From 48d7dbe714da9d1c1152131269ffdfb7d061722a Mon Sep 17 00:00:00 2001 From: azamat Date: Thu, 16 Oct 2025 01:04:46 +0300 Subject: [PATCH] 'LR1' --- labworks/LW1/1.png | Bin 0 -> 22917 bytes labworks/LW1/10.png | Bin 0 -> 7815 bytes labworks/LW1/11.png | Bin 0 -> 6484 bytes labworks/LW1/190.png | Bin 0 -> 6473 bytes labworks/LW1/2.png | Bin 0 -> 28432 bytes labworks/LW1/3.png | Bin 0 -> 28746 bytes labworks/LW1/4.png | Bin 0 -> 28561 bytes labworks/LW1/5.png | Bin 0 -> 27910 bytes labworks/LW1/6.png | Bin 0 -> 31392 bytes labworks/LW1/690.png | Bin 0 -> 7824 bytes labworks/LW1/7.png | Bin 0 -> 31321 bytes labworks/LW1/8.png | Bin 0 -> 8151 bytes labworks/LW1/9.png | Bin 0 -> 7174 bytes labworks/LW1/LR_1.ipynb | 2897 +++++++++++++++++++++++++++++++ labworks/LW1/LR_1full.ipynb | 2897 +++++++++++++++++++++++++++++++ labworks/LW1/images/1.png | Bin 0 -> 22917 bytes labworks/LW1/images/10.png | Bin 0 -> 7815 bytes labworks/LW1/images/11.png | Bin 0 -> 6484 bytes labworks/LW1/images/190 (2).png | Bin 0 -> 182 bytes labworks/LW1/images/190.png | Bin 0 -> 6473 bytes labworks/LW1/images/2.png | Bin 0 -> 28432 bytes labworks/LW1/images/3.png | Bin 0 -> 28746 bytes labworks/LW1/images/4.png | Bin 0 -> 28561 bytes labworks/LW1/images/5.png | Bin 0 -> 27910 bytes labworks/LW1/images/6.png | Bin 0 -> 31392 bytes labworks/LW1/images/690 (1).png | Bin 0 -> 327 bytes labworks/LW1/images/690.png | Bin 0 -> 7824 bytes labworks/LW1/images/7.png | Bin 0 -> 31321 bytes labworks/LW1/images/8.png | Bin 0 -> 8151 bytes labworks/LW1/images/9.png | Bin 0 -> 7174 bytes labworks/LW1/report.md | 610 +++++++ 31 files changed, 6404 insertions(+) create mode 100644 labworks/LW1/1.png create mode 100644 labworks/LW1/10.png create mode 100644 labworks/LW1/11.png create mode 100644 labworks/LW1/190.png create mode 100644 labworks/LW1/2.png create mode 100644 labworks/LW1/3.png create mode 100644 labworks/LW1/4.png create mode 100644 labworks/LW1/5.png create mode 100644 labworks/LW1/6.png create mode 100644 labworks/LW1/690.png create mode 100644 labworks/LW1/7.png create mode 100644 labworks/LW1/8.png create mode 100644 labworks/LW1/9.png create mode 100644 labworks/LW1/LR_1.ipynb create mode 100644 labworks/LW1/LR_1full.ipynb create mode 100644 labworks/LW1/images/1.png create mode 100644 labworks/LW1/images/10.png create mode 100644 labworks/LW1/images/11.png create mode 100644 labworks/LW1/images/190 (2).png create mode 100644 labworks/LW1/images/190.png create mode 100644 labworks/LW1/images/2.png create mode 100644 labworks/LW1/images/3.png create mode 100644 labworks/LW1/images/4.png create mode 100644 labworks/LW1/images/5.png create mode 100644 labworks/LW1/images/6.png create mode 100644 labworks/LW1/images/690 (1).png create mode 100644 labworks/LW1/images/690.png create mode 100644 labworks/LW1/images/7.png create mode 100644 labworks/LW1/images/8.png create mode 100644 labworks/LW1/images/9.png create mode 100644 labworks/LW1/report.md diff --git a/labworks/LW1/1.png b/labworks/LW1/1.png new file mode 100644 index 0000000000000000000000000000000000000000..6219658deb3bfa7bc6bfbf98c9a9689ac5345984 GIT binary patch literal 22917 zcma%jbyU<}yDuo+Dcv2?DcubcBHba~UD6>jgtQF~~6x5D>6cl;w305FV9+$L(k+;O_>*#BuNs zqL+@6EW)R8%5CrklD&+E3<5%33g)dPGWZ(ZUD?nJ0Rg8E{s(c;?Sl;hf+4wzyo{c| z+5S7!d?JPO!I1~1hKfhjR=uwiFi_<2`BCs>8JjoOf2 zG`c7}S+rD!d+u8f_#--bO^6KpKaV^Uuyp?QU0oXp2K-T6K7FL#Kfkd?L{`dsd%2pj z@rJvL=i&aMyU$*AeCOxKv96oHPS+O)G?Kc3<(lstg%-SZ`JH}MALgVT_2Eio_rD>T z^D=MquDrV1EbL>Tr@1-^dvNNy+MsB#8_PY+nLN7Q{hY^;EYdq#C?yqK?(I%v;`8&x z#xG;Hr$?P%cf0P+jZc2QG|!okdYI=ltcO+`H;;eFR=PhP;qIPUI+->P!!BeKmAX4k zZ$0eA)R_Kc3a)ITHyU%SAn31yh{d5At+nj4$=Kli+;N;Bx*SDVt)0c~e&D@5+3&qGHM9e5n2?;iU8Q;8 zSqggyxx`qekNlG0{&06OmosPTw_r;hdTHsk;4__LUl1_R@o;~$%n|j$-|=Ua?c0N; zhkHLKqSKw9BZ0TPRnZ?fn`W#qcNfC`grll2b%l)4#Zp?`@Y|1LnbXPlN8Z-;x*v32 zatO7=zwb3pn{9k3N#S|mec~5f}qo{(L@SiF7Y&UuF%XHgL>G&7l$8vK~#ZT zMd#f7LrBZm_#yIkRJ-C%^oy?o(*45g2 zf4y7tzQFglgWcXt-FXXc0~^s9ER~_po=+59;23zT_S7M#+D`K;bp0ZhWwv7+MsxTFHQ)1){%&-#Pl~WF4Ed#5%|m|pLF(c5L_bE%@2|7%=J}jk zN|Kjs{G!Jol`nb~D-)L2=6K^U<-ye2P z{Ul>dSteFHQEW)hQoBU)GVz0|1!aBd1S1kv3)oS4`ZY$gb-$wDl6z0TeQD;fzLm&7&YJz2 zKjz00xUl`1t_9z@*?0}1l8lQ1#M8g+2Qd>i5e%~cBwy+)ppjB3yCO&t_j2%k=*ViGy>?ys7L ziKnJ*0v}A{7@@rL%ub+%+WGkp8GpOnxB?IBKar8`7igImm=77%aQV&>s5HX zHq>t(Dh*BCXKk~P)0s8u??gm!7lj20F?9x9pEtWM{OLiZ!O~Gwf>)4IEHw_okn2-6 zh-g-ZwgUxUjt;B`Y+xb*m)~EcH5F5+shk_eg!BsnG=^bc__A}$P@SefVT1BY47Mwy zGTZPYQFS&gj_%5#^tTfkM`XAAZeb0cL-tq{LY)44b%T3B#0tZ;XgZ2=-`>kS4sxqD zY+x3rKgM2jh^6vHE7!<-BH2)&OmmzS(lYe~(OJVsWO;_;?EjioCeULB~n; z?P9>@yYn-c4Pz`@q`-{Nv}w&~QLJwI`JcOsrRIljtNw)dFF%|0IDPK4yXo%+}U%rj-O z(sR*)7i)aBrABuHySnL~91W?IP0q8E!}NTTp|}1V=_eaw4G)F6&ym4Rc}iNbdU<;? z5&7h)(aeRNi6&XG%&JvB(F-}A(tm=?^-G^ z$S-rqzlh9{RLjdU3#@!wltE{a9y`wzV8c=-Uo*cVXl0jd|JGKE00J>y$)gvQcRgGi zWIC;zib4&aIFWcR>3^Rpx1t=d?=>MoLXH0deJ#OuVzD!54oT?u2knw-=hjkYRiP0w zopeU8!yeSROW%&uO2kEGTY@0UA-a(o|4*>w^Gd^p^0SpyYz~~oLPi4poNq;8_a~tD z7PE&_hJs=wRF~zEBQG?d3*IbopN7yZR8mn`(eMOD{_$DmP}bXJWgO9%u0&&edZKuD zmdv#V84((5sWymWBl;SCo{SCXEg2SxR?74r(ER3_TwKHxx}hr1J26L2I%3L@Gu5=e zaq220F+Ixcpl4_jD7AC@h4AXz`|wUt-&tD{iq(X0Rc8ms75pw8Jtnl|!E76c_!btF zS15N6qB&5~$ZpV|`wDo&F8gRO_|D_GKbf{SC3z&TLCS6hse?w@cd!vlBFhY!wYB%E zJ_Pa@THP^PZ>IG%r58O_}Tqk%9~`=^EBI|yU1BwDPsiDE3BG1vWNg2%8EL}4wO$@e7=TY!@C)BuGW z<-O97<>UksO>3W`g$c9wwqN&+Y0P7_(o|5J%hhwNP`!z$R2b)xJbDwB$+2(I#F=#C zG%S5nzP~P#*7*UNuHmr;>s%Mw^l?<^J=P)qy7lX;(&fDL^*#12#{;W{VfU@0 zjd}|8J?WYZsqrlxtSA%HFRBp~Jp0VA84E3F-xKBt6sehtLR)O<4~Z)*1~iP}S@D61*FM6HaKBIB6xIE+Ja4-8j0N;uaL;<0W3 z=X~d(vr$;bxzlDrV>`b@&|K&n3fB&sCm=5|4~9`L1PVTjrYe*#JgwN@hVY3 zob_^^!&|j#1cN4%wjM^5XB&w!5W5s+~;)lrkXw-h7=jfNCIPu3=t4h z^3CB<7!07XNt{NEVJhrcL`%Jj5j$6TugaL!c@S&LhNR{{$@_E#08N{ zW+2%T2(=IOT7y`_5cm?R4+CwIx=AZwuaFMLg5(PVPG8y}cwsTnWB4Ro!`SMHQPa7{ zM`EXMj_&BCq{~-i!ytrf=u|Pmh|ll>XdW#$K7t_0lV}uJPbq(>_r1X~>55FMHfzc8JZW)Cqs?Zbt&jb33|9%Rk z5>7m$U~Cjba;nd{!+Vhk2`x0qa*HE;(0A5X_5Mmj!<``r`bKEv6&?7;3X^0qn@FW3 z$cP91or-!=^mlqsW@(QgjHvfnd-Kld!uY{YR7ld~mI;|iGoPH2Tk}0jm8aNodXhC$ zgq(}R75`cfT~G-Bny57$1i*XY53zCkM=mTH3lFrhlhEEoU9mwNf~Bi z8YintEg+fEFFxuc1Mm}gILbeP1b8|Q9MHi@l0l2RWe>iE5Jvulq_^TLx-JKtpvzN`D2gUF1CWC>Kk#{0V) zR z-&rXoqRn@5Zt70IVTx*LbC;E`wb3I#2v7~(PbS|ZRRh;Q~jg0}3AQ8ub(P87V zJ#ffVmYEj!jzGtyiDp21+OP4;s9|S=?MIB#1*K9d3JOQZm3%4i8hELnFcXpclUb?5x>R0rUw`JVm1*p=6Gx#VYvda^4sm7uP4AnPJgDy=v2Yd1rDz=qM_-r=~!pON1 zSl{YS#5nEN^-SYl23cnjsQ9viyMzYJI^TXdO^vJ0Q`tIbY%;JX3Wjn#5Jh=lk0jP} z*hT7yW;?E+qQgP%C}y+!@Unh9exSX55rJ)rY! z#IqFCdIZ~KSe5?zY%UcXjYm9zuS99dtX1F~gH2)Apl}tm63@bJt*1w>9?I2y>-nSE z&HQ8|&+YdigpA*AX3vg}9n+h-Zp3D`fqu3#$d4m$%?~XVHzQz*IlK~VVBefB-3m?L zt1iET#r|K5gvH_xGqpvnH-Fp5(zPTV0?+pxtV=YXZI>Q?z%w_VPoI=-xr`BPiiU@f$9TLi}Q$ zSenq5fZdwr(Zc)Fio=|QWw1l*Z^RyMmL6~lRfLi#goS`?WjdqA?>xiP0FucO(#40~l)KyMfYGG5 z|95oC(L6ZONU!LoGLa<}v%KB*~ewWWp}bMZee|d*xYh z=+%1Gp?0XwZ_>%7(3>$%qc1SH=64={H3v$J##pYPixkDx6S+2kL32Un6xu5bxZbYd zw^9xREa_02{Q5_^24;{$=2K(4CtN0^=aYEtrwe{d(Vb_UW*s8I85>d$SO4gIGauVB zgkmxbx<7Ya4-c&N(A*!Q>V7tpI2n|>|9;+3L^|2~o-pJRyQP2&)=ASIJAU}^aM2Bf zI#z7!Z?{(`eP+jOE?C<@%XG=)Hm5#M>{J8_jo-{0CEn6#8M~&%z}?zr>Q5z~BjZWV z2CD$G2dhi#m8i?*wK2*|6MQHGR@iZhmEZ60d~H^YM^)m6VXO8mZ>g=2^5@QTBYxL; zk$?E2Bt{E3W#=B0!RkIj$|=uwK7hB0^zh|}CT7sC!(?eZIBu3RYJ?RZF2Jz@--`e$ z)aj4ftip_6wEbu;D+wHXU(G-2KfP%NVhEXP56cqP2D->EJg`<=!TkZjoH#vnRNzQy&~uD$W*_`5y^Sv_iF=ep>3XmpVmOJUuj z;As5wWZ2b+Ifge~WKe#VLR`YeH#yv=kUq1{z~~8#RGN%gTH7m}l+AEd>Q`JHhrNku z{9id=+sb9?!9}DFbDbwc)?n{#%zI5V7F+{1%HmW>ZqOW=ql`Qb;+t)9z zzV{|li8WbVEh6Xi5mF6V_&oi{#Ez30iYxL5;YX1i>IpakQ4>#4X1xb(yE#+wT8l?f zwks+kp7^?lRz4t{B%w?@{M1%Q%)KfCGnF+v0`%4;F1f#5-CL|z4vCmb9HMweT#jbO5xT~CykS%4BE*1 zX#hVgv-bVwT!bm^iS08q3ndrwJqF11Q4F=o#r@qu&z#rciaz2+AQyDB`P+G6<~6Cp z5>XsEOm>WB-DATQkP|~W-#SN58-OBU??DG zy=I~HMbSrtDKu`>V5hfxPxyHElxRK1dYox+!W1LGm6>W_C^g%smA~3T^RlfEM{LI5 zjl}8{E#xrgnU5nlW9ZsIWb&I)lgp>5D|-=-&6YSJU!jyjEhNgz6^fhlhFJ~>Mk8?~ zpT}zvqqO#aH;!4xQaw4Jr0tvU=7R1%@ss+4?!4F$Frya91=~;=6{OH1Ej&=A9|zL< zTYSPHgK$bdW`;LW*_RhSK0Oorv>ufqH|Lga5-{e~Hq7o6H_2rp51H7@wzo5j;8z6q z%E(0AEe0NN08JjY=YsD%k|arlK2jJM*SZ>yAunYNPCIl53RcX-KuKwNuLbPJJ!D+$prf|g60d2MC52J#n}# z6L37lQd6-Fcq^aqf_FOA*WiPAJmMiW?oOMREIi|>O4Nm(!)(jibnK{U*=WQ?)p+Uj zD{r+xYXnGOsA3d_twFdx50qa=WA<=~hSeQM4DD37(IHfsY$&;yQXmnOIoroBZ)kD0 zSrkiM&s&t?TEs{)R3NLz45Q;cdubL>7IHhpQfMBrMuf-F4S=y*JI4MJx1S`Tx^tjm!gSv`TMIJ{$M>4&g~d$Kd* zXys??1ad|Mm)TXMa;gz=VXNRy^plMYK;K?Nv5laD*B)%pt?OuSwun6f5;;}UXmd_- zhH)wL;i$_P6BCG-*-?UxoVBu=s!u!}vJ_6*(k%CkW{-V$oCw~d<=!*;x*^-st?y*W zr)>5ayAk6Qy)jToX3P$yTp(zTcGVy7Q8whP(hAp91WATFTOl2rENRzmxL39c6VVGW z$TDL+9d9X9S=9i<^8i?Q;N9n^UjAzLI{=0Mp2hVx;BV_DpHM+j!t;#xq;(cO5#ag7 ziIi^VpH(ju)4Vb+_anw2yHVde)E(K;U;LykyDuxm>#eV&f$h1SWMe04h4Bo&K1N>R zE+V#vSRG#HlruJ7&JES|gm(vNnUoi`zi?KdjT8{(`7>xcOGvRD!N(#ug`D!fP-9%E z^vcA`0L7tSt~gB!eOUj=H=5#^rr#5ZOMrXuVLdm$@aVot=UfSeuV`%+rwt^NDxdfM z?hXD{%G1ylI%{s@+H3cu+kMGdwr_q!S0RTJk#%P=6s~AN4hELzK0E^!pE#t~G<4Gc zp`v)};s5D<7L!iWA6iSzB#$k`W1u}h$4nw@-zI6eu$GR$ve|t>v*VyM_cJ=8bt=Ov z{*A2=)2EhuKC<^V=ovJ=*F;b&pq;mXQhDwB8d$l-Dyzi(L(Xc%xC6F@dd^(MF;_2Z{8 z89|dYG|F}-)|9hEUuiaH=zlKlMS8yFf~M#ceU0_kma1&7E+@=Gy%N(Gdi9N#0Y7)m zx*w8I&GRaKW?9G;rMn;duZP9j6?U15Rr;JV-VsI5k5C54oC|3#X{GC`-T8zt27+JS z19|R;-1i2nYw-wS%|owAY!UBPcE?(tpw`EKUuzPfitji!YL4HL5h(Jdu+A2HVwWys z-b5N1GF$9X-LWlBEt zSTtpH%m)BL2F-9t+-qv&yJc~i_L`Be*r}$`5?xRMR!StPD(5@~Y6IChI|`E^)0>Z< z+Sr3LVi+^1B?19VP<3P%`^i+f4REL6X1ecwEJ%2ybC9G}By zt6J2;W2Ln*QRoJsh&9|z^-OAqA-iI0lJn*emHQYckqh>|B*Cs@Cz|w`1LPf3&`ehc zNOP#h8A~qWn@!Jrc5H%Cb8(N-0nlfk>bgBvYXFB;)@3M-DVlsUpF?D`)oU|%D4it_ zc#Xsfceg+-b-u;!ZQ zIW{=Y*2^X>wY6#6=n$%&gOc`c3_uMzD4$!Q#JHEgge2bQBR z?VHFH6;GY??#MpCHeCw>cPeYM%7HJq@%k|iIPxn55pV{L_4t!kq2zMOehc2LHhI;kUqWybZnGAXaHAWk$Jzd);QbD9y3dfv~A+!yhOTiDa(wZH7K4nj zPWhj0)Evo0Jxj@Wt)i~}MB+LZA5`LzU^Mgn&=Qd1AJaaf0I{|?#*}2 zaK_>^gqV2`+V1i(9ZCtrkze1Or#@(3s>6}Fk@X#T&APzUebl>}r_rpq zJRjzOx4b_3&YPdvZ~ymCxVOF|yOzPuMfyp04O4-<)Zkcb|BLPb^+(R-6+xH9j@C02 z%HYGEUy-paBgiBo{AsUL6xGm*Ih`AS>NlxlHCU5m9vm61lJ&?X^t{fmv)PeTR$+|& zLjMFMDh}DO&-zaw=HW3u-(#@wne3@fd>x;M*i*_~HFTq-r>9n#c ztZY#Q^8k|V-*15ik7iy+-BAp4VT`?^c4eu;0hcyw@zq`w(^?>+ENF>88g(~;<5O*c z-tU;H1)|SCAWx9_;m~Ld1Osp`q4GZg&b<9BfRwB>9eWT{uaD(GEBSCoTNfPa2vGm@_^#GOVqMT0`F^W4_N zKoe*d-K}ouHOpO1ky-@8od{s%>u+D~MNRfoi6unXI!To$nV?F}MPEu}RpH6)LaM+Gv>`BAUQ5?%8btH+l(}!oBICatIqs&(%+gbiJMj@~8Uz_6_!VW}@J+($ zs(o~KCF*o}X&dI%u@4dl6BqQPn8xH#^`<@r=geC9>Z#Yh$k3bK%X~&&T~@t6ikqeJ zXI?#9y-v~LJ-b6DTI`%xZP*H5`Re9)Fk0gm6on}HHJj-SIN!F6p~?)joKdvX;WzI# z0SDda@s!Jb0D^GZ98U)C%)FxW9O&?vf)UF@zr862DwfhvFc95B)^bu3nZ)%ZVbq?a zL&XNTk3}D6EzPsz2z=s5f8NZC$LHQwQ;N~a{`!+NH>C72)}dY{EVCM#<^(o*70O6I zX`!q2%Kk0~Ujcfnhp|e}hc$_X0Y|FiZJ`H#hZn?uwLVF#;?~{}@oiIVf1O!P9#LSD zV8X^y4KtBNZ6$Vj)fI`1wr$1flNZE2S^T0Yt#R6GLAXp4>rJY%XfmGoWA#z=^V8*C7rMp#>gcafeJRZRGqH(n5dP z90@+el^GEEarub)Cubn?U{D-Wo0>KVMn@>IvXv@|<<18?s;ZAT1;lt3-3&O(eGdf1 zw_lYl&z`F4TZtzp2Cz%b1Lek7FnO5MztJF#gx;KWlD5AwvAFYim}9@5y3CK&9IC^! z&UiSrd^{i>0+J?bg6(+4r97AEDq2@qnUR${uklq~3^KQlrWy{eK{~`uFQJccy%H z=mkTBdq$HczU~5!?=XkWq4L)CZZij0~Gtb zJH5pjgGm(jZGH!?Svyf5&^|Qo4gUeUoWtt$dq5lQK*992(lmuK#VA}Pyoyb zq+XG^6=2qhk={sp*fwP&Tt3b(tcL0&o4?M&#=Mnwu;RM&Qd4y%rlV0{5`0VIZ}`#4 zGT3U2=g{TfSiYj>z6^(U;7o3S&CR8Y`n2Rf{-q4BTFJNNTOlZ zNcnd65=qUo$RRP2W1Ao{QHk=Hu4oESM{UgAeN*KWk-Tt zx?se<2^Z+xHBW;N#Sk8=es}5zIq^?(D;-a5655kaXv@c3phooSt_(-0;KUVQOJ}kZ zQa2a9A{)Ki7$Lc=@A`nysSX0fQJE!eBnN>OtkrgwyxbEC!ZW zj0lpxo6!D`yySn#zA74Ywi=EJtKbYY#`AOC|0O`O&k}g<4~@eoyJ@%)Q%5-Z$aVFE zrV6YXD92K@h1Kq1%>pYQ8iUC`Ca_jI^hq}pE2;Pp9tA$|#Pn=EV7T2?B2aNrAdyKW_si^XZ2Xs7gm;sY>Zf*ZCM(~=YtXPV?|`sV#cfPL$o0v?`f>t&d3D55+jDCq-9|MdN~HB@F6Oxo z8P~)F(N*-rT-ND@Qf7V9bm$v~zg~CD^$h=yH-G_%q8qmFSsL||j(n9RhLSI-0KnGF4TXV3)>%?s@R7htcmfM+doL_CVgq(VCk+kIX98L9lvfp9`3 zkkEsvjgNN$QjDA&kuX!D8}mp}vFYh0LHZ?F=2R5EbTRq>b33lY={Gqc%UCB*pq|ey zy_OuDiDyk4a%L2*jQ``&6*~evpjVM2rsp%(DOh9-h)^ci3TA?$nY#hxRd%k~$E!zOX9CM}%I)1%i0Pq;j7+j)&nwhZ`^(EV&;(?3I?&W9x7+8|xp- z0k=dl8fy|B%q6#fC+61_lF?jvwwvZ1DS%_{&-)0#GeV#nUf#b?S>D0Drg${Ba8=L^ zSB6u5r5_ku+VLwNjar}nVG04NGzM8ITOZI0${YXG1%LvJJw|F5P(} zK%32~>!(r`nRBJXpZDteKG?WS-U@j~X-|2bE^sK7?zDw_%(??2*0G%e&Xt>=YNh9W z%T#FdWD>AE#~0fDgq5g#^ynf_fpI7ZRw94jE9qNw|D7bCGUlqi^y6pCi$MoKsdq>epi3@Oc02VtG}jW)i3XY=9_W-yX#$L3Xlli+NRJMRcO9T zL?i$bv&U=Meu~!>P*h8Myk2A3lTHrV3?vlxVK0lQD~n6G_zf4qK~RXLqSdc?@ITFgbu*@vAo}s(vA#N<2 zLE>KwOd;1@rmt#(mc2+nKAU$NOt36+tU-Qtg#?Ki5)_MDyhXaQx+0Q8ze7eO7C zI<1WJa6R1}qZBpc{>*#JVj!8yNlp#U)4kSGl?F5eAsQVwus?8xz98)W>M#zkwG1fs z;NZL907-w&K!SZr5PXtrMkK^FEq`jmF4|e&0o_aA=5^f2F<@hB!NZ8rV&t;BZ zUO<~O5-r6?HJI1Q#A9Mglgh;A#n`gWzs55T1=auwj4qv(Zuku#rUL?wQ?O4@>ae

yXTAulk;b_OAJ zdN2QF%F)GQM2w3c=Xgy>y4GNY0HLq3N`2W<0{~< z;guZ7?Fpb;b9vOY!jnfiQemMpYA0ZWN2eU8w~*?Pto=x$^RZ+rxWS7g+|(9Iqn6uY zp~4sX0bCLw1BBjP|HAX5+xRhE;?{lV8#5jTxNM)21F8Kgd*l1nTi)1tWOJJ9pE0EE zs92wciUfon+CWbKA}lB@l~X>? zLt4)$Vu^N{9uxfNN(N;T-*-^|-mHG~NT?8sHlDI6nCEBdL{W?B;jy+IpCb%3RWEq^# z%w+YW(mL{sK42@n{5=`*A++{%dziKkR%6syui^;@SDtaPMBJUs z3dQuaL^1Kr9I;!{-i$BY%tEhhjUT-sR__+7z*A8&(*4&EO$GsrpbP6&_SBjjq8Wx& zJERDv`HU+{;PQxx^K%OxCQ(0PD_)A4sRqg7QsMr!VMp)=P{1h9C*5&W7O+{8SJHBa z-!QTWzCfPo_^Nfvuz``|2cJUeQyMC60iaPtW@^8t?)|it@ zEzwc87q4QsvZSX?5xx9U@SKxm0K`V0v4P{9f8vA5VF&%yRvWm?qVI~vXnW1!>0fDj z*%6IN0>oMW+RB`LSyn}Y!4i2ULG*uSgtWi^FL^FLWi>?PoOmw}W0O?76~nj%ZwlTo zaC8_JkSs#heAMd7us9|qY%0e3Y*>??vAo=bbcnyVO-WHvJ;C>zJZ&Sy#uD z{rFAVaMZ&bza&A}cGIhQZ{q;M{!dSSsy@>n918G}SJ5z(mcCshAMSeY_cL0yd5?P8 z6BNwfEB#y<(QF(UGgij3B*SAZ?u2GxcW0pMZ%UIvf@M@Rt_DA~|8*o6at3z(^OPT2 z@U}jC})dG+e6Rf3nWyoG49oHXP$JWm=036j`G4$4auwC0txe6OUm z+=lWEjnN2CuHS;GjOgDWRp7#zHYe{X(_BaO zWp0Mxrwc$vwX>kO4NuMNE@hR8e5-&yZo>{4Ufg$Oc%ri=3}w4c@)&a=f)olm=@&JD znWqx~tDiWwrp1EctB&W!^)@O+NVep@NOfhdAGbQ<;p=Jm_1meRl2vS6ML{6@UK!nC zKE>BEm$@dg$A4px3>xg)3lVrgumIHfPu#-gnC+sbz_798zGAIpn{}6hTgH~$8o&vx z>1cNkxpN8v0}-=9{p%oRflb4N$s|YyxBLwvzpjJe4LVJkjFKy$(Uxv~@go9ueD~n3 z0_ejiP{d*aX;vj4W>4D5oSNzmd%#*aU_n|=Y~88)2&5!k0>*-K#z?v1}8_V%DV@~^lhyXYnF-Bb`ZgFqu6b9g!1wQ`u zF)_Zg73hY}dkY{DxUYzO%jAn%Qlyr}bsmyHzhtEx|KkRX(E%+Dui50gq86}pdzBm< zr#@Id^W6g{tCkn3|HyP8ku06=VM6>QvGXt2yqF3jS4@Tm3q;DQRi#>H5h6j*2~Un$ zA1Y4)h*|UY#mX_Hu2|U<921c)rTlW0Jpy>SI6LFW&N!+7`FN{P0@E2fyq^C z?JJZt4j(~W#%vNFiSxl z;ShjejxSA*!$l%95)DI9y=h`j;fWR&wLKB&xZZpT@TwZp83>3zwX9$`F%l`HVe9A* z+ur=R?UTA}S@oIPMQu&yt8mY1UZha5P`M6Nw~Rh)(1cqAOHC zJ&fXe!f(eL4>vkokdaOw;A4hn{>#V>VAv}9;CVJ9St;Y$CCWBDN&zARKYErr<9YqT z%oo^jOCO8RtSRrW_*JMtRs`HZw@s~cp86xlcIdwA%UMR|%J^B5MJ>Aet7IxVUZ)oKi{o#Qf!gMOJy^NGXtz3IfiPlu!&OX+%A3{t4bx%M8anK!x)`WMbp= zhgS0h?@jN`HqI?4)1|Aacr~v0;cH@ltcabqQ+lC%dU@KnjomtbYBsfY1#^3oQ~$uBdS+n#_95w7A@!7WQsQEs zf3K_uf4Mg#s-ZXfkbH&2bZ7droAtH{sqtl478qU@5B@@(2EE0Ws=@>>Dcy*wPtAsx zlCN-a37qDdds@2;6|tj^L_#p>!krDh;o)Lpia9NOxV4Y@d*MTe(j>KLl~T))h8fdT zXs^BK9(Fm7`%p0G&^vC!)y0q7l5+d#x*A2lxwO2RT4&`D?bl|pwR8P#^70U^83^$G zsCvP{0cGVPLLZP9vi`!}_de=*Thiw36VwE#8*4}+TXT{6CDr_Z1@I0AKCnYXJb!2i z&%O^q5yRqNNeicVcZe@u;g7|muJWFBm{fzn!&8=7>>_o}ALk%#ba*Ciu1Bi z#oBXC$cnY3hP))kjJEHm3l<(Jh3g23wE%^`P%IXi6-PXeGGw$*hczKr-C`|$=MiHF zpU5>a#&J^166R{ZOCs`oimM#+;Z$o9lZ`&({6M4igj zud(cli6&P`iPC6E@>uN7;?Zd>oY$usa)fxMULFl4ucNd8BW?dR4f0C*&|v>So-_)R z8iH(wFqVmbDs{jbK1ZZLq8^HR27W_OhCsccNjxFlFh(G5h!STAV=UuOnVa+dn%Kyn zgyLZx0~5+5#o}KZ2A~iOhEz(OJ7)IoepQ0>QMjp0UZZjtjG?VlPhQH2&wtpS)D|=a zMasN45Td0{Vd7LRM$=xju(qWbICiZx`!4RemEo(ALcY zAUI@a>sFz-eZgDD{wUi;NuWRIk7e^`mD4JxKu6a9Lo|$}RPf)KV>Z6ZO7UgupNjYPP!fTre7P8 z$v&#mG||yjfUK1=C(PY!J_%T+j|)2SgDne&Mo@an)n{R%i-v07u_DQq4uNP}!F##1 zw5ce~^Rsyn+#;7$?ZbGQr`ZDek>(;-Q2$&foz>L@zK3`28+o*pBSsqg^svEYuakse({aiUsA@+THqyj)~lcf6d&=;Zotot~&X|&B5lbHhJA-zn~e(MGk$Lu8ve& zTCOS@a*T14Gf4Z?5~B3am=52h4Ukpcf5MrkoqFRVbIE2>z^w-kvfeX%_QO6&iVV zNh(<&ZUGM-uZHUAN*4VmR{rnLk06pW!iZC$6Y5`YSxx2#!~-;WxnTM_E-nubHV^mH_|{4K}Jn9j8lQXT7y%5&TGt&)^+*4qv+^hrb^rz)F4 z!#!NEr%?D@gqY5o!|z@0M#8?bB*N*;{uLQL0GX@AAIErLg#C> zS?~#XyU9`&z%%AI=!$tjAPec;pxGT4G~@bcZ2slFB2MDMeT#Z(AW8Dg11hXhimRb6 zvM^C8u?v&$uNy+DmYy$GCDx=)E%5K`k@OfYyH*CI&)jlB8Y4F4*D9*PN~hh+RhpAOe^!ajs!<1g3>6 z)L=AQogx1X{UJW=70_6(PBvqeqLd{Kt(CP~ppWqXs8z3mD^Lg1F6!V@D4d;%`~RRb zx`LUE5DCP-K}xU05K5&NARO>#HpOl2`qD$P(edYS9PSzB1&E|zs3^nPPLPBDc#2Usg?=eF(g4S=_6FRnnBwO&6hP1mgdyZ~~6&iJloxPqjwWRL8NaLh7tSFN;$*ATG7DVQfAFuB=fTb`rl*b_f0|=!=K0G1U-a&i7 z@xbBgJe_<*rcP#YezlS<=I6S%`LXi54vGUS+pf&Lj$-#uOL04Oh4awMWz-;X+iVmd z;j%;eR|aft8o?BPUE$~Qn1Y*s53sBPsf)5gK_7zHdBX~> zP5&rU%Sz1QtIhaIz)p=!KJr;M14TRsI9^});x;o}^h##QslzioEIJ?iBZ45QTW6ui zAD6f_9$SaQG<~q;oIFIvleBK|2__yf&ZqT|z zJcp=hmXWVa4u5XZQEROk0jOPzEdeY`2eE#KNJi!ooVLOV^^i7keo-fWAf&_f)u^eU z9oX>apWDLR8$TJ@uY*$}8Tsa-qa{64_x3_cK`4+AtVR(i&TP)miivXn#h*iuu%|<+?4c^&^_}4<#Xck9(wj3~2yHiHC!qosD3>m>{E*LY zn1``KD1)!E*F-JjO8~c88&SftS6gT~p-^VWL!J z+-uy+lp;5^lPU)x$7U!8uJwK+>O3h{um^w8?(K8p$d*TS=O>ExWoW7WjX{|RiZkU8S2?|e#8#bVWf&DoqO9SNn$V+*J; zMw`7lZ}uufqH$TFo0Dbh{U-ecIb6ypf&${lh@9FJvNv8;u*83dg~N4KbCzxXPN`E- z)C6ksXV@aIq@>~2djF$8H2m;EGf<|DZB8d@lAY&-jDVf z{O{9IU2-oB&1+|2=Heu|(@Q{KV$+u0&Jsf$oVP`2buWtXsl6a@o zlVOH(BHpamtZS(xCj7{cUqgEz>q?&EG4h37%X+f|mw}-ou}9rgQn{Kj#r0bOHBIuy z6AjftZaHPv9<8qt$(buT2z%)Ho@8jo^5>HNV_Sr1%?57SgE1b_F;f44zK9w&}`~w9S$AsE_ykCj8wu0;h$2`CAvyLq-1ds};sL zJ%GDilc@hWbp9!{JN{MaVy{&u{b$8|25rsUK0Z?D^xj&m->%bwjlu7;B~Tp<#ADB! zvFjr6REE|d;c0^2a7gdsV!;08i9sEPADSMgF5mat-V?=68P(-9N?aK~mX6~WUH7n|Jw z0CD3dd1-~+PxQs%R_82+7>~}JGBP5YnK^RRvJa6~)coc?v}EY3h8!u34GjIbFVW;^ zuuHp%oEd&K!K>ujC=hqoD$ex2>GdaF^kEit#0MmhS6*6bg_~=fl!5!#TxsOTZ-+q{0Q!n1_Z9ZO>>>q~lOvB5 zB)F*vtSoc)U3RHH{osyd^ z&u3~D>(VRO5qn51Q@0ZFy^GECxoEP^`LS47IbCCAUc)5_%%N?N|9tH8Uq5X;`OJWHoEP$EQc zZmlasehDGIjqeJ}I6T7jw=&IV8}uyfA7c^UzYJisqNV;o-`oT80=|35=CX7rYqEU2 zdccn>;48Yskh%gM9L;DMk@(_XCHqpx5xD{o|A?oGx|{pB3=Gg)!d^5bAW zK~+SQA%d-om`wc-5wpQ9zorYBJmui+uHj^Idwx=u>Bo+r-no;Z51*3_yV_e~sLKGd zQ4rVK5YBW9)R~N(e@Mm$N6h$$=HG3eetvkZxHMYU;CMG27$3?s{$}sKcFEq&xKT9H zA0Bv5wrq8NY@h7ll4$Ffb;X2Uu*GUBC5d(KtRGoaxlEPd zEn+&ybllr7U7wmG$Nuw)Z0i9&l*ivTjsPEu7-#+L_={Cmd9^dK*0G(s@77;Blr|0R zhmnToYk6k-ui{iF3u#E|)?o34vCA4*3K5RUPXp72OzRMDMdf)cs66PwO!msw3!1BP z-BH5z7b1-&JCPb38b9C%9^Wf~Mym?yOD{xh&8u7=2a2|NqHr7yp=IT_FfW)lojRPF zBe*@qTJ5Zlzou23lJ1af6OEzl{5Hs7S$GCb!MXM68eQ=Hyb;Gy34pA6nuH;T$sKl- zQn8Lr_b-t6D_$QiaQd61gysI=YA;l$FT%_S6u&)wW7Ww-P9>JKtMz^T+7uU}*QOoF zCQ_|F$N-b6f^fq+pIY->N$r;pVwgVm@Pt_URZa-13#2_-J0=!_nM91`rXvNC0ZEw!%_kxk9dApE}CRJpK-KSGISJpj8CnvBV5@Y}C zYiGx-RpnhJHK!AdLI-=VZOAwBVq*?bj(R?vR{|vW3KEZ?YU8ONoyS&Yd{BDsm}*p4{Ra=VXk~aYL}u6mH#xYB_d8 z(yd|a4#_YwN2&5Q4ZLEU$i?KaV`cxUU6M~Aap1AZn{4$;FX%b4XkaaRtu1x|X^th` zN=E5$N^-+nbG>D9D+hZ#uO}t#0^O87Wf~DH-QTaXS+E|yZ`vIGUTyiz7Ow;v9p|7hJc%T6XGe=OIy<-;Uq>7gUT$D zP4nCsuHSOoz%c)5-<#y<^+Q6H6EB0>lpD9eIK4f@%MdRA?&5L6$!3Gp&(}17<#!r; zcfjGN%&Q~NUk7cKt#iJxz=ZE%FVra5VrgN@$eP#kHCz&!0h?nfy{pnfveK~$f1r=lJ z8gCo2SJ%q~=oM6F27O1!Z66o{jIPAq;X1Y|oO!p=Ci&BZjBm@Z6h^E)CTw!xV^DnH zt}09Hm#A*225z35O?m_TIC}lJRD3ljI>ufX6RduJxyrRK|faJ zyXl$*A+(mb-93|#v>?*WesHQolex|s=Wy0-ZDM?r5GKPAH#1yX-)YX3D|~OSP|ju+ zVe~P^l;n~U4EBx@&H=E?du7ud*TsvOy6E3ZeE7jsE!0Y#N}Lj(emE^sh?WXl__ixR zFS_Ywao%GZbJO;0*F%$Gn8Rm!o{g<>oF0zyuTfb2}@s8F>9Y;n{b<+NlJsj*0+6n$w zE2%;T4x|%noF)cLW}(Rfm2HB#EZ^yAm(m239iZ~*rw_C*quSKj4q33;U*OEm=)lXa zq^CnO(n3l z5sJo1ngtJ{en^$=`)Y(b_U0qbKP&t|mQgBW^a`ggXU;4Ib$ny4{4y{;NAYn!EO;qj z8r*WP&v?T~&F|*jtU{jCznxYc9m+(iK1F{r^e(Rc_I&5d3)F@VQC&ibKeS*)WhNBC zO_k4@rkI1_;=?*m2p!UKWXIhGw8g4faUXCbj;adUJ+&-tdPfV%NgA<8QF7Bqf>05C zgdY7|n`llaIK4M@ye@+r1p^Cg!A>~(e- zB@B|j(lre7+*NMn>4dOyT^f83nbe(!kZzEq6g&Mpmi=>|&df=or&;=Lmh8Xn}LGl{ro7yL;{+Ii$OnwiVx zupNoy#M7)jcMWS3YXn*!m}efX)f;b-O+-hHLuzS@;w|q?m7^CZKP7zo4TqHX3xy1O ztJ#Hy=7s0^4=e1dJ7#`=22JuH>2jI0DYH1*U}fW6dcbYZp=^6;kMz}x`%ph@2^K8T zxWa=u?1HClS~mBh#1GEOo|;qGRl8!jYbi!D7*ZJ>9ve{vHPakiUYR8HV7Oi7(4sN} zaTvB2Xw2^;gnn<)O0=DIrw;1$f&@fxa><$NW)GqZmm_Z6#hw+Mk8S^wm}k|;!X@;- E0BOkA!~g&Q literal 0 HcmV?d00001 diff --git a/labworks/LW1/10.png b/labworks/LW1/10.png new file mode 100644 index 0000000000000000000000000000000000000000..0260a2c020fab95d71e78629ec6817ce482cc0db GIT binary patch literal 7815 zcmbVxcT`hd+HVj96)6IWpi-qbrHJ&Zfb=dP1f_;5Rp~{V4W%~$MG`tl3sR$^^w4W) z7P^EQ2oM6_jx)2?JL}$W-nsXWtgK|60=vnYa=3}Ix3MucsybL~2IH~BWKp>T`s1NU-1fNeo)U@z{KxkV@FS2&e zLVE~=?Xs4-ipgUe?DT2h^Yi=dn^Y(6&*E?SQwToiNWsz}BXKpFwUN}3(QIE`&Qm17 z!&Sov87V}V%9I6%y}!Rrwv4h&ZGDh(=W~^q1Jr)@OCr5$A_3LceMvpKGk=|@9=|}4 zSybo=;^WNdX+{MsX5+IvnNKl5J{@005t$(yN*wBBpU61RKxj`HLLMr|od_paWrAF$ z&x3sDFmHRx%g3jE=gu=G;kyP~^W9F+li^coIXR-N&*67cw$k)j^JD}>L`1H+VWh90GypdL!dAN5s#jG4knkupjSfWL&q43Ah5u%l3(L5%OIggby}8 z@??>J{Nd}jZy5(U3PG#p5M|sMtvFsD9<3*oG&xn^{^MR@A34rs>sj>V1zES?ek;i)#U`D@De<*kO&B;2FK=5pS$M~VM0)p$D!5LrqV)w4%c~VF z2gQ;eQ+HXVT)yweKfIs;mze3RN*?a^7GrYAh#c(pb=>`2s2vrn6-l50;RQP{7jNl zZpdiMiI1>>yy$?uNOp9l)b`FsWfGr$*XFNwcl6|FnbrKF(s6wmCo67s!q^d=>EMx` zeBKiDNBH00=+7lOgs<++#NEk-%`poBo2HM$<<^s<-ZnZqFPMbPdPbX;#|{z_67J8G zgyt6%Xd4+NmPNN^NH_)S%Y}T8pju^6<&hgwJZ(5Nx;jyfzPDYP%x|c=GFs;9dMetu zK(DjXuH6l7wY`AGGN?w^Z$nar;L0U%bC^}Jdh5~|9l>Q>g&1NWp{>IRM@=y zUS;i6LVCJ$T9Y3ZW2#74m9TnFdoY#Hb?ezU2J5iMqK%&ks<7TdRQDbBd@?N1&rN-= z@d}e!=N#O|D3J=`h`kxR^nyiV4ouwUOL5;N1JKENxju1g(~agUBPD!81^Uts8{a?s z(?HZwuix~#vQL5y??E|qC0AC2>Jn6jhK6*tw6&97yg2*MAuy}3nWlJeBg}fkEgkmK zh3JUU%6a{o<5%0uB+w|`KfgW4vO?nAdO3@w_p;>!s!n%ss>O5+7a2QDBHjJ5et}X| zDo-dE1oKiG*BZJ>ldy0(Z@xQC`jOPw(4IdQqXiJf9=|pXuI15AO=ds*PPMi4{#6(E zD|v<#H7>}UZZBux-p2iH{wMkQS0|bRsxK>rPF2G*#Gs0e6p(~I8FfCLbPli)sUJVy zWRdeP#VrqMSk^e-A3LG!>yuNNU)Hz1*q1dw2-ntbjiEu8rcd5)8_eDuw|mv8MyFu! zT30|<{Clh-w=7_2;DT%(myi|GE#bOd+qmUuxpkvsT9Z4brW3!4&>VQDM%9_C^c(s7 z=%ta75$L|B3_PoebqU-WcYcqSxudQ8LqkW3O|eF}?<#%){huPp;g8m5kp4lK?7>nC z39D_ywB#%s%uC31wDdZ0`jn^7LQjIIb;G#j(v-_xyL>wgA7qaHUpV~l-TN=7{$xww zf2Ys1A;G9cH91yhH8$E*X5F~k<|Zj7TkSktXo!q?2q$!`zkshk-un>?YU${;4Wg;N zoRW}mPE%8}|2rb;!`JrqNz}uo8u!WFRHf&tPj?y44k)|06cevL{^iT|4;uKt-~Qj2 z;{WB6@37qa!lI&jE@S2Ht~20#IPp_HugaotH~M3H7?mQLc;)m7`8=#`q(;@vl-x8G zG%2)2Q7h|l{jW^*m;1Ngt$gq;-@Y@k<&K+MDNz(6^OT;(4je|3tl!F>AY3~QIeU_W z?;OCdPv&ts@&QJ-<1Y))T)L6`?7UD{8Z;C(7WYQh?@l0Yi8DpWJeBr}Y)5al9I3fO zTU2Y5BTfu9__=1t_#i^&U0Y-6(yAP~yNXRq<`Oj6u15qO;9!jxAbD98^dbOCe8Ko) z>O4K6^=pUw+ayX^o~)~obQ#t>z^{w#Z_Ou(wd{Qf{pJ@)XdE6k(bCeoK98w&C5`2c z0>uGtjd;z#z=q*ci=pA2GnF=Tdn+XsItoKG%|WDoLP$*_bT4IGyB}#y4oN@@s7ooE z9vwoDr5oM=ICUKxDYG(XU|^WbJw7ZbwWz)wLvzV-45DoBb7lbSZC1ZLV925ZIK1;m zYb+Q(K}3!g>UO()D!<{E7ck*_A3yy0Tk|-V?k#}4yu!6RMa=OvODB006mq3Kb1ut2 z?mrCL-*TuwJ|bWrfg#&IpSReXodi8T7#pm#)2M&=BU1kOa9iB=6GTf#Cz*s3fU)PC zln5C;ISN(?-7H7Sr{u~upPsCI8ShFFf&=~qP^y{0WdyL;iu$E5NtzyNx*q56Iro979B5Giz-wZGYl?PME9S+Fc`4&}^CtjEun7DI4hfj61`y_Hg zii@1`>}!wdhR(Qi+&Y_tQWr=ZB|s+tds}zJzd(G}Y1f2X!Ed^E{fAB6V^SSc#VhYcaT*PHQO>DTR6|0w~?37}rPE+9ed z!LH3NNtiyG4XFzTG*lHr@UQlm`snos;}+?gEr1MU`GUhXCV)MFo;fdg_0}_{>)-l5 zkU`=oz|z$WV{gE;jneSzvz{>$u;Ycf&LoHS_$!VaSh28u?IMe6#5!3sgnl_VnxyGp zT#++l3&9ym7+A)N)37T}-Q&jq<&Rq#>85b5br}IW#Dl1P+N37NyAm;?Kk!7%yS+1s z&$C|N!xSe`;q)r>PELVDs<+YY+qXG5IaQpr3{~&`{Phb9y}2j?Z8=OuG4gnKhm(=7 z&Y&@6ElPvheK`u`MMXva)XmW~`b>~5*8fb~|6jbhk5ke1m(f^y6$CbVZo(nzA|TKy8ZcCVTtDkbJLSZ2(gNvTl8ULI*Tr z@cz~Wd}*NCNk2o%H5C}U{ub|`8ujgq3UStr{%G^gj*btr(a!xfFyrO%%J&t6Z&k<% z)*Wa5r91x90y5i|Ruj|HFG6`(o$}PVuUuR&0Cws&P{|?Zr;j&cVY!A}K+CJWgyq(| z0_o`AX$7i)5f(thU! zg!)9KT`T|y;%vFKoK-7!>BYM*(bPcclT*=-^LUbM-rStM)wWrcy_SF#vJ~K;bwiEy zGd7^V-%GwdOg0$ei(Fw+QTpb2?fZdmmqDskGqbAUR)eq_=%SJ;w+Zq6R`w%~A%t!c z>X^7b`*^Ng^mtw@EJ45+(Ghu)dJZtzA7KrC0C1z~;SW_UU0tbyi>wIX7L#!}-|8bg z>bSWlOSO_F(6?!+ci?Vii;SM}w!9QETUh9uzeZ)*1&(%*6x@^P=7;h0WY+ZrFbi zVKXw+-!uW335^du+-yg<0sZ?&xyz}Wms#>uppF{OvPx>oK3a3L8G0u^R&Fi9oGT8X zS_^0?N7pgaBBNWBw3qokn>J$v^yN3B{wXL{iat^n?#2R2+G!gvT0m!I(E}4zQp7I* z*dU%=$wTkAC&K!~!N-UbC(oqk6&yk6X{vN2n!_c5kSKzpT4Z#`IQ3k|%B9q@aKp_| zRH(SuPj!iFreccA9HvA|NC$P*o62Nhpj5XU0j#|SwnrO?E%b6@JmZL&Gw`_RqJuj9 zMNfoMJd5_bF#vzCNn}~sbWYCcvn=9YN1GgM40@i$(qds=VQmYUP*(s6c5PteT44=2jh!3>3o30_naLVZ>z3^|*-j;}Y(lJ-mmh8YwM z`XXb}X2Dd4psu;Zcve!gI`8wG^u=ns^_k`tM3PIKN%_5r(Wd=uu7IsMEgy|416Kg( z9qSJe____Xb@C?rP6n$d%!rT^%Cww+ugY!P7`&5vM`eO`!L)4?-Zo98W>f8u^b?+Z z>2*+gB?Uw#>c0pRShPC~4-D$fZ34c5)Sz`yl_;Ml$0t; zy%_4NSFbuhH0Eczb2rsCjxv(!c9!ML&1|Z_OGf@pCa9!xW+o?J1^R7kqm_;%0324w zE4>$bSQ^dpJ!e}6f$qOFkFA>}g-QnwEO~%By>Uy1EWjh{a^*Fzut@D%;%O2`%gPH)sd%mo0Ch_wVs_v4C7C~Tx>p;a{GA{kx$MwpsQ(%zpm&WUT3PO13 zZ-yNBeg|$o;_KJ1pPB-;PtdSRo_eDYG+N%g2GA@5I3)^@1zfpX>tbr#@tU))DV9B2 z^<9)&XD?AbB-(jHQvMonwaNe<$u;6HgE%2A#sLf;IWW_e6~WBX4hRGOA2zCi#*Wz5 zH*$~4fzdFC{NZ$osC@W7pw96Dxhb+RZqHWQ6^2K=p1iveGhnD3($b}(B|gLbcXQ0lCl1# zeYNz&L@rYFSZYmQ{4|#PnuS&U&CiCSy<`Semo5|7~gii$lO2_o0S$Al&gd{^PljyzimY*W#syH)A z^{gB2g3!=?I0*EQROZxOYhJHlitxa=a2KjV0?ZE1plI`p6Ww%;sQ5GNy$aBf^wZfgc zqC1)YndQsWjy$4E5=*1zapy|;;5l7||Iwb6=#Ks$s;RW08zEipsetAETU zi$*WYL)7z@oY}~fMM>bOa`#Oy6ma4Vk12jW{hVa5h;G3D#5lGE-_4)5BuswyWJn;& zvkzs1wF!k>onZRGT16I~1*Zs__S~?y36}vhMB-jIS3r|+tt8%aUS10z-Kz5YZ6;w- za=$f3x-AAMeUs4&s2GS3uR{ygQO5+-agw-0S9;(_;AYY;-+ZW?n3SY@T(I`OC)D7| zN=?AF;{+-URqs5RcZ<5nq{wI-Pgq$Gp6fX0bE^d`auAp;p9r&%-3cd0YhG;k==JP+ zfiW@R<-H0Sp9PZA>CuB$**`ta9wMQ>0`UtmMjajeb}Y@Hl^&3Oyt6U_fAH1#ptExA)lRL;sToz2tuEY5bG=mOflK0#&VNHh|q5cok}|DAyqGGR*H| zXdFu$y7`TnBz9wnra{E)9Y`n;h5H~%vtt?~slpq`Hss zwQJ-`#ASW*&l_hclwL>JcJuXvsrs~woy3}}=VZ%0qGStNtyI1ib>j0Ab&kD=vlMjn z{_b<9kX=1Trz!Q`I`!p5*gno2Q#wBMsSat#Zs1UVGE!tw`2+mQDK?H13W2y&6mH(FrUL9@1~GrK2D~einieS#GW+t9bnhy+NCrVndOk3>kWIH{ z36?@@-4AmCcK%v*FjorO^_`jz02oOL7K=h)O@`S;n6G>x+ooqu{kh=2bb)BuDRq3x zn#A-Y3}$px?c>mp>XoByY&n&C_7$MbGNnB|ET^g+(c+U#Yrf*KdU^xIw@%)e;?dCz zq~4B1{r;1t&f*@C7T3hzKNu3abv-65D{5wm;X&nWKv-u#p`uI+&Fzg_b`x_t> z`@M}HgB4IEi5T^eX{@Bi2P2fK%TD zL@Umm3_?Yi&5+r>1r|eI>-c19B!-Sv-d$SyY9MG%YzY@g7?RpvUebPl`(+P}D(>J( zDAL=wJhpJ{F-;HYa2t@LIKgJ*LS97ZDXE9J@ANd)sW@Ll4HoBazU{Yfy8|iDiQwh? zL*NmNrq3aPtGF)T4uf5?9Qn z_2yB!br$#(wrk*)(CjhkVm3dsGE0Y}yMcG|i1K~%+d5y7Zoa3`RP4dFmSdRA0W;M! zQEQKT_g^q!%$q^NvJb}DE=G2FLxR}9ax^eB({rD{AtbO-X}aYhO16TC#E2E%(ui;_ zv8>aoxaT^sF)V}+OcPY_8%~AY3<9O0k!LU8?0>_uM5fzl2_|`G_HaRZ!Q^h820qQ- zG>Tx66T0iCB)>nG#LMre1f#a3!x$rUuG5I1&!W#@m9AW~4JY59_3TBq)JZ-(@sXk0BsLTTd@`2y4R!L_;kkot<|-OMuU0=3ARS9fBS(7=67 zy}MIa0cP-=S8?GlL8-eQ2vj2*$I-zUD)Wa`pi2c+G}xACV#FcfRzjOVNbevWMX(|rL^=|X78DXmXt7hI zMj*6+AT81qfl$MF1kWsbX+8}`yS~RYWWeZ!@FPS;IgQ;+|^rF+QLUf^gV)XJv^|J z?6I*zJ;Ulmb;H7YVu{3In2@xkuuS2=twIz=40D7}Tej-3bnE98NuD>{hN7&ul13MI zMNH46Bt>5}!ckXtJ965{bYl;4sRu7S5!8yZ=RI^t;`HgRZl;)@)s2nz=a?0mHzsRmQ<WINV^Vm1TYzC332j2U#Cj){%AAfJUPdKJ`8`*i9*){Q6Zw zO>GFV@4}Rkp`ow*SZ!H=Sw==idqs8gsp`g+2ZE};7oxUD#@oS(>jNBXExdRJ!0k1iz9WJ%3i~*&5_$X8hS7o zY>KeATU}{a*Ok7o;7MSF6d`hBYYGZ3q@<*nQZ?K~ikVB|uf;VsYG$eUX(@2 zp8Av_|I-*Ey49y9ovq{{>Fn%Wx_wf&Fe%%66!$XQibA0%x^x`RQu4@{C-k|fL-Z=t zS)AS7%PX|4&S9~VS=rgLi^JG}&#)FT%N%_o@%bfj`mMXclY$3pf5dn8dT){bN}oBR zE#2BthTITBU53OAUY;%JYi?^1iMHQbrHK19Zx_fLZnAlN(>G-b!tApcAbX|iEYmH5oVHzyagTK_xE@dgT7e|Vcb%k!eFVA z@L~@V+JCLzx`Fuen!#Ts88kmYEVq;;O*K!%3luvv1lM?tC=*uG($WrZwp%xgg^+_X zM?+_Gi51ogf1IPJp<(yn!GmHP&SornFLH#8N$)^!q32Mdk zW1@%xm)6dU)g|(X0#nSO`K)XJ=4e)a{<33fNlCqH&Pge$2Ff>I=dL(;DAdv4-+#xV z6JsYOBh!Y+6|m2W9e#oC=oPK7{)_zj&Xm~4NC>7yAyl<^d3nos8>G|P!LhcRTiLir zd3nHR0m$id|7o>dT4rNobGLNg#=I9jP~6zqXvL&@?B9~}d#11~-Sb2zt?+eEKJ~!o z`LXQq@#e_gil^{=r~|0Auchu*BV=V6nX&=voiA_Glao&%k;s%MPv&NGv}0?apw>js zo;9bsv!OoLL~QyKNI4p;tgQVsyTh<)Ue5Lc45n{c$+CBq8S+0%7C7tQ7W6YugHo46 zXzgMG=Lg`!ue@Y|FxHIq`~w1Nt1DxDaioF5ww3qr zbiLtI6`#{GGBPPSISaootSpUgpO*E1XYN1U z;yu&vw4kP*zt^o%L_}kyL&E@~ztTAKG_ewSRx8N+q@*MaiOkC1U!M6F<$6b#aVq^u zs{hj+xYM48WIBeqRl&Y~OxTr*Y1J_+8pC=H)mTk?W+v{NwZm#79UV_^Zf>Teriu>@ z4f#*LXC>&JR8g@GULK3A7u3Aj^M^LwH{jXI@Vtl>Bg#l!wdXLVO@W6`+4IT4<7X~_ z2wQC5+5Gv-Wc!(&VXz0I;mb`cZ`l<#)bb5su#{U2EcF`u-9lG;4gR|5a|s+}SLf|N zbo>_vf0H?ND&_549kr+(oYQ_tZ)ulQ zfN$^7BNhc}-T2$d=eNZ^8WDstxt9_UM+Ag zDZe}mY9n{z#2aAfn)U~=Z{B_Q_tmY}MD)PfVQyTiSXpXV-a_n4j{AEj`+qEnzvt9K zm|32xpALYFQwoHg8WSKt+7^ib^YeS@bZTiWpSCKMrRe-X&gR7h0D?R8fVaF|^ZdEt z(bM+QC=`l_^SgHJ3GmVskn(jqBmxcFk*$INNO8R@M@C;o7jM4!O z;6t0jsli$eLGzM8xasnCuQm|*MOb2gh4m*ppQdR#VSM>zk3X(=X)HI2e=bF2YR57g z{haBP(9&|EQ#-(Hg6>HPi4RQIoDC9%gYqMH*GLXXLR1qdlS{26xrzfM#@KA{dYPMx zSdyu=k#(gFPar5LRZvOUR_DXl4<41bohmi$oe2hk=({pyL>uP03Mwy*D_H-=m zr{%ZNRjXmosP!S&=`7d0WRN-U`o%1(9h*)HM%DOzy{OXU+AR#&gy3=8x}=i|%EIWT zRFHl)1;Slbe$vL#G4G&&vI!bD$wn$3n9$zanbjh{5cP7=T4@zudFZsGQ&UqjMb9f= z-UjOa3zg-(X|@cFn={!G^73%2Dq9J#{b?Km$~nRcYFFPM!0)b)I4_Si`BTXupYE_8 z8U+mmvYFM<=eV$5nO9+Aihpyv>$hi&kciv=X$gzPLxu4L1+V4e;^F|xx?9Es&|9fL zG2MUYwf+R2L771*gD;=ut2cn0HiE%c%$2q`yQ8~~sGo7Ze%;W@Dg(IwmYQo%K_y}$ z_Z(;n0F{|Zr`?mAC^-0+mOvk1*uT&G7Od@)lUGA&o3qn)<69XKiyls?KfbmYgBRp< zO7VItH-%I^PFcww-}(5<@g<}ag)}6$*B4Wh#SPl0+EShS%Pkdy7i`o*SBmYLLzW%+ zG;h9;v&FO?iR6I1tc01pa{GLd-d*i(Q!^{j^{|f#0#XgZizz!h5q0)H$hC>PBJCOS zcJ}aEqf|-nC}(YM!_ZJXpm}`Ew6Zm%2$>L>#(&c|LoT^1SHl=&NH(d~6`|%gc}LE% zaj;)~Z=*%4elvY>oZ#db@k5{9C~B_tnJY%qB7WI?!_Y9Yag}KNW{u<|LZ_;3*4qGM zm_cQ50JOXv`g4W}fHw!I>8Z@T%N7=gE0ML5HZQO0zlhjexdJ%8e~jU=PNA7tp$+v} zrLy!p_>8Emtn3`Cm9TfL1b&%mw}ey4R((Az-9pLR`n50dITu-S;=hh8E91i~#;u-Tuo3 zX3N@qj7vikQEU(~bGVx2w9KPfTj|3ogxy6SMUR0>#QCb1V305tHZPB-7cxkt?gVep zWqUgSObn(z8Mi4wOz%($d-5cw=*R@b$RkP6X`v&2JakF}<)Eb!MzOvLq(>|^I`peb z1jy%9KzfTiZM;1;YJO!tm9|F_uaDk%C-MtyMiCX%0*ft8UyhIMPMEJPiN^WR$m>9_ zYc!Ewvj-0!lCMS9*4C0u1=u-7pmJQA-(wnSTl22u`$e5K&Y$eFRQ;}+2o@_@INqFK zqV$!ej)sg!{>DRl$_Mn5F`E}|3fp#sF@1N9Te8)Z(dQ;SO*$tK0q*B5GwO+o!!dYQ6T!0a(?Yos~>N zpmrGx*5&}rtL-5FxmKZ$ZyM4bUmIVcFat-}1+X;$m!(Svj7a*4n3ot+{>Mf}Mp37f z=VG_7q1cTnv=WvX!=YvVxQbWZnG~tNB`6I zStu3%gw?oe(c_qrt*xy|Whz=1v_t#_ZP7& zkZ(L-xDfx7xO!SnE)Ap>eR?5RWmlJ>5J@qZ{b6_Ib1CN7*wu&P!_MQak zr0hBPr7N(`XMC(m_k&R)UF=(H^W=KRsLg5reoJfp53I>xZ`*-Kkk6EY5kao71|GBv z$fhtXKtCLnLZePAL?dl6HzrEN`#~0pHiRr^Tx)rZrx}tj9@$M%H<{a|j%R{`#vej~ zD9s379M+G}s-$(Qsi`fQgj85n6@wAdQt|UJ5EbMaw&A+UYr+DyvH2anKQ2`_ZE#fvip2!AM1q(j+sFx(7i##0h1FxcMg|Dt>Hv0)qV~4O8+u3#L!j-L zZ1&~PA#C+mk7^1HU_sU6HzpsV0I&1xNzgH4nl?sq42PTMsGguVc-z_IQQKa0=Oypc z<{Axq8G}X?i@XTZ`W%}<>kNAnk8S}c1yRYpq-!4^`AP8x4Uz#pOF8X+vlgd$;=r0D zsQ=Wx9k3zELK?xi*bH<_DgsJj&hv=*rfpl-9m;pQSgAe!Fz1IaBjdDSZq8QG9TfXp zr6*qo?0h(sea05Xc_QfqGa5-HYpdS4{r#5cfoRI@@7k{w5`-s)(?_5aW~_>eino0) z)Nj&xXTEg4Y-AyXuu$ZEC`MzeHP}k;$CgC?99+hWfK6w1gfZEen zNSvhL9fo&acYQm5J3xww^-WMaAi{VXP(SkogDp4IjAbG=gqySNOK!;6kNijWB9W`f zBc}DHcCS2H>5?6QQ=(LUf6G{xfU)o-#1DLlObfH*9`7wncBx;)3{+xc3`^mvLh1o7 zDz^q|))$7vo5I%om1Zj|R zY_F{qg$*Nvha8^l^D_5y&Zb37r(4^ryai42!up4wg>UHC{(2E}#Ob1!;#{D<)1`C7 zr~;6wpTL~R`QszLCHCi9*erhbz--E(?qaxQebc!ML8Xta!Yl_@DW9hkRK}7(w$`IX zn<_7nWchEL`PQ#G@wACupCfc}y(}W#4rJhbcEVA>oN1SyU2GFi)SUc?D_@S@+eXh{ zr|oQdpI4GwW5a>{(k?ULT;w7?wnG`{=RS@<#NhgDH)wcYm6RH$+ESqj3?H)DpV$

L-+8)e^)d?ntJ*#vd+p+bGCDt&B`U5b7AAOp@6 zDI_mtgmqFJeIKmS7P|AJW!FAgz#FHHZd`#;#+n)$+~V@MdX}wpJ-!$8B~%n{^cslZ z-Kv5pLq1jMANKDSxjmoTCwdg!)mxIA*F@qs(f>a0;l=vCU1_Vn>YPQ<#Py;jr{S>P zRJE|8XOnVGQPG%(zfZTPd)p!&-Qa+8F(;cENYZD*4!!HKB0FCKYqw46yXvb}3wnC^ zcPi_a9)+#i01Dsc>Ya&QZ_r%r(Y<7++dCme4+wjCq=!TpW^YD?5W3ajfaz)edPLT$ zHJbKQM8(ALt~ceFd0nFNCE0l2xh+c7RN$`IZe`v2Gk2}rqe2da*lP|_=fx}a87_C< znC-$G$CqNjCN&r?pb0~d1w{JrA$f#W30zDsBU6t=RM3+ z+&N&V^~BB0s>A^~+%aI*w>|hxxsUBG`co_y^rqv-djBdF$nhe=Ar8nlzJD=iF1RSR b$8grhqS{+HXAAr%1Y)Fbs)yFOa{Ipk);`?6 literal 0 HcmV?d00001 diff --git a/labworks/LW1/190.png b/labworks/LW1/190.png new file mode 100644 index 0000000000000000000000000000000000000000..0e0fc258a10f1014a07e2a771ebe0bedf158e0ed GIT binary patch literal 6473 zcmdU!c{J4h+sD6@h|o%8DG_40%T^>y$(BK4Y-1=}_82D17)u*MvP^bG$iA;Jq;6Zb zu@#1tZD#Ddu{|F>&+q^HoagzS^Zfppw3Rm?`uNz;OeZ*+{_RJv1)4E zz6U{c#^9mBbOgL|rer>+VWbn=kFlf!l@Iw}xU9Lcg{#Q>fkb<;5MfFQP} zg9lx+Yqm86ogLM@t#bc~#T<#n?S4OR^Ab)~m0n9ZXkp7(p`hX|{Q-Nzw7Sm$z zcx?xV96=$Wt#ZhXVu(P5{r&Lw-{AzGn~xe&m<e}bHgqT&sC1`#l*$Y z`f}>BG?Any}w{%4%B-Rz1wczl$)m1d%FjOooB=j}e3TLR#@;x+^ z*?Z|L=j1a^i`S%DO#4cgl4NhDjt7-4O(N8^fikn!k3hu+9%5{Jec_h%NY!H(@22Oh zdt8uSDZEfwzos}-kEy_T?nRXZl%zC;rd5=rL#>Qruu)nKoRA5dXTAv%nvO|I? z*$htl`cZv_sC^Bjp<^C*8F!8hGc&WGoE+kkZi=|B(r%f!X<5q#r2H$yv?0ZxM!sig z=$SFa&HQY{-PAO}%*c7TB33{BPU|YU7l}1$KMK9he$P>)lOX;0;y}WifC%%Im6Z>M zxkfG~Wb=}QT=yYLf9|v|bbbk3YAt3#!XOJCyR|aielhZf04EY1g{JhiDjk9-aoG%c z0~Y*Ge$rL1616AG2Q8xc6n$D=p1Amy%A7X8EXR|Cey1nW(%HH9xmMU7965)nk&%&} zzW%sD?)rP#AO^^fgN_Bd!(X(2T|6ufoxNa5*TD4u@n24s z2PDfnC-^P+jwulRm%>n+d{A~GIM#D=E-@aR*VQxO$&?{bd_Q)mPe&hiA|^IgQ$;0k zd*hW<=c1$1nZtqi5r|qNLqnl=djBe3h4b*hv#D2HQr6##tXxj#wyU>yb>U}co#Owp z3c8zgO`k*D_~$`k1fQwL2IBlw(Gv+VF@mkFttBobc`j-D*Wco$)FrAXPVOIz`t|F9 z_d?x9Ms{{fxb6O0A+A-b>&9<|

_AtG-S!d{6^$Yi?|JX< zZrBVKAc+M?g)v`o-Z^?@fiTksc!IR%->vLjQ+GISZ<+1FN+zOOs;2yD4E#|;?U31|G+*u zXzM6bhFRfMKY@$t5it?G3R>-Put^eTY)w&MYisMOWdqdu?ORN4L5DsFQJnt8~Zhkv%N!ZZ1%HPSBhdiCqzjxWpFCB?Z|K)t0&fC zTnSS}pFgXbl-Wm(cn%_o9}R@P7aJLcL`5}6{kNU>Uo{1te+{HdR8kU?Us6K+qZwMP zUd<7__mD`~+;AnPeT_PZXXBM`QRl}_#5p>RROugK3O>bvtYrQA@9&1W<0d|D=uYu zdTOc-e27F45)yL%VT0d7fIczE4IovzrtU1`2{Dd^bw&sBy+OjH9^<=V92y#G{p(9e ziB;2)twwhL^HO%5K=v~=5@nrt#OTu4nBh^2_Sb+gv8}47_1KpgJDHf6sHmwu)6E|W z(_-a-+{FJ4Qlv@yYQDFm`C)&UOUkwdbimx;mkOYmo9fM3D67$`#}5hU<$hbtCE#A_ z4IyExbsGa_uC1VDcJ4W~x3#@VO5)Mf(OGkJco7i(dhgA}$KWhl892><;^FmrBBz(m z)mhZ}?45A?wOYp+vbVe4o^;&V=Lb=^Iuy;lrU^Z*W@cg%&m)g+k;God!fkCcQCi1HHJ;Jaskl)|UKCyeDL^wK zEibzd3KT#1%DlB+NtnaGW`a}jd`1X_ww2Yp?KY$$J@2kcXIB?SeKDcJu8R-IoTouP zz0oa?wiwan#U^&`jd{{!F#F9#MS);O_Bj7tS}QO*^F&48iUqoWnvX_wi9jwZNnXR8 z1M!r>!UcHbS{Z7%Zex_{3#GZ_7&gc{eba>wdY86FB;au5 zk?K-&_g0~+UbDvkBh0={ta4S4)Q2*45-)jsd#8Tv$yw=C(4G1gf6;NUz!Q7w(%r>B zlgUw}-g`Yoo;5cor>*e%-Tfhd01MLg-3{f1@@sU^FBNe2hYYgp$V~V7T}MCt&}k+5 zP@;8jic$yiqX8|n>f&eya%8h;VeUCr043I&i{m9|@;$=T;>7&e?mXrydPa}4 zNd9tvZOWYp9#NoSYhCh2??>&sD_zH4&eOCsHKP(;YFZ`LB0F^=Chi=n6M6Jl_{T@| z_%qJ7hmnd?_y}FefjjQ$fqN+eb!TgBJGc*Q4y7t^t>+x8^b9-%^u4v6onuw6y|n4w z3b%$Mw^~DAnYTxw6(E? zRn54qc9iwP>Vs za=64MO!^V=Hn*&kh!~;(O|9{yPVLQoFHSFW`f(3P`7{dqHX>-udz#mKcWn^44F>EF z>=vSucuRd;qz6$*&g*}N1f*2&;m@Kk(IS=_tM(hx=LBm^zq|j-??^4!t79v zVJ`4Y!ShOQ!i}FyaG7J*`Wv++>(JISpR8Noq#-0a&U_UrvqJ+~x7^7#YWbs>yt_ z%C-Vzt@+2F_NKPkh{BYNjEt(x$-|Jw{S(6G0PYT~r&Dpm978GWEgSWr!sHaS+vzq& zJR)~!gM>IB-+$~lX=lC~(nElf$^ZH^mEb5SC1nsNiIM=i7u}zW;E!LB2V+C-&5Cpy zuF!F*p5!>-KQng7GfwhM68diM`yTt^QMd!}spHrG4LOC6OW@mHho}S)MU$yxfssyO9FzqJHxMmz+zI)95D? zW)>DCPUQ5P$eT2cgHF6t!OAV|Mvdh7L*&|qhOsQRSXM|dr|^Dof0`dKvy59W*xp1% zjSqN|iE4n21X(!5-O@*{drVcWsSlSs;%}_=8C?%AO1Q_b@*RNky^!4>$Cnlat!tHG}j@J2N7p%bSHin)N3lh?fI~>L- z$@ZL$mwP5sIUN-Gdr3)25P-H+%W_0+0Bh>BcOL!ZUF5Uo zK$tTASKJB*EmCG|FU(zZ0?$-tEAKcU9xvyb@-(=o-@0l4Awoh#Oe`8qbSsFc)?@Y9 z11T9yjgKdzSRqf{H<@`jKXaf2aVd(vHQjw-=4+IG4;kZRSlYP4gD*^)y1JM^@U{il zUzPzQKGgiZ{$}EI$J;Bn=Iggz2uGj?+D{IPjhA};H?0W&3h3{lB*-}K5UsLO{cDmu z2TTCV%-Wuw(JR;bOME zO8#9xf8)eV<*|Jr$gyIexK(3(Ji5y(E6Cc#&n!S=TMNTcw4Tu-t6*TJ%0uOj(}RD@ zb%dW0Gio_Nwfg>{H+y>kheW}Sq3a;@6y_%za1`YL9%rER@OJ}HIf&CXTg#JEgofx3 zWo3QXx-GB`ASEiEm>sUvrEM%oN)mRK5&kP*6V$>us%0Pl`ttNzmE&2(r7x$5^;qAn zadzC>_uZk*3Q*$exr*VDmK*x?UgMviEe|;swgOv@J5HAyj6cYR5|(S0 zZ<*+F?ckV^$1fC^Oc|Y|zf4poM=YNl?{F&vh!1;Lp;@UGIU7=@!<_@t#fEms1sNF` zD=lZOF;^euNc;w}Zc)!S565$Am2>djEk+DlD`qIgrMY@Kg-W>-Qlew3JrLD1NZ4C@ zdelU*w)-AnJX=+#XqQ`H<3hUWK+Fh1of|_Z4wXIneN}+3GwDGApxqFGE6)v}LAk`laxylpI5I^V!VAGpA2i+0^|^Gw3e6#Gwlm!UiOWaE_^);6-Tx{CqQ(Z*$$G#>Y`{{_Flh*^bG6cDi*pWONMgqmFVpwB^Y2HAU_-W^2a z48T-ZP<8{U-XM;F?>>liz8mxN4~l(OI^>Wj*8F5@Qor#jDb8xN|8SUOy@E;n zgoXE4hUj|zU!Lyu_2c~5Red=;JnP#`A_34MvBXAu|J5c4f&4A0d#l2jqV7XK!J>wG zGn>1Lusi2Ul25jf1Jv+nq^dXx>@BYBkMDNj_I~@1;w^kM55x|E^o-q(2NZodQfaSB z;q?q1%JpQ=T*%s?y85nF%PghR(d_i$rQ`*_W~|rh5@6X82BYM?&Gli|_R9LT{I{vd zG^J9$kqwZ~aNEOU)?gtpZ<#f`1U$d?9Gmo$wVwss!k4m~$xN~wPn)Ex$eD>jZbe7N z*&UDbU11nRVvt2%bEe=fqVagn5%+eO%C)qhMLIzyoN@4CW7Edpk&E`7bE$4;84g0+ zHDeOZrai8Du6M2vyWXs{cV%-a66cqp6c-y4QMp`xm(5Y-HpMA={sIr;H|FlWw2}m_NVh;y_ zam}tryYvFE2?D27-#(=g#AMR!07q04H>tZJUkK6bJMJI^zN$SVH9F&m;1%V;s%vl7{dQ^U6P2ndM5mJLd-ZD~BJ_GNvi1GsL zjCnYlSz;*@Nw-GF=XvgS<`i6GcLOXe-6kVcf{#>hJP;3!4}e|1?C!drz+Rj(G~=!V z6X$!B>Sp6nWotff!UlOfQmXZeoa*OkdN0eWQNm&ljS?{HcS5n8p}z zA&++NDK%(q;6tYsUZ8ImY|jElK+AjsK3Z#vx^Xz~`ILdK;-rL2IL~!res2$|BmO=s zmPe8^vV30N>hs}^=2Skgu_PE}APOzqd(=2Jv*5`i{11DmytE&oGFMI&(K5UL+THve zNh*n0M#~09(4PwQSC)CT+7QKr@gR$4cRuevVbDQ$i=P^={(gt`C<(!RXUQ$fa17;B zk-=HLO0U+|K9KIk`>}-BxMp?yQFQ&lPl{CyLxC zIPm40I6d|hwZ~!U*VlQ@k6G7E5j7yQ{r0+@(HpS0Gp$ssUmX#IMn4A8j;H!0w`7@Y zy>;u!gYDi38kVe@#cxki^0|zZioH{*yDymTg39X>=$0=YxKK`ZI>Q@Il_j6?a^}vH zZ&KbjeVYv8-Rnr=BcV+9Uapni+MT8P zSM9D3BVSVdiBXk&-NL#lvq!8FxDw8o7V_SBQUqG;0jFCX?3tgBK;#gJ#z3*ACRpjUP(N70FA@CHbnuSF`VReT^~Ha?L_>0*z5S!;=u!lLIr6FO;4k}EHq!D zZqi==hQCO`i$64^A4{ttt4k0y%~X*7jMb5Ne2a;hXZDDg_#xyhG@RBfmtH2)Eq+l_ z0Ucwf|7Pplfj{%HJT02V`C{s*lTTAdOBVY{#<|tztMKUuGU`M!&fL_yufb1sgQ&=? zJf_H1Z%sJ(L^PdmR?HNcS5Hk00iU{0zs@j6<}sDYb*rc=KGxOMooV%h@bL1MzKqO6 zMk0o6&`wNFLM;bLwjU3f6Z_|CcGl_O}w%3{EvB+#jNI=t3%7%sp8(1wnwfFW@=J4d7$EVZA zYin_0JxZJ{!KgS-bZm)bFkbxW(fsu3(?@Wc`9Ko0=VrR~Sew7U<~I!)Ow-2c4|g{n z*9ZQ0iDw1GtXj+8f0T7B`QO>!yp(=?&~zXQRnvI=dc53NtoizQuyS#8(dVGsJWk~K zAkkD5XDiw6RB7TtL_|dW%^7UG##Z|>Bbik@?{%@t#cp|<1w=tX0iXNgc#yO7rTERi z)4LPDUtiS)_NpfjyGf08Y(MH&S*`r}Q7+pViqoxVKVQ!+dVMHmyW4IzUypyjHBY|_^!WKhSV_Fd96ox$@lV!sBiu0um^6O@G<%se3qVLfWomEf64bGriS=p zJyCUCcyl;|5w=r?jfdC!GvLuP|Dp4)2*UWpMEa`}p%b!ZD~rjZSM@tZ8C-TVT$imD z{RFeE-ly*_M|Qh>`j-TVzWAMyf9A7ixwjR>6ndcBc- zbYPe5d#oTB>WAAb+N|Ywb(XwA1##~a6-L{P(K?HT$6 z-J-YBR2+?%(G>H(Ot(t=-<`?A!<*}qQJLU@RL;1uF*VInJ>pa&?{DEmSj(ro)AXXE zMwoXpQ6w96JL(U%MzW$<%j%K5yu4;weE1U*5-c)su=2AY9s@jBawO8Tv$GnW>SX+m zi)>}DZ#n9!s0P~-QR9?sC)<9W-l?<~$veVoUm>R+9x&$#Z+?9E=n%|U$J!BP?b!Z1 zc@?u`ELNgkF`j)+N(+3rIn{Q9&v1)z-d4nbwQ|=z%)i7os;H;;S(yLs`XtV7 z%aMCjIQzyY2n{b~t6!9Q^s4z}B++v7i{!6XzpHCZJl4m;sO2>N2VgCBO%y7PxA=HC zUsdu{_+Gl;>)nd@XKW2#NqDLZ(V+YyQK#O5IkqM5ZuzScdw~5Iekd&~t5|w1E-5M5 zwfa>DN=L$`^AVGnC0u{9R#b;eV_PwqB}A)KPuG8=>P)8(s%Bl;-9fW2rDSt^eYq;R z!5xc=`7k8GL0ivr-5NP@9ASltc_jS+=i>jw$dUgrxQ-5R;J@f@Z3A$!sO z*GFODn$pt2H6&&s6RWwu#RnruUP}n(?->qz)GRn@-mkuOaY)NUDmC`yh6(p+AYC|JA zOf1F5JWmI^A4g#hI(m#!q1gBj^K05&MTpomnP+Y#B?5}YsmplO$gX|#p0W*jWnJeA zobX?>VqW{f*cG<_6#PiLytv%@f;IH$fY8v-jb_4|8TZlTn>XcrTdJ7@#u3H~&+vJ#h&-f_x0!pf#jPJH$Qn*7n`1nYugxo$^$4%`9 zw2ek0eX-PP{cwFG2j#Js(4LQp%%a1&W24lex27PrJz!(l97?B;xpmuerZ7wou5lol zCt|HVJ%XT2(qLj4>Q&>Wy_+g|Yd?z@#y9r6+x=-{>owLzUPs^;2en%gEDL{~aOiMs z3R9^vtlNW$iJ)5Z2Etci7!l&@9Qsf>OXy9B5@vSWSNt=ljf2^}aJKnb4xMir&n{Iw z{k;5`tbYH{CMC^p>z01FEac8%y0P+e*Qwx8R8CGV3N{y-LQ#%l7=_Y)v*$C6%iC;J zt%XNa5x9I>2urqq>s}a0jBLcK*LcS5DGH)ZOZDK<>`5KZEJk<=HSE~4ocSM0&G7N{ zPOZg(SuOrMytQSCZk71Jh&|d-k#owa65SxEd2eJ?f(X~_c)+f%?OC}(6)$F~5avp{ zbvCosuXstU_!^JKES*o#qCGtJCnVR(aL*3OtdKH)YoyvLXq}0KgWCRREyZRW3ALeC z$t6vsZCQgXaw-Zl)*?Btm3#(1jLCj5DTE8MG_xh66c+ORCTnX8uda%b)-cN5vOUyH zSt(A0SyyM$JA=zKa6LlA$bS25{ov$Zm5cZ}txx*gm`3iWs{GNFIfkf#e#S3s=Sdt^ z?n$}ZhvdsO=4eHaOkr>kBA#E3Q}r)q5AlxHFliBp;&Mg z-=gM)=M}d-QkVv{F5D|Bh)Q03c(z^eTbA|WXC%ssmfw8 z;!~cb#9-9kJGg+e2~HLY9fWf1bB?8sTDykkjI0b+wBhE>LOL8O_tavwVf;_-?yt7V zhtmsAoj53wWN5vw#dYOL)@4N=>wSUaE5w`2h4s?-8J-~npz3z%CfG4jbsEEN&!hf4d{)wx0?QroyYN!AOHSyOY-h{z?O=G`l5ZO#Q_ z&-(c|^~9S|o6oA3nR%*b@Pf}jW_fy_{&^^QUJ2!6*VZjcPmL<@VS<%`hgUpw7 z^hFJZuOk?L^=gu1{0S7|Fm+H8qDJ6EMYKXng(3fwQkv z0V^nkC?p_@_Ts$ux0H?j1bdG(YZS_}5ZIy$R{WMX)Au#?9m-_ z2cEtpwbwq4OqZ}BelaiK%@`Cu*dKJ6sOji0LwI%L?0vgGZGWDaw%dEO<}UL%HjB-x zV5Lc#knRh6-1g)e#8ykEU!3z*r|h*s%ZUvem79x&X&|a-X8QBOoJJIp&kkA^&iZ|i zD7|Rl!iQ6!+M5wq++xD0=Nnb+n8|JL?an`KaHHR)oM&7eInFXioX4Jj z-c1+VoNY7fxoW?;XeQD$)tC>8%yN-FbT&2Z>PXi@Eft@-jUy$}apw^r_#pvc{6g9Q ze)}9hEOoom{94vsULd=oG?eZKQ=|*SSIc5be0X91VjN{u_x^R*laoTGNR0$F=xYS} zkK65zoi%@Sz9OUtU_Vn>nB}(xul|U7Be(!=7(U<3;42hWb)t>FT;&Q<)-d$h7Q3v_ zUC7r8AKqTk@kWToOw4C|q1a8wEZmck_Lh+MRUQ<+-votMezvc)BlW_aFG2@*f1#POc1+yU zGFR+p)-o%aij=N9(t&2%4~_M3Lq#UK+8}dn@4Y9Q(X1DP1W`^zI29MOVq>fR8v;Op zhzJ`41a8N0BD_o~R3u>Y*)}ai)uLnxSswg#x~MW4RIpvL=5u)%-1B7CO3v85;__%V zw4Dzk+kjWg2jQEl8Xn13J9Xl+dt%Poxbe~q4H+~0HOw-WWKqmr(Tq*A@oyl;W)`;^ zxm1!RgLw{5(bv28CK*(ZJG#A#oGXJ^VC2E-9ro85!3V@m`BL3wPS7IJ4Ploxs z|7wBtfE1?ReH$D_Wr&vfF}`MJBnx6bk|{_g~9#a?rUs8`qN}>BW7ND*XNcp z>ao;Q>kISDE7JMXb?Z(Y-LWxO(FQ+f3pg9r3GgePDW#YIayLaSDlnEx$hqhav#$qW z$$8c?)pR^hW@_rrOw2^tpmyaro*^T!wn1c;sCsy>zbMBZttbI?G=ig;UB9+(z1FR& zlB!2kyOAlC)0m^GqwejbtQCE6YVht2bA%U!nh0QCR{_|EFQR@_*LGs-l++0Bf_G^~{C|c8gl)?T_UK)sR+L4L?a|N~+RywKA(MG<5DJ z=E-Ukvy(G@@t}1(_zOUl1$!)P4=$PjtMKT~8K4i~WXF>Ew-dyC;7cXI%15z_ z_cEga=L?=u@t@y6Qp5Qm*^n=%+~z$dYdtZ?SsdR0dFsE?ta2f1g zNp$vPWIx(uYeybdmxWtS+@cVDr9;V2JxF0>?448A_=n}~`KqgC0_6H)E9*RaW%Yvc zLTvKyPiGDV`zlt{=J4jPXKpuaI|v6;MT>(T3q3TqOHw(U%XDeQ!adP zOMdsljrrw&v+|ABc7t2Qy0$i16#a}+Kh^$}myr#VT zbZpuJ=<)4qLUWu*5%j&l08W16ze4Z-P&)7V%zsu^UWyM^G8@cjD}PstgX>8%6FV^5 zrxf_xrFq%4(;CVI&NN7KhJEx7>%N28+(9q z;tU4R{BXH_bs^{XfZtrLJ?jC+xuqzRX7i}=hs$R`0(q7^3PxML7K$Wf+JVd*oUV=8 zUZPud2nJM%|NSkMf6&xJAJG%X^0r%Ve3I5;J6r3=rhM8JLFACnM~=*F!lH5A&#|d9 z0%hClS3)TYCX|lWng;E$HHNdxqu)UM{<)<;`$A2<8BaCOM0rgW+24sL#Rqd|omMI9eS{}WOZ|O~yCB5N zlzix_$5QVUXfVQG`HLn6S5l~&>W{4^M~AUSp5WRlH6N8coqfrw_p#*R5sFo1sn}xX zqZN12ZRJ}@n>%~;*U~ynF40G6$!o4?D6cD-Z8BhquOwi&%D0CwsB-HaE{>tHZ|b&I z&1lRQB6N~^HZ|S&g1!aUQ4xZ_X?dNJ*?Gf8BX(%TTfqku>{+{IO)AYSL@#Q~Y0z1b z?Nkuz#d!7G*MfZANs_%wMGrL6KHOefH-jLtDpdHU$JKOsqtki$bYtkk4F@P3{q-j! z5X&n-uPkB4{x{EhTbBc|oaWvZ-^i`o>9neuq!)7-HiqkH2r!GIc_&07mG8uf-7-B) zU``88mgZ|yD`9f4rhSV66B+Wtb!*iNase)yENj$=j(*eaR$LMK4+sYeF%d6iG3TIkLi0hwQ{FB$ z{K+n!bg#O%&yBXICW$ORtT|QKhnva%=%V>xZ7TEBqBP6QMj!j==%_OGs^V1~6^o6t z6Rv!u1yH;SQ~ZI5whC~2JL4B$x{!(m{m=G6k5IA2%Z*yb>Ku)o%_}3?N$?u?w~Gq6 z#{NAOR=u49+nSX>3Y&nU%L-m|mGeUF8c*4D_)@o^)H0BSkVgf6e3Q*LY#n0PN!=-DB} zkV2~4K92)axb_UNp)vj$$$B5%_p8f&gWeV*(1$*)_BJWEOM1e84dH?9!@+mzY}FACRrqU(7M+j~K+!Zqj^}8*3oQE zh`<`Q?&c#YZ4AT5cE$NGJxgw8$7SKZDGTjo8Zyjp5B*Fi9zz1h8gtR13o-jVXBL}~ zuEiR-r{rLagQ}h(5kn+x-6V1U2!8bpLKoQWdklpywlr1mL6H>4mv4zAYadlM1ZZKg zi}}yY|1{73@NY*$Vnft!&FrZvKTGc67(qdeytCEQ(YW5E*_3A5T{bK#Dx<2Y-piJqii4&-g0}jXn;uFLZk} z*PJg6iI>Iwo>f{0>==;x>}`#WLLhn!^UIpL&`M%4opGAcp~oFc4vxmPM8Su z*XG5umlmyQ+Ir2+?rz1${|<#`O?w>BG?9Y6#teo*9By7{e1G!!$>*A)ZDqrT1z66V z>LPyIjd>{swes*3l>FR(Jqadg`-z5Olt|=X=5xjUCr$e}BIV&ILBv;4j+}E88DwBlObL`y} zAOGAxa3h`=R?s$7_*kaWXtcl+lHjtc28CdcD?&uXYvH+J$u+QvTpJL*JO)K8n;IqH!jlf=~(^iK^12tJ7X)~K0MJ2@rkW3{v1`P zlw_>0o%u4!16R5Q9(>8|C3_Y6bRelS-%J~w2!bmDIFzCg_S^2A5`k`PEHPA5t0X*? zs{Hy#p&aH(q>Hw=_@+c8i{`R!>i0L19;+neFFNbf#C-(evMi>8X$GrkP^R{bnP7)? z3;rS#je0#a!_BBG&O6pGKrM)a2mH%hYo(vcZ;9a zBVBtm83`*L7yRyK%JLloDVYo@RnHF%1mZG8>`57uH=5s{4WVEw4qvVc$WgBFtmzQ+ zw5~h4v56(BE9DG8Jv$H1*`b&8!>Enht$fPQLuvnTy=w zbMKlnxyq1OTy%c_m`(KieqkOqeTl;~Z2z9!-gI4^9a?O(9xgjK5duA{vl0$$`C;1g zA;$A9!I`$m**K7@4f2FnZ$mBkWMclTHc;Gd$Z5TDq~hg z)A&Wvnzh=4!F<3y%=K7_3Ta(<0=B+W!=&3;kt6Y~iA-`8xK~P$qr=VQ7OX99fS9DX zqRRRykq%Z-VQrw)Gg+WxKT{zg9TGx^W!_=Zz1AC-+L6*`*?C4kLNF4T4P~^idxB+3 zvI-vZZG!+iE{byCOAG5k=e;#2s%pg6&Nu&uzg+9-3>Mp7v_kv?ukMmvhF#S@<3k&sw>zs~KIwcTo^tfD2E#@J!=0-Io@`N%WVjxS9O%8HB+$#-k`z*(C|8O%r| zP&x>GmEB<-ZEdQ;o&TnzBRWLTn$5&?;6W!5L>6Y9J7hU^Yp?T($A&kE4JHwHv%)P< zOj$g$x;}7w=s}L19w8BDzisrxu&GvuelUeS@#|gn{Dr+mbY0eIZd@;u)KXoH9wTZebTt zATvZxcYU&rchXNgN+he72Z9tKewEBWc@xo{z|9-;2X8xEmqolm>0{$s01G=v6-Kyn z?C7aV&X&Pz=rr)0!iZHbxfw6>CXjIUpD}42V)xfWR3VbW3}2qD z!wVi)6~GcK<(pa-d{4qoOH#`g&K#JTnM{Jp&IGHZB_fjD6w{PYA$PMc$k}oqoLt*)vlQAU zL`d4{y95(I(6gMEjfz2%xX{l`jdPILOx_yc%aoMkLDdIvPmwW^&y6^-iX@@2y04=8Ebk->tt~@iVy% zL?LdH9K&T%jL+S8&-NNW=Tufb=e-1LR7f^Ek6pQ$JeQs{p4fE-QNry@pGaDnwV&Vo z>;zs57H69_WsBMEnm--&TDi{sITl&qIWb^jI(V|;_%CWScUe@JF%qAhg(92gM7FLF z$G_Ko8oyS5BBr-s0;}% z)7{(x^e>^`e%9T(^Q2(LwL`Zyh&$9qLQUG!U_{m0*uOE#iwa%l)A`5C!uJDbk{l;b zsL)~SOasE%IHU1|+LJOsHP7@--Sarh^mUi{XkRWBhMR0YW;v{goqLsX9x%;5gZ{E6 zIbf=ibtQ<)|JFCXdc4hDn@H!;jl=#E3!l6(sI#SJIO}}OI!T%bi6q?1-NbaoUFX5L zP^Im4SRe--$+jD7a+0mIx*pUlBpkUrsO8^`gETY;7I&V^A*1Jc7QG06DbKz70n}8J z=0wl)Sw9`%$b>m?j%bYdr90|z+TpD>b*pf&U6Zou(6$ZQwyRLWPy0uhtKl<=pYps1 z+3Uh`ouQQ=$Mzm+kr?mB-@ti4J_>iHbBsLvWkG1siv1LP0 z1{YO4DQmsP^YYUs{;k-p5aCDS-Gy#R{fO}I+%?}yy>bfFi^PW=UqH?pD(n-rvc-I@ zJU_rGUs#V&_KU#|W>5!g2l&KmpYpV^#d*G}S7uG_%}YDx_wsFgwG;Z>?Z?D-D^aGe z%_^DcS-k~^uqnQ~Sg&HH<7>}@3$~NFvEvOvXchLsOaHJo>n~yUe#hPu38!_k4Otxn zOUIVw2<{=XC1v;nO<7;9e^sv^Mw_Qs&Iz%&G zfumGDBFEH}oJ>!M9>QLcDIca=FEal!*yJ5%&c0^#ArjXju?ZnLon?B9tet$rG_yqU z8o(GAT02#LvAi z^0_w0p6#1L+OZ=4q=^GL10xasjrIV2{aQ^pW;>~bOlJr)n$&I($|IN$Q8!LSOUh^! z1-tEDjtkk0MBzbNL|P*&YWdPHN_&;>Cic!^a}tGzxGZc$WExR8mu@W$4@FPd4zJN- z&>l6X!UOt!$fKz=XC8)7sm?q~%}SbK{e9QsA%#W^fYwjayKm==W)o*j&CZiMHrh-4 zTF=QqZZd$Q`#`xv^YxAL>GxuGNIdTZqywb51J&V7E+rMvtYj$?+~zwLcifzMGyd)T zhzoafhQ<0zw`xb7elQK1@W|)xUG6va4{_10+k3dZ+BLUNytZ`2d*XyAj_OsyMmc*~ zU6h}*{|nr2!WBVBdJ!0@L3TSXl$o7IT04!95F?0F0;kZVDo^$|F=GLo*cL#zS+)?F zqjfRO$YM9x9RR^t88F05?hKHy@ln4)@I_=5BC|$PwalaoHgLIY>3>6DN=y)h(O)W( zlKhb%SxEc-9&x5LICBQVJkMlg<(~ZxVW5#x2dBnC;dGtCeM2kofhk3Ve@6Z53~`_w z8w9VC$^9J+SZM?Zz}1$?2GRB08{j$MygUJX@J)^-sVN)eZPn`KwMPEeS+dO{a3^Vz+6bG4XS|KU4q{r_0Eo0PUfP4#~eYt zAeqE7y0)Om8V!W&hv@#w|AU{4q{FF-yYBw&mOG!#TIWjyp>B`oqw(3#S=cX(wwy0U z0o_UAyLvuqM@PqDAAOvTejJY3?Av-S@Mdza>AD<_R=Yh9TF%FSGX~-5=^GyI23kO1 zNeP=R9!+`6*^}GbD@O$&+dX1=^F27jv2}K?ktWjG-MyB9!zV`3dG3<_)ip%V-E>nd z($L}IRsBougMu7;2i2jgaZz3s)%MJD6Tiju$OMmKLNjVO;k)v~EoM6)pmrdI>GRvF5KVFQ!n}h@eU7iA(i_%c5|4Vn>G(BsLOsn+fZ*BO2G9XPe%bkf?z6Ru_ae(9L z%NPX6TXAit%Vg4dEY)%)QEcrGE6jUw;jlWq_kVt2ut3+EM1gYWwJ0SeRa(>jaOt$c zbt~`953MlY>DR#C)cD?34(KNPgppo-&E?I}rvvyZJTEc%2_#=OewS24@Ij@GXN zuEBa)#NuooYjWLEu^rA$=XcDm1B&e;V%lGguPiC2y_kh~UTZj>SU>kkJfphg&Qt_b z?s0u_bWE`n7gPWd;ozWl~)2TfQB^7#h?l6hkNL{fT&2WfW`e z`c+o1%AtoPFGtpbVY@Ff-nNjhB=GS`PSY=>qv)F1^_t_rqj^U@`Nh60ng1vBwF1y9 zHN-lnV>Ezov%CdnDn5t#aIxEqM*yP+K$*r06bQSzy24pq+XGRi7R5C*5_}z}%d+Z) z<6fTmy2EqKSemBv5Ia{PDLiGyYWTAP#r$%6kaPdD)bJXQ-O@Tm#(?tHf0%$O*PQ*W zX}7ep%6mIm)LZyUqGy(TkYgI%F!tV1N6(CJ)+;-X5D|rnKs8m2jN2?Yx{yBc`Kt~p zkNKyA1ppbOahW0^YW<~xwZUor(K(V6RjwNdTb?t?GfB82&kO3Eo^@;Ql=~|Zf(V0T z+Ea;j8hr1{6CfgPqI&?yjhm{cUY%h2V~i18s?qf?;NNDvL8&%=lux)$!=m53YAA#O+aHQ4)8Q3@hN z(qn|rSXx-fyRfck*$rXWARdxZLA=XhzTUYWUOC9+4%bOnn76mdKpb5Kjz%opx&?QN z#Sd5Z)i&cuqoP-ADQvodU|-R4j$R@?ZQ-sNMg%@6vNRlo0OzeN53{-Ix1QiGwvu}}!!EkL60B8+XAik-Rva&RA=5-I~w|KwI_P_Ol z{>_ZkanF4!KRJU?8e$n}&EzDS&KG^gTm5{X``Z(gyjIxW=le0m+1{9-lJavPnYFYf zE3A5UJm#DIeQp7#oFBB^MY6gAzu|q|1E*Z0P!Yr-aRUQNhsK@f)%LKdIhfZBZ?df; zV*0EJ9z&bf6O<0;T}Pkt@)Gg_f)7NUf`yUYQ@So4X~rx!f_J~aTkh=%lc9eOOpQ-u z^wL1gvy6BbhoB%ikp6|Jec;^9M?Dl1veTdhGxSAlX|8kj0^}c;ljc62K!mkZAnIc{ zRcXV{WU+bQr>At@^s>?7fbxw4$<`Lnx)Ys6_8|B#6g5IGs*)oJx@VDs3UBL;!K^344? zzG<%Pu4MGgH%svN_m4y=JW`+L*n0W=-{~&nN=NI(Di$`C5K)WwX~K~^n3C@`b-cNj zavslpELad}kdD?&yTQe>+F?O&4lXeCF{qFEqy1cUe64U%Br&U=4}=gOa*|&5-^9_= znx&?sgo3%F2F}WGY(dY%b~J8aWFWWOCn*SuXVqoGpJfgpaxi zLG}!DlV98C#e01LsdQ`F`|V#i<)kT27}aU%*hln zo?wW2aajnTD}SO+%bbple+^$JslMNb4PYMv&)>5>*XTTrB4u(AYu6d;9y3F^f8P(9 zG#IqZsjZ?6hYm!6X(u;~nt(NKZEs%ELMOa@SY_)zGEqLnhct4v0XFA+5)u-kucF?Pv^Cim%mtuFo5C*34XZ~!<&fw69QX>44 zear?{Px$P}jC}T9YU8jh(NMewHfW;mw?z7I7R|38ajAs*Xpe`6lnaWA6ctredVt@y zv;`NhcjMWAYkvl6j^^UxQo?@sjFS@&)FC>+K7ziTd=8TG=$s22Ol)Q4$)~MTJ>XGR zCt_5ygVGa$tn00qS3D2Abax6N61fy&ADaIz7Qjvru47fPo8bBRJ3TccdM@zJ^oacq ztgvz&@l>O_#CC(RJgHgt4(?S3Fw!Smqom`j*YEAhPgFzVlad%*SDd|b;_2m9Q}i9$ z5l&uEU)S-u&;fcdWgE!hh#Xa~AXs+biBJ6`P%Yox%ge}uina?(x?=xxFzZjza47hs zL0$XV<7$5v>_{rZY`37wb1Q(JEVq#ilW!|Jm13T}Jlv~WT8(5a`}w21RnG+eO7G*& z&d%k&rV79GIiq2|T%xD&hlz=3>~q>_U)8}rAsaFN=Ne<){ES+27tMzsNUIlyBfP9z zgSZcrgQs&4h%jU$3zn%8&O8*gmv{x7uHAp~-cNyIoNZ}b2eKn@mU)8Oa~Gz?6%A~i z+V8J=x=b!GU{4u6Cf#Z}Xl3QiHFj!8F`ISff)o=Rhpk?My6GCIDkmRAkM`@53CxJR z_{9&qi2r#M2n?H*!iTD^lP5zB)#x&_@@K<>d620?}G$sN=T2W|J06<(kL; z#I&whxhq4X08eN6u-Hx?0sjVrKZY-iiruj}bLl=>b`!e|=_*i2EGZ1k#d2Hz8Ng$a z3pU71gDWGo*E+r%2y=j^SDzsvEYWYP^qW1QMADR#9#?yH<{%{KbE3lJhGOsP!vY*QD&k#b zAVq5sW(#}qh~8e9L&qZjY!%Kx+4u9~L_0uiK3t9B%ronbv>D5JnC-Pm9{uE{;#m`@ z<`>$>*}qpxVT(Tn9`4(?Hy$MsxWzMG@yYq>0O_b_N{c52O5uT6pWD$BOT{`xJ}mot=5kVqMqcfptUa`c)`h{#C+~VA_o*0Tn*#fPq%o zeK<@+gu{hBU@Ptpqxq0_aAG++v@w`E=we#o_puX)%sjDd?DI?80q@$X(><7W3Wi?~ zwor@BI34tXV9nSOgHXpBg?G+92+Bvqa2L!i=!xTurCZ|Kj+rpEbQs0p2$sc<`vk{? zlqZWwqk$+`6%GqRmm}24@XQH-J1+N0@;XK4tPpuc9PI9Bi;fYxX#-arVEzw^;%Jm_ zFeHA3;!>Tv4JZA)<7J; zR?p|ovBDJ?M(vG$vN>FJ=7h$rm66rR4MGzFVmPdHgy=N7ePdGv77WyIQ2E*+9E7JEoD6x7aRvqXRLDJm~_}_u#rsXYOz6AdH^(w$V z+c(-9pKTnJwR^y8j88i z_wi$>dASnMwZ3^by6w=ZS7-1$a!mfI$ACO`bB|S7{0>G65eF&NMyS)Gb1J<~tTH_o zz07uq`C8&8!`1IOb37O!t#Tvw$zwG*SxLIXD?P7Fli#n#Dkmj2{%^7in959ybwcU_ zT?qyykP(aJ=Xq|CG~f~B0A@1}BO0;nT|ou$vs>3X>)F2Y*@PS6gq5|ZYcv2M_f;rt z@D%p2+U`VE(Fo8Tvkdq^>NgL8v;6=x>IyK@@E8RbmzKUlv3u~34Dw%3kKJTZ%+T|Z zF;igpMpFTniip&m=N-aN6I`OlxDj1BBeVdjBqardo){S`!5m9|&`%?L+((}#;!|4_ z20_QbkkFL=ir*;wAJUcva|p~_Jgk?1Ju~E;10I)e-W%%)xPPh0yp&rS+HAwSdn6G7 zP(ps8(_=xyR7w*gsF}=8eE(AnhaeH2S&3)by>kd85&AJai;5yKXb>=9z*AA9Dfn?g zZm2$U!lQHV`94?^dT%Iv_61xEE&hwk05h3@6K$jWUL*kHqyRxmwSBlL5t)A!MkDX2 zOyv#AcdKMzlzh(M?I@%MA3?cSp@|9xU-aH(Cr?=B^Gz|#{txGbgZK)pFI=vh%7~s1 zkSx}?WyNUxn%g__= z94bVZpp^O#IwP89s((X=M^r#@0<3&Io{?B7y#IC(H&`Ef)iwdZL5AEJhL>7l+TwGb z^6Q5-r!C(3&rha6Pyz}aphLMcW~tfPv0uM3VUYIVGAkQc!4}A^Gfnq4sJmkNo!#$` ziUmjYD(LsdQe}vBR^E=@21Y?18lnI*|n1~y+EWgm1X7{F?5!vNhJ z&|9PS#n-&&Wtq~@?$|0y%^zCB|7vM)rIz{Xo(2uPzXyo<0KIhg_L_sYn5w%`+pZtB zmktflTZ6waNCWusHTX5c<3_-43G8=>Mi|h^69SrZ%s?YW{qX?cF!NH?)wBO0Z3gf# zluD%3)Unhe-s^FtYc6hXFB&}#9KZ`514ydY04`|`E(vXkb)DgM)}txXHufV1>8G+9 z)_`N2k%bST(kw&FE8?|Unn0+xS!jH@->^lkV6Z9V;7W0MGW(4JEctG30I33TWYu!V zEGgO%uFTAU$OU`?;?0NljU|+vzY-CM8(R||`>D?fZ#!#vVEAQT@jJwjAxA!Q2bsPb zKd7Y^nsL1B_4fVg~N9;-|rj!|HPYDU6 ztuOPaK54SSp%+~vdf=jYNp|2wZf@@IsHj2J=xiRK(*vD_QA{xX)62whn@&0OS?Ii; z)Zj?CVOsCBRdLZhy+x4WNXq;ox9zcqSwinSKnq(0;QzRQ!DiHi@nR_GME-%?J#a6t zof@lr)FCC(*Qa$Kf|$V)vl`8gfy3=UL&_synd}4!KN1LXD*(>co;fjX>^>6IMORR$ z(9%iC!fz_c6#ja@3xmL308*8u)iD4S5w?j?o^oIuMD&VHQHNC7&GI0++ByMFjsw&g z``fo~pe1G~3!=U1IJdLkbWmGMNzuHait54}py?05Dls09tH57zgaCmAVo)fml9CeP zZW(Arp>xUn^?QwZZiOG{DYrLQ^mKGcq=s(zh^!q=BX%oR^(7G)29+So2tU^jsKitu zu5G#7p0On(KgVIdLO#x05u_*pgIlOI3?Rmf5Cr;~cfS=0LUMq;hm7BW67+i+3Ijt8 zNYmCJ|4p=qIE(@W`J`^?0|a5Ux`)l?V%1N`O&S5Yv6(1{s5xs>3ua1Ez76c!pjSYT zlJ=JNqGiWejBcrnO)<3iYB@_)(Uy?_TwwFrc9?TT{VmLC2VUyO`)-oT&m*(2A^~oX zMaM^p8>~K-l#=S!gHT?>!2R?~nyjTYF#X3an?&jPWf3c#1OIKUd#nn~adw!3JkT4|69*wR^ z^A$tUhRIlY20kf%Y=Ga@VVvX@rDghLE_on_X;UV|L7v7T^B^8o7=@ z8|0vpBohk|zTzz7*bKYpyzOR4 z-x~dkW(c+@>hov{!t9-Wn~#_(Ui5IwbKu`J2f)B{J2&i@T~O~`X16a8fRAs~4!7iD zDVbLVJP%EvaG*to0$^=81-!b8b0;P<3WWf_AsoatJ!o-nt)n<5Knj+dhzH&fHEq8! z!dD6YLFaSh;#uzUii470%I{V`*aZ**)%*1tZ-pj3XT?O&80n0ROcVi`Qd(b&SBl{MN-0bJNEt zsTq<5(w<+7|J_ZUo3d`TO?-4yK2{aTwqR)&19|tWMj<9bXhQUkrSVusx@nr?1P1+{ z0QYs?&YfoG~h8%JvQ+`m8FUVge7f1zu>JKl z{%=n+2>VCCO4vWsYOY|UgWb$6dzes{#wn=LX=23PFWnd%l6!p<#n$C!BzsoOyRgs`xC8HR&sUEd%I`*FUj6VF9|u` zr-CrYSBj8w3cCmaChU3`8?shVO34R`BW>5~n0adfeG{^9t*iMoE#aZRc1u595XV}8 zW7q2I5PdpUtOB5g)Cq*{Ek^Cf_H0dk8fLSz4$2>jEWh1rHvwQt^|miK_fnxe*M4kB z5}s#y9_Nd55={H+YnC1Yf*=54FYR}PaQKRUfnjpL+IAY3v-KjctHuq52-3(+I6a`# z#AQAk67mEJ3{Qwj0I7$B!+?pKmD!D`L5|uB89}Oau?-$Viq#HXcrDODrHLAk=hwZW z3xH`8=uwrM+wwkxGas>&GbVEL2+BmWnmjVxdAG?6l;*q0H>B^7RqqKwrUW1auC&ho zs8mkPtAMT*k-qapahgjz%B&7|rRO`=r6Gn_ZkIz)1U82#cO_W>lnAuYgdsMS@qDGk#9C2c%&iBBwnW6>L3gaf(1NYH zC?Aq#UMJLZjoLOJ#4n8mASTBH*VZN_+` z7?SI2z_4jApCpga4euq7bC5jqL9;W@Ql|gv16P$+Apiz!Rna;Z)1nI!k|Qyne*3B+ zL;!hRS;0Jx^K=|wm-$zK*8<$hbNLQve@CFtbim}e(sFPWXn)BnEZ7vapt;u8F|30+ z9g%x^@IR+~M17;E6gMQ3@hcf19gPX_xS$gpe=E}!7ok4k3t=vTM95;k2S4)2-2Q!} z`4w;73W*su{#B7Vz3a3*Mqx@8v7QP5A5l_JXa}97%cmKQ8R~DC0)e>4WZWuTS!Fop z3YB~Wh1)^R8Is%T80aC|)?#WzGR*y85qy5}mTu1lD1!Wpo@+S5pgpG^v-l3Ejg=Ji8$!T zKs4DWF~3Fy4VvvBe>m>#nQZs0Gn6qymX9`bEwd_TQj?=3(19gu@&^Su><8Tu*%5qft8@lB)Z@2_!nXT5aVY`@eZim^#1;JLwi zW&|})2K)CI7#IZfiBk9o8;LC*scDp!pBde;e{$78>}S zJi;sw!|`mf(W9sSmfkRvnG`GB<{WyzRzWuC<#r?DLk;`@x*ia8x!)5Kiseehz2V23 zT5QK_mKqgVNcT)-^Uof0U;i6K{}*!vnEB0-EY{q1fo@eGz+0dr_0EgjLog0HHUg$M zDDsO)>l<{>>4;8QdQ3y`A@^Fp1`l{ppdBiQK3U(`5o+9(Z8q0$oeV^Y?ivNs9}NaKneuaH8)X2VFW=Vb*)sD^*s3(+z7vGa_24cb8;D$IrFAhR%4Y7vUPinNaNRO#e z;Q!>b-mnvfU>4F@(oM73*CB?}84M@TBIy&WRlbN)fxm3f4T!46_Cqm4j7O4k-H$Rh z2eccxe)P(jJ2s+*fQGC42@rtifM#`15c#_Yd;l(!zP@I3eNT)~(1j}gQjqJ6xHp9+ z3#Qwmll&P%XcEs5GJa4k+2dS;!GrtfYJ{OJPA3fDTGgm%;`_3$b^PJRi=H|A zf3JnUXTGTuo~U$*o_QMwiUUarfFkdMc-gU$YRsXPg_8=(*^1FrkSV=24VBiht%3PQ z`OW&Zd3U(~K!xefoWuRz15CEmxXs8)K;RS5@(?Iwia(V=cL3c;&SXo`WE3?iCPw_^ ziDiYEJ|^G(lsicFNePnBZVna}Ob|K%;dUa>cGqBL;k6nPFILGK1M>9FjM=ES(PIie zyHA2A`}J$Mw!;_&N6F%O`0r(3A9*_~?at{y{WwV+=kgO9K+Z{e47Ld-|8kM4<**n+5Ac)qe?w0KBZo-!Un(w+kPx_O>UB;}|#` zXDelpBuPWMqe!Dz|MpNgCSjPog*uB1g`9{NsbsNqcpr6>(!Y4|OYh2%gh z!vNB#)KJnQU4k@7H%JUH(skZ(?|sfb*ZHx}?p){GcakTjwSb&LkJDj) zhsulEAkeI6Lx~epJ#2)JQwPU)%VZRbM8B~>v51XWN92cRHnEKqJp9A-0>;w2)W&kd zx~J>SIhmPJK+6?3+&g#8)liEau;UVi%i>F}3-M-@Wr3yzIYB%-SZsaWmIPk@-dVy9 zf65JNiVH!h^Zuv&8K~%|nt=#!R~h{OFd~O351x_M${2y(H(9TbbtN_JSrm>~n)xZ#*q;?hmwFMXl$@6kn$d3E$YyR(ChMZm2Zkf&WHe z60#88Ry04_oF&5x_nnSCqT8tW-_S^zB!Ac@Qg#D1*Jp!jh&51&3m-h+4RU#l9 z00Dqc1zWt=2P6_b>3~r0qY-G)lupfS;|l}`eee5nip!a2J!>|c%HF- ze7pjc0(ycApu3kFw{reXSb*Uw4>UdeWh+H##*dE*>;i+3WU(@irUD-qfs{wnhdi5~%6=ODgwbl9aLIwQiZ5Qgx{(v`;raA`r zHjMIGAZrXh3IVT|jn{U2nB=6Stb?~2bh95yyB^WtLS2~?axm<3Sij~o%D5mh>MR2; zqRRUptEhnqkl1Z98O#m+MI~zW>BW87nww!~mn4peSe(xF4a~j)ms@@CfF=S|2&od; zi=wvzrVE0my&MKQ+)@-WSKSjysIwvHSF!fHt09a{5?+OPbVR6 zw!mD-po&UpLD#>m!;z1O#E?x(6&fuxByTyIqZl%7p8IWp+*Mt$t9E~CQ7GP^ah*S! zY3=#;#fR%a9L{8Exn;Ips56t8-zor3OdKAb+4=Ko7GVZ z!HVv*+t;z;l%%)K0{h7vE*;6~&T!w5aH19`7Ega?B zJ1qZ6l-9O2-F#v?{>H%9FqU88kb+Kx7eC$)_Q)fM1n9su%QbxaO$=1kX(A>H5ZI-Lb8Rs+!f**H36nu5D0_XC)vGnTq_Cl$4sodS; z0qe=pyK03#J_Zr54y@}s7yMdGkX^tG%=Oex9SpvK`LnWa8!y`@NXzj!+v~XBE=NXF zGSD-l%K8}w3W>iedxoTGqJpCqA_F=JhT(Q)EvfCRBR&>~$F7Cpo5VlA6utuf3w&UjBbI}PfaJoO(gCdp@fpMY~l2YNY%V6fj;^^;G zF_fH;{dMgSY$6VvZbD^y^yLAOm}MO_meU8;nHv*mA(THXLQ)iYO5;I*#HCLSn#s^y zNNw4hU3~D9lNq0PAINDT)RwEK1O9La+RDampPsl&tp;|ETA0Q|&_sl;Ep~$maq5SB4S>Aq38{i@tfLpV%S^L!lMYht8B~iC6{Tn%c zj8TBjT-_S-wn+qR{$o=;wI)Gcf8vI9c{*>x!wrYA*W*b^flb8bN0%>tjuu(raxJ9> zJ$!bBJ$^g;`3QMdq9US~8;&-2N14l$Q59}vw?x@0tdRz3-Ow%vO#!ng)i{(6>Y*&Rt^-enx z!QOhw9WTcYEQ#Am274hS;ydu8bSA|zf8ZWu0sDxz)YHjeQJd!{}E8^bOSp zLOx3c+)r~}k=IP^^@LWcclWvpn|i)Y#W6r$)jr_Q-DP4@^zLLBz2GQ69nq#n(AtD` z7so0CYZppMXk+Q81-k<{DGD?v$H>gfTCSurc-M}F57fucGr{&B5QDi248?gzV>$o1 zw0fA+6ar5BB>#+iRfgYrfn4Zl>|IHoUdaRg^XrR9&R@GxPN{AcW@NF@2G-JMEWO51d@mg zH~$(5l%i_Sf@yi&qvz8CE+dWaG>g;(!^l z=PoQzWUH5RjX!Mti+DSKcwisdEaq^cZn@(w1NH}pSp3@$b*>Z&R8lEaiFzv0GfX-O zit}9yFos;dXb?~-Cl6;Sdd0V0oy1pncHz~f?@O#IA9eWd&RL3wT8g^Bx~y~9y|VUf zWBp4%XenwmVQvCc$$kfGJ!4lW4S$(G?YxuzgJ=5Y<#OlO0CrSOmvPH^&$l#fe-`g| zI@-s*29IX`(G{<&_&TyCHni5Z3rhIUH__yGd&wBw-hXzriMj*9ixjnp1NEoV=?kK{ z3y0-Zdg+v6@RSOmrAe-DoiWLkyZXz%y(IjA*JPS##AE@@;cJMgq6&-g)dua~+xL+% zbClO>Sl2D?&BI^8E*5COuvxZ;%ciJAZ-g0rIs-qHpzgm1T9eeu)n}0osTQ1f{;jmx zGPhkDLIQl7^#X@3X96x4wmL9tMGh%wt8oZ?Km@X!6Ti8(i=LHGB_b>S4fKlnnlNky zQC;3@L5+IhU-hicBk=Zx?b8x!b5U14Ii9$mLxS?dbDiFtFdlIDnrCx)^@Tk zjC2tH{0gQGIEX3MygN@-mqk_o4o~d_IvG0#^JL~lQ+$FS;Aw3t5MH8=sdHtAOKaR!53qgtZW~gtxRIEUi zy!vzLR)}OtZJz(~rG%s-xfH+dGMv*>i7Bm>e0C}x6eLvsGA$46W>Ww}NsA=R7rnQr zL&C#f+eIsQcnBk94j?hm=H)3o3W|V2?XUT6v1^@P;pSmR2iEzMMLUr^BF0ayd?=SD zplb^CSt2Eg=Qe=NB$G#c}hmjEt_De`eN($~zVl4m)=<~CRtY2(k@1m$v^Gf9ytB^*MNPtEi`k-*5=M4*<+u8Pvx$h05AQ{o zaGx%P&jBVj7|^f=udx-ln+t-cy~YZa8_rjw@eSr=tvRYZu@hQm(;iP>25FVpKdc_A zpXd5?;4Qs2tW@bilFA%vI@}{Tw2&ND7nuPDh~Y8NHL<=YfNhQ0@MRs|q#-61+& zWbmT{p+?@?x>y2A)C?vL1;{8tnup+B>Q1D*hZUr2(y`S3z~aKeV41MJ@I=~JSfe7R z3-MRiCPGqEsOo7ek#0$k>5KP*!X=>=iYlqfe1Q zw6e+rS~?(Sy6UElqZMg=i9kH&*ScQtZlk7FH>0e2yVk~>=5i;E_jA-O(=9+@{_gpU6&LpR^OquwoH86W5D(rP=PGXq; ztmf;%is8$(ZhV8&AsfAwp$F3f|HR3NoA0&f`UCGr6-W)007;V(k&!=;nl*q6qoiTK z*dsv9oa%E4>mjm6Wnl@L(2pVs*Fcf<0@|p&biBfz^)NINzz66>Gov35W?*Zh(b>4P zuofye4T}>#tKx|5Q2U(d1a8ENvi>GvPZb8H{XTB2Trn$!fhKVxfe~hgW=aB)Aq{2C zpsDv;_Mus=2dYVoiQ$hz!o44vp$&U@PVse2e{y9PEF}sLOIa&qRI|4n9eKvf`!c5- z^rtja7Rw6f2lh*CMqL$tHkNEi3y0ok%l4ElhMv3p4i`o3-*JtO8I4-j;Rl(T{5qqbh=_g@2kzDJX+{oCO*H-x zh71S?&)vn)^Y{AfdxE;lPqll;pqb|aH7rw`$>F4VeYi(-)4R{(l)Vo>xmyBc`-8^f zd`}b~O$|<$VhCBFpt)_xSlUqaBu}3T-onlg-5>N^=lV=&uLEBOT^R9l!MU)3fb-d0 zkLuhtmW=N{7+)dBkMa#bRS(UR4LAS0JzA=f7gSe*AGHQTpkRJC?~#NvgV#TnVNy@r z%51}FcJxwf@Stz`-7T22IRpNZ<}PR?3$oZ|i3nq+XIh9b&OBisY$o`aX)5K}|K5O= zo!pqw)nKIvHbNL)*h03~7bnb))xW5}Cm&Ntb#+KyAm%_KsVt z35Oxy0_F>O{6+gqgyAGdK{5<$Ex#jbpXMDFpiZ$32jhs>v3VNk*tnZNYn7;od6x2j zbQ}WD=PxtFX+Zpvx!wR6deSialJ6Nca!Ay2v6=M>gBr`w8A;>Ji0S}Gpwf#{e{|#oI81|iAo)!t;(@q> zZMIQ!y+=MVvpe!{vRV48H!f?Z5lQ)qU!9lK5f8FPCLG!q_xay2c*2FfwCd>vInf&r z=?GW){$^TAeJfx{{h%%*qr~jut?<4jLNHz~S-Ge{A|fVER$=ymbjr9!#jAJPoRq;| ztn#TK1YbZT88PtU-&?6djiNFUj#@;<_GP2ZjDK`+2MT{H21z(g6{|I%Ra~ZxJdvZ1 zDFQ6yPC7$p&@r5hX>JWpNe8SQWV_2^+g1qoq-C)`X4|o4`Z2U0=BgPp7Us;`6HJsZ z9_wf7k@|nwWuPyX>QL2t-gxe%9l;CsqCm3|C-e!$#%lghUJTi>*Jje{68C8Zfte93F~_zoN3esqrY@CnRAqIoO!+Fu%A*%f9<$H_DnVPubDPHGjI&FoAhS)+!safnNXBJYJGkqFxy zFU0sxWR1n;?^2uk4X!5lrN2YDL{JeUo|*}nCMQPoFCLDkJ$PWYGr5xDS!{};CwuST z*?zkz#P~Op3OP&_6=m7618Su?7)fK~?uznaP|Hv&M!%YTDM43hi*JO0IT`84IDO0X zdd{p6=ds#ZX?C%@69h-L{{Y zGOQ}1;~vIg=#nncMQ2&D&d*SRBK>eJwmTBR$$-U@P8kJ zGXTMOCYC?y<2s8``;f?hF`Y-ohs9##91B#s>TGbw1@=r}NIG8mZ8rw(vg0?G@brlWZ?G0fmBHS_*1&kSTmu zU3>3M(7#i=73XXQg*;(qoGYaIZs|Xg>iyuX_-YE0?t4~POwY|oI7*PGz@|mu$kkT` z^*tsxmy&gjIZ0286n#lzo)IJ3L$(srFObSIw3I<)H6>38i;=EZ!m49P?ziAlNIECy z2tF-;nPll(>NI=%_Yhy+M$KHqMPbp*$&5{*r=Ji!jzHn>23MoNaG zpbf37z&Mi?#F}o7sBmxFwQA-fGOKKf*Yy-)+3=8$V1*xUW^Yr`V5b_$j%y|RN@F-H zrwW>JxTdrnDE;sfd^eCb+t^k6L;|q`ZDc!?SKd zll61kj}h6*L_!xY{Pe%SIPM-!790CIMIw?nD>}cM=F-#IB8e)NPuH#Z*b#@T$ZBGY0PIE|HVdE9|9Rn z<93$}9Nh$aW={RU?1o$zmant@r`&e&felzauBG`q+(=*1T<9bR+&EV<66mEgtN$~e1EefgTxw{)fv?ccKk z1X0T2N`7)KCjU{ep>+1;B~?w8xDciC)lf;H8dI?~Jv+DR=~@{XLqoA3!uP$r>fXDS z%G3I5D@1N+tBb*_>BxXg_^4T4k0=7O+9vv9gthC= z$g}k2>@-vn16}+5erB@WWBI82y)?D8x7RC;T1vC1GwMWU1Zp+0bL@q>G@6Zk8aFsg z)uB<@s$lx~R2w8lKm~{6%oR!P-s|#!44L0_0^3nSOO4Q+{VXog1$)GP7VA}H^weIB z?XGZgr9P&Z0!mHn?7%F7dBZEwihHm`tk}u>PKryOT~~7@PxrWwm6dMTgmm+@;+cIi zfx>Wa-;L<&hi6G}Xm=-*xU_e=rs;*?!;w2jv=L)o9@82%ktb)cH1ZABq08ou|8rkN zWhZr2h*qHu^$m0s_G>viUg7o7VDa7G}KlEtpke{<<|+Wt1|5+ zR!}bZ_pUuI@O0%BgRdFw|5-hXrnnT=|8HNf-aXuSC|2C9G+LnXiV4K0d=3`4ydvZ> z_ms9P0VD8LcYV#gx#}Q-Z-xr<>YoiMxZkEoDs2aWH!%{4||T<)%?%A z*?%^G|6#QWR<iwmslD3P%0`MQupo<(*X1IFqN#G|CfgcMHo0ZKh zC#ltYl{g8Pz;dIc@g|@W!wA%$Di7H^Q|A5@Zn>$kfO}H8x=QuA4GwxUB$+KB36GbEl?cJM`oq zx=%_!V@h-mMA<>elOLpaVAEZo&n_4Gfg0)ubYp!W%yK;>^qGEkz8w7N1E4h}fVH*p zK{x|H|Kpd>ZUh+^7=Wj_^CXqJruY7y&D+n=KkH>R!yOAobU(2YG6MCw+auHG0VObO$nT65l{@{A_wi{_Go-X1 zkyv_XDDva70*Uxn_)iO{IgkTIWQac+}3dU+tP zEDoNi{Rp`F(*d-r{h9(oE5qPjI#m&MlG`_mqk_L zI8|T1OnY7jnq@n`ThW8<1<$3FdML8T2CsV07veOCA;^cbgN2VJz#&0|l;I_I=TAY~ z$_VVWfObx_UlZm0_T%abe0&h$4;l*PEvh(yb&y8$x_%j8mF?W$<{3~P%-_p(iOb&5 z;OIDQ1nZ#uQw66E0ML{CVFb?*!1;r`sPjP}EG<9;cnJi_?pu7gn7b^ z?H5}N-dnmriP48QL66@FFcN2=z7Lx2f}b|8gX+Y7jKq&Y5^p4O`~w=!i(tElcvKOz ze&;Bp#$NPDm$djngX~mu;KYP>B#G-RkM zlxqVBwyXkj`RpcG^M(E4I51dMvfr~5~8JTS&TwFuVz)*E@ zzyg+^X$4@^889G~7+dVTe^G9HJhJ5n$a!O}!~RxJLVyOJApL8`TJ0ZVPgs`p$_+Oh zfXUwz9Qo>a0@+5MVg|OQ>^Rs&E4Y?U;=o1T3{08u3Zv#0u$YXi)5YRT;0rxfRZ=?4 z#7gi4fWh$scd3=$z2b!4?{~LZCc9>&_HkksA%UhrLcSiV#a60hgp~lksHk=R*&G1w z%@=P(-61eeVFYp~2Ty@*d!;Z*J?Jw=pQng4DNA`;nu(vmYQWfwkvw70KoL%}BztBYibbpeROE}{mhtkDJT}JwM^!xbyoUuZbEV7|Zoq~3 zYHGB)Zm=2f|H_NAWh*Qo1twrqD#^cH>vDhLZwD!Q{cKh2*!R{jvvEA* zS|r)G$)yJLUGFdnA(fukK0O8rSG_1!dA(N-@!!nNMxp{i2%VJ?I2iTqZ)k137eofVyY`el9nDF%e?ld|q zDlR?x@hxo@GxUIq#LpdGMql;phXfHNgOvzf;&AlnWx8JLku+Qyf)1o|>VDQ#;xG{N}Vo zlk0PgIV^!t+ktl2+Iw+}N|FuUpDW*SXR|4*MMy$!XQ+ORAdTC*AG2ZS*%kJNSHL$` zcRNNMf>($z6vL<=t-2Cw&aPomdgc$Tm_~@PtInW!qr;2inn#~zj*7lnpjU?jS2)t* zEcsUyr<2<(^r`0om$w;rs^sJhWuj4q?GM;JQ+lPuJK(`{?k3h-1{}w?+p*aeuzpcG zShQq4<19Ora?WLY(E>d{(uv)D4~7g>SOoxHJ^0w6F@m~yn-3=W(dB){($Fp>PbQY+wnY41G_Zl8Z98bX)`&{w+lxx{<|Y{c`aL4@6(; z2*tL_sH63ma8{*<0J_Kl3V&kXB-8U zlR_FvIdxp!dOBwm{d9A8k-TaO301j>A-rs+O6z_!Dv1}-^ZF$hulwba&D4VqAc!D> zdHjnGXX7__9j$HlAV63?&T~7aa=bk>vbIX~Uca%tok59yA?!0{+kd=>p#G$@#gZoZ zUlq$g*V%t8f%QMvGqU(ZMP!F3vsGrOENbZqv=W)4o)wLo6y$|vfG3s){_!Z3hwE-K zYGJ146J82A@m#8EU1bMJOfZ`T_`sT4poF*%opY2SQ*<<%JK$#@j z29vpj9TAhmf?Qa{Qt%*MEWrC-BWG%4iQ-M3bpi^b)bs3^x5vxD z_?wD;X8N3A9_G>zc}+a997#SAY7d?jMk8{`45}B!AWA_&=85m$QN`*Jz^-tZ^@@@% zf+rNaiyo%zD_nAZH1On13K)-RSprc%FgyS$ITAFZpgvHdQtikfzs?&>7APN&(#C#; z47$wDN4xi6*2-Q}e6(DdfB{Mq{v({+?Fm><N2)MARd>Z{G z2TodvLIy~(05jhZP(EOT`TUm#S}}SXP%V_VVug{+0`{1fFrp1uleZ_ok|OP>B=lQE zYZ7h}B;4{?3|q7{D^R<=uGQ2X2+@Xq0rEOYcQ!ZikXnKIha`P>&3Q6R*!#{tc&)|8 zUDMU%v|&AFYrYLEnst3KKBJY?NjlRQ>fl0D4T!8kKC$mqXB$+(Z#Jnu07R(HJz?cY zl-CG2y{$~Z306R+6oAV6U#<&S;^F_Nrhw_nf`gUTf`%eEv*{gy;?t1_lPnQ)PKA3=B*J_!B^Y2mWVP z8X5uq!gSYClEWzJzqbK?z_F24m&L#+i-%lV;DVnCU6c*nF)(hmq5oiZy~=-qf$?hY zsl2StYtx-H+#ubN(XN|eDPj`l9Qa$_{Bfeyia!-pzw<1|+GMtOq1(RSEu(wdFrF%? zJpZtJFLx^`=hI+waCX$%wnvDTzr?6#oU)FsFa*kw6Ji` zy`;4H+SjS^cy#l3!TUPzy%L6izpZnqhcPZ?#&B1h;&ZcrGX;jg%QAZ3btb8^<@cM@ zwG|>0FDR{FzC1UgyJ3ZC-<FVg%p3ZoWDbScKb7?PStQ1$z4yp1rX4mgE8JX039jDw0 z(`5L`MvKn_L(1rz`s9QW(`DU#)u1_M>Q_8jX}83sWvpu!cvV$Wzx!ycS-|J;#eLUy z^7FH`jH~8k$}0C?Qey^0MS8_U!ehqY{B~=*cuD`BHs2KYLhFAvD%~S}w9a^SeX+Ou zXDCP2bJ8wvVUubr|kdf(#_ zeSL{I>|0_od(AgZHwBwD^l$cMZ?s3Gjop5*88*GCbw9nDySd7k4Y+U$EIvBy<*UD< z6}JCi6u-sC#-<=T?Gh{@9e43wLt4|vr*Bc_sZLA}y!P3tT}z*IuHW%E=%A_J zDDm8CWHbEkm}*2L6IyON$b6bk6xWlDK>XB|iJ01+ zs7Sk;IA<+&^+*_-^sgzR=~L3nzF!egIf+-Zk{q8}=2$}BthKzw_MG!S<>cpgO{3aN zO}AyHh!};|Z!gOK?VvI9XeQmJ*{#QjgSZm4JX#SGSNg(W9MF2b@9jO~nIbWoIrPE^ z=bd}lfcN&e=GFPJ`xwqRM^mtS$J|`N#g4Oh7VbTkt%+MTP?!_J-sJq>Gl_ns=VV0v zHpsctxxi*{nMMTPCh?-w883KdYhWM?&2lb=+08j z9sGa%TlZ$%dUaJX;DNDd7R8E?H-r=XxP z?rpa2O}-=eGRCmdcELF0EtSkl7;I&EIbSKB{@P5}z(hw!=jVq^R4L(#@s(q6vlfwEYU%o)iu1eHysNL*BANjE0x63chjWUhAFK$s4SY)})5au9r z=h~IzUBL@QrtZZ-B?eEFOsJZ|)wKJsS|=7;~&`#jg}o-vT_6JIgp(BB~+oQK6or1~#>SF8?mYOK?a2=|8}A zF>c+v+A_O2Owmijmyc=ELd^a7^?2@nSLfYV+qBxqf`};83|yV>>^ZesUZdQ2q5u_@l2+ z)zyzvdJKYL^p&$^=13lU%6<&vj2b!eCJe)k%54Wj&EvN{^qL(#wv&|wMv7J#UgH+{ zr}Zt;e^PsdFjRxAmiFv!yENG^fq3cO?EaI#s|HWmzg4&QApOnZkCBV+J?F|n#a-jE z&L}GG!cyVgCm|VE7IRy0JQAq9@f+D-cqb%F@f!;gRYQGS{%GI{=?I8ZTgmthXRDug zFUv_I9-Rt}L4*8gic;O%52XJ56zt!bLKp}JLRcpGTcfZ=W<0dlMB0)n*(0c~cqHeg z{7yW2ZDXzM7UZ&p19VVp^#;7Fe z7GzAEg{7@F2pgFxMpLt4AG{OnpiV}x1}Sn?Cod%F=Yy)9C&R-qnSY75EfO~cU-|4c zo*F-8_-;#xY^js`={4(PW7CJ=gV|SRxh_1X8(b_VOvX(T4K*j?ddb!Q z>HhMO1bK(vXVrwAjo$gc$V!)+0W7n-N(}y$lxOqVEFMWxeTH75~r%O5AkTo5$hzqTF# zgdoA4kx4V{2YU~5s5y*?TfXBK>k`YXEPsg$eLS56+mOFwDP<8`G9iW$5bZ}(mW65F zPR$N;#VUSnxaM)9Jve~s!ph2sG!GIs>d~?H$Qmx}k}E29BcM5VM1~M_m2BK$O(f?3 zhI|EMs9|#O%C6WBp?sFF8$pW^OQ1D4vYKd2iI8DFCgXav$Jc!6X5%>+$pC}ZkYv1G zjNH7+a?2iJcvC{BMM^;39J^H@BIX6BBD-h0Q6$G0|M>cKVDw1qof(@9e`A=093}zv zV)OSon3>DoAbtoNN_>9W>M6@@Sib{GnDOCC6nBY>#WgH=TJVEQD;G;m@HJ<@)aZk` z@Dcftxjxak?Gj894g~a$wh%qRNz0`Co7au=aL9C%RatTIt0?#WvVjcic4`q9v0DqR zHjcN8M?I_FmDX)?jSc0o-6K#me>`Az#@igfjH&;2UX+!*r4B_Lgk(T@xFtQi+0{epcG-XluzKvqaxq=a;aqAq;8qw*4P=}stoUTgtw=2B?uFhnVCH@06-L7Tv#^Lj{ zf1mZUt+Ca3kH=Z9d>oHkT96n|_6t_jROc3sm|m6$YF_cJxF4vRNir7a(B~ExZ&fl; zv*?Swf2!&fOV3jGuvI`WcYbWRDm%ePTwKblx~w!2!a*^BIqZ=W^#&!$DZI8jD

Q-{ z!d#4n99J%Tf{nS8^`!`jCF|%9I{6?tQ7q4j@QxQ3<2XLe_5Wgf16HK zG4E>)bReSs_J^*zO)P#=&TR{eJ1#;Due0<0Jh_S*HDM>y$XbJfV90Yyc2mJGQl^YC zX*T&Ub7NlzU8G@7v--wWU!-xRAH>HL8&8!{I(Cddb~9EybSLMBE3o4!&c1&eV>VXG~pmgYgZnpWkL@@kYtV}*#7bRgplk!x0YF3nwA;sk5s-`?WQ zsTz95$mN+ujq*YX75j!4neu3ve#>BK;}D(FvkX6d(35}cqP2@&{xXf=dK_}5!~DjJ z-FoO5n@9@;)f+^;I2h7dOB@@#+ z-$#c`rLk6SEm35D?YN?YyqhFCC7n36^X!65?+L+w4AX8TxZDU$*R$%dvj^=aO>TPIS(>esS%w12vX%%d(3bYn7u)`JzsZSp` zZwRlMMCrZ${(66Uzo^A&3Rr&7JvCS8`(q9tQT}K?LQ09K z!;Owg%VgjZr$2$!JSH;*2V{Y{?3SKDENS9==QndEW%(%P$4XI3O$}G@U?quveVZrle%Y#&An`k=j9-|8%&-IPCwCR4BCCn| zBb>6%0z_H`Vravtg-1gNAC8|nfhv}mB`Oo%?%(EdRa5S2FvQpDmU+l(gjpd$Nfq{a zEkTLi)mdg~ukDP@LH_3Y%7o(8ODA?!(h|LI3;f`-9>9AJ!|pn}ytltzdwkDhS{(t&JAMG{#DYP*Z zxszN&jX0>#UoUuNW3Tu2Sd-RM+t73{lMR_Til;X;<2|>-Q)uK|tME(mPfSVUiQ$;$ zvw8ABjY0vuSwX2QQ1cdoYGBTZRNu_M%7{S*ht*O^y5FIsHrKa4fko+25%D_WW-st& zE93wL;q%bO#htQPNq83f&h9%4%>zLJ#(Xt4oS2KndNQ4pSM3qxz8g6y#xfASAD~Vw za9!%Gbqe0IGW@z#Qs195Ks0|*_M%_v)L3+dEL1Yn0VUAsR?e{fC&etlz{x~l_YWwz zy!Iv-zAyM$3}nhWFKU_pT$k8uSekWrB$YaPw_CRbt-i79it}7cdGmpQCNQ`IB1FC0 zcxrl@n#q10_9tFf#P7t>y97jKx~G&e#~dZN4x8{KU%TJ;`gr$gXgdub9N<{b`CX4? z=8Rv&ddhyMb#tWmo_2*MaB7-PIab8RNggWew`zUW;tv1^7fQ4}ZWTWQg3tP)H%0%m zjvoykm<052)FZA9a|9ih;;uMBr;0#OM#FoZ^EVt1OE$o?U9rNVw?Sg_(9F9ev23|U z_6>Y}G6Pe~)KaR1@B8w|v{O+-jn@UHkaIAe2DhI<>y6jvTaQ*hT6v6Hgxht$V+wR_ zJMg=tMn%@g5h|1KEVPB!A2;C1wFV>%Fp^32b6esNfauA?!pY-9a29ZqFgHKV;D0pe zoJ`oy^23T;AdzK1O?1ZNy+rtneWvq|-IAT@ZfYSZr#n;ChJR!CBOO{*)Sqb?C@5Qx z+Stou!n9)2?8ZvcnzOkUqxpq(0*GC5t>bOy@g(Piu)l1*i@IZx<#_|%&7-$1M2r<` z&)*7EzLmXjfCn*>&D43iFLrygh{;;3D#RMaFi{XJeGR8C#Kgv{*~>~aW9SZY|GN+_ z!Owmm+@%s>2 zM9w4c1j6D>V-XC zG(-w$zYo<*3P+Ik=HKNx4CB#>*n;=a=+n7(3{K+X5O00c&U^Ok0WGmQ+uaDm`JpG3 z`Hlr|$_&%}PYlMo+60;?i)>39Pu!qD zPC|fO0F6HV{#CZ{;w27Ns0^MQ-aWy!#3h;a;2pTtxAUhoEnvqq$aKYE|yEE4_)Hq>o3mg?1aU7h__yW;Ytn~O+GUb&lIBr*5 zG$tMix1|4?>mO7|St^kDME1D-vy?tvngEsAbFT0xY{IDkQH)r%Z^Dh{;tHsun_wbar*3c#Yb}`i|YtL7slJG6>6e znq>Xvyg1GFk!Lb;MK@NVEy9+JENf{!B`YJO=R<^8)~|IVtaj|v`zX0UvR(djgZzh> zqKqXHSfZob_(VLoJc;Itmd0T)Q-T%$)0w=A{zttA_^`V$UfAt7q!+;sfL+t@@K=<- zS)jJM+rA#b66dnp4JfNw^?NEAx0u7Ll#Up%R9vtz8Ga76>Z|V1FuOt z4sV`&_!rM9rH6l^X|0+}Ql7{1ANMfhASujQZMCvTWMa}wcqE__iO$|#Y;cnv4`-AW z_4lbcCSyL&hIO6gFpz03zrkO7x3mZ=lN9%^VHbbAy|!DwN1q~SdgIjanX`~i*j^`J zBSV_0G-sKQFhjhT=tK`96EgR@DX*{^hxl3Kr##=p2fo5x)vn}S&P7rs!ua-#S zd^)12cJH~6zNWV9t}wl-(%qkMzzJ#SeA~<_5cx+M!D?fXq`O#JYWR}2j0h?Kr$Zu< zUd)(?dx*4_oR_p)%q6(oELDZyDjS$te>J)7k+A4(41NoDuU`;o-=QL$7io{BlNY|z zSr>thk}A)&Ea5#;5XhiF3@l8V@;qSO`)hO0!>rgEY99K@m=E%zuWL|f%u3AS2I4B# zG~AjhDLu)$YzLsPgc!nP8w(~q0Jy^}GPQqe}*{OD}?qM_(0^XWmkt4lFmfXsK|68=V2I<@d+luEk-X=K z{~(_&WeI(tg@;*trR-J@$eGgQ-uT~Ym+H^Ezv3@n)$e?tGXCy;68e9bi9qhn&HA_aX`6Ym z32Nog_W5=5IdM_eGqwUgAMB@y-qVA|Z0ACsnC1JdBviGS;)+`4BY1O93pxAens2UN zjk#cG@g*D*iPD=hC0vjxqw1I9BE(1FUdg}T$e=-`l|F31%V*~RYHMOeT?LsznJ)R8fs&rO+UCcj%ivUKqYh*Ad% z{*vL87rd`!?xudG=)!K7jn#F>DiMXj<#>pZ7)aKd3ic=^9+wE04x{YWd~2{t=#N*p z0~siteVx(eO^C6MPPR@v>w@*DY3{O2$X`>6pNEaDr^uLJ+xYuwI+Kn{=`vi)<|sus z^78naw){8bOmRtjG8p8|7!*Btl=9_Yjveu9RLK)%YJR-F`K_%{TU)REyVu9kNT4Aj z;CutB&w>^A{C9F@@*g?VC+rcdnEbUA$1B;<$?%jL}eE;`t{oFMrAp@lhGbCRGMEisJ0y16==f`gz z0tH4lSniAOr9Lsj3t~?lqiZb4Pd0|T2sIfix3Ie+B~rF%)Q-BPU1FV^ue_=Q)fAti zX3PcDuEQKu;N}8Hf+lJhYeZXdTQZ{o>=g(fQ_HtCGzbsWWFMRDZw0L=k8FJlkrz*| zw|MFtFGE982*UEog4 zyd`3Ywg=+PNy;T5ug_{Ms(ev&f*Qg&oiB27S2Yx|*_s^zW4ttd$i&K+wH=7ztTg@R zcDoQVAA`K>k>&kl$|T8sqn}%$(Xm$6W*dTXNHLM=H!$}vW?UDO=0-!xxWh>KdJ9I9~}9Ehytott?{_b)Y(Ao)zHwB`z$Wy3vPlV2B!Lg3eThxjZ~je&Mjl2tT;QtZzEJN8A7HHa=e^#mSJ z@@e2yL7}ffOIVf_xk@Huc%k!go3zmKyn7hS7Yh z&7rh$wS@eFA-iX>?l9ef$XI_CKNdFte~jlXT@9`)2i9UodwLCb?Mdr(xcmJqLQ0;o zaBJ#h^7{jcN;3KDu9Sl|tqoc)B$RB|w`6Ma2jJ_nJiK!AW!?7ACSjD*hHAbMo|^9I zoLn!?b6t)tS`X@Bk17}KT3L9uNsF(6s4=FC5|&+e89b;y>U)mKawp<;7wXi);`h(d zXQ8p<@A7G?>EA+*(#T&>1j#Hce)~ObHt&wS70pJ5J^kh0uP%nbZT6aMKJK6^d1R_b zVgQpHbQDjnaSF43UczlKasvcJYj<;QB*dJ;q6j$SsM!_xW$nr|9H<) zA4QMJI2jXgo9m6St+D>JJIt{4XM=nN(*wt`dhb_bn=d7%?IlGC@S&_P@4hsOyUPu~ zCQs+Z63uVvilJKyNO6}n#~O^lF*dg#UkH0BkRz#wog_A(-#%9+MU9Dt5{y<*2z`ck zW-jnF;QciV^XfW-9Bb-)f&Z`-6m|*mF<72B3mRP@xdb1mK=ImGhpxt-wXImz83Y&$hJPe3 zO_2<5sk+bFvk-Pv<@B!0)%HZT*$ML|Kl4R+UuUkzbmW<3P+pW5vdJpV= zuG&xOl-5xR=~^@-Wd6B`>Fmw*hD(>L%Tv}mTq3OJkzPMJ73HYr!F~8}saf*~ zm)JR+AS8dI2ZE1r1k`@!?xYAEd z_3}6tNh2I8`=?1sb^acq=gvvlCX?+cpRrowmv4=RVPT@!sQRx^LC@fV5p{y1dLB=7 zXxG21%D0(@fVImV^o{euJA7f6=u2Pp!Jr^*QHt-f3f0PTh4R!9!RFI+N zoJv4eNNd91uks8p#K-?GR`MElm8jCT{4zaISqbF-#S#Tc1wu;$ms0Yud)aLUG(r*G zpUAlBu*n?K(>|s0EMjhwp#Cn2tGrXBxr!rx3)B7p(`cK+DZ+E09-x3g5THj&MJecIv5{ptco{2oZ_BerKr{&W29};;vx$T z?JhyC5MvvbwD$Dt7i_Cc%nR&R5)bmyygoT#3cy_Z5Q8^Dv^oTOu5`S%fnNb7OztXF zW4>?^crsx#lmA*xT|nY}DRDJ1RHmKSwpAc8U9OO3TG&C*?B?m0(3LAv2>0@pARwHX z-vh!~KAe-Zdzk9>(1oB%01#ZEtt+426-9@9j!me;mGXefR-oM{%%AXR5Xu}#WK>$H zHDER6x!7UpupAvD7`p))Wk(Sv>nHw12>^e}Yc=E>NKxhV`M>*8YiM|$$+%f6cUV)i z*@B_|_!zp9REYHY?_=pGc{C7(f+io$(eRvy9cKEKv?$_%tTq~;M*wLWiCk|JXheT5 zObywfH50B|)s1$+$Sj&7;mg&~luXWK3tGi?OX_5OV|#XpgDChVaLg3)@~HN``1d?> zAKX^1Qi6h?++d`NFDwDb47K;Uovf$R$d8`dElQr!hqt%~wM$S#hlQc&i`vOg;kZAZ zMyfoMNB%b}9W|t+RwBiR7jQ6r^1+YhKCFIl1x_CRluU4awk3QeA@QRvHF_)|R`8Vr z8-`>9*#BM`r6`X7TYu1(koNNYn_VYPFAH0wG(uhj$#unser&b{e1#ka!~Jii%D_X& z*leM)U@5x6#n=$;NLMsw_-`>J!NNd*BZ#G(zxB|CIytoJE?7b#b{Kuk|MLsRVFg`S z{r?$C_<#S>2!`kx7^F5`9;%uEE5qh+UOfA=FYBcSX>)-$CTN}yS~HJj5^%P1zWiQe zdQJpSgaJLZ<>3c#VXIDJ;a9W9Ku1hp?fbk2ZUSZ@S=AKi2vhjIEKrI(6Pw zpKgXUe`{D}Uo~pA)|6QiOW4WNQwR&}a+Fd-a)Bpr%DG;h*XaAv*d-yU zF>=bPGiFd*Ln;SgpaxUw(Q@lvA@^0a#=ok{dsjjlZ6(u6JBOCd%-=?iCu}k{g0OEz zNI)EVK5*KPB2o>jop<fS_O<;rNgL6->qU6 zQzXjXz5xL7^RedZ9JEMmz)C{cd;ls#4Si$R4nq@>FCOiYC_j2h!&}F^m;Sygi4+Zi z9oAnBt0Su@bo8oL0WJFPW12PLT!tG z@#zIcvia4?)T@3K=APA@6jL{U!w_YPJ73b$ios^m1YVN*W>1erIF#bW1QZ=0KOk|o z=7UMSuwN6#m?JmxHNP1@rj{kI8T@DeIE;QdBnjy~wn+UK!&$*d2j488)o+*g8b7A= z*CXD(FXda=tZ<}lZK0cE148*j=6ECyq-Yau{lfMkhsyohNZFigZU)yZ@$eYKN5j!E zHX(!!CXYL$R5hY!RNKUzb@@ze0jKYiaPJ)R`P0+3$!I`if=H;0qTr#h?oX2#TiIjb zpqdyHJJWIku)4yG255 zZ0`8I#Ca*>ig-Q}Zk_sXnUjz>4%_2p{kYvBQTisHN$1B~Yj7Ugcq;B}{DM@Kt$yiO zAoB`ITM&){|KP51kkWn651(JAUIxMpei~76|Ndf{&7UWX&S@wXo>t&%aT82}8kD#9 z5yV8ldr{r@S@g6zBA_sr=IL_-g`9>PaA6DqxRSXD_dS$?M0t)X0WMEGlmQ;d#=pg` zov)hXkUE7nosPSJ(Z8^Myz)VNx{{H#)|!hG7!K4sl5hZU3cM$<5mcV11b+p-2~T`V@BS{-$&waB!Z3lkgjD zfhrnjK2yWmcZn^W!nI8ARLit!>~n>=$4AvPq%(BFEe!71T+@ zEEI&QNZ*s~0*;I~L$PhXmj_)l%dxVNYy!g+MaFQETWILANT7;zb9W!9wA1##K3hX8 zm%nq>?}9j8FB4P87&;8zVLmpg@*YhSRjE;m`#bjs5OS`LS;?SXr-G8oDM{zQMI%0LMTn44IR6s%TV^y-K)Cp z?(PA!SFYSLJ1_4-^`-|*GYe``SEII%4xp4ZRiSw`U#ayFJR#p3-vaYSGXM|{T0nXlP@o@5Mu-Alb`tONWb$d-Y zt+_!2E*?^o4+bxw4Q5iO)9#xy_0`SG8t12bd(R9XaxQl#uy_LTvexmAaNgptU%$Ms z?3OxX-7|n?x$yUI9TWFHVQBQ_ISTOuK%k!9UiS=**M3bWn;#3@y?*N2Yb6DBFn@7) znczJ2y_kZs&Az%FXL=WQJ}oGeyBLc?$&Gbe#Yuz}wFBG1pS54!GjsKUDh?-S|MpX$_4|=UF&{7 zv4Sk%@<8c$bEKEhTD=#6s(3@j9|8erG#}){ffZ2%r{jWL6erhiiAjCk(!|c}!le6f z?j4u?mp#vn0x@H##o}3o*jM!YL!=ECyfUQy>pn+(sI)rh1Xg4d>|#KMyRyL|j({n1 z<|_Tehh@H4($}N>7`{jAWurD}9)4;AcQ@c2*v1^QnBk^=J5>XEMov_Rh7Z1a?M#No zNuRF|EOta+@uI8%hj_~$*qN{MMry&vlk>kgIer{E?e*EQJo3hFC+3bY*Y7-yjCVGi zXR4#5zvLi3qn{)c*Ij#QzWy<#r!>@i-nyw|rv1yc<(KNNJ}r#eOIR zT<6~Oi-fy>fVBBwnJ}f9HDLbZ=<8!nzoSO8#BE4HT6M!p; z35m<+NUp5*JO_}R_&~(1c}~WqrZDXrQb2ic!9ety+9A9p0xiVZr2FJj7NgDc$NK!V zsZIRn-!R;7GjRE%Ezj?58f(Wo!v;>=G>|=XvLMr0$PlEotiXM(zwWSyyQn!hpb+@}e-qMPX&%KUG$UmX5cwfl zIVy#J1%IdG)L5s({tJ!N;G@$j2}skDV&a+i7lC=&9ZQGCV_RVT!?tns4sI@E&8gs(Rl6_eCbDypt62!9q65|698S!oe z)@jgXUy9~^?r0%CO$|L&4j7@e?$@2xmIb%}dm)_XBP9CyNv->ueTs>fYl&1a)wqj*!|0@FG<;(%`1aL*?15Fb0{}in*Xvq$kFJ!#RHU?_VX=o z0T%WjVoNbz96DB#GT^<;jOK!H&$#^qYXEYNMv${iZ==wp6(#iWl0R=mU36yo6?w;t z!EoL6ByjC8t_keJzgiunwuBM*TT~5Z@MWMp5ydY3PKacyp%h{UD0->Pb6Geb^fN~y zak#tLx-l$s4by?RGz--DuwS{ev@gED<5I~<)NS9Zm*!bDhaThfI`aJQRAHI9pKRn@ zaM!t}wa?)gjn>hXhP%Fk#MeqkUDj+Bh293zBo)=C9us^jJzUd&1<|6V07!z#d}bxU zld-Xpm*I5=gYI7NH;&6-eYjQq~$R$q9MrjrGm@2YMg2dp1;SdGSpB9a!I{p_C| zvkWR;g2x58VbX@w;LL#^rmkq;mX8kSjxqT5o&ycHPq zo}V9WEWILc)M19z;9x^~wGqFU<*6hfy|>XxT?@>|YuZ(*@$#@2jdo0;azQ2@O5!f5 zLCrDyx>D;=Q0vW89HF89fA9J>06dzS2}8rfCid)bo(Bzid=7x_I;@T|)) z`NPsf0m$_K$EnDt!8_VxO95wae8k)m(*`sCV4K&2Lb0tACVR)=m}IkY6l4=adRhMs zCtn-+5lLRe#mV`@j9D~c3D6D&0Q3x-Q8em6s3)L3L}{u6#}+>5;s_k^-<+@)HgjmP zOe0V(LSic`?YUeQR|Lg}Je?xyGiqv!o&V~Sr{F>#AD?qjI$UW4!eM1lcI9Ip#0L)z zwWqAe#t-HX5n(^>2?Z_uH}b>n<_{nyXaI~5ztt5*s3pK=W3fPiAgV)3|J$iq&sr^wwVa(x zyk+5lsj4odq65;RD&gMzEM=tp<7KpoG2|2K%h8p8~qf z`bEOKv!2I?|C!A6`-wIIe~_-T=aV;Zv(g*Pzj~L zM>FA>?9%<~*BG!s?V=X=8jrM0ye6!jor{HWG5PC(Te+~JH3Kw%IA7`qKiOAS6x>y^2XX)gypbFzGAmd8b8g&yi8{`w0KKnJtR+qoidv}C{s}ctAW7dib%hAr4^;mv zeeFC_s9OU1d>)-zg5A^z2{cO`Z8v}=o&EW+OlK?)S*1z-UFVOuo$utslTuzT;N4i; zWpBjL8)~&yvve@d*&?3rWP(Vki%atyl!0?#czXS2)WOET^&1UH#obr)K{L-Yo^CIG z(Df8pG`aBN;Q@=YEDr)e!q|J_T4<`SV&HE{P+}rQb>F`>EIVLT8Uh_L#b3VM3xw3# zouS?7{%0#GyY6;&1>dKfB}{-cS!DfzG$r$Jv*yyz>1;~-yy}Y3SNPz07;J>@{L z@_OG~-??T158y#nG{Go+bLmcX`*uEPF1yyNYQvVBZN-I9ub*#~>Kht@P)%kO! zxJtm@J>A`LrM=3_YP^QWn(=8hjVGJud6}IQLaa@H7a=>%H`lJZKCU8zUMMQj;Wl9OHE!u`+k;_ zn_CqS4!WMN-~39KI-YbW6^F#g#46GIw5xY9?CxFi3KV7Gq*8LTaSl=<kwtko z^oV`-RW-9(^~1 zrV3=#f8}sHS+Y5rEUMkL_xdSpHzfb-@lC@Gr((C=5}{t|Q12g;@6jDaDwk9sYITOO zgQAg#Vyo~aj-*xY=)J#pkHuQK^xwD3S?6&$OrmtJi9jr}dP13O&i`_0EhEsYm3sN) z8!5!wd~de#iq{ecz&*9T#HbIS)3fFzTMH3>A3uR;I!FLsB_Mi>qi4S{Y}IX*xF`6< zd}>;Z;=Tm;%%OU8-+p?LYinmwkW8%;dmpXvi0}Zsyx7iYN-;*!-_LEa8S^8Gv%Cl= zIy3rv?FKYso*^1?ne=baFVf%&pKg__y=$@sL@=}%;%<&@$?@!{I)>bB@=;1= zRC1BYFfkh&yX`siKOCxTo(4x#oAqzrqTQQxoc7%Op?efM2Sio9e{dbja7{sGlE>Nt znW<1Y<2R^WIi9f=75{nz(|qE^UH(la=WJ3;bRxFnKP5u|mS@g?jPG;#@jh(|BOM=T ze5^2x=#=iHt|_Wa!%~XY`-_bn^TU(_JO9zVaqY; zgTDQB)JWbT(2pM8$w1;1IZb_cPBs%L-Yf5gIyV)9>kR;z*Ap$-+N1e2l>^4DjuyB? zgaG&ir#%-0%*Ig)_rFlt^6%cV$R6%W^Uzu}l0;uYJ**lC8lBN?x--UlYE-D-4FCFY zBbdH~>aG(~LuGM_dQjy!>S$D#jKqna2;2ikYYsgEDoUO>hR3GW({9nt3dFJu$$J#r zbC?Q3v`wG*c?7Og{b zdicI?9HNJVCTJ-|N{nlV)CDP!FMd#@SUp^AVS{NhC%s!>&Q>>kVP_zlsz;roTZ~={ z5dtv5XA(QhFKMOMzPKL&`U{Q6q4w{7@hkb36a@m{ zZymIdLad#yim?Pb5_RqE3!6p4T;NF@RA=xJX4N80~U8<0M+_lU1U)4u2VKzOU8?xF&Cd>YY6i5ma#_C0F0lmoG5^~wjDWig2xvmX{pTbp zv=e+}WC;zIlTHz;8u~rG;B5E!sS^M;)-0jL2>Yp`EKuHT$2*k`{ zSeYCUa)QvdFB8uZ-4cy0Fz(-I&FU4oRkrn0&W&{QK5vH4FLSs!q!hGieDzY$xKS3A z5P(0%2fU=eK7^XbMI4vV9esj8bd0&JflQQY?K#Ee7VMxzyihkWN0;(tU%@?O1!xM+ zk%sVZx8!=gVVy^TAA`FXgj?HCyvyHl)c{sY$NA|yBc4en*gcvc{*M5JU}Hf}LLiS9 z0Jxn=%V^%|wT~>{YKBKYk2?r9gl* zUQc)rh(Wq3Wm3jy6?Jt0-5G*TLUtpCli0NAP6IqPN)e5~2|T)YU&ds6oLTzLTh#^S zzDFmE+gZ}0L)x_>_-sWhAkFZ161g&;?SO4v1e)bXW4oAzwZ$H`d?b6FxI*vJf{7+c zg#b>{)hm%MiEQm!X8$7kDjl8rz}s|o4s!eU1m@S<*LeT1-EJ4QfMd<9^pfG)sZ4TWd;8Dfrx z>ay14c1qCXXooLhzEfJ#IPbxmzBcg_TgKL@!AGaJnK*fPJe=#YvstTSWMa~#{OmzV zx%+2QMu$G|($&U#=Jir6)L<7J>8jQ)#|aY&eAH? z#-@giLx%e2^}@!fb0Y;lV;Tx-cW27~;XSA8Q&UrW`udIm+LJVseDV+Ywc}6ku}Y4E z4*aFf0Q@+Apd&+Fp!v;XI7!U`WLW<9)LQo`}F|= zt!Xj2tebyv5adDuzl%G@xZ5mT<#w>x@l4X?@hs@bhmHrAncWR(ct*71j0mBs$WE$A z3r*TKfCch!9-U0hbpj>ER%o*l**y@aN)~Mc&V#oe0V>$K5{Q#^2e2)8Y2e`xj+xsR z=yXwm3?sR_`tspR@kn=UGy%KzNS<*4^uBvz(xXX5dtU4&!EvYQSYq?s-(4u?L-MUx z;7ct``cUu?jnd?RfG1zu=(QBao>X3>nQ?Lp8@$S>{(LB)eOa7E**Sz(Js$z}V#{+j zi)!~Xr*>{l=ko>wx`*IvA4KS;tT`uiYeSr}o49OUdlQ2C7`2-elgi*JZ@j_l`hG z00^{jfT%YR<%E>%HBIHhuaGiAoWcx`X2p^+2(ZgN(8+?Vs4i778JW@KO zp+RyD-ab+TyxkISm#*+wc$MtecBT&Lpz7LVqc9kiA@X11`4@}{?7HRxua3tg9HMO> z;~?U8OGh$GqooVc1U#Ca1YhPb{l7{(@1Q2S|KD5SQA9<$f}p6hKtL%XU1>r9sR$*0R6EqMoV~n%P5q8 zkz*@wA4P1B(jF3GtMOn}H%cvEDX`rUg9=)V9SPsy z(N6FN@=6l4rzG!>2BSGyr1S0NRH5r>FeL-lWm?>M99UMOAc- zb8wv#Nx?CrU~OMZ_~;V&I6V)omihXiU!0*%YJ#FiM61QJc7+7CfJpy5t~i+mFsZs$V( zuP0wiqQ-08+&H=J*luaK{r7YQPulWMqW=U!ZXG>T%AM2{F;rI_)+VA24BgQ}M#`#z z9zK-huX%+;9lHJB1(YxtZc7YwUhlF*OHjs8)Mf$Uj`%4Re^v8ne~h9k;vgtA`C`fN zhISXi?)x*b(a&|PVneZ{D`Pbj->7|!cV+U2cty!wCw>*)kC+FhADm)A33ppbjx zNNQjP0@;4Oz1N1NQ4=E;*4J3X(FOV{8aXE8F82xVkAF_X*8K7W1K^)F3Y^THJ1P@7 z{8sZSmZrK9BmN${3Jx1P7A?}&b#h#WU=W@>;L_hO{K`eV{1(Bt#ACN}PNL+oWNp7X zDd|Je->eggFgj(!sK#c@Q``#oxQHVfqwuDOM?a@@g;SVTYZI!UyFLb|3%W{=Zu_gd*((+hk{W6fZMY~N@@+I>Pkbf743pu&kEWHoL4Nx3#(jK|8ci6XYc zruER|cZb#Ac&2lvgJNwnSl`j3AVbEi`f(Hg2KPGgk*t~-w%+(ucxx7T_}le&+YXxU zt}CaU#fCa8uOl>gNVF66!zf3${m*)>_U)Mq$KlYG&$Lmj<^20KQt}6ggYlFOPUUDIbIJDLvHg)&t2m}g94=@nPfYj3C`spss%)-SI2tycx)>}t%_jEg z9|i!_{80!0jdw>v`LQ%d;R0f2y8I)-Qgo}LbVNiL`QlY}q1ocn-|}((aq82fr00_+ zs{tXp6@&XWwW{#Jj+RE-gV{6Ecb{P~_$n24kXEh6P>sp%AXk(!!Xirm=(l5wiwAoITk!x$3yP670Js@_Jy>S|XLq2Q9~)al3?!k{_kMlQ z=|0{+Yf^i{B~fHvT&7(f4B{Xvq~w9jJ|6_s(|M=`mUz7=rZ1l05SI61RxXW{Y`YevT#GbF=wcioOh zUVNe60e(5Ii-Ai~V?`3Vev$#=J}))+95U#qMdL1$urA;qk5Ad&>7j({>~K)uApeEY7hqOzUx zr+Qw1J)bQw$heEwE`9Jf|55t8(&>{@V_AL#v946xqjM3B`1(*f>UHL zSXfxJY^2ym_+>qo5f}ezMkmX_%*-b(J$1rhHsbMPgc3^50Z^F|Sw??Lsp7(g3pGpG zevoU{I0*grfk%n`mkM*I45-YgC-6gnTh^8~mQ4~hAWhC>2U(_X)a5hELE`|BT!&Q# zWp-cSR6A6QGMoN(^kow}d4htkxMn)B38{ja#mvvkF&9TOZoHmh1>?Qfc9I_+F*f#^ zLw*EUOf_JeZQrP6Ng&lT?jzU6N{ym!-L6%5~Yn%8Pc`C04cy5uZ!ayk>CMoGxn-t;aoZ(nE1Qn6- zc(AtXfH1Qf*gP?DTc4JCmZ^E14UuhuAsH3#7B-KMBvkFw6YC_@s3NA{hW?b~vs*5; z7u_&7Y0}eSYZ~rk5q2X8_^sJoN~_XGPcIbjOR^L{bnLMtI1f;cAsyGiUw&Nol46&n zd~goJ2(?L-Bz(;6G{7`dSmR3Th`njTqVCI@N1#~DBIR9CZF_~4zZlRm#lU6^P#+PK zHr;k_vx)%erv--ZTUS@tKQCgmZM&SR;@y9JATCBITW0IvzKc1$H}z>;d<};RN*OYl z1(LE^v$xKJmoB!I$kPHcW~f14jX95e8|K%|`?i7SAwO^X7lSdtoi1T>pDN}a5D0|I zxklR|q{Q-ly9k{EGa0S14DRLBpSZpER1*%v7z1CsUl+4>iMB@~6LgCpPs6L^pJ(D) zf(Vm?GN_dRs@l2$9CTijIoi|70+O?h0CgbapKPTt{zzc}FEl+{U@}miZhG=NWYlrY z!S^8biA3(F&I6C{uq^V9ev6n>9Et&5V(xbpTzFoD5-q>wC2gU?fCIm=u`KN#ctN=n za_lYhS`mC{c`V2=44LQT>1&8 zexI9g;>$WH+bj2*`chiMaWwk9FT}%*G_(Kb#6zpT?