From 53df99878f56dfcd21beffdde5b3b0a6f99917f3 Mon Sep 17 00:00:00 2001 From: Matvey Date: Mon, 8 Dec 2025 22:31:44 +0300 Subject: [PATCH] lr3 --- labworks/LW3/1.png | Bin 0 -> 21520 bytes labworks/LW3/10.png | Bin 0 -> 12116 bytes labworks/LW3/11.png | Bin 0 -> 11955 bytes labworks/LW3/12.png | Bin 0 -> 61646 bytes labworks/LW3/2.png | Bin 0 -> 7437 bytes labworks/LW3/3.png | Bin 0 -> 7168 bytes labworks/LW3/4.png | Bin 0 -> 30758 bytes labworks/LW3/5.png | Bin 0 -> 6803 bytes labworks/LW3/6.png | Bin 0 -> 6901 bytes labworks/LW3/7.png | Bin 0 -> 13268 bytes labworks/LW3/8.png | Bin 0 -> 124395 bytes labworks/LW3/9.png | Bin 0 -> 70092 bytes labworks/LW3/Untitled3.ipynb | 1 + labworks/LW3/report3.md | 500 +++++++++++++++++++++++++++++++++++ 14 files changed, 501 insertions(+) create mode 100644 labworks/LW3/1.png create mode 100644 labworks/LW3/10.png create mode 100644 labworks/LW3/11.png create mode 100644 labworks/LW3/12.png create mode 100644 labworks/LW3/2.png create mode 100644 labworks/LW3/3.png create mode 100644 labworks/LW3/4.png create mode 100644 labworks/LW3/5.png create mode 100644 labworks/LW3/6.png create mode 100644 labworks/LW3/7.png create mode 100644 labworks/LW3/8.png create mode 100644 labworks/LW3/9.png create mode 100644 labworks/LW3/Untitled3.ipynb create mode 100644 labworks/LW3/report3.md diff --git a/labworks/LW3/1.png b/labworks/LW3/1.png new file mode 100644 index 0000000000000000000000000000000000000000..7490e752970b1f3bcb475196fea0f4b4efced68c GIT binary patch literal 21520 zcmdqJcQ{=A+V(Fp5;Yh`i!vC!3lSw4b#zAWiQc34IwDbm(L2Ft2@)b|L<-S~5?zGo zHG1b=a_{^1?EOCb-oIzR&wD(7yz4k}Ffq)mHEVsZ^ZK0UwW2iD6^Za^@UgJ4h?Ed= zNGvRD1QymcL);s{|5yfoB?P`)^FS)fU{&_ft^f}}ws18#7FJa}!P!F`;4z*n!q5W? z>(=M1f7jX{m0Dq8X%{KU!F7DiHgcpM-EN<#%RosI=?*|<6+*+v6c7BQWF)1LM+6|( zgzU|)-nqPjKLk@aa*(}RFWPlN$x5Wax~=lq^^xi9an~p{Fq_NbR%Sgd(-{Gq<2ehw zEQz~Zywc)t#6wb5`icT~brgJ-kdbPfrYo)tEl-?OFtcD{O%owIo`=Y)ZQGYo zF$BP#Kyh%v9W=N|b!jvf)`~P*dPExSjt%S@;wB1IeFK$DMgqf<79)Y7g-I~kq0nns zgJICH@-XNE2!w})z6HXwA_8%+K@nJ?o=^nT5sDDK2FJ$2T!&*DUWa$#UA+Ww#Qw=k zwC?DrE~QyW26fF(V+E9~PTw7BSEa`q#RGBVv}?P0GlnR>ZETw`lUFrA$dyV!{1bAOU`GV4dht0|W?LKStn zL2mB(A#3zoLUu_3_nk33(GpH&q9|sZY0(u zqFQO|M9A0zY<`6Te?9|$a6NCX@RYdq>CdvG<2eg8n7xM5fC>I!67VqoEeY(-SIV(c zTm}|AjGUTCN_$f^vMZM7rTwYeq}`-*9=4}3+nr;P1kNFKVKv*hJhf?egivXLdFl@n zEZ1pnCPaLED|O0kzTQX$(jbmD%Xe@1Y+N1}OLwPmYjlpBAymH|YHE)__>7ff8NRv4 zYoIg5u5s?fXU|CRL>)*xGtXVw?HoQuZKN5GY6}}sZn$v!J{Qd(NKAYprFwZ;d~z9| zCdC!SUO7<6*QU5AHtgp9+v%IEUYTyFG*N#vXHGU_`TZ36=)qlIy4 zr(bKuRMlG<*0-KG&TT`j`Z;h~dKFzLClexKKK*C=&>h9+ zbJl5sAB&29sJ}`XsKRDOyx?)?FOu2!}GrSAUQle0Sx# z-3^cuK_Y3!whnCzcSK|w+Z|S^<1Ak%D~H-k5f)m$IE~iUuD+w9IQ6o|Tu%7l{+V|6 z*xmL1RtDwzz3qnqbXI;L*-?chA!H02Igyu5_aFhp4z1Cy8>o5Nl2~82*D`ZTPqowd zDB?=dXJUKX+g_4d@B${qwW3Lwk>2PlyZcxsBBlh1w^=M;tfpvM`1XNmF|+|}#eu^X z$v+;%47My(T9xSh_<1Fb^O42reo;Levn$LWvQC^Ty@;|Z8KZsZUNr#YlJ;(jqunlluUi*D=QG(s!S z3OJXM!o-SFY2e7?n)T;A4@9jv5ebo`Qbnok2)NLTCfr09%JU_7{2R3bga{KtXzu6e ztbz_Fh2&7RBM$2|!6Hgc?G_3;%dalfI%qplPjUPaXxMEVQh4Ib%AH+}P*M_ehd@Sm zW`PJObv~zjNh@E>$U?UU$%4SfZY!%@$m8aWdmbYs$JlaAz-Pzg7+HXl8>Jm^E)IHt zCyh3Fw~tV-DT{)Zt<(ZnwbaEZ_raz#8dfcFTR0Ojka4cP&L322;fIp@HA+ftbGn|a z#i;%am)sA>Gr>FJ$1su)YIbTr+^)_r=vWb zYNCM!+#&)f7O!{8pF^*?23;-aW@rm7QY`6U1NbK?b*M@?bS0vl1k?KkKk?Kb4AhL! z|0~re3Iuoe-PKNC{I$8{12^gn*bYE1etogtaI{UN=5bt9z2057^|=O>YF)QV*+;GD z^{*=Pblx3Yuo{=0q4&%GRIq;+;lKL}-_At|a5~?~Sk8`GVqx7SIj5mN{&LJu97>qp z)5>70I459s?alEs^XRN~3qKWX4r37QBf{CjPS) zi;`dh|E$G5KrO!hXDz-3;$Zl*7JEPu$C_-2H}@BzSklD^cxKFsW#%nuR^Yphn0W7B z8lS!}<0y6g3IdMzbBcfR(u}rnqrlj2@6%0P`k+-Sd3Tl*c|rE(*(M!={2%5!bMH0W zgCu#Geg^9N(_S#FIkd*NbIK`iyu?ZXKIrwj{k{Zc^Q(wiWkRXqcHStv<|d1yo?_#^ zwn+L{W~x)(U$6Up)kEh-uVh?Ykca=YZ7;agi~N50bRoDu1kya(ZV~X5zQrQY-FVM@ zU#_43h^e~Y$2-s1;)vr-Ka=mmj@P5D@0>dUGgF((f!`sYKUbSoY7|ncOKNXPndL^s z9B1-+K7pE&ag2`NyzuhQqrK!?I_jj`9xWcdWW^iw74vD8SMXzEvNVuGThXNf;)!)- zGQLtql$s&Nx%iojDEW0oe^2rCS_;fX;k3o&z&$3VfD)$`tY7wQh@UGN@B5}0I9U+- z1(zo#&(@#6p+LbxK0Jz=WwSYr;W=k^shh5;#FRpjb=vWXB zN1D!A@X9e>KR0*A#UZ}7W-l_}a_aqcoO&c}W~+yqKOo?`ukeHx54oe`G(#F5awvB> zKK(aHc@$0B~eu-%)uc; zNI&TLG(KK_CU*W=&Sk1K$S%-sUSWw6Sy&(|XIC%uik{0MAG&Q14miE5&5DKN4B`-c zTMSw;AtbJpyZm61CWo#izTol~?6RVg;Oj>F?bHt(hEyM~W?ts^XeYcVB6RU-{UI)r zC=0VGLpNG`u87Se3YZMzpro}ejcqX#zMOp{ZZC*Xo_EI9dSbvSP9ghgg3*|RluQ2g zqvNMST{^OdC@a|GobLrPvWIVXtRj>jP2PPxkd^-0t`zDv84Kc|ur32r;6T`$H&oEf zYG!_W24pPmINe2hXjSqkQL`NL1CQ$;24&C(HV#H@G4x8$pt0V!+J4+*mal|%w&=bm zGxZN(d6Ku{%%yQ2Zo5z`rneMtcD{m0NM&hyRL7sVoV3v}=m4$`JQ}LSXb(k*aawhyg=mipmUf`i+6j={sMZ{2tUwA%Kz++sK+9T+ z)+MA4L7jPmKqs)XHPcnrfQrLW;(Nk6q>4n_%|BLg#M7@M#~^zUMo+yQRrfg2&>S<} z5~K2p%BW4rn4;_OM#dU$2v}~gd0*b7wbUj$4tQ4J_k-QE;kIN)oB5 zncXyo9mcd4?SRu6J&;c&SqN_Zwo&tu40Z>HGD=z=ha?o$hEoQ%Hb z!atVOG+f6;A3xFbxoI80ac!>z4UD87zrY>yRolTcI#$6O1M8S6D0XzSaL2IUi0r7H zD>J%|NoA6-uhJA_7gvjWeFIMj)zo)S6q(*M5p8_Ae-J&@rm(5=vN5LjHd-6h*`;>G zTv7btoj;3JZ=&|AOM_7Iz|I0Yt=U{f^6zbn@~&V|r?M`;u)1_83sw$H#c|&p~KU^tq zm$sUQkT>+DZ%K>dEJ@ugtD;p(WkzJFEYQ64DrOS9A+2;99xZXxo`ruP`3WgT-IrTF z-w#wqhRNle%!ttt*jwhyt{&+y-kc0YHwDyeso ziJM=O6iYWVCXrCOU5-P7k;g5;9;FWKgXYwtU{MnMU@PqJZ8t`Mii`!#;RWG^3Io0H zzh8f`{?-d;05$UFpS|$EEb(5b`R1ejUJVQScZ9X`)BRhhn#9AoLuhZl?zqSH&)b=c zJ1W-WX^&=}+T-wayL|iS1mW)liI}AA?xVJ(bSNXBB-r6V!+whi5C)WR6wu5o13mkd zPWboV=f5pQ{_!P{O!4vAhjrP}c)j}TF&X|o-3e4T{YE2bKTw=cS)Gbl{+bN-WbrpA z=sn`^&<_mcKG8iEX>|zMY9zq`9X(_B2dpHvfVufO9aV37^6);RYgY#tDVxl0`UdLf zu6LNh&51avKi;#?umKfZ+SMU$#};{J$7s0*YTs)6fUla>Oa>s}F+tRe2Osc#w+@G`9_C$>9Mtgsp{AC46^Hxs(?D4CD!xICit*<}z6T~fk znQH94Z%~^E&?h7gC^+nLS0R)tYOiHM9Uwqf~x6Zl*PdaF&^ z#UtF`vIdH?^R=p62Y(QWKCcIVj_<9NcxpcBJlzhPP0qV>E}@6=MhWHSt^_wo=_sRt zBEH{1H4e8m1+B#J3Fi=PIqJI@eMDohZ$3(40`Kt_^at=M9&i^Q^Jpm>a#aq3Z9id zrT^e8)Os5<{G)$8>z-x@-0Z^EVU4hmhxOCvZ_X_Fyht)q*w)y%q^SBx04J*pthCtW zJ*_c?^X(OVw7H^{gW9dlpOylFHaC7fU9$M48BGKUjkfE2V_CJ4s=qFa)43>KEzKmL zFTDDpdKJe1nR?e_<$S>Zj$Y-Bj=sRBMS61=;k%kOG=X+ffj^_PyG3Tnu|5Tl;jjQp5Sk+cC)8qmtA z1eF<1Pnu6#uoRIwoD{7tPKe}2zwyd;2!~cku4X1D^yV-*pT2B~%suOyvOS0&XohBd zoaqQ9rw~5M`WP&6-z(VUvppRTzLE4;sRE9kVDwJ1t6@gIS4OQ7-u6L7(gCuI*3qHQbltkJ+Vcr25sXl*QzJI5?+bH1*_X=`^{BE)Ck}cS!MPRK7W`1N@zlq zJe=Vfc>@Y|sdudIxw4T$64U&1VJl)C=jGy%rpp2vbv4w@E= zzH@{s_L0pAl*d^q{EZOPH|~=hqTWGnplVJ6-?K=%S|eOuaxC!(G};3T>^&x}ecAqn zPXDDLX2};?aD!Ab>U?Y%#{`1qv-8uu+Ir}5kX!dHIke+T50lrg*hG49q8`0rrW8!P zBPk*X)M9$o+-U5an1@i#Z`hbs??Mf*@B-V=TmgKDf&%u+rNvywZmd>pAW>XF85!jX^}7yeAm%t z*YJN4UHN7}hCHjlq9_a(oP+#n^^~V%F72)U>9~Onaghwb)5MTVJ@sCQNfxxhu54K>F-gZ~bS+OpwFMh*aOHgZsFC=sfw3vs zbP$EgP2dx8C1nsUzqbBbhVlPY?ZAYPr=f(;4X)m-cuj<%W9=owNYi}Y zc}pvBUHc}gwa$?EmnXlEH3vBsE6U2sl3dQv4#ZKOrC{A9q%Krnvw({fz_EQ;pm;K+ zX*fTDD86Ni>i32in4pnN2!H%_WkTXW_zr+1jGCbdxPxFsBDr64GykU#^E}E%(?~r| zru#e`C%QEs<bAq9+#Awg^K47BMz_+ziuRo1~d+ z&VzUe>g36)8K2whbzb6<0i|mbK@JP+PC<7$DGaY6Cbm{S z23O>*ZELvdY>G2p$>F;lE}W<+s8aO#arJZuW>!5q|u8~$yoA7^>*zScQgf(oZHE7hSq-;^(gOzpdpV#XSuThGdG zO5>OSc*U0?bVv;xGMS^WT128l0X=cb1{L?quiUXHj+ior4LUJ(Ys zKENhKi0Ve7)Nh*IG!d7^B|FA1zHTg2tfn91jl#s0Xbir8=tRD7ve2RKHvO2kb2P}4 zzquCbn|RlNU_>5$#K9YL@zG2JK36j4qM-AsO!~tI)haJmMXrNp0(&k*V#jr6IO`8n zrw3{Vlz{Ro$2J8tmm}f-21Wi+iTur=_?M#Wza(~6L7f2>`&oG?Hp!-Ur^lvfy&bbN zdW>idX8><-pzM%Ia2faM&c-Q!#qGZ&X9a&{UT)i8- zD;@VgvtNJDlhALVofo|&8sU4^cXIpM7M!FIK=n3vnWIHz6#zwtl8v&OkdWW6noXTo zz0GO~F0fn<0btb_H#|}5d!Ndp1I&sPKFIgWSwMO{C%U^^TOfahVIz9>4x_*M?JrMf zt5os}zCT^EZp^>5OQUV!vq@X?&IxS;K3t8qJ=Kt{=#SfPEC)ikCVSd1&)$6KXTdKIG?Xw?mh!h4`bR)^lD?B&!edCFLS8^Nf+OKIao`XPo)Z` z*}UVQzk4&}aOiS-N7bY!zV)Y9G7J~_;XuDmZcBVuG-=IsZ|=HB?3m+2wy~1b{<_wi zi{g9wOJf_aE(%t^SwD&z2=ZUQ(nK+hB1-5pyC?MZFF~alP-@b2`l#biDDtEzS%C-h zR=?1jqxS)>M7uJu!CspJ&522vzWix9umoGFl3>f;3+pY+fyS2D&bbG}zHG)PgE3qK zAwj$f-d_zV;U^X<=lsM)k^G4TpoOeSi+hGBsP0J6Z@JkLU`&|Gh^XG&^5xh$IJQwC zd_TJu^7lX~G2A0Z0EKDoY~GYg8zo{B)J1eQu-qUs)nh~`XLeO5b9Ziq@l4_dT5`Ap z$R+_1C*td%#J)2hUzFy<$?EW-=(thU+^)U`4B6N&K-8FSTXH02P?PISQrw1GXgea2 z{{3-ncRikc!A)+P)L#U4ErC+XT=8jO{_LQ#f~DecDYR{nrkmBkd;%8R{ud4`f}gvel!u*|7}Q9nk6UQc#)EP_aCnj_AUMKN&`rxSt8jGh1WYfy!RVg3#? zuQES&e)Oe*Hhix3Ht{L}LE@&PujI=JmL3sp3;CMPuA~%-X6HhU{J_pLE`hW3k-{}wHLhA zd=*)#wh#OG#^fj{VZzOKCy8%m z);=O1bXB^Z;3a07d0YmtUC)aJ*IzfpT)fS;35N;*l6Nt~OZwc_rM2XiIVun?IN6t+ zX&R3?@EJKDKi7qI<)BpZ{~%B%$@vM;=83=T2AcI>{lZI4~fKNjue2cW?^kAFDWs|>K=aYrT?{y31BWZcAD>?ZK%>*nY)+{8S9X2DQ3pcgFGpFy25B-G{5pw;i=3J)eC zaR-Y(;31uINOEX?@@pyi6LDCq%~*}=g`VvrqEkpPT}|zF^rlJV%5v-i3eOJIKZ{wo z&kt`@*hX&}e+1SZ<8X4)8E?zV;`ZptJuE(PL#S-iPb?};Cs=!T8FSZUoTfiWn6 z?M{RdHXryxXnrF65EM16(b~+sr$E|UQXupvl@j)PsfhLXSV!jy zOLdJ0Yb$M^e(6rY$e>**Cr>OX9^M=^WK_QJh&)=3Z%%z#C>{nKw`GPbhz&3qSKh%H zHHd?ClfpjyRIIvtL-m!l+vz$8d)^yAnVs@+?VXCmNoJvFpsE39LiO56JBP zLH+#phE`2dc`Pa+Br%mhSB0Ml4{5efh}FH+c*TLt<*^~3(V z(vM~5sKYO$yDa@{VB7ojGM_ryC^xi^X~(s7R>``o7e3Uq(H}=;_Q>@ujs$u~pMCju zEP{Hcp5}k<#fUhao0mxqyJq9;Cjqf_|IwiZ{)1CSf{Pp}U>bd^l1XiH@-6AU+hH1X zQj*m@K|8p+6|#OGQ7EyrHPC@L*Nm#tp;X)@>RG&Dga$6_(`Q?K$>X zk(wat!j+2Q{X;FSBYR3TVi>ZCrNk-D>ty!c`<$Gd=??@1ao74RZ@+9i*aV2sw_QLN zZPt z{z0SH;0}l)D9?34=tj;+q^dT25Gj(?6|9?L9OgiFpUsH(q`$AN0~7njy-601KmXFv zu#5s@4L#LWj*qi~OumR;I6nIYNFiI6vK8U4z{!6Fu0o*yXsaophG&{@V|;)ll7edE zY$X-F0w!|(PP$VS3ic`@&6d)l_E36?VCOCs?w}FB|8^L&JYY%9+#d+>uAB3>UDiYQ z#4qXGNJ&m#Z8}i2mV4sv;47$9pOwuG@o%;AH{Opu;J$h2ArR2=azZQapxu%t zVK6^(9zXHSctL!is1CTgGQQXD3`_ayxxBRWx>){}7e{VySbbV+ZHl9$Ua{}TEa)AC0kNP9dzL3pO&rwQz=RJm~rla-}`Wjews&k)g*xvtvFQ5U&S=Iu(_O zqcF?o@z=HTQS)6oCNSS|WQV1l5dqx2gmgL>$IHWce<%B7Jjl}7ZgCEw04{sqCx&%QT6;R0nt$({O}qT~v7tK@54 zJSz~yCvAsCsW>R?>hZWmkF7{@6Y2ah))Rk{2xuW(M z5*+KKeWPrsJaEpg)d|NC49?FN=%I&aklwj@0jPP63}F)3@!_L|VH3C_YW`>W8s5%C zp>;WdlAvSEyS90C8VFOP8an3f(h%S0elP8-55}YwasIh#@GtmPDhv@O^kl(N)Z#|* zZ3@im;Bead>$9%bjO2NmCgo0FIRse2KR-o1PWnREUBn}g#^%7Zr=4nY%%3dC_eoH^ zyX9c`SIkNa{00W+4F0ilY>dSxgBetY)2L0Aru6^Vs^JF0O8B4t5m@0yP$vAq6k~I; zU3ikG+%XSDEvuGqvfv`8Lr%0r6G^JHf?U{BO+-6e`xFbH5T=K1A4y>vMv=6?WGwS{ z+A6N&k3u7SM!onDy4ugIGZKPIp=Hj7l!vl(W**Z33Htkg7ALL$ILPW?LXiCwop~@=|@^GkLO4tdDg^k{Nc^8 z=T1Yx)4Y@FGFrj+40ILIQ`JgYJnA!3wVi@lfi8h9nS`MUh}+`U5cRr-1aiOjth}YJ zDAP0AcU3No9UpfXc}UA4Zo^Qj;IQ)8_{?32%J6MWKIAN)U3M( zk+o2nD7p@BwW;4x(()-QDu46>44Z1Zp+|8kiill63|2s=xdZoX_Gg(8RbB`#CGLqE z*!8$bPrAWR+>ZWgg9_*#q1%-5jc(8E0IyKqt$QRvPJ?;y=e@hlU+ zrm?OuADq0O*G_=DoH#$;wM9v*9l-a$PyEa9dCYX91n zML2ZfLnEMQ9zd4=ht=9p+RPcb#P;~Y|DzV;(;|YwpUeU+5)iV?_nlX)={SLEXphKB zA}0oL1<|+eru;{kshlUiWKQ)Kt*A2gZ>Dz3v_>~&mKX|f8@VmVSpnY;+NOeMUu5i2mXGDGax%O1I8aWi<_{mh@ zEG;DHGR17hOBzjURHu83{-k|IO&_(lZs0Uo^K{9PMd=%AxXthSnyfgSMx)=;^V@ko z66MKq@~XeBJLh|UX zWfwbtD$HDVE`}TpR8n1NE|wv56~iYd@CPZ4h21^PokF}+ViKlAM&ddFpm!(hw^_%z z;|F-M(;S1fEhjO{bl)i^4>Qg!J$VtH(NS`g_+bKbg|H$tzL;rYT};?$bXp24GR-`7 zoOiVn40~Up7NvyEh7gO!$jhljCC3A_$6(QsaggZ^*OUG!+_>+&ENxv$95I_)Bic@r z{x5Jki@zzLVWgsUOdB1VGwwzSK$ z9mXZ=ZmgycAV@WQBor?j+Hk!rNdrf5_SUOR%b z$~_4_TkJ@|us5A!QI^9KwWw`cB5+5b&QYZIeFz>Fk527iK+S?OI=IOhai!!K!mEhU zA6}XdB03@4X17rJ?bKtan-+xU_D11F!%F zfXuBJP`}4^iSNd@;n=&oYjGh~A90BH_uq%_l=RTxCZ3(vxjR%oXNK>%jqHQ`HU0QNldMO>FtXp8bAza!w&DeP7iih$w157C+JKY#l+w%);`w{0|wNX~?UQ_p0z8 zOe&1taXXd6orgHF#tJC>(O_0zzu7vlJUzjmz%;y>=nhs%jCv#?>U(f2H_w*QjeIHcP=R;D;tpd z7_}ILA7y%SoE$t6-8A+th-)+M4ZBkGLX&lWeCuNcG)j!-7HDT7sn}bhuAy{fHZC>rcO)2*1ta8YB4)XVfl=(I1oX6OBZyNhj5%g4q6b@cG|p3;O!&(VV6>B?K&;Bh+QQt#DGg?U_!!6#5_ERa2( ziKF-w#m030BN;Rlci+w3jgwWJIGW*+D-rOqJTydMRODN;dzQsm00DPUnHN<5w`C3D;)Zis4D>n-2oY z)Yf2$S~W0BPKQd4=H3`6b59gLRi${io)#3Zfmi-aqiX- zih`}WY9|XR-#u==*FXX+j&t-Cx4CcrCt{)>I5r13@kJ}BeVAcxfTd%r5Fw<;IFZ=k#k8Pdohc7lx07NC(=3`xgn7ml! zD`0DR^}F74A%wv{*Kd$j26`x1v3#ZDyS1HB%ntolYG$P%3smK8aD_eZ&^N$6B=#vW!OSO#LBIT2s zhYg`b5C5bMBz%7vl<~j#GblsLg|G?IqQ(&fV+s_Cps}n)RAufu?;#i9#C~w$OIX!2^?RxZ9Dz2T`)1mq1a| z_6d6zv7mrcwtbAf);Wg~5^X4j!1n8sbC#BJp~u=bL?ES$b7N6qeOFTyxmqD9a}Hn0 zbQdl-mTI6>I|_&h_c{9nVUq#}hnP|TIpnfN3l{|c92qwRm2JDJ-8?(N9kf7UMlb8z zpCp2#pDD&d<>M`PJ~tA1Em1n*0_9T~q@)pM8Z{fnhX9a`#!E^V7;c1J4$a`WyVZ9` zG4qo!q7qBM5sk911Bi1aDFD$v|Iz##+=sgd2dW8m@|B1o$&$4mP}mKL@l@bMC5S$) zMd=`-V_8X+w6uM*>s_tyE#pjNODF+Dm97^bY^wkNI(nK`d003EBkkT%n}OnDl9{g* z4${Bf(9KgSixNhR;)Cpou5u?^F<_?V<~g6Lgr*MexSG<4;l91mIXpI|V4%P=~2gAIfFo?(uE(g=)TgX3yuOboUp})Jr(tEkPst zMR#(;Tf0a%Etdz zABqUDzRP~DB-K2kdi$ZFZEr#i1*CMbeh;_sggt0<@%Y#@=3e->ic17MZ~^@}9^=V~ zz$zE`ug<~zmkR4&j@p!x!M2L39|eOwP6`bFuMGGeW%sr~G%Qe$f4do^FtlhSbV1e> zgm;zE1qN*YH#Y+7m#^)}NKvx@PDfI_EVegt-%t7~v6^YHq_FG!>BW#4IOG z7Vw31v_P#TfFx*)w!pZbrZTgEDHL(*fTpG5f)p1=X-OoB$*4Ag>GYgK4nd%4SjUG@ z?!xC7ENH{iV^JZ6u~4Vos&rird)KjBK!0k%dZ>%E-dPzYj2M*NcKWl(?HGT@NJ%Ri^j4Iq7SQE0k!^rD(>z9D~!AXMG{f3pl4+5V!W z&g3z4NkGb0tz4U!Z#*@Mt`&s~?g;G!*BpPm0uSkyFP!g(LLnU;3E&GlIu0Vx$}Z1= zzs4NUY<~1Hw(x9G^(aytRz?} zvNU>C+~|~+xqDsO5di<+RZYJB+x3+V!P!eqJ6ub+ubq&ny4T?M4DPf4J17B*_@dyu zu0t8S*Qz<>-B**I^M#;A>KRn2!QC3snOZ(WS!vWr0rPuC`E48XSuS$Q@?ELoy$`1g z_74lRn0?G!njiY5$T9Ql*a;y`YD$5Tpnzx3a3NX+nxS2m-8+6OWn7ai6xXgl=lZjk zE`M1<~5_fPW zcB*5mzhv?Br;>UEwCvpZ_I&VFt#yRJd{%o{4AFMf5N#iv6{*GTNHR8rI;=fM%#zZ5 z6mKvH`Gi^St@SDB>RbWvH!B8tz zDqvG%LMWK%WS(Tn`JsL~f;u0b4(M_yy|r%gbiIXD3Pdyh>GX|CC>hL!2%O{1B@MC< z3WW-|UJW`=MGUNskM}O#2($ti^SEJ#-b<#*v0&Ds_3)uNJx{1RN)jKC zX_y=A<+-R<)lF;oxv{uq;Zf2!Pt0NJL#`fi?D&im#8EHKdzOE&WnsCAdij`_rfy7r zq^hY0Hm`o?Q63GP$>;Sx3TIN+T3n9#0hXsc0UYU5m0^2PzoLU4Ze$cEDn8uavf!e$ zqx92)C)&^R-nE5`IA@(*U{s<_E#bd{m(Q1=Rql_Q#zqKmkx}5>U*bQakpjBKJM|pA zHWkRQOIlbkP3*{q)Qu0tB0zBS5LL7Ix*u+IlfU^!W%ykbx!Nn9EBw35zPe+?|8(+ldo3%kbt=HHyuT@L2FIRdt8ELO zDf_Z|X|7#FsCOZ)tD0}-J@F8}QR?)IKkl;eFCqwDfqjcJ(QMhkgv`}O1dP`LTj*8c z1vco_d@iuz0zu5H4g25wad{=+m-}xaGBom@oQ4u6@M*Tiq-axVEFFEv!uo*H!AJhW zorAXG^HC7bu*3LWce>~YUbQA~O=v;lxvVbcSEoB4ijwLXthtXo#2 zE;dbzRX@+GyPiE|m?pixbo7x@sD<83t?wXwk63Dg^3HzsM`nS8!3|-%*%@^{>w>_C zj68+-NXg0Cou*`7??$PGi(>l8+IGc{Dpa4haCxo+_c!58LFqgQdB!Yt;Rd94JMBKj zM1ylWQ>lbVF?_Xwvq(WbdcJP%2&EV_o2J5dii84eFCPBUM5R3C&a$N2#e^(;UhVR~ zBGd?!Tr0Z7mP#x}*moAXW5M_8VpqjiI_Rel4lMhqfupNzM38uxS9j;$SI+|}rxSC2 z5d;qm;r(1}PzxtQ%J=I*!@`vyl z@B(L>wYW4smdf$No4_7(!K<$~ADZ)u@JNSDIe+h=Mp!VBtGvRHQ%$G3`dcg}my}3# zef)wy7+5)E*TQ;7@B_utmyK8U;i~#U{0mtZuGbCWY$#00yFiWsd$DS5o_p6=v8@Va zltT-&eRa^PrcK6u%%1PBP#$Po)5G@--zDa?FDl9HoWgaL$t6 z`Pw^PUkLei(y^lvVX`lvZZR|Vc}+4=(Xqptj0KazzK)UQ>;hU)mx=^s=2LfjNb5q$ zxa9XGa7OUlph0@176-FVhD)`()=b~2_Gu*{03JD<+{3=VXT_}xwTSrnM%wM5#+k?!&m_u64J%D-bQ2rDU7!6BwR|1R) zF|cxHC!1L?w)pW=h2nQR+PO(O@~Veh3^CXyjS3w(c=giHE>j;Lc4kRrx@Z0&K7E{l)q>^$w~lVQKH?Kw+PxAMt>Z z3n6Q!KlKKUW$o_%+jY9nN{ody5~d8t|4yyEEt$D}y8j_@=4pVm4PDhuUFDvAg;x(x_!ToBJtw9wI(9pI`e4VIt6Ss! zZhV09VT4N-dG4==CC`K;CBe3w=Wqi_EUfZtz$*4SnY~{y4Dg710w%KeK3cuZfGQp1 zn|WBUD5kF9#)E~Kq)m)uQTjm!J)gNsssf+>qE_Eb8vT6!lJS$x`@%3#+32(EXu~8$ zW)gU24==uG;^dym*Ny7UjC%BnxGEiRNakwDU`s&`3n3p}Jfq$(<}<~geOSFj_I|KD zWZWOZ)fdGwfQz}CUH^ENX3U7V2 zyIC34Iq#d=hde0unhPUy18GDcn7L_J9bX5{c0baxF-N3RE^sMhza^+;Qx;bX4M!81}wNR)~}2mst3-uC?jh#(HoL z@S4TlhTXm@_pdoU*$lr7s1sJAWSFL|bZXXlx$uVnsKbY^bxuGU= z?_LoBSl?&wjiZu44r?7S)3+g}3Q|&xC}#)!G<`O;rPaAXPTZ18nF7@OTp;he8drOX zHZN&;Gv^`qWpARps2W??OI8$Yt@-&3Pf7V5T?KX{;Kb|V)wDV_~fldu0 zkB;N60=2jbbpd!;tCIHiIkauHdMWxo zYmTM^tp&=00rEk$Kf zEP8UVZWN+~(Htv=Co^iqh~$!^Etk;IgFGr!tTdvisnBAsl}kuCUw=S9oWJ1n{XXB% z=kvTj-{ONnjw>*s~sL(vWhfJ7M(7TUg&^ynbxY$-&k}bNxKXVd=q_L3dOjk=O-)| zyCv<9`(Q09KD6;ykmHg_-2U)o`}dWZjB!L7S{N^l=6UG1ebI9f9Gg zXQGpo@kfcQK!`WOOQT{yZqte+1YiU;Z*s|DuPb;5XtLN^6FAW2Y60q{8Tcw6FLSF% z1}$8WRRAuu*=2vJGJ|lG$Mdu<}xjx2VzcA z5SY1jfvb}=;)ok35gkZaKjXP@=$^h4uJG?}m1{dLG1L^9h7IeEPmbbVRZJg~NUlz3 zZ)!NWlJKXv019W#5bcMjHt4_%I?mYgLc>mN{thfEVZ{VK&d~TU?EJh$5ixKo6D6p4 zS!w^1Wg;?zbj{dW0Wt!orPYw}C`Nf0JKy9dn{pM&*z*?&#ttL*&42h6CS5!wie07i z{}k&+;|9g4oKdp(m*Dx2?G-y5bX#i5(+B(Y<|8}v(=1Xnv9@J>HPewFkL-*gv`qop zAQ7p`4pIqNJ2?%72eyAY*QZ_gD(}p1u-r5nZ!G$~**kuhX%4?+ma>vcCYRUNPdl4U z4VaJ*ll5$jSh(+|)X5QUb-Vh#Y2SQR^6Y< z9PoR!l3g=m;<3aC(J4bp#lCo49urk`PEM{fC5SYq(wK&3YH~Y=U#OEc?Kl=-_<`AT z`cc?oXr?iR5ezJFLdEG#?CP_kH0}H^_^vqjVR3; z>*HBw`ja=9tQaLh;M-EL87(S0wCSBIv7BH_U0^YKxmuSJL0Kv2mPS-=#}Jma6!%sa zUdthq()pgdjcF>ybR3r9MLMCB_ODgv)&7}c1bi)I52aW9+O;Pne)rh+4d=9l*jo<< zO(5)>ef5_XmX{ZO18#*qs4^B#>m;Ek#3^fzWF;8Lv)^am@6m%^RkKmWG{+%_kPW-GdUt$VVH*L7a0>^1!Y=~> z9!m?c1!zmwXiah|#C;SnF|rJ>jUiM{9K9*_8N}UL%v-8OK--LUd)3haKqa$Hum{9OE_em#%^ h%KvYa{Y8uVx*=bt%OF$>tf(NioVyE^T;qI<{U4IJwk7}o literal 0 HcmV?d00001 diff --git a/labworks/LW3/10.png b/labworks/LW3/10.png new file mode 100644 index 0000000000000000000000000000000000000000..754a74e8203357d603b1242ad8bf6a31ac5dbe42 GIT binary patch literal 12116 zcmbt)2{@F0zxT9gm;R+9MM5ZRMD|M3B*e%z){u2Bop{mR?a8(d|-=PffN1j1#@e(m_E@xd7ak@^I^am~m- zWuA=n>}90V7f4E?)Rf&{xnf^fAC(EYemqn1-uDXMg1f=X(OIttI&pH5mfG5iSMuB{ zB~=QHQK+%O#6Fzn0@2b0C#MBxo*)FmEt`(I!!yDoR@8I>miBeM{A`hclz`30Gc8Nhk9X1mZY7 z+7Onc>^tM^AyBfT+;83-GYh8}Iy!!s>PRo5W4AY|$09DOFK@q&kG~yD!;Y$4kdpFR zw?b;H$Wnce>x=mos(r(pJRUBTO_XgMkuKrZxe!s6t~M1`o5OT6Eav9Z|0wA=x|ZTB z(t6x&zbU>JjgfM-h|H|qIqosPt5HueJCwt_NP0I8W4Lc;2^hZZ`{d#rN6Ef+I!#MF@#V=@t zctwnP4#Ovs)M>{mOd8zYZ?&wF6um1Mu2hDRO&L_p_~}Rjnz!(j8-sQBE~J_manZ2P6vHs2&o{ zua+C6UNks3C`cmp_2rh8Enyf11qBzRr3Gq#@7WExqT#=N`bW}b*PiZfIe#Vp-x+j~ z9T4I}TkNsxzP=UbUOug^u6}Gm>Fs?FJ}`S*#=V-x7k*mpf!Ms_Tan8!mB{8ec*3bW zTQ`h!`~U}HupHXn-rmTXhd}Ilp4M`r88f}+c<=Y>3(xd_MO-ZW(a5EdZ+|IA8Z)gU zw7@>=$J0X@$?nxqdhJp)jli_>_4Av_5@3ByL(}j~g6s~6=hmqb;YauKjGcRP?>TO6 z>zvoS3;nkH!{FO!#fORZgdd^`D<7N3Lb86WZLFlyU_vnajZpeA}TrHpm@=;5K#QDNqK zN~Uq_fdJ-U&`1>*=Z31eJz6Y$XX9rP2Sah{V5lHkKlZ+C<##RU1@5lwks1`M8NcGF z?;+11W^bgr9#n##u;`sQ0AsywZzoo?MDxorf?3Z=sjk?{B@r0CunBBZE( z+f#@3K}I=t{lTH>7w4d)#`zC&Pmr^6gmai*3}7r3ZDnx!<9$-lnR(r+ zqVY5EFED7yM({H&a)-%h!Aj~rVh99cCG*FJs6mM;6RWj?h={j(6&{(JoI#u#UixcXgtnnVUG*Pj&s$S5SB6LMQu2ZD z>zY!?sqefrk6jR+@tYGSo(WcgIaWanO&Zv^w+0)@>W~mop-a3G5fMfvCW=Q3c0k6z zJgwbRj-p##mX~*Gj^bS(J6Zp6*WSY^IE7Tbi!W~-!b2d<^#DT;o|NiYXUsB&ksZ$D zYF`%*57Gy9hBzZ_O4QSrIkoEQTa_n|+FR2EbaSS4}#km1lUreaa$Ke!M)B4!1A}q@lLqn#+ zgpYPoHMZA&ZW%*DWZn9)9H?JE1TkAn>7)|77I}wOZVb4G9votb{TY@%6Y(wLCi$G$ z14~sB-XkDfvg^Fj1phY!W2*-_4Q-=gVT2XzT@7||5hZeF+r@zbXevfX+PmoWJOBL8m^0$c@wg8Bd<+UNlE%@JN$v2) z#}auj&{K)RcDLj0pN8^vPKAHMr3#6Eh5JQtAI4KmKHCm;yvC<&1n1-@xy`7}zEvVt zJR9MM(T#E`1iw%59F7ANQM^D0jh`8$3cY<^pVgwOFOup-5sfuEebKjYUUm4V1^QC= z!gH>I@&6LkOb1dwMnnvcIVwk=LDA3wFA;IG(p8|;yimM3_-GjEc~rC~c!w%w6RJ&o3QilCiO|5-Gb|oKQYJ z{a<;Qzd^R?V|!>`ZmyyHDP(S{k-^X5%JQE0g;(wNsjfnQ!S&(=4-ivyPVA0PmvrNG zw(E6j4OQ`zu+80O6ya1zb$GfYjBYW)ihk2JsY`(EqM3OPq@d5I3S*Y-mQr2$q&~_q zh*Y2~RN zy}X{m=HHcGqSh^p-S1ZR4q!@DW!SWRI}oldRa9`-la7drIb|S}SpR_7Eobj{d=WRI ztwNFQwZ03VwSX(WZ|zZe>DlqVjMjMP{J2GOdo}5{Aq1K1r`JqbJu`kce zt9^2is)~@&O`Bj&r?tgN^SYolagT$cSGhDci|e)+MYHR(MG3;J-%m7*5Qu`bz!`CJ z&{Df&r8(qNm27^|j*804ys|P_gzLposhs~b&8Kn8Q2Nosj00$=>AV2`GXk?flxmcAI_+* zj>Dn|d3mm18J3ooVU+|ERelpQvw?rVbWhK_>S|@cE}ef@-#C{Eo-GfL54ci)9AXnC zSAVdus7QZfWu9-dnn19u@tZevaCo1so19%kuY+$d>uJ-^^RZsB;Mf~2Tct}_x^=V-Hscfz^#`?;6oN+lK~IqZ6L zz7(elom><;-ZGxOz9z8ov;g~^fX%e2DKZ`N&Ziru$~(s*5tjxWXILAQ?GZe#h=il9 z?ylr1Mmd!2B37uWsb!DEUA&m$DwpF9qYHV|Pg=mu$F>%4DaZNc%5i157UHLNrQZe8 zi{F2AhuZH?yZZVdAxmF>t;zC2Jgsd11Yu>g7ou*)=a&RE#P^?Qt#ND#zm7{$g56A# zrMTWG8;uG;1T+p7Y{;adI%W=ryKTIC(8^66bn02T3n(}eA|mei)m6?t`@RUZ2M1Y~EdNCg@pM#V? zq)Owm8W$!+bGez1MmNM<5HA?^v`0+2+^0fu8`8M1P}M1Z$C#*{AkiWnG`6X zHp9<}+`N^LgX;0DpI7zy)PpwfmVjXbKdD)Xrt``$h!47m72njE)ay{?b-f}aLVj!{ zS&Sd@>0|Ss-2dMXE9+7=dLTUXKr|kKw;1^`V0iKP0a^eo^RMAlLA#sguKqH=7yS(GOh(!x^v#iE?4aumW^;8vb#UzC z21_^rg`V>SI`Mbtjz2iu@42}!QEE1M&b{p*m7Ha}Q?o#Ll2b_eG>##4=|+a>xJoI2 zclry-G%?3tlF+86CP3$70G(I&${)fjJm{yyzM4bQ)fl15FglxYZ>45wr@HFs=;#t8 zy(G5Bv77oZI^cB5q~N)%C0zpFshLz)E`h+Io{b;2a10bWj8}NAmmK(HVymCa8#fYn zn=Fu=`HA&S<`ohh{Wrz@yK038KoA3^S|m$UD%-3$5Wd_4)91vq;^FQFV%(>^&2Vl5 zo&_f%GJ0?J-o2FAv$?iZ;Wt0n-6sLZ-8pmSOjtsT0CqF~#C`}5_PfV*)4Cu$Ac)m12^&9K$t*;R)Bx-^O4=8BCJCN20L zA>1FmhA{BuoL3tq z3GbZbXDr|**oQgH&lk6okqD+2vsMKfIL;swD=;iG7`-_=F?+pA(6N~AUzvk~PVc4; zKC@-oi9_*0&3Ih!j68MFtq*}s-uvS+$s+6Q70j=xr49`b#D2&Xu9qBp|8$4+Z}b1~ z{6<}Dbs%4A4gETu^>D;w*6ISZb*hU-*l;uReEAd|Y;=A+Z9o{xt9il#gQ>`24(mwC z_9omQBOzRKWRDrl^zeD=;QD&r9fEX{ZwV4{#SJaS@o>JbtGj#LVu+0S+=HeK!i2@vHe!VbZ6hm(`KW3`olARosYf^`udLe$o8Qe^y^~iU&nQgdMi!EX99349 zsF=@qzX-v-GO2pgSdAsDdU^Dpdj(kv5u&M3s9@!wsr<~a;y$-z3$d!E9Z*Aqmx#2z z57G3xx<@&vFU7B(c`-kx#4(z(*XwQ+A?H=-{par9K40bW3%fmc6h^=0^A?FXZx`A3 z?HxHQR(P60qIednEfQs6^!fU==g9fwd0f@$wliMdx~Vygt3?}j=e)`rd(eg@^Rh2* zRcVjDI)ygT^{OvQx#g1_sGq9dhW87#CEMa1(!Bl{-~I-}`#ldDCYQ`6m;U-NSS|>Y zJnA*OM)kE%aYY6UsmAblmwK)+be zmg-tlU44gu-XIIXMpm;Vx29GNnEPJU@xy&|&i8ucc0A}NR=j`jkUcUPH%4pX9l~tR zSCV5K>7PP!m~)BGi4~W7X)%|ffwKk2ve$hES*yZF_rvJJJD994O1eCINc;-tW%E^% zeIs{|v4vN-Go%8Cn^|m=HUSQ_i;Ig-Bd4NMN1B?Zi($?yb8~Z}d-vW$A zwg1V+byN)jq<~hp;cn^MdoM`^RVbVT_;`uw9bheJ0^84(d9C0+{1F&3 zP{6G<-K~pl9=`4TsDK!h_a~>Rp?yX_?YOL{$kh=6#yoWT&_^)fdxB2&@1V=AN-}b`7ms2l&XfyADHS9yvq6nCQj&v|lD2!f&z1 zRkCvU9CV$Cs>|}cl7IZ7u~@2}>vY%q^#-nB8Hq>^NR&YK4({CoY0}0P7WoyfB$xTY z3dh=yag@A_vz~{-6H#o!W#vtgT!df?2&p_y8;aJ z1tWf8VkvthJQO`;`ITT4%YAwGj+>Eg(jQL1<@Qh39Scj5EGnq4>>%{LkQIZ5mv6BA znmJ&12zjk!W?uv^OcFk$wiunmyxPTDJ*_^mrTVg?My(_E zkL$-+)Yj=n{EN0p?!z@&nG=UPg$mWSE$IB@V>o-_tycSCAti~5SR-@eDGT(^?~%HM z=gty?1lJEp1d-=8_vIV;k2G=P#}4qFOG~lK(!2e>3s(_k<6GLH7A@i$^)gYp0tk`p z($76A6Gu2#3Lidvm4iAz&W{y>zC6doq_qtM*0cN)kO&2Yin`k4`SQ(y)1>I}7_C*cYp43Zs$d$GyGuvj1>h8~^ zwpCHza5PI)olQp-R`|v*HgDX%G7+p=fPZMKIYs_%rkg!-`EoC@qQt+a2kzYwa_A7= zD>fw^J#z2CSF1bk-S9rzBLOY=K5vbe??9G7B|dxz43yCEt^b;JtQ5TY^sPaqQ*>9C zH?>Zr>6q@U827M{>LLfz=|voYJZ_rbc~%gw?FNQkEX%Y1gzKgG&j$fsqN9@oE9tB- zB*GNu3m@}7(Cn1@;%Bf3RO>J1xHWghnU18SZ^Q~tPFkmOtdX(#jD_p-Hu2rGPBjC~ zi6~)RDO60~OE=le+R^DU4C60qrFmbEmuET1S8@79M`5UT<{$JaL;3BTsO3g`9ljxJE#A)G}62CK8; zb}8~jiSJ80skg$tB+{F}gm^qvXoV@NOVE70NdUreRs4cCMf3n5Jk2!`NB0AiPq+i> zbDC-s0aYofQ({vU^P~~jL4}CFOPKAcs{rS!Hy7LPnVaV(C7ohR`N1;Bju%Nl2j9%R z>-2RpT7|~br?m^xtlkX)@CehS%F2kNWz zHmRCB3nb?h zu0R$rNMsQa_r%Cp$syg+$?5loxQ%;K)U^6|=+NR}73JtRGsm8FV|ykDt>;Y=14+G# zS4cE9ukSr7_EqEN{H}$($Uk?ruZ-94mG4?Vx<9JElr|_LgDG&oGc#ze3kW2#4=t`X6z%&=VB9LTZj` zalGw|&#Ci?-N1+>=q3g_3O)8eqvIF(E@N~=#eOceqefuEr|(2l+^<==UdKh6?Db=< zx9<@48WOj&}Ivtuo(uH%0Vb=(ka`7RDUuv2p?@!i{} z8;x0|rCmMfu^VvyH+P1d+jh0t4px z$=`ZE-zDRGf@X9~SzJ?Jx*3@it2Z>}4M-{yfzk)HHnpVS{pa7cmoocV0R0oI&_>2y zC6X=@uKjv#cI}rL5&w;u_);SE_xd`KIy$U4)4yc7F!lzCsIzIib&=;%%}$c%d(;Xr@95R|(cySSEuM7;Y-sB{%^Was5~ zb~%B}ElJTMt+ln)2vEMMsRyi0s)j(V+UwhFYJTtDy(D0b8t0p478VxTTFXOh=Hxgt za$p~38ukkG01&OPYdLI*p0B9hTAyVA6I&-1__O?KOW)-J7r%-2_Vs0hrjyxbK9AEc z!$CDr=ytsdj2`lfqV2WxZL`_Ff^K$R<~w7gw*D(?u-G=Nkg#G7?Xrte%Z>?}5E{fG zk_&4WTYthYLu|gQjFUnZ*J=Te-Y*gd1+>3HW|U+8 z$rcCptcf+|Ufg+ILsfp#8Pss*b3Vlx(AHr9;PQUSn+q2%Jns2NV@5g491g!{Wu@-# z?B;`2+z+1j5?97RnWHPI&~mU2Q$wp=(krmQ8+z0(H1kT^{F9UZI|>c@LJlucL%=m3 zv?qx`%>fq=-Wa0H)KFN3?$y)h|1+U?-uRo)du_DtfY=S1VGn=2E5@eL4WS$nH?x4z z-aU!{oh_XYckS&N9uC4$Kx9dLLk#K5H_MuAOK=5e%*@aCKIY^r4_JDjw!OIodP+zI zl_R;mc_w+KrNDxBsGcpX0bl;EG75pv?M_|Qjy~OK&FZzz$;#54oSbA&ej0Ww05c_* z{!$o2RiPMMIo%g={NgLU4;Acqb#$-Bm8@{x3zD!emlZ@kW9+79XXOfnyf+^q5#M$* zZ=HpLkaJx9+~cpjz&9BlH;skD%cDhhYQ@?=4Sd!#oE0PN?EM;DOMEnTA4dOlQ4Qa)+R}hktZ2?O69xj9aJ4fLn9V(20k3@Jd&EB6MYA z^vOK)u8rCyp*djpZ5k*;c=iG*_z~=>w3QVDMYhg7ETEnb#F^mFN6&6tfByWrGH3|` zJ5;sM)4n8iyk)KU`OzVzkwYzhd#+`SjIc9yvCSQsU0E~}&!3*FyF?#=*rp1Qllv+y zF-x|5A~M6{RRJFrr}NQA*J9Ht|2k-Kicub zL<8pe-H=afw%=2BfQ5bXUn9LpS-BAQ$OGYi7g)#aUM$cmKv}iwDqf#btk1bCCO>h> zk$9TYrhE~ObL;daS$+VaPxy5~HAW9i)152yDhSky0GDBl&!)(euJjQ?@Coz@bvG3c z{A4`y%#cG{{F>PuuL}avJDFfz*wtm&+tc&wF`xSnplcuZyfYN9C@=q*n|mAV>@Kik zdwP2(otqq+9aM_&Q%TG-9V)b{#_ouY@72Du@*X3#4P40zii)%B2!C{*I%69BY{&Ar zz_w|gNl_n$N&Y}#(NOFhFJ8(rS4ca0)oQS~dbvxdx3g2$e{E74JB@}qiX`4~+1gw) z2lBjW}3ryd+#>0H284+Z9ROx`IgCK+WdgWU?EwDHKsh5{fw9Be7Z9SUgmD4eq1H|k3! zldq}rbMa$0y|^x(=BJa1XZMA^zG$+CWQ`>xFrr?8q1hc93VJin?$hJ1agsl!x;7CP zcDa6=Mc)N&0HGvCaw(sHQVBb|Z);3?>)h&4JqwPFJS7+>s(*NkVZF^r;cqj*?s@gi zz8p!_17WKF?`mKnu-5>n2mB@qn=3SO9#|~xZ)7#CH^)x;0uO_tb4qr8etu?d?zFc> zTU%R&=g-exC<_ti|Hag|t4r`P4h#$whQ5CNI`$p#hAt$xA67~O9W0#yQJa?+g6MvA zv)UT#FM)r48AY=wFe|&sVzJcY6(#!(0@(3&@>SNC4t`odiN{+}GCcX2IpCn9s+zP*2I-c&v9!=N5?{qxDX zjOp$Vd6}8lYEbk(llt|0^8;ntAUV}nE9|57npodMBFg}qIj@`a?jL2Yv(U1JI8bt$ zvFle*NzmG21GXbsQJi6#?G9>w(I6f+rWNN1qBrbq(|Rd ztw`0vx$ouW<-fp_@hue@1i$GhmS6SU%VVmDi`PLr*#feKXl;L5|O z56vqqG!{M@Kv9ta%MNr5QJwDz6}^3X{iJnJ$;$i?6)i3_Mz%xMoiTwX$=W>zv(z$C zVhNnCG|Y+_3v?3kEIPt~Ck9qf51Fj?E;ygR1Kd!K1Y1ls4=+SD-3JOR{)B{S23Ym& z=^EDTt=%!r9s;owkTiCSj+3@`E_;b^OSmPpyuilE}ctCN@6!N zO;nvfx*tKQ!&nHIOix&|)IhHCMj3bQ2-~q6tn$jT3Y-=JDwPwD`M0XA8BP5++wGyO zud0TdioOG24zcpt(bOF7103(Wr;%uhCk#nWp^0arY5T?&{ELHG>!Z&VNA|hbvsN-QGkqxt%BDk zuNtzuR#gB{C4_(B_CL^h3ZT3~NtT-1~Rjwzaj@ zkOaV0=#2ux{CAg*GzW<9_a!AKhXMWw0BfUoez?-Z8ie3nyV-vk92yGykRGi3M%M18 zC!^N{ZG~?q)vZ)y6ck80d3bQK?=5KF)%xJ|%)7tS0WrLGB&Ehq>HHpGa5gXju-Jg< zx+ZbrU}4o*gblEZ>k{Pi0iVjw08{p~>3##pNsA-HKHa(vb(oDH>DhdM8TI>w3G`C$ z$yR_;b;mdOD62Q`!r^>h#uscl-)c30DcY1;KNR%CZ-vR+3+#yf*>@6;-pJ~-Szn%R zKva?yrh@&IdsmQ6&2}9kq#nV2rcxgs31j<(50!=P^Bc&0wPUn z6avA7A_7JdNk9kzV&MJpo_Ftgcf9-F@h}D(M#j!g{$1vp^II$Swt?2ceSG^M5XeF8 zTi1;s5Vlv~H+Ro2@QTTB$$9Wc+3$wApRt#-U!c9O6GY$M&)dVx&%^EhsQ@Qmn46cU z`~_K=3o??YT>bpKVan3d(Er@yf|sw0bgHkpFF49x?^_ly2!zX?^~+YOQQ`)HToBT} ze$^x>XK^yrdz6;Dy^L!lMqJy|sQt>CyXC5c>A-lCxW%Jf|9Uyb2ueQQMoa6mV!6jV zDV55*f%N0Jp?Z`+Tx5j=A?r=0$_*`-_;T}a0sHH3^Om9RxTfB|)sPkHTQxl`B>BaT zdu}EAiQ$nvF5*Du+@MN6bv`GswO6V7=)R~^haeE5#W;Nj1ae$#*CELJ{r}HRd?}S9 z%v?Pm*Zz37sikGvZSlEKB?zS8)E+E>P~Oy}{IsK_ZHPCJ{m0k#$7R*kbo2qpd!+|n zUbxkT5km$|mj4QQta9XCD^1GZ&(C${!_&(-FrzC&!y=EHk^5J^X&?I2!ffK>AcDBCLc*k z@UFP)XPlqjR*?)r1B%h*;Yl zp(|QRf~FTTjQ#y-&oE|YX5|G1v%<8&!9g9dl#a`J55fJhi(1WY*&I;W)Z857wYa$0 znz0k2$aRycy(cX#E$;dm($AkKmp6un3`VioutN3ZTjKWX!s3v7z9(oBuYy#oZp8Dr z^`}d93ye0+R283ge0rLw_%YcDUk*FP9NAHF$~KXwUcU2rxp=o*vB+#Jqm zy~s1o36WuY-V14Bt`Yp_J|0$E{iI3y@#E83jSX$+RLh32p&kTc-Ow$$*PcciwM2)| z%#lLvzwUoFIqyUgkZ)PK;22h8bs^hdTA?*W%5iKI^2j-wQzJ7Y{<76IS=hAY3f6_LffR`&T{)` z_*BvdU9rq@UDU^_Q(p1*eSBvMckSAxkM4+8iB!EyvCi&om=tQ*u>%s+4*A=StY_WV zUmGpgq7R6ejpc2$gc{sEWmRe^LTcr4x3zj9zsgC7;6&tDI+wN0eKS<83l8KP?lnH7e|syKdJi+}p9cuG`MGmm%v}5ERuS(&Naf+md)G zpc`J5f@$no%URz|8SFSrZ{XJ6cK{*w$S0!^rbMuuYh7zxk-kLB3z)n}pQ5%nkkHgg z^bj(J3z;2aCMKazbLyfbD?FNMQNBYJJebn!tdA}@O=mozmCW24XU>$r{it?c3*OhK zqfc9ox<{%poCDMr$TBW&R&h*Upb_q=M97T8jY~bi_)2-oUm6ZZyFAhlNm7C#^@Qr@EySlpZ zQ=wEf=C6!4EK!}VbmPq7@U4}6p+(kS?{6~Aymxb+{6y5)4i-=e&>Jb%A8}D%;e}4O z+JOJ%X-XSs?jFDTRWKt3LwIvt5?y)ibVpMq`D0TL`ANd^d5)(j^OS{SlpgiezRZxA z$&myT8))-ByNyVSx1APttl`{^%I3sv@H1OqF$6Qq4#c#GAdVF=NtzGvivuD!%tyW68 zUb*Cl2h>~bfQX&0{R%Fe3@9!C@+M(}Ae$qldo$VHIR_aq5Slcz&cz>rde#Faw?6o6 zTD%!A-PqZvkX<)Fe2x^c57Ye9*O;7nT0=4yhM7t!4En-t9DXM@RKen^q%#TaLgXak zPvtAnhFo^#f|bSTqsgQPIqr-Y52EQn16O}ZstT_AIa-Bl>vN-mN7(I}i4}*MhR{lf zRuQwm5%fR8-wow96zBF$MAdYzIDRU%rt59M5=Yy<&4{HfvE-y3&Aj=C>?zdjnq zt~rE!eY+2<;`Qvr&qbJBj7S=HMkc8s_6!jp?~IYB*#_xnz!oFXn~xBIAs@ZN5-h^! zjU{s3OAOx$yr9?_@@t3>dgGw{H*R zD+l}EZn_kQqV`Mt%-ofca=O01iBofz)uHjR!-^%7+OOYAy_L!j#AK;Vd~qW&2jn#r zM(t<_LnWLoZ1EDPLE3aZWY9!({3}n(_HIUNc)f)wVfbo#QT1tapjV$t(CcE^dO# zb@d9*NyxpE@?5WQc9Axhr^D(nnLFiGnnhjxbicpYP6WmW#+!?jBa3Z%)v zX@N=_c(V4cKuA<7?!(jlNYBY8;|S(*j}VUDN>^h!M0|}yOk8|C(&LNVLEigc*dQtS z8(vo=?pAz?J0@YUfjqTmwezUq53=2MlV{^RkM=NEMI9g+eI+8(&&eAdr;lQqEV2iAOO(h^i{V z2VD5zH^Rg;q8vAG7Su*FIA$^lXN&pCGFsiFJJO$8xdn{ z&4#~xQTmPK(iJ&!UP6N32Uy#P0_BI!gD;D~F3>NvPU|o=H8s}KSgvx#3b;zemAbE+ zo0}}vok=3#@%5o}Pg4^U*X{(~kgtz+uO@A;CpE2qi@)SPCK*1xe$M*=N@JW@{^A5{6L&iy8hSx>GF{92^|Q z)T2pSxengH()XNn*s1gJP>p@;VshavEL#1DPdrNTTzt0Fx`t=nfLR&1Qc7nBf zFho8*M9_1TV0yHoUSA@9Y%EX@9T*+CXzP*ir1rY1#hVUm_d#~oUbv`Gb}$dPV}2AQ zkv?k)AyK;^)>m3I_H%+FdH-*0gN)X4j&zNAr;?SFOs9}VZBpUU&(|nj#bd?eVk62T zPY)`=KEIW6sgkkpcjrIhjhRvQoqL9$e<z{3{tR-&0}5lSYa^d7j>n{njfXQz`r+wDaZ^+62xmd;RN9lvB3Rqc?X5 zZnuq09LuPS3;tDVVe4-Zfi5m3FsO);3n^DmEZ3cVmaUK9F#R*qNfS+ndrm8al-9QjS0H;*b9yT1zJ_l9r&&TSuSua zipn*F3`d6-PszIsc~|9HTDXyHZr|%yi|?9{A02kH;>i(BzrZ73MNm`MTW)x5F2^DA zz0x91n}GRFJ-LpCK^ct2;;F`j&{nId+Y;KEj~@>qA8S&GqqqAi)BhN@11#6}uWn{9 z$DMsE0zKjTV4y}VI>f=&;826ht2w9m@n<(BW5!U1zK=jeNrBmgVoxZg3VA2tl)~Pt z1zd;69icGZzLl{j2`FeuG}4o>jj9wfcI)U&KjBA2SDLx$NLvw<}CY<{U`QVfrKz=IRBNw%jH#72Cr}5 z!f0&&epWplOw8T)^qR0|e}=Ts|3zR&#w6`ptz$R^_*&Ig2IPtLw;=E593qZ<0D@Y7 zzbh`OQd{Im83Lh1zQGFHvK#!L#wx8$O-+k}SH3T_GAJW84m}1|**ZnokrDZCyC9jr zfeDlX$JF>e!-aI}=V7jBY}Z*@T7skPn>Sdw@bVwQ{2dUu&$dTEk>I1@*d~2?1Uj}O z=hMs{v`2Bgly^x)c}|uU>1IR}Ml9lymUYg9OFcj)51fWHKoT}a-nwA&DnZ&k)o+abHXud2G*t8-M($|^g6I#n4Lw-4y)k7O;u z&wXhUrpCqv;f%Ef3A>HB??buePW|c6NgvoCN3(+=ixZ8;mnXbCmU_-^N7R9oUuoB7 z8@l%Ma~qS;h5+u_-`~G!p*VY$YkP@HN5sRzB3P61;>Nv!s5-1wUB!pf9UQJxO`f_n z2&C`pdZ-jHy#?{66e@e{28H&eMaocGurSA6Q;BY=ty2X3;+Q^dn#xW1^vY=)4Unw}f} z-`VONd*Mmpw?Wd#sFY%Z96$AMxYbPt+w=6Az9@dfYw7P59C)m!Zs+gitwS96;t5af zZ*b{xirLgh?+!^+#NB+uQ9Pvs($|e&sPGe)oXfHzOb!r+(#$8A_U}X51{~#vkl!V5 zXxe69B1mQFy(E>Fmjlnb54bBv)5Nr>a++`dJ(Y#`j{=DJt#uu`6p4|HL2>zlTP{!RADR~)UW{UBxIyev2 z=;u(HZG^)#tak056n-Ldj?X8FV_yuEkk#LqFLAg-S>&9DqSqhTu=dF{_8USDt7C+# z;hF%@LXM^$f>rA)E36oAR7eqx+YOOPl>M7j@Fzm(#Yrm0FT?rIe))y}Rs290cu~<# z1EZ-Wt`H;CRQih+*MTwRZ2#@upS?d|Rb-rdoa!i94<5;ud%b@_bsoH>TQtGts_Ln7 z<@F1Dp_f!TYV+5xLfGPJ`~~p+!j@jZ7IzCZ5WBTevm-bh)jHe2C5QC)Ttqek0EJJn z*~XPcREtVyy(b4`<<|1KPttP>U%b8xPtaEF4i}U~a`x;8H*~jTp5Kt#uvjiEUQp@W zN5WcT5t?QldtH)?9p!Ho(sQuK2wrPJ&xQ9N$O^F%I(z0Yoq0sMzDwcU_lW#k{IFV` z6yqHC61$5XjboR-#r)CeVm9o=L`8XZt7TD95g?btmG7p?#>U1DU((dneDL7GFcx8K zYGm{#O~S0Kt`25${2(NAU5~xAsOW~izCOM+yxBH*{+N>-@1);|K8dKp6n0y> zb^T3VC`AcbU(Z6nO^YbP&F~q>!`Q*q%dZBrFDI=B0q?~6yegY!KOnN@&COPZYP3`Z z&xulgua-OT)zuM0^02P-=-MK|e-VjGoazJOfmdQ4ECsv5P43(|t&K;zXUJtG0E8Li z{vDHF%`5NhNFi@TvnYSirT)amTh?~=+&6F~1E;*N`85CwT^v!#aFPuN` zTP1Mv1g)m^3^U%EMvJ6lcAIE#OhsH8(W3=-oQ~^xen&cbGfdr!1dZ*jT}w2-pFO~J1XU+` z(qDti{edBK>|#mXz4jeMyoR8vD=GZ*Ko+pG_vxAWVdKz9Z;rqCy8pGd`xDOXX=1wE zJ_AQ}ij0QB<+JMD1OPI9W^%|JRy*O|k;wQ~`0TW?)REY%5Q(>yqAnlTb-1}RLwb(v zrBB_sQ9OkPUd)u3Tu?k^+O7IF2&+byOzX`I(JG)2<1ST8Eg-eSe~w*&Vo zqgSH+OXMiYV(?UhFGFcZH1+haqf)w#R69KX7TYy}k?IfEmz&CXe&=rRmqZsaa%=kS zPE>k(s#V2v5rLmSWN3MJ&8XH^_Y~JGdd%gj{<@C*DJBU7$p#Ox*^>`>;v0ziT?LdZ zOE~xC)eCw%i>G)s(@n)v6lk0=*M^YE&z3LlA=J)Ziw?InwsI%g7+Hh+_jaZXP4MIi z@2W*ItU9eQ!XaGSEfxlS@h&&Ut)ubSPEe12D!Nl|b*fQi^4?BTHBZy0;Dzs*Th40g zJxPLrRpC@FYIcZSz=kRKh!+f|`nSxYoHSfh?P(Mlx&5rEnc8agAD(q< zefA%3*qq<~KA5c))?(kW3mn`HS7p<*wMmZAuro0!eEIU_XN%L2dq&D7ZES#Y>cT;@ z>1NoLmd0i>Nag-OX(x(pWZOB}*)=&U1P)}0D?%T%3DN|u9`pj>~+fFQR zgi;z^*0-x$e(3;W`(R;G29~^8YSsh@6QJ{;_8kB{FI{>s0Isp$UuH(B>ZdN^} zD~&E>p_Gvl!|ic=SNw5Z_!?z0w2v+ImPqQYaoc>hKgCXb&kmNL;_KZ~SO(gn&N+8^ z`sWlHR3Z1UN8k+j${&1HTr38iXt*QYvJ|DGt2_Gn^J#6+DmyPJiERyM)cefdWPZtK zW)&OcmZ^oV{b=7Ugr(u^syX)aB=myzvY6Ni#Ih{{U3gSlfw`^5Tpejz8B#fx)I%ec zSCeAT=G~5rY$K7$NZ)y#a3wS3j%kUE6!-f^V&rrc z5$)5OH(!brjqnoj-koa|Yp+v7cbS35gH!wbd2dYXz8!StS?w}f|e=PpKj&E>BK(q(L(fjSR ziO~M$o>XhOKolZSoEj0fHQqXnRT(AQ^2<{?xDo{vMt47A^qLyok5BF;t_&f2l7ueP zDAYg=GgdBV)FK1#+^Ip>MvLdQwyGPGg|(6tah5{UyEdD0+>>G^G3}`i9$f!^PM<*L zqp!wZ|A0`)hGE3}SSPY5dP45G$hll?fJS_4cWs91p_7CtGOG$t^0fP0ChO=T=LBKf zN@uhEr>Eh5rA##+T7?~yt z(&`p7ww*}fUzrN@Z*1>^UZi}B4obUzbpopb&`%6IJEi7IV@qYA_*`o)C>z(r)8wvO z@P;;bqs?)rwe33``t}|s>W~A{)6)T5O4FC6;Gn8>_w6%rLTH91!^547j z|3ur-zQMh+@1#yP&V!+!ZZw0kQIm zf!_{#HHlUEDd7hq> z>9C?tvW(@z*N-BI_-D&5i{_ncpH7%>@>4bBQe9xEo>w`i`C&JidPIC)o?wacpJJA| z>l5fyA%Xt@U3Wx9h2Ft~2RFZ9A{2hpUcWwl>Cz=P5*Bg(+&NYz9|hEu6u%3i7go%6 zF?`ccZEf6v<)H&869|^+emCJ8KNUij(jI=yrCxg6F6<6Qjh+L<#c%2B)yV(?)S=cJ z)Dh>+8^poO)2iQQBR5MThglyV&Ir)YSGW29IQTN);HNCM4~l2>FMM&yHwBso@NB(1 z?g9u9fLL?l2J$uR*q6F_htW}Xm?P^@NIwAIz%IYufscX>=QWeNI-7}Gi5c=Xf(dT zr+`&kGVCHO067nw^v@WpuqXgX1zgpIEe6$0Qv*W!#zA!!Ps7L?pN~JtH;OB#7Hhn zT^-`7JbFP=W>ia)vaEc1)-p9vBk%EJ)a=UDjCpl?M*J1YBZ1VDHO$(x9=&bJsazAn zt+m}JircT!KfbQ=B-A}?)=;Ea^UqDZ`-~j(>&y=!A(EIOSFb(-1gr!^4Ga7Z$b~D8 z?SIk1mMO7MLY`7Q{7ClV#kt>JAEGni9(W#6xI%@nQ$n(K$)v+0-^Lb1;Js3egoyOkL44Am0aaVA_ z*Y|8wshkk8M{8@Wr-NBayL zs9tyiO&uTVb-sv_-?M|ZwpIq{q*s%h()0A~^CJYMFFBaSlYxfU zz?jSlu>oKu@A=yQpZq^lhTRq9zRk|F>aU}sc1YQ_n73_?R)nBz#s$&XXklg-js(7m1wpO6&@AgG{2)3y z8jHmiB8*GQ3Jb5Zaw>rCCCBmwG8V0C9ecGBiD>#1*{#dP1>{@HxA)qY;`RCY_*U!k znI7w8BH7&F8Qbct(6+hzSjFcKE{%%m-`_7=Hh8~gJro@=Tnt-$Y18jt{r*2by`CXR zM=bB3)>S?WhKyMIfcr79uUZ3m;ms*}YsuOCFe8#_w z(O@!Y_IcBMy45N$_u9%yJ#v{4Fd_Hy6$0V5K5Kp9ICgZD14y2r*`+4Ii1nF!V2-Xe zL)KY@BU=H=x22em*$wJIJD9SooWTIJ$`O10Owji%7u5=Hzpx;c$EWt(t+YHg;oC1| zJ0^dZQ%L>ft$jfBqfROM{JdXdzBB>D9K`(w0=Qp<1K^bvbaK#UnxT z0ldl(B%@*BB-J;paS#>}Vl{X}gA1xa^?@4%TN_3|Yt3838a9CpoFO^`$pp{tff)Na- zmD__G&i*F)(P8ah?h=hwK6YmX`1`A^TGZ*Q=N8Q@_V zwjtUY+Z!0I7O0NC{&O&^*woZ?6KjZ_4Q^UgO=Cs0;U_A2py0!ZL!)nQ#Ixw-)BVRu z&C^Uuuv+?T1f*-$N6NDPmKDl_cZ-!X!Q+bk^y#aQlLH`ohF}TCP-rE!C?OW)I7D%= zbEnVZ!ouf70TnTtPntmsnF^XOV%VC4QGX&La2cz3_i8s#jfGoV{}lC_!##CKq$!vm z%D>&SqDKfm-yBFyFWl>|YABkIkx0|Yopw+vGjuy43~n`#7q>*B4)QDP^lD=Uc!M*# z6F8NtT3RvGqUSGJ?T&+>?DN$lksRP8ZVOygP}l`3e)~*EOt|!71RMBHc92}re-$BtizVO+CiYB7O8;ekrCx6$LlfKbVz5|za(0L&9aLXFry?rQGwm|breoxd&pyb(32pBnD z2P3~i1DUeI&w6It!Kmj^kLgy>^1nH{_-Zn;`#pdjJidPBu%u1XMOP@4*8HPx$%mjMBXej1(CPMiw~;7w zNuGfmCHV$040d*c%diBmuH6ohsG7CBqT-3)G`nqo8K=I~SEZ%m>k~xv<0rwu%=8<~ zhb$CqdyCl)BD;`@iOEhNpqVOxo=bs|^uVh?i>9CQGe_;1rZV7(IwhF28%$j7PrqQJ ztQr>e^|yfTR3aPXYgfZIKda3CRh#|4M)}qwafs4q?4R6!K){do4TI}d*X~9AFAu2& AjsO4v literal 0 HcmV?d00001 diff --git a/labworks/LW3/12.png b/labworks/LW3/12.png new file mode 100644 index 0000000000000000000000000000000000000000..f260834c7a6e0800f12296889e6e23ea4298939b GIT binary patch literal 61646 zcmagG1yo#FumwsC5;O$&5Fog_C&As_Y24i{A-KD{Ya_ve2X}XOm&TocNoL-EZ)X1b zEbgM|K7IP!I#N}8@9F?)Ng)JSY*;8LC7pmf5FiW-&gz z{?yXxaX&7cn>C#q6YKjHqRwob59^LDT`9aMi>zB7I?t_MkE+$_?l2uSeN+efy|e8L{D$^f5$S3_`8?bn6xx09i5ETx$?@& zw$|3qkOO(*-|zA_A?D>xyE#u55gsLPqSn&V`ancfByU6fyKk8gRCM&n@NA+RX{b_~ z-m3hb{!uxwIjWD3PbB6W;4?C9Y#n4)_A_P8?p>nQY9g~CRey$5@cZS7@WFJUyk+xs zd+0_RN~Li5zX#eO4BSAz?-}NBmU@qHk3FRb#a}m<{reu|`CQJ(W?+S9swjp2`3i^k zvy{(u4xdCz)kI|fHU-+#9cN-kY8vZD1^#80zsG?8f};R4=ELtMfKmR8{7ZDWnDLYK zn2AHceINgR@lS_^gjmbvX8-JbG>$7;-BW@1pKViqz2Ks#vmg=qeOGTYzyH2Xe-mLt zI-dW0!%mDM%b&pkqxd~q8H62~48EN0o1zc@dI6!+FLDnY_{T87n?KXbNRZAe7q zo?_%bjhd}1|L@)rD9)f?b?`(>_1wDU$x#iCz8(xiY~Bd9{K5KX0o$-3rX) zeI|%94Lu3~PKF9`-_%k*wN8;Gg{nhru>}J4fbLsMPzHN&m}2Xrj&R|19*>To?mU`h|Q!x?#UsgUNU7{>8nba&a7=Nx~#&0>jbcP?G5NKyL)?o4Gkex zsU~3i4yFs{Ewc&MR9K`)b|tghUfrDzi3kg~3=M^~dc!c9PEw5>#kXo}U+m8mYc?jH zo!N2N@3t2z6um}7WGNwKW{xQbbye8!DUO>kOL3p09yQ(43=R%%gbKXNdQ2CKqggpR zvOJ&z4ww0iAPidBJV`uLzl_?NMVBCjBE@ox1&%~!Q$ZsmGCp7U)`5W#>$T2jWlj)X z#bV{wpZ0tCTFpG*#tUq2m$Ua&RPZn`FiG}EognYhqZdX=KSF1rb zU6~A+h1lancjCPtm9XH_}B%QB_nPa-zxvA8u;k~-M zh2On<=d_*SCl0o@was$Bz1W|t2?Iu1Zn?xWzpx-7g51J~#Qj~h#NhGa{_J3`M%`NM zkN@bnt2gf2pQ%h>Gz^{ju``wzm5?B^))_Kl#I$Y4flj6T33$gdVPRpYmaeX@{U;0L zI=^}I#>v$+X`rUOymf4B?1#AXA8#bj7i;3?4p|kb6f=G-MSo_t*pLu{!+O$zp*38r z!WfFr-FpRDgPfj%hSNU>b||C&ab_8qN=j2n)%1xB`mkepQh8d<9#B7wM!s!t8=+IH zwx@sgK0ZHx^`4$SLbb{yK{GBsUU+Y^Sz|{>M|N&*qNWyp%+YG)lTSi* z-1t}_%F|29%33pC_7Xb;x^dA76mfIDx3;&}H<-dHamvWZIMeLOi^pLHmComf2rL!b z?P0<(hUUiyPM5~ii-Wm1PV_(L^RGge%fo?hui*04YG?)$nb*1_hycR}$7#B}p=0?% z!0W+vx-~?~#x^~!u>|Zs(p0DCULPeAkGqM&=**_+c1Z+}g%r1oR)b zG!eO&{sp`)p=YVHaMXB-|Fm1Ogu*_OlfU8Ru{jKmABQswg1*wt9;;0N#0U>V4507pz={X^0DQMtqG z9HR!V5@6l^9A`51lU60!KhePI+KR9a?iDJT__J+Z{k3g0ZY=wlp@&O;p5T;UX=8MB z(I>iGY6UjH{N?fhM_x0Hxa}~hg{Cl&@AKQ*@Bi}1qd4Q+Xt-TZKE7a|6uiVRFkCwS^Jgx9AXFG4-=#$Ky^nLLhJhIMtFT^*{;`TG7j{j6B#+cw# zUHC%^eqRf3zSl1|W}OUG9u4WBX*fhy&+_M~Sl9#M5M;9%X}>TGoTL5y6@`{z5e%aR zLWGj)_-Qg~t&-BN#ia(zit0c{ZCx%}Nl~UG2S@`qt)sbaIc8$b&}u?Nz{{HMw!RvF zcD@%gmqqo)9(h7z+wAXsmSgK`UA8gLtw0}sQO#{;Pqm=BAT|VtHCuazB06fXaq@hB z&}npdYf|;~8OoaTagRJ#Lr`t9c3&vC@oH5=OZvDPfmQclXlEwE+Ro*Q!T$Lv8I?4O z!?e#3`V1xo`@k{ zdHGb*xc882?raIS zV_^h!VAywl-MPn(Pu&ZozRlWApFly*-IxNK(A`G)Gi;@CZ1<<}y3nm0U;C_-ZPAwZ~!K49cJp6Ew6`pib*7ogmj};x{e?a>zx475I9ffZ!mmTaH%i zgI!I%uC;=XdjpqU{xEsG9VHN9DAczLXN}BTy%hIu^^(kM>)dR<9^of&$Pl@-!{!Zt z<|UN!CDd}@{l)YI!S#XI?r^>uN7!JkQR1e;P(znszmDNe1G10j9xfCO2pi;3y(Ex#2N8@SP|SNm}GJ}a^W`f<2?)B zYm!=LL{g-mnNvl=V)V^~=3Rbr*LxVWC$=%1I)$*ewYBaFr_Yxq%;u^?fYWpB@Gvwk z4x`cKeD#+PoEJnkQ8Z_Ddn5~Lf3^xPMzn*r`R)sFMwQpp7y>@3KY`J2vPA84M2G;0 zD8dwrHf9XdNQj8ms;gZOs+;dG)DD{;J$|TCm#9|hE;YFu>;XOwN#mzo>&OVQr>AFU z2#%1XWCt$p-a<@=Ph)8|KPHk1L?@IV&n`oUb?tU^kMIu3(PVtcaG*ty%4o_LDb+}H z+QG5%e7un|X^q!8BB}H<*bk(}O->_?>}0vw%v$i8R0)K!UToK=7$i8v)%CTxf$c_W z$KoL`?5E8VkqBEodWI}k?NJ2({{9&*@3zGVrs)*zdJrF}%B>^j*kVv_u2zOXjn+i| z1oY1fkv7euExY`&0j>1#GHF9q$KFhbdpD@(N$aEghh~V2%P`ZC6m47C_T>baB0 zhVz*K#b%9h-(JXUxxN9^3mz^%C9e}hVTzcq5w>e=&Y#5WYO_}7>Q|eD-n}tN?3ms7 zsz0d3RELF)!<}?_xN^%^k9F(9W*Kbx`A(p(iki)~J%9vdm%;Yai^U`vn5CbusO}GO zLnUJ@sc=l;jFP)zZAq`_ciGk!gY_4Op>zjT@>E|QPlysYJTAAA*0)`epU_cya<@6A zIh}SnPU4vsRk%q4gF$A@Vnf^ga#mN-EXSQH@nN%pC@)O8^b6&K>qFF3P^!x=dF57` z`vn%W=_D}_wi<3#(AM`Sv4$Nk)F(;w4GkII-<*$^YT(d?K80dZu{0X0n;W$_<~7cz zo4GqcoR|x&d8qyr&NzdCMC*q;XKYrB{!D?O?WJbkwXQIj_iSwOXq1Y>Ri;XcC93)? zzqZhV(5ZC~=j&Ln<%1>f)_cm28l5f{;I3Y7Ars_obg}NP?8>!kNabjg^{gb?N#&hN zgOZ4vbL;pCY&Kgk7GEwVy=n=~vG491KOWsOv^pXCVCDy-<@=J}?bO%}XDfy>b`GtA zF4QIDG~tXtJaev25h2Y@P@K1`f2D++f~sEhTvwQQkfx*GsSYi{*ul=}eFB!4B)z>A zPUfJ>rp;1Sh%S*7r_H8+EW&MDE!dHx*+Mp#&_n^vwKa8Q0VmUbWF$ukI%+9Ir#I@e zqFCtRUP|W+cR6Q9Vz2GWP$r|;zHat%b;%zaHIFJso=Pe_dGxj)-WbJqt$PggCR-YU zv(%1Io77dhGOZQ#Iik&BKu&{#iRoWdMEUI5GpP1<^=4%CdWQp1 zi6XU{QgZU=YY4k%F5D|CD~>-FDACAU?BbRw9bfV|>;oINv}0yw<_tKOV1R(GyStmA zh7;5Y4ENy%%(o{KJS!OH818Jd zh8Hb#L$X$N*Ee!;SGnkyhc5JPoIFZZ;?(IlMr_<7p^X2(&u8Qi z2UgF|uijY1`uHg!AGxFTP7>8myXaw1A4zUO9?H$QE8vzmoVgyp;2t$Beh1xh2XO86 zV-QSksmH@L-gKx?4SM$V{2*lch0hBoe^QvZ`hhtvbD!PwOJAZul|Q`gdO%!M3Hnf( zinUwSXxsv?(>wdlh?FHK$bpIFjSsOh^~ZeNw6Xjd8z@SFfQqSA+mk zAaP#@t6TI94jQ!kBM0NKmX6;5A-LM6!@V@+y^01dZpfD4qsOC*#?DYrB<>H6yIr)3Q=C2K&Qc0_in6N8#mC-7 z8LiHTtU^0SQ2G9rp7!{@Fo%PbzUrd^ai?ap=)_tA@x|leXTie#y$zBz%$Nh-I82Qu zw}j(kD@CxTL>!F<6bQ6Ahm3;KmLnD??znNkmF6j3G{IytE?j=FXg{U#-Ny$RHM?Iw z^CMDjxoHl;p~tH$rv9~2a?%U8U9oz@($r@TSg9?!MAZ}(pWdlvua?|8y_~slw;n`{OI?#2 zwABsMJAxZlIu;g5vFa*i%b$ddtL#_xa6Q%zY#e*F&6XV0oCb`iJ{5CeD!+I+=eJpD zzGky=W)5)-r#s_IAxi1qDoxf08ypN7_s=s<#FgniH;bQOW8I@MHI*)WH zadBp9=8T%svM`INE&RnpW3l8(Lw|C7+|t(<6vq1y4`g*u=0DpRvozH}L_~zgX7VQy ziw#dm=&7|{bGn!@>@(AnmzhgpF~`1KbfqOEBy6}l>0@JOM@C2Q48`Mgdc421+;dki zx=c25pekxZ0>27(pJ8iR;~pY~wA6~_>I2>?Yv_*50ek}5n|B$9?_cvl8br2oWP!p~ zd*RIkw>8!AQ0!Sp=u>CXu#0wl7Wo=`!Si0z)e-el8?<&zvZP6u)TGzI%gLhlC|LGW zm$_1?Mz8zowL!Bdu8nE}d|$BKC*wGdT-eq}75AivOHc^pYRD_yrEU%hPA z!=lA91sY3F_rWu_b=y#osyoR3?uwDp#Zr5%JX#%=-V441C zG!jm5_7`0xnAE!;4{`h9Qy9!V4^$)--9C|`XwjgRg(RvuA8k` zH1oq41<3oe05=9Keg7vHRiaj-rl}+?{Z@+SnmCO60<)l?;B0py2#M$F)5t-!*-Yd@ zy(1$Kas0H~`PQlpgKB^qp*ClI|2}=Z8o)@zBt~wW zZ|y-(ko#fuGc=c1t~pqR+uc(Nm4hTtXnTg&quw9jm-VB0aIYeBR<#$q?Pk0M&W9%q ze)sd=cr9!GFix~7O!oTEn1A7&cqVqRlS0wzHIe@d@q2=?We`MgvMT-!onk*hr%y9g zi1izB|NcB%_l$rAJi$GkZ&rfm+v6ML`IN+Ko*n4{7?YgBue}qOlq#ZpY5iq#oREK{5GoDe-H4#09h<}lQZazT_WgL|92cuB!oO4hy1p5 znNs4n|3IkEp!HotcMt+gRAv5!u~W`dN<3i&CW6$ztqb)(DE^b_L;r#FQVh>lnPLH8 z%g)Zul!n1zGP~JKg%1FjJg0Ly)&`)FnF{?N0bMGjs@WE=00`HW9tHlQfVyOve%F+y z8>Ez$%nmv{u4E;N#Qx2~rieix^?Bmf@oKX0b2Y;k+H@^7VtXfDaXjk=Mn+DK=-wEb zEj1oIP(os`w21>(g z#$q)&9u4^g%28_mU4AgWVfj%0Je~s1L=q1~3vMuq|O)q>4-`-6g1f zsTx|6OS;M($IG2QF~XjPXf-TXt28)nd(C9coxT|_PLjG;L`y?`#%6TRpKP;yuT*lH zWzUG9wlQkkqW|Gn@g)dpxPlK+ZE8~64XkZ&2FDKqX|Kc~Pjl`P=b8q)79-!QvNCe# zUYbI+Xz{Aj&XmI6)_N;S@yEwr8eVHTJ`{Kly8SGx7Fad5mV#E}z1083NbO`VEoWv1 zPo<1wP<X_Lxvej3l2iJaw9t$PGc?N_#rg_f|TdY4tpC`(^KXJ}}coRU(4*NMPv z9yic*aEN=g;PgrIuN>N>q(AN_ozy_9Rzv*pjxqL9(wmkj6k3~gRw)OIB;!t8FD(jx&+g&OxvG%ZbW^)emTX)vhPU%TDsJDL=kHtcY$C zl=c?iA+j6Ui@WkBZphs`d#Ha?042=u4)0%&LhNVUPEcE^Puc30IF@{RG35jcuUD?> z!ue?gX06@Q&Od!zAO&*T5l)(}1qCyw`eWaw?cPT(Z?Y$I z8Qm2p{^(h~pZS{1efYd37io9cQJCxVKxN(AO}z-VK0cS6n1MnW%l}IF|4Q@q9aMIK z;5uKPA~Q2{y2=y--~kAUh+f2q`iSP}0^1WRJ12+UYWWiv7uT>!71zynRx+pK;EzE<(s%vB<0?4Ky&5!p-EW9goDCoQ5dy*>SGdjq+1?Az?F!!hfat_+d;MvEkEOj3J=L}m8qTS)cM zb%R8lTs@MN8%Iy45^gu;hUrEQV z&M9f5f4Wgq_)g|vdKI4)1sv=U(ac{e!wy;q~a(tf<;JmZ+Y zHJ2E~vmxZ}2|d$W+hD4}_Avn47OC(HMrtJN%~$m#p=*pC7b_@l-aS^7hUFoTbA=6| zPgFRNM{RoImD9Lq#pKTKVE}d%((Jw+;14Tl+l##jIq7@nixitA3Nk zNTvV)A6(|9sW>l8afZO$+?Vx*890dl3jrp@qe%r-OTry~Vf_ z@ZQuaI-Hs5PfFkm#jqBs3DG)?1e-C1-+m46m$}x87D3_jf7iin8ND+KE5>JFP&f|XhULaDsGoSx(( zl%}TUQ(OrESV_6YRjP8bFPGQW_&$B|Qn@7nej+0y0jsgFu*|z(F63?jtWoE}LJH7& ziHV-W^MMOkma_skDb&);o=w-=^%A36ZA@(xruCP&%bjt?yrP&OB986};Z?5>lpx)B~VUaRc z39tfdS{KYmy44ZI_GtNt4?}Dt4I1c;(8MPXdtay2ayqb3@w>X;qh+a0)jL}5P84+k z7r>hFfv3hAoNZy@;3VDzwpyLj*iC6x{FJM%-Za#uh$-wh-l!{9lBuW+Y0UGu*&#KV zVmZ>$v9#2h6cazSV0u)X;oPOa+cV#@r;tY{`vf>&;CDUSlns){In;jFJ9v!ZQ0_@kB)ZW?&c^oW@sB7M5GPOV=D zC>u+nQL!*9--m{V>CtWMynjclIN#)QO92uWMB;T!I77v`IEua?i;4OwQ%STl%^hQW zpA>;7WW(IE__pP#)YF|dK?)&rXee&LP=3?gxIM5cuhN{9|w_d6g$(KLw9u{+ZOyzAlKP}iv8+wc#?^wtSujZynDj_uk zIbtV&@_w*^Q$&5LDi;Bw0pj+aId$OIjS>?&GZNc3|6{$cyQHZ8m5({|mo3ov^ zGM%=o?W`~>Yik|gUjRT&;&H#3cWBtq0GE_dgStZXI|9+Br>Eb(d-tmmNb<+}jG$;} zXv9;w65gPEOrP3&;ytmju=W?~F_e^)pb@a`<{(RfNSddH!_i{jsT%xU5!Rr>cs(_} zL;Bn;A6Dn0<8pLPlg@=D%DQ?Qw(uIcVX3<$3T z`eLc;fUGuw*R!c0f)Ud-Hw2eGax2v}v@ed9(e=V?vp=B?5OFwd#3*e88VEq@HSf6O zeg}ZAIW#c~g(t;IMH39>vrL*!E3Z~pSGPxV;L<#9jO%J3oj8`#l?D<3KhMw4|MKwg za2`O)8g6!r98qsey8A|sS8zRfl5KAfqAe6|7vqeVZcpsDisX;S*D+HQac$eqgFPP2 z1pFK{x-Qwreq#ZS^|?GKW)lZWokRHyoiDAfq?BC7EzA$-#3|Z%JlxXYxOeC67p^&* zE_A!5VsT_{M$!>kH8y2`5W#)HUa(^~jRNTGTn6 zmD$T4MjFXT5-!Y5^%UlKB5q zYm^N{^8b`25u^P_>Q5o~zZGuxeg!GGGDXq#NP{JX!Ivbiv@T#k4Wn=N$q-=m17|xr zW(lKn$5c4K$;vy#Y%P9Q+GeN(Xn*6I-pl5(txZ+Vmy9la5wEHVfzJ~Dhk&iyt0GGd z2UV@I;$I^JkdA+8<^YkM#6NXRvj3qi`!9hS7CZ$!tfKuB0`k8;3oTo%#^Q&?LgGeW zTpT;^`}bauwJt`FyDK%-BS76WU7-&r6o%iph6&EwI)$9M@!+S;zJlUU8$0QMdHDXY z^QJ{@FKn#BJ$J^`V|Kmow$d9lXlDr^?>7@hdI0jiqpv2Oo%U6kWm1yv+}PgomgBC? zaebm5$=vFuobYX4)HXd0xG5Z4j2*^bkThWRQHAIl;t*10$+?3zKn;qOM+ zHT_?}O4chsP%3>{vdTVX35ySf24{`6#TB5$3+a4KENi22tFFbjjtDjAW44IuNDrWA zvWPJcrWEfhCX@iucGaN<+_vxl88a2Fq_8D3s1~B3_OTMfcb_FHM>zJJa@~b&DyTfW z9qdNwje1F*B4*c+4>ZZ+6($aNgZQ=;PE=5h(7D65%ldA2aL@ezRwk^N#5lE_bmawR z3gv7!jy_EZF?~fiAk|o1*GqZPGmuR@U2Y%(WjzuKIKN?(fQF_MCPH^L6x&72Q(CR- zG93Z#F;mzRDm62^;oShXjTW$$3&U+CSw~F`NCEG{?Xb@)XDfe#E-rp;&@A~~uy;|Y z1>fqktBa7EZ`2*ff&p@VZI@EY>iO0kgIn3P$%OvLbyO{Pc|QfqmziS)ug#LZKZDhSsSkU! z_qLjnxmSV(LE6XJnCQg_pmw4X@@~eD+#z#%^pBNeZs$7YiUUPqrOE=@QMf_su&*sr zJF3*y^k2wci1^2S4Z z#d$vS^T_{vCSzEsKg%1#Zv_KlE*XOh*k9Nd1D=%AJv+cT-{D|O^%Lq!(A*k(FEui4 z&mk;UntVIzj}_t8+!_W}x=o4=2pXrr9y6t7W_E2dQ+=C+`2F2HmtPc2$nCg)f{a`9 zU>umY&|N}(6ODv~4FDrF+fAi8ky#ttUOVO!ZW z!$GCdo~|wWF>Igf!tO0zR62>@I>syM{vSaCkr+W5Mc|nzWzrA&!cTy5>-+cb%fLw; zg3au7P&Gw|865M~%L}Tq&x|4_5Re%{uGYfV*4Nts^%a!U=>RJrc4_VC@X6rwi%d(i z9Jx$a#M!=4WS}D;%j8$#3-7+4TmTcl{m4~xf*&3k-R3esED>NhoA&J%U2`nvEuZsl2vPzvcXh5O) zSzCJ`-p;C(&a`>MVTBgC0M9W&*opV47^^g zx^T>@9?4SVYi1onksrmUBeq2Y9p695sOVz2-dQm3sH$I>Ls#^Yab@K_A(XAOYp z4<3&r8knu;be<1xK;~bQq!{ufZJe*OJtDi978dH{8i6Loz)Nw>rrRm06vrEmjE7V8 znAtZ~rP(b;Dd=%%s5>OCx;yo6&c6#wV8*>Jht5zlVKC}YF=6f}Vd)RB+?=E}{%$TF z`k<~Blutwh|HuSCH2W%f>8N)Kj5UYJe3-0b!a7#q`TUY6>7|$Fsqo;T{aV@p4;K&h z&tGdz)yV|Tvk{C!Kg^~HI^7$`uI;0y5HwY+OKWHgM0dw{JvaJ7E#0ANt!5J@@kX7m z3iu~!;H0^#|6eL!e5{ly_t7~DiL(j9(uuaozlVs$btnGLG;W;IRKYRZ*OG_GKwW#Y zkD834c;4r>1N@TC+L%cTpCh0Yb1-eZV$T)no7%c6b?!9WMeyO`+mfJAnns5BI}3QZ zRQSksVfoi0!4$(lau6hH&&+o?obdw44+ZilZ!6>gDyKg+jmJGPf=DP)Vh?!9^A6I5 z@SE@dD4A^JlA4eZ(A@lppedtj9g%p235v9Rhz1a6y%ED@l10j_t(gQ+r`YGJ-Hk^> zlq_nv7u!4(vDIODP|H(napTIa)t=IR7gD5h@nD0!xpSxMEXG_1;i{zdcNm-fM+8&3 z)?4uEjUjPmCa)4|$WPw%5>XE_7|yXLu(S(KuVF}Ao%&FApI_t*6or@@l*)eq``4v+ z%t>8e2@ZrVr^1ZJpSUr~zAN>3C?Gi~*Bwkc>Z8ZNg_P#>>vu03%s7pctu{X5u}F+f ze>!!*I`be5zSm?J+Vr>{_lA@UC^>tKU5Xy+CO}c z6)drJUfs}B6tAyZ)3hgjisk|$&=llpnO$97_YWv9-si}AmuSo^^x!b{JbTYP;}TLH zqZpsZqQF)P(D}I(;ibYprNSYi=42qOwI$7mSGCuu;g~uP-buJCpQ3KZP=oGOfdkm% z9Cqe9#2y>eHsMZAKbacM&$&C!DuufDa^3n^iezpY697UYLl@){CY!MW$~P5!+Lc{p z-*X4o{#PfD14J_;aN_nfY-$ z*_X$&_vDNCB~hUkjgiLAQqWJaSga@hf(xmwRSjvv4$HV@bQ|C%li8L<W<%lRQEc?S_OKXjjD6AaG^3Qc!q zyzCS zhNV4iYJFGP7Lu*3*5DT8Y%R;h!M#7Lo6y1!tNThR#On~)) z>tt4>%B8m@+L`3^aVElvh|6lt^0nse?HP>@mdRdCk}_djjtL^MHg?Xpte`Iq7YuBV zjx*&ub3Sde^hovXw^Pd$bNS{nPS&0!Na$f7@<#1b8}5k>6LH5}REka=e~tN+xID!R z3|cm6&UCLh!wzf6H}1LSivFA#PaFoKRPW|`0M_sW;9o$+FjfI#VbrR%Rud;txw(>; z$qteEeLwvsg)hl^-4e;<3Vk@2k3$N+;k&n@kWB-(Yqe|n&Wpa- zVw~#UwF66<_|&ju*Ee1VTFzy5UlssmC8I6TwXv}VOEbE#L!h-+mn1FmaW^G~L?65} zZ88D+6lj4Gp+};oHB0hYV{Usq!m-oiuu~xHxZACuyUmz+{sOTdJ&u%2Whz4>g6TMg zZf7r*e7s{F|D>2aogVs6Dff$t9ACG)%HV-s(2z#vV|jrc~#M7QfiJZzyvOq|w(XNH3?@zPzI$ZV~I- zJ%-rtMi}1aNijEfDoEw-_O4eJtMrT%!|^G#VlthCZ`2&Z&~p1Kn56?y;DFkeAVyTd zWZe{yYyxS27m5^@PIW3E6+9W_JPJ=s8#$n{sL!NKtA8k7#f*_6%5j`x-yut_&&19xm-+3wC51Qxx4v{3#tuq^a%Tqg<@ zayEqo1QNKLHF*Gd0ek{ni4v}RB{hd^JV2WLWj^_LtsFnI9#nLLfxH5(kiy|JrYAm` zkV^P(K3>QN_W!FQ3aA_UuM#SG8}JX=|COEs-2op#N5&N@gNE1rr{nK$N&d6|kN}_} zDiZVFZ>Q3BxCj=Y4HXJ|FG&)tw0MEkeAY4s{7~$Y@$Nu~1inf0sgPx2L;NXcr{L@Y za&}pAPr9OA`?SaK+FG_;iKNaa0j-4v&F9abi&ZLp0ZTmVbPXO%@Y=H}NMaayn8;6OX0IZjSa@v$lmPV|(D#mfM>qz9CH0KytTKZpWH4$m?=t)f{d(VLVE@< z7z`%kWPseb3n*WL`v0wY`5We`7-tg%n925ui3z5K#l@!a3P5fM%vm|W@<7f0FmCIK zBE3FtL&9P*3b*+j`$r@4T{^g^sAwjuxIG^rE}6_{$IVouK1%op1Uze*n!@mEZ|ASn ze}{r1aSBjVBBG)UNm>A;ZDLYroNyA}{->fc7>$U;H7ABQ7U1oW@$oHK4gj!xyhsU& zj-~zL{QQYl%)L%XNC56V4H1t6YB+-r2H^eJ?Y6^>6P7$5@ftOyZZ8h{@PgF;6!QaE&)~a*O{`zNoR>>y_HZ=iY|wQ9L~e`gC(33s^2x zT209SZ{Ov@Ykn05AyT zi-2~C-g2>Fk7jLWrw2Ibtc9%qE==-`{8L!@kD66!eG`y;0?LC7sPb*}rUdrTn#cTs4TZGVXe4=uAgdF6j^sJx<@$SMFkEP@dbg!jzj|1n({4){)ycu(6N8n@f;Irn(=SMt>1?!#S%5rIzq zPz*1`e8U%&jV*cWdzwaG3OmO__^4RR7BHAwh^dL3h~P(mxHAGQ9hL*#>{w(ehvzLd zk~FkZY+{uxJJYkf>}QS$ij5QgXXB%5iSwnK15r*lJB%-1<*aVR3^h2X%+w6kh8Z!r zKqGKS);mDP3u7cCL#c&AuPO{AC}rjFB=(Gk-^avhatOBh7HpqWTpX6PbrIAM@-9{X zTD>#tBe=TSh)H}{o3d9qcQ`f8#f-1#igv(@at8Hk+*Q`!t(DIgZeHp^&bs-5$bEG~ zu6;fZr_8e6HK8w515;w?8Mzx<4Wb&)Ik_!Xj>-+2759H)P%cqQfxW`-vP8{*H1#h{ zkE&h$8oudwRonAjt50igi}QA0n?39*jc}*N02LiKjQYn9{VSVrO5u50TtguDET^rI zNq(W)xAVj)5XP{GDD%Eaa0n|$aQ$|_pIB1V+q@2dd`G$e;Iy`I-*DG|ua~RTg5(*C zuPO3v^5WP4!Ag!#oxWDxR^U#Sz9AAm%tR-glC6NS@b!KvyY20Jyo;?iGpV&Zv>m!F zhT`LgOLR-Iac5G4P%~4P(lM+W^P_Z7D~w+N+upC>mCkG0(59As$1n!#Wo|SFhn;0< zasKa|02_QVYwFs+IWvbbmi`%A%VQ?k|FxsKIxH6bDqW@FV-F?x460>}F-#!H0kV~5 zf4%Ho&Bl&K?{ONeFw>Qlu`@POTm(7W+wD^} z00swdt9PrU+0ewX`m@h|KSFSgg*}^CUOm&PsMs2}Hg(-ejYmy6s8-ljo?`n!oWgdJ zpMG=2mp`q_!)=NrB)Au-1}7sSnsBReq9KkDi*UeQ+A_=WF9o`ezwlt{%ey(ft36q| z-IQcDj_7=7c4NP)f%LPHe-@iMj58W%N+}`f+h5e2+h;CXG8YZ&qLt+(3j$@Jg=3oc zeoMrT-*vWEE%9{s;T`b0K&1P1zsuBY8rw73M$3L&Ncw}EU0dqhi!k7=B9z1tmt=~h z!0g88p7AUPo@F!Fm(=FC23(N1n3iSd=0d%Zy%dGerRxHu8bCnqUn5Yv_D9aEa~cdb zESb#~DwsQ8F5rz9C-B)+pd8F~$*33WZuC~?>K)u)&Xt=?u$WBre&AWm`LcTFSaEmO z0;m2nf1`b+=y9oKS^TEyZO>I}%GF(5%A=-$58T3r;C3la8kF-jDuce*^Ot zT37+qBnP7U&;#CP+RSW?$%yH)K6cGO!8~BXD5fUGculY&WVPevt5*OGD+MS4RLZoU zK>=ccES)xAqbk+sFJ3qUpcfehgXS;QdIxGi@V+r!4g#PAc?vW@3{d5C$5QQr@5B(I z)qJwrOG0D{`#(YyU6176y|Xt+s#RjGL%cX%H=h%j%wt5in-cYDEJ0aYBc!_BgB64) z>aSwP9tRmU8IoMFQh&ZAdbg6dUvzp74I;@8MGzNbp<(=pe4%bzx2aBu`obK{t~^!s z$`au_nxb%g)!t@>&aDN{!cRYPI7#WTsakh6PHs$jR5VTQeN=QKx@`p}(-cj@xh6bS zb7U9p^>s{Iq1oA8avH@Xg)&&!;G7hLfk?D~)=t5p`>@V(kSSiN+tB`jy}0ulS<#|} zqCuuH0#K7d-j{W?B*ep?X5VlPhpJn$_R0Bw*VRN-wISC4UK2J6@EU;E-%N2_%m7RU z@WHm5{a8@y>gvjX@qqXtna%neVA++`)nDTUa=^DMY_U0?5I+^j)GT?tXc;KkXRQ17 z?Ku!ph(D^;IE?P4kfYabm8E4n481T$j^BYmU-m$FyMkM@%58NTuhcz&23qapfWR#Fz#Aj6R7 znwZF~b7?*dyE}-<>??vmrWU8k-u3g+8w&HJmz{|Pn#%-rUT>hctZD)>D%LgKSdU*< z*V*?)DC`EPH$?`DSeTYPm)^p_tT8~Prd|iOTU*xfC#M8mA9NMnj+MR9N#g| zyO&f+#Y^#$gjw=bq>t0E^kWWt!TN5PEo?(=2xJH*r4<@z$avPCT(my%!3Rf+Cw@c=NBA~EY))H%%-u%GXQk^RDJ}+uU2o3~+I!_VED9YS2D*L?SwkL@~YYb}$ zIYxbe&FCA(D_|1H&FOi;O6_GKyODOEw);^Lq zHf4DHXl;|YAl+R?K6T1Dmw|#=TN6r`nX*{4F&fB#KzcOi0E=ZGD0#;f z0xLo8FA+o}?4_v&{Ro|m`Wq+PSj(C*ULNW;!5<80L9nL>`W8)ZETOx)bNoFYBD{i0n;uUMbvJXt*e7ibj1#xC>!<9PSZbJH7 zP7MNNJ~tsi%30dGIFLPhy~9`^2iqEHPtI@BIgx(Jf%bJAN`A5&88 z*i~#2`sEM=Fz2u})R;xbl!U=Qfa;ZM5*opvv}XEFqDLqCGss}=PmD}T#V5bK#pw`r zT%=Fir!ErM&}f^$bMGNnwH>HY|9rZN63X$??c|gh6Q1Jc0)dpLX_Yo){A?iWe1V)Q z*`cb{rOzR*K!G%FfYULa`gS+TkKKMe3M=cd|dDmdu-xBeSQT>cpOaHgy74QGlX_oo5Pj9|`pK=-CU*(LSje1- zy(7h8st*u*?N_Uc)<&XUU+Xiv-`wlzYdqFRrCM;!d0wr&4h$T}WtW9$Y}8*i2@582 z!(3?I!#~tCJ)3K0ef)f{J*HLckw*@5p}fT~IcV9yb`p18uHCw|HGN$|%E>ZSJ6J>! zTNU=A=1b0VwR(y~EO}dCU6Qe}VG0QeIULUS^wBn(u^a&kw_MFem;Pk-F(zsbj#)FH zGKJIbC+v+(qX2NI`=yC()PT81_KH2rdiqA*;#s5`ZEh9zh*ENEyn(s6I-XxXB_`!~ zhqv;@TM+B)0HZaOAcR-*0e}k> z%=*7usItku=G|!dZrUm0GWcq-7M}Vby~?{hWTeSWS@9%muh>^8MO(qQJgGSfdr^$_ zqX614k@@!b%KgVmXpuNv$O(;hOE(-4^g5U`ened$2qXG98W7CHnfRk$yZ!&+?5(4! z-nZ{>5CsK6r5hy$=>`EsrMsj-KuVBKDU*^AkZx%Zkd|(cF6or+?tIqPbM8I&d++a` zXN+^kkiFS^vp>1sbIti$pRJ0`ze;J@HLB>7lKO7$l#kpUZ>ICAso~7eUlo_Je?H${ z31v3B%f1`j83Y9U{Ob$ySMM@&(|)RSiKk)wih6X!U1%EeqdQSdy&yF-`&YV-a z$EwMcOv7PASKG9h^WjK-<=O7NFtx!<-8}qj@$1Za)l%VVL`OTprEGj9=O0Lch9M2& z!jPkpj^_3UMNQw>SPTRMaaq}UxGP>pL&Jfv4P2qWBNk)eV?2bbdAkn9&6^LOKc|Kk zdkQQkfje?nk%&PmnpyquC;jwb?$^o1GWJ6&bz9WyH;i{@L%ur`qdA=#N@-V}whtjG z=c@kFWr;?kDEE%mycJ1Q9CLrI^QQutkI&bHI1c}{XF1_{QsIlDJRs2A6wI(?F~CdmdxI` zuEynuH0-V-6dNMWeF0_*5o&Fl*(|x0o$&?xd(THzFQcX9J8e;MY*B0p;mKoYvB z;3MO2Kn6xabyTIr^3M}K>$;)tQoVX*)a$%HNd{~LEM?mhE^CKp2fo$GW5;p06=rh< zZf0|YyhVC#TKJYiX0L?w9T<@i#*?LFq6xm?S*W13fx4hp`HBlNW?x{D?+4x+A`T-~`( zC}Zvj3X-wzbFV;3^uFUdHEZC8xK{{myi>g*&x9=Az@j_7J2)`;{t4@^MS5h;-t4}Zqz!PiD zmvWY~U~8#K%S{|$P+bFG2oBdSCPHm}s&Bj0>0cZ&9r0t-F#d$CUke7a@ z{bP6mnJd)nHUd-g=<2;cbRh+@7MbU5{}po~YEJ*ZjG(g2FKe$q|JQGt{56CTdv&RXV;D}k&_THkNqRJp@Th!*&Gdm~L14eHGF$vw#4MEXtAV4MrX zNxFi8|IJ}d1D{35FE%#T^c4stN3$Vv44k}(Pr2Lh?2QU?>F0S!Ht#=^&$>?hWdK zWYlGTd~ts80Msfay*DZ%uvAHcb~0!)VLe1M)FwXd@n?v7{VsfGEEOF0ccTmV=ed3Lt z3~B76n!aWc^f6rSmaW&7Jj-$~)AMASTXr7v`NL+9981~F=>(u730UwN)oY&eN^V}L13#v*L4X|8DZ-0mJj zTOQIBWHR^#!`^tvzuCGV%AD)FQsiBEJ2oWqi{`m!CCKTBh$Cpdkdd2oKVgFS@>kvJ zI0!{3_z-^hz*mk}VBW?TaIseR75PoFZgHZ+*`<6APGFh5Efb1s+8hpdvV29>NjlK$ zsK$;_<^9YgTonG6A~n+5jsmCMQYXqz-bfh=p_xmLjxq*4_hf#w46rU2VYI*6;0)0< zG0Yo+s$V?!O$#Ft#lu~7w6~gb?53uieCoti7wzSBB?k*$MMKp+(P`mNrutX|hh}75 zIk;}35s;C2QD3s+8;J{yGnFhi4skYlM7rO}AKb~WZ{T51_$ikTH8?)wS7ZNz)i&e& z;(?AU5q3iah3v0E#)E(vFbH`IWE-B$M^&6}9kGY=eQ)zO3|WbeBfz_RP(S&_4PTST z$#(xc&I=Mk_9IG+0WXdU7Yy`mPNyT>={fC&)W_z z88#8$nw3wAkz+D^$1B^+%xXU!-{1dDZQqRgq2cBFGVU+8yULn7NEC?tZXi6Z<2L#~ z)8r^XFmJ7J-m$W=nTB&8s>Yv}W2!MN z;?h{+!U4Hgy-|WV^NUuT*LZ!)R$cERcb$YnJ2p<#s8P|f12UxQ)VDNP&qTF3Wd`{P zb~crK7~^`q4Nk_9os2~v3!Ts1^w%)Nc5m;e-1>L62=g^`L)SM#M3V;ie9c*ozhTIf zrS%=YxsD{TjBDd+hML!$L+d{p{xeab#Ev}HdT(btQ}tPKTtt26t}_+-MKCYLzd$1y zkFb-vwb$RT+f@Hz7rDaF8_cwm#BcV^ndZgP=Z97NcJHU~ApTZjX7a}uzQ73DLZfXTv;ddmzq^}1I71nPy5DWLs+9pjbONq{5AlQM>G?xx271GJ=i(!Z@P8 zQ03-=Xz&!b#|gS1Y^AVNgoO-;#Tc)RO%A!$rAwEbX8d^wd97~e^wEa%VCr8tx0e&TQs!nwO$l#KmCZb6zV`$;+Dq`P!PyNpfov% zy&Nsh{+5vWmR>3Ko6CVk)y26BG)0{E`c?T{4_Uz(gnFBr`u(?Wtgvi(4-);P+W}di z!1h%-*%$%sp3=A^vcM9esKR#jVl7ILE^E(YfV}#|9`%E%W8( z8orq4!dC{JRT|4S@~GcN8SS+8rHuAE|71)~mlx@*9`Q)lE^bT`O%$0%Ied|FLxX@U zeiiF+E=m#VK-F9`#U%ZXN4cf4z|k=Agmd~827lytvLXj9d4=wE5#kG4#VM>}_3Jmx zdfXHl1yglr$1Hfb1Fjn_5*S~t7>wW)s@@iee)KkCGL`8CiC}TSD^yn}tX!nFQ_IJW z<#~?LXx9kVGE{P3*D4uAR)dV3={et`U(2!c3$GP+V`uNB4^7}}TQngzh3W8Xc0#x6= z0eQVGot^V=v!C1PdazK7MsXRD4N5&AhiV)=*wFc@1+w33XciSfj0>7)^}yCagbt} z{kNBn^nLrWsm!u|Y1VkFQbimoV)&w4W_7=~b+9Kp^QJ1Jf(RS#0b<0QZHBWkYRq&a z+oKm146ZJ8?%T6N2RZ^L>sMUg?s(tm+nyoWv)ZGd&Ph{b{me=AqE|4s^RfTSfYYdX zY_}hgD7sG3*hyqkE1$wMex-DEP0cDi8N#|zb^V(D;e6jAcW2h-_luVY16lDh%HP9& z^aXq!w|yH%md{(JI^33EFfRh`%0P)OPA1!`0rlpJu1;**&Y-UF!KZ(={I2fJe?d%^ zCPqU8z(d%_L?;TZQg#s$kr*)li2C~tw$#_x6R|(Pig*}=zpTyM_oCr=mse90hgO$N zpMapCOnfuAw7QqdetyXkA+$(^ zW`pagTkR2S@8ES&amL^+-`MaN-C*Hr@mwsJucT*=b4=JVAS$WsydN5wDXe;ZovVYz z5^OuPOzKBE{BYgbOjl@dnI!+0g=gKvN1cVId7$%kh*X|>|Bw1C??T+RJxLPodjSx& z%RfOgxI|*#G-OqxEB==9!Shl4BiqRzP8xf%S87VE$xW^ISC13$9R)+*4kQs4`IB$l z-kEK>e>X5)ekSG9U!W3IcfmJuk7sO(qULYecYpBUKHO}0n~olMVua1i|H*wAwffbO zFD(dMqCMwt>}VehzW@Bb_rxbDB;d%bzNKw|)$$2znSLAX9O4FBKhpe`gs9+l*#0<2 ziCBs(s6{uq&RtnG$`=}t)^!jsL=@IT=iA5D;};u2)= zIciBocdDn(FnGKcIu5*_^lH+O`(<5SL4&Bt(Qybrb@Ql_a{3p0 zFS~t_1&)TmqJG>gx_k&WE|+zbGc$z1G|GuBExN>X0f!#&Xw0cql@Pb zTk-CJ>dIGx+ANmxj#n>aZ?c`GyzbZ0ImY`%Z zzw|pjJ8L8Tp^(-W$xL!K$Ys)vq^YU7zcFbkso&e%%j>ews9o-m0#^<|Fv86>Cz|mu z4oN7VT56G7`AD>5)dQ*OJfG9j{#b;)>+6MKm|W4iVXx(boZ8tr0zMaMsl!_a1lnlX zacj|^t1H684Ic0E?c_@RcKrZZgeYWiZSs)ST;sAj5%;W-86n@wB|R}M#sMnKsdzGr zU6SyJiZNsmIyC7P2&D6(%R9Sg=*}7?5Ydzq>i+!%4^bCNrNs>GWU#EoNpLgu89H5x zZsJZj7gWFO@MCt>f~RwJcWREs|0S*&_mAd#x8s>|Q8yQ}2zp-O;uMd++i}q%I$Rn? z_vsVPs^5s(m#jL!a+$k>=AQQBr)8KZO}hGBEab^Fql#HN$d8S+W?|9cb*`Kmv=!mp zGd8)vZtH~>5}wUn^ti1hKk?hcm(soi@wK%IUDMYvyZKkT`AJB2jgm(gCf1kG5xc{% z!$4U55q^`k$0Xe3DLVn+M9a<6>%7}N)kVO4eg_^MHr3o&$Ly!HVB zDbPk+MNu)|l|UbURo&^<0dW)Zk^6ZCDhVXX@+&87zYOPn#d=VI|8UVAlh3v?RiwW|rpt#q<9LfRu)*zQ)M=Pg|pmnod<*0uPmtD%|4 zAhSUbg5=~9a`f_Zm~2j0faMG9pNw8W&=6D}Totk?ZcpgU7WXTV7OCq!QF2x(HW1!` zkUXkXRpm2ow-zT42lJeUHTD#JW!li%XWva1$;rvnbBLO_>FB(sr}fRv{ha$ltKm{2 zE+eDDJR(Vb|9-SWlIYf2$s~l9>fjoF2r`#6l`a7u9vc)r1G&0#T3TSI`Z)z|G(%8% zfi`;SHH046VW%RjBmah(AR4r%yzG# zrlVg(K4ZnVF7WiQ7w92UIZJ~$9Z2DHdk_o4%{w>A4F}p&MmUAk4$l``l zlw^}+yRx%g%DcpckYZXx389S38M{ZyY0^!0g?b%KPIGiV3PKfls8Y)QRz(`eZ5rv44xy3Ad)8hGWLSjHhu;7oIkL&vcQ){>qxyv=-{T3zL;Oy`<}AlP1>0Kf(! z++Vw=5S!-?<5EBq+og2XTylV3WqGS19@M+T@Oh2zDVG=CtlLiqfXZO)>RpyYTe1`is{XG5cXL7UjGCzag822q*nm-Ix{$O8)$bZ?+ z{${(Egc6>?BK0~U>udN%Hwg&PYCJJXhJZi!0hJE%4Ghz-w>|)MLDsM8XrAQN?&6!I zB;c-+CMF~xy#}`(KC_nEFJyGYR#Iz)stI_t3kbItY=fbZk*HM1<)1$FUN=-ttbXqj z@4t5mP_jTBu2Sq99~%>wlgssv_`MOoPKV)80Y4rvgt{+|VF`Ej`t`4$5)jWNvO+X$ z3HByj7q?pP<$m+HaEER-XrTIl7eeGY;nbwRmGpbdii~X|1;V06EO&4R8eYNC(QOd_ z_JWKqEESF5A}QH$7v9txJ=Lx&FLUJH8hk966@e&;xDYRN#nZv54pKH`@V`EBy}0(D zx>cBQGd25ezf;voGAc!9jzK5_<@(=gFcp1dr};S(PigPxZJr~pr$*mQU(Gxvy8enL zSd@vqXGP^njJ46gW*Bt583a%PE`#y7zO-75kzD6Waw_lUsNA`^2FZ28jTeG?^S8*C ziOlxP9$);N-Satk>Lh@4CMMGDq5OHc@MDmM=x!;2@gOCtU%+fmKn66n=%_lv+^Pqk z*S9{jDY$2G^L$h1mG88a+<`0VX=;{_W&)kd1KhONBex2(YaG9#pBy)JF|MJZSlhM< zec_o%tZUlo+#sCT`EdD_Q2c8-GK1WSMcV+^t*Qr!9AhS{+_`9AA!sAOSg*^x?G@SU4aqXExiC&)-3K{Vnz6YDF4*E3NZS&m)>eL z=vaM|6qxQD+n+Fp1_YQM?y=)5T;nnimFhwc_qkfIPB12%MK}E!rP_U|Wwqm7js9$&|KXc5pylP96jxHE20+8MA;05C%{|U(nPJbbl&zMTAlBlR!zJA9|07ay{}xtN zAFRG9a`|yNC*@53T8FB9t%k!7y_FH-7{N>tAm?oEI^nw$)qczIzxyNWFysrmfjkj~ zWKK0YXuylm#urN|JC8m)JDA+Kdt1R7k@xy1eCFC&eQ5Ust!!eH*YAoWGAv__8dp7c zNp8L5wmdA{IsKN0rR$*x%Qj}oQjQ^7CdJ{4a2B+SedOB+OOV&}Z%fc1qpET;EmOaZ zPd23OMhs6B`;xlu7d)Hpr`Uh5#`VVH z!T1WJDvCot&z-aDxH^|yJml}E%j@n~)#&75{vyq)hpoU7$tr;DXZd zX;on3^mlzDkDUOq|A6|IMk)4>Z3m@;h+YUrqg|7cLV8G7lM1;;;4^)`ADzKqV`GC* zw_s89GgIXwpa-Kmmq?9t?p@CJWu{|MyGt(OBYSKtW zD|7k3N(5bxcP6FP?R=xEjs~>{T2dm$%%jnze9vWcpWi++w%SNy*m*A-Z+sgrO~pn2 zc**(67grh3tX$-SZYpG9+O0*tefP9EGKu*zPgm_gXH8J$da9v5RUviLaL;%9Fm~b3 z!YlfW<%TJ`7pKFA7kz4+^!a)HIAiSL^@F70*HQ7r&TSG+N3}jST2sm9s0x)!YB62< zt%_;=xi7~ELE$t^7{b=>w;uqcG25x{st0Vh`Q#Ljq8 zxYzXeheBb#HDnM73_(vo5V#zy8_xa+s@NOQ6gWSeIo%(%tk@qh;~6u8fSl=No7e5_ z?f2a&v?=7M(w)f-T(~P{?9Wuk4ooP8W%8ZpO3NiXcCtgz9$v61xE?#8FvnQW*9!SC z9`6z+9glUSMEK^Cx>eq}nyth};dTT-QgpbH90w8?n4R=HJoDOj**RF(pw{YD%#y`= zCmN%-o_{7yKA|2Y<@$?mOpQB>K2JeIzzl!0?uYnCwHPiFpu~+v%cXYDB$Ac)L>3Y6EEzs)Z)&?bl(8R$^veR2Gjv6h)8# zPzb<)H>AQCGtyO_@&T3=F>3)aVnN_AVQbe0?%O{z3{Dfvf^V*kmxqG|`4R$d59?%L zx?yw)>|BQx6nUV~@m<6q2E>x<6fRe%(ES=5UxzL$)TtI9Dgz;u=@&)N?6*K7uYCJ} z2sQmzbeH$iLL}c;JdqD6U6=Z4DEe5U&xZ0+@R4pAYnhA-`Fq7nKU>@OrI^V=_>T6i z7%jU>KQ3M+xI|*adK#((H~4Qm1RhA|r`g4(M~hcgzjT&wFI~8&iA3WDkYyfH6m|>h zq*f<&^5MAGg%*vTr%DA<7kfBzA=}t77_GO?G(6$WvsO7n?3}_4%znb=8!7yqP5l%IWm>nVVD7EgZ|(lQA(|2*%w z=X$@ypuNK667d|{Qe^&U(2H36_LEgcwgu87SLZeM@QfT-;wt1?3x&j81(*^KO=WNE zQ#~IL+fS^l(kGZUS+u@C1b_~JiFjmoc6XB%sAh^zp#B1jmI3!9;5Z?Ni}w`1}O7%iAYNKi$fAt1_(>60MO>%BF@c$vSd;Izs#YK)*_B86O49-w(6+-e2iIkzc3u z#>B-xQo9nI&QCK?iycs7w0t`I@J zeFj5lV5QqqQ%=dsA~}KQgJ%;rZU5yR+ISI;i%fdf{7%7bBvK~&+wGX4t4z8c%W`!h zXo}ct=}Hf}%p*sTo!_4uPLOAO8M?p7dYU!p1-h2oJC8us4gsw(bcu5F$PhxbX8jjO z3tK0FO%&I}()8y&oIZbf#I@5@#8`0rRH4_M_1O$EbF5|lGYQSB_0>6wOE#F#*OB6H zwykb36d{AQuprB?fY8&LukW9~_*&DS6YnLr_Nb9qhlGewkS8kOMjG4R5iNC7m{6)o ztUaTeqbIz-t>+abWs@Uc8^~JPHWw8x#TXLjKTcuqF0f1iVPv2@-thLfR(#g=r5fNBwFZm z7r;8BFQpKIC$OxwAU;ljWdN#sDwAP0b5!~wzgJSO1Q#tEtNK{gqtx{b zCy>_HCP&-a?iW)*|W#( z87B{`nAE-OCK10t9&>rqI=}o1!vOQSIobkNg0#SH?2chsAS(CJk`^S zydH-uvlzclt(`Bnl8gXrYZP}qACQu1=_uAaxu_uGrV9RQM`BaJ<@ZW37^o8<0E6^y z>k;49PDU=RQ%oF4+_a%78-@u)Ndv{g^XpgvukhteUJs~y4Ga(c;HByx_(CT=>8|w- zY+yF~5n-EDP3y;48iJ!d^tRYG9Ct8gfE!F~>-m$%-GS>P(hr~jN3e9<%8b&K^t0n9 z14dvX5a*!Axr?V1I`=zn=QnH5tNmFml1n_9-!^;iBeCpj3@y)J&9I^6R`o7i8I_&%!Z z{>}rVT#{39v|whHv4zi-6u#IsNr6WPqJ}s4#4wXxuN_NwJH1gNxqA9_x5giFcdndt z8qWTL2tPV+ISW)`w6uV`s0lg+TwHrkPE3T|c36_7kb%7zOy@iN=%v>gQxyNQrhg5S7{WZW#(@uY;;y4+k6Kvcz zAVl6JcO`oLPqZ!9<2=tQ_x!nz5>ff}GC*0jVmO*Z`hu z#8{*UXS*S$vnz##oI1{PcZha zs@6e_7I`h#oezxd^3TpD3_`VG&XcyQ+#g)eeb3R*N$;9L{4WaMUVdYK5bw>SqcSUa zcPWe|h0Agx#@ibL@j!;zRI+`ywk?JI-^YQ*{e=H@ei`txWt!-Is}<`Kg?2??!} z^}>+&!=r?_v|Ss)1JD|}fRB2#)lA_N7)XbhmvCo&ESN@$7f|!?g5D5P((82QCgq2CEk}9M8s;k@ncJCD$-e*L-0Sy3kluB`uz%|WoGb;{N=?$8hTQxBEA)D+i=qCzHq4(L!dPU12 zD&TwNw_~a8Q&4W3gVamEOqXzLgxYgjGOn0g2x8F$C!eH@Ol8vRKLXBN7&hX4!-$VG zK;gPMT|EsCKpgAW+FJHs-X&b%0H@lNum$gnAVi_V-10dc#1y^v>Bk86L8~@f@5-JH zkqqMXzAnJ#P{>gBqj)gE$pljd*$kSd=H@;W6mTHsY5Dm080CKS@kxZ)2#|Y#W;H^; zX)JN7uFwFfkm}#9^h!%S+7ABY-sB%SIB+A{tRROW0+Ff4&!2CCWSnn4%uen!g*;OHvJG0a zhaipuQqu!zsLJg=i1>*56#*;~qj3AoGvV|u^q#7snwr`=;h&+6nN;ttkjpO{?Ldcd z5YrU;hlq9nBC2S93@nJd3=Hhi6W^^3mIt!iph80$0@pE^x+N1;ggt zx!PYtAoZahhWTC`f`E=tp0|nSemTAQtKP6v4u-yUc49d?IuWHvXZu&Cz zi`I(mOjk^_-?|*H)ShHHjFAC9Md}i`m{Ybuml@Kt$B_}7RrLB$V;J{EXgtC8S z>X#QqDlGFVV8k4wPDRA~_m_dc(+KIq)~|}%prOP2J>gRB7p-y!c^6Wm0((D|z z1&7fL94A#tYm$E^T#89fk|tsYWNMT59{xVx{+=88+k5zrA&n|G-__Q5-=aF4yf_!r z&>%)gxS$~nV67DI5=T7hdK132#WP{Y!aw%Lf8+4xvDb=>PDaJVJ0+)A%GhySAAPRc z&c0JGy7nMb#kE{8J`jP*I{e8!F++D86UHL6Nw+H}*T?R!Y0Pf&h|^!wC~+_gkRCn| zuUAk@P!OmxmmUAi()u#QZClX) zRa5I@wFk5a@-Z=^=Gd0~)rgBa?-i|<_bqSkcoO?XkTi$X2g~#s-^lFxpcDZ1x7tP- zF)$)uk9EGrGN~`3U);1{$I`sq7#zmtEVwf97&EGC42RZWL8Mo9p_JYRuZ zQ}xo~>BqE+OpRPlDPTpsMGP?l>UBQsHwa*5C?t6nJuZ9s|KvBBRlbuOZ0;izI>FwM z$*qs9*Eq(KGO8uGb$zYZ+pn$I*Wx}+Z2*_lCGU?8Pg34`#fi`Eg{ECw8jXtBk>#|A zZ8?>b-Rc*!SKAZ4%^&Mq)5J%(%OEnt(DuG0>6*#su4&cfpeU0z6uH#x`S1n8{fA1- zbVKxIYxrvgLuIwm1cNbeRGX$_x-v9m0bx5i_AwA&Nvbu z{+XIxcTDLn`^MJu+=<9pIpyytN|PU(`qI27tGAvX+X{c3u=gY`@|A8|J8Sgk@QMMz zxEs&r)7bna9_Cwe@sx_wFVzKexh=0}b!}%a;C>wKjqmFyT>Vr(P{hUSqWrO`sb*?v zi}95Gt)4bXYX`K=C0nb4N;wpJo9jh6x1yd zcpcY8*A1E;+d?cM8&&WI&*9eI3y(f_>!4QE{PT`ZVY!9o-pCzA6xnr0O7jgPwfT6hdhi5hi<%U+w!dMtL;BB;IvrO9_DjH@Z}NVB*LY(3FEOShTShu4~S4e&C z(?Hi{+%1?rXRDhjXAKhd?o-AizR>3O^ZEF;{{VImGq8O)|D{3Cuv{WNLKrGBLa6c@ zF{Tru`#{T;&rk+(CQMx5f#5VDFz%r_nE+mVB!raZvR;Y?4v822nT-$*qGztsK<#R6 z{o-+P4o*6Stfx#9&I@D^S#N?SW%l;O&lf1#C&_xb{kHtdM^bEq1_oJlK#upiuwj$o zAXFwjYWtA-(w2$%qsGgG6@wPgdt>;feSb@a#zEG@VJW)gGaoBY)GL1R0;EcflNrgs z>2(t-I!1ffGRAg4XF1*I^cIAdke;WgR@r_V*~2)R?v@xhCu=G^_>!@tTJ}gu!HysA zRV?~_m&#!~7c{{%EJBa=y;o`iIn2;KpiEFWml=$VO#O9WDQGgnES8simGOjc9E)!7 z-bsXgrpR=4+BR8sW&$uN!U6QT2{o7P=9DleF(yI@0wvD?=oJVM=xeahlDn+3q23^G z2RAfKVz>?~2AFyL2L6e}YCZh~%vf!ZNPi6!i`?pSey#V@h)dYrC(a)0A3nEsqm;eBHH9O=sNoU}66dsH;f&0HmNnp1-hbfVsyn=_-+BL2 zoVip9ouX+kx0jT{90hhYB?5R|h2H_hdWhh1OUY12%~K3?cLa` z@gIE65EhQ}qvjo>Q$*5swOi^1vkx1-Eu^0%XGn7!QkH^XX1ed$Q4lhZs% zB>qkKP(>LQ5*tB#79|@&q0@sHo@M65-CCA}Pc)NpbfAF9h7q&G>*M>Si)FvM5;L?R z{mK^;W!=I^Lnl`$?^OxJtv9XHIfZRazAQ575an-~QG*kr}1ee7!itn($k&>%RxpVb+yq;np~`}EI7$1WDS;gWW@c7R_Dq`=K!6on)@ks^6uo1A>piM=sw=l zu1_4#sSsGfj-`-V$YEADYO6ecbo+)-Xj6SxijJeUXE3dl$cHdf<`*qpOUM84bKUeI z$Z8Uz&BOwzV>+zxTw(nKO7X)|pi^q=8vfND4h?)#} zSKz|7rLg~1b5$z)^`)r74h3o>IKy~w{yi3JM(AlD?@wXbFwZ*Im0dcZ5FoJH3T6Mm zYODHWsRM{tI+#$s8`c-oulQ#HAGDT z{={Zrh|5gQ&#w5A*S^MQtCA!*D0A!%8=X=;jD-{TDQRrf7E5dHC1Mw>8WU_?CEHtt zN)J=Yt))u^ZY593PYNQABsm@STTd^k&)AklPP}75`8GR>0c0w_1LJ0+Il180-ft@8 zmL9fTaY45JCkOkv0&4t;IV$?tC31$WgqbF?s-*~E3m|%N@bIoYEU_3j8871k(UnKj z;$VGTI+FbZZ2Mn;Ux8^*5f40sxVf89WS&072Q$iZpizG>D`SWJ8zN4Nazmg7ZWFC| zQbtC!aO<&4y1|{<%5g4knCy^ek*|vH7GOvs5$@GmydC?P2>qUFiS=vUnEZM4fB<{+Uks2%w6BL)n5fYwG!iym0PAZt+Za5u`stuVW4g3WE&>w$$Q%3b>Gmouk6ZRsMgBD;$pdupEe?{-adJoH_ z|Mlcw1D6&5inRPA(RSYUlUUyLD_NroVg%G(8Py~GOg|p;ey8u6u;q5uhY^;gR;T&_ z9XcgMfbIeJ0VD-gUP~Tv^CQlpzdu6ZNLB{n_|hX%Da=fw{xg~B(cd{bOo`mW|2wH_ z8F68k_`gtS1S0$I_q_AB$B7%leZGHvzrSZb75)c3dJz>0T2Ux2;B+o6dYpIn|25Pp zA^(MWC0g3%ZaOveM{#b=|3E8vf#a^6b?6XJMkJQz#iB&V8d!IUOV3OD(A-*Znvx88 zGbgsIY+S6>b?t2)=J3wPa7t^gYPyg#FS?s!0%$Dpl=E0Oj3C(6=XyXaay`}|sJ!g? z)NCe9B_R-sPzsb%!18TCnNs11zmpr2^s*UumCUX|_vdzJj8V*kwWlwJ*>XL%hWhec zE0S+bdML;RIlZd-^ss9IXEQ?y>ESM)Se4UceD?$YcrZcGbZ0xF3wPLnY1QdC$K^*$ zerIA&Tgj)y+$P%tlt^gpl;Rq8_4?TJIaW*`Y{iaix0EN-b5-h8yJ}Q~iMi+d_DPXR z9F2xeYvIWv^S||4P+Ix*g(N3w>rm^hC!VrXg`x95DMqXO_`~xZFjOT+3b6{orc!7v zNWxj-VvVGkK|zc`u*%Y+W%8$`ld3<6ch+Re0VW2U>psmyw2l{tSJ5t6So>QRO2Uzp zTL8Sp8+Z8V!aj6d%3>_Xo76){C_wLd#jO6&!^M#dUu7TF>h%6~|76NL-go!)7e?}$ zMzYOvKlr|hFk9(bufbYc4UMebbB!~O^8#^l!qL;m zvD3MW&yDyqC7X_{+Bb3!WrpZqLYSjo-I)tgIdR-d>RQLB=%*VbHg+z|O-vr!ftoZ; zEFMoJeerQz2&kDwW!uPeBZ{|>D?My!+0JKJ8aG1gc_Y=$SZr4^ugsu*zQg_qZM4F= z;fcrTMTXYB_mrJM?<)t|wt0nc_a(!N3do$cq$wh=FBdy?d{4Py_3~-(YdX(GB8bE^ z`DGcmAKI$DmNYnuAx))+1x|Z5Mw8#t=lBxK!j_o`ap~s+7x74$79T|=-8=-3eMsZu znudPLNx8aSuv79$ik3FAEk;RI2qd&|IZ|c53~VY~Jh_i=<4v|hLB(rpFE!qZDxD(#ZZ4qX@el{fvlOe8YeA@;3iLgBhixrFW_nwO!9(63OFYmBCuvq(H8u_|y6U}c;H|!cluCX&I#WtT_(68e% zXDrTRs`r#BU#>andxxhneF{5$p*ZTEd(9=IE#{7M=;)(MD&d^V>d&R0#pU$Yb_<2Z z%qbyxe^2z^`Oe!el}saiMH_olGgoX@+u5^0d{q1qD2_5H$DSE}YNs(r^=nJ4o1q$A zXY|8tsVvw`qLJ8KqPhw4cL{}DdGYb_)igCZ^y)6py@YA907QgHw#_qreZ;V8h(IY! z2*Gobp$v_Xud%YTd!qYbO|=2ss*q!As;PMm=~~4S3vGRaNjkEur`cajdcG{KtSBXm z-wIE+1H+s$ubxoIb>5V)7yOuj}TK zo_mwK6~2)m8oDg9y%=^UDg2~hZJtaZKp^=Sh2>8h3lZ$gYlDqdhS>Rzm2>kcN>0vd zUdbiw)K@Ba)8A1_q)Ny13Tmfx1?kH0^|eN%neECaKeu_yIM2`J-PSDg-J1L4^hN<3 zmDN-lepQG(6Ig*S!#E#ioeFU%4$>7<(CwFhD$t4m_K%i^<^z!4`T*kxgn^Wb3-EFv z#)g5UEXo{?LrN;`g+&&@XG;qr_-%gvD3~ciDPgLs4?4F#xN#8zF62sVXPPhp`1Tm4BZD(;+c>uR?t#n2$Gi)D%e31!slHa6SzZBsj;)9Rr~>^k8QL$(|StBklRk zT9p!)i!|SJjB`QJqSM_M?`b%AbzES%<#f)KU zKPK`hrV4499{qeN;W4Abf}MGLMWv}GXC>x%PL*Qx=UkCt4IwVHUv;%^B2|0Q^5S|Y z>aE-k*ywtv)N?n={_3+SicopuJ072^kZ4 zcjKh}&>Ng|IzBSNhgwdq(_#AVyb$;gMm)xw_T!a01*>iN`g!qh^O z5(F)!TpdA;5)1#*Qa+fXCE#}anOyKyHxLi!+!PfRS-H;acm|*~LCF5xd;68Lva;v* zDwSL|mZ5pQj-~28A-{M**4vJ8)Fb6py=wZnc+7NMSK1jliuuyY)kiCN#%r)uRIXqZ}()faMKbk}kh!?THgaZ&t<=L)Mwmp1t%w_?i? zW!KeU`-5ia>1kT6qne{70WGfwWs_-(OG}Aq;r1d?uTasG zJp`VJWL}R%^|+owZMJn7b|)oE)OO2CBlvEJ#OF-n`pLLu@d4`NfP;m>$vUE*Jl;FP z@#OZ3)g7?Jjldzw840qPq+B20v>kQ5hHDpKc&61~Xf(dVMI~3|Cvxmes(%er)}>08 z^jqy9oxw^ob>K>jz%xhe4 z*`m7mY|gnmq5F%v@(1TzZp?j`gmwx=gt}3gu4!ZRyHXv;ailt~)e#k!c46M$%n%wC zv@xSbZV6z!HYo;vD@7PWckTLhYF1YHVSd|<3BidfH>o`RMj;p7NNLef1{K7W9sK+V ztyR!vpY{2Vo6uH;8D&YZ{9AS+j4YddDS7fH*Xit0_(I?={ic)vlS}pdB6o*F(wa`t z$HW~JXS=>nUOc^?D=Q=nyk#nTMRI3!$4Uhfgdtk!I28Aq1ynWsWz7p?k{b>rviu(l zRDTZC*Xp8V2)x!SS~tW`eK%KglrFg1gs~@R+tZPpW$6_oTG9@qE%YzAwPk zw$8nRO#0-5k=dHnqHxobGz#O&Yl zG;Lg-KaYXZ&go3?#^aUO4(&@O|jI_rk!R_8Ot@Cflenv!zW zd83I5u|kTQb&+mHxXgIX8)TEL9^aSCp3_{pyw=m0qmHdX;Yu=VrTi>{Cv+4Clb)Yb zXE+r9l|uBkR4@7gmFwJ-v0hr$54f|U*td9!N_py$%9|t>qcUmPd;>#wP7{SaUtY7; zcp~Onp{)%?psp0H#1HCzu9fudp-gJ*B##V>@iHK-_2n6e&3DDiNlK!Fp#j2}#Gmh} zu7@1#Y;FC5-T-hu0%76+z<3{^dp$O(i8IVosBX`udcrxjHnIl$4Jh zBN>>8%;X03Sgd1-z14FHuaV!dXm3nC8hF8Xkrs14O4=8bVMnx&4(HtIIx%Zm5|w4W z^2J>LcLNR8?)HuYcJp|S3Z!O-YKncGT>HCvxpt-Q1JZMB$hbBEhVuhxtt)O#sU7t* zl^g`No^#EVj@XrAXwSm#MQ+NI1#EOS&WjW?d|cQPR66G=#2we7=t~TzxWj^}##Vkc z4Qn`kHAYuIj3Y9UBmP;?eV-u{zVjP?ggeG;7BM_1QwLbNi=3NhKT3x+*O6F_-z#}u zWM>MNnf^$Q3$UXgl5Vceb;3(;%inTV=3l(C`h|O|)@D`Hh%_ZV1qCmxar0RYvZ|Kt zCt|vKs6Q2zX1-;{4a8=rV6fa++BWeK@}(y7bjF?C2=+D@eBUlhbM?XXNb0i$`dH%U z+&lJwYhmNysPF3w0T>?Yb;26B#rE{}eu3%O5YxVTFRSp*2xOFC_&Ek7Xy(o~CaVJh zs|~PRItB)G2sOcLUPEzj6A$JQ4zmG9$k%#7wF6FZ1T7tU|E?-y3JMAlQBjIYSu`X0 zt9`NWDEHb<(j&w4_UWr+=u(WT7bJjgymV9Oi}%xx&nT0RZ>61QP*o*w#ahXDZ3dlH zn^?SG38WN}oc}y40@Np3T3Yp2tGgTCim|D;2UW(Of6kD&c4$GG9o(ECNeNgWY@eP% zC?5uI{rmrLp9XQ;C#q4mufDx~`o2LxG!iF-8U79bRX{a(S@`DVU&hq)Y^|S7*su{l z2|I}u5?+H}sFM@_NoXkh=ZF9J?H7LRG=E+yd~@O!lPKcdHgTYYkHq=&!|kgZ-uP6A zH#;QqAx@I^X;^$99an#|R9dx9?{12ym>K{3z`NMkTx504`M;uU=yM-&lGOzY)Are2 zrWn>8)9Sn9I=ev-4$q54ji_|nU46uT2m8+(N}Q$JKg^_l@%vBz$LDhdCl`KX2)san z<;3r=_wT>qnvb&|JKcZ%#T?i>gocv;_5J9mm6ElUolhx({%ebLA-2f>dIfC17;!)4 zbV%7%xSim$u;j|Ehp^}hAzEG_EcfFNE)*`|i8~$`J7pIbHWpq&T3lpUvSTj`qDbP+>XHPWHzw)Vl5IQu*c!W$C<|(8rZR(mzB~CdFM+*oOdMA zHpuvfD{6?l+Zk4>mHiTBs^!u7n}hoJKV0*epPANE@^1*vu?}Y?ws(FP>V}QfMX_99 z8i%JU_y6_v-tk=bZ~M6FYDr5J4V#RH5k;aXdu5cF?2u$-WHeABduMM&A|n))y+ z5<&{0Y`(|yx~|WC-@otU{{F6ix{CMv{d&J%=kpxLd7Q@?edSQvk2z6?z0?Y3vw>8f z*2a&tJ(oJa^;}BSFc-7{6$PfRk3JI)vbL|)7xljsvX)bmd-ts-yQ{*bU3Z>Elw28; zJ0V=tZeF>CGQvlL!Dw;qzNZYwD<+<<5haIx#)x%aFjS zZ&Y;+13KQ^;zfZ4XAM&f5UStQ*2=sypir5NxU#o!OZCK=YA2Tf7rFVpI~De+hkl?F zcB>IHX-rzAT24;+Xt;0gra}JTgopbePw?xRY-Qn6eLHk9 z%ZPr?juysIOEz*-)`;FrXsP|PKD0|s?O4d=^mmoh`A!+EEsT4=6t-^P^2Au_XLB7| z;gctv@5KmV4|n|O_|^57e+J5^-tl|IlTE)W%^V(I{?NRchC(&iMBRM9Qh#2_{!h{J zLwv)$iUv=+jIQbNnku9(y>v@fWT-i7$TGw&KI^#CGSx(mO=_>Hxq0U34hqzRCUZaT z9onxG_{VKs*r%;_DJnS{n*{FBeoG6Wrd7=Je&v>Q?v4DJb4gs-V`jCq)^g_qR zr@UEAj0D5!OlpQVGYQhNNH`oj;2m5NpI+%izh_&tfJ>8+dnV1g*No#wi@#b`C;l!T zJ@$3Ipth&k3*~@cYn-fe2fI(Lle^%nRNB%SL9xFtT)@WtZ8Y%0o! zhj-`2ah5f&#l&@GcQ^gIb?a=uHOitA^?B&FI)qvJtN5=rO5h;U?1RGdZV@VFuJb^q z%ce>cIEVs1R3LWXRa3()EhzOhR_GQU-h4Zx_HFLcv6g4AF8`vlw`X@f`m&E<(7JYP zj|EsI%6{& zFu~|^31%5zRyuyPsYb`*cMPWsPC8wBQFH%XOK!emySSTwg}5Vz#TqXU1PC|RH! z*PEY{RY|a%{MFS0r?%ikCF? z@cRt1(dV|&>vQk4w&!h0joSWGf8W{Q3bwH1Plu1$uGoJP&Eh?#WYRHulT-DK{I)oO ztHQ<7&uvVkAxbOY(YNdGs@Q@rQ(9~-gJoI)XQ|8eiu>KyHvDy}qk_eeKi2!DVRKx~ zOs1aa+=r{Z>>=l<>^M19g}kk{T+QVfxff-^Z}!r5YEpaK)hTw)+0w68^;z!gW&FC{ z_HakZ>M$4>1|{Xbu=;;i+B@Pmitj~9kPbr`E1F+|C;Gewbhjz#E@UsOb<5J&HEL{}GDS^CH&^GjntA!xl}0=E=T~MO{(Kg0 zC_8D!b)GpmEml8oqFIaOt$k}-7%zYG+-;*cfvEeuzaPrUN1RlqPJMFD&guELa!!|r z&ToXaTPm$uy?MTI!~VXokk34J?|OfSrAap2Pz^3{npX%oShQ8^WYdP#n;VWz&_5o1 zmRInB)9TLB%(JG5xuMuqN!SCwRhML;cv*Ec&+#a`FJhT>{8`gw9t<;EX+MZ?sHR*! zv~E~b@<_yFZ&I;K(`462#*T*dVr>VDe%7#>Kc|)58o?NNg>OO0ws=40$d2f~c#WkP zM2`n0Vs%Z;Mv4Qme%X6T8OdU~C$R0^J4xk^!A^a$;6y44S#xtM1(7khS zmNd??YFMA`%9W2J{-XXigUuneZu$cg{>wTYmb2bP1|R44ce(aw#ob;z%D5^=>dLv| zU+4JgM@Ci>;-f8+tRo*}OH$W3n#3Dkb!b1Xo?xB9^esDPU%KLmh{#CDqMWMstDv-= zQbSL-+kTs`#x420bpK_yGU0B|!dJhRKgy3=j$6C= zz11EmiJ0A=_IyxD?A1Ax73@RV_3f6~wceNQsTKpX$sH2oGb^eSz*XQqyds=bntBBx^=ep**L>YP_eHEv( z1$V0@2LEdO_*>oivx(uyXG6)K8lwinXVo0lxSs2BQR&d#IyX-9HEC$Bugh$PalY7H zYWcALXx_kdXah&od4?8VA!T-c-AAPn59xYRTBX%AGD0}w(qC{2kEMUwxjV}@SBo;t zBOqb={+=siGMuW+BbjRsx(u^$>+ah%O%o$m&F?n5Zfdu?e#|TL3k*s>oWwoazAThe z@S4=Di}7e$Xv+_{wwFIMo%OTyhIclTJeSsg&%5f%z_(*yBYQ{+qy2`ot6zb6y(liW zSzd5}3MF=WTz-9P4O+pbBGbQ-#QysIdk945*EItA4aWRnO-xQreZ`DF)>_=O^+QH$ZU(I?_JgE&h3*AdOW(x(?dROKD;r&xFTS#Twk}% zeiNg)#l;ccv}CbX4s4(q|v0p{qOo_ z$6rl54oh|Wan6%^=eS>LJK&UQK3lPW2Rc945XA=S6`LgvYxR#vn}SRMtxo;Mm;?J(N3bt}8$cn=vx!8pk-dU~JK zRCY*&q=6buA?h@F3p@hbUtiC`$5nz^PXt7c>X%j4*Hhkt2oIlO5BcY zd(D=)BB9Olr=OjV@0V}lIVq{NmkkWoyaq8CLdj{sQ|jGF-0ywqTnw5##U3p9>F(Bw zqFM7kM?XFzgLAz1)nbRTugpKyq6$3-nhJ`FVG*F4yWQ~cl6V8d&ICwSzBILkBInX8 ziHjHa2nalEKg_kYSp69okYeqFH$y5f?OJj}f*#fkbrD%Q5Npg>SoRu+Y#P{j%} zGc&qfJhSt|oCPyuql>OvgZ`<$TVzx#hAbt6*ua+Wer~oMy!_W~ZG06!aj(uvOB4Ub zgPHHSK-dlU#ivxKkpmRtEdgF%7$1OgjE~P|;Gv7(HUF*tH|^~x_wW$1?rrRSb(2p> z=tAdTQPI(cmoMMS%;Y-dGIO~$kQs9kXtce(wPsz0ZZSUq#I*@XJ!yC@_~H8zEhYSo z5c4q@u)3#oLX7R-qI`25+vX_Bbi285qoaByG`BE@VfvvA^0=S}Y_lfqKr8qgBANu8SI%!V(|2n>jKh%vvWBWnQ58g)yj;;bx|6xP_Q|LD?fdq)rNE)g9B4vJg;Pw!k}UCQX?q&aY4eOJq) z0lqe$BJ1}>7LMu6Z|rZhoM^E4vg?#fC+Firx|PiTtvomV`MpQnMd5!h>8qxdtrqXK z4&+?^gYk;IUpMs2?mo!3+nQKE5%l3CdvIt%)vG7oS#gGvt!f?FwJXZy>i5$e;=kmt zhH3Ecx+!e)E2DVoPen_Pu}isz+RqQgJsk3e_kG(8D-?8&>=$C6dbn-}Z`Cxz{|`UF{OWoSpEQHg%S#M&CLell zzE`X7x_|j&LQ-XQ?dZurTt>S;n~gBCYwT?iKlR^5y0OKnRdKHkW6w+~OD;Mu2#+pLUv)r#iYo=6!`4-8rOoay7GU0w9v|M^^()$H|>2b@+^;uE*ThrHvC+EsdZ?upx(@Yt8qM;;kZ4Js#0tgg+y zAtTQ;o7LD9DNdQUu%xG8m!^`hduX3^PyO}At~kyZV8F05vCjZY<~ zuT1b+3k&X#AH{psMEYLx>2#8>%ArI+eQPg;!z_U#PeR7HY0nz?@G_m)^qjM7Kb*Y$)I=2JgIH>6XiA_5|v+v8yT-D-@C0}zW2przwt=% zir>O_r}LJZ_0TdO_E+9kP@%*#31STz9TdAVIz03X1tdw&|SK%Cg?_ z(hBD7r)Z)~J>)k>?WpR~Pec+&VhjYhnL_FU>x`XTTv$TtpkKIyxJG5=0BoIU14lpl zxOH6r3iQI7c^{=qBwqg37zHMNVtTqX!UZPVff>=Q8&zL-4W_Bg! z&jx?@N6x{+>Z0CjtG=Gd`z)7gGqZ2jvmw3l*Q>~15&Cbw@{Nqh&0TUTKULco*mZP< zQ=3~mm2X*%p@vOJzx3{~*G)gonf+)q7R0UE<>#|m9P>ThqVi_>i4>0PUgMg`yj@+H zXLQA`y?yw+I(i$sniNMS#o2NVWy`iA{)R9Gua80dyG^4^Y7`X15@o^?pG4&Tmb|F{ z<`oa)!FzSG{M)SRy@F&Z{i_75x0cwy_Z!({^}XO`h>6Y0K7QHX5sYmCU04XSW%r>k zD2A3Ws#u>{1;Xo=*R?^cQKxPS%})>4^el}z7>9QWJDkx)mR$?L4te-EvDRsw?SAv;s#z|F89qNA^uECEiY} zs8j!Z!Jx9n!e-@qr$aLRHx-rqt5iC>HI4Ln*9bHiE8WzZ{1UxWXuj8De8K4vZ*n}V z&o6CFO?Cm3hFuDWRRL7CWeanu2|Um(tkc?^9_Vn^aE2D?LR&{iRcq@GOG`@%6BYsU zb~dsbI!EjRP#fIi%YYy3e}1IBwRSzFN`XZO)nZj;WoyQHR_p~728@%I7Jq~)_McAs zQs=#}%#~eBbr(6~5`X%dxs*P=#4Y&9Gq+08VSQq8)~?a%2*%`9dk$f)MIj6K53~dS z7ntzGVoSUD!I4acWp^G=Fep0qO7q*Fp{URnF+a8wN7m$Ec%ke}?983>2Pgw$B2Vd0 zKULHJqQbUj_M1}lwxN*kMOz0vFE$_Y*mm!TYqhB3Mv({yDfzeyx_ZgZe<@#kwfajl zPmanrK#Yl7x4FNmIP%-q+Lz1Q`5MB4`!x-YI=pbN_Y7)SdVZ|h;~c@lQEX-E7Tfma zuObPORZvI)XC(e}j^w>`M*Qf92sqW?E2p;Xsu zVH_tgpRCR4@Ze!PN3HVqPutzkSxCs`?LHcxy1W|KBb0*DFnX5Cr2oFPhvHI%QN2=3 z%m8nZ!kd9f$swU)p%WJ$q?#A;?mZcPHnCNgPi~d#jQY}H%GurPH*M+cx%tBm=wNj( z*X_)w>&sqFAJ40csBF{=kiGwo<%sr{El+6Dicc8E&Mx27>r=U%ZNyUOuaa_=;?xtG zf!gqx{C$BogWub%g!zP&6IEXoX)&Y+3c{FT{rvblWv`f7ZH>y{9-P>y1Zrvu=$1OJkdiE+jU|Udjev`A6g}(En zPvGl``Iz(B8-7Xv+1#O4&c>eT&%ME-U~x4wqIVav3Q^H%WeA?fd%E6bkh)Cj$#@Pu?tVL-uXNX4+)(s zyHH)t9H(C|&G*!7XIRzR9gGAPq1TVz{L40}*J66fMw`XOK7#g@)ZESknToo8`y=?2 ziybR8vsv3+9=g3@w^qBfaWoM9ljiX^DcoN|FLrhucYQLRe5csu-XZ61TGQ?VXNk^jOa0jB?7xP;|b?o`0{8`NL(@B7a=m5LNAxt+=0y;EUiT*lRJ z_qT9!@hLPZ*w{1D839J>iz>IzQEq<*wjrAp&fqJohd0`p=IAQG%Aci8ds#5a=lf;d!W( z*lX|1Eh`gamGZkhH`zb({ktmQDAZ-eH)oHaNT|J@wPxLhKopdq6<|eatF(iRR;o=+ zep+wTqY0A_VrEWj{C_rQzx*HFWOf@@U)pz+Ok7KJufB+hlu$m66)>w~``sxvm?vu* zS|i}sq~=4_^=;gQb;EJ4v&JvJ^dm&1a{2KOKHgEtyE2+t~A` z%s02?MSkYVmyUzR&8_)^B~l^BneM82JmE2d+#2oy31jyou8iGc z(O?oKf4cB=WhRDYDBe_p#t8lSE^eLq3?P%r^3_7zI&gu8uTW88h+KmGlc z-`gfuxxXHsAE@^aX*aIu3Q;(?=z1je>^nL$ly;Yf!ukgS8Gu!E~=W45w zTc!SkyfFV)*&hfT<$pt7JReA>W{$TKGR11bjK(F^6yvSZ!9fbDCSiT$A<<27tY7XO z_{vRjpZ!dkw?e&pi<-Lqp9R+k{<6N(Sszo~Nss)2d(lc))STX4|Fb*X`M;k0F=kxR z$68EjDRQR~b+r+e_eS6KMZ*|hf0YTd@0dPDwJi1LfUmX`&@F3g<;#~Z7iv+cRL(e@ zRnV9I=Z}LtM!{@8BO_NpuzAiY(r-z6-ZJv?TTY%VJ#;e8$49ns{)_BE!vztRv>eud z{s__F%gjpUj9uIDXT>z9w=Rc6DwTBJ|3|a^AZg9V08tQ=MPdt%LUMX~`lw3ie}6Ff z{J$B;A+m;t63B~}jsd>o6%38l-Y&${oz>g=|?B1ZzDULI>wv>Xp?x%rf<>}s-<8KSas0o?Af`WeX zsLCcvN)}Pk{Ra*lfWCGMbOV5owApJ$1=ks4S@Jzdms0QFpOt$eKfhg!8cmK2Klyh# z!!wco45#XmcnI#5zwsw?H6(4-V|8$BO#bTCth9<9Vv>*!2v_B#sSgiET01#2s>UGh zp4Fcrc69mfbbrM?vWOBAtGmz+$?-R_w3G*3I8wlD8*qrGdfswbb#)pD%k8zGTSP^`|*PK$tniVO5$iafrMT@SqxiY9hx#%lZV9$~;Y z(6L~~+6}dvhq^!Ci$4jNseW>$!`SvwWMpLj0tyuJCctevWkgp)%h>L79~Dpf@tccl zsg+Gub*1D0292S6$1WxoH#g_h)6+u~32lpYE6$s;$x@?f@VV4c05elr+1W_a-_+MX z0Eq?6FkfqtIP{0$%3rs(1|pYF&dE^*c~_lgIh~%Kz75+|p!0qvUd&Aso5dky4C*ht z4!bm(CEx}t#hf?;S-1It0P)b(T@Le;4yBl$VGwn?h48R$0~He&mk%bRdCGM=XuIz5 zHDT>JSV=pvCIOfasUaV$%kK}Qf;AiU6v20|r`hO&*L<1nh8z5bK0X7mSecjP0E;P2Z(v#J7LmMpvk zShx7i>7At$IVb%5EMPG+OL{*;^>`>?)s9V8;z)$rOD7wsQrCtY+>ZI~Azc0yOG~p- z?PQcr0xmOGTwPu72LwpV%gbk%PrlPHGOG47crOYf;0B5IBKG4XT`d@!vNdoENJ3B>9& zb0vm`SDtBD0muVv>%Ws#>Y3}jZGL_}*((p`u6lK*lE!28{?2S2qT7Q>ItrX}Qm@q3 za^7S+H=5k8?mQ1TL8ev})Op=9SNiSSw_9{()!}>mnwla#QS?RBwKipObv@Nv*Y0kR z*7ZrZ#NJ1{z@jZjUmP1=z+2sfV_;Z$e<#IDBoa^j4@Wd~zq)z67K%K(Eo?GC;LKMRQsJy4QH~8RtP;%eZJ#vvl8YkPrcMK-beFrmLI16vV z!Ghl`@bK~S^t?V;yAyZq9Ly9$f*UcBRe^g2zxNz;&(m&oL2R;Qq3qnG0Y=Wx5~EQ` zTuT<#Sof6?wRWxNrY63FBLKHa1Vy|BSl*Ox{to(a#d1dS9?NM(G_m3yasO;URe(_S z=!aZZIDvGVfoh^Y1I-#0lU!H1V%s6ogNJ5NI?i5YWo01#JN&)VvjvkKfvJGog*{e8 zp)oQ9y&;_QD9CcdU?fmEV?q4euC9x$xd)(s^Y5N^3X=#`@ckg@^3vt^18CrcfjA6U zb4?1Z+C)!r2t2`225}aaJNN?qDT3w#-;IITi`h@Zc4*#a@+ob`hI{h*P`k&ajeRReS!ZCLMh+m%_*JH}w@&x0rhja@4 zVoy49`>J)&KGHoh44>fX<;7J5rAKl^ucm>wX9}5}eX6w-ZJBq9nGoyNm4(;wCN_KX+W%;|Qvq zu5FQ>*=4^q#+RRUxfP2&gXL3wU;V1~92RFZUoP*c| z+K~tAs;i|ex}L_;?A*yL8_b5@iW0ZxvjlZmc_zFNt~QKZG9m$fDht2(K>O?T@84k{ zH#41bU(zi832&r|j0wNUEeq!y!6qAgsoedr;MET*{QUgEX!)^dWNT~W6%|E1)h}OZ z<3mBj?j=D!4VxWh@mPYP{c90e^u|A0PUOwC#)#5=mwhT7^qx7Oq&yGRi4evS%N> z!oFwE9{hF4j$1bPeW|1MDE2~W-MHi>5!6420yzXDCCpknI`Zstp@D#SIPtqyJul94 zUwZjM9Z66oyuB)(Pb!>|96lcIE(|stn40r>yU|`gLr?V#6=s}6-QZWRUO}DUxNM?| z3})imp_0O_rL8RoLF(`av^*TNoGPdB`j2I9rRs13Trj`}!v)nW7-kqH4JXrKy%P0e zD`=YqD{v5x$+mvO207ScI~-anMuX&V6q}|rL9R+c$6B6UK0K712-j0Lotq5N{mIqMEfsj6EJ#T~2>Ho{kt>Hetu3l=EUusoTE7TYK3=xL;Wq{ zs6IbrX`bp9-@%dt#4M7FBBTUj#Qf0BtL>%w>9AciOI3<(O>kf2vAhEFK>d)otUXcRY&~Z8>4mP+f%c|bdgCGDm@0bynCsg98UPO0g)GhR zZO@gghlqwFuG1LD8~N(=*QzZGvlGhr*bfMB$YsosNS-}+jya@`?%0(b6rc}~=Cgjt zeQq2Uv_;>SA`eUP%PyS%RPvXi2)a8Megi_-`s$`5lhw=x zBoxo`^Nq1CY_RFkZ1Q5J-MIfu<(l>q#rEM}-56MeiHN!{MIz$aF8;B?8zd~{)iokp z!~6?jlwv4!T`Ov!3m6=_y>>m}pnCgk?#kAw!Qn2x@pJEm3l|jP#bV*9Oy-TCzDKul z+y2W?ejlt4+X5wK6k^z?QHfLnPLaG3lHI$vZ?7q`?yJUCua7 z#y3S>geFQmzWa|KKj==m9K%7?q8>m;{aId~A?P*~xX<2*f$zWpq0-kyQe=i|+udfl#OXyMkI1okbet*|M z{!duBaHwyqtG|`DEcb8EL@j;U)YQAMPzXsf%aJ4gsEn!U>FW^tue7IZMtZvc#PwTv z*Dv3{*W>htO>fGKmPky%*+Z0yLga zeqs1`ceYecYT<81fuM?mNuhotE{ns$&(nH0Mo{5fZ5$jl{MQDtZ3aX`ND$C7YTlTzgp5_37M8#Y+bVZaL@MV^ z6?obwpyY*{OOi2+xsa_)5lf${M;gM94^avtvOTS}1_``*5N+qS8E z`L<`8(9!PQCnCMl6mYetD_t8;v6xRppQ2B2PpLeuYzwUl61hT<>32X*bQ&PrL!_KuR)U&wB^cmx_Mg0=5Vb$*(W8NH->Q)pBjYD_1masRGUTwsm5;>i zZo+?IiT3NaZ||T$#17>*z=!ykcIf6BuCEDTyjXZ*OLs&D0M4;^#g$QFS*Y}`e0av} zwlHIWSOLr84oODrGBPzy>(pdC<#M+Ft=H{Y)&%^Xl&h;KslQg5%%|Eb39n;3b=$TaO1EF zHFxLFFP+t*E~kaCamjywi!AaDl--`jd^+fMEEuv#@SN&TE<6Nsm=;cwr*1uGt>wUHUQB;YcYa(6PCe5Lngao&aO>-}$G zhl?Tcd-@(DH6isC5lIE;Vq|UIf(+5THDS%xy~h%+cIV;6oMYw0Z<2kI$oDfYy%N#Z z*5;(4#0az^)Zat1(;r_)tZseHb(;yLu>JDW1X_2_f3ZYs?uZM=hzdwF~5;_NN})_5Cr|)So|T zIP_OPmxRFzNPiHFGpXmMO|6}srZ}fK>-PvC1L5+gdZn6x)PN6};0IAci}JxKOLyF+ zzimbAMH)+B0`g)cAb<|j;iD-~&*lN^G@*JtI5bp+M=lHvd*nd%1|zT`)FZ4B4G^2) zfHd0B=I=;c;X^NU{y;%ZvKquHvXBjUE^+uv(9wn_0$r3sT49$LHqIiv5T3>2>;#S! z0|vyh6e5AL)Z*+T9-ozxvW1+^Ax1i0@C=ZHSHV4iJZA`ZMi4;6LLATZrPcl7?lFk? z*HMU}w-hQ{)A8gY5~%Zw+WI&QCgAc>kcSAAz|DRIQ;P&YBT51Y2AtaYBaZR26)dAD z--rPrc#-6iY!(}LM9&`FUT`^0kVliM()rW9oTD1z){qs*(k^&_>M=yz!yOd9J75?h zExOzgei)Y>eBAny_qGGk?0UIcXS9q4zdT;pn>_4$4v(`hD30dge&OICR%u(1i&3#D z;Yf6sdx-z~^$R7=ZG!zEkda9kU_;*9nH@T4P}1B2>Oxin;u~+?wCOVHi60*ee4*TA zL+q=syajm^NUeleXg}7u)zWe-Ae@UN`zWc;a)fY2%wKt*u@f~CQ5XJe{dy8jz#JvH z5CoVh$YTK*gwvHcRilG}3Y?SBvGeBU=3Mc!xHZJAsHmva<7ld?tMeeRfC?@{_s`jj z7bCzdMLu>G^SR{R;n&EykQRzPVIyJkdEY2j7q)yXu%thJZ9kHwLF6Pb<6P%yQvl8< z9LM*gI!Z)>k4azUD4Nt3-dGKwwqbe(=<{8M2b`OqH;K&IlmITpA>9{&2TtB-1%lf1 z`7_B%VYMIzXS}++0+S89VeBG742J;iZ& z$evS@hJtqb9D(_22#pC7m%7LN&P)S2ivEqEV&Zj3lGsn4JUNQ=6}4zPw(zn=DR7YT z7fDU%*MR}l<0;@~$zpgZ6hOWpZQcw(8*@0-Uc5xwfFgl~;9qKO$EzxQQsH_1nG$2V9&_(T^w1mLiW?Ts7ZKndCP5QLH!Gq}^NgJNP1 z!N3*C%h5`D9CMfFR2)8D7UE~21lWNh!(?v2UO~CM!oqMIR3IZMFc2A3=AkGuj?6DC zn7-(Pm8-85Pa9l?KzT6tg)B}`kWC{Qx%l|b!`FoyTUi}OXq6XE|0F&Ue}HqCul|#= zMPQ4fNkobB;&R|LozK%_XNVR$%^}S|c+j=x<@TpUMV}QGegj>u61g4zkti^1V-Q7s zU=}L4k#RSjnMUlJ^8Sg5mOPUN%fmRw?GwY5hCHy(s8tLOf|E;!cbwNB|@53uy$nZ1no9y*ew@v zBztOFKKLxqbsP<%ZGx9i{rRZ_XC#L@iC}#|I_RZz9x|MYh85eOPjHAQzxmJ+;IW86 zs1+mfnpt1@e#7uRU^^-dccbK%Lo`wE{Y(G{bQ$FU$${>$Be2j3Tz)$)?R-u|U#JxF z(|^5~K4S;GntOPFOZUYyTdkOxy~!|fG_Ibu(;ZZfYeX$Yyb>v*-oK}j856sNfP};u za_GO3!?iTr$5X_6aWJ@~Jz;%Oh{1d&^)x11HSwJQfw6FM-UmSV98lsz#fQIy>z^K5 zEPFg5w?&t`q}`J-1gqoW&XAyZ!w@LUSq+hhNFovwA0E;J1r9Y1Swwe3oO1vz(k8MyUrvaaqm%^ZQ*Tb!UU~&4f^fbK zwLm&DVfyi8N@P1gHHmmIO4QJht2dxZ4`+`4B#|q8VLuvNZ-h=%#0pM$rcTijzy(PN z$1`JH0a##)8tN{l`SB(Q9E!q}8nloFM8@xzry|b5;f*`i4*eGLsTxmq1L}dJbk9GL z%`NT-I2kEl610sF?)k3uoFID7INtOErhc}X?r6`TjW`5+&Je(OH$NA3nS!6(u3P!* zFTmoP@sKnzn+98kZ{XVEySlPyZ97<-c<8!*?>fam>yP9ps1(_e2Hx1 z!McG-q-&4og52Za9|4Y7h+8kH4B_^W)Znpt<{jN5>F_jHKj!-&v9(1WfEX`v_UvDf z3?ewlo%LHDvzGyKAchDGP7$y%TvgTEw`-9}lN=R0UMV_?u7grZmP)`FoTmm2(BNM} zKa_+d@s+uCICId#A=wW6rK;BcctYKETR4W=-4G{>hD-HqabZ8)G`UYOrZb5uljW<+ z0m$}paood1&5(k@``fIpxRJIHDx1mKS?NR-vcZ&eSh2R?h3kCYM=5OyZFzfKK6;4B z0E16!|70h#fupG7j~qDyVd@B!9|AyqpqtdOyRRJN3lll})Xnq+VS`Tt%j@aKQM7Y^~Nb@xuU)YwP8`iJK zO0b(K@%~lYYQ5rzFPB6DP&i5!2-LYA<8S8?5(>weBEuP^cmfu4EB|~L0>Fi_zcLv2 z0%Iblh{Y6JAM}Z1z>3#M(0!53)ywXm9%@L>)4Y&#sR=L$_A*ytYeS#=;zN{Z?Wkdp z{h-ktX4{vgWFc^}7nv`Ydd3c<`)E&k<6iPezrrgBM%npPuK}jWCn#tFWsUl4Z9n9? z!@_IM{nj%-8oqp8&m7d7x>OH7*Ap*)qd>yg*gXvM5^xe1$$RV7)aGYR(GfsvL)TizO;P4t%)=I~tY5WR-c_23a_+pNK zTpRrv_2E2F}aAmpmgrpvc;F`-R=w#E+lwb+W}80 z!DZq|2cJ^`jrzRNbheE4;pk}O5;W!7Yjf{#qpLEuTk%f3=HYxGk8IA!| zxjYe81TMwsS|VU4QvPD3@fo(no7lcbr;^ZfAG#N(9Jhst-Hv_xp2V1lh>0eeMBGA{v(#%fDk{vB*0Y?h;9PGXkvhpC9z35Cs>1upuG< zkpgtGoKar!q|75v>`|~25(jP+mznv6RFCGS0<#tdK#g*kP$Sz0kYtdC^5xeQSj`g_ zzZFrRZtq?Tw#+a#A9zfDfcL>6A*4w7`0*osCu4&JG9m(5q5S~CA)=v+Qe2WFg!q;4 zBYO3?Lv&cglF)sdLrX%U$}-h_Va>|PB%YrKXAHzk05m}Gm$Xt~9{>ekxcufuPcQ-4 z6D&LmcbwE708R+21SR5qKTNLIEFn=0HL{yHey=>5-37?L;%h^=8xSjxt(p| zGQpKF{L#;)$MLYiheqXlyQs*qFsGn)oBHP}I%;YOREVTz!5BB{>?pu+fD)Au4B>Q> zQ9F^c5rG`Gj<{#i+SW$04iLH|vRMy^qdirNm19Jv4UgSobVUKff@pwy-n(aHZY~R) zkgz@ig&q?bAml|9$br5!$3AJ-R6o}pX8LZURd!22`!WO912+Hlt4@D=FCRGB0Q6Q= zKx!K5ITu*Szl8FXAZLiBM3W3ftN;in50~1NR=*+vp@yeT!p#7`h6dgMD|BSxzOHmU z#z;}$D#jO00l8&edKC>X!X0sBr}_la2y}tvi-lsjx7d4Ghlm}&i1ZJD%BY?M`W!~U zy&@kydWX6ULkY-618sA)9UihQQ9CpTgaiLXumfR=4T!w>>QV@*M=tAlxO#}#e?bW? zZaf>s&zCozy-+#QL5V5D?yh@Yu}C8lksONN{No28tre|s^Z`Oy9g$ZnVov}jLwXMe zBr4(KlhF&s{LC**MIw$=1Tsq!l=#x6OXOHbDR@Kt2=0I+aQPQDz1>Kvd;l&$3KQ|d z`t?@KKbNuJOSG}6iT>n`tc>`ZH7zXx08@hl15cAD0wf&854Rb@ouei!1?WJD2vp+x8AW10( z;ti-5y`keI0>ihzd+BUP(nGYcG>dK7_Z-pPAsfWBB)QO|3nL+J1;r${wI%XS^kJ)T zad;lP_UySg*AydE{s|tBmygc?I38(_0D9rvGVI|*>Gl1nI8zYa@?TK+ReW zZaaAZNQ$R^bPJdW%F zP%wr5GWs4bN=pH6VI@KpehDw+vF?MD1IEM3!Xi=Zd5dY2{tY7T`R9i$4jw*EZDnMK z`!*CM4Gg3x(L0Qy=%#T+M2Xrg008FGGfztqH$zwKhxSBO{6!qTd*zB3A%3%k^0GVEO}ssg$V*&gJqO7cIVK!OtpTol;*Ykbvb=!`Kl-zLP!E`1L^ z=P6_GSvJ3nm*GRLh2|Mtf(C=#f^bMk2;mF`T}P)E*By*pxqoOV%wWS9JQO13QK@*) zqnEbSf3@@-e|)rToBm=2t-dda)?X`9Mv&@(rk9YKdJY*s8e&AsjXpRT!m}vT-=cUz zhc_#)<6JCHLVEldR;Cd&6P1m7)6*L&=0g| zNQlBadxnG{_hJBUbr%f-UYt%;w7>fz%`fcui@7u~C0~R|L(jc+8?SC>H&uk7MYZs3C0g`ecp;n0Gy^Tm=2pLv9 zH*}LO10%05XnUW_bk)UD9eh1gQ&UI)HOGqwAQgtcfivN`H#GMBdvIu|CkV^9w2Hny zeP<8cn6PSm*5tb&by03b(1@c`K#N908FGLFupyeGmty`#yf#Y%1TDXiz`$E@@8oD8mq5Q=gP!N~_3OOIYYds?$)rT~S>HAfnS~Nl zcoQOTfp?n*ax&A*e(s`wt}6@OyptKbkrDftw6Q1kPwDf@Y`&NfT7{gpj(huz>EE zTycC!2taa6f?T6^N89#u<|Aene2*2;FQOko`B^A+D6D zHo(<>0Pz=nZ8FVQjGO-?SR|!uV`@su7qnXNsU+-zcK})+&{;;(NXr1L8`bCrCT8X{ zjnzDx?j%?wRdcGL9t;4Jh{~is^!%lZj;eo|AJ!xU6&N#F8;SFzlBPfp(3o^45T9qh zcWePE5#1iL2A)uLn%xh>WHx>0piYkWED1@nN3o5zCh1R;HZ%g~NLLOcOc1aT>T_8| zMH3`YJ+E%=QJG*1!7IgiWD`%T8axalVuH-9vccDFZNCx>5ZNnY0^vELFN1VEez zNd!a;iUD~T5!zD3m}rF@JlH9>E3XHKG3>L`sDl)d?1Gzv0Idxu%0u~U{-N-}aMRx0 z$J~rN!>DCyhtQRKg$iDlsj{*$_xm{T4(`_o!j5N5s;1M$gZFVd(R*bE@Q1UygPMBn zEmWm44~R3k`u9`=@M_XOMyH?+9s4hCO@Vj`QUo$4lyBX~;PtiUhX+PF=9E>2M9fDa zl7xw#iQwK{i!Je?PestC+i0{wVMtfxsXK%N)Uz}E-3VJ;^rEk{Q5|C zuB(0Q9@76S=mG+PO$BmA9>%_X`-qkVXuw2219zvQqazGIKc9c)JSzP3(Mj@suLXw+ zoh+z7f{~KBI(R7pr6S_cgJ%I)0-TCRsCYhzsQBU;71!22SDw08b%kmnnLao4iS1aVd09-dVUHT+oBO^`j_uVlZ|MSEYE5 z|8hGG z#zXqj^N<=UcXR^o18r@-@%PEmCl-W*?1?(`e6Ha+qDf1br*o4;f#!nFemt~VRh&K4 z%dn)K8TPi)Rmb<}x5S=|ApId^amb~s0dDagJ7$bxf!k&6e`GfM4~9zcXIy`rNE3WJ zUwA?+1?faw+$C=-ln4Z01CfNQ2%Wa`Q0j*YeMSkBz<EaA3c#J;~B6_r&~=ng1Cesk6lD}hcJ=;&Lz*$=x@Q(xRY=mo{^v$e=DqT z(NOv`ij#h2$6nw6D7y@xOCf=ph42z-xz#U&30jFJ6mCdC^}kvOsQ5s=rVTa8&~F4gey7RH1vNI`-*X{BfHPPg6oco2j%be9 zHy9eUN!~kFfto0QALHQkIqW|(cN7#T!Yl%#41Q7)4XO@?yHL96KiH0pWTqO6-5tthj2AzRI9lhR)H3xXa{%aSy7R+vhsG&hzTqS z%q{~EJjJ(f-{3unnoP<=)hGe~v1@Bbtp;ksYq>0}D@fwy*cU&+w zv%}pMs0%%Z3uZS@K)$K+)2Bypc_A?|3OFioG2c+|l9)is8f0@r%P0`m#cNEeXqLO5f;Sz&(;_rU z6#Jm`Z%tvpPWV`)vRhbahp-_s==r7=pWIwN%!rV#7b?61=7DnT@A9>4rtUoR&IDqgP{5+GGXQ*f>md+^{m>Cve`N`vv7V0iKrB&yuj%1TP% zq~;g~)b|+sTLC>X;Y~+zMbu2rH*cEl9Y(>%e)_@v`zqJuWn=>Js8Uh08-FMQe5Q&t znlv}zDTuCn!}UcNhnPsG_?mW<6k^Vc=%u8<_i*O~Fp6IaZWvNkQ3S3rcmbst zK9*Z0;Z{C!ZK|3mQRh5$xIkP$9TLH{DQKv=PQARtlo1c|k!O4(dgKIi1e^#i3t+?m zsT_>+b_%0%KvdUVN0AjEmAmw)t{-_!H9WX8-U{g!8v2l3f(967@(J)`MMVDFKRClR*sNVEa{lnXOJxJ(*8Z!&~5s9;*>pj!oAVSa&tI~B@W zlNSuTc1fb2hB=CN(lvSc`AZl1a5h}0-LS@#;snZAZ_mH-Zv0F|*-DUpNMgzmg9d(& z)Ee;o@FOEVd@pIAXx$?%d7A6b)Vd&addB;qQpQ3_{Z}3cRs>!}s94G9V2edb4m?sl z=h6WgOL~GqBD1Tr_dr?+T!Ziu;O-bd$MqV9MMppG0b`jDP6Y7woUyzb20p^P21k+W z%nWUuzYQDs^5x5G0H$G|05-3*xr6hLB7~YSC!GOGb7EWt*&gKHzG8F`X?pqS(jBHN z;be-n|2c`^NO7)oX3^v5RUsU}&`ITf=gu7p!h1$)S_3ErE~6DJotEY^sGh~h*mk_f zicdsD#8f26m>WTrSc7gA>;eo!oUVj z#Q>}uy)JrXzfWQMlmIv8%*6=KIAcRNsfhC7sB4Iu9J&)h+U00W z63Pec-v*>*(p7;IDd!^3Tb{%?*Kp{=Aq`~)(h6>MFx*xTj4L_zr z9_&6WhZZsng=`Ett^K(L?~2LABuw#;DKd0p-QNwMKgR_u0&Ou>OxqCgO%zb#AF-p& z2i5NsCT-Nv^+0Pd$l!!K<~c~m7?Gw5bsy5EFQcQGei}PGf5>vUJr+?VL*cT`i^zCIup5XFMhq^J}dMI%Ch03rwoh%`elGIXh-g>FSuV5Eph2m;cp(z_Hv zKoWWhB~k;@2}KCy?TmNkUe|r|?u_sK@mNHc$0X;Ry?s^~WJnj}QC>uuyn9xNL zA(0C_)~>EjC<$R<`#;_xHZ}PF}fq|V-(71nWAjoFM96e zzK3ge6Oz~5@!{k}&(F1eM(Rf}sGAVP_+EaR27*}l8TLV@_i1UNS8oC!i2n=^6hQyu zq3gO#3(6H06%sCEPc$_(BYyqW6mbyxaGHc6^!G=`#AMXf-OE9ZWCw(tfG1ouuh$Kw zfyC8YT3XlFNQLB^V_lAq`W$I+ywwWaqcDk)bBg`pFOD^kM z+pQx{{4v+lF)}k$HFB~X6hH* zPoBp_vVGfsLI{-AgC$ASIpmmNe$!sKy{jNY$) zv*}m0!YVtUth&6t_OYg>=E>^HWMZfnj+uo;F<&^x1%*Obfi*W5p~vwZ+IL1&)a?VQ zUn@#sY~)8v=x2Td(4UEdZ*-AJ(>Ut8m^?Q-bv>Pj*dVJ(E9T9eNGsc+uM zg25$J`j%nQ6KtZQqEpE+4w~NH-c|ikQBlqFYk}RbE}ADGjzByI6)FO5+_gYwUTsbEoAkbY#3o)M55Pq|l+viqSSJy^Q)pnB1)|9$_ zuIat7urSvKP7ir+BpBEWUxlkVrG0cg2Al&!I3<$-rVYi0JQHp0?A+GJqZEI8)AN`Y zw0pA4<|OdZ@84g-NAKQ$+!I$*x7Mm|2`DIpkND%|6&`3xOJ-Wjk=?w zqkKu(Txm1Pl04CJc-BsQ#PTf^P%QtKPVwJdNcCXu#nk!`&S|)omewddJUo09{$OYQ z%L67UE5F5OCUvG^Fts@8L6l{8rXD!o&h{1-Ry5%9jHD{Ux{P6CDCW5GlQ(>^#tSmk zohv8b#77T%nzyYH{fQ`kVPQOKVyrP73kzFb$?+dVO~iT(1zDRs7#{Q>2A@Id>Q2H@ zg)xo?e<>b%zHC_h$8`U7Kz)~vm=||$73Al8;x^au{vp-8Tm7YO8KlpSeq;`OwEs3a z4h!QDa{wUTUMC@}-hQimH~CgMT*``pf#D9o7Yp+D4Sh(WC6u629Li>|j89CQJ9%>W zdDI0Aipqa3E-sgCJI?@2Oab(?y=H+#R6T{>goGR%Cz0%GA0OC~uJYURLToK}c&+wX z71;F%837JCCnR*+%8G<$+7GcxOZo4MfBRORkB@IlnuO`lQb!~ya{Fq7?GNXzSg6_G z)YR18on_!gnJtPV=0gEyr_<+Y0QAxd3Um|{6yh5IX@G0i*3#;5OwPzqsWuh4O9MTw zNkL!rtgec)yAQ|y9xeP6vjfkWWwm+v zy>=)w;p);;@bKv9DR@VB_XPa3a!&cu4SBeagyB!~0AQbYK}Q9=a06b`Sy&jD94riJ z==_NEoY&3G4UH>bZdbv=ge$)#kW_)>lRl?urAS%v0@KupvK%aR!@`)P76M4Byr)X0 z(sU%{BXA zKY@$Qc=_^WE1?`sMjxPuSpB4Su6Kro9f^#Hz_@Y5;ZtU2W}XC6@c@)FH9h@CbaZs- z#@CDjpLG{bN%y-S?0@ui;7my2@`d~7&Yxcy3s+AsE!78r2TpIw<9Bz*4zpCvSEPmN zPU3~DW1DA-h+G@w&NMAid%|V4S0Y!z9KS|*ud?+=MMl~Hc*N&CsOI6LgIEGy`7?TN zep_t%^y${MYuBpq6d&oN5sAfSH*k5YK07X`>F!?0&cU&=P|IXDQWpfcD&*@IC?LKCMKe28VIW5I zK}}AF4pr&B|0Rg(0)YHZt&`$<7DpSXJ{*pkm<$rY{)#6(8|nlC92)bY{@qkZiZ`x& zeIf=60}F+Py-3f%A}`$L_F7eFHLo~}!*vGeiOSzp-+zJG0m+c9rKqZ9j9#g08tF4}dsPh2ro1t< zR!M^ASu`KVN8@lnvOJ5>WJ`SX$7d`Jrbi3{nYdRm(GqUyBvqb63z+KlQHS22)aAN; z(=;NvZHbEBIE;i_6KVoDk0s2Dx4x8Bg$NFZ;}>+l!1J7jYgkn;Ez7%v$n0#A!HNyF zu6}xP8Vi$jpIN}zI5@0g`l|e^NUG(-|5v`#`DB>C=+4%>Kf-DPA2$zJ$FXwVQXZb8 zsilRmI#qHtl^3z}30wjijmE;HPjJUk+Txvlb4 zNr@xxHgINMIG>dali+IJwqyI~a2rJ7pC%0_Si3mjgB&!@XG+Cn36qwUwE`CI=~D)L zv_|4}H12{)`-)nrLT8y53mkRpFekkCA^H9P~A;SLzNOjzD>A8$@p>Q_WEFs zl|H=RZE(tsO_B_EMI#M#jexG$%e;?{R~gVp*oI%QqlZV))2C16`c<(~dgcuwIsn&I z#KeE`0#Ej*78N0Z0jqK-9^RuCeMup#lR!ux8~Y_GDd~}YOk`wIcXzj6l{y+-vgzk< z9n1#fZ+`(n*OcmZYlGX{qO46PMHx%v&;U0APA!*FQnFrN$qkuWKbhRY>A$=4XvlN) z!0bSYR-$6)K?F87Hmf5=eHy5>8S<*Vy*)@8b8Ft~KGN$xl}hy>_?uy~1AvDDA1u7v zmrz9XGXPU%hF6c1Hae{sqHSSeG5Ky|!;4eGRq4^AM{UupkjMqkQrdHZf?dgKG5PlW zSCZboeK^#!NZDc+wT%ECXs(jtkOlH9SQH=wUA}9BDK#~6(lmRaeWPgs(xo|_nR&utq=jTrzyc7U-(2II|JbS{Sg;W0?Gymh)|JdQ&dAI`QB9TZd1Z}|nLqCoEAM@34 zT0m2Cv)k56&v`yR1)wRfW&A6@PEXesMvL0LJaXhnP4|0?<^+k$km)2@TNY>(m>eB@ z`z-gF-uSsWhn8rVA}1%OS^ppkkFd3|q0d^G?os>>>M5}V2Vx~+W*YE{g{7q}9*cMl zM_EoTJ`=9g1=hGN`Vbh#*dA|L&}@W7V6j}Q-@t#RK7Y6jxX$3bkQ0zQvh(eL|iZU`YUBe82lX?$#_flD&L;9fTn%Eos@y8+&Z$?Id}^;2xSfF(em;~`<@%I2l* z``#-6qXE`d(#jHe_prCXHayuw2QjK+8B+7}wPUW>w-?&?M}&nXba&rY4kOO@q-rE~ z_V%W##ax+sX0n+eR5o)7thdd0QzTfnWPsM=;rIY9yP=mxh$`)eg%wwLs?ma z+Q*=(O>cqJrGY}_0W}Tg&u?&^to{A>C{sf&GyVP>y5hV**&+?_&l%s}1sSqZK^b&XM-~)*c0JjVcv2qMN9Nz( z3_gXwC2`Ps?Iay2;LMbaK#F+G^rLThtV#pC?^UERI!UN>^3*YA=E;h+p*${|)+~df zoAmVbW_C+sjos!S2XL{HZvFN}XT`*j;4q=o&90Y>gJ5D0|l{2{^Ws1ueguifg` zbMN+DN(`ci@iI(~N11e|>ty7+&+1p~Y*U)>cqC|-LbwpN2*R7PiPv_W?d?bO{WnLs zvlO3}{KYWNqt0$Xk~kQ4*<)@XmuwE=_XBaW86eylVCsSV65g2ymX?)?TH#K(xw<|q z)GKjGGWOqcs{pP)Jv+Pm#c9QSr(wC;w8Z(26ML0QNm%b1Tp(Z-4mBxAjPCQRi?xw2 zUp}s!o0@ViDJjV=FCTD9uPy@j5EU2ah$fvp{F2<-vQOxm@;gLUUjv%Cs1RG*r03p>O3(A7|rQL)%?Q38=6(5 z21UHl8ESHSw4ddiu&_GN$_<=HWg>`eU7ek0K#=t+PX(=a*VY;_hr^-xs#db7?P&F$Z}qot{N zWP_Y<)1iIq)*I*1`YG@rp$+s`_Tp?K)qj%Q3WtArr}5oOnH-vbfNha&7#{MTKd^=V z+L_kW*w{AHm)8Y&l>R6`vuJymCGt104X zbSRDn7YYmJmN8~yW2;@-)cuDOt03bf&8jN-Bqa?})Z@BAHmfb<&L-8$HpI(-haF+e zNYb?dmRl|^?~~QzvVo~0!Xq6VW$e`m z93fIeV|W{6yE5j7*Gb79XKQO~r%;*g;{FQnB0F1Km;OR~ z6u^-O%nElID>d-z8KAP1DRuv^)It_Kiy3^*1~UYvWJT$L!{W$CApwB~J^_KU^V!8U zg2v^&K&o{^kD=zv$sysc_4*)hqq64{doz$Z?%>f7l^6Q*tjd5(?vFSBa<^d^w5kp` z418{>S=a-ZXxGvDU=&Cb_*{yLzW>f<*Z>&nYyH&B=}V3wy2h=4wi@`zVlqQbocj9u zGmk^=p*RBp;7dRjFI`@CC6U($KvOVyjR`SEdoN)2OWX%)>GkRfWer%*+M|EH{Qjrr a?(ChB6qIA1Fp7b|kFvr|`D{7U`~L-u+A^B} literal 0 HcmV?d00001 diff --git a/labworks/LW3/3.png b/labworks/LW3/3.png new file mode 100644 index 0000000000000000000000000000000000000000..5f39f43ee61abac9521349fe5675877dd31453ce GIT binary patch literal 7168 zcmds6c{r47|9_A|Sx$S(a*Bjd31Ju&GD$>8#!^n!tTU6X8A=keM6wel%P^ymj0Pn+ z6$W7nV~rUG6N9n)-P3!W_gv@wz1!9Azu#Qua(S-%xu5%f?(g@ri8MQZMp#H(2!bGC zgps~E1o1ou-%Npx;L64JdV_P^qH4Klfc_POqjzV3Ea`o=Xsl$*Dg zs`Akz%0~`MyQ0xPC@mEg&%cjQ_V#m8dFXe^56mLyV`PJZAkiz_FHZqH-wlHHUPtJk zycm!%Nej7dIk(z4O;u{$>>6w%KRKCno1cH@$zCy%p}vH0UeEoNh0_hPbprZ_om(|c zVxr)WF4_!j*&GIcS$9rfLJ+?H>!qhgsb%4zrFXC6%Wv@JC?(zrHokR=L0>*owmf(C z7s^OqO|S~(%nafcJ%gj;tt+`SGn<7QN4043K&_3(iuXcLZ-#(06e`Fo06E@(mSeT zQq(=u@C60;YHIvOqBe)0B9KT+q>4eGFNmv0c5g9^it{44durl1``NOG+k-hVgj( z4uK81VR8e|z^LQecBG|c(%V5FbjAtawRuPhPp_qDIDkKlMD zpmQ2m>wv3;w|PR)Qq`S)o@>s|?jIk@7ZnypdNHS_tV~Q|&YnHH6{`j5MV_bOOIy1lV0!4c3=t^)cEVP@INha!wdMZx@w{Yvb6eZ=sVchU zWOoI#XwxOZ!