cwT<+54 z%c-AVE#t~~AOgies7!<&Wd8&>v(y=;S_PC$gqQ_jM7*rL0A!QBB`BWW;fvv`Z$=%n zHYA({Q!%`JeE6g-M?>j0CcqqNA8+Y<*9zZ_6E=GZzlwS@P3`gO^2LeG0Gxob>Z=41 z_#9ZkqgJNqDcO4bb^t5`=TiIn`hcU`U#NhJW)SxTjbwY*{{*c!+Pk zTLIJeuU{X4hZIIsL8gNvNe_Mp;XQFG2$1=sA)x^ukjOF+R6Z$ujCFbo2Eq^HVNKw; zQMj=S!0C_yqz%CWL9m!u>_cbSYaqA6OrZs(kcz;D*h>-x(hPQ~x0iipIi}{arw<4d z0qzhPP}BS2OMz=4?K2h)5U>|A7R@vbc1ZKiWt(gS269SOH5fmTB(1<8M-Lq%BbEZ& zF2eC6RGB9)2#bp|0K!0yf0>maxz74I(=mz4GyS)HGK zNsi^RcX{r-ebZ&2b6-Bd{w0tiyYb#LV58U?F08R|@$1Sl+Xi^D63Q`xvZ9RzX7VWV z(8v^15Hd5Fze7nQi=llo#EduvJxe3HRRRo#K79BQRSEob;3h*3&np?Av}@9z3|){x+kXkgrS7?NO=+6Ib$Ow!z3!2tryR(#NT*yM90dRr z&k!IkGZ1;O+_8vt?=u?^=Ap3w&K_u+y`ZEL@Y^j7@ni0}e1Pxo;qMjoV7c&C_dv5i zfNlkR77BP-xjzwn=cDlXgrN)G_UBYM%9d030*I_V=qw1`1;G@-i6J2(eLBq3kn?a% zzT{a&o2PI0bs>YUKv~CrwI1pyuodWP+}*tFU5D8;L>?R<&R;(}-4Tk6OeH+R-Hyr!3E81NITfD{tA8(+Q;Cx#S{s17HFGt0A4O4r99KNQAta`yIA zVIkrTY0F77X=nuw16@KNs%jD!0i;)oICLyt!IP>&>5Dg}4ulUH7_L3_-jiB9WLSws z=)geo2vw}n2U+ivmYMwHOhgkXUT_|EF*gGn7 z7-oQLgRdnXz-zoOj7&ZPk<S-%rsN6PO2AmZ0>g4Epcb-df>kij2BRUIvb67$B!>&1BXCs-jrn`Y6=s4r$Y* zXmEE08k|3Me-!}n_s}~aY*$uQf!k8XlNe}2vt5gm4D+yP+k?y-D&T?V7K!d!4JbFT zUtUAU4dOSyMPBZEyqu96B9eGWx#j@6%YVM`Pw*~J0D#i$6;+CNmrv2SWNE2@A4n=> zc?E@DRC2f$gsMY65|L6>cZ)wjPcM%=LDVsXlt2ec^oGb?ABIs`#Gqm|wzUn8i;I)( zqw}>rhX{YJ)J>!<)6fhsD&T6JuLn2Ej320p3LCFd3kOs%K8@2w#JbL|# zuV0Uyua9Ki(EiUyKp;XrGqL~ot$niT4)mp-9>hb7DFXBKxFqORNRh(m2M(ZKD2Z#rYf}pLp_AAMG;U6m`96Ps(7k)4q#{~QXfbMQpTiFUt)}V65_W)Hd=-vVnq!4;ulT0`!G- zoUhR_|I-!Wr{LeMUXGU+f>;!x{l$wHEe9Otg|J^%Jxyyu{uM+@ff~|C%2l*^I^2P4+5EN;Hj2t!Ao$7%8U(Dxt4c!8OGVZrK&DGt zHgH>bj7YF50Qn}3m7NsFHn*9@QufdT=EAnI4(P7-y9AKR&&lu$MbBs&ci>1tep!osW) z5{$ya!c_QMVAy_;J0Kx(AC)?FH;N?)j|utP(MJc*0DDm(o)PH^&@6!R)j?1Jw5Y_} zAaW2~JTO3EKrZ11Q%|m{dy+-3-^-zNbwH=E-b)0|3DSxuaucRi5K0Cv%>k$dK77gC zTpqoa>qP&Zl2YKwdgOQ2TxAmpR@ez=IZ-HBn!&iEG8Ffi6$D70jPl@wUPTiC4sg>o zamNZu0y%zgK?p;5vs5L9&zXh|pyQyN<3KqBT`*?q=@6M}K)3hnu7Xk>L3+p0Z1SCs z!0T=4c5+wSZ-6nUWo1FaK}Jg0FGAf-BnQTB8P<7%PK; zp#!2-SlcJZY)rn(q3ebr+DSvh1cV3it?2L23=@B3Ku!>$GlCRBBPIuQT!j1vA7+32 z)ThWkIFj+mZbnzG)Q22A)xWnQwSdP$#?4a=C>3x_a%b@5AUlAnPZENNbth1i0h!k* zxN?CChRv1MB{}Bsjhn=Nd9Cv6b^rB!@{ME^*Cw*C8j_ZA?LeTqoA0U?{9KO-)!h!v~6+h`!XQ+uYxjs8>~b((rwS>3W3iCt@)Iyw24 z#l`fN)WS+^B))rcMlKO;#0iq4Q>m?!DC4vP>y zme+9r?iDqc@G>B!PXrbPnFS;A9EoITdP!%4A4eWI?h?Ush!O%c9@Zl^IuGK5_=Io^ z=^M_rfjt4Kv7YFMaKyo)`r_?;$~ILbK@}t|aE$@LF3>|`&;S~pPtITPU$16PV`IBD zujf?OdUBKqQ$>)z2qFk@6O4Hh&@57DAtdEkeBvO~Ekq1>x;q`{Nc``EYHwUcTYe= zIK${%sqCP{fHA{6e1n>3fdtW0Bt-Z&aPSY@;%!0@LM_Krz)S=@2o7MOpNur(FRbaw zffLF>MN*Tal_dl;sTu@EnCt6cJATVS9^PG zMGPZVCJcy+1aFsl9AZ|y`=8%SxMn{Zh6?;N0*#_Ye1wz#t=J_P&(@rGEBVj3(KVx6 z_F?we+#*q!^y}We%%61+$S@^%6GAE&k$;!#;o2p&1l#YU= z1}!o}lyZ#V$@mWT3y`HjnhEXDW!)=KXhHAOy8rUJe+QX-_f_KkpnM34h)A9`PU+H| zys%=;_u^GN1jGGE z#@N&o4-o)K9Jrmc1}F22?qnP}xxFP3wCJpq_VG9Y}zU2SL(0Xjfy(B@p}yUo9v2%EPl{-n!4*A$ehB4* zX^bx41*9UR&~x_sR#wBj?ZJ3562y_G<`UB4%bXlSlc2*RZ;*^lbdUbYM5)!=-F*U$ zD%o3_400Zs*~rG`AGl_IDy^ge{Tfc34@e)}J|l3<@)}j#PAlz^XkcrAGhMZ}ufS2k z=LS>v7GIdmp-^dSYvXYsm#j+;)W9#503;0`6@Rp@IRNx&s@p;Pp1Dg$1cIR2O#CMu z$b>2cP8Y4MmB3dMEe~L#(ewf=T7@SKN)e*QMnb;q>Iw7$n)7|Q)8tw~@mwah8<|^? zJj=HX3=F0*gCqE8xEI?%A(L2RZ+{pPipq~418`5TVv+_!vsYbQq6;3N1B5rvBDN0@ zoC4SuAdJ6Fea>hzz(SKrFi0@o0;L@|XAdNI)oUb57;clHd@5o`gmK$A&>#fhM`xu3 zP@LF5ghaj0!>j_))IkVK$Qt02d%QU=U%pJLbW~^PM{9uL$KdY!IUSJls6k1I0I_ZT zwgder-(eZ8BFj+{nP5dW;lAn1cCm^134fZbD#^RSMBh)oYcdL)7}2dG+5$M4(P zbPj`rK#9mvj{A0q9e#~p0RkED=;c05)=29&Mb(XkwV_j>N{I*=k-QnYo&Giy?Cd~H z=XCLhAa}wbIVIw0Tv*lBY*;a?)Fv7S?Cl@9;r1X2NpgvcF`oBWzsL6pN6t*7))t|Jh3=t59({cXQ0?J*ky z+yE%#0!=Nv9*IbR3W|kmwsf`SvHPwdxuA#lCqHWE&QmC#Af;gV{61QM2{zJocKa|G zgJXf>xetsG0gWJCxfX{a5x7s8*a3WOxqr?k;im8qz!?PtH!mt;P^Cso%Mf2(SxF{y zM6JJ!b(UFMTQ8rb0d#0sqKq6#h4P>_B;>^BPWK^DC}j2tHB%GZoAATGKv4q;)l#pn zPP*P-gTz!Vo*Z87liRc7$++ij!n?kEH;~gNpp&uhKLWPVy!**yo(IO`I5w*-_*jYJ z34lXv#^|qKcd_*n85yh5S4!JHoqvI9XuuRn15>QmQPX+8Od(=>`-9ht0GN5tE0^^F z2^TwdjPxtl&Yd{%+I<*!P5@dEFu2T2I8V0$>KH-Ti7yP^Bo+D4(9z@M_S}CaSjW`C zxU=C&6Fm^F<~US_h^a)h2kGqUi`}npkO3toCMFDoDuP9kmRPS2AaD{!zhpiY$lg4-5mPYWa@7RrFeniNXiMs7 z(8E*~PSPmsURPJ&CgIlT-6jN%=`*7RpvXbE5{3-0%UfJX1le!y!>B|XQIdJh_N-?- zVtyh`Bjqqn^(gkiqT9TTF8Nha5hM?MK%fS6*Pg72r)$3bjCC!l95jIR|DF9Fi^75X z=g&I-`Q}K=|NFEunL;P2+V(%*U9c4Y*BFb8hyQC$M?A^@&H5Oo{y+S%mGym=j~oN9 Tf0CfW|0rivPG`tm^!a}POvavU literal 0 HcmV?d00001 diff --git a/labworks/LW3/lab3_team8.ipynb b/labworks/LW3/lab3_team8.ipynb new file mode 100644 index 0000000..0e1ae59 --- /dev/null +++ b/labworks/LW3/lab3_team8.ipynb @@ -0,0 +1,1629 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "oZs0KGcz01BY" + }, + "source": [ + "## Задание 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gz18QPRz03Ec" + }, + "source": [ + "### 1) Подготовили рабочую среду в Google Colab, создав новый блокнот. Выполнили импорт требуемых библиотек и модулей для дальнейшей работы." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "mr9IszuQ1ANG" + }, + "outputs": [], + "source": [ + "# импорт модулей\n", + "import os\n", + "\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.models import Sequential\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "from sklearn.metrics import ConfusionMatrixDisplay" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FFRtE0TN1AiA" + }, + "source": [ + "### 2) Произвели загрузку датасета MNIST, который включает размеченные изображения рукописных цифр. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "Ixw5Sp0_1A-w" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", + "\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 0us/step\n" + ] + } + ], + "source": [ + "# загрузка датасета\n", + "from keras.datasets import mnist\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aCo_lUXl1BPV" + }, + "source": [ + "### 3) Выполнили разделение датасета на обучающую и тестовую выборки в пропорции 60 000:10 000. Для воспроизводимости результатов установили параметр random_state равным (4k – 1)=31, где k=8 соответствует номеру нашей бригады. Отобразили размерности полученных массивов данных." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "BrSjcpEe1BeV" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of X train: (60000, 28, 28)\n", + "Shape of y train: (60000,)\n", + "Shape of X test: (10000, 28, 28)\n", + "Shape of y test: (10000,)\n" + ] + } + ], + "source": [ + "# создание своего разбиения датасета\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 31)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4hclnNaD1BuB" + }, + "source": [ + "### 4) Осуществили предобработку данных для подготовки к обучению сверточной нейронной сети. Нормализовали пиксели изображений в диапазон [0, 1], а метки классов преобразовали в формат one-hot encoding. Продемонстрировали размерности обработанных массивов." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "xJH87ISq1B9h" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of transformed X train: (60000, 28, 28, 1)\n", + "Shape of transformed X test: (10000, 28, 28, 1)\n", + "Shape of transformed y train: (60000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ], + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (28, 28, 1)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "# Расширяем размерность входных данных, чтобы каждое изображение имело\n", + "# размерность (высота, ширина, количество каналов)\n", + "\n", + "X_train = np.expand_dims(X_train, -1)\n", + "X_test = np.expand_dims(X_test, -1)\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7x99O8ig1CLh" + }, + "source": [ + "### 5) Разработали архитектуру сверточной нейронной сети и провели ее обучение на обучающей выборке, выделив часть данных для валидации. Представили структуру созданной модели." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "Un561zSH1Cmv" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Admin\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + }, + { + "data": { + "text/html": [ + "

Model: \"sequential\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ conv2d (Conv2D)                 │ (None, 26, 26, 32)     │           320 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)     │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_1 (Conv2D)               │ (None, 11, 11, 64)     │        18,496 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)       │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout (Dropout)               │ (None, 5, 5, 64)       │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ flatten (Flatten)               │ (None, 1600)           │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense (Dense)                   │ (None, 10)             │        16,010 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 34,826 (136.04 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 34,826 (136.04 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "model.add(layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", + "model.add(layers.MaxPooling2D(pool_size=(2, 2)))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "q_h8PxkN9m0v" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 85ms/step - accuracy: 0.7738 - loss: 0.7503 - val_accuracy: 0.9435 - val_loss: 0.1959\n", + "Epoch 2/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9429 - loss: 0.1898 - val_accuracy: 0.9670 - val_loss: 0.1182\n", + "Epoch 3/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 72ms/step - accuracy: 0.9603 - loss: 0.1322 - val_accuracy: 0.9743 - val_loss: 0.0887\n", + "Epoch 4/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 74ms/step - accuracy: 0.9678 - loss: 0.1057 - val_accuracy: 0.9760 - val_loss: 0.0762\n", + "Epoch 5/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9719 - loss: 0.0902 - val_accuracy: 0.9787 - val_loss: 0.0687\n", + "Epoch 6/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 71ms/step - accuracy: 0.9749 - loss: 0.0810 - val_accuracy: 0.9800 - val_loss: 0.0622\n", + "Epoch 7/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9775 - loss: 0.0719 - val_accuracy: 0.9820 - val_loss: 0.0575\n", + "Epoch 8/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 70ms/step - accuracy: 0.9790 - loss: 0.0659 - val_accuracy: 0.9823 - val_loss: 0.0524\n", + "Epoch 9/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9812 - loss: 0.0627 - val_accuracy: 0.9827 - val_loss: 0.0525\n", + "Epoch 10/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9815 - loss: 0.0574 - val_accuracy: 0.9837 - val_loss: 0.0480\n", + "Epoch 11/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 70ms/step - accuracy: 0.9833 - loss: 0.0530 - val_accuracy: 0.9845 - val_loss: 0.0454\n", + "Epoch 12/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 72ms/step - accuracy: 0.9838 - loss: 0.0521 - val_accuracy: 0.9853 - val_loss: 0.0438\n", + "Epoch 13/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 71ms/step - accuracy: 0.9841 - loss: 0.0498 - val_accuracy: 0.9857 - val_loss: 0.0436\n", + "Epoch 14/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 74ms/step - accuracy: 0.9857 - loss: 0.0472 - val_accuracy: 0.9865 - val_loss: 0.0413\n", + "Epoch 15/15\n", + "\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 73ms/step - accuracy: 0.9859 - loss: 0.0445 - val_accuracy: 0.9873 - val_loss: 0.0396\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 512\n", + "epochs = 15\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HL2_LVga1C3l" + }, + "source": [ + "### 6) Протестировали обученную модель на тестовой выборке. Определили значения функции потерь и точности классификации." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "81Cgq8dn9uL6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9873 - loss: 0.0396\n", + "Loss on test data: 0.03962046653032303\n", + "Accuracy on test data: 0.9872999787330627\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KzrVY1SR1DZh" + }, + "source": [ + "### 7) Протестировали модель на двух произвольных изображениях из тестовой выборки. Визуализировали изображения и сравнили истинные метки с предсказаниями модели." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "dbfkWjDI1Dp7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step\n", + "NN output: [[1.02410545e-10 1.21296682e-06 6.38641040e-06 8.52757785e-06\n", + " 3.49328509e-12 4.14857287e-10 9.68709627e-17 9.99978900e-01\n", + " 6.33653556e-08 4.88464457e-06]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAaG0lEQVR4nO3df2zUdx3H8Vf50YNBe7WU9npSoDAGZvxQEUrDhkMaoEsQBomw7Q8wBAKWRcC5BbPBcJoqJpPMVPaPoS4ZMDEDMowkUGjJtGXyK4g/Km3qgNCWjckdFDgY/fgH2elBC7vjru/e9flIvgl39/303vvuxnPf9vq9NOecEwAAXayX9QAAgJ6JAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABN9rAe4W3t7uy5cuKCMjAylpaVZjwMAiJJzTleuXJHf71evXp2f53S7AF24cEEFBQXWYwAAHtK5c+c0ZMiQTh/vdt+Cy8jIsB4BABAHD/r7PGEBqqio0PDhw9WvXz8VFRXpww8//ELr+LYbAKSGB/19npAAvfvuu1q7dq02bNig48ePa8KECZo1a5YuXryYiKcDACQjlwCTJ092ZWVl4du3b992fr/flZeXP3BtIBBwktjY2NjYknwLBAL3/fs+7mdAN2/e1LFjx1RSUhK+r1evXiopKVFtbe09+4dCIQWDwYgNAJD64h6gTz75RLdv31ZeXl7E/Xl5eWppabln//Lycnm93vDGO+AAoGcwfxfcunXrFAgEwtu5c+esRwIAdIG4/x5QTk6OevfurdbW1oj7W1tb5fP57tnf4/HI4/HEewwAQDcX9zOg9PR0TZw4UVVVVeH72tvbVVVVpeLi4ng/HQAgSSXkSghr167V4sWL9Y1vfEOTJ0/W5s2b1dbWpu9+97uJeDoAQBJKSIAWLlyojz/+WOvXr1dLS4u++tWvat++ffe8MQEA0HOlOeec9RD/LxgMyuv1Wo8BAHhIgUBAmZmZnT5u/i44AEDPRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATMQ9QK+99prS0tIitjFjxsT7aQAASa5PIr7o448/rgMHDvzvSfok5GkAAEksIWXo06ePfD5fIr40ACBFJORnQGfOnJHf79eIESP0/PPP6+zZs53uGwqFFAwGIzYAQOqLe4CKiopUWVmpffv2acuWLWpqatKTTz6pK1eudLh/eXm5vF5veCsoKIj3SACAbijNOecS+QSXL1/WsGHD9MYbb2jp0qX3PB4KhRQKhcK3g8EgEQKAFBAIBJSZmdnp4wl/d0BWVpYee+wxNTQ0dPi4x+ORx+NJ9BgAgG4m4b8HdPXqVTU2Nio/Pz/RTwUASCJxD9CLL76ompoa/fvf/9af//xnPfPMM+rdu7eeffbZeD8VACCJxf1bcOfPn9ezzz6rS5cuafDgwXriiSdUV1enwYMHx/upAABJLOFvQohWMBiU1+u1HgMA8JAe9CYErgUHADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJhI+AfSoWuNGDEi6jWrVq2K6bny8vKiXhPL50JNnz496jWxXmP3b3/7W9RrsrKyol5z7ty5qNdMmTIl6jWxOnPmTNRr5syZE/Waf/3rX1GvQergDAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAm0lyslw1OkGAwKK/Xaz1Gt7Bo0aKo12zdujXqNR6PJ+o1wN02bNgQ9ZrXX389AZOguwgEAsrMzOz0cc6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATfawHQOeOHz8e9ZrPPvss6jVXr16Neo0kffTRR1Gv2bx5c9RrDh48GPWarKysqNdI0tNPPx3Tuu7qpz/9aUzr+vbtG/Wa//znPzE9F3ouzoAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABNpzjlnPcT/CwaD8nq91mMkreHDh0e9JhQKxfRczc3NMa1D17l27VpM6/r16xf1mlGjRkW9prGxMeo1SB6BQECZmZmdPs4ZEADABAECAJiIOkCHDx/WnDlz5Pf7lZaWpt27d0c87pzT+vXrlZ+fr/79+6ukpERnzpyJ17wAgBQRdYDa2to0YcIEVVRUdPj4pk2b9Oabb+qtt97SkSNHNGDAAM2aNUs3btx46GEBAKkj6k9ELS0tVWlpaYePOee0efNmvfLKK5o7d64k6e2331ZeXp52796tRYsWPdy0AICUEdefATU1NamlpUUlJSXh+7xer4qKilRbW9vhmlAopGAwGLEBAFJfXAPU0tIiScrLy4u4Py8vL/zY3crLy+X1esNbQUFBPEcCAHRT5u+CW7dunQKBQHg7d+6c9UgAgC4Q1wD5fD5JUmtra8T9ra2t4cfu5vF4lJmZGbEBAFJfXANUWFgon8+nqqqq8H3BYFBHjhxRcXFxPJ8KAJDkon4X3NWrV9XQ0BC+3dTUpJMnTyo7O1tDhw7V6tWr9ZOf/ESjRo1SYWGhXn31Vfn9fs2bNy+ecwMAklzUATp69KimT58evr127VpJ0uLFi1VZWamXXnpJbW1tWr58uS5fvqwnnnhC+/bti+naUgCA1MXFSIEkEcv/xH366acxPVcsFwmdNGlS1Gv4BfXUxsVIAQDdEgECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExE/XEMAGyUlpZGvSbWj0Fpa2uLeg1Xtka0OAMCAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjoYz0AgO6ntrbWegT0AJwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBgpkCQGDx7cZc/1+9//vsueCz0XZ0AAABMECABgIuoAHT58WHPmzJHf71daWpp2794d8fiSJUuUlpYWsc2ePTte8wIAUkTUAWpra9OECRNUUVHR6T6zZ89Wc3NzeNu+fftDDQkASD1RvwmhtLRUpaWl993H4/HI5/PFPBQAIPUl5GdA1dXVys3N1ejRo7Vy5UpdunSp031DoZCCwWDEBgBIfXEP0OzZs/X222+rqqpKP//5z1VTU6PS0lLdvn27w/3Ly8vl9XrDW0FBQbxHAgB0Q3H/PaBFixaF/zxu3DiNHz9eI0eOVHV1tWbMmHHP/uvWrdPatWvDt4PBIBECgB4g4W/DHjFihHJyctTQ0NDh4x6PR5mZmREbACD1JTxA58+f16VLl5Sfn5/opwIAJJGovwV39erViLOZpqYmnTx5UtnZ2crOztbGjRu1YMEC+Xw+NTY26qWXXtKjjz6qWbNmxXVwAEByizpAR48e1fTp08O3P//5zeLFi7VlyxadOnVKv/3tb3X58mX5/X7NnDlTr7/+ujweT/ymBgAkvTTnnLMe4v8Fg0F5vV7rMYCE6t27d9Rr/vrXv0a9ZsyYMVGvkRTT7/FdvHgxpudC6goEAvf9uT7XggMAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJuH8kN4AHy8jIiHpNLFe2rquri3qNJH366acxrQOiwRkQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCi5ECBr797W93yfMMHDgwpnV9+kT/V8Nnn30W03Oh5+IMCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwcVIgRR28eLFmNaFQqE4TwLcizMgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEFyMFUti3vvWtmNYNHjw46jWxXvgUPRdnQAAAEwQIAGAiqgCVl5dr0qRJysjIUG5urubNm6f6+vqIfW7cuKGysjINGjRIAwcO1IIFC9Ta2hrXoQEAyS+qANXU1KisrEx1dXXav3+/bt26pZkzZ6qtrS28z5o1a/T+++9r586dqqmp0YULFzR//vy4Dw4ASG5RvQlh3759EbcrKyuVm5urY8eOadq0aQoEAvrNb36jbdu2hX/4uXXrVn3lK19RXV2dpkyZEr/JAQBJ7aF+BhQIBCRJ2dnZkqRjx47p1q1bKikpCe8zZswYDR06VLW1tR1+jVAopGAwGLEBAFJfzAFqb2/X6tWrNXXqVI0dO1aS1NLSovT0dGVlZUXsm5eXp5aWlg6/Tnl5ubxeb3grKCiIdSQAQBKJOUBlZWU6ffq0duzY8VADrFu3ToFAILydO3fuob4eACA5xPSLqKtWrdLevXt1+PBhDRkyJHy/z+fTzZs3dfny5YizoNbWVvl8vg6/lsfjkcfjiWUMAEASi+oMyDmnVatWadeuXTp48KAKCwsjHp84caL69u2rqqqq8H319fU6e/asiouL4zMxACAlRHUGVFZWpm3btmnPnj3KyMgI/1zH6/Wqf//+8nq9Wrp0qdauXavs7GxlZmbqhRdeUHFxMe+AAwBEiCpAW7ZskSQ99dRTEfdv3bpVS5YskST98pe/VK9evbRgwQKFQiHNmjVLv/71r+MyLAAgdUQVIOfcA/fp16+fKioqVFFREfNQQKorKirqkuc5dOhQTOs+/vjjOE8C3ItrwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBETJ+ICuB/+vSJ/j+jr33tawmY5F5/+ctfYlr3Ra58DzwszoAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABNcjBR4SJmZmVGvmTJlSgImudfRo0e75HmAWHAGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GKkQAr7wx/+YD0C0CnOgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE1yMFHhIJSUl1iMASYkzIACACQIEADARVYDKy8s1adIkZWRkKDc3V/PmzVN9fX3EPk899ZTS0tIithUrVsR1aABA8osqQDU1NSorK1NdXZ3279+vW7duaebMmWpra4vYb9myZWpubg5vmzZtiuvQAIDkF9WbEPbt2xdxu7KyUrm5uTp27JimTZsWvv+RRx6Rz+eLz4QAgJT0UD8DCgQCkqTs7OyI+9955x3l5ORo7NixWrduna5du9bp1wiFQgoGgxEbACD1xfw27Pb2dq1evVpTp07V2LFjw/c/99xzGjZsmPx+v06dOqWXX35Z9fX1eu+99zr8OuXl5dq4cWOsYwAAklSac87FsnDlypX64x//qA8++EBDhgzpdL+DBw9qxowZamho0MiRI+95PBQKKRQKhW8Hg0EVFBTEMhJg4jvf+U7Ua3bs2JGASe41YMCAmNZdv349zpOgJwoEAsrMzOz08ZjOgFatWqW9e/fq8OHD942PJBUVFUlSpwHyeDzyeDyxjAEASGJRBcg5pxdeeEG7du1SdXW1CgsLH7jm5MmTkqT8/PyYBgQApKaoAlRWVqZt27Zpz549ysjIUEtLiyTJ6/Wqf//+amxs1LZt2/T0009r0KBBOnXqlNasWaNp06Zp/PjxCfkHAAAkp6gCtGXLFkl3ftn0/23dulVLlixRenq6Dhw4oM2bN6utrU0FBQVasGCBXnnllbgNDABIDVF/C+5+CgoKVFNT81ADAQB6Bq6GDTyk3Nxc6xGApMTFSAEAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEzF/JHeiBINBeb1e6zEAAA/pQR/JzRkQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE90uQN3s0nQAgBg96O/zbhegK1euWI8AAIiDB/193u2uht3e3q4LFy4oIyNDaWlpEY8Fg0EVFBTo3Llz973CaqrjONzBcbiD43AHx+GO7nAcnHO6cuWK/H6/evXq/DynTxfO9IX06tVLQ4YMue8+mZmZPfoF9jmOwx0chzs4DndwHO6wPg5f5GN1ut234AAAPQMBAgCYSKoAeTwebdiwQR6Px3oUUxyHOzgOd3Ac7uA43JFMx6HbvQkBANAzJNUZEAAgdRAgAIAJAgQAMEGAAAAmkiZAFRUVGj58uPr166eioiJ9+OGH1iN1uddee01paWkR25gxY6zHSrjDhw9rzpw58vv9SktL0+7duyMed85p/fr1ys/PV//+/VVSUqIzZ87YDJtADzoOS5Ysuef1MXv2bJthE6S8vFyTJk1SRkaGcnNzNW/ePNXX10fsc+PGDZWVlWnQoEEaOHCgFixYoNbWVqOJE+OLHIennnrqntfDihUrjCbuWFIE6N1339XatWu1YcMGHT9+XBMmTNCsWbN08eJF69G63OOPP67m5ubw9sEHH1iPlHBtbW2aMGGCKioqOnx806ZNevPNN/XWW2/pyJEjGjBggGbNmqUbN2508aSJ9aDjIEmzZ8+OeH1s3769CydMvJqaGpWVlamurk779+/XrVu3NHPmTLW1tYX3WbNmjd5//33t3LlTNTU1unDhgubPn284dfx9keMgScuWLYt4PWzatMlo4k64JDB58mRXVlYWvn379m3n9/tdeXm54VRdb8OGDW7ChAnWY5iS5Hbt2hW+3d7e7nw+n/vFL34Rvu/y5cvO4/G47du3G0zYNe4+Ds45t3jxYjd37lyTeaxcvHjRSXI1NTXOuTv/7vv27et27twZ3ucf//iHk+Rqa2utxky4u4+Dc85985vfdN///vfthvoCuv0Z0M2bN3Xs2DGVlJSE7+vVq5dKSkpUW1trOJmNM2fOyO/3a8SIEXr++ed19uxZ65FMNTU1qaWlJeL14fV6VVRU1CNfH9XV1crNzdXo0aO1cuVKXbp0yXqkhAoEApKk7OxsSdKxY8d069atiNfDmDFjNHTo0JR+Pdx9HD73zjvvKCcnR2PHjtW6det07do1i/E61e0uRnq3Tz75RLdv31ZeXl7E/Xl5efrnP/9pNJWNoqIiVVZWavTo0WpubtbGjRv15JNP6vTp08rIyLAez0RLS4skdfj6+PyxnmL27NmaP3++CgsL1djYqB/96EcqLS1VbW2tevfubT1e3LW3t2v16tWaOnWqxo4dK+nO6yE9PV1ZWVkR+6by66Gj4yBJzz33nIYNGya/369Tp07p5ZdfVn19vd577z3DaSN1+wDhf0pLS8N/Hj9+vIqKijRs2DD97ne/09KlSw0nQ3ewaNGi8J/HjRun8ePHa+TIkaqurtaMGTMMJ0uMsrIynT59ukf8HPR+OjsOy5cvD/953Lhxys/P14wZM9TY2KiRI0d29Zgd6vbfgsvJyVHv3r3veRdLa2urfD6f0VTdQ1ZWlh577DE1NDRYj2Lm89cAr497jRgxQjk5OSn5+li1apX27t2rQ4cORXx8i8/n082bN3X58uWI/VP19dDZcehIUVGRJHWr10O3D1B6eromTpyoqqqq8H3t7e2qqqpScXGx4WT2rl69qsbGRuXn51uPYqawsFA+ny/i9REMBnXkyJEe//o4f/68Ll26lFKvD+ecVq1apV27dungwYMqLCyMeHzixInq27dvxOuhvr5eZ8+eTanXw4OOQ0dOnjwpSd3r9WD9LogvYseOHc7j8bjKykr397//3S1fvtxlZWW5lpYW69G61A9+8ANXXV3tmpqa3J/+9CdXUlLicnJy3MWLF61HS6grV664EydOuBMnTjhJ7o033nAnTpxwH330kXPOuZ/97GcuKyvL7dmzx506dcrNnTvXFRYWuuvXrxtPHl/3Ow5XrlxxL774oqutrXVNTU3uwIED7utf/7obNWqUu3HjhvXocbNy5Urn9XpddXW1a25uDm/Xrl0L77NixQo3dOhQd/DgQXf06FFXXFzsiouLDaeOvwcdh4aGBvfjH//YHT161DU1Nbk9e/a4ESNGuGnTphlPHikpAuScc7/61a/c0KFDXXp6ups8ebKrq6uzHqnLLVy40OXn57v09HT35S9/2S1cuNA1NDRYj5Vwhw4dcpLu2RYvXuycu/NW7FdffdXl5eU5j8fjZsyY4err622HToD7HYdr1665mTNnusGDB7u+ffu6YcOGuWXLlqXc/6R19M8vyW3dujW8z/Xr1933vvc996Uvfck98sgj7plnnnHNzc12QyfAg47D2bNn3bRp01x2drbzeDzu0UcfdT/84Q9dIBCwHfwufBwDAMBEt/8ZEAAgNREgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJv4LNmZpbxxXdkIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Real mark: 7\n", + "NN answer: 7\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "NN output: [[2.6005425e-03 3.0321027e-07 2.2106780e-05 1.3148747e-05 8.1389046e-01\n", + " 1.5582073e-04 3.5853500e-05 2.7356921e-03 2.7238589e-02 1.5330753e-01]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbuUlEQVR4nO3df2xV9f3H8dctP64V28tKaW+vQG1BZRHoNgZdp3Y4aqFbnChL0DGHC9HAihNQWVgUdC6pY4kjLgy3xFHdBJ3LgIgZCRZaMi0YqoSYzY52VUpoi5L03lKgEPr5/kG8X6604Lnc23d/PB/JJ+k957zvefvxcF8995576nPOOQEA0MdSrBsAAAxNBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMDLdu4Iu6u7t17NgxpaWlyefzWbcDAPDIOaeOjg6FQiGlpPR+ntPvAujYsWMaP368dRsAgKvU3NyscePG9bq+370Fl5aWZt0CACABrvR6nrQA2rBhg2644QZdc801Kiws1Hvvvfel6njbDQAGhyu9niclgF5//XWtXLlSa9eu1fvvv6+CggLNmTNHx48fT8buAAADkUuCmTNnuvLy8ujj8+fPu1Ao5CoqKq5YGw6HnSQGg8FgDPARDocv+3qf8DOgs2fPqq6uTiUlJdFlKSkpKikpUW1t7SXbd3V1KRKJxAwAwOCX8AD67LPPdP78eWVnZ8csz87OVmtr6yXbV1RUKBAIRAdXwAHA0GB+Fdzq1asVDoejo7m52bolAEAfSPj3gDIzMzVs2DC1tbXFLG9ra1MwGLxke7/fL7/fn+g2AAD9XMLPgEaOHKnp06erqqoquqy7u1tVVVUqKipK9O4AAANUUu6EsHLlSi1atEjf/OY3NXPmTK1fv16dnZ366U9/mozdAQAGoKQE0IIFC/Tpp59qzZo1am1t1de+9jXt3LnzkgsTAABDl88556ybuFgkElEgELBuAwBwlcLhsNLT03tdb34VHABgaCKAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgYrh1A0Ay+P3+uOoeffRRzzVlZWWeayZPnuy5Jicnx3MN0J9xBgQAMEEAAQBMJDyAnn76afl8vpgRz9sNAIDBLSmfAd1yyy16++23/38nw/moCQAQKynJMHz4cAWDwWQ8NQBgkEjKZ0CHDx9WKBRSfn6+Fi5cqCNHjvS6bVdXlyKRSMwAAAx+CQ+gwsJCVVZWaufOndq4caOampp0++23q6Ojo8ftKyoqFAgEomP8+PGJbgkA0A/5nHMumTtob29Xbm6unn/+eS1evPiS9V1dXerq6oo+jkQihBCuGt8DAuyFw2Glp6f3uj7pVweMHj1aN910kxoaGnpc7/f7436xAAAMXEn/HtDJkyfV2NjIb28AgBgJD6DHH39cNTU1+vjjj/Xuu+/qnnvu0bBhw3T//fcnelcAgAEs4W/BHT16VPfff79OnDihsWPH6rbbbtO+ffs0duzYRO8KADCAJf0iBK8ikYgCgYB1G+hHUlNTPdf85Cc/iWtfGzZsiKvOq4svvPmySktLPde88847nmuARLnSRQjcCw4AYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAICJpP9BOuBq3XnnnZ5r+uqmovE6ffq055r//e9/SegkcW644QbPNR9//HHC+8DAwRkQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEd8NGnyouLvZc8+c//zkJndg6e/as55qWlpYkdJI4P/zhDz3X/PjHP/Zc89Zbb3mu+eijjzzXSPHdgfydd96Ja19DEWdAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATPicc866iYtFIhEFAgHrNpAkHR0dnmtSU1OT0Imt48ePe64JhUJJ6CRxGhoaPNfk5eV5runLl6zTp097rsnPz/dc8+mnn3quGQjC4bDS09N7Xc8ZEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABPDrRsYKrKysjzXFBcXe675+9//7rkmXkuXLvVcc91113mu6e7u9lzTl+K5kaTP5/Nc89JLL3muefbZZz3XSNKMGTM81+Tm5nquSUnx/jtwPMfDf//7X881UnxzfurUqbj2NRRxBgQAMEEAAQBMeA6gvXv36q677lIoFJLP59O2bdti1jvntGbNGuXk5Cg1NVUlJSU6fPhwovoFAAwSngOos7NTBQUF2rBhQ4/r161bpxdeeEEvvvii9u/fr1GjRmnOnDk6c+bMVTcLABg8PF+EUFZWprKysh7XOee0fv16Pfnkk7r77rslSa+88oqys7O1bds23XfffVfXLQBg0EjoZ0BNTU1qbW1VSUlJdFkgEFBhYaFqa2t7rOnq6lIkEokZAIDBL6EB1NraKknKzs6OWZ6dnR1d90UVFRUKBALRMX78+ES2BADop8yvglu9erXC4XB0NDc3W7cEAOgDCQ2gYDAoSWpra4tZ3tbWFl33RX6/X+np6TEDADD4JTSA8vLyFAwGVVVVFV0WiUS0f/9+FRUVJXJXAIABzvNVcCdPnlRDQ0P0cVNTkw4ePKiMjAxNmDBBy5cv169//WvdeOONysvL01NPPaVQKKR58+Ylsm8AwADnOYAOHDigO+64I/p45cqVkqRFixapsrJSq1atUmdnpx5++GG1t7frtttu086dO3XNNdckrmsAwIDnc8456yYuFolEFAgErNvAl9Db98EuZ8eOHZ5r+vIQffLJJz3XrF+/3nNNf/9i9m233ea55p///KfnmmuvvdZzTTw3+/z5z3/uuUaSNm3aFFcdLgiHw5f9XN/8KjgAwNBEAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDh+c8xAJ9bs2aNdQsJF8/duvvzna3HjBkTV93TTz/tuSY1NTWufXn13HPPea7hrtb9E2dAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATHAzUsQtNzfXuoVe1dbWxlXX2NiY4E5sPfDAA3HVzZo1K7GN9CKeG7nu2bMnCZ3AAmdAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATHAzUgxKJ0+ejKvu9OnTCe7E1ty5c61buKyqqirPNe+++24SOoEFzoAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCY4GakiJvP5/Nck5Li/Xee7u5uzzWlpaWeayRp2rRpnmsOHTrkuWbYsGGeax577DHPNXfeeafnmr70gx/8wLoFGOIMCABgggACAJjwHEB79+7VXXfdpVAoJJ/Pp23btsWsf/DBB+Xz+WJGf/+bJACAvuc5gDo7O1VQUKANGzb0us3cuXPV0tISHVu2bLmqJgEAg4/nixDKyspUVlZ22W38fr+CwWDcTQEABr+kfAZUXV2trKws3XzzzVq6dKlOnDjR67ZdXV2KRCIxAwAw+CU8gObOnatXXnlFVVVV+s1vfqOamhqVlZXp/PnzPW5fUVGhQCAQHePHj090SwCAfijh3wO67777oj9PnTpV06ZN08SJE1VdXa3Zs2dfsv3q1au1cuXK6ONIJEIIAcAQkPTLsPPz85WZmamGhoYe1/v9fqWnp8cMAMDgl/QAOnr0qE6cOKGcnJxk7woAMIB4fgvu5MmTMWczTU1NOnjwoDIyMpSRkaFnnnlG8+fPVzAYVGNjo1atWqVJkyZpzpw5CW0cADCweQ6gAwcO6I477og+/vzzm0WLFmnjxo06dOiQXn75ZbW3tysUCqm0tFTPPvus/H5/4roGAAx4Puecs27iYpFIRIFAwLoNfAkVFRWea1atWuW5pi8P0bfeestzTTzzkJqa6rlm165dnmv60ssvv+y5ZvHixUnoBP1FOBy+7Of63AsOAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCu2GjT73++uuea+bPn5+ETmz5fD7PNX35T7WlpcVzzdSpUz3XtLe3e67BwMHdsAEA/RIBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATw60bwNCyfPlyzzV/+tOfPNc88MADnmskKT8/33PNt7/97bj21Z9VVVV5ruHGovCKMyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93ExSKRiAKBgHUbGKKmT5/uuWbPnj2ea0aNGuW5Jp5/qp988onnGkkqLS31XNPY2BjXvjB4hcNhpaen97qeMyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmhls3ACSD3++Pq66ystJzTTw3Fk1J8f673+HDhz3XxHNTUUn6+OOP46oDvOAMCABgggACAJjwFEAVFRWaMWOG0tLSlJWVpXnz5qm+vj5mmzNnzqi8vFxjxozRddddp/nz56utrS2hTQMABj5PAVRTU6Py8nLt27dPu3bt0rlz51RaWqrOzs7oNitWrNCbb76pN954QzU1NTp27JjuvffehDcOABjYPF2EsHPnzpjHlZWVysrKUl1dnYqLixUOh/XSSy9p8+bN+u53vytJ2rRpk7761a9q3759+ta3vpW4zgEAA9pVfQYUDoclSRkZGZKkuro6nTt3TiUlJdFtJk+erAkTJqi2trbH5+jq6lIkEokZAIDBL+4A6u7u1vLly3XrrbdqypQpkqTW1laNHDlSo0ePjtk2Oztbra2tPT5PRUWFAoFAdIwfPz7elgAAA0jcAVReXq4PP/xQr7322lU1sHr1aoXD4ehobm6+qucDAAwMcX0RddmyZdqxY4f27t2rcePGRZcHg0GdPXtW7e3tMWdBbW1tCgaDPT6X3++P+0uDAICBy9MZkHNOy5Yt09atW7V7927l5eXFrJ8+fbpGjBihqqqq6LL6+nodOXJERUVFiekYADAoeDoDKi8v1+bNm7V9+3alpaVFP9cJBAJKTU1VIBDQ4sWLtXLlSmVkZCg9PV2PPPKIioqKuAIOABDDUwBt3LhRkjRr1qyY5Zs2bdKDDz4oSfrd736nlJQUzZ8/X11dXZozZ47+8Ic/JKRZAMDg4XPOOesmLhaJRBQIBKzbwAC3cOHCuOpefvnlBHfSs46ODs81X//61z3XcFNRWAqHw0pPT+91PfeCAwCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYiOsvogJ9KS0tzXPN8uXLE99IAv3lL3/xXMOdrTHYcAYEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADAhM8556ybuFgkElEgELBuA/1IQUGB55q6urokdJI4OTk5nms+/fTTJHQCJE84HFZ6enqv6zkDAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYGK4dQPAlcRzE85PPvkkrn3l5uZ6rtm4caPnGm4sCnAGBAAwQgABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwITPOeesm7hYJBJRIBCwbgMAcJXC4bDS09N7Xc8ZEADABAEEADDhKYAqKio0Y8YMpaWlKSsrS/PmzVN9fX3MNrNmzZLP54sZS5YsSWjTAICBz1MA1dTUqLy8XPv27dOuXbt07tw5lZaWqrOzM2a7hx56SC0tLdGxbt26hDYNABj4PP1F1J07d8Y8rqysVFZWlurq6lRcXBxdfu211yoYDCamQwDAoHRVnwGFw2FJUkZGRszyV199VZmZmZoyZYpWr16tU6dO9focXV1dikQiMQMAMAS4OJ0/f959//vfd7feemvM8j/+8Y9u586d7tChQ+6vf/2ru/76690999zT6/OsXbvWSWIwGAzGIBvhcPiyORJ3AC1ZssTl5ua65ubmy25XVVXlJLmGhoYe1585c8aFw+HoaG5uNp80BoPBYFz9uFIAefoM6HPLli3Tjh07tHfvXo0bN+6y2xYWFkqSGhoaNHHixEvW+/1++f3+eNoAAAxgngLIOadHHnlEW7duVXV1tfLy8q5Yc/DgQUlSTk5OXA0CAAYnTwFUXl6uzZs3a/v27UpLS1Nra6skKRAIKDU1VY2Njdq8ebO+973vacyYMTp06JBWrFih4uJiTZs2LSn/AQCAAcrL5z7q5X2+TZs2OeecO3LkiCsuLnYZGRnO7/e7SZMmuSeeeOKK7wNeLBwOm79vyWAwGIyrH1d67edmpACApOBmpACAfokAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYKLfBZBzzroFAEACXOn1vN8FUEdHh3ULAIAEuNLruc/1s1OO7u5uHTt2TGlpafL5fDHrIpGIxo8fr+bmZqWnpxt1aI95uIB5uIB5uIB5uKA/zINzTh0dHQqFQkpJ6f08Z3gf9vSlpKSkaNy4cZfdJj09fUgfYJ9jHi5gHi5gHi5gHi6wnodAIHDFbfrdW3AAgKGBAAIAmBhQAeT3+7V27Vr5/X7rVkwxDxcwDxcwDxcwDxcMpHnodxchAACGhgF1BgQAGDwIIACACQIIAGCCAAIAmBgwAbRhwwbdcMMNuuaaa1RYWKj33nvPuqU+9/TTT8vn88WMyZMnW7eVdHv37tVdd92lUCgkn8+nbdu2xax3zmnNmjXKyclRamqqSkpKdPjwYZtmk+hK8/Dggw9ecnzMnTvXptkkqaio0IwZM5SWlqasrCzNmzdP9fX1MducOXNG5eXlGjNmjK677jrNnz9fbW1tRh0nx5eZh1mzZl1yPCxZssSo454NiAB6/fXXtXLlSq1du1bvv/++CgoKNGfOHB0/fty6tT53yy23qKWlJTr+9a9/WbeUdJ2dnSooKNCGDRt6XL9u3Tq98MILevHFF7V//36NGjVKc+bM0ZkzZ/q40+S60jxI0ty5c2OOjy1btvRhh8lXU1Oj8vJy7du3T7t27dK5c+dUWlqqzs7O6DYrVqzQm2++qTfeeEM1NTU6duyY7r33XsOuE+/LzIMkPfTQQzHHw7p164w67oUbAGbOnOnKy8ujj8+fP+9CoZCrqKgw7KrvrV271hUUFFi3YUqS27p1a/Rxd3e3CwaD7re//W10WXt7u/P7/W7Lli0GHfaNL86Dc84tWrTI3X333Sb9WDl+/LiT5GpqapxzF/7fjxgxwr3xxhvRbf7zn/84Sa62ttaqzaT74jw459x3vvMd9+ijj9o19SX0+zOgs2fPqq6uTiUlJdFlKSkpKikpUW1trWFnNg4fPqxQKKT8/HwtXLhQR44csW7JVFNTk1pbW2OOj0AgoMLCwiF5fFRXVysrK0s333yzli5dqhMnTli3lFThcFiSlJGRIUmqq6vTuXPnYo6HyZMna8KECYP6ePjiPHzu1VdfVWZmpqZMmaLVq1fr1KlTFu31qt/djPSLPvvsM50/f17Z2dkxy7Ozs/XRRx8ZdWWjsLBQlZWVuvnmm9XS0qJnnnlGt99+uz788EOlpaVZt2eitbVVkno8Pj5fN1TMnTtX9957r/Ly8tTY2Khf/vKXKisrU21trYYNG2bdXsJ1d3dr+fLluvXWWzVlyhRJF46HkSNHavTo0THbDubjoad5kKQf/ehHys3NVSgU0qFDh/SLX/xC9fX1+sc//mHYbax+H0D4f2VlZdGfp02bpsLCQuXm5upvf/ubFi9ebNgZ+oP77rsv+vPUqVM1bdo0TZw4UdXV1Zo9e7ZhZ8lRXl6uDz/8cEh8Dno5vc3Dww8/HP156tSpysnJ0ezZs9XY2KiJEyf2dZs96vdvwWVmZmrYsGGXXMXS1tamYDBo1FX/MHr0aN10001qaGiwbsXM58cAx8el8vPzlZmZOSiPj2XLlmnHjh3as2dPzJ9vCQaDOnv2rNrb22O2H6zHQ2/z0JPCwkJJ6lfHQ78PoJEjR2r69OmqqqqKLuvu7lZVVZWKiooMO7N38uRJNTY2Kicnx7oVM3l5eQoGgzHHRyQS0f79+4f88XH06FGdOHFiUB0fzjktW7ZMW7du1e7du5WXlxezfvr06RoxYkTM8VBfX68jR44MquPhSvPQk4MHD0pS/zoerK+C+DJee+015/f7XWVlpfv3v//tHn74YTd69GjX2tpq3Vqfeuyxx1x1dbVrampy77zzjispKXGZmZnu+PHj1q0lVUdHh/vggw/cBx984CS5559/3n3wwQfuk08+cc4599xzz7nRo0e77du3u0OHDrm7777b5eXludOnTxt3nliXm4eOjg73+OOPu9raWtfU1OTefvtt941vfMPdeOON7syZM9atJ8zSpUtdIBBw1dXVrqWlJTpOnToV3WbJkiVuwoQJbvfu3e7AgQOuqKjIFRUVGXadeFeah4aGBverX/3KHThwwDU1Nbnt27e7/Px8V1xcbNx5rAERQM459/vf/95NmDDBjRw50s2cOdPt27fPuqU+t2DBApeTk+NGjhzprr/+erdgwQLX0NBg3VbS7dmzx0m6ZCxatMg5d+FS7KeeesplZ2c7v9/vZs+e7err622bToLLzcOpU6dcaWmpGzt2rBsxYoTLzc11Dz300KD7Ja2n/35JbtOmTdFtTp8+7X72s5+5r3zlK+7aa69199xzj2tpabFrOgmuNA9HjhxxxcXFLiMjw/n9fjdp0iT3xBNPuHA4bNv4F/DnGAAAJvr9Z0AAgMGJAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAif8DxgnnezHDNA4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Real mark: 4\n", + "NN answer: 4\n" + ] + } + ], + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,26]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YgiVGr5_1D3u" + }, + "source": [ + "### 8) Сформировали детальный отчет о качестве классификации на тестовой выборке, включая матрицу ошибок (confusion matrix)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "7MqcG_wl1EHI" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 0.99 0.99 967\n", + " 1 1.00 0.99 0.99 1107\n", + " 2 0.98 0.99 0.99 970\n", + " 3 0.99 0.98 0.99 1023\n", + " 4 1.00 0.99 0.99 1008\n", + " 5 0.98 0.99 0.98 866\n", + " 6 0.99 0.99 0.99 965\n", + " 7 0.98 0.98 0.98 1070\n", + " 8 0.98 0.99 0.99 943\n", + " 9 0.98 0.98 0.98 1081\n", + "\n", + " accuracy 0.99 10000\n", + " macro avg 0.99 0.99 0.99 10000\n", + "weighted avg 0.99 0.99 0.99 10000\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGwCAYAAAA0bWYRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/+ElEQVR4nO3dd3xT9f7H8VeStknTvQe0pWVvEJBbwIEiQ0Rwo6iACD+1qIggIiIgAoKKiCLDq+AAlXudcBWpqAxBZCrLMsoohS66d5Oc3x+VYCyVljQ9ofk8H4/z0Jyc8W5ySD75fr/nHI2iKApCCCGEcFlatQMIIYQQQl1SDAghhBAuTooBIYQQwsVJMSCEEEK4OCkGhBBCCBcnxYAQQgjh4qQYEEIIIVycm9oB7GGxWDhz5gw+Pj5oNBq14wghhKglRVEoKCggMjISrdZxv09LS0spLy+3ezseHh4YDIY6SORcruhi4MyZM0RFRakdQwghhJ1SUlJo3LixQ7ZdWlpKbIw3aRlmu7cVHh7O8ePHG1xBcEUXAz4+PgAs29wGT2+dymkueLdznNoRhBDiimCigi18Y/08d4Ty8nLSMsyc3NUEX5/Lb33IL7AQ0+UE5eXlUgw4k/NdA57eOow+zlMMuGnc1Y4ghBBXhj8viF8fXb3ePhq8fS5/PxYabnf0FV0MCCGEEDVlViyY7bgbj1mx1F0YJyPFgBBCCJdgQcHC5VcD9qzr7OTUQiGEEMLFScuAEEIIl2DBgj0N/fat7dykGBBCCOESzIqCWbn8pn571nV20k0ghBBCuDhpGRBCCOESZABh9aQYEEII4RIsKJilGLgo6SYQQgghXJy0DAghhHAJ0k1QvQZdDJQXavh1QRDHE70oOacjuE0ZvZ7PIrRDmXWZnKPubHslmLO/GrCYNQQ0K6ffW2n4RJoAMJVp2DoniKP/88FcriGqVzHXzsjEGGz/DS/+yaARWdz5aAaBISaSD3ry9vONSNprdOg+/0m77oXc9VgmzdsXExRuYvpDTdi2zk+1POc52+skmWrG2Y4nZ8vjrJlueTCLgQ+eIyyq8u5/J5MMrHw9jJ0/+qqaq6bkbILqNehugp+mhHL6Z09ufCWde/6XQlSvEtYMj6QwrfI+Bnkn3fji3sYExJVz60ep3L3mFF0SstHpL7zhP88K5uQPXvRdmMaQlakUZ7jxXUK4Q3Nfd2sOY6adYeX8cBL6tSD5oIFZq5LxC6pw6H7/icFoIfmAgbeec8xdxS6HM75OkqlmnO14crY84JyZMs+6897sCMb2b8HjA1rw28/eTF9+gpgWpWpHE3ZyimJg0aJFNGnSBIPBQPfu3fn111/t3qapVEPyd97EP3OOyKtL8YupoNsT2fjGVHBgVWV1/evrQcRcV0T8pHOEtC3HL8ZE7I3FGIMqf/WXFWj547++9JicReP4EkLaldH75XTSdnuStkdvd8bq3D4mi3WrAln/aSCnjhhYOKkxZSUa+t2b7bB9XsrOH315f14EW52gNeA8Z3ydJFPNONvx5Gx5wDkzbU/0Y8cPvpw5ric1Wc+KuRGUFmlp1aVI7Wg1YqmDqaFSvRj49NNPGT9+PNOmTWP37t107NiRfv36kZGRYdd2LSZQzBqbX/kAbgaFtF2eKBY4+ZMXfk0qWDsykuXdm/DZHY05nuhlXTZzvx5LhYbGPUus8wKaVuAdWUH6XsfcvtLN3ULzDsXs3nzhdp6KomHPZh/adCl2yD6vRM74Okkm4Uq0WoXrBuegN1o4tNPr0is4AfOfZxPYMzVUqhcD8+fPZ/To0YwcOZI2bdqwZMkSjEYj7733nl3b9fBWCOtcwq5FgRSl67CY4fBX3qTvMVCUqaPknI6KIi17lgUQdW0Rg5afIbZvIesSwjmzvfKLvjhTh9ZdQe9rWw8ag80UZzpmuIVvoBmdG+T+bfs5WW4EhJgcss8rkTO+TpJJuIImrUr48sg+1p74nSdePs2Lo5pw6ohjfhzVNbNi/9RQqTqAsLy8nF27djF58mTrPK1WS58+fdi2bVuV5cvKyigruzD4Lz8//x+3f+Mr6fw4OYwPesWi0SmEtC2j2S2FZO7Xc/5OlE1uLKLjyDwAgtuUk7bbkwMf+xHZXfrAhBDi704f0/PYTS0w+pi55pY8Jrxxiom3N7tiCgJxcaoWA1lZWZjNZsLCwmzmh4WF8ccff1RZfs6cOcyYMaPG2/eLMTFkVSoVxRrKC7V4hZpZ/2QYvlEVGALMaN0UApuV26wT0LSctF2VB7UxxIylQkNZvtamdaA4S4fRQb+q8rN1mE3g/7ftBwSbyHFQa8SVyBlfJ8kkXIGpQsuZE5Vjpo7uM9KyUzFDHs5k4aQolZNdmr39/jJmwElMnjyZvLw865SSklKj9dyNCl6hZsrytKRsNhLbpwidB4S0LyX3uLvNsnkn3PH+87TCkHZlaN0VTm/1tD6fk+xO4Rl3wjo5puXAVKHlyO9GOvcqsM7TaBQ69Srk4C51T09zJs74Okkm4Yo0GnD3uDLazy1oMNsxWdCo/Sc4jKo/DYKDg9HpdKSnp9vMT09PJzy86ul7er0evb7mo/hPbTaCAv6x5eSddGfb3GD84ypoeUdl90Knh3NJHBdORLdSGv2rhFObjJz4wYvBH6VW7s/HQqs789k6JxiDvwUPbwubXwwmrHMJ4Z3L/mnXdvl8WTATFqRw+DcjSXuM3DY6E4PRwvpPAh22z0sxGM1Exl5oRQmPKieubQkFuToyUz1UyeSMr5NkqhlnO56cLY+zZho5+Sw7fvAhM9UDT28zvW/LpUOPQqbcF6dKHlF3VC0GPDw86NKlCxs2bGDIkCEAWCwWNmzYwNixY+3efnmBlu2vBlGY5obB30xcv0KuHp+N7s/GgLi+RVw7I4M9SwPYMjMY/9gK+r2VRkTXC7/6e07JQqMN4rux4TYXHXKkjV8H4Bdk5sGJaQSEmEg+4MmUYbHkZrlfemUHadGxhFc+O2Z9/MiMMwCs/zSA156KViWTM75OkqlmnO14crY8zprJP9jExIWnCAw1UVyg4/ghA1Pui2P3Jp9Lr+wELErlZM/6DZVGUdS9pNKnn37K8OHDWbp0KVdffTULFixg9erV/PHHH1XGEvxdfn4+fn5+fLinPUYfXT0lvrTFzZupHUEIIa4IJqWCn/iKvLw8fH0dcyXD898V2w+E4+1z+b3jhQUWurdNc2hWtag+guiee+4hMzOTF154gbS0NDp16sS6desuWQgIIYQQom6oXgwAjB07tk66BYQQQojqnB8IaM/6DZVTFANCCCGEo1kUDRbl8r/Q7VnX2V1RpxYKIYQQou5Jy4AQQgiXIN0E1ZOWASGEEC7BjNbuqTY2bdrEoEGDiIyMRKPR8OWXX9o8rygKL7zwAhEREXh6etKnTx+OHDlis0x2djbDhg3D19cXf39/Ro0aRWFhoc0yv//+O9dccw0Gg4GoqCjmzZtX69dGigEhhBAuQflzzMDlTkotxwwUFRXRsWNHFi1adNHn582bx8KFC1myZAnbt2/Hy8uLfv36UVp64Vo3w4YN48CBAyQmJrJ27Vo2bdrEmDFjrM/n5+fTt29fYmJi2LVrF6+88grTp09n2bJltcoq3QRCCCFELfz9JnnVXR13wIABDBgw4KLbUBSFBQsW8PzzzzN48GAAPvjgA8LCwvjyyy8ZOnQohw4dYt26dezYsYOuXbsC8Oabb3LzzTfz6quvEhkZycqVKykvL+e9997Dw8ODtm3bsnfvXubPn29TNFyKtAwIIYRwCfbcl+Cv4w2ioqLw8/OzTnPmzKl1luPHj5OWlkafPn2s8/z8/Ojevbv1rr3btm3D39/fWggA9OnTB61Wy/bt263LXHvttXh4XLhEdb9+/UhKSiInJ6fGeaRlQAghhEswK1rMyuX/Bjb/eb3elJQUmysQ1uaeOeelpaUBXPSuveefS0tLIzQ01OZ5Nzc3AgMDbZaJjY2tso3zzwUEBNQojxQDQgghRC34+vo2uMsRSzeBEEIIl2BBgwWtHVPdnVp4/s68/3TX3vDwcDIyMmyeN5lMZGdn2yxzsW38dR81IcWAEEIIl1BXYwbqQmxsLOHh4WzYsME6Lz8/n+3btxMfHw9AfHw8ubm57Nq1y7rMDz/8gMVioXv37tZlNm3aREVFhXWZxMREWrZsWeMuAmgg3QTvdo7DTaPe7Vj/7rsze9WOUEW/Rp3VjlCVujfMFA2NxgkvCCPHuEsrLCzk6NGj1sfHjx9n7969BAYGEh0dzbhx43jppZdo3rw5sbGxTJ06lcjISIYMGQJA69at6d+/P6NHj2bJkiVUVFQwduxYhg4dSmRkJAD33XcfM2bMYNSoUUyaNIn9+/fzxhtv8Prrr9cqa4MoBoQQQohLsX8AYe2Ku507d9K7d2/r4/HjxwMwfPhwVqxYwTPPPENRURFjxowhNzeXXr16sW7dOgwGg3WdlStXMnbsWG688Ua0Wi133HEHCxcutD7v5+fH+vXrSUhIoEuXLgQHB/PCCy/U6rRCAI2iXLml6/l7VF/PYGkZuARpGRANnrQMXJFMSgU/8RV5eXkOG5R3/rvis99a4OWju+ztFBWYuaPjYYdmVYuMGRBCCCFcnHQTCCGEcAmWy7i/gO36DbelR4oBIYQQLqG+xwxcSaQYEEII4RLOXy/g8tdvuMWAjBkQQgghXJy0DAghhHAJZkWDuZa3If77+g2VFANCCCFcgtnOAYRm6SYQQgghREMlLQNCCCFcgkXRYrHjbAKLnE0ghBBCXNmkm6B6UgwAg0ZkceejGQSGmEg+6Mnbzzciaa/R7u3u+8WL/7wdypF9RrLT3Zn27nF6DMizPq8o8MEr4axbFURhvo42XYt44uUUGsWVW5c58rsn786K5PBvRrQ6hV435/J/08/g6WWx2df6TwP5fFkIp5P1GL3NXHtLLmPnpNr9NwDcP/4sDzxte4vMlKN6Hr6udZ1s3x6Oeu8kk2O1617IXY9l0rx9MUHhJqY/1IRt6/xUyyPH+JWfSdjH5ccMXHdrDmOmnWHl/HAS+rUg+aCBWauS8QuquPTKl1BarCWubQljZ5++6POrF4Xy1XshPP5yCm+sPYzBaOG5+5pSXlo5YvVcmhvPDm1KZGwZb6w9zKyVxziZZODVcdE22/lsaQgr5oZzd0I6y378g5c/PUaX6wvszv9XJ/4wMLRTW+s0fkjzOt3+5XDkeyeZHMtgtJB8wMBbzzVWLcPfyTF+5WaqKQsXzii4nMlyyT1cuVQtBjZt2sSgQYOIjIxEo9Hw5Zdf1nuG28dksW5VIOs/DeTUEQMLJzWmrERDv3uz7d52txsKGDEpjZ5/aQ04T1Hgy3+HcO+TafTon09cm1KeWXiSc+nubP3zF9L27/1wc1MYO/s0Uc3KaNmphCfmnmbL//xJPe4BQEGujvfnRjDxjVPccHsukU3KiWtTSny/fLvz/5XZDDmZ7tYpP0f9RiVHvneSybF2/ujL+/MirMe6M5Bj/MrNVFPnLzpkz9RQqfqXFRUV0bFjRxYtWqTK/t3cLTTvUMzuzT7WeYqiYc9mH9p0KXbovtNOeZCd4c5V1xRa53n5WmjVuZhDu7wAqCjT4OauoP3Lu+RhqKxND/zqDcDuTT5YFMhKc+fha1sxrEsbXvq/GDJS6/Yujo1iy1m1az8rth5k0psnCYksv/RKDqTmeyeZGiY5xq/MTKJuqFoMDBgwgJdeeonbbrtNlf37BprRuUFupu0vgJwsNwJCTA7dd3ZG5T79Q2yb1vxDKqzPdexVSE6mO/95O4SKcg0FuTremx1ps37aSQ8UC3yyMIxHXkzl+WUnKMhxY/LQplSU180FMv7Y48WrT0Uz5f6mvDm5MeHRZbz2xRE8vcx1sv3LoeZ7J5kaHjnGr9xMtXH+3gT2TA2V+u1gtVBWVkZZWZn1cX5+3TaFO5smLUuZsOAky2Y04r05keh0CoMfyiIgpMJ663aLAqYKLY/NTLWOE5i8+AT3dmzHb1u96VoHYwd2/njhvt3HD3nyxx4jH24/yLWDcvnukyC7ty+E2uQYdw0WNFi4/B9J9qzr7K6oYmDOnDnMmDGjzraXn63DbAL/v1W0AcEmcjId+9IEhlbuMzfTnaCwC/vPzXSnadsS6+Mbbs/lhttzycl0w2C0oNHA58tCiIgps9lOdItS6zr+QWZ8A0113lVwXlG+G6eT9UQ2Kbv0wg6i5nsnmRo+OcavnEy1Yf9dCxtuy8AV9ZdNnjyZvLw865SSkmLX9kwVWo78bqRzrwu/njUahU69Cjm4y7GnyYRHlxMYWsGeLd7WeUUFWv7YY6R1l6IqyweEmPD0srDxK3/c9RauurZyrEHbbpXLnj6mty6bn6MjP9uNsEaOGd1rMJqJjCknO8MxxUZNqPneSaaGT47xKyeTqBvOX8r9hV6vR6/XX3rBWvh8WTATFqRw+DcjSXuM3DY6E4PRwvpPAu3edkmRljPHL+RNS/Hg2H5PfPxNhDauYMjDmXz8RhiNYssIjy7n/XkRBIVV0KP/hbMPvnovmDZdi/D0srB7kw//nhnJQ8+dwduvsi+zcdMy4vvlsfiFRjw5LwUvHwvvzY6gcbNSOvasm9MLR09N5ZdEPzJOuxMUbuKBp89itsBPXwbUyfYvlyPfO8nkWAajmcjYCwP0wqPKiWtbQkGujsxUj3rPI8f4lZ2ppuy/6NAV9fu5Vq6oYsARNn4dgF+QmQcnphEQYiL5gCdThsWSm2X/L4LDvxl55s5m1sdLpzcC4Ka7s5mw4BR3J2RQWqzljWeiKMzX0bZbEbNWJuNhuHCVq6S9Rj58LZzSIi2Nm5XxxLwU+tyZY7OfiQtPsnRaI154MA6NFjr8q5BZK5Nxq6MfNcERFUxedAKfADN52W4c+NWLcYNakJet7uHjyPdOMjlWi44lvPLZMevjR2acAWD9pwG89lR0das5jBzjV3ammrIoGix23HnQnnWdnUZR1LvYcmFhIUePHgWgc+fOzJ8/n969exMYGEh09KU/EPLz8/Hz8+N6BuOmcZ4D8bsze9WOUEW/Rp3VjlBVA77Ot1CBxgk/qOUYvySTUsFPfEVeXh6+vr6XXuEynP+umLfjGjy9L7/AKyk08Uy3zQ7NqhZVy96dO3fSu3dv6+Px48cDMHz4cFasWKFSKiGEEA2Rxc5ugoZ80SFVi4Hrr78eFRsmhBBCuBD771rYcIuBhvuXCSGEEKJGXH4AoRBCCNdgRoPZjgsH2bOus5NiQAghhEuQboLqNdy/TAghhBA1Ii0DQgghXIIZ+5r61bttleNJMSCEEMIlSDdB9aQYEEII4RLkRkXVa7h/mRBCCCFqRFoGhBBCuAQFDRY7xgwocmqhEEIIcWWTboLqNdy/TAghhBA1Ii0DDtAvspPaEap49MgRtSNUsbh5s0svJERNyX1OxCXILYyrJ8WAEEIIl2C2866F9qzr7BruXyaEEEKIGpGWASGEEC5BugmqJ8WAEEIIl2BBi8WOBnF71nV2DfcvE0IIIUSNSMuAEEIIl2BWNJjtaOq3Z11nJ8WAEEIIlyBjBqonxYAQQgiXoNh510JFrkAohBBCiIZKWgaEEEK4BDMazHbcbMiedZ2dFANCCCFcgkWxr9/f0oCveC3dBEIIIYSLk5YBYNCILO58NIPAEBPJBz15+/lGJO01qpLlnrHp9Lw5j6hmZZSXajm408i7syI4fczgsH2WF2r4dUEQxxO9KDmnI7hNGb2ezyK0Q5l1mZyj7mx7JZizvxqwmDUENCun31tp+ESaKM3VsmNhIClbjBSeccMz0ExsnyK6PZWN3sfisNztuhdy12OZNG9fTFC4iekPNWHbOj+H7a+mnOl4kkw1c8uDWQx88BxhUeUAnEwysPL1MHb+6KtKHnDO49sZM9WGxc4BhPas6+wa7l9WQ9fdmsOYaWdYOT+chH4tSD5oYNaqZPyCKlTJ0yG+iDUrghl3S3MmD41D56Yw++Nk9J5mh+3zpymhnP7ZkxtfSeee/6UQ1auENcMjKUzTAZB30o0v7m1MQFw5t36Uyt1rTtElIRudvrLNrCjDjaJ0N3pMyuKe/52i99wMTm028tPkUIdlBjAYLSQfMPDWc40dup/acLbjSTLVTOZZd96bHcHY/i14fEALfvvZm+nLTxDTolSVPOCcx7czZqoNCxq7p4ZK1WJgzpw5dOvWDR8fH0JDQxkyZAhJSUn1muH2MVmsWxXI+k8DOXXEwMJJjSkr0dDv3ux6zXHelGFxJK4O5ORhA8kHPXltXDRhjSto3qHEIfszlWpI/s6b+GfOEXl1KX4xFXR7IhvfmAoOrKqs+H99PYiY64qIn3SOkLbl+MWYiL2xGGNQZYES1KKc/ovSaHJjMX4xJhrHl9B9/DlO/OCFxeSQ2ADs/NGX9+dFsNWJfpk42/EkmWpme6IfO37w5cxxPanJelbMjaC0SEurLkWq5AHnPL6dMZOoG6oWAxs3biQhIYFffvmFxMREKioq6Nu3L0VF9fMP0M3dQvMOxeze7GOdpyga9mz2oU2X4nrJcClevpVfuAW5Oods32ICxayx/so/z82gkLbLE8UCJ3/ywq9JBWtHRrK8exM+u6MxxxO9/nG7ZQU6PLwtaF2oI8oZjyfJVHtarcJ1g3PQGy0c2vnPx7m4spy/AqE9U0Ol6kf1unXrbB6vWLGC0NBQdu3axbXXXuvw/fsGmtG5QW6m7cuQk+VGVLOyataqPxqNwiMzUtn/q5GTSZ4O2YeHt0JY5xJ2LQokoGkansFmjq71Jn2PAd+YCkrO6ago0rJnWQBXP3WOf03M4tRmI+sSwhn8YSqR3as2o5Zka9m1KIA2Q/McktlZOePxJJlqrkmrEhasOYqH3kJJkZYXRzXh1BHHjdUR9U/GDFTPqX635eVVfnkEBgZe9PmysjLKyi58WOTn59dLLrWMnZ1KTKtSnh7SzKH7ufGVdH6cHMYHvWLR6BRC2pbR7JZCMvfrUf4c/9fkxiI6jqx8f4LblJO225MDH/tVKQbKCzR8MzqSgGbldH1cvWZoIWrr9DE9j93UAqOPmWtuyWPCG6eYeHszKQiES3CaYsBisTBu3Dh69uxJu3btLrrMnDlzmDFjRp3tMz9bh9kE/iG2HdsBwSZyMtV9aRJmnab7Tfk8fVtTss56OHRffjEmhqxKpaJYQ3mhFq9QM+ufDMM3qgJDgBmtm0Jgs3KbdQKalpO2y/ZDsrxQw9pRkbh7W+j/dho6d4fGdjrOeDxJppozVWg5c0IPwNF9Rlp2KmbIw5ksnBSlWiZRtyzYeW8CGUDoeAkJCezfv59PPvmk2mUmT55MXl6edUpJSbFrn6YKLUd+N9K5V4F1nkaj0KlXIQd3qXXalULCrNP06J/HM3c1JT1FX297djcqeIWaKcvTkrLZSGyfInQeENK+lNzjtt/seSfc8Y688GFeXqBh7chG6NxhwJKzuOkb8NU5quGMx5NkunwaDbh7uN5x3JApdp5JoDTgYsApWgbGjh3L2rVr2bRpE40bV3/Kil6vR6+v2y/Hz5cFM2FBCod/M5K0x8htozMxGC2s/+TiXRWONnZ2Kr1vy2H6yFhKCrUEhFSealVUoKO81DG126nNRlDAP7acvJPubJsbjH9cBS3vqOyG6fRwLonjwonoVkqjf5VwapOREz94MfijVKCyEFgzshGmUg03vppGRaGWisLKbRsCzWgdM/YRg9FMZOyFFovwqHLi2pZQkKsjM9WxrSnVcbbjSTLVzMjJZ9nxgw+ZqR54epvpfVsuHXoUMuW+OFXygHMe386YqTbkroXVU7UYUBSFxx9/nC+++IKffvqJ2NjYes+w8esA/ILMPDgxjYAQE8kHPJkyLJbcLHXauAeNOAfAq58fs5n/6rgoElc75oOyvEDL9leDKExzw+BvJq5fIVePz7Y288f1LeLaGRnsWRrAlpnB+MdW0O+tNCK6Vo4XyDxoIOO3yi6DVX2a2Gx72I8n8G3smPMLW3Qs4ZXPLrxOj8w4A8D6TwN47aloh+zzUpzteJJMNeMfbGLiwlMEhpooLtBx/JCBKffFsXuTz6VXdhBnPL6dMZMzM5vNTJ8+nY8++oi0tDQiIyMZMWIEzz//PBpNZWGhKArTpk3jnXfeITc3l549e7J48WKaN29u3U52djaPP/44a9asQavVcscdd/DGG2/g7e1dZ1k1iqKo1g722GOPsWrVKr766itatmxpne/n54en56VHz+fn5+Pn58f1DMZN42Id1LX06JGjakeoYnFzxw6MFEI4P5NSwU98RV5eHr6+jrni4/nvitsSR+LudfktGBVF5Xxx0/IaZ509ezbz58/n/fffp23btuzcuZORI0cya9YsnnjiCQDmzp3LnDlzeP/994mNjWXq1Kns27ePgwcPYjBU/sgaMGAAZ8+eZenSpVRUVDBy5Ei6devGqlWrLvtv+TtVWwYWL14MwPXXX28zf/ny5YwYMaL+AwkhhGiw6rubYOvWrQwePJiBAwcC0KRJEz7++GN+/fVXoLJVYMGCBTz//PMMHjwYgA8++ICwsDC+/PJLhg4dyqFDh1i3bh07duyga9euALz55pvcfPPNvPrqq0RGRl723/NXqg4gVBTlopMUAkIIIZxVfn6+zfTXU97/qkePHmzYsIHDhw8D8Ntvv7FlyxYGDBgAwPHjx0lLS6NPnz7Wdfz8/OjevTvbtm0DYNu2bfj7+1sLAYA+ffqg1WrZvn17nf1NTjGAUAghhHA0e+8vcH7dqCjb002nTZvG9OnTqyz/7LPPkp+fT6tWrdDpdJjNZmbNmsWwYcMASEtLAyAsLMxmvbCwMOtzaWlphIba3ufFzc2NwMBA6zJ1QYoBIYQQLqGuuglSUlJsxgxUd5bb6tWrWblyJatWraJt27bs3buXcePGERkZyfDhwy87hyNIMSCEEELUgq+vb40GEE6cOJFnn32WoUOHAtC+fXtOnjzJnDlzGD58OOHh4QCkp6cTERFhXS89PZ1OnToBEB4eTkZGhs12TSYT2dnZ1vXrgtNcdEgIIYRwpPMtA/ZMtVFcXIxWa/s1q9PpsFgqr/MeGxtLeHg4GzZssD6fn5/P9u3biY+PByA+Pp7c3Fx27dplXeaHH37AYrHQvXv3y30pqpCWASGEEC6hvs8mGDRoELNmzSI6Opq2bduyZ88e5s+fz0MPPQSARqNh3LhxvPTSSzRv3tx6amFkZCRDhgwBoHXr1vTv35/Ro0ezZMkSKioqGDt2LEOHDq2zMwlAigEhhBDCId58802mTp3KY489RkZGBpGRkfzf//0fL7zwgnWZZ555hqKiIsaMGUNubi69evVi3bp11msMAKxcuZKxY8dy4403Wi86tHDhwjrNqupFh+wlFx2qObnokBDCGdXnRYdu+ub/7L7oUOLNSx2aVS3SMiCEEMIlKNh358Er9pdzDUgxIIQQwiXIjYqqJ2cTCCGEEC5OWgaEEEK4BGkZqJ4UAy7CGQfrzTy+Q+0IVUyN7aZ2BCGEg0gxUD3pJhBCCCFcnLQMCCGEcAnSMlA9KQaEEEK4BEXRoNjxhW7Pus5OugmEEEIIFyctA0IIIVyCBY1dFx2yZ11nJ8WAEEIIlyBjBqon3QRCCCGEi5OWASGEEC5BBhBWT4oBIYQQLkG6CaonxYAQQgiXIC0D1ZMxA0IIIYSLk5YBIYQQLkGxs5ugIbcMuHwx0K57IXc9lknz9sUEhZuY/lATtq3zUzsWg0ZkceejGQSGmEg+6Mnbzzciaa9RlSy3PJjFwAfPERZVDsDJJAMrXw9j54++dbaPE9u92bIsgjP7jRRkeHDv0iO06ZtrfV5R4IfXI9n5SQil+W5Edy3g1pknCYotsy5TnKvjf9NjSNrgj0aj0GZADje/cAq9lwWAnNMezL+mY5V9j/n8IFGdi+rsb3Gm9+7v7h6bzqjn0vjinWCWTGukahZ5nf5Zffy7awiZakOh8rPEnvUbKpfvJjAYLSQfMPDWc43VjmJ13a05jJl2hpXzw0no14LkgwZmrUrGL6hClTyZZ915b3YEY/u34PEBLfjtZ2+mLz9BTIvSOttHeYmO8NbF3PLiyYs+v3lpOL+sCOPWl07yf18cxMPTwvvDW1BRdqFS/++4ODIOezL8gyTuf/cIJ3714avnmlTZ1oiP/uCZX/dYp8h2xXX2dzjbe/dXLToWM/D+bJIPGNSOIq9TDdTHv7uGkEnUDVWLgcWLF9OhQwd8fX3x9fUlPj6eb7/9tl4z7PzRl/fnRbDVCVoDzrt9TBbrVgWy/tNATh0xsHBSY8pKNPS7N1uVPNsT/djxgy9njutJTdazYm4EpUVaWnWpu1/TLa7Po8+EVNr0y63ynKLAtvfCuG7sWVr3zSW8dQl3vHacgnQPDq0PACDjqIEjG/0Z8vJxojoXEdOtkFumn2T/mkDy091ttmcMMOETcmHSudddve9s7915BqOZSW+dZMHExhTk6VTNAvI61UR9/LtrCJlq4/wVCO2ZGipVi4HGjRvz8ssvs2vXLnbu3MkNN9zA4MGDOXDggJqxVOXmbqF5h2J2b/axzlMUDXs2+9CmS939gr1cWq3CdYNz0BstHNrpVS/7zEnRU5jpQdNeedZ5Bl8zjTsVkrLbG4CU3d4YfE006nDhNYrrmY9GC6f32uZcObo5L3ftxDt3teJQon+d5XTm927s7FR+3eDLnr9kU4u8TrWnxr+7S3HGTJdy/mwCe6aGStUxA4MGDbJ5PGvWLBYvXswvv/xC27ZtqyxfVlZGWdmFPuL8/HyHZ6xvvoFmdG6Qm2n71uRkuRHVrKyatRyvSasSFqw5iofeQkmRlhdHNeHUkfppRi3MrPxl7x1sspnvFWyyPleY6Y7X35qYdW7g6X9hGQ+jhf5TThHdpRCNFg6uC+Dj/2vGvUuP0vqmXLtzOut7d93gHJq1L+Hxm5urluGv5HWqOTX/3V1JmYT9nGYAodls5j//+Q9FRUXEx8dfdJk5c+YwY8aMek4mAE4f0/PYTS0w+pi55pY8Jrxxiom3N7uiPgS8Ak30fDjd+rhxxyLy0935eVl4nRQDzigkspxHXzzD5KFxVJS5/BChajnr6+SM/+6cMVNNWRQNGrno0EWpXgzs27eP+Ph4SktL8fb25osvvqBNmzYXXXby5MmMHz/e+jg/P5+oqKj6ilov8rN1mE3gH2L7Kzgg2EROpnpvl6lCy5kTegCO7jPSslMxQx7OZOEkx7/+3iGVv/gLs9zwCb3w678oy43wNiXWZYrO2Y4NMJugJNfNuv7FRHUq4tiWuhkJ7YzvXbMOJQSEmFj03WHrPJ0btP9XEbeOzOKWJh2wWOr3A05ep5pT89/dlZSpphTFzrMJGvDpBKoXAy1btmTv3r3k5eXx3//+l+HDh7Nx48aLFgR6vR69Xq9CyvpjqtBy5HcjnXsVWE9x1GgUOvUq5OsVQSqnu0CjAXeP+vmXERBVhndIOck/+xLx55d/aYGW03u96XZ/JgBRVxVSmu9G6j4jjdpX9jsf3+qLYoHGnaof3HT2oNGmwLCHM753ezd7M6Z3C5t5T7+eQspRA6sXhaj2BSev0+Wpz393NeWMmUTtqV4MeHh40KxZMwC6dOnCjh07eOONN1i6dGm97N9gNBMZW259HB5VTlzbEgpydWSmetRLhr/7fFkwExakcPg3I0l7jNw2OhOD0cL6TwJVyTNy8ll2/OBDZqoHnt5met+WS4cehUy5L67O9lFWpCX75IVCLzdFz9mDnnj6mfFvVE78Q+n89FYkgU3KCIgqY8P8RviEldO6bw4Aoc1KaX5dLl9NbsKtL53EbNKwdloM7QZl4xtW+WW/57MgdO4KEW0ri4WD6wLY/Z9ghrx8os7+Dmd770qKdJxM8rSZV1qspSCn6vz6JK/TpdXHv7uGkKk25HLE1VO9GPg7i8ViM0jQ0Vp0LOGVz45ZHz8y4wwA6z8N4LWnoustx19t/DoAvyAzD05MIyDERPIBT6YMiyU3y/3SKzuAf7CJiQtPERhqorhAx/FDBqbcF8fuTXU34vrMPi/eu7eV9fG3L1W+9p3vyOL2V49zzf+lUVGs5evnmlCaryO6WwEPrjiMu/7CL5I7FySzdloMy+9viUar0LZ/DjdPO2Wzn5/ejCQ31QOtm0JIXCl3v3mMdjfn1Nnf4WzvnbOS1+nS6uPfXUPIVBtSDFRPoyjq9YJMnjyZAQMGEB0dTUFBAatWrWLu3Ll899133HTTTZdcPz8/Hz8/P65nMG4a+RC50sw8vkPtCFVMje2mdgQhXIpJqeAnviIvLw9fX8dcyfD8d0XLVc+iM15+V7O5uIyk+152aFa1qNoykJGRwYMPPsjZs2fx8/OjQ4cONS4EhBBCCFE3VC0G3n33XTV3L4QQwoXI2QTVc7oxA0IIIYQjVBYD9owZqMMwTsZ5rq4hhBBCCFVIy4AQQgiXIGcTVE+KASGEEC5B+XOyZ/2GSroJhBBCCBcnLQNCCCFcgnQTVE+KASGEEK5B+gmqJcWAEEII12BnywANuGVAxgwIIYQQLk5aBoQQQrgEuQJh9aQYEEII4RJkAGH1pBgQqnHGOwROSd6rdoQqZsV1UjuCaEi0OrUT2FIsYFE7hJBiQAghhGtQNPYNApSWASGEEOLKJmMGqidnEwghhBAuTloGhBBCuAa56FC1pBgQQgjhEuRsgurVqBj4+uuva7zBW2+99bLDCCGEEKL+1agYGDJkSI02ptFoMJvN9uQRQgghHKcBN/Xbo0bFgMUiJ4EKIYS4skk3QfXsOpugtLS0rnIIIYQQjqXUwdRA1boYMJvNzJw5k0aNGuHt7U1ycjIAU6dO5d13363zgEIIIYRwrFoXA7NmzWLFihXMmzcPDw8P6/x27drx73//u07DCSGEEHVHUwdTw1TrYuCDDz5g2bJlDBs2DJ3uwjWuO3bsyB9//FGn4YQQQog6I90E1ar1dQZSU1Np1qxZlfkWi4WKioo6CVXfBo3I4s5HMwgMMZF80JO3n29E0l6jZPqLdt0LueuxTJq3LyYo3MT0h5qwbZ2fannOq8/XqaxQy8b5ESSt96P4nBthbUvoO/U0kR1LACjMdOPHeZEkb/ahNF9H9NWF9Jt2msDYcus2vpnSmOM/+1CY7o6Hl4VGVxVxw6QzBDctc0jm85zpeLpnbDo9b84jqlkZ5aVaDu408u6sCE4fM6iSB5zz+HaGTO26F3DXI+k0b19CUHgF00fFse07/78sofDghLP0vzcLbz8zB3d4s/C5KM4cV++9FJen1i0Dbdq0YfPmzVXm//e//6Vz5851Eqo+XXdrDmOmnWHl/HAS+rUg+aCBWauS8QtSr7BxxkwGo4XkAwbeeq6xahn+rr5fp/9NjuL4z94Mnn+S0d/+QVyvAlY90Iz8NHcUBf77SCw5pzy4a2kyD69Nwq9ROSsfaEZ58YV/ZuHtShg07xT/l/gHQ1ccAwU+frApFgeeketsx1OH+CLWrAhm3C3NmTw0Dp2bwuyPk9F7qndasjMe386QyWC0kHzQyFvPR130+bsfS2fwyEzenBzNk4NaUlqsZfZHR3HXO+kZaNIyUK1aFwMvvPACY8eOZe7cuVgsFj7//HNGjx7NrFmzeOGFFy47yMsvv4xGo2HcuHGXvY3LcfuYLNatCmT9p4GcOmJg4aTGlJVo6Hdvdr3mcPZMO3/05f15EWx1gtaA8+rzdaoo1fDHOn9umHSW6KuLCGxSzrXj0ghoUsbulUFkH9eTuseLATMrWwqC4soYMPM0pjINB9b4W7dz1b3niL66CP/G5US0K+G68WfJP+tB3mmP6nduJ2c7nqYMiyNxdSAnDxtIPujJa+OiCWtcQfMOJarkAec8vp0h084f/Xj/lUi2rvO/yLMKQ0Zl8PHCcLat9+f4ISPzxjUhKKyCHv1y6zlpDZ2/a6E9UwNV62Jg8ODBrFmzhu+//x4vLy9eeOEFDh06xJo1a7jpppsuK8SOHTtYunQpHTp0uKz1L5ebu4XmHYrZvdnHOk9RNOzZ7EObLsX1msWZMzmj+n6dLCYNilmD299+8bjpLaTs9MZcrrE+Pk+jBZ2Hwumd3hfdZnmxlt//G4h/VBm+EY75lX4lHE9evpUtAgW5ukssKZxJeHQ5QWEmm2OruEDHH3u9aN2lSMVkziU1NZX777+foKAgPD09ad++PTt37rQ+rygKL7zwAhEREXh6etKnTx+OHDlis43s7GyGDRuGr68v/v7+jBo1isLCwjrNeVnXGbjmmmtITEwkIyOD4uJitmzZQt++fS8rQGFhIcOGDeOdd94hICDgH5ctKysjPz/fZrKHb6AZnRvkZtoOncjJciMgxGTXthtSJmdU36+T3ruyf3/LW+EUpLthMcO+LwNI3eNFYYYbQU1L8Y0s58dXIijJ02Eu17B1SSgFZz0ozLDNuPPDIOa1a88r7TpwbKMv931wDJ2HY9ofnf140mgUHpmRyv5fjZxM8lQ7jqiFwJDKAjY3y91mfm6mm/U5Z3P+Fsb2TLWRk5NDz549cXd359tvv+XgwYO89tprNt918+bNY+HChSxZsoTt27fj5eVFv379bK7jM2zYMA4cOEBiYiJr165l06ZNjBkzpq5eFsCOGxXt3LmTQ4cOAZXjCLp06XJZ20lISGDgwIH06dOHl1566R+XnTNnDjNmzLis/Qhhr8GvnWTtpGgWxrdDo1MIb1tM20E5nN1vROcOdy4+ztpno5nfuT0anUJszwKaXpdfpZux3eAc4noVUJjpzi/vhPL5400Y/p8juOkbcIdkNcbOTiWmVSlPD6k6KFmIOldHdy38+w9RvV6PXq+vsvjcuXOJiopi+fLl1nmxsbEXNqcoLFiwgOeff57BgwcDlWfshYWF8eWXXzJ06FAOHTrEunXr2LFjB127dgXgzTff5Oabb+bVV18lMjLSjj/oglq3DJw+fZprrrmGq6++mieffJInn3ySbt260atXL06fPl2rbX3yySfs3r2bOXPm1Gj5yZMnk5eXZ51SUlJqG99GfrYOswn8//YLKSDYRE6mOjd0dMZMzkiN1ykgppwHPjnKxP2/8/jPB3joyyOYTRr8oyrPBIhoX8Lo/yXx9N7fefKX/dy7IpmSXB0BUbZnChh8LQTGlhN9dRF3LDrBuWN6kr5zTL+wMx9PCbNO0/2mfJ65sylZZx03ZkI4RnZmZYuAf7BtK4B/iMn6XEMVFRWFn5+fdaruO+zrr7+ma9eu3HXXXYSGhtK5c2feeecd6/PHjx8nLS2NPn36WOf5+fnRvXt3tm3bBsC2bdvw9/e3FgIAffr0QavVsn379jr7m2pdDDz88MNUVFRw6NAhsrOzyc7O5tChQ1gsFh5++OEabyclJYUnn3ySlStXYjDU7DQUvV6Pr6+vzWQPU4WWI78b6dyrwDpPo1Ho1KuQg7vUOe3KGTM5IzVfJw+jBZ9QEyV5OpI3+dLiJttfCQZfC15BZrKPe3B2n7HK839V2fSowVRu15XBq+Wcx5NCwqzT9OifxzN3NSU9peovKuH80k55cC7dzebYMnqbadWpiEO7vFRM9g/qaABhSkqKzQ/TyZMnX3R3ycnJLF68mObNm/Pdd9/x6KOP8sQTT/D+++8DkJaWBkBYWJjNemFhYdbn0tLSCA0NtXnezc2NwMBA6zJ1odY/DTZu3MjWrVtp2bKldV7Lli158803ueaaa2q8nV27dpGRkcFVV11lnWc2m9m0aRNvvfUWZWVlNhc1cpTPlwUzYUEKh38zkrTHyG2jMzEYLaz/JNDh+76SMhmMZiL/cr58eFQ5cW1LKMjVkZmqzq+6+n6djm3yAQWC4srIPuHBhpcbEdS0lI53ngPg0Dd+GAPN+EaWk5FkIPHFxrS4KY+4ayo/LHNOeXBwrT9x1xRgDDRRkObO1iVhuBssNLvevvEv/8TZjqexs1PpfVsO00fGUlKoJeDP/uWiAh3lpY4pii7FGY9vZ8hkMJqJbHKhZSs8qoy4NsUU5LqRecaDL98N5d4n0kg9rictRc/wCWc4l+7OVptrETgPjVI52bM+UOMfoxaLha5duzJ79mwAOnfuzP79+1myZAnDhw+//CAOUOtiICoq6qIXFzKbzbXqu7jxxhvZt2+fzbyRI0fSqlUrJk2aVC+FAMDGrwPwCzLz4MQ0AkJMJB/wZMqw2CqDYuqTM2Zq0bGEVz47Zn38yIwzAKz/NIDXnopWJVN9v05lBTp+fCWCgjR3DH5mWvXP5fqnz6L7c3eFGe4kzmpEUZYb3iEm2t+ezTVj063ru+ktpOzwZsfyEErydXgFm4juVsjw/x7BK9hxg/mc7XgaNKKyeHr182M2818dF0XianUKFGc8vp0hU4uOxbzynwsj2x+ZnlqZYXUgr41vwuq3wzAYLTw59xTevmYO7PBmyv3NqChTp6i7pDoaM1BTERERtGnTxmZe69at+eyzzwAIDw8HID09nYiICOsy6enpdOrUybpMRkaGzTZMJhPZ2dnW9euCRlFqNz7yq6++Yvbs2SxatMjah7Fz504ef/xxJk2axJAhQy47zPXXX0+nTp1YsGBBjZbPz8/Hz8+P6xmMm6Zh91GJ+jElea/aEaqYFddJ7QiiIdE61ymcJqWCnyyfk5eXZ3fXb3XOf1dELXgRreflXx3RUlJKyrgXapz1vvvuIyUlxeZCfU899RTbt29n69atKIpCZGQkEyZM4Omnn7ZmDQ0NZcWKFdYBhG3atGHnzp3Wgfrr16+nf//+nD59us4GENaoZSAgIACN5sLFFoqKiujevTtubpWrm0wm3NzceOihh+wqBoQQQgiHsffCQbVc96mnnqJHjx7Mnj2bu+++m19//ZVly5axbNkyAOuF9l566SWaN29ObGwsU6dOJTIy0vpd2rp1a/r378/o0aNZsmQJFRUVjB07lqFDh9ZZIQA1LAZq+kvdXj/99FO97EcIIYQLqudugm7duvHFF18wefJkXnzxRWJjY1mwYAHDhg2zLvPMM89QVFTEmDFjyM3NpVevXqxbt85mYP3KlSsZO3YsN954I1qtljvuuIOFCxfa8YdUVetuAmci3QSirkk3gWjwXLmbYP5M+7sJxk91aFa12HWicWlpKeXl5TbzGtoLJIQQooGo55aBK0mth3wWFRUxduxYQkND8fLyIiAgwGYSQgghnJLctbBatS4GnnnmGX744QcWL16MXq/n3//+NzNmzCAyMpIPPvjAERmFEEII4UC17iZYs2YNH3zwAddffz0jR47kmmuuoVmzZsTExLBy5UqbgRFCCCGE06jnswmuJLVuGcjOziYuLg6oHB+QnV15T/RevXqxadOmuk0nhBBC1JHzVyC0Z2qoal0MxMXFcfz4cQBatWrF6tWrgcoWA39//zoNJ4QQQgjHq3UxMHLkSH777TcAnn32WRYtWoTBYOCpp55i4sSJdR5QCCGEqBMygLBatR4z8NRTT1n/v0+fPvzxxx/s2rWLZs2a0aFDhzoNJ4QQQgjHs/uG5jExMcTExNRFFiGEEMJhNNh518I6S+J8alQM1Oayh0888cRlhxFCCCFE/atRMfD666/XaGMajUaKAXFFc8ZL/7beZXcDXp071MVxt1wWDmYxq53AllKPeeTUwmrV6FPm/NkDQgghxBVLLkdcrVqfTSCEEEKIhsX52h+FEEIIR5CWgWpJMSCEEMIl2HsVQbkCoRBCCCEaLGkZEEII4Rqkm6Bal9UysHnzZu6//37i4+NJTU0F4MMPP2TLli11Gk4IIYSoM3I54mrVuhj47LPP6NevH56enuzZs4eysjIA8vLymD17dp0HFEIIIYRj1boYeOmll1iyZAnvvPMO7u7u1vk9e/Zk9+7ddRpOCCGEqCtyC+Pq1XrMQFJSEtdee22V+X5+fuTm5tZFJiGEEKLuyRUIq1XrloHw8HCOHj1aZf6WLVuIi4urk1BCCCFEnZMxA9WqdTEwevRonnzySbZv345Go+HMmTOsXLmSCRMm8OijjzoioxBCCCEcqNbdBM8++ywWi4Ubb7yR4uJirr32WvR6PRMmTODxxx93REaHGzQiizsfzSAwxETyQU/efr4RSXuNksmJM93yYBYDHzxHWFQ5ACeTDKx8PYydP/qqkuev6ut1UswKmUst5H+rYDoHbsHgN0hL8MMaNJrK5swz08zkrbX9OeMVryH6LZ3NvILNFrLesVB2FDQeYLxKQ9R822XqijO+d+26F3LXY5k0b19MULiJ6Q81Yds6P9XyANwzNp2eN+cR1ayM8lItB3caeXdWBKePGVTL5IyvU23IRYeqV+uWAY1Gw5QpU8jOzmb//v388ssvZGZmMnPmTEfkc7jrbs1hzLQzrJwfTkK/FiQfNDBrVTJ+QRWSyYkzZZ51573ZEYzt34LHB7Tgt5+9mb78BDEtSlXJc159vk7n3lfI/a9C2DNa4v6rI/QJLdkfWMj55G9f/j00NP9OZ50azbb9Z5+/wcKZFyz436ol9mMdTd7T4dffcX2jzvjeGYwWkg8YeOu5xqpl+LsO8UWsWRHMuFuaM3loHDo3hdkfJ6P3VO+ug874OtWKdBNU67KvQOjh4UGbNm24+uqr8fb2vqxtTJ8+HY1GYzO1atXqciNdltvHZLFuVSDrPw3k1BEDCyc1pqxEQ797s+s1h2Sqne2Jfuz4wZczx/WkJutZMTeC0iItrboUqZLnvPp8nUp+U/C+XoPPNVo8IjX49tHi9S8NJQdsP7E07uAWrLFOOt8LX/SKSSH9VQthT2oJuFOLPkaDPk6Db1/HXZzUGd+7nT/68v68CLY60a/cKcPiSFwdyMnDBpIPevLauGjCGlfQvEOJapmc8XUSdaPW3QS9e/e2NkFezA8//FCr7bVt25bvv//+QiC3+rsoopu7heYdivnkrVDrPEXRsGezD226FNdbDslkH61W4ZpBueiNFg7t9FItR32/Tp4dNeR+bqHspII+RkPpYYXivQphT9l+kRfvUjjcx4TOF4xdNYQ8psXNv/LfcOkfYMoAtJB8nwlTFhhaagh9UouhmeNHTjvLe3cl8PKtbBEoyHVM941LsPf0wAbcMlDrb95OnTrZPK6oqGDv3r3s37+f4cOH1z6Amxvh4eE1WrasrMx6kSOA/Pz8Wu/vr3wDzejcIDfT9mXIyXIjqllZNWs5lmSquSatSliw5igeegslRVpeHNWEU0fU60+t79cpaIQGS6GG5DvMlW18Fgh5TIvfzReKAa8eGnxu0OAeqaHitELGIgspT5hpslyHRqehPLXy0y1zqYWw8VrcIzVkf2jh1BgzTb/QofNzTEHgbO+ds9NoFB6Zkcr+X42cTPJUO86VSy5HXK1aFwOvv/76RedPnz6dwsLCWgc4cuQIkZGRGAwG4uPjmTNnDtHR0Rddds6cOcyYMaPW+xAN0+ljeh67qQVGHzPX3JLHhDdOMfH2Zi7zpZKfqJC3TiFylhZ9nIaywwrpr1lwCwH/QZUFgV+/C4WBobkGfXMNxwabKd6l4HW1BiyVzwWP0uJ7Y+WyEdO1HB1gJv97hYA7HFMMuPp7V1tjZ6cS06qUp4c0UzuKaKDqrGPw/vvv57333qvVOt27d2fFihWsW7eOxYsXc/z4ca655hoKCgouuvzkyZPJy8uzTikpKXZlzs/WYTaBf4jJZn5AsImcTHXu4SSZas5UoeXMCT1H9xlZPieC4wc9GfJwpmp56vt1ynjDQtAILX79tBiaa/AbqCXwPi3nlluqXcejsQadP5T/+U/HLbjyv/rYC1/6Wg8N7o2gIs1xP4Oc7b1zZgmzTtP9pnyeubMpWWc91I5zZZMBhNWqs2Jg27ZtGAy1q+oHDBjAXXfdRYcOHejXrx/ffPMNubm5rF69+qLL6/V6fH19bSZ7mCq0HPndSOdeF4oPjUahU69CDu5S55Q5yXT5NBpw91DvX2t9v05KaeXfbEPLP35gVaQrmPMuFAGG1ho0HlB+8sJKSoVCxVlwj6i/q62p/d45J4WEWafp0T+PZ+5qSnqKXu1AVzy5HHH1av1z5fbbb7d5rCgKZ8+eZefOnUydOtWuMP7+/rRo0eKiVzh0lM+XBTNhQQqHfzOStMfIbaMzMRgtrP8ksN4ySKbaGzn5LDt+8CEz1QNPbzO9b8ulQ49Cptyn7lUw6/N18r5GQ9Z7FtzCQd9UQ+kfCtkrLfgPrvwStxQrZC6z4HujFl0QlWMG3rDgEVV5rQEAnbcG/zs0ZC614BZWWQCc+6CyZcG3j2OKAWd87wxGM5Gx5dbH4VHlxLUtoSBXR2aqOr/Gx85OpfdtOUwfGUtJoZaAkMrTU4sKdJSXOu5sj3/ijK+TqBu1Lgb8/GxPKdFqtbRs2ZIXX3yRvn372hWmsLCQY8eO8cADD9i1ndrY+HUAfkFmHpyYRkCIieQDnkwZFktulvulV5ZMqmXyDzYxceEpAkNNFBfoOH7IwJT74ti9yUeVPOfV5+sU9oyWzMUW0l62YM6p/LXvf4eGkNF/flFooewIpKw1Yy4A9xDw+peGkEe1aD0ufNGHPalFo6u81oBSBp7tNMQs0dmcgliXnPG9a9GxhFc+O2Z9/MiMMwCs/zSA1566+BgmRxs04hwAr35+zGb+q+OiSFytThHujK+TqBsaRVFq3PBhNpv5+eefad++PQEBAXbvfMKECQwaNIiYmBjOnDnDtGnT2Lt3LwcPHiQkJOSS6+fn5+Pn58f1DMZNo94XpRCO1HqXeuMyqnOoi+nSCwlRAyalgp/4iry8PLu7fqtz/rui6eTZ6GrZnf1X5tJSjs15zqFZ1VKrTxmdTkffvn05dOhQnRQDp0+f5t577+XcuXOEhITQq1cvfvnllxoVAkIIIURtyOWIq1frnxzt2rUjOTmZ2NhYu3f+ySef2L0NIYQQQtin1qNQXnrpJSZMmMDatWs5e/Ys+fn5NpMQQgjhtOS0wouqccvAiy++yNNPP83NN98MwK233mpzWWJFUdBoNJjN6t1EQwghhKiWXIGwWjUuBmbMmMEjjzzCjz/+6Mg8QgghhKhnNS4Gzp90cN111zksjBBCCOEoMoCwerUaQPhPdysUQgghnJp0E1SrVsVAixYtLlkQZGerc397IYQQQlyeWhUDM2bMqHIFQiGEEOJKIN0E1atVMTB06FBCQ0MdlUUIIYRwHOkmqFaNrzMg4wWEEEKIhqnWZxMIIYQQVyRpGahWjYsBi8XiyBxCCCGEQ8mYgeo53+3QhBA2nPEOgWMOJ6sdoYplLeLUjiCcnbQMVKvW9yYQQgghRMMiLQNCCCFcg7QMVEuKASGEEC5BxgxUT7oJhBBCCBcnLQNCCCFcg3QTVEuKASGEEC5BugmqJ90EQgghhIuTlgEhhBCuQboJqiUtA0IIIVyDUgfTZXr55ZfRaDSMGzfOOq+0tJSEhASCgoLw9vbmjjvuID093Wa9U6dOMXDgQIxGI6GhoUycOBGTqe4vRCbFgBBCCOFAO3bsYOnSpXTo0MFm/lNPPcWaNWv4z3/+w8aNGzlz5gy333679Xmz2czAgQMpLy9n69atvP/++6xYsYIXXnihzjNKMSCEEMIlaOpgqq3CwkKGDRvGO++8Q0BAgHV+Xl4e7777LvPnz+eGG26gS5cuLF++nK1bt/LLL78AsH79eg4ePMhHH31Ep06dGDBgADNnzmTRokWUl5df5qtwcVIMCCGEcA111E2Qn59vM5WVlVW7y4SEBAYOHEifPn1s5u/atYuKigqb+a1atSI6Oppt27YBsG3bNtq3b09YWJh1mX79+pGfn8+BAwfseCGqkgGEwKARWdz5aAaBISaSD3ry9vONSNprVC1Pu+6F3PVYJs3bFxMUbmL6Q03Yts5PtTzOmgmc771ztky3PJjFwAfPERZV+SviZJKBla+HsfNHX4fts7xQw843AjmRaKTknI7gNuXETzlHaIfKD8yfJoVw+Asfm3UaX1PMze+mAXBmu4G1D0RedNtD/ptq3Y4juPp7V1PO9DrVRl2dWhgVFWUzf9q0aUyfPr3K8p988gm7d+9mx44dVZ5LS0vDw8MDf39/m/lhYWGkpaVZl/lrIXD++fPP1SWXLwauuzWHMdPO8Oazjfljt5HbRmcya1Uyo65pSd45d1UyGYwWkg8Y+O7jQKa9d0KVDH/njJmc8b1ztkyZZ915b3YEqcf1aDRw013ZTF9+goS+LTh52OCQfW6aEkLOEQ96v5KJMdTEka98+N+ICO7+JgWvcDMAUdcUc93LmdZ1dB4XPqHDOpdy/88nbba5c0EAqds8CWnvuEJA3ruacbbXSQ0pKSn4+l4oyvR6/UWXefLJJ0lMTMRgUO/9qinVuwlSU1O5//77CQoKwtPTk/bt27Nz58562//tY7JYtyqQ9Z8GcuqIgYWTGlNWoqHfvdn1luHvdv7oy/vzItjqBL+8z3PGTM743jlbpu2Jfuz4wZczx/WkJutZMTeC0iItrboUOWR/plINx9d70X3iOSK6leIXY6LrEzn4xVRw8OMLH55aDwVjiNk66f0s1ud0Htg8Z/A3c2KDFy3vKEBzOZ22NeTq711NOdvrVCt11E3g6+trM12sGNi1axcZGRlcddVVuLm54ebmxsaNG1m4cCFubm6EhYVRXl5Obm6uzXrp6emEh4cDEB4eXuXsgvOPzy9TV1QtBnJycujZsyfu7u58++23HDx4kNdee81mkIUjublbaN6hmN2bLzRZKoqGPZt9aNOluF4yiMvjjO+dM2b6K61W4brBOeiNFg7t9HLIPiwmUMwadHrbtlidXiFt14VfR2d/NfDBv2L4tF9jNk8LpjSn+o+iEz94UZarpcUdBQ7JDPLe1ZSzv041Uk+nFd54443s27ePvXv3WqeuXbsybNgw6/+7u7uzYcMG6zpJSUmcOnWK+Ph4AOLj49m3bx8ZGRnWZRITE/H19aVNmzaX+QJcnKrdBHPnziUqKorly5db58XGxla7fFlZmc1Ajfz8fLv27xtoRucGuZm2L0NOlhtRzRzXHCns54zvnTNmAmjSqoQFa47iobdQUqTlxVFNOHXEMc2WHt4KYZ1L2f12AP5NM/AMNnNsrTcZe/X4xlQAleMDmvQtwrdxBfmn3Pl1fiDfPhzO4NVn0OqqbjPpPz407lWC959dDI4g713NOOvr5Ix8fHxo166dzTwvLy+CgoKs80eNGsX48eMJDAzE19eXxx9/nPj4eP71r38B0LdvX9q0acMDDzzAvHnzSEtL4/nnnychIeGirRH2ULVl4Ouvv6Zr167cddddhIaG0rlzZ955551ql58zZw5+fn7W6e+DOIQQVZ0+puexm1rwxMDmrP0gmAlvnCK6eanD9tf7lQxQYOU1MbzbLpb9H/jS9JZCaxN/s1uKaHJjMYEtK2hyUzH9l6aRuc/A2e1Vv+QK03Sc3uJJy7sc1yrgzOr7vWvozg8gtGeqS6+//jq33HILd9xxB9deey3h4eF8/vnn1ud1Oh1r165Fp9MRHx/P/fffz4MPPsiLL75Yt0FQuWUgOTmZxYsXM378eJ577jl27NjBE088gYeHB8OHD6+y/OTJkxk/frz1cX5+vl0FQX62DrMJ/ENsr+YUEGwiJ9Plx1Y6NWd875wxE4CpQsuZE5W/Io7uM9KyUzFDHs5k4STHFNO+0SYGrTxLRbGGikItxlAz3z8Zik/Uxa+a5httwhBgJu+UO4162H7RHf7MB72/hSY3OLafXN67mnHW16nGVL4c8U8//WTz2GAwsGjRIhYtWlTtOjExMXzzzTf27bgGVG0ZsFgsXHXVVcyePZvOnTszZswYRo8ezZIlSy66vF6vrzJwwx6mCi1HfjfSudeFXx0ajUKnXoUc3OX8p8m4Mmd875wx08VoNODuUcc/cS7C3ahgDDVTlqfl9BZPmtx48S/0wjQdpblajCG23QCKAkmf+dBiSAFaBw9Sl/euZq6U10nUnqqlXERERJVBEK1bt+azzz6rtwyfLwtmwoIUDv9mJGlP5WkyBqOF9Z8E1luGvzMYzUTGXri6VHhUOXFtSyjI1ZGZ6iGZ/uSM752zZRo5+Sw7fvAhM9UDT28zvW/LpUOPQqbcF+ewfaZs9gQF/GIrxwRsnxuIf1wFLe8ooKJIw663AojtV4Qx2Ez+KTe2vxKEX0wFUdfYDkA7s81AwWl3WtVTF4G8dzXjbK9TbcgtjKunajHQs2dPkpKSbOYdPnyYmJiYesuw8esA/ILMPDgxjYAQE8kHPJkyLJbcLPXOl23RsYRXPjtmffzIjDMArP80gNeeipZMf3LG987ZMvkHm5i48BSBoSaKC3QcP2Rgyn1x7N7kc+mVL1N5gZZfXwukKM0Nvb+Z2L5FXD0+G607WMyQneTB4S98KC/QYgw10bhnCV3H5aD7W035x399CbuqFP+mFQ7L+lfy3tWMs71OtSJ3LayWRlEU1f68HTt20KNHD2bMmMHdd9/Nr7/+yujRo1m2bBnDhg275Pr5+fn4+flxPYNx01wBB6IQDcSYw8lqR6hiWQt1fzGLy2NSKviJr8jLy7O767c6578r2o+ajc7j8s/GMJeXsu/d5xyaVS2qjhno1q0bX3zxBR9//DHt2rVj5syZLFiwoEaFgBBCCFEbznY2gTNRffjnLbfcwi233KJ2DCGEEA2ddBNUS/ViQAghhKgXUgxUS/V7EwghhBBCXdIyIIQQwiXIqYXVk2JACCGEa5BugmpJN4EQQgjh4qRlQAghhEvQKAoaOy6tY8+6zk6KASGEEK5BugmqJd0EQgghhIuTlgEhhBAuQc4mqJ4UA0IIIVyDdBNUS7oJhBBCCBcnLQOuQqNRO0FVDXhkbkPnjHcIXHFqi9oRqhgR3UvtCFU53WeBpt5+cUs3QfWkGBBCCOEapJugWlIMCCGEcAnSMlA9GTMghBBCuDhpGRBCCOEapJugWlIMCCGEcBkNuanfHtJNIIQQQrg4aRkQQgjhGhTFvlOaG/Dp0FIMCCGEcAlyNkH1pJtACCGEcHHSMiCEEMI1yNkE1ZJiQAghhEvQWCone9ZvqKSbQAghhHBx0jIADBqRxZ2PZhAYYiL5oCdvP9+IpL1GyfSn9385QHhURZX5X68IZtGUxiokglsezGLgg+cIiyoH4GSSgZWvh7HzR19V8gDcMzadnjfnEdWsjPJSLQd3Gnl3VgSnjxlUy3SeMx1Pjs6UtN2Xb5Y05uQ+L3Iz9Dz+zkG69Mu2Pq8o8MX8aDauCqc4X0fzrgU8OPso4bGlVbZVUabhxcEdSTnozYxv9xDTtsj63K9rglmzqDHpyZ74BFVw4/Cz3PxIqt35z3PGYxwgKLycUc+dpdsN+egNFs6c0PPa+GiO/K7u8VQj0k1QLZdvGbju1hzGTDvDyvnhJPRrQfJBA7NWJeMXVPXLz1UzPXFzS4Z2amudnh3aFIDNa/1UyQOQedad92ZHMLZ/Cx4f0ILffvZm+vITxLSo+oFeXzrEF7FmRTDjbmnO5KFx6NwUZn+cjN7TrFomcL7jydGZyop1RLcp5IGXki/6/DeLG5G4PJLhc47ywte/oTeaee3+dpSXVr2b3+rZsQSElVeZ//uPASx9sgW9h6XxUuJuHnjpGOv/Hcn3KyLszn+eMx7j3n4m5n95BLNJw/P3xzG6dyuWvRhJYZ5OtUy1cf5sAnumhkrVYqBJkyZoNJoqU0JCQr1luH1MFutWBbL+00BOHTGwcFJjyko09Ls3+9Iru0imvGw3cjLdrVP3PnmcOe7B79u8VckDsD3Rjx0/+HLmuJ7UZD0r5kZQWqSlVZeiS6/sIFOGxZG4OpCThw0kH/TktXHRhDWuoHmHEtUygfMdT47O1KF3DndMPEWX/ueqPKcosP7dRtz6eApX9c0mqnUxo18/TE6GB7vXB9ks+/uPAezf7M89U45X2c7Wz0Po3DebGx5IIzSmjE435jAw4TTfLG5cZ6eiO+MxfvdjGWSd8eC18dEk7fUiPUXP7k2+nD2pVy1TrZy/zoA9UwOlajGwY8cOzp49a50SExMBuOuuu+pl/27uFpp3KGb3Zh/rPEXRsGezD226FNdLhish01+5uVu44fYcvvs0CHCO+6JrtQrXDc5Bb7RwaKeX2nGsvHwrWwQKctX71eSMx5OamTJP6cnL9KBNr1zrPKOvmaadCji260Lze16mO8snNWPM64fx8Kw6aqyiXIu73na+h8FC9lk9Wafr/ovRWY7xf/XN4/DvRqYsPc6nv+1n0XdJDLivatElrjyqjhkICQmxefzyyy/TtGlTrrvuuosuX1ZWRllZmfVxfn6+Xfv3DTSjc4PcTNuXISfLjahmZdWs5VjOmOmvevTPw9vXzPrVgWpHoUmrEhasOYqH3kJJkZYXRzXh1BH1++cBNBqFR2aksv9XIyeTPFXL4YzHk5qZ8jI9APALtm369w0uJy/THaj88ffvp5vT+/40YjsWkplS9cu9/bU5rHoxjoNb/GjVI4+MEwbWvdOoch8ZHoRE1c3f4WzHeER0Obc8kMXn74TwycIwWnQq5tEXT1NRoeH7/6j/mXApctGh6jnNAMLy8nI++ugjxo8fj0Zz8V+cc+bMYcaMGfWcTPxVv6HZ7PjRl+x0d7WjcPqYnsduaoHRx8w1t+Qx4Y1TTLy9mVMUBGNnpxLTqpSnhzRTO4qope+XR1BaqOOWhJRql7nuvnQyTnry+sg2mE1aPL1N3PTQGb58PQaNtu6+MZztGNdo4cjvnix/ORKAYweMNGlZysAHsq6IYkAGEFbPaYqBL7/8ktzcXEaMGFHtMpMnT2b8+PHWx/n5+URFRV32PvOzdZhN4B9ispkfEGwiJ1Odl8YZM50X2qicztcUMPPhWFVznGeq0HLmROWvtqP7jLTsVMyQhzNZOOnyj4m6kDDrNN1vyufp25qSddZD1SzOeDypmckvpLJFIC/LA/+wC4MV87M8iG5T2Rd/cKs/R3f78nCznjbrzrilE/FDMhj9+hE0Grj7uRPcOekEeZke+ARWcPBnfwBCoutugJ+zHePZGW6cPGxbiKQcNdDr5jxV8oi64zRnE7z77rsMGDCAyMjIapfR6/X4+vraTPYwVWg58ruRzr0KrPM0GoVOvQo5uEud02ScMdN5fe85R26WG9s3qHtqU3U0GnD3ULN0V0iYdZoe/fN45q6mpF+kebm+OePxpGamkOgy/ELKrV/cACUFOo7t9aFpl8pux/tnJDPzuz28uK5yGv/+AQAeXfQHdzxz0mZ7Wh0EhJfj5qHwy1chNOuSj2+QbZFTl9Q+xg/u8CKqqW0XSKO4MjJS1W8prAk5m6B6TtEycPLkSb7//ns+//zzet/358uCmbAghcO/GUnaY+S20ZkYjBbWf6Jek5czZtJoFPrek833/wnEYlZ/4ODIyWfZ8YMPmakeeHqb6X1bLh16FDLlvjjVMo2dnUrv23KYPjKWkkItASGVvzyLCnSUl6pXdzvj8eTITKVFWtJPXBinkZVi4OQBL7z9TQQ1KqPvqFTWLIwivEkJwdGlfP5qDAGh5VzVt3IgXFAj2y87vbFyIGhoTCmBEZUtCwXZbuz4XzCt4vOoKNOyZXUYO/4XxOT/7LM7/3nOeIx//k4or391mKGPp7NpjT8tOxVz87BzLHhGneuN1JrctbBaTlEMLF++nNDQUAYOHFjv+974dQB+QWYenJhGQIiJ5AOeTBkWS26WepWuM2bqfE0BYY0r+O5T5+gX9A82MXHhKQJDTRQX6Dh+yMCU++LYvcnn0is7yKARlV8mr35+zGb+q+OiSFRxwKUzHk+OzHT8dx/m3tPe+vjjFyu/PHvemc7o+Ue4+dFUykp0LJ/cjOJ8N1p0zefpD/fjYajdB/3Pn4Xy6axYFAWaXVXAs6v3Edep0O785znjMX74NyMvPhzLyGfPMmxcGmkpHiyZ1ogfv3COzwVx+TSKom6pY7FYiI2N5d577+Xll1+u1br5+fn4+flxPYNx01wZzVSqqWZQpqoacJUt6t+KU1vUjlDFiOheakeoysk+C0xKBT8pX5KXl2d31291zn9XxA94ETf3yx98aaooZdu3Lzg0q1pUbxn4/vvvOXXqFA899JDaUYQQQjRkcjZBtVQvBvr27YvKjRNCCCGES1O9GBBCCCHqg1x0qHpSDAghhHANFqVysmf9BkqKASGEEK5BxgxUy2kuOiSEEEIIdUjLgBBCCJegwc4xA3WWxPlIMSCEEMI1yBUIqyXdBEIIIYSLk5YBIYQQLkFOLayeFANCCCFcg5xNUC3pJhBCCCFcnLQMCCGEcAkaRUFjxyBAe9Z1dlIMuIoGfBALAc55h8C7D6WpHaGK1a3D1Y5gqz4/myx/Tvas30BJN4EQQgjh4qRlQAghhEuQboLqScuAEEII16DUwVQLc+bMoVu3bvj4+BAaGsqQIUNISkqyWaa0tJSEhASCgoLw9vbmjjvuID093WaZU6dOMXDgQIxGI6GhoUycOBGTyVTbv/4fSTEghBDCNZy/AqE9Uy1s3LiRhIQEfvnlFxITE6moqKBv374UFRVZl3nqqadYs2YN//nPf9i4cSNnzpzh9ttvtz5vNpsZOHAg5eXlbN26lffff58VK1bwwgsv1NnLAtJNIIQQQtRKfn6+zWO9Xo9er6+y3Lp162wer1ixgtDQUHbt2sW1115LXl4e7777LqtWreKGG24AYPny5bRu3ZpffvmFf/3rX6xfv56DBw/y/fffExYWRqdOnZg5cyaTJk1i+vTpeHh41MnfJC0DQgghXML5KxDaMwFERUXh5+dnnebMmVOj/efl5QEQGBgIwK5du6ioqKBPnz7WZVq1akV0dDTbtm0DYNu2bbRv356wsDDrMv369SM/P58DBw7UxcsCSMuAEEIIV1FHNypKSUnB19fXOvtirQJ/Z7FYGDduHD179qRdu3YApKWl4eHhgb+/v82yYWFhpKWlWZf5ayFw/vnzz9UVKQaEEEKIWvD19bUpBmoiISGB/fv3s2XLFgelso90EwghhHAJGov90+UYO3Ysa9eu5ccff6Rx48bW+eHh4ZSXl5Obm2uzfHp6OuHh4dZl/n52wfnH55epC1IMCCGEcA31fDaBoiiMHTuWL774gh9++IHY2Fib57t06YK7uzsbNmywzktKSuLUqVPEx8cDEB8fz759+8jIyLAuk5iYiK+vL23atLHjxbAl3QRCCCGEAyQkJLBq1Sq++uorfHx8rH38fn5+eHp64ufnx6hRoxg/fjyBgYH4+vry+OOPEx8fz7/+9S8A+vbtS5s2bXjggQeYN28eaWlpPP/88yQkJNRorEJNSTEghBDCNdTzLYwXL14MwPXXX28zf/ny5YwYMQKA119/Ha1Wyx133EFZWRn9+vXj7bffti6r0+lYu3Ytjz76KPHx8Xh5eTF8+HBefPFFO/6QqqQYAAaNyOLORzMIDDGRfNCTt59vRNJeo2T60y0PZjHwwXOERZUDcDLJwMrXw9j5Y+0G0NS1dt0LueuxTJq3LyYo3MT0h5qwbZ2fZPoHd49NZ9RzaXzxTjBLpjVSNYszHeNqZKoo0rD/DW9SvzdQlq3Fv3UFnZ/LJ7B95ZXl9r/lTco3BorTtGjdIaBNBe3HFRLUsQKAolQdB9/2ImO7B6VZOgyhZmIGldL6/wrR1c2p51XcMzadnjfnEdWsjPJSLQd3Gnl3VgSnjxkcs8M6Vt+XI1ZqsLzBYGDRokUsWrSo2mViYmL45ptvarXv2nL5MQPX3ZrDmGlnWDk/nIR+LUg+aGDWqmT8giok058yz7rz3uwIxvZvweMDWvDbz95MX36CmBalquQ5z2C0kHzAwFvPNb70wvXEGTOd16JjMQPvzyb5gPof3M52jKuRaefzvqRv9aD73Fz6fpVFWM9yNj4USHF65ceyTxMTVz2fT7+vznHDR9l4NTKz6eEASrM1AOQn61AU6DIjn35rsuj0bAHHPvVk3wIfh+QF6BBfxJoVwYy7pTmTh8ahc1OY/XEyek+zw/Yp6oeqxYDZbGbq1KnExsbi6elJ06ZNmTlzZo2qqbpy+5gs1q0KZP2ngZw6YmDhpMaUlWjod292vWVw9kzbE/3Y8YMvZ47rSU3Ws2JuBKVFWlp1Kbr0yg6080df3p8XwVYn+uXtjJkADEYzk946yYKJjSnI06kdx+mO8frOZCqF04kGOkwoJKRbBT4xZtqNLcQ72syxjytbImJuKSWsRzneUWb8mpvo9GwBFYVa8pLcAYi4ppyrZ+cT3rNymUY3lNFyZBGpiXXXj/x3U4bFkbg6kJOHDSQf9OS1cdGENa6geYcSh+2zTtXzAMIriarFwNy5c1m8eDFvvfUWhw4dYu7cucybN48333yzXvbv5m6heYdidm++UEkrioY9m31o06W4XjJcCZn+SqtVuG5wDnqjhUM7vdSOI2po7OxUft3gy57NjvvVWFPOeIzXdybFrEExa9Dpbb9cdAaFrN1V2/jN5XBstSfuPhb8W1XfUlFRoMXDr/6+sLx8K1sECnLVLzBrRAEsdkwNtxZQd8zA1q1bGTx4MAMHDgSgSZMmfPzxx/z6668XXb6srIyysjLr479fH7q2fAPN6NwgN9P2ZcjJciOqWVk1azmWM2YCaNKqhAVrjuKht1BSpOXFUU04dUT95mZxadcNzqFZ+xIev7m52lEA5zzG6zuTu5dCUKdyDi72xrdpLvogCyn/M3Burzve0Rea3M/8qOeXCX6YSjR4hli47t1s9AEX/0YqOKnj6EojHSYW1Hnei9FoFB6Zkcr+X42cTPKsl33aS25hXD1VWwZ69OjBhg0bOHz4MAC//fYbW7ZsYcCAARddfs6cOTbXg46KiqrPuC7t9DE9j93UgicGNmftB8FMeOMU0c3VHTMgLi0kspxHXzzD3LHRVJS5/BAhp9J9bh4osOa6UD7rGMaRj4xEDSy1+VQO7V7OTZ+f48ZV2YT3KmPbU/6Unqv6Phana9k8JoDG/Uppenf9NNmPnZ1KTKtS5jwaUy/7E46lasvAs88+S35+Pq1atUKn02E2m5k1axbDhg276PKTJ09m/Pjx1sf5+fl2FQT52TrMJvAPsb0vdECwiZxMdV4aZ8wEYKrQcuZEZV/k0X1GWnYqZsjDmSycJAWZM2vWoYSAEBOLvjtsnadzg/b/KuLWkVnc0qQDFoumXjM54zGuRibvaDO9P8zGVKyholCDZ6iFbU/54d34QgY3o4JPjBlizAR1quCbfsEc/8yT1mMujNcpydDy0/BAgjpV0PVF+1pLayph1mm635TP07c1Jeusg05dcAQFO+9NUGdJnI6qPxVWr17NypUrWbVqFbt37+b999/n1Vdf5f3337/o8nq93npN6Mu5NvTfmSq0HPndSOdeF5rVNBqFTr0KObhLnVOcnDHTxWg04O7RgP9lNBB7N3szpncLHr3pwpS015MfPg/g0Zta1HshAM55jKuZyc2o4BlqoTxPQ9rPeiJvrL5bQlHAXH7hPStO1/Ljg4EEtK2g2+w8NA7/RFdImHWaHv3zeOaupqSnOG6wokPIAMJqqdoyMHHiRJ599lmGDh0KQPv27Tl58iRz5sxh+PDh9ZLh82XBTFiQwuHfjCTtMXLb6EwMRgvrPwmsl/1fCZlGTj7Ljh98yEz1wNPbTO/bcunQo5Ap98Wpkuc8g9FMZGy59XF4VDlxbUsoyNWRmarOrxVny1RSpKvSn1tarKUgp+r8+uRsx7gamdK2eKAo4BNrpvCkjt9f9cEn1kTsbSWYijUcXOpFo95lGELMlOVqObrKSEm6jqh+ld1zxelafnowEGOkmY7PFFCWfaES8Ay5zIvoX8LY2an0vi2H6SNjKSnUEhDy5zUPCnSUl0o31JVM1WKguLgYrdb2ANLpdFgsjjmQL2bj1wH4BZl5cGIaASEmkg94MmVYLLlZ7vWWwdkz+QebmLjwFIGhJooLdBw/ZGDKfXHs3qTuyPQWHUt45bNj1sePzDgDwPpPA3jtqWjJ5MSc7RhXI1NFgZbfX/emJE2Hh5+Fxn1LaTeuEK07KBaFgmQ3tn7pSVmOFg9/C4HtK7jho3P4Na/sRkjfqqfwlBuFp9xYe32ozbbvPlR3t7b9q0EjzgHw6ufHbOa/Oi6KxNXqFXI1ZgHsaQyrv6+meqdR6vOk/r8ZMWIE33//PUuXLqVt27bs2bOHMWPG8NBDDzF37txLrp+fn4+fnx/XMxg3jXofIkIIcTGO+lK2x+rWdXenu7pgUir4ia/Iy8uzu+u3Oue/K25s9wxuusvv2jCZy9iwf55Ds6pF1ZaBN998k6lTp/LYY4+RkZFBZGQk//d//8cLL7ygZiwhhBDCpahaDPj4+LBgwQIWLFigZgwhhBCuwN5BgDKAUAghhLjCSTFQLRn+KYQQQrg4aRkQQgjhGqRloFpSDAghhHANcmphtaQYEEII4RLkRkXVkzEDQgghhIuTlgEhhBCuQcYMVEuKASGEEK7BooDGji90S8MtBqSbQAghhHBx0jIghBDCNUg3QbWkGBBCCOEi7CwGkGJACKEWjT0nRjtIA/6FVJec7Q6BAJ+kbFU7go2CAguxrdVOIaQYEEII4Rqkm6BaUgwIIYRwDRYFu5r65WwCIYQQQjRU0jIghBDCNSiWysme9RsoKQaEEEK4BhkzUC0pBoQQQrgGGTNQLRkzIIQQQrg4aRkQQgjhGqSboFpSDAghhHANCnYWA3WWxOlIN4EQQgjh4qRlQAghhGuQboJqSTEghBDCNVgsgB3XCrDIdQYapHvGptPz5jyimpVRXqrl4E4j786K4PQxg2S6iEEjsrjz0QwCQ0wkH/Tk7ecbkbTXqFqedt0LueuxTJq3LyYo3MT0h5qwbZ2fanmcNVNQeDmjnjtLtxvy0RssnDmh57Xx0Rz5Xb33DpzreLrlwSwGPniOsKhyAE4mGVj5ehg7f/RVJU99ZDr0iy9rlkZy/HdvcjI8ePqdP+jWP9v6vKLAf16L4oePwyjK09GyWwGjZicTEVtqs53dGwL4bEFjTh0y4mFQaN09jwnvJgFQkOPGW48359QhLwpy3fANqqBr32yGTjqF0cdcJ3+HqBsuPWagQ3wRa1YEM+6W5kweGofOTWH2x8noPdU7SJ0xE8B1t+YwZtoZVs4PJ6FfC5IPGpi1Khm/oArVMhmMFpIPGHjrucaqZfg7Z8vk7Wdi/pdHMJs0PH9/HKN7t2LZi5EU5ulUzeVsx1PmWXfemx3B2P4teHxAC3772Zvpy08Q06L00itfoZlKS7TEtC5i5EvJF33+68WNWLc8godnH+OlNfvQe1qYc38byksv3EVz+zeBLHqyGdffncHc9b8x4/N99BySZX1eo1Ho0jebCe8d4vWNe3h0/lH2b/Hj35Pj6uRvqLXz3QT2TA2Uqi0DBQUFTJ06lS+++IKMjAw6d+7MG2+8Qbdu3epl/1OG2R6Qr42LZvX+AzTvUML+7d71kuFKyARw+5gs1q0KZP2ngQAsnNSYq2/Mp9+92ax+K0yVTDt/9FX1l9vFOFumux/LIOuMB6+Nj7bOS0/Rq5iokrMdT9sTbVtvVsyN4JYHz9GqSxEnD6vTKufoTJ1759K5d+5Fn1MU+PbdCG57/DRd++UAkLDgCP93VTd2fhdIj8HnMJvg/WmxDHv+JDcMzbCu27hFifX/vf3N9H0w3fo4pHEZNz2YxpoljezOf1lkzEC1VG0ZePjhh0lMTOTDDz9k37599O3blz59+pCamqpKHi/fyl/fBbnq/mr6K2fI5OZuoXmHYnZv9rHOUxQNezb70KZLsWq5xKX9q28eh383MmXpcT79bT+LvktiwH3nVM3k7MeTVqtw3eAc9EYLh3Z6qR0HqP9MGaf05GZ40P6aXOs8o6+ZZp0KOLy78n07vs+b7DQ9Wg08278Dj3TpypwHWpPyR/VdPdlp7vz6bRBt/pXv6D9B1JJqLQMlJSV89tlnfPXVV1x77bUATJ8+nTVr1rB48WJeeumlKuuUlZVRVlZmfZyfX3cHlEaj8MiMVPb/auRkkmedbdcezpLJN9CMzg1yM20Pl5wsN6KalVWzlnAGEdHl3PJAFp+/E8InC8No0amYR188TUWFhu//E6hKJmc9npq0KmHBmqN46C2UFGl5cVQTTh1Rd6yOWplyMz0A8Au27bbxC6kgN6PyuYxTlS1M/309igdeOE5I4zLWLovkxbvb8vrGPXgHmKzrLUxozs71gZSX6ujSJ5sx8446/G+4KLkccbVUaxkwmUyYzWYMBtsD29PTky1btlx0nTlz5uDn52edoqKi6izP2NmpxLQqZc6jMXW2TXs5YyZxZdFo4eh+T5a/HMmxA0a+XRnMt6uCGPhA1qVXdjGnj+l57KYWPDGwOWs/CGbCG6eIbq7emAFnzXSexVI5dmDI46fpfnM2cR2KePS1o6CBX/4XZLPsg9NOMOfb35nw7iHSTxn48MVYNSKjKBa7p4ZKtWLAx8eH+Ph4Zs6cyZkzZzCbzXz00Uds27aNs2fPXnSdyZMnk5eXZ51SUlLqJEvCrNN0vymfZ+5sStZZjzrZpr2cKVN+tg6zCfxDTDbzA4JN5GS69AkpTi87w61K/3LKUQOhkeoN/HTW48lUoeXMCT1H9xlZPieC4wc9GfJwpmp51MzkH1J5BkNelrvN/LxMd/xDK58LCKv8b+PmF7p23PUKodGlZKXajkvxD62gUbMSuvbN4eE5x0j8MJycdNtt1wtFqfx1f7mTjBlwjA8//BBFUWjUqBF6vZ6FCxdy7733otVePJZer8fX19dmso9CwqzT9OifxzN3NXWKgVXOmMlUoeXI70Y69yqwztNoFDr1KuTgLnVPTxP/7OAOL6Ka2ja9N4orIyNVhQ/iP10px5NGA+4ezvXhX1+ZQqPL8A8tZ/8Wf+u84gIdR/f60OKqyvcttn0R7noLZ5IvdGGaKjRkndYT3Lj67h7lzxaFinKXPpnN6aj6s65p06Zs3LiRoqIi8vPziYiI4J577iEurn5OOxk7O5Xet+UwfWQsJYVaAkIqfy0VFegoL1XnQHXGTACfLwtmwoIUDv9mJGmPkdtGZ2IwWlj/iTr9zgAGo5nI2HLr4/CocuLallCQqyMzVZ3WFGfL9Pk7obz+1WGGPp7OpjX+tOxUzM3DzrHgGXVPfXS242nk5LPs+MGHzFQPPL3N9L4tlw49Cplyn0qnwNVDptIiLWknLrQaZaToOXHAiLe/ieBG5QwYdZYv3mxMeGwJoVFlrH41ioCwcrr2q7wWgdHHTJ/70/jva1EERZQR0rjMepbAvwZWdkPt+cGfvEwPmnYsRO9l5vRhIytnxdCyWz6hUSqMD1HsHDPQgFsGNIriPH9dTk4OsbGxzJs3jzFjxlxy+fz8fPz8/Liewbhpav9L57szv110/qvjokhcrc6HkjNmOu/WkZUXiQkIMZF8wJO3p0aStEe90dYd4gt55bNjVeav/zSA156KvsgajueQTBrNpZf5B9375DHy2bM0ii0jLcWDz5eF8u2qoEuv+E/q4GPDmY6np15LoVOvAgJDTRQX6Dh+yMDqRaHs3uRz6ZWvsEyfpGwF4MA2X2be3a7K89femcFjrx+1XnRow6owivPdaNktn4dmJRMZd2HMgqlCw8cvR7Pl8xDKS7U061zIg9OOE9Wy8vTCA1t9+WReNKlHjFSUaQiKLOfqAecY/FgqXn5/nilVYCG2dRp5eXl10Np7cee/K270GYab5vKLcpNSzoaClQ7NqhZVi4HvvvsORVFo2bIlR48eZeLEiRgMBjZv3oy7+6W/3O0tBoS4IthZDDiE8/yGELV0vhhwFlIMOAdVuwny8vKYPHkyp0+fJjAwkDvuuINZs2bVqBAQQgghakW6CaqlajFw9913c/fdd6sZQQghhItQLBYUzeWfHiinFgohhBCiwZKTxIUQQrgG6SaolhQDQgghXINFAY0UAxcj3QRCCCGEi5OWASGEEK5BUQA7BgE24JYBKQaEEEK4BMWioNjRTeBE1+irc1IMCCGEcA2KBftaBuTUQiGEEEJchkWLFtGkSRMMBgPdu3fn119/VTtSFVIMCCGEcAmKRbF7qq1PP/2U8ePHM23aNHbv3k3Hjh3p168fGRkZDvgLL58UA0IIIVyDYrF/qqX58+czevRoRo4cSZs2bViyZAlGo5H33nvPAX/g5buixwycH8xhosKu60gI4dzkRkWi7hQUOFe/d0FhZZ76GJxn73eFicpbyufn59vM1+v16PX6KsuXl5eza9cuJk+ebJ2n1Wrp06cP27Ztu/wgDnBFFwMFBQUAbOEblZMI4UDyvSvqUGxrtRNcXEFBAX5+fg7ZtoeHB+Hh4WxJs/+7wtvbm6ioKJt506ZNY/r06VWWzcrKwmw2ExYWZjM/LCyMP/74w+4sdemKLgYiIyNJSUnBx8cHjZ23ec3PzycqKoqUlBSnuTWlZKoZZ8vkbHlAMtWUZKqZusykKAoFBQVERkbWUbqqDAYDx48fp7y83O5tKYpS5fvmYq0CV5oruhjQarU0bty4Trfp6+vrNP/gzpNMNeNsmZwtD0immpJMNVNXmRzVIvBXBoMBg8Hg8P38VXBwMDqdjvT0dJv56enphIeH12uWS5EBhEIIIYQDeHh40KVLFzZs2GCdZ7FY2LBhA/Hx8Somq+qKbhkQQgghnNn48eMZPnw4Xbt25eqrr2bBggUUFRUxcuRItaPZkGLgT3q9nmnTpjlV349kqhlny+RseUAy1ZRkqhlnzOSs7rnnHjIzM3nhhRdIS0ujU6dOrFu3rsqgQrVplIZ8sWUhhBBCXJKMGRBCCCFcnBQDQgghhIuTYkAIIYRwcVIMCCGEEC5OigGc7/aSmzZtYtCgQURGRqLRaPjyyy9VzTNnzhy6deuGj48PoaGhDBkyhKSkJFUzLV68mA4dOlgvehIfH8+3336raqa/e/nll9FoNIwbN061DNOnT0ej0dhMrVq1Ui3Peampqdx///0EBQXh6elJ+/bt2blzp2p5mjRpUuV10mg0JCQkqJbJbDYzdepUYmNj8fT0pGnTpsycObNeruH/TwoKChg3bhwxMTF4enrSo0cPduzYoWomYT+XLwac8faSRUVFdOzYkUWLFqmW4a82btxIQkICv/zyC4mJiVRUVNC3b1+KiopUy9S4cWNefvlldu3axc6dO7nhhhsYPHgwBw4cUC3TX+3YsYOlS5fSoUMHtaPQtm1bzp49a522bNmiap6cnBx69uyJu7s73377LQcPHuS1114jICBAtUw7duyweY0SExMBuOuuu1TLNHfuXBYvXsxbb73FoUOHmDt3LvPmzePNN99ULRPAww8/TGJiIh9++CH79u2jb9++9OnTh9TUVFVzCTspLu7qq69WEhISrI/NZrMSGRmpzJkzR8VUFwDKF198oXYMGxkZGQqgbNy4Ue0oNgICApR///vfasdQCgoKlObNmyuJiYnKddddpzz55JOqZZk2bZrSsWNH1fZ/MZMmTVJ69eqldox/9OSTTypNmzZVLBaLahkGDhyoPPTQQzbzbr/9dmXYsGEqJVKU4uJiRafTKWvXrrWZf9VVVylTpkxRKZWoCy7dMnD+9pJ9+vSxznPW20s6k7y8PAACAwNVTlLJbDbzySefUFRU5BSX+ExISGDgwIE2x5Wajhw5QmRkJHFxcQwbNoxTp06pmufrr7+ma9eu3HXXXYSGhtK5c2feeecdVTP9VXl5OR999BEPPfSQ3TdAs0ePHj3YsGEDhw8fBuC3335jy5YtDBgwQLVMJpMJs9lc5Rr/np6eqrc4Cfu49BUIr6TbSzoLi8XCuHHj6NmzJ+3atVM1y759+4iPj6e0tBRvb2+++OIL2rRpo2qmTz75hN27dztNH2r37t1ZsWIFLVu25OzZs8yYMYNrrrmG/fv34+Pjo0qm5ORkFi9ezPjx43nuuefYsWMHTzzxBB4eHgwfPlyVTH/15Zdfkpuby4gRI1TN8eyzz5Kfn0+rVq3Q6XSYzWZmzZrFsGHDVMvk4+NDfHw8M2fOpHXr1oSFhfHxxx+zbds2mjVrplouYT+XLgZE7SUkJLB//36n+BXQsmVL9u7dS15eHv/9738ZPnw4GzduVK0gSElJ4cknnyQxMbHe745Wnb/+iuzQoQPdu3cnJiaG1atXM2rUKFUyWSwWunbtyuzZswHo3Lkz+/fvZ8mSJU5RDLz77rsMGDDAobfUrYnVq1ezcuVKVq1aRdu2bdm7dy/jxo0jMjJS1dfpww8/5KGHHqJRo0bodDquuuoq7r33Xnbt2qVaJmE/ly4GrqTbSzqDsWPHsnbtWjZt2lTnt46+HB4eHtZfI126dGHHjh288cYbLF26VJU8u3btIiMjg6uuuso6z2w2s2nTJt566y3KysrQ6XSqZDvP39+fFi1acPToUdUyREREVCnYWrduzWeffaZSogtOnjzJ999/z+eff652FCZOnMizzz7L0KFDAWjfvj0nT55kzpw5qhYDTZs2ZePGjRQVFZGfn09ERAT33HMPcXFxqmUS9nPpMQNX0u0l1aQoCmPHjuWLL77ghx9+IDY2Vu1IF2WxWCgrK1Nt/zfeeCP79u1j79691qlr164MGzaMvXv3ql4IABQWFnLs2DEiIiJUy9CzZ88qp6YePnyYmJgYlRJdsHz5ckJDQxk4cKDaUSguLkartf2I1ul0WCwWlRLZ8vLyIiIigpycHL777jsGDx6sdiRhB5duGQDnvL1kYWGhzS+348ePs3fvXgIDA4mOjq73PAkJCaxatYqvvvoKHx8f0tLSAPDz88PT07Pe8wBMnjyZAQMGEB0dTUFBAatWreKnn37iu+++UyUPVPan/n0chZeXF0FBQaqNr5gwYQKDBg0iJiaGM2fOMG3aNHQ6Hffee68qeQCeeuopevTowezZs7n77rv59ddfWbZsGcuWLVMtE1QWk8uXL2f48OG4uan/0Tho0CBmzZpFdHQ0bdu2Zc+ePcyfP5+HHnpI1VzfffcdiqLQsmVLjh49ysSJE2nVqpXT3ZJX1JLapzM4gzfffFOJjo5WPDw8lKuvvlr55ZdfVM3z448/KkCVafjw4arkuVgWQFm+fLkqeRRFUR566CElJiZG8fDwUEJCQpQbb7xRWb9+vWp5qqP2qYX33HOPEhERoXh4eCiNGjVS7rnnHuXo0aOq5TlvzZo1Srt27RS9Xq+0atVKWbZsmdqRlO+++04BlKSkJLWjKIqiKPn5+cqTTz6pREdHKwaDQYmLi1OmTJmilJWVqZrr008/VeLi4hQPDw8lPDxcSUhIUHJzc1XNJOwntzAWQgghXJxLjxkQQgghhBQDQgghhMuTYkAIIYRwcVIMCCGEEC5OigEhhBDCxUkxIIQQQrg4KQaEEEIIFyfFgBBCCOHipBgQwk4jRoxgyJAh1sfXX38948aNq/ccP/30ExqNhtzc3GqX0Wg0fPnllzXe5vTp0+nUqZNduU6cOIFGo2Hv3r12bUcI4ThSDIgGacSIEWg0GjQajfXuhi+++CImk8nh+/7888+ZOXNmjZatyRe4EEI4mvp34xDCQfr378/y5cspKyvjm2++ISEhAXd3dyZPnlxl2fLycjw8POpkv4GBgXWyHSGEqC/SMiAaLL1eT3h4ODExMTz66KP06dOHr7/+GrjQtD9r1iwiIyNp2bIlACkpKdx99934+/sTGBjI4MGDOXHihHWbZrOZ8ePH4+/vT1BQEM888wx/v73H37sJysrKmDRpElFRUej1epo1a8a7777LiRMn6N27NwABAQFoNBpGjBgBVN5Bb86cOcTGxuLp6UnHjh3573//a7Ofb775hhYtWuDp6Unv3r1tctbUpEmTaNGiBUajkbi4OKZOnUpFRUWV5ZYuXUpUVBRGo5G7776bvLw8m+f//e9/07p1awwGA61ateLtt9+udRYhhHqkGBAuw9PTk/LycuvjDRs2kJSURGJiImvXrqWiooJ+/frh4+PD5s2b+fnnn/H29qZ///7W9V577TVWrFjBe++9x5YtW8jOzuaLL774x/0++OCDfPzxxyxcuJBDhw6xdOlSvL29iYqK4rPPPgMgKSmJs2fP8sYbbwAwZ84cPvjgA5YsWcKBAwd46qmnuP/++9m4cSNQWbTcfvvtDBo0iL179/Lwww/z7LPP1vo18fHxYcWKFRw8eJA33niDd955h9dff91mmaNHj7J69WrWrFnDunXr2LNnD4899pj1+ZUrV/LCCy8wa9YsDh06xOzZs5k6dSrvv/9+rfMIIVSi8l0ThXCI4cOHK4MHD1YURVEsFouSmJio6PV6ZcKECdbnw8LCbG4H++GHHyotW7ZULBaLdV5ZWZni6empfPfdd4qiKEpERIQyb9486/MVFRVK48aNrftSFNvbFiclJSmAkpiYeNGc529XnZOTY51XWlqqGI1GZevWrTbLjho1Srn33nsVRVGUyZMnK23atLF5ftKkSVW29XeA8sUXX1T7/CuvvKJ06dLF+njatGmKTqdTTp8+bZ337bffKlqtVjl79qyiKIrStGlTZdWqVTbbmTlzphIfH68oiqIcP35cAZQ9e/ZUu18hhLpkzIBosNauXYu3tzcVFRVYLBbuu+8+pk+fbn2+ffv2NuMEfvvtN44ePYqPj4/NdkpLSzl27Bh5eXmcPXuW7t27W59zc3Oja9euVboKztu7dy86nY7rrruuxrmPHj1KcXExN910k8388vJyOnfuDMChQ4dscgDEx8fXeB/nffrppyxcuJBjx45RWFiIyWTC19fXZpno6GgaNWpksx+LxUJSUhI+Pj4cO3aMUaNGMXr0aOsyJpMJPz+/WucRQqhDigHRYPXu3ZvFixfj4eFBZGQkbm62h7uXl5fN48LCQrp06cLKlSurbCskJOSyMnh6etZ6ncLCQgD+97//2XwJQ+U4iLqybds2hg0bxowZM+jXrx9+fn588sknvPbaa7XO+s4771QpTnQ6XZ1lFUI4lhQDosHy8vKiWbNmNV7+qquu4tNPPyU0NLTKr+PzIiIi2L59O9deey1Q+Qt4165dXHXVVRddvn379lgsFjZu3EifPn2qPH++ZcJsNlvntWnTBr1ez6lTp6ptUWjdurV1MOR5v/zyy6X/yL/YunUrMTExTJkyxTrv5MmTVZY7deoUZ86cITIy0rofrVZLy5YtCQsLIzIykuTkZIYNG1ar/QshnIcMIBTiT8OGDSM4OJjBgwezefNmjh8/zk8//cQTTzzB6dOnAXjyySd5+eWX+fLLL/njjz947LHH/vEaAU2aNGH48OE89NBDfPnll9Ztrl69GoCYmBg0Gg1r164lMzOTwsJCfHx8mDBhAk899RTvv/8+x44dY/fu3bz55pvWQXmPPPIIR44cYeLEiSQlJbFq1SpWrFhRq7+3efPmnDp1ik8++YRjx46xcOHCiw6GNBgMDB8+nN9++43NmzfzxBNPcPfddxMeHg7AjBkzmDNnDgsXLuTw4cPs27eP5cuXM3/+/FrlEUKoR4oBIf5kNBrZtGkT0dHR3H777bRu3ZpRo0ZRWlpqbSl4+umneeCBBxg+fDjx8fH4+Phw2223/eN2Fy9ezJ133sljjz1Gq1atGD16NEVFRQA0atSIGTNm8OyzzxIWFsbYsWMBmDlzJlOnTmXOnDm0bt2a/v3787///Y/Y2Figsh//s88+48svv6Rjx44sWbKE2bNn1+rvvfXWW3nqqacYO3YsnTp1YuvWrUydOrXKcs2aNeP222/n5ptvpm/fvnTo0MHm1MGHH36Yf//73yxfvpz27dtz3XXXsWLFCmtWIYTz0yjVjXwSQgghhEuQlgEhhBDCxUkxIIQQQrg4KQaEEEIIFyfFgBBCCOHipBgQQgghXJwUA0IIIYSLk2JACCGEcHFSDAghhBAuTooBIYQQwsVJMSCEEEK4OCkGhBBCCBf3/3mPRVbOuqiWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n", + "display.plot()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "amaspXGW1EVy" + }, + "source": [ + "### 9) Загрузили собственные изображения, подготовленные в рамках лабораторной работы №1. После предобработки передали их на вход обученной модели и получили результаты распознавания." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "ktWEeqWd1EyF" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZk0lEQVR4nO3db0yV9/3/8dfxD0fbwmGIcKCiora61Moyp4y4MjOJwBZT/2RxXW+oaWx02Exdu8kSpS5L6GyyLV2c7sYiWVaxNRmamsVEUTDbwKZUY8w2IowOjICriecgFjTw+d3w1/PtqaAePIf3OfB8JJ9EznVdnHcvr/DsgeOFxznnBADAKJtgPQAAYHwiQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMQk6wG+bHBwUNeuXVNycrI8Ho/1OACACDnn1NPTo+zsbE2YMPzrnLgL0LVr15STk2M9BgDgMXV0dGjGjBnDbo+7b8ElJydbjwAAiIKHfT2PWYD279+v2bNna8qUKcrPz9eHH374SMfxbTcAGBse9vU8JgF67733tHPnTlVUVOjjjz9WXl6eiouLdf369Vg8HQAgEbkYWLp0qSsrKwt9PDAw4LKzs11lZeVDjw0EAk4Si8VisRJ8BQKBB369j/oroDt37qipqUlFRUWhxyZMmKCioiI1NDTct39/f7+CwWDYAgCMfVEP0KeffqqBgQFlZmaGPZ6Zmamurq779q+srJTP5wst3gEHAOOD+bvgysvLFQgEQqujo8N6JADAKIj6vwNKT0/XxIkT1d3dHfZ4d3e3/H7/fft7vV55vd5ojwEAiHNRfwWUlJSkxYsXq7a2NvTY4OCgamtrVVBQEO2nAwAkqJjcCWHnzp3asGGDvvGNb2jp0qX67W9/q97eXm3atCkWTwcASEAxCdD69ev1v//9T3v27FFXV5e+9rWv6eTJk/e9MQEAMH55nHPOeogvCgaD8vl81mMAAB5TIBBQSkrKsNvN3wUHABifCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgIlJ1gMAD7Nx48aIj6moqBjRc82ePTviYz755JOIj9m7d2/Ex1RVVUV8DBDPeAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjwOOec9RBfFAwG5fP5rMfAIygpKYn4mAMHDkR8zEhuEDoWjdZNTyVufIroCAQCSklJGXY7r4AAACYIEADARNQD9Oabb8rj8YStBQsWRPtpAAAJLia/kO65557T6dOn/+9JJvF77wAA4WJShkmTJsnv98fiUwMAxoiY/AzoypUrys7O1pw5c/Tyyy+rvb192H37+/sVDAbDFgBg7It6gPLz81VVVaWTJ0/qwIEDamtr0wsvvKCenp4h96+srJTP5wutnJycaI8EAIhDUQ9QaWmpvv/972vRokUqLi7WX//6V928eVPvv//+kPuXl5crEAiEVkdHR7RHAgDEoZi/OyA1NVXPPvusWlpahtzu9Xrl9XpjPQYAIM7E/N8B3bp1S62trcrKyor1UwEAEkjUA/T666+rvr5en3zyif7xj39ozZo1mjhxol566aVoPxUAIIFF/VtwV69e1UsvvaQbN25o+vTp+ta3vqXGxkZNnz492k8FAEhg3IwUI7qpqCRVV1dHfExqauqInguja7RufMpNT8c2bkYKAIhLBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkYKdXZ2jug4v98f5Umi58iRIyM6btOmTREfs3379oiPqaysjPiYeNfX1xfxMVu3bo34GG5gmji4GSkAIC4RIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABHfDhuLsErjPwYMHIz5mJHdZHk27du2K+BjuoH3P1KlTYzAJYoG7YQMA4hIBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIKbkSLub0bq8XisR0hYI7npqRTfNz7lekgc3IwUABCXCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3IwU3IwU94nna4LrIXFwM1IAQFwiQAAAExEH6Ny5c1q1apWys7Pl8Xh07NixsO3OOe3Zs0dZWVmaOnWqioqKdOXKlWjNCwAYIyIOUG9vr/Ly8rR///4ht+/bt0/vvPOODh48qPPnz+vJJ59UcXGx+vr6HntYAMAY4h6DJFdTUxP6eHBw0Pn9fvf222+HHrt586bzer2uurr6kT5nIBBwklijuOKd9fkZjyueWZ8b1qOvQCDwwL/LqP4MqK2tTV1dXSoqKgo95vP5lJ+fr4aGhiGP6e/vVzAYDFsAgLEvqgHq6uqSJGVmZoY9npmZGdr2ZZWVlfL5fKGVk5MTzZEAAHHK/F1w5eXlCgQCodXR0WE9EgBgFEQ1QH6/X5LU3d0d9nh3d3do25d5vV6lpKSELQDA2BfVAOXm5srv96u2tjb0WDAY1Pnz51VQUBDNpwIAJLhJkR5w69YttbS0hD5ua2vTxYsXlZaWppkzZ2r79u365S9/qWeeeUa5ubnavXu3srOztXr16mjODQBIdJG+BfLs2bNDvt1uw4YNzrl7b8XevXu3y8zMdF6v161YscI1Nzc/8ufnbdijv+Kd9fkZjyueWZ8b1qOvh70Nm5uRIq5vPClx80kL8XxNcD0kDm5GCgCISwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwETEATp37pxWrVql7OxseTweHTt2LGz7xo0b5fF4wlZJSUm05gUAjBERB6i3t1d5eXnav3//sPuUlJSos7MztKqrqx9rSADA2DMp0gNKS0tVWlr6wH28Xq/8fv+IhwIAjH0x+RlQXV2dMjIyNH/+fG3dulU3btwYdt/+/n4Fg8GwBQAY+6IeoJKSEv3pT39SbW2tfvWrX6m+vl6lpaUaGBgYcv/Kykr5fL7QysnJifZIAIA45HHOuREf7PGopqZGq1evHnaf//znP5o7d65Onz6tFStW3Le9v79f/f39oY+DwSARGmWPcQmMCo/HYz3CuBPP1wTXQ+IIBAJKSUkZdnvM34Y9Z84cpaenq6WlZcjtXq9XKSkpYQsAMPbFPEBXr17VjRs3lJWVFeunAgAkkIjfBXfr1q2wVzNtbW26ePGi0tLSlJaWpr1792rdunXy+/1qbW3VT3/6U82bN0/FxcVRHRwAkOBchM6ePesk3bc2bNjgbt++7VauXOmmT5/uJk+e7GbNmuU2b97surq6HvnzBwKBIT8/K3Yr3lmfn/G44pn1uWE9+goEAg/8u3ysNyHEQjAYlM/nsx5jXImzS+A+mzZtiviYqqqq6A8yjsTzNcGbEBKH+ZsQAAAYCgECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAExE/PuAMPb09fWN6LgpU6ZEeZKhHThwYFSeRxp7d9EuKSmxHgEYFq+AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3IwU2rt374iOq6ysjPIkQxvJTU/H4g1MR3Jj0erq6hhMAkQHr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMe55yzHuKLgsGgfD6f9Rh4BLt27Yr4mNG6gSkSw8GDByM+ZuvWrTGYBLEQCASUkpIy7HZeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJiZZD4DE9dZbb43K83AD08TAjUURKV4BAQBMECAAgImIAlRZWaklS5YoOTlZGRkZWr16tZqbm8P26evrU1lZmaZNm6annnpK69atU3d3d1SHBgAkvogCVF9fr7KyMjU2NurUqVO6e/euVq5cqd7e3tA+O3bs0AcffKCjR4+qvr5e165d09q1a6M+OAAgsUX0JoSTJ0+GfVxVVaWMjAw1NTWpsLBQgUBAf/zjH3X48GF95zvfkSQdOnRIX/3qV9XY2KhvfvOb0ZscAJDQHutnQIFAQJKUlpYmSWpqatLdu3dVVFQU2mfBggWaOXOmGhoahvwc/f39CgaDYQsAMPaNOECDg4Pavn27li1bpoULF0qSurq6lJSUpNTU1LB9MzMz1dXVNeTnqayslM/nC62cnJyRjgQASCAjDlBZWZkuX76sI0eOPNYA5eXlCgQCodXR0fFYnw8AkBhG9A9Rt23bphMnTujcuXOaMWNG6HG/3687d+7o5s2bYa+Curu75ff7h/xcXq9XXq93JGMAABJYRK+AnHPatm2bampqdObMGeXm5oZtX7x4sSZPnqza2trQY83NzWpvb1dBQUF0JgYAjAkRvQIqKyvT4cOHdfz4cSUnJ4d+ruPz+TR16lT5fD698sor2rlzp9LS0pSSkqLXXntNBQUFvAMOABAmogAdOHBAkrR8+fKwxw8dOqSNGzdKkn7zm99owoQJWrdunfr7+1VcXKzf//73URkWADB2eJxzznqILwoGg/L5fNZjII7s2rUr4mO4genj4caiiIZAIKCUlJRht3MvOACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgbtgAgJjgbtgAgLhEgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMBFRgCorK7VkyRIlJycrIyNDq1evVnNzc9g+y5cvl8fjCVtbtmyJ6tAAgMQXUYDq6+tVVlamxsZGnTp1Snfv3tXKlSvV29sbtt/mzZvV2dkZWvv27Yvq0ACAxDcpkp1PnjwZ9nFVVZUyMjLU1NSkwsLC0ONPPPGE/H5/dCYEAIxJj/UzoEAgIElKS0sLe/zdd99Venq6Fi5cqPLyct2+fXvYz9Hf369gMBi2AADjgBuhgYEB973vfc8tW7Ys7PE//OEP7uTJk+7SpUvuz3/+s3v66afdmjVrhv08FRUVThKLxWKxxtgKBAIP7MiIA7RlyxY3a9Ys19HR8cD9amtrnSTX0tIy5Pa+vj4XCARCq6Ojw/yksVgsFuvx18MCFNHPgD63bds2nThxQufOndOMGTMeuG9+fr4kqaWlRXPnzr1vu9frldfrHckYAIAEFlGAnHN67bXXVFNTo7q6OuXm5j70mIsXL0qSsrKyRjQgAGBsiihAZWVlOnz4sI4fP67k5GR1dXVJknw+n6ZOnarW1lYdPnxY3/3udzVt2jRdunRJO3bsUGFhoRYtWhST/wAAQIKK5Oc+Gub7fIcOHXLOOdfe3u4KCwtdWlqa83q9bt68ee6NN9546PcBvygQCJh/35LFYrFYj78e9rXf8//DEjeCwaB8Pp/1GACAxxQIBJSSkjLsdu4FBwAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwEXcBcs5ZjwAAiIKHfT2PuwD19PRYjwAAiIKHfT33uDh7yTE4OKhr164pOTlZHo8nbFswGFROTo46OjqUkpJiNKE9zsM9nId7OA/3cB7uiYfz4JxTT0+PsrOzNWHC8K9zJo3iTI9kwoQJmjFjxgP3SUlJGdcX2Oc4D/dwHu7hPNzDebjH+jz4fL6H7hN334IDAIwPBAgAYCKhAuT1elVRUSGv12s9iinOwz2ch3s4D/dwHu5JpPMQd29CAACMDwn1CggAMHYQIACACQIEADBBgAAAJhImQPv379fs2bM1ZcoU5efn68MPP7QeadS9+eab8ng8YWvBggXWY8XcuXPntGrVKmVnZ8vj8ejYsWNh251z2rNnj7KysjR16lQVFRXpypUrNsPG0MPOw8aNG++7PkpKSmyGjZHKykotWbJEycnJysjI0OrVq9Xc3By2T19fn8rKyjRt2jQ99dRTWrdunbq7u40mjo1HOQ/Lly+/73rYsmWL0cRDS4gAvffee9q5c6cqKir08ccfKy8vT8XFxbp+/br1aKPuueeeU2dnZ2j97W9/sx4p5np7e5WXl6f9+/cPuX3fvn165513dPDgQZ0/f15PPvmkiouL1dfXN8qTxtbDzoMklZSUhF0f1dXVozhh7NXX16usrEyNjY06deqU7t69q5UrV6q3tze0z44dO/TBBx/o6NGjqq+v17Vr17R27VrDqaPvUc6DJG3evDnseti3b5/RxMNwCWDp0qWurKws9PHAwIDLzs52lZWVhlONvoqKCpeXl2c9hilJrqamJvTx4OCg8/v97u233w49dvPmTef1el11dbXBhKPjy+fBOec2bNjgXnzxRZN5rFy/ft1JcvX19c65e3/3kydPdkePHg3t869//ctJcg0NDVZjxtyXz4Nzzn372992P/7xj+2GegRx/wrozp07ampqUlFRUeixCRMmqKioSA0NDYaT2bhy5Yqys7M1Z84cvfzyy2pvb7ceyVRbW5u6urrCrg+fz6f8/PxxeX3U1dUpIyND8+fP19atW3Xjxg3rkWIqEAhIktLS0iRJTU1Nunv3btj1sGDBAs2cOXNMXw9fPg+fe/fdd5Wenq6FCxeqvLxct2/fthhvWHF3M9Iv+/TTTzUwMKDMzMywxzMzM/Xvf//baCob+fn5qqqq0vz589XZ2am9e/fqhRde0OXLl5WcnGw9nomuri5JGvL6+HzbeFFSUqK1a9cqNzdXra2t+vnPf67S0lI1NDRo4sSJ1uNF3eDgoLZv365ly5Zp4cKFku5dD0lJSUpNTQ3bdyxfD0OdB0n64Q9/qFmzZik7O1uXLl3Sz372MzU3N+svf/mL4bTh4j5A+D+lpaWhPy9atEj5+fmaNWuW3n//fb3yyiuGkyEe/OAHPwj9+fnnn9eiRYs0d+5c1dXVacWKFYaTxUZZWZkuX748Ln4O+iDDnYdXX3019Ofnn39eWVlZWrFihVpbWzV37tzRHnNIcf8tuPT0dE2cOPG+d7F0d3fL7/cbTRUfUlNT9eyzz6qlpcV6FDOfXwNcH/ebM2eO0tPTx+T1sW3bNp04cUJnz54N+/Utfr9fd+7c0c2bN8P2H6vXw3DnYSj5+fmSFFfXQ9wHKCkpSYsXL1ZtbW3oscHBQdXW1qqgoMBwMnu3bt1Sa2ursrKyrEcxk5ubK7/fH3Z9BINBnT9/ftxfH1evXtWNGzfG1PXhnNO2bdtUU1OjM2fOKDc3N2z74sWLNXny5LDrobm5We3t7WPqenjYeRjKxYsXJSm+rgfrd0E8iiNHjjiv1+uqqqrcP//5T/fqq6+61NRU19XVZT3aqPrJT37i6urqXFtbm/v73//uioqKXHp6urt+/br1aDHV09PjLly44C5cuOAkuV//+tfuwoUL7r///a9zzrm33nrLpaamuuPHj7tLly65F1980eXm5rrPPvvMePLoetB56Onpca+//rpraGhwbW1t7vTp0+7rX/+6e+aZZ1xfX5/16FGzdetW5/P5XF1dnevs7Ayt27dvh/bZsmWLmzlzpjtz5oz76KOPXEFBgSsoKDCcOvoedh5aWlrcL37xC/fRRx+5trY2d/z4cTdnzhxXWFhoPHm4hAiQc8797ne/czNnznRJSUlu6dKlrrGx0XqkUbd+/XqXlZXlkpKS3NNPP+3Wr1/vWlparMeKubNnzzpJ960NGzY45+69FXv37t0uMzPTeb1et2LFCtfc3Gw7dAw86Dzcvn3brVy50k2fPt1NnjzZzZo1y23evHnM/U/aUP/9ktyhQ4dC+3z22WfuRz/6kfvKV77innjiCbdmzRrX2dlpN3QMPOw8tLe3u8LCQpeWlua8Xq+bN2+ee+ONN1wgELAd/Ev4dQwAABNx/zMgAMDYRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY+H8fqksEDhTAVQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step\n", + "I think it's 0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZMElEQVR4nO3df0xV9/3H8df1B7e2hYuIcLkVEbXVpVbWOWXEldlIBLeY+mOJ6/qHGmOjw2bq2i0uUdttCZtN2qWLs/tLt6zazmRo6h8mioLZhjZajDFbiTAsGAFbM+5FLFcDn+8fbvfbW0G9cC9vLjwfyScp957DfXt24bkD5148zjknAACG2BjrAQAAoxMBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJsZZD/BVvb29unbtmlJTU+XxeKzHAQDEyDmnzs5OBQIBjRnT/3nOsAvQtWvXlJubaz0GAGCQWlpaNGXKlH7vH3Y/gktNTbUeAQAQBw/6fp6wAO3Zs0fTpk3TI488osLCQn300UcPtR8/dgOAkeFB388TEqAPPvhA27Zt065du/Txxx+roKBApaWlun79eiIeDgCQjFwCLFiwwJWXl0c+7unpcYFAwFVUVDxw32Aw6CSxWCwWK8lXMBi87/f7uJ8B3b59W+fPn1dJSUnktjFjxqikpES1tbX3bB8OhxUKhaIWAGDki3uAPv/8c/X09Cg7Ozvq9uzsbLW1td2zfUVFhXw+X2RxBRwAjA7mV8Ft375dwWAwslpaWqxHAgAMgbi/DigzM1Njx45Ve3t71O3t7e3y+/33bO/1euX1euM9BgBgmIv7GVBKSormzZunqqqqyG29vb2qqqpSUVFRvB8OAJCkEvJOCNu2bdOaNWv0zW9+UwsWLNBvf/tbdXV1ad26dYl4OABAEkpIgFavXq3PPvtMO3fuVFtbm77+9a/r2LFj91yYAAAYvTzOOWc9xJeFQiH5fD7rMQAAgxQMBpWWltbv/eZXwQEARicCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgYpz1AMBwsm/fvpj3WbduXQImAUY+zoAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMe55yzHuLLQqGQfD6f9RgYpQby5eDxeBIwCZD8gsGg0tLS+r2fMyAAgAkCBAAwEfcAvf766/J4PFFr9uzZ8X4YAECSS8gfpHv66ad14sSJ/3+QcfzdOwBAtISUYdy4cfL7/Yn41ACAESIhvwO6fPmyAoGApk+frpdeeknNzc39bhsOhxUKhaIWAGDki3uACgsLtX//fh07dkx79+5VU1OTnnvuOXV2dva5fUVFhXw+X2Tl5ubGeyQAwDCU8NcBdXR0KC8vT2+99ZbWr19/z/3hcFjhcDjycSgUIkIww+uAgPh50OuAEn51QHp6up566ik1NDT0eb/X65XX6030GACAYSbhrwO6efOmGhsblZOTk+iHAgAkkbgH6NVXX1VNTY2uXLmif/zjH1qxYoXGjh2rF198Md4PBQBIYnH/EdzVq1f14osv6saNG5o8ebK+/e1v68yZM5o8eXK8HwoAkMR4M1LgSwby5bB///6Y91m3bl3M+wDJhjcjBQAMSwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACd6MFPiSofpy4K+oYjTgzUgBAMMSAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHOeoDRwuv1xrxPOBxOwCQAMDxwBgQAMEGAAAAmYg7Q6dOntWzZMgUCAXk8Hh0+fDjqfuecdu7cqZycHE2YMEElJSW6fPlyvOYFAIwQMQeoq6tLBQUF2rNnT5/37969W++8847effddnT17Vo899phKS0vV3d096GEBACOIGwRJrrKyMvJxb2+v8/v97s0334zc1tHR4bxerzt48OBDfc5gMOgkjbjl9XpjXtYzj8Y1VKz/nSzWUKxgMHjfr4O4/g6oqalJbW1tKikpidzm8/lUWFio2traPvcJh8MKhUJRCwAw8sU1QG1tbZKk7OzsqNuzs7Mj931VRUWFfD5fZOXm5sZzJADAMGV+Fdz27dsVDAYjq6WlxXokAMAQiGuA/H6/JKm9vT3q9vb29sh9X+X1epWWlha1AAAjX1wDlJ+fL7/fr6qqqshtoVBIZ8+eVVFRUTwfCgCQ5GJ+K56bN2+qoaEh8nFTU5MuXLigjIwMTZ06VVu2bNGvfvUrPfnkk8rPz9eOHTsUCAS0fPnyeM4NAEh2sV4+eurUqT4vt1uzZo1z7u6l2Dt27HDZ2dnO6/W6xYsXu/r6+of+/FyGzWXYlmuoWP87WayhWA+6DNvz3y+GYSMUCsnn81mPgVFqqL4cPB7PkDwOYCkYDN739/rmV8EBAEYnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHOegAg2XV0dMS8T11dXcz7PPvsszHvAwxnnAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACZ4M1JgkA4fPhzzPmvXro37HECy4QwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBm5ECg/T8889bjwAkJc6AAAAmCBAAwETMATp9+rSWLVumQCAgj8dzz99CWbt2rTweT9QqKyuL17wAgBEi5gB1dXWpoKBAe/bs6XebsrIytba2RtbBgwcHNSQAYOSJ+SKEpUuXaunSpffdxuv1yu/3D3goAMDIl5DfAVVXVysrK0uzZs3Spk2bdOPGjX63DYfDCoVCUQsAMPLFPUBlZWX605/+pKqqKv3mN79RTU2Nli5dqp6enj63r6iokM/ni6zc3Nx4jwQAGIY8zjk34J09HlVWVmr58uX9bvPvf/9bM2bM0IkTJ7R48eJ77g+HwwqHw5GPQ6EQEYKZgXw5fPrppzHvk5eXF/M+Ho8n5n0AS8FgUGlpaf3en/DLsKdPn67MzEw1NDT0eb/X61VaWlrUAgCMfAkP0NWrV3Xjxg3l5OQk+qEAAEkk5qvgbt68GXU209TUpAsXLigjI0MZGRl64403tGrVKvn9fjU2NuqnP/2pZs6cqdLS0rgODgBIbjEH6Ny5c1HvfbVt2zZJ0po1a7R3715dvHhRf/zjH9XR0aFAIKAlS5bol7/8pbxeb/ymBgAkvUFdhJAIoVBIPp/PegyMUgP5cti6dWvM+7z99tsx78NFCEg25hchAADQFwIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjg3bCBLxnIl0NbW1vM+/j9/pj34d2wkWx4N2wAwLBEgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJgYZz0AkOwG8saiHR0d8R8ESDKcAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJngzUsDAxIkTrUcAzHEGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4M1IgUHq6OiIeZ+6urqY93n22Wdj3gcYzjgDAgCYIEAAABMxBaiiokLz589XamqqsrKytHz5ctXX10dt093drfLyck2aNEmPP/64Vq1apfb29rgODQBIfjEFqKamRuXl5Tpz5oyOHz+uO3fuaMmSJerq6opss3XrVn344Yc6dOiQampqdO3aNa1cuTLugwMAkpvHOecGuvNnn32mrKws1dTUqLi4WMFgUJMnT9aBAwf0/e9/X5L0ySef6Gtf+5pqa2v1rW9964GfMxQKyefzDXQkYFAG8uUwkIsQrly5EvM+XISAZBMMBpWWltbv/YP6HVAwGJQkZWRkSJLOnz+vO3fuqKSkJLLN7NmzNXXqVNXW1vb5OcLhsEKhUNQCAIx8Aw5Qb2+vtmzZooULF2rOnDmSpLa2NqWkpCg9PT1q2+zsbLW1tfX5eSoqKuTz+SIrNzd3oCMBAJLIgANUXl6uS5cu6f333x/UANu3b1cwGIyslpaWQX0+AEByGNALUTdv3qyjR4/q9OnTmjJlSuR2v9+v27dvq6OjI+osqL29XX6/v8/P5fV65fV6BzIGACCJxXQG5JzT5s2bVVlZqZMnTyo/Pz/q/nnz5mn8+PGqqqqK3FZfX6/m5mYVFRXFZ2IAwIgQ0xlQeXm5Dhw4oCNHjig1NTXyex2fz6cJEybI5/Np/fr12rZtmzIyMpSWlqZXXnlFRUVFD3UFHABg9IgpQHv37pUkLVq0KOr2ffv2ae3atZKkt99+W2PGjNGqVasUDodVWlqq3//+93EZFgAwcgzqdUCJwOuAYOk///lPzPsM5DU906ZNi3mfiRMnxrwPYCmhrwMCAGCgCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGJAfxEVGKmef/75mPepq6uLeR+PxxPzPsBIwxkQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCNyMFvuTChQvWIwCjBmdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJ3owUGKQrV65YjwAkJc6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATvBkpMEj5+fnWIwBJiTMgAIAJAgQAMBFTgCoqKjR//nylpqYqKytLy5cvV319fdQ2ixYtksfjiVobN26M69AAgOQXU4BqampUXl6uM2fO6Pjx47pz546WLFmirq6uqO02bNig1tbWyNq9e3dchwYAJL+YLkI4duxY1Mf79+9XVlaWzp8/r+Li4sjtjz76qPx+f3wmBACMSIP6HVAwGJQkZWRkRN3+3nvvKTMzU3PmzNH27dt169atfj9HOBxWKBSKWgCAUcANUE9Pj/ve977nFi5cGHX7H/7wB3fs2DF38eJF9+c//9k98cQTbsWKFf1+nl27djlJLBaLxRphKxgM3rcjAw7Qxo0bXV5enmtpabnvdlVVVU6Sa2ho6PP+7u5uFwwGI6ulpcX8oLFYLBZr8OtBARrQC1E3b96so0eP6vTp05oyZcp9ty0sLJQkNTQ0aMaMGffc7/V65fV6BzIGACCJxRQg55xeeeUVVVZWqrq6+qFeAX7hwgVJUk5OzoAGBACMTDEFqLy8XAcOHNCRI0eUmpqqtrY2SZLP59OECRPU2NioAwcO6Lvf/a4mTZqkixcvauvWrSouLtbcuXMT8g8AACSpWH7vo35+zrdv3z7nnHPNzc2uuLjYZWRkOK/X62bOnOlee+21B/4c8MuCwaD5zy1ZLBaLNfj1oO/9nv+GZdgIhULy+XzWYwAABikYDCotLa3f+3kvOACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiWEXIOec9QgAgDh40PfzYRegzs5O6xEAAHHwoO/nHjfMTjl6e3t17do1paamyuPxRN0XCoWUm5urlpYWpaWlGU1oj+NwF8fhLo7DXRyHu4bDcXDOqbOzU4FAQGPG9H+eM24IZ3ooY8aM0ZQpU+67TVpa2qh+gv0Px+EujsNdHIe7OA53WR8Hn8/3wG2G3Y/gAACjAwECAJhIqgB5vV7t2rVLXq/XehRTHIe7OA53cRzu4jjclUzHYdhdhAAAGB2S6gwIADByECAAgAkCBAAwQYAAACaSJkB79uzRtGnT9Mgjj6iwsFAfffSR9UhD7vXXX5fH44las2fPth4r4U6fPq1ly5YpEAjI4/Ho8OHDUfc757Rz507l5ORowoQJKikp0eXLl22GTaAHHYe1a9fe8/woKyuzGTZBKioqNH/+fKWmpiorK0vLly9XfX191Dbd3d0qLy/XpEmT9Pjjj2vVqlVqb283mjgxHuY4LFq06J7nw8aNG40m7ltSBOiDDz7Qtm3btGvXLn388ccqKChQaWmprl+/bj3akHv66afV2toaWX/729+sR0q4rq4uFRQUaM+ePX3ev3v3br3zzjt69913dfbsWT322GMqLS1Vd3f3EE+aWA86DpJUVlYW9fw4ePDgEE6YeDU1NSovL9eZM2d0/Phx3blzR0uWLFFXV1dkm61bt+rDDz/UoUOHVFNTo2vXrmnlypWGU8ffwxwHSdqwYUPU82H37t1GE/fDJYEFCxa48vLyyMc9PT0uEAi4iooKw6mG3q5du1xBQYH1GKYkucrKysjHvb29zu/3uzfffDNyW0dHh/N6ve7gwYMGEw6Nrx4H55xbs2aNe+GFF0zmsXL9+nUnydXU1Djn7v5vP378eHfo0KHINv/617+cJFdbW2s1ZsJ99Tg459x3vvMd9+Mf/9huqIcw7M+Abt++rfPnz6ukpCRy25gxY1RSUqLa2lrDyWxcvnxZgUBA06dP10svvaTm5mbrkUw1NTWpra0t6vnh8/lUWFg4Kp8f1dXVysrK0qxZs7Rp0ybduHHDeqSECgaDkqSMjAxJ0vnz53Xnzp2o58Ps2bM1derUEf18+Opx+J/33ntPmZmZmjNnjrZv365bt25ZjNevYfdmpF/1+eefq6enR9nZ2VG3Z2dn65NPPjGaykZhYaH279+vWbNmqbW1VW+88Yaee+45Xbp0SampqdbjmWhra5OkPp8f/7tvtCgrK9PKlSuVn5+vxsZG/fznP9fSpUtVW1ursWPHWo8Xd729vdqyZYsWLlyoOXPmSLr7fEhJSVF6enrUtiP5+dDXcZCkH/7wh8rLy1MgENDFixf1s5/9TPX19frrX/9qOG20YR8g/L+lS5dG/nvu3LkqLCxUXl6e/vKXv2j9+vWGk2E4+MEPfhD572eeeUZz587VjBkzVF1drcWLFxtOlhjl5eW6dOnSqPg96P30dxxefvnlyH8/88wzysnJ0eLFi9XY2KgZM2YM9Zh9GvY/gsvMzNTYsWPvuYqlvb1dfr/faKrhIT09XU899ZQaGhqsRzHzv+cAz497TZ8+XZmZmSPy+bF582YdPXpUp06divrzLX6/X7dv31ZHR0fU9iP1+dDfcehLYWGhJA2r58OwD1BKSormzZunqqqqyG29vb2qqqpSUVGR4WT2bt68qcbGRuXk5FiPYiY/P19+vz/q+REKhXT27NlR//y4evWqbty4MaKeH845bd68WZWVlTp58qTy8/Oj7p83b57Gjx8f9Xyor69Xc3PziHo+POg49OXChQuSNLyeD9ZXQTyM999/33m9Xrd//373z3/+07388ssuPT3dtbW1WY82pH7yk5+46upq19TU5P7+97+7kpISl5mZ6a5fv249WkJ1dna6uro6V1dX5yS5t956y9XV1blPP/3UOefcr3/9a5eenu6OHDniLl686F544QWXn5/vvvjiC+PJ4+t+x6Gzs9O9+uqrrra21jU1NbkTJ064b3zjG+7JJ5903d3d1qPHzaZNm5zP53PV1dWutbU1sm7duhXZZuPGjW7q1Knu5MmT7ty5c66oqMgVFRUZTh1/DzoODQ0N7he/+IU7d+6ca2pqckeOHHHTp093xcXFxpNHS4oAOefc7373Ozd16lSXkpLiFixY4M6cOWM90pBbvXq1y8nJcSkpKe6JJ55wq1evdg0NDdZjJdypU6ecpHvWmjVrnHN3L8XesWOHy87Odl6v1y1evNjV19fbDp0A9zsOt27dckuWLHGTJ09248ePd3l5eW7Dhg0j7v+k9fXvl+T27dsX2eaLL75wP/rRj9zEiRPdo48+6lasWOFaW1vthk6ABx2H5uZmV1xc7DIyMpzX63UzZ850r732mgsGg7aDfwV/jgEAYGLY/w4IADAyESAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAm/g8uNOhzAMcKTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step\n", + "I think it's 1\n" + ] + } + ], + "source": [ + "# загрузка собственного изображения\n", + "from PIL import Image\n", + "\n", + "for name_image in ['0.png', '1.png']:\n", + " file_data = Image.open(name_image)\n", + " file_data = file_data.convert('L') # перевод в градации серого\n", + " test_img = np.array(file_data)\n", + "\n", + " # вывод собственного изображения\n", + " plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + "\n", + " # предобработка\n", + " test_img = test_img / 255\n", + " test_img = np.reshape(test_img, (1,28,28,1))\n", + "\n", + " # распознавание\n", + " result = model.predict(test_img)\n", + " print('I think it\\'s', np.argmax(result))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mgrihPd61E8w" + }, + "source": [ + "### 10) Загрузили ранее сохраненную модель из лабораторной работы №1. Изучили ее архитектуру и провели оценку качества на тестовых данных аналогично пункту 6." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "DblXqn3l1FL2" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"sequential_7\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential_7\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ dense_15 (Dense)                │ (None, 100)            │        78,500 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_16 (Dense)                │ (None, 100)            │        10,100 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_17 (Dense)                │ (None, 10)             │         1,010 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_15 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_16 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_17 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 89,612 (350.05 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,612\u001b[0m (350.05 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 89,610 (350.04 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Optimizer params: 2 (12.00 B)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model_lr1 = keras.models.load_model(\"best_model.keras\")\n", + "\n", + "model_lr1.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "0ki8fhJrEyEt" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of transformed X train: (60000, 784)\n", + "Shape of transformed X train: (10000, 784)\n", + "Shape of transformed y train: (60000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ], + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 31)\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X train:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "0Yj0fzLNE12k" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 3ms/step - accuracy: 0.9440 - loss: 0.1897\n", + "Loss on test data: 0.18974457681179047\n", + "Accuracy on test data: 0.9440000057220459\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model_lr1.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MsM3ew3d1FYq" + }, + "source": [ + "### 11) Выполнили сравнительный анализ сверточной нейронной сети и лучшей полносвязной модели из лабораторной работы №1. Сравнение проводилось по трем критериям:\n", + "### - число обучаемых параметров модели\n", + "### - количество эпох, необходимое для обучения\n", + "### - итоговое качество классификации на тестовой выборке\n", + "### На основе полученных результатов сформулировали выводы об эффективности применения сверточных нейронных сетей для задач распознавания изображений. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xxFO4CXbIG88" + }, + "source": [ + "Таблица1:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xvoivjuNFlEf" + }, + "source": [ + "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", + "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", + "| Сверточная | 34 826 | 15 | accuracy:0.987 ; loss:0.040 |\n", + "| Полносвязная | 84 062 | 50 | accuracy:0.944 ; loss:0.190 |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YctF8h_sIB-P" + }, + "source": [ + "##### Проведенный сравнительный анализ, результаты которого представлены в таблице 1, наглядно демонстрирует превосходство сверточной нейронной сети над полносвязной архитектурой в задачах классификации изображений. \n", + "\n", + "**Эффективность по параметрам:** Сверточная сеть содержит в 2.4 раза меньше обучаемых параметров (34 826 против 84 062), что свидетельствует о более эффективном использовании вычислительных ресурсов благодаря механизму разделения весов в сверточных слоях.\n", + "\n", + "**Скорость обучения:** Сверточная модель достигает оптимального качества за 15 эпох, в то время как полносвязная требует 50 эпох. Это указывает на более быструю сходимость алгоритма обучения благодаря индуктивным смещениям, заложенным в архитектуру сверточных сетей.\n", + "\n", + "**Качество классификации:** Сверточная сеть демонстрирует значительно более высокую точность (98.7% против 94.4%) и существенно меньшие потери (0.040 против 0.190). Разница в точности составляет более 4 процентных пунктов, что является существенным улучшением для задачи распознавания рукописных цифр.\n", + "\n", + "**Выводы:** Полученные результаты подтверждают, что использование сверточных слоев позволяет эффективно извлекать иерархические пространственные признаки из изображений, что критически важно для задач компьютерного зрения. Инвариантность к сдвигам и способность выявлять локальные паттерны делают сверточные нейронные сети предпочтительным выбором для работы с изображениями по сравнению с полносвязными архитектурами." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wCLHZPGB1F1y" + }, + "source": [ + "## Задание 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DUOYls124TT8" + }, + "source": [ + "### В отдельном блокноте повторили этапы 2–8 из задания 1, заменив датасет MNIST на CIFAR-10, который содержит цветные изображения объектов, распределенные по 10 категориям. \n", + "### Особенности выполнения:\n", + "### - разделение на обучающую и тестовую выборки выполнено в пропорции 50 000:10 000\n", + "### - после разделения данных (между этапами 3 и 4) визуализировали 25 примеров из обучающей выборки с указанием соответствующих классов\n", + "### - при тестировании на двух изображениях (этап 7) одно должно быть распознано верно, а второе – с ошибкой " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XDStuSpEJa8o" + }, + "source": [ + "### 1) Произвели загрузку датасета CIFAR-10, включающего цветные изображения, распределенные по 10 категориям: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "y0qK7eKL4Tjy" + }, + "outputs": [], + "source": [ + "# загрузка датасета\n", + "from keras.datasets import cifar10\n", + "\n", + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wTHiBy-ZJ5oh" + }, + "source": [ + "### 2) Осуществили разделение датасета на обучающую и тестовую части в соотношении 50 000:10 000. Для обеспечения воспроизводимости установили random_state = 31, что соответствует формуле (4k – 1) при k=8 (номер нашей бригады). Отобразили размерности сформированных массивов." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "DlnFbQogKD2v" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of X train: (50000, 32, 32, 3)\n", + "Shape of y train: (50000, 1)\n", + "Shape of X test: (10000, 32, 32, 3)\n", + "Shape of y test: (10000, 1)\n" + ] + } + ], + "source": [ + "# создание своего разбиения датасета\n", + "\n", + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n", + "\n", + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 50000,\n", + " random_state = 31)\n", + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n", + "print('Shape of X test:', X_test.shape)\n", + "print('Shape of y test:', y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pj3bMaz1KZ3a" + }, + "source": [ + "### Визуализировали 25 примеров из обучающей выборки с указанием их классов." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "TW8D67KEKhVE" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRlV33ejX/PeOdbt+aeR7WkFhqRZJAlIzDEBpIfTpzXIbx+lyEhdoLtBOJkQbJsHMiwFq+HZTt2krV+OCvYjuMhdmwSxzh4AFmAkASS0NQautVzV9d86873jO8fVV11n2efrurCt6sZvh8WS/29wxn22Wefc+o+z36sNE1TURRFURRFURRFGSL2jd4ARVEURVEURVG+9dAHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDx72WDyVJIpcuXZJKpSKWZV3vbVK+CUjTVJrNpuzZs0ds+/o+r2r/U5id7H8i2gcVRPufcqPRa7ByI9lO/7umB41Lly7J/v37h7JxyrcW58+fl3379l3XdWj/U67GTvQ/Ee2DSjba/5QbjV6DlRvJtfS/a3rQqFQqIiLy1LOn1v8dRRF8hp9obDvrqRdf41Byo6ZvJ8YizXWkKT9Z4WdiC5caxTGtJDGWCW9nqM1S2ow43mId6aalJMYrIjG1jUN/VbDpK/z5OMX9ygqET8TBmr4TJhv70Wk15d1vvnu9P1xPrqzj03/5iJTKZRERyVNnGC3gdhQLeWM5loXHjnuP4+DpYFMb83GxfGwvEZHYw9facYjv03nDfx2yHfx+3vOgrnJnExGJ8TgldGyDFPtfI6BtCHEbnaBvroPOG4v7aETfofMo9H2oUwv3S0QkjnDfQpfGC2fj+LWaTXn4rrt2pP+JbPTB//fwqOTXxjqXjlWfxobTPbMdT7axrXO7dkG9//jtUI8fuQ1q7g9pxlgRhT2s20v4nc481H7chrpo4zZWPFxHyTP7fY5e8unY+R6Nmzaea2mKfVKExkwRsSzsU47FYxzVPPbTIgNepYh0unjMmh2szy20RESkHybyC3/62o73v1/5lV+RQqEgIiI+nVPFYhHql156yViO62K7e9SfLl++DHVM41ertQL1wuKCsQ6+F2g2W1DztefQwYNQW/T9mZlLUJeKZWOdpRK+NjY2BjW3zcpKHeqExsiFBXO/nn76aajvueceqJtNPI+effZZ3IYCbsOdd95prKNWG4X65ZfxGA5eH6Ioks9/7i939Bo8mXM2rot0/vk5PN+8gjlOiE33Vxafo3gcrJiWKdhf+ZouIuK6+JkwDvD9PG5DHNE1N4fnVZLiOdCoY70KbkdK33Fcvj+msYqu4X7OvH9JqC18Pwe1ZeF+9DrdjO2EjTBeOnDwCNR/7e3fA/Vd975+/d+dTkf+znv+3jX1v2t60LhyM1SpVKRSqYrIt+6DRvot+qARfT0PGnyzmJhX5p34GfXKOkrl8vqDRiHB41ApYmcvrV2MYTn2zj9o2H/FB43CdXjQSPlBI+AHDbxRXf3QVg8aODgP40Ej2ORBY307duhn/Cvrydu2FJwrDxo05tHYkMsYyD0aFz063jk63nm64OT9a3jQoMEgomOTRrgMP8Z+X6DvF+lBo5jR7/NbPmjQB+hcS43B3TyuxoMGX6yNP65s/qCR8bwkkuCH+DqXpy/tdP8rFArrN838oFEqlaDO582bFX7Q4GXkcnjzEsfYh4MQP88PKiLmvYDn8UMl36DiMs3vU3+lbc56jfeD26LXw/f5QSNrHQ6dq/wZz8MbWt6Prb4vIpKjtuDj5bhmp93Ja7BtWQMPGvgZvl5m3gPyaxbfE2JtUe3QSrP23aF1JLwM3gaqHRrXeRuu7d528+/wpYE/b2xjxnY4fD9jXcs9+MDnM953qX/l83ielEr4sLy63q37n5rBFUVRFEVRFEUZOtf0i8b6hz1fvLWncOMvscbT1dZPOVl/VR+Ef1vgP+byE56ISEp/6Tb/4rf5OoX+6sCfjjK+ntDTrGP8cW7z5zluh6zfVGzaEuN3G2M3cSkW/VqR2fYJ/aJh4V95HGdjmbG788+ovuVKzl7965ZL/avXJ7lIbP76wn8ZK+bxV4+A5Bsd+jXCtrF9IvwDloiInH3lDNT1xUWoJ3dNQ334CP5UyV3HTeivtIl53AI61izY6ZA0qt/Dn1RLCf20HJk/uRb4r290+Pt8vnv4C5Pt8V9KzXM39rC/hdT+MnBMs47vTuDlXPHW/uLlOfxzOdaFxPxrr9vF7fZIQlSkXzBK1Ed9+ouTSz+fi4ikVg3qfrkK9fwsHsszF89BvTiH8pluqwG1lfHLpk3njseyCvqFg6VWtSr+paxcNNuuXMDXRug7rXYH6m4ft6nXx/Ok3TX3o9nBc6FNv7Ittle/E8Wb//J9vQjDUIJgdRtPnz4N71WreJyzDJrNZhPqw4cPQ81/dWfp1OIS9jf+vIjIygrKq7rdzSUcZ8+ehbrTwePI9xJZ9xYjNdz3bg9lTL0+1jMz2Md5mfxLgojILpI5PvPMM1BXqzjmpfQrSUCSxtm5GWMdrofbsdLA60du4C/M/GvbTuC7gz8AUP+im6Nu07xA5krYri6NC7xLKf3CaPs0xmaME/kcrqPZxnZP6A7LuK7Thd1x8fOj4+Yvhb0ubme/xwoU/qUKPx/HuI1Z92f8UquFfdqnayyf/4YKKeNX48uXUKb4xUe/APXC0kZ/7PczboCugv6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dGwJBZrbdpByzAF8KxG2UsYxCHvAs+Wk2a6FTZgbbqISC9C7VuXtLTtCOtl0gRapKscCVBvWvUzdNclnEovsdjnQbMgkDQupbZkXaKIOSuc8YTInhljFgT6uLEGEbFYu0jrHFhGcAMye2LHknjNAMPqQO4JXs58hmZfSSSoPw5ptrCQjkudNLVffORPjXUsXcDpCAsObtnlOuoq77jvu6D+3r/+d6B28jiTTC/jxArJrxBGuF8paU5rNn6eZLNi26bu3yY/QsAzqlj4nX60uZ8lyfRYkA+Jz5Nw47ywQvMc2Qm8Qk78tbYoWKQ3phM7H5jHyuMplnmmJGoXnsI1JC9S1kDr0Qw7xTx6GXJUV2uTUPdpP1o0pWSbvBAiIjHPMhaSP6KNziGeOrvUpWtDaup/PQv79a4pPDeKJfQ/8ZjQI41yLzHXkVDXjx38Tre/OlVrZN2Y/nfo0KH12aVqtRq8xx60iYkJ4/tPPfUU1M8//zzU7LkIQ2yjCxfPbPp5EdPvMDqKU7ay/6Hfx75RoBkDZ2Zw3F1aMqee9Ui7P0rTxPLMVsUiniM8U2SWv+X223Hq6YCmAX/kkc9DnVD/Yg/X3Lzp0Wi1l/EFi32C7sC/d94n5Nr2+uxSKd2FRDQm2xk+TovGFjvF/sOz8lk2+UTpWlUomLewjoPfKVdwHQHNstdYyZjOfXB5NLaNjmbNSIbLjEI6Ngn7QPC45vM085pl7hePONyf2NvEM0hFdG9cyJh+OCY/59zlWaibrY2pqnl5m6G/aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogydbXk0xEo2dPzsK9giE0PETI7kEG+blpEjHe8M6ZO/MDdnrONyj+YzNiLu8fMXaYrviUWcX3t/C+cVft3UiLHOyVHUOPsFnNNbSvgdp4D6UNvBOojN57+E25tTINn/QouweMezck6szTWf6cB2eUZYyA4QdkSC1W0IKaHXL2Ibj/mo3xYRCcgD0KG5/xcp8+KrT34J6jMvfh7qpTMnjXWs9HG7inTs775tCurTX/ss1C9MYV+6/w1/DeqoZ+rjbdZ70n75BTxWJTrtORNgJTY1qxb9TYLzalhrG9Gc6hz/YSSLi4hN5zsnNw/qqJ146/HmeuA5lnhrc7/zPrbp9OmkpoaVfUJODnX1MZ1X3fYS1C75JfwMHTTP2c4JsR7piUsF9GzEo+NQWy4ub+YyjpEiGbr7APXp9XodavZwVCu1TbdZRCShfprm8Bwfmd6L20T+AZ53fmkJ23Z1u/BcKlcwG6G25jcIw1Ce+NrTxvevN2EYrm/jgQMH4L3ZWdRTxzzmi8jdd98NNfsjzp7FTJV9+/bgAizyufTIMyTmvQBvB9d79uA62Hvy2GOPQf3aa68a62w00dvAy+C055EqejgOHbpp020UEel28Gbh7nvugnpxCe9HvvCFv4S6TRktQWjmi8QxpbsX8dwbzNWIb0CWi2M54lwlGZy9phbfhIiIS7lBHMnDXgffIz9Eiv2Vz2kRkXIFx8hSGZfRXcJlcHJ9jkJ+bPJ8JKnpL+R8K86fCfrkjyhSfxzBe8alJcy7ERHp93CZxWIZaosOCJ/b7Dvi8VREJKLtniePRm4gGZx9eZuhv2goiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLDG7b9rqhxAzsQ7K84WwdsTnkj8wqbTJFL4ZY5/yasY7JPO5SPUDjDuX1SdxDM9G5gUASEZGLK2h2ezY0Q07GltF0c5AMhPtzaFSrkL+Jw4OKBdNw7pXRJGZRKFfCh5La3ydnbZYZN2FnFn0mHjB3sbluJ2guflGS3mqYU7l6DN4rltFk7WREEnJnd6i/9ckImiMz6f4JDGaM5szwxsvLDagvzqHh9O6b8dgWXeyQLz3+aaj3jmCC2OFDrzPWmcsIlxqET9WYzGydPpoUu1FGgBEHQhpmXfyOlWL/TCmwKGvyCPZfprSKwZC/hI7VTrFspdJba9DlAMeGy2T4m88YA1tFDCMr5/D49shU2O/iOvJl/DwH34mINFvYB7tkCkwoENTP4zKrZI70imgW52BVEZGIwvAaDdwGPteEwqSKPEFGRp/udtE8ywFVTVpnjto2pbYql80JI8olfG3vFJ7z1loIW6/fl983vn39OXfmzHqgnXX4ILw3c+ks1O0WXodERCybxrT9u6EeHatBffY8msMPHUHT9NEjR4x11Fcw5LbTxmvs3NxFqFstNL5OTuJkBPfe+3qo44zJKi6ex32fu4xheGzy9300uXY6uMyx8ZqxDocmavjSY49APT+Pk4mEFNqW0rjr8WwXIpJyaKngZwYNvFlm3utN0A3XJ/WpVHEso0xESWxz/xKaxIbPYQ6dTG02ZtPkGRl9IQjo2kChf/y+65oBtfg+HwPz3oKH4VwetzNJcJ2OEaaHfYODW0W2nmSBx0yeoGOr5a29iOug7Ro8lxM1gyuKoiiKoiiKciPRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ0tufRsGyx1zR2rsP6LgoDETPwhr+yTKFN5+roj1ikgJIOhbnMdUx93mKnDjWHaFVd1Nc1SPeb5DE4JVfCet4z9XzLJEW8QDpLr4U661HSak41UKdY9swgqXFa73gBBZEjxRzVqKtOfQx3cXOoiRYRYVl0YrHvY9Cjsb2sx2Hw0st/IYXCqvbx1mPoK9gzcRzqJCvIjDw/ZMGQqQnUBu9/8/dA3VnAdfy/T71mrOP1N+Oxf8db9kEdJqj5/vJzeNy6SxgQ+fSf/jeore/6PmOde4/eS+sgDSrJPfnM7LGmNQsyepj6TFoJv52SXj5jfEiTLTSlA5rk9Abok0VEPnumJd7aiRKwXjiP+n67aHoAvCq+5o+gZycmTXJEcuA2+WeqGT6DCr2Wp3GW9eoR6YE5wDFH4XvXEnTHeuESeR8CWiZrs7M8Gvza2BieSxXyxrFHw3HYJ2T2oTJ5aKbK2CeDxqqfwLdx+3eKF55/TnL+6tgfBni9bLfrUM/Nor9CRGT/AfR11MYwIHS5gf6KNmnoxwW9cPx9EZGxyV1QLy3OQ92ha3S/jx6Odgc9G6UyXsump8x1Bl1siz75ztiX1Gzhfr300ou0TvP6ODmFIX+dDm737Axut2Njn7bI12Zn+BzZPxD00Xc0qLuPM7wC1xvHTuXKboxUsY0KRTy/gsQc4ztdPC79LoX80S7ZFPBXLOD56dvmcWp18Tj06dq1exddc+kmsd7AMTaIcL9yrjnmCgXIejTWhBT6xwF+PQ9r9veIiNh0beAxMwxwuyMK8nUMz4zZfxy6b4rIBxL2N5aZ5dW7GvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZZo6GtT5/fpqgvsticV2GfHCmhRqyr8zVoZ5toV+CF5EnrWY9Yy79dhc1ZZzNERvZHaSJpsn7c6Sj9DyzyVyaGzqlOZIDmqe+SP6GNs1V/CrNnS8iYtGulvrYViN1/M64jTrFqoPzhu8p0qTXIjJeoTn+89je7oDPI6X8kZ3Ad23x1zSEheI0vJdY2MaBKQ+VhHwEMWnXrR7qdnMx5WrQvOd333GPsY6bJ16F+nWT2OcvN7H/HdiFeuPTc+ehbs/gnPN/+Ue/Zqzz6HfMQX3r69+EH7BRS5lSVoNFfZ61xCIilnE28t8ouGY9KGWOcEiGbG9e7hvF5dLIeoaMT3r+fB5rO8PHlJDmOKZ2Sy1qN5qc3i7jOhLP/FtRRO3o8JjFxzeiZZAu12fPWcb87DwPPGdecM1zuPN8+kXymImIjJCf5eDBQ1DnaZxlDTz3rzDDm1TJYftXHBxXO8nauJrcGI9GFLXFtle3+9VXT8B7XRqT2aMiIhLQmJecOgP1zOwC1A55Awukkb94EccnEZGpKfRxFAp4LMfGJnCdM5h58fzzz0HdpxyYVqNurNPIhvGxj6Yp9oVOD88Bz8fjXq+b6xAL+0+esqxiul6U6Fzt0fGxMv7O2ybvCPfZanXDhxTfAJ9arZYTZ238KBTY84jn9FjF7H+VMl4HopA8GyEelyTG93M0dtVy5liU9in3wqZr7ih6LCLyt55s4TnQ5TyU2PQm9MkvzP6JKo1nTbrH65IfmfNuRERium6zz5E9pxbd60YRft+xM9qO/CwR9enB1rfUo6EoiqIoiqIoyo1EHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2WaOhiX2mhcjIV+CS3rY5a4pkv8/i6g/XKL5iS3ScnqkU9tVws3tpaaOLaTsB590aOyxGEtx/u3LpBlkjSrvt4iIZfhAUEc4Rt+ZcvD9OmndJjPm3z9PHphJH2uX5HKnaJ76NERN4NcWTR9ImebHnyC93uSANrvb3nmPxpGDD0qptKqLrYxjdsQy5Qs4kZmxwtJKL0X9YTHG7+SoTi3sv+/5G7gNIiL5PuoiGzNfgjrq43Fr0pzdEekuE5fyJzo4z72IyMtf+DTUQQs/c9sbMA/EL2LeQLqJDvPqr1Jjplt5NGg8sEx9Mdu8eJ7uQZ+I6RnZGXLVirhrYtg8ZdF4Ps2bn7GNPKYVyAdVraIPYXwcPTzFMubh5HxTB22zZyzZPAPFI39Fn8YOztXgvAoRkZiWyZkXrsuaedwm30cvSpn2U0RkchLbIk9+AfYk5PLkb6E54oMMI1exg36nYoR67TRaXvvvNWTPXAfqzTnx1/TfC6cW4b2YBjjOLhERSU+fhfrW47dDzcc2X8BlxJS5kuVl4ONQKmEfHx9Hf53vvQL1yy+/DHVE43ASmmN7FLBnBs89zorpB5wlw3pzc3zqdel6QD7VlDyAvo/9s9XCZVoZY2BIHpocebQGT5ttSOSHhuM64q75JNg7k7dxW4t502dVpD4ZhnhOLizhfUUc431K1MO6XMO+JCJSG0WPUJ2vmT08Ll6E2zlq4Tr8CP2ubcf0Z7l0A5bLYd8YGcH99vI4Hi6vkKe2Zp67bbrn6rYxY8XwWlIHcSnXxXMzfCB0LeAr2OC1g8fwzdBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwalrWho+a59sl2IC/TfNAiIifqOJe6QxqvJELNLGdzJEI5GguoURURWU5obmeaI9kK8P16jNsUOKibZBWlzULyjNfSGNdRIr2e5+B+1lI8DDzvs4iITVrGKdKHH0DZoXRj8qakqPm7lOGhOdNF3epJypWodjbaKuia+r7rzcjIcSmXV/fDdrEvRAlpcDO+76XYrjlBrWWBtOhJSH0jRY2kE6G/R0QkaKCmm2S8styYh/r5V3CZHh36kPqnY+N+iohMVHE7Xn3sD6Hu9FD/+eDb34sLMHxHWfOzc7/fwiPBwS+0zKxvO6ShTyP+zsb7GVEfO0IxX1j3G/Bc6Q5NZJ7l0SiRr6BarUI9UqthTdkR7NHwHMonETHsM+zJaDRQ29tqYf8JKJ/IJi1vhbZZRCQkbS/rd1m3H1NWB7+f5QPhbA2HfCCc78HXD9a/9zqmz8xp4vkrOWwrx+qv/dc8D3eCfr8pSbK6n2GEWvJmA8frMCNnamISNe187NtdHBOP3DQK9czMZainp02NPGvJ2UdUyOO16K47MY/ohRe/BvWJl7G2YvPaxT6kQgGvjxXyPVap7wQ09i8vmV64HmUdcM3RB2mK2xnT/U0UmuNDyicvMZhXk9yAHI2gF0q8NvjaNAgXxvD89F08BiIiDt1y1io4liQJNmI/wnEgpDZbjsaMdUyV8LXxcbo3iPk8wf45UqYxt4XX7NGM/ufT/RiPfz3ys/iU1xOT76hcMnPOci4e716XvMER3ZPTtSGle2MeD1ehPklj/6AvJ9mGR0h/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk628vRsFf/LyJi0bzTloP1c8+/aHz/i599EpfXRu14v406tWIZ9cz7bjkAdWkK51UXEalTNoc3PYHrFNS+BWQu8WiuYduhJsrQhrMej9sin7CWGLV28/T5SmI+/x0pkt6OlnGqg7VLvg+XfSF502MxSju3Qp6GxN/QYCaOOX//9cZ1q+K6qxr1HGcB0GfDjIwVh/wOUf8S1in2Ddbcp9TnwyhDK9xp0Cu4jLCHGugmZZdEKeomd4+jhtXNmL5/mbI4ODvm9DOfh7pS2w/13W94GLchQydsCes5qX2NOeF5Q0mvm5oaVD6PUu5/6cZ+xqmZA7MTVCqVdW8GewZ4+0Njbn+RQhHHtHwe28WlPsf+CmOsyTCr2Fv8/YgzLjpdPC86HdQwFygHgbdZRGRsDHXRnIvBvhBeB7dljbwqIqafheEsJ4c8NEL6b9/F/RYR8VI8Zh7n2qy1d3SDTEK2nYi95uGrjpBnhfa/vozXVxGRSvkY1AHl/sxcxDGxTddozup4y1veaqwjjtBHxF6RQh6vHaPUd9708JuhXmkuQ91YJh+NiHjO5n2e/To8wvHRzMpx6bQXqcb+Ux3F77DXyciasczrB/u+eMPiAd9Hku68R8Oy7PW29ChjTOi+JcrIqUkp3yoln0nOw2VYfg3qTgc9Q+dWzOPeoGvN5C7056Q0jvQT9IEkfTyuRR+zdarxBWOdZfLhWuR7rNexD6cW+fmoQwaB6TItVLB/xeQ7iiLOtqJ7j/Dqnscr9Gm9DhuPKhvrjOJETtfRs3U19BcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUoaMPGoqiKIqiKIqiDJ1tmcHFknVzUpygaWRxCU1jjZdOGF+vnXkZ6pVZNNnEHTR4dskY2Z15DWp7xAx1imI0YO151w9AXTlyE9T1Hu7HHBklrS1qEdPIk9ALHGxCuSpC/l/JOaYZd7KAh+pgEdum7OJCIzI+1ikQ5kLPNNOWKZwlb+N2xPHGhprm4OvPfP0l6YSrZtp9DpuN8bh026YRstk5C3Wjjv3p4OhtUO8ZP4IL4OPsUEqiiHRifM2PcDtHS9hue8fQMHe5QQauJprFS2zCFpGujetsOBSeRuGZT/75p6EemdoH9ZGb8RwREYnIxMdJhBw0laZsdqMwNcO+L5LEuN2cI2gnG8uwre0NXcMiTVNJ10ydLk0UwZMHcKCciIjvoUk6ovCnOpmmOfDRX8EgsawAUTYi+h5uZxCg2bFSxWNRraHhkrqwpKm5zgIFEdrUFr0ujjdJDvd7dKSGy8ub51a/TxMpNPAc59DYCoUA+hQcl7jmuVTw8TWX2re3dkBSPjA7RKvVFs9b3UY+zp6P5+D0rprxfT4O3UWasICCF5fmzkBdKOI1t9PC8UlExJqkSVqoDWO64PkUrvf6+x6AOqAL5v/+9O8Z62zU0SDOgZAcLlcq4X6MUkBkjc4BEZG90xhuePbcOahbHQ5QxP6ZUKisnzfHB8cjUzH10XTAQM6TZewE5cqIuGvjWqVS3PSz7ZY52UKZDMwjFNiXL+B1pt6hEFc6rnFqXgdsCqrz2KTeoLBfwWPdbuM44Xm4zkKRJ3wRmRjFcb1F11wOAez1sS+MFPC4N2Pz/qVcMicogGWGeC4HfdzuKk2uxNciEZFGE68vMZn1fX+jbcOM4MKrob9oKIqiKIqiKIoydPRBQ1EURVEURVGUoaMPGoqiKIqiKIqiDJ1tCZ0de/X/IiJLy+ivePKJJ6DO58xnmL/3nndA/V8/9ftQX2yiri2JNzc3tBdMHVvYQ41ZRB4MxyPteEghW4KatCBBHZqfGWZGukoOX6FlFijIp8o6bA5JEZHLpLfzSHPKfgo+sLzdo46pzxvN47dm+7id/YFlsB59Jzj52uekUFjd7sszGAi5uIL62Khv6kMbPQyjylH63a4790LN++glqO202UQgInEBQyWX5tAHMlJCPfLNe6h/kqEn38NtXFo29aEXaV/zVdSc5qg3dJdmoX7yc38I9eTkB4x1lMkPFca43QmH7cVsRDKE/sY6+O8enJU5uBsZp8iOEPT6krqr52JUQE1sgUK+vAwPT76AfYj9W0vLOH41O3hsS2X8/q5dU8Y6aqN4rDj86eIcepVSQe2556JG2SUNc21kt7HOkMZqyiYTj3T4I6OozWbttlcy287J45hVm6hBXfJxHX4BlxlyoCJfX8Qc7y2fAl3XPBzeDdDHi4j0+z2J49Vt4OBFrj3P9JHML2LYWL9LvjxqdstCLXkY4Di7MD9vrGNycg/UhRIea4sukGGEJ3q1inr2N77xQVyeb4bFPvv007QO3PdJ8o0cPnwY6ulp7NPlsun/5EDExUUM8Hvuheeh/vSn/wDqk6fQo+rnzP1I6DrNIX+53EZbJUZI6vXHdZz1YMyYAmt7dK9VLZjn8AiHbtI4XijiOT4xjssoF/A60mbDq4iM17Bd8ile99Me3ruWfbzul6ZxG6mUxorpL5xbwDGU/WAu+eTyFAxaLWGfr2T4MTi81SJTmh/huZmWyN/C19cMn2NK4YUpjYfOwEU5K7D4augvGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx6NdrsujrOqE3v66Ufgvf/zp38KdauMOk0RkVsoQ6BQQ01tbhafe+IIdWzFEur3FuqmXj2hecBZGyeky3XJLxEuoX5PplC/l8SmLtJi7ZuNn2mQFLgX4Qt90srxvM8iIvOkh2uR3niS/AR5wf1ybNbTmftxiTwZPM33VG5DE9jL0EZeb1566TXx1zSqS4un4D2/hPvXj00Rf3UEX7vr2EGoKyPTUAekVU8tml87MTWo1YnXQ91YOQn1cg81zcf24XGILdR/Ljax/41WOD9EZLJE+QAe6ixPvPwq1ONFPEfqF78G9XNf/qyxjjd+z/+FL7h0rnbJa2KzPhTfT1NT32nbeH5bJOBNB/t8emP+RpIvFMTzVo9RTDr9Po09rJkXEXE9muOdtLxeDt8fm5iAulxB34HN4REiEoaUo0KZJsU86tUXFvHzZy/PQN1aOQP1m940bqzTJ+/JSA2FzYUy7mdEY3sQoj9vecnU/rcj/IwTYvsf2n0zbhONZ50ufr9BXhURkREPP+MVyU+wdkyzju1OkCTpulY7pWtARP0vScxzLGCrFF27+H2xcBlk95G5ebpeisj08jLUlRr24Xwe+wJfP9uUQeDROXPXnfcb6zx+y11QhwH2L851Yf9dQDu+smJ6/DgrZqSG/qiH3/QWqHfv2gX1b//uf4P6xReeM9aRIy8T+zBSGcjRML59/Tl4cFp8d/UaXCIfVb6Ax3WUMjJERCbG0IsglBmW0LjeaeNxyTmY25LzcTwUEYkpJ2h5ETttTLeEkyX0xe2q4Ta1li9D3aPoGRGR+Qa+mM/juDw2NgY1++JC8mzYnnn/ErRxP1wLr5eui30njsjTQb6loG/eS1TJ1xan5H0dGA44O2sz9BcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtj8b/+fP/vxSLqzqwzz3yGXhvYRE1ZXFizkN98kXMFOi0UHNWpnnRx6v4HHT0ML5ffwznRxYxMy2KI6iNS3iPW5jF0X8RNfX2JM6v7Tnms1lKeQouZVx0yA8xSx6McfJ0LKTmYelb2L4FmlN5rIzLrJCGPqW8kCQjA2KRYklY42f7G5o+20Y98E4wkork1nbjPGd8+Lh/hSLqFUVEHNZzOpgPcL6O86K3DG076ks9MddRzqFut1K7DerFua/i533SmU9iu87UcT93782Ym5y0wxdmUN9udVBn2ae8gRr1ndee/zNjHbsO3AT10TvvgToi4Woc43bbdN5k5WA4Nm6X43j0/oYmNTBjYHaE3fv3Ss5fXfnKCmp7eyGNZ1lzoZOvw/dxH4v0nZA8ZHPzC1AX8uZc/Pk8tmNKYR05H7XTe3fjOidG0RfUauB+2hkH70qbrG8DeUf6PdyGlTkcbObPY75D7Jj+gtoUjuW7duO5tmcveq56AZ5LDcqPmTuL3iURkdtvwjEi7+Lx6a7pkq0bopBf9WVc8WbwvPrcV+LYPEliyrdJ6DxNOdiA4ByN2cuzxmeOHG0b24w1bkNMh5r9Lz6NV1Zq+pJ8H8dAs21wfOr2UMff6aEv5OLFi8Y6AvJ9cBfIU87LyAieV2/4jgegPnP6jLGORhvPtViwcWxnY78SDuHZAe656zYp5Fb3M5fD/eUxPu+aY1OZcoA4t2xxBcfQUg6P/S1TR6GeHDf9Yss0Rp4+jV4sr4LXfdfF+61777kb6meffQbqSmj6dx6cRt9bna4NnDnSoePqUt9p1fH7IiIp3Y9xFpXj437EMfmVaSxjT5eISI62o0e+tsWFjfM9CE2Px9XQXzQURVEURVEURRk6+qChKIqiKIqiKMrQ0QcNRVEURVEURVGGzrY8Gl9+4v+s5xh0ujgP8PgY6mOjXsYc3qdxzu3WJZyvnSMvegFq0s6FqP2U0FzH6BsfxBcmUce70kTNWc9FTVo4hvplL0Fdppsxb30SUWYF6Vxtyt64RI93fZrDeyFDJ5uSlrFJWu9nF1Bv55CO2iNPRZ4bW0RC0g12yccxE2y83w/Mtr/evHiyKd7a/NInz+NxLI3g/hw5Zm5fj7S95y+egfrC7Hmoa1X0GRV91Hb6vqlBPTa9D+pD43hedDroK/ID0ugHqFUv23iexR1Td33hDOqkF2ZQ5zpZxO2eb2Nf8HfjflaKpvby7MuPQn3g5luhzuVRI93voZab5623KS9ERMQlTwZrSgdzNVx3cy359cJyHLHW9oWTaEISm3s5s38Yulaa27xSQV23Teep59F4xbpxEelS20ekT09p7GA9O5WSp7nVe31znTnKZnFp/IlooT3SF996971QF6umx0/4mFMmUp3G9voSeq66K5jvsLtm+p0mK9i+BQ+PT32ttHY+RkhEVjNS0qtmyOBGpUnGOUJjIGdt8G5ZlPHkUns0mhlZVnSsWQMfUM6LRTVnWvSpv3kZ166tjkdM52ZCOT4FyiIaHae8BxGpr9RxGbRMHq+4rffvPwD1nXfebazj6WfRwycOn5sbbbOa6UXGyutMueBLcU3Hb9E5zvccBd/0MFqCbdQmr+ViG/v2m97616DetQfz2dIo4z6E7rfu5/5D93yNHva/5T6dNwdwTK5fNH1JOQ+zYpYdHGuWG5j/EdvYDqNF/H7Xxeu+iEiS4nZyzlzUNr0jgzgOnjeWw1cwEemTt6mDfbgbbbRFEGUEilwF/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo9HpdiWKV/VreQ/nQ251UWt35lyGjo3k5cVpyrggb0JA+QC9cZr/eJ+p4+0evx3qhbnLUKekJbdJg+pVKGuB5sb326Z2LqD5ilOam9wjPXJAutg5C/WhnkdeFBER8oaEpLOO6JnRTlEDaFu4jYsZXhMh34VD3pN0QAgbdDK28Tpz6nJTnLW5uuvLuK0zs7g9i5dQpy4i4ns4N/WB/XisK1PYn2oTqLMcrWJf8vyMNgxxzu7JyjuhHhu/A+qg+RzUVRfb/HgT53NvBabuP+dRfkCK2x01sM/WfNQfv3IS9aN//W24PBGRRgu348KZU1Df/DrM1UhZ+02aVNcxMyZsyoqxSHg9OB9/eoNyDHrtniTh6rl35b9X4LqboZktk/eg08d+uriMx+7QoUNQc1aC55lelxx5Q7gdHZrvvtvF7QwCHPMiGs/OnT1nrNNx8HiUi3huRV3OVaE53+l4Rpnaa5qLvoPb3evSdjdwPv1xB98/egivJyIiYxVqX5u24wZ5M65gW976ecJ5EwnPq5/h9WOPoU2ZTeylsmgdPFd/t2/Oxd/r41gcRdjunEfB2n4+t3m+f85vEDF9IKbviK6XtExuS876EBFpNnG/XOrDOR+XEVF/5XXcevMtxjouzZyButPDsTuKNvY9jjM09teZy7MXJb+W/cMxDBb1N981x3jLw7EpKeJ4OLX/dVDXdh/B75coIyg0+59F3q1qhfo0e2K7eFz/6POPQ/3cWRyT5+vGKmWlgf5jHmM5S8alvuEL3lu4Gb8B8Cuuhcef82U4U07onjEV02Ph2ng9KjuYU+LGGx7mkM7rzdBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwag/g26r1WRmpQp+9EbbqIyAP7JqH28qidO9FFvV0nRR/I/jHU843apj7vTIBauO4F1Ja7+/dCHYWo881HWNukY/MSc512TFo1i+bXJillGOB8756L2+xnTAre7+JnwpByCizS59J8+6yZz2fkEKQt0tb2sC2iAZ1h1N18zubrwb7dk+Ku5WiM1nD9Cc31nzTN4xSRhnv+Evk66qjdzF/GNjp+C+oVRyfM0ycO8LjEgsssVHAu9ShB34hH2vY91LVOn0QPiIhIh+wo+193FOpaHfvwzKXTuA0r2B8zohlkhKxLs6dfgProLXdD7ZN3ICUfk+uYWR2JRZ6glLwGAxpgy9r5HBcRkWazue6LSEn3zfr2ThfbVUSkWkN/DOu2Wy3UZL/66qtQVyo4BrLePeu1AnndJiZwzvZ8HnXPtRHUVrs01l8if46IyHNPPYkvkCZ5bHwa6ptuuxNqy8ZzKQxM/Tlr0vt0vSjSuTZWwfenyf80XTbbzqJ9pd0Qy7bgvztNP4zWM0k8ym2IqT/6GX9GTEhYz94FU9dN52SE7/f75nFqk4+x2cSa/Q82tSX7J/p9HAS5v4qYHg32JfF5xrkarKHn7A4RkfpynbYDzyvOuCGLozQpx6VSwvsbEZHduzD369wFHNyT6Mb61ObrTcmt5ZiMVHEcGavhtu/ae8j4fpezRyqYW/YdD70F6tIo+qiiBBvV9U2PmiTYLnGP78/wffbW3H/PbVDfcjtlz4Rmu/fp3qJQwD5q9E/qwjb5PV3LPHl9umXL06475L+yaBl8veJzQESkT1lEzXm8z2oubeR8dXtd+ROM17oq+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62zODddiJRuGo4yZXJ1FNEA2GXgqZEREq70QiZkpm7s4BGn/k+ruMwhbvs8s3QuE4Pn51Gb8eANIscNDNn0Ri7cuoVqKOkCXVw4GZjnWkDTV4JGZaimJ7n+miwod2UVmoatftkaOqSid2h4Jq8RWY2Nr+FphEoofCwbh6NWvaAUTLsX3tYy7A4dtNB8XOrx++JJ16E9+65G43a+/ftM75fyqGjubOCbdQjo39Kx36ygqfL7mk0v4mI7JrYBXW+iuF3IQVk5SvHoI5C3I/cLpoQITID+6xT56FeaWAA3+geXMf4IWybcAWPezNoGOsYw1NXGi0MbVuexcChaZp0Ie7hOZL2MUxNRCRNKBwsh/1PBsxtlpjBmTtBv99fN9A6ZDAtlXEM9DxzeO3Reez5aCAtFikIlczhyxToxyZXEdOU3mjg8eR1lMs4SUepjO/bFAx1/DY0S4qIJGTULpdxrL773vtxmSV8f6W+CPXC5QvCNBbnoS66aH6crKI5d3eBrgVk1vXEnJAgTtlUjMZPe60P2hlmzZ0gkVSsNRNwyEGx/GErI7CPTKlsvDaCxSh4zPHwOLueaYrnPvraa2egLtN5ks/jceFzpNnEcXhsDIN+Rcz94vPC3G889s0mniMzl2eMdfB+7aNrTJLg9aSYx7G630OjrZvRhXg7l5bwvIgGjMhs5N8Jzl9eFG9tIpl7d98E700fwOtMcRTN4iIiBXI0+0Vso+UVDL7rUXjolclg1r/vmGOsTZMNJHSeWDRWFWiSiHtvQgO6TeNGLuu48YQGtE4eHyM2rNP9WRRkjE00QQFPotCh+8omXTsSWke7kxEoW0SX+uwK3g9bEg382wxFvhr6i4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2ZZH45ZbDkhuzeNQdEnjT5qzFz7zJ8b3/4D0hlZMGnkKafJ3Y8jT9A/931A/9gqG8YmIHCL9+ZiDGr+ZE09DPfcYJo4s/NkfQ90cR5146cBhY53ty6g3Dymoy8mhDrF1YRYXQGFz09/9DmMdo6QHLVDwV+Kits56DgO0unMYsuWm5qEPKYgm947vh7q2f8OTEHTaIv/xF4xlXE9WwmXx14K93Co+I184g16bvXvNZ+hbD74V6j37UDee0nO3k6IG0QhvtM3AJYf8NbGD+s4kZc036srFwb6QeujZGC+b3pN88WtQv/YK1pcWsG3ONnCd9QZqNbsdDBEUESn6qOOvFVGDeuHU41CPjn0X1LNnn8D6gqnBn55G7f++m+/DD9jpwD93Xp8sIhIOaNp9CtxifXWpRCmHItKkUMylJfTTcNjeKAVWzc7i2NHpmKGAvB2saV9cxHE4CHGd5Qpp6Dl8qkDeGRG57W48Vg55GHo9XIfTQ7+Ft4Ka+N2R6eE5WMbzsZLDc81z8JrEwachpWRZlhn25VKwKZ/zltVZ+++N6X/VkRFx1zTy8wvYRi7p1WNOGxQRmwL5ttL5+z72cfZVksVIRESWlrGPRrSOyQn0b9VqpIknf0W7jedM1jZziJ9D3pIowuPaaOIYd/bsa1C/+CJ6AEVEYtLdR9G9UE9NoWcvTx4tjwLVOBhTRCRO2DuJ+7Fv34YHMIpiOfOaeZ5cT5bbvXXfzlefOwHvnTiJY7pXNIMVHTpn+Vi22xQsnMP7nBIF2vY6pp+wQp8JaewpkS+E+2OJ/GWFCo4TKyumP7BYxj5cqdWgfvm1l/F9D6/Bh/dgkO/LJ9AbISJSX6pD/fa3vw3q105juOtjX34G6qnp/VCfOn3GWMdtd7wO6t17a1DvPbyxne2Ma8/V0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBq7KwelUFgVZQYd1E2O9GpQl3umfstqoTa4UsHvxF2a17eEGsYTF1DXu/Clp4x1HCqj/u75L/4F1DNP43duvwd14bf+PfSBdMm3MPfKWWOd51bOQL1rCnWFno+awWdPoB40ofmm97z1e4x1+JOo/wwpq8N3USwbz6Anw7uAdbFE3gARSfO4r/4IahXHB7pLf3tdZyi88sy8OGv65NHdpAEP6DhdMj0Al6roIyiVa1QfhTqxKLPCQc1pZJlt4FC7uCluZ0Ia3Jhnv7exzzs+bmNom9kdhaPoZdrjoYa+8/JXcZ025yyghrXdNjNSnn8Vz90H7sI+myygJ+jJP3oG6lBQ57r3AObbiIjs2XMIapc09IORBtyuO0Wv35MoXj3G5SqeH14Oz0HWpouI5Ghu/S6NeezZ8DxsA9aB8+dFRObncZzkHI3paewvnKXQJ59InrwohYI5dnCaQqeD2QetOmYQFPpY3z6B65wqm23n0LnCUUAx+XasiM49wX4fueb5m9AyuJeFa/0uvEH9b7mxIs5aAANnDCTkKYsc04NSyeGx4/n7WTNPtgTpdPAF3gYRkdRC30Czg8c6n8fr4fg4+r8CWma9Xoc6q8+zL4m9Tisr6MlYXMJzZHYWrxcdvhcREbL8yHPPoxfu1ltvhXp6AsdI18b+O1I1z6OJcdT633IL5nZVyhv3FmEQisizxjKuJ4vLnfX8oHwR70GWyGc1PlEzvs9+sDTGMfPSRfK7BpRPEVLW2twZYx17d+3B7VqoQ12p4Lj9xjd8L9SWi+NEO0DP0YtfM9t87z7MFLnt9a+H+tGvoBd4chy3sXE3tsMrZ8jHKyIp+T+b5DnrudifAvJ3vjKL40N56oixDtvDsb5YJo9yeeDcNSN0ror+oqEoiqIoiqIoytDRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ0tiW0X5m3pJ9bFWYlMeo/HdJ9j996u/H9YD9lACyhHs85hDq30uFDUHsRzl88ttuch3rp3Dnc5ldegLq1gnpR99jdUOduQ+241ydNfWjmg3RI7+nnsFl5NvPpA6iRjqldcj55A0SkSNrZqIkemPYSZiWMpDRv/VgN6sCcYl0S0tyVXkYN6tTAMno91PvtBI2ZlXV9aNjEZ+Sp3djmVt/cvjMXnoe63a/jB9KDUPYj1EBWa6gtrpZQAykiMjWxG+p8Hs+LPPkOijnUQLo0v3ZCmlRxTGFkq4t6+Jk6ae57qP88dhi3cff+Y1A/8xJ6iERETp1CDfPFWdRR332MNdLYdjfd/39BXSqZWQx2RBp72ndrwOfhUrPsFO1OR1xn9ZgWi6hn5cwLPyNkwCKhN9ch7TP7JzhjYO9enANexMzNmJlB7fQC5S80WziuVqt4bNiLwtsgIpJSZkNK2n8nxv5STtHjxy3lZfwJzKH1+i5/iLaB/BZpim0ZB6YOn4X4Cf0tLl4bh+Mt8ieuF0vLTbHt1W1Mk4xBfADXc4zXInoppkGfr+PdPrZZo4vjaq9vtmFk0XYZmSp47aqN4rg6c7kO9fMvoMcszGh77n/9Pva3FmVxBMb1AffTc822270br9PsX1mcR139TYcO8UZC2cvof3t3o3Z/tII+j9ZAdkG/j9f4nWBifGo9x6VM+v1yGfdvcmKXMEnC2SI4hrZXMAuCj2N9Eccy3zaPU4m8cvUY+4tj4Xb3Otg/K2Pose2voD9xZRmvtyIi5SLeV87PYF9YnsV7RCvC/T79Gu7XxARmXoiI7NuL9yfLS9gBkxj3a2rqENTnLl6GOp8zc04mJ/HaUaZMEX/AMxh4pgfsaugvGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx4Nv7Asfn5VlxWnqMEd91FzdmT/YeP75+dR++YU0WNRG0dN3217UPN8exW1d48nJJIUkXaA27X3AGqYgzbOKT+/gvrkadLoxqTrPXjQ1ETnWjgf8ZmTZ6C+9w3oV3lWUDN4eg7176/+xieNdbis5aZ56RvLc1AfHUO93kgJfR88X7yISKGMx3A8wbYp2RuaPtveeY9GtWCL46w+G1t07EkeKiuXzf1bWMI2XFpEX0vYOAl1YxmX4RVRS1zwTY/QSAFPKfZolBzUPHZ7+Ky/axpzEspFfL9FmQgiIpcuYv+ZIX2oxLhNt62gxnRsGvv0/a+/21jH5Dj6OqR3Bks6Hrk8aaTrqL3183ca67CEdP1Jg97f8K9ESYa+fgeoVqviZeQviIjMzmK7c+aFyNYeDc6o4HwAzjnI57N0tphLcODAAag5U+DixYtQLy1iTkFjub7pNomYGnmLxpeig/1jvIL9wxMce5yMjBqbxk2bxzCbM2l4I7F0Mv7MZuRI0CrWfR8Z4+dOEPSSdY/GVn0p8SloREQiB8ftmNo0sXEZrJFvtimrIzLX0e3j+OJSnsfFi5egXiSvZhjiuT1z+TzUWc6UIEBvE3tobNqvnE9eOcq38XxT+z9JPkdb8FydnUV/6KmTmF11yy234DampseiYGO/L/jkaRjI5Or1dz7LqlYbFc9bXW8+j/s/NYXjTr+X0Tc62J9Saue9+9G/GnTx81EPx65m3WwDj/pbSveqbOsIEvTvxJRPYfs4UIxPmN7M8XF8rVbB+69jh/B+eGoPjsm33IL17GX0dIiInD2DfuNjR98K9fwc7sfiAt4XvO2774f6Dz/9u8Y67rsLvSElyrLb3BV2dfQXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLZHfvlsaUiyu6t+ay6gvfHGhBvWXAnO+/xr5CgqXz0Bd34UeDTdPGvg86nhnczgft4hIq4s66e+8+x6o0ybqR3M0FXC+ijr8pVnUuTXITyEi4jo0fzvNfb9nCvXtX6x/Aer6GdRypmfPGOuo0lz209M4v/btN+P82wcOHoJ6nObWz/OOi4hHelCXdKxRuKF7Ta2df0YNk1CStfXWW/Qezdufy5tqwiRBffF4Ffe338E+3evhMvIF1A6XSqZH6CxphQuk/RUL9chBD9f5umNYHz1CutfQ3K99+++CemovajXnG7jOqT3oybjldvRLlGqmBnWS5vWevYT63DDCPjzi4X6ffv5RqHuh6W85cBDzPBLSf6fJRtvEyc7PIS8ismf37vV8DPYlzM+jT+rCBXOsKJCnwqc539n/wHWljO2Wy5mZO1n5HYOMjKBXLkefnyKPR5N8Qf0e6qZFROrk+4j5PMhR/scYjmdF2o0s/wRZEMQV8tORDt84U+j7VpqxEjJlWHSMN7IQvl618l+NOI4lTa/sCPliaEzOippxSjimV0mDHdM42m3RGLeCjehmeGnYK+LauE72fcxcwvOmSJ3h0CH0QPoZWUKFHI5HOTqvPOrjxQLWJfLCFYu4PBGRoI/i/lYD22qOPBrPv/AM1OOTqNsfH8dzQEQkcHHfZhZxDGkHG+dZEJjXn+tNu9Nb96jlcng/duutr4P6qa9+xfj+HPkGjt2EY/7f/P7vwy9Q7san/8cfQ91YwWudiIjl4rGL6TT38RZP7rzvKG7TreilEYfyeIJ3GOscH8V7vJFRuobaeDbmi9iXRun+7Hd/9/eNdXz5sSegvuW2/xvqRhu9duGzeF7deiveM9Y+b3poSiU6T8iXalsb3+HzfDP0Fw1FURRFURRFUYaOPmgoiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMnW2Zwav2LVKyV41a4+M1eC900DTizFFomIi8rowmr+l9GMj3pQAdvufnKMinhUaVfb65+eMWGn4bCxg+Va3VoD7z9DNQn3gRg8VOPY7G7d1F00TNQXcr87jOR//8Eahffw+apr7zgXuhHqFgIBGR8Sk08hQLuE7Pw7ZJEzQKssmPaxGRIGAzNIXyeRsGppTDsXaAPfvy4rmrz8YeTUYwQwF9cd3cvtEKPlffvJeMT1Nobjo7j8tc6eD3+xlhVcUaGRlvQWPtrccPQT2Sojn4dTdhX5jYi0ZIyTDhF3Jo7g0DNFs2OmjAy/tolivl0bjGJmcRkQB9jOJRuN5LL2IIV9pHk159aRHqJ//ADAv6f973o1CPVLDtBudYiHfeBykiIp7nieetjgGdDk5GkdA512ya4YrLizimxbQj3PZX1nWFbhvb1ThHRWTXbjQmFos4VoQhGhNDmrzCIrNtqYxje5XCqERERslA7kS4XSMxTsIxWaZQN5cOqGWeW0YgXerS+9RvqU7ZwJ3Rz3kZtkXm8PWAuxsT2Hf02H5x3dVxmNvDcdBgWiyZEwWMjuFYUSmjITkIcVxN+Tw7RiGBtjke8QQF+RyOcd0Q2y6k6065jNe6B7/rO6BOAtMA7NP1z/CpGoca+5fvYp1k9I0mhfv2KDM0pokEwgg/MDeHwYO2g5PfiIi4Hp5HSy009LajjfEjDMxz5HozPjYp/tqYVKN7qfk5HONt25yU4uiRW6F+/b14vTt44CDUFy7hMu+6/yGoJ6fQyC0i0qLJTw4cxc8cPHwI6nvuvRvq+97wBqhzNDFAVthxGlMKYIp1KjSBRop92KPZL3ZNoTlcROTwwX1Quy5ux67dNajvvus2qAt0LXnzg99prMOncMLLly9DHQ2M652uORnT1dBfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwa4cohCcNVvdp8B3W+M6dRy3Xopa8Z37/URr3d+SX8zjIlq4QF9HCcjlE3uZQRSZREGBx1mgJHhLTDjUX8vNioezxQwe8fOIQ6ORGRfQcOQF0l3WulghrV6V2oiWc9acLJUmJKTMMI973XRQ1gkpBnIWINtLmOHIWJjU/gduYKGxq/dufa9XnDYn4xEGdNy+j7pBWmFuL9FxFZCVA3eXoW92H3KGqLoz5qh3Mkw4wy9MleAU+pfAmX4TmoTR+bQD2yV8ZjkJIW3HXN4xb0cT8sGzd0pIKa/ZSCysKQg/FM7a9DGtJ9+1H3uriI5/KX//J/Qs2eoGeefs1Yx/gkhhS9/a//LahzA0lLkZg67Z3g/IUL64FV3S5qsNnj1M3QsCbsh6DDyZ4M1t3PkvetlXEenqegQA7o278fwxctCrrrdLBtO+QLKedpTBWRIvX7sSIucxcFOFZzOF5RNmhmGFTKYxr1KZu/Q6cny+7ZUyMikpDOnr1ucmPz+uTe+24Rfy1s1XWx0Ww6jnZqXt4d1o5To7A3webDQGNDhpVBjCBBm8ZiGm9iWqbt4DnSbeF9Q5LiGCoiUqewVdNnhnVEPiWbxtkgw/8wc4F09TZeH3k8YL17kmKf72f4q0K6B/JK6K/KDQTY2RmhyNebQ4cOS37Ng8NhovMLeJxuveX1xvcjylk9fvN9UDfq+IGTJ3Es69I1vBeZbWB52GapjdfUlTr2r06bxz9cnkNjVzcx+5+wl4vGKpvuK60Q19lv4zYdPYL+ChGRsRree549jb7IxSW6l01wfPhff/BZqHs9+ryI/OUXn4S6sYJ9dGFxfv3f0TaMkvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkcjdUuSuGv6NxvniJ+fxfmerQXU1omI9Do4D3VrDr/jxKibdFx8P01R5xblzM2vjaKvY9cE1rt3T+Pnq6g3nqB5xqtj+P1czpwb2nN4O/D5LU5Qy8b60JDyGOI0Q3tp+AFovn0XtYueh3M/FwqoU/Q9Mw8k77n0GazdAa1ty9n5Z9RG3173CuRJ65nLk+8gow2DDr52so36wzDG99lvEfXwuJXMJhQh2e3yEs7p/YqNOt+LszNQzy+dg/rQvuNQ10aPGascK++F2qP+l1D/s4w5vilzhbTEIiIR6apdH8+T192O85ufOnES6q889Tn8fs5svMe++EWoKxX0Or3hwY11bGcO72Fy6eJFwzdxBZvOUc4TEBGZ3rMH6gny6NRq2K68DNbQZ1iRDO9CRDVnb5QrZahHaQzlrAWJTGG+Ey5DnQ9xHaM53FDH2txTZmX41GzBdmdPQkrz2ycR1cnmtYjpyeCtuOIdyfKQ7ASvnT8h3lqekUP9zSHNvG+b/dTJaNdBeL/4OKQ0tvi+eT00fC3slaHrZbtFvoQF/H4oqP0PUlNbzmMYH1s+BxKqfQfHoyDj+rHQwD6+ewIzL1K6JubpAjE+jfkzBcoXEREJ6R6nVMXvOMnGPVTQ3/kwocXl5fVjblGmU79Pev4FvLaJiMR93L9XXnoWavaDtVbwPtN2sM1cMbOKRkfJoxFjGy4szFGNvrdFqsMEr/vtwPRoNJp4b7tSxz46M3MRPz8/D3Wvhfu9tIx9TUSk08Zr3uwc+iIXl/E8uXQB30/Jf1Yum/2v08H2TOk86HY3jnFW1szV0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBqxiMRrWshCAT0Ab7j/TqiP33zY+H6bNHwJZUFIvLmG1iUfQm0EtXciIpUyei54XnrWI7ukF2UtOs+NH2fMHdwNUG/Mc3gbc5XT853tolYul6EB92hO7mIRtbHFPB4Pj5bhOai1c4wJ0kUs0q3GNOm1PaCBtmMySewAtp+K7ay2JWuJbzuE+7+cMcd4xcf+0qUohjbNKz0+jW3YrWN99qzpZaiRjnJyHL8zUcM+nUtx7vV28zTUr55EvejY6Fljnc5N3wV1tYSeDYf0xwn14TDEbUiyQgLoXO02UH/r+zin/BvvwznU5y++gJ93TZ31UgPb7pknHoV6cnTjHOh0d77/iYi02u11L0ae/BNV0lMfPHjQ+P5NR49AvWsXesZKRdQXB+TnajZRHzw3hx4gETPjpkjLZC8Jz/8fRtw/cBv8jO4x4eLJVHJxrM+R9tzheedT9gJkZQnxa5v7VdgqYFoyzL+zsfWCM2XitYVk+Tt2grnlS+KsZemwRJqPq2WZB4p9juw3MqJIbH6f15FxHbHYO8PHCZdRcXdBnfPxmnxpCTN3+mndWKdPQSzxFvcS3DaOjesMOuatkWVhWxTLeP5blO0UWHhe1buoobdzeF6KiLRX0NvaCepQx+nGuR1mZH1cb84N5AjxcV5aWoL6i4/g+C0iMl6rQf21Z78CdbGI13G+djk21pOT6JMREdm3F69FlTLmBs1cRr/EY19+BOrlJno4+jwe8n2riFy+jH6IS5cw4+LsWbxus3+qTGN01jrYexcG+JkOjfvNJvotSpTJkmacu5UyegRrtVGqawPbGMn//PyfG8vIQn/RUBRFURRFURRl6OiDhqIoiqIoiqIoQ0cfNBRFURRFURRFGTrb8mh0+125ItHk+bjL5I0YHa0Z32c9KGtKt5qV19CDJqZGMSVtG+vaeJ5mQ2ubsiaVdWzmOvkjPJ85+0QsF/0VuQJq56qkUxQRKVDsgGXhdpDkWSzBF2whH0nGFNzJFvPUD7bVjdAol3yRK5Ya9tLQVNeyfzqjN7m402956B6on34RMywuXka97J3H0UszOmWePrOXUZfbauF5ceY8Hodaldp4CvvGeI2COUL0cIiILM2Q9nIK369UMLtBOI8mRb8Dz88vImLRHPFpgt9pLL6E6yzift97531QP/rEY8Y68jQnf7eLGtOzJ5/beO8GzCEvItJut8VeO+Fj0u5y5gX7u0REWuThCagf13J47ueL6CmzSNvLGTwi5vjDGnkeE9kfEdEy+6QFHsmb/eMAbqbspiGM7HWShpRXwZkYYo4vcbrFd6i22U9AfTgzR4OuQuwLuaJrztI37wRhEEuSrGV50LYl5DsII7P/OdQGuTxr4KmNqHuxx8PO8BOG7Gukdo7p2FdquMwyXf8650l73jNzDFzajpg2nM8B47rOfp7AzAeZHj0EteeS3y6H40FAPsZzZ85DHe0yPRrzS+jJ64XoZRvss3G089dgSzayZbgNSyUc83slM+voMmWnNeh+zLznwO93O3g9zMpxGfsq+j54mZcpu6pQxuNweR49HBSvJZ5ljn9Li+hPaZGXrkv+ifLUblwm+XWKZTNnqt/De4f8ON6PhCH2P/bzlegenX1JIiJF2o6bjh7F+thG3e111aOhKIqiKIqiKMqNQx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR6NULK7PyW6ReC5NNp+3WkQkig3BJ36H3o9IA82q+yQyddoWaTNZx8uGCpf0zLbFYmJcq+uhDltExM+hTrCQx8/wPPblAn7eZl1wlvaS9su2SYPK84Sz1pH0eKxhXf3Q5lruZECfy+/tBL5libt2/DgHZHkFvRGHjpBoXES6MepBHarf+TD6CP7nX6DGdo50mMePmBrb/btQW1mrHoC6SRr9VhPb8fwFrBst1KR2M/TJnd7L+EIe574uFHBecdZp85zyYYRtufYtXEUV5y9P6TvtzjLU+4/g5/fNmPOfz8yihpn1t4Mafdbr7xQjIyPrOnbDY0bbtLJiZoWcO4c+oHq9DnWN5pnneeJZF93rkYcnYzt4jONzN43o+FPekVCfK+dNXX6JMgR8j7wNlGtgZABcg/afPX4uaaU544j9FoYsP6MP8XXravWNytFwkoI4azkURqYFeTYcBzXZq+A+95vov0lT8vZRH3fJX8h9S0REYvIIUX+zyRNULuDc/S7dltgJatH7LfPvo7HD2v7Nz00jkyWlZUamB2fsII6jywvzUAfdFi6SLaV9vDYU3IqxjiREj0a/jccjGsiHitk8sAMEQbDe9/n+jJmYnDBeY83/3r2Y+cSZPQsLmD0yN4fts7SM1xkRkZlZ9FgUKfNtchKPI3u3lpZxnbki9j8/bx63iVFcZrWEnwn66K/wi5i5NLVrH9TspxAxc0qOHL4J6ojuG0+fRj/n1BSaN+tLdWMdtQrux823Yj7evn0b3pJOh4LINkF/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ2ZYZPApSidZCajiwy+IQsMQ02nEQlMVmvJQNghTARIZmDpoSEbEdCiCipCg2/rgufj7no5E771PAUQGNQSIieTIbFVx6fmPjdMwGTjLLsVFNTBMoB1qlNhnr083Nl2weFxGx2EDHnxnchoy2v94UfE/ctbYtTOBxnUGPrVy4aIZV3XILHruVzmWoDxTQmPb2N90O9V9+6QWoL8+g+U9E5MgxXMf0FLbTnonvhDoMsM3rK2huWyFT9SyFCYmIeDlcxu4AjWdsGqWuISH1xzjC769+ic7FFPczofM9iCkgUtAEf8tNFCIoIkt13DeHzs18bsNgl6aU0LhDfOcDD6yb1DsUwrS4iCbCLKM2f4bN4Pw+r6NAY02WGZfHCjZtspE5JqN2wcFjua+Gx/roqHlulXM0xtFkFWzt9ngc5cC0LLM/G3qNEDZeBhu5N/9+1mtXq7O+uxNMjhwW11s95maYLJLlV48o1CuiENOIDPVbpejaifm3SofaPaXxpFxGo+zBPbdAHXTx80GLxgF72twODi/cwtTOYwvvdkYmmwQdfDGkOTPKeZy4IeEJXBJc5+Js3VhH0a3hd+g8SXMb5/vq/RQahK837U5nPRyRx6pGAwNW7Yz+OTmOBvEVCpXzPBzPeJmtNl5ze/2MiUt4Ph+a7CSgeyGHJq4oldCoXRvDyVVGyliLiBQo6M52Nv8bvl/Ac2B8Avt01kQi/QD79MgotmVEQZijY3jtqI6g0TtNzbDDyXHcjlIZ28IeuJ+2OYV1E/QXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLY/GcnNFetGqPtchX0G7TUFiGWEy+VyBXkHNmeNyiA6WIYkiPQ81jyKmbrVaQI0Za2srIxgWVMqjbq1aIM+HmEF1SUJ68YD1obhNrP9M2e+QqR0m3St9JmZPBgXfcEiXnSVCTVCoavNz6MA6LRb67wC9fiRuvLpNJTr0u3bVoH7l1ILx/eo4tkHex8Cl+PnnoH7LQ2+C+h1vwxCdJ55Ez4aIyPkZDBQaGUEN7dg4ajMrJdRZhgFqJCPS+bJGVUQkCvBYT4yh/8GxsU/3AtymOMbvWxxaKSIOeZ9YE23ZFGrk43nX6+LxGK2ZgYo3HT4E9YmXX4M6HdCXp+HOB0aKiCwsLmaOOyJmcCfXIiIha+QjbPseBTvNzs1BzR6NnG+uw/Nx+3za3mKpRDUei6kqruPYGF4mpu0LxjptC/0o7NnjUEgr5aA4ofeNVWSErrF/wvjC5p83V2GOq3G2nyWOb4xHY2UhFmftcCS8bTRWxFnBr7J5kJ3hY2Gv5eb5t2vfoZA5uhdI+rjM86dR6x/TtauxRNcul+8jjM0yPBkJbWjcw/cjOp5JaPqQXmuhhyyl62VMbct9xCU/TKeF57aIiNDYG0ZX9xnx8d8JfNcTd02bP0L3ThyoyQGSIiIJvbSwhMee71u65FHr0z2g45i3sDXarnwe/RNBC/tToYjj4R233wX17n0YphfH5r2TR0HOPAZ3uzg+8vW0QGNwjwNNRaRaw+NdLON+Bn18vzaKAX2lCl6TLcu8dlSp7Wz2GztJ9r+3QH/RUBRFURRFURRl6OiDhqIoiqIoiqIoQ0cfNBRFURRFURRFGTrb8mh87YUX1ueQN+wUpNlvNdrG90tF1KFFIeqRK2XUyk1M8jzBqJtst811dLuo6ZueQs17Ql4F1i8f3IO6tjtuPQp11pOZa5Om3WHdK+ntjEwMhP0UIiIp6T15bmj2aGw1z3uWtjZOSXNKOuuF5oaest0xMwKuN6WqJe5ax+s2UMtpW+hdqI6aOt6lRTx6e/fhMi5cQA3uxQuYs3HbLXdAXczVjHVcnH0V6slRbGjXQS1nGPAE7tiXWIPve2aOC2NTf+z0UAebpJxxQRkZRuqBiEU9n6XbNuU5JD1ch83dMcMjdOTQQdou3I78gF60070xORqtXkfcaHVf2efEHoAsHJ7Pn3wcfFoGpAMPyAvndjNGJPZr0VzzldoY1LffcQ/Ue/ajJnk0h2OqtMw+GEc0nz1nWFDTsG4/Ip9a1vDFbePzXPVGTgZlB/EYmZH1xEN1TJ+5Iou/AfJ4ERGpr3TWtfDGdYXI0vDztYpzWDhjZavrCLdx9mfwyHVb2FdOvHwK6l4X349omxwOvRCRmD7DGQ7s3WTvjZnJkuEv4Mu44fnhZZBngw4He1VERBLygAbk6Rr8Bh+rnWB6fHLdo+bncRyoN3BsymV41HzqbyF51GZn0bfikZchFfQ4lshfISIyPoF5EUmE7bxCmU5jo/j5WgVzMsp5XEe3b157bPYusYeR+gJfB1zqf8WMtrPK6DUpU8ZK38L740opt2ntpOZ5VMrjdvk29jF3oH86oh4NRVEURVEURVFuIPqgoSiKoiiKoijK0Lkm6dSVnxWDYOOnGZ69ln+WDgLz5yXXxZ92YpJC9QP8maxH8osoos/3zSno+gG+xtNFsnSKf17u0DRkzTb+zJbVYDyVHk/ba/zETb+zJSwzCM2ftLYrnWL5FU9b6PBvfSIS00/S/LP4oFzqSjtt9dP6MLiyjmhgqj+eQtG2cFujyNy/MMRtDQLus/j5bhdfaLXxJ/1OhnyMv9Pp4Ha02vgdliDyvJ48ZeC1tLdtYy+1LTyuW0mnnIxeznIslkLFJM/p0n5GdC5nSRMi6n+dHo4hyYBU5sp7O9H/BtcTRRvb+PVIp1IaKyyu+QtZGsfB5WVNU03jz+A2i5hTSPIY2SHpSjvGOu7i50VEUhqbhX6W5/6ylXQqG1yIz2MYS6eE5TEkpboG6RTLUzr91f3qrv13p/vf4PUr3Uo6lbF/PCsvn4fbl05dQ59PuSZZCX2et4HrTFkTy4i2kE5ttZ9Z6zCm9t1iumRehjHUW6b0JJEttjPjvZ28BoeDY4nDU/HSOZ9xj8Gdgaf35msA38fwOR1lyMx5O1g6xetg+VafxsNuD69lvSzpFF0fHdquXo/ufWmqY26pXt+8t+jTa2wT6Pd5XMfP+z1v0/dFRLo9vPZ3uii3cnMbbdlZm3r4WvqflV7Dpy5cuCD79+/fcmHKtx/nz5+XfTTP9LDR/qdcjZ3ofyLaB5VstP8pNxq9Bis3kmvpf9f0oJEkiVy6dEkqlUr2k77ybUeaptJsNmXPnj0Zv+gMF+1/CrOT/U9E+6CCaP9TbjR6DVZuJNvpf9f0oKEoiqIoiqIoirId1AyuKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRB4zpx5swZsSxLnnnmmRu9Kco3MG9+85vlQx/60FXfP3TokPziL/7itpf7sY99TO6+++6ve7sURVGGyVZjnaJ8I/G+971P/ubf/JubfubrvT5/u3FNORrfSrz5zW+Wu+++WzuH8k3Bk08+KaVS6UZvhqJsycc+9jH5wz/8Q/3jiqIo3xbo9fna+LZ70NiKNE0ljmNxXW0a5cYzOTm56fthGIrneZt+RlEU5VuNIAjE9/0bvRnKtzFbXZ+VVb6tpFPve9/75JFHHpFf+qVfEsuyxLIs+dSnPiWWZclnPvMZuffeeyWXy8kXvvCFzJ/NPvShD8mb3/zm9TpJEvmZn/kZuemmmySXy8mBAwfk3/27f5e57jiO5e///b8vt956q5w7d+467qXyzUYURfLjP/7jMjIyIhMTE/LRj350PW2Tf5q1LEv+03/6T/Kud71LSqXSen/7xCc+IdPT01KpVOT973+/9Hpm6qeibMVmY9pHPvIRufnmm6VYLMqRI0fkox/96HrK+Kc+9Sn5+Mc/Ll/72tdgbFWUQZIkkQ9/+MMyNjYmu3btko997GPr7507d06+7/u+T8rlslSrVfk7f+fvyOzs7Pr7V+Sgv/qrvyqHDx+WfD4vIiK/93u/J3fccYcUCgUZHx+Xt73tbdJut9e/96u/+qty/Phxyefzcuutt8p//I//ccf2V/nGZ6v+83M/93Oye/duGR8flx/7sR9bH/NErn59fsc73iGFQkGOHDkiv/d7v7eTu/MNybfVn+1/6Zd+SV555RW5/fbb5V//638tIiIvvPCCiIj8i3/xL+Tnfu7n5MiRIzI6OnpNy/uX//Jfyic/+Un5hV/4BXnooYdkZmZGXnrpJeNz/X5f3vOe98iZM2fk0Ucf1adgBfi1X/s1ef/73y9PPPGEfOUrX5Ef+ZEfkQMHDsgP//APZ37+Yx/7mHziE5+QX/zFXxTXdeV3f/d35WMf+5j8h//wH+Shhx6S3/iN35B//+//vRw5cmSH90T5ZmezMa1SqcinPvUp2bNnjzz33HPywz/8w1KpVOTDH/6wvPvd75bnn39e/uRP/kT+7M/+TERERkZGbuSuKN+A/Nqv/Zr8xE/8hDz++OPy2GOPyfve9z558MEH5a1vfev6Q8YjjzwiURTJj/3Yj8m73/1u+fznP7/+/ZMnT8rv//7vy//4H/9DHMeRmZkZec973iM/8zM/I3/rb/0taTab8uijj67/oeY3f/M35ad/+qflV37lV+See+6Rp59+Wn74h39YSqWSvPe9771BraB8o7BV//nc5z4nu3fvls997nNy8uRJefe73y133333Va/NIiIf/ehH5ROf+IT80i/9kvzGb/yG/N2/+3flueeek+PHj+/Ubn3jkX6b8fDDD6cf/OAH1+vPfe5zqYikf/iHfwife+9735t+3/d9H7z2wQ9+MH344YfTNE3TRqOR5nK59JOf/GTmek6fPp2KSProo4+mb33rW9OHHnoordfrw9wV5VuAhx9+OD1+/HiaJMn6ax/5yEfS48ePp2mapgcPHkx/4Rd+Yf09EUk/9KEPwTIeeOCB9Ed/9EfhtTe84Q3pXXfddd22W/nWY6sxjfnZn/3Z9N57712v/9W/+lfa55Sr8vDDD6cPPfQQvHb//fenH/nIR9LPfvazqeM46blz59bfe+GFF1IRSZ944ok0TVf7l+d56dzc3PpnvvrVr6Yikp45cyZznUePHk3/23/7b/Dav/k3/yZ94IEHhrVbyjcxm/Wf9773venBgwfTKIrWX/uBH/iB9N3vfvd6nXV9/kf/6B/Bct7whjekH/jAB4a/8d9EfFtJpzbjvvvu29bnT5w4If1+X9761rdu+rn3vOc90m635bOf/az+hU/J5I1vfKNYlrVeP/DAA/Lqq69KHMeZn+e+euLECXnDG94Arz3wwAPD31DlW5qtxrTf+Z3fkQcffFB27dol5XJZfuqnfkploMq2uPPOO6HevXu3zM3NyYkTJ2T//v2yf//+9fduu+02qdVqcuLEifXXDh48CIqAu+66S9761rfKHXfcIT/wAz8gn/zkJ2V5eVlERNrttpw6dUre//73S7lcXv//v/23/1ZOnTp1nfdU+WZgs/4jIvK6171OHMdZr6/0183ga+8DDzwAffjbEX3QWINnDrBte/3nsysMavMKhcI1Lfed73ynPPvss/LYY4/91TdSUcTsq4oyDDYb0x577DH5wR/8QXnnO98pf/RHfyRPP/20/ORP/qQEQbCDW6h8s8MTV1iWJUmSXPP3eexzHEf+9E//VD7zmc/IbbfdJr/8y78st9xyi5w+fVparZaIiHzyk5+UZ555Zv3/zz//vHz5y1/+q++M8k3PZv1H5K/eX5VVvu0eNHzfv+pfigeZnJyUmZkZeG1w2sZjx45JoVCQP//zP990OR/4wAfkE5/4hLzrXe+SRx555OvaZuVbm8cffxzqL3/5y3Ls2DH4S8pmHD9+PHMZirIdNhvTvvSlL8nBgwflJ3/yJ+W+++6TY8eOydmzZ+Ez1zq2Kgpz/PhxOX/+vJw/f379tRdffFHq9brcdtttm37Xsix58MEH5eMf/7g8/fTT4vu+/MEf/IFMT0/Lnj175LXXXpObbroJ/n/48OHrvUvKNwlX6z9fL3zt/fKXv/zt7c+QbzMzuMjqLAGPP/64nDlzRsrl8lWfTr/7u79bfvZnf1Z+/dd/XR544AH5r//1v8rzzz8v99xzj4iI5PN5+chHPiIf/vCHxfd9efDBB2V+fl5eeOEFef/73w/L+sf/+B9LHMfyN/7G35DPfOYz8tBDD133/VS+eTh37pz8xE/8hPzDf/gP5amnnpJf/uVflp//+Z+/5u9/8IMflPe9731y3333yYMPPii/+Zu/KS+88IKawZVtsdmYduzYMTl37pz89m//ttx///3yv//3/zYuxocOHZLTp0/LM888I/v27ZNKpSK5XO4G7Y3yzcTb3vY2ueOOO+QHf/AH5Rd/8RcliiL50R/9UXn44Yc3lTU//vjj8ud//ufyPd/zPTI1NSWPP/64zM/Pr9/YffzjH5d/8k/+iYyMjMjb3/526ff78pWvfEWWl5flJ37iJ3Zq95RvUDbrP88+++zXtcz//t//u9x3333y0EMPyW/+5m/KE088If/5P//nIW/5Nxffdr9o/PN//s/FcRy57bbbZHJy8qoa4+/93u+Vj370o/LhD39Y7r//fmk2m/JDP/RD8JmPfvSj8s/+2T+Tn/7pn5bjx4/Lu9/97qvq9z70oQ/Jxz/+cXnnO98pX/rSl4a+X8o3Lz/0Qz8k3W5XvuM7vkN+7Md+TD74wQ/Kj/zIj1zz99/97nev99V7771Xzp49Kx/4wAeu4xYr36pcbUx717veJf/0n/5T+fEf/3G5++675Utf+pJ89KMfhe/+7b/9t+Xtb3+7vOUtb5HJyUn5rd/6rRu0F8o3G5Zlyac//WkZHR2VN73pTfK2t71Njhw5Ir/zO7+z6feq1ar85V/+pbzzne+Um2++WX7qp35Kfv7nf17e8Y53iIjIP/gH/0B+9Vd/Vf7Lf/kvcscdd8jDDz8sn/rUp/QXDUVEtu4/Xw8f//jH5bd/+7flzjvvlF//9V+X3/qt39ryV7lvdayUjQiKoiiKoiiKolwzlmXJH/zBHxgZbN/ufNv9oqEoiqIoiqIoyvVHHzQURVEURVEURRk633ZmcEVRFEVRFEUZJupEyEZ/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk6+qChKIqiKIqiKMrQ0QcNRVEURVEURVGGzjXNOpUkiVy6dEkqlYpYlnW9t0n5JiBNU2k2m7Jnzx6x7ev7vKr9T2F2sv+JaB9UEO1/yo1Gr8HKjWQ7/e+aHjQuXbok+/fvH8rGKd9anD9/Xvbt23dd16H9T7kaO9H/RLQPKtlo/1NuNHoNVm4k19L/rulBo1KpiIjI6FhZLHv1aTYNy/ghC+cPro2ZTzjTe6pQnz59FupOBzfH9QtY5xzcrtGSsY580cfNcnC7ojiAOgx6UCcBbncc4jqjoG+s03WbUB86moP6pltGoK6O4DLyRax9H9cpItLt4H6kMbWNi9vdDZagtqwQ6lyuYqxjZbkI9eOPLkN97vTA+pNUlmdX1vvG9eTKOr761aekXF7td3/4Z6/gZ8aPQJ13sR+IiNiC7ZqmCdQW9WFL8C83Fs+RnfWXHYv7PR23rZZBdZLw92NjlTYpIDshLuMrC3Wq21A3I1xmQu2y9iJuRxzhNoRU0+fjCPufFWXsB73k0+m9b3yjz0e9jnz+Ez+wI/1PZKMP/t6jL0qxvPpvP4fn+dfzlz7+zlbL4P4zjHnbt73dGevkV+hUkrmZGahffO5FqM+fOQ910MP+JCJSKuL4ZKUdqCemR6E+dNNRqPccvgnqfDGr71xbW7RbDXnX/Yd3vP8998j/kEp59cRIEh6/eNvNfdmqv/GYJzYeyMSiseGa+t9W66TrXepturRUwk3fv4ZNEHFpnddwHnLb2NQUSYLX8STGAa1UnNx6HVbML9A6Nt5vNlty+PXfvaPXYHdkTKy1a5xtYxt6NB5mXEUkP1mDOuW/hIchvY/9K1/I48c75v1Yv9GFujCO918xHZe4jtdD18f+1+3i8vKjZnvv2rMLt6GP95mdFo5VfhnHMj9HfT42Wy/o4b7WZxagNq7JdB9p5fGeMY7MdUQr1BZF/I4z0DZpHEv95eevqf9d04PGlRPCsi2x1x40Er6hoitL1k8pLp3cV5a1vgijxmXwMh3HvCF3aB38oJFa+H4S03Y6WKcJbYNj7pft4Ha7Hn7Gz2Gdy29R58x1GDectN38oJFwW9KAlbUOfs1xaWAdePtKF92Jn1GvrKNcLq936kIB70ILdNNQuFEPGka/H/KDRrL1g0ZKDxp+Ab/j5Om48k1/1oMGDXzGoGZv/qCROvSgwU8VImLH+B0nR+cVDZQiO9P/BtdTLFekVFn9g8nX86Bh3Ap+mzxotJotqPMFvtDSsU3Nm0n+jEX9NE/9o1jCMaJUpjGihH/4WltqxmtXZ6f7X6Vckurag0ZMDxr2MB40eBk35EHDHLvhbQk2ff8aNkHEpVufoTxo4DLNBw3846xl/FFKxLIifoHWYY6bO3kNtix7fbv5/syoM5Zj0z0bP2ik1Ke5/9l8D5lxD2jZm3+Ge2yyxeeN+9Cs+04Pj71D10vbwfdt6n/8feHzTERsF4897yefi5az+X4laUYf52O4yTK2cw+oZnBFURRFURRFUYbONf2icYVjd7nirv2V+9SL+HNSr4V/TWp3zKe+ep1W7tWgTlOUIAn9RMpPot1OR5h+iD8vWbwZ9KSYCEqn0hh/mksj/CtYHJpyrSjAZrw8g9swOo7Pc7t24U95xQK2pe+Zf7m9fA5lTPUl3Pfdu/Fn2UTwrye5Ij0NGw0jMlLDv9COTeDPeRfObfxV0kr+6n9J3S6246w/Uds2yezoFwzjJ1kRMf4WlPKvcvQXK/6bDP8FIOsHDfp1i//izH9F4EXY5t9b8POpedyWA/zMk0t4Hj2+hH8B7NJfKRz+JSfK+Is1vWT+0kd/oRH+ayv9hSaj7aIUt7NEPyd77kD/dE1pzU5gWRvdZLu/RmQvb3vL4PezftEYxq8cm29Dxmu0zoB+JVuhn+Qvnb8M9WsnUAoZdHBMFBEZqdJP9PQn5Tz94pHP4Tjr2CSrzdiRlF8zfoG8sm7jqzuC57rirf310463kk6Z8GdYJcAqg5TGhsQYRa/lVzzu4zhWpDwOG2Mcf98cA7fCOCN4lfxDTsb1w/jFiH6BjVO6nWKxhKHWMs9TVnUY7w9sg+Nsf7z5q+LZ3vpfvSP6xUbor/L5inmvZJEsKQlwzOcfeaIGjhv9Hn6eVQoiIhbJeNuX5qD283iP5/s4LgQhrsOljUp6plyruYD3Z4sXcZ02/fo9NoJjmR1gW86eR6mpiIhLsjGLlDO2x/tFv6LQNtj865mYkq7Uo+M12D8zfhG5GvqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkejXK2tz6jkFurwnkW6Nss39VsLy6gdd23UqR06Mg11qUz6MFpelDE7TpSg7qzXRz1dt0+eDItmMiFNGk83Z2XoIm1BbVyriZ954Tn0U0zvQf/ErdN7oT5/BqemFRE58XId6sVZXMe586RlDLGtfdIZFoqmtnF0HPc97+F0kdXqRneJ40TmxdRRX08SSSVZU9uyurBHPgXT65CxPNLYWvTczZrca1IG0ywZvBUpzxBF+uOENOE29fFOxsyOjzdWoH62SX2etJTcNmnIM1uZbccz3Fg0+4kV0RGhdfJkIpIxtV7Sw/W6PEPcwLmdJDfKo2ENzMCylZ4/a+aarTDmb6JVmD1q62VsBWvgaWnsMzIOpkhMs5Atk0/o0gX0ZJw9jdPZ+jSuHjq621jHsWM4V/trZy5C3Wk3oH71FfR9lMZwlim/kDG7Eev/v8GyyaI4lGhtqmjjOBgT2F3DrFPkdePxicejrecby1ovGyK45pLGGnOuNnMrjM24irdmjSTm2Z14I8y/wbJ/JyR/Qb+P10OHfGt8jhjrFNP7yJ6NwXMxyZjq/HqTpMn6ZrOfxynifRBPKysiEpG/wZhlitrIIh9STNPfZv6pfIvhj+/het0OvU8zLfH1kLdBRDodvK9kQ05K98dCHrQ63RtHdfPeqt/AdfgV9FwI33PTTKTs2ZCMGcxyEzhGtmi/3IEGT7ZxndFfNBRFURRFURRFGTr6oKEoiqIoiqIoytDRBw1FURRFURRFUYbOtjwaz3yltz6/tO+jfv/gTajtmpgysyA8StWeGEMdru9SvHyAWrgcJ8Pa5uY7PurWXJoz+fIczm/84ksvQt3toVbOcinLIyMaXmLS9EkN6jZp5p9+Bv0UrR7OXfzKS7PGKjoNSiFOMTfj8hxq6cIAj4cT4vd919TnzV9CfWR1BL0ku6cPr/87iiJ57QXUXV9vUtmQX/Zprmy7R3VG6ioLedmjwbpch5bhXMNzuWVvrtOPSdfIS+S6TfrQZ9ukBRWRp0m72efE2hj7X0QZB2mAbedwu4iIQ93FonMz7dF20Xbb5OFI+qbO1SJfR5+8T4N7cWMcGqu+nSveHWNe/a9Lz7+VzpU028Y6rkUny2PWVhu6+ftJpjcOO0hA/YPPtRyN9b2kDvXS/LyxjhdpbO5RHypUsVc0lhdxG6if86kqcu1ZKM4OJYIzzebKemq6aQnijIwMPyHlQ7ickM2eMR6vMlKRGfaOOMZ1mn0gnLmz+fKzErV5nVtnyWBfSNm3luFDimgMe+3MCai7XdThHzl0G9RhyMvM8rdQe3NS88AxbrbwPmInsGxr3TfC47VDnhHHMfcvZM0/+SX6XTpHfexvbo7S17sZbWgEmFD/cnGdLudNkLchobyeXBnHLhFOfBNJQ14nvt9eQB8u+y8yc1xouyz2VtrY/iFbNvq4EUFoXkXz5PvIp+jb7TQ2+jgn32+G/qKhKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtM/jE6KQ4a2awe+77Dnhv995dUDu2afZ0LTS89Np1qDs9NDclIYXrUfheJ8MY2+jiZ/KjaFofnZ6C+vV33wr1wiyaEFdWWlD3exk2VDLM2BYGQfUL+J36Am73U4/jOsSiIBYR8cjQ5HoY6FIuovm7UjyAiyTPVLeNxkoRkZDabvkyrsPyNoJt4m0Yga4HCQff2RSQk+HZZ/OuS6YwDpnjNrO3DE/LCsTC7YzJJM1BeDPUv15q4HE6tYKhZCIiQRePhRuRUTvC42oYtTmQKCOwT/hw0/FPyVjG5kyLzZoZRkjDM+rgedQNN9oyCm/U30gGpyTY3HCa7Re+lsC9zZZJfTDrM2xs3W5+39ZbYb5krAOPdxShUbbTwbGeg7iSwLx+sPmQT3GvSH0y4Xa4FjPutZm8r/VzwyZJovWwSh5/2KidNW9JknD/yfjQ4Ps0JvJ5n/0d3K7I2nzqhogmqwiCDtX4fpIRNBbTzrIRPk+TwnRaeM29fHkG6nbbNFr3Kez31LmnoU7pPqBYwGtysYgBxUaAn5iTiZiTmmy83+3uvBl89ZzKHlD6ZE536uYYHXfpPKfz3ilgH454QiCa7KfdMu8BebIA16MLCxnQvTweN5cM6J0OmcEL5v1ZTJ9JaeIAy8VrWUQTWdh8/5IxU4VD2xXQMvI5nFRIaJl8XcjlzNv/fpfak/qoP3DPlGQETl4N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7FncmI94OcgeTKmd03jh0mTKyIyf/Es1AfG9kI9dXgEapJoGwFL9eW6sY6zFy9AfXkBPReLl5/DzQxJn0crzXv4fr9talotwc/kcqjFtEmfHvewZp2i75lhhy6J5Mv5EtSV4hjUpQK2ZYl0ivlpDEsUEcl7qD0M+7jO+eXljffCUJ575lljGdcTSwbV4aRHTrkrZ+mvyddBWl9Dy85+ivRaYuK20G6zfllQj/zYXB3qi3OoJY4yvDUSk96T/n7AYXkWbSMHEaapqYFOSavJcneLww6pLdmLkmSsww7xNbtBOv6BYx73d16fLCKrxp01baplbTcIzwzkYq/Klkug72fJZFlWv23Yq2QEwZlfcRw8/xyXg91wQ1nvHvfwesHjnYjpkeJkty6FgdXrdag7HTzXwozAqpznG699I1GplqRSXh37TZ/ctXjIuKaAPvZWkXEqNcaKDC05BfOGIXoszl/A+4Bz509BXV9ZgLpHQY1RbPp3IrqG8o6OkVezTWPLpQsXoWZvpoiIn8M+nXi4nY6L1+RmC0PZqlW8L8gaA3l8MMIJB9vb2jo8cdikabpxXTQCban/ZXho2YsQkbfGd/EeJO5je7RXyK9jdgVjDI0Cuq74FCxIXs0+jSMO+Zr8jDG3Qf3JCMak8yhkT1pE7VAxfSDFCnow+sEKLQP3K0fek4TGuzRjHOfTOaXtCgbG6VQD+xRFURRFURRFuZHog4aiKIqiKIqiKENHHzQURVEURVEURRk62/JoLCwvr+dovHbmZXjPdlCjdtOhfcb3944dhvrQHvQJFMZRwxhYqAHzyEMQZGhsqyMnoXaeewHqtH0J6vMLqKOcX1yEmiIJJInNJmN9aOCyzhJ1iawJtMnj4ds457eIyBjpO4sF/Mz46DjUe3btgbri4zokMNvOJi0ia5gbKxtaWZ7veycYkMcbUQ8B+S3crCwIY0p40hgm7OHAt7eac15ERCJ+dsd1NDuYTXL61a9CfeHUS1D7Ifb5mw+Y59XlWezTjRWaz5x0sfbEQagTvwy16T0QI7SAm5e9Ai41Nr+fNbW+leCLQR3PTdvZ6PMxzbW/U9iy8dcZzmW5NqhdOPNiq6+zhvYaNoE9OaaKGfuskRHBxy7DpGGRl61Sxj5VpLnnkxg9Gf0unhdRhn7doU7k5dBPwbkZPC6z/yDLEPONnqMhlrvum7A4EyNlf4X5dc6XMC0W7M/hhbBfx+yxjeYy1E89/STUX3n6S1Bfnj0HdRjj+FUsOfQ+5QKJ6SuLSK8+Th4Nh8bVlPKL9lHelogRlyUX6/idKEHN/HMvfx7q/QfQk3r44G3GOiTdwncx0O/MY3P9scQWa228sGy+j8HtKdN1RUQkJJ9j0MVxoLdMvg7qXl6ePUMZ1yo+N2PyWnZwnYFNGVDR5uNM1rjhkAeWfSHsD3PYX0NjW6mCfh8RkYiuyznarog9GC1cJ1+D46yAJbqg8JA52LZpcu1joP6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dFoy0Z6wbOvYYbCXOsE1J0AdeAiIgVBzezly+grOHLzHVCXxzGro1TFz+fyVWMdt958N27HHIrMLryA+lE/xvyJsQrmT/g0r7o5d7mZ59Hrod64WES9Xb6M6ygUMTdjpGru1wh5NEarqH/ctxvbiqexX6mj96TZNXMIcjaKUC+cR+3/i69s+HKy2mEniQw9MulFjXn8RSzq7gHpESnGQWLSdvKc8akhYBQR8opY9Jm5Dr6/2MJjP0nbWCihF+e7H7rJWOWf/hnOM9+4jN6GpIPaYWsCvVFWgTSoboYGn/TAvF9C+lDW6xqugMg0aaTkh4pcXEc04HeJrRvT/2yx1ueLZ3n6ten2uU+RZn4Lz4bhybgmq9TmH2KfCB/9LWT8mS+xXrhH3qTOCvbJ9hKOy26GT8ixcMzzXRxHPfKO+JTt4bmU9ZEVCLIFVw7xjbJoiNjrWRYJ69MNzb7ZhilnHRjZJORTo+87Dn5+cWlBmD/5kz+C+rEnvgB1o4vXItdHzXy+iGstjOC1r5ARHhNQbFfUx2tZSsE+Tg7167v24DX3tuNmztRipwH1yknqTx72+WaAfrsnv/a/oB4bmzTWMVpBH4eZtWFd5d87RSobvYLGZzrnl5fwHF/9BmVYUJ8N+8aIhyUf+4wwCPbOGTlAnMFFfgpu1ZiuVXm/KIzjoLckpYuDQ9tpO1vkDHXMDJKQsqxsvhjQPRl71ixaZxJnjLHkNXG9q4+RGTa6q6K/aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGjDxqKoiiKoiiKogydbXk0VuYWxV7TcLo5FEWWKeOi1zP1eQ7FQ7w2U4d6+jB6MCZKqB1386RBExJmiohlox/i2M2otTx/CrWY3gV81hoZx5wC20cNfbtHQnIRqY+hvrjVQI18qYj7kWdPBs057xv6PZGgh5q9MWrvnI+NG5OWMe/hOuOc2XYhZWssN1GTmh+Y2znK0NjvJEGI+sSgg3U7Q8PfJt3jShs/041IcxrQ/Nu0SNbTi4iktF6e257nSc/vOwp17XAN6uaps1DbNh53EZFoEpcRjdJc483noA6aLVxACY+llRHOkJKulb0oSR/7k0fZHbzEJMoQeNIyYjq/rYE+n7Aoe4ewrEGd/jA00qSjNXI2SFNv5JmYfTAhbW6ccJ9knTNvA2LuZ1b/wHF0fmYW6tmLl6FuraCvKDSOvdk/mnV8zabtcIx55XGsNtaRMYZRVMIN9GJ8PXBGhvl3RHPue/4OZ0Dh+90eevseeeQvjHV86bFHoF5p4fVQyHtVKmGrFyv4foEk8YWcmTEwP4ueizDE693lJRz7b7oX93PkAPaVaGTeWEfo4j3N5AFsm5ESeoaKHnpLOsvoZ1lewnNCRGS0SjlJOx9XtSmWZa37IQ1/GedwZWR1OeSbimlA45wX9h1xJlSc4TMwxjPjJN68UY136QUjA0NEfPJ/9cjnyBk+hn+CPt/vZ2TF0G4k/DsBtR17MPhaYTsZ4wP7ulK+B9oYg9Pk2k0a+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR8PpResejZygcLK/hPqwlXlTOzd6GOeI7tiom3RzqKskyaNYDmrL08TUytmkga9Nof7zOx++BepXnz0DdY9yDho0/3uzhbWIiNtBfedoiuu0mrifAWVY2A77KczD4ka4jgJpmFOeQ9lHLb8jqF9OQ1N83Kf5pEfG0DNTGBtd/3cQBPKlxx83lnE9SdMNyWCH/BPtEDWNrb6p4W+08TPtLi6j18f9Dw2N4+aZByIiQvP/s+bZJt30xBjpzMlbs7RYhzoKTF2kRbahpIt6ZSfCWtp0HlEflzzlaqx+CivWZybcFqTtJC0ua1ZFRByOBYhZx3rVxe8cAyYN1v4a3ocMtpgl3niBvSy9Dvbh+Vkzx2BpETXxrRaONzHNdx/T/Ozsv3FIy8vZQiIifg7HmxPPYYbAyecwZymk/WC9dxCZXrigj/02oraxPBx3R3u4jm6HdPyBuY7CFp6MK54Z9s58I5Ll0eAxzJSvc84LtvGTT34Z6i988XPGOtod9CyOjKB/sDyC1/lyFdfp5nA8csj31lg2M6AkpqwE2s9SAfvGvgPYX/0qngOBg/5EEZGp3ei5OHzgMNRlH/2f3Qbu1xxdT4pFXF4231j9bHCPbPJL2OSnSDMMTgln9tAyjHAGm30gW3g6MuCsDsnKvxrAHNepbxl5NSKOTb5Iw5OBtUM5X5y7YWVk/Bg5XsY1efPrj2P4X8zP8DLizcIyruF6dwX9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1tm8GTACBnF+FXyl8qZ06ZpOokpgCtFk1iziYatJMF1WF5K76PJWkQktchg7uMy9h3ZBfX41CjUM+cxlOf0Kxjck/ZMB81yE02HTorGslIJ99OaQNNYZQzrqEfmXRER8i32QmzfYHkR6mJtDGqbjJL5Kq5TRCRso0FplAxLvWBjP7MCZXYSNq43I+xbnY4ZFtSlgL5+F+ugj98JyWBP3uRM869NRjL2Z6Vk9rbH0Fjbb+CJ1FhGU+L8LBotRURS6gs2mWaNlDeajMBdmIM62j1troNqm4yNFu2ow0E/12AGt/g1CnxKB4O+tjD03QiuyRxuvEYmaDIoL87ieX3i2Rehfu7JZ4xVnD15BupuE/tHwgF+ZAZPEjyXbAqoclzzsuH4fD3APsbGa48M5onFQV4cnScS07jK4V8cVMjm726bzeAZga9bHB9r7UwwP7dDWNY1B0XycRPJOm2wTV0Pl/3sc89C/cef+V9QL2aEzvk5bJtiCY91sYi152B/LFGgbRJj33EofFZExLfwWOZHadINus5P0oQrIwW8HtZqE8Y6XBvXa1k4ToYdvM53l/EaOVbEZY7XDhrr4IDXzSaYuJbJJ4aN4zrrRmWLjdp0bcv0sZPpmUPjjAA+zo/bYoIWERGP7nXM0NyM7RrAHMfpmPCNgIjkeYIMGlp8nybjYQ88mb+zJprhgNKYE4S3MIPz+GjbGbf/Rirg1SfA4WbdDP1FQ1EURVEURVGUoaMPGoqiKIqiKIqiDB190FAURVEURVEUZehsy6MRp7YkayFAaUTPKCHWc/Omf6LXw3CpamUS6icev4Dvj2OgzbHb9kDt+hk63hiDeMKANLYJvp9S0JRfxiYpl1AHNx+S/l1E7AjFai5LY13UxtXIkzG+B9shDEx/y+IiarX7FFCX1FG73+ugSDAkDWCzY/pAul1cb0yCXndgx260RN5JUFtsk0fD6pj9T5r4mbiL2t+IdOQclmaz1DMjuCdx8ODHrIt0cZk+aTE7dJx7pHX/i888ZqwzclD/meuTFj0mfSiFHfp5PI+iDN2rxJsHELHwNZHNPRxZGndub4u8A25+4Dtb6FG/YeHQR9qPmQszUD/71a9B/bk//lOoF8+ZGvk+hYq6LgWIGiFt5NlIOEyPvBAZTc8enJSCK30KgSyXOawMNyqKcsLEAb5WquAybPJsdGiM6/dpfMsIBbSNfsm68yuBfd8M/S9D500aeYeuTecvvAb1Zz/7v6FeXEQ/l58zx4rKCPa3cgXHxJEK9gWf/D2lIr5fq2Fyb79hHre5hYtQ796D35kYx9oPsfZa6J9wHNOjUfSwv4U2X7dxu3t1DM48fPRuqPMeJRKLSJhin/16QkGvJ3Ecr4/dNnky+LJhZ2xqSsGKYYjXZGP36LrD57iYNiSDhMOM6X0Ox2Pvg+3huBNlHAM/j5+xXfaPkZ+C+jxfD20/I4yavpPn6zbtGeVAS9giz6NjhvGVqiWo4wDbf9DHyu26GfqLhqIoiqIoiqIoQ0cfNBRFURRFURRFGTr6oKEoiqIoiqIoytDZlkfD9nJi26vaMccmr4OFeq0wMXMM+qSjj1PydVxG/d6jnz8NdbuPurWp6SljHTkLt2u8jDrKU6+8BPUrr6IvZKyEORsS1KDsdlFDLSLSpUyRvoe6toUm+ieWz2HbtCLU4Z85hzpZEZHXXsPX9uzeD/Xh/cegDlZQ63mujvkgy21cp4ipubPJg1Ad0ESztnInsGRDyc1a1YDmxO9FZs5Hn7TnMS3DOBlIu5kY2RCmRtGm13KktUxIJ964gMel227i58nrsNzI8J5YuF8WzdmdTGCfdvKkwzT0pKYBh+crZ52/bUy/bYSO4PeNNWS8Rjk63oDo1L5BHo3BPshci346pjnYO23sDyeePQH1k49+GeoLlJGRBqZe3aW/H1kpfob9MimN1XFM/cnhY29641zqAI7HemLMGCgW2YNB+TMJzUsvInFcpO3A/YjI48NZP1GI7cD7vbZm2izD0JL9uW8AuP9ZlrmN/FqjhZ6wP/nsH0L9yknMbeH9LhTN41QsY5uNT5ShHqUMp5yPxzWfx8/X6PP16LyxzhHy/IxXMKOi6GCOhidYF3KYiWElZs5U1MF9DW08D7p97F/FHI6ze3eT7yM1z92tsAeuSba9838ntsUSa+1cZf+IW8L2ibPGJuov+TJmk7geZ6lRNs4cXh+dDD+hS77bNKLrNnlq+Tqfy+E2xX2613DM/RolH1ElHYe6Pl/Hzx/B+9Im5WN5xvgoUhjBPslnt8tZVTQe5mrUVhl5SAn5PHLkObW7G2NqEmWNn9noLxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1sejepoXuw1zVZIfovqCD6z5IvmM4xLE/v6edSQdSij4rWzqFtrdtFXMD2FOjcRkcP7j0JtHULtZj9ArXCthNrM/bvx+415mnvdPmus086jds5ycDsb8zjXfRCjxm+c9H0jpFEVEZkex+10PNQRNkLU5124jJklJ8+eg7ofmjpDnj+atfoj1ZGBz167Pu96EPZw27od3PZeaOqTQ9LH8/6lrHHkLIgSni65PGqLRUTcAvZ7x0NdZJu0mJdpfm3Lpb6UQy2xOKY+3spRTgZpTFMPdZYOaYkt8pVkZQQYZzPPoU4fMNIIDKm7uQ5DUk5ek+roRntHO28REpHV/bqy5Vt5MlhfLCLSoayac2fQI/bqC69Aff5V9KmldOzsrDwHC8/NKKT500M+z/F97vd+AfXCjmOO7dwUOfJoFChHo5DbPJuDvSwiIjH5QFgDntCc73EP92tpFnMNmiuo9xYRSffROc+OnHVd+jeCR4i3gfwXzbrx/Sb5BV88gTktZ06jF9Chk9Jx8diXSxlachx+xKO+wLkuro3jqB3jAtrkNxyt4jVcRCRvox/CDtEPYdl4/cxXcFxNbbzm2jnU2IuI5By8l0iCBtRhA9t2zz5cp1cgj2DG33ktCoZgi9CgL8I2/EPXn5Fje9YzInLkUWFfbpaG36tgf8mV8Fh7lI3G51+rgMfAc83+x9kwnBMUBrhdvI5iFfuCk9AxMS/B0vcoK42y0fYcQE9tmGCfHnGx/3ZCM0stn8e2suhcjOnaEArud75AGV+peftfoDwQi+5f4spG28VhKKZjORv9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXobM+jMRat698cF3Vud917AOo9+02fwRxpZBdmZ6GOyD/h51C72Wxh5kDeNzc/3I3at04f5wkfnUKt8E033YzvVzCb4+LZOtS7LqHuUkSk10aPhUcaQUMKF+B+jBVQnzdVxeWJiOwhj0YjQP3dYhePx6XZOfx8E/0vWXNw82spCac7nY22ZT/HTjCojw8DzJOI+1inXewHIiJhl77jox4xIe2vk0dNo0d1xOERItIXzuog3WqIOt7IwT6eBthZnDJqhaOMPw0klHPgks6V/RM8V7bLfSHNmH8/QVMEa/ItWobN2naa0zuOMvpPTOslLXexunG8ov7O9z+RzXM0WDLPuQ4iIo1l1HW//Dzm+sycRi9Vlz5vGeddRuaJcFtTpozhHUk3qUwPhySmvyslE05Ic9cnKR5LP+dQTdkvGVkuvQ72wSblZCTUf4Iubue5185AvffgPmMdR28+ArVD8/pbazlSV+8E1xfHssVZyzey6SScmb0E9WNPPGp8/5VXsb81lnE86neprwRYFyp4nHzb9KnxEJXLoa4+7+OY5qX4vtC53e7OQ132zOyOA7sPQx310IPRowwMzoKplOkanqdtErMPN5ZoTKRTc2KKxm4aVy0ry6OBn7GpNZ2Baw5n1+wE0wen1s+JKmXjdCM833Juhp+QcqVC8ouxnydPnoFerUbLM+8BXR/bxaZ2ShOs+yH2cdvGZR4cxRyq43vvMtb55Re+BPUDd78B6noX70O/9NyTUBem2bNmXjtCOt89B79js8+NukeugMcrDjI8NOQ7tajtBjOYwn4gzxpLyEZ/0VAURVEURVEUZejog4aiKIqiKIqiKENHHzQURVEURVEURRk62/Jo+H4g7trcvWMTqPfavRsXNTpGWk8RyeXwuebI4T1QB33MEGg1UHR24Sz6Dro9zKsQEVmu48y+ExOoMSuVcRvmGjiPfauP2k5/ZAzq178JtaAiIvUl3NflJfRD5Mdx/uNkGbW0UasO9cIl1KSKiPT7qAe1S6gp5Smri0XUpI6MoOaUNdVZhJS1kaWb3lk2XBpJhB4MK61D7cfoxxARscvohXF3YRv26Wzok++j38XjGvXNPm6xJ4M0p16Ay/CoSdOU+koBda62xQp6868FrkvzZfPnaW5ssanzWBn+h8Smj+B3XJrT/Urezvo2GJpTsy9xPAN7S4oD2x0mN0gkP9AHjWgQeiXomf1jaR61uqdOvAz18hye+0nI3hhsx5T9EyIixmuUo0HvbhEHInGI50GSZPQPmlO/1yM9Mc0zH/Tx+sF5DJZt6vAT8ryk1LMj6pNJgMdjcR6zhepL6BkUEelTzknBxfN3PcfgBmQYiKxq9K/o9JeXsS/9xZ//GdRPPPUF4/tLdexfHnmrcnTejo/icbEpVyPOGANL4+hNKOVwnC34WLspHut2D4/TSgO3OQhwG0VErASv07undkNdLOC9RUQ6fO5bYd+8frRo/J+fx/uRqSn0pRbIw8DXaDsrj4bzieh9e8DXkWZ4PK43e/dNi7fmp2L9/jh5A13X3D6HfQUWHst+gOdfSle33XvRQ5uEZl9oJnhfyH3WcrBPT1P/9Gksu9jDvJ2Oaf+UH/y+H4I6ncU++/vnvgr13v1472tRxpztmfuVUB6SQx6YkPxUnFez7i+7so3siRSRgDwznRYeD+x/xteviv6ioSiKoiiKoijK0NEHDUVRFEVRFEVRho4+aCiKoiiKoiiKMnS25dG48+7q+vznlQrq3IpF1C/GEWqLRUTyNP/1WA19A46P+ruXXkQvQxyzztcUFy8u4rzgu3ahTq1Qxl12LfQh9PuoD+31cF7h+oqpa2uRZq9Oc5GfOoNz45fp+W6StJylMur0RUSKBXwt9LD9u7TMaoRek8TBdmDtnYhIRCJSl/TJhYFtiKJIThpLuL4MZhj4gsft0G7U4Nbu2m98/09OoaY56NShjmne/ZQ8KpwN4bmmSNEl7W9KbZjyvPwO5QfQ9x1DR2n2v5RF9jRfe6WE3pTJMewbl86/BrWfzxgWPMpYoewOm/S4nMliUZiMneH3cagPp7TMXLqhMbVTU8O6IwyGuWxhdui2TTHv8gL2wflLl/E7LfadkWab/DOW4cDJeG1LU8bmJo00prE8K2eFNMas/+1TUzQWMUvIs7B/cK6GiEhC+mGfdMyc7ROQv6VL4upuxxwDQ9JB5+l9i/6700RRKNHauPTMU6j7fuorODd/u4PachGRUhHHnzxFHbDH7MhhHEdXlvC4dU0rg5Q9HG/KLmVUONiqjRX0OizV8XrpF3AcCCOz9c+ex3uFXA418Pv3YRZC6uJ1vUu5VElk9o3Feby3qC+jH3RqAnNZYs5noNutKMMclbJWn8IRBq9B8Q3ohZXRivhr2Raux9kkNAakpn+sH+A1lU5p8XLk1RI8x9907PuhLvXrxjpe6b8KdbOBx+07PfQQTTTxWHs57J9Lew5BvZy/1VjnnUdvgvozF/87buf4BNQp+dxy5HdxPfMaHNE9tUV+l7SA99N9Gss46yprFPPyOG67tI7SwD1g0Ms4+a+C/qKhKIqiKIqiKMrQ0QcNRVEURVEURVGGjj5oKIqiKIqiKIoydPRBQ1EURVEURVGUobM9M/g9jhSKq1+xbDII2puHQomIuBaaxArktFteQfMaG7tdF81HHP6y+iKtk4xkPnrAxOqiQdCjEJwzZzFQ65lnTQt0j8KnSkU0ni0sogH0/BKaaKwDR6DeNYLmORGRgIORyIxrWRTsVkBTVbmKn8/7bHMU6dM62Kvm+xvLjMgovdPkQjTNHpzGvjBrmUFSDQpYkoiNtth5HA5EopCuODB7ecwm6R72L7uBdVTBDhnbZEAnk2JWUBhbcx0yffW6eK4utLDuhLjMlNcpIpJwWBruu0XGMjYxxmT+TjPM4BwCaMW4zE5/4/2wnxFUtwNYaSrW2olhpWx+xM/2OqZZrllv4Gca2I9jNvAZqYAUPpUxOYC1hbnb/DzD3996nS6FYiXUGAmNF12ajKLp4Nif44uDiNgURFmiCTLY7JhQ+/N5wZNdZL1mGwfgxtrBm/VlkWh1bHv2a8/Ae70u9qUkMsdoizz242MUVubgeT41hRNHCJ2TSWSOswUHg+uKZAbniSEuXMDJKNpdMllPTUNdKmEtIjI2ggF9lVEM8HPzPOkGXh896tPNpjmRw+IcTtzAE+IEAbb/7Cwa1PfuPgZ1lDGpgjlvw2bn4s4H6CZRIPGaGZ8D+apVDgU2t69H9xg2hee5Lt23OHgcVy7hNfzEM58x1nHsAIU1LuIEP36Nrn8pbtP+Kt6/OXSfcJmWJyJy+jyeF9NHJqEunMB7QJuM8iGFqno5mqVBROwQt4OvL0mKbceTuvgFnojGHMPiBMfl0VGaRGHgXqHvqhlcURRFURRFUZQbiD5oKIqiKIqiKIoydPRBQ1EURVEURVGUobMtj0a33pG0v6qTLY2hri2KSIOdYoCaiEhCjzXjZdTcFvIYpJK7D0NOFhYwFHBmdt5YR65CevM8acdLqIm3Elxmn3Suo5P4+e988PXGOmcvoxa2tYLa4VruANTRHOqRozaGIEURh3aJWHlqPPYCRBRMSDpZ18d1Jhn6PMqKk1aLNHiD+tzkRkVWreI7qGlstbANn6mb+uSEfAGs2U5Jdx2R38dhBW2GlcEin4f0UfMY1lF/nFZRvxwL6Shp+Wlq/m0g5aAk0pX3KCSpQ3p5l3TacZKh8Y/xOyTJl9Sm89/l/ortkmS1HfVJl+rOQJmR2bUjWFa6HkxlUSOwZ6PXNUO/mnUcbwIK9+Q+KhTkZNGxSTM6YZpyYJ/Ri3CZxhK4j1EYI3uXxPSS+B5rr1Ej77nYz8MAz+ckMdvOoRCrHIV7pTQmuT6uc3o3BsJOTOH1RUSkUMTx3rax397owL5TJ1+RUnHVv3LxAgbb2TQOeK4ZammxV4pOpNooejJyeRwb8kU89vmM0MOcj15Mz8LrId8rdLvkWwpwmVGMfeXoTfca6xwdxWNbLaO2XyzsKz3yobVJ737qVQx9ExFZXlzC7Th8HGrPxz48Rx6NShHb1mbDqGQE9rEvMNro092OeZ9wvYn7sdjW6n7mRvC4lCp4z5FG5thUKeNnPI/DibF/OSHWizN4/WwGpk/gyZNnoB6la9NYCf1fVWrj3cfxuH7xEh7X+Tb2AxGR3R56GW6bOgz1awsXoY7pAtim/SjR2CYikiYUdEmBwVGC42Onjf2jWMVlxo55j9RnXxf5V5yBwGEn4/heDf1FQ1EURVEURVGUoaMPGoqiKIqiKIqiDB190FAURVEURVEUZehsy6OxvJJIrr+qC/NpDumY5kxOkqw5ylFTFlAWwmgRtZrVvThfdkKSxJUMobcfoi63v4S1NYk6N5u0w+KihnpkDHWUhTzOFS0icugQ6Q5t1IsWXazPPPEK1M8+8VXcJhbAi4hbwHW0SZrI3/B81OeyhyPMyICwSQ9ZLFLuibuhpwxDylHZCdJ0PawgIl3lUg/7WzMxtZsutYmQ3yEhLbt11Tn017BNpTbP5e/QcYvp2Kako7TK2B/TGNvZskztJq1SLNLtx7Rftke6X85myMhIsUlDz/O7p7RfbpH2gzcyw78gPdxX1yfN6YCuOsrK+tgBLBnsBZvnTQQ9M2Og3SbPToTtWqrgOeeT3j2iufpby6ZeuE/ZQDa1/fg06omLFRrTaLdWFnAd3baZMRDHeDwKBTz+uTyOo67h0cDztdc3+wfrmv0cLtMhXXNxFH2Ct97+OqgPHj5krMPzcRmcD3PF72IZvped4fOf+wvJrZ0XiwvoUUwSPG+dnLmNOfLOBHQo7QT7Qq+H18tcCcczv1031uFSnx0ZQe9ls4XXeY+8N26Kun3Xw++XynuNdToOrjOg6123i/1rbgm34eQrmI918sQJYx1CffzwQbyuT+3Ctgv6eC/x9NOPQZ0lcbfommI7eO4OXpM6XXN8ud7ccfMtki+uHp9cAY9boUD+14w/YzsWfofvW/g60mqQF1PwGtEOzTyl8RH054zk8bo/WsVxod1B/2pIt64O+ZYkNe8BkwRPpGoe+8b4KH7Hodyzfp+y1TK8d5yPNEHjdkwhcv1On97HtopT8x4ucvHcc8hrGfU3jo/DputN0F80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NEHDUVRFEVRFEVRhs62PBpnz4tckbCmHmoiGw3U8Zbypj50927UlCV9ytGoocY07i5DHZFuN+qaWmFHUCeYt2gecBs1pylpO1utBag7TaybrTljnYUc7lfewbZI3Vmox/Zi2+y/BTWAzYbp0Ygtmt+9i3o7J8bv2Anq77rcdlGGD8TF7sAejaK3sQ1BsPP60EF48zsd3N/QQQ2kiIiTR41jHOBnbNI0uwnNoU/a9Sgx9aExCVMTF/WgTnUP1hEuNCHdbUi5C1aKtYiIZaGeM0eZFU5Iek/KYrDz2A5pz/RoOFt4IhKPtMTLlNsS4zrdltl/DM1oSn0+HRv4943RyCdBS5Jgdd2JoA+BfQoh5QOIiMSk23Zp3vzxcRwLxkZRE98lffuFwNTZcnrC5DRq3N/w3d8F9YGbjkBNlh159stPQ/3K86Z+/cK5C1AnlOVh0cnjk1+KMzCCwOyDPC98SPrs8dIk1Af2YX3bLfuhnp40cwySfh1fIJ+Wtfa3uaRnHtudIAwDsdeU7b6H521MGRmeZ46BPmmw834N6m4LrwH9Pl4vLfLFpHbGdYDG3oS8cA5lDXFWxEgVNfZlOq4OjamrC8Ht7NIYtkTj6Kuvvgb1ubNn8fsZHrKlObz2P/7YE1Dfdz96gKo19MN0u3WolxfNPpREm3vhOgPb1eub58j15sDBcSmuZZHlHMrKYTtTRlYXn+dC1w22UUaUizbl4BgwMvJGYx0J5avlly9D3SP75siBm6DuenTdqeB5dfkUZnmIiLzhGGaltSmfrVbAtnLIK5WOYP91Mn4CSGhMNDyl7Ochf1lMdWp4DFe/hdtBmVzdjetNt2Xef18N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7GwMLU+5/WlGdQrNldQkz01gVpQEZGLp9GrcNfdqEubGsW6TRpnt4y6t9F9uE4RET+Py/BHcBe7pKO2bRQF+nnUh7o0V7AjFOYhIr5LWQcJzW1vo+5y7Cjq9K3KQahfeWbRWMfsedzu/gpqYy3SwVZJEx2y1jhDv+vYrJtGbWJ7QCN9I3I0kjSVZE2zGpA+cGkJ+1Yyjd4cEZG33oWek6SB7fzopRrUYYQafPZkWKTRFxFxI5oPm/I8EvK92ILnSdLAzzuUu8CaXRFDRi7ikAg1xnOA/VUpaT1TY4EiEc94zpsR4Ptxn85N8oVIhsfCTmme7xCX2Q+sgfdujEdDGqdFktX2S8nTFLOvoHHK+HrZwj5381HUm09PT0CdJ//M6ZM4tviu6bWqTKCv48EHj0P9+ntx/Bmbxv6wtITn1nOC424/MMdA18PtyJEfyvU5ZwnbyvNx/PJCdpqI2DSm5Vysd03g2H/8aA3q8RJeT/z+aWMdidGvruLRaJltsBOM1EYk76/2idIC+SSb2Ka+b45PK3Sd7nexDR2b5uaP8TgklA1ju+Zxslw8Dr0Q1xHRWGDRNbZI+Tm7JrE/T+2iXAMR6fVwmY069reFBTz2EWf2kG8kjs1x9sDBw1CX8njuXqD7m0KJvCg2blNnxexDZG2SGmc4DOQaWPHOezQs6a6fET3KJimQ3yLomWNTsYB91mGfR4r9yyGv7/69mE8xOW3mSr36CHp7y0UcU5cpb2fsAC7z1R6eI226HvrhJWOdpfwdUM/18DOlAp0DQhkXEY0zqfkbgOfxPR15TsmXm6P8pJyN40GW7TIK+V4Wt2u0uHE9ymVk5V0N/UVDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLo7F3113ir+nbWk2cm9gKcB7q+QuoVxQROf8yvjbzWh3qpx5DzezUXtT4Te5DURlFYIiISI7m3O6S1nK5jRrpMfp8MYe6yn4fv9/LmF877KKurZhH3X2lihvajXAZloefL5VN/0TORT1kyaIMhzbqNWsj6FGwqvhMudQmHb+INFq4H40G6lq7nQ1NaRSZGRLXn1SumAN6HdSRN1t1qONRU7v51+9Cbbq88lUoHz95COpeWoPaJl1vuvSKsY5kCTMGEtI8JqR5dKbvx2XSHN5piOeMFWblaJC+2MbsF3FQS2w55BEKsb9ZsSneTClcgXMShDT3KelFLfp8nOE1EcqCsdrYFuHpjX2PwxuT41KUrhTX/j5j0diSBOQhK5jn2C1HUG9+x62oH+axolFHHfel13CcLRdNHf4U+ZPuv/8Y1LunUUNv09jSt3B88khPXDRPLfFpnbffcTPUYYTjz4nnUcPM/StLo1zM4XaP1bA+uBf7+S1HUN9eclB7bffMsdyAu+maXtvKyHDaEWx79f8iUhnB/Vuuk/8iI4ukWMKDl5DvrBvhMmZmL0IdUoBRoWB6MfvkrWr3yV9IGTpxitsUU7ZQfRmv2e3WirHOTgfXef4cekgvnKP+FmHbzM7g/czSEvksRcRz8Vy7eAnzFIIunv8J5QLt2oXnum2bt1/dDp6L8wu4r1NT0xvr23mLhiTtUJK128Zun/yHPt232Bn3MQXc5yTi+y08J4MQ6+lxHD8Xz5t94eUzeP2bnsCxqejhOpdX6lB7lO82dhAzMr7/e95irLMTYXaHm/C1gPabzzsbD2aQcXvFGSM5yuzq0xhKFiFJU2xLN6P/WT6HoZCneeBaEIrmaCiKoiiKoiiKcgPRBw1FURRFURRFUYaOPmgoiqIoiqIoijJ09EFDURRFURRFUZShsy0zeKvZEa+/6lJpLKHRKaLAHN8xn2H8AoYBdZbRLPRaHc0qeTKuTe7F5eXIHCgikib4HTZcFUpsIj1P32cHDRqeXNc0yiYUamT7Bappvxdxv9vz2JZOaBpl84JmoYKD+9Ejg3l7AZfZCvDzi0tm2GF9Bb/T7GDdTzbMP3GSkfZynUnT1f+LiCScH0fb4+dNx+rCPLbBucexTeM6GeqL6MhqzaDRu3f+T8yNjNCIxuZvIZNrFKLZ19v9Zqidkf1Q24E5yYJTQpNi3hmHOoz5XMTP2xTsY5wDIsLBZZwSmNpY2w69T/03q/9YFEDkUCCenWycNzGb0XcIx7LFXTPhxQn2pzDEyROqVXMbC0UcG/IUMGqR+zjoUQibi+06UjNnxJiYxPGmUqXQtbhPNR7/PPnLb38dDrxWahrxX3zhDG7XCI/DWC9M4TbOz2HbcZCqiMjEOJqf7/sONLnf/fojUB8+vBtqI6M0I/MxyZqkYPAra/3ec25M/4viSKK1VScUdNclQ3SjYQbC7dpTg7pUwv7Y69ehvnwZ+5/johm31zODW12XJpdIsC54FCCaYh9eXsa+sFJHQ3oUPWGs07HxPHr5BE4sU6dJFeoNNHtfvoxm8YQvMCIShNgW42Xc7lIBT5ycywHEfC9hXqMcH7+TL+E63IF7HucG/J240e5KuHaOpDRpyNwitmmpZAYrlgv4WkiTerRokho7xXEgopDd6m5zMoLiLnzt5BnsC9//4Bvx8xX8vGXTNvh4H+DnzL7Rb2Mf92n8ylHYnm3RhBwW3o+Fken050DlAgXwVeh66VBAJHeXJDVv/8MYz+eYrttJtHHM7Yx74auhv2goiqIoiqIoijJ09EFDURRFURRFUZShow8aiqIoiqIoiqIMnW15NGYvz4m7JnTtd1HzuLSEATm2mEEqk2MYjlcqY5BK4mDISUSBJK02BjItNUyNWK+/DPWeg6iv69uk5U/Q2xCRjtJxUBdXKtaMdfrOGNQrM6jXm7uEOreIvACdBdQpdpfMULagidsdxCgw7qUUQLSAWv75JdaommFiK53NfR3RgCYvS8N6vbEsa10jHfVx2+w2bo+7iAFMIiK//sfYJosX8dgGfdQCy8IZqr8AZS6lYDwRiWwMmRMKeXJjCs3pY+if056C2ircBrWfJ6OSiEgRzyuL/FEehQOlpMPk8D07Q7uZklbWEtJms2bdI/8U6+FDM5HIppdS0kTHA2FhcWQG1e0MgVwZNm2bzo+4DrXlmIFGHo0/iaA2l6W5vR6+H4S4DscxNfKeh+d2lKCuOQjZ24YHJxE8lw4exs8nKXqARERW6jjuXjiHwYLs0aiNoNa/Wcc+Oz5m6rtvex0GZ33Xm+6Aeno3LlMsPD5BSG2f4fNJZfNx7cr40w+vIezvOpCEPYmt1f7XaeKYnkZ4HMOu6XNZIe+eneB5FEbs68DPF4qoNY/75nUkCfC17gqeByPVGtTNOp74IQX2lUt4PT398kljnYUcBbnNoOeivoLXVDePyxyr4b0Ih9WKiNjUN0rkIWWPBtnYpEh+mHzB9Fd5Xo5q3E57YGy3M3yw15u55Zbke6vHKxXyplKdFzOwb6GD/cui+6s+XQM8ej8J6D4oMsfY/Ch+Z6RJbThC12ifPIvkp2hSiKCfM9fZTnCcnm/ivYHvkg+O/MUxhdW2e6ZHo0kBo76DjRWTT7dWwT7t5fC6HlvmfiQWeTTIUzrY+uaV5+roLxqKoiiKoiiKogwdfdBQFEVRFEVRFGXo6IOGoiiKoiiKoihDZ1sejXNnXxF7TTPneaiDiwX1Xn7O1L8utNDH0Wqijr6IFgwpTu+ButBEbZ2TJdPOob5url7HdYb4bDWaQ92kQzpDi4TjnC0hIpLzUE/Xa2OzPvvVZ6FeuYjbUHFRj+xk+R8i3A7Hxe1sB/j+DHlNFptY83zVIiIRrZdsIGI7A/tl3ViPhu3j/rcot6GT4XMha4yEJFHMd7ENg+Y5qKM26n7FNudB33P8e6HetQ89FudeQZ/HwpnP4wIWX4MyN4pZAP2lGWOdSYrb6TioSU3Zo5Gydvvr+XsDHn+L2t+hufQlpb6VmB6NhAwKqY8aZn8gEyeOzSyHncCSRKy1ffc8HIB8h7wPGedxmpr7De9zXAlpZEMSMbuOqcPPk/7c4WPj0LEjL5zNeSZlXN7uPehJExG5/c7DUD/11VNQt1qoYR4fx3Mnn8dtOHjIXMd3PoS5GYeOoFfEcSn3poWa5STBsTtNM8awlEvO1VhtS9ZD7xRJryvJWs6NTRkEBcpYcXOkRReRtEda8CXcD9uhPCwfP99Zmsd1uGb/S4u43v4K+h2WZ/E8mVtAb5znY18o7EWteZ1yNUREDh44BPXuCfyOFVOGBeUspSmey56YGvmUzue8h/c4OSNXAPej6ON5lM+ZHobU4g5IOQYDF+UkNrfxeuOv/U9ExC5hFo4dkU/SMa+PrT6N8RF5Asir4PrYph7lNcWxeT9WnsDtOrwHPYx2nvqn4DpiOq+KJbwPDTPGdY6essg/EQq2BeeHBHT/dnkRfXUiIhH5wnZP471BQO/7lJclAZ53jY7pQ+IcnVye8kD8jbbrxNc+BuovGoqiKIqiKIqiDB190FAURVEURVEUZejog4aiKIqiKIqiKENnWx6NVm9O7DWNnBOgdqtKcxfvPzJtfD9fQD/Ec8+iHj0geWKb9MitADVlhbzpMxgdR113kTIGzpzE+d4bHmqHjx6uQW17qAHshegzEREJItyuyhhq+g6/DrfpKwuobTszh5kjQdvUvsWUO+CRxrQV4HfmlnCbOl3SyKfmM6ZFeuQ0xdodkFcmCWuXdxbPJh05GUqSjqkP5ZwGzt6I+rjMJECfR0hzdu879h3GOh783vdC3aMuWpw6AvWTy+j76C6fwW0oYX+Nxdwv1hc7NDe+xJyBQUYA41By6IWp40+obyRkLnBoaOHcFd5mERHHwTnWS1UcL8Td0F3HkXnu7wSu7Yhrr7ZnifxdSXUX1FFk+kjYo2HRZPtxQlkIbRw7pqcwC2Z0HPXIIiI33Yzjz66p/VCzrp6PLR9/1g93OjhmipjekmIVx81ObwnquYU61JUituX+/WaOxk1HsX1HqH+wXjuJUIudJNQns3I0+Fyg2l47Xikb2HaIas6VvL+6H3EN96/i4f6FYdb+4Q7l6TpikUfAYxsB9d84Ntfh85fIM2bTdropHWu+7rA/McOf1W1gbgHv1/Q49hXbJh8bHeeqb3qE+DShLis5yilgj0Ihj2Ne6pjXUFb/cxaHa220RWxt7ve6Pthy5e/TPp1P3S4eFy8j46fT2Nwv2CUfVRjTeEkt5OXNNvTpuFwS7Btz53Esmpwgf46L/h6XxvE4Nferz1lUQtlDPKb28fNhgJ2r2zX3q9/Ba96C1KF2KKsjFPRAV0f24Tayp1BEynm8dnRa2FbWQJcOOXJnE/QXDUVRFEVRFEVRho4+aCiKoiiKoiiKMnT0QUNRFEVRFEVRlKGzLY/GwWN5cbzVZ5PLF1CvPj+LHoFG3dSxjU/UoLZJS54kOMdyYwW9C9UersMqmvNINxqofesul6F+7nGcg3t8FLWaR4+ip6NYxeWN5EztHPsF0hB1bTffhstcmkdd4hcvYzZCLyKRoYj0SZIetlC73wvxA+0eto1VQj3evn2oxRMRGRlBbeIyzeU8f3FjO60kFjGner6uWLKhHufZ21lHaYfmxoVd7LMpZY0IzeGdxHgc+bn82PF7jXWkHTwuX/mzP4Z68va3QF0aR89Gb+EE1MHKU7gF6QFjnbaF2suUdKyJkc1AOQrszcnwaFwlTmCgZK8BzU1O25QVYcCCcIvm9I47G+d/coNyNOw4EvuKbphyP3I2zzluamAN0TWZG2Jq51oVNcoH9qP3bXra9DIc2DsBdcnD7bC38GRw3Wnjfi5cMOdfP/G1M/idHmcLYb24gMvw99COhxlztAcoCk6oCzjkLyiSZjkV1uWbOQY8RT57aOy1tknZULhDjBYKUljzaBQncP9ye/F6GkamiNqhK75t4Xcsi/w77L2i9mDPh4iI65JXhMaCgL6zl+4LeBs4WyGeMvt8LkeZNj5uA3tJbLr1sS0zD4Rhb5NtYx91PTqvks09G93Q9FhYLt+SYVvZA2OMt/UmD52llRXJrd2MlOgUdSk7KQ3N20s3ov5jk/ePvAsOjUWuje9HTbOP9/u43pQyv/Ij+H6DbgNqk/j5ZnQBlxeaf5/3cxgCF0XoretRaFfcob5E59XefeirExEJejVcRhfbwojHsmid7C1xzet8q4eDqlPEa8fywD14N7r2HBf9RUNRFEVRFEVRlKGjDxqKoiiKoiiKogwdfdBQFEVRFEVRFGXobMujsfdwSTx/VQg2vQu9DysLKHQ7+xrr20UunUMvQqWEc8B7OdSDpSHqLku5SarN56TzJzHn4tIp1LwvXECdmh3hfizNo+6tWBqHeqRmehvGRlGf1++iP8DP4TKnpnm+c9QZssZQRCRJUP8Y0fzSkmBdIK2nT/V42fSB7D+E+3b3649D3VzZ8B8E/UB++5dPGcu4nqSyoVh1PNx+z8a+ZS+dNxcQYX+xQpyHPk253bFPuw72x/kFM8thufEc1PXLr0KduOiniFqkwaXjlIQ4F7bkTH2yW8X+53iovYxIn2zkaJAO2MocFsg/Ycj8eT9QMGpaPDIExrRZIX0rsTe0szcqR6PdmBUrXu17YRf3ISHjCetuRUQs8nEI69HJJJCEmOVSLlAOQs7Uydopjie9Fm0X6aLZJ8IZOUmA6yhn5Bcd2ov13CKOsz6tcqSI/dijTIGgY3o0lufnoY4CzPPwWCPPqQTG8cjKEsLXuK2ueGjC/o3xCHVaPUmv5GjEeFw8m/TsjmmE8ti3knBOAfu1uD3M/Bvmar6W9Zo8Gg6dEg6PHeSlSTMynCIhvTqdiw7vF5txHG47s2+4pPXnzYhCeoGyFThXx7iGi4hD+8H+lkGPRhBcu0Z+WLQadQmC1T5QGEUfQpRgm+XHa8b3vSLuj+/gMkYSHLu6YR1qO0fXIdf0wbXbuIxCAa+Pe47hYBXSdT6J0EvTCyhHIzSvXUGdvA0u3p9YHt5nSkS+pQC3wTYSVUTiPh7vlRX0g+aKeD9TcHAbwh7dF6QZHiF6qRfiOD64DUlbPRqKoiiKoiiKotxA9EFDURRFURRFUZShow8aiqIoiqIoiqIMHX3QUBRFURRFURRl6GzLDL6yuLweSlOgsLzdB9AkduQoml5FRJ56DI3aF06jmc+20byysoLvL9WxntiFZnIRkYQCYVbQPyhWhIaZxiJu96N/httYrWITjVRNE/XevWjs2bU3oBq3aeYiGn9aDWzLftc0GiZk/AsoACai99MIDUthC9f54oJp1n/p+WehHt1Vg/rosYMby7sBRrRBUjIyORYF9hXMrl2soQksqaN5L6qjiSyyaBkpPpeffuVrxjqq47fgOsd24SK6Z7HuYxiQQ6F1doLH0S2Z/a8yjYY4z8FlhBEaa1NhExiHdMXCWIJ9mkMBYwrbtG0KTUq4Lc2wNDaicjnoF47kxpjBg05XgisbRqbAhIybWcGHFpmLLTKd9inEq76MY97yIoaYVsqmGZL8vdLv4bGzyDTM7cxmcGa0ZvbB47fgeN//2kmoi3kKDD2AwYPnT+O4a1umGbLdxmPuoWdTUkqssmiCAmO/Msz6Dpv16RheMRH3exmBgjvAmfOXJbdm6A7JpJr38VrmuOZ5bBrmyahN/TPlwD5n8yC8rGVaPHMET0Zg4TISPm9SCvYNzXV2KcDTpTCyHJv6aXIL3u+sMDzy0UvEEzdwiCn1r4TSOPk0XH0Ry3AT03o/ox2uN6WKK7n8att5NHbFMfUdxxybUg8Hpzx5pFvzeBw7FCBXpskI7MT8W3nYpHuBPn6mSRMC+TQxju3iOvoN7AzdvnnuRyFe/0oFPG6NFb5fwoPfbdK97ciYsY5mHdd7eW4Wai+P97aTAd7vFCq4TdVR8/7ZovBpi0ztXrIxBjvetY+B+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR+PcqabYaxrBA4dQfzdeRbGdk5KAVkSE/BM26bYdi4J5YtTGLV5CnVtrBcOsRERyLq6XrAwiIet2UY93LqBAGQo/kxh1/CIiTwnqpnNF9D9M7kZtXK+Hbbe8hFq3qG+KN1MOL0tJd5/ydpIGNUJtZMLJLCISkj58uY77cfH0uY31baHjvh6UyyWpVFb72f/v+98I7zUbqHGMMjTekqMQnT5pbCk0JxFsY8sIAENNpIiI7eBrLgUMxSHqR5P4GNW4DsO3kKH7T0g3bQuFanEwj8Xa3s0D/FZf4tc4AIu0naRP5hDArFBA3lcOvBv0FnS7HXniL8zNvN6kSbQechaRRjqgEKZMrwMJs20aXzpdPFYLiw2oz55F01khb46ztREcX1wHP+OQtpol9Hzsogj75MISBkWJiDz3wmlaBx7fqWkMzTq0HzXI02M1qNlvICLi83aTJ0aoZr2xw/3JSJ0UEQp6Y4n8FZ19Epnj506wuLAs3to1mP0RHgXdcQiiiIhLwXTG6GK00ea1EXwnGR4g8oAZl6qEPWQUEphSkG9G0/eEfUi4XTka42KLtP7UtzhgUsQc/9lfZVHyII+JHMbps1dFMsY8jwJcB97uRxnXuOvMyJTIFStAhU7RJnkZzs1iWK2ISDtAL5ZHOv/paQxlzlGoM3sz2/0MH5KN19xqETe008L7RpeuRVGC9z2uj/2vmM/w3pVpHHbo3KSwvfNn8Z6xS9vUyLi3DSi8dXkGx+F8Fc+BfGkE6ojup5PYNCKldA3rtamP5Ta+0+tc++8U+ouGoiiKoiiKoihDRx80FEVRFEVRFEUZOvqgoSiKoiiKoijK0NmWR8NNx8RZyxK4cBK1dW6IGrWFy6jFExG5eJp0Zwlq5mOaAN4iXaXroVYu6ZnPSR3S6UakjROey5o+H1JWQuixr8ScG9oWfC3oo05/ZYn0eOEifj6g+agjM6Mi4baxuK1Ib0fSupg0q6ll6ndtyo3waa5xp7fRFmm68/rQcrks5fKaR+Ndfw3e43nQM30GzJb2B/7A1utgK4OxyC1fyJpcfbM1ioiRi0Ha4S2WeS3r4EyIrZdIno2ve83Z7zcaDfmRD1zTQodKEHUlWNNG2zRxfp+yZXjefBERtm2wXj2gQ0kycNk1jbpbNyMrodFA7W4Y8TC/uZ/GcTkfBN9vNUyfGmv1a7US1GOjqJMuFNgLh8tzbVOIb1mkw6fxiXNu0pT7IL6fZOTFsK6e9/3KIjkzZaeIglisNZ8F501YnAFi+KpEYtJgG+MV9UeXug5fh7iNRUQ8+pJFmxULe5mw7zjsnSHfWhRmnFe0DpvzT/hEs3k8o+t8RsaK8UpE9xLG5ynLg/IZXN4mEWMItMjHGgzkZdnRNVzjhkwraUgYr+0H3RsV9uBnmzOmB8CJ8Rx+8bmLWD9zBuqpA+jZ2Ld/HGo3I87Lt/C+0qFMLa/IXi70wXmUSRZ7aPQ1LI4iYpOPwxPyb9JtY8HDdjh3Cb13mfdXFm7X/Flsu1yR9pPyQaZpG62GeXzYGxf1aJz+/9j77zhLrvLOH38q3Hw7h5nu6Z6cNdJolFBEMgIEskDICdvwFVoLMOaHCDICrxMstr/+rom2Fy9e7CUYh8WwGEwQQUJCSChLozQ5z3RP59vh5gq/P7qnuz+fU+og7nRL6Hnz0ot5bqVTp06dU9X1+Zxn1onY5YX71PSLhqIoiqIoiqIoNUdfNBRFURRFURRFqTkLkk6d+Tw6e+pNlgXwVI++b376MT6zzhMbU2bSJ9aoGUx5G2P6PQp5uTmdIX3ejJjOT+hTsE+fvfgzGH8q5q9kUVMGmp/S+LOpsZM5l4e8vpjyGP5YPPvz85nyRH06rzVnjjE2NvOJk6ULKp2azctDOiWyNO1v9nHyxZnpibnJVUj39IKkU/RZvlDC6ZBLFfzkXiybXXihyNOJ8rf+ufUy80mnuEwipmysVMZy8jb5Ik37TE3YjZj60+g3bZpCssrT9s4tnYps5wuUTuULpal4adtfdVb5jBGBzjeIksfytNTzSKcCY/jj7SP6QIvrHUvq81TttE+Ht6dniWqEdKXK/Q3L5qiYAY2PPBNwVJ9pTG9u9HE8NTni0M3uL0Q6RfuszKqLMxLOpRyDy8WZ+zzm4j3NM+aXi6Y0p1LEfsKrsLQd40oJ+5FyEY/pR0inApLeFQs4bb0dYrl8kmlatNOAixglnSI5HxerkkerQbmIZapSf7kQ6ZRH6QgcOmiFxw46ZuhEtD+e3raI5QoCe9ay4lRZ529/VriAtU6ePCnd3d3z7kx5+XHixAnp6uo6q8fQ9qc8H0vR/kS0DSrRaPtTlhsdg5XlZCHtb0EvGkEQSE9Pj9TV1RnGQeXlSRiGMj4+Lp2dnRFfE2qLtj+FWcr2J6JtUEG0/SnLjY7BynKymPa3oBcNRVEURVEURVGUxaBmcEVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqzuOaaa+T973//chdDUX5ujh49KpZlyZNPPrncRVFeJGj/prwYCcNQ3vnOd0pzc7P2Wcqyo/1k7dEXDUVZQrQTUxRFmeHOO++UL37xi/Ltb39bent7ZceOHctdJEVRasiCEvYptaFSqUg8Hl/uYigvYsIwFN/3xXX11lRe3Gh/ptSCQ4cOSUdHh1x++eWRy7WdKb9IvBzb88v2i0Y+n5ebb75ZstmsdHR0yCc/+UlYXi6X5YMf/KCsWrVKMpmMvOIVr5B77rkH1vnpT38qV111laRSKenu7pb3vve9ks/np5evXbtW/uzP/kxuvvlmqa+vl3e+851LcWrKi5RbbrlF7r33Xvnrv/5rsSxLLMuSL37xi2JZlnzve9+TCy+8UBKJhPz0pz+VW265Rd70pjfB9u9///vlmmuumY6DIJC/+qu/ko0bN0oikZDVq1fLX/zFX0Qe2/d9+Z3f+R3ZunWrHD9+/CyepfJiJggC+dCHPiTNzc2ycuVK+ehHPzq97Pjx43LjjTdKNpuV+vp6+Y3f+A3p6+ubXv7Rj35Uzj//fPmHf/gHWbdunSSTSRER+drXvibnnnuupFIpaWlpkVe/+tXQD/7DP/yDbNu2TZLJpGzdulX+7u/+bsnOV3lxc8stt8htt90mx48fF8uyZO3atXLNNdfIe97zHnn/+98vra2tct1114mIyL333iuXXHKJJBIJ6ejokD/4gz8Qz5vJjjw+Pi5vectbJJPJSEdHh3z605/WL8jKnOhz4BIRvkz5vd/7vXD16tXhj370o/Cpp54Kb7jhhrCuri583/veF4ZhGL797W8PL7/88vAnP/lJePDgwfDjH/94mEgkwv3794dhGIYHDx4MM5lM+OlPfzrcv39/eP/994e7du0Kb7nlluljrFmzJqyvrw8/8YlPhAcPHgwPHjy4HKeqvEjI5XLhZZddFr7jHe8Ie3t7w97e3vBHP/pRKCLheeedF/7gBz8IDx48GA4NDYVve9vbwhtvvBG2f9/73hdeffXV0/GHPvShsKmpKfziF78YHjx4MLzvvvvCz3/+82EYhuGRI0dCEQmfeOKJsFQqhTfddFO4a9eusL+/fwnPWHkxcfXVV4f19fXhRz/60XD//v3hl770pdCyrPAHP/hB6Pt+eP7554dXXnll+Oijj4YPPvhgeOGFF0J7+8hHPhJmMpnwda97Xfj444+Hu3fvDnt6ekLXdcNPfepT4ZEjR8Knnnoq/OxnPxuOj4+HYRiGX/nKV8KOjo7w61//enj48OHw61//etjc3Bx+8YtfXKZaUF5M5HK58GMf+1jY1dUV9vb2hv39/eHVV18dZrPZ8I477gj37t0b7t27Nzx58mSYTqfDd7/73eGePXvCb3zjG2Fra2v4kY98ZHpfb3/728M1a9aEP/rRj8Knn346vOmmm2BMVxRGnwOXhpfli8b4+HgYj8fDr371q9O/DQ0NhalUKnzf+94XHjt2LHQcJzx16hRsd+2114b/9b/+1zAMw/DWW28N3/nOd8Ly++67L7RtOywWi2EYTjawN73pTWf5bJSXEldffTUMfD/+8Y9DEQn/4z/+A9ab70VjbGwsTCQS0y8WzJkXjfvuuy+89tprwyuvvDLM5XK1PBXlJcbVV18dXnnllfDbxRdfHH74wx8Of/CDH4SO44THjx+fXvbss8+GIhI+/PDDYRhOvmjEYjF4WX3sscdCEQmPHj0aecwNGzaE//Iv/wK//dmf/Vl42WWX1eq0lJc4n/70p8M1a9ZMx1dffXW4a9cuWOcP//APwy1btoRBEEz/9tnPfjbMZrOh7/vh2NhYGIvFwn//93+fXp7L5cJ0Oq0vGkok+hy4dLwsheCHDh2SSqUir3jFK6Z/a25uli1btoiIyNNPPy2+78vmzZthu3K5LC0tLSIisnv3bnnqqafkn//5n6eXh2EoQRDIkSNHZNu2bSIictFFF53t01F+AVhsO9mzZ4+Uy2W59tpr51zvt37rt6Srq0vuvvtuSaVSP08RlV8AzjvvPIg7Ojqkv79f9uzZI93d3dLd3T29bPv27dLY2Ch79uyRiy++WERE1qxZI21tbdPr7Ny5U6699lo599xz5brrrpPXvva18mu/9mvS1NQk+XxeDh06JLfeequ84x3vmN7G8zxpaGg4y2eqvJS58MILId6zZ49cdtllYlnW9G9XXHGFTExMyMmTJ2VkZESq1apccskl08sbGhqmx3RFYfQ5cOl4Wb5ozMfExIQ4jiOPPfaYOI4Dy7LZ7PQ6v/u7vyvvfe97je1Xr149/e9MJnN2C6v8QsDtxLZtCcMQfqtWq9P/XuhLw/XXXy9f+cpX5Gc/+5m86lWv+vkLqrykicViEFuWJUEQLHh7bqeO48gPf/hDeeCBB+QHP/iB/O3f/q380R/9kTz00EOSTqdFROTzn/88DOZntlOU50PHTWW50efA2vGyfNHYsGGDxGIxeeihh6Ybw8jIiOzfv1+uvvpq2bVrl/i+L/39/XLVVVdF7uOCCy6Q5557TjZu3LiURVde4sTjcfF9f9712tra5JlnnoHfnnzyyekHxU2bNkkqlZK77rpL3v72tz/vfn7v935PduzYIW984xvlO9/5jlx99dU/3wkov5Bs27ZNTpw4ISdOnJj+qvHcc89JLpeT7du3z7mtZVlyxRVXyBVXXCF/+qd/KmvWrJFvfOMbcvvtt0tnZ6ccPnxY3vKWtyzFaSi/oGzbtk2+/vWvSxiG01817r//fqmrq5Ouri5pamqSWCwmjzzyyPSYPjo6Kvv375dXvvKVy1l05UWKPgcuHS/LF41sNiu33nqr3HHHHdLS0iLt7e3yR3/0R2Lbk5Nwbd68Wd7ylrfIzTffLJ/85Cdl165dMjAwIHfddZecd9558su//Mvy4Q9/WC699FJ5z3veI29/+9slk8nIc889Jz/84Q/lf/yP/7HMZ6i8WFm7dq089NBDcvToUclms8/71+RXvepV8vGPf1y+/OUvy2WXXSZf+cpX5JlnnpFdu3aJiEgymZQPf/jD8qEPfUji8bhcccUVMjAwIM8++6zceuutsK/bbrtNfN+XG264Qb73ve/JlVdeedbPU3lp8epXv1rOPfdcectb3iKf+cxnxPM8efe73y1XX331nJ/9H3roIbnrrrvkta99rbS3t8tDDz0kAwMD05KB//bf/pu8973vlYaGBnnd614n5XJZHn30URkZGZHbb799qU5PeYnz7ne/Wz7zmc/IbbfdJu95z3tk37598pGPfERuv/12sW1b6urq5G1ve5vccccd0tzcLO3t7fKRj3xEbNsGuZWinEGfA5eOl+WLhojIxz/+cZmYmJA3vOENUldXJ7//+78vo6Oj08u/8IUvyJ//+Z/L7//+78upU6ektbVVLr30UrnhhhtEZFLrfO+998of/dEfyVVXXSVhGMqGDRvkzW9+83KdkvIS4IMf/KC87W1vk+3bt0uxWJQvfOELketdd9118id/8ifyoQ99SEqlkvzO7/yO3HzzzfL0009Pr/Mnf/In4rqu/Omf/qn09PRIR0eHvOtd74rc3/vf/34JgkCuv/56ufPOO593znrl5YllWfLNb35TbrvtNnnlK18ptm3L6173Ovnbv/3bOberr6+Xn/zkJ/KZz3xGxsbGZM2aNfLJT35SXv/614uIyNvf/nZJp9Py8Y9/XO644w7JZDJy7rnn6pSjyqJYtWqVfPe735U77rhDdu7cKc3NzXLrrbfKH//xH0+v86lPfUre9a53yQ033CD19fXyoQ99SE6cODE9DbOiMPocuDRYIQvBFUVRFEVRXsLk83lZtWqVfPKTnzS+8iqKsnS8bL9oKIqiKIryi8ETTzwhe/fulUsuuURGR0flYx/7mIiI3HjjjctcMkV5eaMvGoqiKIqivOT5xCc+Ifv27ZN4PC4XXnih3HfffdLa2rrcxVKUlzUqnVIURVEURVEUpebYy10ARVEURVEURVF+8dAXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqzoFmngiCQnp4eqaur0yybioiIhGEo4+Pj0tnZOZ1J82yh7U9hlrL9iWgbVBBtf8pyo2Owspwspv0t6EWjp6dHuru7a1I45ReLEydOSFdX11k9hrY/5flYivYnom1QiUbbn7Lc6BisLCcLaX8LetGoq6sTEZGbbn+HxBJxERFZte4qWGftjtdDHEa89MYrHsR+GWfWDWNFiIdO7oY4mUhAnFm53ThGKBmI+e3bmMt3kZP7BhHrB+UqxJWxcSxDUMb1PVq/hMtdu2Acw7LojTHVDqHv4nm7U9fpDI6D8eFDTxnHGDx5ELeJ4fXyvGD639VyUf7zk++fbhtnkzPH+N+f/QtJp5IiIpKpx+O6sRjEfhgIU/V9iC3BtsFv5TzzcxDgPqP+suPG8JZyXQfLRWWoVLAtMFyGcslcv1wsQZyku9q18JgpWh5Usf3Fk1iXIiK2i+3HtzGuUlfiUQfANWVFXB++tWxq88GsbQqFovz2235/SdqfyEwbvO7K8yQ2dU3Hx8ZgHS6/m0ka+ymXKxBn6/C+DV2slyCHe616eK1jdkQbdPBaxBuyELd1dkDc33ca4rGBIYiT8TQeIGJG9M6VTXhM6n8OH+mD2HLx2qapzUV1y2VqMwHFMWzmEqd70aY4jLh/B/pzEBcqeL3qGyfbgef5ct8DTy95+3vqqaeW7JhnC+7TXq5/IefxRMSsm7mWj4+PywUXXLCkY3BDW1qsqT5nvrLalrncjeFvyRQ+0yVS2GfyM5/jYL9hu+Zf0gOLxmkafSzqM6tV7Dg8imNxfpaKOG/6qVrEfiMIcYytFvAY1TI+ayUSKfMYxiiKFAr43BjVvmazdu0a47dyCceXNbTOueeeN2vdsvx//+/nFtT+FvSicaYjiCXiEktOXvhECgefVLYe4gW9aLj0ohHHwSaZxkGYGx0fU2SZXjRcfPizacCzfGyo/KJh23jebsRnKPNFAy+uH8OHifleNBIpXF9EJJbEa+rSi4bl0YnJ0gwSZ46RTiUlnZ68ATMZLutCXjTofMiitBwvGrEYdkhMSA3Osc1b1qFy8ItGbN4XDdw++kUD7z3fWeSLBt03C3rRoOsR1XEu1UPKdB/oOtMvGq6D19Z40aBrLyLi+/hbjNYJY3g+AfeRguu7ES8aMSpXjNpknPpZXs7l5jJGvWjwQ32Cj0H74BcNLkNUtxwE2I4DamNUdRJzF/+iwefu0vXi5Uvd/urq6hb8YLlcD/CLeVgWMcv5Qsr9YkgHNl+55xtPotZZyPKlHIMt25p5UJ+nyqOKxY82toMr8YuEQ/2E+aJh9rF8XPNFg/+ARX0sxWYZ5n/RCGgbK6BjOnjt/XnqYWovEb/NYBtjwdzrR41PHvf91Gcmk/gcILKw9qdmcEVRFEVRFEVRas6CvmicYXTkqMQSk3+pWtm5DZZZoUdrm3/97jv+EMTVCfzLvk9/ra0MPo6FbcbPSRP0SUtEpK5lB5bL4k/y/KdV3sPcX0DsiNd4y8a301Qc3wpJ7SABvVHbSTyv6kTOOIbnYf0m0yshdviPjjZJbKhuu1atN44x2ncC4qH+/RAXxk/OlKeCnwKXAs/zpuvB/KuYuS7Db94szTGZ+0096hg+fTXx6S8C/EWD4b/ie/RXXAnMMifpPOoCbHDN9EeIyhhKY7zyBMSWZZYxsOiv4nWtEFct/MIUxuiLG//1PzQlYHx9XPqLtDNrH45t/jVmKahUKhIGU180uHz0Va0cmvXIXxNY9uZaeF4sD0rwX9TjEV80mrDu0014rQ4ePYYbTOAnd/5qZtl0r3nmMRMxLNfIMLaxQgFlsdyMyyVcHo+ZX9V8+ish/zU05K9odIzAx/PoGxgxjjE4iL+t2YDa42Dq2oeWee8vBbZtT98H3Je8WCRI832hmO/L8As5D0O5wH/552Ms+ggv7GvDXESd53x1MTvm/mep4evIMX/lFJn/OvFy7ucNKTH1nyIilSo9V3p8n9CXzXm+aATxgJab/XqM+vXQx21Y6eCksHPKpFkqZY5v3H9VqqiGSJCUIZ/HPjVFipWJCRz3RURSJF0bIxvAqZ6emeOX51ZjzEa/aCiKoiiKoiiKUnP0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScRYn87DAmdjCpRSuO9MMyp5SDOIzQeT/3zA8gTlsoHi8VsDgr6lEvGxYbcIfVvHGMZAL3Yc4SNc/MEBTzvBA8C5BIxAwCIWrXXPJwcM1UaRYq1zJno2hsboS4TJpAIV8IX1mLZq9x6sxZp7aeswviXNtaiJ/a/X+n/207pjbybNO+on16timeMYZnjkgkzNkR+MpVaFriKM/FbBaiJeap8+bbxmFzjQGWuiFjnlc2g/uwx1F7efRpnMp4oLcX4mIBr2Uqaba/lR1tECfqchAPV7FcQ1XUnK47B6eidhNm1zOfXnf28uWaZca27WkfDfu9AtICxyKmd0zSfcv1MFGiqbFJT5yk2eTSTTjLnohIiaZkHT5wHFeoYDlZS23eW7h+wjGn7WVvkkflbmggz45H0z1Sk/N8sw1mknRcnu42ot+cTS6H0xEX8mYftmMretcCG89rbHRymzBiBr6lIAiC5522cj6tedRvi/VD1MIHcja8JPOeO+vu5+k/auETqcX6c62z3J4cw/NozNpotlPbeX7fnYg5fpZoOvcV7Z0Qb1i/0ThGU0MzxPV1+NzY0ICetUwGx6oYecF88kmO5IaNY7Lf4diJIxAfPrIHYluwjx4bHYW4SJ62SXg8xHLZ5KXj8+Dnm+Fh8zzS5BUZHsZn8NnT7larC/ep6RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj4brpMR1JzXCVhW1WwPHfgxxMt4UcTDM/TDQfxri0ihqyVsyqMdzLPQVZFItxjFYtug6i9MxGtJO0mFHKXMdl7RzlBrcdjnPBurZQ9IWe2VT25itx3O3kxgHpLNmuXJAeTXGi2Yeg9BF/bfbgHryrRe9evrf5WJefiT/n7GPs8nY6Jh4U3NkJ0hLaOjlI7b36eJ6pDEcJZ0kaxozGdTDR81jHk9gnVVprutyGXXhHmm9XRe3D0j7noib2s1MFrfZfxDzn9xzz/0QWy5q3fuGMY/COVtXGMeoK+F5BCHmSXAdnKN74Bjmahgaw7q97FVXG8fgTKVVmg99tu6a80ssFZ7niTXV1vj6sy48Kk9LldoUn4UbUm6gBNZJmbqzsdN4HUREUpQHI5PCdhuLYZvjMjmUj6JUpf4sZdb96UHU+7oJbGNsryiX8Dzr6d6qcP4YEbFJk+x5WN9V8lzZVA/cua/pMts5yZxlcAR9Ha0tk/rvxeiTa82ZdvZC/BbL4cmYb58L8ZbMx2Jzc7CfYCH+u/nKtRSeidllWA6PRhiGz58R3LDFRHmEMDbOgRLsbFh/DsRvfct/gbixwXzOXL2qG+IqjbFDgzlcTmN0PM7jOpZxyybTV8l5NAolHFMPHtoL8be//W8Q9/ej59kPIp7PInJozUUshn2sbVMOp7KZC21sDL0mcfK6jowOTv+bn13mQr9oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsygzuxEJxYpNunmoVzZ0Dp+6DeFUnJj4SEelYib9VCmh4KY5gsiqXrNfJOjSHx+KYBEpEJAjY2IOGGMOIRtsbOZ/IGFmNMol5+FsiiUblgMzdISWram5GQ1OhivUgIlKo4DZBCuvGsijxDZ3IwDE0IxUjDOe9bCy18PrsunTGDF7Mo0lyKbBcR+wpwzBfN5sS/5RKZjKuYhGN1PkJTPjo+1ynuD0n1eG2JSKSFUqEyAmIKmgi9cmIW62giawuibdoex2arkVEMg62jYHhQYhPDWN78m2smziZhcOEmZDt9BjW3dDAKSwDJUVat3otxE4TTtyQiJmGOjeOx42RMd6afdUjEmcuBf4cZnAmKikYt7EKGd6TKew73DTWSZkSOWXjuL6ISEDt1mMTtU8JQimJlksmdsfB84jbZh8YI6NhRysmzWpvwz7uuT2Y0GqCkgxGmcFTZNLkvjxFdVciczgvT6XMds43fSbAMWZibPLeYYPpUnLmvNkAvRAT9WINxMb4yMsjjrlYs/dCjNjzLTeSxfE2c+7R5IWc18uB2WZwS/i6GWsb29PcJuJQv1GfwWR6b3vruyA+eaIH4scffdY4RiyG+9yyZTPE+TyO+9znxmn7OE3ek0yaSXN5HzEX1zn/vMshHuzHMfnYiRMQhyE+a4iI+FV6Fq3iuG/Rd4MKPWu0tuIYnc+j8VtEpJDHfs2h8+jpm0n+6vsLb//6RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXmLMqj4ZXrxJIpXXoa9enjEzmIh0dQwy0isqL7Iog5qUnK2gGxE0MNbYH07E0J8z3JslA3xjJqXm4kmeFdkkfDZgG0iHiUdssjjbNLGj/xUCNfrWBc9lCvLCJisSTYx22SpHkPHUrQ14cJtYqjmCBGRCSVIG8J+T7Ccv+sf5s+krONk4iLM6WP5IRtnLDPikjUGKOkho31qL9mzX1APoAq6cgt22x/fhnXKVHMicwa6jFujON1aydLRibEe0ZExCfhq5vFumlYidfVq2K513W2QZywzfZ3nDSlew6jDySVRE3plXWNEF+0eRPEsdBMSDRRJG8AebTcWfeZXzHLuBTE4nGJTfmEWLPNmnnHMX0oSbr+ZfJeubRNnHwqZQ/1xZ4fkdgui8fwPUpmRn2a+Lg8sLBMCcpit65rlXHMdAa9ScUJ1P+6dL8mKMlpH/mI3JTpPfGpftkjZSRtq2AbS6fxZrIirk+BdM9JOkbP6GQ/uphkVWeL+bwNtfAQzOdtYG+EiNkvhsE8yTWpnOUKJznlPtX031Uo+Rife0MD6tPr6rDvj7pX52Ox3pJasxwJ+xzHEWvKo+VT0kquQ9uJej6jMoc45v7KTb8OMSeVyxew/7v00lcYx+DEuzyur1iBiTrZu8WJeudKHDu9DrVZ7scrtPyqK18F8d59mKz6gQd+aBwj8DjB3uK8TxPcJ0d4DPk2KBXxeaOhsX76376/8KS5+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKozE0kBN3ao5hq7oSlm3cdiGu7Jha8gzpthuaUWu5qvWVECdjqAEbmUDtneeZPoGEhceIs0eD1me1nTk9P+neIvJPVIqUj4HmL7Zd2mmAc+F7HtZVX/9J4xjd27bgPpMopktSSgc7ju+QLU2oSxwYOGQco2lVI8QnBlDTN94zM2d1ibSSS4Hne1L1pvSSrPUkrTr7K0REkknK02BT45hH02xlMN8E60dFRMoFyuNC7ccfw/wjKUEN/trmRoiDPHohQtfU5eapHKd6cK7xlSswp8H2zduxzHlsf4WimSMlVUKd6vo17RC3NqEGenwIPVr3/wTv1ZYt6NcSEWlffw7EQRnLlbBn7r0C5ZNYKizLmta+skeAtb1RWl6f8kOwTpbzv3DuF4f07+lGM5cQWXDEIoNXQL4Qx8UN6rLYzrtWYvtJZcxcLn0D2E7rU40Q2w6283bSSY9TofMRHhyeH79IbYA14pwfhP0EFc/0CbHzIiAd+qZNaye3rVTlwUf3ynJwpl0Z7WsBlgybc6Cwz4DWZ78Fe+Oi0tmE5F/JkzZ8Yhz7lzHqE/v60T946nQfLh8cMI6ZG8dng1KRni06MQfX6197HcSbN26EmO8zETHGB84jEZFIgncwz/LJvS50m+XwaMwF31+ua9ZhPI738MYN2Odv3oQ+3f5+yu1FlErmOMD9BOcums/DwZ6MhfTrDD8bsH8s5qIv5PWvuwniRx560Nhnhc4jlcLxp1ggbx35AX3KMRd1GmynSpEPenZM1TIn+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo1GYyIkzpX9j/Wu6EeczXrmiydi+vr4e4s6VqBlb04Y6yWMnD0JcHULtZn+P6WVYU98BcdyYHpuFaTQXPi8lIVvVM+fwTsVxHw2Un2FkCDXzvUeehTiVIs1zCTWEIiLJGOmoG1FHbZF2Vlw88cZ2rPvTT5v+lsoo6upbMngewfDpmX8Xl14jb9l25LztIiI26bMTEfOihzTvM+twHRu3YQ0saz2jymInMGdKhnwhiSqWoc5Gr0tc0JcQkkbSTmK+AhGR/lHcppzHNspaYtZqln2Mi74p3lzV3QXxaht1sBbtg5vwEdLa/uzo3cYxNuzAja56xQUQz9aXW/bi572vBbZliT3VLiwSqLMHaCFaXtYDJ6j9GLk5WBaOl0FEROIVaqfcV9eTzyNNOSuoXRdDPK9kxN+n1nWjBr5EFosq5e6oz+AxVzfhMY4OmP6nMEb5iFysuyTpv8sFXF6heegDl/YnImGRcjU1U98cTi63wuXLo3GmX3IpXxMr9oMIDb+RxoCaqEftjfMDsK9leNQcR07Tvd577CjGJ47h+qdxHO8dQA/GOGnB483oBxMRaepAz1iYwH7ye48+BPGRXhzr3vP2d0K8eiW2ZxERj/KyZLN4DJvGXMPTsQCLRmhcM87VEcz699J7NDzPn86jYVvcD2B5onOTYCW8+TfeAnE+j+1tgLxfNvX7nGNl8je8z9lnVMjjmMueDh7X2aPBfXIUvA/LqCt8flqxAtvv9a9/g7HPb/zHVyB23bnrm+/tmMueDtNnSym5JEHPH7HYTH3PbovzoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBoN9dnpPBpdq1fBsuYVqGlsWYFeCRGRtlacj3186DDEhVHUrZ08tgficgE1YScnTphlXLkOYpb1NjWxvpN1+KSJJp2bZcy0LuJSTot4Bqt1+ABqUId78bwbSdvtmvJkKdPczy2rSP9J86OzLtuqw3KPFE19Xn0J9xFW0RPjl2f26ZdMr8rZxrHt59F9mnNhR+lXQ9JJ2oaqmdYnkSN7NNyYKZD3ucGQHyJGOVQmRlCvXGleDXG2Ab1OhYI5939+dAR/qNK1pnnq9xxA75Mdx5vEjZt5EpqpHKxXFh/rfzxA7XYf3dtP78fzFhFJtuK5p7PoEUpZM8dcgP3hrBDKjMrYZ60utQ/OsyFitin2aPByh9o1N/+ARbUi4lHOkwQVo7EZ/VqxBPltbNzAJnG555l9YO8g5V6pYP9SR9fSoX60nTxnfaOYe0FEpGeY8if41HeXKMcDlTvO+u6K2dFmqLI88igEU/dWpbqISeRriDX1PxER4ZwWtG4QkYOh4uFaA4Pkp+jrhdim9kdWG3lq/37jGAeO47h8fN8+PMYhzOFEzU/yJbwuKzdthXjbRejdEhGpUt6oZAo9QPWtLRA/dc99EH/+H/8R4tdf+xrjGJkE7nP7DswB0djYCHFI1ydciEnjRU4iaU975YIA+5k4GWJ5uYjIrp1XQNzSjPl08pTTKZcbhrihAZ/ffM/0aIwM4nNLKo3jWZnynA0P4zHStD57MrjPFol63qDnSIefM31ajvfZNVe/yjjGQw8+AHEmizdO3yA+V+aGKK9GGo8ZRvjMHMpdl8mSx3RWG2a/4FzoFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyiPxpo1KyQ+Nc97IoV6vDTpF1vaVhrbO1nchqbil/IE6nJ9C/VhdhyPEfNNDfTEEOrtmhpRG1zOo1ac50i2XHz3ohQZYoemJjDm4ok4Fs27XEE/wyhpCJONqH93E+Y84Q0xrLtYEbWMQho/Q0BH5W7buMU4Rpp0rsf2/xiPGc4cg+eqXgrCcEbDzlp24zpGeDRczpNBy9n/wTpK1mbGE+Y8/PV0nbKky03QPsfKeB2HT+H87p6H12RizJy3fmIItesdba0Ql0iXPVrEtpDNNEJcCc1uYWgCr3e5jPVd9bA2481rIE6P43lc032+cYxLSZca0hWafc3DCP35UuCHgdgsVJ8ioPZRKBSMdXjufW5zZt4Mmkef5+qPqgcH+6PmZuxfsmlcnqCcFn5IbW4Y+6tSxfRJjZexHOesxf6/EmCb2rsPtf071mOellLVPK/Vnej7KxawHY+Qr2O8Sv6ocdxnXca8f50Y95sYulO5N4JgefK4zAn59EoRHpRnD6I/4tEnnoT4VC96NFasxOsYi+F13Ndj+iTTK9AP4fZhmz8x2Ifr01jV2dUNcZbyUpVLZg6noRHsF9k/R9JzWbESvQE/e/BBiMMID84brr8B4ir5o0LDv8kejbnbloiIZThtzDWWk3jcmclnRGMbp/JqbGwztr/xjb8J8YkTmGMslcJ7cnAQ82g0NGBbisfNserqV14J8Sjlennqub0Q8zjPseGbex6fKMLPJ/zc6NJyvK7NzXgPiYj86q9g3a1ejffJZ//+TyAeH8W65bRfsZj5/JxKYTlc3maWf8+yNY+GoiiKoiiKoijLiL5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcFdd0jcKeOzFaIBNe6haaclbe46sPG37nY0jB599kmIi5QD6iAZ2fwIw+AjP/sZxBUPjdiZGBofm5rQOCuUoCidRFNZJmkagerbMVnhijWYNNCKYQKYPJnZylU05bgZNDyJiGRcPNfKIBp92IhlJ/E82igpm73FNIPneo9D7BXRTJitn1UXz2OIPZs4IuJMmeEsdjYxEUa7kMx7Lhm33ThOPlDKk7mPZi+wI7LGNdhYZy02JeibwMSLaYuSiI3h+sMBGnG9MCJBm4cm5HSSklXV4eQChgmM7gnLwXoQEelYswliJ4EJ1oplrKt6Sqy0ccf5EKfSaPAUEQkdLFeF7pNQZs69UDInZVgKQtuWcKrtcXLP5iaa1ME1+8DxcTQmstGQKVPyMofqKEOJyURE4jQ5BXtQSwUyTZcwztN9v6ULTdj1CfO83BS2h0oZr8/BkzhejJGh/HgfTuJxjGIRkU46kcZ67CfbO7FNeQPYJgsjeF6ZLJZZRMQiM74X4DGL1cnxpLpcCftsazo5a0imfZsmCjhy6ICx/be+9z2I83QePHFAzyBet6aGRixPhBl3oojtaWwC23yCJtFopvFufTc+F/C9vuexJ41jBpQsLklJcJN0T2RTOCbv2rUL4tZW08jc0NQIsUfG7XHq25M85lL24Ij5SkwzuDHOLq8Z3PdEzjQ7lyYG2HnexRC/590fNrbvXoXjyA9/9H2IDx7ESSKGhjChZHs7Pq+dOonJkEVEMjT+da/G9sSJVEuUfJgn8cjnMfloVL9eV4d9z8AATqpw8CAmyeXzWrECJyfYvBHrSUSkniYS+fd//xqVE8+jvgnLGVBS3XjMHEOTKUpySve3Pyvpsb+IpqhfNBRFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwaY31DEpvSbLFXodh/GuJ43kyq09xIeuIY6ij/+QHUlN7/4E8gTlBSQDciYVqxhPq68mgOlw+hfjSTwsQoa9ejNq5jx1qIK5UR45j9faiR7yOdvROjBFhl1NLl81hmK+L1r4GSbA1R0qOxIdTyr1qzGuLVK7dCXB5B7a2IyA8f+g7E9YIavtSsJI2WtfQJqxJuTBJnPELzeDSitO9hgNcpIP/OOOmVS7i6xELUfLtVMyFWQxrL5VbQaFSt0H1BmnvW5Aekp0821BvHTFHCRyuPBW9qQ71xio45Vsb1t2zfYRyjoxt9R1X6G4Xr4j5DH/eZp0SDoZHASCRGCaC8AOu7Eswsr3rLk7DPCSf/ExFJZlDnfckVl+PKnqnj/+l92KcVCuzBoPuKdPepLGqB3YjOgnN1SoB1XUf+GJsSdW5sw2MmqP+qBmbfvv8A9j+tjejRaW9CP8SmDWsh/sY37oZ4kNq9iEgQYDlO96OPY0VXM8ar2iG223D7sEA3uIg4SRxTfME+IjXVDVcqy6OVty1L7Clxf8B9IBVpzz5MTCYiMkGJXs/ZeT7E2TRep2PHjkHsUvssjZoJRE8eRP/g+GlsG3UujvvtDTgGN6awfbILyYuo+ibS7revwGvfRp6LFvJbNNdhv5pNmN4nh7T5o6PoyShY6K/IZuhepfNKp0wvXNLh+3nhSdGWAt8P5czQyh6Tq696LcTNTeg7EDH9hK9+zbUQF+i+P3UKE0LmcnjPP/vMM8YxHnwAfbrn7DgX4nUbN0O8e/duiLkPTpEPrnMVenJFRFpbsf0lyMe2hTyxnBSQEwzHIpIChuQJfM1rsL7v+jH2VQ8/dheWKY7PkGnToiZ15K12KAmoP8uz5gcL7wP1i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNWZRHIyyskdCb1GLv2rUTlnV3dkN8+uQRY/uew6jj/urXUK/8wEOHId523naIPUE98/qN641jrOhE/dyBZ/dBfOe/fxNiK4s6yave8CqIX/GKDRAP9qJmUEQkR76PvjGs1tNjWO5UGvXLY+M4F3QmS/kbRKQ+izrB8WHUf3t5nJfZLqEeNBuiNjdeMbW1UkGNX4nmaR+ddR7l8tLnMQhlJj1GQBpHe768GiJik+7R9zG2aM7yLKWbSPp4zrGi6ddxKCdKhXwcLKkvk1chT/6dUgU1rZm4qesNad7wEp1nopHyC1Dzils0v3bc9D5x/XoV8k+w94TqKp7Aeok6BvtqcuSv2rt3z/S/l6P9iYhY4eR/IiIpyrEz0o/a9LiDy0VEOkg7fvT4KYjTafR9VKmdtzShD2FiBHXiIiJxks5mUpSrxad8EjZei1wR21x/L/Zv55+P/i8REXsA+6Mked96TqHWv1zFdv7cUVy+ZTuOJyIibY1Yd2OUk2RoCOPeAfRHtbU2QlxXb+YrctPYT3auwvPqm+qqQ2t58mgEQSjBtFcJ75dCGa/r2ITpc9m0AcfMbRtxfOMcLGnyDPT2YH4Au4jXUUSk/wCO/etXdkHc1LYK4u5OXN7VjXELecxa2ij3lYg0t2J7S9J9ZJHW3MhOEYRzxiJmaqYKefZC6ljHxyknUh/eq83kYxIRWd+FvgYe1ZbHmTbr+KHM8mhg6VLkQRkcxNxqIiJ19XhduL+rr0evTHMz+iuCAO+7c88x/YR9vdhGn3gSPRg7duA2O3eeB3FHBz5DJskLHOVMYM+F2HilYpRzhNf3yM8X8CAtIi6NwXEq1ytf+UqIv/b1f4L4X/71C1imFPZ1IiJxyi0W+Hges0N/EY1Rv2goiqIoiqIoilJz9EVDURRFURRFUZSaoy8aiqIoiqIoiqLUnEV5NDrWpiQxpQtLNeE7yuET6BE4cRw1tyIiP3sAvQh7nj0OcbYOtcGncbH09ByC+NQB1DeLiNTVo+7x6KGDEA+dwnwf6QxqIp96Dj0dJ/uxzPkRM3dCF2lGN23eCPH6dahdDDah5rQ8ir6PdtKkiohkSU9c14Dn+cwwzi/d3491c/wkXo9SaF76LWvQd3PsONbV6PiMHrdSWfp31DAMp3X8Vcp5wXN6x2KmPt4PaE5yzgVCeRwSdIrxMmoagzGsHxGRHEmWffId5MdRp1uhvBkVD8vo0XkMT5g5DMZIJz1B+uK6BPo60py7w0Mtez5varubSUOapH3aDranMhXTIj2zWOb88BYpkNNp1KB2dMxo9ItF8z5cCtyYK+5Ubossza8+RrlthoZNH1SJ2q1tsyYW6ylFOlyHGnrcMe9jn/wP6Qz2FWXS//qUX8aPoW56+4XYn5Uj8sd0rcGbxSH9btHDct5719MQbz1nLe6vA/0YIiLVah7i9ZtQz+2F2KYCupdO9OQg3n8IPTUiIm0t2M/ufQrb+dq1dVNlWR61fBgGEk6dJ5cgX8D+KZYw+8CGFJ5fjLXl1DZaMjjZfpn8YNvXYH4dERF2X21aiz6Qtd3o8ekgj0ZjcyPEcZr/34pQyXPug5D6crZc2NQvG7lnIvqnkO49vneFNPQVH+N8Advv8DA94IhIZyt6sDLkA4vKD7WUxBKW2FN+l1Qcx5HeE+ixFd+sQ84dwp6MpmY8/wT1f2nqc6Pqo70D29Plddj/JZNYBj4G7zKk54YKJ9gSkXIZry3nmeJ8KAE1yIByRkUZIAy/DrXZBPld3vZf3g3xSupTv/RPnzKOUSnhc6RPPt3CrDbsL8KkoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBpFb7/4U5rgJ/dgDoFDRzog7ukh/aKIDA+hPt2OoZY4n8Plx0kqbluoCTw2YM7THAb0G+UpqE+i/2GiHzVpT9xzPx7TRU1guWyeVzZLWvIVj0G8oh21cY00l3QDbT86ljOOMTKOc0E3U/6PFWtwvuliEXX342Ws2/3kXRERGcuj6C+ZaYI4NksH65YX1XRqgm3b0/kcEpSXgbWarNkVEXFo3m8/mNvnYQnqJgMf158YwzoWEcl52Ghtl+bPLqF5wauidtOKYXvL5VF3PTZo6v5ZDxonXXWmrhHLUMXzSthYxkwatxcRsahyquTZ4DnkXap/lkD7nqlzDUljnyR98po1M7kV8gXTq7IUzG6D45SnwM7gfV2ISPVhUV3bNvkjSA9cIt29Tx6PmGu280wD6pwHx9FTURfHbdraae5+yqVwThf2Az/bbeZIGh2luiD57ilaPkQ5e979qqshfuwJ9OOJiNgx7PM4l0qVNPGWh+fZ0Yx9/4om8+9sXhnrt30j3o+btq8UEZFSqSJf/bqx+VnHdpzpfEAVugdHRnIQt7aYXj87wDuxPIHtKySteEgejrWrUf++aZOZy+oVl14McVM9tsc4afuF7omQDBMB9W9OVM4k6p+4L7fJs+HSeFHl/EVFs3+pN/Je4D4myCsXUH6iShF1/EMDA8YxSuTZyyTZP+DN+vfS+zUc2xJ76vr41P7KNLZ1Uz4UEZHTlOPiqaeegriN/Knsp8jQ2BZPmnmlYgneBn1J+Txeh3HKx8M5LRrID5sPTY9awcPf4uRt4GePahX7fR5fuf8UEfHJ8+JT+ytWchBXSth3vebaN0J84oTZx95551cg9igflj3rXmXvylzoFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyih/ekTOYnFJjcp5FGf1ZdDjZoXYO4IERHLx1wbYakfYr+EOt4ghu9BrovaziAwRdAWvTvZrGEOUbfG+SAGT6Fnw7JJ+xlRZaOnUdN3bD9qAMXCuuE5lC3S76Vipu4wm8X5pts37oC4oR61i11NeN7XvfZKiG++8rXGMR599EmIH3wEfSGJzIwG0w6WPo+B7/vi87zvU7BeNWo9m7S/IWkcbboOPKF2voAa3KGc6dHwKvhbOoPtLUtzdnPOiiq1rzL5KVzXbBt8XyQyeO8VC3it2AuVTmLbaW5uMY7BbbZCHguWC1sx1lVTXUforE3JMc9bP7OC63q88tIQBCJTOveJCarXIl6rUsUso0vnHSMvi0OenlQGr3eMfEUSM/ujso/1NlbCbTauRc/YiVPYX3W14PY/2405eFpb0LMhIuKE2IZGK6h7bmjFNnXuNqyrKt2vjmPev9Uy/Ub+uZjFuRTQaxK3sB48oaQ3IpJuxH2mWlHfffzU5DblsukxWgoc151uIyXyb3Fuma6V3cKwVpzzR3hVHFPL5F1obsJr73F7FHPMZE8Gj3cB+yWKVLc2XsdE3Ow7uG/nPBns2eC8Brlx9JyeOmnm6GJfWl8f5s3p6UH/wfZz0TeZzaLWf0UzjukiZo6Qqsf5F2Ziz1u4Rr5W+EEg4VQZue8yc1eZRoMU5cFobGyEmL0KAfkARkbwOhm5sUSkQl7KVAq9cytXroK4owP9xezREPIOyvHnjGM6iZUQD5G3Lk3eEs4fwuNhjHO0iBjJYKrkp/KpnC7ly+rtwbp7/Wt/wzjEow//GOLT/ZTrZVafaol6NBRFURRFURRFWUb0RUNRFEVRFEVRlJqjLxqKoiiKoiiKotScRXk0rrniVyWVmtQMH9yLut3Ks/shPnpyn7H9COW9SJKmNm6RHpF04IFHc2FHSMRYq2+RTteyGyG2YxiHQhp4mn/bElM7FwT4m026QT/E5a7DgnbUJXqlnHGMkfEeiPOkg924fi3Ezxw9AfHBPY9DvHadqd8tFLC+6zKNEMfTM++lYbj076glryrOlIbYJ30i60MNv4WICP9Gul2H5sIOxtCvM376JMR+xfSpTOTxN8shbWYc4+IE+pRGBT0biSbUkxarZvsbHEHPRaLCWmI8RrmAmvxLL0P/TmjTPPci4vl0H9B9FtAc3x7pcyt0vSIMGcZ94Djkt5p1/QLfEF0vCWE4U/Q0zeFepf4qmzDboE86W4f6gkQK2/GqjdsgPnUMc1gkEmY9NGWxW19hoy66OE75Y7J4bQpUhvwEHmNVHH1GIiJDeeyfOldh//K9ux7CfazE+fLLVayH1WtWG8cYGECPn+dzH0A5SqjNeSGedyJCI7923TqITxw9DfGB3ZP5hzwv2it2tgmn/iciUiL/RGMj+ifcmHkfcx6WRByvdZU8Ghy7LuUDKER44WiMHB1F39rRo6j77ljZCXHvaeyv4uQhq0b0u5s2rIU4TTl4Tp/G9nn8ON5HRw5jToGTER6NXsoBMTSE7XGA4jeT7v7m/+dmiH3f7AML1Ddznhzfn+ljSiXTY3S2sSxr2kfBuaoS5D/8/vd/YGzfTnkyOC8G+yM43wSP81HDfIzGjWoV28sY5b8aG0M/2Y4d6H/1Kui3aBl5xjhmdf1GiCfo3hwdxTGaOXkSny1Gh0eMdSaonBNFLFeVvCmddF9tojI2NjQax+hatQHi3r6jEOdm+Tuj2u/zoV80FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMWZQY/f8dlkslMJjDasgaT0aSSd0Kc60dzi4hImML3Go8SSTlknuLkLWze5eQ2IiIBGwB9NLMFIZpsPDLfhiEZHUNOkGaacWcbtCbLgMbYMKRy2mxYJ2OtYyZBqnhYzosSz0L8m9e9GuJ7nkYD6EM/vQviI8f2GMdIJTHR26/+yq9A3NYwY8RaDiNaaE3+J2ImNrPJmBaVEM6YO4DMpDaZwf0CGrhyg5igaYJMZSIiY0X8zfOxXC0prOMxMomNeNhebR/Nckd7TZOYzSZYMl8eOoRGxyZKkuTEsY373F7FNH4FVHe8hUemU76Xo7zgbOZlg3kw6wr6y5CsSkQkkUxMl9MwylKTCyLMcjT/hfhChmbaSSIoYmzh+kkr4hg0UUP3imY6KNZdWx0ar/cfQTPuyi5ss6WiacZNNWBiu8OH0ETd24P3zjlb0XSYTGJSrZFhXF9EjMkCjAkgaIIMr4J9VKYdzdL5iL+zfe8792G5qHobUlPXftnyRQbT4wtPfMLnXy6b16lcxDqpVvCeC0NsXzyeBgHWGRuiRUTq6jAxnVB7LJdwvOREg8PDOYjjCbzPdu9+wjhmsYB9Xkszttnv3/kdiA/sx8lrhodw4o+ounu+ZLFn4D6PJ7Pg9vqDH3zP2EdXF06icN5551EZZo4xMYHPBEtB3HXFnjqvGE02MECT/fznd/CZUETkgvN3QXzRRRdBzAkiHTLDV2gigCA0r4mbwDYdp8krjtOEGl/431+A+IMf+jDEr/mlV0JcLeGkACIi/SM4+c7JHmxPLS1ogh/N5SDeuwefx/Y8i893IiLpJD7TBTThSp7M4Z0rV+D6Id53Q0N4vUREmprRQE75giU2K2GwbQUiQsmpnwf9oqEoiqIoiqIoSs3RFw1FURRFURRFUWqOvmgoiqIoiqIoilJzFuXRCMJAgnBSH5qtb4Rlr3vtGyAmqbmIiOzfdxDiIdJiHj2KSQBTcdT9hqSy9zxTR8lqcT7BgHPlhVjQUDyKcXmxYJ6YxydLOuqAEkXZNp6HQ4UMKMmgiIhF22zsRO3+hedsgvi+vai/8ziRoWMeI5VFbW0yg5rmxpaZ5cUiaseXAtuyp70XrPln/SzrlychJwElA3LouqXrUINapet4tB91mCIi1QDb5OAgeira6lE73NqO+vn+Y5go6sge1JOWXdRpioh0duF1Gh/NQcxeh1Qa205AWY8m8qj1FBGpkv6YEy3F41hXrHFmz0yUh4aZSxM9n176bFGuVqf7QNfFe2iYvDFcRyIiFvlfHNLVh6SBL5B+PU/JGOuyZtI59r6NUKKnvnHU1V7egVrehgbUNFer2EFNVMz2YfmkP7/3XohbWrCNNmewvfScxIRqYplDE3tebPK7eCQoru/ugLhvGOuh/5DpI1zXhvfnKJ3qtEY5wke3FBSLRXGn/Gn79x+AZdl6bAthxN8RvQr2eUJ+Qk5Qyz6Dchn7/f/4j28Yx1i/Hseia1+F/sHubvQh9PSYmvfZ8Ljf3NJorFMooF/BonH7wAH0ZJyihHwue/4i+ifDM0qkUtg3JymhZ478eN///veNfVxyySsg7u5G/1QYztRFPr/0Hg1r6n8iIraF93D/4ADE1Yrp4xzJ4XNJbtT0+MyGfXsOPSyx70VEJAgoqR899O197kksQw79YPfeezfEr7zsVRDHWy4xjpmx8b5Kp/HZNZvFOEFjx6/f9KsQfz3Ce9LTg222nu53z8Pnt3O2boU4leIx2+xjr7zqNRD/8N5vQ1ytzOpDw4X7JPWLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6oqEoiqIoiqIoSs1ZlEejUKmKFZvUPno+vqOEAc6D3ti+1ti+LU/5JmjO+KOnjkI8XkGdZX0d6tzcmPmeFLJW30NdpaHzZakta/9J32eFpja3Y0UjxN1rUFd55CjOsdzXh3pkl3TabsTc+Jkk6ut6AtS5PnQA9ceZFJbpoktQJ8uaVhGRxsZWiEOLtNphbNa/Seu7BIRhOO29CHgOefIZcC4TEZGQrqVL68QcPKdkHNdv7WiH+Ce7USMtIjI2gbrUzkbU7Q7naW5/StPiJHD9dD2uwHk5REQKZcoV49N87iQtztSxF8fU+TNp8nU4lLeEPRnsoTBzy0Tkf6B7r0L3v+fNnFehuPR5XEQmc0j4Z+Z2t/Cc02m8dmGEhtXhdkr9kWVjl5wgjXxzI3oIRiLqoYNyCCRT2G+evxbnSn/y4HGIG9PY5oZyaFRY34H7ExE5cgD9DqdOo+7+qovPgbhYoXxHVc5FZJ5XnOqiQHPqN6/DfvdkXw7i0WOY26OrHe9nEZEijVENdXhMd+pmqlTn1uufLUZGRqQ6VVf3/gR9MDvOxZwLrW3m+XkV7hvwPKh5SiLBuRJQh3/wIOboEREpU390/vnnQ5xK4bMC+3daWnEcqnhY5oYG3F7kzJz+Mzjk61izZh3EA314HtyfRXnA+DebTEJk8zB8a+zZWL9+vXGMpib07E2QD2N2t5nPL71PslytiO1PthknxPPzPKwfl82nIjI+js8pPG7wOOF56GXg61Stms8h7NvgcYQ9QQ31OB4eO3oU4rEiXoOmzb9kHNOhfDNbV2Cb9SjnUoI8sjFqPL/+679hHKNYRG8d1xV7Arm9ss+Sn3VFRBLkiy6PYbmrs3K3cG6tudAvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVnUR6Nhx/ZI4nkpA5530HUuw4OkkY7RC2eiMi2zagNdoZxTuUE6dPzRdSAlX30DARVU0cZeKR5Jp2aZZOHg1+1QqwSVlnHk+a8zdt34LzhOy+4AOLGVtTK/uguzL8QGnk2jENIewfW3Y5Lcb7jkSJqFVeubIN47Vr0dBQK5vVZt34NxDEb6zLwZ45hO0ufxyAI/OfNnxCSRjcIzPVseq+2Kb9Efz96aZwKtk+L5vTOVUyN4lOH8NpaG7FONwm28VIBtcITpHOdKGPbOHgK5/wWEenqaIR4dRt6LibqULPfthLzCwjpRf0If0uc5JzssTD1oNge2X8RNU8974NjZ9Y2zgLycJwN0qmUoac9g2VzDgLTT2NxPhuLdN6kLx4dw9wc2QT1iUXTM1aXxn4ypD6vrxfnrs+TDrchiTrdDO5OBkbMvmP/cRwPtm9ci/skM1JhAnXPMfKmhLbZBvMBtqmuzahxP36qH+KxHizTWvLSnejHe09EJO7iyWYs1G/bU/45e3ksGlIoFKbvnaEhvI5HSVte19BobG9THpeQz4PaJ/ejhQL6dVpa0V8hIuL5+CzQ14fz/2/duh3ibBf2R9yrjozl8IeAjG1i+gE4d8J5554P8d7n9kA8NoY5LqLgPoxzjCRSWC72ZCQS2Lauv/564xh5ymE0MYG6fGdW/oVyJSJZ2VnG93wJpxq/T3mn6ihXRGsbem1ERNauXQsx+wzYX8H5TfgaRHkxPfL0cMz5R5J03YpFvAb33vtDiLdu2Wwcc33XSojdNOe0wXKXyV9jeNQivMDj49hGSyX0sXFuM/YIjlKepzEaW0RExnNYNzs2bYE4bs+0x0rVk/2HHzL2EYV+0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak5i/JobN7cPT2fvuui1vzxx/dBfOgwzqsuIvLUBGpmvVIO4kqR5lYv4XvQWBX1irYdMY8vaUrDgHVrqH2zLKwCllX7lJOgqRE1uyIiq9duhPj0QA6LRPq8rk7UpA4OoO6+TPPDi4i4lHPEsVHTN5rDufBLNL9+EPB5G4eQi3ah5jkex/nKR0Zy0/+uxkz9+dnG8z3xpq6H4bcgzb5tmeXzPdJBCmpcJ0ine+CpRyBuXLGKjmn6dcYLuM+fPrYfYp7H/jVX4fzudhyvfc8A+kQmSmZ+ga3nXA6xU0WdZZY0qU2NjRBzfpEofwt7LpIJ1LU6NKd8QBp7x8XlVoTHokLHGCcd/+xrXFymPBpBEEzrgvmcPG/+3DLs22CN/Dhp4JN16LWqS+MG1apZjzx//+AY+oZ6+7GNdneiljo3gX1mUsjnljLzGAwOo953dQt5G0hDb+RvYA9QhAli9TbUCx85gvmIcifQo7F+BZYhT/PhZ+vN/DHFMRxj/IA9fpPnERrmvqUh8APxp7xlLc2Yc2GMNNhRNpK2NmxPlTLeR9Uq9j82XQfW0Dc0mHXIY2xfP16nc3agR8MnT8eP7r4Ll1P7u+H6NxjHTCcwh8D4KF7rNWs2QLySfGojI3iPNDWZ3pN6ai8N1I8mk/hM1NeH4/qDDz4I8eAAemxERHp78RnpggsvxmOkZ9pd1Vt6n6TtODNtghpYbjQH8erV6AsVEWmlHCn5PN5v7OvwfdODMZsor15UjqbZcF6NS19xKcSlCh7z9OljELuB+XxWLeF5JCg3FRfJsKDR8kLR9MHlcthG+TzY08gejXwe+4eJApZZRCROiXRufP21uFxmtikUy/Llr6tHQ1EURVEURVGUZUJfNBRFURRFURRFqTn6oqEoiqIoiqIoSs1ZlEejc0WTZKbmSu7uQq3nBbu6ID54ADWRIiL7nnsWYq/cAvHqVRifOD4CMWsec2O4XESkVCFPBnkTwhB1bGfmRZ+OSdrPetMY6Z9FRFav3wrx8V4sZyqP2u26DOpJCxOo7SyXTV1ibgTP6/77HsBjHj8CseehjvDCCy+E+NprUXsnIlIu4DEKBdzH7Dmro3T8Z5t4PCaJxKRGOCiiPtEj7wLPWy0iEoS4jhXHerZofvZjR7B99ecoV0TJrINEAm+pMfLbHO9HnWQQ4jHr0zgXuW1jGbZuNefw3nrONohPHN4LcUML3lfpFLa3OOlcA8fsFiyqT56bnDWo7MHwSGsbpaMNSajPtTtbz1sqmTrZpaBSqUo4dR8kbZwXn+d851hEpMo+IdLEjuZQm9vSij6DhizGvcOmV2VwDH0eRZLiZtLY5lyqaTuO7aM6ht4HN06JNUSkvZ7rAjvSHPnvsklcnk5hXXVvXmsc41QPav2rXFekqx+jeeV9al+lsll32SzmnPGq2M7PzFVf9cx57pcCPxQ5cyuxZ+DYcfTpDfT3Gts30TZ8nVyX/Td43ybIm9VCfYuISJXGnhMn0K9Zpr46TX3e8WN4HkdPoEb+yiteaRzTbsL2M0GN3iKP445zd0KcyWAZonIJcZ/H9/fhI0chfuzxJyG+++57sYwTpkb+AhqnLYf6xFm5rNg/uhTEw1DOWGN9zuMwgfdjLIXPOSIi4+O4jiPY/pob8B5OJPF5y/fmztckYt6zpTK2R85nUleP9/z6thUQVyrUT0T4P8cn8BjlMnorXfbm0facA4NzZIiYOUNSNI5zjpsDBw5CzB4a9mOJiGzZiM/tnGOkYdb9H48v3CepXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxZlBq8UA4nZU2acEE04aTJGnbt1tbH9ORvRMB6SQZSTs+QpcVTfAJoST/WeMo5x7NgJjI9j3E/J8Qb6chBPUMI1ITP48DAmTREReXbvYYg712ECv9ERNACXyfjDSWeiDE4DdO6ne9Ew17kSzflvfAMmNdq6DQ3DjY2Y7ElEpFIh+y0nRJxdTGvupDhng+LIsFjlSTNSjExhto91NjGByfdERAYo+V3fCYwrY2huctNoCpuwsH0OVvG6ioikmtFsmSWTYnMzmt3YoJqKofmtPuZSbBrRKqNoGE+T8ayFrnUY4j4r1NxCOyJhn4d1wwkS2WDOXvyAkgKyYU9ExKE+JJtFg+ZsE198mRL2ZTIpiU1dEzaH8vwIVsQ9wgbSchX7m7oMGhWPn8L7PkNGxrKDZj0RkaF+NJm2NzTSPrB95MvYAOqbsN6LFZrAIKA+UkRWUoK+Ak3W0EmJ4nwXjYjdWzZBnOvDe1NEZLQXf0sneBIN7Fe5jQYuGdZtsw3FYtRwKazPTBpHKxHtdykolipiO5N1Z9PMJRNktD11AscIEZGWJuwLOPEl1xkbZ8tlaq9ZM2GfWHgj7N+PptT+fkxUt3kzJmnbcc55EA8OY/928oQ57vO9V6VkZqf70BjfT2PB6Bgm+ItHTHjQTAkS2Yzf04v36nEywfP12rgJ27yIyHk70aTOU5pUZhmbq+WlnxBjZSYlrjPZRlJpNFHXx3B8rGs1nzFGctiXlGjCmYF+fL5i33WMxkOenEBEJB7D39IujqkpMjgnE7i8RBMJJKgtdK40J0Cor+MEtljOPXtxgpa77vkxxDlKFlwsmNfWcTBZJpvBOfnhiRP47MsG83jCTDi8orWF1tlE8Uz/UPGjUoJGo180FEVRFEVRFEWpOfqioSiKoiiKoihKzdEXDUVRFEVRFEVRas6iPBqOOyCOO6kD8yuo76oUUY8chuY7TMg5cEifbpMgr6EeNWgNjZhMZPNmU+NYJN3iRAE1gblcDuJ9ezHR3bPPopbuxHFMFjRE+lIRkbvv+iHEG7ahHrTvxCGI05Q8qLERtZ6xpKmdW0kejGwWEyt1dqCf4LIrXgGxRfpQTv4iIuLMk1QGkhhFbH+2eW737mk95ckD+2BZJoFtyQpNn0s5xHWqMdSVt69ciXF9O8Qn+9CLEyf9vIiIT0lz4vXoKq2uXAAA2vhJREFUyQhIY5qjJImd9agXbSYd5vCAqV3vO4lazJZ61IsWKbHTSA71yBN0L4tjejRilNiLE1dW6RgJWm5x24pK2Ee/JZOke521j2VofiIi4sZj0zphn4ThMdICR50j31WZNN7HfF8ODKPu9pk92Jes7FxlHKFCuvtcDNukUyRfENXz4aefg7g5g9euvhE9HCJme2inxHfjAZapayN6+Ab60Ts3ehxjEZH6BNZVgRNOkScmTvdamdoo172IiFBCV76GZ3TO1WXyaFTK5WmfD2v+M5QItr/f7J/YI1RXV2esM5v5PBusCxcRSabI11FCv8ShQ9iPrlmzDuLNm7dA3NjYCHE2IhHcQO9piDm546OPPALx/n0HIK5W8HrGIxLzssePPWQWPb9s2oTnsWIFjtHnnodeFBGRujp8Fhgj300wy8fKSd6WguuuukiSU9r+BvJ+hRYl12tcY2z/4CO7Id53CP07GfITJqhPFYuuU4RHw7KwjTsOtuFYDMc7bsOjo/j81t6Oz17DI6Z/p3+A/BD0PPxv//pViJ/Zux9il4ZgS0wvpu/jPqOe4RZDOm16TUIf+9QYJYyc3R9Gj2/R6BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj0Y1GJBqMKkZj8VY24m7CkNT/1qpoKYsIB8Hxz7NIh3SvPWGiUBEHBu3aaS5rhvrUZff1dkN8aWXXAhxfx/qXE+exLmxRUSOHcP5yk/1sGYe9XaXvuKVEK/q6oDYssz5ibOkea4nba0xZ7yPsedh3UfN8R/4honm+eNw4XMo14oVHSsllZzUR/o0Z37oowa8qcmc3z3dRjksqG14JPkuDaPu95wm1BJfuu0c4xgP7z4K8Y+fQs/PacqH0pdDDWpHI84p30h6+L17zfa3+xn0q1x2Ac19HcO2kC+iZt+P4TFitnltk6Rr5ZZSIm9K1UetO+eKiWrjrDmNUU6R6qycEzwn+FLhe554U0Xn8rFkNeoc+Tef7kvW3a+gvCwBGd0KuQHzGFSPpQks2LGTqEH2PfQzsfY66WL7iOdNbXi2Hvt7n/qXlmb0P/WcRg9G+TTmSnCCiP6FforP4/ux2bNB29sR7dzmcYzyv7hT91LUtktBtepN+wk4j8OKFVjHP/rRD4ztSyW81lu2YH6lpqZGiNm3V6H8FBMTeN+LiFQ9XMemfTz8MPol6huwX86Po4dsoA/bSs8pM4/GaWpPAwN4X4yOYp4Cj8Y6zkkQde9yfitubx2dOI5vPwfHh5YW1MTz9RMRKZdwEGJPzexy/bwa/RdC96qVkk5O9nsu+fb8EOOjE+gvETH7SPYRTQzdBfHGNejlYl9cxTP9hC75NtiHxM9K3d14jFIJ/Tuc361YNHNcBDTeVcq4TUMDPneevxPbRjxJOX4c0wfiUh4Nm7wnmSx6l+I0PrG/qqHe9Gdt2Yh9SEBjQ3nWeFVZRB4X/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0bBcSyx3UiNo2eiXiLmoSfN9M49BjOY3rhQpF0eJ33tYk4ZLnYj5/pnQw2Oyxpl1lpkMao3Xr183Zywi4pF3pMh6dVqeSqGG0KW8GqxDFDE1pZaPlZGySSNt4z7KHuqqHdvM1VExp27GbWbVFetul4Jsa5uk05N1t60V57a2SK9YFrMO+dr7BVzH8lGXW3HwOgYWzrfdtgI1uSIir9iFWt9B0rOfzqO3wM3g+nHKj7KiE69TZ9Wc371YyuE+E7hOF+UH2XME9fCFImppk2LqQ9mVwdefNc1jY5i/JkZaY9bJipj3ouuS1nvWNnzPLRWJZHI6PwNrd8tlLC/rq0VMzbtP2l6LjAhcryXyuaXi5jHiLm7jVbAdr+9EH5Bl4bVwqNxBgHXtRPiz8pSvSNpQLxyMYJsrDw9jmWlsKIcRfTv1i3GXfT8Y23QeMfb8uWYbDFjzTV6MMx4a2174HPK1pFr1pr0C8TiOI7kc+hD201z9IiJHj6CfkPNdNTdjHoOhIcwbxV4HyzJ9At2rMbfL+Bj2m08+ibkUHn/8SYgTMex/Qrom5XKUPwuvU4I073VZ9EOkM+g74pwY7KcQEWltwzGnsRF198kU9t2cWyZGeV2i+gfuFzkHBOYSWnqPRipdL6mpPCmWTce3aWwqmPewMS5Q7pG3/trrIL7qkp24/She+37qR0RETlOb7e3D/CcDY/hs2taG/eEA+Sgfe/QxiKub0dckYvo84jSE7tq1C48xgmUs0DNjuWw+P/MzoEe5fHIjOdoHeijGKSdLuWjeR9kbroD4vA2Y+8Ww7S4Q/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0fDtUPxpbSpqz6tV1IP5lQgNdUCaWgcPnyK9uueRzpd8CX41ovgevTtZWI7A0P6i1pY11AvRpPF8+vFGnl8fj8G6bI5dy3z/sxzch0fa4WKI52mRR8NJUpki5qkPaRuLtNiz9eNR84yfbSp+KI43WQ+sj7eprF7EO7RFlz5tof/BEmqzqUYIqx62jScO9xjHOH0Cc6hUA7wv2tpwn0IaXCuGuuuWVizjipJZ75UAtcK+g/tobke98eoS1t2pASxjEJg+kEIB14lRXg3Xxbhaxcq2yRNkRXg0+F70fIxjs9pcuAx5XEQm5w4Pp7wCrJHmW4LnmRcx+5eAfAch1wF5UXyf/BKuea1Y+50gzwYfM+DJ7eneSlB/lC+i5l5EpOigptgm6XSQJ58atYcS5WdIsMhZDLuEWJxIiS4A5z2wKCdGMmYew6MOn3XO1an58avV5fEIWZYj1pSunf08hw4dhth2TB9eI+WsGBxA/frwEF64iQnMacF5NILQrAf2IHJOiz7KeeHQc0Ar+e8aKA9CO3nOREQaKfdLA/knmhrxvOvq0LORIc9GPG7WHfdxcfJgWHRvO3T/s/8iyqfG/YM5zIZzLDv7VP2ynGn67EEpU79w7PBRY/teykvGvqqmJrxuI0O4fkDPkK1NZi6Ihga8r9d2o8/gwScw79TpHhzHPbrnDx88CPHjj6BnQ8R8Bqyrw3uA74kG8gQ1ZcmrmTSfbZsbsM2WStifffu7D0BsUf4sn7xOK5sbjWNcsGMjxC49E4X+rPvfX3guK/2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dHoG+yRVGFK/8Y6X4rTCVM7FyM9ukvzMIcWzvObiKFeL+ZgTLYQEREheZ34pD+2SNbrefhDQLpw2+F51Oef/5+15mz04NUtugysvRURcclgEPNRD5kkfWTFRZ1iMYZzfFu+OQd3XQH1uCXaR9meKae/DHkMXCcmsTM62RD11y4lWUlG5Plwk3jtQvLGxBzSI1bouiRxjvlATH18YxfGCfJHlKtY7w7l+0hlUUu8IoNlGKygplpE5LlDqIHu6ctB3NmFc5dn0qg1bsCmIQMFcw7v0OK6I/17Apcn46g55XvEq5pzrHP+hvwEtelZ+vBSKeLmXwIc1532QLAHwDhHz6xHzpnDvgPeB8+9HyPdt+FTEBGLfWisDed8E7S94SOh+8Rjs5NE9Is0V32M98nnSdfe5YoR08vGuVzYM+NQn+BRPpCxUcr9ISKJBPZ5LnmR/MrkeZl9/tJQLpWnc3lwES684CKIN23aZGyfTOJ96ZKPgz1BlUp1zuV+YLbx3t6TEPO9ev75mFOgu3sNxG1t7RBn6yjnRQa9myJRnjFsT+yniDvkryDDg+HVFLONs7/A4mcFKgO3x2iPBh8Dl4ez7u3laIO+H0zfh2OD5O+hnBa505izRUTk1IE9EIcW3m//9k//CXHJwzFglLxRIXtyRcSnHBQh5YBKZbH9XHz56yHef/AIxB7lmgki2kY8jR6Mjma8z7pXoa9oTXcnxJ2tOO5HeU/SadxnmdrbY089C/Hpfnyetsmrt6oLn2dERLIpvI+KedxHLD5TF1G58p4P/aKhKIqiKIqiKErN0RcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoM7jjijixSUNJ6OM7ChudqmIaBqtkhE2TYdQi040TI3NlkIO4FGDyIBERmxKepdxGXCHEU66WqdxVMoeHbJo2383Y2FghR7phIrOxDOzdDO0IIzOVIzGGRsZkPyZBshsx6VHQgoa6sGImW0nmcJ/V+kZcYbaJOMKsebaxbXu6LtmIm8+jaYxNnSIiqSS2jZDMumwgZIMgJ+9ig6GISGMTGqxSFXRae5Q0rDQxiuunMSlPqh7PY9MGvI4iIhUPDVzDQ2jSe+TxpyF2Ha4bPGY8HTGRA5mYDdMiJ+4K5k6mZjnmfWSRaS+ZxPOyZ8/kYNyXS0MYBNOmY9O4bSb5YgKfk/xZc8fUd3BfE0bUQ6VCiTeNRILU/9A+Arp2FYuXm327W+VJNPAYUcZX2J7qrlwy+yez3Lic646vT9T9yrDhnE3B7pQ5f3lan8jY+LhUpwzZPNkAm6hbWk2zp23xdZnbUG/GWKeua44DmzZtgNiiMTORwH6YE+GFPBkKHyIiUx3/YlP/whMgxKy5J2CJSrZpmL/poDzxDN+rvD7XvYjZ/iyavSaYNaHBckzI4jj29D1RX89JD9Fk3diIE6GIiKzvQhP0yATe54UxHA9HxzEeGMZxfqJg1sFEFa9TmSYjqFDfcuf37oQ4dLDNV3jSj4jJekZGsJxjIzmI9x3FMdmJ45hcl8F7oCvi3l3R0gpxy0qs38Y6jHtP43nG4ti2duwwJ4so5XFCoJAmbErMMqSXyubz9/OhXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Gmk3I2l3Ul/pCWrjSgHqwXzfTKhlSApJY5vhJHOkARstjkCcL2IyERGRTAJ1g60xTk6F+roUaflT5PEoe7h+NSJJSRBwIh6sVsPnwZpojxNsmbrDkCorjKOO3mtB/bGXxPPy6ZhWzNQre02oASy7i2oeZ51glj5+dBQ1kQvxT1TS6Jdoqsc6ZA04w3rtqKROY+Pkz6GEWHUpLFeMDDojYwWIhwf7cf0I74lXKUKcyWBiS8/B+8iiZFVJumeiziukcnKCNU5syW2cNfjFkqnvdOK4TspIsjVzLzvL4BESmdT9n9H+sw+Ik5lFYXMCuID7Bk5siP0N67qjtOQO9XlcLvZYxBN4LVkn7lIRbStKv07JVzlJIHtN6LxDiqPuRd6mWp37nk+yJ2sBCc7Y58F1MWvFefd1NojHXYlP3SepFLY/9k2xT0HE9Gjw3xrn9QyxfSKiHtiOw14F9ktYRnvC9Y2ku8YRI/w5vAL1R9x9sMc0CtM/wcdkPwUn8KRkcxH+Kva8cN2Eszym1djSO4UaGhokM9XuYhHPELNZ0WreO+vWr4Z4LI/jOCcg9Yp4j/tFrMNiRJc7mEev6eAQJhI8egIT3D7++E9w/RyOwfz8FlYins/oUpRCvG4l3sbB8xwexfPs70OvhIhIOtkLcR2Nl67g801HE97rdXXYX8QD8xm958RRiFe04LNExZ85j0Jx4Ulz9YuGoiiKoiiKoig1R180FEVRFEVRFEWpOfqioSiKoiiKoihKzVmUCL9YLExrcR2aJ90ljaPnmxrsYhG1b/E63IZlbKPjOfyBxML1dagfExFJ2TiXc4w0j8UCat+CCmoEM2ncJ2s54w7qfkVE7Dhq46pVyr9Asc9zdlNdstZTxNQJllhTmsKcJIHLQlnWqEYoXWl+c/Z1VKszF6i6DHN4x+OxaR32ypUrYdl889+LSMTE+xhybg7WlbMGnNcXEXFcXIc1py7ppuvrsb1V6b7hqaqrRdSfiogk0phbI5FswjIlsG5slz1FeN3z46b3yRLcJh7DyjNyxbDWnXwBqeT8OQ2qlOtltsbe98y6Xwoc1532D1QqWAZuc1F5NUL6206MvC2Gd4X7H9ZFWxE6fONa0DqcuIe05EnynlgBFqIUkeMitOdrD3PnFGD/RJSfgr0lrF/3yevm+dhHcU4Svg9ERCpFPLc41cWZvtlZgN/jbJDNZiQ95TXj/ojbW1TukiBgD8rcOn++jw1vTeR1Ij+g4VHkcJ66nCcnTxRGXg2b+zwqA5UxypvD52XkXTKOiXEsRn4LPq+IcvD9PbvNc/6RpSCZSE17n/h8DS9YGNE30bjRkMZ8EY5gmw4yc18XN8IvtoH6iTyNmcNb0et74bnbId5/GHOSDVFeqtm5TM4Qj5O/eAKfdasV7NfTWRyzmxvRJ9lUj8+xIiKJBN3fwuM6Pa9kMa7LYp6NLD23iohkkrRNBs/LTc5sw/7TudAvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsSDp15vNosTAznRVLpwILP+OUK+bUV7O3FxGJOzR1GX0KKvH0WTzPYmB+Qg3pU5rt46e4En0aDyr0iTTE9VnOFTUlHX8i9TyWTtHnP55SkIuwAOmUXzUKhusbUxuStCFqkkD+TM7SqVlShGKxOHXYsy8hmG5/s65dmT5FBvRJ1V6AdMqckZXkZfNMyclTj06WEdtswFMe0udNOyR5B0unSErD0qrJctB1EyyDE85dN7bN0hjz3uXWwtOysjTBoi14ikqJ+OTN8Gfy2W3tTBmXov3NPg7IB6s8bSzJfyLuMZYxWXT9eZ+8C8fh5VHyGPzN2Ce1B2PqbNofS6cqvD8RCW2awpTaFKtduK74RPleExHxfa5v6tN46lWSRs03HalIxLlRuz6zzZn1lrr9zZYfs1QlFqMpp6PaRrj00im+1sZdMY8Sytg+Qjo1n5qK26MpnaIpdV+AdIqZTw64MOkUt+GZ+ExbWMoxuDBrDJ5POuX7ZrksejYKPRqThdqOtXjplEPSKZ6GleWppTKO49wHVEmSyRJOERHLxt94G4/uM17OxyxH9LFc4YZ0ivr9oEwy3RietxOY7deiZ1N+jHRmTdt7pl4XNG14uIC1Tp48Kd3d3fPuTHn5ceLECenq6jqrx9D2pzwfS9H+RLQNKtFo+1OWGx2DleVkIe1vQS8aQRBIT0+P1NXVRf41QXn5EYahjI+PS2dnZ6TpsJZo+1OYpWx/ItoGFUTbn7Lc6BisLCeLaX8LetFQFEVRFEVRFEVZDGoGVxRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTn6orGEfPGLX5TGxsY51/noRz8q559//nR8yy23yJve9KazWi7lxcc111wj73//+5e7GMrLgDAM5Z3vfKc0NzeLZVny5JNPLneRFOWsoGOwspy8XNvfL/SLxkIu6ouND37wg3LXXXctdzEURXmZcOedd8oXv/hF+fa3vy29vb2yY8eO5S6S8guCjsHKcqLt78XBghL2KUtHNpuVbDa73MVQFOVlwqFDh6Sjo0Muv/zyyOWVSkXi8XjkMkX5RUPHYGU5+UVsfy/qLxp33nmnXHnlldLY2CgtLS1yww03yKFDh0RE5J577hHLsiSXy02v/+STT4plWXL06FG555575L/8l/8io6OjYlmWWJYlH/3oR0VEZGRkRG6++WZpamqSdDotr3/96+XAgQPT+znzFvztb39btmzZIul0Wn7t135NCoWCfOlLX5K1a9dKU1OTvPe974VMlfPt9wz/8R//IZs2bZJkMinXXXednDhxYnoZfzZjgiCQv/zLv5R169ZJKpWSnTt3yte+9rUXWMPKi4F8Pi8333yzZLNZ6ejokE9+8pOwfCHt6vOf/7x0d3dLOp2Wm266ST71qU+95P6Soyw9t9xyi9x2221y/PhxsSxL1q5dK9dcc4285z3vkfe///3S2toq1113nYiI3HvvvXLJJZdIIpGQjo4O+YM/+APIBjw+Pi5vectbJJPJSEdHh3z6059WCeBLHB2DTXQMXjq0/Zm8FNvfi/pFI5/Py+233y6PPvqo3HXXXWLbttx0000SBMG8215++eXymc98Rurr66W3t1d6e3vlgx/8oIhMDq6PPvqofOtb35Kf/exnEoahXH/99VKtzqSiLxQK8jd/8zfyb//2b3LnnXfKPffcIzfddJN897vfle9+97vyT//0T/L3f//3cIEXut+/+Iu/kC9/+cty//33Sy6Xk9/8zd9ccJ385V/+pXz5y1+Wz33uc/Lss8/KBz7wAXnrW98q995774L3oby4uOOOO+Tee++Vb37zm/KDH/xA7rnnHnn88cenl8/Xru6//35517veJe973/vkySeflNe85jXyF3/xF8t1OspLiL/+67+Wj33sY9LV1SW9vb3yyCOPiIjIl770JYnH43L//ffL5z73OTl16pRcf/31cvHFF8vu3bvlf/7P/yn/+I//KH/+538+va/bb79d7r//fvnWt74lP/zhD+W+++6Ddqy89NAx2ETH4KVD25/JS7L9hS8hBgYGQhEJn3766fDHP/5xKCLhyMjI9PInnngiFJHwyJEjYRiG4Re+8IWwoaEB9rF///5QRML7779/+rfBwcEwlUqFX/3qV6e3E5Hw4MGD0+v87u/+bphOp8Px8fHp36677rrwd3/3dxe93wcffHB6nT179oQiEj700ENhGIbhRz7ykXDnzp3Ty9/2treFN954YxiGYVgqlcJ0Oh0+8MADcE633npr+Fu/9VsLqULlRcb4+HgYj8en20gYhuHQ0FCYSqXC973vfQtqV29+85vDX/7lX4b9vuUtbzHavqJE8elPfzpcs2bNdHz11VeHu3btgnX+8A//MNyyZUsYBMH0b5/97GfDbDYb+r4fjo2NhbFYLPz3f//36eW5XC5Mp9Ph+973vrN9CsoSoWOwjsHLiba/l2b7e1F/0Thw4ID81m/9lqxfv17q6+tl7dq1IiJy/PjxF7zPPXv2iOu68opXvGL6t5aWFtmyZYvs2bNn+rd0Oi0bNmyYjlesWCFr164F7dyKFSukv79/Uft1XVcuvvji6Xjr1q3S2NgI6zwfBw8elEKhIK95zWumdXzZbFa+/OUvT39OVF5aHDp0SCqVCrSb5uZm2bJli4gsrF3t27dPLrnkEtgvx4qyGC688EKI9+zZI5dddplYljX92xVXXCETExNy8uRJOXz4sFSrVWh3DQ0N0+1YeWmiYzCiY/DSou0Peam2vxe1GfwNb3iDrFmzRj7/+c9LZ2enBEEgO3bskEqlMn2xwzCcXn/256mfl1gsBrFlWZG/LeQTXq2YmJgQEZHvfOc7smrVKliWSCSWrByKovxik8lklrsIyosAHYMRHYOXFm1/yEu1/b1ov2gMDQ3Jvn375I//+I/l2muvlW3btsnIyMj08ra2NhER6e3tnf6N53+Px+Ng1BER2bZtm3ieJw899JBxrO3bt7/g8i50v57nyaOPPjod79u3T3K5nGzbtm3eY2zfvl0SiYQcP35cNm7cCP91d3e/4LIry8eGDRskFotBuxkZGZH9+/eLyMLa1ZYtW6a19WfgWFF+HrZt2zatOT7D/fffL3V1ddLV1SXr16+XWCwG7W50dHS6HSsvPXQMNtExeOnQ9mfyUm1/L9oXjaamJmlpaZH/9b/+lxw8eFDuvvtuuf3226eXn6nYj370o3LgwAH5zne+Y8zWs3btWpmYmJC77rpLBgcHpVAoyKZNm+TGG2+Ud7zjHfLTn/5Udu/eLW9961tl1apVcuONN77g8i50v7FYTG677TZ56KGH5LHHHpNbbrlFLr300gVJXerq6uSDH/ygfOADH5AvfelLcujQIXn88cflb//2b+VLX/rSCy67snxks1m59dZb5Y477pC7775bnnnmGbnlllvEtidvzYW0q9tuu02++93vyqc+9Sk5cOCA/P3f/71873vfA5mLovw8vPvd75YTJ07IbbfdJnv37pVvfvOb8pGPfERuv/12sW1b6urq5G1ve5vccccd8uMf/1ieffZZufXWW8W2bW2HL1F0DDbRMXjp0PZn8lJtfy/aFw3btuXf/u3f5LHHHpMdO3bIBz7wAfn4xz8+vTwWi8m//uu/yt69e+W8886T//7f/zvMgCIyOevAu971Lnnzm98sbW1t8ld/9VciIvKFL3xBLrzwQrnhhhvksssukzAM5bvf/a7xWWyxLGS/6XRaPvzhD8tv//ZvyxVXXCHZbFb+z//5Pws+xp/92Z/Jn/zJn8hf/uVfyrZt2+R1r3udfOc735F169b9XGVXlo+Pf/zjctVVV8kb3vAGefWrXy1XXnklaOTna1dXXHGFfO5zn5NPfepTsnPnTrnzzjvlAx/4gCSTyeU6JeUXjFWrVsl3v/tdefjhh2Xnzp3yrne9S2699Vb54z/+4+l1PvWpT8lll10mN9xwg7z61a+WK664QrZt26bt8CWKjsHR6Bi8NGj7i+al2P6scPa3cEVRfiF4xzveIXv37pX77rtvuYuivEzJ5/OyatUq+eQnPym33nrrchdHURRFWQZe1GZwRVEWxic+8Ql5zWteI5lMRr73ve/Jl770Jfm7v/u75S6W8jLiiSeekL1798oll1wio6Oj8rGPfUxE5OeSIyiKoigvbfRFQ1F+AXj44Yflr/7qr2R8fFzWr18vf/M3fyNvf/vbl7tYysuMT3ziE7Jv3z6Jx+Ny4YUXyn333Setra3LXSxFURRlmVDplKIoiqIoiqIoNedFawZXFEVRFEVRFOWli75oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JwFzToVBIH09PRIXV2dZnlVREQkDEMZHx+Xzs7O6SzWZwttfwqzlO1PRNuggmj7U5YbHYOV5WQx7W9BLxo9PT3S3d1dk8Ipv1icOHFCurq6zuoxtP0pz8dStD8RbYNKNNr+lOVGx2BlOVlI+1vQi0ZdXZ2IiLzv5gskEXdERGSiVIR1AseBeLxQMvbjhfjW43lliNvbsxBnGnGfrl2BeHXbCuMYx3tGIS7hIaRUwB+8og+xI5iCfqKCxyxPmOe1qq0FYj8WQHxqpAfirq5OiEf7cZ9pK20cI5GtQlyxUxAP9g1C3N2Ny8MA635wIG8cY+VKrM9+2md758zyctmTv/ncz6bbxtnkzDE+8tXnJJme/Df/UWVBf2WhiZwdwW2Mfcy7z6iZoWs7W3QYUFyD3YcWx7Wf4do3jjH/NkEwXzlmdlIqjMtf/Nq2JWl/IjNt8MSJE1JfXy8iZnm5/UTNHD5fk+JtzH3OvX4U5r2B2/A+ymXsI0dHsU8tlLHvFxFpqMdcGal0BmI3jmWwqQxmtUSdF9UFxbY1zzHMhm8e1V7YvTA2NiarV69e8vb33t/fLInE5Lj4xMNYfieO16XsmddpeAjH1IkJHP9aOvG6/dLrsAN65Pt4voOjnnGMIDYAcWsWt8k24Dh//32HIbYCHHMTVMVr1+J4KyIyMoDbVMs4jq9che0zbuHykZOnILYzZtt44rk+iJ0gCXEsjvu0HaybN74B29bbf3uLcYyfPoD32gP3Y3z1xe3T/y6Vffmzvz24pGPwHf/yE0mkJ69f4JvXHojq7Bb9NWTuPjUMsf2aW5h9JheB7/iANqAheEF9Lq8T0E4sy6F4Acfg5xeL+9C5yzXf2CIi4lDMa8zeplzIyydvefWC2t+CXjTO7DwRdyQRn9ykGmCR+EWjXOUii9j0osGVfeYlZjpO0IsGHSOVMoufTOBvIQ+qHu7DpnbqUFXHQzrPmPmJiMvtx/DyxGgbPq84n7dl1l0iji3VsvE8Y7G5645fNOKxiGNQ3fE6vFxkgQ/4PydnjpFM10kyUz/12+LLwc/T+qIxSfASfNGY/mWJPuOfOU59ff3L7kUjoFHSiZv9QN1UnZwh/Qv+ojG9zyVuf4mEI4nkZL8cc+lFg8YZ3zLHKsfF3xwHz9d1qc/Hv1cZy3l7ERGLjuFSuXissmzqh/m60mm4bsR5OfhbQDGX27X4PHB925m/r1lsHI/j/jIZcwxOJqmu6FyTCXObpRyDE+msJDO/2C8afqAvGmfgOy1qm4W0PzWDK4qiKIqiKIpScxb0ReMMlmOJNfWm39jQAMuKJZT/VIz3QBEnjX8eqZJMqVpGeVDgY/H8AN+cqmXzGCL8hovrZKgMQl8TYg4u90dGIE7xnyXEfKumDy+yae1qXD/A9dlIE0ZcFjeGv41M4Kdij6oilcbPuoGHx0inzbpzHTxGKoUSrmo1jPz3UmFbk/+JmH/14jiKuT4DRsbz7jBqjRp/0bD5LzqL38fcf88+O/AxFnLM+f4iMxvz73ovPhbytzv+WmD+1cmec3mpZEo5R0ZyEOdyGA8PDUOczxdwn2Xc58T4BMSDwxiLiKQzKE1xE/hFo6EZv3i0t+P40dyEyxtJXjN5DOybkyRVSdBf+PlrttFHvAQ9rYcP9Ehs6ov5Y0/idWppa4fY8TqM7YMQx410AttfdQTHpifvxfZ35Wvxa9eBA+ZflL/9bYyd1f0QDw2jBKk8Sl/8MzjGVvjLQKbROGZHJ45dRQ/jSgXHcTfE8fGinVdAfOD0M8Yxutdhux8bwuX5MayL9ibspV77SxdD7FdNiXT/aZQ0V0Ns40+dmKm7SiXq+efs4ji2OFMPOA59JTKeYyIGK5//0m/85X/u/pD3aEf8rdz8osH7NDaZc3v+4B/VbZhqCP5CxuXkusIyRn7dN5QHc/dv8315ifoSEdJvAX/9nvVvVi3MhX7RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTmL82jYImfM8m3tbbAsnx+H2HFNfdh4CfWh2RTqePNjqP8sjOP6tuDyEWvMOEYygbrHOM2QMtSHWk0nTECcSKLwrLWxGZezAUNEygU891gWdZUNLTj9V24Ep41NJbGuHDxtERHxPdR/FidQy5lOkV45hjrXMm2fiOF5i4gEHs4ikeDZZWbrJ3kahSXizNVZ9ARRMuPvmI553/ObMiiO0lHOX47FcDZ05fNN51cLeNKWhRxhMS3qRfkXEp4RKmKVKk2XPT6O9/FIDvun/j7Utw8OoDA8nzenqfZ9vNfZa9VIfdqKFTjddjbL/gi8mA/87EnjmL392BeXPNSzh6dwylMXuyuREP15rjv/zFarVuB5XHXpDojb25rwEDxL2EvQpLFhfbMkEpOt//FHcNp0r4Jem0uuxnFmciVsL66P48BFF2HbyY3idXjkIZwyN2GZU1teeT6W494HcMzcsA63+aWrcA7+onsS4kKFxscQr6uIyOAY1kWWfB4Xn49tfGwI2yuvP/SM6X0qVWi64HlmmzxvJ7bPnTtWQbx79xPGMTZsxv7hosvQZ/PvX585z2p1GTwarjPtzQion/Hp+YH9FiIiPvWKHLOBwnAl0D6NmeRExOZZy+a9z+cenXj2uvnnwzOfNUy/hD/P8ojZ3PgHY7yZbyY/3j6q/eBW7MCaXU5/Ec+AL8rxWlEURVEURVGUlzb6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwaiXRiOvN22UO/xGhhFOL6NnMe9Nyp0xBX8qjx4jmRrYCLhxrAibGCMLE0ak55rudyEVVnacpYm0riXO2JOMZByTRQVEMsR7GIeuMMCd1SSdRM12ewDIWieYxKHvWhacrS7VKGVq9CWTsD1KC6LCIUEZ8yfVLqDslPzOhayxVz/vSzjWNP/idi5lxYiEeDp6E2PBrz7uGFeBl4G87dMd/WCxD+/5wl4gyjtdgnl3shR4hoks9LROLeJefI4aMQ9/ZifoCRHOarEBEZH0dtOOuY45Snp64OfQkrV6Jmu558CyKmJyORwD7RtskgMU/adr6Wq7q7jHU86cUfyIQxRv1XifrRUhH7nkLR7Nvz1K+W8liXW9avhLi9DTXyi3MBvTipWqPT+QrWbSC9uot1PNRvZm7uWInbdK/EdbIZ3Me52zA/yoFDlCuig667iAyfwvY2QdftyGH0IXWvwPba0o7+iMQYejkP7z1uHLNq5SAePIHPJ7FRfPZobsE8LnUBZQ73cbmIyMp6bJN91P5WJPHeveOPd0HccxJ9SpKkRBwisja9DleJ4XPV794y443NF3z59ndon2eZMJyxUZhZuueORURCUv2b4zg9A3JuK5syugdm37XY4czIXUT9BJeBc15E7cMcy4zsHBTOnb8iag+hRT4PYwtanx8lInJ1eJxzZA5falQ9PB/6RUNRFEVRFEVRlJqjLxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1FmcDfhipuc3OTwySOwrFxFc1+6Hg1eIiKN9Y0QD/aj0SmVxkQ+bAjkHE5VMZPnFXKYkCigJH9stPbKaGhZ04lJdbZs3Azx3mf2GscMyRdt2fj+NkLJgcplLGPSRhNZjBPliYhvocHOKuJ5pckEX5xAA142g6bR+hVochcRKZYw8WDVQ1NeZpaJvVQ2jYZnG1vC6eQ5LyRh3zx2LLH4tXteH3aU/WpuS5ZlONXmLjib5cKFnOg88D45IVEtMJIA1vgQzlko80IolSoSj0/2Ic8++xws830s08qVaE4WEdmwfgPE6TQaXeNxNFE7DvYFQYSBbz7YzGhcjHkyQXFiu2TaTPa5bgP2m5s2b4SYcntJsYT9R57M4hMT2BeJiAwPo4l4LIcJ6Rafd3J52tDPw+OPxsR1JzuqVWvIdD2EHVgybfbR//F1vBC3vxfbW9VGE/T/+DJeh+O9OH5+63tmHQ4P4G/xNHWslKB2YjQJ8Ugex/Vxap+dnWb7GxvDyWcGy3iMtZtwAoM9j2OCP7/5ESqz+Wzxyg24j4lWrLunH8VnonvufADi557GZ40Na82/8164FddxWvHkj/XOjMnF4tJPbhCGwbQJ2DBRs3E7YqxywvnXmY0933I74m/l8+W+42R6AU9KNPeELWFgHjO05q4L8wFl7j7Zjpigg+vbN8aCuduD+ehh3rt87iGXY9Z52MYD0/OjXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8GhKzJ/8TkaKPHoFsFj0AxYKpDx0dQU9GjJLlhTZtQwlBbBuLW/AifAKkY4vHydvgkP5zHDWog8P9EO9KbId4zao2YU6fOgxxKo666zLpkcXH864G6KewYqY+tFrFbWwbzzNJCfwyGfS7ZLLomRkZMpOJVavs+0DtrD0rWY77ArTiPy+2NTsRDtXHAtLtGbLJefZhyiQX4q+Yx6MxT6Kexe3thWEk4VmKS1mDpICzy7lcfyGJx+ISj016qi666GJYZll430YlNLLtxWmU2XfAx3hhLE7bG1JtB1Htnvojx8I+jQeaZAb17Q3UX4URCV+t9Z0Qj49h351KzFM3RhuMapMvgkyQc/DGGzOSSk1ej5PHKMlXA44zFbTYTW5/E24z0o+ei2cex2s9QYleL7kClycc9BuKiDz1GI+xVE5K9ptwMLFiMoZtITdyDGIvwv85OoFxmXT0p8nzkxd8Lug4BxNh5g7gs4qISGsX+ld++YZ2iNsbsZXf+a1TEHdvwOW5gUbjGPdPnIS4ZRXWxcDQzEWtlJchAeWsjH3zeTSi/BWclNmeb1wwjFcLGbs4yR8unc/nxsU2ku9FZIu16LxMPwUlwpvHJhc5LMxTMDO5HrIQD5tNvmd+Xpm9i8Be+FikXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8GmMTY1KuTm6STKJ+P5lCzePIGM55LiLiO6jbbWhAHW4xj9rNeBJ1vCEJ8vyI9yTXxW0yGcoX4eE84l4KNahCOt9DR/dAvLUT59IWEbl45xaIyzRn/JGeXohDmlQ+mcW6K/tYTyIiqSReqvoYemIS5HdJkwZ6fAKvR9nDeetFRBJJrCsvxPotzcprUl6WPBrWLB/F4rTuIqZEmzWkxj7m04dGCUQXKfGer9iGRrImfgrW1s65OBqj3PiDsxA5/KKZOYazXFp6a6YY3NdUq3hPRM7xTvy813Mh7X6xnoz5tg8i5ngX6itcvj8F+zxb0BsQWFSmiEMYGvCwQsvN3EBUyHni5znwi4jeQ32SSEyWMZfDMbizE8fPi69qMrZ/5iCecyGPHotd23Bc8CfwuuSGcBxqSNL4KSKJBO7DI09ieweWe8tWzDdz4OBRiNNx8heO4XmKiIyR1zIZx7bRcwpjSeB5Jca3Qbyp3cyXNeSir/H//at9EJ93TivEu65ogfj0MTTNhK5Zd/v24TaVZ05D/OZf6Z7+d7HkiwjmAznbxBxLYlMeBXvevsu8l1zDJ8lj0Xx95kLGw3kKRtYCI1eE0RVRLqvIndI64dzbsJ/C6Nsixg5+/uU+d76xhLePWn9BXpEp/EV0lfpFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYs0qORl3hlUuCWyWKuCJ98BXbcFHDVpRohjocolou5qN0sF1BEVvFRPOfGzXl844m5fR0J8jo0NuF5uC4uHxvPQewFK4xjtrRibo3cBGlIbfRHxBOozUyRR0M8c25y8VH3miIPRsLFd8ZyuQCx7eDybD2et4iI42I5BgaHIC5VZq5xpUJGlCXAkVCcqevJusmIpBfzwv4HI8eFucFcoYjMnyfBJ3/OfHk1WE0feZo0L7gxfzlPv035HdyA/TbmQTh3Auv0WXMaGmWosfZ9mf5EYlkzpxKGfA+wBjbKC8Ea43nmorc5Nwf5JYKoXB1cOT+vQYbOK8JDJuTBMJo19U9cIj7PqHuRz92h+eztec4zDLleoowgc+5i2enoaJ3Oo1G2x2DZWA7PL50xcyWdHkavwqoGHEe2rMW8Dc8dw7GoNYPt7Zc3Y24JERGPvDM/+D72L/kxbD9jORpnioMQV+g5YbRgjo/nbl0D8U2vORfih5/YDzFZFmWsfALilhVmHo1TB3AM7n0a6/vH30fPRksLjqeXno+5OqpGexT5nd/eAfGaLRshzg3N1F2+EHUfnl1i4kt86l4fGMbrVCrhdW9pQc+KiEg8Rc9nAfd/uD6Pp4avILKPnRvTi4lhwIkz+FFjQQkpaNyna02PsuY+o86L88qxD2ReryXnFzHbn5EzZC6PxiLGYP2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dFIZlKSSExuEiMvQ76Kc0THSIsnIuKQ7MwZRY1hrIL7tEsoMnNJk1YhTaCI6UUIYxhbWTyGRZNBx8ukM2zEucgj9Xn0W8zBY6xbjfrR/lGc83u8hHXnheb82qkM+zrwGDHS0qUS+EO1ipUfRJzHOGlfnSTWnTNL02dzUoolwA7DaV2iqeFeQHk4bwYvNtan4/P2hqBRxBLUI7OO3yWtuqn/5JuEtZ3meQY2ewNon8HcdbUQ+4RRV3QMi37wuQzzH2JRGHOKLwfGPTBf3pUF6nvn2OfCrC5nuW4Mb4p5/fne4GbN929AouXo85xHWx34FBtOENrcrKcXuUVDTg+VJJGYPA++rasB5pv47KfQpycicuAUjiObL+yEuEj9V2sKx6ZUGnNfDZTMnBbPPYdehsDHZ4HeHlx+98NPQtxejz6RKg2HxXHTo5Hrx2eJu+7FYyQF/RKujV7L3mH0s5weNf0PdWms3127cJ3Nl3RDvGol5sQ4dx16UM/tXmcco209+jwaGjdBPDYyUxm2bT7/nG3iri3xqTFsLId1dvIE5gurFM1cXRvX47OQ68ztm+IxN+D+MOKONUY7HquMLXg5+w8XkkdjbkLTbTnnMaL3wYnAMDT9nvPv0fhlER6NxTwD6hcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmrMoj0YsnpDYlEdjYhTnmQ5oHvUoKbJD0/W3Ut6GoELzBMexeAHNm856UhGR0TzqN8Mk6iptyqMRo4K2J3D9rrp6iFMRx7Qon0dIeuMqzTufdHH5yRyWeWgC5xUXEelah3NSJ5KolS0VJiD2iqidzWZw/apvnkcigxrSGOX3qJRn9Lqlkrn92ca2Zs3zzJrwBYnX59a7z7cLntPbjVg/wes4qE/2PLxPPCMnAflAQqxnL2J+bZ+ElT79/cBnPTwtD2z2BEX5kDC0LdLUzyMIrbVrwHmxi+kXCLfbhbXjF77+C8LwEZmruC72gbaDcUC5Wny6D0rkU0ulsC+a3Af1q1Xcp0N670qlOudyLvNLgW/937FZ+UNwLLv0KqzDVRvNvyOuPgfP+fgE+gS+8f3dEBcHsc69Mra3TdtMj8ZoDsfQ+joa/1pW4gbkP3RtHKsaxnFsW7UOfQsiIj0TxyB+9jiOoVeuvxji3gF8fokFONY9d4oSbYhIXxX3uaG9EeJLLkJvyaoOzFV1+ZXo4Ti9H8ssIvLM3XgN65rR95CyZq55obj0Y3DCcSUx5c+tS1MuLnqm6Dl50tg+m8b7etWqTlpj7pHC4s4nwrM47zbz9JlGfgpa/kLGMos8GqFhcpx/H/P5++YbCtizFpXnyXg2mKtgi/Ab6hcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcFdJz6djM5JoIErHiOTtWeaSBrIWFIXQ2NaJY7GMpsN5mSoqTOSvYjU+2SE9XCbTJCCOE1m3SZKFhSLz19FuSIm4OsbH4O4RImkQkqmt2YDJgXMjJgmm0QK66pYRAN5oYTJmRwyY5ZCTO4TRrxisqHXtcngKbOMXOHSG9Es6/kNT4vIMzNrHU7+g3Adsnk0GWEmbU1j+4pTJkWfJgooFvG6lIwklFjPsWRCmEqAF3OsUKbltEdqXj5dZ64XERGLjLi8CpvdbCM5Wm15MfyFxLKwFDYnULLMUrJ5mw1+85m7F2L+XnxSwMXuzyxDLIbt0qtin1fMY/9UKaNBuK+Pkn1VzYRpQ0Noxq2UsZ13rVoF8Tj1w2vWroa4nvr6lwL/vzuaJZWabFfP7MY6SqUwbm8xx66Kh5Ob9A5gnf7Ob+I+quN4HeMNmKTtxAkzMe/DP8WxyXXRAJxMYVtJZ2lsy+F4mh3DMrWuxvFSRKRMM820J7A/yjaiAX3NGBnQG3F/u0+ZSQG9PB7jqaexLg4dxva4chWeR0VOQTzcZya0W133OoizcRwPguyMMT4IzXvkbGOFwfRYwM9KmSRe54kJsw6PH0EDfB1NUtPQgHHgY/ubb8wWMZODmrNZzNfHUswTtEQkqpvfqL1YS3nEMeZNCGuau2fDk9mYCU0lIhPv84eOJuxTFEVRFEVRFGU50RcNRVEURVEURVFqjr5oKIqiKIqiKIpScxbl0fDKnpxRBWbTqKVL1aE23ZowE/lkSWMW0jqWjctJUmbo9RIxUx+aoaRzQRz1oJkkJpmpT2K53RTuk1VvpwaGhekpoxZ41MOkO1xuJ8ATiyWwDC1Npg5fyI8yMobHdOZJPlWqotYzFlF3Fmn1fQ81qaA5X4pEYQbhjEZzDu3g5JqmfpCTvNm0juvGKMY6NxJ+RbymV4qouw0quFKa9Mkh+ZRSMWyfqQwu98jvIyIyMor697gz931UJm1mELFPxgo5Qd/8yX9oD/Meg3Wp7JGZvQ++FsuBmfBx/uR7i/VkvBDmO8Z8xzT1xrw/s+4dB4eSXC4H8Te/8U2IB/oHIG5oQO/A//k/X523XOyxaG9rgbiN4tdffx3Eb3rTjcYxbPYrLUs/9/wc2l+RRGKy/jN1OAYf6kFN/NHTDcb2YxP4m2Phvf/APRivXIn91fDTGH/76+Y4P0L+m4SDfoiSjb4Qi+7zuIvX1e/EZLWWiwkBRUTeeO6rILZdLMMp8ld0nYNt497H7sUdcqcpIq6N44NTj31eyyqMU3V43rt345h90y/vMI5x6YWNEJdonB8cPj3973hh6X2S4nvTifkyKXxuaaT7kX1ZIiKFcWyjRw4dgXjbNkzGmE7TeMnjUNTtSd3TfP3ZYonyY8zbrxtJTxc7fopxslFeStwn/0JJAyO2N3r2ubwnmrBPURRFURRFUZTlRF80FEVRFEVRFEWpOfqioSiKoiiKoihKzVmURyM/VhAvPqmnTNWhFyKbpnwBHucDELEEtZicF4N11zGKQxePYbPoXkRSdagTtFNYzjhpcB3Sswv5REo+xqfHJoQZsdGTUbTw3JOkQU3HULvpxFibbmrmx/OobYyRXi9B89iXKe9BmTwaUXNJs26wWECNZXJWjoiqtwBNYY1xHUvcM9ecp3um0xkfN68T+yN4zuiQzingXCE+XsdqhD60EKA2mHORVMmvw3k1+B7gHBmliqmJDuhaJimnjUvtLSCN/RB5PMIIP4UfsL5znrnIDf3n/DrZ+aW0s44Zzu8rOfuYzqAXAzYn9CAWazswcn9EzL/O7XiQvGw/e+BBiIdHRiC+/MrLIU5Qvy0iMjqKevVTPT0Qr13TDXEn5dX42te+BnFLC+r0RUR+6Zd+CeJa5yT5efHtOvGnru/AMOn3+9Dnkk6YfXS6Ds+n4GF/kl6B/dWPH8Bxh1KXSFMXjn0iIqVhyo+Vp76DcgUlYnitQ+qXhykv0HkrOoxjdq7fBvFzhzFfw2h+L8R3PfMMxEcOnYQ4ljA9jw0N6J9z4ujZ2Lwdz6O3F31ImQT6Y67aiH4EEZG+049DfPR0P8T+rEGnWFyGPjAIRKY8fQnyhba3opdmoA/PX0SkSk2yr7cP4ix5bDdvXocbWLSDiMcQznvB/fJi72kjj0bEOvY8+ZEC2io0fG6G4S+iHEiUx2IuFuJVWZBXZHrlha+rXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Go7viONPbhKQNHN8BPMHuGVTPxga87lTYUjzF+PcEJR/Ih5H7bmISDJF/ock6ijDKmroWSsX2lgl+0+cgnjviRPGMRtXN+IxE7jPBOVnYHm576MXIMI+YdRVnHT3xSJekBJ7AUiPVyyaWn/XxXNP0DzZjuXO+vcyaJd9f3oOb5t8L5yrxIvwMqQacN55izwYnodtw5z8GjWJfsR14lrx6JdSGfXJFs3XzvkqfI8PYh6U84FkkuhFSSXwugbU3kbLOSxzaP79IZXCuqvQOhWf64pyeRh7NGHNaeA9/zzxcy1bKl5IHo3FH2OxOS/m92jM5yUxz2P+rdm3USphf2TMM2/kq6AyR+Tq4HuH73n2V7z1rb8N8d//r89BvGfPHuMYvA/Dn7LMno29B0VisckylQo4rpy3CX1pu58xh/eR8iDEqTTW88HHcJ/lXhxn3vhu9BkMDa03jvF//xX9EeKgl2RlM/ooqxWs074+9PfkR05DHI+4BK+5fDvE52xG/8OBH/wEYl9wXH/tLvQCjAU8Fojs60W/RFywriZGxyG+5nL0kmztbIa4oRX9LyIi+UHyXibQ9xAmZq5xaC+9R8MKQ7Gm7oGAfHucRyOVMJ/PSqUi/YLne+wotp1sFj0bnZ3tc24vYt6zNj/jRXjMYPk8v7yQLiC0KEcZ7SOgcT/wzGvrUX9nPPPQuM4nwrnWop6fjfRUc/kw1KOhKIqiKIqiKMpyoi8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo5GKpSURP7MJac5KKAhLhKjvFxEhWb04LmrM4rEYxVg8n/wVcZrHWkTEoTwYLukYPQvjMkkxjxxBjeDTx3Gu9tEyawxFGqqoTaynuaBZ18uy+5iD5+HEzDnkLR89B/kilqNK89jzvM1F1jcHEXOsp+maUl4JL5zZR6m89Br5mOtKbKqNsA6zSufD81qLiDjkh2DPj2OI0XGfbEuJzDdBPpfQNudjx51yiD8ENuXAiLhuto96+GoV24pDhqpKEbXcdXQf2gnKNyIiJaqLKjVi28Y2HATcPozKi4B0/HNMh/7zux9qwdxehsgtFqn5N7wNC/CBzLfPxVpHeH+cM2NyHYw5d4tDPrVKBTte1h97Eceoki+H79dqlfeJ6zc1NUFcCw/N0jMm4dTfB60UjgG9o3h+F16+0tj6vp/ReDaBuSGueSV6FzJNeB3v/z75DUu9xjHqQ+xf+nLYJ6Y68ZhV6lvSWcrP0NKJB3DNthGz8do/vRvzUQQlXL6peQXE2SyWcaWLXhQRkaCKf5c9NYp+ly53LcTOEN4U3Zdie/QTjcYxYiHmfmlvwGOcHtw3/e9wGXxqoe1Mj2khjZ+pLPr4Gpobje2HOA8Z+cmKVTyn3XsOQDw4itt3tLNnQySdxOcnl54rPeonuN8o0nNPiR4SSyXT/1mi3DCFAt6bRXpeK5OHtFLB7StV0yPE5WRvrzl+0vMNPYtk6/B6iYhs374R4o6ONtznrHs1WMRnCv2ioSiKoiiKoihKzdEXDUVRFEVRFEVRao6+aCiKoiiKoiiKUnMW5dEoB9XpCYDLBdSHZZLoyZiYML0MXj0eLl2HWvDAx/eeGOW0KHs473QlNItfR69OSQd1aiWS5R7vw7mxnzmEeTLKaSxj19ou45gumU+8EhYiHmfdPhaiTFrv0TGcd1zE1OeVSYfv0bzLLvk8HCEdvpjzNFuk9ed5umcfwl8GfWjc8SXuTBYitLBOWY+4qcvUbp48uB/iE0cPU3wU4tZG1Ol2d6BWeOMWnLtdRGQi1ghx6FKbTmJbyVfwPil5pP+kCbdjcfNvA3HSJ6eovVmVwpzrZ1NYplTS1PgH5CPqGUMd60gF69/jucrZ/mKZ3hWLhP6OYeSYOeZyqevDMJBwSqfK3gX2KUT7J+Y7wtxnZu4zMqvF3LGxi3n+3mThtXYjVuccSEFAOZES2B9VKWfNfP48EZEwoHnkyTR18NAhiJ95di/Ejot+g1TS9MIxQfB8uuflaYEjp31xpzwKXhzHpr4C9h11MfNCNWfRxzFWrYf4sZ/g2LPrQvRTPPbgCMS/+mvmOFIYx2v5Nx/HcvSexD6vaz32sy2t2HZCD69bfsIcHw+eRK/I7r0PQ+zYmONiSyfmuOgvYB/59GH0qoiI+GWs77e+9rUQt1hpiAfGRiE+vhfztjQ2PWkco63uXIgdfwDiC8+9cvrf4xNlEXnA2MfZpOqH4k6NST75qhx6DmpqwbwhIiLuKazXAuXb4XFjbBjbSv8Atr+9MbzHRUSyKbyvffI1lsgvwX6IMvWHZY/6+Yj0EUHA3jtcbuanIC8xeTtjMdN/bHPOLf5OQP2hQ2Ms+z9zw9g+RUR+dv/PIL7oop0Qb1w/k2/Gcxb++qBfNBRFURRFURRFqTn6oqEoiqIoiqIoSs3RFw1FURRFURRFUWrOojwayfqEJBKTm3gTlGOA9F9V1miLiEO627p6zD+Rm6D5jUkbXCZNYIXmLhYRafCxHH5IMenrirQPi3S8XhXPo5w3vQnVPO50mPwTjfXoX0mlUX+X97EM+RLqRUVEHJpv2qvyvMsYxypY7irN/dzUiNpbEZE05U9gXbU1S4NZKpnzPJ9tQl8knNKHhi5e15GJHMSVMvp5RERGBo5DnM+j/rUOJbaStrHOevbvhtgbMeeQjyWxTY+OYzk80lFyXpYghrrKk6dQk7pizVrjmDu2b4C4v+ckxOu7cc749vU4v36K5pCPBaa/KpbA+2JkAtvbCM3p7VJ75XwiXsQk3EaPEZj67+dfeWmwLGtGpz9PjosF7rEG+5jvEPNVFmt/GTrPqMonHXRTYyPEF1xwAcRtLegV2Lh+LcT2a19tHGIkh/cCa60n8niv/cu//AvEAwN4v9/0phuNY7zYmcjXiTMl+PaqjbCsczvek0dPYD8gIiI2ejJK5WcgDgrYf/Wexr6hcyN63/7H35h+ifwY+iEki9dpdBSvk9OLY0kihWNTMY+5JJyE2f6GyWPR1onnMdSL194m7+b/c/2vQPzFux80jlGmvnxdEst5+BSOD6cHsR4ex9Qesmkr9ssiImFXDuJMbD3E6YaZ+vcd9DcsBZVKafo5rrcHx7/RUdT8s2dDRCQgP0Setgmp/3Pj+AwSY++WZ9ZBKY/3gUd+0io9K7mU44dzXIQV3N62zcdm12bPKI5v/HzM/Tz73hIRRrh4HMfgBHuwQhwvTT8geU0i/J6VMvbjB59FX1HLrFwppYL5jPV86BcNRVEURVEURVFqjr5oKIqiKIqiKIpSc/RFQ1EURVEURVGUmqMvGoqiKIqiKIqi1JxFmcGdpIg75c1JsfmlikaUbNw0G/t0tFP9OSxMIyZ4qYRoHEo2tuAx0pjoR0RkwkOjz+gomsRKBTQP9Y2gYculJEhpGw04EyOUUE3MRFINZP6Ok8E8JFN7nLK5VG3TRMUJ+WwLDUyZFB4zpERvbhKP0VjXaByDEw9aNiWNmbVLLyprzVmmVHbFnjJuPfbsk7Dswacw0Yw1PmRs75LxrDqORsZWmpzgonMxedLIAG7fe+SocQy/igkgOa9hKtMK8dZtaJLt7tgIcZBDA3tvj5lkJ7urDeJnj6GBa6wP2/z6El47L+iBeO+TjxrHuPGNvwqx66Nz/sRTRyBu6loDccOKVRBHp5mjPsVms9vMVmfFNL0ASqXStCmvShc3Rvf5wmBDOS01KmoBCfsM8/cinfPGIcK54whC6h+am7Bvv+KyiyHu7EST8Q03vD5in3jcQgFNxvl8gWI0K7IZvLHBHD9GcxMQ19VlcYXpul2e2QicRIM4U8kRM2lsf01UP0Gr+XfEZALHke74+RAf78P7uFpF076UsF/dus2cuGT/czhG5vLYoNpW4liVG8XrOD5GCfssMotHPLXsfgYTt62kvjzw8dnhRC+2z/+8C8ePzfXYp4qIjAX4bPHw/sdwBUo4PEzjjU1/1+09ZD5LJLvQ/Hz81AGIew7PmNRLpaVPmuvY9vTENG1tOJblaLKGUydxXBERcalvqkvh81aFnnMScXwGcTixXcSzkgTYXio0Z1DZwmMUCnjPF8n0X9eA90BzE90TIlIlw/jQcA7iEk3GE4vheUuVnr2qZttI1GGbjtOzKicF5B7KNKib2HE8Bq/kl2fq1q8svP3pFw1FURRFURRFUWqOvmgoiqIoiqIoilJz9EVDURRFURRFUZSasyiPhu/lxatObkI55jhXiKFNFxEZ9VCHli/jRo6L2jjXwp20ZVAvO1Y0E3qNVVEzWqSELqy/Szai3q41iRpJu0RJoSbMJCWcrKWpGZMiiYPl9EI8r5CSXUVpoKvkgbEd1INn61BvbJPY2xGqq4hjxClZnE/ek3x5pi6XQx86MDAsqfykRvCuux+AZdU0lt0NTR2lQ/4cK4/6z74JbDtP+UchTpBnoKNzk3EMr24tHsNGHaUt6G0opTohvvdRPGa8Ca/Thbtw/yIisRSWO1GH1+3RRx+BONl2BcSFcdTSPvUkejxERFavRD3y1h0XQbylEzXQj+1/GuJ0BnXZLnlVRER8Yb0t/x1kVl1Yy/M3kr6+/mlvQLGIOtqVKzog9jk7qCzEgzH3+gvzBszn0Vicv8XM+2SWwSbtdZmS6TXUY9+9cgV6MkLSVRcLlPRNRNJpvHfq6tAHmKHxgT0ara3Y5gLfPI++08P0C9ZVfcOZdrw8Ho1s3Zi4U8m8nn0a/WDjJexrWjEvp4iInHMO1tHIKCVQK+J9fO5GrLOLLzkF8SMPmffh8DAeY3A3toUcPRxY9CwxOp6D2Elhv9C8qtE4Zm8fluuczktwhRJeLy9Ef14feXMmRs2kpV4JPT6BjeukE+jriCexnHEXj3H3j7CPFBHpfRD3ee5mvIhPPT7jofG8ZWiDVjjtU4rR88LmLTgetrdjWxIRyfVjHY5TcsdiGdtjaPEzCSWKjkjYx2NDjJ7pEpT0z6L+rFrGfWYosV06ItFdiR+vKjgmN2bxnqirN/1hsH3EpU0lsdzZNN7vnOOPd8HPhDZ7IMXMkdvZ1QVxS8vMNS0WyGcyB/pFQ1EURVEURVGUmqMvGoqiKIqiKIqi1Bx90VAURVEURVEUpeYsyqORCESSUxK5kPJVlEmkFlrmrifIJ2DRnMnpAuraVjaiBjcWQ19CX96cw7sSQx1aKYbvUslW1A1uW4+6wn3HcB7x/tIgxA0t5lz5Ps2BPEbnUa3SfPukEeS5occnSLQqIuUqrlOqoFbx6MnTEMdpnytaUCO4aoWpESwUUR8pFh4jDGOz/r30eQyOHHxKEslJnbZj4/FjGdQSDvWbGluhthDWo+Y7qKDm/tQgajWTLl7nDQ3me/ql52F+gIqP+3z4oYch3n/nDyHOOOgbWdGAbSeXQx+AiMi5b/4tLFcr3jcDddgWiqM5iPPkG1m1+ULjGH3j2BY2OOi5WL9pPcT7TqHv4/B+nOe+sRPzhYiINK9YTb9wG7PmWLZUhHJG/colCEhYy3kfRKI8F4jvm76z2djU7i0jZ8aZMs4uB/m7KD+OmSZj7vOIOgfOJdQ/0AtxN2l9eR8Vmuw+qu5KJbwfHcpb0tSEfoIs6aKHhjAHRH7CHD9sGhJPn6a+OzGpmS+WIrThS0BjU8O0Nv7cc7E/qnjY1yQs1KaLiBx4dAXEA6dPQnzuZesgfu4IjoeHTqJn4MQxvM4iIt4YtoVrrsC+YvdzmF/CcnH9datxjC7HMT9DWDYbYDmDWn+rAdvGptZtEB/aj/2wkM/yTK6c2aSSOGaWCjhejlPupkQS98GeioRr5kq44hLsF1soHdn21a+e/nexWJV77v6WsY+ziWXPWCC463HJG9HWbuYiaW9qhJjv+wL53sbpGY/jat70clWKuA575dhZkExi+6zLYqVPTOAxRobwmVBExKviMdrpObOJ/GFuDPtg7tvYjyYismLlSloH72+Xnk9suh4uPRMG7A0WM/9HYyvmPwpm3XqLeQTULxqKoiiKoiiKotQcfdFQFEVRFEVRFKXm6IuGoiiKoiiKoig1Z1EejbpYRlLxyU2sCr6jZOtxV75vCrhcmrc3T3Mox0ljtoJyXIQk7K2ImcthokLaWZrruUK6tGqIcSqFCr4Mzf9vx0zt5sA4agIHh3D+9iJpOetJO8yMjpna4ViiDo85iPOAT+TRk8Aa56MJ1Lmu7jTzgdRl8PrE47gP25lZXqnMrSU/G/zoO18WZ8rDEGvaCsuKPupnR8ewvkREqjnS4Vp4LZMx1EXalP+kQprUvYdRaywiMlh8CuLO9ZgvINaButXtjTtxeRWvS5x8M+M+ajtFRL51F+XJKGCbHg1QczpyHHMF2Elsj9WiOT/28CHUH69Yh+c+uge13rlxbI/HB3B5rA/nlBcRufQq1LWmk3Q9Zt/+8yWgOEv4vi/elLesSDl2KmXUF3sRyYQ4/Yfhh6D+ycxhwTs06yGgnBTsh7AsakMhDwO4z0qVzqsa4SGjbjeVxDYUo0ne8+N4/WM0N31Ls5lnZe8ezO9iu3geLS14r7Hf5f77fwrx448/YRzDp3xFHR3oafjtt7xZREzd9lLRNzgkzlRdbqccF5aPPphVXVh2ERErxP5l7xHcxyHqG9qbMW608L7fdvkG4xhHhvHaJpJ4H1y/Dq9baxPe97Ekjn8HjmD/1d5oPrbsxe5Jjg4ehrhhFT5LWCGWwbbxOSGVwnFfRKRE+T2q9KzhVfG+q1RwjA4rWPf1KbMv37EVx6StG9CT13dsRpefL5j34dkmDMPpPos1/oavKqKPdmz8LZbAa5kh/2q6AcfxdnLG+aWIvog8stwPz+dBC8h/fGD/PohPnUT/oYhILIb93ZYtmyFe2b0K4rEJbBulIrYl9peJiDQ2NkIc0vO0RfF85+mVTY+QT/10iXzVzixjRiU0PR7Ph37RUBRFURRFURSl5uiLhqIoiqIoiqIoNUdfNBRFURRFURRFqTmL8mjEnLTEpjTy8RRqGksF1JjZvqnfWtGIWsxKHDXYbpw09PWNuE/SBK5sNTWAgxOoD/UD1PTlx1AnOTSAWrn6ZD3EYakP4tyoqQkcGECt28ETqGN1LayrMMC4QDrDfNk8L9vBclfLqJ3LpHBO5Srp8UapXg6fIlGriDRmUWeYjOE+Wppm9JKV6tJ7NGRiQMSZrLvxCp5vQwvmQynEIyZ5TuI2MSEtu0MaR5+0nUKaVMec6/pIAduP7aI289rrfxXijatRf5wg/bvl4zUoRpxWhbaJFfDasP7zcN8J2h7bluOYf3/IZrCc9508DvFK0rI3t6EmuqEbz6NszGZu5mbhcgSzzjOcJ9/E2eLYseOSmaqL557D3CAbN2Ab9HzTo+H72OaifByLIQjM7QPKm8E5ZwLqfyzhvBp0rcqoeU4mzBw8JA+Wjk70IjU04Dacd+P48aMQ9/b0G8fYvBl1zyF5SThPRn093ou5HPbLvb2m1tqhExkbQ49CX9/keJDPmx63pSBTlxB3Kh/Q0BiOOwH18ROjpgZ75w5so+duxOtw5YXo2fjPe8kLSBru1npznE8N4XG3t+Bc/Jt3roW4owt1+H4F/RUdh/C8jh43cyRVjlEOqCRe6wNH0I9TIo9hlvxgMdf0T1TIx8FeqJiL9+LYGNadTzkjuhpwbBARqa/Dco2X0Fs5MjZTrgJ5P5eE0J/8T0REOD8P9jPsN5sEf/NZ588diWFKY4+HeZ3iceprOA+QkQGJvAzUbw8MYt6M3GiEP4tOg/NkpDPYvpIZznFDdRfhbzG8JPPksbDInMd5ntyE6TduXYn9tuHzmOUJDCNzOEWjXzQURVEURVEURak5+qKhKIqiKIqiKErN0RcNRVEURVEURVFqzqI8Gm4QEzeY1J6lKOeFF6KuLZNkDZpIWwPqv0Yd1LqNjKOucmwCteWrVuA86d5IzjjGWI7mUK6ieK5MfohyCcvd1oI+kvI46iD9qvlulrZRvx6WUZuZqcc5kdsb8BgDMdScjldyxjEqNGd3HeX3iOPlkHgV97lqDWrmV3fjtRARqU+jrjCTxGNk4jPXtFiuyj/Lk8Y+zibxSlUce/J6VgXbyvk7uyHe12Nq+E8fx238Ms3JTZpbIf1oaGFscVIEEXEFr9ORgwcgvvce0qhech7E69vwutTHcf1EwtS9xpOotcyQbLWcxPMcLeG96QhuH0+a3pMWKtfG9euwXNQfZCjfR5WSkDz97EHjGAcOHYK4uQ7vm+GBGb9UubQ8GvlKpSzu1Ln+8z//Myyz6O82DQ3oERARiZOmeHgYPQBVmos/SquLyyNydZB21qFrI5xDgPLJ2KST9jzU3Mdc7O9ERBoa8Vzf/e53QtzRgXr0EvW7//vzX4D4mWeeMY7x0Y9+FOLutashPkI+j6uvvhpi13XnjEVELBJbVz28Hnv37BcRkWLR9AksBaf7e8VxJ+9n28Y6r49h/9bUuMbYfnj0FMR7T+B5JLNHIa7z0F9x0WbsZxvrTb36hiuw/xjvw7g+g+Of7aJfq6EBcySNPYR+sH37TW/NKy5EH8elO7G9fetfUWc/MIzjQ8tG9JhVKhHXl7xP7BOzaHkqgfdRoYrn6UmjcYgW8rodPIw5HDZvvXH63xMTZRH5rlnOs4htz9go2F7B+XrO+CkB9uEZSX7Il8e+BPZb2PMYFUQkDHgfVHBjn1iGreecA/G6jehzisJx+PmYVmDf7gLyQvHzBp86e2K4ZmJGVZl157EPlcYSe9b1ctWjoSiKoiiKoijKcqIvGoqiKIqiKIqi1Bx90VAURVEURVEUpeboi4aiKIqiKIqiKDVnUWbw4lhBpDxpJPTZw0O5gThZiIhIhZLM5UbR0DkwhMlphNZvbcJkQiM5NICJiIwMoxG7XEbTYSqBRtihQUzytH4dmt02rkND3egoms1FRPpHsBwrmvEYCRdNM0kbDYYNlBjPRw+2iIhkUmjAbCLzpUdJ28IK1v+abqy7lSvQaCsiYoW4j4D26cwyUQXh0icL8ooxCaeSJmUoWZB7EBMybauYRrTwFCaCGs2jcTtfwOvoUXI1n41SEQYuNqd5LsbHDlNyqofQtHikFc2ArVk06lbFTBjJiS5jHhnhbSpnSOsXsb1WInLh7ScTX0iGuSoZ0YbSaHysJLBRF4rmeXBSwHIer0c2MVPuanl5zLitra3TCfvYdL17N7bBSy+91Ni+uQUnZXjggQcgLpWwTXpkRuakWFH9rOmvxGvl2nht5vMhGomfIvJwJWnyj3POQUPv6dOY+LRawX553wGcNOHAYZwYQETkPqqrW7fjMdaswb7bJRN8ipKauo6Z7MuxsG64Lm07NvX/P1+ixRdKKZ8Q25ksVHsn3YNVNF0/e3jA2L5qY/tLJbEvePppNE1fegHek81tuM/u1dhfiYhIgNdhPIUJQtua8WFhMIfLv/V9HMNbmrHBveXXzWOetwXH6UwTjm+9e7CRezm8z3xy645VcJIGERFv7DT9gPVfrnKCV2x/jot9oJM0O9oHnsH6PfY4GuerO5+e/vdyJOzzPUt8b7L9+T6Zk6mfieybqE6EDcVGfj4yanMccQyjO6N1LE7QZ2z//AZoEZFkynxsNhLb0XLfOAgn6OM9zm9yN9z48xjnjeeViLozkgDabM6f/e8FlPHMbha8pqIoiqIoiqIoygLRFw1FURRFURRFUWqOvmgoiqIoiqIoilJzFuXRiDkxiU3pWlNxSu5GGmwnIpmZTUlMUmnUlOZPov+hoxV9BS4dk/cXRZqOUSYN9NAwalIDSoBVn0HN7vAA6TRFJGaj5nR1F+rwXarmJCV1S9fj8hUZ0z/RkEWtrBsj/aeD9Z9IroS4rg7rIfDJVCNiCAttSlBXKM5cn2J56TXK9TteJ+5UcqcmC/WtpWcxqVPDECamEhFZQQmWxkgnHvcodkiDasSmxtui6xCLocfC8fC6+X05iHtH0XvQ62DbsGzzlo0n8BiciIwT+QQWljt0yHtim+flUzkCqgvPwuUTedRvxpJ43o0N2D5FRLwAj1vy8d6LzdLPV63lSdhnWda0Fvm6614Ly/r6sG/gvkdE5LzzMEHj0aNHIeYEfidPon69yr6piD6Qpbh1GSxHPI5t1PdZK87aXlzqVSNMPORf+ud//gqWoQ77xI0bN0NcKGG77+jsNI7wzLNPQ3ziBN7jmSwe4+mn9kKcTqGvbed5FxrHkADbse3gyXd0TJarUFie9lcad6bb3zD9nXCigG1n3VozKevIBNZZMYftqbMN63CijOd5oBevvediQj8RkYSP94Hv4zEeq6BXpqklB/HlF+FYt3XzDogLJTPZ58AQehmOUTld8rpt2orJHjn54ckTpv+zjzyhpVH0kjS3NUKcI5+kk0F/zMk+sw3d8796If6N1++C2I03zPzbM31uZ5vcaFFKU0mLQ/IIsF/Cts2+icdQI+kt7TMI5vEZRBjMjIR8BPeZHLPzwHX4F9Ob4AfkzzES9LG3Dhfz+kGEEc7wgQT8DDZ3v23u03xG910a140klTP7KBcW3v70i4aiKIqiKIqiKDVHXzQURVEURVEURak5+qKhKIqiKIqiKErNWZRHo7G5XtLJSa1jpYpzOPN87xmaE19ExGLJHunsW9tQ77lmLc7HzTq4bJ2pgebfDPkxzeOczeL6pRLqMJMp1DPblqlfF8ptEHNxHZc070nS2SfTqB/Nj1E+EREpF1EPWirgO2Iq2wCxg7uUQ0dQ+5kfN+fg5rwAjU0JimfqKvSXfg7vie4rxYlPtqtcBfWtPfWjEDd0mBrbqofCyDTlE0hzjgKahz9knaUdMU84aVBZVxkE2CAD0ocW6BgxqmYnQn5aMKYiZy0nlwH9OaFgXRlzfotISB4Mn7qOKm3k0YTchQnU4I+Mmvpk9lyx12RgeOa+8KvLk0ejvr5estlJD9XVV18Ny5566imIN27cZGx/0UUXQcy62bvvvhviwUH0kHFuiKh55DkXRz6PdV0uY6OKxbB/amlBvfsoadEdx/z7VJb8Ec3N2Jez92R8HPd5zTWvhPiKK64wjvGv//qvEJ88iX1aUyPeW6NjeIx9+9CzMTqKfYaISIw0yi7lwamrn/QXFIvL0/48rzDd7+SG8Lpu34VjbuCbfeDwAK4zNoBtpW0l+T5G8R483Ydj8Pj4SeMYl+64GI85iG12/wD6js6L4Ri7cx3eN08/hOdRdsy63/ss5epYTZ2Yi+N891q8D0foPutYtc44BqVhkWcffRzi7Tu3Q4wZukR+8gDW1Tld7cYxiqfR3/Lwwz+FuHv1jdP/jtLxn20KJU/8MzlkqIp9Gtui8kzxGMo+D6Gxir2+HAeh6RerkI8t8PEYMfb6Upkc8mTEuc+1zf6vUqZj0rUx+kwjN9ECcnRxOel5jfOY0GkbeV48XkFEKnRRPbo+s+uqUjRzyj0f+kVDURRFURRFUZSaoy8aiqIoiqIoiqLUHH3RUBRFURRFURSl5izKo+H5nnj+pEYrFNTGJdKod/cCc47dHOm07Ri+53R2rsB92HiM0xOooyzHzFwOmRYUUnol1CM3uo0QZ1Oo3ayUUb+eSuL82nYMz1NEJDc+AHGc9MotzZgXI26jDq5QQA2qmyExqIiENHe9RzkgRkZzEFdJL8l65ELe1DZmKVfH6Pg4xKlZXpJKOWou/bOLPS5yxu4SxPC6FMhvUXYaje3ZPxHQPN8B6RMNBSPrLO2oObxZt8j7JM1jyPOI0+YkwfcC0xuTSGB7YW8De0kcwbaTENRIB6bsX2zKB2JR3TmkrY2TFyrwnl/reYZYHI8RkMHKmuXh8CvLk8dg3bp1Ul9fP/3v2Tz66KMQDw2ZXqumJpxLv6urC2LW/sdiLi3H847S8nJeDF7Ho3wxvo+a5V27roV4x45zID5/J87tLyJy4iTmZ3jwwQchrpKnb+0arDueTz/Ke9LWhnkhqlXsq12qq2QS+4SxMewDBwex3xYRqcvivZTLodK+6k3Wf6Wy9DkMRERijiX21P28YiX6YAZP4D1W34S+PRGR4fEeiO04to0DhzAf0UUXb4A4a+N1Gx5gJ4LIE88ehfjSiy+A+PRj2Maf3I1emr7jWIad59Hc/iW8h0REurvweuQC9DqcPI3HSIz+J8SP/WQ/xIP9Zv/C/dHlF+B90NiO/eglr1gP8RNPYZlWrjQ9Guc04LPAzdf+MsSPPDnjM2Kv1VJQqPjiO1P1wDkvqJ/he15ExKcBzidvgkv9QJzGmTjlc3Jcs58IQvyNPYdkDZaAvL8W+T5Khq/E7HOjznU2Nvs/51zb9FuImP0b78SnEytXsW6LFVxeiTBjViiPHPs9k4mZPtXzIsycz4N+0VAURVEURVEUpeboi4aiKIqiKIqiKDVHXzQURVEURVEURak5i/Jo+EEg3pSmrko6X9Z28VzGIiJJ8kMEpDd3KdFG32A/xGNF9AzEM6iJFDHnSBbS09mks6+Ql6R/GH0g6Qwur9qmNyHdgOeVrcdypSndB6dfSGTQ0+HY5mXJj5NmlOwprIHP0j5XtKO+uVwy/S08l3PFwznWZ2u/WQe+FCSdfnGn5kOvUF6HOF13NzTr0LV5rmqsA/ZohCykXIBHw6FjmFpL8jZQ7gheP++SxyMR0eZdrou4sQ6WgOqKNPqsoxVBf4SISMXHuiuTRtWi+y7uRuWfQbj9cfXOzgcSlJfnbySu6057YLi8v/d7vwdxpWLqdg8dOgzxGb/HGaK8CbPZvHkzxD09PcY6nBdjZAS9Iuwv4Db4G7/x6xD/yq/8yrxl/Md//ALEP/rRDyFOJNAv8fTTT0O887zzqUzm9T127CjEE3nUs1//y2+AOKTrM57Hvl0s7N8m94m/VakPbG6Z9AeUycu3VKTTzf//9t48zKryTPd+1lp7rpEqCiigKGYEEZwVwUDUVkPM6GeMx3M0lybpxDbGzmRyDEns0/1dXq2exNN9kpM2+ULypRMzfDHdSVpb21bEqKjIoIKIQFEMBRRFjXtew/dHFcW+73dRVeCmSvT5XZeXPLXXWu+71nqHtfZ+7vcenMPSfdgH97Wi5qRhIhtXiUyejjrIeAXqJfwm9FCZ0TQF4vPOwfa3/tXtRhmJRC3EL77UAvG0Kc0Qr3v9JYgzORzjZsxBrcPrm0zvjmglPiu0YSi7t2F7Snn4LHGoA2NJdBllxBLYnuom4RxrkW513hl4rf/iAxdD/PQTrxlluCTPrBuH/iBnLWwc/HcmM/o6ITcIxBkY2z0Xz5efCfgZUUTEI+8H9qRgn4wgYH0EaR0sc5wwj4mfs/eG4TvFE7/h3WH6T/j0nT2PkKzrMDwxhnkOEBGxqR6s++D5qOjy8xx9HiLGZJ1NLE7eViX18kPqeDz0Fw1FURRFURRFUcqOvmgoiqIoiqIoilJ29EVDURRFURRFUZSyc0IajZznijXgo5ErYI5qLIF54V5IHm+e1ivO5DA/tCpBYgbK+YtbmOcbcc0cVI9y94uUj5fNY15jJEo5gJRn2dtLeZAJ892sPo7rekcod82i3LmABBZ2DM+j6Jm5jYkUXt+KOHpz0KUVh66DTbHn4bUXEek4grncPT0YR0qSHfOF0ddoxBfUSSTR7/UR98krokgagJx5nxzKmbdJI8S5l5zCGHCbDkmnj0fQi4RzM31/6FxNzrNMUg/1WeAjIg5pmyJUcY/bE61NHkTYv8Jsf1Hy0UiQDiQSMxogHWG4lcPNa8V58E7JeQUhGpyxprKS+qQ/vMdFK3kGZDLow+JSHvRtt90G8bRp04wyWlpaIP7Wt1ZBfPgw6g6qqrDeEyeinovbaNg68kuXLoH4rru+CnFnZxfE+/ahtoR1RTNmYB6/iMgf/4TeB29sex3igos6NtaqvLJ+PcS9vajxEBEJPOqPNCb81/92g4iY92m06CtkBnPQY6Tfqq5DbYNnke5ARBqq0VsjRl4jkRh+nstgfCSDXiQ5z9SqeL3Yvrq7WiCurMR9utpwLkqSL9AzL+6AuKfLKFL2bcR5unkC+n8sOR9FGxcvOQ/i5x6/ALe/8ohRxqRm0qW1oJ6lqpLmkwL6nExqwmv3kWtReyIismffQYh37EfdTU3dsWvjWqOv0bBsa9CXiT2hPJ+1DyFaBpoGHJ7Phvnq26UHnWKI1tQLSPtL3hvsI8TjmU2PxYZeImQqM3ylbNY2CH3OWpOhnwNERIpFrLcTNZ9/SwmooraD42EsGqKbtPFvtkXXquT6B/zQOQT6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzgka9vX/d/TfpfT0oRAvzHApSyZ+bOrn0DFZHM4SxL5uMrETkSIJewoullFZhcdMVaDwLJNFgWBvlssIMYIjYWpldS3ENgkK8wUUEmbIJCpEaympGAnl+TzzeAzWErF3TrFgFpJOoygvm0NRVVVlSR2G1/aWHd+uFd8eEK6SMCoWoJjUtk3TuqKDbSFjoSjRuCIk2AoMAZfZxov0N8PcjI17SGjmkvGdncfYzZoifotEYR71PZ+E8wGZThaiPViGaxrN+bTYQySC55XPs9EZlhEhU8EwsRubFrHhmu8eK9PPm31/tBnOXC/CCkARmTNnDsTf//73IT54EEWrCxeeCfHy5cshPuOMM4wyDh5EQekjjzwC8Zo1T0O8ZAkaibEpoJCoM+ze8XlxzPT0oFD5nnv+BuLnnn/O2CeTwXt+331/D/HZ5y6GmBcT6OnBdv7lL33ZKGPjhk0QT5qEpmvNzU0iIpJOj037y2f6BsW48XHYJydPRQO5cQ00Z4jIlCYU+r+0pg3iLW+ged5Nf3U5xM8+vxEP6JuC0vH1OH4EZBD6+ja8xnkf20Jd/QSId+xBg77a2HijzCnVOB9cuWI+xDVVKLzOdeGiHZdeNgm3N4uQfAfe8/GVuADCCy//FOKZM3Gsnz9hHsRzL0MhvoiIH70E4vUbN0Dc29c1+O8wQ9BTTRB4g4Z3lvBchttaIc8xER46aLGeHBs/0zFsWmDD801BPPsdp2gBHzZtZuNBY2Ud+tgJGfdZL+6Q22ycFlNhY0JesCUfMgcLPUcGVIZNAvQKmrNjVGY2ZEGfAj3Y54ssBj/2+Ym0P/1FQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpeyckEYjEUsMGnVxjq1PeW3RFGofRMTIx3M4/y7A3LccaQZylL/uheQA+jbmmEWjZL7CJiZk0FQRobzWGH4eiZq5/ykHjZKqktUQu6QT8YpYR4fyDlMpM7c2Qvl1bo5yE9mEhvIIXbpYubxptsJ59akU5vz68O+Qi3+KsfblxIr35yFalJvpBqRzCTFzzFP7K5BxopF5TqZzdgSPaRj5iEiB7oOp0cCQ80XzOdKNUC6445l5lW5kaEMiJpEiYy/K9fS8kLzXLA0VUdKB5Ek7ksY6eOTUVCya+Z1snMTmdkFJ+/SKplZlrDGN7cxt6urQ3PPee++F+MiRDogrKjCXfMqUyRDzNeovA43CfvjDH0Lc1oY571OmTIF4/HjcPwi4Z5g5ynyuw8hXZNy4WognTMC8/J/85CfGPhdeeCHEV/zFlRBPnIh6Cu4HrBP68Ic/apTBGo0LLjgf4qOamN5e0wxvNCjmCoPtrJdnbzLR9UIMI5sbsD3NmdsE8dkXLoA4Fcfte46ggVyugHogEZHuLuzb1dWoC9lLzw7ZPpxn1j6/C+K589A0cOZkNMoTEUn6OKaNb0AjTNvG55HOLjTP6+vDBvvWzjeNMmZNx/F/fDMaQDpxfDaom4hjZE8f9u2nXkY9lojI7Ho0qlxYfxbEO51jJpXpyOgb9tm2M2hGR95uxhgQhLQ/yyUDWxonijRB8sjDZsixmKlzsayhNWVR0jKwsSc/a7He2NB0iGmsaszzPGbyXEeajCBkXI/FsMNHnKH1oA49r/h0TK9omo7mXbp2Q5yHH4xcqKu/aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLKjLxqKoiiKoiiKopSdE9Jo5LIZsfz+XLIYrREf0KGckHeYGK2T75NPQ8TCzznP1yetQyRuruEdi1HuOOWlkYWARANau580G5UO6iViEVOjEaV1wuPCOYB4jHwUz9ui/SvZM0PMHD7Owk8k6FZG8JgdBVxDPuaYt76qshLiHOlAsiX6gUJxaB3AqSDT0S5OtF+z4JEHRpH0FwEnkIpIhO5thNaMDnw6Bi0EHlB+aBDymm7TOuA+5bdzTj3nWdqUT1r0SJdkKkkkyFFeKx2DtQ951lsEmOfK10FEpMdFDQzrODinNE4amYhP/Swkz98bJrG/tF4e1eedAF/nMDiPdvLkxiHjEHeXIY8nYmqHpk+fTjHmgQe8Hv4wJjkh0iR5u8Y6t956C8Tnn3+esU1jI3odTGjA3H+uQTQy9Hxy+1/dbpSx6KyFEM+fj5qFurp+fUAkYo4vo4GXtwbveR/JnHKCei7fNeeRwhmoE5g+H9tb3UTUENWnZkFsCRa6aaupVWnZjvqIujocj9i76szFpAPpPkx1QB1JXTVqOkREzpo/A+J8H2pJNr62E49Zg20j29cC8f59B4wy4gG2DZ/mE3p8kT4X59x47TSI923aYZSxeCpuk47sh7h0fuC5YjTI9PaW6BFYlDH8/rbFz40IazC408ZJZ5WMmYOR7+KzgUVaggQdI2IPPU7weJoP9YAiPSc/K9DzCWsxCwWaX9nLQ0RiUX4WxXm7UMA5OU2eW9kCHjNXMDU+RbpWAd0vu+TieMNoQWG/EW+pKIqiKIqiKIoyQvRFQ1EURVEURVGUsjOi1KmjKQG5/LGfTfNkP84/v3OaioiITT8v8RKrjkMpRfQLlbF9SF3tYOjUKZeWv43YdB60vJdLP3nxMp0i5pJsnArl029xWUoZy9NSn7Zt/qTl089ULl1/h18Z6c6W3jsRkULe/J0zTz+tcVyaLlUo9l+XkaSLvF2OllG6pCmnTnmUohTY5vKpFv/UTalTnpE6Rfvb9LNiyGs6/0TKS4Ny6pTlU3v1eXvuZyGpU8FwqVO0Pf1ULHztQlKnfC9P8dCpUx6lTlllTp3yB1KnRqP9lZbT09Nj/O3EjnPCewz5aVjq1Ike80RTp45TkxPbmurNy8WmaVlnEZG+vj6IS++FSNhy03Rew5QpIpLJ4JKPxyvz6P9Hu/1BeQHfR4THARGRIo/xNC/kspQua2FKB2/vFsPGCl66k+ZUWt69WMBjFOnzAteRl3YXkXSaUlEyuE0uh+edjdNy75R+mi+Y55XNYj3SGSwzQ5/3pbEOUUr35DqJiPT20TLtESwjXXLMdKa/vNGcgwu50v5x4uU6NN/xVXaNOZWXmCe7gpDnTE6x59Qpy8VjeMOkTlk0rhQK5rOF5+G9tOmYPsUFasOF4vCpU7SivDjC/YieKwtcBj3PhZxHkZ8VhkidKub6n8dGlDIcjGCrvXv3SlNT03CbKe9B9uzZI1OnTj2lZWj7U47HaLQ/EW2DSjja/pSxRudgZSwZSfsb0YuG7/uyf/9+qaqqOslv0JR3G0EQSG9vr0yePDnUuK6caPtTmNFsfyLaBhVE258y1ugcrIwlJ9L+RvSioSiKoiiKoiiKciKoGFxRFEVRFEVRlLKjLxqKoiiKoiiKopQdfdFQFEVRFEVRFKXs6ItGCStWrJA777xzrKuhKPKpT31KPvrRjw65zfTp0+V73/veqNRHUU6UlpYWsSxLNm7cONZVUU4TdA5WTgXlHItGMjcryIh8NBRFeefx0ksvSUVFxVhXQznNWLFihZx99tn6kqooynuCpqYmaWtrk/Hjx491Vd6T6C8ao0ihYBoNKcrJ0tDQIKlUaqyrobzLCIJAXNc0jFKU0x2dg9+bOI4jkyZNkkgk/Lt1HfNOLe/ZF410Oi033XSTVFZWSmNjozzwwAPweT6fl6985SsyZcoUqaiokIsuukiefvpp2ObZZ5+VSy+9VJLJpDQ1Nckdd9wBjrbTp0+X//E//ofcdNNNUl1dLZ/97GdH49SU04jf/va3ctZZZ0kymZT6+nq54ooroA3df//90tjYKPX19fJXf/VXUixxkefUKcuy5Ac/+IF84AMfkGQyKTNnzpTf/va3o3k6yjucT33qU7JmzRp58MEHxbIssSxLVq9eLZZlyaOPPirnnXeexONxefbZZ0NTBO68805ZsWLFYOz7vvz93/+9zJ49W+LxuEybNk3+7u/+LrRsz/PklltukTPOOENaW1tP4VkqpwM6Byvl5LHHHpNly5ZJbW2t1NfXyzXXXCM7duwQETN16umnnw4d877zne/I2WefLT/84Q+lqalJUqmUfOITn5Du7u6TKre07N/97nfy/ve/X1KplCxevFief/55OM5wbfl05j37ovHVr35V1qxZI//yL/8ijz/+uDz99NPyyiuvDH5+++23y/PPPy8PP/ywbN68Wa677jq5+uqrZfv27SIismPHDrn66qvl2muvlc2bN8uvfvUrefbZZ+X222+Hcu6//35ZvHixbNiwQVatWjWq56i8s2lra5MbbrhBbrnlFtm6das8/fTT8vGPf1yOWts89dRTsmPHDnnqqafkpz/9qaxevVpWr1495DFXrVol1157rWzatEluvPFG+eQnPylbt24dhbNRTgcefPBBWbJkiXzmM5+RtrY2aWtrG3T8/frXvy733nuvbN26VRYtWjSi433jG9+Qe++9V1atWiVbtmyRX/ziFzJx4kRju3w+L9ddd51s3LhR1q5dK9OmTSvreSmnHzoHK+UknU7Ll770JXn55ZflySefFNu25WMf+5j4vn/cfcLGvLfeekt+/etfyx/+8Ad57LHHZMOGDXLbbbe97XLvvvtu+cpXviIbN26UuXPnyg033DD4K8pI2/JpS/AepLe3N4jFYsGvf/3rwb91dHQEyWQy+OIXvxjs3r07cBwn2LdvH+x3+eWXB9/4xjeCIAiCW2+9NfjsZz8Ln69duzawbTvIZrNBEARBc3Nz8NGPfvQUn41yurJ+/fpARIKWlhbjs5tvvjlobm4OXNcd/Nt1110XXH/99YNxc3Nz8N3vfncwFpHgc5/7HBznoosuCj7/+c+Xv/LKacvy5cuDL37xi4PxU089FYhI8Pvf/x62u/nmm4OPfOQj8LcvfvGLwfLly4MgCIKenp4gHo8HDz30UGg5u3btCkQkWLt2bXD55ZcHy5YtC7q6usp5Ksppis7Byqmmvb09EJHg1VdfHRyLNmzYEATB8ce8b3/724HjOMHevXsH//boo48Gtm0HbW1tQRCEj4vHKzcIjo2DP/rRjwa3ef311wMRCbZu3RoEwcja8unMe/IXjR07dkihUJCLLrpo8G91dXUyb948ERF59dVXxfM8mTt3rlRWVg7+t2bNmsGfxDZt2iSrV6+Gz6+66irxfV927do1eNzzzz9/dE9OOW1YvHixXH755XLWWWfJddddJw899JB0dnYOfn7mmWeK4ziDcWNjoxw6dGjIYy5ZssSI9RcNZSSc6Fi1detWyefzcvnllw+53Q033CDpdFoef/xxqampeTtVVN4l6ByslJvt27fLDTfcIDNnzpTq6mqZPn26iMiQaZphbWPatGkyZcqUwXjJkiXi+75s27btbZVb+itxY2OjiMjgfD7Stny6oqtOhdDX1yeO48j69evhQU9EpLKycnCbv/zLv5Q77rjD2L80LUBXBVKOh+M48sQTT8hzzz0njz/+uPzDP/yD3H333bJu3ToREYlGo7C9ZVlD/gysKG8HHqts2x5M4ztKqUYomUyO6LgrV66Un//85/L888/LZZdd9vYrqrzr0TlYOVE+9KEPSXNzszz00EMyefJk8X1fFi5cOOQCAOVoGyMtt3Q+tyxLRGRwPh9pWz5deU++aMyaNUui0aisW7du8CZ2dnbKm2++KcuXL5dzzjlHPM+TQ4cOyaWXXhp6jHPPPVe2bNkis2fPHs2qK+8yLMuSpUuXytKlS+Vb3/qWNDc3yyOPPHLSx3vhhRfkpptugvicc84pR1WVdwmxWEw8zxt2u4aGBnnttdfgbxs3bhycMOfMmSPJZFKefPJJ+fSnP33c43z+85+XhQsXyoc//GH505/+JMuXL397J6Cc9ugcrJSTjo4O2bZtmzz00EOD7eXZZ589qWO1trbK/v37ZfLkySLSP4fatj34a9upKPfd3pbfky8alZWVcuutt8pXv/pVqa+vlwkTJsjdd98ttt2fSTZ37ly58cYb5aabbpIHHnhAzjnnHGlvb5cnn3xSFi1aJB/84Aflrrvukosvvlhuv/12+fSnPy0VFRWyZcsWeeKJJ+Qf//Efx/gMldOBdevWyZNPPilXXnmlTJgwQdatWyft7e0yf/582bx580kd8ze/+Y2cf/75smzZMvnnf/5nefHFF+XHP/5xmWuunM5Mnz5d1q1bJy0tLVJZWXncX8kuu+wyue++++RnP/uZLFmyRH7+85/La6+9Nvjimkgk5K677pKvfe1rEovFZOnSpdLe3i6vv/663HrrrXCsL3zhC+J5nlxzzTXy6KOPyrJly075eSrvXHQOVsrJuHHjpL6+Xv7pn/5JGhsbpbW1Vb7+9a+f1LESiYTcfPPNcv/990tPT4/ccccd8olPfEImTZp0ysp9t7fl9+SLhojIfffdJ319ffKhD31Iqqqq5Mtf/jIsYfaTn/xE/vZv/1a+/OUvy759+2T8+PFy8cUXyzXXXCMi/fl2a9askbvvvlsuvfRSCYJAZs2aJddff/1YnZJymlFdXS3PPPOMfO9735Oenh5pbm6WBx54QD7wgQ/Ir371q5M65j333CMPP/yw3HbbbdLY2Ci//OUvZcGCBWWuuXI685WvfEVuvvlmWbBggWSzWfnJT34Sut1VV10lq1atkq997WuSy+XklltukZtuukleffXVwW1WrVolkUhEvvWtb8n+/fulsbFRPve5z4Ue78477xTf92XlypXy2GOPySWXXHJKzk85PdA5WCkXtm3Lww8/LHfccYcsXLhQ5s2bJ//rf/0vWIp7pMyePVs+/vGPy8qVK+XIkSNyzTXXyPe///1TWu67vS1bASfhKopyWmJZljzyyCOG94GiKIqiKEPzne98R37/+98P+m0o5eE9ueqUoiiKoiiKoiinFn3RUBRFURRFURSl7GjqlKIoiqIoiqIoZUd/0VAURVEURVEUpezoi4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzoicwX3fl/3790tVVZVYlnWq66ScBgRBIL29vTJ58mSx7VP7vqrtT2FGs/2JaBtUEG1/ylijc7AylpxI+xvRi8b+/fulqampLJVT3l3s2bNHpk6dekrL0PanHI/RaH8i2gaVcLT9KWONzsHKWDKS9jeiF42qqioREbntc5+XeDwuIiJOArepmzoe4nzeNY6TiCQhtmIOxB5ZekQi+Jbk5vMQ9/T0GGXkutMQv7ruFYhjFpb55rZtENfV10McjcUgzuawDiIik6dMgTiRwItz4OBBiI+kuyEeV10DcVP9BKOMeCwOcU3dOIg7Ojsgtuk8D7a3Qzxv7hyjjOoKLGPX7t0QR2PH7l+hWJRfPfIvg23jVHK0jK8/8GuJJ1MiIuJ7Hmxj2fQtS6g9DG7DX8zwLoGFf/BpAyfkix2v2AfxwQM7IG5vOwTxvHmLIK6qmYjH8/A++mFfJp3wF0zlsM6hYxgXkzanj23L/AZkOEuf0m/SctmM3PvlT4xK+xM51gZbW/dIdXW1iJhjgU/tJey2cDO1uU3yDtwm+XPLvGbDOSPx57l8EeJ8AeOAvq06OgeUEqPOYFN7ML/xws+LAfbngucbZWTyBYy7cRytSeH8UjeuGmKfDumFXKd8EeetNM05Ead/yuzr7ZXzFy0Y9fa3Z8+x9pfPZ2Ab26GdLP6DSMAtjMNT8G01H9EO3l4ZXmC2jdY9eyCurKqEeHw9Pp+IP3xfHRO4ItRZS+9PT0+PTJs2Y1Tn4I/Nr5eo09+Xq2pwHIgnua7YX0VEojQORAKMo3Fss7W12Id5vItGzUdYS/CZzS1ie/F9HGs8epZgUskoxImEWWaB2lNB8Bmw4KUgnjH7bIi37sRnreeeetasiIvXyiPlQ1sXjoeHM/Ss6uD98nlAFAlpb1hGouSZ3Q8CaevpGlH7G9GLxtHGHY/Hj71o0FyTSOKFteywFw3aJobF84tGlF40ijRL5wtmQw5yWG4kgmVEafDlCTDiOEPGjmMO3tFodMiY68DHMOpI+4uIxOhvcXoB4s/5RSNKZfD+IiIJeoDgY0ZjZr1G42fUwfaXTEkiWSEi7+AXjQh23lgc23yUXhjjCXw4Onp+g8fTF42SIswTHa2f8Y+WU11dPfigF429O140YvSiwS8exotGwnzRiJf5RSMf8qLh5HC8t2mirKIXjaP36Sgn86Jh08skj9Vj2f7yeazLe/lFg18s+OGH28K74UVjqL+Vm6NlRB1bYgMvGjF6PotHqK4h6TTDvWjEosd/sO2vB79omG3cEvybS9eHxwF36PcMSVIdEnHzsdmh9uTQo7Xt4rNTKoljaIKerSKOee0sulYWvWg49tBjsDFHj6DdcNvCedsP3SaMEb1oHKW985DEBh5QIwk8yYZZkyA+uHefsX9tZR3EPN449OJRVYmDQyaHE2AmnzPKqKyhX02i2Ir8IhYap18fPHrbDehlprsH3xpFRKIH8aF98uTJeEwXJy+eQ4909UI8rgJ/rRARKXhY75oIlunQT0xHjuAvHAl6wLVC3majNnaWmgo8ZntH5+C/i0XzRfJU43ve4AsGfythcWMKe9oapkMYD7oU+kVsC3v3bjeO8frW5yA+dLgF4pSD962nG/vJorOXQTx+wgyqhPmy59EAZDxgWHyvKabzDnvgNy8dv7QZM+TQ25vzQ/g3LMc5gu+NfvsTEcl6rkQHyi7SZQ+Ge3MVkYjxxoUHoS4YMllg6PshZYRMvqXwA7bv4nX36Eui7btaIH7ppfXGMa9cvhTiqVMaIU4l8Rs9vtdHaIzc1d4pzL49ByA+QPVacQH+OjhpIv46XXTxxHtpPhEROUy/iAcOfRk28OLRlza/5BoNfL8gvt9ftuvhSxA/mtiWOVbwVka/He6hwWiOYdsHQ0Qi/jCP9eZQg39xC2ZWQSGbhThJmQlC84Ux5g1Zo1HEqBc9vJfMc74/+mNgLCoy+NztYx+I0rfPCerzIiJx+gXCL+B9idEvGnF6AC8U8JnPC5kHHPoSK5XC5xj+gjqg7JuI8cUx7h+nuL8i9OUMNSjHwT90HsZf4BacMRc/b+8yinht8xv4B+rfVpSe8SyXYupHIb/kmPM4jtOFkmvHX7wOha46pSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnZOSKNRXV8l8Xh/jnnOxVy5TB5zJANWPYpIND60kK6zC/NyWTBqkUDGiZm5yJU1lAtsYR7amztbIE7EUdMhJNQuUh5b2IornNPe2toKsU3XIqC86izl/u9rw1xkEZEJk3A1ol179uIxi5zriPUs0v05dLDNKKOYwX04Ay/dd2yVr6I7Bjnylgwm8A4rQCqDQM6m9pbtQS3N1o3rjH0yfXjv4pTH6rp4Hw62YT96PocrqZ21+BKIm5vmG2XGbBKQU5azKZ4kkfsw2ggREcc5oaFCONOa+0hYmcOKwUv1DGO0lrvre+IO5HvzeMQLEoTlr7OAj/NcfRJwRVjDQbHnmTqD1t2Y/8sLP7CcqSeNqxelKlFI69G92rvf1N9VjcM2yFo5h5TKAeX+2jn8PJZCca+ISA2vHESryeSKvJoMLczAi2zkTJ0FC+F9Es0UBsbRdAa1HKOFbduDbYCF6SwGD1twwdBo8MfDSjSG1gyFlRHQ+DOc3ovHJ7NMc5zIZnG1P9bSslCWtQ/D1UHEzLs/8SFo+DKGU4uUHiFkXZpTTkUqKvEBEbjno1bGob5SVYFjgogYSmyXVjfha5rjVT5ZDB5yESpSWG4yhc+EVi/O4/x8xv0q8Ok5IBuibYjiMaK0OEaMVqpKZ7sw7sFn34uXXGCU0dGN9d7Zis8aEdLhRqM0N9AAMZJ5n5+zghKt04nomvQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzQonXU5sbB435WvagDqGdnKkra023wFQV5soFlEOb2YP56bEImbXQGsxuwfTRiAh6b9hk3mJTntrhI0cgrqnGenPeuOuG5bXR+sSkX+C8aovyCpsn45rz+3fjtRUR6e1D/45JZPluUR5sbSVe68YJ6GESIm+RTBrzjn16D43GS47pjI2PwWjCOYyV1bUQn3vuEmOfzS8/BXEuh+0n52IucY7cfY8cwvz31za8ALGXNXPDZ81C/wDHwXoGlAfLBmxhJpTDcaImUaZhm8lwGo13AvFIVOKR/lx/1k9w5m5YDyErB8NjJ0J59Xn63KEyXfYHEJEMeQqsf+UViHfs2AXxgYOHIQ6oDk4UNR5h66f/8Y9PQDxp0gSIJ0xAjVl9HXoFxSpQkxFzzfY1ta4GjxHDenbsxXHT82ZCbNNa9rUVpM8TkcRU1HF09eG17Ojo768eG56MEsViIMViMPjvUmwySImE1NEazt+G+rVhhMq6yZA6mt4cIRsBQ/v48PHyObwnIiJH2tshjswnLVswjCtbiO7DhOs5gl1O4Hj99eB68jZ2ySejPwdXV8YlPmCqlyP/CYd0V75r6sd4TmXnaYfENQnyOYtEyHwvxLwxRcadpnv40KZ/KdJ0eOTInQvRdiXoWTXCZtQueY74uH0PzfvJaaZXxwUXngPxoc41EPdlsQw2m+a5J2ze5/vDfbHU8FM1GoqiKIqiKIqijCn6oqEoiqIoiqIoStnRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TkgMHk/FJJEaEAaSjqSjC0XVkyejWFlExC2gOKiDBFzFAopZvCKKvXs6URAdhL0n1TZA2NeF4tmKShQduiRI7+1DsW5VFYrLk0nTsC9PpjI+CTSjZJhVIEFvlERUs6Y3GWXsIvF9Tw9e72QSxUPpDF7rSKQW4mwWRcgiIvsPoqDfieK5lhrBFUNF8e9sDPOZECEZQgsBkKpx4rTZxh4XpvCavfjC4xCnu7BNux62BYsMItOdByF+dQP2ARGRvh7827z5F0JcUY1GZ55FBm7cmUM4UaE2X+uRiMFPpA7lON7J0NXVNWgEl6Hxik0yI9TvRUQsEg3a5J7Xm0ZTJl4wI0ri3ELBFFyyOV5dXT3ELS1o6PfKiy9DnC+QQJ2MoOwQ88b1z6/HekZQVF1Tg0Lu2tpaiKtr0WQrmjCv3YzZ2N96e3HxkIP7cIw8f+E8iCdNpLmht8sog8X245Ikfq7qvxZxMQWho0F3V6/4Xn8bcF2cdyw2M4uYKmz+C4vDI2yKS4LRSJQXVzH7oSEGpzbrs+CcY5aZkog/Q3O0iEiWFjKRgEWtFBt6dZ4bjCLEkL8aGw1nAjjM8UTEWEKC5yir5PoHoy8Gj8UtiQ+Y00VjvJgCzl3FApntiWn8yvc+SqaaVVX4vMZi8UzI4iiej9cl7uAx+Rkul8c5OU7G0jZt7/rmmGsI80nTX8iSCN6nucLH82jfu8MoY8qcMyFeuuQ8iJ94/BmIe9PYVws5qndIIx+Jse7xth0K/UVDURRFURRFUZSyoy8aiqIoiqIoiqKUHX3RUBRFURRFURSl7JyQRqOUaY2owYh1omYgFjEPnaec5hTpCvriGB9oIyMpyoMbV4P6CRGRQgbzAnu7yRCtuwtin4x8OrswR7pIOfNTp6C5nohIXQ3mEWYyWGaO8qzJo0aKRaxzRTXmM4uI1I7Dv/VQnqpNeYnZXozXdXVRHU3To55uzBMc34A5zbES8xzXG8YAaYwJM5QzNRq8DeUcGuZVZIDjm9qGmsYZEC+76jqIN770PMSbXkHTnUiA9zWexHtSGTPzk9taN0Ccz+G9n7/oAojHNUyDuOgOb0RleHBZbJyEn58K873SMk/UMLBcdPalpTjQgQ91oEYgHovS1mYfSaVQi5BKYJ7z4YOHIB5fj/oKK45lPP88GjqKiKx74SWIA6rX5IlonnfwQBvEu1v2QpxI4P6h/o4O5hzHHNRYVCTxPOMVaIqVrEGj1FjcNNPbuOFViFkf4HuYg/yjh1ZD/L4Vl0CczZv53fEYzkE26QuKA2WkWRMwSvR2dYsM6OMsMuSLRMlA0uX2KIY4waY2Sh6IEovTzfaH114FNI7a1GAC1n04w2g0qM5e0dTHsJapSHn3kSQ/j1CZPBeEjF+2sc+J6RSNI4aUYdH9CFgPUKrRCDHEO9U4diDOQLuLkQ7LsobWX/T/DdtLjPobazKipBON01gUjZvPmayzYpJk6Me6j3icNYxIRaWpH3PpGS6gCdEJqA9Q00k5eN/9qDl3pHtQ03ze2Qsg7qDn5c7n8LkgTdq7MJktj3f8jHSy87r+oqEoiqIoiqIoStnRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TkijEYtGJRbtz0+b3IRahdpKXKvftcwcs1g15saNb0CNRQXl6R4+gP4A4yoxv9kJWUe60Iv5m0UXc8zayCtCbKqnj/l3nT2k2XDNtaGnT54CMS1nLp09mMvNmYtVOVorOmz9fdIHTKivg7h+XC3EO1sxz7qbfDXmzjvLKOPVV3At/MlTJkNcXX3sfhWLRVm/cbNxjLHC1F8Mv0Y0w/nGnGss5HdiheSqk9xBYslxEF/8vg9BPI50MC89/SjEExv2QfzJT5htY8du7CdPPIv38c/PdUI870zUbEyfvhBiW0yvGN/jte2H1khwLi5f+nCNRfl1HeUmFlgSH8hbraAc5TitEd+XNceKnIPj06ubUXcQj+D9XbAA83AzOdRWrXsZ83BFRH73L3+CeGJzM8SXLV8G8fRZMyG2SF9xuB29XNIZHM9ETM+jgNZfPyycEEz32sZrmYijhkNEpJLG/2gU68ltqrYC55uzzsUxb8GZ6LMRVi57Ih06dKC/uvZJyxvfFplsbtDHxPDNiJH2IRKShG1oNHCbAsVxF/txhEQc0RAtJo+jPMXyuBlESGtDukk/YA8C89kiYM8G1nG4GLO8jscrO3QoGsZrY5h8do5DR0A6V4/OtdTvwyuOvpdVJGZLZKCdOXTvbep/7MEiIhKL43VOJnCuidqkkbJIs5HE2LLMMdbPoI4xncZtYgns45Eo1jvC95n6WUXKnB9dF69FIUdtlB8zXT4mjmWRSlNf1ZvDeT7fifP68ovfB/HuAzhO97yxBeLAN5+ffWrD3C9Kx21DSzUE+ouGoiiKoiiKoihlR180FEVRFEVRFEUpO/qioSiKoiiKoihK2TmhRNN9+3ZJYiCn7q3uN+Gzrm7Mg5uzeJaxf08B1/mVKOYYJqtRs1Ekz4C2A+jVUREz11rf89Z+iPN5Wiec1mV2Pcwt5gRSXg+5L2uuXb19N65DH6W8tizlL0cjQ+eDRqJmfh5rNAou+X90Y/5esYj17O3Bz48cxvX6RUSap2Mud4LWvq+oOJYjXSiYa5mfaiw5ltd6Mtn8Ro7ssF4MnGPLObEh64RTzDnenL88Z95ciNtbtkPsWHif2jvMMz/cge0lk8Hcy0IG9TqbN6EHQC95y8yZdbZRRlUlaoJcysH36VryetxM2KU/BdYbZceygsHc+HwBryNrW3p7Tc8TN4tjQdtBXBt92mT0JwpoLMlRbm9vxuyHmTzem7PPuwjiWXOwzc2mfn/mmYsgXv3T/xfiZ599xijTojKzOTzPNMW147E9nbsY9RObNm40ynjfFZdBHKEc8Fc3od5l6mycg5qnoxalr9f0EvrDHx+HmPu8P5D7n6PzGS1cLxB3QC+Vy2P9owXST0TNuSrK3gfc56hfFqmfxzzuuGYZMdIY8nRm04QXuOzVgeOXRbqRYsEsM0H+MoFL+ec0H9o0nwYB+1eEaPyM0Z2/p8XHKd/QaJDWJGT+8MncgMdEv+TaFItmjv2pxolFxRnQaCTp+cCla+77poYkWUn6CAu36erAZ7xEBd6n+Hj0ACoIajpERCSK98Hz8Nn0YA95U5EXR5T0h1Hyp7FD9Ikx0piJj+OyQ0KlqEP6vgSeRyHEI4V1SO1tLRBPm456zw9fcxXEnVnUdLS3dxllZLJY7zTNLyfb5vQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzQhqNDa+sk2i0P2fu0B70l9i7F/O/PpL6oLH/wfRuiHOSgbh2Enpx+L2YC7f1mW0QFzNmvtjhvV0Q5zOYA8jpdT4nqXJO5AjUAPkC5t8Vec14SrQskv9HN3l1pLdjnr6IiEu5cVFKfE3GMS/W8ITwcP99e1qNMiZPQT+Qnbt2QRyPH8tBdz1zLfNTjWVZg7qK4fQVYZ8Pr8lgKMfWYo2HuU54hHJ9I4LXvaN9D8Qvb3gS4r0tOyBeOBdzNwMx88rH1WPuZoTOM5/FevsWdvu3trwAcbrzgFHG/AXnQTy+YQbEtoXtLyBtim+sxx029Azd10rv34nfy/LQkemUvN2fP9uV64LPnASOX9EKU0PmFnBs6O3FfOHqWvRdoaFF3CL+wXPNPOiJEzCPuaebvIAox702if4UU6dOx7h5NsRT9qAOTkSkMortNEc+BlmKzz3nHIg/8X99FOLf/uFfjDIu+9AHsMxKXFP/vDdw3Nz8ykaIH338PyHevxvHNxGRja9vhbiHtW/Z/vvljcH4JyJSKLqSL/SPKdk89ntfqA+GdCe3gOORR1qEaJzGG/ILsX3sx55nzsHpLLZpzuXnuSkeo7GAjplKovYpWzDLtCK4TT6P2zhZjHk0oiqJY4xXpuaCZWge+3+QRoF9mQxvIhEJPNyH9SwipXPO6H9PHAS+BEH4HMxxmI6zt4vmL/ZysNjXhZ6N6N67sXqjjLZOLKP9MLbHLa+/BnFDNbadS89DX6nmKTiuO7Y55hZy+CxrR3CMTSSwjSepn/X04vZ9GdMfRKgvxhNYj7370Nds2vxzIb5iBfonvfDiK0YRnV14rXbvQf1xaZM29F1DoL9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilJ0T0mj09nRKZMADIkc5ZIU8riveununsb8Xx/wv18Ycvt6OLojrkrgu8MSJEyB+Yc16s5K0lnhVBebx5rOYSxdhPQWtdxxPoBYiVzBz5F1O1rQw5y9C+Z4+5e1HaA1wzmEVEcmm8dqls1iPrOG9gQl0CVpbuqoKr4uISG8a1/3PU45luiQP0fPMPMVTT6mTxtuHfTXCSivFob9EIiHv6XlsX2+89jzE6195DuJ0Hr1lbFqnPoZNSSprTI+VPfvxb709tAY3radfIC8YO4Jtae9ezGEVEentw3ouWHgxxE3TMK9VpAqigPUsprxlWN4JGo3NG9YP5pyvXfcsfNZQi+NVshLHKxGR2QsWQzxpMuqiauow57hQ4HuH46wfkgddW4maiz+veRri6ZNQB5Ktxvg//h2339t6EOJYzBw7hH0MIniDOSc54uPnu7a0QFxdgXUSEQlIB1RRhdu8b/n7IT7Q3gHx4R1vQbxhA/puiIg0z50H8ZbXXoe4t6ff94T9cUaLoh9IcUBX4QXYB3LUVvximI8GXnebfKVYk5EjH6qAtClh/TBCeomANGF50i54rDsq4rOFS0Uc7jb9aQrUnthLxmY/rQh5J9BYzv41/RUj/QBpMlzSXvL0wt5CrLcSEbFpYLSoHuC9EYz+GOh5vngDc1Qmg/OG4RMS0jb6+nD8ipEXTmUNnm+iGu9TXw7L7GTNh4g8+SJqtdrayTOM5tiDnV1YZmofbh/F8bShzhz/olH8m0eatKJgbLkYZ3LYV8PaX4zGWMshzU+uB+J9rVsgXjQftXbdnTg+iois/fPLWA8f61XqaWOdgJuZ/qKhKIqiKIqiKErZ0RcNRVEURVEURVHKjr5oKIqiKIqiKIpSdvRFQ1EURVEURVGUsnNCYnBHrEEjm1gU31FiMRSGtB8kQY2I2Ak2ZyExSRaPeSSGQqGDB1GQWmQ3KzHFkdVJPMWLz5kDcS6PwrL9ZDx41qJZEAe+aaTy/AYUH6XZT4hEW/EYCiNdEse5XoiIj4RABTIkypGwLEbOhD6J+OIRU42bSKGxUkDitWLptR0jMW55YUMlFrhjHHXwGra3obhUROTVl1H8vb/lDdoC208sgveVDdg8CxcBcOyUUWYmgyJZoXsbsUkASt3OIpF71DGHhXQP9r1NG9dA3JdHY7PZs9EsKBqpg9j3TVE716OMuv+y0d6yTxIDxpXrHv8P+MyJYP9Z9hcfMfa/7Go0OqyrQ0FzlBaCYNOrHC1m0d2F45WISJYM07w8CibjDl77tt17IX55w5sQuwG1H4dWKBARiWEbjFEbsmj8yfTheextxfmi6Jpju+NiPYoZ3KbPw2sVSaBAc89BFD/mQozfXnoe+69XxP4YGVjUwB+jtul6/f+JiGTJhI7Ft27c/B4xRd0u4eD5xWiXPCma8yR4TtnmPNLVifd232Fso8UCjWkknE2SuVmG7uuWbaahbYLE3Jk+LDPmYPusrMVFF5wIzskVtHiBiEjTVDTCrK6heZwWeYmS0JlF7+KbYlpuV0Vqf/mSNstmn6NBoVgUW/rPw3XxfNmYMUZjgohI2sX5z+Fxggz7bBKYSxHF5F2HcaEKEZEjJBDvzWHbSCaqIc7msIyXt+B42E7tecrEWqPMxgk1EDfU4rnXVmJbyeZpEQ+6DlHHvHYRelbgBVWqK/EP7d04Z+d7ayFeeiGapoqI7N2LZqyHSShfuoAOG1gOhf6ioSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnZOSKNRLAQSDOgJEinM062rw/y8bK9ppCIZzOlyKf+4ay/m73V37Yb40CHKRzZTbIWkCRLYqHeorMZ6nzEB8y5rE60Q2x5qOC5/39lGmW1taAizZQ/mTtqUu+1RbiMb9wQh+gfO5Y9SnCMjL4vy5yZMxPOc1IixiMih7l6sJ+VVl+bnDWd2904kIIMZ9sRhAxqLNBpbt7wC8foXnjDKcNPYRm261wG92wdCpk+UpJsvYN5ld5eZl1tTi8eoTGLc2UltJ0p5/33YR1IpUwfCdPegOVAmi3FvJ/aJ+Qsugbi+fqZxzAJpmcwmdkLD1SkhbkUkbvdfz4SP9WFZQXV1rbF/RRX+zecUZB/bi2maif38CN0HEZFDh9shjpLYpXYc5hP3Hu6CeCfp68bXovFgJGnmD7OxoEMn5lBfKpDW7XAa62DFzBx5N4fXIk9lWpQTHqFxt3U/5nOHXTuvD/9WncR87vTAeVl840aJ3nRevKC/3XkBjiU8J7ghQ3QvGe1aFjVamouK1OciCWxLHufQi8jB9iMQv7ARNRUJ0mA0kB4iFsfPO10c8470mvNjUyNqLoIYtnFPsG3sO4jPJ5ksasxs19RJVpMRZjKF9fTIwM+OkMEr6Vk8z3yA8Yw5CssoFI7dv0KI4d+pxvf9wTGLNRk1NTXGtkyxSGbFpPWNkLmjl8ZzTFbgGNBYY7aF+krsB129PK/QxB/B+5ohk7odB/EZsOUQthURkaoEHnNyPerDFsyaBvH0KeMhTkTI0I8NbkXEtskIM+D7j327Ko7H6D1yAOKpM2qNMq68YgXuk8V6te49dgzP82Vvl3ktwtBfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOCSU9Z9OeOE5/DqHnUr4s+zp00zrBIlIoYP5hjvKN8znMjWOvCM7ZjoR4QVRWYX555TjMv9tJeorOA5hPetH5UyBOk89GZxfmuYmITJqEa+HvaMNcOdfDikcoZzqexHw+L2SRduNUbbw2tk3+Cx6tv03eHAcO45ryIiK9mRBdTQm1tbUlxx/9/FCxZMTeCmGbWaQBsEikwetCs81LbQXmAVfG8b6JiBxsxzW4xcd+UChil/OjtE6/g3mvrk91dMzrXlWD/cgOsIwi5f16HrZPTqXNZnDdcBERm9aEd0gMFaVc7UwX6gR2vLEO4r5Gc/3zyc3zIY5EqqieJdciJDd8NPCtQPyBtd45fzpGebWcbywiks1gP8ySJqMihfnqCcrzrqvD3N4LLrjAKOPg/jaIz1mM66XPnINeHhUJzGk+EGD7sMk6qKsLx0wRkW5qMwf2oc4joPFnXDXe2ylTmrBOlbVGGY/9gfRPCcy7b5iEurNEBD+PCulInBCfiVocy9M9eF7WgM8J67lGi0zBFYn0txknSppHD7UMKTF1LraPbdT38Bp15ehmk4ajxiKvpbjph9OdwTGvvRvHp3iAbbg3Q7oP0u9kaFyO2pOMMg90U15+gZ8d8Dy8At7XXC/Oh+cvRL8tEZHKKryemQw+G3ikrfSjmFMfpTnaHoEXFWsaUFg4+t8TR6NRiQ7oKuJxPD+H5oh83vQcExvvQ5T6cIx8onx6Zoy72JYmVpnXoCZKug6ayHkus2Lk/+HgMyMN85IrmM9JvV2o7Tp4CJ8T29vpeflcPOjiM3DccVhHIiIx0pJ4Hj9b4PhWRXOJU8BjHtiHGmgRkcZpZ0D8/uXvg3jN2mM+Q0XXlU07zWOEob9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilJ0T0mi07Tsitt2fV1ikfLBoFA/V12fm52XSuA97MdjGa481RCTimDsY67mn+8hfgqrVSrl0V3xgIcSLmjHv99kX3jDKnDh9MsRnuZh3+MbmbRDnST9h2Zh7F4uYubURG/8WUOyS/iCG6ZPSQ/qLHOd+Sn/+ZSm8DrZb4gkxJhqNIBgU6ljD5LdavplDzXtYlAfpu5T3Tzn2s2eghiDmYo6uiMgf/hVz03MFzN2MxKgWMbzmjkV5wH2Yd1005ROSjGN7s2y81/kMaQdimNtJMhLJh6x/zn3VIT2CS2mrXgHPI5fD9rJz11ajjDMO47Wbt2AJxNHKkr7IHXmUyPu+WAP9N+vhvaygnOyIbeavG3qYPrxwbfv2Q1xdgTnL06bhWPPhj3zEKCNBnT/Ti21oKnnqXLIIx7yLV2Bebsd29BbatR19EUREpAFzjDds2gixTXqoOOX2d7Sj/iIRN8fAGOV3v/7qBohfWItrup+zaBHEc2dOh/jic1G7IiIybRqud/+Ln/4cYmugs7iuKy2tZhs+1ViOI9ZAjnmhyPoRnPtc35zeYzRv5LKk8yB9YJS0WIGLcZoHDxE5fATHPJIhSSGLfTdgrRzNLUUae4KQp5ZijguhaxGQ50oRnwuCPhzLJ01G7xgRkYoK8grL4T4Bj4k0B3nkzeF75jgbIS+UAs3TpVOUy/PVKJBKxiURGzhPi3Sh5D/BfVxExPXwukdsbE/ssZKl9pWl9rlvP3mricj+g6ghswKsh836PoqLdF0depRws6bHCstbAxfbwq4D2Cfy616FuK72PIjPmj3bKKOCtCRdXag3tmn+cSJ4LVP0PNPXZT5MtLehvu+s+QsgTpf44+XyefnDmueMY4Shv2goiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnRPSaLQf7JWjqfGcI59MYX5YoWDm8HOeN2Okhg+zfdE1y8hRbqZF+Z4Nk9H7oK8S9RG7D2Iu3aIFmLNrWWaZyRTWc/lyzHmursbtt+1Er4XubsyVi4Ss0V6gVFhfMC+flgk3PCIqK6kSbBIhIhHSvBQK7JVyLLc2LL/0VGPbttgDdWT9iEHI+RmXldpXjPQSuSzmfK/b/CLEb2wy8xMDobXSHTymS6nEbh6TOwt5bAs1tM54Vb3p3fHc03jQHVsp9zKKn3sFWu/dZ83Q8Ou7W3Se6XwXxDlKWj10iNbCj5n3ryOFeoRd1B7nL14x+G8nTKwyCkyY3CzJZH+u7MyF58NnMcqvTlbXGvt7Ht6LaAyH4O5uzDnu68F44oS6IY8nYt6/BWeeCfGMqehZUU36Op/OI03r4Z/b1GyUuehjl0N84YWof9i/H7Vw1SWePCIirS2oA6mvx/MUEami63nkCF6bg+3ohZBMoldHRSXmOO/YudMoI0lt8MoProS4+0i//0s+n5eX1j1l7H+qiTm2xAb8PxwLxwYhjUBYP86R/1WEHgEilJDuFfHeHyEPgVQ1Xi8RkVwW+2aU5mDbRc0QizMt8g6K8rjNog8RCUhvRzZT4gRZ+hyfE5JJfH6ppOcZEZEc+XzlyeMhiNEYR+ZXAWkB8nnUK4iI2HQPeZrzSjy5fG/o56NTQTwRk0S8v478DGjRnBtPmNfQcWogTtCca0WoraSwfXYU8Po8u9H0cejJYJtNVGA/cX1sn3F6VmJdTJAnzYYbpv/EY+QDMj4jvc6+jl6IX9mK2rxFZ15klBGLk98MtScnwc8a+Hkhh33fCdG59nbiGFpRgX5Y5y0+9mybzg7tu1aK/qKhKIqiKIqiKErZ0RcNRVEURVEURVHKjr5oKIqiKIqiKIpSdk5IoxEElgQDfg2cn5dJU14br1UcdjyKh88MR8J0AhYdJUfraxcpV3PuAsxX3tvaBfHWzbju+AVnzTTKfPUNzBM8chjLbD5jKsTjGidBvHsbrktfETNvy84WzOlL03kVyNekyJYQlDMYC1mnfjhNTKmPxrAaiVNAqUbD9GDBd+ZQlw/KaY1QTmnrjtchfmX9f0J8pGMXxD09mL8oIlIs4H2xhHM1KQfXwftmW5jX2tGBeZfPPm32ku07MPcyUVMLcQXlHxdJexOQB0sQcm9zlKefSmH7YUsbr0j5ujHcoGF8vVHG7JnoUzJt3tlYRiRV8m9j91Fh8tSZkqro13VddBnm7yfomsyYMd3YP5fDfmzROFlbSxocH1tyZyfqEvIhebIVKdSdTW5shNil3P2OPtSldRQwd9x28N7tfuNNo8zK7Tgutu7GMfGXv/r/IL74kmV4AIfWeM+bbbBvWwvE+/eh1u2sRedC3N6H1y5D6/yn82au/+496JNUU4n34+Kll/QfK5OW//OgsfupxyuIeP1jgsM+U2QwEYnT2CMiOdJcCPdTahvRKI2rdJ88FgeKiF/E8SVK2/g2jYG0/1GfkMGYxu0gTJfkYT0j5LdAw4845AExjvQ7VtH0SuglLWWBtCIetdlCjI5B55GMkcZGRPI0f/AjjltyjLHw0XAcRxzHbFciIpkM+bqEaAAsC+ezgLyGinRfYqShPbAN59xe8pkSEXn/JTiPxOk679mPxzjSicfo7cXxL8s3wTa1J/y8a9w3uhYu6ave2ofeH23d5rhe2zwey4xQo6bxrZjHfpfL0fOPY7a/eBQrfrgddWwzx501+G83RCN9PPQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzgpnOlhxTUlBeN6X3h6X7G+suD1seHYR3CMKOgO9OLuVqtndjPt7CcZibOaES9RMtezB3rqoB14EWETnzjNkQv/pqC8T5Iub87X4T1yqeWIt1WHQG1kFEZNIEzO3e1YoeD7FoLcSt+7CMDsov9UPyLONJrIdH65+X5mZ6Y+CjEYip6zke7CMiYuoI2HwkGsVrku3Da9535DDtT+YmImIbl4X6CbXPWAyvueNjzmr1OMyjnNxodtnOI/i3g4cwD7voUR4s5R87IxA8JOKYl5pMYu56Ion6BM4/ntSAOoGzFl5glFE37QyI8zYeI+8eu3b5cBXOKedQR5cks/33fe9B1EtE43gdJzRONPaPRrA9FHtRH1E3bhzEMfJ12Nu6h7Y3tS5XXHUVxLWVeIw//Nu/Qbxx40aI41V4b1M5vNZBb59R5tp/+jHEDq2hn8viGPjqpk24fQSvXZTW1xcxPQUyaRzTdm7fBrEreIwI5TR7npmHP2PmHIjrGiZAXFvVf17RtHkNRoOiVxjsz8Usjj8p8gtwfMxvFxFxSUeQJj+aQPC+1cXxGKko9vPObtPPxqdh0bbwOpNVgvh0n3iez5HXkGWZc1eMxrAYGWkko6zzwH5XncR+V5U08/BjpC3xKEc9m6UGSiGP/YWQOdT3sJ84DveDY+fJOszRIAiCQX2kS6ZQPK/09uL8KSISp/ZkR/A6xxM4H/Zk8ZhvvoW6rLPPnGeUccniyXjMKDaoyPnYx9sP4zPh3r2o4Wglb7VtrTjui4ikC3iuveTl4VAbt2h+bO/B7X/9x8eNMj644jyIZ03BZ1Evh8+qAWnrIhHsA75lNqA4zU8O+V319Rzz+8hkSe81BPqLhqIoiqIoiqIoZUdfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOCdteHdNzDy3LDTNrefuMQArM5mOCopvOHvx8/679EDctRiH24SwKnnZ0mAKYoBdFwufOmwGxE6CgaddmFDTVJlAgNanOFKLV16Pwp6ICRXn5NIrIZjahEPXpP6MZXWcGtxcRiVZV4zEtPNdScfhYGPYNhWHgF7YaAbUNN8D37Mkz5kK88uOfhHjNo7+BeOebm40iYjYL/rD9RGNYhzgJiA3Tpzybp5nnFaFjpslwKEeCugiJGm0LRY2xqGnkU1NVBXGCRHvVtdg+J0+dBvG0qQsgntC8yCijm3y4fDrVUlNGe4wc+5qamqSiol8s3dqO/SObR4Gw75mC9Vc3owj6hSdQ9FdFBnErr7vOKL+UZArvi4hIXwHr1VhVB/Fza5/FOqzHOl2y7BKIdx/BhSXitinG7dqPAkkWitq0z5HDKLgMyPxMQgxfWQQci6PIvXXHDoh9D1XJNonBa8ebi26c/76/gLiKjE7Tuf5rm8mZC0GMBq5vSXFggROf5tiii/28qxsXDBERCWiBhWgV9uMiTdtF7oRkEMmCdJGQ627heGSRCWWURdY+3ieL5pqwRwvbpoVLbDb1w2O4LtYxWYFzcDJlCukdmj9iJBi3yQyR/fQK9Ac7Yo5hNontC3m8p/ESM9+w/U81hUJenAETWovuW4TqE/6MEAy5jRPB9tnW2gZxPc0zF56Nc7aIyLgUirsrUyjE9mkhkZomHB/PmIFjLPn5yVPr8FlKRKTj6Rch7qEyLDLqtejZIxrB+/76G2iUJyKS7sJr8Zn/8kGIp9bjggY2LSzgC4n3PfNZNpaIUsz39Ng+tq9icEVRFEVRFEVRxhB90VAURVEURVEUpezoi4aiKIqiKIqiKGXnBJP8guP8++QYTsdhpNlTjmTY/gHlYlqCOY7FAr5b7TuIOad7O1sh7sthnlusw8xfjxSwjK1vtkB81mzMV7/uQ8sgdlJYRlUKcwZFRPYdwBzoM89sgLjlDaz3gkm1ENfGzoH4Z49vNMooFDFvNRqn/N2S3G8r1CzxFBME4U6QoZj58QHX2ca4QPmiqRrMeaxvnArx3j1mHqVtY/1iZBbExlIBv+pTm54wATeYMN7MiT5Yg9vUk4kbG8nFophbzMaMkRCzwxrSDoyvx/Y3Yw5qMBqmzIL4zd0HIXYrMEdfRKSuYQrEgct9ufTfY/MdSfvePZIeMNHrbd8Hn02ZRvqJqKm1SiZQV5DNYQLwju1bIV58IfbbGZQ/zDm1IiIFyj/PFXB8KZKGo4rMFmfOmA5xugHbk8N5+yJGXwpIY8FmXqyp4nE7DNvCdhxxqC9RmyB5hRTzaC53qMPUMBw8hJq9vizqbqoHjN9ypFUYLXxxxB/IkS+QliEueMKJmNlH8tTXo2SYVkHGnFHStfjUduJJU68TjWIZuRwZnEXIpJTMYwsutmmS+4hjm/pCi/QpFms2YtjeMmma62KY+9+TDslfp64WjZKWROiYdF4uGUR2d5uGdhGHTSYxzpa0u2xu9Nug73ty1GeQz88mfSLHIiIWjQsR0g3k6Zwi5IB78bmoyaiJmeMGa364jXf30nWzsG3Ea7B9TqzDMXvpOaYu5I03tkN85HAXxDZN9Fae+hHNC2xkKCLScQSNA3e3HoJ4ZuPZEPsJ0oVQv3Rd81nW5nGcTCkL+WPzVfEEdGr6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZeRsajdGHNRlhOYCcby6k0eA83g7yHDjUhXmT42pQL3FoH+bsiojMbsYc5je3b4M4m6E6+Zh/d/6lmHddWV9rlFHRh3nUjVPQ86KhAuP9r+Oa8qkIrgu+cDaWKSLyxk7MOY8kcI3+VEmevnmdRwNLMFP/+AS2mbvukQbD9jFX8/B+vG+vvPwMxC0tb0HsxM3uw7Ihi3Ie/QDrFVhYB7YPYE1RMmW2+YDyXO0o3msrQXnWpCNJJjEntbai1ihjMulTps6ch/s0zIQ44mDO87QmPOaOljeNMhxa4792HPa90r5rj7AdlJvXXnlB4gN57P/Pj1bDZ7Pmok7l49ejD4uISPth1Krs3oG5vXV1eN1+9uMfQZzJ4nj1yf92s1FGjpsI+RYUSHfmkVdLpg/HwDxtH5ab65FfjMdlFnAfjxPvKU+aNR4iIjb16Situe/xLnHK/Se9RTREQ9M4Ecfyzo4uiJNHPY+csWl/fbmceAPzXixK1yOO18PJm1qGcaTBEMpnr6Q+WKRc8kwe72MqxG+isgKPkekjH5Yk9muL8tFdKpP9QmzL1E/49LcceQi4pMno7ka9TtxhHZs5tvekUdNTQf4MDrXhI11HIGYfDQmZo4oF3CYWM4SqJduO3MegfBybg33SanF+f5iGtpK8RypIY5YjbWXzlAkQ15LfiZclkwsRKThYRi/eavECbJ823XufzsN28QATq822seKixRB3d+E+nd14r+wAj5EizdqEpmajjCR1NZ/Pw0YdZYqeFSLkm+G75vjX24tjZCGH96N03PZy7FVzfPQXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLJzghqN8sJrqXNO33CajEjErL5PefhcBr9a9WYxb61lN+ZVRppxfWMrYr6b7Ww9DHFFBebK1TVi3q94mJe49Q3cv+2gmds4e85CiANaK7+iAnPo4+S30PryixDf+LG/MMr49R+x3Dd2tEGcqjqm2XDd0X9HtaxjGojhPFjEN3O8LQv/5vqYY9jS0gLxnhbUuQSU9xs45hryYnhQYJmejfclIK2B5WPeZT5L+fAh+cnVNZi8yV4e0QjW04li3DgJ/StmT19klNEwCX0xnFQtxJ6F+Z6cP1pZi74bU5pQOyUisn/vboiTlHOeqDymX+B84NEiHi1KfGD9fL8X1zFvfxPP6dGfmevcH+7Cvp7uRj+RVBzHhtbdeyF+9smnIF559QeNMlp27cJjuFiPrnasd5za8d7dLRDvP4jjgBPis2LxOvE0Vvuk6TLGZeFx2+y/joPtIUIaCx77yVZCAvIxyIdoGObOmw/xtlc3QPznPf3X1mWNySiRqIhIYkAb4JNm0vUwLzxqh3iTRPEaBqQ16c5gjjb7JRWK5N0RchkqSPPFbTrK87yP98UlfY8XYCGWY2pFY3Gsl0NN1CPdRyqK16YygXWKR0LGFxIB9fWgPiBG19Khx6uaKtLOhXgldPdgX+3uRu+ERImmIaz9nnoicrRjsT+F4cEQ4o0Tp7Zh09hj+UPPXcU8Xp+wsShfwGMUAmxPCapDjPzCYjG6L6RL4vssInL+Qhw33Cy2+UMHsV/Fo/iM2JvG85o+B5/nRETGN5JmltpsJIbtK/Bp3i9i7Aem1q5QxPaWy2PfjJXcD9sKef45DvqLhqIoiqIoiqIoZUdfNBRFURRFURRFKTv6oqEoiqIoiqIoStkpm0aDc+bNHNzhYQ0GH4M1GbW1tcYxurtxres85WYa67VTul1HB24/fzpuEEuYl2xn606Iz1k0GeLJM9Hjwqe1n/fvxVy5La9uMcrYtw/zrhcvxpz5CXWzIa6ZMAniLOU2Tq431z+/6rJLIT7Y/ifcoCRX1gpG30cjEGtQ08DNiyUbfF9FxFgzPkreIudf/H6IK5KYZ/nKy5gf39eHbU1ExKHEcHNtccplZz8Im3UklKNaxHxSERGb9BGJGO4zjvURU9HzYvZM1P9U10w0ynBpbXKXyrQsyv2m/PEi5dyPb0BdiIgISWhk9+5WiKfPnjP473xhLPKTRRomVkky0X/uTQ2kIaHvbXL7UXMiIlLo6YR4PHnmpHswlzeVwLHjyEHUV7TRNRIR8clrY82T/w7xgVbah3Kt4zFs91On4r2K2GZurkVTSZE0DOk+HPOi5AExbhzmH3P7ERGx2HeAOnmOxvqqKsyD3tuC4/Rrr7xilDF71hyI3Qx6ihxpPyAiY+UjJJIp5CUYyJPuzeCYHq3Ba+gkTJ+GXhfbhl/EHGzfxeueEDxGZRzHzHzezPPm9uFSeywUyNvKwc9zRRo7KNffDnlqyWWwvTnkfSCUjx6w6YpPPhxZ2l9EHAsLjkZJv0ltNpHC69B5BPvu7pY9Rhnjp83FMkgvEJQ8vwTD6RRPAbFoSuIDHiPch33S0viuqcNjH5YctRX2ObMs7Gc2PQMmKvAeiIjkXdyHtVs859r8fTt1bUNLE+LfVhXBsSZJx8y2d0FcPbEW4m7qE27ebH9zZ6AOJEY+QbEYPhtks9Q+olinQhbnIhGRgM7NitIxSrVL3sjbn/6ioSiKoiiKoihK2dEXDUVRFEVRFEVRyo6+aCiKoiiKoiiKUnbKptE4GU3GiR6D1y7PZMw8tuF8NDirzMj1p/y8s+c34+cJ891sy5uvQdyXxdzZHTu2Y5ldmNs/azqWMbNpglGGWJgb29yEGoyaOtw8m8bcxZnTF0P869+sN4oY3zQNi6R1krt6jq2x7HGO66hDWhsWZYTmkdPN9mkfC6/ZOedfAfH4erwv//nkvxpldBzeB3E8Rnm9VK2Yg7mdVgJzWA+1Yxt/6j/GGWUW8phDOmUyto2JU6h9zT0X4krSZBRcM/+c/2J63PAeQ2u2PN8so3Eytr8C5Yu3lPiaFPKmR8Vo4BYsKQ6cbIzWY59BffLAjgPG/nH2BCCtU47Wxu/twdzxg9R+WnabOpBYDK99NIb6iClTayDefQDLrByHGrNMBvfv6zxolpnA8anoU65vHNu5y2uwx7HvRUNmJtY32ZSszxnhiQQe06Oc4r602YY6O/DcZs3EgTXX138eruvK1jfMOp5qbImKLf3aoBiZRRzpwrHDrTDnKo+8RKIOtmH2LSB7FMl72H4rOYdbRMbX4RhVlcT7kPdxTLPieAw/QnovH7UAkbg5diQsOmYOj1n0sK2wxus/16yB+LmXNhplpLN47oFL3hs01s9ZiOPu3Kk4f9SEfM1r0z0t+jzPHZt3vTI8c504lhwd23M5HJsCGtucEL8J1vRYNE/HydOC+3wqheNMMmlqNALSavGjisMiH7qM+RzWMZEk/xPyohERcRysR5YEh6+8hYNFxUH0U0pU4XlPmY9ziYiIkCbGcfA84jTe5Qt0P6hOVojYicdUhzQxpR5dIVKV46K/aCiKoiiKoiiKUnb0RUNRFEVRFEVRlLKjLxqKoiiKoiiKopQdfdFQFEVRFEVRFKXsnLQYnMWgIzHsM4TZtE+SxJW8PYu/+/rQ3CoMNmMhrZW4JB6PkcLFLqJwu7sHBTYiIjUV9RBHLDRO6usmE8AJKL6dVFkLcU/GNIKrb8Br03mgB+I9u1HEOGMqmrRdvfISiH/1x5eNMtY88yLEBRJLxyuPiY3GwrDKcQJxIkfbxPFFciIiYpv1M9ss3mvfx+5QKKBQbcbMpRB/bBxeYxGRf/vTP0N8uB3F4WyqY1G9nYCEjzYKCHN5s8zmmWdAPH32mRBni3jerXtRiNboJSCuHkcrC4hIQG0hILE3L8LAOA4bGZrfcRTonk6dhuLwva3H+l6eO/Iosf9At8Tj/ULSt/ZiP41VkCA6ZAx0SWxn0XVggefsOfMg7qUx71A7moCJiCxbfhbEXV1k1JTDxQMO92Bf2b1rB8Tth3BsOXs+Gj6KiJx74UV4zC4cn5woGTxGsJ27RRRgjqtFwbqIyKFD7RDz+B+k8NptfO11iHMZFADX1JmLbnR0dECcTODYbQ20O8sfm/YXyeUlMiCkr6LmVR3DOlUmsF+LiGzZimaNETLaHFeNgtLE+PEQZ6iPViZN49dkVS0eowLvZaYX71vUx3sfJcF6sYDtM0ptSUSksgLbUyyGiw/09qHxouXheLThZZz7untNQ1CLTEsDF9tGqgKP+fKrWIcPXfkxiJecjQa5IiJpWvCGDeukdBENz3wWOdWk+zLiDRjCskFfjIxiLcs0jOTxLpHENspC7QgtThCLY3t1Q55DXFrMhOfcKIm52WyUpzKfFpqJJ/G+iohkaI7dSYtK9MSw3+QcbDuV9GxyOGs+2x48gvPN1Ik4fllkKJlKYT2LLs09/MwkplFg4JOgvOS5ynFG/gyov2goiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnZPWaLB+gnOwwygW2VIJYUO+4cocGawdoTw1wTKrqjBncP9hzO3c14Y5vCIiVQnMhct04jEPU7rn/gD/ELMx3vZmm1HGjNl4fXMu5tJ1dWG+XM+BTogrJmG9m+eiKZeIyB/+/SUqg/Jxa49pT8ZCo1HiFWQ4L3LbsNnAT8Qw5vEo/9CivP8omVEd6dwP8fa3thpFFKiNx+OUw0y6EMvBPMnKKsxnbpqK+fDTZsw3ypw4CTUatlMLccpiIyVs4wfb0FiuUDDvbf0ENBAKKNfWNzQzQ/dV1nj070M5voLXpmlq0+C/s2QiN1oUA1+sgTzpNKW4vr4d83LjYo6JMRvzlpOUI58r4liwYPE5EHe2o76m+wj2cxGRns4jENdRnn0iihqcA51o+tfRiboPn/LEj/Sh/kJE5Mk1/wnxiy+hBmziJBxvll6K+emVFbUQe0WzfexpQb3Tn/70J4jnLcC+8b6r/gLiVBRztZ978j+MMp5b8+8Qb3udTMkG2uRwmqRTRSbfK/5AnnSKXA2rq6oh9sScT13KBWcD0Vdf2wSxRTnx0+eh/uvIQdRXiIhMGFcLceN01BklqrA9BnQt3QJe875ebG89PdgHRERa9uGcmaE2GmE/Vxq/qitxnK6vN7VwAZtMkhNcLo9j0oFu7Jurf/ELiBOVZhlzF+G14nMvNcHL5UbftLToFgeN3yybx3zWPJp9JEqmcxVkwFcgkzk2BXRpfnUipnkeu0yyma9DY3Akgtobn00ShU3sTO1TN2nSduzdA3FnAZ/XEjGsQ20F9t0de1BLJSIysQHbyzQyuGWDvjhda9fFvsrmfCIi1dW1EBfI2DJeckiP3TyHQH/RUBRFURRFURSl7OiLhqIoiqIoiqIoZUdfNBRFURRFURRFKTsnrdFgWF8Rtk4+/41z+HI5zAfj7dkHIYzhtuHs8yjl5aeqMI/3pdcwfz3qmLnnjRMxv67zIOoh+ihBNMjhWuWpSrwNXmycUYaTnIJ/yGI9Oroxp8+lHOcJCfTu2E5r44uIdNH1z2Yxzpesbz4WOcoRz5GIO7CGN+VRWjbmz/q+mR9vk44gFcNzKOYwz3LnDlyH/7XNz0HcfmivUYZF1yUimCeZiGF+Z0Mj3pfpszDPfPLUubg/ebaIiPgWHjMIsJVb5IFR34D58vEktt/9e838UF5Pe9KUqfg5rW3PGp4R9V3qWxbrOOySMtyh9V6nikBEwuQ/IiJF8kBxQ7pInuKA8mqLRbxuBTrPSY2or9i7G/UVIiL/+e+YDzxhEup+bvrM5yC+7OPYfvpIo0NdzfAiEhF5YwvqlQ5hFWTOPMw9nzob2/WLzz8PcUcfHUBEFl58AcTjmnBMrB+PfePMhegnEvGw4lvXrzfKaNuHOqyqShyrIwN5z4ZvzyjRY/lSGNDMFDhHmvL5c0VTaxWrR31EbQXpC4uoM/iX3/8W4rbDOB+mu831/h36/pLHvFgcr2mR8sCDAHPJeW3/7gOY/y4icvAg1iuXx2PU1aAWgP21xMKemcmhZ4uISGdPF9bT5zEPj+k6qKGobajFIlOmhqY7jdffpcGm1NOheLyB6BRiiTU4ltv20N5p0aj5eBkjDwveJx7Ha+rSIMrzSiJhenXYFdje8gWei9jTiXW7iEN+IJ5rXvcU6XQnNaCmcV87an0L9JyQjNCzbsjksWc3aXffh9cyWYH9yiVdCM8tuSzPRiIRuhYV5MUReMf2ceyRj4H6i4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZKZtGYyQeF6y54H04j5vXXGYfjjCdAPt5+OyvYGOeWjKFmoxMDvMmezq7IJ7ZhDn1IiJ1tG54hnJlfQ/rHYtizrRljaM4JD+vFY/JOcxFB/P1YuMwF3fPIcyDfeEl0wPCJp2DRZ4P2eyxnNOAE7dHAdt3xBnQXphSGbyvvD68iEiEtmnbg9dg08a19Pl2iH0XcxqjIffJpjW2qyoxp37WnFkQz1lwLsSpmkaIXcHjuYHZZW3ya7At1q/gfaTl36WiqgriWXNmG2Xsp3W9d27fBvHUGTMgjlZgTrRP6eKcxy0iwjIO9too1eWMkY2BOJYlESv8+xnuEmFeIT5diO4uXGu/qgrHgoP7MR+9g3xXWt/aZZRh2zgWNM1CPcR//Ry2yboJtRBXFPFEPMoF90L6/gWX4Li4cDHqKRxqkzvffAPiSZNw/4oq8p8REbZqamzEdeXzWcyJf/mZZyBm7dzG9egbJGL2HdejPh/vrwR7P4waniOB1z8GZEgTIDQ2ZPrMHGxxaZws4EUdR+NVfTXqt15+7imIa6pMPeGe3ahzEfZjipGGI07zjsP9hjVnIfN+DHPJo0nyOnDwWaKd/GjyRTwm+wKJiLj0LBGQv4wTx/Oa2tgE8RVXXQ3xlCnmOJvx8Nwramppi2NlepapTzjVWNYxjYZDYq14PEqx6Tcx3DMe6yVisQh9jmUWCqaPSyKFz1dROkY0hjoQi7ROToTK5Osc4vFTGcPx6sLFOK/PmYX+M1yHDHnD7Npuau/8HLbRBHl0RWKkf/HxuTNKniN9IToQ18frGSXtZQGeZdVHQ1EURVEURVGUMURfNBRFURRFURRFKTv6oqEoiqIoiqIoStkpm0aDCdNPDLeWPms2zHWZMVcunzdzUHmdZaNeVIUcHePwEax3QAntvSFrD7s+vq/V0xrKbgH3cS287PvbuyDu7EQ9hohIfT2uEX8kjcfsKWA+3u42POaO3bjOeNYzb30qhbn6uSzm66HeZfQ1Gr7tiz+Qox4JUEsTjeD16DpsrrW+ZRPmZLfuRg1GNnMEd+AyonifK0LykydOQq3CzFlnQ9wweQ7EsRjmk3qUZ+2wDiS0C9F65qxtEM4tZu0DHi1Ceh8RkSnNeF4dhw9B3LJrB8R19RMgbpiEngdu2PjgDd2mYPwY/eYnIiKJaEziA2vBp6LsD4BxtmCuk89+QwGNVwHpgPa1ogajSGvC5/rCxgpsU3kP2/Xjj/4O4qpqzMsv0JiYzePYksmZHibpXlwnvvMIeQl1YR1yGdzepVzr7u5uowz+W4Y8B7Kk0ShSPXndeNZciYjYNjasbA7LqKrpX6t+rCQa41JxSSb786YL5BXkU9uYUIn6QxERh/SCFaSPiFqoyVhx6fsg3tWyBeKebrzPIiKUfi5ODMtYOA81Q9NnNEPskY7pzbfexDK7zDZfWY1tvuhhPzt4AHUjveSzYZPfkS/mDfZJk+CRX9HMGTi23/jJ/wJxc9NMLNM3x9kIzTE2PX84JZ97IV5lpxo/CAa1cpy/nyBdTKFgjhPROJ4ze1rwd9+Ow898rNM1x1ixeVymfkLzjM3GQKQTsR2KQyZh1o4su/AiiB3ScFSP42cHbEuvbd4iTD6H24yro3G7gGMqS+mi5GFis+hNTP+ZGOmpSr2tTsTFRX/RUBRFURRFURSl7OiLhqIoiqIoiqIoZUdfNBRFURRFURRFKTtl02gMp78QGZnXRimcz8xljKRMow6UuJannLRcDuMk5V0XQy7Z5m245rFFuZt1Nah96M2ip0VnBnOLc3n8XETET2C+7YFOzMfbunMfxH296LPh0ZrrVoQSaUWkihKPPcplLPUxOdF7WRasogRWfx1yaVx3evub6zHejrGISHcn6grYDyFG2oRoFNdmr5uIa/3PmIFrY4uITG06A+JkBa7179l4Hz1aw9sPWJNB1zm0zbMBBeWg8j503oamg+sgZi5t3QTUIcUT2E/2tGCf4Pz5ydOmhZSB+bhD+eyceM8vD9F4XKLx/r5TQR4DqRS2l2TRzB9mXVk+R32f85qzfRAWSfdhpDiLCNleSLqrC+L/e9U3sEwaf1gAw15EoRY6XCgdw6Ox3PdCPB6AkDxoGTrHmHWBFh0jQhq/sPxu9pjh7+Lyuf56j8n4JyIVcVuSif46dexvg8/cPNYpWWOO8ZWV2E+jEdynowPnlQmTUT8xe+Z8iNc8hb4aIiKJKM6RFl2rDa+/BvGbLS24PY1Xvb3YBwIxG31FN853vovzeFea2jjN0REP51w7ZAx0KF/dpa9pp83FMW3JiguxjoZ/Q8goRrqbgkdakhKNRl/f6H9PnM3kxR8wqUqmUHdQII1QXx/eNxHz3sXj5PVAHio++b4UyeMnTAvc14dtOEGb2PTsk4ylcIMIeXuQr4YToo0JSNtVOw7nhkRFLcQW6VucJD4XLLlshVGG0HziF7FtWNT/jUcJmvcTIT4nvsteHNgvisV8yb9ND5Pjob9oKIqiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpeycMsO+csCCO0PsdxJicAn43QqPYZPOzCVFzd5DZOomIoUcChttMlmL2FQGVSESwUIrK0icJCKv7jgIcTqDZabJXI+NbiwSZ8Yd09iwVOwtIuIaQqxjYqQxEUN6gVhuf7nPPfMkfLT19WcgjiXM+vlkimNFUYBVNw7F3lOb0IBp1tyFENfXTzfraNHiAXQNjTd7EntbZB4UkIArTAUdcL+ge+NYbLqDsPg77N4afY2EZuNq0FAyPhfFbi27d2K8/Q2jjObpeL2TSewHpafpjJEc3I5ExBkQFcepfnFasCEaM/tYIoHXJUcGViyaZ7G4QwJoNmESEensQmO7fW0oGvY8FvGVw32OFurg+2PxGEgmWKRqdxxzamLD1giJNvnaGKJ2n9u5KZbmdh4IL0gSDH4yFqRzBfEHDF996tfxFInjQxb8ONCJoulYlBb8IEdby8f7cN7Fl0P8+mto1Cki0tOO5rAWmQR2Z9Hkr7OjHWLbGPNowQwbF1cREenpRtEqi8EtEvzaCYytBLXPkPvr2dh+klU41u/twMVG/v0/USi/5JwLIK4mMbWIiEvtjUXGuRJRe5oMK0eDdNYVtzhgmtuNY5PVi9cnzE8wT4tZZGghCsdmI156lorwgiHmPMCLCLkutr8ixXGa7yL8EMhjFxv8iUhAY48TYdM/mtf5GDTeRWPmuG45+MxX8Gkcp3ncJfF4gRceCTG85mvHc0XpMXnbodBfNBRFURRFURRFKTv6oqEoiqIoiqIoStnRFw1FURRFURRFUcrOO1qjwZyUJsMwM+P8TzI54Tw3F+Ni0cy7ZiMUn97fXN6Hto9Sndy0WQYbC7LmIpHEfE/e3nMxHy8SYvSVzXKOJW5Umso4FhKNuONIfKDiC+ahWV7bni0Qd3dhXrqISEUV5vZOmNAE8eKzl0E8rXkBxJaN19iTkDxKC7uUIQkioyibElk59ug+OyEXPvA5vxhxhDUauL0bYlzGsEkR18KnOiQTeK3PmHcWxHtadxllbH9jI8RzZqM5WHX1MR2IH5InOzoEcvTs2QjRNHIy7xXfX9YVRCi39/BhNKb0PGw/QWCaexaLnGc7tPFpOewP2dBxuHYdofO2aKyxQr4DM45Bg1iM8ppNPQvmd/P2YX+zHTK/HKiC53nSRUaIo0H7oQ6JJ/p1FikyjKyuQk1Gvg/1GCIidgx1BVnDVBKv2b4u1FO8thv7bVBt6iUqSFfg5Ug/QXMT95s43YN8AbePRcz2OnkCasQ4z76zF+c/i/QRURpPiiH6h4YGLKOyFjVZZ8yeCXGVje2tdct2iOvHjTfK6CiQoSflyMcSx46ZzZr391RTLIgclaB2kUliJIr3paoaDUxFRBwb7y0bebLkwrZYy8XjivkIy/Mbj5m+x894WIdYjPs8PQexhkhELNJYOJHYkJ9HSFvHer9IxCzD9bjfsK6N6kmatBz1w3yIMXSB/sbGqoUSkz417FMURVEURVEUZUzRFw1FURRFURRFUcqOvmgoiqIoiqIoilJ2TiuNxslBedIWrxkfDBkyrI3o34fzpoer0jB1CK2EP+QWnHYdUJ08ytfL5s38OtsdOl+81F9hLHw0ihFnMC97+oLF8NkHx2HO7TP/8e/G/o0Tp0C8+NwLIa6sqoM4sDCP0g84XzSslsdbd3/gmDbreehzyiflfHor5LKzVoBz7rkMobZgehyE5KDarPMwtqCYtU+4/8yZ6JkhInLoEOY8v7n9TYgbJx27f7nc6Ocni4hUVlZJItGf515NOfLxONY/CPWnoH5M96KiEo9RUUE59bQWeqGAa8KLmH4Rww1q3HxORgt3ohoNzifmOKwN8t9Yc8G5/rx2Pa/BH42GeHXQNpyOfXTcO5E15MtJMVMU2+u/Vu196D8RmYQ58bGQwcJ38d4m6Lq3tKAvRleuD+L2rlaIe8kTQ0Qkn8a+mYxiG7aTNRBXVWE/qqvDcbhI+sKGBlNbs/jM2RBPbZwG8WtbWyD2c+iHdWZTA8SV1A5ERBrqx0HsVOE2iTo6j1o8ZroX899Dmp94GTz3HOlTIvFjOzmBeR1ONXnvmI6ikMWxJyGkgSqa7S9bYD0EjxM0F5EPlR9gmY4dooOj8c4mzQVrNngMjUQxtmx6vgvp++wVE0SxzcYj2AdSiWG8OqJm+/PpmYvnAtYysV9INovtL8yHpZjHY3oe9uViic4jk1ONhqIoiqIoiqIoY4i+aCiKoiiKoiiKUnZGlDo11ikzp5axPx++pmHXeLjrPpJjnGgZQ8VH/z0a7eFoGbnssZ/6XIeWbsviT35u0UwpKdDSgTlaHtBxcHnIwMJjmKlTw7+nc8oaL983dMLRyFKnTjjRhe8rfRyetjJcKcOlTuGnTsjyynw/CvQzbmm6VH7g36M1Hg22wZKfjvkneF5GNhhJCiS1D/553Fiakbc30qTGKnXqxPYx2rWR+jn8+GS0U6NdYzxcmSLm0pjDpU6NdvsrXZKyQGXnstip/BGkTnHKWj5Py1lSzOMqt9+wv3F7DISXG6V+5A69PLPrmuMTL+fOS3kWKK3Ep/PI8ZK7nnleGTqmE6HzyGC6SzyK41k6g9cyGjEfvzKUEZrjtB7v2P3KZEdvDDxaRqFkuX9OI7fICiAWYgWQ49SpPKdO4faeT2lMtNx0aOqUR2OoTSk+NrVpoSVdKWW66FEKuYRYHFBbKNLSxgVaNtqlmJOQYgUzdSrX2wtxpg/TGnOUCtVHjSlNz0iZbMjS6PSM5NHytsWSdKmj6fcjaX9WMIKt9u7dK01NTcNtprwH2bNnj0ydOvWUlqHtTzkeo9H+RLQNKuFo+1PGGp2DlbFkJO1vRC8avu/L/v37paqq6iRN85R3G0EQSG9vr0yePDn0G/Byou1PYUaz/YloG1QQbX/KWKNzsDKWnEj7G9GLhqIoiqIoiqIoyomgYnBFURRFURRFUcqOvmgoiqIoiqIoilJ29EVDURRFURRFUZSyoy8aiqIoiqIoiqKUnff8i0YQBPLZz35W6urqxLIs2bhx41hXSXmX0dLSUra29alPfUo++tGPvu3jKMqpppztXnnvMZKxbvr06fK9731vVOqjKMrJMSLDvnczjz32mKxevVqefvppmTlzpowfP36sq6S8y2hqapK2tjZtW8o7ghUrVsjZZ5+tD2jKac9LL70kFRUVY10NRRERke985zvy+9//Xr9cId7zLxo7duyQxsZGueSSS0I/LxQKEovFQj9TlJHgOI5MmjTpuJ8HQSCe50kkxClWUUYbbY/K6UJDQ8NYV0FRlGF4T6dOfepTn5IvfOEL0traKpZlyfTp02XFihVy++23y5133injx4+Xq666SkRE1qxZIxdeeKHE43FpbGyUr3/96+K67uCxent75cYbb5SKigppbGyU7373u7JixQq58847x+jslNHksccek2XLlkltba3U19fLNddcIzt27BARM4Xk6aefFsuy5NFHH5XzzjtP4vG4PPvss/Kd73xHzj77bPnhD38oTU1Nkkql5BOf+IR0d3efVLmlZf/ud7+T97///ZJKpWTx4sXy/PPPw3GeffZZufTSSyWZTEpTU5Pccccdkk6ny3+hlDHlU5/6lKxZs0YefPBBsSxLLMuS1atXh7bHsNSVO++8U1asWDEY+74vf//3fy+zZ8+WeDwu06ZNk7/7u78LLdvzPLnlllvkjDPOkNbW1lN4lsrpxG9/+1s566yzJJlMSn19vVxxxRUw9tx///3S2Ngo9fX18ld/9VdSLBYHP+PUKcuy5Ac/+IF84AMfkGQyKTNnzpTf/va3o3k6ymnOUGPaXXfdJXPnzpVUKiUzZ86UVatWDbbH1atXyz333CObNm2CsVV5j79oPPjgg/I3f/M3MnXqVGlra5OXXnpJRER++tOfSiwWkz//+c/yf/7P/5F9+/bJypUr5YILLpBNmzbJD37wA/nxj38sf/u3fzt4rC996Uvy5z//Wf71X/9VnnjiCVm7dq288sorY3VqyiiTTqflS1/6krz88svy5JNPim3b8rGPfUx83z/uPl//+tfl3nvvla1bt8qiRYtEROStt96SX//61/KHP/xBHnvsMdmwYYPcdtttb7vcu+++W77yla/Ixo0bZe7cuXLDDTcMvijv2LFDrr76arn22mtl8+bN8qtf/UqeffZZuf3228twZZR3Eg8++KAsWbJEPvOZz0hbW5u0tbVJU1OTiIS3x+H4xje+Iffee6+sWrVKtmzZIr/4xS9k4sSJxnb5fF6uu+462bhxo6xdu1amTZtW1vNSTk/a2trkhhtukFtuuUW2bt0qTz/9tHz84x+Xoz7CTz31lOzYsUOeeuop+elPfyqrV68e9uFt1apVcu2118qmTZvkxhtvlE9+8pOydevWUTgb5d3AUGNaVVWVrF69WrZs2SIPPvigPPTQQ/Ld735XRESuv/56+fKXvyxnnnnm4Nh6/fXXj+WpvHMI3uN897vfDZqbmwfj5cuXB+eccw5s89//+38P5s2bF/i+P/i3//2//3dQWVkZeJ4X9PT0BNFoNPjNb34z+HlXV1eQSqWCL37xi6f6FJR3IO3t7YGIBK+++mqwa9euQESCDRs2BEEQBE899VQgIsHvf/972Ofb3/524DhOsHfv3sG/Pfroo4Ft20FbW1sQBEFw8803Bx/5yEdGVG4QBINl/+hHPxrc5vXXXw9EJNi6dWsQBEFw6623Bp/97GfhOGvXrg1s2w6y2exJXwPlncny5cthXDpeewxra1/84heD5cuXB0EQBD09PUE8Hg8eeuih0HKOtr21a9cGl19+ebBs2bKgq6urnKeinOasX78+EJGgpaXF+Ozmm28OmpubA9d1B/923XXXBddff/1g3NzcHHz3u98djEUk+NznPgfHueiii4LPf/7z5a+88q5juDGNue+++4LzzjtvMP72t78dLF68+BTV7vTlPf2LxvE477zzIN66dassWbJELMsa/NvSpUulr69P9u7dKzt37pRisSgXXnjh4Oc1NTUyb968UauzMrZs375dbrjhBpk5c6ZUV1fL9OnTRUSGTBE5//zzjb9NmzZNpkyZMhgvWbJEfN+Xbdu2va1yS7+hbmxsFBGRQ4cOiYjIpk2bZPXq1VJZWTn431VXXSW+78uuXbuGP3nlXUFYexyKrVu3Sj6fl8svv3zI7W644QZJp9Py+OOPS01NzdupovIuY/HixXL55ZfLWWedJdddd5089NBD0tnZOfj5mWeeKY7jDMaNjY2D49bxWLJkiRHrLxrKSBhuTPvVr34lS5culUmTJkllZaV885vf1DTQEaAvGiHoKhbKifKhD31Ijhw5Ig899JCsW7dO1q1bJyL9iwkcj3K0s5GWG41GB/999IX5aHpVX1+f/OVf/qVs3Lhx8L9NmzbJ9u3bZdasWW+7jsrpAbdH27YHU1iOUpofn0wmR3TclStXyubNmw1dkKI4jiNPPPGEPProo7JgwQL5h3/4B5k3b97gFxyl45ZI/9g1VDqqorwdhhrTnn/+ebnxxhtl5cqV8sc//lE2bNggd99995BzvNKPvmiMgPnz58vzzz8Pk+6f//xnqaqqkqlTp8rMmTMlGo0OajxERLq7u+XNN98ci+oqo0xHR4ds27ZNvvnNb8rll18u8+fPh2/lToTW1lbZv3//YPzCCy+Ibduhv46Vq9xzzz1XtmzZIrNnzzb+0xXX3n3EYjHxPG/Y7RoaGqStrQ3+Vrps45w5cySZTMqTTz455HE+//nPy7333isf/vCHZc2aNSdVZ+Xdi2VZsnTpUrnnnntkw4YNEovF5JFHHjnp473wwgtGPH/+/LdbTeU9wFBj2nPPPSfNzc1y9913y/nnny9z5syR3bt3wzYjHVvfa+j6hSPgtttuk+9973vyhS98QW6//XbZtm2bfPvb35YvfelLYtu2VFVVyc033yxf/epXpa6uTiZMmCDf/va3xbZtSLdS3p2MGzdO6uvr5Z/+6Z+ksbFRWltb5etf//pJHSuRSMjNN98s999/v/T09Mgdd9whn/jEJ0KXxy1XuXfddZdcfPHFcvvtt8unP/1pqaiokC1btsgTTzwh//iP/3hS56G8c5k+fbqsW7dOWlpapLKy8rjfEF922WVy3333yc9+9jNZsmSJ/PznP5fXXntNzjnnHBHpb6t33XWXfO1rX5NYLCZLly6V9vZ2ef311+XWW2+FY33hC18Qz/PkmmuukUcffVSWLVt2ys9Teeezbt06efLJJ+XKK6+UCRMmyLp166S9vV3mz58vmzdvPqlj/uY3v5Hzzz9fli1bJv/8z/8sL774ovz4xz8uc82VdyNDjWlz5syR1tZWefjhh+WCCy6QP/3pT8YL8fTp02XXrl2yceNGmTp1qlRVVUk8Hh+js3nnoL9ojIApU6bIv/3bv8mLL74oixcvls997nNy6623yje/+c3Bbf7n//yfsmTJErnmmmvkiiuukKVLl8r8+fMlkUiMYc2V0cC2bXn44Ydl/fr1snDhQvnrv/5rue+++07qWLNnz5aPf/zjsnLlSrnyyitl0aJF8v3vf/+Ulrto0SJZs2aNvPnmm3LppZfKOeecI9/61rdk8uTJJ3UOyjubr3zlK+I4jixYsEAaGhqOm2N81VVXyapVq+RrX/uaXHDBBdLb2ys33XQTbLNq1Sr58pe/LN/61rdk/vz5cv311x83h/7OO++Ue+65R1auXCnPPfdc2c9LOf2orq6WZ555RlauXClz586Vb37zm/LAAw/IBz7wgZM+5j333CMPP/ywLFq0SH72s5/JL3/5S1mwYEEZa628mznemPbhD39Y/vqv/1puv/12Ofvss+W5556TVatWwb7XXnutXH311fL+979fGhoa5Je//OUYncU7CyvgJFylLKTTaZkyZYo88MADxrd7ihKGuooqiqKcPJZlySOPPGL4vyiKMnZo6lSZ2LBhg7zxxhty4YUXSnd3t/zN3/yNiIh85CMfGeOaKYqiKIqiKMrooy8aZeT++++Xbdu2SSwWk/POO0/Wrl0r48ePH+tqKYqiKIqiKMqoo6lTiqIoiqIoiqKUHRWDK4qiKIqiKIpSdvRFQ1EURVEURVGUsqMvGoqiKIqiKIqilB190VAURVEURVEUpezoi4aiKIqiKIqiKGVHXzQURVEURVEURSk7+qKhKIqiKIqiKErZ0RcNRVEURVEURVHKzv8Ppj5Li1B2VkkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", + " 'dog', 'frog', 'horse', 'ship', 'truck']\n", + "\n", + "plt.figure(figsize=(10,10))\n", + "for i in range(25):\n", + " plt.subplot(5,5,i+1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " plt.grid(False)\n", + " plt.imshow(X_train[i])\n", + " plt.xlabel(class_names[y_train[i][0]])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d3TPr2w1KQTK" + }, + "source": [ + "### 3) Выполнили предобработку данных для обучения сверточной нейронной сети. Нормализовали значения пикселей в диапазон [0, 1] и преобразовали метки классов в формат one-hot encoding. Показали размерности обработанных массивов." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "iFDpxEauLZ8j" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of transformed X train: (50000, 32, 32, 3)\n", + "Shape of transformed X test: (10000, 32, 32, 3)\n", + "Shape of transformed y train: (50000, 10)\n", + "Shape of transformed y test: (10000, 10)\n" + ] + } + ], + "source": [ + "# Зададим параметры данных и модели\n", + "num_classes = 10\n", + "input_shape = (32, 32, 3)\n", + "\n", + "# Приведение входных данных к диапазону [0, 1]\n", + "X_train = X_train / 255\n", + "X_test = X_test / 255\n", + "\n", + "print('Shape of transformed X train:', X_train.shape)\n", + "print('Shape of transformed X test:', X_test.shape)\n", + "\n", + "# переведем метки в one-hot\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "print('Shape of transformed y test:', y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ydNITXptLeGT" + }, + "source": [ + "### 4) Построили архитектуру сверточной нейронной сети и провели обучение на обучающей выборке с использованием части данных для валидации. Представили детальную структуру модели." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "YhAD5CllLlv7" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Admin\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + }, + { + "data": { + "text/html": [ + "