(2c)xCPtsR(-$81M{C3Qk3go zMhrnv`9<*C6hp5iv$>9Da72M6-<-k%a{o}jW!d2H#1WR2?38CBW>+T2EjZE@5~z9N z)w$MkV`-J#K?xJ{0(AYoI4Tq*L`fVoQfVnmiSsue-$mFh7+VEMKm63&sP0vNqfCBDR>J$eb^Ry^XtkH@9M@yVmSoMA5KFEfgYq%Vw zFurn;lR<#ENWVcM^lXe~sc0-`7j3SL!$*&T{DwT|CXwC!uO|{fB|6o+@`MXV!5pUEQyg9n^82$zm&3$NJI;TaUo- zxvXiTPLsgUqB{Nl(F@hR<-rwSPefjvuYah3w+DWjMOZavC+0{HVl<`HDlCF2c*R?~ zt-hEuue@%;9yG=IJyOXcqn=nq-A~^w`N`rH#h&fgtmGu5Jm4g(G9}E!qg$aYtCm)B zdNWQh-l%mXmnI;;N%pW~KcLS@>&Ik7$6inx%@AmWfIEs$OkXiDJxPoUdL*&Nw^Gbq zFeQkQI^DyQS}I*MQ*P5!PJE4`Ss8sbGbGvMYGuJ<-+G)4VuUM*5m}Zpn+H9^n*($}emxAhId#7z}lVVmf6%bF)Sv4pV;E?V6jbas2I=5BE z-nHJTJHSjbId-I=WO(n7SL<4MTha(QY)E1+_l3uS+ij1TrPk%1F6x@QtsnXCez<$= z0!&R)yD7>G(=dEi^_cPJ@crf6Y=?OF6^fNVv5sV z#`INb<5W$pqv=?`s9OmLnL)EzTcVV<;Md>+2(^g$4JXN7%jZ`68sLC}x4v?ig@aGyK310H zHN7f&uCuawmFZ8@z~_jO9CXyyQWCQZ zehUZb9oE4|%Sx$G&7dG1%t#AdlHwz;;A_7d=)+7`s4+HZ$|I|nsRR-MSw4M0)J){o zzt&At=z!$;&_ZLH!e@j_%)s4g3F~gw{(Sf{6aQQA#xP8=NH&*{^64!63m*JLejKO>^Ep5a$$7cSvjzP=-roXIdn zj-U5v6<_<}Xn+mxRe zOa+5(G@J@`+dLR4J1bXV|8ioA(&X7&tU5-|T#uYJ6u%e`=QCJABavf9C1k|+fNccQ zJE&D8IbSiC%kX;lu*HIJjvF#F6E}~y?*43t?fqeFMIb7an5rNKkUa2DetlZjzSyea zM4YO?f-rgKTzPZ&DYV4$PM{3^4JgC28%6^mv;gj`Y6MDwK|Bhy6@&`I7>4N=XZiv zWkmGkRIoRtQ5IF*^uslGatW9__lK)OrQoX1R}nr+s+@~;D8p%`ZpR^%WBN1u{ATxB z$Hd&C>^G(5%m2q61uvM-b*6ZOA)!{mS2DF}*ez4q8c47 za*WvXoVJx%Z4-j?acB{&&o;OF$9+VJb`eUxzP*v@&@ESZ3dWLJMIQe!Wqb)Y zBIp7tS5TjFdMOXqhUL*cbNaSo_8_Bx&USPM%&7LuemSSlnN-6@V>@)%&JR(>2qN%{ zKywzAD^^q`|Da+$dZDNy4pZqu8rakGN^7VX^d)14jjs{<&{;|OH6rD~s*yizK7m=8 z@78}z&a{B7+N^Ojvh3p(yE0>0BXkBWX?E5}7}?+)J}#!J(?%q~^o8^a`L4#cJXBFs zO*XAFHel>Qv%^XbBsfv%&^uvtEz#3{>hD`plkp1Wvl=^?@1Fcmly&SZin^18k!k7q zJH2Cw&lCD3a0xyf(xy;!vp5vbG(GboHBgwIpB^6xEY|{4pLP^K9ewoW5py=BUX4Wp z2A;hXTKep_e;BG?&-MG6LS{j2&)?djrN(6+HPc`)K52Cz5GXgL@(DH=-9(k$*$hau z8Rqm08!`OdrH;h>pfY3`Go!`R#y91;{p+dU^rC@?qTE zkEfcv^ngh2sJ7Pf?-K-dnkb&OyxCiuK7Ax?FcP+ha2bN3eK;#^(`-uNNYq!M1zmof zaI&FkgWLjV7)%hZrD#xTv*&{{R*a&9btfAetace7RWxqK2ZeRhYa`P$3!{^thY?-T zsR_8`Ua3Os`&x3oW!&DTkA5|KF!E+wr6iYi&%1MabKc`bs&ti1AL@eM)23dszdr6H(P_9TuFHBvL0T`nTN)PnqfoyRU@ITVPIauP? zw~!sm;DD6FNsUaf~3Q6tg{rUGI#QnA~N zpjODojI~&}#mN9i$!)uGV#>6wi!}|XI-Yzxli-kEf$%Y0z&|KI(E04QNbjFw>EW{f z@5w6W_gWSo(GMl{^7gNSRYpER9{->G?_!Izt%aAy+{;&{mly`}CLV$>bk6?>^hHX5 zOZ=#T0T52I07GZ`TNtqy8zv)$?;HPCUqCYk^4&QmVv}TndmVYO?PC-@WCFbU@*I0{ z%HKZr?qZ)Cjk6RL)6zDmfeizvbS5vrb`wA!y=OWO7$)?K80C%XrbyUixy)aBhohKGP1PHe~i(c?y%ZzBC=t z@cu)_O*v%Ct%{BG?XQQ{B$h3F{B?2SwNqd8w% zrbZjT0VPHYb(tz;j--hanBDJ(xQY>geC9|90%a&2`c&K1|k&qg^zQA5ym?=8Z_Xrzl60?v|0dtbS)p11U{=k zmrd1^KgNdIKU$dha_L<7_W7IXthjWkOd6?`N_^GH6!9cA#-@Gb1S8*sU(WYZ)yYNu zLbl&;TI-Qpcp5edU10xCmVo1dedIU=^>hH)q-D2X(sw@LaVFm)MB*QDLxNI=mC<>i z^(6h;o||$2hCgfm#dsQAp#BZazIjK+Q^&{(&x3iXS8f8`tHzd!I)oClg7!r?6S=sdJdKrRq?iqA*sEraGbRSVF0aBM1sKLI0a5d6bR9Yko#t%Lqk&f~c2 zE73OHjUEn`BgI;|G64sn2vyZ1&b3cqJjz2Vrb9Z7WHdVL9~$-_rgKySv;Q$LGhjJR z{AB^uxf}!S?n@lm-((;wE4ggv->McNRXfpxiAc`em6#p*Icovxqq@5@X1mfRndAJlKF0&cGr{q{`$lXG-1NfvruZ@wp!TN62y{|2-s-XUv z%BODxH6qM7NS4)jT@R;(()EcYyClrln6rH7;-QL zzoPXD>a&K^GXAwWxT^K?|K-O=YQR^B`tyYouWs3GwjtdI)83McZy>>#Thx*Rdw=EQ zvsyXnc7Tg)1Sp_804+!P7A_2@-F?e6ocd7*%R;PG1L$I*Wz<_;(aDY87$BHjvA!HB z20=)(vlc0>!qXdG+O96GpL8zVe;BJwP>?7CUHVCSNa&5DAIp4nJ2CQrj|AwwEa!Hr z{dZK%aKi#f8m%?l{_E|{`f=d_sX6di%67qs`?mNnM(m1%wUPB@0?&)LWnw`7<_qcs za~lAeNK2a#Kj&~84p)anc^O|s5~F;nW2WBHVP817fJa|88wk49b1*7?;aFmK=lJLD z?j2z9Qd4v8^7UfSELk->IY?<034ChW2==FFyw*6^Rn?h91oSpZGpatVs4_b>6D+hr zx}HDBs|h+ON(a)k05p*6Pyx8Q#`nz-?TG_@0nLdWeZg(t$z<;qlK7%`%f@$hKM|3q zd8QS|0((~9P!|R4o8Mnzd7*=)r~$ePP`y2V`|FmV;D9=g4$N!ldnl!5HnFYP7hng2 zd)xTOK;5?)?C>1yM&ZKj{*u)L?7pzU5yw3=>q#^DW}C-wo5j8DD2}fNkTWhM<+(3! z)zb0+B718!UV4KPz+@jHFV7C#cm`F!{zIlJ>0TiTw1Hl<5&%2O)<_S4ZVKuabUrH< zJew~ID!{MUr44y`c^jAWVn)hLB^k@AuDCS zKhVhHft&i56Wo{Jdl-mUR04Am%IDb2sJ;jk)tMzvq|#GiBu z)ZC^f8=?M_hRp8*;LB48S_%XYEh;9Il-f-iu2FyoT z;PG!8@;lJ0s+sbf2m=nJlH{-Sb%UU%!?weJk1RfxDjO7N3wT-@05jd5M;dYrj9>Jz zSReC&Z)k%4#4@-~?m3oGiHV7W;I~;JoLoM;uo*ScjCDAk1n z@$I!8*ve}gMZy3i%d`cpq>IpQH%_b?gOfhnEN&ZaHFE~Nx#0B`-UD|m0u=ffL6GVK zLe_Q@qwGTt`S6ByCVu@ZJ1qBdAq(7rAq8VYeN)9!XaQ~9f8;G_nRu0oU1M;TYo3vs z{xioIIB{x?NQ>WJdjz+LZ!EWZQ!Ho9BiJSnUfmy8hIG7A_q=i}Pfxzor-c+MJsFWb z8JVt-iqehVb;hkXv~g)^=`e`#$azwK;ICMI;qrSVP}xz7g;GB7G@ifc7D?%RTFCgc zMtjil?hPBO0D!`jm3?TxxY~p&H6&QRjk!4{v;Ex6|mWm2U@hmSGl8O`yYxPOUexw*j%~~eMv*Zbes2e*z=E>$;ir6 zue1(|okQ5c1{=pjnDeV7K0)QS@Ta@e)eonZY$K9&A{m@aS$JFg$ez4QQZYm}hrVRp zk$@rnnU2Dz+wZlthOV)`@4K$r_Rsf+vj3nB`w;2mN{o^7@?dV`0>)_aLldO*w$eAy zbrOva06>_N5B{M8D_=-A4ved^Tlsl;g4|bl`cKb>Id`0q8rEmrGogLvHXFsg3SJQ} z!fl^-cCjwK|7z~apj@emzwS8Dkk~ZZfd}wvT>P*;h9D*ChNl-U^;7E5YcW#@wA-H3%KP5u*1!FIe8~e?xVSkz zJQMpX*61qE57d;&Cqll;ji+s1T$jtC%xwu38NT&lGXT74oxLGO^f1BpCZB(OUeofk zPu{F&NeJ1qxx^y!Suu`w_QpD|@fiqy^Wv}Jih6Sk5$9~m&&zHB6AC>52CXAtU>1Qe zr2nL6c@ZoeBuK%3&uyyY%`)jdGCY!=Hd>!n#jEq0jcs+`{oNCxM&MNjHqc@?SW;pGUM8N9`$(Q^ysZP;DXMXfbB7H2(rzfG0THr<{DTL_U@;wt5|ft# zPk}u`aRJhRk+V_f+s;*LYmq4U62)5~PE@c2aVjQ0gNX$6jK(n;=dSY!gD|4^r7nFi z&DHo&zw@||O7GaNM}zw8d>b76O8mTd9=t6Jw|mWQgN_}?vppNygSb(~y|s@l5H`!C z7|$*}S=+H5qksDu)IPLeTyc9CMm->ONjolKt!tZBSAl$vEWyM{%Cm-jfGD*jgU###IH^Aw%q&So5o|B0#`{ zKl_h~FfaRx(`Qfh@Yii2=bBEJJVQi{o~{q4jrwb?cG}<%*f>irr7q^jse(qIZ!gao z=M6z@s=9%k^_88W1cQH@{nh5$dh51;ZiH}=r9j4l_>j1GD#{yBpMEK!$;KGS@3hBD z`DYZsE#FAUpW_Wx&X=b%`Vi>_zK12-Ylj4P6KL}4kyQ2p6Rk;O2D6#}kmCo2-2!h5 zfl{D%{;*I&K|GlRT!52=YvPZ@dw-x@2{jH*xlZ8#q3@eFUTeMMYPgYh@0vqDzxW4` z@Wxi$tmGkF4GE69!g0E2@#c4!_;^)yHEvhyA0Jp+N(nGbZ-fj{?mN2bC$???TG!cU zL*~zxJXj$%1${26bjN5WHZ#QZ-<@Rx%8K)670!~LYF@c%ZDYzDdEKp?vMba_gF}V) zwKKCr%(}8vGZ*9#0)`F72Iui$4(Cmf%Tlb z5uk|skV!RoY2C`CxF{i)hgRhJ(`)M>VRWKv16i;UF!>3K1G|yfq}}7D-PPST(SIJv zvdc_)*M|P(wMwD=F!Mk3`ua`gBd3%6=rr3h&EHeJ?iKzhrNf`E5$%I^CRf4}{_QpH zJy48cLJqVlP;lgKQ#>CO3%j}w1TGtrX*to3Y5B3_-XV_>t;d8nH1FblN+H|vI?-6~ zj{k0m*9#eonJZ9&y8!qa-M={a|KE?Ni6>|8rn$PAvpjJJ`~QKR`<^J2$vqAJA0IA) AY5)KL literal 0 HcmV?d00001 diff --git a/labworks/LW1/4.png b/labworks/LW1/4.png new file mode 100644 index 0000000000000000000000000000000000000000..2f94f2f17ff4eb21e54d2ea382a1b9c4b3788579 GIT binary patch literal 28561 zcmZsDWmHw)7cJe5bcm#MDIFr+lG1ev>5?w#2I=lrx>LFlBm_~qOFE_AzWn}gjQ8Pv zU{EX@#qwNd>gVhWDf*rIkHHCq(r(?xHk*1H1&$%9|j`(J-~!56*EEqxY8En}Y- zLR-jiyJ+FW&Q^^sI|MhM6}oKfcGNN7ad9^>mdQQ1?S|9KfzexPX0q`9=^G6NBaB{- zsA?lP2yuvU5F$P?_%#hnY8Uv4*ti>EfTKr2RyLePw^1P?GIEhF1eYSUO9C}GIJnmR z#H7YxcQw>`tmWI;xS-il$5rxdh3=>rG6ikt-DzZ7u(1R(4;Fn--cKRtErpxCuT>jm zCE4*r2JT|6^JYZzE_3>HbaefTBc+PfnszOlgxXDZS$f_l{Y)H=j*e4bG?)dqrPPh# z@Vlv40+BG|hZ7j&?d&SYazqU;|JaK%va_f3VvFikwrr7B+(rG~48#`s%)9KZM(J~| zVmVit)i%SCkL?^M`Eq`KeyYk)ltje4dBJ%?*y;9fll*kCV#8Xm%h`IY=m>?|Lf(o0 z?sUm07$1}0!%fNUTt4;3euDQOFUwzi{hZ8{LI!>@tO8SeFLHM*?p86RYu{0H z%W2$$pdZW3A|hgN`0dtCSS03lzp692ww7x#`)th3Vccl7C)jDpV|y51Stu{3L?JDI z|MB70{(j73P3M#>?|S+1f#LR`F4hiT>vxkqJM;U>k4<!n_V+HnJ`b?at-MH;enfcJbPi_hF`Q0ti#0pWXl_({N`1~uC z$A!)2u}zO4^P8}*>(s+G%Hb1{7{zD%wp|b_GId7et{D9{5LF@QtyxZLYH7tp^vR9) z?^?T=(zv^a+oP#!V{w->j|v+mnm#&VVSNGDgPjMBA`S8Ww~}%vOgnFWg%Cd4citBt z@_#F!e|JNz)O=oTB~*I;OO#2NNmQr*V(+K(oE;h=c@oYc6BFa*ZU8#l4^5u8wGHnq zX&k%`YC?U@mtP`WfW4(%F;w=ZOv}*cLSu0N9=CTSjoTsygP7w@`YX$|${V6_20|ig zNg88koaI%pgg(c)J(B9U+Lt$AGo<8+hgt?)Yrl2 zMv;dP}M`3Z05@YMaJpQu4H<`0^itl|s1S56x;1R+5| z2ySJi4U(hTvz&x*tXD>FxBZ!M=BVCoiZQ1qJLe{;;+JOPis_taYiqY+oP^w8EgSj~ z{jv~IyYcujwe{=TOCs}(AS%c2LECRz^zkN^hu8|OQa+~1Vj_G0DsI_!sl6q8->6)_ z&Go)vAS>iuo#?@BaxQFuJZ4JD987MFKgy)caXEPwoM!F+DN#7#3uji$4_EW8U!$X2ivSdYkzv z{WJEDfdkP2InSHqjEZzLN^Kl#PIT1+{NFj^1a`0Wq@ONG=jECVP@`jD;WOl#ET*&d z7Dz>_GNZ+zKEunkpzPf44=#Nde)h_4K}!^VJLN3!(*X#$d*9INF-kvbOMRm3Ub+@i zC#rOIa;j~W5Uzg5N7P&q(0#eoP&^I0jsDdJGKqq;O_V}egR4A*Yc@_om~};QFu{=H zo$p9^*zv|XBIcRat3LDQSrpr9EwbBK`6z?9KJRjijhO#J!6(C8e`Lzf^K}-ZV4W)t z**#-$SdbjaC8pU8=nPSsTZn$^oP}6 zqd#{-+cJT8d7qF!PsTXJ(P_@(TaV&a-zaS_J@Eav%McBV<9y1(!6YKU;eIO_nH@29 zJNAIsbVKM$FhfL3z^Y`n5T31wkyJ*zvB?dM_x7ZOK&*g6|w3|VwM zM365`w!iBqts`#Z$C1>}7vM7m1^jI=Y8s#WUW+yL{*+{Y9h2r$5#iFs^9twN?V(^p z{;sKi8@e^7HOd@e$98jw9*tfw3W{)#5E1dAV7ZZJzHye(Ut5-~E_=r#YBrR{nsp-p zU4FBs*=_asF)t0xYB`Y8`cjZoQ9Wfk~3eY(c?BC(*o1rJ9&xkcoiq=u40gtCrcB zxOILmZFjLved;>?(`*vZU4u_9P32BE8<3mjb2)!VNEXoGc0MU>&1=Tw`o;)n|6Qkw zzJnWXZ!U;^D+`b^)fz~e9md?J7#!Zkj|r}S27a$)=cyBvQwreY7_Kfr{+{?~(VfEp zm~wkg`r}9Um%Nj}U(+ox)>t(w7hk?sPWcQ{qY>z?W;(OEr@bR@Yc)Y3WJOKG!p-xQgPfM{`<63bR**R@8zSty} zi~jT2vR8#y*O#8nx83QvPH$N{F0|erSihXZOrjecf2i)%LI|ruX5D4&hg|zI@jXyp z5p{ldJR7-kwo#AoGl0ok$vhc3sm4md-}ZOzdU&VpNkNRm9}~Ub>&YU_WLWjqZ22bo z-60DL8=BvdzsAmev|FVEk!o}CL9Cks*}8V}0ns*+|JrY_8kU$ypA7-`!7eu^Hh%V{ zj$T)C=D|K!a_r^q#s#uhCU6yRsw|!_!``vZW&FL?6>xR<+dRv%ea*MkHGnf0__x_G z;I(R$Z76C~UJ@z+3;}h8WjTdT%O5m}=r^`5I)fp`2iK{QV?Q+MPv92BHb$vS+gQ7= zVya0(aJ5qrAs>#oJZ(8O11dZ72224gS4aLINS~4QH%>vtvt!e;1;4hT+*7TBm*Fc- zfD;$>kn)@s9F!Q~z$p0l?qd2jW);EUsOxvJ64K2s+VC%g^3=VzDe_Vga~t;i0_1}5 zON}#hyi+S;`OIen@bm?U12aE54kx{2xNI3c3dsxiX&S^ z3RrgIe5OZd4(x2_B+>{LImOt6%-HiO_EO;5@o>$>FBo3i)@HbcIlGrwuT#o@k8~X3IZLuG(dbevX{4aeS6a82=<$x2N^`Mi`RBR) zzGn?2b{rDBh4+1~ooSHL&W1e7m^cKN5HJ@SlxAY$=g&}sA>9nmZS)I?bauOwrNvKT ze7pv7_iQjiuF+A^zLEv52H^*G^OD&5YI{%h84YEV*>V!YW%n7i%XaY~Gdd5MX&^t3 z&c*4IH0{~6SXNp6H(3+7;M^RUj~bJe>AYc65JS67&c6UR0nbT{q!G%E1cAesOzpDK zHsX^ueYN5rl_(LuaE20<62`5QyQ$Qp9B&|1&_zW>t3b#2GMb(%5_t)pp5q0Fe;Elq zhb|#;E#Y)gS}3RLxJtba2MR{V_J@Ayf-Z-HFy^COSs5N15ic8b{~BU2PpP1~4un}i z!>BQI%KvazlkNVxsSu#&2&oAa4-OFw+|5Y)j7dc4>yiwgv{-LB{qgcgFP5OfBISh8 zSyXF(R7L37XnA?llIK^Y$?xU4W343PxW{pCwGcwcGUBG8Tw**Y=F#4{TKKGq+l^Pm zp_k(!c;xS4+tIA-3Y3#&$z898KG)2H6`s%tpwfMHMS_ z8aBRkGeBlPl*$SDIAUi{uT1mG7?;>-fdg59SK!Qcy7f2t24UNNW!uLXJ2f1lL?DB_qd3?NH#}@8XIEngk%&V37sTrH}m5k_gcu42!9pvJ3Vv6(k z8prQL@Wi%3l14jm4u>t*R^%dz-t(A-7f?bgF)3%6oQ)D_m2~P4>X3}C&BHfBh0^ltP3vr-r9B? zw)^cCrPSva<(H^lG(xfU-ElAWzihPBvo3{#L2~D)cEABoZ?<#x1zOvD?=R;5k((%X z02-OTA334EbbvkldN{DZamg)~j91Ao!J5-*=4At#Rwywi!y}1BW}fg{ex;Z+m#{gI zTE6Zp3GC8-XAY66VXHpYwTbj{SoXQnh`R@uzYsWWQ$Mg7d}s%hX@4JkoOx~3OCqSp z%d<@6q!0ge(QSG6go=emI%dY%@8538*H4a=^C<+(nmeu^LyNyb46*n(aDg# z*bc`2WDVdUdrp4cN78Dq?(rxcHCsz8!%OM#7-hm+&4g%6kqIfN_vyA8YAL@rXNq#_ zRPI>}6&0PZyrB{e z)?9c!-eoPb=-=-EXwKe=6NZ-R!SlBVw!QW>%j(VTB|R27rSjKf%=^jghLy<*x0in} z+;DUsDgpV|k#@xLH*E{Uy#4+UTv-p1baLzNBnzrywEpDtB}Hgv@4Ua%CHQL#JEwI7 z+0LxaS%CM?@2Ra`&zz~A%9lj%oIZ6BwGDF?yBiO`60CsfoVGd^L_KNoyk*X>jS zcOgj7<_GxZgIFNajs3S9b011AUXN4LNB-^1^&EcZViDdHJ*V);il(Jg!L_xcUo{16 z>y$f-ZB37WlpYHPtRMYpsuJrhL(t!g_Ic=XuL+7<;`#l6zzmkF}YO)Yre!L?&S zlXbTs_dp+~a*R&3lYb@3IfrgKe;+y@{>jHq)a2g1H}EL(`}@1W)Az$=%Wx?QdzzE=|W3G~XEP=dVKpK+*J^o-+2emSmKMPGa7u+xq(9{2);n+hgds`~m5 z9Y6MRIryj=x&x7|7Xt51mbJITa*7ies>el~7X1C>S3NleDA zzgqDb(CO|NI9h9jkSrge1QuuJjhm2Y!d7{UR%QB)ZvsiAs^(=mLNerMbrhuVShzdp zgwre+8l`U&Y>^Frprm|mDeTqe#}Yfh zTELEaj{yv&mXZSes$)4OL3FgSp`)RrNSHY8@(UzM@*tNk`;)e8uc1HK$;fXlkQRJQ zZ%`22NDejD6hFSDdI&gPFGesKY(Bsx5_nZZ;UKaL8+MJ0Ph)^@8`O}&)xmo#`fxhR z?zzf8c^-5^iNS`(OIrk_r{7j9Ye;QzR*{LjZ8^Tj+F% zM&s9qU_+;2y5Bp!|8jpSMP?lt`?;G>2p$PVhfWD%V8j2RqU@vCX?Nbvas#lUDH%m!_na8alHB@CQ5D5UKJyd{hj=zFDhFZDju8@VBT zU|pY$Ox(qZ`XQ0kMa$5~54WB&b*giPK{|kiObNT-(=3($UD4FWFJIYcMpDzVJLtt7 zl+`p#^Gc&^Q_W zhN~UnewkFyZTgx@SW%zB3Q>xc7@rt|9O@sB@sb{%hX6}Em_%*MjF5Lvq_E<}ADFrH z!wpmT6;iLXjD0Q@77p`nV%<*$Aw`I*tQtGRL(RCg?4Qv#ftWZq!>E9>wRxSdN{u<1 z7fSgh34c^*NM*KCUy#C7Hk(zo@N-CT%RAz8j3{@8GP>POcxV4OrjX7PH2&sK?Z((5 z*SW=$7KW)okq6|*008e(SvSJsiE~AF&6KHKa32kmA#ISZ^A1a+Xj#{<-6(Nkx$}28 zP;gS5LxqkU|8-Mcs@Ld&vK>C#3mhLZW^PRhUc}Ka4_?K~(H|2J>q_a6Bl$Z=6>gv+ zEz9najX#I)$MvKlz+iNDu!bc>X_@{Mg{T1Oa;z1;UAgBO9MGad>M`lyNYA#R&lH@R z{QNIxf9QkP)Qr2f%7+gQSZNSsnK|)2vY6=GPtFZAxJhvMv0Z#?CWKKn+9MH?lphF} z0)}j05k4vOtE;Q8jN$eUd9x>B&WEL`N1+i}hsrhxl^PAxNRiSb1l$;w4wZ$K!uSV8 zjjg{$9JKeq!8WooVtVi7vdY`PPg_7CE%*i5_`- zU(Q>k_k`|$T5-mdF^wQgOw>W)qwew85ad^GmKydCId)cfqlti*=Vaskye{!jMxqRH z{gN8pJrx6jZ(<^ODJWU!BochOe0fn?4V`3Rhr<9- za$@z}kP4A|l)ppf2Df-rb+hNyVMWg>D#T@l&(YrLerN*a0Ddm4tYBW${DQWdeh%@P ztdg2C>ETn>C_O=7A z2Bi;WTr||IK1_T}qCugwwe^KH&)NxJy$equ<51rW_X<%M+CVz1WrrttMJOLh$htuH z_*Ooxd`FAzj{eV7Po-5A!zG#gr@lsmcuAe>JIdrVu;XC`=d73l%G%u4Pr4Rxf*W*6vjKkppdIt=EelukfTicOSpP&msB0_*0j{ zge?C|zAv(cil+kF#OLmv3`NIOa}_SZxq3$1gUc90|*1Z;IxQW zSu|jngCkNkU(F&AM8B`W_oJe~VD+QlFEBx~>82J^pCK#Ry)sI7ni|3{K@IwaN${1o zvmH4}U=}Yx(mEY2=6;nIp84)wHRf#)j1j+kwI4Yd8z;8!pfe(@<4Zk>XP3+lJuH|0 zzfks5&j#>e`*7l3#E9u3jehdUr79g;4dBD=?V18-IGDp-_^R|*H-6?`SN*Ua&E>NE z;<}mFRyy2V(p7fznP4;1F3P72j4M(q9tEt>+ZgMkzkV8(y^YjNi1d?W$PhTl4D1I+ zwN*9Fb)N3+@pdLt8Y$xApER%3-xwTmv5>UBf}9{IaS@`}QPS_`Ur_Q*pb@;RA<#3_ zlDT6`MyN2=8A5@*75|!U$zS>kUM$r?`=qIlu#}^01D7Bs_^1H!d8%R>8lfWp z#(g2^5bCK$u|m2b;IQQS%7g;3^N)|A#mWXZ0|q{(hTCst9i1G-R93`q68z?|#ZxbR zM%f}{{2|-jC4*xF*dGde#bXIp8f?VZ#x3ZTanVcCW8I8h2j43BJ8O>fAqa zVnYd<){TY{CBzWU#i`8}_Okk#DMu9Ma_nZK9GQWZV?h`hjFyTqv9w`vM}LCtsgAq+ zW+wG>l=Y|mh*X5z7#a6{|DzWn{+j`xCPysb#F^}vydOgDy9HM4`9zmaYB3YOynyL5 zzoxJ^4AU_Fj?g3A`!LyUa(8{=dDjOCvvgDn-^IaSb1#eKV`v{FU2ntT@J%=xqzjG2 zcbGR8b|McW-VP@bx>4$ztz)_ojG=g8^4RRUFq%omB6Jy!g{)`o8@haU*;`l3m!oCl zuSv9z%k9hj?$|1!T7i$yuF<@QlWm-C!j~qJnalKe{&rY|wTIVhD+VbkOp%XJA3p|` z0ChHy=;#+73O?Lqll?L#6Rime!V7#Ak9V`E|aQQL4ij3-C1L`~M|C4VUw;QRkF;`N8arW37`nO6Jow+11%)HB|xE zkl)q5;V4mL!baKIWlF(s4cFIENGwC0n^dCM)Vt~^A#1bY2+iANrf|rrQt*26o-vNB z1)M|5I5{iA!pOTjV)m_F+rGL8HwCIjl-_679`*(SLe3AcQw=^4H^mJIT%DOetmpD) z?yp!Pq+(@u?6orf`_gXat+qh;qhfg#AC@uM;jzAN4~HL6L69oF{GelyK~V)a4Vf76 zelz(ARpBQBl2FrI+AbE>YC= zLy<&ogxrHOm=mKH1syDG&A7^7|8-$=`NAZT8d$_A2b?6h^$(G>ef=_^+RahS4mF9q zkV70`K#d_$(=+FM`VhbZ;#FuY#4d4Zs8A$Fm_I8?c%;Qa2e1?Hm_+Zm#P#14mL^&n zECz!MNLAn!v2hhE#%Q1q{9_~op9n2&Fj}iIdWE#k_6ndrtEAHCZk&xd;wV(8BB~Xp zN|g3TF^xE?Z4ByV(a)a?m~`ZrRh$RT6+NJ$mDZ=JL5Ab$xa^mN7+F|8&e_N~I@Yil ze$#`hl_0-NwU9MR1{=;tjv?ugg8L;@qbR7T#6guMr$v{!U2pg?d7LOt$iUFwre(IK z1*gab_w{I}{fee9zkLXXwZpK_E2+-iT$Y1<@ErRfR>wkTECUC?VvVN&-wf7 zQ&1Eg$`uRzh}5VodOxFo%dYi$Y$TLUqWjdCBw=r+(5Rd5A9a7xrYfPS4=oXRG*jqT z=w}cFU83FK^_W=*GCd`FBiod`MvU-6kdM@8GOO;$*Q#$!i*0UhDF~s9%|Li_8R!Pu zXPZ2;cAa^&4j+wF)Q^cU#ZWAYkGJV#>M3=VG9tRf>~&6ePJhH44S@^KBEJ%OD)Fa{+=sr7cB0%V{V%0!qN?)as9=#5rKV2{XdFrt&US!~O@vWfp zt+n~}@v0|lep&76!#@xR>6n@2(_e*WGuHZBgfb?ChXW?=+BR<2T(Ro=2$beR5Y|-~ zDrb@kq+^q5V)&>{DTal`#D&*N6tZ7g#I?!ZVmEqfoEIkD51y@%Ll@Xgevnem-74WP z8;2GRJQBta%>m%TsYIr>ArO8ZtIz`L`ZmU~*4@@#8xl=w6}zTFUWs5Rsu*U|Vqg zW6R}sxNs3{^am(@xrfyZ+3s(f3XtKu=eqvx)RNn^t8>2Tkq7Rr0#NVcO#SQ6yGnd- zi6-}C@ahp$N5kkF{6{;hLJF-OMIGZbz~OIeaezvKG4U#mCo8eE-dd)rmg*K87&eDh z!cL=6rs@a6{|=lT`hW$9!XN+>=+%tlq?{AA<$ z?+(WQ`=%PFpN$JiXFx`*?CJdSg;}8w=$Ssbj@DGNvi)@&*d8z~%`kGqVB<+2PcXzkw;?1}}(P&tD*J{er|M zp|iKY3&9}CSEE?=I_lsu8+kT7JRBDhf#&wLHL@rI`fS)=AkuSltFe8%HX#xAtQP{t znOdh!IeuVyDpJl70ne;z=zMp&sJ;EL@u9{509@$xbumua4cfK(O@U}Q)o82RVEzC+ zQyx2cp)>hqUvV}D0~lGay`gm6d6@1q@d^-)jl{VW! z(L@&PxP^*+`fx|i@fuKC1ThTjE!r3u#wOI6M`qV7mhJn`GP*_2=i=unSlt%g86UiL z3V+83g5;+s{d5~GR>(k998i(p1#it;bU$(sUoHXfX~ zv+aqLs?GD(u?W+#HsE?o+6r1mIW2X13R191uHq zZvm$p{#6561k;oy4aCj(2$BR1M$j{2B=z{vgEWimI1n+dzoY{HoiY*@`AcZMJ0^7A zx~c=ZGN_K@tAc21Hc&gH%03tuy<)lyP?cXHiKmz%X;KS>Qn;oLn7@oBeeKj#nL!Kc zG6t+>oggj!#aA^#Lqpq0P!@>;g)XHw21A#h8cv{qu?sUM1B*Uj@^sW*fTw#h_tj}->>FG>hcO_|j)!ZFRZXT1do6i-4fBK-e8L!#s|6OA+#+2k_ zD|=28_H)_-X_AvvneP7*VC-i&@!1V@w&pkEeCrsBR`bByM?fNVCXHtB|NgxRE7Ttb zRo&P+&Q-G(dOX<_2))&kzgOqW@0rzu$m zOD@H&Y!8rn7aCSexb#Km6BVJ3RjUjzq{3uNi*{Sx$>0otWd%-=aVO(m3@)o#G7nR3D&bM8RV^Y6N)tbqB zT>N}r1oq!yyx)rpQRLn5S+HrDpye1AU=xFXPwp{k;J%8e*p6!INiQX#@RE&9DMf?8 z*B+Q1)61wzO5axA+9kbGj7*Yll~g)ve&=wYRb)C46OKCH7{=G!UsKp(@!?K_>>Q>@ zB{@6$Tema$u0tm~aO0-)*pg~o2|7$96s9U%=fz~*=7Y*6m-E(GwJ^~O#1OgEjChLk zl>o&wE=jLcjim3WV^H5ntgZ`jO<>p5@1Z&Chv<5bXY#9783`BuGlWz3RLY^lK8Mx$hspl_{yOpMe%k_N`y7 zzKXh2D(E}XvOkR9>9MT7u^3Cu+kTP0BJv2dXx`G^e8iX=P{8_gP`w zo9tiw8P|W{z`DHKEZ43x-584dcN6;D_cPGk753(;j_e3Xx4nMe^&|!V4DUiv<)+!350gQa*{tbD=|^`y%{vv)0TEY3*B6v=O0{3 zFen7nMe)5$Qi#g_H6i$48~29nW^#s&L1KlAPm-a&D#4@nf|F-mLcPc`EWvsfz>zyM zXN$N5w-r=&9GRGy_7pwn#ULE&=LrnTnt6O68O+_nHh~NP%-@ zAU0)0cXLq4^FcU32oK5y5Ra5x9Of4;T7X!!kGuoEg_)Vz>?^%?h9I!nEO=esm1`mXc;@MP7| zqFmH?01dGPi9V2uq^gIHxD|nWKJ`6yxF3XLi<%q!pW<6I1u3ZzSF+;gH&DC5I`YnY zr4`Y58QHLD;{VMo1q3u+vsT&!`YpgZX2ZL*TtPXaRaXKD;iiHp?SC0&r??$jy9Yk* zZ@%?H!Xw3s8O295!HE*iaU_7r1b&7Cp>Qe#xtN6NyL{pIukT0#YvQ0_wn0&*fvN-j ztoTO)2GsBj>+AGK01&pEWKWN4R zT|Z-x&MS)#7~t8RyP#-s?SB_a0%Leqhk|aInRa;%V$Nq!l9Ym;S36vi zLM?VEjI72{HKJF_dWVPHEwpEG+{^LD7GA19@P&*%5LBR%8Q&i@CWN3c z2W*nDMenLJK_ymTkel(Ys^e0}EpmwJ1)J2GiMOieVak7CR|jBHj-mK$NYsV}#ri$?sjAjLsfkMUM@8322Z-90Dr&-8rZues&a6$hXj-nVuAjyF} z>IK$#szjZy!jqWOBq;Oal&n=hl)R=$;`JGij4;nA0?cGQg9UpBg+ z2rc~@wPY426%Xmg@ndvD{0YeMFHZpP0IOnaT6E1g0M4ybK;h&(JzHaKm4*I&j?J*W&Hey7IKNI&^?Z-%KcO*ondS)Ps&7-H&c>scth zedWbPh;epi2)Yos>=yU{>Ik>rT%K~ju&4GIU7+hTS_6#g3A8mx%lMOs`nHc7-0T#@ ze)%DEF{3us;pNr>kQl&&^xx79hbYesi3~4u4)IzU*QvSDp}3X@oaU(C7DjY-oJjgS zRx>hQ@smC+N(t)9YjS6O@2f}jS6YUiusQUYMWsYW!KQ$Q4=%q4?;C(c%&r#Q+?q-= zuBX$()f2;?Rk)<6W7U@{5I{Pf@KYq%tz9F+m%qfJJrcV=zozH`4+bFgjJ_0yD8X2@veV=%YvSk`dgqVz1819yczutB_^e> z{|Dqj6>;VlIwx_}`QhT9#r#86^7j+CsV)I3)d?F0q*|Ge;@C=qLQ^1#PV zV9wYDUJD@r@dSpon^lOkjXp0o{BMYVan*sbZ=v18`D(iJhgq77Zb1D*pBC>I-(!HTn5PgUe-4y#?^YO>m0ePo@HPN$)Xc4)DZV*VSO65zaw! z8bHtU71Cb~>$kmF!pL~Gf2CDx*KyG6ewWwF67pk@!0%&r#6}CeL9>m#;>NXPAmFwU9cq%Z!q79 zOzHkc-|eTr*3{i{X962HlFaxEUU|DVZnLG|sx2G${8Lxe^iCt$7jy&LcI3uXxb55e@KbgGSGG~ z-%|LmSeksR0^Tt>;5=`ucSQwu&wae-&#N49?GMn8=EH#*t64WVgra0kSw`l^gq|K& zZGFAEsMm2913&}nV<^Pfa18VZeSEh`8(N&fU$cIf^zfsK$cA0WI;Q=X1|o9_F(OY- zPwN{Zt1&@|w%>yX>(2(Gk&zM8v2A<#6iMaCDn;IttLFDxn~B3D;sdfr zy}F|W(tqh4ajklcI(*K)^Ew^W3~JuC|1@j1cNpaQD^cID=8wfIG~xcd@%%svPiP+s zE6#T&X-t_#R9CeJ_r-n4_OvG^Cg$=O{wxHn()T6(C{tr-0p7~`<7_jH7O}e8+K=Rz zYbvU$`Gja4y$&fAfZh5ibFxsd5PnNo)8-d@r91~gRe`(ezWwuskdDWImS3&Vhyab5 z^Bb{jRI~~@Qo#NHe}kb$LgJIDYm%XEnTkY!XtiPl5BcWJQuH^Hb?qj{#y&mTFSUC( z0SrD0I*!bCe&ktg2K_PIiw(zr^d!=58PHo>XF~i>$Y~JQvT`aPRNKP&uJwf%{HRqT-hRycaN`v;RmHh;i_sf1y1f<)YjZ1|n zOXjUjRN|AKp<-=A%@I}3fYaWhx*Z-(BuY5uNtC9HCq$(E`8pQ(hE;rcaG$up0cfuK zo-BY(h`~uLbw;!e8o7$Po+YI}g(qEb6@<;ea5GPOSq{E|5L{OKf`f@97=J1J*_Oddv_OA%OE}9FlVrDr!v?b z5U%WqfJBr=w$bzy#X)i~BDPf~S{sNa`}!w}lcglv^9xkMJ|uJ@p9nZH;n??zYuN`O zIjVvh;9A1s+}t-6#8N9XED92YoZ7PZj|9Zg&;_i6S}UxAKU+=KK%`mKzd_x?P=W0f zutBScyRbLDn`dJan^HOcedI)n{8V4aw4E& z{fD;3WNrX;+mVobGh#uH;swg*7tUFsFrr2EZ%iW2^!#fKpirwpQpVqyjd&{#B~v;N z?C;ax)>SPzdwiVZj&W=QL^R)A=F=-XCA{L&dZ4%m3E&=7>uLiyXJ-N;B6(xuyjw;% znX)Q4{5rc}9gZRbUq)tLe`rR;1Os*EhtfaNg&d$A4;VSbx*RPnE>gqESgxQcG@@ZV zOHADT3U)<}3jjXFG7rE5Ti}=~c-SlsZ6eLu-Ym|rb7~5M!AVWkI@z?4_h#WXqvqH= zlmk;c6e?9s+7q+=nE*zX z*Z+a9UlK+_IPt;gL{=C`DJ0?S9eA88l=999b@}Re^3Dwm^CRshZbi@)d<|Am>KK?= zw*@A(I(_d8{T?6o*SyjYR!=E(1ntX|^T?sp3GVs+9!LK$Ic zqpfni5?S`AeGX7~Vp7sD$e1jEJ7tqQbiq!wI9qrC_3UHiLl|{0ZfXRVEZaoFz;1ZD zqQ_x`%hQuACd3Nu8CLaV#!boAI}X$7O`~ z(}Y#j0N?_Wz^f%EAOh{vLN@4V80JBz%eo!zi)O;8XZ&z#qLOV)6FPQKSYOis)`y;W z^!xXp_4kxOhn*rf!$s^EQa75F8y)L=@)v+T^%bC9keYMHjXXds9tL6}BS6+EmrU!< z5_y5F36gTBMP{waY6D~XElMLyHU?11xB`fZ2aSL1PG{7V%YLk|LGo*0;gN>uQuNlq zSUwksR)ou(2n@@;O!>!%T3gwyp!w?)s1!WKg*W@N70{06&lcGpQt%H9Ss&wp(%fuK z6ZTQsh#Z~1xcr@~eL7oz5kc)oTZHcmmS8FrVB=6hyhKk6B8|v?G{jCfcY}o z%n&{ys?{nL*1!AB`~7o%t&?`V+D7G59q+A-KeXw)$m48l3YzEu0dx6erm2}s4xSL{ z4ujbk=wJXUET3ic&j1yFOYRoY3$3H+NuPhlmb_pD^RCFwM<07%M3i{4X{8-(B5*^ zrUmMzW#6`$ukV#9y^qECfrl5U)O^iDGDK>L%(OJt(=Qb@w^L;7@}BA>ieM|e8F>Ju z0K>t~c5qPAxk82qzrYN&a^L5>yOn}<$2y=BE1z~g-YbV-lFBHbgM|QaBpxK(B z5VTV0LwN4K1690HcC0u*|1DTJTJ~?(`F6aZs+uP1_pQy943CTBRxSwE%Ypq}iRs;XZ@fy1Lg4B#X%adP3YHf0P?^=u{*xb$E>`@-EUor5bR2 zGPD?g%B}G=*ue5!wG9+DH>-QGKnt+A38?!Q>*<)&30CC`509{#K?_pR$2ah8;fTjT zgR*iO{aV>7x6TR5g_?1B`&|4ZJcB?{DDoIJ@Vzm!oXihKd$#+)4qixrxyGX)9EH7RybuRxs=`Wl16>9>LGqPp>&2h8!R zhG;Qfs)U=7djH0ArYd~ITefy)<8j)wl})nz&xXiF!}x|33J~p1_?@>t9Dt7h5FmOQ z1DSX4H$8V~?2L>G+{8c7;(P9Um3{HS-{KxDaT3rfLcC{Dbvef4R_TX_l?ntvp&}Iw zRuxK28bpZoWOMyyN>xsmypAk4zwuWqQ2JgQ|E2AM|4wVB^%9Da$U!&sp=LgH(0-Kq zt1$G+TBu>$9wDH*{kR8RKpNBNMOu#~=xuE(x^z7NQ z4`%Y>Z0QIgw?6Z=W>etImIA!*l^r51>?2MgcqKWJE!-5_^$r#4fz_fCF#zrWzh;Va_QXG zTk$Omd!C00pqmdwk*Ie1`q*kokiBC1P}pGmhi8w4Sb%hrpOKXHN#IbCrfASc4_SS= z`YiQxZOo~$@#lm1H+P^`RJLwhn%acGXx1EODGam4ziv+Y+Nv-|*mc>*O+y76iw{&E zOV^y@aq!WOZhRZR+MQ5VVmwO-@mAk}i;wT=c}~0Fv72>+LR235YAUCJYhq$l@*dZYdlva-j?dMlY(OvFlvYkmHf@s@syw~` zXz7i>V*Clj(4-Ua|d_1IiE@f4F{d3yRDFBTk@Gys8>+wLT388Mj_P0@WPV=-0nX98}#w6hV8 zEG(d;KIStgaXHZdmN%%Qa)ENJi;D*xby;VmjFfZSe6Qq)Jnb}YN_iqeR)(L8|Mv-d zFj0MgB?~Tg|MsWiBI$Cu$J>pxOVOID+x;l!LaMX*($_yAQ#VE%9)2=>u-T380$e4; zc_4m&R55?|8@#)tY!<`c9f6^*d8}1gpt4|zx|6#Cv0PkNSmAejnS!W<8hCET&5mZeDsEn;*b8o;)wFCZ5an{`6# zxrhI!v9pef>g(J7PXrM~kwyfRc3|jkrH7P~4k<-Ir5gkhX_#S#j-SBLAt2HzHKY!W zl%%wjNc!&M{jU3Y-v8d^Kdj|iGiT1(XYcR+UZ3mQd|hq)6o0_3@zM8)XH!}8S2Z$O z`SsW&WR*=M9&0>7)J1~1I!wnS7w-KSTgy{E(ps_dIp2MJWH@Z3CfeMR7x>+pcls;i3{ z4ErR|za#&z+=4@Mi>g_OTdQ7fK#na8Rvy1O%>whVfNIGi&`(MxiaFr#SHy){Y0!nu z^DEeappBVQmgFTklH)WSer6y@afV0Xx?Qi?83aZ&KyO3^J9H_PP(}@J{STJ97nnVQssgHuE2&B`lt<1S!%0iMo79PdP?xg^^ureT-Vl=|LMrU4%M(R8 zf_>0kB90kQWN^W;#2k&}CRP5VmGCUj)75{>Ou14jDh7!H)FfQ|{iBTlDNzN}uEbfj|0R0vU>UIj% zb8{s@Pl}ZDCR_G!hS|K}{{F!PIoeVWF{oM>?Y1Z4C_*^vr=*qKH?&SVXJ%x$o~QJ< zvQgGEQ}Y2N;S*_C$$xj#((HS~-M~G>#Ox*-_zGkwqAwDqya_H!>*=u_x`!`AwU5){fJ0WJDy zToBneC0E7`yG^;`+>UxU#Fupt+N%ps>g8H+BRg9h3Hr}X?A1=~Zwop+iOq`xJ4gNy z!0WLCV*6&3nk`NdS!csGwwfgLYYt%#?@KVA^by5CUD2x=Rz>aG-G&@3XNw{kp(SqL zlu?;ECl4uyHI>IZ5Qdo-Zqcm=F#Na8Hzs%70gx{W||NBj%orHN@ zfSUd&^*C3@52-ga?kf`?Tbhm>{?w0)gN{u0t>K$wew8o?tg7K=+q( zCa;v3Dn_h(sA?A4MLz`Q;+u?vrTvxCTSAl7{$&hbxb*UPahNA9Jm|e^*N?ytC$uKe zV+`+f-{wSR@k9*Eq5pU~!KLgta9^@kp4R|963jo~H}z%a>#y8DJvDXMFok<%G$!?1 z8r*vsoyJ)_K8c1lrA!?BqijVbQuT3-f=hdQxuj-ONk zTr5hAS(hrN|cb&FG+K-N3`v?apdKOKyp@Y!LwmCujO70WTjOHem6E|<~DN^m1jYy z9^|=Vo^l-+Us7e$ z5NfY!h&<(2M345HrIrknUV*JUIN}yQ^u}D;eV@0TZGSwar~s~rQU@EUS-xen;(Hsc zb+0xVyo8ygh{TE8#*};~@fB6P)4$VuKaD96ZJvQ`Y~c$*I9&+}l;#FNf|3QzH^W?= z9OZgOxpN?Q_5uwqXKVmyqc8x>WcY)qiuzfbfm9LK#Tc>PaB|iIH;_UG?KjJS0v8bz zGio<_iJJ=s!=39(<)TZ_O{>lKQ;Iop9b<+)=_e|;u*&pSSj8z1VK0Kjld= zB_KSfzd-)FE1Nrw`&tMM4Kx(l1sVm*K-^CRyRCK4tKC3hE2~HX)foS?!VD*Vt|c7yu@FJCCWhACSSpO>9I_Z`kR(clZB-lnx8LF-$+C z6>Q2uyx3qL zuX9XY>t-zNz8S9m!2@XlQ8gS+4+G7N+_k$7-*$qn?aOD;L;`hybz25Q02v)kTDM+Q zyabwWc=^86$28dqDAYor9%IPZle8BsGTUxchkQsfU&P7g&~jvsXM(KCCJR^*k+S95 z@jl$nAAxv=)Se*B1HoGBOdtm!+06Z`k}Fj6fVZnWvUh?`!_x#~By7Zq1_@!+{zV(V zrrulKT9JJkk-nE}!^IZqKca#Un`24Z$zo}`>Bz3`8o9Jd+l5mJf}{L5p4ihV6H zUpfmS+=?iMNWOsipJS#kamG(2Fh7+cCKSScj`SGALX-WnV6I(Jn3?4KM$U*VOPJwK zhXl*U4a6wOV> zzBFVB!JJ$0{LOK*<`cJ+>9aOlALmW!v~P3#(cvHtZ8}$!O5(R5ayXL~;R&zJ%8LKR z%9r%*7f<}V!3opHOG!O8bA$TtD<(iyh72X?|MX9i@y2H*-@tp7tAz`F7kav~jSsZ$ zpQ$xB_}>*ntZ+%#^ceX({|yKIoBN%jL*SlzFi<8tlZ^GR#j?BM^;m99g#$11dR*;8 zCaG63(;iNalf^z^(sCzvC5}3G_om~jJm^;{T`7V3zRtnH|Bc=^Wy_-S?YzOc&e0Cr;z4T4<0p)lz%IrVtomfPZo`uY z#Ujs++>i(M3wQpMY#yu`yRKJ0UE0l|Sc-6yRDCX=-gw?eP`4B_w_GU}nDBkL66-Id z#{_ErO;zv_+6ySfRF7MA^9o4T7mvR0YWgb(&PgiQYu9SX{z&I}6Z?{dXIPO#@^L@) z%X3~88A;vDJI8TnRVH3I)|$)S!jGV(bTDwX?*4&&=76K;R?Cr~S0uce2-z1yNcv+H zm4%S!gR~OIB;e6eN?eeG+ER7lfNc3o%Qn(9Dht(3VVS7nnZc6(i8l#%eY}S;O9PWO zn^iKCp2Z+w+BIa%u7t%P9)hA3ir122*@dxyWmjUpy?5}RfM(h?&wLKJQ{9j2YZX=> z4oqD$NF9Hp8oef1BuX6Ko_#kG7>Y^fF>F43m%i6Ol*&F&tK!t#J5VG*YIABuP{q0! zRqCE4GNHLNudc*eC@Xr-Jt-oq}NCbshhD2>E8_&rGQL&7ik@aMe9*}3ra z!_*#~n&-_`9Y!q-ADoh1)jZ27qCrl6xLk& zx?_)PXyHYFt$N&3vMG(@fm09P0b0f#%H(=AT^Xc#9L1Xdn;wTDNjp_LiR~wd+2aS3 zb7FdBd_m?+QGOOoQ9%|=nm&4EI678mt`!`a9&L|#);at6Y}P{8%e)>1OYNj5Ee4)+ zMx~5brsp70ftiCJ`Hw(a*p}jyd$~I{L%g6;W$Nu+MEk|6>c*1wnvS#?ufE#{-L(CbcvSAPn=>o3nA@7!tH}{u@ zy1aS|WaN^%z0S?GdVi~+#(6-?exn zW7zo0f=hNs6FRXDl~Y+9hr@bUrE@BW6buVbB?@cY#O4s6c;6VdtINm!P%t6GFu$YA zY0hW9t`p=W@Ph2Pq&!W=?=ganBo}~H&QCZ~x<0+rui^m&SLK(N{*595Tw{Gq^h4$>KBwkSA$y&u0vii>-B-_d46-P5NYejnjsv4L=Ky}Zjlo^*g#q)ygQaY}v4p}y~{ zJ?tbS$`Zzf*O*J7OndDP9#98C9&& z(7jZ2D+_(PklTNkm0b&V*sYe*q4u87n5KK1O{h1m?<3w`aC}^srdv2^VM0G5F2*HN zn6+iJU^JSWkQg{fL|5 zeFGEGf{(B9s0ICh7p&74!u8Ff^$zw|xHTz351BGqQy`cmm_%csKqPpQflHSAk4Jf_ zhq-fyccd#<>3h7#w&VN#^+qqk!jZ|E<=BZ^8^%j7OUl);@0Zl-myQ#1AE4MoCCqj4 z>k{mGc)U<XcBTz z*>$pX)@=}Bb*-kyQU0qhhCEBM-fFqPS$M8v+b2IgKp9x=aiMH8SOwAkL6yxbYN;i= z`G_(;b2SPWgQvlriQx{Ag(AsX=MH;>b3sWxQ6*Cs46FwfoxQmDJbU zZ9dKq%f(j%s(f)MI?E%!y|mWkRzk3-6LRp2*u0}jUT@_w{W!L@wSsPBA1u~8sM@c8 zp=9?`yrXyLY7(o(GM3#P5l+*1mbiC3&9GsALQVa{F}r?gOp-?T zg{~fKXu=p(nW~;s;)^e^NY&HLK(QDXA_mXj5m9kBCmX4hShIDx(10C z)K(+RR?trQCAV5wwWtT@PNMcY3{iXn%Y$ALRES0sg>bU+x6N#@I0Y-+&ed=YgmoTO z_fs`wA{?gGLltCQ|C<3Bsa?2wRX=Y;UDM(&YqpdaBh4q}(7yu^tYdFpZe()-XALrpGZ0>7wM&z&aEsys7T;5OrN>2zeHQCD45 zjD5AczUlXNe|D!)<%_pn#t``@x=2=Ii3@#WjvH)ZqI%W~;6;?xS)im~XBI$!F0jGK zg03L;xXe!tUX_<8LLTIr_}hk(!6jg z{OrP4@bcP7YZoVG#2!W!g%)q8;AXFI&_$1^_To*$`GzaP=|3ihmSotPJB6XUI0{8N z;YFlQF?J8QGw7@r*?3`^{;?wLBrulUK}WM}y@XBgL?lTxiAKzS!q&*ezu?Kqf^d>5 zR;~c#b0^Bv;7(Qxh9!&^KUQ@Kj1}%xOQKLIi5y#2doueRh67spMkRZxccJk8fkfpC z%mQW062hdKFmD4$!wG%u@!p1k4jxsgk)K zkaCEL8BTq4=A<4Rwy@B7pBU4Utzn~9K^2tJkw}dQ{N)5QlGeQDmWZoww>CD^XCdmu zYQd25`Bo1_&?5Me8s$`R?E4af^Hvs?>oww?w0CwA#bGfBRO5sOEJ8hLufumiyB}RU zq7k9pheGGFb*FMs-_3x3n5OgY;}$57&QPp0X|SV3e(b{N>F8gE=4^T}aD_CivJI`C zbN39@ndv<$a=XMc#GOd(xR13O(B1lSE2~Boe=SLT?2E3$!cd|;H8)#x_M-T{_B)dMfz%5hsqjNy?o(k+|=&A z;p$&*QruxmvD`Vj8^i!JZ@8P|0#n)LQi{}~CXXfQe+;@m;EFV?J}L1DK1a9XU2#13 z6GN)GvG;>w&{Vfrdxy(ra<5xEkq=p06l%MwS=%}zmL0VmqNy-wH8qFW+@w<1-sgpU z61v*g*ghNHOF?lS2Kb=Zk16hg%#jiM1+P%f*@{TvHJDskX9fOjxzc)>-eI~|VteF- z1!s(57szp?F;e7~#gX5y`I%zaePY6={2arqw!JC|D)awdpJ(oiUTT1qz`2v!QN6mY z#jF}9lRiB7BRiC(8JFGLV_luv$JS9}sv2LPN5IV3Nj4JIp0`;S8lre2s5jC#8sD>b zoO*X(>viwAKfFq{Dl%!9Ewds@MQ3OvU17|}UshYtD!xOhr=)wwkxv@ob*&tY4jY`? zGGb%|H|IZ-jtzkxZFd|0s6rj9@*P@h)s8sp^pMdi!4{*(kM`6KsKsXc>!QG_s_D9S zo&Bl#do}|qRU6A#Vb_xEE6rxz^u3rXWd1)ahnTYY$XG+y%sYh7 z&Wn#`$$9d)x+T?IEf1?qDZDk^lBCLUu}YXJuwfH_+a@R&Jb6vS>UkLSatV`tT$1g9 zDTb@rVz`yL_tO{rAG_d>I#GI$xUkFA8*lqp`4WCdTH_8@Ro(u$IxtUGCdipunw~r^ z5NDPbh@AnG`c^^fQHAVL)lu&+Qv9+nn^?hS$Lo21tq83f=o2l3*S2BDb#fcin7g~{ zG^=Uh57$I5fh`;nSP(yh_l+Z!D6a@Dk&Uv{=W=8e=;eVA8>(ei!D|ZoVS|28eJm<$ zBrqt|Y9oIvkyha*3GMGpVMWqRO_!4QA15dfF)$1j3`rFf%!XN2M^Pav_ivAzqo~x2 z%2n4psSsBv4aC27++(QyuFFW?j_qD;4KXcuCPOx9c^x%VP$rkQ66V=MvmkisL0nj8 zN4y%h{xdEcWs9?db|0SMagWYexYZGh=_$HUWc>OQtu^HqOE zn72ya&^Ow>wR&N~E*04tTB;yUdjuusE0D?PzuW{Sv|h-USN#XFJ*w8cn6U+lVEkZ) zR3E_Qi#ee-BgKQ^HTeuWT2>rMMJi(&eDY9_(!FEo5vWrhz#(wZjSci6Y&| zUa$u=e8fm;%^EVvlqWR0JJ9<4sb949{-d{)bUKLE@ycYrJL6p`9b`-4Tu0udM5WPbymouNpZhIW#N3=OhYBt8f$QFJ6WS7gir+WMQ-D{?Abr7qEIfK0Y@4VC^JC>lC1GQ}fL94eK z;4uZ>2IHfj5$4VQb;1sKwxVgG)(SrJdi_)p$2^I=Y@%%yUF@r&&_3!9ta^_gQ1lBT zw6)`k{4)Ov=Ib;ud8drEt5sE1SkR_rj{A>w%Y*OAo9aDaA5_!Qik%KT-AWbo2iXmK zATzo5%XJIQ-;R4{j2b;!)%{uiIpIi?DhtT$i8PXd( zrk~JmgA)15VmD;QvPEo!3WXr7CLo5xdqP!Ck*xFCWfykMn~Q_%R;I4S^Tt8oaER>f zK;qbA(A2k(`yxY^`?DSh@*Y1_YYP%+NE|U6{xWd!jkvu7)y;z z_5qpzoZRoa2;camNG^0xYD1&*ZomO@WrtP5N!Yl|;zER;=4;{-)kbLWRsx46o|NnT zzq~hAWpp@!t?X?=2$5bw`y8<;(+#2!p11>w(r(S~fpJ}avyQK?0MkFVsGDi~ib@7m za%nK-6qxZ2Y44@ZhfM*<{!nDfDl(*%bmlAJuuXiW?9{eTriaPy*OL;VL)@>xv5nj) zC&!;5mS8UQ8!`CEAO-XF{*k>lQP(L`V2yarMn(mf2a-A3rDVH^AUoE2 z+8p3em%%h1om@-W-QU#oe3VNjk5WtgA>^iR8aF-yRBjJwq+nIznCfF)ZXvIXAA!t= z(bGSX++|;G-i*F%tsw%MDiCzGAz200B8vR?!{l`3n7#~)#Dqa9g@Y{}&2r#j?D-gK}WeIA=gm(bAqaxUVe)0a*1cR%zAC zq}=yx`Uprxhf^EqI! znRKq1=^(c}XCRqp%E4TK0pTz!V%F;3HwWO(QRl9JA%S6!loA>wL3fOYF9=j|7&jv` zQvu5j8fcI|p2jjJ3CxVKUNW?oy?5{Tfo_(WYQE)C%F{af@ zO_v~{{`zRe)wXh^&&4rLGtPL+XjY0QGq7wUo`6`V zZ3~f;4OT8mzYjJQYZX`Wdfsn;8#^=~xk^e#M}56bj_gIV>a`b!L}x$s<%2O?JFGln zlRZdQDBE-VT`6$1){}CF_1^zEVOVBX*vCp_QuT46(1~97*}v3e)YmJnYCjSu4!N8H-q&1=u(=Y7IYOe+qPtjdL3P_k>kx{|baz+0#KS^H zTzi`G8>)bu&V;A7Eeb%n<=3-tQ(YU9cZLwYx>@^DR6!s_}5l)b(c@vE%D3^g;Udypw-bds$G=N6(!dW2stBrc4sW{CZHIn6lu?%Iu7mA-GxrI= zYvlX?63N>sc$qVaGf5MM5fAhYC=LlO{LRtMRC1r3&4jT(Pk;=mac{@yWt@H}DIICR zshK3Xm_iSM)iVjG%Ep6|8}K8(4N*YgBfsXTYzVl`6h8Xdw3d8 zou_JpjBCD|?31zzQ!S|HDq5?N!952*gE3vs@>wK*_22QI1sn5w%|N0(@Ls!p0->~} zbeRs@9`#FZXAtZh$z%SjhFwSOW>~L12&p(>!f;M7!l)hZ899J+I8e)dNe${;l(Gvs zSS6vrGjHdwdk?HTl~7U95)TNNCkDK4O|ySozkR(k`6^-fGID{pjpeg$n_8P1R^Xvk zl1jSTmG8_<3WoM2^nASJ4uDf|jA{Z%tgo}n8;#MnQ>4AiIh34OB;b;`tk{qHOekmz@xZEB;S%J}6QC zd*;_ho)g`jHdX=1F$s(VNO~2Nl65!d zSt%8BZ$1)^o`Nhu738*)%|JC5iMf@Ng=hlCJ?&@KZIH(-|DSvNmyS#5Bs4Af@C!n2 zEdC(VJ(c;jK3v09iJt7FKfZLlFJSjmv_v#353#w4o7JzOf#CZBNAXG0=p!l=1p$d@h5baVV$K~mVBqMh=w>P&=Au(JhmbeX zkir{1526~b{~%UKw5}YZ;GSf#g(*t|>tY!VS<{zf$zY8!{~f5v43JIu7payZ;VT_J z!~a&k+@gs^@N*4$z=Sz?f)7*op~RHGbOlI}Ujj3#;W$l#(IH4qnBfvPVuEaMTE2(C zeA^4L*Wh*kWFp&-Ym?^jr==lh={RF#>Nl2Gd98|Ie@O@Vy+c}U-3foD2oWcLi1rap ze)`s~LqFM&@QC&sUN1UDz_`V_GxBgh?#t)svO)J-_dbPqyRVNRS`vNc~S)Od5VBSFt@KW@|aH S3y#tI2ce{;SSD{3@_zu@7>_pq literal 0 HcmV?d00001 diff --git a/labworks/LW1/5.png b/labworks/LW1/5.png new file mode 100644 index 0000000000000000000000000000000000000000..fad0136c2e01f30cfd312aeab4466659e65a567d GIT binary patch literal 27910 zcmZs@Wmr|+_XR3l(%p6FkdW?@LrHg+fHX)+cXvydg3{dxf|OEHhmaIdN;BTL~(!_2>~oIrw>vjtaif^W}UA zej#{jDat;oouK*&J|Nr4sL4Ef)R2sIYl#9rW4J*LJs&;7`2_z#7oxnizY`sp0RYJ3S|hn?df2Fq8(1V{EaD=bHEph?oq; zPpf8((IMq_O*fPL{;noGADPqC8vSXgd@jG|ts3tZcO=4t+%KA?ORb}HZj8Ll027A zrPH&sA7NPB^FF^? z)4Z-U@tV_ZZPfARrVaXA(tWj)#~1L|?dM8IQ|_?zzloVn}CJOG{Um1nc@~ zRnt>z+BLRc*LPHX$1!SAm6*w`zISVn<*2Co_^IuSX0yPUnqXVRt#AUhhql9l7c0Wx%Al{R5~jNzDW3 zC5t9qCjEBAgzf4Bt~^BctDCk@hH2Z1g8$w5bOqhtUS06-#yXC=I>m!Gt9Y^Esote# z4+HxK;oumDDQ~wdn57p=_>X<}KjzXm4{W(Rid*kpr=s#0p}*)Z@IUI{^S^Mib9SS> zDy#`kc09e>EfO=1RV|V*@v=%8VEdyJzlyYa@@O9 z*#tg5zH-H6nhA518fJC|cC$F+lIQ_J1ERkB>knR}r_{QkV-&ofhGOQnWtm3rHI=js zXMWY{*A+Hh6j{(~Ic!LlX;~LtUmm*}pP*0nMJm(CtOQ=J9@( zX8tt^WV{2I(h6C~yF^$&OXIm4cdt5j3!C(Cb_=#VH`-U$#P0uY6;$+}g+QnEWB^dl0k!G1xXd)=iB8nsO%wF-6Wrhj`~@ZSxzE}FFT z^cv!kyRn}55O=fH{gPQ1_`VtC=)71Ci_TUKMWeVRz?E_ls3tHfPG?ciDoYX_3rfZ! zUI;-zsveTT@apU6{<|69I+RR_eW|8fvbGN_zDYJMCufh7*zv2S$kg>`#D2a?D4D67 z+U9%tMH745Z+y5dVeb($MM`5cr;25ex*j(~gH2nw=dPa&c-#1@glV$jcShyB8Sc24m`4PCI5abG`~QY-YMK!>To-@`s0x#+zY}2 ztkafK&}q-9WcCHvfCwCFQG+&;+QJ%{guUH$1j)ba;fH)i-wc%7|JtiDK98miYQMuF zHLBHN)uGCWGdkBnZ;rx$y3nI-Soy`RtKRjTIwEX5Rqwvu@>BK5)Jr?_HWXsoQVOG7 z#(|i{3uJ%A-Fd|8J3hEOF4|ohY2)$qqV0Pr)*m~OUi*g#ckG+gzqL20ciy{; zii{QecUwlN(P!63j_hTTWPDkoakbT3lBwn}_dXNYD>}z;jhqyUOW~BVut{aU z`_+lD&YKdA>8a=lh3J-@&ZbrrVi6K^dpqGfDxJZ9%*Z!4$9-*j6s1J$;?mm;eY+Qq znh4+2=b9a~Z^(uF@@bLnvQ51kj+!;b!U3LwON1(SojSj=I!IxJ_6Y6_c8egc^q0QCZZaj)heyaFCH=Wny#9Yt%ok%x6R9&^XcJjq;ZMb}UC^pujEF`tC{S z)+en22|29S#`zv&YX?7dyx}k^QwPn_}KFv-_68Q9=CI9Q_%?n2WCcV*#7EZaoS9K zr3zV}?(qszzF3%9YgF$51|jp}p<56B&@gXP-G%|JlU%sfO1t~KGD{`$CFMNbJV~u! zDON|638P6iIu5>PtqP70gPvgOYXd2RbmMrb-^MFlG5Cmev(&)c(Tz5mYk#V~VKvDN=X(6D{|7uEi)`E!D41Mgpvc(t1||+;$8(vG<1FpULfX zSf4)rt*~7=!tO!tf~`lD>Vl46u(eY0A;M_+ z{+yN(kH&o*+fk8&9@B^~M)g~Nb)VE2K=}~2j&U6=d})v#K&yv~?{WFvzpe-MX+r%Q zd(LTLx*SADeD{q%aU8YvH%UV+HNEr`BEz!5X<9y0p$)v4xPsQ<_FgV^k^WnWLQ7eq zT!#91CRm7Vsmp%2@>LB9y)4yu5s%|T=bvb}TW4=MEwJ^9Z9{mu<#1gj=qKyu-i7h=%RnCXQL20aTv$Te187-YZXt1zu(>g=40j z;EJY)L5%c$0ZTP&{2QObO_{#)4J5mE;z-tADUSU^^Xg1d}XCbaE*f}tDtFx z)sm7CEPYO`>71ZTpYht*+6usRZ|48ObvkzBSh-^DSN;WO0KSi1lyG|?nY|3F#Djch z<4G&pVttX#26 zDiW~!mEUtl)Tdz-vj-b5Y%G!&x0m7V+J~bhPyMbzYyXUy;K1-o5_73EGwddx%BSIP zwda?|W8c3wJ?Hr*ak-+sp^*T^$H$62L3r$4j%e|F8MrA|LRJ^7wC8-ND3(_1Tk~aW zZBaPBjmZ24lhkJf+zFZ%c+6#;jx#zn80{jX)v9sD!TftIwf$V`j1lgf8;{>63a&hT zX5*X8l#Dnj3S-JSW+y4~BEaHbe{DP|YW*b#JH$bfEM1RKeo)p*nl=l+tl8%&Ph!7+ zIkL#fAYq%ap+;5lHPQDo3*O>neJ-PB`)RE!t#9((xUsWb<+W8KvJC!@NQla6bAN^8 zs=>S+v0^oURZ5io4b|6LUx08kt=+a74FNeVY2*TJsH7OF-VHl?8W{!HT$@WPsiq6l zXI*Dg8iEQ{)*1+#W|pE}QR3@b<>nzjq<=t#rJBxYK;AQt9j-zpRB(E{am%-V@>OWf z>D?EW1gc4OwHLxMBp}VMNRqMjT`={5DG|DM{$v(wxkSPhw}`|*AMpLV5nZ8{CwMv` zcDyJ#qr%+**|~;(h_@Zj8U=XVo-t(2cMJOpWN3#(*GH-y%5$-PGH<$tjeAWfQWW;j zKvv%9tQ=rFXJo=*XKeA~F|Fi^k-S_qP9{KHhAv%)g3I`77P!Ic(s-e=+rBpSf9;9_ zU$jLVyL1fI`dCVfSY3cHGFsF2-KcjpgH3x3DRJ*Hi#}w)=SQag(yaNBw}FHF00Gyy zxBO?mB)oo`k0L2T$;Yxhu)d<;d&BPmXKIu@VY(*+SWiYk7IN5nbcs#zbY!O&BEA-R zJWSAW&^Uguol1oI%@uoG^6p%_i}rxu@2Tnj?>`IXZ9hjs?kp*LNuMQ=5Iz zHkLdpnbFxprsI8)s9bQ2+$b4vGDNCZ>}Hutlv}BGA2n78R#WOkK8d2U6q807l!OxP zJJ9L1f3V1NK^Y&epG1x);9*tx`d8IVow*dbRM4%|ip?!eUnI}wbL$cGQgOdio328A zee}gTud`EY`Tlb{Kl~)jgp%z7jgx^!5MZDHg#E*Uu7W{7{q(y2Ks{6CooaSWH1S zhkY1XU2K&V5|-oWkH#iT7SD>|>Q|>)9*iYC6paWyW?pmv zmZhIYw+QUd!yQqhn&VX4cX88#H⪻5FR z-_f(cqbQz?;0;wp+cJ_dAay}W9y$Yb%HmiTI7!~*H>0i~r(6ueA!T=$Pw(Xo!io<^ zeEfF!`Xfa@_D<)LtPCffk^G|%$f>qGl2)3T#YhoUST*`}W*4_wf1gLyw_AJF%lF^i zuLb`z?frM}-z7PVI8gd&b);cKv?4TQuKZT*3zn8g*h2GbdF44-t$|1JouXL8-!F&0sA|fsEOXVfJ)7)x(F+q%gB^?|8Y|z!!gh?Fhyr2=H0(aXg|qy#-qFbSRYr}ELTI9^^GN5V`Jh2 zD+~3_Qj?v!zvQ0cC#{mceUPCy?}w~y`j}!(t|r$EZ2~JvV+1VfG@)*RMB~mA^HeW<`wy! z?76mvA%W(zbCN)@5aD$*IpGz*p}pN=S>%;h?epjfi=DKeoqt+u;>|y9Kd;Zn8&IST zoPA!Xv`^!R@Zr&YcasVITc|~d$!jsqBhX$k{u0*9d~PkER|#VU094|4ZcLQ zG=aFZ^bnvX9D|D_DZ#iO{6Fc`k7pv9Tq3h3HR+1fN{pc3(E z#}Sb_*e!{sd7o?F`gw)btFTJ@9V+T$GCUqGYCEOBw>++D#b?geNRz4t>zuLFs#v@{ zFK1bAC{%Jt{46dGUo=FK_1UUkZdLIp*Auu9O%)E)*=Xtd^ z^>L;`rGRNJydebfvuMMD)cksmr-#RZ$T|%ViP=YkqKPHC06_*?p3P&P2~+4wn) z@|-3X8~t}9XvIr#n_=y#gW@W zVdW)jW8QRo70t!3RmegG5|-)J@T%NvfxFIAj{b?eLglVwRsKT+a4OEWpZQ2VR=kc@ zU^sD1>XdAr(D6?u(&fzv9^er2al?aG19w+a~fwrd#OIo5_R(~MZp$wvJZ-#|RRxhIs{zen#)*Ma8u zsXXbK6?_~rD_w3g@D6n2TK5qMf)~QD!a%p+JZo!C5~S>gq!Ae?CesA<&)6K# z*nKF2{tOB49NHAm234owoYI;+J0vObCd5-WTSJB~!x&0o`_2j1ykR7e>wO!Yve=`3 zx^zKeN@7V^`)K$2i#+DCr|G{nWvtbBF$%DV`TX`qf}@K$O*?1xZgos_a-;N6;{1k3aMtRA_xN-$mQ{qVL=;+Yy^Ni+j{FJ2c@06B+TZc zEJI~z5JUmSOj9>v_DUt@zoxcR8ctZQPm|qbE3CF5IN7Uw4SEjES?8@fuRFJGW&>4@m{%1WS&c+LPKR%D<}snpve zX>=3(PmK`%*L%EC1MX?U#3uu#lspz8#1#5a4y57OuFU=2=i9@QZizW#1$WksG6bES z>C~q}CfWp3X&VJUe(0f&Cd!U4ZXrFCTK}@wZ&mJ z_1t2KjoJeUSZ_sD$ShDa-M=Xh8q+C(q=uE(8TAj(_oExG*5=8=vaW6dbc4Yhhk-1k9`wiVUgQjA52BbElL_R?4^cq zXWw4UdO&){*HMpqepsI*Qe-kMEsoE0ZMmmEaB4xziq7LnM*rfx-$F?jc`Y)fJv9*> zp&e0|{JY;SwSVGbuuvx9LguB3_Il^(cjw2y#oC`^1blRk?!v`mVRjiT7-{jjl*-@N zFb1a=86~zDl^9ZSA*VtWTFfwdR;^Jkd!!V(vh>_Rac_e@!`w0q6D+ALk-k?*^V(aKJS1_)P3?xdIt=>SGWY1{;0{ z8lacJdaF|K2?_c)y%~8zdO5;`P4MVU+%l%_P$awd>xEawXoMic{N4u!VxjbbO56u5 zVPDF_&c{>E>KH2buFQ6XJSL@TH7AhhbWD(vNI8=4Ilg-)wMI!YM5G^kTGIMo9yzZz zARF@ZGu$a1Fown%{qR~O<&BHY4jD4H6CPvE zWsemDgmd-ZPWWUpC=$*~Pj9;Nu|)4Tr1N>&BdOB2{`t!N z8|u&$de(4M?4?q~vL{i};TrnJ!c!X)fr?Kl7wEJ!8niXLxEl<@{0prWRsALzLrjK;2Z`(Bk^qMmnbe^XiV+OzJY92zp^2J$?b!I0DMq`9ca}NI0{; zZYxTSFOAtXEfEt%@xPRt4nd}q}$VtQ--rRtl3%yu{3?8g9IfxuA))Xdm3>e`M2A^y0vBs9s`B$`3*jI z@1H;VGD}Lg#xfMwpGi+Q8X+9e9v{bF)v-Z3DFcKMw^gd?N8v_Q0c1@?D#ZMkV%8NS zmwK?1I4|lW^Ut2VFR;hkOZRIn*IJOj&K4iUOjSSf>T%;dr`2iZUcyR@i_038bx-aQ z6p{s77yGuMd{mbhfH@Lk2$H6E48FDo5I(R900I^vn>vF`CN3?=5wN17(Ey5l&qqnCBY7B@qJh^2o7%&k6%C3@JUJt?MUS!(xuD5gi6O z135}f(4~R)Y4*rfBhir$Dhp(Me8_-m?uV^VG@42`ntvLA=n*I9f00lC zP3X|hS!(a3$K<1@!5V$?{^22V^2it;_Ub?3q<_Md3W&ebX+_0~yV3>f3P+X&D+2Zx zvMUs*f_zI<r~xw8Dg*$0-MFa-8Y5t2L8U+WR$=9+7^web|*@>JP&> zk5g&@znJZo)blph_bn>3=%;JT`LV-(=xb(V|KI&+hY4vVJjUCAl<6Bf|AJ0-HllBf zd@-h`aQcO+?qFe-k)`Ewi7wgzK_)ORpA5pkhelKd^Rx!BUq`hrT13ZA|17*{I)!6N>ap(sT@ee-=eKqMjTbN zeyrmpZf99{LA3&$bhMhY_9nNC2DN@fczrzo)}EZpEt<6sqxZtQx&j&sBG0ODX4M?J z9{X}F6+9_4Wa98RIl*%u7+F%WlngfN zTCve(v$0fv%AoV>UEhaI=h7Bwh4HeE-_o7)nhN`69c~9yKAbdSD8gufg1u-gvtG;6 zP)LhGC#Y!z44q+vOw~e-v0V+_br8CRFA#7Xcw>=rH#1us8ND%a>qpV^#l*xs==>G2 zrj&3AZFmL)qMKPV@cJWmtKJo+0XA-C-PbovYe6?P3DjcqE|-9q8f$mo z+6Kg724j-2EL?LT<{IqvNvVD-MS1+`*mJm=Cnkn&I@Noa+Gk`elcR=Kh=W5V==MYr z26P*6eM%Of@m5`;|4ucu2Hm}ORMXreeeZH0T>e*>joB-uNfmC=ocQ?VOE`C(j}vUE zv?8pm57zVESN!L zPC3jgj+q-_5L(vk%%TEk^hhxWxeG z1cQ)+LB_Pv93JjU#A~G^CMJdv)MVJb)X0Vp1pg`!ve_7>#2@RT=9 z8BL(tq+=#d-P^nM)vwu6BbBq=$!t)zSu;}g$~~xsM)6h)&i1w_{!;=WJE6(t$+019Hnn=TICA6m#P+s&RsB~ zAR@%Z$EO1U0d#-927c2yttEYC)|E3bNKFQn#juR@bVj(~%*1Ea>l9wfkSqfs(FnJy7KzY+H@0LJCP(4cFpAeSIdSZU$qSJc|MK~;Z4^RM2)^>_q+;I#o|+Bgt3Imz{* zJtnglU-enz0*bzd<0n8|miyEpt;uT@!uB0Kts!OB_T7K?Ku|xX4Icp)l4b1LGxrwf zHE>MZfWArV4@X-*fdW1)`oFsz4;Z~3ToSS+mKKotY!`>)GzLN=eEIQ6Qbo5@}+&cCVuc;i^xu<>2r#65Dw|G3Bdqf@hmsrOFN z!&!oF&p8mP8IrEL4^y)M4OH1 zS134qZ_OY`O!X=MdAb+CSh6?`txR75)ZTc$H!X)Fb?e4K0oc=?rlD4ul$bHc*~-+G zM!h<-!)jO>Hl^Sqkvx#Kbv`2Bmxq{_qZ>gVilPECCLt?QmeLW_o1df?QL!l&MN*)R zqBbLVK(k|>U*oL`-p}@&zIi5q#lkB0QB;1a&i!;Iz8jIG+rVAdU!BQXzKJL1&|4gl z`nX9U@w!Fs(W>35S*ThNh?925l|{+q=8VB~;~iam2p!Eb4_$$3Arn`<#i`zVq)? zbFC6%ohA1D{QLx;uY;<7Mn(paor4XqD0pnc75^Qwy|bg7C+K{Do#=lE7yaGe-G~_< z<{V-Wa7$djhilSqa`PS(J>jl$u5=OT4OXf|Joed;I{AOPtyT&Ke$p6Af87lm#HF|t z?_DpSiuhf=vWwq~v>rCHO=%h?Y;7>v-N@RN+$pT8LaSrmATRTn7#WFSli3V1Z+emV z)b+dg+asU#Lc3d5CG1wOgB4OB8G62o2jPa)D4Q+RnY+^NaGQ1-4Ams)HcH5J-e2!C z2?)%gs(ef!=ija@OKSAwVPaufw&fPrII6YYfXkb_1()9&K+EL^P()mgUX$N$9D68D zdVBoQEXe07B{fnr5B!q}7eMmb(evsme~Q9(mV?X}= zXkhZF%S|bu@S;~1M&!+p;Ij&7t8Ji|%m8Y_#R;1DpT>p=i!{xPIRvYb(NToy85!H0 zSCr4$`_wiha7o6@VVjaE-RjTXhUu^VHJColnzBxA8EDY|Q&_dnl$9)@ckH7qJZ$zY zq6ZBbGS$fNJA@7e6W?v)S%1ltlgj?=o&WcAh5Tl@`bo)~MM>-|xWoT~i$)vZ<~L-x z3gP3Kzs-6GFtOs`ECTodw&nA)dEO@k zh0C6k5{E>jx2T)1{>b(>Vk0D^^%fEb474y0R zc=AAJ>q{q;#1)ac6a#tm8LSGf0)Kc!y{l}u66I5mZ73TjXY=^T2(?-{p6%|!L)?WD zw$kBW^bFJZj{pI!nWPFQzRyDtDnr?C3mvACcYWbj`pqiWuZ#%6c zI7<%zSZPEJv-5Imro*?lFsK+@U5jlGl&0BtR9whq2M-l4IB*18!QaN`PD8lwywt3e zB(g(h*z>yOF*)BLj6oEt6q6nD07~Wa>rpTkRzPHScvt-Qbo|Mo3G_+tUn`xj(a18{ z1^-?1rXIxsxLLgzEiJ8b-4A-FpDA4z9lpGKUhvBapBg|+`^7d8m&?Jcd8=N;4Z>gJ zao^uftkJQtG@y&rhe!Wx1*{)P)?U{bz+7Soz$R!awzndyJrvDofqL3!8kt+{_Z3p>1G=UMpba3oA6dpO zsV=LXqd=<4K~7HY?KA^U@)39!5MPP6gD`ift*Edb*cB`A@a;x106(_dx00G1A^_SG z`#Dt-{?(P#88YlYWH(r;$^}Q?G5D=?&MWPjG=AIod8?FIKO;%aQXFeLo-wNz9ysAk zKv*bb25jF2Lg6U`qm#@v5S||%)B``)HgFCE15=xBn!AESD=0QaUIK`!=WMuQ!mSJqzLhD+f+-^sDXgBUp>$!WbxA{Qyk} z=^(-h8_VO$FBxJzBu5Wxc^t6{?CD2s*HIeQlWq-o%fJ=L&bEOf-wQn04VL-x!4la*9f>@XadICl-7^kDpL2JX3+i!cu#pv??oI0?BHvsh&^mYSTdm}iJ(A|lG3Q&^} zq!M4Ucn&FAt9!T*AL1kc@2TK4?=^Wbk?(*+g^uK-vO0{ezJ7dP>Vc(%_L&{5BB36I zjfF)~@_LVP*+-r>%@|bm)}1tkPHshvy#MVB#2Q~-ereN7Nr)_e$UR2D#vB5~25%=A zB~%x;)J9)*`-I&JR|djLlhRr=jBM^8X+2YhcnOUha}POE3_%thF$syXhex9twLBhD ztmA+2rJj6Hj*XkU6@d^mj5f1f*fDi|8|3sQ^v}wHhbRD9k%ARWZ^Yv#2j=1taT_K8X|ny zbNSr^cnnwiHyi6G#L7i%yQ6V00&QGw;vsmunXcJ4wqLaROq!$hy&ds(oyZI5_So3i zCf+TUG&j$Fx6bS_FGXOdq4B2(Za~Gh?4-3yrKT41>d(|SV++2&vP+!9u*4uRq`<>8 zlasL*4gp1CQ5AM(6Pas3A^k{G;ZB8@u)SBk^!}z7^v3UZYk$T@xMO;{BF;C%I)5Lp2(U;tEm7~+cKo1K}W=r zdP)ce^z07vUkpZgktZkK2sqk+Y;&ecn+4>AN2vO&E60S)swv-l{DrcLA5S z{DOK^LgrI1GYT7LHg&BayFVhnpwprSitY9J&sOu8N0HRi?e5n8{8QP;F&ODLpeOq7BCrKNdpAwykdOp$M!KFu6^b+5sA5ycLtDt8YvRjfIk{MR~mc|h}Nm#q}+H?QlPOcvC;qm z6Cje=Y5fQN&L6Gc2O`Ac{AZ)hLRz(brAd-!R6*LA_ir@bJBnUcM zD$V=Wj{b8L>g#gGU9mbWBLb63n|qK zxoRp12Pa|99qwLJA)GR@czfd_d&S|^l!*iWS&@t+?TU*uCx*@TsR8#_yWTEL_au%E zi}jY?T?q+~JAfR#Ch{rhvZ7oa_MTJIl)WpC)FEh2(IV*4OQ=r++4TcLQxF?MpV1>B z0MzV~`$#lsOKao@6cJG;N!qvQjO{;U`(N!dCeaCE_2HQAB_M`0s9ce&o=UMQqb9RF zCrD%^&gL`w#0{X9=KEY~%$duzVArzsR{dY1Oc>JMJSO}Ig*D;!7$~q0TeyWn%*yw z4pxl%9~PjV4Z%w-2o=|OY}B(JhPB=N?RnGH-Y-!EYkCwd3Q)Q}rw7-1{HS7p!>tGa zZ%(&I1@V6Zk))0GeaieUXuoP9Z`~I!#KRg*9)Av@mwX=Q4im|PN8vd*1(KKNXcxo8 zLhT~%v3z&g_b(H8@?}^l&Q=BPr~&k zrWd22_rsoL0g3sQQM+47LHQGQs4A%v6n|7E1^p#DX4(TAp9+x18-BZ_YS1e-@$~0F zLLCs9y*aB&vPNOkwK*FDXzGE1g~#q#5m-Z#Y}o|pVyvj=5w?{pK+C2M%jnXI`BtAx z@#;Us2ZEi~uUREHHmCf;WBvK@a&$yjt$LB<1c_JvU^8BJfi?Zr*cZ$PViXEEyF&or zJb-gs3MvP*hiMcpE%)f?D4*|d3%hvH=V@Dwu{of|1T1AJQgUWu~+Hp3J_l5KEo%XG%gml|2@qph(h<{-5>W1M4}x3gC0!l!tdf z+JJ=np{WtDKCFg@h7%;3(l6y0p=PPKUIet!c?AELXM}-+2tvjwDBv3M%Er`o>`+_* z4VEovt%Kj=(X;LgF;5-55v0_NOD`pO;KXAA;WiV7g5?xE4Wg$5%MZpnYLUa<+fx<0 zc-D{B)ny4g3;^z!=M%nyWmdwgM(~3GVcs79`nBboM!VBueg95-JUgFJ++P)@p==JN z6B@%j&@)&=-c}ddLDf}?Y3-QZEK6nW9 zzXvZL8E|sNAgA+K^;#GOjU>)URL?=nmy)XLtNCXbxzB)unEjak!y*2Y!3l7N7q9AIrNBMOv2uGlJu(LafFKa}wiXm zvB1u*ZG_lc|=Y}7y-*I zjIMR^LJ2bi8qMtBjTtwWhgpyb22u6`z6e2EBOmOq_w6*LYd65@yoTn&>qnGQLEYUz z-+Bt@Y^a&pkPFXBkks9IIygXLr=Wf?p2nn-FMtoB#u}y4cL+WB&Y&HaNLQotP*%|c zW|E&zwi-MqN`|9A3tAgTAp^t?`*uQhe_ zT*61aA7v>LHg?Jbs%=MNY%(5cR9qTPKp!`Odf5f-{A9UOdbO_nERALWya5^Bc|5U% z4oDDmts0OuR_jza~!qp0~aiJzdzyXWuT+546k0~ z04DmY|0S5fI7r!Eq9p$004duH*L6XCFJ3P|E@E$EL)*5$l&!H71^K}Hf|Zeag8?T! zAI7*@$A`xz3`pRg-+Q_W-coP=qvERCs!b2uD$4BE>)Bq9W>M66yLBH-M;vp(a1B1TiKH(%Z0(2$5q8ExU8(R7yOo7KR1Ym~x2 zY}#+3$uttJSJmGV2ZXhwj?2rD(-Gz2ga>GA;{)uO<0=nX*2k#hzJF!_6i9HOE+dWa zf@*WU48G1I)nCylvp_ce6V#BJG7Y8&G8JDk45BZrzSsS5;2IHz*8_U;y_1+fA~Hte zhkJ4uH*7L*BRJ1j8(w|NZE$aWb^VjwuzQlL(P5!%`%RsY@>WL3t?R$nGpquy*7*-E#-v5vn62@{*4SWEprJL9b;&%^<1@ z-75nnan|M+IX)Qr8}nQgG^{=g4Q_aK;3(B9lgxk)WqXCzTcP<$!bufH<>E;Rf<0ah z?%-V?!FS1+?@R+ur1=LWANcXF()CS>0TxfVWkTAUJ;x5B2NfBNg8)J#GU zs*7wrRQfR{l0Wf8>L( zl?C#4E2*wmKWB#CH)FA|3JA2wD(sdsNP^y@J12cOziiB@4s8v$-og}GB%G}gpIa_av--~5+WiE!|o5SazQ@c%!Gcz;W??2S0t$Hu3N#6gp&ZDQ&H`mfiI{@@dt0(cVg*w+^ z+6IY%Inc*&x65KqW0;mF=w(h@^!IEmVsmH^+Q``x;W*w6Cx?TTzOkJdN_@e_v8TDmJHk$&sl zXGWd$=41acyYIt6qL1hN_Q^Z-=t~1(17*7cuPp461ko|Ba!xCSL^?m)?Ca5I|EpVb z4;;x2h*}+d26Al(Sb-=Db;D`v|kNFMMAkFgx zp=jtjIa@FHNg{GtY-0vlVz+CXX(`{aC_nS){$g0L?*u?W>47Rh1&w@oi_-UXfaHY} zCqDy&KrRko1S1SxOZLskXWI+wvU5mPb{d_h-UHvOg9avMxvWYmBeEWXv<RnE9_6pXJsIPUKUfoN<3fGUP~*@aqD=Of|I^r;RT7t5|~vc#F? zf+P+rhUKh^Hgm46|0*qw!nQO2+UO=dp9ev-u?aBvP~5?8`J=~mE*_st{9eUcUon4tTHet1Nl? zE^pEk=2*@G)=iEqLF{jk?^~%Tj%WGUz;ZGQ6b!=70eydGJ+EgE+N}%x_+M77JuBB# zOwG?^fW?<5J|q`&&kVvc^7EbSC|4+Ugc$1SU!M3Xh+Y!2O%NO2b$P*tC}oV=xhG#d zNX5Nr029*mIE_0d*DO~$8RG(v^+m|xw|B`+x*0Q9QVdL2&rQ-B&y#@5v{MJJ3F`RyHqU9}4v0IP)8;DQ!e|)Cx#Sy3p(g#WVLb|O)##gF zroY7l#s7-rq!aSsl$~G zwswSBbi50%ySxv#^F1dTVs+V6Ehidd)Ss9Uz7kiq`F|=q�!pwcD!{K}6{)y(B>B zy@*m2Fd-lkklqYUKzb3R30PWbd`t-uqee`OUfJFgUHAkPz@*PDt|<0uAi$ez3xKSMdk^d8cqnE_eH3;p9hN ze=jbN3mIwn2Rd>sdoKQS5i}?;l?%J~xN>&ig?wXu60!f>fK@~h|LZC=iDPkegaX>qx;N7+%G z=bPv|(AlEiaXwc|M}FSnP7zjJe1-FVHDoLTR*?b^i)$N|i*%m@>HE_GQ5r&+do(1 zgjxXkgU;^m{Q`FGX;qxs46?>-1@$&>S>nO;lYPhAjTJa3CFj0gtUzc62V$&loj6D0 zKJToxUWwv3s!Ml04;D2G7TF_>HAE*Z$-bIVqw`45b9{3Y!&teu9f3&5zI zk~0#zpH39_1ceOg6s92hR&zVW&C0!%#@Sg;7Li8AuhwJSPa5K|1h;Cef z@wbXGmi9g)!8XOFe;p2BSl*wL?DSU9vi{7COWDwvi-O75>(ZxG^7j~PfRoZ#&{27R zp_jXd5YYEA-2XHi#%PC*@utoV)Cj4U_sxGd0zph$?>O%>x=*Z6YZJa2s?ul0JNFF{ z(AyXH{TBsNDz1-=0Vqg~5@fr)zvcSb+>Z3Q{jVh=!Ll*EZl)MBFBtd3qOW2|7m_%B zyb1Z^f^-oedXysjFNCN4En^+2!qMiMS#RY~Z}p3!b1OATSixP^qDHnnQ@&)+Exbc( z^t%e?oGf_z?&$67GFnNO^NL~-=<+HhNV(C}i#-vp{q@9L6#o%pJ#C2E+FOXGue(6s z)%g1}b}Y7}80r?jA>Ja+4ez;l-(?U=~=QmKF)zCUp>pMYayLTR3OSp z-!1+%gd)bxE#OL)dXB2nGG0ON-H5Pc&c1YcT?qGqLX2$IM$4e!B$tN2iGV4PGda?N z+Cn7&6+&aNITfC0npz?eW8xDNwtsx0apmNafU!Y7wh(su$v`7}*_nIJIj(tQqi4F0 zZeeAb4K7$>XucPSE1WUa+ngD`H)h{qex9ns{F`51agw3pj$y+L;s>jr7QLNwufxXo z?|d{_050kJ{o^wvoJSDTTpAHzt(4A~dCxrH?|q{(>~k0&U(bA3+yZEhc@LA0f#nz! z7$p&K;CU#opfGXa3ib*IhYLV2t~>yXE@GjPq}9)>=%pFUXi4X9Qp<9?2$bygy1G?( zdHqT7)|#l1#7zbB=v9ox$pn`pAR5swHD&)m$+wim^JSFQV?@1p^7ZEAe~#X3YEf##C*j;X3@Z0UAW<;^dV;~3YHCg9LCDQPX+od$T(E1~a z{iZQ{(2*Moi7f4Dd4Aplm??-2evdbwJdVb|Z2Iu6Wd>;b{_BWeyHSNM?qN6f{&J^? zxn%r#WTDM2=X-f#KyS#Eo$qcs|4UYPWbX5Nkl2U6LIf2xH+VRB$#i9lJtelWm2Xf4#NgFkMHHOLDZhLHky{r z1-j=7WEn^M9Ppq5ZGNZoX3bIPfpPcQp)ks;t6z-hOaPxIAqMypKXxqTuWfOw_O(g7 zhUjMTwDx1~EU%&F%asn_1T2N%cBuLAu&IdfFvd!NLryG_)Q-7MJvWw0jshUv+j^i! z4{IEJ54}7O77MXZ$-!in5v*_ba+>?j6aqhfZ@xm1uwRFA*KQKo3YvPHV3BCuv!2zT zs5CM^y8xQ6Iu`-hIe8ACU3i`=9Bt-6Nqp2yW>VxOM?Qm{U;IJEQ$i%>X#z^3)8CJR!BcyUPFy922Q;AXR(!e$ z!lGjBGJVyJYn+`%0zkXL9Vqz|yRS{X$81h19=`LiM0m+*%zsT%W3HA=B%0wRykpa6 zgi*!v@887l9k~y#Hg(Ucw;;`W?5)p~lpEq=55?L1pLa&&<8PcWjoGaQEl8XyY>lI|7J}|n zCqWfgS;-RmG${z@IGw>2$7E}-6qm!V1BwWzmN-uQpyqt1i7L52ynNS)J1`5T>3i2Z zVB_lkO#2Us7CM_{Z0p9rq0e5)u@TbNHxXN4Oa3vIjb z2d-I?CMNlV>F*57Xg<_IC;dELdbe}p@Q5qs@5N5}skAZF84hXvp=+Xd6VsFq%%;=p z^>{_cIUU`vJ}j6e@M}ydljT?Ix+G-_ZnW~L-F>1zAC?A+Hu&7z2SmSVGxsFBXE*AX zG(K$9R=aDCES6iEWnN@sS#!*pRCp5YFYj2z$mg|=h`^+QYeQuzj+3r;(#Cx*rj(@M1LOLl#qZp#SH(t%9?=|$ZxmMcrYd;lV9nrJ>)7WO4vNvhDqG&S62ZW`3R3l=;UMj_dKmZKRb3 z8gux|R8;fCN}M4c))#b?=fT^o?I(|sbQ@b;+&zIZ!(R`wU2%KgECfyn|F_pRh2D|)R> zO7r+r5Sw`1BXcd3)}M$G`jl=RG8FhMXT9TGhkFaV>;Lnx&RY;IF%fk9~Q*Q5{nmDC%>kF5+Q{mLD980uKtws+7B}=p_gZCS=XH@P4?_OQ97mZ2-o8eBWPX;At6d3@gz zLl-qcqnIFHl8<*uWF(`5%Zsb5lA z&$6J45ovU(or`DESt&q;;}6s{-KgDH+t`}ZVMFSJE zZV)yS#xkpRs&D`Fq{xTI!JNmGvRvlNmpZDr`asm~9;{E7dwCkuB~}v7-c%UrC=_|_ zV>fo}zCK?yt}woOR@)v%JrwuI`Ze`%Cla5Rl9#+o9hFQ=ZbAQ!GoSPRvkSz#x5)Ax zzRH7J(Y5E4=iONyo&qxGmbJD|z`evoX0aV*^CFwer@c<1s&;$DZJH%&l+52b`_8>1 znLSDCP-~5{vepO^%EfQO;lmlpE`?>Y1oc_8y-@HUTe_?6)GhpYV|x9F0b<< z9B(NkDiJ_deXuTPe$#w=kin(im&Ijf!l@dh@BY8>dT{}htm93E+ zn5%!&nBtx+%62!-`ncT`A@UdfcB)PT>z?W}C%D`D6(}EivD_gSFyFvavc1%0Ri@XA z6w#XS(41sZnjiT|@9si~p2M?}(W6(Z5uVk;B8Y^RSu8?CKq6OJBa$kLOW*ob5fEc1 zGTNAc4|t|gp_E{M5U4z<7}1CKPy4%U>Qmglm79ja39*X(xo#N+GrgDeH7? zx21A?nfNzlKC9RJ^m$V*tFLL|^mL=nXkcGd5mzn<0OFrk1zb^3QkAg|3B?2NfQ6R;dUzb3dkx&DgHhE%9OKBNUGR8_`XvV~IQQ^ts%fyAd}UvIS6Z8I$) zvG&ohH2kj_7oa?hXg z8XdA*3VypDkwTY+(WV<(LA$Hpb}SPAZG>4#Gl=kYF^j<60e2;W8+zWR`WYM>S5~ZlD(L>6Kw30lo zC$rg%SGc3%h4VpZ8s`an7g#Z(5{(Uc8363NC)$ zCQ>vgbe)Ro3x{olmr^35#*H=uOEaALcDG*)LXpS$PnR!R79Aq0jql!qe{+dQUeE0{ zcFe_dHrA4E`tgT*W4e|7%Uj{F$PR{sJ~})Grii#do8Bl@!MV4>WL30ZHcp4pLeXnu z>ekU|atpHZYp&ac6%G4=o2iG>RR^UsuSUm4#0Jo2DrAU|e?||yt5+h*-{>QRx6wFS z@pJqU0f7j_UzB}#*?WzxD9#1>ka#=Nd}VxJLCM34c^0ao(pU_CTic%$Mh$zn*NhTD z`OrYRHDVnz;MbNl@c8eJtQ%z0k(*sTrY^Ur%Or}NZX3c4gAcj?xA_}fmuxS z)dVU!thH*FhzDs;9V^Q?N)%o-IP-jfQd-x|fQgYn0c133=pJ#<9hD8R4s0sJ9|i3u zky&Ul+DxA}3;nbkX5#!H{E-a2CR^3rM_5SYG(9Ux@TAWXUS|0UcBLrpg$)bA$h2At z-=|&}0axRP<7ex&WkS>+&CMilW3^xHb8s(2==)NNZ0AZR)xKD7o2YFF^GzVnBgjgh zpQ~VcbG4w+q4`_#9Sfr}?X3tjys1`mt8eLu zPS?l9e7m=fm~###U@V%FYlIo7QIT-!!mC}&| z47bJ_vN{`&*ByWY`F}4b&;@T+mlVchb{=o;=gR&0W)zdmc;(8(rfudd>t^bRoNjl- zc4&ZYUOWS%MvCM^=EvCg3}k55jnJ%RzT5sGn^7vOJyy{OMJ^p?4%gI5rGxVC{qkU` zN&_mC*Pvh^gfJLg)m@Z*p_vju9p6-5-}|-o(}`qz#(tZ@Vg*PP+m5uhGRIk`VJ)_) z`VO(H&Xcir!&lnNd|Q_NV4Cpp)kT z4V(xX(xjg`YOnyemw58$;m1Cp(m;4pKQlzOrGhm-NE9=NbdLR%f)eXbA!JZ0JIhqH zSL_TV`au9fp<&srMu6Xc071NPS=kYz0!Zf&q@{=5swnezZuqMYbwePh5FY3=hCrH2 z7Y;FXYh!djT(9Yo9x>$s2B0{|SqDPKGO8f`xsnd&hCFHoA_*rDV&Z|M12M=|(V6~R zsE_r4yvC?TmX0e@1EAz(K^ahB)9MXd1wDsuQ z*8#ec6J#kQ+X9i(WTaFGaq+>-bfB0SK#HtAkq}<7Fk@|J*8_asLXN|QIDnA2MaFgR za#|Z|H&^@f&6tfvBs^-lk=>Un9hv`zW?F+2PoP8&oCncr-e*XsZf&1`E zN=RT=GM571Dn1bN6q*9j5=|iZ-hRAtStcgqa2E7@!UI)i)j8u@%58e)p*AZM-LWdf zgfgZTndDbamuBi0n<5~@Vy$kqxIeY&N3i>2Hma8!KV;uyxsLbdV%&j1-CeRbtPbYMSt!r2Wd^ z(hx`vgYrTlrTWFwp_KM=AR68Qp2XQBHJYQ;fP+77ipTWV11^cXyj^CmZ7-xdO6s_fXxJ~7_8 zSyN<};WvxB!(Qff?l@9fMU^bSuKD;5h5WCN-HMi`&p@QSGH^*&YwRk0^K#9a_L+MH z;b-@MUVo+kF8QkG)a%>l$2qb~R-q!4dhS;gH2kK;X4l14;SlVZKV>1ss&)HX9QY(|B<3@!_thQX}Z0q@Bk#K9_MC?>s%(ZF;wC zFq{0LMi$`aG0Tw0P=;*#K~` zjASQpjXi2H7Z9jjE&e#aJ)l%WDchCh1F66ZgJ<&VIyGDuQ|!iHkiVkId&(tA849S3 z0cpOBkYyt^3=9##?`&m>4&ZOD253Tn?Dr11kLH9)T^PL6zaBy~0o++U~; zZu4Ymj-u+tH=BB1jIuQ=BB4U)L)&zmTjZ+RI1UW51Rb!mx<+FIgPMTzAc1z}2mtsA z-6(i`lF;+rt;~AmN(L-SOk#=g$E;4k-N_4iElB}v#w?bAX*P^J%hT?iVK07uc5aRY za++kl37?&vRW31aI0vjE-pz(lXNRs=cMJq5VOztV=BKY!#qjDE88ga($TX5Xx=U9D zI|EO^2$0*hFJXSzlj28+f$LO)?K5 ztHL?}*;vG0#W#a)*80-;tzKg!foNFyP{(&Q__sm(yck|SF}qC@$4LsGk1dM?={sy?8WaBcBRV}Rdk`&{Ev zG9?+GBdW65&FWZUTk3VcNNsuYul5Y$3#*RjePT}^p1H#I zOlE-3v?H3TNrtu}}Vq?nQ zZRI*a_0}`j&qN9?gmeX8Y-y?$wN{Gil)=Qx$7DtrJ5qrAx`J7)(VKipCDxyJvWXXp zp80Y(eOOOUk6PaLm4l*_k{-Zye4n!`3@ujNFwU-uN>E+^iJ?3uIy$t2NwXJdmd?0E zB+j?o7&0XL!$#ZcK5S&y1tr{iT-ov;8l6o(%e5F#IbZ$8Z4403ep8#I>8>r5J9|I1 zTUnY5sFuS0a-d;QEugrddcRUT%qRqDfH!USC6_4O4DYq+horLL-o0Z z^A~!OCeF(nf3K4mVEV)iBa-!>JWWE!IbDYSLVFdN4~0+e*RWt487PbXOd64cdssPpFbST$#H& z%GE%Kiyb2%@N5s@G_k-E+;w_9b1ENXRP#XN6l|>XiCuCe<3d;xG=_ktRMuPLdRi|Mpz$yYyrZ@`q|)K5z&#y73zZ1F!!vQ^f|BIA@jD z_6OXD6HJnq#q_aKAJ)wM)}@!sXs+*GiwQj>F9yXvxgs zX}#U4i{R4x!$->;{cV1yK$XRDq_~Pn1)!8`Rc*qNS9$b`OlqpJ48q$yn?gh1=dXUq zWaUs%@YHrKv7&Wf_a!flc1ZIx_JAT2_^U#a|H;Xkyn;3W(_El5>e_PaM!X#jP6Qwqt6nUF&3UnR$*2Kj$E|8>3DYQM>F!Ilu%SDZ zm-z3;Bi{i3-Pl>{;HIr^K__E`dQDu!0+aw8F0}D+Ls21@EJe8UWqYU3R*QHaiDX<0 zz+i18m19$1qJAJ(&%vHdfm`4a9_@|*VMSvyGwfsZ#kI2$TNmjGwOoBvC=4Uixx&P= zDHkgdQNTr}EwjP4@FqsFeAy7x7t|lAb)UwCgnfvg4mu4;Rb0*FH6h`4<{RAH7ef#5BP&yvl{Ma>&ULK-#V)~rF=`< z{aNnYw@FL4J-1;JqS_$5U>=m26=TU=uaPH}pu%ZhG-3hq3Lr4zCx`DJB-pM1&q^Pu zsgrXJ;MtV)s%J+sOlYp!j!dzKUG;GJ(B#4dqcoH@@n?NvTD*+mbqU{DKxj5re2#O?y z`KkPS)1Q7=jaaaR5EGF6BG^6r)2x_Z;c4YDM5aQ47h7Nr)D4Eo!OThXK*sgEvRy&M zr*a6-UWd6shI){>(F3A5oP`A!2@f*48>u3x2C*m1R~FZ}esdY;so#rdd;MT0f{t8s z8rgi#L;WoMk@&#H?Tckmid>7|KCyLFs}jYxg@DV$!b0)%60Og(XnGoz85*ny=**98 zSO;=f+e8aYOWqj*g!H3Ofjz}V=@md9PwDIA&_W5c(Z1f)Z9=q@R#_l&>) z^L{W!hkNebbI#stt-ba{X{syYVv}PdAtB)^y^zyJLP9PEzXCAP!M`|?dU$|8klnQv zpCeTcQ*MJ7sIO$yWRQ?*;&E=Q(7Q??&~=~r$8x`Cq~_l+h4p|I-G45Sw7(7 z9IX8*VIdVU+kBxupLW`+0o{b5O4vRQw|YDjIkTK^1^y;Lp$dK2`}BidL{uVpJ-YW4 z!UtYwP%*26w<&z>g?)eeu-D!zP2>sU#~u-}^x7*t-FwQzqv5{s6N{Vo!xjwoy(Bpd zhsl%L1O#+FIL2?7nnFm2HE^zpM7Qj<5i z@A0GzdD@ObcAxTeTv`X7&%WYj?pcuh9nR-GFLHa)c|UpBd0(lOukbp8%F8wQ`sR3m zW)56gz^VuJ;-(ve#$)Qal2VlaT_2f+J$RPs5$XHAZ0Vb$Ua{SZuckL>)jQO|H;^pf zjdXTyZm&Unooq4^lIG0-YN}hh2ugT1N|v<#a*B!bHYWl3wISK$Xq;0CW54u=t$ExZ3-Xf>NDghoj~0VKod5iQ~{X5jf_B zux0wm;(K&lw~?#i(~TkbfwV(G%PyoW??vAO^zI0o;GNQ9^c*Fg&YRk6)i{1r5LdCQ zwZw&`qs^S)mRpJay73T|J6!86n)qK{(`MeKZEf>Tz21`dH>V4)oLcuA{0^Eo^(#!0 z*9TKu4@F#;pLthQwH~yPY(5IdrO@BqwBj1h5}$VJ^b%3|7R*2ayLa^+2K6s<|NZrOpDb~2udJ5}3gLgx_jkoo z>gohGgXkaic)7HnrR;tT*eaOqaQfZA&cWeMWn!<`zvS`!j?Y}BIDYE`mG~4E0WX={ zs70s!DE&0s)vwV|ZVpyf*BV~b#7DcU@zPTU7J=(x{>$wyE!)h~=?ttF^X~Dxw!Ugk zM;(#O*5N*uTw}*nep|WDId4UvOI8o4c7CSwzaMcpcb}>-;*d){+;bVZ@V&d*6ns6# z*ogb<9Ye#kseA18&(%2b;RRIMwLO~Zk$_j`8Uud&_0uhfO_Ta2&1aN~!8sz2gcp7C zuT{+r$Z$wGT_1Gu<}N@6sD@*Ab96e0rhD+DZW}%`|A_NF9)e@!IsWN=llMnfv5kKWbZQzgTR2{_`@L7;m6{fpq5>U8q2NupzD3%#$ZRBtmVd~pj|Nw8Zo6f6nFqQi>+~I z;8aemeNQ~QyFSEd{JUv*+&+_+G)0zdE}qYPo1RNk?7F&aTKLxCe`6D>s7L zZJKcD37uTPO(x0mM#Sy&pUvS$Bemh?-u*2gA-lo`2B!TtBb$y;ifmXOh3#TPtVOA~ zNzuHgrRImmMSofSs(z^7zFL&HJe;PE9%JPM=Q32>|J~?46_F#?l_lmq*5qHLk#lgc z=t!hQBgQMXsM$zMWgkPzCE&L9Z8;&ldo$>$8)IkoYcY`~&3!BU@9Di=;6NOeAOtRV zL0K&aGKAZ!*R+iF?{J7>!ZI;n)=phqN)-gV*diBDcd;`~gLFLjcgLI4*e+LG)pWi> zeHBN&YKNw9*Y8)tWP7sZ`d{=7i)LqM)oBShIN>^Tvi=?nuRz;5d1I$h{` zYZ4!>l9owO;TzY;lr10)3Kd4yQJHtTl!sr_&n?5|Ycx~7&bzfeaQ+N)5NEqmoy}@ZMiz4YI@&aMn5d8sIsY- z`fSBKFU&X|lQM66pq?B%i;-J26s`MDE`!36taRdPD21RvGNogrjm8us_r%<@Py!z7 zFh`v0L2sOPt7TDo-OQPzECSv80HSMIQ<16M%Gnl63tzkh*MKG~_^E6>%I~9WOh$db z5)#$D{aE2eS8AmBJj3e>yxRb|6h|^)p#xiKjxqZnP-7nj%|xOdqnQfZ9@0r@NS-AT zRX(B;6S<(ELSNp+n17KIeAn#08QP+-Wx7q<6jMBE^kql=dL;O6Rf^1e__s^veggg0 z%@isOH6|nu6Zv6S+=pecNkp<@d{JByL-{9VLS$O*6G9x8WQNdSi>-)zZF|7h{@- zE6mO)kDqCLmH`)A>0bxM4I->q-&`Ae79W+kvaF~qL<;hOcE}*i6_a{(qlfR&-{917K! zBHl_F8Kd4r_2L_pI*Bi<=cw|ZW2G`d$T-CgHe_u?JbdoF=?yhDH>C&m>&ptCVMJdh zXpuQQLCSl7d3x&_Pp{onfnV{<=7)Da5!2U)7i>n+xdX^GaQE{?|3eaCd`Fb@_j_cO zym35K(!vC=0FjIGkdFiw^imP>YBvvKBKCXVfeJM&zI!%p;e8X z7Mg_y!wu207?Iu1UwT&KF;Z9}yJDzoW{)ti(f+wr(m%4{z+_+g9US+f(%1-P6l_-_ zqyT(6P9(X+5jl?+50?EecBgroCZ#Rw@dtbJR^~6cg(}EVJ)Ah(H1TQW-rlkd%ZiDo zrx`le8FEALF}smqfoA zBJYk+hRG^*sGAjD1a&_z!{vJ_T9vCrt8m(bzCvCfg7#Ltf25;47LjY@f4JBqWsBQc zb2d4+q98*aq!931rRVsm)*`1ooI#QY{F@1(G>9_y97rnv)>yYSaT4N%Cr>aS$;ixbQQpyGvE!Eyiw1Z{wgtX z+wXopaIYE{6FfZvu@M~@$AG|Zjym=ju3>)nB1e)+u2_L;tZmt+UAymYR|0QVM?_a{ zj-)X0Mru@NBIYUGZsWDBu>a0>P=^6VKHU2aYEhuakaTRJKWU^@zEprlk(aA_Le9yZCdvlv@pj`3#@s58p{j3&u^af zZPYh$RL)o%Zz6ihO}=BNHI^g(^%viHuI5n!I}&k?t@`6&ZJ{(Frwnu7brJ)VIE8jT zRY>ns5I=iDNKbuunr7m|n%n~t{*bASR=KW{L3#N%s%ks21Q$rrKH3&B+B^bf#Bw&K zUH0a#R7B$+lENo-f1kW?nU`A~u5>ah5U!x77DXQ_)No2jBNA6JB){ZHgFG@glv?NKB{8_#g6>g&u5tZAp7e3|RqLzSQ1&-HfhZx4gj1w?#wGo|*bd+$8) zu^b5JQRgGtFuHHUBZ+hrHFL%1LV8U}RmTQ+%gcT23qnM+2(os_&Z3Bfr99S%N!RVz zwZ+_{8x_XxLUB61jdfC19k?wqf5o4)Uc}%hVv_jbKIK0JV2ivNF869=&80ZYDib=jS>Ig)|lQDTxY1 zQszugba$QMUJs*1vnu}1V${bM7SScGs(NonrK6(BCY~VX7Q{d5#gA@!3ca=;{1y7k zeRwIy|THxm?!oH#5(UO^Od#G7(=|o*h1DMI@4jPkJ^W5BQD3x{BV?SVy0d{ zuL!Zdr8_dinuy&SKISjs4@M~sawbds)&3sk&-cX4jEZC+V*5!~&N&02WoI=eq+2mz zIUHq^s&O&nk?8EN6=+0@nDo`t?`t-?Np{%lEumQW%wibKBB!sq zO-Z;JO}*;Vmpxc1B{Dh}HNs5C`@fet`3eY}OB!EDLvQUUj^f9|=bEr^0uP8aFF3%;9K#m);Y&B{|v=a1hVYN+@mS=4^v^XvYO7yPt7fcEy|7qP%5D>;5lyeL^!_n_IAsiM=uI-Or1dgHn> zd^?P0n@&%R;f)m9S6Y2H9bwZ6=t0Y#bHlXhfVuPWPJI3&W&oi#g%ae-eruSq#@VFb z3@5U3oItv)ZIR*h9JPwqB1G$7HdZv&#@dFXE z%`PIofJ@iSbH!&aowr^HI=HjY+SvM}4_owl@9V;K%|2LXqm3N}{h{k@3u7VDG)Fc` z{|jr$ljcZR*)hR+CL~p-SY2;(IBOv^omgP~nqPGtL3xG885H9@et&F|_d#;Og?t+l z`mJhU3JGhCqL%Qf{;KKHab@S-eiT@pCL&}?w1*d_ExKXKVOVif^q9UEvV7_GaMr-N zhmG@X;h@VwD3Q8-f)CG9jIP@-ngYl<@R?aR2mf(sh{CHuzEEVD!eimHQ$vKZ(DEpA z_|NHxw70Xz=kaw>DtHCdStiq&`=||z?Q&i; z0UR$ng7pBKaj^|>rvn%BUa5~lQLfYyT?ioZ2MfV&uR zffHuqF{x+JEXM*vd)IW(vODj^h(`XB|FNr$HYw6*w{PeN4e_w7a8#R1et z(9uZAHOflBV#}0_+jOgfRIVqY)k;i>6GhBhO!wdq0nvOAg-crvb-*u5HL`(tKQCI4T7~P1l>P1mw%&I`6`7KDVh(*HYl$KM+q2BSnm;Fu7X7O11gG zhe^d>2l}ESSE76NSKpWah=*7)(S~4#;pxv2X-KS8)B!f!_^_MdCN?t^p^d$LYPz5#ekeer`dD=+V-iJzkzzA_BCyM}yddU6!cLn~zX zTq;1?)O#9|%`hr;JR@+M>i= zmF?`S4UQ(pWz=v~R28fkvWM$v^HvlVQArAq5eNMF!KM@1Z~gPQE*LmKP@&k2n*Z#`EG_Viyzqs z7UF}gcc+wg)R=3-pdbvHyBn#621kid5bv^XfbR8i>OU|m*%>$qL<6>->Vp) z??wj}DC5d%eWSL+_uK*+QRax8$j#w;%xApxI7UBwm(vw-ct3;hgGMG&%7M@iN;LBc zj1)&yB~4vwNUlV0Ki0Sys*lD+=}0b5^}1zb8tmLYqZcb3jl};ZmOoz5`|^fXA4k6% zl>GKQ%5lMI(^XC?)NLU8dDnBumRGx8s9PgbNn|;(N+^E(_OW*%!d^=di6g{^=zvSi zg8GWH1EYq%LQHH=L+T3VG~iA5sMo)S+NyUaKaMF18Ix@U0)D!aZjSdnKZnM3%f(fsaSSqQ)J*DL^GWjX#3(AScw6sV=gD%A!70%K6w? zY^*nSs|WU4(3S}uI@?Gt_syhah9z8MrQmIGzap(KZO|MHl3BAXIU7RjzuTOydV#^s^BTP zk@;jEyjc077c2(zS1j>V$WxZE`oVKs%=p1dK#?`GSA?l3^s$&nNx8qGJcOav@)!T) z#A{unVyI4m6`UBI%3WL6*u1bUA$TY3iGq8m1Ga9!=N^if%$z$p!!1JTD;* zdr8fpeE3vNTwYu05_yBvno!ct>1Cc&QQ_wjjn;ir=w$-b@2j$~?- z^w;VUV^ODNC8H%aZbz{F`kySXx$l!TC>_FKPJyfu9=*82O`Yj^A%rg|QP@K@wHA2t zVpuh;Bi$4L+a&tCAp1n8FW2ugMMu9|=Yx z@n1AA0yoJl%x39VnL$kTUM zj&W%sVKM_yT_TqJpsnSB4#tHs=Y@Jhl%81PsFrpo5luAZ zzklwr#fbc=XRc*A1ZUnhU?MVK7DY^){Y5qIdympPHCzdc8J~hZyvYUtt6s4@48U6^ zAdoR-6&o~@9`wOId?MC|ku$(&Nf8z+^o1`QJKfW!StriBALo(vX_1jqksp%yi+Qt5PojN`F zQ1#yyit?Towro%ph8L0V1Y2T6lSfi(C)J{F-a7ULSyFbv^(BrvA4q^ysYiNS2F-5kuCm)P@y^xIWdaT zk63Wz7`G<2e!dlV;l%E2IWKcHh)eEyQ|IB9dt~n6mY$y8&2-=O3O<+j@hO!=&Hz+% zrH7b;2bBeWiW5iQ5Sc6OOGj&-tN%EsZ}ZoT5b^nMi%k=)fZ#ZiDaHf-DXVvug7lb8 z$Csv@0_-iP?GEp4WCjjp`*0T>)mHc+?@rp&e*MDGTBE$0diuQ2Jy^l=oWiPKFe+>} z2Jbr5((25L>no2bQ8{(yMhGZBu%B1*X0JL*hm*hRnj7s$=`@$MfgR)!1bHB`@~D#X)q)65E- z#6I_UYe;A)LS_+A<1T%?(9>?B_$_jDIT|4LTw|&0sNF#f1M?C?UXm6X?^AI%8f)D< zG3yt)bc#>{6l=8rYESg^(XRVSOg=#jQH2PaAfK$szrJcEFC&u)|1R{RX~Axlp^uPH zy47OzHe(2^BWFCe$ND5UXP(+TH42zdT7H0PT2F}qH^7uU>}|dn33l&=l}f=ANhpXk z{rU(C8T()RLc)mHdhLfTC6`lr`sAVEaUU2l#Y9ZSZI5`V(2t3wXOXP(WMzLjWRj#j z%9z2Jk}c6g;(T?$U`=zg&tmkkx{LUsYWv&z^Zmvpu^8t`UeQSA9>x6L_12F8NFFDK zDwy)DZHGV+-S6N(rX$3fiJM8pJ7!I}n$l;@-Sy$2rH-h6sziIt1Q+$#k}?d6eCn=B zXPNu_F*X)i080nOwVE5OFx8yg)P#Y#jZ7bRGkS*h`hZ37($&<}BEgVAEDS@5RD7@c zeP;D1_wN_o?E|ogF3}|8Cw z4La(YARKymM>8+*!SQ*(w*-`sQx8)Q<2|AWJz{)IY4h=WT=S-FajJrFwj2G(@nv>d z55xFE*R@ZIE$XvN-eS^rzGqwyL!%T1B1H}W(yn9}fIqkYCc@w>%ZE-M>DhH|$SKev ztxx?tdU9aXdV9169%S7voynE+?&Gmog(TcE0I#7pp$py>jdUKXo*npk{8cBU5&5ut zH`0u*024jkJwT(#a=`le$E$3KgW5rE^?CfjINU0%u#4x^apY8F1b{=@&G3@V({|dXDTus_mzo=bXczp1R;vja;!Wy=b8NJK z)tz#erV_uve^~(AZFqlOuBWi3A@=R1RU)p!wC($@J6dH-qre_Y?62dCpeI+!f06r@ zAyPxxe@kFv<(Uwru$&>S8rD*}yGtUj{*3MWp=`#(N{%W1>lo59PrC&7-Q;wWk*E40 zuSc3eOGDhb_M5&L^&?nxWW&*%|}1#H63ps@~+m`D<@E z-XZ%H^ja6eE6bgrGWnm<==zvg`-xa83dte0fBnJB7Ey2@{U^0gaDI7Je4#t&Si8-ugnuCGNU zeuY9sl1-k60>ni0ixCbp!|xVGuUbi!I_g3(dpe3&7XI80=cOK|`55bn41r3&A^ryj zl4MI}YsDj1SR_HW!5vBp>EXUG?TeP8FMQm3?`C}Zh2`wA1KCTHY5GZkKuK(sFbrX9L?MUv>x{(>ptP#1q`t2FrjDlLZ z-uud?yKgO`K+T(Xui*NT^f6qSdGtF=&K^4QgLloqmM~wa9RA#OissYMCP9p)yPC@IuCf+ z6n-X#Hy6$N9jIGvbt`8`D>GdDHGCD+B)56k@F|YE&27h?vFBy?vP^|}$lU0Jkrgha zUCXaX%4*{=B#_s+u=J39n&eLEQ{fY*2YtSq;U9?i>_gnuqs42ahDEPO@I&;f0{=QW zpeaB_tlBkcVq}6JKCEyg7UPyoU@j@ZSvzzGZ48C_M8@uAe&Xyk%zoCRAkP}1(lrke zCLZd-Kk2=KK~=&Y=c$u(!O#57YB&44x#-EbaR90pPnIBFI(vduP4giu_nEzp$Fm`< z=eTz>h4zGY!=l1AA7oac?nBcJ_XO$6alVmoKHAt?THAA1?~Q9gwnPo1;Ln`j9IM(l zviT!p34X!K0snYU&lb`hFcCqIE{{>m%@*?t-{Kit^3@MzrC&E~!2{nvY@uIJOHaLc zJ)btwATdU9OPJ;6v`gPUN_M(M^M2zQI14CkFR+UHNtqO1ps-|7(lFC1+}V2((yEJX zGaAIi^hbJ_qeM`;MG`TXt6&A)J>oK`#CJfdVuE4g{Fe zmwUjPRG|V`iEQjT@#?Ks$sX)2p(G@ud4iJ#u~ZadsW>%FS~l4-b{($(`Co2)2$z## zYMRIw(h&z`My|C_>EyB0u|G?d;W4`H?R(XB79N(V*M~S%CR}06dm7K6COJK z80;T!%>P|HGD_z$>KH*WUm>dUf?@HGowq5(Mo$xME^*!EiQ{`()m;Z{B(lAY2^G>1%T z0~=A2q~@7_7OzXNi0lXNG;KGi36HR7zg`q8XSuGHubwLkXm;fD@)|Y_HX+ZXDvMk}mq>(z6?z^RBrdjSfy4qTW62RL59t*%M5uZ8T)hSsh z`vjZtu+bj?pWb6Fj$MY^q$MBMuWyG!Q9L8oZ zib(YjZ5F^fkGSdbm`z5S&x}#ISpI(v!%OG(jL^t9QMR(ONA}Gu>Jor%K8}q6t6yRf zkT6viGWByXu*slhi_EqmOl)A!=otF!Bqgm-eGw_OP4~~p+KJLJDr7JFXMH2jWF{z% zj>c|3`N1*gf7o6>sz9+_Ue$qJX_O9ZBPKwS)ogTL(62)fw=bDuo@Kz;_L*ex`fRtj zanWz^iz6XnLVF5536E#EZXAocZqz>uoqYh}2+5=-B^3bgn*RFwIy)O1R;AGsnB(Qq z%HONa96`6W7yH1rMJ{0f(PUuPCkHr*Cch{y1CJL?W2MsP26O9-SE5|UFg69F(kON} zxGgUt&i$Z1vGMY1VbBCr$4Q*LC@e0#LoX{Yr|_X3jBE)qV7fEkEnJ~ORK9jJ8#c3hecK&?gMXEG~J|ls8w(HHgF2L2OH?? z?;s3Dz_7Ceb5UFN=QOVShGpll^3ap&R65!2V$9-}XY8xZi6BHPjC)qdgo+RTzABP( z#@iVmzPg&6kwI=sPIbg!T5b7muEFWL%8_GirH#k5>DK~nf4_pkiy-yuWtDy-tCL{yyx%;nB^J3iOyVdL=5;LymBR z1v7~7wEsx}3NRVMSoLFg_)$kKx)`Y(T69cIJ?J7dqqG)faps8H{d|l|DWVw__BHur zyRS_BhxTZ2&KS|s&=`fy=Jsgsb?K|!x@8V}4DOgG{B}(?{X;SW-DiRh6Rb|{XH%ZW zo1d_!Z?;DB>u2pUn<*0Qt+&StD}i^Cp$rz~9;X=rz*2t3pK+}0+6|1FaW^PwaozK=uvGfz+2qxp+*luXlWCCi(=_3keWI3s?Ts@W2v zPyHJjm$Ve*<>i+V6<||(&N8R-=43F#QR>GLXMa~H7SVh?jhgGQ^wk=X_rml*6J+&) zB2A!2q8WvnU84;y#2`d@mD{)@pg9IhEkodYsTXTi`+0_#$JS>xp;^WzIpc;m>4P(a zBO~6&%y4xs<2rk>)WjTotu|O;!e#+;SyS7OWL|_Vl{}T1fMuQ$7XMGs;zU^OxSQ7q zZviXiZuqnO9uK{-;`mw$v{Z)o$ucB(o#q4VRK1ag zhj!p=elilX3y1g>EiKzH6z= zWfUr}8LMt4!Kal`mt%kx9n1myWGV2BwrvOWLZSrWx-FC}U$hC~ZKUOe@`AH(K?YJ- z9c6@vzWrGDtKM;%aFQV6NV=nA@zSY5F8cEki9- zgsDLJox_NqaRuzsu#maW(Wu7gUpiAGIzONgF|<#58m;mXn~e245sSkf7Z*E@vn8UR zPihsDD2+~A201%(0EvQI{k0NgV+v7SFhaT1!JhdPL&1wbRn>y;$yj)ABgzDd8evKz zqRc7S5H*PKemnz7V>(eoY8!paEco_}T-X_^g5|PPOS+4@Ii>Q@SiQq!#QMKmnSskG z;b}LrHAO$8Q&yyegsR{n{BLHWblUw48FJDabx+gq35pB*>_kD477%iT;&+QMp$~H# z)xy+*Yx+n{wt!`G%&Bo<<43lfK-1Yxn$A-?>-2v`j6AElFKXu@!q4Zm==46rQe_#W){y;5bUjtSr0qwU93l?PRxv~*h>0RA$Gjg-68;C#Zuo<**@!Kc2o{aHN0>~To5sL) zI4l#=xe~|6jFf4(dst5pJ2<6MQCdY-qVMO{MpTN1rj>2&0t(zW5L{x@z{`~g&u%ob zCSxB=lER1}5Q}9}Eu{4rYe`7iA6Q9+=C+a`yzc1|IviB3fA^T&3l5XY0%(@{Ex*Hn zYB~X9EcYU@Ago`7E&V4yeKI#rw9W?>_5UJ>cq$$Jhtv`?B$iB5a#^jic#^t^lkQBw zR8V(xcM2QwfloBMzY^}{+=ff=If?1yxHK+!sW;jG)TKBs*qD+a zy-rE|FWi~n$*~?R`EF9Bst3WNSX#OpRsFk(AK#sV&q%Dv6E$(iNWJMy-w^!vU+F}| zDnY*BBaveZsGgpyvBE9B>7d!hZ5D9c=lq}x83i4+G0qaYPE1_S`Hs& z1;GN9%8i$$Nd0g$Kf>>PZyVL|w^O5MrKEADkQ4Y|p2DCKPS2ry352Gxl0bd~(c-p> z(Sbl}fZ8C5XxegzK@~O@fg|q8JiT()mrc&%!pi5UDLO%~3xBZZ7hHZpP%-=l5v_MO zz`_c74`DO%0JXKetn7zcI<;Pf>n@jpb^uhHXm$SCngj=uBe*epaAW*-KQ-^~Zau%z zMc9{rX&8GXzPF6J1LPS@5Mx?(Mmb_0lEl@G0;ZN?A+uJ*=_Y6pDJ&{#AwKDgA!~gC zft;#kOBjiYigt75g%WeJXe6^o7yjT|FJf-OpK$w%@Y|Eeg2=65%o_lAZhDNMndhWl z<%iMN#aX1_Szf%TELAtxV@@VxoBj&z`UhhB8Qwth{$7H-4mF8KZf?5d2DT_F-?dL* zjmSSj*^_HV%8@!Phg1B62u;2Q(*z3Yt#~YzxIR$qI@LwjiG^Q^Z?8t`PkdVR3tLZ0 z%vd8$N0|Brs6kkrohxHRdDTFY4|4=irBa^iiPL=zbSzR74fO8(5GYDv1`Z1i$q6`# z8vNA?^jZ%fjaS&0=eM-X#YR{|CvbS$K8w0D->o7w)AU-P`?UW0?_nfUSJauK9+C7fcS_T}L6SPNZI zpZ_>0Ov@?2Xy=l__cEHhWs9E0QgvE}&bTaBSd@DM09+d=5pl9!+5CTr2Adc8q_-Ez zU@n141!@WF>uY|g%f4hC!!=bBs*f<71ImYk=QanB~oip>M8ba_kd+1r&@& z9!uX@oc|gq-!2Oz?|WqZxW*f8@D8lX{xa@)ZxxuFm4H9*&>KGZ04Ld||Hf<-b?R@4 zR({>tlu1?7R6bgzZ;;7DDy;U6eB?HM0f&hGr#({2%TWIGz0Wf5cO*B7SkxzgH>d1X zwr~Fv%H51=Skx0&>H8aZG9mzc-$PxG_?XFI?dO9$ov4kblEC$IID%}y)Y0yLD1O*B z-b?^Nb9=_DmQj%D(lP6q_Qo4wTR%}E&c#Ke>%GPB5TFUV%+2&?7Zsi5!XY~+_|!XR zlM|?YT3mi1T*&S6 zu&*_#guEHJ(i1kUL+Cf8h(b*EnV=!E=yX_=r9orm;4dKImwyU}l%a8AJFK_27fa53 z-RA9n%|wd%t3B+Z8)-HnCY9NLVXyV7r%E;z31Q%g_7Z5FTla-t+S)eNc@gsC7auIN zVpwRQct7xXs%dCg0t&SK!F)4rEi^Kjm+DrTCExXv_2G75*RTO=b#I^8&bF4Zv2N~l z{NvB&PJAI0PBX4XuDpbfYj$)Q%i-u8f#ASLDGx?jG0YPS$zx1FmlcSuisGY%244de z=)kXP#EstIZAWV5K!m+6^m-5xp#FK;Y`PBd_j znbaK!51qH4dw!bl*=NX1sFuQQoEjECtN?&!(MSUmHTF%*?AKQqjb#+l$v0p#xK;J$ zjAXG{zbE8x<^H?~oc(o~S{H!COsnv;*FC>UQ^e*4rk035pmn?ZNs)RK_zt$`Q&u*cehGh zcp0daS%-u~ z({SWU-tZNIq`wknYQBO-|8N{z1d_ssdWO9>l4A`uhShHR_4+0C)23|f>~1{@T~&0v z#m2XXli8TX0f1JT+q=| z)Uh-%hQCKJHl|{Qf@o6T5$mL^jFJa{pO^e6o0#;FvS@!#Psrj^kd1icDY$Fs1^m7k zjgfqWIu1pSJci44>?~ZlMVICOv=hYjwUCm@y&lG$jbr*>9DI?!yX?KC@`N#{8)dK8 zAvw9F5b+jAv;V8|6XRf|{aK@(0%TDuyazLZ`F`+>ZD~q5^ z-?|=q`9Dd(5D~cOI|6rle$#0Vg9X|0`G4+68imyU$}Er zp3H1bdr*mGASButx}LPg$pT~J`Y+i1v>+gr)L$17(=Xgv&=$W;=ay2H=t$#)uM&gb z0pMIuN?9{f@B243=%_LS7XbDtgQMgmH@jqn5pjW1g9ccjTw_>6;Z-o`iJc#ucoW?C zCnf|||KDex!ez3NK)>j>%e4t-(1~X!(28*p<;wX|AOe!&hV4Hg46&K?3=BB%OV}Kg z*{=ZctD^Fr*NP$I@fyq{B&3fNCHbjm{ieR}AIgfV?gL|R>g2rEp>dMuhQfON;92tl zN@?QkC}CnVQ-0z3-j#^s#G&@=pSQu#5wW!gs@hJJ$zJ&ZIGdE7zTGdyJD@W`xJo5e z5Ak4RlNX)AzPwL&m0lm~k6<_0w)8-;`O%w^GGiZB>ewx1if|J^C~18~~|%z*8JjF0C`P-t6se22qY zWS={hxSEVlRvz|WU;&m90HT3f+SBe>_ZDCbI|H280g&l2(8eYQ&{63E7A5!Txdt>L z1fFC;Zu%O*ghBzfWRv^?EhmEKb2lwNU~xsL4q%O&KjRwCCq1BQ=px#t{(o==Peg3L z;b(bH8MOdWA#c!|kY=;V+G!yZ)h2M_JV_8lzTn*TNMy$KMTKPEJqF3Nh#X1>_h_5tD<~`T%Eo zyDIG;)mOG2h+SNOfKL$ z1&b12DV4eL%gy)T-Jh#c=0EgF^*!eO#1udlwJYai!+hJ+( z>%)A^${gT*?QhP@A9b?^WZW|EOX3E)4?v4MlxX9Yg zI<@%S^1^u~`?QGh4TN08^)paQ%P^>Yo*}He2t{l9TbT(JCZ;!&p$*;p{nY!JIyhh zEuxp?XTfKY<>ts)Z#4LyMxbm64`sC!yh5>l*J%L;D;k|WY2SQ+^z0l{%xYp%PLUOU zMC$Ho!Cp839Z8Sf>iJ0ie|jFPqO}4T*)?fg#4=WAA2isU*B#MLvg6@+R4IVyeI!-G zu)N7rR7*xab=G`d1Vv^!ft9({Jyrx@Kt!iuv2*r6%_OZFwha`FGC`Y|I_G|AdC4dH zZTHqt5zpahVFX*Y;Q|qPL6RfnWPCI$z3gRUUR=V$Eu-wT0xJ#lgThy>>nfU_hrJZs z-b2JMgCIqOcP3fp%fpaDB+mE7U@mf38S_i!n5=Hs+oC%CY!NPl5cUZ{VYR-OdO|M| z3IPgY0bR>KPiG-FYO5~&s7H+}pB9bTjkxtvN?&DqkR%&8D19P%D+ug$m{w6l^^*t@ z#lRqn*m!CBr&}E8FHc>I46}qMeM(SbzJzOZDXQREal#)5uA8f@<(Q8S< zR!?^GsN;}RbV^@|>d~ohXNy>g{zvt}o4*@U$w07M&iv}Xd!&pL0#sMnk^nTB8ZcZ$ zj`CqZfU`KjfGtl}J$i7)MBA|Fq%0Vn8_{}Ov4T&q;=4Pr=^6MGRWBnYODZqu`3KwtU)IAB!}`rv z;yaGviU9zbqzl5=N_7UH#HsjN+U6wlUEnJRFjFU^#}TEyoHh(xt(&OWRs)J%4Yi*5 zZlwM)d)?L<(Mv;I47OMEGkiywUG8apU%d2PQ{EG5P@n;(3<45EVc$ACr{KSCpH7c@ zm)3w^)oA|5A5dUG;Q*c( zzwc@SkE;nW1z{|ckwl4)NO{gUi$&^HRVIEG3T=NzY(&Ba5hpOhP}x9j3IwFT01M0~ zJppt1Stg`sFrNrMCX;BDq?8d|cIWm#j6=ry#Q%#dKt+1x`iLpnBU>qDRwr``;}`O{9-zW-JuN6?TA0VQyfT9lO?=5=AvG^$i3%vf4BfZ~Az z0+24)K-o*bJc^Ivfl)>pAa;(=0bubxu^q|~RDnPs-Aryec5R?P0lp?eI%S+QReh13 zOX)inawZeeW-%T1yjaZ^4ADjl?pW0G%(h-LFX4b4UkaI=KOLrzB`mD ztTC9vHJ&FQBM|u41EENDbM1zU=xJ*w06072x2g-igJTqYjGH?b2s;Wnz;e-Ln*md5 z!V7Ctys;P~IX-Z#i=ZL&ezE$4-bX4pEX}r&Q%}B^ooA02IVaPDJlX?JkO!#1h*n*` zV*C`?dB%<=R8dh;Vt{OWB8*KxHaw5lQ!UCs$FF5AL1q5!5|O%y3>ai-Fo}4YK!t#B zXS>rHh#{{2cp8iHGr1G=De@sQ9@GXpT&pimzFA++m=}xDhz*~9mpn{M+^ch#N`MEu z{QgOC-O+zdL&s%&k!g2revPP!=bzM+K6vx(e36#h%*o6w2hBQ!;421(V#$E4ZMFal*2cF%!pr(lpr5BCnslNkJy4A1Y6h+`Q_=k8L~JT? z+SLgT9sDjzWe`;ofK%9XFSzwc2Na-CF8?ByoDoRw46u${llq+c$|Po z6&kG}sh#MdVPc_)y+}%i5E#1EPB#gjHQt5cNI9gV>hgd{Bqsxd!x+_${|nq=uDugb-yvLP`f?y1QSOGdha0UCqnfvCT+FpK0`1VyuEOe^d@4%{ zgjzChixep#_QRWvFHi9M^CZUlne3}`bDspDm>-Y(bHTvCAjQSSMF(&3f{vL$g}5S# zo@!AT!Bukd0^>#xp6QV{Nn{jbkigRTSYo*CRljjl4h>J7N3%3*i?GfB1^Hq#mku+irzeUdQCcOKE%VRAEwA!R_=zB5kqk3B7sM6Lz&8qd1Ghvoq!|Nb~GnX`auwA zaJ!XC6I>E$a~9_5u$Swof5+ijeEH{Sgbvt9iGDyg$*}BF61h;(3syA&)DN-woRm30 zen@~v8~{q@EiiP#yC&8jW6U0{Lfdn7yx-}Oh^3i`s-}v2yy!x%wduX&(5{n^QDBO$ z)d2XiZytLk8v;8%5RjTjTw80`rcgPNZ>T4E=|$$yv_y#IO3R7(@mREO^7mX#ucam6 z4@c0s^V?whdhMFEv2P(FBrDyZ_WRpua=xKx}WW$Nj6x5N@4l>#dQcd0>c{! z4AYXB{y>AJv%5MmQCx}ngU~*@_tMUk1P_4^o@9K?$->JlJ!UpJohVMTR$)TCi(QaK zjxq1V*VY>r!z>*vh7WvZDWRYoG5}O`D8qMku|tf?{R;I%E%VE|zn&{D^>G-FW}Fl7 z+gJ*lgI84M4(tl(Fj}wa(-S_+B|T<15wf!qfFQJTha1>bh3sassu9_>v$G0lJp5as z5I?l+mrDwFOPo-SU4+x24??z9Iw^RCNL`;jQfvbA(7zuX=(UNZILWQm|H5PLc<)}p ziHWve)g)BZdz5g!O+gaJtng?_5)j`cbWPt`dWUjcWBa72{8z`wvO;hzCVNRrD%oYn#D3*R9dAqpzeIJ}~&|RVQbS zvnjH;V5x(Gsb4kvUL!zb2>psFxZ^S5J~B-qm+rQXwW$R#tj2Q0NVn6vgS5*Hy1@Jh z0j1z;;y%@aQ+}@LUbqlZh&D26YJzQx8@U`!T}-Dqz1i5#635DLV@(2iqTK<*zx6T( z#T|=!MlmE96>B$J?{CcY)L0bIYb$t!_4K3 zBzJ8cZT2pM;KPlVC1apR;?N!u>R{qESa~N+S=h}$k!HESl$2U{X|y0^USDmW!V?O7 zc=#a$a@0?9hD!`Ng@i^zNP2w%A7Y`dzK5B)LUuJTS<|K&XJ%IIooKIWX!L8`7kQMO zFPYUWenlVs`EDLn|MCLgcKO?&i&R-VD?jk-_?BKeo6^)e75p^d>$VwsobI}{8)L@J z&PC(^FSzO6OBz=*vwKUwKwxB8dg?d$Fe|dCOutno#tq1(98itrm^|rEKPO;ga_?W| zZGH}Rgle0C@to%X)y4BPZD~dTSqm9bBr&k+?=8gUQA4%WyP2Gr~$+tdjHV?sqE zG`t9Xp!*QRm1MD1%>9arnWl3?%wEJ~S62bG^8rpl0BBL&>|1dVd8P_vkmjcuHEIUKDG33b%0WWSc*U6?5gjtZGQ@+6?d``P>`7{E2@?ARQy4Vi47_N=sZI zKW8Q8@%xwUF*7ssxsju@i>pwhbEaJG8p(O3`Qt#qHdN#7gcN%Xntz_zGPk|RuuHqU z_twzEFhbj>-98QyH6>LP$=q>c!}2~=$E7U-%)FEMLE9k@pB~o)fJ@4%!U(|A(t+O3 zpPdFC`+PZ1J>C_iHF?h1VB?m{LBZe3E8m6fo+Q%K7$vQD?Nat)@2*9m4RP-n-c^U%s5~cbEU(@;>k^zAY#M z-5-Y9i>uvi3oLSQcWMPeq_FcJ&y3x7WEX1erIUHhgT$_>oLvLe%MW2*M%OnY=qtit znkEb!q#&%GGUA;(7n;1@lu9Ke#(a;F#qp-|9oPd|80@=jP@P>}>E%vVO%06~C2-KV z^urDPDt^1Qd`)qu}uk@&9A*Fw^<*y7&WEx z#f}_LC}5n9%4vn0`vi@iVc2-AmgMA8w?7E<5>G*OK4J~e?93OG3h`i_<5YfS+HKM# z)91@g5LIG54*;^QNdj52JEp@4z3;T45bU*%rF@~h6!av7WQIkW$*JZT=+z!>g@rl@ z`HRo>wK|3nzEzpPs~&WKSxpL2Oz&o z6!pb*Ma`D`=;z-3N9$t^hNY=&yN3l~;&$lAWblPqvvN5zylSk?Iaf@d>u?#L>t>6Bt3v1BGe$*F)47JMhmuYW|YxW#_z>_F?*b)G60fX#$I)>LZ)vyDJ1>(f)o$Nj0 zwBO652&w&W?{Z1@l~jFLcy1rvN(|ddR%&@WyMVw@{ZE}&mM7P8oNk`;`+K}Q0_e_4 z4E52qZ*U|ROg8y8w!A~o55V$`buurrSR$fNsFs$J%p;u_f3+7%Pk2yYd?FO@(jek& zOQoChLTLGIvT~?^Pi}-a?BvhNeLT)s#<5F>2Or)(32w>s-_c(w|9GjjB)mK%B2n-l zij0-~>xkkHPhC(VS&4INDDHQ@hyj2sD;j`E@C3P%(?U@yjO1RHt_!V7bWl;*T?oWF zWaLwFuYc_gaUhIX5wb1N7)Z3~*@&4&Xr?}8JsiBntU>}}tJQ)}#)RvrOGOf*e?H=W zHcqQaRCc^y&xzOg_nF6muVOUISA7%Y#Agfz*fDtbO}i8oeK8B*W2$1=pM^drsk`3H zE*UIsX~*PsYCajGS56lvTKc%Y`J5Wg4VhbZIb6Y439eM<_IO7L$5iFip3PZuvDx@! zn;Dx`(lEc2DoJT)l3}?*6+|+TG+HHLBl$qdkuid*u==I2&^)`ih>5zt7&j&mpffi! zT(yMFfNtmSo833q=X%`}wB&oA``B&W;I5@|A^sR_rjjq_yiqFO6dza`Qj(O z)!!;{F8;iWQ?s4O*LsdDZ(B9<7>$v!Il7IF;~qIVJI2W)C`YHBR@P5Qy=n2kuhVQJ zB(>xjT>Zz>rgLHGhv0of_wK%GS=sACUHzSKDK(X}l(S+F>9JmUW*e_V+4ZyTcup!1 z5h`sDOeq^ef$awa?X)==9S<#2eU2e+MVDcT1y zJ27|A4>M4HDpL3t?aM0eBrdOE|9*9adY6PdNmziA&9Zu3qCf6dj()aLNmE?AaFb-f zWT?JBvJBuCnwQoL8uWe0E}(nx`?`BqG!Ny6BpgYfg73f~<3$E*)<4C2Sf z{3ukaZ}08!Umw~F>I3HncTd^0GGR{yjPe|&Q0XpO#){b?uJDz^87U(OA4Oc)wB{3W zHQ!@4LzF50*OLFCbwEJDX-EH7YBUJ(UD1DMG|f`@H|Vjb_+RZSjT|EMI_iGns&nx=0&Ta$KX<@A^;hQc z|FK?Nb3~KW6MV zR)1Fz#aR|uSC~EZQh4on_1k>9E5F$WL(|dbMKU(HatsSuURD-^I5g!5gXTW-igF3c z!x1=oPndaNYe*KHaMLnIj(0@k*DB!B)=>$maOx1=8tH(UIS*oIHjLo&#fJ3iS?2!V z8cKU}1QWi$Se7RFRMi9S7-y=d+@emgyC#>@XMx*-fIk~>52z&}*<7qr$ktsIpo50( z3`vGH_66wug)$oO9A!iu2bcnqzN%bh)jJGl2dxqHjJ=1Os_FNNTZNm|rVX~4lZdk@ zJ@aHHcNiLkV5St6v|QEHT-adpAz>DRc+s^}0lo+hxxfFHw(ic;6TjmH$-jNDrItYD zjIqQV?)kzIkIGX^AIz4&jHubKi@4+%(kXd+*Ao&E8E<0CK+SiLxT~~wPIZ#BN?T;l z9%bbb7xb{~^jx<4PR|4i93)jH*GodG5{FJ2YOJBO>e)8X(9l>uPca@9-$$&S#})Z~Xy-rZgC-SKS5JUUkwhX~LRp}*xr zzx7v0kF~G_7o8Xaem`ul0nJv7nEp)dhwWL`yDau><`#$ zWMtVG3}!m!SKyvCU@U+1-TKBMm8q?TN?AeS0#68STm597dS)ra8mawbYj0$;kg*!M zVRjrKLl%uj+W-aLfJiK%?Ju$$DQ)G}4H`kj&uaNdU5=naqM%-@hBm2j8*_xD7!lKm z4vO!tubq0Prwcu-fK|^8M3M^C%&SmKL9aj4^RBHvd7K`Dv!VMtw5YnJl1^jCZ{}Kj z+k>71H4}2&ZrI7DA$l=pjPu8t%4rsQh;@a;(91j#moNdCQqW&7>q1HsNsP+K@Of*7H1qMjrh z5n_zf{05!v__-=*BNw5p_27sSi*j#&n-!_I#xRN#wmBrqdDX({{C!5$W|nZJ$;Pnh zjz^@L{|qHJ4|HFUqgOElZ>!9ij}T~*4bdbr!2M%D<6ID{Ci+ERJtuf!Zb$|H9_d-L z8tB@W5q%v`BXpGGCHI3r?|j61ZgvYbUW;qtSqfH9s1-$x?bxrq?bcmowfdEHntZIv zk@|RRS2O+3Z#JmxtX!q2f-3IyGx6qa6Y%CC;<$?+g4)wAoB|p)dTK6W=gpxGy=*Z1q7nLBN5e}Egqp^##Q_TJYm2-4Ag6hx&68VzM3m#&=1`* z#;IyG@(l|aZ6a_Uf(Pb@i-62SD%HL+#MM=nD9tsd_m4^m&pblq%jtamqW8MpoAOKT z0_IvAg{sb2aFM%1)P94{)TG09H{D6;YdIAS-ayzp!-?_8@)T|kH~tt+yEZ7R_7*oO ztaixdt5`=@9&M1vx)@z{(ogOfStlH4dX4%bi(0g_bS3{U{>8VS&^antf6uz};SEOW ztFiC6#jF+w6gS;*uGw2Fak7tPsUXLk*Ey8wPweiPmgoti&4(*C^OtQm7Z-hOt87I5 zmnk?niuy-yMfE+Q`&-I;CsDso4>HfW;TjjTp8R$;?{=f+bynIx;!D@xsdkvEHSl%p zS1LQYtCiTyYZB#uoJjFA@%%$*v-|vRJBMn=@Z|*HE6X=?ZI9m%i8UFakW53{X-*9j z$vbB0^>+H~brpy%?myhxrVBIjKr&TaTie-V=rtG`tK7a<^*^Q4P*JMwmy;}gGC76% zSesT%c0Sj})FfKXYt@S8q&@1ogm)ld7e!+)J8y??hlglY-=4l;^VzPyCsDb6BJQ|* zyMbwqLj0R=%%!P(gDyg4_eoCkCP6tkN(}+49Xn+L>?}2lTAz%LyiMa~&RM!>k0vE& za@p&5=S(JYr(Uq6#|e_^W+-Tppyt;u<-;CO8EmS{3Li(dUC-}6(ChN;a! z&w|-Cxh*r?)sibwolDwUcX!&Rj8!<^O|aO;|4rRFSkd%PaEhi~+(P?wd>!5r*>oFS zHs8+lZ5e(-r#_rXL}+9ms_j-)02UTX$jH@9W7R(Xt1i0azW6st$uKjwz1U++d`+M! z#j9%4{%>VZ@4m^|tvrdneNUP{)1IQo*oWI6g4qu&aDJ*8nPpinRfRyf-i0j9rwR(u z4GwD^^5-u3$q>~xEA1QaYJciX7A@H$n27(Aw5sH%savzBNfX9u_x-b^`)KN{`}*>% z`+h3f*3Y_ut*$9$lo>f2+!we{!=K(qhm5awE|7`GVj&JSsC@qr1 z$3%$2q|7t6bbzeHWJG6ZmfsJjGI2bbDeC^KY;3mK(QUHGd~5jEsKcAG`V;s_E%->E zV2zuTRk{6!%1t|OPS(yX{?-VcIF>`ZPe`wjg$W4%B{NR+Ea}KgFWEJaESQaH*4Wr6 zIIwB6nAn?FA6u;Lt(iKWT6#)%TuRb%>)Tf}7PQH$ONaV}4W`%JO>q{*RLLuLe8-VK z_eB?77oWY(X|>{LUanmt7m{B@SEWAQwk`j1e%bUzlD!j6MMo?##jWUs z-nfm&%F20)L@eGbLN;HnqS(}w&0GZX818Qt@zpTBi^#=XDWuFk%<6TmNkuXaF4jt@F=HrZX-C{_edzwnHQd1gt%)+3B{bSd9LZHuZu)doKN(`EZSFq9!)06= zlce3PW2ahX|88`MTR@k)<}+FGd#Q$mbNz8|GK#8y>vVqY)L1U&ujx|qaA^A-C!>zR z#m|LMo=Hgl9ir!V{7&b;Tn}nk)Qk&P*X7VyR+S4^pDuLABy@vrAfKe_xp(1(b{||^ zF51L!Rp6yHpiKDfv8a3keIu6MK!soy5V9e!|n)l%>aY?hfZAoRXWO|v_ZVYmwoJF z`q(fl+ubLES|bTmwrd1b%h{)q?+m6x*jj+7MXri8&xt_Wm(|bto2)RpLsh}>cg;rI zb&dN!b?)l;loe=3YgWG%H6%JS%2Qi&^G&vQpi%e5>h+h!@k(X`gB+a3D=v4M5=v`F zscd6ob8AHwdzO^IY~yDiK4K#P zUip>DY{jFD5eke~LRA|_Xp?*y>MHxR_^n%dSvgY4h2nPHl5YxSH(qv;mC2eI-uS$c zVP#`;bAUis+BP?4pfWxtqhPRF1)XEbHgqV)&8@olB}7R%RM#MDBnCG=g}JQN)Dku93vWCAkabaf^ zIkvdU+N455aO`IKZ4kF_e~<257?x%;?)kG*le&ki*?6=I{`sidsqVDQ{U zi!45NUSN%P#8+h-ucY8m;Xgg|!C)=!;pYs>YQx;!abZ5V8DKuwY>BGlm5N+ zHik{wCilQ44$8lUn)a$hfA)Gemy(3zeb3Z#u_!B>8CpB5lu{SJ7aq3b<&IDMu2ey_ z5|Q2oCQvsl7v%@j78-eO4oSq<>M~yxQX@u6oGc_Jp!gGDSQ61~1Aq>1mOToQ0vu4zQPA_B&W z?2Afjikl~DT4pXOW~7=|6%=%ecdwCU7O#^%9jJX#t0`w&36|Hm7`@m(B#TMHvIWA3 zjbJCM~mR zdp2hJ`?#O14mVXUXp7*qi<1Z)jSE=Kn7gjt4==W;-^Hj5VY|p5>Fa0U-mh?y=k-fv zDaGY$rtAtu#XBpO9^A!UO-;(ms(glX70c)1l}8hdmd1ORaIkBwe_70Ui{@mG&xzu< zL^E-4icAu_$$b|5sYc^$fN^?vu(hbQM(mh#Pg2ON{lY@GLAr3?L-{yFuD%S?#zDaE z+#&5vIQp8HM=>HzsjC92o!FtC51OiGgzonT$^-cMejs9Vpxo}B_%iFW2NHKc7t}>K zIpd)HH;%fy5qy|BVF>s|Rr7!BPs8x8c!{Q3QwI}52dSi{c1gl+{*Cn7c;MgaBq?;5 zcm2X-1Ex@u88y#Yz~G2AH?s`HaS&cztC1-~YY&7bv0<_89LDxs5FJ^D^-6aSXO*a^ z)+^hL)N;3fA8OvO{jvrvc6 za{kW>Z7LoUIYWwNeTxhfg~HBDPG-aPMG>V=>w@a9MwS+H9ITA0A~uRjiW>p08Eoh8 zM*ob)B>xRo=;*+TMYng_gfEkIg$y@(t^ur%A;89Bw@n^OzMgXfiIH5L;ToVV!-zL= z+yh1fC6SVmy|6nuJ%a)9)LQtTCs0(wPFGY$~I+m2vb@j6uDv`XXu=umDNa+{8#4Dt;O}a+z$++^JyNwY_ z+X6QGUkZa&bx=m3g`}F~3M#rPF1a|(%D6Wv=(zA3Xm4&_fsa3U6yteK!c?^d9F)qw zVEbao)s>ZW%rpyeWU=CBuk;<(CFy@<4<%zLZ9Z6vCuM-i1N1m(fOT2|j*aZ`A4-Oh zAs+8bB0sMHRU+&f`(hpRq@3;LX!h-&f(48u|wysd#&PFM*T< zF^C{@CDh87+S&_DlZ2Cn1&#&Q++~CH-D^CLXE=&o=ugw0oy-m^^6v8Yq>qY6zv3{e zeQ>UeqJYWqomCUJ4r+!pas8TZ!&kCOKW1Otky+^`^dG~=x$Cky-i zjbbropQsErhYK=I!X>x<@8iue-n1k~8JIlCKSC3s-une|Y*2Vf*FNBt4ZHfVQpOoe zB!17ZwD={VRXi*Ko@xEZsAj3*_WmnMFDvBOnsgZ5d7_yF_v#Mcf4>^v?)y9;X|@oD zf0s8*)$Sdh`nQ+?&=$>zt9Qr5+~rl?p%uSJgl8Nn;4Ii{;Mx|V;1hMP!idC|=n0S9 z@a^TEb{laxcWxsGa@I=9lag-d*l@AEw zv7u!=C_hwz8K?5qS%U(OE@eBTM2EWu1+Gsze15c(8Gd|4m47p&B^RrWi*w7=CnqcG z{GJnU6w6Cc5UQ%AYsAO>v8tzEoIV>p#P8Tds%2+FmipGVjGae=cU^JPF7|3y_K04G zhmsv?)AI`O2mq{q1TU6z=woMtftSIBOV2tvi%A^m1b@hoNapGeX9DqncXdknH~ z=tKy6w^d1}k?NA>Wo_|MTp3#!Nr*|RS*G+z>`a<#L$e+=B8?d^D zje|nt3m7chuX6Ha#|w)7^r>0tYnc!8f=naU|Fb+|Lk5D><5`_vS;lwXS~swHHPGO| zJup7VEzyli3(i6$JtP-o1K4?o*o9E3)xDZ6m-IOav|Ky>`_MPgJB>oah}en5{^|Pv ze<#L8=9946VtJiMQ}|5=-i*j9h3y$QYGqViT5%NRZJt6?=Pfcu_Oo?Q|pgCmR5n)UJtztWdlf+N=-h(KDT3a?z4Vm_) z4Lg97;?^_aV-RJ*-U4#ca@cV2qB1w#QFI6o-1dcjU0u9i(Ie^>Aj})u?FEK zVkL$G$F4s|5jm<6lyyFtVIIUop$&E!Q~NOO?04zmL2hI)zmk&DV3n0RL<)?mMpucZ zbf#V*mmrGEINOj*d~eh6$ueV;?B>aR{#BvFi(oX_q9_>=eWKdqtwlnP8+;&4(&V!p zDmo?hhw;fkZbW5Om9Cp!-s9r_E9*V=@B5~60CEjC3k2F zYI{d7d}D=x(0`8>BvtuNm9ZxY*d9tEC?lcpis|F)@`4lY5<hR;HkM4v>P|L^^wTmcvouN*x-%~JdlgHj@BtLSj5amY5@-Yyeyn+FG3QE zs-=;#%t$bVQ9h+dAHfZII?p4Du`!SgGqTjAO$i^00gk?#w!B|Gpf>RA^x0~+MNM(w zc~+C&T<`$9#mjhu=F;0;1(y`gV-TV4v#T07Gk@^$K{zoBrM-qmG{r3wL}P@Br0R&I zDT3KVoyPfy|7x{q*F;ExSMx1l`*^);4ODv~>-9hgY=H=^;W)4IGqKS4wCE~4p^;;2 z2wnIx%_-#fUEV?JUmSqajn{~S4iSgL8CD828{`{*SB5E*3PTU`qAZjPGhe^|v+fvj zF&ixr;P!CB^^Vf>Q)l;JLeko>?3tsE(GmLlLBC)u+#nJJ=%Dg!*&kR3#1^rQ1g69& z^Eh{nP*2L*4nFscK7UDk>)QuJIlKwuc>2Y6S8FFW6@G#s{j!n&_RwkdXJ;pAET*AU zz3fG!1>r*D+>O9;ot-?loFRYxcP4AI!(U}(<+DiA$%n(}QsF7kzPLXEevH6NC(f7F z=4+;;B)l?Wc<&=Q%i&4lBdko_`102?NZdioYlRp7KYb)%o}-S@0!+tKodypep*9M2 z?mczv2Wa*v;JXzY-&FWe6?E2jrAGHdhP|4@?*HfO8E364S7P0Ei`1l3nU*5-tyr+pf?9Ck;~IM>%O)X zUnc#p&+1MU5fHU`4pmKId?1b-gzopuQja!3=eEp?l4-PFKN*}J&f-1{u&TleSE?pxbO*gaceIOlNt7Wgq2deAEI zmq+d{2vu8vKiUHveti|;>MgkLRB01|2X`3Yzw)bVdP zJ<9-#MdH!@AdV5Sge@>dP-w(UV-iM%9ICz2K-@$&RZ=_FxxzS_YJWeMrNuW!dYIBV zBgE7Hk0T@A>g_*u0ibqSb%-I_fBWK+fio#1!MNyU@vS#q+F6VYu0)g+&7S?XBy0iY zH=+>s$o*0D2Sf+tw+hT|5on=*Rwk7vh`BHQ?2)9|3?^YrV{3sTmj`{lFBI?BGo;N- z43U$6Ij8WRcscNsJgs;8L{jt@xdlHkKjA;DpZVBLo^W>fX2dcrXN-UE*RO;Bf?E0^ z_i3bO!X4%j%7o7;{C=~aB)oRwn7W)Y=F>iO&E&%s!XVPyZqH{Jmx-tsv@hee?9aI1 zV~w|w2{EgD48&Y`xr7%ir#}Ri_T7s$>7)^)yzQwOZ6>nL$V7khs^pUl|DTwfdKf`y zp-QHR`d&er%>VibztE$r`*SIuw4O6#RoO=HzDQw?hV!U@{GUQb4+*OO&r@vw zhk~YD+XWE)Bi{S`=bvaQ#Cg94sAOJv{w+>qm>g|!g(CFZhQi{_+)om-;djQr zz8{n_U!{54G5LT^rSm|6OTk`72%Ob@7ap}fxJ#iNEcctBbz|Y(wlk4rb=$M z7q6dA~CC*-oN|APX|u0_9qq=;f> z7}4uI5VA+6x$)WUh7|K|!_A^7+i5)|71KcGSJZE=kt6p5c4)I`dKM z4&vsis%5Z@WdC>p`|s(n%r!0*7P)~Ft{&3|s|!cUlw=cM|7Ph7rwvSt@c~-hSo7>A zXY^4yV%qm2ud0fP?6I$TzdN8Vxl+vbhc$vxv8{h7LZQ7w1isHU^siu%1R4xy zFV8$WQ+Myh`I4lZXbS=}8Du0a8Dp-zyqnW(bcOs5-SgM7Sl7q7*z4vSVrE(vC((Yb z;|3}L1c+hkFg4^1F(c`}I0&Rjx(v(me;l^_KP=P#`yv1A@&9j9^J9g-muXK#T|C}x SzJ{sNrxaz?WJ;wUJ^x?pL}w2G literal 0 HcmV?d00001 diff --git a/labworks/LW1/690.png b/labworks/LW1/690.png new file mode 100644 index 0000000000000000000000000000000000000000..1e085c0b080b8c77dd7001cac43e674499da164f GIT binary patch literal 7824 zcmcgxXH-*Lw+)~m-GXu{f`AGr9RaDKO7BgGfQ8!c zcaI`l2!!K?rmB)jfc5$ewa;br)$hNdL6e;quTX1Wu=scl_NK^Di9uel4jXwbQjNj6 z%Y zpKAO@`7fFH3_h2i4L|bVSuq{CD*&r^9o*9FB=|LYEowdNh@xhlW}u<9wkt2Sy%G4t4q_!D1k&BPs=RSU2fHKT~u@==@}IxRuFRD z!iyd0FqjqpUhR$bDivD6klvJjSf{6_M=WU9l|{-u>n$hL+N{jdt^uNG+w(Ln<(8>d z`GY2}ve-L3Je^~2F5k9axuu|BP07e1U|gstK`O@HfI#B;zCU7RV{@^5pI*3w<(3aU zYBVW-fEi1ULHD-GAPWrgl>KNSswoeiJ8drw*ljKJR0sTijGt<#nD!o$AI(*w_{UDz zky!J?QEg$(8v6m;#opx6_iD5(cRjB?(Iivll?{Ln+1c8jxp?uSyUc31a-M;5p3gc~ zA}%M#-FS6;q0x>8vQP6L!uZd4{(lab&Yi(5$`zapOnI~m4k-{nT2Upp`W zZym^#8VaT)6SivcOLjsbHRHL})>u!@8Ap}fd&k<-_;lWN05(XKAk_u}U~kW;95;VKp8@V<1 z{KgAZ(ETrUTba0{Z|-E_%Zc+MGcEoVW5vemH}!K|wLo63U4gt*Xp$Ld_neEo&dZw_ z)|Y(SVIowGsJWvjZwb$6I^yK3#M zpx43j0@4hq*OzZ=J*T_g$B&LMQ8(hCek5=PAIDECNVJ)G-ejp<~WUq5m{3Z8O z%A}lhovgbfV817_N#r#D^~H@PBe-FAK=E=J>^Ck1jD4*YD|%**L+}IJgbK zu16PB;=a9Oa~sHvvDszg3q8n&OZ%&U6&u~) zH+&ye7Kk#Grl6#&tXuB%F@khEMDauJDyET#Q~cM1&$%RlHB8NSp+FSbxXiGOEIg%We*bD8zwj+%YiU*L}mnV6s}YV!Ws`<6xAb>M0?Y0-hw zWF1>qp!AHgeraG+^~@)(cwGBW08qh0$FTO$Pgbwl`@?%FLQe$XPu8?kg)o-mg9zv* zF#;a1(K)v1gKf>ViK)PONHLMt9H8P<#!zQ;iCtMx7EiE%@J#e$*+$wLb2-=S3Yu2a8 zw}+ux&kLb6J)SFEo@5Nsux{~NcOA%7SVwQlh03ShV?`#C|J`R~F^Gj8H-e^t0@m6 zB7Ke!f+4_x+s0w(WWFDYoYSueJ(!HjNBo(p(6(n^aRMI+e|hK7t_{;>Z|W}Tab&+J zc@@_=J8i&lHSZ0OHrDeBx1$nY`fv8t0uvuIdj6{`Q&-pHbEPf$*)>Z2wu&nv)|9ef`uo z%);1=2EA+j^;Vt1e>Rw)7-JOJwkz{#)UC| z6;d^FZrR~h#p^e3cyvPUKK(Q5Iw-7+2Fp5UFctRY{YKBcvgeY21!9{HCET{JOi9mb z>ppAIwq4 z7BnwqU|G?$I+lcv#GLw}9C;W6``w4f=-;6@(uV)~ZL(|40nvESb`~1iNo8_d-8@Sc z>cXwRA_*&K?ZGT*9-ez|!gV&m6(>=+fYMBZmc;dI!zL@$FH!l ztp<%p+w_NTK`DCcKuY&?GD2Nly0xqa!kwoZtE{%ho4g&;W&O)R*#35npO$|_C8KeO z>uUwGF8!wY7}>SbAIi?oC2P}7D057mOKQkvWs4@SMfby*CW|lcIuvwvMsC4fpwO+ej3c>kTD5mTv;%}lSgm+Uqj0|q6qrSk3xOKuBp#AhUt;-;leg;)8-ac zkDr6(()GTA+}<lJR8HE{EK2&Og@064^eL-oGnvx3>t($#%_FN@M3J2g9 zGDzEn|HNMZGuw$G(G|f)s-CE)OL^pgsp$B^-0djGK*oTs(luU<9O4?Kx^;MgnVHwT z{6SUSve#|#T)nKjT$-Ai0L`DyfAi~M6VHYGz12i0Zl#V_*a(BVtgriM)f!-UNWedF z8BupoT*tNJ##=7~KAp6-ERYPC2PnOS8`@$Ny;P(uWI+KYLn=FB={rgvDoA@ppt5c_ zC6mP<%1H>{`JKRJi;)gHZXGK!>>Pg|8;$=*hts>Tv#llwnDjr|BtG?-i0^8Dy0~8t zES5vwcCO=j{T1w%t4#4=!MOT$P8lB!1`fFZ6-Rbx=ydHJu{VSGv*C`5EJ)V4OE+~y zq_!PrTbo>Gn$hkT@aWQ1pXFgCN(Oev-YjYFzxYkgBTJ+XOW>cccx?f4`3;zZK7Gro z*+;Z+!!jrAII!g`z*e5+L^Fv zfI+TRFWl9cYVZ&igw@}%>rLXX2I$9jXkt3k>^p$ocAKhCck6t?`0rO%m;=-oC*W6A z^nLE?R6Xv>5BU8ja>2Hd3=%~#B!c!F<1)lnk1d7}cheskU{9p&`~SeSg|xV0Yc)fU zw-MR{84`=LL7R0IXTq2Nly-zlOIuLV{c+7@qP)&UHAB+PIVTX%9_S?`790HQ3zgk) zu98t(a3Ikb$5i}mw+?Y%_?w+NqvG%1zw57r_}oK*-tIauHRF$SyO&_A4h^cRssaqC zCF@A;nHJT1gp6)$J-mKBnfBei$+z7EYegw~3tP__ zw-08^^4j&K)JX)S%lMYCOk@F4VN$4f6}G+PUq3im^`sN&0R<8Wv;dRh1eWx9b^C@a z&QKMptY3=q|C;3dlmDDIMQQHb8~Z>+8DXQc~>OC@>@GQfhCm)JaJBm?bKd z%)~DCrS<{w={7J0Ds0VY;RilH@bjk6AmB%uK#-J?NfjEuA_b$}7xB5F1xVzfLY#h% z97Zlf+EVoIJhF%*l=hVGfjDKGF8;K*dq|hxveDcJ_{e8BQlM%~QWBHRvt8fa#I}>r z2cO_*p}?so@4~Fp0JoCnIZxsMuwX0+k0?$4-~&9j_2ifc(8hhH+33A0HH^Z2a5HHh zob^=O^|{hpr;(k79K8K|N~j?o=RjQOGBL_VHrfxc!nVyoM%ai~61dzBgSnt$Vq*F5 zot1h@=A%&God|enVa`2SWFj|=70D*)S_$IINS1w^ah2XU+k4|hv=fjMuJq@01I4mU zV(o96eT-|Eg=^o`NxQb$M%WtSfPNEPmwWS5pAY-9Z`mQz@`{ivF-hB3Ad*)g?f z3vN182<>LN13~CcAd=pxL$6eMTnzj#EOD z@MAz}7D2iopGn@l`RzDL0|=(Jr=ovOH+e7BX{QK?+M$rTf2lXuP9IR6TUeJ0O+a@G zfRwej!c^NWZY}mLahoEye-4Gs(|7_=vY2dc9dG#IUixUUF)si{?l%r;EBwur#k;8r zhsz%(qG|6qjed>7rwGDyNS`Apya>yN-pyh1>$mt!isG066-{dW14<3ayVmD}qSgHb z-w}JlutTtVagVguej=gro{)6h^fMrZf67evYg}!eU zU1X>tI@(_>iUcBgJpuGAO4q)admSG!=OO{=1^awMhHbLG4!Tk2@1Ymo@wV)0?jIVW>(2J&Ly9q2IzfuhVa0LKTCVCMkM-Hc*O+V#PMoP*} zKnq5JaAy&>f9pC~sT57e!VM5gateBK}^38Sa>Dm-elzt7rfBe1U1H z*=Xe>6&4wvqP3|8eLaMNTfKv=Z8spVcEsIvWS3=Yz|)#zc!Z*2x%H=8fQN{3eXJl0 z*H|bWGEsR763nQ@&yC+0`PRaJ^V420V5PPoWsy5F9U1k%^DM|OsO`_SPAKws ztP(WrGCtkqq?_~uzb#2fGdJf@f)%DqT8LLzDN`Fg#svm{WnZHdQyL>pedo3r%U+Y@3q1DlLr1 z>2rFVl-iKAKmhG04*jP(Oz_*g5^@zMV%C7cW=Oc)1g)Wa8#=z8kdfic@hark52fud zF=tNW#fu0wN)fO~_`qn%2ZUrYKae&rUs5zt4go8v060JZ01IEbyA{XsXiJ%;Fu=qJfV+U7Gm#rHTTqFC*y1NS#wYMLS45(zDE2@ypZu>AnKX_-QW$HvzbE` zQ;WfQVfjE_W`5AiCv@RMr+p`^kO*F*T}@(WUDtM*N678R@wzDfaID9vzrNzJAmX^kh?K}==AdV`0^z=F;I2{mB`U97bz?>N&-K_@RYm=gw zTBk(JgzRRkF{`BOA6J;4o+=h#&WozF0_q*+=IR7|@L1^0ZNR43PuJ3Bvut9C{{#gQ!(Sf0AeW zF4o2VV+Moq2qPR=o+c$GJ;$m6lg+-RN9!J8;#8FKlk%s^Si5)*bgBC_dM|1P?^i1J zrU>2!nNNKnyh6np{4f*;0@VYOVj=GZhgkbIh|1zSsaX*!diloHDB2l>0kmlKrw*g* zq3mit^Gxg}pk+%fANqi=Daj1=?FL>#C?D7p^+D+oxFq5T*ml)`M`D13D_w~XC2Y)0 z(alc8p(&c$pj=WWS}^1R*B@CCoG1I=BObn_jI`-jth~YG2%PDM;MnEu7y?L24kh9B zDZYr%oMF5Y@q=0Xyqv*g*&NTLmiVT=NB}wD1@vcB#y;8r6AuHO(GM9qKAdQ$gcFvZ zx&`rRYif$NJBUP)f7w;J7Emd^$}DWn4*b<;n4g~Tp-90MMG=#J;(6By%1A-HV&&r1 za~yo+Kxa{(VT4Eg_#$^+?lV=S66^g2_v{e6Wf`x9mw^Z$M7;-&qsXeI9wSwNXaSui zb5BEiiO8(ARW@W2D`ZLV(S9MfOlW9qyesa)_W*yvM4wp}kb_gthK@z-tByIHluV8Z z3^FlvhC0-&-$d;y^8IFVo5SI((<%&hDNj$I*>`eyqUCyR-Klx*G@Ad)DMCL}a$wE4 z2&Ks-)1!u?lCMFT)z^>L)|KG6NOUWhs2m0tZP`DNyUBUlLkxtF(U4Jb^AHa)hx04# z;`aR_R#%4Pw%;BIL}vukqQo5r(-{4hn9cO{YjZIEmt$&eoF^+ERr}zL(&YlH4-!_| z;acp}1bI|dI+pn(fixP2W(;i{#rOj|I|0<6_Q^3xw;@qa6iuR`V$G3R>%4J*oCfo5ZNciZ%4JJQDZudsscV+; zR2%_{8%;ksoQ88Fnl8MuMhtJ7@%1!_pc%s{e*yNiO6Z{*?e>{O#SPd$miU9>}zP&?Hs-A}~HP3`*_gp3Bhdbr>;abIlXoKAjTH&;iK){##(<3=1 zYiaK>x>}yhY=%1M#ruYVAPc=UfUcr8+u9hjW&I^1iZ>JMi*|m!7h;s!%!DN<9^i=kT+KN52 zxlLW2Fy4TBy>s-D@u@QL|2j%q1uy1)mhwuY4t?4xezTnFHSi6;(-B9FL*?(*I*xEJ zFfId&;)uR*OAA&6kGR)jL&z;x$tTbmv}6*Pq{kQoSdkMbcX9cGi63LcYpX#;?=H@y z7UsZjEqo&vm*Rx5pF0_pgPbG#uRkpOQ*;0OU?HRXgzRR;=lc;8C*QzVWQeAko@%-B H!^nRFStY+W literal 0 HcmV?d00001 diff --git a/labworks/LW1/7.png b/labworks/LW1/7.png new file mode 100644 index 0000000000000000000000000000000000000000..6e76cb60989df2578077704f547b2f2e30ca1bdf GIT binary patch literal 31321 zcmZ_0Wmr|;*ELLcBi$hIqq|E|8YQHW4v{YD?(Xgoq*EH{4naWaPU-Gv9k2iWetSQh zOAoNl-h0KIV~jcG34f>j79E8c1quoZT~1a?6$%PE9lU&z5Wr6|n;YJPf1sUI-%3DL zO_1(`H*gl>O5#vZwXvv=M)2T0vc0Uf6BHCiFXRP1Xjf_q1?7G$Cnc`_#o#C#-b+v8 zde9g5hP%v@f#sFk0=0sFzu8ZCe7D=pwtoH8jpLf;S8iYX^OIB=)%{y_m$+VTI?@SB zs5s>^6UMUa#J;DypNx;qJhbg*c}}9kiI@_G7!g*!(c7yw0{^RUQ8Y#CWsmyMD>cB5 z)@#Z0|NnLYDT;1rbadwN?m|)lt?sbep!mDQP zqpvqQF}Ext`IkI-1qDf6LYapF1QX(zZ{HZlGx=2N&Bv$v2|iXlKRp~SIZe*`LBswk zQ~NsgVPIiroNx74Fo8j-@6+MO1*b`orxiNOCpUM2OQ}5yEdoG69qkXpb^&fd< zWsFLWsJ-q_=#q9FS1Gp5>j+0pi?$wDvzm?Lyo-Brk{CZ{RK$)LJJ)+d4+~>O9XVii z7C)0rOp3i!_&#n@WN?~A_}s1|9<^Ug95+rjSj{w?bUu9A=nFr7>bO}s)H$K0r9FP4 z&-E%0x&AF_G7#l(a?ZkVfCe9Ge+ps#W>%*z;0Hd*=S1eoIKyMb7G9p zar2bWel*|8lzFBNz6bqymVlaM2%5t&+n25Qx6a_zI`3CJmGHs;|Rksk7BOqGTH9_*IaU)a|t4UO90IErx>T>rIyBxVbO=hdNCD|t0bShZG!LU@33hyG!5K~AI3Lh#a6-v0>;ju z2ggJ&+!=?;t6E2nHoNoeeaU=z z+!b5)ITxs++K36GA=PpLd%23W?JwsInbs72wsS&``wkI3s~%?4vSnfPk_d{}(`6zj zC+Fpf@5|y5?5f*tw%c3;&cjfLIL$~`Xy?nbC;g??@w4l|!l2ZEJB{AGD{r{iIn)~e@;h^GJU)>gBbIx+Lxr2jgbgL-+@HwMW)D{!G1 zU3|)E$8tn;bA9g1npQllY3b-%&D2jx304)hL&M%v@ob$Jz9qn4CbGy{XB1~fVJsU? zq;K2QRVy9qd^}gs48MQ($AKK{&!Sz|vPRsb=tD(`a`w0Ht3E;vvlP1#Pa9e>0y}9_ z8MAkP>nF3q))zjb8H+Tm2++T(2V*${{KHfRF|^DNeoQTKuR*YzkC=6txqh3a z>Mx0e@JO0KIfz~TQcF%w-k!_-vJu`2=6tE6Pn5mu2KBY98IX$_`|*i(bJ3-LZjX=`u5|@%v()Dy?x8VEoq`&U6j7Supzi}{K99d7O zg8~yk5S^j$ONoX!&)4CA0V8xDodD8D+Ox5ih%#KUZTB{Y9FW!9#o&-1SwmMw| zxj$Reh6s