$)QsZT`2%2t+`l{Ie{$~s?=Bey zK;)H~Pcw@*k2<}*BN(YG3`sW#pL?I)hoRbalY=?y*}plOpXY;&t{@P1Z}DwX*uCZ8 za0w6OwqHJ*M?(9?xg0Yir}y{Uwwc0mh8yD?*k1?)WrO_>Qg|Sv5JAz$Lqk_RyUP*P zHzwPc=9r!B?YYaWS_jZ2WJw1*yAnNVF^TZ-@JKH~s8w_^1EriQcOrPc*f37AM5F(v zh4G`qRqi3y*2yFiDVKQQfxxdDAUElKB8uAD%W2DrYv{VtEA_{{dQYgSsm+o4S)5NS zj$E}cqz6x&&F0hcpUOx}Pq#EPi=VLIfy|BG@-b3fvMzXfmaMU}*BObXx^2BxC^g4A zNM~(fI8t{9BpoihV(TMkn$}s$G3|Pd{4-ihrB1CU)EU zkE$B5{Y0T~kYxeWS1D>JddnO#F*%uDWf;X`9S`{KNKqr!u94_zRQup&RCD;|T`=mv zdpp*z8@g`u{ZnlD&o$Oy)Rw;Z2OwQFBPIRv+Sl&WY(k(6$X?P~8Te4bYL3|J9{8?q3)d zwd<=a9qM8G*CzxszeKt0VBqFW)qWjHjR40^Q4@uI52cGEw0s8ikQfHI0Sd)M{tFEK zcl(UI)g@eK4?ai?v1X}=o|e5j;gaRC7Tt47Nx zx@_bD#Ny&&mWQ~wIE;F8=7U_8$1zn^9qNX#lN2>0-Ko(3h2#Hj4Sy1V<56?h`n$ru zojNnW9}t|9@x8(7ldz_Zcj9%Z9aL%~hJY?}?^Iy!jKBJd?+?O&ZECH-F3*0i7ggLY z^nuQHTb`dhx}1p$8p}(*XlC~K*VA_k%F8b{#!47ptc6044{C-2bmPK$iESl;y6VwY z+}2&;QE{by<79uWLuIdDG+-L^^iacIuboi5E)0Ih%-)_bGc#k)(WK9I*?NzK@3Oy# z(_5YI@m7Sx9eOIgsZMb^H=Jm^P`lwNIG?+l+XaA;XN`@Y^zhyajf#%8w6>;tn1J@$ z|G=mTf}Ymi*=PnvJjI7(-^Af?=zb~~p(rMxf9A@SEBkGEp;?Pj(>Ioumh$^V&NN1D zlPl(4y9Mq#viqS-MP+5@Z;Rv{rq7kJ3Bh`D-HJl!rhLn ztZXC;VKOH@=;ltpabrQGq%Bz<?Bju2Cvv zpS48Lo%%uV6=eU4{0XS8`Dd#CN9Da`6P@(dZ_qRSg9wrSCub?T%S|W~8=F*m8rn8T z%U;o{7_1X)^*x5r<5k^^GI3BUcCfS@sk&=fvMl$1DfV}sy{~+;JPc#R!DJ0a!LYdw zi!6^Jn~UWtt8>JVIb@krW2_9CcXKb#&qB%7rwj{#*;yXlJv}wT}kqGGo9^Wvvp zt*jwEvSR`&Z3;vqjT|_RboRQaKX+ocJ&)DUk4$ zgz-Sq#bE)Zbn$Eoz3N%EU9R98*zE2jj-i;%M!7yGib4H)OwmRDP=Vj~>46UZTrUbQ zHajGfP063^scf8ZD0h8uQ`ey>MJM=1?h-%rRFJ~c@%3xrheSCK8VN&%InPggb@%j) ziS_Tta_**WfSyWGYJaJC{TewkGSVM#zn^7&WcU4Qd9LF6=%N?QnXd!s3ZWU%=^#iV6i46>5^Ab&yUCiFEmv zp0t+G=FQt^TcO8Nq?~L%!0p{HJ<~^b7zu5wYJXN2n4H+%-`SZ*AP^W# zBbieIGzcehNbQKI&VuISS?4vB9$@whUS5Q>w6q`^i?f`RnJJ+PL1QXoJm{Hkh)hkC zAwNI=habEd@V7=j>aVJ#q@?Bd?Vg{XAGedO?E?+ibPCwzMHH$m3p;N^^KF#y#d-)p z@ihP>f#98MJuPbBU~Oe}HeshSvS5x$#pmRl3|SeL!pu+DgrEAgIZe%&NS;qy!G#Qw zHbPHfI}e1bU;iRzO?z?e6O8(OFj#an=ZxV-{H;7yc7zxNF@*nnTKfm`!(Ta_nwsj{ z37+{0)%+BZ2%{DwtJ+Z}uYr`%q28B*_o12r^nuP-^~VFbfBM^Z9Bd2I#I za0V*Nqh?`fGes?-JZR3HqL!@U5X(fq3iSQ^(gTDZkB_^XWNKLgJM{6>r_ULhsE#jR zcB7gaqIX$dxR5hgAHf9F*159C?(FN!YJJ876;dpq&aSSa+}u-hb8}08U@?m`*SIB; znVH$Mda5IMqc&B2^UkJ?tGu1Tu2dnB8M`V&5Z~k#FCO z5=11lo_d4-04KXLp77?nGV3;cB|OyMwUV;4Sd;-eMd&eE5DP@K8dL+Mx;x3g}tJ z1#m>c8XbCnnyjI_eWFmj_|VeHjvb0tuJo47?n>`$U@Z60B)4qD0Be`26RbX}TtFt< zy>Tq1a%PrS!OwI#P~=y#rb07Nm!Dq^f9cutOec80prGK8^ZG-1i{q}X(mx1VOdW(bRE$h> zrnUw_YXJXtu=GV)8L=w60(iN9aOnSv4F2lle~cPhiYd?|r5(9)o1PXtRn-XkP0^N0 zr3MoMhhsEgR0tdX)7*3E{`Q3^gXo=sggshl*P*>*2B0RvUUnYgUlQ{F2@(FImrHlc zf8POLn~q!l23ucfgae4Ot5z4xgl_z)KmW-_|Lvs)qg%v?vng`d!JH^_P(1n+6ZJ#)S#ufAwhvJuDI(JGvsDu=1y1J)1 z;6QGJ?NN2suN0Ngy7XquC`UQCUjsqw0wZthLtLpO7)(ciL*Mi-Td_Fu&m%IO|X7<5WkRXOfi@W z`@oT;fF7WQ3tsVY>;6ofWG7eGm0`cWxYhTZZ5NHpQfLF0`Li9)?rZS>^FHX9FzyLohQFMKMk-Fph%(& zKQE8)o@4sW&CNfMYxaqh+rsxjcURZeB1`;nr}tZEVAqJn%@Aasm=9g9#gU(8NvW?E z#q8B^Z_73K*woZ9MXR0z_*w|$GFW;VJfy}xU@-iS+7`%2G^>`MV*;dvrLAr7X<;77 zOGMY7d~wX_5913Wt-r@9I}h;xq?!E*clbje=l1i*qgqJ(kRC6R#S8>lTWqWdb0;@p zBopbnREn1-sk$07-XVYO+BM+68YZIk_bVJe+yScKVP>XhM~=>D&L(ziSRe!FK87fJ zAj9I!nTS(4@yCu4u-U4mqQOg6T%hv%_PaOiAP5|u)zqy;{21*h83aU9G5uFD0VF2{ z$5G-c{af6f7!^VQYcG?7Dpqi{7{zBP5t2=(fj9vVI*>G))30*}f?jDp?T`=yaQ9ae z{@@r-xfe}~hFhNG>QZ3OFavcw%tuSTpHylOXH#~m9z2)gNV96^7L+J_r4%gnrf&92 z?|#X$e$D)3`yg&*iXZ#!9&mV=i7!Xfof8>B>{8dZTs$ET7@?ly=`w(!(zGx|FJ8QO zn4Fxii5e|<{`}}@O7t!jE}zy%h*C=``-(s#;mKrL!SJ^Qb@q4A+4dM6*y6WDLkW(u zEH7h~({Fw4TAmfrzQh#1dNEPX)C%~L^Vzzdw9DDmOhR=>cel8NRLIJ6j4^`xry3?t zIg~labP??E!h6+S*Vk4_Badt^T3I~mEZlv4<>b9t$ zzzmBe>#lr1ZC7*Crp&q7+{MLZHpLQeH3qn)^^ub8MO#}uz$CZ6*MWEKDlv= z0fI=cU0XKNh#{*?#>+An3b3-QJ}k#BOl0{zmHtMP4kRi=GVt3kiMZknU2HeP53I4J zDrz;=dmN95fLI1=5B6o zXj?aml?7ksqjMGI#PTme2gcBh`aN9xGj)DtrSe=_#$u;07 z`?!)GXpw@VB85zNNMA15W86Rb0gjgJfGY&A=MWqYcMb;9WNnodvKMph3CN=XCbt7s z(AnKx#1-_M{*c;ONu8qN;=|1ObLABk2y-H}aebb4*qM@50`yj4L4gs#rJ%J%I`A_f ziPjR{eWZ>=z60KG*T*D93~)nk0Jal?2oX(9=RiFi9{qx@kqk-)M_1~2iyHu%9eR5A z?nWI>FUtM;^^UF*TjA=MP8OfQI`Q>u*b=>(Rb$)G&>*f8RK7Nw4|n^JAbU462Oco- zyfHT<>$qFO6sRGt*8!fY6L=kAZR6OeC?N@*pxI{&`)1RT9+IGRcCNC4#^(kysj4nT zRaG|N{ZBI0gF9KZ{K@I*cpkou$hqyt!NJwH-#orxy;}cg;Am5Mbu@$uQ5!qo-{143 zx3{1XBN^cy^l9lb+K}|cwno^mAm)Wi9AQ453TT@ThiarKA zH%UEa0E}>(Cyhn}N%#c>BJzsMd`qTw{^+Rlj_unoRbG7t-X-9_(WQI(`@3sH)=fgN z8L&Wekb@xb%zDjyt_lREpu5Z^4pjKnc~dYYsKux%N%6gVF)ItxJW#o}5*z+1UNi8j{UR4Tgczk>uX>1(bLk_N7UgOlVre3qp`%e!UFuS%n zFV2i8iwV2}bx!K)>SCM#f^jwlsEhU(akY<=U&|ULU;(X34l~)li~%kBrgydd$m43={3t}^BQZ$g8WeRe*O5}A%GQV>()O(_I0}mO8&x|5goirtKg4XlEE5C-r*N^?0*cOwTQe@sm@AX*yH?@l zVnZSH_U~^Q%;5-pX(bYP{X>&G8yU6et>R8#U=S^;(lmxJ297nNj~y0H==VU>=N%7F zTfbwamfDv{R9A?tUZy|(l<_nCD+}u}w0gC=L*H<3L;uY-cRvdYr?4EBABG_ELfL`o zJ@828SN#izp4Lqdd$j;CQm-@h}zc=1AGHZ(bzgesyF{bT8hFFn%F zp`nk#!3ta-zzK0OGBbacnka;s*W~AaI$8D6*PqasRkpWhZ4V_fv%cGOR}<~d-Mff8 zU2ViC_wW^^?b^DMq=rMmRp8vAiMr?*3+=a)$6s?|X7MI6{E?m7MX{g?77i%U0-UAA2_3 zCIT;8Lwo&ecE_=5&YO)t-58|Sm*_4RR2#kWd*Ntjj{k2HMZ;~P)f7skf`6u|u0C~R z!Ub&eAYUnt>r79T(Gkuys^3;Eg`05)mD&57;f+OiP#v+%<@k1aR}Ben*Sl*} z*{bj9kzNGbZzkYKu2)<|Uh9yS3f-+s>U&lzL5YyT;d)e0*qoCrsfe{6xTz#iWVDB3 zspDX-H&qhSF>ad1+U*@SA-zP5ZSPg<{W*FxUTc)@!)#28#nN|VGjmGH&g6f5_WczK+A6pL%hB75k76z3w!z`Od*~oHNIHb(Z#h4*ekR_HiCl5rMg6^E>LlLDz zJ#HnsuUr%_&Faid_)M50l=<$NO7y|6c$@0P#q>Fzy5xZeQw*85A;wTqB6>Q$LU@j- z+&cxqSN_jDDi;d~3$JN|z2DLhh={(U8%_f%=Lz&fXwE4LQ^a4Ys5wu-?+o%;g4`GjW_pPT1AIwp*k!%bZLoN_2C zGomCip?Wk!yXV&zL{lbqMoe-zDj4I#B5$+AtEIll+I9sjvi8qV?nW1LhvCmXH=nbR@ z=o=VRm1?%;3Kg$0;zAM}(5U=3HAT#^y?C#>_c?iRFLIOk2+Tf)M)vpId0D0#del>d zOQOwXQ62rwZ9i_xT~2ds>v;&NIJ5inUdJn0&Qe-$Y@F8bi)mC} zt(a{N&nIv%G=fyp=NSo*NILo*iTl39ED0Iw^@l1{em1t@6U(d~TEikv{L*%{Wf=PG zJlXB;!@)n7DP`jUY(<9z{Lgrq8P07aH0z$BjYBkCM(+ak3T5^B+FHWk)IW5Btt~@j|?b6%?cf{$ZF$rjWCy&m*1641O^4!#*<)U zw^}t^DqEcX`0?7XCsuA_>mFN)%~t!wTM2u`Cu=)lr6n%9xIQ*YN)FCY@xp8F;2=Sw zBXOckMlQ4MK#F`j{~^ZRmn zv^4rS`7+{S$7{$bFKtw>mk2-N=4Fo(I`5%?G1=|MnoAmTZA1sSY_j#Y>X$zv@XBnZ z;4JiwhKN)5uz!YR_7!o`Z9nU@w_GyHvKi@hktD&EG5L}-(595tiH(Dw{agWd{BiUs z;t7k%t{s16KyIryh;=+}NBS)v(5LN(q!7lp9ABD`H=gV+Y0i2Yd`YS+`XC#w(^&Kc zVmKE4(?S=~buJewQG&MVN#^&R4=omd%9tbHuWzaElTbEiNn_aZ!`nIEelht^0dL=w zBJ-We->tC8cqt~;&u^;INggRRq~I&z4s`9&?lSbm6^tXpqC#Hl>>zt-_dUx`#J3es zBUPwgDo{o|IgZfhtVlh+L~QI%CUS_s-t&7kTBHaIRsr5VIIi@BLl(y|!_?N`@`HHR z^K~tGlhz>YPlO!d6?2{m67*GmRd&$twkzVE=UWw~dMH44n`>y~_oUqs&>x1OZq5EF}+|hnq^90>IYvCpO8#okdrs;_FiDwJc zeP_^5b@FStruWxefz(`{qn{~KtD_2+FF1CHDMl;&TsHKD4@n~}Z-LP)`YN*-Hu@7_ zv&~!H;z;-nwSF?+9B^E-mfa^&3XZch=Kpq8o4-~#Z?k=7`h(B@fRD^y->R$$bm3Uz z&p^z*9+27_r3Qtm}UPB2Z?1hG$bo5 zXJYxhu2hqgS&Sa+ulDLKH2a%Rm4|qHBOsyUzgAU^(~EmVE@D03h&WoL-M>DPH&JSW zsn;Irz-?9h7Wb7kX>S6%(O98o?ZHn8$z)!LaPX56>bx631mKZy*o=P(%BBN%!n>XM zCNyI1ll*?_pyuf+JD1fsBixtfxCkVkCuDMRa`3UCk?n37?~vAZ1@zXgQ2XsQ|R__QF(}1MLGOM*4kmGR32T0r7-S8 zt)WnY#Tr}D80lJ$jF0M9A4;n9+^Nilj(6ujv4+)&SioW3r-z}%=EsPmnXvSJhr79} z9K8zd5&C=PK8$Un4SD8P4 z{NS`ACnvw{ot^zW>l7F|6bj4{`010q>uh^_z_)LVSq6ROAr18+7S0|_)~z8fpCHkF zKULDjaEGHKDKJZ-GcX=&t?iX}iyxG3Dt4VrJTr5zAEIoXzE(WrvozWXB;=i_nPcMF z`Lw^6Tt5>_$sl4UDo7Pve;tCOOqc9s5GaCfOdqt~ftDz;DeKqi?G%$Z)7VTdQ4E*dtLM(d~^-2aO(oEFG zUO7X3_2+XcqXDa(37Rv+iWQq}TJcL7JYj6u}R>$~H zB6^UL*P^1gKgY$bvGTF74DD)w%t=*MRk~ljK-t#L4ie2V_44Wrzbw_1$-3}MbkgdQ zS(en;V@In8wmk}1L~bwd4HjoP#@E$f(?(8lIT&s#Z8>{6q8U&c^*PMcQ6tyf;=rrt zwsvt7IoRyjzaC4>XVtEN;_`8YY!UcQ?8jVE_6;oV0st<z6TzeekIYdPn zsTl%iAyebHg^Z3~;6SVdylU2$=tHtsJs+Cx?Ug{BgtS5*+7xW?lK#LftmX*o$i(&& zRkGbo;e+)CEiB8C_tzhDA>g%N%5Hvh*TPy#k{~DTXbZ>Di)F6GzRymvv;j@(Hqv6E z4I9-IcR4wGX*r=K^tE+KjClkiowWmY(2*6p9e35)D`Kn6!{coYjRtmsnNhkIFBUt# zkcYN|v{Vn|4SxRqgZZi~RFbic`~7?}2`?=I!@`W#hjV_kwb>3yu_F$o3f(KL+2(Bf zgx3OqaZY}|{>8~I+)a&-zeTt@Eb;=#8Ew1a+LKBqspsnQ+~x9c%w?-=Y(4VOm$U3! zZSAzlaAxb`Ri<@8)zvm1;dLlXR^+WdWdzJv>I~)ymRDn;cbR;@P=5wT8;Ydr4wsX| zMo&GR&w*{rxKCR#_NRonzQ_f-9NObE9jY`R0x)N*TiqweQUxQSPp5lAA8QjPsW1b8KwK zCp?zvavq67!~|@7wsOwihaum>V+wjThpy6cGb<0~LcownX}`a4D=9Y;;bljyctmLE zpspgYQJCTPvYgp#i>#gd{X_ez(pUn~6>Fj3!tpKiV`fNM#?9nOHRneh)Q>hdSXm19 zQ8(BX%^Q?n%#Mh7RG?|NtVBJ(wzjwhk#6saV~OLiGYshl6Ig6M@!iWEQm9$;-DQ83 z)8M@3{<_g@B(*}Kh;?RWW_2l#Sw>PzL+sk%bx)DeU-&joGi2jYmJAyhhzlmUo?pWVs*RM2@#-2s_5}CYiSFyP}38Q=iYEIIhO}lsaFO ze|jA+ohzkk*oOG0$P%=NOV;w#p=i?6r5Uv6Mtf%#bgi*ud*AJUxiH9)bLY;43)uQn z>M?@_$!^jNv~({OH@N6%1{GpeJUl&^<1Bu(sk|ZGAAH>*=)iJZytq5l4|}9)+L*jgn%z ztuBHY*}|N1#hXtiEbtj$`ytg40Os5_Q*oZ{6W292F`QaR%3^*vIcf_ed+59Orj|as!p$34kGI+y@&b+dfzvZ$U zyhN6x(c<%#1$f!%TWZT{vv7chs>;S66#F$H#Ss0N0TY1S*9C97;Rv+oT}xS}XTo`! zap)g#Y>zoCc|+}KrPf<1+LM`7dc}b+l9>ws0n&Gg9C6yvp4;BwYa5*iOW%05=>|zS zL@#?vcbhn+mFrF@m;382Qq>TEp;?lsDBe%3BgWu_6C{- zX8(Nxz#A0Jc7vshNcE6RseV6AsdOF_ z6fWd{4*$gm@jn+%05Z&J^A7lY{T^UbVdW^y%BoQ%Ci(`0H+Q>ubn`=Jg{QA%Us_a0 zVh~#xoc(%Yu8EoENc)eJS@)FGoTVz?P*Ik3S>jC->rtd7dfa$J%;gu95iZWO_ie*uQiVM(`=M4)A;t@ z9D+6UMDk2in_pwY_C?nL#TM)SY(B0uFj}pGf}t?x3RTvTVIM z0tV6F%m2ubWjkmf+~e|<i#rjY}HBuk%RXJ~C@ib-F>Q4(rL>-IkQz6^ypYLAKB2~{M z!)&)3++1Hvj259SoseNti(S<+r{c*;(U=UC4Q~}G;Uu}kfU`S^+dOFCO?EPB{pO`k zy4FB&dNP9h(~I4=it&7p+l@pAy$;;j?FQssW!}zO5 zeNvvQ$TXB3W!L?dGyzs5!I}Nbguc23Z{^s$9%uf(HrFO!?|fR^ggDg8yCysP|Z! zxoUgZhCIU3?ET=J2>)luG_7`$+74HiboLZ;N`~GAE1h93Iv4$H0zVRltCpbPt@C4; z(dpg_8$F9b7ZxfiDxrd@sVNUtKFO#!Pk5vk54XsSVc<%l6Klg7vZ(R%2aiGBU~v=QlWs306C)fIX_ zv$PU6%srE;GOc$C@AT-BKwmaIeT=J{0mXh&UWl$t{qZQ&#=CHO93laGwa!l+_RT46O!jit2zVyO)A}10gLK7zIinYmfLG!y+ zIfRo&R4!q03GMoN%u}ir7n?KB9OP8<)8|j(c-_0jNNmF|7+-$J#4^j+=x}$e!xn!N zjOv@9Ho?n|X7{ysP3?~V8gC?YgIfGppm?K0EO%0dte0jNT^8A7`y#lAw#c+rz&H=J zLeuEo#U?8}Cs<2gq^A3cIa#?LS-L2A8{1%gr1EC-8XeX)`%2%-5e;EAk!!lGF!YAU zRCgxGT4~Stw-^0f^JG+VM3-L^gUEwjq?( zOf-+!egDP#GPz5hhamam*XFcm)hc-GwaKAjyFCuCoO;m7T}I-xC9d(5%aScGUWHKA zZ9uWoQ;(G(+lPBbqL9@FZnDrrnvrwC-DP-CpdlS^%YG*F=#c_&20qF4mOmD8^uDQ% zoZcF^ajnff_Caacj%6zW#IAt`-O<3gY7Z1@a- zR5aUAfB?^#V){*1leWdWN39lPzBnb{&Ry{D&ONtGiPZzA*4_=#1p@0Uy85VA?EGrS zV$qUZ;gM*cyZ4_USg%B>aQ14~Ix`*5IB8$rdn|}N_)d&npjQ!gQw{U0W@WkoEjz3# zFouE8GIWtQl%C3G04_|fH823S5Oj|GQ!@L>Ec+LRpavm-<_|qaiPrOe~ zoHL~%T`2oX%V>i$5MhH$o?9d5u=$Kh)q7l=EQJA54%ZtHdSAYLX#!Lj;RfK125OwF$}MM58%GP&O@_0-q+=ie z0u8~nF3Do5yvkzk4-idx&WVLnjUrt{fP({N^_na-0SsW>E_Co&`?c7;t zLHzYI<9>S>$ulOVFCa4pr3rL?LqjSiCZ^CsP_I~Z!%92^9-Hx7$2)3We{gpIdz zM8CP^BH6jDC()6SDPvq-z4&PGD1-o39UyE(QV zOS?bgG^bNBwKh|8e7YTE`qkiu9rjKY3Sc%Hr3DPR2%NhtF?tBN%NOaQVMzR0Lrgl& zcaprWT!0;yUX?Mvd>Nf!S&icTfQZw2#$k-fum|@Ey~Y~@1InfLF!&m<Uy}6mp6BbuJxg--U0l>{3nh{O*LZn;Y}6ai z7HWouK&x3Dxx3VE*UL5rSkS7&QS~@>t67(8BBOML$ot3QL|}x#(-i9C@^WgIEd_Fh z2R|4I*RX%X`tGk9fv?(OOL7>_0>wDg0xuA^xOunFF;D-N~eb+@Q8TVg7%>^|O1~6^32BE8XWMdbnPi z>cqs;(H?wvnLT!4tXAr)(OW9f>&RBxeb__a`_3+sgi|l}bjS;1<2o&_d3?eenpM){ z-_h|YWK6wqD8<)!ljXIN>_C9s%2{9CKrO%&HGMRPIbF+*-GIQQ9cmfW8&acW2Ad%t ztI%^kmJVI(Tqr;ouT`6QXkD=NEMh{s3lY})Qt4<=tQ4ABA6^TXgg*3N+vdU)HiKyj6h3sB zs1MCK_P+Hq>~yz#w9&3;Qvej$xf&j>zUN>v9~>ys=v?;9D&qgub(52@T1-abXgT`; ztXvG|$?DHc;U3rL_PzC$Ll5_@(lxc_?OuUUm!LGg{#8=WBifu8G#tUqhMybQg}BiH zgXYlrK7_D_B+8MPKfu0%;Qi)n2O4s{ur-oV`_bq1w-mBN-e03MDI<VkxpW;>AA?hTY#xahwjQ1-%YS}ICTQ6)J3gqQsg41Z4QWVAqoeEkR%32_# zAsD)2rrJ_)bZt7Yqv7aIB59eaks{%obym;bN{&;RDPg;ps@v;t$+V z%2T_c+Y`iIns$EZDQYzQCZVZnW=(t?2TBd&v-5Q3q`(2xYi3!2#FN_DpxV#S|{PB_X+JCFY1beN;^Je)kznk!i(G>*smBYSS_JAHf|{ku9-NQVrmxht0x zeiia{Xvh2e=?)vC2ykYWh|6*3Y@=xZXv%7=d&8^zxok~kuy)7)sr z_V7%pEZSr^QepFiK5&zj@8Y(FhJzii=J}J|g9f!~gLB|HP(#l-h}EUf!Xf%UhC4)L z^P?=u_s0*FaYNJ;F{VqyE$qmV14|!!ZN-&5L>=;Y-pwu>x&2;u>~g*_&U&7{GKZ5N=3ra3YGJ?tL$^#+z+TzGT!y>(B>P2 z$vKTiHaq4urk7y=yU+1q3i}JoNEXR|s89Y7wkz5F9bgO=C#J$O9$}c+buX$3genf$^e>zt-pe!%F*PsP*oN9FtjBSTfU;Gms&rxj2{v0HzuS~%EriLr1F%GYp zFPp>5>_D%0!+XL=afoui{GmJ(rDRLguy1R7o*ERe!;8d8PPp)lW4Hml3s@(Gf|r>? zYXEx|ErAKmPbWU$dX>EJD#<3zxaueiL9Y-yE#8DZdOpM(GId}D~}XTy%2+Oyi^C@rfP#i{7JTb}ha-p%^A zJ+9PWTf6l?_*u|@si@-gsekz@i}~%L^qu=zY;u$>|12IH{whv9uzFoZu-&WEQRjt$ zt%BINtB)z69jpsIwq+@}uL)5{f{V#kdlT|{uVG%-5`bf$27`+GtMHp?Dr)mtvdr$E z>&@G7X$OrZR~N-20rVd;4m6csJ8KhgwcnAAcFA00Olydu@p^7AIkT$Ba0ek=n@RUm zesYQZx*Ok!@RTJbS`}AJUMm-+QTfd*?AjmO6;PFOtK{P?M3vu9_8khX)6qDSo zbAmCZxql3#Yv^@^7=RD8p5D^i% z&o@ipX(h-=g3OBQj%o!r$BW;?bwj|jB#oUlpP!se0vgqCCgDBdK9+EMQm=shrpuA` zQlYGQ%DDZnkUs4L*L1$u&)neMlA-Z>vREFk&P;5?CZ)UDI`s>L60Qt&S_?rsF1Wpp54O={xk9Z6U1k#I zzjxE?U7j6UqR1*L{s3ARXDGzU8OTPiZ6@~iY`eOf?B@O>LuMPo0D6{*!-3{7czb4X+m61+so-;yo=yZ z7l>z|M5JV7K4d~47~eH|+tDY)#=d#;CQuKQZng3vUsQk3(`{UtJ>0vfy`gm<$g9e{zBBcg;8QQ}ZH8eVsY}pN&0lz!W|kXgLF)VUMZ;OT2T+>>iN}HnAcFr!#k|))F&S%sX0=gUC0wu zO`$KtSiW67g&OWA!_Y_#-%x5A)?D9K3c0kWFQ|!rJUQNVQ5HbBkH$N&@>AE6FscQe zu3EPuZ-_nNKZKI7X&Ps;-{=qlz(dKJZOZ8b{+Ihy-A23q`F+Vq54m>`qN1YU%ieKo z67h3lVh^!!qJzrK8fkWNh_0*kioiYlk$r8a`5 zHhqR1PX8x06+6BWeb_30o7Tvv$!vqR1m$7i$EbaRJVoT^6g}eUFo(O6)dg&EIeQ!m z>YPL;XPTsZaRvxFA?q4w=F^p5=+w(!0U;9@!fqRZ6rbhh^I6(!NK&^9Zda( zCB-H~RI~2;QedAz=uMZYf789a<%2fZK-VJE-@MHIqIF#?6WejU)Y$4yD#IX6+f2U39UDvSXZNI3(RG@9iYXg zV`=y-O?#xs_8J%JC_-X4axa*pFO+)HjwJK2F1atGbX>N8p&rzGb+iso4-Nhg;al4M zoA9+aFy6hM&Zf>9-_^vJF!4OO2iV|M_v$0M#Wk-o?&B`}6op(WI7k6@_|e)5Ib0M3 zv3q=cT+Ip^Z&tVfk_v}-cA#vYtgz}|?u^*Tz(DwC3YhY}J}2M*sA#ifZK&RNAdELl zqg4p73KSeJQ=a6O|1evzZvMVm2Lk*kS~Urq^A1LYqzzlRF9YVW zX>+0^j?ar1gqvHrNSM4AJ1vq)+;M;xTB~h=OCs!njAe8T@7r5iK-*bUw(Jac-b=8a zNx7Wl5;CwbvVfS;`*Ep8iF?l92ek;~2S+`{o@X^rEw?2PuApA4@9RoG4WsnCvgWCo zjxb~3;|EDQWfpy{tc(S6o~0#)vg#4jRv;4_Oc$+DylEmKCI>ZJ#XQ}V`a8NlZdQZ*RHNeZQAIGBR?Y+QIAzgVyFRLlrE4lcCIA zpd0<1oGjDedHMF+J4B1g#41u1OG|n{)ic6_65txut?Ht{3_=?Dk2PORW$1i2Ffe#a z`y@*YoN(Z)YyB@-EiGaY5L(8@Vyx;J)D0ve0YDE@Y`q`|ayAiu zegq)sOUvKvq3$LZ`840?a~odH8_82C0owwQVs7kXO*+Z(^t_j;@bT_ zu25(g5toRF$cLeo6QJMuHB-Y5Q0CotK<3D5I@}?Li~v-k2z6Thz!K9(>?2jUC+m4d z&Km_4m4NL7qgViubt%p$N#|&D0?>iO7ESOpp@P%nr4J3J(%97LhKKEAOw9f>TWV_R z(5ve*voU7N=~u)q%a3?Z=5HeaK_Nn5kZpaGGaz@Ds(=jmDLFYL>3DaSjFz^i_!HM~ zRRSrX;G^mC3SVLa5+2Mm0-S=JuC%ed57!7(M${DY$HvF6+e3Wf=_9NFb2^fTQ)1MQ zlmZ61IoFWve;>!x@|`CDmTKkZoyB_X2*z{uJTxkWcXHLxq~|K%fJI@P4aCZj%=jRm z*jQYEKYy_n2?abzd}VXX8;IBt;L`Ny&Ym87ZX6;aDP`s8p?&4NsOf19z&y)Bb>9Jg zesikgq4%?7_wdtws2+1%>?@n65mZvP>WuJ=p`P+eCMyhR!&t4f9Nabm z?VpyOKJiWG{gO*?YcnwNuc54m2tX%C#>bZoI46$i)9o7Aw<(~So~g0)xe|cXpioIC z{yI4ZeEZ2(#T>l10rWFuf&}olIW#)J=WhT(AIIbN(rMb}9w-PH4W?Fo*K~5a4&14VQ&nyW6MBxHUMa38#kL53-8mNjmw&_n7 zEWv+d>na|z+1aPT{psvg*6C^AnL}kf+uW=a4?wy*VyedpDbxx^B%78B)~;RP^G|Y1 zbv+Vo;4ULamUFUAPs1O{#eL;*bfdm*3MarG>Bw-qX}DT!hVCHg9bm-myxd)PXT?`g1+^qNNFPNhH1@A4gnz_-$>O!M=4VJ0&9{1NfDT3|kw)R5~9FiUM^q0VgE%;J_YU3ISj3tF&3-{vrp?g+Z(c zwe$sx_HoTjAJFp&iHV_r6LN^8e`zQ2N(2e$I3^xXt{v>DrPuR>mzv_pVdcyo_V>#R zQRKLu2*J7+%57Br*viAhm;2TGS;<_ARGBZ=`gY?EYU;f!M^_Xh*Tg1GR_j!m61iQk zoG9#K&L(Aoq*4#+n7hW5-d(qZ@(PCSy7FDXSW<_S*o>a=XiJ{5V@q$G9vzXLjF7f3 z)vDkBW;70oX5#x5cFmJC6|;A}JzZKI#;<;!L%*CR#Fl5*?Jb?Pw3d}j1>6Mi4EvzW z6#;?t+V%55Ke`he{r^Z|5h~0dc$-e`c{MJVep-8(KDB=pb3)}=;cK>nuTo?3N_&aQ$>*Kbb06jm>Q4?2 zTQT$+ouf!RV@`CX&eR2#^MptW`B?6%Tw4{fa51FsA8+zgpL#i2s!fZg)Ll|cr}xd= zQPFgWN=MlU=Ex=nv_=$4*Z4uS`z$X`CqrhQ{IDx3N~T zbV44mXUTm?T@Cq-j?EuZ;}AD=Xrdb4qBxJwnQ&|n(^LuV4c=Yb*;;$=lFxUB0rgEe zSYj5BiA)XqsaHGta0nt|&x`J~d@!ep48$}VJLjDvL$?X6yZIpvE;UZD?Ssni-@}0z z|GU?M;T@FDR;wnZk3qcHvM2+9whaZJ7<<7IR#8QogCvg3j(;vO)(JbTb!i zz|8-5%UBNVa@i{kCF3>OwRUvwOJ1(n_ISnzoI^igZaEB|Dko`SZ0}@BKpOr<4Hc3i|ygwDaS| zdK!)s23Sv?BsrW?D`d*b%Ff5iD=5r7(p30wl?CfL(wyur`ZWe$zkncjM+h=fsBzavl zem9tqL&Z8+V7p$dAS(AIwojcMdXdtrr{P9_a7htEUZ@I@s8YAAYF#T%d!ESY5Cq|J zVs=BujU{LPmUiMTk)YBXWKDhJYIB<57sKm0uZAoks|_>v#PN&v$F$1IoYJ>n4834h5&B|i2m}CXT7YTX! z#~}plywJ11RirsEgj=w#A~vqarnka8T}(wW(EXHhmhaW4q@*X0nkC~!1>)Y^XwEV;(5ncfd>w#>p8+l0+%DlY+ttB*S10e=LI{Q$yu3U?gjd79 z1!D2*n}UQg2(o<;u88n(L3j7sZiae5eZ*9N@GFQsHtgaz03udDJT8M4DGrBqtS7;( zCh$PcDj`k7ou^iT2A?9Y>+?AcuggP(X+T*^$51L`-GxX8^k!~{=z`+}mV^VsJbSdY z5u^alKyY#j+MIaeMBy?1Fdw|V7V)64auGGm|Ax{Q29$cf^ljwpHOre;_DrD830YS} zE47$9O1vvzSvWnU27X%kc{m3bpa_vN8Vpo$B%E9D_H;;)4{&0bczA0$v~a)z1-yQU zsRslRj{&Z>VU={?z2W^UNyWPPLrgW%0RJho3dTytEe?=Le%~=r0Sz+%Hh*XJt2q!z zm*l2T&r2r0FNMPv_=mu5EkIig9&6!mzWJ@+6#ze$tVV%bjp5m!PXP!1*QeDe|0NEZ z6##Eh+{i*;q^Y0k$-KBLnFJ7?$3Ey6Igy6 z!`WM+)Y!%)ME&MyAy>xEWVmUycsivHt{jX>RC~)(M9ebq&kEb)&3k=S8a8^wdRZAI z2P4Lhk;*`8|BrkFYCk^}ajH&5BdQWeX&|vg)ykr+1yb#pzFVyF1Tfqp=$?_UQ)nI{gXIl~Sw+ueb86so}$c@4~_Y zTria(fdhn0stiS!|D#!HtxDx6MZInHo1rQ$(AV26e*5SWksz;?t2dxo6%P7rCIHcW z`c4{6oqHVLI=%qy=NQ4-g)`Hmx)&(smRT()k8dSRyehBFZS5U?YZEW+Vf1yEGV0Ec z2}pTVac5W$ou_@0;^yvj%8kS_Zt+8ok9-+!M|XER(087ko$d9q&wY-J{6SMxD`;$- z{levzZ=RmC{!8gjtI z?(A6Kx_uk2g@LDwYOo(4G12gt@03hP0!=eW2%AmIs-LXV0xj;&VlcyF9Gv#W)?lLj z#ib=P4bYRGxVOh5^$~ag3)TNn)>=+kYTgZ)U_9aXEZoo@SD4zdJ4`e`wA>7@pQCPizKA{H>PFr&&v@0l z-=JE0GAow(0iQOF@A3c>0T5(> zXvQES>W!vTe+4`hyo6X^U*D6&GgW}6WPx|G*UbRWz5(;k1w>&7zXsns&AMc@tzcqe z0x7hOB}CeRuXifu%d5hwsd8#R_VrWWyTU$fDj)WRkCEl0&oG@lPF49VLcI*1 zZhx>vYh&4$=RL~${#vw#38#ZW%BJZR50JX&6b1za!E0k6j|x@Da{_G@u)1SnxF`zT zmw*l4f(@t^(Bk8t>~)3b4N7ERz@h+YjU?#L!Q*yj1aXdVAKDM@64I<$b62(s_l=mC z4$x76yDEJ6PnzO=2|eGx6}h?Uws2$tGo$0SQNPjq8YDow{}9%Y1Rp^-VVyVhnLLhu zTGABR+z`6=@IG!eOTtEd_evM`>39Lgz%a<(jItPn+ueQCXR@ z*9veNK$oTWSBEOSW;F&j_R3pBaBB!aeLWz2HQyYXEj^;!Xjx%5D2&78c4Y2)@T&>H zK0FpfwEH;p+#7o!@tdE2m(|IJic%u|6EqtnRn}q0<+RxqE$aM*wEiwa9_DZmW!9{W z8(!8!QqbeVzRUUDbB}!06spbK&c`yCtw2e(1qt>ml)<*?&E+n<$~Rpv`G(*ftX({? zCfAQfHM|IPtfe&c^nE!|oJ>r+`Q3Ed^@%ezPRWO-fD5{~xG)A9!l4V$feM%+!tRSQ zj8~TzYtU)25qWwlst+KQ;_TfRNWGoxc?KNa)yaejkSP!kiMA@JeSKDHGm^vfyAvrd z;(zs1>4SSD7~Vj*ePKc(6@hN)4B#s|r0u*U-mZq#r|`e44OzrQI%>dr1D>t2C*x7P zRsBkCQSgO6A}F`OD%62Dukl^s8OIY0qZYnNEejW?LHMYqyEQ>^R!Yj@jLDQ$`I;>5 z@AZJ;2FKniP-#Ed7zOKIax{j`{#k630+n$mMbMwj4k3hy1 z0k(p?oScBCXT8D(T>1#qjtFoGqsO^p)>abl)cgVScA5f~a2d-pC(wBfXP%h!kp5zx zdSaOX^8_kxB8he$!L5Rzjar2njb!GoH7V*K|8!zx0qB%Bt^S@m@ba(jC?A4q&;IQL zC*hcLBfTB2Ywfl2AZAYwSdN+j9WCuLxRHYNzDNkZ@cGeJ9JdQIa4D>o)3HD}>IYa~ zY;RyrIAssyr&XY@{B$+Js&e520o+>wkAwif7_kVdFHunrqfb8WXP9<30#S4i5Dmer zu`EV?6rgPt+~{C5_eKt}p2o`{N(dTKK#3l*diTy93}WK#SkNJVyg#lN_UOqI5o>Ek zIPVNtp@p9k40qoFe%O9<{EORmRRD+GDv+%<0U0i!R(;j)BMvmyp;%TfAi@92^Z;}+ z{>AE;o;IfCh7Ks!f{Iyj7Z(mdHZOvww%k^XxNqxR*_PTu(m~JcojZ3JZI|B|_9d>( zk{YMn+^lKczpJ$ooPGXaT%VcA>&kt#KUsT;6SUPs0a@(0f%_?zw$)cn)n-a+@t z?04G~ETx#~w%XJG(o<(W|D{n`8Vc^I0QoJKcn^nI|B1SMfr8?XB>Nr!gkS!C3nPb2 z&=1zfTYfoxf21U9kwK2j_vHS+TfA8t@uVEiovPA=_td6Ygy%mL& zy|eeq$c~KCB%=`7d;RRaXCa$p3lT!H_j;}`^_)7-InN*G^*ZO2e&2rIdtCSR`F!5@ z5al)f5K8B2_ZR-?E94!FxNbWdXPsDVq|@r3PgUZcUmsq$@jg`0YPxtqY|~ojEQbf@ zgkizi(ehUhNXWC+U1?lITFa|AL-4OA{}_7enbS5|{Uy6#b;Nu=Kdl|SCK5WM9RC%s zPt&0NWykDMF2wij`S*g+dEt4q(K0?W#YA+gvI2^(>^cr_yO2lkG;byOyIvXv{0IBa z4VeNDW2&R-sfR%9wP(sdh>+i3QD<}=iEg9TU6?-DkGN5M@qlk`T_lQ3&SB?FsC|rI z?}%WgJ5Nu~%n=j_jG!dU8nN9oC>hxA*FwJhM_kLg(s;8xY7}dwHj=c+EOFf9KXO;f z9Ogo2%~nV^jFO$yNZ1yaxCBl%r>{rG*Mw{&lvub4kYi1q?T!l`(v^y1>kdeCj6>_s z$Z<8X$CTq2T{t~(qkxGTC39ZeCN+9~I)IuXpR~lXmEpGsADEfLFX7;pN0FclI(;Ae zl&0iw4!RK9Fi=j`mbXQ!oPfflzcEGCC?wvMYifUr{DEuoM;q+p`<9r@t-Ps`U-6q9 zoHT?QdRl`+EfU#=0#x^y{aupvF3Oajvo&z0LYvt^&oSDJ>wb6fy1?uEQqCd6eIdR^ zo+(zw6g*3N73$WWG#F7>B2tB$Bi_$$_ZY<5PBg&!Dwqrk6OvAVW1CMti>{82f4zZi zxE6$>-;JSf4YXgUTefq9_^hM(&`A)He z-SGxz#(^SIGKhs{n1>F-VR5ccA1%Y3!M`E%_KfYyK;vm_KgD4-Zh44ji5%?OFR!eW zE>!JUXqhwzGY}CG@g;xyq#UZ#eN6<6 z=(ciZvQAZ=oS$`KPbp?VZrG22fsYhcdeb;5n)b z*?R-=*c34l&2jD~fg5j2U8H&7{O8#6ZdSO({79|ed-a=IU$A|U#Q$dtYH#J7@?i(c zaaO8H`2jq+a9CP}dIx1=huiDv0u{x_^L59bj4XTO+n*heRzkJZ^ zs~+=PfSa29p(CT1i?KnzYX|3Q70RP4^s3-2*TE!?ZH8`I`}05}l2NI=#V4%i%6haiyDY%fSK>F^#LLaE}+qOTso*7Nbvr*EcV8xOEan2l|Y}<}Bx` zs<*7YcVrxYWL*7)Qn9+vw{!48N?`}>7ZD&R7Jteent$KeXy2#pyi|wB`pI1T?+Pc% zmC{lSd#z2RNE@QjLd2flgQvMVP|C~bx=3TyuFpnB)>CcuywF+7(Ut1IQVa8ZGe?Ey z5HeDw@z{_}^(36cd?|!A=INmia)G0i%+?QxNYHnB(d>t0x}T^iRUTCVkJC+0z-9>l z@BP#Etl#%YL5NpgFrSLQj{JW4=Rb{_0$OC8V?~z-sekrHp#1w|4+jh(f8j4qApzJr z|4-`#dQW(d(U71v;^*YT)~L8XR{vmbBc!n~H=$f~9(y+TfWI`)1D)m{W+ zx3)^B7|TZT)j|}CEu!s)gan8A$IBV2>FMR~ypIZ*cQe+<)shANE0vpT80LMJZn;NI zcPZvz_c?S61EZtcnTvb@ zSnuRLfk6yrn)=C5UD=;U(v}eB2~f>3_24|}@U8O^oJYfMvsMQGJd(mJzOAfG1c#pK z(&=c#_W)5Sav%v68@>6Nax-;yKMp<(StS=2mrR}N*jTiOK;J=w&k=`A55l%%>aKEs z0MF0>b?>qMGDk-3GKWi7t~BSiLhBrUl#K6Q4S6}nt3#c$_?{B4sFoHPsEYm!aO#R= zwJIJ8W79tlJ6{605z&l{jK+YG1cA565I-LukmTRxw(8h6f~XxBb!q@_NF1sX(i z@&G@H3I0B*n>Y0i_V!efgQ+pm-;+{q)@)=nnl&Y{)2EHtJ$}d zprnh7V*p)5w&jTWHm^RlV0tdn!_D=)^WwHaEa;9VZufkR%L#LM+$r6&807^6r#L>} zvmwB%l9|f?s=LLsrKYp9%vPC|ml{4(04=)3+M>%VD#WMqrY0;H^ zvr;Y+lH$E#Yc1Vl{SM?iS=kx~p%+&ZE0f;o%;bLPF`K-P%IprMb}~lci7Ozjl62L~ zaWG;~i-?TOY()z{7@wO%QgdW0VE*K{9Y67lfU^r?hLLfU%L-_}a&UwIPrie`4d2SP zL5)#SkX_CD2sv)yjk>iPcfin{!}a}5D= zbZ+;SlAvwCP}6p{e~`^Lp}>uW0tX>;6$mYZ2F?y6oSL2)4kA+w z5M_K9st=+;XJ7{}6%q|f3e~}_0Tazke=haLustCh;|%8q3x!r%IUywS3H2bp2(XP1 zAOYEtMnr@HbaahEi+YfApDPB0x(#o+vr)Es>$ilza(&Qd-=&dkHFq6MUTiaszKKbs zca{zCjq6%m7^sX+f_C6yuU8LTBvVzF(n zG=?WSI9(f8zS=ChvBwrpr1j2j37~_v28zN%Xh#Nux1_PapdPo815C0Pc!%$y7mv6y zB8oels@=db>_2@H6FprmyFrhw6ZF9!RXf%{DmQeHQ(w{N<5vi&+`w{i2TV`MDikH) zXaMI@-wWJ6P>ms$8tw$|3*XjoLr=CfnibjKGks{m?{<_?`a`Zw(^0E6*BFpX0jaTJ z{UkWW$lhxQm_$FoU{xAz3^G8s6j=4#(NEzO>!KhxEvNR+#O`F+Jke93t$CVsHm<5n zFMtjsr@X{NnN=o+GR#*5>L zY<)djWHai~JJ|wO!uII`^@1MCp;v|f*Yc`fIaT`$`zi8d#m?=;UF~vv4`I=}J2+$D z?=ASD*!-@qSb_U_NYBQS5%$A}S-3MVSKp4$Z$5iRdDnqx?|5>_Y|Bu~m#=fKby-Sm zC!*aWjOnQEmim`?M_b*gd=)@f`qZ{fd7k#$P%-O89?LOs<)DFyCjbWYYmjzg91&1w zioM{(c>8j-#Qpb82@(`#Ma%*C=I>?+sqgQuo#ncl;8%5zxognFf=sivBy6UFuj>4p zNu8@VZYpWCqqe=vY+@fpg??+&NT&WSkTjT*S9!)?Bn}HhL&$xdHNi)kFF2NNRpV(x zvFi`K+x{s~{)aq5+!#**`q8YwtDE==L^HJZ*qIFz>5; z5<&67WW>mEy_%-)VH>XB1;Nn_>O-V~>+{0ib*29YqqN33Cf)LhFIw8Rb6;4n=p$;% zy}IGvR~+&NTGJ4IZS3F}ul1MTO|6JiKX{Ece8c&k+-ZO^^(@s{Yz*>xS6HQ~f+;^Du2I3QD zo}eb`6|f^8IxX}snJc@0_Gv|lQN<>R?c!rZJ@?GeU2N=j!9Si+ z(UeMzZcKrb@AW-OISfrS3~6T6_KuQnx1rDT7y7qUF0o0;Es2^5b`UtFwx(%xoI370 zdKK>x)+(vtCF^)E?uFJOcWR+Cck&y9?nR;MuYpm=wbGv9E`+3qw9o&z!)sOkX8B`^ zBzXX3>V0jPAt!L+&*Ij6})0=h#R|CY}Vm7dN5d)l@# z({zjMk)CS#J*w@`_Uwg@@JSV5Wk#HB2=*W&g9%39R`tQoRp61`;WoqpAyY@Z$AAhp zENJv`IRDV%MtX6Jm;mRNu){NiUmp?md32#kh58Sz@qd-b5m8y@j9+P@;nY+U4wK&j zo`*&EQIATnpSZJh@u{^)4-p{OV^vxS?)P|6Garflk|-AhZ;Z9h^?uhab0MGX#{Uypu? zo9w?FZq9%YOac%-+zZ*F*=JDV+~8+d9xgW4VLls=XvJc zNlzBd7`r8l_2$A)6&kYtTgHec$Oskm@3H9a&jC^6(VnIPZMTIDzCL0UNDajL)MUi` zESPui!-!rihnl3`13{~p45||QHP+fulkM00l)8gL3bMn(s*StMk9QevJO6lOy=8{M zOp)qAhC2_n7NG@+eLa^NDqx<}W7ZEA-6Zdg=z1}x zhOnxr8LJ>s)`>R60!_VKMvD& zGM4IHJB?!Nw$+(#^Ur16P-OAV2|(}}ae1f3;Sl8OFFx9}oDLLZZG7I@FuNNND1FX4 zxq9~ZxH8E`x6Om&_gxG)qpQk^ZKTa_Ipo{v+;Jp5K#RBn*_N+o(P}?i?(P>+Lh6F( zqLG_%tX@pCPb6v_&>>ad@H-uDv@Ixgd#Ze#NwQ;c%?_q5*5u#!XO+}lTe&$Ukk6PU zcQV*wUQachIHK)YlaXEc!ooraI8^TUI)e2JbP@^o_h;j4&vOZdl8<5qMWo5bRD{g$ ziu5ln7-H>hSp|dz6w%mjb-MMk5N?D^lb>zbvO>L%$zo67q(9-5bC$bbLO+nA<(M$t z)%7pqZ;Zd~$LXgHeBgX4rYFcKpnEfVMlv0T_?t==4pF`TcwH10a%5M&dmbAXHy$(v zA*jE>Bx9IAunEVu0XQ{69#mjXKq*-|4m>dINy*8*_7)xaKiT3Qm!3+fH?^pyI0Yf! zW%pkZ%AFH=V!cdC(=X?<3o2q{8H+aWan#?md}&vh!1qa#);_XM{C0DRfhN0qU#Q&@ zoiV-YqK!q0UU9UK7P%(o_KLeR=cqHUQb^YHVvC36`LDVYJdex!beUb|Dx)iF+tc%3i!b zO$l)99IMCM2d2n#astbcC!31*wqPdxT3C}FrlH}}=Hnke8&Hj3x!83*Q)}6r;oQM= z>(_JUDFg0r95mHcCyIPLx*zM*vSxhoc+GPH74juhqtF1v8EAqU=BmH&_WlB~ghU{; ztc4sF6P_mWvVS6(3wyISa`x$5z%wBflS-fBN%&8Hieenj62|D66Bk6>Uv);?~u`dGmEP6i*>r1rtW zy9z{4p$lUB^}}h1+&*bCGJs`ub31zHTmIj%7V{K-Iqc%?lr9YmWOD_c`^mEH(7y_) z`4|{cMpH?niqMeD%^C#?N#6;-8cAoM8mT6EoqT%xCyo)?(QKgq%SH=HsjHJBM>a6C zqf{;-cBfC?h(Ok3Fy=4#1Nldu(+e>u#r4nAvpAgnkap;=GRyfzJmNzHv!BYE_A$`d zO#ivpDxj%ladzHAz$WkqeIX_)_Zk=DedH55xx{zGF~X|%zsrn%L}a|w{%&_`#T?*2 zv_akwyg_8yLTZ(x)?RjOKXGVEnMSSwMu6}-X?L=WA$T7g=6d}^A7g?9I{B!2arbAX zLhsaDPiZdS_FF)zzIXUuB zG6+45t0aaiHRC3=^Qm1Wmt5l1m|B-C4>k3)L1)CUP}ODj-i!sus%0E1!{x34upY53R4P zP=n*0l2hv-3mYH*GMEO;N5HHB4rq%e$EGgjwTPwHy-CIq{f*LJ}g+f$e7PmQi`~^7~e8lwiF9H6>`j%Q$ zlhHVsBY+uRQo$^)fN~#=%v2c@vll&w4hf@VnTRsS2$!OMP4EK*PnyL=OuKlU?EDCainUNY_|6Vi=fecg*TCCv1)W*y>+9jKP>S!K*#zK- zN?Q=1eL+H(hHHR8U`MVzxJ*Zv9&Qd!8pKg#+Z80@zP$*ZEa=cJ{B4+$XMP7;H^@n{ zN^sOwX|dP%H=9|SMl|S&%0qGxV0iN6L=VS+B@b|lZn?P$0l~h&qQ?i)_E|bvUk>De zhJds%LHuqU9gV4S-^l~Ol?o?LpNl(tZ2iz}l5^*}Gc|cZBG1-%Rz3J1aK>DVFlbIT zZ}^b9z@bOY0ILCQZAGRaq-@u8gutc)~XL)7{-Vu4`v;R-^)uUA>?h{%LgCH2bkVeCZwq$r4SKt_XC0PJn9*}iOPWW_y0LP8B z94=9qruml)& z2Ed+m=SdH~bxBgHK#N=i(;0bPn_Fs?>T z={j_YH+Rcj%~ZVdg+S*s$Gz?Kz@uwdX6I=N6Mr_X-vlY=4p=gQ%LkBBGFs!DN9kog zay1J9w@o&fdIgpPfyli9(6Ws9Yhu0{h z?evbT2a&tGZV>7cQLz`=`WgiFD%e#5YV~SBWdOdHgfD5FMsjQ{71Aq(rl%x0gW&#{ zao~~ZgSD%``m;u%R-L1cHvWsU+ebb3@J-^MkeS<{I2`OPcp~6|i@es#nN(mvnuPa= zyzw;;=YsIvH8mq}i~(GX7iJ1#rbq63KpEvh#0n!$L;4#@ zsH2R}WUb5^jER+1CXyhbvY*k(;!%NZx6Q3Beh^E_6A z?;~ugq`)78`B?OgWeWF^0Ut1Kr+YZyrUGTgegR0ZffXF37|-edw>X;YMD*`CHwBQ| zRnk>qlDvkI$V7q%Ot)cJDPj027D~f6ENpW4$l*ld`Uv+@qtFLh7yc00E2NHk^VvG3 zqC%^%uX-x{E^og|u_#uh7_$oH}()S{fhZo(%2s5QvASkxP}-q-$bc zizp6d0s!ImBwTaBj#%5FA_3c9`i2k~E|@fnd|@T=g5iS%D}gjvJ33lDvVw-(@$)A& z=IZVuI)nyQXb6?pQuf`+#3APj4qudC_I*gNo)>VShw(utEF1+%L47vTlDVvMxKDx2 zcKilH0)%XF>4d*vf0eu7OA=-S$QPoFy-)^r@Rx!cW6n@gu3fzVf7j-WJNah48RwBs zbw{*t#rAAEB5C$$!6(BFbWp!F0#xrUm-(6bq2j(_W*2etGX z-eyq%N4+U52H?BGmAAUUZwL ze-`Lj{&Ztr2@foyvNW``5=$#9N-#jR39Ksf&v>_l(i783Zf z@02@b9;XNXu!W=ok+=dA$;)Lp315M4T1lEV2npLw!a-CO67ec+h0xJYg2LYiU@ia% z%!G1<9#k!q$(gJmO;S9h-_)Moco>0(`{>|5>*fxNu3uovf7@)4J^A-L_`bwL7ApY4 z+f7TG&5YSbfH7Q)o`8TJ!2e#yfa{9`c1T!UDtd<^AyEcmqBBDuC@=o9DadsNELM`( zU-%XAUtrEasOx%4cU<=jnKN%BzdfyLdd~#-2TWs@hV46gECvSM9>F80qea*SY*siQrWIL&cIV;YVeRr6q{w1Rh#JhkEPxMafoKjWdr*g; z2iz5G0Am1_JkicI-vKB`$eO}S$GT==aRqS*`d#4ui;2k>#`h8wnSw>;`2z?A0z99m zVJsp6=iR+^3eN>vdRA6b5Jn-Wug`S>IqxIxjOv4ZL5Qjmqs7I=eRB{%*3{Tp0$11y zL6o0ZSdfDoYBqr&Gq)-L3p+Qk7VDuhNY5&3W-zsqfh;^Ecno+V%m?ylKx<0M%gY zY?dKjY6Rd3U);o4?PJ7|eF75`F^I#@<04T|IGm5eOTeN6`wh7MUO}$e4ldV$yzd7j z)CJ@I5h{K%MAKRyO0@5v%R{j!?jwohy!M^T(CnnS9fH{6!5Ih#)rxn(X_+c$g-L+4 z?UC3#k~W7)Dzw^p-G3Uou2REik}tsr22c+)&5GrF48@Asf~-RrnEj zQ3}97nz&z;m#1hxSdcbRNL0U7R1dQbHx@GX`x*Rlqgil^W(RwAMus%pE!PY?Ph?0X zKv>^E11vyEumK=&(8!_{82k*N&LWc?cI{-eW>9Y}+_d3hOdwO4<)~)s z$UsQ|v1q7<4sY*p-*#wR0hQhM0$q;HsE9uqznHxIt8S;}=4L+EReB)LA&D_Kk_kqy zEG@;UW$W~m;mQudo{9PR5xBbIdrJf0XP}V}{?E+rT^}D@sBVtcz%m_WhX%EAN^iF9 zpbs(QTV5LqNU|rTrede}+`4x!r<((op#*TT%4QoD4@t?&(!$$Cl3OsQI05z9$N|~( zSFc_POrI7@z3y|YOHbReM+LzIz;X)B@TDbNkzw@X$0I4u5fgXio612hSi?#a2}orl z7ehJfq`+rAL<$L6-8y-0f;w#=x;BFd1z8|W#1|6l3rR9DuR0=!mfngVUV93sl>1dbAsV?|ng&2sZdJQhb*|SmxY*TwP`@vK$bD z+2R6$Yw{J?@^!3A&(g`hf-6Y@V>{uv>M9HakNV0LA6Ru16%`>Xa3e}b7dwueHUT`c!XpSIS@;iMeMYhBMp=E3sNhii&+)h3{r!xlGtZ6t*PQ*Q@*lxUg0&b4< zf;qzhl@8)sYvfVO(!xP{xp0y}X8!l@mJmyT{@OT9Zc}(}WXd2_0IbL>09fI}oD|+1 zdrT(c_7<@r12hJPpL(8=RMh?m6gf!I3xu3@*v}A@>K&}>;nK7)%bMUkg9Ol#$3qrQ z#Dt9$pP*2}!#4sO7AZpR0CE}f4;E3&pe7(K08fsHHpIsb8lr6rb1^8KSjdetFht3i zF%I@Os=;vbfE0>FB-9Rr2xi9?WpTM)?Q!e!c^(SaZ!Wt-08=(%Cl9o<{(4Cg^XUAPwaKZjSkviLWu-YxR1!u&W-pq>-FED~QyyNx* zn~Eg~WXS>_H$u(mh&}ovYm!7Q81cytAAaYI};}IzK_tWY>H&A33{^upOhwYUA+55-lRxN+k*@l3huXt;oLfMpUwoh8Yq{VytPQ5!siqWDi+tC=IfV zWtc)nhS6XQ!*FhI=XBn4-t%^TzxTa<|NQ2k6dr;Nx-qrq6X(M^V2kUf!-Z z-A_o%9+N(HRP?HkkB7ICjLeN6cSzs#a*;{!GWP;6RUGt@{`y4P0Ok}cpEvMWPp|f~W3het?WoI6Z727$9XZ#~6Y9Ndi@?%~`yzR1 z;qdu(s^D;P(_C!e4n@4L=WvbRNGTu5KXxqHn-#K;i7FC?pkpfAMWJ90){W4y)4>pQ zXfqG=dLs)f^hi_#f_84)4B3xxkXeMg2M6==%rKG%4{GV?==6?4P~%u~*N3MHiShC2 z+r=35xIJDh)o@y_m$!ET7J^hV%gawjiKy2Rr!^_s9ug7~y^li1Jv3QKHpt|3N;O1i;M3O8=2fIjM>izqi(|yI7Xe1-Y`NNZpkr79m zdZg-ZLw4w%wlv!~E`|K={rfw1#2Q%pm$9+R+}vCi6m6Mlup{z~WARAf5_4616(K@9 zlBx`&Was4QXlZFRV9!0^f1Z}MUtUg5m#nqu0~ zm$kLETSkS1gl3llxu<8S{$o`CG*vdp{$3=5_oA0qiF5n2f`Ng7PfoS9wYdcaCJqh` zFVWi|o-9W%@ldec0*lgf#3dX|4o0!Aox>?lPELNT_9Z(~eW2h|yW*h&>nfwQW#ZaP z#Ij#mMFrW4$aoknq`c6m+Zr0S7(9F{^xA25nR!89e;QV^l=TVR zvGZTfH3VXT^mzWu;r~CmX*&&?CR7=N*4=k);H7IPQUKCO4%ok&IKMiVKtZ+xz7QO_~=sNL-zJ5uv>;3XRX?dt3D@*&f zhUhOW&uT`XH#=5$?=s{Isl!~xnKET;lS=lw1Muq#($2XCDi76>U!y24GA}eo?vK4qTV9xsTot`n9TE~!gzB&Mz1D~I*wFPk z>d0T{)lcqy_ssS6_4}}6U%qG|qCfACQ@)&(kZ^Y1`pT6n4kB~?F6b~so7K%)-UZq7 zg4Qg54jYwwB=-0A_wQMd1*G!;R7uOy(y|Ymtmu6xjdXu3vlvib^hDLMK+jEoOt?R* z(kJH^8p(a-H>~=wXT6Ls*%x{ISg3JZM{B%znLpJL(BWYT2_1QP`F(>a-UD@rnv&8| zdFM8MUS8g>jbU3lpYVacZrpa!%q(f0S^*u?s}T4?8#sLkRtB4~O;Pf_V5mwe*;_B*(9!&OzlTu*wk#;L*bRQm#Jy1&@4tV$OosqtNlxcw_ z&A$u$;M`^62DckGOacOG?%%&3g1S{}%e!k=_Vee@+nwNW_^!&& zFY@#AW3Z(qB_V^tmrYC#V(@#dtE#Fx1v#K&XCDV~7M7G4A?wvE0e|LevqD=#ve{Zl zb2@QKN=j#hXC@{#y9dNzM=!a#xqatzw!`Y`c4}zDva+%UEbHxHgA}EV#>U30YP^sr zE{rKrX;tB#laX<7(HB4!_e?c!e%?p_(XrE3<<~ngLCkBa%TuNA+S~DaZ@zk-oGd71 zQ!V$zdjm9L-N&MYV7#=2f6e%W2lb45A%CqmySmyEQ@>gbJ}*5-&-wcKO@{H=b`(2d z<>2!Z6Z%}xy#O7YqKj&?*(O#NPzbUt52?4%W^bqG9p5=zj&W8vqRoC)d3}K*ltqQR zO&`{}+DBr_iAQ|}xh6)$E3EAjgzWwI|3j32)+0ZZ`^QZYML|Lvj`e{PYE%Ovq$>O9 zm&I%hhI{$Z!omW-UdY+EyuXwEA3y$?Hwbwe>(~M)sZ`jZufNzyyAS)zl`8;8y#-cH zYMC`P%2Q6q8dl=4*th4aiUMGlSpOlnT+UPdHQ#=c@v4q!hI}#HU0XOto-F#!eV{7va{fNAL z8FBgtJ46(1@R=Rck+OYduBfO8-U|Rgzh$B98eS4Oo?p0nGZZ0FWT;STVWISgC-S;A zuo(&r9T&I5rp8aIa{tn;P(l++OGXPqMHm&RX4kB_E-HG%8*=mVjGdh` zGYwL5^`D;n`Zj7WlQP)Vm98PmQvyK|GLtOeL7f3JwOIoLmdtU5`b&WFFX-y}&J5S8 z(J{HXadI^AJR8EcP<>z7=u8e`X@YjBJk^z$62a@c(@ZPpHEFqnX3a-MTauQ z)=?E^{o!SK`Q%i8=>ij`qy1!JLgiGl{udTQMG)an!Ye(*u`iMc&j@(jt_8m|T>{lB?Ho?1@x@)WS zdi7onC@rhB^hDYyP&A#$dVBl+*sIQu%O&!r=dCnE&hIga^CM+nbn}Y!{-JqM1kE#m^Uj2AOgKr=70G ze*K@6{(Ce2v$cUX1m6a|7mm>L^z`h*=3ACYf>-5jjncvwSn(~$CP~|HF7t2I|Ixoc zh4#Pf{?}}Yj5uJPEJhRo9uvs7x_$sC&^?JTie37Z_f#- zBduXG!#!zQk=;E#yaX3=Zvo?56Swa~$G#pso;=x;XIU3`tDBu2YOW|!3-y@lD~`eB z<>e(lew>q;dFTUL-40oA7sTj7zYJPKB7kd7Ixsz0VMtsVSLgv2X9h{H>3k{(@!*BY zs-pEo86D89Ne6&rex(f6NJ>g_Qcm0$kXu&-E-o$v67}qv@Fv#VF`J}V`@G~$=7kcQwEGG~io7KmcxZ=ai#JV!!j=jJra0n1yZpNlfOapT6f;_-23 zo4P=Yu&}Vs$NW$XPh&Of`Z26Bmwm@twu3|3NW@d&wE`!cAH1@~^kVEVAdO^XWdXV~ z!MvKi&$(sG5(q$|XU$m#N?lL~TmkU*p=JgvWc=-lh)fDhK-MwTG~fI=s1h$9ADKI7 zQS);6Cg?ykaJr?!BY8l8!NN5DrV9rYcoQjWciGtt4=8Ldz+g}lRiN#g)WY{hj+_QZ zmXnjibSM2KpmyFotK|sRiI}Ja@XyBG)*ju~b6)PxcKyGr1SA|!oG}ANqkgc8^|wL! zXW0C`CjT$7_XkuE%A1;-EBWE^32h)a@7mhBKW6Cm5D0=L?ID}CBqSv4DgmOOrX&Z6 zu7>fZG8pj0q@=v!;!9YR2p-tJva6l@0sV(fRX8-U{VGbp;`8=AXMw0Q5gvYOepBWx z_@15~u<~VNNrk*;p!A;V`Y9eyaR7z(?yl^@`9 zw`nl&wO&AiJe*0igdL*BW+uACV(ZG#N1>SFxP~|;P?VAUxhIxF#}g9qasy?Zf=uB$lHjB-~KAU{SKZi)1+q?W zv$M0$^GRD5?Kv6Fro?>>Ux=8XT{1FqJaPR22sf^{WW@_QI+uX6dnj#_J3c-hgQ%{l zS=YYxw)vWc?!C`@q`R}zLC*7fV9H#PeM87yTW%0k&+Vj3Nwdy3u#04;rJVtL?8rhR zb1h1pb1Ey%@ff=b;Ts*QYb$fre$$p7%u$iGB4LSf5Gv%Z^&XubuB~aGuJN1xSTj?X z2PR#U-8sha$(*dq*4FtH3gz@OxpMHbahHvZcFZzPd3<^;YQP^rqtSp=m^nG6M~kQz z0t4&TnWhB>Q=F7iU$QA;@$+3JpNSZt+`hC)6Dhkog2&{GJhSk=vTI45 z%}ftZdmv(kuU@Gv(!i6g4Gf~eP~>>B+cz-cYXa8zJ$$Qi9N}}*-8**lg#{&aI|;cw zNMsWsPfhsm;Z*5@K*OgxFq+|1D z5an{f{T|2nf^)kF-tUn9lNU*LNQ)#HyK>>y%OE9!fuN?Xh%Lr!)22;Lv$RWQW?5}* zdip6!CQnb^_!zZUAz%Bx#J^jKeVDthU74JWpDuaI0-Ph-`7H-cOR!#)B1E9syS0Ute4^35%@smW9z1{%xMEvDhn>KMR4WUAgv zKte`n3`(Ygi|^pUgTNY90TbX$9noU0kkrjwU2_Bk1mwKN&XcKWh5zPV=yu$#t*sz4 zZ0T2swc|#lugq%U^$p+Kcx`+-t_hTBC=XLN2^zy1^!D;ZI*L$H z&%8mODs8W(P~6F#>CS-caAX>w4<*?2K-s5iFn0Dpmy{e=aA@2J8)@c%G3H&(%*`i& zJ><%YuDgxX1hTpeWc;fET5a0W%4#T9Oq&3XhOn|U7bVWk%g5q{t0IE9<__>6t*F@l zAw?N4fAXXyN^Zim(E2MFQ`vwydBFH%7s9*5BQ{_;nz<~UiWO1T;VuBUKSiPh?OKjf z81}HRu)vK{D?!gx19v<4-09OL(q}-x?tq>^D)n>+WZ({_tL{zVTpV-}R|In=X$<_I zk3fo)sq;`@rJ{xu>Zn}wv3SGkEAJmx0g~?L656mKIXiU?GGiFd6iha{K;WaJWpK9ejD5)8 E06{3pG5`Po literal 0 HcmV?d00001 diff --git a/labworks/LW3/6.png b/labworks/LW3/6.png new file mode 100644 index 0000000000000000000000000000000000000000..3932fc7ac59db4ee064019fedebebf07d10376e0 GIT binary patch literal 6901 zcmd5>c|4T+{(lBXj$M>OxKTokj)cM}gd}@q85+ux7|YnkTFP387RgeSogw?4C|Sq8 z4?>8L7{iR=ey4M9=bqQO=iK}2{_}fYuVL`a^L(H0=ks1ZZ{hkEG})N>m>~#a)7DZq zgdo^6@JeE01ivxv&X54#PGU4JV~o(Y7%!CDHAokQak+uU+;FfK_Ppli?tpfdl|CjT zEpt@Z9)odlKM99BeLq7Q?Pdpm;C9&!T;*pMEmL<0;y}?}uuMdT0|fD*wAD`=dnYau z0?(U}s7))pW;MfmrPXe;?AcS&_j3F4%mXfSTQRO7>#c_x$eqsgu8D#tm8JZx^Ej#c zimQ&53Iw6ZTvMt+TvnE;*3n0frO)qOv}rqWkm2yz*L}Brxmfr%{B~q&#>be4eQO@e zlgNIeV)uRVp_Fy+hMtBR0mDT13lPNm3e`^!L4tY=Owg5E5DYrcDGUYuOveDpoDPDZ z!%UpeYX%q{6z}~88w6iiSm+@x3_MIo$bRsEXTcSMxZFCjii(UXDk}I++?ZHR{2TAH zg#nx-9FE7bLa#-xJ2-TeyG}7y2fp`bk(QI|!!kgstV*93d`9Vt?eK!Si3$d3XYU!F zK7CVVdt(Y$9EGlesk(U&4y=|l%zgRLF#PITWU13gx}M6WdXa6rp|*Co^JqC&bSOO} zdXRUQ`)r5D$B!SMNBjEvBAuP{b8>V2=7v>;CqxTr$DxhAObmh>M3oskRj;MduFch1 z6AKH0N~ggBl!UbOMI@5oPa&~WJYgPJsdov3PWcoRFL0bB* z6}#U&k}@y0ZRhh}Fdy$8t#BuEhuaUHVn?p82lAmL%Xq{fiS1Onb~j<>1iDcJM_i-peh7$ z|EGcr|Nl8Dxj+yKcU&AU;le#paJ6omRh_)<>>TCY{#-5epk)t%aA1Y6QONEG7c702 z`QgKd8YRxlV>QQ;8N3xz@VqMt$STjbsNG5u9YOy5tW>X~3kA8jiZ^iUDRK3&+<}6cG{GsAZXYAu+}-6Ix`y(KuC7Qt~4at7dL#X_>1@ z2eF<$#-Z=vkQMMHSjc{+?TLiAc-Q#$y1WMlGe;$jFMI9$)||T+?n988{^!-=@suuWk%>qSU3d_BUF0m+`D(LrMWqrqy~d_Yqim@kr!~S%cPu& z3e%mfSwzW=pm4k#A--XO&$T^~bR za-r3&+7>iMq0m*R%i=PIvc6a-#1N$Ty=vdM>;HKD9F*Ap6ui8Bw28Sn|4Kr3c6K}- zCVb45@eicUL^XVHI#SIS+8`D^}eSw($?3pUKDK-Do zr%whl`&dUHs2QFP18oo|dd0l{fil%JrAi;E9exMz4Sjc#fMqvoEWT4!?wYe%{DSN#)GgHvYy1y2HB?e$ANyXnRk{5mvxDG=@L(J#F!U75?K+b~)4+^A)(ZE#2UTTER&(C+~ znic`ClMEx77Te!9GdEWosSn;IZ*745y)2ht^zW_KBW> zzU&L5j1-9JCcJ2CJ1=+q_?mBB)0Baknb{yCq!r-G(OKd+02ZYCaeBIu0@nMp=p?!x zh=}Cp8|hhD+PrW}b{9jTx? z+mY0x1FzvBZ>$cW0XL=9_>$(kU+R!oQ+9FzssOiL|M2Dx`6E0~Ji3XyDhmev41cRQ zn;W{3dPU|4ZopCboy{R-W#w#-uC1VzE66<}36cKiVgcbU3ey8gjquj})>S8*hIv-_ z#496jv-j6IX=rFPI(jY+?+MlZB6Cx9;wEmvT}t8KI^RF(*WcUYuua_b*~#!3iPqR+ zpzdJ<>b@Q`S{m*p4%#%U@=2h-6g@83S81Og6Rco1maMu4IdaAo4 z*Xf>1Udq2qD@0!2J#Sq=nr*W|Y~P<&T^*L4o77nV6uG%arI3}zL?RJI!FYM) zR99Qryt~`gqld`bBY82irbankjUL)o+TGh!3XzBlMA~&Ec9qpp7YB9OAuappH9nw6F{0P5Ue${2NI~GL zyq2@e%N2_8#ST3*ApzcvNKwRMu{^Ad4JQD)BTuUO`}+?UJH*YjKg|GQtrH8h@wnTx z*2|2H(8Z@oNqMEEr2z=NYu8>@TcYh-TU#SNMIlwX@RO=ws;Ttbe8qm?-4ngH6+*uQ^2Af6saTuu6$ zH)qCRyC5cRgP`>#f~0l=A~0ZZkwRMLK)TO^?M(t)mQE{YMusL(7IK5oHfJ0P1~rTP z9@LC7)5aGso~@p-Lr_cw4u>ZlIOPer_*aAH%EiR+;L)QK6I2T@(ER1x`d2-lO1_sF z^r90t5!Tok&TXTjc`)Im$Mr_Xi+N^%7s!`r_K&Y_Ty&karqxC;CyOoY;oYu z_8|MMc%YxDv1=`oIQ8oEiVDT-rZ-cOKaSZuQ3p=#?W+vu7JG+bZ?ps;GhQe!IKoK( zU9SFWu>a!*h4aiN770#9-l~5FYE0Y*1!)3|{JP(Xuzy4Z;bC;frlwhn?lVW^rW7YwLlTylma4&X9ot#kL#!RV3GiErU44bjt6N8DP>Wvk3=F-6yR1b zhv_O@f|oGT{Rcx^uD5*%C2u}`UIG^TaFG6 zJ`(|Qa&i}99qsMsNZU(G&b&+vXUuhUA~#Rl&<@|VMHDPzPVO1r>GuHLwPdcZFRXpt z-oA6XIc~XX{9lpDBRrdE>ANU*KpAUXQc}`_#|O?O0DEyR*3Hc=m5&pONj%7`@8eU! zE}-yiswr9$Y`T+^Q>-X%Ag3!$GpDf7fW}{>T9Wd;{jz7lV|4@0F)=oN0Z8)QM>quH zh5OY@X|P&+S>R5CjHA;{b*w?l?bTe%W*5^hV zYS-P58A7TSF5v6y81;V+#6L1x{YAj^$3Fa)LLHl?n+DwogE;9qC|H$gy56B72W2`) zm{D+@sPvYt&?pMTD9E}1WL8$zIc@EqtKj=s0cGidu>o+BY(l4C(+9z*24#UzUj=p& z>z%2IL?b)94B9w;WAOE?q8{tyd8_6ERKsyVqPv#j9z9yWjHp*>axD*?a^d*(v;9r= z3q%!6%HK%9BfOrvNqY=Y;~*u$Xpl`Ej&8D1ju8KT3m1VU?H5xr(_^{`hE($h||X{9?cX zCdk@F85$XZcQ0S+JkACibt46I?8C>89oyoMVL{YYV*QpG1XldI0zy_F6@V$(shw2= z&EC~W)d_{NfVv*SD4UJLgp^FdAp zGP>?$WnXelAb>M=Hp#0PJ+6|Z?0Zp9nfTz`xpTb)g7W*gcLNPk!J<-T#YaAGx_+6c zKbH*S}(9WQ9Chp4n z6d0kxU6V#&uCA_grKpCGtn%{9U?L8Q8!G=pD3ndqN(aeLZ-4*Z^{p@18i^xEypN^` z(fFXHr5nsZC8!2QLbXp1_C+}}16}NkyLVZ&yTObJ2$fJU+wiLo*?1A4;px;$4P&c_ydN->krI$SHfH(H5j>9;@tidpI&$QQzKO}h^b1MZ z{rwjg2Mg8UwHv9@R<*gky~YbG=Zi~9v<>U<(fDOwi=$@6TA&P<0s?CJ`1y&zu3Laf zCOapm2gJ5{O_3F#+i0UTC|(bsr13y2TrD~K!_|GvG@&N1 z-rX;I+pw}T`{n<%m>Ru?8ODEyjN{PQOU&T2z>l8HAO{5+9_bo zaz0jjIf)V9rCo;-QNr{cHazijP*MnA^S$|hX5*V5A)aK|fWgoH3I7_|9q3ruXf z)@jEb7MGQk6;Bc3mv`<3n!DDeDRhTQ-kXBYIOVmJnU*GUW9O>B3M)o{Y((RGwfRk% zX?mLJYX?RPNXPRLFrgb88KnWM)X@C-x9qJ@@a=i9o4~dWu8Qnqo&P*k6ir>78ZL3H z^jWnvR7NDa50|^9f#%HyL!meVf%v>VRAlGa7{-OdhyLo^%9b}9 zOso>FjQ}B>Vsz6KNU}!jwu$hv04nxza`F-|qX5Uoh|Oj_3n!;M$LrVKb~c(279cfh zZEM5GJC7C!O68wCb&7C@g?ALZ5=BWP=`C?Uj>G_rE~ z(NWXMudAyByA*$0C7&D0a|#$w&&mO-KmverMSA*S5=crb(E+PZmxk<8JO~6re_B%; z@Pvs23m%|)`6VTC#h_JB73%>O;ztBjpYoW005&#J^5{_vu%#hJO=AsFYHDi1BOp+r z{eiaZrf4CrxWl?`K+xXBg#zYMoE=>b-0_tMwp<=;y}Z|wg%_Zfh5L+zmWPr^z@Gey zZZCXip4g4jeg>B#UUnscQYvbboE-aeT{{TAlI!N^nvbuFijtb9T)~*^0w$AEwWj*u zsD{OnG6J9{0!TdxVO%1kw}0jyt@K!kT|ziesnkOiR0=6{eG>#qqtO9tBBT7cbnMZ%8_ijVjehDQU1_E*EeDLph5QuvK#qU-04RBoL+AF`+VTEqS zW85fHXyD=1ijvveTdQ_l)+XapTZfFnT=O~Yl~av}au#gt>Dxttx$lAQE%gjAY5Ac{ zqR{AR7XhOZwsGA&bBW4yOr2${+pEN<$3``)s*vO(-5`_34-Uxr|N5ZP_8L=D$f3j8 zfJT-Aac=G>CX2k^vWW|MQ$yiCAMhkQC%gESpOnwR*X+G}-kD#Q*5>BJhQ~O7Q;3T! zIHcn_oUx87gh2SHLaIZmkQpUJg(x}!Q9b?x8b%TTgen&S_#jOnrTiZ9(mmjQ!F`~L z3O?HKBydWa9w_GL1rhh;dBG=6yr38bNQoGRU-V9Z&Zlrl#1n@9^b|?+xsQ9l6pzj2 zmaQPKC|;UsN&kL&0#S?O1zX2*iiV^@cy=kX$jKCN3_V03?DMA3WHsvzHHc*ACMm`9 zI)i)NHYHAC2rrMTrf|Rih(LO9{r22b;@)0;>i5KXcjxtyu-f5;iGE_BkHf0ZzMn`p zCShx9aAn4=fIzx{y90R_SstmE-VDh)_;Y2du_j{KeL&GLEZ{I!Ug=21Xa5H=a5qQl zvVFzSNdSBkV<>`~tnMKI?}?B5Hi8gkxP>I(0#0!04H#`vawb1H37D>JEe`bgCVvJu zc$Q=YK0Y#%K6Tdr!zx2$jzzmlYZ2T4s~P5VejAMAD(HPdBxo z*`gg9V=ce?>9rTBK-!qOEIfZms^zl6HD)g^v-*a0r#t2Nr#Cl$QP>O#s#)(}s#`QQ z+FU8yIT)@kB&;%*TS}Kk6|^$Um!v2f8q7j=ZPRSmj~Vq2k9T(Oppny@N=NFGzKgk& z1v`i8db+RIa4ZQXSw*d{d7d%qvV7Cc(l;>A3CN32xGlru)$k=MHQD{A_95zvtoN?B zozo{DPhrUWBERRGZ9V=sUGWkp&NA{X&8FU#dM&P38kJqAGPZf6PWoD=xy1v!-OBVw zTf@)MXb*%r%LWdLrPK?FXjh%*myirPdS?<1P!D)?tm^6GG4n$|BGk=fspN-0YIafT zL%OEkQQi5@VR@G1JwxI3{YZPO?I8W4178W8WjzC^bZ6=JoHYeKC11%JN#yt$1E-Ug z6M2G*wzCZN5|pI};iut(&)0{ySL@=8(;K+Yffc(4Mvd$CR~|pJdgMJeJG74U4s6bR zHXFtBY$B?3IIK^9c)F3h&c-|jX#dFvm~uBHVP@3UW9Gv34kEhWD{c`w#s0Kz=g4DX~%1yI5RO+86~hvycG5mgQjR+Uh`efn^$mN=$w}qgvJ|(BM9m;p zRuBbAy9>GTK}ksuNJAIEyS2TLaIK~&fKfTgG$Vz`OHL{(R zA3T}GzH&HUwKu<6x}-LBk!yB_UwG^t8k|%f(s-@MdYW&F8_&^lKm_6>R*A{nX2%$4 zCfd-dQT_}_ncAxeNjvL9{WaY9qsZjay%}aym0Bnt=6DZO1n45JOuQH zzCvw7(>uY(K@SFJu%{iMc0 zT7`>Gu_w)Z3&KqNBIJ{9lmM4z0yN{v#4Eupb0FbjlVBH0Y5nby;rH$Xf(-YOMENZ4>EhECUXy4s3_B??Oa@0p#Cy zdk^b#Md|A8(-4qY&4gAu^|@IBEYi3?j~hhQVmR3O&8&+IE&JPx;zRGBxJB+21AEXM zuCGx*tII8FM?GlVL6e_cVb6Q~ZbkCpuKH7cFf@tV@KQqF)~e7oCKy*LCq2(ONhfC#onBX$a)4}ZG z)v&M2LdT*7hd);O$@OnKE3qU048M+2c+dX;xn{u`YS6j8as{oA@HanPg)v&y0REg( z35M`fo5O$YER7u3O#yc5;_6iLDG;^cpA5FYNsJUuARO;KD25-D8!NM3m#*hDE-r0J z2rm8n5;fpP4+EtgjHd5kG(GV*nlb>zTz{jf2QRpS_y?NC!DxE&Z#3n^87uq^*t4q8 zIK@8z``k%rm_Y+@3KZg`K{&FAfl`;p7MCd;sl>n`w9h`nkzwt+BRHrY%myF84kNhq zKcCK>53*~b@XKTPwHG;-(L4N_Y*Z0?S5c6jT5L7FX7$Z(=%}7NHL>@#LtwOX zwdDCu%T|8PBwxpr@kAJ^gZr~dGgq1$0>XS)N49k+zfEN0d);`{rNWgw?c&Vuw6TG; zp6vUwghyt3Q>A!7m9lbGEqZR(w4lC`1wXgp_*MUpn$V*;^Xn4{C8r>79Tyd}&E^_? z)$Ug0c>QX1#{7?h=I2BH9u_M<<#}{R#(I_YlIIx3xpBtaq55F~?>j+4-jv1l^Hx^Z z75pCBQda`@`66@n?T$M=Qy8c7Z)t73ueuz%Xt*dh@fRlBIzequ#fg9%1ru7*)v+Ub zq%4|YwN`Ifqqio$>06iLATQ&qd?=~JcA!9Moo#33wzJOZ5v;^W!PL>O{PFyN;5~sD zllFkgKVRqM>|o13YWlu~IM86awG0|`8{QuBs@fgS%Fu;;bB?aNd~-~+U4AZ3->An^ zv+=%k#@FjGc)~@B>G?x%clee_UC`2UuLb1p=MCB(t@~#EaTtb6&^Gy+8yFg6T>~?< zq=!00*0USfa22<>Poi3o&8fi~Op^Oj_XpYWgQLrD8t8S1z)(7rA+&7%p1>OW$-BZD zEtd89XJ@RX_~$2MhSzewB?<9NTxDQ74&`XdK22=LBxceL92f520rNa!eMb@-xCgb{~lhty(b$Wtnl3KI(R09$}tVlrx4#=Fr&uLhH1zmn$lhR#RC+O5@Njh+FhVQh)0d7!A)wMXoAI3^{n zSiLjpCgGJP9{3sZP>4b$})&+J!0z8#FHWE<@|%iq(?$|n zk5aLPmB25IN%(g0oP8NEY42n>4GF~Eu>+x~(`q++CBT!VeS!R42Ue&1ue+hZn5cdc z06aeKa7`0;H-cDDSl32Y0VFs>L@QAVYC_+selYvot5LL4CIA$&Cb|N5&+7tR*wjqX zHEZ(Q4*{BUdwerzBX_)EtdAFo+M`QFgZTksCjk5{w1RS@Cf&)p=_WqZhnsBrX0ovW z2<+KX2}&6VeV;&sR0_wPg||22(O`gfGqvNxU4ADV(8Umy^?aqU9B3z!{4JV+a@-)S zZNSHg7_=ri6HunYssc_v_W=GhA*9MN`N3&xrF7Z0)e|S4cx4XCfxew$vVvW7buU{o zNmp807TLFyE~ms`%575?c>lzo&Q~Wub$@Dff}E)U+vF)Cs)keVW5F;8T{&4SWSwok z``0Bp^n%O_H%6L=7yK5j^`R`UHuzrjXoBmB)%yZ>mMiL(Rfx3|(a;>vF(ax?z~QxZ zt-q;%J-run?KBRFX4YKa_zo3Ld}`p|8NMBOc(Jzu<@qAxHcLd0=su2^@su{`9JntO; zJ|i{gQ=-eDq1l0V#!v6e0(s9rN(9hAm*QkWsj!S)8-G_XdR@cDH|H0*+I7(PQ%W+> z7_T&`B@nPtL0*`wB_}i z7N54LmS5$;3SkDwDeh*$Vl#p?Ebs^&TF*b0>%}rDeK=zabkWy=10yy>_hskx46G>FU(+n^B`9 zQ{DZ^iJT#y`$VUNXaB(-_$Pkymyb~ORVL%`PbDD`iGsB_0|ru^<^4?tP~h)4f9v#r zhWh_Gv-ls67-kcdVJ{q3^@k~}rY;60rU%L@X@4vgz&giFF;cPef!L*ybo~=qyL7T)sj9^;|AT8n{s8kcHOSj7JuOhE}1g98HOJ1pS?Nv z$vM#c@&dQ zQWI8xm^_A;ul16sXL@j!8j|J==~H=qY0*cwgeRn-IW#n^0}rK;mYoH0M!kKBJJIZ> zxiS2A5ITtfvlyRIIt~g3-Z9~$&yQcSNydLGs|@IH0knE+7%m0cbmuG3SoH11t8+W( z@C#dXqq<`LJ~S!+=1?$Lkj70yC6d7c;EdR~Ghmt0x>#*G?~eje)$6 z>&Jg{AwtG_AM>sRS+KNkn6A}znF4USVhfP{VBoasKqkc)XhDw*Ensf<`P8y+^FiGB z2Ycdne>n?Ci&9H{-8Vw#R35D-C@(WO*hQbvu-SR)d^b|_HZQrn@`cj;nevXpm9B@K zHhG|anR%_3Ou%^Cr5iKHxr z{^5@``j3hL@^Qur(7m~B?h@vZ+NkQH9P(K#!**pmi>(=XsiI|Whf4>9dJQ?5@-9jj zMp5~n=loPXhV6L0rwT<%sYAZam7@tfD5;*nZ{p@E)Zk#a=EF{!RBqp%?>V*{P!e4a z1_E>`KiV+c0m%thlrHEg24Z&NdNK-RY1q1A2A70ytJK-nZr*tGg8h;w5f%7|HG@~O zn98Ym2H8GTxbLgZU$_W{-u%G3p#yO^XK?2aK)m3Nu5>5nemKx&{Ip#VLZQ`^8=Ipx zdv_1eOrm%}uL+VBOFeeEa;BB`A43+Ojc{frDnIU(tet$H(R8 z3r>sTAe--;v=Z7jbGXxqETANF?QQ3E1XQ`M3N5_TdJu^>J|~A-Pc&CiHk$*!HJy=L z4|_t_so*XLnLHkay0H-V+dh?bvY5@4PWl}WCfvdere95_gY~8Wh#KHQUr7&8x1Qn# zQJ;3P%1Rl2oM89WJu%e_Fi(L~qVJXO<}NC6{KD}-`|=(?UK2{eMRSwwt@V*S;iq|_ zN@X~TLM@XBIWU+;JQ5QFzv(*j`AiBQxMt2R$fawyZbSSB_@Cu}fzcvh20gbE6R(Ja z;`PiZO;@?cFZ7BN0S^XaqZY;A^fb*1+Jmv)D_*8qfzb>4o{3f#EWRnO4dql$%9`Fx zeQ$A$Z==_oN_%=8QQL9+fMslcjx0mJ0K8-*kmUG?*8<~q`Rag{CHNjNJ5LU|Tyik> z^QXQSbdV!f+BxLn{TuJA43nbTXXLQdpf*aL{9Zn^Ue8}%T*EU{qa@6%kB^l2_Hqm1 zItoKpUdwzM4wMT{ka8=3k!7aISM=Oi&Q!jo0VNG;$ai8ib!vh108A*Z_Xo4eqF6|k`}|9@4jD16O;wFYL{e`MbS*q;Y1hf2Z@A*E;Y1(> zXm*8<)_Y*ol7~Rj;SHGGUP5EvsAfD$1iTc(X1DpDs?bXY7P+|oe790{0;;?c>Zg>I z*{EHK218v-GbYHnqQoLd? z6Y>|<{0h`?IXsFFRH=`IkywRj%jo)S>Z7GC0SHe?FPX7;n?%+WCzIay z^E~uX2zoB4y=VS`>%0}CnQbPpqNo4TeJCTDNP-phK{o%J+K?8B@FN6rB(;7O)A}ZV$)L^$GO$GBSRI4nUeG+CM z6NVWHZuW!SWzwMJ0P>tqE;L7ldGxL}m+M^Bv`x$40#^+_FnaeR5o5s03$9?A)Cf7dn*Z6&nzBy6uRZ%{>&V;sM_BR2xGZpVaFz#ehEtAaFBvF zwOmw`u4fob)^!0+JLIsD$aopK>ZYZ^4-=an3R4FnuCk;3HIp*TW%(~7Ct)Wu2`JVekYLYd)rfDf$Klg{{dnD7P&?8d1tJ9~?v$TeCu$pJW+w}9 zE9LFK`-jZebmI4doS%x+Rk)MO*-bCm%%L3nqMQ348EVKNk%tXaat_Rx9|%y(JPZuVj?oL0g=1x5{5w<60vC=49kB; zBmWQ3+dK(a>m;%Y2t#%P?)}4aFq@md4_F}U0yH^(EBxb=-P%|vaIuPx0H}+K#IiGZ zwuWe6p45nER=To+5N@-BM&BXZ@KX&IqVYW<8uTx4VWIV;(9<7iVcI~zL0k+9*Cz~Y z!5B2SRv!x55J_;25t0_fGrpxh1Df&hf~k@5qUk63_5d&~F^TRiy)_5K(my}#^(dn7 z9m<#}GR$unz?EsflQ(30@EVO;n7JGfA#} z1OI|5H?~VnES!)|OZ-g{#7{DFXTe`D(w-pvEV$y0!WRK=%1gmXYkrNY%5- zY1M33p5bZkcxccYKa~j3BC}m@O7Mbg5y?3}#%(n0t#M)niTN-PkA#y<boIw| z8(yw)R9xOlV&@U3c9FUUNvEf3%g{7UR!71PbuJg|V~a*=!VdNwy8mN~`(J{nNSyJe z!xGO?uET-LNJNh1ang(BU#5o&rdammZQYRL6IR&W+m}}S+`{xnskI7}o>~59y87Si z^P}Mtcek%^@e2NKTtFb6zy&)=&< zf;C(qPnSu91g>y7!9pxq-ZNBy^6V+Uy+4D*m^Wwxgx#9-#s&L{kG1ye?>PCs*xp<} z@>rjKSNU0y9uE033%~GJx6T({OK?`qb;R#(&{r*|#-))YZ81w<>&KDR_SR0O9Is1! zTa@)1ir6(LaF$xtBJ0~}Ub&0rl8Yi|`NU`^FI|hqos-v-;GS7KyU8_Cql9ARy!yjf zZr8KY${+)7sW`(S2G%vV?Cv4-9volRRiNlMhwK#6#^yd9+!;zxIAf{&xCt&u??4?r z4nwQ)J6VLuFc~F}EqNp697eh9#jMKbZfwO$v^REhAy28Zxx5N3)szD2NhCd#x>+zr z4Z79AVDs%_#*qt^>CcPl7n?PQkCZytgn2R+{tU-KfIOaMegccFTq@y#2mROxnp4>S zR%+oCeQ)aPVYM*vUMAiAM>aC>E`^`#SsJwYy^Lo0%GCSeyAGpkfn2&^NM3dBmXH01 zWj!wQy%J^P+pK9MVrTddms7D>!G;;WJae)DK< zjv4nlcbAoZ2`}-acnPE4*P@2Pme8ggKd0bF^pJA9CwzrEFR4Rm{_N50A3{83SHCD~ zX(Ped*fS4x2v!UM74as$J(Ulhmv*IMD5*d*%fgXUy2vqnd5;;b`x_txB2?X8aJbpm>pBhT=p zMqfjL4}(RhnBnKY113mq8dzh&K@caZwniAe>&fz-jVWs8j~--CV(R2*N9yjyAMCME z+p?k(ip!-L0JpT))2~8#ySN7e20DW+QDhn;X^~0p=BIeq8s@4*8dkP)R2_|hy!W}P z+nYCa7B%|U29ysDeyGS0%ig+^t&L1`EuAKAcyoA8z+;}{5CHF-j0NtCK+(g`cNP;u!bqy3$6Ev?p|)m zsgJEbz34x+7Vs-p)IK2A(o$qj0@e6_zt_^hEO3x5k2YYH=lRuFN0yJ35r`M3G(lQX z{_$73FfzskOvoHopFh^czYXbM`5Kr7aFj2#3GL!s*ETN9?fW$DFM!IYQE%tfbF2>D zf0@hFZK{%4uupF(_iA3r7@55l$VvrDY*c^kxevQZL(8i)0SLsKa~JiY&YjWv=4f)< z<1lVgS=^-Eiq&&LXZ2%e``yK3+8xMS_h_8;Xj}|ud@x$!ewX2RrS#O{UCifzwdS_h z2Nu|86XC(WC=s4x&WCQYqvd*q;x5L1fr@UgNI$%^wjsvP=Q!~EU7c|$XfeaHP*SM* zs8-~+4xd+p=uWf8mOL6!W8M26={RLJ$%U0q2R9ncchA3bste@IzA?Zz5ul|01y84B zl6W=5!sZh_qAXh!13A3n*wr%in^j4x$f!<=WIIRJ()~Cw|EqNKyWh*`dt)Kd!MOR` zd2gC09olVfEuID5r6y}uZ6}OK6Iq)}B^G;q+#4(zN9?qhRC^32QhV-{(DN@Ok$#=1 z{ju+6f^n2C(uT}8g>i;EA@UdOf1LMDm|N{$qq+X8>GRhE3k61}gzQ6P9dC0Yi_^3F z*!=I3hiE>f{#R7s;G(ODN&~mD8yK-IQ0RLTWr#qO?ZFY(Z{=IVZl33IKvZA*L*^bW zvv~j48cBd!QC{DRlcU!_Zy~g)N8=!4@wzWzU2@C&c-3xXAywP>$Brr0_1`{0`B>o+%QisCSX}eS4@r!@h_cQJ7VIeu5Y zgp{XK3M^Pf^v2cbQvu=C?{3#)iDy*YI=dh?K5@<9I+_H|u`RWFV482at<&hwqZ0bv zIti4)kL^X1iZ2KH-!t_}5^_JyI&CH{3ch4sBa$=@-9%IsA=0wPyHYXeV=;(M7DFIz z_@oGeU6<X}r6aabt45T60Bl1W%e@Nt^Q{2( ze0_k%L9wj1uQ(H5mIfy3>u2}#A>(l|i5Gtp?k%HuU~45KJC+qJvKc6TsBLH#F9$eT zok4++xkXzYHX3g6_?VWjW9&V|YUh{)?AoeFxD+oX={OUMH|!Qyla=?{wL}J zy+tC)+_LFqo2@5}7a^|`iDv6s)37nWmA9*3{L395lWJiSE5=BCb|`s;xF!* z@XTW%<(}rVc+4905iRn%U!%x2+_1DLByS}YXZr*wpRO32D_V9ui8D46%pKw!7Zz+= zMRn6c0)k+0T09T);KByJo=?uGB4*X_9AzqxfqXEy)0K4_k9ofpM0Z7|UMpfn4w>t@ z3VPb(mXmeP8`Qv8A;TJ?ifl!LPbm3NRVZM9`2%C*I6Olb0H*=iQ$*>OS*od3;Jl($ zSsOggBiyO)0b=LienBlpkNLk{IFn35X|NueJQqQDIiDZ<+{OE zARuAzLUAX^^4k@^@em2I%X60DFg3kJ(+UXhVbtc|2h%MJAz@zvyGI8eaMe)|YLZev zE~;#x-h454DHVh|D2Mb@o*qU7!j$Bj{S&|^%-Rc_$r1V{AF_Y_`(0067{_oomHG%#Fr1`qu7jnl=NUOguC`?u}03^G8NWifAKQ_v=-o_*X2()ULlxN;vk zLE_!2O;Ol9mdfCb&)^@ivkozYPb-w^HnunH)=WrtIN&0&7TmeBii%*q(A+#fSW~Q=?J}iu z?W*y$34xM$k~qHMaRoC4b2nES+`;DewMF*JuboL+yQg9Y^TdNp@wfT;iB|g=3E)iv z=`NS~>+LEfm{3KiLEfs71bJ(Myz+SQ2E!Mz(a$e5iBIg&6F83Drm+Soa-ne&J{adD zIR91BxKlw+Mob5K;5q+G zfLsI+Z*@2*{K1o)h7J)IzyryH+#>SEUySP`t+~uaE~iiNhU*xMmzGEs(j@}LS5xPo zpA+`9i*WJ>iZ4h_326HHM+lw#oyW4M;=r5HK;7oAy3Z~*4TDY~R5j>QNVSPQIAfN& zPVWykx0BS6r?5tFuY|V1s_ve-GYVYNQ6K`sGbvpPa@Fw|C~wpF6odvV01u-VaDjh5 zspd~~FKoMf-RsnX?sCmc+19$J$;2+<_#Ms1i-9`d-5f8ye z1gISmk@`{;Y&t=kCE0%ynS38g(#wd|7hntsF*Vuy3IW<@F5IqAO7#0IAWCa24315W zU9ru}8C4grrjLA{Z*q55B0%r9F<$Al znR%NfBy^$rw-UIT1e96+?4&BXrx{Q}_fUufo?Mb}dovZ_#7XAN^C`SYbrRO9Y;cO9 zgrrkq3VS{xLX>a)Mc+>TlLGx`0V{3=c}lQy(u74Z-3aTY+LY^$^3lj?zHXm)1%WWX z4A)JXD@&ejECs0X=`}BC22vf{V7;YN^$yfK;vQtQD4!5&C>7eLH1drXnAnfD{FO%Q zcL3?v-9XW;UB!E%Q4of28A#V^aVQ_&%! zcSk3p?J#akJcvY=3o-{{8{b!!Pdsc2+OKWkd~;g^&RG1y+Q?(YlU9ogNv95D$4;5- zUH5KK+BKnG0n9rtXVps=bWFeY=#m}cbm~Z7;A)f-h~aMQ@LN5PBGaw3W#aS&rR$k$ z_#}d^i?4@VMsnf1-=l*D77e>y3h*juba07{on8McFGC)^Zu(c`t?ivIkj1`JnTvcH zAg{G7YKx#$@GSOIp&?aY`e9Gt`a`(3!k8y7f1fw2aVje8gO?!y{wg>hcY`RM-#qh5 z<03^ao%s73wf@r91rFls134%8aE}ZULRwvqZ|E^Qt?lp0j0P+Ru2-m-BnlU+yzICq zGrPr7Ck>uM(P~gRb}Dmc-xh4&{`|pdV0)=86t`y%c_Kg6z)bqh{KZ0GOdmz|PMp5- zrAudyzsnnAS8FQ{YPab{6Y389lVTX91dQ15c2l0`+va!n3t9wX=v`JRTv$oIV_9p5 z%g(dym#YrT%fwEzA@QLUP#;k-3)rQ}IGU8VUbA1C>snQqGpAYMBJ@+7_)UIp&BOB6 zF+%f~PLMqS;xaI&ub4w~(m^-?ualk`CJOFuYb$)2hJbk`(yP*$+4IgD?Qo}@#N7** z9NC|Xg4HhTE~zbOtZ#^*n(#=>^2$Y zlp|E3#ou|P!rH|*UkN}aNSH(Z4j%SZO0LGE#Vw-VQuEe`JAe>|I()HfxxKSMj!GO9 zExqx!i*NCE|YDxw2zR0o*FM@1+cbZ*j8oXsaz(L?;@C=6=RTXXO-ex zAt7-deh_u?MZt4Zbu_I~mICsm_-D-bixO#xbno6UsL+I`g~`9L((b|zmHQ=Ch?O2r3lI5< zFW}{@-03M0Z$v0TGx#4n1}ddhu#ER**yK(i?p=lrZ#cEUkNBT|^N?f4JT^AQM88 literal 0 HcmV?d00001 diff --git a/labworks/LW3/8.png b/labworks/LW3/8.png new file mode 100644 index 0000000000000000000000000000000000000000..a88cdf5d14f120bb75c04d4bac538e5ec39d87b8 GIT binary patch literal 124395 zcmbSy2T)VryRC|XNCyRJK_W$@_ZC2U2LYuhy>|$qg|4(9B~qjpF*HS*NQVFtdat1) z1PC2M?>zqZ-FxRhZ{D5xy*G2tB-xX5vL|QnZ>{fJ>x+7=rA+dO?$Mn)cSuxK6m;+0 z!K1r9IUeHQj)ayf>fF9acq$rt>bco^`dE0_+|jh~ba!_1bat?O=56Bvad2}LKTZ`R{M=xOv#|CV3co+}?%IUBw7;=MI_0zs|cwGKCIz?%uhhsv!Hu zH*@O>n&gZ&S|F3L`%zb4TsU)(l`pAcP{}G}1&1;&9BkAhfg*0 z`Eufs?>p5H7H?{x8|Aaq74nDPE#7x9vI*Qy$b`}z(21c5WISzNrrvGgJm{oOs>`dv z=Hl#Ue*T5$+pMNRX@9Z8jf*+>lTI+#r*AL*_aTLv-+A<(??3IAL`vKL*M||vp{%^l zW5s_RN!bW8y8pW7kRfpB_5U7!oR3`#jri|-DKiQE=eXj!_>R*2W5symT6ft`?cWTO zy_z=j0;tG4E8Y~pO-oHBpFtuAi>GfM+j3syz>Z}f3||*Ii`L_F&UD+JFGK)@c#LbG zjgF2=eb3x4X`iaJvvG9Xs87zl(ypU^KYXL`o9tz`{f%BVy-DboZR_V(Zt`Sw?Up(U z3V@(pyrqH^nUP15d)dw$c;LsU9bjk42Ve$FBKWn#BLC8z-ls2yDEiqqdvqClJ@=%h z?qvyNM~wBlTsCHePnM-ejkU4VYnz_qfKAFy+nY63 z`ZJMrKlI`eO8>BV#{+q>eFDRB4>Ie7Y#Tdatd|PFJLDAIb|d5$+ia+`B!Y_V#elcP zRF@1(r`>Bo->RX3pr$NdPVmhXhMl z@o0XTrbNvSN;wugKEc*{({H9~;rxJ0e!hKj6zHFv=(gR{{qHi@8QiHQ?W8JJ%x8L}kVp^n3^Mp95lil!IsxT$OZBjrR*`BGa zr7;>ozWF%Jlj(E0QXMG(6K)5WZ?rny8<+5&-p9djBDqaMb52LFd9S;oyY|Z%<|ajQ z29+kvoe`U(bEjX8%c?e8u5cqOy-I|FDR$2QjP#+t*1lmqlb2B*QhnfG^H71+=~j2C z2F$w>o|7hA3H?Sez28u+hn(y56Cazq?(#qLQrhLikyD@JVs{q_NY?*uj=|dnshJM2 zbT$7mk`iYz%seZk#aFHFwZq~`ZXAu$JP5@{x_Y?_L^*uuvtA1U>ULo?qZ8Z0)0u=C z$!W5Tsoh8$e?!+zHr`NIWqonqc#jj@_#(jNR6-Do7U&K<$d!4|3$gh#^W(TyHx658 zz$9eWI@x6=Sbi0u~WZq{U-eU*hUG|3R7gZL=;Z|C6!xU8XiPo9j1Z7-!Fb&phGqoQ!VvCIP@!<3Ymncwg7}?Ay}J zkt{-AusN?}_{xwuC$d(>Y$t#dWN+L6U~|Mb`0st}yhantX{gV2+*9Klgcq#kmcNHh z^kWQuL_^VSjmxOedZqp5kX24PdSS`uUef*hgbNarJkloO)Y+DmpK>^sb@o?mDzuIi zCE&InokN0TUG!D;lM8beW(+$`JhN*6_5ClNd*TXfl%52)eh$ggvkBObdFg8!UVSFy zU!mH(nzvSHezCEcEWhF=-gHBaJ$feY$GxBxh*_|Axo$*XOkj_OlF@iG746>1%{hy1 zT%(62MHzds(85sN@2NrD57*x7<{;PY2vwrvYIFq@F1JfDe>ZvBk#MgiGee_Q7GOgE zFfae%ieG44+TaqsGd;#TgY7Lv_h?PnC7{$m1sxfzxOhNKLHiWt#&)3CSkQmGe+0wK z-}seN3}lKwPwU%HKk5@4bXI3XJ~4dJ{0N5vTqaBW?mH@(`cpBvGvxoLDmWhle!?D* z+t+N*Ao<~lYtSr*k2^WiQ5G_q7^1mgLB> zbWSj)-W>axHoYi@vU>c>*R)!B234&CKk1_13GwywOwmyqRoX81olI8ecD_-fnqhNB z1PPhLBVh^-ml`74@0|ur#w+j{N0}g370W+Ft(xXuR(C!x&+Y(M(v8M81|I-Oq*t9B zic3zc8vy~&a#5CLzYP?&sXyC_fBCBH8c!{%C@EJ_+MtQ)Q#~N{DzM{XDG_smKu=ib z;|r%+>R8Cr7tY;-s3^epn;sLp-V$PNq@;WN<)qOz5W5sPTNgNf=hk9nckvRtbL#*d zbb&qVs^@4j`^*h$$31Vd`6wU@JvwB@>(@jy(m~qUptTqYoTe@rf5!XRr8#p`u%>|Y z`LVi=M$l`xGl8|I&Ntp8m9j`x_<`GLjL(g7XNjfBvGmqe1}t3K&8 ztzoGJi6FxH@0{K2MiP-`!q_hHO;v zF5hmQx$4}r6|OoHD94hRh|rJsvQP)r*(W%!p7ygSh~k)&Es`)rsKYxs&>`t;rjws` zCJDjrbk0gmQ)FUa&5{N-c6l^6Px#uph+k0Z$GyTib^mD+pJ2Mk zD3;$}oH(}U8)x0hQBUIKe2;202ih`;V2)NTVy5U>ft2A}t$zZD)_KUj+qhjdUK`|G z_ifZ>WX}_pX=-T5T~?Jz*#u-`4{I7%n1&_Gb*2(qt81*`_*dND{N@9+-HXYMMdSSUGqB(vX&-jHxbY@CvwHzu^`s@uqg-PmDe@1!fKs1NHatr$_E4F ze*a#KuGKH5&uOMUkNzL{)%n-|`|21d==*CSmCR>Yok^Vd-7dhH*wWv;8Fwa?cv=&B z;r8M526V!OGLs4vn8uZk(K=TwjKdt~qFJU)C#^SQcz^#vw}V%MhZwOrACBvj|>sdqS5EakcS z`sKH7In4_>JX3@NoA-uixr+qFaU@qiYYBBaafTNcVyb0u&{(eRH%z581l?1Z7ZMkZ zuD%VlTlMzkzfBG#%lY1wnOUU;2HHC>OQT)WvdTw0aNUGdlC8fSYW=NZ&_qfem0?wm zftVxF^J@|Y96iW-AB&cLQKK0>QFaD3=I!)J>+W+Vx`>ds-D-K)plwLadP+6g#gG7= zLR3ib`5w(b>*fn+f*zrw-U=R8VAvO{<{FOWE|;Q}V+XZ&QJNol2A2Xvg;0b`FLF6( zn-ZsoCU?xU@;|0fiX6;rXycSTev1fpchCATY&tnc1s_7@vBT%2csUL!H8*3H2enRvwLq!UT z?nG~%l|<7dN*}1AbMZ9sIXC{J0_m}nifuZ`+NOQN1V51XRY4ftn(na1L;`b@PgB&i zLW4S0*Lh3H>bd;*3j-kbsMa@JiGSi|lUepvg z`LVYXwz%0&)n0vWD@LsxMa{o0cQ(!x6h_i0QJT{}b(#_zq}#au`9wZ*sqZR0+S2qv zq_Jhyu~fmF(uh)w$z({?hm&60ZQBo*;+NNoBjw&N1|w3wa@v(hbW-d}0ZOn_hD_JQ zSR0GxaI8*t*nMqfk!ZRRPdb^=Cbxjcin=AKkiH{ZPj|~IQ^p=az3<;_r&Nb38$9P5 z?03)9Xa~RRnxXI}#YC+IS04jjBcno2E(*m*;10pTBVv*~$8~ZPS5JVzEYg7thn}1G zlX7l3A~P8uT5OA$R+p?CAm*_{oFwyrg9{V9wNA>gk_)(m2Ah)H1C?EVq8a{G)A>B_ z@F87BW#yXQ{#96jqLSA0Ewgz3GTnGWBs}bsg-T~RBPVX*y<+9myDTQ(?H{7c#c+hfZNGjFfXdDEtLEMxt{V@pFi0peIZ@5j{tlww94YY6vh6G=W(BZ zODF-ET%Y*Yfc;(EWPs z1L#gPveWs5Ls&GEJRZ!PY=N>3G|Ryk8-}X^(*YenNf#HUlR8;;dT`{PeSte=qRBR1 zP&~ulbGiWhO9IU2F(vvJA5YHB48I1j_v54RLh;B?5cw*$Soh3|YCY80(CuTav7{hN zXXhRGb8prB`F$S{Ld{&f0D z{lDy|Uwz>xqO)G2DC}Tv1hn)cAXe@XHX>IVQd;Y~!GI#YAS_z1%i`XTw+3xN0=N|w zsHxqh>FC=DH?#eBKb+#qkasGyUDo|J0OSvs&N+;Z}duaBq)??Djx(?h) zEE$9R6;l{a-^<)Y?J@XXO%-?wFYs*&Q~0BLq9=nhNDj_di85*Iwx!F1uD|6CDmZn_ z9W-yIWA^;4W{w?a@;QPh^P}yUZJTo+o^L5A#5Ma-E`>uc`z}EP!DQ0DGARG!9f2Oc z^t49e*?h)#dY$a-6@8I_kEbJwnFvLN9`!YD2h)0Da1#!QLM*pVHn=g}{*|6>?6&id z2gWT!pFBDP zKl&Ce%r1y2UW~{b83dDpze52_-eH42M-pjoDGzgX=x$a&N7T_S@(XZqA(~<5O}2EK zT)>3FdGkVdrq!vQae+Sr6VX1S>tjC#gn=gFyBz&>&lAi^O1>)>$hez^g|YD+>(+3P zDZ#)tQ77BVb5@`BwOQ5!)blA(1f+n7(;d+O0#t(!qV(ttn;m-UcD?ErBVcQ%1L@iB zP4~+=o+MQrWVmn3gq0dQGj1!b#yHiyJ^T{Enq@kHYu?-M-Fv4YjW_ROhWboIpB?hq zLkhLb%y|fZ<;<$FxE*pS7}11((-Jtq=BE2fbIvtm+IZlEG9K+>9|j7Tr-iZm%s&LP zIc-FS(jCKF8Lh~9MalOEZiz)i<%K*1<|edjZiaeuefs zjv^H#;)Ag;mE!igXM0EZj2K)Qh!mG5n2K3KUhD|=hzIkR*0_f9nI@JaM3?S>3={~iQDVv1mdODO~8 z=DU&7hgDBL8EiJCiNF4*x$f_bvTm1YaCwuG651j~g_-4`TCI6+_?i z2c4h4PFZK)S}o%yb(p6=#qv80ID+F{HS&`gRogXPi-#Y+E-+-o5fzUkke0Y z7EdOQYTWW1OGI%NaFJdw!I zo`kfr7cB4yj+G7pm;DdrHDOn;vsmExBysp>1NWFX`2}LGVN)3PXFKc*@h}zU*ej7Q z?bWpxlJoa*v7+C0F=IF@aIvutIuFD~3QCb~Cst|Ci!4P|J_;haG?qS|mbitg4wmnFv2{V0B7(_yg7aWGvClpEDOQ1;mu4fA~nE zn$w879e9I^(`jV4Hfu>i9x5VY^a|a1Xc_((zs)pT>Z5HO{61bDw}nUhv<1V;mNhR5`nMA>n?#B%F%jM7tav5N;+80!AFieFvRn|Iu3dchH+k zqMfbQvn*qwu7I2lx3i^7ZIX;~8EmxOSI27S-d*j!%~pHovrexaAM`JKKZ;EN0;jmH zU3~9ouIDeRUcQQ1b?saVGdkt64KKJWhFRh#T{y>w@g5`ASGV{z&*SK6kkh876UU&bu=})w zTAadQpK4XKl`~%359QS=m?iR1Rs3#XkE^!>wWc{FdJ>B#5}GJpi*ct^Kj?Eso;^g> z%ms0x0z6q-^&* z3!bg_?K23zvU2{AK*yFA>!Q~8TZP^_%=!f!DtLFAxaCp5w|iHfgN`=Y_ve*h9Wjd> zc!z6qC_3ouIe!yDZ_(Q!b8(5VC<3$GSoSz3`N}+4*BDE6O-g$OpKSLVBE=ZDN%&Rc z{0n-U_7Ee^3r2@#)}UMuS_!wg}8;`_KIv)xGI)SG}dyPF(ixB!6SD|KYGQb1B>G zjDB}&zv|sO4XsI0&_{?X5=MBfpuqKxNQ}bbgrV)A|J@qzKaf=H^Z>ChNcHpM^ht%S zO(`&-Rr2@O@9BgC!|!U;dKP@7tHjv79#r0!N^?S72i6&nr8ceWkD*CE52Uch|2%p; z0iRa=qc+iq$Zit)O~3TjG{QGZsPN0Lb+-!LqUcgxk2+el&u_)}BX?=WhGb0ng^L8C zYIjDJNnCx#TScfkP2AE;RA#@tEcw#slE%W#e-oRSUy^0+&~#hGo|eAuCo{spz?C16 zsmP$i_*oD34O4A^vPl7~>+g#=sYv`!n@gKWc;I3_jak@fwAp2Xj#4CuCOOb5Zgoq1%&~zVI)uu!yCOZdLig)tzB_A9`|a)oTX{#gv)6Mz z*2uZbUe#ZS3*t)bIC6J%^y{ykYVj{q8g1M)HZ(M>%ueAk`RE&VNlC-|EoWu9xHDE@ zAX8d1xRsPoD)wkKERaMkB2|6Qe%a%+CJKDWs;OzB`FncZ8RYQ&pVbes!{q@{`oCj^ zdt`KQLw4k_?--Z2I-SX_@?DemgiDZ=9`c;#nDZ5w&@d1Vq3+v_SxI7apo3q{6c+LHDCdiSX{VH)|Fdip6o@-T3z6+< zfqx(igJntt-dk!CO@3C2E|*E*e)UeXr+AoOcxP6`X}zt66RyNyM5){x$jd2)WlWnS z!gW1!3{_NUytk2DNXGc_bd7Lql_wcI;2h6$D~$EJJMbQU7TTe3_=|XmP3C(gAFCcH zK$rsp-KBNDe2Sr4DSzl-sx@Mo!h!AT;#)P6Q1lr>*4DqHccI^cqQtO5xE3#EBn9y?JSa=zGVA zwK*=+(D;gGPHBT?9BAZ2RwbBpeZ;|+Z(#&J#PXRyrlaCQcamMsnAgF~6EjW*udOUy6 zyn&-*1nssbLrrO3bgFbJ1=>51OFcD>p&Pv(d4?jJb)S5JxJE6=Z`J5ztVtLgtx(X@ zRfivt*KNffd+q zrNSAC+^frD(lD}}U_4YL>5fnj15?gNU(3gkP8C>S;agcU<#eH|_50iIANCnEw3tFp zzZkq`3ce=ZFc!xu>heV7HG8!|g{ni1C*t2Y)-?(6n>Jh==PFw{5}&BiP<$UX*2%9X zTSMJ*Obj{Z(T3V)*r+VbJS*|c@W`%BqK8G2`qOfCGQ9T=!+z=cCS5BV^(I1D$G-_8 zQ$2SUU7)>&&ng9a2j&uk$<4Dypc6?MbRH>vih`Au70_Zqx-&+h|Vbf}FD=&{;o1S4Z;@sb{2L0j$i{&QTNjAk(% zzOU>u7CFT+wrv~H9~k1Z(<$Xg!?S4GrY#M>xX4L$c(p}P6dg+`6h~w;wk`6$C~$ME zBIaxCw5Dk2(fsGfnZkv4*B|v3#U{SoK#S+VtTjpgc25cV!q_%;&mR@hNHx+35Bd8b z@XsSI0Kz@xMYFtsD>HIlE>joIW}A(SGSTf)fqp3rhquPn4~#C;5pHAErSTY(xR&C3 zkg;$dhepQve~g9+O>65m?HOeY|CRLFi8y844PZyXrO&g-X&|=OR4D_Tu8U6%8$IbZ z#iGwo@XwOf2*rt!2mNHSAQj|isnOJ%#hZZZ1M$1BMt zix7cJ`GwD}r#V&qb1~+@egN#f2BxxIsgocA)PtUGz2el1F74epGH`y}(NF!?p&(`C zw<-0fKGQ|*E7Dw+$B+R*o#Ma7Oz*{NY62O`BFSd$lZJDf)+HH7SbQc06~!I8&>cZf zDJUY(%|$|UDpHe~>T2u0(Dpuf^v zGGAWCC6;BigHQShws6A064$UC(}C_9uULK&ajj`5<~kKV>uJ3$ddgguRGhe zs_jYy>$Ba3E>dSW3yI7{^Q!GIwsli3vhnqnNf&n5t}cMMQB>UP{4pvqF_j*eGgwAj ziO#*1WQ>e$RiI(i@{NPeB483*xC4*dJl?dmD;<3sNbW(;aFS*%d}|dIHF_)E+;koc z%8-F;ltat@AIKaZtiAphR$`lK7MOL~8@(1zPC;nqcX#PZzV_s3?eY1ebe;_>h}T$V z7Sei^Urbw~hgT+?t`bK$CYFL9$vj}I^L)ENr_7EOl%aT7$fuC?K5$VShQUV$Ew6^2 z`r#i4!(ahN?NsDu+3m-gg%wv2@v)EEi9FyuSOu)hXZG?AsuNqWZCV%L<+g85f0zp# z`J(*%Y_}NvF(QYxA`|lw)7?!7V`r;qHm#5G--?C>+??Dpat`<<70Vc7o-t$1YqKsp zqvx(W^aK9qIe|C_n6~uQeN^;8D$`0nrp%J|N{mfG0slgs9NkMq4kyJxw-(^n$y4Ia zoM=G^|5LwN>J2b=u_RoHOSb&zqU(f4EkTRdEOF^h_2>uwv1H{6@g`F-2;ovV)tU=* zxm8r|a)9aF6b46LQli+kzWS&uEHhmpYRskXV?XW#S9PE(?KI5S`!xJHT0=@Qie@qc zxxk{iC;Wko;`_*OAv%{&S@-W=T%F{atxOgh?nYw=Eog<5p-IY}+NsZ}Y06!Iiy*OH z2&6CZn%cr>LbyqzBgae>KqA6#IU}AFzBv%Ow$ga>Y@X)wY$1KV_VLO`=*5+&d?SSB z92CdUTH(JXcAkv%CdR5z#FvNfs`~I@}BJ{2?Tq&TP4<$zq%Gtr0p`aYf6+cdk8Kt+2pbzhe=CcT$K^@X+~Ly^*%&6C>v zf}z)0XV6Tlh={(U;gbro!Tz+XLi$J#ig8E7&Rpih1{f>}zkI$r+-B9occE(&Q)<${ zyz?)B<}vGl$oNwqIC^5Q)OsvDxc@0KM`Zm%X>o6I2adcQ_&v-EuCv@w8O)NK+li)j zbhP6|>_}#{2Y%4YlXddy6KEu_`V$)H`{|m}F^{)t-{&S&8fWR9x!Y$-9s;ucAE?=NJIEZ`@Ar#}kX{Wb(JqmSP(4fBJ zsLt3vKbgP|8>;8@dA#l9ZxGo88jbb&4U0-2K0_f8|AJ;)WE6OM#?QL;KKL)@daDub z#}j%~`nG~sXv22?{=}<6u4HCu+#^3e>Tce6fb5*J?fpSng}iM|ECvPPGiv*lP9e z-jS6$KNa#T>`B5bqrjQ!3^QB^xt#9RVV`7NIh?Wf?q(C@o^Th7l-W_yD=8I86O%s@ zzv}Lam+1q zjcXvKXEg-{QZ7{{5q0!iAS0yoYD*X1%Qd$ilJ*3$0t zJk-_FbZDY!SG*`OKaGZ|cm2Xtkz3tgq0FuFmO4DJ54wbw1In$Kz619d-h>4W)S>#; zT=c=rvojCu>R!-Rn%$6IL;33hOa?mkz< zW6i>WEzCy)@u759PVhG8rQ*HfM%meF$-%NbqmC-si>5`Z`U)^uFrh!i- z?U7LN(;}ji#VRy3l@HrO;vXa6_*TFva+1cFNHelJ96MZO`SIJkCz=-ONiVb&^0ZdF z+l_>Dc;g*-doa*LGK52Q*4~wTw1~gG$k3Q+v3V1{m(Z8-&C~1f2avWop(tQzbip z_s9@m`W+X6J=+&hpquR?fpq(-5_$N&fw{Y^5D7)LW72*m-o{e_R4jEI6-7L(^bEz4 zZIDL1TtZ6saWs0eIe}7ZMPL${9c`66_YUCXd_7A&f%9_f;%Y2C^M~L(q{N^vn+7oH zs~fyB(W+d^>SDYyo;42mG6La&7S~+IHLH{Z8PSScWzQA4La}}n6f+$pM3!m+?{e># zt^-{GBe@FU`t}2rxj)hK`b*6K$!l0Z~~t z{a+VeWtEyK&%I}h^b??n?^2p`@g`reGQiapio^X*_>`IqCj`BI8IgH8!DVnDlzh_R za$O4lhY3A9X(F8VZXM%NmcN@w&+;L67K~CoUnf$GKW08eYP4t+z@#}O;%BI~@Gxk# zRn$VRd0pN|e)d_`k%9JQiB1PL`&tME@ls2j$mi718uJV^;^F52xN{H}1u8SH7AD{6Y!y8{T8IkOiNVJAS~8IVFE6J?Q-A8A4gnzOUKzp!1VKeBd4AuN(O^0uoh z`UeLP=vA4(jcD@VqfO;lD``J84~#u}tWauyL1(|Q&S;CiP8JA)7;%p>vha20Zh$pT6v9$*b_qOI4AEfZbMUykkwaBfMiR>PNmz2YYR)EGPLo z8i0$-1711f?|&J%fRy*ecr~;!VuP#hr4FCbt{#-V4D`x3sE4e_njfz?x40Mm;n$RY z+X4>z`%&w7i`LC4ye1K+yf^#2%-7TC?2lq8f>^^_p74r)W8YtCu>T zQb8)M-}tsuDv_7_Yj&U`@5Y6Kf?N-o?$cMX2V~b6rVo=pzOk9UD|?lyWx=SRFfBZ` zTH{z0#gr-+=#hRLC+$Vpd$}=uTg9@ijbSql(K!C$gF3D;SCkP09AGlvIm+2DkMRou#HLL&+Lzi)bgEjK#7w*Np&9p(DYoLZ7SRUNion^#JwY1O8Ic&4J4q)eJ3l}m6K{Qp`S4|| z?cRZvQKprm!UzEH{2};fl2SQb#C}Wav_n)bU|(qU9tA}dmvgjwO2ziew_6CRL`mjS z9YE}&>|rbn#>MlEmpi9@^NDE6g^9JB_Rag~*i-gXZ4d#HTDznE=r6c`w=nfeLi3$j zj=0l+_R&kn6DClII4_`)-s_z7jC~+S1|MfkdyxR^dU*C4Au`eU3i9rE*ilTE8;w{2 zTzGZ;%ImNCrmdxAz&N4npey;uhDBJq0jqahI8zm9%!$>ZuTjYHDG^k!ZMNSW(7X1g zha7&AMpxPNyr}8W8=-$NNjtrpC3I9XBz>euRdk@4oNpo3D75kOWWn>!l2$p*(gw&e zoJK2P;DyENp(;#Id{(qk$oJtA-=9yWnGFwdTXIt`+M>$my%qk*%BWqRP!E@!ElcG) zG}z%ll}`RVj-2wh%Pqo#vaj!}sboe+z`atJNA`>~q<*eBE$Ma^ucf1s%fzMY z0bm~p489?|Dc^AL-F&Ze(SY6KCTEg~y{LzzRY$ngYqMpx zJ!wpD+(RHJR8POul^t0d{M760L@La0S8jmIDv0`|K_-~A$;H4U$y1_0)Rq&r;y8${ zf(heP>9$@>H)5CQ2|D?CIU9rMay0`%R>v~c#P3An5Po&UxZBijcP)*^G{hGjdl4(( z$jxO9jtFqFp6VSR?xcP=!OWo2l~NVQj<`r?Gg;WwH2cnS*0?@QX|%9gd0FFCD%{S| zqZ|(mR(R<$5R5>q5n#@5UAtIPGEC#G#xoIfhLp9wVgPOpo97U8s+zvx3GMu)?X>T@ zPYys5Hu;zZF3}=lD(!I6!-$JCzwHe_R5rS5$n4*mP5xcC`**ACKmmx(rMW4cDb%{f zQqPn`(q)67?aqzrx^W|qt;`&R%9};#mznpC$kLZxTAb$C%#?u?FuAP#sP?XAR=aYD@wSNbi5jB(}Z>oXhgDbN{|L0&vW*>SEO z)^9$m-d^AJm=NOq0VpHhdP<7U5o-OoG8m(LLsh7wW z5W2tKOD-zqoS{#0!N2Lh{c?4W@VOqrob#fgMTzGtrINxpBrz^dHr=4@elr!6NZYLC zKmxpPX=(I6oYjDl%vLKV)>r717agq8Zj9eO=pw*|%Cri3nN`_$aK0lNOn|D{Y5`NB zhZ0-2hs;pMgo2f8Cq~!g5wy{lzRQyIh?(NYD^5i;<+r*yRKhlT^>|0Uk#W?bY3i|2 zS|OD9AU#tk;`Xt2pj-1Zr2}}YoJ0rSrtn}+A5(BVc1KP-mp(m~dwK$itHT$x%_gpo zd&54u``HtW9%yRCT1cKoTyhral!?#yXhS(PMnuW+QPl$jo7zt+V+T? zrEx(q(MC@ODH$LzQIfBwEn`P{Zi}P=Y>eiBcbrA9+1Pt)F#aAo^6q9IW0u;3bjHc| z`7MgD+SZBL`3WUY`{L-5cH2LdGaa;7ck#Y0PCs8f!15O=B123?2O5AZl`^UhngZ2R z1lxB8ufEU>6^=Xe-JN{2Bvzju9U?`?>@SocJs3PSoBHeLQS9AKhre~>+^yo= zK$3uT(C3>h1ISP3quH*X-iu{}1Ko1%D2!I;;dzyV%hH8Xwm(DUzU^l- zOJ`!NIz_w&K6b^M{$dcc0(2As$JzYyWa{ap;SY4#61FfSxR5uYG1K1vuxFQg)c9P| z`)_R>ru2R63D<}iZVlw^1GTO-LCgJrxfUv1z@;qt%vNfMxPr}c7l4F~-k&@eWptI; zcdBImY9}U?B!EA0U|YhSbV-kWhyf`C$L|+R;RnpYJHDPnJ;{SM5_1H40?yXd$tzoH zbULlBC;hKw$O}E}Ga2XJ3iP;-+OHjUbEwx1pqLBIncs%g%Gl6tbVPW|&!)FmZ~iXL zj$D}b6SRIBQEcn}oS8I@E-^+g^RH7B@&1tnUAkmeC-Z>K@ZPvtWBZHe+vc=s#H<0% zxpzN{lI{g+xrVQb^2XvDQcy%wDiXG9eM(@_S#YSiHRyeCICL8ueh6Iz#%0JYJVY4@ z^yN!wp{xhU0yH&6PmkHRAahA#oJz-!)9!O97Z8)CXFPcPNsQEPb$B)qL*oA|Xn%^G z`FiZ;k{)&usT?bS@BNt~r=!EKL!okih!Smc!r@_lM2f%0w+hb1NX`NJK?t^eQW{+~||C(~BCJ4BVMlhAXAA zlA03j=xA-W@9+4ov9a-fjdbq$znJNNY)Htj`%(LylknoTRdWBg8k*TwqcNP0XEIAC*JB;(s=InjD&QCF|UreJT5D8sz*`xE=^hlTRc!Q{D3l zhaGlhiLmp1lNcdCqM{5}%pvQ)<^`^aXd|P;PYiw(A!X)`RJKVjpyqzk&6dhLO#AHKx`?PDB2X@ew z`t_xxGuzJ|QiSqzVzBXhA%ndD)b>CS?{y;#rX2aOJCq`P&CUXje^Ho_%!cleZqLDS zRG2@-L9K3nyzR>ivD3Rmin=|-xh-Qe4wUU0|CA{0^*7OSY;d1_3yf=#I}MoN6XF6?-8j;+YxgxK6b zO(9k_#_fZi_L}>;&`-nk&w!MY%XW*xP8o$QVo1M!^vQizDE;Z>1OUMUJyT;fR{jIcH+K?EmR1NpC` zZ!Mf^2>kRax91`b+0njz-c-GPdVny|SxBVL>O%11ZN$=d9gOv7E*4i@lY(6oXLBuydN*)Bn#%?hWzSEjewB^v2 zQn**@{W1|@z(ig8z2P_1 zownf5`_`}DuMn-7t@9Ggg2e1s!4>QG?&r1c9#a}~rnDRtl!=x9I14;myS0D*Ad|AS z)6N!<-i3cF{ImNP+PK$42-~fv!DeK*wbjzHE=N=BOV)1Mf9J5hdHV|aO-yai4s1#+ zVf$44Py%iMAXtSOEwg&mWlT@Px%ZKZj0_nxS~(&;Mclb=ZC>_VP)=xo776$8@o#jG7d(h<&(b8a7y3IFfvNH3rdZ{!j z3MhmV;7x_;_8si_qZNJMFCNk{u}cBWKwXw#yGi~*FUbln|8azkZ&ROwNC$RGwB?L# z(x<(S`H`aW&9UA*GX;fA3wXg5L)X)3UG~RMoHxP4ll7{E9!aLTul)A{%^SM8GGx30 z4QLJx>|MQl4-^2!Z0^S~t~F(5Hl`~hOhpe`jEVknJ!2{A=UVf7mmY!^|J};%R|+Gv zBTNZlyIXZctWW!iW*K-$kO9pV`vnMtPWHKCz-QWOx#+osudOR zmDS!5j3KwDL?3_~LZ=5F-!|p;cSNtH4UwrRtCSTA)@qAws{0V9(v3-yEfC?1T}YSq z)Aq;B{j1~6+Gl&yg%=2Oa!F=GLoO+)odCl=d?Inup>quyIUnS2o5KVyMb=}x&0Dcg z9{i@Mj=g%XfGV_7_{ovqGzIP5ebypT8K)CJRnrBk_^`Ax>i7b_GUra6n_pS3lW0eGqdN=JCmApI_ zfRE*&ewZlc*_+A2EBFlKEU%FQYE^KlDPo<32P!f007N#}b^_nx%jqWt)KVzFmXP{TuJcJO8z6#x~M2Lq#MQ9hE1f-W5^Q#4O)c zrStni72BXs-|PIloHwgE?Cgz#Lbl)Pi`&M+qSzyq-t7Kw%|GD#wT~ZNDbYqqrwC(B z>aVtY5Q}+?;Mo;FTcTQnn>uy7XQn?>FJda03aHG3)3VypjIH83eJcW}@oI4b2_fn& zdl&evp$2p$JJ6f(*|xpK{dEbXuCF)kb0h}}>d_>1$_U`3K*~699Z4~WQ7qo{m1Fu%N1D0yWz5m`OlP`EGr+~rN)B6t`FHm z>s@(6-$_m+jc*nx_4Oia2t6S=%l~`MyZ1h2jAtAMU&zQJD|fx_HRtu465`2jmZN;f ztfa@Q-X|e9<0$(%yFSXi^os^2qTUO$%;&xMUE*RNna56?DF zP<^Nvy;Rj-NSR|hcy9ax^Swucbz%@E%L49uXJJ@x@b2g=1m}BN#sRk76BRT^3J#6V zCaZrJ2uHkMe!f|tI^No)J}MJOT*ydsLut~ScFaGWGj8@+_Bi4uS@wPR zSE@V_f?UWNO|he7Q^$+Fm!s~NBc$7)#aNnVlx^oym?C{F;+H?IADO7f3y$^F_sjoa znP)2oaz6!OPvxa$WnGgyoE%d(7fx0rGlR#51BB1pj_UjbXLyq0s&Z-E-v1Mn#2{f? z=Rd7K38l=g~#@Xos5YkW&1H@hDusLv9`0;=+6zz(~#1fgissUNBVD1DM=I2 z4Ht)v_c?oB|8nbk zqPu24CuznD#f>}M>24P5N)^|?Dj9#DR(vy_oa4|+FC$G5KBAt`6ph_N{b6vmd2Lyi zzVd1cd0h}nrsxNR0R(Zm*Ubp*;p8uNCx~vs2+lqdQg-VZ3LJIS(u@VY?~ zlkL^Jg(qCU40E-uJLSEPE)rFrG|+DNpe21a5d}Dt(*xt0t@vy>-@~gsxw^Zo3MkLW zC@eC#1nBmv^k`UIMTcW-jgkxNtG~Fc`YA>Be_7~7P5#OX`mUuG1y8GruC(I72mHMK z`F&lUyP%k;1s8`GqRq)UTLD9t)zQ@M;Q@r9EU7BG{B4dvAJ}wc%_h=U1!sf?FxZQe zLd7st#sn-16b!jHQ*yFn`ozTLz-U-QHQ?V3B;e6fn0XAxY3hkXTihj|mf1Vn=Se%e zORY3(H?ZXLfqwKd*FxwtcJC+nl#dIFd>noXoWa9&><;MrV^xh+=Eb$DlPn)Kr5iPf zo2kShEo!6+qns{^i7o?g5kz6#81ZTnkslJTAk<0qq8h53*1DDr(IJ_GaPq~r%LD)E z;{+2oPEO?>Lv+I~Jn9Z2cHv8q-LmUsL4q1WLd@y=E!U|_)_Ru-wF&Q2cyaGczen}g zdu{t)M;fNT-BcDm4K*UWdguz>#aJThTx+Y`Obq_ueO-wLf5k5s8!B8?Lo(up@}Tu= zH-pG?h~pyOd>)x+H;1A+k~$s`g}uAtNC-J0D{c3?6Oljb+0pi3CQQu1j7%oe_+A@N zB*=NvIGQ`YJf`b+06meQALE-z4+D<#&A#u!7H{2!uU})(T;tC*r=eNr!rc{h&V>iZn zu_@wf)}6{!Ytx59QQj?i?vE!=4$98#4N~joRc29tK7bzxB;BuZ`*=l_Z5`W6qUOC~ z^?_~|wPICGldp*ie9hKrM0OA^uEr7&(iD5^)llYomnHw5_HcMsT)&MdeKGX&edda3 z(LlGBe@6!ZEO!b<)s7AjhT3*HhYg}vH+rE^?uITrI*5{jW?b7MsXo@zWY$41&lfP7 zMk4`xao~-8Jvnh85!dLM66f~_xHOnk%?}yQ zzLigNTor3d++l-H9Y|*DeKBL+Y0ea5;ka{s5;a5|jL?6aW;`RSrMdeNb{90krII|T zs5oG=OCppWsc5?`q@MD$yF47p$mwkCmQWFj4P#!ZD}VOv<&eKlUTs&b16AT(P|AqO zi`K0o(0u!%%GGy;OuKd~f9<=W_quzo@1)42)#iv|pY;)v1g}WA;c*o|IP8}M}yqwrbv=tR5rLjC`ohY1cU>nK$ROM2${P{@R z`2}`Vf27#`PZKqpq-`P)2@z-Ro4*QiVPY*~-h~?Qr60oBG5xUHm3E zGxzfO;|pr@ttaxC?+p#y@N=oqM{(?_T6IQ#&lHF9#$h|g`eyJ*Jj_(W+7e!-n#d?5#8=HOM(s4f<;}Z4%o*@x#z`RcTve+YMQ0=Gn4Kgc&pc= z{stW5+{-#aD@c3lWr9aIhIZ|8zNe#uMadC>+ovRTP5%D%19K)BGM3rrU z+2)B;tZNC}@R;(B0iWswe8V^5m?x3zouMSJd8uJnM2Z)uEU{Ll?|upj2vl+FjXB9< z^E#bv2=~Wjzq8B}lJ}Hh?`@>!Gzjpq|3bkH*y;#1{=akK{%5Ez#_8~|i(-%;*U9hf zD+17M>a&@z#+g$Nux$s%7@20@gVea7T`S|)%p1mO;;|cC!E0RBA3o^t4kni51^YMu zEDVgwKl6rng&hH)i=#{A4d(NYxHtk@&g~)lvI^3Evcb(&&6YR zR={r*Du;K^$jwbP;o~|8L`rS2GhaZGUll!*CfP9l1T^*E+p!_wuM)LNY>*>4M-}+# z_Ip$b=2z3^DGY8cx*kp0yNk{G!3eQnD-n`&t2h}>X50$#MuuH3)nIjZH7{tl3R;iW zNOmKVz3A5-NMKiaoHaZ!HWn{^)W;rwb*8|486O=NHwe6f8ydxtTIbkpC)*evVcQAV zqxyzc&FZ;de?Q^x)vg=cPnNB5TXFdBxP{TH>}&~7WuUPan|%knDCBtMur+c#?S~}o zEL~k)M>7p=Zxt2s`v-Wf{Wh$tTFIoKtSn#qsZ%?r{0EU{_d25#-&T}q;waK4FwjKy zay;(G8)X4VzUmTo>1<$SttZ24+dGC-}e3aK2rV7rT5p z)6feLIpU;pv>2i8I10icMU@L2eSjM|=;m+7dElDcvCZg}mG=wF%k4p2MS*%pOJ{9j zOtiER=78O*^J#tanD)a^{%&T%ITRrti&(xaTaIi$@8R#|($0-0APKlU^wyR=u7YsV z9t*sIAx0TD*p3@SYlH-W#Ls-|wTL&I*ji2-5*Z9{=_-F`F!a1|PT)Pvj{Ja3*`#JKm zp~uE_aOgO&bnwMS8se<=AgBr8Bemf7peZDnbfG&|eDfRR76Ava}m)re+ zF=MNkqkQ+~AA(P7@?!D=_M6Ug0Jp*~MC8$!0!2?yP!RfWj{{~Hvk0Jl3D4_!dGM%q zJW8Cj>%1QB8pZ6l^6C7i`IRFsr6Q1{4KpHz2xs!QKfxS;30Op+EVJC@RsmX1Tjrr0 zW=P0sqyXql!bUqT%`Y%e8eap9(DUwy`{=x@xxAi`kPtL5U+Oi>Do+C8a`tb2PK&3! z>LFaU6V9gFhet=DbIzjpi#)=`f9^-=F@BAvz47vLVZkJO*j8T-({ii9jn3i*G!m+l# zIe*%qJ73x)F_}#Y&}vVDS3VK1xViatF|7SvPhtp{6$D8iMlM;;&7mD9{+7d+z}UF2 zElmYQAJL;gX3|1JHJ7<{o8!RX1y0C4guV7Fv2(cF)r?!u*;0U8g%-+tw4v2&=Nyfg z*!Eh_4cIrlf&(*|QT)RTfHlD+1L%)Vl!AhS$I72;68^{EA&?f_(V)lKBG7~q?~+f% zf!Au`E;Gd1^VIXT6XDi{c z4#BNZ;J*gq5X@;kJw4Mfx8K{G?u>RKOw7z_85tQOaiD|NGkSCi=(VosK#ng!s~j&- z*;ooVcsN-7j^IPMI#Vxumjn#n{)qcr-Dg1tzE~_)ALg#q)cLGo;W}{P9x#{%Wn`WK zd*#oHN3wwiuZr#sSpdCo9XxM@v2Qg?`@1OwEMb_qAKd*(xEcgs@NWRk0K3pIm-{=o zo(!NuokatNVQsh#{=w#@6TXY`gG;^(V1lb(T*BJ;qH#R=0XgP|6Ko}*x zR6nzPgdvg0jg2((zaJU}>HBnpc)g!1?+e1?*AtX`7nzudqqg6TJH!xCOw@qrhE=BeVb`h?RS{$O2z4XdH4*}v2p(1VdS z@J&lieFyZ3VH|KtKd{zs0D9#oH~`&4Q)I$dv4k>>avClGegG}P%B7VZe}z5k0tcM# zHZ7GL|6YX$2f$x`V>tkg2CV;Gw5;vzReg46S^v}S^{qHkAK>ftNiCttFVM^c_X`Tb zs+?+-L9#iv&OE8VUkwD6T4H5mlRNX2<8li`F#Kny4jerTj03z=d1>0<%gIBbiu_+H zoJs#{cRp)7YfXGrw2sFfqyZd9&}t~ndKiOiypY{UA2R{XJjk$gNOWONK!NGRzBB_` zCW%XXU{YJ|nVy~=psqM_wA?1=o>cfUfpP8^3rJb6<%^tUZYiJLcqlX21OPp4jD1r$ z+N~LFE4KQ(;Fd0U!%UC<+@RxT}{e8W5&)x*O9^d z$aOpLsoj72`K%r29rgBObxU~tgD9no1m+8>ixl&VhjfgL$&aLb`moD{;3^kmn1zkP zU&Y|D-bV$3H7{}e{a=r7U%vo8*#WfmEquMadH?q&awbznNm2H^gJMALs)X?75{umc z&Oj+X&CkrQcJyuB-F1Vv(}Ep-YPlI-)Dx5x6xaVQlj|MC%*h8Axd#aXj{mz*1KVGqqHF8PyNe+^S@!nx zsP@L+CmH$9$;;<4%kk#;4f9kmnjatfcYFt*hl34lZEe>B+Rp+uXuxQijsLU*u(2fZ z2W_h#F|?x@4(FK9KQYIvFbBO^IxZIL@9Tr$#sS$WniG07{Nk_rxLPK(2Eu%U(iZ#> zF-JfzYs=zRDF)$7r}ePFA&TI`kRvD<2lW_y*3btm%LGF_AeihI-EKUzk>TXx+Nc1& z#Cil*ZoIKu>)YTXF7WFmOzv49pnBS-&jQ!knG*sITJ@LkrwxPbanfvO%V5GzYJOxj zQ>slruo>kI{`vE<1;EKB|81+&{Y4%y@IR`7rq5CV??Qt$WYH1YeayHH<~~5|t$zz= zN`x{6?80|w$awbg&t7lS$>9-leEhA)iGiym=Ck`h0Fb1KFQDW8PRygA<+C8T=|iOi z|5m=Fq@<%&3b4W7`*Zg7ey{;gbqm;jQ*k~PF8kOGG-&)dZ*;Ik?#kif?^fv6Uicq& zbTwJv70Nsf5Cv*~g`c63QQ}|u@PNuNMVu$HT4pOmInEEDQT<2T78#Wd026#;8J7iS zmpior{HfEg0jZztMk0IsjiP^$zn!=A&8z(ujMhabP1|2(2{(PFbWyKdr1yXEsE!#$ zLU{hqKmLD^sqGZtaAn=cfS`)Eta_4aV|pOTy?nFVop;*tEhi^ucYVbH=EtdA=-dFF zD?dm_{=W`H8UHyDkmS_-G~0f&^h7AKGFO*zg~8I9gxxa&@!mP3RC6JHBFf4%I$PwF8NL-6RD)gxL-2` z=8aB!>cSfmHh6eQUI2-Xa-qKEXG%@|^c=5o4YgjxO1_=h2;3#)zEx}XZS3ysbFJ$) zu5M5g3(N?-+G5Djy1&-cLX&(a)3WD>pRT#*Y&c2JrhPh76y6Q_2YHJs!RS80r)iN6$?MvD9;ZR7LV{}ZgM!|#9=cD z?QADTVniW-?nRc0XAY(RBLrmgu9yQ^@ySq$Xx-MUSuauygXb^B*PHy|1JU+5art$y zmDw#Ys_X0pbzPZ@yD_H4(Tt^BiP1EG%vCh&NT~h%r}1wh@OC@c;4Y7+Odh|v*r4br zf9(fNZ-q>DRO3kP4;!5HqEjdiByhkU6;fbeOAQ}XL(pgEgSsNOB{{Rx#+G0Hp0Ril zByNDE`KPAB`6iC^48*SWgq`&J5^JvyOr%^S^Jq-&B9!c;olM5wWcx*I+V9Pfu&mC| zp1Z?ID`$rxVM>n_?Y}BhYyZjukF5wcW-f%D_r?Ntx5ts+a|NCy;=XohB7zYV^k`dv zSOd$ zf9jGOp4Ex@;P9bXaB~*^BM)7XjF3!i969pSZW7-IDWb1?Z(tV1h0Wjr8yVRrF(#-~UDCnO_hh2RA zbaFaTu_|8>BF0xI9h<@!11sAH&p9i5%<&+bMnaT3TZhDOU*%C@S+ztA6!f_G3(3GS zKQd4hENJZcy#EafdXowfCgFE+)uB!wSkqE0@eH7`KckJTXUs+iFE7_(_Uk&wcGp?U zntB*Vl=z0-$b+usY9Z3W&nW0S{3+=1D2zP&*Lq`=JmN0HHu(Pm*X~A7bGfD}-;xJ{ z#)-#zd}XcKLD$`!{2)=OCt57;hl+_S;3sETyJqicBnjEibpLff;`KPVmP7} zpQb=M0E#9^LRB+7K^`pC-=4m)O+zNPj&HP1)-93kZ?D|I3haAP3-p?&_T)>}$GCk| zJUZ5^)L#BLJ5{p5yuvwzTdV9tCOtdc_#m@qmSnoN z)zn5_S2r#-r+s7HoM`CGicWU$i&D2}xeUQb$+O@8VEG@l_RezeA=qn9aPK*%Z;sUw z)^MEFGC0IJH+A~N3?sYhujeM(ZPXM@hrg9s?lffdn##djN75vt!~2`hHe2_wU@V%Y z`_{x-)-x)#CWDG5%R6#OJrZ@oVVK@A%8~HxH*(!R^EjIvaOoWfXJs5pv~2tu&+D1( z(ZTpvHaS(p_j(HjtYV{_mhV@a{L3KY-?ZZgDnBLHeHiLIe$iN$l|WQmW6i$2BdP12 zjWpFYyjDoR}DhbBnWoCa8{@d>R^ZDtQ2WrvDLVf7veW_|eZp zBL~Wp8FlX|pUCuFrqqr4z+Hw!Bdqu6tet9i@jg`&^&;D1E$bx5BYtzJ7IcA|Yr}$> zOpV95^jq3vpUOQ!!}$&#`SPLW0D~#<6#tlk?kZU!Po}j{CCufNqj>Dm94kc6REnnO zTPb1juB1Hg_^TV<-|x1J8&2Soi*rVNVhixTew6SNz<3Ii>OH)2jot(7RFezwd+<=` zEI}EQ=}o3+rABM0UO z7`8i0vi=mX!QzX^!4=G_r=Bu|n_ycRLbtNdm0<;`rx?@xb&>I?ZJp=}U$Cu}B!21M z&D9?SQA;=G#WP_CCnKr^Oi7%4;P$#2CRC_|1C=;s z0~NRTl@RnwtPCYZbbg6~;$t6))~c9!8t*tb7?GWi6dV>E*7_jUjY_fmm|F|wakIBf{grW>bH`*ql1Wl z6|Cc!_e6JkgO;cIRC>+UrbG+5;)0}Y`C`((bub)9-FCu>%R$tGQ#CR%wuiZcn?+*B zeqJ$prcL74126$O-~x^4z2v}P3Ah`j#d3OeF>ATlFe6P02hO-T^r~#>WrarFrvo>y zF}RMK1prc=tlPkGW|yTUMSJ)x^X|><85fsN6ba_Xdwdr!EGn!gxvHz{W@B@XsC*LT zKcsZ?y9I^OY^ude_*`vxixNhDplKdyX@>$zji`>LX!I3jOG|HDJgSK;BXWpV1GhQd zm7%?mzI2-vddK@dmV}CmE7YvP#Qok{L~DZuT?m5Gvm8hr(@Tti_Px|(dY)H)wgwOu z2#e-8eMtMIxWA~P;tvttb(7FQhgzags!hj>HBay@bdt7=OENlWnLzmL=S(UiSeIdw zr&^F9tYQu}ftn2yKcJ&`n9%2X+PdxMd{0RBW!nv{h=j^9hJ)1$>l~3x%xgMO=Y20k zAisr{MGL+xM<^0Q6!CbYM_?ifApr6aJBpxHf>bs{U_N@Ep}*9v_}>p({UItxT8Z<& z4;!uFG82>quRit{-ob43f7eIjMol`iwNpgf_BjlcRMhTb0ydTY@i(?jbZXV*dNBT6aJOedJSWM}{9m!is% z88_oK_kuve59*EWlgoJXSGgfWNV%?amEQB`YyM?9EQ8O7qaZF-^5n~t`z9_?EFBNP zt!j39iT%&a<#t@}h56-paJ1~Rv32$6;z&8@Fr}IdE-hLoqM3cvgXyy>iiOHyNAI$d z-sICYwtR^|wFsYXzotr(>Qw{X<1S5ivqJFJ4pOQlJMgjG_X$sQk4zU8TnhYy`LM8I zx?6Dr6bK&Srn6CGb+M1n{}N=XtR~9q_Au33BqCM2|3O-xqPY1t#av)jQf1_QfAqa1 zFE6CgunT`2$FxArXG$|6w8{lO;g%jjXwcdz)= zp$)&jz*D^wk?0_K#h~=%gQ6ipUO{tDxZ)c<(d;aS&BsBb>JhgbOdEbDt{Y}QcjKwd ze|z6Qy!cb7dU~?=DJgxslA>d+E#FjCj8=A+fRW34!cg(JwJC|cCmEH)utnB0-qqi- z5(5!L=-f*44`#PJNhqP;Bmnn+>bO`Fg{4?je{s-~MtCBM1Jw15KC5_|VN`03ENkn& z?Q8jjCxxSjwxWw0E`R<6-}<*Xp{tGD?h7_od|bqEE7mRMt1@df|x5DQxukWxY^lg{idUPC$9TowSIN>@PiJVlS3MT+4A~OzK_>P zOxyRrAKKw~eT}nBiDvYhO2JzZ*i(lDs3jBB8FUSqe8E-`GZ7Ezp4`O^m(KE zlX!`i)=J}RJpn~Aw#YX*iXSKs0T>Dn9e*3>;(>?`Zl#_0QDrW#A8`*KzB z+L^!gRq-UtVo3By{N{L2K3oL+UFCm!s9lu)dtIyl9=`-KE4n;Q-Sv;1_&_%e+WREU zsS?s}ek)c^5RRkc4H1b~qgPp?kUG?b+K=PsVh7EL{ZHrrw5{HIpONuke=u9SKvw3f z38NW#U6)UMB|!ot?0nR$$a+w!6~M=UWzD)=Ob-+lHMN2@`j( zyt!G)v~e_DzgMdX9(t!UAhlMu{w$-SdY=KlJ|gos3}sOn zp8JEi<%u65X4Az#aCNgI#8w1?rqmj;roi@3yzd?1yx4YOF`_dydsZfl-3u?pmLs8< z8Utdggn{dzD5F`Z(X|ox6v=wcGaLt7wb#foTTg?Pl21~}<_1kF23&jpc-UC}>4w_V zlx*Z<+vQIZJq!T{QoD%fC7OQ_jI?S8b|E)An0khT7wPCE3Pjh&A=@W)7}v)+)J_Xx zBv`A)A*ZW7ql${NCDf-!J(d;c`qXyrWyUQKPs0-1*aXpGP4#T6B8n?30Fc7;1A%mx z8QvIUU}c+lf~ea&fQr=We8tvCkC@Iewk_W~vh@M5v(ti`T~9~z`K{xR>>;5iwu8I@ zfF$_reKc|hq}CXq=U5nP;XVmTgEg6NJQm{I)O`&s{U0*aw_ z43AQpYFFoyM>wLH7FxnZXOd37?uoW7Y0N8RB$w8I<&;eQ>EAyFh1Gw)$S`!+Ohv^H z=a&mA1aYWwIwwIt{}QoGGB0U?EQMa;*t%l`O~t56MJoBNRiU#GZZXn5C084rB*~T= zB5PNn!39GP_HN{ku7PT~-IOCwmq&F8jC9?CN*Zy>8cmiaBq*ICnWaY*b#-&3f0Yw2 z2}vR7yNB9?Rl2Bz5wnbJ4q+hIcac(OE3#Mo?T2+K;Ici1 zMl&zu_=<>FKBM-#mrP{r{6ya4vz^|b9?#zsb--KZ_`RefzmPOB@?<}XM$_}HFW!AA z1O^hbpPyP+$|bv+4`tKtPCuY}+9~d9<{6XCp-7u~@xuAHZ8lF4_Jn12YR_2vw$!6L z`nYc=pkt1y&3?EIIsdlbtSxKLHB;>PxGANlS@mijObu3~Hrd0A;7SYb(0jMb31Bu?O{ z$U9C+UFLstXPw#q`)c+-wA!XL{od)1uqccmtGIlDJBUAcCi$WeW2;Ssq5abizT zgU97jTbGJ_I~UorQ*=l8b$N!X8$M}7;`P`GF7p&9A{ z_@ti;?Uy=7GcmRF60`U)_BZ>*M%&qDfYl6ck(s-EZ*kFF=A z<9~Uz#jR06cpfqmXHT+ytsmML#{5RJTyk7;a}DqI3{vLFgj$s>%8yR3f00ljC0zsg zQOD*49LzssV~csmazs->pVz+Bom%r-*1+1awqMMK1F{Y(J95wzIdV4nBPw<3OZdm# zW_+j#k)Xn>iE%AwhCz>CL|A6?R0G7fuuTmrDzPX}kYaFY`eoX|EKsc&Tu@;uwq~%F5)kw5;g!ZPJu>b2)i1sc!p?z?l+-Ne z*&}&yPv7$qP4h#Iy!8luv|Frt8#{3YLxAmQcI!Xxv_P?%Sv&vmIriVeVkGDu43K3i zksS~j5<(fb_tGsA0wT2d-9gR$ST#85m)ey)zj)ma)F3e*-7Yxu3P2}ni2wTANpP$@(E@8Mb8BH5NOV9}lU)p3zX%=JU&`CwomA-iJx2 zhpwy3Yt)YU2fw$8AcpNon9lu!`R@)7sqSnqxJ=wUI(c7JhRQdqp6r&4gv`ob>iHb} zY0Yg%l*9E2i;kk}{c>0W9kelb-2>E*OoNAsB#@%$lr)CHeX0VRjPBe(huiK&E!o$o?!Vq*dC6ZR#wX0iUzC!1OC(R@6gq>^dADIi8(^=Ts- zbV`gW@|hY;JL_G%4^NykE5f;-pBfv)QE&LW3jr%&XZdd%lON}6zjkf%@~;RoX`Zlj zPbJk0H)Unr8>ocf*+{fek=~Z+7H!tgsHwE)%iSBE-yN8jK1n>4K2kqVR_{Cb02VkS z902~e=FfSnwK9OosE5tP|7U0(4b?XPYRguGyK~)7zz8%`^O~JPXPdev+T!>VB(CXt zb(2kuN3Ev$xRQIIh|0}jeWrs}<_s8jG0Cd#5>eV_n3Xvmz{R%V#F@sl4JfwLW$PXm zeMwA?=Yrs6sZK|dPFG~-D)e$r#V+3MFJ>{yc^tFC76bI>Vx!x5!U z!~fE`NTciGJ(Z@hvwpYL%qPWE>PZO2IYgv&Si@&%rybm5<}t?4jp zPX>4-YYZ13&{zugG~el`b-6U=T7L}Q8gad_pK?ja$WH2vfG8%fk5XqV7?~EgDq96C zthhU?G4jK@PAc1k9tyt50_|B->{qaG2#RCEXh>{?r}LyDu6WV}k}MZN#MJl3>+HqG zZ_a+x6!Aku#AlDz{g9B$3EcQe2}25SJBUVw9e)JsGa_bD=bO@lSs@QDKkTlP(578} z0Ko&!S-QoRE;tLK-_XbD{+#T6#G_XEx!$36>8=Ts%GYM{T9>$nlleq3ITZ)`$Fui| z6{M!{Pz2yLpD?lDa^9hwAfjHK2Z4HuQS>5xE$V9OAtX`C8J^HFTB#(^-R0-8PW$T& z?m5gdEzGF+_fz$yo2)MR9ad)py%PH7V&o2gve;(Xl0@GKZIu|$~P$*Eh!K4vlb^7Ol8P@0#7PiYc9Oo4$_WUEt z?x|IMK-niKR1+L_aR+GCZy-{oqZrIi&+drY$K zEyPnVYG$axXX|zQEa`~PzGy;(3iK$Y-&cHpSA2Z2yn!BC2v4o zUR8+zi+0#>=Lf1PZmJwjH9`K?NLblu7yfPRc+J+VEgdySB1x$k6_6dzC`lCX$bQ6Y z?ie_I^o|;cmLrA-#beu!GDZ~wwdF?iyC%0l52&hUF3e^)!J#fyG_i>XE`O{n;J|~8 z$g;ZoL}nDuqYndm3aYRyOC+u53xkxSqgfcmtog4R!4Q9gutuG3eA?(&!fs01D80>C z*(X10j-A57k~+cI4b%HuZ-;5B_$6YuWi0qVl*FKtG}UxNIAatf&1$S-e_n6^&wIn6 zjI_NN58iBw(cGRoE5E7ZhT9Cc%gmQ#p3>J#ds1AGZfN(}RWixn@IFaVZ(I(D6h3jFLE&&hwQ>!R zY+3i~Ye&-intX-2t=os!Ak4voaF*c1TzIq~k^1+yjLdxU(nG;_kKQjd+TC6AdG8nv ze>BB(Sti;VeB$qwC@l`78?5g!8h;5WjhSZUI{|$RnT8Y3RciABvI6h4)csx-Z6$ps zZ{9K7ut<&`6W&n*@WKS5wG6{usmWUtE6`2Qt>j8p7BV3>-<**IFq>xPPVx2)3Bry5 zgrQK^{PAe-v%kq{ZLNSq-Qarz4VC*d=TY*M@rd$MXdysQmap5ZaI6B2FmPKE=IgqK z-s;i!N;t(HSx@o3$Kmccmqix(yTB8s8c-i68ko(_jRZy_g#< zXfst@uV@DjYSL*Y+0dpSB)RnFh+4Mq**-6wP2nv#n*w$&jcDAH>JmYTbl|lS+_Iq( z@RYf8Qp2P9@K?^!_HO`#>sWq^9r-!NDJAW>J|lQj0)km@PoS*`N>(VwNZOKnK;__bI4{Dj z@+u_IznL33%iyXIx3?@8dq6`4+UFROclRMbxbQH{&Z?FLg*cdi_%0Ied*BpVvEo~j ziRS#~-F4p-BnmuQfNDe9o|6mGBjMQ;JYOY;`B!3IEVpcnY?t_xl1Hq>)Z3hxTK>b?=bPT|7lWD{cQDcut5Su=C}CZz z%Zb5?m20Y~Ik9MLd%MT(+k&C_dpm`gS{irOa7nSOS|5evcD9h$DpXY5wui5KK41PO z+6$F4=Wy|jI>p6ly12}D)Fb?9non_daoz9UOO=cBNU%&89?|IpeZEO0BKH zLwq*M7mpW5Sc090R6$n4mx0itEv;;l>eTCWbW}mg-T{gDR>$!*;s6hKLkDYE!%Q^zvv}okwnJWV#@_c0d zq(VEn!{phc0f*PTt7a!Ob_0}h=o6Y~K_~A4Cj|t0oiSCw94dh+5)$VNi_N@3ln40@ z8N2cV7zGJ3cTQ~yXXlAU_~w~2)rDbZGEd30!9H^D^mKi^(j~xq6c52@#;dTWvsZkD ze4!E04m0m|TKwj2bI>Cz-N*oYiXKK;H}u1*Ax^pl(I<}eA4a13*r{s|F}m<<_#$OR z(Zf|xZQyQRsr=L*{j?8wN%Ry(nXaI4dbx@LS-VTV>sBgzM3va^SnJSU@!H1BS1cW@ z$=@ut=A`MDrTSyD3<6swVZQ}QMk$8Wpg`!ED^!@LN>^?_*ubf+%H(b!0wqMPFIPrR z5#nxBXxb>7UAL~Tt-V(XXTAx6UcvB|1C7bX)fQdWjoAK&V+?h|;Z8oZ8E5)T!&lj1 zMY;(0Pd5Gz&S_1N0Go3*?!v0K*uCtqc|R`XCV1xGv(PNoEB3FPcTY92M0WRtX9f1^ z^3aD8b|1Z*?ic0&%qo?pS{>1WEfjQg!T+}ByOwR)h2{3-PX8HHA#ssP)sT6Xrl`S7 znalm{9D|bU`>|o7zr<1Lg>RLCyn%AO(EHcGu%4I$U zVf2$EG@}ZP#^)d@dFIi8m;ml0F0TUxH`k(ejzUH!k+|OSN3%p&-&I=P;|vh}-DK>y zxKlmt@$B?`rzEyV!B0DVXs8U0I`JPIh!CX;et+|^s{H7Xb3M1BdAy}_A*v%?R>4qB zF?rn1b$>x>8utpUB^A`R*=7eUM3?Ouc{SU{J+RjeU&OBaI&j&S8G9cS^A5e2BiBFT z_mYGss}_(jDR57mwO>kaiUO%&GJ)E5{~#+fL!HKlY+AG&Xa;#xG?)|bTblQ2eWkE| zu6#d#@sDJvENH~Ypk#*8KVDIB$J3KizwgF+5|=>x4OqQ1)d>n63SbrNVspQozohoQ z2$I^8c95l=i*S;+m=LxK6K1Y0U0Q6?6OS8sx1z#^9|$sG)MNUlHUx4%JiY2gnoC5u z(5Cj=SzCZjet!v$M6fP3@bYC^`3c7$0^gG&Lsze5JMj+O@v*pr?2;HD5qkan;2Lox z2gGSTq3*j@lkAS0KrXB&%5MoE=o(>)xvD5IiJ9L_-k!Cg$sy`kaypyi@ys6C_)4cI zVVlp^MaKUvzVFj=szIufaqb{9N9+6d`$D;FWc5l-qOR$RZe23IjA7@yhEs!lX3Bd_ zKrVC6_xpkC_-58zCipe?QV7-o`uXHkVG22&rgO&0CMfwCsuA#=W54#0mhMQb`?yh` zFD*v!)h%AD($7X~NohK90eHbnX)JOP7C(dq|=0Wt~8S8*xSc0vc)6;hhv9&U6mjpzwpQX*sLmn zDgLPRHu~k|FSos-X!&ir4bhQ|^D)>>3JMDb5cgzP65zwtN*paP>J4V7SG%9rBLHfO z_RNQ2pykxJ zWFh3-wgaPE&$X%UhQJ38V8)N1b23}}v`wuN4!^3e|1u9K#0Bj;AV_^?`pqdWGk>}@ zPv|(5i!G6VrG>7(ip=pd)2Aq#B?2?Drr2)eVH9ST3zHnz&w&|gtGd^nA-$;n<@|Cs zrm>+Nh`|5BoL?>j<;lN)@>Ekqb~wqy4+kPh$A9l7sJNl0=pab#oX_Vk(HsyVy-jiY zcIKeOASs93UB^tGGfQJN+Mavmen6lEa`^01N<7jEfUPwLzZw)23&CfLZk#uL$n~hc zxfujeLK#NQaKd@y7Yaq{UV=)AN(r09-zV56IOBTQPN0@Vut=X5L3Vdg;!<`anq3^n zH%0obHpK*DrK6#djrGZ4?s#CAe6pgiD;)oA9B`6I&^-4anP`nmvD(KCl7nHbrSOWZApd3MKD6~%HOPj?2dqXAsjamP(M zut0b7`W`9>MBd6?Bs=Aby;eWn?|F_dF_U&oMpMLr>DGiwM&$!n+4gl6KrbSAp1QQ)?M7A`pVqtcwgXikDKRHTkrt=cjd-VkJL0qmQ>3scPc6aVear{7WhwnG=8t%^D1Z6!0E!AwmY5WV#r zCy`2^^y+|6<0yE(w`xUVaPN^K{9qj7w~*KniHU|l0A_s-j2A z+!>YE>P~hvy#`uBLp zYjg`Q!yN7RHGSzejGwin8Y>C7L^VtV*N0lMkoQs2W)*il@AOff45Pgu9nt3ETeYPo zzB^l9`o(?W_SlO#7Vt(9$!y6F68m6hax0J0M^^R=ZC9zr(SmLgpR*kQx(a+Dawkae z9ru9_%tDBgD&toRJ;n7cU3!w_^O%^z&}+QxIUT5R2Sgwj+r9e#gR!>`i>iGawM`Id zP>}9Wx*Mb$M3fHc?i?Bs7+OL)BqXGzYfx(F?i2;g*4%7nzJ6`m+jy+JA0~^9 z<^l|Q(Y-+im1#3Jj+Cn7Q~bjbB=esbEKDf$_@Wn*$WL9ARG5KeXLeWadmK>U^bCHG z5DKleF^rqvWW>yk+Mm<;Jz{Qo zy{qToZR8HTV}DSDEForVp=OQST}UC(W3dTA9N^7S5~rZOi7#SPY>4rkVwoDMKFbNE z3lylFSc*t5SGAY>*Bdc%xNS#m?e~gunRIvIEWWtoo8~ zQHq3zi8wiD+2_RVPq^&bQ+mnb*Hsk~DR0h29K#!p{4aV)Klbc%pv+(zrprZ>Clktt2q3;c0!Jdl$P4>;)^lS${GQh>(a~*<0Fruh&!NqE2xhz8 zHQ@fHn|n?^VtCfr$o^apmbyu~a{9oV{pyM6A0bEAudS>Qn)J}4)66+4G`Z0u&KB_1 z3bGqcjbm+qm2#vFck%Y4i(VJNllJ5gT^ zPdnJ>eEaoja&3n9axJeyO|V-b7%U@5>5xuG4>?)N+~%5pZogo37F#{Ey#_kH0=?!r zwk(ZtXmr1R)fNA@(Y;syV=t^#k5tAO4DOB5EOt@1aM?o-KN9}9yA_qT9D+fo&p+HU z0y&M;*i1`IeNrXukjN4b@yCZ>O=BT_O%c=Jf@@O&<~ai}tWDJzCcMtY_F{WN(8nvs`xc2E>qxA*r}_@iM#C z&p0rPOiK0oN^l+%YbrXb-WNn>k*~7wM_gDG?0=2aOr1ntV^Pu(lxhAjt)STFpSDYA zg_Jy7V9%hHz%17``7BQtYqR{rH`CELjLOjud-~rlVv(kbi<7^4DvTrzH;ix2;DC*A zpaWn`3OC-;3`PePv72J-KA=%Ne@U}D!t z8PVJTsaYH>FRww@7ErMKuVz5eR2GAScLyEgVeTNx z+zT$YO3thwY;k|WW_GA?`@k_y>FEWW2wyj^y$NSWf&w$n29qBwO^MCKzd-$6Y>k-6 zdF6XijQRJXeoL-nzO>2PV_UV=Mrz<@ zD<@eVN~aKUqbKmU3xD{3y&eh4;3s7JlH`}m8Wa-@H>Frdb;Pw+3LC*lt$ch4On_4gX|^? z#2sB?gYjTrPuRTaZJb!sFE~CD?+OKoY?f_9w844hBNi6jxjHOOtoG^h2H~4|y@NHJ zH9@;(`N2@@t62%nJz{z)0~XE!aLLGKUn!?dz;KW&*~j!rFN15p$y`50TJHB9XZ9r# z7y9zXavYNnkW%w}d-`cl?uv{%T}5=8C93JVkB!(J8M2G* zoqwyG^(mzrjx=D)kZjvKdb0C-U?lBorZLp_u?W}BE_=3&n5!L*KeftyU zFQ*A*o3#{fIX(g#M;X+o&F3G~5rwDvLA%0h6_deySAMrqQ5GUjP%KPn@K@9`e@Cn{_NdPiaqRZ z$y4%XP*AxasX!fnmKivwgzrdHS3Ohl6_f@!Nc3~7q!^W133kQA*zO`e(yJ#E zoQVQA@)m^_m@T{gwFHl3`%tcZphRWD)07isV;P|gS#EEk%%(Xn(PzT^{+wb=c`wr& zo7CoY#wGUL65+{?{p8OPlg!s_p$V`-yZHpv20V|Q_=M)MARlKM`}{n5e>ujY(bTq2 zUjC^0lFa}r!h1e|NS(;jf(mgka!5_{qeOl2mRP50ayrjUX6ScLcUzdMhm{N4f688P z;KytP4G%bdXR3n1cB3{=sc+1-4%h7#_w~(i7qmWg58OoWh_|==o zBB;vtAhSx1Zt+%M0)M3%Voqpgma{_%=!f2qR<_U889ktu`Y*7m$*v}#S-iN-|HQ-{ z^qD5$Sy-o@kGEqD|cuP3JH(>diAC_4JRL_DVOH|_>wZpRn(hg56XibZHyEd>~ytW`Jxf#023AAia6Y+>JThIxPqjV zd!_%*dJnNixk|{c_TM##hX?nbyzt!Ml_E_X!W(HwWQ>ah8;FMAIBat7)N_11YF1r} zaO*rWIb{~VMUIeJWJ3HN#&JbE?2I*wr}l6g_8WF|_8yPL0lT7|cL8CtgNOL?V@I#)G10nCILroSU#?ByaU}OaGkQ?HNg;LzZ*xF7Hi?zrWzWj$s_vRd zMCJHnVAg(*Dp9c!2^yPCQCmEEWuNxG{>d}!UX+nNdG!s>b(ak8y#~%|mO5_vA&(E^ zKtpvlSY2#9GpTlFsQTC1Iu~Vd6j{#Wvwv%~oqyS6`t;M%I`j51Wxzy858SCSsJZVC zCNa(MSGnb0T+Z3JV~Cg~iBrI{wQ6Z}YENqkhn(|FxF8nSx#)CE)GR+raF5Rz=q^zN z@y>>BK_!UDE~uZo=>8gZiHCbmZ` zFDIi<#E;cdIGA4J4r+ZJvZQZIaO&Aq{3WZzsG!lNx$gC5!+8(Dv~%FTa|GH#wX7U+^i)tA%HSI_M@odFsG*1rxtaTO zG4#aA%7KslLejnmEkHT%+w8XhAYJpi6Wc%&&Yl%6 zxbxQl_CwVWlA@#;?U2}Swov;TstUqr)5v0Q^UrvBQZbgEn7>G26Lr8~ZGf}K-=>B? zWXG0nwNx=Pg9tOieI)T>MSXY$Kfb*$l}gsUN~X!teh+hsv?7I=__(>CFV1_D8)7U& zzX3CNKlsU*`9;;;6Zg23zE!>>>9WrE(99X!rC`wK&#y)hp+%e$sv)kQ8k1l}U-@pJ z)t|)Z$Yv7kjWOc3HL_E1l63(|=-lhS?|=?Mp{8a>)rBkoBKoh6R%68hUef<2G>yCQ zTcD{o#Wo)N(%4j5%VQBmu#*1PODdC-S)cAR#9LXWc|60LW_KtZqIwsT8eLg6!7J4a zkQ5s?)a^8+3>B(B{fmNCp!&mJ2K+pIi1Mpq#i?v zR#A+9=mKnAaiYp+?FDIBVPRFAFnfAea_{eXMokA}3_!9s4^$6NeA-JKr?iBGhfpZJQal4M^(=B z*R3$}Gy<@NJ(Rz{^}GO~Q6v`js>f^_vA~Bk!!G_Ng@|6YoZlWBm%7oiGC%Q+TC|5@ zf|Li)ray&4tdS%JotRIRm|quS2Lrwo>kh|S zs>6pPIjj25u*5|ANHBT&Z&f-`%msIoLM#`R!kx&_i-#V~!~0*ds2ROX+i)qHDc0mj zP#t@qJ>#i23=@PrB+lsvBi9dhK}dpFL%UZarAvUGoUio)51(Y~lkY<3Dfnx%Pqv8_ z>>}u2H4g#h^>oi=^S;RwPNVbtO?vv@T3 z(2OOyTAx4M!6l9Nn8P47+#3*wdTuQr23;0r zj7eXuC#GJWE^3avU4;J?WO+I08vzId9yi*Rx#5%XH3SL%VlZmM=$c_Y`A)B=z-&{v zv6f2F8{hu%h&+q*Ttb3(CODTyR4&#}OD)JkkA1o%wX=!YOmkd~g+_zoqnWiU!5Z12 zAl7mBfZ)a8q>I>IKI#KNXO&>cGB=hd9C33*GrpiB4}bjFlFIn!YMYEP1;^TDjCSIU z&vXwe=Qc0*|71j^k^d}({-2q0V@#pw{aRr%Uly=fbPR39Vz)U4y8m!&JF>H6IYMNY z!;Y|QSBYp@Vclj$(cD)`jg{AvyqgCK@v$j&*O-XnDJ(_JtX*mBQm{fGh8q^ZI3tN` z3L^bb5wiPTZJNL>XA@^bTQJ~2v&}=Ih78dXtufgoJn!m%qsX%U~|dR^IvH>VK4J>w!aniXjmB__>4I?l4(3kMrxqa zU9E*1+>~@X<4jB-=laiXQDr$j?jd(xj;UMf40eVmllX0ga0wBE|isF!M_t4@k`K4t@^V~YtS+zRwt(((Z#9gGA{O2cW=URBO)iNv|rYnh6*@3j=;wusaoc`FKnIfCUq*IHR=-{<+siZVG0WHIA$ z7&wY_K9+GAZ!V1(VR!{xh zcB(FRkh?DrLpvAW&}gzVrG|38mX*zQ2p=2WwjMTS@sH%VJ^Jt_$tn1J-O?swckK4CqGaFG zp0z<%Zy|`k&T+EZp}V907sIOX`!=1CT|sRL!sCpFAf+F_eEj9C)&0-0==W)yy1gCH zt&MGyMSYVFzxY2h>Tgw>BCYp@1U2`**x#2>A^k`v5FXP!2o~TVjyIr0sP4U@2oWq0 z_dkAg<%_1o09Jm%F@t%Qvlq{~fQCv@_xQWZK+CP@8;8&tbpQ4zJF`4*2}29rStZ?j zS$=tPbYMzGhDC6l(7AXd2Fr{J`_Ue*R)^qvJ1^O6Q7b=k*pzj`7KT6XUcLz*GX@GL z$$tlszq=E3+oA8WI4M_+Hp^in;>-yGgTLnd{^7@wUCkfw#2EuK|8zo>57wgO>nkVq z$rH}nXo3(rsZ(MD2r)SS@NsSSg(b;OpxTK~K)IQ_-*_<7sY~2+08_ZdtWB9Ta4OOJ ztYQ_P#B@FwWQx6$pE*;c)y>x|dw9{e%PW5a9Q%)lM&TW1&PP}PZID#&Z$lvzTkWsX zIK@cW%W-j#Pg>w@`&+?L-y&;o>NSY*-G4hD&s1QM6t?ir1`m8;g36O-B3|DlQ^A=W@xC88yGTu`=UD;$tSr_ z#HUN%OR^P%706echKGivGV|JI>BgsV-ci09MyD~|ajK~u@%n2PSe7WyoY4uX(~(vE z3GO{MtCTWe{zP*2<7B73fd$|!0B@YFS8Z(ZqIeNp?UFL~CyUO5&|ZsUy}jiK%10u! z>TzK6ExkpdSiO_7sPs$T4Z#Syy_)GqMx|+qMKRoP_`3;+Op|DAd*sz>?n82A0ScjK zF7dUqw1wLA--S5ohpM>Fds8+GRbpICUbrz7L{8vobBNVk>vGLxms4YPnjglc-e%LQ zI8DsEbVU)iIWl>3`Txw3_D|Pt;05u}oe=(FptH-MjN#qjszTXRP`#0CH4<_6tBDyg z?jTpJqzuGalY0zrJp^of(gu0L7KE-CpiHXBnd1u3tlANck<(}9uha&R&zWY?`n=DE zuAZ`GHk9%ijGXYUoNc%aqTvTD*AE)tv5}^$_V2!@xlCX>^i zy1t7I&y{dS?;jQa+8x?kFi{HP^^QZ~Y%k>ZP7YgaiP0d@9@%AyK@>Ac!V2ZeqyvBX z&qw9drm@?o*zrx$r6}5oiiw*f3GoJ@0&q`LsOz^{rN*_c!s=%y!|SaN;j^?i)ge&p zQOMs+w=Z=$1JK{~7^Y?NMRvG*L8l}7l6YST%JxbEZm*wu#~`uzcOXw~MCPEOr3t$K(7{ zRSqq95Hdz%SgH=AEgbp6d*HW&=q3k*p_|z^Tp;XpLsTw8{8B&Eg6)opcI`b5R>o$j zph*$x>_d4bS#aAs{utjho;>{Tkigqaw!b=V25#4dJhN7;JDgek8*i@Q9?dv>m9v^=eZ5-PYU7^^7KB49KDRDo8bl3>l zxhc*!&$l-MtIM97kCqYZHMzJaB5hUcsMvJj$MqtST@xFT3J9?9eo{HbdhY|{9QapaSz^n0bKs<7dBecc>MC#FE?Bp zxyLr(Xq)X90k<6l>7_CoEmyVxWN^6%1I|!ow%65<71UN)1+;4XHgt1Q`0}&{??*{ zn|-OO8Q5QJChUhYY@L4zoa(ofg#sYnWy7D^ z;XA((wOP)TtpPF#nVDSM-ul5WdrZq;eFO2JWg`-&@ke@^!UaAxxsx24>A6!V0c0}! zoTgz^(u>hNpBOBd!Bj5Dq5u~@DO&E3LNplTOhl(LN%o$03Vh&ir`!mV%a6G5+vd#} zkbR!?PAKn7eXFjd34xgx-a@X^qRMlf?*%<1%_Hv3&=bbyf4x;W>eR{mRshOmVWht) zUEyuRT3ZcIAeeS1Ohg-ZdADN4Wc|Wn{8YC9*J94L1?U^jVzHAL86G6Ha2-!mA>kX` zW8&OVCH-T`Bzb2C)OYwbsrC)ADtUin|9((4!S7F9He{LhhW?!a2V&OayHRP`l@A&^ z`u0a9(QohmJV&~Tj{k&C3hlgXjnzG2z)lD^L-G{hZmesb223;6)TdU`F)=PaDd@ab=S42+Z^*_Nk8J_$MuBDV@&I1mCnyvXNZ!3TO%mdZ ziBLg>SGSwH2~G?CDTSG4={vaH92p!G71R`6v`q5%%wnoi1ipp*uKF0(XlU#>;E9@_ zNA4=NX&9do9|>9vK@Kx^!ElZDiqmrw&BJc!Dfnm@;&^%u8S8B))?(`m56sjGkZ)2r z(Ovbc!fThQ_a(B3SD4nV5AgB(nsh1vbu-fn4$~3rjPdm`HENu``CQ6QU;j?5+H64^ z&i8Z2=faJaRynE4GdI+sb_*t1^YoN{Ue>^^QdIE&s9bcGe93_lPyZxL=J&AG6@{8RRy}H0V+b?Z1jt2 z#~gCs&FOz<_RKi3E|?&3(Q*%i#E~w@z2uvb#N>;orKPmFBu{C@JPjD=nV~bI@~FA0 z7)ZCAENM!@4EC_ijLV&nRHad728e(2>MOL>2Kk{5FTZ-$NRv)-t|CWp6$dEX^i9(O z5>HzSqEzP}WYyJGc#mzUwhO#UFd&_1X?7!3dSkv_bswc97Y8)GMq*Q-?`>SkaGR!0|G+rC)8k4*f($p=VE3~qOhIkb!(sVttl_C2?=jZqbO&JxEEK+956%e5%br z*)!*JZMPw3wU-s@30C<^%d9y)d+QK?JmRR-M0U zy)Ak|c^;$Dzd=L0HtGXKR+B?6>Sm14`PaO-a(%^5F3d|}`z)&D(~S1djTobE{@-<9 zH8k6k-*UP-Dss-Gt|H{m%r8&khzWmz*j8W~wdE6_Blt#^+M?8ns=__Vig{ldhcvo0XL?PR(95_zsfvZPP& ztE*U5B8$mktpBE5a)G^GLF>1~AGC)KRCC-L6v=;mA1ynkEw3=@66T~#bmfHUF4r4W ze%b%pVx7m>}G*fHqb0`#n`>@c=?_*EIhL}?^DU&XVQO#HE%I@fKEF#92$@GKy(#^Jny zI`k&hLRI58j4*C{{Cd;dT@*h;k+J7SFxI-FklXL47mrB{_Yck13byv#Dc##Ut&4W8 znaoZ%N@bdaogM_Xa?zIp=yd?ZQSk&LIpml7L=iF)8iWMRe-<|x&<;?K+O$koJ4Q9_ z>sSKIwv%VZaHHUiWG8JblJwMzj}H}Nnk%=zf&5u!{#x$t)R}KjHZ!r(s_xV{q-Q+J zslO-$7E*Cyh(&4k&eRp_z;&FQ&8kXuwoz?*%+_W^jeK{AGbmf7%II`fn zOZ~bFP&?cgFdBK;ulL-Z^+=$s?o`AtnnoM|o5Y5G7&gP6W&#Nb$=tyk=9M1zdy&KY z-F6M&Pv-DKr6iw+cHDme#NrYF6~hv9t_#S8Tx9?q0v0xQ-#wZ4%*P)v5cqFN--`_Z zs`&|z1cGPH%i_TN|JR^U>6XWwa8HNk78GO#(B>z>xPG6`>h8JF_xNc5AU-}b!z6Jk zEkU2cVQl1o)31J&bJ@jYK9Vh#&}S}Vej|Pzq3$PzLm^C`rXq(!Das7+jN2P5;H7?U z?v|%mJXAHgCF*7xc*~xh@}ugJ49YWCD;L^dBVWP zI>6yCx`z)V3sL;~lH!Q8k>1C+qSQa$D~5%It?xSpwp`!M`5tmA4xcQdN=BQk3YiY= zGl%A<-sEQDQTO#eVm0p!=em8M-}A|s-h}g#hxV1=Y*2Mfr5jFa=fl39o}Py;Z?_&i z>gyM(;D>Xz5c(GS3Ts{7rp~1`9X9Yv?qqRoA-Bgp_IV6H9_oK|D&Bz{Ud%N(<$%G9 z{ufK8y2i`5$%7sF1>s}y6x7dXJ>u-D_2^`rIj1Q zxoWfU`>**A4PEo~R3N|v9{@<}>u`y?rbU4Ke^Tz`uM9aWcN+2m`j(nx?}Z)G*#TEJ zpoN8H#&%>z`#suQ=Sz)70Dj}yv_3;(U+=wB!}zj;czxt{Z)BZG0vYi{l3HNVIRpzA zcR=i7kxl||a+m{hkdx$w)~DwyEnbz^3+*=<*Fe`{i|E;;rd$20Qy^;L+AO@dB%oC*QooirR;LmAE+S?P_%pRKd@mXpye6}isY6gK@NNM15X^| z%H8e7#yzK-6KmsYw=(ByZQ~woe$fgSyN}?v*}$D?I-j@OaLYk0zR!vsrv^+?8~1vV zd#}npAwI%k!4(!GpoI6t?Z9`=BBjsx?#x)(&8-F)N=1OIeXmL(if>v-1S^z$NT~GN zU^xMzQvRO(+=M!4+2|p2N)kC}ls;&L;UIx)^hM6kK+tfJ2(bgW_=Ql@e*MBfv~@pm zj{5->I=|15gct`Ug$$Y!H<+vNAL_uqf@wVh|Q5 zK^dvwee_onR^!zQqgYMnvy&P@6yBb13bYIP4d^d(zpT`)VZ1JFzbY-!k?FX=uY_Tv>W@5|Xs5YXI|)B}*^r{P*qs_Zo5v zn6Q3~uu)&R-V~6=$GA9H5~&+%S-Cmj%u)*vl``3Js`THt>-1_zEn$iu05%Zbx*;IC zr0_AQ0xp5eVCtE38y2$KLHsk6fEoZV%;c5Un{W4jjw^cfAamm0YI6TTWQ{O~r7XHn zsA@LD?D<)8ZuYE-)^Q_$IjxA7Oxd~uG6D6Q^73+3ey3$tT3XT_M5Tj`Q99zlmD*1#Zt4!I3P-HYipzBra|~s4;G0OGMsQmvEx z-}=m{v&*rICT#H2Mq`J`>DBj(m?OE#?nNKwL+N}cXO)45$sES)l6bxK4hscZrK(~_ z;fdU;_zxq-l^JZy40eQ?bXX(7y};}tty^vS)Gt|qo~WEM@+7Kj;EEVKJ|cMMWPsxz z=fTN(qPmhOWy*cTdXGVU0TV#9_dqfmM_qb9hmd}~J;0!k4SIcygy*CH&!v8YW0uDX zv2Ewl($X(Kr0ZOJV7vWn)x%q3z@@P*&agrJ1&DuTR-%ln&$8wn*Fb1H;-^_>WW)c! zff@D}kc&&|n?MLl(CL``Y9l#IyG~{^^nO@20QY(_n|}Roj@zOD-TmF&jH?B}1M?IL zhQdBg6QvpZ`fv?iG-kv5fMmx1@^HRR8IV7*?T9F1FiLn6cmfQY{(i<>k7TL% z`cJm)rHktofE>r5%@`mpVCi-Mq+wWC8L$I1{FCsa;GmQ6z{_ygsgK%yPl*kVKBI=F z!vJZ*&9?f$y=}q9#wLEZqD2i@Zrx{2ZfKd^WbW3HOSuU#8v9n^wcfWMux4sI&q? zkR*;k~*4pg($*4Hcf`nFsH6I<5l>1pq3XZVI0;Cq;a z7g1J7oRz5e-KX2RHs6M7J#{CiO28Y@1bpH3Ot;~9cVV&0^HbB*Ll?8^)Ye1)!^HbM zzSdmP3V4OSDYG}38@*2{EM!C;g-fsstoYRcQ<}DcODHgh_us2thK7btVu73?J7cU% z`hV|(wWDJ)U}m~Y+O2Fi;&+&*|L2Bt+?{Z2Xa}BY8=rDX+z*}?1VJH$+N;^P7dimX zN1%`5$~ZFzE}%A8aB4Ty)7ResL?}ND+=lpmIW7q!;eoes-HVJ;?7QW|o9utQOY4A9 zrtm)X{Bw62AZKgpTY_`L}DSVq{ROVdx`#nfeCz%0|libnVJ5ExX-vDJm%Ki7cnz<&oqD4SV zp$xboG?HXxq3t$C)8nu2+k?3Lwv~+&>?+%|xYMGqx8x-f?#&j7(r+S9e!YdZ6U+Tm z37?cQc)w`AU(f&^uij>l-E|gYWaKq4_RH_Jl{H>$)aJuhF!TTU%zw5Gq{9RASQY>0 zy?g(*c`u00~{CG~Rdl%cu#y}Cb zbvAqL&FewadI@}okmq^(>bkb>I9kaGp|$OxHfwT;00Ut5nEKlPy4~P@v9DEO0MZ*6 zJuhm-iyFI?sl|RXW{uKJCd~@@_QPC!-^qxB6!jPT3H2z&JMpD zB|nz9xhbi45l*uWBwMDBB_za;_x?p#f4t)zEEnDr1M6CR()Do3Zlnj{Q0TU6Z4=hW zD{7y_B^-7`n>_S3)6O=eF+#jjt12!!c9W)_LKI*vN=3~3JvD<=nt;@%w`f~J7k>wN344z$uaQNd9w*9=8o(7-wUE2HxVige+B|z zclZMQTxj+!>*ZCd$_sK}7}p+fh9>EcwZ=qwjnUO9e<7K9V1Rv`25%=?8?LC6BcTa| z_0lW{VEA2!?5@q?kEVQl$pyt(C`74R9I<=8g{2&`mFR|b2R?VstR=S(`AFqewH4qk zuKm8NazYHV_aM>?(~(7R)T9#OgEErjnOPmPe% z$}v{gzX2EoiG^&1P}|Cbz9ld5=3=)ax(k2(Uvm+{ z$jLsqeH_Ol@gBcen?WZarDK-QEP8O($b6{@pd5W%!)30|aYOvGiCbI7-|?3F51i}f z(6pMK*ce$4s=E)%%;u`t3?e4a9oY~x(9aqtH*_v4Z*oi##&&B#8p_Vx9br??$*-iL z6h~Z_-Fb3cGx!5lj}ek_#=PX={m+oEKA^S93gSQhI&`+y!*N-)H5w&nZ9;+ojX8G^ z2aKg&Ezn*^3s2o*sOG;I#3I-AY6Ok*wP^q?lV?}Tz#`PuOUVbA##j1wau9=IKeIAY*R>v~=fM=AHN9BK@`#6y5yRd+ zA^cQe^RIka56Clz3V)Q?m@Xo07QMMRo+8-1XrPnCF~mP77IQe(WnnK6O-%nGZ&)4N zC63YbHZtt!Gky}VpGWIQG`fH)m*C$ZKJ=k*oLDCh7F3lW41hr|hoFU&i+9(Qi$Hbf z^sh&2?MQJYjry|A9F@D3-6OIuH@)GcZ($@Ak_!eWWFtm&t&&!!j#I-?