Model: \"sequential_1\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ conv2d_2 (Conv2D)               │ (None, 32, 32, 32)     │           896 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization             │ (None, 32, 32, 32)     │           128 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_3 (Conv2D)               │ (None, 32, 32, 32)     │         9,248 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization_1           │ (None, 32, 32, 32)     │           128 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 32)     │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_1 (Dropout)             │ (None, 16, 16, 32)     │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_4 (Conv2D)               │ (None, 16, 16, 64)     │        18,496 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization_2           │ (None, 16, 16, 64)     │           256 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_5 (Conv2D)               │ (None, 16, 16, 64)     │        36,928 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization_3           │ (None, 16, 16, 64)     │           256 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 64)       │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_2 (Dropout)             │ (None, 8, 8, 64)       │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_6 (Conv2D)               │ (None, 8, 8, 128)      │        73,856 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization_4           │ (None, 8, 8, 128)      │           512 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ conv2d_7 (Conv2D)               │ (None, 8, 8, 128)      │       147,584 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ batch_normalization_5           │ (None, 8, 8, 128)      │           512 │\n",
+       "│ (BatchNormalization)            │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ max_pooling2d_4 (MaxPooling2D)  │ (None, 4, 4, 128)      │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_3 (Dropout)             │ (None, 4, 4, 128)      │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ flatten_1 (Flatten)             │ (None, 2048)           │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_1 (Dense)                 │ (None, 128)            │       262,272 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_4 (Dropout)             │ (None, 128)            │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_2 (Dense)                 │ (None, 10)             │         1,290 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ batch_normalization_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 552,362 (2.11 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 551,466 (2.10 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 896 (3.50 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# создаем модель\n", + "model = Sequential()\n", + "\n", + "# Блок 1\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n", + " activation=\"relu\", input_shape=input_shape))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 2\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.25))\n", + "\n", + "# Блок 3\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n", + "model.add(layers.BatchNormalization())\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Dropout(0.4))\n", + "\n", + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(128, activation='relu'))\n", + "model.add(layers.Dropout(0.5))\n", + "model.add(layers.Dense(num_classes, activation=\"softmax\"))\n", + "\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "3otvqMjjOdq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m87s\u001b[0m 115ms/step - accuracy: 0.3052 - loss: 1.8713 - val_accuracy: 0.4752 - val_loss: 1.3957\n", + "Epoch 2/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.4705 - loss: 1.4488 - val_accuracy: 0.5730 - val_loss: 1.1992\n", + "Epoch 3/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m78s\u001b[0m 111ms/step - accuracy: 0.5626 - loss: 1.2235 - val_accuracy: 0.6470 - val_loss: 1.0268\n", + "Epoch 4/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 107ms/step - accuracy: 0.6261 - loss: 1.0727 - val_accuracy: 0.6940 - val_loss: 0.8987\n", + "Epoch 5/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 106ms/step - accuracy: 0.6678 - loss: 0.9739 - val_accuracy: 0.7042 - val_loss: 0.8850\n", + "Epoch 6/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 104ms/step - accuracy: 0.6986 - loss: 0.8855 - val_accuracy: 0.7360 - val_loss: 0.7630\n", + "Epoch 7/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m74s\u001b[0m 105ms/step - accuracy: 0.7183 - loss: 0.8263 - val_accuracy: 0.7624 - val_loss: 0.7084\n", + "Epoch 8/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 110ms/step - accuracy: 0.7344 - loss: 0.7800 - val_accuracy: 0.7724 - val_loss: 0.6707\n", + "Epoch 9/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7575 - loss: 0.7222 - val_accuracy: 0.7818 - val_loss: 0.6691\n", + "Epoch 10/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 112ms/step - accuracy: 0.7705 - loss: 0.6802 - val_accuracy: 0.7970 - val_loss: 0.6004\n", + "Epoch 11/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7839 - loss: 0.6496 - val_accuracy: 0.7932 - val_loss: 0.6760\n", + "Epoch 12/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 118ms/step - accuracy: 0.7897 - loss: 0.6216 - val_accuracy: 0.8122 - val_loss: 0.5603\n", + "Epoch 13/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 119ms/step - accuracy: 0.8016 - loss: 0.5895 - val_accuracy: 0.7936 - val_loss: 0.6226\n", + "Epoch 14/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 120ms/step - accuracy: 0.8129 - loss: 0.5600 - val_accuracy: 0.8160 - val_loss: 0.5553\n", + "Epoch 15/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8173 - loss: 0.5403 - val_accuracy: 0.8282 - val_loss: 0.5158\n", + "Epoch 16/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8224 - loss: 0.5228 - val_accuracy: 0.8338 - val_loss: 0.5143\n", + "Epoch 17/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 117ms/step - accuracy: 0.8313 - loss: 0.4944 - val_accuracy: 0.8190 - val_loss: 0.5393\n", + "Epoch 18/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8374 - loss: 0.4780 - val_accuracy: 0.7674 - val_loss: 0.7332\n", + "Epoch 19/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8427 - loss: 0.4673 - val_accuracy: 0.8398 - val_loss: 0.4830\n", + "Epoch 20/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m85s\u001b[0m 121ms/step - accuracy: 0.8463 - loss: 0.4508 - val_accuracy: 0.8292 - val_loss: 0.5125\n", + "Epoch 21/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8526 - loss: 0.4341 - val_accuracy: 0.8374 - val_loss: 0.5082\n", + "Epoch 22/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8560 - loss: 0.4201 - val_accuracy: 0.8382 - val_loss: 0.5002\n", + "Epoch 23/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8617 - loss: 0.4127 - val_accuracy: 0.8262 - val_loss: 0.5137\n", + "Epoch 24/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8676 - loss: 0.3964 - val_accuracy: 0.8400 - val_loss: 0.4983\n", + "Epoch 25/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8669 - loss: 0.3931 - val_accuracy: 0.8416 - val_loss: 0.4823\n", + "Epoch 26/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m82s\u001b[0m 116ms/step - accuracy: 0.8692 - loss: 0.3839 - val_accuracy: 0.8462 - val_loss: 0.4897\n", + "Epoch 27/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8740 - loss: 0.3722 - val_accuracy: 0.8338 - val_loss: 0.5208\n", + "Epoch 28/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8764 - loss: 0.3643 - val_accuracy: 0.8480 - val_loss: 0.4734\n", + "Epoch 29/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8812 - loss: 0.3498 - val_accuracy: 0.8514 - val_loss: 0.4512\n", + "Epoch 30/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8820 - loss: 0.3463 - val_accuracy: 0.8432 - val_loss: 0.5021\n", + "Epoch 31/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8874 - loss: 0.3368 - val_accuracy: 0.8486 - val_loss: 0.4834\n", + "Epoch 32/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8866 - loss: 0.3299 - val_accuracy: 0.8424 - val_loss: 0.5011\n", + "Epoch 33/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8880 - loss: 0.3268 - val_accuracy: 0.8398 - val_loss: 0.5170\n", + "Epoch 34/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8909 - loss: 0.3200 - val_accuracy: 0.8482 - val_loss: 0.4952\n", + "Epoch 35/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8911 - loss: 0.3198 - val_accuracy: 0.8516 - val_loss: 0.4742\n", + "Epoch 36/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.8956 - loss: 0.3110 - val_accuracy: 0.8588 - val_loss: 0.4497\n", + "Epoch 37/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.8966 - loss: 0.2992 - val_accuracy: 0.8512 - val_loss: 0.4598\n", + "Epoch 38/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.8999 - loss: 0.2949 - val_accuracy: 0.8478 - val_loss: 0.5029\n", + "Epoch 39/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9016 - loss: 0.2857 - val_accuracy: 0.8632 - val_loss: 0.4740\n", + "Epoch 40/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.9013 - loss: 0.2915 - val_accuracy: 0.8578 - val_loss: 0.4687\n", + "Epoch 41/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9038 - loss: 0.2822 - val_accuracy: 0.8588 - val_loss: 0.4607\n", + "Epoch 42/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.9054 - loss: 0.2767 - val_accuracy: 0.8594 - val_loss: 0.4645\n", + "Epoch 43/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 114ms/step - accuracy: 0.9067 - loss: 0.2722 - val_accuracy: 0.8628 - val_loss: 0.4632\n", + "Epoch 44/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 113ms/step - accuracy: 0.9073 - loss: 0.2697 - val_accuracy: 0.8656 - val_loss: 0.4409\n", + "Epoch 45/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9101 - loss: 0.2590 - val_accuracy: 0.8668 - val_loss: 0.4596\n", + "Epoch 46/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 114ms/step - accuracy: 0.9082 - loss: 0.2638 - val_accuracy: 0.8522 - val_loss: 0.4907\n", + "Epoch 47/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m80s\u001b[0m 113ms/step - accuracy: 0.9149 - loss: 0.2519 - val_accuracy: 0.8600 - val_loss: 0.4572\n", + "Epoch 48/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 113ms/step - accuracy: 0.9154 - loss: 0.2475 - val_accuracy: 0.8542 - val_loss: 0.4735\n", + "Epoch 49/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 116ms/step - accuracy: 0.9126 - loss: 0.2498 - val_accuracy: 0.8628 - val_loss: 0.4717\n", + "Epoch 50/50\n", + "\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 115ms/step - accuracy: 0.9165 - loss: 0.2455 - val_accuracy: 0.8586 - val_loss: 0.4725\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# компилируем и обучаем модель\n", + "batch_size = 64\n", + "epochs = 50\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Vv1kUHWTLl9B" + }, + "source": [ + "### 5) Проанализировали качество обученной модели на тестовой выборке. Определили значения функции потерь и метрики точности классификации." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "SaDxydiyLmRX" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 15ms/step - accuracy: 0.8549 - loss: 0.5139\n", + "Loss on test data: 0.5139228701591492\n", + "Accuracy on test data: 0.8549000024795532\n" + ] + } + ], + "source": [ + "# Оценка качества работы модели на тестовых данных\n", + "scores = model.evaluate(X_test, y_test)\n", + "print('Loss on test data:', scores[0])\n", + "print('Accuracy on test data:', scores[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OdgEiyUGLmhP" + }, + "source": [ + "### 6) Протестировали модель на двух изображениях из тестовой выборки. Визуализировали изображения и сопоставили истинные метки с предсказаниями нейронной сети." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "t3yGj1MlLm9H" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step\n", + "NN output: [[1.2917297e-03 1.5173923e-03 7.3140259e-03 8.7915343e-01 5.2461558e-04\n", + " 1.0724516e-01 9.8486373e-04 1.8565248e-03 6.8461086e-05 4.3758133e-05]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvUUlEQVR4nO3dfXDV9Zn38c/vnJxzkpAnQsiTBARRqEXollWasbVWWIHOOFqZHW07s9h1dHSDs8p227LTanV3J66daW07FP9YV7YzRVt3it46ra5iCXd3gV1YGWrb5QY2LUGSAIE8neQ8/+4/uEnvKOj3goRvEt6vmTNDci6ufH8P51zn5JzzSRCGYSgAAC6xiO8FAAAuTwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXRb4X8F6FQkHHjh1TeXm5giDwvRwAgFEYhhoYGFBjY6MikfM/z5lwA+jYsWNqamryvQwAwEXq6OjQrFmzznv9uA2gjRs36lvf+pa6urq0ZMkSff/739cNN9zwof+vvLxckrTm+o8pVhR1+lm5QsF5XVnjs6r6WY3OtRUlcVPvsrKYc+20ymJT7+JS97XEEiWm3kXF1nr3tSTiCVvvmPs+LIrZTvdo1O38kyQZz6ucMQErb6gf6B829W4/2OFc+7Ofbjf1ntFQ51w775qrTL3ramuca4d6e029jx46ZKpvbKp1rr3q2qtNvadVVzrX5vO287CQzbv3zrrfzw4Pp/SXX3ls5P78fMZlAP34xz/W+vXr9cwzz2jZsmV6+umntXLlSh04cEC1tR98oM7+2i1WFFXccQAFBcNON95RJAx3cIm4e60kFSfc75hLDLWSVGy4048V2+70rfVFhvpEwrgW0wCyHR/TAIqM8wAquNfnc7bexYbjU2TZJ5JiRe53MYm49Rx3X3feePuJGx+sWNZeUmJ7MFla6v6AzzyAMoYBVORee9aHvYwyLm9C+Pa3v6377rtPX/rSl3TttdfqmWeeUWlpqf7pn/5pPH4cAGASGvMBlMlktHfvXq1YseIPPyQS0YoVK7Rz58731afTafX394+6AACmvjEfQCdPnlQ+n1dd3ejf/dbV1amrq+t99a2traqsrBy58AYEALg8eP8c0IYNG9TX1zdy6ehwf0EUADB5jfmbEGpqahSNRtXd3T3q+93d3aqvr39ffSKRML/wDACY/Mb8GVA8HtfSpUu1bdu2ke8VCgVt27ZNzc3NY/3jAACT1Li8DXv9+vVau3at/viP/1g33HCDnn76aSWTSX3pS18ajx8HAJiExmUA3XXXXTpx4oQeffRRdXV16WMf+5hee+21970xAQBw+Rq3JIR169Zp3bp1F/z/c7m8XD9S1Z90/+R32vDJX0lKRE851+aqppl6R4vcP+FcNt12qIoS7h92ixk+tCpJcWu94TW+mPHDiEWGDzoWDB/mlKThdMq5NpXKmnonh9Om+iDivl9Onuwz9T74f951rj1+etDU+91T7okCvzl4xNS7xJCaMS1qu/3MvmKmqb5yZoNzbVWDe60kFaLu523EkFYgSbkPyGl7r9DwIeRIwe1+1vu74AAAlycGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwItxi+K5WJGCFHFMzcn1Jp37pgfdayXp5Ile59r+abbdGbn2SufaGTW2mJ+iWMy5Nm6Mv4nHjbFAMUOER9T2mChnSFbq6Dhh6v3u0ePOtX19Q6beCmz7MJl0jwU60uEerSNJhw63O9emC7bIoZJphvPWliKjsOD+H+pnX2Hqfc3HrjXV186b51xbVF5u6p3PG2KbAttODOV+AyoYaiMxongAABMYAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWEzYKrqpyheJHb8oZP9jn3LSlN2NYRC51ra6+oNPWua3DPhKood89Tk6RoPHCuLYrZHodEi2z1+XzOubZ/YNjU+/hx95ysQ4e6TL3/53fu9d3He0y9+/rdz1lJSg4NOtemM7Z9WDAcH2tWX2TIPSNvWnGJqffMqgrn2qbGelPvOXPnmOqnz5jhXBsrsmUvBhH3236hYAhHlBTJu2f7RQqW84QsOADABMYAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeDFho3gq58xRIu4WWXHq9Gn3xklbBEplTbFzbdMfzTX1rprtHt9RVGGLEAoS7lE8QSxm6t03kDLVv/uue0zNwYPvmnp3drrHzvT0uMfCSNLpPvf4m/5B23k1nLKtJQzdI1NCucdHneH+ODTM2SKh0ln3aJjiwBYj45j2ckY2Y+qdMERZSVI85n5XGonYbm9BaLgtB7Z1B0HBvdZwXgWO5xTPgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeTNgsuJo5V6qk2C2H7cTvfu/ct+dEt2kdkeJK59poaYmpdxB13/2ZYVuW1XC/ezbZsWFbLtmhw52m+t8eOOJc29XVb+odT7gfn9D4eKtgiFQLItYMLlO5JPN/cBaG7htaMNRKUsSwyxNFxvy1qHuOWXbYltVXyLtnDEpSGLoH04UF23aGeff8vTDMmXoXDGvJu+9u51qeAQEAvBjzAfTNb35TQRCMuixcuHCsfwwAYJIbl1/BffSjH9Wbb775hx9SNGF/0wcA8GRcJkNRUZHq6+vHozUAYIoYl9eADh48qMbGRs2bN09f/OIXdeTI+V+ETqfT6u/vH3UBAEx9Yz6Ali1bps2bN+u1117Tpk2b1N7erk996lMaGBg4Z31ra6sqKytHLk1NTWO9JADABDTmA2j16tX60z/9Uy1evFgrV67Uz372M/X29uonP/nJOes3bNigvr6+kUtHR8dYLwkAMAGN+7sDqqqqdM011+jQoUPnvD6RSCiRSIz3MgAAE8y4fw5ocHBQhw8fVkNDw3j/KADAJDLmA+jLX/6y2tra9Lvf/U7//u//rs997nOKRqP6/Oc/P9Y/CgAwiY35r+COHj2qz3/+8+rp6dHMmTP1yU9+Urt27dLMmTNNfabX1qq0xC3aZkZ1jXPfPmMMRrQo5lybzdl6H/ndSffaji5T75N97pEcx0/bYn66ewZN9f0DaefaIIibeieKz/3mlnM3N7VWPu++D3PZrK35eLKl5ZgEgSGPRVJRkftj3OJi47GPud82h5O2d9emzvOmqfPJpAzneGKaqXcYuu/DQuC+TyQpH3E/WUJTrdtoGfMB9MILL4x1SwDAFEQWHADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi3H/cwwXLBIojLiFd+Wj7puRdswoOuv0sHseWOb3PabenSdPO9cePHzM1PtUMu9cmypETb3zxjy9SOBeH43assYy2ZSp3qJQcF+LpfbCWPa5cS2he8aX9RFrkeG2GRrvjlJp930ShLa8w/5+W7ZfTd49g620uMLUOxG47/VIkS0IsJB3P1fCvHvvZDLpVMczIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFxM2iieVySiIukXEnMy4x2Z0ZG0xJT3dA861+S73WknqT7rHyFiidSQplXePKSmYYl6kwFgfGupDQyzMhdSPV+/xXMf/+wnj1jkWcX8cWl5SYupdUlrqXBsGtkio/qFB9+KCe6SWJAWyRfeUliScayvLK21rMRz6WLGptaKGqKRI6H6eDA643RfyDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxcTNgstmFRS5Le9Uxj23qSOdNq2juMc9Qyqft+V1ZQru+W7ZgjULzD1/LVKw5eNZhYH7WvKhbS0FQ0aaJVNLkkLDWizrkCxH52y9+2PFIscMxbPKit0DxBpqaky9C1H3Lc3mbPlrkcD9tlldY7ury/X/3lQ/0PFb59ppCffcOEmqmjnLubYoiJl6RyLu54olAzLieA7yDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxYTNgisuLVVxSYlTbXn5NOe+sZhtk5PDKefaQmib56EhWym0PlYwRJMVZMyCC625dO4KxpQ0S15b1LhsS/aVDHl3kkzHR5Iics/sikVseWDFiTLn2tLyKlPvaKn7WlLpYVPv4cEB59qjPbYMyOH/cM92k6STnaecaz9y8qSp96KbPutcm1C1qXfUkEsXNeTG5bNuOZc8AwIAeGEeQDt27NBtt92mxsZGBUGgl156adT1YRjq0UcfVUNDg0pKSrRixQodPHhwrNYLAJgizAMomUxqyZIl2rhx4zmvf+qpp/S9731PzzzzjHbv3q1p06Zp5cqVSqXcf5UFAJj6zK8BrV69WqtXrz7ndWEY6umnn9bXv/513X777ZKkH/7wh6qrq9NLL72ku+++++JWCwCYMsb0NaD29nZ1dXVpxYoVI9+rrKzUsmXLtHPnznP+n3Q6rf7+/lEXAMDUN6YDqKurS5JUV1c36vt1dXUj171Xa2urKisrRy5NTU1juSQAwATl/V1wGzZsUF9f38ilo6PD95IAAJfAmA6g+vp6SVJ3d/eo73d3d49c916JREIVFRWjLgCAqW9MB9DcuXNVX1+vbdu2jXyvv79fu3fvVnNz81j+KADAJGd+F9zg4KAOHTo08nV7e7v27dun6upqzZ49Ww8//LD+7u/+TldffbXmzp2rb3zjG2psbNQdd9wxlusGAExy5gG0Z88efeYznxn5ev369ZKktWvXavPmzfrKV76iZDKp+++/X729vfrkJz+p1157TcXFxaafM31GtUpLS51qr110rXPfwd5e0zp+tf8d59q+QdtnnbI5QwSOMbolNMTlmIN1rKkzgWEtgS0WKJJ3rzcuW1FDvI4lpkSSgqjtpldwSzaRZIt4kiRF3NdSXj3D1PoTn1rmXDu9utLUe6DPPYrnxLsnTL1LQ/doHUmaHjvuXFsROWbqnXx3n3NtpOiPTL3zoeF4Bu4n4XAq61RnHkA333zzB965BUGgJ554Qk888YS1NQDgMuL9XXAAgMsTAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOCFOYrnUonFY4ol4k61dQ3n/lMP57Jg4ULTOjo73HObhlK2vKlsLu1cGxhyySQpEnGvDwu2NLhCaMtrk6G+2JA3JUlXFieca8vLS0y9M4Zdfno4Z+odKSs31SdT7vslm7Edz3TWfe3vdp77D0uez7Fu99vP3Gtmm3o333i9c23U+Fg7UMZUr3T3h9ecLT39P6bWp4+3O9dmTtvy9KKGPMpo3P2cDYeHnOp4BgQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLCRvEUJeLOUTyJUveIlZJp00zrmHXFLOfaE72Dpt7JlHsUTxja4lWC0JAjY6mVVFRUbKqvrnTf5wuvqDH1vr7KPR6krqHK1DudcN/Oo0lbhFAmUWqq/32ne8xTR4d7LIwkpYbcz8O58+ebel81/2rn2tr6OlPv0jL32308YnusXSiyRSWFcj9vY2UzTb2jOffb/m/27zD1PtX7v51rI0XuMT/DjvdtPAMCAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeDFhs+CCSJGCiNvyysurnPs2NLhnu0lS8poh59ph2TLVjnW5Z3b19/WZeif7k861QWBb95Vz55nqP/axxe61H11o6h0k3fdLNFIw9S52zCKUpKpiW7bbYCpjqo8a+mcMGYOS1Gk4D/OZYVPvGZXu+WEzyitMvWOG8zYS2I59UMia6vOKOtem87YsxaPDtc61/2v77029j3ccda4tM2QjZnNu2Yg8AwIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeDFho3jaD7WrpKTEqXZaPOHct7TUFoPR2Ogeg1Fb6x47IkkFQ9xHasg9EkiSjnd2OtcODg6YepeW2mJnymPuaz9ycI+p97QS97ic6dPLTb0r4u71MdtppXjMFg0Tm+d+btVWzTf1Huivd64tLysz9S4MdjjXtr/Ta+pdFHOP4gnDnKl3Pu8WJfOHeve1DA3ZYpiOd510ro0Uud1nnhWUuJ9XfY7xOpKUC932B8+AAABeMIAAAF6YB9COHTt02223qbGxUUEQ6KWXXhp1/T333KMgCEZdVq1aNVbrBQBMEeYBlEwmtWTJEm3cuPG8NatWrVJnZ+fI5fnnn7+oRQIAph7zmxBWr16t1atXf2BNIpFQfb37C5sAgMvPuLwGtH37dtXW1mrBggV68MEH1dPTc97adDqt/v7+URcAwNQ35gNo1apV+uEPf6ht27bpH/7hH9TW1qbVq1ef922Nra2tqqysHLk0NTWN9ZIAABPQmH8O6O677x7593XXXafFixfrqquu0vbt27V8+fL31W/YsEHr168f+bq/v58hBACXgXF/G/a8efNUU1OjQ4cOnfP6RCKhioqKURcAwNQ37gPo6NGj6unpUUNDw3j/KADAJGL+Fdzg4OCoZzPt7e3at2+fqqurVV1drccff1xr1qxRfX29Dh8+rK985SuaP3++Vq5cOaYLBwBMbuYBtGfPHn3mM58Z+frs6zdr167Vpk2btH//fv3zP/+zent71djYqFtvvVV/+7d/q0TCPa9NktJ9SQVpt7ysbDDo3LeQS5nWkc+61xcMtZIU5tLOtZGCe60kzax2P7RV02z5UdmULZcu03v+d0G+13Detp1BhXsuXZi2ne4DJ91/QRBxjwI7sxZbFJwKBUPumbF3qULn2lzylKn3kUNHbYsxsOS15fO2LLhMxpbXls+6ryWbseXM9Q+4r+VUj/t9oSQd63a/bfYNut82CwW3k9A8gG6++WaF4flP2Ndff93aEgBwGSILDgDgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxZj/PaCxEo8XK5Eodqx2z3nKR2yZUGEQda81zvMwMGSNRdzXIUlBxHJojY9DQlvwWWDony/ETL1jxe7bGcRt685H3EPVch8QT3UulmMvSYXAEPBmO1UUmHaLLcfMdh7aBIbQO8vuk6z7RArk/gMKBVvOXCbvXj84bMtSHE673x9msu7neMHx9sAzIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFxM2ikeJ2JmLg8AQaxLNGTM5DHsoakuRUZhzX3eYs2WDFAyxGZHAFk8UKGtbS8G9f3rQFvXSf9o9eiSbTZl6J4eHnWsHk7beWdsuVzTmnq9TUTnN1LumpsK5tqrCNR7rjKIi9xtQaIwzUui+EwuBrXcksN015iyxTcacn0ze/TaRy9puP7mCobchhqngGE3EMyAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFxM2Cy4aizjnX0Xknq1UMGY8BYF7/lFo7F2Qe5ZVGLpngUlSUDDkzBXZehcM+V6SlM+553CdOj5g6t13wr0+Zcxry+TdM+/SjtlXZ/Ulk6b64mnlzrXl021BcwOGpVxzdYmpdyLufh4W8rZ1pzOWjDRb70xm/OoHh2znyqDh+AynbZl3OcNt05LV51rLMyAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcTN4onElU06hrFYxAaZ27EEGljqDX3jhp7593jdaIRWxRPPmI7bcLQPSppOO0efyNJQVHcvTZmaq3AEK1UJFsESixhW0ustMK5thB1j+2RpFOD7tv52/8ZNPWOxSznim0fZrLu58rggG3dyUFbJFQqnXautUQISVI6614/NJQx9U7l3HsHEffbceB4m+cZEADAC9MAam1t1fXXX6/y8nLV1tbqjjvu0IEDB0bVpFIptbS0aMaMGSorK9OaNWvU3d09posGAEx+pgHU1tamlpYW7dq1S2+88Yay2axuvfVWJf+/ZN9HHnlEr7zyil588UW1tbXp2LFjuvPOO8d84QCAyc30y/zXXntt1NebN29WbW2t9u7dq5tuukl9fX169tlntWXLFt1yyy2SpOeee04f+chHtGvXLn3iE58Yu5UDACa1i3oNqK+vT5JUXV0tSdq7d6+y2axWrFgxUrNw4ULNnj1bO3fuPGePdDqt/v7+URcAwNR3wQOoUCjo4Ycf1o033qhFixZJkrq6uhSPx1VVVTWqtq6uTl1dXefs09raqsrKypFLU1PThS4JADCJXPAAamlp0TvvvKMXXnjhohawYcMG9fX1jVw6Ojouqh8AYHK4oM8BrVu3Tq+++qp27NihWbNmjXy/vr5emUxGvb29o54FdXd3q76+/py9EomEEgnjhyIAAJOe7TOcYah169Zp69ateuuttzR37txR1y9dulSxWEzbtm0b+d6BAwd05MgRNTc3j82KAQBTgukZUEtLi7Zs2aKXX35Z5eXlI6/rVFZWqqSkRJWVlbr33nu1fv16VVdXq6KiQg899JCam5t5BxwAYBTTANq0aZMk6eabbx71/eeee0733HOPJOk73/mOIpGI1qxZo3Q6rZUrV+oHP/jBmCwWADB1mAZQGH54VlNxcbE2btyojRs3XvCiJCkIzlwcq22NDUJD70Jge09HaKi31FrrC4EtCy40vnclVuye11bTUGXqrYJ7wNuJk7a3+J/uHXJfhiFTS5IKeVvm3fHTp51rh7t7TL3zhqy+RHGxqffij/+Rc23TlVeaesfj7q8dnzh+3NS70NVpqs8NuJ9bqaT7eSVJ6bx7jl1Qags8jBri98Jczn0dhYJTHVlwAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvLujPMVwKBYUqyC0nInCICDorX7BF8eTdEiXO1NrSWBQaehfcUzDOrMUQDZPLGfI4ZItukaSYIb6lZqatd3v7uf/Q4bm8233C1Luzxz1eJZmxRevkCraTJW84ufKOMShnxWLuUUkz6qabei/7tHsI8TUfXWTqLUPcVC5tOz4D/b2m+uSge1xOX9+AqXfPSfcYplzWtp1dHUeda7vfda/N5XI6ubv7Q+t4BgQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwYsJmweULhmw1QxZcLmvL4Mpl3HO1CsbeeUN+WHY4ZeqdHko61+bSw6beoTHHLG1Y+0ljXtuxzl7n2u5TtgyuU/3u+zAbGsP6JpAg4p6/N61smql3eXm5c21JiXtmoCTlDRGGsSL3vDtJipckTPUz6uqda/MFW/ZiOmW4nzBmEvb1nHKu7Tnx4dluZ6VTKf3n7h0fWsczIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFxM2iieXKyiXc4vBKeTco2Eyw7aoimzaPUYmb4y0yQwNOtcOD/SZeg8P9jrXpgZtETXJQfeIGknq7e13rj1+vNfUO1OIOtcOpGwRQln3FCYFgXuczZn/YCsfT9GI+z6cNs0WxVNc7B6vE4/b4nIyjvcPZ2ptt/toNGasd78rDQ3nlSQVcu4nS1iwnVjV9e4RQjMbG5xrhx2jwHgGBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPBiwmbBZTI5RaJu+U35TMa573ByyLSOtGOmkSRlku7ZbpKUGnTPSLPUSlJqwL3+9Mnjpt79fba1JFM559psYDslc0Xu+WEl5bZ8r0jCPccsm3HPDJSknDGbLJ93z7ErFGxhY0HE/XGoNQuurLTUubakuMTUO8i6n1fWx9qxItt5GA3c+4dhaFyLe+983tY7bwglLBTce7tmI/IMCADghWkAtba26vrrr1d5eblqa2t1xx136MCBA6Nqbr75ZgVBMOrywAMPjOmiAQCTn2kAtbW1qaWlRbt27dIbb7yhbDarW2+9Vcnk6F9T3Xfffers7By5PPXUU2O6aADA5Gf6Redrr7026uvNmzertrZWe/fu1U033TTy/dLSUtUb/s4EAODyc1GvAfX1nfkjadXV1aO+/6Mf/Ug1NTVatGiRNmzYoKGh87/wn06n1d/fP+oCAJj6LvhdcIVCQQ8//LBuvPFGLVq0aOT7X/jCFzRnzhw1NjZq//79+upXv6oDBw7opz/96Tn7tLa26vHHH7/QZQAAJqkLHkAtLS1655139Mtf/nLU9++///6Rf1933XVqaGjQ8uXLdfjwYV111VXv67NhwwatX79+5Ov+/n41NTVd6LIAAJPEBQ2gdevW6dVXX9WOHTs0a9asD6xdtmyZJOnQoUPnHECJREKJROJClgEAmMRMAygMQz300EPaunWrtm/frrlz537o/9m3b58kqaGh4YIWCACYmkwDqKWlRVu2bNHLL7+s8vJydXV1SZIqKytVUlKiw4cPa8uWLfrsZz+rGTNmaP/+/XrkkUd00003afHixeOyAQCAyck0gDZt2iTpzIdN/3/PPfec7rnnHsXjcb355pt6+umnlUwm1dTUpDVr1ujrX//6mC0YADA1mH8F90GamprU1tZ2UQs6a3g4rTB0e5d4NjXs3Heo35bXNjww4N57yNY7Y8h3Sw/0mXoP9vQ41/b29Jp6FxkzuxrnzHaurayzfX4smnDPGguitpc8LdlXmbT7OShJp0+dMtV3dXc51/YYjr0kRQ1ZY2UVFabeCUOeXtyYv2ZJvCsqipp6xyK2tUQi7plqxig4U7bfcMo9F1OSUmlDnp7h9uBaSxYcAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMCLC/57QOMt2ZdULpV3qs0OG6J4BmxxOUlDvTWKJ9V/2r336W5T74FTJ51rw6jtz2HMbPzgP8HxXk1XXe1cW1VdY+pdUl5uqC0z9Y4Xu8fIRALbY7lBQ8STJHV3ux//7uO2cyWTSTvXXn3tQlPvkmnu+zxwT7ORJBXH3ON1imK2u7oi4/EMQ/fFp3OWECEpOex+fJLGKJ5sxu0+VrI9W8nn3baRZ0AAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALyZsFlz/6X7F424ZSNnhlHPf1KAtr2046V4/0Ntj6p083eW+jkH3bDdJyhRyzrVzrv6IqXfD/AWm+ul1jc61ZSWlpt7lVe5ZcMXGLLhcwT2zq7fXlu0WK51mqq+7wj1/r/aKK0y9S0tLnGsbr6g39S6rqHCujUbds90kqajI/fFzLGrNdgtN9VlDvlsu537blKRUJuveO29bd2gI4AtkqHXM0uMZEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAiwkcxdOrWCzhVJtLuUfxpJP9pnUM9rpH4PT3HDP1Hk72OtcGhtgRSapqmONcO3vhYlPvpivnmuqrq6c715ZNs0XxlJS6nSOSFC2yRb0MDbtFQUlSNpM39Y4n4qb6IHDfL9OM+3BGTbVzbXW1e7SOJMXiMefaImMUj2PaiyRbrJIkZbK245lKu8frDKfco3UkKZd17x0xROtIUtQQURQxtI4WuRXzDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxYTNguvrG1Is5paBVBh2z3dL9x+3reOEe75benjQ1FuGbLLp9VeYWv/RJ292rm2YN9/Uu7qqylQ/rbjYuTaRcM8Ok6SSUvfeltwrSYrF3XPmSsuMGWkx200vHnevt+wTSSorc8+Os647DMNxqZWkfM493y0wZqTlC7a1BIagtOJiWw5gPOZenzPsE0kqMhzPQO77JBFzu63xDAgA4IVpAG3atEmLFy9WRUWFKioq1NzcrJ///Ocj16dSKbW0tGjGjBkqKyvTmjVr1N3dPeaLBgBMfqYBNGvWLD355JPau3ev9uzZo1tuuUW33367fv3rX0uSHnnkEb3yyit68cUX1dbWpmPHjunOO+8cl4UDACY30y90b7vttlFf//3f/702bdqkXbt2adasWXr22We1ZcsW3XLLLZKk5557Th/5yEe0a9cufeITnxi7VQMAJr0Lfg0on8/rhRdeUDKZVHNzs/bu3atsNqsVK1aM1CxcuFCzZ8/Wzp07z9snnU6rv79/1AUAMPWZB9CvfvUrlZWVKZFI6IEHHtDWrVt17bXXqqurS/F4XFXveYdUXV2durq6ztuvtbVVlZWVI5empibzRgAAJh/zAFqwYIH27dun3bt368EHH9TatWv1m9/85oIXsGHDBvX19Y1cOjo6LrgXAGDyMH8OKB6Pa/78M58bWbp0qf7zP/9T3/3ud3XXXXcpk8mot7d31LOg7u5u1dfXn7dfIpFQIuH+eQsAwNRw0Z8DKhQKSqfTWrp0qWKxmLZt2zZy3YEDB3TkyBE1Nzdf7I8BAEwxpmdAGzZs0OrVqzV79mwNDAxoy5Yt2r59u15//XVVVlbq3nvv1fr161VdXa2Kigo99NBDam5u5h1wAID3MQ2g48eP68/+7M/U2dmpyspKLV68WK+//rr+5E/+RJL0ne98R5FIRGvWrFE6ndbKlSv1gx/84IIWNjQwoKIit1iWzOAJ976nz/+GiHP2Hu5zrs3LPVpHkmbUNjrXzr12ian3vIULnWuLp7lHsUhS1BA7Ikn5vFukkiSFoW0fhgX36JFcaIspyRl6h6FtnxQXl5jqo1H3/kFg3M5c1lCbN/W2xOvkcu7niXTmnbiurDFMEeM5bjg8KooYf/EUcb9NDBmOpSQFBcN5ZYjiCQpux8Y0gJ599tkPvL64uFgbN27Uxo0bLW0BAJchsuAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABemNOwx9vZ6A5TPIgh6iXvGBHxh3r3WJO8bPEdlnVnMhlT79TwsHOtMUVGRYZoEEnKGerD0BbHotBwPI3baYniKRh3oiVaR7LFH8Xitpt1NmuJb7E9ZrVE8eQncRSP5dwKzI/7DVE8wylb56j7uWKJ4kkmByV9+PEPQssZcgkcPXqUP0oHAFNAR0eHZs2add7rJ9wAKhQKOnbsmMrLyxUEf3hY0d/fr6amJnV0dKiiosLjCscX2zl1XA7bKLGdU81YbGcYhhoYGFBjY6MiHxC+OuF+BReJRD5wYlZUVEzpg38W2zl1XA7bKLGdU83FbmdlZeWH1vAmBACAFwwgAIAXk2YAJRIJPfbYY0okEr6XMq7YzqnjcthGie2cai7ldk64NyEAAC4Pk+YZEABgamEAAQC8YAABALxgAAEAvJg0A2jjxo268sorVVxcrGXLluk//uM/fC9pTH3zm99UEASjLgsXLvS9rIuyY8cO3XbbbWpsbFQQBHrppZdGXR+GoR599FE1NDSopKREK1as0MGDB/0s9iJ82Hbec8897zu2q1at8rPYC9Ta2qrrr79e5eXlqq2t1R133KEDBw6MqkmlUmppadGMGTNUVlamNWvWqLu729OKL4zLdt58883vO54PPPCApxVfmE2bNmnx4sUjHzZtbm7Wz3/+85HrL9WxnBQD6Mc//rHWr1+vxx57TP/1X/+lJUuWaOXKlTp+/LjvpY2pj370o+rs7By5/PKXv/S9pIuSTCa1ZMkSbdy48ZzXP/XUU/re976nZ555Rrt379a0adO0cuVKpVK2QEXfPmw7JWnVqlWjju3zzz9/CVd48dra2tTS0qJdu3bpjTfeUDab1a233qpkMjlS88gjj+iVV17Riy++qLa2Nh07dkx33nmnx1XbuWynJN13332jjudTTz3lacUXZtasWXryySe1d+9e7dmzR7fccotuv/12/frXv5Z0CY9lOAnccMMNYUtLy8jX+Xw+bGxsDFtbWz2uamw99thj4ZIlS3wvY9xICrdu3TrydaFQCOvr68NvfetbI9/r7e0NE4lE+Pzzz3tY4dh473aGYRiuXbs2vP32272sZ7wcP348lBS2tbWFYXjm2MVisfDFF18cqfntb38bSgp37tzpa5kX7b3bGYZh+OlPfzr8y7/8S3+LGifTp08P//Ef//GSHssJ/wwok8lo7969WrFixcj3IpGIVqxYoZ07d3pc2dg7ePCgGhsbNW/ePH3xi1/UkSNHfC9p3LS3t6urq2vUca2srNSyZcum3HGVpO3bt6u2tlYLFizQgw8+qJ6eHt9Luih9fX2SpOrqaknS3r17lc1mRx3PhQsXavbs2ZP6eL53O8/60Y9+pJqaGi1atEgbNmzQ0NCQj+WNiXw+rxdeeEHJZFLNzc2X9FhOuDDS9zp58qTy+bzq6upGfb+urk7//d//7WlVY2/ZsmXavHmzFixYoM7OTj3++OP61Kc+pXfeeUfl5eW+lzfmurq6JOmcx/XsdVPFqlWrdOedd2ru3Lk6fPiw/uZv/karV6/Wzp07FY3a/rbSRFAoFPTwww/rxhtv1KJFiySdOZ7xeFxVVVWjaifz8TzXdkrSF77wBc2ZM0eNjY3av3+/vvrVr+rAgQP66U9/6nG1dr/61a/U3NysVCqlsrIybd26Vddee6327dt3yY7lhB9Al4vVq1eP/Hvx4sVatmyZ5syZo5/85Ce69957Pa4MF+vuu+8e+fd1112nxYsX66qrrtL27du1fPlyjyu7MC0tLXrnnXcm/WuUH+Z823n//feP/Pu6665TQ0ODli9frsOHD+uqq6661Mu8YAsWLNC+ffvU19enf/mXf9HatWvV1tZ2Sdcw4X8FV1NTo2g0+r53YHR3d6u+vt7TqsZfVVWVrrnmGh06dMj3UsbF2WN3uR1XSZo3b55qamom5bFdt26dXn31Vf3iF78Y9WdT6uvrlclk1NvbO6p+sh7P823nuSxbtkySJt3xjMfjmj9/vpYuXarW1lYtWbJE3/3udy/psZzwAygej2vp0qXatm3byPcKhYK2bdum5uZmjysbX4ODgzp8+LAaGhp8L2VczJ07V/X19aOOa39/v3bv3j2lj6t05q/+9vT0TKpjG4ah1q1bp61bt+qtt97S3LlzR12/dOlSxWKxUcfzwIEDOnLkyKQ6nh+2neeyb98+SZpUx/NcCoWC0un0pT2WY/qWhnHywgsvhIlEIty8eXP4m9/8Jrz//vvDqqqqsKury/fSxsxf/dVfhdu3bw/b29vDf/u3fwtXrFgR1tTUhMePH/e9tAs2MDAQvv322+Hbb78dSgq//e1vh2+//Xb4+9//PgzDMHzyySfDqqqq8OWXXw73798f3n777eHcuXPD4eFhzyu3+aDtHBgYCL/85S+HO3fuDNvb28M333wz/PjHPx5effXVYSqV8r10Zw8++GBYWVkZbt++Pezs7By5DA0NjdQ88MAD4ezZs8O33nor3LNnT9jc3Bw2Nzd7XLXdh23noUOHwieeeCLcs2dP2N7eHr788svhvHnzwptuusnzym2+9rWvhW1tbWF7e3u4f//+8Gtf+1oYBEH4r//6r2EYXrpjOSkGUBiG4fe///1w9uzZYTweD2+44YZw165dvpc0pu66666woaEhjMfj4RVXXBHedddd4aFDh3wv66L84he/CCW977J27dowDM+8Ffsb3/hGWFdXFyYSiXD58uXhgQMH/C76AnzQdg4NDYW33nprOHPmzDAWi4Vz5swJ77vvvkn34Olc2ycpfO6550ZqhoeHw7/4i78Ip0+fHpaWloaf+9znws7OTn+LvgAftp1HjhwJb7rpprC6ujpMJBLh/Pnzw7/+678O+/r6/C7c6M///M/DOXPmhPF4PJw5c2a4fPnykeEThpfuWPLnGAAAXkz414AAAFMTAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxf8FCOE4L3DdAF4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Real mark: 3\n", + "NN answer: 3\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step\n", + "NN output: [[1.0608504e-06 1.7653504e-08 9.3135744e-01 1.1895873e-03 9.9542603e-06\n", + " 6.6781670e-02 6.5458257e-04 5.6261097e-06 5.1841993e-09 1.2788083e-09]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuc0lEQVR4nO3de3CW9Z338c91H3NOCJCTHARUqHLoLqs0Y+taYQV2Hh+tzI62nVnsOjq6wVllu23ZabW6uxPXzrTWDsWZp65sZ4q27hQdnVarWMK0BVqoDNoDj7Cp4EJCOeSc+3hdzx+u2ScK+vuGhF8S3q+ZewaSL9/8rtP9zUXu+5MgiqJIAACcZzHfCwAAXJgYQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxK+F/BeYRjq6NGjqqysVBAEvpcDADCKoki9vb1qampSLHb2+5xxN4COHj2qmTNn+l4GAOAcHTlyRDNmzDjr58dsAG3cuFFf+9rX1NHRoSVLluhb3/qWrrrqqg/9d5WVlZKkxx5+WKUlJU5fKx6PO68rmUw610r6wOn9vnUYaq2siUmFYsG9OAhNva13ppa1h6FtLZZ66z601I9lb0mKxsl2hpHt2FsOZxjZjn3McB4WikVTb+s+LBr6W2olKTTU5/J5U++8oT6bybjX5nJ67P98Z+j5/GzGZAB9//vf1/r16/X4449r2bJlevTRR7Vy5UodOHBAdXV1H/hv331yKy0pUVlpqdPXGzcDyLAOK/MAKhhORAbQOdeP9QAaL9s5pgMotD0xW67NQsHwDZnG1wCy1Fv2iWT8pnkEsaEf9lwxJt+yf/3rX9cdd9yhz33uc7r88sv1+OOPq6ysTP/2b/82Fl8OADABjfoAyuVy2rt3r1asWPE/XyQW04oVK7Rz58731WezWfX09Ax7AAAmv1EfQCdOnFCxWFR9ff2wj9fX16ujo+N99a2traqurh568AIEALgweH8f0IYNG9Td3T30OHLkiO8lAQDOg1F/EcK0adMUj8fV2dk57OOdnZ1qaGh4X306nVY6nR7tZQAAxrlRvwNKpVJaunSptm3bNvSxMAy1bds2NTc3j/aXAwBMUGPyMuz169dr7dq1+rM/+zNdddVVevTRR9Xf36/Pfe5zY/HlAAAT0JgMoFtuuUV//OMfdf/996ujo0Mf/ehH9eKLL77vhQkAgAvXmCUhrFu3TuvWrRvxv08kEkok3JYXj7m/AdRSK0kyvO8uFrO+QdO9Np/L2XoH7s0t7yiX7G8WHcs3dFp2oiVNwLqWcKzfiDputnPszvGxfHOu+fiMozdEW9747fqcOZK1WN5o71rr/VVwAIALEwMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxZhF8ZyrZCyupGNsjuX3mieMvzNdhkibuC2lRLmCe7xOLLBFgwSG7Qxl/13vY8UaU2KO7hkjgSWzSfZ9HlnqjdFKlt5RaI3LGcMYJss6isUx6y3Z4nIskTaSFEaGmB/jc1CYd38OCuKG507HWu6AAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M2yy4RDyuhGNmUsyQe2bJbHrnH7jnUxWLeVPrKHTPp4oZ123KjzJ1tmd2haEtx84innQ/hXN52/EpGPLDCoWCqbflnJWkRMI9P8y6nWHRcK6EtvOwWLRkwdnOkzG97q0M14QlH++d1pasPuO1Zuht2YOutdwBAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8GLdRPPFYTHHHKB5LzIY1kqNoiLYoGqJb3lmL+/y3xtlEhoCdcIyjdUJD5FD/wKCp9+8Ovulc+9bhw6beeUOkTX9fn6l3RVm5qX7Rwiucay9qusjUOx5zj/mxxEdJUmAIcIk5Xu/vCk3nuKm1OW6qaIm+MkYOWZaSN25oJu8eIZXJZJ1rs1m3Wu6AAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M2yy44L8fvhUK7llJsZhtxZa8KWs2lSVvKpI1m8pWb4nf2/vrvabez/34J861mVzO1NuybkvmmSTFjSf3gTcPOtfOnX2xqfefLPmoc+3Fs2eaeufz7vlhecf8sHcFgSV/zRoGZysPQ/fniXzRlnmXzbrfJ/RlMqbeOUPeYbHgvr9zebcdyB0QAMCLUR9AX/3qVxUEwbDHggULRvvLAAAmuDH5L7grrrhCr7zyyv98kcS4/Z8+AIAnYzIZEomEGhoaxqI1AGCSGJOfAb355ptqamrS3Llz9dnPflaHP+AXgWWzWfX09Ax7AAAmv1EfQMuWLdPmzZv14osvatOmTWpvb9cnPvEJ9fb2nrG+tbVV1dXVQ4+ZM22vsgEATEyjPoBWr16tv/qrv9LixYu1cuVK/ehHP1JXV5d+8IMfnLF+w4YN6u7uHnocOXJktJcEABiHxvzVATU1Nbrssst08OCZ38eQTqeVTqfHehkAgHFmzN8H1NfXp0OHDqmxsXGsvxQAYAIZ9QH0+c9/Xm1tbfrDH/6gX/ziF/rUpz6leDyuT3/606P9pQAAE9io/xfc22+/rU9/+tM6efKkpk+fro9//OPatWuXpk+fbmsUiymIjf4NmiVaR5Ki0BCXY4ziCccwisfSOzRG8YTGKJ5Y4H4cT548aeo9aIgeiRnfjxaPu9enU0lT72JUNNUfP33KufZYR4ep93+2tzvX/q/V15l6z2qqda7NDHSbepeXuu/zwHiOx2O2+hLD9/Jd2RJT764u9/Mwb7w2k0nDPky41xaLbvtj1AfQ008/PdotAQCTEFlwAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvxvzXMYxUEAQKArdstUIh79y3GLrXSlIs7l4bGHOYZMgDi4y9A0MWXMwWMyeFtsy7wJCrNbW2ytS7uqLMvTgau2M/kBk09U4nDM0lFQPDQSq1ZY0dP+WeM/fWwddNvS+dscy9uMS2T0K5Xz8paw6gMXsxEXevT6Vt3/cn0u5rD7O2jEEZchojQ55e5PgUwR0QAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMCLcRvFE4WhotAt+qFQdI9YCQJjpI0hfkLG+A6F7rEZMdl6h3KPy4ki2/ch1lig3t7TzrWVJbbefzKr0rn2rVMDpt5/7Hc/r2LGY1+VtsXlZLKGuCkVbGsxROCUlyZNvf+r45hzbRjYno7qp091rk3Gjd9rh7b6WNx9H5YkbVFWU8vd13IyZ4ubKrhm5kiKDPcrrrXcAQEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8GLdZcMWwqELRLdPKkqwUxGw5TJYouFjMNs+LRfcsuGLRlpEWyj2bKh9mTb17u4/a6rs6nWsvmpo29a5dPMu59vjPD5p65wz5a8mEbd3d+ZypPlXi3j9ZsB3PylL3a6K+rtrUuzTl/hSTSJeZeqdi7vl7YdG2vwt5W56e4u7bWZayPU8kq92v/XTClknY2e3euz/vngPomhfJHRAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi3GbBRcqUhi45RoFcfcsK0OpJCmWcM9Uy/SfNvXO5fqca/MF99w4SYri7tlhXT3dpt7Hj79lqr/IkB9WYsxUSxkyuC5rPGXqfeLEEefaQWMOYEngnjMnSal0iXNtV59tLacH3PPABnK2C+hPZs90rs1ljXltBfe8tnzBlpFWKNiyF5Mx9/qCIQNSknoz/c61ZWWlpt6Ncs93O3ZywLk2IbdjyR0QAMAL8wDasWOHbrjhBjU1NSkIAj377LPDPh9Fke6//341NjaqtLRUK1as0Jtvvjla6wUATBLmAdTf368lS5Zo48aNZ/z8I488oscee0yPP/64du/erfLycq1cuVKZTOacFwsAmDzMPwNavXq1Vq9efcbPRVGkRx99VF/+8pd14403SpK++93vqr6+Xs8++6xuvfXWc1stAGDSGNWfAbW3t6ujo0MrVqwY+lh1dbWWLVumnTt3nvHfZLNZ9fT0DHsAACa/UR1AHR0dkqT6+vphH6+vrx/63Hu1traqurp66DFzpvurZgAAE5f3V8Ft2LBB3d3dQ48jR9xf+goAmLhGdQA1NDRIkjo7O4d9vLOzc+hz75VOp1VVVTXsAQCY/EZ1AM2ZM0cNDQ3atm3b0Md6enq0e/duNTc3j+aXAgBMcOZXwfX19engwYNDf29vb9e+fftUW1urWbNm6d5779U///M/69JLL9WcOXP0la98RU1NTbrppptGc90AgAnOPID27NmjT37yk0N/X79+vSRp7dq12rx5s77whS+ov79fd955p7q6uvTxj39cL774okpK3KNEJCkIQgWBW7xFELlHW8QD201fMdfrXNt/+rCpdzrpHscSj9wjMyQpn3PfzsgQ9SFJZaUVpvpsmHIvjmxRL6WV7tEjlZW2/96Npdz3eZls0S2XGuKJJOnoCcN5OOAemSJJxZh7/NGPXv2lqXfdtFrn2qaptuNTDN33eSRbxFMyabvegph7LFDRdqook3G/fgJj1FhFifu5Mr3KfeEZx1gl8wC69tprFUVnz1UKgkAPPfSQHnroIWtrAMAFxPur4AAAFyYGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAtzFM/5EoQ5BcW4U21MZ48Geq/QGMSUzbrnpJWW2/Km4nLbPklKxW35a/nIkL2Xds/rkiT127LGurtPOtc2TLdlpP3hsHv+3qmse16XJCnlfjxr0u7noCQNFGyhXcd73bK1JKlo/L4yYSj/42lbbuCOX/3eufZ/r7ja1DsZc9/nQcJ2bQbGbL+w2OdcG4/Zek+rcc87LETu+ZKSlCm416fS7udsMXLbRu6AAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABejNsonqg4oMgxNqck6R5pY8odkZRIusdg5DO2qJdimHWujULbuvMF90PbZ0vvUD5v+wfV5Unn2lzGPdJEkva+/qZzbcP0OlPvuupTzrXFQtHU+3i/bR/mUmXuxVHG1DtmiJ2JAluE0O8PHnGu/cTHbBFPM6a575Mwsh2fIGF4TpEUGZ5Kw6Lt2Mfi7sdzMO8e2SRJJXH3iKJ03PAc5FjLHRAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi3GbBVcoZlUouuVORYF7llXGmNdWiNzre7p7TL0HBvuda8vKKky9g8h9LaVF2z5Jl9rywKK4exZcV597Pp4knep1r88Nvm3qfcmsJufaTM79HJSkzhO9pvpCscO9d8a2D2XIAwsi23b29bpn+3V2um+jJM2un+1enLNlwcmYvRjE3K+JIOZ+PUhSJu++z3tscXpKV7pn3sUM8XixuNv+4A4IAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAODFuI3iyRTyihXcsh+i/lPOfbPZyLaQUvddVLRkVUhKl01xro2lTK2VUN59HUXb9yGFwLadpvSjyHZKNs6c5Vzb3XHU1Lu0tMS5tqmh1tS7vqrbVL+gody59ujJSlPv9k73uJzDJ06beheK7hE4J0+5X8eSVAzdj30g23VvO8OlyHDtB3HbOZ7LZpxri6GtdyF0X3dkeA6K4m7PKdwBAQC8YAABALwwD6AdO3bohhtuUFNTk4Ig0LPPPjvs87fddpuCIBj2WLVq1WitFwAwSZgHUH9/v5YsWaKNGzeetWbVqlU6duzY0OOpp546p0UCACYf84sQVq9erdWrV39gTTqdVkNDw4gXBQCY/MbkZ0Dbt29XXV2d5s+fr7vvvlsnT548a202m1VPT8+wBwBg8hv1AbRq1Sp997vf1bZt2/Sv//qvamtr0+rVq1U8y8sxW1tbVV1dPfSYOXPmaC8JADAOjfr7gG699dahPy9atEiLFy/WvHnztH37di1fvvx99Rs2bND69euH/t7T08MQAoALwJi/DHvu3LmaNm2aDh48eMbPp9NpVVVVDXsAACa/MR9Ab7/9tk6ePKnGxsax/lIAgAnE/F9wfX19w+5m2tvbtW/fPtXW1qq2tlYPPvig1qxZo4aGBh06dEhf+MIXdMkll2jlypWjunAAwMRmHkB79uzRJz/5yaG/v/vzm7Vr12rTpk3av3+//v3f/11dXV1qamrS9ddfr3/6p39SOp22faHovx8OEnH3kKKSqlLTMt4eyDrXHj/da+o9tdJ9LXH3SC1JUs6QwWUVBLb6EkP21dRyW+jdoo/Mca7Nz7Pdhe/+6S+caweLfzD1rqmoMNVPrXDfLwvnzTb1Vuxt59K3/mjLggsN2X49/TlT7wHDKZ7pd89GlKSqMvfsPUmqLjc8lQa2XLrKUvdjn45ZgheldMp9LYXIfYeHjrXmAXTttdcqis6+6JdeesnaEgBwASILDgDgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxaj/PqDRks3nFYu7zcfypPscjaVsQWY1cfcMu1zWPTdOkpJB6FwbiyVNvcMw7lzruJuHJBK20+aDopveqyRmOz6zprtnqh0/bsvqm1fn/qtB/tB5ytT7jfZ2U3263H0tx07bchf7B93P2yhmyzGz5J6d7Okzte7sds+OSxRt52xjo+3XwiTS7mspZG25dCVx92u/xBZ1qbjh+TCKlbj3dcx/5A4IAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAODFuI3iOdmVU0mJW0xEea1hMwru8TeSVB53r59da8vByBbdY0oyBVsEShS4R/EkErb4m0KhaKovSbtHwxRD2/FJBoa1ZwZMvS9uqHWu7e4+beqdGewy1Xfl3PdL9+mCqXeJIVopFtgioWKG6J7D/9Vp6t1xssu59opLZpl6ZwsZU/2J0+7XW0Vpual3ZYl7dE8qYYthigL3cyUfuh/LWMzt3oY7IACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAX4zYLrq9QpXy+xKm2q5Bz7lufsGWN5Qbdc88KsvUOY+45ZmFoy19T5J7blM/bcubyOVt2XCppOM0M2WGSlB0cdK4N+21ZcL3dXc61eWOG3bzGGab6/+w45Vybzduy4FKGPD3LoZSkRNz9HxhiFyVJ5TH3XLq4IcdMkk6f7DXVx4OUc226tt7UOyipca8NbDsxCLrcaw3XfRBzWwd3QAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAAL8ZtFE8UVCgKSp1q+7Ldzn3rKm2RHDG518cN8TeSFBniWxIJW+9E4BZjJEmFrC3mJx7Pm+rzhYxzbbrE7Zi/qzCYHZNaSTrR4x7HEquaYup9cX2tqT6bfcO5NpW2fV9ZVVXhXHuk84SpdyF0j8upr7vI1FvxcufSk6dtx76h2n3dktRQ776WIGF72u0dcK+PJfpMvWOWlKwgbah1e77iDggA4IVpALW2turKK69UZWWl6urqdNNNN+nAgQPDajKZjFpaWjR16lRVVFRozZo16uzsHNVFAwAmPtMAamtrU0tLi3bt2qWXX35Z+Xxe119/vfr7+4dq7rvvPj3//PN65pln1NbWpqNHj+rmm28e9YUDACY2039Gvvjii8P+vnnzZtXV1Wnv3r265ppr1N3drSeeeEJbtmzRddddJ0l68skn9ZGPfES7du3Sxz72sdFbOQBgQjunnwF1d7/zw//a2nd+oLp3717l83mtWLFiqGbBggWaNWuWdu7cecYe2WxWPT09wx4AgMlvxAMoDEPde++9uvrqq7Vw4UJJUkdHh1KplGpqaobV1tfXq6Oj44x9WltbVV1dPfSYOXPmSJcEAJhARjyAWlpa9MYbb+jpp58+pwVs2LBB3d3dQ48jR46cUz8AwMQwovcBrVu3Ti+88IJ27NihGTP+51cLNzQ0KJfLqaura9hdUGdnpxoaGs7YK51OK512f305AGByMN0BRVGkdevWaevWrXr11Vc1Z86cYZ9funSpksmktm3bNvSxAwcO6PDhw2pubh6dFQMAJgXTHVBLS4u2bNmi5557TpWVlUM/16murlZpaamqq6t1++23a/369aqtrVVVVZXuueceNTc38wo4AMAwpgG0adMmSdK111477ONPPvmkbrvtNknSN77xDcViMa1Zs0bZbFYrV67Ut7/97VFZLABg8jANoMgh66ykpEQbN27Uxo0bR7woSQpicQWxuFNtJuf+M6T+vO3HXpWJgnNtLG/LYYoiQ6ZaYFt3LFHpXJt0zG0aWkrBPXtPkgqFAefaE3/4L1Pvvo5jzrVR0T17T5Iqps9yrk1PseWYxWRby5G3DjrX1ta4Z7tJUv0M91ee5nK2dSeDlHPtgkWLTb1jKfdzvKLK7bnkXXXTbFlwKrjX57K2XLpUwj2rMYrlTL0LRffnlWLB/Sc2ecdasuAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M6NcxnA9RECiKBU61GUOcxKk+28xNVbitQZKCyBZTEiTc1x2XMRokVmZYiG3d6aR7PJEkFXsGnWs7j9qieLJdJ51rSyrqTL2nN9Q718bKS0y9g8gWx5K/fM6HF/237n5b75qp05xr51/ca+od6z3uXHtJo/u1JkmJKe77vDJti5vK5wwxWZIKefd9HgS27Yzyhuszboscisn9eSIIDNd96FbLHRAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi3GbBRcEgXNmUjFwz0nrzhVN65hiqK0sKTf1Dg0Zdo6xeENKS9x7B4EtJytrixpTMZ1yrm2cOdvUu6/a/QhVVNaaepdWVjrXFpUz9S7a4vT00UWXOdfmi7bjmUi4Xz9duQpT7/5Ch3Ntecw9M1CSpk5xP8ejgu2kzeVsF1wy5b6WZNKW6xizZMeFtue3KLLUu5+0YdzteuAOCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgxbiN4lFUfOfhwDWyR5JyBVvExul+9xldkiwz9U7F3aMtYtGAqXcx7x49EoWm1ioWMqb6ZML9NJtW32Dqnaqpc64d6LPl3wRx98iUspjtUorStvMwitzjdcot0S2S0oZomERtjal37rh7DFMxbzsRT552vybCvC0qKW6Mp0ob4qai0Ladtuc3W++w6F5vWfZgxu35hzsgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBfjNgsuHospEXObj8WiW2acJAVB3LSOU4b8sIoKWwZXbYl7XluYs+WvFS2ZUDHbugPjty2B4fucVNKYwZV3ry2W2LL6Ymn3fZjPup+D0jvnt0WqxD1rLAht+zCecM+CC6zniul6s/XOF9y3M1SpqXfWmHeYd8ytlKSyEttzkCWvrXfA/TlFkpKGi7kg93UMZt2eN7kDAgB4YRpAra2tuvLKK1VZWam6ujrddNNNOnDgwLCaa6+9VkEQDHvcddddo7poAMDEZxpAbW1tamlp0a5du/Tyyy8rn8/r+uuvV39//7C6O+64Q8eOHRt6PPLII6O6aADAxGf6GdCLL7447O+bN29WXV2d9u7dq2uuuWbo42VlZWposP1eFwDAheWcfgbU3d0tSaqtrR328e9973uaNm2aFi5cqA0bNmhg4Oy/OCqbzaqnp2fYAwAw+Y34VXBhGOree+/V1VdfrYULFw59/DOf+Yxmz56tpqYm7d+/X1/84hd14MAB/fCHPzxjn9bWVj344IMjXQYAYIIa8QBqaWnRG2+8oZ/97GfDPn7nnXcO/XnRokVqbGzU8uXLdejQIc2bN+99fTZs2KD169cP/b2np0czZ84c6bIAABPEiAbQunXr9MILL2jHjh2aMWPGB9YuW7ZMknTw4MEzDqB0Oq10Oj2SZQAAJjDTAIqiSPfcc4+2bt2q7du3a86cOR/6b/bt2ydJamxsHNECAQCTk2kAtbS0aMuWLXruuedUWVmpjo4OSVJ1dbVKS0t16NAhbdmyRX/5l3+pqVOnav/+/brvvvt0zTXXaPHixWOyAQCAick0gDZt2iTpnTeb/v+efPJJ3XbbbUqlUnrllVf06KOPqr+/XzNnztSaNWv05S9/edQWDACYHMz/BfdBZs6cqba2tnNa0LtSpRVKlbjlN+Vyhky10JCRJilXdM+n+mP3oKl3uSFXqyJu+zlZLGHIA4vZssOsLFl9RePxKRreSZC3tVbMkKeXjNt+nBp+yLX0Xrlczn0txrzD/mz/hxf9t//7+3Zb7xN9zrWls2zXT1O5+z4v5mz7pCdje4dKGLmfK1nDsZSkYsE9jzJmDGqMJ9x7p9Ml7uuIu53fZMEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALwY8e8DGmtBPKEgnnSqTZW4b0YYusfCSFKs6B6xMViw9T56KuNcO2OKLUokEcs711rjO5KBLUbGUl2QbTsjw1rKy2ynezLhvl9iMkYIGWJ+JFucUTZ79t9AfCYD/e5xOflYytS7rP6Df13L/2/KdFtifirhfjwj01koBYbekhQ3PK+EefdrU5ICx0gySRoMbTE/qbj79dafneJcm8m6PbdxBwQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwYtxmwUXROw83gXPfRMKWZRVLus/oUCWm3l0D7r3zp7tNvctj7jlz9TVpU+8SQ/aeJJUk3bOs0ilbZldlyj1TLYjbvt8aNGR25Qq2fK+iMZMwMJzj8aR7rSRV1ZQ71y5ZutjUu6K8wrk2bsgle4f7dvYX3a8HScob89riSfdropBwvx4kqcsQ7Ze1nVaa1TjNuTY/WOleG7rleHIHBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwYtxG8cTiccUcozmKhYJz32LRmFVh2ENB3LY70xXuMRiDfabWmlLqHq9TWmKLvxksuMffSFIQc/8+JxZmTb1zhuNZLLqfJ5IUyn2/uMdGvSMIbN/7pUvcok0kKVO0xciUlZY515YkbOd4Lue+zwfztp1oiZ3pG7Dtk5QxtilhqE8YYnskqbzSPaKoKu5+LCWposw9hik/zf26Tw261XIHBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPBi3GbBFfM5FR2z1Sz5bpEh30uSgsg9h0mhLWcu7ph1J0klhtw4ScrGe51rj3WfMPWWLVJNtRWBc21p2nZ8ooT7PowZM9KScl93tmhbdzJwz3aTpNJEiXtx2ph3aAiyS6YN65B0um/QufZUv+37YculmUja1p1K2I5nTYV7/4oy95xGSQoM+XtRzP2claSerPvF3PHHU861mYxbpiN3QAAAL0wDaNOmTVq8eLGqqqpUVVWl5uZm/fjHPx76fCaTUUtLi6ZOnaqKigqtWbNGnZ2do75oAMDEZxpAM2bM0MMPP6y9e/dqz549uu6663TjjTfqN7/5jSTpvvvu0/PPP69nnnlGbW1tOnr0qG6++eYxWTgAYGIz/QzohhtuGPb3f/mXf9GmTZu0a9cuzZgxQ0888YS2bNmi6667TpL05JNP6iMf+Yh27dqlj33sY6O3agDAhDfinwEVi0U9/fTT6u/vV3Nzs/bu3at8Pq8VK1YM1SxYsECzZs3Szp07z9onm82qp6dn2AMAMPmZB9Drr7+uiooKpdNp3XXXXdq6dasuv/xydXR0KJVKqaamZlh9fX29Ojo6ztqvtbVV1dXVQ4+ZM2eaNwIAMPGYB9D8+fO1b98+7d69W3fffbfWrl2r3/72tyNewIYNG9Td3T30OHLkyIh7AQAmDvP7gFKplC655BJJ0tKlS/WrX/1K3/zmN3XLLbcol8upq6tr2F1QZ2enGhoaztovnU4rnba9Lh4AMPGd8/uAwjBUNpvV0qVLlUwmtW3btqHPHThwQIcPH1Zzc/O5fhkAwCRjugPasGGDVq9erVmzZqm3t1dbtmzR9u3b9dJLL6m6ulq333671q9fr9raWlVVVemee+5Rc3Mzr4ADALyPaQAdP35cf/3Xf61jx46purpaixcv1ksvvaS/+Iu/kCR94xvfUCwW05o1a5TNZrVy5Up9+9vfHtHCisWiikW3mIjIECViXkfBkDtjjOIJC+6xGcWY7Wa1ELrXp0rKTL0vmpYx1VsicPKFclPvVNp9O6Ncv6l3NuseIxMYYnskKWmIYZIkRe7nVlmpLXYmDN2PT2iMM0oZopJKU7ZzPJF0v+7LS23RRzUVKVN9WdJy/G3PV5m8+3NQXyY09T5w5LRz7fEu93Vks25RPKYB9MQTT3zg50tKSrRx40Zt3LjR0hYAcAEiCw4A4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOCFOQ17rL0bq5PNuMegjGUUjynYImaLYwkC9/qYsXfMEK8yGLnva0kaSLvFbLwrcIxUkqRCaNvOfNEQxZO3RQjlHONEJGmwYDsHk3FbbFMy4b6dgfHbyjB0Pz7JuO34DAy675fBjK13wrALA2P8TTJui7SJ8pa127YzU3SvH8ja1p3JuJ/j2az7eZLL5SR9+HNzEI3ls/cIvP322/xSOgCYBI4cOaIZM2ac9fPjbgCFYaijR4+qsrJy2B1CT0+PZs6cqSNHjqiqqsrjCscW2zl5XAjbKLGdk81obGcURert7VVTU5NiHxCkPO7+Cy4Wi33gxKyqqprUB/9dbOfkcSFso8R2Tjbnup3V1dUfWsOLEAAAXjCAAABeTJgBlE6n9cADDyidTvteyphiOyePC2EbJbZzsjmf2znuXoQAALgwTJg7IADA5MIAAgB4wQACAHjBAAIAeDFhBtDGjRt18cUXq6SkRMuWLdMvf/lL30saVV/96lcVBMGwx4IFC3wv65zs2LFDN9xwg5qamhQEgZ599tlhn4+iSPfff78aGxtVWlqqFStW6M033/Sz2HPwYdt52223ve/Yrlq1ys9iR6i1tVVXXnmlKisrVVdXp5tuukkHDhwYVpPJZNTS0qKpU6eqoqJCa9asUWdnp6cVj4zLdl577bXvO5533XWXpxWPzKZNm7R48eKhN5s2Nzfrxz/+8dDnz9exnBAD6Pvf/77Wr1+vBx54QL/+9a+1ZMkSrVy5UsePH/e9tFF1xRVX6NixY0OPn/3sZ76XdE76+/u1ZMkSbdy48Yyff+SRR/TYY4/p8ccf1+7du1VeXq6VK1cqk7GFhvr2YdspSatWrRp2bJ966qnzuMJz19bWppaWFu3atUsvv/yy8vm8rr/+evX39w/V3HfffXr++ef1zDPPqK2tTUePHtXNN9/scdV2LtspSXfcccew4/nII494WvHIzJgxQw8//LD27t2rPXv26LrrrtONN96o3/zmN5LO47GMJoCrrroqamlpGfp7sViMmpqaotbWVo+rGl0PPPBAtGTJEt/LGDOSoq1btw79PQzDqKGhIfra17429LGurq4onU5HTz31lIcVjo73bmcURdHatWujG2+80ct6xsrx48cjSVFbW1sURe8cu2QyGT3zzDNDNb/73e8iSdHOnTt9LfOcvXc7oyiK/vzP/zz6u7/7O3+LGiNTpkyJvvOd75zXYznu74ByuZz27t2rFStWDH0sFotpxYoV2rlzp8eVjb4333xTTU1Nmjt3rj772c/q8OHDvpc0Ztrb29XR0THsuFZXV2vZsmWT7rhK0vbt21VXV6f58+fr7rvv1smTJ30v6Zx0d3dLkmprayVJe/fuVT6fH3Y8FyxYoFmzZk3o4/ne7XzX9773PU2bNk0LFy7Uhg0bNDAw4GN5o6JYLOrpp59Wf3+/mpubz+uxHHdhpO914sQJFYtF1dfXD/t4fX29fv/733ta1ehbtmyZNm/erPnz5+vYsWN68MEH9YlPfEJvvPGGKisrfS9v1HV0dEjSGY/ru5+bLFatWqWbb75Zc+bM0aFDh/SP//iPWr16tXbu3Kl4PO57eWZhGOree+/V1VdfrYULF0p653imUinV1NQMq53Ix/NM2ylJn/nMZzR79mw1NTVp//79+uIXv6gDBw7ohz/8ocfV2r3++utqbm5WJpNRRUWFtm7dqssvv1z79u07b8dy3A+gC8Xq1auH/rx48WItW7ZMs2fP1g9+8APdfvvtHleGc3XrrbcO/XnRokVavHix5s2bp+3bt2v58uUeVzYyLS0teuONNyb8zyg/zNm288477xz686JFi9TY2Kjly5fr0KFDmjdv3vle5ojNnz9f+/btU3d3t/7jP/5Da9euVVtb23ldw7j/L7hp06YpHo+/7xUYnZ2damho8LSqsVdTU6PLLrtMBw8e9L2UMfHusbvQjqskzZ07V9OmTZuQx3bdunV64YUX9NOf/nTYr01paGhQLpdTV1fXsPqJejzPtp1nsmzZMkmacMczlUrpkksu0dKlS9Xa2qolS5bom9/85nk9luN+AKVSKS1dulTbtm0b+lgYhtq2bZuam5s9rmxs9fX16dChQ2psbPS9lDExZ84cNTQ0DDuuPT092r1796Q+rtI7v/X35MmTE+rYRlGkdevWaevWrXr11Vc1Z86cYZ9funSpksnksON54MABHT58eEIdzw/bzjPZt2+fJE2o43kmYRgqm82e32M5qi9pGCNPP/10lE6no82bN0e//e1vozvvvDOqqamJOjo6fC9t1Pz93/99tH379qi9vT36+c9/Hq1YsSKaNm1adPz4cd9LG7He3t7otddei1577bVIUvT1r389eu2116K33noriqIoevjhh6Oamproueeei/bv3x/deOON0Zw5c6LBwUHPK7f5oO3s7e2NPv/5z0c7d+6M2tvbo1deeSX60z/90+jSSy+NMpmM76U7u/vuu6Pq6upo+/bt0bFjx4YeAwMDQzV33XVXNGvWrOjVV1+N9uzZEzU3N0fNzc0eV233Ydt58ODB6KGHHor27NkTtbe3R88991w0d+7c6JprrvG8cpsvfelLUVtbW9Te3h7t378/+tKXvhQFQRD95Cc/iaLo/B3LCTGAoiiKvvWtb0WzZs2KUqlUdNVVV0W7du3yvaRRdcstt0SNjY1RKpWKLrroouiWW26JDh486HtZ5+SnP/1pJOl9j7Vr10ZR9M5Lsb/yla9E9fX1UTqdjpYvXx4dOHDA76JH4IO2c2BgILr++uuj6dOnR8lkMpo9e3Z0xx13TLhvns60fZKiJ598cqhmcHAw+tu//dtoypQpUVlZWfSpT30qOnbsmL9Fj8CHbefhw4eja665JqqtrY3S6XR0ySWXRP/wD/8QdXd3+1240d/8zd9Es2fPjlKpVDR9+vRo+fLlQ8Mnis7fseTXMQAAvBj3PwMCAExODCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAF/8PePRQQsyYJUEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Real mark: 5\n", + "NN answer: 2\n" + ] + } + ], + "source": [ + "# вывод двух тестовых изображений и результатов распознавания\n", + "\n", + "for n in [3,10]:\n", + " result = model.predict(X_test[n:n+1])\n", + " print('NN output:', result)\n", + "\n", + " plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n", + " plt.show()\n", + " print('Real mark: ', np.argmax(y_test[n]))\n", + " print('NN answer: ', np.argmax(result))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3h6VGDRrLnNC" + }, + "source": [ + "### 7) Сформировали подробный отчет о результатах классификации тестовой выборки и построили матрицу ошибок (confusion matrix)." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "od56oyyzM0nw" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 13ms/step\n", + " precision recall f1-score support\n", + "\n", + " airplane 0.81 0.91 0.86 1004\n", + " automobile 0.85 0.97 0.91 985\n", + " bird 0.79 0.80 0.80 998\n", + " cat 0.76 0.70 0.73 985\n", + " deer 0.85 0.84 0.85 992\n", + " dog 0.82 0.77 0.79 968\n", + " frog 0.86 0.93 0.89 1010\n", + " horse 0.91 0.86 0.89 1020\n", + " ship 0.97 0.86 0.91 1002\n", + " truck 0.93 0.90 0.91 1036\n", + "\n", + " accuracy 0.85 10000\n", + " macro avg 0.86 0.85 0.85 10000\n", + "weighted avg 0.86 0.85 0.85 10000\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAIvCAYAAACRJhT+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADroElEQVR4nOzdd3wT9RvA8U+StmnTPeiCQimUPUVBQAQXqIC4AUGGyBJUZCNDQIYgS3APpijoT8WNIgIKIlA2tMxCS0tbunebZvz+SGmNLdBCM2qf9+uVF+Tucvfkck2ee+77/Z7CaDQaEUIIIYQQKG0dgBBCCCGEvZDESAghhBCimCRGQgghhBDFJDESQgghhCgmiZEQQgghRDFJjIQQQgghikliJIQQQghRzMHWAQghhBDCugoKCtBqtRbfjpOTE87OzhbfTlWSxEgIIYSoQQoKCqhfz43EK3qLbyswMJALFy5Uq+RIEiMhhBCiBtFqtSRe0RNzMBQPd8u1qMnKNlCv3UW0Wq0kRkIIIYSwb27uCtzcFRZbvwHLrduSpPG1EEIIIUQxqRgJIYQQNZDeaEBvwdvI640Gy63cgqRiJIQQQghRTCpGQgghRA1kwIgBy5WMLLluS5KKkRBCCCFEMakYCSGEEDWQAQOWbAVk2bVbjlSMhBBCCCGKScVICCGEqIH0RiN6o+XaAVly3ZYkFSMhhBBCiGJSMRJCCCFqIOmVVj6pGAkhhBBCFJOKkRBCCFEDGTCil4pRGVIxEkIIIYQoJomREEIIIUQxuZQmhBBC1EDS+Lp8UjESQgghhCgmFSMhhBCiBpIBHssnFSMhhBBCiGJSMRJCCCFqIEPxw5Lrr46kYiSEEEIIUUwqRkIIIUQNpLfwAI+WXLclScVICCGEEKKYVIyEEEKIGkhvND0suf7qSCpGQgghhBDFpGIkhBBC1EDSK618UjESQgghhCgmFSMhhBCiBjKgQI/CouuvjqRiJIQQQghRTCpGQgghRA1kMJoellx/dSQVIyGEEEKIYlIxEkIIIWogvYXbGFly3ZYkFSMhhBBCiGJSMRJCCCFqIKkYlU8qRkIIIYQQxaRiJIQQQtRABqMCg9GC4xhZcN2WJBUjIYQQQohiUjESQgghaiBpY1Q+qRgJIYQQQhSTipEQQghRA+lRordgfURvsTVbllSMhBBCCCGKScVICCGEqIGMFu6VZpReaUIIIYQQ1ZtUjIQQQogaSHqllU8qRkIIIYQQxaRiJIQQQtRAeqMSvdGCvdKMFlu1RUnFSAghhBCimFSMhBBCiBrIgAKDBesjBqpnyUgqRkIIIYQQxaRiJIQQQtRA0iutfFIxEkIIIYQoJhUjIYQQogayfK80aWMkhBBCCFGtScVICCGEqIFMvdIs1w7Ikuu2JKkYCSGEEEIUk4qREEIIUQMZUKKXcYzKkIqREEIIIUQxqRgJIYQQNZD0SiufVIyEEEIIIYpJxUgIIYSogQwo5V5p5ZCKkRBCCCFEMakYCSGEEDWQ3qhAb7TgvdIsuG5LkoqREEIIIUQxqRgJIYQQNZDewuMY6aWNkRBCCCFE9SYVIyGEEKIGMhiVGCw4jpFBxjESQgghhKjepGIkhBBC1EDSxqh8UjESQgghhCgmFSMhhBCiBjJg2bGGDBZbs2VJxUgIIYQQophUjIQQQogayPL3SquetZfqGbUQQgghhAVIxeg/yGAwcPnyZdzd3VEoque9aoQQoiYzGo1kZ2cTHByMUmmZGobeqERvwXGMLLluS5LE6D/o8uXLhISE2DoMIYQQt+jSpUvUqVPH1mHUKJIY/Qe5u7sD8Nd+P9zc7Cdjf7ltN1uHUJbBDsfZMNpfXw6jXm/rEMqyx1F1pUJbIQqVytYh2D2dsYg/9d+VfJ8L65HE6D/o6uUzNzcl7u72kxg5KBxtHUJZCjv8cbXDTq5Ghf0cR6Xs8LOTxKhCFApJjCrKks0hDCgwYNn1V0f2+G0nhBBCCGETUjESQgghaiBpfF2+6hm1EEIIIYQFSGIkhBBC1EBXbyJryUeFY9HrmTlzJvXr18fFxYUGDRrw+uuvY/xHJwuj0cisWbMICgrCxcWF+++/n7Nnz5qtJy0tjQEDBuDh4YGXlxfDhg0jJyenUvtFEiMhhBBC2NSiRYt47733ePvtt4mKimLRokUsXryYVatWlSyzePFiVq5cyfvvv8++fftwdXWlR48eFBQUlCwzYMAATp48ybZt2/jhhx/4448/GDFiRKVikTZGQgghRA1kMCowWPImspVY919//UWfPn3o2bMnAKGhoXz++efs378fMFWLVqxYwYwZM+jTpw8A69evJyAggC1bttCvXz+ioqLYunUrBw4c4Pbbbwdg1apVPPzwwyxZsoTg4OAKxSIVIyGEEEJYTFZWltmjsLCwzDKdOnVi+/btnDlzBoCjR4+ye/duHnroIQAuXLhAYmIi999/f8lrPD096dChA3v37gVg7969eHl5lSRFAPfffz9KpZJ9+/ZVOF6pGAkhhBA1kKGS7YBuZv1AmTsxvPbaa8yePdts2tSpU8nKyqJJkyaoVCr0ej3z589nwIABACQmJgIQEBBg9rqAgICSeYmJifj7+5vNd3BwwMfHp2SZipDESAghhBAWc+nSJTw8PEqeq9XqMst88cUXbNy4kc8++4zmzZtz5MgRxo0bR3BwMIMHD7ZmuJIYCSGEEDWRwajEYMGxhq6u28PDwywxKs+kSZOYOnUq/fr1A6Bly5bExMSwcOFCBg8eTGBgIABJSUkEBQWVvC4pKYk2bdoAEBgYyJUrV8zWq9PpSEtLK3l9RdS4xOjixYvUr1+fw4cPl+zMmzVkyBAyMjLYsmVLlcRmLQU5KrYsqcvhX3zJTnGkbotc+s6Opn5rU5fGQz/7suvTQGKOu5Gb4cjMnw9Tt3mu2Tr+2BjAvm/9iT3hSkGOA28d34vGs2rup9V39GU690inToN8tAVKIg+5sXpRCHHRLiXLPNT/Cvc8kkqD5rm4uht4otVt5GZb9nBu0T6bJ0cmEN4yD9+AIuYMb8jeX71L5jtr9Dw3NY6O3dPx8NaReEnNt2sC+Gmj/3XWWgUxjUoqjen5Buz91QsAlYORwZPiueOeTILqasnNVnF4tzur36hNWpKTxWL6t4HjE3h2QpLZtEvn1DzftanVYvi3Fh1yeOqFZNN+C9Qx+7lQ9m71tFk8YJ/76Z+eHpPEsFcT+OZjP95/zXo3Nb3eMQ4w8JXLdO2dRq3gIoqKFJw7rmHt4tqcPuJqs5j+6cUFMfQcmML7c+qw5ZOAcpcRkJeXh1JpnqSpVCoMBtMtkurXr09gYCDbt28v+e3Oyspi3759jB49GoCOHTuSkZHBwYMHadeuHQC///47BoOBDh06VDiWGpcYhYSEkJCQgJ+fn61DsZl1kxsSf1rDsBVn8ArQ8vfX/ix/pgVzth/CO1BLYZ6ShndkcXuvFNZPCS93Hdp8FS26ptOiazpfLwqt0vhadsjm+w3+nDnmitIBhk68xPz1pxnxQEsK8033WFI7G4jY5UnELk+emxJXpdu/FmeNngtRGn79ohazPjxXZv6ImZdo0ymLN8eFkRSn5rYumYydF0NakiN//+ZdzhqrIiYDFyJd+HWzL7M+ijabp3Yx0LBFHp+tDOJCpAY3Tx2jZl9i9ifneamXdX9sL55yZmq/BiXP9Trb3kPJWWMg+qQzv3zuw2urL9o0ln+yt/10VaPWefQcmEp0pLPVt329YxwgLtqZd2fVJSFWjdrZwGPDkljw6Rmeu7sFmWmWuT/jjWK6qlOPdJq0zSUl0Q7vEwnoUaC34P3MKrPu3r17M3/+fOrWrUvz5s05fPgwy5Yt47nnngNM94wbN24c8+bNIzw8nPr16zNz5kyCg4N59NFHAWjatCkPPvggw4cP5/3336eoqIixY8fSr1+/CvdIgxqYGKlUquuW1IxGI3q9HgeH/+au0RYoOfSzH2M+jqRRhywAHhkfy9HffNi5IZDHJsXS8YlkAFIulb0OfNX9z18G4PTeqj/LnjGksdnzpZPC2HzwMOEtczmx31SO3bLG9Bm2Kn4P1hCx04uInV7XnN+sXQ6/feXHsb9NMf78uT8PD0imcZtciyVGETs9idhZ/meQl63i1QGNzKa9O7MuK384Ra1gLcmXrVc10ushPdl+fhwidngQseP6pX1bsLf9BKYTgilvx7Bicgj9X6p4A9aqcr1jHGDntz5mzz98PYQH+6dSv2k+R/ZYZl/eKCYA3wAto+deYsaz4cxdU/ZESphbtWoVM2fO5IUXXuDKlSsEBwczcuRIZs2aVbLM5MmTyc3NZcSIEWRkZHDXXXexdetWnJ1LE/aNGzcyduxY7rvvPpRKJU888QQrV66sVCz/ye76W7du5a677sLLywtfX1969erF+fPnAdOlNIVCwZEjRwDYuXMnCoWCn3/+mXbt2qFWq9m9ezezZ8+mTZs2fPDBB4SEhKDRaHj66afJzMy8qe3+c9tff/0199xzDxqNhtatW5d0Nbxq9+7ddOnSBRcXF0JCQnjppZfIzc399+ZuikGnwKBX4Kg2v4O7k7OecwdseynhWjTupkt02Rn2naxGHnTjzvvT8Q3QAkZadcyidv0CDv5hP/vV1UOPwQC5Wda9u3nt+lo+O3iCtX9FMmVVDLWCtVbdfnVhj/tp7II49m/34PCf7rYO5YYcHA089EwyOZkqoiM1NotDoTAyacVF/vdBADFnXG78Ahu52sbIko+Kcnd3Z8WKFcTExJCfn8/58+eZN28eTk6lJ3AKhYK5c+eSmJhIQUEBv/32G40amZ/8+fj48Nlnn5GdnU1mZiarV6/Gzc2tUvvlP5kY5ebmMn78eCIiIti+fTtKpZLHHnus5FpleaZOncobb7xBVFQUrVq1AuDcuXN88cUXfP/992zdupXDhw/zwgsv3PJ2p0+fzsSJEzly5AiNGjWif//+6HQ6AM6fP8+DDz7IE088wbFjx9i8eTO7d+9m7Nix19xuYWFhmXEirsXZTU+Ddln8sLIuGYlOGPTw99e1OH/Ig8wr9nWmCqYvmFEzYzh5wI2YM7b7oquI916rS8xZFzbuP8oP5w4yb90Z3plZjxP77eMHxVFt4Llp8ez81oe8HOslRqcOu7LklbpMH9iAVdPqEFi3kKXfnMXFtWrapP1X2ON+6vpIOg1b5LN6YdCNF7ah9vdl8E3UYb47e5jHnr/CqwPCyUq33YnU0y8kotfDt6st175QWI59n4LfpCeeeMLs+erVq6lVqxaRkZHXzBznzp3LAw88YDatoKCA9evXU7t2bcBU6uvZsydLly4t93Lc9bbbokWLkukTJ04sGd1zzpw5NG/enHPnztGkSRMWLlzIgAEDGDduHADh4eGsXLmSrl278t5775mVDK9auHAhc+bMucFeKfXc8jOsmxTOpPbtUaqM1G2RQ/s+ycQcr1xWbQ1j5sYQ2jifCU81s3UoN/TIkCSats3ltefCuRLvRIsO2Yx53dTG6PAe21aNVA5Gpr8bjQIjb0+va9Vt//OS1YUoF04d1rBhXyR3987gl02+Vo3FntnbfqoVrGX03Him9W9AUaF9n0Mf/cudFx5siqePjof6p/Dqu9G83KcJmanWP9lr2DKXPkOvMLZnU7Bg+52qoKdy7YBuZv3VkX0f7Tfp7Nmz9O/fn7CwMDw8PAgNDQUgNjb2mq/550iZV9WtW7ckKQJTi3eDwcDp06dvabtXK1JASbfDq10Mjx49ytq1a3Fzcyt59OjRA4PBwIULF8rd7rRp08jMzCx5XLp06ZrvE8A/tIBJXx7n7VN/sejv/Uz//ij6IgW16hZc93XW9sKci3S4N4PJ/ZuSkmi99jA3w0ltYMikeD6cF8K+7V5cOKXh+3UB/PGDD0+MsH67jH9SORh59d1o/GtrmTagkVWrReXJzXIgLlpNcGjZ0W9FKVvvp4Yt8/CupeOdraf5KeYIP8UcoXWnXPo8l8JPMUdQKo03XomVFOarSIhx5tRhN5ZPDkWvV/BgvxSbxNKifQ5efjo27D3Oj9EH+TH6IAEhWobPiGPdnuM2iUlUzn+yYtS7d2/q1avHRx99RHBwMAaDgRYtWqDVXvt6vavrrXftrOh2HR1Lz2IUClO2fvVyW05ODiNHjuSll14qs/66dcs/01er1eUOmHUjao0BtcZAboaKk3948+S08hMv6zPywpwYOnVPZ3L/piTFVf69WZuDoxFHJyP/vlpr0CtQ2PD042pSVLt+AVP6NrKLdlrOGj3B9bRs/8r+Lt3aE1vvpyO73Rlxr3lHiAnLYrl03pkv3vHHYLDfaohCafp7tIXtX/ly+E/zhv3zPz3L9q992PaFffWGttY4RtWN7b8lq1hqaiqnT5/mo48+okuXLoCpMfPNiI2N5fLlyyXd/P7++2+USiWNGzcus2xVbfe2224jMjKShg0b3lTMFXFilxcYISAsn+SLLny5IJTABnl0etpUtcrNcCA1Xk1m8Vg3SedNjQc9a2nx9C8CIPOKI5nJTly5aLq0F3fKFWc3Pb61C3H10t1SfGPmxnBPn1TmjAgnP0eJt58psczNdkBbXNL39tPiXauI4FBTlSu0ST75OUquXFaTk2mZw9pZozc7ew8MKSSsWR7ZGSqSL6s5tted51+NQ1ugJCleTasO2dz3RAofvm65S1fXjsmBtCuOzHj/PA1b5DFraEOUKvCuZfr8sjNU6Iqs86U1fGY8f2/z5EqcI76BOp6dkIDeADu3WKanXkU4a/QE1y89YQkM0RLWPN/0Wcbbpjppb/spP1dFzGnzhsMFeUqy08tOt6TrHeNZ6Sr6v5jI39s8SbviiIePjt6DkvELKOLPHy23364XU/JlpzInIPoiBenJjsRFW3+4A1F5/7nEyNvbG19fXz788EOCgoKIjY1l6tSpN7UuZ2dnBg8ezJIlS8jKyuKll17i6aefLrd9UVVtd8qUKdx5552MHTuW559/HldXVyIjI9m2bRtvv/32Tb2Pf8vPcuCbRfVIT1Tj6qnjtodTeHRSDA6OpjOsI9t8WDuhtKX/h2ObANB7XCyPjDddFtz1aRDfryj9wX/zKdPlwSFLz9D5KfORRyur97Om17+56ZTZ9KUT67Ptq1oA9BxwhYHjLpfO+yKqzDJVrVGrXBZvLr2MOnKW6ZLlti99WToxjIUvNmDo5DgmvxWNu5eOK3Fq1r1Zhx8/tUw8ppjyWPzFmdKYXosrienT5UF07G7qRfneL1Fmr5v8dCOO/W2dRuF+QUVMe+ci7t56MtMcOLnflXG9G5GZZruvn0at83nzq9Ieo6PmmI6lXzd7s/QV67bBusoe95M9uN4xvvLVuoQ0KOD+J1Px8NaRneHAmaMaJj7Z2KK9wa4X09IJoRbbblXTG5XoLVjVseS6Lek/9xenVCrZtGkTL730Ei1atKBx48asXLmSbt26VXpdDRs25PHHH+fhhx8mLS2NXr168e6771p0u61atWLXrl1Mnz6dLl26YDQaadCgAX379q10/NdyR+8U7uh97evvnZ+6csPk5pHxpUlSVXuwfvsbLvPpW3X49C3rjb4LcOxvDx6sd8c156cnO7JsUn0rRgTH/nbnwbrtrjn/evOsZeELobYOoYxje93oEdza1mGYscf99G+Tnyp/wFdLutEx/vrIBtecZyk3iunfBnduacFoRFVTGI1G+2lBZ0dmz57Nli1bSsY7qk6ysrLw9PTkWKQ/7u72k7GPCL/P1iGUZbDDw9947WElbMWot8P+Jfb41aWw33Y39kShsm0HgOpAZyxih+4rMjMzb3ifscq6+hsxde9DqN0s14atMKeINzr+bJH3YEn286sphBBCCGFj/7lLaUIIIYS4MWljVL7qGbUVzJ49u1peRhNCCCHEzZOKkRBCCFEDGYwKDEbLtYuz5LotSSpGQgghhBDFpGIkhBBC1EB6lOgtWB+x5LotqXpGLYQQQghhAVIxEkIIIWogaWNUPqkYCSGEEEIUk4qREEIIUQMZUGKwYH3Ekuu2pOoZtRBCCCGEBUjF6D/speadcFBY7j44lfVL/D5bh1BGj+A2tg5B/JfY4/3b7JBRp7N1CGUoHJ1sHcK/WL5uoTcq0FuwHZAl121JUjESQgghhCgmFSMhhBCiBpJeaeWTipEQQgghRDGpGAkhhBA1kNGoxGC0XH3EaMF1W1L1jFoIIYQQwgKkYiSEEELUQHoU6LFgrzQLrtuSpGIkhBBCCFFMKkZCCCFEDWQwWrbnmKGaDuslFSMhhBBCiGJSMRJCCCFqIIOFe6VZct2WVD2jFkIIIYSwAKkYCSGEEDWQAQUGC/Ycs+S6LUkqRkIIIYQQxaRiVIXWrl3LuHHjyMjIuOYys2fPZsuWLRw5cgSAIUOGkJGRwZYtW6wSY0UMHJ/AsxOSzKZdOqfm+a5NLbbNvBwl6xYH8dfPnmSkOtCgeT6jX4+jcZt8AJaMq8u2L3zMXtOuWxYLPosueR53Xs1HrwcTecAVXZGC+k3zGTQ5kTadcywWN0DvISk8OfoKPrV0REe68O6M2pw+orHoNq+l79gkOj+cSUjDQrQFSiIjNHwyP4i48842iQegRYccnnohmfCWefgG6pj9XCh7t3raLJ5/sqfPTmKqGHs4xlu0z+bJkQmmYzqgiDnDG7L3V++S+VtjDpT7uo8X1OF/HwRZK8wb0hsV6C3YK82S67akal0xWrt2LV5eXrYOo1ImTpzI9u3bbR3GDV085Uy/Ns1LHuMfDbfo9pZPCOHQH25MXhXD+9tP0a5rNlP7NiQlwbFkmdvvyeLzIydKHtPejTFbx6zB9THoYdGX53h762nCmuUza1B90q5YLv/v+kg6I167zMZlgYzp0YjoSGfmfxaNp2+RxbZ5Pa065vL9Wj/G9QpnWr8wVA5GFnwejdpFb5N4AJw1BqJPOvP2q3VsFkN57O2zk5gqxh6OcWeNngtRGt6ZWa/c+f1vb2P2WDoxFIMBdv/kXe7ywr5U68SoOnJzc8PX19fWYdyQXg/pyY4lj6x0yyUXhfkKdv/kxfMzEmh5Zy6162t5dmIiwaGF/LC+dF85Ohnx8deVPNy9Sr8IM1NVxEc78/TYK4Q1K6B2mJbnpidQmK/i4inLnUk+PiKFrZ/58OtmH2LPOrNySh0K8xX06J9msW1ez/QBYWz7woeYM85ER7qwdFxdAuoUEd4q3ybxAETs8DBVA+2kSnSVvX12ElPF2MMxHrHTi3VL6vDXL+UnOv/87kxPdqTjAxkc3etO4iXbVW7Lc7VXmiUf1ZFNo966dSt33XUXXl5e+Pr60qtXL86fPw/Azp07USgUZpeljhw5gkKh4OLFi+zcuZOhQ4eSmZmJQqFAoVAwe/ZsANLT0xk0aBDe3t5oNBoeeughzp49W7Keq5WmH374gcaNG6PRaHjyySfJy8tj3bp1hIaG4u3tzUsvvYReX/rje6P1XrVlyxbCw8NxdnamR48eXLp0qWTe7NmzadOmzTX3icFgYOHChdSvXx8XFxdat27N//73v5vcwzevdn0tnx08wdq/IpmyKoZawVqLbUuvV2DQK3BSG8ymq50NnNzvVvL82F43nm7ZnGF3NWHl1DpkpalK5nn46KnToIDfvvShIE+JXgc/bvDFy89yX5gOjgbCW+Vx6E/3kmlGo4LDf7rTrF2eRbZZWa4epuM3O0N1gyVrFnv87CSmm2Pvx7iXXxHt783kl821bB2KqCCbJka5ubmMHz+eiIgItm/fjlKp5LHHHsNgMNzwtZ06dWLFihV4eHiQkJBAQkICEydOBEztdiIiIvjuu+/Yu3cvRqORhx9+mKKi0tJvXl4eK1euZNOmTWzdupWdO3fy2GOP8dNPP/HTTz+xYcMGPvjgA7OkpKLrnT9/PuvXr2fPnj1kZGTQr1+/Cu+ThQsXsn79et5//31OnjzJK6+8wsCBA9m1a9c1X1NYWEhWVpbZ41acOuzKklfqMn1gA1ZNq0Ng3UKWfnMWF1fLlKo1bgaatsvlsxWBpCY6oNfD9q+8iTroSlqSqVJ1e7csJr0Vw6IvzjNsegLH97oxfWAYV/NWhQLe2Hye8ydceDS8Jb3qt+brD/2ZvzHarLJUlTx89KgcICPZvJqWnuKAdy2dRbZZGQqFkVFz4jmxX0PMaRdbh2NX7PGzk5gqrzoc4/c/kUJ+rpI9W+3vMpoBBQajBR/VtFeaTRtfP/HEE2bPV69eTa1atYiMjLzha52cnPD09EShUBAYGFgy/ezZs3z33Xfs2bOHTp06AbBx40ZCQkLYsmULTz31FABFRUW89957NGjQAIAnn3ySDRs2kJSUhJubG82aNeOee+5hx44d9O3bt1Lrffvtt+nQoQMA69ato2nTpuzfv5/27dtf9z0VFhayYMECfvvtNzp27AhAWFgYu3fv5oMPPqBr167lvm7hwoXMmTPnhvusoiJ2eJT8/0KUC6cOa9iwL5K7e2fwyybLXAacvCqGZePr8sxtLVCqjDRsmUe3R9M5e8zUwLPboxkly9ZvWkD9ZvkM6diMY3+50bZLDkYjvP1qHbz8dCz95hxOzga2fu7La0Pqs/KnM/gG2P5L3NrGLoinXpMCJjza0NahCGER1eEY7/F0Cr9v8aWosHpeVqqJbPpJnT17lv79+xMWFoaHhwehoaEAxMbG3vQ6o6KicHBwKElMAHx9fWncuDFRUVEl0zQaTUlSBBAQEEBoaChubm5m065cuVKp9To4OHDHHXeUPG/SpAleXl5my1zLuXPnyMvL44EHHsDNza3ksX79+pJLjOWZNm0amZmZJY9/XrqrCrlZDsRFqwkOLazS9f5TcKiWJV+f49tzx/g04iSrfjqLrkhBUL3ytxlUT4unj47LF9UAHNntxv7fPJj23kWat88lvFU+Ly6Mw8nZyG//6s1WVbLSVOh14PWvM2dvPx3pybbt8DlmfhwdHshi8pMNSElwsmks9sgePzuJqXKqwzHe/I5sQhoWsHWTfV5GMxaPY2Sph7GaVoxsmhj17t2btLQ0PvroI/bt28e+ffsA0Gq1KJWm0IzG0rvQ/fOS1a1ydHQ0e65QKMqdVpHLelUlJ8fUrfzHH3/kyJEjJY/IyMjrtjNSq9V4eHiYPaqSs0ZPcD0taVccb7zwLW/LgG+AjuwMFQd3edCxR/mXBZMvO5KVrsLH33RMFOabjhflv45opcJosRsZ6oqUnD2moe1d2SXTFAojbe7KIfKgrbpXGxkzP45OD2Yy+akGJF1S2ygO+2aPn53EVFHV5xh/sG8yZ45puBBl2+EWROXYLOVPTU3l9OnTfPTRR3Tp0gWA3bt3l8yvVcuUYSckJODtbbo2e3Xsn6ucnJzMGkcDNG3aFJ1Ox759+0oueV3dVrNmzW463oquV6fTERERUXLZ7PTp02RkZNC06Y3HAGrWrBlqtZrY2NhrXjazhuEz4/l7mydX4hzxDdTx7IQE9AbYucVy18gjdrpjNEJIg0LiLzjx8eu1CWlYQPe+qeTnKvl0aSB39czA219HwkUnPp4XTHD9Qtp1M31hN22Xi5unnjdfrsuAVxJROxv5eaMviZecaH/frbW5up6vP/Rj4opLnDmq4fRhDY8NT8ZZY+DXTZapUt3I2AXx3PNYOrOH1ic/R4l3LVPimJutQltgm/MgZ42e4PqljfcDQ7SENc8nO0NFcrztzvTt7bOTmCrGHo5xZ43erIIeGFJIWLM80zF92ZSoadz0dOmZzofzQqwS08242hbIkuuvjmyWGHl7e+Pr68uHH35IUFAQsbGxTJ06tWR+w4YNCQkJYfbs2cyfP58zZ86wdOlSs3WEhoaSk5PD9u3bad26NRqNhvDwcPr06cPw4cP54IMPcHd3Z+rUqdSuXZs+ffrcdLwVXa+joyMvvvgiK1euxMHBgbFjx3LnnXfesH0RgLu7OxMnTuSVV17BYDBw1113kZmZyZ49e/Dw8GDw4ME3HX9l+AUVMe2di7h768lMc+DkflfG9W5EZprlDpfcLBVrFgaRkuCIu5eezg9nMHRqAg6OoNcZuRDlzLYv65ObpcI3QMdtXbMYPDkRJ7WpHOTpq2f+Z+dZ+0YQU55uiL5IQb3GBcxec4EGzQssFveu77zx9NUzaFIi3rV0RJ90YfqA+mSkWL66Vp7eQ1IBWPK1+aXXJeNCygyQaS2NWufz5lel8YyacxmAXzd7s/SVujaJCezvs5OYKsYejvFGrXJZvPl0yfORs0zNF7Z96cvSiWEAdO2dCgrY+Z3tklpxc2yWGCmVSjZt2sRLL71EixYtaNy4MStXrqRbt26AKcH4/PPPGT16NK1ateKOO+5g3rx5JY2cwdQzbdSoUfTt25fU1FRee+01Zs+ezZo1a3j55Zfp1asXWq2Wu+++m59++qnMpbLKqsh6NRoNU6ZM4ZlnniE+Pp4uXbrwySefVHgbr7/+OrVq1WLhwoVER0fj5eXFbbfdxquvvnpLsVfGwhdCrbatq7o+kkHXRzLKnad2MQ3gdiONWudXaLmq9t0aP75b42f17ZanR3BrW4dQxrG9bnYZF9jXZ3eVxHR99nAsHfvbgwfr3XHdZX7+3J+fP/e3UkQ3x9JjDVXXcYwUxn824hH/CVlZWXh6etJN8SgOCtudaf7bL/GHbR1CGT2C29g6BCGEHVA42lcDbp2xiB1FX5KZmVnl7Uav/kY8tm0ojq6We99FuVq+eWCNRd6DJcm90oQQQogaSNoYla961rmEEEIIISxAEiMhhBBCiGJyKU0IIYSoga4OxGjJ9VdHUjESQgghhCgmFSMhhBCiBpLG1+WTipEQQgghRDGpGAkhhBA1kFSMyicVIyGEEEKIYlIxEkIIIWogqRiVTypGQgghhBDFpGL0H6by8UaltJ/7//So3dbWIZTR62SarUMo46d2QbYOoQyFk/0cR1cZtVpbh1CGPe4nfXa2rUMoyw5v0Wkssq/jyWgssvg2pGJUPqkYCSGEEEIUk4qREEIIUQMZsezo1PZXF6wYqRgJIYQQQhSTipEQQghRA0kbo/JJxUgIIYQQophUjIQQQogaSCpG5ZOKkRBCCCFEMakYCSGEEDWQVIzKJxUjIYQQQohiUjESQgghaiCpGJVPKkZCCCGEEMWkYiSEEELUQEajAqMFqzqWXLclScVICCGEEKKYVIyqSLdu3WjTpg0rVqwod35oaCjjxo1j3LhxlVrv7Nmz2bJlC0eOHLnlGK9lwOhoBoy+aDbt0gUNI/vc+a8ljcx99yi335XG6y+3ZO+OWhaL6d/W/X2SwJCyd5v+bq0f70yvU+Xb2/6AB/mXVWWm1+tXQMuZ+eTGKolc4kL6IQcMWgW17iqixat5qP1K7w6UGakiapkLGSdUKJQQ9EARzSbn4eBaNTE+PTqezj3SqROWj7ZASeQhd1YvCiH+gkvJMi/Ou0Dbzpn4BGgpyFUReciN1YvqEhftcp01V52nhl9i6ISLbFkXzIcLGwDg6GRg+JRo7u6ZjKOjgUN7vHlnTkMyUi1zZ/qK7KdFn0XS6k7zu9D/+Jk/b8+ob5GY/q28/fTg0wl065VMw2Y5aNz0PHVHR3KzrfuVPXB8As9OSDKbdumcmue7NrVqHP/Ud2wSnR/OJKRhoenzjNDwyfwg4s47S0yVZEBh0XulWXLdliSJkZUcOHAAV9cq+kW0gIvnXJk+vE3Jc72+7AH96MBLNiuNvvRwY5Sq0qQjtEkBb2w6z58/eFpke3dtzsaoL32efU7FvufdCepRhC4P9o1ww6OxnjtXm35MT69yYf8YN+76PBuFEgquKPh7mBvBDxXRYnoeuhwFJ9/QcGS6K7evyK2SGFu2z+b7DQGcOeaKSmVkyKQ45q8/xcjurSjMNyV15064suNbX65cVuPupWPgy6Zlht7dBoPBsp9leItsHuqbQPQp8+N+xLTz3NE1nYUvNyU3R8XomeeZsSqKic+0tkgcFdlPAD9/XosNy0uT7MIC6xTUr7Wf1M4GDv7pzcE/vRk64aJVYinPxVPOTO3XoOS5XmfbH7tWHXP5fq0fZ45oUDkYGTI1gQWfRzO8a2Ozz7OmxyRuniRGVlKr1vWrK0VFRTg6OlopmrL0OgXpqeprzg9rnM3jgy/xcr/b2bhjjxUjM8lMMz9U+45N4vIFJ47tdbPI9tQ+5veFPv+xI5oQPb536Ej5y4G8eCVd/peFY/Hm2yzI5ZeOXqTsc6BWRx1JOx1ROEKLGXkoin9fW76Wyx+PeZIbk49rPcMtxzhzaBOz58smhbEp4hDhLXI5ccADgJ83+ZfMvxKvZt2yEN776TgBdQpJiLXc2ayzRs/kJadZOTOcfqMvlUzXuOno/kQSiyc15ug+LwCWT2vEhz8fpHHrLE4f9ajyWCqynwAKC1Skp1imanUt19pPAN+urw1Ay/YZVo3p3/R6SE+23XfTv00fEGb2fOm4unxx4iThrfI5sc8y3wfVMaaKkF5p5ZM2RlVIp9MxduxYPD098fPzY+bMmRiNph/Y0NBQs8tsCoWC9957j0ceeQRXV1fmz58PwBtvvEFAQADu7u4MGzaMgoICq8Reu14eG37bzSc//cWkhSepFVi6XbWznslvnOTd+Y2umzxZi4OjgXsfT+eXzb5ghVKtQQtxPzgR8rgWhQIMWgUKBSj/8RuqVINCCWmHTAmcoUiB0pGSpAhAVbzrri5T1TTuphJXdmb561e76On+ZDIJsWqSEyybALww6xz7d3pzZK+32fTw5jk4Ohk58lfp9LgLGq7Eq2naJvvfq7GIa+2nex5JYVPEQd77+RhDJsWidtaX9/Iqda39ZE9q19fy2cETrP0rkimrYqgVrLV1SGZcPYo/zwz7qczYY0yi4iQxqkLr1q3DwcGB/fv389Zbb7Fs2TI+/vjjay4/e/ZsHnvsMY4fP85zzz3HF198wezZs1mwYAEREREEBQXx7rvv3nC7hYWFZGVlmT0q4/RxT5bNaMbM0W14Z15jAmrn8+bag7hodAAMn3SWqKOe/L3Tem2KrqfTg5m4eej59Qsfq2wv8XdHdNkKQh4tBMCrtQ6VC5xa6oI+H3R5EPWmC0a9gsJk05+UX4ciClMUnF+txqAFbaaCqOWmNi2FKVX/Z6dQGBk5M4aTEW7EnNGYzes5MImvjx9gy8kIbu+awfRBTdAVWe5P/+6Hr9CwWQ5rl5Vtn+NdS0uRVlGmrUx6qiPefpb/wb3Wftr5nR+Lxzdg6oCmfPF+MPc9msKk5ectGsv19pO9OHXYlSWv1GX6wAasmlaHwLqFLP3mLC6ulk8aK0KhMDJqTjwn9muIOW2ddnM3Yo8xXcvVXmmWfFRHcimtCoWEhLB8+XIUCgWNGzfm+PHjLF++nOHDh5e7/DPPPMPQoUNLnvfr149hw4YxbNgwAObNm8dvv/12w6rRwoULmTNnzk3HHbHbt+T/F8+6cfq4B2u3/kWXHlfITHekdft0Xnz6jptef1Xr0S+NAzs8SEuyTnn/0ldqat1VhLO/qfqn9jHSblkOx1/XcGGjGoUSgh/W4tlMV1Ihcm9ooM38XCIXazi1wgWFEkIHFqL2NYDCeJ2t3Zwxcy8S2iiPiU83KzNvx7e+HN7tiU8tLU8MT2DaqrNMeKo5RdqqT478AgsZ+Wo0059raZH136pr7ad/XnK8eFpD2hVH3th4iqC6BRa55Gjv++mqiB2llxovRLlw6rCGDfsiubt3Br9s8r3OK61j7IJ46jUpYMKjDW0dSgl7jElUjiRGVejOO+9EoSjNkDt27MjSpUvR68s/u7r99tvNnkdFRTFq1CizaR07dmTHjh3X3e60adMYP358yfOsrCxCQkIqG36J3GxH4mM0BIfkExqeQ1BIPl/u+dNsmVeXHefkIS+mDrvtprdzM/xra2nbJZvXn7fOWXbeZSXJfztw+1vmDaZrddZx79YstOkKFCpw9DCy7W5PNA+VVj1q9yqidq9MClMUqFyMoIDodWo0IbfevuifRs++SPt7MpjUrykpiWUvdeZlO5CX7cDli86cOuLGl4cP0qlHGru+96vSOADCm2fj7VfEqq8PlUxTOUCL2zPpPeAyM55vgaOTEVd3nVnVyNu3yOLte260n/7p1BFTu5CgepZJjG60n/q0usvijeNvRm6WA3HRaoJDC20dCmPmx9HhgSwmPNaAFAtfGq4oe4zpeqSNUfkkMbKhquqlplarUaurru2Ps4uOoJB8fv/BiT9/8eeXr4PN5r/39X4+ejOcfbuq/of1Rrr3TSUjxYF926u+kW55Ln3jhNrHiP/dZYcKAHDyNlV/Uv52oDBNQcA9ZZe72oU/9msnVGqo1VFXRdEZGT07hk7d05jyTDOS4m78A65QAApwdKr6qhXAkb+9GN3bPFl+ZcEZ4qI1fPlxHZIT1BRpFbTpmMGeX03HT+36efjXLiTqiLtFYrqZ/dSgWR4AacmW+XG70X6yx6QITI3Fg+tp2f6VLRtjGxkzP55OD2Yy6cmGJF2yfbtH+4xJ3CxJjKrQvn37zJ7//fffhIeHo1JVrAFe06ZN2bdvH4MGDTJbh6UNm3CWfTv9uJLgjG8tLQNfiMagV7Dz5wCy0p3KbXCdnOBMUrx1r58rFEa6903jty99MJQznEBVMxog7hsn6vTRovzXX8qlb5xwC9Pj5G0k/agDJxe6EDaoELf6pdWgCxvV+LTVodIYSfnLkcilLjR9JR9Hj6pJSsbMvUi3R1KZO6IR+TnKkjY6udkOaAuVBIYUcHevVA796UVmmgN+gVqeHnUZbYGSAzu9qiSGf8vPdSDmrPnOKshXkZXhQMxZ04nAr18FMHxKNNmZDuTlqBg14zyRh90t0iMNbryfguoW0O2RVA7s9CIr3YH6TfIYOSOG4/vcuXhKc4O135yK7CdvPy3eflqC65oupYc2yiU/V8WVBDU5mdZJTIbPjOfvbZ5ciXPEN1DHsxMS0Btg5xbbNRYfuyCeex5LZ/bQ+qbPs5bpZCQ3W4XWSkMsVIeYKkJGvi6fJEZVKDY2lvHjxzNy5EgOHTrEqlWrWLp0aYVf//LLLzNkyBBuv/12OnfuzMaNGzl58iRhYWE3fvEt8PMvZMqik3h4FZGZ7sTJQ568MrAdWen2VQpu2yWbgDpF/LLZOo2uU/Y6kJ+gIuTxnDLzci6oOLXcBW2mAk1tA+EjCqg/2PzyQsYJFWfecUafp8C1vp5Wr+VR55Gqa2Dca+AVABZvijKbvnRSGL99VQttoZIWd2Tz6NBE3Dz0ZKQ4cuKAO+OfbEZmqu3O+D9c2ACjIZrpb0Xh6GTg4G5v3p1rufYYN9pPRUUK2nbO5NGhiThr9CQnOLF7qw+b3gkub3VW83C/BAaMjS15/ubGYwAsm9aI374JsEoMfkFFTHvnIu7eejLTHDi535VxvRuVGT7DmnoPSQVgydfmjeOXjAthm5U6ZPybPcYkbp7CeLU/ubgl3bp1o3nz5hgMBj777DNUKhWjR49m3rx5KBSKMiNfKxQKvvnmGx599FGz9SxYsIDly5dTUFDAE088QUBAAL/88kulRr7OysrC09OT+3yH4qC0n+RGn5pm6xDK6HXC/mL6qV2QrUMoQ+FkP8fRVUatfXUbB/vcT/ps6wyDUCnys3NDOmMRO/mWzMxMPDyqtpp69Tfitv+NR+Vquct++txCDj25zCLvwZIkMfoPksSo4iQxqhh7/MGXxKhiJDGqniQxsh25lCaEEELUQEYsm6NW1/TXfluFCSGEEEJYmVSMhBBCiBrIgAKFBW+rZLDCLZssQSpGQgghhBDFpGIkhBBC1EAyjlH5pGIkhBBCCFFMKkZCCCFEDWQwKlDIvdLKkIqREEIIIUQxqRgJIYQQNZDRaOFxjKrpQEZSMRJCCCGEKCYVIyGEEKIGkl5p5ZPE6D/MkJOLQWFH95NS2F+B8udujWwdQhkuv9o6grLyexbYOoQylEHWucN8ZRizc2wdQhkKlcrWIZRh1OlsHUJZCnv7EVdU33tqVHOSGAkhhBA1kFSMymd/p/BCCCGEEDYiFSMhhBCiBpJxjMonFSMhhBBCiGKSGAkhhBA10NVxjCz5qIz4+HgGDhyIr68vLi4utGzZkoiIiH/Ea2TWrFkEBQXh4uLC/fffz9mzZ83WkZaWxoABA/Dw8MDLy4thw4aRk1O5ThGSGAkhhBDCptLT0+ncuTOOjo78/PPPREZGsnTpUry9vUuWWbx4MStXruT9999n3759uLq60qNHDwoKSnvNDhgwgJMnT7Jt2zZ++OEH/vjjD0aMGFGpWKSNkRBCCFEDmao6luyVVvFlFy1aREhICGvWrCmZVr9+/X+sy8iKFSuYMWMGffr0AWD9+vUEBASwZcsW+vXrR1RUFFu3buXAgQPcfvvtAKxatYqHH36YJUuWEBwcXKFYpGIkhBBCCIvJysoyexQWFpZZ5rvvvuP222/nqaeewt/fn7Zt2/LRRx+VzL9w4QKJiYncf//9JdM8PT3p0KEDe/fuBWDv3r14eXmVJEUA999/P0qlkn379lU4XkmMhBBCiBro6jhGlnwAhISE4OnpWfJYuHBhmViio6N57733CA8P55dffmH06NG89NJLrFu3DoDExEQAAgLMB3YNCAgomZeYmIi/v7/ZfAcHB3x8fEqWqQi5lCaEEEIIi7l06RIeHh4lz9VqdZllDAYDt99+OwsWLACgbdu2nDhxgvfff5/BgwdbLVaQipEQQghRIxmt8ADw8PAwe5SXGAUFBdGsWTOzaU2bNiU2NhaAwMBAAJKSksyWSUpKKpkXGBjIlStXzObrdDrS0tJKlqkISYyEEEIIYVOdO3fm9OnTZtPOnDlDvXr1AFND7MDAQLZv314yPysri3379tGxY0cAOnbsSEZGBgcPHixZ5vfff8dgMNChQ4cKxyKX0oQQQogayJ7ulfbKK6/QqVMnFixYwNNPP83+/fv58MMP+fDDDwFQKBSMGzeOefPmER4eTv369Zk5cybBwcE8+uijgKnC9OCDDzJ8+HDef/99ioqKGDt2LP369atwjzSQxEgAfUdfpnOPdOo0yEdboCTykBurF4UQF+0CgJunjmdfiaNdlyxqBReSmerI3m3erFtWm7xs6xxCSqWRgeMTuO/xNLz9i0hNdGTbl7589lYgYPlh5weMOs+A0RfMpl26oGHko50ACKyTx/MTztK8TQaOTgYO7vHlvTcak5FWtmR8KwzJerTv56Lfp4UCI4raKtTT3FE1cQTAmGZA+34O+gNFGHMMqFo74vSyG8qQsp+T0WikcHIm+n1FqOd74NDl1mPt2T+Bnv0TCKht6nUSc1bDZ++GEPGHDwCL1h+jVYcss9f8uCmQt19reMvbvh4XjY6Bw0/R6e4EPL0LiT7jyQcrWnD21NUxUowMfP40PXrH4OpeRNQxH95Z0orLcW4WiWfA6GgGjL5oNu3SBQ0j+9z5ryWNzH33KLfflcbrL7dk745aFonnqhbts3lyVBLhLfPwDShizvMN2PurV8n8ga9cpmvvNGoFF1FUpODccQ1rF9fm9BFXi8b1T70GpdBzUCoBIVoAYk47s3F5ABE7PG7wSstZ9/dJAkOKykz/bq0f70yvY4OIqp877riDb775hmnTpjF37lzq16/PihUrGDBgQMkykydPJjc3lxEjRpCRkcFdd93F1q1bcXZ2Lllm48aNjB07lvvuuw+lUskTTzzBypUrKxWLJEZ2bPbs2WzZsoUjR45YdDstO2Tz/QZ/zhxzRekAQydeYv7604x4oCWF+Sp8A7T4+hfx0YIQYs+64F9by4vzL+AToGX+C+EWje2qp19IotegZJaMCyXmjDPhrfOYsDSG3GwV3672v/EKqsDFc65MH3FbyXO93pSQqV30zH//MNFn3Jg2vB0Az445z2urjjJ+4B1VdkZmzDZQMCYDVVtHnBd7ovBSYojTo3A3XRE3Go0UTM8ElQL1Ag8UrgqKNudTMD4Tl/U+KFzM49B9mU9VJ5UpiU6sWRJKfIwLCgXc/2gSs96JYuxjbYg9Z/rx/HlzABtW1it5TWG+5a/ovzT1CPXCslky9zbSUtTc0yOO+W/tZfSAe0hNceHJAefo/WQ0y+e1JTFBw7PDT/P6sr8ZNfAeirQqi8R08Zwr04e3KXl+9Xj6p0cHXrLqHcqdNQYuRLrw62ZfZn0UXWZ+XLQz786qS0KsGrWzgceGJbHg0zM8d3cLMtMcrRJjcoIjqxcEEX9BjUIBDzyVxuw1FxnTvRExZ5xvvAILeOnhxihVpYP2hDYp4I1N5/nzB0+bxFNh/2wIZKn1V0KvXr3o1avXNecrFArmzp3L3Llzr7mMj48Pn332WeU2/C+SGAlmDGls9nzppDA2HzxMeMtcTuz3IOaMhnn/SIASYp1ZtySEScvOo1QZMZTzhV7Vmt2ew95fvdj/u+mLJilOzT190mncJtfi275Kr1OQnlq2qtKsTQb+wfmM7duB/FzTn9TSmc354s+dtG6fxpF9vlWy/aKNeSj8lainlZ4ZK4NLf7SNcXoMJ3W4rPNGWd8Uh9MEN/IeTUW3vQDHXi6l7+WsjqLN+Th/6E3+Y6lVEh/Avh3m73XdilB69k+kSZvsksSosEBFeopTlW3zRpyc9HTumsDrU9tz8qgpvs9WN6FD5yQefuwiGz5qQp+no9m8rhF/7w4CYOnrbdn4/S907JLIH9trWySuax1PV4U1zubxwZd4ud/tbNyxxyIx/FvETk8idl77x3zntz5mzz98PYQH+6dSv2k+R/ZYJzHat808vrWLgug1KJUm7XJtlhhlppn/lPYdm8TlC04c22uZiqOwLGl8bWEGg4HFixfTsGFD1Go1devWZf78+QBMmTKFRo0aodFoCAsLY+bMmRQVmcqxa9euZc6cORw9ehSFQoFCoWDt2rVWiVnjrgcgO+PaebOru468HJVVkiKAyAg32nTOpnZ909DvYU3zaH5HDgd2WO+MrHa9PDZs+4NPftzDpAUnqBVoisXRyQBGBUXa0j8nbaESo0FB87YZVbZ93R4tysaOFMzKJPeRFPKHpVP0fX7pAtrif51KPxOFUoHCUYHhWGmZ31hgpHBuFk7j3FD6Wu4rQKk00vXhZJw1ek4dLk3m7ul9hU1//8173x9iyPiLqJ31FosBQOVgROVgRKs1f6+FhSqatUojMDgPH79CjkSUXqbKy3XkdKQ3TVqkWSyu2vXy2PDbbj756S8mLTxZcjwBqJ31TH7jJO/Ob3Td5MmWHBwNPPRMMjmZKqIjNTaJQak00rVPOmqNgagI613Oux4HRwP3Pp7OL5t9scZlflH1pGJkYdOmTeOjjz5i+fLl3HXXXSQkJHDq1CkA3N3dWbt2LcHBwRw/fpzhw4fj7u7O5MmT6du3LydOnGDr1q389ttvgGmUz/IUFhaajSSalZVV7nIVoVAYGTUzhpMH3Ig5U/6XnYd3Ef1fvMzPmyzb3uGfNr8TgMZdz8e7IjHoQamCtYuC2fGNz41fXAVOH/dk2czmxF3U4FNLyzMjo3lzTQSjn7iTU8c8KchX8ty4s6xb1RAUMPTls6gcjHjX0t545RVkTNCj+zYfx6ddcByowXBKh/atHHBQ4PiQM4p6KhQBSrQf5qKe6AbOCoq+yMeYbMCYaihZj3ZVDqoWjlXSpqg8oY1yWbbpKE5qA/l5Kl4f05TY86ZjaecP/iRdVpN2xYn6jXN5buJF6tTPZ96LTS0SC0B+ngNRx73pN+QMl2LcyUhT0/X+OJq0SCMh3hVvH9PfTvq/2oNlpKnx9i07Qm9VOH3ck2UzmhUfT4U8M+oCb649yOjHO5Cf58DwSWeJOurJ3zut9zdWUe3vy2Da2xdQuxhIu+LIqwPCyUq37k9JaJN8Vnx/znSM5SqZOyyU2LO2qRb9W6cHM3Hz0PPrF9b5brolFm58jRUvA1clSYwsKDs7m7feeou33367ZICqBg0acNdddwEwY8aMkmVDQ0OZOHEimzZtYvLkybi4uODm5oaDg8MNx19YuHAhc+bMqZKYx8yNIbRxPhOealbufI2bnrmrzxB71oVPV1jmEkN57u6dzr2PpfHG2FBizrjQoHkeo2bHkZrkyG//q5pLVdcTscev5P8Xz8Lp4x6s/Xk3XXok8es3tVkwqRVjp5/ikWcuYTQo2LU1gLOR7hgN11lpZRlA2dgBpxGm8ryqkSOGC3p03+WbEiMHBep5HmgXZZPXMxVUoGrniKqDE1cv9ut2F6I/VITLJ97X2dCtibvgwphH2+LqrueuHilMWHSGyQNbEXtew89flB7LF8+4kpbsxBvrThAUkk/CJZfrrPXWLHn9NsZNO8KGb39Fr1Nw7ownf/xWm4aNMy22zeuJ2F16zF4862Y6nrb+RZceV8hMd6R1+3RefPoOm8R2I0f/cueFB5vi6aPjof4pvPpuNC/3aUJmqnUupQHEnVfzwgON0Ljr6dIrk4lvxTLp8YZ2kRz16JfGgR0epCVZb3+IqiWJkQVFRUVRWFjIfffdV+78zZs3s3LlSs6fP09OTg46nc5sdNCKmjZtGuPHjy95npWVRUhISKXX88Kci3S4N4OJfZuSkli2DYiLq555a0+Tn6Ni7shw9DrrXYkdPiOeze8Esus701nYxVOmRuD9xiZaJTH6t9xsR+JjXAkOMV3KOrzXl2G9OuPhpUWvV5Cb7cin2/8gMa7qfuwVvkqUoeZ/ssp6KvS7SqsaqsaOuKz2wZhjAB0ovJTkj0xH2dj0Ov2hIoyX9eT1TDFbT+HMLIpaOeKy0uuW49QVKUmINb3vcyfdaNQymz6DLrOqnJ5np466AxBUr8CiiVFivCtTx3ZG7axD46ojPdWZKXMjSLysKakUefsUkp5a+sPq5VNI9Fnr9HQyHU8agkPyCQ3PISgkny/3/Gm2zKvLjnPykBdTh912jbVYR2G+ioQYFQkxcOqwG5/sOsGD/VLY/E6Q1WLQFSm5fNH0uZ07rqFxmzwefT6ZlVMq/71Xlfxra2nbJZvXn69/44XtgOkmspZdf3UkiZEFubhc+4t+7969DBgwgDlz5tCjRw88PT3ZtGkTS5curfR21Gp1uSOJVpyRF+bE0Kl7OpP7NyUpruy6NG565q87RZFWyezh4WbtaaxB7WIoU30x6BUobNRKztlFR1BIHr//aF7Ny8owJZSt26fh5aOt0kshypaOGC7pzKYZLulRBJTdCQo3ZfF8HYbTOhyHmdpfOA7Q4NjL/Kw6f0g6TmNdUXWyzKU1hbK4HVY5GjQ1NZ5PS7ZOY+zCAgcKCxxwc9dyW/srrHm3GYmXNaSlqGndLpnos6bL1S6aIho3S+enb0KtEpfpeMrn9x+c+PMXf3752nzMlfe+3s9Hb4azb5ffNdZgOwqlEUcn2/4CKhTYPAaA7n1TyUhxYN922w0dIG6dJEYWFB4ejouLC9u3b+f55583m/fXX39Rr149pk+fXjItJibGbBknJyf0ess2TAXT5bN7+qQyZ0Q4+TlKvP1M7WJysx3QFipNSdH6Uzi7GFj8SgM0bno0bqa4MtMcMRgsfx35722e9HspkSvxTsSccaZBi3weH3GFXzdbp1o0bPwZ9u2qxZUEZ3xrFTJwdDQGvYKdP5sSowf6XCY22pXMdEeats5k5OQzbPm0LvExVdcg1PEpFwpeyEC7IReHe5wxRBWh+z4f9UT3kmV0OwpReClQBKgwnNeZ2hPd5YRDe1PiofRVQjkNrhUBKrMebjdryPiLRPzhzZUENRpXPd16JdOqfSYzhjUnKCSfbr2TObDLh6wMB+o3zmXktAsc3+/BxdOWbTh7W/srKBQQF+tKUJ1cho2JJC7WnW0/1gUUfPtFGP0Gn+VynBuJlzU8O/wUaSnO7P2z4rcRqIxhE86yb6df8fGkZeALV4+nALLSncptcJ2c4ExSvOWqagDOGj3BoaUVyMCQQsKa5ZGd4UBWuor+Lyby9zZP0q444uGjo/egZPwCivjzR8tdmv23odMSOPC7O8nxTri46bnnsQxadcph+jNhVouhPAqFke590/jtSx+rdUq5VfY0wKM9kcTIgpydnZkyZQqTJ0/GycmJzp07k5yczMmTJwkPDyc2NpZNmzZxxx138OOPP/LNN9+YvT40NJQLFy5w5MgR6tSpg7u7+y1WhsrX+1nTvWXe3HTKbPrSifXZ9lUtGjbPpWlb05n9ml3HzJYZfFdrkuIt32vm3ZkhDJ50mbELLuHlZxrg8adP/di4wjI/XP/mF1DIlDeO4+FVRGa6EycPe/HKs3eQlW5KOGqH5jL4pXO4exZx5bILmz8O5ZsNdas0BlVTR9TzPdB+kEvRujwUgSqcXnTDoXtpBciYqkf7dj7GdAMKXyUOPZxxHGy9HkNevkVMXHQGH38tudkOXDitYcaw5hz+yxu/wELadszg0UGXcdboSU5Qs/tXXza9a/nLHxq3IoaMisKvVgHZWY7s2RXE+g+aotebksT/bWyIs4ueFycfxdWtiMhjPsyccKfFxjDy8y9kyqKTpcfTIU9eGdiu5HiylUat8lj8xZmS5yNfiwNg25e+rHy1LiENCrj/yVQ8vHVkZzhw5qiGiU82JuaMZRO2f/Ly0zFpZSw+/jryslVciHJm+jNhHPrD/cYvtqC2XbIJqFPEL5urQaNrcV0Ko7G6XgWsHgwGAwsXLuSjjz7i8uXLBAUFMWrUKKZNm8bkyZNZvXo1hYWF9OzZkzvvvJPZs2eTkZEBmHqbDRgwgO3bt5ORkcGaNWsYMmTIDbeZlZWFp6cn96ifxkFhPw0AjUW6Gy9kZSpf+/sSc/7K1hGUld+z4MYLWZnSz/4+O2N2jq1DKMOQYZsG5tdj1NnfdwEK+6pu6IxF7DRuITMz86banl7P1d+I0E9motRYrsG6Ia+Ai8Net8h7sCRJjP6DJDGqOEmMKkYSo4qRxKhiJDG6MUmMbEcupQkhhBA1kPRKK5+MfC2EEEIIUUwqRkIIIURNZGc3kbUXUjESQgghhCgmFSMhhBCiBpJxjMonFSMhhBBCiGJSMRJCCCFqqmraDsiSpGIkhBBCCFFMKkZCCCFEDSRtjMonFSMhhBBCiGJSMRJCCCFqIhnHqFySGAnrMehtHUEZxgL7uwdYfvciW4dQxvPHIm0dQhkfNgm3dQhlKBzt7ytV4WK9O99XlDE729YhlGVv96+wt3hqEPv7KxZCCCGEFSiKH5Zcf/UjbYyEEEIIIYpJxUgIIYSoiaSNUbmkYiSEEEIIUUwqRkIIIURNJBWjclUoMfruu+8qvMJHHnnkpoMRQgghhLClCiVGjz76aIVWplAo0Ovtr0u2EEIIIf7FqDA9LLn+aqhCiZHBYLB0HEIIIYQQNndLbYwKCgpwdnauqliEEEIIYSVGo2XHkayuY1RWuleaXq/n9ddfp3bt2ri5uREdHQ3AzJkz+eSTT6o8QCGEEEIIa6l0YjR//nzWrl3L4sWLcXJyKpneokULPv744yoNTgghhBAWYrTCoxqqdGK0fv16PvzwQwYMGIBKpSqZ3rp1a06dOlWlwQkhhBBCWFOl2xjFx8fTsGHDMtMNBgNFRfZ380shhBBClEN6pZWr0olRs2bN+PPPP6lXr57Z9P/973+0bdu2ygKrjrp160abNm1YsWKFrUOplBbts3hyRCLhLXLxDShizohw9m7zLpnv5VfEsCmXuK1LJq4eek7sd+fd2fW4fNF6De/7jk2i88OZhDQsRFugJDJCwyfzg4g7b70YevZPoGf/BAJqFwIQc1bDZ++GEPGHD/61C1j3e0S5r5v/chN2b/Wr8nieHh1P5x7p1AnLN+2TQ+6sXhRC/AXzu6k3aZvN4AlxNGmTg0EP56NcmTG4CdrCWx/43qCHg6u8OfedG3nJKjT+eho/nk3bFzJQFH8nRqz05vyPruQmOqB0NFKreSF3jE/Hv3Wh2bpid7hw8B1v0k47oVIbCbqjgB7vJd1yjAAtOmTz1Kgkwlvm4xtYxOxhYez9xatkfueH0uk5MIXwVnl4eOsZ3b0J0ZGaKtl2efqOvmz67Bpc/ezcWL0ohLjo0s/O0cnAiBmxdO2ViqOTkYN/ePL2rFAyUhwtEpO9Hd/X0qJDDk+9kEx4yzx8A3XMfi6UvVs9rbb98vQalELPQakEhGgBiDntzMblAUTs8LBpXOLmVDoxmjVrFoMHDyY+Ph6DwcDXX3/N6dOnWb9+PT/88IMlYhQW5uxi4EKUhl+/8GPWB+f+NdfIax+cQadTMmdEOHk5Kh4flsjCT08x4oGWFOaryl1nVWvVMZfv1/px5ogGlYORIVMTWPB5NMO7NrZaDCmJTqxZEkp8jAsKBdz/aBKz3oli7GNtiIvW8Ezn9mbLP9Q3kSeGxRPxh/c11nhrWrbP5vsNAZw55opKZWTIpDjmrz/FyO6tSvZJk7bZzFt7ms3vBfPenHrodQrCmuZVWW+Rox96EfmZB/csuoJ3eBHJJ9TsmlYLJ3cDLQZlAeBVX0vnWQV4hBShK1RwfI0nPw4Not9vsbj4mIYCif7FlT9n+HHH+DSC7yzAqIe0M07X23SlOGsMREdq+GWzH699HF3u/JMH3PjjB29eeTO2yrZ7LS07ZPP9Bn/OHHNF6QBDJ15i/vrTZn9TI2fG0v6eDOaPCSc3W8WYOReZ+d5ZJjzVzCIx2dvxfS3OGgPRJ5355XMfXlt90arbvpbkBEdWLwgi/oIahQIeeCqN2WsuMqZ7I2LO2G/PbYXR9LDk+qujSidGffr04fvvv2fu3Lm4uroya9YsbrvtNr7//nseeOABS8Qoimm1WrMG71UlYpcXEbu8yp1Xu34BTW/LZWT3FsScNZ1Br5oRyuf7D3PPI6ls3exf5fGUZ/qAMLPnS8fV5YsTJwlvlc+JfW5WiWHfDl+z5+tWhNKzfyJN2mQTe86V9BTzz6bT/an8+bMfBXmWSdxmDm1i9nzZpDA2RRwivEUuJw6YzlRHzojh27UBfPl+cMly/64o3Yqkw2pC78+l7j35ALjX0XHuBzeuHFOXLNOwd67Zazq+msrp/3mQdsqJ2p0KMOhg7zxfOkxOo8lT2SXLeTesukvzETs8idhx7arC9q9Mn21AncJrLlOVZgxpbPZ86aQwNh88THjLXE7s90DjrqPH08ksGteAo3s9Spb5ePtxmrTJ4dSRqj/m7e34vpaIHR52V4nZt8382Fq7KIheg1Jp0i7XrhMjUb6bqqV36dKFbdu2ceXKFfLy8ti9ezfdu3ev6tjsWm5uLoMGDcLNzY2goCCWLl1qNr+wsJCJEydSu3ZtXF1d6dChAzt37jRbZvfu3XTp0gUXFxdCQkJ46aWXyM0t/REJDQ3l9ddfZ9CgQXh4eDBixAhrvDUzjk6mlP+fl12MRgVFWiXNb8+xejxXuXqYRljPzrDul/JVSqWRrg8n46zRc+pw2S/phs1zaNAsl1/+F2C1mDTuxfsk03S+4+lbRJO2uWSmOrL0y5N8tv8giz+PpPnt2ddbTaUEtC0kfq8LGRdMl3dSo5xIOqgm5O78cpfXayFqswdO7np8m5guO6ScVJOb5IBCaeSrPrXZ0LkuPw8LJO2MZS4Z2aOSzy7D9NmFt8jD0cnI4d2lx1ZctAtJ8U40vc3yf3f2eHxXF0qlka590lFrDERFuNo6nOuTXmnluukBHiMiIoiKigJM7Y7atWtXZUFVB5MmTWLXrl18++23+Pv78+qrr3Lo0CHatGkDwNixY4mMjGTTpk0EBwfzzTff8OCDD3L8+HHCw8M5f/48Dz74IPPmzWP16tUkJyczduxYxo4dy5o1a0q2s2TJEmbNmsVrr712zVgKCwspLCw9083Kyqqy93npvDNJ8U4MnRzHyldDKchX8thzidQK1uLjr62y7VSGQmFk1Jx4TuzXEHO66qofFRHaKJdlm47ipDaQn6fi9TFNiT1fti1KjycTiT3nQlQ5PyqWoFAYGTkzhpMRbsScMcUTFFIAwICX4/l4YV2iIzXc93gKCzdEMeqhVlXSRqzNyAy0OUq+eLAOChUY9XDHK+mEP2L+4x2zQ8P2V/zR5SvQ1NLz8JpEnIsvo2VdMn0NHVzlzZ3T0nCvXcSx1V58PzCYvr9ewtnrvz3yvkJhZNTMGE4eKP3svGtp0RYqyM02/4rOSHHEu5blOrnY6/FdHYQ2yWfF9+dM+y5XydxhocSelWpRdVTpxCguLo7+/fuzZ88evLy8AMjIyKBTp05s2rSJOnXqVHWMdicnJ4dPPvmETz/9lPvuuw+AdevWlbz32NhY1qxZQ2xsLMHBpksYEydOZOvWraxZs4YFCxawcOFCBgwYwLhx4wAIDw9n5cqVdO3alffee69kRPF7772XCRMmXDeehQsXMmfOHIu8V71Oyeujwnll0QX+d/QQeh0c3uPJ/h2eJY1rrW3sgnjqNSlgwqNle0daWtwFF8Y82hZXdz139UhhwqIzTB7YyuzHw0mtp1uvZD5/N8RqcY2Ze5HQRnlMfLq0/YmiuMj30+f+bPtfLQDOR7rSplMm3Z+6wto3697yds//5Mq57924d+kVfMK1pESp2bvAF1d/HY0eL02Ogjvk88S3cRSkqzj1hTvbx/nz6JfxuPgaSs4q247KIKyHqWLa7Y0rbOxSj+itrjTrV3UVLns0Zm4MoY3zLdZ2qDLs9fiuDuLOq3nhgUZo3PV06ZXJxLdimfR4Q/tOjqRXWrkqfSnt+eefp6ioiKioKNLS0khLSyMqKgqDwcDzzz9viRjtzvnz59FqtXTo0KFkmo+PD40bm9oNHD9+HL1eT6NGjXBzcyt57Nq1i/PnzwNw9OhR1q5daza/R48eGAwGLly4ULLe22+//YbxTJs2jczMzJLHpUuXqvT9njvhypieLXi81W0806EtM4Y0xsNbR+Il9Y1fXMXGzI+jwwNZTH6yASkJVd/e6kZ0RUoSYl04d9KNtctCiT7lSp9Bl82WuevBVNTOBrZvsc5lhtGzL9L+ngymPNOUlMTSzyTtiulSVOxZ86pa7DkX/IOrptq3b7EvbUZk0LBXLj6Ni2j0aA4th2Ry+AMvs+UcNUY86+kIaFNI1wUpKFRw6ktTtUFTy3QZybthaUwqJ3APKSLn8i3dtcjuvTDnIh3uzWBy/6akJJYez+nJTjipjbi668yW9/IrIj3ZcpcY7fH4ri50RUouX1Rz7riGNQuDuBDpwqPPJ9s6LHETKv2ts2vXLv7666+SJACgcePGrFq1ii5dulRpcNVVTk4OKpWKgwcPmg2CCeDm5layzMiRI3nppZfKvL5u3dIzeVfXG1+jVqvVqNWWT1Lyisv6waEFhLfMZf0ya1YHjYyZH0+nBzOZ9GRDkmyQlJVHoTR1q/6nHk8ksu93HzLTLd1Gxsjo2TF06p7GlGeakRRnfmaaFKcmJdGROmHm7X3q1C/gwDUa21eWrkCBQmnekECh5IZtC4wG0GtNZ5N+LQpRORnIuOBE4O2mS8KGIsiJd8A9WHe91VRjRl6YE0On7ulM7t+UpDjz4/nsCQ1FWgVtOmexZ6sPAHXC8gmorSXqkHU6G4Ctj+/qTaEobaNptyzdDsjO3/61VDoxCgkJKXcgR71eX3LZ6L+uQYMGODo6sm/fvpIkJj09nTNnztC1a1fatm2LXq/nypUr10wWb7vtNiIjI8sdLNPanDV6gusVlDwPDCkkrGku2ZkOJF9W0+XhNDJTHbhy2YnQJvmMnhXD3l+9OfSn9cYOGbsgnnseS2f20Prk5yhL2lnkZqvQFtz6eDwVMWT8RSL+8OZKghqNq+lyQqv2mcwY1rxkmaC6+bS4I4tZI5pfZ01VY8zci3R7JJW5IxqZ9omfqeKSm+1Q3FhewVcfBTFwXDwXTmk4H+nK/Y8nU6dBPvPHhFdJDPXuyePwe964BenwDi8iJdKJ42s8afyk6fJXUZ6Cw+95Ue++PDS19BSkKzm50ZO8JBVhD5kutTm5GWnaP5uDK03rcQvWcfRj07EV9lDuNbddGc4aPcGhpe3wAkMKCWuWR3aGA8mXnXD30lErWItvoOm4Cmlg+ntIT3a0SIVmzNwY7umTypwR4eV+dnnZDvzyRS1GzIglO8OBvBwVL8yOIfKgm0V6pIH9Hd/X4qzRE1y/tLoYGKIlrHk+2RkqkuOtX0UGGDotgQO/u5Mc74SLm557HsugVaccpj8TduMXC7tT6cTozTff5MUXX+Sdd94pucwTERHByy+/zJIlS6o8QHvk5ubGsGHDmDRpEr6+vvj7+zN9+nSUStMPdKNGjRgwYACDBg1i6dKltG3bluTkZLZv306rVq3o2bMnU6ZM4c4772Ts2LE8//zzuLq6EhkZybZt23j77bet+n4atcxl8abS27mMnGkax2Xb//xYOikMH38tI6bH4uVXRFqyI9u/9uOzVdZNgnsPSQVgydfnzaYvGRfCti98rBKDl28RExedwcdfS262AxdOa5gxrDmH/yodx6X7E0mkJKo5tNvL4vH0GngFgMWbosymL50Uxm9fmdoUbVkThKPayIjpsbh76YiO0jB9UFMSYqum3UOnmSlEvOXD7jl+5KeaBnhs2i+L28akA6BQQUa0E2e+cacgXYWzt55aLQvp/VkCPuGlJ1h3Tk5FqTKyY1ItdAVK/FsX0HN9AmrPqml43ah1Hm9+ebbk+ajZ8QD8+oUPS8eHcucDmUxcHlMy/9X3LgKwYVkgny6r+mO997Omz+7NTea3UVo6sT7bij+7D16vi9EIM987WzrA48x6ZdZVVezt+L6WRq3zefOr0u+BUXNMl/p+3ezN0lduvd3czfDy0zFpZSw+/jryslVciHJm+jNhHPrD3SbxVJhUjMqlMBpvPNSbt7c3in+0tM3NzUWn0+HgYMqrrv7f1dWVtLQ0y0VrR3Jychg9ejRff/017u7uTJgwgR9//LFk5OuioiLmzZvH+vXriY+Px8/PjzvvvJM5c+bQsmVLAA4cOMD06dPZu3cvRqORBg0a0LdvX1599VXA1F1/3LhxJQ20KyorKwtPT0/uUT+Ng8J+yt3GQuuMEVMZSnc7/OKyw1vrPH8s0tYhlPFhk6qpelUlhaP9tYlSWGDss1tlyP5vN6ivCjpjETv5lszMTDw8qrb339XfiJClr6N0sVzjcEN+AZcmzLTIe7CkCiVG69atq/AKBw8efEsBiVsniVHFSWJUMZIYVYwkRhUjidGNWSUxWmKFxGhi9UuMKvRXLMmOEEIIIWqCWzq9KSgoQKs17/ZbnbJCIYQQosaScYzKVenuPLm5uYwdOxZ/f39cXV3x9vY2ewghhBBCVFeVTowmT57M77//znvvvYdarebjjz9mzpw5BAcHs379ekvEKIQQQogqpjBa/lEdVfpS2vfff8/69evp1q0bQ4cOpUuXLjRs2JB69eqxceNGBgwYYIk4hRBCCCEsrtIVo7S0NMLCTINWeXh4lHTPv+uuu/jjjz+qNjohhBBCWIbRCo9qqNKJUVhYWMm9vJo0acIXX3wBmCpJV28qK4QQQghRHVU6MRo6dChHjx4FYOrUqbzzzjs4OzvzyiuvMGnSpCoPUAghhBDCWirdxuiVV14p+f/999/PqVOnOHjwIA0bNqRVq1ZVGpwQQgghhDXd8jCt9erVo149y92/RwghhBBVT4Fle45Vz1GMKpgYrVy5ssIrfOmll246GCGEEEIIW6pQYrR8+fIKrUyhUEhiZEeMWi3G6jqQhJX88+bIdiOk6u/mfqs+aml/x1HTA3pbh1DG6c72dzwZ/3V3AnENdvddoLB8ry4Z+bpcFUqMrvZCE0IIIYT4L7O/W0ELIYQQwvIsPdaQ/RWaK6TS3fWFEEIIIf6rpGIkhBBC1ERSMSqXVIyEEEIIIYpJYiSEEEIIUeymEqM///yTgQMH0rFjR+Lj4wHYsGEDu3fvrtLghBBCCGEZCqPlH9VRpROjr776ih49euDi4sLhw4cpLCwEIDMzkwULFlR5gEIIIYQQ1lLpxGjevHm8//77fPTRRzg6OpZM79y5M4cOHarS4IQQQghhIUYrPKqhSidGp0+f5u677y4z3dPTk4yMjKqISQghhBDCJiqdGAUGBnLu3Lky03fv3k1YWFiVBCWEEEIIC5OKUbkqnRgNHz6cl19+mX379qFQKLh8+TIbN25k4sSJjB492hIxCiGEEEJYRaUHeJw6dSoGg4H77ruPvLw87r77btRqNRMnTuTFF1+0RIxCCCGEqGKW7jlWXXulVToxUigUTJ8+nUmTJnHu3DlycnJo1qwZbm5ulojvP6Fbt260adOGFStW2DqUCvMN1DLs1QTuuDcLtbOByxfVLB1fl7PHNDaJp9egFHoOSiUgxHSn8JjTzmxcHkDEDg+bxPPU8EsMnXCRLeuC+XBhAwAcnQwMnxLN3T2TcXQ0cGiPN+/MaUhGqlOVbbdFqxSe6H+Who0y8PUr4PXpHdi7O/gfSxgZ+FwUD/a6iKtbEZHHfXlnWRsux5v+Pv0Dc+k/6DStb0vG26eAtBQXft8WwuYNjdHpbn1Ys76jL9O5Rzp1GuSjLVASeciN1YtCiIt2AcDNU8ezr8TRrksWtYILyUx1ZO82b9Ytq01edtUMxH+ul46ihLLTvZ9SEDhVVfLcaDRy6SUDuX8ZqbNEifs9pe8/qp2uzOuDFyjx7FE1Q789PTretJ/Cru4nd1YvCiH+gkvJMi/Ou0Dbzpn4BGgpyFUV78u6JfuyqtnDZ1cRLTrk8NQLyYS3zMM3UMfs50LZu9XTatu/kafHJDHs1QS++diP91+rY+twxE246aPZycmJZs2aVWUswk64eepYtuUsx/5yZ8bAMDJSHahdv5CcTNWNX2whyQmOrF4QRPwFNQoFPPBUGrPXXGRM90bEnHG2aizhLbJ5qG8C0adczaaPmHaeO7qms/DlpuTmqBg98zwzVkUx8ZnWVbZtZxcdF8558utP9Zg5b1+Z+U/2P8sjj0ezbOFtJCa48uywSF5fsodRg++nSKsipG4OSqWRVUvakBDvRr36Wbw06TDOzjo+ea/lLcfXskM232/w58wxV5QOMHTiJeavP82IB1pSmK/CN0CLr38RHy0IIfasC/61tbw4/wI+AVrmvxB+y9sHCN2gAn3p88LzRmJfMOB+v8JsubTPjKDgmoJeU+LWqXQBpXuVhAdAy/bZfL8hgDPHXFGpjAyZFMf89acY2b0Vhfmmv7NzJ1zZ8a0vVy6rcffSMfBl0zJD726DwXCdwG82Jjv47CrCWWMg+qQzv3zuw2urL1ptuxXRqHUePQemEh1p3e+km2ZUmB6WXH81VOnE6J577kGhuPab/f33328pIGF7T79whZTLTiwdX7dkWtIltQ0jgn3bzM8I1y4KotegVJq0y7VqYuSs0TN5yWlWzgyn3+hLJdM1bjq6P5HE4kmNObrPC4Dl0xrx4c8Hadw6i9NHq6ayFbEvkIh9gdeYa+TRp86xaUNj/t5jqiItXXA7n33zEx3vSuCP3+twcH8AB/cHlLwiMcGVrzdn83CfC1WSGM0Y0tjs+dJJYWw+eJjwlrmc2O9BzBkN8/7xI5oQ68y6JSFMWnYepcqIQX/rX6QO3ubrSFlrwLEOaNqVTi84bSTtUwP1N6g420P/71UAoHIHBz/LfLHPHNrE7PmySWFsijhEeItcThwwHSs/b/IvmX8lXs26ZSG899NxAuoUkhBb9ce8PXx2FRGxw8NmleLrcdbomfJ2DCsmh9D/pURbhyNuQaXrwm3atKF169Ylj2bNmqHVajl06BAtW976F2t1l5uby6BBg3BzcyMoKIilS5eazU9PT2fQoEF4e3uj0Wh46KGHOHv2rNkyH330ESEhIWg0Gh577DGWLVuGl5eX1d7Dnd0zOXNMw/QPLrD56Ane+eU0Dz2TarXt34hSaaRrn3TUGgNREa43fkEVemHWOfbv9ObIXm+z6eHNc3B0MnLkr9LpcRc0XIlX07RNtlViCwzKw8e3kCMHa5VMy8t15HSUN02bp13zda6uOnKyqu5y3z9p3E1JR3bGtc/BXN115OWoLPLDaiwykvWTEa8+ypITOkO+kfjpegKnKK+b+CQuMnDmXh0XBunI+NaA0Wi5BhMl+ymz/P2kdtHT/clkEmLVJCdY5rO6Zkw2+uyqm7EL4ti/3YPDf1ZhadHSpFdauSpdMVq+fHm502fPnk1OTs4tB1TdTZo0iV27dvHtt9/i7+/Pq6++yqFDh2jTpg0AQ4YM4ezZs3z33Xd4eHgwZcoUHn74YSIjI3F0dGTPnj2MGjWKRYsW8cgjj/Dbb78xc+bM626zsLCwZARygKysrFt6D0F1tfR6NoWvP6rFppUBNGqTx+i5cRQVKfjtS59bWvetCG2Sz4rvz+GkNpCfq2TusFBiz1qvWnT3w1do2CyHl59sW2aedy0tRVoFuf9qa5Ge6oi3n9Yq8Xn7FJi2mWa+TzLSnUvm/VtQ7Rx6P36ej99rUeXxKBRGRs2M4eQBN2LOlN82zcO7iP4vXubnTbXKnX+rsncY0eeAZ+/SH+6kZQZcWilw73bt80K/UUpc71CgdIacv40kvmHAkKfEp3/VJwAKhZGRM2M4GVF2P/UcmMSwKbG4uBq4dN6Z6YOaoCuy/C0u7eGzq066PpJOwxb5vNizka1DEVWgylrMDRw4kPbt27NkyZKqWmW1k5OTwyeffMKnn37KfffdB8C6deuoU8fUAO9qQrRnzx46deoEwMaNGwkJCWHLli089dRTrFq1ioceeoiJEycC0KhRI/766y9++OGHa2534cKFzJkzp8reh0IJZ4+5sOYN0+WY8yc1hDYuoOezKTZNjOLOq3nhgUZo3PV06ZXJxLdimfR4Q6skR36BhYx8NZrpz7WkSPvfuPeyr18+ry/+i907a/PLD/WrfP1j5sYQ2jifCU+V3xZR46Zn7uozxJ514dMVtat8+wAZ3xpx66TAsZYpocneZSD3gJGwz67fXq7W8NLP2LmJAmO+kdQNBnz6V/1nP2buRUIb5THx6bL7ace3vhze7YlPLS1PDE9g2qqzTHiqucWPQXv47KqLWsFaRs+NZ1r/BhQVVq/vBumVVr4q+xT37t2Ls3M1aXBmIefPn0er1dKhQ4eSaT4+PjRubLp2HxUVhYODg9l8X19fGjduTFRUFGAaWbx9+/Zm6/3383+bNm0amZmZJY9Lly5dd/kbSbviUKbdzqVzzvgHF93Sem+VrkjJ5Ytqzh3XsGZhEBciXXj0+WSrbDu8eTbefkWs+voQ35/4k+9P/Emr9pk88uxlvj/xJ+kpjjg6GXF1N+/N5O1bRHqKdS59XK0U/bs65OVdUKaK5OObzxsr/iTqpA8rl5StgN2qF+ZcpMO9GUzu35SUxLLv38VVz7y1p8nPUTF3ZDj6KugR929FCUZy9xvxerS0ypN7wEhRHJzupieqvY6o9qbPK26ygZgRZXuiXeXcQoEuCQzaqv2mHz37Iu3vyWDKM01JSSzbji8v24HLF505ccCD+WPCCWlQQKce174sWhXs4bOrThq2zMO7lo53tp7mp5gj/BRzhNadcunzXAo/xRxBqaym2UENVumK0eOPP2723Gg0kpCQQERExA0v+QjLUKvVqNVV1zg68oArIQ0KzabVDivkSrzjNV5hGwoFODpZ50vnyN9ejO59m9m0VxacIS5aw5cf1yE5QU2RVkGbjhns+dUPgNr18/CvXUjUEeu0OUhM0JCWqqb1bclEn/MCwEVTROOm6fz4bemo9L5+pqTo7Blvlr/RDmOV9hwx8sKcGDp1T2dy/6YkxZU9LjVueuavO0WRVsns4eEWq35kfGdA5Q1ud5W+P78hSrweNV/uQl89AeOVuN197f1QeAaUHqB0qqp9ZWT07Bg6dU9jyjPNSIq78UmlQgFY9Ji3n8+uOjmy250R95o3XJ+wLJZL55354h1/i/QgrDKWbgdUTXPCSidGnp7mvYOUSiWNGzdm7ty5dO/evcoCq44aNGiAo6Mj+/bto25dU4+u9PR0zpw5Q9euXWnatCk6nY59+/aVXEpLTU3l9OnTJUMfNG7cmAMHDpit99/PLe3rj/xZ/u0Z+r2YxB/fe9G4TR4PD0hlxWTbjckxdFoCB353JzneCRc3Pfc8lkGrTjlMf8Y6t6HJz3Ug5qz5n0tBvoqsDAdizpoagP/6VQDDp0STnelAXo6KUTPOE3nYvcp6pIGpu35w7dK2fAFBeYQ1zCA7y4nkKxq2fNmQfoNOcznOjaREDc8+F0VqqjN7dwcBxUnRW39yJVHDJ++2wNOrNAH+d1XpZoyZG8M9fVKZMyKc/BxlSfuq3GwHtIVK0w/r+lM4uxhY/EoDNG56NG6mRr6ZaY5V9iNiNBjJ+M6IVy8FCofSdTr4KXDwK7u8YyA41S6+3PaHAV0quLRUoFRD7t9GUlYb8H226n7gxsy9SLdHUpk7olG5+ykwpIC7e6Vy6E8vMtMc8AvU8vSoy2gLlBzY6VVlcZjHZB+f3Y04a/QE1y9ttxcYoiWseT7ZGSqS461Tnf2n/FwVMafNx5YqyFOSnV52uqgeKpUY6fV6hg4dSsuWLfH29r7xC2oYNzc3hg0bxqRJk/D19cXf35/p06ejVJrOqsLDw+nTpw/Dhw/ngw8+wN3dnalTp1K7dm369OkDwIsvvsjdd9/NsmXL6N27N7///js///zzdYdIqGpnjmqY+3x9hk5NYMC4RBIvOfH+a7XZ8Y3t2hd5+emYtDIWH38dedkqLkQ5M/2ZMA79YT89QD5c2ACjIZrpb0Xh6GTg4G5v3p3bsEq3Ed44nUVv7S55PmLscQC2/VyX5W+043+fh+PsouPFiYdxcyvi5HFfZk3qRJHW1Kam7e1XqF0nl9p1ctnw1VazdT/c9bFbjq/3s1cAeHPTKbPpSyfWZ9tXtWjYPJembXMBWLPrmNkyg+9qTVJ81VQ+c/cZ0SWCZ5/KVzQUDpD+pYEry8BoBKcQCBivxOuxqvsb7DXQtJ8Wb4oym750Uhi/fVULbaGSFndk8+jQRNw89GSkOHLigDvjn2xGZqplKrf28tndSKPW+bz51fmS56PmXAbg183eLH2l7rVeJspj4TZG1bVipDBWsg+qs7MzUVFR1K9f9Y01/wtycnIYPXo0X3/9Ne7u7kyYMIEff/yxZOTr9PR0Xn75Zb777ju0Wi133303q1atIjy8dHyQjz76iDlz5pCWlkaPHj24/fbbefvtt0lIKGc433JkZWXh6elJN8WjOCjs6PKXBbs73yyVh/2Nh0JAOSUNGzPExts6hDKa/FX++EO2dLqz9UaArihLDjNws4yFhTdeyNqsePJZETpjETuNW8jMzMSjir+nrv5GhM1cgMqCbYP1BQVEv/6qRd6DJVX6r7hFixZER0dLYnQNbm5ubNiwgQ0bNpRMmzRpUsn/vb29Wb9+/XXXMXz4cIYPH272vGHDqq08CCGEqOGkjVG5Kl1nnjdvHhMnTuSHH34gISGBrKwss4e4dUuWLOHo0aOcO3eOVatWsW7dOgYPHmzrsIQQQoj/vApXjObOncuECRN4+OGHAXjkkUfM2r0YjUYUCgV6vf2Vt6ub/fv3s3jxYrKzswkLC2PlypU8//zztg5LCCHEf4lUjMpV4cRozpw5jBo1ih07dlgyHgF88cUXtg5BCCGEqJEqnBhdbcDXtWtXiwUjhBBCCOuQka/LV6k2RtbsMi6EEEIIYW2V6pXWqFGjGyZHaWmWHa5eCCGEEMJSKpUYzZkzp8zI10IIIYQQ/xWVSoz69euHv7+/pWIRQgghhLVIr7RyVbiNkbQvEkIIIcR/XaV7pQkhhBCi+pNeaeWrcGJkMBgsGYcQQgghhM3Z3x0PRdUxWvoCcvVn1GptHUIZxotxtg6hWoi63f5G2f/q0m5bh1DGE3XutHUIwp7JT0QZlb5XmhBCCCHEf5VUjIQQQoiaSHqllUsqRkIIIYSwK2+88QYKhYJx48aVTCsoKGDMmDH4+vri5ubGE088QVJSktnrYmNj6dmzJxqNBn9/fyZNmoROp6vUtiUxEkIIIWqgq73SLPm4GQcOHOCDDz6gVatWZtNfeeUVvv/+e7788kt27drF5cuXefzxx0vm6/V6evbsiVar5a+//mLdunWsXbuWWbNmVWr7khgJIYQQwmKysrLMHoWFhddcNicnhwEDBvDRRx/h7e1dMj0zM5NPPvmEZcuWce+999KuXTvWrFnDX3/9xd9//w3Ar7/+SmRkJJ9++ilt2rThoYce4vXXX+edd95BW4mONpIYCSGEEDWR0QoPICQkBE9Pz5LHwoULrxnSmDFj6NmzJ/fff7/Z9IMHD1JUVGQ2vUmTJtStW5e9e/cCsHfvXlq2bElAQEDJMj169CArK4uTJ09WeLdI42shhBBCWMylS5fw8PAoea5Wq8tdbtOmTRw6dIgDBw6UmZeYmIiTkxNeXl5m0wMCAkhMTCxZ5p9J0dX5V+dVlCRGQgghRA1krZGvPTw8zBKj8ly6dImXX36Zbdu24ezsbLmgKkAupQkhhBDCpg4ePMiVK1e47bbbcHBwwMHBgV27drFy5UocHBwICAhAq9WSkZFh9rqkpCQCAwMBCAwMLNNL7erzq8tUhCRGQgghRE1kpTZGFXHfffdx/Phxjhw5UvK4/fbbGTBgQMn/HR0d2b59e8lrTp8+TWxsLB07dgSgY8eOHD9+nCtXrpQss23bNjw8PGjWrFmFY5FLaUIIIYSwKXd3d1q0aGE2zdXVFV9f35Lpw4YNY/z48fj4+ODh4cGLL75Ix44dufNO021vunfvTrNmzXj22WdZvHgxiYmJzJgxgzFjxlyzXVN5JDESQgghaqJqNvL18uXLUSqVPPHEExQWFtKjRw/efffdkvkqlYoffviB0aNH07FjR1xdXRk8eDBz586t1HYkMRJCCCGE3dm5c6fZc2dnZ9555x3eeeeda76mXr16/PTTT7e0XUmMqojRaGTkyJH873//Iz09ncOHD9OmTRtbh3VTeg1KoeegVAJCTANixZx2ZuPyACJ2XL9XwX85pqdHx9O5Rzp1wvLRFiiJPOTO6kUhxF9wKVlm0WeRtLoz2+x1P37mz9sz6lssrhbts3lyZALhLfPwDShizvCG7P21dFC0CUuieeCpVLPXROz0YMbgxjaLCSCkYT7DpsbRskM2KgcjsWedeX1UQ5IvV7zcfSsGjk/g2QnmjTQvnVPzfNemFttmfo6Sz98MYd9WH7JSHKnfIpfn5lykYZtcADYvrcPu73xJveyEg5ORsJa5PDP5Eo1uyzFbz8HtXny5vA4xURocnQ00uzOLqZ+csUjMfccm0fnhTEIaFpqO+wgNn8wPIu687XoNteiQw1MvJJuOr0Ads58LZe9WT5vF829Pj0li2KsJfPOxH++/VsfW4VyXtXqlVTeSGFWRrVu3snbtWnbu3ElYWBh+fn62DummJSc4snpBEPEX1CgU8MBTacxec5Ex3RsRc8Y2X4i2jqll+2y+3xDAmWOuqFRGhkyKY/76U4zs3orCfFXJcj9/XosNy0u/DAsLLNu/wVmj50KUhl+/qMWsD8+Vu8yBnZ4sm1ianBUVKmwaU1DdApb+L4pfNtdiw/Jg8rJV1GuUj7bQun1BLp5yZmq/BiXP9TrL7pd3JzUg9rQLL711Dp8ALX98XYs5/Zuy4vej+AYVERyWz/PzLhBQ15SE/PBREK8PaMLbu4/g6Wu619PeH314f3IYz0yNpWXnLPQ6BbGnXW6w5ZvXqmMu36/148wRDSoHI0OmJrDg82iGd21sdtxbk7PGQPRJZ3753IfXVl+0SQzX0qh1Hj0HphIdadvu5uLWSGJURc6fP09QUBCdOnUqd75Wq8XJycnKUd2cfdvMz77WLgqi16BUmrTLtVliZOuYZg5tYvZ82aQwNkUcIrxFLicOlFatCgtUpKdY73OO2OlFxE6v6y5TVKggPdnROgFx45gGT4rnwA4vPlkYUjItIdb6x5Vej9X2S2G+gr9/8mHq6tM0L64q9p0QR8RvXvyyIYBnJsfR5THzyt6Q12LYvsmfmCgNre7KQq+D1a/V49kZMdzfP7lkuZBG+RaLe/qAMLPnS8fV5YsTJwlvlc+JfW4W2+71ROzwsGn1+lqcNXqmvB3Diskh9H+p4oMJ2lQ1a2NkLdJdvwoMGTKEF198kdjYWBQKBaGhoXTr1o2xY8cybtw4/Pz86NGjBwC7du2iffv2qNVqgoKCmDp1qtmdf7OzsxkwYACurq4EBQWxfPlyunXrZnaHYWtSKo107ZOOWmMgKsLVJjH8mz3EpHHXA5CdaX5ucc8jKWyKOMh7Px9jyKRY1M56W4RnptWd2Ww6eJiPfz/O2HkXcfeq3J2mq5JCYaT9vRnEX3Bm/vrTbDp4mBVbIunYPd3qsdSur+WzgydY+1ckU1bFUCu44vdSqiyDXoFBr8BRbTCb7uRs4NT+sj/yRVoF2zb6o/HQEdosD4Do466kJapRKmFij5YMu+025g1sQuwpy1WM/s3Vo/i4z7BNtciejV0Qx/7tHhz+093WoYhbJBWjKvDWW2/RoEEDPvzwQw4cOIBKpeKpp55i3bp1jB49mj179gAQHx/Pww8/zJAhQ1i/fj2nTp1i+PDhODs7M3v2bADGjx/Pnj17+O677wgICGDWrFkcOnTouu2VCgsLzW7Kl5WVdcvvKbRJPiu+P4eT2kB+rpK5w0KJPWvb8rC9xKRQGBk5M4aTEW7EnNGUTN/5nR9J8U6kXXGifpM8npscS52wAuaNbmT1GK+K2OXJnq3eJF5SE1SvkCGT45i37gyvPNYUg8Gyl47K4+WnQ+Nm4OnRCaxbUptP3gjh9q6ZzPzgHFP6Neb4PutUAk4ddmXJKy7EnVfj41/EwPGJLP3mLCPvbUJ+btX/6Lu4GWjcLpv/rahDnYZn8axVxO4tfpw56E5gaEHJchG/ebH8hXAK85V4+xfx2mdRePiYEtmk4qra5mV1GDIrBv+QQr77IIhZTzVj1R9HcPe2bBKuUBgZNSeeE/s1xFjw8l111PWRdBq2yOfFnrb7W78pUjEqlyRGVcDT0xN3d3dUKpXZ6Jrh4eEsXry45Pn06dMJCQnh7bffRqFQ0KRJEy5fvsyUKVOYNWsWubm5rFu3js8++4z77rsPgDVr1hAcHHzd7S9cuJA5c+ZU6XuKO6/mhQcaoXHX06VXJhPfimXS4w1tmhzZS0xj5l4ktFEeE582HzDs503+Jf+/eFpD2hVH3th4iqC6BTa5VASw63tfs5guRLmwdvdxWnXM5sge61+OUBS3xty7zYtvPjH9rURHamjWLoeeA5Ktlhj981LMhSgXTh3WsGFfJHf3zuCXTb7XeeXNe+mtc7wzoQHDb2+HUmUkrEUud/VJ4fzx0ktSLTplseSXY2SnObLtM3+Wjg7nje9P4Omnw1hcbHrixXg69kwDYOyy84y44zb2/uhL94FXyttslRm7IJ56TQqY8GhDi26nuqkVrGX03Him9W9AkZXbyQnLkE/Rgtq1a2f2PCoqio4dO6JQlJ6pd+7cmZycHOLi4oiOjqaoqIj27duXzPf09KRx4+v3IJo2bRqZmZklj0uXLt1y7LoiJZcvqjl3XMOahUFciHTh0eeTb/xCC7KHmEbPvkj7ezKY8kxTUhKv34Pq1BHTD15QvYLrLmdNiZecyUh1INhGMWWlO6ArUhB71rziEHvOmVq1LXcp60ZysxyIi1YTHFp444VvUmBoIa9/FcnGM/v5cP8hFv14Ap1OSUDd0s/CWWMgqH4hjdrlMGZpNEqVke3FCbeXfxFg3qbIUW0koG4hyfGW7c03Zn4cHR7IYvKTDUhJqB5tJa2lYcs8vGvpeGfraX6KOcJPMUdo3SmXPs+l8FPMEZRK+y2bXO2VZslHdSQVIwtydbVO+xe1Wl2pUT1vhkIBjk72dZRbNyYjo2fH0Kl7GlOeaUZS3I0rQA2K24akJdvPD4lfoBYPbx1pV6zXGPufdEVKzhzTUCfMPDGrXb+AK/G220/OGj3B9bRs/8ry+8VZY8BZYyAnQ8WRXZ48+2rsNZc1GhUlVYgGrXJxVBuIP+9M0/amBty6IgVX4pyoVdtSCZ2RMfPj6fRgJpOebEjSJesMp1CdHNntzoh7zU9eJyyL5dJ5Z754x98ml6zFrZHEyIqaNm3KV199hdFoLKka7dmzB3d3d+rUqYO3tzeOjo4cOHCAunXrApCZmcmZM2e4++67rRbn0GkJHPjdneR4J1zc9NzzWAatOuUw/ZmwG7/4PxrTmLkX6fZIKnNHNCI/R4m3n6m6kZvtgLZQSVDdAro9ksqBnV5kpTtQv0keI2fEcHyfOxdPaW6w9pvnrNGbVTkCQwoJa5ZHdoaK7AwHBo67zO6fvUlPdiSoXiHDpl3i8kU1B/+w3Lgv14sp+bKa/30QxLS3z3N8nztH97pze7dM7rw/g8l9m1xnrVVr+Mx4/t7myZU4R3wDdTw7IQG9AXZu8b7xi2/S4Z2eYITgBgUkXnRm/by61G6Qz719kynIU/LVytrc8UA6XgFastMc2bougLREJzr2MvVW07jr6T4wic1L6+AXrKVWnUK+fc90mb1Tr9TrbfqmjV0Qzz2PpTN7aH3TcV/LVLXKzVahtfBQFNfirNETXL+0uhgYoiWseb7p+LJBcp2fqyrT5qogT0l2etnpdkfaGJVLEiMreuGFF1ixYgUvvvgiY8eO5fTp07z22muMHz8epVKJu7s7gwcPZtKkSfj4+ODv789rr72GUqk0u/xmaV5+OiatjMXHX0detooLUc5MfyaMQ3/YrreFrWPqVdx+Y/GmKLPpSyeF8dtXtSgqUtC2cyaPDk3EWaMnOcGJ3Vt92PTO9duH3apGrXJZvPl0yfORs0yXUbd96cuq6aHUb5LH/U+k4OqhJy3JkYN/erJ+aW2KtJb7UbteTEsnhvHXL96sml6Pvi8kMHpODHHnTYM7noyw3vHlF1TEtHcu4u6tJzPNgZP7XRnXuxGZaZb7SszLVrHxjbqkJjjh5qXjzofSeGbKJRwcjRj0EH/OhZ1f1iIr3QF3bx0NW+cw76uT1G1ceuls0IxYVA5GVr7cAG2BkvC2OczeHIWbl2UaXvceYkq4lnx93mz6knEhbPvCxyLbvJFGrfN586vSeEbNuQzAr5u9WfpKXZvEJP5bFEajsZrmdPZlxYoVrFixgosXLwLQrVs32rRpw4oVK8yW27VrF5MmTeLo0aP4+PgwePBg5s2bh4OD6Qs5OzubUaNGsWXLFjw8PJg8eTKbNm3i3nvvZeHChRWKJSsrC09PT7rRBweFbS6ZVBdKZ/sbiM2oN9x4IYFRV2TrEMr46tJeW4dQxhN17rR1CNWDFU8+K0JnLGKncQuZmZl4eFRtp4SrvxFNxy5Apbbcd6C+sICot1+1yHuwJKkYVZFx48aZjTX073u8XNW1a1f2799/zfW4u7uzcePGkue5ubnMmTOHESNGVFWoQgghhLgGSYzszOHDhzl16hTt27cnMzOz5K7Affr0sXFkQggh/lOkjVG5JDGyQ0uWLOH06dM4OTnRrl07/vzzz2p97zUhhBCiupDEyM60bduWgwcP2joMIYQQ/3VSMSqXDPAohBBCCFFMKkZCCCFEDaQoflhy/dWRVIyEEEIIIYpJYiSEEEIIUUwupQkhhBA1kTS+LpdUjIQQQgghiknFSAghhKiBFEbTw5Lrr46kYiSEEEIIUUwqRv9lShUoVLaOopTBMncA/69RONnhjX/19vfZKZw0tg6hjCfqdrZ1CGUsuGB/N7Z9tX57W4cgQNoYXYNUjIQQQgghiknFSAghhKipqmlVx5KkYiSEEEIIUUwqRkIIIUQNJL3SyicVIyGEEEKIYlIxEkIIIWoi6ZVWLqkYCSGEEEIUk4qREEIIUQNJG6PyScVICCGEEKKYVIyEEEKImkjaGJVLKkZCCCGEEMWkYiSEEELUQNLGqHxSMRJCCCGEKCYVo+vo1q0bbdq0YcWKFbYOxaJadMjmqVFJhLfMxzewiNnDwtj7i1fJ/M4PpdNzYArhrfLw8NYzunsToiOte2fzvmOT6PxwJiENC9EWKImM0PDJ/CDizjtbZftPj46nc4906oTlm7Z/yJ3Vi0KIv+BSztJG5q4+zR3dMpk7Mpy923wsElPPZxLp2T+RgDqFAMScdeGzt0OI+MMbgIf6JtKtdwoNm+eicdPz5G3tyc227J98RfbTi/Mu0LZzJj4BWgpyVUQecmP1orrERZe3L2+dPe6n8iiVRgaOT+C+x9Pw9i8iNdGRbV/68tlbgYCiyrdn0MP2FbU5ssWP7GRHPAK03PZECve8eBlF8eYKc5X8siiEyG3e5KU74B1SSKchiXQYkFyynv2f1eLod75cPulKYY6KmUcP4uKhr/J4r+o1KIWeg1IJCNECEHPamY3LA4jY4WGxbVaEb6CWYa8mcMe9WaidDVy+qGbp+LqcPWbd78pKkTZG5ZLESOCsMRAdqeGXzX689nF0ufNPHnDjjx+8eeXNWBtECK065vL9Wj/OHNGgcjAyZGoCCz6PZnjXxhTmqyy+/Zbts/l+QwBnjrmiUhkZMimO+etPMbJ7qzLbf/S5RIvHA5CS6MSaJfWIv+iMQgH3P3aFWe+dYmyf1sSe06B2MRDxhxcRf3jx3CTrfG4V2U/nTriy41tfrlxW4+6lY+DLpmWG3t0Gg6HqEwB73E/lefqFJHoNSmbJuFBizjgT3jqPCUtjyM1W8e1q/yrf3h/vB7Fvoz9PLokmoFE+ccdc+WpyGM7uejoNTQLgp3l1Ob/Xg6eXn8e7TiFn//Dku1mhePgX0fSBDACKCpQ06ppJo66Z/LI4pMrj/LfkBEdWLwgi/oIahQIeeCqN2WsuMqZ7I2LOWOdE6d/cPHUs23KWY3+5M2NgGBmpDtSuX0hOpuW/m0TVk8TIirRaLU5OTrYOo4yIHZ5E7PC85vztX/kClJxx28L0AWFmz5eOq8sXJ04S3iqfE/vcLL79mUObmD1fNimMTRGHCG+Ry4kDpWeqYU1zeWJYAi/1acFn+w9bNKZ9v5tXotYtr0fPZ5Jo0iab2HMatqwNBqBl+0yLxvFPFdlPP28q/ZG/Eq9m3bIQ3vvpOAF1CkmIrfofNnvcT+VpdnsOe3/1Yv/vpr/FpDg19/RJp3GbXItsL+aQO00fyKDJvab37V1Hy7HvM4k76vqPZdy47fEUwu7MBqD9M8ns/9yfS0ddSxKjzs+Zkqjov90tEue/7dtm/l21dlEQvQal0qRdrs0So6dfuELKZSeWjq9bMi3pktomsVSKVIzKJW2MbsBgMDB58mR8fHwIDAxk9uzZJfNiY2Pp06cPbm5ueHh48PTTT5OUlFQyf/bs2bRp04aPP/6Y+vXr4+xs+qP93//+R8uWLXFxccHX15f777+f3NzSL7+PP/6Ypk2b4uzsTJMmTXj33Xet9n6rC9fiUn12hm3OyDTuxdvPLD23UDvrmbLiHO+8Fkp6inUTYKXSSNeeKThr9Jw6Yp0fqIoobz/9k9pFT/cnk0mIVZOcYPl9Zq/7CSAywo02nbOpXb8AgLCmeTS/I4cD1zlpuRX1bsvm/B4PUqJN30sJkS5cPOBOo26Z/1gmh6jtXmQmOmI0wvm97qRccCa8S5ZFYqospdJI1z7pqDUGoiJcb/wCC7mzeyZnjmmY/sEFNh89wTu/nOahZ1JtFo+4NVIxuoF169Yxfvx49u3bx969exkyZAidO3fmvvvuK0mKdu3ahU6nY8yYMfTt25edO3eWvP7cuXN89dVXfP3116hUKhISEujfvz+LFy/mscceIzs7mz///BOj0ZRab9y4kVmzZvH222/Ttm1bDh8+zPDhw3F1dWXw4MHlxlhYWEhhYWk1JyvLPr60LEWhMDJqTjwn9muIOW2Zdik32v7ImTGcjHAj5kxp+4ERM2KJPOTO379Zpk1ReUIb5bLsi+M4qQ3k56l4/YUmxJ6zjzYN19pPAD0HJjFsSiwurgYunXdm+qAm6Iosd55mz/vpqs3vBKBx1/Px/9u767CosjeA499h6AZFQhADe7ELu1Zx127XXgxU7F5bf3a3rrriunbhmit2Y2J3ICgqSHfM/f2B3JUVa2VmcDmf55nnce7ceGcY77z3nPece+I2qlTQUYL3TAeO7VLP96lmn2ASYpTMr++KQikhpSr4flgQZZr//YPeZGIAu34pwEy3sujoqlDoQItpTyhQOVotMX2u/MXiWbDnYdrfM1aHyR75efZAO61FAPb5kmjcOZSdq2zYvMiWImXi6DM5iORkBYe3ae588KXEqLTMicToE0qVKsWECRMAKFy4MEuWLOHIkSMA3LhxgydPnuDklNav/vvvv1OyZEkuXrxIxYoVgbTus99//x0bGxsArly5QkpKCi1btsTZ2RkAV1dX+XgTJkxg7ty5tGzZEoACBQpw+/ZtVq5c+cHEaPr06UyaNEkN7z578pr2HOdiCQxt7qKV4/eb/JT8ReIY1raEvKxyvXBKV43Eq7HrR7bMekFPjOjXtDQmZqlUd3/D0FkPGNHxu2zxo5/Z55Tu2O5cXD1tgbVNEq16BjN68QOGtilJcpJ6kqPs/Dmlq9kknLotwpjhlZ+A+0YUKhmH58Qg3rzS4/D2XFl+vBv7rLm2OxdtFz7CtnA8wbeN2TvFGXPbZMq1CgXg3DpbAq+a0HnVfSzzJvL0ghl/TsiPuW0yLtW1dwEW9MiAvt8XwdgslRqNIxm28BnDW7poLTlS6MCD60asnZHWLfvoljH5iybwY+fQbJ0YCZkTidEnlCpVKsNze3t7Xr9+zZ07d3BycpKTIoASJUpgaWnJnTt35MTI2dlZTooASpcuTb169XB1daVhw4Y0aNCA1q1bY2VlRWxsLI8ePcLDw4OePXvK26SkpGBh8eHm9NGjRzNkyBD5eVRUVIa4/kv6TQ2i8vdRDG1RiFANdL38U5+JT6lUJ4Lh7YsT+vLvGoIyVaOwz5fIdv9LGdYfs+wBty6aMfKn95ODrJCSrEPws7RWs4e3TCniGkOzrsEsHldILcf7XB/6nNLFResSF63Li6eG3PU3ZdvVy1RtGMaJPbnVEk92/Zze1XPsc7YstePEn2k/pE/vGpEnbxLtvV6qJTE6ON2Jmp7BlG4SBoBdsXjCnxtwfJk95VqFkpyg4NAcRzqueCDXIdkXT0ugTq2y02pilJKsw4unad+rhzeMKVomjuY9Qlg0UjvnvbDXuu/VNwU+NKT6D9qtW/skUWOUKZEYfYKenl6G5wqFApVK9dnbm5hk7PdWKpX4+vpy9uxZDh06xOLFixkzZgx+fn4YG6ddva5atYrKlSu/t92HGBgYYGDwDRT6fRWJflOfU9U9kuGtXbRQ2CjRZ2IAVRuEMfKnErwKyngS3LrcnoNbbDIsW3HwBr/+zxm/I5Yai1KhI6Gn//nfz6z38c8pMwoFoAA9fc2dRbX/Ob3PwEiF9I+QVKkKFGrqYUyKV763bx2lhPR2ZGBqsoLUZJ331lEokdfJLhQa/v780+2LJjgVyjg4JW/BRF4/1/vAFkJ2JhKjf6l48eIEBgYSGBgot87cvn2biIgISpT4eOuAQqGgWrVqVKtWjfHjx+Ps7MyuXbsYMmQIDg4OPH78mI4dO2ribQBgaJyKQ/6//1PbOSVSsEQc0RG6hLzQx8wyBRuHJHLZJQPgVCitODQ8RI/wEM38x/ea9pw6LcKZ2L0A8TE6WNmkxRIbrSQpQf1jCPpNfkrtpm+Y3KtI2vFzJ709vi5JiTqEh+pnWnAd8kL/s5KDf6Pb0AAunbTk9QsDjE1Sqd0klFKVoxj7c9r3zyp3ElY2yTg4p/298heNIz5WyesX+sREqufv9qnPyc4pgZqN33DllCWRYbrktkuirecLkhJ0uHjcUi0xZcfPKTPnfS1oP+Alr5/rE3DfkELfxdOy12sObcn61iKA4vXCOb7UAUuHRGyLxPPilgmn19hRoU3aHEWGZioKVI7iwHQn9AxVWOZN5ImfOVd35uaHsX9PaxAdokd0iB5vnqZ9z1/eNcLAVIWlQyLGllk/n1H30cFcPGpGyHN9jExTqdMiglJVYxjzU8FPb6wmO1flYf7u+7Tv/4qTeywpWiaOHzq+YcEIR63F9DkUkoRCUl9Cqc59q5NIjP6l+vXr4+rqSseOHVmwYAEpKSn07duXWrVqUaFChQ9u5+fnx5EjR2jQoAF58uTBz8+PkJAQihcvDsCkSZMYMGAAFhYWuLu7k5iYyKVLlwgPD8/QXZaVipSOY/a2B/Jzz4nPATi01Zq5Q/JT5ftIhs0PkF//ZflTANbPs+OPeQ5qiemfmnRLKwids/NRhuVzBjnhu1X9ffiNO70GYNbmOxmWzx1ekMM7bDLbRO0scyUzbNZDrPMkERut5MldE8b+XIKrZywB+KHDSzoNCJLXn7PpJgBzR7pweGfWz4sDn/6ckhJ1+K5iNM27v8TUPJWIUD1uXjRjSOsSRL5RTxKSHT+nzCwb50TX4S/wmhaIZe60CR73/5GbDQvs1HK8JhMD8J3nyJ/j8hPzJm2Cx0odXlN3wAt5nfaLH/HXLEe2DipEXIQulnkTaTAsiModX8vr+G3Iw9GFeeXnq9qlJZytZj+mfOvQLI/bMncKwxc9wzpPCnHRSp7cMWTMTwW5clJ7owzvXzNmco8CdB8VTMdBL3kZqM+KCXnVVjgvqJdCkr7RlE4DMpv5unnz5lhaWuLt7c2zZ8/o378/R44cQUdHB3d3dxYvXoytrS2QNlzfx8cHf39/efs7d+4wePBgrly5QlRUFM7OzvTv3x8vLy95nY0bNzJ79mxu376NiYkJrq6uDBo0iBYtWnxW3FFRUVhYWFBbpyW6imzUlKtS32y4/5aOofZGsnzQR7pNtSY1+/3tsuPnpIpP0HYI75n26Jy2Q3jPLwUqaTuE9ymyV/dgipTMccmHyMhIzM2zdlbv9N+IMp2motRX3zkwNSkB/z/GqOU9qJNIjP6DRGL0+URi9JlEYvRZRGL0eURi9GkiMdIe0ZUmCIIgCDmQmMcoc2Lma0EQBEEQhLdEi5EgCIIg5ERiHqNMiRYjQRAEQRCEt0SLkSAIgiDkQKLGKHOixUgQBEEQBOEt0WIkCIIgCDmRqDHKlGgxEgRBEARBeEu0GAmCIAhCDiRqjDInWowEQRAEQRDeEi1GgiAIgpATiRqjTInE6D9MN09udHX0tR2GTEpI1HYI70kND9d2CMJ/STa73xZkz/uSjXh0Q9shvGd20bLaDiEDhaSCFG1HkTOJxEgQBEEQcqhvtQ5InUSNkSAIgiAIwluixUgQBEEQciJJSnuoc//fINFiJAiCIAiC8JZoMRIEQRCEHEjMY5Q50WIkCIIgCILwlmgxEgRBEIScSMxjlCnRYiQIgiAIgvCWaDESBEEQhBxIoUp7qHP/3yLRYiQIgiAIgvCWaDESBEEQhJxI1BhlSrQYCYIgCIIgvCVajARBEAQhBxLzGGVOJEZq1K1bNyIiIvDx8fngOvnz52fQoEEMGjRIY3H90297TmDrkPDe8r1bnVg+swTuLQKp5R6MS7EojE1TaVurLrExehqLr02PALoPfoLP+rz8OqMweRzi8fb1y3TdaYNLcPpQHo3E1bhLKD92eYOtUxIAAfcM2TDflkvHzDVy/G8lpnZer6j2QyROLokkJehw+5Ixa6baE/TIUGsxpWvSLZTWfV5jbZPC49tGLBubl3v+xlqJpdOQYDoPfZVhWeBDA3rUKq6VeAC+qxxDm74hFHaNI5ddChN/zs+5gxZqO54qFc4stOX2bktiQ3QxtU3mu5YRuHm9RqFIW2f/cEdu7rTKsF2BGtG08X4KwLPzJmzuWDDT/Xfe9RD7UvFfHed3laJp7fkq7XOxTWZSj0KcO2Qpv95p8AtqNQnDxiGZ5GQFD28Y4z0rL/f8Tb762IL6icRIyy5evIiJiXb/swzq7IZS+Xdq71wohqnLL3H6sB0ABoapXDmXmyvnctOt/wONxlb4uygatQnm8b2/P6PQl4Z0rOWWYT33NsG06h7IpdPWGostJFiP36bZ8/yJAQoFfN8mjIlrn9KvQREC7mvnRz87xlTKLZY93rm572+MUlei26hgpm16TM9aRUmMV2olJoBaTcPpNeEFi0c5cveKMS16hjB142M8ahQl8o3mEv93Pb1ryKj2heTnqSkKrcSRztBYxeNbhvy1yZoJvz1V+/H8Vtrgv9GaH2YHkbtwAi9vGLF/pCMGZqmU7/ZGXq9AzWgazQqSn+vq/z38KW+5OPqev5Nhv6fn2RJwzhQ7169PiiDtc3ly24hDW3IxftXj914PemzIsvH5CH5mgIGhihYer5j2x31+rvkdkWHa+W5lStwrLVMiMdIyGxsbbYdAVIR+huetuz3mRaARNy6nXZXt3pQfANfyYRqNy9A4hREz77BoQhHa9w6Ql6tUCsJDDTKsW7VeKKcO2pAQp7mvtJ9vxitn75n2NO7yhmLlY7WWhGTHmMb84+p97qB8bL15i8Kl4rnpZ6qVmABa9grl4EZrDm1JS6YXjXSkUr0oGnYIY+sSW63ElJoK4SHZ54fz0jFzjbY2Pr9ijEv9KArViQbAwjGZO3tiCL5ulGE9pb4KU5uUTPeh1JcyvJaaDA8Pm1Ouyxu51elrXTpuwaXjH245O7474wXar1OccO/whgLF4/E/k33+vkLmRPF1Fti+fTuurq4YGRmRK1cu6tevT2xsrPz6nDlzsLe3J1euXPTr14/k5GT5tfz587NgwQL5uUKhYPny5TRq1AgjIyMKFizI9u3bNfZedHVV1PkhGN/djoB2r1b7jn3AhZO58D//8VYglxLRFCoew6Gd9hqK7H06OhK1moVjYKzizqXs0VyeHWMCMDFPBSA6QnutRbp6KgqXiuPKKTN5mSQpuHrKjBLl47QWV94CSWy8fBPvs7cZuTgAG4ckrcWiDXnLxRFw1pSwJ2kXa6/vGBJ0yZgCtWIyrBfoZ8qSisVZVb8Ih8Y5EB/+4e/SwyPmxEcocW2t2Qu7dLp6Khr9FEJMpJLHt7XTTfsh6TVG6nx8i0SL0VcKDg6mQ4cOzJo1ixYtWhAdHc2pU6eQ3jYhHjt2DHt7e44dO8bDhw9p164dZcqUoWfPnh/c57hx45gxYwYLFy5k/fr1tG/fnhs3blC8eOa1BomJiSQmJsrPo6Ki/vX7qVLnNaamKRze4/Cv95EVajZ6hUvxGAa2K/fJdRu0CubZI2Pu+Kuv9uFD8heLZ8Geh+gbqIiP1WGyR36ePdBu7Ux2jCmdQiHhOek5Ny8YE3DP6NMbqIm5dSpKXYgIyXgKDA/Vxckl8QNbqdfdqybMGWxE0CMDrPMk02nIS+buekDvusWIj9VeEqlJVTxDSIrRYfX3RdBRptUc1Rz6ipLNIuR1CtSMpnDDSCydkogIMODkXFu2/ZyfTtsfoZPJx3RjqzUFasRgZp95C5O6VKoXweglTzAwUhH2Wo9fOhYmKlz85H4LxF/pKwUHB5OSkkLLli1xdnYGwNXVVX7dysqKJUuWoFQqKVasGD/++CNHjhz5aGLUpk0bevToAcCUKVPw9fVl8eLFLFu2LNP1p0+fzqRJk7Lk/TRoFsSls7kJC9XeD2luuwR6j3rImJ6lSU76+A+CvkEqtX94xaYV+TUT3D8EPTKg7/dFMDZLpUbjSIYtfMbwli5aTUSyY0zpvKY9x7lYAkObu2g7lGzn3S6rJ3eMuHvVmPV+t6nZJIK/NufSYmSac3efBbd3W9JkfiC5iyTw+rYRR/5nj2meZL5rFQFA8SaR8vo2RROxKRbPr3WKEXjeBOdqsRn2Fx2sy5NTpjRd/EyTbwOAa2fN6OteHAvrFBp1COWXZY8Z2KyY1urXhM8nutK+UunSpalXrx6urq60adOGVatWER4eLr9esmRJlMq/f9zt7e15/fr1R/fp5ub23vM7d+58YG0YPXo0kZGR8iMwMPBfvRcbu3jKVHrDIR/Hf7V9VilcIhqr3Mks3naJPdeOs+facUpViqRpx+fsuXYcHZ2/22erNwjBwEjFkT+1UxOSkqzDi6cGPLxhzNrp9jy5bUTzHiFaiSU7xwTQb2oQlb+PYkTrQoQG6396AzWKClOSmgKW/6hTscqdQnhI9rhejI3SJeixAQ75tdOCpQ3HZ9hR2TOE4k0isSmaSMkWEVToHsr5FR+uxbTMl4yRdQrhAQbvvXZjuzVGlqm41Pv3rej/VmK8kuAAQ+5eNWX+iPykpipwbx+q8Tg+StLA4xuUPc4A3zClUomvry9nz57l0KFDLF68mDFjxuDnlzacXE8v49WBQqFApcraG8gYGBhgYPD+SeFLfd/0OZHh+lw4nTsLovr3/M9b0adZhQzLBk+9R9BjY7atcUKl+rv2qUHLYPyO5SIqXLs/tOkUCtDTz15nA+3HJNFv6nOqukcyvLULrwK//rv6tVKSdXhw3Ziy1aPl4ecKhUSZ6jH86Z09WmcMjVNxcE7iyI6c08KQnKCD4h+X6zpKkFQfrneMDtYlPlyJSZ7kDMslCW7ssKJki3CU2eAjVOhI2e7cIGROJEZZQKFQUK1aNapVq8b48eNxdnZm165d/3p/58+fp0uXLhmely1bNitC/SCFQuL7ps85sjcvqtSMZyarXIlY5UrE3imtKDW/SwzxcUpevzQkJirrE5L4OF0CHmYcrZQQp0NUZMbl9vni+K5CJBP6uP5zFxrRfXQwF4+aEfJcHyPTVOq0iKBU1RjG/JT5HCo5NSavac+p0yKcid0LEB+jg5VN2g9YbLSSpATtNVrv/DU3wxYEcv+aMfeupg3XNzRWcWiz5qZ8eFfPcc8572vB6yA9ctml0HloMKkqOO5j9emN1cTQOBWHAn8XgNs5JVGwZDzREUpCnmf9/32XutGcW5YHc4dkchdO4NUtIy7+lhvX1mmt8EmxOpxZlIei7pGY2KQQEaDP8Zn2WDknUaBGxgLtZ2dNiAzUp1S78MwO9VUMjVMztOTZOSVSsEQc0RG6RIUr6dD/Jed9LQh7rYe5dQpNuoSQ2zaZU/u097fMjJjgMXMiMfpKfn5+HDlyhAYNGpAnTx78/PwICQmhePHiXL9+/V/tc9u2bVSoUIHq1auzYcMGLly4wJo1a7I48ozKVH5DHvsEDu3O+95rjVoF0rH3I/n5rDUXAJg/8TsO73l/fU1p0OIloa8MuHJGOz9klrlTGL7oGdZ5UoiLVvLkjiFjfirIlZNmn944B8XU5O38M3N2PsqwfM4gJ3y3audvB3DiTysscqXSZfhLrGxSeHzLiDEdCxARqp3mhdz2yYxe+hQzq1Qiw3S5dcGEQU2KEBmmvdN0kdLxzN7x99/Nc9ILAA5tsWLu4HxZfrx6E15wer4tvuMdiHuTNsFjmfZhVO2fVn6gUEqE3DPk1k4rEqJ1MM2TQv7qMdQY8gpdg4y/wte3WZO3XCy5CmV9V2SRUnHM2npfft57QtqcSr7bcrHol3w4FUqgfus3mFulEB2hy/1rxgxrXZSA+9obcCB8PoUkfaMzMGUTd+7cYfDgwVy5coWoqCicnZ3p378/Xl5emc58PWjQIPz9/Tl+/Djw/szXCoWCpUuX4uPjw8mTJ7G3t2fmzJm0bdv2s2OKiorCwsKC+na90NXJHl1MAFJC9quVSA3P+qtJIQfLqolyslI2PMWPeHRD2yG8Z3ZR9bbKf6kUKZljKTuIjIzE3Dxr55JK/42o8sNkdPXUNygjJTmB8/vHq+U9qJNoMfpKxYsX5+DBg5m+5u3t/d6yd+csAnj69Ol76zg4OHDo0KEsiE4QBEEQhC8hEiNBEARByIFEjVHmxHB9QRAEQRCEt0SLUTYjSr4EQRAEjVD3XEPf6M+ZaDESBEEQBEF4S7QYCYIgCEIOJGqMMidajARBEARBEN4SLUaCIAiCkBOppLSHOvf/DRItRoIgCIIgCG+JFiNBEARByInEqLRMiRYjQRAEQRCEt0SLkSAIgiDkQArUPCpNfbtWK5EY/YelvglHodDOncIzo7TLo+0Q3iduIitkJTFB62eZVchV2yG8Z2vQKW2HkEFUtIr8xbQdheZMnz6dnTt3cvfuXYyMjKhatSozZ86kaNGi8joJCQkMHTqUzZs3k5iYSMOGDVm2bBm2trbyOs+ePaNPnz4cO3YMU1NTunbtyvTp09HV/fx0R3SlCYIgCEJOJEnqf3ymEydO0K9fP86fP4+vry/Jyck0aNCA2NhYeZ3BgwezZ88etm3bxokTJ3jx4gUtW7aUX09NTeXHH38kKSmJs2fPsm7dOry9vRk/fvwXfSyixUgQBEEQBK06ePBghufe3t7kyZOHy5cvU7NmTSIjI1mzZg0bN26kbt26AKxdu5bixYtz/vx5qlSpwqFDh7h9+zaHDx/G1taWMmXKMGXKFEaOHMnEiRPR19f/rFhEi5EgCIIg5EDpM1+r8wEQFRWV4ZGYmPjJ2CIjIwGwtrYG4PLlyyQnJ1O/fn15nWLFipEvXz7OnTsHwLlz53B1dc3QtdawYUOioqK4devWZ38uIjESBEEQBEFtnJycsLCwkB/Tp0//6PoqlYpBgwZRrVo1vvvuOwBevnyJvr4+lpaWGda1tbXl5cuX8jrvJkXpr6e/9rlEV5ogCIIg5EQamscoMDAQc3NzebGBgcFHN+vXrx83b97k9OnTagzuw0SLkSAIgiAIamNubp7h8bHEyMvLi71793Ls2DEcHR3l5XZ2diQlJREREZFh/VevXmFnZyev8+rVq/deT3/tc4nESBAEQRByIIUkqf3xuSRJwsvLi127dnH06FEKFCiQ4fXy5cujp6fHkSNH5GX37t3j2bNnuLm5AeDm5saNGzd4/fq1vI6vry/m5uaUKFHis2MRXWmCIAiCIGhVv3792LhxI7t378bMzEyuCbKwsMDIyAgLCws8PDwYMmQI1tbWmJub079/f9zc3KhSpQoADRo0oESJEnTu3JlZs2bx8uVLxo4dS79+/T7ZffcukRgJgiAIQk6kevtQ5/4/0/LlywGoXbt2huVr166lW7duAMyfPx8dHR1atWqVYYLHdEqlkr1799KnTx/c3NwwMTGha9euTJ48+YvCFomRIAiCIAhaJX1Gt5uhoSFLly5l6dKlH1zH2dmZ/fv3f1UsIjESBEEQhBzoS+uA/s3+v0Wi+FoQBEEQBOEt0WIkCIIgCDmRhuYx+taIxCibefr0KQUKFODq1auUKVNGI8f8rlI0rXsHU9g1jly2yUzq6cK5Q1YZ1nFyicdjVBCulaNR6ko8e2DIFE8XQl58fqX/l/ht11FsHeLfW753uzPLZ3+HXd5YPAbcoWTpcPT0VVw+Z8OKuSWJCFNPPJn5rnIMbfqGpH1udilM/Dk/5w5aaOz430pMjbuE8mOXN9g6JQEQcM+QDfNtuXTM/BNbql+TbqG07vMaa5sUHt82YtnYvNzzN9ZKLO28XlHth0icXBJJStDh9iVj1ky1J+iRoVbigez5fdJGTPExOmyZnY8LB62JDNWjwHexdJv0BJcyaTc43TrXkbN/5ubNC3109SUKusbQfkQghcvFAPA60IAdCxy5edaciNf6WNslUaNFCC0HPEdX/xvNHv7DRFfaZ6pduzaDBg3SdhhqYWicypM7xiwd55zp6/b5Epi7/Q6BjwwZ0b4ofRqWZOMiB5IS1ff1GdS9Gp0a1ZMfY7wqA3D6iD0Ghin8b9EFkGB0v8oM6+mGrp6K8XMuolBo7iRjaKzi8S1Dlvzi+OmVNSQ7xhQSrMdv0+zxci9C/0ZFuHbGlIlrn+JcJEGrcdVqGk6vCS/YMM+Ofg2L8Pi2IVM3PsYiV7JW4inlFsse79wMalyY0e0LotSVmLbpMQZGqVqJB7Ln90kbMa0YXojrpyzwWviAuYevUapmBFM6lCAsOO2mpA4FE/j5f0+Yc/gak3fexMYxkf91LE7Um7S2hxcPjZAk6DXjMfOO+tN1wlN8/7Bl48x8GnsPmZIk9T++QaLFKItIkkRqaiq6ut/eR3rpuCWXjlt+8PWuw59z8Zgla6Y7ycuCn6n3KjYqImPLT+uuj3gRaMyNK9aUrRxKHvs4+nepTnysHgDzJpVmy+FDlK7wBv+LudUaW7pLx8yzRavHu7JjTH6+Ga/mvWfa07jLG4qVjyXgvvZaQ1r2CuXgRmsObUm7SeWikY5UqhdFww5hbF1i+4mts96YjgUzPJ87KB9bb96icKl4bvqZajweyJ7fJ03HlBSvg9/+XIz47S4lqkQD0HZoEJcPW3FovS3tRwRSvUVohm26TAjg6GZbAu4Y41o9ijJ1IihTJ0J+3dY5kRePgjm03pYu4wI09l6EzyNajD5Dt27dOHHiBAsXLkShUKBQKPD29kahUHDgwAHKly+PgYEBp0+fplu3bjRv3jzD9oMGDcowN4NKpWLWrFm4uLhgYGBAvnz5mDp1aqbHTk1N5eeff6ZYsWI8e/ZMje8ycwqFRKW6ETx/YsjU3++x+fJVFvjcxq1BuMZi0NVVUcf9Ob57nAAFenoqkBQkJ/399U1K0kFSKShROkxjcQlfTkdHolazcAyMVdy5ZKK1OHT1VBQuFceVU2byMklScPWUGSXKx2ktrneZmKe1FEVHKLUcSc6WmgqqVAV6Bhkn5dE3VHH3gtl766ckKTi8IQ/G5ik4l/jwdykuWompZUqWx/slFJL6H9+ib695QwsWLlzI/fv3+e677+SJom7dugXAqFGjmDNnDgULFsTKyupju5GNHj2aVatWMX/+fKpXr05wcDB37959b73ExEQ6dOjA06dPOXXqFDY2NpnuLzExkcTERPl5VFTUl77FD7LMnYKxqYq2fYJZNycva2Y4UaFWJONWPmRk+6Lc8FP/lVuVWi8xNU3h8L60pvO7Ny1JSFDS3esuvy8rBgqJ7v3uotSVsM6d+Im9CdqQv1g8C/Y8RN9ARXysDpM98vPsgfZai8ytU1HqQkRIxlNgeKguTi7a/w4pFBKek55z84IxAfeMtB1OjmZkqqJI+Wh2LHAkr8sDLG2SOe2Tm/uXzbDL/3d38OXDlizoW4SkeB0s8yQzduNtzK0zT3xePjHkwFo7Oo8VrUXZkUiMPoOFhQX6+voYGxvLN6JLT2QmT57M999//9n7io6OZuHChSxZsoSuXbsCUKhQIapXr55hvZiYGH788UcSExM5duwYFhYfLi6cPn06kyZN+tK39VnSa3bO+Vqya03ae39825gS5WP4sWOIRhKjBk0DuXTOhrDQtB/SqAgDpv9Sjn4jbtK07VMklYITvg48vGuOSp2zuAr/WtAjA/p+XwRjs1RqNI5k2MJnDG/potXkKDvzmvYc52IJDG3uou1QBMBr4QOWD3XBs0IFdJQSBb6LpVqzUJ7c+LvVs2TVKGb/dZ2oMF2ObLRlfp8iTNtzA4vcGZOjsGB9pnYqjtuPb6jf8fU/D6VZ6q4DEjVGOVOFChW+aP07d+6QmJhIvXr1Prpehw4dcHR05OjRoxgZffyKcfTo0QwZMkR+HhUVhZOT00e2+HxR4bqkJCt49iBjDM8eGlKyYkyWHONjbOziKFMxlGmjymdYftXPhh6t6mBukURqqoLYGD3+2H+Yly+0M6JI+LiUZB1ePE2rG3t4w5iiZeJo3iOERSOz5nv6paLClKSmgKVNxh8tq9wphIdo97TYb2oQlb+PYmiLQoS+Le4VtMsufyKTdtwiIU6H+GglVrbJzO9TmDz5/m5dNDRWYVcgAbsCUKR8DAOql+Ho5jy08HohrxP2Uo9JbUtQtEI0vWY91sZbET6DqDH6SiYmGeskdHR03pvaPDn571Eun0py0v3www9cv36dc+fOfXJdAwMDzM3NMzyySkqyDvevG+NYMOMIorwFEnj9XP0n7e8bBxEZbsCFM3kyfT0qUp/YGD1KlQ/FwioRv5OaL5oVvpxCAXpaHKackqzDg+vGlK0e/U5MEmWqx3D7sraSa4l+U4Oo6h7JiDaFeBWouaknhM9jaKzCyjaZmAgl105YUrHBh2saJUlB8jsjd8OC9ZnUpiQFSsXSd95DdLLBr69Cpf7Ht0i0GH0mfX19UlM/PWzWxsaGmzdvZljm7++Pnl7a6KnChQtjZGTEkSNH6NGjxwf306dPH7777juaNm3Kvn37qFWr1te9gY8wNE7FIf/fVz52TokULBFHdISSkBcGbF9pz+glj7jhZ8a1c2ZUqB1JlfoRjGhXTG0xQdoP1feNgziyzxFVasazSP3GgQQ+NSUyXJ/iruH0GnIbn00FeP5Mc6N3DI1TcSiQJD+3c0qiYMn4tM9NA0njtxJT99HBXDxqRshzfYxMU6nTIoJSVWMY81PBT2+sRjt/zc2wBYHcv2bMvavGtOgZgqGxikObrbUSj9e059RpEc7E7gWIj9HByibtgio2WklSgnZ+RbPj90kbMfkftwBJgUOheF4+NWT9/5zJWyie2u1CSIjTYeeivFT4Phwr2ySiw/Q4uM6OsJf6uDV+A6QlRRPblMDGMZEuYwOIeqMn79syj3amhxA+TCRGnyl//vz4+fnx9OlTTE1NUX2gmKVu3brMnj2b33//HTc3N/744w9u3rxJ2bJlgbSb4I0cOZIRI0agr69PtWrVCAkJ4datW3h4eGTYV//+/UlNTaVx48YcOHDgvTqkrFKkVCyzttyTn/ceHwiA77ZczB1WkLN/WbF4jDPt+gbTZ1IAQY/SJne8den9ERlZqUylUPLYx3Noz/vzlTjmi6Vb33uYmifxOtiYLWtd8NlUQK3x/FOR0vHM3vFIfu45Ka3J/NAWK+YO1s78JNkxJsvcKQxf9AzrPCnERSt5cseQMT8V5MpJ9X5/PuXEn1ZY5Eqly/CXWNmk8PiWEWM6FiAiVO/TG6tBk25pP6Jzdj7KsHzOICd8t2onWcuO3ydtxBQXrcumGfl4E6yPqWUKlRuF0WHkM3T1JFSpafMUzd2Wh+hwXcysUihUOoZJO27iVDRtktrrpyx4+dSIl0+N8KyYsSxga9CnewXURtQYZUohfc4tbQXu379P165duXbtGvHx8axdu5bu3bsTHh6OpaVlhnUnTJjAypUrSUhI4OeffyY5OZkbN25w/PhxIG24/vTp01m1ahUvXrzA3t4eT09PRo8enenM1/PmzWPixIkcPHiQqlWrfjLWqKgoLCwsqKPXBl2Fdk7ymVHaZd4dpk0pgUHaDkEQhGxAqwlKJqKiVeQvFkxkZGSWlkfA378RtSuNQVdXfQMgUlISOH5hqlregzqJxOg/SCRGn08kRoIgQA5NjCpqIDG6+O0lRtmg/EsQBEEQBCF7EDVGgiAIgpADKSQJhRo7jdS5b3USLUaCIAiCIAhviRYjQRAEQciJxKi0TIkWI0EQBEEQhLdEi5EgCIIg5EQSoM7Zqb/NBiPRYiQIgiAIgpBOtBgJgiAIQg4kRqVlTrQYCYIgCIIgvCVajARBEAQhJ5JQ86g09e1anURi9B+UfpeXFCl73bVZUiVqO4T3ZLfPSBAE7YiKVmcV8peLjkmLR9y1S/NEYvQfFB0dDcCpFB/tBvJP4rZkgiBkU/mLaTuCzEVHR2NhYaGenYt5jDIlEqP/IAcHBwIDAzEzM0OhUPzr/URFReHk5ERgYGC2uQGgiOnziJg+j4jp84iYPk9WxiRJEtHR0Tg4OGRRdMLnEonRf5COjg6Ojo5Ztj9zc/Nsc+JJJ2L6PCKmzyNi+jwips+TVTGpraUonQr499fOn7f/b5AYlSYIgiAIgvCWaDESBEEQhBxIzGOUOdFiJHyQgYEBEyZMwMDAQNuhyERMn0fE9HlETJ9HxPR5smNMwpdTSGIsoCAIgiDkGFFRUVhYWFCv5HB0lepL4lJSEzlyazaRkZHZrg7sY0SLkSAIgiAIwlsiMRIEQRAEQXhLFF8LgiAIQk4kJnjMlGgxEgRBEARBeEu0GAmCIAhCTiRajDIlWowEQU3EgE9BEIRvj0iMBCGL3bhxA+Cr7lOXlZKTkwFITU3VciQflp5EhoeHazUOlSrjHc2zQ3KbHpMgZDmVBh7fIJEYCVkuO/yYaMtff/1FvXr1+O2337QdCkFBQYSFhaGnp8fevXvZuHEjKSkp2g4rUwqFgl27dtGjRw+Cg4O1FoeOTtop8dy5c3Jc2v4+p8d06NAh7ty5o9VYsrMP/Z20/ff7J39/f2JjY7UdhvARIjESspRKpZJbSu7evcujR4948OCBlqP6uPQT57179zh69ChnzpwhMDDwX+3LwcGBVq1aMXfuXNauXZuVYX6RqKgoevbsSbt27Vi7di1NmzbFyMgIXd3sVVaY/tk/ePCA8ePH07hxY+zs7DQex7utMv7+/lSvXp1ly5YB2kuO3o3p9OnTeHl5sWjRIp4+farxWLK7d887L1++zPD/V5vJbWJiYobnd+/epXHjxrx+/Vor8fxT+i1B1Pn4FmWvs6TwTZMkSb66nTBhArt37yY+Pp74+HgGDx7MgAEDUCqVWo4yI0mSUCgU7Ny5k4EDB2JnZ0dMTAy2trYMHDiQFi1afNH+XF1dGTlyJMbGxsyZMwdDQ0M6dOigpug/zMTEhN69ezNy5Eh69+7NkiVLaN26NSkpKdkqOVIoFPj5+XH06FHKly/PTz/9JP9NNOXd7+2yZcu4e/cuhoaG9O/fn6SkJAYNGiT/uGoqrndjmjNnDi9fviQmJoZ169ahUCgYOnQohQoV0kgsn5L+uVy7do07d+6gVCopWLAg5cuX11gM6Z/V6NGj2bdvH48fP6ZRo0bUrVuXPn36aPzvB7Bw4UJ27drFrl27sLKyAtK6tY2MjMiTJw+pqanZ7nwopBEtRkKWST/pTJ06laVLl7JgwQJOnz5N/fr1GTp0KPfv39dyhH9LvxpXKBScP38eDw8PRo8ezcWLF5k2bRqnT5/+4njTa3iioqIwMTEhOjqaIUOGsGnTpiyP/2MkSUKpVFKyZEni4uLImzcvhw4d4s2bN+jq6ma7WqMFCxYwZswY/Pz8iI+PR0dHR6NX+Onf27FjxzJx4kTc3NxYvHgxP/30E+PGjWP27NnyepqKKz2mGTNmMHnyZOrVq4ePjw9Dhw7l8OHDzJs3j8ePH2sklk9RKBTs2LGDhg0bsnz5chYuXEi7du349ddf1X7sd1vVfv31V9atW8fIkSNZuXIlOjo6rF69mkmTJslxalK1atW4fv06Hh4ehIWFARAZGYm+vj4mJibZIylKH5Wmzsc3SCRGQpZKSEjgwoULLF26lNq1a3PmzBl8fHxYtmwZxYsXlwuBteXy5ctA2hVmer3N+fPnqVOnDn379uXZs2cMGTKEnj17MnLkSABevHjxWftWKpXs3LmTGjVqkJiYSPPmzbG1tWX8+PF4e3ur5f1kJv0HwMrKir/++os5c+YQEhJCly5dePPmDUqlUk6OkpKSNBbXh2zatAlPT09evnyJt7c30dHRGv8Re/XqFX/99RezZ8+mQ4cOeHh4MH36dIYOHcqECRNYvHgxoLnkSJIk4uPjOXjwIAMHDqRRo0ZUqlSJKVOm0KdPH7Zt28bs2bOzRXJ09epVPD09mTBhAidOnGD69OkEBASoNbb07296S9GZM2d49uwZU6ZMoWPHjnTs2JEFCxbQuHFj/vzzT/bv36+2WD6kQoUKHDt2jDNnztC9e3diYmJISEjIFnVrwseJxEjIUrGxsZw5c4Z8+fJx7NgxOnfuzLRp0/D09CQxMZHJkyfj7++vldj2799Px44dWbRoEYDcpZSSkoKTkxMvX76katWqNGzYkKVLlwJpxdTbt28nJibmk/sPDw9n9uzZDB06lJkzZ7Jo0SK8vb2pW7cu//vf/9TecvTuyK64uDgMDAwoUaIEzZo1o0+fPkRERNCtWzfCwsJQKpUsWbKEbdu2afQknX6s58+f8/z5c27dugWkdWE1adKEFStWsH37drk4VVOxKZVKnj59SmhoqLzM0dERDw8PSpcuzcCBA+XvjSaSNoVCgb6+PgYGBvJnkZ7IDx48mEaNGrF161YWLlyo9ZqjO3fuUL58efr06UNAQACdOnWiZ8+ezJgxA4BHjx5l6fE8PDw4fvw4kNZidO/ePWrUqMG0adMICQmR17O3t8fLywuVSsWZM2eyNIbPVbp0aQ4ePMi5c+fo3bs3MTExGBkZsWXLFg4cOMDly5c5efIkW7Zs0U6Sq5LU//gGicRI+NcyG0acK1cu2rRpw5w5c2jcuDELFizA09MTgNDQUC5evMjNmzc1HSoABQsWpGrVqmzdupUlS5bIy62srPD29qZ06dK0bNmSFStWyN0527dv5/r16x9s9k7/4Y6MjMTU1JSQkBAMDP6+W3WZMmXo06cP+vr6jBgxgjVr1qjlvaXXT+zbt4/27dtTuXJlPDw82Lt3L7q6urRv354+ffoQGRlJjRo18PT0ZMCAAZQuXVqjdTMKhYLdu3fTvHlz6tevT4sWLRgwYAAAv//+OxUrVmTWrFlyMqqO2DJLtiwsLGjSpAl+fn4ZBgs4OTlRrlw56tWrx5w5c9SW3Gb2f0mpVFKkSBG2bNnC8+fP0dXVldfLnz8/JUqU4MSJE+zdu/eD70sTJEnCxMSE+/fvU716ddzd3eX/XydPnuS3337LkHB+jaSkJPT09KhZs6Z87KJFi3LgwAF0dXU5duxYhkTRxsaGChUqcOvWLY11Iaf/HR49ekRAQABly5blr7/+4vDhw7Rp04bo6GgmTpyIl5cX3bp1o0uXLowcOVK0ImUjIjES/hWVSiU3YwcFBREQECC/Vrp0aU6cOIG7uztt2rQB0loxevXqRXx8vMaLkZctW0ZwcDDFihVj/PjxFC9enA0bNsgtAB4eHrRu3ZqwsDA6duxIbGwskZGR/PLLL/z5558MHToUIyOjTPedPszc09OTgIAAKlWqxJMnT3jz5o28TpkyZahatSoKhYI1a9YQERGR5SdBhULBn3/+Sdu2balduzYjRozAxMSEzp07s2PHDjk5GjNmDNWrVyc4OJjr16/z3XffZWkcn4rx0KFDclfVvn37GD58OEuWLGH37t0ArF+/nkqVKjFixAh2796d5Z/Tu6OXXr16JY9e0tPTo1mzZly7do1Vq1Zx7949AKKjowkODqZt27a4ubmxb98+EhMTszSud/8vXbt2jevXr3P9+nUAFi9ejKOjIw0bNuTBgwdER0eTmprKzZs3GTVqFDVr1mTGjBlyF426pb/vx48fy0lanjx5OHfuHFWqVKFx48ZyfQ/A1q1befToUYaLhX9LpVKhr6/PihUr0NPTY82aNWzevJmEhAQaNmzIzp078fX1Zfr06XJ9YExMDFevXsXR0VEjNT3pyf+uXbto3bo169evJywsjLJly+Lr64uzszM2Njb89ddfXL9+nQsXLnDjxg1u3rypnWJ6UWOUOUkQvsIvv/wiubi4SPb29lK7du2k8PBwSZIkafz48VLhwoWlihUrSk2aNJGqVKkilSlTRkpKSpIkSZJSUlI0Ep+/v7/k7u4uPXjwQF52//59qUePHlKVKlWkBQsWSJIkSa9fv5YaNWokmZiYSMWKFZOqV68uOTk5SVeuXHlvn6mpqZJKpZIkSZIeP34sFSlSRFq9erUkSZK0atUqydraWlq0aJEUEhIib+Pp6SnNnDlTCg0NVcv7fPDggVShQgVp2bJlkiRJ0qtXryRHR0epePHikqmpqbR169YM6yckJKgljk8ZNGiQNGrUKEmSJOnp06dSwYIFJU9PT0mSJPkzlSRJ6tWrl/Tw4cMsO65Kpcqw//Hjx0ulSpWS7OzspFKlSkl//PGHJEmS9Mcff0glS5aUypcvLzVr1kwqX768VLp0aUmSJGnYsGFSpUqVsvS7+25MI0eOlIoUKSLlzp1bcnJykrp16yapVCrp2bNnUtWqVSUbGxupbNmyUokSJaRChQpJkiRJW7dulUqUKCFFR0dnWUyfinX37t1SoUKFpOXLl8vLxo4dKykUCmnDhg1SYGCgFBwcLI0YMULKlSuXdOvWrSyPJSUlRapYsaJUunRpaceOHfL32cfHR1IoFJKLi4vUtm1bqVmzZlK5cuWkxMTELI/hQw4cOCAZGhpKS5culZ4/f57hNX9/fyl37txSmzZtpDdv3mgspn+KjIyUAKl+wYGSe+ERanvULzhQAqTIyEitvdd/I/uM2xW+Ce9e3a5fv57169czdepUUlNTmThxIo0aNWLbtm1MmjSJChUq4O/vT0hICO7u7vTq1QtdXV2NDhkvXbo0mzdvxsLCggsXLpA3b14KFy7MiBEjmDVrFps2bUJXV5d+/fqxf/9+Nm/eTHh4OLlz56ZKlSo4OTnJ+woKCsLR0VF+/0ePHsXf358aNWrIrWA9evTgxYsXTJo0iYsXL+Lk5ERISAi7du3i4sWL5MqVK8vem/T26jQpKQlra2vc3Nxo27YtQUFB1KtXjx9++IGhQ4fSo0cPfv75Z1JSUuQ4s+IK/kulpqZy/vx52rRpQ1RUFNWqVePHH3+U5wtauXIlDg4ONG3alJUrV2bpsd8teJ02bRpLly5l4cKF2Nra8ttvvzFt2jRevHjB8OHDcXZ25vLly5w7d44GDRowYcIEAF6/fk2JEiWydJh1eivPvHnzWLVqFTt37kRXV5fnz5/Tr18/2rRpw/bt2zlz5gy//vorUVFRKBQKBg4cCICvry92dnbyd1Kd0rtBf/rpJ2bOnEmdOnXk+KdMmUJoaCheXl7o6+vj7OzMmzdv8PX1pUSJEl997HfPO5DWzXjixAlatGjBtGnTUKlUNGnShGbNmrFv3z5+/PFHzMzMGDt2LC1btgTShsrr6el9dSwfIr0tmF+zZg2DBw+mb9++8mvp35nSpUvj6+tL+fLl0dPTY/369Rr5230kajW36nybLUYKSfpW27oEbTpw4ABPnjzByMiI7t27A2mjt2rUqIGNjQ1bt24lX758722nybk70hMHSOs2SZ/HZ8eOHTg4OPDgwQNmzZrFjRs36NChg/xjk5kpU6bw+PFjli9fjqGhIQC9e/dm1apVFCpUiFOnTmWYmHDdunWcOnWKy5cvY2try4wZMyhTpkyWv7fDhw+zb98+BgwYQO7cuTEzM2Pw4MEEBgbi7e2NqakpvXv3ZteuXRgZGXHjxg3MzMy0druS2bNnc+nSJU6ePEnz5s1ZtmwZCoWCxMRE+vbti6OjI2PGjEFPTy9LYhw7diy2trb0798fgDdv3tC4cWM6d+6c4YdrxIgRbN++nfXr11OtWrUM+wgKCmLZsmUsX76c06dPU7Jkya+O658/9O3ataNw4cL873//k5ddvHiRevXq4eXlxbRp0zJs//jxY+bOncvmzZs5fvw4rq6uXx3Tx0iSRHh4OE2aNKFJkyaMGjWKpKQk4uLi2Lt3LxUrVqRo0aJcunSJZ8+ekStXLooUKYK9vf1XH/vdC6m7d+9iaWmJrq4uuXPnJi4ujqZNmxIZGcnIkSNp0qQJBgYG7Nu3jyZNmuDl5cWkSZPkeYTUTaVSUaFCBRo3bszkyZPfe/3Vq1fY2tpy48YNDAwMKFKkiEbi+qeoqCgsLCyoX3AAujrqu0hKUSVy+PEiIiMjMTc3V9txspqoMRK+WHBwMI0bN8bLy0seBSJJEg4ODpw+fZrQ0FA6derE3bt339tWk3N3vPvDamtri6enJ8bGxnTp0oXnz5/LLUeurq5s376dWbNmfXBf9evXZ/jw4RgaGhIZGQmktXCMHj2aR48esXPnTuLi4uT1u3btyq+//sr58+fZuXNnliZF6e9t586dNG3aFGtra968eYOZmRnJycn4+/vj6OiIqakpkFY/M23aNK5evYq5ublGa1FCQkIICAiQP5vKlStz4cIFHBwc5IkT00cr+vr60rlzZ/T19bMkxoiICM6cOcP27dvlWcgtLCyIjIyUk5L0mYlnzZqFra2tXHeWHn9MTAzTp09nz549HDt2LMuTopMnTwJpiU5QUJC8TmpqKhUrVqRfv35cunSJuLg4uaYnLCyMs2fPcu3aNY4eParWpCj9c3jz5g3W1ta8ePGCIkWKEB0dzZQpU2jatCk9evSgUaNG+Pj4UKFCBVq2bEmtWrW+OimaMWMGly5dkpOi0aNH06RJE8qVK8fIkSM5efIkxsbG/Pnnn1hYWDBr1iz27dtHQkICP/74Iz4+PqxcuZKhQ4dmGK2WldI/n/TC7oiICIyMjOR7/r1b8P3kyROWLl1KUFAQrq6uWkuKMhA1RpkSiZHwxezt7bl48SL58+fH19eXN2/eyF0V9vb2nDp1iitXrrBw4UKNxvXuSerdhtD0f3fs2JG+ffuSmJhI165d5eRo5MiR5M2bl8OHD2d6E1NJknBzc6NEiRIcP36cXr16cfbsWSBtMss+ffowdOhQdu7cSUJCQoZtDQwMMDY2zvL3ev/+fYYNG8bcuXMZN24cFSpUANKSoIoVK7Jnzx6WL1/OgAED2LlzJ/Xq1cPa2jrL48hMemuWj48PDRo0oG7dulSvXp1Ro0ZRrlw5/ve//xEZGYmHhwdNmzaVJwPcvXs3Li4uWRaDpaUlW7ZsIU+ePPzxxx+sWbMGXV1dChYsyMaNG4G0v0/6XE5ly5aVu1rSEzNTU1MmT57MoUOHvjq5TS/IT0+Kxo8fj4eHB69evaJTp05cvXoVX19f4O8LCAsLC2JjY9HV1ZW3s7a2pkWLFuzbt4/SpUt/VUyfolAo2LRpE3Z2doSGhlKnTh26du1KoUKFuHnzJu3atSMhIQE7Ozv27NmTZcc9c+YMmzZtYurUqdy9e5djx47xxx9/sHjxYgYNGsSrV68YM2YMhw8flpMjKysrBg8ezLlz51CpVDRt2pQNGzawe/dutd2IN33m9s6dOxMeHo61tTU9e/Zk6dKlrFu3LsOF4K+//sqRI0fkFmch+xI1RsJH/bPJP125cuXYsmULjRo1onfv3qxZswYLCws5OQoICMDS0lKjsd6/f5+iRYsCf4+A2rJlC/Hx8VSuXJmePXvSqlUrlEolc+fOpWvXrvz++++4uLgwbdo0jIyMMm1yf7f1QqFQcPToUZRKJUqlksqVK7N06VJUKhU9e/ZER0eHFi1aYGRkpNbagWfPnqGnp8cPP/wgL0tPSDp06EBMTAyzZ8/G2tqaffv2UaBAAbXF8q7078vhw4fp1KkTU6ZMoXv37kybNo0FCxZQsWJFOnbsSK5cubh+/TqXL1+mQoUKzJo1K0uvoFUqFUqlkjx58jBkyBBGjx7NypUrsbS0ZMqUKbRo0YJ27dqxZcsW+cfr2rVrcoKZTpKkLKkLK1WqFD/88IM8t0/6aCRvb29sbW2pUaMG+/fvZ+XKlaSkpNCoUSPCwsI4duwYhQoVQl9fP8P+TExMvjqmj0n/LoWGhnLkyBHmzp1L7ty5Wbp0KQ0bNiQlJYXmzZvLtWpFixYlT548HzxffKlq1arxyy+/sGrVKiZMmICTkxMjRozA3d0dd3d3ypcvz9KlS+X6r/r167Nz505++eUXatasiY6ODiqVitatW+Pu7i63nqrDpUuXuHXrFgMHDmThwoV069aNR48e0b17d06ePImRkRGxsbHs3LmTEydOkDt3brXF8sVUEmqtA/pG5zESNUbCB/2z0Dp9Arzhw4fj6OgIpJ3g0+9JtHr1ajk5Sk8mNFVT5OvrS8OGDdm8eTNt27Zl3759NGvWjGbNmqGrq8uePXuoV68e06ZNw9XVlR07drB8+XIiIiLYs2dPps3+kiTJP7Bv3rxBT08Pc3Nzbt68SbNmzShfvjxDhw6lcuXKAHh5ebFs2TI5BnXy8fFhwIABnDp1CmdnZ3kYukKh4MyZMyiVSlxdXUlOTlZ7grp+/Xqio6Plmp2kpCT69u2Lubk58+bN4/Xr11SuXJkffviBJUuWoFAoNPa9GDp0KI8ePSI4OJg7d+6QN29eBg0aJCdMBgYGFCxYkPDwcCIjI7l+/XqWDwyYPHkyO3bs4OrVq+jo6LBt2zbWrVtHZGQke/bskf8+R44cYeHChVy4cAFLS0s56bh06RJ6enoav9fXpUuXGDJkCACrVq2iSJEi7x3/9evXLF68mCVLlnD27FmKFy/+1cd9t0h6+/btrFy5En9/f4YPH86IESPk9Y4ePcrSpUsJCQlhxIgRNG7cWH7t3e+Xuj+3lJQUVq9eze+//07BggVZtmwZ5ubmbNu2jU2bNhEZGUm+fPkYNmxYlnTFZgW5xsjZS/01RgFLRI2R8N+RnhSNGjWKUaNGceXKFa5cuYKbmxt79+4lPj6eSpUqcfDgQU6ePEmLFi2IjY3NcBLSVE1RoUKF6NOnD56enmzdupVnz54xf/58duzYwZYtW7h06RJ37txh7NixJCUl0apVK7p164adnd17tynZv38/165dQ6FQyLf5+PHHHylbtixNmzYlKCgIX19fLl++zNy5c/Hz8wNgyZIlDB48mFKlSqn9/ZYuXZrQ0FD5flQ6Ojry5759+3b27duHkZGR2pOi2NhYfv/9d/744w/5tif6+vpERUVRpUoVQkJCKFu2LA0aNGDp0qXyyKajR4+qrXsj3e+//87atWsZP348+/fv5+7duzg6OrJx40aioqI4ffo0bdq0oXDhwjRo0EBOitJnmM4qkZGRclfYxIkTmTp1Ko8fP84wXxFAvXr1WLRoEdu2baNLly4MHTqUy5cvo6enR0pKisYL5u/cuUNcXBzXrl3DxMQEhUKR4f/KiRMn6N27Nxs3buTYsWNZkhSpVCo5Kdq7dy+1a9emf//+ODs7s2HDhgyz5tetWxcvLy95YlP4u9v83fOOOj63e/fuyV2wurq69OzZk06dOvH48WP69etHREQEbdq0Yf369Rw5coSVK1dmm6QoA0ml/se3SANTAgjfoPT5SZYvXy45OjpKV69elSRJko4ePSopFArJzs5O2r59uxQfHy9JkiSdPn1aatSokZSamqqtkKWAgABpwIABkoWFheTk5CR5e3tLkiRJycnJkiRJ0s2bNyUDAwNpxYoV8jZRUVEZ9vHy5UupQIECUvfu3aVHjx5Jt27dkszMzKT//e9/0owZMyRPT09JV1dX8vb2lh49eiQVLFhQ6tChg3Tq1CnNvdG31qxZI+np6UnDhw+Xbty4Id2+fVsaMWKEZGlpKd25c0djcbx48UJq06aNVLt2benXX3+VJEmSevToIVWuXFkqUKCA1LdvX/lvEBMTI7Vv316aMWOG2ueyGj9+vFStWrUM804FBgZKFStWlFxcXKQdO3a8t4065ig6deqUVLx4ccnV1VWytLSUwsLCpP3790uurq5Sq1atpEuXLr23jbpi+hLJycnSli1bJBcXF6l69eryHFzp8Tx9+lT6448/pEePHmXJ8d5976NHj5bs7OykpUuXSpIkSdu2bZNq164tNW/eXPL398+w3eXLl9V+3nk3tvv370uVK1eWvLy8MsyPlJiYKM2ePVuys7OTevbsKc/p9s/tswN5HqN8fSX3/IPV9qifr+83OY+R6EoTZGPHjqVw4cJ07doVSLvSXbp0KXZ2dvz888/4+PjQtWtXFi9ezP79+zl58qRcc/BugXFW1Rn8G0+ePGHFihUsWLCASZMmMWrUKLkYW1dXl0aNGlGoUKEMtwT5pytXrtC7d28qV66MpaUliYmJ8h3Wo6Ki+P333xkyZAgHDhwgT5481KxZk1atWrFkyRKNFlaqVCp27NhB7969MTExwdDQEKVSyaZNmyhbtqzajy9JEikpKejp6XH79m2GDRtGREQEw4YNo2zZsrRt25bg4OAMo63GjBnDhg0bOHz4cJYVWmcWl0KhYMaMGezYsUOu80jvojly5AjNmjXD2dmZadOm0axZM7V3t7i7u3Po0CEaNmzIgQMHgLSb586bN4/ixYszaNAgypUrlyF+TUo/ZmBgoDwfT9GiReXb4qTXGK1fvx4rKyu1xjhlyhQWLVrE/v37KVKkCBYWFkBa9/Hy5csxNjZm0qRJ77XMqvO8k/5+T58+LY8IvXDhAlWqVGHq1KlyDVhKSgplypQhKCiI1q1bs2rVKq1NjfExcleaUx/1d6UFLhddacK36fHjx/j5+fHbb7+xbds2IG1ETL169XB3d+f+/fv88ssvTJkyhS5dutC/f39evnxJ69atuXjxYoZ9aXPCsgIFCuDp6UmPHj0YM2YMW7duRalUynUj8fHx7xWy/lO5cuVYuXIlFy9e5I8//iA+Pl5+zdzcnM6dO9OxY0dWr16Nq6sr+/btY9SoURofbaKjo0ObNm24efMmW7duZf369Zw4cUIjSVE6PT09tm7dyqRJk4iIiODatWuMHDmSw4cPM2zYMBQKhZwktWrVihUrVrBr1y61JUXwd9dJkyZN8Pf3l6dhSO+iSUxMpF69ejRv3pwmTZpk2EYdwsLC0NPTY9KkSTx79kyeZLNDhw4MHjyYu3fvsnjxYs6fP6/2WDKT/qO/c+dO6tevT506dahcuTJ9+/YlMDCQNm3aMHjwYMLCwujWrZs8ClUdwsLCOHnypFyoHxMTw7Fjx+jZsyeJiYnUqVOHpKQkvLy83rs5rTrPOwqFguPHj1OzZk2SkpIYP348derU4dSpU4wdO1Yelh8XF0f58uX55ZdfmDhxYrZMioRPE6PSBCDtBqszZsxg9uzZLF68GJVKRbt27eTC4j///BNTU1O5wDElJYXRo0ejr6//3oR4mpJ+Qvf39ycwMJDQ0FBatmxJgQIFmDRpEiqVig4dOnDr1i1y587N8+fPuXDhAsuXL//kvsuVK8eqVato1qwZR44cwd/fXx6ubWFhgYODA3v37iUhIYGqVauq+Z1+nIODAw4ODho/bvpQ5e7du7N48WKqVauGUqmkR48ebNiwgY4dO3L06FGWLVtGeHg4BQoUYMaMGRQuXFgj8ZUsWZJVq1bRq1cvYmJiaNu2LdbW1ixdupRSpUoxdepUQP0tnNbW1vj4+KCjo0PevHmZPXs2P/30Exs3buSnn35CoVAwevRoChYsSJUqVdQWx4coFApOnDhBp06dmDdvHsWKFZPvbfjy5UsWL15MmzZtUKlU/O9//6Nv375s2rRJLZ+ZQqHg9u3b3Llzh5MnT7Js2TKePHmCSqVi7969TJ48mXbt2nHhwgWNjbSEtJbo8PBwpk+fTp06dYC02kuAQ4cO0b17dzw9Pdm9ezcPHjxgzpw52NjYaCy+f02MSsuU6EoTMrh8+TKzZs0iODgYLy8veXTV8uXL5ZYAW1tbvLy8KFCggDwhniZv8/Gu7du307t3bxwdHXny5AkODg4MHTqUzp07ExMTw8SJE1m3bh22traMGzeO8uXLf9GNU2/cuEHHjh0pX748gwYNkueN6d27N48fP8bHx0ftQ6ezs19//ZWFCxdy6dIl+Ua7QUFBtG/fnlevXjFr1ixatGih1Rh37NhB37595ZZCGxsb/Pz8tDLSKzY2lq1btzJr1izKlSvHhg0bgLRRlXXr1tXoBKjvGjNmDP7+/nIRM4C/vz/16tWjS5cuzJ8/n5SUFHkSx/z586stljVr1jB8+HBSU1Px9PTk+++/p379+nTs2BEjIyNWr14tr5vVSW1m+wsICKBIkSLo6OgwduxYxowZI496i4uL47fffmPt2rW8ePECCwsLNm7cKHeLZldyV1peT/V3pT1f8c11pYnEKIdL/2F4d3jrhQsXmDt3LsHBwfTr14927doBUKtWLc6dO4eDgwOWlpZcvHhRrfce+pRr167x/fffM3v2bBo3boyFhQUeHh7cvn2bvn370r17d/nWCfv27eP69ev/6j/n1atX6dKlC3FxcdSsWRMDAwO2b9/O4cOHs3xG629N+r3yTp06hY2NjVzHc+PGDapWrYqzszPDhw+na9euWqmdSffixQueP39ObGwsNWrUQKlUai2Zj42NZdu2bcyZMwdHR0cOHjwov6bJW+akkyQJDw8Pnj9/zl9//YVKpSIlJQV9fX3++OMPhg4dyoULF3B2dtZYTM+ePSMxMVFuXVSpVDRo0IBKlSq9d3uUrBYYGIifnx+tW7dm8+bN7Nmzh5o1azJu3DgaNmzI+vXrgb8vBlUqFVFRUTx79gx7e/tvoqVITowceqs/MXqx8ptLjESNUQ6WPvcNpM3KGxUVhUqlolKlSgwfPhw7OzuWLFnCpk2bgLThuRs2bGDZsmUZhhFry5MnT7C2tsbd3R0rKyt0dXXx9vamaNGizJkzh6SkJAoWLMiIESPw8/P71/8xy5Yty8aNG9HR0eHIkSPkz5+fy5cv5/ikCMDNzY2AgAAWL14M/F3Hk5SURPny5SlVqhR169YFNF878y4HBwcqVqxI7dq1USqVpKamaiUpgrTJGdu0aUOfPn2wtrbOMG2BupMiSZLkepiwsDDi4uJQKBQ0adKEEydOcPjwYXR0dOTPxtTUlFy5cmFmZqbWuP4pX758FC5cmJiYGE6fPk2zZs14/fp1pvcfy0rJycmMGDGC+fPnM2TIEH766Se+//57evXqxcyZM9myZQtjx44FkJMiHR0dLC0tKVWq1DeRFAmfJhKjHCy9yXjChAnybRvq1avHzZs3qVChAr/88gv29vYsX75cTo7atGnDDz/8oNUfl/RGzpiYGGJjY+VZpuPj41EoFHJdwt69ewFwdnbG1tb2q47p6urK5s2bKVasGB4eHhq9es7OXFxcWLVqFTNmzGDMmDE8ffqUiIgIdu/eTf78+VmxYgVOTk7aDvM92uqySmdiYoKHhwcbNmyQZ2lWp3/OzbVr1y6aNm1KmTJlmDBhAkZGRnh6etK/f398fX3lc4Ofnx/GxsZaSWolSeLSpUvMnDmT5ORkLl++jK6ubob7j2U1PT09li9fTmpqKgsWLMDT05Nu3bqhUCho3749y5cvZ+bMmYwbNw7Q7kCTLCGh5nulafsN/juiKy0Hercf3dvbm8GDBzNr1iySkpLw8fHh0qVLrF+/nsaNG3PhwgXmz5/PtWvXWLx4MfXq1dNKzJl1w7x584ZixYrRvHlzVq1aJS9/9uwZ7u7urFy5kho1amRpHAkJCeJeR/8gSRKbN2+mV69e2NjYoKOjQ3h4OL6+vtm+1iI7UHcX46tXr3Bzc6N27dqMGTOG5ORk3NzcGDp0KKGhoZw+fZrChQtTqVIlAgMDWbJkCeXKlUNPT4+bN29y9OhRjY50fFdiYiK3b9+mdOnS6OjoaKT7Mzk5GXd3d8LCwrCxsaFr16507NgRSBvVunHjRvr374+npyfz5s1TayzqInel2fdGV+fjo3S/RooqicPB315XmkiMcrA9e/Zw8eJFChUqJM9dBGl3ht+zZw83b97EwcGBs2fPcvDgQSZMmKCVK+30H47z589z/vx5ihUrRvHixXF2dmb79u14eHjQqlUr/ve//5GcnMzatWtZs2YN586dk29dIqjf06dPuX79unxvOnUW6ApfJn1uripVqsitp+ldQnv27GHRokVYWVnRqVMnLCwsOHDggHyzWk2NIvwUTc6PlpiYSHh4OD169CAuLo6ff/6ZTp06ya/Pnz+fmTNncuPGjW+y+0xOjOx6qT8xevmrSIyE7Ovdws6LFy/SpUsXnj59yq+//krnzp1JSkqSR+6ULVuW2rVrM3/+/A/uQ5P27NlD+/btcXFx4eXLl9SrV48hQ4ZQoUIFfHx86NOnDwqFAhMTE5KSkti1a5dorRCEd1y5coU+ffrw6tUr2rdvL9/QFtL+f82fPx8rKyvGjRsn6ufeevz4MQMGDCAhIYGuXbvSuXNnJkyYQEBAAPPmzcPa2lrbIf4rIjH6uG+8g1T4EukJTfoQ4d69e2NjYyOPstDX1yclJYXU1FQcHR1JTEz84D40RXp7I9c9e/awZMkSrl27xqJFi3jz5g3jxo3jwoULNG/enLt37/Lrr7+yatUqzp49K5IiQfiH9Lm5dHR0OH36NLdu3ZJfa9KkCcOGDePx48fMmTOHuLg4xDVz2vxuixcvxtzcnFmzZlGxYkUWLlwoF85/81Qq9T++QSIxygHeLVacO3cunTt3xsbGhp9//plRo0bx9OlTuZlYV1cXpVLJq1ev5Lt7a0P6Sfnly5fExcWRlJREiRIlAGjXrh1eXl6oVComTJjAmTNnsLCwoHHjxtSuXZu8efNqLW5ByM5KlSqFj48PsbGxLFq0KENy9MMPPzBz5kymTp2qtYLr7KhAgQIsXryYwYMH06RJE/z8/OSJb4X/JtGVloNcuXKFs2fPkjdvXnnSvZiYGLy9vZkxYwbW1tYUK1YMpVIp341eW0OaAXbu3MnQoUNRKpXExsbi7e1Nw4YN5df37t3LihUrCA8Pl28hIAjCp129epUePXpQrlw5Bg8eLF90CDmD3JVm46H+rrSQNaIrTcgeevbsyatXr+Tn58+fp0KFCgwbNkyee0ilUmFqakr37t355ZdfSEpK4vbt23h4ePDgwQN0dXU1Pk9Rep4eGBhInz59GDBgAD169KBw4cL079+fkydPyus2btyY7t27Y29vj52dnUbjFIRvWdmyZVm9ejXXr19nypQp3L17V9shCUK2IRKj/6DXr18TEhKSoQ+8VKlSLFiwAKVSyZUrV4C0CfdUKhUmJiZ06dKFvn37YmJiwubNm+XtNN2crlAoOHbsGD4+Pnh4eDB48GBGjRrF9OnTKVOmDAMGDODUqVPy+q1atcLb2ztbzpUjCNlZ2bJlWbJkCcHBwfId7IUcRq1zGL19fINEYvQflCdPHnx8fNDT0+O3334jICAAY2NjevTowaRJk5g5cyaLFi1CoVDIk8ultxx16tQJf39/+TYgmi62jouLY+3atQwcOJDr16/Ly6tVq8aAAQMoUqQIgwcP5ujRo/JrpqamGo1REP4rKlasyMGDB7G3t9d2KIKQbWivgERQu+joaEaNGoWjoyN//vknjo6OctHyoEGD0NHRwcvLS06OzMzM6N69O/Hx8ezdu5fg4GCNnzCNjY0ZMmQIBgYGeHt7c+rUKXmSxurVq6NQKJgyZQoTJkzAzc0NQ0NDUSQqCF9BTFiag6kk1Do9terbbDESxdf/IZlNgBYYGEijRo0wMjJi165dODo6kpCQwOLFi/nll1+YMmUKo0aNAv6eSDEmJobk5GSsrKzUHnP6MZOTk1GpVPJIuCdPnjBq1CgOHz6Mj49Phhmsz58/j5OTkxh9JgiC8C/IxdfW3dVffB229psrvhaJ0X/Eu0nR4cOHiYmJQUdHh6ZNmxIUFIS7u3uG5CgxMZGpU6dy9OhRTp06Jbe6aPIO6OnHOnDgAKtXr+bFixcULVqUXr164ebmRmBgIKNGjeLQoUPs3r2batWqaSQuQRCE/7L0xKieVVe1J0ZHwtd9c4mRqDH6D5AkSU6KRo8eTbdu3Zg8eTLt2rWjW7duABw4cID4+HhatmxJUFAQBgYGjBs3Tk6K0vNjTXZLKRQK9u7dS/PmzbG3t8fd3Z0rV64waNAg1q1bh5OTE1OmTOHHH3+kRo0anD9/XmOxCYIgCDmTSIz+A9KTmVmzZrFu3Tp27tzJlStXmD17Nr///jsDBw5EoVBw8OBBEhMTqVatGiEhIejp6clJkabrdCRJIjIyktmzZzNmzBiWLFnChAkTOH/+PC4uLixdupSrV69SqFAhhg0bRs+ePf8bM80KgiBkF5KUVgekrsc32iElEqP/iBcvXnD79m3mz59PpUqV2LlzJ+PHj2fs2LEcOXKEgQMHkpKSwu7du6lZs2aGJEMTSZEkSUiSJM/CrVAoMDMzIzo6GjMzMwCSkpIwNjbmt99+Izo6mtWrVwPg6urKkiVLKFKkiNrjFARBEHI2MSrtP8La2ppmzZpRp04dLl26xNChQ5k4cSIDBgzA0tKSYcOGER4ezubNm+V7o2nihrDprVGRkZFYWlqiVCo5c+YMKpUKNzc3dHV15WH5+vr6JCUlYWhoSIMGDXjy5Im8vZ6enlrjFARByHEkNY9KEy1GgjYZGhrSuHFjLC0tOXz4MCVLlqRr165AWsLRsWNHDAwMyJ07t7yNJuYoUigUhIaGUqZMGdavX8+hQ4eoWbMmCQkJ6OrqMmXKFDZu3Mi0adPkWAGCg4OxsbERN7IUBEEQNEq0GP2HpN/X7P79+0RGRqJQKEhISOCvv/6iU6dO8qSNmQ3rV6eUlBR+/vln+vXrR1JSEtu3b+f7779HpVJRs2ZNZs2axfDhw7l+/TouLi6EhIRw4MAB/Pz8NBqnIAhCjqJSgUKlvv1Laty3GonE6D8kvVaoV69e1KxZk2rVqpGYmIihoSGtWrWS19N0smFnZ0eVKlWIiYlBX1+f6OhoOQ4jIyM8PT1xdXVl6tSpvH79GnNzc86dO0fJkiU1GqcgCIIgiMToP6hKlSqcP3+enTt3Ym5uzpAhQ+Qbwqa3KmlCen1QSkoKrq6u7N69m2vXruHl5UV8fDy9e/cGQE9Pj7p161K3bl0AEhISxGy8giAI6iZqjDIlEqP/qHLlylGuXDn5uaaTIkhrwTpz5gwDBw5k//79NGnShHLlyhEfH8/w4cPR0dGhZ8+e6OjosGXLFhwcHKhRo4Y8+7UgCIIgaJpIjHIITSdF6WxtbQkNDaVJkybs27ePvHnz0rdvXxQKBYMHD+bJkyekpqayaNEibt26BWh2kklBEIScSlKpkNRYYySJGiNByEiSJFxcXDhy5AjNmzenYcOG/PXXX+TNm5f+/fuTK1cuVqxYQa5cuThz5gwFCxbUdsiCIAhCDifulSZkuStXrsjdeOl1Rg8fPqRFixYYGBhw8OBBedqA6OhoUlNTsbS01GLEgiAIOUf6vdLqGrVDV6HGe6VJSRyN3yLulSbkbBERETRq1IjatWsDyLcccXFxYdOmTQQFBdGlSxdevXoFgJmZmUiKBEEQhGxDJEZClrK0tGTLli08fvyYRo0aAX/XDLm4uFCqVCkOHjxI+/btUam+zf5nQRCE/wR13ict/fENEomR8FXSe2Lv3bvHxYsXOXfuHLVr12bjxo3cvHlTTo4gbXbuEiVK4Ovry9q1a8XkjYIgCEK2I36ZhH8tvX7Ix8cHd3d3unbtSt26denZsyf29vZs3LiRO3fuUK1aNVasWIGXlxc7duygePHi5M+fX9vhC4Ig5GySlDY7tdoeosVIyGEUCgWHDh2ie/fujB49Gn9/f3bu3MmaNWuYMGEC9vb2/PXXX+jq6rJs2TLOnDnDnj17cHBw0HbogiAIgpApMVxf+NeioqLYsWMHgwcPplevXjx58oT+/fvTsmVL9u7dS0xMDEuXLuXEiRNERESgVCoxMzPTdtiCIAgCIKkkJIX6WnW+1UHvIjES/jVDQ0Pq169PuXLlCAsLo1WrVtSuXZvVq1ezadMmOnbsSEJCAsuWLRNzFAmCIAjfBJEYCf+avr4+TZo0wdDQkD/++ANDQ0MmTpwIpHWz1apVi7t372pt1m1BEAThIyQVoMbRwd/ozNeixkj4Kuk3e33y5AnR0dGYmJgAcO3aNVq1asWDBw/Ily+fNkMUBEEQhM8mLuWFLNG4cWOmTp0qtyBdvHiRU6dOoaenp+3QBEEQBOGziRYjIUuULVuWY8eOUaBAAYoVK8bZs2cpVaqUtsMSBEEQPkBSSWp/fKmlS5eSP39+DA0NqVy5MhcuXFDDO/840WIkZBk3NzcqV66MQqGQZ7sWBEEQhM+xZcsWhgwZwooVK6hcuTILFiygYcOG3Lt3jzx58mgsDtFiJGQpHR0dkRQJgiB8C9Q6uaPqi4uv582bR8+ePenevTslSpRgxYoVGBsb89tvv6npA8icaDESBEEQhBwohWRQ41RDKSQDaXPevcvAwAADA4MMy5KSkrh8+TKjR4+Wl+no6FC/fn3OnTunviAzIRIjQRAEQchB9PX1sbOz4/TL/Wo/lqmpKU5OThmWTZgwQZ7aJV1oaCipqanY2tpmWG5ra8vdu3fVHWYGIjESBEEQhBzE0NCQJ0+ekJSUpPZjpd9T813/bC3KbkRiJAiCIAg5jKGhoTwPXXaQO3dulEolr169yrD81atX2NnZaTQWUXwtCIIgCIJW6evrU758eY4cOSIvU6lUHDlyBDc3N43GIlqMBEEQBEHQuiFDhtC1a1cqVKhApUqVWLBgAbGxsXTv3l2jcYjESBAEQRAErWvXrh0hISGMHz+ely9fUqZMGQ4ePPheQba6ia40QRDUolu3bjRv3lx+Xrt2bQYNGqTxOI4fP45CoSAiIuKD6ygUCnx8fD57nxMnTqRMmTJfFdfTp09RKBT4+/t/1X4E4b/Ey8uLgIAAEhMT8fPzo3LlyhqPQSRGgpCDdOvWTZ6ZXF9fHxcXFyZPnkxKSoraj71z506mTJnyWet+TjIjCIKgDqIrTRByGHd3d9auXUtiYiL79++nX79+6OnpZZhYLV1SUhL6+vpZclxra+ss2Y8gCII6iRYjQchhDAwMsLOzw9nZmT59+lC/fn3+/PNP4O/ur6lTp+Lg4EDRokUBCAwMpG3btlhaWmJtbU2zZs14+vSpvM/U1FSGDBmCpaUluXLlYsSIEUhSxil1/9mVlpiYyMiRI3FycsLAwAAXFxfWrFnD06dPqVOnDgBWVlYoFAq6desGpI1SmT59OgUKFMDIyIjSpUuzffv2DMfZv38/RYoUwcjIiDp16mSI83ONHDmSIkWKYGxsTMGCBRk3bhzJycnvrbdy5UqcnJwwNjambdu2REZGZnh99erVFC9eHENDQ4oVK8ayZcu+OBZBEDRLJEaCkMMZGRllmOjtyJEj3Lt3D19fX/bu3UtycjINGzbEzMyMU6dOcebMGUxNTXF3d5e3mzt3Lt7e3vz222+cPn2asLAwdu3a9dHjdunShU2bNrFo0SLu3LnDypUr5Vlyd+zYAcC9e/cIDg5m4cKFAEyfPp3ff/+dFStWcOvWLQYPHkynTp04ceIEkJbAtWzZkiZNmuDv70+PHj0YNWrUF38mZmZmeHt7c/v2bRYuXMiqVauYP39+hnUePnzI1q1b2bNnDwcPHuTq1av07dtXfn3Dhg2MHz+eqVOncufOHaZNm8a4ceNYt27dF8cjCIIGSYIg5Bhdu3aVmjVrJkmSJKlUKsnX11cyMDCQhg0bJr9ua2srJSYmytusX79eKlq0qKRSqeRliYmJkpGRkfTXX39JkiRJ9vb20qxZs+TXk5OTJUdHR/lYkiRJtWrVkgYOHChJkiTdu3dPAiRfX99M4zx27JgESOHh4fKyhIQEydjYWDp79myGdT08PKQOHTpIkiRJo0ePlkqUKJHh9ZEjR763r38CpF27dn3w9dmzZ0vly5eXn0+YMEFSKpVSUFCQvOzAgQOSjo6OFBwcLEmSJBUqVEjauHFjhv1MmTJFcnNzkyRJkp48eSIB0tWrVz94XEEQNE/UGAlCDrN3715MTU1JTk5GpVLx008/Zbhvkaura4a6omvXrvHw4UPMzMwy7CchIYFHjx4RGRlJcHBwhtEjurq6VKhQ4b3utHT+/v4olUpq1ar12XE/fPiQuLg4vv/++wzLk5KSKFu2LAB37tx5bxTLv5kcbsuWLSxatIhHjx4RExNDSkoK5ubmGdbJly8fefPmzXAclUrFvXv3MDMz49GjR3h4eNCzZ095nZSUFCwsLL44HkEQNEckRoKQw9SpU4fly5ejr6+Pg4MDuroZTwMmJiYZnsfExFC+fHk2bNjw3r5sbGz+VQxGRkZfvE1MTAwA+/bty5CQQNbee+ncuXN07NiRSZMm0bBhQywsLNi8eTNz58794lhXrVr1XqKmVCqzLFZBELKeSIwEIYcxMTHBxcXls9cvV64cW7ZsIU+ePO+1mqSzt7fHz8+PmjVrAmktI5cvX6ZcuXKZru/q6opKpeLEiRPUr1//vdfTW6xSU1PlZSVKlMDAwIBnz559sKWpePHiciF5uvPnz3/6Tb7j7NmzODs7M2bMGHlZQEDAe+s9e/aMFy9e4ODgIB9HR0eHokWLYmtri4ODA48fP6Zjx45fdHxBELRLFF8LgvBRHTt2JHfu3DRr1oxTp07x5MkTjh8/zoABAwgKCgJg4MCBzJgxAx8fH+7evUvfvn0/OgdR/vz56dq1Kz///DM+Pj7yPrdu3QqAs7MzCoWCvXv3EhISQkxMDGZmZgwbNozBgwezbt06Hj16xJUrV1i8eLFc0Ozp6cmDBw8YPnw49+7dY+PGjXh7e3/R+y1cuDDPnj1j8+bNPHr0iEWLFmVaSG5oaEjXrl25du0ap06dYsCAAbRt21a+4eWkSZOYPn06ixYt4v79+9y4cYO1a9cyb968L4pHEATNEomRIAgfZWxszMmTJ8mXLx8tW7akePHieHh4kJCQILcgDR06lM6dO9O1a1fc3NwwMzOjRYsWH93v8uXLad26NX379qVYsWL07NmT2NhYAPLmzcukSZMYNWoUtra2eHl5ATBlyhTGjRvH9OnTKV68OO7u7uzbt48CBQoAaXU/O3bswMfHh9KlS7NixQqmTZv2Re+3adOmDB48GC8vL8qUKcPZs2cZN27ce+u5uLjQsmVLfvjhBxo0aECpUqUyDMfv0aMHq1evZu3atbi6ulKrVi28vb3lWAVByJ4U0oeqIwVBEARBEHIY0WIkCIIgCILwlkiMBEEQBEEQ3hKJkSAIgiAIwlsiMRIEQRAEQXhLJEaCIAiCIAhvicRIEARBEAThLZEYCYIgCIIgvCUSI0EQBEEQhLdEYiQIgiAIgvCWSIwEQRAEQRDeEomRIAiCIAjCW/8H42qgdI2A0zoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# истинные метки классов\n", + "true_labels = np.argmax(y_test, axis=1)\n", + "# предсказанные метки классов\n", + "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", + "\n", + "# отчет о качестве классификации\n", + "print(classification_report(true_labels, predicted_labels, target_names=class_names))\n", + "# вычисление матрицы ошибок\n", + "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", + "# отрисовка матрицы ошибок в виде \"тепловой карты\"\n", + "fig, ax = plt.subplots(figsize=(6, 6))\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n", + "disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n", + "plt.tight_layout() # чтобы всё влезло\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RF4xK1cxamBc" + }, + "source": [ + "#### Анализ результатов классификации датасета CIFAR-10 показал, что разработанная сверточная нейронная сеть с архитектурой, включающей три блока сверточных слоев с batch normalization и dropout, успешно справилась с задачей классификации цветных изображений.\n", + "\n", + "**Общая производительность:** Достигнутая точность классификации составляет 85.49%, что является хорошим результатом для данного датасета, учитывая его сложность (малый размер изображений 32×32, высокая вариативность объектов, наличие фоновых элементов).\n", + "\n", + "**Анализ по классам:** Модель демонстрирует различную эффективность для разных категорий объектов:\n", + "- **Высокая точность (≥90%):** ship (precision 0.97, recall 0.86), truck (precision 0.93, recall 0.90), horse (precision 0.91, recall 0.86) - объекты с четкими геометрическими формами и характерными признаками\n", + "- **Средняя точность (80-90%):** automobile (precision 0.85, recall 0.97), airplane (precision 0.81, recall 0.91), deer (precision 0.85, recall 0.84), frog (precision 0.86, recall 0.93), dog (precision 0.82, recall 0.77) - объекты с более сложной структурой\n", + "- **Пониженная точность (<80%):** bird (precision 0.79, recall 0.80), cat (precision 0.76, recall 0.70) - объекты с высокой внутриклассовой вариативностью и схожестью между классами\n", + "\n", + "**Особенности классификации:** Наибольшие трудности модель испытывает при классификации кошек (precision 0.76, recall 0.70), что связано с высокой вариативностью этого класса и схожестью с собаками. При этом модель демонстрирует сбалансированные метрики precision и recall для большинства классов, что указывает на отсутствие систематических смещений в предсказаниях. Интересно отметить, что для некоторых классов (automobile, airplane, frog) recall выше precision, что говорит о склонности модели чаще предсказывать эти классы.\n", + "\n", + "**Выводы:** Полученные результаты подтверждают эффективность применения сверточных нейронных сетей с batch normalization и dropout для классификации цветных изображений. Архитектура успешно извлекает пространственные признаки различного уровня абстракции, что позволяет достигать высокого качества классификации даже на сложных наборах данных с ограниченным разрешением изображений." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/labworks/LW3/report_team8.md b/labworks/LW3/report_team8.md new file mode 100644 index 0000000..004f088 --- /dev/null +++ b/labworks/LW3/report_team8.md @@ -0,0 +1,587 @@ +# Отчёт по лабораторной работе №3 + +**Ильинцева Л.В. Коновалова А.А. — А-01-22** + +## Задание 1 + +### 1. Подготовили рабочую среду в Google Colab, создав новый блокнот. Выполнили импорт требуемых библиотек и модулей для дальнейшей работы. + +```python +# импорт модулей +import os +os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3') + +from tensorflow import keras +from tensorflow.keras import layers +from tensorflow.keras.models import Sequential +import matplotlib.pyplot as plt +import numpy as np +from sklearn.metrics import classification_report, confusion_matrix +from sklearn.metrics import ConfusionMatrixDisplay +``` + +### 2. Произвели загрузку датасета MNIST, который включает размеченные изображения рукописных цифр. + +```python +# загрузка датасета +from keras.datasets import mnist +(X_train, y_train), (X_test, y_test) = mnist.load_data() +``` + +### 3. Выполнили разделение датасета на обучающую и тестовую выборки в пропорции 60 000:10 000. Для воспроизводимости результатов установили параметр random_state равным (4k – 1)=31, где k=8 соответствует номеру нашей бригады. Отобразили размерности полученных массивов данных. + +```python +# создание своего разбиения датасета +from sklearn.model_selection import train_test_split + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 31) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (60000, 28, 28) +Shape of y train: (60000,) +Shape of X test: (10000, 28, 28) +Shape of y test: (10000,) +``` + +### 4. Осуществили предобработку данных для подготовки к обучению сверточной нейронной сети. Нормализовали пиксели изображений в диапазон [0, 1], а метки классов преобразовали в формат one-hot encoding. Продемонстрировали размерности обработанных массивов. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (28, 28, 1) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +# Расширяем размерность входных данных, чтобы каждое изображение имело +# размерность (высота, ширина, количество каналов) + +X_train = np.expand_dims(X_train, -1) +X_test = np.expand_dims(X_test, -1) +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 28, 28, 1) +Shape of transformed X test: (10000, 28, 28, 1) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +### 5. Разработали архитектуру сверточной нейронной сети и провели ее обучение на обучающей выборке, выделив часть данных для валидации. Представили структуру созданной модели. + +```python +# создаем модель +model = Sequential() +model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape)) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu")) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Dropout(0.5)) +model.add(layers.Flatten()) +model.add(layers.Dense(num_classes, activation="softmax")) + +model.summary() +``` +**Model: "sequential"** +| Layer (type) | Output Shape | Param # | +|--------------------------------|---------------------|--------:| +| conv2d (Conv2D) | (None, 26, 26, 32) | 320 | +| max_pooling2d (MaxPooling2D) | (None, 13, 13, 32) | 0 | +| conv2d_1 (Conv2D) | (None, 11, 11, 64) | 18,496 | +| max_pooling2d_1 (MaxPooling2D) | (None, 5, 5, 64) | 0 | +| dropout (Dropout) | (None, 5, 5, 64) | 0 | +| flatten (Flatten) | (None, 1600) | 0 | +| dense (Dense) | (None, 10) | 16,010 | +**Total params:** 34,826 (136.04 KB) +**Trainable params:** 34,826 (136.04 KB) +**Non-trainable params:** 0 (0.00 B) + +```python +# компилируем и обучаем модель +batch_size = 512 +epochs = 15 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +### 6. Протестировали обученную модель на тестовой выборке. Определили значения функции потерь и точности классификации. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9873 - loss: 0.0396 +Loss on test data: 0.03962046653032303 +Accuracy on test data: 0.9872999787330627 +``` + +### 7. Протестировали модель на двух произвольных изображениях из тестовой выборки. Визуализировали изображения и сравнили истинные метки с предсказаниями модели. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [3,26]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` + +![Тестовое изображение MNIST 1](images/img_15_1.png) + +``` +Real mark: 7 +NN answer: 7 +``` + +![Тестовое изображение MNIST 2](images/img_15_3.png) + +``` +Real mark: 4 +NN answer: 4 +``` + +### 8. Сформировали детальный отчет о качестве классификации на тестовой выборке, включая матрицу ошибок (confusion matrix). + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix) +display.plot() +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step + precision recall f1-score support + + 0 1.00 0.99 0.99 967 + 1 1.00 0.99 0.99 1107 + 2 0.98 0.99 0.99 970 + 3 0.99 0.98 0.99 1023 + 4 1.00 0.99 0.99 1008 + 5 0.98 0.99 0.98 866 + 6 0.99 0.99 0.99 965 + 7 0.98 0.98 0.98 1070 + 8 0.98 0.99 0.99 943 + 9 0.98 0.98 0.98 1081 + + accuracy 0.99 10000 + macro avg 0.99 0.99 0.99 10000 +weighted avg 0.99 0.99 0.99 10000 +``` + +![Матрица ошибок для MNIST](images/img_17_1.png) + +### 9. Загрузили собственные изображения, подготовленные в рамках лабораторной работы №1. После предобработки передали их на вход обученной модели и получили результаты распознавания. + +```python +# загрузка собственного изображения +from PIL import Image + +for name_image in ['цифра 3.png', 'цифра 6.png']: + file_data = Image.open(name_image) + file_data = file_data.convert('L') # перевод в градации серого + test_img = np.array(file_data) + + # вывод собственного изображения + plt.imshow(test_img, cmap=plt.get_cmap('gray')) + plt.show() + + # предобработка + test_img = test_img / 255 + test_img = np.reshape(test_img, (1,28,28,1)) + + # распознавание + result = model.predict(test_img) + print('I think it\'s', np.argmax(result)) +``` + +![Собственное изображение цифры 3](images/img_19_0.png) + +``` +I think it's 3 +``` + +![Собственное изображение цифры 6](images/img_19_2.png) + +``` +I think it's 6 +``` + +### 10. Загрузили ранее сохраненную модель из лабораторной работы №1. Изучили ее архитектуру и провели оценку качества на тестовых данных аналогично пункту 6. + +```python +model_lr1 = keras.models.load_model("model_1h100_2h50.keras") + +model_lr1.summary() +``` +**Model: "sequential_10"** +| Layer (type) | Output Shape | Param # | +|------------------|-------------:|--------:| +| dense_22 (Dense) | (None, 100) | 78,500 | +| dense_23 (Dense) | (None, 50) | 5,050 | +| dense_24 (Dense) | (None, 10) | 510 | +**Total params:** 84,062 (328.37 KB) +**Trainable params:** 84,060 (328.36 KB) +**Non-trainable params:** 0 (0.00 B) +**Optimizer params:** 2 (12.00 B) + + +```python +# развернем каждое изображение 28*28 в вектор 784 +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 31) +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X train:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 784) +Shape of transformed X train: (10000, 784) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +```python +# Оценка качества работы модели на тестовых данных +scores = model_lr1.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.9440 - loss: 0.1897 +Loss on test data: 0.18974457681179047 +Accuracy on test data: 0.9440000057220459 +``` + +### 11. Выполнили сравнительный анализ сверточной нейронной сети и лучшей полносвязной модели из лабораторной работы №1. Сравнение проводилось по трем критериям: +### - число обучаемых параметров модели +### - количество эпох, необходимое для обучения +### - итоговое качество классификации на тестовой выборке +### На основе полученных результатов сформулировали выводы об эффективности применения сверточных нейронных сетей для задач распознавания изображений. + +Таблица1: + +| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки | +|----------|-------------------------------------|---------------------------|-----------------------------------------| +| Сверточная | 34 826 | 15 | accuracy:0.987 ; loss:0.040 | +| Полносвязная | 84 062 | 50 | accuracy:0.944 ; loss:0.190 | + + +##### Проведенный сравнительный анализ, результаты которого представлены в таблице 1, наглядно демонстрирует превосходство сверточной нейронной сети над полносвязной архитектурой в задачах классификации изображений. + +**Эффективность по параметрам:** Сверточная сеть содержит в 2.4 раза меньше обучаемых параметров (34 826 против 84 062), что свидетельствует о более эффективном использовании вычислительных ресурсов благодаря механизму разделения весов в сверточных слоях. + +**Скорость обучения:** Сверточная модель достигает оптимального качества за 15 эпох, в то время как полносвязная требует 50 эпох. Это указывает на более быструю сходимость алгоритма обучения благодаря индуктивным смещениям, заложенным в архитектуру сверточных сетей. + +**Качество классификации:** Сверточная сеть демонстрирует значительно более высокую точность (98.7% против 94.4%) и существенно меньшие потери (0.040 против 0.190). Разница в точности составляет более 4 процентных пунктов, что является существенным улучшением для задачи распознавания рукописных цифр. + +**Выводы:** Полученные результаты подтверждают, что использование сверточных слоев позволяет эффективно извлекать иерархические пространственные признаки из изображений, что критически важно для задач компьютерного зрения. Инвариантность к сдвигам и способность выявлять локальные паттерны делают сверточные нейронные сети предпочтительным выбором для работы с изображениями по сравнению с полносвязными архитектурами. + +## Задание 2 + +### В отдельном блокноте повторили этапы 2–8 из задания 1, заменив датасет MNIST на CIFAR-10, который содержит цветные изображения объектов, распределенные по 10 категориям. +### Особенности выполнения: +### - разделение на обучающую и тестовую выборки выполнено в пропорции 50 000:10 000 +### - после разделения данных (между этапами 3 и 4) визуализировали 25 примеров из обучающей выборки с указанием соответствующих классов +### - при тестировании на двух изображениях (этап 7) одно должно быть распознано верно, а второе – с ошибкой + +### 1. Произвели загрузку датасета CIFAR-10, включающего цветные изображения, распределенные по 10 категориям: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик. + +```python +# загрузка датасета +from keras.datasets import cifar10 + +(X_train, y_train), (X_test, y_test) = cifar10.load_data() +``` + +### 2. Осуществили разделение датасета на обучающую и тестовую части в соотношении 50 000:10 000. Для обеспечения воспроизводимости установили random_state = 31, что соответствует формуле (4k – 1) при k=8 (номер нашей бригады). Отобразили размерности сформированных массивов. + +```python +# создание своего разбиения датасета + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 50000, + random_state = 31) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (50000, 32, 32, 3) +Shape of y train: (50000, 1) +Shape of X test: (10000, 32, 32, 3) +Shape of y test: (10000, 1) +``` + +### Визуализировали 25 примеров из обучающей выборки с указанием их классов. + +```python +class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', + 'dog', 'frog', 'horse', 'ship', 'truck'] + +plt.figure(figsize=(10,10)) +for i in range(25): + plt.subplot(5,5,i+1) + plt.xticks([]) + plt.yticks([]) + plt.grid(False) + plt.imshow(X_train[i]) + plt.xlabel(class_names[y_train[i][0]]) +plt.show() +``` + +![25 примеров из датасета CIFAR-10](images/cifar_25_samples.png) + +### 3. Выполнили предобработку данных для обучения сверточной нейронной сети. Нормализовали значения пикселей в диапазон [0, 1] и преобразовали метки классов в формат one-hot encoding. Показали размерности обработанных массивов. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (32, 32, 3) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (50000, 32, 32, 3) +Shape of transformed X test: (10000, 32, 32, 3) +Shape of transformed y train: (50000, 10) +Shape of transformed y test: (10000, 10) +``` + +### 4. Построили архитектуру сверточной нейронной сети и провели обучение на обучающей выборке с использованием части данных для валидации. Представили детальную структуру модели. + +```python +# создаем модель +model = Sequential() + +# Блок 1 +model.add(layers.Conv2D(32, (3, 3), padding="same", + activation="relu", input_shape=input_shape)) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 2 +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 3 +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.4)) + +model.add(layers.Flatten()) +model.add(layers.Dense(128, activation='relu')) +model.add(layers.Dropout(0.5)) +model.add(layers.Dense(num_classes, activation="softmax")) + + +model.summary() +``` +**Model: "sequential_9"** +| Layer (type) | Output Shape | Param # | +|--------------------------------------------|-------------------|---------:| +| conv2d_41 (Conv2D) | (None, 32, 32, 32) | 896 | +| batch_normalization_6 (BatchNormalization) | (None, 32, 32, 32) | 128 | +| conv2d_42 (Conv2D) | (None, 32, 32, 32) | 9,248 | +| batch_normalization_7 (BatchNormalization) | (None, 32, 32, 32) | 128 | +| max_pooling2d_26 (MaxPooling2D) | (None, 16, 16, 32) | 0 | +| dropout_24 (Dropout) | (None, 16, 16, 32) | 0 | +| conv2d_43 (Conv2D) | (None, 16, 16, 64) | 18,496 | +| batch_normalization_8 (BatchNormalization) | (None, 16, 16, 64) | 256 | +| conv2d_44 (Conv2D) | (None, 16, 16, 64) | 36,928 | +| batch_normalization_9 (BatchNormalization) | (None, 16, 16, 64) | 256 | +| max_pooling2d_27 (MaxPooling2D) | (None, 8, 8, 64) | 0 | +| dropout_25 (Dropout) | (None, 8, 8, 64) | 0 | +| conv2d_45 (Conv2D) | (None, 8, 8, 128) | 73,856 | +| batch_normalization_10 (BatchNormalization)| (None, 8, 8, 128) | 512 | +| conv2d_46 (Conv2D) | (None, 8, 8, 128) | 147,584 | +| batch_normalization_11 (BatchNormalization)| (None, 8, 8, 128) | 512 | +| max_pooling2d_28 (MaxPooling2D) | (None, 4, 4, 128) | 0 | +| dropout_26 (Dropout) | (None, 4, 4, 128) | 0 | +| flatten_9 (Flatten) | (None, 2048) | 0 | +| dense_17 (Dense) | (None, 128) | 262,272 | +| dropout_27 (Dropout) | (None, 128) | 0 | +| dense_18 (Dense) | (None, 10) | 1,290 | +**Total params:** 552,362 (2.11 MB) +**Trainable params:** 551,466 (2.10 MB) +**Non-trainable params:** 896 (3.50 KB) + +```python +# компилируем и обучаем модель +batch_size = 64 +epochs = 50 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +### 5. Проанализировали качество обученной модели на тестовой выборке. Определили значения функции потерь и метрики точности классификации. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 5s 15ms/step - accuracy: 0.8549 - loss: 0.5139 +Loss on test data: 0.5139228701591492 +Accuracy on test data: 0.8549000024795532 +``` + +### 6. Протестировали модель на двух изображениях из тестовой выборки. Визуализировали изображения и сопоставили истинные метки с предсказаниями нейронной сети. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [3,15]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` + +![Тестовое изображение CIFAR-10 1](images/img_44_1.png) + +``` +Real mark: 3 +NN answer: 3 +``` + +![Тестовое изображение CIFAR-10 2](images/img_44_3.png) + +``` +Real mark: 5 +NN answer: 2 +``` + +### 7. Сформировали подробный отчет о результатах классификации тестовой выборки и построили матрицу ошибок (confusion matrix). + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels, target_names=class_names)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +fig, ax = plt.subplots(figsize=(6, 6)) +disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names) +disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра +plt.tight_layout() # чтобы всё влезло +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 4s 13ms/step + precision recall f1-score support + + airplane 0.81 0.91 0.86 1004 + automobile 0.85 0.97 0.91 985 + bird 0.79 0.80 0.80 998 + cat 0.76 0.70 0.73 985 + deer 0.85 0.84 0.85 992 + dog 0.82 0.77 0.79 968 + frog 0.86 0.93 0.89 1010 + horse 0.91 0.86 0.89 1020 + ship 0.97 0.86 0.91 1002 + truck 0.93 0.90 0.91 1036 + + accuracy 0.85 10000 + macro avg 0.86 0.85 0.85 10000 +weighted avg 0.86 0.85 0.85 10000 +``` + +![Матрица ошибок для CIFAR-10](images/img_46_1.png) + +#### Анализ результатов классификации датасета CIFAR-10 показал, что разработанная сверточная нейронная сеть с архитектурой, включающей три блока сверточных слоев с batch normalization и dropout, успешно справилась с задачей классификации цветных изображений. + +**Общая производительность:** Достигнутая точность классификации составляет 85.49%, что является хорошим результатом для данного датасета, учитывая его сложность (малый размер изображений 32×32, высокая вариативность объектов, наличие фоновых элементов). + +**Анализ по классам:** Модель демонстрирует различную эффективность для разных категорий объектов: +- **Высокая точность (≥90%):** ship (precision 0.97, recall 0.86), truck (precision 0.93, recall 0.90), horse (precision 0.91, recall 0.86) - объекты с четкими геометрическими формами и характерными признаками +- **Средняя точность (80-90%):** automobile (precision 0.85, recall 0.97), airplane (precision 0.81, recall 0.91), deer (precision 0.85, recall 0.84), frog (precision 0.86, recall 0.93), dog (precision 0.82, recall 0.77) - объекты с более сложной структурой +- **Пониженная точность (<80%):** bird (precision 0.79, recall 0.80), cat (precision 0.76, recall 0.70) - объекты с высокой внутриклассовой вариативностью и схожестью между классами + +**Особенности классификации:** Наибольшие трудности модель испытывает при классификации кошек (precision 0.76, recall 0.70), что связано с высокой вариативностью этого класса и схожестью с собаками. При этом модель демонстрирует сбалансированные метрики precision и recall для большинства классов, что указывает на отсутствие систематических смещений в предсказаниях. Интересно отметить, что для некоторых классов (automobile, airplane, frog) recall выше precision, что говорит о склонности модели чаще предсказывать эти классы. + +**Выводы:** Полученные результаты подтверждают эффективность применения сверточных нейронных сетей с batch normalization и dropout для классификации цветных изображений. Архитектура успешно извлекает пространственные признаки различного уровня абстракции, что позволяет достигать высокого качества классификации даже на сложных наборах данных с ограниченным разрешением изображений. \ No newline at end of file diff --git a/labworks/LW3/requirements.txt b/labworks/LW3/requirements.txt new file mode 100644 index 0000000..451176b --- /dev/null +++ b/labworks/LW3/requirements.txt @@ -0,0 +1,6 @@ +tensorflow>=2.10.0 +matplotlib>=3.5.0 +numpy>=1.21.0 +scikit-learn>=1.0.0 +Pillow>=9.0.0 +