  • C))VibZ_%#nsnVnue~N-ZXHCMx>_F>iaIZ^i~GeE%-JUS~yQlp}Z6 znSI5W-D>-->*eX>*v%oa{rUco^;U&;juZ=C=T`kcByE0mS-5xy@%Ocx^7#R0x+5;) zdG;Ol=ZOAV`dbo_%8fJLV$5Y<(5B**u)d zA;!;S%V(?I@D3;OOb8unZpZief?_^D2m!I%*O<@cgy9&Mn38YhOQH4FuU%^1IaWH( z5YOLxB7Lxm!LnG%goxs*OK-JMIuGIOP1Y9j_;6T0dxY>1EZKUcdT2X?;Crs) ze~4m|@G7!(J=Qt3QC&7S@SFD$S&kXne01o?J0{=e>ht$_sr;Ccj~Ti0Rkx{YlKMOW~jePE1ssW z(%h0gKf!H3{f6xs@_9JHZfi})!J_aH6P`K>Oq-&9`*^F=7ih@$(6L{V8PaqQTY+S( zuSKXwvg#6??2lCy-j9bNAz?OghKra_!XtuMTXbN3=Y)YYFvAoj!PaG6)iS^%MGehC zIS|kv?lNje-P}IFDLICXujc@F5I$KW(zD~{x$Ci>u*G(Rlr3DNbr47%s5gH)fgy8f z6vz=RCLT%37rLrjAu1D1tg$%DEj*=&nnDQ2inYY#N0DvT_eyKW&7HP1#!UP$HzMc* z9UhYCO=~jG)M(`KO!FMl)=b7A^|?O37h9J~@Q__yj>#ztQU%o#t22%zl22xj=vjxB zZYNWmx3RujELzv3-MQyq+|_l>39p>(bz7DdC*fy1M}x-?{JYWHSt=A#A&0#;j!~qz zhffzje5T`R9=X;}-K$`85o1D6&L+j?gTU`8Dcc8C*9Z^l;r@tS&&1}wYjIk6x(Inl z-Zb%jG}EHYLOn(%7Vtt`yxk@5Ugy&u?5vse`nsC8erx}=7JamNWl8c;y8Vx4XQb0` z%Z3(~S&YC^&-!iiY70HJ!x7Oq$eot>!lmlOXlZ>s0lI}%B&CgS4DA=E)JEB(uKim^ zqs+zaSeNA0FX7z1tb1`jD6QPy{6Y3`F}CbWIb zvz!C&{CCy`)DI}W0*IB^k)N;9&;%mV>@q7lw|J>9820}R3uq8Hs>M%a-Zh28$8pCc zoxVAjN;r<+MIM@n@QvFKAnA!6j=L$%H+4rB-xgO4QLL*aOw6BwLX{F-e-sCwOtmqoAXghklS`M$dkHcujm+k5A(j2N7q+_t$hY z2h@T8#hoP~XUduns#odB(zQ{?>+}1VtM3F*R`M0}WYH=zOHCr|Wcogy4K6pSLwS8P z!SfGS9A%HU(lNy%NRUtP5RTjW}K}XeGTXWkbOC8Eex$}RxVUoA+k(U&PMenWKHHw zHziA0D)QKk1)FH6xMszycD^l2{c4PFI&R3`=ds0fh?;x8(opa0;*1z%t7Y+ZyC-uNNgck^d4$J`Pk_q)9j z`PSzFMx8m16OuBxjpYpdnyF3@%@4G@)=eY&T6c*cu*ctHg z(YV%vC&g7$0a_bZ${bbnQ*1n7s_^BsS2ILEYMeK)RsCjPN{NL?NiOwbr~FQVnaDiM z6sB6sbFZ1!a@>A`I3w}3&N{hC4|jquulexW;EvJ7Zl6`PeQqcP{UloDoh8nM?3%Fs z5sCF}Q&8*fcb1Jd*_ItGC*gM*M8(#G`6~sM$+e$+fXo_W_iN2 z4a_G#>}J|^I=K7>%!J_YYL~BlPY`l`qYY+^+w3=u#`&xZcJF&~Rs5<@fq)upW2t}YHdmp|dIW1r z`WUEIqUhjML=y5Ic5-$oo@V*7-+)Guz~D=Mq)}beF4pPmsr`_$q;%Z9wv*2Ked0Ol zz6<^v2;(>KzS5ZYFY7F8FbTi4-s_o-m>Rz*EsSwA=XZ|}OI6I`e@|l55Rb~s5zMwj z;N*t8MPCxIKhRH2F3B96gE1Cyd)kZHHc6vcp!{+= z_M%a4wdx?Q(^YBj8j4kJ%&e7n0LNf-g2!_2=Wi|Mn62`)HllCeIuPD#G(Id62lHy{ z>20!B#DXBDsqd1EOCV*s>V4xfNhk@;yXxh%3)780UIVo=Wr5*K?ChLJ^^v3(ju7XE z#p$rv-B#l9?=+pebc>w$c}}+~iV&hNAF8akIF_LJP$pR}jxN0WzS-N&XopVldC^Bp z^hF=>cL~2Vm&lr20KBNu8-ngM$<#|`|Ff=otbN2O_Aue3P&p6d%XYG+-V#)5n;02a z2h~Z(jRAcDAhoSdCsS5mtIAO{1s}wFQwJCy29jo){|Lx<6rQit%jmI5UMHU9`77%8 zc^ohVrC;o5M;?1^IvOupS9g3M`CQ{~jish?MiioJ|IxwckKHkgs=mXD{ddQT<{fvH z|NO1F41Ykmki3KaA-sCtSF^T4!mq<%IuQJy%mKvDo53DL34_m$J*}z1Wb3>w z!2L`-?L~iL1!q^=k8ewe0MjENE{x^WnRp+0A?vN z8%S&o2wtNB2Ev`jGbrEMSRzmwN?X$Rtp;|V@J+4b(-YQ?JhOHxE39gXWpqR29fuQW z7rtypYkIQQ43z%e8&IKD>X)rnl=8>tpF_fb^YZ+(oc5ni`RBlGaoBh>;av48^#T|1 z3M?L-6>j`8(^_gTtVW2E)Y8EQbfjGwkAt$Wdc{i8p#`Nl}4RKQO5b1 z^}EqX1R|h2jvfST_jDTd*Gy`CA*DB-!@W4CEJ`WBb(OOBDc zn0oXQ&|x&Yz2Ex?Q-gUz=R?NMxSIqzEh(GscX$K;{*t0~r{V2=9 zRiopR81H)tnqwhi8!a+*W0!n-(qpVu+8#rTH6B)S#H*N@M;CD#Z2EE{Re)o(?$l)f<4WH>rGEprA%l7H@;#X@ejKW;k_rAK?5d%9UY zfs6KrU-ECxz`}~j7rhm^?sco3(UN}ilxFYrLnNdz$ZW@#Vi)QC%_JKou@;@^Uy9?m zF=9)qMt3c{IfpUm@$1b?CSG7^7N-MLbi>1Zf?5BmHMT>;9IFm4N6oh5;Gp-Ca{)f&vlPjZKP$(fL z>u2WIov7vgyFs|h_V~D~hp3dvBDproW6(w>f0uy5cWlfEgq)o6UjhjH+evCm4nLpT z^GDKGO~kwiNFMxMLimbX)~+QKiKy2HkFhW&G@31`TGs<7zAwA#(zoi-2qN4b^Do(= z33lz~cDbZmi0qS#O?*-Hb}xDu zN%{Y-QAZKKle6;XNfd8?MG)X{;fDk2?b3= z>rj)T3s_tik^8+u)+&-tif6lvOeDXqkDY0EQ(Sf+_d2tBQCwr+5N5;KBO1SVP~KbL z4Qz{@K==zANP_M3W(@mv47vhc20&X-yQ~*d=Hdq7ZiUr8fkZO8L4Dr=;cb0#>vfP z5zf_S@n6K+R~5{R1|b|ZWDgQq0Vl>HFu`~OKP+I@kf=`_$c#Fs)MChW;U4W;_vx~| z&W9%&LoL_nq`vIE4?&vdiazNpFsA4+>Z*BV?}D8u5w!2;R~~m_B=9h3XVT&gRKN+C zEshwk$5=v35EZ{1lpWMJ(>?Kn!?N zrq$8=9dib&@`{TkvqKzPVq0Dv#AkFI2E3Kvm)+jggVf;Q`{U{51O!e1DgA$S1DSYVydr(tL79~7+g9L?R43)?qaOZO(M2M>_itLvi zsEoI%)3Olt618;0sxecH6>v>6XlI}tR-#jmvK3x^krR)`TwpK2tAO5MY;FjvY=HNN zW+tqFh7<*6kpASHZ6J5hbNb%;pwkd{M>}nV(+kE^(HrVQ-w-S(L|;dSE7F+Ka!d=B z7SnOcBuRP&8N4&)u^UpdBxLE9D!~>s9RA{~1SyH=gn&OyYa3%nGZ_cV9rQP@Z46Q) zDKtwP;)Y3yf|>rd;i#c5J-Daa%f29H>PVT+;68tV;b&tF{y-wZ&6V)(qw4$O#{@A| z7ecT-oav&RsHDZL4u_d!5X@*=4NsZ=6f&45(~T?Z4uDG&CeAX^YZT+nj<7w^P$U{P zNE4DxBKgStO$>_v`4T0}SAdA1oRAQ5CaJ0C5UlWOVMHyUl7o&@$!{nrDU;TOTfA`| zsq8=74pky;y*M=VEpnmVEGIpxx9Pd;30vu7g%a|wb}XpVUvs=Qw8f>{G{%2R_lG)L zbeL^;Rr-KXXZ%O$EksCTwTaG^PE&+_?X$)8it!B{DeR6a6^qymdR#;<_T!rbrOw0_ zGp{tX=&iUnwj9^1lZJ{5gmn^J=cM-7@d3dCTC$6idMs}ae6PiX)wrEhIuG?hoGLhOF7$5*!lh z(Zwa8_&L)q8r!nes_zpd~_NJ*@!&#Xq)KJmRkyhu6< zn&p+6)eH&(%wT7-WbvS2f=B|?Os*mmX=f(G&%5W=Q+Ltb$uEbS^d3cZ*NNKq^`B%= z@bPF~v>K_q>#)BdQC&nD{-5F2cFel*gnlXu9-B#`N*lp;T zcBK)HBRXsn-_0=u^m_V+yo(|6@81sX-;YEZ3_3LoHtKL>Ucz;mRI&z7h$UyBz{)DF zzlox^CRSb46aCB=<Ehz1hschcPAC`D1(d(q&8C$a7#Jb6A=9~N_OvI%9?X-V{;eV%JQ_r9 zQFKPXvW7T|O~^0>`Jyt{zGwbS|4loJ zzhNE623wy{X_|LUAC}rqvv^n!JPWBHevQgsl0hYUsGaj0@mII36=+p>wOldFm@5zV z2KK1a{*+z^(1N&sK{?iTgRhGAA#gDY`In!yB8DI{kzTR0)!V<=f3*JuKpzv#W%t7R09JZ+2wk*#!WwETk3i(sQOIAYEc4N zZpq*Xp>T33A9!^N;pR8;k4>B}NXM81{gl*~2QUFs>TlFVNpU592zq?tkR$Afwx>7~ z@c4jjx28=M>@Nqh7t>DEJ`5DanXt zglr5fE}g^AvGC$XFSV^$QWfkz1f!8CINvc2pZ>7ip~Hnw8hK;W8;kvpNfE(^s`Oa< zU0NZ4z-Sjk!iRrK<`wfBBS5xaMTPA;u`IdP5bMKrVi%;EiObNJ>C|h{v)+aU6GH(F z^aPVE_`Z%lw;9x!!`_d_WE1Fvez%Us+q4pJ@{_k1OSU zN=)H-bM@B_@5_;Tvdij+P&Sc%7qiawweepZ2y|?lDK&DV#@5rEYhSPk;L14s(L?_* z0^NR{(TswTC1BRM7$Y}_A7`&ax)&kRP`^ji>Bwff4kfeUbGCmQv*>&O4YPx+^a>4H zJjUwJPn79K4fJUfX(4+24SxGq>Td3@u@tNZ z7YR{;b*U0Y3#QL4-?SP2cS@nzu%ylD-oKp#0qTSyKS_1;O~WGNYB2pNo26q3JotXm zW5JCeiQ;h63`uD!AVfh!i!0j0m|tGe;Yls$Fk0iS>VJ4&T4e>j%gR*F?w0-@_Su^F z-E9LpjSeMUugEeEQv;Qb$f=4Qyodd5w-nq4sMou}R_uKuz-Wm=V*lxlMaZHsiR7WO zWZ#Qk6$&dZqYP(7qV@LUO^84-O$5l~zEp7vfp#Q{qn$ot7wrg3OV*?vPH^?s<5;bU>EtP|r{8#L_oL`Jb=4!f@Q~?%nvKxs3b{4k z>>JhxpzSQnnpO}!Hmy&I#H}!H3BugZ&dg_ZE=M)c-u%oDB|n(^iAh!-Qsl8tDfRq@ zmJz1)Vcpd_eCTzjM>{9JPq~VlkDP_KYDxJGS?Lq+5zYd&$9jq(8vJgQZAC2{wWOOy zt3NLt=X39HbEwNBQX?@bqQ2q&2C)Jj%W1pXFz2He)N671B}<0F^wE)aNy9X76IDpvho@+9mdoT6 zPIPq?4EuV@?!NrimYhE+wZ{0(-ynV2!_uu3Ofp2#fX_6=Zp5A=w#S;XmSbT^2}@v7 zDIMF)`6FIDuhz8RVO;FtFPB@_{1Gi7#xW;C)Av6PoUapUs(SuYlld`6&;DaiO)T@j zDQLg=VRhGAq~UfHb+|q>Sp+QtMg(OTcw8*Yk3z4T_Z`psG*z zKP^VD6j;-MoSPNT$$rPMUaVLFhyi6+C-OWf{@;_cKX+8)(TEZTs2@jTI;>wj<=2xx?BbMf<`IcBB_wE3j9nfJ`;jp25~ zMU`fBptRYBlI7Z57a`8p_@;*f!^zW{iv1Xv^;$8Vnwds(e~(*=PrptWOuhg5qQdc#L zrd89{uPnYZ9|vAAsR+P$)UguJbgulTg#7U2QI-L@@9tHyDT$H!Y}; zY<3X$F2CrDQz}u25jP@kIvrAp+qYT(#pUSeOpZChM}>ipig2DxKn_Rq_gymkxwyXw z_}3ALesJPaC3Sj#khfXs>g$>%Xz`Ns8zEC;0&sn>Q))6pS*v=BmE5-~j89hn(aE6n z69$KyUV_vzs{X#BN}HiaO{PGx7tl8=Mbiw*J&)AjaK$O+|GWK&cPE_5p45p)x|}J| zf7sDza3Ft`w$k5kT4UO3M%$KSroil*4z4E!t_Po@=#p$P{Hn~_Ji%fZuCZteLJa?n zp=OYbP;tE*Z7mrTQZRQHPyhDKrX~uEQv>6qe+Wr4{881;cT|Oumy1$+@17hnYE$ul zzlO&pEOxa|QS_=&6{%O#&;i^L=idaEu*Zi7y^<=C{Z^%39b?6KCPi1>K;1A6G3+6M zX*^>lS~AO_E&PUZHPM|=cFj!mf5WUI*xj_Fhl)a%%>LB?m5iuoUQ;QQpt+^fbGGEC zDVFs^xNb&|R0)G{wDxj>9G3#*Q6#|Q!zt{<{_vg5QrFN>C>M^et%Vd3qfMx1UiF!N zf_>SRSBcToQEf+2VA6F4K; z5aDIP>T7mVLPEjKs;^jsxeG+5w`tukIhgqx%cQNXz3{nye5n;w^`(KetOW1fI2ZQE)STv#39;wilXFeIy%8aS|K4_g;Z7-v+9m(l*(ijR8$urnjZj(y}I*u z164yqBY3VtSz0<+US9qaYK@Ho3T{%%ygwW~?u@#AgPz9h?1-YAJx6+7#E6(TosN8? zTUOHjoU~I}MaAQ0>!4xyw#lx~?mehZW+)WRw->{;Q)pR;<^q487O)kyT?0G9RDxJ< zu+L7q1-Hkg<+8&d*~swlPhhaS1U9@7_c^ z^^k|_MLV7^r-rmuS!K6;lj=1O_}_ltur5EJp?R~r*OH5xGok-Yz`mEd{2`Dd;8Zd_ zGc()ac_XGDXo;Y3JIdDe3mDgMoM1*pVn;oO;;1+@|J<)6iU%S*m8}zxPo))!Pd*wP`#~6fRjtv_)A1XO zj=B$*HC+KF!6Q)KV>Q@t!;E2&Wk^h-f^VPEXs;MZkdtSJM65z&YMgXnw9}{0vJXIA zvum9F(7KaheF>_M)}SD1i>0RcMv+eRJ)@p+3MAeJNxkMQ^2paD2z13F?%N)siFFR7 zCGr+?Ki~2gtdPRf;&jLvdc~qaoubG|ZSrr32^b<8WoMLyBGL!)cAibsADOP_`*K?_ z>Cq&7tPL7Ts@B8Im9?fg4yoz15GYNE9ge0SDt9H3pin{N7-H0|=loN;bt8gFPySgh zkuJC?Mm38zaZQ_3L4qUwOJxJ=7$n5v#1B1!lVI!o^p?VVOJ)lMm=)G5Q3gH2MaSFq z&^A4j_eyp2oLZdHR0;zvqrmY20&G;6lsS;boM9=$+q}SP-LHpI=y?#T4#eGYi1BYNCL~tdUC-6vjcXzFzn4m9D=&PLSG$AmkM2^q3#)_)V8J-fu)#jG#*Wbx22s|$s4ch~ zH+Lg#OIS#*WyKC38%btbCdD1=R$&eikiii8%bwcIX^vEHT9h}PxG54zmq!bap9*<` zurR3-m0VHQana?ZI|Uqt>B~esBIpA4LIZV49U_lZjaTl)zi`vxX#4uDw8hcBE`s>4$*=~`pJmstV=)x>zF@1o837Vc+AdAaGgapct8Px&|U<7MvJ312UZh~557 z!$b~)RL3nPMLpBvWI>Sl$23u?0r>FR(wVSxK(gp=8T(K1HU1TUe0PHOKFkYp4sCtI z)RGw_Jz~cXy&@nu1V;AhyWQNAR#vq=D_-yW%PD*g2_4($whGha>8v(1g@OO?&*L2K zfD_(6kW-G<2^_WZZ{Or;WTKF4uxW~dmduLX^H3&#?wAktdGop)sBdot z>0H;sa1a4&#}D5CoXw4f_EM0vRsc3b+f)I&1@3P6r^{JCL7UdtcIwCD>Cr5ZW%5~! zgBDiI%9Ao)Rc{6H=d-~Vr|3Wqr6`!=I+hnm1r(rn^9{katpo+=rH-%w;@=V=k zV8wd(;Zwm4YiTN81*(XY2s)EBdwAFY51TX4+}))|N%tz~KZO;NXfuR6gL6?-mH zvHY}}V9eBnT)_Yw`=up4f<&qgUyyZ~fH%FW@6|*CvTSm{sz!_Bbix#2>iH@_O1E6# zFybb9pLQcwz5N3cYN@VmOL0@*tMD=dxeKWQ-1&3B%?4;D|A9ge5OyFg=Skn^ndsBW zi3!(^@kbmdQ)kx?XyKefMII?Y8~xurQdN${za=lbm=Kyw2K@^2+B|K4>l7>_L%JIW z-b{d=gSW5Z8cW$W?I*VhJl|&fdz(%5xz7?;7)ihJ$>b^4?z) z7dzuKUvquFahMD=*MYW%Ru?2J{jY9|Hhj^f0@EG7pdH{K8u`p~c6PS0KXiMXVZEYB zc)8w`aTJevFhS0~WAsCCiBU|+hT5ti(@*W5GCS`E0-@sp1qI|U6t`f%b(K3e%oCp_6tsfIHA_{%~tiK~PHlrvpxt0kqVn5VXnWUEU>oNgI&qm8VvG zU%Y`q->DV!GAtEY{ha|7^}j1Odp~I|(RtWuFM$zw%YY^*YQGyrUQW(olsec1cvDL5 zZ%(RjZ*Qkm8Ey^_lR9q^S(f(&m5|V;iK?Hfyb-qddh}aEo5C>m_QW^yBttRsX=|bP z6PgKHZkp#!!b6VlwDM|dre+-!hh$9zKjcw~+AMHuuJXEeaos+HgE)_?BAnmXm!aic z#C`V)v}~BzRuPsM0;lodvZoKydbdkcldO``ELAA!1|#2+X(zw^CYyF$pBcfa$r~~u zSLYNJ$q(<#18CJWs@_P~I!+VPn*ec!Ju1X>cwzh+5 z4a8sIvmoaEoCYir^t(Pi6-8Uy+bx763jv53^62sTqnCN&f!uD#dKNuK{e~m=9E6Tv z9V8A&&_>XEEFL#{&v%mSKj)n#`jM9W23Y(Ju!}`_y$N6yjoKkpH{ANRu86K5%&i*ScnxAxvIl_P7pHzg7 zxcMy5KSbvG;g*}NwOVwazL^}kP)9rfsKt+pKO<`R z2XIA|ee`|OfOta=9e$DCdgxhev57Xf+V@iFX>n`Owwsgm^~c_rnwiaJSSfP&;q_iO z&(;`coTuX^=6^@}pz4GeW9)Lrkv{7c*Uwa}doS0fw~-v_yx=6Z|Gikc^)QU3(Q5MV zl*|!H6;XYTV@|kLKTa)a;(E@F3Fr7#+jqCH;i>&FhMoC7o?k0#8NTPk^i|la>WVv{ zvSyQ=h8E|N&iXkjHJ!_1;!`n0vmp`;D_hs)!R)9D1KnJ}4=8_kxO}_SPFs<5_#QUi zMcg2Bk&e;lIuy!bTqf1gB!VxRr4rek!U`og|I1V^AXe^e2h&PU)<8P1S}H)Gr1aV+ z6PaOLZ5h{7EQx>=l0dLL0LbPu*zdNdG@GX6UZ>(?1<;8U6!CKbZke|c$~^a8-` z=0I7^-wf+2WE*S~_Jgi5+;n-V5;{6HJ@bDUP9G#BM}LmG=d!Ok-;T83d^dJn=_4)I z<^(cq{DwBC_%5q;U1kng%qWnp*{5??4A%AMYs`(y%2z3Fsnu|ACzUK*$MQ(%)ii84 z0mQ>r21wwm3dIxXhGLauf^?f<3ZMENs!(`Rast6tIz0h*Gbtx2ub@tzAQK=K_Gbu$ z;-Di+NNxIv!fDRyKga06MU8(CMeALq!R^q?_zyyRAUB!|ichLNbbaO6w0_Iq61u7TkIx z!huf!(?nfb#CQk107jqTlntKl{R@YjmvJ;LZdfV`{(m$A;%EMT=kg}(OpRb)(0~CT zd)mqy01^g`NSX&Jnd>xtPS?dxEHd@PS4v3Y`#2naCa)CneC6Vy30qzI#JhuYZm?|>-a%7^=PWTYkFjF`}qhHu!lOD zSfrWInV(71P2#2p`AugJr9n6bWCKe6@C9sl0URd%i1hb`K-ygG6x;}-kmNL*?CJ*u5kh^bTXZt?i-2-V}5{z0uu7i`JGjRVm z^A$1xlYvxi30fR&v&KL%w950OLleBd+XCSRpi9}xw$Gh7wWbOG7NJxD+!7ln!beVc zCtKSp)Z2%u`n3L*(Hc|y{}@E`8v4FeGIIQrnXY6(4OnW}Vr0wb!3!hi=vY5ccw-2Rkg+J1vL2tij|!J&rC=}SQ*D~ioecF={z z>Kf?x2zo4Ck$Decp=ko4=6-GsC%P=V%(s};7D8Exn@N*x?~`3^7?FYYyG zWVD40o8uFZW8A;bn@Sqnqz%_SxjFZO}nhx==+_bkS5DqdxbTe?X3QVSBqLJ z&dz^)9*&kD9znjCJw?wW1P>M06arU=)D|W7m^IwkqwtJ<=^|KwAiB>e=sA5$T!`H~B0 z_{~?D^P|Lhfo4QA7N7v}F}KMYMH$sN_^O{j|9(&K5dA94IoI6Iqbi5_r7b5{J&(zC zWR6Zh<3`s8J*Fcs?}z^GPK1+ZC?PdE9x;2Z`X8uyZ(x8tSZZ+!yzy#K)zLYScXf4D z)OV{Akc(||JzCh~`I@h+zwn9r0)m72(UQGxj+d>aLn6<>25g&;#|j_9I&1-a+6AOt z>sXQNQceBz>-J)je)!RoJff{2%4?O#FXU zJK`LJY(4D0*@`-=9kp5AOyM8l+9KP2i;6Wu$;?W-T%tp&8ga{OZCeu)! zbFGHAmhY%*e!Z_XACBXUdguTUQ%ms5MnQ_MUCa<5E@s%X)AXsNoAY z^e;gB3jmEyZ>*TgKOd&3-#_k`8`nDydz}A(+uW82WjUeeX8!vUoBvqV%6CM({|u_4 zUY+paZZuTXw6EAK>aPFJ6nwU1sr6WTC3Jm1FYOfG5c8Qq$tM9N8zpmY9JD6yp;YhN zG=Z+_pr%iRU8r2F?98Z-%MGv6wQZA@i#U?!UI+z{bqyL3g&0S-V{V9`Ee7 zs2HTa&(EsUB1|YkHI`+g`YD72Q*|(h1D^>))@O=_ut>Ti&h+2?I0Q_+yV4q^saS!N zgDl|G`TfB6P^$)va1B2Yv;h-DuJd6tv`Wm({AF{qFm=9uzECeQ zEuI!BjEsL#Kpp)w2Vw=`#M7_;Ku&%;RnI7K@@xo9?cIRD(O*{CY-lTstKs{*>87e=Jc0H}So;zsGJ#_#^U#W^&L6;t-=gUZserpKw$PGR1cX z*_+`}H5dv;H4{f~=jWP)JxaohT_;{UGvhY~D|t3#?T6lPxJarZSxtt8hlf>R%(qnI}LpD10AJ zMMPVcO~MrN*299H(;15JH;-EXHmJ;)hI66=5d|+Dq9GUpH&i^t7zCE(2JkS_uN z1&#J8{MxaDl(BmV6#QV_LJxq-B@aZ@1+X_gAOHqZM`7&{W92T976l!&S0hZ-K}}&s zUT)g%@tP5{93pb*49GeLT2-nlp8--eP6sF?ogqD>rJz6pV(Nz^+K#gU65CGiUYg=S zdft^XW`mOEWJums%-U*?_4ld5QMoM?N%~9q@^eTvS2ik;KvU0;G>aJ+nS5 zwAemV2HH_=&bXAUyrrnu`{bY-^ZtmdbfTnFK_%b%ec#`+iaizp-Qg|e3!uiP@m=jw2{>1 zMXSvO>ax1fQ9~kb`Tt6Bw`6nZM4VD2w$1sX@u7uc&Y~adQ1*MzGr|v|p5X z2{2Ssc6XltZASR$22SzgU1Q4F5*`F7VlQ$tazc9LK~;>$c8Omfh}~ByC1H_~PRC8) zL&ZTyIugqhR~R9z2wVH91dye5m7U2w_NcyN)PkTp=nRTlt?gC<0{^eIw+@Ojext=L z!oUClDNz)VZctKE8i}Ptx|@|20YyrY4hd;kIz$>&KsuHZBm|@dBv(M-KCj>J{N{J( z&fJ+h_s;&Mz`nb0d_Lzn&pGFLur9JcG=3>qQ3B9(iHsRGYC@X=i|~WUvwLZ~7d;Le zd7GxzzI%!PWZEqXTL>7QNM5~ZPahYNa+tDeG+k@O9%;B8NBsNQd%3hhNH$o}H@8f7 z4kCFSR}PQMDv@D#Swc#+!jG^rx3ndp(0 zy-Ss}i`rS&M)e6jOXhF3rI;&TvS~^N87xzOrC-?%tAD{!-x$aEHnaKfw%4prH5}TE z3XOjvUUj(R>wtw4C;6^8r&Rp(s1F)!ice$^nDBY}r zdS+BfGwA!T@-FrQHrtEL6=M~aucqXna?<+xhQ^?g_r>d8f_v<@WVAJQKU71{&c<@< zt~W2zb&a+4?OJ8oq^P-Y_byBE6Mye%dLgBJxy=K6&w;cm`ztRAUa$5Np{5V4*r**{ zi@hsjwMCx-Q`j(l=fQd$@Dy%q<0vF^B&EH-oKY^vC@DbG847@f?!-CWkV-N#R_!0> z0u#Cr%Ax9xgJeY6sF9z+V2+Zj>oDg<#wSI$xX&G3qpMn;ZfZg-BM1Da{ZBkpcD8K1 zTF{-cYBnbI7VJ!J8?cL*M8Yz=$%*K38?u==zb<_ic3XPflf#ph#Nq#T-x*9wwlDARr@kk7iR`X03 zw7ARCN)VA53C`rSQ|6wYaz_&rrpM49jvW_E4ei4e|!7GDiI!RBzIsR?OzTdw^em-=%xgI_X((WB-_ zWUxq0SFlHiOPdEZEY8+m;Jgips)Z8B2yxn49_URj^kSRQ{N|n4Ej@1-yM6D@jvbgy z62~;SU?;xs#~HT4;sr&1dhP&3+2kNh`fJpuN$GySp*+=ewo3$bnVgXwN@%~uqVgSN zd1QchX6Nv7o8jNS%}yM4v`m$4+a9IEZ-8OeqGhGnNc*?5FvFG^r{}Qj^(s>37ua>4 znrb*Dg8R@J-tv)*B~xyiM!iI*k;W=}g&nltT9DuOS}n>2)nOOfD3!}JC^R%Qxi0)u zq72Q!uUoOjQCkbOHOF#n75AGo=3|Hdv*W#jGuuw_6!_#ihnDb8OWwwsu9ftS$NA?X z6LSl%s~s~I7D&WpNYX)1CKE+m_O->g zSm=rE4C5_T$dT^^$wq!hF0_WODZswty4Z`B+g`7pyDZR2`;nrAg5^s!au&EU&Uc#x zJa?C`vjh68A{*nVZzuJ0M`+OT?2YxG&}Hi$v3g%%_{;Y=j1pbZij4Kux(R1 zNGg%OfVb2(r^}#ff+P_nBA}NF#shX~!QT^TcY_5}ZpJyvLukHaBL1142LVgJz$BGk zWJ;rA<}$k7YZpKj)4|&fg09{urd?J_08!d>bdjf7V?m@U|IZ)Mr$YIxt?S0_+i~&E zb$Yg>rK!D6IrR2Xyf!~_4WM5d6vGY8hzQ^?7%V^iP90-HO2~e)HXBf1HKerv5Lq3& zJ&bpZxIu#XkPr9FnEeK}gH^Y(U1>1Xd>fYaS5=&vUl3A@H8txY`a^|T9C<7vNeNH5 zLlOo}lu{Nl(-DV!ZCO~((xVTKj zbeI|9=O|k+|MWjgP>Yi>5Wd~JJQt#rbEcwcAjp8{IxTsB%f4s&E^#z5yRtm!cn3a)Sf)XNKQ8k-Q@E^UTQ(>z9oE(Wc|s<>CO zxAD~^LSw{?Hs|-p9U7=n-Wfa#?yKe&H)QOtswxJZ?`&7!LsF!q5)sR`Js0I|QMr{G z`<~>Jf(7d(FPao%o~I-7sKhR~5pDq8i_~NjKg}{9MT|(38)U&sCth8ZiLG8xJJ*2xu-~3W{AaPp*YQeIo7be9d>l{NfKDMYk$oCRTwU z8i97>PnY*ED-PG|R!<;|OkZ3U2~47=_Z)dnARzz=KI6O9s|g1+J%g5c8qkvLIPXkZ zWo#+%vAdf-?$bDD_!1*s?5)?A=)UCnxx{g)j*;ovrPKQT<*JmPQ%vCeG%qX!4_8V% z(jTVev(d0mqNH`nvQSLaqczn)D)@ioOlNn{+)zSXRNVoD}Z;fhv z>&n$KC?oWtzxv^<=(Oh|4Nipcin<7o9^+(QS>fmXv}PIGZFG1c-@VuX#aUOkw=5?b#48e4y# zFg0em)Ss>#v$Win%uh(VURkB`@Dn?gkUNFzaV|rvZI|I#QcdM!7FHG@!Ux_kp6O|; zxEhe^bWS9akj?r=l_#L_0BB=rmI6`6wq5x82Y_s{otBn{E3ej&V(!PaN7UDLbO+P3 z3%>9JMs@xT9M~1M{j(#UXBI+7xzBr%X_e;XwX-=YgS_q1o0}qn+J=UP8wc$QD9%5v zG@pJbH3SS-G`V)IAKJ+{ZQF`oI_CA3PO<+kGc(~yN1H6*XxOltS>x0IC;iKNOSaKE z(WHyGzo0%D`7APhd;#49fO)dP2tjcZi@=*Nf=UtaP-M8Tp%S35vF^DfPIZHc>Z1D8SJO)!cce`Q}9 zyd?avq#Sfmb>bQ58C+??e_NYyXL@e#rT0B)l=7dJsWaExS^r_tkz7^HX;)W;`d@EM zrO<9Lxc-pAy*ixnczqadXcAdEX7R4({V_ZbIS^@wLc%XxU(RfZZFlo%9o}S+m3)DJ z<);2Bxs0}~t)vgWJ0e(EibIq@>yGbUg?ER?@6RjcVpAdZsc1gNU zQG0omJo&4jvHXH;Gu>^yQ=g^wEDSeb_w2Wvg$mo{9%qI`3{tS+tg5C%9G;A`ATuxOa{=x(x77!A@(HE%#45Qe0eH z+D-d~_`I8lC?eJ9=K5NFOVs2HLSf(&QT{YUV!u8>=vuX*m1u$u61IToe-IUBF_l}I zsIR8$s}I(*A}po2CmUu9@}@U6UsXyG{g$$jdzP5P&Pr$xocc9iUL6GfQnQXu82VcSnJFZU;=U zL7kvG89PVZwQhl=Pi+LACwN(jv;`_MkHKHVYbuw%P{f+A11#A!b0EK3Bnd~Nr|?*U zuAL}0b?5zfNG)f;Q;R2uD>{s1%KHVVToG#CzsX}H0Z%>rKR9<|WT{3>5#a#l$pcY zEno|PIj=>^!r+TyV&EQ*HIXZ{D=l}%+ddD~N=hkWpC8)EEJ+0zT#A5!dzDiE^;uj@ z=Y^~X(>4``W8=;b8DFP1wg{erBcK!7|C0VJW<-CNIG88eICBo&^0a|(nk0cE=VM@^ zC=@A4{vq8);uZq=xTo09Y1#DZm2wfR_M;qH97mj^`WA2uQU-26ycTmWM~-YW1=E|V z@rBm~*tP@ei5vJGo>|?2`(`f!-UE*=dRQ`vQ|-Jt0Mz9S!w1&2tI^BMyvUci_epA@ zgsvfM$k8%CLpy2f4ZfT5sPb7M8&B1mso#YZ3cRK_WO$#@ZEKZ}&8WG=@gD0iIi|ju zD2~8J&F=2Kzyt1zY`h(qJ1_%pYhmqqte3{H86nu8qr9c2QO9M{D)D{4-X-#$#0;@x(2UX1`2-4RqHyBLla+f1_kJ5iYV#gr1FhBScXpK4m|acCn@jFxMI> zNn+JQT}JEeJ0b-PN?sch_7hz1MfjI7?hLH`t8)u4`ME*L=9kc3iPvsfbvr@e#?DlkzYKW2@KpLSh zQaMFs^G#WzLeH-ZBb3t+gcV#3%v%_ZirO3CeYff)8H1GL}N{n?l z3!ZG8oy6#gCFGQc+Th0Ftc!r}kZk!wQROffwvZ$1WA8B8WEA>We`8W(^~2F79vxB? z1225CD^aX<@GaDOG(SG0q*M)y^qHKM_+lp37M4&?%2CR}5dFPQ0 z^aC-NQ0xt9wOZbvm#j0->Kj(HIId%FQ(0Os`lswnBs}n%%iZUH2Dj4FPlDGH=ey!p zp$pLu{9`6alqVaG!HJ<^(BKv314*NlqCVAITU$0^eMqwpz=9QQ9h5v4;l&Mmx;-gE z0+sw1I)1UQJ(D$-z-^tqVfeuv9bCi#Dl?ajFP-aBW)BIW*9*gslnA_o z7>E*tHCUOf`)CNwZ|EIZ)&eOW^X?thxV+cgYXKxTQ;)}@n~*IMA~7eY5nc?C!3Zd{ zHB?p8VV`*X&b}(K_rW6d$En=<`U%o|tgJ)$RCez@w-=b$*m~H)t{2{AE&dcpz{17F zRk_3Q{z=)a(S1e#*?G*wiJ>p~$LwA&<9blOp$EmO>L~aqEGqbC;u8Kpy|nwr;poa1CTa?Uf6Ou8B|0o1DUVN z%gf!M7+5X+a#>wYE~Hm*m6gWhhrb{aLQn+&Ev>@lruQ!{+!VnzF9?R1uzg0wvI6V2 zhKozN-Uv1Hz;$AT(Uo2^~GTBjpC^EF=@<)OEt^lC@s{=&TGst2cwR&tqwu; z{?&Nx0;|(n4j{x|GO!!aT;E3%8InrzkF=1|)l6?b1OTIDuWnZDfyD7z^dx0Nj-3op z&j-+}o3x!k_-jL}uB3!+$U7b`(i1q^8C0oV!4xDvu`BOj5QL2y-9}+)1%TG|J8^|4 z6z~S&4AiqaiE*eF8;qO+^tZ0Mory>1Vn%{4yjFJkzi>0P_ zVr(Wo`g6vupD@xF(r3@aH78|>KmYNSctXs`XY*wc5fxcXOnpiA|>QyWf4+Un;Y`nt|e-Uy{inmMmB_v`1JeM_Nmc^1Z}>FAB26M z2xxyXd+1wHYpAJ3x%%z@_VsZz_!c++>@*~-wmNp4%+oVTJHPuYIX)wd7pIKs%q#fd zxM*H$mL|?zlsBTZp)$P46X(e&RD9g`@x7D%J%k7S95`Z8d}#C-QM^yr93%flyv*mw zv?^s*s%S<3MCX)94`&Be1-q3}iFVoNMCZyp@7>l_B&I=Je>5+PZ<@y zut!_?=KsX?4vLPs?zTIBw~|(^aqzGVZ9M5=5ahX(XoeS-6CwD{F+dDzLFEMA1hvz#ra2%C

    =3M}Cjm&Irb7HlkP=+&U_u!kg>rMMX%7c`5!dOnkCEB7O9 z>blUcQpxX^0yMScx1Ys`)+y_98pgh(#>gG144aa$>~zG?j~5%g>7}k}3@Vsh-D zoU0JAfO%i4h@^t)S^Y9?tQ)5eiI|)B3-8qR@4QPUT)+FSo)@GTXnsvvy^!X!6#}h) z9K+d@9YTj_f4|Jw;BALs(eDZ;KDy(7ZqX}xi0i#+&_1DwOP}#}cz=F-%dK}?Y&qZ2 zB2n7(Mw=1jW7M_TI%lI}_V!D7f3jL{a&-EbFs9r%@n66HK0?s^?n>=P#?`;%Uv2lc zOu(x14P0anT#+I8Q59Ln*^%~BHxSp{okPn76;>3b}ZXgmK`lU zP1Nu5KqE?9E1_NLVu&?%;UwmG^Es7DW-G~unQsMX$#I2Rn_M^Z?7J&_5xKU1x=510 zv2tMK8W8P$68sTW&8nPG3J1;Jif{Tn3s-Wy;(8*A z>ne2kU}Iun;2t2Hv-Y|Y_r_Q0;QPx^4xQrOG{g5Kehm+eXm0l34#e($kMc?R^Ycc^ z{;!CGW88cvOMYo#?|*{SGbqZ>U8<83JTSNZ9-S3M+WBmk&_K^K{^mEkoXhJRN9DIv zzKU%I_WI5+HvIWQt)!>%Bszm4sB8rMU3gx0^hZaO%kK$NmhS%S8+mJe#|=H~TU&%1 z74+VIPqrAp)aIUR^`}d$uE}(9q07RH|B|T^oK4bF8!v}DYi|CQWA$`IB6<`BIo5~M z8>7n=$3?k9!s&YW@tDF4wZ3O!j|BY66c_7{3vQllxwCbgY_sM7I*EKjM`8PHO;gq> zq{lO7W-qBcoeB`}MTjD6^qA84ScRSPadpn>_Q+SJtA!&~>M~3IahpwNB~$G}ksSLo$(rL7qn+Nqi@fgA zW#_@TSYQk>^`{Ne>Ky3oonMgIdp2tRozq!P7>%u*Ngcn%X+#j$knMV59ZQ0WUtPQG zzBEx8p;7$=Lp9;Kyh?&z3Y=c*Cukh7r&S(wZ(?(I-~;ZEiiBdW@7$~gX&Po_hh6Q& zAnR!3Z7)r3Ggk=&zVY{wQRlXnYbi#o7LFgM9TfvKEeGm zj><27Vgu(-4#gvU_TK@}QVZLX|A49f+~aOa7Gd0i5Aif+{X#^a#x|ZV?{L_(P5tr= zteoeP-zZOg8geLyyE~Dsx~yeo_Uh2hU`3YZ@qU@wV))2mnh(a6)>Gw?FsJ-tJ*Vxn5Y)|BQnG?)K<%;4civTOUkq_KoDFYQBmP8*R1N&*u_GK)ZAAPt8Y zM9M2wajf>=*wn}Ji@ezs&5+mee-9E)7N)2kLoV0lx0||@pSt8>zWIW(i$EO1x_ca# zFQ{EKJ$qnnBCT?yJB+FbnAF!vS40sI4?hr+Tt%sduYG9|~eQz6wbWcF9*7B!% zoOq+bQ4R&S61=u870oCC51UsewGTb=Ovkd^gLrE=}CVgLc-zIody=%QzVIToAIHFzD{A9S{~%BEXPJBV!?f((^-%b z@Z!+EgTv6C%V2momibDn&mTP|lZPR?vmt$F&;uFIwPtH=#PtQ(2;By^{wR0KD!HT( zdAZA?#zJexeSgQTeD4r?w&ANjqEh(;PUhfM$UB3wfqOi;otNNTaP<|DiR2|ksJ1o> z=~Uh(%c4fEpM1c5gzr)Fi9Lz*7iP>bajwDe>aU-%Z#u7--4oz3m~`b{iE%@BD66}u zMa|C5#$2U+e8z9CzG)r(eiEgLoJJz>y`Ey=X3I1PQ*7|~=%J(fnyR>;MOvYuDJ=U; z$&Vlw`s3&glZWCZG32aT<(6j$DAKb8<+@^*O~hCN5_|dLX%%tDIr)z%)a0wwc*%82o%*ZcGbhf@e$}Hk3bF11^`DLO9kd^6OBYy-w!G3jUOzfA5XaAnBhQz2 z_KSJqv$neO9HNLfnJ;JA%Dt~3`-*n)i}&)|KC7dgK+Ge=%vV=Y?kbq?{fZa8EyQBR zz`{dsT%;BB?_>`wNCy$%0Cc$u)i}*aASksKB#XmMekc88e8RvBBNRX4ADCZQSQ%1R z8Ad|Wy!J~S{`{W#KyV-Ed=Ut|L>$51MznC*zDQZH?XXL}aOxT$xqOZJQq9tZ_O-YU5c?CE!Oor+U0}BCL*x(0(;a45Ksz68XqB? ze%0%3-NfbP<#osV$-FYLk|6&B%DDiH2bHpBjmHPJL^OiD4AK^D;S}qX|JC?CG(#p# zP)Za{y`=Cr7QSlobHbUAy~d_b5W~*)_$JKqzSk4 zOq62Qn4rrP8Qqm;*$izgOt<;5RCL@5ajXO2OrmzB+eTcThYd`THDD(DUff;}jf>u> z8l?UGcxX3V(^PDlh=pXO^db z(wIMgNkX#i1!&5;E=<@;-5VfDdaP`RYdt8$pZQeaq6I6N>%f(ntgZE~!`T8Ns zZ{Gu735LQ(jT~8>bz%TvbS37V!b3##PR7{)f$YlpZ=H$&`Txb5?^GQ z(bF^Bi~V(Bt=^EGjSUT^Z=oEiAWIsRD`*?jUFz4$D_DLeZsE!Z(StmT-sF5pJsm;m zf|_m=J!-Hhm1ETOES*hj5!yZ@V4BT`$uScKe?Z}C7|p2ibe&4kt1uh}Ty*P*%sdvq zb@{Qr{;%$bNWyR;gyVL=+Qj6;`9FWBZ-jUt{Ps!~lymm>*>MZJMw8YHT6roaJyHA6N$2(W{X=H828^uBP+o>#jx=`nXdl}{=J^1xt$QHUhYOQKQNx z5_2Kmv*#!_l%-2uP1;|r;G&557AvbtJ*I%UL2Z6nH_!Bi*43)#jHcx$ruP2wgp6RyOkH>0iJ)Y*Zw4wkCAWT9Um8q!izQ?u%!buwWGsSotHfB5#RZO@_zVpe@1^?XtvnDe)gC zp)AGPY`<0dQ=3nq2UY^qz6J~e8i2;kj36Pk=g&xlXo*cqS}|dw9)b+wrK!0_3IT^? z8Hg)7hj@oC9d#m`KLxUe+wP|3zS5V5l!(^Uc8`ELcvwz z-ZcubQxWv)A20IIIYUoW=p(t``SCk~inP8c^}78p z3IOpXWRte4U93slR$%#1o~Kx_wT*iFv9lsdGk=I>UV0zHdONoNf=Y56lTf4n@~1QA zC~xVPojZoP1Yxn%JFFZp`dA1J`dOx^Hog~-F3u_shhDj*^Gx9U30i4azONp0SH(_v z^2UCdDwa z?kUFb<$j{PiqM5FX4_CkW$AUt{7(7Ml&+HULRpk~>xDRSmf{TA^Qcz&yq#lg>_lvm z`DQGAv4&P0)6#{rj$Nc$N{_afOEgB}vK}ru=G_gN8vNLY_K|JgT^u$Jx0GQfHXLhkAImf7?sA)hv0DWd6Ax`h#d-5=zU+Dp(kY`jEsv6}eTBcBEW@O&@`dau zOlO0druvzAv#;A1O1dVdDEsgv%JhUpPIf<67w?7+i!9! zX;+#)TTQ2tJK$xfX1d_H&>=oX1p?Zq$p^c7B^Hl_70pJj{%1i!fbg++mJ@__J?>0N zC>mv&R1%n}V3!JNe+!1LYvylH@v+dWHn^yLaE`FEALsGr^Vb1Z1jNiYih@EA)7OB_ z|II&JUbMdr3-i2{r2a=yL6n@0ek4LHF3iB4Wj8jCc=$ZGR*~*Ju^BhYRZVT%B4;iO zJSFNN1bx;`FaI+R9Hb#p(a|ucjmFhARplMO5-9uBlHctxJ^hiI1_CP3$X<2D`M?A% z@XrhbPo7XaU9*4$yW_mU3o=#jc>p|`L4e}QOPD#Ka*c5g%sMuzGCE-LHu6P*ryDH2 zXX&-6k0almLuB0J*B z1#ohn?KM&LV&b^T&e8yvd*60)6UZpm8y#8aeJfSf)G|P;W3w`p?_d*=V-9{x*G1-P$E(9>265%E%&47xR&P_^`ki;pMKQFjIN;-0R(D zF$ofdAJJdYSHt}MiiLPGW<^6jm`3b2pU6Sxl&jwDizzHAoFGva1jt+KRS5tlWbdF%F1;0(j8?j>#WW-;(iVV5%92jR3_$S@e zX3-|U z{WHr@R=mzraJ`#AuYToRgJbm!J~^S3e)V!H)E;@%@4vp*0-7EM>4DwpnF}dvIIWl= zg7NESs-~ZLBP|YxQr*htyko%WRzU8%)471>W*Ka7ZeLY$g8w1DW@OBO_n(^(tK84{ zU5xq;Q3yC%CqphS&VacL3&|I|@a_J!po;6(R{~}r8{1(?eE<(9{8~134KeAPBZh46 zb!!b`Ld#pY7w1VPYOS7ICYv51dZd%XrjtRiM9)&*Xg(4JMKv;(0up^9+(0*6J8z4( z5yZ3dW76&u4B=zF4{#Cp4EXQ$hS3A`MrP!-J2K}=s%JyrGiHgGNR!ut)F;pokA#(j z!@bJ^wAb(5=W1{R_+J-8@`R2dg6GG#GSk4RFPh#BVjw#C0X-e6okB{S=(u*Jm8ugw zGMBwbA3H%?3gRcdCtdvf|Ws38-*g>p}g@4 z?y>tGpjxTM4Lr9@!G~LDlyR!`_~_CoP>{YPeJgZV?l!VC;^Kt}Xn zG#FP}<18^*i*{XIZo8~qJ#dD-ALR1mI!l#P6w6o4z=sMW*jC@r2-TWKFkB=nohmc2 z8aQNkdP7CdTzsccSU-cQz0IA~8>>Hv^@ zR^QV0EJ>nQv(jfd+}E#IhT@0M+riN7tM)%Ge_?EZ%U)}% z{8CZ^HBGLP{bkFlbGa4WLZjFk8j-r%#rNv>Hxk^b@6s1}uft%pGm8xLzHhJKghvI0 zW3S>)l^WgUL7?9?He~zrS3yRa5xb8D1wjkxeww;iqd%B zyo;D;ldBxNIkS-Ive~^nP7qG@hJbS%A2SJM7$sys7DIi8yDFiq{HDO^XjKJIN|-&# zB~dl~7N*5y9dn%L9##%j3{r2 zPHbyb4Y>4eE8><1b4Mhy)z8LJ?$Vg72yj0SY8~%1vZPbLk`R+@rt3j?X)O5KjcH#p zrCW5=cS!T6ljgKNPjO}DI}t`HC-HXda&PJ3)@W|tW7e8rFf&;A<|94{Lg3`C>sn{7 zOoL#~XcaAFx z2eQII`Z|#hXjgj~8(>DJHFztFM~OykLDn_7n;US1j2EnK1j9oy3&$)8(c?&DjAQZQ zb^T zcZVzpt>Cg@ePCkSP4EScOS50Mb&0>`o}njXfLs2o9Pb;%R!C%*ta$e7&-v3?(vmFh zh#v<-Yu|6e*y?#7u`RJ^RKh5o)~?sGT@1Rc6gL^pOwat8{O~}g_u}Wku2R2~<8cV8 z*4ozjXjz?_wT%7(pJ%#It4@l|%bFv2Ek~(4 z!0S&%i^W=%~K^pr5{7$2sx&b11L1p;=GLwoa@JqPmlRnua8sK%asD3vf_b;Z)Q!feDfp@5S(qaucP1dPTnnT6=ft(@a@u(OuogLl)eK~Y_)m+``W zY5Ri03Z(~xNb9S~Twq%8ztpEKl=bJ~E!mL{Beh!2wKbUKvTU((_v>|6zdt-4L6T=4 zjXW}))x6^ck$K^K=fVQ+zSCy7Zo)$tAx2B^VB_kUP%(pZ>NL@JE^^(T+ePe^TbaH< zHnH|YLs*B z6t|YZxrYAsXW{b_E558$6Sgf*OTXoW7h#l9KLWYDin%7APe(pqgVv&f<&jhuwSdeH z%^&oTde>(~J|LsrdvrY)e>K^h}jSiq-9P}wUX=SNmi6;U70|h@F AjsO4v literal 0 HcmV?d00001 diff --git a/labworks/LW1/8.png b/labworks/LW1/8.png new file mode 100644 index 0000000000000000000000000000000000000000..6a0663b712ab6e11e538be6ea1791d76097ab141 GIT binary patch literal 8151 zcmd6scT|(zw(eg96y*b~AVolFB2pt#1fn3)K|w*JM7kJ?(v%uSDS}8ZK>?AbKtOs8 z0SiS!??FIX=pcj|2)Qesea;>G?z_kR_J5Z#GC~+3S?^kNKJ)iH@2i{o8Z1Y+jzAE^ zqNRD=5Q6CJ!9$1XAo$DlN#T9)MCWd(p$ZkW^UQ%43=Y@yu0c>yB=epXBY1uIk*29T z1hIalJ?NTTKiWbNpOe=0Yqy_TE{z;cI{AI4X_bS$YQ@auniNmiks}9!LyxSTCmvI$ zpHOFDV7SE}dY0+OjnH!{bhjU!xW*bEGC9r^a$4%y`CFlGKO$POJZ=&-t;_AGu@4DO z+cnB<)g`@nKX`{xq{YY!nN7TFZeCvX8lz0JU4MZEvI6>O-tUYY?0$p_y*2sO#W%q66yZ^gvMPA4M^ihQAZmbtmP?6?be zwAZFv9kzm_4wCv3l9Rbk!vkvfuiiX=GAwqwsEL>P-IXWp*~Slo^2H|C=X%x(Q4}5f z_IILU#`#et4jlvmDq??cC+pGpm-2(qvgpnCS5qyzLIjhH3=O9yBjE{JvBE9=7&E&s zFAuL(;3#?$=9TvmbWpRtX5dcmC!^x0tJZUbvb?`|mF@^tGfO*O z*JAGORcCeNUF54*uZlDv{_3EMN!)TS7guo9x{HW9^Mfp0f}Zoe(cpRT&(*}-moUr> zU0)b5nD5II;S1PK?=3_ig4y`m@7h7Xzv^GA%I)syp@01NG5pGKuxk2E^YfAL{ipmw zLf>iopZWbSs97P96XH>mqJL)dZ;tsW9{P3q|LZrY9>=#Ph{u9sv%FxGqhF>0K@Bej zli<6HFjHIrwl~kDBko~e?vMcV>^^w!4rwNlys^-l5vlUf)Cm=I6qC$qdBy6y%n9Tvs4# zW_EV+q^PLqb5PWb>xF9RH_uBXH1VN++TO8b(h66|do6daDUvVooO;-xG6z_Yfwi@D z=GEs1vLE0sLHyS(IOz}mC1t_MhuSMr+UPZk>9S5R#@rjqfFMawzKs#wtpye}woPx& zbf>Ew+WGZ@4bO57dd60+Gnw1HPpqu0Oj{ZNUwV>5`}&47Jyh_2>GOXr09}<7JL`%< zE{fP5Wd)V!kmldNe9f{uM3aTu1TQ_a_EZpTBg(B=Z5~k-OXXwrGyHb zrZ-w{Zp9co$+Kr0@-t7cYR8?o;+;RG`#tPb7C57FBF39U^jerdt?W}evX2m^7w>+2p`dU|DLzxL{ksn~$og)erwg=uqx+8s4x?r9u7!PxDT z7-ip0r=eoIa7>lBWRC3#yj8Yl^tn3RJ7+@a>IR;Hg{b0B9!#zf+gTCt*t#Y$bP>RAeUQ5NY71AWOq501A7jcpZa5+FDw3cgDRLtnt^nv;I;F_pf;Pp_AutUR}m+S(=eH$qR)#paq=U-s+D?-2NDanZ~%!w71mx z?>dQBg7WKfnSMi>>1cgUf5@qA_-B=Sn?t9kEV4hY+H--BTya({co6f`eRI)N0n`M> z8#(wn9h~pXoHqLsHaThM5OnKeQ-dFQ-4P9Qctg`}^41C!E}r`B+jaCM#~9P&sNRpa z+!hC=f!ZF`ee=Rp5_#!0viGA^0)Gcr-AdhV!Nt3u>y?U}db0Jp!Tx-%GN*f%C*IUx zo~3=td-XddMIchix_kg*CW1gw%KX2h9C4PQ+eODan+`$V zX9sqZwibtM?)5})$;xb4e-CSkkQ+TeT;VFWp(~>QE((+>`fb2H<3da4Na(6Z>&BnS z;vMDFA5w*sN8;R#399e<$}%%E2L+&`BW}t`Kt7Pw!lixh=D?&f{BZrSS6}M@8Ep2fO>_jZk`#~o*(3ZVpJ`3WoIDNB5 zxiP;IN-Pivh18uK|3-x0YS6c)reWoC@nR+kUP}Zt`)@E7+oYEWoi1T9LOKK!3W{tJ zN<^a+udEoL$gvpj1u$Q4=iYAVubq3Xs?1R}x4VLqvl)D$;4vFz`k+VB-`}M>Pr+Gf zJ6$f{eOtEq6c}&CW}}31XXFjVovva#otkOA8lH{Z0k$(18#^;;!^sszHcbR^SD)0< z1sKog)5y3k?kt*^%ep=p@l1>pHEQf%OMR26;5HSCu`@7HNmcSL#xOovpS@Lc%D?p5 zWRBPh+95R>lpmxj!G$jtIS^+j8)4S3mCPg}a~MquI~s zc70H93w$4N$>rzWFb+u}2(@somypGc4Dn$+yfU6{%v%nD( zH+Pm?QDS2OyBHvm3JOCPgP;9U^qBp%fEFfG_dn&N7MJ~$_9uIg)-~YkwTKpy!8sPA zVmkh?V}EB#OOYfGd92=slh@}2*x-Ag!A3gx%Q_Q!``se@$#`2O0qROMm(>|Zw={KzRARlZv;HPcIxsJ)DQODqA@LKq=O zKc%>A7DxvaYW+W;_|FRW&zOPVYkdxA5uDbGgDf&7L4mYlHuqgBD<_JJi?_KjR-mW> z3Vz#Qt&&1Q>byR)XU$02;o0DaaL=QQGdZB2Xw;W`CpJ~t7aTl?<sl8b!7WF) zx4Ay{X&iDT2ld8xP&(raJ=Gt>U2qgHgb}8vr$=u!!+E&et92Mm{;9ztoAQH_|4~)( z{MTgb&(`C1?9P0JnSS#8>RULX>S9IYgRU3x93mOODT07MvQKpt*=P*a`PV3)ld=BBRJFTYBN-2; z?sNb(;ZNc@_;$0yFXj0kuDO3U260SYL*rMo2w18v<=IhOpRzWt>@k-*0)00Cz@5HJ7D$@ zpI_&?(U>2p?T={k94ZNR20%?S7*1(`)lV+L`d1UG5jC*&#`gtL>HghAU0LxE#4#ZARf<+`4(do^1w9w~%TULmUqVeVs)to$ z>j1NuMRn;xD=4Vbt}I#z@h|8?{3l>-@DMfsu+y+m9VtJae#<+gi^Vg%2I4%wrl@lZQrhYcXIsGSX$u53xP~4T)TSrb^07#QBR{zwr&aY}^ zZdlRTl8^sX1dT;$HjSv4s6m1W?WX!JM}tW)2BhE%TT4qzIdQ2~61QG<^QFYM-MO4J z(4aulhs3AYvu){dQ7U<=d{-8l@=Z&0qYfE?G5yIBTMahi)9-+s_DF8I_WX$x_+S?9 zsf9vZx$KlI_@}EU1^&r{{u^ll?Qt%qy^}VkFy7n>ZkeWCBWyTCB4u~0HB&1VwAyS} zMuykCpZuRjlKxxv#(w{7e%$$6Uk31bH2d&-{Ht@D8K8SV@y1-{cd7D^zx3BG4Hl^Z z)AT&vu615=2^2=%gM$Fnt24E3#z0pa0h&h+wWi3%t+;S zt?b_WJ2SK+j9RWAIC@P=i2H94Ba{8hc+eqeE#U@jP%~M;9MpxSwFu1v26LNgK88?t zV48PQfd{n+Rr0{7zZh`g>5Ywz+8H+@K!Mt|Cd6M^uKe2X)>Qd;(iSu(I86={Wv|5~ z%-Q2oBsS>7-8X?di$f(uI&s3es*Qd#yI=LsW1^z&M~3kz``iY2CoDJmG((B9-c!f7 zcK~X(k`fUSdAl3}2Ko=+@9oCw{AHX5rAiRHc=F~FlDwR)i?+5LC_|diXdA@^x=W+M zyue(cXJDY#+nw}O-C4S+si}3YCuh3;IeoF)w04PsS&wVoPPP-FRO_1fJ!TIwqJK!-oj_gD(qssB#?7H!Uy*tf;pD|?8h+{wKy?cY{Sc+tIlx-0TxVmxZ;2KzC>*h8vBMTsc+44=XkSOm*h!2W?Ul}szi=mphL%@T zuRJN>%*YkE1kCL8`6M7w5{1~!WMD8&8eek?jMO}lqhIlCj4glZi78WXCu*jt_}i{c zwGhj=`k`mP+%Ay}YD6S(=$z;IayuTzuit#`j8Z}E?`2U4EAP%w!~hEv&t7uCmF(Q^ zNL5}+kn^`lQS_uq)>wZ>Dj%{xUplSfz6xdCsHgL{T1bSjurPt^+;b98xW?2sUz+cg zM#_^U^Uvn{w~-lh!OU zg*t%xOe}w^;n;1|HD^6$Thq=bok>x_^rTQagE-f##u{eT%8DhP5T~aT5u36`DQWukFC_uUcR*ID4P^ZU0}^wiN4m=330qP6gtP{kbZzegu>W*J0qjLppWy|1TMYt}Ys_5dV0K+&sD zBZ1*|7JuS2T&`zrW8>U54Eo@(1;h9Mgp0nOsv@;t$pU7xJOK+LpXO(D^iJaPaB90) z`T_;Gk{|uGdT5y-G>Rzwq$y0;n%7 zP6P%NJqhqF>Q0_<3oul)j0V1&q~wpc*47Ra1S&+!<7l0_``sVU^%*}J0_jFPxQy0XZ&Ie~SlvIEgamMFs!eVzj=DDk zFTUS!K-8q*owD01-87n7J08rfD;KmW>u~DC2>~JPI4O*ixOzA{$gudULECQ#r;Yvu zEVm+f`Eviu+~uCPfdH{(_Zj7+ta8xX`mZT4Wvc z8cg5CLc^>ukYs5jNLbKPR2gQA(SY5hO@jkapjEt+`7ug#8;}3wbb^_Sv|IqClT-+w z2$*G~06+tg1;{Xu^YOVNN83}CkrmGt|8Adwu+e^hJZv@}4i~$>VEvJ7dky!7SNUN@ z?a~;I+O4f%+1=gkht;1$KEJ=_MobHyxRaQg${QLU-owXqBuMpfu`Pr9KN8Nac)I_0 zPW1Xj0}m5}ptABvKUA-rY;WP}#{W{M0tiub^P60^-Ih>i#ZuW-kbqLdJsQaU89!nrcn#SY|KVT7E1>k|GgD8D)t46N&3_QR*V5?@V1;At0&2&{S*QaLX zPG~;>6Cix%J_dhJX!c&fRNx&}K>Qva%J()d?qpBB_fpwFrX|+L%k{wn-G?pVH;vmF zNF7?*+A(iksSMfp~o)^sqhlK|kP*-YS+^;lZY&dR6aG_NSJJAm6S z+nYDR$!t7&41y=q8ZV4D9|8AdCgq7`b$aH^Jb>FvGX+2kx&gy}KArU#fE-NFD6yiu zC>I1dvXn&Mt!3HC1y8|U0s9R*%{>;Jxn$+t0VTD{FvASFXuJbDpMzW)&{+ zK*6>0j4_#jB-*z!P@qI4*7 zPi%Wj4=69&w$yU5>v!}jBbzOQ>wVyr>{&`*^Kq4+fC4@T6d)hfl`B277;B(%SZQY} zmS|ork#UN>dHc(u8?R3vI}LoDg4{!JZ;7Zpw~BXXXO$_qdw|ml*{;^uca=XQi?8{C z`rECpPewUcZ#;TSditxLj)c7j)Q}Rp+`W~FLiro`ZZ00~&AlTQ)uny8Y27#eSg#cY zTm3FpuN<@n+SmlNub!B?@wSLcehG8m)ZJBgT<$dAICEEqwIfd z^PpRGQ{>%26DGT7&*)2DDKq=(so1OCv~4-s-Ay6b^?Xog?g>gaarR-HQCxECk`Pp8 zBU2F_@o!)QT6zTM9+2pl7<442ieP^{PN@@7<|C)B&*uXlZLgWp-Qoa%RAy%Gl}Kt7 zxPdgf$mY;~uq5>*zD@@_HNa*lZ|-KNvHRVlxia7xmykESB~!%^tfk_XCrvB zW_0MUWCYpFk83)lya5Io9D)dH`zxRBz-vpHh20~E2vH#1e!adp)bo?Av*X^4@HNBt zqAapl>M@B@SHIcL^zND`uCQA=b6$<7lD!W`jM7Y3h~r=oOyq?rT%Lf68wYX!TmPDWl!-xMIq#M|ywg%Sl?eFb z2k>BD&n0bG1_u|HhaFq8^>I+Dscg z+GFbG^Xc7?XZkQf_NZtHe*KV!nU!hHBlD~@N#{HBeLt8bYacmYiVZ+{#5LyL$oP>oLgN}GF&zCTf99yIq5>PiWI)I#o+Fh!cu3jjJ zm9VIO>CCLV@_WI83Ug>rN;f4SXm@Oq1BxCUaiGX7e0&W&(2dJZgZJ;5k<~jLixdsj zaI<7yPupjkcJsUL{(>*O#OBn(jSI{j$&xU*jpD_dTXTsPH879sU)?*D9kNqvbj@NF zCsb>sO6lHw9*&cbzgjbBlCs zci&Sm?9IXMJj10?CWrPnHvQvv1in0fZL;}cmTA07)}u@tYuTg?Vt6pxl6}m7Ys6}+ zl@|a2ZxA}ZjsyGY(~NcpI>6DxFMt2{1CEe|^^rVZ{xQ)MbJD zVC{0OrSX0{l+!F1mQ;KAx~kk~lDPx8+9OrSAHBW87vQO6f!O%q;(g8eJI`2$d)+^> z@c2uT_cm|B(-eB28Xtt@h4-$=)A4`#H|fCt+{RX)qC#5cM>+lSMY6%oct}fK|9XMy H{lNbPY-rSZ literal 0 HcmV?d00001 diff --git a/labworks/LW1/9.png b/labworks/LW1/9.png new file mode 100644 index 0000000000000000000000000000000000000000..e9e8aefc6082e3b5be3c7de3ee0de9cee3b6ea14 GIT binary patch literal 7174 zcmch6S5#A7n08R4$Oi(72uiUaN)ss}2!!67AT<<~CWa8DDP54FfFd12N2(BduYw|- zNa($nP^5(x2+Ynm|6I&kvu3>dFS1xk7W?e8&+|SlA9b{pY0tBshd>~-swxV)5D1wZ zctNQsz$d~C9q+*(GACVSIY>dzH5_l4(@Q3J%&E#&PhRB)sBoJY4GQSuZpJ?6zfk<1R(Ay*pbBe(-WOuEzW&ZKEmtl-J#OyC>c{4Da=L)=N+!RS5|0`8NbyMF?&08sObezEFG3QT_AbvH?ksVMi5V8utnk!QLT<=E zdzN;${N+GIRn@~Bg3Q zs=u+ZF}B!Jxo-h6m>=Jdh8ccldt~Dy*A)={RXMEVgm|PW?nNk*Is@r#5~ji=J>sUO zrf!+@mY~S-TBTtYh^vusS&7QX$Y_hymbUBYh~`~qfPA1!mNi0~h*mq}B3O8zxQ|q) zrhfOg)alF8wEh*!QerXXM~OhCyVU?}$;=x~}uwtK0O;w`erKtr5qGHYtywW0M$8fxKH@V)6g@ z@uQIInvvaD1)9&KOl7nZc~37}%esK`-SBg6gCIrlAbe(;12TISv%tZt+<8xVVQ*<+ zVWgjDcH{;*gqhwSlBi67<`ugv)ps}Y>yRae|8E~KFI^}an?jxF->b(*NFHzgaJ@i3 z0iO6R0Gtw0q*;wKL(086L`ax4q0Paqv$HeO&+iQEeQeWv%FcAfkoj+U1tlI-a^LlI zbt6oDh`SYwh=FhVy48->Fq$v}w8;oRGFv+(CNc3E_$RF2mxB9$b9cohA64g#`{!dCtG@hJOj;1pHr{uot{SvtP$x#fj0a#eisNK6NXVw^in!-Nk(9|TUf#}e$?c>!llQIn z|4e|LC{SWJ?S~4I%Ix}-P+~{{Fm{nYe=3YrJ7r6mWIX#3NJ5oxi;Vi|3Gu(+9Wi7nB)NR|5=Qzce?qRR=qDXSP4@o;cWVdZ&rqG%Dq1#)C+uGM$FQBOybBQ#5%&C& zC)=@&ZS(Dsi0*{RMY@@m4o1kGbALA}e8uuz%L93aD(Y(#w5+$l`Id?z3Ht%tZ@#&# z4yww^`l6!|yDI~W)ZuAu7)&LMiaBQZdR9woYtR!i|g%6gAA}xP~-j7V}blT|_Q{R}Z2e;6WEpN=9p6pG)eKGL!B;c~Q zn$I`pYFLXo;y`EKI5pzhqChqu?ol)H9q>j(1NXC0B#G(y= zk&BQ#DJ^x;VJ2zJU_9D zMzpefXefoTBi=Ceeouh;EG;jB_tKAfw^tygG(Mmhf(H{RQrLaxZ#Vv?iv^9RuWGeYl#9RzHCRPnJpDyp9{pzaC-q3Ft@dlf z>RSl$m%X)TgFM)oAx}gsw6s3gZT-3`jL3{v{%(qq`fp~kU+i`<6NW5$5waqDGg#cpMb%Q z@%JZ(@g{h0Wo2Xl^u+MP0{d_Fvg_pZeFqH0sh6cuEQ-uCETlV>)js&Mxp`Y5^tL8S z1#mN9&l-D&o1B(%nm}n25#P;>A$B5O3Zvr=B-#u3Cw4_$g`zW3H@Aovkyj@Xj z**c1<1jnhqI*3N_OEw(L((JJFg*7P4dkL{Wzrd^hS2II?z4@C>H|lyc*xtw#RSFQK zcH0y$0|#;M<0>L;DwXVqA}n`%fG*Icb)-KAI2kz}U@OWR$u3=|B6}FdNj@#Up=$yB3cdy|ytN}pJ*0m#=jMIFY6C8J=ih634^-b+16k-)#H zxVlzU!`l|{w$7$Xotf&f8AV0E!N4z1iz^L()91bTjwCJA7jMTI%q$EU=<4ZNpBx`< zk4>EnI%gW9O-L&{Z~h~^S^7e_)EB?lSUK2J~mWFae-a(McC!uTH4izvr_xxmcLkPT~=-WUD>Y6tnO`Z z7aF@xa)#-a-pXO@qDSQ(`OLc8J3ET4mpU0c>I5MlM5OE0@*`<{h^rO}ztvS$!Quc)WkzP^h}jKQRaI=JI&&{E zK0bbS=P<)zq6S-F_DEGlr3kvKIht-|t?K+ch#Tj|ANKiF3nkJ%*zsn{Yadvkv_1B{ z^)cIDIr3@DD*}yihO9{w^d09f{mjA|#1#GPc}xhntVX}L-1`GhA(zSA)ocg6$@Wgl z>G)vX`gpZ)2B-g+(Q`^jCg=Z%p8t+7w#+;=fW%II_k?mlB7vswUMSE@d@K9Si++MO z(MO5cF*=f^GyI)`O4hYM2Baa(tK8u<1Y@!QX^9>T8;-O zMKr7E%P1HlkcO#itX>W(cNUHhcWg?W-4uQ3a$fKihg^UC`Zc!dwI!HC_0Sq;+;h0K zx{Asdlk%4%CWl&y51&=m(Q-(eRv^Z}emgOkSfC!Tvkg))!(=jdJtMibW3D3W9@o6t z5YU#~^3TZ18kK*}Uir{|SP(Z}T`GzHE$_IuW(;iO^C0coQm3V!XhRFHfpJ=^j;Om4 z2?@Lb0RbfQD4dM%;4O@E*!Xf?ejea&&ybAs!GTRz+;y?>SMSS^QVeC>o0F*ZQ zwm>UvQYtRncB8mRf@@amI%2_}PL?~9V<`?4&xZ3FBwcmuN*cu|*xYr*XjwQ)6y7me z@6j#e))~X!y#+W#1^A?H;*6REpf`<#2i?wTyEi`4$(@lAxl7j!CE~QR&K(R}hN%Ky zurS*aLdr=szhrAHU|w9fZYd7WP1!!jYf$gH>KSf`!o?Jdgh{fuEx}CNgw;azoyG2M zUqCkT#m&?G=hjcMGBZ`{-FG#lasatvD-bZ;XnEdUO_T`9l1m)m<=UoBPu_sZ3m+|q zCv5gPIA&`l-4Yi!2HC>;%x1UP)TI=RZ2{+58NMye6lpU$4r#tpTg-zq_cx@rrbR0_SqfZb7XE)U)#mrGlM_J>##TCTp`7%>^aZ}jJy%2Y+w zlqeK3#_~!0Vm>CLm15(yANUq+T(iLB_u-$KYXVW}!e{WFF@|!qO{r^ZYhQx3DtW5+ zs`BNiX4Rg4Wc!;?#NdBlA@&DOs7)uhfR9YapELA6uNt-Il>-dCX~p*O7fU z3>YNimz1Vv)zE@L`7OLO)8|1LNFS8h&5&bNhQ zGgL3y{Z94$cha`!RXtSZe_cfaxEPw^8NNX1;hrS;0|(O4%Hd=GM@h(S+o~GaYjGps zzT?G^$$<6ag{(U+m2yCyf7~DmLxEYXTAl%V-WGZkZ^y90AMwQ7yTN|4&Nzn8_y(-f zfk;5W`5LG0fk^`s3_o9KaE2Zc+)5?-+uZxm8rPp2c?)z7UeJT43-ehC4nkwXwmnhe zPK$Bt5p?X5cfKlp5`uaF5o})@DJ2Cy#zh-bvc|)1Z$|A|2J<+*Iyx}zxex>fz)OU51rUUj(ReaBd&FDy?ws18scw#EfsD^_FY z;JMjE={Vssqzbx|3D|x7sYRv3gw=4-vxqNWp6&;VQ$dTD~T zNeJ`!wBV;UZP6H$67(qw&kw5zjW6c*Vq=qV7Mv3)-bR(RWGv+XUb=tr8mk`xwK7!5 zAzY|xLDG~=;LlyPo%?pMAbj?9)Yo;oXPSls(oiTFe$fH>UMT~Z$~@rBCsLEh;e`*6 z#|#ublgAC@#j;%aWB_bLi8s+*98`+At95O_f+Y;L$#^=PcLLVIFe9xnevhra4G=8~yz6NKUE(qQ6RyH=M zb+?_xcw+Ag9@kg$YDP|YKtWzdUBsME{Ox9{+nila<8}wHRL}BG%l!-88y?CzClKeWtm62Lna=>0r9S=v$3f zy>3ZiOJWqU!`@QW)D*Qak)YJh&Q+{AM{~I?{HAhOESA&~zG*y4iucGrAq+L5#8a9u z15EY7`TWhnj4xacz{oiGOlKVK?CcOvPxc#$pg6Ae0sGnGPS>8kI_v}ROgP;w^f{zC ze_n&y^U>JX-kY1g+mwDijjrn^r_)XEiM~(8j>M3YYmH#BV_zh~smI)7UG(&KntXS4 zsI#v@Aas*#M;llfsLRR|Cx?D;^xbgmT$9sf+B5u)KAhuSZd7HiMBkWv=x;TV!nu>9 zjeSZ#Y+@@2KXI4=;G)-%N&;S*gsH+p99Z>au{+`DELz4%18V5|^jJ&UkZClky{%0U z9SpKV9P-(E@QZz;TJv7D#>_HUy6{Z7ap6>luUNVis}%mKVeJ!wt zA1rBLl3Xpz60YH#R|0y9YwNhuj$EjwNfKf9d_DTb1um=|vw6@hyyWt!kCdSVMvr@I zRZynUo7g2SW#OJ&#>9cci{cJ{4`tMcfd)~yMHTlvWXQs2A~Bni!&8S8d`nN&ayB{p znc1#+U(j07^$oiPR`pXmkG&zC=(U<;j@J@4cl0v zq+3ZSt7r$GhE5IJvTvN|vBU#n+s&}J!2W2RG}#<(wWHIf*R%*#J7O(LgoRF`XsjG= zD4eE$+P|AD@jZ`>k)|vz z%U)K$(UkZ8<2j$M~fqRX|SibDqqd&C^GeH~`9*Q7f+6hRk%!UA5 zqFj!T_BSe(c?|+U>#Hg!e{Yy+FecUYahb<88vOeVqzvtWk&#(CGrcoYpliLK*|Ukk z0-OB&=fB?#87Q@1_f^T9$RnO(-4oB_2;`2#1d+}saIo*DO5B1LLPw@ z=Ds05=mLlNqOPphDXtn@umkR1eXWe?_44oQP9bc>FWvFN$|hwmuD_?C4IaH5Xztse z7Xf}7vH2GGS!}`yBV}WH6V2PFnR>a#l(uO)PDTVPZpZ2`VT7JZo5+9kr)n" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAADqCAYAAABwW9CIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALMhJREFUeJzt3Xl8VPW9//HPJMCwTwgxCWEzVDYBUYEgF5QgS8hDURCuhWrFFmVp4MomFi8QXDAql2IVRK+yyEWhQA0Cxdg2bNIbUEBlEwQaNSwJhN5sGJKQfH9/8GM08j05M8lMZs7M6/l4fB+P5j0z53xPmjfON5P5jk0ppQQAAAAALCzE1xMAAAAAgJpiYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADLY2EDAAAAwPJY2AAAAACwPBY2AAAAACyPhQ0AAAAAy2NhYzHffvut2Gw2+a//+i+PHXPnzp1is9lk586dHjsm4Gt0BTBHTwBz9MQ6WNjUglWrVonNZpP9+/f7eipe8/e//10GDBggEREREhYWJnFxcfI///M/vp4WLCbQu5KamioJCQkSExMjdrtdWrVqJaNGjZIjR474emqwkEDvyYcffii//OUvpV27dtKwYUPp2LGjzJgxQ/Ly8nw9NVhIoPdEhOdeOnV8PQFY3+bNm2X48OHSp08fmT9/vthsNlm/fr089thjkpubK9OmTfP1FAG/cPjwYWnWrJk89dRTEhERIdnZ2bJixQqJi4uTjIwM6d69u6+nCPjc+PHjJSYmRh599FFp06aNHD58WJYsWSLbtm2TgwcPSoMGDXw9RcDneO6lx8IGNbZkyRJp0aKFbN++Xex2u4iITJgwQTp16iSrVq0K2nIBPzdv3rwbsieeeEJatWoly5Ytk7feessHswL8y8aNGyU+Pr5S1qNHDxk7dqy8//778sQTT/hmYoAf4bmXHn+K5idKS0tl3rx50qNHD3E4HNKoUSO5++67ZceOHYaPWbx4sbRt21YaNGgg/fv31/45y/Hjx2XUqFESHh4u9evXl549e8rmzZtN5/PDDz/I8ePHJTc31/S+BQUF0qxZM2exRETq1KkjERER/GYNHmflruhERkZKw4YN+TMbeJSVe/LzRY2IyIgRI0RE5OuvvzZ9POAqK/eE5156LGz8REFBgbz77rsSHx8vr7zyisyfP18uXrwoCQkJ8uWXX95w/9WrV8vrr78uSUlJMnv2bDly5Ijce++9kpOT47zP0aNH5a677pKvv/5afv/738uiRYukUaNGMnz4cElNTa1yPp999pl07txZlixZYjr3+Ph4OXr0qMydO1dOnTolp0+flhdeeEH2798vs2bNcvt7AVTFyl25Li8vTy5evCiHDx+WJ554QgoKCmTgwIEuPx4wEwg9+ans7GwREYmIiKjW4wEdK/eE514GFLxu5cqVSkTU559/bnifq1evqpKSkkrZ//3f/6moqCj129/+1pllZmYqEVENGjRQZ86cceb79u1TIqKmTZvmzAYOHKi6deumrly54swqKirUv/3bv6n27ds7sx07digRUTt27LghS05ONr2+oqIi9fDDDyubzaZERImIatiwodq0aZPpY4GfCvSuXNexY0dnVxo3bqzmzJmjysvLXX48gluw9OSnxo0bp0JDQ9U333xTrccj+AR6T3jupccrNn4iNDRU6tWrJyIiFRUV8q9//UuuXr0qPXv2lIMHD95w/+HDh0vLli2dX8fFxUnv3r1l27ZtIiLyr3/9S7Zv3y4PP/ywFBYWSm5uruTm5sqlS5ckISFBTp48KWfPnjWcT3x8vCilZP78+aZzt9vt0qFDBxk1apSsXbtW1qxZIz179pRHH31U9u7d6+Z3Aqialbty3cqVKyUtLU3efPNN6dy5sxQXF0t5ebnLjwfMBEJPrvvggw9k+fLlMmPGDGnfvr3bjweMWLknPPfSY/MAP/Lee+/JokWL5Pjx41JWVubMY2Njb7iv7h/3Dh06yPr160VE5NSpU6KUkrlz58rcuXO157tw4UKlglbX5MmTZe/evXLw4EEJCbm2Vn744YelS5cu8tRTT8m+fftqfA7gp6zalev69Onj/N+jR4+Wzp07i4h49DMSAKv3RETk008/lXHjxklCQoIsWLDAo8cGRKzbE5576bGw8RNr1qyRxx9/XIYPHy5PP/20REZGSmhoqKSkpMjp06fdPl5FRYWIiMycOVMSEhK097nllltqNGeRa2+8W758ucyaNctZLBGRunXrSmJioixZskRKS0udvxEBasqqXTHSrFkzuffee+X9999nYQOPCYSefPXVV/LAAw9I165dZePGjVKnDk9Z4FlW7QnPvYzxr4Sf2Lhxo7Rr104+/PBDsdlszjw5OVl7/5MnT96QffPNN3LzzTeLiEi7du1E5NoP+aBBgzw/4f/v0qVLcvXqVe2f0ZSVlUlFRQV/YgOPsmpXqlJcXCz5+fk+OTcCk9V7cvr0aRk6dKhERkbKtm3bpHHjxl4/J4KPVXvCcy9jvMfGT4SGhoqIiFLKme3bt08yMjK099+0aVOlv9P87LPPZN++fZKYmCgi17aQjY+Pl7ffflvOnz9/w+MvXrxY5Xxc3XIwMjJSwsLCJDU1VUpLS515UVGRbNmyRTp16hTU2w7C86zaFZFrf4Lwc99++62kp6dLz549TR8PuMrKPcnOzpYhQ4ZISEiIfPLJJ3LTTTeZPgaoDqv2hOdexnjFphatWLFC0tLSbsifeuopuf/+++XDDz+UESNGyH333SeZmZny1ltvya233ipFRUU3POaWW26Rfv36yaRJk6SkpERee+01ad68eaUt/pYuXSr9+vWTbt26yZNPPint2rWTnJwcycjIkDNnzshXX31lONfPPvtMBgwYIMnJyVW+iS00NFRmzpwpc+bMkbvuuksee+wxKS8vl+XLl8uZM2dkzZo17n2TAAnMroiIdOvWTQYOHCi33367NGvWTE6ePCnLly+XsrIyefnll13/BgESuD0ZOnSo/POf/5RZs2bJnj17ZM+ePc7boqKiZPDgwS58d4BrArEnPPeqgm82Ywsu17ccNBpZWVmqoqJCvfTSS6pt27bKbrerO+64Q23dulWNHTtWtW3b1nms61sOLly4UC1atEi1bt1a2e12dffdd6uvvvrqhnOfPn1aPfbYYyo6OlrVrVtXtWzZUt1///1q48aNzvt4YmvO999/X8XFxamwsDDVoEED1bt370rnAFwR6F1JTk5WPXv2VM2aNVN16tRRMTExavTo0erQoUM1+bYhyAR6T6q6tv79+9fgO4dgEug9UYrnXjo2pX7y+hsAAAAAWBDvsQEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYntc+oHPp0qWycOFCyc7Olu7du8sbb7whcXFxpo+rqKiQc+fOSZMmTcRms3lrekC1KaWksLBQYmJiJCSkZr8bqG5PROgK/Bs9AczRE8CcWz3xxofjrFu3TtWrV0+tWLFCHT16VD355JMqLCxM5eTkmD42Kyuryg9UYjD8ZWRlZfmsJ3SFYZVBTxgM80FPGAzz4UpPvLKwiYuLU0lJSc6vy8vLVUxMjEpJSTF9bF5ens+/cQyGKyMvL89nPaErDKsMesJgmA96wmCYD1d64vH32JSWlsqBAwdk0KBBziwkJEQGDRokGRkZN9y/pKRECgoKnKOwsNDTUwK8oiYv17vbExG6AmuiJ4A5egKYc6UnHl/Y5ObmSnl5uURFRVXKo6KiJDs7+4b7p6SkiMPhcI7WrVt7ekqA33G3JyJ0BcGHngDm6AnwI5/vijZ79mzJz893jqysLF9PCfBLdAUwR08Ac/QEgcrju6JFRERIaGio5OTkVMpzcnIkOjr6hvvb7Xax2+2engbg19ztiQhdQfChJ4A5egL8yOOv2NSrV0969Ogh6enpzqyiokLS09OlT58+nj4dYEn0BDBHTwBz9AT4iWpvwVGFdevWKbvdrlatWqWOHTumxo8fr8LCwlR2drbpY/Pz832+6wKD4crIz8/3WU/oCsMqg54wGOaDnjAY5sOVnnhlYaOUUm+88YZq06aNqlevnoqLi1N79+516XGUi2GVUdP/ENWkJ3SFYZVBTxgM80FPGAzz4UpPbEopJX6koKBAHA6Hr6cBmMrPz5emTZv67Px0BVZATwBz9AQw50pPfL4rGgAAAADUFAsbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYXh1fTwAAfm7YsGHafPPmzdr80qVL2nzjxo3a/M9//rM2z8jIMJxTUVGR4W0AALiqS5cu2nzKlCnafNSoUdq8uLhYm8+fP1+bL1++3HxyFscrNgAAAAAsj4UNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALM/ju6LNnz9fnnvuuUpZx44d5fjx454+FX6mf//+2vyXv/yl4WMmTpyozW02mzbv1q2bNj9y5IjJ7PBT9KRqH3/8sTZfsWKFNr/pppu0+cCBA7X5+PHjtfnZs2cN5/Tf//3f2vyFF14wfAxqhp74p9DQUMPbOnfurM0fe+wxt+4fGRmpzXv37m0yu+BDT/zT5MmTDW9LSUnR5o0aNfLIuZctW6bNT5w4oc337NnjkfP6A69s99ylSxf5+9///uNJ6rCrNPBz9AQwR08Ac/QEuMYrP/l16tSR6OhobxwaCBj0BDBHTwBz9AS4xivvsTl58qTExMRIu3bt5JFHHpHvv//e8L4lJSVSUFBQaQDBwJ2eiNAVBCd6ApijJ8A1Hl/Y9O7dW1atWiVpaWmybNkyyczMlLvvvlsKCwu1909JSRGHw+EcrVu39vSUAL/jbk9E6AqCDz0BzNET4EceX9gkJibKv//7v8ttt90mCQkJsm3bNsnLy5P169dr7z979mzJz893jqysLE9PCfA77vZEhK4g+NATwBw9AX7k9XeXhYWFSYcOHeTUqVPa2+12u9jtdm9PI6AkJCRo87Vr12pzh8NheCyllFvnjo+P1+bsilYzZj0RCa6uXL16VZuPGzfOrePUr19fm0+aNEmbz58/3/BYycnJ2vzw4cPafNOmTVXODe6jJ/5hxowZhre99NJLXj13YmKiNjfaSTEY0ZPatWjRIm3+5JNPGj7GaPezgwcPavOFCxdq83bt2mnzBQsWaPNf//rX2jyQdkXz+ufYFBUVyenTp6VFixbePhVgWfQEMEdPAHP0BMHM4wubmTNnyq5du+Tbb7+V//3f/5URI0ZIaGiojBkzxtOnAiyLngDm6Algjp4AP/L4n6KdOXNGxowZI5cuXZKbbrpJ+vXrJ3v37jX8AD0gGNETwBw9AczRE+BHHl/YrFu3ztOHBAIOPQHM0RPAHD0BfuT199gAAAAAgLd5fVc0VN/YsWO1+ZIlS7R5w4YN3T6H0T73Ve1/746wsDBt/vDDD2vzX/3qV27d/8KFC9WaF4LDlStXtPnixYu1eVU7K3344YfafPXq1dq8Y8eO2vz8+fOG5wD8ycyZM7V5SkqK4WOMdto02u2pQ4cO2rxx48bavEuXLtqcXdHgKXXr1tXmRn2YNm2aNq/qQ1LvuOMObZ6ZmanNKyoqtHlIiP71CaP3Vxk9r5wwYYI2tyJesQEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHnsilaLjHavmD59ujZ/9dVXtbnRrjPl5eXa/E9/+pPhnN5++21tfuTIEW1+2223afP77rtPm7/xxhvavG3bttrcZrNp8+XLl2vzYcOGaXOgOo4fP254W1JSkjZPT0/X5g0aNPDInABve+aZZ7T5c8895/axNm3apM1/85vfaPPdu3dr827durl9bkDH6N9io11b4+LitPmCBQu0+ZYtW7S5Ua9ERE6fPm14mzuMdkv77rvvtHmnTp08cl5/xis2AAAAACyPhQ0AAAAAy2NhAwAAAMDyWNgAAAAAsDwWNgAAAAAsj13RatEdd9yhzV955RWPHH/evHna/OWXX/bI8UVEBg4cqM2NdnZr2LChR87bvHlzjxwHqC6jHQEBqxs9erQ2r1NH/xRh27Zthsd69NFHtfmVK1fcn5jGsmXLPHIcBI8HHnhAm69du9at45w9e1abG/WnuLjYreNXR8+ePbX54MGDtfknn3zizen4BV6xAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeW7virZ7925ZuHChHDhwQM6fPy+pqakyfPhw5+1KKUlOTpZ33nlH8vLypG/fvrJs2TJp3769J+ft1xo1aqTNX3zxRW1us9ncyp9++mltvmjRIhdm55rly5dr89/85jceOf6GDRu0+ZYtW7R5bm6uR85bW+iJNTVo0MDwtl/96lfavLS0VJuXlZV5ZE6BjJ7UrhEjRmhzox3/du3apc2HDRvmsTm5+9+/y5cve+zcVkFP/MOUKVO0eW3sfhYTE6PN16xZo83z8vK0uSefJ/ort1+xuXz5snTv3l2WLl2qvf3VV1+V119/Xd566y3Zt2+fNGrUSBISEjy21SNgBfQEMEdPAHP0BHCd26/YJCYmSmJiovY2pZS89tprMmfOHHnwwQdFRGT16tUSFRUlmzZtMtzrGwg09AQwR08Ac/QEcJ1H32OTmZkp2dnZMmjQIGfmcDikd+/ekpGRoX1MSUmJFBQUVBpAIKtOT0ToCoILPQHM0ROgMo8ubLKzs0VEJCoqqlIeFRXlvO3nUlJSxOFwOEfr1q09OSXA71SnJyJ0BcGFngDm6AlQmc93RZs9e7bk5+c7R1ZWlq+nBPglugKYoyeAOXqCQOX2e2yqEh0dLSIiOTk50qJFC2eek5Mjt99+u/Yxdrtd7Ha7J6fhcz+99p8aMmSINldKafN169Zp88WLF7s1nzvvvNPwtuTkZG1utOuN0VyN3qRotGPH5MmTtXkw7CRVnZ6IBGZX/M2MGTMMb+vVq5c2f+edd7Q5TxRqhp543oQJE7S50b/rH3/8scfO3bVrV23eqlUrt+aEyuiJubS0NG3+j3/8Q5v37dtXm0+fPl2bb9++XZtX58/7EhIStPnChQu1eWxsrDZfv369Nt+5c6fbc7Iaj75iExsbK9HR0ZKenu7MCgoKZN++fdKnTx9PngqwLHoCmKMngDl6AlTm9is2RUVFcurUKefXmZmZ8uWXX0p4eLi0adNGpk6dKi+++KK0b99eYmNjZe7cuRITE1Npz3Ug0NETwBw9AczRE8B1bi9s9u/fLwMGDHB+ff2lubFjx8qqVatk1qxZcvnyZRk/frzk5eVJv379JC0tTerXr++5WQN+jp4A5ugJYI6eAK5ze2ETHx9f5d++2mw2ef755+X555+v0cQAK6MngDl6ApijJ4DrfL4rGgAAAADUlEd3RYNnbdiwQZvbbDZtbrTrzKZNmwzP0bJlS7fmdOzYMW0+e/Zsbb5161a3jg/UhjFjxmjz+fPnGz7m+PHj2nzu3LmemBLgdW+//bY2P3r0qDb/4x//6LFzG72RPSwsTJtv3LjRY+dGcMvPz9fmRru/bt68WZv369dPm2/ZskWbjxw50nBORjvSjh8/XpuHhOhfh/j1r3+tzY121Q0GvGIDAAAAwPJY2AAAAACwPBY2AAAAACyPhQ0AAAAAy2NhAwAAAMDy2BXNj/35z3/W5gcOHNDmt956qzavzod0Ge2eY7RrVE5OjtvnALytd+/e2nzp0qXa/MSJE4bHGjx4sDa/cOGC+xMDfCA1NdWtvDqaNWumzSdPnuzWcdLS0jwxHcBQXl6eNr///vu1udHuZ3fffbc2z8zMNDx3o0aNtPnZs2e1+axZs7R5MO9+ZoRXbAAAAABYHgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB67onlBUVGRNs/NzdXmERERbh3/zjvvdHtO7po0aZLXzwEYCQnR/86lf//+2rxv377afObMmdq8adOm2vyrr74ynNOAAQO0+blz57T53r17tXlxcbHhOQCre+ihh7R5ly5dtPmxY8e0+caNGz02J8AdRjvJtm7d2q3jGO18VpU333xTm69du9btYwUrXrEBAAAAYHksbAAAAABYHgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5bi9sdu/eLcOGDZOYmBix2WyyadOmSrc//vjjYrPZKo2hQ4d6ar6AJdATwBw9AczRE8B1bm/3fPnyZenevbv89re/NdzWcejQobJy5Urn13a7vfoztKDs7Gxt3qZNG23+9NNPa/MJEyZo85YtW1ZvYm545ZVXtPmcOXO0eVlZmTenYzn0xDUdOnTQ5kZbJYeFhbl1fHd/LqvaSn316tXa3GazafPLly9r8w0bNmjz3/3ud9r8ypUrhnOyOnpiTU2aNDG8berUqdrcqCd79uzR5kYfmxCM6Il3GG3h/8c//lGb33zzzW4df/fu3Ya3Gf237/e//702N/pv4o4dO9yaUzBwe2GTmJgoiYmJVd7HbrdLdHR0tScFWB09AczRE8AcPQFc55X32OzcuVMiIyOlY8eOMmnSJLl06ZLhfUtKSqSgoKDSAIKBOz0RoSsITvQEMEdPgGs8vrAZOnSorF69WtLT0+WVV16RXbt2SWJiopSXl2vvn5KSIg6Hwznc/WRXwIrc7YkIXUHwoSeAOXoC/MjtP0UzM3r0aOf/7tatm9x2223yi1/8Qnbu3CkDBw684f6zZ8+W6dOnO78uKCigYAh47vZEhK4g+NATwBw9AX7k9e2e27VrJxEREXLq1Cnt7Xa7XZo2bVppAMHGrCcidAWgJ4A5eoJg5vFXbH7uzJkzcunSJWnRooW3T+X3SkpKtPmLL76ozR955BFtrpTS5ka7Jx09etRwTj169NDmRju1paena/O//vWvhueAuWDtidEOgidPntTmRjsrvfnmm9r8888/1+bNmjXT5gcOHNDmIiJ33HGHNnc4HNrcaJezsWPHanOjHXfuvfdewzkFm2Dtib9p27at4W2dO3fW5oWFhdr8D3/4g0fmhB8Fa09uuukmbW60m+v48eO1eZ06+qfGRrulGe0im5ubq81FRO677z5tvmbNGm2+efNmbf7TV91+6p133jE8d6Bze2FTVFRU6bcAmZmZ8uWXX0p4eLiEh4fLc889JyNHjpTo6Gg5ffq0zJo1S2655RZJSEjw6MQBf0ZPAHP0BDBHTwDXub2w2b9/f6W9v6+vFseOHSvLli2TQ4cOyXvvvSd5eXkSExMjQ4YMkRdeeIE91RFU6Algjp4A5ugJ4Dq3Fzbx8fGGfwolIvLJJ5/UaEJAIKAngDl6ApijJ4DrvL55AAAAAAB4GwsbAAAAAJZnU1W9vukDBQUFhrsMBapHH31Um69evVqbFxcXa3Oj/eqNdoaq6hxjxozR5p9++qk2Hzx4sDYvLS01PLfV5efn+3SLzGDsSiAw6u+JEye0+e233+7F2XgfPQk869evN7ztoYce0uYTJ07U5u+++65H5mR19MR1oaGh2nzlypXa3Og5VllZmTY32kVt4cKFLsyuZmbNmqXNU1JStPmxY8e0ed++fbV5QUFB9SbmJ1zpCa/YAAAAALA8FjYAAAAALI+FDQAAAADLY2EDAAAAwPJY2AAAAACwPLc/oBPVV79+fW3+zDPPuHWcJ554Qpvv3bvX7Tk98sgj2rxRo0bafNiwYdo8KSlJmy9evNjtOQGBYMSIEdq8bt26tTwTBKoePXpo81tvvdWrxx85cqThY4w2Wv3uu+88MifAaOcwo93PsrOztfmAAQO0udEOlbXh1Vdf1eYRERHafObMmdp8wYIF2nzKlCnVm5iF8IoNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADLY1e0WmS005jRDjZnz57V5lu2bPHYnIwkJydr84SEBG0+YcIEbc6uaAh0kyZN0uaLFi3S5hcvXtTmU6dO9dSUEGB69uypzXfs2KHNGzRo4M3pVOm9997T5rt27arlmSBQxcbGavPy8nJt/vjjj2tzX+5+5q6UlBRtbvTca/Dgwd6cjl/jFRsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYnlsLm5SUFOnVq5c0adJEIiMjZfjw4Te8+erKlSuSlJQkzZs3l8aNG8vIkSMlJyfHo5MG/Bk9AczRE8A1dAVwnVu7ou3atUuSkpKkV69ecvXqVXn22WdlyJAhcuzYMeeOX9OmTZO//OUvsmHDBnE4HDJ58mR56KGH5B//+IdXLiAQ2Gw2bX748GFtXlRU5M3piIjIuXPntHlpaak2N7qGYERPai4yMlKbX7hwoZZn8qM5c+Zo8//8z//U5oWFhdrcaGfBQ4cOVW9iFkVPXGe0E2bjxo21+cmTJ7X5ypUrtbnRjnwRERHa/OjRo9pcRGTcuHGGt6F66Epl7du31+YVFRXaPCYmRpvXqaN/Cnz16tXqTcyLiouLtfk333yjzbt06aLNu3btqs2PHDlSvYn5IbcWNmlpaZW+XrVqlURGRsqBAwfknnvukfz8fFm+fLl88MEHcu+994rItX9IO3fuLHv37pW77rrLczMH/BQ9AczRE8A1dAVwXY3eY5Ofny8iIuHh4SIicuDAASkrK5NBgwY579OpUydp06aNZGRkaI9RUlIiBQUFlQYQSDzRExG6gsBGTwDX8NwLMFbthU1FRYVMnTpV+vbt63xpKzs7W+rVqydhYWGV7hsVFSXZ2dna46SkpIjD4XCO1q1bV3dKgN/xVE9E6AoCFz0BXMNzL6Bq1V7YJCUlyZEjR2TdunU1msDs2bMlPz/fObKysmp0PMCfeKonInQFgYueAK7huRdQNbfeY3Pd5MmTZevWrbJ7925p1aqVM4+OjpbS0lLJy8ur9JuDnJwciY6O1h7LbreL3W6vzjQAv+bJnojQFQQmegK4hudegDm3FjZKKZkyZYqkpqbKzp07JTY2ttLtPXr0kLp160p6erqMHDlSREROnDgh33//vfTp08dzsw4wSilt7nA4tLm7O3lU9SSgf//+2vzZZ5/V5ka78BhdQzCiJzcKDQ3V5l988YU2nzVrljb/+ZtozdSvX1+b33nnndp8yZIlhse67bbbtPmaNWu0+ZQpU7S50W5pwYaeuM7o39e8vDxt/uSTT2pzox38mjdvrs3/8pe/aPMHHnhAm8M76EplRrv+GT2fWbFihTZ/5plntLnRv921oVevXtp8xowZ2vz6+6x+zuhPEINhC3C3FjZJSUnywQcfyEcffSRNmjRxfuMcDoc0aNBAHA6HjBs3TqZPny7h4eHStGlTmTJlivTp04ddORA06Algjp4ArqErgOvcWtgsW7ZMRETi4+Mr5StXrpTHH39cREQWL14sISEhMnLkSCkpKZGEhAR58803PTJZwAroCWCOngCuoSuA69z+UzQz9evXl6VLl8rSpUurPSnAyugJYI6eAK6hK4DravQ5NgAAAADgD1jYAAAAALC8am33jOopLi7W5qdOndLmRruZHD9+XJuXl5dr859/aNdPRUREaHObzabNjV4SP3z4sOE5AKOd/Ix2LTP6c4rPP/9cm1dUVGhzox1mfvGLX2jzM2fOaHMRce429HMfffSR4WMAbzLqz0svvaTNe/furc3Pnz+vzefNm1e9iQFeZLSbWWpqqjZ/8cUXtbnR7ph/+9vfqjexn6nObrFGz72M/hv36aefavMFCxZo84sXL7o9J6vhFRsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYHgsbAAAAAJZnU9XZtsGLCgoKxOFw+Hoateo//uM/tPlrr72mzWvj/zKjnTn++te/avOpU6dqc6Md3AJBfn6+NG3a1GfnD4Su3HPPPdo8JSVFmxvtFGgkLS3NrXzFihWGxyoqKnLr3LiGntTcuXPntHlUVJQ2N/pvhNHuZw8++KA2P3jwoAuzgyfQE++JjIzU5n379tXmo0aN0uZjxozR5h9//LE2b9OmjeGcjHb4NMqNdp7ds2eP4TkCkSs94RUbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB4LGwAAAACWx65ofiAmJkabJyQkaPMBAwZo8wceeECb16tXz/DcGzdu1OYZGRna/N1339XmZWVlhucIVOxiA5ijJzWXmJiozbdu3arNjx49qs2NdiHMy8ur1rzgOfQEMMeuaAAAAACCAgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5bi1sUlJSpFevXtKkSROJjIyU4cOHy4kTJyrdJz4+Xmw2W6UxceJEj04a8Gf0BDBHTwDX0BXAdW7tijZ06FAZPXq09OrVS65evSrPPvusHDlyRI4dOyaNGjUSkWvl6tChgzz//PPOxzVs2NDl3T7YmQNWYbQ7R230RISuwBroCWCuqt2eeO4FXOPKrmh13DlgWlpapa9XrVolkZGRcuDAgUrbSDZs2FCio6PdOTQQMOgJYI6eAK6hK4DravQem/z8fBERCQ8Pr5S///77EhERIV27dpXZs2fLDz/8YHiMkpISKSgoqDSAQOKJnojQFQQ2egK4hudeQBVUNZWXl6v77rtP9e3bt1L+9ttvq7S0NHXo0CG1Zs0a1bJlSzVixAjD4yQnJysRYTAsN/Lz82utJ3SFYdVBTxgM8+FKTzzZFXrCsOJwpSfVXthMnDhRtW3bVmVlZVV5v/T0dCUi6tSpU9rbr1y5ovLz850jKyvL5984BsOV4UrBPNUTusKw6qAnDIb5cHVhw3MvRjAPry1skpKSVKtWrdQ///lP0/sWFRUpEVFpaWkuHTs/P9/n3zgGw5VhVjBv9oSuMKwy6AmDYT5cecLGcy9GsA9XeuLW5gFKKZkyZYqkpqbKzp07JTY21vQxX375pYiItGjRwp1TAZZFTwBz9ARwDV0B3ODSUv7/mzRpknI4HGrnzp3q/PnzzvHDDz8opZQ6deqUev7559X+/ftVZmam+uijj1S7du3UPffc4/I5+K0BwyrD6DcHtdETusKwyqAnDIb5qOo30Tz3YjCuDY//KZrRiVauXKmUUur7779X99xzjwoPD1d2u13dcsst6umnn3b5b0cpF8NKw+jn2uj+nuwJXWFYZdATBsN8VPVzbfQYnnsxgm248jPt1gd01gY+JApW4coHRXkTXYEV0BPAHD0BzLnSkxp9jg0AAAAA+AMWNgAAAAAsj4UNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADL87uFjZ99rA5gyNc/q74+P+AKX/+c+vr8gCt8/XPq6/MDrnDl59TvFjaFhYW+ngLgEl//rPr6/IArfP1z6uvzA67w9c+pr88PuMKVn1Ob8rNlekVFhZw7d06aNGkihYWF0rp1a8nKyvLpJ/LWpoKCgqC6Ziter1JKCgsLJSYmRkJCfPe7gWDuihV/bmrCitdLT3zPij83NWHF66UnvmfFn5uasOL1utOTOrU0J5eFhIRIq1atRETEZrOJiEjTpk0t8833lGC7Zqtdr8Ph8PUU6Ipwvf6OnvgHrte/0RP/wPX6N1d74nd/igYAAAAA7mJhAwAAAMDy/HphY7fbJTk5Wex2u6+nUmuC7ZqD7Xq9Jdi+j1wvqiPYvo9cL6oj2L6PXG9g8bvNAwAAAADAXX79ig0AAAAAuIKFDQAAAADLY2EDAAAAwPJY2AAAAACwPBY2AAAAACzPrxc2S5culZtvvlnq168vvXv3ls8++8zXU/KI3bt3y7BhwyQmJkZsNpts2rSp0u1KKZk3b560aNFCGjRoIIMGDZKTJ0/6ZrIekJKSIr169ZImTZpIZGSkDB8+XE6cOFHpPleuXJGkpCRp3ry5NG7cWEaOHCk5OTk+mrG10BN6AnOB2hOR4OoKPfEuekJPrM5vFzZ/+tOfZPr06ZKcnCwHDx6U7t27S0JCgly4cMHXU6uxy5cvS/fu3WXp0qXa21999VV5/fXX5a233pJ9+/ZJo0aNJCEhQa5cuVLLM/WMXbt2SVJSkuzdu1f+9re/SVlZmQwZMkQuX77svM+0adNky5YtsmHDBtm1a5ecO3dOHnroIR/O2hroCT2hJ+YCuSciwdUVeuI99ISeBERPlJ+Ki4tTSUlJzq/Ly8tVTEyMSklJ8eGsPE9EVGpqqvPriooKFR0drRYuXOjM8vLylN1uV2vXrvXBDD3vwoULSkTUrl27lFLXrq9u3bpqw4YNzvt8/fXXSkRURkaGr6ZpCfSEntATc8HSE6WCryv0xHPoCT0JhJ745Ss2paWlcuDAARk0aJAzCwkJkUGDBklGRoYPZ+Z9mZmZkp2dXenaHQ6H9O7dO2CuPT8/X0REwsPDRUTkwIEDUlZWVumaO3XqJG3atAmYa/YGekJP6Im5YO6JSOB3hZ54Bj2hJ4HSE79c2OTm5kp5eblERUVVyqOioiQ7O9tHs6od168vUK+9oqJCpk6dKn379pWuXbuKyLVrrlevnoSFhVW6b6Bcs7fQE3oiEjjX7C3B3BORwO4KPfEcekJPRALjeuv4egIILklJSXLkyBHZs2ePr6cC+C16ApijJ4C5YOuJX75iExERIaGhoTfszpCTkyPR0dE+mlXtuH59gXjtkydPlq1bt8qOHTukVatWzjw6OlpKS0slLy+v0v0D4Zq9iZ7QE5HAuGZvCuaeiARuV+iJZ9ETeiJi/esV8dOFTb169aRHjx6Snp7uzCoqKiQ9PV369Onjw5l5X2xsrERHR1e69oKCAtm3b59lr10pJZMnT5bU1FTZvn27xMbGVrq9R48eUrdu3UrXfOLECfn+++8te821gZ7QE3piLph7IhJ4XaEn3kFP6EnA9MS3excYW7dunbLb7WrVqlXq2LFjavz48SosLExlZ2f7emo1VlhYqL744gv1xRdfKBFRf/jDH9QXX3yhvvvuO6WUUi+//LIKCwtTH330kTp06JB68MEHVWxsrCouLvbxzKtn0qRJyuFwqJ07d6rz5887xw8//OC8z8SJE1WbNm3U9u3b1f79+1WfPn1Unz59fDhra6An9ISemAvknigVXF2hJ95DT+hJIPTEbxc2Sin1xhtvqDZt2qh69eqpuLg4tXfvXl9PySN27NihROSGMXbsWKXUtW0H586dq6KiopTdblcDBw5UJ06c8O2ka0B3rSKiVq5c6bxPcXGx+t3vfqeaNWumGjZsqEaMGKHOnz/vu0lbCD2hJzAXqD1RKri6Qk+8i57QE6uzKaWU518HAgAAAIDa45fvsQEAAAAAd7CwAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABY3v8DdgKW8coUU6QAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Создаем subplot для 4 изображений\n", + "fig, axes = plt.subplots(1, 4, figsize=(10, 3))\n", + "\n", + "for i in range(4):\n", + " axes[i].imshow(X_train[i], cmap=plt.get_cmap('gray'))\n", + " axes[i].set_title(f'Label: {y_train[i]}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hNRbQ3GJU9fq" + }, + "outputs": [], + "source": [ + "# Добавляем метку как заголовок\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "js1x4HkMVfwm", + "outputId": "82515441-af66-4383-b7d0-24473fd417db" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (60000, 784)\n" + ] + } + ], + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7k8dJS06WNfN", + "outputId": "c5527c79-25bd-409a-c8fe-33f5624618e6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed y train: (60000, 10)\n" + ] + } + ], + "source": [ + "# переведем метки в one-hot\n", + "from keras.utils import to_categorical\n", + "y_train = to_categorical(y_train)\n", + "y_test = to_categorical(y_test)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "num_classes = y_train.shape[1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ir0bQztHWu9V" + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yQ9FXNqXXDHD", + "outputId": "b1735201-eab3-4fcd-8793-861f3dbf9ac3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "model_1 = Sequential()\n", + "model_1.add(Dense(units=num_classes,input_dim=num_pixels, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 181 + }, + "id": "RUvTKwOZXfEi", + "outputId": "7d762a7d-7b06-48c1-af64-6310475f1166" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential\"\u001b[0m\n" + ], + "text/html": [ + "

    Model: \"sequential\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m7,850\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense (Dense)                   │ (None, 10)             │         7,850 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
     Total params: 7,850 (30.66 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
     Trainable params: 7,850 (30.66 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "model_1.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "print(\"Архитектура нейронной сети:\")\n", + "model_1.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l8f1EiJUYLvl", + "outputId": "8d88ef7c-7d4e-4067-d777-d78aee4c3c39" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.7168 - loss: 1.1499 - val_accuracy: 0.8695 - val_loss: 0.5093\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8763 - loss: 0.4841 - val_accuracy: 0.8858 - val_loss: 0.4226\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8890 - loss: 0.4170 - val_accuracy: 0.8953 - val_loss: 0.3855\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.8923 - loss: 0.3911 - val_accuracy: 0.8990 - val_loss: 0.3649\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8989 - loss: 0.3692 - val_accuracy: 0.9032 - val_loss: 0.3503\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9034 - loss: 0.3525 - val_accuracy: 0.9055 - val_loss: 0.3410\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9026 - loss: 0.3452 - val_accuracy: 0.9080 - val_loss: 0.3325\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9063 - loss: 0.3369 - val_accuracy: 0.9087 - val_loss: 0.3263\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9084 - loss: 0.3280 - val_accuracy: 0.9112 - val_loss: 0.3212\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9097 - loss: 0.3235 - val_accuracy: 0.9123 - val_loss: 0.3169\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9092 - loss: 0.3218 - val_accuracy: 0.9127 - val_loss: 0.3130\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9105 - loss: 0.3134 - val_accuracy: 0.9142 - val_loss: 0.3089\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9136 - loss: 0.3088 - val_accuracy: 0.9142 - val_loss: 0.3076\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9143 - loss: 0.3086 - val_accuracy: 0.9160 - val_loss: 0.3041\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9145 - loss: 0.3049 - val_accuracy: 0.9152 - val_loss: 0.3016\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9159 - loss: 0.3041 - val_accuracy: 0.9157 - val_loss: 0.2994\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9171 - loss: 0.2976 - val_accuracy: 0.9143 - val_loss: 0.2982\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9144 - loss: 0.3051 - val_accuracy: 0.9168 - val_loss: 0.2964\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9173 - loss: 0.3012 - val_accuracy: 0.9173 - val_loss: 0.2954\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9165 - loss: 0.2982 - val_accuracy: 0.9168 - val_loss: 0.2945\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9175 - loss: 0.2946 - val_accuracy: 0.9172 - val_loss: 0.2934\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9174 - loss: 0.2937 - val_accuracy: 0.9172 - val_loss: 0.2911\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9191 - loss: 0.2884 - val_accuracy: 0.9173 - val_loss: 0.2912\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9196 - loss: 0.2908 - val_accuracy: 0.9162 - val_loss: 0.2890\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9191 - loss: 0.2870 - val_accuracy: 0.9183 - val_loss: 0.2886\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9193 - loss: 0.2891 - val_accuracy: 0.9187 - val_loss: 0.2881\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9194 - loss: 0.2837 - val_accuracy: 0.9182 - val_loss: 0.2867\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2867 - val_accuracy: 0.9187 - val_loss: 0.2862\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9217 - loss: 0.2817 - val_accuracy: 0.9182 - val_loss: 0.2856\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9229 - loss: 0.2757 - val_accuracy: 0.9178 - val_loss: 0.2850\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2809 - val_accuracy: 0.9180 - val_loss: 0.2847\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9213 - loss: 0.2825 - val_accuracy: 0.9193 - val_loss: 0.2838\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9216 - loss: 0.2822 - val_accuracy: 0.9197 - val_loss: 0.2832\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9232 - loss: 0.2757 - val_accuracy: 0.9202 - val_loss: 0.2823\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9207 - loss: 0.2836 - val_accuracy: 0.9197 - val_loss: 0.2822\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9220 - loss: 0.2791 - val_accuracy: 0.9192 - val_loss: 0.2823\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9215 - loss: 0.2777 - val_accuracy: 0.9173 - val_loss: 0.2824\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9238 - loss: 0.2752 - val_accuracy: 0.9180 - val_loss: 0.2809\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2707 - val_accuracy: 0.9200 - val_loss: 0.2809\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9228 - loss: 0.2783 - val_accuracy: 0.9188 - val_loss: 0.2807\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9251 - loss: 0.2679 - val_accuracy: 0.9198 - val_loss: 0.2806\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9235 - loss: 0.2774 - val_accuracy: 0.9188 - val_loss: 0.2797\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9225 - loss: 0.2772 - val_accuracy: 0.9198 - val_loss: 0.2791\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9240 - loss: 0.2749 - val_accuracy: 0.9193 - val_loss: 0.2791\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9265 - loss: 0.2666 - val_accuracy: 0.9197 - val_loss: 0.2786\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9246 - loss: 0.2747 - val_accuracy: 0.9198 - val_loss: 0.2786\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9239 - loss: 0.2721 - val_accuracy: 0.9193 - val_loss: 0.2783\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9224 - loss: 0.2779 - val_accuracy: 0.9200 - val_loss: 0.2787\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9233 - loss: 0.2755 - val_accuracy: 0.9203 - val_loss: 0.2778\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9247 - loss: 0.2684 - val_accuracy: 0.9182 - val_loss: 0.2778\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history = model_1.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "UJ5yuJBrZsjT", + "outputId": "02557983-a862-4ac4-baef-8a4e0e35942c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgJVJREFUeJzt3Xd8U9X7wPFPdveATqC0QJkyqiDIUGQryHCiKFNR1hekoMBPpgsVRRwIDhAVUdyKIlARUNkCZZbKbllllO6VJvf3R2ggtEDTJqShz/v1uq8m564np4Un59xzz1UpiqIghBBCCLegdnUAQgghhCg9SdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYRwCLPZzLlz5zh8+LCrQxHipiaJWwhRZqdPn+bZZ58lMjISvV5PcHAwjRo1IiMjw9WhCXHT0ro6AFH5DBo0iO+++46srCxXhyLK4eDBg3To0AGj0cjo0aO57bbb0Gq1eHp64u3t7erwhLhpSeIWN8T58+f58ssv+fvvv/nrr7/Izc3lnnvu4dZbb+WRRx7h1ltvdXWIwk7PPPMMer2eTZs2Ub16dVeHI0SloZKHjAhn+/rrrxk6dChZWVlERUVhNBo5ffo0t956Kzt37sRoNDJw4EA++ugj9Hq9q8MVpbBt2zZatGjBqlWr6NKli6vDEaJSkWvcwqnWr1/PE088QVhYGOvXr+fIkSN07twZDw8Ptm7dysmTJ3nsscf47LPPGDt2LACKohAVFUXv3r2LHS8vLw9/f3+eeeYZANauXYtKpeK7774rtq2Pjw+DBg2yvl+0aBEqlYqjR49ay/bu3UtgYCD33XcfhYWFNtv9+++/Nsc7d+4cKpWK6dOn25SXVDZr1ixUKhV33323Tfnhw4d5+OGHqVatGmq1GpVKhUqlonHjxteqRgAKCwt56aWXqFOnDgaDgaioKP7v//6P/Px8m+2ioqK47777bMpGjRqFSqWyKfvjjz9QqVT8+uuv1rK77767WMxbt261xllk06ZNeHh4cOjQIW655RYMBgNhYWE888wzpKam2uxf0jFfeeUV1Go1S5YssfvcV3P33Xdbty1pufz3DvDBBx9YY69WrRojR44kLS3tmufIzMzkqaeeIjIyEoPBQI0aNRg2bBgpKSk22xX9DV1tufLvZceOHdx77734+fnh4+NDp06d2LRpk3W9oih06NCB4OBgzpw5Yy0vKCigSZMm1KlTh+zsbACOHTvGiBEjqF+/Pp6enlStWpWHH3642OcvilGv13P27FmbdRs3brTGeuW/A+F60lUunOq1117DbDbz9ddf07x582Lrg4KC+Pzzz9m3bx8ffvgh06ZNIyQkhCeeeII33niD1NRUqlSpYt1+2bJlZGRk8MQTT5Q7tuTkZO655x4aNGjAN998g1brmH8OaWlpzJw5s1i5yWSiV69eHDt2jGeffZZ69eqhUql45ZVXSnXcp556is8++4yHHnqIcePGsXnzZmbOnElCQgI//vijQ2IvyYQJE4qVnT9/nry8PIYPH07Hjh0ZNmwYhw4dYu7cuWzevJnNmzdjMBhKPN6nn37K5MmTeeutt+jXr5/d576WGjVqFKv75cuX89VXX9mUTZ8+nRkzZtC5c2eGDx9OYmIi8+bNY+vWraxfvx6dTlfi8VNTU9m1axdPPfUUYWFhHDx4kPnz57NixQq2bNlCSEiIzfYvvvgitWrVsr7Pyspi+PDhNtvs3buXO++8Ez8/P55//nl0Oh0ffvghd999N+vWraNVq1aoVCoWLlxI06ZNGTZsGD/88AMA06ZNY+/evaxdu9Y6rmDr1q1s2LCBRx99lBo1anD06FHmzZvH3Xffzb59+/Dy8rI5v0ajYfHixdYvzmD5HXl4eJCXl1eaahc3miKEE1WpUkWJjIy0KRs4cKDi7e1tUzZlyhQFUJYtW6YoiqIkJiYqgDJv3jyb7Xr16qVERUUpZrNZURRFWbNmjQIo3377bbFze3t7KwMHDrS+//TTTxVAOXLkiJKamqo0atRIqV+/vnLu3Dmb/Yq227p1q0352bNnFUCZNm2aTfmVZc8//7wSEhKiNG/eXGnfvr21vOgzzZw502b/9u3bK7fcckux+C8XHx+vAMpTTz1lUz5+/HgFUP78809rWWRkpNKjRw+b7UaOHKlc+c89Li7Ops6LYrk85uXLlyuAcs8999jsP23aNAVQOnXqpBQWFlrLi+ruvffeK/GYv/32m6LVapVx48YV+4ylPffVXK0eZ82aZf29K4qinDlzRtHr9UrXrl0Vk8lk3e79999XAGXhwoXXPdfl9uzZoxgMBmXIkCHWMnv+hvr06aPo9Xrl0KFD1rKTJ08qvr6+yl133WWz/4cffqgAyuLFi5VNmzYpGo1GefbZZ222ycnJKRbjxo0bFUD5/PPPi8X42GOPKU2aNLGWZ2dnK35+fkq/fv1K/AzC9aSrXDhVZmZmsVZISUJDQwGstxHVq1ePVq1a8eWXX1q3SU1N5ffff+fxxx8v1nWamZnJuXPnbJarycvLo1evXpw9e5YVK1ZQtWrVsny0Ep04cYL33nuPKVOm4OPjUyxGoEznW758OQCxsbE25ePGjQPgt99+K0u416QoCpMmTeLBBx+kVatWJW4TGxuLRqOxvu/fvz+hoaElxrNlyxYeeeQRHnzwQWbNmlXuc5fVH3/8QUFBAc8++yxq9aX/AocOHYqfn99167LofvWiJTQ0lO7du/P9999jNpvtisVkMrFq1Sr69OlD7dq1reXh4eH069ePf/75x+bWuqeffppu3brxv//9j/79+1OnTh1effVVm2N6enpaXxuNRs6fP090dDQBAQFs3769WAz9+/dn//791i7x77//Hn9/fzp16mTXZxE3jiRu4VTVqlXj0KFD193u4MGDADajkwcMGMD69es5duwYAN9++y1Go5H+/fsX23/IkCEEBwfbLEXX/K40ePBg/vnnHzIzM63XtR1l2rRpVKtWzXoN/nL169cnMDCQt956i/Xr13P27FnOnTuH0Wi87nGPHTuGWq0mOjrapjwsLIyAgABrHTnSl19+yd69e4slBsD6xalBgwY25RqNhrp16xa7nnrixAl69OhBdnY258+fv+4162udu7yK6qp+/fo25Xq9ntq1a1+3LpOSkor9rf3444+kp6df8wtjSc6ePUtOTk6xWAAaNmyI2WwmOTnZpnzBggXk5ORw4MABFi1aZJOoAXJzc5k6dSoREREYDAaCgoIIDg4mLS2N9PT0YucJDg6mR48eLFy4EICFCxcycOBAmy81omKR34xwqvvuu4/U1FQWLFhw1W1SUlL47LPPCA4O5o477rCWP/roo+h0Omure/HixbRo0aLE/+SmTp1KXFyczeLh4VHi+bZv387PP/9McHAwTz/9dDk/4SUJCQksWrSIl19+ucRrpD4+PixdupTs7GzatWtHSEgIwcHBbNiwodTnKM0gLUcoKChgypQpPPnkk9SrV6/Y+iuTxfUcPHiQmjVr8sUXX/DHH3/w2WeflfncrhYWFlbsb+2xxx67Yedfu3atdUDi7t27i63/3//+xyuvvMIjjzzCN998w6pVq4iLi6Nq1apX7REYMmQIX331FQkJCfz11182gzpFxSOD04RTTZ48mZ9++onhw4ezf/9++vXrh8lkAiwtl9WrVzN16lQuXLjAkiVLbAY0ValShR49evDll1/y+OOPs379eubMmVPieZo0aULnzp1tyi7vwr3cJ598Qq9evdBoNNx3330sWLCAJ598styfddKkScTExNC3b9+rbtOlSxfeeOMNHn/8cebPn0/t2rUZN26ctU6uJjIyErPZzIEDB2jYsKG1PCUlhbS0NCIjI8sd/+U++OADzpw5U2z0c5GiAVeJiYk2XbxFMV55X354eDjLly8nNDSUn3/+mXHjxtG9e3eCg4PtPnd5FdXVlbEXFBRY73q4Fg8Pj2LbvPvuu/j5+REUFGRXLMHBwXh5eZGYmFhs3f79+1Gr1URERFjLTp06xf/+9z+6du2KXq9n/PjxdOvWzeb3/9133zFw4EDeeusta1leXt41R8zfe++9eHh48Oijj9KuXTvq1KnD33//bddnETeOtLiFU4WFhbFx40buvfde3nrrLW677TYWL15MdnY2kZGRDBkyBE9PT5YtW1Ziq6V///7s27eP5557Do1Gw6OPPlrumO68804AevTowaOPPspzzz1X7HYee23cuJGff/6Z11577Zqt4uTkZEaMGMHo0aN5+umn6dy5M4GBgdc9fvfu3QGKfXGZPXs2YPksjpKZmckrr7zC2LFjCQsLK3GbTp06YTAYePfdd21acV9++SUpKSnFbkerV6+edRzDe++9h9lsZsyYMWU6d3l17twZvV7Pu+++i3LZNBYLFiwgPT39mnVZUot1x44d/P777/Tp08fu7mWNRkPXrl35+eefbS4vpKSksGTJEtq1a4efn5+1fOjQoZjNZhYsWMBHH32EVqvlySeftPkcGo3G5j1Y6vxaXw61Wi0DBgxg165dDBkyxK7PIG48aXELp4uIiODnn3/m1KlTrF+/nlmzZhEfH8/8+fOJiYkhJibmqsmuR48eVK1alW+//ZZ77723VAPd7PHOO+/QsGFD/ve///HNN9/YrNu4caPNNcuiQUIHDx5ky5YttGzZ0rquaCKSa7XWzGYz/fv3p0aNGrz22mt2xdmsWTPrJDVpaWm0b9+eLVu28Nlnn9GnTx86dOhgs33RwLsiSUlJADZl8fHxJZ5r+/btBAUF8fzzz181nipVqjB58mSmTJlCt27d6N27N4cPH+b999+nWbNmPPXUU1fdNywsjFmzZvHUU0/xxBNPWL+UlPbc5RUcHMykSZOYMWMG99xzD7169SIxMZEPPviA22+//Zq3GiYlJdGjRw8efvhhqlevzp49e/j4448JCgoq8/X4l19+mbi4ONq1a8eIESPQarV8+OGH5Ofn88Ybb1i3+/TTT/ntt99YtGgRNWrUACwJ+YknnmDevHmMGDECsFye+uKLL/D396dRo0Zs3LiRP/7447qDIl966SWee+65Un2RFC7m0jHtolIq6XawaxkxYoQCKEuWLCm2rqy3g13us88+UwDll19+sdnuWsvlty0BikqlUrZt22Zz3Ctvb3r11VcVg8Gg7Ny5s9h217sdTFEUxWg0KjNmzFBq1aql6HQ6JSIiQpk0aZKSl5dns11kZOR14798ufJ2MEB5++23bY5ZdPvXlebOnas0aNBA0el0SmhoqPLMM88o58+fv2Y9FOnYsaNSs2ZNJTMzs0znvlJpbwcr8v7779vEPnz4cOXChQvXPEdmZqYydOhQJTIyUtHr9UpwcLDSv39/5dixYzbb2XtL4fbt25Vu3bopPj4+ipeXl9KhQwdlw4YN1vXJycmKv7+/0rNnz2Ix3X///Yq3t7dy+PBhRVEU5cKFC8rgwYOVoKAgxcfHR+nWrZuyf/9+JTIyssR/D1e73et664XryJSnosIbO3YsCxYs4PTp08Umj3CF6dOns3btWtauXevqUIQQlZBc4xYVWl5eHosXL+bBBx+sEElbCCFcTa5xiwrpzJkz/PHHH3z33XecP3++xIFMrhIdHU1OTo6rwxBCVFLSVS4qpLVr19KhQwdCQkKYMmUKo0aNcnVIQghRIUjiFkIIIdyIXOMWQggh3IgkbiGEEMKNVLrBaWazmZMnT+Lr63vD5n0WQgghrkVRFDIzM6lWrdp1Z+CrdIn75MmTNnP/CiGEEBVFcnKydWa8q6l0idvX1xewVM7lcwCXhdFoZNWqVXTt2rXEp0GJq5O6Kxupt7KTuisbqbeys6fuMjIyiIiIsOaoa6l0ibuoe9zPz88hidvLyws/Pz/5g7aT1F3ZSL2VndRd2Ui9lV1Z6q40l3BlcJoQQgjhRiRxCyGEEG5EErcQQgjhRirdNW4hKiuTyYTRaHR1GC5jNBrRarXk5eVhMplcHY7bkHoru6K6y8/PB0Cr1TrkNmRJ3EJUAllZWRw/fpzKPMOxoiiEhYWRnJwsczjYQeqt7IrqLikpCZVKhZeXF+Hh4ej1+nIdVxK3EDc5k8nE8ePH8fLyIjg4uNL+52s2m8nKysLHx+e6E1yIS6Teyq6o7ry9vSksLOTs2bMcOXKEunXrlqsuJXELcZMzGo0oikJwcDCenp6uDsdlzGYzBQUFeHh4SAKyg9Rb2RXVnaenJ2q1Gp1Ox7Fjx6z1WVbyWxCikqisLW0hKgpHffFxeeKeO3cuUVFReHh40KpVK7Zs2XLN7efMmUP9+vXx9PQkIiKCsWPHkpeXd4OiFUIIIVzLpYl76dKlxMbGMm3aNLZv306zZs3o1q0bZ86cKXH7JUuWMHHiRKZNm0ZCQgILFixg6dKl/N///d8NjlwIUdFV5hH07kx+b9fn0sQ9e/Zshg4dyuDBg2nUqBHz58/Hy8uLhQsXlrj9hg0baNu2Lf369SMqKoquXbvy2GOPXbeVLoS4+cXHxzNw4EDq1atHYGAgfn5+pKenuzoscR2HDx9m+PDhNGrUiKpVq+Lp6cn+/ftdHVaF5rLBaQUFBWzbto1JkyZZy9RqNZ07d2bjxo0l7tOmTRsWL17Mli1baNmyJYcPH2b58uX079//qufJz8+33kMHloncwfKtrrzf7Ir2l2+I9pO6K5uy1FvR4DSz2YzZbHZWaE6RnJzM9OnTWblyJefOnSM8PJzevXszZcoUqlatat1u7dq19OrVixEjRrBkyRL8/Pzw9PTE19fX+pmLboUrqgtROs6st4SEBNq1a8eDDz7IJ598QlBQEDqdjsjIyJvid3Rl3ZnNZhRFwWg0otFobLa159+0yxL3uXPnMJlMhIaG2pSHhoZe9dtWv379OHfuHO3atUNRFAoLCxk2bNg1u8pnzpzJjBkzipWvWrUKLy+v8n2Ii+Li4hxynMpI6q5s7Kk3rVZLWFgYWVlZFBQUODEqxzp69Chdu3alTp06fPzxx9SsWZP9+/czdepUli9fTlxcHIGBgSiKwtChQ3n11VcZMGCAzTGKvqhfLjMz80Z9hJuKM+ptxIgRPPnkk0yePNmmvKTfmzsrqruCggJyc3P566+/KCwstNkmJyen9AdUXOTEiRMKoGzYsMGm/LnnnlNatmxZ4j5r1qxRQkNDlY8//ljZtWuX8sMPPygRERHKiy++eNXz5OXlKenp6dYlOTlZAZRz584pBQUF5VrejUtQ7pi+TJn/5/5yH6uyLdnZ2cpPP/2kZGdnuzwWd1rKUm8ZGRnK3r17lezsbMVkMimFhYVKZm6+S5bCwkLFZDKVaunWrZtSo0YNJSsry6b8xIkTipeXl/LMM88oJpNJ2bNnj6LT6ZTnn39eqVmzpmIwGJRWrVop69ats37eOnXqKK+//rpy4cIFawzbtm1TACUxMVFZvXq1Aijnz5+3nmfAgAFKr169rO9/++03pW3btoq/v79SpUoVpXv37sp///1nXX/o0CEFULZt26aYTCYlKSlJefDBB5Xg4GDFx8dH6d27t3Ls2DHr9lOnTlWaNWtmfX/+/HkFUFavXn3VGP777z+lZ8+eSkhIiOLt7a20aNFCWblypU39HD9+XOnTp49SpUoVBbAul3+2K5f4+HilQ4cOioeHh1KlShXlqaeeUtLT063199hjj9nEUVR3hw4dspa1b99eGT16tPV9ZGSkMnv2bOv7VatWKYD1OBkZGYpKpVLGjx+vREdHKwaDQWncuLHyww8/XLVOc3JylE6dOimdOnVScnJyFJPJpGzatEnp1KmTUrVqVcXPz0+56667lK1bt5b678yZS2Fhoc3fXHZ2trJ3714lIyOj2L/Tc+fOKYCSnp5+3fzpshZ3UFAQGo2GlJQUm/KUlBTCwsJK3GfKlCn079+fp556CoAmTZqQnZ3N008/zQsvvFDiUHuDwYDBYChWrtPpyv2IurTcQk7lqjiTZZTH3ZWRI34PlZE99WYymVCpVKjVatRqNTkFhTSe7pqejn0vdsNLr7nudqmpqaxatYpXXnkFb29vm3XVqlXj8ccf55tvvmHevHmcP38eo9HI4sWL+fjjj6lVqxbvvPMO3bt358CBA4SHhzNkyBA+++wznn76aWtdfPbZZ9x1113Uq1ePkydPAljrCCy3zxVtC5Cbm0tsbCxNmzYlKyuLqVOn8uCDDxIfH2+zn1qtxmQycd9996HT6Vi2bBk6nY4xY8bwwAMPsHXrVuuxi7a/8ufVYsjJyaFHjx68+uqrGAwGPv/8c3r37k1iYiI1a9YE4LnnnuPAgQOsWLGCiIgINmzYwIMPPmhz3MtlZ2dz77330rp1a7Zu3cqZM2d46qmnGD16NIsWLbLpsr5WrEXxlvTebDbz3HPP4ePjYy27cOECiqLw0UcfMX/+fJo3b86SJUt46KGH2LZtGzExMTbnURSFfv36kZWVxR9//GGdkyA7O5tBgwbRokULFEXhrbfe4r777uPAgQOlera1MxXV3eX//lQqVYn/fu35f9Blg9P0ej3Nmzdn9erV1jKz2czq1atp3bp1ifvk5OQU+8Mruk6guGAqRw+d5dz5he5/LUaIiuTAgQMoikLDhg1LXN+wYUMuXLjA2bNnrf85zpo1i+7du9OwYUM++OADqlWrxty5cwEYNGgQiYmJbNu2DbBcT1yyZAlDhgwBsCaB3Nzcq8b04IMP8sADDxAdHU1MTAwLFy5k9+7d7Nu3r9i2f/zxB7t27eLzzz+nVatW3HbbbXz55ZfEx8fb/J9nr2bNmvHMM8/QuHFj6taty0svvUSdOnX45ZdfrNvEx8fTr18/br/9dsLCwqhSpco1j7lkyRLy8vL4/PPPady4MR07duT999/niy++KNawKqvPPvuM/Px8evfubS0r+r1NmDCBxx57jHr16jF9+nQ6dOjAm2++abO/oigMHjyYgwcPsnz5cnx8fKzrOnbsyBNPPEGDBg1o2LAhH330ETk5Oaxbt84hsVdELp05LTY2loEDB9KiRQtatmzJnDlzyM7OZvDgwQAMGDCA6tWrM3PmTAB69uzJ7NmzufXWW2nVqhUHDx5kypQp9OzZs9iF/hvBQ2v5EpFnlMQt3IenTsO+F7u57Nz2sOcLedu2ba2v1Wo1bdq0sSbVatWq0b17dxYvXkyHDh1YtmwZ+fn5PPzwwwDUrVsXvV7PV199RWxsbInHP3DgAFOnTmXz5s2cO3fOmniSkpJo3Lixdbs2bdpgMpkICAigUaNG1vKaNWsSERHBvn376Ny5c+kr4TJZWVlMnz6d3377jVOnTlFYWEhubi5JSUnWbWrVqsXy5csZNmzYdZM2WAaINWvWzKZno23btpjNZhITEwkODi5TrEVycnKYPHky8+fP5/vvvy+2/vLfG0C7du1svoiApRdh9erVDB48uNhnSklJYfLkyaxdu5YzZ85gMpnIycmxqZObjUsTd9++fTl79ixTp07l9OnTxMTEsGLFCuuAtaSkJJsW9uTJk1GpVEyePJkTJ04QHBxMz549eeWVV1wSv+Hif0J5RnlijnAfKpUKL33Fnu04OjoalUpFQkIC999/f7H1CQkJBAYGEhwcTGBg4FWPc/lscU8++SQDBgzg/fff59NPP6Vv377WAapVqlRh9uzZjB07lhdeeAGNRkN+fj49evSw7t+zZ08iIyP5+OOPqVatGmazmcaNGxcb8Ld06VISEhKsDY5rxWSv8ePHExcXx5tvvkl0dDSenp489NBDNjG8/fbbPP744wQFBeHl5eXyJ3rNmjWL+vXr07NnT5vEXdrfG1h+37///jsPPPAAffv2pVu3S188Bw4cyPnz53nnnXeIjIzEYDDQunVrtxqIaS+Xz5w2atQojh07Rn5+Pps3b6ZVq1bWdWvXrmXRokXW91qtlmnTpnHw4EHrt8y5c+cSEBBw4wMHPHRFLW5J3EI4UtWqVenSpQsffPBBse7r06dP8+WXX9K3b19UKhV16tRBq9Wyfv166zZms5kNGzbYtHi7d++Ot7c38+fPZ8WKFdZu8iIjR44kPT2dPXv2EB8fT69evazrzp8/T2JiIpMnT6ZTp07WrvqSRERE0K5dO9LS0my60ZOTk0lOTraJyV7r169n0KBB3H///TRp0oSwsDCOHj1qs029evUYNGgQUVFRbN68mU8++eSax2zYsCE7d+4kOzvb5jxqtZr69euXOVaAU6dO8dZbb/HWW28VW+fv709YWJjN7w3gn3/+KVZHX3zxBffccw8vvfQSQ4cOtRl1vn79ekaPHk337t255ZZbMBgMnDt3rlxxV3QuT9zuzEN7scUt17iFcLj333+f/Px8unXrxl9//UVycjIrVqygS5cuVK9e3drT5uPjw9ChQ3nuuedYvnw5CQkJjBgxgpMnTzJixAjr8TQaDY899hj/93//R926dUscS+Pp6UmdOnWIjo62GdgUGBhI1apV+eijjzh48CB//vnnVbvUwdJd3qpVKwYMGMCWLVvYvn07jz/+ODExMXTs2NG6naIo5OXlkZeXZ51voqCgwFpmMpkwm83We3zr1q3LDz/8QHx8PDt37qRfv37F7nfetGkT//d//8d3333HLbfcQvXq1a9Zz48//jgeHh4MHDiQPXv2sGbNGv73v//Rv39/m9t1zWazNa6i1mx+fr61rKT7rufOncv999/PrbfeWuK5x44dy+uvv87XX3/Nf//9x/Tp01mzZg3jx4+32a6oe3zs2LFERETY1H3dunX54osvSEhIYPPmzTz++OM3/cN0JHGXg7S4hXCeunXr8u+//1K7dm0eeeQR6tSpw9NPP02HDh3YuHGjzbXON998kz59+jBw4EBiYmLYuXMnK1euJDw83OaY/fv3p6CgwDqOprTUajVff/0127Zto3HjxowdO5ZZs2Zdc5/vv/+eiIgIOnXqRPv27QkKCuKnn36y6QbetWsXnp6eeHp6Wu+m6datm7Vs8eLFLFu2jKFDhwKW2SYDAwNp06YNPXv2pFu3btx2223W4509e5aHH36Y2bNn25Rfi5eXFytXriQ1NZXbb7+dhx56iE6dOvH+++/bbPfrr79a4yrqGW3QoIG17O+//y52bLPZfM1LmePGjWP06NGMGzeOxo0b88MPP/DDDz/QrFmzErdXq9V8+umnLFmyhFWrVgGwYMECLly4wG233Ub//v0ZPXo0ISEhpfrs7kqluGI4tgtlZGTg7+9Peno6fn5+5TrWyj0neWbxDppU92PZ/+50UISVg9FoZPny5XTv3l1uB7NDWeotLy+PI0eOUKtWrXI9StDdmc1mVqxYQZ8+fUhOTi42+VNF9dNPP/HTTz/ZXDa8kcxmMxkZGfj5+cljPe10Zd1d69+iPbmpYo9QqeAujSqXFrcQFVl+fj4pKSm8/vrrPPTQQ26TtMHSxS9fbsXl5OtTOXhYR5XLNW4hKrKvvvqKWrVqkZ6ezuuvv+7qcOzSs2dPPv74Y1eHISoQSdzlYLjY4pYJWISo2AYNGoTRaGTt2rXXHawlREUnibscPOQ+biGEEDeYJO5ysI4qlxa3EEKIG0QSdzkUDU4rKDRjNleqwflCCCFcRBJ3ORgum3dZrnMLIYS4ESRxl0NRixvkOrcQQogbQxJ3OWg1ajQqSxd5XqEkbiGEcGdFU8tWdJK4y+ni+DS5l1sIIdzMjz/+SI8ePYiKisLHx4c773SPGTAlcZfTpcQtLW4hHGnQoEGoVCrrUrVqVe655x527drl6tDETWDmzJkMHTqU++67j99++434+HiWL1/u6rBKRaY8LSdJ3EI4zz333MOnn34KWB7nOXnyZO677z6SkpJcHJlwZ4cPH+bVV19l06ZN3HLLLa4Ox27S4i6nosSdK4lbuAtFgYJs1yx2PtPIYDAQFhZGWFgYMTExTJw4keTkZM6ePWvdZsKECdSrVw8vLy9q167NlClTil2rPHr0KBqNhsDAQDQajbUVn5aWBsD06dOJiYmxbl9QUEB0dLTNNkWioqJsegJUKhU//fSTdf2KFSto164dAQEBVK1alfvuu49Dhw7ZxKJSqYiPjy923Dlz5ljf33333Tz77LPW94mJieh0Ops4zWYzL774IjVq1MBgMBATE8OKFSvsPteVn6Gk83/xxRe0aNECX19fwsLC6NevH2fOnLHZ59dff6VZs2Z4enpa66ZPnz5cy7x586hTpw56vZ769evzxRdf2Ky/MrZnn32Wu++++6qfce3atcV+b/3797c5zsqVK6lTpw6vvPIKwcHB+Pr68sADD3D8+HHrPlf+TWzfvp2AgACb55vPnj2bJk2a4O3tTUREBCNGjCArK+uan9cRpMVdTkWJO1+ucQt3YcyBV6u55tz/dxL03mXaNSsri8WLFxMdHU3VqlWt5b6+vixatIhq1aqxe/duhg4diq+vL88//7x1m6KHIP7000/cfvvtbNq0iQcffPCq53r//fdJSUm56voXX3zR+qjNKx8dmp2dTWxsLE2bNiUrK4upU6dy//33Ex8fX66naz333HPFnij1zjvv8NZbb/Hhhx9y6623snDhQnr16sXevXupW7dumc9VEqPRyEsvvUT9+vU5c+YMsbGxDBo0yNq9nJaWRt++fXnqqaf46aef8PT0ZMyYMdbnjJfkxx9