#~HzgV!UkO zn2%d4qW;u532GB0t~{vJi;+O$p2BIw8?92R1GNPXG#ie{-Z%#C&Xk9Hd*CjkIz_U1 z`nN=C(c`KeSh@zZ&ZHK{A_xkUNEYCI`Qg-*6g&(j63v)_o4BT@Y-Mr#)d#Q(%*XU* zO5LiUPx9&lU6q%0cGPOM-|1O1@|<2NGxGquv{PIFl|jcG2p;2j2i|46qynmbX&ZFp89qlaIc8L+P#b?zqN95)l4%u@O^w?uPyd~FZz z9C3*Hp>fJ4rYJ^nbw;x(PPQ)*!g)vc(o|Lar5wvwcbdHYDHE=kr6E7TF59WpSt9I)bOc4x=Y{$wqr#TnG768RIB zODQJJQdMiAlJmBnf-ja2m#?@)u!6C=nG7a2l1ofmmWww39DuTV@fbxBGHF=d!NRL> z1lkGx>ElFeAMZ|vEC;kac-U z_?zymWJkdpUwvRPBM2jGo)NYw%1GDXxa`-?vfInq{p|}Kz!6!;I1-x_#Cf5SztH^W zw5isqV?$0~{}|F`!QeB3g+JSx7 zpW?*1DzF2gff`zo)5V`ZQTo>NIN?ys_7Z9R6q;}Qa`#i{=1+-%W|#8w?~&Ot1apk( z%~eAT6O$E>HPMGkRjM1WlH|E`Xyd{TQJV9+O}q;lq_##TWm%jG0>Wug)3%g^)I6V?4MQY`AR zYuNV;^{m@SR~@`dpqV56T9{|{t*P9W3sy9WwExl3KpG4A?~-umQ`!IGUx(FD$AvlQ zo2pmj2JGS4){d+Mh5Ib&7KSy82I(DN<2l0OXa1Dt7A7YvrUd7e++d|2If>gKg+fl_ zLyCv4j|q!8D3UGk1d0Y_Q_*ABKHvINLfZEwf?jgO<;#i7lh}D3${W^$d$UIJ#X+jX zwhE}&bsC71FH_ex{ifY3;lW*SRO^)zD@@*NFSJpRzg#G8G9}wGJJ7bMG4b}%fYgnL zI<9T_1(jTT1Q_h*_iPPoBS6rHoUfsqcDbRDadNT2E0+UsAPuKwpq$IkcrE(QnC<-d ze%Irx=UWO-*!z5`@awFU_B(m7c_CPZeweS5%Fz{JlGX2_*`k|&O^Koek*~R|GJk#_Y-IIW7%n;;0i5F!<-3(9pQ;qxH}n|z)2!&TyLTs-zs&Tir5c3+rbCcb zPOuQ#qmv*P%S(6Cns}(RTUl}9=F;=%4}UL(K!WxspLG0Me}VQ5$5*xcYF1~QbACfd zpor9vPv*0yD<9?GJvOHNQ7tA1axOls^)$VU(Q{hKtKH5WqKt{K+t81axQzhMR*3va z^o)+4udOx3*TMV9fvF2{> zMf@La2}0QanaS{%oUUP))j$)jS>ol#=i^D8?jcKTUno&%|Rn%^hQ%B~*5S5E=DrDZy0L zm+rJyS@6fI>=Yv5b&Uc?YmL#9&srx{PL1h!{sLPzTG*7q&Y=f<{miqe&V!y+(J$F1 z&Q5kJKBfPeh;z{Hu4k$YWW&wDo{)Nc6JmW$gs<2$ssP|AvkyN}#w?r(rAGV@VLM@H0}1Ug_4GzM^WiB)^*X zJgAQqBq&u79x>r8O0d4DUd_I<#3E@_y(%XHY@TdJ(Efx0cb8fHBHz`d*j=eTNFO`cYqCtk z)`*hhs?Fpx!;hJ`KdFTs5ctccIM`&Thro_!%NFExB@C7D(udblXC+}1a~W0YMgho| zje+wjWjf`nn9R%~I?PD0xA#Q!6=E)+KF+0VcorB41r zN+1k1DO#reZE#+kf%25DBFfk-M8HVdSFY`G;PKGk3Yc12$z1IS>{&*I>?VK6NT`W- z?9rR>$q4^+=;O|y*fU-tI`Ei(!;lo4(y2{Zk*S-)#d6R2mfU({t<7p`P>%3iLBdwAY&(g5}gUcS4|KHuR|8p*89n3e;)zn)|d^!o;%#j~*Si`fW zm6b_2)zf6nr!D(|>yez{d-RG4%>`wJHdtVs>;GyE(L9!~LDA(SQBBDAb5~zuq21|8 z8*a!$#xO$sIS}5iZpm>|elnt7gtJd;@ejg!I5!25EF?^M`(uJ8;rk+=_3j3y%^sEA znzXVrEKJT&?8`f>J%z8n+u1RZ`oGuD=i`#^+?LfBo$S zz7yT#0Vm5Y22~E^D=ma;dP}Vhb)@HyoyaAqmcq|mBUz}2zfwZ#%)V*Jy}f-LMNq|O zRk)BZ5-VQRZMs0BPcM?@Ui~`if)Utp{j#6vBz!L=cdqH}68)GT`|J54u4V21KBgjFMllH)V|6O?DbnN( z$G1t1f2GE(K;pSrI;t~C-m{LcO292)|6f(~+tXLq1RClf-vRRzu$ z1dRMCx&X^EPS;)$9{y`>XXn2%W|_QIYB1IESfEdbT)&@zXDmw|X4)2eg;+HqFD?C8 zmM;%G+A2m~uf0R*O@#FMUr_x<7Q7X&S9-c@SebUid^*b^OE$Qb;RZ5RL(e{pxOmj( zGv|a~XUNJQC*FWZ%SuUvw1)A9hh+wR=%tc0%pg=!B43CED?~$T1mw`^BHjcTFdZ5V z@>eDvnzjq_M`n**GuOAPJmpaHeeR!NI516W;hi)(&t&{wFn^5(rD7@hAN6eiV@>!! zk|^eh^_OI})dF^RK@hv&bb=JyjKb8UY#E6# zFt}67j_RzTCA-VcBC-AV4}JgP^d$hVADyec-be8m@4|NidbEpaD~wH(W}PBqDm9R0 zEsZOe7rD<-oEI)FQ*ifW)2CXxweaC~g_s^{h4xPNZ^oms4jsxh6_VZfA9WSG;^id9 zf9ks^v8Pia!Iv0&0+i)skXAysd4ua_G8)KX%SzV`YN*~s5G9RLe?yt_!Os+{w}&}g7XNS~zH=6UEreZ-<O(h5ls`crRyQ9_`;|PE zUceJEV#y#g-`pT5dA^H*4E^SN9D@Ef{GtGjR~=l{O7K4*p!`v)AHM?QAnCf0KKjDE+kn9Y@cjYFYvtLCWc<38Tw(Bt{>nWP>hiN-GmlJsUng#*xu9 zn#=OV^DXH}jUOi;PkcT97h`W3)MmGEf8RA|DNb<@P^7p!#T|+}6hd(eQXE<|6bbH9 z9EwAsXelKmxTZjh6WoJCkT*Ra-Z|&P^PhW$VFnp4u3USv_g;Ig-^x5e8skFR(3eO; zv=*Js?$ha}_Y}eIb%D3^RPVm}oXYJz@vc3O3jyYgUGhZySA^z&6ubXfS(0Tc15E+u z0L`H0sP@)z{uwGeS~H5qbWueGTYo+qq6SspAr9CF!Ql5Q-w7rqF+FtN8Wtrv zvabFt_iS{vsUDh3`bK;Irn4}MSvgleDZ}Db&(`aXvgzZq z4~X}X;ho`^SwKW5e3Gh!j6qS^co`_^gm^_i!KiVsr&{Cp_C1c+-_1AmwBvNg0hjA|eNI{8ZrH(1`Jy_pq`%B1cHVEn!YTZ+0wTiq`y zQRa!cq@3O8fVEGHVPC~!_nFd)ZWvga=nbB?;$Ncf>=~uAvd?)Cey%5qKbu`a+S{K7 z%D*07AqhhLb9IB*@1WR;dR1 zLOg;>I>z`Mva>W%T7i@w;%nK%l2nXm-3+hsg49Vc>KOkb7D?c zf+G%drBvncInhAj^yy+ENEy5ml1*SAE5nib?C8y*uCkdDY}g+Y&h`KK0z(rFRqQO)@Iu zMh5S;u4K^d`&shCP&zy6VUuma}Tn&BHVi?^Et!Dst#<3 zf^{}@LZOXXp`?=XmgIpWu$Qnon>Bhs+4HGTd5zRxF3WF^X+^>mMU{NNEjO_5egM|$ zAlnAyDd3pdc3V=HdwMFXfy}?=yC9YSPzyBw^uRc5AGv~!%Kau|zrh4zyYB~H$UH=q z8d=58!5iW}1UV%QjYrRl_|LCd7>n#D+J|E_KM4qEX1o9?jqg}R^30{!HI-Ev12K9@ zaxLl>;IlWTj4zE1YAk)e`YUI`3}b=9t^l^M!TT%c#Xiae)`F+{3imtu;x*@&Oe0Tk z?)K{Xv8PCTg$ybGjCYmNRf*Y0c<4n_TNQu|oGZ%_=XyofOyN0h`depNwU3&^<}sMC>9eDDNb0x@A8*u{6l?T^3|}&Q>=o$bH~VKAwUMzT zdm#P!$LM=69_T^e?4c5u*UhULGsZ=Sx+1RnI9(ce?{L7L5$o<&%nPFJ7CzrJ+T~Uk zbsJcBasG#*|JvpJKTa?nN>K^uzZG^|k87S|TC~P>viM25d(95~(m(B=>-MTog1>rpcGk%vvKwxl^+XlaTP5#9c^Hn1)1y6sG}Lf};D zMDjeN<+XXd&p6o``Q^pxo3lqK))DqV?X{JrQ9Fc6i%^!od3q_Iwvuqdh>TT_Gr#3K zJV6VuV~od6RMq9V^mc$UT8BK#BFa^k6LAK6cxr3=P>(vlaE&TG{H(E45*j?_676?C zDn;nN7_t9ap(L=+2@F5(CA9J!IU{tJy7vSZ_$|vYF18`ri{pU7#@eyCPeH!d`2mZQ z7;2;apW>BcpE5oaUiTd}>`s>GtQQFMli7W6ZZ;5Pv-t( z2ZI{@6oK~@;JBIVKGC8#^f#OtNSD`{y1FMFyxIc||Nh{unqzAa0a>U||e>>`oiXPva?!p;aa!bH{3z(FNQi9>K z7!NVmkHGXC6goEI-NP^qW|~TrkcB{UC^o_8$~ygQVTWwh94Cd^*-K0c*9%H>B1C~IWtYnamMH$AWFpDS-B zWh}jW3!#3wM7j!Jq^Z1}edaeY$Hz}lpYV1W7Qa)c*l#4;Q38>fosFWH-Ru_^a^U=?PR~uU}@E~n{qdWK8(8bpd-hChbg}xC9Tems0?F8vAhCP z{yFrDgO!yDPvI_3#*Y!RjzL=*$|J^{llx9w=AzI%OL6E}u;7FMEsu&dP-GbxhdMYtHyNXhqS0IBW7?jg zp}bW9Fefyj<>JIW8#&VHl=CveGf-O;PAc@XA7hGYJHC>y2BY~tYD^2KJZVml#0TA5 zBIbO2tXE54asP~P)WY*=A~@Vs&%4*YO8aF3ydU-^HcJh8CdTXVGQP?{m3}8>EHc^QH#S6$#{09d=MiFY)VJ-0=xSf%QnBZ?o@f`~5gb%01z~~-_vEV< zbLAw@qfXS9etSF|%6QvI?-xe(3(ssKMJGOGMGga3&G`N2H!g@p^FAvkP(~c-WBq?F~?Op0Zswk`!9UXAGZPk1CK3xf3hVQk@>%% zJr;1fiD2Oo`nV7iZd(A)b5;N3HDInhDR2H8}>?dq&Z*@}`Q zQW8`I9su5-h~+-Q$2*K}-N-~*#r!G3q-!NUD|FCZ!Ta;|2#);TLw&xfx9V|61GPU% zQWL+;8LNdgurrk@vq^lK69tN5;q7fli-x|CqB3i7i?~dFJ}Nl4HDJ@$3_8`05nytB z+ZUu2%=lle6aQ~nn`J8fiDh7(k25EI-fVON+}WdvPHdUqkLU`l<|!2?zHBw?OxVCF znnu|mEVey?++HW7uQq>dcYA99%iA2oTDk_khOOvLoB0n>qyTCu}WilDMK&J&iRyAcpt*Wzv*CY5mT%ztJO-8bE9%;etG<~yyws5UYMxmpWQ%4H&^-4*-;C- z+6X7wLw}5*sDS~qHh-dH5WtS{553H%9D5~@KonJoux*%QlzcMUus=_iDn}dq1hRi8 z21Q5n$r#7yOMEfNHdZJxg}d$umN(uG)mRr$?7~67JvLZF_V!5JbGIp5;6aA1$}RT~ zAi_5#nhhAh2l-WR6^~zZ;rI^Qf4ZeQ@{*K%o#9;XZzCp+Q~*8nifFhdT}^v)o{DG1 zC+}a%iW&|w^7-)VpKnBkg<9|(Rl2C0hF!>glHcR{I9F>YApRL;q!tWfgxx*2Dv){W z{;Wok+XOMVFa1$`W=JFjUj{h6vb`_CkkIE*V6#dCKBNyJrThGB#;3(XFPtOw#JbXx zw39IBTWyNB6F{VAAOzutPpVUuHI}nGA82rs<9s6Y11)S0Js}7}%)b{(3b9m3->j#5 zHi-}M+xz_^#LE+R4tB(d2$@#fLJ<;eZ<#y+1?Uh=qe-h@)Ia-N{d44ib(Vjq6~~B zndqAx-gp)Wb3lK%F0mGm9rvf^i`TA3+gVX>imU=2dAZngiNPh$;i57`v^->d39Q@t zz%{NfUeu*d_yom9j^0mavM}uaj)!okXX zVp#0-m!b=YK@&&2Roa-8qWG}25yH0Csf$8ggzggLQk2dCs1svcxXHN^80?pN!=Thg zw8}?=RHJiTa~xJL*8%bXl2wr>DzDqZ6X*}aFK2azA$>E`F{ixsGM{7$?lu+fa;|pQ zsAVal^!D9^F{ssTJQ5=IUnhhzO$5OYqp=~&_?S`x>4ioyqhCXU+*9WIJd>H?QK){t zxaZNR&g>ws#WCTPF3s_#SK3cl2sY0i^!Urr^#%z605yD_`McTmaVJJ=35pD+&a44~?M50G#i+>}lD4h?OT_-~6Bv7If5Gb4)dN0>!IKrH(oVx+ zJ*;uJ(FsLkKdKVBYud0^jbGK)(P|e?&x1yqqqwl|?WTmKxA(emoEA;gU89&k3_1lv)ijSEN8!Ivh3|fbjk7casAT`?0qg{vu;`Ts+r0Q@vXBrk z+PttPUvxv_{AU6ws~#})mdNJ^01ys;(@HfBDxY4@EC6Ww3qR~>c@eAUiA~gicaOiC zwDFsuUTdBIfR9c9t&=?6Zhxp!jOaQjZH??@)Y4rRMQPB<8ltz>C&@RCz5?wyy}-?ju=Y)kC7KoNF}N_x{hH zs0L-bf6l3zeLidN4-1G;zjHB;rCQ%?H+mfe$nAgDlYQ6s6O>EoHMvK%{Xr8`x(1t_ z(JiGIb9Q(doXU!xn6c?7vy@6w2$d(%kU2K z%hR$mMhuU!DJzW#1SfZ#V`h02;E?UnItOr638XJm5aql z*Za%&XbuFXu(7>=_C7QevniLkV&BXSyy;duKG|@0qu=Hc>496UPVXE3%IhatkvE}}UHD~Xq;yb;EddgBM zS9Kq5tfHgogUpi$^r&PJOxF(<$wlm(qQx$rA0kiMmrF8)&M|7)?Gpq6LB^3Z4W*pL zVGHT3yCJ81utS1(PnD-qQlktcduk#C(M9&$IC^p?&3J=jm^M)jXhuS$%A&JmQdv~? zyV%)rt+P;QbBM+3_5ww0*`Yv;?%3777*YF$xaY?DNUq_y#5E|g(gbG(kE2-Gv_Gz7 zd_D}Rh=1~+xeaXltnZ-{I49e~#iO76#bhQ~@=On7m-yzR%u8zj-=cL`GbyVRMCKyW z6qZXF zyJ49pdU3k72`jRlV*o%jWTmNhneaf5!={U?U9@WYt(oTn`0#DzVdN<%Xv6T-u-0TI zzQb!NJ~L9PV8b;(#cuw@w1#`G0M>Bljf`%&Oj#6wjKVdSgC)eG#xVVE!SZkhI{F{d zS#B_zH$c{7!f&;51wU~*p#T6eJs>n9+{-Pk7X4@Ogu&7WmDYMIdYu{t$+-i%XG#_s z1l4k;lvf!S=E@j^2=mP;C3(7wa*t*_xB?tXM2tN#Yx#WdqRt}){-h!v>lLov_K8>^ zAFtEnu8!c}j#Q=!?YbW!FgwKU_Z`y9(aHIAf%DK^GfM&#iS~YkU)=GF$IN?NDI3DL zBSNVd9z{#v?iQx9X!3x1)%r#<1*UGRT%+k$cqfn!bJpP;-{eCulEECM4w5U!VkiEr zRSL)Dy@2JC^d4Uk@NhX|)#Y?k%%f-NVl->#4qzTq7iIVevks6~jgP#D7FA#|`w=Ec z6w~^+^R8WU*SUbE_gp~5GW?VgL0{+4Yc4=-l-WM$x-d&_V&Ap-ct;ts2j}OcNB>H1 z(hN1=&IrG}d}bbqp`un>;qT0T+x3|O_T*De*R%^92kQ^oEm`4mHk5nHdAL1w(EhRDaBtJOgUV7YZMH|ZL!h?F10SEhJvMNg^ru! zjfU@>b(Yka?JkxuHKuu0fwOk}jyL8CC2FQSXVk*7oi10s1AXQLB$gS?yQX<)-$MW>9D~@_FHZVW9rU zm-BxgQ1|1yX=8-#$;D4fiRA^Drn)bd8kS6$uOl{66LEP9BkeNM?KC!i+Hn-nju9tC z#1HGEM6*5q%<(&(uzST*v|6?dI4BEhbu*4E|)hMb9_35;Qst@hwqwa zcj8b=>^g%H-XyN?{v9Z0g_k4X2SN*SbSXQjaLp#W*RJ6sov=U=mbXo&EaqrCeo?#&)ezifGPFVHLJ9D5;D+ zOjkq?JG}qiap~$2S$(Ej?rxG=&-U?pZ6Yiyu>z2ZTTy)SkTX0vQmmxl zIhU5Oz0F3J$lE2C1wCkPsLCi54o31z+G)RXiWX_z;^Wv0{lNxo zeX?uf%e!5Y*dkhOEhV*MZ>g|4B+jB*a|16W>10tsiXoO&_^Qs&IN~Otbr|*+mRmI;pUv zHs#l3%$&@ws^KqqRMf#&-GR*9G-A~@F8rX{(W(hYN^aV8k8J9c^8l29Z|@cKNCIGT zYAyqdBy{q~XHB@6wQ`_e`C=(35C02~*leiN2tPp%XQcvp}Pxc7nKN zFS|sjv!o$^$|&CBF}Xd%`a1E{pccDBn0Wr|bI>0c-!zD6BN%(Empox$6ZYuk2s)hv zMg95*-Miz9C$ok&&pHijYA*NwOnkh3qrjZRtc^9IEC3X78(sOg2heL1iQ@$r`S;5M zr*XGVI;lsm3~PAb-!FDA;)A*poIOO=J@8JBMV;;@DG`HN*NS?Zv=E?_0H&r6AHOKQ zsf)IYuo~^^C@X^@NA$P<(m9Pug*D_yClufL&G(K$^8dD7s9a1h!DMXT0I9~sM}>do zuzVy^Pg3WP8DXrR$i5X=9ZwhpfC8S?WIlfH(ir6O9Q9&{RDg)pxVU8{g)aRB@A5%G zaS|s(QF4Wr`HM{x&Y{O=!?WfVo7sP;C3Kxu`?x#0B%l z`%2qD25uHM?rAn9F5k+CU^4}1`3+u-V1VYs!1lucqAMn{a8~-z0JUAKVg-6+YDZ}) zi~ZgqjO~7iV)51VL6o;Iq;#)QLZq{f~2BSKF$HH}AiBglRg73WpuFZ%f`k7KxJzgWd5=P#t@u`g4 zB-N^orsww9ae1-s6zp`1PK4o~e>Ntosp0_;uZlHcGv$oPcG`%IB5&75B>g85D_(SQ zDB|n&_6|_>+p$##y17qchMB;<#&@%2BCbDz7=_oXKy1pB{e;rktvYwmp$ihZG5@8^>-~_2#z?Vf&~)KKMszyO`*m37=Qon2(K&{h?uQXOMF` zFh8z=%Cg{5;BZ65y8m7d(4bS>z8ZcxXl3#og`o$s!V;!(U2?=iUIgaMSqs)*a^-7+Q68I}1(P#+E= zoK7r&W{Bct_v1~g&o?BNZ?ENu*$0dH!mc~1why%9KBqVAt)Le@&w*eSo3l1!tZf0{ z+5mXs`lgv=R<*diBdfPO!O($W(jQ*-PiY~qIXwdD&eRUz7{}c}5U9GdSdjwcT zkH)8}$AfOQ7&%*a9W@@vEB;B0V9>ipQGt_stT~u;r&=$|am2C9?x33@!kTTR1X83$ z$Cn{k)sVSezCuGDtT_BJc?{|IB4T!9Ho$ugoaGhm^*}7u>!lB4LNRULmc%Pv^!6b< z(08w*a>!ol`uc2_aWsW|eLSX^khPyDNi%D|Gkp4EoeuTo%wY(*jYy9)_i3&7*Fx4e z3Tw+BZwZ%B#S#p6m>LiT1;9p(Vv*%ZpHC6ol1_cLml2Q*1_s&`0K+ySTUuz`wCTb; z7jg-ru^RB`r2;5c&7WIdo)nd|pI$aq|k;-0bv?#(!P=w#^Ij@iXO;tkz3 zCid6WhBb=XStC<^v}l9jo(5-ITp4;w5ii-+CoUJP1VxZynl;A7#wSu#$eD|IP)7C7|P!TU}U+7wj1n|`}zt}}k z?U1FrPo42jH;@s{lr>kmN@In%rC>E^Ifu+Joen&>V$q<-b`;uFQT|DXXXzDEluuEv zTQS1YvrGa%$GtARQpCf2tSh)XUkafZJ?N_s7QXTYPt(TODJq_jF5_u;1S~|k! z861k4n8*KoYTt>^8J7^yQFoEw%=Z<>l%xQ&fCerpS%NLU1AcXOvudx>AZKTB?)R_2LVr+Fiv z#~7Fi2scqNeQyHuOVNlwFZi$~CHcj(qc69tPdDRq^V44rV)Lrp72F}WF#bnMDw;4+ zCFDlqyG%U>*>m=~gbmRE#O z=N9YyO1!G^-ihh?cd6T6ArO0zM*N8%(emamQE7Qt%H`fGfNoXMw{KNVm}MXT&wr49 z#Ar{UFSl>#7^7_hmF@^6I3Tmn|J}%p^cR#}w zoEkaK7mm@c{bog>yzp)Se(s>Sg^Xm5+}ri&zaT1hHZAo*)Ud^KU5UySXi^x*Bx+ER zEwGOE{m927O47jcnL;9G-Ho+JuU?B1z>}<-4#@`nq=2AFYvev*L&GAM<`&9f7uGze zsK9Ts*TKY8(ZNktCN#E4>@R3}vSXwsDP8CzrDTc2DSJ>}Nr`slh;*$sW-cJi z5;tz5Sw~sdB`LZdY!MAR^9si8OV31!Z#j_;amHKcDJldFs`Cm)1e`iOp;k%vB&;u! z&f^^t6$DFv4#1o9KQu+?76hJ)5t73i=y7pBYXubL&z9G9uBw6EJI)Rj6`+tKUrsD+ z0-DrI+k_GZ49(_TH9F-5SS4$toAlN6YmK1|YU#)D!XQ=?fld6t7yg~r?q(q`Hd`7V z!b*v+Sp68tlU@!sB)j!|LVMRh;i%q=h5|(siZ&iYb`b-1NE;D8-Ru4P{-^myU*Qlb zf%&Cy%7PK=BMCf2*L5lcS}c8-c>mL9B-WTht{{!nCbTNi{j-*9xw}^PL-@NZ(w`7peya-;CnnyYYWH}Q9|+MNGsHZIbM$P;E=YhN zbA6e{6rdf|I!mX!2I7uKHmjEmhrEESv_(IVF^WvO&;RctoB!KD{y*BgtliOhdIa>P zCP%R_mFytUfkDbtF#a`N)|E{v4bO}}88nYna5p{>&0yKgZ=Xu^#->B}0iHmE=u0lf zx-@-f2bxbQsvt#HDo+IkrGd|>PO^Hd$6W3o{D3?!6V%ElL<8TB3sQEd3J#VHxa>mN z{IwneW8;8Qnq@>=wlT>(}5NTIIil(yuNH2{E{dZ)^dM~XihZEIui#go%b@@$HES_2CxoC!%(%}RM1VC&L6 z`+x)RNKtV1iEW&>V^YM2owx9bOv8(jL(v49o)Wh-K0)p4yVF~gq!wkXsQ3G?nk-is z2b8rR9W}fp64NE#APE&dE7m6-@!PxIjBq*w@BY{@D@0oqujwKlml{I@E-tJeR%ZfV z4t&w~zztfy3uIiZ2Qkrw*IFc#OMz9ee&zNl5^!QbU|P>V+795hRb!Jgc({1s2Cl}i zGA!1+(LxCp?(4ysFBke&+xF+|GhHf|Ca-2w-)bq8=>7zu((2YCKDSEMy(3az&CLU8 zOodR`v@!Yb!PnL3R)1_h;dgK;gjQCjieVYDJ!5B0T!Uu#@Y8x7!)&28k0m(+Y&W>4 zW)0NP+Dxe&@h3-l4YPtr=0mi9;KeW@r6eL^Sj%s5m6;Bj9jq&G7GHkq#NDZ?8_A# z70{<#@W*-2>g7_@yOk^d2Q4C6LFs@6w_)K!y~vc(B-mHe9%dk*A_rI0T8H%Py!sIt z5hbN!m%WPW%U+N3K+@!cNyz0LBW?p-b)mL+6IvQaK6BnJf>=azFFfSSW5=djk83*g z9mcozN5YgPEqAMKVTczsm0q(Y4?cECRaKW31;^~q((7=5jul;so59e?+~sQ1LSeFc z9`GE+v~@1=!V{v5#lpw6vLD`+>6VDm^_?e`LMyePmyPdEu)t=fZ|WBQCKSeMEeOkV zOe-|>u=kTf*KO%Bn4=Q7dnNIC-qtS3T-H{BZJ|IXZj5L`3;?iOhcSx;O0-zRd&0|f z{o)vY@VC~)fFr`Z>RnIx9KXN%{5|jZ2c?&pBSIt7kZpXaAFu;;lx9ApVO5G(zI@#& z&hp^2z9=vCb!+h>WDwnMzh(PX!{y0=#(XAI!+^7+NmC$y`otxh%}ZkLHBeCOli9`9 zXQw7C6=Ux?5BUcjoL~_pW0Emr4}p*TmOAq&+}#Ql#&=Pj?M815)rm~@-xU2yl7z}g zfuG&J$MSQ{uDmVV-H=>r!pIYt*8zsSjNAGJ`rPtFiY7PFSb>?S96E;Jv3vQ#Qbir{ z?|f^LRQ5GEEP46kRr{sQzm)|lW~u0eZb>rC-_t_pM(>5du`K2@B00=?JTQG_OoaoQ(zDC!E zmnR~#U+r#SK2;1_tRq52^nn4aP^Kp?R(yj`R+8!>6=U3>rn{hzfBJ;}`Da~SRY6wY z(muNrx4P=RlX0{fINl)XuA%?|n`jf|s@isi8-x~a&=JtaE zdUZ+IACA?0-e=#%^vIr;PY)dZ`kfUnO4NI|B`PW{ERrM5{4HT7`10{}jPD`*Tp-}# zuE%AA9dM zERX;S3V3M)`2q&Jui5p4tPLN16ic|my^{NPhwGTMHtCQOb57QHweVCsVv!F~Q#0TC zXZAj7ri=KwuMSdF?OHqIYyQ3?VyG--gX-Az>x~a*g6Xib=V@EKcuVZ4B>^Z#uwsEW z69b=LyIdh9taDSwJE6=$1#@QrXy4;D_t8@7-R~x0H7hy$5s)64+7eexjg>VF>(3*m zuNNv-UL|Ysre#V)P|1~r(hJ5Z_c7qhk{&#Ekss{_U&&g)%#K|5@ch19wqVTpT9Z)^ z&H%}aY$`>|=tYntb&hv30{h|Qej}Nrno*Wo()&Cw5Tf3-9w)`8M@QT`w)05{_-u>1 zmtPG*fK1(lA|nr2aW-@rKaGsjM;QsC&G=gC`X#npJ z+z>flR@%wRrRFd`cW>NH;qw7-=FCf3c${7c1O=jb-XFr65br8Kyur%2&h&}3fy<*? z^-TyNYr<`R!gvAN+p=1x?w6=G$)?y3evY)rO`9x#734Y3LuB#0qycVSE^Dim+}Gic z?6{i&`%{xqSInIpmdG#B`>zz+=wY!NLM~eC3?U&eptn*zT`(LaIpuijVEzpU0!s9xmGUPXdO<{4>^##H!~#8gIBo4famy=qjH?#sR zNINS0^^Gczk_uI5&S})g%s(RrLptOG{seSEF62;F?Ne*Y5>;CsjCz!}zGtp|>;Y8? zA8QjA6?t9wwzh7>G8wQg%ckRoKeQUe=tn1v!O(O)sg0aN4Ak*!{267=Go~mcXr{TQ zzVg_koS94@cH(&$vK&jVVa_uoihXXSaH$gZJMtIf_MU5O@T)cT<#Un;OYVFLsx0H@ z+$@A|rGoUOW^>kBGs{2MNJYa>Q6b{e$?eiCng@4l*WO0 z#R~MR46arn@eA4#BzIXcXnP62Fx2Dg?tnl|8AhvV9DhQ8nh`rxX3O#!1y43oXBmjb ztjOhISLC@gQ2ceEN>ev)Bobqq;Ez0M+&>C>eFg4^+v-t^c(TQ)ybhs__M~c1j+J_G zvRxGv4hZOp3*`zK#Z;4&!&0UVbG3H`uN3`n#s5r5WU<_9#rz=&{MM)%R2u{GBq5?C zV2>tf-maMwmfb5G?`?5DX*xISXoV6fkzX&RU*adruQ!JD}fiAVN!a{S*;*dL9Oe&mdIL^5te zED(V#QyYa{96N`cro40Ug$FWs%4d^vS7f#8xi9H|{x;*ikJiV3ojJ1X ze@V0$l_s^1=}C^J>JAA0XH_5TY$$}Zt`w;3C+IigH%ZLnuI#$tKr|!4lky#Lta)2P zy?W+rQ?cD-*O_4|=bXcX^Rd6=;^#&u{?}4^M*6SD2+bJ=)obX7cI@ByfYcp8p}e@o zB%e6r^vC92#&t^-`v$9DpUR~D{hl61YQMYuN+zZrDTe)QMpXf~p{q-%?fI;I5Ib2CdD3_zORnV1hZ!2y_{R0jB_xF{ySncajaJ425(ZIy zi)0aX0#@qN{Q}mh@bEi3oe)g7$l-%4cA7zYV#Y&Z)6x~Q;v4$TU}4QR;_6%-tlgv1 z$RNfPph~ID2BRrWnH1IhBVAR5zkPo>tBq6b(7R*JYf(enh?VXp5i6Jja!C)*SVwP*+j<#MLh=QH{bH)@s`K?Ye;OIluw(SIry z-NY<rv*Y=*ED9oBX}HnZ&d}9t`zSiW&fDpqNfM5g&1Z7)FF|MgFT1_P+^3TP%7meQ1t` zsF0?)D zXr<_qF1hT5_8N0innz3Xb>k;<+JrGTIJq6uu8*g*K}gJ_Py-&%((gY z5w3in`>nXKys?Pv1A!X{oeibM^SQW3UT1OpVW$j+NTkU#VoxeC|Z`l!4S z_$NQ*4wUmw-s6QdkEzGthmOZe=0qBquo#N5*`SwDa!bFY1{vzt>PSB;(ck%F&+Wz^ zVz0D1V%d{;REC`d@M+r}2~sr(Xo?cBq=;_#8wg}smVOvx3ZeZLlTs+D1$!slqr_#X zQw%LP;D0%TBWh)+-o%qhoJJv}1-lfd+_pa;X(ohjzZB@jr7PbQ5T;hn>hafDlQyec z2|n4n8j1&^YZSjmzK}99lnOFjY2zq>+cQG)(>M%*zMC}-3WgK>&YTyafZIn->*KF_ z;~bv6mTAe8hXeAtk>i#84 z|NVHE|KCc@|M=A~5$m;+$jZm;tZ3|&rZPK?Fks}{3p}_pa1d&V&xJ6asOA%g@ z1pR)AA8JD_WNJSR6}imYem;vkvZ$sj#H&Lbndb=jahb>7kd_427_wWNMs$DHcvciN z$@(p^_7@{2xb7wR!O>S!@tls$v- zce!{Z(Y5VChcv6&>aI-SLz(FeOpEn{d}YGbwm*yBp%w*6-%a%%GKwWqoVTw)OwtsycHlpt4L}+ePuI@ zo$J6~g7@>ELx^?NGMZe~I}BPn4v*D1t=e{0&4*L4jA(wgvs7SydinhgJ=4;s{pC$A z+6ryRTwpwZ6sG05RqjGq>5kehm~Mn?k2z7wa2s_q_z~mWzM@wq?!n#g~x>UruyvV z3X=Crvr%Hv!KRpc8=Sce`eb`>kYd}kAviF=@O3VIu`R@4Dg*H=Hh6znxZ0?6G$yb? zOVf2$TKU+HQgtV`QZ)Vd@0fvdqqFnZ^Ai&fKrdG*6E{iRLUm3?g8tQe*Jzj|)mean zQ}eUIu*sucP%YTs!8Wh06B}_c(maJRbWHgx`1#F- z5&3R)R&-qoImx8Tzz9ar&SHB)J*~Q>H}q?vIFF>=oASoeO4ktUp-H;y8FB9<1P;j2 z!5(t~3%OOZBx^}n-<7<+DxMVQ{NUrs5e`mfy`Yb1EjZm+*yYVIFzywbd+*q(2Fw#! z0}>KFtEfXYh0B8~BfMG^gI}ie-*TDI4OI@SJva$p%SKUTTv+~t`hKe%$FHQs)=ldF zo5oj(77zq3&v{)|PSBEp5^5*JCQo{{>o@HAWV0QG0!zO0?wO(-u9}z(vrNGNe4!&FYb$Em!5N#J z0#?)Bv_<(OmQVjLcTKLpYPr^}f-Z;l{k$GGQd`F7x_JtuxviG8CLxRKOI2R#c(pl3 zoI%N$XY))sE#!Q)U@2CA!!IUX?$t?h=f>CsSyx?rhRXB{WI@4E=k7_O7RvuBC}hpCjJXmuS;| zM^C&@Xt|ryT>PC%L7e!+VJnZEcprS3Mcd>X%BDn*^9gT>9)Iw?c5`H(L#V(|rGD9A z8@pJxR6UT z6pAYFS|aBweZ|?FCuUfXjK#e{W6r6i9^pqBk^?JaXtb0xnmF!~Y@x8o-^_Z7yZs_w z6G69`tOYWS!aUk@qYZo3KX19WUo^9Xd?zD1DTJiYLHg<~`#{Oe$@-~!55bwlj&>Vf z$jTPpf^+-Gli8iEiQ-15Uth!s$~tdEJ=eh1=55Dc(+l^t{Ta!MZ(|&&^@}FX%Q=O_ zv0teV1pQg+v=j_uNJPRR>Uw%pv0Af*H=dZ73#JgjRVp_{!4SPsh)}qwql+!l=TV zyTkkMUz?k^{d}^=F;G`A&Ed_SyKXA_yQBYbm`!(_*vg55Kj^(s%vv6mI86O}spD|^ zo7dOZ*S2#luId)0R^l6J_1ccO&8C{GsLOe3jzQw25j&Qg5pEx$R2F7jc~r2KxluW` zqE1NLUl#aZ!122b3$m*=>2F=$mMz^5aS+JR+|u3q0lTKjsVSyVOd91`fe~i^_7_?F z%CI_7<0TWhRZzoU-hcfF<`b)trGIIOF1tyyQ(EW!?O_HAg{mA23=CWsD7cF2yxn)t z*x0bUx?Q@z?GqI$m7VwB%=7FcHB#ZuNWqZB{cm@zcraLa47l|#b{|744w9B>zQvsC zvZTKo=n2POKj=72U%JX$N}8C^!Mtvm-_Q=;(E|YfqM`pHr%Rig4JNn0-t5%fecAin zWWOU?9`fu8^F$bOMBLN8#kt%ArgBR3IRslx<`h-`eP^pznCxiQbzG^Q2I1rX0Q9G8EnZdXtBs0n(p=4i-p-KwN2c{{{4I=_ z_ZpKr770BO(c3@9bRnc;;K4H26Ogr=ld%j10OQ4iuT_c50p1uvcn%t!25PjUyjqdP-QQH5-O=}}fIJzB%h3LoZUC`Gv-P{B#ugRX|G?jq5OCMM>Kf4d3Lix<*jL6`NIYh!Nh_={1O+9KwAgV-{cvfEo* zi5L!cGv;_nW$ z94sJ~TQD&BwuAQFH4#k9!&;Voei8;W9h#1*Fwp+{pUH_?T~B8GhnCG+5Txsd!7?jK zDX*9EVOm7~g1*-p;B+Y+2kq)EbLrIXojPF*nO;jn+#MQs*LC-%**Q6-b#>a90l(Hu ze^(FIz;%O2oo5DNIxRA=>4V<<i@$ z3T?;)iM7N3kFm3kimGcH{w*qqG$A>dyofoj2E+|3 zi`VdMKqX+ZcUph3?0C6cU)l*sEWG}e|LetO~Q=O971)@;|*iZW6c_Y%I?B>;#EleCPC~d%=CL*%Qok z+1+%}Jv<9|QJP;qyzl?#Ci5LKM(KOfNGc{7cjBYEv-QFj`O{c=!WKbd$J({r-Q$3( z<2e8!+#vD8L54T6+l)5&+Ah(2O^MGtwU28vH#KFs7ri@fok4PK4haEKA|oQy{VoBx zelUoVNzw`Mdi4n+*U=YpTo(vN0ZMlv>yQI&#eS>B`UzL0)i0+K+E927n?zh0r=#A z?E{PS2m}-(ihu+{zu;vvAjOf}{dv<#Q)1dx=VYX+(M>M#`KiFqS9-7i{@_VrS`|wG z<=v-jy2mFVjLi4X&AIEJ0k4XTj0_5efG&XH%Vf~^{w4w7hS+I1p4kOJ{iJ{*BTO&@ zBeC}~&IE5cC2B>avSEqOkD6V^mB3WJmkaH!U&FJP=K)tcX5y(NezRog_V#9dUTS~f!+$;lXJA6sTpzSgBt8;Q zqu2&yEP&~tvyH|Cd{|XkDGvA?%7HB`02e=h-e^DZgYc+Ow{UP~h93mdlE?i3;Qk_e zfc3^_eP586;|`vb)1PmH$;Ksx;o*yK`4^PJqrTt_l*4Gr>udK)GhCo{6?7dM%I;Wyx%dvh zJY7+&zkV}d=(c??DrkBQKbNWs)6He|~D=u=L0ATquEOsMB(bs7FYuf|ihsS_$ zg0sTV;TvP1nPde{{aQFd9sb1LKzDI=nQg)L9`NcAi2q3ob642?M}Nv8Ae7DFb4@a^ z?sz51meH-r6JL`DB~6#!r+`9%z-#vx!ID_1SFc)WeinDv8wjBF?Cu`SM)~8sLji<7 z;Ku+4h=m0N7%+Sw(8_0z^pi#b91eFKfKCF&zgvPpdtrL@3h4otUJLsq^x~^`Z#Uh# z_B)llu3KDSzN$9%JNyltFi``VsN}Qy@^T#r1ekhrFWWa9(F<@vyKuzyQvt?&tn~O+ z1gIn$SI_$XAIrqBfKxfjZ9^A`dCn)hX4$;K+`-TuU@@BfPiFQJLQT0(I$ZlIWLLXnOC8Z{dw>H>%YA!_=UThu3rxas*D^8l$x2Z%vCeB1*nix%t5b|6 zkRCb%#vH()G=aZld6vZr+G`W=*Dk5wQ}wzYWuwL}k;d@0`(L`xfhfUqofIxbU9Lu1 z>@WB30ntsH$?sr*$6y$UFnq^TE>W8^4Mx|0EVWa=zetsF63A=P=v$!q>&Lo9{91K& zF~E$A_MNB7_yibYI*exa5_o3G_kmgP`QO%+!%-6fKuYwuv~JqHxV$KNI3)3N7wZO)@k7kT&YtI^R}@2&S*vt!1n?MUE9F`AJk5C>f739a+laB zErC-{HgA>flg1)q*JeP@BV4S?0G{@Ny47+ zyqd{b%qC#Tna5VA1zesw1F>6GMFssr&#qH@E$+W~<13bS_3L-lnf3^e?Ql z*Ydv%P_Kv_>MRgus$R(8NKLk(N=OZK@O^P(q}x+N36jRX?P6ndXa4H2>1_*a@X+S% zn_$UZ6kjO9^H92#b=nS#O&PKE%s7z?zOlXY3VRYuZ`Oe45}T~gnlN{6yn?u2x~2tv zw*t-F-z}gN_akb@z0JCFF=_wE@!X#Uvo+nsy`^PQOX9yAZW3ehkOKr-fO(DOa)fTR zL?&;+@^yof>dbhU$4Ll=g){@^nSpGK)k~QAF4-jfF(V2Tf(7G&wd1HbRp8OO` z>bsIwmh)qyNCw%v@c0QWHHkiEHjeVEk;1X|31=w;?l1JaxdFUZ@DYJnxqukJhM3w; z9WtPx;7L^7Q*jJf$*OA7yZCiQ%_RhvZ+RuBX4m!=|6*P(+zuJSYe2tjT)k<;$?f^9RK zbOHIq&9PI4)(UUJ`I#9g!ia}UiFP2Q0S;DKVCut7rfz=Ll$Z=qw7awi5-96RldHI9STlw3(8zseQC*#!(EKCbb z2w(ZWq;plGTezneaIUv+d%a~Md8lIm7_cCqGbOg<*2KVjvcsVW$(Iwx0uR>i%|yK1 zOx#y$K^3$pzhq7Rxv^I3SqvtVQ7jIQ?D8CN>ZKu>%nVTskrs+#2Zis6tQQD>PyQil zDMA&Hx}cP8mFm#)Y)&p&m2RH4LLhZpCr$2{&7WU%nK0eefr)t6Wk&u_6@I{WsO%l9 zjJ=|F1l&^rasm&Gwb3YRT>XH+1D!VBLCi^B*R$LgF)0j*zGn(7N(--s!RHINpDj6g=78R+6IjB4w3E7*RS@ z&bwT(Al|alCh(wBy6MMIIKI|XP>lM%1(J2t1vQxw`!xLAWL1f+HX`vX3k!nYga!lu zMu1_fR5cK$Q&KsZznQd#D@Q^_h3OcK%n#b0iKhlt7Z5V9DxQ5%gS2K7GCjprR4`qRcZeQBryV%8RTg`{2<`T_LnQQ=S&C%qa}g z>|2tdb*}TTsS>akkyt~UY|@%5w+gC2sg1vWtW9!0nxC9u`Qw-*=)T6+e`5KrDIU>} z*!2J-)egT`Lr=u1`;8<6CS{nH&y+sG{MjPVyL>NNFUG^07~#u;3$(MOm<7JLsxqrn zdm-A=+vcyhwnLOC*`u~o^@Ibce|$S3QZ80#TJNtyGvOlW`%9Iz^}tLmuN9l43iY5e>wePN1z$xV?+;DNe>b(HfP zk}HQeQV>^bgMB?T2q$sBU}&eC(iX)wNQ#;x@u}c5Wi528?9sPniGpyT@>Ivg!RBB{ z`6BCAhK_t{i0i|&g`{Ox=vgVrevE6wNv~3C+CFsej%bDn$m&#y4MD4@B@vp$5qbjQ zIMM6*RPsFVFCg=#M!$FTTPP$aV~{7ta_AWoV+)}^e64M)aezaQm~kiMe+>fbCs3C+_!Qx zC`TlV{pXe6EUsx$uYL2Ic-L^FelY%iO;(ilogm%CCYtd1vHZYT0FkXb{cQxrH>{fL zK9s#I*Y(I{;G5X*hikJpjiXs@ZwKEhuA~O4Ei}%SUgF^->$_fl)~)B>UDpJ?pat%^ zAYui|{e`naQ*Cwc#SfwNZcy%Ms4VT2u70-dS+V-Eta!}MsIwegk^6cd-{{hC`)`bR$- zEe;$hcu1q3^r%IlIVba(QANwY8nK*(C~5n~NQh32)1Xnls-EMuarM3_|yV?I_C>!O7 z;YXwzmd&iS9#k7I5R4oA<5N7L(a&9;Nnd$qHboG_MlSq!?2Z^{HWkZw14b}Pkao3v z4E+Oz2KcOCNpf1Rd2XkJ9X#^X^+CllG?0Ht{2;SD@572+%Xr5}Zl7)j&cyok*ByGt2}{zFdlYK`Jx!^4X^ww8~6XiAo%nRDu0xrv0%r6a)f z_%3$&e0y|WiyX=0%XsqNaDcj28O^SnY{TV;^E%n=IRq*Y8MDEBpuyPyyakjQ0^P64 z=1;L>S$TWZ#L=XohnuY`K@>eDXG1<2fVUC%Ham@4)V+vF;{0;mfu5x#Cd78-L=K_i zJgmii)zg@#{fHM7!`zPYO={nBCGxfscg?mswP3bQ!$_XnXGe&hKGr1t#BAxCb>)3T zxinB#T+nE>Y~AdT-EMRA7p+Td^i7!i734tlXFJ*UW;t+54(mfTL3&Zzhbh=oM zrtRG1Bsu!lW7nSMl1)d?`-DF;JL;;zVu;GGu7D9oF>YzZQj*Yn#)p|tld8l+mqz3D zO$M1W&8t$Nah8c`c5wqJhRNN56_3YhYmWt|Af-G;@asVC@ug;*|;c$yjER+7-a>Uyy& zgpeqKlmmSu74T8}MMBk+Rq1N2_&wivReg*torW3dRz^fB{=qG}J}EjFoVZj2>&e{e zHZfD0>h1*1XI1tSp=j|=CL-LW=oPln2sG&Zb4i)}3mvT7_PL$_M}UCys{^#Eta!Ke}`6IIj ze2!5!mFcjtV>E`Tb*P@^#UyQ$tU$j6v25lZF?@`ya_Z^nrh)v5JnepeeUhKOrx1D( z+b&vz(fzo3TfawP`QoN&59z)XUv`#&J$Dt`+1%PPfqa0wEz&MZ{#HiA_U}oSw_Sg- z?twt1GBoIP5o!3Z;DGZrcLV{xlYh~W0yT;~1&}`k#t2V}hFDF&)3)`4i2iyNCW$-& zO6RL>_c^mW+*La~Ry!yz(%Q=xaIR3%74elGtYdyD^SsRERvkIB9DuF+Q8hPD`#x$P zfa@o9yn=i!gh{pD#7UaGvSPm~<})S!$F=rI#xR(c&7!1N`tzP=n-GXGjabm8JHjAe zXaAXwZn2r0OkJGGcCdt8TXQTPsy zK{wjU&-pl!@6T_=nIZ1)Y(|GhZ>LU{v9Jc|ZK`mM zofg8IG~o#e5v`O|oyoO&*^Qp;k1<-N$#VG>D`|xAh!VRJ83OFxFcqzNAuXnM3jj~_ zn&*I8Y(S8C!gGr<&f>c!tlRmUVywei;D-m5Mx*WLvkWahUe)g=W+_x-;%SA#J`qu^ zDAeZ?q0jQvR9I)~&dFQdetkp|Sg{7N)`xTpuMVv0OAI8gi@NhtmwSm4XDAF`f+gsf z{?Z)dDsLZvHjK-LMUP8cOL1cS_V+~l=2#ceRH++a4+~+Y~U@qJGq!lcv*@y;8`l}?j zbn>Le3Wg*#{cs&jLz7}pU6$YH37KWw!`5paWY1>tgp6|d{E`Cv1{kL(@X24TlNkYc z^L>D(<*LgK=sNq|1& zwsAWKmr_6yh2Cuh8a$)zp5UzYXlx}2lu?nR8&>oZhaI$|vIjPnG5HI#Wz^>gMppe9 zw_VBBxOC+Ux~vs$hi&uzI1N>>)WDH?77qUn%r7s?32p= zDqC6VZf))KHP5KCsI77O3Cu9f_YP)D7T{_-3bfMqwZehy2M3U)ulBMhS^M0~uY8w+ zXcXepZLVskLf&bC}NazCJ2kFmzojN*-q;d9oYx! zAE_y#RSS5p&|^LnWyNb>U%3#TwIFsVIwgNfeU^+;hT!EH$Ro$tvq)Wjr;`123wvm4 zR#Q-YH(^dF)$gkFGjw7_z>22Bvf^ZxYP2CGFm|Eyg!WLI8E0N%+4qWUt9|N0+pToP z%G>CdXn^Z19WJLjE3(gX>UNY8_bA@eN|LKCiBB4GK)WC4I5Dx7BBAkl%mMf215-u1B)|JeFu5?GUkao( z&d6!?|MP}+UcxqM4u4S+>U+vI`36Ilo)o(cA&H^OVEXKj`D@e^<2r2>sUF);B7HLh zz3W~?ZoG4|&tjlEKkKQ$PNr&?*GGyD$`woW)ar{6DaRc-lz1o%P7GGKceM7WJ$apl z=oph+8u`M&=A@Oqz4N9$K50xi8PL+X@#(?&Hf*XxaChC3Ay$~mo zHxj|M`}#e@+SF)mE-B5^8xOyFMMO7c<=hsVUlLw7HBjTdChhAmGIlF60F;tMz7}Ia zA2L`;lKH?en%>)#=v*7QH)`zp%ZuCuj=fFp7_e=S9kFs`K6CSk)l0+~&Ks}7MnM&- zHS^v6egi3#VaKxH{s=W4@?39nD6+3k2CxR{%$3OKy!7tt-c^n9@0639nKCHZw6*z^3lPZB z|499CgM(~Wi4~T&-Rf!9<0;b^_u4WCmCa|R z=7Nb7tX(#yp1jK`;dlD#D71s431FlxAF(xab4gkzd43U7jQf(U_OJBWv+C_S4pxpR zJw>Og0YX6tYd(yb)Gtj!p|64yq&TOGIJcGbui+z8OzSk4SL-*Xj)TkHrznWZE-lvW zgVFJP(|hMq@<4D$}XQQvL3dv2p zu|ecfI+vd=pKOYNKw@1y%}kNWx74CLlpytVa+wOmG6v~j*=#OAWbzjO_zmVy?d}}^ zf#MIj_s3Z?8E9eMY-UBE_tf*s@4?M*gW)S=h^J#Pe*d{{F3MuaP=o-JS`u)-H3)8x z_KDgK@iZVf;wTN;3pvQ{Gla0y{t_==A@>$F%x_5ZJmEp8t-NStL)$A>NLT)HH>_%c zITLe_FQ3%V>LBav}VcF z_Ww)e_&x657IpzO%sqj!H%L48_0OelEP1os$l8g`je;OZm-uKo_-YXye+1Vf%fA+u zKKH+!0j*F-9FgGk^Koe(zKpt8Hp4|!-5Y$%_OFkh>Ur8@W^*f}N7czzN9YWVTE0F> z4@Q7*J^Ab$;kioYWL<>YR62oa%A`whxK{9R1v6$bHA=zO3G^19FC>-i%Dw6yPJc?D zrate-AdvjvLZ5g?jc6$mQ8hpDd&?nTs`w>9#4XSoD=8p3uAY5v1e}0#wAL$oxDdUO z2O8#PV7Cu;(mZBr$W1)uNMDS{bLu z@JB1>aL`!QC-%qY{>h$sHJ7y#h?E63#p<^gDQ}0ZcI3a)&-W(UfArkJU?;*5Q(d(2IZkYlk>R&fr;{nK z)MT`1!=t3oCel>BmPfuRD`m0_M zluMv%ychGSDs-r(#`QI0EmykZkzd~%%3HJ{H<;MItR((yM{y_rgaZ>Z<5I(zIy8=v z;0&7-SD4KcvM^UJ0|*lHk#iS68mnmL_lR54SI)n?j4|Y8|D*kq|GQ(ON(s=?{E)QJ z5$6472KoNwUGE%dY3RXob(qDB;(2Niq)l-(L3O zv?Scg5n{=KU3>l2pPdH2#Q)j+1d2h%jyJq(=R!C8?8Lk&QdQpKRs;($Jul9x`B6jH zJEzebHx<3D14ibqyOzJ94Cip77bh%%Hr$=h^atxG8ElCdo2H$Jvm6$_uyaCycHQ zB^DtiIyfaeDa5APEZMp_J7n0NCR;b)WS}zS{PROcu~sa-a1=7 zr2VlJp82N&@fv=sPE2l5xMA_{Z-%+>hugbd`y94btH>!RhybYRh0GeSH}BLf=zaom z<+an+S-c{98?eAlTAYbny(nF%7;D6NA&6i}q6K`3BFN}WZ_Cd5m$bc#V5qWuH00T=s{?ml}*)0mbd{B$BEG`O1PdmHuQ4*M?IC?#+O$2pzNd{006`D4vzHo zSD`+3)K2Nz&+}=ZvD#CzdBa&U$^nVSOZ2txHtZ;T{xg6wz1EY^IUrR28;i;WZ!+h zH9EQ1LrnW0{%MCe$>`nI&%<9P6_|*_ZyD(ZV%}BGS$>f!#kUiYWfmKs=5tV{TcaMv zum|$?0Wg~W#3{_W@3#gkEN!fyc-(OyR<9CEr&CHsw~Z3Vi1UZ zOOtRNX@Va!(~>pfg$L*BBI~e{>9MgN?vsV7qjRoQ!I#6YoEX5&vx@T1q(D(>vwztx z*Wo{>X>6n!%^`i-z1?1>Q68WG`D*;6*Vjm9nZ2XJoFRLPLbh9bW%l>(BW!qbyNn_G+7*7P@ALQPD*qjBt~R zsE+<8f|jw5$S0g6Y+S)fGvA~h2@$w334FhE`03-44Xtac~DT1 zSJsfjw`u2Y>)lrnulOWyXbnwx6V92zhqp%;5iQ`1*|$1BU%M$OA%=F+Y}}00dopDS zOD}++$macgm_@rJ{apoG+k_5u41|jGd}!pNij6Do&%Y|{3mS_|-M?Hl1vaK{_<_bF z?O2cO_j*R07)s-u7$^an*UvPyAiRWUQPkg$f0D64)7ypYOz&jGD?$9l%ZTP-io?nc zYxP`i0wBGae@M{+wql9|(*`Xbc!>la7zQs79MD0ypVmMS`XbEXo*IVbbG(T1ukv#4 zw<_kT*9;2*N`-5Z>qTKt#d$~yK8u`C;91>G^z%ZmKEvT#eW+X22*k;zNhW4IcCK9I z`!&@(Ff z`N^~=ua)=Rbtd6P}PpTWvtbeTN~l8QiYUToY`{EQI_=Q;ZpBfca= zR3^VY(=f>m`@`-{*S@DuHmfqL<|99oh@#k(V02i$9iG#R>ddVC^MYSA`*eVT9+{1i zuuNu(^h6vUFiz!7qQbRhqB(UIb=oY>GLayEVv1-Ny=>0L9riPYJ*8nYn(q9_?p6bgM3r1zm6`l|igHaE!9%x; zs!uxw_i;OI=7)Po9=?;D#Pk~(UWc#9%gF$3yxD@E6l@58>RsP#W-Rg3ROrJ6zxx!O zpF+$}orit%bbuY(Ow8nj5vw~7CK$3*ZCWf|>iD|FJ7aJxJ*$Cge_(ih+3S9L*{tU) z+ea_0rnv%$mXw?rTzq%m^puUWi<1-Y?{fk$pDLOq=#3OKNhctt&< z-N<8K=TTBHzL$YJLkrdlM>xD@h`NLGW^k+EV_eh22P20a$GSRlCw<^Z78wT>9YelO-vgN&b23V*q{(#98l3Zuwn$bf6A1@f zA(h5&O(!yp*wshO;Ey)LYekU@bNaWd94Y%SY%!VMc}6beKCV2raaskcUY&z)XSlPA zZ=<&^Z;kkDBqz?VP@la#CWev5)Fy4^v4uJe7A{CK^+-ld;H6~zGi&YkK+>?5_g6Gb z>m60jw8a*OoyZ$L^FBLrwq9Sio&&Xmt=ZeyV3&b%_%9_r#Wax6%4hjT`guRJcKD
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ conv2d (Conv2D)                 │ (None, 26, 26, 32)     │           320 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)     │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_1 (Conv2D)               │ (None, 11, 11, 64)     │        18,496 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout (Dropout)               │ (None, 5, 5, 64)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ flatten (Flatten)               │ (None, 1600)           │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense (Dense)                   │ (None, 10)             │        16,010 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n"],"text/html":["
 Total params: 34,826 (136.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m34,826\u001b[0m (136.04 KB)\n"],"text/html":["
 Trainable params: 34,826 (136.04 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}}]},{"cell_type":"code","source":["# компилируем и обучаем модель\n","batch_size = 512\n","epochs = 15\n","model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n","model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"on8tduvA6Hps","executionInfo":{"status":"ok","timestamp":1765216754501,"user_tz":-180,"elapsed":25502,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"1b940a02-1268-47f5-e2b2-9b8cc927ff94"},"execution_count":11,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 40ms/step - accuracy: 0.6012 - loss: 1.2802 - val_accuracy: 0.9483 - val_loss: 0.1785\n","Epoch 2/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9392 - loss: 0.2017 - val_accuracy: 0.9675 - val_loss: 0.1072\n","Epoch 3/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9605 - loss: 0.1282 - val_accuracy: 0.9728 - val_loss: 0.0857\n","Epoch 4/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 11ms/step - accuracy: 0.9684 - loss: 0.1051 - val_accuracy: 0.9792 - val_loss: 0.0735\n","Epoch 5/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9721 - loss: 0.0891 - val_accuracy: 0.9815 - val_loss: 0.0629\n","Epoch 6/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9759 - loss: 0.0796 - val_accuracy: 0.9823 - val_loss: 0.0598\n","Epoch 7/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9779 - loss: 0.0708 - val_accuracy: 0.9845 - val_loss: 0.0574\n","Epoch 8/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9810 - loss: 0.0614 - val_accuracy: 0.9850 - val_loss: 0.0526\n","Epoch 9/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9809 - loss: 0.0618 - val_accuracy: 0.9845 - val_loss: 0.0534\n","Epoch 10/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9815 - loss: 0.0565 - val_accuracy: 0.9847 - val_loss: 0.0497\n","Epoch 11/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9828 - loss: 0.0538 - val_accuracy: 0.9845 - val_loss: 0.0502\n","Epoch 12/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9840 - loss: 0.0504 - val_accuracy: 0.9860 - val_loss: 0.0481\n","Epoch 13/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - accuracy: 0.9841 - loss: 0.0483 - val_accuracy: 0.9872 - val_loss: 0.0468\n","Epoch 14/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9856 - loss: 0.0464 - val_accuracy: 0.9868 - val_loss: 0.0434\n","Epoch 15/15\n","\u001b[1m106/106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9861 - loss: 0.0432 - val_accuracy: 0.9868 - val_loss: 0.0438\n"]},{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":11}]},{"cell_type":"code","source":["# Оценка качества работы модели на тестовых данных\n","scores = model.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"m96G7zNB66ca","executionInfo":{"status":"ok","timestamp":1765216756411,"user_tz":-180,"elapsed":1906,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"281c6c0c-3320-4614-9bd2-5a53f9437584"},"execution_count":12,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step - accuracy: 0.9900 - loss: 0.0318\n","Loss on test data: 0.03606646880507469\n","Accuracy on test data: 0.9894999861717224\n"]}]},{"cell_type":"code","source":["# вывод двух тестовых изображений и результатов распознавания\n","\n","for n in [3,26]:\n"," result = model.predict(X_test[n:n+1])\n"," print('NN output:', result)\n","\n"," plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n"," plt.show()\n"," print('Real mark: ', np.argmax(y_test[n]))\n"," print('NN answer: ', np.argmax(result))\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"wfzh1a3F6-j7","executionInfo":{"status":"ok","timestamp":1765216757181,"user_tz":-180,"elapsed":772,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"92ce6419-d42f-4431-a289-7447a8a37db9"},"execution_count":13,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 401ms/step\n","NN output: [[3.3479900e-08 4.7786756e-14 9.9999976e-01 2.1413245e-08 1.2324374e-11\n"," 1.0817477e-09 6.3094833e-12 4.4141193e-10 2.3786414e-07 8.6100585e-11]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHHlJREFUeJzt3XtwVPX9xvEnCWRFTTaNMTe5GECkIxCnKGlGpSgZQmodbm3ROhY6jg402AreJh25qJ2m0ptjh2pnaom2gpdpAS8tMxhNaG2CBaEpbcmQNC1hSIIyZTcEEtLk+/sjP7euJOBZdvPZhPdr5jtDds+T8/F4zMPZXU8SnHNOAAAMskTrAQAAFyYKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA/wSb29vTpy5IhSUlKUkJBgPQ4AwCPnnNrb25Wbm6vExIGvc+KugI4cOaIxY8ZYjwEAOE/Nzc0aPXr0gM/H3UtwKSkp1iMAAKLgXD/PY1ZAGzZs0JVXXqmLLrpIBQUFeu+99z5VjpfdAGB4ONfP85gU0Msvv6xVq1Zp7dq1ev/995Wfn6/i4mIdPXo0FrsDAAxFLgZmzJjhSktLQ1/39PS43NxcV15efs5sIBBwklgsFos1xFcgEDjrz/uoXwGdPn1ae/bsUVFRUeixxMREFRUVqaam5oztu7q6FAwGwxYAYPiLegF9+OGH6unpUVZWVtjjWVlZam1tPWP78vJy+f3+0OITcABwYTD/FFxZWZkCgUBoNTc3W48EABgEUf//gDIyMpSUlKS2trawx9va2pSdnX3G9j6fTz6fL9pjAADiXNSvgJKTkzV9+nRVVlaGHuvt7VVlZaUKCwujvTsAwBAVkzshrFq1SkuWLNF1112nGTNm6KmnnlJHR4e+8Y1vxGJ3AIAhKCYFtHjxYn3wwQdas2aNWltbde2112r79u1nfDABAHDhSnDOOeshPi4YDMrv91uPAQA4T4FAQKmpqQM+b/4pOADAhYkCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACZGWA8AIP5ccsklnjPr1q3znOns7PSceeKJJzxnTp8+7TmD2OMKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgIkE55yzHuLjgsGg/H6/9RhA3ElM9P73xcLCwoj29eijj3rOFBcXR7Qvr3Jzcz1nWltbYzAJziUQCCg1NXXA57kCAgCYoIAAACaiXkDr1q1TQkJC2Jo8eXK0dwMAGOJi8gvprrnmGr311lv/28kIfu8dACBcTJphxIgRys7OjsW3BgAMEzF5D+jgwYPKzc3V+PHjdeedd+rQoUMDbtvV1aVgMBi2AADDX9QLqKCgQBUVFdq+fbueeeYZNTU16aabblJ7e3u/25eXl8vv94fWmDFjoj0SACAORb2ASkpK9JWvfEXTpk1TcXGxfve73+n48eN65ZVX+t2+rKxMgUAgtJqbm6M9EgAgDsX80wFpaWmaNGmSGhoa+n3e5/PJ5/PFegwAQJyJ+f8HdOLECTU2NionJyfWuwIADCFRL6AHH3xQ1dXV+te//qU//elPWrBggZKSknTHHXdEe1cAgCEs6i/BHT58WHfccYeOHTumyy+/XDfeeKNqa2t1+eWXR3tXAIAhjJuRAgauu+46z5mysjLPmQULFnjOxLs//OEPnjM//OEPI9rX66+/HlEOfbgZKQAgLlFAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDBzUgR9zIyMjxnHn/88Yj29eUvf9lzJi0tzXMmMdH73/0iyaBPb29vRLm77rrLc2bz5s0R7Ws44makAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwd2wMajGjh3rOVNTU+M5k5OT4zmD//nggw88Z37xi1/EYJIzTZ8+3XNm1qxZEe1r//79njO33HKL50wwGPScGQq4GzYAIC5RQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwMcJ6AFxY7rzzTs+Z4Xhj0ffff99zJi8vz3Pm5MmTnjOS9PWvf91z5p133oloX4Ph3XffjShXWFjoOXO2m28OZLjejPRcuAICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABggpuRYlC1tLR4zvz5z3+OwST927p1q+fMb37zG8+Zf/7zn54zGzdu9Jx5/vnnPWek+L6x6KRJkzxnCgoKYjAJzhdXQAAAExQQAMCE5wLauXOnbrvtNuXm5iohIeGMlyycc1qzZo1ycnI0atQoFRUV6eDBg9GaFwAwTHguoI6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn53kPCwAYPjx/CKGkpEQlJSX9Puec01NPPaVHH31U8+bNkyS98MILysrK0tatW3X77bef37QAgGEjqu8BNTU1qbW1VUVFRaHH/H6/CgoKVFNT02+mq6tLwWAwbAEAhr+oFlBra6skKSsrK+zxrKys0HOfVF5eLr/fH1pjxoyJ5kgAgDhl/im4srIyBQKB0GpubrYeCQAwCKJaQNnZ2ZKktra2sMfb2tpCz32Sz+dTampq2AIADH9RLaC8vDxlZ2ersrIy9FgwGNSuXbtUWFgYzV0BAIY4z5+CO3HihBoaGkJfNzU1ad++fUpPT9fYsWN1//3367vf/a6uuuoq5eXlafXq1crNzdX8+fOjOTcAYIjzXEC7d+/WzTffHPp61apVkqQlS5aooqJCDz/8sDo6OnTvvffq+PHjuvHGG7V9+3ZddNFF0ZsaADDkJTjnnPUQHxcMBuX3+63HABCn1qxZ4zmzbt26iPZVVVXlOVNcXOw5093d7TkzFAQCgbO+r2/+KTgAwIWJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGDC869jAABLy5YtG7R9Pffcc54zw/XO1rHAFRAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAAT3IwUQFQkJnr/++yTTz7pOZOZmek509bW5jkjSa+88kpEOXw6XAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwwc1IEbGJEyd6ztx6662eM0VFRZ4zV1xxheeMJHV1dXnOvPTSS54zL774oudMR0eH58ypU6c8ZyQpKSnJc2bdunWeMw888IDnTCQiuempJHV3d0d5EnwcV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMJDjnnPUQHxcMBuX3+63HGLKuvfZaz5nVq1dHtK958+Z5ziQm8neeSL322mueM8uXL49oXytXrvScefDBByPal1cnTpzwnJkxY0ZE+zpw4EBEOfQJBAJKTU0d8Hl+GgAATFBAAAATngto586duu2225Sbm6uEhARt3bo17PmlS5cqISEhbM2dOzda8wIAhgnPBdTR0aH8/Hxt2LBhwG3mzp2rlpaW0Nq8efN5DQkAGH48/0bUkpISlZSUnHUbn8+n7OzsiIcCAAx/MXkPqKqqSpmZmbr66qu1fPlyHTt2bMBtu7q6FAwGwxYAYPiLegHNnTtXL7zwgiorK/Xkk0+qurpaJSUl6unp6Xf78vJy+f3+0BozZky0RwIAxCHPL8Gdy+233x7689SpUzVt2jRNmDBBVVVVmj179hnbl5WVadWqVaGvg8EgJQQAF4CYfwx7/PjxysjIUENDQ7/P+3w+paamhi0AwPAX8wI6fPiwjh07ppycnFjvCgAwhHh+Ce7EiRNhVzNNTU3at2+f0tPTlZ6erscee0yLFi1Sdna2Ghsb9fDDD2vixIkqLi6O6uAAgKHNcwHt3r1bN998c+jrj96/WbJkiZ555hnV1dXp+eef1/Hjx5Wbm6s5c+boiSeekM/ni97UAIAhj5uRxrHp06d7zrz55pueM5mZmZ4zkaqrq/Oc+dWvfhWDSaLnlltu8ZyZM2eO50xSUpLnzN69ez1nJCk/P99zZrBuNHvrrbd6zvz+97+PwSQ4F25GCgCISxQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAE9wNO4798pe/9JxZunSp58zf/vY3zxlJ+t73vuc5s2XLFs+Zzs5Oz5l4t3nzZs+ZxYsXx2ASW4cPH/acmTp1qudMIBDwnMH5427YAIC4RAEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwMQI6wEwsNGjR3vOnDp1ynPmrrvu8pyRpH379kWUG24WLFjgObNw4cIYTDL0RHKOP//8854zkd7Q9siRI54zO3bs8Jxpbm72nNm/f7/nTLzhCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJBOecsx7i44LBoPx+v/UYcSGSfzX//e9/PWfmz5/vOSNJb775ZkQ5r1JTUz1nIrlBqCQ98sgjnjN5eXmeMz6fz3PmP//5j+fMnj17PGcizUV6HnmVnJzsOZOUlBTRviK5uW8k/vrXv3rOfPWrX43BJNEVCATO+t8vV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMcDPSOPbaa695znzpS1/ynKmtrfWckaSKigrPmVGjRnnOLF++3HNm0qRJnjODqaenx3PmW9/6lufMM8884zkT7yI5h0aMGBHRvtrb2yPKoQ83IwUAxCUKCABgwlMBlZeX6/rrr1dKSooyMzM1f/581dfXh23T2dmp0tJSXXbZZbr00ku1aNEitbW1RXVoAMDQ56mAqqurVVpaqtraWu3YsUPd3d2aM2eOOjo6QtusXLlSr7/+ul599VVVV1fryJEjWrhwYdQHBwAMbZ7emdu+fXvY1xUVFcrMzNSePXs0c+ZMBQIBPffcc9q0aZNuueUWSdLGjRv12c9+VrW1tfr85z8fvckBAEPaeb0HFAgEJEnp6emS+n6Nb3d3t4qKikLbTJ48WWPHjlVNTU2/36Orq0vBYDBsAQCGv4gLqLe3V/fff79uuOEGTZkyRZLU2tqq5ORkpaWlhW2blZWl1tbWfr9PeXm5/H5/aI0ZMybSkQAAQ0jEBVRaWqr9+/frpZdeOq8BysrKFAgEQqu5ufm8vh8AYGiI6P/OWrFihd544w3t3LlTo0ePDj2enZ2t06dP6/jx42FXQW1tbcrOzu73e/l8Pvl8vkjGAAAMYZ6ugJxzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eOVGVlZeix+vp6HTp0SIWFhdGZGAAwLHi6AiotLdWmTZu0bds2paSkhN7X8fv9GjVqlPx+v+6++26tWrVK6enpSk1N1X333afCwkI+AQcACOOpgD66r9SsWbPCHt+4caOWLl0qSfrJT36ixMRELVq0SF1dXSouLtbPfvazqAwLABg+uBlpHMvKyvKc+ctf/uI5k5mZ6TmD//nRj37kOfPcc895zhw4cMBzBrDEzUgBAHGJAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGAiot+IisHR1tbmOfPUU095zqxevdpzRpJGjRoVUc6rEydOeM5s27Yton09+eSTnjONjY2eM6dOnfKcAYYbroAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYSHDOOeshPi4YDMrv91uPcUGZNm1aRLm0tLToDjKAo0ePes4cOHAgBpMA8CIQCCg1NXXA57kCAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYGKE9QCwV1dXZz0CgAsQV0AAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADDhqYDKy8t1/fXXKyUlRZmZmZo/f77q6+vDtpk1a5YSEhLC1rJly6I6NABg6PNUQNXV1SotLVVtba127Nih7u5uzZkzRx0dHWHb3XPPPWppaQmt9evXR3VoAMDQ5+k3om7fvj3s64qKCmVmZmrPnj2aOXNm6PGLL75Y2dnZ0ZkQADAsndd7QIFAQJKUnp4e9viLL76ojIwMTZkyRWVlZTp58uSA36Orq0vBYDBsAQAuAC5CPT097tZbb3U33HBD2OM///nP3fbt211dXZ379a9/7a644gq3YMGCAb/P2rVrnSQWi8ViDbMVCATO2iMRF9CyZcvcuHHjXHNz81m3q6ysdJJcQ0NDv893dna6QCAQWs3NzeYHjcVisVjnv85VQJ7eA/rIihUr9MYbb2jnzp0aPXr0WbctKCiQJDU0NGjChAlnPO/z+eTz+SIZAwAwhHkqIOec7rvvPm3ZskVVVVXKy8s7Z2bfvn2SpJycnIgGBAAMT54KqLS0VJs2bdK2bduUkpKi1tZWSZLf79eoUaPU2NioTZs26Ytf/KIuu+wy1dXVaeXKlZo5c6amTZsWk38AAMAQ5eV9Hw3wOt/GjRudc84dOnTIzZw506Wnpzufz+cmTpzoHnrooXO+DvhxgUDA/HVLFovFYp3/OtfP/oT/L5a4EQwG5ff7rccAAJynQCCg1NTUAZ/nXnAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABNxV0DOOesRAABRcK6f53FXQO3t7dYjAACi4Fw/zxNcnF1y9Pb26siRI0pJSVFCQkLYc8FgUGPGjFFzc7NSU1ONJrTHcejDcejDcejDcegTD8fBOaf29nbl5uYqMXHg65wRgzjTp5KYmKjRo0efdZvU1NQL+gT7CMehD8ehD8ehD8ehj/Vx8Pv959wm7l6CAwBcGCggAICJIVVAPp9Pa9eulc/nsx7FFMehD8ehD8ehD8ehz1A6DnH3IQQAwIVhSF0BAQCGDwoIAGCCAgIAmKCAAAAmhkwBbdiwQVdeeaUuuugiFRQU6L333rMeadCtW7dOCQkJYWvy5MnWY8Xczp07ddtttyk3N1cJCQnaunVr2PPOOa1Zs0Y5OTkaNWqUioqKdPDgQZthY+hcx2Hp0qVnnB9z5861GTZGysvLdf311yslJUWZmZmaP3++6uvrw7bp7OxUaWmpLrvsMl166aVatGiR2trajCaOjU9zHGbNmnXG+bBs2TKjifs3JAro5Zdf1qpVq7R27Vq9//77ys/PV3FxsY4ePWo92qC75ppr1NLSElp//OMfrUeKuY6ODuXn52vDhg39Pr9+/Xo9/fTTevbZZ7Vr1y5dcsklKi4uVmdn5yBPGlvnOg6SNHfu3LDzY/PmzYM4YexVV1ertLRUtbW12rFjh7q7uzVnzhx1dHSEtlm5cqVef/11vfrqq6qurtaRI0e0cOFCw6mj79McB0m65557ws6H9evXG008ADcEzJgxw5WWloa+7unpcbm5ua68vNxwqsG3du1al5+fbz2GKUluy5Ytoa97e3tddna2+8EPfhB67Pjx487n87nNmzcbTDg4PnkcnHNuyZIlbt68eSbzWDl69KiT5Kqrq51zff/uR44c6V599dXQNv/4xz+cJFdTU2M1Zsx98jg459wXvvAF9+1vf9tuqE8h7q+ATp8+rT179qioqCj0WGJiooqKilRTU2M4mY2DBw8qNzdX48eP15133qlDhw5Zj2SqqalJra2tYeeH3+9XQUHBBXl+VFVVKTMzU1dffbWWL1+uY8eOWY8UU4FAQJKUnp4uSdqzZ4+6u7vDzofJkydr7Nixw/p8+ORx+MiLL76ojIwMTZkyRWVlZTp58qTFeAOKu5uRftKHH36onp4eZWVlhT2elZWlAwcOGE1lo6CgQBUVFbr66qvV0tKixx57TDfddJP279+vlJQU6/FMtLa2SlK/58dHz10o5s6dq4ULFyovL0+NjY36zne+o5KSEtXU1CgpKcl6vKjr7e3V/fffrxtuuEFTpkyR1Hc+JCcnKy0tLWzb4Xw+9HccJOlrX/uaxo0bp9zcXNXV1emRRx5RfX29fvvb3xpOGy7uCwj/U1JSEvrztGnTVFBQoHHjxumVV17R3XffbTgZ4sHtt98e+vPUqVM1bdo0TZgwQVVVVZo9e7bhZLFRWlqq/fv3XxDvg57NQMfh3nvvDf156tSpysnJ0ezZs9XY2KgJEyYM9pj9ivuX4DIyMpSUlHTGp1ja2tqUnZ1tNFV8SEtL06RJk9TQ0GA9ipmPzgHOjzONHz9eGRkZw/L8WLFihd544w298847Yb++JTs7W6dPn9bx48fDth+u58NAx6E/BQUFkhRX50PcF1BycrKmT5+uysrK0GO9vb2qrKxUYWGh4WT2Tpw4ocbGRuXk5FiPYiYvL0/Z2dlh50cwGNSuXbsu+PPj8OHDOnbs2LA6P5xzWrFihbZs2aK3335beXl5Yc9Pnz5dI0eODDsf6uvrdejQoWF1PpzrOPRn3759khRf54P1pyA+jZdeesn5fD5XUVHh/v73v7t7773XpaWludbWVuvRBtUDDzzgqqqqXFNTk3v33XddUVGRy8jIcEePHrUeLaba29vd3r173d69e50k9+Mf/9jt3bvX/fvf/3bOOff973/fpaWluW3btrm6ujo3b948l5eX506dOmU8eXSd7Ti0t7e7Bx980NXU1Limpib31ltvuc997nPuqquucp2dndajR83y5cud3+93VVVVrqWlJbROnjwZ2mbZsmVu7Nix7u2333a7d+92hYWFrrCw0HDq6DvXcWhoaHCPP/642717t2tqanLbtm1z48ePdzNnzjSePNyQKCDnnPvpT3/qxo4d65KTk92MGTNcbW2t9UiDbvHixS4nJ8clJye7K664wi1evNg1NDRYjxVz77zzjpN0xlqyZIlzru+j2KtXr3ZZWVnO5/O52bNnu/r6etuhY+Bsx+HkyZNuzpw57vLLL3cjR45048aNc/fcc8+w+0taf//8ktzGjRtD25w6dcp985vfdJ/5zGfcxRdf7BYsWOBaWlrsho6Bcx2HQ4cOuZkzZ7r09HTn8/ncxIkT3UMPPeQCgYDt4J/Ar2MAAJiI+/eAAADDEwUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABP/B+w7LUIa5l2bAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 2\n","NN answer: 2\n","\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n","NN output: [[2.7364138e-09 7.8356831e-13 1.9827752e-08 7.4724680e-06 1.7721488e-06\n"," 2.3284849e-07 1.7225671e-11 2.4611420e-05 6.3226136e-05 9.9990261e-01]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG2xJREFUeJzt3X9sVfX9x/HXLdALaHtZKe3tlYIFBRZB3BC6RkQdDaXbjPz4Q8UlwAhELGbQOU2Nij+WVFniDAuDP7bATEQdCT8i2VikSJmzhYCwhmyrtHYCoS2ThHtLgULo5/tHs/v1ShHP5d6+ey/PR/JJuOec9z1vPh768vSefupzzjkBANDHMqwbAADcnAggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmBho3cDXdXd369SpU8rKypLP57NuBwDgkXNOHR0dCoVCysi49n1OvwugU6dOqbCw0LoNAMANOnHihEaOHHnN/f3uW3BZWVnWLQAAEuB6X8+TFkDr1q3T7bffrsGDB6u4uFgHDhz4VnV82w0A0sP1vp4nJYDef/99VVZWavXq1fr00081efJklZWV6fTp08k4HQAgFbkkmDZtmquoqIi+vnLliguFQq66uvq6teFw2EliMBgMRoqPcDj8jV/vE34HdOnSJR06dEilpaXRbRkZGSotLVVdXd1Vx3d1dSkSicQMAED6S3gAffnll7py5Yry8/Njtufn56utre2q46urqxUIBKKDJ+AA4OZg/hRcVVWVwuFwdJw4ccK6JQBAH0j4zwHl5uZqwIABam9vj9ne3t6uYDB41fF+v19+vz/RbQAA+rmE3wFlZmZqypQpqqmpiW7r7u5WTU2NSkpKEn06AECKSspKCJWVlVq4cKHuvfdeTZs2TW+99ZY6Ozu1ePHiZJwOAJCCkhJAjz76qP773//qpZdeUltbm+655x7t2rXrqgcTAAA3L59zzlk38VWRSESBQMC6DQDADQqHw8rOzr7mfvOn4AAANycCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYSHgAvfzyy/L5fDFjwoQJiT4NACDFDUzGm951113avXv3/59kYFJOAwBIYUlJhoEDByoYDCbjrQEAaSIpnwEdO3ZMoVBIY8aM0RNPPKHjx49f89iuri5FIpGYAQBIfwkPoOLiYm3atEm7du3S+vXr1dLSovvvv18dHR29Hl9dXa1AIBAdhYWFiW4JANAP+ZxzLpknOHv2rEaPHq0333xTS5YsuWp/V1eXurq6oq8jkQghBABpIBwOKzs7+5r7k/50wLBhwzRu3Dg1NTX1ut/v98vv9ye7DQBAP5P0nwM6d+6cmpubVVBQkOxTAQBSSMID6JlnnlFtba3+85//6JNPPtHcuXM1YMAAPf7444k+FQAghSX8W3AnT57U448/rjNnzmjEiBGaPn266uvrNWLEiESfCgCQwpL+EIJXkUhEgUDAug3gW8vPz/dcs3jxYs81c+fO9VyTl5fnuUaK7+80ePBgzzWvv/6655rXXnvNc82FCxc81+DGXe8hBNaCAwCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYILFSNGnBg0a5Llm+vTpnmumTp3quUZSXL82JJ4FP+P5/Vj97J9qQvh8Ps817733nueaBQsWeK7BjWMxUgBAv0QAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFq2OhTv//97z3XLF68OAmd2IpnFeh+9k81IeKZh66uLs81DzzwgOcaSTpw4EBcdejBatgAgH6JAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACAiYHWDcBeXl5eXHWvvvqq55qf/exnnmv6chHOS5cuea75/PPPPdc8//zznmvGjRvnueazzz7zXCNJ+fn5nmsaGho813zyySeeazIzMz3XBINBzzVIPu6AAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmGAxUmjDhg1x1T3yyCMJ7iRxdu/eHVfd6tWrPdfU19fHda50s2rVKusWkGK4AwIAmCCAAAAmPAfQvn379PDDDysUCsnn82n79u0x+51zeumll1RQUKAhQ4aotLRUx44dS1S/AIA04TmAOjs7NXnyZK1bt67X/WvWrNHatWu1YcMG7d+/X7fccovKysp08eLFG24WAJA+PD+EUF5ervLy8l73Oef01ltv6YUXXoh+QP32228rPz9f27dv12OPPXZj3QIA0kZCPwNqaWlRW1ubSktLo9sCgYCKi4tVV1fXa01XV5cikUjMAACkv4QGUFtbm6Srf598fn5+dN/XVVdXKxAIREdhYWEiWwIA9FPmT8FVVVUpHA5Hx4kTJ6xbAgD0gYQGUDAYlCS1t7fHbG9vb4/u+zq/36/s7OyYAQBIfwkNoKKiIgWDQdXU1ES3RSIR7d+/XyUlJYk8FQAgxXl+Cu7cuXNqamqKvm5padGRI0eUk5OjUaNGaeXKlfrVr36lO++8U0VFRXrxxRcVCoU0Z86cRPYNAEhxngPo4MGDeuihh6KvKysrJUkLFy7Upk2b9Oyzz6qzs1PLli3T2bNnNX36dO3atUuDBw9OXNcAgJTnc8456ya+KhKJKBAIWLeRstasWeO55plnnklCJ73r6OjwXPPOO+94rnn99dc910jS8ePH46rrr4YPHx5X3Z///GfPNVOnTvVc4/P5PNfE86DSggULPNdI0scffxxXHXqEw+Fv/Fzf/Ck4AMDNiQACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgwvOvY0D/duedd3quiXdB9M8++8xzTVlZmeeadFuhOl4rVqzwXPPss8/Gda7bbrvNc01fLaxfVVXluYZVrfsn7oAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYYDFSxG3cuHGea0aNGuW5hsVIezz11FOea+JZVLQv/fWvf/Vcs2PHjiR0AgvcAQEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADDBYqToUzU1NZ5r2tvbPdds3rzZc40U3wKr8bj//vs91wQCgSR0Ymvu3Lmeay5evJiETmCBOyAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmfM45Z93EV0UikbRcdLGvlJWVea7ZunVrXOcaPHiw5xqfz+e5pp9dognBPPQYMGCAdQtIonA4rOzs7Gvu5w4IAGCCAAIAmPAcQPv27dPDDz+sUCgkn8+n7du3x+xftGiRfD5fzJg9e3ai+gUApAnPAdTZ2anJkydr3bp11zxm9uzZam1tjY533333hpoEAKQfz78Rtby8XOXl5d94jN/vVzAYjLspAED6S8pnQHv37lVeXp7Gjx+v5cuX68yZM9c8tqurS5FIJGYAANJfwgNo9uzZevvtt1VTU6M33nhDtbW1Ki8v15UrV3o9vrq6WoFAIDoKCwsT3RIAoB+6oZ8D8vl82rZtm+bMmXPNYz7//HONHTtWu3fv1syZM6/a39XVpa6urujrSCRCCN0Afg4oNTAPPfg5oPRm/nNAY8aMUW5urpqamnrd7/f7lZ2dHTMAAOkv6QF08uRJnTlzRgUFBck+FQAghXh+Cu7cuXMxdzMtLS06cuSIcnJylJOTo1deeUXz589XMBhUc3Oznn32Wd1xxx1xfWsIAJC+PAfQwYMH9dBDD0VfV1ZWSpIWLlyo9evXq6GhQX/84x919uxZhUIhzZo1S6+99pr8fn/iugYApDwWI4U2bNgQV92yZcs81/Dhew/moUdGBquBpTPzhxAAAOgNAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEq2FDmZmZcdXNmjXLc82kSZM816xcudJzTbyam5s914wfP95zzYkTJzzXxDN3famhocFzzfe+970kdIL+gtWwAQD9EgEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMDrRuAvUuXLsVVt3Pnzj6pqa6u9lwTr1tvvdVzTTyLuS5dutRzTX9fjHTbtm3WLSDFcAcEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABIuRAl9x7ty5PjnPvffe2yfnidfmzZs91/TlorFID9wBAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMMFipMAN+slPfuK5Zv78+Z5rnHOea7744gvPNZK0evVqzzWXL1+O61y4eXEHBAAwQQABAEx4CqDq6mpNnTpVWVlZysvL05w5c9TY2BhzzMWLF1VRUaHhw4fr1ltv1fz589Xe3p7QpgEAqc9TANXW1qqiokL19fX68MMPdfnyZc2aNUudnZ3RY1atWqUPPvhAW7ZsUW1trU6dOqV58+YlvHEAQGrz9BDCrl27Yl5v2rRJeXl5OnTokGbMmKFwOKw//OEP2rx5s374wx9KkjZu3Kjvfve7qq+v1w9+8IPEdQ4ASGk39BlQOByWJOXk5EiSDh06pMuXL6u0tDR6zIQJEzRq1CjV1dX1+h5dXV2KRCIxAwCQ/uIOoO7ubq1cuVL33XefJk6cKElqa2tTZmamhg0bFnNsfn6+2traen2f6upqBQKB6CgsLIy3JQBACok7gCoqKnT06FG99957N9RAVVWVwuFwdJw4ceKG3g8AkBri+kHUFStWaOfOndq3b59GjhwZ3R4MBnXp0iWdPXs25i6ovb1dwWCw1/fy+/3y+/3xtAEASGGe7oCcc1qxYoW2bdumPXv2qKioKGb/lClTNGjQINXU1ES3NTY26vjx4yopKUlMxwCAtODpDqiiokKbN2/Wjh07lJWVFf1cJxAIaMiQIQoEAlqyZIkqKyuVk5Oj7OxsPf300yopKeEJOABADE8BtH79eknSgw8+GLN948aNWrRokSTpN7/5jTIyMjR//nx1dXWprKxMv/vd7xLSLAAgffhcPCscJlEkElEgELBuA/jW/va3v3mumT59uueaeP6p7tixw3ONJM2dOzeuOuCrwuGwsrOzr7mfteAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACbi+o2oQLqaMGGC55p77rnHc008K1vX19d7rnnjjTc81wB9hTsgAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJliMFPiKRYsWea4ZOnRo4hvpRW1treeaeBYwBfoKd0AAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMsBgp8BU//vGP++Q8//jHPzzXrF27NgmdAHa4AwIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCxUiBr/jpT3/queYvf/mL55p4FhZtbW31XAP0Z9wBAQBMEEAAABOeAqi6ulpTp05VVlaW8vLyNGfOHDU2NsYc8+CDD8rn88WMJ598MqFNAwBSn6cAqq2tVUVFherr6/Xhhx/q8uXLmjVrljo7O2OOW7p0qVpbW6NjzZo1CW0aAJD6PD2EsGvXrpjXmzZtUl5eng4dOqQZM2ZEtw8dOlTBYDAxHQIA0tINfQYUDoclSTk5OTHb33nnHeXm5mrixImqqqrS+fPnr/keXV1dikQiMQMAkP7ifgy7u7tbK1eu1H333aeJEydGty9YsECjR49WKBRSQ0ODnnvuOTU2Nmrr1q29vk91dbVeeeWVeNsAAKSouAOooqJCR48e1ccffxyzfdmyZdE/T5o0SQUFBZo5c6aam5s1duzYq96nqqpKlZWV0deRSESFhYXxtgUASBFxBdCKFSu0c+dO7du3TyNHjvzGY4uLiyVJTU1NvQaQ3++X3++Ppw0AQArzFEDOOT399NPatm2b9u7dq6KiouvWHDlyRJJUUFAQV4MAgPTkKYAqKiq0efNm7dixQ1lZWWpra5MkBQIBDRkyRM3Nzdq8ebN+9KMfafjw4WpoaNCqVas0Y8YM3X333Un5CwAAUpOnAFq/fr2knh82/aqNGzdq0aJFyszM1O7du/XWW2+ps7NThYWFmj9/vl544YWENQwASA+evwX3TQoLC1VbW3tDDQEAbg4+d71U6WORSESBQMC6DQDADQqHw8rOzr7mfhYjBQCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYIIAAgCYIIAAACYIIACACQIIAGCCAAIAmCCAAAAmCCAAgAkCCABgggACAJgggAAAJgggAIAJAggAYKLfBZBzzroFAEACXO/reb8LoI6ODusWAAAJcL2v5z7Xz245uru7derUKWVlZcnn88Xsi0QiKiws1IkTJ5SdnW3UoT3moQfz0IN56ME89OgP8+CcU0dHh0KhkDIyrn2fM7APe/pWMjIyNHLkyG88Jjs7+6a+wP6HeejBPPRgHnowDz2s5yEQCFz3mH73LTgAwM2BAAIAmEipAPL7/Vq9erX8fr91K6aYhx7MQw/moQfz0COV5qHfPYQAALg5pNQdEAAgfRBAAAATBBAAwAQBBAAwkTIBtG7dOt1+++0aPHiwiouLdeDAAeuW+tzLL78sn88XMyZMmGDdVtLt27dPDz/8sEKhkHw+n7Zv3x6z3zmnl156SQUFBRoyZIhKS0t17Ngxm2aT6HrzsGjRoquuj9mzZ9s0myTV1dWaOnWqsrKylJeXpzlz5qixsTHmmIsXL6qiokLDhw/Xrbfeqvnz56u9vd2o4+T4NvPw4IMPXnU9PPnkk0Yd9y4lAuj9999XZWWlVq9erU8//VSTJ09WWVmZTp8+bd1an7vrrrvU2toaHR9//LF1S0nX2dmpyZMna926db3uX7NmjdauXasNGzZo//79uuWWW1RWVqaLFy/2cafJdb15kKTZs2fHXB/vvvtuH3aYfLW1taqoqFB9fb0+/PBDXb58WbNmzVJnZ2f0mFWrVumDDz7Qli1bVFtbq1OnTmnevHmGXSfet5kHSVq6dGnM9bBmzRqjjq/BpYBp06a5ioqK6OsrV664UCjkqqurDbvqe6tXr3aTJ0+2bsOUJLdt27bo6+7ubhcMBt2vf/3r6LazZ886v9/v3n33XYMO+8bX58E55xYuXOgeeeQRk36snD592klytbW1zrme//aDBg1yW7ZsiR7zr3/9y0lydXV1Vm0m3dfnwTnnHnjgAffzn//crqlvod/fAV26dEmHDh1SaWlpdFtGRoZKS0tVV1dn2JmNY8eOKRQKacyYMXriiSd0/Phx65ZMtbS0qK2tLeb6CAQCKi4uvimvj7179yovL0/jx4/X8uXLdebMGeuWkiocDkuScnJyJEmHDh3S5cuXY66HCRMmaNSoUWl9PXx9Hv7nnXfeUW5uriZOnKiqqiqdP3/eor1r6neLkX7dl19+qStXrig/Pz9me35+vv79738bdWWjuLhYmzZt0vjx49Xa2qpXXnlF999/v44ePaqsrCzr9ky0tbVJUq/Xx//23Sxmz56tefPmqaioSM3NzXr++edVXl6uuro6DRgwwLq9hOvu7tbKlSt13333aeLEiZJ6rofMzEwNGzYs5th0vh56mwdJWrBggUaPHq1QKKSGhgY999xzamxs1NatWw27jdXvAwj/r7y8PPrnu+++W8XFxRo9erT+9Kc/acmSJYadoT947LHHon+eNGmS7r77bo0dO1Z79+7VzJkzDTtLjoqKCh09evSm+Bz0m1xrHpYtWxb986RJk1RQUKCZM2equblZY8eO7es2e9XvvwWXm5urAQMGXPUUS3t7u4LBoFFX/cOwYcM0btw4NTU1Wbdi5n/XANfH1caMGaPc3Ny0vD5WrFihnTt36qOPPor59S3BYFCXLl3S2bNnY45P1+vhWvPQm+LiYknqV9dDvw+gzMxMTZkyRTU1NdFt3d3dqqmpUUlJiWFn9s6dO6fm5mYVFBRYt2KmqKhIwWAw5vqIRCLav3//TX99nDx5UmfOnEmr68M5pxUrVmjbtm3as2ePioqKYvZPmTJFgwYNirkeGhsbdfz48bS6Hq43D705cuSIJPWv68H6KYhv47333nN+v99t2rTJ/fOf/3TLli1zw4YNc21tbdat9alf/OIXbu/eva6lpcX9/e9/d6WlpS43N9edPn3aurWk6ujocIcPH3aHDx92ktybb77pDh8+7L744gvnnHOvv/66GzZsmNuxY4draGhwjzzyiCsqKnIXLlww7jyxvmkeOjo63DPPPOPq6upcS0uL2717t/v+97/v7rzzTnfx4kXr1hNm+fLlLhAIuL1797rW1tboOH/+fPSYJ5980o0aNcrt2bPHHTx40JWUlLiSkhLDrhPvevPQ1NTkXn31VXfw4EHX0tLiduzY4caMGeNmzJhh3HmslAgg55z77W9/60aNGuUyMzPdtGnTXH19vXVLfe7RRx91BQUFLjMz0912223u0UcfdU1NTdZtJd1HH33kJF01Fi5c6JzreRT7xRdfdPn5+c7v97uZM2e6xsZG26aT4Jvm4fz5827WrFluxIgRbtCgQW706NFu6dKlafc/ab39/SW5jRs3Ro+5cOGCe+qpp9x3vvMdN3ToUDd37lzX2tpq13QSXG8ejh8/7mbMmOFycnKc3+93d9xxh/vlL3/pwuGwbeNfw69jAACY6PefAQEA0hMBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAAT/wc5Hussv8h9zQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 9\n","NN answer: 9\n"]}]},{"cell_type":"code","source":["# истинные метки классов\n","true_labels = np.argmax(y_test, axis=1)\n","# предсказанные метки классов\n","predicted_labels = np.argmax(model.predict(X_test), axis=1)\n","\n","# отчет о качестве классификации\n","print(classification_report(true_labels, predicted_labels))\n","# вычисление матрицы ошибок\n","conf_matrix = confusion_matrix(true_labels, predicted_labels)\n","# отрисовка матрицы ошибок в виде \"тепловой карты\"\n","display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n","display.plot()\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":771},"id":"BJzUruLZ7Grd","executionInfo":{"status":"ok","timestamp":1765216758870,"user_tz":-180,"elapsed":1679,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"2245a6d3-ffbf-4602-8ad1-7448067e59bd"},"execution_count":14,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 0.99 997\n"," 1 1.00 0.99 1.00 1164\n"," 2 0.99 0.98 0.99 1030\n"," 3 0.99 0.99 0.99 1031\n"," 4 0.99 0.99 0.99 967\n"," 5 0.98 0.99 0.99 860\n"," 6 0.99 1.00 0.99 977\n"," 7 0.98 0.99 0.99 1072\n"," 8 0.99 0.98 0.99 939\n"," 9 0.99 0.98 0.98 963\n","\n"," accuracy 0.99 10000\n"," macro avg 0.99 0.99 0.99 10000\n","weighted avg 0.99 0.99 0.99 10000\n","\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAgMAAAGwCAYAAAA0bWYRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd5JJREFUeJzt3Xl4E+Xax/FvkrZJ040udIMCZd8XQZHFHUFExF08qAgKr1hU8IiIiiwKVdwQRRAXcAGBcxQXjrKICijIDgrFshShtHSzS7q3Seb9oxKMpdKSpDM09+e65rrIZGby62RI7jzPMzM6RVEUhBBCCOG19GoHEEIIIYS6pBgQQgghvJwUA0IIIYSXk2JACCGE8HJSDAghhBBeTooBIYQQwstJMSCEEEJ4OR+1A7jCbreTnp5OUFAQOp1O7ThCCCHqSFEUCgsLiY2NRa/33O/TsrIyKioqXN6On58fJpPJDYm05YIuBtLT04mLi1M7hhBCCBelpqbStGlTj2y7rKyM+OaBZGTZXN5WdHQ0x44da3AFwQVdDAQFBQHwysYe+AcaVE5zxsqeTdSOIIQQFwQrlfzI147Pc0+oqKggI8vG8V0tCA46/9YHS6Gd5j1/p6KiQooBLTndNeAfaMA/UDt/io/OV+0IQghxYfjzgvj10dUbGKQjMOj8X8dOw+2O1s43qBBCCOFBNsWOzYW78dgUu/vCaIwUA0IIIbyCHQU7518NuLKu1smphUIIIYSXk5YBIYQQXsGOHVca+l1bW9ukGBBCCOEVbIqCTTn/pn5X1tU66SYQQgghvJy0DAghhPAKMoCwZlIMCCGE8Ap2FGxSDJyVdBMIIYQQXk5aBoQQQngF6SaoWYMuBiqLdOybF0zqt/6U/2EgtEMFvZ7OJ7xLJQClOXr2vhzCqZ9MVBTqiOxVQa9n8gluYXVsY9uzjcjYaqI0y4CP2U7jHhV0f7yAkJbWml7WLYbel8Nt47IIa2wlJcmft55pQvJes0df85907l3E7Q9l06ZLCeHRVqaPbsHWNSGq5TlNa/tJMp3bneMz6Xd9AXGty6ko05O008x7s2I4eVT9a71raT9pMZNWPwdqS84mqFmD7ib4eWooGVtM9H0xlyFfZhDTr5wNoxpTkqlHUWBTQjiFJ3244q0crv8si4BYKxtGR2AtOXP96bBOlVw6O5cb/pfB1e/moCjw3f0R2F2/+VWNrrgxj7HT0ln6ajQJg9qSkmRi1rIUQsIrPfei52Ay20k5YOLNpzxzV7HzocX9JJnOrWufYr5aEsGEG9owZXhLDD4Ksz9Jwejvwf9UtaC1/aTFTFr8HBDuoYliYP78+bRo0QKTyUTv3r3Zvn27y9u0lkHqOn96PF5A1MUVBDW30fVhC0HNrBz6JJDC333I2Wfkkml5hHepJLillUum52Mr0/H7//wd22lzZzFRF1cQ2NRGWKdKuk2wUHLKh+I0z90l8ZaxOaxZFsa6FWGcOGxi3uSmlJfqGHRXrsde81x2fh/MB3Ni2KKhXwFa3E+S6dyeHtGS9SvDOH7IREqSP69MaEZU00radC1VJc9pWttPWsykxc+BurC7YWqoVC8GVqxYwWOPPca0adPYvXs33bp1Y9CgQWRlZbm0XcWqQ7HpMBidm3UMJoXsXUZsFX8+/svzOj0Y/KqePxtriY6Uz8wENrVijvbMrxgfXzttupawe/OZ23kqio49m4Po2LPEI695IdLifpJM5ycguOr/UmG+erch1+J+0mKmC53tz7MJXJkaKtWLgVdffZUxY8YwatQoOnbsyMKFCzGbzbz//vsubdc3UCGiezm/vhVMSaYeuw2OfWkmZ68fpdl6QlpaMcda2ftqCOUFOmwVcOCdIEoyfCjNdv5QOrQsgBUXxbLioiakbzJx9fvZGPxcilej4DAbBh/Iz3YezpGX40NoY8+OU7iQaHE/Saa60+kUHpyRxv7tZo4n+597BQ/R4n7SYqYLnU1xfWqoVC0GKioq2LVrFwMGDHDM0+v1DBgwgK1bt1Zbvry8HIvF4jT9k75zckGBVVfEsrxrE5I/CqT5kBJ0etD7wuXz/qDwdx/+27sJK3o0IXObkdjLS6vtlRZDSxj8WRYDPsoiqIWVHyeEYyt3yy4QwquNn51G8/ZlJI5rrnYUIbyaqmcT5OTkYLPZiIqKcpofFRXFb7/9Vm35xMREZsyYUevtBzWzce3H2VhLdFQW6fCPtLN5YhiBcVVVdXjnSq7/PIuKQh32Sh2mMDtr7ogkrHOF03b8ghT8gqwEt4CIbn/wn96xpK73p8UN7u/jtOQasFmh0d8q/9AIK3nZDfrkjzrR4n6STHWTMOskva+18O+bW5FzykNNbbWkxf2kxUwXOlf7/WXMgEZMmTKFgoICx5Samlqr9XzMCv6RdsoLdJz60UTTq8ucnvcLUjCF2bH87kPufl/irj7Hl7wCtgrdPy9znqyVeg7/YqZH/0LHPJ1OoXv/IpJ2qXuKk5ZocT9JptpSSJh1kr7XFfDE7a3ITD37GJ36pMX9pMVMFzo7OmwuTHY887mvBaqWlxERERgMBjIzM53mZ2ZmEh0dXW15o9GI0Vj7D470zVXLBsdbKTzuw56XQghuWUmrW4oBOL7GH1OoHXOslfxDvuya1Yim15QS07+qD6Aw1cDxr83E9CvDFGanJMPAgXeCMBgVmlxRVuPruuqzRRE8PjeVQ/vMJO8xc/OYbExmO+uWh3nsNc/FZLYRG3+mxSQ6roKWnUopzDeQnabOrzot7ifJdG7jZ6dx1c15TB8VT2mRntDGVafJFRcaqChT7/eJ1vaTFjNp8XNAuIeqxYCfnx89e/Zkw4YN3HTTTQDY7XY2bNjA+PHjXd5+ZZGeva+GUJJhwK+RnWbXltJtYgF636rnS7MM7H4hhLI/DJga22g5rITO486MQ6g6s8CP5A8DqbDoMYXbiOxVwaBPsjGFe67BaOOXoYSE27h3Ugahja2kHPDn6RHx5Of4euw1z6Vtt1Je+vSo4/GDM9IBWLcilFcmNlMlkxb3k2Q6t6H3/QHAy58ddZr/8oQ41q9U74tXa/tJi5m0+DlQF3alanJl/YZKpyjqXlJpxYoVjBw5krfffptLLrmEuXPnsnLlSn777bdqYwn+zmKxEBISwlu7euEfqJ0+tKXt5YIcQghRG1alkh/4goKCAoKDgz3yGqe/K7YdiCYw6Pxbn4oK7fTulOHRrGpR/Rv0zjvvJDs7m2effZaMjAy6d+/OmjVrzlkICCGEEMI9VC8GAMaPH++WbgEhhBCiJqcHArqyfkOliWJACCGE8DS7osOunP8Xuivrat0FdWqhEEIIIdxPWgaEEEJ4BekmqJkUA0IIIbyCDT02FxrE1b3JtmdJMSCEEMIrKC6OGVBkzIAQQgghGippGRBCCOEVZMxAzaQYEEII4RVsih6b4sKYgQZ8OWLpJhBCCCG8nLQMCCGE8Ap2dNhd+A1sp+E2DUgxIIQQwivImIGaNYhiYGXPJvjo1LvN6N+tTd+rdoRqBsV2VzuCEEIIjWoQxYAQQghxLq4PIJRuAiGEEOKCVjVmwIUbFTXgbgI5m0AIIYTwctIyIIQQwivYXbw3gZxNIIQQQlzgZMxAzaQYEEII4RXs6OU6AzWQMQNCCCGEl5OWASGEEF7BpuiwuXAbYlfW1TppGRBCCOEVbH8OIHRlqotNmzYxdOhQYmNj0el0fP75507PK4rCs88+S0xMDP7+/gwYMIDDhw87LZObm8uIESMIDg6mUaNG3H///RQVFTkt88svv3DZZZdhMpmIi4tjzpw5dd43UgwIIYQQHlBcXEy3bt2YP3/+WZ+fM2cO8+bNY+HChWzbto2AgAAGDRpEWVmZY5kRI0Zw4MAB1q9fz+rVq9m0aRNjx451PG+xWBg4cCDNmzdn165dvPTSS0yfPp1FixbVKat0EwghhPAKdkWP3YWzCex1PJtg8ODBDB48+KzPKYrC3LlzeeaZZxg2bBgAH374IVFRUXz++ecMHz6cgwcPsmbNGnbs2EGvXr0AeOONN7j++ut5+eWXiY2NZenSpVRUVPD+++/j5+dHp06d2Lt3L6+++qpT0XAu0jIghBDCK7irm8BisThN5eXldc5y7NgxMjIyGDBggGNeSEgIvXv3ZuvWrQBs3bqVRo0aOQoBgAEDBqDX69m2bZtjmcsvvxw/Pz/HMoMGDSI5OZm8vLxa55FiABh6Xw4fbEviq5RfeH31Ydp1L3HLdn/9OYBn743nrh6dGBTbnS3fhDg9/+PXIUwZ3pLbOnVmUGx3ju73r7aNSbe2ZlBsd6fp9clNqy23bkUYD17Tjhviu3JHl068OaWJW/6Gs7ljfCZr0/fx4Iw0j71GbXTuXcSMD46xbPcB1qbvo891BarmOc1Tx5Nk8pw7x2cy7+tDrDr0Kyt+OcC094/RtFXZuVf0IK0e36Ct904NcXFxhISEOKbExMQ6byMjIwOAqKgop/lRUVGO5zIyMoiMjHR63sfHh7CwMKdlzraNv75GbXh9MXDFjXmMnZbO0lejSRjUlpQkE7OWpRASXunytstK9LTsVMr42SdrfL7TJcXc/1T6P25n8IgcPtm73zE98Izz8p++3ZglL0ZzR0Imi77/jRdWHKXnlYUu5z+btt1KGHJ3LikHTB7Zfl2YzHZSDph486nqxZFaPHk8SSbP6dqnmK+WRDDhhjZMGd4Sg4/C7E9SMPrbVMkD2jy+QXvvXV3YOXNGwflM9j+3k5qaSkFBgWOaMmWKmn+WW6haDJxrpGV9uGVsDmuWhbFuRRgnDpuYN7kp5aU6Bt2V6/K2L766kPsmZ9Bv8Nkr+gG35XH3Y5n0uLzorM+fZvRXCIu0OqaAILvjucJ8Ax+8GMOk109w9S35xLaooGXHMvoMsric/+9MZhuT3zzO3ElNKSwwuH37dbXz+2A+mBPDljUh5164nnjyeJJMnvP0iJasXxnG8UMmUpL8eWVCM6KaVtKma6kqeUCbxzdo772ri9MXHXJlAggODnaajEZjnbNER0cDkJmZ6TQ/MzPT8Vx0dDRZWVlOz1utVnJzc52WOds2/voataFqMXCukZae5uNrp03XEnZvDnLMUxQdezYH0bGndpq9vv8slNs7dWbsVe14f3YMZSVnznXdvSkIuwI5Gb48cHl7RvTsyPP/15ysNF+35xg/O43tG4LZ85f9Jc7Q4vEkmc5PQHBVi0BhvvpFr5ZcCO/dhSI+Pp7o6Gg2bNjgmGexWNi2bRt9+vQBoE+fPuTn57Nr1y7HMt999x12u53evXs7ltm0aROVlWdaZtavX0+7du0IDQ2tdR5Vzyb4p5GW9SE4zIbBB/KznXdDXo4Pca3rPiDEE666OY/IphWER1Vy7KA/782K4eRRI8++9zsAGcf9UOywfF4U455LIyDIxpIXY5gyvBULNyTj6+eey2deMSyP1l1Kefj6Nm7ZXkOkxeNJMtWdTqfw4Iw09m83czy5+jgeb6b19+5cXL83Qd3WLSoq4siRI47Hx44dY+/evYSFhdGsWTMmTJjA888/T5s2bYiPj2fq1KnExsZy0003AdChQweuu+46xowZw8KFC6msrGT8+PEMHz6c2NhYAP71r38xY8YM7r//fiZPnsz+/ft5/fXXee211+qU9YI6tbC8vNxp1KbF4v6mcK25/u4/HP+O71BGWGQlk+9oTfrvfsS2qMCugLVSz0PPpTnGCUxZ8Dt3devMvi2B9HLD2IHGsRWMm5nOlOEtqSz3+mEmooEbPzuN5u3L+PdNrdWOItzMjg47538Vwbquu3PnTq666irH48ceewyAkSNHsmTJEp544gmKi4sZO3Ys+fn59O/fnzVr1mAynRmTtXTpUsaPH88111yDXq/n1ltvZd68eY7nQ0JCWLduHQkJCfTs2ZOIiAieffbZOp1WCBdYMZCYmMiMGTPctj1LrgGbFRo1tjrND42wkpetzV3T/qKqprj0343EtqggLLIqe7O2Z0Y+Nwq3ERxmdVtXQeuupYQ2tjJ/7SHHPIMPdLm0mBtH5XBDi67Y7Q33Mp21pcXjSTLVTcKsk/S+1sK/b25Fzim/c6/gZbT83tVGfbcMXHnllSj/cG0CnU7HzJkzmTlzZo3LhIWFsWzZsn98na5du7J58+Y6Zfu7C+pn3pQpU5xGcKamprq0PWulnsO/mOnR/8yvZ51OoXv/IpJ2mV2N6xGnTz8Mi6zqH+p0cTEAJ4+eGcBiyTNgyfUhqol7Rvfu3RzI2KvaMu7aM1PyXn+++yyUcde2lULgT1o8niRTbSkkzDpJ3+sKeOL2VmSm1n1AmDfQ5nsn3EH7pdxfGI3G8xq1+U8+WxTB43NTObTPTPIeMzePycZktrNueZjL2y4t1pN+7EzejFQ/ju73J6iRlcimlVjyDGSn+fFHZtXbkPrnF3poZCVhkVbSf/fj+1WhXHKNhaBQG8eSTLw9vQldLi2iZceqloCmrcrpM6iABc824dE5qQQE2Xl/dgxNW5fRrZ97Ti8sLTZU6zstK9FTmFd9fn0ymW3Exlc4HkfHVdCyUymF+VX7VQ2ePJ4kk+eMn53GVTfnMX1UPKVFekIbVxXSxYUGKsrU+c2kxeMbtPfe1cX53F/g7+s3VBdUMeAJG78MJSTcxr2TMghtbCXlgD9Pj4gnP8f1JvZD+8w8cduZfse3p1ddCOjaO3J5fO4Jfl4XwisTmzmeTxzXAoC7H8vgnscz8PFV2LM5iFXvNqasRE/j2Er6X5/PXROcTyOZNO84b09rwrP3tkSnh66XFjFraQo+7j+hQFPadivlpU+POh4/OKPq+gvrVoQ67df65MnjSTJ5ztD7qsbmvPzZUaf5L0+IY/1Kdb7ktHh8g/beu7qwKzrsLtx50JV1tU6n/FOHhof9daRljx49ePXVV7nqqqscIy3PxWKxEBISwpUMw0ennQNxbfpetSNUMyi2u9oRhBCiGqtSyQ98QUFBAcHBwR55jdPfFXN2XIZ/4Pn/Bi4tsvLExZs9mlUtqrYMnGukpRBCCOEudhe7CezSTeAZ5xppKYQQQriL63ctbLjFQMP9y4QQQghRK14/gFAIIYR3sKHD5sJFh1xZV+ukGBBCCOEVpJugZg33LxNCCCFErUjLgBBCCK9gw7Wmfpv7omiOFANCCCG8gnQT1EyKASGEEF6hvm9UdCFpuH+ZEEIIIWpFWgaEEEJ4BQUddhfGDChyaqEQQghxYZNugpo13L9MCCGEELUiLQMeoMU7BI47fETtCNUsaNP63AsJUVs6DTbhyr1XNEVuYVwzKQaEEEJ4BZuLdy10ZV2ta7h/mRBCCCFqRVoGhBBCeAXpJqiZFANCCCG8gh09dhcaxF1ZV+sa7l8mhBBCiFqRlgEhhBBewabosLnQ1O/KulonxYAQQgivIGMGaibFgBBCCK+guHjXQkWuQCiEEEKIhkpaBoQQQngFGzpsLtxsyJV1tU6KASGEEF7BrrjW729vwFeXlm4CIYQQwst5fctA595F3P5QNm26lBAebWX66BZsXROidiyG3pfDbeOyCGtsJSXJn7eeaULyXrPL203fbmLvu6FkHzBSkuXDdW+dIv7aYsfzigI7Xg/j4Mpgyi16onuWcfmMbBq1qHQss+utUI7/YOaPg0b0vgr37z5W4+uV5elZObQZxZk+jN6VgjHY7vLfAHDn+Ez6XV9AXOtyKsr0JO00896sGE4eNbll+67w1HsnmTzLP8DGyCdO0fe6AhqFWzl6wJ8Fzzbl0D51MmnxGNdiprqwuziA0JV1ta7h/mW1ZDLbSTlg4s2nmqodxeGKG/MYOy2dpa9GkzCoLSlJJmYtSyEkvPLcK59DZame8PblXDYt+6zP713UiF8/DOHymdnc+t+T+PrbWT0qFmv5maY1W6WOVoOL6PSvgnO+3vdPRRLevtzl3H/XtU8xXy2JYMINbZgyvCUGH4XZn6Rg9Le5/bXqwpPvnWTyrIkvp3LRZUXMeaQ5Dw5oz66NQbyw/Ajh0RWq5NHiMa7FTHVhR+fy1FCpWgwkJiZy8cUXExQURGRkJDfddBPJycn1mmHn98F8MCeGLRpoDTjtlrE5rFkWxroVYZw4bGLe5KaUl+oYdFeuy9tufkUJvR/LpeXA4mrPKQr88kEjej6UR/yAYsLbV3D1S1mUZBk4tj7Asdwlj+bSbVQBYW3/+UNy/9JgKiwGut2f73Luv3t6REvWrwzj+CETKUn+vDKhGVFNK2nTtdTtr1UXnnzvJJPn+Jns9L8+n3dnxbB/WyDpvxv5+NUY0n83csO9f6iSSYvHuBYzCfdQtRjYuHEjCQkJ/Pzzz6xfv57KykoGDhxIcXH1Lypv4eNrp03XEnZvDnLMUxQdezYH0bFniUdfuzDVh5JsH5r2PfM6xiA7kd3KydxTt2bA3MO+7JofxtUvZaKrh6MsILjql0lhvsHzL1YDNd87yeQag0HB4AMV5c4Ha3mZnk4XF6mS6e+0cIz/nRYz/ZPTVyB0ZWqoVB0zsGbNGqfHS5YsITIykl27dnH55ZerlEpdwWE2DD6Qn+381uTl+BDX2v3N7X9VklP1mv4Rzk1+5ggrJTm1/89uK4dvH4umz+QcgmKtWFJ93Zrz73Q6hQdnpLF/u5njyf4efa1/ouZ7J5lcU1psIGmnmX89msGJwybys3248qY8OvQsJv13oyqZ/korx/hfaTHTuciYgZppagBhQUFVH3RYWNhZny8vL6e8/MyHhcViqZdcom5+fiWC0FYVtB1WP7+oxs9Oo3n7Mv59U+t6eT3RMM15pDmPvXKCT3YfwGaFI7+a+eHzUNp0Vae14q+0eIxrMZM4f5opBux2OxMmTKBfv3507tz5rMskJiYyY8aMek5Wvyy5BmxWaNTY6jQ/NMJKXrZn3y5zRNVrluYYCIg80zpQkuNDRIfa/2JL2+pP7iE/jq4JrJrx57m5iy+J56JxeVzyqPv6hRNmnaT3tRb+fXMrck75uW2750PN904yue7UcSOTbmuD0d9GQJCd3CxfnlrwO6dOqNsyoKVj/DQtZqoNOy7em0AGEHpeQkIC+/fvZ/ny5TUuM2XKFAoKChxTampqPSasH9ZKPYd/MdOjf6Fjnk6n0L1/EUm7PHuKU1CcFXNjKye3nnmdikIdWfuMRPUoq/V2Br15itu/SuX2L6umK2dlAXDTJ2l0vvvcZyDUjkLCrJP0va6AJ25vRWaq+k25ar53ksl9yksN5Gb5EhhipecVFrauDVYpifaOcW1mqj3FxTMJlAZcDGiiZWD8+PGsXr2aTZs20bRpzaf4GY1GjEb3Hnwms43Y+DOj4qPjKmjZqZTCfAPZaepUvJ8tiuDxuakc2mcmeY+Zm8dkYzLbWbf87N0ndVFZrKPg+Jk+fMtJH3KS/DA2shMUa6XryHx2vRVKSIsKgpta2T43DHOkzelaBIXpPpTn6ylK90Gx68hJqtpPIc0r8Q1QCGnu/IuvLK9qvEFoqwq3XWdg/Ow0rro5j+mj4ikt0hPauOqUtOJCAxVl6tW4nnzvJJNn9bzCgk4HqUeNNGlRwQNT00g9amLdinBV8mjxGNdiprqQuxbWTNViQFEUHn74YVatWsUPP/xAfHx8vWdo262Ulz496nj84Ix0ANatCOWVic3qPQ/Axi9DCQm3ce+kDEIbW0k54M/TI+LJz3F9IF7WfhNf3t3E8XjL7MYAtLvZwtVzsug+Np/KUj0bn4mkwqInulcZN7yfjo/xzHU4d8wNI3nVmV9L/xlWtZ9u/DiNJr3r5xSjofdVne718mdHnea/PCGO9SvV+0Lx5HsnmTwrINjGqCdPERFTSWG+gZ++bsTiF2OwWdX5AtDiMa7FTMI9dIqiqHa15Yceeohly5bxxRdf0K5dO8f8kJAQ/P3PPTrVYrEQEhLClQzDR6feh8iFYNzhI2pHqGZBGxl4JNxIp8Ffbep9vF4wrEolP/AFBQUFBAd7pkvm9HfFzetH4Rtw/i2+lcUVrLp2sUezqkXVloEFCxYAcOWVVzrNX7x4Mffdd1/9BxJCCNFgSTdBzVTvJhBCCCGEujQxgFAIIYTwNFfvL9CQTy2UYkAIIYRXkG6Cmmn/XBAhhBBCeJS0DAghhPAK0jJQMykGhBBCeAUpBmom3QRCCCGEl5OWASGEEF5BWgZqJsWAEEIIr6Dg2umBDfnKOFIMCCGE8ArSMlAzGTMghBBCeDkpBoQQQniF0y0Drkx1YbPZmDp1KvHx8fj7+9OqVSuee+45p0vxK4rCs88+S0xMDP7+/gwYMIDDhw87bSc3N5cRI0YQHBxMo0aNuP/++ykqKnLLPjlNugm8hBbvEJhw+JDaEaqZ36at2hGqk7vx1Y4WMwlNqe9ughdffJEFCxbwwQcf0KlTJ3bu3MmoUaMICQnhkUceAWDOnDnMmzePDz74gPj4eKZOncqgQYNISkrCZDIBMGLECE6dOsX69euprKxk1KhRjB07lmXLlp333/J3UgwIIYQQHrBlyxaGDRvGkCFDAGjRogWffPIJ27dvB6paBebOncszzzzDsGHDAPjwww+Jiori888/Z/jw4Rw8eJA1a9awY8cOevXqBcAbb7zB9ddfz8svv0xsbKxbsko3gRBCCK/grm4Ci8XiNJWXl5/19fr27cuGDRs4dKiqFXTfvn38+OOPDB48GIBjx46RkZHBgAEDHOuEhITQu3dvtm7dCsDWrVtp1KiRoxAAGDBgAHq9nm3btrlt30jLgBBCCK+gKDoUF7oJTq8bFxfnNH/atGlMnz692vJPPvkkFouF9u3bYzAYsNlszJo1ixEjRgCQkZEBQFRUlNN6UVFRjucyMjKIjIx0et7Hx4ewsDDHMu4gxYAQQghRB6mpqQQHBzseG43Gsy63cuVKli5dyrJly+jUqRN79+5lwoQJxMbGMnLkyPqKWytSDAghhPAKdnQuXXTo9LrBwcFOxUBNJk2axJNPPsnw4cMB6NKlC8ePHycxMZGRI0cSHR0NQGZmJjExMY71MjMz6d69OwDR0dFkZWU5bddqtZKbm+tY3x1kzIAQQgivUN+nFpaUlKDXO3/NGgwG7HY7APHx8URHR7NhwwbH8xaLhW3bttGnTx8A+vTpQ35+Prt27XIs891332G32+ndu/f57opqpGVACCGE8IChQ4cya9YsmjVrRqdOndizZw+vvvoqo0ePBkCn0zFhwgSef/552rRp4zi1MDY2lptuugmADh06cN111zFmzBgWLlxIZWUl48ePZ/jw4W47kwCkGBBCCOEl3DWAsLbeeOMNpk6dykMPPURWVhaxsbH83//9H88++6xjmSeeeILi4mLGjh1Lfn4+/fv3Z82aNY5rDAAsXbqU8ePHc80116DX67n11luZN2/eef8dZ6NTlAv3Sh0Wi4WQkBCuZBg+Ol+144g6kosO1ZJcdEg0YFalkh/4goKCglr1w5+P098VvT6bgE/A2Qf71Ya1uJydt8z1aFa1SMuAEEIIr1DfLQMXEhlAKIQQQng5aRkQQgjhFRQX703QkFsGpBgAht6Xw23jsghrbCUlyZ+3nmlC8l6zZPrTDffmMOTeP4iKqwDgeLKJpa9FsfN79/SZpW/3Z8+7oWQdMFGS5cPgt9JoeW2x43lFge2vh5O0MoRyi56YnqVcMSOLRi0qHcvsfCuM4z8EkHPQiN5XYczuo9VeJ/MXI1tfbkz2fiM6HUR2LaPvE9lEdKhwy99xmpbeuw9+PkB0XGW1+V8uiWD+001VSHSGlvZT595F3P5QNm26lBAebWX66BZsXROiShbJ5DkKrg13acgjZby+m+CKG/MYOy2dpa9GkzCoLSlJJmYtSyEkvPoHqLdmyj7ly/uzYxh/XVseHtyWfT8FMn3x7zRvW+aW7VeW6ghvX84V07LO+vyeRaH88mEjrpiZyW3/PYGPv8JXo5pgLT9TpdsqdbQaXEinf+WfdRsVxTq+ur8pQTGV3PbfE9y8PBW/ADtfjm6KzY27VWvv3SPXt2N4906O6cnhrQDYvFrdD3Ct7SeT2U7KARNvPqVugfRXkknUJ1WLgQULFtC1a1fH1Zz69OnDN998U68Zbhmbw5plYaxbEcaJwybmTW5KeamOQXfl1msOLWfatj6EHd8Fk37MSFqKkSUvxlBWrKd9z+Jzr1wLza8o4dLH/qDlwOr351YU2PdBKL0eyqXlgGIi2lcw4KUMirN8OLY+0LFc70f/oPuofMLbnv1Xfn6KH+X5Bi6Z8AehLSsJb1PBxQ//QWmOD4Xp7jsTRWvvXUGuD3nZvo6p94AC0o/58cvWwHOv7EFa2087vw/mgzkxbNHQr1zJ5H6nr0DoytRQqVoMNG3alBdeeIFdu3axc+dOrr76aoYNG8aBAwfq5fV9fO206VrC7s1BjnmKomPP5iA69iyplwwXQqa/0usVrhiWh9Fs5+DOAI+/niXVl5JsH5r2PfO3G4PsRHUrI2OP6R/WdNYovgJTqI2D/wnBVgHWMh1J/wkhtFU5wU3c82tU6++dj6+dq2/JY+2KcFDxQ03r+0k0XKfPJnBlaqhUHTMwdOhQp8ezZs1iwYIF/Pzzz3Tq1Kna8uXl5U63irRYLC69fnCYDYMP5Gc774a8HB/iWp/9lpSepsVMAC3alzL3qyP4Ge2UFuuZeX8LThyu/Zfx+SrJMQBgjrA6zfePsFGSU/vD1y9Q4aaPU/l6XCw754cBENKikqHvn0Tvpv8FWn3vTut7XQGBwTbWrQxTNYfW95MQ3kgzYwZsNhvLly+nuLjYcU3mv0tMTCQkJMQx/f02ksJzTh418tC1bXlkSBtWfxjB46+foFkb94wZqA/WMh3fTYkipmcpt/7nBLcsTyW8TTn/G9MEa1nDrfb/atDwXHZ8H0xuplygS3in+r43wYVE9WLg119/JTAwEKPRyIMPPsiqVavo2LHjWZedMmUKBQUFjik1NdWl17bkGrBZoVFj51+doRFW8rLVaTTRYiYAa6We9N+NHPnVzOLEGI4l+XPTA9kef11zhA2gWitAaY6hWmvBPzn0VRCFab5c80ImUV3Lie5RxrWvnsJy0pdj37qn/1yr7x1AZJMKelxWyJpl4armAG3vJ9GwKYrrU0OlejHQrl079u7dy7Zt2xg3bhwjR44kKSnprMsajUbHYMPa3kLyn1gr9Rz+xUyP/oWOeTqdQvf+RSTtUucUJy1mOhudDnz9PP8/IziuEnNjKye3nvnbKwr1ZO4zEd2j9i0T1lI9Oj1OXeWnHyt292TV8ns38M4/yM/xYdsG9S+hquX9JIS3Ur0M9/Pzo3Xr1gD07NmTHTt28Prrr/P222/Xy+t/tiiCx+emcmifmeQ9Zm4ek43JbGfdcvX6VbWWadSUU+z4LojsND/8A21cdXM+XfsW8fS/Wrpl+xXFOgqO+zkeW076kp1kxNTIRlCslW4j89j1VhiNWlQQ3LSSbXMjCIi0En/tmbMPCtN9KMs3UJTug2LXkZ1Udf3xkOYV+AUoxPUrZsuLEWyaHkmXe/JRFNj9dhh6g0KTS903aE1r7x1UfdEOvDOXb/8Tht2mjWZOre0nk9lGbPyZM1Gi4ypo2amUwnwD2Wl+/7CmZFI7U13I5Yhrpnox8Hd2u91pkKCnbfwylJBwG/dOyiC0sZWUA/48PSKe/Bz1+lW1lqlRhJVJ804QFmmlpNDAsYMmnv5XS3ZvCjr3yrWQvd/E53efGf/x0+xIANrfXMA1czLpMTaPylI93z8TRYVFT0yvUoa+n4aP8UzLxPa54fy26szpTiuHNQfgpo9TadK7lNBWlQx5O50db4bz6R1x6PQQ0bGcoe+lERBpc8vfAdp77wB6XFZIVNNK1q5Qd+DgX2ltP7XtVspLn565UNWDM9IBWLcilFcmNpNMGs5UF1IM1EzVuxZOmTKFwYMH06xZMwoLC1m2bBkvvvgia9eu5dprrz3n+nLXwgub3LWwluSuhaIBq8+7FrZb9iQG8/nftdBWUk7yv16Quxa6W1ZWFvfeey+nTp0iJCSErl271roQEEIIIYR7qFoMvPfee2q+vBBCCC/i6hkBDblBTHNjBoQQQghPqCoGXBkz4MYwGqP6qYVCCCGEUJe0DAghhPAKcjZBzaQYEEII4RWUPydX1m+opJtACCGE8HLSMiCEEMIrSDdBzaQYEEII4R2kn6BGUgwIIYTwDi62DNCAWwZkzIAQQgjh5aRlQAghhFeQKxDWTIoBIYQQXkEGENZMigGhGi3eIXDQfovaEapZ27lh3R1NCKE9UgwIIYTwDorOtUGA0jIghBBCXNhkzEDN5GwCIYQQwstJy4AQQgjvIBcdqpEUA0IIIbyCnE1Qs1oVA19++WWtN3jjjTeedxghhBBC1L9aFQM33XRTrTam0+mw2Wyu5BFCCCE8pwE39buiVsWA3W73dA4hhBDCo6SboGYunU1QVlbmrhxCCCGEZylumBqoOhcDNpuN5557jiZNmhAYGEhKSgoAU6dO5b333nN7QCGEEEJ4Vp2LgVmzZrFkyRLmzJmDn5+fY37nzp1599133RpOCCGEcB+dG6aGqc7FwIcffsiiRYsYMWIEBoPBMb9bt2789ttvbg0nhBBCuI10E9SoztcZSEtLo3Xr1tXm2+12Kisr3RKqPnXuXcTtD2XTpksJ4dFWpo9uwdY1IZLpAsgEMPS+HG4bl0VYYyspSf689UwTkveaPfJa1mI4/IaRrA2+VOTqCG5vo/2TZYR0qRpg++vTJtK/8HNaJ7yflV5vl1Tblr0Cfr4rgMJkA33+W0Rwe88O0q3P/VRXd4zP5P6nMlj1TgQLpzVRJcOd4zPpd30Bca3LqSjTk7TTzHuzYjh51KRKHtDm/7kb7s1hyL1/EBVXAcDxZBNLX4ti5/dyM60LXZ1bBjp27MjmzZurzf/vf/9Ljx493BKqPpnMdlIOmHjzqaZqR3GQTLVzxY15jJ2WztJXo0kY1JaUJBOzlqUQEu6ZovTAs/78sdWHLoml9F1VRHhfGzvHBFCWeabpMKK/lSt/KHRM3eZULwQAkl8xYoysn7N06ns/1UXbbiUMuTuXlAPqfekCdO1TzFdLIphwQxumDG+JwUdh9icpGP3VO1Vai//nsk/58v7sGMZf15aHB7dl30+BTF/8O83bXiCDyaVloEZ1bhl49tlnGTlyJGlpadjtdj777DOSk5P58MMPWb169XkHeeGFF5gyZQqPPvooc+fOPe/t1NXO74M1V9VKptq5ZWwOa5aFsW5FGADzJjflkmssDLorl5VvRrn1tWxlkPmtDz3mlRLWq+oLonVCOdkbfUhd4UebR8oB0PspGCP++RMje7MPf2zxofvcUnI2+7o159nU536qC5PZxuQ3jzN3UlPuejRTtRwAT49o6fT4lQnNWLn/AG26lrJ/W6AqmbT4f27beueWiSUvxnDDvX/Qvmcxxw+pW9DVity1sEZ1bhkYNmwYX331Fd9++y0BAQE8++yzHDx4kK+++oprr732vELs2LGDt99+m65du57X+sL7+PjaadO1hN2bgxzzFEXHns1BdOx59l/jrlBsoNh06I3OX/R6o0Le7jNjZ3J3+PD95YFsviGApJkmKvKdPzzKc3QcmG6iS2IpBpPnf2bU936qi/Gz09i+IZg9f8mmFQHBVQVfYb7hHEt6L71e4YpheRjNdg7uDFA7jnDRed2b4LLLLmP9+vVuCVBUVMSIESN45513eP755/9x2fLycsrLyx2PLRaLWzKIC09wmA2DD+RnOx/CeTk+xLUur2Gt8+cTAI26WTm60EhAy1KM4QqnvvYlf58Bc7Oq5v6IflaiBljxb2KnJFXP4deN7HrQzKVLi9EZqm5/uv8Zf+LuqCCks53SNM//yqjv/VRbVwzLo3WXUh6+vo1qGWqi0yk8OCON/dvNHE/2VzuO5rRoX8rcr47gZ7RTWqxn5v0tOHH4AmgVQG5h/E/O+6JDO3fu5KOPPuKjjz5i165d5x0gISGBIUOGMGDAgHMum5iYSEhIiGOKi4s779cVoq66JJYCsPHqINZfFMTxpX7EDK5E9+d3esz1ViKvshLU1k7UNVYuml+CZb+B3B1Vvy5PLPXDWgwtH6hQ60/QhMaxFYybmc6L45tRWa69u6iPn51G8/ZlJI5rrnYUTTp51MhD17blkSFtWP1hBI+/foJmbWTMwIWuzi0DJ0+e5K677uKnn36iUaNGAOTn59O3b1+WL19O06a1H+yyfPlydu/ezY4dO2q1/JQpU3jsscccjy0WixQEXsqSa8BmhUaNrU7zQyOs5GV75mac5mYKlywpwVoCtmIdxsYK+/7tj3/Tsw8ENMcp+IbaKTmhJ/xSG7nbDeTvM7D+Iudm8Z/vDCBmSCVdZrv/A1WN/XQurbuWEtrYyvy1hxzzDD7Q5dJibhyVww0tumK3q9M3mzDrJL2vtfDvm1uRc8rv3Ct4IWulnvTfjQAc+dVMu+4l3PRANvMmy2fxhazOnwYPPPAAlZWVHDx4kHbt2gGQnJzMqFGjeOCBB1izZk2ttpOamsqjjz7K+vXrMZlq18RkNBoxGo11jSwaIGulnsO/mOnRv9BxupVOp9C9fxFfLgn36Gv7mMHHrFBZADlbfGj72Nm/xMsydFTmVxUNAO2nlNH64TNfcuVZOnb9XwBdXy6lURfPjFpXcz/VZO/mQMZe1dZp3r9fSyX1iImV8xurVAgoJMxKo+91BUy6rTWZqfI5U1s6Hfj6XSA/mWUAYY3qXAxs3LiRLVu2OAoBgHbt2vHGG29w2WWX1Xo7u3btIisri4suusgxz2azsWnTJt58803Ky8udLmrkKSazjdj4M8220XEVtOxUSmG+gew0dX4ZSKba+WxRBI/PTeXQPjPJe8zcPCYbk9nOuuVhHnm9nJ8MKAoEtKj6tX/oFRMB8Taa3FSJtQSOvmUk6lorxoiqMQOHXjVhbmYnol/Vr3L/GOd2Rh9z1QeLOc6OKdpzH6b1vZ/OpbTYUK0vvqxET2Fe9fn1ZfzsNK66OY/po+IpLdIT2rjqtMviQgMVZep0ZWjx/9yoKafY8V0Q2Wl++AfauOrmfLr2LeLpf7U898oaoFOqJlfWb6jqXAzExcWd9eJCNpuN2NjYWm/nmmuu4ddff3WaN2rUKNq3b8/kyZPrpRAAaNutlJc+Pep4/OCMdADWrQjllYnN6iWDZDo/G78MJSTcxr2TMghtbCXlgD9Pj4gnP8czp+tZC3UcmmuiLFOHb4hC1LVW2jxSht636myDwkMG0r/0pdKiwxipENHXSuvx5ehVbm2u7/10IRp63x8AvPzZUaf5L0+IY/1KdYomLf6faxRhZdK8E4RFWikpNHDsoImn/9WS3Zu0d0bIWbna79+AiwGdotRtfOQXX3zB7NmzmT9/Pr169QKqBhM+/PDDTJ48mZtuuum8w1x55ZV079691tcZsFgshISEcCXD8NHJB5tw3aD92jtDZW1nbZ1rLoQ7WZVKfuALCgoKCA72zLF++rsibu5M9P7nf+aDvbSM1AnPejSrWmrVMhAaGopOd6avpLi4mN69e+PjU7W61WrFx8eH0aNHu1QMCCGEEB4jYwZqVKtioL6uCPjDDz/Uy+sIIYTwQtJNUKNaFQMjR470dA4hhBCiwUlLS2Py5Ml88803lJSU0Lp1axYvXuzoZlcUhWnTpvHOO++Qn59Pv379WLBgAW3anLkgV25uLg8//DBfffUVer2eW2+9lddff53AQPddKtulYbJlZWVYLBanSQghhNCker7oUF5eHv369cPX15dvvvmGpKQkXnnlFUJDQx3LzJkzh3nz5rFw4UK2bdtGQEAAgwYNoqzszCnLI0aM4MCBA6xfv57Vq1ezadMmxo4de7574azqfDZBcXExkydPZuXKlfzxxx/VnrfZ1LvLlxBCCFGjeu4mePHFF4mLi2Px4sWOefHx8Wc2pyjMnTuXZ555hmHDhgHw4YcfEhUVxeeff87w4cM5ePAga9asYceOHY7WhDfeeIPrr7+el19+uU5n8f2TOrcMPPHEE3z33XcsWLAAo9HIu+++y4wZM4iNjeXDDz90SyghhBBCq/7eIv7Xe+b81ZdffkmvXr24/fbbiYyMpEePHrzzzjuO548dO0ZGRobT5fhDQkLo3bs3W7duBWDr1q00atTIUQgADBgwAL1ez7Zt29z2N9W5GPjqq6946623uPXWW/Hx8eGyyy7jmWeeYfbs2SxdutRtwYQQQgi3On02gSsTVdfb+et9chITE8/6cikpKY7+/7Vr1zJu3DgeeeQRPvjgAwAyMjIAiIpyvpV4VFSU47mMjAwiIyOdnvfx8SEsLMyxjDvUuZsgNzeXli2rrjYVHBxMbm4uAP3792fcuHFuCyaEEEK4k7uuQJiamup0nYGaLpNvt9vp1asXs2fPBqBHjx7s37+fhQsXam5gfp1bBlq2bMmxY8cAaN++PStXrgSqWgxO37hICCGEaKiCg4OdppqKgZiYGDp27Og0r0OHDpw4cQKA6OhoADIzM52WyczMdDwXHR1NVlaW0/NWq5Xc3FzHMu5Q52Jg1KhR7Nu3D4Ann3yS+fPnYzKZmDhxIpMmTXJbMCGEEMKt6vlsgn79+pGcnOw079ChQzRvXnV77Pj4eKKjo9mwYYPjeYvFwrZt2+jTpw8Affr0IT8/n127djmW+e6777Db7fTu3btugf5BnbsJJk6c6Pj3gAED+O2339i1axetW7ema9eubgsmhBBCXMgmTpxI3759mT17NnfccQfbt29n0aJFLFq0CACdTseECRN4/vnnadOmDfHx8UydOpXY2FjH1Xw7dOjAddddx5gxY1i4cCGVlZWMHz+e4cOHu+1MAjiPYuDvmjdv7qhyhBBCCK3S4eKYgTouf/HFF7Nq1SqmTJnCzJkziY+PZ+7cuYwYMcKxzBNPPEFxcTFjx44lPz+f/v37s2bNGkymM/dQWLp0KePHj+eaa65xXHRo3rx55/+HnEWtblRUlxd95JFHXApUF3KjIuFucqMiIepXfd6oqPmLz6M3uXCjorIyjk9+xntvVPTaa6/VamM6na5eiwEh3E2LX7zhP4Wee6F69ke/PLUjCFF3cqOiGtWqGDh99oAQQghxwZIbFdXIpXsTCCGEEOLC5/IAQiGEEOKCIC0DNZJiQAghhFdw1xUIGyLpJhBCCCG8nLQMCCGE8A7STVCj82oZ2Lx5M3fffTd9+vQhLS0NgI8++ogff/zRreGEEEIIt6nnyxFfSOpcDHz66acMGjQIf39/9uzZ47iPc0FBgePOTEIIIYS4cNS5GHj++edZuHAh77zzDr6+Z676169fP3bv3u3WcEIIIYS7nB5A6MrUUNV5zEBycjKXX355tfkhISHk5+e7I5MQQgjhfnIFwhrVuWUgOjqaI0eOVJv/448/0rJlS7eEEkIIIdxOxgzUqM7FwJgxY3j00UfZtm0bOp2O9PR0li5dyuOPP864ceM8kVEIIYQQHlTnboInn3wSu93ONddcQ0lJCZdffjlGo5HHH3+chx9+2BMZPapz7yJufyibNl1KCI+2Mn10C7auCVE7FkPvy+G2cVmENbaSkuTPW880IXmvWTL96c7xmfS7voC41uVUlOlJ2mnmvVkxnDx6/nckc5f62k+KTaH0vTLK11Vg/8OOPkKP8Xo//O8zodNVNWcWPV9M+TcVTuv59vYh+NUgx+O8WwuwZ9idljE/6I//PZ7bl/L/7ty0uo9AW/upLuSiQzWrc8uATqfj6aefJjc3l/379/Pzzz+TnZ3Nc88954l8Hmcy20k5YOLNp5qqHcXhihvzGDstnaWvRpMwqC0pSSZmLUshJLxSMv2pa59ivloSwYQb2jBleEsMPgqzP0nB6G9TJc9p9bmfSj8uo+zzcgIeM9NoWTDmh/wpXVpG2X/LnZbzvdSH0C9DHFPg9IBq2/J/wOS0jOk2o9vz/pX8vzs3Le4j0N5+qhPpJqjReV+B0M/Pj44dO3LJJZcQGBh4XtuYPn06Op3OaWrfvv35RjovO78P5oM5MWzRSMUNcMvYHNYsC2PdijBOHDYxb3JTykt1DLorVzL96ekRLVm/Mozjh0ykJPnzyoRmRDWtpE3XUlXynFaf+8m634bfZb749fXFEGPAeJUffpf4Yk36W0Hkq0Mfrj8zBVf/b68zOy+j8/fsQCn5f3duWtxHoL39JNyjzt0EV111laMJ8my+++67Om2vU6dOfPvtt2cC+Xj3RRF9fO206VrC8jcjHfMURceezUF07FkimWoQEFz1BViYb1AtQ33vJ5/OBsq/rMB2woahmQHrYSuVv1gJeNjfaTnrHiu5Q/LRBenw7emDeaw/+hDngqD04zJKl5Shj9JjvNYP051GdD4Nd+T0310Ix7gWXPD7ydXTAxtwy0Cdv3m7d+/u9LiyspK9e/eyf/9+Ro4cWfcAPj5ER0fXatny8nLHRY4ALBZLnV9P64LDbBh8ID/b+a3Jy/EhrnV5DWt5X6a/0ukUHpyRxv7tZo4n+597BQ+p7/3kf48JpUQh/1+WqjY+O5jHmjAOOtPE73upL35X+KKPNWBPs1HydimWfxcR8nYQOkPVl73pdiM+bQ3ognVYf61axv6HnYBHtN8H7C5aP8a14oLfT3I54hrVuRh47bXXzjp/+vTpFBUV1TnA4cOHiY2NxWQy0adPHxITE2nWrNlZl01MTGTGjBl1fg3RsI2fnUbz9mX8+6bWakepVxXfVVKxroLA6QEY4g3YDlspfr0UXYQe0/VVBYFxgN+ZFVoZMLQykH+HBeseK769qi4a5j/8zEBBn9Y+4AvFc0owP+iPzs97WgeE8GZuu2vh3Xffzfvvv1+ndXr37s2SJUtYs2YNCxYs4NixY1x22WUUFhaedfkpU6ZQUFDgmFJTU90RXVMsuQZsVmjU2Oo0PzTCSl62Ol0oWsx0WsKsk/S+1sITt7Ui55TfuVfwoPreTyXzS/C/24RxgB8+rQwYrzNiutNI6UdlNa5jaGJA10iH7aS9xmV8OvqADeynal6modHyMa4lF/x+kgGENXJbMbB161ZMprqdijR48GBuv/12unbtyqBBg/j666/Jz89n5cqVZ13eaDQSHBzsNDU01ko9h38x06P/mYJIp1Po3r+IpF3qNNtqMRMoJMw6Sd/rCnji9lZkpnp29Htt1Pd+UsoAvfMvd52ef/zAsmXZUQoU9OE1/+K3HbaCHnSh3tMqoM1jXHsu9P0klyOuWZ1LuVtuucXpsaIonDp1ip07dzJ16lSXwjRq1Ii2bdue9QqHnmIy24iNP3MednRcBS07lVKYbyA7TZ1fmp8tiuDxuakc2mcmeY+Zm8dkYzLbWbc8TJU8Wsw0fnYaV92cx/RR8ZQW6QltXHVaU3GhgYoyt9W4dVaf+8mvny+lH5Sij9JjiNdjPWSjdEU5xiFVx61SolDyfil+V/qhD9dhT7NT/FYp+qZ6fHtXdRFU7rdiPWDF9yIfdGYd1v1WiueVYhzod9azDtxF/t+dmxb3EWhvPwn3qHMxEBLifJqLXq+nXbt2zJw5k4EDB7oUpqioiKNHj3LPPfe4tJ26aNutlJc+Pep4/OCMdADWrQjllYlnH7vgaRu/DCUk3Ma9kzIIbWwl5YA/T4+IJz/H99wre0mmoff9AcDLnx11mv/yhDjWr1TvQ6k+91PARDMl75RS/HIJ9ryqiw6ZhhnxH/VnC50BbEdtFH5ThFKkoI/Q43uJD+YxZ8YC6Hyh4tsKSt8vQ6lQMMTq8b/TiGm4Zy/eJP/vzk2L+wi0t5+Ee+gURal1w4fNZuOnn36iS5cuhIaGuvzijz/+OEOHDqV58+akp6czbdo09u7dS1JSEo0bNz7n+haLhZCQEK5kGD46ORBFwxT+k+v/19ztj355akcQDYRVqeQHvqCgoMBjXb+nvytaTZmNoY7d2X9lKyvjaOJTHs2qljq1DBgMBgYOHMjBgwfdUgycPHmSu+66iz/++IPGjRvTv39/fv7551oVAkIIIURdyOWIa1bnboLOnTuTkpJCfHy8yy++fPlyl7chhBBCCNfUeYTQ888/z+OPP87q1as5deoUFovFaRJCCCE0S04rPKtatwzMnDmTf//731x//fUA3HjjjU6XJVYUBZ1Oh82m7o1ihBBCiLOSKxDWqNbFwIwZM3jwwQf5/vvvPZlHCCGEEPWs1sXA6ZMOrrjiCo+FEUIIITxFBhDWrE4DCP/pboVCCCGEpkk3QY3qVAy0bdv2nAVBbq7c01oIIYS4kNSpGJgxY0a1KxAKIYQQFwLpJqhZnYqB4cOHExkZ6aksQgghhOdIN0GNan2dARkvIIQQQjRMdT6bQAghhLggSctAjWpdDNjtdk/mEEIIITxKxgzUrM73JhBC1C8t3iHw5qRstSNUs6qj3OBMnIO0DNSozvcmEEIIIUTDIi0DQgghvIO0DNRIigEhhBBeQcYM1Ey6CYQQQggvJy0DQgghvIN0E9RIigEhhBBeQboJaibdBEIIIYSXk5YBIYQQ3kG6CWokxYAQQgjvIMVAjaSbQAghhPBy0jIghBDCK+j+nFxZv6GSYkAIIYR3kG6CGnl1MXDn+Ez6XV9AXOtyKsr0JO00896sGE4eNakdjaH35XDbuCzCGltJSfLnrWeakLzXLJkkU5117l3E7Q9l06ZLCeHRVqaPbsHWNSEee73KYh0H55lJ/9ZIea6eRh2sdJ1SRGgXK1DzDYU6/buItveXOs2zVcDGO0MpSPbhqk9zadTB5rHcoL33TjK5l5xaWDOvHjPQtU8xXy2JYMINbZgyvCUGH4XZn6Rg9PfsB865XHFjHmOnpbP01WgSBrUlJcnErGUphIRXSibJVGcms52UAybefKppvbzenqmBZG3xo9eLhVzzeS6RfSv48f4QSjOrPm4Gb8xxmi563gI6hSYDy6tt68DLAZgi6+f/oxbfO8kk6ovqxUBaWhp333034eHh+Pv706VLF3bu3Fkvr/30iJasXxnG8UMmUpL8eWVCM6KaVtKma+m5V/agW8bmsGZZGOtWhHHisIl5k5tSXqpj0F25kkky1dnO74P5YE4MWzzYGnCarQzS1xvp/HgxEb0qCWxup8P4EgKb2Ti2vKrFzdRYcZpOfWek8SWVBMTZnbaVscmPzC1+dJ5U7PHcoM33TjK5meKGqYFStRjIy8ujX79++Pr68s0335CUlMQrr7xCaGioKnkCgqt+gRTmG1R5fQAfXzttupawe3OQY56i6NizOYiOPUskk2TSNLtNh2LTofdz/tTUm+CP3b7Vli/L0ZGxyY/mt5ZVm79nWiC9XijE4O/5T2AtvneSyUNUKgReeOEFdDodEyZMcMwrKysjISGB8PBwAgMDufXWW8nMzHRa78SJEwwZMgSz2UxkZCSTJk3CarW6FuYsVB0z8OKLLxIXF8fixYsd8+Lj42tcvry8nPLyM02JFovFbVl0OoUHZ6Sxf7uZ48n+bttuXQWH2TD4QH6281uTl+NDXOvqzaiSSTJpiW+AQlj3SpIXmglqVYgp3E7q/4zk7vUhsFn15v4TX5jwMSvEXntm/ygK7H4qmPg7ywjtbKU4zfO/WbT43kmmhmPHjh28/fbbdO3a1Wn+xIkT+d///sd//vMfQkJCGD9+PLfccgs//fQTADabjSFDhhAdHc2WLVs4deoU9957L76+vsyePdutGVVtGfjyyy/p1asXt99+O5GRkfTo0YN33nmnxuUTExMJCQlxTHFxcW7LMn52Gs3bl5E4rrnbtimEN+r5ggVFgTVXhvNF9whSlvoTd335WT9tjn9mIu6GcgzGM/NSPvanskRHuzEXyC9NccE4PYDQlamuioqKGDFiBO+8845Tq3dBQQHvvfcer776KldffTU9e/Zk8eLFbNmyhZ9//hmAdevWkZSUxMcff0z37t0ZPHgwzz33HPPnz6eiosJduwVQuRhISUlhwYIFtGnThrVr1zJu3DgeeeQRPvjgg7MuP2XKFAoKChxTamqqW3IkzDpJ72stPHFbK3JO+bllm+fLkmvAZoVGjZ2bgUIjrORlq9OQI5ku3ExqCGxm5/IPCxi6M5vrvsvlyhX52K0Q0NS5ZSBnpy9Fx3xocZvzGJ3sbb7k7vXhi+4RfN4lgvXXhQHwwx2h7JwShCdo8b2TTB7gpjEDFovFafpri/XfJSQkMGTIEAYMGOA0f9euXVRWVjrNb9++Pc2aNWPr1q0AbN26lS5duhAVFeVYZtCgQVgsFg4cOODCjqhO1WLAbrdz0UUXMXv2bHr06MHYsWMZM2YMCxcuPOvyRqOR4OBgp8k1CgmzTtL3ugKeuL0VmanGc6/iYdZKPYd/MdOjf6Fjnk6n0L1/EUm71Dl1RzJduJnU5GMGU2M7FQU6sn7yI+Zq518yxz8z0ahTJSHtnYuErk8Vcc2qPK7+rGrqs7AAgItfsdDpUc8MJtTieyeZtCsuLs6plToxMfGsyy1fvpzdu3ef9fmMjAz8/Pxo1KiR0/yoqCgyMjIcy/y1EDj9/Onn3EnVUi4mJoaOHTs6zevQoQOffvppvbz++NlpXHVzHtNHxVNapCe0cdWpMcWFBirK1KuTPlsUweNzUzm0z0zyHjM3j8nGZLazbnmYZJJMdWYy24iNP/NFHB1XQctOpRTmG8hOc39LWOaPvqBAYLyN4hMG9r8USGC8jeY3nxkkWFmkI22tkS6Tiqqtb451PqvAYK76ORYQZ8M/2l5teXfR4nsnmdzLXdcZSE1NdfoxajRW/yGZmprKo48+yvr16zGZ1L92zbmoWgz069eP5ORkp3mHDh2iefP66bcfet8fALz82VGn+S9PiGP9SvUO7I1fhhISbuPeSRmENraScsCfp0fEk59TfTS2ZJJM59K2WykvfXrmGH9wRjoA61aE8srEZm5/vcpCPUlzAyjN0OMbYqfJwAo6PlqM/i+74OTXRlCg6RDtDDrT4nsnmdzMTVcgrE3L9K5du8jKyuKiiy5yzLPZbGzatIk333yTtWvXUlFRQX5+vlPrQGZmJtHR0QBER0ezfft2p+2ePtvg9DLuolMURbUzJ3fs2EHfvn2ZMWMGd9xxB9u3b2fMmDEsWrSIESNGnHN9i8VCSEgIVzIMH90FcCAK0UDcnJStdoRqarqyodA2q1LJD3xBQUGBG7p+z+70d0WX+2dj8Dv/X+m2ijJ+fe+pWmUtLCzk+PHjTvNGjRpF+/btmTx5MnFxcTRu3JhPPvmEW2+9FYDk5GTat2/P1q1bufTSS/nmm2+44YYbOHXqFJGRkQAsWrSISZMmkZWVddYWifOlasvAxRdfzKpVq5gyZQozZ84kPj6euXPn1qoQEEIIIeqiPi9HHBQUROfOnZ3mBQQEEB4e7ph///3389hjjxEWFkZwcDAPP/wwffr04dJLLwVg4MCBdOzYkXvuuYc5c+aQkZHBM888Q0JCglsLAdDAvQluuOEGbrjhBrVjCCGEaOg0dqOi1157Db1ez6233kp5eTmDBg3irbfecjxvMBhYvXo148aNo0+fPgQEBDBy5Ehmzpzp3iBooBgQQggh6oXKxcAPP/zg9NhkMjF//nzmz59f4zrNmzfn66+/du2Fa0H1exMIIYQQQl3SMiCEEMIryC2MaybFgBBCCO+gsTEDWiLdBEIIIYSXk5YBIYQQXkGnKOhcuLSOK+tqnRQDQgghvIN0E9RIugmEEEIILyctA0IIIbyCnE1QMykGhBBCeAfpJqiRdBMIIYQQXk5aBoQQdabFOwTOPrb93AvVs6fiL1E7gvgL6SaomRQDQgghvIN0E9RIigEhhBBeQVoGaiZjBoQQQggvJy0DQgghvIN0E9RIigEhhBBeoyE39btCugmEEEIILyctA0IIIbyDolRNrqzfQEkxIIQQwivI2QQ1k24CIYQQwstJy4AQQgjvIGcT1EiKASGEEF5BZ6+aXFm/oZJuAiGEEMLLScsAMPS+HG4bl0VYYyspSf689UwTkveaVcvTuXcRtz+UTZsuJYRHW5k+ugVb14SolufO8Zn0u76AuNblVJTpSdpp5r1ZMZw8apJMGs90mtaOcU9mOrYtiM2LoknbH0Bhlh93v32IjgPzHc8rCnz7WhN2Lm9MqcWH5r0KGfbc70TElztt57fvQvhuXhMyfjPjY7QT37uQexYdrvZ6JXk+zLu+M5YMP6bu24V/sM3lv+GvtPTeae2zqc6km6BGXt8ycMWNeYydls7SV6NJGNSWlCQTs5alEBJeqVomk9lOygETbz7VVLUMf9W1TzFfLYlgwg1tmDK8JQYfhdmfpGD0d++HnmTyDC0e457MVFGqJ7pDCTfOPH7W5ze9HcPWJVEMe/53xq06gJ+/ncUj21FZrnMss/+bUP7zWCt63p7NI1/v5//+m0S3G/846/Y+nRxPdPsSl3OfjdbeO619NtXV6bMJXJkaKlWLgRYtWqDT6apNCQkJ9ZbhlrE5rFkWxroVYZw4bGLe5KaUl+oYdFduvWX4u53fB/PBnBi2aKTifnpES9avDOP4IRMpSf68MqEZUU0radO1VDJpPBNo8xj3ZKZ2VxYw8PE0Og3Kq/acosCW96O4anw6HQfmE9OhlNtfSaEw04+kdaEA2KywemZzBk85Qe8R2US0LCOqTRldb6ie7eePIymzGLhszCmXc5+N1t47rX021dnp6wy4MjVQqhYDO3bs4NSpU45p/fr1ANx+++318vo+vnbadC1h9+YgxzxF0bFncxAde3qm0m8IAv5sBi3MN6ic5AzJdHZaPMbVzJSXaqQw249W/S2OeaZgG027F3FidyAA6fsDsGT4odPDG0M6kXhJd5bc15aMZH+nbWUeNvH9vFhufyUFnQc+SbX43omGS9VioHHjxkRHRzum1atX06pVK6644oqzLl9eXo7FYnGaXBEcZsPgA/nZzkMn8nJ8CG1sdWnbDZVOp/DgjDT2bzdz/G8fjmqRTDXT4jGuZqbCbF8AAiOcm9kDIyop+vO53FQjABvmNuGq8enc+94hTCE23r2rPSV/FnbWch0rHmnNdVNSadSkwiNZtfjeXeikm6BmmhkzUFFRwccff8zo0aPR6XRnXSYxMZGQkBDHFBcXV88pxfjZaTRvX0biuOZqR3GQTMKdFHvV58+VCel0HpxHky4l3DYnBXTw69dhAKx9KY7GrUvpcfPZxxEIjVLcMDVQmikGPv/8c/Lz87nvvvtqXGbKlCkUFBQ4ptTUVJde05JrwGaFRn+rskMjrORly4kWf5cw6yS9r7XwxG2tyDnlp3YcQDKdixaPcTUzBTWuahEoyvF1ml+U40vgn88FRVb90o9sc2ash49RISyunIK0qlaDlC1B7P86jGdaX8wzrS/mvRHtAZh10UV8+1oTt2TV4nsnGi7NFAPvvfcegwcPJjY2tsZljEYjwcHBTpMrrJV6Dv9ipkf/Qsc8nU6he/8iknape9qVtigkzDpJ3+sKeOL2VmT+2YyqLslUG1o8xtXMFBpXTlDjCo7+dOazo6xQz8m9gTS7qAiAJp2L8fGzk5Ny5pRQW6WOvJNGGjWpOv3wXwuO8PDX+xn/v6rplheOATB25UEuvSfTLVm1+N5d6KSboGaaKC+PHz/Ot99+y2effVbvr/3Zoggen5vKoX1mkveYuXlMNiaznXXLw+o9y2kms43Y+DP9kNFxFbTsVEphvoHstPr/pTl+dhpX3ZzH9FHxlBbpCf3zF1RxoYGKMnXqSclUe1o8xj2ZqbxYzx/Hz3yR56YaSU8yYw6x0qhJBX1HZ/L9m7FEtCgjNK6c9a82JSiqgo4Dq84+MAXZuWREFt/ObUpITAWNmlSweVE0AF2GVI3iD2/ufE2Ckryqj9LGrUvdep0Brb13WvtsqjO5a2GNNFEMLF68mMjISIYMGVLvr73xy1BCwm3cOymD0MZWUg748/SIePL/1oxYn9p2K+WlT486Hj84Ix2AdStCeWVis3rPM/S+qn7Rlz876jT/5QlxrF+pzoeSZKo9LR7jnsyU9msA797VwfH46+erxm1cdGs2t718jMv/7xQVJXpWPdWCMosPzS8uZNSSQ/gaz3zQD56Sit6gsPKxVljL9cR1K+KBZb/hH1K/14zQ2nuntc8m4T46RVG31LHb7cTHx3PXXXfxwgsv1Gldi8VCSEgIVzIMH516H2xCCPXNPrZd7QjVPBV/idoRNM+qVPIDX1BQUOBy129NTn9X9Bk8Ex/f878iqLWyjK3fPOvRrGpRvWXg22+/5cSJE4wePVrtKEIIIRoyuRxxjVQvBgYOHIjKjRNCCCGEV1O9GBBCCCHqg6tnBMjZBEIIIcSFzq5UTa6s30BJMSCEEMI7yJiBGmnmokNCCCGEUIe0DAghhPAKOlwcM+C2JNojxYAQQgjvIFcgrJF0EwghhBBeTloGhBBCeAU5tbBmUgwIIYTwDnI2QY2km0AIIYTwctIyIIQQwivoFAWdC4MAXVlX66QYEEI0CFq8Q+DFe+v3lse1saO7Qe0I6rH/ObmyfgMl3QRCCCGEl5OWASGEEF5BuglqJsWAEEII7yBnE9RIigEhhBDeQa5AWCMZMyCEEEJ4OSkGhBBCeIXTVyB0ZaqLxMRELr74YoKCgoiMjOSmm24iOTnZaZmysjISEhIIDw8nMDCQW2+9lczMTKdlTpw4wZAhQzCbzURGRjJp0iSsVquru8OJFANCCCG8w+luAlemOti4cSMJCQn8/PPPrF+/nsrKSgYOHEhxcbFjmYkTJ/LVV1/xn//8h40bN5Kens4tt9zieN5mszFkyBAqKirYsmULH3zwAUuWLOHZZ591224BGTMghBBCeMSaNWucHi9ZsoTIyEh27drF5ZdfTkFBAe+99x7Lli3j6quvBmDx4sV06NCBn3/+mUsvvZR169aRlJTEt99+S1RUFN27d+e5555j8uTJTJ8+HT8/P7dklZYBIYQQXkFnd30CsFgsTlN5eXmtXr+goACAsLAwAHbt2kVlZSUDBgxwLNO+fXuaNWvG1q1bAdi6dStdunQhKirKscygQYOwWCwcOHDAHbsFkGJACCGEt3BTN0FcXBwhISGOKTEx8ZwvbbfbmTBhAv369aNz584AZGRk4OfnR6NGjZyWjYqKIiMjw7HMXwuB08+ffs5dpJtACCGEqIPU1FSCg4Mdj41G4znXSUhIYP/+/fz444+ejHbepGVACCGEd1DcMAHBwcFO07mKgfHjx7N69Wq+//57mjZt6pgfHR1NRUUF+fn5TstnZmYSHR3tWObvZxecfnx6GXfw+mKgc+8iZnxwjGW7D7A2fR99ritQO5LmMt1wbw4Lvk3ms+Rf+Sz5V1778jC9rrKomum0offl8MG2JL5K+YXXVx+mXfcS1bJoeT+ddsf4TNam7+PBGWmq5tDaMX5afR5PtmI4MUfHvsF6dvbWk3SvnqL9Vc/ZKyF1ro79t+nZdamevdfqSXlGR0XWmfXL0+DYdB37rq9a/5cb9KS9pcNe6bHI1WjleKqt05cjdmWqC0VRGD9+PKtWreK7774jPj7e6fmePXvi6+vLhg0bHPOSk5M5ceIEffr0AaBPnz78+uuvZGWdefPXr19PcHAwHTt2dGFvOPP6YsBktpNywMSbTzU998L1RGuZsk/58v7sGMZf15aHB7dl30+BTF/8O83blqma64ob8xg7LZ2lr0aTMKgtKUkmZi1LISS8Hj8N/0Kr++m0tt1KGHJ3LikHTGpH0dwxDvV/PB2boaPgZx0tn7fT+T92QvooHHpQT0Um2Mug5KCO2DEKHZfbaf2KnbLfdRyecOYju+x3wA4tnrHT+VM7cY/byfqvjpNv6DyS9++0dDxpVUJCAh9//DHLli0jKCiIjIwMMjIyKC0tBSAkJIT777+fxx57jO+//55du3YxatQo+vTpw6WXXgrAwIED6dixI/fccw/79u1j7dq1PPPMMyQkJNSqe6K2VC0GbDYbU6dOJT4+Hn9/f1q1asVzzz2HUo+XfNz5fTAfzIlhy5qQenvNc9Fapm3rQ9jxXTDpx4ykpRhZ8mIMZcV62vcsPvfKHnTL2BzWLAtj3YowThw2MW9yU8pLdQy6K1eVPFrdTwAms43Jbx5n7qSmFBaofwtbrR3jUL/Hk70M8jboiJtgJ6gnmJpBk3EKxjjI+o8OnyBo97adsEEK/i0gsCs0e9JOSZKO8lNV2wjpB/EzFUL6gqkphF4J0fcq5G/wfDGgteOp1ur5OgMLFiygoKCAK6+8kpiYGMe0YsUKxzKvvfYaN9xwA7feeiuXX3450dHRfPbZZ47nDQYDq1evxmAw0KdPH+6++27uvfdeZs6c6bbdAioPIHzxxRdZsGABH3zwAZ06dWLnzp2MGjWKkJAQHnnkETWjiRro9QqXDc3HaLZzcGeAajl8fO206VrC8jcjHfMURceezUF07KleV8FpWtlPp42fncb2DcHs2RzEXY9mnnsFL1Pfx5NiA2w69H/7Yac3QtEeHWe7I46tCNAp+ATVvF1bERjqob66YI8nBbC7uH5dFq9F8WAymZg/fz7z58+vcZnmzZvz9ddf1+3F60jVYmDLli0MGzaMIUOGANCiRQs++eQTtm/fftbly8vLnc7ntFi01R/bkLVoX8rcr47gZ7RTWqxn5v0tOHFYvebB4DAbBh/Iz3Y+hPNyfIhrXbtzfj1Ba/sJ4IphebTuUsrD17dRNYeW1ffxZAiAgK4K6Yv0mOLt+IbDH2t0FP0Cprjqy9vL4eTresKuUzAEnn2bZScga7mOuImebVm9kI8nuYVxzVTtJujbty8bNmzg0KFDAOzbt48ff/yRwYMHn3X5xMREp3M74+LO8r9GeMTJo0YeurYtjwxpw+oPI3j89RM0a6ONvnAt0dp+ahxbwbiZ6bw4vhmV5V4/REhTWs6q+om6b6CBnZfoyVqmI+w6pdqnsr0Sjj6hBwVaPH32L6OKTDiUoCf0WoXGt3ruC0uOp4ZL1ZaBJ598EovFQvv27TEYDNhsNmbNmsWIESPOuvyUKVN47LHHHI8tFosUBPXEWqkn/feqNs0jv5pp172Emx7IZt5kdfa/JdeAzQqNGjvfrCM0wkpetnqHtdb2U+uupYQ2tjJ/7SHHPIMPdLm0mBtH5XBDi67Y7fUz4EzL1DieTHHQ/j07ttKq5n2/xnDkCR3GJmeWOV0IlJ+C9ovsZ20VqMiC38boCeym0GKqZ3+5XvDHk4KLtzB2WxLNUbUYWLlyJUuXLmXZsmV06tSJvXv3MmHCBGJjYxk5cmS15Y1Go1tHT4rzp9OBr596/zOslXoO/2KmR/9Ctv45CE2nU+jev4gvl4Srluvv1N5PezcHMvaqtk7z/v1aKqlHTKyc31jbH9z1SM3jyeBfNVktYNmio+mEquPFUQicgHbv2PFpVH3disyqQiCgo0L8DAWdh3+sX/DH03kMAqy2fgOlajEwadIknnzySYYPHw5Aly5dOH78OImJiWctBjzBZLYRG1/heBwdV0HLTqUU5hvITnPPDSAu9Eyjppxix3dBZKf54R9o46qb8+nat4in/9Wy3rP81WeLInh8biqH9plJ3mPm5jHZmMx21i0PUyWPFvdTabGB48n+TvPKSvQU5lWfX5+0doxD/R9PBVsABUwtqvr7U1/TY4qHiGFKVSEwSU/xQWg7zw52qMypWs8QAnrfPwuBB/QYYyFuooI178y2fSM8Elmzx5NwnarFQElJCXq9cylrMBiw210Z7lk3bbuV8tKnRx2PH5yRDsC6FaG8MrFZveXQcqZGEVYmzTtBWKSVkkIDxw6aePpfLdm96R+GNdeDjV+GEhJu495JGYQ2tpJywJ+nR8STn+OrSh6t7ict0toxDvV/PNkKq64JUJEJPiEQeo1Ck/EKet+qCwrl/1D1K/vAnc6n7rV7x0bwxWD5WUd5qo7yVNg3yHmZi/faPJL5gmcHXGm8qL+vpnqnU+rzpP6/ue+++/j22295++236dSpE3v27GHs2LGMHj2aF1988ZzrWywWQkJCuJJh+OjU+QIQQoiaaPFLeUd3bV0XwKpU8gNfUFBQ4HS9f3c6/V1xTecn8DGcf1ez1VbOhv1zPJpVLaq2DLzxxhtMnTqVhx56iKysLGJjY/m///s/nn32WTVjCSGEEF5F1WIgKCiIuXPnMnfuXDVjCCGE8AYygLBGcgtjIYQQ3kGKgRrJVSOEEEIILyctA0IIIbyDtAzUSIoBIYQQ3kFOLayRFANCCCG8gtyoqGYyZkAIIYTwctIyIIQQwjvImIEaSTEghBDCO9gV0LnwhW5vuMWAdBMIIYQQXk5aBoQQQngH6SaokRQDQgghvISLxQBSDAgh1KJz5cRoD9HiLyQN7qcdPbT3EXv1r0VqR3BSVlTJD5eqnUJo70gVQgghPEG6CWokxYAQQgjvYFdwqalfziYQQgghREMlLQNCCCG8g2KvmlxZv4GSYkAIIYR3kDEDNZJiQAghhHeQMQM1kjEDQgghhJeTlgEhhBDeQboJaiTFgBBCCO+g4GIx4LYkmiPdBEIIIYSXk5YBIYQQ3kG6CWokxYAQQgjvYLcDLlwrwC7XGWiwOvcu4vaHsmnTpYTwaCvTR7dg65oQtWMx9L4cbhuXRVhjKylJ/rz1TBOS95olk2Sqkw9+PkB0XGW1+V8uiWD+001VSHSGlvbT3Y+d4p5/ZzrNSz1i5IErOqiSB9TJZC2GlDf9yN5goDJXR2B7O22frCC4c/Uvwd9m+pH+H1/aPFFO3D1Wx/wtg/wpS3fugW75aAUtHqh+HArt8PpiwGS2k3LAxNpPwpj2/u9qxwHgihvzGDstnTeebMpvu83cPCabWctSuP+ydhT84SuZJFOtPXJ9O/SGM02bLdqX8cLyo2xerW7Bq7X9BPD7byaeHN7K8dhmVf8uiPWd6bdpRoqP6Ok4uxxjpELGah/2jDFx6eelGKPOHEfZGwxYftHjF3n2X8rxCRXE3namQPAxa6R5XboJaqTqAMLCwkImTJhA8+bN8ff3p2/fvuzYsaNeM+z8PpgP5sSwRQOtAafdMjaHNcvCWLcijBOHTcyb3JTyUh2D7sqVTJKpTgpyfcjL9nVMvQcUkH7Mj1+2BqqS5zSt7ScAmw2nfWXJU/+3Un1mspVB9rcGWj1WQWgvO+ZmCi0fqsQcZ+fkijOvW56p49BsPzq+UI6+hjg+AQrGiDOTQd3GujNOFwOuTA2UqsXAAw88wPr16/noo4/49ddfGThwIAMGDCAtLU3NWKry8bXTpmsJuzcHOeYpio49m4Po2LNEMkmm8+bja+fqW/JYuyIcUO9Xr1b3U5P4Cpbt2s+SLUlMfuM4jWMrVMuiRibFBopNh97P+QtPb4KCPYaqZexw4CkjzUZVEti65i/G4+/5sqm/me23mzi+2Be7tcZFhUaoVgyUlpby6aefMmfOHC6//HJat27N9OnTad26NQsWLDjrOuXl5VgsFqepoQkOs2Hwgfxs55I7L8eH0Mbq/I+STBdupr/qe10BgcE21q0MUzWHFvfTb3sCeHliM56+uxVvTGlKdLNyXll1GP8Amyp51MjkEwDB3Wz8/rYf5Vk6FBtkfGWgYJ+eipyq4vH4+77oDNB0RM3vU9N/VdLppXIueq+UJrdbOf6OL0df9fNI5jqzK65PDZRq7WBWqxWbzYbJZHKa7+/vz48//njWdRITE5kxY0Z9xBOiwRk0PJcd3weTm6lOn7yW7fw+2PHvYwf9+W2PmY+2JXH50HzWLg/3mkwdE8v5baqRn64xozMoBHawEzXYRmGSHssBPSc/9uHilWXo/qFhqdnIM4VCYDsrOl9InulHqwkV6FWuCRTFjuLCnQddWVfrVGsZCAoKok+fPjz33HOkp6djs9n4+OOP2bp1K6dOnTrrOlOmTKGgoMAxpaam1nNqz7PkGrBZodHffiGFRljJy1andpNMF26m0yKbVNDjskLWLFPni+2vtLyfTiu2+HAyxUhsi3K1ozjURyZznMJFS8q4YlsxfdeXcvEnZShW8G9qp2C3nopcHVsG+vN9dzPfdzdTlq7n8Mt+bBnkX+M2g7vYUKw6StPUH5CJ4mKrgIwZ8IyPPvoIRVFo0qQJRqORefPmcdddd6HXnz2W0WgkODjYaWporJV6Dv9ipkf/Qsc8nU6he/8iknapMwpHMl24mU4beOcf5Of4sG2D+v9ntLyfTjOZbcQ2ryA3SzutKPWZyWAGY2OFygLI3WIg4iob0UOtXPJpKRf/58zkF2mn2X2VdFtYVuO2in7Tg17BL6zhfpE2BKqW4a1atWLjxo0UFxdjsViIiYnhzjvvpGXLlvWWwWS2ERt/ZlBOdFwFLTuVUphvIDtNnTatzxZF8PjcVA7tM5O8p+q0K5PZzrrl6vX1SqYLN5NOpzDwzly+/U8YdpsGfp2hvf00ZmoaP68PIeukL+HRVu759ylsdvjh81BV8qiV6Y+fDKCAuYWd0hM6jrzqhzneTsxNVvS+4Nvob4MLfcAYoRAQXzW/YK8ey696Gl1ix8esULBPz+GXjETfYMVXCydsKS7ewrgBtwxook0uICCAgIAA8vLyWLt2LXPmzKm3127brZSXPj3qePzgjHQA1q0I5ZWJzeotx19t/DKUkHAb907KILSxlZQD/jw9Ip78HPV+pUimCzdTj8sKiWpaydoV6g4c/Cut7aeImEqmzP+doFAbBbk+HNgewIShbSnIVe8jUo1M1kI4+rof5Zk6fEMUGg+w0eqRCvS1fFv0fpC5xodjC/TYK8DURCHunkqa3auRCw7Z7aBzod+/AY8Z0CmKeqXO2rVrURSFdu3aceTIESZNmoTJZGLz5s34+p776LNYLISEhHAlw/DRaac5Twi3+qfRWmrR4i8kLe4nDbr6lyK1IzgpK6pk5qXfUlBQ4LGu39PfFdcEjcBHd/4tvlalgg2FSz2aVS2qtgwUFBQwZcoUTp48SVhYGLfeeiuzZs2qVSEghBBC1Il0E9RI1WLgjjvu4I477lAzghBCCC+h2O0oLnQTyKmFQgghhGiwNDGAUAghhPA46SaokRQDQgghvINdAZ0UA2cj3QRCCCGEl5OWASGEEN5BUQBXrjPQcFsGpBgQQgjhFRS7guJCN4GKl+XxOCkGhBBCeAfFjmstA3JqoRBCCCHOw/z582nRogUmk4nevXuzfft2tSNVI8WAEEIIr6DYFZenulqxYgWPPfYY06ZNY/fu3XTr1o1BgwaRlZXlgb/w/EkxIIQQwjsodtenOnr11VcZM2YMo0aNomPHjixcuBCz2cz777/vgT/w/F3QYwZOD+awUunSdSSE0DYN3oBHkwOpNLifNKisSCN3EPxTebEVqJ/Bea5+V1ip2ncWi8VpvtFoxGg0Vlu+oqKCXbt2MWXKFMc8vV7PgAED2Lp16/kH8YALuhgoLCwE4Ee+VjmJEB6kxe9dLZL9VCs/XKp2grMrLCwkJCTEI9v28/MjOjqaHzNc/64IDAwkLi7Oad60adOYPn16tWVzcnKw2WxERUU5zY+KiuK3335zOYs7XdDFQGxsLKmpqQQFBaFz8falFouFuLg4UlNTNXNrSslUO1rLpLU8IJlqSzLVjjszKYpCYWEhsbGxbkpXnclk4tixY1RUVLi8LUVRqn3fnK1V4EJzQRcDer2epk2bunWbwcHBmvkPd5pkqh2tZdJaHpBMtSWZasddmTzVIvBXJpMJk8nk8df5q4iICAwGA5mZmU7zMzMziY6Ortcs5yIDCIUQQggP8PPzo2fPnmzYsMExz263s2HDBvr06aNisuou6JYBIYQQQssee+wxRo4cSa9evbjkkkuYO3cuxcXFjBo1Su1oTqQY+JPRaGTatGma6vuRTLWjtUxaywOSqbYkU+1oMZNW3XnnnWRnZ/Pss8+SkZFB9+7dWbNmTbVBhWrTKQ35YstCCCGEOCcZMyCEEEJ4OSkGhBBCCC8nxYAQQgjh5aQYEEIIIbycFANo7/aSmzZtYujQocTGxqLT6fj8889VzZOYmMjFF19MUFAQkZGR3HTTTSQnJ6uaacGCBXTt2tVx0ZM+ffrwzTffqJrp71544QV0Oh0TJkxQLcP06dPR6XROU/v27VXLc1paWhp333034eHh+Pv706VLF3bu3KlanhYtWlTbTzqdjoSEBNUy2Ww2pk6dSnx8PP7+/rRq1YrnnnuuXq7h/08KCwuZMGECzZs3x9/fn759+7Jjxw5VMwnXeX0xoMXbSxYXF9OtWzfmz5+vWoa/2rhxIwkJCfz888+sX7+eyspKBg4cSHFxsWqZmjZtygsvvMCuXbvYuXMnV199NcOGDePAgQOqZfqrHTt28Pbbb9O1a1e1o9CpUydOnTrlmH788UdV8+Tl5dGvXz98fX355ptvSEpK4pVXXiE0NFS1TDt27HDaR+vXrwfg9ttvVy3Tiy++yIIFC3jzzTc5ePAgL774InPmzOGNN95QLRPAAw88wPr16/noo4/49ddfGThwIAMGDCAtLU3VXMJFipe75JJLlISEBMdjm82mxMbGKomJiSqmOgNQVq1apXYMJ1lZWQqgbNy4Ue0oTkJDQ5V3331X7RhKYWGh0qZNG2X9+vXKFVdcoTz66KOqZZk2bZrSrVs31V7/bCZPnqz0799f7Rj/6NFHH1VatWql2O121TIMGTJEGT16tNO8W265RRkxYoRKiRSlpKREMRgMyurVq53mX3TRRcrTTz+tUirhDl7dMnD69pIDBgxwzNPq7SW1pKCgAICwsDCVk1Sx2WwsX76c4uJiTVziMyEhgSFDhjgdV2o6fPgwsbGxtGzZkhEjRnDixAlV83z55Zf06tWL22+/ncjISHr06ME777yjaqa/qqio4OOPP2b06NEu3wDNFX379mXDhg0cOnQIgH379vHjjz8yePBg1TJZrVZsNlu1a/z7+/ur3uIkXOPVVyC8kG4vqRV2u50JEybQr18/OnfurGqWX3/9lT59+lBWVkZgYCCrVq2iY8eOqmZavnw5u3fv1kwfau/evVmyZAnt2rXj1KlTzJgxg8suu4z9+/cTFBSkSqaUlBQWLFjAY489xlNPPcWOHTt45JFH8PPzY+TIkapk+qvPP/+c/Px87rvvPlVzPPnkk1gsFtq3b4/BYMBmszFr1ixGjBihWqagoCD69OnDc889R4cOHYiKiuKTTz5h69attG7dWrVcwnVeXQyIuktISGD//v2a+BXQrl079u7dS0FBAf/9738ZOXIkGzduVK0gSE1N5dFHH2X9+vX1fne0mvz1V2TXrl3p3bs3zZs3Z+XKldx///2qZLLb7fTq1YvZs2cD0KNHD/bv38/ChQs1UQy89957DB482KO31K2NlStXsnTpUpYtW0anTp3Yu3cvEyZMIDY2VtX99NFHHzF69GiaNGmCwWDgoosu4q677mLXrl2qZRKu8+pi4EK6vaQWjB8/ntWrV7Np0ya33zr6fPj5+Tl+jfTs2ZMdO3bw+uuv8/bbb6uSZ9euXWRlZXHRRRc55tlsNjZt2sSbb75JeXk5BoNBlWynNWrUiLZt23LkyBHVMsTExFQr2Dp06MCnn36qUqIzjh8/zrfffstnn32mdhQmTZrEk08+yfDhwwHo0qULx48fJzExUdVioFWrVmzcuJHi4mIsFgsxMTHceeedtGzZUrVMwnVePWbgQrq9pJoURWH8+PGsWrWK7777jvj4eLUjnZXdbqe8vFy117/mmmv49ddf2bt3r2Pq1asXI0aMYO/evaoXAgBFRUUcPXqUmJgY1TL069ev2qmphw4donnz5iolOmPx4sVERkYyZMgQtaNQUlKCXu/8EW0wGLDb7SolchYQEEBMTAx5eXmsXbuWYcOGqR1JuMCrWwZAm7eXLCoqcvrlduzYMfbu3UtYWBjNmjWr9zwJCQksW7aML774gqCgIDIyMgAICQnB39+/3vMATJkyhcGDB9OsWTMKCwtZtmwZP/zwA2vXrlUlD1T1p/59HEVAQADh4eGqja94/PHHGTp0KM2bNyc9PZ1p06ZhMBi46667VMkDMHHiRPr27cvs2bO544472L59O4sWLWLRokWqZYKqYnLx4sWMHDkSHx/1PxqHDh3KrFmzaNasGZ06dWLPnj28+uqrjB49WtVca9euRVEU2rVrx5EjR5g0aRLt27fX3C15RR2pfTqDFrzxxhtKs2bNFD8/P+WSSy5Rfv75Z1XzfP/99wpQbRo5cqQqec6WBVAWL16sSh5FUZTRo0crzZs3V/z8/JTGjRsr11xzjbJu3TrV8tRE7VML77zzTiUmJkbx8/NTmjRpotx5553KkSNHVMtz2ldffaV07txZMRqNSvv27ZVFixapHUlZu3atAijJyclqR1EURVEsFovy6KOPKs2aNVNMJpPSsmVL5emnn1bKy8tVzbVixQqlZcuWip+fnxIdHa0kJCQo+fn5qmYSrpNbGAshhBBezqvHDAghhBBCigEhhBDC60kxIIQQQng5KQaEEEIILyfFgBBCCOHlpBgQQgghvJwUA0IIIYSXk2JACCGE8HJSDAjhovvuu4+bbrrJ8fjKK69kwoQJ9Z7jhx9+QKfTkZ+fX+MyOp2Ozz//vNbbnD59Ot27d3cp1++//45Op2Pv3r0ubUcI4TlSDIgG6b777kOn06HT6Rx3N5w5cyZWq9Xjr/3ZZ5/x3HPP1WrZ2nyBCyGEp6l/Nw4hPOS6665j8eLFlJeX8/XXX5OQkICvry9TpkyptmxFRQV+fn5ued2wsDC3bEcIIeqLtAyIBstoNBIdHU3z5s0ZN24cAwYM4MsvvwTONO3PmjWL2NhY2rVrB0Bqaip33HEHjRo1IiwsjGHDhvH77787tmmz2Xjsscdo1KgR4eHhPPHEE/z99h5/7yYoLy9n8uTJxMXFYTQaad26Ne+99x6///47V111FQChoaHodDruu+8+oOoOeomJicTHx+Pv70+3bt3473//6/Q6X3/9NW3btsXf35+rrrrKKWdtTZ48mbZt22I2m2nZsiVTp06lsrKy2nJvv/02cXFxmM1m7rjjDgoKCpyef/fdd+nQoQMmk4n27dvz1ltv1TmLEEI9UgwIr+Hv709FRYXj8YYNG0hOTmb9+vWsXr2ayspKBg0aRFBQEJs3b+ann34iMDCQ6667zrHeK6+8wpIlS3j//ff58ccfyc3NZdWqVf/4uvfeey+ffPIJ8+bN4+DBg7z99tsEBgYSFxfHp59+CkBycjKnTp3i9ddfByAxMZEPP/yQhQsXcuDAASZOnMjdd9/Nxo0bgaqi5ZZbbmHo0KHs3buXBx54gCeffLLO+yQoKIglS5aQlJTE66+/zjvvvMNrr73mtMyRI0dYuXIlX331FWvWrGHPnj089NBDjueXLl3Ks88+y6xZszh48CCzZ89m6tSpfPDBB3XOI4RQicp3TRTCI0aOHKkMGzZMURRFsdvtyvr16xWj0ag8/vjjjuejoqKcbgf70UcfKe3atVPsdrtjXnl5ueLv76+sXbtWURRFiYmJUebMmeN4vrKyUmnatKnjtRTF+bbFycnJCqCsX7/+rDlP3646Ly/PMa+srEwxm83Kli1bnJa9//77lbvuuktRFEWZMmWK0rFjR6fnJ0+eXG1bfwcoq1atqvH5l156SenZs6fj8bRp0xSDwaCcPHnSMe+bb75R9Hq9curUKUVRFKVVq1bKsmXLnLbz3HPPKX369FEURVGOHTumAMqePXtqfF0hhLpkzIBosFavXk1gYCCVlZXY7Xb+9a9/MX36dMfzXbp0cRonsG/fPo4cOUJQUJDTdsrKyjh69CgFBQWcOnWK3r17O57z8fGhV69e1boKTtu7dy8Gg4Errrii1rmPHDlCSUkJ1157rdP8iooKevToAcDBgwedcgD06dOn1q9x2ooVK5g3bx5Hjx6lqKgIq9VKcHCw0zLNmjWjSZMmTq9jt9tJTk4mKCiIo0ePcv/99zNmzBjHMlarlZCQkDrnEUKoQ4oB0WBdddVVLFiwAD8/P2JjY/HxcT7cAwICnB4XFRXRs2dPli5dWm1bjRs3Pq8M/v7+dV6nqKgIgP/9739OX8JQNQ7CXbZu3cqIESOYMWMGgwYNIiQkhOXLl/PKK6/UOes777xTrTgxGAxuyyqE8CwpBkSDFRAQQOvWrWu9/EUXXcSKFSuIjIys9uv4tJiYGLZt28bll18OVP0C3rVrFxdddNFZl+/SpQt2u52NGzcyYMCAas+fbpmw2WyOeR07dsRoNHLixIkaWxQ6dOjgGAx52s8//3zuP/IvtmzZQvPmzXn66acd844fP15tuRMnTpCenk5sbKzjdfR6Pe3atSMqKorY2FhSUlIYMWJEnV5fCKEdMoBQiD+NGDGCiIgIhg0bxubNmzl27Bg//PADjzzyCCdPngTg0Ucf5YUXXuDzzz/nt99+46GHHvrHawS0aNGCkSNHMnr0aD7//HPHNleuXAlA8+bN0el0rF69muzsbIqKiggKCuLxxx9n4sSJfPDBBxw9epTdu3fzxhtvOAblPfjggxw+fJhJkyaRnJzMsmXLWLJkSZ3+3jZt2nDixAmWL1/O0aNHmTdv3lkHQ5pMJkaOHMm+ffvYvHkzjzzyCHfccQfR0dEAzJgxg8TERObNm8ehQ4f49ddfWbx4Ma+++mqd8ggh1CPFgBB/MpvNbNq0iWbNmnHLLbfQoUMH7r//fsrKyhwtBf/+97+55557GDlyJH369CEoKIibb775H7e7YMECbrvtNh566CHat2/PmDFjKC4uBqBJkybMmDGDJ598kqioKMaPHw/Ac889x9SpU0lMTKRDhw5cd911/O9//yM+Ph6o6sf/9NNP+fzzz+nWrRsLFy5k9uzZdfp7b7zxRiZOnMj48ePp3r07W7ZsYerUqdWWa926NbfccgvXX389AwcOpGvXrk6nDj7wwAO8++67LF68mC5dunDFFVewZMkSR1YhhPbplJpGPgkhhBDCK0jLgBBCCOHlpBgQQgghvJwUA0IIIYSXk2JACCGE8HJSDAghhBBeTooBIYQQwstJMSCEEEJ4OSkGhBBCCC8nxYAQQgjh5aQYEEIIIbycFANCCCGEl/t/Ac6t4I6uj9sAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["# загрузка