/ZMyYMcyZM4fOnTvz66+/MnjwYGrUqEGHDh0cEve2bdv45ZdfbMrOnj3Lzp078fX15ffffwdgzJgx9OnTh61bt9o8ehVg//79dOvWjcmTJ/PUU09Zy9VqNe+++y61atXi8OHDjBgxgueff54PPvjAIbFfjSTucpKuciGc59dff8XHxwewJMTw8HB+/fVXmwQ4efJk6+uoqCjGjx/P119/bZO4i1rgISEhhIWF2TzL+0qpqam8/PLLTJgwgSlTphRbn5+fT5UqVazPz77SlV8IFi5cSHBwMPv27aNx48al+NTFrVmzhg0bNvDUU0+xZs0aa/mbb77JhAkTePTRRwF4/fXXWbNmDXPmzGHu3LllOtfVDBkyxFrvtWvX5t133+X2228nKysLHx8f/vvvP3JycpgwYQLVqlm+GHp6el4zcb/55psMGjSIESNGABAbG8umTZt48803HZa4Y2Njee6552x+l2azGY1Gw5IlS4iIiABgyZIl1KlTh9WrV9O5c2frtseOHaNLly48/fTTjB8/3ubYl/dIREVF8fLLLzNs2DBJ3BWdTq0AKrkdTLgPnZel5euqc9uhQ4cOzJs3D4ALFy7wwQcfcO+997JlyxYiIyMBWLp0Ke+++y6HDh0iKyuLwsLCYs8zzsjIAMDb+/qt/RdffJEOHTrQrl27EtenpqZe83nJBw4cYOrUqWzevJlz585hNlt645KSksqUuBVFYdy4cUybNo3z589byzMyMjh58iRt27a12b5t27bs3LnTpqxNmzY2X3ZycnKKneexxx5Do7k0qVRubq5NV/G2bdt48cUX2blzJxcuXLD5XI0aNSIiIgKtVstXX33F2LFjS9W7kJCQwNNPP10s/nfeeee6+5bGTz/9xOHDhxk3blyxL2ERERHWpA0QGRlJjRo12LdvnzVxp6Wl0blzZ44fP063bt2KHf+PP/5g5syZ7N+/n4yMDAoLC8nLyyMnJwcvL/v+1u0h17jLSS+3gwl3o1JZuqtdsVzRBXk93t7eREdHEx0dze23384nn3xCdna29TGXGzdu5PHHH6d79+78+uuv7NixgxdeeIGCggKb45w8eRK1Wk1ISMg1z3fgwAE++eSTqz768/jx4xQUFFCrVq2rHqNnz56kpqby8ccfs3nzZjZv3gxQLKbS+vzzz8nOzmbYsGFl2h8sX27i4+OtS1GL+HJvv/22zTYtWrSwrsvOzubee+/Fz8+PL7/8kq1bt/Ljjz8Clz5XeHg48+bN49VXX8XDwwMfHx++/PLLMsdcXkajkeeff55XXnkFT09Pm3WBgYFX3e/ybvJjx47RqlUrpk+fzpAhQ2y+8Bw9epT77ruPpk2b8v3337Nt2zZrL0dZf9elJYm7nKSrXIgbR6VSoVaryc3NBWDDhg1ERkbywgsv0KJFC+rWrcuxY8eK7bd161YaNGhQ7BrxlSZMmMBTTz1FdHR0ievXrVuHp6enTVK73Pnz50lMTGTy5Ml06tSJhg0bcuHCBTs/5SU5OTm88MILvP766+h0Opt1fn5+VKtWjfXr19uUr1+/nkaNGtmURUREWL8ARUdHo9UW72wNCwuz2ebyZHfgwAHOnz/Pa6+9xp133kmDBg2KDUwDGDhwIA0aNODpp58mPj6eXr16XfPzNWzYsFTxl8W8efPw8fGhf//+xdY1aNCA5ORkkpOTrWXHjh3j+PHjNueuXbs2ixYt4oUXXsDPz49JkyZZ123btg2z2cxbb73FHXfcQb169Th58sb0ZElXeTnJBCxCOE9+fj6nT58GLF3l77//PllZWfTs2ROAunXrkpSUxNdff83tt9/Ob7/9Zm0JgqXls3TpUmbPns306dOvea6DBw+SlJTEwYMHS1x/6NAhXnvtNXr37l1spHlaWhoFBQUEBgZStWpVPvroI8LDw0lKSmLixIklHq+goIC8vDzre0VRKCwsxGQyWbuslyxZQvPmza86Mvu5555j2rRp1KlTh5iYGD799FPi4+Md3tKtUaMGer2e9957j2HDhrFnzx5eeumlYtuNGzcOlUrF22+/jU6nw9fXt1hdXRn/I488wq233krnzp1ZtmwZP/zwA3/88YfNdkaj0VpXJpMJs9lsfX+1a+hvvPEGy5YtKzbQDKBLly40bNiQfv368fbbbwOWwWkxMTF07NjRup2vr6/1S86iRYto2bIlDz30EHfeeSfR0dEYjUbee+89evbsyfr165k/f/41atGBlEomPT1dAZT09PRyH6ugoEDpN/sXJXLCr8rsVYkOiK7yKCgoUH766SeloKDA1aG4lbLUW25urrJv3z4lNzfXiZE53sCBAxXAuvj6+iq333678t1339ls99xzzylVq1ZVfHx8lL59+ypvv/224u/vryiKovz7779K7dq1lZkzZypGo1G5cOGCYjKZlDVr1iiAcuHCBUVRFGXatGkKoLz55pvW4165TWRkpE08Vy5r1qxRFEVR4uLilIYNGyoGg0Fp2rSpsnbtWgVQfvzxR0VRFOXIkSPXPM6nn36qKIqitG/fXlGpVMrWrVutMU2bNk1p1qyZ9b3JZFKmT5+uVK9eXdHpdEqzZs2U33//3bq+6Fw7duywqbPIyEjl7bfftr6/PL4i7du3V8aMGaOYTCblwoULyuLFi5WoqCjFYDAorVu3Vn755RebYy9ZskQJDQ1VTpw4YfM77N27d8m/4Is++OADpXbt2opOp1Pq1aunfP755zbrr1VXly9FcRT93u67775ix7n8Mx46dEjp0aOH4uXlpfj4+Cj333+/cvz48avWtaIoyosvvqhER0cr2dnZiqIoyuzZs5Xw8HDF09NT6datm/L555/b/M0U1Z3JZFIU5dr/Fu3JTaqLH6jSyMjIwN/fn/T09GsOMCkNo9HI0A9WsPaUmmfa12bSvQ0dFOXNz2g0snz5crp3716sC1BcXVnqLS8vjyNHjlCrVq3rdhXfzMxmMxkZGfj5+ZXptqyoqCjWrl1LVFRUsXV9+vQpdn9xWTz77LPExMQwaNCgch3Hkcpbb5XZlXV3rX+L9uQm+S2Uk9zHLUTlEBwcbDPq+nKBgYHo9fpyn0On0131HEIUkWvc5WS5HUwGpwlxs9u6detV1xVNy1pes2bNcshxxM1NWtzlpJdR5UIIIW4gSdzlJKPKhRBC3EiSuMvJmrhl5jRRwVWycahCVDiO+jcoibucZAIWUdEVDXZy9mxOQohrK5p5rbx30sjgtHK69FhP6SoXFZNWq8XLy4uzZ8+i0+kq7S09ZrPZOulJZa2DspB6K7uiusvNzSUvL48zZ84QEBBQ7jsHJHGX06XbwaTFLSomlUpFeHg4R44cKXE60MpCURRyc3Otz4oWpSP1VnZX1l1AQMBVnypnD0nc5SS3gwl3oNfrqVu3bqXuLjcajfz111/cddddMumPHaTeyq6o7tq3b4+np6fD7tGXxF1O8nQw4S7UanWlnjlNo9FQWFiIh4eHJCA7SL2VXVHdGQwGh06sIxcsyklGlQshhLiRJHGXk4wqF0IIcSNJ4i6nyydgkftkhRBCOJsk7nLSXVaD+YVynVsIIYRzSeIuJ5vELQPUhBBCOJkk7nLSqEB98dZGGaAmhBDC2SRxl5NKBR46yzB/GaAmhBDC2SRxO4BBa6lGuZdbCCGEs0nidgBpcQshhLhRJHE7gKeuqMUtiVsIIYRzSeJ2AIP2YotbbgcTQgjhZJK4HcBDWtxCCCFuEEncDiDXuIUQQtwokrgd4NKockncQgghnEsStwNcanHLNW4hhBDOJYnbATykxS2EEOIGkcTtAAZpcQshhLhBJHE7gHVUucxVLoQQwskkcTuAh1ZGlQshhLgxJHE7gEEnc5ULIYS4MSRxO0BRV3m+tLiFEEI4mSRuB7B2lcs1biGEEE5WIRL33LlziYqKwsPDg1atWrFly5arbnv33XejUqmKLT169LiBEdvykK5yIYQQN4jLE/fSpUuJjY1l2rRpbN++nWbNmtGtWzfOnDlT4vY//PADp06dsi579uxBo9Hw8MMP3+DILzHI4DQhhBA3iNbVAcyePZuhQ4cyePBgAObPn89vv/3GwoULmThxYrHtq1SpYvP+66+/xsvL66qJOz8/n/z8fOv7jIwMAIxGI0ajsVyxF+2vUysA5BYUlvuYlUVRPUl92Ufqreyk7spG6q3s7Kk7e+pXpSiKUuaoyqmgoAAvLy++++47+vTpYy0fOHAgaWlp/Pzzz9c9RpMmTWjdujUfffRRieunT5/OjBkzipUvWbIELy+vMsd+uYQ0FfMTNFT3Uni+mbS6hRBC2CcnJ4d+/fqRnp6On5/fNbd1aYv73LlzmEwmQkNDbcpDQ0PZv3//dfffsmULe/bsYcGCBVfdZtKkScTGxlrfZ2RkEBERQdeuXa9bOddjNBqJi4ujTcsWzE/YgcHLm+7d25XrmJVFUd116dIFnU7n6nDchtRb2UndlY3UW9nZU3dFvcGl4fKu8vJYsGABTZo0oWXLllfdxmAwYDAYipXrdDqH/RF6e+gByC9U5A/bTo78PVQmUm9lJ3VXNlJvZVeaurOnbl06OC0oKAiNRkNKSopNeUpKCmFhYdfcNzs7m6+//ponn3zSmSGWStGo8lwZnCaEEMLJXJq49Xo9zZs3Z/Xq1dYys9nM6tWrad269TX3/fbbb8nPz+eJJ55wdpjXdekhI5K4hRBCOJfLu8pjY2MZOHAgLVq0oGXLlsyZM4fs7GzrKPMBAwZQvXp1Zs6cabPfggUL6NOnD1WrVnVF2DYuf6ynoiioVCoXRySEEOJm5fLE3bdvX86ePcvUqVM5ffo0MTExrFixwjpgLSkpCbXatmMgMTGRf/75h1WrVrki5GI8Lra4zQoYTQp6rSRuIYQQzuHyxA0watQoRo0aVeK6tWvXFiurX78+LryLrZiiFjdYpj3Va10+r40QQoiblGQYB9Br1RT1jst1biGEEM4kidsBVCoVBm3RE8JkvnIhhBDOI4nbQTxkZLkQQogbQBK3g1gf7SktbiGEEE4kidtBrI/2lGdyCyGEcCJJ3A4iXeVCCCFuBEncDnJp9jTpKhdCCOE8krgd5PLZ04QQQghnkcTtINJVLoQQ4kaQxO0gnkWJu1C6yoUQQjiPJG4HsY4qL5AWtxBCCOeRxO0g0lUuhBDiRpDE7SDWxC33cQshhHAiSdwOYijqKpfbwYQQQjiRJG4HuTTlqbS4hRBCOI8kbgfxkAlYhBBC3ACSuB1E5ioXQghxI9iduA8fPuyMONxeUYs7X7rKhRBCOJHdiTs6OpoOHTqwePFi8vLynBGTW/KQwWlCCCFuALsT9/bt22natCmxsbGEhYXxzDPPsGXLFmfE5lZkcJoQQogbwe7EHRMTwzvvvMPJkydZuHAhp06dol27djRu3JjZs2dz9uxZZ8RZ4cl93EIIIW6EMg9O02q1PPDAA3z77be8/vrrHDx4kPHjxxMREcGAAQM4deqUI+Os8OQ+biGEEDdCmRP3v//+y4gRIwgPD2f27NmMHz+eQ4cOERcXx8mTJ+ndu7cj46zwZMpTIYQQN4LW3h1mz57Np59+SmJiIt27d+fzzz+ne/fuqNWW7wC1atVi0aJFREVFOTrWCu3SNW5pcQshhHAeuxP3vHnzGDJkCIMGDSI8PLzEbUJCQliwYEG5g3MnRaPK5XYwIYQQzmR34j5w4MB1t9Hr9QwcOLBMAbkrT70MThNCCOF8didugAsXLrBgwQISEhIAaNiwIUOGDKFKlSoODc6dFHWVG00KhSYzWo1MSieEEMLx7M4uf/31F1FRUbz77rtcuHCBCxcu8N5771GrVi3++usvZ8ToFooGpwHkFcp1biGEEM5hd4t75MiR9O3bl3nz5qHRWJKVyWRixIgRjBw5kt27dzs8SHdg0F76DpRnNOFjKFNnhhBCCHFNdre4Dx48yLhx46xJG0Cj0RAbG8vBgwcdGpw7UatV6LVF93LLdW4hhBDOYXfivu2226zXti+XkJBAs2bNHBKUu/LQyiQsQgghnMvu/tzRo0czZswYDh48yB133AHApk2bmDt3Lq+99hq7du2ybtu0aVPHReoGPHQaMvIKpcUthBDCaexO3I899hgAzz//fInrVCoViqKgUqkwmSpXArM+2lNuCRNCCOEkdifuI0eOOCOOm4I82lMIIYSz2Z24IyMjnRHHTUHmKxdCCOFsZbpn6dChQ8yZM8c6SK1Ro0aMGTOGOnXqODQ4dyPzlQshhHA2u0eVr1y5kkaNGrFlyxaaNm1K06ZN2bx5M7fccgtxcXHOiNFtXHq0p7S4hRBCOIfdLe6JEycyduxYXnvttWLlEyZMoEuXLg4Lzt1Yu8plcJoQQggnsbvFnZCQwJNPPlmsfMiQIezbt88hQbmrS9e4patcCCGEc9iduIODg4mPjy9WHh8fT0hIiCNiclseMnOaEEIIJ7O7q3zo0KE8/fTTHD58mDZt2gCwfv16Xn/9dWJjYx0eoDux3sctiVsIIYST2J24p0yZgq+vL2+99RaTJk0CoFq1akyfPp3Ro0c7PEB3UnQfd64kbiGEEE5iV+IuLCxkyZIl9OvXj7Fjx5KZmQmAr6+vU4JzN55yjVsIIYST2XWNW6vVMmzYMPLy8gBLwpakfYlBJmARQgjhZHYPTmvZsiU7duxwRixu79LtYNLiFkII4Rx2X+MeMWIE48aN4/jx4zRv3hxvb2+b9ZXtiWCX85AJWIQQQjiZ3Yn70UcfBbAZiFaZnwh2uUtTnlbeOhBCCOFc8nQwB7p0O5h0lQshhHAOuxP3sWPHaNOmDVqt7a6FhYVs2LChUj89zNpVLlOeCiGEcBK7B6d16NCB1NTUYuXp6el06NDBIUG5K3mspxBCCGezO3EXXcu+0vnz54sNVKtsLg1Ok65yIYQQzlHqrvIHHngAsAxEGzRoEAaDwbrOZDKxa9cu6xSolZVBBqcJIYRwslInbn9/f8DS4vb19cXT09O6Tq/Xc8cddzB06FDHR+hGpKtcCCGEs5U6cX/66acAREVFMX78+ErfLV6SS4PTpKtcCCGEc9g9qnzatGnOiOOmUNTiLig0YzYrqNXFxwIIIYQQ5WH34LSUlBT69+9PtWrV0Gq1aDQam8Vec+fOJSoqCg8PD1q1asWWLVuuuX1aWhojR44kPDwcg8FAvXr1WL58ud3ndYaixA2QL61uIYQQTmB3i3vQoEEkJSUxZcoUwsPDSxxhXlpLly4lNjaW+fPn06pVK+bMmUO3bt1ITEwkJCSk2PYFBQV06dKFkJAQvvvuO6pXr86xY8cICAgocwyO5KG99D0oz2jCU2//FxkhhBDiWuxO3P/88w9///03MTEx5T757NmzGTp0KIMHDwZg/vz5/PbbbyxcuJCJEycW237hwoWkpqayYcMGdDodYLnmXlFoNWq0ahWFZoVco4lAVwckhBDipmN34o6IiEBRlHKfuKCggG3btjFp0iRrmVqtpnPnzmzcuLHEfX755Rdat27NyJEj+fnnnwkODqZfv35MmDDhqt30+fn55OfnW99nZGQAYDQaMRqN5foMRftffhwPnYas/EKycvMxettdvZVGSXUnrk/qreyk7spG6q3s7Kk7e+rX7swyZ84cJk6cyIcffliu1u65c+cwmUyEhobalIeGhrJ///4S9zl8+DB//vknjz/+OMuXL+fgwYOMGDECo9F41UFzM2fOZMaMGcXKV61ahZeXV5njv1xcXJz1tcqsAVT8sWYd1WXg/XVdXnei9KTeyk7qrmyk3squNHWXk5NT6uPZnbj79u1LTk4OderUwcvLy9plXaSk6VAdxWw2ExISwkcffYRGo6F58+acOHGCWbNmXTVxT5o0idjYWOv7jIwMIiIi6Nq1K35+fuWKx2g0EhcXR5cuXaz1MCvhLzLT8mhxRxtujQgo1/FvZiXVnbg+qbeyk7orG6m3srOn7op6g0ujTC1uRwgKCkKj0ZCSkmJTnpKSQlhYWIn7hIeHo9PpbLrFGzZsyOnTpykoKECv1xfbx2Aw2MzyVkSn0znsj/DyY3noLVVaqKjkj7wUHPl7qEyk3spO6q5spN7KrjR1Z0/d2p24Bw4caO8uJdLr9TRv3pzVq1fTp08fwNKiXr16NaNGjSpxn7Zt27JkyRLMZjNqtWUE93///Ud4eHiJSdsViiZhkUd7CiGEcAa77+MGOHToEJMnT+axxx7jzJkzAPz+++/s3bvXruPExsby8ccf89lnn5GQkMDw4cPJzs62jjIfMGCAzeC14cOHk5qaypgxY/jvv//47bffePXVVxk5cmRZPoZTeMh85UIIIZzI7sS9bt06mjRpwubNm/nhhx/IysoCYOfOnXbPqta3b1/efPNNpk6dSkxMDPHx8axYscI6YC0pKYlTp05Zt4+IiGDlypVs3bqVpk2bMnr0aMaMGVPirWOuYp2vXJ7JLYQQwgns7iqfOHEiL7/8MrGxsfj6+lrLO3bsyPvvv293AKNGjbpq1/jatWuLlbVu3ZpNmzbZfZ4bRR7tKYQQwpnsbnHv3r2b+++/v1h5SEgI586dc0hQ7swgTwgTQgjhRHYn7oCAAJvu6yI7duygevXqDgnKnV26xi0tbiGEEI5nd+J+9NFHmTBhAqdPn0alUmE2m1m/fj3jx49nwIABzojRrVzqKpcWtxBCCMezO3G/+uqrNGjQgIiICLKysmjUqBF33XUXbdq0YfLkyc6I0a3I4DQhhBDOZPfgNL1ez8cff8zUqVPZvXs3WVlZ3HrrrdStW9cZ8bkduY9bCCGEM5X5KRgRERFERERgMpnYvXs3Fy5cIDBQnocl93ELIYRwJru7yp999lkWLFgAgMlkon379tx2221ERESUePtWZVPUVZ4riVsIIYQT2J24v/vuO5o1awbAsmXLOHz4MPv372fs2LG88MILDg/Q3cjgNCGEEM5kd+I+d+6c9SEgy5cv55FHHqFevXoMGTKE3bt3OzxAd3PpPm65xi2EEMLx7E7coaGh7Nu3D5PJxIoVK+jSpQtgeZbo5U/tqqw8ZQIWIYQQTmT34LTBgwfzyCOPEB4ejkqlonPnzgBs3ryZBg0aODxAd3PpdjBpcQshhHA8uxP39OnTady4McnJyTz88MPWZ11rNJoK9bAPV7l0O5i0uIUQQjhemW4He+ihh2zep6WlOew53e7OQ7rKhRBCOJHd17hff/11li5dan3/yCOPULVqVWrUqMGuXbscGpw7krnKhRBCOJPdiXv+/PlEREQAEBcXR1xcHL///jv33HMP48ePd3iA7sZ6O5hMeSqEEMIJ7O4qP336tDVx//rrrzzyyCN07dqVqKgoWrVq5fAA3Y10lQshhHAmu1vcgYGBJCcnA7BixQrrqHJFUTCZJFkZrBOwmFEUxcXRCCGEuNnY3eJ+4IEH6NevH3Xr1uX8+fPce++9gOV53NHR0Q4P0N0UtbgB8gvNNu+FEEKI8rI7cb/99ttERUWRnJzMG2+8gY+PDwCnTp1ixIgRDg/Q3RQNTgPLE8IkcQshhHAkuxO3TqcrcRDa2LFjHRKQu9NpVKhVYFYsA9T80bk6JCGEEDeRMt3HfejQIebMmUNCQgIAjRo14tlnn6V27doODc4dqVQqPHQacgpMMkBNCCGEw9k9OG3lypU0atSILVu20LRpU5o2bcrmzZtp1KgRcXFxzojR7XjIg0aEEEI4id0t7okTJzJ27Fhee+21YuUTJkywPnSkMvPQWr4PyTO5hRBCOJrdLe6EhASefPLJYuVDhgxh3759DgnK3cm93EIIIZzF7sQdHBxMfHx8sfL4+HhCQkIcEZPbM0jiFkII4SR2d5UPHTqUp59+msOHD9OmTRsA1q9fz+uvv05sbKzDA3RHnpdNwiKEEEI4kt2Je8qUKfj6+vLWW28xadIkAKpVq8b06dMZPXq0wwN0R0Vd5fkyX7kQQggHsytxFxYWsmTJEvr168fYsWPJzMwEwNfX1ynBuSu5xi2EEMJZ7LrGrdVqGTZsGHl5eYAlYUvSLs5DusqFEEI4id2D01q2bMmOHTucEctN49IzuaXFLYQQwrHsvsY9YsQIxo0bx/Hjx2nevDne3t4265s2beqw4NyVQSZgEUII4SR2J+5HH30UwGYgmkqlQlEUVCqVPNqTy7rKZXCaEEIIB7M7cR85csQZcdxUZHCaEEIIZ7E7cUdGRjojjpvKpWvc0lUuhBDCsUo9OG3btm106NCBjIyMYuvS09Pp0KEDO3fudGhw7qqoqzxfWtxCCCEcrNSJ+6233qJjx474+fkVW+fv70+XLl2YNWuWQ4NzV9aucrnGLYQQwsFKnbg3b95M7969r7q+Z8+ebNiwwSFBuTu5j1sIIYSzlDpxnzhx4pqTrfj4+HDq1CmHBOXuZHCaEEIIZyl14g4ODiYxMfGq6/fv309QUJBDgnJ3houD0+R53EIIIRyt1Im7c+fOvPLKKyWuUxSFV155hc6dOzssMHcmXeVCCCGcpdS3g02ePJnmzZvTqlUrxo0bR/369QFLS/utt97iv//+Y9GiRc6K061Ynw4mLW4hhBAOVurEXadOHf744w8GDRrEo48+ikqlAiyt7UaNGhEXF0d0dLTTAnUnco1bCCGEs9g1AUuLFi3Ys2cP8fHxHDhwAEVRqFevHjExMU4Kzz15Wm8Hk65yIYQQjmX3zGkAMTExkqyv4dI1bmlxCyGEcCy7H+spru/yrnJFUVwcjRBCiJuJJG4nKJqr3KyA0SSJWwghhONI4nYCg+5Stcq0p0IIIRxJErcTGLRqLg66l+vcQgghHKpUg9N27dpV6gM2bdq0zMHcLFQqFQatmjyjmXyZhEUIIYQDlSpxx8TEoFKprjrQqmidSqXCZJIWJlgGqOUZzdLiFkII4VClStxHjhxxdhw3HcsANaNMeyqEEMKhSpW4IyMjnR3HTcd6L7cMThNCCOFAZZqABWDfvn0kJSVRUFBgU96rV69yB+UuVLu+puXhhaj25kFMX5t1Mu2pEEIIZ7A7cR8+fJj777+f3bt321z3Lpq7vDJd41adTSA8fTumk9uKJW7DxcSdW1B56kMIIYTz2X072JgxY6hVqxZnzpzBy8uLvXv38tdff9GiRQvWrl3rhBArsIAoAFQXjhZb5aEt6iqXa9xCCCEcx+4W98aNG/nzzz8JCgpCrVajVqtp164dM2fOZPTo0ezYscMZcVZISmAUcJXELV3lQgghnMDuFrfJZMLX1xeAoKAgTp48CVgGsCUmJpYpiLlz5xIVFYWHhwetWrViy5YtV9120aJFqFQqm8XDw6NM5y2vosRN2jEw27asiwanyTO5hRBCOJLdLe7GjRuzc+dOatWqRatWrXjjjTfQ6/V89NFH1K5d2+4Ali5dSmxsLPPnz6dVq1bMmTOHbt26kZiYSEhISIn7+Pn52XxJKLq+fsP51cCMGnVhHmSlgF+4ddWlFrd0lQshhHAcu1vckydPxnyxdfniiy9y5MgR7rzzTpYvX867775rdwCzZ89m6NChDB48mEaNGjF//ny8vLxYuHDhVfdRqVSEhYVZl9DQULvP6xAaHbn6IMvrC7b3untKV7kQQggnsLvF3a1bN+vr6Oho9u/fT2pqKoGBgXa3fAsKCti2bRuTJk2ylqnVajp37szGjRuvul9WVhaRkZGYzWZuu+02Xn31VW655ZYSt83Pzyc/P9/6PiMjAwCj0YjRaLQr3isZjUayDSF4F5yh8OxBlGq3W9fpNJa6yMkv/3luRkV1InVjH6m3spO6Kxupt7Kzp+7sqV+7E3d6ejomk4kqVapYy6pUqUJqaiparRY/P79SH+vcuXOYTKZiLebQ0FD2799f4j7169dn4cKFNG3alPT0dN58803atGnD3r17qVGjRrHtZ86cyYwZM4qVr1q1Ci8vr1LHejVN9cEAHNoax/4T/tbyk0lqQE3CgUMsNx4o93luVnFxca4OwS1JvZWd1F3ZSL2VXWnqLicnp9THsztxP/roo/Ts2ZMRI0bYlH/zzTf88ssvLF++3N5D2qV169a0bt3a+r5NmzY0bNiQDz/8kJdeeqnY9pMmTSI2Ntb6PiMjg4iICLp27WrXl4ySGI1Gjiz+DYC6QVpqd+9uXXfwz4OsPnmY8Bo16d69UbnOczMyGo3ExcXRpUsXdDqdq8NxG1JvZSd1VzZSb2VnT90V9QaXht2Je/PmzcyePbtY+d13380LL7xg17GCgoLQaDSkpKTYlKekpBAWFlaqY+h0Om699VYOHjxY4nqDwYDBYChxP0f8EWYbLAPo1GlJqC87npdBD0CBCfljvwZH/R4qG6m3spO6Kxupt7IrTd3ZU7d2D07Lz8+nsLCwWLnRaCQ3N9euY+n1epo3b87q1autZWazmdWrV9u0qq/FZDKxe/duwsPDr7+xE2TrL3bzXzE4TeYqF0II4Qx2J+6WLVvy0UcfFSufP38+zZs3tzuA2NhYPv74Yz777DMSEhIYPnw42dnZDB48GIABAwbYDF578cUXWbVqFYcPH2b79u088cQTHDt2jKeeesrucztCjiH44ovzkHepq6PodjC5j1sIIYQj2d1V/vLLL9O5c2d27txJp06dAFi9ejVbt25l1apVdgfQt29fzp49y9SpUzl9+jQxMTGsWLHCOmAtKSkJtfrS94sLFy4wdOhQTp8+TWBgIM2bN2fDhg00auSa68iFGk8UryBUOecsre7wZsBlLW65j1sIIYQD2Z2427Zty8aNG5k1axbffPMNnp6eNG3alAULFlC3bt0yBTFq1ChGjRpV4ror5z9/++23efvtt8t0HmdRAqMsiTv1ssStlfu4hRBCOF6ZHusZExPDl19+6ehY3FdgFJz4Fy6bs9w6c5pc4xZCCOFApUrcGRkZ1lunrjdkvby3WLkj5eJTwi4foGaQrnIhhBBOUKrEHRgYyKlTpwgJCSEgIKDEGdIURUGlUlWq53EXsT5sJPVS4vaQ53ELIYRwglIl7j///NM6U9qaNWucGpBbKkrcl7W4i65x50tXuRBCCAcqVeJu3749AIWFhaxbt44hQ4aUOL1oZWXtKk8/DoUFoNXLqHIhhBBOYdd93FqtllmzZpU4AUul5hMKOi9QzJCeDFz+WE9pcQshhHAcuydg6dixI+vWrXNGLO5LpSrWXV6UuAvNCoUmaXULIYRwDLtvB7v33nuZOHEiu3fvpnnz5nh7e9us79Wrl8OCcyuBUXBmn3WAWlFXOUBeoRkfjd3fkYQQQohi7E7cRU8FK+lBI5V1VDkAgbUsPy/ey100OA0s3eU+hjLdMi+EEELYsDubmM3S7VuiKhcT98UWt1qtQq9VU1BoluvcQgghHEb6bx3lihY3gIdWRpYLIYRwrDIl7nXr1tGzZ0+io6OJjo6mV69e/P33346Ozb1UuSxxKwogI8uFEEI4nt2Je/HixXTu3BkvLy9Gjx7N6NGj8fT0pFOnTixZssQZMboH/whQqcGYDVlngMse7SmTsAghhHAQu69xv/LKK7zxxhuMHTvWWjZ69Ghmz57NSy+9RL9+/RwaoNvQ6sGvBqQnWW4J8w2VSViEEEI4nN0t7sOHD9OzZ89i5b169eLIkSMl7FGJVImy/Ey1vZdbusqFEEI4it2JOyIigtWrVxcr/+OPP4iIiHBIUG7rKreESYtbCCGEo9jdVT5u3DhGjx5NfHw8bdq0AWD9+vUsWrSId955x+EBuhXrALWLLW69JXFnF8gUsUIIIRzD7sQ9fPhwwsLCeOutt/jmm28AaNiwIUuXLqV3794OD9CtXPF4z8gqXgD8dzrTRQEJIYS42ZRpOq/777+f+++/39GxuL9A2xZ3s4gAvth0jPjkNNfFJIQQ4qYiE7A4UlFXefZZyM8kJiIAgD0n0zHKg0aEEEI4gN0t7sDAQFQqVbFylUqFh4cH0dHRDBo0iMGDBzskQLfi4Q+eVSA3FS4co3bILfh6aMnMKyTxdCaNq/u7OkIhhBBuzu4W99SpU1Gr1fTo0YMZM2YwY8YMevTogVqtZuTIkdSrV4/hw4fz8ccfOyPeiu+yAWpqtYpmNQIA2Hk8zWUhCSGEuHnY3eL+559/ePnllxk2bJhN+YcffsiqVav4/vvvadq0Ke+++y5Dhw51WKBuIzAKTmyzDlBrFuHPPwfPEZ+UxuOtIl0bmxBCCLdnd4t75cqVdO7cuVh5p06dWLlyJQDdu3fn8OHD5Y/OHV0xQC0mIhCQFrcQQgjHsDtxV6lShWXLlhUrX7ZsGVWqVAEgOzsbX1/f8kfnjq54vGezCMt17QNnssjMM7oqKiGEEDcJu7vKp0yZwvDhw1mzZg0tW7YEYOvWrSxfvpz58+cDEBcXR/v27R0bqbu4Yva0EF8Pqgd4ciItl90n0mlTJ8h1sQkhhHB7difuoUOH0qhRI95//31++OEHAOrXr8+6deusM6mNGzfOsVG6k6IWd3oymApBo6VZhD8n0nLZmSyJWwghRPmUaQKWtm3b0rZtW0fHcnPwCQONAUz5luRdpRYxEQEs332a+OQLro5OCCGEmyvTBCyHDh1i8uTJ9OvXjzNnLM+e/v3339m7d69Dg3NLavWlqU+LZlAruiUsOd01MQkhhLhp2J24161bR5MmTdi8eTPff/89WVlZAOzcuZNp06Y5PEC3dMUAtSY1/FGr4HRGHqfT81wYmBBCCHdnd+KeOHEiL7/8MnFxcej1emt5x44d2bRpk0ODc1tXDFDz0mupF2oZZS/zlgshhCgPuxP37t27S3zASEhICOfOnXNIUG7visd7AtxaMwCQxC2EEKJ87E7cAQEBnDp1qlj5jh07qF69ukOCcnvWx3setRZdus6ddqOjEUIIcROxO3E/+uijTJgwgdOnT6NSqTCbzaxfv57x48czYMAAZ8Tofi6fPU1RAIi52OLedTwNk1lxUWBCCCHcnd2J+9VXX6VBgwZERESQlZVFo0aNuOuuu2jTpg2TJ092RozuJzASUEFBFmRbLh/UDfHFS68hu8DEobNZro1PCCGE27I7cev1ej7++GMOHz7Mr7/+yuLFi9m/fz9ffPEFGo3GGTG6H60B/C5eNrg4QE2jVtHk4mM945PSXBOXEEIIt2d34n7xxRfJyckhIiKC7t2788gjj1C3bl1yc3N58cUXnRGjeyphgFpMRAAA8fLAESGEEGVkd+KeMWOG9d7ty+Xk5DBjxgyHBHVTCLz4CM/UEhK3tLiFEEKUkd2JW1EUVCpVsfKdO3danw4mKPZ4T4BmFxN3YkomuQUmFwQlhBDC3ZV6rvLAwEBUKhUqlYp69erZJG+TyURWVhbDhg1zSpBu6YrZ0wDC/T0I8TVwJjOfPSfTuT1KvugIIYSwT6kT95w5c1AUhSFDhjBjxgz8/f2t6/R6PVFRUbRu3dopQbqlK2ZPA1CpVDSLCCBuXwo7k9MkcQshhLBbqRP3wIEDAahVqxZt2rRBp9M5LaibQlGLO+s0FOSA3guwXOeO25fCDpmIRQghRBnY/VjP9u3bW1/n5eVRUFBgs97Pz6/8Ud0MPAPBwx/y0i2t7tBGwKUBajKDmhBCiLKwe3BaTk4Oo0aNIiQkBG9vbwIDA20WcZmi7vLUw9aiJjX8Uang+IVczmXluygwIYQQ7sruxP3cc8/x559/Mm/ePAwGA5988gkzZsygWrVqfP75586I0X2FNbb8PPqPtcjPQ0edYB9AWt1CCCHsZ3fiXrZsGR988AEPPvggWq2WO++8k8mTJ/Pqq6/y5ZdfOiNG91W/u+Xn/l+tc5bDZfdzS+IWQghhJ7sTd2pqKrVr1wYs17NTU1MBaNeuHX/99Zdjo3N3dTqCzgvSk+FUvLW4mSRuIYQQZWR34q5duzZHjljuTW7QoAHffPMNYGmJBwQEODQ4t6fzhOjOltcJv1qLb71sgJpZnhQmhBDCDnYn7sGDB7Nz504AJk6cyNy5c/Hw8GDs2LE899xzDg/Q7TXsafm5/1Lirh/mi0GrJiOvkKPns10UmBBCCHdk9+1gY8eOtb7u3Lkz+/fvZ9u2bURHR9O0aVOHBndTqNsV1Do4ux/OHYCguug0ahpX92fbsQvEJ6dR++JgNSGEEOJ67G5xXykyMpIHHnhAkvbVeAZArbssrxOWWYvlfm4hhBBlUerE/eeff9KoUSMyMjKKrUtPT+eWW27h77//dmhwN42G91l+XtZdLgPUhBBClEWpE/ecOXMYOnRoiTOj+fv788wzzzB79myHBnfTqN8DUMGJbZB+Arg0QG3fqQzyC+VJYUIIIUqn1Il7586d3HPPPVdd37VrV7Zt2+aQoG46vqEQ0cryev9vANQI9KSqtx6jSWHrkQsuDE4IIYQ7KXXiTklJueaDRbRaLWfPnnVIUDcla3e55Tq3SqXi3iZhAHy+8aiLghJCCOFuSp24q1evzp49e666fteuXYSHh5cpiLlz5xIVFYWHhwetWrViy5Ytpdrv66+/RqVS0adPnzKd94ZqcDFxH10POZZJawa2jgLgj4QUklNzXBSYEEIId1LqxN29e3emTJlCXl5esXW5ublMmzaN++67z+4Ali5dSmxsLNOmTWP79u00a9aMbt26cebMmWvud/ToUcaPH8+dd95p9zldokotCG0CigkSfwegbqgvd9YNwqzAF5uOuThAIYQQ7qDUiXvy5MmkpqZSr1493njjDX7++Wd+/vlnXn/9derXr09qaiovvPCC3QHMnj2boUOHMnjwYBo1asT8+fPx8vJi4cKFV93HZDLx+OOPM2PGDOv0q26hhNHlg9pEAfD1liRyCgpdEJQQQgh3UuoJWEJDQ9mwYQPDhw9n0qRJKBcfmqFSqejWrRtz584lNDTUrpMXFBSwbds2Jk2aZC1Tq9V07tyZjRs3XnW/F198kZCQEJ588snr3oKWn59Pfv6lx2cW3c5mNBoxGo12xXulov1LfZzoe9CtnYlycDWF2RdA70O72oHUrOJJUmou3/2bxGO3R5QrJndhd90JQOqtPKTuykbqrezsqTt76teumdMiIyNZvnw5Fy5c4ODBgyiKQt26dcv8HO5z585hMpmKJfzQ0FD2799f4j7//PMPCxYsID4+vlTnmDlzJjNmzChWvmrVKry8vOyOuSRxcXGl21BR6KQPwafgDDu+fZNTgS0BaO6nIilVwwdx+/A7sxuVyiFhuYVS152wIfVWdlJ3ZSP1VnalqbucnNKPc7J7ylOAwMBAbr/99rLsWi6ZmZn079+fjz/+mKCgoFLtM2nSJGJjY63vMzIyiIiIoGvXriXek24Po9FIXFwcXbp0ueaI+8upPbbAprm08D6FqbvlsZ935hlZOesvTueaCGzQijZ1qpYrLndQlroTUm/lIXVXNlJvZWdP3ZU0udnVlClxO0pQUBAajYaUlBSb8pSUFMLCwoptf+jQIY4ePUrPnj2tZWazGbDcjpaYmEidOnVs9jEYDBgMhmLH0ul0DvsjtOtYjXrDprmoD8ahVimg1VNFp+Oh5jX4fOMxvth8nPYNin/2m5Ujfw+VidRb2UndlY3UW9mVpu7sqdtyz1VeHnq9nubNm7N69WprmdlsZvXq1bRu3brY9g0aNGD37t3Ex8dbl169etGhQwfi4+OJiHCD68M1bgefUMjPgCOXnl8+8OIgtdX7U0g6L7eGCSGEKJlLEzdAbGwsH3/8MZ999hkJCQkMHz6c7OxsBg8eDMCAAQOsg9c8PDxo3LixzRIQEICvry+NGzdGr9e78qOUjloNDXpYXu+/9NCROsE+tK8XjKLIhCxCCCGuzuWJu2/fvrz55ptMnTqVmJgY4uPjWbFihXXAWlJSEqdOnXJxlA5WNBnL/t/AfGme8kFtowBY+m8y2flya5gQQojiXHqNu8ioUaMYNWpUievWrl17zX0XLVrk+ICcLepO8PCH7LOQvAUiLZcF2tcNplaQN0fOZfPDjhP0vyPSxYEKIYSoaFze4q6UtHqod/GBLZdNxqJWqxjY2pKsF60/Yr1XXgghhCgiidtVirrLE36ByxL0g81r4GPQcuhsNv8cPOei4IQQQlRUkrhdJboTaD0gLQmOrbcW+3pYbg0DWLT+qIuCE0IIUVFJ4nYVvTc0e8zyeuULcPF+dLh0a9ifiWc4ei7bBcEJIYSoqCRxu1KHF0DvC6fiYedX1uJaQd50qF90a5g8NUwIIcQlkrhdyScY2j9neb16BuRnWVcNalsLgG/+TeZMRvFHqQohhKicJHG7WqthEFgLslLgn7etxXdGB9Gkuj9Z+YVM+H6XjDAXQggBSOJ2Pa0Bur5seb3hPbhg6RpXq1W89Ugz9Fo1axLPsnRrsguDFEIIUVFI4q4IGvSAWneBKR/+mGYtrhfqy/iu9QB46dd9JKfKHOZCCFHZSeKuCFQq6DYTVGrY+yMc22Bd9WS72rSMqkJ2gYnx3+7EbJYucyGEqMwkcVcUYY3htoGW1ysmWm8P06hVvPlwM7z0GjYfSWXh+iMuDFIIIYSrSeKuSDq8AAY/OLUTdi6xFtes6sULPRoC8MbKRA6eyXRVhEIIIVxMEndF4hMM7Z+3vF79IuRfStD9Wtakfb1gCgrNjPtmJ4Um81UOIoQQ4mYmibuiafkMVKld7PYwlUrF6w82xc9Dy87j6Xyw9pALgxRCCOEqkrgrGq3+stvD3ocLR62rwvw9eLF3YwDeXX2APSfSXRCgEEIIV5LEXRHV7w612ltuD4ubarOqd0w17m0cRqFZIfabePKMJhcFKYQQwhUkcVdEKhXcc/H2sH0/w/bPL1ul4uU+jQny0fNfShZvrkx0YaBCCCFuNEncFVXoLXD3JMvrX2MhabN1VVUfAzMfaArAJ/8cYcE/couYEEJUFpK4K7I7x0PDXmA2wtInIP2EdVWXRqHEdrk0q9pXW5JcFaUQQogbSBJ3RaZWQ595EHILZJ+xJG/jpSeF/a9jNM+0rw3A//24m5/jT1ztSEIIIW4SkrgrOoMPPPoleAbCye2wbAxcfFKYSqVi4j0N6H9HJIoCsd/sZNXe0y4OWAghhDNJ4nYHVWrBw4tApYFdX8OmD6yrVCoVM3rdwgO3VcdkVhi1ZAd//XfWdbEKIYRwKknc7qL23dDtFcvrVZPh0J/WVWq1ijcebEr3JmEUmMw8/cW/bDmS6po4hRBCOJUkbnfSahjEPA6KGb4dDKmHrau0GjVz+t5Kh/rB5BnNDFm0lV3H01wXqxBCCKeQxO1OVCroMRuqN4e8NPiqn8185nqtmnlPNOeO2lXIyi9kwMItJJzKcF28QgghHE4St7vReUDfL8EnDM4mwDcDIe9ScvbQafhk4O3ERASQlmPk4fkbWbFHBqwJIcTNQhK3O/ILh76LQWOAQ6vhk05w9j/rah+Dls8Gt6RVLUvLe9jibcxauR+TWXFh0EIIIRxBEre7irgdBv8OvtXg3H/wcUfY/5t1tb+XjsVPteLJdrUAmLvmEIMXbSUtp8BVEQshhHAASdzurEZzeGYd1GwDBZnwdT/48xUwW57VrdOomXJfI955NAYPnZq//jtLz/f/Yd9Jue4thBDuShK3u/MJgYG/WEacA/z1BnzVF3LTrJv0jqnOjyPaUrOKF8mpuTwwbz0/7ZBZ1oQQwh1J4r4ZaHRw7+tw/4eg9YADq+DjDpCyz7pJw3A/fhnVlvb1LLeLPbs0nhnL9mI0mV0YuBBCCHtJ4r6ZNHsUhqwE/wjLPd6fdIbd31lXB3jpWTjodv7XMRqAT9cfpdf769mZnOaigIUQQthLEvfNploMPL0OarUHYzZ8/yT8ONx6v7dGrWJc1/p81L85AV46Ek5l0OeD9Uz/ZS9Z+YWujV0IIcR1SeK+GXlXhSd+gLueA5Uadi6B+XfC8W3WTbreEsbq2Pbcf2t1FAUWbThKl9nr+GNfigsDF0IIcT2SuG9WGi10nAyDfrN0nV84Agu6wF+zwGwCoKqPgbf7xvDFky2pWcWLU+l5PPX5v4z4chtnMvKucwIhhBCuIIn7ZhfZBob9A7c8AIoJ/nwZPusJ6cetm9xZN5iVz97FsPZ10KhVLN99mk5vreOLTcdk0hYhhKhgJHFXBp4B8NBC6DMf9D5wbD3MawN7f7y0iV7DxHsbsGxUO5rV8Cczv5ApP+2h69vr+GXnScySwIUQokKQxF1ZqFQQ8xgM+xuqt4C8dPh2ECx5FFL2WjdrVM2PH0a0ZVrPRvh76jh0NpvRX+3gnnf+4rddpySBCyGEi0nirmyq1IYhK+DO8ZaBa//9DvPawvdDIfUIYBl5PrhtLf6Z0IHYLvXw89DyX0oWI5dsp/u7f7Niz2kURRK4EEK4giTuykijg05TYOQWaNQHUGD3N/B+C/g1FjItTxPz9dAxulNd/p7QkTGd6uJr0LL/dCbDFm+jx7v/sHLvaWmBCyHEDSaJuzILqguPfAZPr4U6ncBcCP8ugHdiIG4a5F4AwN9Tx9gu9fh7Qgf+1zEab72GfacyeOaLbXR8ay0L/jlCRp7RpR9FCCEqC0ncAqrdCv1/sNw6VqMlFObC+jkwpxmsmgJpSYBl5rVxXevz94SODL+7Dr4eWo6ez+GlX/dxx6urmfrzHg6eyXLtZxFCiJucJG5xSVQ7eHIVPPY1hNwC+emw4V14pxksfQKOrgdFoYq3ngn3NGDTpE683Kcx0SE+5BSY+HzjMTrPXkf/BZv5c3+KdKMLIYQTaF0dgKhgVCqofy/U7QYHVsLm+XB4LSQssyxhTSxPImv8EN4GD564I5LHW9Vkw6HzfLr+KKv3p/D3gXP8feAcEVU8efC2Gjx4Ww0iqni5+pMJIcRNQRK3KJlabUng9e+FMwmWBL5zKZzeDT+PhLip0HwQxDyOqmod2kYH0TY6iKTzOXyx6Shfb00mOTWXOX8cYM4fB2hZqwoP3VaD7k3D8THIn50QQpSV/A8qri+kIfR8BzpNg+2fw9ZPID0Z/n7LskS0gmaPwS33U7NqAC/0aMTYLvVYufc03287wfpD59hyJJUtR1KZ9ste7mkcRu9mYUhPuhBC2E8Styg9ryrQ7lloPQoSf7Mk8UN/QvJmy/L7BGjQHZr1w6tOR+6/tQb331qDk2m5/LjjBN9vO87hc9n8uOMEP+44gZ9Ow7/mBLo3rUarWlXQamTIhRBCXI8kbmE/jRYa9bYsGadg97ew8ys4s88yjereH8E7BJo8BI36UK3G7YzsEM2Iu+uwIzmN77cdZ9nOk2TkFfLllmS+3JJMoJeOLo1CuadxGG2jgzBoNa7+lEIIUSFJ4hbl4xcObUdDm//BqZ2WBL77W8g+A5s+sCy+4dDgPlSNenFbzTbcVrMJk+6px3tLV5LqXZM/Es5wIcfIN/8e55t/j+Nj0NKxQQhdGoVyZ90gArz0rv6UQghRYUjiFo6hUkG1GMvS9WU4EGdpef+3AjJPwdaPLYtXEDTogUe9HtwSYOTeHrcw84GmbDmayoo9p1mx5zRnMvP5ZedJftl5ErUKYiICuLt+CHfXD6ZxNX/UapWrP60QQriMJG7heBqd5Vp3g+5QmA+H18G+ny3XxXPOwfbP0G7/jG4aH9Tqv9A060ubWnfQpk4Q03vewo7kNFbuPc3axDP8l5LF9qQ0tielMTvuP6p667mrXjB31w+mTZ0ggn0Nrv60QghxQ0niFs6lNUC9rpbFNAeO/gMJv6AkLMOQfRa2L7IsfjWgyYOomzxM85qNaR4ZyP91b8iJtFzWJZ5l3X9nWH/wPOezC6yD2wCiQ3xoXbsqd9Suyh21q1DVRxK5EOLmJolb3DgaHdTpAHU6UNjlVbZ+M5s7vI+jTvwVMo7D+ncsS3ADy8C2iFZU961Gv1vD6deqJgWFZrYdu8C6/87y139nSTidwcEzWRw8k8UXm44BUD/UlztqV6F1narcFhlIiK+Hiz+0EEI4liRu4RpqLWf9GmPq/jzqnm/DgVWWQW3/rYSz++HPl223N/ih9w2ntV84rX2rMbFJdbI6t2CDqREbjmay6fB59p/OJDHFsny20ZLII6p40rxmILdFBnJbzUAahPnKbWdCCLcmiVu4ns4DGvWyLHnpkPCr5Zp46mHLwLaCLMjPsCznEq27+QBd9T50je4EHbpzofrdbDqlsOnweTYfSSUxJZPk1FySU3P5Kf4kAF56Dc1qBHBbZAAxEYE0i/CXVrkQwq1I4hYVi4c/3Pq4ZSmSl2FJ4BknL/1MPQIH4yArxZLk9/1MoErNvTVbc2+9e6DtvWR438HO4+lsO3aB7Ulp7Dh2gcz8QjYePs/Gw+eth68e4EmzCH9iIgJoViOAJjX88dLLPw0hRMVUIf53mjt3LrNmzeL06dM0a9aM9957j5YtW5a47Q8//MCrr77KwYMHMRqN1K1bl3HjxtG/f/8bHLW4YTz8LEtwfdtysxlO7YDE3y1Lyh44tt6yxE3Bz6sqd1Zvzp3Vm8OdzTE/0pyD2QZLIj92gZ3H0zhwJosTabmcSMtl+e7TAKhVUDfEl4bhvjQM96NBuB8Nw30J9jGgUsmtaEII13J54l66dCmxsbHMnz+fVq1aMWfOHLp160ZiYiIhISHFtq9SpQovvPACDRo0QK/X8+uvvzJ48GBCQkLo1q2bCz6BcBm1Gqo3tywdJ8OFY5b7xhOXWx5BmnPecu38wCrL5kC9wCjqVW/OY9VvgxZNyQpsya7zKuKT09iZnEZ8chopGfnWa+VFXewAVb31lkQe5kv9MF/qhfpSN9RHWudCiBvK5f/jzJ49m6FDhzJ48GAA5s+fz2+//cbChQuZOHFise3vvvtum/djxozhs88+459//pHEXdkFRkKrZyyLMc/SAj+x7dJy/iBcOGpZ9nwPWK6Tt/GPoE1YE6jRFFo04Yx3XXZl+rM/JZOEU5kknM7g6LlszmcX8M/Bc/xz8JzNaSOqeFIvxJe6ob7UD/Ohbogv0SE+eOhk2lYhhOO5NHEXFBSwbds2Jk2aZC1Tq9V07tyZjRs3Xnd/RVH4888/SUxM5PXXXy9xm/z8fPLz863vMzIyADAajRiNxnLFX7R/eY9TGTm/7jQQ2syy3DbEUpSXjupUPKqT2y0/U/agSjtmedJZerKlpQ6EAJ20nnTyCUXxCYFqIRRGh3AOf5ILfPkvx4fdWb78fd6fUzlYB8Ct3n/GenaVynLtvE6wN9HB3tQO8qZOsDd1gn0I8NKV+VPJ31zZSd2VjdRb2dlTd/bUr0pRFJc9XPHkyZNUr16dDRs20Lp1a2v5888/z7p169i8eXOJ+6Wnp1O9enXy8/PRaDR88MEHDBkypMRtp0+fzowZM4qVL1myBC8vL8d8EOG2tIXZ+Ocl45+ThF/uMfxzk/DLO45aMV13XwUVWfpgzmirkawK54C5GnsKqrMlvxqnCv2uup+PTiHEA4I9FII8FII9i16DhzTShaiUcnJy6NevH+np6fj5Xf3/D6gAXeVl4evrS3x8PFlZWaxevZrY2Fhq165drBsdYNKkScTGxlrfZ2RkEBERQdeuXa9bOddjNBqJi4ujS5cu6HRlb0VVRhW57kymAkzpx1Fln4WsFFRZZyD7DKqslIvvUyDtGKr8DHwLzuBbcIY6xHN30QG0oHh4kG+oSpbGn1T8OV3oQ1K+N0l5npw3+XM+25cLWb7swpcLii9ZeAIqgnz0RFX1IrKqF1FVvIgK8ra8r+KFp15ToeutopO6Kxupt7Kzp+6KeoNLw6WJOygoCI1GQ0pKik15SkoKYWFhV91PrVYTHR0NQExMDAkJCcycObPExG0wGDAYik+DqdPpHPZH6MhjVTYVsu50OvCoD9S/+jaKAlln4Nx/F5cDl36mJ6EqzMOj8AQenCAIqGc9dsmHM6IlVfEhtcCX1JN+nD/px1klgH2KP+vw55zij+IdgldgGJm5CkneydQM8qF6gCfVAz0J8fVAIw9fKZUK+TfnBqTeyq40dWdP3bo0cev1epo3b87q1avp06cPAGazmdWrVzNq1KhSH8dsNttcxxbC6VQq8A21LLXutF1XkGN5rGn2uYvLWcvDVWzen4ecVMtPYzY6CglVpRGqSrv6OY3AGTAqGg78VYM95ih+UaLYY67FQXUk/v4B1AjwonqgpzWhVw+wLOEBHvKMcyFuEi7vKo+NjWXgwIG0aNGCli1bMmfOHLKzs62jzAcMGED16tWZOXMmADNnzqRFixbUqVOH/Px8li9fzhdffMG8efNc+TGEuETvBfooCIwq3fYFOZB7MYnnnIfs85bEn5UCWZbu+sLMFJTMFDS559GpTDRSHaOR+hiPsA4As6LicFY4ezKjOJoUhgpIwcxZzOxGQY0ZH70KX4MGtWcAOYENMIfcgndYHcL8vQjz9yDE1wO9VqaDFaKic3ni7tu3L2fPnmXq1KmcPn2amJgYVqxYQWhoKABJSUmo1Zf+M8nOzmbEiBEcP34cT09PGjRowOLFi+nbt6+rPoIQ5aP3siz+Na66SdE/VGN+Hn/88iUdGwahPbsXTu1EObUTdeYpolUniebkVY+BGci9uKQChyBT8WS/EsGf5kgSlJqc9IhG8auGn48/gQH+BPn7EuZvIMTPg7CLS4CXTiaiEcKFXJ64AUaNGnXVrvG1a9favH/55Zd5+eWXS9xWiJueWkOuPgilfndo3BsAFUBmCpzeBSfjIeMEqDWgUoNKg6JSkVcImQVmMvPNmDJO45e+n6q5R/All9tV/3G7+j/L8U3AhYtLsqVbPhc9uRjIVQycxsAxlR6zxhN0Hqj1nmgM3ugNXhg8vfHw8sWjanW8g6PQValp+TLiEWC5tCCEcIgKkbiFEOXkGwq+XaBul2KrVIDnxcVmLkKT0TKYLmUPyqndGE/tQpWyF01eqvV2OJ3KhI5c/Mi9+A3hIjOQf3HJvHZoOSov0nQhZHuEU+AVisbTH52nLx7e/nj6+OHjF4je0xf03mDwAZ235bXeG/Q+oNWXo2KEuPlI4haistLoILQRhDZC1fQRrOlRUSxJ3ZgNxlzLUmB5XZCXSXpGJhkZGWRkZZKdlUFudjZ5udkU5GVhzsvCv/AcYZyjmuo8QaoMvJQcvAqOQsFRKP0dL1ZmlRazzgv03qgMPqg9/FF5+IHh4hz2hste67xAo7cke40eNAbL59QaUClqfPJOWgYH+gZbyoVwQ5K4hRC2VCpL4tPqwTPQZpUeCL64XI2iKKTnGjmXlc+hC+lknT2G8fwxlPTjqDNPYc7PgoIsVAXZaAuz8VBy8VHl4UUe3qo8vMjHizwMqkIA1Eoh6oIMKMiArLJ/LC3QCSDh4lTKeh/L5/MMuPgzEAy+oPe1tPz1Phd/+lrKDb7gVQW8gsCrKmjkv0/hGvKXJ4RwKJVKRYCXngAvPdEhvlC/BtC2xG0VRSG7wMS5zHzOZ+dzOLOAc1n5nMvK53xGNpkZ6WRnpZOblUFeTia6wix8yMWXHHxVuZbXqhx8L/70pAAdhegxolcVWl8bVIV4qArxJgdfclCjWJ7zXpBlme62LDwCwDvoUiL3DLh4LV9VVBFFNXLptWK29GgoCqBc9t5sWbjs9ZXrPAMhoKZl8Y+w/PSrLpcSKiFJ3EIIl1GpVPgYtPgYtEQFeV93+9wCExdyCriQU0BajvHiayOp2QUcyjGSllNAak4BF7ILOJ9t+ZldYDt9rRozvuQQoMoigCwCVNn4k0WgKgtvLK3/op+Bmnz8Nfn4qvMsXw7M6XibMlChQF6aZTl/0DmVUyoq8KtmSeQ6D8uARFQXByaqbF+r1JZBi2otqDQXBzBqLE/Zs5ZpL21z8adaURGdcgTVjvPgU/VS70TRovOSwYc3mCRuIYTb8NRr8NR7Ui3As9T75BlNpOUYOZOew8q1/1C/ya1k5JtJu5j0i74EJGUXWBJ/dgEZeZZuekp47oMaMwFkUUWVQRUyqaLKpKoqAz9yLAkd0GlUeGhV6LVqPLRqDFo1Bp0avVaLQadFr9Vg0GsxaDUYdFrLa93FdRd/aqx3Bly8HTbnHKQlQ1qSZUlPhsI8y10EGSfKW7VXpQFuATi5tOQN1DpLb4PBt/i4A4Ov5b1ah6U34YqehqIyrQF0npYvATqvy157WhaV5uKXj6IvIyrbLylaw8WxDZf/NFi+lACYzVB4cbyGMcf2p0p98UtIFctPN7gEUvEjFEKIcvDQaQjz11DVS8MRf4V7G4ddd3pJo8lsac1nW1rzqdmWlnxGrqVVn55rJC3HSFqukaO5RuJzjKTnGsk1Xmzdm4CC8satxsegw9fD0iPh79mAAC8dgb56AkN1BHjqCNNmEGo+QxXTWbzVJgw6NR5a0KtVli8RlydKs+nST3MhKKaLZRd/XlluLgSzCVNhASeOHaRGVR/UeemQe+HSYjZaluyzlqWiUessidlkx8yaBn/wupjIvapYvjhcrRejqMejS/EHWTmTJG4hhLiCTqMmxNcym5w9jCYzWXmFZOYVkpFnJDOvkMyLPy9/n5FbSGb+xZ95lqSflW8iK99IntEMQJ7RTJ7Rcr3/+gJs3qlV4GPQ4uuhw8egxdugwdugxVuvxcugsf2p1+DtpcXboMXXYPlp2dfy2qBW2LFqBeHdu6O+/AuPolharTmpkJcO+ZmQnwF5GZafl782F1Ks257LWtCm/Eut4ILLW8QXF5txAcpl4wEuvjYVQGF+8QRtLqHLROth26I3mywzF+alW9bnp1uWC0dL8yuH4AaSuIUQwl3pNGoCvfUEepd9wJjRZCY735L8s/ItS1Fyv5BttOniL+oVSMspIPPitooCZgUy8govdfmXk0alYVr8GkvyN2jw0l/2U6/By6DF1xCAtyHo0hcAPy3ewZqLXxwufWnwMWgxaNXOmX1PUS5L4hd/KqZLSVrrYbl2XxJToWXMQk7qxR6FVMvrwtyLXxq4oov/4usr7ry4ESRxCyFEBaLTqK2j8u2lKAo5BSZrws/KK0r8heQUFJJdYCIn/4qfBYVk51/6kpCdb7r4peFS69+kqEjLtVwacAS1imKt/8u/BHjpLD0EXnrLT0+dBi+9Bk+9ZbtLry37F7321GlQaQ2Wa9z20mgtdwl4BznkMzqTJG4hhLhJqFSqi61iLaEOOF6hyUxadh7LVsTRqu1dFJhVVyR8kzXpZ+cXkl1QaOnyzzOSnX/pC0TRtkVjAMwKZOYXkplfiGX6PcdQqbAm+SsTvKdOe7H8UpmX3vKlwEOnwVOvxkOrwUOvwUNr2cZTd3Ep2kenQV0BHp8riVsIIUSJtBo1/p46qhigbohPuZ/HbTIr5BovtfazLyb8HKOJnHwT2QWFNl8Mci5uk1NgIrfARE6BiRyjidyCS2XZBYXWngFFwbJNgQNGB16FQau+lPT1GmoHefPRgBZOOdfVSOIWQghxQ2jUl+7bdyRz0ReCyxL+5a+Lkn7uZUnfWm40kXfZkms0kWc0k1tw6X3OZXMB5BeayS80cyHHctlA64IWuCRuIYQQbk2tvnSJAMpwffs6FEUhz2i+9EXgsi8Jes2Nf4a9JG4hhBDiGlQqlfU6d1VXBwPc+K8KQgghhCgzSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG6l0j/VUFAWAjIyMch/LaDSSk5NDRkYGOp2u3MerTKTuykbqreyk7spG6q3s7Km7opxUlKOupdIl7szMTAAiIiJcHIkQQghhKzMzE39//2tuo1JKk95vImazmZMnT+Lr64tKpSrXsTIyMoiIiCA5ORk/Pz8HRVg5SN2VjdRb2UndlY3UW9nZU3eKopCZmUm1atVQq699FbvStbjVajU1atRw6DH9/PzkD7qMpO7KRuqt7KTuykbqrexKW3fXa2kXkcFpQgghhBuRxC2EEEK4EUnc5WAwGJg2bRoGg8HVobgdqbuykXorO6m7spF6Kztn1V2lG5wmhBBCuDNpcQshhBBuRBK3EEII4UYkcQshhBBuRBK3EEII4UYkcZfD3LlziYqKwsPDg1atWrFlyxZXh1Th/PXXX/Ts2ZNq1aqhUqn46aefbNYrisLUqVMJDw/H09OTzp07c+DAAdcEW4HMnDmT22+/HV9fX0JCQujTpw+JiYk22+Tl5TFy5EiqVq2Kj48PDz74ICkpKS6KuGKYN28eTZs2tU540bp1a37//Xfreqmz0nnttddQqVQ8++yz1jKpu5JNnz4dlUplszRo0MC63hn1Jom7jJYuXUpsbCzTpk1j+/btNGvWjG7dunHmzBlXh1ahZGdn06xZM+bOnVvi+jfeeIN3332X+fPns3nzZry9venWrRt5eXk3ONKKZd26dYwcOZJNmzYRFxeH0Wika9euZGdnW7cZO3Ysy5Yt49tvv2XdunWcPHmSBx54wIVRu16NGjV47bXX2LZtG//++y8dO3akd+/e7N27F5A6K42tW7fy4Ycf0rRpU5tyqburu+WWWzh16pR1+eeff6zrnFJviiiTli1bKiNHjrS+N5lMSrVq1ZSZM2e6MKqKDVB+/PFH63uz2ayEhYUps2bNspalpaUpBoNB+eqrr1wQYcV15swZBVDWrVunKIqlnnQ6nfLtt99at0lISFAAZePGja4Ks0IKDAxUPvnkE6mzUsjMzFTq1q2rxMXFKe3bt1fGjBmjKIr8vV3LtGnTlGbNmpW4zln1Ji3uMigoKGDbtm107tzZWqZWq+ncuTMbN250YWTu5ciRI5w+fdqmHv39/WnVqpXU4xXS09MBqFKlCgDbtm3DaDTa1F2DBg2oWbOm1N1FJpOJr7/+muzsbFq3bi11VgojR46kR48eNnUE8vd2PQcOHKBatWrUrl2bxx9/nKSkJMB59VbpHjLiCOfOncNkMhEaGmpTHhoayv79+10Ulfs5ffo0QIn1WLROWJ5o9+yzz9K2bVsaN24MWOpOr9cTEBBgs63UHezevZvWrVuTl5eHj48PP/74I40aNSI+Pl7q7Bq+/vprtm/fztatW4utk7+3q2vVqhWLFi2ifv36nDp1ihkzZnDnnXeyZ88ep9WbJG4hKriRI0eyZ88em+tm4urq169PfHw86enpfPfddwwcOJB169a5OqwKLTk5mTFjxhAXF4eHh4erw3Er9957r/V106ZNadWqFZGRkXzzzTd4eno65ZzSVV4GQUFBaDSaYiMDU1JSCAsLc1FU7qeorqQer27UqFH8+uuvrFmzxuZxtGFhYRQUFJCWlmazvdQd6PV6oqOjad68OTNnzqRZs2a88847UmfXsG3bNs6cOcNtt92GVqtFq9Wybt063n33XbRaLaGhoVJ3pRQQEEC9evU4ePCg0/7mJHGXgV6vp3nz5qxevdpaZjabWb16Na1bt3ZhZO6lVq1ahIWF2dRjRkYGmzdvrvT1qCgKo0aN4scff+TPP/+kVq1aNuubN2+OTqezqbvExESSkpIqfd1dyWw2k5+fL3V2DZ06dWL37t3Ex8dblxYtWvD4449bX0vdlU5WVhaHDh0iPDzceX9zZR7WVsl9/fXXisFgUBYtWqTs27dPefrpp5WAgADl9OnTrg6tQsnMzFR27Nih7NixQwGU2bNnKzt27FCOHTumKIqivPbaa0pAQIDy888/K7t27VJ69+6t1KpVS8nNzXVx5K41fPhwxd/fX1m7dq1y6tQp65KTk2PdZtiwYUrNmjWVP//8U/n333+V1q1bK61bt3Zh1K43ceJEZd26dcqRI0eUXbt2KRMnTlRUKpWyatUqRVGkzuxx+ahyRZG6u5px48Ypa9euVY4cOaKsX79e6dy5sxIUFKScOXNGURTn1Jsk7nJ47733lJo1ayp6vV5p2bKlsmnTJleHVOGsWbNGAYotAwcOVBTFckvYlClTlNDQUMVgMCidOnVSEhMTXRt0BVBSnQHKp59+at0mNzdXGTFihBIYGKh4eXkp999/v3Lq1CnXBV0BDBkyRImMjFT0er0SHBysdOrUyZq0FUXqzB5XJm6pu5L17dtXCQ8PV/R6vVK9enWlb9++ysGDB63rnVFv8lhPIYQQwo3INW4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFqKSMBqNLFq0iHbt2hEcHIynpydNmzbl9ddfp6CgwNXhCSFKSaY8FaKSiI+PZ9y4cYwYMYJbb72VvLw8du/ezfTp0wkPD2flypXodDpXhymEuA5pcQtRSTRu3JjVq1fz4IMPUrt2bRo1akTfvn3566+/2LNnD3PmzAFApVKVuDz77LPWY124cIEBAwYQGBiIl5cX9957LwcOHLCuHzJkCE2bNiU/Px+AgoICbr31VgYMGADA0aNHUalUxMfHW/eZMmUKKpXKGocQomSSuIWoJLRabYnlwcHBPPDAA3z55ZfWsk8//ZRTp05ZlyufHTxo0CD+/fdffvnlFzZu3IiiKHTv3h2j0QjAu+++S3Z2NhMnTgTghRdeIC0tjffff7/EGI4fP86cOXPw9PR0xEcV4qZW8r9kIcRN65ZbbuHYsWM2ZUajEY1GY30fEBBAWFiY9b1er7e+PnDgAL/88gvr16+nTZs2AHz55ZdERETw008/8fDDD+Pj48PixYtp3749vr6+zJkzhzVr1uDn51diTC+88AJ9+/bljz/+cORHFeKmJIlbiEpm+fLl1pZxkTfeeIPFixeXav+EhAS0Wi2tWrWyllWtWpX69euTkJBgLWvdujXjx4/npZdeYsKECbRr167E423fvp0ff/yRxMRESdxClIIkbiEqmcjIyGJlhw4dol69eg49j9lsZv369Wg0Gg4ePHjV7caNG8f48eMJDw936PmFuFnJNW4hKonU1FQyMzOLlf/777+sWbOGfv36leo4DRs2pLCwkM2bN1vLzp8/T2JiIo0aNbKWzZo1i/3797Nu3TpWrFjBp59+WuxYv/zyC//99x/jx48vwycSonKSxC1EJZGUlERMTAwLFizg4MGDHD58mC+++ILevXtz55132owav5a6devSu3dvhg4dyj///MPOnTt54oknqF69Or179wZgx44dTJ06lU8++YS2bdsye/ZsxowZw+HDh22O9cYbb/Dyyy/j5eXl6I8rxE1LErcQlUTjxo2ZNm0aixYt4o477uCWW27hjTfeYNSoUaxatcpmANr1fPrppzRv3pz77ruP1q1boygKy5cvR6fTkZeXxxNPPMGgQYPo2bMnAE8//TQdOnSgf//+mEwm63Gio6MZOHCgwz+rEDczmYBFCCGEcCPS4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHcyP8DtRbt5d9QrrAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RSH6UjI3aLvH", + "outputId": "176cf10e-718a-4416-98f5-6e7fa32c6aee" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9206 - loss: 0.2956\n", + "Lossontestdata: 0.2900226414203644\n", + "Accuracyontestdata: 0.9222000241279602\n" + ] + } + ], + "source": [ + "scores=model_1.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores[0])\n", + "print('Accuracyontestdata:',scores[1])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oHKekiY0aYy2" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_100 = Sequential()\n", + "model_2l_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_100.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "jOQ74vuTab8l", + "outputId": "3ebe13db-8d47-4256-a8fd-49ee40801aab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_1\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_1 (Dense)                 │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_2 (Dense)                 │ (None, 10)             │         1,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
     Total params: 79,510 (310.59 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
     Trainable params: 79,510 (310.59 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_100.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rblSqgG8aoSl", + "outputId": "0eb3fa3d-50a7-4b77-fdf6-7b834228ce17" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.5185 - loss: 1.9076 - val_accuracy: 0.8188 - val_loss: 0.9700\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8349 - loss: 0.8532 - val_accuracy: 0.8565 - val_loss: 0.6222\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8649 - loss: 0.5911 - val_accuracy: 0.8718 - val_loss: 0.4999\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8795 - loss: 0.4889 - val_accuracy: 0.8837 - val_loss: 0.4374\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8879 - loss: 0.4305 - val_accuracy: 0.8913 - val_loss: 0.4000\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8955 - loss: 0.3942 - val_accuracy: 0.8972 - val_loss: 0.3744\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8999 - loss: 0.3707 - val_accuracy: 0.9007 - val_loss: 0.3557\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9011 - loss: 0.3581 - val_accuracy: 0.9047 - val_loss: 0.3405\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9034 - loss: 0.3444 - val_accuracy: 0.9067 - val_loss: 0.3298\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9057 - loss: 0.3285 - val_accuracy: 0.9110 - val_loss: 0.3196\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9096 - loss: 0.3217 - val_accuracy: 0.9142 - val_loss: 0.3112\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9111 - loss: 0.3150 - val_accuracy: 0.9152 - val_loss: 0.3043\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9138 - loss: 0.3049 - val_accuracy: 0.9148 - val_loss: 0.2976\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2993 - val_accuracy: 0.9172 - val_loss: 0.2920\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9176 - loss: 0.2897 - val_accuracy: 0.9162 - val_loss: 0.2876\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9175 - loss: 0.2886 - val_accuracy: 0.9197 - val_loss: 0.2811\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9203 - loss: 0.2774 - val_accuracy: 0.9208 - val_loss: 0.2774\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9189 - loss: 0.2852 - val_accuracy: 0.9228 - val_loss: 0.2725\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9194 - loss: 0.2757 - val_accuracy: 0.9225 - val_loss: 0.2685\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2701 - val_accuracy: 0.9242 - val_loss: 0.2651\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9230 - loss: 0.2631 - val_accuracy: 0.9257 - val_loss: 0.2615\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9260 - loss: 0.2609 - val_accuracy: 0.9270 - val_loss: 0.2578\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9261 - loss: 0.2607 - val_accuracy: 0.9275 - val_loss: 0.2545\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9262 - loss: 0.2595 - val_accuracy: 0.9288 - val_loss: 0.2509\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9269 - loss: 0.2580 - val_accuracy: 0.9292 - val_loss: 0.2482\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9303 - loss: 0.2420 - val_accuracy: 0.9298 - val_loss: 0.2447\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9322 - loss: 0.2410 - val_accuracy: 0.9303 - val_loss: 0.2412\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9324 - loss: 0.2404 - val_accuracy: 0.9313 - val_loss: 0.2386\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9341 - loss: 0.2307 - val_accuracy: 0.9308 - val_loss: 0.2359\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9303 - loss: 0.2417 - val_accuracy: 0.9323 - val_loss: 0.2333\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9342 - loss: 0.2315 - val_accuracy: 0.9330 - val_loss: 0.2305\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9342 - loss: 0.2296 - val_accuracy: 0.9333 - val_loss: 0.2279\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9357 - loss: 0.2289 - val_accuracy: 0.9340 - val_loss: 0.2257\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9378 - loss: 0.2179 - val_accuracy: 0.9347 - val_loss: 0.2230\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9379 - loss: 0.2208 - val_accuracy: 0.9358 - val_loss: 0.2216\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9375 - loss: 0.2193 - val_accuracy: 0.9365 - val_loss: 0.2182\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9362 - loss: 0.2210 - val_accuracy: 0.9373 - val_loss: 0.2165\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9401 - loss: 0.2116 - val_accuracy: 0.9375 - val_loss: 0.2143\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9411 - loss: 0.2100 - val_accuracy: 0.9385 - val_loss: 0.2121\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9402 - loss: 0.2093 - val_accuracy: 0.9385 - val_loss: 0.2098\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9417 - loss: 0.2065 - val_accuracy: 0.9405 - val_loss: 0.2083\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2075 - val_accuracy: 0.9398 - val_loss: 0.2063\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9426 - loss: 0.2033 - val_accuracy: 0.9407 - val_loss: 0.2047\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9448 - loss: 0.2010 - val_accuracy: 0.9418 - val_loss: 0.2028\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9448 - loss: 0.1964 - val_accuracy: 0.9412 - val_loss: 0.2012\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9443 - loss: 0.1986 - val_accuracy: 0.9417 - val_loss: 0.1992\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9445 - loss: 0.1920 - val_accuracy: 0.9418 - val_loss: 0.1972\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9451 - loss: 0.1891 - val_accuracy: 0.9428 - val_loss: 0.1954\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9463 - loss: 0.1912 - val_accuracy: 0.9433 - val_loss: 0.1941\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9456 - loss: 0.1900 - val_accuracy: 0.9433 - val_loss: 0.1923\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_100 = model_2l_100.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "3xxN78gZbbQG", + "outputId": "987b070c-a1e5-402d-bf9b-65a81c742bd7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgUVJREFUeJzt3Xd8U9X7wPHPbZqke28oLVA2MkRFhl9ACggK4kRRpuAXga/IUOAn04WKIA4UB0MFxI2iiBRkKLKlDBmyZ1taSvdKk/v7I20gtECTpqSlz/v1yqvJuTf3PjktPDnnnnuOoqqqihBCCCGqBBdnByCEEEKIspPELYQQQlQhkriFEEKIKkQStxBCCFGFSOIWQgghqhBJ3EIIIUQVIolbCCGEqEIkcQshhBBViCRuIYRDmEwmUlJSOHbsmLNDEeKmJolbCGG3xMREnnvuOaKiotDpdAQHB9O4cWMyMjKcHZoQNy1XZwcgqp+BAwfy7bffkpWV5exQRDkcOXKETp06YTAYePbZZ7n11ltxdXXF3d0dT09PZ4cnxE1LEre4IS5cuMCSJUv4448/2LhxI7m5udxzzz20bNmSRx99lJYtWzo7RGGj//73v+h0OrZs2UKNGjWcHY4Q1YYii4yIirZs2TKGDh1KVlYW0dHRGAwGEhMTadmyJbt378ZgMDBgwAA+/vhjdDqds8MVZbBz505uu+02Vq9eTZcuXZwdjhDVilzjFhVq06ZNPPnkk4SFhbFp0yaOHz9ObGwsbm5ubN++nXPnzvH444/z2WefMXr0aABUVSU6Opr777+/xPHy8vLw9fXlv//9LwDr169HURS+/fbbEvt6eXkxcOBAy+tFixahKAonTpywlP3zzz/4+/tz3333UVhYaLXfjh07rI6XkpKCoihMmzbNqry0spkzZ6IoCh07drQqP3bsGI888ggRERG4uLigKAqKotC0adNrVSMAhYWFvPzyy9StWxe9Xk90dDT/93//R35+vtV+0dHR3HfffVZlI0eORFEUq7I1a9agKAo///yzpaxjx44lYt6+fbslzmJbtmzBzc2No0eP0qRJE/R6PWFhYfz3v/8lNTXV6v2lHfPVV1/FxcWFpUuX2nzuq+nYsaNl39Iel//eAT744ANL7BEREYwYMYK0tLRrniMzM5MhQ4YQFRWFXq+nZs2aDBs2jKSkJKv9iv+Grva48u9l165ddO/eHR8fH7y8vOjcuTNbtmyxbFdVlU6dOhEcHMz58+ct5QUFBdxyyy3UrVuX7OxsAE6ePMnw4cNp0KAB7u7uBAYG8sgjj5T4/MUx6nQ6kpOTrbZt3rzZEuuV/w6E80lXuahQr7/+OiaTiWXLltGqVasS24OCgvj888/Zv38/H330EVOnTiUkJIQnn3ySN998k9TUVAICAiz7r1ixgoyMDJ588slyx3b69GnuueceGjZsyNdff42rq2P+OaSlpTFjxowS5UajkV69enHy5Emee+456tevj6IovPrqq2U67pAhQ/jss894+OGHGTt2LFu3bmXGjBkcOHCAH374wSGxl2b8+PElyi5cuEBeXh7PPPMMd999N8OGDePo0aPMnTuXrVu3snXrVvR6fanHW7hwIZMmTWLWrFn07dvX5nNfS82aNUvU/cqVK/nyyy+tyqZNm8b06dOJjY3lmWee4dChQ3z44Yds376dTZs2odVqSz1+amoqe/bsYciQIYSFhXHkyBHmzZvHqlWr2LZtGyEhIVb7v/TSS9SuXdvyOisri2eeecZqn3/++Ye77roLHx8fXnjhBbRaLR999BEdO3Zkw4YNtG7dGkVRWLBgAc2aNWPYsGF8//33AEydOpV//vmH9evXW8YVbN++nb/++ovHHnuMmjVrcuLECT788EM6duzI/v378fDwsDq/RqNh8eLFli/OYP4dubm5kZeXV5ZqFzeaKkQFCggIUKOioqzKBgwYoHp6elqVTZ48WQXUFStWqKqqqocOHVIB9cMPP7Tar1evXmp0dLRqMplUVVXVdevWqYD6zTfflDi3p6enOmDAAMvrhQsXqoB6/PhxNTU1VW3cuLHaoEEDNSUlxep9xftt377dqjw5OVkF1KlTp1qVX1n2wgsvqCEhIWqrVq3UDh06WMqLP9OMGTOs3t+hQwe1SZMmJeK/XHx8vAqoQ4YMsSofN26cCqi///67pSwqKkq99957rfYbMWKEeuU/97i4OKs6L47l8phXrlypAuo999xj9f6pU6eqgNq5c2e1sLDQUl5cd++9916px/zll19UV1dXdezYsSU+Y1nPfTVXq8eZM2dafu+qqqrnz59XdTqd2rVrV9VoNFr2e//991VAXbBgwXXPdbl9+/aper1eHTx4sKXMlr+h3r17qzqdTj169Kil7Ny5c6q3t7f6n//8x+r9H330kQqoixcvVrds2aJqNBr1ueees9onJyenRIybN29WAfXzzz8vEePjjz+u3nLLLZby7Oxs1cfHR+3bt2+pn0E4n3SViwqVmZlZohVSmtDQUADLbUT169endevWLFmyxLJPamoqv/76K0888USJrtPMzExSUlKsHleTl5dHr169SE5OZtWqVQQGBtrz0Up19uxZ3nvvPSZPnoyXl1eJGAG7zrdy5UoAxowZY1U+duxYAH755Rd7wr0mVVWZOHEiDz30EK1bty51nzFjxqDRaCyv+/XrR2hoaKnxbNu2jUcffZSHHnqImTNnlvvc9lqzZg0FBQU899xzuLhc+i9w6NCh+Pj4XLcui+9XL36EhobSo0cPvvvuO0wmk02xGI1GVq9eTe/evalTp46lPDw8nL59+/Lnn39a3Vr39NNP061bN/73v//Rr18/6taty2uvvWZ1THd3d8tzg8HAhQsXiImJwc/Pj7///rtEDP369ePgwYOWLvHvvvsOX19fOnfubNNnETeOJG5RoSIiIjh69Oh19zty5AiA1ejk/v37s2nTJk6ePAnAN998g8FgoF+/fiXeP3jwYIKDg60exdf8rjRo0CD+/PNPMjMzLde1HWXq1KlERERYrsFfrkGDBvj7+zNr1iw2bdpEcnIyKSkpGAyG6x735MmTuLi4EBMTY1UeFhaGn5+fpY4cacmSJfzzzz8lEgNg+eLUsGFDq3KNRkO9evVKXE89e/Ys9957L9nZ2Vy4cOG616yvde7yKq6rBg0aWJXrdDrq1Klz3bo8depUib+1H374gfT09Gt+YSxNcnIyOTk5JWIBaNSoESaTidOnT1uVz58/n5ycHA4fPsyiRYusEjVAbm4uU6ZMITIyEr1eT1BQEMHBwaSlpZGenl7iPMHBwdx7770sWLAAgAULFjBgwACrLzWicpHfjKhQ9913H6mpqcyfP/+q+yQlJfHZZ58RHBzMnXfeaSl/7LHH0Gq1llb34sWLue2220r9T27KlCnExcVZPdzc3Eo9399//82PP/5IcHAwTz/9dDk/4SUHDhxg0aJFvPLKK6VeI/Xy8uKrr74iOzub9u3bExISQnBwMH/99VeZz1GWQVqOUFBQwOTJk3nqqaeoX79+ie1XJovrOXLkCLVq1eKLL75gzZo1fPbZZ3af29nCwsJK/K09/vjjN+z869evtwxI3Lt3b4nt//vf/3j11Vd59NFH+frrr1m9ejVxcXEEBgZetUdg8ODBfPnllxw4cICNGzdaDeoUlY8MThMVatKkSSxfvpxnnnmGgwcP0rdvX4xGI2Buuaxdu5YpU6Zw8eJFli5dajWgKSAggHvvvZclS5bwxBNPsGnTJubMmVPqeW655RZiY2Otyi7vwr3cp59+Sq9evdBoNNx3333Mnz+fp556qtyfdeLEibRo0YI+ffpcdZ8uXbrw5ptv8sQTTzBv3jzq1KnD2LFjLXVyNVFRUZhMJg4fPkyjRo0s5UlJSaSlpREVFVXu+C/3wQcfcP78+RKjn4sVD7g6dOiQVRdvcYxX3pcfHh7OypUrCQ0N5ccff2Ts2LH06NGD4OBgm89dXsV1dWXsBQUFlrsersXNza3EPu+++y4+Pj4EBQXZFEtwcDAeHh4cOnSoxLaDBw/i4uJCZGSkpSwhIYH//e9/dO3aFZ1Ox7hx4+jWrZvV7//bb79lwIABzJo1y1KWl5d3zRHz3bt3x83Njccee4z27dtTt25d/vjjD5s+i7hxpMUtKlRYWBibN2+me/fuzJo1i1tvvZXFixeTnZ1NVFQUgwcPxt3dnRUrVpTaaunXrx/79+/n+eefR6PR8Nhjj5U7prvuuguAe++9l8cee4znn3++xO08ttq8eTM//vgjr7/++jVbxadPn2b48OE8++yzPP3008TGxuLv73/d4/fo0QOgxBeX2bNnA+bP4iiZmZm8+uqrjB49mrCwsFL36dy5M3q9nnfffdeqFbdkyRKSkpJK3I5Wv359yziG9957D5PJxKhRo+w6d3nFxsai0+l49913US+bxmL+/Pmkp6dfsy5La7Hu2rWLX3/9ld69e9vcvazRaOjatSs//vij1eWFpKQkli5dSvv27fHx8bGUDx06FJPJxPz58/n4449xdXXlqaeesvocGo3G6jWY6/xaXw5dXV3p378/e/bsYfDgwTZ9BnHjSYtbVLjIyEh+/PFHEhIS2LRpEzNnziQ+Pp558+bRokULWrRocdVkd++99xIYGMg333xD9+7dyzTQzRbvvPMOjRo14n//+x9ff/211bbNmzdbXbMsHiR05MgRtm3bxh133GHZVjwRybVaayaTiX79+lGzZk1ef/11m+Js3ry5ZZKatLQ0OnTowLZt2/jss8/o3bs3nTp1stq/eOBdsVOnTgFYlcXHx5d6rr///pugoCBeeOGFq8YTEBDApEmTmDx5Mt26deP+++/n2LFjvP/++zRv3pwhQ4Zc9b1hYWHMnDmTIUOG8OSTT1q+lJT13OUVHBzMxIkTmT59Ovfccw+9evXi0KFDfPDBB9x+++3XvNXw1KlT3HvvvTzyyCPUqFGDffv28cknnxAUFGT39fhXXnmFuLg42rdvz/Dhw3F1deWjjz4iPz+fN99807LfwoUL+eWXX1i0aBE1a9YEzAn5ySef5MMPP2T48OGA+fLUF198ga+vL40bN2bz5s2sWbPmuoMiX375ZZ5//vkyfZEUTubUMe2iWirtdrBrGT58uAqoS5cuLbHN3tvBLvfZZ5+pgPrTTz9Z7Xetx+W3LQGqoijqzp07rY575e1Nr732mqrX69Xdu3eX2O96t4OpqqoaDAZ1+vTpau3atVWtVqtGRkaqEydOVPPy8qz2i4qKum78lz+uvB0MUN9++22rYxbf/nWluXPnqg0bNlS1Wq0aGhqq/ve//1UvXLhwzXoodvfdd6u1atVSMzMz7Tr3lcp6O1ix999/3yr2Z555Rr148eI1z5GZmakOHTpUjYqKUnU6nRocHKz269dPPXnypNV+tt5S+Pfff6vdunVTvby8VA8PD7VTp07qX3/9Zdl++vRp1dfXV+3Zs2eJmB544AHV09NTPXbsmKqqqnrx4kV10KBBalBQkOrl5aV269ZNPXjwoBoVFVXqv4er3e51ve3CeWTKU1HpjR49mvnz55OYmFhi8ghnmDZtGuvXr2f9+vXODkUIUQ3JNW5RqeXl5bF48WIeeuihSpG0hRDC2eQat6iUzp8/z5o1a/j222+5cOFCqQOZnCUmJoacnBxnhyGEqKakq1xUSuvXr6dTp06EhIQwefJkRo4c6eyQhBCiUpDELYQQQlQhTr3GvXHjRnr27ElERASKorB8+fLrvic/P58XX3zRsqxedHS0Zao+IYQQ4mbn1Gvc2dnZNG/enMGDB/Pggw+W6T2PPvooSUlJzJ8/n5iYGBISEmye2F8IIYSoqpyauLt370737t3LvP+qVavYsGEDx44ds6zRHB0dfc335OfnW+b1BfMkGKmpqQQGBt6weZ+FEEKIa1FVlczMTCIiIq47A1+VGlX+008/cdttt/Hmm2/yxRdf4OnpSa9evXj55ZevuujBjBkzmD59+g2OVAghhLDd6dOnLTPjXU2VStzHjh3jzz//xM3NjR9++IGUlBSGDx/OhQsXWLhwYanvmThxotUaxunp6dSqVYvjx4/j7e1d7pgMBgPr1q2jU6dOpa4IJUon9WYfqTf7Sd3ZR+rNfrbUXWZmJrVr1y5TXqpSidtkMqEoCkuWLMHX1xcwL7Lw8MMP88EHH5Ta6tbr9VYrThULCAiwmrzfXgaDAQ8PDwIDA+WP2gZSb/aRerOf1J19pN7sZ0vdFW8vyyXcKjVzWnh4ODVq1LAkbTAvNq+qKmfOnHFiZEIIIcSNUaUSd7t27Th37hxZWVmWsn///RcXF5frXhMQQgghbgZOTdxZWVnEx8dblhc8fvw48fHxliUIJ06cSP/+/S379+3bl8DAQAYNGsT+/fvZuHEjzz//vGVNZyGEEOJm59Rr3Dt27LBaR7h4ENmAAQNYtGgRCQkJliQO4OXlRVxcHP/73/+47bbbCAwM5NFHH+WVV1654bELUdWoqkphYSFGo9HZoTiFwWDA1dWVvLy8alsH9pB6s19x3RXfkuzq6uqQ25Cdmrg7duzItWZcXbRoUYmyhg0bEhcXV4FRCXHzKSgoICEhoVovjqKqKmFhYZw+fVrmcLCB1Jv9iuvu1KlTKIqCh4cH4eHh6HS6ch23So0qF0LYzmQycfz4cTQaDREREeh0umr5H7DJZCIrKwsvL6/rTnAhLpF6s19x3Xl6elJYWEhycjLHjx+nXr165apLSdxC3OQKCgowmUxERkZW6zXNTSYTBQUFuLm5SQKygdSb/Yrrzt3dHRcXF7RaLSdPnrTUp73ktyBENSH/6QrhXI76Nyj/koUQQogqRBK3EOKmZDAYnB2CsIP83q5PErcQ4qYQHx/PgAEDqF+/Pv7+/vj4+JCenu7ssMR1HDt2jGeeeYbGjRsTGBiIu7s7Bw8edHZYlZokbiFEpXX69GkGDx5sGQ0fFRXFqFGjuHDhgtV+69evp3379oSFhbFs2TK2b9/OkSNHrKZHFpXPgQMHaNWqFYWFhSxYsICtW7dy9OhRGjZs6OzQKjUZVS6EqJSOHTtGmzZtqF+/Pl9++SW1a9fmn3/+4fnnn+fXX39ly5YtBAQEoKoqQ4cOZc6cOQwZMsTZYQsbjBw5khEjRsgkWjaSFnc5LN91lp7v/8WPJ6UaRdWhqio5BYVOeVxrwqUrjRgxAp1Ox+rVq+nQoQO1atWie/furFmzhrNnz/Liiy8CcPDgQU6ePMmRI0eIiorCzc2NO++8kz///NPyeWNiYpg1a5bV8ePj41EUhSNHjrB+/XoURSEtLc2yfeDAgfTu3dvyetWqVbRv3x4/Pz8CAwO57777OHr0qGX7iRMnUBTFMoXz2bNneeSRRwgJCcHb25sHHnjAajGkadOm0aJFC8vrtLQ0FEVh/fr1V43h6NGj3H///YSGhuLl5cXtt9/OmjVrrD5XQkICDz74IIGBgSiKYnlc/tmutHfvXu6++27c3d0JDAzk6aeftloTYvjw4TzwwAMl6u7EiROWso4dO/Lcc89ZXkdHRzNnzhzL67Vr16IoiuXzZGdns27dOgoKCqhXrx5ubm7ccsst/Pjjj1et0/z8fGJjY4mNjbXMRrZ9+3a6dOlCUFAQvr6+dOjQgb///vuqn/VmIC3ucsjIM3AwKQu3AGdHIkTZ5RqMNJ7ym1POvf+lbnjorv/fTmpqKr/99huvvvpqiXUIwsLCeOKJJ/jqq6/44IMPSE5OxmAw8MUXX/DJJ59Qu3Zt3nnnHe655x4OHz5MeHg4gwcPZtGiRQwdOtRynIULF/Kf//yHmJiYMq0umJ2dzZgxY2jWrBlZWVlMmTKFBx54gPj4+BK3+RgMBnr06IFWq2XFihVotVpGjRpF79692b59u90T4GRlZdGjRw9effVV9Ho9n3/+OT179uTQoUPUqlULgLFjx/Lvv/+yatUqIiMj+euvv3jooYeu+bm6detGmzZt2L59O+fPn2fIkCGMHDmy1Nkr7WEymRg7dixeXl6WsgsXLqCqKh999BHz5s2jVatWLF26lAcffJCdO3dafakBMBqNPPbYY2RlZbFmzRrLcs2ZmZkMGDCA9957D1VVmTVrFj169ODw4cNlWtu6KpKmYjm4aTUAFJicHIgQN5nDhw+jqiqNGjUqdXujRo24ePEiycnJmEzmf4AzZ86kR48eNGrUiA8++ICIiAjmzp0LmFuuhw4dYufOnYA5sS5dupTBgwcDWL4c5ObmXjWmhx56iAcffJCYmBhatGjBggUL2Lt3L/v37y+x75o1a9izZw+ff/45rVu35tZbb2XJkiXEx8ezdu1au+ulefPm/Pe//6Vp06bUq1ePl19+mbp16/LTTz9Z9omPj6dv377cfvvthIWFERBw7ZbF0qVLycvL4/PPP6dp06bcfffdvP/++3zxxRckJSXZHevlPvvsM/Lz87n//vstZcW/t/Hjx/P4449Tv359pk2bRqdOnXjrrbes3q+qKoMGDeLIkSOsXLnS6gvA3XffzZNPPknDhg1p1KgRH3/8MTk5OWzYsMEhsVdG0uIuB3dJ3KIKctdq2P9SN6ed2xa2dK23a9fO8tzFxYW2bdtakmpERAQ9evRg8eLFdOrUiRUrVpCfn88jjzwCQL169dDpdHz55ZeWxY6udPjwYaZMmcLWrVtJSUmxJJ5Tp07RtGlTy35t27bFaDTi5+dH48aNLeW1atUiMjKS/fv3ExsbW/ZKuExWVhbTpk3jl19+ISEhgcLCQnJzc60WY6pduzYrV65k2LBh103aYB4g1rx5czw9PS1l7dq1w2QycejQIYKDg+2KtVhOTg6TJk1i3rx5fPfddyW2X/57A2jfvr3VFxGA559/nrVr1zJo0KASnykpKYlJkyaxfv16zp8/j9FoJCcnx6pObjbS4i6H4v+EDKbqN++zqLoURcFD5+qUR1m7iGNiYlAUhQMHDpS6/cCBA/j7+xMcHIy/v/81P2uxp556iu+//57c3FwWLlxInz59LFPABgQEMHv2bCZMmIC7uzteXl4sWbLE6lg9e/YkNTWVTz75hK1bt7J161bAPKXs5b766itefvnlMsVkq3HjxvHDDz/w2muv8ccffxAfH88tt9xiFcPbb79Nfn4+QUFBeHl50b17d7vP5wgzZ86kQYMG9OzZ06q8rL83MP++f/31V5YtW8Zvv1lf5hkwYADx8fG88847/PXXX8THxxMYGFji93IzkcRdDu66oha3rHQnhEMFBgbSpUsXPvjggxLd14mJiSxZsoQ+ffqgKAp169bF1dWVTZs2WfYxmUz89ddfVi3eHj164Onpybx581i1apWlm7zYiBEjSE9PZ9++fcTHx9OrVy/LtgsXLnDo0CEmTZpE586dLV31pYmMjKR9+/akpaVZdaOfPn2a06dPW8Vkq02bNjFw4EAeeOABbrnlFsLCwqwGiAHUr1+fgQMHEh0dzdatW/n000+vecxGjRqxe/dusrOzrc7j4uJCgwYN7I4VzAPlZs2aVWJgIICvry9hYWFWvzeAP//8s0QdffHFF9xzzz28/PLLDB06lIyMDKtYn332WXr06EGTJk3Q6/WkpKSUK+7KThJ3OVgSt3SVC+Fw77//Pvn5+XTr1o2NGzdy+vRpVq1aRZcuXahRowavvvoqAF5eXgwdOpTnn3+elStXcuDAAYYPH865c+cYPny45XgajYbHH3+c//u//6NevXq0adOmxDnd3d2pW7cuMTExVgOb/P39CQwM5OOPP+bIkSP8/vvvV+1SB3N3eevWrenfvz/btm3j77//5oknnqBFixbcfffdlv1UVSUvL4+8vDzLKOmCggJLmdFoxGQyWWYTq1evHt9//z3x8fHs3r2bvn37Wrrsi23ZsoX/+7//49tvv6VJkybUqFHjmvX8xBNP4ObmxoABA9i3bx/r1q3jf//7H/369SM0NNSyn8lkssRV3JrNz8+3lF0ZB8DcuXN54IEHaNmyZannHj16NG+88QbLli3j33//Zdq0aaxbt45x48ZZ7VfcPT569GgiIyOt6r5evXp88cUXHDhwgK1bt/LEE0+UGNB4s5HEXQ6XusqdHIgQN6F69eqxY8cO6tSpw6OPPkrdunV5+umn6dSpE5s3b7a61vnWW2/Ru3dvBgwYQIsWLdi9eze//fYb4eHhVsfs168fBQUFDBo0yKZYXFxcWLZsGTt37qRp06aMHj2amTNnXvM93333HZGRkXTu3JkOHToQFBTE8uXLrbqB9+zZg7u7O+7u7oSFhQHQrVs3S9nixYtZsWKFZTT87Nmz8ff3p23btvTs2ZNu3bpx6623Wo6XnJzMI488wuzZs63Kr8XDw4PffvuN1NRUbr/9dh5++GE6d+7M+++/b7Xfzz//bImrdevWADRs2NBS9scff5Q4tslksnzBKs3YsWN59tlnGTt2LE2bNuX777/n+++/p3nz5qXu7+LiwsKFC1m6dCmrV68GYP78+Vy8eJFbb72Vfv368eyzzxISElKmz15VKaotoz9uAhkZGfj6+pKeno6Pj0+5jnUiJZuOb63HTaOyd1o3tFqtg6K8+RkMBlauXGm5ZUaUjT31lpeXx/Hjx6ldu3a5lhKs6kwmE6tWraJ3796cPn3aqjVZmS1fvpzly5c77NYsW5lMJjIyMvDx8ZEV5mx0Zd1d69+iLblJRpWXw+XXuKvZ9x8hqpT8/HySkpJ44403ePjhh6tM0gZzF798uRWXk69P5VB8H7cJBYNRErcQlVXxlKnp6em88cYbzg7HJj179uSTTz5xdhiiEpHEXQ6X35OaZ5Ch5UJUVgMHDsRgMLB+/frrDtYSorKTxF0OWo2CxsU80CRXErcQQogbQBJ3OSiKgpvWXIV5MrRcCCHEDSCJu5yKu8ulxS2EEOJGkMRdTm6SuIUQQtxAkrjLyd3SVS6JWwghRMWTxF1Ol7rK5Rq3EEJUZcVTy1Z2krjLqbirPE9WGhFCiCrlhx9+4N577yU6OhovLy/uuusuZ4dUJpK4y0kGpwlRMQYOHIiiKJZHYGAg99xzD3v27HF2aOImMGPGDIYOHcp9993HL7/8Qnx8PCtXrnR2WGUiU56Wk5tc4xaiwtxzzz0sXLgQMC/nOWnSJO677z5OnTrl5MhEVXbs2DFee+01tmzZQpMmTZwdjs2kxV1Oco1bVDmqCgXZznnYOKe/Xq8nLCyMsLAwWrRowYQJEzh9+jTJycmWfcaPH0/9+vXx8PCgTp06TJ48ucS1yhMnTqDRaPD390ej0Vha8WlpaQBMmzaNFi1aWPYvKCggJibGap9i0dHRVj0BiqKwfPlyy/ZVq1bRvn17/Pz8CAwM5L777uPo0aNWsSiKQnx8fInjzpkzx/K6Y8eOPPfcc5bXhw4dQqvVWsVpMpl46aWXqFmzJnq9nhYtWrBq1Sqbz3XlZyjt/F988QW33XYb3t7ehIWF0bdvX86fP2/1np9//pnmzZvj7u5uqZvevXtzLR9++CF169ZFp9PRoEEDvvjiC6vtV8b23HPP0bFjx6t+xvXr15f4vfXr18/qOL/99ht169bl1VdfJTg4GG9vbx588EHOnDljec+VfxN///03fn5+Vuubz549m1tuuQVPT08iIyMZPnw4WVlZ1/y8jiAt7nJy00lXuahiDDnwWoRzzv1/50Dnaddbs7KyWLx4MTExMQQGBlrKvb29WbRoEREREezdu5ehQ4fi7e3NCy+8YNmneBGg5cuXc/vtt7NlyxYeeuihq57r/fffJykp6arbX3rpJctSm1cuHZqdnc2YMWNo1qwZWVlZTJkyhQceeID4+Phyra71/PPPl1hR6p133mHWrFl89NFHtGzZkgULFtCrVy/++ecf6tWrZ/e5SmMwGHj55Zdp0KAB58+fZ8yYMQwcONDSvZyWlkafPn0YMmQIy5cvx93dnVGjRlnWGS/NDz/8wKhRo5gzZw6xsbH8/PPPDBo0iJo1a9KpUyeHxL1z505++uknq7Lk5GR2796Nt7c3v/76KwCjRo2id+/ebN++3WrpVYCDBw/SrVs3Jk2axJAhQyzlLi4uvPvuu9SuXZtjx44xfPhwXnjhBT744AOHxH41krjLqbjFLV3lQjjezz//jJeXF2BOiOHh4fz8889WCXDSpEmW59HR0YwbN45ly5ZZJe7iFnhISAhhYWFWa3lfKTU1lVdeeYXx48czefLkEtvz8/MJCAiwrJ99pSu/ECxYsIDg4GD2799P06ZNy/CpS1q3bh1//fUXQ4YMYd26dZbyt956i/Hjx/PYY48B8MYbb7Bu3TrmzJnD3Llz7TrX1QwePNhS73Xq1OHdd9/l9ttvJysrCy8vL/79919ycnIYP348ERHmL4bu7u7XTNxvvfUWAwcOZPjw4QCMGTOGLVu28NZbbzkscY8ZM4bnn3/e6ndpMpnQaDQsXbqUyMhIAJYuXUrdunVZu3YtsbGxln1PnjxJly5dePrppxk3bpzVsS/vkYiOjuaVV15h2LBhkrgru+Jr3NJVLqoMrYe55eusc9ugU6dOfPjhhwBcvHiRDz74gO7du7Nt2zaioqIA+Oqrr3j33Xc5evQoWVlZFBYWlljPOCMjAwBPz+u39l966SU6depE+/btS92empp6zfWSDx8+zJQpU9i6dSspKSmYTOb/G06dOmVX4lZVlbFjxzJ16lQuXLhgKc/IyODcuXO0a9fOav927dqxe/duq7K2bdtafdnJyckpcZ7HH38cjebSwkm5ublWXcU7d+7kpZdeYvfu3Vy8eNHqczVu3JjIyEhcXV358ssvGT16dJl6Fw4cOMDTTz9dIv533nnnuu8ti+XLl3Ps2DHGjh1b4ktYZGSkJWkDREVFUbNmTfbv329J3GlpacTGxnLmzBm6detW4vhr1qxhxowZHDx4kIyMDAoLC8nLyyMnJwcPD9v+1m0h17jLSVrcospRFHN3tTMeV3RBXo+npycxMTHExMRw++238+mnn5KdnW1Z5nLz5s088cQT9OjRg59//pldu3bx4osvUlBQYHWcc+fO4eLiQkhIyDXPd/jwYT799NOrLv155swZCgoKqF279lWP0bNnT1JTU/nkk0/YunUrW7duBSgRU1l9/vnnZGdnM2zYMLveD+YvN/Hx8ZZHcYv4cm+//bbVPrfddptlW3Z2Nt27d8fHx4clS5awfft2fvjhB+DS5woPD+fDDz/ktddew83NDS8vL5YsWWJ3zOVlMBh44YUXePXVV3F3d7fa5u/vf9X3Xd5NfvLkSVq3bs20adMYPHiw1ReeEydOcN9999GsWTO+++47du7caenlsPd3XVaSuMvJMuWp3MctRIVTFAUXFxdyc3MB+Ouvv4iKiuLFF1/ktttuo169epw8ebLE+7Zv307Dhg1LXCO+0vjx4xkyZAgxMTGlbt+wYQPu7u5WSe1yFy5c4NChQ0yaNInOnTvTqFEjLl68aOOnvCQnJ4cXX3yRN954A61Wa7XNx8eHiIgINm3aZFW+adMmGjdubFUWGRlp+QIUExODq2vJztawsDCrfS5PdocPH+bChQu8/vrr3HXXXTRs2LDEwDSAAQMG0LBhQ55++mni4+Pp1avXNT9fo0aNyhS/PT788EO8vLzo169fiW0NGzbk9OnTnD592lJ28uRJzpw5Y3XuOnXqsGjRIl588UV8fHyYOHGiZdvOnTsxmUzMmjWLO++8k/r163Pu3I3pyZKu8nKSFrcQFSc/P5/ExETA3FX+/vvvk5WVRc+ePQGoV68ep06dYtmyZdx+++388ssvlpYgmFs+X331FbNnz2batGnXPNeRI0c4deoUR44cKXX70aNHef3117n//vtLjDRPS0ujoKAAf39/AgMD+fjjjwkPD+fUqVNMmDCh1OMVFBSQl5dnea2qKoWFhRiNRkuX9dKlS2nVqtVVR2Y///zzTJ06lbp169KiRQsWLlxIfHy8w1u6NWvWRKfT8d577zFs2DD27dvHyy+/XGK/sWPHoigKb7/9NlqtFm9v7xJ1dWX8jz76KC1btiQ2NpYVK1bw/fffs2bNGqv9DAaDpa6MRiMmk8ny+mrX0N98801WrFhRYqAZQJcuXWjUqBF9+/bl7bffBsyD01q0aMHdd99t2c/b29vyJWfRokXccccdPPzww9x1113ExMRgMBh477336NmzJ5s2bWLevHnXqEUHUquZ9PR0FVDT09Mdcrxvtp1Qo8b/rPb9eLNDjlddFBQUqMuXL1cLCgqcHUqVYk+95ebmqvv371dzc3MrMDLHGzBggApYHt7e3urtt9+ufvvtt1b7Pf/882pgYKDq5eWl9unTR3377bdVX19fVVVVdceOHWqdOnXUGTNmqAaDQb148aJqNBrVdevWqYB68eJFVVVVderUqSqgvvXWW5bjXrlPVFSUVTxXPtatW6eqqqrGxcWpjRo1UvV6vdqsWTN1/fr1KqD+8MMPqqqq6vHjx695nIULF6qqqqodOnRQFUVRt2/fbolp6tSpavPmzS2vjUajOm3aNLVGjRqqVqtVmzdvrv7666+W7cXn2rVrl1WdRUVFqW+//bbl9eXxFevQoYM6atQo1Wg0qhcvXlQXL16sRkdHq3q9Xm3Tpo36008/WR176dKlamhoqHr27Fmr3+H9999f+i+4yAcffKDWqVNH1Wq1av369dXPP//cavu16uryR3Ecxb+3++67r8RxLv+MR48eVe+9917Vw8ND9fLyUh944AH1zJkzV61rVVXVl156SY2JiVGzs7NVVVXV2bNnq+Hh4aq7u7varVs39fPPP7f6mymuO6PRqKrqtf8t2pKblKIPVG1kZGTg6+tLenr6NQeYlNUvu88w4svdtKrlx3fD213/DQIwf4NeuXIlPXr0KNEFKK7OnnrLy8vj+PHj1K5d+7pdxTczk8lERkYGPj4+dt2WFR0dzfr164mOji6xrXfv3iXuL7bHc889R4sWLRg4cGC5juNI5a236uzKurvWv0VbcpP8FspJpjwVonoIDg62GnV9OX9/f3Q6XbnPodVqr3oOIYrJNe5yksFpQlQP27dvv+q24mlZy2vmzJkOOY64uUmLu5ykxS2EEOJGcmri3rhxIz179iQiIqLUuXKvZdOmTbi6ulpNEOAMlxYZkQlYhBBCVDynJu7s7GyaN29u89R8aWlp9O/fn86dO1dQZGXnLnOViyqimo1DFaLScdS/Qade4+7evTvdu3e3+X3Dhg2jb9++aDSa67bS8/Pzre7zK5760GAwlFhByB6umFva+YUm8vMLcHGxbWao6qq47h3xO6hO7K03VVXJyspCr9dXRFhVQvF/mqqqWqbrFNcn9Wa/K+suKyvLUnblv2Fb/k1XucFpCxcu5NixYyxevJhXXnnluvvPmDGD6dOnlyhfvXq1Q+aSzTdCcTX++Muv6GVAqE3i4uKcHUKVZGu9eXt7k5+fT15eHjqdrtRJKaqLy+f7FmUn9Wa/lJQUCgoKSElJ4eLFixw+fLjEPqXNH381VSpxHz58mAkTJvDHH3+UOmVfaSZOnMiYMWMsrzMyMoiMjKRr164OuY87v6CAF7atB+A/d8cS6Fn+W0KqA4PBQFxcHF26dJH7uG1gb72pqsr58+ctPU7Vkaqq5OXl4ebmVq2/uNhK6s1+V9ZdcHAwTZo0KbUebfm3WWUSt9FopG/fvkyfPp369euX+X16vb7U7kGtVuuwhKFVVAyqQqGqSBKykSN/D9WJPfVWs2ZNjEZjtb08YTAY2LhxI//5z3/kb84GUm/2K667Dh064O7ufs179G2p2yqTuDMzM9mxYwe7du1i5MiRgHlWGlVVcXV1ZfXq1VZzzN5IWg0YCmW+clH5aTSaajvBh0ajobCwEDc3N0lANpB6s19x3en1eof+u6syidvHx4e9e/dalX3wwQf8/vvvfPvtt9dcZq+i6VwgB8gtkIEbQgghKpZTE3dWVpbVSjzHjx8nPj6egIAAatWqxcSJEzl79iyff/45Li4uJRahDwkJwc3Nza7F6R1JV3RTndwSJoQQoqI5NXHv2LGDTp06WV4XDyIbMGAAixYtIiEhgVOnTjkrvDLTSuIWQghxgzg1cXfs2PGaN6QvWrTomu+fNm3addfYvRGK5mCR+cqFEEJUOJmr3AG0LuYvHzI4TQghREWTxO0Aco1bCCHEjSKJ2wEsiVu6yoUQQlQwSdwOIIPThBBC3CiSuB2geHCaXOMWQghR0SRxO4B0lQshhLhRJHE7QPGocukqF0IIUdEkcTuAjCoXQghxo0jidgC5xi2EEOJGkcTtAMUt7hy5xi2EEKKCSeJ2ABmcJoQQ4kaRxO0AWukqF0IIcYNI4nYAGZwmhBDiRpHE7QA6uR1MCCHEDSKJ2wEsU54WmJwbiBBCiJueJG4HKO4ql2vcQgghKpokbgcovo8712BEVVXnBiOEEOKmJonbAYq7yo0mFYNRErcQQoiKI4nbAXSX1aIMUBNCCFGRJHE7gEYBjYsCyHVuIYQQFUsStwMoCrgV9ZfL7GlCCCEqkiRuB3Evmj5NusqFEEJUJEncDuImiVsIIcQNIInbQdyLusrzpKtcCCFEBZLE7SDSVS6EEOJGkMTtINJVLoQQ4kaQxO0glha3dJULIYSoQJK4HaT4djC5j1sIIURFksTtIHKNWwghxI0gidtB3HTFXeWytKcQQoiKI4nbQaTFLYQQ4kaQxO0gl6Y8LXRyJEIIIW5mkrgdxENa3EIIIW4ASdwOYrnGbZBr3EIIISqOJG4Hkfu4hRBC3AiSuB2keOY0uY9bCCFERZLE7SDFi4zINW4hhBAVSRK3g0hXuRBCiBtBEreDSFe5EEKIG0ESt4PIBCxCCCFuBEncDuIm17iFEELcAE5N3Bs3bqRnz55ERESgKArLly+/5v7ff/89Xbp0ITg4GB8fH9q0acNvv/12Y4K9DnedXOMWQghR8ZyauLOzs2nevDlz584t0/4bN26kS5curFy5kp07d9KpUyd69uzJrl27KjjS6yu+xp1faMJkUp0cjRBCiJuVqzNP3r17d7p3717m/efMmWP1+rXXXuPHH39kxYoVtGzZstT35Ofnk5+fb3mdkZEBgMFgwGAw2B70FYqP4cqlGdMyc/Pw0Dm1aiu94npzxO+gOpF6s5/UnX2k3uxnS93ZUr9VOruYTCYyMzMJCAi46j4zZsxg+vTpJcpXr16Nh4eHw2L5Y/3vFFfnz7+uxkvrsEPf1OLi4pwdQpUk9WY/qTv7SL3Zryx1l5OTU+bjVenE/dZbb5GVlcWjjz561X0mTpzImDFjLK8zMjKIjIyka9eu+Pj4lDsGg8FAXFwc3bp2Qb9jA/mFJtp16EQNP/dyH/tmVlxvXbp0QauVbzllJfVmP6k7+0i92c+WuivuDS4LmxP3sWPHqFOnjq1vc7ilS5cyffp0fvzxR0JCQq66n16vR6/XlyjXarUO/SPUarW46zTkF5ooVBX5Ay8jR/8eqgupN/tJ3dlH6s1+Zak7W+rW5sFpMTExdOrUicWLF5OXl2fr2x1i2bJlDBkyhK+//prY2FinxFCaS7OnyQphQgghKobNifvvv/+mWbNmjBkzhrCwMP773/+ybdu2ioitVF9++SWDBg3iyy+/5N57771h5y0LmYRFCCFERbM5cbdo0YJ33nmHc+fOsWDBAhISEmjfvj1NmzZl9uzZJCcnl/lYWVlZxMfHEx8fD8Dx48eJj4/n1KlTgPn6dP/+/S37L126lP79+zNr1ixat25NYmIiiYmJpKen2/oxKoSbJG4hhBAVzO77uF1dXXnwwQf55ptveOONNzhy5Ajjxo0jMjKS/v37k5CQcN1j7Nixg5YtW1pu5RozZgwtW7ZkypQpACQkJFiSOMDHH39MYWEhI0aMIDw83PIYNWqUvR/DoWQSFiGEEBXN7lHlO3bsYMGCBSxbtgxPT0/GjRvHU089xZkzZ5g+fTr333//dbvQO3bsiKpefbKSRYsWWb1ev369veHeEO6y0IgQQogKZnPinj17NgsXLuTQoUP06NGDzz//nB49euDiYm68165dm0WLFhEdHe3oWCs96SoXQghR0WxO3B9++CGDBw9m4MCBhIeHl7pPSEgI8+fPL3dwVU1xV3mOdJULIYSoIDYn7sOHD193H51Ox4ABA+wKqCpzL1ohTLrKhRBCVBS7rnFfvHiR+fPnc+DAAQAaNWrE4MGDrzn1aHVw6T5uSdxCCCEqhs2jyjdu3Eh0dDTvvvsuFy9e5OLFi7z33nvUrl2bjRs3VkSMVYZ70cIico1bCCFERbG5xT1ixAj69OnDhx9+iEZjbmEajUaGDx/OiBEj2Lt3r8ODrCpkAhYhhBAVzeYW95EjRxg7dqwlaQNoNBrGjBnDkSNHHBpcVeOuK7rGLV3lQgghKojNifvWW2+1XNu+3IEDB2jevLlDgqqqpMUthBCiotncVf7ss88yatQojhw5wp133gnAli1bmDt3Lq+//jp79uyx7NusWTPHRVoFyH3cQgghKprNifvxxx8H4IUXXih1m6IoqKqKoigYjdUrgcmUp0IIISqazYn7+PHjFRHHTUGmPBVCCFHRbE7cUVFRFRHHTUGucQshhKhodk3AcvToUebMmWMZpNa4cWNGjRpF3bp1HRpcVeOmk8QthBCiYtk8qvy3336jcePGbNu2jWbNmtGsWTO2bt1KkyZNiIuLq4gYq4xLM6eZnByJEEKIm5XNLe4JEyYwevRoXn/99RLl48ePp0uXLg4LrqqRa9xCCCEqms0t7gMHDvDUU0+VKB88eDD79+93SFBVlftlXeXXWmdcCCGEsJfNiTs4OJj4+PgS5fHx8YSEhDgipiqr+D5uo0nFYJTELYQQwvFs7iofOnQoTz/9NMeOHaNt27YAbNq0iTfeeIMxY8Y4PMCqpLirHMytbp2rzd+LhBBCiGuyOXFPnjwZb29vZs2axcSJEwGIiIhg2rRpPPvssw4PsCrRahQ0LgpGk0qewYivu9bZIQkhhLjJ2JS4CwsLWbp0KX379mX06NFkZmYC4O3tXSHBVTWKouCu1ZCVXyizpwkhhKgQNvXlurq6MmzYMPLy8gBzwpakbU3mKxdCCFGRbL4Ie8cdd7Br166KiOWmULy0pyRuIYQQFcHma9zDhw9n7NixnDlzhlatWuHp6Wm1vbqtCHYly73c0lUuhBCiAticuB977DEAq4Fo1XlFsCsVJ+4cSdxCCCEqgKwO5mByjVsIIURFsjlxnzx5krZt2+Lqav3WwsJC/vrrr2q/epi7LDQihBCiAtk8OK1Tp06kpqaWKE9PT6dTp04OCaoqk/nKhRBCVCSbE3fxtewrXbhwocRAterI0uKWa9xCCCEqQJm7yh988EHAPBBt4MCB6PV6yzaj0ciePXssU6BWZ+5yjVsIIUQFKnPi9vX1Bcwtbm9vb9zd3S3bdDodd955J0OHDnV8hFWMJG4hhBAVqcyJe+HChQBER0czbtw46Ra/iuKucrmPWwghREWweVT51KlTKyKOm4bcDiaEEKIi2Tw4LSkpiX79+hEREYGrqysajcbqUd1d6io3OTkSIYQQNyObW9wDBw7k1KlTTJ48mfDw8FJHmFdnMqpcCCFERbI5cf/555/88ccftGjRogLCqfrkPm4hhBAVyeau8sjISFRVrYhYbgpyjVsIIURFsjlxz5kzhwkTJnDixIkKCKfqk65yIYQQFcnmrvI+ffqQk5ND3bp18fDwQKvVWm0vbTrU6kS6yoUQQlQkmxP3nDlzKiCMm4dMwCKEEKIi2Zy4BwwYUBFx3DTcdearD5K4hRBCVASbr3EDHD16lEmTJvH4449z/vx5AH799Vf++ecfm46zceNGevbsSUREBIqisHz58uu+Z/369dx6663o9XpiYmJYtGiRHZ+g4lgGp8k1biGEEBXA5sS9YcMGbrnlFrZu3cr3339PVlYWALt377Z5VrXs7GyaN2/O3Llzy7T/8ePHuffee+nUqRPx8fE899xzDBkyhN9++83Wj1FhirvK8wtNmEwy+l4IIYRj2dxVPmHCBF555RXGjBmDt7e3pfzuu+/m/ffft+lY3bt3p3v37mXef968edSuXZtZs2YB0KhRI/7880/efvttunXrZtO5K0rxqHKAvEIjHjqbq1gIIYS4Kpuzyt69e1m6dGmJ8pCQEFJSUhwS1NVs3ryZ2NhYq7Ju3brx3HPPXfU9+fn55OfnW15nZGQAYDAYMBgM5Y6p+BjFPzWX3eOekZOPVpFWd2murDdRNlJv9pO6s4/Um/1sqTtb6tfmxO3n50dCQgK1a9e2Kt+1axc1atSw9XA2SUxMJDQ01KosNDSUjIwMcnNzrZYaLTZjxgymT59eonz16tV4eHg4LLa4uDjLc62iwaAq/Lp6DQH6a7xJWNWbKDupN/tJ3dlH6s1+Zam7nJycMh/P5sT92GOPMX78eL755hsURcFkMrFp0ybGjRtH//79bT1chZs4cSJjxoyxvM7IyCAyMpKuXbvi4+NT7uMbDAbi4uLo0qWL5Z72qfHrSMs10Lrdf6gX4lXuc9yMSqs3cX1Sb/aTurOP1Jv9bKm74t7gsrA5cb/22muMGDGCyMhIjEYjjRs3xmg00rdvXyZNmmTr4WwSFhZGUlKSVVlSUhI+Pj6ltrYB9Ho9en3JZq9Wq3XoH+Hlx3PXaUjLNVCoKvKHfh2O/j1UF1Jv9pO6s4/Um/3KUne21K3NiVun0/HJJ58wZcoU9u7dS1ZWFi1btqRevXq2Hspmbdq0YeXKlVZlcXFxtGnTpsLPbQt3uSVMCCFEBbF7yHNkZKSl1b13714uXryIv7+/TcfIysriyJEjltfHjx8nPj6egIAAatWqxcSJEzl79iyff/45AMOGDeP999/nhRdeYPDgwfz+++98/fXX/PLLL/Z+jAohC40IIYSoKDbfx/3cc88xf/58AIxGIx06dODWW28lMjKS9evX23SsHTt20LJlS1q2bAnAmDFjaNmyJVOmTAEgISGBU6dOWfavXbs2v/zyC3FxcTRv3pxZs2bx6aefVppbwYoV3xIm85ULIYRwNJtb3N9++y1PPvkkACtWrODYsWMcPHiQL774ghdffJFNmzaV+VgdO3a85hKhpc2K1rFjR3bt2mVr2BXDZITsZPSGdKtiD520uIUQQlQMm1vcKSkphIWFAbBy5UoeffRR6tevz+DBg9m7d6/DA6zUNs1BO6cRjc99ZVV8adpTkzOiEkIIcROzOXGHhoayf/9+jEYjq1atokuXLoD5HjSNRnOdd99kPEMA0BdaD+OXFcKEEEJUFJu7ygcNGsSjjz5KeHg4iqJYZjLbunUrDRs2dHiAlZpnMAB6Q+mJW65xCyGEcDSbE/e0adNo2rQpp0+f5pFHHrHcI63RaJgwYYLDA6zUihK37soWt05uBxNCCFEx7Lod7OGHH7Z6nZaWVj3X6fYMAsxd5abLBtnJ7WBCCCEqis3XuN944w2++urSYKxHH32UwMBAatasyZ49exwaXKVX1OLWqIWQn2kplmvcQgghKorNiXvevHlERkYC5lnL4uLi+PXXX7nnnnsYN26cwwOs1HQeqDpP8/OcZEuxu85crXnSVS6EEMLBbO4qT0xMtCTun3/+mUcffZSuXbsSHR1N69atHR5gpecRDAXZKNmXljSVFrcQQoiKYnOL29/fn9OnTwOwatUqy6hyVVUxGqtfolKLrnOTfanFLde4hRBCVBSbW9wPPvggffv2pV69ely4cIHu3bsD5vW4Y2JiHB5gpVd0nVvJvryrXEaVCyGEqBg2J+63336b6OhoTp8+zZtvvomXl3m96YSEBIYPH+7wACs9j6IWd07JrnK5j1sIIYSj2Zy4tVptqYPQRo8e7ZCAqhq1qMWNXOMWQghxA9h1H/fRo0eZM2cOBw4cAKBx48Y899xz1KlTx6HBVQlF17iVy1rcbrLIiBBCiApi8+C03377jcaNG7Nt2zaaNWtGs2bN2Lp1K40bNyYuLq4iYqzU1OKu8uzzljJ3WWRECCFEBbG5xT1hwgRGjx7N66+/XqJ8/PjxlkVHqg3L4DS5xi2EEKLi2dziPnDgAE899VSJ8sGDB7N//36HBFWVWK5xXz447bKu8mutNy6EEELYyubEHRwcTHx8fIny+Ph4QkJCHBFT1VLUVa7kXgSjAbh0H7fRpFJglO5yIYQQjmNzV/nQoUN5+umnOXbsGG3btgVg06ZNvPHGG4wZM8bhAVZ67v6oKCio5pHlPuGWrnKAvAITetdqtk65EEKICmNz4p48eTLe3t7MmjWLiRMnAhAREcG0adN49tlnHR5gpeeiId/VB7fCdPPsaT7haDUKGhcFo0kl12DEF62zoxRCCHGTsClxFxYWsnTpUvr27cvo0aPJzDSviOXt7V0hwVUVVokbUBQFd62GrPxCuSVMCCGEQ9l0jdvV1ZVhw4aRl5cHmBN2dU/aAAWuRXVw2chyy3zlMu2pEEIIB7J5cNodd9zBrl27KiKWKitf62N+cvm93EVLe0qLWwghhCPZfI17+PDhjB07ljNnztCqVSs8PT2ttjdr1sxhwVUV+a6+5ieXLzQi93ILIYSoADYn7sceewzAaiCaoiioqoqiKNVyac981+IW9+X3cpurVrrKhRBCOJLNifv48eMVEUeVdqmr/PIWt3SVCyGEcDybE3dUVFRFxFGlXWpxl+wql8QthBDCkco8OG3nzp106tSJjIyMEtvS09Pp1KkTu3fvdmhwVYUlcWddlrh1co1bCCGE45U5cc+aNYu7774bHx+fEtt8fX3p0qULM2fOdGhwVYVVi7tobnK5HUwIIURFKHPi3rp1K/fff/9Vt/fs2ZO//vrLIUFVNQXFiduYD/nmSWmkq1wIIURFKHPiPnv27DUnW/Hy8iIhIcEhQVU1Ro0eVVt0W1zRdW5J3EIIISpCmRN3cHAwhw4duur2gwcPEhQU5JCgqiTPos9enLiLr3FLV7kQQggHKnPijo2N5dVXXy11m6qqvPrqq8TGxjossKrGsi53UeJ2kxa3EEKIClDm28EmTZpEq1ataN26NWPHjqVBgwaAuaU9a9Ys/v33XxYtWlRRcVZ+Hle0uC2JW9bjFkII4ThlTtx169ZlzZo1DBw4kMceewxFUQBza7tx48bExcURExNTYYFWepaucvPsacVd5TKqXAghhCPZNAHLbbfdxr59+4iPj+fw4cOoqkr9+vVp0aJFBYVXdageRV3lWeaFRmSuciGEEBXB5pnTAFq0aCHJ+kpeco1bCCFExbN5WU9ROtVDusqFEEJUPEncjnLl7WDSVS6EEKICSOJ2EMs17mzra9w50uIWQgjhQJK4HaX4Pu7ci2A04K6TZT2FEEI4XpkGp+3Zs6fMB2zWrJndwVRp7v6guIBqgpwLuBWt0S2JWwghhCOVKXG3aNECRVFQi1a+ulLxNkVRMBptT1Rz585l5syZJCYm0rx5c9577z3uuOOOq+4/Z84cPvzwQ06dOkVQUBAPP/wwM2bMwM3NzeZzO4yLBjwCzde4s5Nx9/IHoKDQhNGkonFRnBebEEKIm0aZEvfx48crLICvvvqKMWPGMG/ePFq3bs2cOXPo1q0bhw4dIiQkpMT+S5cuZcKECSxYsIC2bdvy77//MnDgQBRFYfbs2RUWZ5l4Bl9K3AGNLMV5BiOeervuvBNCCCGslCmbREVFVVgAs2fPZujQoQwaNAiAefPm8csvv7BgwQImTJhQYv+//vqLdu3a0bdvXwCio6N5/PHH2bp1a4XFWGbF17mzknFz1ViKcyVxCyGEcBC7s8n+/fs5deoUBQUFVuW9evUq8zEKCgrYuXMnEydOtJS5uLgQGxvL5s2bS31P27ZtWbx4Mdu2beOOO+7g2LFjrFy5kn79+pW6f35+Pvn5+ZbXGRkZABgMBgwGQ5ljvZriYxgMBjQegbgAxsxETMZC9K4u5BeayMzJx1cv4wAvd3m9ibKTerOf1J19pN7sZ0vd2VK/NifuY8eO8cADD7B3716r697Fc5fbco07JSUFo9FIaGioVXloaCgHDx4s9T19+/YlJSWF9u3bo6oqhYWFDBs2jP/7v/8rdf8ZM2Ywffr0EuWrV6/Gw8OjzLFeT1xcHE3PZ1EXOLZnK/svRKNBAyisXruOMMed6qYSFxfn7BCqJKk3+0nd2UfqzX5lqbucnJwyH8/mxD1q1Chq167N2rVrqV27Ntu2bePChQuMHTuWt956y9bD2Wz9+vW89tprfPDBB7Ru3ZojR44watQoXn75ZSZPnlxi/4kTJzJmzBjL64yMDCIjI+natSs+Pj7ljsdgMBAXF0eXLl3QbzsE61dTN8yX6B49eH3/RnLS87i9TTtuqeFb7nPdTC6vN61W6+xwqgypN/tJ3dlH6s1+ttRdcW9wWdicuDdv3szvv/9OUFAQLi4uuLi40L59e2bMmMGzzz7Lrl27ynysoKAgNBoNSUlJVuVJSUmEhYWV+p7JkyfTr18/hgwZAsAtt9xCdnY2Tz/9NC+++CIuLtZd0nq9Hr1eX+I4Wq3WoX+EWq0Wjbe558AlNwUXrdYy7anBpMgf/FU4+vdQXUi92U/qzj5Sb/YrS93ZUrc2X3g1Go14e3sD5sR77tw5wDyA7dChQzYdS6fT0apVK9auXWspM5lMrF27ljZt2pT6npycnBLJWaMxJ8ir3a52w3gVjYIvsSa33MsthBDCMWxucTdt2pTdu3dTu3ZtWrduzZtvvolOp+Pjjz+mTp06NgcwZswYBgwYwG233cYdd9zBnDlzyM7Otowy79+/PzVq1GDGjBkA9OzZk9mzZ9OyZUtLV/nkyZPp2bOnJYE7TfGo8uKFRmS+ciGEEA5mc+KeNGkS2dnZALz00kvcd9993HXXXQQGBvLVV1/ZHECfPn1ITk5mypQpJCYm0qJFC1atWmUZsHbq1CmrFvakSZNQFIVJkyZx9uxZgoOD6dmzJ6+++qrN53a4yxcaUdVLK4RJ4hZCCOEgNifubt26WZ7HxMRw8OBBUlNT8ff3t4wst9XIkSMZOXJkqdvWr19v9drV1ZWpU6cydepUu85VoYpb3IV5kJ95aU3uApMTgxJCCHEzsfkad3p6OqmpqVZlAQEBXLx40aZRcTclnSdoPc3Ps5PlGrcQQgiHszlxP/bYYyxbtqxE+ddff81jjz3mkKCqNEt3eYpc4xZCCOFwNifurVu30qlTpxLlHTt2rBzTjjqbZYBaMn4e5uH9yZn513iDEEIIUXY2J+78/HwKCwtLlBsMBnJzcx0SVJV2WeKODjJ3mx9PyXZiQEIIIW4mNifuO+64g48//rhE+bx582jVqpVDgqrSvC5L3IHmxH3igiRuIYQQjmHzqPJXXnmF2NhYdu/eTefOnQFYu3Yt27dvZ/Xq1Q4PsMq5rMVdJ9icuE+n5lBQaELnKguNCCGEKB+bM0m7du3YvHkzkZGRfP3116xYsYKYmBj27NnDXXfdVRExVi2XJe4Qbz0eOg0mFU5fLPsE8kIIIcTV2LWsZ4sWLViyZImjY7k5XDZ7mqIoRAd6sj8hgxMp2dQN9nJubEIIIaq8MiXujIwMy0pa17tX2xErblVpxYk76zwAtYPMiVsGqAkhhHCEMiVuf39/EhISCAkJwc/Pr9QZ0lRVRVEUm9bjvild1lUOEB1kXohbErcQQghHKFPi/v333wkICABg3bp1FRpQlVecuHNTwVhI7SBz97gkbiGEEI5QpsTdoUMHAAoLC9mwYQODBw+mZs2aFRpYleURACiACjkXqF3U4j4hiVsIIYQD2DSq3NXVlZkzZ5Y6AYso4qIBj0Dz8+zzlhb3ufQ8mfpUCCFEudl8O9jdd9/Nhg0bKiKWm4dXiPlndjL+Hlp83MwdGzIRixBCiPKy+Xaw7t27M2HCBPbu3UurVq3w9PS02t6rVy+HBVdlXbbQiKIo1A7yZPeZdE6kZNMwrJqPuhdCCFEuNifu4cOHAzB79uwS22RUeZErRpYXJ+5jcp1bCCFEOdmcuE0mU0XEcXO54l7u4sVGZICaEEKI8pLJsyvCZbOngbnFDXAiRaY9FUIIUT52Je4NGzbQs2dPYmJiiImJoVevXvzxxx+Ojq3qKqWrHJCuciGEEOVmc+JevHgxsbGxeHh48Oyzz/Lss8/i7u5O586dWbp0aUXEWPWUmD3NnLhTsvLJzDM4KyohhBA3AZuvcb/66qu8+eabjB492lL27LPPMnv2bF5++WX69u3r0ACrpCu6yn3ctAR56UjJKuDkhRya1vB1YnBCCCGqMptb3MeOHaNnz54lynv16sXx48cdElSV51WcuM+DqgIQHSjd5UIIIcrP5sQdGRnJ2rVrS5SvWbOGyMhIhwRV5RW3uAvzoCALuHyAmiRuIYQQ9rO5q3zs2LE8++yzxMfH07ZtWwA2bdrEokWLeOeddxweYJWk8wStBxhyzNe59d6W69yy2IgQQojysDlxP/PMM4SFhTFr1iy+/vprABo1asRXX33F/fff7/AAqyzPIEg7Zb7OHVDH0uKWxC2EEKI8bE7cAA888AAPPPCAo2O5uXiGmBN30SQslq5yma9cCCFEOcgELBXlylvCiganpeUYuJhd4KyohBBCVHE2t7j9/f1RFKVEuaIouLm5ERMTw8CBAxk0aJBDAqyyLltoBMBdpyHc142E9DyOX8jG31PnxOCEEEJUVTa3uKdMmYKLiwv33nsv06dPZ/r06dx77724uLgwYsQI6tevzzPPPMMnn3xSEfFWHVe0uOFSq/t4snSXCyGEsI/NLe4///yTV155hWHDhlmVf/TRR6xevZrvvvuOZs2a8e677zJ06FCHBVrlWNbkPm8pig7yZPOxC3KdWwghhN1sbnH/9ttvxMbGlijv3Lkzv/32GwA9evTg2LFj5Y+uKrti9jSAOjKyXAghRDnZnLgDAgJYsWJFifIVK1YQEBAAQHZ2Nt7e3uWPriqzXOO+rKtcErcQQohysrmrfPLkyTzzzDOsW7eOO+64A4Dt27ezcuVK5s2bB0BcXBwdOnRwbKRVTSnXuGsHeQDm2dNUVS11kJ8QQghxLTYn7qFDh9K4cWPef/99vv/+ewAaNGjAhg0bLDOpjR071rFRVkXFiTsnFYyFoHElMsADFwWyC4wkZ+UT4u3m3BiFEEJUOXZNwNKuXTvatWvn6FhuLh6BgAKokHMBvEPRu2qo4e/O6dRcjidnS+IWQghhM7smYDl69CiTJk2ib9++nD9vHjX966+/8s8//zg0uCrNRVOUvLmiu9wLkBnUhBBC2MfmxL1hwwZuueUWtm7dynfffUdWlnn1q927dzN16lSHB1illXadO9B8nVuW9xRCCGEPmxP3hAkTeOWVV4iLi0OnuzT71913382WLVscGlyVd8XsaXBpZLks7ymEEMIeNifuvXv3lrrASEhICCkpKaW8oxorZRKWS+ty5zgjIiGEEFWczYnbz8+PhISEEuW7du2iRo0aDgnqpuFTVB8p/1qKLl8lzGRSnRGVEEKIKszmxP3YY48xfvx4EhMTURQFk8nEpk2bGDduHP3796+IGKuuWneaf57YZCmq4eeOVqOQX2giISPPSYEJIYSoqmxO3K+99hoNGzYkMjKSrKwsGjduzH/+8x/atm3LpEmT7Api7ty5REdH4+bmRuvWrdm2bds1909LS2PEiBGEh4ej1+upX78+K1eutOvcFapWG0CBC4chMwkAV40LkQHmAWqy2IgQQghb2Zy4dTodn3zyCceOHePnn39m8eLFHDx4kC+++AKNRmNzAF999RVjxoxh6tSp/P333zRv3pxu3bpZbjO7UkFBAV26dOHEiRN8++23HDp0iE8++aRydtN7BEBoU/Pzk5da3bWLVwmTW8KEEELYyObE/dJLL5GTk0NkZCQ9evTg0UcfpV69euTm5vLSSy/ZHMDs2bMZOnQogwYNonHjxsybNw8PDw8WLFhQ6v4LFiwgNTWV5cuX065dO6Kjo+nQoQPNmze3+dw3RHTRRDWXJ24ZWS6EEMJONs+cNn36dIYNG4aHh4dVeU5ODtOnT2fKlCllPlZBQQE7d+5k4sSJljIXFxdiY2PZvHlzqe/56aefaNOmDSNGjODHH38kODiYvn37Mn78+FJb/Pn5+eTn51teZ2RkAGAwGDAYDGWO9WqKj3G1Yyk178R16zzUE39SWLRPpL95xrSj5zMdEkNVdL16E6WTerOf1J19pN7sZ0vd2VK/Nifuqy2OsXv3bsvqYGWVkpKC0WgkNDTUqjw0NJSDBw+W+p5jx47x+++/88QTT7By5UqOHDnC8OHDMRgMpU4AM2PGDKZPn16ifPXq1SW+fJRHXFxcqeW6wmy6A0ryQdb8uIwCrQ/n0xVAw/5TyZXz2vwNdLV6E9cm9WY/qTv7SL3Zryx1l5NT9luEy5y4/f39URQFRVGoX7++VfI2Go1kZWUxbNiwMp/YXiaTiZCQED7++GM0Gg2tWrXi7NmzzJw5s9TEPXHiRMaMGWN5nZGRQWRkJF27dsXHx6fc8RgMBuLi4ujSpQtarbbUfdTE91GSD9ClgSdqwx60TM9j7v6NpBa40LVbF1w1ds08W6WVpd5ESVJv9pO6s4/Um/1sqbvi3uCyKHPinjNnDqqqMnjwYKZPn46vr69lm06nIzo6mjZt2pT5xABBQUFoNBqSkpKsypOSkggLCyv1PeHh4Wi1Wqtu8UaNGpGYmEhBQYHVbG4Aer0evV5f4jhardahf4TXPF50e0g+gOvpLXDLg9QMcEXv6kJ+oYmkrELLbGrVkaN/D9WF1Jv9pO7sI/Vmv7LUnS11W+bEPWDAAABq165N27ZtHfIL1Ol0tGrVirVr19K7d2/A3KJeu3YtI0eOLPU97dq1Y+nSpZhMJlxczC3Vf//9l/Dw8BJJu9KIbgfbP7EMUHNxUagd5MnBxEyOX8iu1olbCCGEbWzuo+3QoYMlaefl5ZGRkWH1sNWYMWP45JNP+Oyzzzhw4ADPPPMM2dnZDBo0CID+/ftbDV575plnSE1NZdSoUfz777/88ssvvPbaa4wYMcLmc98wUUUjy5P2mdfnBqKLbwmTe7mFEELYwObBaTk5Obzwwgt8/fXXXLhwocR2o9Fo0/H69OlDcnIyU6ZMITExkRYtWrBq1SrLgLVTp05ZWtYAkZGR/Pbbb4wePZpmzZpRo0YNRo0axfjx4239KDeOVwgENYCUQ3DyL2h0H7WDL019KoQQQpSVzYn7+eefZ926dXz44Yf069ePuXPncvbsWT766CNef/11u4IYOXLkVbvG169fX6KsTZs2VW8lsuh2RYl7kzlxF7e45V5uIYQQNrC5q3zFihV88MEHPPTQQ7i6unLXXXcxadIkXnvtNZYsWVIRMd4cirvLT/wJXFreUxK3EEIIW9icuFNTU6lTpw4APj4+pKaar9m2b9+ejRs3Oja6m0l0e/PPxL2Qe9Eye9rZtFzyC227vCCEEKL6sjlx16lTh+PHjwPQsGFDvv76a8DcEvfz83NocDcV7zAIjAFUOLWFIC8dXnpXVBVOXZC1uYUQQpSNzYl70KBB7N69G4AJEyYwd+5c3NzcGD16NM8//7zDA7ypXNZdriiKpdV9+HyWE4MSQghRldg8OG306NGW57GxsRw8eJCdO3cSExNDs2bNHBrcTSe6Pfz9meV+7tui/dl7Np3V/yTS45ZwJwcnhBCiKrA5cV8pKiqKqKgoR8Ry8ytucSfshrwMejaPYOGmE8TtTyK3wIi7zvZlUYUQQlQvZe4q//3332ncuHGpk6ykp6fTpEkT/vjjD4cGd9PxrQH+tUE1wakttIz0o6a/O9kFRn4/WPr640IIIcTlypy458yZw9ChQ0tdmMPX15f//ve/zJ4926HB3ZQs63Obr3P3bB4BwE+7zzoxKCGEEFVFmRP37t27ueeee666vWvXruzcudMhQd3UoopuCzthvs7ds5k5ca87lExGnqx3K4QQ4trKnLiTkpKuubCIq6srycnJDgnqplbc4j63C/KzaBTuTUyIFwWFJlb/k3Tt9wohhKj2ypy4a9Sowb59+666fc+ePYSHy8jo6/KrBb61QDXC6S3m7vJmxd3l55wcnBBCiMquzIm7R48eTJ48mby8vBLbcnNzmTp1Kvfdd59Dg7tpRVt3l/dqYU7cm46kcCEr31lRCSGEqALKnLgnTZpEamoq9evX58033+THH3/kxx9/5I033qBBgwakpqby4osvVmSsNw/LADVz4q4d5MktNXwxmlRW7kt0YmBCCCEquzLfxx0aGspff/3FM888w8SJE1FVFQBFUejWrRtz5861LMUprqP4fu6zf0NBNug86dk8nL1n01mx+xz97pT74oUQQpTOpglYoqKiWLlyJRcvXuTIkSOoqkq9evXw9/evqPhuTv7R4FMDMs7C6W1QtxP3NYvgtZUH2X4ilYT0XMJ93Z0dpRBCiErI5rnKAfz9/bn99tu54447JGnbQ1EuXecu6i6P8HPn9mh/VBV+3p3gxOCEEEJUZnYlbuEAlgVHNlmKehVNxrJij4wuF0IIUTpJ3M5S3OI+uwMMuQB0vyUcjYvCnjPpHE/JdmJwQgghKitJ3M4SUAe8wsBYAKe2ABDkpadt3UAAfpZ7uoUQQpRCErezKAo0KJpCdus8S3Gv5pcmYykeuS+EEEIUk8TtTG2fBcUF/l0FCXsA6NokDJ3GhcPnsziYmOnkAIUQQlQ2kridKbAuNHnQ/PyPWQD4umvp2CAYgBXSXS6EEOIKkrid7a6x5p/7f4TkQwCWpT5X7JHuciGEENYkcTtbaGNoeB+gwh/m9cw7NwrBQ6fhdGouu06nOTU8IYQQlYsk7sqguNW99xtIPY6HzpXYRubpY6W7XAghxOUkcVcGNW6FmFjzUp+b5gCXRpf/vCcBo0m6y4UQQphJ4q4s7hpn/rlrCaSf5a76Qfi6a0nOzOebHaedG5sQQohKQxJ3ZRHVBqLag8kAf72H3lXDiE51AZjx60FSZJ1uIYQQSOKuXP5T1OreuQiyzjOoXW0ahfuQnmvg1V8OODU0IYQQlYMk7sqkTkeo0QoKc2HzXLQaF2Y8eAuKAj/sOsufh1OcHaEQQggnk8RdmSgK/Od58/Ptn0JOKi0i/eh/ZxQAk5bvJc9gdGKAQgghnE0Sd2VT/x4IvQUKsmDbxwCM7daAUB89Jy7kMHfdEScHKIQQwpkkcVc2igJ3jTE/3/Ih5Gfi46ZlWs8mAMzbcJTDSTKHuRBCVFeSuCujxvdDYD3IS4Pt8wG4p2kYnRuGYDCq/N8PezHJvd1CCFEtSeKujFw0l1rdm9+HvAwUReGl3k3x0GnYfuIi3+yUe7uFEKI6ksRdWd3yCPjXhuxk+OG/YDJRw8+dMV3qA/DaSrm3WwghqiNJ3JWVRgsPzweNHg6thA2vAzCwbTSN5d5uIYSotiRxV2Y1WkHPd8zPN7wB+3/CVe7tFkKIak0Sd2XX4nG4c7j5+Q/DIGk/zSP9GNAmGoCJP+zhfGae8+ITQghxQ0nirgq6vAy1/wOGbFj2OOSkMrZrfWr6u3M6NZcnPtkq17uFEKKakMRdFWhc4eFF4FcLLp6A757CW6uwZEhrwnzcOHw+iyc/3UpqdoGzIxVCCFHBKkXinjt3LtHR0bi5udG6dWu2bdtWpvctW7YMRVHo3bt3xQZYGXgGwmNfgtYDjv4Oa6cRFejJl0/fSYi3noOJmTz56VbSciR5CyHEzczpifurr75izJgxTJ06lb///pvmzZvTrVs3zp8/f833nThxgnHjxnHXXXfdoEgrgbCm0PsD8/O/3oM9X1M7yJOlQ+8kyEvH/oQM+s3fRnquwblxCiGEqDBOT9yzZ89m6NChDBo0iMaNGzNv3jw8PDxYsGDBVd9jNBp54oknmD59OnXq1LmB0VYCTR6Au8aan//0PzgXT0yIF0uH3kmAp469Z9MZsGAbmXmSvIUQ4mbk6syTFxQUsHPnTiZOnGgpc3FxITY2ls2bN1/1fS+99BIhISE89dRT/PHHH9c8R35+Pvn5lwZuZWRkAGAwGDAYyp/cio/hiGOVWfsX0JzbjcvRNahL+1D42DJqhzZl0YBW9F+4g/jTaQxcsI35/W/FU+/UX/FVOaXebgJSb/aTurOP1Jv9bKk7W+rXqf+rp6SkYDQaCQ0NtSoPDQ3l4MGDpb7nzz//ZP78+cTHx5fpHDNmzGD69OklylevXo2Hh4fNMV9NXFycw45VFq6eD3OX2wF8ss6iLOjGjujhJPm2ZEgMzN2vYeepNB56Zy3/bWREr7mhodnkRtfbzULqzX5Sd/aRerNfWeouJyenzMernM2xq8jMzKRfv3588sknBAUFlek9EydOZMyYMZbXGRkZREZG0rVrV3x8fModk8FgIC4uji5duqDVast9PJvkxmL6fjCuJzbS+vg7mGJfxtT9adqczWDAop0czSzky4RA5jzajAg/9xsb23U4td6qMKk3+0nd2UfqzX621F1xb3BZODVxBwUFodFoSEpKsipPSkoiLCysxP5Hjx7lxIkT9OzZ01JmMpkAcHV15dChQ9StW9fqPXq9Hr1eX+JYWq3WoX+Ejj5e2U4aDP2+h1/Govz9GZq4F9GkHafVPW/w2eA7GLhgG7tOp9Nz7mbeeKgZ3W8Jv7HxlYFT6u0mIPVmP6k7+0i92a8sdWdL3Tp1cJpOp6NVq1asXbvWUmYymVi7di1t2rQpsX/Dhg3Zu3cv8fHxlkevXr3o1KkT8fHxREZG3sjwKweN1jwtatdXAAW2fwpLH6VVqAu/PHsXzSP9yMgr5JklfzPx+73kFhidHbEQQohycPqo8jFjxvDJJ5/w2WefceDAAZ555hmys7MZNGgQAP3797cMXnNzc6Np06ZWDz8/P7y9vWnatCk6nc6ZH8V5FAXa/g/6LC66z3stzO9KLZdkvh3Whmc61kVR4Mttp+j1/p8cSCh7l4wQQojKxemJu0+fPrz11ltMmTKFFi1aEB8fz6pVqywD1k6dOkVCQoKTo6wiGt0Hg34F73BIPgifdkZ7dhvj72nI4qdaE+Kt5/D5LO6fu4nPN59AVVVnRyyEEMJGlWJw2siRIxk5cmSp29avX3/N9y5atMjxAVVlES1g6O+wtA8k7oEF98DtQ2jXeTK/jrqL57/dw+8HzzPlx3/Y+G8Kbzx0C4FeJccACCGEqJyc3uIWFcAnwtzybt4XUGH7J/D+7QSe+Jn5/VsxtWdjdBoX1hxIouPM9cxdd0SufQshRBUhiftmpfeCBz6EASsgsB5kJcG3g1GWPMSghiZ+GNGWJhE+ZOYXMvO3Q3R6az1fbT+F0STd50IIUZlJ4r7Z1f4PPLMJOr0IGr15gZIP2tDk8MesGHY7c/q0oIafO4kZeYz/bi/3zNnI2gNJcv1bCCEqKUnc1YGrHjq8AMM3Q51OYMyHda/g8vFd9Pb8h9/H/odJ9zbCz0PL4fNZPPXZDvp8vIVdpy46O3IhhBBXkMRdnQTWhX4/wEPzwTMEUv6FpY+gX9SNIWHH2DCuI8M61EXv6sK246k88MFf9Ju/lbUHkjBJF7oQQlQKkrirG0WBWx6GkduhzUhwdYezO2DJQ/gu7cGEemdYN7YDj7SqiYsCfxxO4anPdtBp1nrm/3mcDFl1TAghnEoSd3Xl7gfdXoXn9lxK4Ge2w+KHiPjufma2TGHDuI48/Z86+Li5cvJCDi//vJ82r61l6o/7OJqc5exPIIQQ1ZIk7urOK8ScwEfthjtHgKsbnNkGix8kcvkD/F/NfWwZdyevPtCUeiFeZBcY+WzzSTrP2kD/BdtYsfuc3EomhBA3UKWYgEVUAt6hcM9r0G4UbJoDOxbA6a1weiseWk+eaHgvfe97hE1qKxZtOc3ag+fZ+G8yG/9NxkvvSrcmYTzQsgZt6gaicVGc/WmEEOKmJYlbWPMOhXtmmBP49vmw92u4eAL2fo2y92vaewbTvsmDJNzWi8WnA1ken8DZtFy++/sM3/19hhBvPb2aR9C7ZQ2aRPigKJLEhRDCkSRxi9J5h8HdL0Kn/4MzO8wJfN93kJ0M2z4ifNtHPB9Qh3G3Pcg/gZ1ZetyLX/Ymcj4zn0//PM6nfx6nbrAnXZuEEdsolJaRfrhIS1wIIcpNEre4NkWByNvNj26vwdF15iR+8BdIPYby51s05S1eC6rPS+3vZ6tHR5Ycc2fNgfMcTc7mw/VH+XD9UYK8dHRuGEps41DaxwThKjlcCCHsIolblJ1GC/W7mh/5WXDoV/jnBzgSByn/4vrHTNoxk3bBjcjr2ItN+vb8cMqTDf+mkJJVwFc7TvPVjtO4aV1oVzeQoAKFpqk51A31dfYnE0KIKkMSt7CP3guaPWJ+5KXDoVVFSXwNJB/ALfkAnXmDzr61MN7aiX+97uDH9BhW/JvD2bRc1h5MBjR89faf1PR3p23dQNrFBNGmbiAh3m7O/nRCCFFpSeIW5efmC837mB+5aXBoJez7Ho5vgPRTaHZ9RiM+o5Hiwvgat5HSpD1rChoz/4CeEzmunLmYy9c7zvD1jjMA1A/1om1dcxK/Lcpflh0VQojLSOIWjuXuBy36mh8F2XDyLziyFo6uhZR/Uc5sI/jMNh4HHnZxg3qtOePdnL8K6vL9+XB2Jhbyb1IW/yZlseivEwDUCfbk9qgAbov25/boAKICPWS0uhCi2pLELSqOzhPqdTE/ANJOm1cnO7oW9dh6tHnpcHIDtdlAbeAJxYXCWo0549WMrYUx/Hwxkj+SPTiWnM2x5Gy+2nEagCAvPbdH+3NrLX+aR/rRtIYPHjr5UxZCVA/yv524cfwiodUAaDWAwvw8/vz+E/4TrUNzbrt5spe0U7ie30f0+X1EA30AU2AIKX7N2efSgN+zovjxfCgpWfDrvkR+3ZcIgIsC9UO9aVnLj+Y1/Wge6Ue9EC9cNTIxoBDi5iOJWziHi4YMj1qYbuuBRvtfc1lGgmW2Nk5tgcQ9uGSfJyQ7jruJ427gZb0rOf6NOerWmJ2GKNamhrI1K4iDiZkcTMzky23mVrm7VkPjCB+aRvjQpIYvTSN8qRfqhVaSuRCiipPELSoPn3Bo0tv8ADDkwrl489zpp7fBme0oWUl4XthDM/bQDBgEqB5aMn1iOOlah12GmqxLC+Xv/JrsPGlk58lLa4rrXF1oGOZNkwhfmkT40Cjcm3qh3vi4aW/8ZxVCCDtJ4haVl9YdotqYHwCqCmmnzKuYndkOiXshcS9KfgY+aQe4hQPcAvRXADfI1wVwXluDo6YwducEcsgQwomzYfx4JowvuXTLWYSvG/XDvGkQ6k39UG8ahHkTE+KFm1bjlI8thBDXIolbVB2KAv5R5sctD5vLipN5URInaR8k7oG0U+gLUoksSCWSvXRUAN2lQ6Vqgtir1mFrfm12ZcawI7026w95WLa7KBAV6GlO5kVJvUGYF9GBnnLtXAjhVJK4RdV2eTJvdN+l8rwMSD0KF45C6rGin0Wvc1MJMKbQgRQ6aLcBoKJw3i2af5R6bMqLZmteLU6lhLAqJYtV/yRaDqvTuFA3xIt6IV7EhHhRN9iLuiGeRAd6SgtdCHFDSOIWNyc3H4hoaX5cKfcinD8IZ3fC2R1wZidK+ilC844TynHuBiia86VA48UF1xBOq8EczvfjeGEQZ5KCOZoYwmo1nLyiHRUFIv09qBvsSd1gL2oHe1I70JOoIE/CfdxkgRUhhMNI4hbVj7u/9bVzgKzz5lXQzu4w/0z6B3JS0BmzCDdmEc4x7lCAy8axmVBIdgnhX1MEBwojOJIewZGLNfj6UAQZeFn207m6EBXgQXSQJ7WDPIkK9KB2oCe1gz0J9ZakLoSwjSRuIQC8QqBhD/OjWEEOpJ82TxyTdrLo+Snz48JRXHJTCTUlEUoSd7nusjpchosfZwjhiCGIE2oIpy+EcCo5lBVqCIn4o2K+Tu6mdSE60JzQo4M8LQk9KtCDYC+9zBAnhChBErcQV6PzgOAG5kdpslMg+RCkHDL/TD4EKf9Cxll8TGk0Jo3Gmn9LvM2AlvNKIKeNAZxVA0hICSQhOZCDaiDr1EDOqQFk4ImHzpVaAR5EBXoQFWhO5jV89VzIg0KjCa3cxSZEtSSJWwh7eQaZH9HtrMvzMuDicbh44tIjteh1+mm0JgM11ERquCSWPGaRLNWNs2oQ5y4EcjYliHNqEFvVIHOZGsSM3XGE+XkQ6V/0CHAnMsDD/PD3IMhLJ611IW5SkriFcDQ3Hwhvbn5cyVgIGWch/cwVP89Cxhnzz9xUvJQ8GihnaMCZUk9hUDUkZAVwNjOYs6fMCf1PNYgzajBn1SBSNYEE+/lSw8/d/PB3J6LoeU1/d8J83WQWOSGqKEncQtxIGtdLt69dTUFOUTIvur6efsb8PP0Matop1LQzaBUjtZRkapF81cNcyPQmMSOAhJMBJKoBHFcD2awGkEAAiQRi8qpBSIAfNfzNydyc1D2o4e9OuK+b3N4mRCUliVuIykbnAUH1zI8rFBoMrPzlZ3rcdSva7IRLg+UsA+dOo6afQSnMJVDJJFDJpAknSz9PASQn+HDuXBDn1EDOqUGsUwNJVANIVn0xegSh8w3D1y+ICH8PIvzcqOFnbrmH+7kR5KmXEfFCOIEkbiGqGsUFfCIgMApq3Vlys6qa71XPOFf0OGv+mWl+raafgbTTKIW5BCsZBCsZNOdYyfMYgVTIv6AlGV9SVB+SVT/2qf78pgZyXgkm3zMM1ScSt8CahPh5E+7nToSvG2G+bkT4uuPnoZVr7UI4mCRuIW42igIeAeZHWNOSm8E8VWzuxaJu+DOXdcefRs1MxJR5HrLOozFkolcM1CSFmkpKyXPlA8lgOq+QjC8JaiBn1UA2F7Xgk12CKPCMQPGtiad/GKF+HoT5uhHq40aYjznBB3np0UjLXYgyk8QtRHV0eXIPb2a9CbBc3TbkQnayeYKarPOQlQSZCZjSTlNw4RRknEGbdQ6NqYBQ0ghV0mjBUetz5Zkf+Ymu5m54/EhVvflH9WEjvqTig0EfCJ7BuPqEoPcLwycglBAfd0uSD/Vxw8fNVVrvQiCJWwhxLVp38KtlflzGBS6tr6aqkHPBMoCOdPPAOmPaGQovnkbJOIs2Jwm9UkiUcp4ozpc8jxHIKHqcAaOqkIoPKaoviaov+/AlTfGjQB+A0SMYvELQ+oTi7h+Gd2Aowb4+hHjrCfF2w8ddEry4uUniFkKUj6Jcuqf9srnhNVzWcjcaIDPBnNSzk4seKZiykylIT6Iw4zzkpOCam4KbIQ2NohJMOsFKOo0uP5cBSC96nL1UnKZ6kqL6cgBfLuBHjjaAfLcgjB4hKN6haH3D0PuGcijVRNS5DCICPAn0lC56UTVJ4hZCVDyN9vot92JGg3lWuuxkyD4PWckYMhLJSU3AkJGEKSsZTU4KuvwLeBguosGIn5KNn5JNDOeKjgFkFz2uuGMudYEXF1RfjuNNlsafPF0Ahe6BqJ5BaLyCcfMOxN03GO+AEPwCQgn098NTL614UXlI4hZCVC4aLfiEmx9FtIBvafuaTJCXZr7+nn2egowksi+cI+9iAsaMRJTs82hzk3HLT8GrMA0XTAQoWQQoWeb3q5gH2OUDaaWHk69qOY8XWS4+ZLn6k6cPxOAWiOoRjItPCDqfMDz8w/AKDMfPPwAfbx8UV70DK0QIa5K4hRBVl4vLpUF2NEQH6K6yqyE/j99WfENsm+a45F0kMzWBnNRE8tOTKMw8j0t2Mpr8i+gK0nE3ZuBtysAVI3rFQCgXCVUvguGkubs+69phGXAlT3HD4OKOwdUd1dUDk86HQq9wFN8ItP6RuAdF4RkUiat/pHnFOmnRizKSxC2EqB5cNBRofSCkERqtFr+64Het/VUV8jPJSU8h7UISWRcTyUtLoiCj6Fa5nGR0eRfwMFzAy5iGnykdrWIEQEshWjULjFnmbvt8zN32F4HTJU+Vi54MjT8Frl4Uunph1PuguPng4uaL1sMHvZc/bj6BePgEo/Es+qLi7g/uAaAtcbFB3OQkcQshRGkUBdx88HDzwSO0TpnekpeXS0rqRdLSLpKekU5WRjrZWenkZmdQmJ2KLjsJz/xEfArOE2RKIVy5QKCSiTv5uBsTrZN8GRUobuRpfTDo/DDq/cAjAI1nADrvINx8AtF6BZmTvEegOdF7BIK7H7jIlLZVVaVI3HPnzmXmzJkkJibSvHlz3nvvPe64445S9/3kk0/4/PPP2bdvHwCtWrXitddeu+r+Qghxo7i5uVMzwp2aERHX3ddoUrmYU8Dh9Awyz58k52ISeZkXyctOozAnDVNuOmp+Bkp+JlpDFu7GTPyULPzIsvx0VUzo1Dx0BXlQcN7chX/h+nGqKOS7+lCg96PQLQDcA9C4eaPz8EHn4YPGzRt0nqDzQtG4EZp+COV0ABR/CXDzk5a+Ezk9cX/11VeMGTOGefPm0bp1a+bMmUO3bt04dOgQISEhJfZfv349jz/+OG3btsXNzY033niDrl278s8//1CjRg0nfAIhhLCdxkUhyEtPkFcw1Ai+7v5Gk0paTgEXcwo4lm0gNSuPzPSL5GUkk5+RQmHWBUw5qZB7EdeCNPQF6fiQiR9Z+Bcl+gAlEx8lBwUVt8J03ArTIfsqc9kXcQXuBDj2tnU8Gj0mvS+4+eHi4Y+LmzeK3ht0XqD3Nj8uf+7mZ27pu/leesggPrs4PXHPnj2boUOHMmjQIADmzZvHL7/8woIFC5gwYUKJ/ZcsWWL1+tNPP+W7775j7dq19O/f/4bELIQQN5rGRSHQS0+g1+XJ7uote1VVycgr5EJWPheyC/g325z007NyyM1IoTAzBWPWBZTcVFzyUqEgGxdDNh7k4kkeHko+XuTiQR5eSi6+mG+58yEbjaKiMeajyTkPOech1b7PpLq6obj5FSX3oiSvu/x50U8336Jr+n5FP4ta/W6+1bLL36mJu6CggJ07dzJx4kRLmYuLC7GxsWzevLlMx8jJycFgMBAQEFDq9vz8fPLz8y2vMzIyADAYDBgMhnJEj+U4l/8UZSP1Zh+pN/tVx7rzcAUPPz2Rfle2bOuWur/JZE72F3MKSMsxkJpTwMnMPLbt/ofgmrXJzDeSlp1PXnYGak4qal46Sl4aHqZsvJRcvIqSvreSiye5eCp5eGMu91Gy8SEHXyUbHyUHAKUwD7ISzQ87qJjHIRQncdXNr+i5z2XPfVHdfEBvfqhuvkXPi74YVOBoflv+5mz5u3Rq4k5JScFoNBIaGmpVHhoaysGDB8t0jPHjxxMREUFsbGyp22fMmMH06dNLlK9evRoPDw/bg76KuLg4hx2rOpF6s4/Um/2k7mzjBdwdAZiOmW+o9yt64Aa4oaqh5Jsg2wA5hZBdqHCu0Pw6uxByCpWin5ee5xWacCnMxaeoJe9JblHiN7fuL3/tTQ4+Sk5Riz8LHyUbP7LwVPJRUCEv3fygaAEdG6goFGrcKXTRY3TRl/hpdNFTqHHDoHGn0MUdg8bD/Lzop0HjQaHGnVxt4DW/AJTlby4nJ6fMcTu9q7w8Xn/9dZYtW8b69etxcyt9oMTEiRMZM2aM5XVGRgaRkZF07doVHx+fcsdgMBiIi4ujS5cuaLXach+vupB6s4/Um/2k7uxTUfVmNKlk5hWSlltAem4h6bkG0nIMZOSZf17MNXAi10BaroGM3EIy8sw/0/MM5BlMaCnEl2x8lSx8ycZHyS56fallX/zamxy8lRy8yS36mYNOMaKgojXmoDWWPWleSXVxpXBCQqmJ25a6K+4NLgunJu6goCA0Gg1JSUlW5UlJSYSFhV3zvW+99Ravv/46a9asoVmzZlfdT6/Xo9eXHACh1Wod+kfo6ONVF1Jv9pF6s5/UnX0c/n8m4KbXEexre89nfqGR9KKEbv5pIP2yR0augaSi52lFr9NyzK9zC4yAihsFRQk9F3fy8SAfDyUfd/LxJA93JR8P8vBU8vAhBy9y8VZyi3oAcvF1ycFLycWEK4Haa687X5a6s6VunZq4dTodrVq1Yu3atfTu3RsAk8nE2rVrGTly5FXf9+abb/Lqq6/y22+/cdttt92gaIUQQlQGelcNId4aQrxtf2+ewWhO5EXJPC2ngMy8Sy16808DyXmXvhhk5pufZ+YZMKnWx/PWu7L3Bs965/Su8jFjxjBgwABuu+027rjjDubMmUN2drZllHn//v2pUaMGM2bMAOCNN95gypQpLF26lOjoaBITzYMavLy88PLyctrnEEIIUfm5aTW4aTWE+Nh+H7qqqmQXmBN/caLPLzRWQJTX5vTE3adPH5KTk5kyZQqJiYm0aNGCVatWWQasnTp1ChcXF8v+H374IQUFBTz88MNWx5k6dSrTpk27kaELIYSoRhRFwUvvipfelQjcnRaH0xM3wMiRI6/aNb5+/Xqr1ydOnKj4gIQQQohKyuX6uwghhBCispDELYQQQlQhkriFEEKIKkQStxBCCFGFSOIWQgghqhBJ3EIIIUQVIolbCCGEqEIkcQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaqQSrE62I2kquZV0DMyMhxyPIPBQE5ODhkZGWi1WoccszqQerOP1Jv9pO7sI/VmP1vqrjgnFeeoa6l2iTszMxOAyMhIJ0cihBBCWMvMzMTX1/ea+yhqWdL7TcRkMnHu3Dm8vb1RFKXcx8vIyCAyMpLTp0/j4+PjgAirB6k3+0i92U/qzj5Sb/azpe5UVSUzM5OIiAhcXK59FbvatbhdXFyoWbOmw4/r4+Mjf9R2kHqzj9Sb/aTu7CP1Zr+y1t31WtrFZHCaEEIIUYVI4hZCCCGqEEnc5aTX65k6dSp6vd7ZoVQpUm/2kXqzn9SdfaTe7FdRdVftBqcJIYQQVZm0uIUQQogqRBK3EEIIUYVI4hZCCCGqEEncQgghRBUiibsc5s6dS3R0NG5ubrRu3Zpt27Y5O6RKZ+PGjfTs2ZOIiAgURWH58uVW21VVZcqUKYSHh+Pu7k5sbCyHDx92TrCVyIwZM7j99tvx9vYmJCSE3r17c+jQIat98vLyGDFiBIGBgXh5efHQQw+RlJTkpIgrhw8//JBmzZpZJrxo06YNv/76q2W71FnZvP766yiKwnPPPWcpk7or3bRp01AUxerRsGFDy/aKqDdJ3Hb66quvGDNmDFOnTuXvv/+mefPmdOvWjfPnzzs7tEolOzub5s2bM3fu3FK3v/nmm7z77rvMmzePrVu34unpSbdu3cjLy7vBkVYuGzZsYMSIEWzZsoW4uDgMBgNdu3YlOzvbss/o0aNZsWIF33zzDRs2bODcuXM8+OCDToza+WrWrMnrr7/Ozp072bFjB3fffTf3338///zzDyB1Vhbbt2/no48+olmzZlblUndX16RJExISEiyPP//807KtQupNFXa544471BEjRlheG41GNSIiQp0xY4YTo6rcAPWHH36wvDaZTGpYWJg6c+ZMS1laWpqq1+vVL7/80gkRVl7nz59XAXXDhg2qqprrSavVqt98841lnwMHDqiAunnzZmeFWSn5+/urn376qdRZGWRmZqr16tVT4+Li1A4dOqijRo1SVVX+3q5l6tSpavPmzUvdVlH1Ji1uOxQUFLBz505iY2MtZS4uLsTGxrJ582YnRla1HD9+nMTERKt69PX1pXXr1lKPV0hPTwcgICAAgJ07d2IwGKzqrmHDhtSqVUvqrojRaGTZsmVkZ2fTpk0bqbMyGDFiBPfee69VHYH8vV3P4cOHiYiIoE6dOjzxxBOcOnUKqLh6q3aLjDhCSkoKRqOR0NBQq/LQ0FAOHjzopKiqnsTERIBS67F4mzCvaPfcc8/Rrl07mjZtCpjrTqfT4efnZ7Wv1B3s3buXNm3akJeXh5eXFz/88AONGzcmPj5e6uwali1bxt9//8327dtLbJO/t6tr3bo1ixYtokGDBiQkJDB9+nTuuusu9u3bV2H1JolbiEpuxIgR7Nu3z+q6mbi6Bg0aEB8fT3p6Ot9++y0DBgxgw4YNzg6rUjt9+jSjRo0iLi4ONzc3Z4dTpXTv3t3yvFmzZrRu3ZqoqCi+/vpr3N3dK+Sc0lVuh6CgIDQaTYmRgUlJSYSFhTkpqqqnuK6kHq9u5MiR/Pzzz6xbt85qOdqwsDAKCgpIS0uz2l/qDnQ6HTExMbRq1YoZM2bQvHlz3nnnHamza9i5cyfnz5/n1ltvxdXVFVdXVzZs2MC7776Lq6sroaGhUndl5OfnR/369Tly5EiF/c1J4raDTqejVatWrF271lJmMplYu3Ytbdq0cWJkVUvt2rUJCwuzqseMjAy2bt1a7etRVVVGjhzJDz/8wO+//07t2rWttrdq1QqtVmtVd4cOHeLUqVPVvu6uZDKZyM/Plzq7hs6dO7N3717i4+Mtj9tuu40nnnjC8lzqrmyysrI4evQo4eHhFfc3Z/ewtmpu2bJlql6vVxctWqTu379fffrpp1U/Pz81MTHR2aFVKpmZmequXbvUXbt2qYA6e/ZsddeuXerJkydVVVXV119/XfXz81N//PFHdc+ePer999+v1q5dW83NzXVy5M71zDPPqL6+vur69evVhIQEyyMnJ8eyz7Bhw9RatWqpv//+u7pjxw61TZs2aps2bZwYtfNNmDBB3bBhg3r8+HF1z5496oQJE1RFUdTVq1erqip1ZovLR5WrqtTd1YwdO1Zdv369evz4cXXTpk1qbGysGhQUpJ4/f15V1YqpN0nc5fDee++ptWrVUnU6nXrHHXeoW7ZscXZIlc66detUoMRjwIABqqqabwmbPHmyGhoaqur1erVz587qoUOHnBt0JVBanQHqwoULLfvk5uaqw4cPV/39/VUPDw/1gQceUBMSEpwXdCUwePBgNSoqStXpdGpwcLDauXNnS9JWVakzW1yZuKXuStenTx81PDxc1el0ao0aNdQ+ffqoR44csWyviHqTZT2FEEKIKkSucQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaoQSdxCCCFEFSKJWwghhKhCJHELIYQQVYgkbiGqCYPBwKJFi2jfvj3BwcG4u7vTrFkz3njjDQoKCpwdnhCijGTKUyGqifj4eMaOHcvw4cNp2bIleXl57N27l2nTphEeHs5vv/2GVqt1dphCiOuQFrcQ1UTTpk1Zu3YtDz30EHXq1KFx48b06dOHjRs3sm/fPubMmQOAoiilPp577jnLsS5evEj//v3x9/fHw8OD7t27c/jwYcv2wYMH06xZM/Lz8wEoKCigZcuW9O/fH4ATJ06gKArx8fGW90yePBlFUSxxCCFKJ4lbiGrC1dW11PLg4GAefPBBlixZYilbuHAhCQkJlseVawcPHDiQHTt28NNPP7F582ZUVaVHjx4YDAYA3n33XbKzs5kwYQIAL774Imlpabz//vulxnDmzBnmzJmDu7u7Iz6qEDe10v8lCyFuWk2aNOHkyZNWZQaDAY1GY3nt5+dHWFiY5bVOp7M8P3z4MD/99BObNm2ibdu2ACxZsoTIyEiWL1/OI488gpeXF4sXL6ZDhw54e3szZ84c1q1bh4+PT6kxvfjii/Tp04c1a9Y48qMKcVOSxC1ENbNy5UpLy7jYm2++yeLFi8v0/gMHDuDq6krr1q0tZYGBgTRo0IADBw5Yytq0acO4ceN4+eWXGT9+PO3bty/1eH///Tc//PADhw4dksQtRBlI4haimomKiipRdvToUerXr+/Q85hMJjZt2oRGo+HIkSNX3W/s2LGMGzeO8PBwh55fiJuVXOMWoppITU0lMzOzRPmOHTtYt24dffv2LdNxGjVqRGFhIVu3brWUXbhwgUOHDtG4cWNL2cyZMzl48CAbNmxg1apVLFy4sMSxfvrpJ/7991/GjRtnxycSonqSxC1ENXHq1ClatGjB/PnzOXLkCMeOHeOLL77g/vvv56677rIaNX4t9erV4/7772fo0KH8+eef7N69myeffJIaNWpw//33A7Br1y6mTJnCp59+Srt27Zg9ezajRo3i2LFjVsd68803eeWVV/Dw8HD0xxXipiWJW4hqomnTpkydOpVFixZx55130qRJE958801GjhzJ6tWrrQagXc/ChQtp1aoV9913H23atEFVVVauXIlWqyUvL48nn3ySgQMH0rNnTwCefvppOnXqRL9+/TAajZbjxMTEMGDAAId/ViFuZjIBixBCCFGFSItbCCGEqEIkcQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaoQSdxCCCFEFSKJWwghhKhCJHELIYQQVYgkbiGEEKIK+X8UjWlFv06cagAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_100.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_100.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zPAyv-kzb5s6", + "outputId": "7bf8991c-f122-408d-b657-a62c21c28652" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9436 - loss: 0.2091\n", + "Lossontestdata: 0.20427274703979492\n", + "Accuracyontestdata: 0.9438999891281128\n" + ] + } + ], + "source": [ + "scores_2l_100=model_2l_100.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_100[0])\n", + "print('Accuracyontestdata:',scores_2l_100[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YA-uMXpAb9Lm" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_300 = Sequential()\n", + "model_2l_300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_300.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "XuNfGZBtcB9y", + "outputId": "a7f1866c-6a08-4c5c-dd3c-631aa53926cc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_3\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_3\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m300\u001b[0m) │ \u001b[38;5;34m235,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_6 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m3,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_5 (Dense)                 │ (None, 300)            │       235,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_6 (Dense)                 │ (None, 10)             │         3,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ], + "text/html": [ + "