собственного изображения\n","from PIL import Image\n","\n","for name_image in ['test3.png', 'test5.png']:\n"," file_data = Image.open(name_image)\n"," file_data = file_data.convert('L') # перевод в градации серого\n"," test_img = np.array(file_data)\n","\n"," # вывод собственного изображения\n"," plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n"," plt.show()\n","\n"," # предобработка\n"," test_img = test_img / 255\n"," test_img = np.reshape(test_img, (1,28,28,1))\n","\n"," # распознавание\n"," result = model.predict(test_img)\n"," print('I think it\\'s', np.argmax(result))\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":914},"id":"pFVJZwuk7QAK","executionInfo":{"status":"ok","timestamp":1765216761006,"user_tz":-180,"elapsed":2149,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"71c2e110-746f-4616-d677-493d3b64b3de"},"execution_count":15,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGf9JREFUeJzt3W9Mlff9//EXWjnaFg5DhAMVBbXVpf5Z5pQRW2cnEdhi/HdDXW+oMRocNlPW1rGsarcldC7pmi5Od2ORNavamUxMveFisWC2gY1UY8w2IgYrRsHVhHMUCxr5/G746/n2KEjP8RzenMPzkXwSOdd1cd67duKzF+d4keSccwIAYJCNsB4AADA8ESAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGDiCesBHtTb26urV68qJSVFSUlJ1uMAAMLknNPNmzeVk5OjESP6v84ZcgG6evWqcnNzrccAADymtrY2jR8/vt/tQ+5HcCkpKdYjAACiYKC/z2MWoN27dysvL0+jR49WQUGBPvnkk691HD92A4DEMNDf5zEJ0AcffKCKigrt2LFDn376qWbNmqXi4mJdv349Fk8HAIhHLgbmzp3rysvLg1/fu3fP5eTkuKqqqgGP9fv9ThKLxWKx4nz5/f5H/n0f9SugO3fuqKmpSUVFRcHHRowYoaKiIjU0NDy0f09PjwKBQMgCACS+qAfo888/171795SVlRXyeFZWltrb2x/av6qqSl6vN7j4BBwADA/mn4KrrKyU3+8Prra2NuuRAACDIOr/DigjI0MjR45UR0dHyOMdHR3y+XwP7e/xeOTxeKI9BgBgiIv6FVBycrJmz56t2tra4GO9vb2qra1VYWFhtJ8OABCnYnInhIqKCq1Zs0bf+c53NHfuXL3zzjvq6urSunXrYvF0AIA4FJMArVy5Uv/73/+0fft2tbe361vf+paOHTv20AcTAADDV5JzzlkP8VWBQEBer9d6DADAY/L7/UpNTe13u/mn4AAAwxMBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAR9QDt3LlTSUlJIWvatGnRfhoAQJx7Ihbf9Pnnn9dHH330f0/yREyeBgAQx2JShieeeEI+ny8W3xoAkCBi8h7QhQsXlJOTo0mTJunll1/W5cuX+923p6dHgUAgZAEAEl/UA1RQUKDq6modO3ZMe/bsUWtrq1588UXdvHmzz/2rqqrk9XqDKzc3N9ojAQCGoCTnnIvlE3R2dmrixIl6++23tX79+oe29/T0qKenJ/h1IBAgQgCQAPx+v1JTU/vdHvNPB6Slpem5555TS0tLn9s9Ho88Hk+sxwAADDEx/3dAt27d0sWLF5WdnR3rpwIAxJGoB+jVV19VfX29Ll26pH/9619atmyZRo4cqdWrV0f7qQAAcSzqP4K7cuWKVq9erRs3bmjcuHF64YUX1NjYqHHjxkX7qQAAcSzmH0IIVyAQkNfrtR4DMbJ27dqwj8nLy4v6HMPFpUuXIjru4MGDYR/T3d0d0XMhcQ30IQTuBQcAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmIj5L6RD4orkxqL79u2L/iCIuoKCgrCP2bp1a9jHcAPT4Y0rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgbtiIWE1NTdjH5OXlRX2O4SKSO1SXlJRE9FxlZWVhH/PZZ5+Ffcxbb70V9jFIHFwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBkpItbZ2Rn2MTt37oz6HMNFWlpa2MecOXMmoueK5Kaxo0ePjui5MHxxBQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBmpECc2LZtW9jHRHJTUWCwcAUEADBBgAAAJsIO0MmTJ7V48WLl5OQoKSlJNTU1Idudc9q+fbuys7M1ZswYFRUV6cKFC9GaFwCQIMIOUFdXl2bNmqXdu3f3uX3Xrl169913tXfvXp06dUpPPfWUiouL1d3d/djDAgASR9gfQigtLVVpaWmf25xzeuedd/SLX/xCS5YskSS99957ysrKUk1NjVatWvV40wIAEkZU3wNqbW1Ve3u7ioqKgo95vV4VFBSooaGhz2N6enoUCARCFgAg8UU1QO3t7ZKkrKyskMezsrKC2x5UVVUlr9cbXLm5udEcCQAwRJl/Cq6yslJ+vz+42trarEcCAAyCqAbI5/NJkjo6OkIe7+joCG57kMfjUWpqasgCACS+qAYoPz9fPp9PtbW1wccCgYBOnTqlwsLCaD4VACDOhf0puFu3bqmlpSX4dWtrq86ePav09HRNmDBBW7Zs0a9//Ws9++yzys/P1xtvvKGcnBwtXbo0mnMDAOJc2AE6ffq0XnrppeDXFRUVkqQ1a9aourpar7/+urq6urRx40Z1dnbqhRde0LFjxzR69OjoTQ0AiHtJzjlnPcRXBQIBeb1e6zEQ59auXRvRcYN1886pU6eGfcxg/ju6urq6sI9Zt25d2MdcunQp7GMQP/x+/yPf1zf/FBwAYHgiQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAibB/HQMw2MrKysI+Zs+ePTGYZPior68P+5j29vYYTIJExhUQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCm5FiyEtLS7MeYdjZsWNH2MdkZWWFfczWrVvDPqa7uzvsYzA0cQUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgZqQY8vbu3Rv2MaNHj47BJPGnoKAgouNKSkrCPqasrCyi5woXNzBNHFwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmkpxzznqIrwoEAvJ6vdZjAAkhLS0touMOHDgQ9jGR3MA0EpWVlWEf89Zbb8VgEgzE7/crNTW13+1cAQEATBAgAICJsAN08uRJLV68WDk5OUpKSlJNTU3I9rVr1yopKSlkDdalOQAgfoQdoK6uLs2aNUu7d+/ud5+SkhJdu3YtuCL5eTIAILGF/RtRS0tLVVpa+sh9PB6PfD5fxEMBABJfTN4DqqurU2ZmpqZOnapNmzbpxo0b/e7b09OjQCAQsgAAiS/qASopKdF7772n2tpa/eY3v1F9fb1KS0t17969PvevqqqS1+sNrtzc3GiPBAAYgsL+EdxAVq1aFfzzjBkzNHPmTE2ePFl1dXVauHDhQ/tXVlaqoqIi+HUgECBCADAMxPxj2JMmTVJGRoZaWlr63O7xeJSamhqyAACJL+YBunLlim7cuKHs7OxYPxUAII6E/SO4W7duhVzNtLa26uzZs0pPT1d6errefPNNrVixQj6fTxcvXtTrr7+uKVOmqLi4OKqDAwDiW9gBOn36tF566aXg11++f7NmzRrt2bNH586d05///Gd1dnYqJydHixYt0q9+9St5PJ7oTQ0AiHthB2jBggV61P1L//73vz/WQACip7OzM6LjVq9eHfYxZ86cCfuYvLy8sI8ZPXp02MdgaOJecAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAR9V/JDSD+bdu2LexjIrmzNYY3roAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABPcjBRIYFVVVREd97Of/SzKk/Strq4u7GOqq6ujPgdscAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgZqSAgbVr14Z9THFxcdjHrFq1KuxjIhXJjUXXrVsX9jGXLl0K+xgMTVwBAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmuBkpIhbJDTXz8vKiPoe1qVOnhn3MYN4kNBLcWBSDgSsgAIAJAgQAMBFWgKqqqjRnzhylpKQoMzNTS5cuVXNzc8g+3d3dKi8v19ixY/X0009rxYoV6ujoiOrQAID4F1aA6uvrVV5ersbGRh0/flx3797VokWL1NXVFdxn69at+vDDD3Xo0CHV19fr6tWrWr58edQHBwDEt7A+hHDs2LGQr6urq5WZmammpibNnz9ffr9ff/rTn7R//359//vflyTt27dP3/zmN9XY2Kjvfve70ZscABDXHus9IL/fL0lKT0+XJDU1Nenu3bsqKioK7jNt2jRNmDBBDQ0NfX6Pnp4eBQKBkAUASHwRB6i3t1dbtmzRvHnzNH36dElSe3u7kpOTlZaWFrJvVlaW2tvb+/w+VVVV8nq9wZWbmxvpSACAOBJxgMrLy3X+/HkdPHjwsQaorKyU3+8Prra2tsf6fgCA+BDRP0TdvHmzjh49qpMnT2r8+PHBx30+n+7cuaPOzs6Qq6COjg75fL4+v5fH45HH44lkDABAHAvrCsg5p82bN+vw4cM6ceKE8vPzQ7bPnj1bo0aNUm1tbfCx5uZmXb58WYWFhdGZGACQEMK6AiovL9f+/ft15MgRpaSkBN/X8Xq9GjNmjLxer9avX6+Kigqlp6crNTVVr7zyigoLC/kEHAAgRFgB2rNnjyRpwYIFIY/v27cveF+w3/3udxoxYoRWrFihnp4eFRcX6w9/+ENUhgUAJI4k55yzHuKrAoGAvF6v9RjDSiQ3FZXu/4cHBk8kNwitr6+P6Lmqq6vDPoYbi+JBfr9fqamp/W7nXnAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwEdFvREViqampiei4vLy8qM6BR+MO1Ug0XAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACaSnHPOeoivCgQC8nq91mMAAB6T3+9Xampqv9u5AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMhBWgqqoqzZkzRykpKcrMzNTSpUvV3Nwcss+CBQuUlJQUssrKyqI6NAAg/oUVoPr6epWXl6uxsVHHjx/X3bt3tWjRInV1dYXst2HDBl27di24du3aFdWhAQDx74lwdj527FjI19XV1crMzFRTU5Pmz58ffPzJJ5+Uz+eLzoQAgIT0WO8B+f1+SVJ6enrI4++//74yMjI0ffp0VVZW6vbt2/1+j56eHgUCgZAFABgGXITu3bvnfvjDH7p58+aFPP7HP/7RHTt2zJ07d8795S9/cc8884xbtmxZv99nx44dThKLxWKxEmz5/f5HdiTiAJWVlbmJEye6tra2R+5XW1vrJLmWlpY+t3d3dzu/3x9cbW1t5ieNxWKxWI+/BgpQWO8BfWnz5s06evSoTp48qfHjxz9y34KCAklSS0uLJk+e/NB2j8cjj8cTyRgAgDgWVoCcc3rllVd0+PBh1dXVKT8/f8Bjzp49K0nKzs6OaEAAQGIKK0Dl5eXav3+/jhw5opSUFLW3t0uSvF6vxowZo4sXL2r//v36wQ9+oLFjx+rcuXPaunWr5s+fr5kzZ8bkfwAAIE6F876P+vk53759+5xzzl2+fNnNnz/fpaenO4/H46ZMmeJee+21AX8O+FV+v9/855YsFovFevw10N/9Sf8/LENGIBCQ1+u1HgMA8Jj8fr9SU1P73c694AAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJoZcgJxz1iMAAKJgoL/Ph1yAbt68aT0CACAKBvr7PMkNsUuO3t5eXb16VSkpKUpKSgrZFggElJubq7a2NqWmphpNaI/zcB/n4T7Ow32ch/uGwnlwzunmzZvKycnRiBH9X+c8MYgzfS0jRozQ+PHjH7lPamrqsH6BfYnzcB/n4T7Ow32ch/usz4PX6x1wnyH3IzgAwPBAgAAAJuIqQB6PRzt27JDH47EexRTn4T7Ow32ch/s4D/fF03kYch9CAAAMD3F1BQQASBwECABgggABAEwQIACAibgJ0O7du5WXl6fRo0eroKBAn3zyifVIg27nzp1KSkoKWdOmTbMeK+ZOnjypxYsXKycnR0lJSaqpqQnZ7pzT9u3blZ2drTFjxqioqEgXLlywGTaGBjoPa9eufej1UVJSYjNsjFRVVWnOnDlKSUlRZmamli5dqubm5pB9uru7VV5errFjx+rpp5/WihUr1NHRYTRxbHyd87BgwYKHXg9lZWVGE/ctLgL0wQcfqKKiQjt27NCnn36qWbNmqbi4WNevX7cebdA9//zzunbtWnD94x//sB4p5rq6ujRr1izt3r27z+27du3Su+++q7179+rUqVN66qmnVFxcrO7u7kGeNLYGOg+SVFJSEvL6OHDgwCBOGHv19fUqLy9XY2Ojjh8/rrt372rRokXq6uoK7rN161Z9+OGHOnTokOrr63X16lUtX77ccOro+zrnQZI2bNgQ8nrYtWuX0cT9cHFg7ty5rry8PPj1vXv3XE5OjquqqjKcavDt2LHDzZo1y3oMU5Lc4cOHg1/39vY6n8/nfvvb3wYf6+zsdB6Pxx04cMBgwsHx4Hlwzrk1a9a4JUuWmMxj5fr1606Sq6+vd87d//9+1KhR7tChQ8F9/vOf/zhJrqGhwWrMmHvwPDjn3Pe+9z33k5/8xG6or2HIXwHduXNHTU1NKioqCj42YsQIFRUVqaGhwXAyGxcuXFBOTo4mTZqkl19+WZcvX7YeyVRra6va29tDXh9er1cFBQXD8vVRV1enzMxMTZ06VZs2bdKNGzesR4opv98vSUpPT5ckNTU16e7duyGvh2nTpmnChAkJ/Xp48Dx86f3331dGRoamT5+uyspK3b5922K8fg25m5E+6PPPP9e9e/eUlZUV8nhWVpb++9//Gk1lo6CgQNXV1Zo6daquXbumN998Uy+++KLOnz+vlJQU6/FMtLe3S1Kfr48vtw0XJSUlWr58ufLz83Xx4kX9/Oc/V2lpqRoaGjRy5Ejr8aKut7dXW7Zs0bx58zR9+nRJ918PycnJSktLC9k3kV8PfZ0HSfrRj36kiRMnKicnR+fOndO2bdvU3Nysv/3tb4bThhryAcL/KS0tDf555syZKigo0MSJE/XXv/5V69evN5wMQ8GqVauCf54xY4ZmzpypyZMnq66uTgsXLjScLDbKy8t1/vz5YfE+6KP0dx42btwY/POMGTOUnZ2thQsX6uLFi5o8efJgj9mnIf8juIyMDI0cOfKhT7F0dHTI5/MZTTU0pKWl6bnnnlNLS4v1KGa+fA3w+njYpEmTlJGRkZCvj82bN+vo0aP6+OOPQ359i8/n0507d9TZ2Rmyf6K+Hvo7D30pKCiQpCH1ehjyAUpOTtbs2bNVW1sbfKy3t1e1tbUqLCw0nMzerVu3dPHiRWVnZ1uPYiY/P18+ny/k9REIBHTq1Klh//q4cuWKbty4kVCvD+ecNm/erMOHD+vEiRPKz88P2T579myNGjUq5PXQ3Nysy5cvJ9TrYaDz0JezZ89K0tB6PVh/CuLrOHjwoPN4PK66utr9+9//dhs3bnRpaWmuvb3derRB9dOf/tTV1dW51tZW989//tMVFRW5jIwMd/36devRYurmzZvuzJkz7syZM06Se/vtt92ZM2fcZ5995pxz7q233nJpaWnuyJEj7ty5c27JkiUuPz/fffHFF8aTR9ejzsPNmzfdq6++6hoaGlxra6v76KOP3Le//W337LPPuu7ubuvRo2bTpk3O6/W6uro6d+3ateC6fft2cJ+ysjI3YcIEd+LECXf69GlXWFjoCgsLDaeOvoHOQ0tLi/vlL3/pTp8+7VpbW92RI0fcpEmT3Pz5840nDxUXAXLOud///vduwoQJLjk52c2dO9c1NjZajzToVq5c6bKzs11ycrJ75pln3MqVK11LS4v1WDH38ccfO0kPrTVr1jjn7n8U+4033nBZWVnO4/G4hQsXuubmZtuhY+BR5+H27dtu0aJFbty4cW7UqFFu4sSJbsOGDQn3H2l9/e+X5Pbt2xfc54svvnA//vGP3Te+8Q335JNPumXLlrlr167ZDR0DA52Hy5cvu/nz57v09HTn8XjclClT3Guvveb8fr/t4A/g1zEAAEwM+feAAACJiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAw8f8AV/pP763qwmcAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n","I think it's 3\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGmFJREFUeJzt3X9MVff9x/EXWr3aFi5DhAsVFbXVpf5Y5pQRW2YnEdli/JVFXf/QptHgsJm6thvL6q8twblka7o43R+LrFn9UZOpqVlILJZrtqGNVmPMNiIEJkbA1YR7EQsa+Hz/ML3f3grae72XN/f6fCQnkXvPh/v2eMPTw70cUpxzTgAADLJh1gMAAB5PBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJh4wnqAL+vr69P169eVmpqqlJQU63EAABFyzqmzs1O5ubkaNmzg85whF6Dr168rLy/PegwAwCNqaWnRuHHjBrx/yH0LLjU11XoEAEAMPOzredwCtGfPHk2cOFGjRo1SQUGBPv7446+0jm+7AUByeNjX87gE6PDhw9qyZYu2bdumTz75RLNmzVJJSYlu3LgRj4cDACQiFwdz58515eXloY97e3tdbm6uq6ysfOjaQCDgJLGxsbGxJfgWCAQe+PU+5mdAd+7c0fnz51VcXBy6bdiwYSouLlZdXd19+/f09CgYDIZtAIDkF/MAffrpp+rt7VV2dnbY7dnZ2Wpra7tv/8rKSnm93tDGO+AA4PFg/i64iooKBQKB0NbS0mI9EgBgEMT854AyMzM1fPhwtbe3h93e3t4un8933/4ej0cejyfWYwAAhriYnwGNHDlSs2fPVk1NTei2vr4+1dTUqLCwMNYPBwBIUHG5EsKWLVu0Zs0afetb39LcuXP19ttvq6urS6+88ko8Hg4AkIDiEqCVK1fqf//7n7Zu3aq2tjZ94xvfUHV19X1vTAAAPL5SnHPOeogvCgaD8nq91mMAAB5RIBBQWlragPebvwsOAPB4IkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACaesB4AiWvt2rURr5k4cWLM50Diam5ujnjNoUOHIl7T3d0d8RrEH2dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJLkYKlZWVRbVu7969MZ4EeDifzxfxml27dsVhEjwqzoAAACYIEADARMwDtH37dqWkpIRt06ZNi/XDAAASXFxeA3r++ef14Ycf/v+DPMFLTQCAcHEpwxNPPBHVC4UAgMdHXF4DunLlinJzczVp0iS9/PLLunr16oD79vT0KBgMhm0AgOQX8wAVFBSoqqpK1dXV2rt3r5qamvTiiy+qs7Oz3/0rKyvl9XpDW15eXqxHAgAMQTEPUGlpqX7wgx9o5syZKikp0d/+9jd1dHTo/fff73f/iooKBQKB0NbS0hLrkQAAQ1Dc3x2Qnp6u5557Tg0NDf3e7/F45PF44j0GAGCIifvPAd26dUuNjY3KycmJ90MBABJIzAP0+uuvy+/3q7m5Wf/85z+1bNkyDR8+XKtXr471QwEAEljMvwV37do1rV69Wjdv3tTYsWP1wgsv6MyZMxo7dmysHwoAkMBiHqBDhw7F+lMizgoKCgbtsWprayNe4/f7Yz8IEhZfY5IH14IDAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEzE/RfSYXCVlZVFvGbt2rWxH2QA0VxYdPv27bEfBIA5zoAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABggqthJxmfzzdoj1VbWxvxmqqqqpjPASAxcQYEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgYqSImt/vj3hNc3Nz7AcBkJA4AwIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmIg7Q6dOntXjxYuXm5iolJUXHjh0Lu985p61btyonJ0ejR49WcXGxrly5Eqt5AQBJIuIAdXV1adasWdqzZ0+/9+/evVvvvPOO9u3bp7Nnz+qpp55SSUmJuru7H3lYAEDyiPg3opaWlqq0tLTf+5xzevvtt/WLX/xCS5YskSS9++67ys7O1rFjx7Rq1apHmxYAkDRi+hpQU1OT2traVFxcHLrN6/WqoKBAdXV1/a7p6elRMBgM2wAAyS+mAWpra5MkZWdnh92enZ0duu/LKisr5fV6Q1teXl4sRwIADFHm74KrqKhQIBAIbS0tLdYjAQAGQUwD5PP5JEnt7e1ht7e3t4fu+zKPx6O0tLSwDQCQ/GIaoPz8fPl8PtXU1IRuCwaDOnv2rAoLC2P5UACABBfxu+Bu3bqlhoaG0MdNTU26ePGiMjIyNH78eG3atEm/+tWv9Oyzzyo/P19vvfWWcnNztXTp0ljODQBIcBEH6Ny5c3rppZdCH2/ZskWStGbNGlVVVenNN99UV1eX1q9fr46ODr3wwguqrq7WqFGjYjc1ACDhRRyg+fPnyzk34P0pKSnauXOndu7c+UiDYeibMGFCxGui+Y8IP8QMJCfzd8EBAB5PBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMBHx1bAxtA3mlaPXrl0b8Zr6+vqI1+zatSviNQCGPs6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATXIw0yezbty/iNSUlJVE91vz58yNeM2rUqKgeayiL5qKsEydOjPkc/Wlubo5q3aFDhyJeM5gXwkVy4AwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBxUiTTEdHR8Rr/H5/VI8VzcVIJ0yYEPGawbzY59SpUyNes2rVqqgeayhbuXJlxGsOHz4c8Rouevp44wwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBxUgxqBd3jObCotGsGepqa2sjXhPNv9OiRYsiXhPtumjWFBQURLxm8+bNEa/hAqZDE2dAAAATBAgAYCLiAJ0+fVqLFy9Wbm6uUlJSdOzYsbD7165dq5SUlLAt2m8DAACSV8QB6urq0qxZs7Rnz54B91m0aJFaW1tD28GDBx9pSABA8on4TQilpaUqLS194D4ej0c+ny/qoQAAyS8urwHV1tYqKytLU6dO1YYNG3Tz5s0B9+3p6VEwGAzbAADJL+YBWrRokd59913V1NTo17/+tfx+v0pLS9Xb29vv/pWVlfJ6vaEtLy8v1iMBAIagmP8c0KpVq0J/njFjhmbOnKnJkyertrZWCxYsuG//iooKbdmyJfRxMBgkQgDwGIj727AnTZqkzMxMNTQ09Hu/x+NRWlpa2AYASH5xD9C1a9d08+ZN5eTkxPuhAAAJJOJvwd26dSvsbKapqUkXL15URkaGMjIytGPHDq1YsUI+n0+NjY168803NWXKFJWUlMR0cABAYos4QOfOndNLL70U+vjz12/WrFmjvXv36tKlS/rzn/+sjo4O5ebmauHChfrlL38pj8cTu6kBAAkvxTnnrIf4omAwKK/Xaz3GYyU9PT2qddH8gPFgXRUjmot9SpLf74/tIAOoqqqKeE1HR0fEazZt2hTxGim6i4QO1r9tRUVFxGt27doVh0nwMIFA4IGv63MtOACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJiI+a/kRuKJ5irLkrR69eqI10R7deZIRXO1aUlqbm6O6RzWtm/fHtW6aK6QfvTo0YjXzJ8/P+I1o0aNingNhibOgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE1yMFFGL5iKm0V4cE4Mrmn/bZLuQK+KPMyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQXIwVwn7KysojXrF27NvaDIKlxBgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBipEASi/YCoStXroztIAOora2NeE1VVVXM54ANzoAAACYIEADAREQBqqys1Jw5c5SamqqsrCwtXbpU9fX1Yft0d3ervLxcY8aM0dNPP60VK1aovb09pkMDABJfRAHy+/0qLy/XmTNndPLkSd29e1cLFy5UV1dXaJ/Nmzfrgw8+0JEjR+T3+3X9+nUtX7485oMDABJbRG9CqK6uDvu4qqpKWVlZOn/+vIqKihQIBPSnP/1JBw4c0He/+11J0v79+/X1r39dZ86c0be//e3YTQ4ASGiP9BpQIBCQJGVkZEiSzp8/r7t376q4uDi0z7Rp0zR+/HjV1dX1+zl6enoUDAbDNgBA8os6QH19fdq0aZPmzZun6dOnS5La2to0cuRIpaenh+2bnZ2ttra2fj9PZWWlvF5vaMvLy4t2JABAAok6QOXl5bp8+bIOHTr0SANUVFQoEAiEtpaWlkf6fACAxBDVD6Ju3LhRJ06c0OnTpzVu3LjQ7T6fT3fu3FFHR0fYWVB7e7t8Pl+/n8vj8cjj8UQzBgAggUV0BuSc08aNG3X06FGdOnVK+fn5YffPnj1bI0aMUE1NTei2+vp6Xb16VYWFhbGZGACQFCI6AyovL9eBAwd0/Phxpaamhl7X8Xq9Gj16tLxer1599VVt2bJFGRkZSktL02uvvabCwkLeAQcACBNRgPbu3StJmj9/ftjt+/fvD11z6ne/+52GDRumFStWqKenRyUlJfrDH/4Qk2EBAMkjxTnnrIf4omAwKK/Xaz0GMORUVlZGvOZnP/tZHCaJnR07dkS8Zvv27bEfBHERCASUlpY24P1cCw4AYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmovqNqICk0K/giMTEiRNjPkcimjp1asRrVq1aFYdJ+ldbWxvxGr/fH/GaqqqqiNcgeXAGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4GKkiOqiopK0f//+2A6CmIvmoqKS9Morr0S8prm5OarHwuOLMyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQXI4WOHTsW1bqJEyfGdA7EXlVVVVTruLAoBgNnQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiRTnnLMe4ouCwaC8Xq/1GACARxQIBJSWljbg/ZwBAQBMECAAgImIAlRZWak5c+YoNTVVWVlZWrp0qerr68P2mT9/vlJSUsK2srKymA4NAEh8EQXI7/ervLxcZ86c0cmTJ3X37l0tXLhQXV1dYfutW7dOra2toW337t0xHRoAkPgi+o2o1dXVYR9XVVUpKytL58+fV1FRUej2J598Uj6fLzYTAgCS0iO9BhQIBCRJGRkZYbe/9957yszM1PTp01VRUaHbt28P+Dl6enoUDAbDNgDAY8BFqbe3133/+9938+bNC7v9j3/8o6uurnaXLl1yf/nLX9wzzzzjli1bNuDn2bZtm5PExsbGxpZkWyAQeGBHog5QWVmZmzBhgmtpaXngfjU1NU6Sa2ho6Pf+7u5uFwgEQltLS4v5QWNjY2Nje/TtYQGK6DWgz23cuFEnTpzQ6dOnNW7cuAfuW1BQIElqaGjQ5MmT77vf4/HI4/FEMwYAIIFFFCDnnF577TUdPXpUtbW1ys/Pf+iaixcvSpJycnKiGhAAkJwiClB5ebkOHDig48ePKzU1VW1tbZIkr9er0aNHq7GxUQcOHND3vvc9jRkzRpcuXdLmzZtVVFSkmTNnxuUvAABIUJG87qMBvs+3f/9+55xzV69edUVFRS4jI8N5PB43ZcoU98Ybbzz0+4BfFAgEzL9vycbGxsb26NvDvvZzMVIAQFxwMVIAwJBEgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAx5ALknLMeAQAQAw/7ej7kAtTZ2Wk9AgAgBh729TzFDbFTjr6+Pl2/fl2pqalKSUkJuy8YDCovL08tLS1KS0szmtAex+EejsM9HId7OA73DIXj4JxTZ2encnNzNWzYwOc5TwziTF/JsGHDNG7cuAfuk5aW9lg/wT7HcbiH43APx+EejsM91sfB6/U+dJ8h9y04AMDjgQABAEwkVIA8Ho+2bdsmj8djPYopjsM9HId7OA73cBzuSaTjMOTehAAAeDwk1BkQACB5ECAAgAkCBAAwQYAAACYSJkB79uzRxIkTNWrUKBUUFOjjjz+2HmnQbd++XSkpKWHbtGnTrMeKu9OnT2vx4sXKzc1VSkqKjh07Fna/c05bt25VTk6ORo8ereLiYl25csVm2Dh62HFYu3btfc+PRYsW2QwbJ5WVlZozZ45SU1OVlZWlpUuXqr6+Pmyf7u5ulZeXa8yYMXr66ae1YsUKtbe3G00cH1/lOMyfP/++50NZWZnRxP1LiAAdPnxYW7Zs0bZt2/TJJ59o1qxZKikp0Y0bN6xHG3TPP/+8WltbQ9vf//5365HirqurS7NmzdKePXv6vX/37t165513tG/fPp09e1ZPPfWUSkpK1N3dPciTxtfDjoMkLVq0KOz5cfDgwUGcMP78fr/Ky8t15swZnTx5Unfv3tXChQvV1dUV2mfz5s364IMPdOTIEfn9fl2/fl3Lly83nDr2vspxkKR169aFPR92795tNPEAXAKYO3euKy8vD33c29vrcnNzXWVlpeFUg2/btm1u1qxZ1mOYkuSOHj0a+rivr8/5fD73m9/8JnRbR0eH83g87uDBgwYTDo4vHwfnnFuzZo1bsmSJyTxWbty44SQ5v9/vnLv3bz9ixAh35MiR0D7//ve/nSRXV1dnNWbcffk4OOfcd77zHffjH//YbqivYMifAd25c0fnz59XcXFx6LZhw4apuLhYdXV1hpPZuHLlinJzczVp0iS9/PLLunr1qvVIppqamtTW1hb2/PB6vSooKHgsnx+1tbXKysrS1KlTtWHDBt28edN6pLgKBAKSpIyMDEnS+fPndffu3bDnw7Rp0zR+/Pikfj58+Th87r333lNmZqamT5+uiooK3b5922K8AQ25i5F+2aeffqre3l5lZ2eH3Z6dna3//Oc/RlPZKCgoUFVVlaZOnarW1lbt2LFDL774oi5fvqzU1FTr8Uy0tbVJUr/Pj8/ve1wsWrRIy5cvV35+vhobG/Xzn/9cpaWlqqur0/Dhw63Hi7m+vj5t2rRJ8+bN0/Tp0yXdez6MHDlS6enpYfsm8/Ohv+MgST/84Q81YcIE5ebm6tKlS/rpT3+q+vp6/fWvfzWcNtyQDxD+X2lpaejPM2fOVEFBgSZMmKD3339fr776quFkGApWrVoV+vOMGTM0c+ZMTZ48WbW1tVqwYIHhZPFRXl6uy5cvPxavgz7IQMdh/fr1oT/PmDFDOTk5WrBggRobGzV58uTBHrNfQ/5bcJmZmRo+fPh972Jpb2+Xz+czmmpoSE9P13PPPaeGhgbrUcx8/hzg+XG/SZMmKTMzMymfHxs3btSJEyf00Ucfhf36Fp/Ppzt37qijoyNs/2R9Pgx0HPpTUFAgSUPq+TDkAzRy5EjNnj1bNTU1odv6+vpUU1OjwsJCw8ns3bp1S42NjcrJybEexUx+fr58Pl/Y8yMYDOrs2bOP/fPj2rVrunnzZlI9P5xz2rhxo44ePapTp04pPz8/7P7Zs2drxIgRYc+H+vp6Xb16NameDw87Dv25ePGiJA2t54P1uyC+ikOHDjmPx+Oqqqrcv/71L7d+/XqXnp7u2trarEcbVD/5yU9cbW2ta2pqcv/4xz9ccXGxy8zMdDdu3LAeLa46OzvdhQsX3IULF5wk99vf/tZduHDB/fe//3XOObdr1y6Xnp7ujh8/7i5duuSWLFni8vPz3WeffWY8eWw96Dh0dna6119/3dXV1bmmpib34Ycfum9+85vu2Wefdd3d3dajx8yGDRuc1+t1tbW1rrW1NbTdvn07tE9ZWZkbP368O3XqlDt37pwrLCx0hYWFhlPH3sOOQ0NDg9u5c6c7d+6ca2pqcsePH3eTJk1yRUVFxpOHS4gAOefc73//ezd+/Hg3cuRIN3fuXHfmzBnrkQbdypUrXU5Ojhs5cqR75pln3MqVK11DQ4P1WHH30UcfOUn3bWvWrHHO3Xsr9ltvveWys7Odx+NxCxYscPX19bZDx8GDjsPt27fdwoUL3dixY92IESPchAkT3Lp165LuP2n9/f0luf3794f2+eyzz9yPfvQj97Wvfc09+eSTbtmyZa61tdVu6Dh42HG4evWqKyoqchkZGc7j8bgpU6a4N954wwUCAdvBv4RfxwAAMDHkXwMCACQnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDE/wEfb3K+p4Q5yQAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n","I think it's 5\n"]}]},{"cell_type":"code","source":["model_lr1 = keras.models.load_model(\"best_model.keras\")\n","\n","model_lr1.summary()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":255},"id":"Plyx39Cm72c7","executionInfo":{"status":"ok","timestamp":1765216762816,"user_tz":-180,"elapsed":1804,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"eebaf793-5f1b-4fff-912b-6ad55cee9d62"},"execution_count":16,"outputs":[{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_10\"\u001b[0m\n"],"text/html":["
Model: \"sequential_10\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_23 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_24 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_25 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ dense_23 (Dense)                │ (None, 100)            │        78,500 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_24 (Dense)                │ (None, 50)             │         5,050 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_25 (Dense)                │ (None, 10)             │           510 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,062\u001b[0m (328.37 KB)\n"],"text/html":["
 Total params: 84,062 (328.37 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n"],"text/html":["
 Trainable params: 84,060 (328.36 KB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m2\u001b[0m (12.00 B)\n"],"text/html":["
 Optimizer params: 2 (12.00 B)\n","
\n"]},"metadata":{}}]},{"cell_type":"code","source":["# развернем каждое изображение 28*28 в вектор 784\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 60000,\n"," random_state = 23)\n","num_pixels = X_train.shape[1] * X_train.shape[2]\n","X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n","X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n","print('Shape of transformed X train:', X_train.shape)\n","print('Shape of transformed X train:', X_test.shape)\n","\n","# переведем метки в one-hot\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)\n","print('Shape of transformed y train:', y_train.shape)\n","print('Shape of transformed y test:', y_test.shape)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Gl-SOZoHHkie","executionInfo":{"status":"ok","timestamp":1765216797621,"user_tz":-180,"elapsed":240,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"2c7babb2-99de-44fd-85b6-39e1f5a80aa7"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (60000, 784)\n","Shape of transformed X train: (10000, 784)\n","Shape of transformed y train: (60000, 10)\n","Shape of transformed y test: (10000, 10)\n"]}]},{"cell_type":"code","source":["# Оценка качества работы модели на тестовых данных\n","scores = model_lr1.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"NKMJJLIUHsoj","executionInfo":{"status":"ok","timestamp":1765216808331,"user_tz":-180,"elapsed":2878,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"8132ade5-55c7-4dc2-d7bc-b45146f75302"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - accuracy: 0.9576 - loss: 0.1293\n","Loss on test data: 0.13758081197738647\n","Accuracy on test data: 0.9567000269889832\n"]}]},{"cell_type":"code","source":["# загрузка датасета\n","from keras.datasets import cifar10\n","\n","(X_train, y_train), (X_test, y_test) = cifar10.load_data()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"bNlYmpBUH1nD","executionInfo":{"status":"ok","timestamp":1765216911865,"user_tz":-180,"elapsed":16710,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"81c84db4-0773-4ea1-8fa5-1876f2ffa569"},"execution_count":19,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n","\u001b[1m170498071/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 0us/step\n"]}]},{"cell_type":"code","source":["# создание своего разбиения датасета\n","\n","# объединяем в один набор\n","X = np.concatenate((X_train, X_test))\n","y = np.concatenate((y_train, y_test))\n","\n","# разбиваем по вариантам\n","X_train, X_test, y_train, y_test = train_test_split(X, y,\n"," test_size = 10000,\n"," train_size = 50000,\n"," random_state = 23)\n","# вывод размерностей\n","print('Shape of X train:', X_train.shape)\n","print('Shape of y train:', y_train.shape)\n","print('Shape of X test:', X_test.shape)\n","print('Shape of y test:', y_test.shape)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ww_CL1uRIK9V","executionInfo":{"status":"ok","timestamp":1765216926509,"user_tz":-180,"elapsed":365,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"25b525a7-0fe7-4da0-9dad-b04b5cce18b7"},"execution_count":20,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X train: (50000, 32, 32, 3)\n","Shape of y train: (50000, 1)\n","Shape of X test: (10000, 32, 32, 3)\n","Shape of y test: (10000, 1)\n"]}]},{"cell_type":"code","source":["class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n"," 'dog', 'frog', 'horse', 'ship', 'truck']\n","\n","plt.figure(figsize=(10,10))\n","for i in range(25):\n"," plt.subplot(5,5,i+1)\n"," plt.xticks([])\n"," plt.yticks([])\n"," plt.grid(False)\n"," plt.imshow(X_train[i])\n"," plt.xlabel(class_names[y_train[i][0]])\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":826},"id":"vn81SpnTINSC","executionInfo":{"status":"ok","timestamp":1765216937490,"user_tz":-180,"elapsed":1611,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"2a69ec40-9b23-4e87-c233-a823bf9cc269"},"execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmUbNdZ3w8/Z6q5uqun2/OdpTtIV7MlNFlyLGMZDMbwAr/1c2J4XwOLMUzB8AYT25D81gp4WkmAJHYWIm8SIJjlEAh2wHYA40GSLWu+kq7uPPdYXXPVmd4/um/f+n73uT3Idbtl+/mspaX7dFWdvc8+ezin6vvdjxXHcSyKoiiKoiiKoig9xN7uCiiKoiiKoiiK8q2HPmgoiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6TnuRt4URZFcuHBBisWiWJZ1veukfBMQx7FUq1WZmJgQ276+z6va/xRmK/ufiPZBBdH+p2w3ugYr28lm+t+GHjQuXLgg09PTPamc8q3F2bNnZWpq6rqWof1PuRZb0f9EtA8qyWj/U7YbXYOV7WQj/W9DDxrFYlFERB5+7wPippc/0go78J5sKQNxFPjGcWw7BXEc45NxUGnhMeIAyxgo0BHNJ+vKUh3LdPA92QKdMp6G1Mtt/LybhdivmonUwyWsZ2oYn+5iG1+3ag4ec74B8Q/ccsgo4y3fcRvWKzsEsSdYRrvyCsTPncP406dqRhkzLTy3MMC2C7teDjqBPPGJv1vtG9eT7jI2/mXK9nzrEsdm/+glG/k26XrX4fXEVvS/7nK+++33iOctzyFRgO1ca+Nk4qZx7hARyWfSEPvtJsSZlAex7eF8VatjGc1WZJTRpHqkPZyP+os4jxZyBXq9H+J6C+en0iDWUUQkinG+53k46GAdbCsHcauFc386Yy5NldoSxNzPPWqrahXnuHYb65hO8Xoi4np4zEIR16wr18Pv+PKpP/6bLe9/H/3oRyWbXe5X/+7f/Tt4TzqdNj73jbIdc8n6c1xSnfhvtAbHOE4OH94J8T3374W4E4RGCe0OHsMP8F5BYlzXoxDrFIR0H5CwRrkOHuOFZ49DvGP48NU6dtry8Y//hy1dg5/40uekUMiLyPKvHN3YNp/PRtZgbKPr0934oFyvtevA/fHS5ctGCTOXZyAeHRuDeGR4hMrY/IlyPcxxst55MubawXA9u+NarS73vfGtG+p/G3rQuHJCbtoVd2UBcEOspJfFQ4W+2ZCOje/hBw3p4OvUj8UzFh/z5xq3je/hBw2XjmHRIdw0TjC2S3XuJHQQXIvETfODBr5udXAyiWmBzGTogCJSyONNi5PDhZofNLwQF51cFm8OvLR56V3qVBa1nZVw6lvxM+qVMixrrQeN1zLJffOhP1svc2XC26r2uFKO57lXHzRoQLg0YfGNb+LfInfN150Uvc43O6G5WPDc7Lo4AXkezgUperhJp3H+8SN/zddFRCKaG/iYtvCDBr4ehjjvplLrt535oEFzHL0/DNd+MBExHzS8dR78trr/ZbPZ1QcNh25KOe4F36wPGhYt7FGEx+T+mc3ieukkPGhYTkTvoXrQWI5oHAYh1mkjDxrc/5IeJrdyDS4U8lJc+aLi2/VBo1Yzv6St0f1YIZ+HuEhf7nwrPGhcux4magZXFEVRFEVRFKXnbOgXjStYViz2yrd4fgN/Tm+l8OeTeh1/ChcRyWTxm7FOQE9U9CVCPovf4ncClAQECd862C4+XTkWnmKzip8p5FHy5WWxTvVFOo9mgmyAfkFtVklWlqef39tYx110nrceus0oI3Txp7dGFX/BkICkU2V88owqeF6Ftvk0e7FJv+ak6Kdg++rrlkPlbzm9/xbn9SA5ei3fTn3j32ht/rzX+9bn9dCW1wPbscV2lr+f4W8s0/StqJvwjXmng1KpmH4tCOhbUp++6WcJSIuOt1IyRPztruPg6y7Fvo914l9YWeYkIpLN0S8x9OV6g46Zz+IbbBvjdpsmVRHJ07eE/B6uV0jXh39F4fMWERkYxG8m80W8ps328vWI497/erARzpw5I5nM8pr1zDPPbEsdvhVYKL8K8cQe/JY6tMz1rdnCsdju0HvCtX+l43EVJ3yhzL9oHDuB9SzPX50ffH/r12A/8FfPg3/RYJLWpc2a1jfyjfpmj8Gs90sBX7fZ2VnjGBcvXoS4XC5DzHMX/zIV0P1bUp3XOw9+ndvadXmONq/PevcS3dc8SurA10B/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5m/Jo7OrLSGpl96J0CvVg5UXUCtc65s4ks4sVLDyH/ojYo8/QLg1RC7VyoW9qxHgnqwbpeGPS9jspn2JsklwW69SsmdrhOMRjFLJ4XrZH28S2UY/3yBvugHh6dJdRRtNG7bB42JZLLWz/RhPbJmyjfjRgj4eIRGn8TDZPW2vOXdWxBh3TH3P9seSqN2O93Sq2xyOwnsZxsxrTjbx/8x4NPuZraaut92S8HnwgocRir7RXRO0WkGY5laBHbpEWN0U7QrGuu03jzEnzDnWmZywkrThrc3n3Jd6Rp9nAuSQQmt/6cH4TEXFo63LW73Y6OG8ODvAxsA6LZXNnl0JmbY8Gx+zhs8mr4idswc4aed8nnf3K9die+W95Zy3eXesKfJ3X09BfL3q9C9LGDse7TuGHItoWrdUgLxRtv5zrM7emDiP2S1FMflCPbDwObXMfBuYa7Hl4zNEx3Gq6kLpaL/YObAVhGK7OUTz/OjTfdTqUO0DMPplO0T3fOn4J3qkrySewWU8Gv9/cTQvPq1Awt8UeGsJ0A1ny3TabOKdWq9U146SdrZpN8kW36N6WzuOKl+sKOd4Zq0D3lCIyMDCwZtw9xyR53K6F/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0cgstSW9so/4gxOoU0sND0Js5aeNzx87fx7iJ149DvHlCDV9lpCHI0P7BIupVY1blH2zgl4GL0u6NJLa1juog3MC1NpZYu6fniniQTKkBc62MR4dwGY/sGsC4iA2tZeehXvER+ESxPUa7uPcqOF5t2m//XTG1Ic6KaxnQJmPg659u0N/6zXKr7fcDEnaYc6OyjHv7d+Lc+q1L+R6sBHdtqH55Sy5XXkp4jg2NKpbQXlpSdwV8XXKxfmJc0XUa2a+CZc0xnaWfWmU+dvHMRnblKMna/olFheoXWioepQjIOYpkfIbLVRwrkmnTf36/Bxqims1nEdZSt2mnBfcRTkjsojpwWANMhMErHPGhkjqkgsLtF6ksQ+G8XIf3A59vMhyv7/WeGZtOfsSVo5A8WvJwr051h/7m6tD8uHW9mgw1SXsn0uULytbxLxgImYfNuP15mGM2RslIhKF7MHCfAvpLg+pZW/9vP5Xn/7M6ribnt4Jr01MTEL8ta89ZXye5/S3vOUf0TuwUdmTwba3ZI8G/S2ie0KLj8nft9OcSxcuxb4SETl37hzEExN4T7e0hHPomTNn1ny93Tb9LcbfOMcIvZ9zdaTI2+UlZJnPF9AHNzCIHqGpqavXuFarG5+/FvqLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpszgYT2WMFi2nAyTqWd8bAxie2C/8fk9k/i3g/tvgfj/PPcsxF89fQzLJ39WbJuGwaiNpzSYRTNLtYymaCtLiXoKaHRs1dH0F1umAcvNo8mwP4PuSncGTYz7Bun5rrUAod8yjWjpFBp3apfQ/H35pdMQ16toLrJTlPgrIdmKRWbJVgdNVbkuo1DQNs3kW8lrSQq1WVP0a8k7xfXqNjCLiDgumX07ZMyN105YlHQObGYLEhJB4THWfDnxvDf7Gcta21CXVAYnIuMEZN2f2S6Du+04Yq/MfZaD5+jZaE5u18wNE/pLmAAp5WJDLMzNQ+x6eMwoQgNeo2kmdup0sG06EfaHLM0lrRaaDJt1LKPZwM/PXELDtIhIroDXyqekgI6L17ZcLkPsumiwtF3zO7AwWq9fY5l9fWhs5D7XbpmdsNPG8ckJEzvBsmm4e2OM1wtGcrOEtWp94/U3+v4NHPEbPGTy59c+KLdNi9av+XlcL8d3mcnMbAv7hkNm7MBau09YFiX4E9PIHJJx2aOxOjB49d4gyTB8vXn1xIlVM/Sx4yfhtd279kL84otHjc9P78RNgi7P4nw3NMQJ4iihKRm9k9rQ2O5gnaWClxI2k/MmFOUy9hURkf5+vM/M53HuYRM8J8/jhH2cXFREJJPmtQDryes+J9RLkfnbTZmbaQQ0b1equBacOXvV9N6gxK5rob9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTSilsgVCVfEiexs1Jw12qZ/wvVQt7ZzFHVt35MvYXl11CAem7sAcZiQ1GmxSZr3PtJ5d/DZqjOPZWRIZ80J17JYRRERyZN2LuWTXpQSd3lFbKvaDPotBgqmPtT3se0ac+jraJLWMSIvQKaEGuhS0UzWkiG9d72J2kS7SxPI+sCt5vpo9CkBTg+KYK2ml0KtZrlMiRVJL2/blDAsNNvdTDiEmP4I1jOvf6KmLpqSZ65TB9O7Yo5dHmusz+0ucbs8GsMDw6vJ5JYoGWhASdwcyzzHXBb9V5kUzk8Ls3hMbrd0FvtTuWr6JTwHyw0pcZtP/oIyJYvqkPa71cbzSqfNPpjP4VzOGvhWE7W+nofrRxBgmXFo6t2jiH1m5K8j3bMfUlJA1nPbZvLVZp0So5JvLZtbbn9OJPZ6wPRoJL3rGxs37CF7jUdZJ16PzdeB2yageXR+jpKPJSQ7dGz8jG3cPnESR/apORSbZQTk43DTOJYHh68mSt6OhKX79+9fTdh3+fIMvNaiJJxJPsryYhnil46+AvGBAzdAPLJjGGJeZuKk78q5XQ3/IP6B72VmZ2chPk+JptmzIWImD62Tz43vAziZHif4u3Ae7wlFRCoV9HHwGsqJBPl19vnanjn/se/QpbUk7vIQrZegEsra8DsVRVEURVEURVE2iD5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0ajFUmwomdr+agHq5L3oRqQ5lFEcjl8T6G/APHE0CjEP/DgGyF+6rmvQPz8afRsiIj4AertSqU+iFtN1FH6PmqDq7OovwtIP9o3jHUWEfFD1FXWZvHcx0nLVi1jHU6fRU3gwADq+URE0pkSxE3ad7lNOuoO7fHN3pMwYD2pSC5PPht+Do2vto0Tfys+o67jXdiAtYH3y2btZoH8Ofz+RdKwdijPhpegK2etOscR7z0erefZWB/+DOdlYb+F51GehARPRzaLGtJ0Gj/TvW98FEVSrZhzzPVmdHBitV4dyjNTqaJm2UnQs7t03rto7/lKGc+pUl/EA9g4N2Qz5hQeUL6JgPf7pznSj2l/f9I4Oy72uUIR/RUiIp0Ozptpyv+R97AtQgtfP3cZ58A4TshBQh6MFGmOOyHOaW0fj8G5PVizLCLi13FeDQI8r/yKF9Gyt8cjpPQIGpuzs+hT8v2EfEVGTiPsX5Exr1KRCb6PhIphSMewHSvx31tFs9lanR947ao3cO5qt9GzISJy6dIliDmfToV8b/fdfy/Ew8ODEPu+6ZfgVjGWbZrfmk3MB3H6NOYke+KJJyAuFMx7wIMHD0LMOaB88u/x63yfsGPHDqOMTgePwd4S9mhks9k1X7dT5trhkq/j+KsnID527Pg167MW34p3i4qiKIqiKIqibDP6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwas7WWeCu6rudOzcFrqcFpiO0M5mQQEYlCVMuRrFcsFzWzw/2oKbttF+rz4hrqKkVEQvKGtEmP10mjriywsAyH9rpORxg7vumfyJAY022UIR6nPZQbbdQEvnwa90yemjA1gCRNlHIF2/fsPJ5XTbBx++pY5nzafMasDuHf2pTHJO7K8RB0zH3urzeWZXV5A1jL+hp8BvwH45DURhsogvf6X1igfCfNBsQDgwMQ96OlSGbncJyxtlPE1NA7Lva3YhEPmicvzsIC5mCpVMpGGUbegHXyYnAcBtgu7OEQEXFd+gztde93+YpYD71VNJu+hFfmMZob2FbgJ/igeI/3N9x1N8Tnz6GGea6CHo1CCueGoT5zrrh46hzEDvsJqOm5nS3ykWQ87HN8LUVEFhZwPhobxQnrnnvvgfjxr74AsU9t6XpmP48F35PLYb+uLWI/rtZw/soX8P3pjJmvyPNwDWIdfntFlxz4Wz//ifAceP3ZpnQ13zDrNRF7xMqL2H+bDfP65gucF2ftPrB+/qKkz0Rrxt3zv+ua4/B6Y9v2atulKX/YpYtnIWa/oQj67EREjr96EuKFefzM/DzOfw8+eD/Ee/buMsowmpm8DNylHVpTxycnscyHHoL40kWco0VEykvoLWleugxxvfEixKPkwdi7bx/EA4N0wydm3hTO1WH4QclLwp4aO5Xg96Q1mMt44fmr5xGGG+9/+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUR6NupcW1lj/y+CuoPR8ZQN1asYB6WRGRORv1X8NDqEPLF0gzZqGez6V9o3d4poD0xhwe4/Qiaszu3X0TxLkR1MYVSfM8khmCeKjf3N84RfvSP/VXfw5xqXke4naEz3f1OplVEvShURr/5pCGuRnhMTIpLKO/iPq9ZhrrLCKSp95gp3Af5tnK1TLCztaLd9Pp1KrONSJdOe8pzbkjkmANralHpj9wXoSEJjD2UrcpD0aIcWWJ9+1H3WOK8k8k6XxLpRLEBw4ehvjuN3wHxLt3o671+eeeg/hv/uZvjDJmZ1Fzyu3Lmnqf9tgOSc8cBGYf5z3U+VzDrrbja7dV9JWGJZ1e1vG/8PLL8FpMPgPed1/EkAsbnoCQcj3E5CEr9I9AbCVM4e2A/DOGvQb/wH3OJm9SQE3dbpvaXM73EpHXbWiEPHzeGYgnd94IcSZr6oeDGvaPwR1jEC82sM+NjvVDzHkMJiamjDLSGZzzjr7wPL4hWvFoJPTfrWAtjwb/Pel9642bb1ZPhsnabcE+pFqV9O81019VKHIuoLU9GNyWG7o+HNMfur0lSbmIrjfLHovleqdo7mo2sQ05z42ISKvFuSDw9QYd4/GvPA7xmTOY4+K+++4zyjhyBO/xsjm696G8GfPzeK/66quvQux38D40SPAm8LVYWkL/MHsdsnm8z7RsnMfTtO6LiPQVi/gZ6j958gJzHg1eox2PPUciQt7Jvj70tRWKV+u9mTlQf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaLSbloQr+t9KC187+iru3b5356jx+fIi6taOPY/61wP7hiFOZ7B69QrpvlumjnIwhaLGrId7pd904I0Qv+Hh74U4ItmaE2MdbMfUtXVob+ihGLVrsye+AnFzAduqNYdlVOdRzyciUlmkXAl96B3ZtwvjsX58hty1EzV/5YKpATxL+rwvHEcddTW++pmgvfXPqHfeMiquu1wuyySDgHMumB4N1pG329h//A4elI/h0yG5TBGRjs9eBDwme0k41wJ7PPr6UJfpJ+zfXyQd5T/+x/83xPdSDoN8HrWbb3oT7k1+5513GGX8j0/9D4j/4ctfgPiKb2EV1vW3cMLwfXPsmppmfsfVP2yXRyOI3a45AcdQFPCe96bPgHOzROzJiPF1x0F9cS6HvoPKkpmvKCSPhinlxjJt8oGwt4T9UJ0kjwYNjgb5zgIfKzEyjP6I2eMnIO4n35GISCGN/TaVxba4+zveBPGNN6Lv49TxYxBfmUu6iUnbX55HD5VtLbddUv/dbjbiAVg/GRCPK37/N57Dw6zX1o9lrkO7hWv44qI5rsYncS62nbXbwpyjenF9tpeFhQVJpZbnC9vC+W1xEXNeJM3R9Tq2K1kWxSL/xI5RvCdkX8CXvvRFo4xTp3AuGRzCXFWcX+LMGbzPqdWwjuwDGRjA4yUdk3NWNBqYP+vkScwf0mzhefcVzPxI+QL7OnD+4jWY4yvXbfXzCeuTzx7SatV4z2tBf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUGdy2U2KvJBaxc/jRxSaaPesN0yxX6sMES+dPoQHmyccxGcvenfj+agXN5HYKjZIiItks/m14AE3ppeFJ/ECM5m7H4oRZ+CxmhaYBOOPiMQ7f+gaIL/aj6ebsMUxC0y6iyXHhMpqqREReOo3nfuEMGhvTNprZJgfxvHNZNAKdWMLkVyIi5zp4DeMUHrMwcvUYfmvrTWspz141cNppSo5Ez8xJtYtjbAPDqkfmtYhivvRJOQF9ym52aRZNYHOL2OcDNoOTObjjcBJL88xuvvkIxLfdfivEff1oIvPomF4K++/0tLmRQ6GAmyo06ngenRYnNUJTGZtnk7zcbJSPY467/709ZvB0piDpzPIcM0BjbIGSGiaZjW1KzLRIG2SEZCiPeTMB2gzACs12cMikaVFPD6kjs3FROGGfj8Zuv4PXfvkjMb0Hy6hV0GA5OoSJB1+hjSeOH0OzpIjI1CS2t5fFsTBByVQLRYxv2I/9vN4oG2Xksmj4/Z63fz/EiwszIiLSarXk03+OiVm3AstKnAJERMSmzTwSh8g6Pmwj6Rx/fgPjjuvHBntzro4oXjtRamyZJlaHNzgQ2rCANtmIHdqUw8fX52fM9TGKJrCeNo+btec43ughqSn5PRJzW1mJ/94qSqXSqsmYN1eZmBiH+MKFi8bnl+i+I6LL5FFSub37dkN8882YjPbixQtGGTMzMxDPzc9CPDqK8wibu2+77TaId+3CBLdJ8NrVblPiwcfxnu/YMbx/e/TRRyGuJtzbVsmYzUkBuUxO2Dc8gnNuvogJ/kRELFoLOBFh9xzD881a6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo0oDlaljlYONWReEeM85hBb/lsaNX2FAUy4dKaCGrPjZ1DPR/I9mWuj/n25XNSYvelW1NcNkM6XJZGs9RTWj9pJwkrWvKOevTS0G+KgXoZ4iTSnlbLpb7FSqIuuUnK5GUqQVTgxh+8X1NA/XjE1qDN5SgDTRw1ud9XBNhPHXW+arUjclSqtlcxtmSQtMf+Nk6WtnWBpvddFRNo+/s0PWeOIcbOBvpi+fvSR3HIn6l5PHkddpojI4CiOPYcGiuvi676PfeGlF1+E+Itf/JJRRoc8F5aFZTSbqMEv9GGyoA52z0SdOXsaOCljd/vHsUiY4E+43hw/eUa8lcRHnTa2ScajhHKuWb+AkkSeOoW+tHodk3XGlKBKyOviJbSjTXphy6Wko6StZc+GmVgMP8965OVPcJI/8oWQh6dRxTjnYb8/Xzb7eYMSb+XJDzW3gBrm7DnUarsxedDEnGf9DvZj181SnFr5v5m0cGuI5VoJ7nhMWUlfI7Inw3jP2nPeRubAa3lIrh5jnSSAbH7jAyYkyjPqSccM2WtJXky2dCwleDRimje5GpbFnjJuq/U9GhH7UdZq7m3I7RcEoTjOcmOxZ2BsDNeqfN5MOnf2LCYrbvg4JosZ9A3Mz+N9DCe6KxRMnwEntc2n8X4sk8b1cGpqes242cB7r0bTvO9cWFhYs56XLl2CeIT8Ehcvop/l5KvHjTLOnD5Nf8EOMD2N9eaEfQ1KhphL8Gjkcvi3iXH0JU1NXU202ulsPGmp/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbn0bB8iVa0jTXKP1Hx0GcQiKnjbVVRx5bBQ8jYaAnic5fKEJ+/jPrliDTRIiLTWSzXdVB86UWoCbRYpxuT3p21nEn6WNJ/xqTVdItoWMmPoZZunvaCXlpAnbCISCbGeg4WsPFO00eOX0SNaWoM9c0NC/eLFxG5eGEe4t051PgNDV3VUXcScgRcb8qVtjjOSh4N3sN5A3J91uWyJ8ChU2I/RUybfods8BGRchXLaLUpNwft525R37mi/1+tk4t9aXq32eejGPWflTJexz1TeyCeXcQ8LZdOo550YQbzQYiInDp9AuK9N5YgrtewP5ItQFpNyqvRMTXu3DZr6cO3K49GHFkSR8t9Lys45x2Z2AvxyCBqg0VEvALqlqcPHYL46AnU5i6Wcc5skS46nTbLcGkv9JA07hFp4KMI55YwQEONS30yCZ88PAEZbPwY4xrlsAhpXk7SXpcp58jIMOZZOkV70595Ffu1FeN52Y7Zh654MK7AHqp0ZrltO7Rn/esBzoHB89fKu76hMjYy7vg9Zr6HtX0eNufZIE9QMaE79lMuqrkyLog1zh1j8dxP9zNlM1dMp4XX3Mun6R1rjzPO08TXa+VDEG7XPHctpqd2reYq8zxss4By/gTsLxORZ599BuLLl3GtOXjoBoiHhoYg5lwRtRreE4qYXpFWC8dwQN6u/r4SxJcuUh6OOfSJVCplo8xaHedl9q9MTKDXIZfDeZvzTKVz5jofUnc5cfxViAd3DEOcIh/1q6dwDe8rlowy2J8yMYF55x5++OHVfzebTfnjP/mkcYwk9BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0amPyVuavkjUYc0ufTeypKpwd43WIK4L4eiMyeNWrolwTwbzQoes9nAfa1FRHZaqO3tNNCrUCuXIc71Y81jl/axZr+FsQe4iNDfbNJeciNbIerxGh0878WWeV4XKMdIx0Z9aGkQPRhejBrT/tIgxA/ccNgoo/7E30Pst1Gb6DpX9eURGxq2gJNn51d1rYYe2dAno05dRFb9HVfo70e9fIE0t0MD2KZ9fairXFg0vTSNGdwPOyZ9seeirjWbRS3m5NQ+iA/ufwPEhw7uNMocH5+CeGIUc8dIiH2nVUEPR5o0/ekE7XCB8hxMTh+A+JVXUB9//gzqXDnnRVIuhqS/dcN5NLaDXNaRVGq5vTIxXrv79qFHY2oM90oXEanTXFGltg/oxAJqk4D2Lk95ZptlSN/bIK10m3KeuJQbiIcOexksxxxbdoTnlcqiPrhBiVSGR1F7vXM/tt35i6ZP6PEvPQ5x3EZ9dn2hDHEQYJ3SedaUmxpyl8xFM7OzEJcGl+dRv2PO0a83Ej0A2wH1ac4/wTkvrAD7dJ7G+jvvRB2/iMiR/ajL/+Ljz0L8KnkWT1dxzW2EOL/Va2aOgKUGVmSgSB4Ni/2ea09SpndFjJwh7NHoniPXmy+vB8W+ouRW1qwbbsDrcOrUKYjZTyEi8tZH3wrxlyhnE+eXYO8Cj1l+XURkcBDvdbid+TN8mZaW0At2jLxfmQzObSLLOea6cRy666N5n/MMBT7e2ya13ciOHfgZaosm5cng/nHhAnqBjzfQwyYicubMWYgPHMB1PtXl12Pvy1roLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejdiLJF7RBEdt1IfZKdTtZobNfYB37sc9ehcu4V7DTz6P+/ufmGlA7Aeoi40SNI4LZdTtNluofevUsYygjdpNN4P13pAUnDWnAekKy6iNkyrq1zmfiGRNDeDJ2TN4iCbq7/oKqBc9vBc10Ht3owb6hvseNcqwqNwvHv1fEC8sXm0rv2Xqm6837a4yzT3jKXZM/arjUh/18ermbbz245Pol3jzm98E8de+jnuCi4g02k9SvfBZnjXgO3fuhvgd73wnxI8++p0QF3Nm/hOXzitu4RhYvHQa6ziL+vcG+ZZKCTkMvvPND0E8SL6QPdOY/+H/fP7zELPOlfdcF1lfU45a2u0xadhOe9WzEDuoo33ipacg/torSXuh42B/eh7nArsfr+89934HxAXKyVOrmPvIT+/dD3GljvWsVlCDPEe+otlLGHfaqMXlPixi9nPOM1Gr4FwfWzi3t30cr4cP3GiU0aG96Tsd0iR32DNFOWnI18Z+GBERh/pgNoOfsSSE/28nPFx4/LzOUjCsYtSbtOR3HUIf2r37UZu+dxi9myIio0Vcu37gPuw/lSqOk6+dxXH3zAnsO7M1M49GbR6PMTSKXgCbcnNYnMeEl6QNWGiMXEJdeTbiaOsvcCbtSWblhiUg79/IDmyPJA0/+7/mZtHnwetCh7xQ7F3I59FnuXwMvDc5dfoUxJOTmBsin8+vGbPXod02/VlcZkh5hBZDvM9sNnENZo9pLm/eA9pkbhobwzxCBcrRlE24j+zmxInTxt84/8fzzz8PcbdHg6/NWugvGoqiKIqiKIqi9Bx90FAURVEURVEUpefog4aiKIqiKIqiKD1nUx6NMIjFurLnOu0T3CKd+MuL6IUQEQlfegHi/UO49/XoFPoKmi7qY3N11JydvmTmMThPOsovP4Uas/EJ1DiXBochzmZRI+2mUa9nJTybRfSnMESdW33hOYjjBr5+5OaD+HoG8zWIiHz1xRMQX57F9k2nsf1zOdSCT5MucaSIsYjId9z8AMTH57HtXrl8dW/yYBv0oSLSlUcj+e+rcYKGnyWxnOOC48nJCYgnJrG/XrqMe+yLiHz/938/xCmP/BMk1B2kXB23UF/IZ1kjbu4bznv6n33xaYhPPv0ExIvzmB/lpeOvYhn9OCZERAb7SxDXywsQjw7jeezfj/6W2TlsK9czczEYetwW6nEtqzuPRixBsPX7yPcXSpJOL1+T4gC204Ex1JZHsTm9XjhzCeKFE+hteeTBN0L8zh/6XoiPvvwSxCdOoHdLROQf/aO3YD0E54LyIuZReeXFFyH+8hcxn07QRj9FXz/OoSKo3RUxfR058r6FNBptip0EAfv996Ff5dirWO+L589hGTRHeZRHx0+YIxYXsG0i4Tw4y3NzzJP+FmFZ1jW9TMafXzceDTYxYts5lIXrzoPo5bz/IN4X/Pnfmt64FOWCefv9N0O8cxf6PI4cwbF77Dj6lr52DOdIEZGwhe9JdzDnQ4PugSwb+05E/THp8vAaxP4AzCW09Rc4l0tLLrd8Hxb4OF/HEfoSUilz/hsfG4V4eBjb8Otf/zrEi3Qfyf6wHZRbQsTMg8G+g74+nL/YTzEzg/6d+XmcE4aGzPXR97EPz82Z/acbh3IR1WpYx6Eh9LuIiJQGsN62hWXmcnjfyOvjrl27Ie4rlowyLl/Gcz97FvNqdOf9Ssphci30Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPhp2yxE4t6y190lXOtNEvcbli6kjPnULd7osWampnL6PuO53FfYFTpEFrdcwyvBC1woN9eIr+EmqkL73yd/j+IdSDRlncjzuKzDId0l46FsanT6G/Iqzjee6hHBC5EDWGIiL/16NvgPiJr70C8aUytn9+EM+jNIx762dT5v7TeWrfTBb9Kbab7fr31ufRWEufzHJVxzG7NusiWdTMetE3PvQgxKOj2KZ9fWa+iXHa23pkuARx4OP+7LzXei6D9a5VsS806mbeBNZAzyyWIT7xCnowFskvkR5B3WxmBM9BRKTto461TMdYrGCZ7RZqTvfsRf9Cu23qO8+dPQ/xPOlcu6/xskcDPRxbQdopSNpZ9mjs3Y9janoP+lJcjxPkiEzswXbJ7kE9+vg0eqfKlOPkxHGcSxzbLKNCn8nm0XeW8bCPHbgB671zAjXIJD1f9ahAPUg7XV3COrQa6PM4fwHn4R2j2AdrNdN/F6bwXB0aO6UBPM/BQfRYsafm4kXMFyIiMj+PJzswWII4nV1eX9ptM0fA1mDJlfFuTIW07iTNlHFsmNvoDfx+8hXw64lOA/LL0VvYj0PSfinXsK8MjB2C+I67DhslXjx9EuKzlAvGzWG+hj1TuK7fW0K/wfQOyn0lIqcuY96B2Tl8T429bZxbxiK/RUIuFrY+GtcL2m4DiTh6TLvZWs01E4fsyaB5IcFDYlEuiIFSCWLOR8HjzPNwjC+S30zE9Evs3Yvz2yD5cufm8H7smWfQU7uwUKbjm9eN83vUaZ3mOZPvY2o1fH+5bM5/JWqrQgHv15aW8BgDA5hvZnAAfR+ZBC/w4iLeb0QhedS61o7NeIT0Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE2ZwTP9KXHTy4Y8q4pmFo/MgFa/mZCrFaOJ5sISGmicDBqUZypobqnNogG1k5AvZP8oJg57+MEjEI/n0JTzxONPYh1SaAg+/EaMYxfNSCIiFiXEWiqjgemvP0sJ+1w02AyfrEB8cBpNPCIiD91zAOKpEWzvf3gOjWq33/NmiHdMo4Gu3EIzpojIEy/9LcRnZk5B3A6vmn+CcOuTBXWbwdnYbZOh3rbNZ+hMBhM+cpKxrGGGxyRjg4OYMOfADXuMMmpVMmuH2BdcC02HtoXn0ahigqJaFU1hS5QoT0SkTubJxVk0US+RaS/K43n0D6Nptp3w/UOLNntoNtDUXqtgvRt1NJXV6/j+hQVzw4NKBccBm826E15tR7IqEZH5+dnVfvO1BrbJl7/+NYgtw8gpUnKxD0ofxicuoKl1npJHseGyUDDnirMnMcnS0DCaAG0y8GYoeSJvZuEHPsXmRhCFAs7dASVzOkUm9g7NHy+8+DLEjRaOExGRiK75xCSeV5kM5K0OGoLTi9i/khJO5TLYvp6LY6HdWh5rbP7cFtbxdW/ILLyu+Xtz8XI9OHkqvc7jmubqLz+LSSxHSzgvP3S3aQY/MoV9Yf4s9rfmEs6bi0XsryNFLIPnehER28YNC2JKfFqhBK7pIm4e0qFEhVZozrOhrNfeVuK/t4pXXn5FMitjhA3Ohw/jdfESNsOIY7z3maLNLw7fhMb/UyfxunCyPU6uJyIyNoaJdfN5vNY87ptNXD95HeI46bwi2tEgS/cOLu2oYSYexPvMgQHsOyIiGUp62m7hmjo7i21x/jxuVpDP4+Y1MzNmUsFLl/C+MEPzodN1Hk608YS5+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUR8MPfImdZc2g30Cdrl9H3Vsmh3oyEZHIRt1tdhDfY1fxuac5j3r3MEa9WNYzdbJZD3Vrjz/xPMRDlPTkuZcxgdZTZz4L8U/vuR3inXtvNsrk9C2diBJLpVGHODGM3oA906jTHh9N0DZ6WErfCH7mwTdhQr/pQ3dD3CCd9VdP/K1Rxuee/jTEc3VKmNalK0xO1HR9WSthn2Vh37Ed8xnaIZ3kECVnPHjwIMT5PPU3SqZ3+JDp0ZibRS1wq479q9XCcROEOCaWFlBXaTs4Rspz6IUQETl/Bv05LUr+Y3l4jCDEcXP+9BmIQ8dsY4va06fEg1GM55HLYh8PIvz82dOYrFPE9H2w7+Yal35LefOb75HcipenUkdtb5XGmB2a0+u5l1B//tWvfQXipQp6V+IGHvOO2++CeH4GdeEiIsdfRX16fwk1yv2U6Cnt4bXp70Mf2sAwJrgqUzI+EZFWA/scezSGhlBD/wrV0XKxv3CyVhGRNiWPOkEJHnfuxHm2kEU99+XzqD+emEBvkoiIS96vMMbx2gmW62AnJFv7ZuQb9WRsxKNhlCmk7baxzc/Oo9fmP33qixB/9etHjWM+etcuiCeL1Kc98t9R8ry5Wewbp0/hOBUR2bt/N8bkr5t5AT9TcUjfnilBHMfmGmVx2xjNG6/14nWnVCpJNrt878E+A/ZNJvUD9k4WCngf8/DDmCT3pVFMHvv88y9CXKngHCwiEgQ4L0xP4zjP5nCuaZDXbnISyxwbR//ECCX2TYL9K+wt4XuP/hJ67TJp8vKJ6QPhZL+XL12G+C//8i8h/trXnoI4lzPnWL4+nEAx6vJ7RuHG50D9RUNRFEVRFEVRlJ6jDxqKoiiKoiiKovQcfdBQFEVRFEVRFKXnbMqjIR1rVSgd0z7oJFeU0DL1W04en2tqtH+x38Bjtmm7difC6h7cXzLKuP0G3Cv4+LOoXz/mlbEOPla8Vcc9ky8toJ59ai/q+0REQsoPUhhAjfMP/uMfgdiqoiZeWq9AmE5hHURE2jXU5rdqqIkfmEJ9cpr2jj51Ccv86tHHjTJmuIwmXoBM9qp3xPa3XjAfRdE19b9OgieD4f2zI9oHenR0B8QDA6ibjCLOH2Du9Z/ysIx6gB6NmPwRjoP9KQzRp9Ch/BU2a3hFZIj24JYRPI8WjbMq7Qu+tIRllMtmjgu/jecRBfgZ18GxmyaNqdfGtvI8cxyxJ2OtXBnblUfj7KtX95HfuXsaXuM+mEqZOtvFPvRfLdBe57FQTgvqH+Uy+dYCMxfE+Qs45y2UUZ+epXwynAPp0CH0Ko1m8PNjWZxjRUTSHh4jCHGslEawjzZo7D34xjdCfPI05gIREYksbItLl7HtKlXsoxOTOyGuUR6N4UH0jYiILC6iLy2fxesVN5f7XWRvT/9bi434J/hPPAe+Fk/GuvXgcc3vp5j9Ok1aX585a85P9Spq9x88gDkvHrwbdfoO+SfOnz8G8VwZ+5KIyAj5UKM21rxAc1q0hPWMyG8XOKaPNebp/XXgS+tmYmJ81aPG15nX5sS+Qj4DvndyHJxHhofRy1Cp4HU5eRznOhGRB954H8SPvu2tXAmIauRpHBvH9bO/H+8DkvJosLdhvdjINUPX2bzXEGnTDTHnUeGcJG9605sg/tSn/pzKMO8l7rjjDoirVezDla6Y8xqthf6ioSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nM25dGImlcldo6FH7U81Gslacy8NGoYC3lTw9zNYB7L6FTKEI/3mRqzvSOovfR2o1bz2Bna75009bfQPvVTE6jzTZalYT28NOqs9990AOJOsBfi6jxqhRdOfM4oYeb0SYhTOdw3vDR4COIwwopenLsI8exC2SjDibDedkTCQT9K/vcW0a355D2labtn8Tyza3suaitD2gd6hnISzMygXjubxnwCrm0KaB2XdPppfI/vkw+pg56MmES6QRv7p98xx5VNY9GntwQR+kIi8pZYFno48lkzP02bPBahj+9Jp7Dv5HPYVqFgGQ7tnS9iakZt1vxu8x7yIiJ//w//sOppeOtbUfu75/AtEB8/jfu5i4i8cgrzh7Ra2I4Z0nlXKbfI3Dz2yVRCPw9C0pLTpLVn3z6I774bc+5MTqLWd2CgBLGXwjlWROTMOTyvi5dwLNUj1KNP7LkJ4stl7F/t2FwbXMoHMzS6G+LInoe4fxh1+fc9hHrvQs4sY34W97s/fw69bVdylHQ6pjdmK4jlas/ntYg18Uka7CjavOfiGwfHMS8rvH4aoU19PGP2P7YMWjaOo3q5DPGL85jv6JkXXoB41437jTJqLSxkcYZ8a2TZy9XRxxYI1iEcSMiXtY4no/uaJl3f601fqST5vOnRElnf77P8t3WuNcUpykeRIn9EKm3Of6Oj6Afj+nY6OOcOD+O80mq11oz5vkFk/Rwi7NFgnwfHSV5ULoPHsk9r8m7yEB6+Cb13X33iGaOMs2fxPtGj+5l67ep6xJ7XtdBfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwabb+9mh+DZMBiU14NO23qB8MA/1YYQh3avsNjEO/agd6G8hnUPC8896xRxunjuFd6h7T8bcF4fBK9Dvfedz/Ejoe6uGYTdZciIj5p/lIp1Ic6WdQAuinUDKYzAxA3fHN/bbt0I8QTBx+GuJ/aqhVi2w4O4d7QE8Oo3xMRiQTP7bKFotNOtyZwG/aRd11nVbto6j8xTtJQOy6eD+smz1/Affmfe/YoxGGbfDElUyvskVfJ8dIUY19pNLC/NhvkIfJZD5rkbcBr3SZfR7PO+WqwDJeuc+iY+UHS5K8Su4RhB8+7OIj9LZvG834pj7kZREQsm/cWJ49GtD2+jG4uzMxf1cqmUc8/vvsIxGcr5vS66yC27ejoOMSDRfQNRDH20TBCLa/rmjrvu+9Dn1lfCeeXG2/EuWTXLuzXrBdOUx6NywtmHoPy6csQNz1sm1YN+zHre+0q5vAJI1MH3WzhWGGtdEBGraeOvgzxjkGaV8MEvxN5C09fwPM6cfJiYllbhSVXHQ9mToyNeDT4L9d/TMVcBsnPbTImxJxjgCqds8zz+u43fwfEt+zAcRPX0JPB7dBfxFwJM7Po91n+EIYZi/x45Dsbo9urFOVrqBewTBGReTpmi+b27ku8HdNhvdkUWZmneQzzmpw0hsMA/8bXwaWcPnwvtWs3zlWXLuP4FBEpFHC+2myuGPZCGPdzjrkGM2aeDLqOVCfT75B0cdfOvcHnYTv4hvvuuwfixXkzX9uxYycgdugYO0bRe7lR9BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj0a+lBV3Zd/igDauDkPUHrueqWNrNFDXWq7hHvGVEurU0uRtOHAQc0Ucr5v7/b9w/FU8ZhX3ui4VShAfueN2iHN9qC1uk9a/Xsf94UVEnnn6aYh5b/y3vvU7IR4cwP3cRVBDXRq/1yhjx8RuiLNF9LNElAMjCrEONdpH3InMZ8wm6aitkHMjXNWP+9bW7yNv29aq1pG1nawDjni/bhGJ6UPzc6jDfYE8P2nSi9oxnvPkhKmxHRkqQux52M6szeQcB4bXxMc9vB2HvBIiwsM4jnEsOg6Wmc6hhtVxSxBnE8S/MXkFqlXUG/tL6O8ZGMDcMLGPbe05Cd9xcF4AYyvxdTaZ3wKW6o1Vb09oo5/i1TM4N7x0HD0/IiKTOzC3w5vuR93sDbtxXNcpj8b5i+hlaHZMHbTQ9XbJJ9QhPfBzx45DzHrhNiVmuThnejSW2njxGpTvxYqwH/PFtsgvVaua+uHz5zGnRb6AXjfOuyIksz9JaU0yttkH7QDP/ZUX0KfVbC6fV5jg79gK4ji6mouAPRohezSSPs9/2dyYsqz1jQHraeC51S3BOS0iDXyaPJC37UL/l4jIm+69GeLRApbSWMLOMHcR89G4M2WIqwm5EubK2CcH6EQCugfyA4xTZGzNNdE7JyJSdXFutmhdD7s8elGCX+96UyjkV/NSsE+J407H9Pq1aW3i+0aeexyH8maQX2JsDOdLEZFMBufldhv7zzzlImo2cY5lsnQfyscXMX1t7DVhXwf7Q10XX0/ygfBnmPW8Izt24Li5465bjfcs0jjx6Dx2d3lkuF3XQn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZlBncsW1xriSlIWNKo46m67BtHjplU8KkiBKLtTipE5YxtmsfxDseMZPO7TpwDuJTJ9AcvjSPBs0zlzEe3Y/GoPp5dBB+6pOfMsp8+ehLELPBt1HHY/7Ye/4/EKdyaJwd3VUyynDTaOj0ySlLuc7EIadgIVWAuD9lGurGhnZD3JrFtuu0rp6H39p6M2QYhqtmcCMhDpkak4xTnOBriQzy9ToamjudxyHOZdHw1V+8xSgj7WAZmQwlfGyhAZA3DvB9Tm6F5jcvjQZYERGLEkUJxU6KkiRR32m3cBwGgWn0b9TRCHnhIo6bQt8IxFkyzKU9TsRkzg98TU03+PYn7HPdlDgrRvYUmQQpR6YMDpqbBRSKOA5n5tHcfeMNeyB+8tknIf7U//wbiPuHR40yBnaQEZ/GxnrGRLPVKdlUwoYEsYd/S/FGChZvgkBJtDgpm2MaLndmp6hQMh0blaI5IcY6ZRJ80JdOnYJ4qYJzwpW242u9VcRxnJCsdBlO2Jf8vu2oOCXkIxOzTYndLNoA456bcUz8k//rLUYJ42O4oUp15hLE84u4BlsFfL/04Xp49IVjRhlLVZy7D5Vw44+RPCXbo7k8zuIYaZdxQw0RkaCfxtb2T3mA53mrxmfT0OyuGYuYRmresIANxrGRjBZfX1jARIwismpWv1Y9+vtxw58cbY7CJnZjXUqATex8jPU2SEjT/Z2TsFmKR2sotz+b8fl1m24SR0ZKRhnT07ieeLSRyNTU1c1Mmi3e4OPa6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo2luaq4qSsJ+1Bjls2i9s6zzOQhzRrq1tKkFR7uH4Z4ZGAc4lwe9WPZkln94UH8zMEbDkB8afYUxJUaaXBJB7ewiBrqZ5593ihzaaEMsUdJZRYWUd/OyeU6EeoOXRd1cSIiVsS6eUrOZJHO2kbx4/TYbojtjKn1l5fwM2dmT2IZXR6HKCGh0fUmimK5IpdkvSHHToJHg3WRrL10XfRgLJZR//mVr6BefmwYNboiIplDkxBfSfB1hYj0yJ02JzCiOtIQ9RMShUWkB2UPhkWaes/GY0akXW8lJIFrtVDjzPLvwSEcmynSdhaLpIvNJvQ/1o+vmcxwe8TLmVRqVaf/6quvwGvjlHhsaQH9YiIiVhs9GudI913qR+34yOQuiPPDmKAqO2wmrMoOo0cjDHFcWzRX8HzE7c5+L/68iIhHhwjJgxGF6Gdhjwb7p5KWJtfGPsWf8SmxYBjxeWP/qlXMpIBnTp7FetIx4hWvSRhtT8K+KIqMOl3B1IEnvgsiU36+OV/Uhsqg7zNt+sxQFu8Dbj68E+Lvf+QuiN9w50GjRJeS4bUWcC63Xex/Xhb70q13oN/ucsfU5T/xNCZvPL2AY7dcxc90aE3yUnmK0RsgIhI75GfhNWubp8A4vnrN1/cEJXkb+PzWHqMueflKJVxHooRxmEqtnTwvk8G+kM9j/1vPk5H0+rXG5LU+s969yAZsIQacNJDnfa5jUoK//n70Fbourmk7Rq96mRqNtRMddqO/aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTXk0soXUqmbOtVG7xfpYv2Vq1mLBv/XTXtZDpOO2BTVgfgf3nc6lUIssIpJKowaatW8jNmmei3jMdhPLzFMehDfcc4dR5t9/4UsQs1Zuz417Ia7UyhDH6/gvREQC1jvSeRm6fPIoFPuwrfMtzHsiIlKroR+Ft8uP2lfrFVnbo5G/CpbPHo2N7CHPWk7WRWYpT0Iuhz6ket1sw3oDPT8pEq/ztWb9spBmtdPBvapdMXW9PNIsC4c1yz1b5AsJfNa5mgLRVBbHZnGQ8mRQW+UL6F/pLwxBPDho5nGx6QIEpMHv9hJcK5fA9aavOLCq+X356MvwWqoPPWZnT54yPu+PoqfC7+B5vPDKCYjvuhfnm5tvw7gZJeSLEfI7uOtoqSlm/1VAvqI4SvBncV4MOmYYOfQ6j1ceB+Z5WeQlcrmb2tiPLfK+RR0cmxdOnzbKqC2hb8N1aCx5K3l8OHHRtwkbG3fstcK+kab++UPf/QjEb3sL9vFMhGty2ERvhIjI3NwsxHnK17BzN65/bhrrVJlBP96NU5gXSETEo2seVLFe7QDn1QrlVniVcj6MjeJ8ISJSJH9n2DHPdTuxLHvVo2V4vcxENsbn2TfA+SbYd8W5IQpFXP/2U94hERE/wHHfbuMaysdkr8J6OS+ScnQl/a0bvg9N8kfg+9cvg+vl0FzleXy/g33L5vxbIjI8jOvyjh3ovZycvJpHo14388BcC/1FQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpedsyqMh4oms6L9bbcoHwHvvs+1ARNIZ0h+ShO/suQsQF2zcd3ogi/qxgT5T4+g4qLv3SA+ajlDjF0WoY/NJM9ghneVdb8D9tkVEBkdKVAfUvu3ZNwVxu4PazhS9PwzNxovomdAPSEdIr6czuE8460t3DJga1DsP3wvxXG0O4vKZ8tVge7aRX8Xcy5o13wmfoQ3cg4D8EhZrHtF3MDaOPoPdu0yfgUP9LaIy/DbpjclgwecVBbQXto39W0TEp2NErCmlvdl5y+8gwDqzjlZEZGYO9e21Jo6TqUkc24ViCeKBfvQmDI9MCMMa047hHbnKNlk0pNEK5MpwtcrYJs0a6qn9wJxez16Yx/fQWK808ZhDNLewh6yR1EYxeSos3k99ndwIHBt+CvPzvB8+HyQy9nQnXwh3Sj6eiEQ+nleL2qJO+7oHbbwerQrq+C+dMz0aEfvl3GRdc7xOG24Pm68TX8rN7t+fnHOAcxphfPNenAve9iCuqVOUn6i+iJW8fB6vo4hIg3yPdZrLG3S/MjKNc3eH+ufiHI5TEZFhyuHg5dEPWiV/zwit65xD6dLZi0YZlodtw17L7tPaDpukZdmrXgG+9ut5CDbCen4Jn+7HxsbMPEJ8jBrlSmM4zwZ/fr28GiLr59Fg1vN9JLWdkdNnnfZdr97NppkHo1QaoLh0zWNupF2uoL9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTQ6nUiilV37ffJkpDzUswcdU//F+7MvLmEegrCDeuOJIdz/2Kf9j9sd3C9ZRMTmM+K9hukNLnk60gU8D8/D94/sMJ/NDh64EeJCobBmLKS7532drdjUvvGfWrz/NOli2aNhkaa4P0N1EpG7D9wP8bnL5yGeXby8+u+Ol2DC2RKWz4P1ihbp0Fl3KWJqL22LtJi0r3REJqL+PPp7vASRbOBjv+e8GSF5NjodakfWPVqoEbeM5AFJGnqqE427VhvLbLSwL52/hPlURESeeuYoxBMTqI31SMuezaK/qo/yuBQK/UYZhj6XNedduv3tyqPhpB1x3OV6Zgu4V/+5S2cgXqyY+4yzH6YTYH+ZncXXHcE57szlMsTVtjkHOjQW7Ghtj4WxBzz1Qc7LkpBmxcBwUK1zuczLmZCHKcR5cr09+B0eKxG+P2kspfN4Tdk3ZF9ZD5zt+o7OkmtdAJ4HkjwbfO03o7O+Wv7a0Pb9cusBzHXwf7/jHoh370EPo03Xea6K12121vRoLC6in7C/H9c3N43r4fxlzGlx6uRljC+bc2CphH1yKI1zXkD5GpqUr6jI+RksM49BYx7nDKsf+6NYYfK/twjbvrZHYz3PhkhS7oe180m0aX7jdT1pHcjlcJ1O07VnuA4cc5lJY2azfonNxhs55np14rbk+VLEbKtWC/t0d+6MRmPjOV70Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPRirliJta0a+x3pASKyTlgnA91H9xbggng7puL4NaO9aU1eumRszLo74uncZTDEP0ZORyGLOuMOXR666ZxyCTQV9HKkW6epLvNUnLyXtDp7J43ssHQX1o20f9Z531oDlsSyEvSlIigoKN53HLDbdC/PyrT18t3zG14dcbz/NWdYkeXZcMeVKyOdK2ikjG0B/iOTiUb2LPLvQhDPThdfWDBI8QySbDgD1CeIx8Hq9TQF6aMMb+7Aemdj0kDX6TtJMRHWOpivVeamCZJ8+Z/qrz58sQ7969C2I3he2dTmMfTqX5dfP6sB5+25JlrMHA6IC4K33v8E2H4TWLxpyVmzE+n8/iGLNpXI+NYG6gAfJ31cMXIM6F5lzhUL4YTg3BKSos7rRE/BpMGfwJm+Z6m8o0c3eY/dyy8ESM3rHJpBCdZsv4W0DzqMU5IdLL1z4gf8hWYVm2WFby94P8d/atJX9m7TYyX+cyzM/YlEuoMYfjYN8w5qNI0b3DS889jwekHBcDRdNfGNB6mCaP2PQ+9IkEDZwDv/KVlyGeXTRzL7BHKDOI+T5a1CPrPpbRpnXfixOu4zy+x6b7F7vrZsLehkQajuOsehh4DTZyQCXklmDfAPsf2K/KnoF9+/ZBPD4+bpTBa2qW5tz14DqaftDNezT4vvK1eDLWK5OPsZ4Xb2AAfZMbOWa1etVXzdd/LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTZnBIz+WaMWAZNNHfR9NTG4qIWFaBg2gk5PTEB/efRDimynuI4OXk5AQhg2BASUWNBO5kUmHjsmG9dA3k5x4HpqFOmQoZGdkTMmefJ9MO03TiBZYaIp66dRFPAYZzaaG0chscwKsBCOZRdd0/zgmIjyw88jqv5t10zB8vbFtZ9WclMlie4yOool2z65J4/PTkyMQWzGaSxfKSxBPjg3i5yewjEwGjd0iZp/sdNCYzcnybBf7dBRj/+L+5mYSNgoI2QSLhrqlCl6r0xfRpDhbwXEZBKZRO6a2SqfRYJemBJAOJfBjU5mXMtvOS5G5jPvo68AbbmVSYq2Y4ErU5wIyxw1EeB1ERDL8ngJe/yOHDkDs0gYFs5RAyU8wEdpkBg95mifTMBuvI9qQgL+OihKM2gnObIy4jxJsuIxjc54N4za9Z50OwVMeJy4MEhKe0WYLRtLIFRN7p7X1m2GILG+IkpRoS8Q00m6EzSe+5GufYIylNkvTWE+3cE4899KLENermHyPu2MuZSZg27FzJ8TDY6MQ9w0PYZknMRntsVMXIG42zY1mWpSktrKEbeF4RYrJhNzG69Osm32oTkmL25exjLBjJf57qwiCYLWfcTI3NmEnJXTjvmtsnEPzGZvBub9ycj4RkWIRr8N6ZfJ5cCJQPl7SmOEy1jPK8/v59aREhuuZ0teLeX6IEtan9epdKFxt71rNTEh7LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY+GX40l9pb1ab6P+i5OXlYYMJPq7N69F+ID+w5BfHgaPQGDGUzsE5F2rtEyNYDNKurGhodQZ+8ayY5IW0faOE6yk2IduZhatzheR4/nYbM7pItr+aYG+nwF/zbXxPM4sgs1qjlKiBaTtjZMSOZkUWK3jIOay9sO3b7673rV9JFcbyYmRsVZ8bfs24sJ447chH1n327To5FJ4zk3a6gFbtT6IbZt0knSdfbbpsbWyXKyoBK+7qDOt9WhBEY29oVaDf0Vbsfs82LjtW60sW9cWMD+d24Gy6yQ36ZZQ/2yiJmQM5/HtuIEfQ6dB4+JVILO2iNfx+vBk8EUBoZW/SWRg/UNqb94CYmi2HPBvhTWhjdpXg09mlsSviuKeWzTW4wpkK6Nw7p7GgZ2Uh449orwtUtI3gVvp+RlUWzqz416rQMn27OoDJvF/yJi0d9Yjn2lWl5Csr+tIJ/PS2bF68ia+Ax5IDfvv0jQeRsXkj2M5jVJufieg0duhvgiWuFkcBjnkpEDmFyv1sb5yXZMf5dbQB19h+4dvvbCcYiPHzsDcTnA8xgaQ4+jiMj4CK0P1EdbPo7l0Mb7lTjiZMJGEeLV8DOLdbyfcSTT9e+t92hYlrXaR9jrwHB/FDGTE7NvgP0RnGSOvQtJdeBjcBns6+BjsheiTet8UiLCWg3vhzhJIHuDuY4FSsya5MNiLwm/h9ubj8llNhqmx4ITH6/VNnxvvBb6i4aiKIqiKIqiKD1HHzQURVEURVEURek5+qChKIqiKIqiKErP2ZRHQ1qyammIG7S/P2nlBkoDxsfHKbfD/vF9EA8X0U9hk7aOc1zYaVOfd+nSJYznZyE+fAPuUz84WIK4Wi1jGbQnveeZTca6VoY1gtxWuQzq4M4E5nl9+Sz6CSb7cV/wG/ehrtUl/aZNOQki29TvOpxThF4f6ruaNyAlCQLT68wHfuNXJJdb1j5OTeyA1wp50idHlMtERMpl7AszmIpEZukzS5UqxK6H5xwmbFtvka+F+4Yf4LWuLS1CzHpQn7TDjmkRkgp5lc5cQL3opXnav91H/ahDmme/Y3pPCoUSxMUC6pU9l7SdNvstyP+TMv0LKY/7/Xoa5K03ceSKJUmtiKsD9mKRmcFN8KG4Nu91jp+p1PBa1kLS5ZJmNjQMF2L4IdKk1bcizpuBsW2z34LyT2xA+89XzqZxwLkWIjpmkvY/tjgfyNr9g20eIa0f7MdYLpj019x2K8ewos0tnb3i0UcfXd3Xf3x8/Bs+3nprl8U5U3hv/oRbCF5rSrS+9ZFPKUX5iGLq4yXqK1bCxOvQMflaD+zGe4sjY+gbOXjPd0LM/VVEJE25wSz2q1CeFu7T5rgxy6CUWtKh/DM79171udZqNflX/89HjGNcT+I4Xj0P9giwByDJo2HmcsD+ZeY5Q9gzwB4OETMXRJ18LtUqruvrHZOPlwR7RTj/B7Ne3oykOZaPyfcK67Ud+0aS/cZ4Tdea65Pa/prv3fA7FUVRFEVRFEVRNog+aCiKoiiKoiiK0nM29Pvv6k9lXVvahvQTmNDPpX4btzETEWnTloAN+kmr7uFPOyydiv31f9bhtPcBbcPL25B5nrPm6xadVxCYZa73k1W7jT8puvSTo+9SHeqmdKpVx3o1qcxKpQJx5zVIp1ySfvA7ql1SotrK9ravZQvFzXKljGbz6jaH9Tpt8xpT34jM/lenbVwbTfzpsdnC69SiPuyGLClJOHcXj2nRVqN+G+vZor7RodinMp3I/G6g3aEy1tlCMCT5Fl/oKEGaYFlYb/7ZlscdjyOWTrVaeC1EzJ/R1+pbV17biv7XXU73lsbtJp4Dt3O7bZ6jkCypRefcJAlIK8R2NspMkE45EV8/lmuRxIMkRMYv4lSnOElyZK0ZCk835u63JOdKuK7GjreblE5FfGKvQTp1pXE6K1tNbnX/6x5XPOZeC1shnfJoW1eWOXVovokd3kKXpVPm1p98TO7EDdo2mtfkoENb0Ce0S0Dz5vWQTvHtBUunuq//FUnQVq7B3TKkIMB1hqVUQWBeJ96+O2mr2LXYiHTKdVESxOPEcdbeMrfVMqXD68HXgNM/MKZ0CuuUdElNqRrW03FwLLLkiz8fJqzzMd9HsaS163pduQfbkJQ23sC7zp07J9PT0+seTPn24+zZszI1NXVdy9D+p1yLreh/ItoHlWS0/ynbja7Bynaykf63oQeNKIrkwoULUiwW1/0GRPn2II5jqVarMjExsSlT0GtB+5/CbGX/E9E+qCDa/5TtRtdgZTvZTP/b0IOGoiiKoiiKoijKZlAzuKIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RB41r8PDDD8sv/MIvbHc1FEVRtpwf/dEfle/7vu9b8z27d++Wj33sY1tSH+VblziO5Sd+4idkcHBQLMuSp59+erurpHyLovd128OG8mgoivL65wMf+ID8j//xP3ShVraEJ598UvL5/HZXQ/km5zOf+Yw89thj8rd/+7eyd+9eGR4e3u4qKYrSQ/RBQ1EURdk0IyMj210F5VuA48ePy/j4uNx3332Jr3c6HUmlzCS2irLdaN/cGCqdkuVsl+9+97ulUCjI+Pi4fPjDH4bXFxcX5d3vfrcMDAxILpeTt73tbXLs2DF4z8c//nGZnp6WXC4n73znO+UjH/mIlEqlLTwL5VuBKIrkt3/7t2X//v2STqdl586d8q/+1b8SEZFf/dVflRtvvFFyuZzs3btXfuM3fmM1C/hjjz0mH/zgB+WZZ54Ry7LEsix57LHHtvFMlG8GPvnJT8qRI0ckm83K0NCQPPLII5D990Mf+pCMj4/L0NCQ/MzP/AxknWfplGVZ8vu///vytre9TbLZrOzdu1c++clPbuXpKN9k/OiP/qj83M/9nJw5c0Ysy5Ldu3fLww8/LD/7sz8rv/ALvyDDw8Py1re+VURE/u7v/k7uvvtuSafTMj4+Lr/2a78mQXA1u3G1WpV3vetdks/nZXx8XD760Y+qVEYxiKJI3vve98rg4KCMjY3JBz7wgdXXzpw5I+94xzukUChIX1+f/NAP/ZBcvnx59fUPfOADctttt8knPvEJ2bNnj2QyGRFZfx79xCc+IYcOHZJMJiMHDx6U3/u939uy831dECvxT/3UT8U7d+6MP/vZz8bPPvts/Pa3vz0uFovxz//8z8dxHMff+73fGx86dCj++7//+/jpp5+O3/rWt8b79++PO51OHMdx/A//8A+xbdvx7/zO78Qvv/xy/Lu/+7vx4OBg3N/fv30npXxT8t73vjceGBiIH3vssfjVV1+Nv/CFL8Qf//jH4ziO49/6rd+Kv/jFL8YnT56M/+f//J/x6Oho/K//9b+O4ziOG41G/Mu//MvxTTfdFF+8eDG+ePFi3Gg0tvNUlNc5Fy5ciF3XjT/ykY/EJ0+ejJ999tn4d3/3d+NqtRr/yI/8SNzX1xf/5E/+ZHz06NH4L/7iL+JcLhf/x//4H1c/v2vXrvijH/3oaiwi8dDQUPzxj388fvnll+P3ve99seM48YsvvrgNZ6d8M1Aul+Pf/M3fjKempuKLFy/GMzMz8UMPPRQXCoX4V37lV+KXXnopfumll+Jz587FuVwu/umf/un46NGj8ac+9al4eHg4fv/73796rB/7sR+Ld+3aFX/2s5+Nn3vuufid73wnrOOK8tBDD8V9fX3xBz7wgfiVV16J//AP/zC2LCv+67/+6zgMw/i2226LH3jggfirX/1q/JWvfCW+884744ceemj18+9///vjfD4fP/roo/FTTz0VP/PMM2vOo3Ecx//lv/yXeHx8PP6zP/uz+MSJE/Gf/dmfxYODg/Fjjz22Ta2w9XzbP2hUq9U4lUrF//2///fVv83Pz8fZbDb++Z//+fiVV16JRST+4he/uPr63NxcnM1mVz/zwz/8w/F3f/d3w3Hf9a536YOGsikqlUqcTqdXHyzW43d+53fiO++8czV+//vfH996663XqXbKtxpf+9rXYhGJT506Zbz2Iz/yI/GuXbviIAhW//aDP/iD8Q//8A+vxkkPGj/5kz8Jx7nnnnvin/qpn+p95ZVvGT760Y/Gu3btWo0feuih+Pbbb4f3/PN//s/jAwcOxFEUrf7td3/3d+NCoRCHYRhXKpXY87z4T//0T1dfL5fLcS6X0wcNZZWHHnoofuCBB+Bvb3jDG+Jf/dVfjf/6r/86dhwnPnPmzOprL7zwQiwi8RNPPBHH8fIa63lePDMzs/qetebROI7jffv2xf/tv/03+Ntv/dZvxffee2+vTut1z7e9dOr48ePS6XTknnvuWf3b4OCgHDhwQEREjh49Kq7rwutDQ0Ny4MABOXr0qIiIvPzyy3L33XfDcTlWlPU4evSotNttefOb35z4+p/8yZ/I/fffL2NjY1IoFOR973ufnDlzZotrqXyrcOutt8qb3/xmOXLkiPzgD/6gfPzjH5fFxcXV12+66SZxHGc1Hh8fl5mZmTWPee+99xrxlXlSUTbKnXfeCfHRo0fl3nvvFcuyVv92//33S61Wk3PnzsmJEyfE931Yd/v7+1fXcUW5wi233ALxlXnt6NGjMj09LdPT06uvHT58WEqlEsxhu3btAn/aWvNovV6X48ePy3ve8x4pFAqr//3Lf/kv5fjx49f5TF8/fNs/aCjK64VsNnvN17785S/Lu971Lvmu7/ou+cu//Ev5+te/Lr/+678unU5nC2uofCvhOI78zd/8jXz605+Ww4cPy7/9t/9WDhw4ICdPnhQREc/z4P2WZUkURdtRVeXbDN3NTLlefKPzGvfNtebRWq0mIsse3qeffnr1v+eff16+8pWvfOMn803Ct/2Dxr59+8TzPHn88cdX/7a4uCivvPKKiIgcOnRIgiCA1+fn5+Xll1+Ww4cPi4jIgQMH5Mknn4Tjcqwo63HDDTdINpuVz33uc8ZrX/rSl2TXrl3y67/+63LXXXfJDTfcIKdPn4b3pFIpCcNwq6qrfAtgWZbcf//98sEPflC+/vWvSyqVkk996lOv+Xi8eH7lK1+RQ4cOfaPVVL7NOXTokHz5y1+WOI5X//bFL35RisWiTE1Nyd69e8XzPFh3l5aWVtdxRVmPQ4cOydmzZ+Xs2bOrf3vxxRelXC6v3utdi2vNo6OjozIxMSEnTpyQ/fv3w3979uy53qf0uuHbfnvbQqEg73nPe+RXfuVXZGhoSHbs2CG//uu/Lra9/Ax2ww03yDve8Q758R//cfkP/+E/SLFYlF/7tV+TyclJecc73iEiIj/3cz8nb3zjG+UjH/mIfM/3fI98/vOfl09/+tPwM6+irEcmk5Ff/dVflfe+972SSqXk/vvvl9nZWXnhhRfkhhtukDNnzsgf//Efyxve8Ab5X//rfxk3hLt375aTJ0/K008/LVNTU1IsFiWdTm/T2Sivdx5//HH53Oc+J9/5nd8pO3bskMcff1xmZ2fl0KFD8uyzz76mY/7pn/6p3HXXXfLAAw/If/2v/1WeeOIJ+U//6T/1uObKtxs//dM/LR/72Mfk537u5+Rnf/Zn5eWXX5b3v//98ku/9Eti27YUi0X5kR/5EfmVX/kVGRwclB07dsj73/9+sW1b12FlQzzyyCNy5MgRede73iUf+9jHJAgC+emf/ml56KGH5K677rrm59aaR0VEPvjBD8o//af/VPr7++XRRx+VdrstX/3qV2VxcVF+6Zd+aatOb1v5tv9FQ0Tkd37nd+TBBx+U7/me75FHHnlEHnjgAdCI/sEf/IHceeed8va3v13uvfdeieNY/uqv/mr1J7j7779f/v2///fykY98RG699Vb5zGc+I7/4i7+4uvWZomyU3/iN35Bf/uVfln/xL/6FHDp0SH74h39YZmZm5Hu/93vlF3/xF+Vnf/Zn5bbbbpMvfelL8hu/8Rvw2R/4gR+QRx99VN70pjfJyMiI/NEf/dE2nYXyzUBfX5/8/d//vXzXd32X3HjjjfK+971PPvzhD8vb3va213zMD37wg/LHf/zHcsstt8h//s//Wf7oj/5o3W8DFWU9Jicn5a/+6q/kiSeekFtvvVV+8id/Ut7znvfI+973vtX3fOQjH5F7771X3v72t8sjjzwi999//+qWooqyHpZlyZ//+Z/LwMCAvPGNb5RHHnlE9u7dK3/yJ3+y5ufWm0d/7Md+TD7xiU/IH/zBH8iRI0fkoYcekscee+zb6hcNK+7+LVLpGT/+4z8uL730knzhC1/Y7qooiqJcdyzLkk996lPyfd/3fdtdFUWRer0uk5OT8uEPf1je8573bHd1FOXblm976VSv+NCHPiRvectbJJ/Py6c//Wn5wz/8w2+/pCyKoiiKsg18/etfl5deeknuvvtuWVpakt/8zd8UEVmVOCuKsj3og0aPeOKJJ+S3f/u3pVqtyt69e+Xf/Jt/Iz/2Yz+23dVSFEVRlG8LPvShD8nLL78sqVRK7rzzTvnCF74gw8PD210tRfm2RqVTiqIoiqIoiqL0HDWDK4qiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpefog4aiKIqiKIqiKD1nQ9vbRlEkFy5ckGKxKJZlXe86Kd8ExHEs1WpVJiYmxLav7/Oq9j+F2cr+J6J9UEG0/ynbja7Bynaymf63oQeNCxcuyPT0dE8qp3xrcfbsWZmamrquZWj/U67FVvQ/Ee2DSjLa/5TtRtdgZTvZSP/b0INGsVgUEZHb3vGj4ngpERGJowje46VSEIf0uohIJp3Fwl0sPgxDiAPfh7gTdCB2bLP6to1P25wmJIywjE4bj8nP6nxe6VTeKDOKsJ5RHOAbYmwLI3OJ42BsmalN3JjOiyrqU9vxefO3EHZsXh9L8DM2tUb3q4Hfka9+6rHVvnE9uVLGO3/wTvG8lWuewmsfp6gNPYpFRBzus9R/LIyXKm0sg4bL8PAOo4iMi20WBXhdFhYq+P5MAevkpSEO6Zq49LqIiBNjvZwI++zYME4CA/0DEAcx1jFK6BudThPiubkZiLM5HNv9g4P4/sVZiC/PXjDKuHAe/9ZqYT2OHLjjan3abfmDj3x0S/qfyNU++PCBAXGd5Ws82JeB90Q07IMA5wURkVoT/3a53MJjRHi9x+j0bj1Qgnj/nj6jjEKR5igLr83CEpY5svceiPM7DkIc+Pht1f4b8XURkf4S1iObxX7q0VzPcw3HIub4bbex3n6IDe5l8Hp4NFfzd25R1BGG15yLJ1+C+KuffUxERJrtQH7uY5/d8v73bz/8W5LNXjlPnGscB+OkL575m0dznRB6HeOI5go3aQ2m9cynNrXoSth0DPMbc6xEUuYvh8qMaJ2PorXX4Njof+vD90AWta1tcVvzvGpeIK5FHF17DW42m/Izv/irW7oGf+m/f1gKK3M9ny9fN8s2zy+0cE11Q5oj67jOtKpl/Dzda4X8eTHvI4uDo1hmFtvLSeManKJ5w4rpOiacl9DfQrrWYUB9OFj7FwCzr2wE/Az3eSNOKCMMqN4hxnbXNa41mvLQP/mFDfW/DT1oXOlAjpe65oOGm8KFxQrNk+D38IOGRR1EaKBGFk+sm3/Q4DK4mtyF+MaOz0FEJIqonjEtkvygwU3jfuMPGvFmHzRoIhZJeNCwrj3JXeu414MrZXiee/XhYL0HDY5FjAeNlPGg4UHopalNabikMnhDv1yttR80vDSWkaLY8+iBnR80UmaZTozH4AeNTBZvwLK5HMQBPRjzhCQiYlNzpjM4DriMDD14pFv4eiptnoebwvNwaXCmMubY26qf8a+U4zqWuM7yeE+5OO55RPECdeXz3Tg0XxnzDx0i7eEfsmmzn+f4b3Qj12zh6zl6KMjTtfPpQaNYML9s6SviYp2l/rD6BcEKFs9PPLtYCQ8aLTyG+aCB9fbSr+FBo4M3LrU8jpUcjdet7n/ZbEZy2Svnuc6DRsK9zDf8oEHrhpu0BhsPGvyQ+Tp80HgNeYvXfdAw2noDDxpcrzUeNFaPsoVrcCGXlWL+G3nQwM+4IfcfWu9C+uKN7rXC0OzkIa25xRzORS7Nbw59AZ5O45h/LQ8awXoPGv7r80EjoLZb60HjChvpf2oGVxRFURRFURSl52zoF40rxPHVJ26WRgVBsGYskvRTLkkPIv61gcrwSQaVIE1IpfEJ2OGnbndzT/8OfZUbi/kU6NDXjvTrnuTy+MScT+F5LzXqEHf4lx0RsfibAId/RcF6deibOZaAWQnSBJt+JuEnVfwGZ+ufUQ8dvEcyK99qN/wGvHa5fBnidoQyCxGzzdIOfjvJv5jl6RcNP+T+uGSUUac+yb+w5fsx7nQWMcZflsWiOraNb4BE8vRTsE/fgl2Yx7boCJYZ29SnE77dC+gbmcjF8wyoP12aO4d1uIyyqPkFlF6JiCxWFqgeOJa7uyf/ordVROJKtNL3W/SFuEVjkH8FEhEZ6sex3/Zp3Pp40Bv34i8FN96IkrT+XMJ85LAcC485VMA+xPraXTffDXGxhFI7N43nICJi8TfGxjfIXE/6FY2+Sbt46hmjjOef+N8QL83PQ9w3MgHx1L7bIJ7ccwTfnyB95F/Vpm7Az3Q67xIRkVq9IfKvP2N8/nrTaXdW1zSbOphPY9Tln8PE/Jadv+XkXwbM92MZPsuERcQ2rj3/WkVzyXrv3wBJv8KudczXUiZ/xvgmd51j8vtZ0SFifoNsnpbV9V7zPuF6U282xFq5fhn+BZqua8xaUhFpdVA6XJnBdaF26SLEzTKO8SDEBdLimy0RSblYr7liCT+TxTm1NIbzxtAQzofpVD/Edtr8ZZ1/qQlpbEb86zat0QErUtbpz8uQSmWdsc0SxqQxY46La98Tslx/LfQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY9GFEerOuR2G7VyrBdkraeISL2OXoRWC7XE2SztBkD69MEh2pYsoQyWboe0M0mrjdun8c4JrE9P85aJHtZJRKTTIT+ARVptKmJ4ALeCrDZQtxgn7Ajlk4a5Q9rYkPSQgY+xFbMGMGH3ANIR8rl2t7edsCvM9WZ68ibJrewY0fKr8FppEPXWS3XUdoqYnh6W5bZ87BuSWvt1z9hnSMSm7hGTFt0i3bQh0yUdL1/HTsfcKSflYR8NSStbqaGXJHaw7TJZ2sErQa7Mu3tY1DiVeo3KxLE+M3Me4oVF8/rUajiO8tkhiFNdOxfFoan/3Qo6QSzRSgN1qAq80VnS/JSmnc52jqP+d3gQ2/XwfuzXO8bw/W6M7SwiEtPckO3bhcfY/0aIJw5gnOsfxuPxTkQJ2msxtjANKV57d63zJ78O8d/8yb8xinj1hRchbvs0J0bYtnb2LyDee/AOiB9883cZZew9gJ4MIV9X38Dy9bA8s923gjCMVnX87NHg/pa0vfJ6u07xOs7vX+/zIgnePnoP18um+YrL4PNKKnM9/wR/Zj3/xEZ2/VmvDHM3HtoCNdGL6VCMr3d/ZmM6/t4SBOGq/zZibx/d9zRpa1oRkfOnj0F86eRJiP0qriOtBq65lSZ6MyWhj5cKtFNcEeuR70ePRlhHb2CwiPHgjj0QD4yip0NEJHY5vcPa23Xz68a9iVFC0h5l3P9w/mM/1Xq7UCX9jT0a3WzGI6S/aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTXk0PNcV94puf519qdmXICKSzqCA3aa9h/0AfR9t8lOEtB98jjIcL5dLBZPEjH0HrKPk/B/tNurGfd/UyEfGXuLUNqQnj308Zi6Nl6HBG/SLCGv8OD+IS36WTJrzZvCey+alN/R4dI1TXbk4Anvze51/o0yM7ZR8fjnbbxBh35iypiGuN80cF5Ul/Fu7hf2t3kKvTLWB72900NtQb2EsIuLTteX8Jpytl5OMcnbfLO3Z7VumrtKlMqKQcqg4pKWktgv9tbXEIiJsibAoi3rMRQSoYQ9a2JZhQtvZtIe8RfNByrna52Jn6/ufiEjQlUzIpZw8POX5HbOOrQZpjEl/vmsKPRj5PPpv2DNWLGCOCxERJ4Vet1xxEuKJvbdhGYPjEHOuIIv6U5KJx8hCTR4wn6734sUTEP/dX/xXiL/6OHo2RESqNSzkXIV8abQGhRHmavnic38F8ZNPPW2U8X3f//+CeGwMPTK1mWWfSKOZNEdff1zHXs0HFBkaadJXJyq96XhsEjM+Qr4DTomRsNAb7+H5ZJ01mvNSGXnCE3TjfC9hTmG8/q2dM4rzBokk5cUx0ovjMXlyN/KJGEWIsLeJ84B19/GEteB6E4bhqjY/DLD8ehPXz7MnXjI+f+EkejTq8+jJqFfx/M9cwpxPlTa+7iVYRUdLeO+zg6av0Mcy3QDX7LCJH2jWKWdUYI790sRO/INLOeLo/ewBingBTYB7JI8rHheml2n9+YCPyfcv3YdcL3dNN/qLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpszgqVRK3BVD8HomatMgbRqp10sWxEnoGmQ2qtXM5Hlsbstk8hA7Nppr10s6wsmCQjZGipkEkE3tfXk0FLZbaJStLKLhKYjM5z/D+EfG+DDieq2dIMswzYuIbbFBDt/T7lxtiyDBFH+9SWdTksktXz/qbhKGeJ1yJbzuIiLDxVH8DCUZ86lNG228TvU2msgWy5jYR0SkRobyVpuTVKIZuLyEieu8NPbpUhGTO8ZJeRIpqZhvY+MstMsQR5RpLiATdoeScYqYNjLefMDzcNzlXeyvA3l8f84pGWVEIW1okKKEfV1GSTYsbxWWdTWJlk/JFJfIRDhfoUSeIhLTSBwsYPKop5+fg7hZw/70jx7cD3FqgLJKiohF139p9lX8zOlnIc4OTOHnPfOY3SQlFG0tXYK4fOF5iBcuYpmvPvtViL/2lZchnq+YxkWXNkoI6HuyFGXL3E3JDU8v4fg9P08JOkXkqa8+CfHevZisy20tm9ib7e1JGOnYlrgrJuN1k9QZDn1zPePYpTY112QsM+0mJLCleZUTy7kp+ozNJlZKLkvHt6yE25Z1kufxfUFEfZjf76XMMiwyX3PbRFRTNpybG+Ykfc9LiQVpXbe6kuRZnDBvK7CiVRN6h6aBhUuYlHX2DBq/RURqtGYu1LGNTpzDMVptYP/MptFkXQtocw0Rac1hmy0s4bo+OcqJBvGesF9wXgjCCxDHoTlvRCGW0Te5D2I3i8mmfd5Mh5LrJXnDLRqbptUbzzviDZvoE2ZSQZEopM/wZjbd5W3AwH4F/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKo+G4KXHcZf0uJwfhBHDNtqlj40Q8adLbBZQVjLXi7NnodEy/RJv+1miUIfYo645NGlX2JbC200nQhnPeHJuSVRWM80Rt22IddYYpFxNuiYg4pOkLHLp0pFtlvS7rQd0EfafD2lhqC6ur7Swze9F1x7IisazlOrouXbcIdb9ugo7XTVMb5Dh7HoadgBL1UPv4o2b/a5IHo9nERGVRjJ8JQ0pKR0ktHdJZdprmuOrwuCBd72IVk+V1KOFQo46vnz9/xiiDRaPZIur4c+QtsbOYTHMgj3GUoA+1Bft9FGDc6Uqg2GmZPpKtwJar3aTj4xiarVJyz4TvcW7dPQHxnuFhiM9fvAgxz4k8JisVU6PcJp+Ql0NvkpNF70vQoARW5NHgvGNRYGpzZ868APGpp/8c4uo8+kSqC9jn0uTpmW2a/WNHP9br0DT2uTPnsf1jMnIdGEM/THYY20VE5KabD0L88gt4XiPF5fHX6myPR8OyrNW5nZPPGheKYzE9GSz03piP4CrszRQRiWl981J43TiPWNIxujHXMvP9/B6L+yzNu2xa5ARqccL8xO/htuHY8HBQ2yYlPOPz6HRwru7+TJKX7noThcFqAuImrUUXz6FHo1U11yppkcdiHsdseQHnov03YiK8sR2UcDmNyUhFRI4e5cSBOKdOTuC49zK4ztjkO4rJb1xfMr2Z8x6eV2FwDOJUDr2W7Rj7SmThuIwThl1M3l3uP7GQT5q6V0j+C9835/GA/ubRfaLbNX+oR0NRFEVRFEVRlG1FHzQURVEURVEURek5+qChKIqiKIqiKErP2ZRHw3NdcVf0ay55BFi/yDpfEZGYBKGmRpE0jxksgzWQSRpH3g878FHHaNH+2Y7LXgd69trAvuESYJmZFO7LnE+jPj2gXBxeDrXDdpCw/zl5NGzyu0Qh76lOey4b+yGb+t2YfDY2XWPXu3pelrX1Hg2/05JOe7lc7n8RadlDFgKLSEQax3ZA+5yTptmn/eAdajNX8DqLiFw+P4NlNFAvOjyAetChEmr0vTz2hXyW8sAYJYrY5FdZIs8F6z1tykdQW0DNaXkaczmIiDQphwjnXCmyBpXGWaWBXpVqrWyUYVl4zebmsB7l8tW27bRNf8xWUMo74q3kLZmvsu4b2+TQOLaJiMh4EeePxiKe43AJX7/jdsybEVn4enkpQQcd49iYOHAnxCPjN+AxfdRJt5vUf2godRLy/HQi7NeNNtaz7WNcHMTcQjffisfzs1gHEZHKAnmLWtjHWgHOcZU6tk33/CUisnTO9CLFt2NFdpOn5uUXlvN/tBP0zVtBKuVJKpWc5yRm34E5xRt77zvs4zCnTcDjHBhJ72eDBMEexc1+3RkZOaM24tGI6fW1824knRZr3DcL+2O4zGv97Vqvr/fe64EdxWKv+FcWZ3GtW7yIc1mnZo6RNs1NS5xjpQ/9Y6cuYx6q4+dxPc3l0BshItIo47Xt78c1tFCg+7M8zl3ZHL7fEvJmdsz8SNUy5sMqz6IvZJDyaIiF9WbLLHs2RESCdfLOCXlJuHtEbG1KuH+mlFxi0X2n48SJ/14P/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKo9HxOxJd0Tay5p88Aem06WVgzXtI+7GzPiybMfV33SR5NGzK7+CTNph9Hp6HTRD6pHMjYVs6ZeryLdKLT42j/nhkAPV5jRZqh4tF1L9LJ0HjavEe3LyHNtaT9aDtNr7eTNpDmZSptqAmOparesnQx9e2gvmZWWnmluuQzaKuMkN9JUkmbJPHgqw1YpNfp7yI3oX6/CLEjTJdNxGpNbAvZEjH2IgpNwztRW5lUJM6vAM14v2FfqPMFO0Dns/iebQpb0aK9t/PUf8cGcQyRUyPRky5YlwL61ClPd4dD7W12Qx6NkRELAvrOTCAe5FXq1eP0Wy2RQRzNWwFnh2Lt6JbLTewvvkUtns2QcNaX0LvQUj75N90EPeN7y9hu7aalHMnQ9pfEZk+8BDEOw8/AHE6Q3MYzRVRC+fIgPLJ2J0Eb5yNfSp0sAyX+mgmi+O1bweexyNj40YZzz2D+/SfOINtuW8S6+3XsG1HhgcgzubM84gC7Oc79+A+/S+/8LWVf63tQ7hedOfR4DU3ohxPVkIeDSMvBnXR2MJ1gSTaEjZp/mKdeEIZDvk6XFpzI/KM8Rou5N0KQjN/RESeMPZksD+Ubl/MnBjs1RQRKsI4d15zjZwlRBia+UBsumacK6X79SDY1O1bTwg7HQlX/KH1efQl1ObJ22UOL+l42GYhxQFd+9HRXRBzXofTJ44bZdQWcQ0d2ok+yIjW4EYT2zxHntl6A+dcR8w+77g4R9bK6F/J0rrtUi6jlMtjwry2hiUnpvuzDq2pfH9D3jo3IVkHp48x8qV1j0VLPRqKoiiKoiiKomwj+qChKIqiKIqiKErP0QcNRVEURVEURVF6zuY8Gu32qoaL8zIYWs2aqd/i/b95L37WlPmk82ZPBusXRUTSVIap1afcCQHqJP026vHSpCflWMTUd44Ooh7vwXtug/jVk7h/+/HLuP90nLCHcsx6OAdzc1gkrovo+kQu6vmc2NQZ8v7kQRv9A3aXBjjYJo3yFZZI687xwADqsUVEsjlsM4dzvfBe6xR/9ckn8XiW2RfS1CdfvXAa4rCNOspCH+pBJ/fsg7hDHg5n516jTD/AcdLqYNwhn1GD+ldI+QeaTfRTiIhw+pgc5fdI51CD74RYBvuUkjw0jSZqaz3OcTN29XrU6/jerWKuFoi7YiZrkclnpA/PeahkjuN2Bcddrh/fs2MU2zUmPXqW94138f0iIj7l4anR2IjIs5Mr4lixKFcHz+SRmP6sdL6P4hGIKxUcB5zTIqC2zOXN87rxIPol+iknzezFyxCfPYVjp91Bz9XkhDlHDAzieXgWjp1779otIiKNViDyF68an7/exJazuj5YZGq0yTdlJYjkea3yaU018mxcwDY79nf/AHFl0cy545FHLE3zbq4f18f0QIlinCuyg/h6huZMERE3i3N5RH6pmPqX79P9C33n6oXmd7ApD/8WctsZvhAc65wnSKyEXCw0MbJEfqOvXTfiWOKVe41WFf1MzRrnlzD9rC7l/+rvUDs72Cb3HUF/xcgwzk1f8Eyf5IlX8W+OS74jB68be2bPnL0AcRjifDfYZ3qH2SO6NDcL8cXzOE6yOZx7ioODEI/tQm+KiHn/vHgJ69mq4Vj1yTvsOvj5Ur85/7Ffz+mj93R78ZJMONdAf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaNhOLPbK3vBhiHpDl/SLSVvscp4MVoQGlFeD95lmDWSzYerzqhUWf3OMx0i7+PrUKO25THXwk/bwbuHf4hZqou+66QaIWb/n11AT79qoaRURCencbdIE8vVgsa3rol6y08Q6iojYPvpTdu/AvZ6/467bV//dajbkyT/7/xnHuJ7kcnnJ55fbhjWRDOsZRUzNf8g+FfK5DA6glrhZx/524sRJo4xDe6fwDx28tuU51JG36qgzbzfQe2CR7jpO2Pt6xyjmm2DxLiuBO5QXoUPjzkrIT+O3UKdar6Iet13Ctm118PVsmq+HKTD2W1iPFuV6cTNXj9HCrrplXKr44qzsZZ+i/f89l3PXmHNFSPlvRkZRA+uRftiK8VqlU+hd6Bibq4vUlzDfxOVzqGkf3oE5KjzyS/iUS8jvcH8x9//v1MoQu4Kf4bQ9to39xSJtequFnxcR6S/hvOi3cWy1q7wfPtazUiMPUOkWs4xh9IGIj7kCsrlljXK0TV/RRXF8NUcEzVce770fmdcppgvhUd4Gl+aGY1/+EsSXvvw4HtBPWA/pmD61FaWEkpSQJ4j8FnYfXvf0CK7RIiLDO/G6De/GebhvDHMDpQdx3LUjvhcx50C2TiblKemGfZJCeU4cx/w8D2f2pcZdx4hl4xr5XuE6nngrhr065YxqtNb2PoiIpMnsV6NcRC3KXzJPXrxL5TLEds706ebIK5eycRyEdK1nad44fQznz71TJYjTaXPtiip4P2VRXrP5Obx3CKNzELvkeTx/9pRRxvgo1mPmMh7j0ix5fQOsZ4lyeQRDZk6uTAbbMzOI4yg3cnWc2U1z7F8L/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTZvBGoy6Ov2wA8n008bA5N83J0EQkCimJHCeZixIS2HTB3is7wXHOiQQ5QVFE5rX+IiYHevTheyFemEczYL1tGrBcSnJyaA8az4oe1nP/9CjFaOa9eME0arORPktJaHbvwjIDautLFy9CbKVMw/lgEU123/u2RyC+48jh1X9XKxX5/xpHuL6k0ylJp5eNq75vmkW7SUrmyE67iBLxuC724UIBDVo33oDJ9C4dNxN21cpo9naoj9ZraArLZtAMLjSu5i6iMS2Vw/4qIuJQH0/Te3KUTM2m7xdiMsW7CckYbfpbJ+Qkf+jObvlo1G2RmZyTwomIRJTkzxacQ1pdpr1GY3vc4HFsSRwv18P1sL4zFTJAm3ntZA/uryAlMjjzhhcLZTTVnzuJ/SuXMZNi3XkHFhLRtWg30QTYoU01eOOJkJzPtao5P5185asQ1+cxKWk2i4b0gI6Zz+PY6/jmPMubgxT6cOzkCxiX+nB523v4IMQ33vkmo4xUGo9Rq9PGHStJsIK2abTeClzHEXdl0wHDOExrX9KmDhEl8aotYJKvDF3bhePHIc7SXGEnbOoQ0gYW4dp5ecWm6xo1yLxLSUuDC4tGmXPH0Bg7k3kK3zCOa+7kG3GdHz28H+uQYNS2qeYhbaLBY/fKxjlXXzcOacCbIhhJALvjjRywxzieK85K0uIUrY812vyiUjEnQMfDcd7m5LFpnCcefxqv68LcJYjHx3cYZVy4iGP2wBRe+1od+9fsHM2PdI83MIDrZypjtnutgceIQpy3OZ91o0nrId+vzc0YZVTncQODkWFsq5EhrOfSAq6Rs5cpESFtpiEiUijg9XGaeK67Slfb2w/WvgfrRn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6TmbS9gnzqom0yWNtU+a1chP0LDGqD+0bDxGRKnFXJsS3JAW3U2ZSdvYtlHIYhkH96FO9/5bboK4mEFdeNjEhDG3HMHkeyIilSXUtaZIm3l5BjWDhSzqqt/68AMQf+GLXzPLoGRxt5Om9P6774I4ncLzvnwZtY2ptNl2feRX2TFYwmN2NW47KSPjdcbzvFXvRauFGkjXXb8rN0iL7geoKS2mUC/KnoFMGtu0XjO16jM+Js0ZGByEOKBn+/OXSE+6ZxfWuVaFuJWQpNLvoHYzFmwbickPQW3lWCQgpWR7IiIRJV9if1WL9MrFQdS6ew7WISkhW6uD1yOgZHVhl9g78M1kUFuBH4pcyY3ZbuIcZ1mcmczUr0/QtcjmUOccRviZZ49hf/rsk+jRuHE36nJFRPZMoXbXtnG+KfSjJ6xJc1xMfpzIxrni0gXUTYuI/MX//grElXnUAx/eNwLx5AT22XFv7bEmItJq4FhwqE9lsljPbAaPOTCMZRb6zIRVRiJJWnOCTmfl/9vj0bAse7WfsacxIE+GzcJwEbEpEZ1NSTIvvYrXrc/D/lWO0bPo2GYZFiWSC6leEWXsCxw6BnsdaM502fQhItLGz1g2ruPNyziOvvKZz0N8Tz/OV8PT6HkUEbHW+V7WJn+FbbEXjpLvbcBjYdvs2eiKrbUTBl4PbM8Ve8Wjsfsg3gu9+NzLEM/Pm/NEm9qgTH6IeliGuFDE/pfPoP/slZfPGmXQrYF4FiXqpKSntTKO5V0T6FXNF7EvOY7pPWEvcKeN65NNSVGDJo1DOl6zY46r+SU8Zi6HxxwYxvNyLJwPz57FtWN41PS3CHlGffIqhV1xuE7Cym70Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPhhVZYq3skZ1NoZbLIr2W45n6rYj0r5aQbruD+/6mPdqnmvYatjxzD/kM5U/IZ7AeQQN19ZVLuN97ijT1aRfr/PwztD+3iJw+cQLi8jzuTS6kUb3p8AGIH37L2yB+8J7bjDIGS6hVHB8uQTzMfgryYNy4ZwridmBqjNsd1B76rTa9fvV6dJI8ONcZy7bFWtFCcp4M1rtGCXvIG5pZ0jBHtJ97m3wJvLW63za9DC1BX8HNt90O8dA06kU/+7//BuKZWew70wXS4MfmeQWUsCEgDTNvd53OkX8iTZrqpukDOf/qMYgbpFFfJM/GLXfeCfG+vXshrliotxcRcS1szw6V0Ymu9sekXB9bQbXtr2qxec4bKWL/2rXDzFVTGsY5a47yZNQuYPz8CWynOml3T10w90I/ehTno4Mh6dcz6NHo0FyQzqDWt1rHPvnZz6O+XUTkr7/8IsQ8l1ycx7l95w485s5JnHf37iwZZaQF2yJD+9mXBtFzEfrjEOdpLGUy6GURMXM9CfWzK00VrJ3y6bphWdZqrgUj54KNa5WXMFccf+Y5iPPkv5EYr32URl+LPYjX0U7IfRXSvBg3aZ6McF1xbXzdprnbFcqr4ZjeJ/arWDRZx+T/jEnIf/YU+gk8yhEhIjKQx7+5adTuc+4N36I1kuYLKzLnMMeY18gj1DVWw8C8vtebbo/G4ATmpxjdOQnx+ZPoPxQRaXbw2jUpR0qDfHq7KefYG25Dj+3fP47vFxF57iXMQXF2Du/5clmcm7I+eYNpXHku+ZETcvxEIfs46DqSXy9fxLWhQzmjcrzui4hPc9PcPM6HnA8roDrNL+CNQN+86TXpp3oMDdIalup6ZAg2/vigv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NFzPFXdFn8d7QgekW2t2zH3yHRf1yRbpJvO0L/DYMOZ1YN19uWrq8zzS4TukW+s0UWP60suv4AFI69k3jPu/v3LsVaPM2hLqpPO0F3Ehhzo3m7R2Q5S/IoNSRxERKWbwUsWC+roG7YU/XyVtd4v2/I9NbW3awbbjehe79vxnj8RWYDuuOCs5INJZ8hlQfYIEETU/VcekR26xVp0+4FDukFSCT6BvGL0wt9//JognF1Av+uTXn4F4Zn4R4uld6G3IuqihFBEJqE/7MfaFdgf3zy6Q/jjjYn9szOH7RUQunj0OcYv0xecrWId8H2q7R8ewXSzHPI9MjvJ7eDiHZLv6o5s2/VlbQScMV7XxORovE0PYrrt24n7sIiKFAp7js8cxv80rZ1GzvOTj+7ndWm1znj15BnMdZCivT5TBXC0dymlSLOFe9RdnyhA/8fUXjDJrdcprQ+Px5ByWMV/HOfOlMzguho6a/eOufXjMW24sQTw4OQ1xJk85bGzS3dvm92wR+VmalCun1Vju5+329uTRsG17dc/+iPNNkEcjmCOvoIiEFzFPhl/Ea92hcWXvxT48uBvXKvHN62S3ydeyiGtRo4z1arZwzovIIxa08PNR25zb3RCvpRXhebR87J+pQdTAV5dw/jrx1PNGGaOk1d+xG+e07A7sb6k+8hGStyRO8GhEAeXWoPsZ17l6Xo6z9bmsYkskXpn/Ipr/7rznDRA350wP41NfQ69fljyw6RTl/EnhPZ7l43w5NmT64M724zhv1PEYi2Xsb8PD6O1Kkfd3kXx0ftu870zTuOG8USHljskV0Bu1NIdrdhiZ91cezf2chqVR43GBZXppbJe5iunRmNiP+WPGpnGt8Lvuj4MEf9a10F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes6mPBph5K/u/Wzs9kz7BmcSNNgx7bWf8fA5Z4B0axOknWs0UEe5tFA2yujrx8/ceghzVrzpPtzfv5TCetbrpAelR7HMX5tNNlhCPfru6Z1YpwLu154jf4FQHoR62dTWpvNY7ouU16AwgnvjX1rA85ivos7QiUxt94P3YNvkR9Cfkupqq1TavL7Xm+48GuzR4P24k/JoZFPYv7JZ1Hf6Keyfjot92iVNato1dZT7DmHejP4x1I03aD/twR2ogT49w3uPY5nsQRIRiTp47s0mXvvLs6hr9ei8srRveLNSNssgPaaXRq12o4Ya0wsXz0McW/h5O0Efz3uNeynyJ3TvQ29upb8lpBxrNY/Grh3YBvt34Rgs9Jl5GgqU+6GP9lNP0ZyYomuTIh1+KsJ2FxFZWsL+cGkG46lDeIxOG4+xeBnn2cUFjCt1PJ6ISM7DY37HTTdB/OoCejIWF3Gv+2IRx2a7Zep/Mxmcc4r92L4pyu3E29375HdpJ2itW3X0ByzMYD8OV/IvdDrblEijCx5DKdL3v/o85jYREYk9fE9nAOewmoVr0cxlvE5pF8sslUwfkhNiX8hOoA9kMEYTot3AOoU+ec5aWKfWHHqQRETqc3MQV8gD5JMnMb8D17ZsEfXr8YWLRhlnjp6E+EIWdfl9O+g8aT4Y2YlrQWHSNGOGNB+0qd7duVM4j8pW4Eci/sp9XBxTHqFJzHlx8Pb9xudfOYltGJbJZ2Rhf1y6hH6K4yHetywummN4NI3jfGAM54XhAZxrLMoJdmEJ58M5ygszUjDvAQeKJYhr5JG1qE65PupvMZ7XxYt43iIiGVrzpiexD/OSmqFcVfe+8Q6IS/sOGWX00ZrFPpCwayiG5i3kNdFfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwagd+WWJZFW57LHyW9YGDuM54iDbZFuTZumERvwz13HIb47FnUyy5eRu25iMiBnagTfOT+uyGeHtsBcamI+2nHgvX2Q9Tn1ZdQ9yYiMjqCx0x7qCXutPAYGfI3xPS4Vy6XjTJKBSxjqYJa4pOXUI97/jL6PGYWUbP64H3YLiIikxOoGc1kUMtod+n17ASvwPVmdm5W6o1l/aRDe5KnyGuTYR9Mwns8j3KTWHjtberi2RzqF0uUY0VEZHwKdbi5PH6mXq1RjHrQXB61m+ks1rndMTX5nTZq5qvVMsazmBeDc+C4Dp1oaI7dIo2TJuUpabZRR3327FmqE46bsTHUL4uYvhrf34QIdIsYL2XEWfGKHNqN++YPD2EbeSnTw5NJ4zlOks+jWsZ+G7ZJE5/FMXm5jHOiiEiTNMW5wd0QT+w6iK9TH2vVyhCPxPj6nmnca11EpLOI+SbuncT37Bkfh/gFTMti1KGUM+fZ6Wkcb8UB1MS3fBQU11skMCYfYatmlrE0h/22toTa/+yV3E8JeYi2mpgE1Cdeehnic8fRxyciki/gvBm2sQ1qgh6Bi2Xe/x/ns6ZnzhWL89gn85SPySXzzL6xEsSZPN1LhPj62I24t7+ISNDA8/j6338e4qiBc0lE58FrQdvwyokM0brtkUdv8dQZiOdPnYL4QvEliDNT5jgavx99kn07aZ7sapor92JbSRjFEq54NGzyiPAtgZWQ52NsDOe7fkrLMjeD/pw25fi5cJ5ysgTmfYhF61mL1ibbK0HcpDW1QnmpBqn/5geo0iLSJo/FIvXHYgbXinZAfWcJ6zg7Z85NwyX0BDXJY+Y3MY48jMeKuLaUhnH+FBEJKN9MFLIP6GrMHp210F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes6mPBqWfVWH1+6glov3JB/Im/rkXVNTEOdJF9nnos7N81GnNk4atXtuNvdp3j2NPoP6/AWIX5zB/bEP33wrxJksaljbPmrqbzx8o1HmAu3rfXkOvSOlPtRu+wG21clz+P6nXjxqlPEPj38Z4jOnz0F84SLud16lvAZvfPhhiB+67z6jjFQa27fTQd1gqkv7mJSn4npj286qNyMgD5BLniF+XUSEd9y2KS9GKo19tkXemomdeyD+wX/8T4wyBmlvdJ/asEHemoDbmK5By0f/xdwC+i1ERDLkPaktoV6+Sb4Qi8S0SyHqzYOOuTd5QIkrKm28/mfO4bgqtnEsv/rqqxDz9VquF2o+PQ+vR7cmvdnEa7NVTA244q30m0KaNch4zq6dFsaizc6zlBui0kRvVSZCLXkQ4bUtFBO8cOkSxPkB1HnXKEdFOoPXYnQK+/noNNb5/10wtb1PPfl1iOeOo9ehWEBd8+QoeunmKqjrL2bM+YW9RJ0OvqfWwn4euSWIU+SdazWwLUVEyjO4z3/axrHgOcvtHUTb79GIeNySt4rzjIiI7N2LfSEYwhxQlSb5tyjfUuSiRyhxHEbkQbRQG35+Fr0Mw0PYv05cwLVsdg6PN1wwc3cMD+BY69+L51U/SedBc2ZMnptOgk+ylcdzzw1h+w4WKQdEBdfgqIpz+dln0bMhItIcQI/ezeN4ri74vrY+j0Y3EXv9XLwGWfKTiYgU6b4wpDU2pHsjoTm0UsXXm6HpAwkFj9kJ6D6zgmtukXKXtMroy0qlsf/2DZr+z4juh4XuI0PK8fPiSZznXzyO94DplJmnLJPDvrFIfbRAt9wjlBsmojx2ccI9HHtf7TV+i3DpvWuhv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKDN5ptcRZMaD15dHccvMeNHrvHCoZnx8bw4RLnofPOf0umlWCMpr1bEr4Nz5ollGroMnm/Gk0obaaaJibmcP3p9NYxsLiZYrNRCqXL+F7CmTaufc77oF4bAcm3zt55jTEX3n8CaOMChl8O5ScpU7m75CMgmMjaCrLeKZZv1nHRDUOGVedrufSMNx6M7jnuasG4Rwl0eHkgkm0m2jGa5PpOZXDPm2zcbfQj/EevM4iInEK+49PSSlt8q5lyKDaoE0VLl5Ck3WnbSYL6u8rQTy3sAhxs4N9wXXxvC7O4BiIAjNRnpvFci+Xqb9RdkMvjdeDzd+cbEzENN/XamjuTXcZ5VstvJZbRTFti7fSfraFYyAOyBAYm6bBMMJ2SNOGGPkMzk8nLuFmFgcK2K6phHHcCNBA2SB/5aUL2KeqC2h+bA5jcqkdY2jcvv2WW4wybzmCm2r80R/9d4g/9ed/CXHKwfPcg0VIHKBhU0Tk6FEaC5T4jY2khQEsI53B69Fp43wnIhK2cOxkUjQHrmxY4BiJrLaGOI5Xxw5vLNDfjwbo2dico1u0mUCRDKKlYdy4ZDclWozIgFyvmddpbh5N0tU2zokZ2mAlZWEdWjWM25Qc9HFKTCgi0iZj/6178X6kbwjn7pKFx7RpXY/a5iYLoYvt2VjAz2RcnMuHCiWIY9obIogSNnLo4/kdrzF41rdhP4IoDFfvLSy6brwhECdpFRFZoLVm5hImEm5QPlo/xjbqkGnf88xxmKVNI3jN9ek+wM7jdT2wF+/Ppiaw73ix2ee9HG000cH7EyuDY+KFY7jpxPk5PPE90zgORUTSlDA4bGF78+Y9zSb2Hd4gx0/YMMcjfzev092Jmq1NbEagv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NBznasK0tKCurUSaW0lIhvTKUUzEUyONbIaSILE+rO5T0p22qZWLSRPvkw6f9Z72F78EMWu/l8gbkeRNSJMe/fY7boe4XkfttuWgnu8Nd9wJ8fgoJlUSEZmbQx11RPq6mVl8vVLH89i9bx/ErOcTEcllUETKng2rS3aY9Pnrje8H4q/0gTIlqxkeRg9KoWAmq+qQ7tuxUWM4PzsLcR95H1IeXud2gsY2onYJye/AyfM6lPCqQf1vdhb7Lx9fRMSipEaTezGp5DD1pyrV4dxnPwux55nJgsYmd0Icpskz5KGOdXwKtd0jI+jPSqfNZHbN5tq+C79r/Pu+6SPZChzPXfW4uC4KWuOY5h7f9AB4LvoEPME5bnKQvCy+IZqF8PSc2R8GRtDwMLuI+t/5xecgDmhcDJfwWh46gHPHvhuw/4iI7KE+99BDD0D8xFf+AeLO0imId2TRa5LNmMmgFsmzM7+IevbpKfSWtJt43rQ0SLOBc6aIiEQ4Hm2aIyS+8t2c6THaCmzbXvWOsc3p4nn0+nkpM/Fmq41tuHT8GMSR4Lh0yFtVyOO8WhpEX4iIyI1TqHFPZXHsB4fwOlXr6IuZ3oMJI1s2zrvPvvSKUeaZk5gEsENtkyuRvn0R5/rWDPl7YvPWiKT8Yjco2VyI471NX+M65DEtFM01Kqpjn23TPU63F5ETsG0FURheTRRJHqCAxorfMddHR3BtSTvkZaC0upaLxxzdget8yjO/K3dj/Fub7mOKlJh3kBL2jY5iPNBPyYAbZaNM28E+OjyIffz5U5jU+fwMHiMSrFOlYq4d7TbWa5K8vqkI2y6bIj8LrVdhgkcjjmnepXucbl+GH258DdZfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwa+WJJ3NSyxq5eQV3lX/315yCu18vG523a9zxuo8Zr4uANEO/eNQ3x5eO49/DCLOreRERKRdTteinUvgW0fzbrwln7XaTjPfzwm4wy77vvPohHR1EjvYO0dOwfSKVQt7iP/BQiIgFp/XlP5A4JkGMbzzudJW14wiMm76HM+2R35z3hHChbgWVZYq3sY+9R/gBuj0oF9+cWEVmiv7kO6j8dC49pCzaIQx4NJzbbIKA94hcWcN/wM6dQR807UQ8Po555II+5OvoyqNMUESn0DUH80Fu+C+Idu3ZBzHlaws//H4izadOjsXc/+T6mcSy3nsW97SencOyyR2NgwNR2c94SzgXTPVb5+m8VruesejQcykcSkWje903PSYe6jOuiJn6C8hbUGucgfv4M7k3fDM12CATnxdPnMM9PO8BrZ9M4Hy/hnNeooB/Hb9Nm9yISdfBchyZQZ//IQzhHnj2K+vapCWwH1zbH1i4Px0K+D+dRm9pSPHzdctF7Ipbp0ei0sV5OiLpnb0UzHm+DPl4E50DbwTayKc+DmzYTLYSUfKE0gJr32Mf+5Ps4r4YtLOPyeexbIiJnz2Duqiu+zisUi+gZG5xA/1eR1pbhAtZp94MHjTLj+w5B7Hfw1sal9eHkc8chPnbiJYhTlnlr1KQ+bnGOgRDjkPIteCRpbyya9y9VF+s5fjvmrOm+V4iirc9lZcWhWCu5LGyaR1yH5qLIzLMws4DrY6OBx2j62D9T7BckH1wrMMuIqc/myaswRH7OgHIbVZrUd1z8fNShfEkiMlLC9WypifdbR19GL9QA+ULaNexbmQT/p1/DcjtZuj+xyR/K9760HlkJuYraMfmGYvKsdeWO6kQb9+nqLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejXqrI86KXC2bQb3s8ATqwMvPmfrXuIV7Azsx6usunkQ9cmsOfSA5qm22aOrVpYDaOJv26y/RXsJ33303xHv37oWY/RI33XTEKJJ9HAx7MK5obK/A/gLOH7L8N4x5D+Tu/bVFRIT0kqzmtB1zn3o35fCbIPS69lRP86b0W4DrOuKu1IE1+nz+i4tl4/NRiG3WZi1nlvMioDaTLB1X9xPvhvK0LFD+kzPnsI8fPoIa3NFJ1Oi3KXeAF5ua1JFp1DjnB9Cz4VvY/6od7A3FQfRPFDKmR6NvBH1GY/24T/iFMnoHirRHfDaH80Wjae7xH5Lu3aY+7HpR178T2n4LyKRTq3u3Oy6bmjjnhXmtfBo3tTadY4ifqTXwPFlPnEkYxyH5zBaq6Kmo+5yviHILCenEF/Baths414uIuDSnhaRj3nPgZojPnnoe4lQe+5znmUuTRY4mxyWdc0DHKGKfFQfXhnzB9AnVeN4kX2G0osOPk8b+FhBF0ao2nz1Bo1O7IX5pBv1gIiKNCo7TYAZ120ePYo4K9ozt3o1luGJqyUdH8Lr4LVzHOzT2y/OY06JWxzkvJi9C1jb7PHsQ3SzWIZ/D9WHXJOr067snsc5Lpr+qRfcvEY3lgM7Lb6AnsOPj64vm9CD9Y+jv5Gvc7VtjD9tWYMXL/4lcHQtX6NA8MjyGa5mISKa/BHErwDYpZfogTqXJL0F+i0zW9KjZMfbJqI3XslzF6zJXwzqkL1JeqiHsOzuGcS0TEbHm8Tv7r7+AY69RxT68exJ9SrMXMMecnXBtqXmlWqW8LYKxm8Z5u7aE47DUxLlARESovX3yYXT7dnktWwv9RUNRFEVRFEVRlJ6jDxqKoiiKoiiKovQcfdBQFEVRFEVRFKXnbMqjEQSBxNbys0lMWtYbDh6GeGLQ9C383ef/Ev9AWjqPcm+kac/vvkHUnOVypkdj1270VOw/jPWa2ov7+991110QDw+jvt2ybIpNfSh7LBjeR5w9GhuDtZp46RwH45D0zJ0Oau1qDVNf55Iumn0h1epVTV+tmqDvu874frCa58R1sa7tNmv+E/a5pxPqtFC72VfoW/P1Shm1nR7v8S0ibdI9vvDccxAPj6M288CNmJ9ibh49HRZ5UfpKJaPMVAE1o4sV1Dg7PvaFiQkcA4duuRXi+TnUi4qI1Ml7MlrCtrr1FtzHnrZYl4i+06jWzP4T0zXLZikvgnT32e35jiSXz0p6JeGMMa5t0hOzqUdEHMoP0aphn6qT12WRximXMTqckI/EwXar0FAP65wHg7xYlC9mYAi9DqPjU0aZfQP4HotyPHgZ7MczDYxf+TvMw3Jo34RRhm3jPDsxie/pH8I4pPNyeUJLyEPg2HjNLItyP0Xhyv+3PoeByPIUduU0QhqTzRDPt5Mmj4qIXDyH/W3mMuq2L1Xwuk3diXPD8GH0KD7++c8bZZy+fAGPMYxt6tG6PpjGMl3KXcLDyPHRjyEi0upQfoZFzO8RUF6CdIQesxMXzmIZYmr/B3P4mVIJ512X7hVq85cgXpzBebWTMctITaCvgT0a3et4x994HoPe4Yq1ctsY04XxaXgNjOJaJyJy023Yf5744tMQL5bJx5vG+8iUg2vuQJ95n2mTr6BF9ay1sP+5GTxGNo3jaHwCr/uOiZJR5rmL6DNarGDskMGiXcXcREXyGJXnMf+WiMj8PH6m3cL+Nr4D7495zbVpDMQtM9eYa2P7tilXWPes5/sbnwP1Fw1FURRFURRFUXqOPmgoiqIoiqIoitJz9EFDURRFURRFUZSesymPRtoVuWIFYN3kKOnxHn7Tg8bnb7iAusnBCxchzpBG3sgPMNiP8b49ZhlvfgjisUMHIHZoP22f9pznOAwx9jzWjYvYNvs47DVfX+/zSXk02IPhuaj5433nXdJyP/f8CxB/+vP/xygjsNb2kiwsXNUNdgxPxPWnWq1IuJILgz0ZXNds1tTxcjtzLpJLF1FbzNabTAY9QUOD6OcREXnuWfRkLJZRV/nwww9DfOzYMYgvX8Yxct896CHqp/wUIiKLVfSSzFHujqk9JYiP3HQTxC8+8yTEYYL+vEON0WhimROkLe6QScN1UY88PmFq8CsV1IzyPvFOly8nKQ/MVpDNZiS9km/G5kmQQs8xp1eXPDfpNPapch3bucw6Wjrm5DT6bUREOi0cG6cvY39IUb1T5Hcq5XDsFIo4Lw9QbgURkVZnbZ9aTPvlS4j9Y24e8248XTtpHGN0Cj0Hk9Svy1XKOUN77rsenldAnkARkaBD/hXSNae8K9fe+OiWEMe2xCu6acvC65bvQ8/A9D7MCSUi4uWxv3klnG/shTLE6UH0APWRP2f6NpyfREQ+/WfPQpzNY86KvjTq8FMNXFPnLp2HOOrgXOOlTV2+l0pTjG2TymPbtCnHTXkJvVGdJXN9mxXyrtGak6PcHWmL7iVoXA7sNr1OEc1rLZpn3a7X1/OGXg8CPxTfT87fEZG/yZgfRWSwRLlubOwL1RqulxcX8bqkyY945jK+X0Qk5eNcUsxgXygUsP8EdI+XyeE18EOsw1LHnNcP3YF5goIYz/OFpzA/TYNyYLiU46eQNf3HsWA9IxvXkmxfCY/pUZ6XDpZZvmTm2SngUJUgTTm5um5N252N53HRXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczZlBk+5jrjuslHmSuKiKzzzLBrAWpSsRkTk1sldEN/eIQPXNJlr70ODTf+NmIyvsNM0QrpjoxC3U2isTrGBiozXnAguJNNiGJkGGJvM357H5nD+BJmmyKQcRQnJ5jhhH/l1F+cx8dLRl9Fk/Jd/9WmInzt2wiwijYakVgtNVd0JgsLATPi3lbBxmJM3ep6ZDOmKifcKIzvQ1Folg1anjX2F2+PkSdOweuIUGqymprCPOi6axJbIwNomU21fCZMFddpYBxHTYOyT0TGfxQ0Qzp45BXGVki9OJRiM+/txIwY22/MxvBS+zuZ9M8GiuQkCb8zQPU7W22DheuF6tngrhmCL62B4w00zZExj23IwzpHZP5tBs6PjUjK9QTNhX2OpjMck4zLaS0UcSqAWBfiOTBr7LPc3ERHqcmLTZhS5Is7t2RyeZ4rGr502225qCjccaDSwnmxSHdqBxwwCTOTVbOCcKSISBTi+bIuv18q13yYzuG1b1+z7fX1o2jcTXooMDeF12L0XN1SZXcQ2uUiJyE6fwHXl+FmMRUSqEV67V87jOB7ux7nBps0sihlcwwsFSigppgk6ouR11ToZYSmBWi6HfXj4hoMQnz5rJi29sITH4PY+vYRjtZ/mrxwNkuGEPuTQefCmF92bnry2xL/fGI7tirMytmMqn5MLRgnVK+ax3ftpcuov4phtVPBGZ7aC45OTJIqIHJrATSM8C9t0YaYMcUym6oqF9wF1us7thJ0gJndivQ8euh3iRhn7wux57F/VKiXTEzMZcJruz/wA63n5Eo5daxjPq93E12s1vPcQERnoYHvbw/SIkLp6nmFn4/eA+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mURyMKRaKVRxPWBzZ81HZ9/fhZ4/MnOqgJu2ijTjszew7i+iuo+TtUQh3czoKZ1CQXoE53eAj1eiVKasJa8Spp5lkPmya9u4hIOoN/a9RQr86JdVwjkRcl7EsQNwaUAO35l1+G+KnnMFHcy68ch3ieEse5WTPxm0+J2tiNEnXVm/WYW8H09E4prCTscUi7ysndGg3UL4qIWJREJ5PC68Zem0IB28j30RfSapk+gzvuekNS1a/Wq4160d1790P81FNPQTxLCbSKObPP1+lcOXHZAOmy2Uywfx96n9IZUx9aLGKSowz1eR5HWUoMxtdnaclMtMTjhNs/03Xu7N/YKqIgktBePpeIRohts1HBHMc2J0MMsM+5KYxZZ98JeK5ISO5JY3OsD68Fj92Ui8cczOH1HyyiNti1zYSOUYjXP/JxfLap33NbNSj50223YKJVEZHhEfRUtZpYZpqTtnl4HiEl42uQbl/E9MdxMkO54j1JuLZbDXuaOE7S8LO3KkX+m/4SjvPxEfRLLMzjHDg+aiYtffv3fC/EYRV19eUl1IovNhcgnlvA6+TGeJ37TYuQZMg35KUwsVs2h21xmTTxL1yYh3ghwUN26N7vgPimm9FD+uSTmPj03FPPQNzn4DgrFcx7if5+9AO4a6xzERs1t4A4siVevQnE1yzyoCRaSChppuXimB3Ikb9V8BydGvY/PzTXgaEhPEaOfFZOgGVaLtapmMO5KGNT0k4rIVEdVWNochLiG+84DPHFyzj3zNRxPeyj+1QRkWI/JZ1kX0cTz3NuBl/3IxyHAwNmH1+q4b1EXx0v4viNV5P9etbG+5/+oqEoiqIoiqIoSs/RBw1FURRFURRFUXqOPmgoiqIoiqIoitJzNuXRSKdS4qaWNZ2dDmpuhbwMLmnxRESqDmrCnp1FL4NF3obwDGrhFiIs48Vjp4wy+kq4r/zUNObuSJGOl7X8C/Oo1QxJU53rQw2riEh/CXMMXL58GY+5gBpUroProE7WEnOf5g7lVzh+7jzE56nMVBZ12T75D6KEZ0zOGeJ5qCHt1ouGtN/3VtBut1bzuHC+E9Yn8/7jIiILi3gdGnXyZOTxOlrUZhMTExA/+MAbjTJmqP9wfhk/xHoODqHu/P4H8ZhHjqAOePaymZ+GFaMO6ZWnxlFnXV7i3Ax4nuzHEBFJp7HPNpvNNV8vL5YhdqnPs8dDxLym5TIeI+rSJyd5cLaCZrslUbTctwLygzlUf9a/i4hY5G+IYmx726J95innwOw8zqGdtjkOeX/0Fs3V7ENguxVLbxtV1EVXK2WjzDTNN1YaD7JI17JanoN4bAD73MTElFGGm8K2yQjF5J+7slZdIQpojnBNsX9Ac29A8/+KPUeCBJn2VhBFsUQrdWLfk7CePWEOjOh84hjjDLVxIYPXdXIU58Ab+D5ARALKsRSQl6ZG+YjmGrjuNyo4T1dp3q5UzLG/WKfcB2X0ecQh5Uhq4nraoE5v50yDwf4ufbqIyPAO7KN33Y1z3PlXz0A8eeNuiEd24rwsIlKifEU8J243nSgQL1xuO8MDRHHSt9jZPPoMBofR4zN7EdvMpclpMEf5ebKmZ3GkSN4s6hvFNH6GUkdIjd5faWGdJ6dKRpmRi8dcbOIY6BvH+9CpA3dA/OyZz0GcT/BiBlnKJ2PjfBeQFyqKcSzHIc6x1arpb7GobUb6B+j1q21rbcKnq79oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNCQAXFxcM/fcVPA8PFToJmyh3UNc90yYdJekk26Tznim/gMezzer3lQYhnpxCzZ+QrKzZwjrxXv6877idNs+fcwJUKpRvgfbkZmmb69H+766p7XZsLLdFWtuANrVu1LFtxcK2siXhOlK9WM/rOFc/E/Gbt4BKpbJ6fUZoT332DCTtIW/FeG0HaF9qljx7lO+EfQheyrxO1Rq2e76AusgU7e0/TBpVIzeHjbrMiDcvF5FcHvNN7BgdgzikPn3xAvp7BkoliEsUL9cL9Z/skTDbBvuXT3Xg6yUiMkl7j/NYzHSVwZ6craLdCVYHcEyaeN5H3tTQy9VERCs45BNwqM+NDGMfDQLsD1bCOOS/NBvYp7w2+c5iLNNq4xHadK3m59FfISJSHMB+HFD/OHPqJMRl8q1NjGOfLRYwn4CIiJCfwKV8L56xNpFvMI3jZGDyFqOIVh41ya0aeqI6neW5vhNvTx4Ny7JW5zbO8bSe92YZ6n9O8np+rWN0fNKBJ/Rxj9Z+J4dl2GmsQ4bytMgIruERGWLagXliDeqjnNenVsU1ukXv98nrNEf9U0Tk0oWLEO+c2ollLOG6H1L+hb4d6L8YmTA9Gi6tDw75BLvnve3ogYuVirT9tlEXEXPN9ZI8Qh3sP26KPFEBvl6iXEqjfdiGuay5Bo+WcM6cb9Qopr5BftOOhe/PNrCMHbZZ5oU56l8W3X852FYnZjCXzLkl9Cm1Eu7Mp/aiXzMTo5/i+LOvQGzTmp2j3DLiJfiNxzCn1ui+GyEOu1YXK9A8GoqiKIqiKIqibCP6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwaYezzVt2reBZq7WzSV4uIOE3UwoX0nBPQHvK+j5q/doz7/kaxWUY9RO1bpU37GRdR82eTBpJ19x69nkrwhWTzqHULSb+bK6A+z6McAiQ9ljghj0ZE+ReiDrWFjzpWn3JiGHklEjTGedrjWmx8j9+lyXScrX9GXVqqSGf1vLFu7LVJ0sfncnjtQ8ph0OqgdjOgU8ySF+JSQk6LmUv4N5/0n2xdapOOcpbyoQQ+1qlSQS2oiEgc4bnOzc1CnKK92CPS1g5QHhjOByFi6m+ztM934GN/rJNHKJvDvrVYRU2qiMjxY69CXChgGfWl8uq/tyuPRhTFEq5o4WlqEIs08zG/QURs8txwzMfIZfFa7N6JHgI7Ik+PiGToWtw5jlryrIua+DTlOIkj7LPWAl6rmZOnjTLn51DTvkS5PI6/ivrhoQEcSzcdOQhxkbTYIqZXJKA5MCTNsDH2yJfmpkyNcmEUcyWkitMQVy89s/xZMdeerSAMw2Tvj5j+niRMb9PaccSLE71uJ3gxfaqfQ32aV7c0eTMj8hOyJSNrmx6NNOUxsPtprh8qQbxeO3R8s43PX8IcSa8efw7iRgPnvO/67jdDXKI6ZRNyCXmcH4rX8a552E7wIV5vgiiQIFy+gpxjjFs0CM36BS2ct6s1XM/yNN/15XHMBhF+3rbMXBAtGppNyutSIf9Oy8ZrPbKjBPH46DDErmX2P7+F175Nt9atEOfDyMH4znuOQLxjBD1vIiL7bsB53Alwfqss4PxYOYtzsk/3wnZsrk+5YfTGtcn35XbfhyZ4pa6F/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0cik06t5NHiP+w7p26PI1M5l6D0h+QYCa509vkmbGYamRqxDf7J92ouftJkuaUxrNdQjl0lrPD0+YZQ5NID7fg/0lyC26LxC0lb6hrbY1Ie2aO/n2CL9sYPHaNC+4JxzhLWfy8fAtglirEenaw/sgPTPW0EQhBKs7Kl+/vwFeI3znTgJe3gL7bvfpv5TLKEWM59F7Xp5Af0/F85jPgoRkVq5jEWSDrddw3ZbIp1lkfYFT7vkU2rS/txinitronnDdfZgsJ8iiMy+0SFdq0/jIqbPhDTufOrzxRztnS/mnv0xeQ2aXfuh8z74W4VlLf8nIuJSDgyb5qs4Yaf79VStnBuBvVA2jXurYc6zh3dMQTwyMA5xhy5vmnxpjuAxq0uoTX/2RfTSiIjMNnDe5HMvDqJH5+DNN0CcLeBYc1xz/KYz2Gcs6jCdNuVGaFBbZVHH77vm1bBpbDhp9HGks8tzfZigDd8KuvNosM+A54GkXEI+jUszFwK+n/sjw/cBIiJu0ty7BpyvievNcVKd+D1mDqi168Sfz2TN9/f1Yf9hr0wYctviMTukkU/M9URxbF87V4Gb4KW73oRRtOrN4DbmvhRE5vm5nJuK5p6+AfRmRR1s45juSZyEnGOdEMd9QMbikNo0ojU2nSKPLd0jpj3TWxNm0vQXyiVDhs8b9mIOlXZA/Tfh3nbmAt7z5NJ47tN7d0N8iXI21Rfx/mXXQVwnREQGRtCjEdB9ZKorn9saXdNAf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUmyiO41XDT4bML2xsajbNxGKLLUpaEpKhjow9LpuiybQTJzwnsce5SQasiMy6+QIm0WFTK9uZ6jUzUVhEZu7+fjLU0HlGlAgvlUaTY6OOSdxEEhJ5ZdCYFtXRCGmTEW1xsYwHNBIxiSxRAkSfEsG1u8y5UYIJ8HqTSqUkvWKASqU847Vu2IQtImKREa28hP0x5aHxaYiMaekUfv7CEpqrREQ4l0+OkzPS+zlBU54S4XF/7Oszk4yx0ZFNgmzS8+naGT3BSGZlmj6XlnB8Z9I4H9g0cqKAkyLtMMqoUxI+cyzmINoOLNtZTbLnUaI7Tr4XReamDhFNUJGzduIwmiqEcyxl8qap3hMyVtNGEXmPzN8uHtRv47U+PTcD8Uy1YpTpZHA8DgxiYsHpfWg8zObJmE2bDYRp02zNm2pwsjj2CBvGZ0rcleRlDOma8TzqB8vzLM/pW4Vt26tm6PVM0kmJ/dh/bB6Dy8PXAxrHG8kZx8eIorWN21wnns+SksVGlFgsyaTeTRyzkZleT9gsxaY3eTTeXapXh+rA87SdcB68fkSSnJwx6XhbgRXGYq0YlXkzBp7zk9YRz8a5hzdguXQZ72NadB1Kg/j+bJ+5zvuUFNCieo0M41zVoXllpA/n1DytbZcWzI1wFiNM1BtSItWI7n1rS7h5RqOJ93zpNJvLRQqUUDmihLa8WUFhEmN3ENuhb9xMCligpMYZus90usfyJrqf/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0fDDWKKVpHmcKyYk/avfNL0M4uGHkhLWdBOTBtJxUN9nJ2gUbdL0WaQPZdlqu4X1Zp0raz/PzswaZXLSmUwZNczsJzDqTRrBZidB/2txwj18uU3JzSxKeJUuoO6w0zZ9IKzNZpkqJFBcL/PYdaBeq6z6egYHB+lVSjyVUMEK+XM80qrH1DnqFbyOWfIlDZKHY/kzpA/l5FP0ftYns7aYryMnJtwIrRZea9aue+QjSdJ2D5LmvkDepvl5TOpmWeRXIL1uo44aVRERj8aFRwnWWp2r2thomzwajmMnasSXoSRhScnOOCGatXa/9ags9qUlJbarWliP+iLqh9Mh+elo7n7pIiaGulDGazs+PmKUOTWNiUz7h7G/ZHM41jjBq+NinVttc/3wXO6npLOn97vUNsbYC00df0C+wLBVhrhdX27Ldvva2vnrSb1RX/UX8Dhlzb7vm+uI51FSSdbZ07rOcweXEQYJPhBat5vkvfJoPeTbAGNOpPkqlzAHcluwh7TeIO0/nRffJ+Ro7hERyblYrk1j0SffDifw4/UmKfEg+9IkuvZCa1tb/z2xY9tX5zWq6nr3cyIiS5SwdqGFbbTo40GzBfQk2kVcc8M8JXUWEY98jqmA2tBDv0R/Go8xMobehfwwzneVlnnbXHKxTEsouWiI/oqxkTGsEo3LJI9pnjwauRy+x7gnN+4tsH9ymSIimTSeB/exbp8ce+bWQn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6Tmb8mik0xlxVnSGvo8a20YVNddBCzWRIiIeafgcl7wL9H7LxtcjYx91s/quy5pm1Km5lAuBdWqcj6HTQU0hSyhFRBzaT98isVyjhW0VkHazQxrUMOH5zw9Jyx1zW2KZfpP0u6SLTdoAnbW1rnft51De338rsOJIrBVzytLiArzWpn34+TqKiMSk0h4k7WWd8gMszV3GY3rYPp2W6XNxqE9Wa6gH5WbjerNut1hCTaqV4EtiDxDDfZi1mxZpN5N0/5wjwnWxP2bSqBdNZ9DDkaZjzl44bZRR6sdzjWgcdKerCZKSIGwBtmOt5m+IySjFaTN4/38Rs3+YumbSE/PrnBOF9msXEWm6qInveDi/NCpliCu073yN3r9//yTEu3ZOG2V6RdQPC3lL2m1cD0LSs7vUJzu+eV4OrQec9MGhuZyvR5P2qm/6CR4N+kzUwTkhfaX9E3IEbAVzs7Or+u2LFy/Ca6zrZv+FiEizideBvVNpysvSJG8Dr10Sm3NFgXT1iws4V/sBzkfpDM7VpVIJ4tlZzOOScc35rtPGY+7ZswfikMbVydOnsA6Ut+Dmm242ykh5tAaTF8qnew3b4XpyfhDzPALDV4Nx9zVNur7XmzAKV3PNcE4Vrk+SZ6NK3iyfxuzkvn0QF4uYk2x0DPNoZIrmOh/SXHOc8pI16V41jLBPV+k88h72jVHK5SEi4tB6x/mxHL73tddeBzbidzGhez7y92SpjsllsEeZXu32XiaM/Wuhv2goiqIoiqIoitJz9EFDURRFURRFUZSesyHp1JWfxMKun/VC+omPt7eNAvNn6dDi7QgtihHeci6irSDthJ9+YouPyT/n8XaSCB+Tf8pMlE7RT/gsK+Jj8M/P4QakU2G0tnSKf8oPWTdg7O1oFGFcw7V+mr3y3q34+fZKGd1bErLEqE0/nSdt0cr9rUHbLrZIVsA/wQYBbR/ZMuUdluB7At5umd7fJlkTn5fTxJ+GWd62XK+E7ZC7aJLEi7eP9KmOLK1arhdva0lyHJJYhBGeR0jSKZZwiIikaPtHl36a7b5eVz6/VfKBK+V0urY/XW8uCSNzflpnZ2sJ6DM2TSaGPCFBwxiRLKnTwWvV9lm6iWOlQ5IIfn+zbfa3IIX9mGVNUcDjE4/p0vzmeHQ8EYlJJsb9OI5orqYyfKp3M2GNMqVTvK4tv6HVWf7/Vve/Vtecw3MeSyGS6sbzDUunhKTH/H6+bknyCZaDsnTTp/mKx4D5edqCPmHLV35Pi+Zmlk7x+7ntWGYnIuLyCF/nXoGblm9XDBmamPdVAUmNuq/plXl9K9fgZuvqtWTp1LonLCJN6rNtmpsCn7b3puvEn48989xDLsOY32jeoC7covfzfBckzE224HXyXJIxGdIpfN2S3kuneGw7tIYnlZG0nnTjdi1gVywBG+l/VryBd507d06mp01drqKcPXtWpqamrmsZ2v+Ua7EV/U9E+6CSjPY/ZbvRNVjZTjbS/zb0oBFFkVy4cEGKxeJrfNJSvtWI41iq1apMTEwkJh7qJdr/FGYr+5+I9kEF0f6nbDe6BivbyWb634YeNBRFURRFURRFUTaDmsEVRVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6jj5oXIMf/dEfle/7vu9b8z27d++Wj33sY1tSH+Wbn4cfflh+4Rd+YburoSgbQvur8q3GY489ZmQeZz7wgQ/Ibbfdthpv5F5A+dZD57/eoQ8a3wBPPvmk/MRP/MR2V0NRFEVRXnds5Mb+9cY/+2f/TD73uc9tdzUU5VuGDSXsU5IZGRnZ7ioo38Z0Oh1JpVLrv1FRFEXZEIVCQQqFwnZXQ1G+Zfi2/0Xjk5/8pBw5ckSy2awMDQ3JI488IvV6ffX1D33oQzI+Pi5DQ0PyMz/zM+J3Ze5k6ZRlWfL7v//78ra3vU2y2azs3btXPvnJT27l6Sivc6Iokve+970yODgoY2Nj8oEPfGD1tTNnzsg73vEOKRQK0tfXJz/0Qz8kly9fXn39yk/6n/jEJ2TPnj2SyWREZP0+/IlPfEIOHTokmUxGDh48KL/3e7+3ZeerfHNQr9fl3e9+txQKBRkfH5cPf/jD8Pri4qK8+93vloGBAcnlcvK2t71Njh07Bu/5+Mc/LtPT05LL5eSd73ynfOQjH/mm+zZbQT7zmc/IAw88IKVSSYaGhuTtb3+7/P/Ze+8wSc7y3Pup0LlnpifvbJzN2tUqoZwQIMnIAixkw4cx/gBbxmBfJGEw+DMiGDjYgLGNr3MOmMMBycbGxgFxQOgAAsnKOa425zC7E3umezpW+P6Y2Zm577c0QeqdMej56dJ17TNdVe9bVW+o6r7v99m3b5+IiNx9991iWZbk8/mp7Z966imxLEsOHjwod999t/zO7/yOjI6OimVZYlnW1Hg3V3s69UvID37wA9m8ebOk02l505veJKVSSW699Vbp7e2V1tZWef/73y++P50ReT7tVETke9/7nmzcuFGSyaS89rWvlSNHjkx9xtIpJggC+fznPy9r166VVCol55xzjs7zv+Do+Hd6eVm/aPT19clb3/pW+d3f/V3ZsWOH3H333fLrv/7rUynVf/7zn8u+ffvk5z//udx6663yrW99S771rW/NesxbbrlFfuM3fkOefvppedvb3ia/+Zu/KTt27FiEs1F+Ebj11lslk8nIww8/LF/4whfkz/7sz+QnP/mJBEEgN9xwgwwPD8s999wjP/nJT2T//v3ylre8Bfbfu3ev/Nu//Zv8+7//uzz11FNztuFvf/vb8olPfEI+97nPyY4dO+S//bf/JrfccovceuutS3H6yn9RPvKRj8g999wjt99+u/z4xz+Wu+++W5544ompz9/5znfKY489Jt///vflwQcflDAM5frrr5/64uX++++X97znPfKBD3xAnnrqKbn22mvlc5/73FKdjtIgxsfH5UMf+pA89thjctddd4lt23LjjTdKEARz7nvZZZfJX//1X0tzc7P09fVJX1+ffPjDHxaRuduTiEipVJKvfOUr8p3vfEfuvPNOufvuu+XGG2+UO+64Q+644w75+7//e/na174GD/nzPe7nPvc5ue222+T++++XfD4vv/mbvznva/L5z39ebrvtNvnqV78q27dvl5tvvll++7d/W+655555H0P5r4WOf6eZ8GXM448/HopIePDgQeOzd7zjHeGaNWtCz/Om/vbmN785fMtb3jIVr1mzJvyrv/qrqVhEwve85z1wnIsvvjj8gz/4g8ZXXvmF46qrrgqvuOIK+NuFF14YfvSjHw1//OMfh47jhIcPH576bPv27aGIhI888kgYhmH4yU9+MozFYmF/f//UNrO14TAMw/Xr14f/+I//CH/7zGc+E1566aWNOi3lF5xCoRDG4/HwX/7lX6b+NjQ0FKZSqfADH/hAuHv37lBEwvvvv3/q88HBwTCVSk3t85a3vCV83eteB8d929veFra0tCzKOSiLw8DAQCgi4bPPPhv+/Oc/D0UkHBkZmfr8ySefDEUkPHDgQBiGYfjNb37TaAPzaU/f/OY3QxEJ9+7dO7XNu9/97jCdToeFQmHqb6997WvDd7/73Qs+7kMPPTS1zY4dO0IRCR9++OEwDCfG2XPOOWfq83e84x3hDTfcEIZhGFYqlTCdTocPPPAAnNNNN90UvvWtb53PJVT+i6Hj3+nnZf2LxjnnnCNXX321nHXWWfLmN79Zvv71r8vIyMjU52eeeaY4jjMV9/T0SH9//6zHvPTSS41Yf9FQTnH22WdDfKpN7dixQ1atWiWrVq2a+mzr1q2Sy+Wg/axZswa8QbO14fHxcdm3b5/cdNNNU7rjbDYrn/3sZ6fkD4qyb98+qdVqcvHFF0/9ra2tTTZv3iwiIjt27BDXdeHz9vZ22bx581Tb3LVrl1x00UVwXI6VXzz27Nkjb33rW2XdunXS3Nwsvb29IjIh83yxzKc9iYik02lZv379VNzd3S29vb3gn+ju7p6ak+d7XNd15cILL5yKzzjjDGOcfSH27t0rpVJJrr32WhhTb7vtNh1Tf0HR8e/087I2gzuOIz/5yU/kgQcekB//+Mfyt3/7t/Knf/qn8vDDD4uISCwWg+0ty5rXT8aK8kK81DaVyWQgnq0Np9NpEZnQjs4cJE/tpyiKMhtveMMbZM2aNfL1r39dli9fLkEQyLZt26RWq0098IeTMk0RAYnSSyVqrFzqOblYLIqIyA9/+ENZsWIFfJZIJBatHoryi8TL+hcNkYmB6vLLL5dPf/rT8uSTT0o8Hpf/+I//eNHHe+ihh4x4y5YtL7Wayi85W7ZskSNHjoAp8fnnn5d8Pi9bt26ddd8XasPd3d2yfPly2b9/v2zYsAH+X7t27ek+JeUXhPXr10ssFpv6gkVkwvy4e/duEZlom57nwedDQ0Oya9euqba5efNmefTRR+G4HCu/WJy6xx//+Mfl6quvli1btsAv/qd+We3r65v621NPPQXHiMfjYNYWmV97ejHM97ie58ljjz02Fe/atUvy+fy85umtW7dKIpGQw4cPG2PqzF+jlV8cdPw7/bysf9F4+OGH5a677pJf+ZVfka6uLnn44YdlYGBAtmzZIs8888yLOuZ3v/tdueCCC+SKK66Qb3/72/LII4/IN77xjQbXXPll45prrpGzzjpL3va2t8lf//Vfi+d58od/+Idy1VVXyQUXXPCC+83WhkVEPv3pT8v73/9+aWlpkeuuu06q1ao89thjMjIyIh/60IcW6/SU/8Jks1m56aab5CMf+Yi0t7dLV1eX/Omf/qnY9sT3UBs3bpQbbrhB3vWud8nXvvY1aWpqko997GOyYsUKueGGG0RE5H3ve5+88pWvlC9/+cvyhje8QX72s5/Jj370I7EsaylPTXkJtLa2Snt7u/zd3/2d9PT0yOHDh+VjH/vY1OenHq4/9alPyec+9znZvXu3sVpPb2+vFItFueuuu+Scc86RdDo9r/b0YpjvcWOxmLzvfe+Tr3zlK+K6rrz3ve+VSy65ZF5Sl6amJvnwhz8sN998swRBIFdccYWMjo7K/fffL83NzfKOd7zjRddfWRp0/Dv9vKx/0Whubpb//M//lOuvv142bdokH//4x+Uv//Iv5Vd/9Vdf9DE//elPy3e+8x05++yz5bbbbpN/+qd/eknf0igvDyzLkttvv11aW1vlla98pVxzzTWybt06+ed//udZ95urDf/e7/2e/K//9b/km9/8ppx11lly1VVXybe+9S39RUMBvvjFL8qVV14pb3jDG+Saa66RK664Qs4///ypz7/5zW/K+eefL69//evl0ksvlTAM5Y477piSslx++eXy1a9+Vb785S/LOeecI3feeafcfPPNU0swK7942LYt3/nOd+Txxx+Xbdu2yc033yxf/OIXpz6PxWLyT//0T7Jz5045++yz5S/+4i/ks5/9LBzjsssuk/e85z3ylre8RTo7O+ULX/iCiMzdnl4s8zluOp2Wj370o/Jbv/Vbcvnll0s2m51znJ3JZz7zGbnlllvk85//vGzZskWuu+46+eEPf6hj6i8wOv6dXqxwpsBSeUlYliX/8R//IW984xuXuiqKoihLyrve9S7ZuXOn3HvvvUtdFUVRlEVFx79pXtbSKUVRFKUxfOlLX5Jrr71WMpmM/OhHP5Jbb71Vk0MqivKyQMe/F0ZfNBRFUZSXzCOPPCJf+MIXpFAoyLp16+QrX/mK/N7v/d5SV0tRFOW0o+PfC6PSKUVRFEVRFEVRGs7L2gyuKIqiKIqiKMrpQV80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs68Vp0KgkCOHz8uTU1NmulQERGRMAylUCjI8uXLpzJoni60/SnMYrY/EW2DCqLtT1lqdA5WlpKFtL95vWgcP35cVq1a1ZDKKb9cHDlyRFauXHlay9D2p7wQi9H+RLQNKtFo+1OWGp2DlaVkPu1vXi8aTU1NIiKy/pq/E8dNi4iI44zCNgEtklv3W4zjxK0yxR5uYPsQlsIUxDGqritVowxPKhBXgiY6Rh3ilIux4+LbetlzIK4GcaNMRwKIsw6eVy3Et71iFctwbTyvlFszyqBNpFzHY1iC1y4ewzI9Og8rYlVjh76pKNXwvCw3OfXvoF6WAz/9/am2cTqZan8b3iSOExMRkXiyE7bx6niBRofGjePE3ATEAd1rz8bzbaZz62hphrg0PGyUMTqG/SKWzUCca2qDuIk+r1awj4yO5iG2HTwHEZFCidp8BWO+r2GI5xl62F6DENuSiEgqi+cez3VA7Lp4/RNJLDMoYz8b6hswyvAs7M+Wjefh2mPTxwvqcuTg9xal/YlMt8HLfuP/ETc2MQZsu+StsE1L20aI4zHscyIiQX0M4ice/AnEw0f3QZzuXA3xmee/FuLOrrVGGSF/48gh3n4JfPyD6+LYEdCXVRUxxw7bpvtNZfAudkDjl/EtqVmGxX8KcJy0HGyDVR93sOh+eD5XUsSv0z0Lqe9MjrPV0pj893f1Lnr7y+SyU9fKkjmuYcQYH6N+2tnZTsfAfcbGCrh9F467vWvWGGWcdeY5EL/61dfiPr24j+viNefxKRaLGWUwpVIJ4nIZx//xEsY8Rpbo83vvM7M5b9/xDMQDA/0Q1+s4xgV0HtUAx1U+bxGRdCoNcSaTpi2mx2qv7snddz66qHPwI/d9W7LZiTr51MnnbI8vAj7GfI5pzG889tgLrdfcdTCzRISzfh7QA7MxZFsv/RequTJXRH1u/jLB5zH972KxJBdf+bZ5tb95vWicurCOmxYndupFgwZ5qrNvcwcxH3gcCzsmv2g4IR7Doeo6YnbUkBqFHfAx+MWiRjHXEcuwA/NBj180HIfKCPkYVAa9RTgRA5DN9eLGL/iw6NCLRmhhGfN50XDCF37RmPrbIvyMOtX+nJg4Tnzy33gfwgDPz7bpJVZEbJvuHQ04ts33Ec/XpfPnOkwcIz7rNnwM18WXad/F+8L72455D2wH97Ftiud60bD54Sri2lE9HL4Wboxiap/Upo17IcbtEIvuh+2YDxyL9TP+qXLcWFzc+MQ9TqTwJTGZxgE3+kUD700sgff/1EvMVBzH65xIZalMfAEUEQmNC0khvUfO+aJhnEYDXjT80/+iYfGLRhxPpO69+BeNqWMucvuzLAv+PWtdzNMzHiQch76AsngsmX37qJeAZBLbbDaLbZYfTGIxvG8v5kWD68Vt2KL2yQ/5fOmSSXN84nrM9YLkU9tx6H5EzfN8TOPaGHss7hyczaalqWli3PNp3HgxLwXzLXchx9QXjReq09yfL+RF4xTzuSdqBlcURVEURVEUpeHM6xeNU3heXcLJXwR+7aIifBbQ2/utPzblF+96HW7T5ByBOE0/E37jx/jNx6Ye3P/8HtxfRCTWsgLiv/k+SlG2rMOfTP/f6/AbhP17j0J8/w78xvGZEz1GmddfgpKPy84gmUgxD/Gjz+N5Fkt4G978KvPXoH17jkF8YBiv7yvOXQ7x6AmUphw4gZKe889ZZ5Th1fGYh/vxm4HvPTQthwsDvK6LwbVvOFcSk98Ar1qNP/kP9OchPrhnl7F/VzfuU7fwGypuf+vXrYd4dQ/e+8M7njPK6Du0B4+xbSvEy1b1QtzRiRKkShnb58mjhyAeHTMlYT+6C3/mD2L0LayP7bHu4/cLAyRjSsVNeWBHTzfEr/i1ayBOtKAkLJuibxhLKDP7v//0D0YZoyMof4jRLwJxZ/pa1etVObTfOMRpJ/DrEngT1/fkse3wWa2MMpNMc87YP5vGNlco9kE8XsPrlA7xuhby2B56uruMMsKQv4HDz22LpVH0LT1JPR369SHmRHyjF8z+TbhH8jyffxmgMisV81e1mIvtMiZ4LctVHIfr/Msxfa/miDlH2fyVHf1SGkz+Cu+H9Gv8IlGr1aZ/XXP5V1z6FTtCGlaj8xsdxTZrfkuP+2foV7tzz73QKOPNv/EmiFeuZHkVf0uK96Faw3Eg5PvGOmIxf21wXKxnM8le+wew3wkpHc488yyjjCGSyhaLKINk+ZZfw1/c6jS/el5E+6NfZsIyteEZv17zfL0YhOF0m5jr14a5vlGfX3n8zb/x1b+5D+v4CePX1rlrsdAdIq7FXJ/jBr4fpcigX+nm+CXhxfyixPWY7R4u5P7qLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ0EejUACObWURXMMhW7nnoPL2d5+325j/2svvwTig7twebhMiqrjoR49QyuwtGVMn0C2HTWONQ81qKk4riaxuhvjPc+hFyKsoQbaCkyPRnczXosTJ1Fn/+OHsA43vxN9JI88tAPr1IXeABGR5586DHFKUHO6qQev/317UT8eC/FadkWUcecdeO5vunEbxHc/fWLq356L57gYVCtjEoYTutc6aaebmlEv+MpXnWvsn+vAe8fLDjvkCfA91DgOFFGj27rB9Lm0b8LlRltb8b7EaTWTMmmLPVqCt+uMLVinYweNMnOd6CNq7WiF+MSx47gDrRA1lkdte64VjyciUiwegLhWQX9U1zr0cDi0AlBbB3qILrgUvSsiIgcefxBi28P+XZmxpHNNzCWgFwOvVBaJTehnB46SR6OI/i4ngfdBRGTFCuz7gZeHOJHEsSSoj0A8OoAeoGANHk9EJCBtLut9HfJwsH/C81H7zd9GWRHa8kqVxgOS71Zq+PloBcejahXrYIXmqj/LunGt9qCKno0S2SaaurDNJdPUrgNTB82rTLG4+pRHMVgij4bv+1Pa67k021Eaal5hrFbBvu/QilHJBN6HdetwzPuVa3C5ZRGR3l5ckrlWm/1aBSSa5/ZorELlmudVq5tL3c+kTp/n8ziWl8voOe3uRm+UiMiWrWdA3D90EusQnICY205AviPfi2h/5Osgm5HEEtNt3vNfugdioYRh+ILa/NOxyhSXZbYNsy7sXVpovRrhbXipx5zPylYL9Wy8mDJm22chSSL1Fw1FURRFURRFURqOvmgoiqIoiqIoitJw9EVDURRFURRFUZSGsyCPhm1bYk+uoX7sEGq0z9+Ah3rdWaaGujyAWvH8EG7jkdfBq6GmlpZJl4Giqf0MmvBvPmn5OYP0kYOozfzxE6gvHZZlEDenzEWYB47igv59Hr6/7T+AFS+Po0Y+Rxlrd+9HXbaIyJ3Poz55TRdqSPuO5CG+b3snxOkk5msYOszriIu8+kos40d37IW4ODatOY/Ul55mnn9qp7iT/gLLQv11Tw9qh/cfRr+JiIhzfAjiDOV+OHocNbfFIt63pibU3Ld3oS9BRCTOmZv7cK31NGXJ9ShrfDXAthFPo2Y602x6hK58w69DfPIA5vc4sAfvo1iYL8SJYZ3KdVO7WaP8HvseeRzidAbrZVObrlKm+mQKvSsiIhu2nQlxWMJ+MNI/reuv8mCwSHTlWiU2mWcknsXr1N6E18hOmF6GljiOeWefgTkGAvKAcWb4dBqzkcdDc6yok+bdCoxU4Pg5eThs8mBYfLyyee1d0uFXybPh13CfwMfPx/OYg2Bk2PTfVUdQA18epbE9RnlwqO+0dmL/jVpv36K06aHNHo2Ja+Vbiz/+iYjYrjulk3aMjNq0sWN+j2ixrpt8aS55yHKUf2Ljhg0Qr13LOTJMTwZ7MFgHXqW2USOfAmvuOSO1iNnebBvPq1hAn+R4Eed9TjtfrZrtr7kJx8lYivJdUczZnSldjdQiyqhQm6zXsJ3FZpyXH+GVOt2EMu3ReDG+hLnyNMzlOzByxUT5kKi9ccztaa5cHQvxIjQKJ6Lv8njF5zVXPeeT9+J0ZHcX0V80FEVRFEVRFEU5DeiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkBncsu0pw0m+gEaUx5/cB/G2jWjWFRHZuRfNfIVRNHAlyCC6gozdiQANXMWCaUpcsRrfnbrSgxDHfTS3SY2SVwWYBMonM2bWMo1onTms9/M70Hy7qQtNW0PDaEzbfQyvwzkZNHKLiIxW0SQc2GiUr9XRWHayiGa4ZWms4/bH7jXKKNiYcMx2sIwVLdP18uquYJrB049tV8W2J69/LQ+fDdNCA/2DaPwWEUnG0Eh7+CCe72Aejdv1OpmtrEMQHz+E5kARkfZ2XDwgTYbzeA4NqSn6PEaG89DF9pxINRllplvRlL4xh/UaHchDvP3Jp7FOlHyzUjP7Va4Z+015EBcT2Ps4tqe2TmzDqWWU0E+wn4mIZJZjEr8EJQ/rKE/3o3JpXET+0jjG6ea1r75aUukJ02dTKw6fXTm8V75tJuyzLEpEZ6EB3rPZ4If92LHRcBraZnJFi8yOrksGPzIF+pSgj02DMTIEJr0oEzVuU6/j2F2hhGkjFexrJ0+OQvzznz5slHF0Ny5yIHUaA21sUyvW4+IWlo+xY0ech/EnMmBOhu4SfUWXbWmemoPj8dis20ZZP11KEJrO4pjYQePT2ZuwT15++RW4f9pMrFitzm4GN7anpIF1D83gId+DCDN4pYJzqGVhvxkaxgR9VTJZx+PYdsolMotPHBRCN4b71DysV5XM2j4lHvQjrotfY4M3Xkt7Rr0Df/HN4K7jTpmp2bTP4wibrkXmNoPPhWF4jvAqh9SJfZrHA8OAjvU0FiOI0X23zUItSvRprKdic0j33sb26EbkuLRp4ZiAxnUJcKcYPd5bVAk/NNsP341QHIpnlEn1mQ39RUNRFEVRFEVRlIajLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXhLMyjYVlTWtyTBdTH5p9HzW3iEGoiRUSS9FpTLKMirKUPdZabe/AYJwZx+2cGzKRfoX0Y4vO60aNRHcR6P7ETNarrW1Hbv28EvQ+DASaGExHZeRDrWanxuaOW87Y7MMlW3MHzaM6hl0VE5JLVeH0LedTn7TuCWv/L1mMCrP5hvC4l29TXHe1HbeIF5+G16R+bvjb1EO/VYnDmmVslnpjQBMeSqOmulFFT293ZbuxfGkdd5PGTmNTPtrA7xBy8RjUPtcRjedMHwvpNN4ueimQS25+dQB+CTRpqm8Tgvm8mChss4H1ry6AW/aLrXgdxXLBtHN+7E+Ja3by3tRr2A28cPx/dh/VyiisgzpAevrVjlVFGQP4DixKwNWem26M7jj6nxWLbGVskO5l0sSmL9ybr4jWybNPDE1JCRvZTeHGMAzYNkPbcD02dPlsoWNbM+mBDQ0/S3xgdwK1HCIipTD5m3cN23ubhmNgSx36xs9X0Iu16YjvEXo2Sm9G1TNqXQxy38f4EMrvHQUSMLHj25HdzdkRCrcVgxfpV4rgTbcChhHCOg+dvx8wxPp7C+9DUkoN4TTf22zdefR3E5557DsTspxARKVdwcOBEY5w0sE7jTa2OxwwCHFvKJTPRnUfjYr2O+vPhYRyrq1Wso0fj8Oio+fziUPta04PJffcfwPmkQD62SgXrXa+Z/Sj02C9FG8zom3N5X04Hnu+J9wLJetlvEbVdLDaPPrcQIiweFvlo4zSHhpyAVMgfQV2bE0pKHNuKiEiMvrM3RgcjiSp+XCfvXsw2r5PvYr84Noqe0fwotr9MBS9Oewp9kl3L1hpleJTQ2idfUjij4iH7TGZBf9FQFEVRFEVRFKXh6IuGoiiKoiiKoigNR180FEVRFEVRFEVpOAvyaISWLeGkLnQ4eS581pJCLddI1dRu2gFp5RKo8TpRRn1irIrauMBCbVyYMXVsdx9Brb5lr8c6pFD3feQg6ibHx1G3VgtRZ2055rrhj+7AMrtaMOfAoL8Jj5nCMhwftZqHnkQ/hoiIw0JrH/W3u57Ea2WTv8ClW33Omt1GGc+MoVfkyR0DEPd708fw6wtqOg0hmWiXRGJCy51oQw9GoortL6iih0NEpP8E5nqxQ7ymAemuPVr73yL/ReCbAtHCWB7iTBnrkaW1rus+rRlfwbbEHg3Wl4qI+AnsNx6tG768E3PaXPy6GyG+77vfxP37zbZhUf/2SAOdzmKbjVE+iMqBfoif3W7m0bCbMAdJ+0rsJ+0d05roiTwai08qHpdUfGIMyMYoh0UR7+WRw9jeRESG+tGftXnrNoizy3sgDniIY82sY67pXqdx1hLWJNNa9havK09jh8P646j18SlHgLFEOx6jiXJe+BmsQ9ox/QUe3fPQx7G7qQnHXVdQl+9IHuJAckYZQmvq83mdWsd/qTwam87aKLHExLUL2IxDYVQeg5YWHOOzTRivJd/B2rVrIHbovMcjvFKlqBwUs9TLozEwoPmwVMX7PDaSN45ZowZXGEcfWn4EPRdBgGN7oYDHHKNxXEQk5lIOEsq9Ead+URjCMbFK58F5J0REQsoRwr6Hmb6MheagaARBEE7VwaE+yrl0ojwk/DcjL8YCsSISaTge1ovTXvjk+QnJMEG3WSyXvCcWti0REQnwXtYGcd73CuhDilGl8lXye3aY8+NYDI+5+/jjEPtOHmLrCNazdhh9b697/R8aZbR19ELsBXSu9ox+Y5vP+C+E/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBaYR2NaIlwiTXy1hrq40DLXGmYdWxiyljhFMWrKQqH9eTFiEbFJd8sqxoA0fXZIvg/SPLMGMHRMXaSbQW15Jf8oHqMDfR4urXceBnjtAsofICISGgJcPHeHdNkeXVuJ4fZH86YGMEuaU7+GYsUxZ3qNdT8w1zI/3dSHjoo9qY/PxPGaDZfxPo6NRXg0htBzkslg+3JdzBviUlvwKX8A67dFRKoV1P6ODp7EMjtxLetMDusQ+Lh/tYIayXrE0tVODH1DWbq1J8fxmBu7eiG+5Mbfhvj7X//fRhmdOWyT9fxRiE/0o8a0OYvtI5Wi/CAlsx9VC7gO+PH+ZyE+mZr2L9R4bfNFwrVtcU/pismntO/54xB/77vfMfYvjqCm/U2/iTfrkmWoia8aOQgw9kNTo8w+DktIS81jiZGPgbYnPbEfoQ0PqR4hjZsW9ZU4HTOTwDrkmsw8GiH1vyBADXxLE46z1TLej6CGOZViKbOMgL57C0Kcc05NYUEYkUtkEcgm4hKf9GhUPNR9V8nTWB+PuE8OtrdO8m/1dnRCHGdrII1PlYqpV6/VULvN2n32JlQqlLeHfAqVMo4lo/m8UWbFw/tRJo8oX5vhERyXA6pTVL6iWJyfVygXTJZyIlGf8CpcRpRHg9s4ezaW1qMRj7kSj0+M5UEwe/lR/ovZPCciZlsxoI85R8tEGTjX+DT2BPQMF9h4zcc9bNOFCuZDGa5j2xERqRXIq7QHPYmVw9j+9u3C+bN3HbaF0jrTC1xsw+fjdBPOP24Wx79kL7bPvjHsZ8NlHA9FRJoszMHlU44RmXEtg4jnnxdCf9FQFEVRFEVRFKXh6IuGoiiKoiiKoigNR180FEVRFEVRFEVpOAvzaEz+JyIi4ex+CTs010FnT4awxouPyeWzfC9Kn8y6xTkkfwGVYhtrziNeRJlBeiPEA8cew88DXE8/tRq3d3mtYidCu8laRrp0tqHdxs/TCdQh2jFT497soKb5kLcVy4xNr1Nv2YufR+NQ37GptczXebhWey7bBrFjo15RRKTeuQLi0RL6OOq0zrkTQ62n42KbNlW8IrUAtcHjw6iDdOqYCyDm4lHGyxgn2H/RRLkbRKSpGf0TAWljwxC1mieHyUdyCDWnrT2o0xQR2XDWRRCTRUieeOhuiHftegbiyijmjwgi8iRk6TxSLtbTmbEWea2+NBp5y7bEnvTuWILt4+EH8Zy3P2fmI3Eo/8hj9z8C8aVXX4vbx7GMgHxqkcvQh9g3edzkXVg37ZBngz0cvjuPcdfQn+M+DmmrEwlso22UJ0dExKImE/o4bnp17M9HDj4HcbKlC+LVm9FbJyLiB6hjtijHyKncOYE/e66I08Wh7bvFjU3c31qF9Pz+7B5IEZGQxpcLzzwX4jXL0bPRTH2yRp6MWpX8FRLlb5jdo1EcQ69Nvcz5JnCwKbGnQ0RqHh6Tc3XUPaxTqUj3mebPeMwcn6p0rg5p+5d1Y5ttzuAcVMijjt+OsDj4PM9zvwpf4N+LRfjC5TbCMzLXMWzym3GeKRERz8Y2Wgnwuo+U0D8xMIbPPSeH0T8xksfPK3Hz2SmgHErNz5FnYx/2gYf/cy/E7sXY70Ytc/wr11sh3mivoi2wjFIcx8PMeuxXJ+voiRQR6bYxd5Ud4LhsS2LGv6OegKLRXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazgI9GjNUYDZp5Yy12yPeYQxpL+3DayTPtXsU1qyh2HPUQUg7zPkrnCCiFg7qWHvWvwJi78Q9ECfr6CfwkhvwcGKuTzxcxzXf0xnUh7q0rnu5gvq59U2oM/Q98zz2l7ZAXI110Bb1F/j34lD1A/EnzSl7T+Ths85m1Ei2NZl5XJalMU9GNo7NP1/BazJeZQ00XXPycIiIOElsCz7pekf7UReZXYZtQSzU9cYC9GRkAlMbnqHkGpaD9bK8PMR9z2yHeP/OPRBv3oTtQESke8VqiMfywxBfcs31EG89/3KIn3jgPyHeueMpo4xjfVhPiwwIcXf6nnre0ng0bGfao+HydaYx8Q2//hvG/kER9cNjY3g/6wH2W9tBj05IngHLNscKHnst8lhYPLCSLtpmj4bNx5vbo8HHMOpAunuXcr8kUmaeH8ulsbmGx2iiPr+sqwXiw/ueh3jV2vONMuIxLDcgz9Wp7+ZcGZelYPDE8FSek/I4ecrIlxCPm2vx+23YvtpyOP6k0ngNKxU8T6+C1yOom37CGnko2NtWGkdPxsBxzFNQGEV9e64D56FEEsdxERGbPBqJJJ7HeBGvVUc7auIHh3BcrlTNPFHsPYnH8HrnWnDszmZxLuAcGVF+hLk8CnPmmTjdzHwIZDvsPOrG58fjgmGxpSfUWohtY4j8FSIix0rof+gfw/Z1cgj3KZTRP1jxsM075Df23Aj/cRkrfuwozo+ZIXx+6+7F+bTPJ3+Fbz6/xFP4t7yNXpEkjV2pGLbHkyNYp6GTO4wy1vRshrgthfUUf8acF6hHQ1EURVEURVGUJURfNBRFURRFURRFaTj6oqEoiqIoiqIoSsPRFw1FURRFURRFURrOgszgtuOIfSrRVlSyvBlEWZrYyMjbBIa5SOb4w8Jh0zoTkBGbzUlOxP5scCLPsbzm6m0Qj1TRlOOHT0J8ctg08Y2UMXlexhqCuDb4LMTrW9AcFy+jcbU/RNOPiEjZxoQwFiVQtGY46ZfCk9aSTkps0vA0WsZ35D19aDDsGKUkiCKSjOE23e1oFm3OoJlqiE5ypEyGrappxE0k0bxtJ7BtDPcPQOzuPwhxU1MOYm8IjWyVo+aFHyJvWiqLDdC38LyGh9Ds1r0Kzd9ujgxgItI/hkbGDCVYyySwzcZTaES75o1vgnjN5k1GGY/dexfEBw+gqa9UmjZomknBFgk7mPhfRAJK2PXKay6FeNlqTBApIuLWsN5HDh7EDSgfY536IPnNI83gIf+Nk6eGbMCkcZnN37SCRvS3U3OswuFQ0j9edMOhxHicEVJEqj4adGt13OeVV14F8YoN6yDevhuTZ+aSZhlj45i8sjiG+9SqEydWKZvjy2IwPDQq9uT9qdFiFWystc2VT8SiKT8Rx36cTuA8MV7M0/7UFiLKGC2guZZuvQyfwDHt+eexnwd1PGYsiWNJz6oeo0xeiMGmNuzaeJ5HjhyBeHAwTwc0kwLGafEQO0NmbzY28wMNdwpOWBy1zZJk5XtxzMcMbtPoEXIcw2syUEGT/tP774b4cB4XNhERGarjPF/18BpWizgGc3uTAO9zjMampjbTDN7Sjc8SJ8/EtrGnhM9rksXzbNuG+y/fjPuLiDTRMx0vSGGPoDl86BiOZSMHcCxb1n6GUYZdxH7ipmjxB3e6X1ju/MdA/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzIowEYmVVYf2hqC1nPGYYcU+IxI+nTHBn9RCIkjrP7Qow6crIqlh5HnZeDl/HoGGpIH9iBiaKuu7QX4n37MYFM1jaTBbWOPA5x/17U23V1YeKlKy7ChGlODXWzD+/nRFQidoA6e4u0iaE1rRFcisRBqXRyKqHWiRFK2Ea681LNrN9YmfaxMPlPJo7HyMZQi5lK4/U5MGgmjatVSR/qk8+FkmjZB49CHHSgNjjZksPjx03t5ji12bSP980nL4FHn1dJU52PSvQVdEJsNcXpc9S9uuQtSGcwYdG6My80ykilcZvkvf8X4l3bpxMLhvNL39lwAsuXYLIfeIIa1Q1b0ZNRjZPhQkQy5JfZ2tkMcSVJ984YE9lPYXpVQos1xDymkQ+NtOQBlWGzLj9iFOXEpsY3WDT2+1RFn48ZM/XrJY8SuTXjmHfVVddA3NSBuuc1vVjoyIipMS6PoJb68I5HIO4/OdG/6zVz/FwMRvNj02NvyPd19gS4IiLJBF7DwiiOVxZ5FB3yOozmRyH2fPM+sa9jeAiv6VOPPw3xwBDOd1s3oXY8oOcEl7M7ikgqlaFtcE5OUpK/chn17Fu3ngVxf/9ho4yRPM65YwXUyLsxHGd7lnVDfGD/AYjr9YinEe6b5hbTn/3i2Dem4UZp4zxxoojJY//zOZwDDg3vh7jmmONfidqkTx4NO6BEux75x8ieUw/weHbEdbdLuFMuh2NPijwbEmCbz67GsSkjpkcoO4rbOGM4Bg3s6Yc4fxQ9Glu2boT4kgvONMroyWK5tXH0T4kzI2lgxXxOfSH0Fw1FURRFURRFURqOvmgoiqIoiqIoitJw9EVDURRFURRFUZSGsyCPhiXTlgVee511aywfndiHjsdrcLMeOeAyeBH5iEpyPYw64F/YaxCxLDiVGbE2OenR4+nlEB+sXAvx/Xswl8K5q/G8mzu7jDJq4TMQP/vsY1gHQc3pzudRD7rzKOruB5MrjTKcBN00uh+BNd1cLOvF23teLN1dbZKYzNdw6DjWNZZADaQXon5WRMQiaebJMdQjsicol8J7vboD4zNRgisiIvkCHrNQwzZbrBcxPokaU7+K9zFHa3p3LkdduohINtcOsRtPQlylXACOkJ+CvCmWYHsWEamQHnMoQH1ognxKvB6/i1WK9Fh0r9wA8WVXkw8knM6zUatV5bHHfmYc47RjhRP/i0jo4r0KBK9JMUokT10sRXaYuov3xhZqtNQnZ/qmpusxe34F9pkF7K8gTTznTrCi1v835gPahr1v7hz5AmLmefkWnldzC7b75uYOiMtlbLM7ntsN8dOPP2qU0dSE9dj33MMQF0Yn7rHnLVEeF7Hl1MRn+GLYo2Gbk7DrUL/kJBd0G1zquNUa5oDqP3nCKGNkBOe3vuOYC+G5Z3ZC3LMKteNnveJ8iDs68L6e8ulBPR0890QSt0lQnp9163shbm1Df9jOXWauhGod73mlgnNMqYRxtYoeIDMHiXl/+J4ZzyszjhGGodRksdshPAXOse3cHpRCHX0Fj+3+OcT7hzE/WI2eO6pVmlhEpFrHbeo0p7L9y61hnxjrx3Fj7CjGsZrpzYwLbtNkY+6XZEj9LsBj1HeThyhjejGP1bBfjQ6i92llB3nWtqyF+BUX5SD2Uzi2iYgcPXofxPkRzK2WSk/n3Bov4XWdDf1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsTGg/Q57H+sJQODY1tg5pSL0aasxsF3WSdgx1a6xPjtQAziEbNHwhxv4LX58/YG8JrUUuWdTK7T6BOtfLN5MOP2PW4entOyCOxXCfYuIciO8ffhUeoAnXdbZdU4MqlPNhqXIVvBCbt66TdGoiN8HJftRuDhVRq5nPm+vce1X8m2vzNcD7NlzE8w981Nx2NZF+XkSW57AeCdIOj3js2cB+c3IM28bwIdR+1kro8RAR6ehZBXF71zKI45RvoCm5GuJkEvXLtbqp+/VJk+6xV4DWQ6/UcPvxKmpSU3Gz/cWpTbb2rIH4FZdPe50q5XH5l3/4inGM004YTvkROO+PR2OLE9HF2MzmCXvGaPuA+qRhOovQeRsxjU+s+2ZfG+c34iIDc2xnLTnHPPbHOD8RHS8WMY4n6VRj5C2qcxulag4Po1dpdAjXmRcRWbsCx2rWUsetiTHEjvDGLAau6075Cg2fJF3jCCeNXHTRKyDevHk9HoPGxJDOv0i5I0aGMQdP1DZkYZTeNb0QbzsXPRlrevHzWAzHWfZGiIh4lPwgRrkR4jEc40oeaeRpzEunUWMvIpJJ4/NIQLmDjh/vg/jYUcyPxdfWifQwsD+KP5/+50T+m/nr5BtBGIZT7W42/4iI6Q0TESnV8xA/sw99AocHj+AOdO9DPt2yOVfVyzQu01xUL9KYOobxyDGMC4fxvJp8c97PNuG9TdCzK08FJQ/n9QHBeT8ew3w1IiKtMbye65qwjPNX5CDujuHzztP374N4x7CZqyPWgXNuayd6NLpXTPej8dL8E7noLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ2F5NKxArMl1kH3SqFo+asyCwSeM/YeOos/Aq5AurbkH4lgrrq8dT6HW3HHNtYYtB/9m0zY+6ey9CmreWUtsrGttm5fMdVH/GVC+j1SA6x+ny7dDPDSAeTfasqibFRFpacYyDlkpiLNdl0JsJ/GYAWlYJTD9FxF/+i/F2pXLJHNqfekrUdf7k/sOQVyN0PEOFEnH66DG0CWxekia2sEi6nrzJVOnfWIUt1ndjnrOtd3kQ6L8E2va0eNBS3rLYBF1wCIig8dQuBrWcafW5ZifIk15NgLBthSLU3IHEbEN/w7ikebZD7BO5TLuMR4z+1GS1rpn70iiaTpvQuCYdVwMZqTRYEuT+DbWKRaZTIhy05Cvg6wuRl4fQwcdmNfR87AMx+W7RWUaSnCqN4n9q1VzHXnOR+SQQcWiY7p1PKhfwRNPR5xXzsV22tqGsUdmAPYatXWgT+3MMzcbZWxYixrl57pXQHwinMgJwZr+xcJxnBlz0uwa6YBNKiLixtjXUqUYz2toCH2UJ/vR12K7pl49kUR/QxNNLFu2ou571Wr0mLku3nv2h9Wqprac8/wMnsT8DC61x3IN9euVGuVaiPAwZpvwvKpVLLMwis8WPvlbupY1QxyVZsfi5yrD9zVdL98PZHTE9OydTmZY1MzPKEdGzTN9krv2Pw3x8SHM95XO5HCHAJ/fWsgD6Y2Z8/zhfvRi+Q7uMzKM12zPdswFUx3CcSIW4H0vScEos+bjRanZlHOFBtHQxX5oV/Dz8rjZd5tasd+MjGPfu/dJfM5c1U5jaAqvg9+MY5uISCyLfwtz+LzitE4fwzHT2bwg+ouGoiiKoiiKoigNR180FEVRFEVRFEVpOPqioSiKoiiKoihKw1mQR8MPQpFgQovWkkLt4P/7KtSxreu6yNj/f39zL8Q/+Snq6kslXEO5cuheiC0bRWG2beq0Y7RetkN684CE1X4NNX7xBF6SWBx1cJ5vrk6ezpBWmDSlgYvXKtsOoZRK5KeIEEGytv/AYSzDiqP+UwJTRz2T+a+A/F+Hhx98XJLJUxpB1CP6Ad4XN2Zqhzn3C+/j87rgpJc19o+4T/0F1A8Pl/A+HBlCXe+2FdhvVixDfWiOdMGrckaRsj+PmtPRftS9FgtYh9LqlVjmKswdkEpjWxMRSSVR31mpoqbZo2tp5LyhNefLJXP99/ESXrtEEvu760/3zUrV1P8uBoEXTGnfLco34bPHJ4jQ8ScoT4Hhl6DvfqiNBQG1uYhkCcUCaoibmnBscMgXFNKYFpLXwSG9OucDmPgbedk4rwbXk+LREVw3PqiZGuXO1k6IV67EcbO/H3X5hTK2sRRplDdtNj0ane3Y/2644UaIDx7cIyIi5UpFfvxTzAGwGMTiztS1Zh8M3ycnwgPw7NOokX9u+x6I01ns+wePHIS4WEIfwvIVvUYZ1BTEZ68I5Vdoa+uCmPNTjFKujuFBvM8iIoeP4bPD4BDuUypivS26OKvWYFty3YjvYKnvhfQsceZW9FauWdeNu3PfjZiFPZ/mbZ6TZtzzWq0u25/Gsf5044e2+JPeM4/Ox03gfTs5hs97IiJ9Q8cgHh/APpluxhxQYyfyELeuQp/CCrzEIiISHyJ/hINzbpWu+9re8yBedfGVuP04+pSGj5v+Y2+YPKJVfK4sk6erWKGcP1V+NjHbRpFybzguzpcB+SLvO4TPBVu2oP9sSy89iIpIOotzg0u5ihIzng28cP6vD/qLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkEcjqE+vwH7GZtT9vuoV+M7S3JYz9n/rW14P8RNP7YR4jPIUBCTsLZPmNgzNNZRrNdS2xevo0bBt0u4b4mH8PJPGS2RHrU1uof4zlsZrUSzQ5zHUIRbGaT3ukqnPi9Ha5Kk2jJ0UxpwTw/L5Dy8taQavm78Y3PvYHolNrtvuxnA996YO1Fu7cXOtdUM3Thp7oynw/uzPibgEvP66TetrnxzD9jNIXoP0IdQfr2jDXDMbV5i6ym3d2BdZZ73nBOpHj+zHMiwf+9WWs01/VS6Xg/j4CVx7nD0arF8O6ti363XTY8GeGdatujPyfVTKZt9fDCyxp3JCcG4Ibk8SlUfD+G4HY69O1y0gvwTp8rlNi4iUyzjepFIZOiZV02j4dEyfyozoJx5737jelH+IPR018rWNV8z+a1HfSiRm99+lU+idq3vYZjJp/FxEpEpa6vUbNkG8bPnE2F0sLk37u+D8bRKbzEETIx8at4SYY3pplvegP2vlKsxhURxHXffgIOYksC30TUX5uTj/Dccu3cd4HO9DiebD4SGsw9Ej6McQEXn40UcgPnzsOMT9lFthxXIU93d2ofY/FjevHecY4Su+ajUeM57Ga12tUj6QmumjrFWpH3H+ohlDTLVi+txON9VSVWKTHq1R8iP6FvkT6blHRGT4CI4DD/2M5qLYGMQlehbam8X5sK3VHCe8Ct67tVvRg3H2Jswr5dpbID5JeamqRfT7cPsVERkcw3MdHcLzqga4T0WwH/nUlqLyuNTIv+PS2O845PNIkd9qFOfcbB/64kREzl+B40FPK/qnWmc8W8TErOMLob9oKIqiKIqiKIrScPRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsyAxuT/4nItLeikaQp5/dDvGqXkxeIyLS3oTmlJAMMKGFZpeWZkzmwmYqnx3PEpGEjcxU8TiacNrbMQlUPo/JrtiA3tNOifFEZNwwe3MiJbzMqTjGbPj8l9sxUaGIyJ6DaL5N9f46xBkHr1XNMJEtvnm78SREJs2IATXdQh6T6pTHTbNmQG2DzbzGezclYLO4vUbUsE6G8YCSUzkOtr+gju1rpI73KX8EzW6D42YSuDNW4r1eQUkot3RjErLWETzm0f4dEBf7O4wy1q7EflJuxr58sh8NnOUqlhHSIgp+3TRC+pSoi/3i+RmmvFoFy1ssRkfHxJ+8x5kMmqybm2ls4MxlIhJ6lIDPpvHK4+R5tD2brv2IxSnIBMzXuh7QhaXElEGI27ORO/DMZJjsSefFImo0tnNyuQQZ1msRiVGP9eEYGNuF9fi1GzG5XjKL94ONy/mTeDwRkWxnGx6D9jmVpNPjxTUWiV997VVTiQd9ukbjJez3doQZfG0vGmF7erBf9/fjIhslSqKZImN3sWiacWtVTjqHYUsOr2mCkuryggg8Z/NCAiIiVUoguv/gQYjHCnhtlvVQkkBa4aBSiTJqk/mazou94hk3TdvTBqG5IEZIzwKWRfvMaHa+u/htcHxsVKxJU3LfYTRmHzncB/FARGLFnTtwAaATB/dBXKKLaMdxkZtjNo77516M5mURkVf/xqUQr16HZu9jh/AY/3LrNyA+uvsoxF4VzeDVEj5riIhYPt7LOo3LNYsWbjCSa2J7C8Uc10fpWdSh55VEDPsJe7XHuV9GJF6Nu1jPlIvHjM1ogLGo1XBeAP1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNBx90VAURVEURVEUpeEszKMRd8WeTBZ0oh/1d48feRziZAp1lyIiadIbskY+TQmUEqRBzGTQh+D7pla4QFpMnxKmeV6NPsc6JZNYRrGACWRiPZjYR0QkTp6LKiXiCUmnb1mUsCiB+uTRgpmQqCKYDKij8wIsg5KFOaSfCy1ONmdq/V3yktRILz4z05clpob1dOOHIqck7baN2sFiAb01nHhKRMRiTSJdM1NxyMJzCiOSpfGfgpC8MqQFZj09Z0OrB3jAE0NmkqZ8AbWxq5ehNn3jMjxmTytqhze46DEq7H/AKGO4BetZdzDppJC2OKxhPT3qZ15E4ss6JUurlPCe1urT51GrLo1H42tf+7spzbhF/TpJCeTaO02vi+NgH0sksB3HSa/ukt+Lk5+lUmbSOU5kZ5FYN0aa90wGx9FkCrd3XTyeX8MxUsRs97UajrMV0rfHUngMl3T3QyOoixYRKVObOnkS/QScsMqx2R+F5xVE9PhYHOvVtWw5xKXSRN9K03izWCSSKUlMeTTworsxrLvjmOdXJ09YoYBJu7hNx+M852K/zedRpy8iRmNg/0RTE3rGQkpsyd4THkPjCbP99a7uhfhI3wDEx/vRj9PVhX2zRm1LAnN+rJVxzPFpDKvW8HqXK5SMk5IJc3LhiWPUaBueZ6fLqFZNj8fpxnZssZ1TCUspoXIR55HDe48Z+/cdxvuQTePYY1fwug+M4HNmkMRrPFYyk84NBM9C7FawrzqUfLZm78Y6ntgLcdrGMdZxI+Z9B8/DF47J58YDJs37lhPxG0DAHmXy9wXYVmIJvFatrfjs2tGB/VBEJJEkTwbNRzNjN27O4S+E/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBbk0ZDQn/hfRKoBatBuvB49AytWrTB2/96/3g5xvY5rcDflcA3z8jhq/tIZ1MqZ+kVT5x2PYz0zWdR3Dg6ilrO9Hb0QrPttaUE/hYhIyLrVUfSJlMaxnoeOo/543MPPj55EX4iISPfW38Y/ZFBjGtA6zjbVmyWBEUuRSzKJzSGs0Zr9M+LQjsoicXoJrZgEdmyyfGwL8RTqFTMRJ1ijtuGTHpbzDfgBn6ORLCCikrNfF/ZocC4YI9cHFeG4pi+pRl6TPcew/YyVUH980XpcO781i7rMXDholNH3JOZ2qWR7IC4lKC7WKEYtd6mEfVtExKf8DYk0ek0Ce7rvehH5IxaDJx9/ekrrX6NEH+OUu6WlJWfs78Yo/8sY3ivW7oZ0TbJZ9Nd0dJg+kEwW156vVfFadXXhGLesB+uZzqKXIT+CGufnnzXzT7AnI03ekZEx1FLXSN/dlMXcCl1t7UYZTS2oMXZoDGLNPPsJRoawDbIfRkTEIq11qYznFU6uhx8ucOpsFOVqfWr9+5DGDvagWBatqy8iEuI5swcjm81BvGI5zuP95M08edLU4XMejPES+uW6u3GsYM/iaB7bijlWmGPssmXYpjdtwHwhNuWrcShH0sgQPge4Uf6WGuefoVwx5H8ZGMBx1GPfGifeEJEqPRNxvwpmzEn82WIQus5UDojApbo5OP5ZMXOMz3ViP2fvVpy8fGuWY56MsRpenwN7zLGo5Xnsm2NVvE9nrMf4yl9ZC/HAfhwnxo7TnGybOX5C4ectmp/ovFyL+y75RdkfKyI2jXfJJPabXDPODWvXoY/y7G3rIN603sxBkmvD++OQ1zqc4TEMnfmPgfqLhqIoiqIoiqIoDUdfNBRFURRFURRFaTj6oqEoiqIoiqIoSsNZkNA04VriTOa26DtJ6/sfzUPcmd5n7F8dQ81iM+mNY7T++/AQehkSSdT91uumRnH1Glz3fMUK1IMeOXocyxgmvwTnX6D8E15g+kISKcqjMYL6vBrp7k+MoJax7OH73nL2Y4hIYvW5WAbpM2PkyYjR+vy1KtY7FbEWOeeViLu0vrmdmPHvJdDI2/GJ/0XEopwfvMZ0Immen5sgTXcN9dj1CutjUT/qk6Y2CE0d5UJhzwbDuU2aWtLGNiF5SQpFbMPHh3H99/+soR550wrUZa5rR2+EiEhTHHWrwXAe4qPj2K/6htB7MDqKOQ/KdK1FRCwbz7V9FeqsU5lpzWm9Zu6/GIRhKOGkj6JOHjGXNKuxmOmn4RwXfUXMgZLP43gUhNjm2Hp05IiZc4dzATmUcyZ1IY6jHZ3oOytS++nvx3t37Kipy2c9+vr16yHOkxfl0ImjECfIL5FNme28g9aBr1Eb+NfvfhdiN8E+LvSudLShJ1BE5OCB/RDf8aM7IP7Yx/5ERCLmiUWiXvPFdaLHXh5L2MMhIpKIY3tin2OC5oW2thxuTx6Cct2cD4cGsQ0fPXoY4lwLXveeHvSB+ORZrNI4PF4yc5gMD+OYViqiz4OfNcTHMgZP4vgVi1N+IzH9cU1N2J6qVfQkjBYwrpBXzsjdISI1j7chj9CMfEXsR10M/NAXf9J/YLvY3to6sb+tWWf6rFatRU+ZzdN4HftVzMGxa2QMPx8ZN3NBuAVs9ycPoo+jHOQh3rIFPRoXvhLb4zN3HYS4PWLcCKmeJ0+y35PyTAmOh1nKK2S0VxGx6NlzWTfWo5P6alsXjuurVuP2Ta1mGYkm/FuS/H7WjDnO4hxgs6C/aCiKoiiKoiiK0nD0RUNRFEVRFEVRlIajLxqKoiiKoiiKojScBXk03IQj7qR2sVhETe3tP0at8cHnfmrsn0ygxjZHejCPNM6ZDK0HT3pQXqtdRKS9MwcxpzU40YfrgLNmOpPBOo3R+u/HjqH+VESkvRU17bzGukO6WK+CcefmGyFuXvEao4xx0sayuNGN4YnGYrTGdw0/d+wIfR2t3RwaEt/p91JeN3oxsCQU69Qa6haWb9P1MNaxFhHXprWrbT4Gfm6TBrFOa37XI/TJAfklTB8HaTXnSEfCHg1ec36inhinUqjNLBRR01wsY1t67jDWcWjUPK+zyMfB6uADB1AjPVxALa3vo0/EiZt916FzGxlAL4Bfm/48yp+1GFTLJbEn202CcmJUKnzdzDbI98on3W1gtFvyFVH7Gi/hdRURKZXxb7aF9TxAPoRiCcfEWBzr0NqKuuqNm9A7M1FLbEPnnnc2xHv3Y5ljVWyTmTS22XrVvL8nT+Ic49jYCv/tX/8V4gsuuQziDRu3QBxE5GI5eBzb3FNPPQ3xQw8+JCIilYp53ReDWq06Y5yi8ZraStQInc2gzyAkDxDn8YnFUHuepfvU2hQxBtI8Mjqah/joYfTnjFKelibKBzBI/p/+4+inEBEZGhyCOEbj5rJlmFMgQfYpr45+Cs8zz8uycCe6VBKS34XzgfB5VCJ8anUP2z3XY+a8xnljFgPXCsWdzEESd3Ewy1Kes+Zmc4zPuDjHpl3ys3r4PMbjYXsajzk8bPolDvXjM9rYKN7bAo25XvkQxGu2YZ6pDavQw9HW3GWU6XN+j2dxTI3zeBHg59U4PkPGk/jsKyJSq6K3t6uzjT7HMsIA43gS+3I1qv1QHiGHYntG/g87Ko/YC6C/aCiKoiiKoiiK0nD0RUNRFEVRFEVRlIajLxqKoiiKoiiKojSchXk0QkvcSeG+baNAcdxGvdjBw+Za182tqPfidX9TGXzvCeuoSTsxiBr5jk7U0k0cE+vx9DO7IS6RpjmVRk1guczaW9QhBoH5bjZO62OzuSGTQY1z1xb0YKzY/FqIq56pT26yMI/BYIiavsDF84jTna2Qni4dM88jIM9ClTTMiRn7eBFegdPN8p42iU+ut18YR91lycf2aEXo44UkhezrcMj3EaNrWqV11K0ojS35OEKfTRhYiZBMGhbdJ87FwJ4NEZFMBnXT4+PYb1hPzvlAOA/HkWGz7xbKeD1jcdJh4+0QsbHeLU3o8WjrxrXKRUQyWey7IyOouy4WpjXP3hJ5NF7z6ldKPD6hdT1GWvF8Pg+xL6YBp6kZ+20qhW2sWCSfEJk6WLMc5fFhr5FFbe7oEcxrMDSM7T7XhjroahXLLI1hnUVEfMpLMDSEevRqBRtIlnIQsKY+nTDLODSIPqB6Ddt571rUUp979jkQF8axHwwMoE56op7Yp6+84kqIb7v170VExI/wdywGBw8clPhkjqQgZP0+9kmHkxSISJnmvxUr1kBMy+YbPgTHoXwnWTPnDnsUebxhb1t+FOe2sQLGpRL5J3ggF5EmyrGSbsGK+3StxMfxw/exn0VZGLkvVik3VSmPuREOHkDt/8gInle0x489M9zfgxmfzWHwOw3UvfqUj8SjPu+Q/8J1zYtYGEKflRVif6uQb6BObalAz1oHjuKYICKy4zi2l7KD93qd4PPYYBnr5K/ANr5t43kQB0PovRERkRLmGrpwA557j0/PVuPYb/b72H7rcTMPmOXgHFoiT4a42B5S5HEujeO1S6TMfhSP4bmHAT9XhZH/ngv9RUNRFEVRFEVRlIajLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ0Fm8PaWhMQmTSqjNhpBymNoID1aNI1AHpn5YpQcL9d5FsSdFTTrjXv7IF61MmeUEVBiu1IBDTOxOCYtIa+VVGtoHIqTSXFFJxpyRERGyaCUakFT4vItb4B4Yy8mjkqn0Th7YNA0GbtJNMqmyWzrxCh5TgJji4xjPU2mEehkiZI1kTl6pvmnbi2+EW3T+lWSTE4YVWs+3pennsckUKWyaRa2ybzE5knbZuM1vYeTuZLN5CIiLhvqq3gvPTKH+2RiZ3Mvm78TCdMk1kwGYzaYj5BJmZMIemRstdgBKiIDRTTYBWSMdGmRhIDqYMfRmFb3ze84jhzBpG6VMTRP+v70/fE8Thm4OHR2tE0l+STPtWF4HhvHpIUiIoWxPMQ29aNUEs147P3nhGr1iOvA5luh+12j5FLUBKVYxHr392ECrJhjJsmqVHAMfOD+eyHesHEjHoOuXZIXPYhIBtWcxUUPLMFr1U4LgWTJDLmsBxcgcGxzDHviiScg3rBuHcQP3f+wiJgm3cXiue3bZ5hsqd/S+diUYE5EpFLCcfGVr+SEoLg9r2URS+KcnXFM034YYrkjeezH5Uoe4sDnBTJobKHEqamUOQZWKAkpJ5DkxJd1Mh1z8sZkxGIEPCx6ZOYu00ICw8O4mMXYGJrFoxYUsOaYV2fWYSnM4BL6U0kD6x4tgmNcc3MeYbO3BNj+BvJ4zICSOEuMDNEWr0Ii4tOCGdY4tq+B7TiedW3F9lRuxTr4AT5bdCfM+5aJ4/NvJ43jJ47gPs/uwTokVuJzKT8TiojUqL2kKEGiQwn56FFWSuPYXpctx74sYiYEtniSW4ABfCb6i4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qKhKIqiKIqiKErDWZBH48wVaUkkJ3SyJ06if2LfrocgPk7Ja0REci1YXG/vhRB3rkEvw/K1qJVrO3oM4lWdpgbwwFEs9xVXYTK847vvhng0j5rcpu5zIV636VKIVyfRJyIicv/DD0J8xrk3QJxdjglfujKoWV3WgRrBwrj5/heLoT456aFWjhNeJcmzUackgJ0ZU2dY93CfJGX9q804Ri0iadLpJpmIS2pSh7i1dy19hnrFR5/aa+xfJt+GZeH5eQG2N058liLdbsw271OFk6WRxrRawSRjIqibDDhhURX19qwDFhEZGUW9Z0hJJsNw9nsVku7Sj/j+IQyxHqyhTzqz+z4KQ5jcboQSN03sg36qBGmz/XD6Hvv+0ng02jtaJZWc6K/dyzDx05at6EOI8miUSUs+OIiJ7dgfUSpx8kVso7WIxIWc4KxaoTYWsC+I2xjWYZwS3QURl96hBK5BgGWmUqQ5HsX2kaXEqU7E+LJl8waIW1pQr93UkoN4z65dEKebWqhMUwftkX/lZB+22+Skx2+pEvad6OsT25non2ShM7wMiTiOiSIi66/ZDHF7O7Zhx8GDplJ4jCDAMritiYiEgnOwbfMxab4roL6d8sAZc1tp1EyYVijQ38gi6sRpPiTvHCdGjUf4QLw6JQH0sKKdlEC4owPjfB7ryF66+bH48+5M3JgjsclraVmzezKW0fgoYiYSLuRxfIsF2N7iCfRZJajPdizvMspoasaEpM88ic8CYwN437ydGG9uoUTQ6/G8uldQVksRWe1QotWRPMQ/PYgJ/XYGeG2aqf2m6+Y837NsOcRBgGXG4/iM6NVxoLYFPRyckFhEJBGnxM/UL2YmFF5IS9RfNBRFURRFURRFaTj6oqEoiqIoiqIoSsPRFw1FURRFURRFURrOgjwaZ60KJZ2e0KvtpbXZRzOo2BoeNf0Tl1x2HcTbzv81iIslXNc3mySdL62L3tPK6ziLZLJYD09wnx/1PQ5xdw51b2dc8CaIW1ecC3Fi5EdGmbnM0xCv7kHtcDKH73Mbl6H+M5XGOm+qmTlI4oI66Vqd1kyu462MUx6NTtxcervNMla0oma0UCMddWL6/pTLoXzbOMLpxbJtsSbzN9i0ZvzGdasgTifNNaIfe3onxCMFbF8xygXhka+FRYluxFrrcYHaxTUAAOVLSURBVF5nmrwMrKt2aliHShnvs0drpbsu3UgRsej7glQatZpNlGdjqB91sRZpqB1j7WyRgPXJNfJPNWF7aqZqjnPuBss8j7KNGvoKXcrRwnR7XIIV5CcL9ib+FxGbhs9kCs8plW4396f2sGF9L8Ss/ec8Kuy3ifKq1Iw2hde+UqlRjG2uVMb2USxiPDSIniARkXHDF4JlsmcjGae+VqP96RxERJpp/K9VsQ2WS3ge23fsxu09bMNdHWZOpHQSx+bxcSyjvS03Ud8lyuPiB/6Up8oijTaPAx0d3cb+l1yCnsOmJhwbuD3Va3jNikW8r7WqqSUPQrx3Do0vnCeD/RF18giNjaOHI8oXUvewHhb1k2qVciiRvyDXgmOPGzfHdk7pUKL5I0HzwbJlyyDevx/zBEWNYi/Ot7F4xFxnyjNTr5EHgPJKdXaa/onBQfSn1snw1dmZgzgRw/7oODg+NjebPiS3jtd9+AT6iXfvx/YzegLrcPixPNZpNR5vc7d5XmOD+GyRHcU2vG0NjjX1Kj6fDFD7HCqb/r5a/wmIi8M4Li9rQ29JW3sPxHF6JmKPqoiIb+RmwX7kzPCBOY75DPlC6C8aiqIoiqIoiqI0HH3RUBRFURRFURSl4eiLhqIoiqIoiqIoDWdBHo0Vy0Ykm5nQrDbTutTeMdStrdy42tj/hte9Egt3UeM4SvpPl7Se7WnUy6aT5hrybbT8dSyOWsxHcvS5jTq2i85eD3GJNKjdHZi/QUTk+OEVEK9uRw3zGZvxfS6XIh12DLXFHRlT/+uRBrVGa3gPFfBaZBKo08+mscxU3NTW+t2o4SuSTjCVmD6P8ZKpoT7dWJP/iYj4pMENKTfAulW0FraIJGkt/8eexZwofSfyELNXwQrJExSaGkVeh95xaRubdJLUBwLS7bIWPEpXmUqRdp1zcdSwbbAKk3XBUTphi7wFfoj16BvDMkrUD+OU58Tjhe4nCuZSIYrN0Ota1tJo5B1n4v+JOlD+EUoAYMfMe8V+GN/H68aeDM5BwJfIts1cEKwVz2RwLAhZ20/3NiCdrsc+kND035l5JfAYo2OYW2FkDNeNr5C/ojSGunwREYcMTn6IsR1DjwzngxkroDY7ETdzYYSkGQ/pvLom807U64s//olMWHxO3S6+b3zNzzzzTGP/7m7Um3NfT5JHpVzGMW90DOc29smImNcmQceMU36P8XEcC8h+J46NbUPM5ich5SOKJ7EtcL9JUH4QJ479yI7Qn/t0XqxRr9U4TxPnOcAyKpWF52KZeUjj9i8C46NlkckuUi1hX+GcQIMDZi61Iu3T0ob5JLwqXuOqh+0rRbkfxovmNWxO5SB+zZXoS8qk0VO7Yy/m3eg7hHV46MdHIN6cbTPKdEawHn3H8TzTafRoXLcKj3GQch09eRDLFBEZo2vXs3wlxPUC1mFoGP0wOfIMSYQXk+dcn3xtMx9nIqaBF0R/0VAURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4C/JotMTHJBuf0Imlc6gX68ihBm1la6+xf1sKNbK+YJxtRy1npYI63eY0lplwSQguIkEKNWbjPr5LNWdRWNa7Ej0Zq5ehVi4U1F22ps0yr7x0G8TFSh7i9cuHIK7SuuCxOApIY4GpP7dJMuqQHtm1UfOczuD9aEqQp6FuamuFvCKdbagp9f1pzV8qbq5lfrrxg0D8SS9GSBp/m/SGgZjazVXLURfJeQ8efGwXxCdP9GEZpElkL4SISJ3l7FxP8nDESIPPuTo4N0ChYK6vzV6SIuVBKFFuDsvifCF4HjY3NjG9Ba6F29TJrzJM2s4knVgYoQ+1HPob+XDsGdfSjhJqLwJ+4IsfTFwvyzgH9l9E+EiC2YXVIensbYt9K+RL4PYTAd9vMY5JJdD2LiUQYD18VD3Ym+S4mKegrT2Hx/TxfjrcEcTMjVCn7ufR52dQEymR38Cvmz6QkO5ZpYxxMDmfVKtV+eGPjd1POxP+mYn7Zzt4gvEE+r96e00/IV/WCnkQeRzNZvGYtuD1GC+a41HgY/vKpslDxvkXnBzEDuVjSLO/MIXjm4hIMoXzsu3wfED5iMjHZFMbN3IoiUhAfh2HchqxR4s9FPPpq3yDInrBjH8tfs4Ny7KnxpPWVpxP6zT5RXn9OtrRO5kl/06J2hN7t7JJfK6JcXITERkPKYcPtemt2zZB7KbQw7Zr7zGIy0M4Tjz00weMMqsZ9Px0ZzGv184D6F9J96EvZNsK7GfnZbHPiIg8lyePkODzWS2B+9jUxtl/lUyZOUjY38f3MJjhhQ0WYNLQXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazoI8GoFXkcCb0LuFIemPXdR7JdPmob0q6u8sWjDbjaHuP0UaVCN3xMmTRhkJ0tv5Fq7lnCYfwtlbMP+HVA5AmM3gefgR3oaVPe0Q796HGr96fQDiVAb1y34Vr6VjR3g0eM140hIvb0dt3WgR1zsvk77U8k39pBvi9XdiqOmzZryXWkJrmy8Kgcik98LmvA60pR8hH7RY1E3XIEn6xIC6B9kOIpTqIqFDOl3SMToh1oG1wyHlXkhnsV/ViqY+eXgI74VPZfi0FjlLhTkHCddJRAyxsEVabdb1s3+hxnrdwPS32LQNe0/cme1xKRaRF5HQsiWcPNeA1xwnjbLlmN/jGF4XWoufZa++0bJfWDM7VYbF3haErzNfS9bIM2GUx4P+ZlF+EIs07wH5KRzKHxIh7zZapeFbo/wfvH02TbkSrJxRBuvwpYV8IZNjSKVi5iFaHKY9GtwDUknUeWfIpydiaq7LZfJN+jhWZJKUb4I8HbVR0+fSthLX9/co/0S1jH7CWAzH3eZWnHfYI9Tff8Io03Hx3lbHcZwslLCeIXnMsk2kV4/KJZSktkA5H4qjOOf6Hvs958ai3mrmSpnh0bAW36eWzWanfDvsOWF9fzUixwqP+xb5A5upzfI8X6b5r14zZ+HQpftEZTS1opdhy5no0+V8PCOF4xCvX2nm0RgbyEP87PZ+iAdq2D7r1D4PHcF+uGbjGqOMoyfwmM445slobkP/S1s71jOdxvGBPRsiIrEY1pPzOs1sj1aEg+iF0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAWZAYfLVTEm0w4NV5CM8tgEc1WXSvRVCIiImTujDloj6pX0dQai6MpR8gkPV7OG0VUyfAbz6AB5hVnboB4wxpMJOXV8DzY8OVYVCcRyTXjMXqW4zHGxtCQ3pbLYRkBGYht0zYWkME3JDNlrYbGMDZRVckdPR6R+C1nNUNcqmC9nRlG5fHS4pshLScUa7LNuDa2LyN5WkQyGZuuWaWEZrVUHI/ZuwpNjYODaPYbLZpJC0PDNE1JtWgRhVoN3/UDygqYSKBhKx1Hw52ISLFAbZYSQrrsmuWYjNx2hG0xoMUH2IRssUGY/cbcpqN8ZDFKVhfnpG/T7c+qL36yKhGRMLAkmBwD2Qxpu3Mn02OPKfdjjk0z6MLP20wcSNeZ+o5PCUN9NllzYkURsak9hGQGD8kYKxb2tYAXAnDN+YNN6IFH5nvanpP+cZtlQ3AUPi9acMqAuwRGXBFMmMaJGM/YfCbEF154kbE/G0BL43hfONmezwtm0AIH4bhpBmcTcKmC83oxT2bwNBqxM004DyWTOOZ5VTOZXqWAzyN+HbeJk6E8TsZlNsFGLVZRo8SnVTIm1wo4X1ZLsy+YEpUYNU7G+DoZ6WfuE7UQxOkmM8MMHqfnMzYbR5nBeUzkPluv4X3z6PnLjWP7rUW0hRQ9V1Y9fFbhuSqfx2chj56VKlV8vluzyjSDD9mY3DcYx2eF1lQO4nQK7/NAP7adQ8cini1CNMp3WbjwkR3gteWFHFKUoM9o8xIxp/H9mjEfzS8B5eS2895SURRFURRFURRlnuiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTgL8mjk84WpBCkn+wfhs6ZmTIIST5j6w2oNNXuekI43mF3HXauQJjcwE45UyDvASsu2FkrCVkUtXLnCCYzwXaweoQ2v1PBcmzN4LVyL/BWke61WKWFahL+gTAmifNInt5Cu1SEdokO6w+YM6vtEzORNLmv4/Okb4nNiq0Xg5MmCJBIT5x1z8XxYS2xbZv0oN5r4Ht7bzpYcxF4WjxkjX0hh/KhRRnGMNLWkoy7Ru71vZBbEz6lpScw2PRrxBPuG8N6WOCmXIdmnOoUR+mTuuz4nSuLrP3sCP9aXi4i4AZ5HEOK52t50f/e8ufX1pwPP98WbbPs2Nygav6JyCnLCNPZkmP6J2RN4mR4Ocx8jASPpz8M5kh+GnFQyQhoecCKucPbzYDMT+0g8TggrYswHnGgypA3CAO+PYavg+xdJdILEpdDHi0z0q+lrSZ7HGCXNTaBmXkQkCPi+UB8j34rt4OctHahPj9t7jTKGDh6GuEL3Nkb+G259Hs0t7BuJueZjC98Ph8ZETnzKCSL5ulSrZiK4Ks3B7Fvj1uTRs0SMvE0e+wplIiHeTHi8mHktJuYOTAZ8uom57pS2n8c/9r2kPbMPhzbPNezTxWdCn5LtpZrxOYd9WiIibgrblx+SZ4h8RbnWVoh7elZAnB+jZI9V05fU1Yt97cw2rFelzol7sU5Nbdg+R/JmGUnqi6k4ltnZicmnV/X2QNzR0QFxJuIZkOcTbn9R88180F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBr1elVqtQmNlkNrQHe1t9PWpnbOJ113Iob6u+FhXM/YcrGMkRFct7peNf0SmTRqMytjwxCn4qwlJ60/aekGhlBn6UmEf4J8Hss6UGdpkwa+TOtvn8pNcgojJ4GI8J9YY+qS7rUe0jriSfzcccxbX/dQNxijvAAzq7AUb6j/8e8PieNMnEc8jnrDMESNoyXmGtGmupBF39Zsn7IEX8bLET6XCueoIM2jcBncnig/hbH93Jp8bj0emzKMJjy7LlPEzCdgbEMNNKqe8HnEx+yrsSzycNnTa40HgamhXgzCMJw6d3ONe/bfzO1j4rXMWQPrca6IeWhknbm8B9T3zbXTSadv03lEeHjYghF36Lyovfg1aj+UP8YPzftrOew1wbhSpfwf5H8KAz5vs53PlaXk1OV/kVLll4xlOzPuF/t9cNt63Zyr2BPkkQa+RnO0RfOjm8AxL5s2fZIn9x+EuJ/05t3rMJdVWMM523ZpvEpjnTPkYxARCaiv8bODQ3GphHO2RX0mljL9LVkey6nMSgHzg+Sa8RiX914A8b79R4wyRkYovxV52Rx3Rh0ifIinm0Cmpw+2l/E1tqLyLNA1dIX9NzR2cZfn/E1RlaRigwDvQzKeoc9n90l2UT6QIuVLERGpUHtq4VtDFfXreMxyBee68fGIPGV0wdMZzKvR0oJek47OHMTNzeThSpp9l+csM1/WdB2inhNeCP1FQ1EURVEURVGUhqMvGoqiKIqiKIqiNJx5SadO/URSKk//3FMu408/dfq103FN6UqR5DtBDHcap6Vp+efPEpcZIZ1iCUeVfvbin9+LVOZ4iZZCK/OSvObP0Ra9r42XSNYU45+f8Lzr85BO8Xnwz5aujT8/1+skO6F6s/RNxLz+Hi0rGM44z1PbLuTnsxfLqTJmymV8n86P5GmmJKnx0qkgqAoTBFgvUzrFNeC/LFw6ZUifjDrR77gvQjrFx+AlT1m38WKkUywFMKRTMn3/T7WFxWh/M8upVKbvuSk5mj2OgqUrc0mjGiGd4mrNJZ1iWUrU+rY2yak8WspzodKpYF7SKdynUsM61GkJZJ+lUxHSNkPISNuckhacageL3f5QyoBl12rYX4pFkuGIiOvifeF5IiC5WUBLTlvVMsSlsinxqNBcVaV68VLtnoX3JSS5kBvH54ZyGesgIlKpzP7swEuxGtvT53VjDXARr0LnRUux1khKWaeHIqeGn3PfFzGlKyy1nTlWn5IGLuYcXCxOS4R4GX6bxqYgsl48V9HyvTy2GF2e55kIDOkUjU3UHueSTnFahvHxiPZX5mcn2mAu6RS1JX6+FhHzoY+W24/FsF7FcZIkklSUUwKImBJpZuZz46m2MJ/2Z4Xz2Oro0aOyatWqOQ+mvPw4cuSIrFy58rSWoe1PeSEWo/2JaBtUotH2pyw1OgcrS8l82t+8XjSCIJDjx49LU1PTi07YofxyEYahFAoFWb58+by+uX0paPtTmMVsfyLaBhVE25+y1OgcrCwlC2l/83rRUBRFURRFURRFWQhqBlcURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qIxg1e96lXywQ9+cKmroSinhW9961uSy+Vm3eZTn/qUnHvuuVPxO9/5TnnjG994Wuul/HJy8OBBsSxLnnrqqaWuivILiM7HymIQhqH8/u//vrS1tel4dZrQFw1FOU3M58H+vxof/vCH5a677lrqaiinEX2AUxRFmeDOO++Ub33rW/KDH/xA+vr6ZNu2bUtdpV865pWwT2kMtVpN4vH43BsqyhKRzWYlm80udTWUJSQMQ/F9X1xXpwdFUX652bdvn/T09Mhll10W+bk+t710Xra/aIyPj8vb3/52yWaz0tPTI3/5l38Jn1erVfnwhz8sK1askEwmIxdffLHcfffdsM19990nV155paRSKVm1apW8//3vl/Hx8anPe3t75TOf+Yy8/e1vl+bmZvn93//9xTg1pUHceeedcsUVV0gul5P29nZ5/etfL/v27RMRkbvvvlssy5J8Pj+1/VNPPSWWZcnBgwfl7rvvlt/5nd+R0dFRsSxLLMuST33qUyIiMjIyIm9/+9ultbVV0um0/Oqv/qrs2bNn6jinfgn5wQ9+IJs3b5Z0Oi1vetObpFQqya233iq9vb3S2toq73//+yGT7FzHPcX3vvc92bhxoySTSXnta18rR44cmfqMpVNMEATy+c9/XtauXSupVErOOecc+dd//dcXeYWVxead73yn3HPPPfI3f/M3U+3yW9/6lliWJT/60Y/k/PPPl0QiIffdd1+kbO6DH/ygvOpVr5qKgyCQL3zhC7JhwwZJJBKyevVq+dznPhdZtu/78ru/+7tyxhlnyOHDh0/jWSq/aMw1H89nbPv6178uq1atknQ6LTfeeKN8+ctf/oX7RVlZXN75znfK+973Pjl8+LBYliW9vb3yqle9St773vfKBz/4Qeno6JDXvva1IiJyzz33yEUXXSSJREJ6enrkYx/7mHjedPb3QqEgb3vb2ySTyUhPT4/81V/9lf56PMnL9kXjIx/5iNxzzz1y++23y49//GO5++675Yknnpj6/L3vfa88+OCD8p3vfEeeeeYZefOb3yzXXXfd1OC2b98+ue666+Q3fuM35JlnnpF//ud/lvvuu0/e+973Qjlf+tKX5JxzzpEnn3xSbrnllkU9R+WlMT4+Lh/60Ifksccek7vuukts25Ybb7xRgiCYc9/LLrtM/vqv/1qam5ulr69P+vr65MMf/rCITAxujz32mHz/+9+XBx98UMIwlOuvv17q9frU/qVSSb7yla/Id77zHbnzzjvl7rvvlhtvvFHuuOMOueOOO+Tv//7v5Wtf+xo85M/3uJ/73Ofktttuk/vvv1/y+bz85m/+5ryvyec//3m57bbb5Ktf/aps375dbr75Zvnt3/5tueeee+Z9DGXp+Ju/+Ru59NJL5V3vetdUuzyV8fdjH/uY/Pmf/7ns2LFDzj777Hkd70/+5E/kz//8z+WWW26R559/Xv7xH/9Ruru7je2q1aq8+c1vlqeeekruvfdeWb16dUPPS/nFZq75eK6x7f7775f3vOc98oEPfECeeuopufbaa1/whVdRTvE3f/M38md/9meycuVK6evrk0cffVRERG699VaJx+Ny//33y1e/+lU5duyYXH/99XLhhRfK008/Lf/zf/5P+cY3viGf/exnp471oQ99SO6//375/ve/Lz/5yU/k3nvvhTb8siZ8GVIoFMJ4PB7+y7/8y9TfhoaGwlQqFX7gAx8IDx06FDqOEx47dgz2u/rqq8M/+ZM/CcMwDG+66abw93//9+Hze++9N7RtOyyXy2EYhuGaNWvCN77xjaf5bJTFYmBgIBSR8Nlnnw1//vOfhyISjoyMTH3+5JNPhiISHjhwIAzDMPzmN78ZtrS0wDF2794dikh4//33T/1tcHAwTKVSU+3xm9/8Zigi4d69e6e2efe73x2m0+mwUChM/e21r31t+O53v3vBx33ooYemttmxY0coIuHDDz8chmEYfvKTnwzPOeecqc/f8Y53hDfccEMYhmFYqVTCdDodPvDAA3BON910U/jWt751PpdQ+S/AVVddFX7gAx+Yik+15e9973uw3cx7f4oPfOAD4VVXXRWGYRiOjY2FiUQi/PrXvx5ZzoEDB0IRCe+9997w6quvDq+44oown8838lSUXwLmmo/nM7a95S1vCV/3utfBcd/2trcZ46+iMH/1V38VrlmzZiq+6qqrwvPOOw+2+f/+v/8v3Lx5cxgEwdTf/vt//+9hNpsNfd8Px8bGwlgsFn73u9+d+jyfz4fpdBrG2pcrL0sR7r59+6RWq8nFF1889be2tjbZvHmziIg8++yz4vu+bNq0CfarVqvS3t4uIiJPP/20PPPMM/Ltb3976vMwDCUIAjlw4IBs2bJFREQuuOCC0306ymliz5498olPfEIefvhhGRwcnPol4/Dhw5JOp1/UMXfs2CGu60Lba29vl82bN8uOHTum/pZOp2X9+vVTcXd3t/T29oJ/oru7W/r7+xd0XNd15cILL5yKzzjjDMnlcrJjxw656KKLZq373r17pVQqybXXXgt/r9Vqct555833Eij/RVnoWLVjxw6pVqty9dVXz7rdW9/6Vlm5cqX87Gc/k1Qq9VKqqPwSMtd8PJ+xbdeuXXLjjTfCcS+66CL5wQ9+sAhnoPyycf7550O8Y8cOufTSS8WyrKm/XX755VIsFuXo0aMyMjIi9Xod5tCWlpapNvxy52X5ojEXxWJRHMeRxx9/XBzHgc9OPegVi0V597vfLe9///uN/WfKAjKZzOmtrHLaeMMb3iBr1qyRr3/967J8+XIJgkC2bdsmtVptqh2EYTi1/UyJ0kslFotBbFlW5N/mI+NqFMViUUREfvjDH8qKFSvgs0QisWj1UE4PPFbZtg3tWwTb+HxfGq6//nr5h3/4B3nwwQflNa95zUuvqKIoymlEn9say8vSo7F+/XqJxWLy8MMPT/1tZGREdu/eLSIi5513nvi+L/39/bJhwwb4f9myZSIi8opXvEKef/554/MNGzboCgW/BAwNDcmuXbvk4x//uFx99dWyZcsWGRkZmfq8s7NTRET6+vqm/sbrb8fjcTBri4hs2bJFPM+DtneqrK1bt77o+s73uJ7nyWOPPTYV79q1S/L5/NQvcLOxdetWSSQScvjwYaPNn9L5K//1iWqXUXR2dkL7FsE2vnHjRkmlUnMuh/wHf/AH8ud//ufya7/2a+rlUQzmmo/nM7Zt3rx5Sl9/Co4V5cWyZcuWKW/QKe6//35pamqSlStXyrp16yQWi0GbGx0dnWrDL3deli8a2WxWbrrpJvnIRz4iP/vZz+S5556Td77znWLbE5dj06ZN8ra3vU3e/va3y7//+7/LgQMH5JFHHpHPf/7z8sMf/lBERD760Y/KAw88IO9973vlqaeekj179sjtt99umMGVX0xaW1ulvb1d/u7v/k727t0rP/vZz+RDH/rQ1OenHq4/9alPyZ49e+SHP/yhsVJKb2+vFItFueuuu2RwcFBKpZJs3LhRbrjhBnnXu94l9913nzz99NPy27/927JixQq54YYbXnR953vcWCwm73vf++Thhx+Wxx9/XN75znfKJZdcMqdsSkSkqalJPvzhD8vNN98st956q+zbt0+eeOIJ+du//Vu59dZbX3TdlcWlt7dXHn74YTl48CBIApnXvOY18thjj8ltt90me/bskU9+8pPy3HPPTX2eTCblox/9qPzxH/+x3HbbbbJv3z556KGH5Bvf+IZxrPe9733y2c9+Vl7/+tfLfffdd9rOTfnFY675eD5j2/ve9z6544475Mtf/rLs2bNHvva1r8mPfvQjkLooyovlD//wD+XIkSPyvve9T3bu3Cm33367fPKTn5QPfehDYtu2NDU1yTve8Q75yEc+Ij//+c9l+/btctNNN4lt29oG5WX6oiEi8sUvflGuvPJKecMb3iDXXHONXHHFFaDL++Y3vylvf/vb5Y/+6I9k8+bN8sY3vlEeffTRKVnU2WefLffcc4/s3r1brrzySjnvvPPkE5/4hCxfvnypTklpILZty3e+8x15/PHHZdu2bXLzzTfLF7/4xanPY7GY/NM//ZPs3LlTzj77bPmLv/gLWIFCZGLlqfe85z3ylre8RTo7O+ULX/iCiEy0rfPPP19e//rXy6WXXiphGModd9xhSKMWynyOm06n5aMf/aj81m/9llx++eWSzWbln//5n+ddxmc+8xm55ZZb5POf/7xs2bJFrrvuOvnhD38oa9eufUl1VxaPD3/4w+I4jmzdulU6OztfcKnZ1772tXLLLbfIH//xH8uFF14ohUJB3v72t8M2t9xyi/zRH/2RfOITn5AtW7bIW97ylinfEPPBD35QPv3pT8v1118vDzzwQMPPS/nFZT7z8Wxj2+WXXy5f/epX5ctf/rKcc845cuedd8rNN98syWRyqU5J+SVixYoVcscdd8gjjzwi55xzjrznPe+Rm266ST7+8Y9PbfPlL39ZLr30Unn9618v11xzjVx++eWyZcsWbYMiYoUswlUURVEURfkF5l3vepfs3LlT7r333qWuivIyZHx8XFasWCF/+Zd/KTfddNNSV2dJUTO4oiiKoii/0HzpS1+Sa6+9VjKZjPzoRz+SW2+9Vf7H//gfS10t5WXCk08+KTt37pSLLrpIRkdH5c/+7M9ERF6SJPqXBX3RUBRFURTlF5pHHnlEvvCFL0ihUJB169bJV77yFfm93/u9pa6W8jLiS1/6kuzatUvi8bicf/75cu+990pHR8dSV2vJUemUoiiKoiiKoigN52VrBlcURVEURVEU5fShLxqKoiiKoiiKojQcfdFQFEVRFEVRFKXh6IuGoiiKoiiKoigNZ16rTgVBIMePH5empibNcqiIiEgYhlIoFGT58uVTGVxPF9r+FGYx25+ItkEF0fanLDU6BytLyULa37xeNI4fPy6rVq1qSOWUXy6OHDkiK1euPK1laPtTXojFaH8i2gaVaLT9KUuNzsHKUjKf9jevF42mpiYREfnd3/1NicfjEzu6+Fbb1twCcUu2yTiO42BsiQ9xIp6AOJtOQ5x0Y3g811yZ13Vmf9sOQyzToUq5NlXyRcArBnMchAHElUoR41rFOGYijtfTdeMQe54Hcb1eozJD+hy3FxGp1rBeVdqmXJs+ZqVSlU9+/n9MtY3TyakyHrjjnyWbmWgTlpuEbXxSAdbLeE1FRJwk7nNoaAji//W/bsNj0vVobmmGOPCxLYmIePU6xCHda/HxmtZqeJ/4PoYB7u9V8fiTG2G9AnOTmVghluH7XOeIFa/pT16A516h8/CpEjZ9C8b9bqII/NtsK2/7fiDP7d2/KO1PZLoNfuaLX5JkKiUiIuNjedimJYntw42Z7WOoVoWYu2Esi2OeZ+G9KdbHIa7VzPEuaeM4uXrNGohLYzTeFDFeu6IH4lwH1imommUWCjhmZeLY144cPQpxldpPSzfOHyMls//Wq9jG2nI5iP0Ax4Dh0QLEPPYHNbMvNeewHtzum9NZEREpl0ryR29/56K3v1f8wf8WJzFxP8KA2xfNO1x5ERGjT9FgYewy1+dRZcw+ABn1mj2cH3PuxNdm4Vi0E3+HO9cxLZnHLwG8CR90xud+rSxP/e8PLOoc/MwzB6bLC3DwsqnuYWieLz+X7Nj5HMS1egni3t5eiFspJ0UY0Ye9cTxGlcaSgf7jEBdHR/GYHvYrn+b0aohjuIhIUw7H/piLj9b8jb8bS0GcbeqEuG0ZjtkiIm4Gx2Huy9y+eP60LXpGquJ1EhH5yR3/AfFjTzwJceey5VP/rlar8ld/+1fzan/zetE49VNZPB6XRCL6RSOZxJeEFD3UiYg4VNpcLxrpFN6MVOyX80XDsanDRlQhmcDr6bp4rTwPO0Otho3KeNFwzRcN26GHQ4c6MY8kIovyM+qpMrKZtDRlMxN/m+NFo2abbcNJ4T6ZShniGLUvm+5TnD73I34uNOYJnnRtHgzwc94/4LcGf+6JPQhmn/KsgAco3H8+LxpcUcexZ/280S8aU8Us0s/4p8pJplKSmhyXfPpCIEXjVdSLRpLGJ+5iMTqGZ+GgWXfxmFbEeJegF40UfWETeNym8JhpmtAyk31uan/XLNMP8N6l6UWDr41FD8kpKrMs5rXjNsPnxS8ayTq/tNOLBk9IIpJM82SOIddzsdufk0iL+1/oRSO6jJf6ovEiXgNehi8aU39axDm4qalJmpsmH6pfxItGjV40MhkcW2L0xUk2m4W4qQkf6EP6gktExKMHqDjdqNI49uGQvxykFw2PynBCc97P0Lgx54tGnF40jPM0H95jNA4bLxL8okHzPNehVjHHPx6nT/2wcIpEwnyun0/7UzO4oiiKoiiKoigNZ16/aJzCtu2ptyKbvsG06dsmK+Lb3iDgb5gwdukt0PhlgL+ViNCI8Hc8jkv1srhe+DYW0Fs4f9s7H+b6RYNjfiOMx/AtUsT82Yu/HXHmMOMY3w7P4y2Ut7Bm+WwxGK8FYlUn7odFEiSP7ptXMn8WtKr4C0atQr/q0LfHHv2MG9CvRlFXPB7DY7jUTxIuxiWqZ7WKP8vytxKliDZfq+J5BCSF8vgbGvpWieOobygMsxd9fWV8Y0N9mb+NjvpFIwjxbz590z6zRG8RDLhRPHt4r8QTE78mPvrc4/DZsmwXxMtb8RsoEZG6T/eXPj9Ww3s5TBscH8Kf/et5U2bJ92LdurUQb1iDetoUfVU7XB+A2OrD43W3mlrtIMRfUfp24LXZ89QzEGcT7RC7XfgNnp80pya7jv2XL15/Cdv9wWPHcAM6ZK1ojhG59jbchvpGT8fEPfaq5jepi4HtOFNzbWj000b8osGfUz+bh3QqnOOY5iFe+q8N85J0vfjNRcSc817yCDSfXyJm+UUjiBhDTzeJmCWJ+EQl+FfMkK5QhABCnn8Wx4FvfeOrEA8cPwzxJVdcDPGrXnstxMUhlD2JiAwd74f4+OEjEJfKKKmslnEc8CrYt5P06+xA3pR1sgyF1REu3atWmhvO2HYGxGvGR4wi1m85B+JUGmWelszeHnheOHRgr7HNof34t672Voh379g+9e96PULG/UJlz3tLRVEURVEURVGUeaIvGoqiKIqiKIqiNBx90VAURVEURVEUpeEsyKMRdxyJT2rN4rTUrEtxpBPdkH+yz4A0fnMcIAjNlUks0uqzfp1XZ8omcbUAJ46XhFdrijYnsK9jdu2lTRLWOK1+4kZp5OlPFumqfdqAvQG80pUVuaKPUQiFVuS/F4vi2KiEk/4Di1bdqtaxLdRKpnbTo+Y+yitz0ao11Srp3wNckSFqBYYErbYWJ4+QTfrlVAL9OLzKVJ1WvCjw6k4iUhjDezkwiOdeKKAmtU5L6PJStDHqyyKm14k9GNxWWKNq+q1M5mpT4Qv8ezGJN2UlPnmPU8txqcUxG9tkiZa/FRFJ00p59TJ6NvqK+PngGC5n66bIz5XBMkVERgZQ37tn+/N4jDIec+UyXFpxeGwQy6AmN5hBD4eIyDC1IZdG77AdPRirl6NHY5TGs0LV1BvHaOnZw4exHid4FbkEXhsrwL5k9G8RKQ6PQcxLj8cm26gfsazmYmDJjFF6riE4aoznpZM4nGPVI+6ikUXw6jfG53MdlI84HwMF+yBn39xYMepFLAi10EHILCLK38Jz8AuHS+GTrA3tklptYoUkK4X6fUlhnx7O4/LxIiL/987vQdx3+CDEAfXJe3/yE4hPkIejrcNcBnZ4AMe3kJapT9GY6fm8eh2tGBXinN7Rg148EZEY+TjKJTyPJkr/YFk47g+R1ySW3G+UcZjO/eLLroa4vX0FxIFPS+OT3+zQQdOjsW/PLoibWrDe6cT0uFzjB9lZ0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBox153KeJikLN7sM4jUW3MuCGv2HBfsQ7Asf9bPRUTGS6jPGxpCvXHfMK6ZnM1ipslta3GN+XQateZehC7TNvShs6eC52vD2ciDKHvLHCJSPibHNVr3nXMrTDC7z2apPRrjpWkNtkUZkkdpTfzRIrYDEZECeTIKFbwvxXHOYYFeBvZbpJNmvpN0GrWanCHUr6N2M6CbHaeMoZUK5Z+I0PUmYrhNrYZa9fwIamUrtE44r8cfpbx0KAsx+zqMPBsGc2uoLfIZeeQlmdnmAj+q/Z5++kbHJFaZaCd9/Xn47Mz1qN0dHaM8LSLS338C47FhiMfQTiN+Ee9ltgXXX29fvcwoI7eWNMfcPmgQ238C65Ruo5wWNHasHjf7/uptGyCukodq5/g+iEdy1E8o/8y+p1ErLCKSH8axfJjG8nQLemY2dKNm+WQfapzPOPtso4w0+UBODpAfZXyi/3r2EuXRsK2pvmbmZ8Jto8Zo9gAYc5ORA2N2/0T0NMDGD+7ss/tEzGPOsb9EzbFR9Zrx+VzelCgMs8nsJg32qsxrxpxzoxkbLEEuoaOP/71k0xN9u6kd/RHZZVsgrpbN+i3P4pw5tgLHr5ECztuFYh7iShHH/WWXnGuU0bEc2/DR53dAnOlAL0lLF3pNavQM6dA8tPnMzUaZCRrvnn4C84UsW90LcVXITxbSOJ/G51IRkTvuvB23oSzpF12K2cVtykvVd/QgxM8/+7BRRqYJ55e6R5nc09PPJ25t/s+A+ouGoiiKoiiKoigNR180FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CzOCu60yZW9kY65AvJCKvmDhsGCczU8zlBGpo/AnIjeV75JwUkUoJzXs1HxMrrVuHyamO9aPx55lDJyE+Z30PxAnXTCQVBpRI0DC+YmyzOW4++Yi4zDkSCbI5l5NTDefNhHbZJjRJ8TGW2gz+6O5jkpxMllakRGdDeUy0NVxAo6iISKGMda6W0Oh0/PAxiDeuRLNVkky1cdds5AlK+Og6uE+V8nyVSljPahlNYQ7tn4ybBvQEGc45GWNxDK9N8XgfxHXa3q+bdnBeqCFGfTMRw3qZCwnwEc0yaE2EWc3g/hKZwceGRsWdvAf9B/E6ru1EM3iMktSJiIxQMrzm1esg9k6gcT+2sg3itIMm6raUWUZHDk2BJwPsK61pXHBgvJKHuE5j3HAdF4no4+yhInLtOjSC2jHc5uCuZyF++GdoRBwfRVN8opuSgYmIU8A2Zg9iuy5Qsr2mDRshLo2j0Xv3sQNGGfGT2Bdam7uxzMLkmFFfooR9ljWjH8w1Bs89Rpv5+exZP+c/GPPQvJh9bHgxx+TxxjS5z1aD6AVYzELm/ANgzA7zOS2joi9sKLcj+uHp5gc/f3ZqjmuPPwSfve7V2yBuyuCiFCIirzsXx54zOnHBhn/76XaIBwZwfqzTQhaxJJqXRUSEkjLbNIdm2nGc7liFCwBVijiO+OP4jLhq8yajyHZKyHfoyBH8nMaz4/10XjTnNufM8W+orx/iO/7tuxAfPowLbrS34eIYgY/z6a49mMhVRKSrYznEA/04X1VmJP+tLWAM1F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs6CPBqOHYpjT2jkOHmeUMxJ7EREXBc1hex2iFmoU/NJU1atYXU7u81kVa0tqJVLDKDmuWdZjuqJut8dh9G78NDzqLV7xTqzzOYUJ/UjjwZtb4UBxbP7LSaOgfsElGGIFe/skYmR7po9GyIi6QxpG228NuGMMwnnJThtLP/00yfFdieudd2n8sn/E0TofD0PL4pTRe16Tyvq4VetJM09XVT2T4iIuLRNja7z2Bi2r2IBfUblCm7vkE+mOYv6exGRZAJ1+xnS4K9cjrrLk8Ooh2cPR9R5zZWQz54jERj3ZdfFPiMiEnjYir067hOLTe/DCQMXi5aWjMQSE8mZulejvngkQM9PYJk+qLXnnAlxjK5rrjsH8QqKR0/iMU8exmR7IiJdKfQWNdEwH9p47RKUZLJOY8tyqkOTbfqEghq2W9fG+98cw3t5uIDa3xFKkpUYMYqQCxPnQrymC8f6p0tHId67+xDEdcGDjgdmIYUhvIfLMujR6Fg30ZfqNHYsFrN5NAyfQtT+PDcZHgBO2CezxtFevdk9ipHZOmc5Js998/I0zuEh5McTm+s8dxELLmM+tsY5vSJg0lh8j8Z9231xJw25rXX0OF1/KfoKnBCfvURE0nH0lG1ehR61pOD4dvQgltG9Yj3EQcQ8ME6+x3QSx7c47VOnOdip0zhOff3IHtPbNUhz5oGnMWGfFPG8TvSj36Iph9cle8E5RhlCz3CPPPgAxNuffwLizh70I//KdW+AeNXKXqOIXc9gvfv70bNcqUxfC8+f/xysv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NBZEpHzwhdeEFhFDu8l5NRxaaL+peZVRwpr1vRAf2v4ziPuH8hAXirQWMPkn9vahfr1WRa2xiMirzlqDhyANdEDiTJs0gixZDawo7RvrVmfX47IuNkU6xbZ2zJkhIuI4pm7+her5opZPf4kMjTtiTWohHScBn5FFw/CwiIjUaD3sziRe54tegeuAt6Xx8+JYEeJkCr0QIiKVGuo5h4cwr0uJPBpeDfWgQm2jXMbP/ZqpDY/H8L5lyceRa0H9Z1cXajcHRrGN1+tmGzf1yBjXPfRoZZKo49+wFvuIHSFY3nXwOMSUnkb8GaLnKG3uYtCUTUo8OdH2epah96WWptxCCbyuIiJbN62GeO++XRBnM9iQR/PoI7Cb8Lq63ejHEBHJrMW+3UFjWpx8CM/tPQhxd28vxBvOxHF2eAD9FSIi//Kj2yHOdWL/fOWFF0NsZ3D9+/07MIfN6BDmkxERCcuHIX7jlZdBXH0e+6fTjNcm3oXxsbw53jVT7pzONNbzFWduFhGRSqks/8fYexGwremkVXMJ+sOI7xHJOMA5nTiPRkQCp1k/jtgkog5z1ZsPwHWKKmBhuam4CpbhMZt9/8mdXtrnL2YXyGW1+N8T172ahJPjyfgY9VEf/WKuZc5VD+3G3BrFBJ5DtgXHVMc/CHE6iz5K3zPzKfl19pqSb3I8j/VsxmcjzpVWpHxOQ3uwTiIiIyfx3Hc88gjEheM4dlUoD1jvNsxDFE+YPriulZjTbcd29FNwHiGvjl6Vpx9/FOKEmzPKOLJ7Nx5zHMdUL5y+3j5P0LOgv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NCwJxTolfjQNFhRGaKhZ02V4EfC9h5eJ5jwbo4Oo6RYR2VPFtZt37kGNfKGEertSjeuAdWyiHBn7+sy18dubUbO8jTTSPq03zLpYMwtGlPZtrndC0trStXbIxNCcQV2iiMjYOOXWoBwjcE+j7u9pxpWY2DKZR6OIdS1XcS3sao28NyJieaiL3PbqsyBevxbzIhSHcA1pN4a681jM1FEWx1EnOU75ASqkeYyRv6KlBTXi5TLqYFlLLCLiB6hTHR3LQxyPYz2XLcNcMHsPY66YYtHUxxt6YAv7UY7y11x4wXkQX3HxBRBvf+5Zo4zn9mLeA/YheTNycSyVRyMRE4lP3rJsFb0OXhzvZdBs9rHdh1BX29ONuVrWdeK68o8/9hjErUn031z96lcYZezr2wvxGevPhXjZRtQg+3W8ls+fxHZ/9wDeF7HMHDxNDt7/M9fiOvBdzehN2bIS2+yhO7E9nOnimvwiIm9+9UaIs9U+iNefxDFgy6XXQNzXjm125FHcXkRk4xr0o3Q35yBuy0ycZ9ma3c92urBtR+xJr2IwlxEhymhgeCzmmosIzrsRUYaRB2MOw4PxueHhmE9fp32M3B3zOMRsVVgkorxryPTn9hJ4NNy4I+6khyGoYx8OfZw3Qs61JiJD4VaI+2o4frktD0OcyWI/S9BcFpRxPhURqY+jr61WzmMZKapXgHOuKzhu+x56HfID+EwpIjJCXsyKj/UaLuIzYpLybiTT+HyWSKCXRUSkicZ+h57xPMpDVRnH8W7wBD67rl7ZYZSRzeUgHqXnldCbkUttAUZd/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzMo2FNaxdNbSdpPyM9GhySxs9C3VoQoMYsoDwadc9c77/vAGrlxqr4LhU4qL9zY3iMLK2FX/NQYz+QN9eGfno/+kJW03rtqSTVwadrZdPa5hGC0rnUcPYcFhnWfjbF8TxFRIaGUbMcOnge4YwbGIqpvzzdDB85IpY90WRDWj/bJt24JZSfQkS62/F8Nq5Gr4JD621bFDc34f6xuPmeblMb5ZwWCfo8l0Ntu0temiR5NKLaQY1ya5RKqCmNUQ6VrhzmBli7BnNc7N27zyjDo+vd0YYa+tdd/6sQX3rxhRCPU/6Q/kHsMyIiNcopwh6NmQRLkchFRLwZPqFCDDtZnjw9oyfMPBpuBvdpz+C68OEu9EO0PoH3ot6fxzJWox9DRERyeP99GgOLWdT/jod4b4YG0PtWprFk01ozB8+brn8VxIVxbMd7j+6HeFkH9iWvhfKH9KPOWkQkGME2s+cQejRaqL2cePgpiEvnUr4jx2xDtTq2wXZat79jcgwo2eb4uRhYlj3ll+KxxrBJRmjkeRuL8g3N2atOQ7+by9Nh5ouImB8N74mRKGNWjLEm8jRnf+aZC6MKEX4M/tNsl3spfCSxeFxcd6Kv8pzAXlSxzfbX3NYNsZfcBPFA8TmIs204Lqxehf2xNWVehI5e9L1lN2NujqYOnLuScfReWvR8tqwb5+hKBfNZTPwNx9z1526AuDSOn3tVfK48/7IrIM7l8BxERDqbsN4ZeugrUX4Zx8ZnjwsvfjXEl1yOeYhERA4cfh7i4ycwv5HrT98PS/NoKIqiKIqiKIqylOiLhqIoiqIoiqIoDUdfNBRFURRFURRFaTgL8mjMhD0BDsnzWPs5AeV6IAGi75Omj0SIDuUtGCUtuojI4DDqjbOkq69QfgWfXrVCl9Y3Jn17c8bU/o8UsN4nC7jNhgRqAIOQvCnGkt+mtpHXTA/o1hlaW8OkQZ6GiDwEQZ1yjHjoD3BnrP3sRfhjTjueNyV0tSknhh2iHr45Y+oHV+RQ45iw8D5Vy9SeSBucTOJ9HC+ZGvxYDO9LC+WXiLfi2tXtbag5rVTxvJqpT9iuqQ33uN9QW1m5ciXEvEZ3cwtpP5PmGt5jBfTvnHfeuRBfeD6uhx6nvnq8gOtxHzyM2k8RkUqF/E/U/+0ZnpmFrOHdSDzbEXvSJ7T92e3wmUtVal5hehm848MQ79p9F8T7nz8IsZXH676C1lLv7zthlFG3sW8eemAXxB3d2AbXtuH9XpNKQWz3Yn6ZeKe5/ro3iJrjI0O4bvyabtRm7z+yG+LNl2yDeO/P8dqKiNz+n49DnEthf9wzgOe9rIR9sTOHfa25CfcXEalX0OuVjOFN7T95WEREyiUz18xiYFuO2JNeRsMxYM3tITDyXszRjcx0Wbz/3H5CLtPYw/BksG9kHufF575gOwV7OqJ2oBwicxx0riKjnpD43Hmbmcc0vSunn1g8LrFJj0aVniF8H/tfWDNzzbAtyo3hHJqK45y8dduZEP/a//MbEK/owbxDIqYHVlzykpC3idO5uXRdHbonnm/2fc5pEgQYhwEeI6Dnl8DGsSiZwHFeRGQd5b3YTF6UHQf68ZiUq6Mph+PhszvuNcqojuH8tL63F+LyDMOe5/uyc9gcp6PQXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBZkBrdFxJ70tDhkUzIsqmFEsqCAzeBkJjISDpEpjEw7XmgakmtkSKpW0KTI3rWAks7EHExmlkZfpLRk0RwuIjIyjmWcGMZ4YyeaotjszcnHIhPxsGOJzp1zp4SUHTEkw/B42TS1e1SPMl27mDttWKpUzf1PN3YQiDWZhMry0LidcNGgleDskCKSjpPZvYDGJ8fCe++SaaxKRu0oQzwvHlCtorm0uRnN4U3NlNyR7lM8jqbqdLNpEoslcBs2Ca5evQrioX487842NC1ffOFFRhlsUly5EpMWJWJ8rfC8B4ewzJExNIeLiLgx0zw4kyBiAYPFZqz/xNT19qvYBpf1rIZ4BcUiIrt/iCbogQOYHK+bOnImgdcknsP2FW+hAUpE6kXstyOULGp872GIc0ksY0U3tofwBCbKqznY3kREjtMCAzbFO2rPQtx84RkQdzVj8sy79txhlDFcwvM6ey3u84q1aJbsbMVFDo4ePApx28omoww3gf2vpRnP9WRx4lpWvcUf/0QmFkQ4tShCEPC8MftiKxMb8Tb88VyG53m4rOdIJGca0mevNyffM83hZjWMOTTS3D3bMSNOwjjE7N/TWsacPbvRe3KnWasxM7Ttxf+e2Ik3izM5Ttc9esag6TDl4sI7IiLNKZwXqg72ycwKTHp6yUVvg3j1ZjSHW4G5OIodUuJnH+thrJNDyYsDi5+tcH/HN8fcUwuETJeBhcRtXrwHx546PWvl6dlERKS1GxOOrlyG88uhEzgmZZbhvO+U9kC8dbmZFLV6MZbhdmBSv5MD04stVatV+fkzagZXFEVRFEVRFGWJ0BcNRVEURVEURVEajr5oKIqiKIqiKIrScBbk0XAkFGdSqGjbrKOkOMI/wVpLE9ZukpiONKm51pxxhLKHerrhfkxoVa/i55xYJZnGuKUZdfueZ+rI+8dQ43foRB7ic9egrjoTo+QtpOdjvZ+Iee0sYX8L+T7oWgV13L7mmZrVWBzr6dZRTzk+Q+tdXQKPRhB6U+3MDtCTEXio+S+VTX3ocB51j/3UNrJp1CcG1MbLdM5t7ei3EBERC+9Difw76Sx6LNwEXvOWDLa3pibUcja1o+5cRCTbZPo2ZlKv47XYvv15iAtjmDSpLZczjpGhemXJvFQYzUM8XkY/y/ETeK05caaISIISWxqJu2Zot4MglNEiJfhbBBJxV2Lxif7ZtLwTPuugxHaFo5i0TkSkeAj9Dl2kMc4kse+v6cD73dmZg3g4wutyOI9tjscCl3xsy1rIq1DAvhUvYtLAtGOOT2GA42JgYd8YrGL7eXjHf0J8tI7JpkaPm4kIJY1+iXJA/jrqji2teN67j2OSyMNPmv3m/BvRnxTUcNzsmEy4WY6byWIXA8uypzxYPAezz8BIYicR/gdrjs9pnjHz4kV5GebKAkhz2Rwejbk8G5N/nLUOXE/DwhHh6TPLYK/I/JPrRez+Agn9ZvfIhODzmOt5qvHEQ1ti4UT7q1G242Id+1O+jOOGiEii+lOIO4o5iNuX4Ry8fhv2x7BIz06+WUathuOfT8+E4mC9YwnyXNgYc3JkxzGvO5fh0bNCLIuetZpP50HPb7sO7jfK2LEL/1av4j7nb1gO8cWXnw1xuvAoxO19ZsLhnp7rIH7uOM4VLekZPl3THvOC6C8aiqIoiqIoiqI0HH3RUBRFURRFURSl4eiLhqIoiqIoiqIoDWdBHg3XCsSd1KDbQh4MiwRbVoTPgLbhZaA5rwZrMz0fNdndLW1GGekW1AInY3jMnc/jWsKOhXq8agl1a80tqD1uz5rek1wS9zncj3q9vcfwGOetw/XefUogwnk1RERsw78yuw6WfR8e5WeIUncmXaxniq7d2Ni0dturm9fhdBOG/tRVcBw8H99DP0k5Io9L3wBq5rsGUBe+vhfXpQ5Iy+7GsE2zf0JEpFxBzXxbO+YkyLViHKPcET3LUeff1d0FcabV9IVYzuz5PnbsQE9GPp+H2Kd8IK5jii9ZFx1zcZtaFY8xQNd2aBjX7B4v4/0SEXHs2UWf9ozPo/rIYrB581pJpCZ8NfUc1red/DdP7zlk7F8NcGwoUUeskv63ezm2lw1rUIc7VDA1yhUaevuOozcpRnkzYkn0PjiUuyOT5Htt+rMCqndzEw7uTh7j55/YB3EpwH7TnjTXql9NfaF5w3qIKyux73g9mGdDBP1Q49vN+1MYHYV4525s18vbJupQLqGPZbGwbEvsyWRWYYjXNOQxzzK/RzRTWJAHw9iDjkEmDSMnhpjeqjkrMQdzHi+yCPZ1GFtQyNcqqo6ms2P2Tx2K8ZgJ2/SptaewvaUt7Gt2anrOqZVDQafT6ccJA3Emny0C8hmMkS9yz/Nm+/vpAzg3NcdwTr7sjVdB3GVjnqlEsQ/ifXsfNMo4fnQvxMUx9FNZMaxXexc+j61ctRXiVavOhdiNm/P+6GAe4koBfSLZjWsh9mzyzNZwHK+UcBwSERkawJxLhQKWSY8WsvfADyBensYxa2AIn5VFRH42sAviY0PURr3pvCd1LyJX3gugv2goiqIoiqIoitJw9EVDURRFURRFUZSGoy8aiqIoiqIoiqI0nAV5NKwwnNJkGnkzhPRahubR9BlEKEi5RIhYMx+LeE1as+EsiLOkPz52BLXiFulaq5RnY3SYdPyrzLX7h5oGID4xhPq7A8dQq3nOWtQEzrEEuIiI+Oxfoc/Zk+GzR4P296M0qKSFden6phPTf7CXYA3vdCI25fPZsmkTfFYqoP76wH5Tf805LeLkSbFJf8zXNJ1B3XgsZnoK6h52qc5OzLWQyeB62u3k4VizBn0iLTn0ZLgZU1dZKqP2skS6/dFBzN3Q3YV1yg+jhr/mmfrzoIL9pHICr6XLa4tT/6977OkyiuARRHzSgIYztmAN9mJh+4E4/kS7WJVD/fAW8vhUNuPYISKy4+7HIC5U8DoeqeF5jdMo2bUM20uq2czrE7rYbh26Vj7l1OF+79E685kctrlEaGrLHQfrUacyutvw842rsA2ePIF1yEXkhnnlxRdAnN7WC/Hukzi2JwPsi61nrIP4ig3o6RARWb0MPTClMuq7g0k/XeAvUfuzLbEnzY1GvgnyBIRBhI+OPRbW7D6CkPNLUBhaUfkn2P9AnZ33CWf3Osyvr7N35IVz8EQWwn6LiDKNv/C1oznWDtCHlvRwHF6WNcfZ5SnqexY+bySap9tjObb4PqFMa0bisYlnKj/AuiVjOC5sXGWOEwdX4jXZeDb6HV5xKfqqkjblMQuwP+7evdsoY+AkehnG8lgP30ffS3s/3pexEew3HW3oBYulzbHJobbgUi40o/nRHBuOo883ZZkejXiI9fQd3KfanIO4r4p5qZ6t4jzf1GJ67QbsByC2O/C5yp/hpQt5HpkF/UVDURRFURRFUZSGoy8aiqIoiqIoiqI0HH3RUBRFURRFURSl4SzIoxGGoYRBOPlv9gSgntoJIt5hQizOJm2wzbpJm3WTlNdhCNdgFhFZv+0yiNdtRo1fkdbvf+Teh7EMh+oYoiawM4V+DBGRc1ejJr7vJPpC8kXUYRfLqI3LxFnPN7c+lLdhP4ERs047MPV1/LeQ76kV/e/FYvXyjikt+KWXngGfefVVELMPQUQkYeN9OWPTBtyAzt+hkwxIm14q430VEcmQh2L5ctR8p1Po0eihz9vaWyF2Kc+GROW4YK02r29dw3qf0tieor0T89HU6uZ5Fcaw33hVaitUZt0nfwvlRXAcc3zwacyw2SQ0s7wwFBFTA3y6OTgwKPHkhPZ15zHMyTNC/TxoNrW8HWvWQHxy1w48BnlZdhzD8Wb9CdTpWrEI/XocdbUtHejrKIxiPat1vI4h+drqCTxeZ7OZy8WmcfPIScyLYZG/7tXnocdqYAS12aO+mWelYyXm0cjTfHCyhB6Nk4dxXO5didehNYkeGxGRviHSaxfxGOOxif5drZj1Wwws2xLrVB4N6mOcb8JKmLlI+D74PnsrZ8+rwXN0GJWrgy1AlHPL8BdSQi0ez8w8GlHzI1eM6zBHJdl8EpXTh70kAc7jTukkbl44BnHdy0M8XjGv3cF+9D2EZWzTTkvv1L9rVdMverqx47bY8Yl6B2y9obFrfZd5n5a/Cq9ZLY3bdLbjXHRqrD1FoY5xPGaORdkE3Zcc1mu8jN4G18JxujSO4+FYBbdvEs7PI5KheqdbcxB7dClqlE+pSnnJ0m7eKKOtBcft/gTWe+uZl+LnFvpU9wxjDpK6mO2nI4lt0qvjOB7MOI/aApqf/qKhKIqiKIqiKErD0RcNRVEURVEURVEajr5oKIqiKIqiKIrScBbu0ZjUT3qkx2NPgBOl3WTtJWszaS1izmsQI818dcz0S/Tt3wXxhnPRs3HBRVdDnCIx550/vhvifcdRi9tkLlsvrzwXL+O+Iyhe+/mzeYhPDKLubf0K1BkGhn5UxMgpMocng/0Wxud+hEeD9LrGOu0z6rUUeQw2buqR2KS/oL0D1992LdSRn3vmucb+LRnUZA/1n4D48IG9EGebsAyb2mutZq5DvYnye7S1oXaziY6ZSmG9WY7MXoZa3fQl1KkemTT6RFrbUJs+OJiHuKMbfSFHjuJ62yIiVSrDoqGjTJp1ztOSiKPuP5VAra2ISKFEZdD1nnn9lyqPhudZYnkTN2ngBOUfKZFvpWr2MbcH20PiEOroqyX0hA2XsE/uJM9GqtXMq9JGuVq6l6G3IZZA38HQKOrAKzFshGMuecjqnPFExKpguxws4fxgxfF+berthviMLWshPjyCencRkZWbcT37yjiuNZ8mf9QIXcsDxzGvyWjCzEPQlMH+OTBC93jy46XQx4uIWG5crMkxMCzgNfJPot/H6ew19neaeiC2qR8GAY35nPKCfGoW+8FExHY4F4fZ12fiCs87lAPDSN5h9n3O/xGwR8MwjrAHY3afiIiIlLH9hKM4X1gBzut+FcfEUgE9pf2HTY+pReN7qhW9h8m2M6f+7TnYvheDRCIp8cmxnC+pV2dPp/kMWB/EPndkEA/SdQn6H3y+9zTPtAeml6Y1huNfSOPZqJFzBY/hkYe2OoK+LVluzsFhyPWg9kN5d+wKtpWRJx+B2Eng5yIi3T29EB/N4jjuOuhLPXpkO8RFm/K8RPj7arRN3cZ7alvTD8AR08ALor9oKIqiKIqiKIrScPRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNJyFeTQCfyq3AqVYMGLPNQ8dRqx/jcenNbzJk+HSuvqubR7vxMGnIG7tWgFx53LU+Z57Ca49nGpCbdw9d+Hxnj+M2mMRkbYmXN948xq8GI/tRk3fyeE8xL3LcT3kuqH3ExGLNagYe6yX5M/Jf8F5T0Tmzs0x8+OlkMi35ByJxyeuTTKObaGtBTXfq1esNvaPkd8hpLX6jx4mD1AV9aQ5ykewahXqZ0VMT0acvAnsuShTLo6WHK3tT/e9WjF1uTXSAsccNBL1rMB6Wg5qpkfyqD22bdOIlGvDNjoyiPr4qodtnD1CnEejpwvvl4iINYR6eEMvPqPR8WeLRTKWknhswldTLtL67EePQuzb5lixrBnb0LLVmFfj2B7UffucO6hKGnnLvFclC8fe5hSOJ03kA6rHsIwy5Qc4UUI/wv4irisvItJGmvdCCevVjrJpsWO4fVs7tvugyzyvMy7YCvGl3diuNz3zGMTDlPvl/95/L8RH+o4bZbzynFdAXC/gfJAfyE/8PcKftRhYEog1qVt3c6jJrgzjuvn9j3zH2D8ew/En1425hBLLzoTYaSLNvI1jRxiPmOdpLEiMo8a9lsAxMXCwcVghzk1mHg2TkLbhPE+hYHuyAuqbNdS7hyPYD0VEpIyePn5eKRfRc1HMo4emNo79pl43z6tjGXqVmrdeB3GQnX6eCStmvqPTTSwWm5rTOBVXrYbXtBbh36llcfxLNl8IsW+jXzUcx3Os1XD+6yL/mYhIvD2HxxAca8rkg+FHoSLV26G2I545rtvsJSFCysvi1HFMzT+JY1frWecYx8guPxePmdgH8eNPPgnxzsJ+iJPruI4R/ir67aHGudRm5PGqz/E8j8dVFEVRFEVRFEVpMPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAWmLAvmEraxkl12LAVRiSdYzP43Em3+JhkVo54TwqraB46+MxPIa4U0dCVa0OjT5ONJp2Ny7EO8ZhpAN57ApOubVyOZfR2Y518C8uoUvK8MML7ZiTHIfe3TwlhPDI0eb5HsWkE4oR9HAczjEFBhJn8dFMaH5J6beJ+VStoGutatxFiNrKLiNhkIE8m0dgYJ2NjIon3tasLjWednWjGFJkwy80WByHeB05qFNLnAd1Xv44GVxGROpnBJY4NaPnqXojXbdoC8U9+8kOIvYhu2d3eAXEnLbJQpKRvJ05gH6gdwzbf2kSmdxEZI+OfaaSfNqL5fiD9A1jmYlC3PLGsCTPh2jPQnDxyFM+5UqJETyKSP9IHcVsC23GiOYfHKKMZmRMjOhGGPL+M17pGxuuEje3DpqSRUsXtD5zIQzw2bCZ0bHGw7xQoF975OTxmlu7/aB13iK1G06iISB9dz9YAk8+dv4UWPSADZncG42d37jTK6G7HxRxsMrju6j888Y8lMoPbli32qTGDFm1o3nA5xOmeM4z98wcehvjYwUfx+DsfgDiZwkUgmpfjONvUhYuriIj4zz4HsTNCiQQv/lWIY2tfBXHA8w4/W7CRW0RsMvjyHBrW0IhtFXDhBrtKxu2KueBBuUiJLUcxeWatiIbygJLJxTs2Q9x1xmuMMkJa7KHi4TFSM56JApnbJN9oEvG0JOKT8yYtOlKki37nfTh+i4jEW3Dxi5VNOG4884//AHGVjNg1Wqji5Ig5B5RqeA1dnufTWK8cJemMp3BxAqefnhvSZvtLpTDprR3H8S2WxmPWqYzExbgoUdcm0wy+/TE0e+/dj3PJ8WFc1MVfjQu2uNbszxYiIjQTiFfjRYSmj1GvqRlcURRFURRFUZQlRF80FEVRFEVRFEVpOPqioSiKoiiKoihKw1mgRyOc8kmwvWJeSXWMBHCUoI+2n+uQQYQPxKVkVSVKorPn8Z9jHRzUQFohaqDHa6jfW5Yzk+n1dGCSnbYcKt3WDB2D+IkjmHSmVEHtXDJhahs9unZ1ShrjG56N2f0WHItEJPUzkvxNlxHlgTjdVEol8WMT93dsJA+fOZQwjJPYiYhY9F7d1JyBeP16vI+Oi/eBk/E5jtkW+Lqwl8WhVp4g/ahHya5CSl4VeKY2vF7Dc00kUVeda0W9uxPD80qTRrW7B/0XIiIXX4z6b9fGYwwOYPKzkZ/+DGLu+10dpga/RP6TUgn7iedPX5vAX/z2JyIyVspLLJi4Z1UHPSUrN6P++PB92O9FRAZ3H4a4llwOcYn6cSqNiQ4z286C+KCPHg4REa8fvQwdlNwwTomaiiU8RqWEY8vRYbwvQ0OoTRcxEyi6LmqrX/PKCyCuxknfjU1Qyi5qnkVEjh3BsTzdhHF7Evu37eH9+ZWLMTnYylb0x4iIPLlrD8RH+1AHnc5M3Pt6bPH18SIijm2LY0+cZ0hjC3sgE02mh6zrbEwAl1uP2vDiEdSBj+xBz8aB5+6DOF272yjDPYRacSeHY0XLkWcgTtk4Z9upHMRWHMdp+xh6oURE4lXyDa3GMcyiz8fy5KeqoL+imjf9VaUCat5DqneyEz0xTb3nQ5zu2IT7x3HsFxEJauhVMnISz5wPwsX3ScbchMTciecbizxCx0ewT/zkQTO57PrV5J/oxLGk5VFsb7bg9i10PapFc55nv05AfbVMY1OF5vE6TetDKzG5bLDZ9OlWm/Fe2hlss6uT+OzQ1I3eppXn4LhudZjj39NPYFK/Z57DpJLlAK9F9wr2NrGPyXx+qdEztW/4o6Y/9xaQNFd/0VAURVEURVEUpeHoi4aiKIqiKIqiKA1HXzQURVEURVEURWk4C/Jo+GEg/qSGy6FdWa9uRxgsOA9GSBovy5pLd00a3IgyLItzdWC9BodQq5kfRx1hZytq69JZ1Lu7gak7rJM2bqyYg3jlOqzDkwcOQrx9L+pFz9qIum0RES+cPQ8Gr4lcr8/ut/AiNO512qZOuvqZ+7BnZDGIuwmJTeory+OoZR0bzUOcSJo+F59yieSa8N6uXYceDYs0jIkUCslTtDa2iKlVt21qszZr2bkLUt4Mn9e+Ntfw9uro2zD6IuU4YH9VthnX/O5NrTPKWLUa/QecR+fQIdSLDg2jxtmhnAbLulD3KiLSuxHLLRRQNz0wOK3Jr9c92bHniHGM003p6LC4k/k99h9+Hj4b7VkN8cln9xn7c5sKV+J4Uz+IXpeWVZSrI4P3aveBQ0YZy7tR32u1YBkhJUppor7sj+Uhruwlr4lFhgoRKZ3AcbW3E6/FyrPR49OXxTHzcBnXww8o74qISM3DsdcNnoZ4fRdem7Y49m+PxNe7Du03ynj+EF1P8mk15yauZa1q1m8xsGxbrKkxhTTW3LHDiHwTlLcnkc1hvPXVEGcoT8aJZ++EuNxntvFSG/ZbSaBncWj3sxC7+7dDnGrCOmUs3N/dZbb5OHkne1LY3hLNqJHvH0bvTX4IfSWWa47tqW7si5mVZ+PnnejBcNiDQVNmGOGTZF9gSM884MOxF98nlE67kkxOzCeZDM4rxwbxHpQtM1eSX0N/RH75BoirVcy5cnIY85t4bTmsj2kzEMvDa9ZCfsL2ccqpQnk34jS35QbR65Xdi2O0iIi4OAfXM9h+dpxzLsTN3gGIN7XhiRzxzfwgxwex3KHhPMRhiuYWyophcXMLzPZTpm3Yx2E50/uEjno0FEVRFEVRFEVZQvRFQ1EURVEURVGUhqMvGoqiKIqiKIqiNJwFeTQCP5hevz42hxbdmcc7TMgeDYr5c949wicQkCzVozWV+4dJ++bgUcfKqKtMxFG0lo7juvYiInXSvY4FeFlbaD3zS87D/f/9p6gV7lrWa5TR0ozaRr9GmmYPz8PMmzF7Ho6ov80WR+1/ulnes1wSkzlGetegjyXbjHrsVBKvl4hIPIF6Q5eaaCKG9y2TRS26ZXN3MTWOdogHdVwsk1NvxGKxWWOPr7Nl9qtajXNvYL/hXB6H9++GOE6+kHjSbOPFAupU47QW+YF92Ia9Gtabc+bweYqIdJNvY/NmXJe+PqMNl8sV+bf/81PjGKcbb2BcJDahxy3uxjwOpZOU0yJijffEcswfErLdga5bwUcvQN8oapbbM+Za/KkYXuv1W3Dd941reml7upcnsIz+u3Bt+9oOc9y1+1H3vHn1ZjxGCXX7zxTQw3O47yjEsSbz2jU3k/fER8/G7t1PQZyxUCfd3orty3VNjXxb9zKI0zn8PDF5rapls36LgW1bYk9q80P2aDAReaZ4bOAhjOfcVGsPxKsu/HWIS0OYF0ZEpNi3C+IKbVPoPwhxbRzHltIA+iVGy9gHYnXcXkTEDTEninUcy3QG0ZNRGMpDHKccGC3rLjbKSLb14jEpvwc/z4RkyjCHbvP+GbnEhI85vYW9BB6NpkRZUomJ8zrzLBxXdg7gGNCzEX0yIiJpesZLxfEa7KDcN+ky+Sp5fs2a13C0Ff/md2FOlX7KzzQwhON4nL5/bxH0eBQreJ4iImeO4Ni/bRz3SV34SojHduJ8eXAXep0O9Jk5mErkQ6XHTKnRM1+1itehMET5QjzzWcKl/Eacx6s+Y9zz6urRUBRFURRFURRlCdEXDUVRFEVRFEVRGo6+aCiKoiiKoiiK0nAW5tEIAgkmfRE++SMCIzb3N3wDlAeD7BK87LT49Hkm2yYML00dI71yrg3XO3YpB0E5wHcvznHRmUMtqIhIrBV1vaOUw+Lg0VEsk97vuttQS/zkbnMN5d6tGyFuCVGXn/CxDC+YPc+Gof2P+Jvp0fAj/71YXHjheZJOT/gH1vb2wmdx0pmHAd5XEZFEHJs7p2Fh/XKc9IqUCkIq5Yi19C3KL0N5MmLk2eB+Ylns8SAvg+ETERFe65p0vcMDqLl/6N6fQdyWQ6OAkyDtsYisXEk5VQJsf7aHn/M3GPE4alajPFy1KureOR9Ipjk3fbwE5lFZLKxg4n8REeqCYhWxPfAa5CIiPp138Rhqx5Muei5aV6OnI9eN/pmuHPq/RER6V6IXYe3yLoh5nXiXtN5jefRTxGi99eYus8xaM+qWywUcw57e+QzE/3lsD8R18rMs32IUIbEYtqER0k7HHFw3XmzsO4V+9IV05Mx2vnplB+5TRD33eGViTKxH+B8WA9tyxJ5sV6Exfvm8sbG/X8V+E+x6BOLkKvTW1Glui1ObdlLmfJjtxrmqPHIQ4sx+LPPk3iexTpTHJUjimBdksU+IiAjlTeofQN19rYLnbcWx3mvbMAdGNiLHQJ3Gbp5AjPlEeFyem7lU7zOPYfOEtAh8+x+/K87kGNZ/AvM6BDb2v2vXm/3r+d2YJyN/BO/92k04tqxctRJiux/z9QztxXwUIiJN9OTo9+G4nKzmIV4n2DYcmoNjKXw+a0ub/kI7xPHryXEaa+jup9ai9ylPHrZsjznPV6rYv0Py3bIPsjxAczSlFnOz5jNcNoX3sEhzWrU8fUxfPRqKoiiKoiiKoiwl+qKhKIqiKIqiKErD0RcNRVEURVEURVEazoI8Gn4QiD+p/Q88WqvYIV2ca3oAWMMYo9wbXow8HIK6t3IdY99YhF6m6jdVhoua5sDGeg6UcN3mSkjr2Huo3xsdMP0T/hCuAd8/gH6JsXFad9lFsdz6HtTrHdy11yhjjDR+61bhua9I4LUMfbpWnF8kwmNRI81flbapzvict10Mlvcsk0xmQveZTKKWkD0AoW82bfYAWZz7xYh5zXnSSEbU0avjheb8JRJjjwZ7m/CoLnk8DGG2mPXmLXZs3w7xkcO4xnxTBnXZ7ctyRhncd4cGByCu19ATk0yg18DNsF7XvHr1Cq5FXiKdvz2jErXy0ng0fL8+dS0C0n2HAXt6zDYYOngdQsGxoXMZauI7e9Bv0VdAjXJ7qzkG2qQlf/DJnRC/YtN6iFty2HfqZHQ7c/M6iI8dRs+PiMgJDz0XJ4YxF0JhN+qFi8ex/VRrpJN2zfwMTjIHcd4iX0c7XouWJjwvWsJfYo6Zg+TkKI3deYxta+KYtcpS5dGwp/s7ewIs8qnxCYuIVcY+VnzkLohbSuhJdK98K8T1kNp0lBezQp7ECvbjWAZzHjUv74U46eC9L43j/qFH5igR8dh7EuC9L5XwfgV5jI//5B8g7l6B/U5EJPurfwix1dyM9aIkXi8my4WRR4MG3pk+Qjsip9LpZteeQ1N1YvtgNovt7cHH/tnYv6UH80n4HVdD3LYuB3FzJz6/PX8Q28aP/uX7RhmxCl4zO9ULcVh4DOJuejjqpPGvvYrt7awus20k2nJYJs1347vQi7LzMD7jnX3lZVhmB/nNRMSjuZ+f4MjCJjXK9ROj9DN+ROcdob7FvpCZc8uE73d+z4H6i4aiKIqiKIqiKA1HXzQURVEURVEURWk4+qKhKIqiKIqiKErD0RcNRVEURVEURVEazsIS9vm++P7Eu4lHBhqXzLe+bxq22BvpJiiBWgL3CR021qLZaHBon1FGSAn36jWMC2NovqxScr2QHMNNZJSsVE0TaqmOf0um0BjrkYHuVNKnU5wwDIdmsrkje5+GuFZZDnGwDJ1Z3Sm8VnSaUo24P6UaJmcpUwK1SnW63rW6afY/3cTi8SnTN5uk2Qzu1UwrnkeGZcMdSgsBeGSot2y8iLWqeQ0Can8eXfiA2zy7rAk2rLuxubtsvY739uABTGqUL6AhNEHmTCeijP/z/e9BnIqjkTaVQtNeZycmXuJkiHaEUbU5iyZmNlcO9R+b+ne5EpEscRGwxJq6Z2ENr7NPpkGvatbR6kMTtEf9sNKM7fjAc/sh7ithIrLKEI4dIiK7dhyEuH8YXYDZLJqmk8fQAHxgPy5usawNF6tY1Wkm7Nu7ApOolQaxrzljmJCqmcbEwTyOy+EILaAhItQ8pFjBZHqJgBbI6MBEhQcPHYN45x68tiIimVZMzhUje25reqISdn1pEvZZjjWV7DLk7LQBtbcIs3CM7r27aRvE1f5dEHfeg4beExsvhLg4jgknRURqY0cgLg1ie6rkcaEAn+YSr0ILtIzjOOw25YwybQ+3GS/gMSifqDhVbJ/FAvar5rVrjTJa0q0Qh2SE5bG6EcxqBo9IyHi6SaTiU4typFJ4vukMJbrj1VdE5OgAXrM945g48emTeIwcPcf4ia0QN1+Bz0EiIhu7yPifwIFj6CQe48RJ7Dfb8zg/2iGOXd5Za4wyX3kxZhjNZMm4TYunjIxi+3u0D/vAlm5z0SHHwWe8ZA4N404Sz8Ol8w7p8SewzHm+RENIEOIxEsnp+2PVQxExnyOj0F80FEVRFEVRFEVpOPqioSiKoiiKoihKw9EXDUVRFEVRFEVRGs7CPBpBIMFkAjKfkrn55Keo181D51pJY4bScAkpkV0YoAatTkm+3IikX2MF9EuUxzGu+ShUq5AvgROmlUiXz/p3EZEyafWrNdzH81GvF3PwPAeHUWediKPeXUTEL6NO8ND+HRDXRnEfdyPqqmOkx6tUTR9Imf7G29Rn+A04Md1i4NiOOM6EZpA9GlXSwx/ch74EEZGRYUx2lsvl8PhkIgpJf5hKYfut18ykhyFpGmMuehkyGTwGJ+xjL4NQHOesPBHH8Em7fcEFqKte3bsa4jPPPhPLiJtl3P/A/RA//wx6hlYvXwlxqYT6+a4u1MuzH0ZEpKc7B3GV2lh9YGjq355Dgv1FwnZiYk9qZcOQEiXS2GHxvRSRkBINOim81kXyezkD2O/ro6gfPlQyx6NYGn0G7B25/Qf/CXFzCyaXWtGJSQMrRdx/vGz6Qno29UIcxvK4TwU9FwXSxP//7f17lF1Vne6Nf9da+36re6WqcquEJBAIgRgQItBR8W1oVMT2KMeX80aG2Ppq04Ci0A5E4efpHp5GWx326X5PwzjSfVDRt221++dRUVoQBCK3cEsg5FpJqpKqVGpX7ftlrfX+UZVd9TxzJZXoThWX72cMBpm1915rrrnmnGutvZ9nPj55IdLtqN0WEakVcfxWyC83MoyvT3ThHJhJYsDac1tfMPaxuB/11xkav9XKpPa/FuC/mQscZ3oOLJdG4bWJnY/je2vYd0REEj0roZw5rR/KhV88CeX8Q9+D8sFzXoSytQR9CyIitSPohSlTyKRN16LM4rVQjq28GN+/C+eaWJupy4+WMURy7zYMZavSHBmiuSURwnuNli4zlM2hkFi2yMzmtzMJinw9/ne/M/fBQa1zgWO708GpNN+5NTx+b8Jsj0R9O25vAq8TpTCO2YP2QihbFHh6Wp95n7l+DZ673j70JY0uxf7zv59GP88wnRc3gft4IGfOuU8/hfWKx8hD6uOcXPbw5rf1II7lwnOm9ykSxv6XasFtViwOPcXPuzU8Li8g/DeUwnGRTNE9uT89joKub8dCf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0ai7dXGm/AYOPaJUKa8iHEc9mYhIPIm78ygXwxfOwEC9WJkWw/ZrpkbMIt2ZRWtd+6TVjFKuQaWMvgTXQi24ZZna8DD5OHj5co/06L6HdaxQroYXMjWAyQR6MA4dQY3zWATrMFHEtaST5H8pl02PRo28JuxBmHk+avPg0SiXS+JMdbyxMVxnenQUNY6HBgeNz9uGhhb7Qow0uL6Px0/yeolGUSMpIpLPoS66WCTdpI0a1ESS9PQk/E2nUV/q+eb6/Ratp36EvCgtmXYo969AnXYijXr4WNScFladjp+ZoH2UqHHY5xGJotY9ZGNZRMQi/wk1vziR6fPjzE+MgfjJmPjhKY8GiWBt9pClTZ9BuchrtOM4iq/sh3IyipkViR3YKAUxx6FbQ/+ATXPikf3oschlaS7wcRxMRHAuOXQAcxBERIo1fM/qNjz2ykHOQsB+vWAl6qr7151j7OOtl7wVygdHUMdsZXEfBw+hbn/DW94C5XjE7ESRLswD6WvF8vihyX5fLuG+5oqZOS7xJNYtetZlUC5SnoWISHb301Au7NkC5bqLmvkj3XjdCTs47mNZM1fKIp9a+2kXQLnzrEuhnOpebmxjJn3nvxfKhSEzPyu7YzOUV78b91mawL5SOoS5BuEIauxD6/7YrIiF/jrbphyNk/RoBEnczW0ce5vz4dFoiUXFmbreRKlqnDMVdkwfU0sK546Kj/1pNPcKlfE64Vs4N+3Pm9fgh+zToNzbg9c/O4LbOLgH6105xNcu9FMUbNNDmxM8DrrFE49uG+ulLJSXZdDX5AfcvxTomlsnj4yTxOOyI1gJzr7za2bfqhXoMzaew/iMjC2+fz8e+ouGoiiKoiiKoihNRx80FEVRFEVRFEVpOvqgoSiKoiiKoihK0zk5j0atLs5RDSFr0Ehb2NNq6tgipP2uV1HjWC2hHqxSY706bnOAfAoiIt1tqP0tlnEfEZuyEkjnZsjWyIzi1k1db4i02hblLzikoS+U8fU6rcefL6COW0QkFkKRX4i8ItUKtlWZ9sGS+HLN1E/Wa5THQFkp1eq0lrtWMzMkTjUHDgxKYsqrkiMvBGtbu7pRvywiUquirtrzOTcENYwWmW2sGpZDAUaBVCpDf8H+lS/gmt3VGtahStklnEdRD9BF8mfqdcqCKR6EcnsP6uH5TFYqpv7coXGwZMliKI8eorXybfZbYR2jKdREi4hMFLBPFum47BmeGNubn+9IOrvaJByd1PB2LkL/RGkMz5UfNX0ooTTqaNOLWqGcXIwZFm4V55ZoN/avehX3KSLikVa6ewGebz+P7Zwjr9vAftSvOyHq93nTQzZ+EP0Q+zvx9RTpnHtWooejfTlmu+wYMHX4bbtboZxpxT60Zs0KKFsTWSjHHaz3pRdhXoOISE8/+gVyZVrnf2reKeRxHM8VlmOJ5UzOdR55BhzyOKUi2B4iIvE2bOd8Jx5vcTHmDyUnsBzOYP+Md51h7CPSguMinMHOYFO9OTuIs6wsysyJd+HcM7lPzOkJJXCc2LRNY+Y+EXsF1dP+A7N8TsyjcWxs+2RzO/5wIrbVuJ9JxeleKkL3SqmAHKEEtplfIJ+Bi3NTguY3nvUrBfM+5MmDr2Kdw9hOyTTWe7yI48au4bztOeTNCaPnQ0TEEtyGw3499tPU8do2MZ6F8g7XnF/icfJrUr28GmeLYS+v16m/BORoWOQBjdHtjG1Nv+5Z6tFQFEVRFEVRFGUe0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7Ko1Gruw1dIC2VLRZpuEkuKiIi8RjuruTReu+kOQyH8P2dSdTOTSRMDfRYNovboEcpP8yeC9LSke6yUCE/Rd3UBPJ6/7aQDpF9IOTzcOn1ctXUQNcqlMcQwraq0mfyRWxbh54pyxVzHz4dW63OHoZp7X5QO5xqCqVSQ1vrk6jWprLnmfVj+avrsieDchFsPI82+WKC2wD/FothH62Q7yBL/TUUxjqw/yccMb1PFvW3TKYVypyHwt6bIyOYQZLLYllEZN9eXJP/wMB+3Af5W/KkYef8mnPXnWvsIxbHY0vFUNcfmeHRYO/KXJFpSzcyQdKnoV7dOYjHnBtDH5GISHQp5qhYaZwocwfQ61AhHW04g7rcjrTpRXKp3/rkNUp1otb3LcvPgvKRUfTbbNv8PJRLWdMbJ5T/UqWF409fgfv4zUuYezC0/0ncnGPOT7/10LvWc9pCKL/tdPQLrFiyCMqRKs6JSxfjuRARCVFbFUjnHJ668IX5AjhHWPZ0TpNNc43pQzA11CHKt2lbfh6UW5eth7Jfwr7g0hzpRM2sGN/Dc8d5RMYFk+ppWA9IN+5EzIyuMP3NYxcGnVf+htUy6hQAB2T9wQRp3E/cd8H5SXOBG/IaJ6gcogyfOLZPybSBil2i7LQq3X8JXi9jNmcV4T6iAfeZ3Col8nnUyV+acShHKI/zG8e1ub6ZT+Oz34E+Y3P/o66UK+CYKTlmPojlY9vYCao3zZmRKHlMOffFdCqJHcFtxMI4z3kz2s6vq0dDURRFURRFUZR5RB80FEVRFEVRFEVpOvqgoSiKoiiKoihK0zkpj4brelJ3J3VdFum86xbq9WpVU6Dn1UhHSTr6MOnRfdL91snbkEmYWs1x0oZHSGNWKaLXwaP1+NlPIax7JV2/iEiN8ifqJOpzPfZk4HH5pEE16iAiJdLAc9uxHrdYptwCWnO5UjE1qV69Ru+hXIPy/Ho0ShVPZCojwHexrmHyCAVYNCQapvWwWeNKeSaWzOLZYKGliHikTy4WsWxRxsE4rZ+dSePC1ek06ukdDkQR81jZkxGN0rgjP8/eV3dAefduXDtfRGRsFP0GR8h/wP4VHoeJOGpOQzHTaxKjDBKH9LmWN32+QvZJTV1No1qqikzVY2wMvSwVqlKoy5yfapTLUNixF8p+DuenUBqzItrWoA8hlDTboZidwDpT/2jtxHXgFy7FDIJIG46TfTvaoJyImPtM5HGfoTBprXtwG9ExLI/uOwBlu2BmueT3DGE9+9GjUaGslmWnrcQ6ka/HqZl5RSN5/NuOIazXwgWT+3TDJ65Pbia27TTmIZ/mfMumTIKAoAa+1jBGjEMcz5PN4nPfvB76Fl3PSJ9u+ut4m6TjJz9M4BH4fOw8N1OduG14bg/8DtY/TmnuCbr+nGpqjsjRWyaXE5j4vsY2fUw1usdwOHuDsq3y5OP1y3SeA7JMHGqXKnlNo3QfGqd7RJv8Fhb3x4AeyH2BxyZ/p29sg+5tvYD7q3oZrw3RBG0jSn4y8q9wFla5SB4PEbFcek8Wt2nPuCdif/Px0F80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nROylFZKpfEdSc/Unc5vIxNsKaZr1jgUB0yyJD5u0LBKmE2nwQE6NhksqHcOqnV2NyN7+fgu2rt+IZ0ERE6dCOUrUJGbpfDrcjEyGURkRr9jbfBAUWFEhqHwg4anEr0uohIvYr1LJFxvlCYLrvu8U2Fp4JwJNoIZirlsT34vItrGpUs+lMiiUZbM/4I/8LHnM+PGZ+o17ENEwkyQYd5L9iHI2TcjrJpmoOBRMQiByf3P64317GQQwNspWSOXVrPQFpayCBMx7ls+XIod3Z2Qrm1HT8vIlITrBeHMNrH+Pdckh2ZkPBU6FnYRcNzmYIOy+Om2diiySLR0gplJ4XlKhm7s4MjUG6LYWigiEjEIRM6ucGLQ2jkf+xJDMuLxCkUcHkXlFszpxn7HH5lD5QLtBjI7tJBKEe7MYyxrYjBb7WI2c9TFH5ZPozHsfmFLVAO29jWS7rQ9L6mb6mxj8MFnPMeeWUblN82tQBJqTA/gZG2NR1o59O4t9iAaji7RXw2SRvGa94GFXn+CciM8zmw1nDK8h/YPG5sELADTO58rDzX80IfszN7GN7s7zi+WTbw1YD5/Vg7nY/AvnK51lhEhW3YUVokIhQ127xcx3mB751CNl3vKGSu4lLIsxfUx4/f7rkczYcWBfqxqZ03ENjnjx+WaZrFaZN0HL6YgaUlWryiWsTrZcjBevN9AV/DS8WA+2dayCESxW3EY9Of8QLusY6F/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7Ko+FE4uKEJz8SjqBCj2Vrnh8Wpubi7sKkR3e4NjUM/eLgKTtiBmJZtJEyeREqpE936+RdIH17tUZBhAEhJTUXt1EnMVxbK+rRQ3nyR1iYrBIKm2FmlTLq5tnHESZ9pGVj+6cyGIbmBzxjFj2sVyKF24glpnXUk4F9g8Y2TiU9Cxc1vAATRw7Da5Ui6he9mukzYDjYJxTCNjx06BCUixT4FeSliVGfjkTw3DrUPyMR1J17FNbI+Vq+IT4W4dEXFGI0E/b3xGJY57Y20z8RprBD9lxkqH+1tKDmntvWCwgOs0hHzT10cHA63C7IYzQX1F1XrKn2q5VRRxtJoO+gNhHgg6J5M7kEQ+c6+xdBuVjAfn14934ol8fQwyEiUqJQ0doozqNda/ugXKiSx6eKYydMwVATAWGfrSvQK3JkF4Y+7tiLoZBR6nPt5NnpXne6sY8OmkdfePFFKD/xxBNQ3rLtKSivP/dcKO87c72xj/EatYWF9dwxMBkayMGvc4UTcsQJTQX20RDikLkgqboRJDabR2O29wc5DfgjxuuzeDSMz/MkGBRESOGFs+4TmcUWEvi3k/VozN4OJ7LV6ddnm+dPBbZliz2l/bcopNWtYf+r1c0wR/YNRGk+FPLQhkPkM6DrkMfGAzGvbwzXi2vJdQzyOjGzWJvMMUHXefY++Y55XF4Ea0q3jUYIru8c37MVT5n36NU8zv0enQ8/PH0d99WjoSiKoiiKoijKfKIPGoqiKIqiKIqiNB190FAURVEURVEUpemclEdj+YqzJDa1ljmvtZ7Po1a4e9EK4/Ntraghc8K03jZpMS0ni+839O6mxqyF1hbOTuyEcs1FXbXnka6Q9H01Wui5XjN1aRXWsdEK04sWLoZyLoea6V7yUwTYQMQmP8HoKK7ZPzKCfoIINc2ihcuwjijTFhGRI6OYC8EZI/H4dO5EtVqVRx5+1tzIKSQcns7R6O7FAyhOZKE8fGCf8XmbskQ4T8LQ+VqsecbXOYdDRMQnzWiZvDXpNHobuA51I7eFsmQCRyzWq1bDPmuTlpc1qNy3gtYhj8dx7LJHg3M0WDvLutkgdWfIxoN79eWtUH7oP37Z+HetZup/54KellTDV7PhtFXwmk16Y3up6eHxEqj5txPYrvFO9La0LFoA5ep69GyU8maeQ6WEa807Y+gniEex39bI9xPuQb+NOJT9kcRzLSISI79cdzSN9TyC14ewhRPUwgWYccFRICJmnwqvWANlO04ewCTuoz3UCuVX9wwZ+7DoONb04byZz056w5wAn8pcYIvXyAwyvAuz5DaIiFizeDJMbTn5J/gafUIy7dnedPxMJqPOAe+fVUXPFZ2lSsHb47Y6cY168D5/HyeINeNfc98HXc8Tf6oOfh3nO84ccy3zPGVa8B4uEqH7Lw/n9QhlcVSL7Ncx68jXs4AgFyjx9dDwvtApqAf5C+k9tj2Lf8Y7/rnzbPP1UBr9nLEO3AfZQ8WmXA3X5QMxjyMaw20a3uAZlwJXPRqKoiiKoiiKoswn+qChKIqiKIqiKErTOSHp1NGfV8szln716GexMi0LWyyZy4sWaDmu2aRTpSJuw6afehzHlE+USDZQruDP/pUqSadc+mmOXq9WWdoSsLwtaZ1q9NNcpVKhMraVZ+P7T0Q6VauypAvryU+QvM+glfX42Fk65TjVGe+tTm3nJH8+/j04uo+Zy8vaFvcVlJCUAvpfnaRTrsfHh/2xRD8blst4HvnzIqZ0in9CLdKymIZ0iqRSoRDKP8KhIJnB8YUDLJ3ySMbE570YsHQsy1YK1N7cD0zpFEswgipKS01T+8+USx3991z0v5n7mbmksSFRoz5p0+siIl6VlvAN4bkJ0VxRpX5c5TahPikiUqNteLQMc8jCaZ/nK+FtknSqytIEEeFf+rkONV4KmqQsVdpn0DdgPLZqNKfZVAleIrISoeuJa17+LDqOMvXzytTYqEydlznvfzOW8fYN+QXLogI3FLjdY+/4+NKpE1EPza4YOv7ytuaSugFz4Kz1ODnpVPAW/jDpVMCivCfwrmNLp6qlSQn2XF6DYfl1WqLV42tAgK6O5TazlXm5d95H0LEbf5utTPA+Zt1+wN9mOydmHfn1gHpxW3Db0e0w78NY9TfgRpOXrDX2MaN89N8n0v8s/wTetX//flm8ePFsb1PehOzbt08WLVo0+xv/ALT/KcdiLvqfiPZBJRjtf8p8o9dgZT45kf53Qg8anufJ4OCgpNNpM8xEeVPi+77kcjnp6+szzVdNRvufwsxl/xPRPqgg2v+U+Uavwcp8cjL974QeNBRFURRFURRFUU4GNYMriqIoiqIoitJ09EFDURRFURRFUZSmow8aiqIoiqIoiqI0nTf9g8bb3/52uemmm475en9/v3zjG9846e3ecccdcu655/7e9VIURZlrZpsPFeX3Yc+ePWJZlmzZsuUP3ta1114rV1111R+8HUU5lTSzz7/eedM/aMzGk08+KR//+MfnuxqKMiv6cKsoymuRxYsXy9DQkKxZs2a+q6K8ydEvU+YefdCYha6uLkkkEsd8nUO7FEVRlGCqHNynvClwHEd6enokFArOCPZ93wgvVZT5QPti89EHDZlMZ77++uulpaVFOjs75fbbb2+kHbJ0yrIs+Yd/+Ae58sorJZlMyl/91V+JiMhXvvIVWbBggaTTabnuuuukXDaTqRVlNjzPk7/5m7+RFStWSDQalSVLljT62K233iqrVq2SRCIhy5cvl9tvv73xoHvvvffKnXfeKc8995xYliWWZcm99947j0eivNYpFAqyadMmSaVS0tvbK1/72tfg9UqlIp/97Gdl4cKFkkwm5YILLpCHHnoI3vPoo4/KJZdcIvF4XBYvXiw33HCDFAqFxuv9/f3y5S9/WTZt2iSZTEZ/HX4D8/Of/1wuvvhiaW1tlY6ODnnPe94jO3fuFBFTRvLQQw+JZVnys5/9TNavXy/RaFQeffTRxq+y/+N//A9ZvHixJBIJ+dCHPiTj4+O/135n7vtf//Vf5R3veIckEgk555xz5PHHH4ftzNaXldc/1157rTz88MPyzW9+E66TQX0xSKJ30003ydvf/vZG+XjXa8Z1XfnoRz8qZ5xxhgwMDJzCo3ztoQ8aIvJP//RPEgqF5He/+51885vflL/927+Ve+6555jvv+OOO+T973+/vPDCC/LRj35UfvCDH8gdd9whf/3Xfy1PPfWU9Pb2yt///d/P4REobxQ+//nPy1e+8hW5/fbbZevWrfLd735XFixYICIi6XRa7r33Xtm6dat885vflLvvvlu+/vWvi4jI1VdfLTfffLOcddZZMjQ0JENDQ3L11VfP56Eor3E+97nPycMPPyw/+clP5IEHHpCHHnpInnnmmcbr119/vTz++ONy//33y/PPPy8f/OAH5fLLL5dXX31VRER27twpl19+uXzgAx+Q559/Xr7//e/Lo48+Ktdffz3s56tf/aqcc8458uyzz8rtt98+p8eozB2FQkE+85nPyFNPPSUPPvig2LYt73//+8XzvGN+5i//8i/lK1/5imzbtk3Wrl0rIiI7duyQH/zgB/Lv//7v8vOf/1yeffZZ+dSnPvUH7/e2226Tz372s7JlyxZZtWqVfPjDH258c32ifVl5ffPNb35TNmzYIH/2Z3/WuE4eTTwP6ouzcbzr9UwqlYp88IMflC1btsgjjzwiS5Ysaepxvebx3+Rs3LjRX716te95XuNvt956q7969Wrf931/6dKl/te//vXGayLi33TTTbCNDRs2+J/61KfgbxdccIF/zjnnnLJ6K288JiYm/Gg06t99990n9P677rrLX79+faP8pS99SfucckLkcjk/Eon4P/jBDxp/Gx0d9ePxuH/jjTf6e/fu9R3H8Q8cOACfu/TSS/3Pf/7zvu/7/nXXXed//OMfh9cfeeQR37Ztv1Qq+b4/OX9eddVVp/holNciIyMjvoj4L7zwgr97925fRPxnn33W933f//Wvf+2LiP/jH/8YPvOlL33JdxzH379/f+NvP/vZz3zbtv2hoSHf933/Ix/5iP++973vhPbr+35j3/fcc0/jPS+99JIvIv62bdt83z+xvqy8Mdi4caN/4403NsrH6otB/ezGG2/0N27c6Pv+7Nfro/3ukUce8S+99FL/4osv9rPZbDMP5XWD/qIhIhdeeKFYltUob9iwQV599VVxXTfw/eeddx6Ut23bJhdccAH8bcOGDc2vqPKGZtu2bVKpVOTSSy8NfP373/++XHTRRdLT0yOpVEq+8IUvvOl+glWaw86dO6VarcK81d7eLqeffrqIiLzwwgviuq6sWrVKUqlU47+HH364IUt57rnn5N5774XXL7vsMvE8T3bv3t3YLs+XyhuTV199VT784Q/L8uXLJZPJSH9/v4jIceeooL6xZMkSWbhwYaO8YcMG8TxPXnnllT9ovzO/pe7t7RURkeHhYRE58b6svHE52Xlqtuv1UT784Q9LoVCQBx54QFpaWv6QKr5uCXZmKcclmUzOdxWUNyDxePyYrz3++ONyzTXXyJ133imXXXaZtLS0yP3332/o6hWlGeTzeXEcR55++mlxHAdeS6VSjfd84hOfkBtuuMH4/ExpgM6Xbw7e+973ytKlS+Xuu++Wvr4+8TxP1qxZc9wFAJrRN050v+FwuPHvo18sHpVXnWhfVt64cF+0bbvh1T3KzMV/jne9nskVV1wh9913nzz++OPyzne+8w+v6OsQfdAQkc2bN0P5iSeekJUrVxoX2GOxevVq2bx5s2zatAm2oSgnw8qVKyUej8uDDz4oH/vYx+C1xx57TJYuXSq33XZb42979+6F90QikWP+CqcoMznttNMkHA7L5s2bGzdSY2Njsn37dtm4caOsW7dOXNeV4eFhueSSSwK38Za3vEW2bt0qK1asmMuqK69BRkdH5ZVXXpG777670V8effTR32tbAwMDMjg4KH19fSIyeS21bbvxa9up2K/25TcPJ3qd7OrqkhdffBH+tmXLlsYD6/Gu1zP55Cc/KWvWrJErr7xSfvrTn8rGjRv/sAN4HaIPGjI5sX3mM5+RT3ziE/LMM8/It771rZP6pvjGG2+Ua6+9Vs477zy56KKL5Dvf+Y689NJLsnz58lNYa+WNRiwWk1tvvVVuueUWiUQictFFF8nIyIi89NJLsnLlShkYGJD7779fzj//fPnpT38qP/rRj+Dz/f39snv3btmyZYssWrRI0um0RKPReToa5bVMKpWS6667Tj73uc9JR0eHdHd3y2233Sa2PammXbVqlVxzzTWyadMm+drXvibr1q2TkZERefDBB2Xt2rXy7ne/W2699Va58MIL5frrr5ePfexjkkwmZevWrfLLX/5S/u7v/m6ej1CZS9ra2qSjo0P+8R//UXp7e2VgYED+8i//8vfaViwWk4985CPy1a9+VSYmJuSGG26QD33oQ9LT03PK9qt9+c1Df3+/bN68Wfbs2SOpVOqYixW8853vlLvuukv++Z//WTZs2CD33XefvPjii7Ju3ToROf71+rrrroNt/cVf/IW4rivvec975Gc/+5lcfPHFp/w4X0uoR0NENm3aJKVSSd761rfKn//5n8uNN954UsswXn311XL77bfLLbfcIuvXr5e9e/fKJz/5yVNYY+WNyu233y4333yzfPGLX5TVq1fL1VdfLcPDw3LllVfKpz/9abn++uvl3HPPlccee8xYwecDH/iAXH755fKOd7xDurq65Hvf+948HYXyeuCuu+6SSy65RN773vfKu971Lrn44otl/fr1jde//e1vy6ZNm+Tmm2+W008/Xa666ip58sknG7+ArF27Vh5++GHZvn27XHLJJbJu3Tr54he/2PgmWnnzYNu23H///fL000/LmjVr5NOf/rTcddddv9e2VqxYIX/6p38qV1xxhfzxH/+xrF279pirODZrv9qX3zx89rOfFcdx5Mwzz5Surq5jeoguu+yyxn3d+eefL7lcDlQrIse+Xgdx0003yZ133ilXXHGFPPbYY00/rtcyls8iNEVRFEVRlDnmjjvukB//+MeNvA1FUV7/6C8aiqIoiqIoiqI0HX3QUBRFURRFURSl6ah0SlEURVEURVGUpqO/aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihNJ3Qib/I8TwYHByWdTotlWae6TsrrAN/3JZfLSV9fn9j2qX1e1f6nMHPZ/0S0DyqI9j9lvtFrsDKfnEz/O6EHjcHBQVm8eHFTKqe8sdi3b58sWrTolO5D+59yLOai/4loH1SC0f6nzDd6DVbmkxPpfyf0oJFOp0VEpLUt03iabWtLw3ssG59ywyHzCadQKEG5XK5DuVKuQjkei0LZDlN1Lc/Yh+fh30IhPkSbSljvWq1Mda5BuV439+n6+DeLD91z8f01jC45/7yzoPzBD/0fxj5+/fATUK7UsN6lagHKvS103LYDxa72jLGPvfsPQ/mJ3+2E8ujh8ca/J+NX/EbfOJUc3cc3brtW4rGIiIi4Ph7/RL4IZT/gWxfPxXYvFfFcuy6ea4vOa09XF5RDAU/x+QLWgztDOpmEcjQex8/n8lhn6s+d3VgHEZFCEc99tYbH4UTDUHZd7I98FAmqk4hIrVqBcr1K+6BxlM1moezR/JCIJwL2geM/Re/x3em2KFWq8pmv/tOc9D+R6T543fWflkh0cl4q5ifgPakMjqlaLWdsZ+TwIJQtD4+5UsJyuYR91nLwXEpACtLac9ZD+dUd23Gb5XEoc7t7FK0UiUbw/TV8v4jZT8XD821R/xAaO6UyXhtq1L9ERMIRvB5wBFQ8hv125PAhKIdCWEfHuDbMfuzt7b0iIlKv1eTX//9fzHn/u/euv5ZEPCYiIqkM7jtOdbEcc35yaD6KUH9y6TQODg1DuVzDa3Y602Lsw6dmLc4yP/E35PU67sOzsBxPmfNTio6d57w0jU2PjjvT3QvlRCJl7MOrYj3C9vHvJaww7qPk4ufrrjl4x8dx/v/+//tDKD/0H79u/Nut12X744/M6TX4PdefK+Ho5L1Eor0N3rN/zxCUB7eNGds5/ewVUPZtbOdDO0ag3N6F14Dr/s+PQnnPyweMfTzyzG+hHKXryNvedj6Un9r+ayiPZ3GOrhTwvG75xV5jn/USnttEO+6zWMMxUK/iQFu0Bu8LOpeY42pw5yiUownsf8kM7vPwEexLoSi+f8GimLGP3hZ8mNy3Da9hqeT0Z+o1V37zoy0n1P9O6EHj6ERgWZbYUzcMDk1i/KDBr4uI8fMKl3nCme39fO0KwvxJ5/iTw2x1CvrZkC+ixluMbeDLoRA+BMTjeEEVEQnTQ5bHD0gevs7vt+hBI0oTcdBnZmsL3/fn5GfUo/uIxyLHfNCo0gXwRB40fLrhpuuA8aBxdN9HCXrQcOu8EXwPPzzHqOzSTRzfwCUC+obn4T557J38g4a5jyq9qU7Hzg8aZbpB4wcNbksRkRCdMm4rPl8iwePxVHB0P5FoVKJTDxr1Gtbv6N8bn7HNG/JwBM+F5WGf9OpY5i82bLpBCopbjcbwAhIO8/nnbeA++GY7RJ/3ZfYveE72QSNUp/nNMw+MvzTiB40QzV+Og3OeQx3MoXlXRMTibYZ4XqXzN8f9LxGPNb4ISCbwxiKRxPKJPWjgOOQHDd6HTQ+A/LqI+aDBT8MherA96QeNhPmgkaRj5zkvlcIbOX7Q4AeVZNK8efLo2MN0TZ3tQSN0Ag8aLo0bHstBD8dzeQ0OR53Gg0YkRscX4fFm9r9wlMawTdugMRyOYJn7eCxu3izzHMtl7j98HEeP7yhuje8RA+4BZ7l35ftj436Z2orbUkTEpvc4YfoMlWd9f2T28xMKYz1Ckd+v/53Qg0bjzSGn0YC1Ot/c0E2oeS0yfoFo78DBb1lYdut4YzFBvy7EwubJ8Dz8W4wGKneAeBw7WWumB8rZLD4VVgK+aQtxR6abqHAY61Ckb9KrNN88v3W3sY9wFCe+uouTdUsS65Cv4D5qFt4Eje7BbzVFRNwKnsO+hX1Qzmann25935daNegknzpcty6uO3X+LOy6FTregDlcYlE8D/xQUK9gm6ZTOKnV6QIZDbjIpugXC37QaG2hbyp4kNINW5x+XYhEzYcAnz7j0S9o/EDUQt/uWXQjUC7SrzJi3tRx24VCNAao3jWf6hRwwfTr/CBB3+Yf499zyZ4922fcbGK7HxjENomFzVrG6fmq7uF8Egrj+W0N4zd+xRx+8z+WNb81rNCve70LcE577oUBKIdpHq3W8DxUqjRf1fDXLRGRSgX/FnbwOCIheqDmX6Ppwuv59MAuIiWa/316kGht7YBydy8e99gEfvvpW+aDK08cdgjLsczkHOJUzWvPXBCJRCU69cuORXOLT08JlmPW0XGO/2USX9f5RtemX5UOHzli7GNoBL8RLtJ8wl908EMqvy42noNE2px30y04py0kmc8C+sUi09EJ5XoIB2alhH1eRCQepi9PuN4e/2KG7W9RW0cDzs+hgweh/OKW57GeM1Qfxpdac0A80iuRqYe4kUEc8xM5qk/A3WXBw1+B/Rye2/YOHLOdrXgd6e7Ae5LKUnOOTTyD5+n5F7dA+by3ng3lyDhek7c8+CiUl7xtAZR7z2419pkbxnm4IjhPrzwD+2My1Y51TmGf711I9xEi0tWLbbFnL87jy8/EbcZ249jdv38/lNPdpqrF9bDft3TQPdPM65UfMH8eA111SlEURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEejVnXFmtLWuqwHNQzPpkieVwUplVBzm0hgdVjz+P73Xwnl6//v/8vYB+vo2bjokAkskUSdmiOsD6XVtMKmiZpXfjEMmmS4++VDv4Hyd374Syi/vMfUXZcrqHOt5HEVgz2v7IAym0rZKNTZY65elCf9d3s7av5mHvukR8P0q5xKPM9vmERZ214nfX85YGWcWoVWSuLlwUi/zCsrCUmDowF9oUQrV7FvtlJGXathNiWvQ6mI58QLMD+FyB/FXrU6tYVjLNyAdcgFaH+N8U164wLpsD2aH8JkMDfMw2Jqs6vU/vHI9DiyA4yuc8GOnc83TMYJMiLyufG5L4hIJont0NneCuW6S/4uQR13nbTjFVqlRkRk9wvb8A+0T9fHtnOpnV0yrfrCJlZTm2ucD+ovDpk82Sdqk569XjY18rxYRaIFV73p7EItdTKFbfnEZtQos0lURAwfYSZBJuEpA3DVPnF9cjOp193GXOeXcC6p0nkJWhAjwis3sunexter5PfyqO+M51BzLyIyOIirD3F/4kUTarQKFXs6qrTinTHBiUicTMLDw7hCj03HdcYaMpRH2G8RYPKLkC+VzODc3HlqmxrdGCRi5spWu7bjdXz4ALalP8M/FbQ4xqmmWo6