     Total params: 238,510 (931.68 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ], + "text/html": [ + "
     Trainable params: 238,510 (931.68 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_300.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Xitmk0EcDXW", + "outputId": "71ff6e9a-7026-41e7-a488-a70188d483f2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.5528 - loss: 1.7901 - val_accuracy: 0.8203 - val_loss: 0.8592\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8386 - loss: 0.7584 - val_accuracy: 0.8618 - val_loss: 0.5684\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8667 - loss: 0.5470 - val_accuracy: 0.8748 - val_loss: 0.4692\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8820 - loss: 0.4562 - val_accuracy: 0.8857 - val_loss: 0.4180\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8882 - loss: 0.4171 - val_accuracy: 0.8907 - val_loss: 0.3849\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8947 - loss: 0.3853 - val_accuracy: 0.8945 - val_loss: 0.3657\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3605 - val_accuracy: 0.9007 - val_loss: 0.3484\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9029 - loss: 0.3491 - val_accuracy: 0.9048 - val_loss: 0.3384\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9011 - loss: 0.3418 - val_accuracy: 0.9040 - val_loss: 0.3294\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9073 - loss: 0.3307 - val_accuracy: 0.9077 - val_loss: 0.3223\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9055 - loss: 0.3271 - val_accuracy: 0.9077 - val_loss: 0.3149\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9073 - loss: 0.3190 - val_accuracy: 0.9125 - val_loss: 0.3084\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9110 - loss: 0.3118 - val_accuracy: 0.9113 - val_loss: 0.3046\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9113 - loss: 0.3054 - val_accuracy: 0.9127 - val_loss: 0.2996\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9119 - loss: 0.3018 - val_accuracy: 0.9138 - val_loss: 0.2966\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2951 - val_accuracy: 0.9143 - val_loss: 0.2926\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9143 - loss: 0.2991 - val_accuracy: 0.9162 - val_loss: 0.2902\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2885 - val_accuracy: 0.9165 - val_loss: 0.2859\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9159 - loss: 0.2888 - val_accuracy: 0.9160 - val_loss: 0.2831\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9192 - loss: 0.2835 - val_accuracy: 0.9158 - val_loss: 0.2805\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9190 - loss: 0.2817 - val_accuracy: 0.9178 - val_loss: 0.2783\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9207 - loss: 0.2744 - val_accuracy: 0.9182 - val_loss: 0.2753\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9218 - loss: 0.2724 - val_accuracy: 0.9188 - val_loss: 0.2742\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2702 - val_accuracy: 0.9198 - val_loss: 0.2709\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9216 - loss: 0.2714 - val_accuracy: 0.9182 - val_loss: 0.2692\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9245 - loss: 0.2650 - val_accuracy: 0.9217 - val_loss: 0.2665\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9237 - loss: 0.2650 - val_accuracy: 0.9228 - val_loss: 0.2638\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9258 - loss: 0.2602 - val_accuracy: 0.9228 - val_loss: 0.2619\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9253 - loss: 0.2593 - val_accuracy: 0.9222 - val_loss: 0.2608\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9264 - loss: 0.2600 - val_accuracy: 0.9240 - val_loss: 0.2580\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9278 - loss: 0.2537 - val_accuracy: 0.9230 - val_loss: 0.2575\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2526 - val_accuracy: 0.9247 - val_loss: 0.2552\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9283 - loss: 0.2503 - val_accuracy: 0.9252 - val_loss: 0.2511\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9291 - loss: 0.2496 - val_accuracy: 0.9250 - val_loss: 0.2509\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9318 - loss: 0.2444 - val_accuracy: 0.9260 - val_loss: 0.2484\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9291 - loss: 0.2486 - val_accuracy: 0.9273 - val_loss: 0.2452\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9304 - loss: 0.2447 - val_accuracy: 0.9287 - val_loss: 0.2437\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9321 - loss: 0.2355 - val_accuracy: 0.9260 - val_loss: 0.2446\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9335 - loss: 0.2358 - val_accuracy: 0.9287 - val_loss: 0.2413\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9337 - loss: 0.2346 - val_accuracy: 0.9288 - val_loss: 0.2369\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9326 - loss: 0.2387 - val_accuracy: 0.9283 - val_loss: 0.2371\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9327 - loss: 0.2357 - val_accuracy: 0.9285 - val_loss: 0.2347\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9345 - loss: 0.2281 - val_accuracy: 0.9290 - val_loss: 0.2327\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9366 - loss: 0.2256 - val_accuracy: 0.9308 - val_loss: 0.2319\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9359 - loss: 0.2239 - val_accuracy: 0.9307 - val_loss: 0.2287\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9377 - loss: 0.2224 - val_accuracy: 0.9320 - val_loss: 0.2273\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9373 - loss: 0.2172 - val_accuracy: 0.9335 - val_loss: 0.2260\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9371 - loss: 0.2191 - val_accuracy: 0.9335 - val_loss: 0.2238\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9378 - loss: 0.2159 - val_accuracy: 0.9342 - val_loss: 0.2205\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9395 - loss: 0.2136 - val_accuracy: 0.9347 - val_loss: 0.2197\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_300 = model_2l_300.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1LkgLfwmdEZJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "72d41f55-dd67-4fd4-c915-63157e2bb252" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgKFJREFUeJzt3Xd4U+XbwPFvmtm9J5QWKBuhCIIoCmgBQRGcKMpUEIFXpgI/QcAFDhAHihsVUdwTkYoMRQQEypAhpWxKKd07aXLeP0IDoQWaNiUNvT/XlavJc07OuXO3cOc55znPUSmKoiCEEEIIt+Dh6gCEEEIIUXlSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCOEUFouF06dPk5KS4upQhLiiSeEWQlTZyZMnGT9+PDExMeh0OkJDQ2nZsiW5ubmuDk2IK5bG1QGIumfo0KF89dVX5OfnuzoUUQ3Jycl0794dk8nEY489xtVXX41Go8HT0xNvb29XhyfEFUsKt7gsMjIy+PTTT/njjz9Yt24dRUVF3HLLLbRr1457772Xdu3auTpE4aBHHnkEnU7H33//Tb169VwdjhB1hkpuMiJq2ueff86IESPIz88nNjYWk8nEyZMnadeuHdu3b8dkMjFkyBDeeecddDqdq8MVlbBlyxY6dOjAypUr6dGjh6vDEaJOkXPcokatX7+eBx98kIiICNavX8/BgwdJSEjAYDCwefNmTpw4wf33389HH33EhAkTAFAUhdjYWPr161due8XFxfj7+/PII48AsGbNGlQqFV999VW5dX18fBg6dKjt9eLFi1GpVBw6dMjW9u+//xIYGMhtt91GaWmp3Xr//POP3fZOnz6NSqVi1qxZdu0Vtb300kuoVCq6detm156SksI999xDVFQUHh4eqFQqVCoVrVu3vlgaASgtLeWZZ56hcePG6PV6YmNj+d///kdJSYnderGxsdx22212bWPHjkWlUtm1/fbbb6hUKn766SdbW7du3crFvHnzZlucZf7++28MBgMHDhygVatW6PV6IiIieOSRR8jMzLR7f0XbfO655/Dw8GDp0qUO7/tCunXrZlu3ose5v3eAN9980xZ7VFQUY8aMITs7+6L7yMvL4+GHHyYmJga9Xk/9+vUZNWoUaWlpduuV/Q1d6HH+38u2bdvo3bs3fn5++Pj4cPPNN/P333/bliuKQvfu3QkNDeXUqVO2dqPRyFVXXUXjxo0pKCgA4PDhw4wePZpmzZrh6elJcHAw99xzT7nPXxajTqcjPT3dbtmGDRtssZ7/70C4nhwqFzVq7ty5WCwWPv/8c9q3b19ueUhICB9//DG7d+/m7bffZubMmYSFhfHggw/y4osvkpmZSVBQkG39H3/8kdzcXB588MFqx3b06FFuueUWmjdvzhdffIFG45x/DtnZ2cyZM6dcu9ls5vbbb+fw4cOMHz+epk2bolKpeO655yq13YcffpiPPvqIu+++m0mTJrFx40bmzJnDnj17+Pbbb50Se0WmTJlSri0jI4Pi4mIeffRRbrrpJkaNGsWBAwdYuHAhGzduZOPGjej1+gq39+GHHzJ9+nTmzZvHwIEDHd73xdSvX79c7pcvX85nn31m1zZr1ixmz55NQkICjz76KPv27eOtt95i8+bNrF+/Hq1WW+H2MzMz2bFjBw8//DAREREkJyezaNEiVqxYwaZNmwgLC7Nb/+mnn6Zhw4a21/n5+Tz66KN26/z777/ccMMN+Pn58cQTT6DVann77bfp1q0ba9eupVOnTqhUKj744APatGnDqFGj+OabbwCYOXMm//77L2vWrLGNK9i8eTN//fUX9913H/Xr1+fQoUO89dZbdOvWjd27d+Pl5WW3f7VazZIlS2xfnMH6OzIYDBQXF1cm7eJyU4SoQUFBQUpMTIxd25AhQxRvb2+7thkzZiiA8uOPPyqKoij79u1TAOWtt96yW+/2229XYmNjFYvFoiiKoqxevVoBlC+//LLcvr29vZUhQ4bYXn/44YcKoBw8eFDJzMxUWrZsqTRr1kw5ffq03fvK1tu8ebNde3p6ugIoM2fOtGs/v+2JJ55QwsLClPbt2ytdu3a1tZd9pjlz5ti9v2vXrkqrVq3KxX+upKQkBVAefvhhu/bJkycrgPL777/b2mJiYpRbb73Vbr0xY8Yo5/9zT0xMtMt5WSznxrx8+XIFUG655Ra798+cOVMBlJtvvlkpLS21tZfl7vXXX69wmz///LOi0WiUSZMmlfuMld33hVwojy+99JLt964oinLq1ClFp9MpPXv2VMxms229N954QwGUDz744JL7OteuXbsUvV6vDB8+3NbmyN9Q//79FZ1Opxw4cMDWduLECcXX11e58cYb7d7/9ttvK4CyZMkS5e+//1bUarUyfvx4u3UKCwvLxbhhwwYFUD7++ONyMd5///3KVVddZWsvKChQ/Pz8lIEDB1b4GYTryaFyUaPy8vLK9UIqEh4eDmC7jKhp06Z06tSJTz/91LZOZmYmv/zyCw888EC5Q6d5eXmcPn3a7nEhxcXF3H777aSnp7NixQqCg4Or8tEqdPz4cV5//XVmzJiBj49PuRiBKu1v+fLlAEycONGufdKkSQD8/PPPVQn3ohRFYdq0adx111106tSpwnUmTpyIWq22vR40aBDh4eEVxrNp0ybuvfde7rrrLl566aVq77uqfvvtN4xGI+PHj8fD4+x/gSNGjMDPz++SuSy7Xr3sER4eTp8+ffj666+xWCwOxWI2m1m5ciX9+/enUaNGtvbIyEgGDhzIn3/+aXdp3ciRI+nVqxf/93//x6BBg2jcuDHPP/+83TY9PT1tz00mExkZGcTFxREQEMDWrVvLxTBo0CD27t1rOyT+9ddf4+/vz8033+zQZxGXjxRuUaOioqI4cODAJddLTk4GsBudPHjwYNavX8/hw4cB+PLLLzGZTAwaNKjc+4cPH05oaKjdo+yc3/mGDRvGn3/+SV5enu28trPMnDmTqKgo2zn4czVr1ozAwEDmzZvH+vXrSU9P5/Tp05hMpktu9/Dhw3h4eBAXF2fXHhERQUBAgC1HzvTpp5/y77//lisMgO2LU/Pmze3a1Wo1TZo0KXc+9fjx49x6660UFBSQkZFxyXPWF9t3dZXlqlmzZnbtOp2ORo0aXTKXR44cKfe39u2335KTk3PRL4wVSU9Pp7CwsFwsAC1atMBisXD06FG79vfff5/CwkL279/P4sWL7Qo1QFFREU899RTR0dHo9XpCQkIIDQ0lOzubnJyccvsJDQ3l1ltv5YMPPgDggw8+YMiQIXZfakTtIr8ZUaNuu+02MjMzef/99y+4TlpaGh999BGhoaFce+21tvb77rsPrVZr63UvWbKEDh06VPif3FNPPUViYqLdw2AwVLi/rVu38v333xMaGsrIkSOr+QnP2rNnD4sXL+bZZ5+t8Bypj48Py5Yto6CggC5duhAWFkZoaCh//fVXpfdRmUFazmA0GpkxYwYPPfQQTZs2Lbf8/GJxKcnJyTRo0IBPPvmE3377jY8++qjK+3a1iIiIcn9r999//2Xb/5o1a2wDEnfu3Flu+f/93//x3HPPce+99/LFF1+wcuVKEhMTCQ4OvuARgeHDh/PZZ5+xZ88e1q1bZzeoU9Q+MjhN1Kjp06fz3Xff8eijj7J3714GDhyI2WwGrD2XVatW8dRTT5GVlcXSpUvtBjQFBQVx66238umnn/LAAw+wfv16FixYUOF+rrrqKhISEuzazj2Ee6733nuP22+/HbVazW233cb777/PQw89VO3POm3aNOLj4xkwYMAF1+nRowcvvvgiDzzwAIsWLaJRo0ZMmjTJlpMLiYmJwWKxsH//flq0aGFrT0tLIzs7m5iYmGrHf64333yTU6dOlRv9XKZswNW+ffvsDvGWxXj+dfmRkZEsX76c8PBwvv/+eyZNmkSfPn0IDQ11eN/VVZar82M3Go22qx4uxmAwlFvntddew8/Pj5CQEIdiCQ0NxcvLi3379pVbtnfvXjw8PIiOjra1paam8n//93/07NkTnU7H5MmT6dWrl93v/6uvvmLIkCHMmzfP1lZcXHzREfO9e/fGYDBw33330aVLFxo3bswff/zh0GcRl4/0uEWNioiIYMOGDfTu3Zt58+Zx9dVXs2TJEgoKCoiJiWH48OF4enry448/VthrGTRoELt37+bxxx9HrVZz3333VTumG264AYBbb72V++67j8cff7zc5TyO2rBhA99//z1z5869aK/46NGjjB49mscee4yRI0eSkJBAYGDgJbffp08fgHJfXObPnw9YP4uz5OXl8dxzzzFhwgQiIiIqXOfmm29Gr9fz2muv2fXiPv30U9LS0spdjta0aVPbOIbXX38di8XCuHHjqrTv6kpISECn0/Haa6+hnDONxfvvv09OTs5Fc1lRj3Xbtm388ssv9O/f3+HDy2q1mp49e/L999/bnV5IS0tj6dKldOnSBT8/P1v7iBEjsFgsvP/++7zzzjtoNBoeeughu8+hVqvtXoM15xf7cqjRaBg8eDA7duxg+PDhDn0GcflJj1vUuOjoaL7//ntSU1NZv349L730EklJSSxatIj4+Hji4+MvWOxuvfVWgoOD+fLLL+ndu3elBro54tVXX6VFixb83//9H1988YXdsg0bNtidsywbJJScnMymTZvo2LGjbVnZRCQX661ZLBYGDRpE/fr1mTt3rkNxtm3b1jZJTXZ2Nl27dmXTpk189NFH9O/fn+7du9utXzbwrsyRI0cA7NqSkpIq3NfWrVsJCQnhiSeeuGA8QUFBTJ8+nRkzZtCrVy/69etHSkoKb7zxBm3btuXhhx++4HsjIiJ46aWXePjhh3nwwQdtX0oqu+/qCg0NZdq0acyePZtbbrmF22+/nX379vHmm29yzTXXXPRSwyNHjnDrrbdyzz33UK9ePXbt2sW7775LSEhIlc/HP/vssyQmJtKlSxdGjx6NRqPh7bffpqSkhBdffNG23ocffsjPP//M4sWLqV+/PmAtyA8++CBvvfUWo0ePBqynpz755BP8/f1p2bIlGzZs4LfffrvkoMhnnnmGxx9/vFJfJIWLuXRMu6iTKroc7GJGjx6tAMrSpUvLLavq5WDn+uijjxRA+eGHH+zWu9jj3MuWAEWlUilbtmyx2+75lzc9//zzil6vV7Zv315uvUtdDqYoimIymZTZs2crDRs2VLRarRIdHa1MmzZNKS4utlsvJibmkvGf+zj/cjBAeeWVV+y2WXb51/kWLlyoNG/eXNFqtUp4eLjyyCOPKBkZGRfNQ5mbbrpJadCggZKXl1elfZ+vspeDlXnjjTfsYn/00UeVrKysi+4jLy9PGTFihBITE6PodDolNDRUGTRokHL48GG79Ry9pHDr1q1Kr169FB8fH8XLy0vp3r278tdff9mWHz16VPH391f69u1bLqY77rhD8fb2VlJSUhRFUZSsrCxl2LBhSkhIiOLj46P06tVL2bt3rxITE1Phv4cLXe51qeXCdWTKU1HrTZgwgffff5+TJ0+WmzzCFWbNmsWaNWtYs2aNq0MRQtRBco5b1GrFxcUsWbKEu+66q1YUbSGEcDU5xy1qpVOnTvHbb7/x1VdfkZGRUeFAJleJi4ujsLDQ1WEIIeooOVQuaqU1a9bQvXt3wsLCmDFjBmPHjnV1SEIIUStI4RZCCCHciJzjFkIIIdyIFG4hhBDCjdS5wWkWi4UTJ07g6+t72eZ9FkIIIS5GURTy8vKIioq65Ax8da5wnzhxwm7uXyGEEKK2OHr0qG1mvAupc4Xb19cXsCbn3DmAq8JkMrFy5Up69uxZ4d2gxIVJ7qpG8lZ1kruqkbxVnSO5y83NJTo62lajLqbOFe6yw+N+fn5OKdxeXl74+fnJH7SDJHdVI3mrOsld1Ujeqq4quavMKVwZnCaEEEK4ESncQgghhBuRwi2EEEK4kTp3jluIuspsNmMymVwdhsuYTCY0Gg3FxcWYzWZXh+M2JG9VV5a7kpISADQajVMuQ5bCLUQdkJ+fz7Fjx6jLMxwrikJERARHjx6VORwcIHmrurLcHTlyBJVKhZeXF5GRkeh0umptVwq3EFc4s9nMsWPH8PLyIjQ0tM7+52uxWMjPz8fHx+eSE1yIsyRvVVeWO29vb0pLS0lPT+fgwYM0adKkWrmUwi3EFc5kMqEoCqGhoXh6ero6HJexWCwYjUYMBoMUIAdI3qquLHeenp54eHig1Wo5fPiwLZ9VJb8FIeqIutrTFqK2cNYXHyncQgghhBuRwi2EuCLV5RH07kx+b5cmhVsIcUVISkpiyJAhNG3alMDAQPz8/MjJyXF1WOISUlJSePTRR2nZsiXBwcF4enqyd+9eV4dVq0nhFkLUWkePHmX48OFERUWh0+mIiYlh3LhxZGRk2K23Zs0aunTpQkREBJ9//jmbN28mOTkZf39/F0UuKmPPnj20b9+e0tJSPvjgAzZu3MiBAwdo3ry5q0Or1VxauNetW0ffvn2JiopCpVLx3XffVfq969evR6PREB8fX2PxCSFcJyUlhQ4dOrB//34+++wzkpOTWbRoEatWraJz585kZmYC1mtlR4wYwYIFC3jhhRe4+uqriYuLo169ei7+BOJSxo4dy5gxY3j33Xe59tpriYuLIyYmxtVh1XouLdwFBQW0bduWhQsXOvS+7OxsBg8ezM0331xDkVXOu38eZG6Smg//OuzSOIRwhKIoFBpLXfJwZAKYMWPGoNPpWLlyJV27dqVBgwb07t2b3377jePHj/Pkk08CsHfvXg4fPkxycjIxMTEYDAauvfZa/vzzT9vnjYuLY968eXbbT0pKQqVSkZyczJo1a1CpVGRnZ9uWDx06lP79+9ter1ixgi5duhAQEEBwcDC33XYbBw4csC0/dOgQKpWKpKQkAI4fP84999xDWFgYvr6+3HHHHRw7dsy2/qxZs+w6HtnZ2ahUKtasWXPBGA4cOEC/fv0IDw/Hx8eHa665ht9++83uc6WmpnLnnXcSHByMSqWyPc79bOfbuXMnN910E56engQHBzNy5Ejy8/Nty0ePHs0dd9xRLneHDh2ytXXr1o3x48fbXsfGxrJgwQLb61WrVqFSqWyfp6CggNWrV2M0GmnSpAkGg4GrrrqK77///oI5LSkpISEhgYSEBNtsZJs3b6ZHjx6EhITg7+9P165d2bp16wU/65XApddx9+7dm969ezv8vlGjRjFw4EDUavUle+klJSW2XzBY73kK1gEQ1R0EkZ5bTGqRihNZhTKgwkFl+ZK8OaYqeSu7jttisWCxWCg0ltJ6VmJNhXhRu2b1wEt36f92MjMz+fXXX3n22WfR6/VYLBbbsrCwMAYOHMiyZct44403SEtLw2Qy8cknn/D222/TsGFDXnvtNW655Rb27dtHZGQkw4YNY/HixYwYMcKWiw8++IAbb7yRRo0aceTIEQBbjsBa8MvWBcjLy2P8+PG0adOG/Px8Zs6cyR133MHWrVvx8PCwrWexWCgpKaFPnz5otVq+//57tFotEyZMoH///mzcuBGVSmX7EnPu+y4VQ25uLrfccgvPPPMMer2eTz75hL59+7Jnzx4aNGgAwMSJE/nvv/9Yvnw50dHR/PXXX9xzzz122z1XQUEBvXr14tprr2Xjxo2cOnWKkSNHMmbMGD788EO7L1sXi7Us3opeWywWJk2ahI+Pj60tPT0dRVF4++23efPNN2nfvj2fffYZd955J5s3byY+Pt5uPyaTiQEDBpCfn8/KlSvRarVYLBZycnIYNGgQr776KoqiMH/+fPr06cO+ffsqdW/rmlSWu3PzoCgKJpMJtVptt64j/6bdbgKWDz/8kJSUFJYsWcKzzz57yfXnzJnD7Nmzy7WvXLkSLy+vasVy4qgH4EHywcMsX36wWtuqqxITXVNA3J0jedNoNERERJCfn4/RaKTI6Lr5pvNy8yjVqS+5XlJSEoqiEBMTY/uyfa6GDRuSlZVFSkqKrWc4a9YsunTpAlj/3a9atYpXXnmF6dOnc+eddzJz5ky2bNlC+/btMZlMLF26lGeeeYbc3FxbgTh16pTtWluTyURpaalt/z169LDtPywsjAULFhAXF8emTZto2bKlLY6CggJ++OEHduzYwYYNG2zna998803atWvHjz/+SLdu3SgpKcFsNtu2n5eXB0BhYaFdB+PcGBo2bEjDhg1tcUyePJmvv/6aL774gpEjRwKwbds27rnnHpo1awZgm+gjLy+vwuuIP/roI4qKinj99dfx9vamQYMGzJ07l/vvv58nn3ySsLAwALs4CgoKAOtUumVtpaWlGI1G22uLxUJxcTG5ubl8+umnFBUV0bt3bwoKCsjNzbWt99hjj3HrrbcCMGHCBNauXcvcuXN55513bDnNz89n0KBB/Pfff/z8889YLBbb+zt06GD3eV566SW+/PJLfvnlF2655ZZyn9cVyn63RqORoqIi1q1bR2lpqd06hYWFld6eWxXu/fv3M3XqVP744w80msqFPm3aNCZOnGh7nZubS3R0ND179sTPz69a8Rxancyvx1IIiYiiT5821dpWXWMymUhMTKRHjx6VvsG8qFreiouLOXr0KD4+PhgMBnwVhV2zelz6jTXAU6uu1EQw3t7egLXoVPTvtKwY+fr62r6AJyQk2K17/fXXc+DAAfz8/PDz86NPnz4sWbKEbt268e2332I0Ghk0aBBeXl7Ex8ej0+n4+eefmTBhAgBarRaNRmPb5v79+5k5cyabNm3i9OnTtmKfmZmJn58fPj4+APTq1Quz2UxAQAAdO3a0xdOqVSuio6M5fPgwfn5+6PV61Gq1bftl2/Py8rK1nR9Dfn4+s2fPZvny5aSmplJaWkpRURHp6em2dRo1asTq1asZN24cQUFBtvz4+vpWmMtDhw4RHx9PZGSkra1Hjx5YLBZOnDhB48aNAeziKPv9+Pj42No0Gg06nc722sPDA4PBgEaj4fnnn+fNN9/km2++oaSkxC5fN910k11cXbt25ccff7Rb5+mnn2bVqlUMHTq03DnwtLQ0ZsyYwdq1azl16hRms5nCwkIyMjKq/X98dSmKQl5eHr6+vqhUKoqLi/H09OTGG28sN3NaRV9QL8RtCrfZbGbgwIHMnj2bpk2bVvp9er0evV5frl2r1Va7YHgbrO83mZHiU0XO+D3URY7kzWw2o1Kp8PDwsPW4fNSX7vW6UtOmTVGpVOzbt6/CXuLevXsJDAwkPDyctLQ0ALvPB5T7zA899BCDBw/mjTfe4KOPPmLAgAG2whASEsL8+fOZMGEC06dPR61WU1JSwq233mp7f79+/YiJieHdd98lKioKi8VC69atKS0ttdvPsmXL2LNnD3PmzKkw9rJ1y77AlK1z7s+y52Xnp8teP/HEEyQmJvLyyy8TFxeHp6cnd999NyaTybbOggULeOCBBwgLC8PLy8t2R6/z83Nuns7d//mxnPtF62Kxnpvzc1/PmzePZs2a0a9fP7799lvbOsHBwRfcxvm/uz179vDLL79w5513ct9999GrVy/b+sOGDSMjI4NXX32VmJgY9Ho9nTt3tsuJq5R9GTv386hUqgr//Try/6DbXA6Wl5fHP//8w9ixY9FoNGg0Gp5++mm2b9+ORqPh999/v+wxGbTW//yKTHKrOyGcKTg4mB49evDmm29SVFRkt+zkyZN8+umnDBgwAJVKRePGjdFoNKxfv962jsVi4a+//qJly5a2tj59+uDt7c2iRYtYsWIFw4cPt9vumDFjyMnJYdeuXSQlJXH77bfblmVkZLBv3z6mT5/OzTffTIsWLcjKyqow9ujoaLp06UJ2dja7d++2tR89epSjR4/axeSo9evXM3ToUO644w6uuuoqIiIi7AaIgfVLz9ChQ4mNjWXjxo289957F91mixYt2L59u+3wd9l+PDw8bIfbqyo1NZV58+aVGxgI4O/vT0REhN3vDeDPP/8sl6NPPvnEdm5/xIgRdr3T9evX89hjj9GnTx9atWqFXq/n9OnT1Yq7tnObwu3n58fOnTtJSkqyPUaNGkWzZs1ISkqiU6dOlz2mssJdXCqFWwhne+ONNygpKaFXr16sW7eOo0ePsmLFCnr06EG9evV47rnnAOvh2hEjRvD444+zfPly9uzZw+jRozlx4gSjR4+2bU+tVnP//ffzv//9jyZNmtC5c+dy+/T09KRx48bExcXZDWwKDAwkODiYd955h+TkZH7//Xe7U3Dnu+666+jUqRODBw9m06ZNbN26lQceeID4+Hhuuukm23qKolBcXExxcbFtEK3RaLS1mc1m28AsgCZNmvDNN9+QlJTE9u3bGThwYLkBZ3///Tf/+9//+Oqrr2jVqtUlL4t74IEHMBgMDBkyhF27drF69Wr+7//+j0GDBhEeHm5br+ycdXFxMUajEbAO/i1rq2jg28KFC7njjjto165dhfueMGECL7zwAp9//jn//fcfs2bNYvXq1UyePNluvaCgINv60dHRdrlv0qQJn3zyCXv27GHjxo088MADV/zNdFx6qDw/P5/k5GTb64MHD5KUlERQUBANGjRg2rRpHD9+nI8//hgPDw9at25t9/6wsDAMBkO59svFoLF+7yk2lf+DFUJUT5MmTfjnn3+YOXMm9957L5mZmURERNC/f39mzpxp+88c4OWXX0alUjFkyBByc3O5+uqr+fXXX+3O2wIMGjSI+fPnM2zYMIdi8fDw4PPPP+exxx6jdevWNGvWjNdee41u3bpd8D1ff/01Y8eOtV222qNHD1577TW7Q887duwoV2TOPQxcZsSIESxevJj58+czfPhwrrvuOkJCQpgyZYpd7zM9PZ177rmH+fPnc/XVV1fqs3l5efHrr78ybtw4rrnmGry8vLjrrruYP3++3Xo//fRTuVjPnyjl/H1aLBbbF6yKTJo0iby8PCZNmkR6ejrNmzfnm2++oW3bthWu7+HhwYcffkh8fDz33nsvPXv25P3332fkyJFcffXVREdH8/zzz5cr/FccxYVWr16tAOUeQ4YMURRFUYYMGaJ07dr1gu+fOXOm0rZtW4f2mZOTowBKTk5O1QM/47d/TygxU35Sei9YW+1t1TVGo1H57rvvFKPR6OpQ3EpV8lZUVKTs3r1bKSoqqsHIaj+z2az8/PPPilarVU6ePOnqcCrt22+/tf2f6Apms1nJyspSzGazy2JwV+fn7mL/Fh2pTS7tcXfr1u2iEzIsXrz4ou+fNWsWs2bNcm5QDtDbetxyqFyI2qykpIS0tDReeOEF7r77brtDwLWdWq2WAZzCjtuc466NPMvOccuhciFqtc8++4yGDRuSk5PDCy+84OpwHNK3b1/effddV4chahEp3NVg0FrTJ6PKhajdhg4dislkYs2aNTKHuXB7UriroWxUeUmp9LiFEEJcHlK4q+Hc67gvdq5eCCGEcBYp3NXgeeZQuaKA0Sy9biGEEDVPCnc1lPW4AYqNUriFEELUPCnc1aBVe+CB9RC5zJ4mhBDicpDCXU1lnW5X3ipRCCFE9TlyT2xXksJdTWdOc0uPWwgh3My3337LrbfeSmxsLD4+Ptxwww2uDqlSpHBXk+5MBqXHLYRzDR061HaLR5VKRXBwMLfccgs7duxwdWjiCjBnzhxGjBjBbbfdxs8//0xSUhLLly93dViV4jb3466tbD1umT1NCKe75ZZb+PDDDwHr7TynT5/ObbfdxpEjR1wcmXBnKSkpPP/88/z999+0atXK1eE4THrc1aSzFW7pcQs3oShgLHDNw8H5DvR6PREREURERBAfH8/UqVM5evQo6enptnWmTJlC06ZN8fLyolGjRsyYMaPcucpDhw6hVqsJDAxErVbbevHZ2dmA9b4H8fHxtvWNRiNxcXF265SJjY21OxKgUqn47rvvbMtXrFhBly5dCAgIIDg4mNtuu40DBw7YxaJSqUhKSiq33QULFthed+vWjfHjx9te79u3D61WaxenxWLh6aefpn79+uj1euLj41mxYoXD+zr/M1S0/08++YQOHTrg6+tLREQEAwcO5NSpU3bv+emnn2jbti2enp623PTv35+Leeutt2jcuDE6nY5mzZrxySef2C0/P7bx48fb3ZXt/M+4Zs2acr+3QYMG2W3n119/pXHjxjz33HOEhobi6+vLnXfeybFjx2zvOf9vYuvWrQQEBNjd33z+/PlcddVVeHt7Ex0dzejRo8nPz7/o53UG6XFXk1YKt3A3pkJ4Pso1+/7fCdB5V+mt+fn5LFmyhLi4OIKDg23tvr6+LF68mKioKHbu3MmIESPw9fXliSeesK1TNkHSd999xzXXXMPff//NXXfddcF9vfHGG6SlpV1w+dNPP82IESMAyt06tKCggIkTJ9KmTRvy8/N56qmnuOOOO0hKSsLDo+p9pccffxyDwWDX9uqrrzJv3jzefvtt2rVrxwcffMDtt9/Ov//+S5MmTaq8r4qYTCaeeeYZmjVrxqlTp5g4cSJDhw61HV7Ozs5mwIABPPzww3z33Xd4enoybtw4233GK/Ltt98ybtw4FixYQEJCAj/99BPDhg2jfv36dO/e3Slxb9myhR9++MGuLT09ne3bt+Pr68svv/wCwLhx4+jfvz+bN2+2u/UqwN69e+nVqxfTp0/n4YcftrV7eHjw2muv0bBhQ1JSUhg9ejRPPPEEb775plNivxAp3NWk81AAlcxXLkQN+Omnn/Dx8QGsBTEyMpKffvrJrgBOnz7d9jw2NpbJkyfz+eef2xXush54WFgYERERdvfyPl9mZibPPvssU6ZMYcaMGeWWl5SUEBQURERERIXvP/8LwQcffEBoaCi7d++mdevWlfjU5a1evZq//vqLhx9+mNWrV9vaX375ZaZMmcJ9990HwAsvvMDq1atZsGABCxcurNK+LmT48OG2vDdq1IjXXnuNa665hvz8fHx8fPjvv/8oLCxkypQpREVZvxh6enpetHC//PLLDB06lNGjRwMwceJE/v77b15++WWnFe6JEyfy+OOP2/0uLRYLarWapUuXEh0dDcDSpUtp3Lgxq1atIiEhwbbu4cOH6dGjByNHjix3n+9zj0jExsby7LPPMmrUKCnctZ2c4xZuR+tl7fm6at8O6N69O2+99RYAWVlZvPnmm/Tu3ZtNmzYRExMDwLJly3jttdc4cOAA+fn5lJaW4ufnZ7ed3NxcALy9L93bf/rpp+nevTtdunSpcHlmZma57Z9r//79PPXUU2zcuJHTp09jsVj/bzhy5EiVCreiKEyaNImZM2eSkZFha8/NzeXEiRNcf/31dutff/31bN++3a7tuuuus/uyU1hYWG4/999/P2r12UmlioqK7A4Vb9myhaeffprt27eTlZVl97latmxJdHQ0Go2Gzz77jAkTJlTq6MKePXsYOXJkufhfffXVS763Mr777jtSUlKYNGlSuS9h0dHRtqINEBMTQ/369dm9e7etcGdnZ5OQkMCxY8fo1atXue3/9ttvzJkzh71795Kbm0tpaSnFxcUUFhbi5eXY37oj5Bx3NZUVbulxC7ehUlkPV7vicd4hyEvx9vYmLi6OuLg4rrnmGt577z0KCgpst7ncsGEDDzzwAH369OGnn35i27ZtPPnkkxiNRrvtnDhxAg8PD8LCwi66v/379/Pee+9d8Nafx44dw2g00rBhwwtuo2/fvmRmZvLuu++yceNGNm7cCFAupsr6+OOPKSgoYNSoUVV6P1i/3CQlJdkeZT3ic73yyit263To0MG2rKCggN69e+Pn58enn37K5s2b+fbbb4GznysyMpK33nqL559/HoPBgI+PD59++mmVY64uk8nEE088wXPPPYenp6fdssDAwAu+79zD5IcPH6ZTp07MmjWL4cOH233hOXToELfddhtt2rTh66+/ZsuWLbajHFX9XVeWFO5qknPcQlw+KpUKDw8PioqKAPjrr7+IiYnhySefpEOHDjRp0oTDhw+Xe9/mzZtp3rx5uXPE55syZQoPP/wwcXFxFS5fu3Ytnp6edkXtXBkZGezbt4/p06dz880306JFC7Kyshz8lGcVFhby5JNP8sILL6DVau2W+fn5ERUVxfr16+3a169fT8uWLe3aoqOjbV+A4uLi0GjKH2yNiIiwW+fcYrd//34yMjKYO3cuN9xwA82bNy83MA1gyJAhNG/enJEjR5KUlMTtt99+0c/XokWLSsVfFW+99RY+Pj4MGjSo3LLmzZtz9OhRjh49ams7fPgwx44ds9t3o0aNWLx4MU8++SR+fn5MmzbNtmzLli1YLBbmzZvHtddeS9OmTTlx4vIcyZJD5dWkO3NkSQq3EM5XUlLCyZMnAeuh8jfeeIP8/Hz69u0LQJMmTThy5Aiff/4511xzDT///LOtJwjWns+yZcuYP38+s2bNuui+kpOTOXLkCMnJyRUuP3DgAHPnzqVfv37lRppnZ2djNBoJDAwkODiYd955h8jISI4cOcLUqVMr3J7RaKS4uNj2WlEUSktLMZvNtkPWS5cupX379hccmf34448zc+ZMGjduTHx8PB9++CFJSUlO7+nWr18fnU7H66+/zqhRo9i1axfPPPNMufUmTZqESqXilVdeQavV4uvrWy5X58d/77330q5dOxISEvjxxx/55ptv+O233+zWM5lMtlyZzWYsFovt9YXOob/44ov8+OOP5QaaAfTo0YMWLVowcOBAXnnlFcA6OC0+Pp6bbrrJtp6vr6/tS87ixYvp2LEjd999NzfccANxcXGYTCZef/11+vbty/r161m0aNFFsuhESh2Tk5OjAEpOTk61t2U0GpVhr/6gxEz5SXn2p3+dEF3dYTQale+++04xGo2uDsWtVCVvRUVFyu7du5WioqIajMz5hgwZogC2h6+vr3LNNdcoX331ld16jz/+uBIcHKz4+PgoAwYMUF555RXF399fURRF+eeff5RGjRopc+bMUUwmk5KVlaWYzWZl9erVCqBkZWUpiqIoM2fOVADl5Zdftm33/HViYmLs4jn/sXr1akVRFCUxMVFp0aKFotfrlTZt2ihr1qxRAOXbb79VFEVRDh48eNHtfPjhh4qiKErXrl0VlUqlbN682RbTzJkzlbZt29pem81mZdasWUq9evUUrVartG3bVvnll19sy8v2tW3bNrucxcTEKK+88ort9bnxlenatasybtw4xWw2K1lZWcqSJUuU2NhYRa/XK507d1Z++OEHu20vXbpUCQ8PV44fP273O+zXr1/Fv+Az3nzzTaVRo0aKVqtVmjZtqnz88cd2yy+Wq3MfZXGU/d5uu+22cts59zMeOHBAufXWWxUvLy/Fx8dHueOOO5Rjx45dMNeKoihPP/20EhcXpxQUFCiKoijz589XIiMjFU9PT6VXr17Kxx9/bPc3U5Y7s9msKMrF/y06UptUZz5QnZGbm4u/vz85OTkXHWBSGSaTif97ewUrjnnw4LUNeLb/VU6K8spnMplYvnw5ffr0KXcIUFxYVfJWXFzMwYMHadiw4SUPFV/JLBYLubm5+Pn5VemyrNjYWNasWUNsbGy5Zf379y93fXFVjB8/nvj4eIYOHVqt7ThTdfNWl52fu4v9W3SkNslvoZq0HmfuDiajyoW4ooWGhtqNuj5XYGAgOp2u2vvQarUX3IcQZeQcdzXpZFS5EHXC5s2bL7isbFrW6nrppZecsh1xZZMedzWVjSovkcIthBDiMpDCXU1yHbcQQojLSQp3NcnMacJd1LFxqELUOs76NyiFu5rKruOW+3GL2qpssFNNz+YkhLi4spnXqnsljQxOqybbqPJSKdyidtJoNHh5eZGeno5Wq62zl/RYLBbbpCd1NQdVIXmrurLcFRUVUVxczKlTpwgICKj2lQNSuKvJdj9u6XGLWkqlUhEZGcnBgwcrnA60rlAUhaKiItu9okXlSN6q7vzcBQQEXPCuco6Qwl1NtnPcpXKOW9ReOp2OJk2a1OnD5SaTiXXr1nHjjTfKpD8OkLxVXVnuunbtiqenp9Ou0ZfCXU2267ilxy1qOQ8Pjzo9c5paraa0tBSDwSAFyAGSt6ory51er3fqxDpywqKazva4zTJqVwghRI2Twl1NZT1uRYESOVwuhBCihknhribtORkskWu5hRBC1DAp3NWk9gCNh3WkpcyeJoQQoqZJ4XYC/Zlud7EUbiGEEDVMCrcTeGqtowWlxy2EEKKmSeF2AoPGmkYp3EIIIWqaFG4nMJzpccuhciGEEDVNCrcTSOEWQghxuUjhdgKDbXCaXA4mhBCiZknhdoKyHrdMeyqEEKKmSeF2grJR5XJrTyGEEDVNCrcT6MtGlUuPWwghRA2Twu0Enjprj1vmKhdCCFHTpHA7gUF63EIIIS4TKdxOIJeDCSGEuFykcDtB2eVgMnOaEEKImiaF2wnO9rjlHLcQQoia5dLCvW7dOvr27UtUVBQqlYrvvvvuout/88039OjRg9DQUPz8/OjcuTO//vrr5Qn2IuRQuRBCiMvFpYW7oKCAtm3bsnDhwkqtv27dOnr06MHy5cvZsmUL3bt3p2/fvmzbtq2GI704T7mtpxBCiMtE48qd9+7dm969e1d6/QULFti9fv755/n+++/58ccfadeuXYXvKSkpoaSkxPY6NzcXAJPJhMlkcjzoc5S9X6Oyvi40llZ7m3VFWZ4kX46RvFWd5K5qJG9V50juHMmvSwt3dVksFvLy8ggKCrrgOnPmzGH27Nnl2leuXImXl5dT4ti3eyegJvVUBsuXL3fKNuuKxMREV4fgliRvVSe5qxrJW9VVJneFhYWV3p5bF+6XX36Z/Px87r333guuM23aNCZOnGh7nZubS3R0ND179sTPz69a+zeZTCQmJtKpfTve37cDg48fffp0rtY264qy3PXo0QOtVuvqcNyG5K3qJHdVI3mrOkdyV3Y0uDLctnAvXbqU2bNn8/333xMWFnbB9fR6PXq9vly7Vqt12h+hj6d1+8ZSi/xhO8iZv4e6RPJWdZK7qpG8VV1lcudIbt2ycH/++ec8/PDDfPnllyQkJLg6HLmOWwghxGXjdtdxf/bZZwwbNozPPvuMW2+91dXhAHI5mBBCiMvHpT3u/Px8kpOTba8PHjxIUlISQUFBNGjQgGnTpnH8+HE+/vhjwHp4fMiQIbz66qt06tSJkydPAuDp6Ym/v79LPgNIj1sIIcTl49Ie9z///EO7du1sl3JNnDiRdu3a8dRTTwGQmprKkSNHbOu/8847lJaWMmbMGCIjI22PcePGuST+Mp7nzJymKIpLYxFCCHFlc2mPu1u3bhctdIsXL7Z7vWbNmpoNqIr0GrXteUmpxXboXAghhHA2tzvHXRuVHSoHOc8thBCiZknhdgKt2gONh3X6NDnPLYQQoiZJ4XYST7lDmBBCiMtACreT6M8U7iKj9LiFEELUHCncTuKpO3OHsFIp3EIIIWqOFG4nMZwZWV4sPW4hhBA1SAq3k3jqzhRu6XELIYSoQVK4naSsx11klMFpQgghao4Ubicx6GS+ciGEEDVPCreTGDQyX7kQQoiaJ4XbSTylxy2EEOIykMLtJLZR5VK4hRBC1CAp3E5ytsctg9OEEELUHCncTqKXe3ILIYS4DKRwO8nZucqlcAshhKg5UridpOwe3NLjFkIIUZOkcDtJWY+7RM5xCyGEqEFSuJ3EIOe4hRBCXAZSuJ3EIOe4hRBCXAZSuJ1EznELIYS4HKRwO8nZUeVyjlsIIUTNcbhwp6Sk1EQcbk8OlQshhLgcHC7ccXFxdO/enSVLllBcXFwTMbkluY5bCCHE5eBw4d66dStt2rRh4sSJRERE8Mgjj7Bp06aaiM2tyKhyIYQQl4PDhTs+Pp5XX32VEydO8MEHH5CamkqXLl1o3bo18+fPJz09vSbirPXkULkQQojLocqD0zQaDXfeeSdffvklL7zwAsnJyUyePJno6GgGDx5MamqqM+Os9QznDE5TFMXF0QghhLhSVblw//PPP4wePZrIyEjmz5/P5MmTOXDgAImJiZw4cYJ+/fo5M85ar+zuYAAlpTKyXAghRM3QOPqG+fPn8+GHH7Jv3z769OnDxx9/TJ8+ffDwsH4HaNiwIYsXLyY2NtbZsdZqBs3Z70BFRrOtBy6EEEI4k8OF+6233mL48OEMHTqUyMjICtcJCwvj/fffr3Zw7kSj9kCrVmEyKxSXynluIYQQNcPhwr1///5LrqPT6RgyZEiVAnJnBo0ak7mUIqMUbiGEEDXD4cINkJWVxfvvv8+ePXsAaNGiBcOHDycoKMipwbkbg05NXkmpzJ4mhBCixjg8OG3dunXExsby2muvkZWVRVZWFq+//joNGzZk3bp1NRGj25BruYUQQtQ0h3vcY8aMYcCAAbz11luo1dYBWGazmdGjRzNmzBh27tzp9CDdxdl7ckvhFkIIUTMc7nEnJyczadIkW9EGUKvVTJw4keTkZKcG527kDmFCCCFqmsOF++qrr7ad2z7Xnj17aNu2rVOCclcGuUOYEEKIGubwofLHHnuMcePGkZyczLXXXgvA33//zcKFC5k7dy47duywrdumTRvnReoGpMcthBCipjlcuO+//34AnnjiiQqXqVQqFEVBpVJhNtetAuYpg9OEEELUMIcL98GDB2sijiuCQQanCSGEqGEOF+6YmJiaiOOKUDaqXCZgEUIIUVOqNAHLgQMHWLBggW2QWsuWLRk3bhyNGzd2anDuxjY4TaY8FUIIUUMcHlX+66+/0rJlSzZt2kSbNm1o06YNGzdupFWrViQmJtZEjG7DNjjNKKPKhRBC1AyHe9xTp05lwoQJzJ07t1z7lClT6NGjh9OCczee0uMWQghRwxzuce/Zs4eHHnqoXPvw4cPZvXu3U4JyV2VTnhbLOW4hhBA1xOHCHRoaSlJSUrn2pKQkwsLCnBGT2/LUSY9bCCFEzXL4UPmIESMYOXIkKSkpXHfddQCsX7+eF154gYkTJzo9QHdi0MiociGEEDXL4cI9Y8YMfH19mTdvHtOmTQMgKiqKWbNm8dhjjzk9QHdi0MmUp0IIIWqWQ4W7tLSUpUuXMnDgQCZMmEBeXh4Avr6+NRKcuzFoZOY0IYQQNcuhc9wajYZRo0ZRXFwMWAt2dYr2unXr6Nu3L1FRUahUKr777rtLvmfNmjVcffXV6PV64uLiWLx4cZX372y2c9xSuIUQQtQQhwendezYkW3btjll5wUFBbRt25aFCxdWav2DBw9y66230r17d5KSkhg/fjwPP/wwv/76q1Piqa6zdweTwi2EEKJmOHyOe/To0UyaNIljx47Rvn17vL297ZY7ckew3r1707t370qvv2jRIho2bMi8efMAaNGiBX/++SevvPIKvXr1qvR2aoqn3NZTCCFEDXO4cN93330AdgPRLtcdwTZs2EBCQoJdW69evRg/fvwF31NSUkJJSYntdW5uLgAmkwmTyVSteMreX/ZTjbVgF5lKq73tK935uROVI3mrOsld1Ujeqs6R3DmSX7e6O9jJkycJDw+3awsPDyc3N5eioiI8PT3LvWfOnDnMnj27XPvKlSvx8vJySlxlU71mlgBoKCw2sXz5cqds+0pX16fJrSrJW9VJ7qpG8lZ1lcldYWFhpbfncOE+fPgw1113HRqN/VtLS0v566+/at3dw6ZNm2Z3fXlubi7R0dH07NkTPz+/am3bZDKRmJhIjx490Gq1ZOSXMHvrWkyKiltu6Y2Hh6q64V+xzs+dqBzJW9VJ7qpG8lZ1juSu7GhwZThcuLt3705qamq5WdJycnLo3r17jR4qj4iIIC0tza4tLS0NPz+/CnvbAHq9Hr1eX65dq9U67Y+wbFu+XmcLtUWlRn/mnLe4MGf+HuoSyVvVSe6qRvJWdZXJnSO5dXhUedm57PNlZGSUG6jmbJ07d2bVqlV2bYmJiXTu3LlG91tZhnMKtVzLLYQQoiZUusd95513AtaBaEOHDrXrxZrNZnbs2GGbArWy8vPzSU5Otr0+ePAgSUlJBAUF0aBBA6ZNm8bx48f5+OOPARg1ahRvvPEGTzzxBMOHD+f333/niy++4Oeff3ZovzVF7aFCp/bAaLbIJWFCCCFqRKULt7+/P2Dtcfv6+todmtbpdFx77bWMGDHCoZ3/888/dO/e3fa67Fz0kCFDWLx4MampqRw5csS2vGHDhvz8889MmDCBV199lfr16/Pee+/VikvByui11sItPW4hhBA1odKF+8MPPwQgNjaWyZMnO+WweLdu3VAU5YLLK5oVrVu3bk6bAKYmeGrV5BWXSo9bCCFEjXB4cNrMmTNrIo4rhsyeJoQQoiY5PDgtLS2NQYMGERUVhUajQa1W2z3qOpk9TQghRE1yuMc9dOhQjhw5wowZM4iMjKxwhHldZtCeuUOY3JNbCCFEDXC4cP/555/88ccfxMfH10A47s92qLxUCrcQQgjnc/hQeXR09EUHlNV1ZYVbetxCCCFqgsOFe8GCBUydOpVDhw7VQDjuz3aOu1TOcQshhHA+hw+VDxgwgMLCQho3boyXl1e5adoyMzOdFpw7KjvHXSw9biGEEDXA4cK9YMGCGgjjyuGpk8vBhBBC1ByHC/eQIUNqIo4rhl5z5hy3FG4hhBA1wOFz3AAHDhxg+vTp3H///Zw6dQqAX375hX///depwbmjsz1uOccthBDC+Rwu3GvXruWqq65i48aNfPPNN+Tn5wOwfft2mVUNMEiPWwghRA1yuHBPnTqVZ599lsTERHQ6na39pptu4u+//3ZqcO7IU2dNaYkUbiGEEDXA4cK9c+dO7rjjjnLtYWFhnD592ilBuTPbddxSuIUQQtQAhwt3QEAAqamp5dq3bdtGvXr1nBKUO5ObjAghhKhJDhfu++67jylTpnDy5ElUKhUWi4X169czefJkBg8eXBMxuhXpcQshhKhJDhfu559/nubNmxMdHU1+fj4tW7bkxhtv5LrrrmP69Ok1EaNbkbuDCSGEqEkOX8et0+l49913eeqpp9i5cyf5+fm0a9eOJk2a1ER8bsc2c5r0uIUQQtQAhwt3mejoaKKjozGbzezcuZOsrCwCAwOdGZtb8pRz3EIIIWqQw4fKx48fz/vvvw+A2Wyma9euXH311URHR7NmzRpnx+d25By3EEKImuRw4f7qq69o27YtAD/++CMpKSns3buXCRMm8OSTTzo9QHdjkHPcQgghapDDhfv06dNEREQAsHz5cu69916aNm3K8OHD2blzp9MDdDdl57ilxy2EEKImOFy4w8PD2b17N2azmRUrVtCjRw8ACgsLUavVTg/Q3ZSd4zaWWrBYFBdHI4QQ4krj8OC0YcOGce+99xIZGYlKpSIhIQGAjRs30rx5c6cH6G7KDpUDFJea8dJVefyfEEIIUY7DVWXWrFm0bt2ao0ePcs8996DX6wFQq9VMnTrV6QG6G7vCbbLgpbvIykIIIYSDqtQdvPvuu+1eZ2dny326z1B7qNCpPTCaLXKeWwghhNM5fI77hRdeYNmyZbbX9957L8HBwdSvX58dO3Y4NTh3JZOwCCGEqCkOF+5FixYRHR0NQGJiIomJifzyyy/ccsstTJ482ekBuiPbtdxGKdxCCCGcy+FD5SdPnrQV7p9++ol7772Xnj17EhsbS6dOnZweoDvy1FkLd0mpFG4hhBDO5XCPOzAwkKNHjwKwYsUK26hyRVEwm6VQARg0ZT1umYRFCCGEcznc477zzjsZOHAgTZo0ISMjg969ewPW+3HHxcU5PUB3ZNDJfOVCCCFqhsOF+5VXXiE2NpajR4/y4osv4uPjA0BqaiqjR492eoDuyKCR2dOEEELUDIcLt1arrXAQ2oQJE5wS0JXAU3rcQgghakiVruM+cOAACxYsYM+ePQC0bNmS8ePH06hRI6cG567KznFL4RZCCOFsDg9O+/XXX2nZsiWbNm2iTZs2tGnTho0bN9KyZUsSExNrIsZaS5X8Gy2PL0N14He79rM9bhmcJoQQwrkc7nFPnTqVCRMmMHfu3HLtU6ZMsd10pC5QHVxNk1M/Yz7cCJr3srXLHcKEEELUFId73Hv27OGhhx4q1z58+HB2797tlKDchncYAKqCdLvms/fklsIthBDCuRwu3KGhoSQlJZVrT0pKIiwszBkxuQ3lTOEm/5Rdu23mNCncQgghnMzhQ+UjRoxg5MiRpKSkcN111wGwfv16XnjhBSZOnOj0AGs171CgfI/bUyvnuIUQQtQMhwv3jBkz8PX1Zd68eUybNg2AqKgoZs2axWOPPeb0AGszxaesx51m1y43GRFCCFFTHCrcpaWlLF26lIEDBzJhwgTy8vIA8PX1rZHgar0zPW4KM8BiBg9rT9tTbjIihBCihjh0jluj0TBq1CiKi4sBa8Gus0UbwCsEBRUqxQyFmbZmfdmhcrnJiBBCCCdzeHBax44d2bZtW03E4n7UWowa65SvFJwdoCY9biGEEDXF4XPco0ePZtKkSRw7doz27dvj7e1tt7xNmzZOC84dlGj80ZfmWc9zh7cCzrkcrFQGpwkhhHAuhwv3fffdB2A3EE2lUqEoCiqVqs7d2rNE42d9kn92ZLltVLn0uIUQQjiZw4X74MGDNRGH2yrWBlifnDOy3DaqXM5xCyGEcDKHC3dMTExNxOG2bD3uc85xG+QctxBCiBpS6cFpW7ZsoXv37uTm5pZblpOTQ/fu3dm+fbtTg3MHJVp/65P88oVbruMWQgjhbJUu3PPmzeOmm27Cz8+v3DJ/f3969OjBSy+95NTg3EGJpnzhlruDCSGEqCmVLtwbN26kX79+F1zet29f/vrrL4cDWLhwIbGxsRgMBjp16sSmTZsuuv6CBQto1qwZnp6eREdHM2HCBNt15a5QXFGPW2NNq9FswWxRXBGWEEKIK1SlC/fx48cvOtmKj48PqampDu182bJlTJw4kZkzZ7J161batm1Lr169OHXqVIXrL126lKlTpzJz5kz27NnD+++/z7Jly/jf//7n0H6dydbjLijf4wY5XC6EEMK5Kl24Q0ND2bdv3wWX7927l5CQEId2Pn/+fEaMGMGwYcNo2bIlixYtwsvLiw8++KDC9f/66y+uv/56Bg4cSGxsLD179uT++++/ZC+9JtnOcRecBnMpAAaNFG4hhBA1o9KjyhMSEnjuuee45ZZbyi1TFIXnnnuOhISESu/YaDSyZcsW241KADw8PEhISGDDhg0Vvue6665jyZIlbNq0iY4dO5KSksLy5csZNGjQBfdTUlJCSUmJ7XXZ4DqTyYTJZKp0vBUxmUyUaHxRVB6oFAum3JPgEw6ATuOBsdRCXlEJfnqHJ6i74pXlvrq/g7pG8lZ1kruqkbxVnSO5cyS/lS7c06dPp3379nTq1IlJkybRrFkzwNrTnjdvHv/99x+LFy+u9I5Pnz6N2WwmPDzcrj08PJy9e/dW+J6BAwdy+vRpunTpgqIolJaWMmrUqIseKp8zZw6zZ88u175y5Uq8vLwqHe8FqTwoUftiKM3hzxXfkuvVAAC1ogZUrFy1mnDP6u/mSpWYmOjqENyS5K3qJHdVI3mrusrkrrCwsNLbq3Thbty4Mb/99htDhw7lvvvuQ6VSAdbedsuWLUlMTCQuLq7SO66KNWvW8Pzzz/Pmm2/SqVMnkpOTGTduHM888wwzZsyo8D3Tpk2zu094bm4u0dHR9OzZs8IR8o4wmUwkJiaiC6wH6Tnc0K4pSuObAHh+11qK8kro2LkLraKqt58rUVnuevTogVardXU4bkPyVnWSu6qRvFWdI7mr6FLrC3FoApYOHTqwa9cukpKS2L9/P4qi0LRpU+Lj4x3ZDAAhISGo1WrS0uzvZZ2WlkZERESF75kxYwaDBg3i4YcfBuCqq66ioKCAkSNH8uSTT+LhUf6QtF6vR6/Xl2vXarXO+yP0CYP03WiKM+HMNg1nBqiVKir5Y78Ip/4e6hDJW9VJ7qpG8lZ1lcmdI7l1eOY0gPj4+CoV63PpdDrat2/PqlWr6N+/PwAWi4VVq1YxduzYCt9TWFhYrjir1dYCqSguvOzKJ8z685xpT213CJPBaUIIIZyoSoXbWSZOnMiQIUPo0KEDHTt2ZMGCBRQUFDBs2DAABg8eTL169ZgzZw5gvVZ8/vz5tGvXznaofMaMGfTt29dWwF1B8Q61Pik4e6MR2z25ZRIWIYQQTuTSwj1gwADS09N56qmnOHnyJPHx8axYscI2YO3IkSN2Pezp06ejUqmYPn06x48fJzQ0lL59+/Lcc8+56iNYeVfU47bGLT1uIYQQzuTSwg0wduzYCx4aX7Nmjd1rjUbDzJkzmTlz5mWIrPJsPW6Zr1wIIUQNkwuMneHMtdt285VL4RZCCFEDKtXj3rFjR6U32KZNmyoH467OnuOWHrcQQoiaVanCHR8fj0qluuDI7bJlKpUKs7kOFqqyc9yFGWA2gVp7zj25ZXCaEEII56lU4T548GBNx+HevIJApQbFbJ2z3C8Sw5nBacWldfCLjBBCiBpTqcIdExNT03G4N5UHeIdC/knryHK/yLPXcRulcAshhHCeKo8q3717N0eOHMFoNNq133777dUOyi35nCncZ67lLjtUXiI9biGEEE7kcOFOSUnhjjvuYOfOnXbnvcvmLq+T57jhzMjynbZruaXHLYQQoiY4fDnYuHHjaNiwIadOncLLy4t///2XdevW0aFDh3LXXdcptklYrCPLbee4ZeY0IYQQTuRwj3vDhg38/vvvhISE4OHhgYeHB126dGHOnDk89thjbNu2rSbirP18zi/cMle5EEII53O4x202m/H19QWsd/g6ceIEYB3Atm/fPudG507KCneBfeGW67iFEEI4k8M97tatW7N9+3YaNmxIp06dePHFF9HpdLzzzjs0atSoJmJ0D+fNniYzpwkhhKgJDhfu6dOnU1BQAMDTTz/Nbbfdxg033EBwcDDLli1zeoBu47z5yg1ydzAhhBA1wOHC3atXL9vzuLg49u7dS2ZmJoGBgbaR5XVSWY/7zKFyT53cHUwIIYTzOXyOOycnh8zMTLu2oKAgsrKyyM3NdVpgbqfsHHdRFpQa0WvkULkQQgjnc7hw33fffXz++efl2r/44gvuu+8+pwTllgwB4HHmAEZBOp46GVUuhBDC+Rwu3Bs3bqR79+7l2rt168bGjRudEpRb8vA451ruNNvgtBI5xy2EEMKJHC7cJSUllJaWlms3mUwUFRU5JSi35VN2e8902+A0o9mC2VLxXdWEEEIIRzlcuDt27Mg777xTrn3RokW0b9/eKUG5LdslYWd73CDnuYUQQjiPw6PKn332WRISEti+fTs333wzAKtWrWLz5s2sXLnS6QG6lXOmPdVrzn4nKjKZ8dZX+X4uQgghhI3DPe7rr7+eDRs2EB0dzRdffMGPP/5IXFwcO3bs4IYbbqiJGN3HOdOeeniobMVbetxCCCGcpUrdwPj4eD799FNnx+L+Kpj2tKTUIoVbCCGE01SqcOfm5uLn52d7fjFl69VJ591oxFOrJqfIJLOnCSGEcJpKFe7AwEBSU1MJCwsjICCgwhnSFEVBpVLV3ftxwwVv7SnXcgshhHCWShXu33//naCgIABWr15dowG5tfNuNCJ3CBNCCOFslSrcXbt2BaC0tJS1a9cyfPhw6tevX6OBuaWy67hLcsBUfPae3EYp3EIIIZzDoVHlGo2Gl156qcIJWATWaU/VOuvzglNnb+1ZKue4hRBCOIfDl4PddNNNrF27tiZicX8q1TnnudNt125nFxpdGJQQQogricOXg/Xu3ZupU6eyc+dO2rdvj7e3t93y22+/3WnBuSWfMMg9BvlpNAyJBSAlvcC1MQkhhLhiOFy4R48eDcD8+fPLLavzo8rB7lruxqGtATiQnu/CgIQQQlxJHC7cFoucr72oc67lbhzjA0iPWwghhPM4fI5bXMI513I3DrUW7uPZRRQaZUCfEEKI6qtS4V67di19+/YlLi6OuLg4br/9dv744w9nx+aezrlDWJC3jkAvLSC9biGEEM7hcOFesmQJCQkJeHl58dhjj/HYY4/h6enJzTffzNKlS2siRvdyzj25AVuvW85zCyGEcAaHz3E/99xzvPjii0yYMMHW9thjjzF//nyeeeYZBg4c6NQA3c550542DvXhn8NZHJAetxBCCCdwuMedkpJC3759y7XffvvtHDx40ClBubXzpj1tHGa9XE563EIIIZzB4cIdHR3NqlWryrX/9ttvREdHOyUot1Z2qNyYB8bCs4fKT0nhFkIIUX0OHyqfNGkSjz32GElJSVx33XUArF+/nsWLF/Pqq686PUC3o/cDjQFKi89cy20t5AdPF2C2KKg9yt9ZTQghhKgshwv3o48+SkREBPPmzeOLL74AoEWLFixbtox+/fo5PUC3Uzbtac4RyE+nflQDdGoPSkotnMguIjrIy9URCiGEcGMOF26AO+64gzvuuMPZsVw5fMoKdxoatQexIV78l5ZPcnq+FG4hhBDVIhOw1IRzpj0F5Dy3EEIIp3G4xx0YGIhKVf48rUqlwmAwEBcXx9ChQxk2bJhTAnRLPuUvCQPkkjAhhBDV5nDhfuqpp3juuefo3bs3HTt2BGDTpk2sWLGCMWPGcPDgQR599FFKS0sZMWKE0wN2C+dfyy2XhAkhhHAShwv3n3/+ybPPPsuoUaPs2t9++21WrlzJ119/TZs2bXjttdfqbuG29bjTgLM97hQp3EIIIarJ4XPcv/76KwkJCeXab775Zn799VcA+vTpQ0pKSvWjc1e2c9z2056ezjeSXWh0VVRCCCGuAA4X7qCgIH788cdy7T/++CNBQUEAFBQU4OvrW/3o3NU5NxoB8NZriPQ3AHKeWwghRPU4fKh8xowZPProo6xevdp2jnvz5s0sX76cRYsWAZCYmEjXrl2dG6k78T4ze1p+uq2pcagPqTnFHEjPp31MoIsCE0II4e4cLtwjRoygZcuWvPHGG3zzzTcANGvWjLVr19pmUps0aZJzo3Q3ZT1uUwGU5IPeh8ah3vyZfFoGqAkhhKiWKk3Acv3113P99dc7O5Yrh94HtF5gKrRey633oXFY2bXccqhcCCFE1VVpApYDBw4wffp0Bg4cyKlT1kuefvnlF/7991+Ht7Vw4UJiY2MxGAx06tSJTZs2XXT97OxsxowZQ2RkJHq9nqZNm7J8+fKqfIyadYFruWVkuRBCiOpwuHCvXbuWq666io0bN/L111+Tn28tRNu3b2fmzJkObWvZsmVMnDiRmTNnsnXrVtq2bUuvXr1sXwbOZzQa6dGjB4cOHeKrr75i3759vPvuu9SrV8/Rj1HzKrgvN8DhzEKMpRZXRSWEEMLNOVy4p06dyrPPPktiYiI6nc7WftNNN/H33387tK358+czYsQIhg0bRsuWLVm0aBFeXl588MEHFa7/wQcfkJmZyXfffcf1119PbGwsXbt2pW3bto5+jJp33rXc4X56vHVqzBaFI5lyuFwIIUTVOHyOe+fOnSxdurRce1hYGKdPn670doxGI1u2bGHatGm2Ng8PDxISEtiwYUOF7/nhhx/o3LkzY8aM4fvvvyc0NJSBAwcyZcoU1Gp1he8pKSmhpKTE9jo3NxcAk8mEyWSqdLwVKXt/Rdvx8ApBDZhzT2I5s7xRqDc7j+eyLzWHmEBDtfbt7i6WO3Fhkreqk9xVjeSt6hzJnSP5dbhwBwQEkJqaSsOGDe3at23b5tAh69OnT2M2mwkPD7drDw8PZ+/evRW+JyUlhd9//50HHniA5cuXk5yczOjRozGZTBc8TD9nzhxmz55drn3lypV4eTnnTl2JiYnl2pqlZtMcOLpnC9sLrOfg9SUegAe/rN9K6SHFKft2dxXlTlya5K3qJHdVI3mrusrkrrCwsNLbc7hw33fffUyZMoUvv/wSlUqFxWJh/fr1TJ48mcGDBzu6OYdYLBbCwsJ45513UKvVtG/fnuPHj/PSSy9dsHBPmzaNiRMn2l7n5uYSHR1Nz5498fPzq1Y8JpOJxMREevTogVartVvmsSUNVnxHg2AD9fr0AeDQmhT+WZWMNqg+ffpcVa19u7uL5U5cmOSt6iR3VSN5qzpHcld2NLgyHC7czz//PGPGjCE6Ohqz2UzLli0xm80MHDiQ6dOnV3o7ISEhqNVq0tLS7NrT0tKIiIio8D2RkZFotVq7w+ItWrTg5MmTGI1Gu3PuZfR6PXq9vly7Vqt12h9hhdvyjwTAo/A0HmeWNY2wflFIySiSfwBnOPP3UJdI3qpOclc1kreqq0zuHMmtw4PTdDod7777LikpKfz0008sWbKEvXv38sknn1zwPPOFttO+fXtWrVpla7NYLKxatYrOnTtX+J7rr7+e5ORkLJazo7L/++8/IiMjKyzaLnXetKeA7VrulFP5KIocKhdCCOE4hwv3008/TWFhIdHR0fTp04d7772XJk2aUFRUxNNPP+3QtiZOnMi7777LRx99xJ49e3j00UcpKCiw3ct78ODBdoPXHn30UTIzMxk3bhz//fcfP//8s+0IQK1z7rSnZ4p0TLAXHirIKyklPa/kIm8WQgghKuZw4Z49e7bt2u1zFRYWVjgI7GIGDBjAyy+/zFNPPUV8fDxJSUmsWLHCNmDtyJEjpKam2taPjo7m119/ZfPmzbRp04bHHnuMcePGMXXqVEc/Rs0ruxystAhK8gDQa9Q0CLIOiEuWiViEEEJUgcPnuBVFQaVSlWvfvn277e5gjhg7dixjx46tcNmaNWvKtXXu3Nnh68VdQucNOh8w5ltv72mwnt9uHOrDoYxCDqQXcF3jEBcHKYQQwt1UunAHBgaiUqlQqVQ0bdrUrnibzWby8/MZNWpUjQTptnzCIDPfep47uDFgPc+9au8pDpySHrcQQgjHVbpwL1iwAEVRGD58OLNnz8bf39+2TKfTERsbe8FBZXWWdxhkptgPUAv1BpC7hAkhhKiSShfuIUOGANCwYUOuu+46uSygMoLj4OjfcGIbtLoDOPdmIzLtqRBCCMc5PDita9eutqJdXFxMbm6u3UOco1FX688Dq21NZYX7eHYRhcZSV0QlhBDCjTlcuAsLCxk7dixhYWF4e3sTGBho9xDnaNTN+vPkDiiwzuMe6K0jyNt6zbn0uoUQQjjK4cL9+OOP8/vvv/PWW2+h1+t57733mD17NlFRUXz88cc1EaP78gmDsFbW5ylrbM1ynlsIIURVOVy4f/zxR958803uuusuNBoNN9xwA9OnT+f555/n008/rYkY3Vvj7tafdoXberj8gPS4hRBCOMjhwp2ZmUmjRo0A8PPzIzMzE4AuXbqwbt0650Z3JWh0TuE+M4Pa2cItPW4hhBCOcbhwN2rUiIMHDwLQvHlzvvjiC8DaEw8ICHBqcFeEmOtArYOco5BxAIDGYWcOlcu13EIIIRzkcOEeNmwY27dvB2Dq1KksXLgQg8HAhAkTePzxx50eoNvTeUF0J+vzFOvo8rIe98HTBZgtcrMRIYQQlefwlKcTJkywPU9ISGDv3r1s2bKFuLg42rRp49TgrhiNusGhP6yXhXUcQf1AL3RqD0pKLZzILiL6zPzlQgghxKU43OM+X0xMDHfeeacU7YspG6B26A8wl6L2UNEwxHq4XG42IoQQwhGVLty///47LVu2rHCSlZycHFq1asUff/zh1OCuGJHxYAiAklw4sRWQ89xCCCGqptKFe8GCBYwYMQI/P79yy/z9/XnkkUeYP3++U4O7Ynioy82iJpeECSGEqIpKF+7t27dzyy23XHB5z5492bJli1OCuiLZLgs7v3BLj1sIIUTlVbpwp6WlXfTGIhqNhvT0dKcEdUUqm/702GYoyTvnZiNSuIUQQlRepQt3vXr12LVr1wWX79ixg8jISKcEdUUKagiBsWAphUN/0ujMtKen841kFxpdG5sQQgi3UenC3adPH2bMmEFxcXG5ZUVFRcycOZPbbrvNqcFdcc6ZRc1bryHK3wDAtqPZrotJCCGEW6l04Z4+fTqZmZk0bdqUF198ke+//57vv/+eF154gWbNmpGZmcmTTz5Zk7G6v7LLws4MUEtoGQ7At1uPuyoiIYQQbqbSE7CEh4fz119/8eijjzJt2jSUM/Nuq1QqevXqxcKFCwkPD6+xQK8IDW8ElQec3gc5x7m7fX0+3nCYX/89SW6xCT/DhccQCCGEEODgzGkxMTEsX76crKwskpOTURSFJk2ayH24K8szEKLawfEtkLKGq+IH0iTMh/2n8vl5Ryr3d2zg6giFEELUclWaOS0wMJBrrrmGjh07StF2VNno8pTVqFQq7m5fH4CvthxzXUxCCCHcRrWnPBUOOvc2nxYLd7Srh4cKthzO4uBpmYxFCCHExUnhvtyiO4LWCwrS4dRuwvwM3Ng0FICvpdcthBDiEqRwX24aPcRcb31+Zha1ssPl32w9hkVu8ymEEOIipHC7wvmXhbUIx8+g4UROMRtSMlwYmBBCiNpOCrcrlA1QO/wXmIoxaNX0bRsFyCA1IYQQFyeF2xXCWoJPOJQWwdGNwNnD5b/sSiWv2OTK6IQQQtRiUrhdQaWyuywMID46gMah3hSbLPyy86TrYhNCCFGrSeF2lXMvC8M6A91dck23EEKIS5DC7SplPe4TSVBgHZB2Z7v6eKhg06FMDmfINd1CCCHKk8LtKn6REHEVoMDmdwGI8DfQpcmZa7rlxiNCCCEqIIXblbpMtP786w0ozATgrqvrAXJNtxBCiIpJ4Xallv0h/Cow5sGfrwDQq1UEvnoNx7KK2Hgw07XxCSGEqHWkcLuShwfcNN36fNO7kHcSg1bNbXJNtxBCiAuQwu1qTXtB/Y7Wa7rXvQzA3e2th8t/2ZVKQUmpK6MTQghRy0jhdjWVCm6eYX2+ZTFkHebqBoE0DPGm0Gjml11yTbcQQoizpHDXBg1vhIZdwWKCtS+cd5/uoy4OTgghRG0ihbu2uPkp68/tn0H6f9zRrh4qFfydksn65NOujU0IIUStIYW7tqjfAZr1AcUCa54nKsCTBzo1AOCJr3bI/OVCCCEAKdy1S/cnARX8+y2kbmda7xZEB3lyPLuI55fvcXV0QgghagEp3LVJRGtofaf1+e/P4a3X8NLdbQH4bNNR1uw75cLghBBC1AZSuGubbv8DlRr2/wpHN3Fto2CGXhcLwNSvd5JTJIfMhRCiLpPCXduExEH8QOvzVU8DMOWW5sQGe3Eyt5inf9ztwuCEEEK4mhTu2qjrFFDr4NAfkLIGT52al+9pi0oFX289RuLuNFdHKIQQwkWkcNdGAdHQfpj1+W+zwWKmQ2wQI25oBMD/vt1JVoHRhQEKIYRwFSnctdUNk0DrDSe2wu/PAjCxR1Mah3qTnlfCzB/+dXGAQgghXEEKd23lGw63v2Z9/ud82PUNBq2aeffG46GCH7af4Jedqa6NUQghxGVXKwr3woULiY2NxWAw0KlTJzZt2lSp933++eeoVCr69+9fswG6ylV3w3WPWZ9/PwZO7iI+OoBHuzUG4MnvdnE6v8SFAQohhLjcXF64ly1bxsSJE5k5cyZbt26lbdu29OrVi1OnLn7N8qFDh5g8eTI33HDDZYrURRJmQeObwFQInw+Ewkweu7kJzSN8ySww8sRXOzCWWlwdpRBCiMvE5YV7/vz5jBgxgmHDhtGyZUsWLVqEl5cXH3zwwQXfYzabeeCBB5g9ezaNGjW6jNG6gIca7nofAmMh+zB8NQy9SuHle9qiVav4fe8pRi3ZQrHJ7OpIhRBCXAYaV+7caDSyZcsWpk2bZmvz8PAgISGBDRs2XPB9Tz/9NGFhYTz00EP88ccfF91HSUkJJSVnDyfn5uYCYDKZMJmqN5lJ2furu51L0vrC3R+jWXwLqpQ1mFfOoFnC07w1MJ4xn23n972nGPz+Rt5+sB0+epf+SivtsuXuCiN5qzrJXdVI3qrOkdw5kl+X/i9/+vRpzGYz4eHhdu3h4eHs3bu3wvf8+eefvP/++yQlJVVqH3PmzGH27Nnl2leuXImXl5fDMVckMTHRKdu5lMh6w+l46A3UG98k6aSFgqDrGNkM3tmrZtOhLPovWMUjzc14ay9LOE5xuXJ3pZG8VZ3krmokb1VXmdwVFhZWenvu0T07Iy8vj0GDBvHuu+8SEhJSqfdMmzaNiRMn2l7n5uYSHR1Nz5498fPzq1Y8JpOJxMREevTogVZ7OaplH8yrtaj/eoWrjy+mzc33QGRbuh/PYfhHWzmcb2LxkQAWD21PqK/+MsRTdZc/d1cGyVvVSe6qRvJWdY7kruxocGW4tHCHhISgVqtJS7OfCSwtLY2IiIhy6x84cIBDhw7Rt29fW5vFYh2YpdFo2LdvH40bN7Z7j16vR68vX8S0Wq3T/gidua1LSpgB6f+i2r8S7VdDYOQaro4N5YtRnXnwvY38dyqfge9vZsnDnagf6JwjCjXpsubuCiJ5qzrJXdVI3qquMrlzJLcuHZym0+lo3749q1atsrVZLBZWrVpF586dy63fvHlzdu7cSVJSku1x++230717d5KSkoiOjr6c4buGhxrufBeCGkPuMfj0bsg6RNNwX74c1Zn6gZ4cyijknkUbOJCe7+pohRBCOJnLR5VPnDiRd999l48++og9e/bw6KOPUlBQwLBh1ik/Bw8ebBu8ZjAYaN26td0jICAAX19fWrdujU6nc+VHuXw8A+D+z8AQAKlJsOgG2PElMcHefDXqOhqHepOaU8y9izaw81iOi4MVQgjhTC4v3AMGDODll1/mqaeeIj4+nqSkJFasWGEbsHbkyBFSU2WGsHJCm8GoPyD6WijJhW8ehm8eIUJv5ItHOtMqyo+MAiN3vrWe11btx2SWa72FEOJKUCsGp40dO5axY8dWuGzNmjUXfe/ixYudH5C7CGgAQ3+GP+bB2rmw43M4+jfBd73PZyOvZfIX21m5O435if+xcvdJXr6nLc0jqjcgTwghhGu5vMctqkmtgW5TYNgv4N8Asg7B+z3x27SAtx+I59X74vH31LLreC59X/+T16X3LYQQbk0K95WiwbXw6J/Q+i5QzPD7s6g+vp1+sRYSJ95Ij5bhmMwK8xL/444317PvZJ6rIxZCCFEFUrivJAZ/6/So/ReBzgcOr4c3OxO2dwnvPNiOVwa0tfW+b3v9D974XXrfQgjhbqRwX2lUKoi//8zAtU5gzIOfJ6H6qC93NCghccKNJLQIw2RWeHnlf9w0bw2fbzoiBVwIIdyEFO4rVVAj63nv3i+C1tva+37rOsJ2LOLdB+OZf29bQnx0HM0sYuo3O+n20hqWbjwidxoTQohaTgr3lcxDDZ0egdEboFE3KC2G32aiei+BO6Oy+OOJm5h+awtCfPQczy7if9/upPvLa1jy92FKSuVuY0IIURtJ4a4LAmNg0HfQb6H1PHhqErzTDc8/5/Bwp3D+eKI7M25rSaivtYBP/24X3V9awycbDlFQUurq6IUQQpxDCnddoVJBuwdhzCZofhtYSmHdS/ByUzyXP8ZD9U/wx+PdmNm3JeF+ek7kFDPj+3/p+NxvTPlqB/8cykRRFFd/CiGEqPOkcNc1vhEwYAncsxgCG4IxH5KWwOI+GN5qzzDTF6wb0ZjZt7ciNtiLAqOZZf8c5e5FG7h53lreWnOAU7nFrv4UQghRZ0nhrotUKmh1Bzy2zTqArd2D1svHsg7BmufRL4xnyH9jWZ1wgq+Gtebu9vXx0qlJOV3ACyv20nnu7zy0eDO/7EylyCjnwoUQ4nKqFVOeChdRqSDmOuuj94uw5ydI+hQOroNDf6A69Acd1Ho6NOnBs/1vZ3lJPEuTMvjncBar9p5i1d5TeGrVdG8eSq9WEdzUPAxfg9z2TwghapIUbmGl84a2A6yP7COwfRnsWAYZ+2HvTxj2/sSdGgN3NunJyfg+LMlowbe7MjmeXcTynSdZvvMkOrUHXZqEcEvrCHq0CCfQu47crU0IIS4jKdyivIAG0PVxuHEypP0L/34Du76BrIOw5wci9vzAZK0Xk5r05Hjwdfxc0JRl+1WkpBfw+95T/L73FGoPFdfEBnJDk1BubBJKqyg/PDxUrv5kQgjh9qRwiwtTqSCitfVx0wxI3Q7/fmst5NlHUO3+jvp8xyPAyKBG5Fx9PeuV1nx0ogGb0hT+Tsnk75RMXvp1H4FeWq6PC+HGJqF0aRJCqLf86QkhRFXI/56iclQqiIq3PhJmwfGtsP9XSFkDx/5BlZlCQGYKtwK3oqKkQRv+827PiuLWfHoigqxCEz/tSOWnHdZ7qzcK8SJS7UHp9lQ6NQ6hXoAnKpX0yIUQ4lKkcAvHqVRQv7310f1/UJxrnVI1ZY31kb4X/antXMV2rgIm633IbtCZLdr2fJXTlJUnDKScLiQFD9Z/tROACD8D7WMD6RATSIeYIFpE+qJRy0UPQghxPincovoMftCst/UBkJt6poivhuRVqApPE3g0kQQSSQDMkY05EnAt36eFs1Hfkc0nFU7mFvPzjlR+PtMj99KpaV3Pn6vOPFrX86dRiLecJxdC1HlSuIXz+UVa71AWfz9YLHByOySvsj6ObkSdeYCGmQcYDygFKpR6LTgV1J4kj5b8ktuQ3497kFdcyqaDmWw6mGnbrLdOTasoaxG/qr4fLSP9aRTqjVZ65kKIOkQKt6hZHh4Q1c76uHEyFOfAwXWY/0ukcPdKfEtSUaXvJiJ9N7cAtwBKUCNywq7hoLoRO4tD2ZDtz9pTnhQYzWw6lMmmQ2eLuVatIi7MlxaRvrSI8KN5pC/NI/wI9dW77CMLIURNksItLi+DP7ToiyXuFn5nOX1u7IA29R84/Jf1cXKnbaBbO6AdMBhQtFqMwTFk6OtzSIlgZ1Eof+SGsa0kij2pCntSc4Hjtt2E+OiIC/OhSZgvcWE+tkeYr14GwQkh3JoUbuFaPmHQsp/1AVCUDUc3wZENcPo/yDgAmSmozCXos5OJIpko4DrgERVggELvBpwwxLFHiWFDYRRrc8I5nh/M6Xwjf6dk2u3O16CxFvFQHxqF+tAwxJvGod40CPZCr1Ff5g8vhBCOk8ItahfPAGja0/ooYzFD7nFrEc9IhswUOL3fOjlM3gm8Co4QV3CEOKAvgB7MOj/yDJGke4Rx1BxIcok/uwv8OF4STOrRYHYeCaT0nD9/DxVEB3nRMMSbRiE+NAz1pkGQFw2CvKgX4IlOI+fRhRC1gxRuUft5qK2zuQU0gMbd7ZcVZEDaTji5E07usv48vQ+1MZcAYy4B7KMJcBPAOdOoW1CToQ3nEFHsMYbxX2k4KVmR7MuIZO2+QJRz7r/joYJIf0+igzxpEORFTLA39QM9iQ7yIjrQixAfnRx+F0JcNlK4hXvzDoZG3ayPMqUl1t55zjHIPWb9mXPc2mvPOQa5x/EwGwk1nSCUE1yjwq6omzz0pKvDSbf4c9zkQ5rFj/Q8f07n+ZNxyI99ij/HlVBO4weo8NSqqR/oaVfM6wd6Ui/Qk3oBngR5S2EXQjiPFG5x5dHoIbyl9VERiwXyT5499J6RfPZ51kG0lhKiLEeIAtp6cMGb3+bgw3+WKPZb6pGcUZ/9p+uRaKlHKkHA2UJt0HpQL8CTqABrca8XUFbUvYgKMBDhZ5DJZoQQlSaFW9Q9Hh7gF2V9NLzBfpm5FLIPQ85RyE+HglOQfwoKTp/zPB1yT+BPPtd4/Mc1Hv/ZbaLIw4uTHuGcMAdwxBTASUsQJzODSMsIZKsSxHIliBy8KSvuag8VEX4GogIMtgIfGeBJpJ+BCH8Dkf4G6bULIWykcAtxLrUGghtbHxdjKrL20NP3QfreMz/3QeYBPC2FNLQcpCFw/QX+hRnRkqEK4KQ5gFOKP6fyA0jPC+DU0QD2KgH8pfiRgS8Zij+F6NFp1ET6Gwj31WPO92DHin2E+3sS6qsn1Mdg/emrJ8BTK7PLCXGFk8ItRFVoPSHiKuvjXGaTddR7zlHIPWGd/jXvzM/cE9bnhRnoMBGppBPpkX7JXRUrWjLwIzPPl8xcP07jx8mNQRxRgtmoBHFSCSZVCSITXzQeHoT66on0NxDp70mkv7XXHhXgaf15ptirpbgL4bakcAvhTGothDazPi6ktATy0yAvzfoz/+SZ5yeth+LzTkJhhvXwfGkRBpWJemRQT5Vx0V2XKFpSlSBOF/lTWKinMNVAIXqKFD3H0bP/zPNsfMn3jKTUtz4eAdEE+/sR4W8g3M9AuJ+ecD8DIT7SexeitpLCLcTlptGfvbztUowF1nPqBRlQeJrS3DT+27KOZvX8UeefPDNS/jgUnEKvMhGrSiOWtEtvtxTIAkumilMEcFwJ4ZgSyk4lhN8Vf3IVb/JV3qg8A9B4B6H3CcDTLxh//wBCfK2H5kN89LaffgaNnIMX4jKRwi1Ebabztj4CYwFQTCb2H/enSa8+qLXnXMNWaoS8M4fjC9LBVGgt+saCs89NhViMBZhyTqFkH0abdxy1uYgIsohQZdGe/eX3XwrknHkcB5OiJgM/0pRATimBJCsBpCmBZHoEUWIIo9QnHJVvJJ7+YYT4WQ/Lh505/x56ptAbtDJDnRDVIYVbiCuBRgeBMdbHRXgAttuvKIr1kHz2Eesj56j1Z8FpLEU5lBZmoRRloyrOQW3MQa2UolWZbYW+HBOQZX2YFDXp+HNKCeSUEsC/SqC12BNAidYflWcQGp8g9H4hePmFEOTvZxtgF+ytI8RHT5C3TmasE6ICUriFqKtUKvAOsT7qXW23yAPQndugKNaR9EVZ1svi8k5ae/h5JynNOYEp+wRKbirqgjR0JZloVWaiyCRKZT9XvE3RmceZsXlFio5sfMhVvChCT4qiZxd6TGpPFI0X6Lzw0HmDpz/4RKIOiMIQWA+fsGiCAoMJ8dHjrZf/zkTdIH/pQohLU6lAZy2g+NezW6ThvP9IzKazg+zyywp8GkpeKqU5JyktyISiLDyKs9GacvBQzHiqjHiSSWRFhb70zKMQyC6/OF8xcFIJJF0VRInGB7VGh1qjR6PVodXr0Wn16PR6dDo94enZFG0+jSakPirvUCh7aA3OypQQNU4KtxDCudRaa3E/r8CXzSyrPbdRUaAkz9qTL8qy3q/dVIilpICiglwKC3IpKsijpDAfU1E+FGWgKzqFV0k6/qWn8VYK8VEV46NKpTGpYMb6KKk4tAYAK78o117s4U2RLohC72hKAhpDUBya8KZ4R7XAP6wBGrlznKhFpHALIVxHpQKDn/Vxzvl5D8D7zOOiSvIhP42ijKPknz5KYV4OhUVFFBUXU1xcTElJMcUlJZiMxZhKitGUZOOv5BKsyiFYlUswuehVpRgsBRiKCwgsPgoZf8GBs7soUPTsV0VxShOJSmtAp9Gi02rQazXodRoMWi16nRaDwYAhMBKtXwT4hFtvWesTbj0V4SGFXziPFG4hhPvS+4DeB8/gxng2vfiqJpOJ5cuX06HnLeSWWEjPK2F3bjFZWRkUZqViyjmBPvcwfgWHCC05QlTpMeorJ/FWldCCg7QoPWg9ZO8gCyqKtIGUGMIw+USh+NVHExSNISQGr9CGeAREWwu8hwzEE5UjhVsIUafoNR5EeeqJCvA80xIBtKpwXbPJSFbqfgpP7MV4OoXCYiMFxUYKS0wUGU0UlRgpMpooLjFhNhYRqOQQpsomVJVDqCqbYHLxUCl4mzLxNmVC3l5ILb8fExryPPwp0fhQqvHBrPcHvR9qTz803gHovAPw1qrRY0RVWgylRWAq+1lkndTHOwT8o8/MERAN/md+aj3L71C4NSncQghxAWqtjsAGrQhsUHFhP5eiKOQWl3I6v4TTeSUczDeSkVtAQXYaphzrID1DwQm8i08SYEoj1JJOlCqDCDLRqkoJsmSAMQOMWAfiOYt3qLWYhzSF0ObWR1hza2GXXr5bksIthBBOoFKp8PfU4u+ppXGozzlL4ipc31hqIavQyH+5hdbz89lpFOVmUZKfhakwG3NRDhTnoirJRWPKp8SsUIKOYnQUK2d+nnmYFDUhqhzqqU5TX3WaemcevqqiMzPvpcPxLXb7L1V7UuQfhzmkGZqQxnjqtagBFIvdw8NcSrPUQ3j8kwr+keAddub8fRjofKzjFMRlJYVbCCFcQKfxODM/vAHqB11y/WKTmYwCIxn5JWd69UbS80vIyDdyOr+E3QVG/igwkllQQmaBEZPZgh8FRKtOU191iiaq4zT1OEYT1TEaqVLRm4vwzdwJmTvhvwvvVw00Bzj5XfmFWq+zl9R5BYFnEHgGnnkeeLZN52OdJEhjALXOOu2v7bnBelc+UWmSLSGEcAMGrZp6AZ7UC7j0OWtFUcgrKSUz32gr9pkFRo4WGNmWX0JWXiGanEP45x0gpPgQQaZULIoKBRUWVFjwwELZaw90mAhR5RCqyiEE6/l7b1WJdTrd7MPWR3V4Bp5zfr7BmefRZ58b/GVk/jmkcAshxBVGpVLhZ9DiZ9ASG3Khi+qusT0zWxRyikxk5JecKfTWnvvpfCOn84r5N/kwOr9gsgpNZBYYySo0YlCKCTlTyINVuQSo8gkkj0BVPgHkE6jKJ1CVRwD5eFGCTmVCTyl6lQkdJtRYzoZSdh3/yR0X/lBaL2vPXe9rvZpAV/bT5+xPnc/Z+f31vmd/egWDV4j15xXQu3f/TyCEEKJa1B4qgrx1BHnraHLeMutldAfp0+catGdubGOxKGQXWYt45pnD8xkFRjLzjaQVGNlTYCSjoOTMFwDro9Si2G3XAws6THhSQpgq+8z5+XTb+fmyc/WhqpwzgRRaHwWnqvdhDQHWEfhlhdw3/Jxefoz1uU9YrT53L4VbCCGEQzzOKfSVUTbivuyQ/fm9+uxCI5mFJrYVGFl1pkdfaDQDoKUUHwrxURXhQzHeFJ19rirGh0K8KcFLVYw3xQRojASoS/BTG/FRFeNLIT7mHDxLc1ChQHG29ZGRfOGANYazh+69gq1T4moMZ8/Na8557R0Cre6oflIdIIVbCCFEjTp3xH2j0Mq9p9hkJqvQWuCzCo3n9O6Ntt79wTM9+6xCE1mFRhSFC06S44GFAPIJUuUSTJ71pyqXcFUWDbWZNPA4TZSSTpDlNB6lxZCx3/q4lJBmUriFEEIIg1ZNpL8nkf6Vm0DGbFHILjTair2twJ/pwWefOT+fXWjkRKGR3QUm8krOVPlzir2WUiJUGdQ/c+jejwL0mNCrTBgwoseEQWXCV12Kj7qUUmMEN9fA578YKdxCCCHcntpDRbCPnmAfPXFhlXuPsdRy5jC9tQefWUHP/sSZop99pldfdggfk/VHc1/fulm4Fy5cyEsvvcTJkydp27Ytr7/+Oh07dqxw3XfffZePP/6YXbt2AdC+fXuef/75C64vhBBCVESn8SDMz0CYX+Vv61pSaian0ERWoYnsQiMqFwxic/l8d8uWLWPixInMnDmTrVu30rZtW3r16sWpUxWPHFyzZg33338/q1evZsOGDURHR9OzZ0+OHz9+mSMXQghR1+g1asL8DDSL8KVTo2A6Nrz05DnO5vIe9/z58xkxYgTDhg0DYNGiRfz888988MEHTJ06tdz6n376qd3r9957j6+//ppVq1YxePDgcuuXlJRQUnL25ry5ubmA9RIHk8lUrdjL3l/d7dRFkruqkbxVneSuaiRvVedI7hzJr0pRFOXSq9UMo9GIl5cXX331Ff3797e1DxkyhOzsbL7//vtLbiMvL4+wsDC+/PJLbrvttnLLZ82axezZs8u1L126FC8vr2rFL4QQQjhDYWEhAwcOJCcnBz8/v4uu69Ie9+nTpzGbzYSHh9u1h4eHs3fv3kptY8qUKURFRZGQkFDh8mnTpjFx4kTb69zcXNvh9Usl51JMJhOJiYn06NHDNjGBqBzJXdVI3qpOclc1kreqcyR3ZUeDK8Plh8qrY+7cuXz++eesWbMGg6HiwQV6vR69Xl+uXavVOu2P0Jnbqmskd1Ujeas6yV3VSN6qrjK5cyS3Li3cISEhqNVq0tLS7NrT0tKIiIi46Htffvll5s6dy2+//UabNm1qMkwhhBCi1nDpqHKdTkf79u1ZtWqVrc1isbBq1So6d+58wfe9+OKLPPPMM6xYsYIOHTpcjlCFEEKIWsHlh8onTpzIkCFD6NChAx07dmTBggUUFBTYRpkPHjyYevXqMWfOHABeeOEFnnrqKZYuXUpsbCwnT54EwMfHBx8fnwvuRwghhLgSuLxwDxgwgPT0dJ566ilOnjxJfHw8K1assA1YO3LkCB4eZw8MvPXWWxiNRu6++2677cycOZNZs2ZdztCFEEKIy87lhRtg7NixjB07tsJla9assXt96NChmg9ICCGEqKVcPnOaEEIIISpPCrcQQgjhRqRwCyGEEG5ECrcQQgjhRqRwCyGEEG6kVowqv5zK7qniyLywF2IymSgsLCQ3N1emAnSQ5K5qJG9VJ7mrGslb1TmSu7KaVJn7ftW5wp2XlwdAdHS0iyMRQggh7OXl5eHv73/RdVx6W09XsFgsnDhxAl9fX1QqVbW2VXansaNHj1b7TmN1jeSuaiRvVSe5qxrJW9U5kjtFUcjLyyMqKspu0rGK1Lket4eHB/Xr13fqNv38/OQPuookd1Ujeas6yV3VSN6qrrK5u1RPu4wMThNCCCHciBRuIYQQwo1I4a4GvV7PzJkz0ev1rg7F7UjuqkbyVnWSu6qRvFVdTeWuzg1OE0IIIdyZ9LiFEEIINyKFWwghhHAjUriFEEIINyKFWwghhHAjUrirYeHChcTGxmIwGOjUqRObNm1ydUi1zrp16+jbty9RUVGoVCq+++47u+WKovDUU08RGRmJp6cnCQkJ7N+/3zXB1iJz5szhmmuuwdfXl7CwMPr378++ffvs1ikuLmbMmDEEBwfj4+PDXXfdRVpamosirh3eeust2rRpY5vwonPnzvzyyy+25ZKzypk7dy4qlYrx48fb2iR3FZs1axYqlcru0bx5c9vymsibFO4qWrZsGRMnTmTmzJls3bqVtm3b0qtXL06dOuXq0GqVgoIC2rZty8KFCytc/uKLL/Laa6+xaNEiNm7ciLe3N7169aK4uPgyR1q7rF27ljFjxvD333+TmJiIyWSiZ8+eFBQU2NaZMGECP/74I19++SVr167lxIkT3HnnnS6M2vXq16/P3Llz2bJlC//88w833XQT/fr1499//wUkZ5WxefNm3n77bdq0aWPXLrm7sFatWpGammp7/Pnnn7ZlNZI3RVRJx44dlTFjxthem81mJSoqSpkzZ44Lo6rdAOXbb7+1vbZYLEpERITy0ksv2dqys7MVvV6vfPbZZy6IsPY6deqUAihr165VFMWaJ61Wq3z55Ze2dfbs2aMAyoYNG1wVZq0UGBiovPfee5KzSsjLy1OaNGmiJCYmKl27dlXGjRunKIr8vV3MzJkzlbZt21a4rKbyJj3uKjAajWzZsoWEhARbm4eHBwkJCWzYsMGFkbmXgwcPcvLkSbs8+vv706lTJ8njeXJycgAICgoCYMuWLZhMJrvcNW/enAYNGkjuzjCbzXz++ecUFBTQuXNnyVkljBkzhltvvdUuRyB/b5eyf/9+oqKiaNSoEQ888ABHjhwBai5vde4mI85w+vRpzGYz4eHhdu3h4eHs3bvXRVG5n5MnTwJUmMeyZcJ6R7vx48dz/fXX07p1a8CaO51OR0BAgN26kjvYuXMnnTt3pri4GB8fH7799ltatmxJUlKS5OwiPv/8c7Zu3crmzZvLLZO/twvr1KkTixcvplmzZqSmpjJ79mxuuOEGdu3aVWN5k8ItRC03ZswYdu3aZXfeTFxYs2bNSEpKIicnh6+++oohQ4awdu1aV4dVqx09epRx48aRmJiIwWBwdThupXfv3rbnbdq0oVOnTsTExPDFF1/g6elZI/uUQ+VVEBISglqtLjcyMC0tjYiICBdF5X7KciV5vLCxY8fy008/sXr1arvb0UZERGA0GsnOzrZbX3IHOp2OuLg42rdvz5w5c2jbti2vvvqq5OwitmzZwqlTp7j66qvRaDRoNBrWrl3La6+9hkajITw8XHJXSQEBATRt2pTk5OQa+5uTwl0FOp2O9u3bs2rVKlubxWJh1apVdO7c2YWRuZeGDRsSERFhl8fc3Fw2btxY5/OoKApjx47l22+/5ffff6dhw4Z2y9u3b49Wq7XL3b59+zhy5Eidz935LBYLJSUlkrOLuPnmm9m5cydJSUm2R4cOHXjggQdszyV3lZOfn8+BAweIjIysub+5Kg9rq+M+//xzRa/XK4sXL1Z2796tjBw5UgkICFBOnjzp6tBqlby8PGXbtm3Ktm3bFECZP3++sm3bNuXw4cOKoijK3LlzlYCAAOX7779XduzYofTr109p2LChUlRU5OLIXevRRx9V/P39lTVr1iipqam2R2FhoW2dUaNGKQ0aNFB+//135Z9//lE6d+6sdO7c2YVRu97UqVOVtWvXKgcPHlR27NihTJ06VVGpVMrKlSsVRZGcOeLcUeWKIrm7kEmTJilr1qxRDh48qKxfv15JSEhQQkJClFOnTimKUjN5k8JdDa+//rrSoEEDRafTKR07dlT+/vtvV4dU66xevVoByj2GDBmiKIr1krAZM2Yo4eHhil6vV26++WZl3759rg26FqgoZ4Dy4Ycf2tYpKipSRo8erQQGBipeXl7KHXfcoaSmprou6Fpg+PDhSkxMjKLT6ZTQ0FDl5ptvthVtRZGcOeL8wi25q9iAAQOUyMhIRafTKfXq1VMGDBigJCcn25bXRN7ktp5CCCGEG5Fz3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcItRB1hMplYvHgxXbp0ITQ0FE9PT9q0acMLL7yA0Wh0dXhCiEqSKU+FqCOSkpKYNGkSo0ePpl27dhQXF7Nz505mzZpFZGQkv/76K1qt1tVhCiEuQXrcQtQRrVu3ZtWqVdx11100atSIli1bMmDAANatW8euXbtYsGABACqVqsLH+PHjbdvKyspi8ODBBAYG4uXlRe/evdm/f79t+fDhw2nTpg0lJSUAGI1G2rVrx+DBgwE4dOgQKpWKpKQk23tmzJiBSqWyxSGEqJgUbiHqCI1GU2F7aGgod955J59++qmt7cMPPyQ1NdX2OP/ewUOHDuWff/7hhx9+YMOGDSiKQp8+fTCZTAC89tprFBQUMHXqVACefPJJsrOzeeONNyqM4dixYyxYsABPT09nfFQhrmgV/0sWQlyxWrVqxeHDh+3aTCYTarXa9jogIICIiAjba51OZ3u+f/9+fvjhB9avX891110HwKeffkp0dDTfffcd99xzDz4+PixZsoSuXbvi6+vLggULWL16NX5+fhXG9OSTTzJgwAB+++03Z35UIa5IUriFqGOWL19u6xmXefHFF1myZEml3r9nzx40Gg2dOnWytQUHB9OsWTP27Nlja+vcuTOTJ0/mmWeeYcqUKXTp0qXC7W3dupVvv/2Wffv2SeEWohKkcAtRx8TExJRrO3DgAE2bNnXqfiwWC+vXr0etVpOcnHzB9SZNmsTkyZOJjIx06v6FuFLJOW4h6ojMzEzy8vLKtf/zzz+sXr2agQMHVmo7LVq0oLS0lI0bN9raMjIy2LdvHy1btrS1vfTSS+zdu5e1a9eyYsUKPvzww3Lb+uGHH/jvv/+YPHlyFT6REHWTFG4h6ogjR44QHx/P+++/T3JyMikpKXzyySf069ePG264wW7U+MU0adKEfv36MWLECP7880+2b9/Ogw8+SL169ejXrx8A27Zt46mnnuK9997j+uuvZ/78+YwbN46UlBS7bb344os8++yzeHl5OfvjCnHFksItRB3RunVrZs6cyeLFi7n22mtp1aoVL774ImPHjmXlypV2A9Au5cMPP6R9+/bcdtttdO7cGUVRWL58OVqtluLiYh588EGGDh1K3759ARg5ciTdu3dn0KBBmM1m23bi4uIYMmSI0z+rEFcymYBFCCGEcCPS4xZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHcyP8DhBXKXlVLS5UAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_300.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_300.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AJQ9PCjDdIWx", + "outputId": "0465f6cc-a514-447c-a6fb-5d42a75a146f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9365 - loss: 0.2352\n", + "Lossontestdata: 0.23040874302387238\n", + "Accuracyontestdata: 0.9372000098228455\n" + ] + } + ], + "source": [ + "scores_2l_300=model_2l_300.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_300[0])\n", + "print('Accuracyontestdata:',scores_2l_300[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lMwKttpGdRBF" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_500 = Sequential()\n", + "model_2l_500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_500.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "kp_GuJGtdTt7", + "outputId": "cf1cc121-c59a-4d1a-d095-2373226b04b4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_4\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_4\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_7 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m500\u001b[0m) │ \u001b[38;5;34m392,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_8 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m5,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_7 (Dense)                 │ (None, 500)            │       392,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_8 (Dense)                 │ (None, 10)             │         5,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ], + "text/html": [ + "
     Total params: 397,510 (1.52 MB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ], + "text/html": [ + "