K70+Om9EDuKqbE6EV2haiZ0pEJN2yBModnW/B11N4P9aRxGN0qP/t2ktznYgsIB/Hkk70o+7ZtgvKPZl+3EcZ67DjKTzOM95iLuUaSmGfPXwQy51Lsc+fdhZuI0nzZ7lq3gOmupZD2eXFSGgOjdAqe7XDZJzPmbf/Tjf20eVruqG8d2Daf2WZVr1jor9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T82i4bkOrzaE6HAgXDpvPMEZ6s/Da/Kgh433ksqhX373HXMM7SmvCe3X8DMvPSzVMPi2VMAkxX6AcjbKpux4exm0cGMK1sBPxViifcRZp7ahSHB4kIhKPU8ZIGrcplAzOuRI2+REqdfM4OBV97x7M8yjP0ARzrsJc4LpuQ8dfoCwSDh3jDBYRM304Q22aTqFmlgP7PPYQVEyRYjzCPiTKMyGPRtkjX0wb6s5L1P+ckNnuDiVkWWQMCZH+s07nOR7DdcRZQz35GewvUdLjFiZw3ITI98GhlEH+HvaBOOQDmenhYA/IXJFMRhvr4zsOnosk+VCOapkB6pf8nqhNGScUZOdSMGUiYC3+SB7P7/YBTLKNdVGCOc0FFml7ObQpaOiz5YbzGUolnPu5P4Q4FMsL8IGwBpkCp8aymCrse9iv6xUKRwzKROKgLUqqdHOTbevV5tafdpRSsSLWlE7dcqgO1D5ugJ8rSkGamQzOeWF63aXrysFDeK0bOoTXOhGResC1ZSZl8t9wmb1aderz7A8VEalRajfnXb2ybTuUffI+ZTrQsxjkQ+KwvAWU08JJ7TwmOBG9XjazrF58HnMzckeyVIfpevP1aC6wpN4I3+zuwvG0by+ex9NWof9CRGT1yvVQXtR9HpTZ99KZxDZPZ/D6ODaK1x0RkSLdZ2648G1Q3vL0FihH+nE+XL7iNCi/vPMVKPd2m/7W09+KnovND22Fsh3Fcz9CPqZXB7NQTreZfdxxyN/SugrKL/5uM5T3HcD74yjdJ+THzHGabKNrFlmZMi2tjX/Xyiee46K/aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJQZPJWKN0x+NQ5E89HMV6uZRiWPXYRk/syTiXFBXy+Uf/Jv/xvK//qv/2bsIxZDM4tj4SFyDg8Hu9UraHDh0DDPCzC6UVBPugXNRcuWLYPy8pVL8QNk6jpyEE2NIiLhBBpNOdSIm7tawwMtV8nUXjEdnfkCmfIo4G5m282DF1wq1YrYU0GQbBjkModAiYgUC2hsDFP4TyaJxkg2RYfoPOfGzbCq7m40mHMA3wSFOFXIUN5BZnA2/HEg5dS7oMTZaRxaWSpiO3CIZVDbhQzTMQd0miFaM+FARV7oQcQMEuT5YWbIX1Dg31xQr4o0PLaUOhemgDjPMxcLsMO44EU8hH3Or1N/oXE+kUfzYyag3TkMj4MEqwUKVxSsZ4LGAZvFawHnzvNosQlacIDN4S59xxVNUfhhwRxb8RSau2Nkvq/Q3J3OtEI5FMbzU63iQgwiIuEQbrNthvlRRKRnQd/Uvk4iraqJVCt1CVmT5yOSwDazaD6LRMxFHaIxbIMkLTxSpuvdqzt3QnnXblxYoBgQrCgez8U4Z1VoDuOFJowQU5qfghaCqHNAKB07G4RHjGss7jPouLI5NG9zCGUyjePGpoEYtbBOL2150djH889ugbJbofnend7nvJjBw4fEmjruqmCbZtrxvicaxvEqItLXfgaU21r5vgaPlwMmvRD23xQviiMiAzsOQNkmg3kqg/Uq1vE4epehyX/cxvDHpWvRlC0i0n0mhf1G6BpawXrnaA2FGo2Z3z6AixeIiHQsxm1e9p8xoLT2BM5n44ezUF60rBPKI7vxPkBEZPnpOKcMjaJpPRmdvj/h4Nfjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8mhUypWGFjueRG1drcqaeVPE73qooXVs1F7aFAzVksK0kBzts1gICHWy8G+JJOlYLdRydsc6oByNYpPEYlh2HLPJLAuPY/deFOCxb6RAXoHiBGo/IyFzHzUKbmtJohdg4FUKLyQdddVDLXedtZ8i0hrHerb3oOZ0x97psCbfF5lrmXK5VGmkIPkUQMga8Lpr6sg5kC8VxzIbT+qkV47GsS8VAwK/stkslCvUzkdGUe+5aPFiKLM+mUPr/ABvQpj7JMn2WVPPQZnsXQkKY2SvST3IqzSDKumyqz6djwCPj00aetZuzzysekCg21xQnCiJPWWCaWtHzWsmiZrZQhHPtYiIZeEc1xZBjXyljO02SiGTNs2rndyHRWSCwvEs6rfsb0lRaJtFJh+f/HdOQKBjqYLnw4kcX2efaUOd9LLl/VAe2IGBV5OfaYVyexeOnT279kHZpzmgrQXbulgy58BUIgHleh3f4/vu1P/nxyMUjcUkGp+8LrKXJprE6yWH74mIUPczQv32DmAbbt2G52FsHD1CHpsexWx3thGxB4zDVRNJPAfJGF7rQjEzCJP7bFsnXtcTtA2bJskazdOOZX4Hy1r/KnlNihTOWnVo3NA8/eILLxj7GBocxD/QXDwzKNKbjzkwKSJT00nUx/ZIp/qgvPyMtxofz7QshDJfV1KJKpWxL+Qr9P4O9DSKiNQcnDN3vPwqlCPk7SqTf6dWwv65YCHOM7mC6e1yt+M22h305R6m+4KxYfSgtZA3s7sH+6+IGQz94//5CyhP7MF7xIwxl5GX0zPvMw8ewGtWnv178fbGv/3K8X2ZM9FfNBRFURRFURRFaTr6oKEoiqIoiqIoStPRBw1FURRFURRFUZrOSXk0yuVqw6PhWagd9Ek7bGRmiBja8Tqtz37Gaahr+8//5wehnCJNancPaqJFRGo11M+9un0AyitXLIfyi8+/ghsgn0iINK2Wb+oi22j96O/e9wMoDw4dhvIvH/g5lEcOofYumUJtnYipJ77wwnVQTq9FTZ9HbTt4GMvLl5oawNUruqBsW6i1/ebd014Sz/elUkFd4qnGFUvcqU7k0rrpddIKJxKoyRURiTioWa6V8VyWDT0iajk9EjhXfc6WEBncsQfKMepP3V3Y7ot6sQ9X6Lyx9tgNyGYQGosR8jrUangeI7QWOfsGomHzuBzOtKCyQwOlxN4Cylmw7IDvOKjeFV5f356eruoBHrC54H2XXyjRKe17gvwRcWqDcgU1yyIi+w+hjnbPPlzP36FxHifdd6ZO5zrA7JIl7Xg4ih6NEvm9QnQZ2LBmJZSTUTxXtYAMnprHGQ7kNSKPjiWUdxTCOnYvN9eqt2n8tndg+5/VeTqUYxHc5vLW9VAuVbAdRERicfQ5WHTRaolPziul8vzkaNjRuNjRyTra1P866XpoS0BWTRjPUzaPbfDyK6hnz02gJyNEWTd+QI6LT55FfotDXgchy088hucgEsM3pCn7Q0QkHMZ9RiJYTlC5p6sbyu2LsL9Fk+b1o+LS3EzjfSyHXrcYeU1qJfIObKN7j4D32DQ3uzPa0rPm3qORCvdKZKqtHQfngTx5F+IJ8zyFwtgmHs8DETz3IfIZTOTR2xAjX5KISC6HfdalObJ6BMdFRfD9i09bBOUlqzD3zEub9z0hBz0WxRLWq1BG71Mog9soTmDbLV1m+pCGR3Hslij3LNKC892ildh3wg6Oo/we06M2sOcQlM84A8dF/7Lpc1opHd+nORP9RUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJRHY9JkMSkS9F0UXrrG+v6mjtfUG5LPg9b5/d53fwzlTBd6CDa87QJjHwcPoub55z/5GZTf//53Q/l/fe+HUOZ8EBGscyUgO2H1SvSWcA5Bawt6ON5z5RVYx//4LZQXdLQLs2P7DijbpJVdvgg/kxvPQvmsVagXZ1+JiFnvukttMfP8BXlwTjHlmtvIz+BsiFQK9aAhMde5r5VJm0mZBS5p2w0bAXkIqrwovYiM51Fr2dqDWuCuDvRoVMjLwNkcHo2jOudRiEilSt6SBGq3HRuHuUfjLEQ+EEtM7W+liPvgHAufxnKF8gdiNrZd2DHX+I8Y6/5jvbwZvgyPDV9zhFcuiTeVB5SntfcTtKZ7zDLHyJFh9GvlSpQtRHlEYdI9j5RQU18uomZZRMTJ0Fgg/1IohG2Xz+E+9u7CHKCqj1rgoPyYCPWhGGnmfZpHOzp7cB+VLJSzWfStiYjYLrbNWztaoVxPYa7Jq5QJEaHjGBmm7CERcanfOg7Wu6tjch+cjzNXRGJxicSndOthygMgL1YqZo4RzunZv38IyoODWGa/hEPnOShHg/MmOLfFrBVlWtSPn1/U1Wt6MzkXI0Uei852nHcL5FNqp+tp7yLMexARKdM8W2ftP9WbM0oGh7A/Dh+gzAwREc5ncY7tiQnKOzrVJMJ1iUYm67Afh5MM7cW57awzTS9DrgP7aHs3eUspg6VQxHGWJ89QvUKVEJGIjeMiFMJyqhPLg8W9UPajvVCOhnHM7CQfg4iIkF8lO4L3oXZ4jOqAc/TuPfj+/hWmv6WlC/0qRbomeza2XcnFsRqO4PxZC8gaW9HTD+UlSzDvaE9pW+Pf1fKJe4T0Fw1FURRFURRFUZqOPmgoiqIoiqIoitJ09EFDURRFURRFUZSmc1IeDdu2GjkaLullWYcZhGWTpovEmjUXq1MjDeLQ9l1Q3rMHtXUiIqOHUXu5uAv16iFaWzyeRi1njNYmj4RYe27q0kKkLa9UeB1x3IZDOQZ10n6Wi6iZFhHxqX3LtI77hIfaxVwe9ZH5PGoZ6655HPU6rw1PaznD+Zh7fWipVBZvqt42aY3jtP79yGHUPIqIVGndZ7+GbRpL4HnhLIgcrXHuh1E7LGKuK5/OoBemUMC11kkCLtUq9k+PNLrGGvRijsUi9R/2r7A3JUK5GeWy2f9cD9vOJgOLx94Ri3N1sK2jUfZCmTh0jusz9POBOT1zwCNbdjQyQzpaUb+6PoZzSSTAo5Evo6fCp1yMhIPHHG7Ffn3Iw3FdD5jCk9RHXDo3DmmOq5RXso08GqE0ZbkE5DPUyLMQi6GeOBKlfAqyoXEuy+GCmVMRJQ18rkLjM4J1GLewz5UOoiY+MAuDTlmB5k13ai36aoBPZS5wwmEJhc019kVM31q1GpB3UsM2Gh0dhTJ7OGYbp0HXfYf6cI36V53qyfMX1+G05Zh99dYNFxr7HBtDDXydM3homwP790M5MYJ9Y8lS1OlPbhTrbVNniZF/JV/BOoyQbn9iwvRX+eR5MdoX9jH3c2A17DSyxiIZvNdKt+AYLtA5EREJRbA/ZVJYHh3DvlChNq+zR23MzMKJ0vhIt+FctHQNntvRZ9A7s+8V7AudGcySGNtrjv0jE+htKpTQr+LWsJ4JB+fxQgXnooPj5hy7+HT0DeVz+Jn9L2Nm3MgAvj4ew332LW819hFN4PnYvhu9cl58ev6oVWa/5z+K/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE4uR8OyJv+T2ddwDofMTbsufoa9C+kO0pJPoJ49RGsmt2dwDWYRkfYu1Pi1LFkK5Uw36vNWrVkD5Z3PPgPlZBq1xROksRcR6WxdCeW8jdq4Lc+il+SBXzwM5UQKtd0TJXP9aZe0m6NHUP/YuwD9BbUIPkOSvFl819QZOnQ+2OfgzvjMfKzhHYnGJBKZ1F/WaM34sbEslLNHxo3PJ0g3nkiix4LzBXhNb580sY4TsE496d87u3Bt/wSfF/LFREhfWvVIF+wE6bMtKvG5Zz8VfprPZShkfv9QKPMa8bjNag2Po1rFsRoJYb09z/QIlUr4t3gcx0UoNO09CLmmV2Uu6Opol/DUOY7FuP+Qvt0xNaztLdgH0xkct1HqU2zzSLmosc/lzHHMQ7PuskcDz2+EdPgZymFZ0NcKZc8z167nvIlUCr1JiTj6WewIzqsujYP2ML4uIhKiPiZ1ynIizXsqisfpx7GtnYB+3p7GelYoeycenTznler89L9yqdTIjAgluP7YHy3LnJ84c6dcJu8eaeJ5buDzzF6tyc9gv69UArwwM2AfSCKBY6S9DfNperrNHI2ubswreurpp6BcGsfjtMiXFqHblbBtjt1I/Phzc5lymNgPc/gw6vaLxaDrPOUT0dxtzcijORFfbLPZtf+QhKOTjbXzKfQlLFmEY2dkFO+lRES80lugvOM/nodyoQXzdXp78FwXsnhdDwf4lUJ0rQnjZUQmDmO7O+M4VxXH0bc0fgT9r7Vxs93Hx/DcZinHLH8I7xtbMjhv978d72VzR8z7zOwQeufaenFctC/E+2ef5zcfPW0LVplZHfU67ndkBx5XzJ++NtSrmqOhKIqiKIqiKMo8og8aiqIoiqIoiqI0HX3QUBRFURRFURSl6eiDhqIoiqIoiqIoTeekzOAhJ9QwmLFpzHPRIOMFhFVxiE4yhaavt214K5Q/eOU7oFwqoKHLsczqp5JoIkx3ovm7hQzk1/znLJQL40doH2Q2CjC/JWJoZvu///xTUO7twX3u3b0Dym3daIDyA57/JrJodOzsQuNVIoHH7ZNhs7sL6xCNmWFzlrAZF7cZi0wH2XieLyLHN/k1G1dscRttg22Uo4UDoiEzaCoWIfMumSUjETQI1siIF6VAtopnmi3HxtGkP0qhRZHOVijnxvG8xpJoxK2RCZsN7SIicTJP1usUVFZiozZuM0vGs2TK7Bs1+kzVWF0A28IINEuQyTnAqDozkE9EpJDHkKNicbpPlyvzE5iWjIUaZnCLFgdwqf5uwIIJMTJ7Z2gOHD2C5juf2jXMCY++OQbZUMqBaNz2IVqggM/dkWHso5n2VmOfySQaC90qbvNIHo2IhSIaLs22CwiCo7IVwX3GF+A+OzNYz0IN58R83gz7yiTxfIRaKEBxKgyxTAGFc4Xnecc0AfN5NltMpEQG5GEKkeM24b4SiaChPsiMy6FzZTKD82fY/M2G8xIFkA4fOmTss7sPr/P9FPJnk9vbout4Wyv2pXDYbLu6sWgGBWPSwgHclmz+DlpQhWdFDtaduYDOfJjBpVQW35s87nCU+lsI65P3MBRRRGTfKy9BedfT+J7VV1yJm3RwLioXMFyvUjLH8GJaAGjnod1QLlEI59gw3vMdOpLF1x99BMoc9Csisv/IASjz7W89h23VdiYZt8t4v1IawTqJiBTzWK/dT6A5vO8MXHhm5SXYDoeHcKy/8jhea0REanSPHevEPt63+Izp91bqIoL3ssdCf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0UgkI42AHt9DTVmNgn9q9QD9YJj0yRSGd/oq1FWuPRvDXVjzXKfQNhER4TAyCgl0XdSLdmQoHCiNOnyfNJJOyNRu5ooYIhOLY9u0tZDuvoK6Qr+UhXImY+rwk4vb8TM+HrtLHpkwBcflKGgwlsCQGhGR0RHUGToUfGPP1JebEvtTzvj4hESmtLaxMLZxNIJlK6D/8Znz/OMH2bHvxaL2KBdNfTzrkQ8dHobygg5sd0MDTYF8IQp0K3FomYiEyEti+iWwrxgejnKVymYgW5hCteJxCvuxsd7JBNbTIU10UIiXZeEZKpCmuTTDo1FhD8gcsWrpQolGJ89JyMb6tpA/zKugtlxE5Ixli6GcakGvlfgLsUxi34cffQHKwyMYJiUiIg6FPLKvjPqcR5r6KgWNhas4l4Q8cw6s5fEzZdoGjwsO3OT+UHPNuT3sYD2qr+yB8tIqhnstOr0PN0BeACvAY5WM4PlgP0GqdfLcs+9projH4415yaPzWiMPJI9rEdOTcWA/auT5PLCPgF8P8mjYNC54juNtBgXXzWR4GOfQHTtMXbgTpeBLmrvjGbwGt7S14gboWlALyKOtUPtWqY+WyLfD/gqPfEdBYYemd41CKWds058Hj4bt1MSZCiJdsfo0eK2Wx74VC5mBcEMH0HuwN4vnNrQd/RSLll4A5WSqC8pWQGZcNIT9yfNwHnbpOu5EyZspOKcWJ7DOfshsd8uj6zaNC8/GOg08h/6I+G70wdXEvHa0dGEfDyWxvw3vx3q278F72dwhvO+cGDb3USWvXF8fXo/+5J0XNf5dKlTkp9/E8Oljob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8miI64pM6SsdGz/qR1jPb2psnTBqzKol1IL//IH/gHKYcguiFmrjklFTH8rLzBt6Uap3lfTtDq1zHyWtXTjAo1Grodbt05/+Myin6DhaWlEHnEqjfjQRNzMgnn1+K5Tvvvc7UPYF11TuWdAN5SLp7odHUBspIhIlzajroibVOsa/54pipSL1qYyALK11vXwRrhnd0UHadxEZH8fPOCHyDVSxjSzKaYlw5wrIikm3oC7VsnAfYRonrKvOT6BWM0Ea/lrVHFf5POo9w+RfGRvLQvnQQTz35RJrNU0NaiKFfbSjC7WyoQiPRWyrCumXeVyKmOvpz/RkiOC69fX5WENeRPYNDkpk6lg9yhJa3LsIyima70REXn6F1oG3BqDsh3E+CpGv7dAE5rJYttkHeX3/eCxO72CPBq3VT/kglSrq8g8fwQwMETNfwaXzY+yDzr9tY53qAf4C/lZsgsbCK7sHoVy2cBvVehbKI8PmOvLt6TYoR8jrlpzS/hs5MXOEbTuNsVMjD4DvYwsFeRgPH8ZjzuVQj85ZHFxmf0VQFoRDXhqHzjXnZHDeBO8zm81Cee/uPeY+yaOxYAlqy33KSEr65JWj3sU5YSIiVfJ7luneoVyntiPvE7dDsL8F6xGiC2115j4C2v5Uk4gkJDzlk2xJo98ssQRzHGoj5vy364XHocyJTdUJ7J8HxrDN2jrPhXKqxRzD+RpeR3oph2XsCHlJIvj+VauXQXm8jHPuQfI5iYh4o3ju63TerDiOidIEzk0VytloWWzemrtFPN+dvZT5k8GdjlOGV89K7PML1/B1QaSzHb3AF56G2Xb1+nRb1t0T96npLxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihN56Q8Gq0tUXGcyWcT1k8n4qilayWtq4hI3UNdq1tBHeSuV9CH8NLOs6D8ny7bCOW2pJk34ZO+2CLNYz6PeRLlEmrlQiSKZA19sYB6UhGRCmncF/Xj+u29C3qgXKf1ty1BfV6lHJQxgOV0Co+9jzTz9Squ25xMUB5DCdtBRBoZFUcpV1BnHZqhvfUC/AmnGs+tizt1OuOk57cdPM+cqyEiEo9R9gutrx0J0TrV1B68Djq3l4hIdzd6Y3jt9ew4ejDKdK6P5HEt7DD5SkquqV3nTAn2aFRIyz4+jrkvhw/jPltbWwP2gfUez2L/scgXEEuh+jZC4yqZNNdYZz8LS5Bn6qbdAA31XGDFXLEik8dSy+McWHGxHI+YPpKqTzkFIeqnYdyGRzpui3JWwlFzHCZpXoyQV4TbtVrhPoX1Zs18Lm/OgYZHgzMEvONnCMTjpBcO8OBMTGRpGzj+CmXsYx15rFPnQiwXHXP85gs4NqIhmhO9yXFQ8+an//n+9PnjrIcY+14CvFblPF4XOBeD85g470To+hroMyBvn2dTX6C5mv07pQqOgewEnpNa1ZwDOd8qRnN9azvej3guBzBQXgVnE4nZVnxN9qvkQ6J5t5XmvGQCvZsiImPU33gczLx3CIiBOeUMDxQlFJ5s6+jpWXjNFvTxbd++y/h8he633nvpe6Gc89GTuGvry1BevqIfyi0ZLIuI9KxF70h6yRoo73kMvcCFg1l8/wI8B7UJyuEYMv2FoQjdf7TguHCLeB59GrxeHcv5QdMDFuqlrA4a3skF2Of7zsT+1tGBY8ApmcfRv6AfynEHt/HI9kcb/66WT3wO1F80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRms5JeTQS6UjDo9HaSisg03ruLW1mjkExj2t2HxlD7aUvqN/LHsb1/vu6cJu8xvnURgCH1mcPkyxtB+nTJ0qoYS2SpjBi5AWIVKsoluugcoXW166Tti4Wwm2WA9Zor9bxbzHKEPF82kcd9aRR0qx2tJvnp1RALWKF9Ln1Gfpdz5t7j0YsEWmcc5uekUfHcG3/toTpAYiQntijdaAtylCJJ1FDWyZtsOOaGuiWNO53/x7MTRgdQ69DmLTqPI6EfE2eoacX8UgL7PP3B9ThUuRvGQvTWvq+Kf6NWdh2Ph17NodjOVFn3xH2LUvMcbR4Eer0w+QtyOWm265en58cg0wiKtGpsZdwcTLJhHFOtC3zexyL5qwweVfilKFTpXZ2aYH2VBLXRhcx9ensyagUsd+XaM7zfc7AOH5ZxNTqsweD8xZm83BwDoeISJHWww/RZO6Tb2xoELexctmZUO5dYnr8SnnsV5yrdPQCwrkwc4UvlvhTfoJwDPsbxTxImbKTREQmyCPGHowQeQQ486JKc2A+Z/p14uR9SZD/xqN9coZKG3nE2BthB1x76uQZnRjB60F5Efom65zrQ2M16BvYOF2ni0UcN0LXbZt8HnHyAPL1SMT0lDpkBAlZ0+fDY5PIHNDSnpBwdPL89i7B6+N45RCUR8b3G5/vo+yNLvLOODXc5u4BzKyo9C3AciTALxHFbbh17H/pAvbPZRHM4MpH6RyswM8XJkwP7SCd63ASz3W5jH0lnMLXKw72nYBLsORzOJ8NvYg5GUlq277lmGvSkUAfbyJnXjtGd+G9wEj6RSgfnHG/XK+YPqZjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T8miUXU+OKuImSMvKGtsjOVND3dbaAeX169dCee3ZmJvR24cas3wWNYBhXntdRCyS9pLEVEpl0tkL6n5LE6jtfPDXj0D5kc3bjH1296Nu8K//8kYoh0jnyzpMnzSqkZiZAZFK4RrVdVqrvFBg7T8eeI00hJGI2XY1F/W2lSrqXmdKQudBHirRWKSRXTGeRS1h1EbN4xitvS4iYvmoDW7vQj9FoYjHbxnr7GPfCYoSsWWWHBbKXGnPoJ7UojXmWW8fZI1xyYPBuQh1+hBnjHRSBkupZGpQS6T3NvTFtA/WVfM2hwYPGvvo7MDxzmvjz8xOsULz49FYlOyUWHSyr5VsPKZYmPxgATkrpy9FrXg8ieO6vR37w449g1AeDGG7BeUYsP+BPRgFysHgPsoCYd4e552ImB4M1vpzTkGdclAmJmj+CjgupkaaeIv8TQdpffz9AzhnnL7YzHrKhPF8sE/o6FGUbXOMzAW+7zfaulrBuYSzjUIBc7RL49TwxtC5Zk8G+xL4dRGRMmWqVCknwy5ixbpp/ll31tlQLlD/3bff1P6XaV7lPs25O9z/OGuGvSkiItEozps56rN12medvCg+tXWMPDYiZr25HjPHRZBX6lTTs2y5RGKTbVWZwPO4cwfmZkQDOmBHG57rFStXQnnbHmyzShF9uvkJ9CWEHHMuqtFcVKH+kiNfrlfAa1thF16HIivPh/K6i/E+VkTEcx6F8sEdQ1jPFN8XYL0zGbwf61uB85CIyMCz2N8mdmKfr1NWx5Ht2JaHS+gXXbgSj1NEZNuBASgPDWB729b0OHFrJ97/9BcNRVEURVEURVGajj5oKIqiKIqiKIrSdPRBQ1EURVEURVGUpnNSHo3sUL6xPvpZZ6LW7py1i6B8aBC9DiIiJUFN2P/vy1+GcoJkuc+++BKUv/w3/wvKh7OmDr9S5WwEfJa69NJLoPyR//QeKJ+/AY/r/Leij2Tn9XcY+7R5/XzS9pMFQ1zOAPCxjlHSuIqI7B04AOViGfV3cdL4sR+BtbSloqmvi9Ia/hlBD4PlTOsO58OjYTu22FOaVbYquLT2fzY/IYxFvpZInNbLJk9Aucw+A/asmDpe1uFapJueyGG9FnS34/tL2Hd80sMn02Y+COe05DifhraRbmmFclsU+28uZ2qgCxOo64+RXpl9RnWqUzjCuS/GLmR0DLWz6TTmHERnaJr5mOaKbTuPNPwpPI4X9uG5TKfMMbZvAH1mYqNvIEw+j2y+RK/T2vX5gDmQPDqFAp67eg23yTkbItivWQseIF8X1yU9us/jgHxpNILZb8Een6B6sEnKom1WK7jN321Bf93ggVZjHyEa0+kMaqUjUzkaVfa1zBGVSkWcKf9dKIHXiWQCx6QdEPXB44bblLM3+DywtyHoQlCnoVmqY0VSMbxWtWYw06mDyknK/TkyhrpxEZEcZXRls1msk5Hrg8fp2Mfv8yIiJfKBMJwdw34LLrPvUiTYGzITa0Z7z8c1eGDwgISmcjTKlF1yZA+2cWvI9DK0tmN2Q80n/xj5XopHMEcjdwS3GYmYflaXPD35XTtwGwWcM3OH0U9RG9wL5WrpDCgn159n7PMtq/He9je7/w3KBQ+PY8n5rbgBGlaje7A/i4jkDuBx2XT7PvAyXj8P7aW2pPyPlRf0GvsoC+7j4I4slM8/5/TpKluuiOB96bHQXzQURVEURVEURWk6+qChKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7KDP72t69oBKaduaobXiuX0ejUceZi4/OdfRjEUyqgqWtgHE2LTz79LJR/8eCDUD5yxDScWx46pGwyV7W0orFsw1uxTulRNO0s7UPzUSplGrUTaTS6OmQGT2ewrapVNNxEwvj+/YMY0iUi8ssHMDjw0MhhKJ+1AOsVCeMzZJ2Mq/kc1kFEpO5jW7kuh8xMG+S8IDfvKaZerTeejNlIVyLTbCnATBo2jNlouOLgKNflIDwOUzLbIBFDs25HB4aC5cazuA9y4tohPI8cPpQIm0OWAyBrbMwlA2i1huZMj8y/VoDLsEThjVzuorZzKHCtUCpAORIQtFQnA6ZxDmfss1KdHzNuseJKzZuse9ihMDcb5xYr4Hucau3454ozIoslCl06jHPeeB7bVUSEfNhGkJjNAaJ0unnhCH7dMt3j4tNYcWb5DssXfL9H2+SA0cnPIA4tQMB79MgAzHOES4siiIi0JPGcumQArtcnX3cpjG2usCyrMT5jtHiFzSdezHHshGhRBhpzbFhmg3OEFirhgL/Jz+B+E0kcFz2dGHDLC2hspUVg2Fxerplzu01m7gKNi5HDeF1PdrRCOZ1Gk3LQYgR5CrpkZrsmstG7paXFeA+HAnJA4sy5OWAYnnIK+SEJVSePo3QY26jVwuNpTZjHt2LZKii3ZNBEfWAA7/k8mgc8Wljg8EHTjOzRdb1AZvDiAQyu83jBgzIFFw/i5902XPRDRGTxmedCef15eB5feurfoZz0cP4Yr6BxOz8R0McjFObbSvdrBewQ4zm8RvME+urjtDCJiFhRbO+F/a1Q3rBxTePflXJNfvNTM8A6CP1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEcjEg81PBp7B7PwGgfgRKJmkEqoBXVnu3e9AuXtu1ELF+KAtRBVt27uwyMhWpg+09HWCuUXXtoM5QXtqBlc1vdOKHf34OsiIv/lP30Iyt/5X/8C5X+JPgDlZAZ1/JwNtHMPBsaIiGx/CbVwvQvw2LPj2LZVCptrbUVPQyxphgXVSWfNYTjhyHRbzodHI+RbEvanNKqkNXZDFFBYIH2iiCRTHL6FQXV0+BIiH0E8zm1mtkGYdNPs0SiXKaCIQgDZTxGN4TmocWCWBPT5KOqox8ZRs+qT7jrBWtqgIKgQ+zxwbPr0GdbPc70dzzyOSBzPR5IC+7LZaU9XLUAbPhe0pqKNwD6Lpk+b6hRx8HhERFoyeEw+BcQ5ZIhopbni8Ch6NEoUADlZETz/odDxv08ywvRmC9sL8mj4LpXJg0GTHHVB8H+JmJ4/ETP0MUT1sl3yO1E96+z78Mw+tHwR6q+TKTyHR09PuRqQhjcH2JbV8EA45HPhviPkkxIRSaQy9BZ8D3sT2K/F7w/qC2HykS3q6YNyMo6BfYeH0T/BbRtN4PvtAH9XPIzzJAf3DpHvMdGGc14kzGPGvDVif8r4OAa/cZhhnI4zk8G2Z19b0D44JHDmOAoKFTzV5Icq4kz5PztDdC9k41jpXmgG9qUpcDZB4Y3xOB5/awffK+Ex5wPCGw/RfeQE3WdmyjhnRikjsaMHz4tH53H3/p3GPoXud0M0B1s+HsfeF7ZDuUQhqoURc35pXYLXjkIE7x3Kw9j/wlUK0a1i29UDfGZ+FcfzYvJTLeqfbptS8cTnQP1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEcjf2RcwuFJQVtrivT7gnpXu2RqN8fHcW3rlWedB+WlK9ZAOTtO+kTSh/7qf2OuhohIpYL1YL3d//HOy6C8+gzM+0iSTrxImrW1azF3Q0RkQRdqEf/jF7+C8sFRPI4EaTXbOlEvGoqY2u5KEfWgYcH3VMtYtskrkKf1uN26eX5iMdQAsg1j5vr5QWvpn2rCMzwa5TLqAyMUQJBIm2t4J2Okw6V1zaukT3bp9WgU2zhorXXW6UbJL5HJoEa1RN6mOun82aPhBXg0OCsmRDrfupHVgG0Vi+FxxUiTKiLS2oF9/AhpYyukq/ap83BOQhCFAs4PqTT3Ry/w33PJyv4+iU3pcTlzgGXd4ZB5rtasXgjlZAL7g0WZJnYEz4VF/Xzk8G+NfYQT6CVinX2phHNBvYr19KgPeux9sMy2D9E+LNLRn7YEdfrVGvb7F3fsh/KSbtMLVyzR+PSx3ksX9kJ5994hKOcp+6VYxXlZRKSrG68XCxegx+poeEGxbI79uaBWq0ltKkPGjeB54FyXmhvwPSKbY4yXKeeF+nhHJ56X01euNLZRJ9/ZBHkZxkaPQLlC+4iTp8ghb06QhYznwNwE6vDL5HvM0DW7lTJV0inTw8hzGOdqRMnTyNke7PtoacH7ABHTw1AsYh8tV6bbdh5iNKSvbUnDq2n7eDz5Cl1nkuZ1JM3zHc2Z3QvRI7W/jGebc1v4Gi5i+nOKNF051N+Wnb4Myu/+zx+A8pEs9t/vfPffjH0e2vkilGPt6G2Id+A1NtyGno1Snvq4ZXpPWrqwPZeegXPVxATO65VxHIfjB7A8ut30WEQi2N5nrlmOb5iZrXYSNkn9RUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXpnJRHo6MjKdEpfV46RmuYh7F88BDqxUREfvrA76D869++CmXHQY2jS2LMkF+j100dpZPCD43lUDf4//w/90A5Ecd9OjY1iU165ZCpjFzd3w/lvsWo6y15qIULk1cgSmtJ1+qm+C1E6zRX8qjdHM/SGv5JaktaQ75WNfXjpTKuZx6P8drk08cxHzkajjf5n4gIn4YqrQnN3gYREbeOYs3hcdRBdpAPwbKwzer0+WLR7OOdregNqZBudWICMy3sEG6Dj4PXYo8HrCFfoHqwT8Qi3bVLa5FXa7Rufdz0CJUpJyFJWmLOWmBtdzKBfotSxcw5yRdQ89xn90C5PmNc8LmYK1KRhMSnxqJFEmSyT4hbNz0A0TBqc2Mu9lPfQa3uK7uHobxrP5bZ7yVi6tXzeewf7PPpIY9YNIRzaJXWX49FzLHV1Y5z8ZIleO6W0hz5g3//BZT7SZv9X95/hbGPn//ycSjvOIC6+7XnroIyezBye/ZBeTyHniAREcN25eNJDk/p7sO2mVExFzi2L449Ofn5pFfndfE9z5wr+NyFQhF6B7YZezYyaTzPK1auMPZxZPAglA/sw3avUX6JRf01QXMe5x/VKqa2PEZZG7lRPLdHBtGv0zt0CMqL+xZBORIKyCBJJo5b5nm2Tn5Rj+4DEokAL1wb3jsMHsTx7sw4X1ZADsypJhOLNTwah7N4v9CxGP1n3Yv6jc9zThQ7TWIJnHuiEewbnNtSq+A1Q8T0ueQyOL/ZcTy3+/djf/35D38M5cPk9ylms8Y+y2nyzg0/B+W+ldgfF5yB14FEC7bd2D5zjj18EPvPivOXQvnIGGbFuFXK4KriOHrpV3j+RERa/VYoxxK4jVdfnG6rSkDW0bHQXzQURVEURVEURWk6+qChKIqiKIqiKErT0QcNRVEURVEURVGazkl5NKo1T2RqDfWQg1o6j/SIB4ZNffLz2w5D2bZ34xt4LXbyS/DS+QuXoKZeRKQtgzq0F15EHa8Two2cfTZqTMNhrEMmjVq6I8OosRcROXAAdZTxFGov159/FpT37clCecfWbVD2bXNt6Aj5OnpS9J4o1jObQz2fQ7kaboDHItGCOukIr18emtbnWZ4vrOc91fi+J/5UJ7B5FXHSq1Zq5jr3Fj1XF8uoae6Noua2Wsbji1G+SSJq6ignJnDN7USKzgt5NMzzgHU8HMtCuSVm+icKE+h3qLnYx2tVbJtciXTYUTzP0Zg5LYQr5CtycB+JOL7u1rH/1dg34pur4be34nhuo3JuYlqPG3JOXB/aTFLxlCSmzoFl4zHYNrU7+71EJMIeDcpmGc6iHviRzaj1rVF/sQJW08/lMafgLFonPhXFeq1/K85P7S04DgrkcwtF8BhEzIyabBY1yT/5xSNYR9LZf+hP/wTK/UtwHXoRkaXk+3h59w4oR2hR/jNOwzXgdw+ghrlWM/ugTzkmyRheT+pTfibbMufouSDsWBKZ8tDw9dCt4R88z/ThJch/1ZIhP2ER55JwmPsw9rdKgNeqSH+LkT8rRtd53kc7ZVpwLpDnmv4sn7YZT2AfrU7gHDi4E+8L+nowg4V9IiIiFs3lbW14vSxSPk0pn4WyTcEDLa2mv6qjC7MR/Jd3Yh2cGVlW8/A9cWdrXyMbKlbFMV4WvOYeHBowPr/j2eehbJNng6LSpJRHH4Hr4jVhPDtq7MOjsVmv4XnJkVemUsLzsuc/MJuonsHz7KdajX0maVyk29AnEu0mL0kE3394AO8h21qxH4iIhFrw3mHrFrxvzLTg/ciys3EOffHBPfj+toDrPNlOn3sG79FXrpu+llTdE/fp6i8aiqIoiqIoiqI0HX3QUBRFURRFURSl6eiDhqIoiqIoiqIoTeekPBo11xdrSh/p+aiDi5PWuK/T1Dh2xXF3EyXSWrKmlHT3vo+vZ0Ko2RURSYdQpxaukR69jvXe9tTL+Dp5GcK0jvOCTtRyioiIg1q1cdLM738R1xEfOoBeFaH1z8NJMx8kEkN96NZXUa9XKOEz4+rlrVAuFrAd3LqpryuSv4CzCiql6XryetZzQSqTlNiUbyQ7Tl4ZemQuVU3tsOOg1tehtdJrtC69Q9rhOOmbbVPiLeM51NgnU6jV7F2I67VvIc1qPI7nuVxCPWm9aB5XhPr8+ATmgwwdRJ1re18nlH3yW3hVUwPtOFgvHu/cFk4U2zqXR41qhMW4IhKnPJmZngwREWdGdoE9T1+ReJYn3pRPzffooGn+sgO8VuzrqNTRa1KpoEi2UsQx+Y6N74Dy8y9i/xERGdiP2/zApfiZMAV+8NL2Xo09GfgGzzLHfimH9f7VfzwK5cEhXKv+mivfDeXlLd1QdnOmB6e3Hf0ELVHsL1YN65mg8R4J8eXOzCEIU05NtY6683JpcvyVyuY4nAscxxZnqo4W+RIcyqPwPXMcR8nv0EPehLEszh31Oh6nR8aQA4P7jX1MHME+GyKvX5S8bS0tmHPA2UHsv2hvR828iEiJfGcx8rJxHsgEZSNseXYLlL2A61vfYpy701Rvtkuxf8q2+XyZk1g/5c3s2nMAyvshkyTgAnSKaU+2SWwqoyo/in6J0f14X7PP2mp8Pk3emR1H0IOSpliXWmEXlHe9SnlhxpgWqZL/y3dxPhsfxbkoTT5cj/K0Ykm8hidbTW9wqhXnrxDakmT/NrrPHMpimebYQ7vNjK6l5+B+84ewD59xNnrSUpQnUipiuwy/bM5h/gT22dXvXw3lAwem82iCstiOhf6ioSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKZzUmZwx7LEmTJmxSigi/L7ZHm/aZj5L3+KJtQXX8GwlWdeQNN0IYdm0Br5A1/c8oqxD4sMUhySEwlhvWsuGmQsC41rmUVoOG8JMAL96McPQnl8Ais6dhiNauEQGtVqPhoOfcs08XmCfxs5gm3T047bXLkcjWr1KhqDimU8bhERz+PAJzQGbZkRuOh5voxljU2cUlLJpMSmTMbkUxeLzJmVAKNSgQzxra1oLmWzns2ZgLQ4gcuJWSJih/DZvUAhTukMnoc2Mrju2z8E5RZ6f8II0BJpzWDwU5uP9RzOYt9gI6QnHKZnfv9QLKD5PhpBw2ZXN46LQhGPO0wGUDbWi5hm/GKZgwinX6+7ppF3Ljh0aERiU8fCCyLEaU5kE6KIiO2jUTZKiwWUKCSSgzZffBVD6iaKZmgm94d6jdp1HIO2HA/nPO7nEmD+Zko1PFfDhzE0MBnBfst5o9lRvBbYTsCliUzBbRSK1ZqmBUhoIZCeBPXZTjMUK0qDvljGtpKpc+7589P/yuWy2FPtwGZwNlmXAwzrPMcvXrwYyocPY3DYwUMYcshG25ERXGhCRKRUwP2yAT1CRu0am3VpQY3uBRg8FgqTY1hEhoex3hHaJ5vBeeGJIyNoZN4/gPciIobXWxbTYg8JMhUnk1jmkNJckRaFEZHubjQVr1mzBj8zY+523bqgVfzU88rQ0xKeGsvbd+2B1xLdeC1L9Zmhmw6FZO4ZwPmsrxfvERf3YxuO7MXzcugAzqci5oIFLvV5i+6lxrI4V3GGrk1zQNDInxjH+atr6elQ7lyMwdCHc09BecEybCsrIJRyYAv2l3IJ58jBXbRA0Djeh1oU6Nm/Ds+XiEg8gWOz2oOLQ1jF6X1aFTWDK4qiKIqiKIoyj+iDhqIoiqIoiqIoTUcfNBRFURRFURRFaTon6dGQhkejShp/l/SKdkDgTVsad7ekD3WSE/V+KB86cAjKA7tQkZiMmIE1NRf1xj7p7usU+ueQFpj1yYcP4D4Pk4ZeRGTpaahzdUmLWaPQJ5LWBgRmmSrAco58HhbW+8wzUG9cJ519nXTWdtQMTBPaL4dXzQwxCgo0OtXk8nmpVSfrzaFNoQJ6AvIBwXbsOYnHUdNcr2OfjpDfolrF8+iwMUlM3X4uj7rJTLoVyt096AEaHUPNaXYc9cqhFtTfi4hk2vBv3X3YFzILUIv5yp49UE6RttgP0IfmC6jVLlWxvWsueoI4DDGRwBDKZJISjcQM9orTe4oz/Av+3GdViYhIW7pN4kc15sZcgv3FDfCRsEY+RlpyIc9GPIKa2SeNgEdzHJ9/1hlQTkewHUuk1eXw1XDYDFudSbVuanNjCRxLvV2oOR6keTTOoW3kRXICwg4nKqg57mpHX1A7bSNO8+qlF10I5dNOw4ArEZE0aZTDFCx5tFqR0vwE9tm23fAbcP/ivhUE+zo6O7EN+5ctg3J2HPXrhQLq1WM0h4qI2BQc6Prse8FrWSKB/bO9tRXKE+TVDBpXNTJw8ntc6rMOzTVCdexsN72YbhX38cq2bVDu6MZ5t4P8dzbND9Go6VOLRrHevb0YqNjZOe1hqLNpdQ7YemCHOOHJ40j04DzRuQyvZXXLvL10c3gNfeGpF6BsnXEulFcsWwrlRQuxPwpdk0VEslm6FyBPmk3+qgh5YqMpPK4IzW37dr5o7HMim8VqUejt+e8/H8oJ2Yv7bMVxGY+aoc0jr+I+ktR/omGsZ6YDX1+2Gv0/iaQ5z7evwjl0aB96T5zc9Ge88uzzzVH0Fw1FURRFURRFUZqOPmgoiqIoiqIoitJ09EFDURRFURRFUZSmc1IejWqtLkdXkw6FSO8eRV1mPUDHW63ic00oSmtdh1A7F4/h+9/3nlVQbs+YGrNf/3Y/lAcPoV7P5SwE9/g6R9ZQH9UnziRMfod6iXIxSC/q0/OdQ/rQSNjUoDqCx3H6OaghXdqPOn3XJb04yen8AD2vEyK/Cq1HDdrbE1hbv9n4ntfQIVtkbOE1y2sctCEiBdInu7R+e72GHo1oGnWS9Tr2laB9UIyLlMrYF9IZ0mKSD6GlrRXK7NfhcyQiEo1h/6vUKLujFdumowu1xIUCaqDTAdrNhZQns28/ejbGxlA7a9tYz3Qvaj87u8wMA8c5/hwyMyfA54aeI9rb2yURP9o+5GmizItq1ZxbeEx55JdIpVBX+47z1uM+KA9g1xD62EREuklfnophHwvRNizSUnPmAK9DHw+YO9jP9UfnrYPyHsoHSMZxbHG+kWWb57dQQm1/PIaa5BT5BVoo16SnG30jdoAPxPDs0cRZmxqPlcr85Gg4jt0YJ/E4jlM+bzabAUWkTuPGo3E60wMwuQ/sj6x/D7rOWxa2a5z6Xyt5F9rasMx+i2oV5+VSycyOGR9Hbxv7VYxMC5prapQPMkA+NhGRvkWLoOzSNfCZJzEboYP8Lz096LeoBnQhzj5JJXGcLF8+7SuqVivyqLmJU0q6LSOhyGTbLVrZB6+Vs9im2aw5NxWzeO62P7cLyl0x3ObK3pVQbm3D9giz10ZEdr2yB8qdHdinY3R9GxnBbI6VZ+N9Zu/ihVD+l382j6uQRR/I4C700hUOrsY6rUHvyf4Dr0K5njTvMwsT2EeLo9hXYnQ/HWnF89F/LvmOAn5mKNexT1eLeP+ScqbvM0MBHtVjob9oKIqiKIqiKIrSdPRBQ1EURVEURVGUpqMPGoqiKIqiKIqiNJ2T82i4buPRJOHQGtA2az9NDb9P686HSOLleajNbG0j3b2Hz0W/+d1BYx9Dw6g3r9V5rXHcqU/b5FrnSlinftJZiog4EdLG0tLOZF+RVbRW8YIO1AzGk+b62skEad5Juzl8CPMWovT+kIP6vZAdtAbyLM+dM7W31omvodwsnFBIQlMehezYGLyWasEch1CAl8HmTBXKzbBJcxiJ4DYc6h31gLyJBHkuCqT9HRkdwX2E8VyHwrhPlzTViZS5vnaxgrrpchXHgF9DHWuNdNUFygRIp82MiyXLUJ+cK2B/Gxo6DOXWFtTFFkl7zPOFiIhPmvLxHO5jZgZAzTW14XOBL774Mnne2ePDOSvhcEDGAHmLQjROHcptOHsNantZ533P//svxj5a05RJQZkmcfIhVCpY7wp5lThLIhQyddHcp/p7UWt92iLMGipxzg3Nwzbni4jIHsowipI+u7UVs3XK1K/rlMPhueY1yvPwODiP4ei8Ys3Td3TlcsXoQ0eJUjYJ51kEwZ5FzrTooZyfiYks1cfME3HCeO4SNNbL1L+GDuF1PE9ZHRblHzlWkLeGsjuOcd6O0k6+kJ5ePM5w1By7+RxmIqUCMo1msm3rViiXaZwtXYZeABGRtjbcb7GEx9Hf3z+9vbLpVTnVVAtlcae8tnu2DsBrqTTOTX6Aj3NiFNuwTt3n8Ah6/eJRyuqg60q9njX2wT6jRBLbtKMLX3fDWKflZ+JcVfexP3b0mX3j8D68jhepD+96+iUon7NoLZQHXnoSyotWmte3xUvxfvjxF7JQLpTRO9KzFu+JvAjnJZkewso+/Nv4ML6eaJ/ehlc/cZ+u/qKhKIqiKIqiKErT0QcNRVEURVEURVGajj5oKIqiKIqiKIrSdE7KoyG2M/mfiAjpqT0qs9ZcxPQy+EXUGLq0pvy+A1koP/M71IEnk6ZWOJNg/TFuk9catshr4JMe1PNJ119CPbyIiFtFTfTEBB7XW87BdZjPPQe1xKy5zeVNfV6Z8hhq5C/gXIHDw6gRDIXw89Go2XZ2CPcbiaBe15+R9+HPfYyG2LbdWCu+RFklMdKIc3uJiPicYUBrrbMWvUa5GRFat98K8CFFU9gXfFqnfudOXDe8tRVfj9G69eNlXB8+KEejxpr6KL4nm8c+Wyxxtgy1S8Dy2CyL7u5FnevB4VEo10kjffgIam+DYjB6+1DXXyL9d2WGByIoo2IuSGfikkxM6obL1Afr1Tq9N8BPU6S29zmnAY/LIQ+PY2MfdD1Tr55Ik3bcoX5K0wvr28N0bljv7gcNfpr/OaOCtxE2xhJ+/uXduLa9iMjuAcxuWbUUdfVchxrtU8J0nI45ljhfyKZ8kKP5PSfifzgVWL4n1lSfcWnO88kb4QTkhETI++JSRgXnofQswDYePYwes2IJrzMi0vAwTb8HPWOlMo6BXA5f57GdoTk1GjavXfyZKB0nZ4zwXJ8hv0VbB2UOiEid/Cz5Cs5PfH3guJmxIziXL15mXufjdKxi4z7batO6+1LJ9DGdas5ccJ5Epu4dcjH00GW6MRtp+0vbjc+H0zjm/AzOoeMVvE7EyC84fgD7Slt7q7GPIyN4LTo4iPeN3V3oJSmS16WSxb7y2BPPYZ1987y1LUAviTuIc+SBnZiTsXjXMij3L8OMn9o41llEZMFyfE/HauzD+QHcZ0sM6/TKZpw/2fcrIjL8Cp4PK4bvOWxPt1X9JLKE9BcNRVEURVEURVGajj5oKIqiKIqiKIrSdPRBQ1EURVEURVGUpnNSHo16pSrWlCbY9lE7zLEKjhXgAXDwby0JfM5J21koL+lADeIl554B5e4Os/qcbVAuowY1QRp4Xgu/TrrXGGnU8kVT97r/IGr8FrXieserV6F2MZYgbSXptNvCqK0TESmVUKvI/oCIT3khJJ+rkf/FdU2RvBNBjen4BK2vP6MtPW/uTRrxWLzhsanW8ACr5FNwPVPDXyU9ciyOx5tI4nkr0FrYLE3nnA0RkRR5KFrSuM0UaU5rdew7CeobtTKW6wHHNVHGtkjHKX+G8j9Yn+zUsM8H+UCMHAz6jqK1pRXKlQrus1DA46xVzQycNiMLBcdaYUYmTlCGyVzgeX4jf6FQwDZxLGy3ag01zCIi4SSu2V4skJfBx20cIH3xU8+/gu8Xsz8k49hn8kXUNVdK7MUi3T6Jy+vkGwnyJ1jkMyuSR4ozBJIp7KN1mocH9uMa/SIiLSmcuzPUX8byeJz5Io7fJI3vYgHfLyJSpXo71AePav9LVTM/Yi6wPV/so3OvcZ6wDb0AIxT7cRIxPPe+i+e6mzIJ3FWnQ3nv3r3GPiYq6EWou+QnJBOYR2PZsXF+ilKWQiggg4c9YRHyYkbpum+FsL9yfo0TMLe3tKJvI0M5EeEjOLfbFl5fIrQPi81QIhKJU54Mefwqxenj8uYhS+jWa26U9FSWUz2M540zo4bPNuf4PaM4rl98FX0cPvWFNI35lnbMPxkapqAHEXnlZcysOGMJ3jdGEjjGW/vQn2PL8c9BrWD2jZBgPWMR7BtVmi+2b94G5Qv/E+YlPf7oL419DGzHsbbiHPQ0vjSEHowdlDPn0f3PKyM4TkVEPB/7aLWK56Nn4XTbuDX1aCiKoiiKoiiKMo/og4aiKIqiKIqiKE1HHzQURVEURVEURWk6+qChKIqiKIqiKErTOSkzuG05Yk8ld/kuml2sEJbrZMIWESmQ0SdMhubzzsVAEpvD9Az/cUDqF70nESeDHJmY7RAaBB0KtyK/l7S2ms9mS5e04h88NgKhwc4ic5HrYR3DsYCgpTDul4+jUsfPJDPYNtUaB9qZJlION6xW8DPWjAAoixt6DrAsS6ypUK4wBUL6Rn1Mo1I8QSFhZGCtkbmJwxqPjKORN5OmcCURieTQgBpPoJGxtwcDsI5kx6BcKWCYVYrqbB6nSJX+dJjqUOBwQwrycWlg+bbZxycoVMul/pShkLihHIYmWWSU7u3CsS4ikoqhoa5CBn9vhuHT4zC2OSKXyzeC0ioVXiwB22giYA5Md2Ofmqig+S4UwvKOITRPbtu7E8rtSWwzERGrSiFYEzSP0vurZCrltmWTca1mmlDZZMxBhGzWLVNIFhuCF3Sg6VNEpLsTg0453PLIGI4lpk5mVSdgPQEOmuVMTm9qQQK/Pj/9z/O8RtCoR+fBt3BOLwb0vyQtTuFbeBwxCp3jeZavuJ5vNuLgCM4f4xNoOq3Qgis2BS26xvUT+7PnmPMTh0h6fLPAC3lQuGGC5ulwxAzDc6gtErSgQYgWF2lLoHncJhN7rMUcuxwKaHF5RhiiJXO/IMbPf/LvEotOHueCdhyPXQu6qGzO8f2nXQjlS8/6IyhX68e+5xAR6Uth+PGLL2wx9hE6C+fhNavQDJ5qwTl2Ze8iKI+MUthxHMdV11JchEJEJNqGn6k4tDjNIewbhw9gIOmRnf1Q7u1bYexjwkczeIqM8nxPuPMpNMpbNHpLFXNBi3AKj3ViFMdef/d0W9VPIjNXf9FQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOifl0ajWRY7K1lmhapGfwgmZzzCscTzq9zhKOMRaYdYgogbNcczq26S7LxdRC1wivWeU9J4hCitjbXmxihp6ERGbtP22g1q4aBS1dPEo1Zv2YQdo5IV8HaUyBQ1SWJVFZ4i9JuEQagZFzHr7PntkrBn/Nqt4qskXClKf0u2nKaxrPI/+CQ5eFBGJkgfAov7HOnI+xBy1seeZGlmXQnFa6C2hKIc4UYCkQ3p40lBzmNrkH8m/Q9rd2bIVOcgsny8Y76lWcBy1pbH9/Ti2peOgLjsUwuPs6kI97+RGyCtC5yM2o+14nM8Vbt0Xtz5ZT3eW+Wmc9K0iIuNjOI7D5L0qVLJQbrdQO37JWRiYFo+a47hE569GQWEeBzjSnMcBfewxYz+GiBn6Z5HuPkxjjee4Ygn1wu0Z9PyIiEQCjnUmFZrbuY/wcVkBwZQ0BYpH80hlahvsz5kranVXalP+EA6dM4LGHNNn4LK3kjyJHObp0hiMx7E/dnWa49ila0+IrtNHjmShXKpjW/qCbV6lsFAvbJ439mhwvUvsCaJ5NEZ9K2SbfdyhPh2h/uNZOMeFyQvA87ATDgi+NHxpWG97RsCrXZ/70Mhnnt/WCB6MRbC/pcjfkyE/kIhIWyuO60QCQw5T5PWzYiko2zF8fx+9LiKy8uK3QTlN+2xpxWtXkvw5h3IYtLpgMb6/wmnIIrJvGL10jz/8HJQHfLweHjmCfrLBV/ZjnXvwOEVEygXc786tI1B2Wql/xrD/1erYAVsiAcHQwzhHxj0KNY5Oj5u6feIeIf1FQ1EURVEURVGUpqMPGoqiKIqiKIqiNB190FAURVEURVEUpemclEdjy/MHGmtBd3ZhhkA6gXrQIJsBL8Lt0lrkvGayTzkGHmnjgrwMvCa3T8LIiQn0WLCWmLfphEhHyQurS4CXhLXmpIkOkbaWtZ5B+vMy6aQrVdxnNIJ6vDotcsza3ErVXAS5VqP1yylHY3R0WrvImti5YOYa8oUC6tBn0xJPgufaCR1fV846bN4mezpERKrUzqNj6B2JJnEbvs/r1ON5jGJR7ABdr0v+KJt8Rzb5PDyqI2uo6wEZAVHWMFPeg/jYVxZ04xrq0QhlZJQD1vC28Xy0tWGWgp2f1idXQiexiHcTKRSKjfHuk86b5w5uVxERoT4Wj1CmDq21Hw6hPrizrZX2aWYJzZYhUOfcjDoeB3tPWLfPfUFEpFQiLTmNNR47FRfPX2sXrskf5L/jw2LtvpGTQV4Sm+bIYkAfrJCPw8itmTrHpZNZRL6J+LbdyLlhu9ZEHq9t4ag5B9qGBxGPr1Y7/nGFKX8iGjH7QiaFmnj2KFJslJSLB6HsUtvyPJwK8O+w52JiYuK4r5eNvoP79KKmx69MPiKHfEl18saVqS35NiEU8D2vTx6NegGvH7Xx6WyEWkD/PdXYTkjsqbFZozbNlvC6MV40c20OHMJ8JZ5D4+TZqPvHv2bH2O8qIqkk9skOyuTpXYD5Jr1drVBu68Wsjrf3XAzlas08b+NL8H7kkmXvhPLIBPo79+4fhPLOvbvx9UOvGvtwXPSjVD3c58Jz8J68MIr9b2wvjqO6a147otT+dFsve3Ydavyb7yOOh/6ioSiKoiiKoihK09EHDUVRFEVRFEVRms4JSaeOymRmRpzzz+sstzgx6RRugxVDpnSKpQrmTzezSae43iyXMVQHFq93GCCd4t+wDVnR8X9isukn1wA1hNRnkTfM9jpLp8ylOc33cKT9TLnU0X/PhYTq6D5myr1C1DeqJMVw/aCl1+hnWPrp0JBOkbysViXJScA+Qg5+xuijJF1gyRfv063hPu2AffKSt4bEhOrtUNu59H1DtWbKBnyP2oakS/wZLlsWllmRKCISDuE+QiSFmdk2R/89VxK+o/spzZBx8M/+3H9KQUugWsfvczwn1niZZkPq+YdLpywaF7U692FePtmEj5WlU3xBYOkUSwLtINmZIZ3CfXIdWDpl0fmqBpwflq0eSzpVnvrsnPe/GXIZX2h5bjoxtcApkOTKFkmGZlkmlq8bpQD5TpnOS6WO47hKS4BzH+cy77MWMD/xXMyjokoypjKd+yJJ/yRoeX6fJKU0idVoZFRKdBx8KQiQ4LB0qsbL889o76PtPJfX4JlzA0casAzP4vYS816H51CHzpMhnaJD5TqIiITDx5+HeSntArVxmGTZvsXXR/O85Yv4mUIRZYzcv1i6x2OiHtDH+drg0QB3SU7v0ussdeJb28kP0XvoFHozDv3o9k6k/1n+Cbxr//79snjx4lk3prz52LdvnyxatOiU7kP7n3Is5qL/iWgfVILR/qfMN3oNVuaTE+l/J/Sg4XmeDA4OSjqdNr6BU96c+L4vuVxO+vr6ggMGm4j2P4WZy/4non1QQbT/KfONXoOV+eRk+t8JPWgoiqIoiqIoiqKcDGoGVxRFURRFURSl6eiDhqIoiqIoiqIoTUcfNBRFURRFURRFaTr6oKEoiqIoiqIoStPRB41TxJ49e8SyLNmyZct8V0V5HfH2t79dbrrppvmuhvIGRPuWoigKMtu82N/fL9/4xjdOert33HGHnHvuub93vd5IvOkeNPRiqyiKoihvLPTGTjkVPPnkk/Lxj398vqvxuuZN96AxG77vS53TeBXlDQInkCrK74v2JUVR3uh0dXVJIpE45us1SjNXTN5UDxrXXnutPPzww/LNb35TLMsSy7Lk3nvvFcuy5Gc/+5msX79eotGoPProo3LttdfKVVddBZ+/6aab5O1vf3uj7Hme/M3f/I2sWLFCotGoLFmyRP7qr/4qcN+u68pHP/pROeOMM2RgYOAUHqXyeqFQKMimTZsklUpJb2+vfO1rX4PXK5WKfPazn5WFCxdKMpmUCy64QB566CF4z6OPPiqXXHKJxONxWbx4sdxwww1SKBQar/f398uXv/xl2bRpk2QyGf1m5k2O53lyyy23SHt7u/T09Mgdd9zReG1gYEDe9773SSqVkkwmIx/60Ifk0KFDjdePfmN8zz33yLJlyyQWi4mIyL/8y7/I2WefLfF4XDo6OuRd73oX9MF77rlHVq9eLbFYTM444wz5+7//+zk7XuX1xfGuqbfeequsWrVKEomELF++XG6//fbGTd69994rd955pzz33HNwbVeUE6Fer8v1118vLS0t0tnZKbfffrscjZhj6ZRlWfIP//APcuWVV0oymWz0z6985SuyYMECSafTct1110m5XJ6PQ3lt4r+JyGaz/oYNG/w/+7M/84eGhvyhoSH/V7/6lS8i/tq1a/0HHnjA37Fjhz86Oup/5CMf8d/3vvfB52+88UZ/48aNjfItt9zit7W1+ffee6+/Y8cO/5FHHvHvvvtu3/d9f/fu3b6I+M8++6xfLpf997///f66dev84eHhOTxi5bXMJz/5SX/JkiX+r371K//555/33/Oe9/jpdNq/8cYbfd/3/Y997GP+2972Nv83v/mNv2PHDv+uu+7yo9Gov337dt/3fX/Hjh1+Mpn0v/71r/vbt2/3f/vb3/rr1q3zr7322sY+li5d6mcyGf+rX/2qv2PHDn/Hjh3zcajKa4CNGzf6mUzGv+OOO/zt27f7//RP/+RbluU/8MADvuu6/rnnnutffPHF/lNPPeU/8cQT/vr162G++9KXvuQnk0n/8ssv95955hn/ueee8wcHB/1QKOT/7d/+rb97927/+eef9//7f//vfi6X833f9++77z6/t7fX/+EPf+jv2rXL/+EPf+i3t7f799577zy1gvJa5njX1C9/+cv+b3/7W3/37t3+v/3bv/kLFizw/9t/+2++7/t+sVj0b775Zv+ss85qXNuLxeJ8HoryOmHjxo1+KpXyb7zxRv/ll1/277vvPj+RSPj/+I//6Pv+5DX061//euP9IuJ3d3f7//N//k9/586d/t69e/3vf//7fjQa9e+55x7/5Zdf9m+77TY/nU7755xzzvwc1GuMN9WDhu9PdqqjN3K+7/u//vWvfRHxf/zjH8P7ZnvQmJiY8KPRaGMSZI4+aDzyyCP+pZde6l988cV+Nptt5qEor2NyuZwfiUT8H/zgB42/jY6O+vF43L/xxhv9vXv3+o7j+AcOHIDPXXrppf7nP/953/d9/7rrrvM//vGPw+uPPPKIb9u2XyqVfN+fnCSvuuqqU3w0yuuBjRs3+hdffDH87fzzz/dvvfVW/4EHHvAdx/EHBgYar7300ku+iPi/+93vfN+ffNAIh8PwZcnTTz/ti4i/Z8+ewH2edtpp/ne/+13425e//GV/w4YNzTos5Q3CbNdU5q677vLXr1/fKH/pS1/SGzvlpNm4caO/evVq3/O8xt9uvfVWf/Xq1b7vBz9o3HTTTbCNDRs2+J/61KfgbxdccIH2xyneVNKp43Heeeed1Pu3bdsmlUpFLr300uO+78Mf/rAUCgV54IEHpKWl5Q+povIGYufOnVKtVuWCCy5o/K29vV1OP/10ERF54YUXxHVdWbVqlaRSqcZ/Dz/8sOzcuVNERJ577jm599574fXLLrtMPM+T3bt3N7Z7sn1beeOydu1aKPf29srw8LBs27ZNFi9eLIsXL268duaZZ0pra6ts27at8belS5dKV1dXo3zOOefIpZdeKmeffbZ88IMflLvvvlvGxsZEZFIauHPnTrnuuuugj/7X//pfG31YUY4y2zX1+9//vlx00UXS09MjqVRKvvCFL6gMWWkKF154oViW1Shv2LBBXn31VXFdN/D9fE3dtm0bXMuPbkOZJDTfFXitkEwmoWzbdkOjd5SZpp94PH5C273iiivkvvvuk8cff1ze+c53/uEVVd4U5PN5cRxHnn76aXEcB15LpVKN93ziE5+QG264wfj8kiVLGv/mvq28eQmHw1C2LEs8zzvhz3NfchxHfvnLX8pjjz0mDzzwgHzrW9+S2267TTZv3twwUN59993GRZj7tKIc75r6+OOPyzXXXCN33nmnXHbZZdLS0iL333+/4WtTlLlAr6knx5vuF41IJHLMp9SZdHV1ydDQEPxtZibGypUrJR6Py4MPPnjc7Xzyk5+Ur3zlK3LllVfKww8//HvVWXnjcdppp0k4HJbNmzc3/jY2Nibbt28XEZF169aJ67oyPDwsK1asgP96enpEROQtb3mLbN261Xh9xYoVEolE5uW4lNcnq1evln379sm+ffsaf9u6datks1k588wzj/tZy7LkoosukjvvvFOeffZZiUQi8qMf/UgWLFggfX19smvXLqN/Llu27FQfkvI643jX1Mcee0yWLl0qt912m5x33nmycuVK2bt3L7znRK/tisLMvA6LiDzxxBOycuXKE/5CZPXq1YHbUCZ50/2i0d/fL5s3b5Y9e/ZIKpU65rd573znO+Wuu+6Sf/7nf5YNGzbIfffdJy+++KKsW7dORERisZjceuutcsstt0gkEpGLLrpIRkZG5KWXXpLrrrsOtvUXf/EX4rquvOc975Gf/exncvHFF5/y41Re26RSKbnuuuvkc5/7nHR0dEh3d7fcdtttYtuTz/6rVq2Sa665RjZt2iRf+9rXZN26dTIyMiIPPvigrF27Vt797nfLrbfeKhdeeKFcf/318rGPfUySyaRs3bpVfvnLX8rf/d3fzfMRKq8n3vWud8nZZ58t11xzjXzjG9+Qer0un/rUp2Tjxo3Hld5t3rxZHnzwQfnjP/5j6e7uls2bN8vIyIisXr1aRETuvPNOueGGG6SlpUUuv/xyqVQq8tRTT8nY2Jh85jOfmavDU14HHO+aunLlShkYGJD7779fzj//fPnpT38qP/rRj+Dz/f39snv3btmyZYssWrRI0um0RKPReToa5fXEwMCAfOYzn5FPfOIT8swzz8i3vvWtk/q17MYbb5Rrr71WzjvvPLnooovkO9/5jrz00kuyfPnyU1jr1w9vul80PvvZz4rjOHLmmWdKV1fXMTWel112mdx+++1yyy23yPnnny+5XE42bdoE77n99tvl5ptvli9+8YuyevVqufrqq2V4eDhwezfddJPceeedcsUVV8hjjz3W9ONSXn/cddddcskll8h73/teede73iUXX3yxrF+/vvH6t7/9bdm0aZPcfPPNcvrpp8tVV10lTz75ZEMWtXbtWnn44Ydl+/btcskll8i6devki1/8ovT19c3XISmvUyzLkp/85CfS1tYmf/RHfyTvete7ZPny5fL973//uJ/LZDLym9/8Rq644gpZtWqVfOELX5Cvfe1r8id/8iciIvKxj31M7rnnHvn2t78tZ599tmzcuFHuvfde/UVDCeRY19Qrr7xSPv3pT8v1118v5557rjz22GNy++23w2c/8IEPyOWXXy7veMc7pKurS773ve/N01Eorzc2bdokpVJJ3vrWt8qf//mfy4033nhSS8FfffXVjfvF9evXy969e+WTn/zkKazx6wvLZyOCoiiKoiiKoijKH8ib7hcNRVEURVEURVFOPfqgoSiKoiiKoihK09EHDUVRFEVRFEVRmo4+aCiKoiiKoiiK0nT0QUNRFEVRFEVRlKajDxqKoiiKoiiKojQdfdBQFEVRFEVRFKXp6IOGoiiKoiiKoihNRx80FEVRFEVRFEVpOvqgoSiKoiiKoihK09EHDUVRFEVRFEVRms7/B3X8dIxDWWloAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["# Зададим параметры данных и модели\n","num_classes = 10\n","input_shape = (32, 32, 3)\n","\n","# Приведение входных данных к диапазону [0, 1]\n","X_train = X_train / 255\n","X_test = X_test / 255\n","\n","print('Shape of transformed X train:', X_train.shape)\n","print('Shape of transformed X test:', X_test.shape)\n","\n","# переведем метки в one-hot\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)\n","print('Shape of transformed y train:', y_train.shape)\n","print('Shape of transformed y test:', y_test.shape)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"NUwOVYuCIPIy","executionInfo":{"status":"ok","timestamp":1765216948692,"user_tz":-180,"elapsed":590,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"2832ca08-854f-4213-d588-af752444d015"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of transformed X train: (50000, 32, 32, 3)\n","Shape of transformed X test: (10000, 32, 32, 3)\n","Shape of transformed y train: (50000, 10)\n","Shape of transformed y test: (10000, 10)\n"]}]},{"cell_type":"code","source":["# создаем модель\n","model = Sequential()\n","\n","# Блок 1\n","model.add(layers.Conv2D(32, (3, 3), padding=\"same\",\n"," activation=\"relu\", input_shape=input_shape))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(32, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.25))\n","\n","# Блок 2\n","model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(64, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.25))\n","\n","# Блок 3\n","model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.Conv2D(128, (3, 3), padding=\"same\", activation=\"relu\"))\n","model.add(layers.BatchNormalization())\n","model.add(layers.MaxPooling2D((2, 2)))\n","model.add(layers.Dropout(0.4))\n","\n","model.add(layers.Flatten())\n","model.add(layers.Dense(128, activation='relu'))\n","model.add(layers.Dropout(0.5))\n","model.add(layers.Dense(num_classes, activation=\"softmax\"))\n","\n","\n","model.summary()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"VhXXpAUKIg5z","executionInfo":{"status":"ok","timestamp":1765217432833,"user_tz":-180,"elapsed":539,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"ba4ea6b3-933f-4135-8449-c83c4ab42f39"},"execution_count":23,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential_1\"\u001b[0m\n"],"text/html":["
Model: \"sequential_1\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_3 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_3 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_6 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_7 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n","│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_4 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ conv2d_2 (Conv2D)               │ (None, 32, 32, 32)     │           896 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization             │ (None, 32, 32, 32)     │           128 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_3 (Conv2D)               │ (None, 32, 32, 32)     │         9,248 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_1           │ (None, 32, 32, 32)     │           128 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 32)     │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_1 (Dropout)             │ (None, 16, 16, 32)     │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_4 (Conv2D)               │ (None, 16, 16, 64)     │        18,496 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_2           │ (None, 16, 16, 64)     │           256 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_5 (Conv2D)               │ (None, 16, 16, 64)     │        36,928 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_3           │ (None, 16, 16, 64)     │           256 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 64)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_2 (Dropout)             │ (None, 8, 8, 64)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_6 (Conv2D)               │ (None, 8, 8, 128)      │        73,856 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_4           │ (None, 8, 8, 128)      │           512 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_7 (Conv2D)               │ (None, 8, 8, 128)      │       147,584 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ batch_normalization_5           │ (None, 8, 8, 128)      │           512 │\n","│ (BatchNormalization)            │                        │               │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_4 (MaxPooling2D)  │ (None, 4, 4, 128)      │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_3 (Dropout)             │ (None, 4, 4, 128)      │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ flatten_1 (Flatten)             │ (None, 2048)           │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_1 (Dense)                 │ (None, 128)            │       262,272 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_4 (Dropout)             │ (None, 128)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense_2 (Dense)                 │ (None, 10)             │         1,290 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m552,362\u001b[0m (2.11 MB)\n"],"text/html":["
 Total params: 552,362 (2.11 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n"],"text/html":["
 Trainable params: 551,466 (2.10 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m896\u001b[0m (3.50 KB)\n"],"text/html":["
 Non-trainable params: 896 (3.50 KB)\n","
\n"]},"metadata":{}}]},{"cell_type":"code","source":["# компилируем и обучаем модель\n","batch_size = 64\n","epochs = 50\n","model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n","model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"1MmpBaHFLM9S","executionInfo":{"status":"ok","timestamp":1765218101408,"user_tz":-180,"elapsed":368146,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"6619dad6-9783-4fad-fb5c-6495a11bcebf"},"execution_count":24,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m33s\u001b[0m 23ms/step - accuracy: 0.2713 - loss: 2.0996 - val_accuracy: 0.4600 - val_loss: 1.4698\n","Epoch 2/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.4710 - loss: 1.4611 - val_accuracy: 0.5876 - val_loss: 1.2134\n","Epoch 3/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.5671 - loss: 1.2243 - val_accuracy: 0.6042 - val_loss: 1.2126\n","Epoch 4/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.6242 - loss: 1.0786 - val_accuracy: 0.6838 - val_loss: 0.8650\n","Epoch 5/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.6618 - loss: 0.9714 - val_accuracy: 0.7076 - val_loss: 0.8535\n","Epoch 6/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.7015 - loss: 0.8811 - val_accuracy: 0.7096 - val_loss: 0.8280\n","Epoch 7/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7175 - loss: 0.8198 - val_accuracy: 0.7428 - val_loss: 0.7633\n","Epoch 8/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.7368 - loss: 0.7710 - val_accuracy: 0.7632 - val_loss: 0.6851\n","Epoch 9/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.7579 - loss: 0.7130 - val_accuracy: 0.7674 - val_loss: 0.6738\n","Epoch 10/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7730 - loss: 0.6751 - val_accuracy: 0.8030 - val_loss: 0.5984\n","Epoch 11/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.7847 - loss: 0.6376 - val_accuracy: 0.7694 - val_loss: 0.7044\n","Epoch 12/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.7970 - loss: 0.5956 - val_accuracy: 0.7886 - val_loss: 0.6338\n","Epoch 13/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 9ms/step - accuracy: 0.8038 - loss: 0.5751 - val_accuracy: 0.7992 - val_loss: 0.6106\n","Epoch 14/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8139 - loss: 0.5532 - val_accuracy: 0.8152 - val_loss: 0.5782\n","Epoch 15/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8206 - loss: 0.5221 - val_accuracy: 0.8126 - val_loss: 0.5920\n","Epoch 16/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8288 - loss: 0.5039 - val_accuracy: 0.8266 - val_loss: 0.5345\n","Epoch 17/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8327 - loss: 0.4915 - val_accuracy: 0.8188 - val_loss: 0.5628\n","Epoch 18/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8415 - loss: 0.4732 - val_accuracy: 0.8248 - val_loss: 0.5356\n","Epoch 19/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8486 - loss: 0.4533 - val_accuracy: 0.8232 - val_loss: 0.5351\n","Epoch 20/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8525 - loss: 0.4387 - val_accuracy: 0.8304 - val_loss: 0.5254\n","Epoch 21/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8520 - loss: 0.4297 - val_accuracy: 0.7862 - val_loss: 0.7218\n","Epoch 22/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8589 - loss: 0.4169 - val_accuracy: 0.8384 - val_loss: 0.5035\n","Epoch 23/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8636 - loss: 0.4034 - val_accuracy: 0.8192 - val_loss: 0.5844\n","Epoch 24/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8716 - loss: 0.3834 - val_accuracy: 0.8250 - val_loss: 0.5500\n","Epoch 25/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8709 - loss: 0.3822 - val_accuracy: 0.8364 - val_loss: 0.5000\n","Epoch 26/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8786 - loss: 0.3592 - val_accuracy: 0.8500 - val_loss: 0.4872\n","Epoch 27/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8708 - loss: 0.3783 - val_accuracy: 0.8492 - val_loss: 0.5018\n","Epoch 28/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8819 - loss: 0.3502 - val_accuracy: 0.8498 - val_loss: 0.4784\n","Epoch 29/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8866 - loss: 0.3325 - val_accuracy: 0.8434 - val_loss: 0.5009\n","Epoch 30/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8878 - loss: 0.3299 - val_accuracy: 0.8450 - val_loss: 0.4781\n","Epoch 31/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.8902 - loss: 0.3252 - val_accuracy: 0.8550 - val_loss: 0.4734\n","Epoch 32/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8907 - loss: 0.3245 - val_accuracy: 0.8434 - val_loss: 0.5142\n","Epoch 33/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8927 - loss: 0.3160 - val_accuracy: 0.8498 - val_loss: 0.5049\n","Epoch 34/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.8983 - loss: 0.3004 - val_accuracy: 0.8432 - val_loss: 0.5066\n","Epoch 35/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.8984 - loss: 0.3011 - val_accuracy: 0.8394 - val_loss: 0.5416\n","Epoch 36/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9025 - loss: 0.2877 - val_accuracy: 0.8502 - val_loss: 0.4972\n","Epoch 37/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9016 - loss: 0.2897 - val_accuracy: 0.8468 - val_loss: 0.5086\n","Epoch 38/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9011 - loss: 0.2889 - val_accuracy: 0.8528 - val_loss: 0.4809\n","Epoch 39/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9063 - loss: 0.2709 - val_accuracy: 0.8506 - val_loss: 0.5207\n","Epoch 40/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9082 - loss: 0.2689 - val_accuracy: 0.8546 - val_loss: 0.4983\n","Epoch 41/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9040 - loss: 0.2784 - val_accuracy: 0.8522 - val_loss: 0.5021\n","Epoch 42/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 9ms/step - accuracy: 0.9055 - loss: 0.2769 - val_accuracy: 0.8520 - val_loss: 0.5108\n","Epoch 43/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9098 - loss: 0.2575 - val_accuracy: 0.8470 - val_loss: 0.5368\n","Epoch 44/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9134 - loss: 0.2487 - val_accuracy: 0.8542 - val_loss: 0.4839\n","Epoch 45/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9147 - loss: 0.2523 - val_accuracy: 0.8494 - val_loss: 0.5282\n","Epoch 46/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9162 - loss: 0.2465 - val_accuracy: 0.8538 - val_loss: 0.4990\n","Epoch 47/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9169 - loss: 0.2459 - val_accuracy: 0.8584 - val_loss: 0.4915\n","Epoch 48/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9178 - loss: 0.2409 - val_accuracy: 0.8602 - val_loss: 0.4881\n","Epoch 49/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 10ms/step - accuracy: 0.9168 - loss: 0.2516 - val_accuracy: 0.8578 - val_loss: 0.5049\n","Epoch 50/50\n","\u001b[1m704/704\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 9ms/step - accuracy: 0.9204 - loss: 0.2299 - val_accuracy: 0.8524 - val_loss: 0.4976\n"]},{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":24}]},{"cell_type":"code","source":["# Оценка качества работы модели на тестовых данных\n","scores = model.evaluate(X_test, y_test)\n","print('Loss on test data:', scores[0])\n","print('Accuracy on test data:', scores[1])\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"8DFXlHIFLRmW","executionInfo":{"status":"ok","timestamp":1765218104302,"user_tz":-180,"elapsed":2888,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"217f2436-0f57-4ee6-b65b-82b5868add12"},"execution_count":25,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 5ms/step - accuracy: 0.8549 - loss: 0.5187\n","Loss on test data: 0.518433153629303\n","Accuracy on test data: 0.8521999716758728\n"]}]},{"cell_type":"code","source":["# вывод двух тестовых изображений и результатов распознавания\n","\n","for n in [1,10]:\n"," result = model.predict(X_test[n:n+1])\n"," print('NN output:', result)\n","\n"," plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray'))\n"," plt.show()\n"," print('Real mark: ', np.argmax(y_test[n]))\n"," print('NN answer: ', np.argmax(result))\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"XFNJlrvzMupw","executionInfo":{"status":"ok","timestamp":1765218332815,"user_tz":-180,"elapsed":1260,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"cfe6de90-c202-4c27-d199-f0c58e3e236b"},"execution_count":31,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 193ms/step\n","NN output: [[5.0897655e-05 1.5590033e-06 1.1971882e-07 5.6473659e-10 3.7635881e-09\n"," 1.3418226e-10 1.1458374e-08 1.3129012e-10 9.9994743e-01 1.9529903e-08]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALsBJREFUeJzt3X9w1fWd7/HXOSfnnATID5KQXxIwgEIVoS1VzLV1rVB+9I6jldnRtjOLXUdHNzirbLctO61Wd3fi2pnWtkPxzl1XtjNFW/cWvXpbXcUSblughYr4o6WAqYAkQX4kJznJ+f29f7CmNwr6eUPCJwnPx8yZIee8eefz/X7POe98c855JRQEQSAAAM6xsO8FAADOTwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXRb4X8F6FQkGHDx9WaWmpQqGQ7+UAAIyCIFBvb68aGhoUDp/+PGfUDaDDhw+rsbHR9zIAAGfp4MGDmjp16mlvH7EBtHbtWn3rW99SZ2en5s+fr+9///u64oorPvT/lZaWSpLuf+A7Ki4ucfpecz/2Med1FU8oda49yX0XFYUjps4xw94vsRRLKoq4nz3mg7yp92hSsBQbT6gtZ+D5nGklyhVsCVi5vHt9Lmtci6G3AuNv7QPDTjemggVyry8Etn1SCNvqLXeucNh2R4yEo861+YytdyjIOddOLHF/fksme/WZRR8dfD4/nREZQD/+8Y+1evVqPfLII1q4cKEefvhhLV26VHv27FFNTc0H/t93H/TFxSUqLnEbQBMnTnJeW8nEsTmAJsTd74QSA+iURnAA5XK2fWgeQLnxP4CssZQMoPcbyQE0yTCABvt/yGNoRN6E8O1vf1u33XabvvSlL+mSSy7RI488ogkTJujf/u3fRuLbAQDGoGEfQJlMRjt37tTixYv//E3CYS1evFhbt259X306nVYikRhyAQCMf8M+gI4ePap8Pq/a2toh19fW1qqzs/N99a2trSovLx+88AYEADg/eP8c0Jo1a9TT0zN4OXjwoO8lAQDOgWF/E0J1dbUikYi6urqGXN/V1aW6urr31cfjccXj8eFeBgBglBv2M6BYLKYFCxZo06ZNg9cVCgVt2rRJzc3Nw/3tAABj1Ii8DXv16tVauXKlPvGJT+iKK67Qww8/rGQyqS996Usj8e0AAGPQiAygm266Se+8847uvfdedXZ26qMf/aiee+65970xAQBw/hqxJIRVq1Zp1apVZ/z/SyZOUEnJBKfaoiL315Dylg/dSYrH3D9gWBy1/UYzYvgNaMH64cKC4QOAEds+MSf0GT7QaflwoSRlCoYPgFo/iGr4D9Z1h4y//A4bjlHI+CHXIktYganzyV+/u4p8QGbYqZtbPohqW7l1KZbYysD4odh8fsC5trgkZuq9f98bzrUnjr7tXDsw4LZm7++CAwCcnxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAAL0YsiudshYtiChe5xUqk0oYcjHzWtI58wX1GZ7PGCJQi97/1HgkZQ1By7nEf4SJjjIwld0RSYIhBKYrY/u58WPa/U+/KEiMz4gyHyLpHCnLfzrzx+CTT7jEyf9q319Q7FOScawPj4766ssJUP2PmDOfaV3a9Yup9uKPDufaSy2abem/5v//LufbNfa8612azbseGMyAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAF6M2C24glZZCbrlTsVixe2Nj7pnChjywIltOVhBxz1TLBrZcskLBPScrnLP9HBIO27LgJPf6nKFWkgp599p83rgPDfs8WmR7KIUCw8IlZVIp59qCIXtPkmIxt8xFSSoU0qbeu3f9xrn2Z09vNPXOpvudaws5WxZc1eQKU/2Vzc3OtceOHjP1fv2N151rf7fzJVPvrq59zrWpZI9zbS7ndv/mDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWojeJpb9+reNwtYqesYopz32M93aZ1TKyocK6dVOZeK0mWxJTieImpd8gQlzMwMGDqHRijXkIhw1r63eNVJCnR2+tcmzLE2Ui2dRcXG+KgJBlTgZRKZ5xrI2Hbw7q8vMK5Nnn8TVPvtheecq49fvSwqXcu4x4LFOTdo6kkqffEUVP9O0c6nGsjhgguSertTbiv4x1bxFNJsft+iUXdz1fCIbfnCM6AAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M2iy4V175rYqKok61b/xhj3Pfvn73TC1Jqqipd66tmlJr6l1UFHeura6qMfUumTDBuba/3z1P7WS9La8tl3PPm0oNJE29s/3uOVm5XNbUu1BwD2zLG2olKRSJmOrDYbfHgiRNmFBq6j25osq5dt8bW029D+zf51xbFHXfRknKZN3vV1lDlp4kRQw5gCfX4t4/CGz3w1gs5lzbn7T1zubc8xHjJe77O+f4eOAMCADgxbAPoG9+85sKhUJDLnPmzBnubwMAGONG5Fdwl156qV588cU/f5OiUfubPgCAJyMyGYqKilRXVzcSrQEA48SIvAa0d+9eNTQ0aMaMGfriF7+oAwcOnLY2nU4rkUgMuQAAxr9hH0ALFy7U+vXr9dxzz2ndunVqb2/Xpz71KfWe5i9Xtra2qry8fPDS2Ng43EsCAIxCwz6Ali9frr/8y7/UvHnztHTpUv3sZz9Td3e3fvKTn5yyfs2aNerp6Rm8HDx4cLiXBAAYhUb83QEVFRW6+OKLtW/fqT8PEI/HFY+7fx4GADA+jPjngPr6+rR//37V17t/oBMAMP4N+wD68pe/rLa2Nv3pT3/Sr3/9a33uc59TJBLR5z//+eH+VgCAMWzYfwV36NAhff7zn9exY8c0ZcoUffKTn9S2bds0ZcoUU5/qismKRt0iKGZdPNe5b3mFLdImVOQeyVFWXmbqHY+XuNfG3KN1JClqiDUpFKpNvbNZW9xHEATOtea4nFzavbaQN/W2xOvk87beQcE91kSScln3/iHjw7q4eKJ77/4LTb0zfSeca9MZW1zOwMCAe2+5R85IUkS2KJ5A7sfHEqskSdms+308lXKvlaR4rMJ9HSn345PPue2PYR9ATzzxxHC3BACMQ2TBAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8GPE/x3CmIqEiRUJuy8vl3HO1ikvc8uXe1Tj9Qufaoqhtd4YM8z8SseVHhcOGLKuQe+aZJGNKlmSIghvR5oXAtp0jKchbdooUDrnfV8Jh28+VuZz7fqmsmmzqPeuiOc61id4eU+9Uqt+9dsCWBWfZ3ye5H8/uHvd8PElKJk/9xzxPJZ1x3yeSVBwrda7tPNzhXHsy0/GND63jDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWojeLpeueoiorc4mc6jh137nt5kW2T6y+4wLm2kDdG2oTcc2ciEfe4oZP17j9bhEK2WJjAEDvyX9/B0Nza212hYDs+wQiuxRo51Jtwj1g5/PY7pt6JngHn2kLBtk8scTmZrC0uJxp1v49fMLXR1LtisntEjSQVRSLOtYmEe7TOSe77vChuO6cY6Es611ZWVjnXptMpvbTp6Q+t4wwIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWozYKrqqpSNBpzqp1UUeHct7TUlvGUzWSdayMRW06WIQrOnEsWBJafLWwZaWPVaMqCO3YsYar/9a+2O9e+ue8tU+9c3v2OmMvlTb1TA+5ZcNmceyadJH30Y/OdaxsuqDP1zuds2YuFvGW/GO9XhueJsOVJRVJxcdy5tqpqsnNtKuWW68cZEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMCLUZsFN+9jn1BxcYlT7aSyMue+8eJi0zpyefcsuKBgy8kKhUcur61QcO9tjI8aUSOZv2bO0zNkdhXytt5HO98x1V9QW+tcWzelytQ7kXDPpbPuw0wm41ybzbrXSlJTU6NzbXnpBFPvvPGxHIm4P5WGrA84S33Idk7RcbDdvbVhn6TTZMEBAEYx8wDasmWLrrvuOjU0NCgUCumpp54acnsQBLr33ntVX1+vkpISLV68WHv37h2u9QIAxgnzAEomk5o/f77Wrl17ytsfeughfe9739Mjjzyi7du3a+LEiVq6dKlzPDcA4Pxgfg1o+fLlWr58+SlvC4JADz/8sL7+9a/r+uuvlyT98Ic/VG1trZ566indfPPNZ7daAMC4MayvAbW3t6uzs1OLFy8evK68vFwLFy7U1q1bT/l/0um0EonEkAsAYPwb1gHU2dkpSap9zzt2amtrB297r9bWVpWXlw9eGhvd39kCABi7vL8Lbs2aNerp6Rm8HDx40PeSAADnwLAOoLq6k393vaura8j1XV1dg7e9VzweV1lZ2ZALAGD8G9YB1NTUpLq6Om3atGnwukQioe3bt6u5uXk4vxUAYIwzvwuur69P+/btG/y6vb1du3btUmVlpaZNm6a7775b//RP/6SLLrpITU1N+sY3vqGGhgbdcMMNw7luAMAYZx5AO3bs0Kc//enBr1evXi1JWrlypdavX6+vfOUrSiaTuv3229Xd3a1PfvKTeu6551RsjMApmTBRxSVu8RnhcMS5b0i2GIx8Ludea+osRSLu6w4CWxRP2BTzM7Is8S0FY9RLxLCdIxfyIxXH46b6+R/7iK1/zL1/oWC7r1jicqzvUp00aZJzbTLZZ+r9+9//3rm2r9e27vgEtxiwd2WzA861PT09pt6TKyucazOpblPvI2+/5VxbWuL+8kg6k3aqMw+ga6655gOfUEKhkB544AE98MAD1tYAgPPI6PkxGQBwXmEAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvDBH8YxGlqyxfMGW2BbKu2fHhUK2nDlTRpox32tEs+CMeW15w9qt+zCdd8/qC4Vs+6RmyhTn2mjU9lCKx9xzACUpZ8hrM26mYnH3fR4O2x4/+XzKuTaZtGWkxeOGfRiyPX4sj01J6k/2O9f29toy7yonlzvXJnuOmXonE0eca493tDvXZh0zNDkDAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4MWqjePIFKZ93i8MIhbPOfcPGSBtDEo9CIzjPrdE6EUN5OGSLHbHG5VhWHrbmyBjK66ZUmVrPuXiG+zKMUS/hsC2KJ5FIONeeOH7c1HtKjXvk0MVNF5p6Hz3qHg1z/EiXqXfUcL/tPHTA1Hta0yxTfXrAPV4nnxkw9c5m0s61yT7350JJOvpOr3NtNOLemygeAMCoxgACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxarPgCoWCCo65bblc3tDZUisVCu55U6ER3J0hY0ZatMg9ry0sW46ZAlt2nCXHrnTyZFPv6Rde6Fwbj9qOT8hwXykyZvUFgW2f9yZ6nGuNUX2KFrnn0nV2dJh6P7XxKefa3+7YYerddGGTc21j0zRT71AkZapP9B5x7x22HaCehHtG3pt/2mvqffz4Cefa4qj7/SSXd3vscAYEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPBi1Ebx5LJZ5SJuywvn3aNhAkOtJOUNIzoctvUuMkSgWOM7stmce++QLZ4oZ+gtScXFxc61x48eM/U+cazbuTZm2N+SlOxz7z31gjpT7+J4ian+naNHnWtLS0tNvS1xLP/jf/xPU+8DBw46137so/NNvRsa6p1rDx9629T70GFbfUlJ3Lk2lU6beofk/tgPcrbek0rdH5uhwP3JMJRze47gDAgA4AUDCADghXkAbdmyRdddd50aGhoUCoX01FNPDbn9lltuUSgUGnJZtmzZcK0XADBOmAdQMpnU/PnztXbt2tPWLFu2TB0dHYOXxx9//KwWCQAYf8xvQli+fLmWL1/+gTXxeFx1dbYXZQEA55cReQ1o8+bNqqmp0ezZs3XnnXfq2LHTv7MpnU4rkUgMuQAAxr9hH0DLli3TD3/4Q23atEn/8i//ora2Ni1fvlz50/yFvNbWVpWXlw9eGhsbh3tJAIBRaNg/B3TzzTcP/vuyyy7TvHnzNHPmTG3evFmLFi16X/2aNWu0evXqwa8TiQRDCADOAyP+NuwZM2aourpa+/btO+Xt8XhcZWVlQy4AgPFvxAfQoUOHdOzYMdXXu39qGQAw/pl/BdfX1zfkbKa9vV27du1SZWWlKisrdf/992vFihWqq6vT/v379ZWvfEWzZs3S0qVLh3XhAICxzTyAduzYoU9/+tODX7/7+s3KlSu1bt067d69W//+7/+u7u5uNTQ0aMmSJfrHf/xHxePuWUmSlM/klA87Zo6FDRlFRbZMNYULzqWRmHutJGVT7plqxSW27LBUNuVcG4RtWXAT4u75UZJUHHO/mx1665Cp9+aXfulce+KELWdu3vxL3YsLHzP1tmT1SdLBg+6ZaqmU+7GXpGg06lxbV3+BqffCK/+bc233cfe8O0l64/XdzrV9/VlT78ammab6uCFnsO94t6l3SekE59qJYfdjKUm5fMa5tn7qNOfabNZtf5sH0DXXXKMgOH3o5vPPP29tCQA4D5EFBwDwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwYtj/HtBwyefyymXdMsqCyOmjgd5X614qScrm0u69+2xZcJGIe35UJuOe2SRJGUMWXH19tan33EsuMdWXRN1zAA/s3W/qfencJufa+vqrTL0vmnWxc204bHsoBYHtvtLT0+Nc2919wtR77ty5zrUDGffHgyS98srLzrVv7vujqfeEuPs+D0fc89Qkqauz01R/rNP9+EyrrTT1rpoUc67d22c79vPnfcK5doohBzCdTul/P/N/PrSOMyAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBejNoonnUlJIbfaWDTq3DcIbJtcKLjFAUlSUZFtngeBe+++voSpd8SwlIlx96ick/XFpvq+RK9z7Tvv2CJQSia4b+h//+wSU+9IdKJzbSZji9bJpN2jkiTp9dffcK498s4xU+/tv/mNc+2b7ba4HMsdcXJNnan1QK/7YyJxtMPUe1Kx7TGRSLhH4JQae1dNcb+vnEh0m3pPnT7LuXaCYd1huWWecQYEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLUZsHl81nl8xGn2rQhUy0Scev553VknGtzeds8jxhysnL5nKl3NOKejxcJO4bu/Zf2P71pqlfIvf+U2hpT60T3Eefaw28fNvXu7nXP4DpwwNb74FvtpvpXXnnZufbtt9829S4uLnGuraudbOqtaMy59I/7D5haFxXc8sYkaVqdbd25tHt+oSQdOeKev3fhhe7PKZJ0vPu4c20qnTX13vPH151rk8lu59pMxm0bOQMCAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxaqN4Uqm0CgW3WkukTTTqHlFzsrd7bd4Yl1NSUupcO3lypal3WO4xJa+99pqp95tv2qJ4ysvLnWu7urpMvXv73SNT3vijLf7m+FH3CJS+Hlt0SybVb6rPZtPOtaWlZabe5ZPi7sUZ23387bfdj2fvwICp9+yZjc61NdXujzVJeuutE6b6dNr9+CQSCVPv3AH3/dLfnzT1Li4udq7tMaw7m3WLBOIMCADghWkAtba26vLLL1dpaalqamp0ww03aM+ePUNqUqmUWlpaVFVVpUmTJmnFihXmn2oBAOOfaQC1tbWppaVF27Zt0wsvvKBsNqslS5Yomfzzad8999yjZ555Rk8++aTa2tp0+PBh3XjjjcO+cADA2GZ6Dei5554b8vX69etVU1OjnTt36uqrr1ZPT48effRRbdiwQddee60k6bHHHtNHPvIRbdu2TVdeeeXwrRwAMKad1WtAPT09kqTKypMvkO/cuVPZbFaLFy8erJkzZ46mTZumrVu3nrJHOp1WIpEYcgEAjH9nPIAKhYLuvvtuXXXVVZo7d64kqbOzU7FYTBUVFUNqa2tr1dnZeco+ra2tKi8vH7w0Nrq/swUAMHad8QBqaWnRa6+9pieeeOKsFrBmzRr19PQMXg4ePHhW/QAAY8MZfQ5o1apVevbZZ7VlyxZNnTp18Pq6ujplMhl1d3cPOQvq6upSXV3dKXvF43HF44bPIQAAxgXTGVAQBFq1apU2btyol156SU1NTUNuX7BggaLRqDZt2jR43Z49e3TgwAE1NzcPz4oBAOOC6QyopaVFGzZs0NNPP63S0tLB13XKy8tVUlKi8vJy3XrrrVq9erUqKytVVlamu+66S83NzbwDDgAwhGkArVu3TpJ0zTXXDLn+scce0y233CJJ+s53vqNwOKwVK1YonU5r6dKl+sEPfjAsiwUAjB+mARQEH54vVlxcrLVr12rt2rVnvKiT36ugIHAMgzP8JrHgGjD3Xyz5btlcxtQ7kXDPD+vvt2WHhcMh59rOjkOm3r/9zTZTfcR9KSrk86behYJ75l3IvVSSFDUEAUaLbC+nFlszCeW+E4OcLa+tv7fPvdaQMShJhbT7/XbGBVNMvavK3XPMigx5kZL9fii51+fytueJZK9brpokHT3yjqn3QNL9+Bw+5P48kc+7Pc+SBQcA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8OKM/hzDuZDL5RQOu0Wh5AzRI649/1zvHt0TtmTOSMpk3CM5LLWSVFpW5lx74cyLTb2NaSzavWunc23OGJUUNUSshEO24xMKGyKenGOjTkql0ra1jGB1ss89jiVrjJGZOrXeubamssLUO+QQDfaugYGUqXcm4x5/I0mRIvd9nsvZer/9dpdzbTZtOz49hu20/Nkc18gzzoAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXozaLLhsNqOQY3aXNd/NxBCrFeRteWCxWMy5tqSkxNQ7CNx/tgiM2WEXTp9lqi9k3ffL66++Yuqdy7jnmAXGLLggn3eutXWW8sb7SjjkfjytuYFhQ+bdzFlNpt41NdXOtbF41NRbcs+ADAy5cZKcn3veVWbIXkylbLl0R955x7nWcj+RpKIi9+fOgYEB59qC4/7mDAgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MWojeI5fvyIolG3aI7S0nLnviXFE03rKBTcIzzyBfdokJO93eNYrNEgIblHbIRDtiijcNgWazLtwguda7t7jpt6t+/9g3NtWLZ1W+JyCsZonZDhfiVJRRH3418UtR3PmprJzrUNDe7ROpJUVlrqXGuNyykE7tE9UUPkjCRNLneP1pFsMTVHjp8w9VbEPbKryBCrJNmie2zPQW6PB86AAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M2iy4eCyqaNQtAymw5LXlbJldRVH3GV1UZNud+XzeudaSGydJuWzWuTYouNdKUsiYBZfo7XGu7U+5Z2pJtgy2XMF9f0v2bDKLkLF1kWMuoiTV19eYepeWuecj9vcnTb1Dhvy9aNT2+Ckqct8nCmxZcMa7ihIJ9/3Sl0ybek+ePMW9d7ctS7FguI+Hw+5ZcK5tOQMCAHhhGkCtra26/PLLVVpaqpqaGt1www3as2fPkJprrrlGoVBoyOWOO+4Y1kUDAMY+0wBqa2tTS0uLtm3bphdeeEHZbFZLlixRMjn09PO2225TR0fH4OWhhx4a1kUDAMY+0y9dn3vuuSFfr1+/XjU1Ndq5c6euvvrqwesnTJigurq64VkhAGBcOqvXgHp6Tr64XFlZOeT6H/3oR6qurtbcuXO1Zs0a9ff3n7ZHOp1WIpEYcgEAjH9n/C64QqGgu+++W1dddZXmzp07eP0XvvAFTZ8+XQ0NDdq9e7e++tWvas+ePfrpT396yj6tra26//77z3QZAIAx6owHUEtLi1577TX98pe/HHL97bffPvjvyy67TPX19Vq0aJH279+vmTNnvq/PmjVrtHr16sGvE4mEGhsbz3RZAIAx4owG0KpVq/Tss89qy5Ytmjp16gfWLly4UJK0b9++Uw6geDyueDx+JssAAIxhpgEUBIHuuusubdy4UZs3b1ZTU9OH/p9du3ZJkurr689ogQCA8ck0gFpaWrRhwwY9/fTTKi0tVWdnpySpvLxcJSUl2r9/vzZs2KDPfvazqqqq0u7du3XPPffo6quv1rx580ZkAwAAY5NpAK1bt07SyQ+b/v8ee+wx3XLLLYrFYnrxxRf18MMPK5lMqrGxUStWrNDXv/71YVswAGB8MP8K7oM0Njaqra3trBb0rjd+v1ORiFt+U3V1rXPfmim2XwWGwu55U0VR22tZluw49xSmd/+D4R32xua5bMZU39XZ4Vx75L/Oql0VLKFdxmw3y26xHp9o1JZNNmVKtXOt9dfdJSVumYuSLdtNsuXppVK2+1Uu556/lknb8g47Oo6Y6hOJ03/U5L3KJleZetfVNzjX7j1xzNQ7ZLjjWh5rrhlzZMEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALw4478HNNL6EgmFw27zMTPgHrORTqZN6yiKT3SuDUfcY3skqdjwZyiiUVtv1xgjSSrkc6beR4+4R+tIUsfhg861+ZR7vIokhQP3eBBrXE4hKDjXxozHZ0p1uam+dJL7fSWXTZl6ZyOGeB1LdoukoODeO2Tsnc+7H/t01hbFk+jrM9Vn8u4xQhPKSky9B1K9zrX5vPt9VpJClkSokHvvwDGyiTMgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBejNgvu0jkfV1GRW75WUVGxc994zL32ZHP3GZ3N2/Km8jlbBptFoeCe25TN2dZ97NhRU/2JE8eda+MR289EIcfMKUkKAkPmmaSiiPvDo7Ky0tR74kRbHphM22nLA8tk3HPMrCzZZJZsN0nKGR4/AylbBmRf0pZJGDE8T5RXlJp693T3ONca4/QUMdzH8wXLPiQLDgAwijGAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXozaKJ6DB99UJBJxqi0pnuTct6pyimkdk8rL3YsN8TeSFDJGpliEDZEc+awtisUSfyNJxTG3SCVJUsEWx2JZSTRqWIekyRVlzrUlcVvvwHhfCRsyVqy9Q46Ps5PF1p9Z3deSTtviclKplHNtd0/C1Dudsa2lwvC8MqHY/X4lSZm4e1RWcbEtaixr2E7LY8019YozIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXozYL7sSxLoXDbvMxFp3g3Dfq2PNd8eKYc22+YMtIKxgyuwLXcKV36w0ZXP1JY05Wqt9UHwrc890CYxacJcdsSnWVqXdF2UTn2rwxO8wqbDj8+Yx7dpi190DGlhuYNtTn87Zjb8mCS/YnTb3DRbZsv9opjc61E+MVpt49hW7n2pAhM1CS8vmcc22kyL23ayVnQAAAL0wDaN26dZo3b57KyspUVlam5uZm/fznPx+8PZVKqaWlRVVVVZo0aZJWrFihrq6uYV80AGDsMw2gqVOn6sEHH9TOnTu1Y8cOXXvttbr++uv1+uuvS5LuuecePfPMM3ryySfV1tamw4cP68YbbxyRhQMAxjbTa0DXXXfdkK//+Z//WevWrdO2bds0depUPfroo9qwYYOuvfZaSdJjjz2mj3zkI9q2bZuuvPLK4Vs1AGDMO+PXgPL5vJ544gklk0k1Nzdr586dymazWrx48WDNnDlzNG3aNG3duvW0fdLptBKJxJALAGD8Mw+gV199VZMmTVI8Htcdd9yhjRs36pJLLlFnZ6disZgqKiqG1NfW1qqzs/O0/VpbW1VeXj54aWx0fzcJAGDsMg+g2bNna9euXdq+fbvuvPNOrVy5Um+88cYZL2DNmjXq6ekZvBw8ePCMewEAxg7z54BisZhmzZolSVqwYIF++9vf6rvf/a5uuukmZTIZdXd3DzkL6urqUl1d3Wn7xeNxxeNx+8oBAGPaWX8OqFAoKJ1Oa8GCBYpGo9q0adPgbXv27NGBAwfU3Nx8tt8GADDOmM6A1qxZo+XLl2vatGnq7e3Vhg0btHnzZj3//PMqLy/XrbfeqtWrV6uyslJlZWW666671NzczDvgAADvYxpAR44c0V/91V+po6ND5eXlmjdvnp5//nl95jOfkSR95zvfUTgc1ooVK5ROp7V06VL94Ac/OKOFTSotU8Q1Nidwj2Pp6+szrSNy/IRzbckE90ggSYpG3eM+IobIGUnK5tzjWJJJW7SOJQJFkmSIeonF3KOPJGlylXu8zoTiYlPvwBCVZD0+YWO9JYopm7VF8ViOZ7/x2OcN67bGyFjWnUoNmHqXTKow1VdVVzvXRotsr3xMnOgeCZXL2eKMLAlfuZx7bE/BsbFpTzz66KMfeHtxcbHWrl2rtWvXWtoCAM5DZMEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8MKdhj7R3I0cKhhgUS9RLPm+LqrDET+QM8TeSJEPySDhk+1khl3dfi3WfFALDsZFMeR/W3vmC+9qt2xmyxMgY1239yS8Ucl+LJbZHsu2XfN54fAwPzpDlASEpb3iOsO4T0/OPbNFX2WzG1NsWgWNbt2tkzkn2++CH7fdQYD0yI+zQoUP8UToAGAcOHjyoqVOnnvb2UTeACoWCDh8+rNLS0iHhhIlEQo2NjTp48KDKyso8rnBksZ3jx/mwjRLbOd4Mx3YGQaDe3l41NDQo/AGh0qPuV3DhcPgDJ2ZZWdm4PvjvYjvHj/NhGyW2c7w52+0sLy//0BrehAAA8IIBBADwYswMoHg8rvvuu0/xeNz3UkYU2zl+nA/bKLGd48253M5R9yYEAMD5YcycAQEAxhcGEADACwYQAMALBhAAwIsxM4DWrl2rCy+8UMXFxVq4cKF+85vf+F7SsPrmN7+pUCg05DJnzhzfyzorW7Zs0XXXXaeGhgaFQiE99dRTQ24PgkD33nuv6uvrVVJSosWLF2vv3r1+FnsWPmw7b7nllvcd22XLlvlZ7BlqbW3V5ZdfrtLSUtXU1OiGG27Qnj17htSkUim1tLSoqqpKkyZN0ooVK9TV1eVpxWfGZTuvueaa9x3PO+64w9OKz8y6des0b968wQ+bNjc36+c///ng7efqWI6JAfTjH/9Yq1ev1n333aff/e53mj9/vpYuXaojR474XtqwuvTSS9XR0TF4+eUvf+l7SWclmUxq/vz5Wrt27Slvf+ihh/S9731PjzzyiLZv366JEydq6dKlSqVS53ilZ+fDtlOSli1bNuTYPv744+dwhWevra1NLS0t2rZtm1544QVls1ktWbJEyWRysOaee+7RM888oyeffFJtbW06fPiwbrzxRo+rtnPZTkm67bbbhhzPhx56yNOKz8zUqVP14IMPaufOndqxY4euvfZaXX/99Xr99dclncNjGYwBV1xxRdDS0jL4dT6fDxoaGoLW1laPqxpe9913XzB//nzfyxgxkoKNGzcOfl0oFIK6urrgW9/61uB13d3dQTweDx5//HEPKxwe793OIAiClStXBtdff72X9YyUI0eOBJKCtra2IAhOHrtoNBo8+eSTgzW///3vA0nB1q1bfS3zrL13O4MgCP7iL/4i+Nu//Vt/ixohkydPDv71X//1nB7LUX8GlMlktHPnTi1evHjwunA4rMWLF2vr1q0eVzb89u7dq4aGBs2YMUNf/OIXdeDAAd9LGjHt7e3q7OwcclzLy8u1cOHCcXdcJWnz5s2qqanR7Nmzdeedd+rYsWO+l3RWenp6JEmVlZWSpJ07dyqbzQ45nnPmzNG0adPG9PF873a+60c/+pGqq6s1d+5crVmzRv39/T6WNyzy+byeeOIJJZNJNTc3n9NjOerCSN/r6NGjyufzqq2tHXJ9bW2t/vCHP3ha1fBbuHCh1q9fr9mzZ6ujo0P333+/PvWpT+m1115TaWmp7+UNu87OTkk65XF997bxYtmyZbrxxhvV1NSk/fv36x/+4R+0fPlybd26VZFIxPfyzAqFgu6++25dddVVmjt3rqSTxzMWi6miomJI7Vg+nqfaTkn6whe+oOnTp6uhoUG7d+/WV7/6Ve3Zs0c//elPPa7W7tVXX1Vzc7NSqZQmTZqkjRs36pJLLtGuXbvO2bEc9QPofLF8+fLBf8+bN08LFy7U9OnT9ZOf/ES33nqrx5XhbN18882D/77ssss0b948zZw5U5s3b9aiRYs8ruzMtLS06LXXXhvzr1F+mNNt5+233z7478suu0z19fVatGiR9u/fr5kzZ57rZZ6x2bNna9euXerp6dF//Md/aOXKlWprazunaxj1v4Krrq5WJBJ53zswurq6VFdX52lVI6+iokIXX3yx9u3b53spI+LdY3e+HVdJmjFjhqqrq8fksV21apWeffZZ/eIXvxjyZ1Pq6uqUyWTU3d09pH6sHs/TbeepLFy4UJLG3PGMxWKaNWuWFixYoNbWVs2fP1/f/e53z+mxHPUDKBaLacGCBdq0adPgdYVCQZs2bVJzc7PHlY2svr4+7d+/X/X19b6XMiKamppUV1c35LgmEglt3759XB9X6eRf/T127NiYOrZBEGjVqlXauHGjXnrpJTU1NQ25fcGCBYpGo0OO5549e3TgwIExdTw/bDtPZdeuXZI0po7nqRQKBaXT6XN7LIf1LQ0j5Iknngji8Xiwfv364I033ghuv/32oKKiIujs7PS9tGHzd3/3d8HmzZuD9vb24Fe/+lWwePHioLq6Ojhy5IjvpZ2x3t7e4OWXXw5efvnlQFLw7W9/O3j55ZeDt956KwiCIHjwwQeDioqK4Omnnw52794dXH/99UFTU1MwMDDgeeU2H7Sdvb29wZe//OVg69atQXt7e/Diiy8GH//4x4OLLrooSKVSvpfu7M477wzKy8uDzZs3Bx0dHYOX/v7+wZo77rgjmDZtWvDSSy8FO3bsCJqbm4Pm5maPq7b7sO3ct29f8MADDwQ7duwI2tvbg6effjqYMWNGcPXVV3teuc3Xvva1oK2tLWhvbw92794dfO1rXwtCoVDwn//5n0EQnLtjOSYGUBAEwfe///1g2rRpQSwWC6644opg27Ztvpc0rG666aagvr4+iMViwQUXXBDcdNNNwb59+3wv66z84he/CCS977Jy5cogCE6+Ffsb3/hGUFtbG8Tj8WDRokXBnj17/C76DHzQdvb39wdLliwJpkyZEkSj0WD69OnBbbfdNuZ+eDrV9kkKHnvsscGagYGB4G/+5m+CyZMnBxMmTAg+97nPBR0dHf4WfQY+bDsPHDgQXH311UFlZWUQj8eDWbNmBX//938f9PT0+F240V//9V8H06dPD2KxWDBlypRg0aJFg8MnCM7dseTPMQAAvBj1rwEBAMYnBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi/8HWYx2aAQkelYAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 8\n","NN answer: 8\n","\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step\n","NN output: [[3.7840240e-05 8.8557690e-06 1.5065701e-02 6.9747168e-01 3.3291127e-03\n"," 6.2251734e-03 1.4282507e-02 2.6306707e-01 7.0983755e-05 4.4104352e-04]]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALh9JREFUeJzt3Xtw1fWd//HXued+Qgi5SaBcFLxBK1XM2LooWYGddbQy+9O2M4tdR0c3OKtsty07rVZ39xfXzrS2HYp/rCvbmaKtO0VHZ4urWOJ2C7RQGaq2UWiUUEi4mXtyrt/fHyzZXxTk84aETxKeD+fMmOTNO5/v5Zx3vsk5rxMKgiAQAADnWdj3AgAAFyYGEADACwYQAMALBhAAwAsGEADACwYQAMALBhAAwAsGEADAi6jvBXxYPp/XwYMHVVpaqlAo5Hs5AACjIAjU29ururo6hcOnv84ZdwPo4MGDqq+v970MAMA5am9v1/Tp00/79TEbQOvWrdO3vvUtdXR0aOHChfr+97+va6655oz/rrS0VJKULC92vgIKyf1KKRaPOddKJya5q1w2b+odMvQOcjlT70CGhCVjGJM5vclwIWs5lpIUirj/Fjkatp3ukcjYXYGHQrbffhfE3OsXXDbP1HvBVZ9yrn33D++Zev/q17ucazMDaVNv07kStR3LWGHCVJ8w1IcC2+NEamDAubaitMTUe9qUUufaooT7/SeTzWnTa78Zfjw/nTEZQD/+8Y+1Zs0aPfnkk1q8eLGeeOIJLVu2TK2traqqqvrYf3ty6IRCIfcBZPhV3cddDp6K5cE2CNsemEOWGZG33YEsKxnzMMAxHEBh07E39jaeKxbWAWRZSyxmu1sXJNwfPOMx2w9wEcO6c8b9bTpXjMc+YvjB5kR9xLnWcr+XbPswaliHJMWi7vVx43klnfmxeUzuYd/+9rd1991360tf+pIuu+wyPfnkkyoqKtK//uu/jsW3AwBMQKM+gNLptHbt2qXGxsb//SbhsBobG7Vt27aP1KdSKfX09Iy4AQAmv1EfQEePHlUul1N1dfWIz1dXV6ujo+Mj9c3NzUomk8M3noAAABcG768DWrt2rbq7u4dv7e3tvpcEADgPRv1JCJWVlYpEIurs7Bzx+c7OTtXU1HykPpFIKGH4IygAYHIY9SugeDyuRYsWacuWLcOfy+fz2rJlixoaGkb72wEAJqgxeRr2mjVrtGrVKn3605/WNddcoyeeeEL9/f360pe+NBbfDgAwAY3JALr99tt15MgRPfTQQ+ro6NAnP/lJbd68+SNPTAAAXLjGLAlh9erVWr169Vi1H8HyYtFUKmXqHTO88C5kfLFbLpt1Lza+ei1k+O2q5cWcJ3obEx9C7ikO1hei5i2pDMbtDEwvFrXtk7Bhn0jSzItqnWuv/dRCW+9Zs5xrC4vdXzkvSe8YkhP+0NZm6h2Puj98RUO2F2haX4RsebGo9ZXfEcOLRSOGfSJJMqSDRGJx91rHxx/vz4IDAFyYGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvxiyKZ7yyxPZIUtYQl2N5X3hJCkXco2FsQS9SKHD/2cL6HvWW95GXpLlzZjrXXlRjywt86813nGs/6Bsw9Y4l3GOYwiFDrJKkYuM7kHyivtK5tjxZZGseuJ9d0yptx6e6yr2+bb8tiicUcT9xrffNaNT92Eu2yK4gb4thyhoipAYGBk29w4Y7fzxW7lybybjdH7gCAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxbrPg8vm8QoYMJFfWnvm8e05WIFuoWiTqvhZrXluQM/QO234OqZxaZqq/5OJPONdeOme2qffs2jrn2nf2HzD1zhv2SyhImXonwrb6qqnFzrWZfNrUO2TI9ouF4qbeJSUlht62+2bUcKeIRW0PdfG4LQsukXAP98vlMqbeQ4Zaa9bljJmznGsLE+73h3TabRu5AgIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeDFuo3iCvCTHZA5LvI41dsaSrpPPucf2nPgH7s3DEfe4FEkKDKkmgXGXpHM521rkvva58y819Z523TT33u+8Y+q97929zrWHD7WbelcmK031ZcXukTaB4bw6Ue8eDZPJZk29oyH3+4T1p+FI2P3hq7DIPSpHksrKSk318YJC59p0xhaV1B/rc64tSyZNvf/81s851x7rdI+yGhwakn6y+Yx1XAEBALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvBi3WXAnguDcAs0CQ/BZkDeEpJ34F+6lxt45uedk5fO2DK5INObeO2frnRoYMtUXRd1zsi6qnWnqPbVqqnNt23vvmXofPXrYuban1z2vS5Jqa2psa/mg17n2WJdtLT097vWDGVsOYCg76FxbUznF1HtgKOVcW1JSZOqdNGaqRRMFzrWplPu6Jamvu9u5NhaPm3qXlJc712ZS7udJdNDtMYIrIACAF6M+gL75zW8qFAqNuM2fP3+0vw0AYIIbk1/BXX755Xr11Vf/95tEx/Fv+gAAXozJZIhGo6ox/o4bAHBhGZO/Ab377ruqq6vT7Nmz9cUvflH79+8/bW0qlVJPT8+IGwBg8hv1AbR48WJt2LBBmzdv1vr169XW1qbPfvaz6u099bN4mpublUwmh2/19fWjvSQAwDg06gNoxYoV+ou/+AstWLBAy5Yt03/8x3+oq6tLP/nJT05Zv3btWnV3dw/f2tttb20MAJiYxvzZAeXl5brkkku0d+/eU349kUgokbC9XzsAYOIb89cB9fX1ad++faqtrR3rbwUAmEBGfQB9+ctfVktLi9577z398pe/1Oc+9zlFIhF9/vOfH+1vBQCYwEb9V3AHDhzQ5z//eR07dkzTpk3TZz7zGW3fvl3Tpk0z9Tn5IlYXQeAel5PP26JELL2tQiHDuq3ryLrH64SM8SoFhbZYk+kV7sc+lMqYeofd04xUXW27Cl/5f+5wX0fU9rNc2/73TfV7f/+2c+0f3v6tqfd7bfuca4uLS0y9C0pKnWuvutL2gvXf73vPuTZe4B6VI0llyTJTfTThHjfVd5onZJ22dzTiXmxMGrM8vsVi7uMilnVb86gPoGeffXa0WwIAJiGy4AAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXoz52zGcLUtGkWtmnLV2zHuP4fgPG362iMdt675q0VWm+osvucS5Npuz5dIp6n4Kz7vsclPrmCE/LJ1zz96TpHjZFFN9UYl7NllBLGbqvWfnDufaIJ829c5nBp1ri4uKTb3r6mqca/uHbOdVzLgPy6eUO9fGjb07D/7RuTZsfFCx3PNjsbh7rWO+JFdAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvxm0UTygUco62scT2nM06XIXDtnkei0UMtbb4jnjcPUZmel2tqfefr7zVVF9dM825ttcQ3SJJuaNHnGujxn2osPvxKS4uNbWumOoeIyNJ0WjCvdZ4Hh4/dtS59sih9029Qxn36J4iY5TVlQs/6Vz71u/3mnofOnTIVJ/Ju9fG4+6RNpKUNuzDWMS2DyNR93M8EnE/r1xruQICAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeDFus+DCklxTjQJLhpQxb2os5XI551przpxC7vl4gXGX7D9oy8mKGDLvCosLTb1zA0POtaFQytQ7b4gY7O1zX4cklRSXmOqjiSLn2otmzzP1XnhNl3Ptf736gal3eshwfIxZfeVTK51rp0+3HZ83f/eqqb513z7n2njMlgXX+0GXc211pfs+kaS+nj7n2kTE/X4cdsxR5AoIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4AUDCADgBQMIAOAFAwgA4MU4zoILK+yYBpeTIbTLug5DBlsQ2NYROKfdSaGwLbAtn3fPmTvc2Wnq/cwzPzbVX/WpTznXXnPtNabeJUn3TLV43JbBVVpa6lwbNmYMho3H05J3mIsmTL2n1tU718665FJT7yOdHe7rmFZl6p1IuG9nfb37NkrSihXLTfWB4XHi2LHjpt6/+uWvnGsrpkw19Q4ZHoOKitzvD0FAFhwAYBwzD6DXX39dN998s+rq6hQKhfT888+P+HoQBHrooYdUW1urwsJCNTY26t133x2t9QIAJgnzAOrv79fChQu1bt26U3798ccf1/e+9z09+eST2rFjh4qLi7Vs2TINGWLZAQCTn/lvQCtWrNCKFStO+bUgCPTEE0/o61//um655RZJ0g9/+ENVV1fr+eef1x133HFuqwUATBqj+jegtrY2dXR0qLGxcfhzyWRSixcv1rZt2075b1KplHp6ekbcAACT36gOoI6OE894qa6uHvH56urq4a99WHNzs5LJ5PDN+mwVAMDE5P1ZcGvXrlV3d/fwrb293feSAADnwagOoJqaGklS54deV9LZ2Tn8tQ9LJBIqKysbcQMATH6jOoBmzZqlmpoabdmyZfhzPT092rFjhxoaGkbzWwEAJjjzs+D6+vq0d+/e4Y/b2tq0e/duVVRUaMaMGXrggQf0j//4j7r44os1a9YsfeMb31BdXZ1uvfXW0Vw3AGCCMw+gnTt36oYbbhj+eM2aNZKkVatWacOGDfrKV76i/v5+3XPPPerq6tJnPvMZbd68WQUFBabvE49HnWNw8pYIHGMESsgQsWGJ7ZGkSNS9PhJxi7Y4KZ/LO9cOZgdNvY8dOWqqz2UzzrWJQluMzNx5c51rrefg4KD7fkkmk6beVoUlhsihiO08rDJE4Hzq07aopPb97zvXxguKTL2LDPsk0ICp95w5c0z1pcly59rW1ndMvXeGf+1ebIyEskQ8WaLDXGvNA2jJkiUfm3kWCoX06KOP6tFHH7W2BgBcQLw/Cw4AcGFiAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALwwR/GcL7FYxDlbLTDEH1myj6QT0ULuxabWptgm0zokhQ05c9GwLWeuMGHLaxsYcM/hOnLkiKn3wqsWOteWlBSbelsOqPWdfIeGhkz1Rf19zrWJAtvxiRsOf7yo1NR7Wo37G0xmcjlT75AhHzEUtZ3j/b39pvp81j17sa/bdq5kMlnn2qFs2tS7t9/9vlkQdx8XqYxb/iNXQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAAL8ZtFE84HFI47BaFYoniySswrSOQe8RG3r1UkhQxROAEtmWbUoGiUdtpUFJUZKrv7el1rj18+LCpd2dnp3NtJFJn6p1MJp1rA+MByhtPlqEB92iYXNYW89NniMDJ5mzrzoXcz/FYYYGpd8QxqkuSonG3aJiz6S3Z4nWsUTyWcyudc4/tkaTjXd3OtcUFcefagcGUUx1XQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvxm0WXPA//znVWoPSDEIh91S1iCWAzdjbUPo/3PdJ1pAFdjb1rsdRkgYMmWeS1LbvD861fb19pt4zZ85wrp1aWWnqXVBgyz2Lxdwz1dJpWxacJZYuFjOu2z0+TPG4oVgyBSTmrVmKSdvP5u8c+L1zbfv77abeuYx7vlveUCtJQ4ODzrWDQ+7n1VDKrZYrIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAF+M3iiewJG0YcmrMsT2GemNeThC4Z6DkZYvYiEYsh9a2T3KBLYonk3Nfe9QYOZQfcI/XOXzAPXZEkooS7vuwsDBh6h02Ryu5949EbJE28bh7zE80GjP1jsXc6y3RVJKUyVruE+7bKEl9PQOm+v0HDjrXth/4o6l3dsA9AidSVGLqHTLsw8CQ2eRayxUQAMALBhAAwAvzAHr99dd18803q66uTqFQSM8///yIr995550KhUIjbsuXLx+t9QIAJgnzAOrv79fChQu1bt2609YsX75chw4dGr4988wz57RIAMDkY34SwooVK7RixYqPrUkkEqqpqTnrRQEAJr8x+RvQ1q1bVVVVpXnz5um+++7TsWPHTlubSqXU09Mz4gYAmPxGfQAtX75cP/zhD7Vlyxb98z//s1paWrRixQrlTvMums3NzUomk8O3+vr60V4SAGAcGvXXAd1xxx3D/3/llVdqwYIFmjNnjrZu3aqlS5d+pH7t2rVas2bN8Mc9PT0MIQC4AIz507Bnz56tyspK7d2795RfTyQSKisrG3EDAEx+Yz6ADhw4oGPHjqm2tnasvxUAYAIx/wqur69vxNVMW1ubdu/erYqKClVUVOiRRx7RypUrVVNTo3379ukrX/mK5s6dq2XLlo3qwgEAE5t5AO3cuVM33HDD8Mcn/36zatUqrV+/Xnv27NG//du/qaurS3V1dbrpppv0D//wD0okbFlZeUPukEVgzIKz1FuzrMIhwwVo3rpuS7GptXKhtG0tGfe8qaKobTEVRe712bwtTy8epJxrQzn3WklKpW3ZZJbfVZQU2/LALHltkaht3aGQ4f5j6ixFIu47JRSy5eNFTFmKUjjivl9O94Ss07E8FsaMWX2DA+6Zd11dXc61Q0Nu+XXmAbRkyZKPfVB++eWXrS0BABcgsuAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF6M+vsBjZaxyoIbT0KWwDZjFlzeUJ8JGbOpDNlukpTLuGfHZYf6Tb0Heo4410aiBabeSrnnZEXytn0YNWaqmX5UDNvOlVjc/WHAer/MZDLOteYsRUNemzXbLZlMmuqrq6uda4sKC029+7rc3yU6lXLLYDvpwIF259r+wT7DOtzu81wBAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8GLdRPBaBJdJmDFnXYQk1CRk30VJuTEBRKG+M4sm6x9Qc/sA9dkSS8u8MOtdWJKeaeldVz3KuDeVtP8sFOeO5knM/WwYH3SOEJCkacY8FCodt25nLuZ8rEcM6JClsOG+t981o1PbQaIniqTLUSlLXsQ/caz/oMvU+etQ9yqqkrNi5NpMligcAMI4xgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXkyKLDiL8ZIbJ9ny2vKmaiNrzpwlxE5S3vAPelK23paQvGjM1jqbdf8H0XDC1DswZsdls+6ZaoExq2/AkO9mzUhLpdwPaDxuO0ChkGEfmu/3tvry8qRz7fSLLjL1PnzwkHPtBx+458ZJtuPT19fvXJtOZ5zquAICAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxfqN4gtCJm1Otpe9ZrWZMhAwxMvafFBz3naSQoVaSjEk8xn0eMbUOxwuca0PGLJ50zj3SJp1zix45Kcjb9rmlvfVciUQsDwO2dVt6xw3HUpKyWfedkssMmXpbHyciEff9Ei+0xTYp5n6fSBtzskqTU5xrp180w7nWNeKHKyAAgBemAdTc3Kyrr75apaWlqqqq0q233qrW1tYRNUNDQ2pqatLUqVNVUlKilStXqrOzc1QXDQCY+EwDqKWlRU1NTdq+fbteeeUVZTIZ3XTTTerv/9+U1AcffFAvvviinnvuObW0tOjgwYO67bbbRn3hAICJzfQ3oM2bN4/4eMOGDaqqqtKuXbt0/fXXq7u7W0899ZQ2btyoG2+8UZL09NNP69JLL9X27dt17bXXjt7KAQAT2jn9Dai7u1uSVFFRIUnatWuXMpmMGhsbh2vmz5+vGTNmaNu2bafskUql1NPTM+IGAJj8znoA5fN5PfDAA7ruuut0xRVXSJI6OjoUj8dVXl4+ora6ulodHR2n7NPc3KxkMjl8q6+vP9slAQAmkLMeQE1NTXrzzTf17LPPntMC1q5dq+7u7uFbe3v7OfUDAEwMZ/U6oNWrV+ull17S66+/runTpw9/vqamRul0Wl1dXSOugjo7O1VTU3PKXolEQomE8XnxAIAJz3QFFASBVq9erU2bNum1117TrFmzRnx90aJFisVi2rJly/DnWltbtX//fjU0NIzOigEAk4LpCqipqUkbN27UCy+8oNLS0uG/6ySTSRUWFiqZTOquu+7SmjVrVFFRobKyMt1///1qaGjgGXAAgBFMA2j9+vWSpCVLloz4/NNPP60777xTkvSd73xH4XBYK1euVCqV0rJly/SDH/xgVBYLAJg8TAMoCM4ckFRQUKB169Zp3bp1Z72ok9/L5fu5rmt8cl93yBxiZ8mCs4mEbM9dCYXdv0M4YsyCC7vXD6bd8qlOOt7T5VzbPzRg6h2K5Ez14aj7XTVmqJVOpJe4yuVs6y4qKnKuHRwcNPXOZNyz4Ayxi5Js55UkZfPu+yVWEDf1jhcVOtcWlhSbetfWXeRcW13rXjs46HZOkQUHAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPDirN6O4XwIgrx7FM8Yr8VVyJppY+tuqzaUh8xhPLafWyIR9yMUjdhOybwhFihr6iwdPn7cufZQ52FT76k100z1ecMhiseNUS+G+nw+b+pticmy9o5YYpvMDxK2syUcdT8Pa2pP/dY0p7NgwQLn2j8ePGjqfdHMmc61iWL3mJ982G1/cAUEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8IIBBADwggEEAPCCAQQA8GLcZsGVJksUccwTSqVSzn0zmbRpHfm8e4hUEFhzstxrw4774qSIIVMtEomZeiuwrSVnyPhKFBSYescSCffeRUWm3r1D7udV55Gjpt5VxjyweNQ99yyVyZh6R6Pu54o1ry2ddr+/WTPsLPeJbD5n6x0y5MxJCoXd78ylZWWm3jM+4Z7XNmTY35KUyrpn3nX3D7ivY3DIqY4rIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAF+M2iqe6qkpRx/iRdNo9MiWXs0VyZAyxJum0LQLFshZjAorCYfcokVjUFsUTGKN4sobtTE5JmnqXJN1jTUpLi02984Z1pzLukSaSlE7ZzpUSQ0xNRLaTxRKvY43iicXczy3LfU0y3peNUVZ52Y5nJuu+llDEtpbBlFusjSQd7Ogw9Z5WV+9cW2A49lnHWDKugAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABeMIAAAF4wgAAAXjCAAABejNssuGwm4xyAFou4503Fo+6ZWpIUN/QuTASm3hlDllUmkzb1DodCzrWRiPE0CNuy40KGfV5TW2vqXVJc5FxbUJgw9R4cGHCu7etzr5WkfmN9SWmJc22Qt52HacO5FQS23pbsOGvvSMQ97zCesN3vQyH33pKkwP3+Zj0+x48ed6597w/vm3pfdvlVzrWRkPv9PuKYpccVEADAC9MAam5u1tVXX63S0lJVVVXp1ltvVWtr64iaJUuWKBQKjbjde++9o7poAMDEZxpALS0tampq0vbt2/XKK68ok8nopptuUn9//4i6u+++W4cOHRq+Pf7446O6aADAxGf65f/mzZtHfLxhwwZVVVVp165duv7664c/X1RUpJqamtFZIQBgUjqnvwF1d3dLkioqKkZ8/kc/+pEqKyt1xRVXaO3atRr4mD/mplIp9fT0jLgBACa/s34WXD6f1wMPPKDrrrtOV1xxxfDnv/CFL2jmzJmqq6vTnj179NWvflWtra366U9/eso+zc3NeuSRR852GQCACeqsB1BTU5PefPNN/eIXvxjx+XvuuWf4/6+88krV1tZq6dKl2rdvn+bMmfORPmvXrtWaNWuGP+7p6VF9vfvbxAIAJqazGkCrV6/WSy+9pNdff13Tp0//2NrFixdLkvbu3XvKAZRIJJRI2F6fAQCY+EwDKAgC3X///dq0aZO2bt2qWbNmnfHf7N69W5JUa3yBIQBgcjMNoKamJm3cuFEvvPCCSktL1dHRIUlKJpMqLCzUvn37tHHjRv3Zn/2Zpk6dqj179ujBBx/U9ddfrwULFozJBgAAJibTAFq/fr2kEy82/f89/fTTuvPOOxWPx/Xqq6/qiSeeUH9/v+rr67Vy5Up9/etfH7UFAwAmB/Ov4D5OfX29WlpazmlBw98rl5NrYlIm65Y7JEkhQ0aaJKXTGefacMT2rPahlHsGVybrvg5JKipwz74KAvf9J0nZrC3LaurUSufaiy+5xNQ7Zjic2awtT8/ygoAPDneaeh8/dtRUP72+zrk245jDddLQ0JBzbdpwzkpSPO5+Hlqy3SQpa7jfF+XcMwMlqbjYPXtPkiKGx5Vsznb/OXjgkHNt1/FuU+8g455HmUul3GvTbucJWXAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC/O+v2AxloQCisIuc3HbM49puZMcUIfljbEfcg91UKS1Dcw6FwbidpiSnJ5w3aGbPtkcLDfVB8Lu8eUXDJ3tql3KO9+fP7Yvt/UO9XrXhsz7sMPjh021QeB+8lVUmKLkcnn8861x48fN/Xu73c/V6xRPJb7srV3UVGxqV6GKJ6+vj5T6yNHjzjXWh/fBvq6nGuPh93PwZRjbA9XQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvGEAAAC8YQAAALxhAAAAvxm0W3LWfvUGJRMKpNptzzyjKWrLdJKWG3DKNJCmdSZt6W3KyBvp7TL2PH+4w9DaEnknKZ92z9yQpHnP/OSebdd/fknSo/T3n2vZ9fzD1Hup1z+wqMOTdSVI+ZztXenq7nGunldSZekej7g8DR46455JZ6y3rkKTiYve8tqKiIlNva6aa5H78e3ps9+WBgQHn2oICt8fMk2LxmHNtsrzMuXZoaMipjisgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAXDCAAgBcMIACAFwwgAIAX4zaKp+YTF6ugsNCpNhR2n6P5XN60jkzGPXYmY4yoGeztdq5tb3vX1Luvx7238rZ4onTaFpfT3+ce9bPtl/9l6n3g/Tb34gG3eJCT4oZ4lURB3NQ7FLWdhwMD7rFAubytdyjkvp3ptC1CKJUyRFkZe7vGvVjXIUlhw2PKCRHnSut2lpaWOteWlU0x9Z536WXOtUsblzrX9vX26dFH/+8Z67gCAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHjBAAIAeMEAAgB4wQACAHgxbrPghnJ5yTG3LRy4981lc6Z15HLuzdNpW6aaJSPt2OGDpt5Ku+dkTSkqMrWOBoYdLqnzoPva/3ig3dQ77B5jpqJowtQ7HnL/+ex4r/uxlKSSrC0PTIZ8t4KoYadIykbdHwZKSspMvdMZ93Ol0DH78aShgX7n2ojxZ+1YxPbQGFj6G+8/MpRnc7bHoJwhG3NG/Uzn2p6eHqc6roAAAF6YBtD69eu1YMEClZWVqaysTA0NDfrZz342/PWhoSE1NTVp6tSpKikp0cqVK9XZ2TnqiwYATHymATR9+nQ99thj2rVrl3bu3Kkbb7xRt9xyi9566y1J0oMPPqgXX3xRzz33nFpaWnTw4EHddtttY7JwAMDEZvpF58033zzi43/6p3/S+vXrtX37dk2fPl1PPfWUNm7cqBtvvFGS9PTTT+vSSy/V9u3bde21147eqgEAE95Z/w0ol8vp2WefVX9/vxoaGrRr1y5lMhk1NjYO18yfP18zZszQtm3bTtsnlUqpp6dnxA0AMPmZB9Bvf/tblZSUKJFI6N5779WmTZt02WWXqaOjQ/F4XOXl5SPqq6ur1dHRcdp+zc3NSiaTw7f6+nrzRgAAJh7zAJo3b552796tHTt26L777tOqVav09ttvn/UC1q5dq+7u7uFbe7vtabgAgInJ/DqgeDyuuXPnSpIWLVqkX//61/rud7+r22+/Xel0Wl1dXSOugjo7O1VTU3PafolEQomE7fUZAICJ75xfB5TP55VKpbRo0SLFYjFt2bJl+Gutra3av3+/GhoazvXbAAAmGdMV0Nq1a7VixQrNmDFDvb292rhxo7Zu3aqXX35ZyWRSd911l9asWaOKigqVlZXp/vvvV0NDA8+AAwB8hGkAHT58WH/5l3+pQ4cOKZlMasGCBXr55Zf1p3/6p5Kk73znOwqHw1q5cqVSqZSWLVumH/zgB2e3sMiJm4twyJBVEWRM68hlBp1rswO2OJauo390ru088J6pdziVcq4tnjLF1FtZW9xHb3e3c22/Yd2SFDFEpvQX2CKHLPEtQc4WrRMuLDDVR0Pu8Toh41qUdz+eg4O24/NBl+U+YfuLQCwSd+8csf2yJ2zJv5GUD9wjvrLGGKbBQffIoa5u27OIuz847lwb5Ny30bXWdMSfeuqpj/16QUGB1q1bp3Xr1lnaAgAuQGTBAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvDCnYY+1IDgRgTE0NOT8b8KGmJJs2hYlkjasI2WMkUmn3WOBcrm8qXdgqM9k3SM2JClriOSQpHzePdYkH9giUEKW3nnbPnQ/q6TA2Nu6D4eG3M+tgUH3c1aSBgfdz8N02hYjk8mMXe/A8OOzZf9J0sCAewSXJBlOQ6VStu3MGu6fOfN55X6uWN4stLf3RARTcIb7cyg4U8V5duDAAd6UDgAmgfb2dk2fPv20Xx93Ayifz+vgwYMqLS1V6P+7sunp6VF9fb3a29tVVlbmcYVji+2cPC6EbZTYzslmNLYzCAL19vaqrq5O4fDpL1XH3a/gwuHwx07MsrKySX3wT2I7J48LYRsltnOyOdftTCaTZ6zhSQgAAC8YQAAALybMAEokEnr44YeVSCR8L2VMsZ2Tx4WwjRLbOdmcz+0cd09CAABcGCbMFRAAYHJhAAEAvGAAAQC8YAABALyYMANo3bp1+sQnPqGCggItXrxYv/rVr3wvaVR985vfVCgUGnGbP3++72Wdk9dff10333yz6urqFAqF9Pzzz4/4ehAEeuihh1RbW6vCwkI1Njbq3Xff9bPYc3Cm7bzzzjs/cmyXL1/uZ7Fnqbm5WVdffbVKS0tVVVWlW2+9Va2trSNqhoaG1NTUpKlTp6qkpEQrV65UZ2enpxWfHZftXLJkyUeO57333utpxWdn/fr1WrBgwfCLTRsaGvSzn/1s+Ovn61hOiAH04x//WGvWrNHDDz+s3/zmN1q4cKGWLVumw4cP+17aqLr88st16NCh4dsvfvEL30s6J/39/Vq4cKHWrVt3yq8//vjj+t73vqcnn3xSO3bsUHFxsZYtW2YKSBwPzrSdkrR8+fIRx/aZZ545jys8dy0tLWpqatL27dv1yiuvKJPJ6KabblJ/f/9wzYMPPqgXX3xRzz33nFpaWnTw4EHddtttHldt57KdknT33XePOJ6PP/64pxWfnenTp+uxxx7Trl27tHPnTt1444265ZZb9NZbb0k6j8cymACuueaaoKmpafjjXC4X1NXVBc3NzR5XNboefvjhYOHChb6XMWYkBZs2bRr+OJ/PBzU1NcG3vvWt4c91dXUFiUQieOaZZzyscHR8eDuDIAhWrVoV3HLLLV7WM1YOHz4cSApaWlqCIDhx7GKxWPDcc88N1/zud78LJAXbtm3ztcxz9uHtDIIg+JM/+ZPgb/7mb/wtaoxMmTIl+Jd/+ZfzeizH/RVQOp3Wrl271NjYOPy5cDisxsZGbdu2zePKRt+7776ruro6zZ49W1/84he1f/9+30saM21tbero6BhxXJPJpBYvXjzpjqskbd26VVVVVZo3b57uu+8+HTt2zPeSzkl3d7ckqaKiQpK0a9cuZTKZEcdz/vz5mjFjxoQ+nh/ezpN+9KMfqbKyUldccYXWrl2rgYEBH8sbFblcTs8++6z6+/vV0NBwXo/luAsj/bCjR48ql8upurp6xOerq6v1+9//3tOqRt/ixYu1YcMGzZs3T4cOHdIjjzyiz372s3rzzTdVWlrqe3mjrqOjQ5JOeVxPfm2yWL58uW677TbNmjVL+/bt09///d9rxYoV2rZtmyKRiO/lmeXzeT3wwAO67rrrdMUVV0g6cTzj8bjKy8tH1E7k43mq7ZSkL3zhC5o5c6bq6uq0Z88effWrX1Vra6t++tOfelyt3W9/+1s1NDRoaGhIJSUl2rRpky677DLt3r37vB3LcT+ALhQrVqwY/v8FCxZo8eLFmjlzpn7yk5/orrvu8rgynKs77rhj+P+vvPJKLViwQHPmzNHWrVu1dOlSjys7O01NTXrzzTcn/N8oz+R023nPPfcM//+VV16p2tpaLV26VPv27dOcOXPO9zLP2rx587R79251d3fr3//937Vq1Sq1tLSc1zWM+1/BVVZWKhKJfOQZGJ2dnaqpqfG0qrFXXl6uSy65RHv37vW9lDFx8thdaMdVkmbPnq3KysoJeWxXr16tl156ST//+c9HvG1KTU2N0um0urq6RtRP1ON5uu08lcWLF0vShDue8Xhcc+fO1aJFi9Tc3KyFCxfqu9/97nk9luN+AMXjcS1atEhbtmwZ/lw+n9eWLVvU0NDgcWVjq6+vT/v27VNtba3vpYyJWbNmqaamZsRx7enp0Y4dOyb1cZVOvOvvsWPHJtSxDYJAq1ev1qZNm/Taa69p1qxZI76+aNEixWKxEceztbVV+/fvn1DH80zbeSq7d++WpAl1PE8ln88rlUqd32M5qk9pGCPPPvtskEgkgg0bNgRvv/12cM899wTl5eVBR0eH76WNmr/9278Ntm7dGrS1tQX//d//HTQ2NgaVlZXB4cOHfS/trPX29gZvvPFG8MYbbwSSgm9/+9vBG2+8Ebz//vtBEATBY489FpSXlwcvvPBCsGfPnuCWW24JZs2aFQwODnpeuc3HbWdvb2/w5S9/Odi2bVvQ1tYWvPrqq8FVV10VXHzxxcHQ0JDvpTu77777gmQyGWzdujU4dOjQ8G1gYGC45t577w1mzJgRvPbaa8HOnTuDhoaGoKGhweOq7c60nXv37g0effTRYOfOnUFbW1vwwgsvBLNnzw6uv/56zyu3+drXvha0tLQEbW1twZ49e4Kvfe1rQSgUCv7zP/8zCILzdywnxAAKgiD4/ve/H8yYMSOIx+PBNddcE2zfvt33kkbV7bffHtTW1gbxeDy46KKLgttvvz3Yu3ev72Wdk5///OeBpI/cVq1aFQTBiadif+Mb3wiqq6uDRCIRLF26NGhtbfW76LPwcds5MDAQ3HTTTcG0adOCWCwWzJw5M7j77rsn3A9Pp9o+ScHTTz89XDM4OBj89V//dTBlypSgqKgo+NznPhccOnTI36LPwpm2c//+/cH1118fVFRUBIlEIpg7d27wd3/3d0F3d7ffhRv91V/9VTBz5swgHo8H06ZNC5YuXTo8fILg/B1L3o4BAODFuP8bEABgcmIAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALxgAAEAvGAAAQC8YAABALz4f9epqIgD0GvoAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Real mark: 3\n","NN answer: 3\n"]}]},{"cell_type":"code","source":["# истинные метки классов\n","true_labels = np.argmax(y_test, axis=1)\n","# предсказанные метки классов\n","predicted_labels = np.argmax(model.predict(X_test), axis=1)\n","\n","# отчет о качестве классификации\n","print(classification_report(true_labels, predicted_labels, target_names=class_names))\n","# вычисление матрицы ошибок\n","conf_matrix = confusion_matrix(true_labels, predicted_labels)\n","# отрисовка матрицы ошибок в виде \"тепловой карты\"\n","fig, ax = plt.subplots(figsize=(6, 6))\n","disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names)\n","disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра\n","plt.tight_layout() # чтобы всё влезло\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":898},"id":"757ub76BNjY4","executionInfo":{"status":"ok","timestamp":1765218354931,"user_tz":-180,"elapsed":11282,"user":{"displayName":"Чиёми Анзай","userId":"17549274460477558773"}},"outputId":"f5cac39f-9212-44a7-af3c-ed0c369438ba"},"execution_count":32,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 9ms/step\n"," precision recall f1-score support\n","\n"," airplane 0.86 0.88 0.87 986\n"," automobile 0.94 0.93 0.94 971\n"," bird 0.75 0.85 0.80 1043\n"," cat 0.83 0.64 0.72 1037\n"," deer 0.78 0.90 0.83 969\n"," dog 0.78 0.75 0.76 979\n"," frog 0.83 0.92 0.87 1025\n"," horse 0.92 0.83 0.87 948\n"," ship 0.93 0.93 0.93 1003\n"," truck 0.94 0.90 0.92 1039\n","\n"," accuracy 0.85 10000\n"," macro avg 0.86 0.85 0.85 10000\n","weighted avg 0.86 0.85 0.85 10000\n","\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkYAAAIvCAYAAACRJhT+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8DpJREFUeJzs3Xd8E/UbwPFPks50t9CWQqGUlj0FRZbgQFRAxImCDJFdkD0EZchQBEQUUVFZoog/FcWBIAoKIlA2FMrooqWT7t0m+f2REogtUKCXtPZ5v155vZq7y92T9HJ57rnv93sqg8FgQAghhBBCoLZ2AEIIIYQQlYUkRkIIIYQQJSQxEkIIIYQoIYmREEIIIUQJSYyEEEIIIUpIYiSEEEIIUUISIyGEEEKIEjbWDkAIIYQQlpWfn09hYaHi27Gzs8PBwUHx7VQkSYyEEEKIaiQ/P5/69ZxJSNIpvi1fX18iIyOrVHIkiZEQQghRjRQWFpKQpCP6UACuLsq1qMnM0lOvbRSFhYWSGAkhhBCicnN2UeHsolJs/XqUW7eSpPG1EEIIIUQJqRgJIYQQ1ZDOoEen4G3kdQa9citXkFSMhBBCCCFKSMVICCGEqIb0GNCjXMlIyXUrSSpGQgghhBAlpGIkhBBCVEN69CjZCkjZtStHKkZCCCGEECWkYiSEEEJUQzqDAZ1BuXZASq5bSVIxEkIIIYQoIRUjIYQQohqSXmllk4qREEIIIUQJqRgJIYQQ1ZAeAzqpGJUiFSMhhBBCiBKSGAkhhBBClJBLaUIIIUQ1JI2vyyYVIyGEEEKIElIxEkIIIaohGeCxbFIxEkIIIYQoIRUjIYQQohrSlzyUXH9VJBUjIYQQQogSUjESQgghqiGdwgM8KrluJUnFSAghhBCihFSMhBBCiGpIZzA+lFx/VSQVIyGEEEKIElIxEkIIIaoh6ZVWNqkYCSGEEEKUkIqREEIIUQ3pUaFDpej6qyKpGAkhhBBClJCKkRBCCFEN6Q3Gh5Lrr4qkYiSEEEIIUUIqRkIIIUQ1pFO4jZGS61aSVIyEEEIIIUpIxUgIIYSohqRiVDapGAkhhBBClJCKkRBCCFEN6Q0q9AYFxzFScN1KkoqREEIIIUQJqRgJIYQQ1ZC0MSqbVIyEEEIIIUpIxUgIIYSohnSo0SlYH9EptmZlScVICCGEEKKEVIyEEEKIasigcK80g/RKE0IIIYSo2qRiJIQQQlRD0iutbFIxEkIIIYQoIRUjIYQQohrSGdToDAr2SjMotmpFScVICCGEEKKEVIyEEEKIakiPCr2C9RE9VbNkJBUjIYQQQogSUjESQgghqiHplVY2qRgJIYQQQpSQipEQQghRDSnfK03aGAkhhBBCVGlSMRJCCCGqIWOvNOXaASm5biVJxUgIIYQQooRUjIQQQohqSI8anYxjVIpUjIQQQgghSkjFSAghhKiGpFda2aRiJIQQQghRQipGQgghRDWkRy33SiuDVIyEEEIIIUpIxUgIIYSohnQGFTqDgvdKU3DdSpKKkRBCCCFECakYCSGEENWQTuFxjHTSxkgIIYQQomqTipEQQghRDekNavQKjmOkl3GMhBBCCCGqNqkYCSGEENWQtDEqm1SMhBBCCCFKSMVICCGEqIb0KDvWkF6xNStLKkZCCCGEECWkYiSEEEJUQ8rfK61q1l6qZtRCCCGEEAqQitF/kF6v59KlS7i4uKBSVc171QghRHVmMBjIysrCz88PtVqZGobOoEan4DhGt7JunU7HnDlz+Pzzz0lISMDPz4/Bgwcza9Ys0++YwWBg9uzZrF69mvT0dDp16sSqVasIDg42rSc1NZWxY8eydetW1Go1Tz31FO+++y7Ozs7ljkUSo/+gS5cu4e/vb+0whBBC3KGLFy9Sp04da4ehuLfeeotVq1axbt06mjVrRmhoKEOGDMHNzY1x48YBsHjxYlasWMG6deuoX78+r732Gj169CAsLAwHBwcA+vfvT3x8PDt27KCoqIghQ4YwfPhwvvjii3LHojIYqujQlOK6MjIycHd3Z+s+P5ycK8/V0nkt2lo7hFI0nh7WDqEUXVq6tUMoTVV59iMTvc7aEZSm1lg7gtIq4eek1jpaO4RS9PmF1g7BTLGhiD2GraSnp+Pm5lah687MzMTNzY33D7XH0Vm5+khedjEhbfeTkZGBq6vrDZft1asXPj4+fPrpp6ZpTz31FI6Ojnz++ecYDAb8/PyYNGkSkydPBoy/dT4+Pqxdu5Z+/fpx+vRpmjZtysGDB2nXrh0A27Zt47HHHiM2NhY/P79yxS0Vo/+gK2VHJ2c1zi6V5wfNRmVr7RBK0ajtrB1CKapK+DlVysSoUsZUCROjSvg5qVWV73unV1XCGoEBRZtD6FGhR9n1gzERu5a9vT329vZm0zp27MjHH3/M2bNnadiwIceOHWPPnj0sW7YMgMjISBISEnjooYdMr3Fzc6N9+/bs27ePfv36sW/fPtzd3U1JEcBDDz2EWq1m//799O3bt1xxS2IkhBBCCMX8u2nH7NmzmTNnjtm06dOnk5mZSePGjdFoNOh0OhYsWED//v0BSEhIAMDHx8fsdT4+PqZ5CQkJeHt7m823sbHB09PTtEx5SGIkhBBCVEOWanx98eJFs0tp/64WAWzevJmNGzfyxRdf0KxZM44ePcr48ePx8/Nj0KBBisVYFkmMhBBCCKEYV1fXm7YxmjJlCtOnT6dfv34AtGjRgujoaBYtWsSgQYPw9fUFIDExkVq1aplel5iYSOvWrQHw9fUlKSnJbL3FxcWkpqaaXl8ele/isxBCCCEUd+Umsko+yis3N7fUsAQajQa93nhjkfr16+Pr68vOnTtN8zMzM9m/fz8dOnQAoEOHDqSnp3Po0CHTMr///jt6vZ727duXOxapGAkhhBDCqnr37s2CBQuoW7cuzZo148iRIyxbtoyXXnoJMDZCHz9+PPPnzyc4ONjUXd/Pz48nnngCgCZNmvDII48wbNgwPvzwQ4qKiggJCaFfv37l7pEGkhgJIYQQ1ZLeoEKv5E1kb2Hd7733Hq+99hqjR48mKSkJPz8/RowYweuvv25aZurUqeTk5DB8+HDS09Pp3Lkz27ZtM41hBLBx40ZCQkJ48MEHTQM8rlix4pbilnGM/oOujFHx+4k6laq7/qv177F2CKVovDytHUIputQ0a4dQWiXs8l0Zx+eRcYzKR63VWjuEUvT5BdYOwUyxoYhd+m/LNQbQrbryG7H4YBfFxzGaevdfirwHJUnFSAghhKiG9LfYDuh21l8VVc2ohRBCCCEUIBUjIYQQohrSG9ToFRzHSMl1K6naJUZRUVHUr1+fI0eOmMY+uF2DBw8mPT2dLVu2VEhslqDXwc7ltTm6pQZZyba4+hRy11Mp3D/2EteOPJ903oFtb/oTecAFfbEK7+A8+n9wHvfaxvsJZSXb8stCf87vcaUgR0PNwHy6jblE80eVaR/zXEginR7LwD+ogMJ8NWGhWj5dUIvYCw43f7ECnhkazZDxEWzZUIePFxvv7OzhVcDQSRdo3SENrbaY2CgtX62ux97fvG+ytoozYGI8L05KNJt28bw9L3dtYrEYmrfP4pmRiQS3yMPLt4g5QwPZ96u7aX6nR9PoOSCF4Ja5uHroGPVwYyLCLNvmpNfAFHoOvIyPv3F/jg53YOM7PoT+Yb12EGq1gQET43nwyVQ8vIu4nGDLjq+9+OJdX1Dwtg03Yu3P6dmRcXR6+DJ1AvMoLFATdtiFzxbXIy7SeK8179r5rNt9pMzXLhjbkD2/eCkSV1XYx8Xtq3aJkb+/P/Hx8dSoUcPaoVjFnx/WYv9Gb55eEoFPwzxijzvxzdRAHFx0dBxi/EG9HG3PR880pd2zyTw0IQ57Zx1JZx2xsdeb1vP1xEDyMzW8uPocTp7FHP3eiy9Dghjzwyn8muVWeNwtO+SwdW0Nzh7VorExMHh6PAu/jGBY10YU5Fm2wWtws0weffoSEeFOZtMnLTyNk0sx88a2IDPdlm6PJTJ9ySle6edIxBkXi8UXdcaB6f0amJ7rii37o+qg1RMRpuXXr2ow+5OIMuefOujMnz96MOHtGIvGdkVyvC2fLaxFXKQ9KhV0fyaVOWuiGPNwQ6LPWifZfnZ0Ir0GJrNkfADRZx0IbpXLpKXR5GRp+P4zyyXX17L259Tingy2fu7L2RPOaDQGBk+KYcHaMEY80pqCPA0p8fa8cK/5zakf7ZfIUy9fInS3u2JxVYV9vDx0qNApmHQruW4lVbvESKPR3HAETIPBgE6nw8bmv/nRRB92oUn3dBo/kAGAR51Cjm/NIPbY1R/57Uvq0KhbOo/OuGia5lXPvMdGzGFn+rwRhX/rHAAeGHuJvZ/5EnfCSZHEaGb/QLPnS8fXZfPJUwS3zOPkfucK3971ODgWM/XNMFbMbUS/4dFm85q0zmTlGw05e9J4Nr3p4wCeePEiwU2zLJoY6XSQlmy9G9GG/uFG6B/Xvxv4zm+MZ/E+dazXC2j/DvP41r5Vi14DL9O4bY7VEqOm7bLZt92dA78bY0uMtef+Pmk0KvmOWYO1P6fXXmpq9nzZtCA2HQgluHkOJw+6oterSEsxvyFtx4dT+esXL/JzlTthqgr7uLh9VfMC4E1s27aNzp074+7ujpeXF7169eLChQuA8VKaSqXi6NGjAOzatQuVSsUvv/xC27Ztsbe3Z8+ePcyZM4fWrVvz0Ucf4e/vj1ar5dlnnyUjI+O2tnvttr/99lvuv/9+tFotrVq1Yt++fWbr2bNnD126dMHR0RF/f3/GjRtHTk7FHBzr3ZXFhb2upEQYD2rxYY5EHXShYTfj+9LrIfwPd2rUz2fNwEYsaNeGD55oSth2d7P11L0rm+M/eZGbrkGvh2NbPSkuUBF4b+a/N6kIJ1djF+SsdMtWi0bPPMeBv7w4+k/pbv6nj7py3yNJOLsWoVIZuO+RROzs9Bw/6G7RGGvXL+SLQydZ+3cY096LpqZfoUW3X9Wo1Qa69knDXqvndKjTzV+gkLBQZ1p3yqJ2/XwAApvk0uzubA7e4AfYkirD56R1KQYgK73sE9egZtk0aJrLr5t9ypwvzF1pY6TkoyqqmlHfRE5ODhMnTiQ0NJSdO3eiVqvp27evaWjxskyfPp0333yT06dP07JlSwDOnz/P5s2b2bp1K9u2bePIkSOMHj36jrc7c+ZMJk+ezNGjR2nYsCHPP/88xcXGL/yFCxd45JFHeOqppzh+/DhfffUVe/bsISQk5LrbLSgoIDMz0+xxPfeNiqdl78u881ALZgW34/1ezen0UgKtn7hsfA+XbSnM0bD7w1oEd01nyPpwmvVIY+PIYCL+uVr1eH7lefRFKua3acvrjdqxZWYAAz48h1eA8mdIKpWBkXPjOHlAS3S4o+Lbu+K+RxIJaprF2uWBZc5fNLkZGhs9m/fu4ftDuxn7ejhvjG9B/EXLtS04c8SJJRPqMnNAA96bUQffugUs/e4cjk6VbywbawtonMeWcyf4Meo4496MZd7QAGLOWadaBPDVSh92/+DBJ7vD+CnyMCt/PcN3n3jzx3fWHWursnxOKpWBETOjOBXqQvS5sr9TPZ5NIua8I6ePWK5CK/57/pPXi5566imz55999hk1a9YkLCwMZ+eyL7vMmzeP7t27m03Lz89n/fr11K5dGzCOzNmzZ0+WLl1a5uW4G223efPmpumTJ0+mZ8+eAMydO5dmzZpx/vx5GjduzKJFi+jfvz/jx48HIDg4mBUrVtC1a1dWrVplNsLnFYsWLWLu3Lk3+VSMTvzkybHvvXj23Qv4BOcRH6blxzfq4epTxF1PpWAoyeGadE+n81BjmyO/prlEH3LmwBfeBN6bBcCOpXXIy9Tw0udncPIoImyHB1+GBDF882l8G+eVK5bbFbIwjnqN85n0RJCi27lWDZ98Rkw/x8zhrSkqLLtK9WJIJM4uxcx4uRWZaXZ0eCCZGUtOMXVwG6LOWeZy37WNYiNPO3LmiJYN+8O4r3c6v25SpiFqVRV7wZ7R3RuiddHRpVcGk9+NYcqTQVZLju7rncYDfVN5MySA6LOONGiWy8g5sVxOtOW3/1nvf1dZPqcxcyIJaJjH5H7NypxvZ6+jW+8UvlxZx6JxVWU6lG0HVFVPx/6TFaNz587x/PPPExgYiKurKwEBAQDExFy/EVy7du1KTatbt64pKQLjDer0ej3h4eF3tN0rFSnAdJfgK3cEPnbsGGvXrsXZ2dn06NGjB3q9nsjIyDK3O2PGDDIyMkyPixcvlrkcwLZF/tw3Mp5WvVPxbZxHmycv0+mlBHZ9YIxD61GM2kaPd5B5cuMdlEf6JeO1/MvR9vyz3oenFkcS1CmTWk3zePCVS9RumcM/G5QtYY9ZEEv77plMfboBKfF2N39BBQluloWHVxHvfRXK1iO72HpkFy3vTufx/rFsPbIL3zp5PP5CHO+83oRj+z2JPOvMFx/W51yYC736xVkszn/LybQhNsIePwtU8qqa4iI1l6LsOX9Cy5pFtYgMc+SJl5OtFs+wWXF8tdKX3T94EnXGkZ3fePHtam/6hSRYLSaoHJ/TqNkR3PNAGtMGNCUlwb7MZTo/moq9g56d39W0aGziv+c/WTHq3bs39erVY/Xq1fj5+aHX62nevDmFhddva+HkdOfXzMu7XVvbqw1jVSV95K9cbsvOzmbEiBGMGzeu1Prr1q1b5nbt7e2xty/7YPFvhXmaUnd3UGsMGPTGOGzsDNRpmWNqg3RFSqSDqat+UZ5xBSq1+d1k1GpMFaeKZ2DMgjg6PpLBlKeDSLxYvvdbUY7+48GovnebTZvwxhliI7V8/VldHByN50b/fv96XenPyZIctDr86hWy8xvrNcauKlQqsLWz3v/K3lFfxv6jqnR3Y7Hs52Rg1OxIOnZPZVr/ZiTGXr9K1eOZJPb/7kFGquzr5SXjGJXtP5cYXb58mfDwcFavXk2XLl0AY2Pm2xETE8OlS5dMd+X9559/UKvVNGrUSLHt3nXXXYSFhREUpMxloiYPprFrpR/ufgX4NMzj0ikn9nzqS7tnrp4BdhmewKaxDah/TxaBHTI5u9uNMzs9ePnL0wDUbJCPV0A+W14N4NFXL6L1KCZsuwfn97gy8NOzisQdsjCO+/umMWdIffKy1XjULAIgJ0tDYb7yX768XBuiz5tfDsvP05CZbkv0eWc0Nnrioh0ZOzucT5YEkZluS4cHkmnTIY05IS2vs9aKN+y1OP7Z4UZSrC1evsW8OCkenR52bfGwWAwOWp1ZhcrXv4DAprlkpduQfMkOF/diavoV4uVr/B/6NzA2Nk5LtrVYb7ohM+I5+LsLyXF2ODrruL9vOi07ZjPzhbLbj1nCPzvc6DcugaQ4O6LPOtCgeR5PDk9i+1fWu4xm7c9pzNxIuvVOYd7IRuTlaPCoYTw5y8nSUFhw9ZJ2rXp5NL87k9dfbmyRuKrCPi5u338uMfLw8MDLy4uPP/6YWrVqERMTw/Tp029rXQ4ODgwaNIglS5aQmZnJuHHjePbZZ8tsX1RR2502bRr33nsvISEhvPzyyzg5OREWFsaOHTt4//33b+t9XKv3nGh2LKvDD68FkH3ZOMDjPc8n8cC4S6ZlmvVIo8/8KHav8mPr3HrUDMzjhQ/OEXB3NgAaWwODPgvn18X+rH+5IYW5arzqFfD0kgga3X/9Xnt3FPdgY+PwJd9eMJu+ZLw/OzZb/0awumI1s0e3ZMj4CGa/fxxHRx2XLjqybGYTQv+y3A9bjVpFzFgZhYuHjoxUG04dcGJ874ZkpFruq96wVS5vf33O9HzkHOOlxO2bPVk6MYB7u2cw+Z2rQx28uioKgA3LfPl8mZ9FYnSvUcyUFTF4eheTm6Uh8rQDM18I5PCf1mu0+8Fr/gyacomQhRdxr2Ec4PHnz2uwcfn1hxdRmrU/p179je0cF38RZjZ96dQG/Pbt1bGdHn46mZQEOw7/5W6RuKrCPl4eOoManYJVHSXXraT/XGKkVqvZtGkT48aNo3nz5jRq1IgVK1bQrVu3W15XUFAQTz75JI899hipqan06tWLDz74QNHttmzZkt27dzNz5ky6dOmCwWCgQYMGPPfcc7ccf1nsnfX0ej2GXq/feNCxds+m0O7ZlOvOr1G/gP6rzldITOXRw6+VxbZVXtNfamP2/FKMlgUTm19nactYNDrAqtsHOL7PhR517rru/B1fe7Hja+s2BH9nkr9Vt1+WvBwNH87x58M5lSc2a39OjwZ1KNdy65bWZd3SspsaKKEq7OPi9v3nEiOAhx56iLAw8zMMg8FQ5t/dunUze/5vo0aNYtSoUWXOW7t27S1tNyAgoNS23N3dS027++672b59+3VjEkIIIe6UARV6BXulGaroyNdVs84lhBBCCKGA/2TFSAghhBA3Jm2MylY1o7aAOXPmmG4bIoQQQojqQSpGQgghRDWkN6jQG5RrB6TkupUkFSMhhBBCiBJSMRJCCCGqIR1qdArWR5Rct5KqZtRCCCGEEAqQipEQQghRDUkbo7JJxUgIIYQQooRUjIQQQohqSI8avYL1ESXXraSqGbUQQgghhAKkYvQfNq/VPdiobK0dhsmGi39aO4RSXvTvZO0QSlNVwuvyep21I6gaDHprR1Al6PMLrB1CKWoHe2uHYEZtUEGustvQGVToFGwHpOS6lSQVIyGEEEKIElIxEkIIIaoh6ZVWNqkYCSGEEEKUkIqREEIIUQ0ZDGr0BuXqIwYF162kqhm1EEIIIYQCpGIkhBBCVEM6VOhQsFeagutWklSMhBBCCCFKSMVICCGEqIb0BmV7jukNiq1aUVIxEkIIIYQoIRUjIYQQohrSK9wrTcl1K6lqRi2EEEIIoQCpGAkhhBDVkB4VegV7jim5biVJxUgIIYQQooRUjCrQ2rVrGT9+POnp6dddZs6cOWzZsoWjR48CMHjwYNLT09myZYtFYiwPtdrAgInxPPhkKh7eRVxOsGXH11588a4vKHQGkJet4ZsldQnd5klmii31mufw4pxIAltnA2AwwLdL6/LHlz7kZmhoeHcWgxdewLd+PgCn97my8NkWZa577tZjpvVUpObts3lmdDLBLXLx8i1mzksB7NvmVuHbuRPPjklk6KvxfPdJDT6cXccqMTwXkkinxzLwDyqgMF9NWKiWTxfUIvaCg1XiqawxrfvnFL7+RaWm/7C2BitnWud/Vxn28ebts3hmZCLBLfLw8i1iztBA9v3qbprf6dE0eg5IIbhlLq4eOkY93JiIMK1i8Tw7Mo5OD1+mTmAehQVqwg678NniesRFOpqW8ahRyNDp0bTplIHWSUdspCObPqjN3l+9FIvrdugMKnQK9kpTct1KqtIVo7Vr1+Lu7m7tMG7J5MmT2blzp7XDuKFnRyfSa2AyK2f5M6xbUz5dVJtnRiXS56Vkxbb56ZQgTv7lzsjl51i04ygt7kvnzReakRpvB8BPq2qzfU0thiy8wJytx7F31LF4QDMK841fvOC2Wbx36IDZo9vzCdSsm0/9VhWfFAE4aPVEnHLg/Vet86N1Mw1b5dJzwGUiwqz3Yw/QskMOW9fWYHyvYGb0C0RjY2DhlxHYO+okpmuMe6wR/Vo3Mz2m92sAwF8/Wi/Zrgz7uINWT0SYlvdn+V93/qmDzny6sLZF4mlxTwZbP/dlwjMteHVQU2xsDCxYG2a270xecp469fOYO6IRo3q2Yu+vnsxYcZYGTXMsEqO4M1IxsjBnZ2ecnZ2tHcYNNW2Xzb7t7hz43XhAToy15/4+aTRqrcyXujBPzcFfvJjw6Wka35sJwJMTL3LkN092bvDl6SkxbPvUj8fHXqRtj1QARiw/R8hd93DoVy869EnBxs6Au/fVs+3iIhWHtnvy8OB4VAqdtIT+4UroH67KrPwOOWh1THs/muVT/Xl+XIJVY5nZP9Ds+dLxddl88hTBLfM4ud8634XKGFNGqvnh+LmQRC5F2nF8n/WOF5VhHw/9w43QP66fHO78xliF8alTYJF4XnupqdnzZdOC2HQglODmOZw8aPysmrTJ4v3ZgZw97gLApg/q0HdIPEHNs7kQ5mSROMtDeqWVzapRb9u2jc6dO+Pu7o6Xlxe9evXiwoULAOzatQuVSmV2Wero0aOoVCqioqLYtWsXQ4YMISMjA5VKhUqlYs6cOQCkpaUxcOBAPDw80Gq1PProo5w7d860niuVph9//JFGjRqh1Wp5+umnyc3NZd26dQQEBODh4cG4cePQ6a6eBdxsvVds2bKF4OBgHBwc6NGjBxcvXjTNmzNnDq1bt77uZ6LX61m0aBH169fH0dGRVq1a8b///e82P+HbExbqTOtOWdQuuUwV2CSXZndnc/AGB6c7odOp0OtU2NrrzabbOeg5e9CV5Bh7MpLsaN4lwzRP66ojsHUW5w+7lLnOIzs8yU6z5b7nkhSJubILWRjLgZ2uHPmr7M/Hmpxcjd+prHSNlSO5qrLFZGOr54En0/j1Ky+UunwtKobWpRiArPSrie3pIy7c91gKzm5FqFQGuvZMwc5ez/H9lfNESpizamKUk5PDxIkTCQ0NZefOnajVavr27Yter7/pazt27Mjy5ctxdXUlPj6e+Ph4Jk+eDBjb7YSGhvLDDz+wb98+DAYDjz32GEVFVysKubm5rFixgk2bNrFt2zZ27dpF3759+fnnn/n555/ZsGEDH330kVlSUt71LliwgPXr17N3717S09Pp169fuT+TRYsWsX79ej788ENOnTrFhAkTGDBgALt3777uawoKCsjMzDR73ImvVvqw+wcPPtkdxk+Rh1n56xm++8SbP77zvKP1Xo+js46gtplsedeftAQ79DrY+21Nzh1yIT3JjvRk4+U0txqFZq9zq1lERpJdmevctcmbFl3T8KxVWOb8/7Kuj6cR1DyPzxbVsnYopahUBkbOjePkAS3R4Y43f4EFVMaYOj6SgbOrju2blfnOiYqhUhkYMTOKU6EuRJ+72q5p4diG2Nga+PpQKD+E7Wfs/AjeGN2I+OjKsX9doUeF3qDgo4om9Va9lPbUU0+ZPf/ss8+oWbMmYWFhN32tnZ0dbm5uqFQqfH19TdPPnTvHDz/8wN69e+nYsSMAGzduxN/fny1btvDMM88AUFRUxKpVq2jQwHgd/+mnn2bDhg0kJibi7OxM06ZNuf/++/njjz947rnnbmm977//Pu3btwdg3bp1NGnShAMHDnDPPffc8D0VFBSwcOFCfvvtNzp06ABAYGAge/bs4aOPPqJr165lvm7RokXMnTv3pp9Zed3XO40H+qbyZkgA0WcdadAsl5FzYrmcaMtv/1Om8eDI5edYPTmIcXffjVpjIKB5Nh36JBN14tYvI6TG23FitwdjV4UrEGnlVtOvkFHz4pjxfAOKCipfGTtkYRz1Gucz6Ykga4diUhlj6tEvlYN/uJKaaGvtUMQNjJkTSUDDPCb3a2Y2feCEizi56JjxYlMy0mzo0D2VGSvOMqVfM6LOVp5LaaJsVk2Mzp07x+uvv87+/ftJSUkxVYpiYmLQam+vV8Hp06exsbExJSYAXl5eNGrUiNOnT5umabVaU1IE4OPjQ0BAgFn7Hx8fH5KSkm5pvTY2Ntx9992m540bN8bd3Z3Tp0/fNDE6f/48ubm5dO/e3Wx6YWEhbdq0ue7rZsyYwcSJE03PMzMz8fcvu6FieQybFcdXK33Z/YPxbDXqjCPetQvpF5KgWGLkE5DPrP+dJD9XTX6WBnefIt4f1YiadfNxr2ms+mSk2OHuc7U6l5FsS71mpds9/fmVN84eRbTpnqpIrJVZUItcPGoWs3Lb1aRQYwMt7s3h8cEp9KrfCr3eOmdxYxbE0r57JpP6NiAlvuxKn6VVxpi8axfSpksWb7xc39qhiBsYNTuCex5IY8rzzUhJsDdNr1U3n8cHJjDi0VbElFSRIs840bxdFr0GJPL+64HXW6XFGRQex8ggFaNb17t3b+rVq8fq1avx8/NDr9fTvHlzCgsLTQmKwXD1LnTXXrK6U7a25mdiKpWqzGnluaxXUbKzjb2nfvrpJ2rXNu9hYW9vX9ZLTPNuNP9W2TvqMfzrbet1KlQWKEA4aPU4aPXkpGs48ac7z70aRc26Bbh5F3Jqj5spEcrL0hBx1IUHXzRvWGwwwJ9f+9D5qWRsbKvoHQzvwNE9Lgx/oJHZtEnLYrh4wYHNK72tlBQZGLMgjo6PZDDl6SASL1bcvnr7KmNMRg8/d5n0FBv275T2KJWTgVGzI+nYPZVp/ZuRGGve69PewdherdQxVG8cCkVUflZLjC5fvkx4eDirV6+mS5cuAOzZs8c0v2bNmgDEx8fj4eEBYBr75wo7OzuzxtEATZo0obi4mP3795sueV3ZVtOm5r0JbkV511tcXExoaKipOhQeHk56ejpNmjS56TaaNm2Kvb09MTEx171sZgn/7HCj37gEkuLsiD7rQIPmeTw5PIntXyk3BsfxXe5gAN8GeSRGObBpQQC1GuRx37NJqFTwyNBLfP+eP77186npn8//ltTF3aeQtj0um60nbK8byTEOdHs+UbFYr3DQ6vCrf7UNk69/IYHN8shK15AcZ53qQ16OplQ7mfxcNVlppadbSsjCOO7vm8acIfXJy1bjUdN4gpOTpaEw3zqX+ypjTGBss/Lwc6n89rUnep31z7Yrwz7uoNXhF3C1x5mvfwGBTXPJSrch+ZIdLu7F1PQrxMvX+D/0b2DsNJKWbEtacsVfihwzN5JuvVOYN7IReTkaPEraPuZkaSgs0HAxwpG4KAfGvhHBJ2/WIyvdlg7dU2nTKYM5wxpXeDx34kpbICXXXxVZLTHy8PDAy8uLjz/+mFq1ahETE8P06dNN84OCgvD392fOnDksWLCAs2fPsnTpUrN1BAQEkJ2dzc6dO2nVqhVarZbg4GD69OnDsGHD+Oijj3BxcWH69OnUrl2bPn363Ha85V2vra0tY8eOZcWKFdjY2BASEsK9995708toAC4uLkyePJkJEyag1+vp3LkzGRkZ7N27F1dXVwYNGnTb8d+KD17zZ9CUS4QsvIh7DeMAjz9/XoONy31v/uLblJelYfOb9UhNsMfJvZi7H73MM1OjTVWfnqPiKMjV8Nn0BuRm2tDw7kymbDiFnYP5GdjuTT4Et8vELyhPsVivaNgqj7e/uWB6PnLuJQC2f+XB0gl1Fd9+VdF7sDF5XfLtBbPpS8b7s8NKjYsrY0wAbbpk4VOniF+/qhyNrivDPt6wVS5vf3219+/IOXHGGDZ7snRiAPd2z2DyO9Gm+a+uigJgwzJfPl/mV+Hx9OpvPOla/IV5W9ilUxvw27fe6IrVvD60MUOmxDDn43ActTouRTuwdGoQB3d7VHg8ouJZLTFSq9Vs2rSJcePG0bx5cxo1asSKFSvo1q0bYEwwvvzyS0aNGkXLli25++67mT9/vqmRMxh7po0cOZLnnnuOy5cvM3v2bObMmcOaNWt45ZVX6NWrF4WFhdx33338/PPPpS6V3aryrFer1TJt2jReeOEF4uLi6NKlC59++mm5t/HGG29Qs2ZNFi1aREREBO7u7tx11128+uqrdxT7rcjL0fDhHH8+nHP77ZRuVfvel2nf+/J156tU8NTkGJ6aHHPD9Yx+/2xFh3Zdx/c508OvlcW2d7umPhNs1e1Xxs+oMsYEcPhPV3rUbm3tMEwqwz5+fJ8LPercdd35O772YsfXlhtR+tGgDjdd5lK0IwtCGt10OWuTcYzKpjJc24hH/CdkZmbi5uZGN/WT2KgqT6+WDdF/WjuEUl7072TtEEpTakTKOyGHifKR/135qCvHeFHXUjtUnnZmAMWGQn7P3URGRgaurhXb3uzKb0TfHUOwdVLukmhRTiHfdV+jyHtQkox8LYQQQlRD0saobFWzziWEEEIIoQBJjIQQQgghSsilNCGEEKIa0is8wGNVvSWIVIyEEEIIIUpIxUgIIYSohqTxddmkYiSEEEIIUUIqRkIIIUQ1JBWjsknFSAghhBCihFSMhBBCiGpIKkZlk4qREEIIIUQJqRj9h6mdHFGrlLsPzq2qjPcley96r7VDKGVsQGdrh1CK2sXF2iGUptNZO4JSVHaV596EV+gys60dQmn6yve/0+fmWjsEM3pDkQW2IRWjskjFSAghhBCihFSMhBBCiGrIgLKjUxsUW7OypGIkhBBCCFFCKkZCCCFENSRtjMomFSMhhBBCiBJSMRJCCCGqIakYlU0qRkIIIYQQJaRiJIQQQlRDUjEqm1SMhBBCCCFKSMVICCGEqIakYlQ2qRgJIYQQQpSQipEQQghRDRkMKgwKVnWUXLeSpGIkhBBCCFFCKkYVpFu3brRu3Zrly5eXOT8gIIDx48czfvz4W1rvnDlz2LJlC0ePHr3jGK+n5/Px9Hw+Hp/aBQBEn9PyxQf+hP7pCcBb64/Tsn2m2Wt+2uTL+7ODFIvp35q3z+aZ0ckEt8jFy7eYOS8FsG+bm2Lb0+vg53fqcvC7mmQl2+LmU0j7p5PoMS4WVclJUEGOmu/fDODEdk9y0mzw8i+g65B4Og9IMFtX5CEXtr5dl+ijLqg1Bmo3zWH0hjDsHPQVHveAifG8OCnRbNrF8/a83LVJhW+rLDfblwAat85k0IRoGrfMQq9XceG0E7OGNqOwQKNITM+OjKPTw5epE5hHYYGasMMufLa4HnGRjmbLNW6TxaCJMTRulW2MK0zLrCFNFIvrWs+8HMOQiVFsWV+bj99sAMAjz8TTrWcSQU2z0TrreKZ9R3KyLH/IdnTSMWjKJTo+koF7jSIunNSyanYdzh5zsngsAL0GptBz4GV8/AsBiA53YOM7PoT+4WqVeMDyx6eKokel6L3SlFy3kiQxspCDBw/i5GSdA8nNpCTYsWZJAHHRjqhU8NATiby+8jQhfVsTc94Y8y9f+bBhRT3TawryLFtsdNDqiTjlwK9fejL7syjFt7djVR32fO7LgKXnqNUwl5jjzmycEoyDq45uQ+IB+PaN+pz9242By8/iWaeAM3+5s3lWA9x8CmnRPRUwJkUfDGpK99GxPDMvArUG4k5rUamUu71i1BkHpvdrYHquK7bcwelm+1Lj1pnM/+QUX31Uh1VvBKLTqQhsnINBr1yMLe7JYOvnvpw94YxGY2DwpBgWrA1jxCOtKcgzJj2N22Qx/7PTfPVhbVbNq4+uWEVgkxyLXAoIbp7Fo8/GE3HG/Phg76Dj0B4PDu3xYMjEKMXjuJ4Jb0cT0Cifxa/UIzXRlgeeTOXNL88x7IGmXE6ws3g8yfG2fLawFnGR9qhU0P2ZVOasiWLMww2JPutg8XjA8scnoSxJjCykZs2aN5xfVFSEra2thaIxt/8PL7Pn65YH0PP5BBq3zjIlRgX5GtJSLH8QvCL0D1eLnhFGHnKhRfdUmj+YBoCXfwGHfqhB9FFns2XaP5VEcAdjNa3TC4ns3ehL9FFnU2L07Rv16To4nodHx5le59MgT9HYdTpIS66c+9KIGZF8v8GPr1f7m5aJi9QqGtNrLzU1e75sWhCbDoQS3DyHkweN+9SImVF8v86Xrz+qfU1c5hUlJThodUxdfIYVsxvSb0SM2bzvN9QBoMXd6YrHcT12Dno6P5bOnJcacHK/CwCfL/Pj3ocy6PViCuve9rN4TPt3mFdi1r5Vi14DL9O4bY7VEiNLH58qivRKK5u0MapAxcXFhISE4ObmRo0aNXjttdcwGIyVgYCAALPLbCqVilWrVvH444/j5OTEggULAHjzzTfx8fHBxcWFoUOHkp+fb9H3oFYb6PpYMg5aHWeOXP2i3987iU3//MOqrYcZPDEKewedReOytPptszj7txtJEcYDbWyYlohQV5p2Szdb5sRvnqQn2GEwYFw+0pHG9xmXyUqxJeqICy5eRSzr24JX297Nu88258JBF0Vjr12/kC8OnWTt32FMey+amn6Fim7vev69L7l5FtK4dRYZl21Z+uUxvti7n8UbjtOsbYZF49K6FAOQlW48L3TzLKJx62xjXJtP8MU/oSz+4iTN2mbeaDUVYvSscxzY7cnRfR6Kb+t2aDQGNDZQWGD+A1eQr6bZPdlWiuoqtdpA1z5p2Gv1nA6tnBV5UfVIxagCrVu3jqFDh3LgwAFCQ0MZPnw4devWZdiwYWUuP2fOHN58802WL1+OjY0NmzdvZs6cOaxcuZLOnTuzYcMGVqxYQWBg4A23W1BQQEFBgel5ZuatH9ADGuawbNMx7Oz15OVqeGNME2IuGM/kd/3oTeIle1KT7KjfKIeXJkdRp34e88dapt2KNXQfHUt+tob5D9yFSmPAoFPRa0o0d/dNNi3z9NwINs0I4rX2d6O20aNWQ783zxNU0h4rJcYegJ+X+9N3ZhS1m+Zw4Ftv3n+hOTO2H8G7fsUnvWeOOLFkgiOxF+zx9C5iwMQEln53jhEPNCYvR/m2MnD9falxK+Pn0j8khk8W1yfitBMPPpHEorUnGdnrLi5FK1+hUakMjJgZxalQF6LPGffvWnWN/4f+42L55M16xrj6JrNoQxgjH22lWFz3PWpsP/TKs3cpsv6KkJejISzUiRfGJxBz3oH0ZFu6PZFKk7Y5XIqyt1pcAY3zWL71vHEfy1Ezb2gAMeesUy2qyqRXWtkkMapA/v7+vPPOO6hUKho1asSJEyd45513rpsYvfDCCwwZMsT0vF+/fgwdOpShQ4cCMH/+fH777bebVo0WLVrE3Llz7yj22EhHxjzRBicXHZ17pDDprbNMHdCSmAtaftnsa1ou6qwTqcl2vLnuJLX884i/qPyPmTUc+bEGoVtqMmjFWWo1zCU2zIlv5tYvaYRtTI7+XFuLqCMuDP80DM/aBZzf78rXrxnbGDXunGFqN9OpfwL3PpsEgH/zSM7udeOfzT48Pi26wuO+tpwfedqRM0e0bNgfxn290/l1k9cNXllxrrcvqUrq0z9/5cuOb30AuHDamdYd0nn4qUTWLgtQPLYxcyIJaJjH5H7NTNOuNKb/eZMPO77xNsYV5kTrDhk8/EwSa5fUK2tVd6SGbz4jZlxg5sstKCqs3IX7xa8EMHFpNF8eOomuGM6f1LLrew+CW+RaLabYC/aM7t4QrYuOLr0ymPxuDFOeDJLkSFQISYwq0L333otKdTVD7tChA0uXLkWnK/uyU7t27cyenz59mpEjR5pN69ChA3/88ccNtztjxgwmTpxoep6ZmYm/v/8NXlFacZGa+BhjknP+lDMNW2TRZ+Al3iuj59mZY8ZLQbXq5f9nE6MtCwPoPiqWto+nAODXOJfUWHu2f1CH9k8nU5ivZuvb9Xj5ozOmdki1m+QSF+bM7x/XpnHnDFy9jZewagWZtynyCcojLc4yZ9s5mTbERtjjF1Bw84UryPX2pc2rjW1mrlQir4i5oMXbT/n4Rs2O4J4H0pjyfDNSEq5+/qkl7bFizpvvyzEXHPGupcxlyOBm2XjUKOK9/x02TdPYQPN2GfR+IY4+rbugV7BB+q2Ij7ZnytMNsXfU4eSiJzXJllc/iCA+xnoVo+Iitalidf6Elkatc3ni5WRWTLu14151J22MyiaJkRVVVC81e3t77O0r9iClUoOtXdndyRs0yQEgNdl6jbGVVpinNlU4rlBrDKYqkK5Iha5IjUptKGMZ499e/gW4+RSQGGH+g5sc4UCT+9MUi/1aDlodfvUK2fmNdRpjw9V9KTHWnpREO+rUN08U6wTkcfBPJdvYGBg1O5KO3VOZ1r8ZibHmVYXEWHtSEmxLx1U/j4O7lYnr6D53Rj3e1mzahAXhxEZq+foT/0qTFF2rIE9DQZ4GZ7di2nbN4pOFtW/+IgtRqcDWTrmenqJ6kcSoAu3fv9/s+T///ENwcDAaTfnadjRp0oT9+/czcOBAs3UobfDEKEL/9CAp3h6tk45uvZJpeU8Gs4Y2o5Z/Ht16J3NwtyeZ6TbUb5TDiBmRnDjgSlS45Ro7Omh1+NW/evbu619IYLM8stI1JMdVfILW/KFUtr9fBw+/AuOltFNO/PFJbe591jhGkKOLjqB7M/h+YQB2DhF41C7g/H43DnxTk76vRQHGg/WDI+L4+Z261G6SQ51mOez/nzeJFxx56cPwCo8ZYNhrcfyzw42kWFu8fIt5cVI8Oj3s2mKZxr032pdAxTef1mbA2Bgizzhx4bQTD/VNok5gHgvGNVYspjFzI+nWO4V5IxuRl6PBo4ZxP8rJ0pSMUaTim09qM+CViyVxaXmob7IxrpBGisSUl2tD9Hnzw29+nobMdFuiS3qCetQoxKNGIX51jQlbQMMc8nI0JMXbk51huUS3bddMVCoDFy84UDuggJdnxXHxgj3bv7LMpdl/GzIjnoO/u5AcZ4ejs477+6bTsmM2M1+4cVtMJVn6+FRRpI1R2SQxqkAxMTFMnDiRESNGcPjwYd577z2WLl1a7te/8sorDB48mHbt2tGpUyc2btzIqVOnbtr4+k65exUx+a2zeHoXkpNlQ2S4lllDm3Hkbw9q+BbQpkM6Twy8hINWR3K8PXu2e7HpA8uWrBu2yuPtby6Yno+cewmA7V95sHRC3Qrf3jNzI/lpaV02vxZIdopxgMdOLyTwyCsXTcsMeS+cHxbXY90rDclNt8GjTgG9psSYDfB4/9B4igrUfPtGfXLTbajdJIcxG09Rs54yvQ1r1CpixsooXDx0ZKTacOqAE+N7NyQj1TJf9RvtSwBb1tXG1k7P8BkRuLgVE3HGiZkvNVP0kmyv/sZkdvEXYWbTl05twG/fGtsUbVlbC1t7PcNnRpXEpWXmoKbEx1ivzcpjz12i/5irXfjf3nAMgGWvNuS3Lb7Xe1mFc3LRMWR6HDVqFZGVrmHvLx6secvPouNjXcu9RjFTVsTg6V1MbpaGyNMOzHwhkMN/Ktvb80YsfXwSylIZrvQnF3ekW7duNGvWDL1ezxdffIFGo2HUqFHMnz8flUpVauRrlUrFd999xxNPPGG2noULF/LOO++Qn5/PU089hY+PD7/++ustjXydmZmJm5sbD7j0x0ZVec5W9FlZ1g6hlPei91o7hFLGBnS2dgilqJ2db76QpV2n7Z41qeysd8nyenSZ1u9WX4q+8v3vKptiQxG7+J6MjAxcXSt2jKQrvxF3/W8iGifl2orpcgo4/PQyRd6DkqRiVEF27dpl+nvVqlWl5kdFRZk9v14++uqrr/Lqq6+aTXvrrbfuOD4hhBBC3JwkRkIIIUQ1ZACUvGZUVS9HVe4BNIQQQgghLEgqRkIIIUQ1pEeFCgXHMVJw3UqSipEQQgghRAmpGAkhhBDVkIxjVDapGAkhhBBClJCKkRBCCFEN6Q0qVHKvtFKkYiSEEEIIUUIqRkIIIUQ1ZDAoPI5RFR3ISCpGQgghhBAlpGIkhBBCVEPSK61skhj9h+mzc9CrCq0dxlWqyvclmXBfP2uHUNpvla/+rHqhEu1HJQy+XtYOoRTV5Uxrh1CKKjvH2iGUUil/MKvqdZ//kLi4OKZNm8Yvv/xCbm4uQUFBrFmzhnbt2gHGe4zOnj2b1atXk56eTqdOnVi1ahXBwcGmdaSmpjJ27Fi2bt2KWq3mqaee4t1338X5Fm6ELZfShBBCiGroSsVIyUd5paWl0alTJ2xtbfnll18ICwtj6dKleHh4mJZZvHgxK1as4MMPP2T//v04OTnRo0cP8vPzTcv079+fU6dOsWPHDn788Uf+/PNPhg8ffkufi1SMhBBCCGFVb731Fv7+/qxZs8Y0rX79+qa/DQYDy5cvZ9asWfTp0weA9evX4+Pjw5YtW+jXrx+nT59m27ZtHDx40FRleu+993jsscdYsmQJfn5+5YpFKkZCCCFENaQ3qBR/AGRmZpo9CgoKSsXyww8/0K5dO5555hm8vb1p06YNq1evNs2PjIwkISGBhx56yDTNzc2N9u3bs2/fPgD27duHu7u7KSkCeOihh1Cr1ezfv7/cn4skRkIIIYRQjL+/P25ubqbHokWLSi0TERFhai/066+/MmrUKMaNG8e6desASEhIAMDHx8fsdT4+PqZ5CQkJeHt7m823sbHB09PTtEx5yKU0IYQQohqy1DhGFy9exNXV1TTd3t6+1LJ6vZ527dqxcOFCANq0acPJkyf58MMPGTRokHJBlkEqRkIIIYRQjKurq9mjrMSoVq1aNG3a1GxakyZNiImJAcDX1xeAxMREs2USExNN83x9fUlKSjKbX1xcTGpqqmmZ8pDESAghhKiGjBUjJXullT+WTp06ER4ebjbt7Nmz1KtXDzA2xPb19WXnzp2m+ZmZmezfv58OHToA0KFDB9LT0zl06JBpmd9//x29Xk/79u3LHYtcShNCCCGEVU2YMIGOHTuycOFCnn32WQ4cOMDHH3/Mxx9/DIBKpWL8+PHMnz+f4OBg6tevz2uvvYafnx9PPPEEYKwwPfLIIwwbNowPP/yQoqIiQkJC6NevX7l7pIEkRkIIIUS1VJlGvr777rv57rvvmDFjBvPmzaN+/fosX76c/v37m5aZOnUqOTk5DB8+nPT0dDp37sy2bdtwcHAwLbNx40ZCQkJ48MEHTQM8rlix4pbilsRICCGEEFbXq1cvevXqdd35KpWKefPmMW/evOsu4+npyRdffHFHcUhiJIQQQlRDhpKHkuuviqTxtRBCCCFECakYCSGEENVQZWpjVJlIYiRKWffPKXz9i0pN/2FtDVbOrGOFiEp7dkwiQ1+N57tPavDhbOVjUqsNvPDyWe7vEYuHVwGpyQ789nMdNq0JBoxf/heGhnNf90vU9M6nuEjN+XA31n/YiPAwjxuv/FYk62B1BhzIhwI91LaBKZ7QyO7qMtFFxmWOF4AOqGcDs73Ap+TrXmiAVenwRx4UGeBuBxjnDp6aOw6v/4gL9B8ZYTbtYqSWEU92AsC3Ti4vTzhLszbp2NrqOfR3DVa91Yj01NLjmtyu5s2TePrpMwQFpeLllc+8eZ3Zt8+4j2g0egYNOk67dvHUqpVNTo4tR474smZNK1JTHU3raNAglZdeOkbDhqno9Sr27q3Dxx+3IT/ftsLi/GzLH/j45ZWa/uPXdVn1dvNrphiYuzyUdh2TeWPKXfyzu/zjsdyq5vdk8fTIRIJb5OLlU8Tclxuwb7t7mcuOXRhNzwEpfDi3Dls+9SlzGaVZ+jhwPb0GptBz4GV8/AsBiA53YOM7PoT+4XqTV4rKSBKjSmzOnDls2bKFo0ePWnS74x5rhFpz9epwQON83tx0gb9+dLNoHNfTsFUuPQdcJiLM4eYLV5CnXzzPY32jeOeN1kRHuBDcJJ3xM4+Rk23L1q+NNzqMu+jMh0ubkxCnxc5ezxP9Injj3f28/Mz9ZKZXwA9/lh5eSYLW9vBmDXBTQ1wxuFxzRfxSMbySDI9qYZArOKkhqgjsrjlz+yAd9ufDbE/j/BXpMOcyrPD+9xZvS9R5J2aObGt6rtMZt23voGPBB4eJOOvCjOHG+S+OvsDsd48yceA9FXZ26eBQTESEO9u3B/Laa3vM5tnbF9OgQRpfftmMiAh3XFwKGTHiMLNn/8krr/QAwNMzj0WLdvHnn3X54IO2ODkVMXz4ESZN2s+CBZ0rJEaA8YM7orkmF60XmMWClQfYs7OW2XJPPB+l6OjE13LQ6okMc2T7V168vjriust17JFG4zY5pCRUXKJ4q6xxHLie5HhbPltYi7hIe1Qq6P5MKnPWRDHm4YZEn7V+fNcljYzKJImRKCUj1Xy3eC4kkUuRdhzf52yliK5y0OqY9n40y6f68/y48t/75k41aZHG/r98Ofi38cw4KUFL1+6XaNQ0na0ly+zeXtvsNavfbUqPxy9SPyiLY6EVkBhtyoKaGpjqeXVarX99hT/NgPYOMML96jS/a5bJ1sMvOfCqJ7QpOWBP9YAhiRBWAE3vPE6dTkXa5dLrado6HW+/PEKev5e8HGNMS19vxubdu2h1TypH93vd8bYBQkP9CA0te8yS3Fw7Zs6832zaqlVteffdHdSsmUNyshPt28dRXKxi5cq2pmTt/ffbsWrVNmrVyiI+3qVC4vx3svz0wAtcuqjlxOGr/9/A4Ez6vhDJ+MGd+PyXnf9eRYUL3eVG6K4bnwB5+RQyat5FZr0YzLw15xWPqSzWOg5cz/4d5p/Z2rdq0WvgZRq3zanciZEokzS+Vpher2fx4sUEBQVhb29P3bp1WbBgAQDTpk2jYcOGaLVaAgMDee211ygqMl7CWrt2LXPnzuXYsWOoVCpUKhVr1661ePw2tnoeeDKNX7/y4solI2sKWRjLgZ2uHPmrYn6cyuv0CQ9atUvBzz8bgPpBmTRtlUrovpplLm9jo+fRJ2LIzrIh8lwFldP/zjNeMpt7GZ66BCMS4afsq/P1BmMlqI4NTEs2LjMmEfZcc7nmXCEUA22vOVjXtQVvDYQVVkiYtevmsmH7bj7duocpC05Q09e4fVs7PRhUFBVePewUFmgw6FU0a51eIdu+HVptEXo95OQYL0fa2uopLlabVbAKCoylnWbNkhWJwcZGz/2PxrFjax2ufM/s7XVMeeMoq95uVmaiaQ0qlYEpy6P430c+RJ91vPkLFGKt40B5qNUGuvZJw16r53Sok7XDEbdBKkYKmzFjBqtXr+add96hc+fOxMfHc+bMGQBcXFxYu3Ytfn5+nDhxgmHDhuHi4sLUqVN57rnnOHnyJNu2beO3334DwM2t7DO5goICCgoKTM8zMzMrLP6Oj2Tg7Kpj+2bPmy+ssK6PpxHUPI+xPRtafNtfrw9Cqy3mo0270OtVqNUG1n/UmF3bzds13N0pkWnzDmPvoCP1sj2zXrmXzAy766z1FsUXww/Z8LQLvOAC4YXwfjrYqKCHE6TrIc9grCwNcYVhbnAw33iZbGlNaGUPqXqwBZz/dU7koYZU3R2HGH7SjWWvNyc2WotnjQJeGBHB25+FMurpDpw54UZ+noaXXjnHuveDABjyyjk0NgY8ahTcZM3KsLXV8dJLx9i9ux65ucbLQkeP+jBs2BGeeuo033/fEAcH4zIAnp75isRxb7dEnJ2L+e3Hq/vTsAlhnD7hzj9/Wqf9TlmeHZ2ATgfff1Yxl11vhzWPAzcS0DiP5VvPY2evJy9HzbyhAcScq+TVIoUbXyONr8W/ZWVl8e677/L++++b7g7coEEDOnc2tlOYNWuWadmAgAAmT57Mpk2bmDp1Ko6Ojjg7O2NjY3PTm98tWrSIuXPnKvIeevRL5eAfrqQmWq8tAUBNv0JGzYtjxvMNKCqwfKGzy4OX6NYjjrdntyE60oXA4EyGjz9Faoo9O3/2Ny13/JAXYwfdh6tbIY/0iWH6/ENMfLkzGWkVcMZvABrawcslCXKwHUQVw9YcY2KkL1muo4MxeQIIsoNThbA125gYKSx0bw3T31HnXAg/4cban/fQ5eFEtm+pzcKpLQl59TSPPx+DQa9i9zZfzoW5WKX3ikaj59VX96JSGS+VXRET48bSpe0ZNuwoQ4YcR69X8f33DUlNdVAszocfv0jovpqkphh/SNt3SaRlu8uMe7Hi2jTdqaAWOfQZkkRIzyZYq3ps7ePAjcResGd094ZoXXR06ZXB5HdjmPJkUOVPjkQpkhgp6PTp0xQUFPDggw+WOf+rr75ixYoVXLhwgezsbIqLi3F1vfXLLjNmzGDixImm55mZmfj7+9/gFeXjXbuQNl2yeOPl+ne8rjsV1CIXj5rFrNx29SaDGhtocW8Ojw9OoVf9Vuj1yh2sXwo5zdcbgvjzN2M7ougLrnj75vHMwPNmiVFBvg3xsTbExzoRfsqDjzf/zsO9L/L1+qA7D8JTY+xhdq26NvBnrvFvNzVogHq2pZc5WXKZzFMNRRjbGl1bNUrTV0ivtH/LybYlLkaLn78xxiP/eDH08c64uheiK1aRk23L5zt2k/CrZS/LXEmKvL1zmT79flO16IpduwLYtSsAd/d88vM1GAwq+vYNJz6+4i+N1PTNo/XdKSycdrXBest2l6lVJ5fNO3eYLfvqm4c5ddSTGaPurfA4bqb5Pdm41yhmw74TpmkaGxg2K5a+LyUxqFMLxWOw9nHgRoqL1FyKMp58nD+hpVHrXJ54OZkV0+78WKwU401klV1/VSSJkYIcHa9/sN+3bx/9+/dn7ty59OjRAzc3NzZt2sTSpUtveTv29vbY21d8NeDh5y6TnmLD/p3W73J6dI8Lwx9oZDZt0rIYLl5wYPNKb8UPhvYOOgx682l6vQr1TTarVhkv11SI5nZwsdh8Wmzx1W74tipjG6QylylJeoLtjN/6w/lwn9Y47WIRJOmgaQVd8ruGg2Mxterk8vtP5j2tMtON22p1dyrunoX8s7vstlpKuJIU+fllM336/WRlXf+7k55uPNt/+OEIiorUHDlS8V3lu/e+SEaaPQf2Xv0M/re+Adu/N/9B/WDTX6x+pykH9ljnMtbOb7w48pf5sWDB5+fY+a0nOzbXuM6rKpa1jwO3QqUCW7sqmhlUc5IYKSg4OBhHR0d27tzJyy+/bDbv77//pl69esycOdM0LTo62mwZOzs7dLoK+lG9RSqVgYefS+W3rz3R66x/sMnL0RAdbp5o5ueqyUorPV0JB/b48Nzg8yQnOhId4UKDRhn07RfBjh+NP172DsU8N/g8+//yIfWyPW5uhfR8Ohqvmvns+b38d3W+oadcYFwSbMyEblo4Uwg/5cCEa8ZJes4F3rgMLe2gtYOxjdG+fFhW8qPrrIZHnWBVhrGbv5Ma3ks3JkUV0CNt6ISz7P+zBkmXHPHyLmDAyAvo9Sp2bTMmFN0fjyMm0omMNDuatMxgxJRwtmysS1x0xVViHByK8PO72ijdxyeHwMA0srLsSE11ZObMvQQFpTJ79n2o1QY8PIyNw7Oy7CguNiaQvXufJSysBvn5NrRpk8jQoUdZs6aVqYF2RVGpDHTvFcvOn2qj112t4KVdti+zwXVyogOJl7QVGsO1HLQ6/AKutvfy9S8gsGkuWek2JF+yIyvd/CdDV6QiLdmW2AjLXC6y9nHgeobMiOfg7y4kx9nh6Kzj/r7ptOyYzcwXAq0WU3nIAI9lk8RIQQ4ODkybNo2pU6diZ2dHp06dSE5O5tSpUwQHBxMTE8OmTZu4++67+emnn/juu+/MXh8QEEBkZCRHjx6lTp06uLi4KFIZKkubLln41Cni16+s3+i6MvhwWXMGDA9n9OSTuHkaB3j8ZUtdvvzM2ABUr1fhXy+bBx+7iJtbEZkZtpw77c7UUR2JiaygnjON7WCul7FL/oZMY1f90W7w0DU/lJ0dYbwHfJllbJjtbwtzvKDFNfvNaHdQpRt7txUB7ezhlYoZhLKGTz7TFp3A1a2IjDQ7Th11Z8LAe8hMMyYUtQNyGTT2PC5uRSRdcuSrT+vz3ed1K2TbVwQHp7J48R+m5yNGHAFgx44APv+8OR06xAHwwQe/mr1u6tT7OXHC2NC5YcNUBgw4iaNjMRcvuvLee+34/feKv6Tc+p4UvGvls31r5Rg4tWHLXBZvPmt6PmJ2LAA7vvZi6aQAK0VV+bnXKGbKihg8vYvJzdIQedqBmS8EcvjPytdrTtycymCoqlcBqwa9Xs+iRYtYvXo1ly5dolatWowcOZIZM2YwdepUPvvsMwoKCujZsyf33nsvc+bMIT09HTD2Nuvfvz87d+4kPT2dNWvWMHjw4JtuMzMzEzc3N7qpnsBGZd1G05WdTd3K8YN0reLPKt9XUvNCxXTlr0gG34oZ96giqS9XXI/QiqJLSLR2CKUYrFQJv6FK9lNYbChiF9+TkZFxW21Pb+TKb0TAp6+h1ipX7dPn5hM19A1F3oOSJDH6D5LEqPwkMSofSYzKRxKj8pHE6OYkMbIeuZQmhBBCVEPSK61slWsgCCGEEEIIK5KKkRBCCFEdyU1kyyQVIyGEEEKIElIxEkIIIaohGceobFIxEkIIIYQoIRUjIYQQorqqou2AlCQVIyGEEEKIElIxEkIIIaohaWNUNqkYCSGEEEKUkIqREEIIUR3JOEZlksRIWE4lHB/ekJZh7RBK655j7QhKeePCPmuHUMrMhp2tHUIpOnXlu3Rg0Fe+711lPBYIcYUkRkIIIUS1pCp5KLn+qkfaGAkhhBBClJCKkRBCCFEdSRujMknFSAghhBCihFSMhBBCiOpIKkZlKldi9MMPP5R7hY8//vhtByOEEEIIYU3lSoyeeOKJcq1MpVKh0+nuJB4hhBBCWIJBZXwouf4qqFyJkV6vVzoOIYQQQgiru6M2Rvn5+Tg4OFRULEIIIYSwEINB2bE2q+o4nrfcK02n0/HGG29Qu3ZtnJ2diYiIAOC1117j008/rfAAhRBCCCEs5ZYTowULFrB27VoWL16MnZ2daXrz5s355JNPKjQ4IYQQQijEYIFHFXTLidH69ev5+OOP6d+/PxqNxjS9VatWnDlzpkKDE0IIIYSwpFtuYxQXF0dQUFCp6Xq9nqKiogoJSgghhBAKk15pZbrlxKhp06b89ddf1KtXz2z6//73P9q0aVNhgVVF3bp1o3Xr1ixfvtzaodwxL99Chr4az90PZGLvoOdSlD1LJ9bl3HGtVePqPTiFp0cl4VmzmIgwRz6YVZvwo5aP6ZlhFxkyKYot6/z4eFEDAGzt9AybFsF9PZOxtdVzeK8HK+cGkX7Z7iZrqzhqtYEBE+N58MlUPLyLuJxgy46vvfjiXV+UuKGjXgc7l9fm6JYaZCXb4upTyF1PpXD/2Euortlc0nkHtr3pT+QBF/TFKryD8+j/wXncaxcCkJVsyy8L/Tm/x5WCHA01A/PpNuYSzR9Nq5A4m9+TxdMj4glukYuXTxFzhwWxb7uHaf6kJRF0f+ay2WtCd7kya1CjCtn+vz036hKdeqRRp0Eehflqwg4789lb/sRGOALg7FbMixNiadslk5p+BWRctmXfDg/WLatNbpblxuW19P50KyrLsQDguZBEOj2WgX9QgfH/Garl0wW1iL0gnZOqolv+hr3++usMGjSIuLg49Ho93377LeHh4axfv54ff/xRiRiFhTm7FbNsyzmO/+3CrAGBpF+2oXb9ArIzNDd/sYK6Pp7G8NmXeG96Hc4c1tJ3WDILvohgaJdGZFy2tVgcwc2zePS5eCLOOJlNHz7jAnd3TWPRK03IydYw6rULzHrvNJNfaGWx2J4dnUivgcksGR9A9FkHglvlMmlpNDlZGr7/zLvCt/fnh7XYv9Gbp5dE4NMwj9jjTnwzNRAHFx0dhyQCcDnano+eaUq7Z5N5aEIc9s46ks46YmN/dRiQrycGkp+p4cXV53DyLObo9158GRLEmB9O4dcs947jdNDqiDytZfvmmrz+8fkylzm4y41lk+ubnhcVKPfD36J9Fls3eHP2uBNqGxgy+SIL1oczvHsLCvI0ePkU4uVdxOqF/sScc8S7diFjF0Ti6VPIgtHBisX1b5ben8qrshwLrmjZIYeta2tw9qgWjY2BwdPjWfhlBMO6NqIgz7rHzRtRGYwPJddfFd1yYtSnTx+2bt3KvHnzcHJy4vXXX+euu+5i69atdO/eXYkYRYnCwkKzBu9KeXZ0EimX7Fg6sa5pWuJFe8W3ezNPDk9h2xeebP/KE4AV0+pwz4OZ9Hg+lc3v+1gkBgetjqlLwlnxWjD9Rl00Tdc6F/PwU4ksntKIY/vdAXhnRkM+/uUQjVplEn7M1SLxNW2Xzb7t7hz43Q2AxFh77u+TRqPWOYpsL/qwC026p9P4gQwAPOoUcnxrBrHHriaN25fUoVG3dB6dcfXz8qpXYLaemMPO9HkjCv+SOB8Ye4m9n/kSd8KpQhKj0F3uhO5yv+EyRQUq0pIt86M6a7B5JWrplEC+OnSE4BY5nDzgSvRZLfOvSYDiYxxYt8SfKcsuoNYY0OssU62x9P5UXpXhWHCtmf0DzZ4vHV+XzSdPEdwyj5P7nS0ej7gzt3UT2S5durBjxw6SkpLIzc1lz549PPzwwxUdW6WWk5PDwIEDcXZ2platWixdutRsfkFBAZMnT6Z27do4OTnRvn17du3aZbbMnj176NKlC46Ojvj7+zNu3Dhycq4ecAICAnjjjTcYOHAgrq6uDB8+3BJvjXsfzuDscS0zP4rkq2MnWflrOI++cPnmL1SQja2e4Ja5HP7LxTTNYFBx5C8Xmra98x/O8hr9+nkO7PLg6D4Ps+nBzbKxtTNw9O+r02MjtSTF2dOkdZbF4gsLdaZ1pyxq188HILBJLs3uzubgH26KbK/eXVlc2OtKSoTxkkF8mCNRB11o2M2YKOn1EP6HOzXq57NmYCMWtGvDB080JWy7u9l66t6VzfGfvMhN16DXw7GtnhQXqAi8N1ORuMvS8t4sNh06wie/nyBkfhQu7sUW27bWxXjHgKz065+rOrkUk5utsVhSBJbfn8qjshwLbsTJ9cr/s/JWiwDplXYdt32xOjQ0lNOnTwPGdkdt27atsKCqgilTprB7926+//57vL29efXVVzl8+DCtW7cGICQkhLCwMDZt2oSfnx/fffcdjzzyCCdOnCA4OJgLFy7wyCOPMH/+fD777DOSk5MJCQkhJCSENWvWmLazZMkSXn/9dWbPnn3dWAoKCigouHoGnpl5Zz8mteoW0uvFFL5dXZNNK3xo2DqXUfNiKSpS8dvXnne07tvl6qlDYwPpyea7bFqKDf5BBdd5VcW677Ekgppm88rTpdvSedQspKhQRc6/2n+kXbbFo0ahReID+GqlD1oXHZ/sDkOvA7UG1r7lxx/fKfN/u29UPPnZGt55qAUqjQGDTkX3ybG0fsKYSOdctqUwR8PuD2vRfVIsPaZf5NxuNzaODGboF2cIvNeYND6/8jybQoKY36Ytahs9to56Bnx4Dq8Ay/xvQ3e7sXebBwkX7alVr4DBU2OZv+4sE/o2Qa9XNhFRqQyMfC2aUwediT5bdhsZV48inh97iV821VQ0ln+z9P5UHpXhWHAjKpWBkXPjOHlAS3S4o7XDEbfhlhOj2NhYnn/+efbu3Yu7uzsA6enpdOzYkU2bNlGnTp2KjrHSyc7O5tNPP+Xzzz/nwQcfBGDdunWm9x4TE8OaNWuIiYnBz88PgMmTJ7Nt2zbWrFnDwoULWbRoEf3792f8+PEABAcHs2LFCrp27cqqVatMI4o/8MADTJo06YbxLFq0iLlz51bY+1Op4dxxR9a8aYz9wiktAY3y6fliitUSI2ur4VvAiFcjmPlSC4oKb6vQahH39U7jgb6pvBkSQPRZRxo0y2XknFguJ9ry2/+8Knx7J37y5Nj3Xjz77gV8gvOID9Py4xv1cPUp4q6nUjCUNCNq0j2dzkONbY78muYSfciZA194mxKjHUvrkJep4aXPz+DkUUTYDg++DAli+ObT+DbOq/C4/2331qufTVS4lsjTjqzdc4KWHbI4ulfZy6Bj5kUT0CiPSc80LXO+1lnHvM/OEnPOkc+X11Y0ln+z9P70XxCyMI56jfOZ9ETp3tuVjvRKK9MtJ0Yvv/wyRUVFnD59mkaNjNfJw8PDGTJkCC+//DLbtm2r8CArmwsXLlBYWEj79u1N0zw9PU2fx4kTJ9DpdDRs2NDsdQUFBXh5GQ8mx44d4/jx42zcuNE032AwoNfriYyMpEmTJgC0a9fupvHMmDGDiRMnmp5nZmbi7+9/2+8vNcmG6LPmvSkunneg82MZt73OO5WZqkFXDO41zS9veNQoJi1Z+V46wc2y8KhRxHvfHjZN09hA83YZ9O5/iVkvN8fWzoCTS7FZ1cjDq4i0FMv1Shs2K46vVvqy+wdjAht1xthwt19IgiI/ZNsW+XPfyHha9U4FwLdxHmlx9uz6oBZ3PZWC1qMYtY0e7yDz5MY7KI+oUOOlkMvR9vyz3odXfj2BT0PjcrWa5hF10IV/NvjwxIKoCo/7ZhIuOpB+2Qa/evmKJkaj50bR/oF0Jj/XhJSE0vuJo5OO+WvDycvWMG9EMLpiyybllt6fysPax4IbGbMglvbdM5nUtwEp8Zb73ouKdct70e7du/n7779NSQBAo0aNeO+99+jSpUuFBldVZWdno9FoOHTokNkgmADOzs6mZUaMGMG4ceNKvb5u3auNnp2cnErN/zd7e3vs7SuucXTYQSf8G5iXpGsHFpAUZ/neHlcUF6k5d1xLm85Z7NtmbN+gUhlo3TmbH9Yqf4A++o87o3rfZTZtwsKzxEZo+fqTOiTH21NUqKJ1h3T2bq8BQO36uXjXLuD0UZeyVqkIe0e9qUpzhV6nQqXQ72lhnqbUutUaA4aSy082dgbqtMwxtUG6IiXSwdRVvyjPuAKV2rxBglpNqfdiKTV8C3H1KCY1Sal93sDoudF0fDiNqc83ITG29PdX66xjwbozFBWqmTMs2CqVSkvvT+Vh7WNB2QyMWRBHx0cymPJ0UKXorFIuSrcDqi5tjPz9/cscyFGn05kuG/3XNWjQAFtbW/bv329KYtLS0jh79ixdu3alTZs26HQ6kpKSrpss3nXXXYSFhZU5WKa1fbvam3e+P0u/sYn8udWdRq1zeaz/ZZZPte5l0m8/rsHk5Rc5e0xL+BFjF10HrZ7tm5S/vJeXY0P0OfOvS36ehsx0G6LPGZPX7d/4MGxaBFkZNuRmaxg56wJhR1ws1iMN4J8dbvQbl0BSnB3RZx1o0DyPJ4cnsf0rZX4wmjyYxq6Vfrj7FeDTMI9Lp5zY86kv7Z5JNi3TZXgCm8Y2oP49WQR2yOTsbjfO7PTg5S+NbRRrNsjHKyCfLa8G8OirF9F6FBO23YPze1wZ+OnZConTQavD75r2Sr7+BQQ2zSUrXUNWug0Dxl9izy8epCXbUqteAUNnXORSlD2H/lSmkfGYedHc3+cyc4cHk5etNrVDy8myobBAbUyK1p/BwVHP4gkN0Drr0DobG/RmpNoq3u7pCkvvT+VlzWNBWUIWxnF/3zTmDKlv/H/WNP5G5mRpKMyvvJfeRdluOTF6++23GTt2LCtXrjRd5gkNDeWVV15hyZIlFR5gZeTs7MzQoUOZMmUKXl5eeHt7M3PmTNRq4xegYcOG9O/fn4EDB7J06VLatGlDcnIyO3fupGXLlvTs2ZNp06Zx7733EhISwssvv4yTkxNhYWHs2LGD999/36rv7+wxLfNers+Q6fH0H59AwkU7Ppxd26oNLgF2/+CBm5eOgVMS8KhZTMQpR2b2r096ivUqWdf6eFEDDPoIZr57Gls7PYf2ePDBPMsmvh+85s+gKZcIWXgR9xrGAfl+/rwGG5f7KrK93nOi2bGsDj+8FkD2ZeMAj/c8n8QD4y6ZlmnWI40+86PYvcqPrXPrUTMwjxc+OEfA3dkAaGwNDPosnF8X+7P+5YYU5qrxqlfA00siaHR/xVy+bdgyh8VfhZuej3jdOHTAjq+9eG9mAPUb5/LQUyk4uepITbTl0F9urF9aW7EqTe8XkwB4e5P5bZSWTq7Pjm9qEtQshyZtjD1U1+w+brbMoM6tSIyzTEXC0vtTeVW2Y0HvwcbOBku+vWA2fcl4f3ZsrsTtMqViVCaVwWC4aegeHh6orhnGNicnh+LiYmxsjHnVlb+dnJxITU1VLtpKJDs7m1GjRvHtt9/i4uLCpEmT+Omnn0wjXxcVFTF//nzWr19PXFwcNWrU4N5772Xu3Lm0aNECgIMHDzJz5kz27duHwWCgQYMGPPfcc7z66quAsbv++PHjTQ20yyszMxM3Nze6qZ7ARlU5kgYAbr6rWZzG1XLVnPLSZVt3jJiyLLywz9ohlDKzYWdrh1CauvI1NjUUWW7YgXLT66wdQaVXbChiF9+TkZGBawUfp678RvgvfQO1o3Kjc+vz8rk46TVF3oOSypUYrVu3rtwrHDRo0B0FJO6cJEblJ4lR+UhiVE6SGJWPJEY3ZZHEaIkFEqPJVS8xKtelNEl2hBBCCFEd3FHfxvz8fAoLzQevq0pZoRBCCFFtyThGZbrlloU5OTmEhITg7e2Nk5MTHh4eZg8hhBBCiKrqlhOjqVOn8vvvv7Nq1Srs7e355JNPmDt3Ln5+fqxfv16JGIUQQghRwVQG5R9V0S1fStu6dSvr16+nW7duDBkyhC5duhAUFES9evXYuHEj/fv3VyJOIYQQQgjF3XLFKDU1lcDAQMDYnuhK9/zOnTvz559/Vmx0QgghhFCGwQKPKuiWE6PAwEAiIyMBaNy4MZs3bwaMlaQrN5UVQgghhKiKbjkxGjJkCMeOHQNg+vTprFy5EgcHByZMmMCUKVMqPEAhhBBCCEu55TZGEyZMMP390EMPcebMGQ4dOkRQUBAtW7as0OCEEEIIISzpjsYxAqhXrx716tWriFiEEEIIYSEqlO05VjVHMSpnYrRixYpyr3DcuHG3HYwQQgghhDWVKzF65513yrUylUoliZGoWjQaa0dQik3d2tYOoZTX7n7U2iGU0uyfNGuHUErYfY7WDqFKMBTIvdIqBRn5ukzlSoyu9EITQgghhPgvu+M2RkIIIYSogpQea6i6jGMkhBBCCPFfJRUjIYQQojqSilGZpGIkhBBCCFFCEiMhhBBCiBK3lRj99ddfDBgwgA4dOhAXFwfAhg0b2LNnT4UGJ4QQQghlqAzKP6qiW06MvvnmG3r06IGjoyNHjhyhoKAAgIyMDBYuXFjhAQohhBBCWMotJ0bz58/nww8/ZPXq1dja2pqmd+rUicOHD1docEIIIYRQiMECjyrolhOj8PBw7rvvvlLT3dzcSE9Pr4iYhBBCCCGs4pYTI19fX86fP19q+p49ewgMDKyQoIQQQgihMKkYlemWE6Nhw4bxyiuvsH//flQqFZcuXWLjxo1MnjyZUaNGKRGjEEIIIYRF3PIAj9OnT0ev1/Pggw+Sm5vLfffdh729PZMnT2bs2LFKxCiEEEKICqZ0z7Gq2ivtlhMjlUrFzJkzmTJlCufPnyc7O5umTZvi7OysRHz/Cd26daN169YsX77c2qHclmfHJDL01Xi++6QGH86uY5UYmrfP5pnRyQS3yMXLt5g5LwWwb5ubVWIBeOblaIZMiGTLhtp8/GawaXrjVhkMeiWSRi0y0etVRJxxZtbwlhQWaCo8BrXawAtDw7m/RyweXgWkpjjw20/+bFobDBjvaj1h5hEe6hlr9rpD/9Tk9Yn3Vng8AP1HRdB/VJTZtIuRWkb0uRdn1yIGjI7kro6p1PTNJyPNln2/12TDykBysytuEP7wXnqK4ktP93wG/KariVugJ3s/FKeA2hG0rcB3rAr7+sbPLO0HA3Fzyz6iN96hwsbzzu8Y3vOFBHo+n4BPHWOv3uhzjnzxvj+hf3oAYGunZ9iMKLr2TMHWTs+hPe6snB1I+mW7O9729Tw36hKdeqRRp0Eehflqwg4789lb/sRGOALg7FbMixNiadslk5p+BWRctmXfDg/WLatNbpblb6LQe3AKT49KwrNmMRFhjnwwqzbhR7UWjwPguZBEOj2WgX9QgfGzC9Xy6YJaxF5wsEo84s7c9t5sZ2dH06ZNKzIWUQk1bJVLzwGXiQiz7hfcQasn4pQDv37pyezPoqwaS3DzTB59Jp6IcCez6Y1bZfDGR8fZ/EldVi0IRqdTEdgoG73+zn9Iy/L0gPM81jeKd+a3ITrCheAm6Yx/9Sg5OTZs/fpqe7/QfTVZvqC16XlRkbLjukadd2LmsKvb0+mM79/LuwAv7wI+WRpEzAUtPn75hMwKx8u7gIWTWlTY9htsUGHQXX1ecAGiRhtwfcgYh2MTFe6Pgq0v6DIg6WMDUWMMNNwKKo0Kt4fBuaP5/yxujgF9IRWSFAGkJNixZkk94qIcUKngob5JvL7qDCF9WhFzXsuImZHc3S2NheMakZOlYfTsCGatDGdyv4r7nP6tRfsstm7w5uxxJ9Q2MGTyRRasD2d49xYU5Gnw8inEy7uI1Qv9iTnniHftQsYuiMTTp5AFo4NvvoEK1PXxNIbPvsR70+tw5rCWvsOSWfBFBEO7NCLjsu3NV1DBWnbIYevaGpw9qkVjY2Dw9HgWfhnBsK6NKMir+JOiCmNQGR9Krr8KuuXE6P7770eluv6b/f333+8oIFF5OGh1THs/muVT/Xl+XIJVYwn9w5XQP1ytGgOAg7aYqW+dZsXshvQbEW02b/i08/ywsQ5ff1LPNC0uSrkz2CYtUtn/ly8H//YBIClBS9eH4mjUNJ2t1yxXVKQmLdVyia2uWEXaZftS06PPO7Ng4tUf9oRYLevea8CURadQa/TodRWTsNl4mB+fUtbqsasDTm2Nzz2fvGa+H/iMhvP9DBReAnt/UDuoUF/zcRWnGcg5CH6vV9xBfv/vnmbP171Tj54vJNK4dRYpCXY8/HQSiycFc+wfY1V02fQgVv96lMatszhz1KXC4rjWrMGNzJ4vnRLIV4eOENwih5MHXIk+q2X+NQlQfIwD65b4M2XZBdQaA3qd5X4EnxyewrYvPNn+lfFzXDGtDvc8mEmP51PZ/L6PxeK4YmZ/845HS8fXZfPJUwS3zOPkfrmaUtXc8pGodevWtGrVyvRo2rQphYWFHD58mBYtlDubqSpycnIYOHAgzs7O1KpVi6VLl5rNT0tLY+DAgXh4eKDVann00Uc5d+6c2TKrV6/G398frVZL3759WbZsGe7u7hZ8F0YhC2M5sNOVI38pcyCuikbPOseBP704+o/5D5ubZyGNW2WRftmWJZ8fZuPuvby19ghN70pXLJbTJzxp1S4FP/9sAOoHZdC0VSqh+7zNlmvR5jIbf/qVj778ndGTj+PiWqhYTAC16+Wy4bc9fPrz30xZdIqavvnXXdbJpZjcbJsKS4r+TV9kIP1ncO+jKvOETp9nIO0HA7a1jRWksqT/CCoHcHtQkRBRqw107ZmCg1bHmaMuBDfPwdbOwJG97qZlYiO0JMbZ0bh1ljJBlEHrYiy7ZaVf//zZ+P/TWDQpsrHVE9wyl8PXHJcMBhVH/nKhadtci8VxI06uVz67SlwtAumVdh23XDF65513ypw+Z84csrOz7zigqm7KlCns3r2b77//Hm9vb1599VUOHz5M69atARg8eDDnzp3jhx9+wNXVlWnTpvHYY48RFhaGra0te/fuZeTIkbz11ls8/vjj/Pbbb7z22ms33GZBQYFpBHKAzMzMO34fXR9PI6h5HmN7Nrzjdf1X3PdoIkFNsnnlubtKzfOtkwdA/zFRfPp2Ay6ccebBPoks+vQYo/rczaWYiq8cfb0hCK1TMR99+Qd6vQq12sD6jxqza/vVdmCH9nvz9+5aJFzSUqtODoNGnGHusv1MHt5ZkUt84SfcWDarKbFRWjxrFvDCyEjeXnuIUU+2Jy/X/HDj6l7I88Mj+eUbvwqP44qsP0CXDR69zadf3mwgcYUBfR7Y1YOAlSrUtmV/HmnfG3B/xFhJqkgBDXNYtvkEdvZ68nI1vDG6MTHntQQ2SaaoUEXOv9rtpKfY4VlT2aT2CpXKwMjXojl10Jnos2Xvu64eRTw/9hK/bKppkZhM2/XUobGB9GTzzyctxQb/oILrvMpyVCoDI+fGcfKAluhwR2uHI25DhbWYGzBgAPfccw9LliypqFVWOdnZ2Xz66ad8/vnnPPig8fRy3bp11Klj/KG6khDt3buXjh07ArBx40b8/f3ZsmULzzzzDO+99x6PPvookydPBqBhw4b8/fff/Pjjj9fd7qJFi5g7d26FvY+afoWMmhfHjOcbUFQg9xkGqOGbz4jp55k5rBVFhaXPAtUlH9Mvm/3YsaUWABFnXGjdPo2Hn0xg7fKKH+Ory4OX6PZwLG/PuYvoCBcCG2Yw/JVTpKY4sPMXfwD+/K22afnoCFeizrvy6f9+p0WbFI4dqvgftNA9Xqa/o845E37ClbXb/qZLjyS2f3c1AXJ0KmbuyuPERDixcVX9Co/jirTvDbh0BNua5kmN+6PgfK+K4hRI2WDg4nQDgZ+B2t58udzjBgoioc4bFZ9ExkY6MubxVji56Oj8yGUmLT7H1P7NK3w7t2PMvGgCGuUx6Zmy25FqnXXM++wsMecc+Xx57TKXqa5CFsZRr3E+k54IsnYoNyW90spWYYnRvn37cHCo3i3wL1y4QGFhIe3btzdN8/T0pFEj47X706dPY2NjYzbfy8uLRo0acfr0acA4snjfvn3N1nvPPffcMDGaMWMGEydOND3PzMzE39//tt9HUItcPGoWs3JbuGmaxgZa3JvD44NT6FW/lWINiiur4KZZeNQo4r2vQ03TNDbQvF0GvZ+PY1gv4/805oL52fXFCC01a13/UtKdeGlMGF9vCDIlP9ERrnj75vHMwHOmxOjfEi45kZFmR606OYokRv+Wk2VLXLQWP/880zRHbTFvrDpKbo6GN8a3QFesTPJdGG8g+wDUfbv0vqpxUaFxAfu64NgCTnczkPkHuD9ivlzqFgMOjYwNtitacZGa+BhjReH8KWcatsimz6B4/vypBrZ2Bpxcis2qRu41CklNVq5X2hWj50bR/oF0Jj/XhJSE0ttzdNIxf204edka5o0IVuz/dz2ZqRp0xeBes9hsukeNYtKSLd877lpjFsTSvnsmk/o2ICVe+f+VUMYt70VPPvmk2XODwUB8fDyhoaE3veQjlGFvb4+9fenGrrfr6B4Xhj9g3hBz0rIYLl5wYPNK72qXFAEc/ceDUX3amU2bsCCc2AgtX3/qT8JFB1IS7ahTP89smdoBeYT+Zd4eqaLYO+gw/KvXh16nQn2Df49XzTxc3ApJu2yZkxgHx2Jq+efx+4/GHwlHp2Lmf3iUokI188a1LLP6VlHSfjBg4wEunW+yYElbCMO/rlLpcg1k7gCfEMvs7yq1AVs7PedOOlFUqKJ1xwz2/mqswNWun4dP7ULFGl4bGRg9N5qOD6cx9fkmJMaWPqZonXUsWHeGokI1c4YFU1Ro+YpycZGac8e1tOmcZRqyQ6Uy0LpzNj+s9brJq5ViYMyCODo+ksGUp4NIvFhxx2NFKd0OqLpUjNzczMeOUavVNGrUiHnz5vHwww9XWGBVUYMGDbC1tWX//v3UrVsXMDa2Pnv2LF27dqVJkyYUFxezf/9+06W0y5cvEx4ebhr6oFGjRhw8eNBsvf9+rrS8HE2pa+P5uWqy0kpPtxQHrQ6/+ld/uXz9CwlslkdWuobkOOXPzPJybYg+b967JD9XTWbG1enfrPFnwJgoIsKdiDjjzEN9EqlTP5cFE5opEtOBPT48N+gcyYmOREe40KBhBn37RbDjJ2O1yMGxmBdeOsveXbVIu2xPrdo5vDTmNPGxThzar0y1aOikc+zfVYOkeAe8ahYyYHQEep2KXb/44OhUzIKPjmLvoOPtGU3ROhWjdTKe9Wek2VVowm3QG0j/Adx7gcrm6noLYw1kbAfnDqBxh+IkSF5rQO1QOoHK2A4GHbg/VmFhmQyeFE3on+4kXbJH66SjW+8UWrbPZNZLTcnNtmH7/7wZNiOSrHQbcrM1jHo9krDDLoomRmPmRXN/n8vMHR5MXrYajxrG71tOlg2FBWpjUrT+DA6OehZPaIDWWYfW2djIOCPV1qInTN9+XIPJyy9y9piW8CPG7voOWj3bNylzEnIzIQvjuL9vGnOG1Dd+djWLAMjJ0lCYL80RqppbSox0Oh1DhgyhRYsWeHh4KBVTleXs7MzQoUOZMmUKXl5eeHt7M3PmTNQlDVCCg4Pp06cPw4YN46OPPsLFxYXp06dTu3Zt+vTpA8DYsWO57777WLZsGb179+b333/nl19+ueEQCdVBw1Z5vP3NBdPzkXMvAbD9Kw+WTqhrrbDMfL/BHzt7PcOnXsDFrYiIcGdmDmtJwkVlkskP32nBgGFnGD35BG4exgEef/m+Hl9+Zmwwr9epCAjK5MHHLuLkXERqigNHDtRkw8eNKS5SplJTw7uAaW+dwtW9iIw0O04ddmPCgLZkptnRol0ajVsaOwZ89vM/Zq8b/EgHki5V3OeUvR+KEsCjj/n3RmUPOUcNpHwJ+kzQeIFTGwj8rPTAjWnfG3C933jZraK5exUxefF5PL0LycnSEHnGiVkvNTX1RPtoQX30ehWz3g83G+BRSb1fTALg7U1nzKYvnVyfHd/UJKhZDk3a5ACwZvdxs2UGdW5FYpzlqiS7f/DAzUvHwCkJeNQsJuKUIzP71yc9xfJjGAH0HnwZgCXfXjCbvmS8Pzs2WydZKxeF2xhV1YqRymAw3FLoDg4OnD59mvr1lWswWZVlZ2czatQovv32W1xcXJg0aRI//fSTaeTrtLQ0XnnlFX744QcKCwu57777eO+99wgOvjo+yOrVq5k7dy6pqan06NGDdu3a8f777xMfX8ZwvmXIzMzEzc2NbqonsFFZ50BRplvb1SxCUwkTfJVb5RsewZCdY+0QSmnya5q1Qygl7L7K1wvJUFx884UszFBg/d5jlV2xoYhdfE9GRgaurhU7htuV34jA1xaiUbBtsC4/n4g3XlXkPSjpli+lNW/enIiICEmMrsPZ2ZkNGzawYcMG07QpU6aY/vbw8GD9+vU3XMewYcMYNmyY2fOgoMrfw0EIIUQVIm2MynTLFz/nz5/P5MmT+fHHH4mPjyczM9PsIe7ckiVLOHbsGOfPn+e9995j3bp1DBo0yNphCSGEEP955a4YzZs3j0mTJvHYY8aWiI8//rhZuxeDwYBKpUKn011vFaKcDhw4wOLFi8nKyiIwMJAVK1bw8ssvWzssIYQQ/yVSMSpTuROjuXPnMnLkSP744w8l4xHA5s2brR2CEEIIUS2VOzG60ka7a9euigUjhBBCCMuQka/LdkttjKp7l3EhhBBC/LfdUq+0hg0b3jQ5Sk1NvaOAhBBCCCGs5ZYSo7lz55Ya+VoIIYQQ4r/ilhKjfv364e3trVQsQgghhLAU6ZVWpnK3MZL2RUIIIYT4r7vlXmlCCCGEqPqkV1rZyl0x0uv1chlNCCGEEIp78803UalUjB8/3jQtPz+fMWPG4OXlhbOzM0899RSJiYlmr4uJiaFnz55otVq8vb2ZMmUKxbd4v8BbvleaqEIMSl9Arvoq4w02dTFx1g6hFJVt5TtUnGxX+fbtX+P2WjuEUnrUbmPtEERlVvm+Rhw8eJCPPvqIli1bmk2fMGECP/30E19//TVubm6EhITw5JNPsnev8Xun0+no2bMnvr6+/P3338THxzNw4EBsbW1ZuHBhubd/y/dKE0IIIYRQQnZ2Nv3792f16tV4eHiYpmdkZPDpp5+ybNkyHnjgAdq2bcuaNWv4+++/+eeffwDYvn07YWFhfP7557Ru3ZpHH32UN954g5UrV1JYWFjuGCQxEkIIIaojgwUeUOpm8wUFBdcNacyYMfTs2ZOHHnrIbPqhQ4coKioym964cWPq1q3Lvn37ANi3bx8tWrTAx8fHtEyPHj3IzMzk1KlT5f5YJDESQgghhGL8/f1xc3MzPRYtWlTmcps2beLw4cNlzk9ISMDOzg53d3ez6T4+PiQkJJiWuTYpujL/yrzyqnwNB4QQQgihOEv1Srt48SKurq6m6fb29qWWvXjxIq+88go7duzAwcFBuaDKQSpGQgghhFCMq6ur2aOsxOjQoUMkJSVx1113YWNjg42NDbt372bFihXY2Njg4+NDYWEh6enpZq9LTEzE19cXAF9f31K91K48v7JMeUhiJIQQQlRHFmpjVB4PPvggJ06c4OjRo6ZHu3bt6N+/v+lvW1tbdu7caXpNeHg4MTExdOjQAYAOHTpw4sQJkpKSTMvs2LEDV1dXmjZtWu5Y5FKaEEIIIazKxcWF5s2bm01zcnLCy8vLNH3o0KFMnDgRT09PXF1dGTt2LB06dODee+8F4OGHH6Zp06a8+OKLLF68mISEBGbNmsWYMWPKrFJdjyRGQgghRDVU1Ua+fuedd1Cr1Tz11FMUFBTQo0cPPvjgA9N8jUbDjz/+yKhRo+jQoQNOTk4MGjSIefPm3dJ2JDESQgghRKWza9cus+cODg6sXLmSlStXXvc19erV4+eff76j7UpiJIQQQlRHSt8coRKOql0e0vhaCCGEEKKEVIyEEEKI6kgqRmWSipEQQgghRAmpGFUQg8HAiBEj+N///kdaWhpHjhyhdevW1g7rtvQamELPgZfx8TfedC863IGN7/gQ+ofrTV6pvN6DU3h6VBKeNYuJCHPkg1m1CT+qVXy7PZ+Pp+fz8fjUNt7jJ/qcli8+8Cf0T0/TMo1bZzJoQjSNW2ah16u4cNqJWUObUVigUTy+azk66Rg05RIdH8nAvUYRF05qWTW7DmePOSm+7edGXaJTjzTqNMijMF9N2GFnPnvLn9gIR9Myjz6fxP2PX6ZBsxycXPQ81fIucrIseygaMDGeFyeZDwR38bw9L3dtotg2c7PVrFtci79/cSP9sg0NmuUx6o1YGrXOK7Xsu9Pq8POGGoyYG8eTw5JN02cPqs+FU46kX7bBxU1Hmy5ZDJ15CS/fYkVitsbndDPPhSTS6bEM/IMKjPtYqJZPF9Qi9oL1Rktu3j6bZ0YnE9wiFy/fYua8FMC+bW5Wi6e8qlqvNEuRxKiCbNu2jbVr17Jr1y4CAwOpUaOGtUO6bcnxtny2sBZxkfaoVND9mVTmrIlizMMNiT5rvYNP18fTGD77Eu9Nr8OZw1r6DktmwRcRDO3SiIzLtopuOyXBjjVLAoiLdkSlgoeeSOT1lacJ6duamPNONG6dyfxPTvHVR3VY9UYgOp2KwMY5GPQqReMqy4S3owlolM/iV+qRmmjLA0+m8uaX5xj2QFMuJ9gpuu0W7bPYusGbs8edUNvAkMkXWbA+nOHdW1CQZ0wQ7R30hO52I3S3Gy9Ni1U0nhuJOuPA9H4NTM91xcr+r96Z5E9UuANT34vG06eI37/xZPpzQazedYYatYpMy+39xY0zh5zw8i19N/BWnbLpNy4RT58iUuJtWT2vNm8Mq8/yrecUi9vSn9PNtOyQw9a1NTh7VIvGxsDg6fEs/DKCYV0bmfYxS3PQ6ok45cCvX3oy+7Moq8QgKo4kRhXkwoUL1KpVi44dO5Y5v7CwEDs7ZX+UKsr+HeZnOmvfqkWvgZdp3DbHqonRk8NT2PaFJ9u/MlZpVkyrwz0PZtLj+VQ2v+9zk1ffmf1/eJk9X7c8gJ7PJ9C4dRYx550YMSOS7zf48fVqf9MycZHKV7L+zc5BT+fH0pnzUgNO7ncB4PNlftz7UAa9Xkxh3dt+im5/1uBGZs+XTgnkq0NHCG6Rw8kDxorjljXGoflbts9UNJab0ekgLVnZhPqKgjwVe352Z86aSFrcmwPAi5MT+GeHKz+u92LwNOMNLlPibflgVm0WfBHB6y8GllrPk8OvVo986hTxXEgic1+qT3ER2Cj0Viz5OZXHzP7mn8vS8XXZfPIUwS3zOLnf2Soxhf7hWikq6rdM2hiVSdoYVYDBgwczduxYYmJiUKlUBAQE0K1bN0JCQhg/fjw1atSgR48eAOzevZt77rkHe3t7atWqxfTp0ykuvloGz8rKon///jg5OVGrVi3eeecdunXrxvjx463y3tRqA137pGGv1XM6VPlLMddjY6snuGUuh/9yMU0zGFQc+cuFpm1zLRqLWm2g62PJOGh1nDniiptnIY1bZ5Fx2ZalXx7ji737WbzhOM3aZlg0LgCNxoDGBgoLzM/qC/LVNLsn2+LxaF10AGSlV75zsNr1C/ni0EnW/h3GtPeiqelXukJTUXQ6FXqdCjt7vdl0ewc9pw4Yf8z1elg8ri5Pj0oioFH+TdeZmabh9289aNouR7GkCCz7Od0OJ9cr+5h1qkXiv6fyHa2qoHfffZcGDRrw8ccfc/DgQTQaDc888wzr1q1j1KhR7N27F4C4uDgee+wxBg8ezPr16zlz5gzDhg3DwcGBOXPmADBx4kT27t3LDz/8gI+PD6+//jqHDx++YXulgoICCgoKTM8zM+/8TDygcR7Lt57Hzl5PXo6aeUMDiDlnvWqRq6cOjQ2kJ5vvsmkpNvgHFVznVRUroGEOyzYdM34muRreGNOEmAtaGrcyft79Q2L4ZHF9Ik478eATSSxae5KRve7iUrTjTdZccfJyNISFOvHC+ARizjuQnmxLtydSadI2h0tR5R8SvyKoVAZGvhbNqYPORJ+1fPXsRs4ccWLJBEdiL9jj6V3EgIkJLP3uHCMeaExeTsX/wGqd9TRpm8MXy32pGxyFe81idm3x4PQhJ/wCjPvv5pXeaDQGnhiacsN1fTK/Fj+sqUFBnoYmbXOYty6iwuO9wtKf061SqQyMnBvHyQNaosMt9z37z5CKUZkkMaoAbm5uuLi4oNFozO7gGxwczOLFi03PZ86cib+/P++//z4qlYrGjRtz6dIlpk2bxuuvv05OTg7r1q3jiy++4MEHHwRgzZo1+Pnd+PLHokWLmDt3boW+p9gL9ozu3hCti44uvTKY/G4MU54MsmpyZG2xkY6MeaINTi46OvdIYdJbZ5k6oCWqkrrrz1/5suNb4yW9C6edad0hnYefSmTtsgCLxrn4lQAmLo3my0Mn0RXD+ZNadn3vQXALy1bWxsyLJqBRHpOeKf/NGy3l2ssekacdOXNEy4b9YdzXO51fN3nd4JW3b+p70SybWJcX7mqOWmMgqEUu3Z5I49xxLeeOO7Llk5qs/DUc1U2a8DwzKolHnk8lMdaWjct8efuVusxbH3nT190Oa3xOtyJkYRz1Gucz6Ykga4ci/kMkMVJQ27ZtzZ6fPn2aDh06oLrmCNapUyeys7OJjY0lLS2NoqIi7rnnHtN8Nzc3GjUyb7fxbzNmzGDixImm55mZmfj7+9/gFTdXXKQ2VRjOn9DSqHUuT7yczIppd7be25WZqkFXDO41zXvfeNQoJi3ZMrtxcZGa+BjjWen5U840bJFFn4GX2Ly6DgAxF8yrIjEXtHj7Waaada34aHumPN0Qe0cdTi56UpNsefWDCOJjLFcxGj03ivYPpDP5uSakKNzguyLkZNoQG2Fvqt4owS+gkCXfnic/V01Olhovn2IWjKhHrXoFnNjvTHqKDQPubmZaXq9TsXquH1tW12T9gTDTdDcvHW5eOuo0KKBucDQD2jXj9CEtTdspn/ha4nMqrzELYmnfPZNJfRuQEl/597HKSHqllU0SIwU5OVmmTY69vf0t3Tn4dqhUYGtnvb28uEjNueNa2nTOMnWDVakMtO6czQ9rrXPmqlKDrZ2exFh7UhLtqFPfvNt1nYA8Dv7pYZXYAAryNBTkaXB2K6Zt1yw+WVjbAls1MHpuNB0fTmPq801IjLXs5bvb5aDV4VevkJ3fKN/I2EGrx0GrJytdw6Hdrrw86xKdH0vnri5ZZsu9+kIgDz6VxsPPpV53XYaSJktFhZZpLmrJz+n6DIxZEEfHRzKY8nQQiRerxj4mqg5JjCyoSZMmfPPNNxgMBlPVaO/evbi4uFCnTh08PDywtbXl4MGD1K1bF4CMjAzOnj3LfffdZ7E4h8yI5+DvLiTH2eHorOP+vum07JjNzBdK95KxpG8/rsHk5Rc5e0xL+BFjd30HrZ7tmzxv/uI7NHhiFKF/epAUb4/WSUe3Xsm0vCeDWUObASq++bQ2A8bGEHnGiQunnXiobxJ1AvNYMK6x4rH9W9uumahUBi5ecKB2QAEvz4rj4gV7tn+lfAI5Zl409/e5zNzhweRlq/GoYWyom5NlQ2GB8cfbo0YhHjWL8AswNjAOaJxHXraapEv2ZGdY5pA07LU4/tnhRlKsLV6+xbw4KR6dHnZtUS6RDd3lgsEA/g0KiIu045M3auMflM/Dz13GxtbYju5aNjbg4V1sakN35rCW8KNamt+Tg7N7MfFR9qxb7EutgAKatM1RJGZrfE43E7Iwjvv7pjFnSH3jPlbTONRBTpaGwnzr9Cdy0Orwq3+1UbqvfyGBzfLISteQHFeJq1nSxqhMkhhZ0OjRo1m+fDljx44lJCSE8PBwZs+ezcSJE1Gr1bi4uDBo0CCmTJmCp6cn3t7ezJ49G7VabXb5TWnuNYqZsiIGT+9icrM0RJ52YOYLgRz+0+XmL1bQ7h88cPPSMXBKAh41i4k45cjM/vVJT1H+7NXdq4jJb53F07uQnCwbIsO1zBrajCN/G38gtqyrja2dnuEzInBxKybijBMzX2pG/EXLNwh1ctExZHocNWoVkZWuYe8vHqx5y88i48/0fjEJgLc3nTGbvnRyfXZ8UxOAnv2TGDD+0tV5m0+XWkZpNWoVMWNlFC4eOjJSbTh1wInxvRuSkarcITEnU8OaRbVIibfFxV1Hp8fSGTI9vtw9yuwd9ez9xY0NS33Jz1Xj6V1Eu/uzmPlKNHb2yvwCWeNzupnegy8DsOTbC2bTl4z3Z8dm5U+SytKwVR5vf3M1npFzjfv39q88WDqhrlViErdPZTAYqmhOV7ksX76c5cuXExUVBUC3bt1o3bo1y5cvN1tu9+7dTJkyhWPHjuHp6cmgQYOYP38+NjbGA01WVhYjR45ky5YtuLq6MnXqVDZt2sQDDzzAokWLyhVLZmYmbm5udKMPNqrKM/5IZaR2sW6yVxZ9jmUbSZeHyrbynUMZCitXt3GAX+OOWDuEUnrUbmPtEEqTn52bKjYUsYvvycjIwNW1YsdIuvIb0SRkIRp75TrU6AryOf3+q4q8ByVVvqNdFTV+/HizsYZ27dpV5nJdu3blwIED112Pi4sLGzduND3Pyclh7ty5DB8+vKJCFUIIIcR1SGJUyRw5coQzZ85wzz33kJGRwbx58wDo06ePlSMTQgjxnyJtjMokiVEltGTJEsLDw7Gzs6Nt27b89ddfVfrea0IIIURVIYlRJdOmTRsOHTpk7TCEEEL810nFqExyrzQhhBBCiBJSMRJCCCGqIVXJQ8n1V0VSMRJCCCGEKCGJkRBCCCFECbmUJoQQQlRH0vi6TFIxEkIIIYQoIRUjIYQQohpSGYwPJddfFUnFSAghhBCihFSM/svUGlBprB3FVXqdtSMoTVf5YqqMN2zVeLhbO4RS9FnZ1g6hlMp4w9ZeJ1OtHUIpPzb3tHYIVYBK+TY60saoTFIxEkIIIYQoUflOTYUQQghhGVW0qqMkqRgJIYQQQpSQipEQQghRDUmvtLJJxUgIIYQQooRUjIQQQojqSHqllUkqRkIIIYQQJaRiJIQQQlRD0saobFIxEkIIIYQoIRUjIYQQojqSNkZlkoqREEIIIUQJqRgJIYQQ1ZC0MSqbVIyEEEIIIUpIxegGunXrRuvWrVm+fLm1Q7EotdrAgInxPPhkKh7eRVxOsGXH11588a4voLJqbL0Hp/D0qCQ8axYTEebIB7NqE35Uq/h2nx0ZR6eHL1MnMI/CAjVhh134bHE94iIdAfCunc+63UfKfO2CsQ3Z84uXInE1vyeTp4cnENw8By+fIuYOD2bfDg/TfPcaRQyddpG7umTg5Krj5AEXPphTj0tRDorEA+BVM58hr5yjbccU7B10xF/U8s6cZpw/7VZq2TGvhvHY07F8vKQR339RT5F4er6QQM/nE/CpUwBA9DlHvnjfn9A/jZ/To88l0K13CkHNctA663j6rnvIybLOodHLt5Chr8Zz9wOZ2DvouRRlz9KJdTl3vOL38Z3dXcm7pCk1vV6/fFq8lkd+sorTSx1J+duW4lwVTgE6gofnU+vhohuuo/H4XIKGFVR4vGV5dkwiQ1+N57tPavDh7DoW2ebNVMaYrkvaGJVJEiNRyrOjE+k1MJkl4wOIPutAcKtcJi2NJidLw/efeVstrq6PpzF89iXem16HM4e19B2WzIIvIhjapREZl20V3XaLezLY+rkvZ084o9EYGDwphgVrw/h/e3cdFlX2BnD8OwyNpCIhiCj2YufascbarWuvhYqBmGvrz+7ADuxWXFvsxsRuUEARQZDuub8/kFFWrJWZwfV8nmeeh7lz5953hol3znnPOX0alCIxXk5YsB5/VCqb4T4N24fQqudLrp42U1lc+gYK/O8bcnR7LsYtf/KPWyXGL39ESooWE3sXJC5GTsser5i28QG9f3MmMf7jL8XvlcM4mVlrL3PrqgXjB5QhMkIH27xxxER//P+pXCuEIs6RhL3Wy/I4PhT2Spe1sx148UwfmQzqtnjNuKUPcG1WkoAnhugZKLh6xoyrZ8z4c1iASmP5nBymKcz1esytC8aM6ZSft2+0yeOYSExk1v+fAKpui0ZKfX89+okcn57G2NRPS3x8/zIiOUpGucUx6JpLvDygyzV3I6ptj8a06Ps7FnKNJ2/r94mQtpF6vg0LlYyjUac3+N1TXZL/rbJjTMK3E4mRGiUlJaGrq6vpML6oWLkYLh414/KJtF/4IUF61GoWQeFSsRqNq2XvMA5vtuDoNgsAFo6wo0KdKOp3CGf7YiuVnnvsn8UyXJ87womtl69S8JdY7lwxQaGQERGW8X/7a71wzh7KSUKcar7YAK6eNvtk4pXHMYGiZWLpU+8Xnj9Oa3FYNCYfWy7foFbTNxzelvVJbutu/oSG6DN/wi/KbSEvP27tyGmZgMvwB4ztX5YJC69neRwf8jlhkeH6unkONPojhCKlogl4YoiXpy2QlvxqUtt+rwl7qcucIXmV20ICVZc06llkTGCertLB0D6VnOVTAIi4oY3zuDjMS6QlQQVdEvBbr0fkXXmGxEjbSELfUr1NA/qGqYxY/Jz5w+3pMPCVWs/9Kdkxpi8SLUaZEjVGX6BQKBg+fDgWFhZYW1szYcIE5W0BAQE0a9aMHDlyYGJiQtu2bQkJCVHePmHCBEqVKsWqVatwdHREXz/tV8TOnTtxdnbGwMCAnDlzUrduXWJj3ycdq1atomjRoujr61OkSBGWLFmitscLcO9qDkpViSaPYwIA+YvGUbx8DFdOftwVoi7aOgoKlojj+llj5TZJknHjrDHFysapPR5D47Qvj+i3mf+2cCoeQ4FicRzZrtqE7XN0dNM+lZIS37/NJUlGcpIWxcvFqOScFWuE8uSeCaNm3GTTsZMs3HyR+i2CMuwjk0m4/+82u9bnI8Avh0ri+BQtLYkajcLQN0zlga/xl++gRpXqRfLoliGjl/uz7eYdPI48pOEfb9RybkUSBO3Xxb5lErJ3veXmpVN4eViHpLcyJAW8OKiDIkmmTJzSPV2lz5FfTTnTypina/RQpGRygizmOjWIy8dNuHE2+/wPs2NMwr8jWoy+YN26dQwZMgQfHx8uXrxIt27dqFKlCnXq1FEmRadPnyYlJYX+/fvTrl07Tp06pbz/kydP2LVrF7t370YulxMcHEyHDh2YOXMmLVq0IDo6mrNnzyJJaV9imzZtYty4cSxevJjSpUtz48YNevXqhZGREV27ds00xsTERBIT3zdlR0VFfddj3uZhhaFxKqtO30ORClpy8Jxhy8k9Fl++s4qYWKQi14a3oRlfshFh2tg7qaeeIZ1MJtFn9DPuXjVWtsT8U/22rwl4YsD9G5r7kAx8qk/IC126Dw9i4V/5SIjXosWfr7C0TcIid5JKzmmdJ57fWwexZ5MD29Y4Uqh4FH2GPSAlWcbx/XmAtFal1BQt/t6S9wtHyzr5CsUyd/ttdPUUxMfJmdyvCAFPVF+b9i1s8ibRuHMYu1dasnWhFYVKxdF3UhDJyTKO7VDte+/VCR1SomXYN3//Xio7J5br7kYcrWKGTFtCrg/lFsRg5KBQ7uPYMRGTYqnomkpE+Mp5MN+AhFAtio+IV1msNZpG4PRLPAMaFVLZOb5Vdozpa4hRaZkTidEXlChRgvHjxwNQsGBBFi9ezPHjxwG4ffs2/v7+2NvbA7B+/XqKFy/OlStXKF++PJDWfbZ+/XosLS0BuH79OikpKbRs2RIHh7RiU2dnZ+X5xo8fz5w5c2jZsiUAjo6O3Lt3j+XLl38yMZo2bRoTJ07MssdcvUkEtVuEM901H88fGVCgeBwuE4J4E6LDsZ2qKSL+kfSf4E++QvEMbV8809t19VKp2SSMLR6aLbxMTdFisktB3Gb4s/PmdVJT4MZ5Uy6fNFW2CmQ1mZbEk3smrF9cEAC/hyY4FIihYesgju/Pg1PRKJp1CGDgH5VQZyF/kL8B/ZuWxMg4laoN3uA+8zHDO/6SrZIjmRY8vmXA2ulpXXtP7xqSr3ACjTqHqTwxCtylh2XVZPRzv/8me7hIn+RoGZVWR6NrJvHqhA7X3I34dX00JoXSkqP83d4nUiaFU5HpwO2JhhRxi0eugqoBS9sk+k56wagOBUhOzB4dHtkxJuH7iMToC0qUKJHhuo2NDa9fv+b+/fvY29srkyKAYsWKYWZmxv3795WJkYODgzIpAihZsiR16tTB2dmZ+vXrU69ePVq3bo25uTmxsbE8ffqUHj160KtXL+V9UlJSMDX9dDfWqFGjGDJkiPJ6VFRUhri+Va8xL9jmYc3pv9M+jJ89MCB3niTau77SWGIUFS4nNQXMLDO205vnSiEiVH0v477j/ahQO4JhHYoT9irz+o+qDcPR01dwfI9lprer05M7RvRv9AuGxino6EhEhuswf89dHt82Usn5IsL0PuoeC/Q34tc6aV3MxUtHYGqRhOfBs8rb5doSPdwe0uyP5/zZuLpK4kpJ1iI4IG0E4ZO7OSjkHEOzrsEsGltAJef7N8Jfa/P8Ucai3cAn+lT9XbW1T3EvtQi9pE25Be+782MDtHi2WZ8aeyMxdkpLgkyKpBJ+TZtnW/QpMT7z7mvzEilIKTLiX2iRw1GR6T7fw8k5DnPLFDwOP1Ruk2uDc6VYmnYLo7FjSRQK9Y6czY4xfTVRY5QpkRh9gY5OxtE0MpkMheLr3/BGRhm/gORyOd7e3ly4cIGjR4+yaNEiRo8ejY+PD4aGab9eV65cScWKFT+636fo6emhp5d1RZp6BgqkfzxERaoMmQZ/DKUka/H4liGlq0Zz8XBakiiTSZSqGsPfnupI1iT6jvfn19/CGdGxOCFBnx51Ur/Na3xOmBMZrtqRct8i7t3wc9t8CRR0jmX9XNW0Zt3zNSNPvoxF+nkcYgkNTnu+ThywwdcnY+vHJI/rnDxgg/ffeVQSU2ZkWhI6uln/xf097l0xwr5Axm7hPPkTef1Cta+jwD266FlI5K7+fhh+asK7P/7xfS7TAj7ztEU+0AYtCV0L1Xwj+p4zpnftwhm2uc8NIPCpPts9cmskAcmOMQnfRyRG/1LRokUJDAwkMDBQ2Tpz79493r59S7FixT57X5lMRpUqVahSpQrjxo3DwcGBPXv2MGTIEGxtbfHz86Njx47qeBiZuuRtSvuBr3j9Qpfnj/Qp8Es8LXu/5ug2zXaj7V6Ri6HzA3l005CHN9KG6+sbKji6VfW1T/0n+lOzSRiTXAoTHyvHPFdajU5stJykxPdJq41DPL+Uj2JczyIqjwnSRsLYOiQor1vbJ5K/aCzRkdqEvtSj2u/hRL7R5vVLXfIViafvuOdcPGrO9bOqKaT32uTA7LWXafunH2e9rSlUPJIGLYNY9L+0bsfoSF2iIzP2saSmyIh4o8eL56ppxerm/pyrZ8x4/VIPQ6O0bs4SFaMY826koXmuJMwtk5XPY77CccTHynn9UpeYSPUlt7tX5mbe3ke0HxDCmX1mFC4Vx+8d3zB/uOq6ZCUFBO3Rxa5ZEloffBvkcFRgmDeV2xMNKTo0XtmVFnpRm/JL0gr3I3zlRNzSJleFFORGEhE3tbk3wwC7xknomqomMYqPlfP8oUGGbQlxWkRHfLxdXbJjTF9LJknIJNU166jy2KokEqN/qW7dujg7O9OxY0fmz59PSkoK/fr1o0aNGpQrV+6T9/Px8eH48ePUq1eP3Llz4+PjQ2hoKEWLFgVg4sSJDBw4EFNTUxo0aEBiYiJXr14lIiIiQ3eZKi0Za0/XYS9xnRqIWa60CR4PbszFpvnWajn/p5z+2xzTnKl0GfYKc8sU/O4aMLqjI2/DVP/l1bhjWlfQzM33MmyfM7wAx3a/H/Zer3UoYa90uX7WTOUxARRyjmXm1gfK633Gps3D470zF3OG5ccidxK9RwdgliuZ8FAdju/OxeZFtiqL5/E9U/43tBTdXB/ToZcfIS8NWDG7CKcO2ajsnF9iljOZoTOfYJE7idhoOf4PjBjzZzFunDcD4PcOr+g08P3Iudlb7gAwZ4RThv+tqj26acikno50HxlMx8GveBWoy7LxeVQ66CHsojbxwXLsW2YcpailAxWWxfBgrgFXXHOQGifD0D6VUlPjsKqe1p2tpQsvD+nyaIk+iiQZhnkU5O+SiGPXhMxOJQg/DJkk/aApnRpkNvN18+bNMTMzw9PTk4CAAAYMGMDx48fR0tKiQYMGLFq0CCurtCHaEyZMwMvLC19fX+X979+/j5ubG9evXycqKgoHBwcGDBiAq6urcp/Nmzcza9Ys7t27h5GREc7OzgwePJgWLVp8VdxRUVGYmppSU6sl2rLs052DIvXL+6iZlmH2Kb5NJ6Vmv+dJbm6m6RA+oohWzZQD30MRp/6pI76k8Z1wTYfwkf2/aG6E648iRUrmlORFZGQkJiYmWXrs9O+IUp2mINdV3WSUqUkJ+G4crZLHoEoiMfoPEonR1xOJ0dcRidHXEYnR1xGJ0ZeJxEhzRFeaIAiCIPyExDxGmROTLgiCIAiCILwjWowEQRAE4Wck5jHKlGgxEgRBEARBeEe0GAmCIAjCT0jUGGVOtBgJgiAIgiC8I1qMBEEQBOFnJGqMMiVajARBEARBEN4RLUaCIAiC8BMSNUaZEy1GgiAIgiAI74gWI0EQBEH4GYkao0yJxOg/TJ7DELlMV9NhKKVGR2s6hI8oEhI1HcLHsuGacimvQjQdwo9BJtN0BB/ZX9xc0yF85O8XlzUdwkea2lXQdAhCNiESI0EQBEH4Sf2odUCqJGqMBEEQBEEQ3hEtRoIgCILwM5KktIsqj/8DEi1GgiAIgiAI74gWI0EQBEH4CYl5jDInWowEQRAEQRDeES1GgiAIgvAzEvMYZUq0GAmCIAiCILwjWowEQRAE4SckU6RdVHn8H5FoMRIEQRAEQXhHtBgJgiAIws9I1BhlSrQYCYIgCIIgvCNajARBEAThJyTmMcqcSIxUqFu3brx9+xYvL69P7pMvXz4GDx7M4MGD1RbX57TpFUh392d4rbNlxbQCAOjoKug1wo/qjULR0VFw/bw5HhOdePtGV21xrbt0F2v75I+2/+2ZC4/RdmqL40NaWhKdhgRTp2U45rmTefNKB+8dOdm8wBrQzCrrv1SMoU2/UAo6x5HTOoUJf+bj4mFTjcSSrnGXMBp1eYOVfRIAzx/qs2meFVdPmmgspuz4PHUaEkxn95AM2wKf6NGzRlENRaSZ5ykuRotNM/Nw6bA5kW90yF88jl6TAihYKhaAzXNsObvXgrCXumjrSjg5x9JpxAsKl4lVHmP7AhuuHjfD764BOroSW+7fUGnMADmtk+jxVzDla0ehp6/g5TM95gzJy+Nbhio/t5C1RGKkYVeuXMHIyEjTYQBQ8JdoGrYLxu9Bxnh6j3pK+RoRTBtUlNgYOX3HPmXMovsM/aOk2mIb+HthtOTvf37kK5LA9K1PObtfc19mbfuF0LhLKLMH5+P5I30KlozDfc5zYqPl7F2TWyMx6Rsq8Lurz5EtFoxf80wjMfxTaLAOa6ba8MJfD5kMfmsTzoS1z+hfrxDPH+lrJKbs+DwBPHugz8j2BZTXU1M0k2Cn08TztHioI88fGuC20A8Lq2RO7c7J2PaF8Dh5h5w2yeTJn0Cf/wVg7ZBIUoKMvSutGf9HIZafv41pzhQAUpJlVGkcTuGyuhzbmkvlMecwTWGu12NuXTBmTKf8vH2jTR7HRGIi5So/93cRa6VlSiRGGmZpaanpEADQN0xl+OyHLBxbkPZ9A5XbDXOkUK9VCDOHFeamjxkA80YVYsWhaxQuGcXDm+r51R8ZnvGl2s41hJf+uty6mEMt589MsXIxXDxqxuUTaclZSJAetZpFULhU7BfuqTpXT5potCUmMz7eGZNXzxk2NO7yhiJlYzWWGGXH5wkgNRUiQnU0HYaSup+nxHgZFw6aM3rNY36pFAPAH+4vueJtxqH1uek04gU1WoRnuE+P8QF4b7Hk2T0DSlaLTrvP0JcAHN+WUy1xt+33mrCXuswZkle5LSRQTy3nFrKeKL7OAjt37sTZ2RkDAwNy5sxJ3bp1iY19/+U4e/ZsbGxsyJkzJ/379yc5+X2XUL58+Zg/f77yukwmY+nSpTRs2BADAwPy58/Pzp07Vf4Y+o17wuVT5vheNM+wvWDxGHR0JXwvvN8e5G/I6xd6FC0VrfK4MqOto6B2ywiObMuJprqsAO5dzUGpKtHkcUwAIH/ROIqXj+HKSc12yWRnWloSNZpFoGeo4P7V7NFSmp3kcUxi87U7eF64x4hFz7G0TdJ0SGqVmipDkSpDVy/jBDi6+gruXfn4R1Bykowjm3JjZJKCY/F4dYX5kUr1Inl0y5DRy/3ZdvMOHkce0vCPNxqL52ul1xip8vIjEi1G3yk4OJgOHTowc+ZMWrRoQXR0NGfPnkV614R48uRJbGxsOHnyJE+ePKFdu3aUKlWKXr16ffKYY8eOZfr06SxYsIANGzbQvn17bt++TdGimdcaJCYmkpiYqLweFRX1TY+h+u+vcSoWw6DWpT+6zdwyieQkGbHRGV8qEW90MM+lmQ/tXxtEksMklaPbLTRy/nTbPKwwNE5l1el7KFJBSw6eM2w5uUezcWVH+YrEM3/fE3T1FMTHajGpRz4CHmumtSi7enDDiNluBgQ91cMidzKdhrxizp7H9KldhPjYbN4lk0UMcygoUjaGbQtssSvoh5llMme8cvLwWg5s8iUo97vibcqsfgVIjNfC3CqZSVseYWKRorG4bfIm0bhzGLtXWrJ1oRWFSsXRd1IQyckyju0Qnwc/GpEYfafg4GBSUlJo2bIlDg4OADg7OytvNzc3Z/HixcjlcooUKUKjRo04fvz4ZxOjNm3a0LNnTwAmT56Mt7c3ixYtYsmSJZnuP23aNCZOnPiv4s9lnUifv/wY/aczyUk/RgNi/fbhXDlpQniIZrscqjeJoHaLcKa75uP5IwMKFI/DZUIQb0J0OLZTPU34P4qgp3r0+60QhsapVGscydAFAQxr6SSSow982GXlf9+ABzcM2eBzj+pN3nJk68/zenJb6MdC93x0L1sKLblEAedYqjUP5+kHRczOVaKZf/QuUeHaHN1syQyXAszefw+zXJpJjmRa8PiWAWun2wLw9K4h+Qon0KhzmEiMfkA/xjdhNlayZEnq1KmDs7Mzbdq0YeXKlURERChvL168OHL5+197NjY2vH79+rPHrFy58kfX79+//8n9R40aRWRkpPISGBj4yX3/qWDxaMxzJbNo93X23TnLvjtnKVEhkqadX7LvzlkiwnTQ0ZUwMs74gWOeM5mIMPWNSkuXO08SpatFc3iz5r8oeo15wTYPa07/bcGzBwYc35WT3Stz0971laZDy3ZSkrV4+UyPJ7cNWTvNBv97BjTvGarpsLK12Chtgvz0sM2X+OWd/0Ns8iUybddDtj++xporN5lz4D6pyTKs875/HvQNFdg6JlKkbCwD5zxDLpfw3qK5es3w19of1csFPtEnt+3HI2mzFUkNlx+QaDH6TnK5HG9vby5cuMDRo0dZtGgRo0ePxsfHBwAdnYytGjKZDIUiaxeQ0dPTQ0/v3xX6+V4yo2+TMhm2uU19RJCfITtW2REarEdykoxSld9y/mja6I48jnHkzpPIfV/j7479W9Vr94a3Ydr4HNd84ayegQLpH/9KRaoMmfi58UUyGejo/qCfmmqib5iKrUMSx3dln2JsddI3VKBvqCDmrZwbp03oOjrok/tKUlq9kabcu2KEfYGMCWye/Im8fvFz/u9+dCIxygIymYwqVapQpUoVxo0bh4ODA3v27PnXx7t06RJdunTJcL106Y/rf7JCfKw2zx9nfBkkxMuJeqvN88dpxbFHd1nRa4Qf0ZHaxMXIcRnzlHs3jNU2Ii2dTCZRr104x3ZYoEjV7DBmgEveprQf+IrXL3R5/kifAr/E07L3a46qaSRMZvQNU7F1fF/7ZW2fRP7i8US/lRP6Qv0tfADdRwVz5YQxoS90MciRSq0Wbynxawyj/8ivkXggez5Pvca+4JK3Ka+DdMhpnUJn92BSFXDKy/zLd1YRTTxP10+ZIEmQp0ACwc/08ZxsT54CCdRtF0ZCnBbbF9hQod5bLKySiQrX5oBnbt680qVq4/ej1UJf6BIdISf0pR6KVBl+dwwAsHFMxMAo61c23b0yN/P2PqL9gBDO7DOjcKk4fu/4hvnDNTPH2tcSEzxmTiRG38nHx4fjx49Tr149cufOjY+PD6GhoRQtWpRbt279q2Pu2LGDcuXKUbVqVTZt2sTly5dZvXp1Fkf+9VZMK4Ck8GP0gvvo6Cq4ds6cJZOc1B5H6WrRWNklc2Rb9uizXzLWnq7DXuI6NRCzXGkTPB7cmItN8601FlOhkvHM2vVUed1lYtqw5aPbzJnjlvdTd1Mps1wpDFsYgEXuFOKi5fjf12f0H/m5fkb9LY7psuPzlMsmmVEezzA2TyUyXJu7l40Y3KTQR1NVqJMmnqe4KDnrp9sRFqyLsVkKlX+PoPOIF2jrSChSIeipASd65yIqXBsT8xScSsYyffcD8hZ+X5y9aVYeTux4P3/R4Pq/ADBlxwOcf8360bSPbhoyqacj3UcG03HwK14F6rJsfB4xEOMHJZOkH3QGpmzi/v37uLm5cf36daKionBwcGDAgAG4urpmOvP14MGD8fX15dSpU8DHM1/LZDI8PDzw8vLizJkz2NjYMGPGDNq2bfvVMUVFRWFqakodk05oyzTz6zczqdGaGd7/Wdmx30uRqukIhH9LpvmWzI9kw4/4v19c0XQIH2lqV0HTIWSQIiVzSvIiMjISE5OsbZ1P/46o9PsktHVUNwAiJTmBSwfHqeQxqJJoMfpORYsW5fDhw5ne5unp+dG2D+csAnj27NlH+9ja2nL06NEsiE4QBEEQhG8hEiNBEARB+AmJGqPMZcN+BEEQBEEQBM0QLUbZjCj5EgRBENRC1XMN/aBfZ6LFSBAEQRAE4R3RYiQIgiAIPyFRY5Q50WIkCIIgCILwjmgxEgRBEISfkUJKu6jy+D8g0WIkCIIgCILwjmgxEgRBEISfkRiVlinRYiQIgiAIgkZNmzaN8uXLY2xsTO7cuWnevDkPHz7MsE9CQgL9+/cnZ86c5MiRg1atWhESEpJhn4CAABo1aoShoSG5c+dm2LBhpKSkfFMsIjESBEEQhJ+QjPcj01Ry+YZYTp8+Tf/+/bl06RLe3t4kJydTr149YmNjlfu4ubmxb98+duzYwenTp3n58iUtW7ZU3p6amkqjRo1ISkriwoULrFu3Dk9PT8aNG/dtz4tYRPa/J32BwNqG7bPVIrIy7ezXc5stF7YVb8kfl1hE9qvIdLLP51K6A88uaTqEDKKiFeQq/Eyli8hWqTsRbW0VLiKbksD5Y+P/1WMIDQ0ld+7cnD59murVqxMZGYmlpSWbN2+mdevWADx48ICiRYty8eJFKlWqxKFDh2jcuDEvX77EysoKgGXLljFixAhCQ0PR1f26151oMRIEQRCEn5Ekqf5CWiL24SUxMfGLoUVGRgJgYWEBwLVr10hOTqZu3brKfYoUKULevHm5ePEiABcvXsTZ2VmZFAHUr1+fqKgo7t69+9VPi0iMBEEQBEFQGXt7e0xNTZWXadOmfXZ/hULB4MGDqVKlCr/88gsAr169QldXFzMzswz7WllZ8erVK+U+HyZF6ben3/a1sl/fhiAIgiAIKqeuma8DAwMzdKXp6el99n79+/fnzp07nDt3TnXBfYZoMRIEQRAEQWVMTEwyXD6XGLm6urJ//35OnjyJnZ2dcru1tTVJSUm8ffs2w/4hISFYW1sr9/nnKLX06+n7fA2RGAmCIAjCz0hSw+VrQ5EkXF1d2bNnDydOnMDR0THD7WXLlkVHR4fjx48rtz18+JCAgAAqV64MQOXKlbl9+zavX79W7uPt7Y2JiQnFihX76lhEV5ogCIIgCBrVv39/Nm/ezN69ezE2NlbWBJmammJgYICpqSk9evRgyJAhWFhYYGJiwoABA6hcuTKVKlUCoF69ehQrVozOnTszc+ZMXr16xZgxY+jfv/8Xu+8+JBIjQRAEQfgJySQJmQqnc/iWYy9duhSAmjVrZti+du1aunXrBsC8efPQ0tKiVatWJCYmUr9+fZYsWaLcVy6Xs3//fvr27UvlypUxMjKia9euTJo06ZviFomRIAiCIAga9TVTKurr6+Ph4YGHh8cn93FwcODgwYPfFYtIjARBEAThZ6R4d1Hl8X9AovhaEARBEAThHdFiJAiCIAg/oexUY5SdiBYjQRAEQRCEd0SLkSAIgiD8jL5xrqF/dfwfkEiMsplnz57h6OjIjRs3KFWqlFrO2dblBVXqvcEufzxJiVrcu27MmpkOvPA3ACB3ngTWnb6R6X2nDCjEuUM5VRpfm16BdHd/htc6W1ZMKwCAjq6CXiP8qN4oFB0dBdfPm+Mx0Ym3b9S3anenIcF0ds84y2rgEz161iiqthj+qXGXMBp1eYOVfRIAzx/qs2meFVdPZu3q3D96TL9UjKFNv1AKOseR0zqFCX/m4+JhU43F809t+4fQ469g9qzKxbLxdl++g4q0cw2hyu+R2DslkpSgxb2rhqyeYkPQU9WtyP5Pv1SIpnWf4LT/lVUyE3s5cfGoufL2w8+vZHq/VVPt2LncJktiiIvRYsNMWy4cNiXyjQ4FisfRZ1IQhUrFAbBxjg1n9poT+lIHHV0JJ+c4uox4SZEyabffupCDkW0KZXrs+QceKI8jZA8iMfpKNWvWpFSpUsyfP1/ToWQ55wqR7NtozaPbOZDLJbq5BzDF8x59GpQiMV5OWLAef1Qqm+E+DduH0KrnS66eNlNpbAV/iaZhu2D8Hhhl2N571FPK14hg2qCixMbI6Tv2KWMW3WfoHyVVGs8/PXugz8j2BZTXU1Nkaj3/P4UG67Bmqg0v/PWQyeC3NuFMWPuM/vUK8fyR+r7MsntM+oYK/O7qc2SLBePXPNNIDJ9SqGQcjTq9we+eZp6bD5WoHMs+z1w88jVEri3RbWQwU7f40atGYRLj5WqJQd8wFf/7hhzdbsm4FU8+ur1DuVIZrper+Ra3mc84d9D8o33/rQVDHXj+UJ+hC5+T0yqZE7st+Kt9QZadvEcum2Ty5E+g7/8CsXZISyD3rMzNmD8Ksvr8XUxzplC0XCwbb9zKcMwNs2y5ec6YgiU1mBRJUtpFlcf/AYnEKItIkkRqaira2j/eUzr2z4xTpc8d4cTWy1cp+Essd66YoFDIiAjL2BLza71wzh7KSUKc6j4c9Q1TGT77IQvHFqR930DldsMcKdRrFcLMYYW56WMGwLxRhVhx6BqFS0bx8Kb6WiJSUyEiVEdt5/sSH++MrR6eM2xo3OUNRcrGaiwJyY4xXT1potEWq0/RN0xlxOLnzB9uT4eBX78auKqM7pg/w/U5g/Oy/c5dCpaI545PDrXEcPWUGVdPmX3y9n++/yr/9pabF415FZg1r63EeBnnD5oxbs1TnCvFANDJPZjL3qYcWJ+LriOCqdUiIsN9eo8P4uiWXPjfM6BUtWh0dCUscqcob09JhktHTGnSPRSZZn9LCZkQxddfoVu3bpw+fZoFCxYgk8mQyWR4enoik8k4dOgQZcuWRU9Pj3PnztGtWzeaN2+e4f6DBw/OMJunQqFg5syZODk5oaenR968eZkyZUqm505NTeXPP/+kSJEiBAQEqPBRvmdonPYGjn6beZLnVDyGAsXiOLLdSqVx9Bv3hMunzPG9mPGXX8HiMejoSvheeL89yN+Q1y/0KFoqWqUx/VMexyQ2X7uD54V7jFj0HEvbJLWe/3O0tCRqNItAz1DB/atGX76DGmTHmLIT16lBXD5uwo2zxpoOJVNGJqkARL9VT2vRtzLLlUyF2pEc2WaZZcdMTZWhSJWhq5ex9UNXX8G9Kx8nh8lJMg5tyoWRSQqOxTNvDbp01IzoCG3qtXuTZXH+GzJJ9Zcf0Y/XvKEBCxYs4NGjR/zyyy/KqcXv3r0LwMiRI5k9ezb58+fH3Pzrmm5HjRrFypUrmTdvHlWrViU4OJgHDx58tF9iYiIdOnTg2bNnnD17FkvLzN/siYmJJCYmKq9HRUV960NUkskk+ox+xt2rxjx/bJjpPvXbvibgiQH3b6juw7v6769xKhbDoNalP7rN3DKJ5CQZsdEZX74Rb3Qwz6W+xOTBDSNmuxkQ9FQPi9zJdBryijl7HtOndhHiYzX3xZGvSDzz9z1BV09BfKwWk3rkI+CxZrtlsmNM2U2NphE4/RLPgEaZ16Jomkwm4TLxBXcuG/L8oYGmw8lU3VZhxMdqcf5w1nWjGeZQULRsDFsWWGNfMAEzy2ROe1nw4JoRNvnef+76eJswo58jifFaWFglM2XLE0wtUjM95tGtOSlTM4pctslZFqeQdURi9BVMTU3R1dXF0NAQa2trAGUiM2nSJH777bevPlZ0dDQLFixg8eLFdO3aFYACBQpQtWrVDPvFxMTQqFEjEhMTOXnyJKamny4MnTZtGhMnTvzWh5Wp/hP8yVconqHti2d6u65eKjWbhLHFQ3UFobmsE+nzlx+j/3QmOSn7Nmp+2BXjf9+ABzcM2eBzj+pN3nJkq2oL0j8n6Kke/X4rhKFxKtUaRzJ0QQDDWjppNBHJjjFlJ5a2SfSd9IJRHQqQnJg9X/OuU1/gUCQB9+ZOmg7lk+q3DeOEV84sfw6HLnzGPHcHOpd1RkueVlxdo3kET269//FYskoMi48+ICpczuHNuZjm4si8/Q8xy5WS4VhhL3W4fsqEkcv8szTGf0XUGGVKJEbfqVy5ct+0//3790lMTKROnTqf3a9Dhw7Y2dlx4sQJDAw+/+ts1KhRDBkyRHk9KioKe3v7b4oLoO94PyrUjmBYh+KEvcp8JeKqDcPR01dwfE/WNVX/U8Hi0ZjnSmbR7uvKbXJt+KVcJE06vmRMz1/Q0ZUwMk7J0GpknjP5o1oodYqN0ibITw/bD35FakJKshYvn6X9/57cNqRwqTia9wxl4Yhvf038l2PKTpyc4zC3TMHj8EPlNrk2OFeKpWm3MBo7lkSh0FwxSv8pQVT8LQr3FgUIC9bce+xzipePxt4pgamuBb688zeyyZfEzF2PSYjTIi5aCwurFKa5OGKd9/17Xd9Qga1jIraOUKRsAD2rFOPIlpy0G5Bx5OrRbTkxNk+hUr23WR6nkDVEYvSdjIwy1kloaWl9tBhecvL75tIvJTnpfv/9dzZu3MjFixepXbv2Z/fV09NDTy/zRObrSPQd78+vv4UzomNxQoI+/Su+fpvX+JwwJzJcdQXHvpfM6NukTIZtblMfEeRnyI5VdoQG65GcJKNU5becP5oLgDyOceTOk8h9X83VZugbpmLrkMTxXdmnGBtAJgMd3ez1yy07xqRJvueM6V27cIZt7nMDCHyqz3aP3BpMiiT6T3nBrw0iGdbaiZDA7/mcUa0G7UJ5dMsQ//uZlwBkBX1DBfqGCqLfyrl+2pg/R7/45L4KSfZRi7ckwbHtOanTOhztbPAxIVOkXVR5/B+RSIy+kq6uLqmpmfcXf8jS0pI7d+5k2Obr64uOTtq7oGDBghgYGHD8+HF69uz5yeP07duXX375haZNm3LgwAFq1KjxfQ/gM/pP9KdmkzAmuRQmPlaurNOJjZaTlPi+VsbGIZ5fykcxrmcRlcUCEB+rzfPHGV+aCfFyot5q8/xxWiJ6dJcVvUb4ER2pTVyMHJcxT7l3w1itI9J6jX3BJW9TXgfpkNM6hc7uwaQq4JRX1tU3fKvuo4K5csKY0Be6GORIpVaLt5T4NYbRf+T/8p1/opj0DVOxdXxfj2Ztn0T+4vFEv5UT+kL9LSLxsfKP6nYS4rSIjvh4uzq5Tn1BrRYRTOjuSHyMFuaWaT/yYqPlJCWop8tP3zA1QyustX0i+YvFpf2vXqYlaoY5UqnWKIIV/1NNC+S1U8ZIkgy7Agm8fKbHmsl5sCuQyG/t3pAQp8XWBdZUqvcWc6sUosLl7Pe05M0rHao1zjha7eY5Y14F6FH/jzCVxClkDZEYfaV8+fLh4+PDs2fPyJEjBwpF5qlw7dq1mTVrFuvXr6dy5cps3LiRO3fuULp0WhGxvr4+I0aMYPjw4ejq6lKlShVCQ0O5e/cuPXr0yHCsAQMGkJqaSuPGjTl06NBHdUhZpXHHtKbemZvvZdg+Z3gBju3Orbxer3UoYa90uX7WTCVxfIsV0wogKfwYveA+OroKrp0zZ8kk9dY+5LJJZpTHM4zNU4kM1+buZSMGNylEZLjm3lZmuVIYtjAAi9wpxEXL8b+vz+g/8nP9jOZa0rJjTIVKxjNr11PldZeJLwE4us2cOW55NRVWttOkW9qoqdm7n2bYPnuwPd7bLdQSQ6ESsczc9r6Lsc+4tKk7vHfkZM7QtOS6RpM3IINTf6smptgoOZ7T8xAWrIOxWSpVfo+g64iXaOuAIlUi6Kk+U3rnJzJcGxPzFAqVjGPW7kc4FE7IcJwjW3NStFwM9k6a7W5XEjVGmZJJ/+z3ETL16NEjunbtys2bN4mPj2ft2rV0796diIgIzMzMMuw7fvx4li9fTkJCAn/++SfJycncvn2bU6dOAWnD9adNm8bKlSt5+fIlNjY2uLi4MGrUqExnvp47dy4TJkzg8OHD/Prrr1+MNSoqClNTU2obtkdbln3qAWTZcI6n1Gj1Du//KuIt+ePKjpPSZMPXk0wn+3wupTvw7JKmQ8ggKlpBrsLPiIyMxMQka1vC078jalYYjba26gZApKQkcOryFJU8BlUSidF/kEiMvp5IjIQsJRKjryISoy9TS2JUXg2J0ZUfLzHKnuNCBUEQBEEQNCD7/YQXBEEQBEHlZJKETIUtiqo8tiqJFiNBEARBEIR3RIuRIAiCIPyMxKi0TIkWI0EQBEEQhHdEi5EgCIIg/IwkQJWzU/+YDUaixUgQBEEQBCGdaDESBEEQhJ+QGJWWOdFiJAiCIAiC8I5oMRIEQRCEn5GEikelqe7QqiQSo/+g9FVeUqRkDUeSkUxSZZXfv5OazZ4j4Icd4ioAiCVBvoZMyn7PU1R09vp8io5Ji0es2qV+IjH6D4p+t/7XmfhdGo5EEH4y4jvs62TD3yO5Cms6gsxFR0djamqqmoOLeYwyJRKj/yBbW1sCAwMxNjZG9h2LWkZFRWFvb09gYGC2WQBQxPR1RExfR8T0dURMXycrY5IkiejoaGxtbbMoOuFricToP0hLSws7O7ssO56JiUm2+eBJJ2L6OiKmryNi+joipq+TVTGprKUonQLV9v5mr97JryZGpQmCIAiCILwjWowEQRAE4Sck5jHKnGgxEj5JT0+P8ePHo6enp+lQlERMX0fE9HVETF9HxPR1smNMwreTSWIsoCAIgiD8NKKiojA1NaVO8WFoy1WXxKWkJnL87iwiIyOzXR3Y54gWI0EQBEEQhHdEYiQIgiAIgvCOKL4WBEEQhJ+RmOAxU6LFSBAEQRAE4R3RYiQIgiAIPyPRYpQp0WIkCCoiBnwKgiD8eERiJAhZ7Pbt2wDftU5dVkpOTluxMzU1VcORfFp6EhkREaHROBSKjCuaZ4fkNj0mQchyCjVcfkAiMRKyXHb4MtGUI0eOUKdOHdasWaPpUAgKCiI8PBwdHR3279/P5s2bSUlJ0XRYmZLJZOzZs4eePXsSHByssTi0tNI+Ei9evKiMS9Ov5/SYjh49yv379zUaS3b2qf+Tpv9//+Tr60tsbKymwxA+QyRGQpZSKBTKlpIHDx7w9OlTHj9+rOGoPi/9g/Phw4ecOHGC8+fPExgY+K+OZWtrS6tWrZgzZw5r167NyjC/SVRUFL169aJdu3asXbuWpk2bYmBggLZ29iorTH/uHz9+zLhx42jcuDHW1tZqj+PDVhlfX1+qVq3KkiVLAM0lRx/GdO7cOVxdXVm4cCHPnj1TeyzZ3YefO69evcrw/tVkcpuYmJjh+oMHD2jcuDGvX7/WSDz/lL4kiCovP6Ls9Skp/NAkSVL+uh0/fjx79+4lPj6e+Ph43NzcGDhwIHK5XMNRZiRJEjKZjN27dzNo0CCsra2JiYnBysqKQYMG0aJFi286nrOzMyNGjMDQ0JDZs2ejr69Phw4dVBT9pxkZGdGnTx9GjBhBnz59WLx4Ma1btyYlJSVbJUcymQwfHx9OnDhB2bJl+eOPP5T/E3X58HW7ZMkSHjx4gL6+PgMGDCApKYnBgwcrv1zVFdeHMc2ePZtXr14RExPDunXrkMlkuLu7U6BAAbXE8iXpz8vNmze5f/8+crmc/PnzU7ZsWbXFkP5cjRo1igMHDuDn50fDhg2pXbs2ffv2Vfv/D2DBggXs2bOHPXv2YG5uDqR1axsYGJA7d25SU1Oz3eehkEa0GAlZJv1DZ8qUKXh4eDB//nzOnTtH3bp1cXd359GjRxqO8L30X+MymYxLly7Ro0cPRo0axZUrV5g6dSrnzp375njTa3iioqIwMjIiOjqaIUOGsGXLliyP/3MkSUIul1O8eHHi4uLIkycPR48e5c2bN2hra2e7WqP58+czevRofHx8iI+PR0tLS62/8NNft2PGjGHChAlUrlyZRYsW8ccffzB27FhmzZql3E9dcaXHNH36dCZNmkSdOnXw8vLC3d2dY8eOMXfuXPz8/NQSy5fIZDJ27dpF/fr1Wbp0KQsWLKBdu3asWLFC5ef+sFVtxYoVrFu3jhEjRrB8+XK0tLRYtWoVEydOVMapTlWqVOHWrVv06NGD8PBwACIjI9HV1cXIyCh7JEXpo9JUefkBicRIyFIJCQlcvnwZDw8Patasyfnz5/Hy8mLJkiUULVpUWQisKdeuXQPSfmGm19tcunSJWrVq0a9fPwICAhgyZAi9evVixIgRALx8+fKrji2Xy9m9ezfVqlUjMTGR5s2bY2Vlxbhx4/D09FTJ48lM+heAubk5R44cYfbs2YSGhtKlSxfevHmDXC5XJkdJSUlqi+tTtmzZgouLC69evcLT05Po6Gi1f4mFhIRw5MgRZs2aRYcOHejRowfTpk3D3d2d8ePHs2jRIkB9yZEkScTHx3P48GEGDRpEw4YNqVChApMnT6Zv377s2LGDWbNmZYvk6MaNG7i4uDB+/HhOnz7NtGnTeP78uUpjS3/9prcUnT9/noCAACZPnkzHjh3p2LEj8+fPp3Hjxvz9998cPHhQZbF8Srly5Th58iTnz5+ne/fuxMTEkJCQkC3q1oTPE4mRkKViY2M5f/48efPm5eTJk3Tu3JmpU6fi4uJCYmIikyZNwtfXVyOxHTx4kI4dO7Jw4UIAZZdSSkoK9vb2vHr1il9//ZX69evj4eEBpBVT79y5k5iYmC8ePyIiglmzZuHu7s6MGTNYuHAhnp6e1K5dm//9738qbzn6cGRXXFwcenp6FCtWjGbNmtG3b1/evn1Lt27dCA8PRy6Xs3jxYnbs2KHWD+n0c7148YIXL15w9+5dIK0Lq0mTJixbtoydO3cqi1PVFZtcLufZs2eEhYUpt9nZ2dGjRw9KlizJoEGDlK8bdSRtMpkMXV1d9PT0lM9FeiLv5uZGw4YN2b59OwsWLNB4zdH9+/cpW7Ysffv25fnz53Tq1IlevXoxffp0AJ4+fZql5+vRowenTp0C0lqMHj58SLVq1Zg6dSqhoaHK/WxsbHB1dUWhUHD+/PksjeFrlSxZksOHD3Px4kX69OlDTEwMBgYGbNu2jUOHDnHt2jXOnDnDtm3bNJPkKiTVX35AIjES/rXMhhHnzJmTNm3aMHv2bBo3bsz8+fNxcXEBICwsjCtXrnDnzh11hwpA/vz5+fXXX9m+fTuLFy9Wbjc3N8fT05OSJUvSsmVLli1bpuzO2blzJ7du3fpks3f6F3dkZCQ5cuQgNDQUPb33q1WXKlWKvn37oqury/Dhw1m9erVKHlt6/cSBAwdo3749FStWpEePHuzfvx9tbW3at29P3759iYyMpFq1ari4uDBw4EBKliyp1roZmUzG3r17ad68OXXr1qVFixYMHDgQgPXr11O+fHlmzpypTEZVEVtmyZapqSlNmjTBx8cnw2ABe3t7ypQpQ506dZg9e7bKktvM3ktyuZxChQqxbds2Xrx4gba2tnK/fPnyUaxYMU6fPs3+/fs/+bjUQZIkjIyMePToEVWrVqVBgwbK99eZM2dYs2ZNhoTzeyQlJaGjo0P16tWV5y5cuDCHDh1CW1ubkydPZkgULS0tKVeuHHfv3lVbF3L6/+Hp06c8f/6c0qVLc+TIEY4dO0abNm2Ijo5mwoQJuLq60q1bN7p06cKIESNEK1I2IhIj4V9RKBTKZuygoCCeP3+uvK1kyZKcPn2aBg0a0KZNGyCtFaN3797Ex8ervRh5yZIlBAcHU6RIEcaNG0fRokXZtGmTsgWgR48etG7dmvDwcDp27EhsbCyRkZH89ddf/P3337i7u2NgYJDpsdOHmbu4uPD8+XMqVKiAv78/b968Ue5TqlQpfv31V2QyGatXr+bt27dZ/iEok8n4+++/adu2LTVr1mT48OEYGRnRuXNndu3apUyORo8eTdWqVQkODubWrVv88ssvWRrHl2I8evSosqvqwIEDDBs2jMWLF7N3714ANmzYQIUKFRg+fDh79+7N8ufpw9FLISEhytFLOjo6NGvWjJs3b7Jy5UoePnwIQHR0NMHBwbRt25bKlStz4MABEhMTszSuD99LN2/e5NatW9y6dQuARYsWYWdnR/369Xn8+DHR0dGkpqZy584dRo4cSfXq1Zk+fbqyi0bV0h+3n5+fMknLnTs3Fy9epFKlSjRu3FhZ3wOwfft2nj59muHHwr+lUCjQ1dVl2bJl6OjosHr1arZu3UpCQgL169dn9+7deHt7M23aNGV9YExMDDdu3MDOzk4tNT3pyf+ePXto3bo1GzZsIDw8nNKlS+Pt7Y2DgwOWlpYcOXKEW7ducfnyZW7fvs2dO3c0U0wvaowyJwnCd/jrr78kJycnycbGRmrXrp0UEREhSZIkjRs3TipYsKBUvnx5qUmTJlKlSpWkUqVKSUlJSZIkSVJKSopa4vP19ZUaNGggPX78WLnt0aNHUs+ePaVKlSpJ8+fPlyRJkl6/fi01bNhQMjIykooUKSJVrVpVsre3l65fv/7RMVNTUyWFQiFJkiT5+flJhQoVklatWiVJkiStXLlSsrCwkBYuXCiFhoYq7+Pi4iLNmDFDCgsLU8njfPz4sVSuXDlpyZIlkiRJUkhIiGRnZycVLVpUypEjh7R9+/YM+yckJKgkji8ZPHiwNHLkSEmSJOnZs2dS/vz5JRcXF0mSJOVzKkmS1Lt3b+nJkydZdl6FQpHh+OPGjZNKlCghWVtbSyVKlJA2btwoSZIkbdy4USpevLhUtmxZqVmzZlLZsmWlkiVLSpIkSUOHDpUqVKiQpa/dD2MaMWKEVKhQISlXrlySvb291K1bN0mhUEgBAQHSr7/+KllaWkqlS5eWihUrJhUoUECSJEnavn27VKxYMSk6OjrLYvpSrHv37pUKFCggLV26VLltzJgxkkwmkzZt2iQFBgZKwcHB0vDhw6WcOXNKd+/ezfJYUlJSpPLly0slS5aUdu3apXw9e3l5STKZTHJycpLatm0rNWvWTCpTpoyUmJiY5TF8yqFDhyR9fX3Jw8NDevHiRYbbfH19pVy5cklt2rSR3rx5o7aY/ikyMlICpLr5B0kNCg5X2aVu/kESIEVGRmrssf4b2WfcrvBD+PDX7YYNG9iwYQNTpkwhNTWVCRMm0LBhQ3bs2MHEiRMpV64cvr6+hIaG0qBBA3r37o22trZah4yXLFmSrVu3YmpqyuXLl8mTJw8FCxZk+PDhzJw5ky1btqCtrU3//v05ePAgW7duJSIigly5clGpUiXs7e2VxwoKCsLOzk75+E+cOIGvry/VqlVTtoL17NmTly9fMnHiRK5cuYK9vT2hoaHs2bOHK1eukDNnzix7bNK7X6dJSUlYWFhQuXJl2rZtS1BQEHXq1OH333/H3d2dnj178ueff5KSkqKMMyt+wX+r1NRULl26RJs2bYiKiqJKlSo0atRIOV/Q8uXLsbW1pWnTpixfvjxLz/1hwevUqVPx8PBgwYIFWFlZsWbNGqZOncrLly8ZNmwYDg4OXLt2jYsXL1KvXj3Gjx8PwOvXrylWrFiWDrNOb+WZO3cuK1euZPfu3Whra/PixQv69+9PmzZt2LlzJ+fPn2fFihVERUUhk8kYNGgQAN7e3lhbWytfk6qU3g36xx9/MGPGDGrVqqWMf/LkyYSFheHq6oquri4ODg68efMGb29vihUr9t3n/vBzB9K6GU+fPk2LFi2YOnUqCoWCJk2a0KxZMw4cOECjRo0wNjZmzJgxtGzZEkgbKq+jo/PdsXyK9K5gfvXq1bi5udGvXz/lbemvmZIlS+Lt7U3ZsmXR0dFhw4YNavnffSZqFbfq/JgtRjJJ+lHbugRNOnToEP7+/hgYGNC9e3cgbfRWtWrVsLS0ZPv27eTNm/ej+6lz7o70xAHSuk3S5/HZtWsXtra2PH78mJkzZ3L79m06dOig/LLJzOTJk/Hz82Pp0qXo6+sD0KdPH1auXEmBAgU4e/ZshokJ161bx9mzZ7l27RpWVlZMnz6dUqVKZfljO3bsGAcOHGDgwIHkypULY2Nj3NzcCAwMxNPTkxw5ctCnTx/27NmDgYEBt2/fxtjYWGPLlcyaNYurV69y5swZmjdvzpIlS5DJZCQmJtKvXz/s7OwYPXo0Ojo6WRLjmDFjsLKyYsCAAQC8efOGxo0b07lz5wxfXMOHD2fnzp1s2LCBKlWqZDhGUFAQS5YsYenSpZw7d47ixYt/d1z//KJv164dBQsW5H//+59y25UrV6hTpw6urq5MnTo1w/39/PyYM2cOW7du5dSpUzg7O393TJ8jSRIRERE0adKEJk2aMHLkSJKSkoiLi2P//v2UL1+ewoULc/XqVQICAsiZMyeFChXCxsbmu8/94Q+pBw8eYGZmhra2Nrly5SIuLo6mTZsSGRnJiBEjaNKkCXp6ehw4cIAmTZrg6urKxIkTlfMIqZpCoaBcuXI0btyYSZMmfXR7SEgIVlZW3L59Gz09PQoVKqSWuP4pKioKU1NT6uYfiLaW6n4kpSgSOea3kMjISExMTFR2nqwmaoyEbxYcHEzjxo1xdXVVjgKRJAlbW1vOnTtHWFgYnTp14sGDBx/dV51zd3z4xWplZYWLiwuGhoZ06dKFFy9eKFuOnJ2d2blzJzNnzvzkserWrcuwYcPQ19cnMjISSGvhGDVqFE+fPmX37t3ExcUp9+/atSsrVqzg0qVL7N69O0uTovTHtnv3bpo2bYqFhQVv3rzB2NiY5ORkfH19sbOzI0eOHEBa/czUqVO5ceMGJiYmaq1FCQ0N5fnz58rnpmLFily+fBlbW1vlxInpoxW9vb3p3Lkzurq6WRLj27dvOX/+PDt37lTOQm5qakpkZKQyKUmfmXjmzJlYWVkp687S44+JiWHatGns27ePkydPZnlSdObMGSAt0QkKClLuk5qaSvny5enfvz9Xr14lLi5OWdMTHh7OhQsXuHnzJidOnFBpUpT+PLx58wYLCwtevnxJoUKFiI6OZvLkyTRt2pSePXvSsGFDvLy8KFeuHC1btqRGjRrfnRRNnz6dq1evKpOiUaNG0aRJE8qUKcOIESM4c+YMhoaG/P3335iamjJz5kwOHDhAQkICjRo1wsvLi+XLl+Pu7p5htFpWSn9+0gu73759i4GBgXLNvw8Lvv39/fHw8CAoKAhnZ2eNJUUZiBqjTInESPhmNjY2XLlyhXz58uHt7c2bN2+UXRU2NjacPXuW69evs2DBArXG9eGH1IcNoel/d+zYkX79+pGYmEjXrl2VydGIESPIkycPx44dy3QRU0mSqFy5MsWKFePUqVP07t2bCxcuAGmTWfbt2xd3d3d2795NQkJChvvq6elhaGiY5Y/10aNHDB06lDlz5jB27FjKlSsHpCVB5cuXZ9++fSxdupSBAweye/du6tSpg4WFRZbHkZn01iwvLy/q1atH7dq1qVq1KiNHjqRMmTL873//IzIykh49etC0aVPlZIB79+7Fyckpy2IwMzNj27Zt5M6dm40bN7J69Wq0tbXJnz8/mzdvBtL+P+lzOZUuXVrZ1ZKemOXIkYNJkyZx9OjR705u0wvy05OicePG0aNHD0JCQujUqRM3btzA29sbeP8DwtTUlNjYWLS1tZX3s7CwoEWLFhw4cICSJUt+V0xfIpPJ2LJlC9bW1oSFhVGrVi26du1KgQIFuHPnDu3atSMhIQFra2v27duXZec9f/48W7ZsYcqUKTx48ICTJ0+yceNGFi1axODBgwkJCWH06NEcO3ZMmRyZm5vj5ubGxYsXUSgUNG3alE2bNrF3716VLcSbPnN7586diYiIwMLCgl69euHh4cG6desy/BBcsWIFx48fV7Y4C9mXqDESPuufTf7pypQpw7Zt22jYsCF9+vRh9erVmJqaKpOj58+fY2ZmptZYHz16ROHChYH3I6C2bdtGfHw8FStWpFevXrRq1Qq5XM6cOXPo2rUr69evx8nJialTp2JgYJBpk/uHrRcymYwTJ04gl8uRy+VUrFgRDw8PFAoFvXr1QktLixYtWmBgYKDS2oGAgAB0dHT4/fffldvSE5IOHToQExPDrFmzsLCw4MCBAzg6Oqoslg+lv16OHTtGp06dmDx5Mt27d2fq1KnMnz+f8uXL07FjR3LmzMmtW7e4du0a5cqVY+bMmVn6C1qhUCCXy8mdOzdDhgxh1KhRLF++HDMzMyZPnkyLFi1o164d27ZtU3553bx5U5lgppMkKUvqwkqUKMHvv/+unNsnfTSSp6cnVlZWVKtWjYMHD7J8+XJSUlJo2LAh4eHhnDx5kgIFCqCrq5vheEZGRt8d0+ekv5bCwsI4fvw4c+bMIVeuXHh4eFC/fn1SUlJo3ry5slatcOHC5M6d+5OfF9+qSpUq/PXXX6xcuZLx48djb2/P8OHDadCgAQ0aNKBs2bJ4eHgo67/q1q3L7t27+euvv6hevTpaWlooFApat25NgwYNlK2nqnD16lXu3r3LoEGDWLBgAd26dePp06d0796dM2fOYGBgQGxsLLt37+b06dPkypVLZbF8M4WESuuAftB5jESNkfBJ/yy0Tp8Ab9iwYdjZ2QFpH/DpaxKtWrVKmRylJxPqqiny9vamfv36bN26lbZt23LgwAGaNWtGs2bN0NbWZt++fdSpU4epU6fi7OzMrl27WLp0KW/fvmXfvn2ZNvtLkqT8gn3z5g06OjqYmJhw584dmjVrRtmyZXF3d6dixYoAuLq6smTJEmUMquTl5cXAgQM5e/YsDg4OymHoMpmM8+fPI5fLcXZ2Jjk5WeUJ6oYNG4iOjlbW7CQlJdGvXz9MTEyYO3cur1+/pmLFivz+++8sXrwYmUymtteFu7s7T58+JTg4mPv375MnTx4GDx6sTJj09PTInz8/ERERREZGcuvWrSwfGDBp0iR27drFjRs30NLSYseOHaxbt47IyEj27dun/P8cP36cBQsWcPnyZczMzJRJx9WrV9HR0VH7Wl9Xr15lyJAhAKxcuZJChQp9dP7Xr1+zaNEiFi9ezIULFyhatOh3n/fDIumdO3eyfPlyfH19GTZsGMOHD1fud+LECTw8PAgNDWX48OE0btxYeduHry9VP28pKSmsWrWK9evXkz9/fpYsWYKJiQk7duxgy5YtREZGkjdvXoYOHZolXbFZQVlj5OCq+hqj54tFjZHw35GeFI0cOZKRI0dy/fp1rl+/TuXKldm/fz/x8fFUqFCBw4cPc+bMGVq0aEFsbGyGDyF11RQVKFCAvn374uLiwvbt2wkICGDevHns2rWLbdu2cfXqVe7fv8+YMWNISkqiVatWdOvWDWtr64+WKTl48CA3b95EJpMpl/lo1KgRpUuXpmnTpgQFBeHt7c21a9eYM2cOPj4+ACxevBg3NzdKlCih8sdbsmRJwsLClOtRaWlpKZ/3nTt3cuDAAQwMDFSeFMXGxrJ+/Xo2btyoXPZEV1eXqKgoKlWqRGhoKKVLl6ZevXp4eHgoRzadOHFCZd0b6davX8/atWsZN24cBw8e5MGDB9jZ2bF582aioqI4d+4cbdq0oWDBgtSrV0+ZFKXPMJ1VIiMjlV1hEyZMYMqUKfj5+WWYrwigTp06LFy4kB07dtClSxfc3d25du0aOjo6pKSkqL1g/v79+8TFxXHz5k2MjIyQyWQZ3iunT5+mT58+bN68mZMnT2ZJUqRQKJRJ0f79+6lZsyYDBgzAwcGBTZs2ZZg1v3bt2ri6uionNoX33eYffu6o4nl7+PChsgtWW1ubXr160alTJ/z8/Ojfvz9v376lTZs2bNiwgePHj7N8+fJskxRlIClUf/kRqWFKAOEHlD4/ydKlSyU7Ozvpxo0bkiRJ0okTJySZTCZZW1tLO3fulOLj4yVJkqRz585JDRs2lFJTUzUVsvT8+XNp4MCBkqmpqWRvby95enpKkiRJycnJkiRJ0p07dyQ9PT1p2bJlyvtERUVlOMarV68kR0dHqXv37tLTp0+lu3fvSsbGxtL//vc/afr06ZKLi4ukra0teXp6Sk+fPpXy588vdejQQTp79qz6Hug7q1evlnR0dKRhw4ZJt2/flu7duycNHz5cMjMzk+7fv6+2OF6+fCm1adNGqlmzprRixQpJkiSpZ8+eUsWKFSVHR0epX79+yv9BTEyM1L59e2n69Okqn8tq3LhxUpUqVTLMOxUYGCiVL19ecnJyknbt2vXRfVQxR9HZs2elokWLSs7OzpKZmZkUHh4uHTx4UHJ2dpZatWolXb169aP7qCqmb5GcnCxt27ZNcnJykqpWraqcgys9nmfPnkkbN26Unj59miXn+/Cxjxo1SrK2tpY8PDwkSZKkHTt2SDVr1pSaN28u+fr6ZrjftWvXVP6582Fsjx49kipWrCi5urpmmB8pMTFRmjVrlmRtbS316tVLOafbP++fHSjnMcrbT2qQz01ll7p5+/2Q8xiJrjRBacyYMRQsWJCuXbsCab90PTw8sLa25s8//8TLy4uuXbuyaNEiDh48yJkzZ5Q1Bx8WGGdVncG/4e/vz7Jly5g/fz4TJ05k5MiRymJsbW1tGjZsSIECBTIsCfJP169fp0+fPlSsWBEzMzMSExOVK6xHRUWxfv16hgwZwqFDh8idOzfVq1enVatWLF68WK2FlQqFgl27dtGnTx+MjIzQ19dHLpezZcsWSpcurfLzS5JESkoKOjo63Lt3j6FDh/L27VuGDh1K6dKladu2LcHBwRlGW40ePZpNmzZx7NixLCu0ziwumUzG9OnT2bVrl7LOI72L5vjx4zRr1gwHBwemTp1Ks2bNVN7d0qBBA44ePUr9+vU5dOgQkLZ47ty5cylatCiDBw+mTJkyGeJXp/RzBgYGKufjKVy4sHJZnPQaow0bNmBubq7SGCdPnszChQs5ePAghQoVwtTUFEjrPl66dCmGhoZMnDjxo5ZZVX7upD/ec+fOKUeEXr58mUqVKjFlyhRlDVhKSgqlSpUiKCiI1q1bs3LlSo1NjfE5yq40+76q70oLXCq60oQfk5+fHz4+PqxZs4YdO3YAaSNi6tSpQ4MGDXj06BF//fUXkydPpkuXLgwYMIBXr17RunVrrly5kuFYmpywzNHRERcXF3r27Mno0aPZvn07crlcWTcSHx//USHrP5UpU4bly5dz5coVNm7cSHx8vPI2ExMTOnfuTMeOHVm1ahXOzs4cOHCAkSNHqn20iZaWFm3atOHOnTts376dDRs2cPr0abUkRel0dHTYvn07EydO5O3bt9y8eZMRI0Zw7Ngxhg4dikwmUyZJrVq1YtmyZezZs0dlSRG87zpp0qQJvr6+ymkY0rtoEhMTqVOnDs2bN6dJkyYZ7qMK4eHh6OjoMHHiRAICApSTbHbo0AE3NzcePHjAokWLuHTpkspjyUz6l/7u3bupW7cutWrVomLFivTr14/AwEDatGmDm5sb4eHhdOvWTTkKVRXCw8M5c+aMslA/JiaGkydP0qtXLxITE6lVqxZJSUm4urp+tDitKj93ZDIZp06donr16iQlJTFu3Dhq1arF2bNnGTNmjHJYflxcHGXLluWvv/5iwoQJ2TIpEr5MjEoTgLQFVqdPn86sWbNYtGgRCoWCdu3aKQuL//77b3LkyKEscExJSWHUqFHo6up+NCGeuqR/oPv6+hIYGEhYWBgtW7bE0dGRiRMnolAo6NChA3fv3iVXrly8ePGCy5cvs3Tp0i8eu0yZMqxcuZJmzZpx/PhxfH19lcO1TU1NsbW1Zf/+/SQkJPDrr7+q+JF+nq2tLba2tmo/b/pQ5e7du7No0SKqVKmCXC6nZ8+ebNq0iY4dO3LixAmWLFlCREQEjo6OTJ8+nYIFC6olvuLFi7Ny5Up69+5NTEwMbdu2xcLCAg8PD0qUKMGUKVMA1bdwWlhY4OXlhZaWFnny5GHWrFn88ccfbN68mT/++AOZTMaoUaPInz8/lSpVUlkcnyKTyTh9+jSdOnVi7ty5FClSRLm24atXr1i0aBFt2rRBoVDwv//9j379+rFlyxaVPGcymYx79+5x//59zpw5w5IlS/D390ehULB//34mTZpEu3btuHz5stpGWkJaS3RERATTpk2jVq1aQFrtJcDRo0fp3r07Li4u7N27l8ePHzN79mwsLS3VFt+/JkalZUp0pQkZXLt2jZkzZxIcHIyrq6tydNXSpUuVLQFWVla4urri6OionBBPnct8fGjnzp306dMHOzs7/P39sbW1xd3dnc6dOxMTE8OECRNYt24dVlZWjB07lrJly37Twqm3b9+mY8eOlC1blsGDByvnjenTpw9+fn54eXmpfOh0drZixQoWLFjA1atXlQvtBgUF0b59e0JCQpg5cyYtWrTQaIy7du2iX79+ypZCS0tLfHx8NDLSKzY2lu3btzNz5kzKlCnDpk2bgLRRlbVr11brBKgfGj16NL6+vsoiZgBfX1/q1KlDly5dmDdvHikpKcpJHPPly6eyWFavXs2wYcNITU3FxcWF3377jbp169KxY0cMDAxYtWqVct+sTmozO97z588pVKgQWlpajBkzhtGjRytHvcXFxbFmzRrWrl3Ly5cvMTU1ZfPmzcpu0exK2ZWWx0X1XWkvlv1wXWkiMfrJpX8xfDi89fLly8yZM4fg4GD69+9Pu3btAKhRowYXL17E1tYWMzMzrly5otK1h77k5s2b/Pbbb8yaNYvGjRtjampKjx49uHfvHv369aN79+7KpRMOHDjArVu3/tWb88aNG3Tp0oW4uDiqV6+Onp4eO3fu5NixY1k+o/WPJn2tvLNnz2Jpaams47l9+za//vorDg4ODBs2jK5du2qkdibdy5cvefHiBbGxsVSrVg25XK6xZD42NpYdO3Ywe/Zs7OzsOHz4sPI2dS6Zk06SJHr06MGLFy84cuQICoWClJQUdHV12bhxI+7u7ly+fBkHBwe1xRQQEEBiYqKydVGhUFCvXj0qVKjw0fIoWS0wMBAfHx9at27N1q1b2bdvH9WrV2fs2LHUr1+fDRs2AO9/DCoUCqKioggICMDGxuaHaClSJka2fVSfGL1c/sMlRqLG6CeWPvcNpM3KGxUVhUKhoEKFCgwbNgxra2sWL17Mli1bgLThuZs2bWLJkiUZhhFrir+/PxYWFjRo0ABzc3O0tbXx9PSkcOHCzJ49m6SkJPLnz8/w4cPx8fH512/M0qVLs3nzZrS0tDh+/Dj58uXj2rVrP31SBFC5cmWeP3/OokWLgPd1PElJSZQtW5YSJUpQu3ZtQP21Mx+ytbWlfPny1KxZE7lcTmpqqkaSIkibnLFNmzb07dsXCwuLDNMWqDopkiRJWQ8THh5OXFwcMpmMJk2acPr0aY4dO4aWlpbyucmRIwc5c+bE2NhYpXH9U968eSlYsCAxMTGcO3eOZs2a8fr160zXH8tKycnJDB8+nHnz5jFkyBD++OMPfvvtN3r37s2MGTPYtm0bY8aMAVAmRVpaWpiZmVGiRIkfIikSvkwkRj+x9Cbj8ePHK5dtqFOnDnfu3KFcuXL89ddf2NjYsHTpUmVy1KZNG37//XeNfrmkN3LGxMQQGxurnGU6Pj4emUymrEvYv38/AA4ODlhZWX3XOZ2dndm6dStFihShR48eav31nJ05OTmxcuVKpk+fzujRo3n27Blv375l79695MuXj2XLlmFvb6/pMD+iqS6rdEZGRvTo0YNNmzYpZ2lWpX/OzbVnzx6aNm1KqVKlGD9+PAYGBri4uDBgwAC8vb2Vnw0+Pj4YGhpqJKmVJImrV68yY8YMkpOTuXbtGtra2hnWH8tqOjo6LF26lNTUVObPn4+LiwvdunVDJpPRvn17li5dyowZMxg7diyg2YEmWUJCxWulafoB/juiK+0n9GE/uqenJ25ubsycOZOkpCS8vLy4evUqGzZsoHHjxly+fJl58+Zx8+ZNFi1aRJ06dTQSc2bdMG/evKFIkSI0b96clStXKrcHBATQoEEDli9fTrVq1bI0joSEBLHW0T9IksTWrVvp3bs3lpaWaGlpERERgbe3d7avtcgOVN3FGBISQuXKlalZsyajR48mOTmZypUr4+7uTlhYGOfOnaNgwYJUqFCBwMBAFi9eTJkyZdDR0eHOnTucOHFCrSMdP5SYmMi9e/coWbIkWlpaaun+TE5OpkGDBoSHh2NpaUnXrl3p2LEjkDaqdfPmzQwYMAAXFxfmzp2r0lhURdmVZtMHba3Pj9L9HimKJI4F/3hdaSIx+ont27ePK1euUKBAAeXcRZC2Mvy+ffu4c+cOtra2XLhwgcOHDzN+/HiN/NJO/+K4dOkSly5dokiRIhQtWhQHBwd27txJjx49aNWqFf/73/9ITk5m7dq1rF69mosXLyqXLhFU79mzZ9y6dUu5Np0qC3SFb5M+N1elSpWUrafpXUL79u1j4cKFmJub06lTJ0xNTTl06JBysVp1jSL8EnXOj5aYmEhERAQ9e/YkLi6OP//8k06dOilvnzdvHjNmzOD27ds/ZPeZMjGy7q36xOjVCpEYCdnXh4WdV65coUuXLjx79owVK1bQuXNnkpKSlCN3SpcuTc2aNZk3b94nj6FO+/bto3379jg5OfHq1Svq1KnDkCFDKFeuHF5eXvTt2xeZTIaRkRFJSUns2bNHtFYIwgeuX79O3759CQkJoX379soFbSHt/TVv3jzMzc0ZO3asqJ97x8/Pj4EDB5KQkEDXrl3p3Lkz48eP5/nz58ydOxcLCwtNh/iviMTo837wDlLhW6QnNOlDhPv06YOlpaVylIWuri4pKSmkpqZiZ2dHYmLiJ4+hLtK7hVz37dvH4sWLuXnzJgsXLuTNmzeMHTuWy5cv07x5cx48eMCKFStYuXIlFy5cEEmRIPxD+txcWlpanDt3jrt37ypva9KkCUOHDsXPz4/Zs2cTFxeH+M2cNr/bokWLMDExYebMmZQvX54FCxYoC+d/eAqF6i8/IJEY/QQ+LFacM2cOnTt3xtLSkj///JORI0fy7NkzZTOxtrY2crmckJAQ5erempD+ofzq1Svi4uJISkqiWLFiALRr1w5XV1cUCgXjx4/n/PnzmJqa0rhxY2rWrEmePHk0FrcgZGclSpTAy8uL2NhYFi5cmCE5+v3335kxYwZTpkzRWMF1duTo6MiiRYtwc3OjSZMm+Pj4KCe+Ff6bRFfaT+T69etcuHCBPHnyKCfdi4mJwdPTk+nTp2NhYUGRIkWQy+XK1eg1NaQZYPfu3bi7uyOXy4mNjcXT05P69esrb9+/fz/Lli0jIiJCuYSAIAhfduPGDXr27EmZMmVwc3NT/ugQfg7KrjTLHqrvSgtdLbrShOyhV69ehISEKK9funSJcuXKMXToUOXcQwqFghw5ctC9e3f++usvkpKSuHfvHj169ODx48doa2urfZ6i9Dw9MDCQvn37MnDgQHr27EnBggUZMGAAZ86cUe7buHFjunfvjo2NDdbW1mqNUxB+ZKVLl2bVqlXcunWLyZMn8+DBA02HJAjZhkiM/oNev35NaGhohj7wEiVKMH/+fORyOdevXwfSJtxTKBQYGRnRpUsX+vXrh5GREVu3blXeT93N6TKZjJMnT+Ll5UWPHj1wc3Nj5MiRTJs2jVKlSjFw4EDOnj2r3L9Vq1Z4enpmy7lyBCE7K126NIsXLyY4OFi5gr3wk1HpHEbvLj8gkRj9B+XOnRsvLy90dHRYs2YNz58/x9DQkJ49ezJx4kRmzJjBwoULkclkysnl0luOOnXqhK+vr3IZEHUXW8fFxbF27VoGDRrErVu3lNurVKnCwIEDKVSoEG5ubpw4cUJ5W44cOdQaoyD8V5QvX57Dhw9jY2Oj6VAEIdvQXAGJoHLR0dGMHDkSOzs7/v77b+zs7JRFy4MHD0ZLSwtXV1dlcmRsbEz37t2Jj49n//79BAcHq/0D09DQkCFDhqCnp4enpydnz55VTtJYtWpVZDIZkydPZvz48VSuXBl9fX1RJCoI30FMWPoTU0iodHpqxY/ZYiSKr/9DMpsALTAwkIYNG2JgYMCePXuws7MjISGBRYsW8ddffzF58mRGjhwJvJ9IMSYmhuTkZMzNzVUec/o5k5OTUSgUypFw/v7+jBw5kmPHjuHl5ZVhButLly5hb28vRp8JgiD8C8ria4vuqi++Dl/7wxVfi8ToP+LDpOjYsWPExMSgpaVF06ZNCQoKokGDBhmSo8TERKZMmcKJEyc4e/asstVFnSugp5/r0KFDrFq1ipcvX1K4cGF69+5N5cqVCQwMZOTIkRw9epS9e/dSpUoVtcQlCILwX5aeGNUx76ryxOh4xLofLjESNUb/AZIkKZOiUaNG0a1bNyZNmkS7du3o1q0bAIcOHSI+Pp6WLVsSFBSEnp4eY8eOVSZF6fmxOrulZDIZ+/fvp3nz5tjY2NCgQQOuX7/O4MGDWbduHfb29kyePJlGjRpRrVo1Ll26pLbYBEEQhJ+TSIz+A9KTmZkzZ7Ju3Tp2797N9evXmTVrFuvXr2fQoEHIZDIOHz5MYmIiVapUITQ0FB0dHWVSpO46HUmSiIyMZNasWYwePZrFixczfvx4Ll26hJOTEx4eHty4cYMCBQowdOhQevXq9d+YaVYQBCG7kKS0OiBVXX7QDimRGP1HvHz5knv37jFv3jwqVKjA7t27GTduHGPGjOH48eMMGjSIlJQU9u7dS/Xq1TMkGepIiiRJQpIk5SzcMpkMY2NjoqOjMTY2BiApKQlDQ0PWrFlDdHQ0q1atAsDZ2ZnFixdTqFAhlccpCIIg/NzEqLT/CAsLC5o1a0atWrW4evUq7u7uTJgwgYEDB2JmZsbQoUOJiIhg69atyrXR1LEgbHprVGRkJGZmZsjlcs6fP49CoaBy5cpoa2srh+Xr6uqSlJSEvr4+9erVw9/fX3l/HR0dlcYpCILw05FUPCpNtBgJmqSvr0/jxo0xMzPj2LFjFC9enK5duwJpCUfHjh3R09MjV65cyvuoY44imUxGWFgYpUqVYsOGDRw9epTq1auTkJCAtrY2kydPZvPmzUydOlUZK0BwcDCWlpZiIUtBEARBrUSL0X9I+rpmjx49IjIyEplMRkJCAkeOHKFTp07KSRszG9avSikpKfz555/079+fpKQkdu7cyW+//YZCoaB69erMnDmTYcOGcevWLZycnAgNDeXQoUP4+PioNU5BEISfikIBMoXqji+p8NgqJBKj/5D0WqHevXtTvXp1qlSpQmJiIvr6+rRq1Uq5n7qTDWtraypVqkRMTAy6urpER0cr4zAwMMDFxQVnZ2emTJnC69evMTEx4eLFixQvXlytcQqCIAiCSIz+gypVqsSlS5fYvXs3JiYmDBkyRLkgbHqrkjqk1welpKTg7OzM3r17uXnzJq6ursTHx9OnTx8AdHR0qF27NrVr1wYgISFBzMYrCIKgaqLGKFMiMfqPKlOmDGXKlFFeV3dSBGktWOfPn2fQoEEcPHiQJk2aUKZMGeLj4xk2bBhaWlr06tULLS0ttm3bhq2tLdWqVVPOfi0IgiAI6iYSo5+EupOidFZWVoSFhdGkSRMOHDhAnjx56NevHzKZDDc3N/z9/UlNTWXhwoXcvXsXUO8kk4IgCD8rSaFAUmGNkSRqjAQhI0mScHJy4vjx4zRv3pz69etz5MgR8uTJw4ABA8iZMyfLli0jZ86cnD9/nvz582s6ZEEQBOEnJ9ZKE7Lc9evXld146XVGT548oUWLFujp6XH48GHltAHR0dGkpqZiZmamwYgFQRB+HulrpdU2aIe2TIVrpUlJnIjfJtZKE35ub9++pWHDhtSsWRNAueSIk5MTW7ZsISgoiC5duhASEgKAsbGxSIoEQRCEbEMkRkKWMjMzY9u2bfj5+dGwYUPgfc2Qk5MTJUqU4PDhw7Rv3x6F4sfsfxYEQfhPUOU6aemXH5BIjITvkt4T+/DhQ65cucLFixepWbMmmzdv5s6dO8rkCNJm5y5WrBje3t6sXbtWTN4oCIIgZDvim0n419Lrh7y8vGjQoAFdu3aldu3a9OrVCxsbGzZv3sz9+/epUqUKy5Ytw9XVlV27dlG0aFHy5cun6fAFQRB+bpKUNju1yi6ixUj4ychkMo4ePUr37t0ZNWoUvr6+7N69m9WrVzN+/HhsbGw4cuQI2traLFmyhPPnz7Nv3z5sbW01HbogCIIgZEoM1xf+taioKHbt2oWbmxu9e/fG39+fAQMG0LJlS/bv309MTAweHh6cPn2at2/fIpfLMTY21nTYgiAIAiApJCSZ6lp1ftRB7yIxEv41fX196tatS5kyZQgPD6dVq1bUrFmTVatWsWXLFjp27EhCQgJLliwRcxQJgiAIPwSRGAn/mq6uLk2aNEFfX5+NGzeir6/PhAkTgLRutho1avDgwQONzbotCIIgfIakAFQ4OvgHnfla1BgJ3yV9sVd/f3+io6MxMjIC4ObNm7Rq1YrHjx+TN29eTYYoCIIgCF9N/JQXskTjxo2ZMmWKsgXpypUrnD17Fh0dHU2HJgiCIAhfTbQYCVmidOnSnDx5EkdHR4oUKcKFCxcoUaKEpsMSBEEQPkFSSCq/fCsPDw/y5cuHvr4+FStW5PLlyyp45J8nWoyELFO5cmUqVqyITCZTznYtCIIgCF9j27ZtDBkyhGXLllGxYkXmz59P/fr1efjwIblz51ZbHKLFSMhSWlpaIikSBEH4Eah0ckfFNxdfz507l169etG9e3eKFSvGsmXLMDQ0ZM2aNSp6AjInWowEQRAE4SeUQjKocKqhFJKBtDnvPqSnp4eenl6GbUlJSVy7do1Ro0Ypt2lpaVG3bl0uXryouiAzIRIjQRAEQfiJ6OrqYm1tzblXB1V+rhw5cmBvb59h2/jx45VTu6QLCwsjNTUVKyurDNutrKx48OCBqsPMQCRGgiAIgvAT0dfXx9/fn6SkJJWfK31NzQ/9s7UouxGJkSAIgiD8ZPT19ZXz0GUHuXLlQi6XExISkmF7SEgI1tbWao1FFF8LgiAIgqBRurq6lC1bluPHjyu3KRQKjh8/TuXKldUai2gxEgRBEARB44YMGULXrl0pV64cFSpUYP78+cTGxtK9e3e1xiESI0EQBEEQNK5du3aEhoYybtw4Xr16RalSpTh8+PBHBdmqJrrSBEFQiW7dutG8eXPl9Zo1azJ48GC1x3Hq1ClkMhlv37795D4ymQwvL6+vPuaECRMoVarUd8X17NkzZDIZvr6+33UcQfgvcXV15fnz5yQmJuLj40PFihXVHoNIjAThJ9KtWzflzOS6uro4OTkxadIkUlJSVH7u3bt3M3ny5K/a92uSGUEQBFUQXWmC8JNp0KABa9euJTExkYMHD9K/f390dHQyTKyWLikpCV1d3Sw5r4WFRZYcRxAEQZVEi5Eg/GT09PSwtrbGwcGBvn37UrduXf7++2/gfffXlClTsLW1pXDhwgAEBgbStm1bzMzMsLCwoFmzZjx79kx5zNTUVIYMGYKZmRk5c+Zk+PDhSFLGKXX/2ZWWmJjIiBEjsLe3R09PDycnJ1avXs2zZ8+oVasWAObm5shkMrp16wakjVKZNm0ajo6OGBgYULJkSXbu3JnhPAcPHqRQoUIYGBhQq1atDHF+rREjRlCoUCEMDQ3Jnz8/Y8eOJTk5+aP9li9fjr29PYaGhrRt25bIyMgMt69atYqiRYuir69PkSJFWLJkyTfHIgiCeonESBB+cgYGBhkmejt+/DgPHz7E29ub/fv3k5ycTP369TE2Nubs2bOcP3+eHDly0KBBA+X95syZg6enJ2vWrOHcuXOEh4ezZ8+ez563S5cubNmyhYULF3L//n2WL1+unCV3165dADx8+JDg4GAWLFgAwLRp01i/fj3Lli3j7t27uLm50alTJ06fPg2kJXAtW7akSZMm+Pr60rNnT0aOHPnNz4mxsTGenp7cu3ePBQsWsHLlSubNm5dhnydPnrB9+3b27dvH4cOHuXHjBv369VPevmnTJsaNG8eUKVO4f/8+U6dOZezYsaxbt+6b4xEEQY0kQRB+Gl27dpWaNWsmSZIkKRQKydvbW9LT05OGDh2qvN3KykpKTExU3mfDhg1S4cKFJYVCodyWmJgoGRgYSEeOHJEkSZJsbGykmTNnKm9PTk6W7OzslOeSJEmqUaOGNGjQIEmSJOnhw4cSIHl7e2ca58mTJyVAioiIUG5LSEiQDA0NpQsXLmTYt0ePHlKHDh0kSZKkUaNGScWKFctw+4gRIz461j8B0p49ez55+6xZs6SyZcsqr48fP16Sy+VSUFCQctuhQ4ckLS0tKTg4WJIkSSpQoIC0efPmDMeZPHmyVLlyZUmSJMnf318CpBs3bnzyvIIgqJ+oMRKEn8z+/fvJkSMHycnJKBQK/vjjjwzrFjk7O2eoK7p58yZPnjzB2Ng4w3ESEhJ4+vQpkZGRBAcHZxg9oq2tTbly5T7qTkvn6+uLXC6nRo0aXx33kydPiIuL47fffsuwPSkpidKlSwNw//79j0ax/JvJ4bZt28bChQt5+vQpMTExpKSkYGJikmGfvHnzkidPngznUSgUPHz4EGNjY54+fUqPHj3o1auXcp+UlBRMTU2/OR5BENRHJEaC8JOpVasWS5cuRVdXF1tbW7S1M34MGBkZZbgeExND2bJl2bRp00fHsrS0/FcxGBgYfPN9YmJiADhw4ECGhASydu2lixcv0rFjRyZOnEj9+vUxNTVl69atzJkz55tjXbly5UeJmlwuz7JYBUHIeiIxEoSfjJGREU5OTl+9f5kyZdi2bRu5c+f+qNUknY2NDT4+PlSvXh1Iaxm5du0aZcqUyXR/Z2dnFAoFp0+fpm7duh/dnt5ilZqaqtxWrFgx9PT0CAgI+GRLU9GiRZWF5OkuXbr05Qf5gQsXLuDg4MDo0aOV254/f/7RfgEBAbx8+RJbW1vlebS0tChcuDBWVlbY2tri5+dHx44dv+n8giBolii+FgThszp27EiuXLlo1qwZZ8+exd/fn1OnTjFw4ECCgoIAGDRoENOnT8fLy4sHDx7Qr1+/z85BlC9fPrp27cqff/6Jl5eX8pjbt28HwMHBAZlMxv79+wkNDSUmJgZjY2OGDh2Km5sb69at4+nTp1y/fp1FixYpC5pdXFx4/Pgxw4YN4+HDh2zevBlPT89verwFCxYkICCArVu38vTpUxYuXJhpIbm+vj5du3bl5s2bnD17loEDB9K2bVvlgpcTJ05k2rRpLFy4kEePHnH79m3Wrl3L3LlzvykeQRDUSyRGgiB8lqGhIWfOnCFv3ry0bNmSokWL0qNHDxISEpQtSO7u7nTu3JmuXbtSuXJljI2NadGixWePu3TpUlq3bk2/fv0oUqQIvXr1IjY2FoA8efIwceJERo4ciZWVFa6urgBMnjyZsWPHMm3aNIoWLUqDBg04cOAAjo6OQFrdz65du/Dy8qJkyZIsW7aMqVOnftPjbdq0KW5ubri6ulKqVCkuXLjA2LFjP9rPycmJli1b8vvvv1OvXj1KlCiRYTh+z549WbVqFWvXrsXZ2ZkaNWrg6empjFUQhOxJJn2qOlIQBEEQBOEnI1qMBEEQBEEQ3hGJkSAIgiAIwjsiMRIEQRAEQXhHJEaCIAiCIAjviMRIEARBEAThHZEYCYIgCIIgvCMSI0EQBEEQhHdEYiQIgiAIgvCOSIwEQRAEQRDeEYmRIAiCIAjCOyIxEgRBEARBeOf/wsPieKKyAX8AAAAASUVORK5CYII=\n"},"metadata":{}}]}]} \ No newline at end of file diff --git a/labworks/LW3/report3.md b/labworks/LW3/report3.md new file mode 100644 index 0000000..02152c4 --- /dev/null +++ b/labworks/LW3/report3.md @@ -0,0 +1,500 @@ +# Отчёт по лабораторной работе №3 + +### Киселёв Матвей, Мамедов Расул А-01-22 +### Вариант 6 + +## Задание 1 + +## 1) В среде Google Colab создать новый блокнот (notebook). Импортировать необходимые для работы библиотеки и модули. + +```python +# импорт модулей +import os +os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3') + +from tensorflow import keras +from tensorflow.keras import layers +from tensorflow.keras.models import Sequential +import matplotlib.pyplot as plt +import numpy as np +from sklearn.metrics import classification_report, confusion_matrix +from sklearn.metrics import ConfusionMatrixDisplay +``` + +## 2) Загрузить набор данных MNIST, содержащий размеченные изображения рукописных цифр. + +```python +# загрузка датасета +from keras.datasets import mnist +(X_train, y_train), (X_test, y_test) = mnist.load_data() +``` + +## 3) Разбить набор данных на обучающие и тестовые данные в соотношении 60 000:10 000 элементов. При разбиении параметр random_state выбрать равным (4k – 1), где k –номер бригады. Вывести размерности полученных обучающих и тестовых массивов данных. + +```python +# создание своего разбиения датасета +from sklearn.model_selection import train_test_split + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 23) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (60000, 28, 28) +Shape of y train: (60000,) +Shape of X test: (10000, 28, 28) +Shape of y test: (10000,) +``` + +## 4) Провести предобработку данных: привести обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные должны принимать значения от 0 до 1, метки цифр должны быть закодированы по принципу «one-hot encoding». Вывести размерности предобработанных обучающих и тестовых массивов данных. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (28, 28, 1) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +# Расширяем размерность входных данных, чтобы каждое изображение имело +# размерность (высота, ширина, количество каналов) + +X_train = np.expand_dims(X_train, -1) +X_test = np.expand_dims(X_test, -1) +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 28, 28, 1) +Shape of transformed X test: (10000, 28, 28, 1) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +## 5) Реализовать модель сверточной нейронной сети и обучить ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывести информацию об архитектуре нейронной сети. + +```python +# создаем модель +model = Sequential() +model.add(layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape)) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Conv2D(64, kernel_size=(3, 3), activation="relu")) +model.add(layers.MaxPooling2D(pool_size=(2, 2))) +model.add(layers.Dropout(0.5)) +model.add(layers.Flatten()) +model.add(layers.Dense(num_classes, activation="softmax")) + +model.summary() +``` +![picture](1.png) + +```python +# компилируем и обучаем модель +batch_size = 512 +epochs = 15 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +## 6) Оценить качество обучения на тестовых данных. Вывести значение функции ошибки и значение метрики качества классификации на тестовых данных. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 4ms/step - accuracy: 0.9909 - loss: 0.0257 +Loss on test data: 0.02905484288930893 +Accuracy on test data: 0.9904999732971191 +``` + +## 7) ППодать на вход обученной модели два тестовых изображения. Вывести изображения, истинные метки и результаты распознавания. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [3,26]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` +![picture](2.png) +``` +Real mark: 2 +NN answer: 2 +``` +![picture](3.png) +``` +Real mark: 9 +NN answer: 9 +``` + +## 8) Вывести отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки. + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix) +display.plot() +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step + precision recall f1-score support + + 0 0.99 1.00 0.99 997 + 1 1.00 0.99 1.00 1164 + 2 0.99 0.98 0.99 1030 + 3 0.99 0.99 0.99 1031 + 4 0.99 0.99 0.99 967 + 5 0.98 0.99 0.99 860 + 6 0.99 1.00 0.99 977 + 7 0.98 0.99 0.99 1072 + 8 0.99 0.98 0.99 939 + 9 0.99 0.98 0.98 963 + + accuracy 0.99 10000 + macro avg 0.99 0.99 0.99 10000 +weighted avg 0.99 0.99 0.99 10000 +``` +![picture](4.png) + +## 9) Загрузить, предобработать и подать на вход обученной нейронной сети собственное изображение, созданное при выполнении лабораторной работы №1. Вывести изображение и результат распознавания. + +```python +# загрузка собственного изображения +from PIL import Image + +for name_image in ['test3.png', 'test5.png']: + file_data = Image.open(name_image) + file_data = file_data.convert('L') # перевод в градации серого + test_img = np.array(file_data) + + # вывод собственного изображения + plt.imshow(test_img, cmap=plt.get_cmap('gray')) + plt.show() + + # предобработка + test_img = test_img / 255 + test_img = np.reshape(test_img, (1,28,28,1)) + + # распознавание + result = model.predict(test_img) + print('I think it\'s', np.argmax(result)) +``` +![picture](5.png) +``` +I think it's 3 +``` +![picture](6.png) +``` +I think it's 5 +``` + +## 10) Загрузить с диска модель, сохраненную при выполнении лабораторной работы №1. Вывести информацию об архитектуре модели. Повторить для этой модели п. 6. + +```python +model_lr1 = keras.models.load_model("model_1h100_2h50.keras") + +model_lr1.summary() +``` +![picture](7.png) + + +```python +# развернем каждое изображение 28*28 в вектор 784 +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 60000, + random_state = 23) +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X train:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (60000, 784) +Shape of transformed X train: (10000, 784) +Shape of transformed y train: (60000, 10) +Shape of transformed y test: (10000, 10) +``` + +```python +# Оценка качества работы модели на тестовых данных +scores = model_lr1.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.9576 - loss: 0.1293 +Loss on test data: 0.13758081197738647 +Accuracy on test data: 0.9567000269889832 +``` + +## 11) Сравнить обученную модель сверточной сети и наилучшую модель полносвязной сети из лабораторной работы №1 по следующим показателям: +### - количество настраиваемых параметров в сети +### - количество эпох обучения +### - качество классификации тестовой выборки. +## Сделать выводы по результатам применения сверточной нейронной сети для распознавания изображений. + + +| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки | +|----------|-------------------------------------|---------------------------|-----------------------------------------| +| Сверточная | 34 826 | 15 | accuracy:0.991 ; loss:0.029 | +| Полносвязная | 84 062 | 50 | accuracy:0.957 ; loss:0.138 | + + +### Вывод: сравнивая результаты применения двух сетей, можно сделать вывод, что сверточная НС лучше справляется с задачами распознования изображений, чем полносвязная. + +## Задание 2 + +## В новом блокноте выполнить п. 1–8 задания 1, изменив набор данных MNIST на CIFAR-10, содержащий размеченные цветные изображения объектов, разделенные на 10 классов. + +## 1) Загрузить набор данных CIFAR-10. + +```python +# загрузка датасета +from keras.datasets import cifar10 + +(X_train, y_train), (X_test, y_test) = cifar10.load_data() +``` + +## 2) Разбить набор данных на обучающие и тестовые данные в соотношении 50 000:10 000 элементов. При разбиении параметр random_state выбрать равным (4k – 1), где k –номер бригады. Вывести размерности полученных обучающих и тестовых массивов данных. + +```python +# создание своего разбиения датасета + +# объединяем в один набор +X = np.concatenate((X_train, X_test)) +y = np.concatenate((y_train, y_test)) + +# разбиваем по вариантам +X_train, X_test, y_train, y_test = train_test_split(X, y, + test_size = 10000, + train_size = 50000, + random_state = 23) +# вывод размерностей +print('Shape of X train:', X_train.shape) +print('Shape of y train:', y_train.shape) +print('Shape of X test:', X_test.shape) +print('Shape of y test:', y_test.shape) +``` +``` +Shape of X train: (50000, 32, 32, 3) +Shape of y train: (50000, 1) +Shape of X test: (10000, 32, 32, 3) +Shape of y test: (10000, 1) +``` + +```python +# вывод изображений +class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', + 'dog', 'frog', 'horse', 'ship', 'truck'] + +plt.figure(figsize=(10,10)) +for i in range(25): + plt.subplot(5,5,i+1) + plt.xticks([]) + plt.yticks([]) + plt.grid(False) + plt.imshow(X_train[i]) + plt.xlabel(class_names[y_train[i][0]]) +plt.show() +``` +![picture](8.png) + +## 3) Провести предобработку данных: привести обучающие и тестовые данные к формату, пригодному для обучения сверточной нейронной сети. Входные данные принимают значения от 0 до 1, метки цифр закодированы по принципу «one-hot encoding». Вывести размерности предобработанных обучающих и тестовых массивов данных. + +```python +# Зададим параметры данных и модели +num_classes = 10 +input_shape = (32, 32, 3) + +# Приведение входных данных к диапазону [0, 1] +X_train = X_train / 255 +X_test = X_test / 255 + +print('Shape of transformed X train:', X_train.shape) +print('Shape of transformed X test:', X_test.shape) + +# переведем метки в one-hot +y_train = keras.utils.to_categorical(y_train, num_classes) +y_test = keras.utils.to_categorical(y_test, num_classes) +print('Shape of transformed y train:', y_train.shape) +print('Shape of transformed y test:', y_test.shape) +``` +``` +Shape of transformed X train: (50000, 32, 32, 3) +Shape of transformed X test: (10000, 32, 32, 3) +Shape of transformed y train: (50000, 10) +Shape of transformed y test: (10000, 10) +``` + +## 4) Реализовать модель сверточной нейронной сети и обучить ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывести информацию об архитектуре нейронной сети. + +```python +# создаем модель +model = Sequential() + +# Блок 1 +model.add(layers.Conv2D(32, (3, 3), padding="same", + activation="relu", input_shape=input_shape)) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(32, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 2 +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(64, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.25)) + +# Блок 3 +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.Conv2D(128, (3, 3), padding="same", activation="relu")) +model.add(layers.BatchNormalization()) +model.add(layers.MaxPooling2D((2, 2))) +model.add(layers.Dropout(0.4)) + +model.add(layers.Flatten()) +model.add(layers.Dense(128, activation='relu')) +model.add(layers.Dropout(0.5)) +model.add(layers.Dense(num_classes, activation="softmax")) + + +model.summary() +``` +![picture](9.png) + +```python +# компилируем и обучаем модель +batch_size = 64 +epochs = 50 +model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) +model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) +``` + +## 5) Оценить качество обучения на тестовых данных. Вывести значение функции ошибки и значение метрики качества классификации на тестовых данных. + +```python +# Оценка качества работы модели на тестовых данных +scores = model.evaluate(X_test, y_test) +print('Loss on test data:', scores[0]) +print('Accuracy on test data:', scores[1]) +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.8507 - loss: 0.5097 +Loss on test data: 0.4886781871318817 +Accuracy on test data: 0.8521999716758728 +``` + +## 6) Подать на вход обученной модели два тестовых изображения. Вывести изображения, истинные метки и результаты распознавания. + +```python +# вывод двух тестовых изображений и результатов распознавания + +for n in [1,10]: + result = model.predict(X_test[n:n+1]) + print('NN output:', result) + + plt.imshow(X_test[n].reshape(32,32,3), cmap=plt.get_cmap('gray')) + plt.show() + print('Real mark: ', np.argmax(y_test[n])) + print('NN answer: ', np.argmax(result)) +``` +![picture](10.png) +``` +Real mark: 8 +NN answer: 8 +``` +![picture](11.png) +``` +Real mark: 3 +NN answer: 3 +``` + +## 7) Вывести отчет о качестве классификации тестовой выборки и матрицу ошибок для тестовой выборки. + +```python +# истинные метки классов +true_labels = np.argmax(y_test, axis=1) +# предсказанные метки классов +predicted_labels = np.argmax(model.predict(X_test), axis=1) + +# отчет о качестве классификации +print(classification_report(true_labels, predicted_labels, target_names=class_names)) +# вычисление матрицы ошибок +conf_matrix = confusion_matrix(true_labels, predicted_labels) +# отрисовка матрицы ошибок в виде "тепловой карты" +fig, ax = plt.subplots(figsize=(6, 6)) +disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix,display_labels=class_names) +disp.plot(ax=ax, xticks_rotation=45) # поворот подписей по X и приятная палитра +plt.tight_layout() # чтобы всё влезло +plt.show() +``` +``` +313/313 ━━━━━━━━━━━━━━━━━━━━ 5s 9ms/step + precision recall f1-score support + + airplane 0.86 0.88 0.87 986 + automobile 0.94 0.93 0.94 971 + bird 0.75 0.85 0.80 1043 + cat 0.83 0.64 0.72 1037 + deer 0.78 0.90 0.83 969 + dog 0.78 0.75 0.76 979 + frog 0.83 0.92 0.87 1025 + horse 0.92 0.83 0.87 948 + ship 0.93 0.93 0.93 1003 + truck 0.94 0.90 0.92 1039 + + accuracy 0.85 10000 + macro avg 0.86 0.85 0.85 10000 +weighted avg 0.86 0.85 0.85 10000 +``` +![picture](12.png) + +### Вывод: полученные метрики оценки качества имеют показатели около 0.85. Из этого можно сделать вывод, что сверточная модель хорошо справилась с задачей классификации датасета CIFAR-10. \ No newline at end of file