     Trainable params: 397,510 (1.52 MB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_500.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YdDl5OBkdXYf", + "outputId": "345e610e-0037-424b-e537-e13a3c867f9d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.5493 - loss: 1.7652 - val_accuracy: 0.8298 - val_loss: 0.8146\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8435 - loss: 0.7186 - val_accuracy: 0.8608 - val_loss: 0.5514\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8698 - loss: 0.5216 - val_accuracy: 0.8768 - val_loss: 0.4572\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8831 - loss: 0.4475 - val_accuracy: 0.8865 - val_loss: 0.4084\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8879 - loss: 0.4108 - val_accuracy: 0.8918 - val_loss: 0.3823\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8930 - loss: 0.3828 - val_accuracy: 0.8972 - val_loss: 0.3626\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8983 - loss: 0.3595 - val_accuracy: 0.9015 - val_loss: 0.3486\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9001 - loss: 0.3542 - val_accuracy: 0.9023 - val_loss: 0.3385\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9007 - loss: 0.3479 - val_accuracy: 0.9048 - val_loss: 0.3280\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9042 - loss: 0.3333 - val_accuracy: 0.9060 - val_loss: 0.3242\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9067 - loss: 0.3251 - val_accuracy: 0.9077 - val_loss: 0.3177\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9089 - loss: 0.3189 - val_accuracy: 0.9093 - val_loss: 0.3119\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9082 - loss: 0.3227 - val_accuracy: 0.9117 - val_loss: 0.3078\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9119 - loss: 0.3072 - val_accuracy: 0.9123 - val_loss: 0.3037\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9122 - loss: 0.3064 - val_accuracy: 0.9107 - val_loss: 0.3013\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9133 - loss: 0.3014 - val_accuracy: 0.9138 - val_loss: 0.2988\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9133 - loss: 0.3027 - val_accuracy: 0.9152 - val_loss: 0.2962\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9147 - loss: 0.2972 - val_accuracy: 0.9170 - val_loss: 0.2914\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9154 - loss: 0.2965 - val_accuracy: 0.9145 - val_loss: 0.2898\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9179 - loss: 0.2874 - val_accuracy: 0.9163 - val_loss: 0.2878\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9170 - loss: 0.2921 - val_accuracy: 0.9165 - val_loss: 0.2874\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9187 - loss: 0.2833 - val_accuracy: 0.9163 - val_loss: 0.2845\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9192 - loss: 0.2845 - val_accuracy: 0.9167 - val_loss: 0.2810\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9198 - loss: 0.2798 - val_accuracy: 0.9158 - val_loss: 0.2819\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9196 - loss: 0.2829 - val_accuracy: 0.9180 - val_loss: 0.2782\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9215 - loss: 0.2812 - val_accuracy: 0.9168 - val_loss: 0.2774\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9220 - loss: 0.2716 - val_accuracy: 0.9175 - val_loss: 0.2754\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9220 - loss: 0.2714 - val_accuracy: 0.9198 - val_loss: 0.2750\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2716 - val_accuracy: 0.9190 - val_loss: 0.2739\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9246 - loss: 0.2690 - val_accuracy: 0.9197 - val_loss: 0.2717\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9223 - loss: 0.2720 - val_accuracy: 0.9217 - val_loss: 0.2701\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9244 - loss: 0.2632 - val_accuracy: 0.9203 - val_loss: 0.2682\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9252 - loss: 0.2610 - val_accuracy: 0.9222 - val_loss: 0.2680\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9247 - loss: 0.2616 - val_accuracy: 0.9205 - val_loss: 0.2654\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9262 - loss: 0.2621 - val_accuracy: 0.9215 - val_loss: 0.2641\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9266 - loss: 0.2599 - val_accuracy: 0.9217 - val_loss: 0.2626\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9273 - loss: 0.2577 - val_accuracy: 0.9230 - val_loss: 0.2596\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9268 - loss: 0.2608 - val_accuracy: 0.9223 - val_loss: 0.2588\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9266 - loss: 0.2571 - val_accuracy: 0.9230 - val_loss: 0.2577\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9263 - loss: 0.2576 - val_accuracy: 0.9247 - val_loss: 0.2567\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9295 - loss: 0.2481 - val_accuracy: 0.9270 - val_loss: 0.2543\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9297 - loss: 0.2504 - val_accuracy: 0.9253 - val_loss: 0.2534\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9313 - loss: 0.2430 - val_accuracy: 0.9253 - val_loss: 0.2528\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9288 - loss: 0.2501 - val_accuracy: 0.9250 - val_loss: 0.2502\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9312 - loss: 0.2430 - val_accuracy: 0.9275 - val_loss: 0.2470\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9310 - loss: 0.2461 - val_accuracy: 0.9250 - val_loss: 0.2479\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9311 - loss: 0.2470 - val_accuracy: 0.9272 - val_loss: 0.2445\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9308 - loss: 0.2468 - val_accuracy: 0.9280 - val_loss: 0.2432\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9310 - loss: 0.2396 - val_accuracy: 0.9277 - val_loss: 0.2417\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9335 - loss: 0.2354 - val_accuracy: 0.9285 - val_loss: 0.2419\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_500 = model_2l_500.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "P1jA4OiUecrl", + "outputId": "83e6a06e-7438-4fb9-a0d7-6d13ebe73993" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfhVJREFUeJzt3Xd4U2X7wPFvdvfeUFqgTJEhKoL4AlJAUBQniiLjBWX4ylThJ9OFiiIOFCeogOACRREpyFBkQxkypOxRyuieSZPz+yM0EFqgSVPS0PtzXbmanHNyzp27hTvPc57zHJWiKApCCCGE8AhqdwcghBBCiPKTwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgiXsFgsnD17loMHD7o7FCGua1K4hRBOO3XqFMOHDycuLg69Xk94eDiNGzcmOzvb3aEJcd3SujsAUf307duX77//ntzcXHeHIiogJSWFDh06YDKZePbZZ7npppvQarV4e3vj6+vr7vCEuG5J4RbXxLlz55g7dy5//vkna9asoaCggLvuuosWLVrwyCOP0KJFC3eHKBz09NNPo9frWb9+PTVq1HB3OEJUGyq5yYiobPPnz2fgwIHk5uYSHx+PyWTi1KlTtGjRgu3bt2MymejTpw+ffPIJer3e3eGKctiyZQs333wzy5Yto1OnTu4OR4hqRc5xi0q1du1annjiCaKioli7di2HDh0iMTERLy8vNm3axMmTJ3nsscf48ssvGTFiBACKohAfH899991Xan+FhYUEBgby9NNPA7Bq1SpUKhXff/99qW39/Pzo27ev7fXs2bNRqVQcPnzYtuyff/4hODiYe+65h+LiYrvtNm/ebLe/s2fPolKpmDRpkt3yspZNnToVlUpF+/bt7ZYfPHiQhx9+mJiYGNRqNSqVCpVKRZMmTa6URgCKi4t5+eWXqVu3LgaDgfj4eP7v//6PoqIiu+3i4+O555577JY988wzqFQqu2XLly9HpVLxyy+/2Ja1b9++VMybNm2yxVli/fr1eHl5ceDAAW644QYMBgNRUVE8/fTTpKen272/rH2++uqrqNVq5s2b5/CxL6d9+/a2bct6XPx7B/jwww9tscfExDB06FAyMzOveIycnBwGDBhAXFwcBoOBmjVrMmjQINLS0uy2K/kbutzj0r+Xbdu20bVrVwICAvDz86Njx46sX7/etl5RFDp06EB4eDinT5+2LTcajdx4443UrVuXvLw8AI4cOcKQIUNo0KAB3t7ehIaG8vDDD5f6/CUx6vV6zpw5Y7du3bp1tlgv/Xcg3E+6ykWlev3117FYLMyfP5+WLVuWWh8WFsZXX33F7t27+fjjj5k4cSIRERE88cQTvPnmm6SnpxMSEmLbfvHixWRnZ/PEE09UOLZjx45x11130bBhQ7799lu0Wtf8c8jMzGTKlCmllpvNZu69916OHDnC8OHDqV+/PiqVildffbVc+x0wYABffvklDz30EKNGjWLDhg1MmTKFPXv2sHDhQpfEXpYXXnih1LJz585RWFjI4MGDufPOOxk0aBAHDhxgxowZbNiwgQ0bNmAwGMrc36xZsxg3bhxvv/02vXr1cvjYV1KzZs1SuV+yZAnffPON3bJJkyYxefJkEhMTGTx4MPv27eOjjz5i06ZNrF27Fp1OV+b+09PT2bFjBwMGDCAqKoqUlBRmzpzJ0qVL2bhxIxEREXbbv/TSS9SuXdv2Ojc3l8GDB9tt888//3DHHXcQEBDA888/j06n4+OPP6Z9+/asXr2aVq1aoVKp+OKLL2jatCmDBg3ixx9/BGDixIn8888/rFq1yjauYNOmTfz99988+uij1KxZk8OHD/PRRx/Rvn17du/ejY+Pj93xNRoNc+bMsX1xBuvvyMvLi8LCwvKkXVxrihCVKCQkRImLi7Nb1qdPH8XX19du2fjx4xVAWbx4saIoirJv3z4FUD766CO77e69914lPj5esVgsiqIoysqVKxVA+e6770od29fXV+nTp4/t9axZsxRAOXTokJKenq40btxYadCggXL27Fm795Vst2nTJrvlZ86cUQBl4sSJdssvXfb8888rERERSsuWLZV27drZlpd8pilTpti9v127dsoNN9xQKv6LJScnK4AyYMAAu+WjR49WAOWPP/6wLYuLi1Puvvtuu+2GDh2qXPrPPSkpyS7nJbFcHPOSJUsUQLnrrrvs3j9x4kQFUDp27KgUFxfblpfk7v333y9zn7/++qui1WqVUaNGlfqM5T325Vwuj1OnTrX93hVFUU6fPq3o9Xqlc+fOitlstm33wQcfKIDyxRdfXPVYF9u1a5diMBiU/v3725Y58jfUo0cPRa/XKwcOHLAtO3nypOLv76/85z//sXv/xx9/rADKnDlzlPXr1ysajUYZPny43Tb5+fmlYly3bp0CKF999VWpGB977DHlxhtvtC3Py8tTAgIClF69epX5GYT7SVe5qFQ5OTmlWiFliYyMBLBdRlS/fn1atWrF3Llzbdukp6fz22+/8fjjj5fqOs3JyeHs2bN2j8spLCzk3nvv5cyZMyxdupTQ0FBnPlqZTpw4wfvvv8/48ePx8/MrFSPg1PGWLFkCwMiRI+2Wjxo1CoBff/3VmXCvSFEUxo4dy4MPPkirVq3K3GbkyJFoNBrb6969exMZGVlmPBs3buSRRx7hwQcfZOrUqRU+trOWL1+O0Whk+PDhqNUX/gscOHAgAQEBV81lyfXqJY/IyEi6devGDz/8gMVicSgWs9nMsmXL6NGjB3Xq1LEtj46OplevXvz11192l9Y99dRTdOnShf/973/07t2bunXr8tprr9nt09vb2/bcZDJx7tw5EhISCAoKYuvWraVi6N27N3v37rV1if/www8EBgbSsWNHhz6LuHakcItKFRMTw4EDB666XUpKCoDd6OQnn3yStWvXcuTIEQC+++47TCYTvXv3LvX+/v37Ex4ebvcoOed3qX79+vHXX3+Rk5NjO6/tKhMnTiQmJsZ2Dv5iDRo0IDg4mLfffpu1a9dy5swZzp49i8lkuup+jxw5glqtJiEhwW55VFQUQUFBthy50ty5c/nnn39KFQbA9sWpYcOGdss1Gg316tUrdT71xIkT3H333eTl5XHu3LmrnrO+0rErqiRXDRo0sFuu1+upU6fOVXN59OjRUn9rCxcuJCsr64pfGMty5swZ8vPzS8UC0KhRIywWC8eOHbNb/vnnn5Ofn8/+/fuZPXu2XaEGKCgoYMKECcTGxmIwGAgLCyM8PJzMzEyysrJKHSc8PJy7776bL774AoAvvviCPn362H2pEVWL/GZEpbrnnntIT0/n888/v+w2aWlpfPnll4SHh3PbbbfZlj/66KPodDpbq3vOnDncfPPNZf4nN2HCBJKSkuweXl5eZR5v69at/PTTT4SHh/PUU09V8BNesGfPHmbPns0rr7xS5jlSPz8/FixYQF5eHm3btiUiIoLw8HD+/vvvch+jPIO0XMFoNDJ+/Hj++9//Ur9+/VLrLy0WV5OSkkKtWrX4+uuvWb58OV9++aXTx3a3qKioUn9rjz322DU7/qpVq2wDEnfu3Flq/f/+9z9effVVHnnkEb799luWLVtGUlISoaGhl+0R6N+/P9988w179uxhzZo1doM6RdUjg9NEpRo3bhyLFi1i8ODB7N27l169emE2mwFry2XFihVMmDCBjIwM5s2bZzegKSQkhLvvvpu5c+fy+OOPs3btWqZPn17mcW688UYSExPtll3chXuxzz77jHvvvReNRsM999zD559/zn//+98Kf9axY8fSvHlzevbsedltOnXqxJtvvsnjjz/OzJkzqVOnDqNGjbLl5HLi4uKwWCzs37+fRo0a2ZanpaWRmZlJXFxcheO/2Icffsjp06dLjX4uUTLgat++fXZdvCUxXnpdfnR0NEuWLCEyMpKffvqJUaNG0a1bN8LDwx0+dkWV5OrS2I1Go+2qhyvx8vIqtc17771HQEAAYWFhDsUSHh6Oj48P+/btK7Vu7969qNVqYmNjbctSU1P53//+R+fOndHr9YwePZouXbrY/f6///57+vTpw9tvv21bVlhYeMUR8127dsXLy4tHH32Utm3bUrduXf7880+HPou4dqTFLSpVVFQU69ato2vXrrz99tvcdNNNzJkzh7y8POLi4ujfvz/e3t4sXry4zFZL79692b17N8899xwajYZHH320wjHdcccdANx99908+uijPPfcc6Uu53HUunXr+Omnn3j99dev2Co+duwYQ4YM4dlnn+Wpp54iMTGR4ODgq+6/W7duAKW+uEybNg2wfhZXycnJ4dVXX2XEiBFERUWVuU3Hjh0xGAy89957dq24uXPnkpaWVupytPr169vGMbz//vtYLBaGDRvm1LErKjExEb1ez3vvvYdy0TQWn3/+OVlZWVfMZVkt1m3btvHbb7/Ro0cPh7uXNRoNnTt35qeffrI7vZCWlsa8efNo27YtAQEBtuUDBw7EYrHw+eef88knn6DVavnvf/9r9zk0Go3da7Dm/EpfDrVaLU8++SQ7duygf//+Dn0Gce1Ji1tUutjYWH766SdSU1NZu3YtU6dOJTk5mZkzZ9K8eXOaN29+2WJ39913ExoaynfffUfXrl3LNdDNEe+++y6NGjXif//7H99++63dunXr1tmdsywZJJSSksLGjRu59dZbbetKJiK5UmvNYrHQu3dvatasyeuvv+5QnM2aNbNNUpOZmUm7du3YuHEjX375JT169KBDhw5225cMvCtx9OhRALtlycnJZR5r69athIWF8fzzz182npCQEMaNG8f48ePp0qUL9913HwcPHuSDDz6gWbNmDBgw4LLvjYqKYurUqQwYMIAnnnjC9qWkvMeuqPDwcMaOHcvkyZO56667uPfee9m3bx8ffvght9xyyxUvNTx69Ch33303Dz/8MDVq1GDXrl18+umnhIWFOX0+/pVXXiEpKYm2bdsyZMgQtFotH3/8MUVFRbz55pu27WbNmsWvv/7K7NmzqVmzJmAtyE888QQfffQRQ4YMAaynp77++msCAwNp3Lgx69atY/ny5VcdFPnyyy/z3HPPleuLpHAzt45pF9VSWZeDXcmQIUMUQJk3b16pdc5eDnaxL7/8UgGUn3/+2W67Kz0uvmwJUFQqlbJlyxa7/V56edNrr72mGAwGZfv27aW2u9rlYIqiKCaTSZk8ebJSu3ZtRafTKbGxscrYsWOVwsJCu+3i4uKuGv/Fj0svBwOUd955x26fJZd/XWrGjBlKw4YNFZ1Op0RGRipPP/20cu7cuSvmocSdd96p1KpVS8nJyXHq2Jcq7+VgJT744AO72AcPHqxkZGRc8Rg5OTnKwIEDlbi4OEWv1yvh4eFK7969lSNHjtht5+glhVu3blW6dOmi+Pn5KT4+PkqHDh2Uv//+27b+2LFjSmBgoNK9e/dSMd1///2Kr6+vcvDgQUVRFCUjI0Pp16+fEhYWpvj5+SldunRR9u7dq8TFxZX57+Fyl3tdbb1wH5nyVFR5I0aM4PPPP+fUqVOlJo9wh0mTJrFq1SpWrVrl7lCEENWQnOMWVVphYSFz5szhwQcfrBJFWwgh3E3OcYsq6fTp0yxfvpzvv/+ec+fOlTmQyV0SEhLIz893dxhCiGpKuspFlbRq1So6dOhAREQE48eP55lnnnF3SEIIUSVI4RZCCCE8iJzjFkIIITyIFG4hhBDCg1S7wWkWi4WTJ0/i7+9/zeZ9FkIIIa5EURRycnKIiYm56gx81a5wnzx50m7uXyGEEKKqOHbsmG1mvMtxa+Fes2YNU6dOZcuWLaSmprJw4UJ69OhRrveuXbuWdu3a0aRJk8tO3VgWf39/wJqci+cAdobJZGLZsmV07ty5zLtBicuT3DlH8uY8yZ1zJG/OcyR32dnZxMbG2mrUlbi1cOfl5dGsWTP69+/PAw88UO73ZWZm8uSTT9KxY0eHbw5R0j0eEBDgksLt4+NDQECA/EE7SHLnHMmb8yR3zpG8Oc+Z3JXnFK5bC3fXrl3p2rWrw+8bNGgQvXr1QqPRsGjRItcHJoQQQlRRHneOe9asWRw8eJA5c+bwyiuvXHX7oqIi203n4cIdnkwmEyaTqUKxlLy/ovupjiR3zpG8OU9y5xzJm/McyZ0j+fWowr1//37GjBnDn3/+iVZbvtCnTJnC5MmTSy1ftmyZy+a+TkpKcsl+qiPJnXMkb86T3DlH8ua88uTOkWmUPaZwm81mevXqxeTJk6lfv3653zd27FhGjhxpe10yAKBz584uOcedlJREp06d5NyPgyR3zqlI3sxmM8XFxVTXyRKLi4v5+++/adOmTbm/+AvJW0VcnDsvLy80Gs1lz2GX9AaXh8f8FnJycti8eTPbtm2zzVttsVhQFAWtVsuyZcu48847S73PYDBgMBhKLdfpdC4rGK7cV3UjuXOOo3nLzc3l+PHj1bZog/U62aioKFJTU2UOBwdI3px3ae58fHyIjo5Gr9eX2taRf88eU7gDAgLYuXOn3bIPP/yQP/74g++//57atWu7KTIhqjaz2czx48fx8fEhPDy82v7na7FYyM3Nxc/P76oTXIgLJG/OK8mdr68vxcXFnDlzhkOHDlGvXr0K5dKthTs3N5eUlBTb60OHDpGcnExISAi1atVi7NixnDhxgq+++gq1Wk2TJk3s3h8REYGXl1ep5UKIC0wmE4qiEB4ejre3t7vDcRuLxYLRaMTLy0sKkAMkb84ryZ23tzdqtRqdTseRI0ds+XSWWwv35s2b6dChg+11ybnoPn36MHv2bFJTUzl69Ki7whPiulJdW9pCVBWu+uLj1sLdvn37K55zmz179hXfP2nSJCZNmuTaoIQQQogqTPo9hBDXJbnu2DPJ7+3qpHALIa4LycnJ9OnTh/r16xMcHExAQABZWVnuDktcxcGDBxk8eDCNGzcmNDQUb29v9u7d6+6wqjQp3EKIKuvYsWP079+fmJgY9Ho9cXFxDBs2jHPnztltt2rVKtq2bUtUVBTz589n06ZNpKSkEBgY6KbIRXns2bOHli1bUlxczBdffMGGDRs4cOAADRs2dHdoVZrHXA4mhKheDh48SOvWralfvz7ffPMNtWvX5p9//uG5557jt99+Y/369YSEhKAoCgMHDmT69OkMGDDA3WELBzzzzDMMHTq0XNNXiwukxV0Bn/51iNeTNcxed8TdoQhRboqikG8sdsvDkQlghg4dil6vZ9myZbRr145atWrRtWtXli9fzokTJ3jxxRcB2Lt3L0eOHCElJYW4uDi8vLy47bbb+Ouvv2yfNyEhgbfffttu/8nJyahUKlJSUli1ahUqlYrMzEzb+r59+9rdZnjp0qW0bduWoKAgQkNDueeeezhw4IBt/eHDh1GpVLbbDJ84cYKHH36YiIgI/P39uf/++zl+/Lht+0mTJtG8eXPb68zMTFQqFatWrbpsDAcOHOC+++4jMjISPz8/brnlFpYvX273uVJTU3nggQcIDQ1FpVLZHhd/tkvt3LmTO++8E29vb0JDQ3nqqafIzc21rR8yZAj3339/qdwdPnzYtqx9+/YMHz7c9jo+Pp7p06fbXq9YsQKVSmX7PHl5eaxcuRKj0Ui9evXw8vLixhtv5KeffrpsTouKikhMTCQxMdF2D4pNmzbRqVMnwsLCCAwMpF27dmzduvWyn/V6IC3uCjiXayS1QMWprEJ3hyJEuRWYzDSe8Ltbjr37pS746K/+3056ejq///47r776aqlrz6Oionj88cdZsGABH374IWfOnMFkMvH111/z6aefUrt2bd59913uuusu9u/fT3R0NP3792f27NkMHDjQtp9Zs2bxn//8h4SEBLuCejl5eXmMHDmSpk2bkpuby4QJE7j//vtJTk4udZmPyWSiW7du6HQ6Fi9ejE6nY9iwYfTo0YNNmzY5fWlebm4u3bp149VXX8VgMPDVV1/RvXt39u3bR61atQAYNWoU//77L0uXLiU2Npa///6bBx988Iqfq0uXLrRu3ZpNmzZx+vRpBgwYwDPPPHPVK3vKy2KxMGrUKPz8/GzLzp07h6IofPzxx8ycOZOWLVsyb948HnjgAbZs2WL3pQasEwk9+uij5Obmsnz5ctuMmDk5OfTp04f3338fRVF4++236datG/v37y/Xva09kbS4K8BLpwGgqNji5kiEuL7s378fRVFo1KhRmesbNWpERkYGZ86cwWKx/vubOnUq3bp1o1GjRnz44YfExMQwY8YMwNpy3bdvH1u2bAGshXXevHn0798fwPbloKCg4LIxPfjggzzwwAMkJCTQvHlzvvjiC3bu3Mnu3btLbbt8+XJ27NjBV199RatWrbjpppuYO3cuycnJrFixwum8NGvWjKeffpomTZpQr149Xn75ZerWrcvPP/9s2yY5OZlevXpxyy23EBUVRUhIyBX3OW/ePAoLC/nqq69o0qQJd955Jx988AFff/01aWlpTsd6sS+//JKioiLuu+8+27KS39sLL7zAY489Rv369Zk0aRIdOnTgrbfesnu/oij069ePlJQUlixZYvcF4M477+SJJ56gYcOGNGrUiE8++YT8/HxWr17tktirImlxV4CX1vq9p8BkdnMkQpSft07D7pe6uO3YjnCka/3222+3PVer1bRp08ZWVGNiYujWrRtz5syhQ4cOLF68mKKiIh5++GEA6tWrh16v55tvvrG7KdHF9u/fz4QJE9iwYQNnz561FZ6jR4/azd7Ypk0bzGYzQUFBNG7c2La8Vq1axMbGsnv3bhITE8ufhIvk5uYyadIkfv31V1JTUykuLqagoMBuoqratWuzZMkSBg0adNWiDdYBYs2aNcPX19e27Pbbb8disbBv3z7Cw8OdirVEfn4+48aNY+bMmfzwww+l1l/8ewNo27at3RcRgOeee44VK1bQr1+/Up8pLS2NcePGsWrVKk6fPo3ZbCY/P/+6nrxLWtwVYDj/n1ChSVrcwnOoVCp89Fq3PMrbRZyQkIBKpWLPnj1lrt+zZw/BwcGEh4cTHBx8xc9a4r///S8//vgjBQUFzJo1i549e9pu7RsSEsK0adMYM2YM3t7e+Pn5MXfuXLt9de/enfT0dD799FM2bNjAhg0bADAajXbbLViwgJdffrlcMTlq9OjRLFy4kNdee40///yT5ORkbrzxRrsY3nnnHYqKiggLC8PPz4+uXbs6fTxXmDp1Kg0aNKB79+52y8v7ewPr7/u3335j/vz5/P67/WmePn36kJyczLvvvsvff/9NcnIyoaGhpX4v1xMp3BXgpbOmr0ha3EK4VGhoKJ06deLDDz8s1X196tQp5s6dS8+ePVGpVNStWxetVsvatWtt21gsFv7++2+7Fm+3bt3w9fVl5syZLF261NZNXmLo0KFkZWWxa9cukpOTuffee23rzp07x759+xg3bhwdO3a0ddWXJTY2lrZt25KZmWnXjX7s2DGOHTtmF5Oj1q5dS9++fbn//vu58cYbiYqKshsgBlC/fn369u1LfHw8GzZs4LPPPrviPhs1asT27dvJy8uzO45araZBgwZOxwrWgXJvv/12qYGBAIGBgURFRdn93gD++uuvUjn6+uuvueuuu3j55ZcZOHCg3S0w165dy7PPPku3bt244YYbMBgMnD17tkJxV3VSuCvAS3u+xS3nuIVwuQ8++ICioiK6dOnCmjVrOHbsGEuXLqVTp07UqFGDV199FQA/Pz8GDhzIc889x5IlS9izZw9Dhgzh5MmTDBkyxLY/jUbDY489xv/93/9Rr149WrduXeqY3t7e1K1bl4SEBLuBTcHBwYSGhvLJJ5+QkpLCH3/8cdkudbB2l7dq1Yonn3ySjRs3snXrVh5//HGaN29ud/thRVEoLCyksLDQNkraaDTalpnNZiwWi202sXr16vHjjz+SnJzM9u3b6dWrl63LvsT69ev5v//7P77//ntuuOEGatSoccU8P/7443h5edGnTx927drFypUr+d///kfv3r2JjIy0bWexWGxxlbRmi4qKbMsujQNgxowZ3H///bRo0aLMY48YMYI33niD+fPn8++//zJp0iRWrlzJ6NGj7bYr6R4fMWIEsbGxdrmvV68eX3/9NXv27GHDhg08/vjj1/3NdKRwV0BJi7tQWtxCuFy9evXYvHkzderU4ZFHHqFu3bo89dRTdOjQgXXr1tmd63zrrbfo0aMHffr0oXnz5mzfvp3ff/+d6Ohou3327t0bo9FIv379HIpFrVYzf/58tmzZQpMmTRgxYgRTp0694nt++OEHYmNj6dixI+3atSMsLIxFixbZdQPv2LEDb29vvL29iYqKAqBLly62ZXPmzGHx4sW20fDTpk0jODiYNm3a0L17d7p06cJNN91k29+ZM2d4+OGHmTZtmt3yK/Hx8eH3338nPT2dW265hYceeoiOHTvywQcf2G33yy+/2OJq1aoVAA0bNrQt+/PPP0vt22Kx2L5glWXUqFE8++yzjBo1iiZNmvDjjz/y448/0qxZszK3V6vVzJo1i3nz5rFs2TIAPv/8czIyMrjpppvo3bs3zz77LBEREeX67J5KpTgy+uM6kJ2dTWBgIFlZWQQEBFRoX8t2neSpOdu4sUYAi/93h4sirB5MJhNLliyxXTIjyseZvBUWFnLo0CFq165doVsJejqLxcLSpUvp0aMHx44ds2tNVmWLFi1i0aJFLrs0y1EWi4Xs7GwCAgLktp4OujR3V/q36EhtklHlFSAtbiE8Q1FREWlpabzxxhs89NBDHlO0wdrFL19uxcXk61MFlJzjLpBR5UJUaSVTpmZlZfHGG2+4OxyHdO/enU8//dTdYYgqRAp3BRhkVLkQHqFv376YTCZWrVp11cFaQlR1UrgrQEaVCyGEuNakcFeAnOMWQghxrUnhroCSucpNZgWzpVoNzhdCCOEmUrgroKTFDVBULK1uIYQQlU8KdwWUnOMGma9cCCHEtSGFuwLUahUalbWLXO4QJoQQnq1katmqTgp3BenPZ1AGqAkhhGdZuHAhd999N/Hx8fj5+XHHHZ4xA6YU7grSSeEWolL07dsXlUple4SGhnLXXXexY8cOd4cmrgNTpkxh4MCB3HPPPfz6668kJyezZMkSd4dVLjLlaQVdKNxyjlsIV7vrrruYNWsWYL2d57hx47jnnns4evSomyMTnuzgwYO89tprrF+/nhtuuMHd4ThMWtwVVFK4ZfY04TEUBYx57nk4eE8jg8FAVFQUUVFRNG/enDFjxnDs2DHOnDlj2+aFF16gfv36+Pj4UKdOHcaPH1/qXOXhw4fRaDQEBwej0WhsrfjMzEwAJk2aRPPmzW3bG41GEhIS7LYpER8fb9cToFKpWLRokW390qVLadu2LUFBQYSGhnLPPfdw4MABu1hUKhXJycml9jt9+nTb6/bt2zN8+HDb63379qHT6ezitFgsvPTSS9SsWRODwUDz5s1ZunSpw8e69DOUdfyvv/6am2++GX9/f6KioujVqxenT5+2e88vv/xCs2bN8Pb2tuWmR48eXMlHH31E3bp10ev1NGjQgK+//tpu/aWxDR8+nPbt21/2M65atarU76137952+/n999+pW7cur776KuHh4fj7+/PAAw9w/Phx23su/ZvYunUrQUFBdvc3nzZtGjfeeCO+vr7ExsYyZMgQcnNzr/h5XUFa3BVka3HL5WDCU5jy4bUY9xz7/06C3tept+bm5jJnzhwSEhIIDQ21Lff392f27NnExMSwc+dOBg4ciL+/P88//7xtm5KbIC5atIhbbrmF9evX8+CDD172WB988AFpaWmXXf/SSy/ZbrV56a1D8/LyGDlyJE2bNiU3N5cJEyZw//33k5ycXKG7az333HOl7ij17rvv8vbbb/Pxxx/TokULvvjiC+69917++ecf6tWr5/SxymIymXj55Zdp0KABp0+fZuTIkfTt29fWvZyZmUnPnj0ZMGAAixYtwtvbm2HDhtnuM16WhQsXMmzYMKZPn05iYiK//PIL/fr1o2bNmnTo0MElcW/ZsoWff/7ZbtmZM2fYvn07/v7+/PbbbwAMGzaMHj16sGnTJrtbrwLs3buXLl26MG7cOAYMGGBbrlaree+996hduzYHDx5kyJAhPP/883z44Ycuif1ypHBXkF66yoWoNL/88gt+fn6AtSBGR0fzyy+/2BXAcePG2Z7Hx8czevRo5s+fb1e4S1rgERERREVF2d3L+1Lp6em88sorvPDCC4wfP77U+qKiIkJCQmz3z77UpV8IvvjiC8LDw9m9ezdNmjQpx6cubeXKlfz9998MGDCAlStX2pa/9dZbvPDCCzz66KMAvPHGG6xcuZLp06czY8YMp451Of3797flvU6dOrz33nvccsst5Obm4ufnx7///kt+fj4vvPACMTHWL4be3t5XLNxvvfUWffv2ZciQIQCMHDmS9evX89Zbb7mscI8cOZLnnnvO7ndpsVjQaDTMmzeP2NhYAObNm0fdunVZsWIFiYmJtm2PHDlCp06deOqppxg9erTdvi/ukYiPj+eVV15h0KBBUrirOp1aAVQyOE14Dp2PteXrrmM7oEOHDnz00UcAZGRk8OGHH9K1a1c2btxIXFwcAAsWLOC9997jwIED5ObmUlxcXOp+xtnZ2QD4+l69tf/SSy/RoUMH2rZtW+b69PT0K94vef/+/UyYMIENGzZw9uxZLBbrl/qjR486VbgVRWHUqFFMnDiRc+fO2ZZnZ2dz8uRJbr/9drvtb7/9drZv3263rE2bNnZfdvLz80sd57HHHkOjuTA3RUFBgV1X8ZYtW3jppZfYvn07GRkZdp+rcePGxMbGotVq+eabbxgxYkS5ehf27NnDU089VSr+d99996rvLY9FixZx8OBBRo0aVepLWGxsrK1oA8TFxVGzZk12795tK9yZmZkkJiZy/PhxunTpUmr/y5cvZ8qUKezdu5fs7GyKi4spLCwkPz8fHx/H/tYdIee4K6ikq1yu4xYeQ6Wydle743FJF+TV+Pr6kpCQQEJCArfccgufffYZeXl5tttcrlu3jscff5xu3brxyy+/sG3bNl588UWMRqPdfk6ePIlarSYiIuKKx9u/fz+fffbZZW/9efz4cYxGI7Vr177sPrp37056ejqffvopGzZsYMOGDQClYiqvr776iry8PAYNGuTU+8H65SY5Odn2KGkRX+ydd96x2+bmm2+2rcvLy6Nr164EBAQwd+5cNm3axMKFC4ELnys6OpqPPvqI1157DS8vL/z8/Jg7d67TMVeUyWTi+eef59VXX8Xb29tuXXBw8GXfd3E3+ZEjR2jVqhWTJk2if//+dl94Dh8+zD333EPTpk354Ycf2LJli62Xw9nfdXlJ4a4gGVUuxLWjUqlQq9UUFBQA8PfffxMXF8eLL77IzTffTL169Thy5Eip923atImGDRuWOkd8qRdeeIEBAwaQkJBQ5vrVq1fj7e1tV9Qudu7cOfbt28e4cePo2LEjjRo1IiMjw8FPeUF+fj4vvvgib7zxBjqdzm5dQEAAMTExrF271m752rVrady4sd2y2NhY2xeghIQEtNrSna1RUVF221xc7Pbv38+5c+d4/fXXueOOO2jYsGGpgWkAffr0oWHDhjz11FMkJydz7733XvHzNWrUqFzxO+Ojjz7Cz8+P3r17l1rXsGFDjh07xrFjx2zLjhw5wvHjx+2OXadOHWbPns2LL75IQEAAY8eOta3bsmULFouFt99+m9tuu4369etz8uS16cmSrvIKkuu4hag8RUVFnDp1CrB2lX/wwQfk5ubSvXt3AOrVq8fRo0eZP38+t9xyC7/++qutJQjWls+CBQuYNm0akyZNuuKxUlJSOHr0KCkpKWWuP3DgAK+//jr33XdfqZHmmZmZGI1GgoODCQ0N5ZNPPiE6OpqjR48yZsyYMvdnNBopLCy0vVYUheLiYsxms63Let68ebRs2fKyI7Ofe+45Jk6cSN26dWnevDmzZs0iOTnZ5S3dmjVrotfref/99xk0aBC7du3i5ZdfLrXdqFGjUKlUvPPOO+h0Ovz9/Uvl6tL4H3nkEVq0aEFiYiKLFy/mxx9/ZPny5XbbmUwmW67MZjMWi8X2+nLn0N98800WL15caqAZQKdOnWjUqBG9evXinXfeAayD05o3b86dd95p287f39/2JWf27NnceuutPPTQQ9xxxx0kJCRgMpl4//336d69O2vXrmXmzJlXyKILKdVMVlaWAihZWVkV3pfRaFQen/azEvfCL8rbv+91QXTVh9FoVBYtWqQYjUZ3h+JRnMlbQUGBsnv3bqWgoKASI3O9Pn36KIDt4e/vr9xyyy3K999/b7fdc889p4SGhip+fn5Kz549lXfeeUcJDAxUFEVRNm/erNSpU0eZMmWKYjKZlIyMDMVsNisrV65UACUjI0NRFEWZOHGiAihvvfWWbb+XbhMXF2cXz6WPlStXKoqiKElJSUqjRo0Ug8GgNG3aVFm1apUCKAsXLlQURVEOHTp0xf3MmjVLURRFadeunaJSqZRNmzbZYpo4caLSrFkz22uz2axMmjRJqVGjhqLT6ZRmzZopv/32m219ybG2bdtml7O4uDjlnXfesb2+OL4S7dq1U4YNG6aYzWYlIyNDmTNnjhIfH68YDAaldevWys8//2y373nz5imRkZHKiRMn7H6H9913X9m/4PM+/PBDpU6dOopOp1Pq16+vfPXVV3brr5Srix8lcZT83u65555S+7n4Mx44cEC5++67FR8fH8XPz0+5//77lePHj18214qiKC+99JKSkJCg5OXlKYqiKNOmTVOio6MVb29vpUuXLspXX31l9zdTkjuz2awoypX/LTpSm1TnP1C1kZ2dTWBgIFlZWVccYFIeJpOJpz9cyh+pap76Tx3+r1sjF0V5/TOZTCxZsoRu3bqV6gIUl+dM3goLCzl06BC1a9e+alfx9cxisZCdnU1AQIBTl2XFx8ezatUq4uPjS63r0aNHqeuLnTF8+HCaN29O3759K7QfV6po3qqzS3N3pX+LjtQm+S1UkHSVC1E9hIeH2426vlhwcDB6vb7Cx9DpdJc9hhAl5Bx3Bek01g4LKdxCXN82bdp02XUl07JW1NSpU12yH3F9kxZ3BV24HExGlQshhKh8UrgrSLrKhRBCXEtSuCtICrfwFNVsHKoQVY6r/g1K4a6gC3cHk65yUTWVDHaq7NmchBBXVjLzWkWvpJHBaRUkdwcTVZ1Wq8XHx4czZ86g0+mq7SU9FovFNulJdc2BMyRvzivJXUFBAYWFhZw+fZqgoKAKXzkghbuC9NJVLqo4lUpFdHQ0hw4dKnM60OpCURQKCgps94oW5SN5c96luQsKCrrsXeUcIYW7gqx3B5O5ykXVptfrqVevXrXuLjeZTKxZs4b//Oc/MumPAyRvzivJXbt27fD29nbZNfpSuCtI7g4mPIVara7WM6dpNBqKi4vx8vKSAuQAyZvzSnJnMBhcOrGOnLCoIBlVLoQQ4lqSwl1BMqpcCCHEtSSFu4JKBqcZzRbMFrlOVgghROWSwl1BuosyWCSXhAkhhKhkUrgr6OLCLSPLhRBCVDYp3BWkVoFOY722UQaoCSGEqGxSuF3AS2cd5i+FWwghRGVza+Fes2YN3bt3JyYmBpVKxaJFi664/Y8//kinTp0IDw8nICCA1q1b8/vvv1+bYK/AS2tNo1zLLYQQorK5tXDn5eXRrFkzZsyYUa7t16xZQ6dOnViyZAlbtmyhQ4cOdO/enW3btlVypFdmsLW45Ry3EEKIyuXWmdO6du1K165dy7399OnT7V6/9tpr/PTTTyxevJgWLVq4OLryK2lxF0mLWwghRCXz6ClPLRYLOTk5hISEXHaboqIiioqKbK+zs7MB6xyyJpOpQscveb/hfOHOLTRWeJ/VRUmeJF+Okbw5T3LnHMmb8xzJnSP59ejC/dZbb5Gbm8sjjzxy2W2mTJnC5MmTSy1ftmwZPj4+LomjIDcbULFu42YKDsgkLI5ISkpydwgeSfLmPMmdcyRvzitP7kru1V0eHlu4582bx+TJk/npp5+IiIi47HZjx45l5MiRttfZ2dnExsbSuXNnAgICKhSDyWQiKSmJ6PAQDuZk0PjGZnRrHlOhfVYXJbnr1KmT3LjAAZI350nunCN5c54juSvpDS4Pjyzc8+fPZ8CAAXz33XckJiZecVuDwYDBYCi1XKfTueyP0FtvTaPJopI/bAe58vdQnUjenCe5c47kzXnlyZ0jufW467i/+eYb+vXrxzfffMPdd9/t7nCAC6PK5XIwIYQQlc2tLe7c3FxSUlJsrw8dOkRycjIhISHUqlWLsWPHcuLECb766ivA2j3ep08f3n33XVq1asWpU6cA8Pb2JjAw0C2fAcDr/LynMgGLEEKIyubWFvfmzZtp0aKF7VKukSNH0qJFCyZMmABAamoqR48etW3/ySefUFxczNChQ4mOjrY9hg0b5pb4S3hprS1uuRxMCCFEZXNri7t9+/YoyuVHYc+ePdvu9apVqyo3ICfZWtzFMgGLEEKIyuVx57irIoNW5ioXQghxbUjhdgFvOccthBDiGpHC7QIyV7kQQohrRQq3C5Sc45bLwYQQQlQ2Kdwu4CXnuIUQQlwjUrhdoKTFXSRd5UIIISqZFG4XsJ3jLpYWtxBCiMolhdsFSu7HLV3lQgghKpsUbhfwklHlQgghrhEp3C4gc5ULIYS4VqRwu4CMKhdCCHGtSOF2gQstbukqF0IIUbmkcLtAyahyo9mC2XL5m6YIIYQQFSWF2wVKRpUDFMklYUIIISqRFG4XKBlVDtJdLoQQonJJ4XYBjVqFTqMCZICaEEKIyiWF20UuXMsthVsIIUTlkcLtIjIJixBCiGtBCreLyK09hRBCXAtSuF2kZBKWIincQgghKpEUbhfxkjuECSGEuAakcLuIzJ4mhBDiWpDC7SIyqlwIIcS1IIXbRQxaGVUuhBCi8knhdhFvvbS4hRBCVD4p3C5SMl+5XA4mhBCiMknhdpGSc9xyOZgQQojKJIXbRWyjyovlHLcQQojKI4XbRWRUuRBCiGtBCreLSOEWQghxLUjhdhGDViZgEUIIUfmkcLuIXA4mhBDiWnC4cB88eLAy4vB4JTcZkcFpQgghKpPDhTshIYEOHTowZ84cCgsLKyMmj2Q7x22UFrcQQojK43Dh3rp1K02bNmXkyJFERUXx9NNPs3HjxsqIzaNcuBxMCrcQQojK43Dhbt68Oe+++y4nT57kiy++IDU1lbZt29KkSROmTZvGmTNnKiPOKk9GlQshhLgWnB6cptVqeeCBB/juu+944403SElJYfTo0cTGxvLkk0+SmprqyjirPLmtpxBCiGvB6cK9efNmhgwZQnR0NNOmTWP06NEcOHCApKQkTp48yX333efKOKu8C3cHkxa3EEKIyqN19A3Tpk1j1qxZ7Nu3j27duvHVV1/RrVs31Grrd4DatWsze/Zs4uPjXR1rlSZd5UIIIa4Fhwv3Rx99RP/+/enbty/R0dFlbhMREcHnn39e4eA8ie06brkcTAghRCVyuHDv37//qtvo9Xr69OnjVECequS2nsZiC2aLgkatcnNEQgghrkcOF26AjIwMPv/8c/bs2QNAo0aN6N+/PyEhIS4NzpOUdJUDFBWb8dE7lVohhBDiihwenLZmzRri4+N57733yMjIICMjg/fff5/atWuzZs2ayojRI1xcuGVkuRBCiMricLNw6NCh9OzZk48++giNxlqszGYzQ4YMYejQoezcudPlQXoCjVqFTqPCZFZkgJoQQohK43CLOyUlhVGjRtmKNoBGo2HkyJGkpKS4NDhP4yWXhAkhhKhkDhfum266yXZu+2J79uyhWbNmLgnKUxlsl4RJV7kQQojK4XBX+bPPPsuwYcNISUnhtttuA2D9+vXMmDGD119/nR07dti2bdq0qesi9QDeepmvXAghROVyuHA/9thjADz//PNlrlOpVCiKgkqlwmyuXgXM1lUudwgTQghRSRwu3IcOHaqMOK4LttnTpMUthBCikjhcuOPi4iojjuuC3GhECCFEZXNqlpADBw4wffp02yC1xo0bM2zYMOrWrevS4DyNzFcuhBCisjk8qvz333+ncePGbNy4kaZNm9K0aVM2bNjADTfcQFJSUmXE6DEu3CFMWtxCCCEqh8OFe8yYMYwYMYINGzYwbdo0pk2bxoYNGxg+fDgvvPCCQ/tas2YN3bt3JyYmBpVKxaJFi676nlWrVnHTTTdhMBhISEhg9uzZjn6ESnOhq1xa3EIIISqHw4V7z549/Pe//y21vH///uzevduhfeXl5dGsWTNmzJhRru0PHTrE3XffTYcOHUhOTmb48OEMGDCA33//3aHjVhZvGZwmhBCikjl8jjs8PJzk5GTq1atntzw5OZmIiAiH9tW1a1e6du1a7u1nzpxJ7dq1efvttwHrzU3++usv3nnnHbp06VLme4qKiigqKrK9zs7OBsBkMmEymRyK91Il7y/5qddY7wiWX1jxfV/vLs2dKB/Jm/Mkd86RvDnPkdw5kl+HC/fAgQN56qmnOHjwIG3atAFg7dq1vPHGG4wcOdLR3Tlk3bp1JCYm2i3r0qULw4cPv+x7pkyZwuTJk0stX7ZsGT4+Pi6Jq+Tc/sljakDN7n0pLCn61yX7vt5V93ERzpK8OU9y5xzJm/PKk7v8/Pxy78/hwj1+/Hj8/f15++23GTt2LAAxMTFMmjSJZ5991tHdOeTUqVNERkbaLYuMjCQ7O5uCggK8vb1LvWfs2LF2Xyiys7OJjY2lc+fOBAQEVCgek8lEUlISnTp1QqfTsW95CitTDxJTK45u3RpVaN/Xu0tzJ8pH8uY8yZ1zJG/OcyR3Jb3B5eFQ4S4uLmbevHn06tWLESNGkJOTA4C/v78ju7mmDAYDBoOh1HKdTueyP8KSffl6WfdnNCvyB15Orvw9VCeSN+dJ7pwjeXNeeXLnSG4dGpym1WoZNGgQhYWFgLVgX8uiHRUVRVpamt2ytLQ0AgICymxtX2sGrUzAIoQQonI5PKr81ltvZdu2bZURy1W1bt2aFStW2C1LSkqidevWbonnUjIBixBCiMrm8DnuIUOGMGrUKI4fP07Lli3x9fW1W+/IHcFyc3Pt7uF96NAhkpOTCQkJoVatWowdO5YTJ07w1VdfATBo0CA++OADnn/+efr3788ff/zBt99+y6+//urox6gUF+Yqlxa3EEKIyuFw4X700UcB7AaiOXtHsM2bN9OhQwfb65JBZH369GH27NmkpqZy9OhR2/ratWvz66+/MmLECN59911q1qzJZ599dtlLwa41b2lxCyGEqGRuvTtY+/btURTlsuvLmhWtffv2buuqvxqZOU0IIURlc7hwHzlyhDZt2qDV2r+1uLiYv//+u1rfPUzOcQshhKhsDg9O69ChA+np6aWWZ2Vl2XV7V0dyW08hhBCVzeHCXXIu+1Lnzp0rNVCturlwdzBpcQshhKgc5e4qf+CBBwDrQLS+ffvaTWpiNpvZsWOHbQrU6kq6yoUQQlS2chfuwMBAwNri9vf3t5vwRK/Xc9tttzFw4EDXR+hBbF3lcjmYEEKISlLuwj1r1iwA4uPjGT16dLXvFi9LyeVgxmILFouCWl36lIIQQghREQ6PKp84cWJlxHFdKOkqB+s9uX30DqdXCCGEuCKHB6elpaXRu3dvYmJi0Gq1aDQau0d1Zle4ZWS5EEKISuBwk7Bv374cPXqU8ePHEx0dXeYI8+pKo1ah06gwmRUZoCaEEKJSOFy4//rrL/7880+aN29eCeF4Pi+tBpO5WAq3EEKISuFwV3lsbOwVpymt7gy2S8Kkq1wIIYTrOVy4p0+fzpgxYzh8+HAlhOP5LlwSJi1uIYQQrudwV3nPnj3Jz8+nbt26+Pj4oNPp7NaXNR1qdSKTsAghhKhMDhfu6dOnV0IY14+Sa7mLpKtcCCFEJXC4cPfp06cy4rhulHSVF0iLWwghRCVw+Bw3wIEDBxg3bhyPPfYYp0+fBuC3337jn3/+cWlwnki6yoUQQlQmhwv36tWrufHGG9mwYQM//vgjubm5AGzfvl1mVePiO4RJV7kQQgjXc7hwjxkzhldeeYWkpCT0er1t+Z133sn69etdGpwnunBPbmlxCyGEcD2HC/fOnTu5//77Sy2PiIjg7NmzLgnKk9m6yuVyMCGEEJXA4cIdFBREampqqeXbtm2jRo0aLgnKk11ocUtXuRBCCNdzuHA/+uijvPDCC5w6dQqVSoXFYmHt2rWMHj2aJ598sjJi9CgXLgeTFrcQQgjXc7hwv/baazRs2JDY2Fhyc3Np3Lgx//nPf2jTpg3jxo2rjBg9SklXuVwOJoQQojI4fB23Xq/n008/ZcKECezcuZPc3FxatGhBvXr1KiM+jyOXgwkhhKhMDhfuErGxscTGxmI2m9m5cycZGRkEBwe7MjaPZNDKOW4hhBCVx+Gu8uHDh/P5558DYDabadeuHTfddBOxsbGsWrXK1fF5HGlxCyGEqEwOF+7vv/+eZs2aAbB48WIOHjzI3r17GTFiBC+++KLLA/Q0Fy4Hkxa3EEII13O4cJ89e5aoqCgAlixZwiOPPEL9+vXp378/O3fudHmAnkYmYBFCCFGZHC7ckZGR7N69G7PZzNKlS+nUqRMA+fn5aDQalwfoaby0cjmYEEKIyuPw4LR+/frxyCOPEB0djUqlIjExEYANGzbQsGFDlwfoabz1cjmYEEKIyuNw4Z40aRJNmjTh2LFjPPzwwxgMBgA0Gg1jxoxxeYCeRmZOE0IIUZmcuhzsoYcesnudmZkp9+k+78LdwaTFLYQQwvUcPsf9xhtvsGDBAtvrRx55hNDQUGrWrMmOHTtcGpwnksvBhBBCVCaHC/fMmTOJjY0FICkpiaSkJH777TfuuusuRo8e7fIAPY2tq1wuBxNCCFEJHO4qP3XqlK1w//LLLzzyyCN07tyZ+Ph4WrVq5fIAPU1Ji9tYbMFiUVCrVW6OSAghxPXE4RZ3cHAwx44dA2Dp0qW2UeWKomA2S/dwSeEGKJJWtxBCCBdzuMX9wAMP0KtXL+rVq8e5c+fo2rUrYL0fd0JCgssD9DRe2gvfhQpMZtvlYUIIIYQrOFy433nnHeLj4zl27Bhvvvkmfn5+AKSmpjJkyBCXB+hptBo1Oo0Kk1mRAWpCCCFczuHCrdPpyhyENmLECJcEdD3w0mowmYulcAshhHA5p67jPnDgANOnT2fPnj0ANG7cmOHDh1OnTh2XBuepDDoNOUXFMgmLEEIIl3N4cNrvv/9O48aN2bhxI02bNqVp06Zs2LCBxo0bk5SUVBkxepwLl4RJi1sIIYRrOdziHjNmDCNGjOD1118vtfyFF16w3XSkOpNJWIQQQlQWh1vce/bs4b///W+p5f3792f37t0uCcrTlbS4i6SrXAghhIs5XLjDw8NJTk4utTw5OZmIiAhXxOTxvGS+ciGEEJXE4a7ygQMH8tRTT3Hw4EHatGkDwNq1a3njjTcYOXKkywP0RHJrTyGEEJXF4cI9fvx4/P39efvttxk7diwAMTExTJo0iWeffdblAXqiC3cIk65yIYQQruVQ4S4uLmbevHn06tWLESNGkJOTA4C/v3+lBOepLtyTW1rcQgghXMuhc9xarZZBgwZRWFgIWAu2FO3SbKPK5XIwIYQQLubw4LRbb72Vbdu2VUYs140LLW7pKhdCCOFaDp/jHjJkCKNGjeL48eO0bNkSX19fu/VNmzZ1WXAeQbFAcSHodLZFJaPKi6SrXAghhIs5XLgfffRRALuBaCqVCkVRUKlU1erWnuqkF7k3+RMsgWOgwxjbcpmARQghRGVxuHAfOnSoMuLwTDpfVCiQm2a3WC4HE0IIUVkcPscdFxd3xYejZsyYQXx8PF5eXrRq1YqNGzdecfvp06fToEEDvL29iY2NZcSIEbbBctecXyQAqtzTdosNWjnHLYQQonKUu3Bv2bKFDh06kJ2dXWpdVlYWHTp0YPv27Q4dfMGCBYwcOZKJEyeydetWmjVrRpcuXTh9+nSZ28+bN48xY8YwceJE9uzZw+eff86CBQv4v//7P4eO6yqK3/mZ4i5pcUtXuRBCiMpS7sL99ttvc+eddxIQEFBqXWBgIJ06dWLq1KkOHXzatGkMHDiQfv360bhxY2bOnImPjw9ffPFFmdv//fff3H777fTq1Yv4+Hg6d+7MY489dtVWeqUpaXHn2X/RuHA5mLS4hRBCuFa5z3Fv2LCBMWPGXHZ99+7d+eyzz8p9YKPRyJYtW2yzrwGo1WoSExNZt25dme9p06YNc+bMYePGjdx6660cPHiQJUuW0Lt378sep6ioiKKiItvrkh4Dk8mEyWQqd7xlKTaEWBOYm4bJaASVCgCdSgGgwFhc4WNcr0ryIvlxjOTNeZI750jenOdI7hzJb7kL94kTJ6442Yqfnx+pqanlPvDZs2cxm81ERkbaLY+MjGTv3r1lvqdXr16cPXuWtm3boigKxcXFDBo06Ipd5VOmTGHy5Mmlli9btgwfH59yx1sWjaWIewBVcSHLfvmBYo11f7vSVYCGtDPpLFmypELHuN7JPdydI3lznuTOOZI355Und/n5+eXeX7kLd3h4OPv27aN27dplrt+7dy9hYWHlPrAzVq1axWuvvcaHH35Iq1atSElJYdiwYbz88suMHz++zPeMHTvW7uYn2dnZxMbG0rlz5zK7/R1hMpkw7fRGZymgc5tmEFoPgMAD5/h03xa8fP3p1q1NhY5xvTKZTCQlJdGpUyd0F10DL65M8uY8yZ1zJG/OcyR3ZY0fu5xyF+7ExEReffVV7rrrrlLrFEXh1VdfJTExsdwHDgsLQ6PRkJZmP7ArLS2NqKioMt8zfvx4evfuzYABAwC48cYbycvL46mnnuLFF19ErS59yt5gMGAwGEot1+l0LvkjLNQFoSsqQFdwDnSNAfDz0lvXFVvkD/0qXPV7qG4kb86T3DlH8ua88uTOkdyWe3DauHHj2LlzJ61ateLbb79l+/btbN++nQULFtCqVSt27drFiy++WO4D6/V6WrZsyYoVK2zLLBYLK1asoHXr1mW+Jz8/v1Rx1misA8EURSn3sV2pSBdofXLRyHIZVS6EEKKylLvFXbduXZYvX07fvn159NFHUZ0fiKUoCo0bNyYpKYmEhASHDj5y5Ej69OnDzTffzK233sr06dPJy8ujX79+ADz55JPUqFGDKVOmANYBcNOmTaNFixa2rvLx48fTvXt3WwG/1gq1UriFEEJcOw7NnHbzzTeza9cukpOT2b9/P4qiUL9+fZo3b+7UwXv27MmZM2eYMGECp06donnz5ixdutQ2YO3o0aN2Lexx48ahUqkYN24cJ06cIDw8nO7du/Pqq686dXxXKNIFWZ/YFe7zE7DI5WBCCCFczOEpTwGaN2/udLG+1DPPPMMzzzxT5rpVq1bZvdZqtUycOJGJEye65NiuUFjSVZ5TusVtLLZgsSio1Sp3hCaEEOI65PCUp8JekTbI+qSMrnKAIml1CyGEcCEp3BVUWNbgNO2FtMp5biGEEK4khbuCCss4x63VqNGe7x4vLJbCLYQQwnWkcFdQUcmo8vxzUGy0Lfc+311eYJTCLYQQwnXKNThtx44d5d5h06ZNnQ7GExm1fihqLSpLMeSdgcAaABh0GnKKiuXWnkIIIVyqXIW7efPmqFSqy05yUrJOpVJhNlezFqZKDb7hkJMKuadshfvCJWHVLB9CCCEqVbkK96FDhyo7Do+m+EWiykmF3Au395RJWIQQQlSGchXuuLi4yo7Ds/lGWH/mnLItKmlxF0lXuRBCCBdyagIWgN27d3P06FGMRqPd8nvvvbfCQXkcv/O3Jr24xa2VFrcQQgjXc7hwHzx4kPvvv5+dO3fanfcumbu82p3jBhS/8y3u3Itb3OcLt5zjFkII4UIOXw42bNgwateuzenTp/Hx8eGff/5hzZo13HzzzaWmKK02ympxn+8qLzBKV7kQQgjXcbjFvW7dOv744w/CwsJQq9Wo1Wratm3LlClTePbZZ9m2bVtlxFmlKb4lhVvuECaEEKJyOdziNpvN+Pv7AxAWFsbJkycB6wC2ffv2uTY6T+F/vnCXcaMR6SoXQgjhSg63uJs0acL27dupXbs2rVq14s0330Sv1/PJJ59Qp06dyoixylNKRpXnpoGigEp14TpuGVUuhBDChRwu3OPGjSMvLw+Al156iXvuuYc77riD0NBQFixY4PIAPULJ4DRzERRmgnewbVR5kXSVCyGEcCGHC3eXLl1szxMSEti7dy/p6ekEBwfbRpZXO1ov8AqEwizrADXvYDnHLYQQolI4fI47KyuL9PR0u2UhISFkZGSQnZ3tssA8TsnI8vOTsEhXuRBCiMrgcOF+9NFHmT9/fqnl3377LY8++qhLgvJIl1wSVtLiLpAWtxBCCBdyuHBv2LCBDh06lFrevn17NmzY4JKgPJKtcJe0uKWrXAghhOs5XLiLioooLi4utdxkMlFQUOCSoDySf5T15/lruS9cDiZd5UIIIVzH4cJ966238sknn5RaPnPmTFq2bOmSoDxSycjynJLCXXKOW1rcQgghXMfhUeWvvPIKiYmJbN++nY4dOwKwYsUKNm3axLJly1weoMfwu6TFLZeDCSGEqAQOt7hvv/121q1bR2xsLN9++y2LFy8mISGBHTt2cMcdd1RGjJ7B76JJWLj4HLd0lQshhHAdp27r2bx5c+bOnevqWDxbqXPc57vKZcpTIYQQLlSuwp2dnU1AQIDt+ZWUbFftlIwqL8iA4iIZVS6EEKJSlKtwBwcHk5qaSkREBEFBQWXOkKYoCiqVqlrejxsA72BQ68BigtzTeOmCACgwVtN8CCGEqBTlKtx//PEHISEhAKxcubJSA/JYKpW11Z19HHLT8PINBeRyMCGEEK5VrsLdrl07AIqLi1m9ejX9+/enZs2alRqYR/K/qHAH3QiAsdiCxaKgVlfTedyFEEK4lEOjyrVaLVOnTi1zAhaB3XzlJee4AYqk1S2EEMJFHL4c7M4772T16tWVEYvnu2i+ci/thdTKADUhhBCu4vDlYF27dmXMmDHs3LmTli1b4uvra7f+3nvvdVlwHuei+cq1GjVatYpiiyKXhAkhhHAZhwv3kCFDAJg2bVqpddV6VDlYz3GD3R3CcouKZRIWIYQQLuNw4bZYpAhdlq3FfWESltwiuSRMCCGE6zh8jltcQcl85TmX3iFMCrcQQgjXcKpwr169mu7du5OQkEBCQgL33nsvf/75p6tj8zwXz1euKDJ7mhBCCJdzuHDPmTOHxMREfHx8ePbZZ3n22Wfx9vamY8eOzJs3rzJi9BwlhdtigoIM23zlRXKOWwghhIs4fI771Vdf5c0332TEiBG2Zc8++yzTpk3j5ZdfplevXi4N0KNoDdapTwsyrJOwaKXFLYQQwrUcbnEfPHiQ7t27l1p+7733cujQIZcE5dHKmISlQAq3EEIIF3G4cMfGxrJixYpSy5cvX05sbKxLgvJoF03CEuanByA1q9CNAQkhhLieONxVPmrUKJ599lmSk5Np06YNAGvXrmX27Nm8++67Lg/Q41w0CUu9yJYAHDid68aAhBBCXE8cLtyDBw8mKiqKt99+m2+//RaARo0asWDBAu677z6XB+hxLpqEpW4NPwD2S+EWQgjhIg4XboD777+f+++/39WxXB8uOsddL9JauFNO58odwoQQQriETMDiaiWTsOSmERfig06josBk5kRmgXvjEkIIcV1wuMUdHByMSlW65ahSqfDy8iIhIYG+ffvSr18/lwTocS6ahEWrUVMnzI99aTmknMklNsTHvbEJIYTweA63uCdMmIBarebuu+9m8uTJTJ48mbvvvhu1Ws3QoUOpX78+gwcP5tNPP62MeKs+/wstboCEiPPd5WlynlsIIUTFOdzi/uuvv3jllVcYNGiQ3fKPP/6YZcuW8cMPP9C0aVPee+89Bg4c6LJAPUZJi7swC0wFtsK9/3SOG4MSQghxvXC4xf3777+TmJhYannHjh35/fffAejWrRsHDx6seHSeyCsINAbr89zTdgPUhBBCiIpyuHCHhISwePHiUssXL15MSEgIAHl5efj7+1c8Ok+kUtnd3vNCizsXRVHcGJgQQojrgcNd5ePHj2fw4MGsXLmSW2+9FYBNmzaxZMkSZs6cCUBSUhLt2rVzbaSexD8Sso5Cbhq167VErYKcwmJO5xQRGeDl7uiEEEJ4MIcL98CBA2ncuDEffPABP/74IwANGjRg9erVtpnURo0a5dooPc1F13IbtBriQ305eDaP/Wm5UriFEEJUiFMTsNx+++3cfvvtro7l+nHRfOVgHVl+8GweKadzaFsvzI2BCSGE8HROTcBy4MABxo0bR69evTh92lqcfvvtN/755x+H9zVjxgzi4+Px8vKiVatWbNy48YrbZ2ZmMnToUKKjozEYDNSvX58lS5Y48zEqz0XzlQN257mFEEKIinC4cK9evZobb7yRDRs28MMPP5Cbay1G27dvZ+LEiQ7ta8GCBYwcOZKJEyeydetWmjVrRpcuXWxfBi5lNBrp1KkThw8f5vvvv2ffvn18+umn1KhRw9GPUbn87VvcJSPLpXALIYSoKIcL95gxY3jllVdISkpCr9fblt95552sX7/eoX1NmzaNgQMH0q9fPxo3bszMmTPx8fHhiy++KHP7L774gvT0dBYtWsTtt99OfHw87dq1o1mzZo5+jMp10ahygHoR1hH2ckmYEEKIinL4HPfOnTuZN29eqeURERGcPXu23PsxGo1s2bKFsWPH2pap1WoSExNZt25dme/5+eefad26NUOHDuWnn34iPDycXr168cILL6DRaMp8T1FREUVFRbbX2dnZAJhMJkwmU7njLUvJ+y/dj8orFC2g5Jyi2GSiVpABlQrS84ycyswj1Fdfxt6ql8vlTlyZ5M15kjvnSN6c50juHMmvw4U7KCiI1NRUateubbd827ZtDnVZnz17FrPZTGRkpN3yyMhI9u7dW+Z7Dh48yB9//MHjjz/OkiVLSElJYciQIZhMpst200+ZMoXJkyeXWr5s2TJ8fFwzd3hSUpLday9jOl0AJec0S379BVRqgvUa0otUzF28nIQAlxz2unBp7kT5SN6cJ7lzjuTNeeXJXX5+frn353DhfvTRR3nhhRf47rvvUKlUWCwW1q5dy+jRo3nyyScd3Z1DLBYLERERfPLJJ2g0Glq2bMmJEyeYOnXqZQv32LFjGTlypO11dnY2sbGxdO7cmYCAilVQk8lEUlISnTp1QqfTXVhhNsI/w1Fjplv728A3jB/PbWX1v2cJq3Mj3W6NrdBxrweXzZ24Ismb8yR3zpG8Oc+R3JX0BpeHw4X7tddeY+jQocTGxmI2m2ncuDFms5levXoxbty4cu8nLCwMjUZDWlqa3fK0tDSioqLKfE90dDQ6nc6uW7xRo0acOnUKo9Fod869hMFgwGAwlFqu0+lc9kdYal86HfiEQv45dEXpEBRNg6gAVv97lkPnCuSP/yKu/D1UJ5I350nunCN5c155cudIbh0enKbX6/n00085ePAgv/zyC3PmzGHv3r18/fXXlz3PfLn9tGzZkhUrVtiWWSwWVqxYQevWrct8z+23305KSgoWi8W27N9//yU6OrrMou1WF03CAhfdJUwGqAkhhKgAhwv3Sy+9RH5+PrGxsXTr1o1HHnmEevXqUVBQwEsvveTQvkaOHMmnn37Kl19+yZ49exg8eDB5eXm2e3k/+eSTdoPXBg8eTHp6OsOGDePff//l119/tfUAVDllTMICcpcwIYQQFeNw4Z48ebLt2u2L5efnlzkI7Ep69uzJW2+9xYQJE2jevDnJycksXbrUNmDt6NGjpKam2raPjY3l999/Z9OmTTRt2pRnn32WYcOGMWbMGEc/RuW7zCQsadlFZBfK6EwhhBDOcfgct6IoqFSqUsu3b99uuzuYI5555hmeeeaZMtetWrWq1LLWrVs7fL24W1wyCUuAl46oAC9OZReScjqXm2oFuzE4IYQQnqrchTs4OBiVSoVKpaJ+/fp2xdtsNpObm8ugQYMqJUiPdMk5brC2uk9lF5KSJoVbCCGEc8pduKdPn46iKPTv35/JkycTGBhoW6fX64mPj7/soLJq6ZJz3GAt3H+lnJXz3EIIIZxW7sLdp08fAGrXrk2bNm3ksoCrueQcN8ic5UIIISrO4XPc7dq1sz0vLCzEaDTara/opCbXDf/z16Jf1OKWOcuFEEJUlMOjyvPz83nmmWeIiIjA19eX4OBgu4c4zy/C+rMoG4zWqexKRpYfzygg31jsrsiEEEJ4MIcL93PPPccff/zBRx99hMFg4LPPPmPy5MnExMTw1VdfVUaMnskQAFpv6/PzdwkL8dXbbjBy4HSeuyITQgjhwRwu3IsXL+bDDz/kwQcfRKvVcscddzBu3Dhee+015s6dWxkxeiaV6kKrO/fCtK4yEYsQQoiKcLhwp6enU6dOHcB6Pjs9PR2Atm3bsmbNGtdG5+lKznPnlB6gJue5hRBCOMPhwl2nTh0OHToEQMOGDfn2228Ba0s8KCjIpcF5vBDrFxxSt9sWJYTLyHIhhBDOc7hw9+vXj+3brYVozJgxzJgxAy8vL0aMGMFzzz3n8gA9Wu3zI/APrrQtqhcpI8uFEEI4z+HLwUaMGGF7npiYyN69e9myZQsJCQk0bdrUpcF5vDrnC/fJZMhPB58Q6p0/x33kXB6FJjNeuvLfUU0IIYRwuHBfKi4ujri4OFfEcv0JiIHwhnBmLxz+ExrfR7i/AX8vLTmFxRw+l0fDKLnuXQghRPmVu6v8jz/+oHHjxmRnZ5dal5WVxQ033MCff/7p0uCuC3XaW38esHaXq1QqW6t7f5p0lwshhHBMuQv39OnTGThwYJkzowUGBvL0008zbdo0lwZ3XSgp3AdX2RaVzKAmA9SEEEI4qtyFe/v27dx1112XXd+5c2e2bNnikqCuK/FtQaWBjEOQcRi4cEnYASncQgghHFTuwp2WlnbFG4totVrOnDnjkqCuKwZ/qHmL9fn5VnddmYRFCCGEk8pduGvUqMGuXbsuu37Hjh1ER0e7JKjrTt0O1p/nC3fJOe5DZ/MwmS1uCkoIIYQnKnfh7tatG+PHj6ewsLDUuoKCAiZOnMg999zj0uCuG7bz3KvBYiEm0BsfvQaTWeHIuXy3hiaEEMKzlPtysHHjxvHjjz9Sv359nnnmGRo0aADA3r17mTFjBmazmRdffLHSAvVoNVqC3h8K0uHUDtQxzUmI8GPH8SxSTufa5i8XQgghrqbchTsyMpK///6bwYMHM3bsWBRFAayXN3Xp0oUZM2YQGRlZaYF6NI3OOkjt39+s3eUxzUkILyncOUCUuyMUQgjhIRyagCUuLo4lS5aQkZFBSkoKiqJQr149uQ93edRpf75wr4S2w0mIlDnLhRBCOM6pmdOCg4O55ZZbXB3L9a1kgNqRdWAquHAtt0zCIoQQwgEO32REOCmsPvhHg7kIjq63jSw/cCYXs0Vxc3BCCCE8hRTua0WlsptFLTbEB71WTVGxhWPpMrJcCCFE+UjhvpbqXLieW6NWcWONQACSdqe5MSghhBCeRAr3tVRym8/U7ZCfzkMtawLwzaajtlH6QgghxJVI4b6W/KMgojGgwKHVdG8Wg49ew8EzeWw+kuHu6IQQQngAKdzX2kW3+fQzaLmnqXWa2Pkbj7kvJiGEEB5DCve1Vsd+3vKet9QC4NedJ8kqMLkpKCGEEJ5CCve1FtcG1FrIPALph7ipVhD1I/0oNFn4eftJd0cnhBCiipPCfa0Z/KDmrdbnB1eiUqlsre4Fm466MTAhhBCeQAq3O1xym8/7W9RAr1Gz60Q2u05kuS8uIYQQVZ4Ubnewu82nmRBfPZ1vsN6gZb60uoUQQlyBFG53iLkJDAFQmGm9pht47FZrd/lP205SYDS7MTghhBBVmRRud9BoIf4O6/Pz3eWt64QSG+JNTlExS3amui82IYQQVZoUbnexdZevBECtVtHz5lgAFmySa7qFEEKUTQq3u5QMUDu6HozWm4w81DIWtQo2Hk4nRe7TLYQQogxSuN0lNAECY8FshF0/ABAV6MWdDSMA+HaztLqFEEKUJoXbXVQqaPW09fnqN6G4CLgwk9oPW45jLLa4KzohhBBVlBRud7plAPhFQdZR2PoVAB0ahBPhb+BcnpHle+R2n0IIIexJ4XYnnTf8Z7T1+Zq3wFSAVqPm4Zutt/ucL4PUhBBCXEIKt7vd9CQE1oLcU7DpcwAeOT+6/M/9Zzieke/O6IQQQlQxUrjdTWuAds9bn/81DYpyiAv1pU3dUBQFvtt83L3xCSGEqFKkcFcFzR6DkLqQfw42zASg5y3WVve3m49RaJKZ1IQQQlhJ4a4KNFro8H/W52vfh4IMutwQRbi/gdSsQqb+vs+98QkhhKgypHBXFTc8ABGNoSgL1s3AS6fhjQdvBODzvw7x5/4zbg5QCCFEVSCFu6pQqy+0utd/BHlnubNhJE/cZr2ue/R328nIM7oxQCGEEFWBFO6qpOE9EN0cjLnw1zsAvNitMXXCfUnLLuL/Fu5EURT3xiiEEMKtpHBXJSoV3Dne+nzTZ5Cdirdew/SezdGqVfy26xQ/bD3h3hiFEEK4lRTuqiahI8TeBsWF8OfbADStGcSITvUBmPjTLo6ek2u7hRCiupLCXdWoVHDnOOvzLbMh4wgAg9rV5ea4YPKMZkZ+m0yxWeYxF0KI6kgKd1VU+w6o3Q4sJljzJgAatYp3ejbHz6Bl85EMZq4+4OYghRBCuEOVKNwzZswgPj4eLy8vWrVqxcaNG8v1vvnz56NSqejRo0flBugOJee6t82F7fMBiA3x4aX7bgBg+vL9bD+W6abghBBCuIvbC/eCBQsYOXIkEydOZOvWrTRr1owuXbpw+vTpK77v8OHDjB49mjvuuOMaRXqNxd4CrQYBCiwaDP8sBOD+FjW4u2k0xRaFEQuSyTcWuzdOIYQQ15TW3QFMmzaNgQMH0q9fPwBmzpzJr7/+yhdffMGYMWPKfI/ZbObxxx9n8uTJ/Pnnn2RmZl52/0VFRRQVFdleZ2dnA2AymTCZTBWKveT9Fd3PZXV8CU1hDurtc1F+GIBZpUOp14VJdzdk8+F0Dp7N48WFO3m9xw2o1arKiaGSVHrurlOSN+dJ7pwjeXOeI7lzJL8qxY0XBhuNRnx8fPj+++/turv79OlDZmYmP/30U5nvmzhxIjt27GDhwoX07duXzMxMFi1aVOa2kyZNYvLkyaWWz5s3Dx8fH1d8jMqlWGh5ZCY1M9ZjVmnZUGckZwKasC9LxUe71SioaBlmoVddC1q3958IIYRwRn5+Pr169SIrK4uAgIArbuvWFvfZs2cxm81ERkbaLY+MjGTv3r1lvuevv/7i888/Jzk5uVzHGDt2LCNHjrS9zs7OJjY2ls6dO181OVdjMplISkqiU6dO6HS6Cu3risxdsCwcgGbfr7Q+8j7mxxbQrVYb6iSfZMzCf9hyVo13UDgfPNoMX4PbO1HK5Zrl7jojeXOe5M45kjfnOZK7kt7g8vCM/+XPy8nJoXfv3nz66aeEhYWV6z0GgwGDwVBquU6nc9kfoSv3dZkDwMOzYcHjqPYvQ7ugFzz5Ew/dcjNhAd4MnrOVv1LO0Wf2Fr7oewuhfqU/b1VV6bm7TknenCe5c47kzXnlyZ0juXVr52pYWBgajYa0tDS75WlpaURFRZXa/sCBAxw+fJju3buj1WrRarV89dVX/Pzzz2i1Wg4cuI4vkdLq4ZGvoPZ/rFOiznkAUnfQvkEE8wa2IthHx/bjWTw8cx3H0mWCFiGEuF65tXDr9XpatmzJihUrbMssFgsrVqygdevWpbZv2LAhO3fuJDk52fa499576dChA8nJycTGxl7L8K89nTc8+o11ZrXCLPi6B5zeQ4tawXw3qA01grw5eDaPBz/6mz2p5e92EUII4TncPpxp5MiRfPrpp3z55Zfs2bOHwYMHk5eXZxtl/uSTTzJ27FgAvLy8aNKkid0jKCgIf39/mjRpgl6vd+dHuTYMfvD4txDTAvLPwayukLKchAg/fhjchgaR/pzOKeKRj9ex8VC6u6MVQgjhYm4v3D179uStt95iwoQJNG/enOTkZJYuXWobsHb06FFSU1PdHGUV4xUIT/wINW6GggyY8xCsfpMofz3fPt2aW+KDySks5onPN/BT8gm5o5gQQlxH3F64AZ555hmOHDlCUVERGzZsoFWrVrZ1q1atYvbs2Zd97+zZsy97Kdh1zScE+i2Blv0ABVa+CvMfI1CVx9f/bUVio0iMxRaGzU/mqa+3kJZd6O6IhRBCuECVKNzCSVoDdJ8O980AjQH+XQqftMfr3G5mPnETwxProdOoSNqdRuK01SzYdFRa30II4eGkcF8PWjwB/10GQbUg4xB81gntru8YnlifX/53B81ig8gpLOaFH3by+Gcb5LagQgjhwaRwXy9imsNTqyEhEYoLYOFT8OtoGoQZ+HFwG8bd3QgvnZq/D5yjy/Q1fP7XIcwWaX0LIYSnkcJ9PfEJgV7fQrvzc7xv+hQ+vgNNShID2tZm6bD/cFudEApMZl7+ZTcPfvQ3yXKHMSGE8ChSuK83ag10GGst4N4hcGYvzHsYvu5BfPFB5g24jdfuvxF/g5bkY5n0mLGW3p9vYMPBc+6OXAghRDlI4b5e1e8Cz26DNv8DjR4OroKZd6D++Rl6NdKxbOR/eKhlTbRqFX/uP0vPT9bzyMx1/Ln/jAxgE0KIKkwK9/XMOwg6vwLPbIIbHgAUSJ4D799E9NbpvHVfAitHt+fxVrXQa9RsPJxO78830uPDv1m+O00KuBBCVEFSuKuD4Hh4eBb8dznUvBVM+bD6dXjvJmJ3f8KrnaJY83wH+t9eGy+dmu3HMhnw1Wa6vvsnc9YfIatA7sMrhBBVhRTu6iT2FutlYw/PhqA4yD0FyyfCtEZELRvEhBvO8Nfz7Rncvi6+eg17T+UwbtEubn11Oc9+s401/56RkehCCOFmHnVbT+ECKhXccD806AY7FsCW2XBiC/yzEP5ZSFhIHV5o2ZdBzz7Md3sK+X7LcfaeyuHn7Sf5eftJYgK9eOCmmjzUsibxYb7u/jRCCFHtSOGurrQGuOlJ6yN1B2yZBTu+g/SDkDSBwBUvM6BRd/7b47/s1LThuy0n+Cn5BCezCvlgZQofrEzh5rhg7moSRefGUdQK9XH3JxJCiGpBCreA6KZwzzvQ6WXY9YO1FX5yK/zzI6p/fqRpRGOa3jKAFzs9RFJKHt9tOc6f+8+w+UgGm49k8Mqve2gY5U/nxpF0viGKG2ICUKlU7v5UQghxXZLCLS4w+EHLPtbHyWTY/AXs/A5O74ZfR+K1fBLdmz1G9+4DSNXfyG87T5G0O42Nh9PZeyqHvadyeO+PFGICvejUOJKOjSK5JT4Eb73G3Z9MCCGuG1K4RdlimsO970GnlyB5Hmz6DNIPwMaPYePHRNduR/8Wvenf40YyDDfwR0oWSbvTWP3vGU5mFfLluiN8ue4Ieo2aFrWCaFM3jNsTQmkWG4ROI2MihRDCWVK4xZV5B0HrIdBqEBxcaS3g/y6FQ6utDyBYpebBoFo8GJpA8W11OGCO4s/0IBadDGRXtjcbDqWz4VA67ywHH72GW2uHcFvtYEy5YDJb0Onc+xGFEMKTSOEW5aNWQ0JH6yPzKGyeBQf+gHMHwJgDGYch4zBaoMH5xwDAGF2Pg/43s8bUiLmnanKkwItV+86wat8ZQMsHe/6gac1AWtQK5qZaQbSoFUxkgJc7P6kQQlRpUriF44JqQeJE60NRIPc0nEuBc/vP/zwAZ63P9Rn7aZixn4bAQFQU1ryB/T43kVRQn3knozhX7MOmwxlsOpxh231MoBctagXTPDaIG2sGckNMAP5e0iwXQgiQwi0qSqUC/0jrI/52+3X56XBkLRxcDYfWoDq7D++zu2jKLpoCI3UqiqIac8y/GVss9ViSFcdfp704mVXIyZ2p/Loz1XaIOmG+NK0ZxI01AmlaM5DGMQH46OXPVwhR/cj/fKLy+IRAo+7WB0DOKTj0JxxajXJoDarMI3id+4d65/6hHvAoYAmLIT2kBbt1jdmQH8uKc0HszdJy4EweB87ksXDbCQDUKqgZ7EPdcF/qhPtRN9yPOuG+1A33I8xPL5ejCSGuW1K4xbXjHwVNH4amD1NsMvHHojl0rO+H9uQWOLYeUnegzjlJWM5J/sOv/Ad4DrCEhJPlV4djmlrsNEaxNiuUTbkRHE1XOJqez8p9Z+wP46Wl7vliXjfC1/Y8LtRHRrQLITyeFG7hNoX6EJTG3aDZw9YFxjzr9KvHNsCxjXB6D2QdQ51/huD8MwSzgabA4wBeUKwPIMOnDse1sew1x7AlP5z12eGcKAwl+Vgmyccy7Y6nVauIC/U53zq3FvK4EB9qhfoQHeiNRi2tdCFE1SeFW1Qdel+o/R/ro0RRLpz9F87sgzN7L/zMOIzWmE24MZlwkmkBPAZgAIvWmxzf2pzThHLKHMgRoz//5vlwojiAM2eD2H02iNW7AylCf+HQGjU1g72pZSvmvtQM9iY22IfYEG8ZHCeEqDKkcIuqzeAHNW6yPi5mKrCOYD+zz/o4uw/O/AvnUlAXFxCYtZtAoA7QBqz3wdPb7yJX7c9pQjhRHMgpSxBpmcGczgjilBLMDiWYU0oIZwikGC1BPrqLCrkPMYFeRAZ4ERnoRVSAF+H+BumGF0JcE1K4hWfSeUPUjdbHxcwm6zXl51Ksg+FyT1tvX5p72v612YifJQc/cqij5rI3uLWg4pwSwKniYE6dDiEtLZg0JZitSiS7lTgOKdGY0aBSQaivgcgAA1EBXkQFehET5E10oBfRgd7UCPImMtCAQSvTvwohKkYKt7i+aHQQVs/6uBxFgYIMyE2DnFRrQc9JhZxLX59CbTERrsoiXJXFjRwutasi9Oy1xPKPpRZ7CuLYnRfH+pO1yMO7zEOH+RmICfIiwt+LcH894X4GwvwNhPsZCPc3EHb+p69B/mkKIcom/zuI6kelsl6q5hMCEY0uv53FAvnnIOckZKdaf+acguwT1glmTu3CYMqjmfoAzdQH7N5aoA0gT+VPNj6kW3w4a/Ii3eJDdqEv2ak+ZKT6k64EsF/xJwN/zikBZOGLcr7p76vXEHG+Cz7C30BkgBcR/gZCfbQczFKRkJZDVJAvwT561DKoTohqRQq3EJejVoNfuPUR3az0eosFMg7BqZ32j5yTeBdn4002YVjPs3OF7vgSxajJVPzJUPwwosWUrcGcraEYDcWKBjNqTGhpgo6N/87hhBJGmiqUXEM0Rr8YNP6RhPl7E+ZvIMRXT4ivnjA/PSG+BkJ99YT66WXSGiGuA/KvWAhnqdUQWtf6uKHHheX56dZz6YVZUJhp/VmQeeF1Qaa1JZ9/FvLOWp8XZaPFQpgqizBVlmNxmIEsMGVqOKWEcIIwjloiOKJE8pcSwRHF+jwTP7x0GkJ9rd3xJY+S7nlrd72eIB89/l5a/A06vHRqmcxGiCpGCrcQrlbSDe+IYuOFYp6fDhYTmIvBYv8oNhWxO3kjN8QGQ/ZJzBnHIPsE2rxT6DATqzpDLGe4Tb2n1CGyFW+OKpFk5/nglW/EK82EASNeKiNeGPHGiAEjWfhyUInhkCWKw8RwSleTs4ZYMr1i8fL2IcRXbyv41ofedp4+zM8g918XopJJ4RaiKtDqISDa+rgCxWTi0IkgGt3ZDZ1Oh61Emouto+WzTljv3pZxCNIPnb9r2yHISSVAVUAT1eGrhhJCLiGqf7lZ/e/5gwKFYClQcSI9jCx8KUKHUdFZf6LlJDoOoaNI0ZGj9qdAF4LREEyxVwgWnzDUfuFo/cPx9/UjyEdHkLeOQB8dwT7686/10roXopykcAtxPdBoIbCm9VGrVen1xvwLBd2YB1ov0HmBzuf8c2/rT60X5J3BcjYF0+l/MZ/Zjyo9BV3mAbTGHFuL/qrMQP75R/qFxXmKARNairGes7eev1dzCjUWlQaLWodJ7UWxxhuL1htF64NK741K74vG4IvGOxBtQCReQZH4hETjHxqDPjAKtAYXJVKIqk8KtxDVgd4HIhpaH1cTEI06uil2pVBRrOfj0w9YZ7MzF0FxIRQX2R5KcRHGwlyMOecw555ByTuLOv8cuqJzGIwZaBQzvqoioMj+eBc3shWsRd8MGMv/8XLwIVsTRL4mCKPOn2KdP8X6QBSvQFRegai9A8ErAOOpNI7uDiUwLBq/4Ai8fPzLfxAhqggp3EKIq1OpLoywv9wmgOH8oxRFOT8wLwMsZrvz9oq5mAKjkdz8AvLzCyjIz6UwP4eiglyKC3MpLszHXJSHYsxHY8zC15SOf3EGgUomYWShV5nxJx9/cz6YT16x4LcAWPiG7XWhoiNLFUCuOoACbQBo9Gg0GrRaDRqNFp1Wi06rQafVodXr0QVEoQ+ugTYwGvyjrTfO8Y+yTtcrxDUihVsIUflUKvAOtj4uXQX4nH84wmJRyC4wciL9DHnnUsnPTMWUcw5zQSZKQRaqwizUxiy0xhx0phy8irPxKs4ikBwClVx0KjNeKhNenCPScs6hFv6lCtS+5OlCKNb6YdH7oej9weCHxssfjZc/Op9A9L6BePkFW1v/hgDwCjj/8/xrjfx3LMpH/lKEEB5JrVYR5GsgyLcmxNa86vYmk4klS5bQrVs3NGoN2bmZ5KafpiDrNIXZZyjKOUdhYSEFxmIKCo0UGE0UFJkoNBVTZDRSbCzE15ROhCqDSDKJUGUQpUrHV1WEtyUP76I861mAPOc+T4EmgFzvaAp9oin2r4kSWBNNUC10oXH4hMXhHxKBRqu3fgkS1ZoUbiFEtaPWqAkIDCEgMAQox3n/8ywWhexCExn5JjLyjRzJKyI7KxNT5gmKs9MwF+ZgKcxBKcpBVZSDypSH1pSLzpyHlyWfAPLxVxVYu/ZV+fhTgI/Kes7f25yNd2425O6D02Uf34wKI3pMKgMmtQGzWo9F4wVaA5ZLBvJpvXzRefli8PZH6+WHSu9jHYyo87Z27eu8QXf+p8EPfCOsAxZFlSeFWwghykmtVhHkY52kpjYl57WjKE/xNxZbyC40kZlvIqvAxLEC68/svHwKcjKx5KShyz2OV/5J/ApSCTKeIrQ4jXDLGSLIQK1S0KDgTRHeStGFQXwm130+ky6AYp9wLL6RaPwj0QXFoPYNI/bcSVS7jeDld/4qBB9rkdd6X7giQaMDjd76UGukZ6ASSeEWQohrQK9V2yatcZSxqIicnEyyc3LIzcslLzeXvLw8CgryKMjPo6ggD1NhHuaiPMzGfDDmoTIVoC7Ox6AU4aMqwosifCjCW2W0Fn9KlhvxJx+DqhidKRtdVjZk2c+9fxPA0U/LHa+CClVJEdfowDsI/M4P5LMN6rtocF9ADeuVD6JcpHALIUQVpzcYCDVEEhoW6dD7FEUht6iYrAITOYXFZJ9v5R8//zy70ER2QTFZ+UaMuemQl4Y+/wz6ojP4mc4RTibhqkyCyT0/w14RXpisM+2dL/pemDCo7Jv9KhTrJYPm85f+FaRD+sErxlrsEwFBcWhC41EFxUFwHATFWecmADAVWB/FBWAqPP+zwHqVQmBNCKlt/QKgvv5n7pPCLYQQ1ymVSoW/lw5/L53D7y05n38mO58ly1fTuMUtpBotZOabzj+MZBZYz/dn5RvJOX85X35hAQaK0VGMTlWMnmKCyCVSlUGEyjqoL1KVQQSZRJ5/7q8qQJt/GvJPw8lNzn9gjd5a7ENqQ3Bt68/AWDBYR/mjL/l5/qG+yp1/qigp3EIIIUopOZ/vq1MR7w/t64ej0139C4DZopBdYB28l1lgLfDZBdZWf3aBiXOFJg4VFFtb+4XWHgBzXga++ccJLz5FrOq0dYY+1RliVaeJUqVjRk0RegoUPYVc9FD0ANRUnaGm6gx6sxHO7bc+ykHR+YAhAJXt0rzzPw3+F12mpwPFbJ2LwGIGxXL+cf65bzi0+V+Fcu0oKdxCCCFcRqNWEeyrJ9hX7/B7C01mMs+P2M/IM7In38jfecbzy0xkFhgvtPbzTbYvBhYF1FiIUZ2jliqNOFUacarT1FKlEa1Kx5cCfFWF+FGAL4VoVRYAVKZ8MOVb5/l3VnhDKdxCCCGqJy+dhqhADVGB5b8szWJRyDUWk1XShX++uGcVmDhUYGJbvpGs8+f2M8936xcW5GEpzEZlysOPgguX6JGPn6oAfwrwV1kv39NgwYIKC2osqDCjRkGFTqtFr9OhtkTyUCXmpCxSuIUQQngstVpFgJeOAC8dsQ7eTddkttha+Ol51lZ+er6R9FwjaflG9uQZrS398+sz803kFhVb31wMFEIjvwAp3EIIIcS1oNOoCfc3EO5f/kv0jMUWMguMZORZC77aDderS+EWQgghykmvVRPh70WEv/tmmfPMsfBCCCFENSWFWwghhPAgUriFEEIIDyKFWwghhPAgUriFEEIID1IlCveMGTOIj4/Hy8uLVq1asXHjxstu++mnn3LHHXcQHBxMcHAwiYmJV9xeCCGEuJ64vXAvWLCAkSNHMnHiRLZu3UqzZs3o0qULp0+XfSf5VatW8dhjj7Fy5UrWrVtHbGwsnTt35sSJE9c4ciGEEOLac3vhnjZtGgMHDqRfv340btyYmTNn4uPjwxdffFHm9nPnzmXIkCE0b96chg0b8tlnn2GxWFixYsU1jlwIIYS49tw6AYvRaGTLli2MHTvWtkytVpOYmMi6devKtY/8/HxMJhMhIWXPdVdUVERRUZHtdXZ2NgAmkwmTyVTme8qr5P0V3U91JLlzjuTNeZI750jenOdI7hzJr1sL99mzZzGbzURG2t8cPjIykr1795ZrHy+88AIxMTEkJiaWuX7KlClMnjy51PJly5bh4+PjeNBlSEpKcsl+qiPJnXMkb86T3DlH8ua88uQuPz+/3Pvz6ClPX3/9debPn8+qVavw8ip7+rmxY8cycuRI2+vs7GzbefGAgIAKHd9kMpGUlESnTp3KdZ9acYHkzjmSN+dJ7pwjeXOeI7kr6Q0uD7cW7rCwMDQaDWlpaXbL09LSiIqKuuJ733rrLV5//XWWL19O06ZNL7udwWDAYCg9gbxOp3PZH6Er91XdSO6cI3lznuTOOZI355Und47k1q2D0/R6PS1btrQbWFYy0Kx169aXfd+bb77Jyy+/zNKlS7n55puvRahCCCFEleD2rvKRI0fSp08fbr75Zm699VamT59OXl4e/fr1A+DJJ5+kRo0aTJkyBYA33niDCRMmMG/ePOLj4zl16hQAfn5++Pn5ue1zCCGEENeC2wt3z549OXPmDBMmTODUqVM0b96cpUuX2gasHT16FLX6QsfARx99hNFo5KGH7G9dPnHiRCZNmnTV4ymKAjh2PuFyTCYT+fn5ZGdnSxeSgyR3zpG8OU9y5xzJm/McyV1JTSqpUVeiUsqz1XXk+PHjxMbGujsMIYQQopRjx45Rs2bNK25T7Qq3xWLh5MmT+Pv7o1KpKrSvkhHqx44dq/AI9epGcuccyZvzJHfOkbw5z5HcKYpCTk4OMTExdr3MZXF7V/m1plarr/ptxlEBAQHyB+0kyZ1zJG/Ok9w5R/LmvPLmLjAwsFz7c/uUp0IIIYQoPyncQgghhAeRwl0BBoOBiRMnljnBi7gyyZ1zJG/Ok9w5R/LmvMrKXbUbnCaEEEJ4MmlxCyGEEB5ECrcQQgjhQaRwCyGEEB5ECrcQQgjhQaRwV8CMGTOIj4/Hy8uLVq1asXHjRneHVOWsWbOG7t27ExMTg0qlYtGiRXbrFUVhwoQJREdH4+3tTWJiIvv373dPsFXIlClTuOWWW/D39yciIoIePXqwb98+u20KCwsZOnQooaGh+Pn58eCDD5a6RW5189FHH9G0aVPbhBetW7fmt99+s62XnJXP66+/jkqlYvjw4bZlkruyTZo0CZVKZfdo2LChbX1l5E0Kt5MWLFjAyJEjmThxIlu3bqVZs2Z06dKF06dPuzu0KiUvL49mzZoxY8aMMte/+eabvPfee8ycOZMNGzbg6+tLly5dKCwsvMaRVi2rV69m6NChrF+/nqSkJEwmE507dyYvL8+2zYgRI1i8eDHfffcdq1ev5uTJkzzwwANujNr9atasyeuvv86WLVvYvHkzd955J/fddx///PMPIDkrj02bNvHxxx/TtGlTu+WSu8u74YYbSE1NtT3++usv27pKyZsinHLrrbcqQ4cOtb02m81KTEyMMmXKFDdGVbUBysKFC22vLRaLEhUVpUydOtW2LDMzUzEYDMo333zjhgirrtOnTyuAsnr1akVRrHnS6XTKd999Z9tmz549CqCsW7fOXWFWScHBwcpnn30mOSuHnJwcpV69ekpSUpLSrl07ZdiwYYqiyN/blUycOFFp1qxZmesqK2/S4naC0Whky5YtJCYm2pap1WoSExNZt26dGyPzLIcOHeLUqVN2eQwMDKRVq1aSx0tkZWUBEBISAsCWLVswmUx2uWvYsCG1atWS3J1nNpuZP38+eXl5tG7dWnJWDkOHDuXuu++2yxHI39vV7N+/n5iYGOrUqcPjjz/O0aNHgcrLW7W7yYgrnD17FrPZbLtneInIyEj27t3rpqg8z6lTpwDKzGPJOmG9o93w4cO5/fbbadKkCWDNnV6vJygoyG5byR3s3LmT1q1bU1hYiJ+fHwsXLqRx48YkJydLzq5g/vz5bN26lU2bNpVaJ39vl9eqVStmz55NgwYNSE1NZfLkydxxxx3s2rWr0vImhVuIKm7o0KHs2rXL7ryZuLwGDRqQnJxMVlYW33//PX369GH16tXuDqtKO3bsGMOGDSMpKQkvLy93h+NRunbtanvetGlTWrVqRVxcHN9++y3e3t6VckzpKndCWFgYGo2m1MjAtLQ0oqKi3BSV5ynJleTx8p555hl++eUXVq5caXc72qioKIxGI5mZmXbbS+5Ar9eTkJBAy5YtmTJlCs2aNePdd9+VnF3Bli1bOH36NDfddBNarRatVsvq1at577330Gq1REZGSu7KKSgoiPr165OSklJpf3NSuJ2g1+tp2bIlK1assC2zWCysWLGC1q1buzEyz1K7dm2ioqLs8pidnc2GDRuqfR4VReGZZ55h4cKF/PHHH9SuXdtufcuWLdHpdHa527dvH0ePHq32ubuUxWKhqKhIcnYFHTt2ZOfOnSQnJ9seN998M48//rjtueSufHJzczlw4ADR0dGV9zfn9LC2am7+/PmKwWBQZs+erezevVt56qmnlKCgIOXUqVPuDq1KycnJUbZt26Zs27ZNAZRp06Yp27ZtU44cOaIoiqK8/vrrSlBQkPLTTz8pO3bsUO677z6ldu3aSkFBgZsjd6/BgwcrgYGByqpVq5TU1FTbIz8/37bNoEGDlFq1ail//PGHsnnzZqV169ZK69at3Ri1+40ZM0ZZvXq1cujQIWXHjh3KmDFjFJVKpSxbtkxRFMmZIy4eVa4okrvLGTVqlLJq1Srl0KFDytq1a5XExEQlLCxMOX36tKIolZM3KdwV8P777yu1atVS9Hq9cuuttyrr1693d0hVzsqVKxWg1KNPnz6KolgvCRs/frwSGRmpGAwGpWPHjsq+ffvcG3QVUFbOAGXWrFm2bQoKCpQhQ4YowcHBio+Pj3L//fcrqamp7gu6Cujfv78SFxen6PV6JTw8XOnYsaOtaCuK5MwRlxZuyV3ZevbsqURHRyt6vV6pUaOG0rNnTyUlJcW2vjLyJrf1FEIIITyInOMWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGqCZPJxOzZs2nbti3h4eF4e3vTtGlT3njjDYxGo7vDE0KUk0x5KkQ1kZyczKhRoxgyZAgtWrSgsLCQnTt3MmnSJKKjo/n999/R6XTuDlMIcRXS4haimmjSpAkrVqzgwQcfpE6dOjRu3JiePXuyZs0adu3axfTp0wFQqVRlPoYPH27bV0ZGBk8++STBwcH4+PjQtWtX9u/fb1vfv39/mjZtSlFREQBGo5EWLVrw5JNPAnD48GFUKhXJycm294wfPx6VSmWLQwhRNincQlQTWq22zOXh4eE88MADzJ0717Zs1qxZpKam2h6X3ju4b9++bN68mZ9//pl169ahKArdunXDZDIB8N5775GXl8eYMWMAePHFF8nMzOSDDz4oM4bjx48zffp0vL29XfFRhbiulf0vWQhx3brhhhs4cuSI3TKTyYRGo7G9DgoKIioqyvZar9fbnu/fv5+ff/6ZtWvX0qZNGwDmzp1LbGwsixYt4uGHH8bPz485c+bQrl07/P39mT59OitXriQgIKDMmF588UV69uzJ8uXLXflRhbguSeEWoppZsmSJrWVc4s0332TOnDnlev+ePXvQarW0atXKtiw0NJQGDRqwZ88e27LWrVszevRoXn75ZV544QXatm1b5v62bt3KwoUL2bdvnxRuIcpBCrcQ1UxcXFypZQcOHKB+/fouPY7FYmHt2rVoNBpSUlIuu92oUaMYPXo00dHRLj2+ENcrOcctRDWRnp5OTk5OqeWbN29m5cqV9OrVq1z7adSoEcXFxWzYsMG27Ny5c+zbt4/GjRvblk2dOpW9e/eyevVqli5dyqxZs0rt6+eff+bff/9l9OjRTnwiIaonKdxCVBNHjx6lefPmfP7556SkpHDw4EG+/vpr7rvvPu644w67UeNXUq9ePe677z4GDhzIX3/9xfbt23niiSeoUaMG9913HwDbtm1jwoQJfPbZZ9x+++1MmzaNYcOGcfDgQbt9vfnmm7zyyiv4+Pi4+uMKcd2Swi1ENdGkSRMmTpzI7Nmzue2227jhhht48803eeaZZ1i2bJndALSrmTVrFi1btuSee+6hdevWKIrCkiVL0Ol0FBYW8sQTT9C3b1+6d+8OwFNPPUWHDh3o3bs3ZrPZtp+EhAT69Onj8s8qxPVMJmARQgghPIi0uIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggP8v+DI2LW5EqQMQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_500.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_500.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s2IdipB3eh3Z", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "df6151d8-b1fc-4e69-8dda-076b2c836468" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9290 - loss: 0.2572\n", + "Lossontestdata: 0.25275251269340515\n", + "Accuracyontestdata: 0.9301000237464905\n" + ] + } + ], + "source": [ + "scores_2l_500=model_2l_500.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_500[0])\n", + "print('Accuracyontestdata:',scores_2l_500[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sPmUCF2q-yKD" + }, + "source": [ + "Лучшая метрика - Accuracyontestdata : 0.9438999891281128, при архитектуре со 100 нейронами." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qB_TMC8KfLxV" + }, + "outputs": [], + "source": [ + "#9 пункт\n", + "model_3l_100_50 = Sequential()\n", + "model_3l_100_50.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_3l_100_50.add(Dense(units=50, activation='sigmoid'))\n", + "model_3l_100_50.add(Dense(units=num_classes, activation='softmax'))\n", + "\n", + "model_3l_100_50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BeZb9kX_fSjT", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 246 + }, + "outputId": "02d33699-95a4-4ceb-e2b2-a849a5b3c16a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_5\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_5\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_9 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_9 (Dense)                 │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_10 (Dense)                │ (None, 50)             │         5,050 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_11 (Dense)                │ (None, 10)             │           510 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
     Total params: 84,060 (328.36 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
     Trainable params: 84,060 (328.36 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_3l_100_50.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M6fHvyBifb76", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "abf93d28-a4b9-4814-96a4-9d4d4c531f29" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.2184 - loss: 2.2653 - val_accuracy: 0.4402 - val_loss: 2.0564\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.5373 - loss: 1.9305 - val_accuracy: 0.6475 - val_loss: 1.4814\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.6621 - loss: 1.3505 - val_accuracy: 0.7543 - val_loss: 1.0269\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7630 - loss: 0.9652 - val_accuracy: 0.8047 - val_loss: 0.7883\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8158 - loss: 0.7571 - val_accuracy: 0.8412 - val_loss: 0.6438\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8455 - loss: 0.6224 - val_accuracy: 0.8575 - val_loss: 0.5530\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8636 - loss: 0.5428 - val_accuracy: 0.8652 - val_loss: 0.4939\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8749 - loss: 0.4841 - val_accuracy: 0.8773 - val_loss: 0.4487\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8809 - loss: 0.4496 - val_accuracy: 0.8850 - val_loss: 0.4174\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8883 - loss: 0.4151 - val_accuracy: 0.8903 - val_loss: 0.3935\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8935 - loss: 0.3920 - val_accuracy: 0.8973 - val_loss: 0.3757\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8959 - loss: 0.3821 - val_accuracy: 0.9000 - val_loss: 0.3597\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9008 - loss: 0.3563 - val_accuracy: 0.9027 - val_loss: 0.3473\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9018 - loss: 0.3480 - val_accuracy: 0.9038 - val_loss: 0.3370\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9057 - loss: 0.3381 - val_accuracy: 0.9048 - val_loss: 0.3282\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9060 - loss: 0.3279 - val_accuracy: 0.9077 - val_loss: 0.3197\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9070 - loss: 0.3260 - val_accuracy: 0.9090 - val_loss: 0.3124\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9082 - loss: 0.3208 - val_accuracy: 0.9093 - val_loss: 0.3056\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9121 - loss: 0.3049 - val_accuracy: 0.9112 - val_loss: 0.2994\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9136 - loss: 0.2994 - val_accuracy: 0.9128 - val_loss: 0.2937\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9125 - loss: 0.3029 - val_accuracy: 0.9128 - val_loss: 0.2895\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9147 - loss: 0.2911 - val_accuracy: 0.9163 - val_loss: 0.2839\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9146 - loss: 0.2905 - val_accuracy: 0.9162 - val_loss: 0.2788\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9174 - loss: 0.2865 - val_accuracy: 0.9182 - val_loss: 0.2746\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9193 - loss: 0.2795 - val_accuracy: 0.9190 - val_loss: 0.2707\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9231 - loss: 0.2650 - val_accuracy: 0.9202 - val_loss: 0.2665\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9221 - loss: 0.2665 - val_accuracy: 0.9212 - val_loss: 0.2618\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9243 - loss: 0.2587 - val_accuracy: 0.9222 - val_loss: 0.2583\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9246 - loss: 0.2599 - val_accuracy: 0.9228 - val_loss: 0.2543\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9278 - loss: 0.2529 - val_accuracy: 0.9238 - val_loss: 0.2506\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9254 - loss: 0.2524 - val_accuracy: 0.9253 - val_loss: 0.2472\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9307 - loss: 0.2428 - val_accuracy: 0.9267 - val_loss: 0.2427\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2449 - val_accuracy: 0.9285 - val_loss: 0.2403\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9316 - loss: 0.2332 - val_accuracy: 0.9298 - val_loss: 0.2365\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9322 - loss: 0.2345 - val_accuracy: 0.9307 - val_loss: 0.2325\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9315 - loss: 0.2356 - val_accuracy: 0.9303 - val_loss: 0.2297\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9338 - loss: 0.2272 - val_accuracy: 0.9327 - val_loss: 0.2273\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9361 - loss: 0.2201 - val_accuracy: 0.9342 - val_loss: 0.2240\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9352 - loss: 0.2239 - val_accuracy: 0.9348 - val_loss: 0.2209\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9384 - loss: 0.2145 - val_accuracy: 0.9357 - val_loss: 0.2181\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9375 - loss: 0.2188 - val_accuracy: 0.9373 - val_loss: 0.2145\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9379 - loss: 0.2157 - val_accuracy: 0.9380 - val_loss: 0.2121\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9416 - loss: 0.2053 - val_accuracy: 0.9380 - val_loss: 0.2091\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9418 - loss: 0.2027 - val_accuracy: 0.9397 - val_loss: 0.2068\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2037 - val_accuracy: 0.9403 - val_loss: 0.2036\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9443 - loss: 0.1954 - val_accuracy: 0.9395 - val_loss: 0.2011\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9449 - loss: 0.1941 - val_accuracy: 0.9410 - val_loss: 0.1992\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9431 - loss: 0.1947 - val_accuracy: 0.9415 - val_loss: 0.1964\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9444 - loss: 0.1934 - val_accuracy: 0.9417 - val_loss: 0.1940\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9475 - loss: 0.1858 - val_accuracy: 0.9422 - val_loss: 0.1914\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_3l_100_50 = model_3l_100_50.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hkDzHYXkgPbY", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "ce3685f3-2bdb-406c-cc09-e210e2282c3c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAHWCAYAAACFR6uKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjgtJREFUeJzs3Xd8U9X7wPFPkqbp3htKWyh7KksQZVimgqBfFVABERyAiuBCkeFCURAnuBBREZz4QxEsaEFWQaBskD3b0t2mM03u74/QQOigCS0p7fN+ve6rzZ1PTseTc+6556gURVEQQgghRK2gdnQAQgghhKg6ktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EuGZMJhOpqakcO3bM0aEIUWtJYhdCVKukpCQmTpxIREQEzs7OBAYG0qJFC7Kzsx0dmhC1kpOjAxCiLKNGjeLHH39Er9c7OhRxFY4cOULPnj0xGAw8+eST3HjjjTg5OeHq6oq7u7ujwxOiVpLELmqMtLQ0vv32W/755x/Wr19Pfn4+/fr144YbbuDee+/lhhtucHSIwkaPPvoozs7ObNmyhXr16jk6HCHqBJVMAiNqgqVLlzJ27Fj0ej2RkZEYDAaSkpK44YYb2LVrFwaDgZEjR/Lpp5/i7Ozs6HBFJWzfvp0OHTrw559/0rt3b0eHI0SdIffYhcNt3LiRBx54gJCQEDZu3Mjx48eJiYnBxcWFbdu2ce7cOYYNG8ZXX33F008/DYCiKERGRnLnnXeWOl9BQQHe3t48+uijAMTFxaFSqfjxxx9L7evh4cGoUaMsrxctWoRKpeLEiROWdfv27cPX15c77riD4uJiq/3+/fdfq/OlpqaiUqmYMWOG1fqy1r399tuoVCp69Ohhtf7YsWPcc889hIWFoVarUalUqFQqWrVqVVExAlBcXMyrr75Ko0aN0Ol0REZG8uKLL1JYWGi1X2RkJHfccYfVugkTJqBSqazWrVmzBpVKxW+//WZZ16NHj1Ixb9u2zRJniS1btuDi4sLRo0dp2bIlOp2OkJAQHn30UdLT062OL+ucr7/+Omq1miVLlth87fL06NHDsm9Zy6U/d4CPP/7YEntYWBjjx48nMzOzwmvk5OQwZswYIiIi0Ol01K9fn8cee4zk5GSr/Up+h8pbLv992blzJ/3798fLywsPDw9uu+02tmzZYtmuKAo9e/YkMDCQ8+fPW9YXFRXRunVrGjVqRG5uLgAnT55k3LhxNG3aFFdXV/z9/bnnnntKvf+SGJ2dnUlJSbHatnnzZkusl/8dCMeSpnjhcG+++SYmk4mlS5fSvn37UtsDAgJYvHgx+/fv55NPPmH69OkEBQXxwAMPMHv2bNLT0/Hz87Psv2LFCrKzs3nggQeuOrbTp0/Tr18/mjVrxvfff4+TU9X8yWRmZjJr1qxS641GI4MGDeLkyZNMnDiRJk2aoFKpeP311yt13jFjxvDVV1/xv//9j8mTJxMfH8+sWbM4cOAAv/zyS5XEXpbnn3++1Lq0tDQKCgp4/PHH6dWrF4899hhHjx7lo48+Ij4+nvj4eHQ6XZnn+/LLL5k6dSpz5sxh+PDhNl+7IvXr1y9V9itXruS7776zWjdjxgxmzpxJTEwMjz/+OIcOHWL+/Pls27aNjRs3otVqyzx/eno6u3fvZsyYMYSEhHDkyBEWLFjAqlWr2Lp1K0FBQVb7v/LKK0RFRVle6/V6Hn/8cat99u3bxy233IKXlxfPPfccWq2WTz75hB49erBu3To6d+6MSqVi4cKFtGnThscee4yff/4ZgOnTp7Nv3z7i4uIs/Rq2bdvGpk2bGDp0KPXr1+fEiRPMnz+fHj16sH//ftzc3Kyur9Fo+OabbywfrMH8M3JxcaGgoKAyxS6uJUUIB/Pz81MiIiKs1o0cOVJxd3e3Wvfyyy8rgLJixQpFURTl0KFDCqDMnz/far9BgwYpkZGRislkUhRFUf7++28FUH744YdS13Z3d1dGjhxpef3ll18qgHL8+HElPT1dadGihdK0aVMlNTXV6riS/bZt22a1PiUlRQGU6dOnW62/fN1zzz2nBAUFKe3bt1e6d+9uWV/ynmbNmmV1fPfu3ZWWLVuWiv9SCQkJCqCMGTPGav0zzzyjAMpff/1lWRcREaHcfvvtVvuNHz9eufxfQmxsrFWZl8RyacwrV65UAKVfv35Wx0+fPl0BlNtuu00pLi62rC8puw8++KDMc/7++++Kk5OTMnny5FLvsbLXLk955fj2229bfu6Koijnz59XnJ2dlT59+ihGo9Gy34cffqgAysKFC694rUvt3btX0el0yujRoy3rbPkdGjx4sOLs7KwcPXrUsu7cuXOKp6encuutt1od/8knnyiA8s033yhbtmxRNBqNMnHiRKt98vLySsW4efNmBVAWL15cKsZhw4YprVu3tqzPzc1VvLy8lOHDh5f5HoRjSVO8cLicnJxStZiyBAcHA1gek2rSpAmdO3fm22+/teyTnp7OH3/8wf3331+qaTYnJ4fU1FSrpTwFBQUMGjSIlJQUVq1ahb+/vz1vrUxnz57lgw8+4OWXX8bDw6NUjIBd11u5ciUAkyZNslo/efJkAH7//Xd7wq2QoihMmTKFu+++m86dO5e5z6RJk9BoNJbXDz74IMHBwWXGs3XrVu69917uvvtu3n777au+tr3WrFlDUVEREydORK2++G9y7NixeHl5XbEsS57XL1mCg4MZMGAAP/30EyaTyaZYjEYjf/75J4MHD6Zhw4aW9aGhoQwfPpwNGzZYPTr4yCOP0LdvX5544gkefPBBGjVqxBtvvGF1TldXV8v3BoOBtLQ0oqOj8fHxYceOHaViePDBBzl48KClyf2nn37C29ub2267zab3Iq4NSezC4cLCwjh69OgV9zty5AiAVe/qESNGsHHjRk6ePAnADz/8gMFg4MEHHyx1/OjRowkMDLRaSu45Xu6hhx5iw4YN5OTkWO6rV5Xp06cTFhZm6QNwqaZNm+Lr68ucOXPYuHEjKSkppKamYjAYrnjekydPolariY6OtlofEhKCj4+PpYyq0rfffsu+fftKJQ7A8sGqWbNmVus1Gg2NGzcudT/37Nmz3H777eTm5pKWlnbFe+YVXftqlZRV06ZNrdY7OzvTsGHDK5blqVOnSv2u/fLLL2RlZVX4gbIsKSkp5OXllYoFoHnz5phMJk6fPm21/osvviAvL4/Dhw+zaNEiq0QOkJ+fz7Rp0wgPD0en0xEQEEBgYCCZmZlkZWWVuk5gYCC33347CxcuBGDhwoWMHDnS6kOPqDnkpyIc7o477iA9PZ0vvvii3H2Sk5P56quvCAwM5KabbrKsHzp0KFqt1lJr/+abb+jQoUOZ/wSnTZtGbGys1eLi4lLm9Xbs2MGvv/5KYGAgjzzyyFW+w4sOHDjAokWLeO2118q8R+vh4cGyZcvIzc2lW7duBAUFERgYyKZNmyp9jcp0IqsKRUVFvPzyyzz88MM0adKk1PbLk8mVHDlyhAYNGvD111+zZs0avvrqK7uv7WghISGlfteGDRt2za4fFxdn6TC5Z8+eUtufeOIJXn/9de69916+//57/vzzT2JjY/H39y+3RWH06NF89913HDhwgPXr11t1OhU1i3SeEw43depUli9fzuOPP87BgwcZPnw4RqMRMNd81q5dy7Rp08jIyGDJkiVWHa78/Py4/fbb+fbbb7n//vvZuHEj8+bNK/M6rVu3JiYmxmrdpU3El/r8888ZNGgQGo2GO+64gy+++IKHH374qt/rlClTaNeuHffdd1+5+/Tu3ZvZs2dz//33s2DBAho2bMjkyZMtZVKeiIgITCYThw8fpnnz5pb1ycnJZGZmEhERcdXxX+rjjz/m/PnzpXpvlyjpEHbo0CGrJuSSGC8flyA0NJSVK1cSHBzMr7/+yuTJkxkwYACBgYE2X/tqlZTV5bEXFRVZntqoiIuLS6l93n//fby8vAgICLAplsDAQNzc3Dh06FCpbQcPHkStVhMeHm5Zl5iYyBNPPEGfPn1wdnbmmWeeoW/fvlY//x9//JGRI0cyZ84cy7qCgoIKe/z3798fFxcXhg4dSrdu3WjUqBH//POPTe9FXBtSYxcOFxISwubNm+nfvz9z5szhxhtv5JtvviE3N5eIiAhGjx6Nq6srK1asKLPW8+CDD7J//36effZZNBoNQ4cOveqYbrnlFgBuv/12hg4dyrPPPlvqcSVbbd68mV9//ZU333yzwlr16dOnGTduHE8++SSPPPIIMTEx+Pr6XvH8AwYMACj1wWbu3LmA+b1UlZycHF5//XWefvppQkJCytzntttuQ6fT8f7771vVAr/99luSk5NLPW7XpEkTSz+KDz74AJPJxFNPPWXXta9WTEwMzs7OvP/++yiXDPXxxRdfkJWVVWFZllXj3blzJ3/88QeDBw+2uflao9HQp08ffv31V6vbF8nJySxZsoRu3brh5eVlWT927FhMJhNffPEFn376KU5OTjz88MNW70Oj0Vi9BnOZV/Th0cnJiREjRrB7925Gjx5t03sQ15bU2EWNEB4ezq+//kpiYiIbN27k7bffJiEhgQULFtCuXTvatWtXbjK8/fbb8ff354cffqB///6V6ohni/fee4/mzZvzxBNP8P3331tt27x5s9U905JOTEeOHGHr1q106tTJsq1koJaKansmk4kHH3yQ+vXr8+abb9oUZ9u2bS2D+GRmZtK9e3e2bt3KV199xeDBg+nZs6fV/iUdA0ucOnUKwGpdQkJCmdfasWMHAQEBPPfcc+XG4+fnx9SpU3n55Zfp27cvd955J8eOHePDDz+kbdu2jBkzptxjQ0JCePvttxkzZgwPPPCA5UNLZa99tQIDA5kyZQozZ86kX79+DBo0iEOHDvHxxx/TsWPHCh+lPHXqFLfffjv33HMP9erVY+/evXz22WcEBATY3R/gtddeIzY2lm7dujFu3DicnJz45JNPKCwsZPbs2Zb9vvzyS37//XcWLVpE/fr1AXPCfuCBB5g/fz7jxo0DzLe/vv76a7y9vWnRogWbN29mzZo1V+y0+eqrr/Lss89W6oOmcCCH9skXohxlPe5WkXHjximAsmTJklLb7H3c7VJfffWVAij/93//Z7VfRculj2UBikqlUrZv32513ssf33rjjTcUnU6n7Nq1q9R+V3rcTVEUxWAwKDNnzlSioqIUrVarhIeHK1OmTFEKCgqs9ouIiLhi/Jculz/uBijvvvuu1TlLHm+73EcffaQ0a9ZM0Wq1SnBwsPLoo48qaWlpFZZDiV69eikNGjRQcnJy7Lr25Sr7uFuJDz/80Cr2xx9/XMnIyKjwGjk5OcrYsWOViIgIxdnZWQkMDFQefPBB5eTJk1b72frI5I4dO5S+ffsqHh4eipubm9KzZ09l06ZNlu2nT59WvL29lYEDB5aKaciQIYq7u7ty7NgxRVEUJSMjQ3nooYeUgIAAxcPDQ+nbt69y8OBBJSIiosy/h/IeZ7vSduEYMqSsqBWefvppvvjiC5KSkkoNruEIM2bMIC4ujri4OEeHIoSoY+Qeu7juFRQU8M0333D33XfXiKQuhBCOJPfYxXXr/PnzrFmzhh9//JG0tLQyO1o5SnR0NHl5eY4OQwhRB0lTvLhuxcXF0bNnT4KCgnj55ZeZMGGCo0MSQgiHk8QuhBBC1CJyj10IIYSoRSSxCyGEELWIdJ4rg8lk4ty5c3h6el6zcbeFEEKIiiiKQk5ODmFhYRWOYCiJvQznzp2zGntZCCGEqClOnz5tGVmwLJLYy+Dp6QmYC+/SMZjtYTAY+PPPP+nTp0+Zs3mJ8knZ2UfKzX5SdvaRcrOPreWWnZ1NeHi4JUeVRxJ7GUqa3728vKoksbu5ueHl5SW/8DaSsrOPlJv9pOzsI+VmH3vL7Uq3iKXznBBCCFGLSGIXQgghahGHJvZZs2bRsWNHPD09CQoKYvDgwRw6dKjCYz777DNuueUWfH198fX1JSYmhq1bt1rtM2rUKFQqldXSr1+/6nwrQgghRI3g0Hvs69atY/z48XTs2JHi4mJefPFF+vTpw/79+3F3dy/zmLi4OIYNG0bXrl1xcXHhrbfeok+fPuzbt4969epZ9uvXrx9ffvml5bVOp6v29yPE9UxRFIqLizEajY4OxWEMBgNOTk4UFBTU6XKwlZSbfS4vN41Gg5OT01U/Zu3QxL5q1Sqr14sWLSIoKIjt27dz6623lnnMt99+a/X6888/56effmLt2rWMGDHCsl6n0xESElL1QQtRCxUVFZGYmFjnJ65RFIWQkBBOnz4tY1jYQMrNPmWVm5ubG6GhoTg7O9t93hrVKz4rKwsAPz+/Sh+Tl5eHwWAodUxcXBxBQUH4+vrSq1cvXnvtNfz9/cs8R2FhIYWFhZbX2dnZgPnTlMFgsPVtWCk5/mrPUxdJ2dnH1nIzmUwcP34cjUZDaGgoWq22zv5zVhSF3Nxc3N3d62wZ2EPKzT6XlhuY/2ZTUlI4duwYUVFRpQahqezfdI2ZBMZkMjFo0CAyMzPZsGFDpY8bN24cq1evZt++fbi4uACwdOlS3NzciIqK4ujRo7z44ot4eHiwefNmNBpNqXPMmDGDmTNnllq/ZMkSmd9b1HpOTk6EhIRQv359uWUlhIMVFhZy5swZEhMTS93WyMvLY/jw4WRlZVX4KHaNSeyPP/44f/zxBxs2bKhwRJ1Lvfnmm8yePZu4uDjatGlT7n7Hjh2jUaNGrFmzhttuu63U9rJq7OHh4aSmplbJc+yxsbH07t1bnu+0kZSdfWwtt4KCAk6fPk1kZKTlw3FdVTJkpwwnbRspN/uUVW4FBQWcOHGC8PDwUn+P2dnZBAQEXDGx14im+AkTJvDbb7+xfv36Sif1d955hzfffJM1a9ZUmNQBGjZsSEBAAEeOHCkzset0ujJrKlqttsoSSlWeq66RsrNPZcvNaDSiUqlQq9UVjj9dF5hMJgBLeYjKkXKzT1nlplarUalUZf79Vvb/oEN/AoqiMGHCBH755Rf++usvoqKiKnXc7NmzefXVV1m1ahUdOnS44v5nzpwhLS2N0NDQqw1ZCFGLSP+N65P83Crm0MQ+fvx4vvnmG5YsWYKnpydJSUkkJSWRn59v2WfEiBFMmTLF8vqtt97i5ZdfZuHChURGRlqO0ev1AOj1ep599lm2bNnCiRMnWLt2LXfeeSfR0dH07dv3mr9HIUTNkZCQwMiRI2nSpAm+vr54eXlZOu2KmuvYsWM8/vjjtGjRAn9/f1xdXTl48KCjw6qxHJrY58+fT1ZWFj169CA0NNSyLFu2zLLPqVOnSExMtDqmqKiI//3vf1bHvPPOOwBoNBp2797NoEGDaNKkCQ8//DDt27fnn3/+kY5BQtRCp0+fZvTo0YSFheHs7ExERARPPfUUaWlpVvvFxcXRrVs3QkJCWLp0Kdu2bePIkSN4e3s7KHJRGQcOHKB9+/YUFxezcOFC4uPjOXr0KM2aNXN0aDWWQ++xV6bfXlxcnNXrEydOVLi/q6srq1evvoqohBDXi2PHjtGlSxeaNGnCd999R1RUFPv27ePZZ5/ljz/+YMuWLfj5+aEoCmPHjmXevHmMGTPG0WELG0yYMIHx48fz2muvOTqU64b0cqhmE5ft5tWdGvaezXZ0KEJUmqIo5BUVO2Sx5UGd8ePH4+zszJ9//kn37t1p0KAB/fv3Z82aNZw9e5aXXnoJgIMHD3Ly5EmOHDlCREQELi4u3HTTTZZHaxVFITo6mjlz5lidPyEhAZVKxZEjR4iLi0OlUpGZmWnZPmrUKAYPHmx5vWrVKrp164aPjw/+/v7ccccdHD161LL9xIkTqFQqEhISADh79iz33HMPQUFBeHp6MmTIEM6cOWPZf8aMGbRr187yOjMzE5VKZVXhuTyGo0ePcueddxIcHIyHhwcdO3ZkzZo1Vu8rMTGRu+66C39/f6uhty99b5fbs2cPvXr1wtXVFX9/fx555BHLLVAwP3o8ZMiQUmV3aWWsR48eTJw40fI6MjKSefPmWV6vXbsWlUpleT+5ubn8/fffFBUV0bhxY1xcXGjdujW//vpruWVaWFhITEwMMTExlqedtm3bRu/evQkICMDb25vu3buzY8eOct/r9a5G9Iqvzc5m5ZNaoOJcVj43ODoYISop32CkxTTHtHztf6Uvbs5X/teUnp7O6tWref3113F1dbXaFhISwv3338+yZcv4+OOPSUlJwWAw8PXXX/PZZ58RFRXFe++9R79+/Th8+DChoaGMHj2aRYsWMXbsWMt5vvzyS2699Vaio6OtEm55cnNzmTRpEm3atEGv1zNt2jSGDBlCQkJCmYONDBgwAK1Wy4oVK9BqtTz11FMMHjyYbdu22f3YmF6vZ8CAAbz++uvodDoWL17MwIEDOXToEA0aNABg8uTJ/Pfff6xatYrw8HA2bdrE3XffXeH76tu3L126dGHbtm2cP3+eMWPGMGHCBBYtWmRXnJczmUxMnjwZDw8Py7q0tDQUReGTTz5hwYIFtG/fniVLlnDXXXexfft2qw89YH7CY+jQoej1etasWWO5/ZqTk8PIkSP54IMPUBSFOXPmMGDAAA4fPnzFuc2vR1Jjr2YhXubnEJOyC6+wpxDCFocPH0ZRFJo3b17m9ubNm5ORkUFKSorlsaK3336bAQMG0Lx5cz7++GPCwsL46KOPAHPN99ChQ2zfvh0wJ94lS5YwevRoAMuHh0s7917u7rvv5q677iI6Opp27dqxcOFC9uzZw/79+0vtu2bNGnbv3s3ixYvp3LkzN954I99++y0JCQmsXbvW7nJp27Ytjz76KK1ataJx48a8+uqrNGrUiP/7v/+z7JOQkMDw4cPp2LEjISEhVxztc8mSJRQUFLB48WJatWpFr169+PDDD/n6669JTk62O9ZLffXVVxQWFnLnnXda1pX83J5//nmGDRtGkyZNmDFjBj179rT0qyqhKAoPPfQQR44cYeXKlVYfEHr16sUDDzxAs2bNaN68OZ9++il5eXmsW7euSmKvaaTGXs1CvMyfGJOyChwciRCV56rVsP8VxzxF4qotPTpkRWxpur/55pst36vVarp27WpJumFhYQwYMIBvvvmGnj17smLFCgoLC7nnnnsAaNy4Mc7Oznz33XdMmjSpzPMfPnyYadOmER8fT2pqqiUxnTp1ilatWln269q1K0ajER8fH1q0aGFZ36BBA8LDw9m/fz8xMTGVL4RL6PV6ZsyYwe+//05iYiLFxcXk5+dz6tQpyz5RUVGsXLmSxx57rFJDeB84cIC2bdtaTc518803YzKZOHToEIGBgXbFWiIvL4+pU6eyYMECfvrpp1LbL/25AXTr1s3qgwrAs88+y9q1a3nooYdKvafk5GSmTp1KXFwc58+fx2g0kpeXZ1UmtYnU2KtZsKXGLoldXD9UKhVuzk4OWSrbBB0dHY1KpeLAgQNlbj9w4AC+vr4EBgbi6+tb4Xst8fDDD/Pzzz+Tn5/Pl19+yX333WcZVtrPz4+5c+fywgsv4OrqioeHR6lJqQYOHEh6ejqfffYZ8fHxxMfHA+ZJdi61bNkyXn311UrFZKtnnnmGX375hTfeeIN//vmHhIQEWrdubRXDu+++S2FhIQEBAXh4eNC/f3+7r1cV3n77bZo2bcrAgQOt1lf25wbmn/cff/zB0qVLS3WgHjlyJAkJCbz33nts2rSJhIQE/P39S/1cagtJ7NXMUmOXpnghqpS/vz+9e/fm448/LtU8npSUxLfffst9992HSqWiUaNGODk5sXHjRss+JpOJTZs2WdWYBwwYgLu7OwsWLGDVqlWWZvgS48ePJysri71795KQkMCgQYMs29LS0jh06BBTp07ltttus9wKKEt4eDjdunUjMzPTqpn+9OnTnD592iomW23cuJFRo0YxZMgQWrduTUhISKmniZo0acKoUaOIjIwkPj6ezz//vMJzNm/enF27dpGbm2t1HbVaTdOmTe2OFcwd+ebMmVOq4yKAt7c3ISEhVj83gA0bNpQqo6+//pp+/frx6quvMnbsWMtkXiWxPvnkkwwYMICWLVui0+lITU29qrhrMkns1SzE+0KNXZrihahyH374IYWFhfTt25f169dz+vRpVq1aRe/evalXrx6vv/46AB4eHowdO5Znn32WlStXcuDAAcaNG8e5c+cYN26c5XwajYZhw4bx4osv0rhxY7p06VLqmq6urjRq1Ijo6Girjle+vr74+/vz6aefcuTIEf76669ym+zB3BzfuXNnRowYwdatW9mxYwf3338/7dq1o1evXpb9FEWhoKCAgoICSy/voqIiyzqj0YjJZLKMxta4cWN+/vlnEhIS2LVrF8OHD7fcEiixZcsWXnzxRX788UdatmxJvXr1Kizn+++/HxcXF0aOHMnevXv5+++/eeKJJ3jwwQcJDg627GcymSxxldSGCwsLLesujwPgo48+YsiQIdxwQ9ndi59++mneeustli5dyn///ceMGTP4+++/eeaZZ6z2K2l+f/rppwkPD7cq+8aNG/P1119z4MAB4uPjuf/++0t1uKxVFFFKVlaWAihZWVlXfa5jyVlKxPO/KY1fWqmYTKYqiK7uKCoqUpYvX64UFRU5OpTriq3llp+fr+zfv1/Jz8+v5siqx4kTJ5SRI0cqwcHBilarVcLDw5UnnnhCSU1NtdovNzdXGTdunBIQEKA4OzsrN910k7JhwwarfYxGo7Jz504FUGbPnn3Fa48cOVK58847La9jY2OV5s2bKzqdTmnTpo0SFxenAMovv/yiKIqiHD9+XAGUnTt3KoqiKGfOnFEGDx6seHh4KB4eHsqQIUOU06dPW843ffp0BajUMnLkSMs1evbsqbi6uirh4eHKhx9+qHTv3l156qmnFEVRlPPnzyv169dXPv/8c8t1/v77bwVQMjIyyn2vu3fvVnr27Km4uLgofn5+ytixY5WcnBxLuQ0bNqxScZbEoSiKEhERobi6ulq958vLtLi4WJk6daoSFhamaLVapXXr1sry5cst2y8vU0VRlEOHDimurq7K6tWrFUVRlB07digdOnRQXFxclMaNGys//PCDEhERobz77rvlvt9rwWg0KhkZGYrRaLSsq+jvsbK5qcbM7laTZGdn4+3tfcUZdCojN7+QljPNz5DueLk3fu7OVRFinWAwGFi5cqXlkSBRObaWW0FBAcePHycqKqrOz+5mMplYtWoVgwcP5vTp01a10Zps+fLlLF++vMoePbOVyWQiOzsbLy8vmQTGBmWVW0V/j5XNTfITqGbOTmo8tebPTolZ5T8mI4RwrJJ5sN966y3+97//XTdJHcy3EOTDryghif0a8LlQSZf77ELUXCVD0mZlZfHWW285OhybDBw4kM8++8zRYYgaQhL7NeDjXFJjl8QuRE01atQoDAYDcXFxV+xMJkRNJon9GvCWGrsQQohrRBL7NeCjkxq7EEKIa0MS+zVguceeLZ3nhBBCVC9J7NeAdJ4TQghxrUhivwa8L+k8J8MGCCGEqE6S2K+Bkhp7XpGRnMJixwYjhBDCbiVD99ZkktivAWcN+LiaB4+Q5nghhLh+/PLLL9x+++1ERkbi4eHBLbfc4uiQrkgS+zUSfGGWN+kZL0TVGTVqFCqVyrL4+/vTr18/du/e7ejQRC0wa9Ysxo4dyx133MHvv/9OQkICK1eudHRYVySJ/RoJKZmXXYaVFaJK9evXj8TERBITE1m7di1OTk7ccccdjg5LXOeOHTvGG2+8wbp163j88cdp2bIl0dHRllnkajJJ7NdIiLfU2MV1RFGgKNcxi40dTHU6HSEhIYSEhNCuXTteeOEFTp8+TUpKimWf559/niZNmuDm5kbDhg15+eWXS90rPXHiBBqNBl9fXzQajaUVIDMzE4AZM2bQrl07y/5FRUVER0db7VMiMjLSqiVBpVKxfPlyy/ZVq1bRrVs3fHx88Pf354477uDo0aNWsahUKhISEkqdd968eZbXPXr0YOLEiZbXhw4dQqvVWsVpMpl45ZVXqF+/Pjqdjnbt2rFq1Sqbr3X5eyjr+l9//TUdOnTA09OTkJAQhg8fzvnz562O+e2332jbti2urq6Wshk8eDAVmT9/Po0aNcLZ2ZmmTZvy9ddfW22/PLaJEyfSo0ePct9jXFxcqZ/bgw8+aHWe1atX06hRI15//XUCAwPx9PTkrrvu4syZM5ZjLv+d2LFjBz4+Plbz28+dO5fWrVvj7u5OeHg448aNQ6/XV/h+r5ZTtZ5dWAR7ybzs4jpiyIM3whxz7RfPgbO7XYfq9Xq++eYboqOj8ff3t6z39PRk0aJFhIWFsWfPHsaOHYunpyfPPfecZZ+SJ1aWL19Ox44d2bJlC3fffXe51/rwww9JTk4ud/srr7zC2LFjAQgNDbXalpuby6RJk2jTpg16vZ5p06YxZMgQEhISrmp2tGeffbbUjGDvvfcec+bM4ZNPPuGGG25g4cKFDBo0iH379tG4cWO7r1UWg8HAq6++StOmTTl//jyTJk1i1KhRlubrzMxM7rvvPsaMGcPy5ctxdXXlqaeesswzX5ZffvmFp556innz5hETE8Nvv/3GQw89RP369enZs2eVxL19+3b+7//+z2pdSkoKu3btwtPTkz/++AOAp556isGDB7Nt2zZUKpXV/gcPHqRv375MnTqVMWPGWNar1Wref/99oqKiOHbsGOPGjeO5557j448/rpLYyyKJ/RqxNMVnS2IXoir99ttveHh4AOaEGRoaym+//WaVIKdOnWr5PjIykmeeeYalS5daJfaSGnxQUBAhISEVNrmmp6fz2muv8fzzz/Pyyy+X2l5YWIifnx8hISFlHn/5B4aFCxcSGBjI/v37adWqVSXedWl///03mzZtYsyYMfz999+W9e+88w7PP/88Q4cOBeCtt97i77//Zt68eXz00Ud2Xas8o0ePtpR7w4YNef/99+nYsSN6vR4PDw/+++8/8vLyeP755wkLM39wdHV1rTCxv/POO4waNYpx48YBMGnSJLZs2cI777xTZYl90qRJPPvss1Y/S5PJhEajYcmSJYSHhwOwZMkSGjVqxNq1a4mJibHse/LkSXr37s0jjzzCM888Y3XuS1s0IiMjee2113jssccksdcGJU3xUmMX1wWtm7nm7Khr26Bnz57Mnz8fgIyMDD7++GP69+/P1q1biYiIAGDZsmW8//77HD16FL1eT3Fxcan5rLOzswFwd79ya8Err7xCz5496datW5nb09PTK5wv+/Dhw0ybNo34+HhSU1MxmUwAnDp1yq7ErigKkydPZvr06aSlpVnWZ2dnc+7cOW6++War/W+++WZ27dplta5r165WH4by8vJKXWfYsGFoNBrL6/z8fKum6O3bt/PKK6+wa9cuMjIyrN5XixYtCA8Px8nJie+++46nn366Uq0TBw4c4JFHHikV/3vvvXfFYytj+fLlHDt2jMmTJ5f6kBYeHm5J6gARERHUr1+f/fv3WxJ7ZmYmMTExnDlzhr59+5Y6/5o1a5g1axYHDx4kOzub4uJiCgoKyMvLK9W6UlXkHns1U696jpsPv0GEwXz/TO6xi+uCSmVuDnfEclkT55W4u7sTHR1NdHQ0HTt25PPPPyc3N9cyjenmzZu5//77GTBgAL/99hs7d+7kpZdeoqioyOo8586dQ61WExQUVOH1Dh8+zOeff17u1K5nzpyhqKiIqKiocs8xcOBA0tPT+eyzz4iPjyc+Ph6gVEyVtXjxYnJzc3nsscfsOh7MH34SEhIsS0mN+lLvvvuu1T4dOnSwbMvNzaV///54eXnx7bffsm3bNn755Rfg4vsKDQ1l/vz5vPHGG7i4uODh4cG3335rd8xXy2Aw8Nxzz/H666/j6upqtc3X17fc4y5thj958iSdO3dmxowZjB492uoD0YkTJ7jjjjto06YNP/30E9u3b7e0ktj7s64MSezVTHVuBwH6gwSZzJ+is/IN5BXJIDVCVBeVSoVarSY/3/wEyqZNm4iIiOCll16iQ4cONG7cmJMnT5Y6btu2bTRr1uyKtajnn3+eMWPGEB0dXeb2devW4erqapX0LpWWlsahQ4eYOnUqt912G82bNycjI8PGd3lRXl4eL730Em+99RZardZqm5eXF2FhYWzcuNFq/caNG2nRooXVuvDwcMsHpOjoaJycSjfohoSEWO1zaTI8fPgwaWlpvPnmm9xyyy00a9asVMc5gJEjR9KsWTMeeeQREhISGDRoUIXvr3nz5pWK3x7z58/Hw8ODBx98sNS2Zs2acfr0aU6fPm1Zd/LkSc6cOWN17YYNG7Jo0SJeeuklvLy8mDJlimXb9u3bMZlMzJkzh5tuuokmTZpw7lz1t4RJU3x1czV34HEtzsTdOZjcIiNJWQU0DPRwcGBC1A6FhYUkJSUB5qb4Dz/8EL1ez8CBAwFo3Lgxp06dYunSpXTs2JHff//dUpMEc81p2bJlzJ07lxkzZlR4rSNHjnDq1CmOHDlS5vajR4/y5ptvcuedd5bqKZ+ZmUlRURG+vr74+/vz6aefEhoayqlTp3jhhRfKPF9RUREFBRdb+RRFobi4GKPRaGkSX7JkCe3bty+3Z/mzzz7L9OnTadSoEe3atePLL78kISGhymvK9evXx9nZmQ8++IDHHnuMvXv38uqrr5bab/LkyahUKt599120Wi2enp6lyury+O+9915uuOEGYmJiWLFiBT///DNr1qyx2s9gMFjKymg0YjKZLK/Lu4c/e/ZsVqxYUaojHEDv3r1p3rw5w4cP59133wXMnefatWtHr169LPt5enpaPgQtWrSITp068b///Y9bbrmF6OhoDAYDH3zwAQMHDmTjxo0sWLCgglKsIoooJSsrSwGUrKysqz6X8ccxijLdSyleN0fp9c7fSsTzvykbD6dUQZS1X1FRkbJ8+XKlqKjI0aFcV2wtt/z8fGX//v1Kfn5+NUdW9UaOHKkAlsXT01Pp2LGj8uOPP1rt9+yzzyr+/v6Kh4eHct999ynvvvuu4u3trSiKovz7779Kw4YNlVmzZikGg0HJyMhQjEaj8vfffyuAkpGRoSiKokyfPl0BlHfeecdy3sv3iYiIsIrn8uXvv/9WFEVRYmNjlebNmys6nU5p06aNEhcXpwDKL7/8oiiKohw/frzC83z55ZeKoihK9+7dFZVKpWzbts0S0/Tp05W2bdtaXhuNRmXGjBlKvXr1FK1Wq7Rt21b5448/LNtLrrVz506rMouIiFDeffddy+tL4yvRvXt35amnnlKMRqOSkZGhfPPNN0pkZKSi0+mULl26KP/3f/9nde4lS5YowcHBytmzZ61+hnfeeWfZP+ALPv74Y6Vhw4aKVqtVmjRpoixevNhqe0VldelSEkfJz+2OO+4odZ5L3+PRo0eV22+/XXFzc1M8PDyUIUOGKGfOnCm3rBVFUV555RUlOjpayc3NVRRFUebOnauEhoYqrq6uSt++fZXFixdbfmdKys1oNFqOr+jvsbK5SXXhzYhLZGdn4+3tTVZWVoUdYCrDuPJ5NFsXYOzyBCNPD2TDkVTm3NOWu9vXr6Joay+DwcDKlSsZMGBAqSZGUT5by62goIDjx48TFRVVbZ15rhcmk4ns7Gy8vLzseuwsMjKSuLg4IiMjS20bPHhwqeer7TFx4kTatWvHqFGjruo8Velqy62uKqvcKvp7rGxukp9AdXMzN8Wr8tIJ8ZZH3oSozQIDA616jV/K19cXZ2fnq76GVqst9xpCgNxjr3aK64VnYfPSCA2UQWqEqM22bdtW7rYvv/yySq7x9ttvV8l5RO3l0Br7rFmz6NixI56engQFBTF48GAOHTp0xeN++OEHS+/V1q1blxqUX1EUpk2bRmhoKK6ursTExHD48OHqehsVu1BjJ/9ijV0eeRNCCFFdHJrY161bx/jx49myZQuxsbEYDAb69OlDbm5uucds2rSJYcOG8fDDD7Nz504GDx7M4MGD2bt3r2Wf2bNn8/7777NgwQLi4+Nxd3enb9++Vr1Lrxk3c41dlZdGqKUpXiaCEUIIUT0c2hR/6UQEYH5UICgoiO3bt3PrrbeWecx7771Hv379ePbZZwF49dVXiY2N5cMPP2TBggUoisK8efOYOnUqd955J2AevCE4OJjly5dbhlW8VhTXizV2GS9e1GTSj1YIx6uKv8MadY89KysLoMIxmjdv3sykSZOs1vXt29cyI8/x48dJSkqyGsfX29ubzp07s3nz5jITe2FhodVzjiVDSxoMhlIzQNnKoPVCC5CfScCFDo6p+iL0+YXonKTvYkVKyv5qfwZ1jT3lpigKer0enU5XXWFdF0r+qSqKYhkOVVyZlJt9yio3vV5vWX/533Bl/6ZrTGI3mUxMnDiRm2++ucKxkpOSkggODrZaFxwcbBmgouRrRftcbtasWcycObPU+j///BM3N9vGrb6cSjEyCFChsH3t/+Gk8qVYUfH9/63Cv24/WVRpsbGxjg7humRLuXl6elJYWEhBQQHOzs5lDthRl1w63rqoPCk3+6SlpaEoCkVFRaSmppKRkVFmv7Cyxu8vS41J7OPHj2fv3r1s2LDhml97ypQpVq0A2dnZhIeH06dPn6t+jt1gMFC0xx1nYy69b76BsOPnOZWeT7Mbu9AxsvyxiIW57GJjY+ndu7c8x24De8pNURTOnz9vaa2qqxRFoaCgABcXlzr/4cYWUm72KavcAgMDadmyZZnlWNm/zxqR2CdMmMBvv/3G+vXrqV+/4oFbQkJCSs2BnJycbJkeseRrcnKy1RzIycnJVrMQXUqn05XZBKnVaqskoRQ6eeBszEVblEWotyun0vNJzSuWZFVJVfVzqGtsLbf69etjNBrr9K0Pg8HA+vXrufXWW+V3zgZSbva5vNyuNEZBZcvWoYldURSeeOIJfvnlF+Li4iqcDalEly5dWLt2rdUct7GxsXTp0gWAqKgoQkJCWLt2rSWRZ2dnEx8fz+OPP14db+OKipw8oTDZ/Cy7t3kKwKQs6Rkvah6NRlOnBz/RaDQUFxfj4uIiCcoGUm72qa5yc2hiHz9+PEuWLOHXX3/F09PTcg/c29vbMmvQiBEjqFevHrNmzQLMg/B3796dOXPmcPvtt7N06VL+/fdfPv30U8A8s9PEiRN57bXXaNy4MVFRUbz88suEhYWVO0lCdSvUeJq/yUsjxLsJIM+yCyGEqB4OTezz588HKDV28pdffmkZB/nUqVNWYw937dqVJUuWMHXqVF588UUaN27M8uXLrTrcPffcc+Tm5vLII4+QmZlJt27dWLVqlcPGwS5yupjYLc+yS2IXQghRDRzeFH8lcXFxpdbdc8893HPPPeUeo1KpeOWVV3jllVeuJrwqczGxpxNcX0afE0IIUX3kQeproMjpwtzrUmMXQghRzSSxXwNlNcWfzymg2CgDOQghhKhaktivgcJLEru/hw4ntQqTAin6wooPFEIIIWwkif0auLQpXqNWyZjxQgghqo0k9mugSHOx8xxgmb5VErsQQoiqJon9GrDcYy/KgeJCmZddCCFEtZHEfg0YNK4oqgujeeWlEVrSFJ8tiV0IIUTVksR+LajU4HZhKtq8NKmxCyGEqDaS2K8V19KJXcaLF0IIUdUksV8jyiU19lCpsQshhKgmktivFVd/89e8dEK8zRPcJGcXYDJdeVhdIYQQorIksV8jiltJYk8jyFOHSgUGo0J6XpFjAxNCCFGrSGK/Vi5J7FqNmkAPHSDPsgshhKhaktivlUvusQNyn10IIUS1kMR+jSiu1on94rCy0jNeCCFE1ZHEfq1c0hQPUmMXQghRPSSxXyuWGnvJePHmnvFyj10IIURVksR+jVh6xeemgqJIjV0IIUS1kMR+rZR0njMWQlGuZfS5ZBkvXgghRBWSxH6taN1BY37E7fLR5xRFBqkRQghRNSSxXysqlVUHupJe8fkGI9n5xQ4MTAghRG0iif1acrs4rKyLVoOfuzMAidnyyJsQQoiqIYn9WnIr+1l26UAnhBCiqkhiv5bcA8xfL3uWXR55E0IIUVUksV9Llw1SEyKPvAkhhKhiktivpctHn5NhZYUQQlQxSezXUjk19qTsQkdFJIQQopaRxH4tuVkPKxtqGVZWauxCCCGqhiT2a0nusQshhKhmktivJUtiTwUuJvacgmL0hTJIjRBCiKsnif1aumSAGkwmPHROeOicADgvY8YLIYSoApLYr6WSqVsVIxRmAVhGn0vPLXJUVEIIIWoRSezXktYFnD3M31/oQFeS2NMksQshhKgCDk3s69evZ+DAgYSFhaFSqVi+fHmF+48aNQqVSlVqadmypWWfGTNmlNrerFmzan4nNrhsWFl/qbELIYSoQg5N7Lm5ubRt25aPPvqoUvu/9957JCYmWpbTp0/j5+fHPffcY7Vfy5YtrfbbsGFDdYRvn8t6xvtKYhdCCFGFnBx58f79+9O/f/9K7+/t7Y23t7fl9fLly8nIyOChhx6y2s/JyYmQkJAqi7NKXZbYpcYuhBCiKjk0sV+tL774gpiYGCIiIqzWHz58mLCwMFxcXOjSpQuzZs2iQYMG5Z6nsLCQwsKLo79lZ2cDYDAYMBgMVxVjyfElXzWufqgBY855TAYD3q4aAFJzCq76WrXN5WUnKkfKzX5SdvaRcrOPreVW2f1UiqIodkdVhVQqFb/88guDBw+u1P7nzp2jQYMGLFmyhHvvvdey/o8//kCv19O0aVMSExOZOXMmZ8+eZe/evXh6epZ5rhkzZjBz5sxS65csWYKbm5td76c8Lc98S3TKag4H3c7+evcRf17FkqMamnmbeLyFqUqvJYQQovbIy8tj+PDhZGVl4eXlVe5+122N/auvvsLHx6fUB4FLm/bbtGlD586diYiI4Pvvv+fhhx8u81xTpkxh0qRJltfZ2dmEh4fTp0+fCguvMgwGA7GxsfTu3RutVot64yGIW02jUB8iBwzA9VAKS47uROPuzYABXa7qWrXN5WUnKkfKzX5SdvaRcrOPreVW0pp8JddlYlcUhYULF/Lggw/i7Oxc4b4+Pj40adKEI0eOlLuPTqdDp9OVWq/Vaqvsl9RyLo9AANQFGai1WoK8zS0CGbkG+YMoR1X+HOoSKTf7SdnZR8rNPpUtt8qW7XX5HPu6des4cuRIuTXwS+n1eo4ePUpoaOg1iKwSyuk8l5ZbRA25KyKEEOI65tDErtfrSUhIICEhAYDjx4+TkJDAqVOnAHMT+YgRI0od98UXX9C5c2datWpVatszzzzDunXrOHHiBJs2bWLIkCFoNBqGDRtWre+l0koSe655vPiSAWoKi03kFRkdFZUQQohawqFN8f/++y89e/a0vC65zz1y5EgWLVpEYmKiJcmXyMrK4qeffuK9994r85xnzpxh2LBhpKWlERgYSLdu3diyZQuBgYHV90ZscVmN3c1Zg7OTmqJiE+m5Rbjrrsu7I0IIIWoIh2aRHj16VNj8vGjRolLrvL29ycvLK/eYpUuXVkVo1acksRdkgrEYlcYJf3dnErMKSM8tItyvanvhCyGEqFuuy3vs1zVX34vf52cAMhGMEEKIqiOJ/VrTOIGLj/n7C83xMhGMEEKIqiKJ3RHKHVa2sLwjhBBCiEqxObEfO3asOuKoWy5L7H7u5mfopcYuhBDiatmc2KOjo+nZsyfffPMNBQUF1RFT7Xd5jd3jQo1dL4ldCCHE1bE5se/YsYM2bdowadIkQkJCePTRR9m6dWt1xFZ7uV9eY5fOc0IIIaqGzYm9Xbt2vPfee5w7d46FCxeSmJhIt27daNWqFXPnziUlJaU64qxdLDX2dAB83aTznBBCiKphd+c5Jycn7rrrLn744Qfeeustjhw5wjPPPEN4eDgjRowgMTGxKuOsXcppis/Ik8QuhBDi6tid2P/991/GjRtHaGgoc+fO5ZlnnuHo0aPExsZy7tw57rzzzqqMs3Yp1XlO7rELIYSoGjaPPDd37ly+/PJLDh06xIABA1i8eDEDBgxArTZ/RoiKimLRokVERkZWday1hyWxm8eLL3ncLaewmMJiIzonjaMiE0IIcZ2zObHPnz+f0aNHM2rUqHJnTAsKCuKLL7646uBqrctq7F4uWjRqFUaTQkaugRBvSexCCCHsY3NiP3z48BX3cXZ2ZuTIkXYFVCdc1nlOrVbh6+ZMqr6QtNxCQrxdHBicEEKI65ldk8BkZGTwxRdfcODAAQCaN2/O6NGj8fPzq9Lgai23C+VUpAdDAWhd8Hc3J3Z55E0IIcTVsLnz3Pr164mMjOT9998nIyODjIwMPvjgA6Kioli/fn11xFj76LxBdaG5Pd9ca5dn2YUQQlQFm2vs48eP57777mP+/PloNObkZDQaGTduHOPHj2fPnj1VHmSto1aba+25Keb77F5hFyeCkZ7xQgghroLNNfYjR44wefJkS1IH0Gg0TJo0iSNHjlRpcLVaOY+8ybPsQgghrobNif3GG2+03Fu/1IEDB2jbtm2VBFUnlJPYZfQ5IYQQV8Pmpvgnn3ySp556iiNHjnDTTTcBsGXLFj766CPefPNNdu/ebdm3TZs2VRdpbXNZz3iZCEYIIURVsDmxDxs2DIDnnnuuzG0qlQpFUVCpVBiNxquPsLYqb/Q5qbELIYS4CjYn9uPHj1dHHHVPuU3xhY6KSAghRC1gc2KPiIiojjjqnssngnHXAVJjF0IIcXXsGqDm6NGjzJs3z9KJrkWLFjz11FM0atSoSoOr1UoSe655vPiSGntmvgGjSUGjVjkqMiGEENcxm3vFr169mhYtWrB161batGlDmzZtiI+Pp2XLlsTGxlZHjLXTZZ3nfNy0ACiKPPImhBDCfjbX2F944QWefvpp3nzzzVLrn3/+eXr37l1lwdVqJcPKXmiK12rUeLtqyco3kJFbRICHzoHBCSGEuF7ZXGM/cOAADz/8cKn1o0ePZv/+/VUSVJ1w6T12RQEuTt8qz7ILIYSwl82JPTAwkISEhFLrExISCAoKqoqY6oaSxG4shKJcQB55E0IIcfVsboofO3YsjzzyCMeOHaNr164AbNy4kbfeeotJkyZVeYC1lrM7aHTmxJ6XBjoPGX1OCCHEVbM5sb/88st4enoyZ84cpkyZAkBYWBgzZszgySefrPIAay2VylxrzzlnTuy+ETL6nBBCiKtmU2IvLi5myZIlDB8+nKeffpqcnBwAPD09qyW4Ws+S2C+fulUGqRFCCGEfm+6xOzk58dhjj1FQUACYE7ok9atwWc94vwuD1EhTvBBCCHvZ3HmuU6dO7Ny5szpiqXvcA8xfLYnd/Cy7dJ4TQghhL5vvsY8bN47Jkydz5swZ2rdvj7u7u9V2mdHNBqXGi5dhZYUQQlwdm2vsQ4cO5fjx4zz55JPcfPPNtGvXjhtuuMHy1Rbr169n4MCBhIWFoVKpWL58eYX7x8XFoVKpSi1JSUlW+3300UdERkbi4uJC586d2bp1q61v89ooNV68PO4mhBDi6jh0drfc3Fzatm3L6NGjueuuuyp93KFDh/Dy8rK8vvT5+WXLljFp0iQWLFhA586dmTdvHn379uXQoUM17zl7S2K3Hi8+I6/IMvWtEEIIYQubE/vJkyfp2rUrTk7WhxYXF7Np0yabZn/r378//fv3tzUEgoKC8PHxKXPb3LlzGTt2LA899BAACxYs4Pfff2fhwoW88MILNl+rWlk6z1n3ijcYFbILivF21ToqMiGEENcpmxN7z549SUxMLFX7zcrKomfPnhiNxioLrjzt2rWjsLCQVq1aMWPGDG6++WYAioqK2L59u+X5egC1Wk1MTAybN28u93yFhYUUFl58xCw7OxsAg8GAwWC4qlhLji/rPCpnH5wAJTeVYoMBDeDurCG3yMj5rFzcnNxLHVOXVFR2onxSbvaTsrOPlJt9bC23yu5nc2Ivr4k4LS2tVEe6qhYaGsqCBQvo0KEDhYWFfP755/To0YP4+HhuvPFGUlNTMRqNBAcHWx0XHBzMwYMHyz3vrFmzmDlzZqn1f/75J25ublUSe1kz33nlnaInUJiZyOqVKwFwUWnIRcXva9YRJU8SAmWXnbgyKTf7SdnZR8rNPpUtt7y8vErtV+nEXnIPXKVSMWrUKHS6i7OPGY1Gdu/ebRlitro0bdqUpk2bWl537dqVo0eP8u677/L111/bfd4pU6ZYDYebnZ1NeHg4ffr0sbqXbw+DwUBsbCy9e/dGq72saT07EQ5NRWfMZUD/fqBS88WpLaSdzaZpmw7ENK9hfQKusQrLTpRLys1+Unb2kXKzj63lVtKafCWVTuze3t6Aucbu6emJq6urZZuzszM33XQTY8eOrezpqkynTp3YsGEDAAEBAWg0GpKTk632SU5OJiQkpNxz6HQ6qw8qJbRabZX9kpZ5Li9z4lYpRrTGPHD1xf/CdK1ZBUb5A7mgKn8OdYmUm/2k7Owj5WafypZbZcu20on9yy+/BCAyMpJnnnmm2pvdKyshIYHQ0FDA/AGjffv2rF27lsGDBwNgMplYu3YtEyZMcGCU5dC6gLMnFOVAbiq4+sroc0IIIa6KzffYp0+fXmUX1+v1HDlyxPL6+PHjJCQk4OfnR4MGDZgyZQpnz55l8eLFAMybN4+oqChatmxJQUEBn3/+OX/99Rd//vmn5RyTJk1i5MiRdOjQgU6dOjFv3jxyc3MtveRrHM9gSMuBnCQIaGyZCCZDErsQQgg72JzYk5OTeeaZZ1i7di3nz59HURSr7bb0iv/333/p2bOn5XXJfe6RI0eyaNEiEhMTOXXqlGV7UVERkydP5uzZs7i5udGmTRvWrFljdY777ruPlJQUpk2bRlJSEu3atWPVqlWlOtTVGB4hkHbEnNiROdmFEEJcHZsT+6hRozh16hQvv/wyoaGhVzWISo8ePUp9MLjUokWLrF4/99xzPPfcc1c874QJE2pm03tZPC/c+9dbJ3ZpihdCCGEPmxP7hg0b+Oeff2jXrl01hFMHlST2CzV2GVZWCCHE1bB5rPjw8PAKa9nCRh4XbhFIU7wQQogqYHNinzdvHi+88AInTpyohnDqIE9zj3705kf0LjbFF5Z3hBBCCFEum5vi77vvPvLy8mjUqBFubm6lnqtLT0+vsuDqBM+SGnsicDGxFxhM5BUV4+Zs849ICCFEHWZz1pg3b141hFGHldTYc8w1dg+dE84aNUVGE2n6Itz8JLELIYSoPJuzxsiRI6sjjrqr5B57UQ4U6lHpPPBzdyYpu4CMvCLC/apmrHohhBB1g8332AGOHj3K1KlTGTZsGOfPnwfgjz/+YN++fVUaXJ2g8wTtheRd6j67dKATQghhG5sT+7p162jdujXx8fH8/PPP6PV6AHbt2lWlo9LVGSpV6UfeLow+l66XxC6EEMI2Nif2F154gddee43Y2FicnZ0t63v16sWWLVuqNLg6w6PsQWrkkTchhBC2sjmx79mzhyFDhpRaHxQURGpqapUEVedcVmOXpnghhBD2sjmx+/j4kJiYWGr9zp07qVevXpUEVedcntjdSmrs8iy7EEII29ic2IcOHcrzzz9PUlISKpUKk8nExo0beeaZZxgxYkR1xFj7XT76nIc0xQshhLCPzYn9jTfeoFmzZoSHh6PX62nRogW33norXbt2ZerUqdURY+1nGX3Oerx4aYoXQghhK5ufY3d2duazzz5j2rRp7NmzB71ezw033EDjxo2rI766wTL6XMnjbjpAauxCCCFsZ/ewZuHh4YSHh2M0GtmzZw8ZGRn4+vpWZWx1h2X0OekVL4QQ4urY3BQ/ceJEvvjiCwCMRiPdu3fnxhtvJDw8nLi4uKqOr24oucdemAVFeZam+JyCYoqKTQ4MTAghxPXG5sT+448/0rZtWwBWrFjBsWPHOHjwIE8//TQvvfRSlQdYJ7h4g5OL+Xt9Et6uWjRqFQAZeVJrF0IIUXk2J/bU1FRCQsyPZ61cuZJ7772XJk2aMHr0aPbs2VPlAdYJVqPPJaNWq/B1M8+alyajzwkhhLCBzYk9ODiY/fv3YzQaWbVqFb179wYgLy8PjUZT5QHWGZeNPufrJvfZhRBC2M7mznMPPfQQ9957L6GhoahUKmJiYgCIj4+nWbNmVR5gnVHu6HMySI0QQojKszmxz5gxg1atWnH69GnuuecedDrzo1kajYYXXnihygOsM8qbCEZq7EIIIWxg1+Nu//vf/6xeZ2ZmyjztV+vy0efkkTchhBB2sPke+1tvvcWyZcssr++99178/f2pX78+u3fvrtLg6pTLRp+TQWqEEELYw+bEvmDBAsLDwwGIjY0lNjaWP/74g379+vHMM89UeYB1xmWjz/lLjV0IIYQdbG6KT0pKsiT23377jXvvvZc+ffoQGRlJ586dqzzAOsMy+px55jyZulUIIYQ9bK6x+/r6cvr0aQBWrVpl6RWvKApGo7Fqo6tLSu6xF2SCoUBq7EIIIexic439rrvuYvjw4TRu3Ji0tDT69+8PmOdjj46OrvIA6wxXX9DowFgI+iR83f0ASexCCCFsY3Nif/fdd4mMjOT06dPMnj0bDw8PABITExk3blyVB1hnqFTm++yZpyAnGX8f8+NvGXlFGE2KZYhZIYQQoiI2J3atVltmJ7mnn366SgKq0zxCzIldn4RvvY4AKApk5hXh76FzcHBCCCGuB3Y9x3706FHmzZvHgQMHAGjRogUTJ06kYcOGVRpcnXPJIDVajRovFyeyC4pJz5XELoQQonJs7jy3evVqWrRowdatW2nTpg1t2rQhPj6eFi1aEBsbWx0x1h2lRp+TZ9mFEELYxuYa+wsvvMDTTz/Nm2++WWr9888/b5kURtihjNHnjqfmSmIXQghRaTbX2A8cOMDDDz9cav3o0aPZv39/lQRVZ5UafU6eZRdCCGEbmxN7YGAgCQkJpdYnJCQQFBRk07nWr1/PwIEDCQsLQ6VSsXz58gr3//nnn+nduzeBgYF4eXnRpUsXVq9ebbXPjBkzUKlUVst1M+ucjD4nhBDiKtncFD927FgeeeQRjh07RteuXQHYuHEjb731FpMmTbLpXLm5ubRt25bRo0dz1113XXH/9evX07t3b9544w18fHz48ssvGThwIPHx8dxwww2W/Vq2bMmaNWssr52c7OojeO2VzMl+YfQ5X0nsQgghbGRzxnv55Zfx9PRkzpw5TJkyBYCwsDBmzJjBk08+adO5+vfvbxngpjLmzZtn9fqNN97g119/ZcWKFVaJ3cnJiZCQEJtiqRFKmuLz06G4yFJjl6Z4IYQQlWVTYi8uLmbJkiUMHz6cp59+mpycHAA8PT2rJbgrMZlM5OTk4OfnZ7X+8OHDhIWF4eLiQpcuXZg1axYNGjQo9zyFhYUUFhZaXmdnZwNgMBgwGAxXFWPJ8ZU6j9YTJ7UWlcmAIfMs3i4aANJyCq46juuRTWUnLKTc7CdlZx8pN/vYWm6V3U+lKIpiSyBubm4cOHCAiIgIWw67ciAqFb/88guDBw+u9DGzZ8/mzTff5ODBg5b7+3/88Qd6vZ6mTZuSmJjIzJkzOXv2LHv37i33A8iMGTOYOXNmqfVLlizBzc3Nrvdjr957n8bNkMb6JtPYVNSYBQc1hLkpPN9WxuEXQoi6LC8vj+HDh5OVlYWXl1e5+9ncFN+pUyd27txZ5YndVkuWLGHmzJn8+uuvVp32Lm3ab9OmDZ07dyYiIoLvv/++zN78AFOmTLHqH5CdnU14eDh9+vSpsPAqw2AwEBsbS+/evdFqtVfcX5P8HpxLo2vrRnh63syCg1swalwYMKD7VcVxPbK17ISZlJv9pOzsI+VmH1vLraQ1+UpsTuzjxo1j8uTJnDlzhvbt2+Pu7m61vU2bNrae0mZLly5lzJgx/PDDD5bZ5crj4+NDkyZNOHLkSLn76HQ6dLrSI7tptdoq+yWt9Lm8QuEcOOWnEBxubi1Iyy1CrXGqs+PFV+XPoS6RcrOflJ19pNzsU9lyq2zZ2pzYhw4dCmDVUU6lUqEoCiqVqtqnbv3uu+8YPXo0S5cu5fbbb7/i/nq9nqNHj/Lggw9Wa1xV5pLR54K9XNBqVBiMCucy8wn3u7a3BYQQQlx/bE7sx48fr7KL6/V6q5r08ePHSUhIwM/PjwYNGjBlyhTOnj3L4sWLAXPz+8iRI3nvvffo3LkzSUnmgVxcXV3x9vYG4JlnnmHgwIFERERw7tw5pk+fjkajYdiwYVUWd7UqeeRNn4RGrSLc141jqbmcSs+TxC6EEOKKbE7sVXlv/d9//6Vnz56W1yX3uUeOHMmiRYtITEzk1KlTlu2ffvopxcXFjB8/nvHjx1vWl+wPcObMGYYNG0ZaWhqBgYF069aNLVu2EBgYWGVxV6vLxotv4G9O7CfT8rhZprsXQghxBZVO7Nu3b+eZZ57h119/LdWhLCsri8GDBzNv3jzatm1b6Yv36NGDijrllyTrEnFxcVc859KlSyt9/RrJktjNo89FXKiln0zPdVREQgghriOVHlJ2zpw59OrVq8xe4t7e3vTu3Zu33367SoOrkywTwZhHn4vwN3dOPJWW56iIhBBCXEcqndjj4+O58847y90+cOBANm3aVCVB1Wklo8/lpYLRQIS/ucZ+QhK7EEKISqh0Yj979myFI8x5eHiQmJhYJUHVaW7+oL5wh0R/3pLYT6XlVnjbQgghhAAbEntgYCCHDh0qd/vBgwcJCAiokqDqNLXaal72+r5uqFSQW2SUMeOFEEJcUaUTe0xMDK+//nqZ2xRF4fXXX7/iYDGikkoSuz4JF62GEC8XAE5Kc7wQQogrqHRinzp1Knv27KFz5858//337Nq1i127drFs2TI6d+7M3r17eemll6oz1rrD03r61gYXesafkp7xQgghrqDSj7s1atSINWvWMGrUKIYOHYpKZR7eVFEUWrRoQWxsLNHR8qB1lbj8kTd/N+KPp0uNXQghxBXZNEBNhw4d2Lt3LwkJCRw+fBhFUWjSpAnt2rWrpvDqqEtGnwN55E0IIUTl2TzyHEC7du0kmVeny0afK+kZfzJdErsQQoiKVfoeu7iGLk/sfuYa+8k0uccuhBCiYpLYa6JLHncD83jxAKn6IvSFxY6KSgghxHVAEntNVDL6XG4KGIvxdtXi42aeh1fuswshhKiIJPaayD0AVGpAMSd3Lk4GI4+8CSGEqEilOs/t3r270ids06aN3cGIC9Qac3N8TqJ58Qqlgb87u85kySNvQgghKlSpxN6uXTtUKlW5Y5WXbFOpVBiNxioNsM4qSez6y6dvlcQuhBCifJVK7MePH6/uOMTlPEMgkUumby2ZDEYSuxBCiPJVKrFHRERUdxzicqVGnzM/8nZCHnkTQghRAbsGqAHYv38/p06doqjIesaxQYMGXXVQgjJGnzPX2M9l5lNUbMLZSfo9CiGEKM3mxH7s2DGGDBnCnj17rO67l4wdL/fYq8hlg9QEeepw0aopMJg4m5lPVIC7A4MTQghRU9lc7XvqqaeIiori/PnzuLm5sW/fPtavX0+HDh2Ii4urhhDrqMsSu0qlsszyJiPQCSGEKI/NiX3z5s288sorBAQEoFarUavVdOvWjVmzZvHkk09WR4x102WjzwE0uDC07CnpGS+EEKIcNid2o9GIp6cnAAEBAZw7dw4wd7A7dOhQ1UZXl1lGnzsPJvPtDctkMNIzXgghRDlsvsfeqlUrdu3aRVRUFJ07d2b27Nk4Ozvz6aef0rBhw+qIsW5yDwRUoJggNxU8g4mUxC6EEOIKbE7sU6dOJTfXfI/3lVde4Y477uCWW27B39+fZcuWVXmAdZbGCTyCzAPU5CSCZzANSuZll2FlhRBClMPmxN63b1/L99HR0Rw8eJD09HR8fX0tPeNFFfEINif2y0efS8vDZFJQq6W8hRBCWLP5HntWVhbp6elW6/z8/MjIyCA7O7vKAhOU6hlfz9cVjVpFYbGJ8zmFDgxMCCFETWVzYh86dChLly4ttf77779n6NChVRKUuOCyxK7VqAnzcQHkkTchhBBlszmxx8fH07Nnz1Lre/ToQXx8fJUEJS64bPQ5gIgLj7zJZDBCCCHKYnNiLywspLi4uNR6g8FAfn5+lQQlLrisxg7QQCaDEUIIUQGbE3unTp349NNPS61fsGAB7du3r5KgxAVlJHbLI29SYxdCCFEGm3vFv/baa8TExLBr1y5uu+02ANauXcu2bdv4888/qzzAOs3SFJ9sWWUZfU7usQshhCiDzTX2m2++mc2bNxMeHs7333/PihUriI6OZvfu3dxyyy3VEWPd5RVm/pqTCIYC4OLocyekKV4IIUQZ7Jr7s127dnz77bfs27ePf//9l4ULF9K4cWObz7N+/XoGDhxIWFgYKpWK5cuXX/GYuLg4brzxRnQ6HdHR0SxatKjUPh999BGRkZG4uLjQuXNntm7danNsNYJnCLj6mUefSzkAYJkIJivfQFaewZHRCSGEqIEqldgvfT49Ozu7wsUWubm5tG3blo8++qhS+x8/fpzbb7+dnj17kpCQwMSJExkzZgyrV6+27LNs2TImTZrE9OnT2bFjB23btqVv376cP3/epthqBJUKQlqbv0/cDYC7zokADx0AJ2UEOiGEEJep1D12X19fEhMTCQoKwsfHp8wR5hRFQaVS2TQfe//+/enfv3+l91+wYAFRUVHMmTMHgObNm7Nhwwbeffddy4h4c+fOZezYsTz00EOWY37//XcWLlzICy+8UOlr1RghreH4OkjaY1kV4e9Gqr6Qk2l5tKnv47jYhBBC1DiVSux//fUXfn5+APz999/VGlBFNm/eTExMjNW6vn37MnHiRACKiorYvn07U6ZMsWxXq9XExMSwefPmcs9bWFhIYeHFkdxKWh4MBgMGw9U1d5ccb+95VEEtcQJMibswXjhHuI8L20/C8ZScq46vJrvasqurpNzsJ2VnHyk3+9habpXdr1KJvXv37gAUFxezbt06Ro8eTf369St1gaqUlJREcHCw1brg4GCys7PJz88nIyMDo9FY5j4HDx4s97yzZs1i5syZpdb/+eefuLm5VUnssbGxdh3nmZ9BL8B0bhcrf/8NVGoK01SAho27/iMit/z3VVvYW3Z1nZSb/aTs7CPlZp/KllteXuU6Tdv0uJuTkxNvv/02I0aMsOWwGm/KlClMmjTJ8jo7O5vw8HD69OmDl5fXVZ3bYDAQGxtL79690Wq1tp/AVIzy9is4FRcwoEtz8GuEYVcif/y4B8XdnwEDOl5VfDXZVZddHSXlZj8pO/tIudnH1nKrbD82m59j79WrF+vWrSMyMtLWQ69aSEgIycnJVuuSk5Px8vLC1dUVjUaDRqMpc5+QkJByz6vT6dDpdKXWa7XaKvsltf9cWghqAed2oE3ZD8HNaBjkCcDpjPw68UdUlT+HukTKzX5SdvaRcrNPZcutsmVrc2Lv378/L7zwAnv27KF9+/a4u7tbbR80aJCtp6y0Ll26sHLlSqt1sbGxdOnSBQBnZ2fat2/P2rVrGTx4MAAmk4m1a9cyYcKEaour2oW0hnM7zB3oWt1lmb41MauAAoMRF63GwQEKIYSoKWxO7OPGjQPMvc8vZ2uveL1ez5EjRyyvjx8/TkJCAn5+fjRo0IApU6Zw9uxZFi9eDMBjjz3Ghx9+yHPPPcfo0aP566+/+P777/n9998t55g0aRIjR46kQ4cOdOrUiXnz5pGbm2vpJX9dCm1j/nqhZ7yfuzMeOif0hcWcTs+jcbCnA4MTQghRk9ic2E0mU5Vd/N9//7WaKa7kPvfIkSNZtGgRiYmJnDp1yrI9KiqK33//naeffpr33nuP+vXr8/nnn1sedQO47777SElJYdq0aSQlJdGuXTtWrVpVqkPddSWkJLGbn2VXqVQ08HNjf2I2J9MksQshhLjI5sRelXr06IGiKOVuL2tUuR49erBz584KzzthwoTru+n9ckEtAJV5zPicZPAMJsL/QmKXyWCEEEJcwq4hZdetW8fAgQOJjo4mOjqaQYMG8c8//1R1bKKEzgP8o83fX2iOvzh9q4w+J4QQ4iKbE/s333xDTEwMbm5uPPnkkzz55JO4urpy2223sWTJkuqIUcDFoWUvNMdH+ps7LUqNXQghxKVsbop//fXXmT17Nk8//bRl3ZNPPsncuXN59dVXGT58eJUGKC4IaQ37frbU2Et6xp+SWd6EEEJcwuYa+7Fjxxg4cGCp9YMGDeL48eNVEpQoQ6h1B7qSpvjTGXkYTeX3UxBCCFG32JzYw8PDWbt2ban1a9asITw8vEqCEmUo6RmfdhQK9YR6u6LVqDAYFc5l5js2NiGEEDWGzU3xkydP5sknnyQhIYGuXbsCsHHjRhYtWsR7771X5QGKCzyCwCME9Elwfj+a8E6E+7pxLDWXU+l5hPtVzZj2Qgghrm82J/bHH3+ckJAQ5syZw/fffw+Yp09dtmwZd955Z5UHKC4R0hqOJEHiLgjvRAN/c2I/mZbHzdGODk4IIURNYNdz7EOGDGHIkCFVHYu4kpDWcCS2VAe6k+nyyJsQQggzu55jFw5yWQe6iAuPvEnPeCGEECVsrrH7+vqiUqlKrVepVLi4uBAdHc2oUaOu77HZa6qSDnTJ+8FYTGSAucZ+5LzegUEJIYSoSWxO7NOmTeP111+nf//+dOrUCYCtW7eyatUqxo8fz/Hjx3n88ccpLi5m7NixVR5wneYbBc4eUKSHtMO0rtcQgMPn9WTmFeHj5uzgAIUQQjiazYl9w4YNvPbaazz22GNW6z/55BP+/PNPfvrpJ9q0acP7778vib2qqdUQ3ApOb4HE3QS2bU6jQHeOpuSy7UQGvVtcxxPdCCGEqBI232NfvXo1MTExpdbfdtttrF69GoABAwZw7Nixq49OlHbZ0LKdovwB2Ho8zVERCSGEqEFsTux+fn6sWLGi1PoVK1bg5+cHQG5uLp6eMpVotbhsbvbOUeYy33o83VERCSGEqEFsbop/+eWXefzxx/n7778t99i3bdvGypUrWbBgAQCxsbF07969aiMVZpfW2BWFThcS+95z2egLi/HQOXQmXiGEEA5mcxYYO3YsLVq04MMPP+Tnn38GoGnTpqxbt84yEt3kyZOrNkpxUWBzUGkgPwOyzxLmU5/6vq6cychnx8kMbm0S6OgIhRBCOJBd1bubb76Zm2++uapjEZWhdYHAZnB+HyTuBu/6dIry40zGWbYeT5fELoQQdZxdA9QcPXqUqVOnMnz4cM6fPw/AH3/8wb59+6o0OFEOS3O83GcXQghhzebEvm7dOlq3bk18fDw//fQTer15cJRdu3Yxffr0Kg9QlKGcnvEJpzMpMBgdFZUQQogawObE/sILL/Daa68RGxuLs/PFAVF69erFli1bqjQ4UY7LhpaN9Hcj0FNHkdHErtOZjotLCCGEw9mc2Pfs2VPmBDBBQUGkpqZWSVDiCoJbmb9mnoL8TFQqlaV3vDTHCyFE3WZzYvfx8SExMbHU+p07d1KvXr0qCUpcgZsfeIebv0/eC1xyn/2EJHYhhKjLbE7sQ4cO5fnnnycpKQmVSoXJZGLjxo0888wzjBgxojpiFGUpmRAmseQ+uzmxbz+ZgcFoclRUQgghHMzmxP7GG2/QrFkzwsPD0ev1tGjRgltvvZWuXbsyderU6ohRlOWynvFNgjzxcdOSV2Rk37lsBwYmhBDCkWxO7M7Oznz22WccO3aM3377jW+++YaDBw/y9ddfo9FoqiNGUZbLOtCp1So6RpbcZ5dx44UQoq6yObG/8sor5OXlER4ezoABA7j33ntp3Lgx+fn5vPLKK9URoyhLSY095SAUFwLyPLsQQgg7EvvMmTMtz65fKi8vj5kzZ1ZJUKISvMPBxQdMxebkDlY9400mxYHBCSGEcBSbE7uiKKhUqlLrd+3aZZndTVwDKtXFWvuFDnQtQr1wd9aQXVDMwaQcBwYnhBDCUSo9Vryvry8qlQqVSkWTJk2skrvRaESv1/PYY49VS5CiHCFt4MQ/lg50Tho17SP9WP9fCluPp9EizMvBAQohhLjWKp3Y582bh6IojB49mpkzZ+Lt7W3Z5uzsTGRkJF26dKmWIEU5LDX2BMuqzlEXEvuJdEbdHOWYuIQQQjhMpRP7yJEjAYiKiqJr165otdpqC0pUUsSFD1Jn/oW8dHDzs7rPXt5tEyGEELWXzffYu3fvbknqBQUFZGdnWy3iGvKNNA8vqxjhv9UAtKnvjbOTmlR9EcdScx0bnxBCiGvO5sSel5fHhAkTCAoKwt3dHV9fX6tFXGPNbjd/PfgbADonDTeE+wDy2JsQQtRFNif2Z599lr/++ov58+ej0+n4/PPPmTlzJmFhYSxevNiuID766CMiIyNxcXGhc+fObN26tdx9e/ToYenEd+ly++23W/YZNWpUqe39+vWzK7YarySxH1kLRXmAPM8uhBB1mc2JfcWKFXz88cfcfffdODk5ccsttzB16lTeeOMNvv32W5sDWLZsGZMmTWL69Ons2LGDtm3b0rdvX86fP1/m/j///DOJiYmWZe/evWg0Gu655x6r/fr162e133fffWdzbNeFkDbmZ9qL8+FYHHBxfnZJ7EIIUffYnNjT09Np2LAhAF5eXqSnm5NHt27dWL9+vc0BzJ07l7Fjx/LQQw/RokULFixYgJubGwsXLixzfz8/P0JCQixLbGwsbm5upRK7Tqez2q/W3iZQqaDpAPP3B38H4MYIH5zUKs5m5nMmI8+BwQkhhLjWKt0rvkTDhg05fvw4DRo0oFmzZnz//fd06tSJFStW4OPjY9O5ioqK2L59O1OmTLGsU6vVxMTEsHnz5kqd44svvmDo0KG4u7tbrY+LiyMoKAhfX1969erFa6+9hr+/f5nnKCwspLCw0PK6pBOgwWDAYDDY9J4uV3L81Z6nIqrGfXHa+gnKf39QXFiAVq2hZZgXu85ksflICoPbhVXbtavTtSi72kjKzX5SdvaRcrOPreVW2f1UiqLYNPbou+++i0aj4cknn2TNmjUMHDgQRVEwGAzMnTuXp556qtLnOnfuHPXq1WPTpk1Wz8A/99xzrFu3jvj4+AqP37p1K507dyY+Pp5OnTpZ1i9duhQ3NzeioqI4evQoL774Ih4eHmzevLnMiWpmzJhR5nC4S5Yswc3NrdLvx1FUSjH99jyBszGXfxq/RLpHU349qeavc2q6BJkY2kimcRVCiOtdXl4ew4cPJysrCy+v8gcgszmxX+7kyZNs376d6Oho2rRpY9OxV5vYH330UTZv3szu3bsr3O/YsWM0atSINWvWcNttt5XaXlaNPTw8nNTU1AoLrzIMBgOxsbH07t27Wp/91/zfONR7vsfY+XFMMa/y96EUHvlmJ1H+bvw5sVu1Xbc6Xauyq22k3OwnZWcfKTf72Fpu2dnZBAQEXDGx29wUf7mIiAgiIiLsOjYgIACNRkNycrLV+uTkZEJCQio8Njc3l6VLl1ZqRrmGDRsSEBDAkSNHykzsOp0OnU5Xar1Wq62yX9KqPFeZmg+EPd+j+e8PNP1m0blRICoVHE/LI6PASJCnS/Vdu5pVe9nVUlJu9pOys4+Um30qW26VLdtKd57766+/aNGiRZmD0GRlZdGyZUv++eefyp4OMA9F2759e9auXWtZZzKZWLt27RWHp/3hhx8oLCzkgQceuOJ1zpw5Q1paGqGhoTbFd12Jvg2cXCDjBJzfj7erluYh5k90245nODY2IYQQ10ylE/u8efMYO3ZsmdV/b29vHn30UebOnWtzAJMmTeKzzz7jq6++4sCBAzz++OPk5uby0EMPATBixAirznUlvvjiCwYPHlyqQ5xer+fZZ59ly5YtnDhxgrVr13LnnXcSHR1N3759bY7vuuHsDg17mr+/0Du+ZHjZzcdSHRWVEEKIa6zSiX3Xrl0VDvLSp08ftm/fbnMA9913H++88w7Tpk2jXbt2JCQksGrVKoKDgwE4deoUiYmJVsccOnSIDRs28PDDD5c6n0ajYffu3QwaNIgmTZrw8MMP0759e/75558ym9trlctGoeveNBCA33cnUlQsHeiEEKIuqPQ99uTk5Arb952cnEhJSbEriAkTJjBhwoQyt8XFxZVa17RpU8rr8+fq6srq1avtiuO617Q/qNSQuAsyT3NLdD2CvXQkZxey5kAyA1rX4lsRQgghABtq7PXq1WPv3r3lbt+9e3ftvod9PXAPgPCbzN8f+gMnjZr/ta8PwLJtpx0YmBBCiGul0ol9wIABvPzyyxQUFJTalp+fz/Tp07njjjuqNDhhh8ua4+9pHw7A+sMpnMvMd1RUQgghrpFKJ/apU6eSnp5OkyZNmD17Nr/++iu//vorb731Fk2bNiU9PZ2XXnqpOmMVldHswvCyJzZAfgaRAe50jvJDUeCn7WccG5sQQohqV+nEHhwczKZNm2jVqhVTpkxhyJAhDBkyhBdffJFWrVqxYcMGS4c34UB+DSGo5YU52v8E4N4O5lr799tPYzJd1XhEQgghajibJoGJiIhg5cqVpKamEh8fz5YtW0hNTWXlypVERUVVV4zCVpc1xw9oHYqnzonT6flsOZ7mwMCEEEJUN5tndwPw9fWlY8eOdOrUqfbOmnY9u3SOdkM+rs4aBl6YCOZ76UQnhBC1ml2JXdRwoW3Bqz4YcuHYOuBic/wfe5PIypcZmIQQoraSxF4bqVQXO9FdaI5vW9+bpsGeFBab+L9d5xwYnBBCiOokib22KmmO/28VmIyoVCru7XihE500xwshRK0lib22irgZXLwhNwXObANgyA310GpU7Dmbxf5zpSfzEUIIcf2TxF5babTQ5MLY/vt/BcDP3ZneLcyPJH7/r9TahRCiNpLEXpu1utv8dcdiyEsH4J4LneiWJ5ylsNjoqMiEEEJUE0nstVnjPhDSGor0sPkjAG5tHEiotwuZeQb+3Jfs4ACFEEJUNUnstZlKBd2fN38f/wnkpaNRqywTw0hzvBBC1D6S2Gu7prdDcCsoyoEtHwMXJ4bZcCSVMxl5joxOCCFEFZPEXtup1dD9OfP38Z9AfgYN/N3o0tAfRYEfZWIYIYSoVSSx1wXNBkJQCyjMhi3zAbjvwjPtP/x7RiaGEUKIWkQSe12gVl+8175lAeRn0q9VCJ4uTpzNzGfj0VTHxieEEKLKSGKvK5oPulBrz4L4BbhoNQy5oR4Ac/78T2rtQghRS0hiryvUarj1WfP3mz+G/Ewm9IzG3VlDwulMftguPeSFEKI2kMRel7QYDIHNLtTaPyHIy4WJMU0AeGvVIbLyZNY3IYS43klir0surbVv+QgKshh1cySNgzxIzy1iTuwhx8YnhBDiqklir2taDoGAplCQBfGfotWomTmoJQDfbDnJvnNZDg5QCCHE1ZDEXteoNRefa9/8IRRk0zU6gNvbhGJSYPqv+1AU6UgnhBDXK0nsdVHLIRDQBAoyYeunAEy9vTluzhr+PZnBLzvPOjY+IYQQdpPEXhepNZf0kP8QCnMI9XbliV6NAXhj5UGyC6QjnRBCXI8ksddVre4G/2jIz4C4NwF4uFsUDQPcSdUXMi/2sIMDFEIIYQ9J7HWVWgO9XzV/v/lDOPg7zk5qZlzoSPfV5hMcSspxYIBCCCHsIYm9Lms2AG4aZ/7+l8ch/Ti3NgmkX8sQjCaFab/ulY50QghxnZHEXtfFzIT6Hc2D1vwwEgwFTL2jOS5aNfHH01mxO9HREQohhLCBJPa6zskZ7lkErn6QuAtWT6G+rxvje0QD8Prv+8mRjnRCCHHdkMQuwLs+3PUZoIJ/F8LuHxh7a0Mi/N1Izi7kie92Umw0OTpKIYQQlVAjEvtHH31EZGQkLi4udO7cma1bt5a776JFi1CpVFaLi4uL1T6KojBt2jRCQ0NxdXUlJiaGw4ell3eFGsdcfARuxVO4ZB7hvaE34KJVE3cohanL5X67EEJcDxye2JctW8akSZOYPn06O3bsoG3btvTt25fz58+Xe4yXlxeJiYmW5eTJk1bbZ8+ezfvvv8+CBQuIj4/H3d2dvn37UlBQUN1v5/rW4wWI6g6GXPh+BO2CtXww7EbUKli67TQf/nXE0REKIYS4Aocn9rlz5zJ27FgeeughWrRowYIFC3Bzc2PhwoXlHqNSqQgJCbEswcHBlm2KojBv3jymTp3KnXfeSZs2bVi8eDHnzp1j+fLl1+AdXcfUGrj7c/AIgZSDsGIivZsHWcaSnxP7Hz9tP+PgIIUQQlTEyZEXLyoqYvv27UyZMsWyTq1WExMTw+bNm8s9Tq/XExERgclk4sYbb+SNN96gZUtz8jl+/DhJSUnExMRY9vf29qZz585s3ryZoUOHljpfYWEhhYWFltfZ2dkAGAwGDIar6zhWcvzVnuea0fmiGvIZmm8Go9rzPcb6nRjaYRSn0nL5bMMJnv9pN/7uTtzcyL/aQ7nuyq6GkHKzn5SdfaTc7GNruVV2P4cm9tTUVIxGo1WNGyA4OJiDBw+WeUzTpk1ZuHAhbdq0ISsri3feeYeuXbuyb98+6tevT1JSkuUcl5+zZNvlZs2axcyZM0ut//PPP3Fzc7PnrZUSGxtbJee5VqJD/0fLc8tg1QtsOZJBC/em3OivZkeamke//penWhqp535tYrneyq6mkHKzn5SdfaTc7FPZcsvLy6vUfg5N7Pbo0qULXbp0sbzu2rUrzZs355NPPuHVV1+165xTpkxh0qRJltfZ2dmEh4fTp08fvLy8ripeg8FAbGwsvXv3RqvVXtW5rimlH6Yfs9H89wfdTszDOGwZvft2YvRX29l6IoOvTrjzwyOdCfV2ufK57HTdlp2DSbnZT8rOPlJu9rG13Epak6/EoYk9ICAAjUZDcnKy1frk5GRCQkIqdQ6tVssNN9zAkSPmjl0lxyUnJxMaGmp1znbt2pV5Dp1Oh06nK/PcVfVLWpXnumbu+RK+G4rqWBxO392HxwM/8dmIjvxvwSYOn9cz9uud/PB4F7xcqvd9XZdlVwNIudlPys4+Um72qWy5VbZsHdp5ztnZmfbt27N27VrLOpPJxNq1a61q5RUxGo3s2bPHksSjoqIICQmxOmd2djbx8fGVPqe4QOsKw5ZCwx7mnvLf/g/vlH/58qGOBHrqOJScw2Nfbye3sNjRkQohhLjA4b3iJ02axGeffcZXX33FgQMHePzxx8nNzeWhhx4CYMSIEVad61555RX+/PNPjh07xo4dO3jggQc4efIkY8aMAcw95idOnMhrr73G//3f/7Fnzx5GjBhBWFgYgwcPdsRbvL5dmtyL9PDt/6ifvYsvR3XE3VnDpqNp3D1/E6fTK3fvRwghRPVy+D32++67j5SUFKZNm0ZSUhLt2rVj1apVls5vp06dQq2++PkjIyODsWPHkpSUhK+vL+3bt2fTpk20aNHCss9zzz1Hbm4ujzzyCJmZmXTr1o1Vq1aVGshGVJLWFYZ+B0uHwbE4+PZ/tHrgJxY/3JlHv97OwaQcBn24gY/vb0+Xa9BbXgghRPkcXmMHmDBhAidPnqSwsJD4+Hg6d+5s2RYXF8eiRYssr999913LvklJSfz+++/ccMMNVudTqVS88sorJCUlUVBQwJo1a2jSpMm1eju1k7ObObmX1Ny/uZv2qkOseOJmWtfzJiPPwINfxPP15hMyQp0QQjhQjUjs4jpRktyjuluSe2jWLn54rAt3tguj2KTw8q/7ePGXvRQVy9jyQgjhCJLYhW2c3cz33EuS+9d34bLnW+bd25YX+jdDpYLvtp7i/s+3kKovvPL5hBBCVClJ7MJ2Jcm90W3m3vL/9wSqZffzWHsvFo7siKfOiW0nMhj0wQb2ns1ydLRCCFGnSGIX9nF2g/t/gN6vgsYZDq2Ej2+iJ//yy/ibaRjgzrmsAoZ8vJHZqw6SVySPxAkhxLUgiV3YT62Bm5+EsX9DUEvIS4Wlw4je/AK/jGlDnxbBGIwKH8cdpffc9fy5L0k61gkhRDWTxC6uXkgreORv6PokoIKdX+O9qAef9ijmsxEdqOfjytnMfB75ejtjvvpXnnkXQohqJIldVA0nHfR5FUb9Bt4NIPMkfNmf3mc+IHZcW8b1aIRWo2LtwfPEzF3HB2sPU1hsdHTUQghR60hiF1Urshs8vhHaDgfFBJs+wO3jG3nOYxWrxnWgS0N/CotNzIn9j37z/mHN/mRpnhdCiCokiV1UPRcvGDIfhi2DwGZQkAlrptPou1tYcsN+3r+3JYGeOo6n5jJm8b/0f+8fftl5BoNRnn0XQoirJYldVJ+m/eDxTTB4vrl5Xp+E6venGbRhCOv6p/LorZG4O2s4mJTD08t20ePtOBZtPE5+kTTRCyGEvSSxi+ql1kC74fDEv9DvLXALgPRjuP3fo0w5+Shbh+TxfO+GBHg4czYznxkr9nPzW3/x3prDZOQVOTp6IYS47khiF9eGkw5uegyeSoCeL4HOC5L34P7rQzy+YxBbOm3g3T7eNPBzIz23iHfX/EePOf+w7Kianacy5T68EEJUkiR2cW3pPKH7c/DULrhlMrgHQe55nDbNY8j624kLfpcfb0mkTYgreUVGNp1Xc+9nW7ltzjo++vsI5zLzHf0OhBCiRpPELhzDzQ9umwaT9sO9X0N0DKBCfXwdHbZN5teiMWxot4Yhfqdw1ao5lprL26sPcfNbf/HA5/Es33lW7sULIUQZHD4fu6jjNFpoMci8ZJyEnd/Azm9Q5Zyj/sGFvAu8HdKC/f79WJB+AytPadhwJJUNR1Lx0DnRvWkgvZsH06NpID5uzo5+N0II4XCS2EXN4RsBvV6C7s/DkVhM27+Cw3/ilLKfNin7+RgVBY1uYoNrT+acbc6BDPh9dyK/705Eo1bRPsKXmOZB3NY8mEaBHo5+N0II4RCS2EXNo3GCpv0xNowh9v++p0/9fJz2/wwnN+JydjMxbOY2tZasJj3Y7NSJb1Ki2ZiiY+vxdLYeT+eNlQeJCnDntmZB3BwdQMcoPzx08qsuhKgb5L+dqNEMTh4oN94LncdA5mnY+yPs+RFV8l58TsXSn1j6A4bQxvzn2YmVec1ZnFif46nw+YbjfL7hOBq1itb1vOnSyJ8uDf3pEOmLm7P86gshaif57yauHz7h0O1p85K8H/Yvh6N/wdntaDMO0zLjMC2BZ1ycSfNrz1Z1W37LjGRNVigJpzNJOJ3J/LijaDUq2tb34aaG/rSP8OWGBj5yf14IUWtIYhfXp+AW5qXni5CXDsfXw9G1cOQvVNlnCEjZzAA2MwBQ3HWkebVgt7opq7MiidVH8u9JhX9PZlhO1zDQnRsb+NI+wpcbG/jSOMgDtVrluPcnhBB2ksQurn9uftBysHlRFEg7Yq7JH18Pp7agykslIGMnvdhJL+AtF8hxj+CgUzPi88NZlxPG/pQIfkzJ5cftZwDw1DnRJtyblmHetAj1omWYFw0DPdBIshdC1HCS2EXtolJBQGPz0vlRc6JPPwan4+HUFji9FVIO4Jl7ko6cpCMwQQcKKjJcwjlIFJvy6rHTEMG+I5FsPOJpObWLVk3TEHOSbxnmRbMQL5qGeErHPCFEjSL/kUTtplKBfyPz0m64eV1+BpzeBud2QOIuSNyFKvssfgWn6MopuqqBC7fcs7RBHFZFsrUwnF2GcPafiWDJ6SDgYs29vq8rzUI8aRriSdMQL5qFeBIV4I5WI+M/CSGuPUnsou5x9YUmfcxLidxUS5K3LBnH8TacpwPn6aDaakn2BRp3TjhFscdQn92FIRzJqkdCRn3WHPCiJOE7a9REBbgTHeRBo0B3GgV5XPjeAxet5tq/ZyFEnSGJXQgA9wCIvs28lCjIhuR9kLT7wrIHzh/AxZhLM+NemrGXe7QXd8/TeHJSHc7eolAOFodyNCWMPedD+UMJxHRh9GaVylzDjw70IDLAnagAdyL9zUuYjwtOUssXQlwlSexClMfFCyK6mJcSRgOkHDIn+ZQDkPIfpByEjBO4GXNobtxPc9V+uCThF6u0JKpDOGwM4b/iEI5lhXAsI5TfDoWQgjcltXytRkW4rxuRAe5E+LsR4edGhL87DfzdqO/ris5JavpCiCuTxC6ELTRaCGllXi5lyDf3xk85dGE5CGlHIf0oTsUFhBtPE85pel32F1egcuGcKpijxUEcMwVxKiOYk+nBrFGCSFT8Kb7wJ6pSQaiXCw383Yjwu5js6/u6Ee7nSqCHDpVKeuwLISSxC1E1tK4Q0tq8XMpkguwz5qSfesT8Ne0IpB2GrDO4KAU0VE7SUH2y1FyLRtSkqgI4aQrgpDGA0/ogzuQEcOx4EBsUf1LwoehC04DOSU09X1fCfd0I89aRk6zCuDuRiAAP6vm4EeSpk+fyhagjJLELUZ3UavBpYF4a9bLeVlwEWach/bj5kbyM4+bvL3zVGAsJVs4TrDpPp3L+UrPx4LzJixTFh9RML1IyfEhRfChUfFh2+j/OKAEk4Yda40Sotyv1fFyp5+tKmI8rYd4uhHi7EObjSqi3C54u2rIvIoS4rkhiF8JRnJwvPop3OZMJcs+bp7LNvLBkXPI1+yyYivFCj5daTzTnyr1MsaImCT/O6AM5kxPI2VMBnFEC2KH4c+7CUoAOT50ToT4uhHqbE32Itwth3q6EeLtYXkvyF6Lmk8QuRE2kVoNniHlp0Ln0dpMJCjJBfx70yZCbYv6qT8aUnUTa8T0EaPNRZZ3ByWSgPqnUV6UCB8q8XLriQaLiz7l0f86l+XNe8eUc3uxWvM2tAYo3aXjhrDMn+hAvF4K9XAjx1lm+D/V2JdhbR4C7NPsL4UiS2IW4HqnV5qF03fwgqJnVJqPBwKaVKxkwYABajQb0SZB5yjw7XuZJ8/dZZ8y1/qwzUKTHT2VeWnKywstmKu6kZnqbF8WLVMWbZMWb/Zi/T1O8yFD5oHgE4+3tTZCnjmAvHcGeLgR56QjycrmwzgU/N2f5ACBENZDELkRtplaDV5h5aXBT6e2KAgVZF5N8yaI/b74VoE8GfYr5e1MxPqpcfFS5FTb9A1AEOeddSUn2JgUfUi7U/Lcp5tfnFV9SVb4Uu4fi4ulPoJcrwV46gi58AAj00BHoaV4CPHQ4O8nz/UJUVo1I7B999BFvv/02SUlJtG3blg8++IBOnTqVue9nn33G4sWL2bt3LwDt27fnjTfesNp/1KhRfPXVV1bH9e3bl1WrVlXfmxDieqRSgauPeQluWf5+lzb9556/8DX1ku9TIDcFRX8e9CmojAV4qvLxVOXTkKTyz1sEhalOnE/xJRlfkhRfUhQfdimeZOBJ+oWvBp0vGvcAnL0C8fNyt0r8lsVDh6+0Agjh+MS+bNkyJk2axIIFC+jcuTPz5s2jb9++HDp0iKCgoFL7x8XFMWzYMLp27YqLiwtvvfUWffr0Yd++fdSrV8+yX79+/fjyyy8tr3U63TV5P0LUSpc2/dOs3N1UYG4FKMy5eP9fn3zJ9+dBn4SSk4Qp+xya/HR0qmLCVSmEk1L+9RVAb16yzrqRqniTivl2wHHFm20XXmfgTbGrP7gHoPUMxM3Ln0AvFwI9dAR4lrQEOOPvrsPbVSsfAkSt5PDEPnfuXMaOHctDDz0EwIIFC/j9999ZuHAhL7zwQqn9v/32W6vXn3/+OT/99BNr165lxIgRlvU6nY6QkJDqDV4IUZpKZR61z8ULAqLL3gXQABQXmhN+ThJknzN/1SdDXhrkpaHkpWHSp6LkpaEpyECFgrcqD29VHo1ILPv6xUCWeTEoGjLwJE3xJF3xIhVP/lM8ycSTLDwx6HwwufqhcfdH6xGAs6cfZ89Cwc6zBHm7Eeihw9/D/EFAbgeI64VDE3tRURHbt29nypQplnVqtZqYmBg2b95cqXPk5eVhMBjw8/OzWh8XF0dQUBC+vr706tWL1157DX9//zLPUVhYSGFhoeV1dnY2AAaDAYPBYOvbslJy/NWepy6SsrPP9VVuanAPNS8hN1S4Z7HJaL4dkJeGKtd8K0CVm3Lh63lMuSkYs89DXiqa/DScinPRqowEkUmQKrPskxqxtASQbF6VrziT/Jsv5/HhhOLDVsWX84oPOVp/DC4BaNy8cXbzxs3DB3dPHzy8ffD3cMHf3Rk/d2f83LV4u9St1oDr63eu5rC13Cq7n0pRFMXuqK7SuXPnqFevHps2baJLl4vjcT/33HOsW7eO+Pj4K55j3LhxrF69mn379uHi4gLA0qVLcXNzIyoqiqNHj/Liiy/i4eHB5s2b0WhKj7c9Y8YMZs6cWWr9kiVLcHNzu4p3KIRwFLWpCOdiPbribJyLc9AV5+BcnI1zsR6nYj1qgx4ng968j0mPm1GPM0V2XStHcUWPKzmKK2mKN2l4kqXyRq/2Ik/tRYGTJ0VaLwxaL0zOXjg5u+LhrMLDScFDCx5OIPP/iCvJy8tj+PDhZGVl4eXlVe5+Dm+KvxpvvvkmS5cuJS4uzpLUAYYOHWr5vnXr1rRp04ZGjRoRFxfHbbfdVuo8U6ZMYdKkSZbX2dnZhIeH06dPnwoLrzIMBgOxsbH07t0brVYG97CFlJ19pNzsl5ebxcY/f+aWdo1xKkhDlWPuD2DISsKYnYhKnwIGPZoiPVqjHo1iBDB3FCSfUBXAWeuTmoCiC8sFhYoTaXiRpniRdqF/QJbGhyKtD4qLFyqdF2o3H7TuPug8/HD19MXd2w9vDw/83HX4umnxdHGqMfMDyO+cfWwtt5LW5CtxaGIPCAhAo9GQnJxstT45OfmK98ffeecd3nzzTdasWUObNm0q3Ldhw4YEBARw5MiRMhO7Tqcrs3OdVqutsl/SqjxXXSNlZx8pNzu4e5OnC0YT1Q2nS8quzH+UigLFBVCoh8Jsc4fBgkyKc1LIz0iiMCuZ4hzzLQN1firOBWm4FKXjYspDpyomjHTCVOnW5zRcWHLKDq9I0aDHFb3iSjJuFKjdKHJyx+jkjtHZE5POB9z8ULv74ezhj84rAHfvIDx8A/HxD8LVxaVaPwzI75x9KltulS1bhyZ2Z2dn2rdvz9q1axk8eDAAJpOJtWvXMmHChHKPmz17Nq+//jqrV6+mQ4cOV7zOmTNnSEtLIzQ0tKpCF0LUdSqVefIfrSt4BFpWOwGeF5YyGfIvPCpofkTQpD9PQWYyRVlJGPQZmPIzoSALdVE2TkXZ6IpzcDHlokbBWWXED/NgQhbFF5aCK4esV1zJVnmQp/Yk38mLIq0nxc4+mFx8wNUXrZs3Wg8/XDx8cfP2w8M7AE9vf5zcfEDrcqXTixrC4U3xkyZNYuTIkXTo0IFOnToxb948cnNzLb3kR4wYQb169Zg1axYAb731FtOmTWPJkiVERkaSlGR+RtbDwwMPDw/0ej0zZ87k7rvvJiQkhKNHj/Lcc88RHR1N3759HfY+hRACMH8Q8Ak3L5gn9XO7sJTLZIKiHHOrQGEORXlZ5GZnkpuTQUFOJoV5mRhys1DyM1DnZ+BUlImuKBNXYzYephw8lVzUKgUPVT4e5IMp5eLtgdzKhV2AMzlqb/Qabwq0vhTpfCjW+aO4+mFy86M4OZPDG4vw8PEzdyr08kXn7gPOHuZ5EcQ14/DEft9995GSksK0adNISkqiXbt2rFq1iuDgYABOnTqFWn2xV8n8+fMpKirif//7n9V5pk+fzowZM9BoNOzevZuvvvqKzMxMwsLC6NOnD6+++qo8yy6EuD6p1eDibV4A5wuLbyUPV4zF6LPT0GekkJuVRn52KkU5aRhyM1Dy0qEgE3VBJk6GHLSGHFyMObiZ9HgouXiSj1ql4EIRLqYUAk0p5tsFedbX6AQQV/b1DTiRq/YgX+NFkZMXBmcvjDofFFcf1K4+OLn74ezmjYuHN66e3ri5e6PSeZg/FOg8zV+lxaDSHJ7YASZMmFBu03tcXJzV6xMnTlR4LldXV1avXl1FkQkhxPVPpXHCwzcYD99gm44rNprIyCskKzMDfeZ5CrJSMGSnUKxPhbxU1PlpOBVk4FyUjjo/Ezd1Ia6mPFwVc8uAq8rcY1BLMT6mTHxMmeYPBfm2v4cilY58Jy8Ktd4YnH0w6XxQXH1RufmicfND5+GDzt0HV09fNK5e5g8EOk/QedW5VoMakdiFEELUPE4aNf6ervh7ukJ4WLn7GQwGVpZMPKTVYjIp5BQWk6LPJzs7A312JgU56RTlpFKcm4Ep19xKoCrMQluUhbMhG+fiXLSmPNyUfNwpwF2VjzuFuKnMY4w4K4U4G1LAkFKqtaAyjGgwaFwp1rhidHJFcXIDZzdUzu6odJ5o3HxwcvNB6+6L2tXnYguJi/clHxIuLJqa3UFQErsQQogqpVar8HbV4u2qhUAvIKLSxxYYjGTnG8jIN3A8z0BWbgG5ORkU6jMw5qRizEs39yUoyMSpMBNnQyYuhmy0xlxcTXl4XHj00PNCf4KSDwYajGiMejDqsXO4AotilTPFWneMWg9MWvPtApWLNxpXLzRu3mhdvVG5XGg1cPGGgCYQ1u7qLmoDSexCCCFqDBetBhethiCvS++pl99acCmD0UR2voGsfANnL3zNzs0nT59FQZ6ewrwcCvP1FOfnUFygx1SUi1KYi9qgR2vQ467o8SIPL1Xuha95eJOL+4UPCy4q88hvTkoRTkVFUJRRqbj2ht5Fq0e/vPKOVUQSuxBCiFpBq1Hj76HD38O+jtKFxUb0BcXkWBYDiRe+ZhcUo8/NpyAvC0NuNsUF2ZgKsjEV5KAqysHpwkiGHuThQT6elLQe5JGjiaRVFb/XikhiF0IIIQCdkwadh8buDwaKolBYbCK7wGD5gKAvLKax57V9IksSuxBCCFEFVCrVxVsJ5Y5QVP1k2gEhhBCiFpHELoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EEELUIpLYhRBCiFpEErsQQghRi0hiF0IIIWoRSexCCCFELSLTtpZBURQAsrOzr/pcBoOBvLw8srOz0Wq1V32+ukTKzj5SbvaTsrOPlJt9bC23kpxUkqPKI4m9DDk5OQCEh4c7OBIhhBDCWk5ODt7e3uVuVylXSv11kMlk4ty5c3h6eqJSqa7qXNnZ2YSHh3P69Gm8vLyqKMK6QcrOPlJu9pOys4+Um31sLTdFUcjJySEsLAy1uvw76VJjL4NaraZ+/fpVek4vLy/5hbeTlJ19pNzsJ2VnHyk3+9hSbhXV1EtI5zkhhBCiFpHELoQQQtQiktirmU6nY/r06eh0OkeHct2RsrOPlJv9pOzsI+Vmn+oqN+k8J4QQQtQiUmMXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCT2avbRRx8RGRmJi4sLnTt3ZuvWrY4OqUZZv349AwcOJCwsDJVKxfLly622K4rCtGnTCA0NxdXVlZiYGA4fPuyYYGuQWbNm0bFjRzw9PQkKCmLw4MEcOnTIap+CggLGjx+Pv78/Hh4e3H333SQnJzso4ppj/vz5tGnTxjIoSJcuXfjjjz8s26XcKufNN99EpVIxceJEyzopu7LNmDEDlUpltTRr1syyvarLTRJ7NVq2bBmTJk1i+vTp7Nixg7Zt29K3b1/Onz/v6NBqjNzcXNq2bctHH31U5vbZs2fz/vvvs2DBAuLj43F3d6dv374UFBRc40hrlnXr1jF+/Hi2bNlCbGwsBoOBPn36kJuba9nn6aefZsWKFfzwww+sW7eOc+fOcddddzkw6pqhfv36vPnmm2zfvp1///2XXr16ceedd7Jv3z5Ayq0ytm3bxieffEKbNm2s1kvZla9ly5YkJiZalg0bNli2VXm5KaLadOrUSRk/frzltdFoVMLCwpRZs2Y5MKqaC1B++eUXy2uTyaSEhIQob7/9tmVdZmamotPplO+++84BEdZc58+fVwBl3bp1iqKYy0mr1So//PCDZZ8DBw4ogLJ582ZHhVlj+fr6Kp9//rmUWyXk5OQojRs3VmJjY5Xu3bsrTz31lKIo8jtXkenTpytt27Ytc1t1lJvU2KtJUVER27dvJyYmxrJOrVYTExPD5s2bHRjZ9eP48eMkJSVZlaG3tzedO3eWMrxMVlYWAH5+fgBs374dg8FgVXbNmjWjQYMGUnaXMBqNLF26lNzcXLp06SLlVgnjx4/n9ttvtyojkN+5Kzl8+DBhYWE0bNiQ+++/n1OnTgHVU24yCUw1SU1NxWg0EhwcbLU+ODiYgwcPOiiq60tSUhJAmWVYsk2YZyOcOHEiN998M61atQLMZefs7IyPj4/VvlJ2Znv27KFLly4UFBTg4eHBL7/8QosWLUhISJByq8DSpUvZsWMH27ZtK7VNfufK17lzZxYtWkTTpk1JTExk5syZ3HLLLezdu7dayk0SuxDXufHjx7N3716re3aiYv/f3v2GNLWHcQD/DudM6c8kxQ1JMUxJxbJFtjIi7I1RjIoYlDkRkhLBQCFBrKCgMhCzXhYTUogILAkpS+ciKcHa0siWU9MCS6gsK3WWz31xuYfr1breizI7fT9wYPuds995zsPky9mOO/Hx8XC73fj48SOuXbsGm80Gp9Pp77LmtVevXqGgoAB37tzBggUL/F3OLyUjI0N5nJycjNTUVERHR+Pq1asIDg6e9f3xo/g5EhYWhoCAgClXNr59+xYGg8FPVf1a/uoTe/hj+fn5uHnzJhwOx6RbDRsMBvh8PgwNDU3anr37k06nQ2xsLEwmE06dOoVVq1bh3Llz7NtPPHr0CIODg1izZg20Wi20Wi2cTicqKyuh1WoRERHB3s2QXq9HXFwcvF7vnLznGOxzRKfTwWQyobGxURmbmJhAY2MjzGazHyv7dcTExMBgMEzq4adPn9Da2vrb91BEkJ+fj9raWjQ1NSEmJmbSepPJhMDAwEm983g86O/v/+17N52JiQmMjY2xbz+Rnp6Ojo4OuN1uZVm7di327dunPGbvZubz58/o7u6G0Wicm/fc/7rkjmbkypUrEhQUJFVVVfLs2TPJzc0VvV4vb9688Xdp88bw8LC4XC5xuVwCQMrLy8XlcklfX5+IiJw+fVr0er3cuHFD2tvbxWKxSExMjIyMjPi5cv86dOiQLFmyRJqbm2VgYEBZvn79qmxz8OBBiYqKkqamJmlraxOz2Sxms9mPVc8PxcXF4nQ6pbe3V9rb26W4uFg0Go00NDSICPv2X/z9qngR9u5HCgsLpbm5WXp7e6WlpUW2bt0qYWFhMjg4KCKz3zcG+xw7f/68REVFiU6nk3Xr1snDhw/9XdK84nA4BMCUxWazicif//JWWloqEREREhQUJOnp6eLxePxb9DwwXc8AiN1uV7YZGRmRvLw8CQ0NlZCQENm5c6cMDAz4r+h5IicnR6Kjo0Wn00l4eLikp6croS7Cvv0X/wx29m56VqtVjEaj6HQ6iYyMFKvVKl6vV1k/233jbVuJiIhUhN+xExERqQiDnYiISEUY7ERERCrCYCciIlIRBjsREZGKMNiJiIhUhMFORESkIgx2IiIiFWGwExERqQiDnYgU4+PjqKqqQlpaGsLDwxEcHIzk5GScOXMGPp/P3+UR0QzwJ2WJSOF2u1FYWIi8vDykpKRgdHQUHR0dOH78OIxGI27fvo3AwEB/l0lEP8EzdiJSJCUlobGxEbt378by5cuRkJAAq9WKe/fu4enTp6ioqAAAaDSaaZfDhw8rc3348AFZWVkIDQ1FSEgIMjIy0NXVpazPyclBcnIyxsbGAAA+nw8pKSnIysoCALx8+RIajQZut1t5TWlpKTQajVIHEU3FYCcihVarnXY8PDwcu3btQk1NjTJmt9sxMDCgLP+8d3R2djba2tpQV1eHBw8eQESwbds2jI+PAwAqKyvx5csXFBcXAwBKSkowNDSECxcuTFvD69evUVFRgeDg4Nk4VCLVmv6vmIh+a4mJiejr65s0Nj4+joCAAOW5Xq+HwWBQnut0OuVxV1cX6urq0NLSgg0bNgAAampqsGzZMly/fh179uzBwoULUV1djc2bN2PRokWoqKiAw+HA4sWLp62ppKQEVqsVd+/enc1DJVIdBjsRTVFfX6+cWf+lrKwM1dXVM3p9Z2cntFotUlNTlbGlS5ciPj4enZ2dypjZbEZRURFOnDiBI0eOIC0tbdr5Hj9+jNraWng8HgY70b9gsBPRFNHR0VPGuru7ERcXN6v7mZiYQEtLCwICAuD1en+4XWFhIYqKimA0Gmd1/0RqxO/YiUjx/v17DA8PTxlva2uDw+HA3r17ZzTPypUr8e3bN7S2tipj7969g8fjQUJCgjJ29uxZPH/+HE6nE7du3YLdbp8yV11dHV68eIGioqL/cUREvx8GOxEp+vv7sXr1aly6dAlerxc9PT24fPkyLBYLNm3aNOmq959ZsWIFLBYLDhw4gPv37+PJkyfIzMxEZGQkLBYLAMDlcuHo0aO4ePEiNm7ciPLychQUFKCnp2fSXGVlZTh58iRCQkJm+3CJVInBTkSKpKQkHDt2DFVVVVi/fj0SExNRVlaG/Px8NDQ0TLpA7t/Y7XaYTCZs374dZrMZIoL6+noEBgZidHQUmZmZyM7Oxo4dOwAAubm52LJlC/bv34/v378r88TGxsJms836sRKpFX+ghoiISEV4xk5ERKQiDHYiIiIVYbATERGpCIOdiIhIRRjsREREKsJgJyIiUhEGOxERkYow2ImIiFSEwU5ERKQiDHYiIiIVYbATERGpyB+Ul+3HtbopZQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_3l_100_50.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_3l_100_50.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VdJfu6Djgik1", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2e7b1bd4-e509-4981-fc3e-4974a4908d13" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9423 - loss: 0.2074\n", + "Lossontestdata: 0.20320768654346466\n", + "Accuracyontestdata: 0.9427000284194946\n" + ] + } + ], + "source": [ + "scores_3l_100_50=model_3l_100_50.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_3l_100_50[0])\n", + "print('Accuracyontestdata:',scores_3l_100_50[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EkTKyuyMgviX" + }, + "outputs": [], + "source": [ + "#9 пункт\n", + "model_3l_100_100 = Sequential()\n", + "model_3l_100_100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_3l_100_100.add(Dense(units=100, activation='sigmoid'))\n", + "model_3l_100_100.add(Dense(units=num_classes, activation='softmax'))\n", + "\n", + "model_3l_100_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fVv9bbckg1df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 246 + }, + "outputId": "45c82f28-3212-4241-ce0b-098a23b2bd2f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_6\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_6\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_12 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_12 (Dense)                │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_13 (Dense)                │ (None, 100)            │        10,100 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_14 (Dense)                │ (None, 10)             │         1,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ], + "text/html": [ + "
     Total params: 89,610 (350.04 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ], + "text/html": [ + "
     Trainable params: 89,610 (350.04 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_3l_100_100.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DBmXBpkEg482", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "59470c59-cc9d-436a-ad18-d2c31dc3755f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.2217 - loss: 2.2757 - val_accuracy: 0.4550 - val_loss: 2.0754\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.5328 - loss: 1.9426 - val_accuracy: 0.6695 - val_loss: 1.4533\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.6905 - loss: 1.3098 - val_accuracy: 0.7663 - val_loss: 0.9693\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.7778 - loss: 0.9031 - val_accuracy: 0.8193 - val_loss: 0.7365\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8182 - loss: 0.7111 - val_accuracy: 0.8360 - val_loss: 0.6098\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8400 - loss: 0.5970 - val_accuracy: 0.8538 - val_loss: 0.5323\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8530 - loss: 0.5334 - val_accuracy: 0.8658 - val_loss: 0.4795\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8729 - loss: 0.4714 - val_accuracy: 0.8770 - val_loss: 0.4420\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8781 - loss: 0.4415 - val_accuracy: 0.8828 - val_loss: 0.4129\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8848 - loss: 0.4121 - val_accuracy: 0.8882 - val_loss: 0.3905\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8926 - loss: 0.3878 - val_accuracy: 0.8930 - val_loss: 0.3729\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8940 - loss: 0.3762 - val_accuracy: 0.8970 - val_loss: 0.3591\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8983 - loss: 0.3611 - val_accuracy: 0.8998 - val_loss: 0.3470\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9010 - loss: 0.3482 - val_accuracy: 0.9030 - val_loss: 0.3364\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9049 - loss: 0.3351 - val_accuracy: 0.9047 - val_loss: 0.3295\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9049 - loss: 0.3361 - val_accuracy: 0.9077 - val_loss: 0.3200\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9069 - loss: 0.3236 - val_accuracy: 0.9097 - val_loss: 0.3141\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9081 - loss: 0.3148 - val_accuracy: 0.9110 - val_loss: 0.3077\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9100 - loss: 0.3122 - val_accuracy: 0.9128 - val_loss: 0.3004\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9108 - loss: 0.3060 - val_accuracy: 0.9145 - val_loss: 0.2951\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9121 - loss: 0.3015 - val_accuracy: 0.9167 - val_loss: 0.2893\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9166 - loss: 0.2886 - val_accuracy: 0.9168 - val_loss: 0.2845\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9152 - loss: 0.2864 - val_accuracy: 0.9177 - val_loss: 0.2807\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9170 - loss: 0.2838 - val_accuracy: 0.9202 - val_loss: 0.2750\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9199 - loss: 0.2770 - val_accuracy: 0.9218 - val_loss: 0.2712\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9224 - loss: 0.2716 - val_accuracy: 0.9233 - val_loss: 0.2663\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9244 - loss: 0.2639 - val_accuracy: 0.9235 - val_loss: 0.2633\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9234 - loss: 0.2602 - val_accuracy: 0.9243 - val_loss: 0.2584\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9256 - loss: 0.2614 - val_accuracy: 0.9252 - val_loss: 0.2556\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9269 - loss: 0.2521 - val_accuracy: 0.9268 - val_loss: 0.2511\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9278 - loss: 0.2485 - val_accuracy: 0.9275 - val_loss: 0.2472\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2445 - val_accuracy: 0.9272 - val_loss: 0.2434\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9307 - loss: 0.2422 - val_accuracy: 0.9280 - val_loss: 0.2407\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9298 - loss: 0.2395 - val_accuracy: 0.9293 - val_loss: 0.2367\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9311 - loss: 0.2357 - val_accuracy: 0.9303 - val_loss: 0.2339\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9332 - loss: 0.2273 - val_accuracy: 0.9323 - val_loss: 0.2307\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9333 - loss: 0.2269 - val_accuracy: 0.9330 - val_loss: 0.2283\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9365 - loss: 0.2195 - val_accuracy: 0.9327 - val_loss: 0.2249\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9369 - loss: 0.2157 - val_accuracy: 0.9327 - val_loss: 0.2215\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9364 - loss: 0.2184 - val_accuracy: 0.9360 - val_loss: 0.2180\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9384 - loss: 0.2135 - val_accuracy: 0.9353 - val_loss: 0.2158\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9388 - loss: 0.2112 - val_accuracy: 0.9370 - val_loss: 0.2128\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2068 - val_accuracy: 0.9357 - val_loss: 0.2107\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9414 - loss: 0.2046 - val_accuracy: 0.9362 - val_loss: 0.2078\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9424 - loss: 0.2021 - val_accuracy: 0.9372 - val_loss: 0.2053\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9429 - loss: 0.1996 - val_accuracy: 0.9368 - val_loss: 0.2030\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9463 - loss: 0.1907 - val_accuracy: 0.9387 - val_loss: 0.2007\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9450 - loss: 0.1945 - val_accuracy: 0.9393 - val_loss: 0.1983\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9472 - loss: 0.1869 - val_accuracy: 0.9407 - val_loss: 0.1958\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9460 - loss: 0.1903 - val_accuracy: 0.9403 - val_loss: 0.1929\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_3l_100_100 = model_3l_100_100.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bRUvSIR0hv9g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "6413487c-9cd1-4e20-a493-3d267049ed43" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAHWCAYAAACFR6uKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjYFJREFUeJzs3Xd4k1X7wPFvmqbp3htKC5QtQ0EQxJchG0FwAiogggP4KUNRfJHlAAeIA8EFiIrgxBdFsKAFWQXBskFaNrSldO+myfP7IzQ0XTRpSqC9P9f1XCTPvHPacuec5zznqBRFURBCCCFEreBg7wCEEEIIYTuS2IUQQohaRBK7EEIIUYtIYhdCCCFqEUnsQgghRC0iiV0IIYSoRSSxCyGEELWIJHYhhBCiFpHELoS4bgwGA5cvX+bkyZP2DkWIWksSuxCiRiUmJjJp0iTCw8NxcnIiICCAli1bkpmZae/QhKiVHO0dgBDlGT16NN9//z3Z2dn2DkVUQ1xcHD169ECn0/Hss89y22234ejoiIuLC25ubvYOT4haSRK7uGGkpKTw9ddf89dff7F161by8vLo168ft956Kw899BC33nqrvUMUFnrqqadwcnJi165d1KtXz97hCFEnqGQSGHEjWL16NePGjSM7O5uIiAh0Oh2JiYnceuut7N+/H51Ox6hRo/jkk09wcnKyd7iiCvbu3UuHDh34/fff6d27t73DEaLOkHvswu62b9/Oo48+SnBwMNu3b+fUqVP06tULZ2dn9uzZw8WLFxk+fDhffPEFkydPBkBRFCIiIrj33nvLnC8/Px8vLy+eeuopAKKjo1GpVHz//fdl9nV3d2f06NGm9ytWrEClUnH69GnTusOHD+Pj48M999xDUVGR2X5///232fkuX76MSqVi9uzZZuvLW/f222+jUqno3r272fqTJ0/y4IMPEhoaioODAyqVCpVKxS233FJZMQJQVFTEq6++SuPGjdFqtURERPDyyy9TUFBgtl9ERAT33HOP2bqJEyeiUqnM1m3atAmVSsUvv/xiWte9e/cyMe/Zs8cUZ7Fdu3bh7OxMfHw8rVq1QqvVEhwczFNPPUVqaqrZ8eWd8/XXX8fBwYFVq1ZZfO2KdO/e3bRveUvJnzvARx99ZIo9NDSUCRMmkJ6eXuk1srKyGDt2LOHh4Wi1WurXr8/TTz9NUlKS2X7Fv0MVLaV/X/755x/69++Pp6cn7u7u3H333ezatcu0XVEUevToQUBAAJcuXTKtLywspHXr1jRu3JicnBwAzpw5w/jx42nWrBkuLi74+fnx4IMPlvn8xTE6OTmRnJxstm3nzp2mWEv/HQj7kqZ4YXfz58/HYDCwevVq2rdvX2a7v78/K1eu5MiRI3z88cfMmjWLwMBAHn30Ud566y1SU1Px9fU17b9u3ToyMzN59NFHqx3buXPn6NevH82bN+fbb7/F0dE2fzLp6enMmzevzHq9Xs/gwYM5c+YMkyZNomnTpqhUKl5//fUqnXfs2LF88cUXPPDAA0ydOpWYmBjmzZvH0aNH+emnn2wSe3lefPHFMutSUlLIz8/nmWeeoWfPnjz99NPEx8ezePFiYmJiiImJQavVlnu+5cuXM2PGDBYsWMCIESMsvnZl6tevX6bs169fzzfffGO2bvbs2cyZM4devXrxzDPPcPz4cZYsWcKePXvYvn07Go2m3POnpqZy4MABxo4dS3BwMHFxcSxdupQNGzawe/duAgMDzfafO3cuDRs2NL3Pzs7mmWeeMdvn8OHD3HXXXXh6ejJt2jQ0Gg0ff/wx3bt3Z8uWLXTq1AmVSsWyZcto06YNTz/9ND/++CMAs2bN4vDhw0RHR5v6NezZs4cdO3YwbNgw6tevz+nTp1myZAndu3fnyJEjuLq6ml1frVbz1Vdfmb5Yg/Fn5OzsTH5+flWKXVxPihB25uvrq4SHh5utGzVqlOLm5ma27pVXXlEAZd26dYqiKMrx48cVQFmyZInZfoMHD1YiIiIUg8GgKIqi/PnnnwqgfPfdd2Wu7ebmpowaNcr0fvny5QqgnDp1SklNTVVatmypNGvWTLl8+bLZccX77dmzx2x9cnKyAiizZs0yW1963bRp05TAwEClffv2Srdu3Uzriz/TvHnzzI7v1q2b0qpVqzLxlxQbG6sAytixY83WP//88wqg/PHHH6Z14eHhysCBA832mzBhglL6v4SoqCizMi+OpWTM69evVwClX79+ZsfPmjVLAZS7775bKSoqMq0vLrsPPvig3HP++uuviqOjozJ16tQyn7Gq165IReX49ttvm37uiqIoly5dUpycnJQ+ffooer3etN+HH36oAMqyZcuuea2SDh06pGi1WmXMmDGmdZb8Dg0ZMkRxcnJS4uPjTesuXryoeHh4KP/5z3/Mjv/4448VQPnqq6+UXbt2KWq1Wpk0aZLZPrm5uWVi3LlzpwIoK1euLBPj8OHDldatW5vW5+TkKJ6ensqIESPK/QzCvqQpXthdVlZWmVpMeYKCggBMj0k1bdqUTp068fXXX5v2SU1N5bfffuORRx4p0zSblZXF5cuXzZaK5OfnM3jwYJKTk9mwYQN+fn7WfLRyXbhwgQ8++IBXXnkFd3f3MjECVl1v/fr1AEyZMsVs/dSpUwH49ddfrQm3UoqiMH36dO6//346depU7j5TpkxBrVab3j/22GMEBQWVG8/u3bt56KGHuP/++3n77berfW1rbdq0icLCQiZNmoSDw9X/JseNG4enp+c1y7L4ef3iJSgoiAEDBvDDDz9gMBgsikWv1/P7778zZMgQGjVqZFofEhLCiBEj2LZtm9mjg08++SR9+/bl//7v/3jsscdo3Lgxb7zxhtk5XVxcTK91Oh0pKSlERkbi7e3Nvn37ysTw2GOPcezYMVOT+w8//ICXlxd33323RZ9FXB+S2IXdhYaGEh8ff8394uLiAMx6V48cOZLt27dz5swZAL777jt0Oh2PPfZYmePHjBlDQECA2VJ8z7G0xx9/nG3btpGVlWW6r24rs2bNIjQ01NQHoKRmzZrh4+PDggUL2L59O8nJyVy+fBmdTnfN8545cwYHBwciIyPN1gcHB+Pt7W0qI1v6+uuvOXz4cJnEAZi+WDVv3txsvVqtpkmTJmXu5164cIGBAweSk5NDSkrKNe+ZV3bt6iouq2bNmpmtd3JyolGjRtcsy7Nnz5b5Xfvpp5/IyMio9AtleZKTk8nNzS0TC0CLFi0wGAycO3fObP3nn39Obm4uJ06cYMWKFWaJHCAvL4+ZM2cSFhaGVqvF39+fgIAA0tPTycjIKHOdgIAABg4cyLJlywBYtmwZo0aNMvvSI24c8lMRdnfPPfeQmprK559/XuE+SUlJfPHFFwQEBHDHHXeY1g8bNgyNRmOqtX/11Vd06NCh3P8EZ86cSVRUlNni7Oxc7vX27dvHzz//TEBAAE8++WQ1P+FVR48eZcWKFbz22mvl3qN1d3dnzZo15OTk0LVrVwIDAwkICGDHjh1VvkZVOpHZQmFhIa+88gpPPPEETZs2LbO9dDK5lri4OBo0aMCXX37Jpk2b+OKLL6y+tr0FBweX+V0bPnz4dbt+dHS0qcPkwYMHy2z/v//7P15//XUeeughvv32W37//XeioqLw8/OrsEVhzJgxfPPNNxw9epStW7eadToVNxbpPCfsbsaMGaxdu5ZnnnmGY8eOMWLECPR6PWCs+WzevJmZM2eSlpbGqlWrzDpc+fr6MnDgQL7++mseeeQRtm/fzqJFi8q9TuvWrenVq5fZupJNxCV99tlnDB48GLVazT333MPnn3/OE088Ue3POn36dNq1a8fDDz9c4T69e/fmrbfe4pFHHmHp0qU0atSIqVOnmsqkIuHh4RgMBk6cOEGLFi1M65OSkkhPTyc8PLza8Zf00UcfcenSpTK9t4sVdwg7fvy4WRNycYylxyUICQlh/fr1BAUF8fPPPzN16lQGDBhAQECAxdeuruKyKh17YWGh6amNyjg7O5fZ5/3338fT0xN/f3+LYgkICMDV1ZXjx4+X2Xbs2DEcHBwICwszrUtISOD//u//6NOnD05OTjz//PP07dvX7Of//fffM2rUKBYsWGBal5+fX2mP//79++Ps7MywYcPo2rUrjRs35q+//rLos4jrQ2rswu6Cg4PZuXMn/fv3Z8GCBdx222189dVX5OTkEB4ezpgxY3BxcWHdunXl1noee+wxjhw5wgsvvIBarWbYsGHVjumuu+4CYODAgQwbNowXXnihzONKltq5cyc///wz8+fPr7RWfe7cOcaPH8+zzz7Lk08+Sa9evfDx8bnm+QcMGABQ5ovNwoULAeNnsZWsrCxef/11Jk+eTHBwcLn73H333Wi1Wt5//32zWuDXX39NUlJSmcftmjZtaupH8cEHH2AwGHjuueesunZ19erVCycnJ95//32UEkN9fP7552RkZFRaluXVeP/55x9+++03hgwZYnHztVqtpk+fPvz8889mty+SkpJYtWoVXbt2xdPT07R+3LhxGAwGPv/8cz755BMcHR154oknzD6HWq02ew/GMq/sy6OjoyMjR47kwIEDjBkzxqLPIK4vqbGLG0JYWBg///wzCQkJbN++nbfffpvY2FiWLl1Ku3btaNeuXYXJcODAgfj5+fHdd9/Rv3//KnXEs8R7771HixYt+L//+z++/fZbs207d+40u2da3IkpLi6O3bt307FjR9O24oFaKqvtGQwGHnvsMerXr8/8+fMtirNt27amQXzS09Pp1q0bu3fv5osvvmDIkCH06NHDbP/ijoHFzp49C2C2LjY2ttxr7du3D39/f6ZNm1ZhPL6+vsyYMYNXXnmFvn37cu+993Ly5Ek+/PBD2rZty9ixYys8Njg4mLfffpuxY8fy6KOPmr60VPXa1RUQEMD06dOZM2cO/fr1Y/DgwRw/fpyPPvqI22+/vdJHKc+ePcvAgQN58MEHqVevHocOHeLTTz/F39/f6v4Ar732GlFRUXTt2pXx48fj6OjIxx9/TEFBAW+99ZZpv+XLl/Prr7+yYsUK6tevDxgT9qOPPsqSJUsYP348YLz99eWXX+Ll5UXLli3ZuXMnmzZtumanzVdffZUXXnihSl80hR3ZtU++EBUo73G3yowfP14BlFWrVpXZZu3jbiV98cUXCqD873//M9uvsqXkY1mAolKplL1795qdt/TjW2+88Yai1WqV/fv3l9nvWo+7KYqi6HQ6Zc6cOUrDhg0VjUajhIWFKdOnT1fy8/PN9gsPD79m/CWX0o+7Acq7775rds7ix9tKW7x4sdK8eXNFo9EoQUFBylNPPaWkpKRUWg7FevbsqTRo0EDJysqy6tqlVfVxt2IffvihWezPPPOMkpaWVuk1srKylHHjxinh4eGKk5OTEhAQoDz22GPKmTNnzPaz9JHJffv2KX379lXc3d0VV1dXpUePHsqOHTtM28+dO6d4eXkpgwYNKhPT0KFDFTc3N+XkyZOKoihKWlqa8vjjjyv+/v6Ku7u70rdvX+XYsWNKeHh4uX8PFT3Odq3twj5kSFlRK0yePJnPP/+cxMTEMoNr2MPs2bOJjo4mOjra3qEIIeoYuccubnr5+fl89dVX3H///TdEUhdCCHuSe+zipnXp0iU2bdrE999/T0pKSrkdrewlMjKS3Nxce4chhKiDpCle3LSio6Pp0aMHgYGBvPLKK0ycONHeIQkhhN1JYhdCCCFqEbnHLoQQQtQiktiFEEKIWkQ6z5XDYDBw8eJFPDw8rtu420IIIURlFEUhKyuL0NDQSkcwlMRejosXL5qNvSyEEELcKM6dO2caWbA8ktjL4eHhARgLr+QYzNbQ6XT8/vvv9OnTp9zZvETFpOysI+VmPSk760i5WcfScsvMzCQsLMyUoyoiib0cxc3vnp6eNknsrq6ueHp6yi+8haTsrCPlZj0pO+tIuVnH2nK71i1i6TwnhBBC1CKS2IUQQohaRBK7EEIIUYvIPXYhBGB8lKaoqAi9Xm/vUOxGp9Ph6OhIfn5+nS4HS0m5Wad0uanVahwdHav9mLVdE/u8efP48ccfOXbsGC4uLnTp0oU333yTZs2aVXjMp59+ysqVKzl06BAA7du354033qBjx46mfUaPHs0XX3xhdlzfvn3ZsGFDzXwQIW5yhYWFJCQk1PmJaxRFITg4mHPnzskYFhaQcrNOeeXm6upKSEgITk5OVp/Xrol9y5YtTJgwgdtvv52ioiJefvll+vTpw5EjR3Bzcyv3mOjoaIYPH06XLl1wdnbmzTffpE+fPhw+fJh69eqZ9uvXrx/Lly83vddqtTX+eYS4GRkMBk6dOoVarSY0NBQnJ6c6+5+zwWAgOzsbd3f3SgcAEeak3KxTstxUKhWFhYUkJydz6tQpmjRpYnVZ2jWxl65Br1ixgsDAQPbu3ct//vOfco/5+uuvzd5/9tln/PDDD2zevJmRI0ea1mu1WoKDg20ftBC1TGFhIQaDgbCwsDo/n73BYKCwsBBnZ2dJUBaQcrNO6XJzcXFBo9Fw5swZ03pr3FD32DMyMgDw9fWt8jG5ubnodLoyx0RHRxMYGIiPjw89e/bktddew8/Pr9xzFBQUUFBQYHqfmZkJGO9/6HQ6Sz+GmeLjq3ueukjKzjqWlptOp6N4kkeDwVBjcd0MistBUZQ6XxaWkHKzTkXlpigKOp0OtVpttn9V/6ZvmGlbDQYDgwcPJj09nW3btlX5uPHjx7Nx40YOHz5s+nazevVqXF1dadiwIfHx8bz88su4u7uzc+fOMgUFMHv2bObMmVNm/apVq+p8DUbUfo6OjgQHBxMWFlat+3pCiOorLCzk3LlzJCYmUlRUZLYtNzeXESNGkJGRUengaTdMYn/mmWf47bff2LZtW6Vj4JY0f/583nrrLaKjo2nTpk2F+508eZLGjRuzadMm7r777jLby6uxh4WFcfnyZZuMPBcVFUXv3r1lRCYLSdlZx9Jyy8/P59y5c0RERFjd9Hez0ul0ZmVUPMmGTABlmetdbqV/bjer8sotPz+f06dPExYWVubvMTMzE39//2sm9huiKX7ixIn88ssvbN26tcpJ/Z133mH+/Pls2rSp0qQO0KhRI/z9/YmLiys3sWu12nI712k0Gpv98tjyXHWNlJ11qlpuer0elUqFg4NDrb8/Ghsby7vvvsvOnTtJTk4mPz+fxMREvLy8gKu3IorLQ1RNTZfbyZMnefvtt9myZQtJSUlkZGRw6NAhmjdvbvNrXU/llZuDgwMqlarcv9+q/j9o199cRVGYOHEiP/30E3/88QcNGzas0nFvvfUWr776Khs2bKBDhw7X3P/8+fOkpKQQEhJS3ZCFEDeYc+fOMWbMGFOP/vDwcJ577jlSUlLM9ouOjqZr164EBwezevVq9uzZQ1xcnCmpixvT0aNHad++PUVFRSxbtoyYmBji4+Nv+qRek+xaY58wYQKrVq3i559/xsPDg8TERAC8vLxwcXEBYOTIkdSrV4958+YB8OabbzJz5kxWrVpFRESE6Rh3d3fc3d3Jzs5mzpw53H///QQHBxMfH8+0adOIjIykb9++9vmgQogacfLkSTp37kzTpk355ptvaNiwIYcPH+aFF17gt99+Y9euXfj6+qIoCuPGjWPRokWMHTvW3mELC0ycOJEJEybw2muv2TuUm4Zda+xLliwhIyOD7t27ExISYlrWrFlj2ufs2bMkJCSYHVNYWMgDDzxgdsw777wDgFqt5sCBAwwePJimTZvyxBNP0L59e/766y+7PMs+ac0BXv1HzcELGdf92kJYS1EUcguL7LJY0u1nwoQJODk58fvvv9OtWzcaNGhA//792bRpExcuXOC///0vAMeOHePMmTPExcURHh6Os7Mzd9xxh6mjrqIoREZGsmDBArPzx8bGolKpiIuLIzo6GpVKRXp6umn76NGjGTJkiOn9hg0b6Nq1K97e3vj5+XHPPfcQHx9v2n769GlUKhWxsbEAXLhwgQcffJDAwEA8PDwYOnQo58+fN+0/e/Zs2rVrZ3qfnp6OSqUiOjq6whji4+O59957CQoKwt3dndtvv51NmzaZfa6EhATuu+8+/Pz8UKlUpqXkZyvt4MGD9OzZExcXF/z8/HjyySfJzs42bR8/fjxDhw4tU3anT582revevTuTJk0yvY+IiGDRokWm95s3b0alUpk+T05ODn/++SeFhYU0adIEZ2dnWrduzc8//1xhmRYUFNCrVy969epl6ju1Z88eevfujb+/P15eXnTr1o19+/ZV+FlvdnatsVflD7jkLzBg9ktSHhcXFzZu3FiNqGzrQkYel/NVXEzP5zZ7ByNEFeXp9LScaZ+/oyNz++LqdO3/mlJTU9m4cSOvv/66qYWvWHBwMI888ghr1qzho48+Ijk5GZ1Ox5dffsmnn35Kw4YNee+99+jXrx8nTpwgJCSEMWPGsGLFCsaNG2c6z/Lly/nPf/5DZGSkWcKtSE5ODlOmTKFNmzZkZ2czc+ZMhg4dSmxsbJl7zzqdjgEDBqDRaFi3bh0ajYbnnnuOIUOGsGfPHqs7oWVnZzNgwABef/11tFotK1euZNCgQRw/fpwGDRoAMHXqVP799182bNhAWFgYO3bs4P7776/0c/Xt25fOnTuzZ88eLl26xNixY5k4cSIrVqywKs7SDAYDU6dOxd3d3bQuJSUFRVH4+OOPWbp0Ke3bt2fVqlXcd9997N271+xLDxj7iwwbNozs7Gw2bdpkqsxlZWUxatQoPvjgAxRFYcGCBQwYMIATJ05cc27zm5H0DqlhwZ7GXo1JWQXX2FMIYYkTJ06gKAotWrQod3uLFi1IS0sjOTnZ1Enp7bffZsCAAbRo0YKPPvqI0NBQFi9eDBhrvsePH2fv3r2AMfGuWrWKMWPGAJi+POTl5VUY0/333899991HZGQk7dq1Y9myZRw8eJAjR46U2XfTpk0cOHCAlStX0qlTJ2677Ta+/vprYmNj2bx5s9Xl0rZtW5566iluueUWmjRpwquvvkrjxo353//+Z9onNjaWESNGcPvttxMcHHzNsUNWrVpFfn4+K1eu5JZbbqFnz558+OGHfPnllyQlJVkda0lffPEFBQUF3HvvvaZ1xT+3F198keHDh9O0aVNmz55Njx49TK20xRRF4fHHHycuLo7169ebfUHo2bMnjz76KM2bN6dFixZ88skn5ObmsmXLFpvEfqO5IXrF12ZBnsZvjIkZ+XaORIiqc9GoOTLXPn1SXDRlx5qojCVN93feeafptYODA126dDEl3dDQUAYMGMBXX31Fjx49WLduHQUFBTz44IMANGnSBCcnJ7755humTJlS7vlPnDjBzJkziYmJ4fLly6bEdPbsWW655RbTfl26dEGv1+Pt7U3Lli1N6xs0aEBYWBhHjhyhV69eVS+EErKzs5k9eza//vorCQkJFBUVkZeXx9mzZ037NGzYkPXr1/P0009XaUCwo0eP0rZtW7Ohvu+8804MBgPHjx8nICDAqliL5ebmMmPGDJYuXcoPP/xQZnvJnxtA165dzb6oALzwwgts3ryZxx9/vMxnSkpKYsaMGURHR3Pp0iX0ej25ublmZVKbSI29hhUn9qRMqbGLm4dKpcLVydEuS1WboCMjI1GpVBw9erTc7UePHsXHx4eAgAB8fHwq/azFnnjiCX788Ufy8vJYvnw5Dz/8sGmQKl9fXxYuXMhLL72Ei4sL7u7uZYa4HjRoEKmpqXz66afExMQQExMDGAcdKWnNmjW8+uqrVYrJUs8//zw//fQTb7zxBn/99RexsbG0bt3aLIZ3332XgoIC/P39cXd3p3///lZfzxbefvttmjVrxqBBg8zWV/XnBsaf92+//cbq1avL3I4dNWoUsbGxvPfee+zYsYPY2Fj8/PzK/FxqC0nsNexqU7zU2IWwJT8/P3r37s1HH31Upnk8MTGRr7/+mocffhiVSkXjxo1xdHRk+/btpn0MBgM7duwwqzEPGDAANzc3li5dyoYNG0zN8MUmTJhgeoY6NjaWwYMHm7alpKRw/PhxZsyYwd133226FVCesLAwunbtSnp6ulkz/blz5zh37pxZTJbavn07o0ePZujQobRu3Zrg4OAyfZOaNm3K6NGjiYiIICYmhs8++6zSc7Zo0YL9+/eTk5Njdh0HB4dKZ+OsioSEBBYsWFCm4yIYn5AKDg42+7kBbNu2rUwZffnll/Tr149XX32VcePGmYYGL4712WefZcCAAbRq1QqtVsvly5erFfeNTBJ7DbvaFC81diFs7cMPP6SgoIC+ffuydetWzp07x4YNG+jduzf16tXj9ddfB4yPw44bN44XXniB9evXc/ToUcaPH8/FixcZP3686XxqtZrhw4fz8ssv06RJEzp37lzmmi4uLjRu3JjIyEizjlc+Pj74+fnxySefEBcXxx9//FFhkz0Ym+M7derEyJEj2b17N/v27eORRx6hXbt29OzZ07Sfoijk5+eTn59v6uVdWFhoWqfX6zEYDKZxxJs0acKPP/5IbGws+/fvZ8SIEWXGb9+1axcvv/wy33//Pa1atTKbGbM8jzzyCM7OzowaNYpDhw7x559/8n//93889thjBAUFmfYzGAymuIprwwUFBaZ15Y0jv3jxYoYOHcqtt95a7rUnT57Mm2++yerVq/n333+ZPXs2f/75J88//7zZfsXN75MnTyYsLMys7Js0acKXX37J0aNHiYmJ4ZFHHinT4bJWUUQZGRkZCqBkZGRU+1wnEtOV8Bd/UZrNWK8YDAYbRFd3FBYWKmvXrlUKCwvtHcpNxdJyy8vLU44cOaLk5eXVcGQ14/Tp08qoUaOUoKAgRaPRKGFhYcr//d//KZcvXzbbLycnRxk/frzi7++vODk5KXfccYeybds2s330er3yzz//KIDy1ltvXfPao0aNUu69917T+6ioKKVFixaKVqtV2rRpo0RHRyuA8tNPPymKoiinTp1SAOWff/5RFEVRzp8/rwwZMkRxd3dX3N3dlaFDhyrnzp0znW/WrFkKUKVl1KhRpmv06NFDcXFxUcLCwpQPP/xQ6datm/Lcc88piqIoly5dUurXr6989tlnpuv8+eefCqCkpaVV+FkPHDig9OjRQ3F2dlZ8fX2VcePGKVlZWaZyGz58eJXiLI5DURQlPDxccXFxMfvMpcu0qKhImTFjhhIaGqpoNBqldevWytq1a03bS5epoijK8ePHFRcXF2Xjxo2KoijKvn37lA4dOijOzs5KkyZNlO+++04JDw9X3n333Qo/7/Wg1+uVtLQ0Ra/Xm9ZV9vdY1dx0w4wVfyPJzMzEy8vrmuPxVkV2bj63zDX2cN0/sw9erjI0alXpdDrWr19veiRIVI2l5Zafn8+pU6do2LBhnRsrvjSDwcCGDRsYMmQI586dM6uN3sjWrl3L2rVrbfbomaUMBgOZmZl4enrKULwWKK/cKvt7rGpukp9ADdNq1Lg5Gr87JWRW/JiMEMK+CgoKOH/+PG+++SYPPPDATZPUwXgLQb78imKS2K8D7yszYcojb0LcuIqHpM3IyODNN9+0dzgWGTRoEJ9++qm9wxA3CEns14GXk7HGLoldiBvX6NGj0el0REdHX7MzmRA3Mkns14FXcY09UxK7EEKImiWJ/TrwvlJjT5LELoQQooZJYr8OimvsCdIUL4QQooZJYr8OpPOcEEKI60US+3Xgpb3SeU6a4oUQQtQwSezXQXGNPT1XR75Ob99ghBBCWK146N4bmST268BFDS4aY1FLBzohhLh5/PTTTwwcOJCIiAjc3d2566677B3SNUlivw5UKgi6MsubdKATwnZGjx6NSqUyLX5+fvTr148DBw7YOzRRC8ybN49x48Zxzz338OuvvxIbG8v69evtHdY1SWK/Tq7Oyy6JXQhb6tevHwkJCSQkJLB582YcHR2555577B2WuMmdPHmSN954gy1btvDMM8/QqlUrIiMjTbPI3cgksV8nxfOyS894cVNQFCjMsc9i4bxUWq2W4OBggoODadeuHS+99BLnzp0jOTnZtM+LL75I06ZNcXV1pVGjRrzyyitl7pWePn0atVqNj48ParXa1AqQnp4OwOzZs2nXrp1p/8LCQiIjI832KRYREWHWkqBSqVi7dq1p+4YNG+jatSve3t74+flxzz33EB8fbxaLSqUiNja2zHkXLVpket+9e3cmTZpken/8+HE0Go1ZnAaDgblz51K/fn20Wi3t2rVjw4YNFl+r9Gco7/pffvklHTp0wMPDg+DgYEaMGMGlS5fMjvnll19o27YtLi4uprIZMmQIlVmyZAmNGzfGycmJZs2a8eWXX5ptLx3bpEmT6N69e4WfMTo6uszP7bHHHjM7z8aNG2ncuDGvv/46AQEBeHh4cN9993H+/HnTMaV/J/bt24e3t7fZ/PYLFy6kdevWuLm5ERYWxvjx48nOzq7081aXY42eXZgU19ilKV7cFHS58Eaofa798kVwcrPq0OzsbL766isiIyPx8/Mzrffw8GDFihWEhoZy8OBBxo0bh4eHB9OmTTPtUzzR5dq1a7n99tvZtWsX999/f4XX+vDDD0lKSqpw+9y5cxk3bhwAISEhZttycnKYMmUKbdq0ITs7m5kzZzJ06FBiY2OrNTvaCy+8UGZGsPfee48FCxbw8ccfc+utt7Js2TIGDx7M4cOHadKkidXXKo9Op+PVV1+lWbNmXLp0iSlTpjB69GhT83V6ejoPP/wwY8eOZe3atbi4uPDcc8+Z5pkvz08//cRzzz3HokWL6NWrF7/88guPP/449evXp0ePHjaJe+/evfzvf/8zW5ecnMz+/fvx8PDgt99+A+C5555jyJAh7NmzB5VKZbb/sWPH6Nu3LzNmzGDs2LGm9Q4ODrz//vs0bNiQkydPMn78eKZNm8ZHH31kk9jLI4m9pmUn4Zl3lvpBDQFpihfC1n755Rfc3d0BY8IMCQnhl19+MUuQM2bMML2OiIjg+eefZ/Xq1WaJvbgGHxgYSHBwcKVNrqmpqbz22mu8+OKLvPLKK2W2FxQU4OvrS3BwcLnHl/7CsGzZMgICAjhy5Ai33HJLFT51WX/++Sc7duxg7Nix/Pnnn6b177zzDi+++CLDhg0D4M033+TPP/9k0aJFLF682KprVWTMmDGmcm/UqBHvv/8+t99+O9nZ2bi7u/Pvv/+Sm5vLiy++SGio8Yuji4tLpYn9nXfeYfTo0YwfPx6AKVOmsGvXLt555x2bJfYpU6bwwgsvmP0sDQYDarWaVatWERYWBsCqVato3LgxmzdvplevXqZ9z5w5Q+/evXnyySd5/vnnzc5dskUjIiKC1157jaeffloS+83M8ev76HH5OLv8PwdcpMYubg4aV2PN2V7XtkCPHj1YsmQJAGlpaXz00Uf079+f3bt3Ex4eDsCaNWt4//33iY+PJzs7m6KiojLzWWdmZgLg5nbt1oK5c+fSo0cPunbtWu721NTUSufLPnHiBDNnziQmJobLly9jMBgAOHv2rFWJXVEUpk6dyqxZs0hJSTGtz8zM5OLFi9x5551m+995553s37/fbF2XLl3Mvgzl5uaWuc7w4cNRq9Wm93l5eWZN0Xv37mXu3Lns37+ftLQ0s8/VsmVLwsLCcHR05JtvvmHy5MlVap04evQoTz75ZJn433vvvWseWxVr167l5MmTTJ06tcyXtLCwMFNSBwgPD6d+/focOXLElNjT09Pp1asX58+fp2/fvmXOv2nTJubNm8exY8fIzMykqKiI/Px8cnNzy7Su2IrcY69hiosPAAFq4x+J1NjFTUGlMjaH22Mp1cR5LW5ubkRGRhIZGcntt9/OZ599Rk5Ojmka0507d/LII48wYMAAfvnlF/755x/++9//UlhYaHaeixcv4uDgQGBgYKXXO3HiBJ999lmFU7ueP3+ewsJCGjZsWOE5Bg0aRGpqKp9++ikxMTHExMQAlImpqlauXElOTg5PP/20VceD8ctPbGysaSmuUZf07rvvmu3ToUMH07acnBz69++Pp6cnX3/9NXv27OGnn34Crn6ukJAQlixZwhtvvIGzszPu7u58/fXXVsdcXTqdjmnTpvH666/j4uJits3Hx6fC40o2w585c4ZOnToxe/ZsxowZY/aF6PTp09xzzz20adOGH374gb1795paSaz9WVeFJPaadiWx+6qMnSUuZRWgN1jWOUgIUXUqlQoHBwfy8vIA2LFjB+Hh4fz3v/+lQ4cONGnShDNnzpQ5bs+ePTRv3vyatagXX3yRsWPHEhkZWe72LVu24OLiYpb0SkpJSeH48ePMmDGDu+++mxYtWpCWlmbhp7wqNzeX//73v7z55ptoNBqzbZ6enoSGhrJ9+3az9du3b6dly5Zm68LCwkxfkCIjI3F0LNugGxwcbLZPyWR44sQJUlJSmD9/PnfddRfNmzcv03EOYNSoUTRv3pwnn3yS2NhYBg8eXOnna9GiRZXit8aSJUtwd3fnscceK7OtefPmnDt3jnPnzpnWnTlzhvPnz5tdu1GjRqxYsYL//ve/eHp6Mn36dNO2vXv3YjAYWLBgAXfccQdNmzbl4sWabwmTpvia5mK8T+euZKF2UKE3KFzOLjA91y6EqJ6CggISExMBY1P8hx9+SHZ2NoMGDQKgSZMmnD17ltWrV3P77bfz66+/mmqSYKw5rVmzhoULFzJ79uxKrxUXF8fZs2eJi4srd3t8fDzz58/n3nvvLdNTPj09ncLCQnx8fPDz8+OTTz4hJCSEs2fP8tJLL5V7vsLCQvLzr7byKYpCUVERer3e1CS+atUq2rdvX2HP8hdeeIFZs2bRuHFj2rVrx/Lly4mNjbV5Tbl+/fo4OTnxwQcf8PTTT3Po0CFeffXVMvtNnToVlUrFu+++i0ajwcPDo0xZlY7/oYce4tZbb6VXr16sW7eOH3/8kU2bNpntp9PpTGWl1+sxGAym9xXdw3/rrbdYt25dmY5wAL1796ZFixaMGDGCd999FzB2nmvXrh09e/Y07efh4WH6ErRixQo6duzIAw88wF133UVkZCQ6nY4PPviAQYMGsX37dpYuXVpJKdqIIsrIyMhQACUjI6Pa5yr67WVFmeWpFK1/Uen0+iYl/MVflNizadUPsg4oLCxU1q5dqxQWFto7lJuKpeWWl5enHDlyRMnLy6vhyGxv1KhRCmBaPDw8lNtvv135/vvvzfZ74YUXFD8/P8Xd3V15+OGHlXfffVfx8vJSFEVR/v77b6VRo0bKvHnzFJ1Op6SlpSl6vV75888/FUBJS0tTFEVRZs2apQDKO++8Yzpv6X3Cw8PN4im9/Pnnn4qiKEpUVJTSokULRavVKm3atFGio6MVQPnpp58URVGUU6dOVXqe5cuXK4qiKN26dVNUKpWyZ88eU0yzZs1S2rZta3qv1+uV2bNnK/Xq1VM0Go3Stm1b5bfffjNtL77WP//8Y1Zm4eHhyrvvvmt6XzK+Yt26dVOee+45Ra/XK2lpacpXX32lREREKFqtVuncubPyv//9z+zcq1atUoKCgpQLFy6Y/Qzvvffe8n/AV3z00UdKo0aNFI1GozRt2lRZuXKl2fbKyqrkUhxH8c/tnnvuKXOekp8xPj5eGThwoOLq6qq4u7srQ4cOVc6fP19hWSuKosydO1eJjIxUcnJyFEVRlIULFyohISGKi4uL0rdvX2XlypWm35nictPr9abjK/t7rGpuUl35MKKEzMxMvLy8yMjIqLQDTFXot7yD+s9XMbQZxn0JI4k9l87Hj7Wnb6vye8uKq3Q6HevXr2fAgAFlmhhFxSwtt/z8fE6dOkXDhg1rrDPPzcJgMJCZmYmnp6dVj51FREQQHR1NREREmW1Dhgwp83y1NSZNmkS7du0YPXp0tc5jS9Utt7qqvHKr7O+xqrlJfgI1rLjzHHlpMkiNELVcQECAWa/xknx8fHBycqr2NTQaTYXXEALkHnvNu3KPnbw0ggOvJHbpGS9ErbRnz54Kty1fvtwm13j77bdtch5Re0mNvaa5eAOgyksl2Etq7EIIIWqWJPYapphq7OnSFC+EEKLG2TWxz5s3j9tvvx0PDw8CAwMZMmQIx48fv+Zx3333nel509atW5eZRk9RFGbOnElISAguLi706tWLEydO1NTHqJzZPXaZ4U3cuKQfrRD2Z4u/Q7sm9i1btjBhwgR27dpFVFQUOp2OPn36kJOTU+ExO3bsYPjw4TzxxBP8888/DBkyhCFDhnDo0CHTPm+99Rbvv/8+S5cuJSYmBjc3N/r27Wv2POh1cyWxqxQ9oc7GkYYSMvLlP1FxwyjuOV/eEKJCiOur+O+wOk8C2bXzXMmpA8H4cH9gYCB79+7lP//5T7nHvPfee/Tr148XXngBgFdffZWoqCg+/PBDli5diqIoLFq0iBkzZnDvvfcCxuEWg4KCWLt2rWkihOvG0ZkiByccDYUEaYwjYeXp9GTmF+HlIo9wCftTq9V4e3ubRglzdXUtd8COusBgMJgGhZHHtqpOys06JctNpVKRm5vLpUuX8Pb2rtaTDzdUr/iMjAyASmdV2rlzJ1OmTDFb17dvX9McuqdOnSIxMdFs5h0vLy86derEzp07y03sBQUFZiMTFU8GodPpyszZbCmdTgdqdxwNqajzLuPtoiE9T8eFlGxcg9yrde7arrjsq/szqGusKTc/Pz/0en2l05DWBYqikJ+fj7Ozc539cmMNKTfrlFdunp6e+Pn5lfv3W9W/6RsmsRsMBiZNmsSdd95Z6exGiYmJBAUFma0LCgoyDSlZ/G9l+5Q2b9485syZU2b977//jqurZTNNlae7ozvoUtmz9XdcVLeSjor/bf6LFt7SHF8VUVFR9g7hpmRNualUKnlGWgg70ev1ld6mrertshsmsU+YMIFDhw6xbdu2637t6dOnm7UCZGZmEhYWRp8+fao98pxOpyPnxHwAbr8lkiaF/iScSKFBszYMaF+vWueu7XQ6HVFRUfTu3VtGnrOAlJv1pOysI+VmHUvLrbg1+VpuiMQ+ceJEfvnlF7Zu3Ur9+vUr3Tc4OLhMc2FSUhLBwcGm7cXrQkJCzPYpOW9wSVqtFq1WW2a9RqOxyS9poaOxyd2xMJNQb1cgheRsnfwBVJGtfg51jZSb9aTsrCPlZp2qlltVy9auvRwURWHixIn89NNP/PHHH5XOX1ysc+fObN682WxdVFQUnTt3BqBhw4YEBweb7ZOZmUlMTIxpn+utUO1mfJGbaprVTUafE0IIURPsWmOfMGECq1at4ueff8bDw8N0D9zLy8s0z+/IkSOpV68e8+bNA4zT5nXr1o0FCxYwcOBAVq9ezd9//80nn3wCGO8RTpo0iddee40mTZrQsGFDXnnlFUJDQyuc1rCm6a7U2MlLI8TfmNjlWXYhhBA1wa6JfcmSJQBlZjtavny5aeais2fPmj0+0aVLF1atWsWMGTN4+eWXadKkCWvXrjXrcDdt2jRycnJ48sknSU9Pp2vXrmzYsMFuM1cVmhJ7KkFXhpVNkNHnhBBC1AC7JvaqDNISHR1dZt2DDz7Igw8+WOExKpWKuXPnMnfu3OqEZzOF6iuJPTfVNKys1NiFEELUBBlJ4DooLNkUf6XGnppTSL5Ob8eohBBC1EaS2K8DU409LxUvFw1aR2OxX8osqOQoIYQQwnKS2K8DnWNxr/g0VCrV1elbpTleCCGEjUlivw5MNfaCDNAXme6zJ2Tk2TEqIYQQtZEk9uvAVGMHyE831dilA50QQghbk8R+HSgqNYr2ytC0ualXm+Iz5B67EEII25LEfr24XJmxLu/qI2+JmdIUL4QQwrYksV8niouP8UVe2tXELoPUCCGEsDFJ7NdLcWIv0RSfJI+7CSGEsDFJ7NeLqcaeatZ5zmCQOdmFEELYjiT260Qx3WNPI8Bdi4MKigwKl3Ok1i6EEMJ2JLFfLy7exn9zU3FUOxDgYZz/Xe6zCyGEsCVJ7NdLiV7xgHSgE0IIUSMksV8nJXvFAzJIjRBCiBohif16MfWKv5LYPWVediGEELYnif16KdErHiBIJoIRQghRAySxXycle8UDpnnZ5R67EEIIW5LEfr0U19h1uaDLJ8hTauxCCCFsTxL79aL1BJXa+LrkePEZ+SiKDFIjhBDCNiSxXy8qVYn77GmmXvG5hXqyCorsGJgQQojaRBL79VRivHhXJ0c8nR0BSJL77EIIIWxEEvv15Go+SE2Ilwsg99mFEELYjiT266lUz/jiR97kWXYhhBC2Ion9eirRFA8Q7GkcL16a4oUQQtiKJPbrqVRTfPCVpvgEaYoXQghhI5LYr6fS48VfeeRNauxCCCFsRRL79VR6vHivK1O3So1dCCGEjUhiv55KN8V7XukVLzV2IYQQNiKJ/Xoq1Su+eJCalJxCCor09opKCCFELSKJ/Xoq1Svex1WDk6PxR5CcVWCvqIQQQtQiktivp5JN8YqCSqXC19UJgLQcnR0DE0IIUVtIYr+eipviDUVQmA2At6sGgNTcQntFJYQQohaxa2LfunUrgwYNIjQ0FJVKxdq1ayvdf/To0ahUqjJLq1atTPvMnj27zPbmzZvX8CepIo0LqI094a82xxtr7OmS2IUQQtiAXRN7Tk4Obdu2ZfHixVXa/7333iMhIcG0nDt3Dl9fXx588EGz/Vq1amW237Zt22oifMupVGV6xvu6FTfFS2IXQghRfY72vHj//v3p379/lff38vLCy8vL9H7t2rWkpaXx+OOPm+3n6OhIcHCwzeK0KRdfyEow9Yy/2hQv99iFEEJUn10Te3V9/vnn9OrVi/DwcLP1J06cIDQ0FGdnZzp37sy8efNo0KBBhecpKCigoOBqr/TMzEwAdDodOl31Em7x8cX/qp29cACKspJRdDo8ndUApGbnV/tatU3pshNVI+VmPSk760i5WcfScqvqfipFURSro7IhlUrFTz/9xJAhQ6q0/8WLF2nQoAGrVq3ioYceMq3/7bffyM7OplmzZiQkJDBnzhwuXLjAoUOH8PDwKPdcs2fPZs6cOWXWr1q1CldXV6s+T0VuP/k+oRl/c6D+SE4F9CI6QcVPp9Xc5mdgVFODTa8lhBCi9sjNzWXEiBFkZGTg6elZ4X43bY39iy++wNvbu8wXgZJN+23atKFTp06Eh4fz7bff8sQTT5R7runTpzNlyhTT+8zMTMLCwujTp0+lhVcVOp2OqKgoevfujUajQf1rFMT+TatGobS4awCFsRf56fQhXLwDGDCgfbWuVduULjtRNVJu1pOys46Um3UsLbfi1uRruSkTu6IoLFu2jMceewwnJ6dK9/X29qZp06bExcVVuI9Wq0Wr1ZZZr9FobPZLajqXmx8A6oIM1BoN/h7GYWXT83TyB1EBW/4c6hIpN+tJ2VlHys06VS23qpbtTfkc+5YtW4iLi6uwBl5SdnY28fHxhISEXIfIqqBUr3gft+LH3eTelBBCiOqza2LPzs4mNjaW2NhYAE6dOkVsbCxnz54FjE3kI0eOLHPc559/TqdOnbjlllvKbHv++efZsmULp0+fZseOHQwdOhS1Ws3w4cNr9LNUWanx4n2u9IpPk+fYhRBC2IBdm+L//vtvevToYXpffJ971KhRrFixgoSEBFOSL5aRkcEPP/zAe++9V+45z58/z/Dhw0lJSSEgIICuXbuya9cuAgICau6DWKLUePHeVwaoyS3Uk6/T46xR2ysyIYQQtYBdE3v37t2prFP+ihUryqzz8vIiNze3wmNWr15ti9BqTqmmeE9nR9QOKvQGhfRcHcFektiFEEJY76a8x35TK9UUr1KppDleCCGEzUhiv96Km+Lz0sFgnIPd21WGlRVCCGEbFif2kydP1kQcdUdxYkeB/AygZAc66RkvhBCieixO7JGRkfTo0YOvvvqK/Pz8moipdnN0AqcrI+CZesZfqbFLU7wQQohqsjix79u3jzZt2jBlyhSCg4N56qmn2L17d03EVnuV6hkvU7cKIYSwFYsTe7t27Xjvvfe4ePEiy5YtIyEhga5du3LLLbewcOFCkpOTayLO2sW1+D77lUfe3K7M8JYjTfFCCCGqx+rOc46Ojtx333189913vPnmm8TFxfH8888TFhbGyJEjSUhIsGWctUupnvG+UmMXQghhI1Yn9r///pvx48cTEhLCwoULef7554mPjycqKoqLFy9y77332jLO2qWCpni5xy6EEKK6LB6gZuHChSxfvpzjx48zYMAAVq5cyYABA3BwMH5HaNiwIStWrCAiIsLWsdYepQap8b7SKz5VesULIYSoJosT+5IlSxgzZgyjR4+ucGKVwMBAPv/882oHV2uVbop3k6Z4IYQQtmFxYj9x4sQ193FycmLUqFFWBVQnVDBevAxQI4QQorqsGis+LS2Nzz//nKNHjwLQokULxowZg6+vr02Dq7VKT916pSk+M7+IIr0BR7UMCCiEEMI6FmeQrVu3EhERwfvvv09aWhppaWl88MEHNGzYkK1bt9ZEjLVPqaZ4LxeNaVN6ntxnF0IIYT2La+wTJkzg4YcfZsmSJajVxpnI9Ho948ePZ8KECRw8eNDmQdY6pqZ4Y2J3VDvg5aIhI09Hem4h/u5aOwYnhBDiZmZxjT0uLo6pU6eakjqAWq1mypQpxMXF2TS4WqtUUzxcbY6XQWqEEEJUh8WJ/bbbbjPdWy/p6NGjtG3b1iZB1XrFNfbCbCgydpjzlmfZhRBC2IDFTfHPPvsszz33HHFxcdxxxx0A7Nq1i8WLFzN//nwOHDhg2rdNmza2i7Q2cfYCVIBivM/uESSPvAkhhLAJixP78OHDAZg2bVq521QqFYqioFKp0Ov11Y+wNnJQg4u3MannpYJHkGmQGpm6VQghRHVYnNhPnTpVE3HUPS6+VxJ7qalb5Vl2IYQQ1WBxYg8PD6+JOOqeUoPUFDfFyz12IYQQ1WHVADXx8fEsWrTI1ImuZcuWPPfcczRu3NimwdVqFYwXL03xQgghqsPiXvEbN26kZcuW7N69mzZt2tCmTRtiYmJo1aoVUVFRNRFj7VRqkBppihdCCGELFtfYX3rpJSZPnsz8+fPLrH/xxRfp3bu3zYKr1cqMF19cY5fELoQQwnoW19iPHj3KE088UWb9mDFjOHLkiE2CqhNKNcVffdxNmuKFEEJYz+LEHhAQQGxsbJn1sbGxBAYG2iKmuqG4xl66KT63EINBsVdUQgghbnIWN8WPGzeOJ598kpMnT9KlSxcAtm/fzptvvsmUKVNsHmCtVWq8+OKmeIMCWflFeLlqKjpSCCGEqJDFif2VV17Bw8ODBQsWMH36dABCQ0OZPXs2zz77rM0DrLVKNcVrHdW4OanJKdSTllsoiV0IIYRVLErsRUVFrFq1ihEjRjB58mSysrIA8PDwqJHgarVSveLBOF58TmEeqbmFROBmp8CEEELczCy6x+7o6MjTTz9Nfn4+YEzoktStVLJXvGK8p+7jZqyly3jxQgghrGVx57mOHTvyzz//1EQsdUtxU7y+AHS5QMln2aVnvBBCCOtYfI99/PjxTJ06lfPnz9O+fXvc3MybjGVGtypycgcHDRh0xuZ4JzeznvFCCCGENSxO7MOGDQMw6ygnM7pZQaUyNsfnXDI2x3vVx0cGqRFCCFFNMrubPbn6GhO7abz44hq7NMULIYSwjsX32M+cOUO9evUIDw83W+rVq8eZM2csOtfWrVsZNGgQoaGhqFQq1q5dW+n+0dHRqFSqMktiYqLZfosXLyYiIgJnZ2c6derE7t27Lf2Y10epnvFXR5+TGrsQQgjrWJzYe/ToQWpqapn1GRkZ9OjRw6Jz5eTk0LZtWxYvXmzRccePHychIcG0lBzxbs2aNUyZMoVZs2axb98+2rZtS9++fbl06ZJF17guKhgvPlUmghFCCGEli5vii++ll5aSklKmI9219O/fn/79+1saAoGBgXh7e5e7beHChYwbN47HH38cgKVLl/Lrr7+ybNkyXnrppXKPKSgooKCgwPQ+MzMTAJ1Oh05XvWbx4uPLO4/a2RsHQJ99GYNOh4fW+D0rLaew2tetDSorO1ExKTfrSdlZR8rNOpaWW1X3q3Jiv++++wBjR7nRo0ej1WpN2/R6PQcOHDANMVvT2rVrR0FBAbfccguzZ8/mzjvvBKCwsJC9e/eaRsQDcHBwoFevXuzcubPC882bN485c+aUWf/777/j6upqk5jLm9K2ZUIaTYBTR/ZxOHM957IBHElMzWL9+vU2uW5tINMBW0fKzXpSdtaRcrNOVcstNze3SvtVObF7eXkBxhq7h4cHLi4upm1OTk7ccccdjBs3rqqns0pISAhLly6lQ4cOFBQU8Nlnn9G9e3diYmK47bbbuHz5Mnq9nqCgILPjgoKCOHbsWIXnnT59utk495mZmYSFhdGnTx88PT2rFbNOpyMqKorevXuj0ZgPE+uw4wRcWk+jEG/CBwzgQnoe7xz8i1yDA/379ym3ZaQuqazsRMWk3KwnZWcdKTfrWFpuxa3J11LlxL58+XIAIiIieP755y1udreFZs2a0axZM9P7Ll26EB8fz7vvvsuXX35p9Xm1Wq1ZC0QxjUZjs1/Scs/l7g+AQ346DhoNAZ7GRK7TK+gUB9ycLL5TUivZ8udQl0i5WU/KzjpSbtaparlVtWwt7jw3a9YsuyT1inTs2JG4uDgA/P39UavVJCUlme2TlJREcHCwPcKrXKle8a5Oapwcr9xnl57xQgghrGBxYk9KSuKxxx4jNDQUR0dH1Gq12XK9xcbGEhISAhhvCbRv357NmzebthsMBjZv3kznzp2ve2zXVKpXvEqlujpIjQwrK4QQwgoWt/WOHj2as2fP8sorrxASElKt+8DZ2dmm2jYYB7+JjY3F19eXBg0aMH36dC5cuMDKlSsBWLRoEQ0bNqRVq1bk5+fz2Wef8ccff/D777+bzjFlyhRGjRpFhw4d6NixI4sWLSInJ8fUS/6GUmrqVjCOF5+UWSA1diGEEFaxOLFv27aNv/76i3bt2lX74n///bfZs+/FHdhGjRrFihUrSEhI4OzZs6bthYWFTJ06lQsXLuDq6kqbNm3YtGmT2TkefvhhkpOTmTlzJomJibRr144NGzaU6VB3QyjZFG8wgIOD6Vl2SexCCCGsYXFiDwsLQ7kyzWh1de/evdJzrVixwuz9tGnTmDZt2jXPO3HiRCZOnFjd8GpecVO8YoCCTHDxLjH6nDTFCyGEsJzF99gXLVrESy+9xOnTp2sgnDpG4wyaKx0Rc1OAq+PFy+hzQgghrGFxjf3hhx8mNzeXxo0b4+rqWqb7fXnDzYpKuAdAWg7kJINfY1PnORkvXgghhDUsTuyLFi2qgTDqMPcgSDsN2cZH9HxkhjchhBDVYHFiHzVqVE3EUXe5X5nAJts4Sc3VxC41diGEEJaz+B47QHx8PDNmzGD48OGmWdN+++03Dh8+bNPg6gT3K731i2vsbtIrXgghhPUsTuxbtmyhdevWxMTE8OOPP5KdnQ3A/v37mTVrls0DrPVKJ/biGrsMUCOEEMIKFif2l156iddee42oqCicnJxM63v27MmuXbtsGlydIE3xQgghbMjixH7w4EGGDh1aZn1gYCCXL1+2SVB1SgU19txCPQVFentFJYQQ4iZlcWL39vYmISGhzPp//vmHevXq2SSoOqVUjd3D2RG1g3GYXhmkRgghhKUsTuzDhg3jxRdfJDExEZVKhcFgYPv27Tz//POMHDmyJmKs3Uw19ktgMODgoMLbRTrQCSGEsI7Fif2NN96gefPmhIWFkZ2dTcuWLfnPf/5Dly5dmDFjRk3EWLu5BRj/NeggPx3ANF68jD4nhBDCUhY/x+7k5MSnn37KzJkzOXjwINnZ2dx66600adKkJuKr/Ry1xjHj89KM99ldfa/cZ8+RpnghhBAWszixFwsLCyMsLAy9Xs/BgwdJS0vDx8fHlrHVHe5BVxN7YAt83KRnvBBCCOtY3BQ/adIkPv/8cwD0ej3dunXjtttuIywsjOjoaFvHVzeUeeTtyj12aYoXQghhIYsT+/fff0/btm0BWLduHSdPnuTYsWNMnjyZ//73vzYPsE6oaJAaaYoXQghhIYsT++XLlwkODgZg/fr1PPTQQzRt2pQxY8Zw8OBBmwdYJ5QZVlaa4oUQQljH4sQeFBTEkSNH0Ov1bNiwgd69ewOQm5uLWq22eYB1gjTFCyGEsBGLO889/vjjPPTQQ4SEhKBSqejVqxcAMTExNG/e3OYB1gmlauze0hQvhBDCShYn9tmzZ3PLLbdw7tw5HnzwQbRaLQBqtZqXXnrJ5gHWCaVq7L5XmuLTpSleCCGEhax63O2BBx4we5+eni7ztFdHmc5zMkCNEEII61h8j/3NN99kzZo1pvcPPfQQfn5+1K9fnwMHDtg0uDqjOLHnpoBeZ2qKz8wvokhvsGNgQgghbjYWJ/alS5cSFhYGQFRUFFFRUfz222/069eP559/3uYB1gkuvqC60vEwJ9k0VjxARp7cZxdCCFF1FjfFJyYmmhL7L7/8wkMPPUSfPn2IiIigU6dONg+wTnBwMN5nz0qA7CQcPUPxdHYkM7+ItFwdfu5ae0cohBDiJmFxjd3Hx4dz584BsGHDBlOveEVR0Otl/nCrlX7kTZ5lF0IIYQWLa+z33XcfI0aMoEmTJqSkpNC/f3/AOB97ZGSkzQOsM8p55O1MSq48yy6EEMIiFif2d999l4iICM6dO8dbb72Fu7s7AAkJCYwfP97mAdYZphq7MbH7XukZLzO8CSGEsITFiV2j0ZTbSW7y5Mk2CajOMtXYi0efMzbFp0pTvBBCCAtY9Rx7fHw8ixYt4ujRowC0bNmSSZMm0ahRI5sGV6dUOPqcJHYhhBBVZ3HnuY0bN9KyZUt2795NmzZtaNOmDTExMbRs2ZKoqKiaiLFuKDP63JWm+BxpihdCCFF1FtfYX3rpJSZPnsz8+fPLrH/xxRdNk8IIC1VQY5emeCGEEJawuMZ+9OhRnnjiiTLrx4wZw5EjR2wSVJ1UwT12GS9eCCGEJSxO7AEBAcTGxpZZHxsbS2BgoC1iqpuKm+ILs6Eg++rUrdIrXgghhAUsTuzjxo3jySef5M033+Svv/7ir7/+Yv78+Tz11FOMGzfOonNt3bqVQYMGERoaikqlYu3atZXu/+OPP9K7d28CAgLw9PSkc+fObNy40Wyf2bNno1KpzJabYjpZJ3fQuBpf51y6OkCNPMcuhBDCAhbfY3/llVfw8PBgwYIFTJ8+HYDQ0FBmz57Ns88+a9G5cnJyaNu2LWPGjOG+++675v5bt26ld+/evPHGG3h7e7N8+XIGDRpETEwMt956q2m/Vq1asWnTJtN7R0erOv9fXyqVsdaedhqyL+HjFQpAep4ORVFQqVT2jU8IIcRNwaKMV1RUxKpVqxgxYgSTJ08mKysLAA8PD6su3r9/f9PIdVWxaNEis/dvvPEGP//8M+vWrTNL7I6OjgQHB1sVk125B11J7El4hxib4vUGhcz8IrxKTAwjhBBCVMSixO7o6MjTTz9ten7d2oRuKwaDgaysLHx9fc3WnzhxgtDQUJydnencuTPz5s2jQYMGFZ6noKCAgoIC0/vMzEwAdDodOl317nEXH1+V86hdA3AA9BkJqDHg6qQmt1BPcmYuro6u1YrjZmRJ2YmrpNysJ2VnHSk361hablXdz+I26o4dO/LPP/8QHh5u6aE2984775Cdnc1DDz1kWtepUydWrFhBs2bNSEhIYM6cOdx1110cOnSowi8i8+bNY86cOWXW//7777i62iahVuUZ/zYpeTQE4mK3c+xSCFrU5KLi16hoIuz7HcquZHwE60i5WU/KzjpSbtaparnl5uZWaT+LE/v48eOZOnUq58+fp3379ri5uZltb9OmjaWntMqqVauYM2cOP//8s1lv/JJN+23atKFTp06Eh4fz7bfflvuYHsD06dOZMmWK6X1mZiZhYWH06dMHT0/PasWp0+mIioqid+/eaDSVN6c7/HUEtm6mSYgnjQYM4OPTO0lLyKLlrbfTvWlAteK4GVlSduIqKTfrSdlZR8rNOpaWW3Fr8rVYnNiHDRsGYNZRTqVSmTp4XY+pW1evXs3YsWP57rvvTNPGVsTb25umTZsSFxdX4T5arRattuyc5xqNxma/pFU6l1cIAA65l3HQaK7Mw55FVoGhTv+x2PLnUJdIuVlPys46Um7WqWq5VbVsLU7sp06dsvQQm/rmm28YM2YMq1evZuDAgdfcPzs7m/j4eB577LHrEF01VTT6nDzyJoQQooosTuy2vLeenZ1tVpM+deoUsbGx+Pr60qBBA6ZPn86FCxdYuXIlYGx+HzVqFO+99x6dOnUiMTERABcXF7y8vAB4/vnnGTRoEOHh4Vy8eJFZs2ahVqsZPny4zeKuMaXGi/eRqVuFEEJYqMoD1Ozdu5cePXqU28afkZFBjx492L9/v0UX//vvv7n11ltNj6pNmTKFW2+9lZkzZwLGOd7Pnj1r2v+TTz6hqKiICRMmEBISYlqee+450z7nz59n+PDhNGvWjIceegg/Pz927dpFQMBNcI+65LCyBoPM8CaEEMJiVa6xL1iwgJ49e5bbmczLy4vevXvz9ttv89VXX1X54t27d0dRlAq3r1ixwux9dHT0Nc+5evXqKl//huN25cuHQQf56fiahpWVxC6EEKJqqlxjj4mJ4d57761w+6BBg9ixY4dNgqqzHLXg4mN8nZ1UYlhZaYoXQghRNVVO7BcuXKh0QBp3d3cSEhJsElSdVqIDnTTFCyGEsFSVE3tAQADHjx+vcPuxY8fw9/e3SVB1WokOdL6S2IUQQlioyom9V69evP766+VuUxSF119//ZrPlIsqKFFj93G7co89R4fBUHFfBCGEEKJYlTvPzZgxg/bt29OpUyemTp1Ks2bNAGNNfcGCBfz7779lOrsJK5RI7EGezqgdVBTqDVzKKiDYy9m+sQkhhLjhVTmxN27cmE2bNjF69GiGDRtmmkZUURRatmxJVFQUkZGRNRZonVGiKV6jdiDU25lzqXmcTc2VxC6EEOKaLBqgpkOHDhw6dIjY2FhOnDiBoig0bdqUdu3a1VB4dVCp0eca+LqaEnvHhr6VHCiEEEJYMfIcQLt27SSZ15RSo8818HVjOymcTa3arD5CCCHqtip3nhPXSTk1doBzktiFEEJUgST2G01xYs9NAb3OlNilxi6EEKIqJLHfaFx8QaU2vs5JNiX2MymS2IUQQlybJPYbjYNDifvsSabEfjm7gNzCIjsGJoQQ4mZQpc5zBw4cqPIJ27RpY3Uw4gr3QMhKgOxLeIVq8HR2JDO/iHOpeTQLrnhYXyGEEKJKib1du3aoVKoKZ2Ir3qZSqdDr9TYNsE4q1YEu3M+NgxcyOJuaK4ldCCFEpaqU2E+dOlXTcYiSSjTFg7FnfHFiF0IIISpTpcQeHh5e03GIkkw1duOz7GHFPeNTcuwVkRBCiJuEVQPUABw5coSzZ89SWGg+89jgwYOrHVSdV8Gz7FJjF0IIcS0WJ/aTJ08ydOhQDh48aHbfvXjseLnHbgNlRp+TxC6EEKJqLH7c7bnnnqNhw4ZcunQJV1dXDh8+zNatW+nQoQPR0dE1EGIdVKbz3JXR59LyZPpWIYQQlbI4se/cuZO5c+fi7++Pg4MDDg4OdO3alXnz5vHss8/WRIx1T6l77CFeV6ZvLTJO3yqEEEJUxOLErtfr8fAwPnLl7+/PxYsXAWMHu+PHj9s2urqquCm+MBsKsnFUO1DP2wWAM9KBTgghRCUsTuy33HIL+/fvB6BTp0689dZbbN++nblz59KoUSObB1gnObmDxtj8To7cZxdCCFF1Fif2GTNmYDAYAJg7dy6nTp3irrvuYv369bz//vs2D7BOUqnKdKALk1nehBBCVIHFveL79u1reh0ZGcmxY8dITU3Fx8fH1DNe2IB7EKSdlkfehBBCWMTiGntGRgapqalm63x9fUlLSyMzM9NmgdV5pWrsxT3jJbELIYSojMWJfdiwYaxevbrM+m+//ZZhw4bZJChBJYPU5NkrIiGEEDcBixN7TEwMPXr0KLO+e/fuxMTE2CQoQZnEHlZi+tacApm+VQghRPksTuwFBQUUFZVNLDqdjrw8qU3aTKmmeC8XDV4uGgDOpUlzvBBCiPJZnNg7duzIJ598Umb90qVLad++vU2CEpSpsUOJ5vgUSexCCCHKZ3Gv+Ndee41evXqxf/9+7r77bgA2b97Mnj17+P33320eYJ1VqsYO0MBPpm8VQghROYtr7HfeeSc7d+4kLCyMb7/9lnXr1hEZGcmBAwe46667aiLGuqnksLJXxg1oIM+yCyGEuAarpm1t164dX3/9ta1jESW5BRj/NeggPx1cfU2J/YwkdiGEEBWoUo295PPpmZmZlS6W2Lp1K4MGDSI0NBSVSsXatWuveUx0dDS33XYbWq2WyMhIVqxYUWafxYsXExERgbOzM506dWL37t0WxXVDcNSCi4/xtQxSI4QQooqqlNh9fHy4dMl4r9fb2xsfH58yS/F6S+Tk5NC2bVsWL15cpf1PnTrFwIED6dGjB7GxsUyaNImxY8eyceNG0z5r1qxhypQpzJo1i3379tG2bVv69u1riv+mUsGz7OdTZfpWIYQQ5atSU/wff/yBr68vAH/++afNLt6/f3/69+9f5f2XLl1Kw4YNWbBgAQAtWrRg27ZtvPvuu6ahbhcuXMi4ceN4/PHHTcf8+uuvLFu2jJdeeslmsV8X7oGQfMxs+lZHBxWFegNJWfmEeLnYOUAhhBA3miol9m7dugFQVFTEli1bGDNmDPXr16/RwMqzc+dOevXqZbaub9++TJo0CYDCwkL27t3L9OnTTdsdHBzo1asXO3furPC8BQUFFBRcnee8+JaCTqdDp9NVK+bi4605j9o1AAdAn3ERw5XjQ72dOZuax8lLmfi7WtVF4qZRnbKry6TcrCdlZx0pN+tYWm5V3c+izODo6Mjbb7/NyJEjLTnMZhITEwkKCjJbFxQURGZmJnl5eaSlpaHX68vd59ixYxWed968ecyZM6fM+t9//x1XV1ebxB4VFWXxMa0u5RAJnDy4iyOpDQFw0TsADvwaHcPlwLrRHG9N2Qkpt+qQsrOOlJt1qlpuublV619lcZWvZ8+ebNmyhYiICEsPvWFNnz6dKVOmmN5nZmYSFhZGnz598PT0rNa5dTodUVFR9O7dG41GY9GxDjvj4Y8NNA50J2LAAAB2Fh3h+J7zeNdvwoBekdWK7UZXnbKry6TcrCdlZx0pN+tYWm5V7aBucWLv378/L730EgcPHqR9+/a4ubmZbR88eLClp6yy4OBgkpKSzNYlJSXh6emJi4sLarUatVpd7j7BwcEVnler1aLVasus12g0NvsltepcXqEAOOQm43Dl2Ah/dwAuZOTXmT8gW/4c6hIpN+tJ2VlHys06VS23qpatxYl9/PjxgLGTWmkqlQq9Xm/pKausc+fOrF+/3mxdVFQUnTt3BsDJyYn27duzefNmhgwZAoDBYGDz5s1MnDixxuKqMeWNPiePvAkhhKiExYndcGUUNFvIzs4mLi7O9P7UqVPExsbi6+tLgwYNmD59OhcuXGDlypUAPP3003z44YdMmzaNMWPG8Mcff/Dtt9/y66+/ms4xZcoURo0aRYcOHejYsSOLFi0iJyfH1Ev+plL8uFtWommVjD4nhBCiMnbtVv3333+bTQFbfJ971KhRrFixgoSEBM6ePWva3rBhQ3799VcmT57Me++9R/369fnss89Mj7oBPPzwwyQnJzNz5kwSExNp164dGzZsKNOh7qbgdeXJg7xUyE01jj7nVzx9ayE5BUW4aWt3z3ghhBCWsSorbNmyhXfeeYejR48C0LJlS1544QWLx4rv3r07ilJxz+7yRpXr3r07//zzT6XnnThx4s3Z9F6asxf4REDaaUg8AI264+mswdtVQ3qujrOpubQIqV7nPiGEELWLxZPAfPXVV/Tq1QtXV1eeffZZnn32WVxcXLj77rtZtWpVTcRYt4W0Nf6bsN+0Su6zCyGEqIjFNfbXX3+dt956i8mTJ5vWPfvssyxcuJBXX32VESNG2DTAOi+kLRz52Syxh/m6cuB8htxnF0IIUYbFNfaTJ08yaNCgMusHDx7MqVOnbBKUKEFq7EIIISxgcWIPCwtj8+bNZdZv2rSJsLAwmwQlSgi+kthT4qEgC4BwSexCCCEqYHFT/NSpU3n22WeJjY2lS5cuAGzfvp0VK1bw3nvv2TzAOs89ADzrQeYFSDwE4Z2v1thTJLELIYQwZ3Fif+aZZwgODmbBggV8++23gHGWtTVr1nDvvffaPECBsTk+84KxOT68M2HF07em5aE3KKgdVHYOUAghxI3Cqsfdhg4dytChQ20di6hISFs4vt50n91s+tbMfEK9ZfpWIYQQRhbfYxd2UKoDnaPagXo+xmQu99mFEEKUZHFi9/HxwdfXt8zi5+dHvXr16NatG8uXL6+JWOuu4sSefAx0eYD0jBdCCFE+ixP7zJkzcXBwYODAgcyZM4c5c+YwcOBAHBwcmDBhAk2bNuWZZ57h008/rYl46yaPEHD1B0UPSUcAGTNeCCFE+Sy+x75t2zZee+01nn76abP1H3/8Mb///js//PADbdq04f3332fcuHE2C7ROU6mMtfb4zZAQC/XbmxL7GekZL4QQogSLa+wbN26kV69eZdbffffdbNy4EYABAwZw8uTJ6kcnripujk88AEhTvBBCiPJZnNh9fX1Zt25dmfXr1q3D19cXgJycHDw8PKofnbiqVAe6MGmKF0IIUQ6Lm+JfeeUVnnnmGf788086duwIwJ49e1i/fj1Lly4FICoqim7dutk20rquOLEnHQa9zjR9a0pOIdkFRbjL9K1CCCGwIrGPGzeOli1b8uGHH/Ljjz8C0KxZM7Zs2WIaiW7q1Km2jVIYp2/VekFBBiQfwzO4NT6uGtJydZyT6VuFEEJcYVU178477+TOO++0dSyiMioVhLSB038Zm+ODW9PA15W03AzOpEhiF0IIYWTVADXx8fHMmDGDESNGcOnSJQB+++03Dh8+bNPgRClyn10IIcQ1WJzYt2zZQuvWrYmJieGHH34gOzsbgP379zNr1iybByhKCGln/PdKYpee8UIIIUqzOLG/9NJLvPbaa0RFReHk5GRa37NnT3bt2mXT4EQpIW2M/yYeBINeErsQQogyLE7sBw8eLHcCmMDAQC5fvmyToEQF/CJB4wq6XEiJp1GAOwBHEjJRFMXOwQkhhLgRWJzYvb29SUhIKLP+n3/+oV69ejYJSlTAQQ3BrY2vE/bTpr4XWkcHkrMKiLuUbd/YhBBC3BAsTuzDhg3jxRdfJDExEZVKhcFgYPv27Tz//POMHDmyJmIUJZk60MXirFFze4RxUKDtcdJaIoQQworE/sYbb9C8eXPCwsLIzs6mZcuW/Oc//6FLly7MmDGjJmIUJZXqGd8l0g+AbXEp9opICCHEDcTi59idnJz49NNPmTlzJgcPHiQ7O5tbb72VJk2a1ER8ojRTYj8AisKdjf2B48ScTKFIb8BRbdUTjEIIIWoJi7PA3Llzyc3NJSwsjAEDBvDQQw/RpEkT8vLymDt3bk3EKEoKaA5qJ+MIdGmnuaWeF57OjmQVFHHwQoa9oxNCCGFnFif2OXPmmJ5dLyk3N5c5c+bYJChRCbUGgloZXyfsR+2gonNjY3O83GcXQghhcWJXFAWVSlVm/f79+02zu4kaVuo++52R/gBsl/vsQghR51X5HruPjw8qlQqVSkXTpk3Nkrteryc7O5unn366RoIUpQRfGaimuANdY2Ni33s2jXydHmeN2l6RCSGEsLMqJ/ZFixahKApjxoxhzpw5eHl5mbY5OTkRERFB586dayRIUUrJoWUVhcYBbgR7OpOYmc/fp9Po2sTfruEJIYSwnyon9lGjRgHQsGFDunTpgkajqbGgxDUEtQSVGnIvQ1YCKs9QukT68eO+C2yLuyyJXQgh6jCL77F369bNlNTz8/PJzMw0W8R1oHEx9o6Hq/fZrzTH74iXDnRCCFGXWZzYc3NzmThxIoGBgbi5ueHj42O2iOukgg50By9kkJGrs1dUQggh7MzixP7CCy/wxx9/sGTJErRaLZ999hlz5swhNDSUlStXWhXE4sWLiYiIwNnZmU6dOrF79+4K9+3evbupE1/JZeDAgaZ9Ro8eXWZ7v379rIrthlUqsQd7OdM4wA1FgZ0npdYuhBB1lcWJfd26dXz00Ufcf//9ODo6ctdddzFjxgzeeOMNvv76a4sDWLNmDVOmTGHWrFns27ePtm3b0rdvXy5dulTu/j/++CMJCQmm5dChQ6jVah588EGz/fr162e23zfffGNxbDe0Uokd5LE3IYQQViT21NRUGjVqBICnpyepqakAdO3ala1bt1ocwMKFCxk3bhyPP/44LVu2ZOnSpbi6urJs2bJy9/f19SU4ONi0REVF4erqWiaxa7Vas/1q3W2C4FsAFWRegOxkoERil/vsQghRZ1k8VnyjRo04deoUDRo0oHnz5nz77bd07NiRdevW4e3tbdG5CgsL2bt3L9OnTzetc3BwoFevXuzcubNK5/j8888ZNmwYbm5uZuujo6MJDAzEx8eHnj178tprr+Hn51fuOQoKCigoKDC9L+4EqNPp0Omqd7+6+PjqnqcMB2cc/RqjSomj6Pw+lMY96RDmiYMKTibncPZyFiFezra95nVWY2VXy0m5WU/KzjpSbtaxtNyqup9KURTFkkDeffdd1Go1zz77LJs2bWLQoEEoioJOp2PhwoU899xzVT7XxYsXqVevHjt27DB7Bn7atGls2bKFmJiYSo/fvXs3nTp1IiYmho4dO5rWr169GldXVxo2bEh8fDwvv/wy7u7u7Ny5E7W67OAts2fPLnc43FWrVuHq6lrlz3O9tT/9EfXTdnEk5EFOBA8CYMEBNWdzVDzSWE/HQIt+tEIIIW5gubm5jBgxgoyMDDw9PSvcz+Ia++TJk02ve/XqxbFjx9i7dy+RkZG0adPGumit9Pnnn9O6dWuzpA7GOeOLtW7dmjZt2tC4cWOio6O5++67y5xn+vTpTJkyxfQ+MzOTsLAw+vTpU2nhVYVOpyMqKorevXvb/Nl/h53x8McumnsX0mTAAACOak6wdOspctzrM2BAa5te73qrybKrzaTcrCdlZx0pN+tYWm5VfaTc4sReWnh4OOHh4VYd6+/vj1qtJikpyWx9UlISwcHBlR6bk5PD6tWrqzSjXKNGjfD39ycuLq7cxK7VatFqtWXWazQam/2S2vJcJmG3A+BwZhsODoBaw11NA1m69RQ7T6Xi6OhY7rj+N5saKbs6QMrNelJ21pFys05Vy62qZVvlznN//PEHLVu2LPcbQ0ZGBq1ateKvv/6q6ukA41C07du3Z/PmzaZ1BoOBzZs3X3N42u+++46CggIeffTRa17n/PnzpKSkEBISYlF8N7wGncHVH3JTIP5PANqH++Dk6EBSZgHxyTl2DlAIIcT1VuXEvmjRIsaNG1du07SXlxdPPfUUCxcutDiAKVOm8Omnn/LFF19w9OhRnnnmGXJycnj88ccBGDlypFnnumKff/45Q4YMKdMhLjs7mxdeeIFdu3Zx+vRpNm/ezL333ktkZCR9+/a1OL4bmtoRWj9gfH1gDQDOGjUdwo1PAMg0rkIIUfdUObHv37+/0kFe+vTpw969ey0O4OGHH+add95h5syZtGvXjtjYWDZs2EBQUBAAZ8+eJSEhweyY48ePs23bNp544oky51Or1Rw4cIDBgwfTtGlTnnjiCdq3b89ff/1VbnP7Ta/1Q8Z/j/0KBVlAyefZJbELIURdU+V77ElJSZW27zs6OpKcnGxVEBMnTmTixInlbouOji6zrlmzZlTUmd/FxYWNGzdaFcdNqd5t4NsYUuONyb3tMO6M9OftjcfZeTIFvUFB7XDz32cXQghRNVWusderV49Dhw5VuP3AgQO17x72zUClgjYPG19faY5vXc8LD2dHsvKLOHghw47BCSGEuN6qnNgHDBjAK6+8Qn5+fplteXl5zJo1i3vuucemwYkqKr7PfjIaspJQO6jo3MjY90Ca44UQom6pcmKfMWMGqampNG3alLfeeouff/6Zn3/+mTfffJNmzZqRmprKf//735qMVVTErzHUvx0UAxz6Abh6n12mcRVCiLqlyvfYg4KC2LFjB8888wzTp0833eNWqVT07duXxYsXmzq8CTto8zCc32Nsju88njsjjTX2PafTyNfpcdaUHXFPCCFE7WPRADXh4eGsX7+etLQ04uLiUBSFJk2a1L4JVm5GrYbCby9CQiwk/0vjgCYEeWpJyixg75k0Uw1eCCFE7Wbx7G4APj4+3H777XTs2FGS+o3CzR8iexlfH/wWlUrFnY2NyfyvE9IcL4QQdYVViV3coNpceab9wLegKPRoHgjAD/vOU1Ckt2NgQgghrhdJ7LVJswHg5A7pZ+DcbvrdEkywpzPJWQX8/M9Fe0cnhBDiOpDEXps4uUIL4/StHFiDRu3AmK4RAHzy10kMBpnGVQghajtJ7LVNcXP84R+hqJDhHRvgoXUk7lI2fx6/ZN/YhBBC1DhJ7LVNw27gHgR5aRC/GQ9nDSM6NQDg460n7RycEEKImiaJvbZxUMMt5jO+PX5nQzRqFbtPpRJ7Lt1+sQkhhKhxkthro+Lm+OO/QX4mwV7ODG5bD4BPpdYuhBC1miT22iikLfg3haJ8OLoOgCf/0wiA3w4lcDYl157RCSGEqEGS2GsjlarEM+3G5vhmwR50axqAQYHPtkmtXQghaitJ7LVV6weN/57aCpnGZ9ifulJr//bvc6TmFNorMiGEEDVIEntt5RMBYXcAChz8DoDOjf24pZ4n+ToDX+48Y9fwhBBC1AxJ7LVZu+HGf3d8APkZqFQqnvxPYwBW7jxNvk6GmRVCiNpGEntt1nYE+DWBnGTY8hYAA24Jpp63Cyk5hXy/97ydAxRCCGFrkthrM0cn6Dff+DpmKSQfx1HtwBNdGwLw+bZT6GWYWSGEqFUksdd2TXoZJ4cxFMGGl0BRePj2MLxcNJy6nEPUkSR7RyiEEMKGJLHXBX1fB7UTxP8Bx9fjpnXk0TuMw8x+sjXezsEJIYSwJUnsdYFvI+g80fh6w3TQ5TOqSwROagf2nU1n96lU+8YnhBDCZiSx1xV3TQWPEONc7Ts/JNDDmfvbG4eZffmng9JDXgghaglJ7HWF1h16v2p8/dcCyLjAC32bE+ChJe5SNvPWH7VvfEIIIWxCEntd0voB46A1ulyImomvmxPvPNgWgC92npH52oUQohaQxF6XqFQw4C1ABYe+hzM76NY0gNFdIgB44bsDXM4usGuIQgghqkcSe10T0hbajza+Xj8NDHpe6t+cpkHuXM4u4KUfDqAo8my7EELcrCSx10U9XwFnL0g6CHtX4KxR896wW3FSO7Dp6CVW7T5r7wiFEEJYSRJ7XeTmBz1mGF//8SrkptIixJNp/ZoB8OovR4hPzrZjgEIIIawlib2u6jAGAltCXhqsHQ8GPWPubEjXSH/ydQYmrY6lsMhg7yiFEEJYSBJ7XaV2hMEfgqMz/PsbbPwvDg4qFjzUFm9XDQcvZLBo07/2jlIIIYSFJLHXZfXbw9ClxtcxSyDmY4I8nZl/X2sAlmyJZ9fJFDsGKIQQwlI3RGJfvHgxERERODs706lTJ3bv3l3hvitWrEClUpktzs7OZvsoisLMmTMJCQnBxcWFXr16ceLEiZr+GDenVkOh12zj6w0vwfEN9LslhIc61EdRYMqaWNJyCu0aohBCiKqze2Jfs2YNU6ZMYdasWezbt4+2bdvSt29fLl2qeLAUT09PEhISTMuZM2fMtr/11lu8//77LF26lJiYGNzc3Ojbty/5+fk1/XFuTndOgttGgmKA78dAwn5mDWpFhJ8rFzPyeeSzGEnuQghxk3C0dwALFy5k3LhxPP744wAsXbqUX3/9lWXLlvHSSy+Ve4xKpSI4OLjcbYqisGjRImbMmMG9994LwMqVKwkKCmLt2rUMGzaszDEFBQUUFFwdmCUzMxMAnU6HTqer1ucrPr6656lxfd5EnXYGh1NbUL5+CKfHf+ejEe0YufxvjiRkMvzTXXwxuj2+bk7XLaSbpuxuMFJu1pOys46Um3UsLbeq7qdS7DgaSWFhIa6urnz//fcMGTLEtH7UqFGkp6fz888/lzlmxYoVjB07lnr16mEwGLjtttt44403aNWqFQAnT56kcePG/PPPP7Rr1850XLdu3WjXrh3vvfdemXPOnj2bOXPmlFm/atUqXF1dq/9BbxKORTncdeI1PPMvkOHSgG1N/sv5Ahc+PKImS6ci1FVhQks97hp7RyqEEHVPbm4uI0aMICMjA09Pzwr3s2uN/fLly+j1eoKCgszWBwUFcezYsXKPadasGcuWLaNNmzZkZGTwzjvv0KVLFw4fPkz9+vVJTEw0naP0OYu3lTZ9+nSmTJliep+ZmUlYWBh9+vSptPCqQqfTERUVRe/evdFoboKMmN4JZUVfvHLO0j/nO/QPfUW3bgU8tmwPF7MLWXnOmy8e74Dfdai533Rld4OQcrOelJ11pNysY2m5FbcmX4vdm+It1blzZzp37mx636VLF1q0aMHHH3/Mq6++atU5tVotWq22zHqNRmOzX1JbnqtGBTSG4WtgxQAc4jfhsOkVmg94m2+e7MzwT3dxPCmbUcv38vW4Tvi7ly2zmnDTlN0NRsrNelJ21pFys05Vy62qZWvXznP+/v6o1WqSkpLM1iclJVV4D700jUbDrbfeSlxcHIDpuOqcs86r3x7u+wRQwZ5P4depRPppWf3kHQR6aDmelMWIT3fJhDFCCHEDsmtid3Jyon379mzevNm0zmAwsHnzZrNaeWX0ej0HDx4kJCQEgIYNGxIcHGx2zszMTGJiYqp8TgG0vBcGvA2o4O/P4cuhNHYrZPWTdxDkqeXfpGyGf7KL5CxJ7kIIcSOx++NuU6ZM4dNPP+WLL77g6NGjPPPMM+Tk5Jh6yY8cOZLp06eb9p87dy6///47J0+eZN++fTz66KOcOXOGsWPHAsYe85MmTeK1117jf//7HwcPHmTkyJGEhoaaddATVdBxHAz/Bpzc4fRf8GlPGnGB1U92JtjTmROXshn2yU7iLsm48kIIcaOw+z32hx9+mOTkZGbOnEliYiLt2rVjw4YNps5vZ8+excHh6vePtLQ0xo0bR2JiIj4+PrRv354dO3bQsmVL0z7Tpk0jJyeHJ598kvT0dLp27cqGDRvKDGQjqqBZf3giCr55GNJOwWe9aPjAMlY/2YXhn+4iPjmHQR9sY/bgljzUIQyVSmXviIUQok6ze2IHmDhxIhMnTix3W3R0tNn7d999l3fffbfS86lUKubOncvcuXNtFWLdFtQSxv0J346EM9th1UNE9J7Lz+PHMuW7A2yLu8yLPxzkrxOXeX1oa7xcpPOMEELYi92b4sVNws0fHlt7dYS632cQ+OdUVo5sy4v9muPooOKXAwkMfP8v9p5Js3e0QghRZ0liF1Xn6ASD3od+b4LKAWK/xmHlIJ5pDd893ZkwXxfOp+Xx0Mc7WfxnHHqD3cY+EkKIOksSu7CMSgV3PA2PfA9aLzi/G5Z04dazX/DrxM4MbhuK3qDw9sbjPPpZDIkZMj6/EEJcT5LYhXUi74ant0KjHlCUD5tm4bmyD+91g7cfaIOrk5qdJ1PovXALS7fEk6/T2ztiIYSoEySxC+v5RMBjP8GQJeDsDYkHUH3akwdTP+aXp9vTpr4XWQVFzP/tGHcv2MLPsRcwSPO8EELUKEnsonpUKmg3AibugVvuN3as2/EBjb7rxdp+RSx4sC3Bns5cSM/judWxDPloO7tOptg7aiGEqLUksQvbcA+EB5YZx5n3rAdpp3H46l7uPzOX6DENeKFvM9yc1Bw4n8GwT3Yx9ou/ZWAbIYSoAZLYhW016wfjd8Ht4wAVHFiD88edmJD+Dn890YBH72iA2kHFpqNJ9F20lRe+28/RhKrNWCSEEOLaJLEL23P2hIHvwLjNENkbFD3s/wbfFXfymv59/hgVSq8WQegNCt/tPU//9/5i2Cc72Xg4UR6RE0KIapLELmpOvfbw6Pcw7g9o2s94//3gt4R/053P3D7i1+H+DGwdgtpBxa6TqTz15V66vf0nn249SUaezt7RCyHETUkSu6h59drDiDXw5BZofg+gwKEfaPVTXxY7vM3uB3SM7xaOt6uG82l5vL7+KHe8sZlZ645wPgcURWrxQghRVTfEWPGijghtB8O+hoQDsPVtOPo/OL4ev+PrmeYezOROw9jo1IsPYhWOJ2Wxavd5wJEfLu5gyK31GNw2lAh/N3t/CiGEuKFJjV1cfyFt4OEvYcIe6DwRXP0hOxHNzkXcs+UeNnjPJ+ruiwxq4YWjSuHk5RwWRv1L93eiuXfxdj7fdopLmTKinRBClEdq7MJ+AppC39fh7lnw7wbYtxLiN6M6s50mZ7bzvtaT00FtuNBoKF9casIfJ3PYfy6d/efSef3XI9zRyI8+LYPo2TyIBn6u9v40QghxQ5DELuzP0QlaDjYuGRcgdhX88yWq9DM0LNhGw33b6Kp2orDZXexzuYPPLzUj6rwjO+JT2BGfwux1R2gc4EbP5oH0aBZIhwhfnBylMUoIUTdJYhc3Fq960O0FuGsqRaf+4vSGj2hcdBxV2imcTm3mDjZzB1AY1poD7l1Ym9Wc7y4GEJ+cQ3zyKT796xTuWkfuauJPj2aBdG7sR30fF1Qqlb0/mRBCXBeS2MWNycEBpUEXDtdPJ7x/fzQZp+D4eji2Hs7vwSn5IB2SD9IBeNXDgyTfjuxUbuGr5EbszfHnt0OJ/HYoEYBQL2c6NfKjU0NfOjXyI8LPVRK9EKLWksQubnwqFQQ0My5dJ0P2Jfh3o/G+/Om/UOVnEJywmaFsZiig8w3ihFsHNuU354eUcM5k+PHTPxf46Z8LAAR5aunY0I+ODX25Ncyb5sEeOKql6V4IUTtIYhc3H/dAuO0x42LQQ0IsnNwCJ6Ph7C40uUm0zP2VlvzKs05Q4BLMKdfWbC9swv9SG3Awsz7r9l9k3f6LADhrHGhdz4t2Yd60C/OhXQNvQr2cpVYvhLgpSWIXNzcHtXEAnHrt4a4poMuDczHGJH/qL0iIRZuXSPO8RJoTxRMaKHJ157x7a/bpI9mZ6cfhgkAOng5hz+k04BQAAR5a2tb3omWoFy1DPGkV6in36oUQNwVJ7KJ20bhAo+7GBaAwFy7shbO74OxOOLcbx8IsItJ2EsFO7gPQGndN1wRyilAO5QcSlxvCv8frs/xoQ7IwPkrn4exIyxBPWoZ60irUi+bBHkQGuuOsUdvhgwohRPkksYvazckVGt5lXMDYdJ902JjkE/bD5ROQcgLy0vDWXeJWLnGrGiiRq8851OfvoobE6hqx/3RjVp1qQAFOADioINzPjSaB7jQL9qBJkAfNgjxo6O8mj9wJIexCEruoWxzUxpHvQtqYr89NvZrkL5+AlDhIPADpZwkznCfM4TxDHf4CQK9y5Iw6gkNF9YjX+XM2NZBzKQGsORJEMl4oOODooCLcz5XGAe40DnQ3/hvgRqMAd7xcNHb44EKIukISuxAArr7QoJNxKSnnMlzYBxf3GZv0L+xDnXuZRkVxNCIOSuXoQjScVwI5Y/DnTFoQZ1KDOHosmA1KMOeVAHQ4EuChpZG/G40C3Gjo70aEn/HfBn6uaB2lWV8IUT2S2IWojJs/NO1jXAAUBTLOGZN9ShyknYb0M8Z/My7gpOhopLpAI/WFMqfS48AFgx+n84M5cy6I+LOhbFXqscwQSiK+OKhUhHq70ND/SqL3dTUufq6E+bjippU/VyHEtcn/FEJYQqUC7wbGpTS9DjLOGxN96iljsk89aVrUulwaOCTTgGTgoNmh2YoLcUoIcdn1icsMJT4+lD1KABcVPzJwA1T4u2tp4OtiSvj1fVyp7+tCmI8rIV7O8iy+EAKQxC6E7ag14NvQuBT3yi+mKJCddDXRp8TD5X8h+TiknsSdPNqpTtKOk2Yd9wBy0XLB4M/FAj8uXvTj4gU/Lij+7FICOK8EkIgvKgc1od7O1Pd2pZ63M7nJKgr+uUiYnzv1fVwI8nSWznxC1BGS2IW4HlQq8Ag2LuFdzLcVFRqTffKxq8k+5YRxQpzcy7hSQBOHCzShbPM+QKGi5qLiz/ksf85lBnLuTAAXFH9+OP8vifiQqPhSqHIiyMOZUG9nQr1dqOftQoiXMyHeLoR6uRDi7Yyfm5M8py9ELSCJXQh7c3SCwObGpTRdnjHBZ543NvNnXDDe4884B2lnIOM8TgYdEaokIkgCDpd7iTTFncR8HxITfEm86MslvDmleLJX8SAFT1IVTzIdvNF6BhDo7UZoceL3cibkSuIP8XLBx1UjyV+IG5wkdiFuZBoX8I80LuUx6CErwZjk089A2hkMqadIOXUAf6cCVFmJoMvFR5WNjyqbFpyr/Hp5kJ7rRsIFX85faerfeeXf80oASeog3L38CL6S8IM8jcm/+N8QL2f83LWoHST5C2EvktiFuJk5qMGrvnHhTgD0Oh071q9nwIABaBwdIT8dMhMg6yJkXlmyL0HuZchJgdzLKDmXIS8VlWLAW5WDtyqnwi8BmdkuJGd5c/m8F6mKBymKJ8fxYofiQYriRZrKC51rEHiF4uvlRbCnM4GezgR7OhPs5UyQp5ZAT2c8tI5S+xeiBkhiF6I2U6nAxce4BLWseDcw1v7z0iEn2dj0n3YG0s8aWwLSz6Kkn0WVk4ynKg9PVR6NSaj4ujrgMqQnu5Go+F5ZfPgbX5IUH9IVN/LVHji6+eDk4YeLpx+e3n4EebkQ6OFMgIfWuLhr8ZbmfyEsckMk9sWLF/P222+TmJhI27Zt+eCDD+jYsWO5+3766aesXLmSQ4cOAdC+fXveeOMNs/1Hjx7NF198YXZc37592bBhQ819CCFudg5qcPMzLuXc71cBFOYY7/VnXzJ+AchNMf6bkww5l1FyktFnXUKVlYC6KNdU+29e0S2A/CtLMhgUFVm4kKp4kKj4cejKl4BLKj9ytUHo3ILBIxStdxABnq5Xkr/xS0DglS8CMm6/EDdAYl+zZg1Tpkxh6dKldOrUiUWLFtG3b1+OHz9OYGBgmf2jo6MZPnw4Xbp0wdnZmTfffJM+ffpw+PBh6tWrZ9qvX79+LF++3PReq9Vel88jRK3m5AYBzYxLOVRc+U9FUaAg03gLIPOCsR+A6TZAEvrcNPQ5aZCfjrogHbU+HweVghe5eKlyaUiS+YmLgIwry3nIUlzIwoVMxY1MXPlXceVvXMlXu1Pg5IvOJQCDezAOniFofUJx9wnG38uNQE8t/u5afFydpB+AqLXsntgXLlzIuHHjePzxxwFYunQpv/76K8uWLeOll14qs//XX39t9v6zzz7jhx9+YPPmzYwcOdK0XqvVEhwcXKUYCgoKKCgoML3PzMwEQKfTodPpLP5MJRUfX93z1EVSdta5YcpN7Qo+jY1LOYrTqgEwFBUY+wLkZ6DKSYasBFRZF9FnXKQo7QJK5kXU2Qk45V/GAQMeqjw8yCNUlVr2xIVXlgwofkJQr6hIwYtLijeHFC9S8CTX0Zt8J1/0Ln4orv6o3QNwdPfnVJIOzeEEAr1c8Xd3ws/NSVoCruGG+Z27yVhablXdz66JvbCwkL179zJ9+nTTOgcHB3r16sXOnTurdI7c3Fx0Oh2+vr5m66OjowkMDMTHx4eePXvy2muv4efnV+455s2bx5w5c8qs//3333F1dbXgE1UsKirKJuepi6TsrHNzl5srEGlcvDAugErRoynKQaPPRWPIRVOUi6M+F40+D3S5KIU5qHWZOOvScSnKwEOfjpeSjlqlEEg6gar0q5dQgIIrS7r51bN/cjZ2DMSLE4on6XiS5eBJntqDIrUrekdX4xMLGhfUGjfUWhectC64Ojni5mic9a8uurl/5+ynquWWm5tbpf1UiqIo1QmoOi5evEi9evXYsWMHnTt3Nq2fNm0aW7ZsISYm5prnGD9+PBs3buTw4cM4OzsDsHr1alxdXWnYsCHx8fG8/PLLuLu7s3PnTtTqst+8y6uxh4WFcfnyZTw9Pav1GXU6HVFRUfTu3RuNRmb1soSUnXWk3Eox6I1PAGQnocpKxJB9mfyMJAoykijKSkaVm4w6LxVtQSquRWk4KtbXOnMVLSl4kqbyJlvtTa7Gh0Jnf/QufuAagKOHH1oPP9w8ffHw9sPL2w8fD1c0N/lwwPI7Zx1Lyy0zMxN/f38yMjIqzU12b4qvjvnz57N69Wqio6NNSR1g2LBhptetW7emTZs2NG7cmOjoaO6+++4y59FqteXeg9doNDb7JbXlueoaKTvrSLkV04C2PvjUN61xqmBPXWEhv/7yA33uvBVNQQZKziUKMpLIS0uiMPMS+uzLKPkZqAoyUBdm4VSUjbM+GxclDwBXVQGuJBNGMugxLvmUaREoKUfRkqJyJ9fBnXy1BwUaT4qcvDA4e6Ny8UHt6ovGwxdnTz/cPHzx9PLF3csbldYDnNyNnR5vEPI7Z52qlltVy9auid3f3x+1Wk1SknlHmaSkpGveH3/nnXeYP38+mzZtok2bNpXu26hRI/z9/YmLiys3sQshBAAqFUVqV/BtDBoNKsD5ylIpgx4KMtFlp5KVepHc1ETy05MoyrqEkn0Jh9zLaPIv41SYgbM+Cxd9Nm4Yvwy4qQpwowAMKcYOBzqgai2uAOSrnClwcKPQ0Q2dkxd6rTeKiy8qNz8c3f3Qevjj4hWAs6c/Klc/cPUzTlPsKB2Kayu7JnYnJyfat2/P5s2bGTJkCAAGg4HNmzczceLECo976623eP3119m4cSMdOnS45nXOnz9PSkoKISEhtgpdCCGuclCDiw8aFx98Axrje+0jQF+EPj+TzLRLZKWnkJ1+mYKsVAqzUzHkpqLkpuFQkI5jYQZaXSYuRZk4G3JwJQ938nBS6QFwVvJx1ueDPsXYXyCraiHnq5zJc/QiX+NNkdYHg7MPuPri4O6PxsMfZ89AXL0DcfIMMH4ZcPY29iuQMQVueHZvip8yZQqjRo2iQ4cOdOzYkUWLFpGTk2PqJT9y5Ejq1avHvHnzAHjzzTeZOXMmq1atIiIigsTERADc3d1xd3cnOzubOXPmcP/99xMcHEx8fDzTpk0jMjKSvn372u1zCiGEGbUjajdffNx8S94luKaCIj0pOYWkZmSRmZ5KVmY6OVlp5Geloc9NhdxUHPLS0BSmo9Vl4FaUjidZ+JCNtyobb7JxVBmMXwh0+aBLqnILgQEHChxcKHRwpcjRFb3GDUXjhuLkRpPsQjJ+3ISThx9aD1+c3HxQuXgbvxA4e4HWw7g4uYGjs3xBqEF2T+wPP/wwycnJzJw5k8TERNq1a8eGDRsICgoC4OzZszg4XO1YsmTJEgoLC3nggQfMzjNr1ixmz56NWq3mwIEDfPHFF6SnpxMaGkqfPn149dVX5Vl2IcRNT+uoNk7M4+UCDcqO9VGevEI9abmFJOUW8m9OAVkZqeRlJKPLukxRdgpK7uUrXwbScCpMx1WXjrshAx+y8FEZvxQ4qgw4YMDFkIOLIcc4tkD+1WsEAxzdUaV4DDgYny7QuGLQuIGTOypnTxxcvdG4eqN29bn6hcDZC5w9Qet59ctB8WvHinpL1G12T+wAEydOrLDpPTo62uz96dOnKz2Xi4sLGzdutFFkQghx83NxUuPi5EKot8uVNYFAObMJlqAoCtkFRaTn6jiaU0BmZho5WZnk5mSQn51JQW4Gutxs9PmZ6POz0GVdxl1VgFNRFh5k40UOnqpcvMjBS5WDG/m4qoxPHzlgwEmfDfpssy8HltI7aNE7uaM4eaBycsfB2R21sycqrTto3cHJ48q/V95rPUu8vtL5UOtpfF+LWhFuiMQuhBDixqJSqfBw1uDhrCHM1xXwqXBfnU7H+isTDzk6OpKn05ORpyM9V8flPB1xuToy83Rk5OaRk5N15YtBFrq8LIryszDkZ6EqyEKjy8STXDxVOXhe+WJQ/N6DPNxVxv4Fble+IKgNBajzCyA/pdqfV1GpryR6D+MXgyuvTV8ISrYUaD1KtCJ4Gl8Xty5oXO3+BUESuxBCCJtRqVS4Ojni6uRovF1gAYNBIaugiIxcHRl5V5fzeToy841fDrLyi8jOy6MgNwtDXgb6vEwoyEIpyMJJn4ubKh83jIu7Ks/4WpWHO/lXvhQYRy0s3s9DZXw6QaXooSDDuFSD4uAIzl6oTLcRvKDZAOj0VLXOawlJ7EIIIW4IDg4qvFw0eLlY9yx8QZGezLwi0xeCzBJfDhLyjV8KjF8Qiq5+UcgrpCg/G0NBFlp9zpUvAsYvAe5XvgAYWwtyTa0GHuThocrFnTw8yMXjSsuCo8qAylBknBwp92orwv78INp2slUpXZskdiGEELWC1lFNgIeaAA/rOkoXFOnJyi+6suhM/2ZeWZear+OM2barrzPzdOgLstEWZV25hXD1VsItHu1oa+PPWhlJ7EIIIQTGLwZadzX+7tY/QVXel4NAK79oWEsSuxBCCGEjtvhyUF0398wDQgghhDAjiV0IIYSoRSSxCyGEELWIJHYhhBCiFpHELoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EEELUIpLYhRBCiFpEpm0th6IoAGRmZlb7XDqdjtzcXDIzM9FoNNU+X10iZWcdKTfrSdlZR8rNOpaWW3FOKs5RFZHEXo6srCwAwsLC7ByJEEIIYS4rKwsvL68Kt6uUa6X+OshgMHDx4kU8PDxQqVTVOldmZiZhYWGcO3cOT09PG0VYN0jZWUfKzXpSdtaRcrOOpeWmKApZWVmEhobi4FDxnXSpsZfDwcGB+vXr2/Scnp6e8gtvJSk760i5WU/KzjpSbtaxpNwqq6kXk85zQgghRC0iiV0IIYSoRSSx1zCtVsusWbPQarX2DuWmI2VnHSk360nZWUfKzTo1VW7SeU4IIYSoRaTGLoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7DVs8eLFRERE4OzsTKdOndi9e7e9Q7qhbN26lUGDBhEaGopKpWLt2rVm2xVFYebMmYSEhODi4kKvXr04ceKEfYK9gcybN4/bb78dDw8PAgMDGTJkCMePHzfbJz8/nwkTJuDn54e7uzv3338/SUlJdor4xrFkyRLatGljGhSkc+fO/Pbbb6btUm5VM3/+fFQqFZMmTTKtk7Ir3+zZs1GpVGZL8+bNTdttXW6S2GvQmjVrmDJlCrNmzWLfvn20bduWvn37cunSJXuHdsPIycmhbdu2LF68uNztb731Fu+//z5Lly4lJiYGNzc3+vbtS35+/nWO9MayZcsWJkyYwK5du4iKikKn09GnTx9ycnJM+0yePJl169bx3XffsWXLFi5evMh9991nx6hvDPXr12f+/Pns3buXv//+m549e3Lvvfdy+PBhQMqtKvbs2cPHH39MmzZtzNZL2VWsVatWJCQkmJZt27aZttm83BRRYzp27KhMmDDB9F6v1yuhoaHKvHnz7BjVjQtQfvrpJ9N7g8GgBAcHK2+//bZpXXp6uqLVapVvvvnGDhHeuC5duqQAypYtWxRFMZaTRqNRvvvuO9M+R48eVQBl586d9grzhuXj46N89tlnUm5VkJWVpTRp0kSJiopSunXrpjz33HOKosjvXGVmzZqltG3bttxtNVFuUmOvIYWFhezdu5devXqZ1jk4ONCrVy927txpx8huHqdOnSIxMdGsDL28vOjUqZOUYSkZGRkA+Pr6ArB37150Op1Z2TVv3pwGDRpI2ZWg1+tZvXo1OTk5dO7cWcqtCiZMmMDAgQPNygjkd+5aTpw4QWhoKI0aNeKRRx7h7NmzQM2Um0wCU0MuX76MXq8nKCjIbH1QUBDHjh2zU1Q3l8TERIByy7B4mzDORjhp0iTuvPNObrnlFsBYdk5OTnh7e5vtK2VndPDgQTp37kx+fj7u7u789NNPtGzZktjYWCm3SqxevZp9+/axZ8+eMtvkd65inTp1YsWKFTRr1oyEhATmzJnDXXfdxaFDh2qk3CSxC3GTmzBhAocOHTK7Zycq16xZM2JjY8nIyOD7779n1KhRbNmyxd5h3dDOnTvHc889R1RUFM7OzvYO56bSv39/0+s2bdrQqVMnwsPD+fbbb3FxcbH59aQpvob4+/ujVqvL9GxMSkoiODjYTlHdXIrLScqwYhP/v737DWlqD+MA/h1uE6U/kxIdkrIwIxXLFtXKiFhvimJUxKBMRUhKhAIHDcQKCqoFYtbLYkIKvbNGSEk6jUYJ1pZGtpyaEhhCJVmps3zui8s93F13u96LMe/p+4EfbL9z9ttzHiZfDjvuVFTg7t278Hq9EbcaTk1NRTgcxtjYWMT+7N3v9Ho9MjMzYTabceHCBaxduxZXrlxh337g6dOnGB0dxfr166HVaqHVatHR0YG6ujpotVqkpKSwd3NkMBiQlZWFUCj0Uz5zDPafRK/Xw2w2o7W1VZmbmZlBa2srLBZLDCv7/zCZTEhNTY3o4adPn9DZ2fnL91BEUFFRgaamJrS1tcFkMkVsN5vN0Ol0Eb0LBoMYHh7+5XsXzczMDKampti3H7Barejp6UEgEFDGhg0bcPjwYeUxezc3nz9/Rn9/P4xG48/5zP2nS+5oTm7duiXx8fFSX18vL1++lLKyMjEYDPLu3btYl7ZgjI+Pi9/vF7/fLwCkpqZG/H6/DA0NiYjIxYsXxWAwyJ07d6S7u1tsNpuYTCaZmJiIceWxdfz4cVm6dKm0t7fLyMiIMr5+/arsc+zYMUlPT5e2tjbp6uoSi8UiFoslhlUvDE6nUzo6OmRwcFC6u7vF6XSKRqORlpYWEWHf/o0/XxUvwt79ncrKSmlvb5fBwUHx+Xyyc+dOWb58uYyOjorI/PeNwf6TXb16VdLT00Wv18vGjRvlyZMnsS5pQfF6vQJg1iguLhaR3//lrbq6WlJSUiQ+Pl6sVqsEg8HYFr0AROsZAHG73co+ExMTUl5eLklJSZKYmCj79u2TkZGR2BW9QJSWlkpGRobo9XpJTk4Wq9WqhLoI+/Zv/DXY2bvo7Ha7GI1G0ev1kpaWJna7XUKhkLJ9vvvG27YSERGpCL9jJyIiUhEGOxERkYow2ImIiFSEwU5ERKQiDHYiIiIVYbATERGpCIOdiIhIRRjsREREKsJgJyIiUhEGOxEppqenUV9fj4KCAiQnJyMhIQF5eXm4dOkSwuFwrMsjojngT8oSkSIQCKCyshLl5eXIz8/H5OQkenp6cPbsWRiNRty/fx86nS7WZRLRD/CMnYgUubm5aG1txYEDB7By5UpkZ2fDbrfj4cOHePHiBWprawEAGo0m6jh58qSy1sePH1FUVISkpCQkJiZi165d6OvrU7aXlpYiLy8PU1NTAIBwOIz8/HwUFRUBAN68eQONRoNAIKC8prq6GhqNRqmDiGZjsBORQqvVRp1PTk7G/v370djYqMy53W6MjIwo46/3ji4pKUFXVxc8Hg8eP34MEcHu3bsxPT0NAKirq8OXL1/gdDoBAFVVVRgbG8O1a9ei1vD27VvU1tYiISFhPg6VSLWi/xUT0S8tJycHQ0NDEXPT09OIi4tTnhsMBqSmpirP9Xq98rivrw8ejwc+nw9btmwBADQ2NmLFihW4ffs2Dh48iEWLFqGhoQHbt2/H4sWLUVtbC6/XiyVLlkStqaqqCna7HQ8ePJjPQyVSHQY7Ec3S3NysnFn/weVyoaGhYU6v7+3thVarxaZNm5S5ZcuWYfXq1ejt7VXmLBYLHA4Hzp07h1OnTqGgoCDqes+ePUNTUxOCwSCDnegfMNiJaJaMjIxZc/39/cjKyprX95mZmYHP50NcXBxCodDf7ldZWQmHwwGj0Tiv70+kRvyOnYgUHz58wPj4+Kz5rq4ueL1eHDp0aE7rrFmzBt++fUNnZ6cy9/79ewSDQWRnZytzly9fxqtXr9DR0YF79+7B7XbPWsvj8eD169dwOBz/4YiIfj0MdiJSDA8PY926dbhx4wZCoRAGBgZw8+ZN2Gw2bNu2LeKq9x9ZtWoVbDYbjh49ikePHuH58+coLCxEWloabDYbAMDv9+P06dO4fv06tm7dipqaGpw4cQIDAwMRa7lcLpw/fx6JiYnzfbhEqsRgJyJFbm4uzpw5g/r6emzevBk5OTlwuVyoqKhAS0tLxAVy/8TtdsNsNmPPnj2wWCwQETQ3N0On02FychKFhYUoKSnB3r17AQBlZWXYsWMHjhw5gu/fvyvrZGZmori4eN6PlUit+AM1REREKsIzdiIiIhVhsBMREakIg52IiEhFGOxEREQqwmAnIiJSEQY7ERGRijDYiYiIVITBTkREpCIMdiIiIhVhsBMREakIg52IiEhFfgNPicwMWJotIQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_3l_100_100.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_3l_100_100.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M9nWMqSXiErG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "92accb15-9c22-46d8-a60a-f5f64488809f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9435 - loss: 0.2058\n", + "Lossontestdata: 0.2007063776254654\n", + "Accuracyontestdata: 0.9431999921798706\n" + ] + } + ], + "source": [ + "scores_3l_100_100=model_3l_100_100.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_3l_100_100[0])\n", + "print('Accuracyontestdata:',scores_3l_100_100[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s7xnJPAsiJ4-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "418ceaef-1937-4c15-f327-940560f8866b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Слои Нейроны 1 Нейроны 2 Метрика\n", + "0 1 100 - 0.9439\n", + "1 1 300 - 0.9372\n", + "2 1 500 - 0.9301\n", + "3 2 100 50 0.9427\n", + "4 2 100 100 0.9432" + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    СлоиНейроны 1Нейроны 2Метрика