E@&?3&-cEH^oro#{Rf7#l>BOC$%aj1dvr$CjD2es|eTO#Wf z_q>S3->yfGeQo;EaC3Cloo_fg!)Ljs{gRJv*n;dZz|+$RD<3 zWoE0Vxb+RiAhNgR;~y6n1E+fs%l^Z3FI?iosNfX?b1y21H-By|G4n(_=GYzyRS`@o z&XcdN7IGW}k|dUCZL?#Pzy0nh98|6`tWC_UVoi8F`>UUO{pTYg`#>1KSI2r97Sj67 zw2pyy?!vSU>+i6>6?_uGXU8fB{^0FF5gnfjmp$*2ED_7#3>d!iy89-OdUe_~_bB$q z{koJAR5kg{gcYnx(69x2`|l?BZBHzH5d_CEO9QlI~V zw7N^ugp7|`&)>z!#NBLpI%5VbYp*EER9Xa)Wdtzy3&^ROT%8+0Q) zWA<%47RCG^$W6=@3tljJx-gy}?Q%P6E;^)A`a>h1!P~xHW*vuLjugE-Ht$x(M{_a1 zAA9y^1q7Ow1x_=1=OwqLSJh;_Eo54iQupd1C+D_5G^X2qY>kG8q6inur}ZgHT*Pz+ z{PNO*Ecf*a?Jwkf>Zn>|2t{+1Xb2-6GK+7E%@*nvi62Ep&$524IE!N9Bzu1U@T*jp zN}28bb!#PcE#zXeSYY5DWD7R1}cQ9>7|MD+wpWc-lAX>F^JpZK^~m zY)&rgql)Mz`@jEA(pwl~8umL+lgU>Fgtzs297O1u<$Fjjjm4Ya&}9+AO9YbI3i8dD zppr)dpg{n(PMzH3ClGaSrbUv z-4{6a2Gm<02~(ksN?Lit`!piEy&>VJkdRXuT%Wa1!-|O{_EY5?SS!=i=R4kds@QN{ z2-_H7HvSrsF6R&Bp&4+|?#T|x6-VN7p%R!v7@c=~N)?m<{^_%SI^iR$#_S;tUh348 zA<6rC#lfRLsOM%2Ea4Yw;wE=cj@c$+3}~04-%ghspsQrW(|Q1CL(X8=wfJ#PB@^^} zGP9B`U8-bqlY>>Et9yPJuHGvj3e(##SfNFC@XOOgC65tc7qsLEv3! zv#rebnqjL&>^BS+9EJXmLT6xg{YLPAs(k)u-NOIg@kuHZNK&0>f95t;c3+wOGfd=U z>RHuEl7%kPQ|oS_4U_aqj}~jmy@CFCJH>3R*htRLk=-a#Y|@**W_<8sOB{@mmIv;z z&%Q+6`7ieB1)I;U*wL)VRa%5*U|~_OMitbXTl0Z_3A6 z$mYR@VHJhB`1f$cm<5X#=fD^(7YqgpJ+3GuinRXx*{1zovS4>FH391kfu`-f!Ic}+ zdQC`tJ&I`Q}5}VU?D3EYW;9-Go0!2gv;_dkK%ndjf-}mQVzdCYhnlk4zwusM8 zKyp1O=-3uA-h9mv&pP#I!QIqfHh*3PMimi?%uR^&r-7aCVQOAvL9{?I@`D6$BfLp? zmQ)CuJDV<rB1wtRG9c*Ttq*~X~MIvzf1WdsvW4~0eCo;_MB$Jz!SW*%fBqxW1!V7`q9V178 z5>W`fC2;u)0kbo?4ga}MDsNO4Z3M9wKG|b6;|`-NzKzxJ{2J^ zt71g(-n*F2HW_inDYtgJ2w?@o&CK~Zp%)_Qp?JxY?6WqM*dOfkvHP5S(l5S-`>*&( z0_kk4krOsNUPJONct7guFL->!n3!Sy{31e%AkNm41n9dS(l2G;Sc}MWg5%|7q|*;t zovY;tt`#$)v3v>bu#tj@*0ySH?NQDl;zpd1sL#%HluIYp%y_uXB$BAIdSnwr4FZW$ zA@mlM0&}CZOAF|X|Fts|_wU`g247Uz()ON}HJC%6xkcP^iu)2(nX&QdNg!Ekj>RiL z_ffur&44j73_mtxwf%y&%bzt$5Q$wobTy6nT*>fodW4wq<4Gu6l56hECtJqCX14UQ zweD`J4;JXtBgb*n4B-&=Ly?#ZjYNv2_ma~uRXMOQs$&m(cCrkqIKhb6u~3Bm0d#se z?Y$??yFLmTe*8WbD}@}VKB+BBY|GS5XTjyGbe1TnLhpO#iq}J1Tr}9V^*-AvHPlhH z?5oBqSJV;UXh0wulZZ3N(RLUysp(#MbjBsI`S$s1#$5a+$Ytyc!t>A-EtAxrCKpFs zAYt7uHQuCZ>sJJ_9FHWjFHd&;#sIu8z6Wz~b%HS|JoF6yFfx=>WU}wW$(JZ5QVNPv z<_2QMxG6!+(3CI^uyRfytb4$$UO-VXUxP-7io2HIw$Nn1i-@J9{n>1!#`7+I+jJ!e zlJOS`JRJ!4p**kJn!}yOhYLxKb?F|Uf#$s$JF-@l^XCMg`_!k-z3s7wKoua;AsnWa zX8jaK4$)nD+N8+aD!g*G+P_$Oan1xk6w{-O<)8 zn&XnzlLZW|x(w(y=d|9L5Xk(iJ(A*fp`I)ZdT%lB+n1)S6bam`96Z|@#cv+psbqyT z8den3w#Nd`(eO1OREn}rMHWVKT)!3JfAFS!7Vxbds_T_~D z1G|4Xawa!^lH7Ys}JLrAo(lkHk??oxc7B10ofUC)v63$JC!h z_5LaL?Zk}b@@sH+=4%6h97xM6Nd{2Y1iDkyJTx9mA%uCuUEE9?@I#&#CNrxrnpr=x z-54|&uB&@rAX5}8{YFvuhuG$5O zZo5t7YSx}5pO;x%2qEeSLp9bPbuZ*wGSc@draeuOqsed%T};`XDR~{jL=r9<5qj@# zr_K-YN<_h{DhJzgal7#vq8Bs78KaHjqq|4ztCNCfpe0GufLE1tqZiv6#Ufq$6%TL( zX(}uIti$1?B-!obnQ8dlwa|@z6siT`OBGke72RuA zfB2i+np>+q)Oshdddj*I`-1++=-C%*xXp1ndEI%HVw!EUv?cGshPe4=ATI~QwVV)_&V{?me@ndOSp ztOLl-JzUAeeUH%iSf)5W5xp1_#Q=!^DL$g`RZoqxGwpt=r-M{c)Eg1<3V6B}p(UGUo4|=EC3FJ97geQ85?FfbG3tK@*^+GJ(X= zENq#&E6fb;Lez7llj|^sHj^4U4@7#4{;PvX$w1*iN%22t+y4d0zAga5lTU&+$%%(h zPbZ^g)H|3+!cJXgWShCjKk@#~7K=X*d3L`1M;qOhU#Q-y{UZUnP z^h*@SWQ6zTOUlwj#8dElZ^gtE8&L2uU#t>et)+{HkQfpu&2uy6jn#2%HAfl1qDspx zj|vSVT^voD=8Ty_j(373H5)&94%#oY;jO=1_(6U8-ft|p;lW6%%kr*Q7{WEy5w>q- zoY*LrO_JDs|Fr6AUuS_fkKWPLm|Z**&9~hSCe4YB8v>a}9=AI8FjIb?eqUnrOGV)E zEVpgKq{y=2MFA~zaWalO}}6w zuQLwi?lA&$H=uH(l|+au%#ESj6(6u#({?E`VtY<`)NSQ9>d z=;hy=GV1i>{?)RFnP$9y7e-VtaKSUJF~E`H!1LZC&vX#T8u@3e$${bc+3OQk1loPx z*UO2<`!nf5vQ(1lqGAqO9hf&wD#AuH1tF&j;C+MUoD1bNbfFw;R{?C9mZ|uxY?c{T{i^aDtBug{JfbD`%J27JyMJ$jciwVxe zMV+Ls4eYXAHRv0A&UwXXYMl^_933@V!v~W?Zp;8lD1;$ZCeO?a=bUyB7I#bu-$ z4=k-MI+ov?-%u|*k8L#aGP#7|tO)|~*2|(X+uGwtczyOv{4oRbI?!pgX*gWwFYhrF zSx@M`&CrrQb4uKLb6(TJ8OQA6-8T_NinF2W-yk3+HcAP`5y$iF7~)LdRr1~ z>p*0WJuS`Ei&RdSsc%j?x2D_cWeWM9)}v5OCT;#yo8GtP7atys48M6Bu9NEiV%axo ztG(tM*qMC3$Den9afS<}8HeV0I-f*ifdVQ-?<{GoGe4g8EB>(J(1x0^n-nBa76+jp ze{O%9{y5?k;%S_oTJv&8B+6_*@W&nBbLOT;eT%ds0eJh;x5ST{>_$^@8>iDrTx6)yd|AX;Jm|RWsf%F+*iYR= z_5sk@^!FDp$G=-qU6aH7$r17eI5Mzd;TY@dG&}FV^jm1Nr|6*(V1^I1RnCmCS^Yq0 z?z+UQ;P8~?pY7hHaZc0As!un@eDY`M83l1vm*gckX64`choazy9^*==sWYbG4aTX8 zQEpg-sQ(6l*DHPcr-In8RyWOry&0y>)@u@9S&3!Uw}j8DJgfZpRsXP-hT{E4p|0lS@_$(ziFyb(suV;<`k zt}-tB(ugQVWlR*JgOE&?hAUWzM!`&CJt!QF!o9Tn8tdMBL98iE0G|PwsK`LW6F9*F zhRr7C$mEZUi`6YpORg=19v?9G5^eB^*`s)zGlj!)5ep_*1Av?{0E6WRgI1hD#z&8IJw^&;vEw* zijQQC+c?=|Xe&P@JYE-zAcEO67QJw8_{7knVG&pKQiIC202!c`+fTa@{eJu9V4hBz zAaRJ*_Zl{zjNocr15$Vy@n?f+o_bx^loyfJ@;MJUt$B3tDpcKSXDVvn9LZ0&&SQCo zBvQYQ6L0@kf0V8gY}vx7N_4~1BEQPM9#Qeliv-U$fa&$gyGd|e5utcd9jd0zz5#iB z^yh}UZJfXtR?#QR>Ree7SNph~Cuw2X(c`Cc zemBqF`?sHWAIJM0@82+S-?P@W)_tw(I!_1O@~)&tGefMhDwRCRGRvva9clb(+1v85 zu>FfaPS?~2EQX-U{+AIHK-tGvK&C|TyY&YgfQm!m?*^xAt_6V- zKPe6q(szg;?O7X+`kG?QyT~RX?t&dr@T{cF@vfLDn^Sr}xrz$vkgTZ(l_zSq%f+()&%$XH^R7WaOy}nR=60`3j{w}r*}U& zE848F3g^}yD|s1Y{C%UM5qHq?d8AygTcdo=U-eMOocC_6+n98XYm*w_^{q$xRbp$u z1dq34+``Dkpcf$}F9i&IVUi#aSyS&t`X67TEn3R8F8Muyd8DAk9Cd`=k`|CKFmUHG zeKlmLZv2Eh{b$4FdVaz5kThId-Y9U)9*rql?^VY05@q?; zh2R_mpxjI$7Rpt6$@rltio+K_FHSB2b_FD|xh+nM_!gi@wK8I-BT>{KHM7*<>?J*L z7e}`8(Fou)oqp>;j+b9QG^g)SAF7d8se!}bmOOR{v%gRiI;P7|TC^6EHW1UnB zL9I`5qoWNKzs3)299=|+RtCGWuMRB1= z@=cKTX9Y$2i%q0|d0^uB1Hs8A3-^C+UrO9#dIWyrFhB!vhgX-S>=Of3fR-;OUj!BC z^VWoXHs4uJllHrn>G=8u*aw<)M&Z$o%@`iH5JX4eVF@!ePst!Wg-~V=ce4wq#6NID zvo%Q}&-W-AZc*>ifQ>$Vg7#>LJPM11<8;`B~Mo#^7W zlnE0K%`l%Q)|~5Gl{RdqSe3M-n~96NQ;+QzEE3@s5<1*`>g5pN4l7e}UM2q}|K-n| zla2xBSw%h7=`;yx+hl*vSsT$xTOtOznFls&!rRrFkkrUEPpcVMFc?paB{M~+gsMNl zKoo7`Mta#F(e9-Gy|U&h1Oo)Bq1g&xQt!=Cn$8;hTca9L()?<<4FjH}nOry!8P5fF zJmkkTDH%8b&i?H$~#<3ao3C3ff9#&g~-S>oht)HL2+$h+LY zC+cn2VI2vEh}haaDZ|g@jF|O5lVa2%aP!bkcTaEd#!72i5~2Y{Q>Qj-dRi0Jv-X0JAECo(czSL&V&c}87$jvKCxnpb;FwYMAQS4~dLx(`!=Qsmq4X8JwJ zU+&_T$dysX1ckqfF3lBOx@I2E1bh*|1|l3b9~ek*3L3o6`Rij}7{e)$* zH)_%@=7f_@fPbEx(B3HJs~PNEZeHCImE?PWZ)Rjm{K|M<_9pc!DBR;hb0UT4Q))zd zVg@9(z+ncC8O@DDyO z*bcwwS-<44)F1Db&vZM#ucuRu_SQ-gnhE<+WmTcpCJt1nIGMISojOZTHr%@Qz|ri3 zDBD)uh>OfVZv*z#*3BP@LhQ%1Q*0hnCaUc3(*QN;*Yj~z_PyCB8;zk!mo$rRi)bQ( z2S!>v8vUSj?Q09-Hx0;Qh0K&4eOqfIdI-FYxIciJM}novh$mK~jqF@2=}+r>;qML4 zS6^7}N$=jx6bA>~3D4(|hsT_lKb2n?vLW|OMy`&Uhsbm%HZFk+EmL?1zbaCxE1<(8 zenj3{@SdZ`9Sg7O2ny`OlBZXK_Qo?7=KZH7MEvFj>rr?0gu15LPt*yl$EB0;MX?*Z z@gr@?c5_){6HG>?*HIVR2)2@R7$U=By4EUbG|`4zkyfV5zX`W^_|rNs!ot{EeIzLV z)jRoLhvij9=KtC}Grk)a5{i6V!al5qMQt@Ar!zBdxibUGxh>UDThnCAq%3}K)FN!_ z^vw$$IF_?1xMhoXpu$bA#FK-Y_D=PN{hd*7pOmv`_n89LGx1;w0%*=DS(C6j?Q#5gCNp zj!VBE6XkbDPn@0AOT|yjd3Ot$4&}yuUl=1PvuY4FXF7%y*-R7Q&|pP^a-a#levc&W z)qHaLp`38j94&e3#L-uFse7;mCM=GM55kzqyJJ2cs-2ml8%9E8O9+oQ7dR{PAUtOR z{f++A==nI!P9kzYg{Ex&kM~5G2=&gn`?xf}_siRt*CNNK1luW|pR$6oAws52d#^ZM zE^L}~GE*$N#j8z+&>3~`wHTok#pk)ihWh@&aw-y6&m2v(;Xam2OzRHhFv57FkPXFQ z7fSc%FQP21;ok{;b|2BobUz z%-TN~;<~!P)1WfAjYemmGE=Q&v?-43`D}9h4yDRVc`)0-+WOkqN#xERR6ALpF5kVa z&n$KRuJ9Xq=F{3lgV*W4p-$?4n*wR4EYFbQ>wW%ZUs5|~l>2z6Jez~pdP-ND_l4Gn z(6Zsu;4Zv{z)o+mv+;@JIexCR00j1Qiost8gw^|&W>T|ILyofP!nUXD=9=q|!$8sZYb_edfBD64{?R>As3BEJ)ZuG|TRwsw;qrS1a;_E?qSHFXJi`8zppKZnTAh z0Jr2=ey0ASP%t!wOqwb>Sk9Sgvp~}#h0zIhWLK4%!bZ@)aUr65TgI_)`D&f-olDl# zIoklt4-u_)GH*S9BO0rqHBQD5d;dN+U`@rq_xfT;;g=_8^}YN;iqWu2+v!Ntl+&CP zW81#-2}ZGI<%|Ak=HU;zmyQ*`={8E5De8OvQsYjOJ(1ehUmG zMl-rA3Y~X5Glx*L+jMmZ!rXc0hRcd%|C2Oz2mgBs{x7kPDKc=^~^YeK1%+V_K?F^psbwHC#J0F_UzM(SrzJHPddG}V7YJv z!w&6^lh~Q@io<1&B;U?!5Z%}xr}+xXI?cR=C)!R8@45I2^;_N^X6pJQZajG35vmw7 z)BJI*C^ba9c&5oqOPY6DuC?~goj!i>@9gKy++epH6?UQuYqg$s!IJb;`L&M8ZQh-2 z3T!YgQgb#2H+-y~Mgq2^;rhn?+*Vh_0BmecaQj@g*XPe2A!SgAprx`j*SHm4HYQ%s zNkhB<;rXhhRiL@43>@lM z-ucX5segpk@6GqSTvmwLyD|Ob$Rc7OB6Arj!N0B**B#O`IW0;&?a4;DSR)Ta9+@lx$21hX9?e$EERHwHFXhPgFoXwcf_f z7Uu?gN1JsD$h$S(_B%d;O>pO zY?5kcHsnu#`gCi?xH5A=xNvf2A^Z@&(qy@R5$KGIE9^`YTO#$=Hleemx2x9#H=6V| zysrJROaLBfPzN??%Da=sV7Znbr>xNqt*XD+n+}eZ0`mRrY3E*;GH+CfT{MSUk;buJ zse?k^>hRpXxbJ|bz#>V~3#Kcu@X@#>gWNf0f@q8vfclLje_vpShRSd*Q7SN95haac zoogJSrwx0ft=;=t5!zsV>B#5`;20ZfC?q&Q@9~R?gE;4)7w5V^DH5ZOK5S{t$aFd- z`e6^O<;~7y^?^pm&`lTuHke78s{CnGZ9@&sGlJ#1sPTmx+C!zy*M0WnF$Y4sms7fECriny!hqGdaRb76T07_ z^@bsZ%BSr65mYmxw$?ApQ4|lnibbc9QdCtup0Aen4h37a_>U&PUEXSnq(=T}b!?c@ z1P9p6sA9lkb)oLQhpAHhdWVe0rGMY|RuNA?BbN^v$cKW6o?TTGrV6~Afk#rs zTO@T`#5j|;{_@SG({9ev?%Fl!ZTCPz9vgHjbbq@x)9$6l>$d4K8c#oda!?Tw@UJ4e z@&BJel)Vc6`}aG81YSgjRHTVj8WmCA=HG*k99h?Tem>0Gzbi~4U!H%_s*dJ%$7Rk@ zaot_ldkyidc`Nz-F*O|@ah)0im#z-W&Zx9ILRRxvF&=udp=liV&gLu>mmZR1VsxF) z{VH%1Rn&+`tXKmSFds~p=Q0uF3-RyaSEdugAm(d+gfENTX%z?BA#O?9=J_l*!$8o% zFY3JYGB%Xpf^a=IL@hl6e6%1uAwh#Xk?Kh>)qAPkN-a*bI!a9Ng%|(qyz7f5yq14l z0ynQ*`b^ijz^A44}j3gZQKm7MI5n6tgT@B(|U5ijwCoWrW4im^e`UU?wy(N^Qq!e|>ga-?gzK5<5xO!0lLuQR27@Uv;T+pNX+d;#`;U zP{gUFBJ!BDCLrK+fs2!bw70#?DFENG3r*?S+33r^Q4OyP8*yp*lVy!+&ryZ2E@*mo ztK4|QU`X0m1Yo(8u2|pSRx& zzM-suf$|8(aiA%lCi@pgI|vQ_C zdvYaMP^Dw!QoGo_XIdx-*h?}DnI|^$ZS#7N)nmKR)CE);KapjfD*DtZZWR-sz*n$P z=Ql+i36vL9%KAI;YKjar&c1dr>+SLPJl!Z!_1=>3p1p7_G2QWj`=!Ny=+vlMt^RnF zq~u}bS-8D=j8|}3hd)z#tb9^i&8q!qW5?sfIu>D?CY}4;YDmOriy>IHVtK0f9REPF zEnG16HoD7+4TMM2rt8WZek$rW9aJ8GKhg2*mqWYSYmjL=dYLAQiHI`gAKHU#u?h4I zjdM(r>+&tZsgu>_M3}NiXUe1We%;TZ)4iD7%@|ed{K3JRRc_phHbR#S7o-p=?)}*% z=Nm=(?BU0U=^tfagsHjj+UM75g&o2@j>LVa7=roM44jrx^v@-(C|l9-odJwT>_qpk88Zi`9yS`t*q0H6X2# zr>dm4DHYfYsI$`DdAeBB8z@|nG^Cw2q)RI#2~RZs?*Ymn!@rj}A?odk(R7Ugo_O!m zEwc)4HVhrs#DP#EbD`4N9Q9m~ZD(G(2RSrWC034KwR8n`7so80uX|+?pE-)eOssJH43E65bG;BsnZmwt>_7h~J3` zHby2649pRo6UIixKDjbT%~3CfLW6EAz!GHf18$U;NKl^h4<9MEvC3b8&OdVAXTI#0 z=*WDX*nS**<2GyefBQ9r%Pkv9y4rxJ{tI>Bsy|K}r1@7OOyUd#-!ZmUx}m zkW)demMv~Ez6%2B$HgCEtu~;I>Z;{>>u&I8iZg-UXWO_{V><2V`P$gdGZitos9jkBz_bIY}Vx~YbH9_dm zhbR8{4D0gQK-Lohg8D_H!;6ctLVPuxq0(2vcZk}}pN)^5R*Fvrg|%qRS03$5SKr_8(nULKa?R?^x6+6W{;D|l2G=FokqR=OJdz~yZjNP-|KV7Qvx%bv;c00DVQ(yZ2 zfCVOE)8@S2Uzd-}79xKQ++s}v4t8oY01B_n6tf@cuy zt_}dg*Bylbs65Y*hSJ;X^o~K3d;C%Hg4c8Rv6pYl+WWm6xo;1@Q~oFOrKbFx&!6Rg zAJL6DpGf{^bDo#|uh5k$aO>amV47&y&P$HC^ziX%^8y?hg4_E`4p0img9iBB(&>A^ zbzx_ zK;ccKKe$=0?28!tt)ja_i3dhTqKW~QdTUWubKfY3`X(i0n})P@lI4UYrVVL&CSh~0oc16XY+P; zITV%7{gtf$Ah{b5{Va5eiv0$+lLjHdy$?)Tt@6*lz^!~RBIM}u#}pEp@QcD?+AfpZ zq6t|($?=lL(J939Ud=qnDIPozfH-0xfg@qwuC3)b1AykA_ouopF#-OD6hQF+7%>1y zu1KV8R`V1S0eYpyI6Z*P9-E(MF}R+aUO9c23wi+go2+&O`~)D*ei-agL6jaZmXKT7 zfW|IC7j*2VOT?ki3NY^d3D5(2b^#hV;sMmlZ!<@msQA{0!W#vNOuyGydR&F2OO7-|)?cxaa+ zLE^M)Yin)O-ew2a2KT218x)6bLBL-C%D&V3F_bE3e{d=xZdzhm-?K#Y=BN`fWao`v z8Y2nelFM=hNY8!1xHx-z={9ZE-k!x2dN1NB=U7H>fwVC4z%QoGZ$0xGkWTna)hkmfiQ?>pRyj29o+>iO z{qO?rckBag`hgCu5YK9{7zo3;)KKd?`AM-EFW2ZqhG&HTj7aYw; zer=xTwg%uEvvkPRIb`|%w9IEeH25BX<-Za~0$-uel^nX<=Hs(w_ke=;nyozAk@1bSG5u zcCUxb?nJ}0H&Jx8KL4&f!#%T)y$#Omtm-rMtK zyR99MAV<|#$bBDv{tq0T%(lM$;zrTp+i-#%_R@nyXDnCYA8AZ$ zt2prWri!(k7M?vy8Wm7>Zd@-iAQVn|;CBAqC}TR=)YV^jgmfd?VSgNLIwlaZmb zKaPctGIGElN1T!BdIq{u1Eus-jAz$lu3P-7vt|bjx0m!Sf@@|cRCKZiw)~P6`s@`$JaH>)Y>jG0~V)W1HW0yBp>ML zaT@v$;-#ihgNI1IY^8&Og2F8*$OwTzK-}(ZH8xGhR`Z23WoH`#I1C=CdpkQn0sRy1 zT`k~X=t0>%E}iDNTxXDAdN5tElr_Kiz8X*O?+GWnFGq2s03KDig(@JMJn7LYz&%C` z^1yoQT2D)2uJSH`fgNjA*76B3S&2T#KGp$CRzx!}F9BBuLS55pBm6BZQH+jV%SXTw zLvCJghxtLiw1RvPTmW+v&|8GEYFEnv zW+-s>sJk%fMhy^{e(shwDL({ed0E*YXIIyO2m3*-SYe(X5a4v3hWH+q)XTZ)R(fC! zh>4EIeUNOJ?9bI80D+9ogHNXcm;f7ByJZQHkUb+{k^N_}04VwI9~=<2X_2al3UhOF zIoa9L|EPUDJUvZ5e|~d^0K)J2+$Z3QBE8mW5R+xzAAvx&9!O>z^`Jcfrk+#(SrO!N zNE(f+mj(*P0S+AQ7J*tiaOE0#nl0uUZ6rA-Gv71$fV z|IDqXrBn6>;2Iv3FyYf}fF^7pPbqnQGubYFTtz~!v~h>o9nr@?*7mJfuj$i+xMH>y z(xmIyNB3~mmw$=dW-jQp-I1T?YZrX(ZxJWsDg%I3Xnj2Wu6hB8=xx)r|2PD$@_m>! zbR7czky!w5b@r=Bkl(6pE@4^J>#QoB5bCfFjLO*3(o!RjVD_fH${xt#B|M#@K^OZ2 z3kcc@^btL5NFE}|!`q0S%@`?3lumQU!$7?MATwfxHX}q1q8|2~;myF|hW`D($p-)B z0lmQa-Tx`>&CC8*1KWSQNB%Fb{`WyMgEPnuA*%8m6_qYkIn+cezfrk=_tEk>UBZC8 zfkFDrSs_G!@-Cm#Y4#pmjl&##CSlS#YE{mio}zd!l8GAL-YyAj)*RHC^P4MX01q56 zQ?_Ccq_5K*SvRxpL(Hi@_>JD>4+?l-ecFt{-}YfR$%t0Y2U@Ob*v8$GY^)SIJz2@p z9XqL!X!)v)k`210(hcuRrGzL$rDn0!UD#kVLGaaODQa zvkD!yQqdrem42*peEDR`Uqo6s@w+20B@_lnXqxT7QWrH*aigVhVUU_Y=qk8V^{d`q zq!$6&@0eh@5^Z0{mUq_~4zWX~nR}x*QNavP&V1J-WDbuPw`&N9ULtcVq2MigqZnOU2yAH9xc!-;Ho-{IKs9Wv#3r2Fm-`q-S)l=S5! z#k@oEh6AHhlP5t5LCD*qTRyM0;8~UKPNa?6{Yz4jTyA|b%L$-*v;()9(*EfO(ZJiU z>qpd#K~kEs(0cws@4fx~77*xt+2s24{k_4U`+d`SXK#=XTB-hFt^09!1}51L1$Gtxk@5Z{YOM9yqPy#DKbK2 zd=X;<3^Lj4EcznWadv!2SIl{kz5W-zTPoxRg*x2b-`!tJGfJFLwb|axmrR>nuSE`S z^IeEdr?aeXt+#-)TCkR?d|)qQQR~7<=7nze2vyH)tl`okZ!;E_0;a$1-oYZJ++hQ# zVGvQopj{?;?r!h=(pT}=^tn4L#z-@Vh*E;1X4}hdeWUbKytH|+$U&86Czop3-#0qd z&kr$#6Mn5(+QS)Rv(ff^`Y;cWN4R?mnT)MI?ODGnBA1A~el65tl^GVUpP23NX?P>E z*%&77mA53W$W-^-IgTHJA8)`GgB*!<#YJD*+lkrFcbv! z8Yviib_Ay6^=e$r+x>Q&;o!V1i{>$6zuS!K1!VD{1$$#kFH^Z~S;P%M?Q6#$?42c|%|B$RDI>>~)M^;edjK`YY5nD5z&Pu8K zk~Gdwa7fw1$tVXTaiC7_SlF_uJ^pWL-$IF3k4?|o>|+69%6tYFdBo?$Yd2QgB~~Q) zfXRV`7rAWYA){^hAuh_nW3vX=jccPd@5H$u^Y6i3dFO(LSD0~T5Fg_+BtE*4m{jy~ z*?sDW|J$`8>ip4fHNwjaBT5DCY~0?y=7)dU?X)z%?z$OqNw%?fb!_$>iQedhJ!f|P z=0+}}WtE58Kg%jk_~}Wj1%`ucUUGr`t6kL`yRjnPWzja5x{6490*2Pc&=?m5yxpj> z6>&?VrKjNs?RI=J;05%w&ei~k>ab~kx-DcmL7Q)jHeFb^j=faG<&Jf)kx+Q)n~?4o zHBp=!Rn@Z3$$9F6g_GM)NU-XA^R|dFyhqG!GVPe%qQoQs&u$VXy3Y5b&5W$bzzD>PYm% zZ(f7RqiHq({Pygg=Fe-%jTl#9>nj zec3ZIf7*u2KIYY7;Cv*_+{VtI<`14raUEw9%x9xbggv?H291xRZFsyuHO>7F0R-2S zc^oSBOO*Ft0{89IbYxM6VVVA@nKysq;T35-AEZN@VzBZn?J)QuSzX(qu4(9?C8qb*GRGpILKD%flFYe9_&^C7O5AT7Fk=?D?`mHE5)@X2Q5=}8q?qqdGUPzLL zHy37-asBm%bek{2)%!w$v8@?8p_jl?;8e2iK-Nek{YStEY(N zohjvYj%?>iQOY|}nB6b1*1SFg#7F3}Ns4yBr+0rh+U42?Sy<5I{j(oKGQlhw6?V1n z-|7_^^3#<`7Y4(-FgPUwda1hgYlLe8j93@Gx%56W_X$5%@>qMaT`rbH)nUvjFxdIU zvZ`p}?zs0vuo5M#)Tuop6(*qAgT@U)G#oc@1k2Hf?2pVYp>F`YS9VDX*VO7YLhanQ zVB>R)`6HZam1$_LQ(>wecga-;{U`Ngs}!6a4(vqHSq96Pv=)7SK18#oOx81vmhC+$ zHW%&yo69cK3C1e<4`56xLwZU2RVEbsNpS~=BTwPhN^A!5n}o@F|M3#c`r>8Dx-$R~9x=Quf%8 zzv`$d$3OnWnC?Jiv0w0>oRSuV7pdMOM_R`ei#gnY$A5{-?1B^&B!nDN4k8(0BTt=5 zJ9JkXZKa_G8LW8N6l<77xI7R+X`3YFOw)LjYtgfp9~7g%h<1q6_VZ9jzMZ8pP$b(K zR+zX?iJCpYrZd(u#zc$0t5SvwQFgj?X-SJ+lI(G)jja*U+b?|YJ#Wv9mAs=o^A%i2 zN!(ujjMJ+dt@xH~cTEI4EtK|BHNrCS@lL``T7eP?1A#I8J*NriGuxdUCG7C*v0`Po zi<+O%&@&P79u7d)RkIX;>$Ozch{Qq=;wHi)Rj<~i|CTpDiyiNf z-xsA9#04foRk6Mor4x^%Y~_cbZ4czBIeU4|(u?K2gO1~BJB~Ey_@~T!DX{Tr|Ea3} z1cWkn_Ixa{i(kd;=t_|P$20|QG-%Pxw*JUQbqR4o#3*~^Ag9Jj@US;O_MC<_NybDFbvK{HC2_yXG1ar@ofGGM4ZAg zit&!H<4dJ*5NP!&sglq{aB`D&CkmTJ--JFFMe5~~L)b(aLV^h}%&jriFI4D5dgSQjEq~$Mix?stEGepdXVZRf2A;iD}HHPWfOR* z2F@{)T%KrE29^8{`M~0WrWFIH`T2*x%3M4YJSanv#bxbJ%O?6hZ+Eds#8t|D+E!OH zpxH-r?6m;;u$Ssd>3&3h1x{}mDMZM=%Z6F89`J0{R|@gkIlVC94qxlZ z^L!103ygd&3dW|rRHo!S4CdFoiuBO$ZTXQAf^nrk&03;0wZ^Z~bT zw@9_yJ>ce80i@xH%i`ZciGzckS$k~s&(gUvs?VMdo2>;^sp?l3m+aKd*d5=b)ujgdkJ$uWQ=AGc9$PWa6G48oH5jnY>tU5wAbrexF$H*WR-lH2*9}KhVApeqmJPpDoR}lk}>w{IA-0c+q08b zGf$SGr%JzZReqCUROkoq3?Vl#OSh0tJ*nKdRi&Kq_0@<;w+L|bB#uZGYdVvh%@@ij zc{bmu$qoPW0R)hgDVEo+4<_#6P#S{pZd%gxX7EqE+$2pOxbPiT8mqO8rJy{UtSco4`}z5;^KJ`b8W4|pg)aYjg?H_M>;efVd9NC zpnVV2fc+pC)^;&p7!kewi^1{g`V}d8m&Ay!C=cUUa-U_gg!f1A1bGUNYx50rEY12pbBs^^r;fXZ&(y;_4Sw7E zj&*DNa}*~VlzG>F6^17nHBkapO{mvp!6cZsYxkEJj4FHWo?T&F3DF7TJcm3ulz*%~ zrQLcSpY^oe_8&tMc}5NXb6RTg-xiq-%e(XTZ&-F_uWA)goXCq<8=D5dnmZOQfqC~> z6j)uu?%}AJDIg_FR~*YMpgD@8Cs7zTvV0IWR%inZA9E&4GbhCk^Y%vY0R+J zDX6*KTpZWOgPrHTm(=@P*h8qWP^i2<*0}95hR%Rj&_{?HB3PhR8h5N4k0l1O6cWP| z)PM}fza&|xK<($+QCZZRISBQrz|q)ht~i^)>NR~y8j6b$p0ISIq^Twnx_+Kzh^!|c zuFj~GM#=43deW~|zW41=uwaQ$-(Wc{t#s!xWqHF2B*B1jlxg47?*`Yw(%qpO~llxD*MNB3NZMK!-$!(8FbC#6>~b^b`3BLqu<8B8gIfd;H4;Qb~dR3%Nu zJ5*X9m3lx$G!Xt8uTvn0=~^00OWp%{3({0pZOAVo>)#J8ZG2dQBXe{cs-p9BgRY44d{80zT#Oo3jHnxLsz~+i zp*o}gJfrgGc{V-MtEfO(hrM{lbJj6GRFuby=e^V=gAV6Fma`#-6LYyol)uvY#;jsmt3XS0Bs`MPiQ^ z{LTAMjDXIKtj$Zf#3f1W^8KBw^ra8vFi3UN>m_cn6WwbO!_#*s@%Gq~Ru~?FOHLbv zntRg+vS)OzN`uV*#-laOSRc*r;H`g}iy@Zm-O>ku={6 zTd@xQfPR`m%{ARn7AK!9pZJX3Vjhd^vHOeP&5SL`;7p&_pCN$BWh)g$_n6&cX5hA9Mp$r}Vn&OJF zu5OvXYjFq~^n8iSG%l)Rwl6W6%=7MfP`Ly)RmLDDF77aptJ@Dj>lYE8r0sACc}u@r zP8AdbbbUAM7xO4_NSC5qn|lhlD=_)zs&+ZVGr&|^q~cyi2ZyhL2s#{p;}7_Ex2T?F zx2Q%0It=d7Quzl5M;XwG_?>5dbqm}1=5%r(c5!z{nAet@i*d^=(@5_L-0r^a3et#` z8!e1pQk~IpoDDh!&O>t*3!Sy)NkoX}_mlt2vHq{^1^=!>ae7aQHD60AM9RKxq7_8) z-6SS2v@3~^xJaD_>+i^!p6XH+YK;pBlpUnz*-(#hx%`9w+KJvS!r|r&| zR1RC&2R90bg+OVc=PqO3@u3BYM7YO=kb&xm>+eBx-MW;g(U+o@B)g^Vg z8N_+2e`==WpRi9dpQ%LhHujL7e2M4=ol>2Zl?%{GHIQsn&fe?d%n#F}ghH2a0bEUa zNw(UVRHC4B#4gVX(pN~#=?{(0S6*&uVQsaxM)5!=dD=hO(Hzek4(9Q$$L#oiq2NmO#ZSeS)0MZj*zhnxw=)|YGXJZ#j%i7kVGHic@w% z&e-hu&Ty4hE@xWFS{(JgJnjlUnzq3ue*Djhe%WO^E9viJW~c43g9eqF*u4W=Ft)MB zeyU`oiGi)?>&)!2OmU;n*e5P(ShdhM6a{vWpGve)Hd0~YC>zG4HQo3*6~wsP)_Q0g z&Ea$PY_P0^bzcKf%ndMl%_2UX)2&59b#k_>>ita9quXaSFT|yPHfwoJPml;Zi_gGU zhA#%aidQK@dT8+yCk&>{hb}5AfJh_T6AojL6G)TGg8Ct!xhdJD^HxOQmn(~HFN*+V zmHVgZ#E5RNoPqYK9P!@M?J73r;|4PcLhmG)38S(1y(%M;^tgV=5-T!W8S zlNWLCF6!LKp)!oTfSsu!Ps4nK)0b4C8^)Mm(qGXJ~4VSP^OB)<92RN+8hffdc$7O)!)rfu>rji zf=>Cm^oNudf8A|Ykc0XqeX!4MWgnh2bMkzqk^}h~<+NZSEj${B$iqu*2U$FJw(~P| zNug`iy$M8_^Ks=i5sPv+7fw!zj=yGboGv(b&O*C0c11VvM;B~{db5Ra4XmqXYwn}I zXUBxsAem0+Shc%hlYZ7Tej+xJpE*_poy2O=kdN`;TaZ=7DXlo{5 zdTgU6ku^aLLg;86ulLj2vKoh~MJV)W0VsN4^?7kfro%00ciu*EXyPP0cs;oH(gQx{ z;h4i}&jv%&b3s6_#s^|%_NQfdsQxAIRECH>!OV$uJ$n)u(xjqseo6>5eF z&R-Q4gHEHb*Pea<=n$;T9gtU6XXC~aE8(^wlA+6-kqKmpck+LlgA`q}E}H@{*Qamb ztg#qtvgTCA{OFu*bYIL(uiNf#)Kw4m+aU*wEhzmqi{{@DC~5cfmFCWSds1s3LB7!a z7{jV2jNO;viH1(`A}mN)|PbIWrM8l0A`* z2AB86RBteG?wi^lW=U+&p3xkMcbPKL!=D)8J;%*GKh3*JqS2DE_CX*AZk4HBf)Ag* zWb@ndDD+er_wSMMT`5j#>OGq8c)_a>)hG0)K$s^=1)LKFjmrMw(5RBYg2ew79~MAr zY9C63YF~I~`^OKBi`&!89GhIsZ&M_Fj&BexvQ_B$tZKin`NA2scE&f@Vzl92cH-G5 zqx3#nQjA4rTcjLicyIuSlzpfcL?ghvx5g$3{OTEe{Ur#<%iuFd$y zff=(x@o|7t0NfqQ`xxoYucMd)e!gyq9=*oD+KLyFktyCAHjwFL!tIYVo4FYZMB+V* z!ln{7-m7ZDDMQ{8Ak1Rs=d*U*bXd-E?Psi;8Y|47KQkKZc)SpAeTS{B8ek@aJ(b$< zZP@Eqd+rCKGaCzsr2F*vMcSl>Zb-7TJv%cor*7GMZs^e$ z?MLSD%tcjpwHNRi&Lt#;@XzjPD#+7*@)H(N<$dpCM&!PoSdh)+S9+4V0k^jIr0v2$ zas{bbwy2UJ)O?7k>t?z^H-jA%WMABd5Y)EJdc{2Pu~dw#Q%@7An?J&ji@VCnjgIE5Hxc^P zn30?@T-Ym}_os62gze^!S0MaQqxtHZsDoC&Mya;g07rVGouio0`C}e&$|eQMM9yc> z4Mua$_&-skxY47yKmaB1GJ;JcB;#GH4_{n-2j^ASR&drj@cNmsWZWMoB5wdYZpC4D z))^zQ5=3-28i#^15aEYy?JA9;>D`?aWp)#OWoku-ujkdCLHk@9nv&jglBF%Ba-^ zuZNk0W~Nw5mc?CQR49H~4x)lQ?(d{|MNbC;VF!p-mW5rV$R=GeKMM~i5={6m>V#dq zam-^f_dF5s*Q8n6Fo!}vEw|ED*my1d_S z`;hjOU$=!1z|>WWQPGv? z3H|{ZU^A!ofdUpD#{4ZoZEZEwly}+Qyto29uhSsjEU|~J=OU_S&!#^dXpLZPfVK~U zWL3$SKzMXR1-n`Flfpf1@E>1tL8pab-&jjrTD)*eNft*X=K$0y6%-~&jllX)5zg9g z5n>NV@BJZPm%%<+X-{QH%1~T1tdjAGN0RhTdy-t^QglbGbKQW1Y(VOAL{jv81J8<2 z3Cj``0IAN#sHx0+5h-I`gub2NuKVNH?l$biIC!P;^z>3wS|5Cdh5gQWM^mgHPkW*1 zML$#0AsDRh9Wdov_dH`S$Uz)Ex@>>s>1L&7?JTN0dxc4CwHH${dziBnou)!YwgJRjhK=X2h#v0HKhF6VD{LJ{Q}ba?)Urr3`lFY&0m zO@}sAqlUC8^vwOFREfVy7?1@I@xjd;mM{)^QU=8#hX*2?;J%!4qo>yWK2TZttMwl_ zOI-rSK=k*CSHkvEmR>;(-63JEL|N;jUHoipJJ(I{gSp%HaUt~d!W(h6ayiRv<4e?Xw`9Qej*x%(Ho2TofX^ zD4}1ZD@M6qqB#H+$w&?(Ycz z&RA9pBxkUz{bp>>Oud4$T6QrXgFK3OF8>V|tf=NFUc?zo$$YA!DwV|3c`->cQX&~< zO;roZpIOak53ZjUkPR1y3AqZwa^ba#%yGwRYSr;Y1T?}t%nIhIpIC4pmqs|Y-z z*(oqy2$B)}9Om?~L(Q3j!O9>!TJzg{wazLy@XUPBo5OzSOOQ+e4@MKr;>llFE(z|@ zilU;K6*=e@>(iboCFG9=T$~NyT&_2!=umR&ifoJLm3@YVhGAy?&l{mUtjI5W80m33lc^5{mRY2oeQbo5qC7Y- z->4cqvLFnd{phW9UbHTe4XORH*<|*hIfa(ibYj_qVxYs zdkhkv9@{Oq^j~@h9@H**ZF^;_>`?KP2AC`-4li)c0rxjvD%V zJ2m>nw2e8rXS6kw8tRByd)#|2Lw;A1pyG}D?|Sn8I=V@)E!&whIw#NiYTWaH-OfBx zj4R5=xDFkkZtRoRGd3JY|6w$7YAQJm&onjPw(o~Tr_bcLX0k(7LmAa1bOBBS_LFQYf%m}uj%q;Z zC8b2EL{im`aO5{{rSz-}yjzQiCSgCanYmSyx;d7^_Oci%ThTpfxe07wLD}`GquR&^g&1c8|OgIgi8(IuMRjU@-AW7pYR7(pfcMO zf7*sg7!>jLU#0Cj5DdH4hx@!v?U-i8Jx}vjC|h?1Wjt#R5g?Vbo^RPmvKfncM{Q4Q zVIU;!zS`U-dnLt0o$A=CSDFOQ|K~UEczu;fmNf?1ekj>Ioq&eK;?&&zjkDcpamfB` zQp)IjFj=KHF`vJ&ftS7{TkLu4-}myL#%8g1d=&@__q~s%quwE72Is?l+%9rHAC=yn zNHYb?!utgkGkAZ;BqiUEkzXa7bk!+pQZ?EarSgd2{T354>&8cNRs-Dl3@qfu;bK%Q zqguH!`dsN!?8Xz)gRqyy%^b8Q$iioz55+~LvO;?7Nq6^5m!EzoDF2i|K@8Qi8qQ3g z$mZMBwx>3WaO?|cuYclt_1q%dMg6hDFEeXZh1?7N)2=GKsSgPL;Kz7msI9%W;~^W^ z@PKl;I081R6~7m+v!)RnU`z*wp>Fj(GVfjIJ|e|m&nD`8ssT;DtdS){hi z40uAn9ebClY;CE<+c}31JZd?7JJ+DoUjMB!Lj1mSl>%(ysC%T|T;(x};L;Vy2>bN= zJu_n`he=n1)vdPs)T}Cp>fK`P^2BYTmB9vhuwH244rCM5%uGu=$~2TBuv6(eXOY&# z1g>@s7v`rmZ?31}>5+=o+<8Ati!=44PnRNkCK0#sRB>hDJ8Uq zUo4XtHS>@*QSa)0K}3i2wpGq7Gq{;#lxlqJiP@h?2v*o4(XRt4AtcS_zuafSduHS{ zKXnRnv|(Jj`={fQ5qqjF<=`uAi|na`)atNIZ_DS+xU{sd#gu054*Ly*oW7dX54T(r z#J66*y~BnESLWlks&Ck0cqcRfmGha`F?Xj_Oc|~Bqjs-rv!l%5XYMaiRgfF+vGce` z5_&`Tj>;p|#_GO@>`{X5ZJ3arxjT+smQ#PJuFA{)RT?%%c1tRT7qFqYiwp0}F&3(s z(fIkHhNZ6R+>c+BCS0l|K{j=&pF!na{Q&sk`JW^~gQ-=W+?4cQ<7Q%)S{O=U#@&0Y zlX2V}`~+UL4$26siTMo71?s*)*>hM}XJQi;?ncEJB>PCa{?-6>)N^)on7QCoS8nre zQb<}@{zN8iezy~f;=N`TjwCr>tye4<;Ht5|=VNY?WB*DK9A(=gSvo#k%nQIzqb|d*ID~^s*Fs}GC63r-AC5C!DTx!zr~d= zA5E!g$i}yEtn=tJ1js&|R}bL-ke5njzSC#=G97C6peL8|`B^(GXg z%1&Qwj>HKZu-81MT zyeQK?WO3bnvX41lWujpr>$oe9vo0v`5x0RT-hN(9?se1;l2bAi6ZQdYC6Xeh1v4=9qa zH@$j$$eeFb{5Cy&R#uaC+?Kgbk&Hil*0OGGg=u=@l`yUb_xvk-iOSD1m_c7Rx-0AO zoYv-Ogrg|H@lR4D5+1&?u^o8*(6TycQ!#3w^`n1(ndEAO-a&SaGm}HHD$6?og6CE5 z86W05;#%xgs;5!&d@f&;A58hJ#5Z?nT(zxR#?i61ShkyH#d>-G8)i_!TbuyEd=W-g^Vi-xR`V zLqe+Pk5e1W?v+e48oD!w+m)2D6>))0t2_b+84U&;_r6)GJtlLu)iMuo{zlBQ>fhQo zyy8nJM?oTz_R^srs9njEGMdpdC`op1R5Cw!5D^yB>7lRU1{8>-Nyj;jm|#G#8qCZa z87f8_^YXep@PZ#Wy;~co7chF6?u3P;dHR7dD#zvJeBopV%t|S#r`BYag{jtTMAFCT z-XT)>C#JBD*21cG4z~iG+SQ{h;b2uB1_6te%rY@A3+%HyuCE<4)qCQWc%Sgk!2OEB&U|?wB zvFml}vnpr2$K4?zwti2m9h$L^W-4JbH6O52Z0w{|B-pHi9!<(w3>t%0dtG#gf@SE| zbqUT3cz@^exkT*dyOD!fmWM^I@mgF+N2c+{cXNHL1n^nP& zSQRLAG)llYMKbLa_H?UN?!+Akw(HDgzAAi<5_Yh?IwhSNc5bE|7LJsq7?z2BfU20a zQqg38M-C>b%Fm8y1Bd0Sr0l$KJo1o~)Zz9}1V8#KU>0JTSHE_|1SAl>xF?{EFMO9Z za@?xI-EnG;JrCH{mmEL(0>t7dT*Z$3LX*-(@p(?UB+n}JPlVJ&cK1+61K=ue{GHM` zX5nBN6_t9j=%BZlGYOMN??CI$t1WcvaRm5sx!kA3-gsVwGo@XJcstm}Co$|h+W}78 zkzag*gGWW%?Z}l@Q2Y1%G=;+v^q3d8F^62ELCyyB1E$?gd?tR-OVHz1$0Xy_NS?U% z8Vf_+5ip3}VH1RfMI=1A9?Y_)h!ho)aN#tAX>A)=K0eQ5cHkFVjW`BT`PpDDv#xT% zA9j%Ajry!(ELxaDK^D@?bmcji!(lRT$BWyvZgAj%y96($E|{ukiKIrNUXtc_AilG& zmHyZ1NO6oqN@(ZIUB?Hk(PESN$%o$N0Ca^gIniL>$@rY2e*72y?jN6ier9?dt8!wx zHs4QCUp+M&&8*)7%Ovb}e^{hpZsf5}y%P{pzLFdZzTNRNEdiL-ysu|Q&5L)(L;aae zS2zPG*;wT!*`L+bHeBw&^&>`NjeiFtY5jWAt|lCbVZ}Eus0KXZC(RwmJHsqiJqup6g&y zu8Q0CndOUlkY%y!)V6dVXG~wFbhYGCzTo!tY|iQ<4_*)}gQVbcL(HVV9Z}e-W0!0k zP_Q-k#pn8ol__g((fKcggR=PZzz0Kkzj!ZXIFEo*bm%QORB78$z}f%P;%YRcWa^K> zlMS;6r~s*C1~*`Vg4B)o`jLHv&o{!Y*CuH`zrHz(0YOHmg?OHOK4k+nc%xvpvC)hg z4A-kkvU3!P`(E%#?B{W8O}5d?)AA(+l5=s$#S#q@oEep;)dkU(%q=1>CBY`i?AfvO z5G%Khys6LpSR`l1BGDbO0$I^Z{7HT!LYrb5p2!Rjyz-D?OivuwEa9zDV_crafRJ`e zN4={TM}@={^wQWXM+b((+ZHf(j{4WV21fWAe{g>oV;=A9b$$uAmh2nvou%4CSz5KD z?%|Jjs`}Vv)^LjyXWdIO z4wEbA@4Wf~6Uzx{EjZA_+hJ<|lNh%1Hd~oi2Dj3|3XlDgnIf_ z-6u~KorW@z#Pl!DlYcRWc7Hfh1j8`Pgc}x5wIpe0mMluNBkhxti`@wL<^JiZnUh1u zJj(22ASi8<6kP6o^n9mFQquRT?J)Ctcew@YQ;%3gj)KWRv|-M)5@lXo2VTU6>f6h^ zYtf5$0{A^Xg8Y1;N}e0hzrytvm+>}Qx(avMA%%h1ahk8>ZRDnR@-NvXcX>5W3KuDc zfsUh`wStaB%SXO5SRQwY1y$7X-1>MA7qtLcktR~;wB z+@kT?E6N6UPLU>~d$6?Pt!KZYKf9Vd;9=i;{y88jVA>=K^AC+7(1}y|OS@RDU=yQh zQ}x+r0hmf;W~7nRF&WY^vUBJD;v1&kH6YMOqKa6sxOi6&Hq|?-PhwS%`S!PA@5A5(@= zQUm3alabEHv9CQ262>Ty0e*Ln;!$!bH-<}of#p#dcPEZahamq3R5iThE4SAhC$Doc zh;VTFD}4M;w+)yauFCd7XHBvi7YV3_Gg3qViOki6yB>=Sr?Ory1d8K(V%Cs)@pD@V z53_zOd2{Y)2CNms+v{{IRr3v%y5SRZrh-#XvgFqYOKX$Ys|nZ2JRU6_7jk(54MP!& z2@qiQzLH~z)ZK*CDEq2K9Xuomy~n9Xz9fW0_4oK-0A%>_9qzy{2Es7lz8GBT(K=H8 z^2TB@>?&f|S^0&KlF8FluWbB1^3-|tq7^=gzo+%<+@RK3N8wu3g{j{S5)UZQ>0G~H zHm~dk_gkF|Jrl*;X!$WiO_KU$`imrX&EgE$ITEN-M-6{RB#I+@Uz&H-eSog~UITe< zYkJ%QH=&!4Og#j35t@dnpNr(*O^yDut|q$N?Khu_nf0@?=l~tTsM8S4ASIs@#5}IV zY>hjN+=JciMB!)*iJh34Zy=e=9w1mnVjxLbO4t#R>celX*lGMnf+0eufv&RV1R{$jsR9MUso2P{Q%w%dAw6!cU-O=p_oNs$oAkf`c-iI zNvR>#&ndWeI_Dp_$mC@U>Q>tCB+F=7#Jxfj;Y^w@l`P0f}Hj3Tio+D!-eYdApWUv|3xc=J7el>9dJW6uFbK9`&4}`f)sc{?M0CFs>Q?Y9Um! zBz*_fGpIS~P&U4_hcw~q3FT;MXvSgPIfD0lL$xZ`C8)qmtc zWvU1;07aH6I~u+W^W5;Q`d52e1j#2OM`t6&tJK27r>n1f{U&2+M2+#`u?|V7H|MqT z{?or@{la2IS*52TOEN;AbR0OM;XiNLGHOUwjHrv1S13SrgooHyo^JvIeQ0TEi3d0A z>^z#;)WJ&38G#i_?GM?D^IL!CU{~T_C%T(ZrjlxZL>!4YTG$xUk+Xd4;xZs^+N7c& zdjoET&BC*6<17NQ$8zIksK4y4@fiyXS?_h`lxvr+Li%Df^VK^L6>!lvDTV3nh`j=x z2p4fuf@t z|6So(4lUHNIlIsJ}B*%!7`_&v#Q5zsyLb@=2k)5DRvrb>@b0e8Agr5$vyp$ z-D-Q9L2Kbic)gyuh*h&CmFBmr>r0Hy031rmG#f8NMqqt{uEz(Bhx;HcPO8HNV&xa} zf{8K_*5A77XbB30latedsxS*_w=W_phA|!qj7#wzlg>oVU$^C50+X!1M`Py(5hA3QkB7N?e3^sKZYTYOu{PRi z^onkOvMxW{*kE5&b#ugn;u&;ZR74P~Y3$OeRymDBYP z=q4x?o1%x<;&&u5l7Ir5b0p$SA=7s_BC+(XoNWjwiJ&Tw>5hIFfQs-@q-Y0|)0P^> zH`%eXCpovxitV*p+RF?!g~*0_TX3CJI8yaue4?|3xM9aP`|s*5o1`|5zqhYZDEEWb zAib00v_v-s_vW1MK~Xeu^eYcszFVo($l0>wu!w&54IRDlFsvM&v-SonEhSURj0D8y zYbEL!lf=6>%R`L2lZb!C-u1gXg2}17>Y0?ldQm4;CUQ+djJitp4!?=urO)SL&F=Uc zhAE&X$(u70jf3GOdGHlqL~t2ih9ke{n0h>;I*UmoPOI&Z@h!&r?Bt>0vyF$C`3TFe z6*K=ZfABx+cJC-ct2njbbA?Lz51MN(i%*L z>(kGB4EgFuF7VZEd^~bqubv{p`izAv;QJ@x&-nPmur@~C$9Bp1bz6{@@J|s+sp{%| zxqtH&yVo^H!UmFm+{;n_f^%G4Y{~JdGJP=FzY6rFKUAC6B=~5y`5le&HcomlKj1me zi(+gLd-`=e86mJ5G&<5qi8`YgGFdjF%Vng=`lVN)b>)fd>~pfD;(qn#=PEYjy^6@xCE#_w9$|%&IjJ&nUO$g(|k& zz4$))GyjpSB~5fX#@Vbg&kI)hfEKOpn%G~?2S~*D9dx5&Mq|GXSZ$)6_z-7TxQElA z=_NE6&(vY2UE-xvuk?HjzMiGHWbXU6n~M7);?nzMDXvyx5eJW63KL_+nQBP}1(z@3 z&oQR7LsmoS=q$~aMEx&lX@jP9iN{Uwo^lg0#%XOvkLkq_2ja&7Yg~v*wJRTs@|YgD zEjDC+xSl{jN5%=#$@=Hr_rFXNEPAjjoF!+a;0Brbzc-ez2vf18NJJBEaYz08q~?D{?Qf3) zb<8>PWPXXK-`(D=DCv^9*XH86#uA?SGEoaUJb^xJRE zlg|2r@m9ciaX|)>X4_VU&aQG{+BqYPu~UyR%#&H#oFcuch^J5kJgWA3jA=e;E>mt3 zIEsXGoWYudI9ym*yn>VKCy-ws7PUf-Z_|-6x}z7_@SuID=*pPb`Opn9Uv8FZ#@oaAT{6A))Cas>(4n zGk7Dxo7jbu93RSo%gXaB2!|`C?K#vemLTFU&iVIoukSq9*tZK7A3{T9bsLn{WcW6_ z^}gP8Jv)jilLkxcIMEDC3xEAN%NXG=<4lp^H$|$dEK^3QkUP0?H0dydqnjpI{Tb*J zKc!G;)-M#G%7yR_W!bGuIX&pWWn?K7IIxy6R28zLQ%3CMk?23!7+3D}XT^`(LVY`73b|y`EgTIH&yr9^++Vg6+ z(Wd=!Q`uZi1SMRb#39q<<90al(%Y%T9pn>t-Lrk$ob;LK;uufYHog6I5R7-Z(LYu<%&DwX%q}v?Ssjlt_Y9TBeKBVLnD7i&WbyId4YKTb-rLc4+FmC8@0+uu(hCOOQ)B~J$JP;M=jd(N~eUDj$_ z`^ZC4YUtD1FqCbVBWcvntU}8rUCbe)8HXDvdq^dvZ!Yq#N4I#*S&2#BMn70ph$LziwS1BOLG|-+ z5?Q6;ottPppc)tqZ?IupTnfresZvie4$&+62787&amjM-j3d${u0~{MCNc%T_BdV% z6w>I=MG5*$zitNgZC~FLDJ7(B#VVG0HaAbGrQ14tnLa&2qibfn%GYm0QAI=hXpFJ3 z%Gawoh$_O8%r*8*@cc)nk7{^WJamR+jC9N-7B4HWm*y^Heoak%%c6mf&-E9`M>U{%|q|`F@DXb6GkZ)k8%jz|oXV;m=rSS)tfcl)qZygr@xkO!M^MkXw0M$^Pal+vmTG3v*G zjC|m0&NN-Fq8a9K7weRN$Rlx|YVw~>gQAxP!$#>>N61F_ZA6uxwW{n61%*{Gl4}(3eu5y*KD~_&xN453ta^OHHk`&&T{{(8nzg`|swyk4K^3?+ z^Rg+yx}73e)jzR)Q;`TdSSIKEGIWKXVu$j~zbO<0!hw~0LrF^6?(^+fFSw&lC6RYB zG`_yYt^8}lwi8j0zo7)BO@zzjBPfP!!C-jU>weXYR8}KDaxy`jjVa=ZE@C;a0YqR( zh|15CV~PV)^T+Q7`Kni)zi_r(azmD8VVwf3s}AqF??J-Ed6g-lb|9~3)?V6hpW!hNCkcK zJr>+pO;qU$ohaRn?_90l-ptnNW59r*LhI_H?PCs;#Wl zjL=ZF$({j1#}1DJ0^X_qiPj+8RaapZZA#(|YJrc@wLuj^k&a7|V}PxhZXi75FhS9X zq%fz=d%zuGUSYTUktxwCm0dr`;2yx&^Do$!f9n}tUKVX`uGsz{F!>()lVd?sjaLnB zo6RrYAthh`C})!w^JU75@S`W5H*0Fpoy=YN=5)UEc5sd)!8}m*W$50iRj^^PruX5Z zT-5C}*#~w6Zi*!Ng?H$A^_nT8(vm$M)4-De8usz$bZwWyvG3(ENrfs${HV}aCGlZs z(-ZjXWU3A*_n@JQQH1UNoF8?Da&gh2gbKEppO|Q*L9MuFuZrV^>q$wmsS4!#hF9y}L?ohjH z(y$0-_1{1BgBwad2FWKct=BnM^uBa<7UJUs9w9~xXWiVMT#$!m8cb)zT&xcJga^&k zENZc~NNT_48Vhmu3JtkTHGXGPTuIz4T~CUyQ@f0HL?fj!L*lJd;0ssQd)rh^WEeHt za0dINM-66@$?5)i#ni%>(gW6IbF9IsR%kn!VGBDrkV@NaUsYq8mZS5zd}3`MVDiQj zr8;d$d*l8o2$Pm6$Am-HVl7rtaVMyM0&{m#u=#D9ibihDg+RgmsD2t?;?I=YMMR@C zT{g~bA`MU{xZ#Nd}YMMiOfqIM2+SM;y&-8-H z_BA?OQX>TtK!&~f-qATo5ymw?5Rq03 zNH|rc$V2nNY1Tt}4(XEl2b4}+rz4*l zxX7(g3iA=e!Q-IKYn-7h7*Uh*-(F6T?>&^fu2)fc6dj!hyC5j!B4Sa0>os%ibY5&% z%gGGkuyL9XqN$qw9cQRei1YfFw4}Ilk7;hE3(n5)j5*L0z;m=ad8_mQBL&F&3l<7E zyQfg|RMFWBR$A_BtaLoqphE#$mD&$C^cDYj5mAI^9?Mib!_2vw&_Fp>B+<%!ha-FT zr`|(y^V&?D+wY#Oy@sdX-#Eanyh^oG<;Z!=Cr0LBfZeLxF#XbM;zUa0qT%k9^)+$z znrBauW|kXQ!YjMi+g0-&g~f#UKtM=Q@2!7`3WSC}qbTOC%T+0+iBK$J`x2wLR5XWO z#Qs2u>{zR5wfxuA(Y>N|4F?g8PQ%wCPHd4qDY9!2))AcF(@<)_1b)T3i8&7iCr)Tg%s@ul<2Qf=dRWV5Zce#SQdtUISKnKfXGPHgY7qj=?W ztN|=OJtV0VrH9P`^2!9Cru<$P?IJj|e|Mey=?SCOIuC2C%y%A)SmwPP*Pp?d=P*zEk+XBWl7?CStgk<6P>PUiPf{ z9^DI+BLSE2MN1gGA%*+t!iNG0$l+3RH<*ECORBJOospg}Nyc=x+|l>DdV)C9tAJn; zWBd~n>Foylz_L~+-w47twY62*_H+^g_^WiF+IeCFL)t35ut8N?f>4cg9LP0G*EZ~A zlSW}{%I0(Y>H7o?k#KkfPfpMxZA5HTFx7H?Z#rH(!g~ZgEEV;Mn$* z*Q`;T^0x4PqY9^t=Yfyj471XKl%*tvsZo~I-{CnHt1k0(d}sfq=KL>DME?=%&CFA0 zCt#xT+8xR9Q~%HNgk7@^VtnT4QAWj}O~g>wJA#zXQ=B`;cR=tzBR*pQMRL;qb21D{ ztXkUE#HyN~!{!Q!RcqA3{139)hiIK+c8w`J%l$L+-W()G<*4@z)AP*mPm*EIB{Qhw zzWwv@h-WJN9#a^(CvF*=!k=HNC2t;yUrGBY=BNvc(HNT<701+vc9KPf=fu2?%XfH< zAG$u`Po|O?Q(lYtuq@K7CsU8vDCxuZ9b2jb*&nwqNjs`54iZ==j#fsx{o{Zae(N>2xk+C#cF43n3=4QpkiXFc5nE>7r<)z_N6NNWaW} z?cDmRd)V*fkRVK%3jWoNB1#{-q0n~d_@)4OR#Orqf`tn%Y6i zzms|5J)CB0%S-z-tIcAznIXA|%To3f7%;SFaOkL}TltoB0!|HSE$5I2HD6p5= zAJRMiB9GsFBv|ShWBUcne{6)KZlB^Byuc5Q#ca#I?GbbW|D~udhbNP1CyG1jY_VrC z1%uT5b0s`I##Eh?=GLkES|#QdXDf&Vdf75KUmpJY=s;1OSAKH?s>y?8atOWXfbH#w ziyW>?_p*w^>G*T@JyM5>J};8gg0)rL6OdM^r^U3iFjG)u=Xx{C`wG?1wW>nCecCUR zh@*bO>LlT%(qhI`n4q!Lp8Gy~T&AKyA*5FpF$Z8p(+GH-$vMQyBbD8=UX*h>Ib z5p{F@37g5YQ3)v-mx(mX()(?yd-c`MAg@f7(>DF>xurw1!rs$t2(Ppct67TALKc`Z z>lUUB>Iv+_ZbOt2;y!8N^|sQo_mXZa($7GR^jf4ZPd%Xumnv(`>s^kc5se0hAXp=J zB_BxOYOJ4CnlLlXb9wtw0|kr~Cu_B00!k=bt1cVO*lU4cr8~XHAt1Ka@cKe&GOdocUf`8(->do9x+?bk#>U6Oy1ow6>>xTsk-mjib zg6vKMa|`m5dKmQ|bI$siWlUXMbQ*hq&eR)ilAQp9AR`vz1S((Qb5AJ^HHQRkml(VR zB_)4P4CR<^QHC-&lD7=+PQW1HCTe^4^h*_PnNqxE_>scGzv*lWckh$lSDSjHu@rDQ zqe<)nBik8$^2sdz;nY#hv3FIqal+TMj44J;)YV-xSuug@w33h zQL6d4#nsffS>U?L;veT$=1&I`XjI_~;eu3{UMgC(!#+SU)q7fYfe1b-AtI7tLmQHk zKI-*WSf|N;OH7=Y0YS=UugN>=KhaU0y~W9bJ$Z53k}aW^HH*FV#*I^wRHb&Sg#ws! zL74bar5}ZE9Rr#DXvw%x;tYX5J_~o^7e^wcDpV1k_e-g(kGE~V>AbrWnVeCU-TPIpox?wv zaMZwM!0T*>OVQ!|I$Z*`K3jldqj-tGDmS$m;} zvtd0bY!6d7@?DSpbolM07voCk;(+?w$xw6S@tH&^8OlNLH0Qm@0=&cdD81>;_Zxd# z&d8hw8v~*2iCY(4PA@k~>+6(5y2#-F=~-pysa!!M)XZEu6*0WaRtw_Ve(^bgNCGe` z@~}2l-d4&L)Ge_ka=phSE_HwTDs64K?3woHv7brBHska?zHbv2F>eRX1r-Vg@&pDi z9CB|I>nBG2h6BItY=O<8&EgYpf75q4++^lWZ&_$vZI47N$29%<__|N74J?l9+r5=T zuW!^xayVYR3f}kkIf<6tIzzR101h8-QoO zMg7Rr@D?)yc#Q}9uV#~J(mH&cD76GXjUs zhvI0`vL!YIfhoPto{V4!^ZtWs$0W1amab_TMAJstWwJQ_r|^YVt%e@cY^sqSnLe06p8_2J_bAc8kAx&M|i+ecLl&^Hhf1_3{i>t?H8^eHUR=^$rVx4~kVw1>oC&y!R)V-tf+@kRqM%xLAdQPE#VUB2~ zV!@&FnL5)8veJu-i~hvc>rb;)R&i$Bq&Mc9N|A7gQ$KsHte02g>FFt&jTrT?146u) zE?O?+fDCa(20H4ik>K@_EQyHeC|^@=KP(@K*(U@tn0Ys7aBr9C+ZV~eq%Fi(fizbbKb4A z1V|sO?n{sYVSoy7u+xku%rYqLKbtn>WM^j|o1JB@UG{CHh)6Qsjt4{zyt^YjbS5{j z(YB|h;p2Bp`Nct)acR_3<*W(d}^irekS8Sa(Fk2@n&$R$E<-yjb!o zZ8hz|y+eZphb^ejXvN{;U=d&vhQX*mh8&4E7p-?Uw+*hl*Q=|m0>UO6)dN7TxSU^K z?CaZ7-!s-bAZGhw8IgW*x$QF7dfZL!vwU%bPF261UpnW%d)tbP_}3c%vEe5v#Lhx5a1@;$Itchw{5S^yNrI09$g{ zcnEH-t)0GG#q--boU88t*FS1&fhrr|dJwMudZM%GF+IWQhwQ(#_e1HT_uVbpFhODy zvmM>d`=RUso5HtT>(sslX@2*oa>!b5KCElao9g?CpfPYLd|7^+pbyL4Mxx<4`rSlh zWH0Y7qwWAIVx8}F*YM60c0;@7?(UAdL-^gQ_`!$LZkL+902k#B<;zQUc32Om`qzu? z8~6D|)09yF&N6gOF<}$_b}}I7P{r+c&RZwoGobgh5B@P)$mm3wdyOO|B^~9ATAC7= z0f4LUNiW@PUZTMcde8atr`T-*^oglceJXXRtnay;X5@J7JW61KudpRSOzO-TIw}v+_boUGT z_yP0)*Y*B2V)()y$l|{PP?aNq^uT=ln5?uJSO5W>e66U(L*RwpBTs@mk3RJQS@M9- z(P}ZA-sY3;HfIGe;wb&gdGrxWuZx?T^_4|$01*Vvwn_7MF0_6Y;=EH<5l6K3xQR*?dvdI0Hn>)Q5o8I zK_fq5B%Gg{+%}Uf|(kNPZ;OwYSa z?Webd9CE*1CHk=R;(rG^VqYte z-EFoMH$k2TcdFK~DF_b>tqwaII#I~@BKr-Yrcojcc)~~i-awf~?EL3OC4T#*g*U28 zfEUv(m4vFwra1h0bqR~==bP4}L$|MbZnK}p#>Qwbmi<~+Z8YNR-`6HwiIAmt z8Yq}Z25xeFBO}kR?aUdv|1Ztqv9Rxb5|sWx;quR+rTX>%mx4){&#>dB`LYiZVw5wU2K^2@ag(aL=Y;uxltEC z%~+&an&5*v?`!cvk@?L7@Q_)hwg6&)Ckmwv+(@&-IAVnkn>5f^58z^)-cFY~Glknx*rVA6my<*j{!h}XF+%MZcLTF9X{TxbLBIQZSd{SpA8rx(re z0COkVXl(?@Oe;@X@Z2r_*X@&@ASR5XK~`E?dL1~`(DDXu%^8W`F$v(uG{Hp)6_H5=rLqldjquTRh$qv9bsJxHFkTB6()9r%;^kM7=*pWX5%{r2j z2Tcg&`qdzE;4+rtXuWp&^`7NqLPMo*W+urSU`~>YIyDS1fitY({{bjD``gy$kNz$H ze=MaMtpNRRSjz4+o_&KMFBl+)zQaIH=xbh6bDE1U9gW{C_@egF2c-A^V=a_{orrOW zcCI$i*aoNXaaaWa(9~b;6n*mW06BQQU37_C02(o;E+Wld;A)yWg{d3(p-l|{-$?8Q zJP!lNbmP)%pe-&3`g1MESGBD-cIf`of;VE&>1w;6AL!P-Rskc;B#5hlh6!@H8vF@$ zzW=Y61O0*ZFvIKY)3dX|X&UBIppO`valOtsHZ{fIcPisYf9N^gXofu5I6>d2>N5Jx zxKC1+ucb@s*09ixqW3DcVRWg_zRd}v-w7iv?Z1vRzzgFZ(Ib>wRHT3gng++!m`dON z_g;!ZyCLAEM4-BWrJ?=6&2%FU`0UJoj(4&9E$F^xqr1?+7nHgeXg>Z6I#(9?&kp;4 u{m1_tQTFdp-hX84{f{Lu|I=Fx-C??3yM#+VuwOO}Wmef>W~oNVF% literal 0 HcmV?d00001 diff --git a/labworks/LW3/9.png b/labworks/LW3/9.png new file mode 100644 index 0000000000000000000000000000000000000000..da97e38b5023db93710bb8aaf90e99b6187ca802 GIT binary patch literal 70092 zcmd43Wmp{Vn(j-Gpus)3ySoO5;O_43Zo%DxCAdRyg1fs0cXxM!pCbRY)~uP?Yi953 z>^ax@K+|1RS697M)q6kp{d+o0PDbnl3^oi12*?KsabX1zkazPSAfPKy?|~&TPY(6K zuXm0LVuB#$V>k!E3vg2bX#o(BsuN@`AO z(o$T8w$^m|Mz#jVbZ*vmz}g@nJp68U`i7RqP6P(Vrsg)h>$V+_-=(SQ|U(6S!Gh**J2!@e=*nFc68~)j!p4q<4(4`F=C(EjZyVG%uyuCgC31E)H{vqUH(@m}GGe7Q&}TNHWn?tc zr`0!NW~4P@W;SAHW#nKoVKgB6+s8YZoBZ47+c^Gh7=QtxfBOqPBOSxrF26nJl65dQ z2KM6ZBl#G4{`~#lE#sko+mV0TF}}Z+0LKbE`^U(<4bwkH*VqOaQdeN?XcE4`f`Ggr zO9%@nx#=7~+ghQjrraU;Hjoy`1v}X-uIR;_#jegrGyb;E6DFyuroJeY9$*fafJ=oV zCfO}GiDQZd`rTkZvGU2X_)Ff za63O?ZCEHoWI?mSLtk9nT->ze(!Am#R30;}aL1{c2Hu1hDP5QK>+1X z0HrweT1o!)#6OmcsPfP6_a^GvJv!LY*4aG6zn3LlW%+_2ei6e3ixF66@S@qgIDfn6 z4@X7RZz#loxeOb;KSf{TJ7?gpDMYw)WTsBOzjYGDG|{o*G^}BjPi_175Dl4zFdvUn zf5T@xHL@}#WuG$}t&MRBl>mFTj zQ8)zk+wPeYv_VL6H|uz(s$9kS6G%lKdjFo=opN+wt-$?h3e$zU@o1_shc@AP3E}h0 zDY^NlwsWxB;Ok2_`jDyj5MGrYga9Hq;d5vQ46rdlY(zgaZ~??X76Q<}w*CoR1rb;< z`30)1HtV)0n5muVUXMKi>`d-HuD{L}6JHG3f6A&2#wii7q*FLT?J3oC~k)zj; zUV!UE+o{3WBO+Zj4)!D=5n^SC(n^pe65%`ufteziyf#uJrMwYWyYD?Zk*) zeTQCy##BIDc+`j2VX=6|&9z?W9=(iT|Y~;7J@-%+!_4Bv2zX~#rDAdlwm1j$gI!So-lh8Yjik_6Xt%-9;Egfa+BS=$m~2h4ZQ z=}z?fyP7vAjt?~@J~Vo0X6lZX*J+}b7WHz&THHSCqUyRQhbxyX%(x_9N^3OPWnNu? z1T2$!`eFRWZFkc-V{cw;NNkUMJ%Jc)n0XjI-P6r#^u#l!fB2$~D?5Ai{02!hEDnutcwX@{*vEVRObpRX=u2|AVdb9=~;~DyoY2FUbE@k0k2wUi*w8f zq0&$JkUy7UrOo{jV}cs0_3S>~)vOo#GSs#iKB;Ix1``ZN9hfF?h3J^NE-?US{j7iQ z=E=@h{c{{g^n*GFybR;109kDF9Xd!|U%zl&yv@^~YSZ(~r6EUz zaiZbYSoIPA4T2O@IL7k}?S@B&M(VI@0qzi;S6b_On_qQ%5H7F%v^KTRN#S#;zxm_g zuG8N8-Aq>gh@|mWX(_ShNZEN!7~7x;&%9CZIhJ=-aY8R^FQ69p5WX&9jcB?W@6*G` z496jdJEG%#zKIE@)j2Ge|sW^(uR z;ytBx*DuG(N>MoWYqvekrkxgt2FOehV3XrH`KTWFGPF#U$}6 z4dc^7KcBK|OD?^n8mjiVSHma>z-^VQ^b$NO+1kX{n=pB&$)Gj;{-yrD0k|G(jg4-+ z1ci9YN`2xSw7pmbW>n^j#4MNkcu6GS~j?hV}0~-s<*sHf7(kzu{x^7^93&S3EwBt#iPZC z;x=>Qrba_1GrC2$BUwmU^XgM;w!7I*__8QoT(-Mv`{P9~51I10p1D^x>9^~i)wYKr zUGX``_>ut1(EdF6Y*N(8J+RLA*W>ry6H4DJxTWxreMV0I8VSNUKC@M@to(zIh1WZ% z)}Wd}z-4i*<{J~{gK|-6qf?rbRUf2_gKfEPo|C&r2Vwate3WWa{;gF#D?f8d@V?Z= zrFFGurP=QM24O!#wXd%F7o)NNR*7Bv#IyiHOx5ji<~&<_go|Z;ShxPmB-p*OZ_dr= zy%yGMU=MIHc%qL?CR3CBm_{mib+26Il4)rS9b0MA%ZI>+98->4xjhYBu1C8OtCdzM zIK!d0_WD|)+93NqZm-kAJI1`s@#k;1Gb^-e4V`t2keu-`)UU!Bkg0@5Jy&`+?K>^% zeOdY+3Zlq#mR8`mp0!2SB5TXMLU;25S@>8VMYP^#@~DG)J%|k-Q&AeV4bKp@N-RN9 zwLj|R{8`{%P33==H=Acf(cqp3`OV~+UGoe~a50}$(!@S2KOHe#`J#TLHTfUaHA&h% ze?*p#6?*9{ej5sBA*mW5XRzr%^y}ok&dlX*e1gy)y0~nAJtqP?dgaGyqDHDRL0#i_ z~fG*FaV zJHD^__^j0?jKdkEQuJ-UyKdePuZBrCGCeTIydlZKhGOR8TWMJ)uUPO(ONz`9;Sae? zj7|NG7!M0~DEMdTGl5cwUkSG$>T+HvUL1k@A9sAtm){&&$y@x%fzI-+G0rt=_-QAL z!?hoh_a}Az1Qk~kDic5DJ#7WvOrH;#rQdpJx|Z%4-l1bI^oMfN|Sf!L1Iwx);sC z%J`_oJcs*hip-~KkBs_7PBJL;xHV|+{Tz1GyMUw=)EXj#W9uz<`t|NiH7YD)Mu?rOA=dQ;lh4__UDns_(|tdqayXCCg1GL_Ksl zx4uRrQrWHlnsPrZ_@PT4a@j9f_H-gS(8?;_foM7YL2%pL-Pa>_X-DNk`n_2E3vS)s z)(DJn4_6CO>E6y(3%7XDh||~hxT|ba^(~?0syjGWsIm`Rzter%U-J;@TEVKV4y0kS zUs-e3=8-_71W<|3*kR=q=JON2cBo9_8{^WtshW2gkF;6ds*3cCcshh$O8*kzFY!X^ zd{crJ*@amN*z0;?^bq+e^Zqg9Fdp~AgkQ*X-c;4QCos4}vGua89t|@cVBm{g%|Eg+ zAx||KdgpoTz9+W>{p3su!HYX<=Ncs0$b0T1tVG;!i#%}D;g}bgLtM*&`%xO*gi$Cu zhJs7Me~&7VH?ac`2dpDm{!?QEjY1o8w3j7y_GrWVpEp09o@}o!^sp>@ z!dvTs0SB?s5ms+mrBabSC9P}#lU0TmQLg2vW=B>tg}d*C8+{GUDMsdbeXp;bHp9-A z`yfeCOqIQ#4&TMU#%*r@^Sss{H0Auo#P7DvHadfim7=AqLi>IT4&q}H@)};R&YbpbU#^I9wXoJW4(~~c|6TvQhy)s^l-mZw4s4nb% zYWTyBQGNRCB))UN1)sTBDJA~q7IcqB`GEc8l>W2NArE_XcWV+0$c!S4AMC@r1I*lx z%(Q#(?+=^D^I%_?kd3C}5WZ}c$k_1bs1t06g@1ocbdgFZ3&ca%Y;qe)Do2v_YKMc5 zPiICt(i%YBykU;g(ei=%uGM|$n13GhBlDhH-cfhj5z@YH|GAWZVE@T0>+AWZl}&rG zW@WoZr&(T&gq)AIYgw>8%TbPnpf_dc!@UK)@q7Gx|B)aBZ z52MzX)Nos4S1*dB^OK^C6d=KERd?rT@$a9 z$sd2_qOi@BnIuKHS(t6o^WO8wStyCaW-L{!@5puI=w@Aq>YhCa=3L%ek} zForT3a?&-j8B^#|%HiU&S1a8t17~}}+&QL(hNPZ}i(*2iZVLe0lEn)gA=2Ro%ep5T z+BBxrNDJUt`$aonj2v#kCaaUSh<HQ;>uQ0X$rARY9-T=OQZU3~9 zT32&U{N`qALe58PBc0=Fpk(H7V2k=Fr3$!Pc~O;XLu&Kc zD5}1*1W4Ih;F@5%L*rwyrYK(U4Yod&Jx`e}1eEdsl}|8CR?dqlibg>1Tb&4ugieL# z#MTrSgK&~(HmUT%k)F#~46S7*W|DaZBcckjh60Z2Q|WQ1Gum{QagkrHJfZW+&SEfr zZkl#5wGl6|;D-H!<8e+Y)?McXU0tkv&ylJ8?fOGb!i2#|{3N~+3sFO2U`sE>b75Jb z8b=V*eq=+0;lv$NUK1zXakEtBlyuxiAFI6ltEV@8ABh-cs9Ifi_7ex_=~ip?Vn%dA zOa0E=!R3zz3yjTB^72&(BZLp@^^cfAa69maLI|5?V)YvMM$_hNU)TlprU-^+-0d(D zvbv5#A$Q>qyZJw15%iVu$SWYKnXO#V*BGlVuyNj-yVXL>9)A2jD_C6>&4vCV3yrQS zkMqRhQCc6J2=PgvCK}~NhvS-SG{D%3yD-ewF{ZZ2ZCWWQP6U0&maHm%{6!87AWsrT0g=U$xnBc3EsL>1^xr(*r=;56J` z!)QFgddX`>`-GU@#q3}4S0t8&#m2P<#cZS z+B(mJ)YNbK9&+T!>cOuoXYZ2({iCUGz6|e6wdBAf!gIoH5K^*37il0#Xw){zctEXQ zL*Xd8Q-MPDE1ay8FncOAv&iLmKzgIkE+9P6m-nU?Y`t1sT{yFO`SUw7@tli`UU`?6 zF^b$;p{KSu3gK;O``Je~&w&CdGDL+2{h&%w! zSqkcavjY2A)XBlf>uSIg8n@1FVD^3%bwp5QEZHf1;-cLwZVahMbFHG*-VBeqs~g+% z5)CV{qbEQwC6MAA)U5Q6mn)$`#-}@`GG%LCFJ>F$Io8v@ZDC{G*ExHH;GwP6Q%Z`Is445#0W%<(|hf5BItZ!4*r2~dj|af zrR;=KEJx@Rt@ai&3n3;#Y!K9o!r%?LIU|d?|DLV-UX~8p+JFrf>z|xdG zyPdf(2GNY=q0_mmUz=@mZn0ylD|lKa02-|3X@f{4JN!5muuNAUZp*}xa(!0Gi*KqzKs397rq4@{zqcYF zXj~Bg6qSa+JB+RSd8>?}Y?-j;gxYM-u-v*Zu89oF^xEfEcMVa)QLMSjcz{Pgt-vDC66Fpi50{aoYgh z9$r&BwCx}1n;wXj)s*0$5j|fS&Q700qhtH*$KROTu?f$kOp2;JvpKRVu9wcZjls~yQx*e);q>LKl=OLmNCj^Kj?EoMWv- z7FpabJ@9)LQ9ss!rHY6BJ)x1qhm!HcE)0xo{AWt77n$j0jGJYFG+Iv(xrczrv2jQ$ zX!^0;+ma@T#}c$i(a)*iJ9Ex+>X>5Hbj4)T$^J!|$T{N3s-v?afYz5o#GYIZeLd=CYu9x%0ahD=` zJThq?5!l{=CZN8U#^-eO6#}Qsg7w)Uy4n-#peH);f4?M5`B1_zCdE$K;#|5>W9(qB ztIJPF_bV(WYBz!+B01m89)8nHtX{9=Ga!R_-0dwii<(vO{hU_U!vss(W&f zybxQ>8sy{7{@wRH`VC?wx_N1+J`{a1Bad*sl*UJbrz|IhEN<{?PKODQ0PGGe zt9X(A40fx`P4=(VctGiNp%Kk^Rpg>HOf`0tMyW{02~S{sF)1**m^!zB-M7B12-+Py ztz)hCMR5{ES8=W{H%Ix(Xf|`q|7P$)Y*&xfEEEBfGywy1j_9E^zTF4yrj<6JXqV7>TCEV zLX+!DKRGaPUf%B$Nc=$3ckBB>VIU+w@}cNqHQp7O)Xb&;aT^Vz~~+o#?m>2G-boX&2R zoNealA-QNU&^%;(DEZFn`i8 zC`yzgq9i~7#S#Is=o>uAyl)@FP3McWl!)9**OpTm%ZUvR?3_+{E04%8vx3Oag7msM zmfiUcYeL!{e&ru9pc;=kCBB|>9o!UpXcuhiyk&5TguuzoMw@eGcWq0*k=Qh0)xg4< z!=zt_JZ~3fDS7kyBwd1-*>xiTEt2WH$P6M!N0+-lz@$a!Ii{37_bLD*01g6_?J;{R zR;iyNjo;EeMoL&Kk>_!W)2HNb3?YvE)Y<#uz`G%^s90&}q(MGh%mm8Sw`9--r$yNd zFL;gFOKQ!A#-@r~FUg>awG6QDI^^t>NYdL`AFP^X*x&}M>JU^a)N>`{6vlf&YY8U=Bi|dePC&!?KZ!eGugviKJ^!Q1gP66yT_-wT$yPfXXAzf4`)I|kAo zt4rS=-*&rhCz7Kf32B$7+{W|$d0Ctf3~5@F1&n%;))Q3HH|=gs=sl-RhM@z#@c1SE2g3h1*mVJ z-MXi5J9lBuecf?REFg*-k1$99h}jxlG-MSkG|5b8kjiWv^XT* zP9SB!RvEi_2^%I$=Z)7{n&Pf}6<8OyFALGH=GxpJv^zS(Fvb}NC9)>D3>Qq6d>NVK-NI|Tj@f#@>;^P??=_f2`rW8{cxb{2_ zh0_L}!{Bvi&tl*VVGvM2RpUQNzrdfhZU}A8pzpmnYkI7HByx=Uz!d|hR>rR_^+=Oy zBeU^vcU2^+UMDSRh`bm{omR&Gc!^q$unL)*R!Hdjv)Ov|jyS4_2I!Dffsj4n8>rt*0E*P@eX*bk;hh2^xc=u* z=YL&j)VzPh08DG}PXGTH#{W~9qI%ZdJ`44<`WK#%L=1w7=U3`}tJH8mr@#A3!3K41 zCrgjIjS_#gLfhuOu5UmD5C4A!PguEgYIv@1Y3jx{BP#D8!x)r61gAzGlmKpvUlsde z+r(ww3Mhhkr2mF6@SFcD2_VRmDutl#e1RYoA(?Myz!k521@7b@{#I*Ea*!7RUJcmH z?es`a&P$P0kk9RNPrs)rDoNcmjOCFK>^eO49~M>O$A%ty zm*xh|!GE9B@@%ZzK-PYsmNOelMXo~*P4G>t%)r*cDx1==J&L~ZI$k9LyKW6{%`D@V zQ5}X5l(oPIst>!9sLxke%pFjE>B$Fxb$@9V{h;7V^1LYNIzmnw)RiT)KQ$YR=s$@Gi_br@Q5K4Z{}C;_O7% z^h(MVEwN-hQ@>e0BAUm89<{$=Dq~oWu{%@j3m(n4SO2 z&$(RwY~iX%_M@>m4$q9tZ8!-Tf?zOWMP}!5iNN%pfrv6th-%X&*UWJj__+L+wVB5& z?mucX#daC^otPkv`=#VqPs`XZgtLH?IWTqka!pV_T(+4C7ftreZ8hHi9W6A}*-b=k ze7N7;HCFEX0f{g1p3wNuzT`O8@F=Lgdrd8LvS{<&^lq|14PpU66ReHYE(cQsF3 z&(%NeeXKuIGtb4vFdrRB+!-sN%>%JbX)Y;|R^M^+Tah(A`Btl~q2gXw4`CoJw*n;@ zx(CeXAMfB@t`+2p!)SlIuS!J32UVbBqAGp|P6CJFQ0LSMhwAhu8Z{djCgJh@M~iaamGCV)!tz(a=E8cZw~&ci@f;^3 zgtTw_OV_cOv;0jYV&DE&JTc(EDyYC&7nWArlzajWk(mlk6^lB~kTp98(<0|MCYgi9 zISdW8&gm=wLhJ?W!rE)G6}^^B27tFRPjZYLW`BpqDdWLax+a^xXX4T@_w{|2$7e!2 zfp)AyJMB~9bkoo^g0W~`5Q?|CaIqT|N7vcm5or_@nqOgLxuV7}$BOjY4RNklvCb*V zZS&FC?%Q!%nA)CT0dVe`UvFLt4QykpWKsvwOFfUQg{3^^WN?R8i=3H03yALRfh7iF zm^wZxulPUDz=#s(OZ#6QH677J=Bi^TqZ~>KOpotvRp!g4aR;tWE;~MN$IY3Hhn$BC zB-G6}k&i+7^$k0n9Fs0Th5}_D4?7fZT2#qO(rJ6=I?t3EnH0VCmAwhXzD0}F+*rki zWa%acdXlF{$b<&k+$jXb?bRdt`MiG6#8UEs2BiB%w1ht@xC@o}zqIVTWxGq7lvm`j z?PX)cc&eDdnT(t0nb=J!^{M1>(>Z8VE>u82`b0Y1CI$v19uA0Ng`urMtM3VlB2{F* zoA5$1zW9ksJ0_5JwvTQFoG+}YmWQhd{-&Tg88p)b$hINWUPtm7r*hHaUyC)lr#;!CsL7auzuAHW@Gw`XXx_xY6`R_n^g$s}Pw zj|y8+hNw>joq;TeED1!ZU7T~vbqELr3H!yqKf>Urlnw)U+5GMcc!jxl@n1z@5eU_x zFIzV2{NTj@FFbou7~({mh2Y@JEvSY!&(D)f;c_)ew{W;{vsgQnIHSP>BbJxti*J`n zd@S8G>&i7ZE{D`Aq_Z@;Hg_}hbNWHY<&l%Mg8j_*Q}d;+0WOfU3+QD#_qR_ZX&WzXZx?RNpsSVG8fn0e_HiAm{pKfC z(-N^ipW3flFmYA4(y~&q4xKPr4@{yTv7sR?4ClraT_3W`(d2l0oggG(jSk?S*tbE>eZl9Y9iq{EDQ^N$EJ2mtgplVx6Z!NNZNXg#| zHW~B)oyE=ID)T+vL|1RX$Mp?}H4d?D^zTPJzD$MV1<#ee5xvai4oltNZ-iaoREpH> z2GXJ&XJOh??!ck8cW}dGE_3F+%n_J}96a{*c?`Xn<EpVSh0v23HkA6Pz zrYHW+Sd`~;%H>%oY0mb9A|VH=N{DV=>$)uFMBu!0%OP%BkordX)fex0 z;Q^(W;Qly;yPK{EfDQdJkRX~ogC?+akO$h)# zvda54=`8}vym+hwQ$TnE;EKKJ!$Z_AUb%tFuqBqW_7oKx~d^@W6km6)j!SY4W_Jq^ZPt*KrPI)GI2owW}NQ z{WW)fKB$|wRW4RmYRt9%_pM*ZeKxOmLuRUa<4AoWa~H#v!7x^CS=i$B%7iP=x>rX= zT0_~L`~L!ib$o+i6P|7)rwhKf6n>vCIA|;EK55^X!QFb676a^kV9#Fz&WKJtO}5D2!@MS`s#DV>b+uhPeVT5P1+q(d>FKNOEVt5 zZ>N6)THd}i8phK@bTfbB+e_>n$6Cc7+9SR}#|2r3zxBm)*8|$c;x_a9Dr7k<%0Hwj za7{u``(W#6N8K4!@Pd7r#XSNrP+6hHP1pUK_6N4I+fvFLlXf;gL?m&rnMXA-*b3Z9 z{)+zr4cgk@AY`^=+~ned^1$u*0Oco|i?2m))l{}2UH1~#MJubVm$_1?Zf$Z@x+urBE}3^)bdl zuieIZ)^be@1wB4Lr9-1OSG@v&VXB)xGpTJdoC9&^ilW_BF{|`~W09IoE2w z^?U|#UUUqYW%hltbkg*KYCzF=Z+P)T9|XX_m{+*g9sWoRgvTRC9gGOCPAbH=m5@zx z-?r8j{B=u;%4(e3W|z(YLL3N#<96+o(e$H`Jm&uu=^<&}f>w|Sq$1uBwC*FdCoBqc z;2V*v<1a@a1uaj_*z1k~ad}Bm%=*wj7k@gOM^~wy(98|^_fdD-h&zc7AU^xfw4+~b zex7@1TzhrrT-mRWia4Fljx%cNs~b0Pt88iC&{@;uSm6+U@fupmT-UBm(YBU*Ds>SY zeWBtox0os@QZr3#z8`+m^0gC+a>WsP=n!6AKs-PXKe@~%rZ%XwKB7Nap>FtTw*NdM>a1vqoKOM}ia;Cu8 z-@F?U2xE@p`DeJJv$h0r&Uax-;Jz}ph3)xy0wD(r45k`?Mr4Lr5HmMMHX1NnzSSu{ zls*mj>5 zLc}-G`7yU>qi*V9eYVH4BnO_Gse-w5?_y_SIIN zF?q|div)k169$~*8|N2PQL2@nA3p5#BiX%Se7Bf++pVUH>M8*0J(2k%uZxic>Gw$)lnaO)bYTj8f@--UmF# zqVAeo{D@0g{A`ZuT7=Px_4}NJwj@cXS{CG&oTQfBDoC&XiWjsUeC#c&$jKwTVShHm zRpaJrj9O{k>g(kR8g*HMQ<=?Keph=~Yj;zg=j!8gTGew*e{G-m>=3={AFCYytgr&A zN|ZcB{wA>6ve)LdEfyr;{=y|HcR!<^Lf7DSzOxyB_$ZW`)9l|p42i`$Da9R@h_FH- zdpns=PYCy+*)SRLD*@Zrc%HYwp5%V7^9`L#eMD)gOYb@8m+Y>hZ5S_fL`enoGaY%& zULnixsazSfn|9OGM^Lm1c6|?=z3Gjzo!H6#5-{Q+l%X3H@J2BntTE+rxf94e7e2l_wUgL>X=X z&}VWX1@>ryJYa51I$1ZM-gy>D(ofWGfD$J2l1m`#khi`lRSYXFO9FaCp9;X*x(h^{ z@SNQ5iRR?gR@$XdE z5B%bUp&(ygtzRx$Qms)!tKNtQ5;DM70#2je^jBn*UAt3LQdC?@;N1j5`N6&U&{>3S zDTs$jb5p&s)r`>;spFhBVZ+!+4%MMPOJSR#825czGBsY#2N317D<4Ov%DT^oV8K;@ zdT??JI2hq9#FD>H^;IV^1*sJwHu-%u&ZS2Q^B#56NP{IL*O&H!aXd>T`x6Jyy=rgr z3>gS5Jt(Pz$N0%t?MufTnYpb3AD4tyk+j`nT4FALdvuu$+pc@_j#pk&LASOb!Bz2H zerD-AKv2!{Q5O6ar;(O`91Yb25^YDBEx1)J>X!c_4FHawy_FKg@W(r|>&*dbO&h$r zaa7E$yi0Bsq)`=8eotAHwwKsrB^p1*GTUGE~6!)uqN_U_1ftQ+!)yH z4iA?T(%3ma^2yn#2aNdQMd*E5Q?xV3+D zQpj5JXh_HaoCdUYZa#F#^96x!Tf=dLvB+ zN0f6#%>FCNV5av?5#6%q0CU)Hz`W=XQ-DWjdARLAbz@Xvo zIY&^<=A?4nu0tgw%TUVLfogd|^Wc%pRl>B_;>VJdw+3=psHc9YSPu25RjJq8syL8= z4FHRWC8q?AG>@us4jP_&P}-!7?rAMWM7d$wq7xp0Vd;Xu%(5^WmO~9`>ogrIIvT!9 z^7D;sE5#Z*3fmB+);Jm&dMVWd{O-S3v0jY<0oMgOK|-A)vWnHXyloFY>C zjAmYV*8DNXx!Jc7t_q9VPH-v`1{i-@@&-@u5gCIGynLV@nvBMR;_+=K$VLV#DM3;I zrV=DAFzd|WwXnHE3ul+G^M3@j#U)n(Um)G20%9>_MS@BXJO4pGUF89q?YB5k3K}TK z-inexta{?V&l+QA|AMaw)c#f59zeRkF-ddSeruiwr-Ox+9S-0i-Ndo1;~6mQuUsQf z_`UDn;hi1?`Fj~Sv^DqEBk)K`^>l9d*qH1vt!0csb&o{Qnnu=i(peVfVXbr$dpL>|7U06`>X zUOA3`-2ygKcg-Rv@5@q#^35qZlM67k+l1$WC7sHaEyjiaEqFa3MJd-DeK|M?5PWO9 zC?zxUkA+*q_v5|hT2(%qWV0G)xKz1XB=i(@0Qw1MM4qI=18QTyJUCw*CDa7}=xH-1 z|3Fl{!lRwmB1EJ*OG)aoJ*n99&)TRrs#z00J;IzpM*+y;d`C5=AX!>kqQByd8w79D zwi)W@%#PI70AI#~&&BpTr(elxKbJ<1x7~kW{H0D;r6~bRb;qSkr{`}``0QiDhAC6m58dG7qe?jZQ(wg zi8rQeh!1ET^wA|5rZL%d0v3pirXj1>%{+3*>tdia2|J5j0{nDaS2^H+pW1|6Vn{oS zK{#rE_@IcT1Tl-$HvG3L=>iVHnq2+?I9U^ zi;|&twRJwTgD0e6Z2>b1d~U_*$7rIjX)^zT9=mP&VXKu@vh(%UqyHRK37PBPwF^i9 zL`NMw5ISVhZUH0hA-|L)SM%0CfU#ML%P8N~HXK;7z4f%1@rP$|P^;Ji=>FpnDMYdO zUt?Zr>VBcIA*z8lEnaD^kkED{}N}2G1VOH&d z_wFJyg~`B0+^PzcC(AGBie;!KJ&$sDrpH5_(aR425FB%7R`@n&XnYejV=nhQ7FP%P zy|!!E>MKJ%laG4s)Dx`S;ttr+9wn^5w{<`xxX+am<&=~om_3R8ocm&RM<$+PfDVJs zD_g|bUUhFn=HhmsWX%I=3R ze9L1Y=-Did8~}ed!SQ<-UClGt+C+6%O?c>bYLycx#*@QMF$DGsoAP%HH@xT%~3((T}hkhWWJ#B4q^t(iku{`+U5~!edx>guHm-j;@QAoTQ~9wLaOG zl5c|;yMf?5Jlmb@q}bfw@Mhrh^3{BAd4s6gx=bt7XyTS+kCHZl8F9?Q{jX*OI+H&L zdTGx=ydk1#h)U91%ffGX6auX#&>e>-34i2hnE<#pI16tpt{;Dz9%^-1|2@%m<_MGA zj>38;!t07?8sU@vzXsZf9F#>1Cq!@%X38v7N*97G`OUg8%Xf9UTJ43G90Ml07aA6= z4_-dPjZH;CZSa`{b^tNPu*=r{6J$|2_bnKilm%$&my~B^qx#ko&C1qWD@;7HF>rf9 zAVT|OH5umnrL&Z&?yv6Fw3_!$6@T?7{0bp;b7UA)MgIL)2#&lql#~Y(>A9^1{*o@^=XQvy4iRcOX~oi4 z906ye+(@-?{on^RL3!J@(4TJVFb4i)Eq{+eF352xH=u>8cRg;r%8@z_)MlVN7^e+>p$8!C;yFk3nL`p>l_nb^eF!>@tQ>eV`L?|{2j z%+c;c11+K(n3mp%#%hkOd?qOP#0XT-d*2H{g8B~}y?PAsy}%2cXN4&?1Z?;XO2KSM zuQ@c*p(hKYKX!1Ncg1*jcVkS&TF}P=7PV=Tdmu zdCPw`tGbmqKw!c~TK+7!YLM_UHLFOICWz%Ey4=es)eHaN6SUxc8cJHk1@y=#0NG5% znfvQ`1bPQ;d*2kYPbIjL5nBFanUrncx>>c@mu82}P zyYmZSmt!uMMb2p??X8%AKSlnHgxnRiTN_1w#SXGIZB$@;5ov|{v2Oc+fc-Qlv}@?S zzz{x6njT-DXntCiWB7UX6aUD=>K}a(xyp^O%km~{bOm!_)d98$ zGKPJ08BfgiRgsJrVHW7Ck)ANJ!W#mTx|q!^U81@E7kAMgt0BH3vD#Qpt&{ygotv~7 z8k+a)cnJXW-6*&}UbQWm#sgTB&}mj<%sc;b1Y~>fWCH(BErCdHywV+8)`B^=q;0rg z4|~*lKlSRRolw3;eQSSED_xby(YzgOTs>31UB{fD)n56mQh}FV)9_|U7~6q1FHQ-+ z`&I&N5w8KGn8-lCh1Op^z3=~( zvj6+Hi~v0%Rc~+*090Cbeg?uOaU>vu0wAhmenWBB%2$BWz#xxXm_80!gi~JQ#!3KQ4CDVJV{%dWZV|J=L6$aCO1m$OYxn0 zG`nUH&^1onFE&)At{eB=7l@$t{&ugba_-Lsx{x#W-2nE)b4<<69GL6Ix^1T{KBs%v zCgl(V-i|x|&V?vwkcNlb4k@VQodd0?S3PoQ=p}?8-PUi|z$CmF3HG6IB>U7vY#sNo zPuV`lSJar#8!!*oj*)Ed?Dko#7lsRa7cu&}{>BeU9{wlXNAqU-vmoRf=_%5yK0Fmu zpGO`BOoFoltC@H;#><4)D)bghe_Aul9tCmgh{-%KYxO2oS$vvTbtAiRDqUf_dRpyz zWY@B{?_g;L`rV?ejqyCRxozCO)vahWx6}y?k9F#nM{9gQ>HVXOdG%Qac^k^%0kp*M zJYdN^))nZjt==QF#iBygX++|q{v~`5xM;q%p+;;%?qF`m2f+Ng=N%tvTNhe^+uyI@ zUER)Gk?5Qk*kW^q&#a2+}Da(jcIOAdR%NfYJ@p z-QA6Zg3>J|-Q5k+-62SKPwG4qU2E;N*N%6;=N<1kzj4k#jv+&E&hMOj=l$H*b$u?T z|N9d!s~8+cvf1s>Rt%QDdke}AOQjP`AKM2?$XwZ$Zz8f4kWIX-{a==z*U#LLMdJ`o zes}a7*OAw(;{PZ!a#2ymSUS$BPyWHUrugACm~`^b!C8Fm4)kq#p?fth(RIcz68hZS*Q>O7G@8WKG-}y&riRkrYkI0r4lxGN zp71$+goPeu7u1~gmriXTj~Yga!oj!2(cW95Txcl-30SS3?+gxb7Imr01t3*3vKn5V z)q>%x+jF#jrb2!=xCEaj@SZzuF%yJbK@OctH`q4i8>!SY%Fz508FDJSE6TAKqTPH&t~oQ25X{@2;M&oG2o*y$qa{{pQ^!ycw-$q_VO)Xpt-Hs@j*sA%||6M;Xr{67gRqiQx zm-jJXY4irQr<&eVE6=z;^lGD_9~YyHtD=sIyhP#r%ON~o@I6yo&|ZuM6w? z`%v>W4C{TCmxIxzQ+aIbxZvCvy_^K!D4AR|D3p#L@II2>{rRpD=QxRA(y<|}LQ`3`QA-OqiOk)Rf%#DnR#h!{u zac}g-H`bH9QVvaf2=xIL*lNYbl}Nl%rt0J4&?9kE-E$MAge*0+tbPxkg!{50W^oht z?I{Pbarm9)AxL^!2Jwkk<~s{zsh#ePhJ(WGQ!oIfG&pGO~@p33UtaO`4;sKJyHVQ$1pE%rYSFvrv=z@W(OE zo)2n_Ke{4jrg~szxFfVF`H%l zByTZV5Xpuh;ZTES`cBC+vJ+GHJgCtPsXXQuHzF*#_fQ2X) zuWha2j0h)|H#m4*d~)HJd02syf6m1VaciUg%>vfqkN8)^y0)o7Jq`y(dx3dJ!(9G$hlg6Se~4s&gyAGjp}B?U;s1 z##f%_k`=)a{?l}wXF$~NV~;xhkstl`brS|X(js&WoxbZa{61>yE?9TG~Z|(W={;VG2vn5;QC;al%DtdQF$Vjk{yUzRv^PKWJw} zIrM~Jb^{(D;F|e4hW$Z#`)8|J|Cyi3S-!3orGkGD3BDQCh=Z*>fiWumgm*j~B$EG~ zM_W9={pYNPJ}P*`Jvz{2!0WI}QiB{D-!zt9%MXc*+L&ToHrPx!&3SM)Ud!~$x9DWAikZl*;V=;I#6RM#B) z#fuA)*36mBh^+V7j~bUl$OOyZNdx>cJ+j}XtN%H7Hv5wlktQzQ8dtdDd^qXEAgs4X z!H6I-JgBx41(|64?oHw#Z85rk_?>P|WDz_^o3N7%coRG@+>QiImVwbqjB2tD)o;r` z0R32%!kL_CW$ZZaM$B(^B&=6-*W%If%)GG%Y?!F>sl~GG&@|Ofd}B_$HE*`$ys9{Q zifU(EwKqLKsno%ty`h(Ye;1f?3`@^Hb6`?z7Cu5pu?fCRm?bV@dH>zcQQc7H-eo@8 zW!w7Yw~q535N5QcP9rM-ldqyM;w;o(twb2@GParT8LkuqwbsO@c)7}*k$6_ie^(vh zlj5ajZfFcqyD!RI2umb|dAJ|Re@mj~czvn_<`f=xIJ5zrHB0+zz;5;Jj-)t!txcQ) zn$FlWp3)VvbZ8D1*{GtrDQ)_ZJrBuOG$4m9+03)a+=z=I!4!zaQNU*kbkasEtfmA} z4U`ZMt)?~xC~L(W4IZrbv8mM&gzHK__3NtKnQ&BO2Lvzsg7?e-T>^DF-ufA^Erm;* z7SphRPXK$$uZ9-7W@H7uxcfnPG1q8C$TbGN{$r6zYj z4E%&Ctc=8?9$tqI)Dg6%N3ic|u3o#wg8?Vh1@}4uCNoV_DBiAQPGI5<;FbLMSSqf3 z;P|ohLz_Q`@|9pncmndqiR?;cG~ssXm)p?Xl1e{EE44}_hx7{G;tT&`ZIoMGufnAL zj_G0B<>RMa1&Uubg<>+D&}>CfDI;(_YO&dipi?DHICaG%px~gik*}h60oU?jZN&vD zW2NuNis%BOEYHF3zMFw_MYphlv$L1v3#}8=u5ZgV+)6zMUKz*=`RwvakLKH`70D&7tV)Y4KZe^{=Ssl(sh0$>W|md*1aP{8jIco` zQRF%fbzhgBYD-#9ZDNPxyMJxQ-e&oopt7Ij>lAE%iR6Bh%$1N4NBU!aG!7|6mT83! zkhwo@21vqlG-@VDL}0Ty%5QtfI^u7nRZjHyr5A8>HJD4sHN23A&xT5wlInLTbnJMc zUhL0g;uzpOYjp8YIDUK7r8>5MZUQARB~Qd$>Ka*J`PGNn$VVLc4gGN)W=(^AzHkVi z7}jh&z`H`qi84a|VV-|xb?D+I7g7#xVxt1Py0)fGr?&TT!ls>r9?wQ zToNd<&^-{67+eqMw0h)^uWUtqGH7gRK$!v@+F*Vbiy0hi+>9eq9_41B9pcn}oI_Uf zg*ER~al&ikNv2Qt>pQ}!eCtq77LO2HHIjUXqmVar|2QtF$h7VCUDcR46`+YyHXDxw zsgqkLDbsj5^aadm5FCP}AyUdxh35C)_2XIKv?uMni|Wu}BEGy|d_Ij<9v-5O7VXQxI*3hKSWu13b$D+SmUb8 z_b;-;^{#*C87fPv)>l7;d-U*2pLzbzY15+eSX(vJCdgCf8o&!qorX`<~tEd+b z*ZLd4*(s}h_Il3|BfZ^1l5kcj#4M(DA@TWO%;)AoHC8d(80SGfmliPDQtq6TOOZ^gymwjjLoAH|Q&uYZOFy}$AQGu$7rIcJ|Ns2jCR zZvE}TP%iEk)h|mx+tdG(=TE5L>L;I1E(ko)xt-#SHsDtd(6)IqKE#9$jQNLtHSK4v zV650njBPn83g3mS9nCR~i518eUw=E~Hdl>$%stDIjS&5qjQ>6ijRJ_~uLFpO(-z*X zl5K@hyAj8SgV^=_`PU=m2Bmru2;9hVLzJj1E$p$Dfa@EAt;X@iP0cPY?=zxz!Z7z& zGnM&C{7*labm72Z9?0`!$}e8iL1(OgwLt7lt{cuRA5rTAnT5msKPLxk%Xfjpva)Zr zTuK$A_F9$WnHA9V1!iuQxqkl5vyDGH!w%K|Q{ z&!x(djgE>AsKWqWbXh3mNLMcnOzq& zQND3-o2dIY+qMWGoIk~=`v{UOPS6O|<1WqGkU83yVB5h9V25i~RYzq{iSv8nPOuhc zjeo>Q-P-*nx2Ibubl5j_H?z6|%EZkcydlb|0xSDc9{O1UVU$L(zT$pwJh!Xe8e zrWq*{2oozX=JDeqqKBmywqlE5r*u?d|0j~cdN@vhm)Q*7EH{x(PN%*PYx zzVO{-3kx-|%x;K$h7Y*^b8O2}PCbC{VM~p3l6sphD|#CivBu71KQFz&#L0TQGe@4(sa>ETe9(2NVHHO42Sp>wae(` z&B9K#M0`|hsqwbg*p%E_W0m{o(ujLuQ)4nHYl*t2*MFmUjetT%`L5TPBL& zZ-JTNA0YUsN#x&I-&bwfdp+}2R~6T^R;1d0Cy86f2F>v4A{xxQ`w8|6{ zJk4)!it5OUFYol+;4n+A3Oa8UgQ3d6;DhUDhNp|HfH_W5y`?$>6I4&((6^Y|EYB@a ztcjIw_|0KMq1m8&iNq>D5irU>V@%WWZf3-+wzLZ!084&11vLfS-vIR5m6Ed-p*pnO z0aS-x3%T@DGXf!JM9H)9 zwgiKrs0nsd>);66Ft1eOY2Ik3Rs6g;w-oO702p#9eTV}0NDsLAEkv<%B7H?q=|h;K zhQUkoOT2D(1p7uJ>K6vUKEzrcH@|IdIt+1TEQ8lX$$KV>KsU-w4RV&Gp2{K}%I^o= zCLIHPWU0J*{i|8wTxxmJX1f2;(8hiZ_;)W6o_xD<<_@XWmsQ7%c)+W^f_avDaNFu}9LHa@nYUxWWy% zvb>xo_X-I6e-7m`LY9?9OWJK+zlC4sjrs4XF8|?V*8kbAZHULj&g>tFyc;@y@Le>K z^TO{FH^ZL7?2T!Ef4%pO#Frge%CP_|JrX(YLbC3eTDVbyA_kRCYkbOz3z#C=x5pa`<9a=nraH&vG__O^0Y`3cX|ITnI z?o!}}A&VAKzssshBT@*-nk2yHV~(TX^h<0a7-T!DsbmTUXjo-%}%U)Jd&0GGXfzu4;*fWS?E zQVako&~FY)mT6ubyxWheE^*JMdt*(jV**z=qGyGm+*>2)UZtWy{g!}5OOUhnQ%a?} zszaEu&)dO2)k$HGHBWBlbZ+LP>~HloH{ z%Ip41Z_ypk0D&#R1l@Y|&|8ZZipdKQk=Cer-392`{oq!UXRBn-%h)6r9{y-+R&*K}{4mtdu zu~4(N@BlmwzQHe41&9__KF6#O$8&=o!*wT4|87*|pmTfDayq@1#?trnD;73WOzvjE zhq6=)#&2Xh_?8!i3tBcG&Wf^TVE9Q(o=C?n3GC~sbA3fTd9*K1!hJ$RXAYU}mMb?J zeqyY%>X-grB;~0p3gHiS@zLX<*3a7Eyhjmy4VbuBmKor|1xZaM!}}5;Fs?^AzY+p& zSz-_@!R`pWwhr(QI^DcQ-0Y)lALrWcFq0Bkx|$xs#oCnSEgOgtcWX=yCKSGtIj6~N z3!W^%=oxW{(x`4T&5IPZTo6Y(HL4nFnr~QY5`i*@vhHsJ(3YfSxMDWqb-AuI*3(j@ zg62ElY%ioXCJk0$kmXt`oG3k0Q@wUS%3R7m>naD>V4!X=wKOcfxZ{$YxS=G(N{(3e z@ijFz;@nHTfx)KGaoTbFG3wi3zcauI%<1Hi$@LqA+t;kqP?4aIjfhFut6K%rJM^ z<;Gp+d{7xaV`5~wGUuh;(9u6rl`iqB%`xK#_FRWa;Mxll7MVy>U8?re-hm#akbHL1 zv1bI_eVebA1M>cBcJA+Z$@{p)=f1!|Eykhyc=zJc(_0i1_>MnCF_7K+6qN!SbevfU zEJU+pjR@O_;Ij>^6C?ez!8=D(+@oQ=5rN{|`7LpAm=mzf)02aH$v=yi@+)~=-tZ+g z{wbvWw^Q3)*MDmBxNHAsn+F3Lyx)0c^rvoTCw5XKre|ew43jaL5_1n++VAwjZ*~Su zIVP6>6`ILp2SsOgs@Dsc#B@Sk-Z9%w?9*4uYBQP-o}SRw-kjZSLq zSL$SxHxBj9e}(}44X^np?)u+(*`Wv5p9x!oI1HczGX|*fM&%D6x51LQf+?wINZEaDJC8WwY$s1dt3}`#XmR$AhTtgWm4D2}~<%C+(|x z-)BNVa6kH7e97L5aMTizUu^8ogkH6Bg%vf7ZiWWRS(~3&JSNel*eG%&qFmodaX5GR z!1%2R^>R~NVh_s}>QJ!bh^WW4seZdN)IG=NAa0y}id0@31m#O+%SqA8eEOA_O)ts4 zn*gXZiU@+jCGu+JpHrXKqGC0CQa<`lgHY=X_~<(zW~3G(!r7BJlEwp9dok^y#V3|} zXG0}*ws=K4k)>;p^~OML^F|=t+sP9wB6Zatq;TWVd}ft!v}@Mf5>%;yh^Ce|v1d}%A zu-wSB?{2Z7@ZAceayQF3IP(Jl(mom`It_P1pxthe1qsc!biJFwcSrH~T^aZfcv3RI z-tDXBRlw0Z3hv3g0@{Kom1Bn2Zr_PyFJwcxL3_`;hl%f0EQGURoFBZ-Ef=2eGqU?SxE(S0m#i z#noVVAI8WYJYdtO0v|8B#fIDsfgPkoApU74pIz)Pm`kHaKt;We_#XuJa7+xZzu~#a#(ZkO5fGMd1cZ;e)Z*l+Qdz9l zW10Yr%g10;g0YO>#EEXh`+06YHqvuC;l(TU??5+&J3Ij}&@x#+FJ}WW^ud=PAS`iy z?~M&$2XI{u(8mp*Ph3j{SJ`4DIV<3*-micu_WKcKdGyY2E?T7r&~cRz9c;v?ASj>e z%G)va3c>TfEV1KrNL!d>u8=fWz!1Cj6<|L1IF=h_x5B=sesl3bk-!fG`~*#C`ZN6~ zYt)0dC@?V@2B118yvH;i05=eb4Ob?#LlL0=yIR6411puErWKcL_G@4C_sBZHwlY>L z6i$={C93zWY}{D@US>DS*Xglw05k%w@4bx&zK1%;H zbaawZQ3TMV`8Gn_lIg0u$~rp%2Z*jfZmy#QJ0{p>xNz4^w4fqzaXw=}yVfR$_SXFr zo4CxArsOe$N3_~gY!c3~PC0_D%{4*x%HRWMf+eD*^?y-Q_zREpZ!F3c^5@uLFEHO% zsGJw(wU=F01}OuhnYFm~9g=D%Cp^b{ru7<@u;p|u%bOz`tK`$#YN003b|0OU*9@i) ztjy!z+{5E|rT+NJ(U{;#f?~_-_JxX#;wDU};@yEfr#8&9L85=i#Fg*%*#=M)%<0d! z=U!W-8hjvZtfNN`kMfNKw}%ZgBtcswqt9RWlkt~3q2h(FZ>lFZp4QFbmJWB@pcpnj z3p%-A5DxU{Hi>@#1XI1dLtp=?%*vv~pi(E7ZLM_54P=IkNaBP4gDEfw z?v@An&EKx2jW?SX64aqz>S_@VXO(8BTD{(8vXRXQnfvH(K+b>saZj|&t)Y~AHiu(;tW z{`-Q%e}x~^T=%+kGGMih@YN}W;%+XvoeZ6!D=j%;A1*G^y+Lzvw+^Sc9eHSXV5Nx4 zGY*9OM73)!tJ=F9e|0AVuc{{&&x8EDHm9PogxfEHlN^BhGKfv~I1VA|pwH216f;Qz z^$@|^|8)3YBHx*y5G`PAnXU3L?5yBl%>^zjC`@d_o6eyV?LY9j-1Gr`a}la{S&v!0 z+yRp>)SV_o}hjPnp5FAW?)a2hg(PbKQ zhH?MZ_QMq1%-4o-LlcB1_-^oniqFlCSI#g;3|;06d3t#febP>f=b|Bs_p2iSt(>-N zhH$b0+VLama*OBCQHMSxJ(jj60h?>CVAYwx-U=US2i(JUUv+b zTI=2Z4*xPb|GzO}vOFl0LrySluS~(tR{$+aAMx(3So*(Ew~-noHsb z^=8!J@Opa(1iN+UgdP#l!$ED*&ggS4>>z{ZckAL1MR&n<*wsB=KNi~8V)^VYsHN=h zR!2ISN**d%XrnT$*ecwqVJ^Y>T z{udVspX@(!k?`BCE&r{JBnGj7`XBm8mI~v4(OqrsUy#1B=7TJ zei#1X;=33@tMKf>r(MlBN*r>VOLQo?Pi~J1QmFP&ZYjv<#T~r=BHm?id--SFOj*L_ z>H#?`{NRE1{C_76a~_69@eA2E2t!X8AMV zvn95Do z3g48b4qcI-b9_LoQHky{K!XFDwC|caKBBOvs4_iZOcGhJ>!BNyY|$ySYv+*VY>e+f z$8IWSsvd!z6fyfJxfr(u48o0Wd4Vwdih7gAz?#6+h4|hG?Q#~ZYVO()ImWBT2OVmc zzn(tZ{-RnvY1gk#yS?*qwtkJSO`MZBuc@|IVx@4xd z7I5~;)#)oer?3|-k8j)-4Ef>A0|Qn#MOK-(<-Tkcl1~6~Vji(YJv5mA7i@2>Q7+1K z8}-RKoURLheb2Iy8p$e+wZ7OLJC9?ZibpIe?I2_(s~j49Q=0=m%0;dmpf11(fOgy| zky81ekqrXk!k=K%j2wz~x=@Mx0|uKxTTQpq!_3*pB0X)+e{T%d0>0pg@ETCV+)0WJ zP;(8Q!B{ut$WT;+Anl*Y#n90qHYzab0yyQB3?^q-v4OMI$>HOG{-6*5q(2)dU67gH zNq$=Ua?BUeTje;8OvFC^5F%UqRMz4dbYGf<3VtV`;dxd_c_cs#=(DKAJd}>6S4J?d zXemvDxLu{c^_N+$56;7nIwGLih7?BYB9_LtqxoIqejN( zscSzrl9jU{lC&f_E6#s3;^TzkK!KKc{t27aW&2(B6tf`~3*#ZbY#W($WS$?g6(NPu z`I=UDVJDP^t8pL6tx^^|xYmrV{yWW~ckyh*xye$2>Vzs52!p88>Q*JtBIs=E9=6a# z$0=F=y~b3!Rmobm{Si=Fny6b5B;5h|zTFFua2Lvt?|f`2jYJiuGb&#AgfE>xx{hsp z!8~K2X|7?pKn8um-oPG%CN;{+&YTgSYvtn1`;kg?;|sTSIj%Bnww_zxhNsb*uEl5^ z7~r)R$-2tIS)S5r5&}pJJS~m=SdY4qJ{vmHxR0>PBAJ*$K4wYp^$iw;jj@euHX?4l zBkRylpr*h0xcI8_`+g?A=h#*j&?%bk0%Zy84BFfj$`?qs9qTaL>o>Ohwu8Pgv#fG5 zYLs4CGi((bSAqXzt}pfBy9pMAU=hF;FfY5>>;{A+d!qN23BJ=e{Tc^5jSLz(tEQ?$ z6lB`9vQ|N6ODwI2u`KvmVlS8?w4GO0b?Ja9^}_}Za-yE?mwkaTYTlU}-syTf3p(=f zN1VQyM}9FfD^W%p(1$h-0uQ3>Z&H3r_#k6VS!f2iT(-#5a7Yz8KE>CCsK6Ez3Dk{EUCT?0DBF@+{hX#_(85is)kYI{=0O z0E)3!@?&x4e@TH6^(w6-fWlHX;mMkm{qj%mO9+L9fx3^{8XPQ=CR-DOw4*o#AngXF zT;0c<42_}!dev*b0loNRq+1a|-Bj#Fz{Q#nPVnRSA-E-S083e4`!*dDr8zWvDprD$ z_jjPr&Y9{g0hg>;kTxv^-m$|vW&~(&S444fY*@SNOGZF{d0yI?6YIzY`d=|54qohc zIpCOWPkHO-Xb7ufY<&k`=6|y7(TNBe`!LQ=Eam|dAIf~uMfdVA)i1>bJu5MHo7+A1 za)bbl=zUQih&#>UbQbxCQ4@kMkl08yNJMrNL7Q?R>|5u-Z|%tX{!{=v@TUA&^>U@R zAeWN@RUYYQY1wZlxY#fSr{6NEUo$enjh(`;0MVSz%lysobFl%`*zexA$3+{+IKc}; z;o(~et%$uzRRSfVxA1z1J4{~!)m#S!3Q5Eaz|>jdpg;RPusMSx>^3VH}(yNxY!KcVShHtdk}f} z`qUJ}0ZG&B4Or!1DT7&Bv-Anz;3-hc27dxxY%|euUmm?laeR5!72#?TP4QeLm>tEIHk3y^8E>S=2ylNk!0j5smT!qE9&n(gZNf%A-)FLp0KInE8m#z zFXyieVK{P7R)JehAFV6172Cz!y{%EbtYMPLn5mkvokXTA@wivB$g1YoiII*O>OJf1 z-D~p~-w2Uf1)@WZ;NStm16Oz8l8;}KYzb?L;*1-G|K?LssGhjDE0kj!G-Xcv$R;)~ zAm9TcRmhPyK@t**JAXY9mg(EzQ``Mm!f~k5%$kKxH?ar?2tXmGa$sNNB5U@t z4-vKQwtQ7oA^h0e*Tv`=QX#x?gi4CgFvWKcad-2z`w`uHlnA1%><<`E88eRx*S?Un zi%9v6IF78gF8hT6UjVoKeRY-o`o6#IErZys|05xU4%(wU6TDsx1=L#@tLv{3b@mYOHH-#SHdojjz@9xMaMdk2t6xRn!1Xajq zXark7dEMlNHUQ$6kAWLR%oPOT`4*J+tLQq>-UzdF`5zJJW`>eu9{mhl^e(=q_dg(< z@yvaaoJn!zt*rtjLme0qK%1n$pvD|du7Na}L6cGm7g5@DnNSQFR6j9%P=53{xd<4d z>NO9kB^s*L`sb#`^lrn!?}|k^H@0lycv96X^GOeJR&+1b(yXB?hl>E1_ZZy<9mp`%suuVp2?>;ckEn^}fw{4!j#+*tuqT+zi5AdJ755#5NL2`nPd$ACO z8)k^zh$Le7aXAsg==xrK zC(`Ak?djp89?4Oi(h>hQ+WT>WH!+)W@+3^R^q8(;B%`|T@wyEg*p;fbXjOPY`n^~u zZ~d4zbPAKs5YfoKjvlqrV|~qa1 z$+0NTk45+1;RvBY;Y(Cjx5Onr#H6}IKf$K(2MK27pOauz@+*yhVpAOIsW;^=`Opd_aS#g{P{ATBE^M%3fYgngpoBKBj)rJd87SklQs%m>oRSCX|!J0obY zSZTtn>Wno(&@5HA-r&wipvDr%`vB1I79jZ)eepCgGp-5EJ$VJ3?=+e29`;BL5gj_TmIe)nA8!Cz8@>&(qF`=O-LszG9`iK12(YO}xuo z@3|5r15tW9Ff#b+G)QSbrv2*Z@3H#PAW=btEMTi}%o7((v*Ix?q{LJtvI?kbGJZY(3vFe_y{_H#3pr)b4J_-Oug3jdV##q%Y*kawNe;MNL6ZU z+Ca?|vk(v%ykc_z>yCwhkm2h*=IE8ihhm7>JMAU&KU?53=AGnsQf&moW_TQ8M^pwP|iR5Z$z1Q~QPjI0naKze)@J46K!E4M3a3ojfXnjB=$Oznf4X27o#tnwuB`jjpHTbJp82@{p9H?t=Y!5aR{-Ll(xAF0+Y^DX zSsMfnVZHM_fLmBemVy%|E=j8@SvYaPIaZ;PJiB=_w42dFC3bGm9UcHrlHjN;P~4_{r?Ke ziw6K3-b97HrOY+nbS0EY(B0FD67E7{C#y`fs z-Tv_`8vyg6ao;Rmy!B%1`~+@=tKyFNgtvA6^QOvGrsUg7V6y&dXV9JZaLUJa)n=<= zL37g9Xls8Gj*bILJIwKY<~6z#hPuOq3EZ9D17zTK%-*pj{Js&zbcJ{J1A1U@f?v(M z%$H!MJ2vsz>EdNcm%a`uy{hOo(CA!y{ba|HQp0rR-{W^fWq~7vo zIT(kJl^(w_!V=rxaE0j~#$lPBoJAXf^`ZoiMnZ9bQZSEna?U(cp_K9_@~Ge;6irh%5Z#_Y0Jj(efT<>?T zelWL#7&bHocJZ(sT2(>qO;KwLs-Bc%3b0N3gsIDOKTve8%03BEYBu3|mAQ$Wyl;l< zB8st_hjVyxe56=Xw-ZT!<{2>c?5;F4-IVTN9@*(6FN3adealNRh>A(2GM#x`z!{Gq zJ!#ln7@{C6nG@!?p`b`FP)`I^$ey?gmFLxfo?JcihWxRuAJW$4#lOK{?D?RLCO4gi zHi(We{}Bl$3F%Jqwa`GW%KgxxMC~UHaX6vB(9P)|z`V#nVf=6DfNucC*VMB*((0|y z`J=&{(K^@)i1i8Hs+f@8E>U)B(^D-5fPh)$B`~=Ka@brQnL}g+BiG^^l}rSgkKA0| z{GJ3^*1f!y=7yX%w`x=b2KK`Y_~=WAIujQ;NF8d>_b#vgmC;B7p`U~pTVxgok2I(R zV-OoKYkjcSxtCiC)dJE*=StqdQc9%AC1uoC`b#!{BHhL`SMEK8V;9P?Pwp4qaqz^gPKe!*tq-S-{>A~7APP1~0B|4IL|ag+Y9(Enl$VnYuWUh4S0y9RttlBeU>ZcaP+ z1aCiWpSwAG#L5`^U&4oX60RDd$A-lzq~Wxeth_N;)hS4SkBf`vHOiU zcNUiJooc=G)jr+xY+;j>ZoSQ?3l}O+W|Fi%9h<3=(S^j|O*ZXM8UE5vs~wxJtY-H_ zYiFj`$BoJqpqJ5^JY<(DipZWXrDHoWp(*4jJhbb z&T39p6rbfIUEB(p9{CZDK2%8yX3r^(SN8OK&c-C`*S)=Iq1%Glyz(|x9ZQ#Ob6zx>*AaAg zvEoib44|*!7_uDc#fBJ}NcZ)N56m=g%n#=uf1%6+Kg`vZrZo~-M^eRwgH0Mu=epZ$ zu5IzjG_sB#kelo5Ha>+n=gKI=u!=dbj%fw)LGk*eq&1M7tkT-(w=* zfGx8eW4O@ko9A(&aJijjBwCwOMKL?B#g4#D-1xn zI~cN~^E-Netr%{jIM&js`e2}jzx1cCT&=sfHF8|O6mIV7=`J^hO|@W)CCzLF6i8## zq>k3#^;LTI-pX@*%TpIKZ$)`e zXulW3dVM*nW#~dx^$4-QyAPj^qT&gA!BfWd%cMI;45_riq#4!bZ=S!#lR!5`L_cCu zFlTdz2-IYL&5z5--%2@lXddnhiF=IutJH}oJb`4}2nlD>e21#BIMur*zsXyV?EMRb zJQQuCfv&xpd{ozQGWV?cTG6?{)(W25sgDf21r5GVdI$;F@SKkEyQ=y&`LSQNe_SUG zU146=C{5=b2(2)3avYr(r`|emnV}-RCD!p`P?;c;r~d2Qkk0A}aez-#g1&~*T`TTj3jXz=LR!S<2I%dCl)dh5_VIEaMe1(~!nYklo+o-I&I6-u zTliHZJiN}VXT?KjWoo0=Sv0BUNgOQGssm3<-`8QFjojQc+0M%b_BJq^O}>rp{T_*rMHcR zoce_4`mnj*3AIsgV+r zBhQc^^X9sGj-u4i!qx6v7}puNR|y`Wb)X&Wirw9Tjra zqVSbFG1a76vBm{i(?^&gy>_LC%TMXAc<7v$*xcJ?tpj-GRtS25B|&)7Q6F ze1<+-2Ma8o3qJNHwOgN~&_M}+M7KSbcsf1YcTt<^(6?HtJwA2l%7Q*W zItY^#vnvY!f@KwZ)9gtF7B$`5&tdh=K1x&kbF=w{TME8CjvdbnOC#n>PzKA({dUvP z_c?Nfzdc%?ytS_WS!)P>lzQWeb==9ievhhDuAWa87&htE_B!?-&faUcW%JbVFl03DAuGfqzGnx$)zo_aaVr zEbB8br9-my-NMW;b`;Cyn=3@ttFeiP7AQ&o(Fp5ZPX&tjQL}dri8N2pK1FX|_r1K~ zI%?9}rh<3NW0LZ5-!09I%WAO(GwOy`1by!xV-z>CP)X>@O>R}R^{d z_oj{S5QXH_5LC{2FfCdh42|G>65w=aM6{B#^1Q`kkh9><)!LyC&^S=XJH1U%ncYK4 zE~JjedANEq|0pEyzODMub#R${@ter`iy$z0!jz0Y7`~2=7b9|E{m%RL717bev+ucM zQCN*$nM7C%7j6T_X;W>UMBh+c9C?`Lj8qGHvi?ZS3791jZj zKE&zpjN>AmluUT`%B`csFDz`YYB6cny>j6hKikmzIb|{+UZ&>-90%SycPouOE@|l$ z{$6j^YO`%{mE{m}!j=nO{Gxi9BTK||6Ru*+2^1D=ZCLZ1-ChJ9-%E|2e57ceAxk&% z&-~m_K|R*7R&7PWw#LDqhUErdIonHD;-AiAbqz%%)s! z$^||njB>I#+FBA247+?*?}G22tszwW%5TBT0d-6SS{AAsKMXAkB`nk^_9X)zjbCM< zEPFr8LJgp0p_S0G&31T(|F&?qXrD@WMBsU1+4zdnEcyA|84es?27dhSZ#n|_7hl*0f5!t zU;(h&DC$z<8oZ)JsSI!F@{F3?GDl-#aKWd2=!@3|5`ChF5*d97BB$rzzTE6)3pds+ zI=GQB<~F7BtWoqbnaQepp$av~jFK`0{Bt}qSk3e=#07k`t`A@2G};;V$J~B-zJb5@ z*5nI=Hqru!rP4Fw;VnOM$J|vL>B@@t7hx$s>Y9ulc&}q~ezNQA z7j7aEixynVbkB@syBG|hB;0**x{{$wX#+TeIOFZH&$D}s<45oeept^mDaqgRVcuIg zeaLDMr(M|8g+eYFDhwRq+w9ot+@%B|M&Y`O3DYB}(8@3fe>iOr{bRt z(Tzp|b!*!YWuL2_3#c4WtJg1$T8RVDOlRH@*)Vfq!c%tsQ6yq6L$(@ZC3V995!JsR zAHTolDvg={fN_`f7t~ODP`1S-c!3Xpn~>bzHX`igZPf02?>&mfBTZvECANeUtR|G$ zyYyH!@@vY4xF;EQ%8V5Eu*c1JXd8zX-G%cp>JW3cZNi6VE{Lor6BiTZgQkuoH3!Zi zwX@QESJxor9P4!N1WV)kp%$M;Wj-1iQC}}Q=k*4+DQ7|(zYYW@)@y7eIN$I=o$Pn} z?4#Q?XYc6fC}wmP9+a$|`3lN+FPPA*&g3U*mo-^-S=i(^%GvAVeNkb{cbWW<^_}6+k4%LXdsSz-QaJUu_;-BXRo(mXx`XZ5#%htJyj)75dCv5a7J9+C^LnpZ3 zs6obKNWX}w;`!W}+0(?zhmMCI3fQ(jcp>F)wyDYnX6RDdwo~|y;mf@Kb~<>nI~=ii zC3RCPUj#d%9+;7i*@r*leZ4pT4K6s@hbriSbo}H0i@mpws&d`iMgc)UK%_xhS{ezF z5-E{Z=`QI8=`N8J5s*ftTe>@>k(BO~?n%sZPjs!l)?WMFd%f>>&N$~gv&Dw)l0hKW4@xxV`^z-owlz zMplDR%>U8s2yz9!RvsvrAzd5oB3c{oC2+aRt~9SyYx6GkMW*f81M7(&6Eb@cn$-P0 zyn*v#t%BtCFyTu|Z|X4yBEh>nHK%MX+pFY^AF7U@Y6lzM$t3rIg$qTA+&svTyoMfL z{*DM|5FZnvTAP``%gZ>W`w|n|qaE|$O}&kZzAx1|JO3nqE7fXeZ2UD-%PRqcxN)^- z))UC!zp2P+q~N$Aih~8*5vx@3y6<|F!>0a6Io#v0x%Q!e?vtGDwpg|jh-<%;bR+-F8Vn!*Z~T@bC2$xn;3r!(=9X!5h-oR_)N+;#L#8C zn&WyVI8#koj?aWu2Tntk4Gj)jOZjo;dj$|1?o%`{dVh#VD4{JX9>op`HGQj~{i?W8 zk4ZCe#q#E@%-3ao3Au<*koe6}o`ClWDlXC)u)g&lU4|@_GO3Vp#?Y=TyQK?UF$)>8{>@OH373%N-RZSVA#juR@-eNl1>t(#UpyA&xNh7R8cF zSew18v!*z+)%vbs4;g3$Ozl6B+tg){TOJ+I>oxrc3^TzykGe4~Gu(EfyNRgsrsP1- z^1IAEo(MIF_z2&rg^LlTGhG zafL(kP;B(|)QXL+jI3{5nVZh2;;10de%nJywodlhIx+gnIwhD8n8DfWqDll_*~p-= zCfyB>;yTjHc)2%JnTi23g9~p;PbaP%TLsK?w&rY)axp*QxXEm>Y=Pmwrj$}Yo@F~$ zxQBmt>>i}%MT3XrhNZ_x_c})41b;r|`dE~m*kqf#_p&4HV$+rWb>MOOk@Hk?4Eylw zclG50enPX79-B*PURyk#kIw=HQ1Qjr9pqjK$FFO=y}X+5yw&~gob(~pwj#jVl$|!k zZqHOTd=6fGz|wbE9lC#f`#lOb^n*8fQ4CPvO!~&5yPiGkYmXlefNMI-{zfDHCJRgK&V8)omPld?Y^ow=k1grQNYF zSA(VgRcFn|^-ro3d&wrCHm20r)14|mR@u29-a)2h={uVirSFS|iT6pBqjh5E-}7;` zAF-V*Y)pO)dP{Mx?Qzb1M|uABb#aWtb69bV11OHU8>v#X_p3N&qP6B{aZC`Xhh9Md zo9eiFJV0?w2`G+PLv+uT$t9+1agJc@?`69y)1F0pIwc0ts*K%r%*yQ>I%#(Hku{Tj zOI;`Ha=ES*^Sv?#W-v8J$qR4qWn6RTgG@*{m9cQLY9x>_VxM&tD$on>X7XN}$ zF!Ufi-AQo0>=oEJ=Y-uqNN001pSQ$c3rcPTnqwLp;b-h~}lowW^hUQZ3y3eGh1v z!V;Y zGy9w@j>;zw+XITWBOLUd>*D_Wl$NN#MijTbib67GlubUVi}{f0ns4C1PA0Qs#5BNhKy zHO!}2tHM4c!5_gM&>24$=S<5c+N7aGoOW>|eA(x)uS;2{5F6$DS1H2+mJ4mL2ekD5 zs1HWym&W5+y;WJ?)nWy#)$PRF<=d9cG=`80;V7$MRN`e^3xkBgkE}N#N^GWb6|oQ=}0qKUm#D*M3gI;P{Mst_s|*YM&X3JgQxAtVS&= z-<*4B1#Ec&`}Y+Z69@jN19Yh6z;1ptxZqY_Y+$Lu~q0mTv%ub)BH;g!^Z` zqP6fIY)vpsTGe^Q0IKC=ioDDKWr@ww(a9@_xS+ko2YATqwu%1HjNXfYR6(9uVSdWT;)^SVc7c0{oOuI{3CP|qj#(~Zr0X)~CQ zJA&auPo#K#Tbz#oWk}YYonUbU8yNSWJ_7q%VJTqWb*S2+F?Buu$J_ zor-Y+I7Gf@o#*$Zoy41+-p@hU%JK6_`p<982g)GC-U4z+zDmgXPz^H?4kDU)rDOD* ziA`hL80xIQ(n&QyKv$TLw&eEubKAD!Y(iX52sZ1eT#~PBwK=oxh>{W^?vn~$?hBSt zSO>g8s)zM9vZ!ZJ2`MxyvVaFJF2OgBC`%gU*e*E7p|(8h0UghzbQl4LDqw*%&yiHW zi8<29Akx#mXBl=I!aIY9cnrq2k@m;BL`RM9wuNtXa~Aunk+G00mAvx8*P1F)$9V#! z*N0$%p}6WcfTnY~j~*L!cE;Woyvz8*J}Hc}2m86Q`21r>^U9h}ic^H{bf9}a0hy?8 zr`^329LI^{7V*;fuh-}Rl5eC-DpV8Mv4(D=13gY z4A)N`59U>P``_ZZy1vUwhSzBD`eK{5PKoZcMA5=nV>1@Dko`Sqx;SY5sJ-()jdV=? z|AUb(MdP1Gx@JzcZA}C$aFs>3?l%(^t*ki}J|MH5Pf&o~Fubs|%o`9@WJYUI7ALQi zw04DCKItw}?fZyo0#MJs9yZDcRSNGF$Mx1WTPoK%l28vXFeSX+cYAE-C~E#5gZo2G zQuE+hL3I5TQakiTI^cr!#ffP%ImY@PJO0>t5mTvhhb%<$hWxZ4o7?qt=IWvlL%6^b zP#`{a4&JR*5}%9PWxQSAXVH; zPw&FscdV2*b6uM}=PD=DD&GDq8Fi+5htx?sKxW9 zopLe83YruVC}o(0D+p0{{g>$(C1f3iEt!`Kq%OXfres|W5S7>T%|GasD+>>M|Kj4o zeQ$t*liEr0WN(c!iVOU&>i`bL{{M?QKz+n6IIv#a7UxkQm<`Ow(V^_?JFhh43DTHW zFHII`nXf)v5pF3HK>x0ZPw+*{kw9%)GrF4n>Pcd@|Llx~CxoF{CVZQ*!Nw#Vsdx4qn96s3vb>nG2bFTAwa)*FM`v5p#U3D?% z=M(o1N>Swl#8HKm0yuE-7Ohp0Dy(BS-mnBz@5Lq^6E2aKsa2Hm|ELrl<0Pl>W1>_L zdXV~WCR)$S^4SacW%6Tc6~go}fsaTQ8FmcE=Ydp=tP4 zEr_Zn&Q*yz!?sMt?ArFcgY|~8>o=US>I!3_nhy(7$SYcZaHHIWRn$+lwCpzVzuBaI z16(O3vKwGU(&sRhB2^J=G;Xb5E0W@!ey&L3e5V5isITd&B!G_x>~II$9u3I<8Rh+x zD)CptjdnDGSzK2QvPBJsZh)ZgCvZ%P3WIesp!FAb{rxwQVz zRKQQbnu9;aH81qiOhzW8(EEJ{aaL)D5e+0`$f%$C!X4OD=7sotHw|glkA^lIEDB~+!{)r9iVhXW1g^a;22+LVH=Oe?GK zW9O~AIY(aW0FdFOCDdIaPLJMr-sq~xnECo1?f0osMl&n%2azLNvn>atvgKSB;+)5Q z6t&+g`zMS}gHHMF;&=rjW5l(eYU_|&eM8oK@1SJ#`QwlSnwcg%?r3ZBqS@SMo3OT9 zj6zWl1;~22#t5-)l(eaI&sTDrG~3uJi@?h0H!(>UcPXbgrqVCTz}gno9LYRIMg^O< z4#c#0`B8=1wwt^eVNYia#u#{0`)-`(0C1&7^{)Qa2esRUzN0Z}dd~?oZl?%hvE~3= zzHU~N>;j=wtnS6fU5**5-H7+J02}Rm2R!1wL77D zuu|BnyZ>$rExa_+jv_>fsr_<&IywZ^2Z?)%PinXH;oRV+-_Da<*J)}89w>6+apvjj z$inNo7b=JK9)*rk5m3+4(%luZW_P6VhJe^RD%)m=Upq=l5c{Fk;l$yYdv`v#eR#Tpxs5K!xRu z78T;WB_ET`5_)+fQ`%yJ1aFh1Ft{IfDNOZKilhmeNN(|V)XVPTBO7m_&vzb)c}jek zq3r;Mj`y$X%Go2>G+B*Og7HO4pZ_a`0QKPU|4{}0t}0++Yg?=S;)|32x&nY#hh-`^ zZ6K7!wivl`QBA9>3UCiYhh~H0PC}CS0_wH^>U;-R5seQw;-~zmvRD|bDtghB|I{QK zxMoOMh9}4%#~z^;9USJPA{jyX>4=%`5%qNfeyr=hngQ}-H|3#UaN`AIWmPK#qt8Tj zcTg<(Eh^m#H?%_5u{=!C(>LKStt?&vx+ExD=%sIqHJw_1&LrvYf`EYlg_s)#e|HT# zCc$^7%TJ@PYmpy6P5%F;5>P3znbagj(SBbhD8i#)#|SsmunA(E7a&9z+b_Ki^ci>i zgoK6U^$zfd^lzf#Z-1zIO-S6^sh2}e_1^W)OzW95QPYPB9z*KJ{5Nw-IEQ#?A+^M= z&(Jd!+J9g<+K@oppruNztJza`)$&yHMKI?`AY@$qot*i4$+mDcLDi>%=814$ve~y4*Lp?$MHfb7cEJMXkeuzT}eu>JxiMh)Y`y*x%2XN z0@g{+KYMkHs}D@@TmvN$}ykhgQG5)H^F*7k};=W$n7rFC)X)rhOw zFU60kvx&2ye0(v25Vox*#aPcCMjwgouJAV*5OX1SS7ajXPc;$RH32RJU`yFvoAu_P zFyv4$vhUf#=~LM+I>@N_A`evoPF6dg`|J}WrdXAkI4l}G1m>bD zBJs4Zgd>Q_HBV>J2ym`$JB&C(v>wV0nDk1%`#dIDC^WsvL3{#ZU}G`7j|MB9k?O1@ zv|UjPNBvj)gG;FH53MK$XjgWAP=xS#+TCvjjLO>UE-zJ#M#QMd-1OI5%<{0kDmAXc3ix|xF3A~5z;T8=8+R{-|DC^_yY($Ug zw?))2c+_j@&=yU<*&)IX}sz{{1_{7u%&j8|A+O zLft)zKx9Yat1?Nhlm-(D=!Ti0hGv0A`B`CSV=7pqJR}U(C=agMBqC^(cNe^SemHY$ zm{n?zWI8C3qZ!MaunnJuO2xo!45g6!!-1sNUPJiX{ro`N;<PsG4U4!pJ;Mm?wsW z{p2(|`-B^j8(Ha2FAFD+gBh6ZdtKZE#ZZTiY{mIH8?4p3*F3f4c!W}X>ys~TDRuS*fH#7}LWVhxx z{ixdAYlDc{ji?*XsC6G%AFE&Y$q&)%B40Pd%nQ)7*92(OBuobP(q}>mU)xfhp|Ow; z`Jc<|gACG|6zG%xl%xXdlb>oit;+}@`cyE1GJV}AuiwVrk>Rt!;;Rc9*psv_DdCv~ zEh@+eJ%HbFvPXmi*8RQ*4vDqY!G)m8H$sFo#+BB=vTS;r1I#&2!IsBPIO>%l)@n9B z@8|eCcSYd$(Q|jzH{lr;_@74Tv)h%-kHpKf?hG@Jx7tlB~B%ZE8iS3i#t!>OZDTcKNyQFHF@9HH}WoRDPC*a=+QPVAoAc_!JuQ;L$hswt1$>{X8XH~F0H07zk7O%wId`ZhqbGDR>$6MW2)v2J@9l)xofD3k1F%b8m+HL zWcGZYvrnl0hB$Ay@Qk$bWZdN0i4HLrhkZqX305TgY<5)}kBzUMxO8ynu%bF)KbMD{ zeR1?w_e|#zS|Fbu&!vo0V&w2Nlz)4k<8oZUFVHbExpO+n3&L^!+3va%W~o)e_8IR> zJ?6lEK`|X@d*z4LW{YQF%=)tJjKc4k3F=_LXz_#w`1qgDWSBI4vf!$KVz+&PKS}fk z^8g{ut#2;6wN{U~}6IaWF* zS@5@~>$>`74j0Zp9|8_3Wsiv`v}Zd53-S->tYNbn z^91tPpCyK_p6%(p#rpOSbpjfyu0wI}@A074kBZEijU5U;5&?cDU?0(jDGb%++ENwe zidGHLV{!xenSZc!UG9AnG+XB}IrRUCmIrROz_^EQ$LLog7@TB6zEHqD#pbuE1Q*+m z6|b=m+dAFP9UN*~h@R&7lkk~hMEckuSevO~cfA zptFL2CT~nv)DY_3Y^y}X!{oCfY;@aVbkBR z)b|p0*D;@O!>F!2lOPI?0yxPDBY|TgD&-zy{Y_aV#PO4F9is_Lryk<$F>7B$D_;gk zC`^xJS<2UQrfWMr$BBa-W;G}UIXA(P>kF!{e6wnw?WV#xdrtZ2u?##LL={J8=Yz@f z>YRhmq6Jaa;%6k;=I|d_y2@EG`c22J`6*i=XtGVmbf{RLrMx=3S+P48Xl0riAg+2x zJysk%jTIz5Gr@tFg8WXh-LpT9oP&o&@PExIh}?QhqzxehPPZv2s;*|jh;n%fL~0Kh z)11@dcZI~sA3mqi;CnNn>i0mWR}yPSG2jOa*~QQkGg(u6mX@JNia93Wy*h#G!fYIP zvZW1&|H-dD{EaCr!vJqbd~wlT#om?6lWACmQb9M5H(Qjo36J~Oox3r#re2~~zulcu zz#C)zhD%nkPzQ?PuwJkwNs7%rFFeP;55u=U+$ zFwV#0v3~Zs&crG)4(l*+p~mZ@a_A6Ziix?iabtx;L#43a;M92P$AXARUS_v#%z9jG z?89)q$)^K1pBdwtLoTh!mfl*PVF)a}AtRr9a%D{b3f1>g z79@Iat86Oj|Iy0^`inDdAg&4rNrQGBMHTB~CSZ(8M|#XP|KYZ!`2h3y>`QCL=W1`A z3b9F8DH?|2-rdJRcg34R^|v`z_%*1qd?}B{PB<2Z93S7Qe~Arst-sbb;@7k8PpwF^ z)z$=32BHD~W!fVnLA=PMM%vUXd5o~W8`VgB#=QaZZ%oE*P>F~W1L%#gftbd-Y%b(_ z6Z-w`LprE?J_)XZ8|Fzi?^nLX=2V0G9z4}~kWb3=? z|cc$#D3a!VgXGvZ3rhtk&?&Wf+nmt(YY5?cS%H5L*i5puU(LffQak(cLo|04QKNEGJhg<~qhK852r*=6)B-U8K^V%EdIt(V&V# z3TTHhWHLfpe#bkTNl!u?TCwphwSWn-tD{N?8xpSr5UbyMEcUtN`9?_czSn6vc=ZiX zG-MIL@ni?jCd;-Bu_3bHXYL#y_gPek>okOfZyTi0UMR>vwS*bQ~Q<}}r!5XEET zp(Speek=oAkc{^#M-biH=&5$vldxM%qS#$qHAy;3l?PZ`&(z&#Yyk^*vZLRWiR9#w zTQyYLVBt>MjvJ7?pZUp{mv3M7u6jO7`}Q#UPUE*KhB?O@ZBGWK|%m$LfA0ei{XpLhJ3+45LDY=PxKpJkf#oVKrfCrGs z%dNiJ`Jn+>YaznSX||9a={F(1Xj_zc?0CzK{qg;zR8%_2OvY9kkd6Mc| zSVq@i%cF?Ba3ogng=*x1=($8pqd}A9N!Ygn>*?E53-m0Ydu!H6Pgl8Fh7ZVTI8wA z5}^ZC70K|uR0hbMruhe;c-Zf*rZ9Xzh^K3U87N6b%QDXIKKz&-KLJ(AzE1dR5a{h~ zEw%35ywB|WnW8636=!_%Lzia9Zn8j{`*SRkYZtun;0@cKX3Mrt;9oS|B>L{}$0A9*nf40IVS<<#Csdrlb*lLbj$kmH2_qAY-94cMA2`XeFt?!{V8Mt!2vOmIP&)<7#<|aCszt=!=Hmo&82}~4$@ISc{bugIf6Q8xUZsX0R+g2*Wzp7tYYN4vMmmqbWhwSd3d{gLi%3h3 zY7d?p`sfz=@TIc#3H}zg6&oFW?lUC#6gc*pW1cN|hF|f_|7�Vds6cyikBHV4_+ z=Lb$b3BO}Um&7vwZNNw-rj>O~JiF1*@W-rapbpaMh5jPyL94Tg8z zzzqvULFE;S3IL8l1kYhsjSiwc5m?~0O=u{ekvtR+DGqH+s7oa*czMloH8%h4MM#JV zzIA(S*M=RL!6{`CMq>F&ELc2L9$Umtr&jvTX2Jg@2>Dz3LD7)pn_pEN$j0 z(Znij86Gt~Ey#wm)4CT8;MYjp{T|A#w8i)QMRh?32OK_(Wma8Jz0|Rq@@dx?#fhAG zj-v==(?Y&eZ7)0ocG={_zKv!7hn~6p>f7K+aOKW)S_;>1#pS5hieq2v-Nk?|v@9n! zX#0ApWX%kDn^f#!;NgvbCCONQVyVYeCz!C>s18?u9o*P8+Zv8PnSQR*nSRoS>J#q6 zaqEHmXk1m}x8~r?_Odq7NewqAQ&Y42>i}gMs~QOQ6FXF}$!BF+sSEFTxW^Z+#C#vC z@c{{tIhZ42=0-JIg@6CeTPlFvxOxkhc!Pb!`m<|9v%`@3l7W`}av@5Q)g!y|tMGL( z&q_9%%~XL2gwM$_y61C}2~Fb{Dzb|gi+sDW^~US$o#*<)Un)~GF_#?|ujC!iHGjgs z1OWTQNv-sVnO`k|9PNh?J#sEs0}P8T!bbOxLystX4%JvR0O~ezu~V+?Fw@$96Vw44 zwMfLGp0nB)6wco=9C0||_4l0C26vhSNHp<&)Mr5X%vB|8f2uWWxo?t{iXB_4b2fkL zTS>V;)&5)Git!AdAe+ExuNM$!4vNXmuSw1*0_t8y2bnkutG`{f^2%islQ!+Yr{0{h z?;sN&SasLo~C&!G}BYpS&P0vbCT_xnT?WcR4S245o z7_Ewxq@A}x=5?F??`As;9{qH*peX!@%xg8mW%qUFwaxF|FpA7$Ss#_@Umolh+JHZK zuvfLrT>fwMU_)LOu6MeE;uu;`uEItDeyb`Hd7{%M#sou_zt^e!1(^M2(g6tbdPivl z_a1&8h_wJ`%Za+L2O_NxDu@e=Xv!`;$&Eiz zqEzs$qnU$DSjWUJ;K-EI8&qa5IADi4h#4Bu9R-#m`$gU4`3dfV5SOk)HJVTL+g?`f zQYWSD6m{A|Y8PjFS@|@~N<>eTYd=2`Clageo}3j5J*$^ ztVXIWfV*X;$21H4Ub|L|baa^sTM%9>tPqv2M$*xRD{*F14(1d1_8<<-Kb5%A;`KB4 zo1NrRH+0%Rdr{(f6-4Ga@!iNcjw!>lWCV3wL#oJk)nTa%COZEjUa~qsgC77a9dkc zI!66;TbBhs1vr==!x`8;f6zC2K-pSm)>JnpSWz(_N@K?U>}mM}AF8)CDe2e^TUHux(l`2%82(&@`q#d`u}K-Nv@TV(BkNl zhM(=HU%}Q~7k~f5Q;T5nXU@qL&qv*9*OG=f6# z;4q6ZZNOlpAe@0-bk(F6+nAh`4uF{iUOpyA;hhfrO}vy?td_T>YQd<^A9NQ_JKpAh z9LhAtuJ6OkJDgPk zBXnJJ2M5)aiS6qV_E@5%H2=5 z6nKi1n=Y^1r@qW0(h?ruuT)>4DwzC7PWCzKSz`2!i?k4C5K+vail^v_MGbH~VOz4E zzdE#hnfbLQ^4#*#8U_S8TP&!J)Do%?(eG-emf34l z(LA-S_p??4I@s;vIQ&c~c0p7;L7C}C2wh!tnR`XtMEc{ifc=bn&VTgcr1z`**l~wy zIn;OVgX4=fr$abu$%C`zea6ZrCs8&q*!15wq1< z`MIto68?~mmNLFs6K%<7@Trz7RV-!C?>){cGQZODeL6Zylp>vQlj34X1x*PxJe4IV z*^`R13t`eTnABP%jj2;1axJv z(wfcQ;Dn1Bll4-GZy6=A3`B$FPv#%JP^W7F8QHuPw>Sqdrvk!EW{ORt6LODwGN$gG zzx2E{GMe-%y~yXz|ZK+-i*V}^7! z)CcN08f&X1cU(FXiC7S28t|HVb|Y0N)jt_RkvZk%MZZ*%px zGgTu&b6o2yr*q{R69VrIiqEd;o}$|I0ns6}HrMY+5T^PXy*MI;aae=hz~#H4snS)xLSsDi z(n0!~k(vh@FGv`?F63>DqO`?N%{5zCDhTN0y#m#74?wIA5Ii!O1q?PWPrwZd<*J=- z_u?|+$n%Zw`y>a>M&`ByVdM?{Rn$jEA)jy*_B1bZqF4AkKa3!w3T9>sISz2b)pc2m z=E*F}lL`pZY7%=1k}$4*Cl3}oNXv+B*-SY~kB%MwOH}OeN`kA23RX1tbLV)+=gc=C zA2%v;b$+4>>+QJiiTl~xanpiAoxB~4^hPi_0oL--T5%?{_C=^os8CiP5yw({Y7AxO zLpVs20JULJyh;@gS)u08qeP#moczskNurC8YwMcPS5zUq_TzJqMY~l5WfLzV0U-=` z@$YKWZe@3n>SWd|AlfH3i+kh9UtfZt#7{QL41iN`$kIo?01m3kN2T_&S5mlEVQPAR z%!++nxp~ATuMW(3iV)s+-r!T?c|Ubwx7Ew+LOlkY`7sLODf^E>3Sj0ZzB| zU|TY?68R}TYhS8$qNRf+V>m_><=!PP6{yO_L4s!Gy>Qp0s z2c%O@(!i3d)x`XQ1@20r-ByFCA_L747nFTaV>}lf-nGcd;CynF&@U8@BT@BGQF?-; zR(EG~2T6z4u92xe$=&4zLgK`QdC|&glb;|rF7M!Pw6#5y7ChqMnx7y8Mgo53mCGi} zYkrAtqE>ko08@3u*Ht(O%0qWs{U-5xpJ8|?-eHWUx`h_-Nh#eFsuizxDvVPPMDFnU zcCJ)ruMN7>S(zY^W3^DS;U+w&T&WcuHH+l#jrfSh#9ZrSO0rY_;IyLZbaz;XdbLx^ zBE-2u*3%{ua2oB!Ml!k1moR`-A{fbY)HMeYQ6utSGPa1%v7CE)Lg8m$9OcO-a2j-;Wdegj2#r1IEl1qm>A@qE zU*h04tEoHL$*LiGndaw03(Wa`$H>`7XY@M%1dG^#cwZ4%pV{EurjNe0r8}NmGdtzw zI{qcn>1V3yLmVtsrN^_D_si)!Z6jStx~FC2#y;g@A0glR}eWMGr+_wy(0xW=~4%4PEM9c&(6;1z@fSYtRWZsR+mZ?Ou@oK6gZe@&$&d##5N!enP4s z)E&&n*M(_%H=sBEHw;99Yv2j8sjBySu8Y%bZpTFmG&o}?AXn{A3BNR}2KW7SHVW-P z{AWcP1XiUCQ~1P){P<#F0$(DGOG%b#+St85Sn&lY0;@Op-B~q4+zRq?%9Gw{{xUgZ zj;PuBouw269hL6sm0Y?1Q&q2laI&rTV%N;Iq<1io@pph0lCBm^(Oc$(7{L_1-|&+a zXJgc>?_8q$7a77DI2>Cz#aA0~dSN{3{@}h83k#3ZFRs5QcXfR`wZ*^pbyRnomdpnI z1Db%+BKo@f)7HI{F&$Msw=c^t0gTM<$jhk$=maL~07MdLIYcnpES%qO!BP+e)^HNf zq`4d%n{{zjn|qeU&tZa}#%J>LgIku<;K=g`8>EGcn@u0u8%|I;Z#DpyKGM?qVeI$S zbGC3tK~4&a+PrewlVV#3?YSg|(m)9DAtMJIz6zopH3j}uvX!Nc-Easx) ztxs0yp{b4(fA5B~y3B5QF-&+dCoZ@|eho~Qgo17XH=2*!GcJWI5JsIPzPGN!?}=N% zRkwynRjZG^$IQN9)^?n#H0xu(bEKsjLX{UHD)vq}E1NuTc${{bnLoGCM- ztg|=mZj%L&umCS+=mw{==5qsp6}sDWW#YM>AOhH8=v8gByMkME^@C`-Ebr3uIio6! z(fYGI7uRSSE7mSf=dN;xL+%@L2do8+E4-tJ=y!-SMn3b3=-)w{&wUiavHF($q>saJx~Q4S6-W4g~hb5u-U=gZ{K%|KE`0hO!#KmrI>AMWC(TnV9gA5GFEgzqDIHkh*q1;p14??agOr=a(Ii z@qBw0T5p_vQ`Ta5y7_TxQvG$p(V{+1`<3?2Er8r#+3dh;UZ|a#Kd#_sM6kcz`mzPq ztTC2e)XAWDK|U0GWv#m~D&ks-^i+to<+$nnL*L@F;)M3I4#zom_rY)a5hop4hBhK{ zz|7ZvnYw*kvrFx4{*8dw!bdLT(M&71T2Chko--1)37QskL>Xx=!FqhwFQ5JhbWX40 ztCppNzvhO7bhxmn)d`&?35~X8OAAuS{!%w1hLD z)p=;Pae+PH_?Yd-2)+=~^dC`>V(Xt#kafml3`Gx%W_RbgZfw1Pz~L5Y0Oni!;zT0Q zcebK0G!Dob!|4~SPrGP=B&v)!9VwAS7beA|My}P<)oD4OaQ9Pv=@9x+8|D1hPqYIQ}9g0hiBa z+-@P`Km+=(Qg_PCvR3Rt zUitXgIC&z-xZ0Da-|^x1(U-x?^ICVFcYs05_3(-(@ydY2>QHr l(>nCHF-G3|r z+5b?+BiSJkkvbXS?PUZ`-) zCBv1o!(FNm6rl6gkaQ`z_^?3|1;*~U)@fhCs2zY~9K>C~<^caWXu^PB>BW5!|Lc_Z zwc|+2$I>i&hz^#ubE>^53*<*wH*4xsSx_auxH0g}{hU>yme(|B*-81%c*C!H);Qwf zvBwsBG{=hTtD-l7)CT0K_55M!^(TD$-^A};!g+|d=T!w|voh+W@V&MUrmRF-&GId( zQN!s5f|CT-Ua$U(;p*P}$6E|-cJ_3yyHGZLh_vcZ(TfFP`Mv0Zf{9P$+HY5VEt@^9 z@C~oKmi$$U9rNbPtc~ z2+1GkM0`!eQhi#|wsC`exs4YjVDtMdmW!L-BloQ%IDL5BDVv13>nY8;Y+ljFH~K*# z_C??8X&=pGiWIx&ZWwv5sZEpd$eqK41>+YU(&Xhj{69kKP}uzqQfHpFY0PEq;C|(7 z1MrxXG$LptqVn2SB`TYsRIvY~YgD zaz?%P`z|q42wBr#v$T|e#R@{>sg0-2owKc>nK$SgSeu5vAbP;jM5M6Fy$33;XH;?lJ&a-cyZPwh-+ZL!eH2qc7tk8_(K{0^f zRdwSK?*V!=TjjRut&AYsdC94t6^(fsy;}*0Kxrx-G!djmsbB=IqNU1cu-fErB)sni zW@l*8ik$Vd`xKHs4rHhD7R*%wn0064 zb({_ey9{NdEn>EPVXPZ7>nS~bT2JL{pN0+~pg^m0MdBdh)}Kil=j9#MAyX}=r5Xt3 z{9nDD=UbEAmc}VTKsq8I5eOYbdheigK~xawAShKS(i8+jC?YK=MVf+C>7WrJy(7{E zLYE$T(U;K6?C{Rand{7lIp@pp5Aa-1p1t?lYu)$nMlPf<>hZK{*=Z2op;dBV5%fTM z(cCj(oNkXe+74d?r1CsD+Gb67wc9F^{IdX5 z?RMmrubNpkJbk^CZV)8|1<~O_)bP!g`Y;gCjNY9j7QQnV zeVQnc18S9_IDu#a0=jY?bu}Ys7o^3Xh`&LGQM!l2w>PkS;6aG3$_m7O8_&kY(!` zL$UX{AdWI5pl2-+h6?9ce^~)z9>4fVQj}2nBu4S^n!4xSoa;ekPdR}*f zxr(6PXXbQ+n18_Vts!s#6f0nV4YSL)_$f92Xe^Mb9lffgD0Uu~kaj7{^9&rKhPixs ze_Mc7o`PN-Fa>=LXA;vA2mvaGzym*2`8iX`Uw(rDSd&u=giOv{15H8bQGpsveF;SM zP;{ zzO5y%?Au8m_LJ_|r7M=^vMT4W+L<_rEipGx%`3W$FPw`O&mo4KoT-vi0Wq)xv%{l3 zj~0I_DKjIYq_{Gm)b+?z4oEEjkbRzu5;^pc%ni*M4W z)Ax}^XAn3PkY8?F=z_-_l+A8PU&u@RkPevBaz9Z1*6%2YKRROJzw!#D+iUw;*T?)8 zyqIDICIrY3qDpy;qdB18V=m{#)(8q0OfV4!B#hi+TEGwv+EhN2*+_0RWB2mBPHdsO zkYIRK7G8!2X%iW**#<1|)V;hVPY||Z*h%CE2#Zsq(zQfVS-xXSt zOSVMY2;zf^zv%!03P?S|WX}SH7FE*;CtPRl?F;~pajr?49xm+cHn(`+$)Ly}DgFi* zVbbDnWWq|Gxt$z-2#F?NrB+MT!& zTm-jD3Q7>mbhqTZH4OAeL+X2YI5iOYy8+$T6i&gkS`BSWnd`~2X})#8Bz;`8(s+J9 z?GsoB#zon$9v0=U)@yDDlJ@FY_Ok#k$%X3p8r)h@*Oj&8Q>m28%B$g@dD(noo;~ui z@Rw~~xIdPJ*0+Z2kP3j%Hp!H4jlFO@)+0?q+a=Le1Mqm$Kv66RW2h)BIWT@H=_<^p zRfXE~zMZcjRO^WD_WUu%<{_9L3*1r>QJBB#oA>>C7Spaz!7L_jy4Tu79z1y8``FJ^ zB@Aa@aT+eF5>t)r*|Z1OhM_{)e1)@%IvNFljb}_s-91~Ihg2k0rO3ETU_6UNN6^rI z(tf!WO)3bU%L`1MqmrKSOe!j?6i!d&sJ~#$L~o}S6LZM5 zGN|_Dj>`*7+Ks4GYYaR6Gk1;d-JvBLDx-H7t%ag5p++n=jh**>bn1XU9fI4#UM&>S3SmUQL@O(uXM{C@~ zhTS!6*u2~5H#Mx4|BwSnP~e;OQ`jtD-KZfz70^DTGN4<&iejThzW9id?m5)=rj-$` zaeQ_0DHNAz_s81< zXP}zVwJT&ko-)K?hgqB<)ee$Ob-z^dJPp2*I7>0S1sz~74ztfYMiGhx%))bc7TbwT z*QBcuje_vN;{Y~1?t{>Oj+yTi#7mtN>=(T0w3 zQ&AXyX9M}vgK;u6a~H>**NvU?Q1`yzZ7|s9r6#nY3hyTd5tqRoJ@mR3m{;J>j{k=4 zV%2P1?;W}))(&TTHym9^4#xw!dx&**U!r zkaZJLA{A~eu1RUqvi-KcY2$0)AKN?XaQu7+BdZcIG%t^b9F?hfg~!*hNJb4Y)T($8 z1av9n=H43z^{~%mV_ADKUSH6GWsb z?HX*w>Q6vbod(v*BZ|gT(E6R9CUI-%J!3&%B@#cqWenl1$rbfwh0|7z^*`VYWi<<} z!2411OsF=x+USTz=9L?@t}rNb*tB9bjrgldz@#LT!k!?vjWgj_ z*d5O8TzpRO1#A(2CI^-(N%G61egYR&+Gb9!O7uHhypk_k;vb0Y@R_V!4296&IoAK4q|Jp>YS%pV+a$X<)Q|xQ8MI-Sz1zYlotbA)|hT(+VCZQA_8O>k(8aZc8`4BBr)Iu*G#l>Cv&Z z$QnNDtS+{;OwYfox}~3`L;<~PuU9~>b4|DXmUSH!_agB1Ou=TfS% zs~?)uE={Gn{gCE?4O5Xtmu#7l7PG;P!0wD6ZbKiprcxK4_%lYE%g|`U>v5Knrxm7+ zx7>sLs-(*%K0|mi%V!32t0(q(S5N$=@WXBkx~K=*w2yGKT zSsOYX;JHEP7KUt(LB)ALVWiQwn~|DCoqCf{rvD`Utuv7j0p50m zCBxTxQT3$>0qQwAJ>l`XmhHfyL};nhPk&|(mCp*uB;{_ZdWTxfobjebH>aw%e#_jt zMfjlW6J1g5=c*Yl&0jxy?L zdm7S`fG>EuAG>Opu@|chc5K@-u>YBDS}x8DGN zER`jGrR?jF)Z@Bx=8r6fLBqE4j&BlvUd;4(^)PUe@6Ze>XBK}jW$Nd)eBE`tHlTjgg?Yk?5dCp(EO}; zn)=J0TwhZ2&m}i%8@6==wvm#9n`RTy^0r%+>sy%BDyt~&=VjtI>IKY(MnZA4k+Z=F z?dmzHP_JFYNk=Qlr^xq-d_I&J)*xxC2)&zjk9yY)B&p$AH|x2YPD#{k4v7@L!{r=R zmdjWj)!0z9aFSw~*LOaSw7sg%m3aZ-5wd+#Y2KHq{5@sbTaQ6ihiHI=5;4pe&9-s{vb@-Vgn3hfo& z^~?Vr(M(juTZrZ(%U-U*Cc7KZS`}wiI{@%$VnLP&kDX@IsoD_~>@*@e7LItFy^3p| zK>4=m9*iMLV<~R+2R}E9^0xM#jb80&9FQv$y(U^VV02fxLOvlm)(*k%kB`1ZrALsI zZrqh$`7QrOI)D!LNSzqu@P;lcPSL**J;-I#Qy#-bP;P5JSJo0vJiI_IHW01nNTi}a z06uY2a|Q$u4Vu#&99DY$$gto?uD(gf6!BZHb@VxxpDij(~{vI_tBYJEiIa7RuZ7r}kGSb?) zJ5yf*%{I>H_mpz^;|04mUXt1eQV*x@BJvF%^K&NW$+k6EMj{Zl>u3p=rc>`NEs%#g z_1JKa&(6(ms!J4m;yv`!fM-<2kw!kBp0pmAff2B{w~cc^b|061Rq1&UD5VzE=UOoD zE;p+B)`l^MIH?xvq87~%@J$^ZrI|qSyvbykFxc`o*ey9F6QM6ar@E_?T%!afFu~BF zSE@xJvRbp7EL3TPwYmT92O^j!)f^2_!DZeL%3r&0z~-%mFjzAOiP5thJ-YSjcTqPR z>?O!|X&RXTU+-1aM(3(_DBcUhP9;EA%u#p&FWwRT+_8GttY$V3kstvRcZo+3*9=>C z0~UAds<=y#BZF>k=%qOB(T4gsoe4wZE|qUx`6SU>lp4f!1~{mfZRvFQ6v|*YPo2At zty9#WzH+W7<)ALggJg^K(XpVV;uHuDzPP;QWSaF}G_C2hN6?2ag(AkrYV<1@q_s2p zu0W350#l5gZ4XoM%b$=uQ8r`WQL&T?E8)p=HhTUJC#`bqn=Urja^Tkox(=W4cRsE$ lIiKys{h#@F|0`qSj6L8xhFHL0Y>oi@>1fModel: \"sequential\"\n","\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m320\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1600\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m16,010\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"],"text/html":["