    01100-0.9439
    11300-0.9372
    21500-0.9301
    32100500.9427
    421001000.9432
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "
    \n", + "
    \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"\\u0421\\u043b\\u043e\\u0438\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041d\\u0435\\u0439\\u0440\\u043e\\u043d\\u044b 1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 178,\n \"min\": 100,\n \"max\": 500,\n \"num_unique_values\": 3,\n \"samples\": [\n 100,\n 300\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041d\\u0435\\u0439\\u0440\\u043e\\u043d\\u044b 2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"-\",\n 50\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041c\\u0435\\u0442\\u0440\\u0438\\u043a\\u0430\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005850374852367438,\n \"min\": 0.9301000237464905,\n \"max\": 0.9438999891281128,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.9372000098228455,\n 0.9431999921798706\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 47 + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "data = {\n", + " 'Слои': [ 1, 1, 1, 2, 2],\n", + " 'Нейроны 1': [ 100, 300, 500, 100, 100],\n", + " 'Нейроны 2': [ '-', '-', '-', 50, 100],\n", + " 'Метрика': [ 0.9438999891281128, 0.9372000098228455, 0.9301000237464905, 0.9427000284194946, 0.9431999921798706]\n", + "}\n", + "\n", + "df = pd.DataFrame(data)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "55eu09I9kA93" + }, + "outputs": [], + "source": [ + "model_2l_100.save(filepath='best_model.keras')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mvjk1vAK8Qaa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 534 + }, + "outputId": "a8cf252d-4e39-49e1-e4c9-c3b71aa0d7d1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 266ms/step\n", + "NN output: [[3.86779779e-04 3.69515050e-08 2.03053992e-06 1.15266894e-05\n", + " 1.57332561e-05 4.79512411e-04 7.92529917e-08 9.95542467e-01\n", + " 1.50878295e-05 3.54681048e-03]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG05JREFUeJzt3X9sVfX9x/FXC/SK2N6ulvb2SoGCP9gEOsekNCrD0QDdQkRI5q8/wDCIenGDzulqVMSZdLJMCQuDmGwwM0FlEYguYcFqS3Qthl8hbLOjXRWQtigL90KRwujn+wfZ/XqlBc/l3r57L89HchJ67/n0vj2765PTnh4ynHNOAAD0sUzrAQAAVyYCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAy0HuCruru7deTIEWVnZysjI8N6HACAR845nThxQsFgUJmZvZ/n9LsAHTlyRMXFxdZjAAAu06FDhzRs2LBen+9334LLzs62HgEAkACX+nqetACtWrVKI0eO1FVXXaWysjJ9+OGHX2sd33YDgPRwqa/nSQnQ66+/rqqqKi1dulS7d+9WaWmppk+frqNHjybj5QAAqcglwcSJE10oFIp+fO7cORcMBl1NTc0l14bDYSeJjY2NjS3Ft3A4fNGv9wk/Azpz5ox27dqlioqK6GOZmZmqqKhQQ0PDBft3dXUpEonEbACA9JfwAH3++ec6d+6cCgsLYx4vLCxUe3v7BfvX1NTI7/dHN66AA4Arg/lVcNXV1QqHw9Ht0KFD1iMBAPpAwn8PKD8/XwMGDFBHR0fM4x0dHQoEAhfs7/P55PP5Ej0GAKCfS/gZUFZWliZMmKDa2troY93d3aqtrVV5eXmiXw4AkKKScieEqqoqzZ07V9/97nc1ceJErVixQp2dnXrwwQeT8XIAgBSUlADdc889+uyzz/TMM8+ovb1d3/72t7V169YLLkwAAFy5MpxzznqIL4tEIvL7/dZjAAAuUzgcVk5OTq/Pm18FBwC4MhEgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMJD9Czzz6rjIyMmG3MmDGJfhkAQIobmIxPevPNN+udd975/xcZmJSXAQCksKSUYeDAgQoEAsn41ACANJGUnwEdOHBAwWBQo0aN0gMPPKCDBw/2um9XV5cikUjMBgBIfwkPUFlZmdatW6etW7dq9erVam1t1R133KETJ070uH9NTY38fn90Ky4uTvRIAIB+KMM555L5AsePH9eIESP04osvav78+Rc839XVpa6urujHkUiECAFAGgiHw8rJyen1+aRfHZCbm6sbb7xRzc3NPT7v8/nk8/mSPQYAoJ9J+u8BnTx5Ui0tLSoqKkr2SwEAUkjCA/TYY4+pvr5eH3/8sf72t7/p7rvv1oABA3Tfffcl+qUAACks4d+CO3z4sO677z4dO3ZMQ4cO1e23367GxkYNHTo00S8FAEhhSb8IwatIJCK/3289BgDgMl3qIgTuBQcAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmEj6P0gHfFl1dbXnNc8995znNdu3b/e8RpJ27tzpec2nn37qec2f/vQnz2v6u4vddLI3t9xyi+c1kyZN8rymL73wwgue1/znP/9JwiT9H2dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJHhnHPWQ3xZJBKR3++3HuOKMmTIkLjWPfnkk57X/OQnP/G8Jt75AAvx3A07nrvEp4JwOHzRu6RzBgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmBhoPQDs/ehHP4prXbreQBG4HFu2bLEeIWVwBgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBmpGmmsrLS85rf/OY3SZjE1kcffRTXuk8++STBk/SsubnZ85o333wzCZPYqqio8LymL2+Ce/jwYc9r/v73vydhkvTEGRAAwAQBAgCY8Byg7du3a+bMmQoGg8rIyNDmzZtjnnfO6ZlnnlFRUZEGDx6siooKHThwIFHzAgDShOcAdXZ2qrS0VKtWrerx+eXLl2vlypVas2aNduzYoSFDhmj69Ok6ffr0ZQ8LAEgfni9CqKys7PUH3c45rVixQk899ZTuuusuSdIrr7yiwsJCbd68Wffee+/lTQsASBsJ/RlQa2ur2tvbY65s8fv9KisrU0NDQ49rurq6FIlEYjYAQPpLaIDa29slSYWFhTGPFxYWRp/7qpqaGvn9/uhWXFycyJEAAP2U+VVw1dXVCofD0e3QoUPWIwEA+kBCAxQIBCRJHR0dMY93dHREn/sqn8+nnJycmA0AkP4SGqCSkhIFAgHV1tZGH4tEItqxY4fKy8sT+VIAgBTn+Sq4kydPxtxGpLW1VXv37lVeXp6GDx+uxYsX6/nnn9cNN9ygkpISPf300woGg5o1a1Yi5wYApDjPAdq5c6fuvPPO6MdVVVWSpLlz52rdunV6/PHH1dnZqYULF+r48eO6/fbbtXXrVl111VWJmxoAkPIynHPOeogvi0Qi8vv91mOkrD//+c+e18yePTsJkyTOyy+/7HnN008/HddrffbZZ3Gtg1RUVOR5TTw37szNzfW8Jt6Lm374wx96XrN///64XisdhcPhi/5c3/wqOADAlYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmPP9zDOg7I0eO9LymsrIy8YMYW7Zsmec13NW675WVlXleE8+dreOxZs2auNZxZ+vk4gwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUj7yODBgz2v2bBhQ5+8Try6u7s9r/nWt77leU17e7vnNbg806ZN87zmjTfeSMIkF/r3v//tec0rr7yShElwuTgDAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMcDPSPjJ06FDPa8rKypIwyYXOnDkT17o//OEPntf861//iuu1EJ8hQ4bEte7ZZ5/1vGbgQO9fTv773/96XvPjH//Y85pPP/3U8xokH2dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkbaR0KhkPUIvdq4cWNc6x555JEET4JE27JlS1zrJk2alOBJelZfX+95TV1dXeIHgQnOgAAAJggQAMCE5wBt375dM2fOVDAYVEZGhjZv3hzz/Lx585SRkRGzzZgxI1HzAgDShOcAdXZ2qrS0VKtWrep1nxkzZqitrS26bdiw4bKGBACkH88XIVRWVqqysvKi+/h8PgUCgbiHAgCkv6T8DKiurk4FBQW66aab9PDDD+vYsWO97tvV1aVIJBKzAQDSX8IDNGPGDL3yyiuqra3VCy+8oPr6elVWVurcuXM97l9TUyO/3x/diouLEz0SAKAfSvjvAd17773RP48bN07jx4/X6NGjVVdXp6lTp16wf3V1taqqqqIfRyIRIgQAV4CkX4Y9atQo5efnq7m5ucfnfT6fcnJyYjYAQPpLeoAOHz6sY8eOqaioKNkvBQBIIZ6/BXfy5MmYs5nW1lbt3btXeXl5ysvL07JlyzRnzhwFAgG1tLTo8ccf1/XXX6/p06cndHAAQGrzHKCdO3fqzjvvjH78v5/fzJ07V6tXr9a+ffv0xz/+UcePH1cwGNS0adP0y1/+Uj6fL3FTAwBSnucATZkyRc65Xp//61//elkDpauPP/7Y85oPPvjA85q2tjbPa5YsWeJ5DfpeYWGh5zW33HJLEibp2eeff+55zbx58xI/CFIG94IDAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiQx3sVtbG4hEIvL7/dZjAEkVCAQ8r9m0aZPnNWVlZZ7XSFJTU5PnNS+99JLnNS+//LLnNUgd4XD4ov/KNWdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJgdYDAFeiBx980POaSZMmeV4T772GX331Vc9ruLEovOIMCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwc1Igct03XXXeV6zYMECz2viubHo7t27Pa+RpJUrV8a1DvCCMyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQ3IwW+JDPT+9/J1qxZ43nNyJEjPa+Jx8yZM+NaF4lEEjwJcCHOgAAAJggQAMCEpwDV1NTo1ltvVXZ2tgoKCjRr1iw1NTXF7HP69GmFQiFde+21uuaaazRnzhx1dHQkdGgAQOrzFKD6+nqFQiE1NjZq27ZtOnv2rKZNm6bOzs7oPkuWLNFbb72ljRs3qr6+XkeOHNHs2bMTPjgAILV5ughh69atMR+vW7dOBQUF2rVrlyZPnqxwOKzf//73Wr9+vb7//e9LktauXatvfvObamxs1KRJkxI3OQAgpV3Wz4DC4bAkKS8vT5K0a9cunT17VhUVFdF9xowZo+HDh6uhoaHHz9HV1aVIJBKzAQDSX9wB6u7u1uLFi3Xbbbdp7NixkqT29nZlZWUpNzc3Zt/CwkK1t7f3+Hlqamrk9/ujW3FxcbwjAQBSSNwBCoVC2r9/v1577bXLGqC6ulrhcDi6HTp06LI+HwAgNcT1i6iLFi3S22+/re3bt2vYsGHRxwOBgM6cOaPjx4/HnAV1dHQoEAj0+Ll8Pp98Pl88YwAAUpinMyDnnBYtWqRNmzbp3XffVUlJSczzEyZM0KBBg1RbWxt9rKmpSQcPHlR5eXliJgYApAVPZ0ChUEjr16/Xli1blJ2dHf25jt/v1+DBg+X3+zV//nxVVVUpLy9POTk5evTRR1VeXs4VcACAGJ4CtHr1aknSlClTYh5fu3at5s2bJ0l66aWXlJmZqTlz5qirq0vTp0/X7373u4QMCwBIHxnOOWc9xJdFIhH5/X7rMZDiBgwYENe6X/ziF57XPP/8857XxPN/u23btnlec/fdd3teI0mnTp2Kax3wZeFwWDk5Ob0+z73gAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIK7YSMtlZaWxrVuz549CZ6kZ7t37/a8ZurUqZ7XhMNhz2uAROFu2ACAfokAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHQegDgUjIzvf896amnnkrCJImzYsUKz2u4sSjSDWdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkaKfm/+/Pme18yZMycJkyTOoEGDrEcAzHEGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4Gak6PeKioqsR0i4WbNmeV6zdu3axA8CGOIMCABgggABAEx4ClBNTY1uvfVWZWdnq6CgQLNmzVJTU1PMPlOmTFFGRkbM9tBDDyV0aABA6vMUoPr6eoVCITU2Nmrbtm06e/aspk2bps7Ozpj9FixYoLa2tui2fPnyhA4NAEh9ni5C2Lp1a8zH69atU0FBgXbt2qXJkydHH7/66qsVCAQSMyEAIC1d1s+AwuGwJCkvLy/m8VdffVX5+fkaO3asqqurderUqV4/R1dXlyKRSMwGAEh/cV+G3d3drcWLF+u2227T2LFjo4/ff//9GjFihILBoPbt26cnnnhCTU1NevPNN3v8PDU1NVq2bFm8YwAAUlTcAQqFQtq/f7/ef//9mMcXLlwY/fO4ceNUVFSkqVOnqqWlRaNHj77g81RXV6uqqir6cSQSUXFxcbxjAQBSRFwBWrRokd5++21t375dw4YNu+i+ZWVlkqTm5uYeA+Tz+eTz+eIZAwCQwjwFyDmnRx99VJs2bVJdXZ1KSkouuWbv3r2S0vO32QEA8fMUoFAopPXr12vLli3Kzs5We3u7JMnv92vw4MFqaWnR+vXr9YMf/EDXXnut9u3bpyVLlmjy5MkaP358Uv4DAACpyVOAVq9eLen8L5t+2dq1azVv3jxlZWXpnXfe0YoVK9TZ2ani4mLNmTNHTz31VMIGBgCkB8/fgruY4uJi1dfXX9ZAAIArA3fDRr/X2NjYZ6/1l7/8xfOaeH6N4KOPPvK8Bkg33IwUAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADCR4S51i+s+FolE5Pf7rccAAFymcDisnJycXp/nDAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJfhegfnZrOgBAnC719bzfBejEiRPWIwAAEuBSX8/73d2wu7u7deTIEWVnZysjIyPmuUgkouLiYh06dOiid1hNdxyH8zgO53EczuM4nNcfjoNzTidOnFAwGFRmZu/nOQP7cKavJTMzU8OGDbvoPjk5OVf0G+x/OA7ncRzO4zicx3E4z/o4fJ1/VqfffQsOAHBlIEAAABMpFSCfz6elS5fK5/NZj2KK43Aex+E8jsN5HIfzUuk49LuLEAAAV4aUOgMCAKQPAgQAMEGAAAAmCBAAwETKBGjVqlUaOXKkrrrqKpWVlenDDz+0HqnPPfvss8rIyIjZxowZYz1W0m3fvl0zZ85UMBhURkaGNm/eHPO8c07PPPOMioqKNHjwYFVUVOjAgQM2wybRpY7DvHnzLnh/zJgxw2bYJKmpqdGtt96q7OxsFRQUaNasWWpqaorZ5/Tp0wqFQrr22mt1zTXXaM6cOero6DCaODm+znGYMmXKBe+Hhx56yGjinqVEgF5//XVVVVVp6dKl2r17t0pLSzV9+nQdPXrUerQ+d/PNN6utrS26vf/++9YjJV1nZ6dKS0u1atWqHp9fvny5Vq5cqTVr1mjHjh0aMmSIpk+frtOnT/fxpMl1qeMgSTNmzIh5f2zYsKEPJ0y++vp6hUIhNTY2atu2bTp79qymTZumzs7O6D5LlizRW2+9pY0bN6q+vl5HjhzR7NmzDadOvK9zHCRpwYIFMe+H5cuXG03cC5cCJk6c6EKhUPTjc+fOuWAw6Gpqagyn6ntLly51paWl1mOYkuQ2bdoU/bi7u9sFAgH361//OvrY8ePHnc/ncxs2bDCYsG989Tg459zcuXPdXXfdZTKPlaNHjzpJrr6+3jl3/n/7QYMGuY0bN0b3+ec//+kkuYaGBqsxk+6rx8E55773ve+5n/70p3ZDfQ39/gzozJkz2rVrlyoqKqKPZWZmqqKiQg0NDYaT2Thw4ICCwaBGjRqlBx54QAcPHrQeyVRra6va29tj3h9+v19lZWVX5Pujrq5OBQUFuummm/Twww/r2LFj1iMlVTgcliTl5eVJknbt2qWzZ8/GvB/GjBmj4cOHp/X74avH4X9effVV5efna+zYsaqurtapU6csxutVv7sZ6Vd9/vnnOnfunAoLC2MeLyws1EcffWQ0lY2ysjKtW7dON910k9ra2rRs2TLdcccd2r9/v7Kzs63HM9He3i5JPb4//vfclWLGjBmaPXu2SkpK1NLSoieffFKVlZVqaGjQgAEDrMdLuO7ubi1evFi33Xabxo4dK+n8+yErK0u5ubkx+6bz+6Gn4yBJ999/v0aMGKFgMKh9+/bpiSeeUFNTk958803DaWP1+wDh/1VWVkb/PH78eJWVlWnEiBF64403NH/+fMPJ0B/ce++90T+PGzdO48eP1+jRo1VXV6epU6caTpYcoVBI+/fvvyJ+DnoxvR2HhQsXRv88btw4FRUVaerUqWppadHo0aP7eswe9ftvweXn52vAgAEXXMXS0dGhQCBgNFX/kJubqxtvvFHNzc3Wo5j533uA98eFRo0apfz8/LR8fyxatEhvv/223nvvvZh/viUQCOjMmTM6fvx4zP7p+n7o7Tj0pKysTJL61fuh3wcoKytLEyZMUG1tbfSx7u5u1dbWqry83HAyeydPnlRLS4uKioqsRzFTUlKiQCAQ8/6IRCLasWPHFf/+OHz4sI4dO5ZW7w/nnBYtWqRNmzbp3XffVUlJSczzEyZM0KBBg2LeD01NTTp48GBavR8udRx6snfvXknqX+8H66sgvo7XXnvN+Xw+t27dOvePf/zDLVy40OXm5rr29nbr0frUz372M1dXV+daW1vdBx984CoqKlx+fr47evSo9WhJdeLECbdnzx63Z88eJ8m9+OKLbs+ePe6TTz5xzjn3q1/9yuXm5rotW7a4ffv2ubvuusuVlJS4L774wnjyxLrYcThx4oR77LHHXENDg2ttbXXvvPOO+853vuNuuOEGd/r0aevRE+bhhx92fr/f1dXVuba2tuh26tSp6D4PPfSQGz58uHv33Xfdzp07XXl5uSsvLzecOvEudRyam5vdc88953bu3OlaW1vdli1b3KhRo9zkyZONJ4+VEgFyzrnf/va3bvjw4S4rK8tNnDjRNTY2Wo/U5+655x5XVFTksrKy3HXXXefuuece19zcbD1W0r333ntO0gXb3LlznXPnL8V++umnXWFhofP5fG7q1KmuqanJdugkuNhxOHXqlJs2bZobOnSoGzRokBsxYoRbsGBB2v0lraf/fklu7dq10X2++OIL98gjj7hvfOMb7uqrr3Z33323a2trsxs6CS51HA4ePOgmT57s8vLynM/nc9dff737+c9/7sLhsO3gX8E/xwAAMNHvfwYEAEhPBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJ/wPpxromZauT4QAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 7\n", + "NN answer: 7\n" + ] + } + ], + "source": [ + "# вывод тестового изображения и результата распознавания\n", + "n = 150\n", + "result = model_2l_100.predict(X_test[n:n+1])\n", + "print('NN output:', result)\n", + "\n", + "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "print('Real mark: ', str(np.argmax(y_test[n])))\n", + "print('NN answer: ', str(np.argmax(result)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Mc1vi6w59TOw", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "outputId": "28932b4f-4d56-40c5-d253-59c985f1230e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "NN output: [[8.1927046e-06 9.8501807e-01 4.7102575e-03 1.5754283e-03 5.3024664e-06\n", + " 2.3075400e-03 6.3471968e-04 7.6599965e-05 5.5682263e-03 9.5791329e-05]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGiNJREFUeJzt3Xts1Xf9x/FXufTAWHtqKe3p4dIV2EDHZYpQ67bKpKGtSrglwuQPMAQEyyIwNmVxsKlJFZO5zFRm1FAXB0xUIMOkCZS1zWbLAgMJURuKdRShZRB7Tim0YPv5/cFvx53Rwk45p+/28Hwkn4Se8/30vP165Om35/SQ4JxzAgCgjw2yHgAAcG8iQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMQQ6wE+rqurS+fPn1dSUpISEhKsxwEARMg5p9bWVvn9fg0a1PN1Tr8L0Pnz5zV27FjrMQAAd6mxsVFjxozp8f5+9yO4pKQk6xEAAFFwp7/PYxag0tJSPfDAAxo2bJhycnL07rvvfqJ9/NgNAOLDnf4+j0mA3njjDW3cuFFbt27Ve++9p+nTp6ugoEAXL16MxcMBAAYiFwOzZs1yxcXFoa87Ozud3+93JSUld9wbCAScJBaLxWIN8BUIBG77933Ur4CuX7+uY8eOKT8/P3TboEGDlJ+fr5qamluO7+joUDAYDFsAgPgX9QBdunRJnZ2dysjICLs9IyNDTU1NtxxfUlIir9cbWrwDDgDuDebvgtu8ebMCgUBoNTY2Wo8EAOgDUf89oLS0NA0ePFjNzc1htzc3N8vn891yvMfjkcfjifYYAIB+LupXQImJiZoxY4YqKipCt3V1damiokK5ubnRfjgAwAAVk09C2Lhxo5YvX67Pf/7zmjVrll5++WW1tbXpm9/8ZiweDgAwAMUkQEuWLNEHH3ygLVu2qKmpSY888ojKy8tveWMCAODeleCcc9ZDfFQwGJTX67UeAwBwlwKBgJKTk3u83/xdcACAexMBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcR6AAD9T0FBQcR7ysvLYzDJrSZMmBDxnn/+858xmAR3iysgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEH0YKxLERI0b0at+mTZsi3uOci3hPXV1dxHtaW1sj3oP+iSsgAIAJAgQAMBH1AL3wwgtKSEgIW5MnT472wwAABriYvAb08MMP69ChQ/97kCG81AQACBeTMgwZMkQ+ny8W3xoAECdi8hrQ6dOn5ff7NX78eC1btkxnz57t8diOjg4Fg8GwBQCIf1EPUE5OjsrKylReXq7t27eroaFBjz/+eI9vnSwpKZHX6w2tsWPHRnskAEA/lOB68+b9CLS0tCgrK0svvfSSVq5cecv9HR0d6ujoCH0dDAaJEBAlvf09oH379kW8Z86cORHv6c3vAeXl5UW854MPPoh4D+5eIBBQcnJyj/fH/N0BKSkpeuihh1RfX9/t/R6PRx6PJ9ZjAAD6mZj/HtCVK1d05swZZWZmxvqhAAADSNQDtGnTJlVVVelf//qX/vKXv2jhwoUaPHiwnnzyyWg/FABgAIv6j+DOnTunJ598UpcvX9aoUaP02GOPqba2VqNGjYr2QwEABrCoB2j37t3R/pYAeumLX/xir/b15g0FvbF9+/aI9/CGgvjBZ8EBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACZi/i+iRioYDMrr9VqPAfQ7EydOjHjPO++806vH6qtPr+/N/9ZbW1tjMAli4U7/IipXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAxxHoAAJ9MVlZWxHv66lOtJekPf/hDxHuuXbsWg0kwUHAFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNIAQOPPPJIxHvKysqiPkdP2traIt6zbdu2iPf897//jXgP4gdXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACT6MFDCwY8eOiPeMHj06BpN077nnnot4z9GjR2MwCeIZV0AAABMECABgIuIAVVdXa968efL7/UpISNC+ffvC7nfOacuWLcrMzNTw4cOVn5+v06dPR2teAECciDhAbW1tmj59ukpLS7u9f9u2bXrllVf06quv6siRIxoxYoQKCgrU3t5+18MCAOJHxG9CKCoqUlFRUbf3Oef08ssv6/vf/77mz58vSXrttdeUkZGhffv2aenSpXc3LQAgbkT1NaCGhgY1NTUpPz8/dJvX61VOTo5qamq63dPR0aFgMBi2AADxL6oBampqkiRlZGSE3Z6RkRG67+NKSkrk9XpDa+zYsdEcCQDQT5m/C27z5s0KBAKh1djYaD0SAKAPRDVAPp9PktTc3Bx2e3Nzc+i+j/N4PEpOTg5bAID4F9UAZWdny+fzqaKiInRbMBjUkSNHlJubG82HAgAMcBG/C+7KlSuqr68Pfd3Q0KATJ04oNTVV48aN0/r16/WjH/1IDz74oLKzs/X888/L7/drwYIF0ZwbADDARRygo0eP6oknngh9vXHjRknS8uXLVVZWpmeffVZtbW1avXq1Wlpa9Nhjj6m8vFzDhg2L3tQAgAEvwTnnrIf4qGAwKK/Xaz0G8IlNmjQp4j2HDh2KeE9vPoz0ypUrEe+RpK997WsR76muru7VYyF+BQKB276ub/4uOADAvYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmIv7nGIB41ptPti4vL494T28+2fo///lPxHuWLVsW8R6JT7ZG3+AKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwYeRAh9RWFgY8Z6srKwYTHKr999/P+I9vfmgVKCvcAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgw0iBj/D7/dYj9OhXv/qV9QhAVHEFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNIEZe+/vWv92rf008/HeVJuvf2229HvGfv3r0xmASwwxUQAMAEAQIAmIg4QNXV1Zo3b578fr8SEhK0b9++sPtXrFihhISEsFVYWBiteQEAcSLiALW1tWn69OkqLS3t8ZjCwkJduHAhtHbt2nVXQwIA4k/Eb0IoKipSUVHRbY/xeDzy+Xy9HgoAEP9i8hpQZWWl0tPTNWnSJK1du1aXL1/u8diOjg4Fg8GwBQCIf1EPUGFhoV577TVVVFToJz/5iaqqqlRUVKTOzs5ujy8pKZHX6w2tsWPHRnskAEA/FPXfA1q6dGnoz1OnTtW0adM0YcIEVVZWas6cObccv3nzZm3cuDH0dTAYJEIAcA+I+duwx48fr7S0NNXX13d7v8fjUXJyctgCAMS/mAfo3Llzunz5sjIzM2P9UACAASTiH8FduXIl7GqmoaFBJ06cUGpqqlJTU/Xiiy9q8eLF8vl8OnPmjJ599llNnDhRBQUFUR0cADCwRRygo0eP6oknngh9/eHrN8uXL9f27dt18uRJ/fa3v1VLS4v8fr/mzp2rH/7wh/J4PNGbGgAw4CU455z1EB8VDAbl9Xqtx0A/MmzYsIj3VFVV9eqxZs6c2at9kfrsZz8b8Z6//vWvMZgEiJ1AIHDb1/X5LDgAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYiPo/yQ1EW2JiYsR7+upTrQH0HldAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJPowUuEt79uyJeM+pU6diMAkwsHAFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNI0e9973vfsx7hto4fPx7xns7OzhhMAgwsXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACb4MFL0qTFjxkS8Z+XKlTGYpHv//ve/I97z61//OgaTAPGPKyAAgAkCBAAwEVGASkpKNHPmTCUlJSk9PV0LFixQXV1d2DHt7e0qLi7WyJEjdf/992vx4sVqbm6O6tAAgIEvogBVVVWpuLhYtbW1OnjwoG7cuKG5c+eqra0tdMyGDRv05ptvas+ePaqqqtL58+e1aNGiqA8OABjYInoTQnl5edjXZWVlSk9P17Fjx5SXl6dAIKDf/OY32rlzp7785S9Lknbs2KFPf/rTqq2t1Re+8IXoTQ4AGNDu6jWgQCAgSUpNTZUkHTt2TDdu3FB+fn7omMmTJ2vcuHGqqanp9nt0dHQoGAyGLQBA/Ot1gLq6urR+/Xo9+uijmjJliiSpqalJiYmJSklJCTs2IyNDTU1N3X6fkpISeb3e0Bo7dmxvRwIADCC9DlBxcbFOnTql3bt339UAmzdvViAQCK3Gxsa7+n4AgIGhV7+Ium7dOh04cEDV1dVhv1jo8/l0/fp1tbS0hF0FNTc3y+fzdfu9PB6PPB5Pb8YAAAxgEV0BOee0bt067d27V4cPH1Z2dnbY/TNmzNDQoUNVUVERuq2urk5nz55Vbm5udCYGAMSFiK6AiouLtXPnTu3fv19JSUmh13W8Xq+GDx8ur9erlStXauPGjUpNTVVycrKeeuop5ebm8g44AECYiAK0fft2SdLs2bPDbt+xY4dWrFghSfrZz36mQYMGafHixero6FBBQYF+8YtfRGVYAED8iChAzrk7HjNs2DCVlpaqtLS010Mhfn3rW9+KeM+oUaNiMEn3/vjHP0a859KlSzGYBIh/fBYcAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATPTqX0QFeuszn/mM9QgA+gmugAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE3wYKfrUgQMHIt6zcOHCGEzSvT//+c999ljAvY4rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARIJzzlkP8VHBYFBer9d6DADAXQoEAkpOTu7xfq6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgImIAlRSUqKZM2cqKSlJ6enpWrBggerq6sKOmT17thISEsLWmjVrojo0AGDgiyhAVVVVKi4uVm1trQ4ePKgbN25o7ty5amtrCztu1apVunDhQmht27YtqkMDAAa+IZEcXF5eHvZ1WVmZ0tPTdezYMeXl5YVuv+++++Tz+aIzIQAgLt3Va0CBQECSlJqaGnb766+/rrS0NE2ZMkWbN2/W1atXe/weHR0dCgaDYQsAcA9wvdTZ2em++tWvukcffTTs9l/+8peuvLzcnTx50v3ud79zo0ePdgsXLuzx+2zdutVJYrFYLFacrUAgcNuO9DpAa9ascVlZWa6xsfG2x1VUVDhJrr6+vtv729vbXSAQCK3Gxkbzk8ZisVisu193ClBErwF9aN26dTpw4ICqq6s1ZsyY2x6bk5MjSaqvr9eECRNuud/j8cjj8fRmDADAABZRgJxzeuqpp7R3715VVlYqOzv7jntOnDghScrMzOzVgACA+BRRgIqLi7Vz507t379fSUlJampqkiR5vV4NHz5cZ86c0c6dO/WVr3xFI0eO1MmTJ7Vhwwbl5eVp2rRpMfkPAAAYoCJ53Uc9/Jxvx44dzjnnzp496/Ly8lxqaqrzeDxu4sSJ7plnnrnjzwE/KhAImP/cksVisVh3v+70d3/C/4el3wgGg/J6vdZjAADuUiAQUHJyco/381lwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT/S5AzjnrEQAAUXCnv8/7XYBaW1utRwAARMGd/j5PcP3skqOrq0vnz59XUlKSEhISwu4LBoMaO3asGhsblZycbDShPc7DTZyHmzgPN3EebuoP58E5p9bWVvn9fg0a1PN1zpA+nOkTGTRokMaMGXPbY5KTk+/pJ9iHOA83cR5u4jzcxHm4yfo8eL3eOx7T734EBwC4NxAgAICJARUgj8ejrVu3yuPxWI9iivNwE+fhJs7DTZyHmwbSeeh3b0IAANwbBtQVEAAgfhAgAIAJAgQAMEGAAAAmBkyASktL9cADD2jYsGHKycnRu+++az1Sn3vhhReUkJAQtiZPnmw9VsxVV1dr3rx58vv9SkhI0L59+8Lud85py5YtyszM1PDhw5Wfn6/Tp0/bDBtDdzoPK1asuOX5UVhYaDNsjJSUlGjmzJlKSkpSenq6FixYoLq6urBj2tvbVVxcrJEjR+r+++/X4sWL1dzcbDRxbHyS8zB79uxbng9r1qwxmrh7AyJAb7zxhjZu3KitW7fqvffe0/Tp01VQUKCLFy9aj9bnHn74YV24cCG03n77beuRYq6trU3Tp09XaWlpt/dv27ZNr7zyil599VUdOXJEI0aMUEFBgdrb2/t40ti603mQpMLCwrDnx65du/pwwtirqqpScXGxamtrdfDgQd24cUNz585VW1tb6JgNGzbozTff1J49e1RVVaXz589r0aJFhlNH3yc5D5K0atWqsOfDtm3bjCbugRsAZs2a5YqLi0Nfd3Z2Or/f70pKSgyn6ntbt25106dPtx7DlCS3d+/e0NddXV3O5/O5n/70p6HbWlpanMfjcbt27TKYsG98/Dw459zy5cvd/PnzTeaxcvHiRSfJVVVVOedu/nc/dOhQt2fPntAxf//7350kV1NTYzVmzH38PDjn3Je+9CX3ne98x26oT6DfXwFdv35dx44dU35+fui2QYMGKT8/XzU1NYaT2Th9+rT8fr/Gjx+vZcuW6ezZs9YjmWpoaFBTU1PY88Pr9SonJ+eefH5UVlYqPT1dkyZN0tq1a3X58mXrkWIqEAhIklJTUyVJx44d040bN8KeD5MnT9a4cePi+vnw8fPwoddff11paWmaMmWKNm/erKtXr1qM16N+92GkH3fp0iV1dnYqIyMj7PaMjAz94x//MJrKRk5OjsrKyjRp0iRduHBBL774oh5//HGdOnVKSUlJ1uOZaGpqkqRunx8f3nevKCws1KJFi5Sdna0zZ87oueeeU1FRkWpqajR48GDr8aKuq6tL69ev16OPPqopU6ZIuvl8SExMVEpKStix8fx86O48SNI3vvENZWVlye/36+TJk/rud7+ruro6/elPfzKcNly/DxD+p6ioKPTnadOmKScnR1lZWfr973+vlStXGk6G/mDp0qWhP0+dOlXTpk3ThAkTVFlZqTlz5hhOFhvFxcU6derUPfE66O30dB5Wr14d+vPUqVOVmZmpOXPm6MyZM5owYUJfj9mtfv8juLS0NA0ePPiWd7E0NzfL5/MZTdU/pKSk6KGHHlJ9fb31KGY+fA7w/LjV+PHjlZaWFpfPj3Xr1unAgQN66623wv75Fp/Pp+vXr6ulpSXs+Hh9PvR0HrqTk5MjSf3q+dDvA5SYmKgZM2aooqIidFtXV5cqKiqUm5trOJm9K1eu6MyZM8rMzLQexUx2drZ8Pl/Y8yMYDOrIkSP3/PPj3Llzunz5clw9P5xzWrdunfbu3avDhw8rOzs77P4ZM2Zo6NChYc+Huro6nT17Nq6eD3c6D905ceKEJPWv54P1uyA+id27dzuPx+PKysrc3/72N7d69WqXkpLimpqarEfrU08//bSrrKx0DQ0N7p133nH5+fkuLS3NXbx40Xq0mGptbXXHjx93x48fd5LcSy+95I4fP+7ef/9955xzP/7xj11KSorbv3+/O3nypJs/f77Lzs52165dM548um53HlpbW92mTZtcTU2Na2hocIcOHXKf+9zn3IMPPuja29utR4+atWvXOq/X6yorK92FCxdC6+rVq6Fj1qxZ48aNG+cOHz7sjh496nJzc11ubq7h1NF3p/NQX1/vfvCDH7ijR4+6hoYGt3//fjd+/HiXl5dnPHm4AREg55z7+c9/7saNG+cSExPdrFmzXG1trfVIfW7JkiUuMzPTJSYmutGjR7slS5a4+vp667Fi7q233nKSblnLly93zt18K/bzzz/vMjIynMfjcXPmzHF1dXW2Q8fA7c7D1atX3dy5c92oUaPc0KFDXVZWllu1alXc/Z+07v7zS3I7duwIHXPt2jX37W9/233qU59y9913n1u4cKG7cOGC3dAxcKfzcPbsWZeXl+dSU1Odx+NxEydOdM8884wLBAK2g38M/xwDAMBEv38NCAAQnwgQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE/8H341JvPmYkeEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 1\n", + "NN answer: 1\n" + ] + } + ], + "source": [ + "# вывод тестового изображения и результата распознавания\n", + "n = 810\n", + "result = model_2l_100.predict(X_test[n:n+1])\n", + "print('NN output:', result)\n", + "\n", + "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "print('Real mark: ', str(np.argmax(y_test[n])))\n", + "print('NN answer: ', str(np.argmax(result)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KB4fgTJ0_EIL" + }, + "outputs": [], + "source": [ + "#загрузка собственного изображения\n", + "from PIL import Image\n", + "file_1_data = Image.open('ИИЛР1_6.png')\n", + "file_1_data = file_1_data.convert('L') #перевод в градации серого\n", + "test_1_img = np.array(file_1_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "no8ogZL3_t57", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "7640781d-fdca-4355-a086-6ab27b2f9f8a" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGl9JREFUeJzt3V9M1ff9x/HX8Q+ntuUcRIQDFRW11aVWdE4ZcWXdJIJbTP1z4bpe6GJsdNhMXbvFJWq7LWGzSbd0cXYXi25ZtZ3J1NQLE0XBbAMbKcSYbUQYDoyAq5FzFAsa+fwu/O20p4J6jufwPhyej+STlHPOl/P222999sDhg8c55wQAwBAbZT0AAGBkIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDEGOsBvqi/v1+XL19Wenq6PB6P9TgAgCg553T9+nXl5eVp1KjBX+ckXYAuX76s/Px86zEAAI+ovb1dkyZNGvT+pPsSXHp6uvUIAIA4eNDf5wkL0O7duzV16lQ99thjKioq0kcfffRQx/FlNwBIDQ/6+zwhAfrggw+0detW7dy5Ux9//LEKCwtVVlamK1euJOLpAADDkUuAhQsXuoqKivDHd+7ccXl5ea6ysvKBxwaDQSeJxWKxWMN8BYPB+/59H/dXQLdu3VJ9fb1KS0vDt40aNUqlpaWqra295/F9fX0KhUIRCwCQ+uIeoE8++UR37txRTk5OxO05OTnq7Oy85/GVlZXy+/3hxTvgAGBkMH8X3LZt2xQMBsOrvb3deiQAwBCI+88BZWVlafTo0erq6oq4vaurS4FA4J7He71eeb3eeI8BAEhycX8FlJaWpvnz56uqqip8W39/v6qqqlRcXBzvpwMADFMJ2Qlh69atWrNmjb7yla9o4cKF+vWvf62enh5973vfS8TTAQCGoYQEaPXq1frvf/+rHTt2qLOzU3PnztWxY8fueWMCAGDk8jjnnPUQnxcKheT3+63HAAA8omAwKJ/PN+j95u+CAwCMTAQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiYTshg3g/hoaGqI+Zu7cuVEf09jYGPUxkjRv3ryYjgOiwSsgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmGA3bCS9odo5OhXFeh6cc/EdZBCx7NbNTt2pg1dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJNiPFkGJjUXxeLP9uY9koNZZNTyU2Pk00XgEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY8Lpad/RIoFArJ7/dbj4EESbLL7R7d3d1RHzN+/Pj4DzIMXbt2LepjYtkkNJYNTDMyMqI+RoptPjYw/UwwGJTP5xv0fl4BAQBMECAAgIm4B+iNN96Qx+OJWLNmzYr30wAAhrmE/EK6Z599VidOnPjsScbwe+8AAJESUoYxY8YoEAgk4lMDAFJEQr4HdOHCBeXl5WnatGl6+eWX1dbWNuhj+/r6FAqFIhYAIPXFPUBFRUXat2+fjh07pj179qi1tVXPP/+8rl+/PuDjKysr5ff7wys/Pz/eIwEAklDCfw6ou7tbU6ZM0dtvv61169bdc39fX5/6+vrCH4dCISKUwvg5oNTFzwHdxc8BfeZBPweU8HcHZGRk6JlnnlFzc/OA93u9Xnm93kSPAQBIMgn/OaAbN26opaVFubm5iX4qAMAwEvcAvfbaa6qpqdHFixf197//XStWrNDo0aP10ksvxfupAADDWNy/BHfp0iW99NJLunr1qiZOnKivfe1rqqur08SJE+P9VACAYYzNSBGzhoaGqI+J5RvIvDEAjyqWN0jEimvvM2xGCgBISgQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACTYjRcyG6tLxeDxD8jwA4ovNSAEASYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMjLEeAPYaGhqsRwAwAvEKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwWak0Ny5c61HADAC8QoIAGCCAAEATEQdoNOnT2vZsmXKy8uTx+PR4cOHI+53zmnHjh3Kzc3VuHHjVFpaqgsXLsRrXgBAiog6QD09PSosLNTu3bsHvH/Xrl1655139O677+rMmTN64oknVFZWpt7e3kceFgCQQtwjkOQOHToU/ri/v98FAgH31ltvhW/r7u52Xq/XHThw4KE+ZzAYdJJYQ7iSnfX5YbFYsa1gMHjf/7bj+j2g1tZWdXZ2qrS0NHyb3+9XUVGRamtrBzymr69PoVAoYgEAUl9cA9TZ2SlJysnJibg9JycnfN8XVVZWyu/3h1d+fn48RwIAJCnzd8Ft27ZNwWAwvNrb261HAgAMgbgGKBAISJK6uroibu/q6grf90Ver1c+ny9iAQBSX1wDVFBQoEAgoKqqqvBtoVBIZ86cUXFxcTyfCgAwzEW9Fc+NGzfU3Nwc/ri1tVWNjY3KzMzU5MmTtXnzZv385z/X008/rYKCAm3fvl15eXlavnx5POcGAAx30b4l9tSpUwO+3W7NmjXOubtvxd6+fbvLyclxXq/XLV682DU1NT305+dt2EO/kp31+WGxWLGtB70N2/P//4EnjVAoJL/fbz3GiHLt2rWYjsvIyIjvIIPweDxD8jzJrqGhIepjkn2j2cbGxqiPmTdvXvwHQUIEg8H7fl/f/F1wAICRiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACai/n1ASD3jx4+P6bih2kg9ll2gY90xORV3nI5FLLtUT506NepjYjl3sVx3sfx5JHbeTjReAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjxuqHaUfEihUEh+v996DDyEJLt0IsS6+WQsG2pevHgx6mNScQPTVBTLdcQGpp8JBoPy+XyD3s8rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABJuRImZJdumY6e7ujvqY8ePHx3+QOLp27VrUx2RkZMR/EGOx/LuNZQPTb3zjG1EfMxywGSkAICkRIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACbGWA8AJEIsm0hKyb9J6FBJtfMQy+aqknTx4sWoj0nVjUUTgVdAAAATBAgAYCLqAJ0+fVrLli1TXl6ePB6PDh8+HHH/2rVr5fF4IlZ5eXm85gUApIioA9TT06PCwkLt3r170MeUl5ero6MjvA4cOPBIQwIAUk/Ub0JYunSpli5det/HeL1eBQKBmIcCAKS+hHwPqLq6WtnZ2Zo5c6Y2btyoq1evDvrYvr4+hUKhiAUASH1xD1B5ebn++Mc/qqqqSr/85S9VU1OjpUuX6s6dOwM+vrKyUn6/P7zy8/PjPRIAIAl5nHMu5oM9Hh06dEjLly8f9DH//ve/NX36dJ04cUKLFy++5/6+vj719fWFPw6FQkRomHiESyfh+DkgfN5Q/hzQvHnzYnquVBQMBuXz+Qa9P+Fvw542bZqysrLU3Nw84P1er1c+ny9iAQBSX8IDdOnSJV29elW5ubmJfioAwDAS9bvgbty4EfFqprW1VY2NjcrMzFRmZqbefPNNrVq1SoFAQC0tLfrRj36kGTNmqKysLK6DAwCGt6gDdPbs2Yi9jrZu3SpJWrNmjfbs2aNz587pD3/4g7q7u5WXl6clS5boZz/7mbxeb/ymBgAMe4/0JoRECIVC8vv91mPgISTZpRPB4/FYj4AUEMs1zrX3GfM3IQAAMBACBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcZ6AIws3d3dUR+TkZER9zkwsjQ0NFiPgAHwCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMFmpBhSbCyKRxXLxqJTp06N/yB4ZLwCAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMsBkpYtbd3R31MUO1GWksG1ZK0rx58+I8Ce4nlushlo1FL168GPUxsT4XHh6vgAAAJggQAMBEVAGqrKzUggULlJ6eruzsbC1fvlxNTU0Rj+nt7VVFRYUmTJigJ598UqtWrVJXV1dchwYADH9RBaimpkYVFRWqq6vT8ePHdfv2bS1ZskQ9PT3hx2zZskUffvihDh48qJqaGl2+fFkrV66M++AAgOEtqjchHDt2LOLjffv2KTs7W/X19SopKVEwGNTvf/977d+/X9/85jclSXv37tWXvvQl1dXV6atf/Wr8JgcADGuP9D2gYDAoScrMzJQk1dfX6/bt2yotLQ0/ZtasWZo8ebJqa2sH/Bx9fX0KhUIRCwCQ+mIOUH9/vzZv3qxFixZp9uzZkqTOzk6lpaXd89bKnJwcdXZ2Dvh5Kisr5ff7wys/Pz/WkQAAw0jMAaqoqND58+f1/vvvP9IA27ZtUzAYDK/29vZH+nwAgOEhph9E3bRpk44eParTp09r0qRJ4dsDgYBu3bql7u7uiFdBXV1dCgQCA34ur9crr9cbyxgAgGEsqldAzjlt2rRJhw4d0smTJ1VQUBBx//z58zV27FhVVVWFb2tqalJbW5uKi4vjMzEAICVE9QqooqJC+/fv15EjR5Senh7+vo7f79e4cePk9/u1bt06bd26VZmZmfL5fHr11VdVXFzMO+AAABGiCtCePXskSS+88ELE7Xv37tXatWslSb/61a80atQorVq1Sn19fSorK9Nvf/vbuAwLAEgdHuecsx7i80KhkPx+v/UYSJBr165FfUwsG1bGslFqrM+F2A3VhraxXg/jx4+P6TjcFQwG5fP5Br2fveAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgIqbfiArEKpbdhYdqB+1YNTY2Rn3M1KlToz4mlj9TLLPFau7cuVEfM1Q7W7OrdXLiFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ3xeKBSS3++3HgMjVLJvfDpU2PAT8RAMBuXz+Qa9n1dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJMdYDAMmEDTWBocMrIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGAiqgBVVlZqwYIFSk9PV3Z2tpYvX66mpqaIx7zwwgvyeDwRa8OGDXEdGgAw/EUVoJqaGlVUVKiurk7Hjx/X7du3tWTJEvX09EQ8bv369ero6AivXbt2xXVoAMDwF9VvRD127FjEx/v27VN2drbq6+tVUlISvv3xxx9XIBCIz4QAgJT0SN8DCgaDkqTMzMyI29977z1lZWVp9uzZ2rZtm27evDno5+jr61MoFIpYAIARwMXozp077tvf/rZbtGhRxO2/+93v3LFjx9y5c+fcn/70J/fUU0+5FStWDPp5du7c6SSxWCwWK8VWMBi8b0diDtCGDRvclClTXHt7+30fV1VV5SS55ubmAe/v7e11wWAwvNrb281PGovFYrEefT0oQFF9D+h/Nm3apKNHj+r06dOaNGnSfR9bVFQkSWpubtb06dPvud/r9crr9cYyBgBgGIsqQM45vfrqqzp06JCqq6tVUFDwwGMaGxslSbm5uTENCABITVEFqKKiQvv379eRI0eUnp6uzs5OSZLf79e4cePU0tKi/fv361vf+pYmTJigc+fOacuWLSopKdGcOXMS8gcAAAxT0XzfR4N8nW/v3r3OOefa2tpcSUmJy8zMdF6v182YMcO9/vrrD/w64OcFg0Hzr1uyWCwW69HXg/7u9/x/WJJGKBSS3++3HgMA8IiCwaB8Pt+g97MXHADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARNIFyDlnPQIAIA4e9Pd50gXo+vXr1iMAAOLgQX+fe1ySveTo7+/X5cuXlZ6eLo/HE3FfKBRSfn6+2tvb5fP5jCa0x3m4i/NwF+fhLs7DXclwHpxzun79uvLy8jRq1OCvc8YM4UwPZdSoUZo0adJ9H+Pz+Ub0BfY/nIe7OA93cR7u4jzcZX0e/H7/Ax+TdF+CAwCMDAQIAGBiWAXI6/Vq586d8nq91qOY4jzcxXm4i/NwF+fhruF0HpLuTQgAgJFhWL0CAgCkDgIEADBBgAAAJggQAMDEsAnQ7t27NXXqVD322GMqKirSRx99ZD3SkHvjjTfk8Xgi1qxZs6zHSrjTp09r2bJlysvLk8fj0eHDhyPud85px44dys3N1bhx41RaWqoLFy7YDJtADzoPa9euvef6KC8vtxk2QSorK7VgwQKlp6crOztby5cvV1NTU8Rjent7VVFRoQkTJujJJ5/UqlWr1NXVZTRxYjzMeXjhhRfuuR42bNhgNPHAhkWAPvjgA23dulU7d+7Uxx9/rMLCQpWVlenKlSvWow25Z599Vh0dHeH117/+1XqkhOvp6VFhYaF279494P27du3SO++8o3fffVdnzpzRE088obKyMvX29g7xpIn1oPMgSeXl5RHXx4EDB4ZwwsSrqalRRUWF6urqdPz4cd2+fVtLlixRT09P+DFbtmzRhx9+qIMHD6qmpkaXL1/WypUrDaeOv4c5D5K0fv36iOth165dRhMPwg0DCxcudBUVFeGP79y54/Ly8lxlZaXhVENv586drrCw0HoMU5LcoUOHwh/39/e7QCDg3nrrrfBt3d3dzuv1ugMHDhhMODS+eB6cc27NmjXuxRdfNJnHypUrV5wkV1NT45y7++9+7Nix7uDBg+HH/POf/3SSXG1trdWYCffF8+Ccc1//+tfdD37wA7uhHkLSvwK6deuW6uvrVVpaGr5t1KhRKi0tVW1treFkNi5cuKC8vDxNmzZNL7/8stra2qxHMtXa2qrOzs6I68Pv96uoqGhEXh/V1dXKzs7WzJkztXHjRl29etV6pIQKBoOSpMzMTElSfX29bt++HXE9zJo1S5MnT07p6+GL5+F/3nvvPWVlZWn27Nnatm2bbt68aTHeoJJuM9Iv+uSTT3Tnzh3l5ORE3J6Tk6N//etfRlPZKCoq0r59+zRz5kx1dHTozTff1PPPP6/z588rPT3dejwTnZ2dkjTg9fG/+0aK8vJyrVy5UgUFBWppadFPfvITLV26VLW1tRo9erT1eHHX39+vzZs3a9GiRZo9e7aku9dDWlqaMjIyIh6bytfDQOdBkr773e9qypQpysvL07lz5/TjH/9YTU1N+stf/mI4baSkDxA+s3Tp0vA/z5kzR0VFRZoyZYr+/Oc/a926dYaTIRl85zvfCf/zc889pzlz5mj69Omqrq7W4sWLDSdLjIqKCp0/f35EfB/0fgY7D6+88kr4n5977jnl5uZq8eLFamlp0fTp04d6zAEl/ZfgsrKyNHr06HvexdLV1aVAIGA0VXLIyMjQM888o+bmZutRzPzvGuD6uNe0adOUlZWVktfHpk2bdPToUZ06dSri17cEAgHdunVL3d3dEY9P1ethsPMwkKKiIklKqush6QOUlpam+fPnq6qqKnxbf3+/qqqqVFxcbDiZvRs3bqilpUW5ubnWo5gpKChQIBCIuD5CoZDOnDkz4q+PS5cu6erVqyl1fTjntGnTJh06dEgnT55UQUFBxP3z58/X2LFjI66HpqYmtbW1pdT18KDzMJDGxkZJSq7rwfpdEA/j/fffd16v1+3bt8/94x//cK+88orLyMhwnZ2d1qMNqR/+8Ieuurratba2ur/97W+utLTUZWVluStXrliPllDXr193DQ0NrqGhwUlyb7/9tmtoaHD/+c9/nHPO/eIXv3AZGRnuyJEj7ty5c+7FF190BQUF7tNPPzWePL7udx6uX7/uXnvtNVdbW+taW1vdiRMn3Je//GX39NNPu97eXuvR42bjxo3O7/e76upq19HREV43b94MP2bDhg1u8uTJ7uTJk+7s2bOuuLjYFRcXG04dfw86D83Nze6nP/2pO3v2rGttbXVHjhxx06ZNcyUlJcaTRxoWAXLOud/85jdu8uTJLi0tzS1cuNDV1dVZjzTkVq9e7XJzc11aWpp76qmn3OrVq11zc7P1WAl36tQpJ+metWbNGufc3bdib9++3eXk5Div1+sWL17smpqabIdOgPudh5s3b7olS5a4iRMnurFjx7opU6a49evXp9z/pA3055fk9u7dG37Mp59+6r7//e+78ePHu8cff9ytWLHCdXR02A2dAA86D21tba6kpMRlZmY6r9frZsyY4V5//XUXDAZtB/8Cfh0DAMBE0n8PCACQmggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE/8HYMK6RNiPcj0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "#вывод собственного изображения\n", + "plt.imshow(test_1_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mpkMp0r0_z_N" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_1_img = test_1_img / 255\n", + "test_1_img = test_1_img.reshape(1, num_pixels)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "brZ2LVVK_640", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "69d1d18e-6241-43b4-9610-bcf1685594d3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n", + "I think it's 6\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_1 = model_2l_100.predict(test_1_img)\n", + "print('I think it\\'s', np.argmax(result_1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "le5KqCc1wMwT" + }, + "outputs": [], + "source": [ + "#загрузка собственного изображения\n", + "from PIL import Image\n", + "file_2_data = Image.open('ИИЛР1_1.png')\n", + "file_2_data = file_2_data.convert('L') #перевод в градации серого\n", + "test_2_img = np.array(file_2_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YVYE-Vkq5wR7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "0c932382-ef82-4388-8197-3419fd063826" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGLRJREFUeJzt3X9MVff9x/HXVeFWW+5FRLjcihS11aRWmjllxNU1kShuMfXHH67rH9oYG+21mbp2i0vUdlnCZpNm6WLW/aVZVm1nMjT1DxNFwWxDm1qNMeuIMDYwcnE141xEQQOf7x+u99tbQbx6L28uPB/JJ5F7zr33zemRZy/3CD7nnBMAAMNsnPUAAICxiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATE6wH+Kb+/n5dvXpVOTk58vl81uMAAJLknFNXV5fC4bDGjRv8dc6IC9DVq1dVXFxsPQYA4BG1tbVp2rRpg24fcd+Cy8nJsR4BAJACQ309T1uA9u7dq6eeekqPPfaYysvL9emnnz7Q/fi2GwCMDkN9PU9LgD7++GNt375du3fv1ueff66ysjItW7ZM165dS8fTAQAykUuDhQsXukgkEv+4r6/PhcNhV11dPeR9Pc9zklgsFouV4cvzvPt+vU/5K6Dbt2/r3LlzqqysjN82btw4VVZWqqGh4Z79e3t7FYvFEhYAYPRLeYC+/PJL9fX1qbCwMOH2wsJCRaPRe/avrq5WMBiML66AA4CxwfwquB07dsjzvPhqa2uzHgkAMAxS/u+A8vPzNX78eHV0dCTc3tHRoVAodM/+fr9ffr8/1WMAAEa4lL8Cys7O1vz581VbWxu/rb+/X7W1taqoqEj10wEAMlRafhLC9u3btW7dOn3729/WwoUL9Zvf/Ebd3d169dVX0/F0AIAMlJYArV27Vv/5z3+0a9cuRaNRPf/88zp27Ng9FyYAAMYun3POWQ/xdbFYTMFg0HoMAMAj8jxPgUBg0O3mV8EBAMYmAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGKC9QBAptu3b9+wPM+rr746LM8DDBdeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJnzOOWc9xNfFYjEFg0HrMTBGPcwPFl2/fn3qBxmAz+cblucBUsXzPAUCgUG38woIAGCCAAEATKQ8QG+//bZ8Pl/CmjNnTqqfBgCQ4dLyC+meffZZnThx4v+fZAK/9w4AkCgtZZgwYYJCoVA6HhoAMEqk5T2gy5cvKxwOa8aMGXrllVfU2to66L69vb2KxWIJCwAw+qU8QOXl5dq/f7+OHTum3/3ud2ppadELL7ygrq6uAfevrq5WMBiMr+Li4lSPBAAYgdL+74A6OztVUlKi9957Txs2bLhne29vr3p7e+Mfx2IxIgQz/DsgIHWG+ndAab86IDc3V88884yampoG3O73++X3+9M9BgBghEn7vwO6ceOGmpubVVRUlO6nAgBkkJQH6M0331R9fb3+9a9/6W9/+5tWrVql8ePH6+WXX071UwEAMljKvwV35coVvfzyy7p+/bqmTp2q7373uzpz5oymTp2a6qcCAGQwfhgp8DUj7K9DAi5CQKbhh5ECAEYkAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHBegBgJOns7Ez6Prm5uUnfp6+vL+n7AKMNr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP8MFLgayZPnpz0fZxzSd9n/PjxSd8HGG14BQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMJB2g06dPa8WKFQqHw/L5fDp8+HDCduecdu3apaKiIk2cOFGVlZW6fPlyquYFAIwSSQeou7tbZWVl2rt374Db9+zZo/fff18ffPCBzp49q8cff1zLli1TT0/PIw8LABhF3COQ5GpqauIf9/f3u1Ao5N599934bZ2dnc7v97uDBw8+0GN6nucksVgZs4aL9efJYiW7PM+77zmd0veAWlpaFI1GVVlZGb8tGAyqvLxcDQ0NA96nt7dXsVgsYQEARr+UBigajUqSCgsLE24vLCyMb/um6upqBYPB+CouLk7lSACAEcr8KrgdO3bI87z4amtrsx4JADAMUhqgUCgkSero6Ei4vaOjI77tm/x+vwKBQMICAIx+KQ1QaWmpQqGQamtr47fFYjGdPXtWFRUVqXwqAECGm5DsHW7cuKGmpqb4xy0tLbpw4YLy8vI0ffp0bd26Vb/85S/19NNPq7S0VDt37lQ4HNbKlStTOTcAINMleynoqVOnBrzcbt26dc65u5di79y50xUWFjq/3++WLFniGhsbH/jxuQyblWlruFh/nixWsmuoy7B9/zuxR4xYLKZgMGg9BvDAhuuvkM/nG5bnAVLF87z7vq9vfhUcAGBsIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYmWA8AjCTnz5+3HgEYM3gFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4IeRAl/z/PPPW48AjBm8AgIAmCBAAAATSQfo9OnTWrFihcLhsHw+nw4fPpywff369fL5fAmrqqoqVfMCAEaJpAPU3d2tsrIy7d27d9B9qqqq1N7eHl8HDx58pCEBAKNP0hchLF++XMuXL7/vPn6/X6FQ6KGHAgCMfml5D6iurk4FBQWaPXu2Nm/erOvXrw+6b29vr2KxWMICAIx+KQ9QVVWV/vCHP6i2tla//vWvVV9fr+XLl6uvr2/A/aurqxUMBuOruLg41SMBAEYgn3POPfSdfT7V1NRo5cqVg+7zz3/+UzNnztSJEye0ZMmSe7b39vaqt7c3/nEsFiNCMPMIfx3SzufzWY8AJMXzPAUCgUG3p/0y7BkzZig/P19NTU0Dbvf7/QoEAgkLADD6pT1AV65c0fXr11VUVJTupwIAZJCkr4K7ceNGwquZlpYWXbhwQXl5ecrLy9M777yjNWvWKBQKqbm5WT/96U81a9YsLVu2LKWDAwAynEvSqVOnnKR71rp169zNmzfd0qVL3dSpU11WVpYrKSlxGzdudNFo9IEf3/O8AR+fxRqONZJZHxsWK9nled59z+lHugghHWKxmILBoPUYGKP++9//Jn2f3Nzc1A8yAC5CQKYxvwgBAICBECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwETSvw8IGM0mT56c9H1G2A+UBzIGr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJpIKUHV1tRYsWKCcnBwVFBRo5cqVamxsTNinp6dHkUhEU6ZM0RNPPKE1a9aoo6MjpUMDADJfUgGqr69XJBLRmTNndPz4cd25c0dLly5Vd3d3fJ9t27bpk08+0aFDh1RfX6+rV69q9erVKR8cAJDh3CO4du2ak+Tq6+udc851dna6rKwsd+jQofg+X3zxhZPkGhoaHugxPc9zklisjFnDxfrzZLGSXZ7n3fecfqT3gDzPkyTl5eVJks6dO6c7d+6osrIyvs+cOXM0ffp0NTQ0DPgYvb29isViCQsAMPo9dID6+/u1detWLVq0SHPnzpUkRaNRZWdnKzc3N2HfwsJCRaPRAR+nurpawWAwvoqLix92JABABnnoAEUiEV26dEkfffTRIw2wY8cOeZ4XX21tbY/0eACAzDDhYe60ZcsWHT16VKdPn9a0adPit4dCId2+fVudnZ0Jr4I6OjoUCoUGfCy/3y+/3/8wYwAAMlhSr4Ccc9qyZYtqamp08uRJlZaWJmyfP3++srKyVFtbG7+tsbFRra2tqqioSM3EAIBRIalXQJFIRAcOHNCRI0eUk5MTf18nGAxq4sSJCgaD2rBhg7Zv3668vDwFAgG98cYbqqio0He+8520fAIAgAyVistA9+3bF9/n1q1b7vXXX3eTJ092kyZNcqtWrXLt7e0P/Bxchs3KtDVcrD9PFivZNdRl2L7/ndgjRiwWUzAYtB4DeGDD9VfI5/MNy/MAqeJ5ngKBwKDb+VlwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGKC9QBApuvs7Ez6PoFAIPWDABmGV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAl+GCnwiCZPnmw9ApCReAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATCQVoOrqai1YsEA5OTkqKCjQypUr1djYmLDPiy++KJ/Pl7A2bdqU0qEBAJkvqQDV19crEonozJkzOn78uO7cuaOlS5equ7s7Yb+NGzeqvb09vvbs2ZPSoQEAmS+p34h67NixhI/379+vgoICnTt3TosXL47fPmnSJIVCodRMCAAYlR7pPSDP8yRJeXl5Cbd/+OGHys/P19y5c7Vjxw7dvHlz0Mfo7e1VLBZLWACAMcA9pL6+PveDH/zALVq0KOH23//+9+7YsWPu4sWL7o9//KN78skn3apVqwZ9nN27dztJLBaLxRply/O8+3bkoQO0adMmV1JS4tra2u67X21trZPkmpqaBtze09PjPM+Lr7a2NvODxmKxWKxHX0MFKKn3gL6yZcsWHT16VKdPn9a0adPuu295ebkkqampSTNnzrxnu9/vl9/vf5gxAAAZLKkAOef0xhtvqKamRnV1dSotLR3yPhcuXJAkFRUVPdSAAIDRKakARSIRHThwQEeOHFFOTo6i0agkKRgMauLEiWpubtaBAwf0/e9/X1OmTNHFixe1bds2LV68WPPmzUvLJwAAyFDJvO+jQb7Pt2/fPuecc62trW7x4sUuLy/P+f1+N2vWLPfWW28N+X3Ar/M8z/z7liwWi8V69DXU137f/8IyYsRiMQWDQesxAACPyPM8BQKBQbfzs+AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACZGXICcc9YjAABSYKiv5yMuQF1dXdYjAABSYKiv5z43wl5y9Pf36+rVq8rJyZHP50vYFovFVFxcrLa2NgUCAaMJ7XEc7uI43MVxuIvjcNdIOA7OOXV1dSkcDmvcuMFf50wYxpkeyLhx4zRt2rT77hMIBMb0CfYVjsNdHIe7OA53cRzusj4OwWBwyH1G3LfgAABjAwECAJjIqAD5/X7t3r1bfr/fehRTHIe7OA53cRzu4jjclUnHYcRdhAAAGBsy6hUQAGD0IEAAABMECABgggABAExkTID27t2rp556So899pjKy8v16aefWo807N5++235fL6ENWfOHOux0u706dNasWKFwuGwfD6fDh8+nLDdOaddu3apqKhIEydOVGVlpS5fvmwzbBoNdRzWr19/z/lRVVVlM2yaVFdXa8GCBcrJyVFBQYFWrlypxsbGhH16enoUiUQ0ZcoUPfHEE1qzZo06OjqMJk6PBzkOL7744j3nw6ZNm4wmHlhGBOjjjz/W9u3btXv3bn3++ecqKyvTsmXLdO3aNevRht2zzz6r9vb2+PrLX/5iPVLadXd3q6ysTHv37h1w+549e/T+++/rgw8+0NmzZ/X4449r2bJl6unpGeZJ02uo4yBJVVVVCefHwYMHh3HC9Kuvr1ckEtGZM2d0/Phx3blzR0uXLlV3d3d8n23btumTTz7RoUOHVF9fr6tXr2r16tWGU6fegxwHSdq4cWPC+bBnzx6jiQfhMsDChQtdJBKJf9zX1+fC4bCrrq42nGr47d6925WVlVmPYUqSq6mpiX/c39/vQqGQe/fdd+O3dXZ2Or/f7w4ePGgw4fD45nFwzrl169a5l156yWQeK9euXXOSXH19vXPu7n/7rKwsd+jQofg+X3zxhZPkGhoarMZMu28eB+ec+973vud+/OMf2w31AEb8K6Dbt2/r3LlzqqysjN82btw4VVZWqqGhwXAyG5cvX1Y4HNaMGTP0yiuvqLW11XokUy0tLYpGownnRzAYVHl5+Zg8P+rq6lRQUKDZs2dr8+bNun79uvVIaeV5niQpLy9PknTu3DnduXMn4XyYM2eOpk+fPqrPh28eh698+OGHys/P19y5c7Vjxw7dvHnTYrxBjbgfRvpNX375pfr6+lRYWJhwe2Fhof7xj38YTWWjvLxc+/fv1+zZs9Xe3q533nlHL7zwgi5duqScnBzr8UxEo1FJGvD8+GrbWFFVVaXVq1ertLRUzc3N+vnPf67ly5eroaFB48ePtx4v5fr7+7V161YtWrRIc+fOlXT3fMjOzlZubm7CvqP5fBjoOEjSj370I5WUlCgcDuvixYv62c9+psbGRv35z382nDbRiA8Q/t/y5cvjf543b57Ky8tVUlKiP/3pT9qwYYPhZBgJfvjDH8b//Nxzz2nevHmaOXOm6urqtGTJEsPJ0iMSiejSpUtj4n3Q+xnsOLz22mvxPz/33HMqKirSkiVL1NzcrJkzZw73mAMa8d+Cy8/P1/jx4++5iqWjo0OhUMhoqpEhNzdXzzzzjJqamqxHMfPVOcD5ca8ZM2YoPz9/VJ4fW7Zs0dGjR3Xq1KmEX98SCoV0+/ZtdXZ2Juw/Ws+HwY7DQMrLyyVpRJ0PIz5A2dnZmj9/vmpra+O39ff3q7a2VhUVFYaT2btx44aam5tVVFRkPYqZ0tJShUKhhPMjFovp7NmzY/78uHLliq5fvz6qzg/nnLZs2aKamhqdPHlSpaWlCdvnz5+vrKyshPOhsbFRra2to+p8GOo4DOTChQuSNLLOB+urIB7ERx995Px+v9u/f7/7+9//7l577TWXm5vrotGo9WjD6ic/+Ymrq6tzLS0t7q9//aurrKx0+fn57tq1a9ajpVVXV5c7f/68O3/+vJPk3nvvPXf+/Hn373//2znn3K9+9SuXm5vrjhw54i5evOheeuklV1pa6m7dumU8eWrd7zh0dXW5N9980zU0NLiWlhZ34sQJ961vfcs9/fTTrqenx3r0lNm8ebMLBoOurq7Otbe3x9fNmzfj+2zatMlNnz7dnTx50n322WeuoqLCVVRUGE6dekMdh6amJveLX/zCffbZZ66lpcUdOXLEzZgxwy1evNh48kQZESDnnPvtb3/rpk+f7rKzs93ChQvdmTNnrEcadmvXrnVFRUUuOzvbPfnkk27t2rWuqanJeqy0O3XqlJN0z1q3bp1z7u6l2Dt37nSFhYXO7/e7JUuWuMbGRtuh0+B+x+HmzZtu6dKlburUqS4rK8uVlJS4jRs3jrr/SRvo85fk9u3bF9/n1q1b7vXXX3eTJ092kyZNcqtWrXLt7e12Q6fBUMehtbXVLV682OXl5Tm/3+9mzZrl3nrrLed5nu3g38CvYwAAmBjx7wEBAEYnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDE/wHey6QFMggR7wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "#вывод собственного изображения\n", + "plt.imshow(test_2_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iabh56bf52Cx" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_2_img = test_2_img / 255\n", + "test_2_img = test_2_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "184Hvdg26hoh", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "53455b67-6eac-4625-cd82-2eb64ba5ec27" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "I think it's 1\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_2 = model_2l_100.predict(test_2_img)\n", + "print('I think it\\'s', np.argmax(result_2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ELjlb0b28h8d" + }, + "outputs": [], + "source": [ + "from PIL import Image\n", + "file_190_data = Image.open('ИИЛР1_690.png')\n", + "file_190_data = file_190_data.convert('L') #перевод в градации серого\n", + "test_190_img = np.array(file_190_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nDvEgbbU8wcC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "7356832f-7b05-4876-c0f2-8996dea2ac2c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGltJREFUeJzt3X9MVff9x/HX9dfVtnARES63oqK2utSKzikjtqxGIrLF+GuJ7fqHLkajw2bq2i4uq7bbEjaXdE0XZ/eXrlnVzmRq6h8mioLZhjZaiTFbiTicGAVbI/cqFjTy+f7ht7e9FdR7ufe+L5fnIzlJuecc7tvjkWcv93DwOOecAABIsgHWAwAA+icCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAyyHuCburq6dPnyZWVkZMjj8ViPAwCIknNON27cUCAQ0IABPb/OSbkAXb58WQUFBdZjAAB6qbm5WaNGjepxfcp9Cy4jI8N6BABAHDzs63nCArR161aNHTtWQ4cOVXFxsT7++ONH2o9vuwFAenjY1/OEBOjDDz/Uhg0btHnzZn3yyScqKipSeXm5rl69moinAwD0RS4BZs6c6SorK8Mf37171wUCAVdVVfXQfYPBoJPEwsLCwtLHl2Aw+MCv93F/BXT79m2dOnVKZWVl4ccGDBigsrIy1dXV3bd9Z2enQqFQxAIASH9xD9Dnn3+uu3fvKi8vL+LxvLw8tbS03Ld9VVWVfD5feOEKOADoH8yvgtu4caOCwWB4aW5uth4JAJAEcf85oJycHA0cOFCtra0Rj7e2tsrv99+3vdfrldfrjfcYAIAUF/dXQEOGDNH06dNVXV0dfqyrq0vV1dUqKSmJ99MBAPqohNwJYcOGDVq2bJm+853vaObMmXrnnXfU3t6uH//4x4l4OgBAH5SQAC1dulSfffaZNm3apJaWFk2dOlUHDx6878IEAED/5XHOOeshvi4UCsnn81mPAQDopWAwqMzMzB7Xm18FBwDonwgQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJQdYDAP3R0aNHo95n9uzZCZgEsMMrIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABDcjTWGnT5+Oep+xY8dGvc/w4cOj3gdfSdbfUyzPM3Xq1Kj3SXVtbW1R78M5npp4BQQAMEGAAAAm4h6gN998Ux6PJ2KZNGlSvJ8GANDHJeQ9oGeeeUaHDx/+6kkG8VYTACBSQsowaNAg+f3+RHxqAECaSMh7QOfOnVMgENC4ceP08ssv6+LFiz1u29nZqVAoFLEAANJf3ANUXFysHTt26ODBg9q2bZuampr0/PPP68aNG91uX1VVJZ/PF14KCgriPRIAIAV5nHMukU/Q1tamMWPG6O2339aKFSvuW9/Z2anOzs7wx6FQiAj9P34OqG9I1t/ThQsXot6HnwO6h3PcRjAYVGZmZo/rE351QFZWlp5++mk1NjZ2u97r9crr9SZ6DABAikn4zwHdvHlT58+fV35+fqKfCgDQh8Q9QK+++qpqa2t14cIF/etf/9KiRYs0cOBAvfTSS/F+KgBAHxb3b8FdunRJL730kq5du6aRI0fqueee0/HjxzVy5Mh4PxUAoA+Le4B2794d70+ZFpJ1I8lY3qDFV1L5hp+xXLjg8XjiP0gPUvlijOvXr0e9j8TFC4nGveAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMJ/42o0QqFQvL5fNZjxF0sh5nf/Jh8KfbPIUIybyyaLMm6gWlWVlbU+0j8G+yth/1GVF4BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMQg6wH6olju4BuL+vr6pDxPOkrW3xF6Z9q0aVHvE8udrZuamqLeJ9bnwqPjFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ3xdKBSSz+ezHuOBknXI2traot5n+PDh8R+kD4r17yiWY56sG1Z6PJ6kPE86SuaXOf6evhIMBpWZmdnjel4BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmBlkPgJ5xY9Hku3DhQtT7TJ06Nep9YrnpKZKvvr4+6n2uX78e9T799d86r4AAACYIEADARNQBOnbsmObPn69AICCPx6N9+/ZFrHfOadOmTcrPz9ewYcNUVlamc+fOxWteAECaiDpA7e3tKioq0tatW7tdv2XLFr377rt67733dOLECT3++OMqLy9XR0dHr4cFAKSPqC9CqKioUEVFRbfrnHN655139Mtf/lILFiyQJL3//vvKy8vTvn379OKLL/ZuWgBA2ojre0BNTU1qaWlRWVlZ+DGfz6fi4mLV1dV1u09nZ6dCoVDEAgBIf3ENUEtLiyQpLy8v4vG8vLzwum+qqqqSz+cLLwUFBfEcCQCQosyvgtu4caOCwWB4aW5uth4JAJAEcQ2Q3++XJLW2tkY83traGl73TV6vV5mZmRELACD9xTVAhYWF8vv9qq6uDj8WCoV04sQJlZSUxPOpAAB9XNRXwd28eVONjY3hj5uamlRfX6/s7GyNHj1a69at029+8xs99dRTKiws1BtvvKFAIKCFCxfGc24AQB8XdYBOnjyp2bNnhz/esGGDJGnZsmXasWOHXn/9dbW3t2vVqlVqa2vTc889p4MHD2ro0KHxmxoA0Od5nHPOeoivC4VC8vl8SXmu06dPx7RfLDefjIXH40nK86SjFDut78PfbXLFej7EcjPSWL4+pOv5EAwGH/i+vvlVcACA/okAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAm+vXdsFPsj36fdL1DbjJwp3N8Hf/WbXA3bABASiJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAyyHsBSfX19TPsl64aViN20adNi2i/Vb1qJ5Gpra4t6n6ysrLjPka54BQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOjXNyPlhpWIh1huanv9+vWo9xk+fHjU+6B3Lly4EPU+3Kz40fEKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAw0a9vRprquGFl8sVyY9GxY8dGvU9WVlbU+yD5YrmxaFtbW9znSFe8AgIAmCBAAAATUQfo2LFjmj9/vgKBgDwej/bt2xexfvny5fJ4PBHLvHnz4jUvACBNRB2g9vZ2FRUVaevWrT1uM2/ePF25ciW87Nq1q1dDAgDST9QXIVRUVKiiouKB23i9Xvn9/piHAgCkv4S8B1RTU6Pc3FxNnDhRa9as0bVr13rctrOzU6FQKGIBAKS/uAdo3rx5ev/991VdXa3f/e53qq2tVUVFhe7evdvt9lVVVfL5fOGloKAg3iMBAFKQxznnYt7Z49HevXu1cOHCHrf573//q/Hjx+vw4cOaM2fOfes7OzvV2dkZ/jgUCqV8hHpxyKISy88T8HNAvXP69Omo90nWzwF5PJ6o98E9yfo3K/Hv9uuCwaAyMzN7XJ/wy7DHjRunnJwcNTY2drve6/UqMzMzYgEApL+EB+jSpUu6du2a8vPzE/1UAIA+JOqr4G7evBnxaqapqUn19fXKzs5Wdna23nrrLS1ZskR+v1/nz5/X66+/rgkTJqi8vDyugwMA+raoA3Ty5EnNnj07/PGGDRskScuWLdO2bdt05swZ/eUvf1FbW5sCgYDmzp2rX//61/J6vfGbGgDQ5/XqIoRECIVC8vl81mM8UIodsgi8UZ18sVy4kKybXKbjm9vJulBE4mKR3jK/CAEAgO4QIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARNS/jgFSfX191PvEcvfjWFy/fj3qfdLxjsmxStadrWMRy52ZU/nO7X1BLHcgx6PjFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjUuxuhaFQSD6fz3qMuEvlm1wC8RDLjTtjucFqLGK9qSg36u2dYDCozMzMHtfzCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHNSNMMNz1FuovlxqLcVNQGNyMFAKQkAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDEIOsBEF/Tpk2zHuGBknWz1FhuWClx00ogmXgFBAAwQYAAACaiClBVVZVmzJihjIwM5ebmauHChWpoaIjYpqOjQ5WVlRoxYoSeeOIJLVmyRK2trXEdGgDQ90UVoNraWlVWVur48eM6dOiQ7ty5o7lz56q9vT28zfr16/XRRx9pz549qq2t1eXLl7V48eK4Dw4A6Nt69RtRP/vsM+Xm5qq2tlalpaUKBoMaOXKkdu7cqR/+8IeSpE8//VTf+ta3VFdXp+9+97sP/Zz8RtT0xkUIQP+R0N+IGgwGJUnZ2dmSpFOnTunOnTsqKysLbzNp0iSNHj1adXV13X6Ozs5OhUKhiAUAkP5iDlBXV5fWrVunWbNmafLkyZKklpYWDRkyRFlZWRHb5uXlqaWlpdvPU1VVJZ/PF14KCgpiHQkA0IfEHKDKykqdPXtWu3fv7tUAGzduVDAYDC/Nzc29+nwAgL4hph9EXbt2rQ4cOKBjx45p1KhR4cf9fr9u376ttra2iFdBra2t8vv93X4ur9crr9cbyxgAgD4sqldAzjmtXbtWe/fu1ZEjR1RYWBixfvr06Ro8eLCqq6vDjzU0NOjixYsqKSmJz8QAgLQQ1SugyspK7dy5U/v371dGRkb4fR2fz6dhw4bJ5/NpxYoV2rBhg7Kzs5WZmalXXnlFJSUlj3QFHACg/4gqQNu2bZMkvfDCCxGPb9++XcuXL5ck/eEPf9CAAQO0ZMkSdXZ2qry8XH/605/iMiwAIH306ueAEoGfAwKA9JDQnwMCACBWBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARFQBqqqq0owZM5SRkaHc3FwtXLhQDQ0NEdu88MIL8ng8Ecvq1avjOjQAoO+LKkC1tbWqrKzU8ePHdejQId25c0dz585Ve3t7xHYrV67UlStXwsuWLVviOjQAoO8bFM3GBw8ejPh4x44dys3N1alTp1RaWhp+/LHHHpPf74/PhACAtNSr94CCwaAkKTs7O+LxDz74QDk5OZo8ebI2btyoW7du9fg5Ojs7FQqFIhYAQD/gYnT37l33gx/8wM2aNSvi8T//+c/u4MGD7syZM+6vf/2re/LJJ92iRYt6/DybN292klhYWFhY0mwJBoMP7EjMAVq9erUbM2aMa25ufuB21dXVTpJrbGzsdn1HR4cLBoPhpbm52fygsbCwsLD0fnlYgKJ6D+hLa9eu1YEDB3Ts2DGNGjXqgdsWFxdLkhobGzV+/Pj71nu9Xnm93ljGAAD0YVEFyDmnV155RXv37lVNTY0KCwsfuk99fb0kKT8/P6YBAQDpKaoAVVZWaufOndq/f78yMjLU0tIiSfL5fBo2bJjOnz+vnTt36vvf/75GjBihM2fOaP369SotLdWUKVMS8gcAAPRR0bzvox6+z7d9+3bnnHMXL150paWlLjs723m9XjdhwgT32muvPfT7gF8XDAbNv2/JwsLCwtL75WFf+z3/H5aUEQqF5PP5rMcAAPRSMBhUZmZmj+u5FxwAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwETKBcg5Zz0CACAOHvb1POUCdOPGDesRAABx8LCv5x6XYi85urq6dPnyZWVkZMjj8USsC4VCKigoUHNzszIzM40mtMdxuIfjcA/H4R6Owz2pcBycc7px44YCgYAGDOj5dc6gJM70SAYMGKBRo0Y9cJvMzMx+fYJ9ieNwD8fhHo7DPRyHe6yPg8/ne+g2KfctOABA/0CAAAAm+lSAvF6vNm/eLK/Xaz2KKY7DPRyHezgO93Ac7ulLxyHlLkIAAPQPfeoVEAAgfRAgAIAJAgQAMEGAAAAm+kyAtm7dqrFjx2ro0KEqLi7Wxx9/bD1S0r355pvyeDwRy6RJk6zHSrhjx45p/vz5CgQC8ng82rdvX8R655w2bdqk/Px8DRs2TGVlZTp37pzNsAn0sOOwfPny+86PefPm2QybIFVVVZoxY4YyMjKUm5urhQsXqqGhIWKbjo4OVVZWasSIEXriiSe0ZMkStba2Gk2cGI9yHF544YX7zofVq1cbTdy9PhGgDz/8UBs2bNDmzZv1ySefqKioSOXl5bp69ar1aEn3zDPP6MqVK+HlH//4h/VICdfe3q6ioiJt3bq12/VbtmzRu+++q/fee08nTpzQ448/rvLycnV0dCR50sR62HGQpHnz5kWcH7t27UrihIlXW1uryspKHT9+XIcOHdKdO3c0d+5ctbe3h7dZv369PvroI+3Zs0e1tbW6fPmyFi9ebDh1/D3KcZCklStXRpwPW7ZsMZq4B64PmDlzpqusrAx/fPfuXRcIBFxVVZXhVMm3efNmV1RUZD2GKUlu79694Y+7urqc3+93v//978OPtbW1Oa/X63bt2mUwYXJ88zg459yyZcvcggULTOaxcvXqVSfJ1dbWOufu/d0PHjzY7dmzJ7zNf/7zHyfJ1dXVWY2ZcN88Ds45973vfc/99Kc/tRvqEaT8K6Dbt2/r1KlTKisrCz82YMAAlZWVqa6uznAyG+fOnVMgENC4ceP08ssv6+LFi9YjmWpqalJLS0vE+eHz+VRcXNwvz4+amhrl5uZq4sSJWrNmja5du2Y9UkIFg0FJUnZ2tiTp1KlTunPnTsT5MGnSJI0ePTqtz4dvHocvffDBB8rJydHkyZO1ceNG3bp1y2K8HqXczUi/6fPPP9fdu3eVl5cX8XheXp4+/fRTo6lsFBcXa8eOHZo4caKuXLmit956S88//7zOnj2rjIwM6/FMtLS0SFK358eX6/qLefPmafHixSosLNT58+f1i1/8QhUVFaqrq9PAgQOtx4u7rq4urVu3TrNmzdLkyZMl3TsfhgwZoqysrIht0/l86O44SNKPfvQjjRkzRoFAQGfOnNHPf/5zNTQ06O9//7vhtJFSPkD4SkVFRfi/p0yZouLiYo0ZM0Z/+9vftGLFCsPJkApefPHF8H8/++yzmjJlisaPH6+amhrNmTPHcLLEqKys1NmzZ/vF+6AP0tNxWLVqVfi/n332WeXn52vOnDk6f/68xo8fn+wxu5Xy34LLycnRwIED77uKpbW1VX6/32iq1JCVlaWnn35ajY2N1qOY+fIc4Py437hx45STk5OW58fatWt14MABHT16NOLXt/j9ft2+fVttbW0R26fr+dDTcehOcXGxJKXU+ZDyARoyZIimT5+u6urq8GNdXV2qrq5WSUmJ4WT2bt68qfPnzys/P996FDOFhYXy+/0R50coFNKJEyf6/flx6dIlXbt2La3OD+ec1q5dq7179+rIkSMqLCyMWD99+nQNHjw44nxoaGjQxYsX0+p8eNhx6E59fb0kpdb5YH0VxKPYvXu383q9bseOHe7f//63W7VqlcvKynItLS3WoyXVz372M1dTU+OamprcP//5T1dWVuZycnLc1atXrUdLqBs3brjTp0+706dPO0nu7bffdqdPn3b/+9//nHPO/fa3v3VZWVlu//797syZM27BggWusLDQffHFF8aTx9eDjsONGzfcq6++6urq6lxTU5M7fPiw+/a3v+2eeuop19HRYT163KxZs8b5fD5XU1Pjrly5El5u3boV3mb16tVu9OjR7siRI+7kyZOupKTElZSUGE4dfw87Do2Nje5Xv/qVO3nypGtqanL79+9348aNc6WlpcaTR+oTAXLOuT/+8Y9u9OjRbsiQIW7mzJnu+PHj1iMl3dKlS11+fr4bMmSIe/LJJ93SpUtdY2Oj9VgJd/ToUSfpvmXZsmXOuXuXYr/xxhsuLy/Peb1eN2fOHNfQ0GA7dAI86DjcunXLzZ07140cOdINHjzYjRkzxq1cuTLt/ietuz+/JLd9+/bwNl988YX7yU9+4oYPH+4ee+wxt2jRInflyhW7oRPgYcfh4sWLrrS01GVnZzuv1+smTJjgXnvtNRcMBm0H/wZ+HQMAwETKvwcEAEhPBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJ/wPlZdvhH8Q1XQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.imshow(test_190_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V954Q-Us82lQ" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_190_img = test_190_img / 255\n", + "test_190_img = test_190_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5uEzkB1N89-i", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e38b9678-2ed7-4d0c-d3ac-76a8769abda1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n", + "I think it's 2\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_190 = model_2l_100.predict(test_190_img)\n", + "print('I think it\\'s', np.argmax(result_190))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cp-Y7YSb9IKI" + }, + "outputs": [], + "source": [ + "from PIL import Image\n", + "file_290_data = Image.open('ИИЛР1_190.png')\n", + "file_290_data = file_290_data.convert('L') #перевод в градации серого\n", + "test_290_img = np.array(file_290_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fHfFgIu49QqP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "44ece705-518a-4b12-e7e0-c1e1144ce02b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGDBJREFUeJzt3X9MVff9x/HX9Qen2sJFRLjciha11aQqzZwy4uq6SBS3mPrjD9v1D22MjfbaTFm7hSVquy1hs0mzdDHt/tItq7YzmZr6h4lFwWxDG63GmHVECBsY+bGacC6ioIHP9w/X+92tICL38ubC85F8Eu8959779njKs5d7xIBzzgkAgGE2znoAAMDYRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJCdYDfFNvb6+uX7+u9PR0BQIB63EAAIPknFNHR4fC4bDGjev/fc6IC9D169eVn59vPQYAYIiampo0ffr0frePuG/BpaenW48AAEiAgb6eJy1A+/bt01NPPaXHHntMRUVF+vzzzx/qcXzbDQBGh4G+niclQJ988onKysq0Z88effHFFyosLNTKlSvV1taWjJcDAKQilwRLlixxkUgkdrunp8eFw2FXUVEx4GN933eSWCwWi5Xiy/f9B369T/g7oDt37ujChQsqKSmJ3Tdu3DiVlJSopqbmvv27u7sVjUbjFgBg9Et4gL766iv19PQoNzc37v7c3Fy1tLTct39FRYWCwWBscQUcAIwN5lfBlZeXy/f92GpqarIeCQAwDBL+94Cys7M1fvx4tba2xt3f2tqqUCh03/6e58nzvESPAQAY4RL+DigtLU2LFi1SZWVl7L7e3l5VVlaquLg40S8HAEhRSflJCGVlZdq4caO+/e1va8mSJfrtb3+rzs5Ovfrqq8l4OQBACkpKgDZs2KD//Oc/2r17t1paWvTcc8/pxIkT912YAAAYuwLOOWc9xP+KRqMKBoPWYwAAhsj3fWVkZPS73fwqOADA2ESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwkPEBvv/22AoFA3Jo3b16iXwYAkOImJONJn332WX322Wf//yITkvIyAIAUlpQyTJgwQaFQKBlPDQAYJZLyGdDVq1cVDoc1a9YsvfLKK2psbOx33+7ubkWj0bgFABj9Eh6goqIiHThwQCdOnNAHH3yghoYGPf/88+ro6Ohz/4qKCgWDwdjKz89P9EgAgBEo4JxzyXyB9vZ2zZw5U++99542b9583/bu7m51d3fHbkejUSIEAKOA7/vKyMjod3vSrw7IzMzUM888o7q6uj63e54nz/OSPQYAYIRJ+t8Dunnzpurr65WXl5fslwIApJCEB+jNN99UdXW1/vWvf+nvf/+71q5dq/Hjx+vll19O9EsBAFJYwr8Fd+3aNb388su6ceOGpk2bpu9+97s6e/aspk2bluiXAgCksKRfhDBY0WhUwWDQegwAwBANdBECPwsOAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYGHSAzpw5o9WrVyscDisQCOjo0aNx251z2r17t/Ly8jRp0iSVlJTo6tWriZoXADBKDDpAnZ2dKiws1L59+/rcvnfvXr3//vv68MMPde7cOT3++ONauXKlurq6hjwsAGAUcUMgyR05ciR2u7e314VCIffuu+/G7mtvb3ee57lDhw491HP6vu8ksVgsFivFl+/7D/x6n9DPgBoaGtTS0qKSkpLYfcFgUEVFRaqpqenzMd3d3YpGo3ELADD6JTRALS0tkqTc3Ny4+3Nzc2PbvqmiokLBYDC28vPzEzkSAGCEMr8Krry8XL7vx1ZTU5P1SACAYZDQAIVCIUlSa2tr3P2tra2xbd/keZ4yMjLiFgBg9EtogAoKChQKhVRZWRm7LxqN6ty5cyouLk7kSwEAUtyEwT7g5s2bqquri91uaGjQpUuXlJWVpRkzZmjHjh361a9+paeffloFBQXatWuXwuGw1qxZk8i5AQCpbrCXXp8+fbrPy+02btwYuxR7165dLjc313me55YvX+5qa2sf+vm5DJvFYrFGxxroMuyAc85pBIlGowoGg9ZjAACGyPf9B36ub34VHABgbCJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATE6wHGCv2798/6Mds2rQp8YMkUE9Pz6AfM378+CRMAowcvb29g37MWP3vgndAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJfhgpHtlY/QGKwINEo1HrEVIG74AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP8MNJh8uqrrw7L62zatGlYXkeS2tvbB/2YKVOmJH6QFHTx4sVBP+a5554b9GMe5c9I4s8Jw4N3QAAAEwQIAGBi0AE6c+aMVq9erXA4rEAgoKNHj8Zt37RpkwKBQNwqLS1N1LwAgFFi0AHq7OxUYWGh9u3b1+8+paWlam5ujq1Dhw4NaUgAwOgz6IsQVq1apVWrVj1wH8/zFAqFHnkoAMDol5TPgKqqqpSTk6O5c+dq27ZtunHjRr/7dnd3KxqNxi0AwOiX8ACVlpbqj3/8oyorK/Wb3/xG1dXVWrVqlXp6evrcv6KiQsFgMLby8/MTPRIAYARK+N8Deumll2K/XrBggRYuXKjZs2erqqpKy5cvv2//8vJylZWVxW5Ho1EiBABjQNIvw541a5ays7NVV1fX53bP85SRkRG3AACjX9IDdO3aNd24cUN5eXnJfikAQAoZ9Lfgbt68GfdupqGhQZcuXVJWVpaysrL0zjvvaP369QqFQqqvr9dPf/pTzZkzRytXrkzo4ACA1DboAJ0/f17f//73Y7e//vxm48aN+uCDD3T58mX94Q9/UHt7u8LhsFasWKFf/vKX8jwvcVMDAFJewDnnrIf4X9FoVMFg0HoMAMAQ+b7/wM/1+VlwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADAxKACVFFRocWLFys9PV05OTlas2aNamtr4/bp6upSJBLR1KlT9cQTT2j9+vVqbW1N6NAAgNQ3qABVV1crEono7NmzOnnypO7evasVK1aos7Mzts/OnTv16aef6vDhw6qurtb169e1bt26hA8OAEhxbgja2tqcJFddXe2cc669vd1NnDjRHT58OLbPl19+6SS5mpqah3pO3/edJBaLxWKl+PJ9/4Ff74f0GZDv+5KkrKwsSdKFCxd09+5dlZSUxPaZN2+eZsyYoZqamj6fo7u7W9FoNG4BAEa/Rw5Qb2+vduzYoaVLl2r+/PmSpJaWFqWlpSkzMzNu39zcXLW0tPT5PBUVFQoGg7GVn5//qCMBAFLIIwcoEonoypUr+vjjj4c0QHl5uXzfj62mpqYhPR8AIDVMeJQHbd++XcePH9eZM2c0ffr02P2hUEh37txRe3t73Lug1tZWhUKhPp/L8zx5nvcoYwAAUtig3gE557R9+3YdOXJEp06dUkFBQdz2RYsWaeLEiaqsrIzdV1tbq8bGRhUXFydmYgDAqDCod0CRSEQHDx7UsWPHlJ6eHvtcJxgMatKkSQoGg9q8ebPKysqUlZWljIwMvfHGGyouLtZ3vvOdpPwGAAApajCXXaufS+32798f2+f27dvu9ddfd1OmTHGTJ092a9eudc3NzQ/9GlyGzWKxWKNjDXQZduC/YRkxotGogsGg9RgAgCHyfV8ZGRn9budnwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABODClBFRYUWL16s9PR05eTkaM2aNaqtrY3b54UXXlAgEIhbW7duTejQAIDUN6gAVVdXKxKJ6OzZszp58qTu3r2rFStWqLOzM26/LVu2qLm5Obb27t2b0KEBAKlvwmB2PnHiRNztAwcOKCcnRxcuXNCyZcti90+ePFmhUCgxEwIARqUhfQbk+74kKSsrK+7+jz76SNnZ2Zo/f77Ky8t169atfp+ju7tb0Wg0bgEAxgD3iHp6etwPf/hDt3Tp0rj7f//737sTJ064y5cvuz/96U/uySefdGvXru33efbs2eMksVgsFmuULd/3H9iRRw7Q1q1b3cyZM11TU9MD96usrHSSXF1dXZ/bu7q6nO/7sdXU1GR+0FgsFos19DVQgAb1GdDXtm/fruPHj+vMmTOaPn36A/ctKiqSJNXV1Wn27Nn3bfc8T57nPcoYAIAUNqgAOef0xhtv6MiRI6qqqlJBQcGAj7l06ZIkKS8v75EGBACMToMKUCQS0cGDB3Xs2DGlp6erpaVFkhQMBjVp0iTV19fr4MGD+sEPfqCpU6fq8uXL2rlzp5YtW6aFCxcm5TcAAEhRg/ncR/18n2///v3OOecaGxvdsmXLXFZWlvM8z82ZM8e99dZbA34f8H/5vm/+fUsWi8ViDX0N9LU/8N+wjBjRaFTBYNB6DADAEPm+r4yMjH6387PgAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmRlyAnHPWIwAAEmCgr+cjLkAdHR3WIwAAEmCgr+cBN8LecvT29ur69etKT09XIBCI2xaNRpWfn6+mpiZlZGQYTWiP43APx+EejsM9HId7RsJxcM6po6ND4XBY48b1/z5nwjDO9FDGjRun6dOnP3CfjIyMMX2CfY3jcA/H4R6Owz0ch3usj0MwGBxwnxH3LTgAwNhAgAAAJlIqQJ7nac+ePfI8z3oUUxyHezgO93Ac7uE43JNKx2HEXYQAABgbUuodEABg9CBAAAATBAgAYIIAAQBMpEyA9u3bp6eeekqPPfaYioqK9Pnnn1uPNOzefvttBQKBuDVv3jzrsZLuzJkzWr16tcLhsAKBgI4ePRq33Tmn3bt3Ky8vT5MmTVJJSYmuXr1qM2wSDXQcNm3adN/5UVpaajNsklRUVGjx4sVKT09XTk6O1qxZo9ra2rh9urq6FIlENHXqVD3xxBNav369WltbjSZOjoc5Di+88MJ958PWrVuNJu5bSgTok08+UVlZmfbs2aMvvvhChYWFWrlypdra2qxHG3bPPvusmpubY+uvf/2r9UhJ19nZqcLCQu3bt6/P7Xv37tX777+vDz/8UOfOndPjjz+ulStXqqura5gnTa6BjoMklZaWxp0fhw4dGsYJk6+6ulqRSERnz57VyZMndffuXa1YsUKdnZ2xfXbu3KlPP/1Uhw8fVnV1ta5fv65169YZTp14D3McJGnLli1x58PevXuNJu6HSwFLlixxkUgkdrunp8eFw2FXUVFhONXw27NnjyssLLQew5Qkd+TIkdjt3t5eFwqF3Lvvvhu7r7293Xme5w4dOmQw4fD45nFwzrmNGze6F1980WQeK21tbU6Sq66uds7d+7OfOHGiO3z4cGyfL7/80klyNTU1VmMm3TePg3POfe9733M//vGP7YZ6CCP+HdCdO3d04cIFlZSUxO4bN26cSkpKVFNTYziZjatXryocDmvWrFl65ZVX1NjYaD2SqYaGBrW0tMSdH8FgUEVFRWPy/KiqqlJOTo7mzp2rbdu26caNG9YjJZXv+5KkrKwsSdKFCxd09+7duPNh3rx5mjFjxqg+H755HL720UcfKTs7W/Pnz1d5eblu3bplMV6/RtwPI/2mr776Sj09PcrNzY27Pzc3V//85z+NprJRVFSkAwcOaO7cuWpubtY777yj559/XleuXFF6err1eCZaWlokqc/z4+ttY0VpaanWrVungoIC1dfX6+c//7lWrVqlmpoajR8/3nq8hOvt7dWOHTu0dOlSzZ8/X9K98yEtLU2ZmZlx+47m86Gv4yBJP/rRjzRz5kyFw2FdvnxZP/vZz1RbW6u//OUvhtPGG/EBwv9btWpV7NcLFy5UUVGRZs6cqT//+c/avHmz4WQYCV566aXYrxcsWKCFCxdq9uzZqqqq0vLlyw0nS45IJKIrV66Mic9BH6S/4/Daa6/Ffr1gwQLl5eVp+fLlqq+v1+zZs4d7zD6N+G/BZWdna/z48fddxdLa2qpQKGQ01ciQmZmpZ555RnV1ddajmPn6HOD8uN+sWbOUnZ09Ks+P7du36/jx4zp9+nTcP98SCoV0584dtbe3x+0/Ws+H/o5DX4qKiiRpRJ0PIz5AaWlpWrRokSorK2P39fb2qrKyUsXFxYaT2bt586bq6+uVl5dnPYqZgoIChUKhuPMjGo3q3LlzY/78uHbtmm7cuDGqzg/nnLZv364jR47o1KlTKigoiNu+aNEiTZw4Me58qK2tVWNj46g6HwY6Dn25dOmSJI2s88H6KoiH8fHHHzvP89yBAwfcP/7xD/faa6+5zMxM19LSYj3asPrJT37iqqqqXENDg/vb3/7mSkpKXHZ2tmtra7MeLak6OjrcxYsX3cWLF50k995777mLFy+6f//73845537961+7zMxMd+zYMXf58mX34osvuoKCAnf79m3jyRPrQceho6PDvfnmm66mpsY1NDS4zz77zH3rW99yTz/9tOvq6rIePWG2bdvmgsGgq6qqcs3NzbF169at2D5bt251M2bMcKdOnXLnz593xcXFrri42HDqxBvoONTV1blf/OIX7vz5866hocEdO3bMzZo1yy1btsx48ngpESDnnPvd737nZsyY4dLS0tySJUvc2bNnrUcadhs2bHB5eXkuLS3NPfnkk27Dhg2urq7OeqykO336tJN039q4caNz7t6l2Lt27XK5ubnO8zy3fPlyV1tbazt0EjzoONy6dcutWLHCTZs2zU2cONHNnDnTbdmyZdT9T1pfv39Jbv/+/bF9bt++7V5//XU3ZcoUN3nyZLd27VrX3NxsN3QSDHQcGhsb3bJly1xWVpbzPM/NmTPHvfXWW873fdvBv4F/jgEAYGLEfwYEABidCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT/wdLTtiH+GUhWwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.imshow(test_290_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VigLQgvN9Vtz" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_290_img = test_290_img / 255\n", + "test_290_img = test_290_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OT4Gyq3w9cKm", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7f87b9cb-2d20-4f07-df92-8fdfb155f614" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "I think it's 4\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_290 = model_2l_100.predict(test_290_img)\n", + "print('I think it\\'s', np.argmax(result_290))" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/labworks/LW1/LR_1full.ipynb b/labworks/LW1/LR_1full.ipynb new file mode 100644 index 0000000..1d8e358 --- /dev/null +++ b/labworks/LW1/LR_1full.ipynb @@ -0,0 +1,2897 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0G3B3V7wQOcB" + }, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "osfcYg__RCj4" + }, + "outputs": [], + "source": [ + "# импорт модулей\n", + "from tensorflow import keras\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import sklearn" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rhibgIV6RLsB", + "outputId": "cb0bddd9-eec5-4746-f1fd-b4dbc58a09f9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n", + "\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 0us/step\n" + ] + } + ], + "source": [ + "# загрузка датасета\n", + "from keras.datasets import mnist\n", + "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhjPpWFkSYbP" + }, + "outputs": [], + "source": [ + "# создание своего разбиения датасета\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hLYuoklsSf6l" + }, + "outputs": [], + "source": [ + "# объединяем в один набор\n", + "X = np.concatenate((X_train, X_test))\n", + "y = np.concatenate((y_train, y_test))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T27CvmBSUUjw" + }, + "outputs": [], + "source": [ + "# разбиваем по вариантам\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size = 10000,\n", + " train_size = 60000,\n", + " random_state = 27)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ONK_i4sFUfHu", + "outputId": "c0fcaa5a-bea9-4ae2-f37e-9dd907b1fe92" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of X train: (60000, 28, 28)\n", + "Shape of y train: (60000,)\n" + ] + } + ], + "source": [ + "# вывод размерностей\n", + "print('Shape of X train:', X_train.shape)\n", + "print('Shape of y train:', y_train.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 251 + }, + "id": "MFnSPykWUwv7", + "outputId": "b408d0d0-5e44-445f-9648-b1fbe8918df3" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAADqCAYAAABwW9CIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALMhJREFUeJzt3Xl8VPW9//HPJMCwTwgxCWEzVDYBUYEgF5QgS8hDURCuhWrFFmVp4MomFi8QXDAql2IVRK+yyEWhQA0Cxdg2bNIbUEBlEwQaNSwJhN5sGJKQfH9/8GM08j05M8lMZs7M6/l4fB+P5j0z53xPmjfON5P5jk0ppQQAAAAALCzE1xMAAAAAgJpiYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADLY2EDAAAAwPJY2AAAAACwPBY2AAAAACyPhQ0AAAAAy2NhYzHffvut2Gw2+a//+i+PHXPnzp1is9lk586dHjsm4Gt0BTBHTwBz9MQ6WNjUglWrVonNZpP9+/f7eipe8/e//10GDBggEREREhYWJnFxcfI///M/vp4WLCbQu5KamioJCQkSExMjdrtdWrVqJaNGjZIjR474emqwkEDvyYcffii//OUvpV27dtKwYUPp2LGjzJgxQ/Ly8nw9NVhIoPdEhOdeOnV8PQFY3+bNm2X48OHSp08fmT9/vthsNlm/fr089thjkpubK9OmTfP1FAG/cPjwYWnWrJk89dRTEhERIdnZ2bJixQqJi4uTjIwM6d69u6+nCPjc+PHjJSYmRh599FFp06aNHD58WJYsWSLbtm2TgwcPSoMGDXw9RcDneO6lx8IGNbZkyRJp0aKFbN++Xex2u4iITJgwQTp16iSrVq0K2nIBPzdv3rwbsieeeEJatWoly5Ytk7feessHswL8y8aNGyU+Pr5S1qNHDxk7dqy8//778sQTT/hmYoAf4bmXHn+K5idKS0tl3rx50qNHD3E4HNKoUSO5++67ZceOHYaPWbx4sbRt21YaNGgg/fv31/45y/Hjx2XUqFESHh4u9evXl549e8rmzZtN5/PDDz/I8ePHJTc31/S+BQUF0qxZM2exRETq1KkjERER/GYNHmflruhERkZKw4YN+TMbeJSVe/LzRY2IyIgRI0RE5OuvvzZ9POAqK/eE5156LGz8REFBgbz77rsSHx8vr7zyisyfP18uXrwoCQkJ8uWXX95w/9WrV8vrr78uSUlJMnv2bDly5Ijce++9kpOT47zP0aNH5a677pKvv/5afv/738uiRYukUaNGMnz4cElNTa1yPp999pl07txZlixZYjr3+Ph4OXr0qMydO1dOnTolp0+flhdeeEH2798vs2bNcvt7AVTFyl25Li8vTy5evCiHDx+WJ554QgoKCmTgwIEuPx4wEwg9+ans7GwREYmIiKjW4wEdK/eE514GFLxu5cqVSkTU559/bnifq1evqpKSkkrZ//3f/6moqCj129/+1pllZmYqEVENGjRQZ86cceb79u1TIqKmTZvmzAYOHKi6deumrly54swqKirUv/3bv6n27ds7sx07digRUTt27LghS05ONr2+oqIi9fDDDyubzaZERImIatiwodq0aZPpY4GfCvSuXNexY0dnVxo3bqzmzJmjysvLXX48gluw9OSnxo0bp0JDQ9U333xTrccj+AR6T3jupccrNn4iNDRU6tWrJyIiFRUV8q9//UuuXr0qPXv2lIMHD95w/+HDh0vLli2dX8fFxUnv3r1l27ZtIiLyr3/9S7Zv3y4PP/ywFBYWSm5uruTm5sqlS5ckISFBTp48KWfPnjWcT3x8vCilZP78+aZzt9vt0qFDBxk1apSsXbtW1qxZIz179pRHH31U9u7d6+Z3Aqialbty3cqVKyUtLU3efPNN6dy5sxQXF0t5ebnLjwfMBEJPrvvggw9k+fLlMmPGDGnfvr3bjweMWLknPPfSY/MAP/Lee+/JokWL5Pjx41JWVubMY2Njb7iv7h/3Dh06yPr160VE5NSpU6KUkrlz58rcuXO157tw4UKlglbX5MmTZe/evXLw4EEJCbm2Vn744YelS5cu8tRTT8m+fftqfA7gp6zalev69Onj/N+jR4+Wzp07i4h49DMSAKv3RETk008/lXHjxklCQoIsWLDAo8cGRKzbE5576bGw8RNr1qyRxx9/XIYPHy5PP/20REZGSmhoqKSkpMjp06fdPl5FRYWIiMycOVMSEhK097nllltqNGeRa2+8W758ucyaNctZLBGRunXrSmJioixZskRKS0udvxEBasqqXTHSrFkzuffee+X9999nYQOPCYSefPXVV/LAAw9I165dZePGjVKnDk9Z4FlW7QnPvYzxr4Sf2Lhxo7Rr104+/PBDsdlszjw5OVl7/5MnT96QffPNN3LzzTeLiEi7du1E5NoP+aBBgzw/4f/v0qVLcvXqVe2f0ZSVlUlFRQV/YgOPsmpXqlJcXCz5+fk+OTcCk9V7cvr0aRk6dKhERkbKtm3bpHHjxl4/J4KPVXvCcy9jvMfGT4SGhoqIiFLKme3bt08yMjK099+0aVOlv9P87LPPZN++fZKYmCgi17aQjY+Pl7ffflvOnz9/w+MvXrxY5Xxc3XIwMjJSwsLCJDU1VUpLS515UVGRbNmyRTp16hTU2w7C86zaFZFrf4Lwc99++62kp6dLz549TR8PuMrKPcnOzpYhQ4ZISEiIfPLJJ3LTTTeZPgaoDqv2hOdexnjFphatWLFC0tLSbsifeuopuf/+++XDDz+UESNGyH333SeZmZny1ltvya233ipFRUU3POaWW26Rfv36yaRJk6SkpERee+01ad68eaUt/pYuXSr9+vWTbt26yZNPPint2rWTnJwcycjIkDNnzshXX31lONfPPvtMBgwYIMnJyVW+iS00NFRmzpwpc+bMkbvuuksee+wxKS8vl+XLl8uZM2dkzZo17n2TAAnMroiIdOvWTQYOHCi33367NGvWTE6ePCnLly+XsrIyefnll13/BgESuD0ZOnSo/POf/5RZs2bJnj17ZM+ePc7boqKiZPDgwS58d4BrArEnPPeqgm82Ywsu17ccNBpZWVmqoqJCvfTSS6pt27bKbrerO+64Q23dulWNHTtWtW3b1nms61sOLly4UC1atEi1bt1a2e12dffdd6uvvvrqhnOfPn1aPfbYYyo6OlrVrVtXtWzZUt1///1q48aNzvt4YmvO999/X8XFxamwsDDVoEED1bt370rnAFwR6F1JTk5WPXv2VM2aNVN16tRRMTExavTo0erQoUM1+bYhyAR6T6q6tv79+9fgO4dgEug9UYrnXjo2pX7y+hsAAAAAWBDvsQEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYntc+oHPp0qWycOFCyc7Olu7du8sbb7whcXFxpo+rqKiQc+fOSZMmTcRms3lrekC1KaWksLBQYmJiJCSkZr8bqG5PROgK/Bs9AczRE8CcWz3xxofjrFu3TtWrV0+tWLFCHT16VD355JMqLCxM5eTkmD42Kyuryg9UYjD8ZWRlZfmsJ3SFYZVBTxgM80FPGAzz4UpPvLKwiYuLU0lJSc6vy8vLVUxMjEpJSTF9bF5ens+/cQyGKyMvL89nPaErDKsMesJgmA96wmCYD1d64vH32JSWlsqBAwdk0KBBziwkJEQGDRokGRkZN9y/pKRECgoKnKOwsNDTUwK8oiYv17vbExG6AmuiJ4A5egKYc6UnHl/Y5ObmSnl5uURFRVXKo6KiJDs7+4b7p6SkiMPhcI7WrVt7ekqA33G3JyJ0BcGHngDm6AnwI5/vijZ79mzJz893jqysLF9PCfBLdAUwR08Ac/QEgcrju6JFRERIaGio5OTkVMpzcnIkOjr6hvvb7Xax2+2engbg19ztiQhdQfChJ4A5egL8yOOv2NSrV0969Ogh6enpzqyiokLS09OlT58+nj4dYEn0BDBHTwBz9AT4iWpvwVGFdevWKbvdrlatWqWOHTumxo8fr8LCwlR2drbpY/Pz832+6wKD4crIz8/3WU/oCsMqg54wGOaDnjAY5sOVnnhlYaOUUm+88YZq06aNqlevnoqLi1N79+516XGUi2GVUdP/ENWkJ3SFYZVBTxgM80FPGAzz4UpPbEopJX6koKBAHA6Hr6cBmMrPz5emTZv67Px0BVZATwBz9AQw50pPfL4rGgAAAADUFAsbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYXh1fTwAAfm7YsGHafPPmzdr80qVL2nzjxo3a/M9//rM2z8jIMJxTUVGR4W0AALiqS5cu2nzKlCnafNSoUdq8uLhYm8+fP1+bL1++3HxyFscrNgAAAAAsj4UNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALM/ju6LNnz9fnnvuuUpZx44d5fjx454+FX6mf//+2vyXv/yl4WMmTpyozW02mzbv1q2bNj9y5IjJ7PBT9KRqH3/8sTZfsWKFNr/pppu0+cCBA7X5+PHjtfnZs2cN5/Tf//3f2vyFF14wfAxqhp74p9DQUMPbOnfurM0fe+wxt+4fGRmpzXv37m0yu+BDT/zT5MmTDW9LSUnR5o0aNfLIuZctW6bNT5w4oc337NnjkfP6A69s99ylSxf5+9///uNJ6rCrNPBz9AQwR08Ac/QEuMYrP/l16tSR6OhobxwaCBj0BDBHTwBz9AS4xivvsTl58qTExMRIu3bt5JFHHpHvv//e8L4lJSVSUFBQaQDBwJ2eiNAVBCd6ApijJ8A1Hl/Y9O7dW1atWiVpaWmybNkyyczMlLvvvlsKCwu1909JSRGHw+EcrVu39vSUAL/jbk9E6AqCDz0BzNET4EceX9gkJibKv//7v8ttt90mCQkJsm3bNsnLy5P169dr7z979mzJz893jqysLE9PCfA77vZEhK4g+NATwBw9AX7k9XeXhYWFSYcOHeTUqVPa2+12u9jtdm9PI6AkJCRo87Vr12pzh8NheCyllFvnjo+P1+bsilYzZj0RCa6uXL16VZuPGzfOrePUr19fm0+aNEmbz58/3/BYycnJ2vzw4cPafNOmTVXODe6jJ/5hxowZhre99NJLXj13YmKiNjfaSTEY0ZPatWjRIm3+5JNPGj7GaPezgwcPavOFCxdq83bt2mnzBQsWaPNf//rX2jyQdkXz+ufYFBUVyenTp6VFixbePhVgWfQEMEdPAHP0BMHM4wubmTNnyq5du+Tbb7+V//3f/5URI0ZIaGiojBkzxtOnAiyLngDm6Algjp4AP/L4n6KdOXNGxowZI5cuXZKbbrpJ+vXrJ3v37jX8AD0gGNETwBw9AczRE+BHHl/YrFu3ztOHBAIOPQHM0RPAHD0BfuT199gAAAAAgLd5fVc0VN/YsWO1+ZIlS7R5w4YN3T6H0T73Ve1/746wsDBt/vDDD2vzX/3qV27d/8KFC9WaF4LDlStXtPnixYu1eVU7K3344YfafPXq1dq8Y8eO2vz8+fOG5wD8ycyZM7V5SkqK4WOMdto02u2pQ4cO2rxx48bavEuXLtqcXdHgKXXr1tXmRn2YNm2aNq/qQ1LvuOMObZ6ZmanNKyoqtHlIiP71CaP3Vxk9r5wwYYI2tyJesQEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHnsilaLjHavmD59ujZ/9dVXtbnRrjPl5eXa/E9/+pPhnN5++21tfuTIEW1+2223afP77rtPm7/xxhvavG3bttrcZrNp8+XLl2vzYcOGaXOgOo4fP254W1JSkjZPT0/X5g0aNPDInABve+aZZ7T5c8895/axNm3apM1/85vfaPPdu3dr827durl9bkDH6N9io11b4+LitPmCBQu0+ZYtW7S5Ua9ERE6fPm14mzuMdkv77rvvtHmnTp08cl5/xis2AAAAACyPhQ0AAAAAy2NhAwAAAMDyWNgAAAAAsDwWNgAAAAAsj13RatEdd9yhzV955RWPHH/evHna/OWXX/bI8UVEBg4cqM2NdnZr2LChR87bvHlzjxwHqC6jHQEBqxs9erQ2r1NH/xRh27Zthsd69NFHtfmVK1fcn5jGsmXLPHIcBI8HHnhAm69du9at45w9e1abG/WnuLjYreNXR8+ePbX54MGDtfknn3zizen4BV6xAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeW7virZ7925ZuHChHDhwQM6fPy+pqakyfPhw5+1KKUlOTpZ33nlH8vLypG/fvrJs2TJp3769J+ft1xo1aqTNX3zxRW1us9ncyp9++mltvmjRIhdm55rly5dr89/85jceOf6GDRu0+ZYtW7R5bm6uR85bW+iJNTVo0MDwtl/96lfavLS0VJuXlZV5ZE6BjJ7UrhEjRmhzox3/du3apc2HDRvmsTm5+9+/y5cve+zcVkFP/MOUKVO0eW3sfhYTE6PN16xZo83z8vK0uSefJ/ort1+xuXz5snTv3l2WLl2qvf3VV1+V119/Xd566y3Zt2+fNGrUSBISEjy21SNgBfQEMEdPAHP0BHCd26/YJCYmSmJiovY2pZS89tprMmfOHHnwwQdFRGT16tUSFRUlmzZtMtzrGwg09AQwR08Ac/QEcJ1H32OTmZkp2dnZMmjQIGfmcDikd+/ekpGRoX1MSUmJFBQUVBpAIKtOT0ToCoILPQHM0ROgMo8ubLKzs0VEJCoqqlIeFRXlvO3nUlJSxOFwOEfr1q09OSXA71SnJyJ0BcGFngDm6AlQmc93RZs9e7bk5+c7R1ZWlq+nBPglugKYoyeAOXqCQOX2e2yqEh0dLSIiOTk50qJFC2eek5Mjt99+u/Yxdrtd7Ha7J6fhcz+99p8aMmSINldKafN169Zp88WLF7s1nzvvvNPwtuTkZG1utOuN0VyN3qRotGPH5MmTtXkw7CRVnZ6IBGZX/M2MGTMMb+vVq5c2f+edd7Q5TxRqhp543oQJE7S50b/rH3/8scfO3bVrV23eqlUrt+aEyuiJubS0NG3+j3/8Q5v37dtXm0+fPl2bb9++XZtX58/7EhIStPnChQu1eWxsrDZfv369Nt+5c6fbc7Iaj75iExsbK9HR0ZKenu7MCgoKZN++fdKnTx9PngqwLHoCmKMngDl6AlTm9is2RUVFcurUKefXmZmZ8uWXX0p4eLi0adNGpk6dKi+++KK0b99eYmNjZe7cuRITE1Npz3Ug0NETwBw9AczRE8B1bi9s9u/fLwMGDHB+ff2lubFjx8qqVatk1qxZcvnyZRk/frzk5eVJv379JC0tTerXr++5WQN+jp4A5ugJYI6eAK5ze2ETHx9f5d++2mw2ef755+X555+v0cQAK6MngDl6ApijJ4DrfL4rGgAAAADUlEd3RYNnbdiwQZvbbDZtbrTrzKZNmwzP0bJlS7fmdOzYMW0+e/Zsbb5161a3jg/UhjFjxmjz+fPnGz7m+PHj2nzu3LmemBLgdW+//bY2P3r0qDb/4x//6LFzG72RPSwsTJtv3LjRY+dGcMvPz9fmRru/bt68WZv369dPm2/ZskWbjxw50nBORjvSjh8/XpuHhOhfh/j1r3+tzY121Q0GvGIDAAAAwPJY2AAAAACwPBY2AAAAACyPhQ0AAAAAy2NhAwAAAMDy2BXNj/35z3/W5gcOHNDmt956qzavzod0Ge2eY7RrVE5OjtvnALytd+/e2nzp0qXa/MSJE4bHGjx4sDa/cOGC+xMDfCA1NdWtvDqaNWumzSdPnuzWcdLS0jwxHcBQXl6eNr///vu1udHuZ3fffbc2z8zMNDx3o0aNtPnZs2e1+axZs7R5MO9+ZoRXbAAAAABYHgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB67onlBUVGRNs/NzdXmERERbh3/zjvvdHtO7po0aZLXzwEYCQnR/86lf//+2rxv377afObMmdq8adOm2vyrr74ynNOAAQO0+blz57T53r17tXlxcbHhOQCre+ihh7R5ly5dtPmxY8e0+caNGz02J8AdRjvJtm7d2q3jGO18VpU333xTm69du9btYwUrXrEBAAAAYHksbAAAAABYHgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5bi9sdu/eLcOGDZOYmBix2WyyadOmSrc//vjjYrPZKo2hQ4d6ar6AJdATwBw9AczRE8B1bm/3fPnyZenevbv89re/NdzWcejQobJy5Urn13a7vfoztKDs7Gxt3qZNG23+9NNPa/MJEyZo85YtW1ZvYm545ZVXtPmcOXO0eVlZmTenYzn0xDUdOnTQ5kZbJYeFhbl1fHd/LqvaSn316tXa3GazafPLly9r8w0bNmjz3/3ud9r8ypUrhnOyOnpiTU2aNDG8berUqdrcqCd79uzR5kYfmxCM6Il3GG3h/8c//lGb33zzzW4df/fu3Ya3Gf237/e//702N/pv4o4dO9yaUzBwe2GTmJgoiYmJVd7HbrdLdHR0tScFWB09AczRE8AcPQFc55X32OzcuVMiIyOlY8eOMmnSJLl06ZLhfUtKSqSgoKDSAIKBOz0RoSsITvQEMEdPgGs8vrAZOnSorF69WtLT0+WVV16RXbt2SWJiopSXl2vvn5KSIg6Hwznc/WRXwIrc7YkIXUHwoSeAOXoC/MjtP0UzM3r0aOf/7tatm9x2223yi1/8Qnbu3CkDBw684f6zZ8+W6dOnO78uKCigYAh47vZEhK4g+NATwBw9AX7k9e2e27VrJxEREXLq1Cnt7Xa7XZo2bVppAMHGrCcidAWgJ4A5eoJg5vFXbH7uzJkzcunSJWnRooW3T+X3SkpKtPmLL76ozR955BFtrpTS5ka7Jx09etRwTj169NDmRju1paena/O//vWvhueAuWDtidEOgidPntTmRjsrvfnmm9r8888/1+bNmjXT5gcOHNDmIiJ33HGHNnc4HNrcaJezsWPHanOjHXfuvfdewzkFm2Dtib9p27at4W2dO3fW5oWFhdr8D3/4g0fmhB8Fa09uuukmbW60m+v48eO1eZ06+qfGRrulGe0im5ubq81FRO677z5tvmbNGm2+efNmbf7TV91+6p133jE8d6Bze2FTVFRU6bcAmZmZ8uWXX0p4eLiEh4fLc889JyNHjpTo6Gg5ffq0zJo1S2655RZJSEjw6MQBf0ZPAHP0BDBHTwDXub2w2b9/f6W9v6+vFseOHSvLli2TQ4cOyXvvvSd5eXkSExMjQ4YMkRdeeIE91RFU6Algjp4A5ugJ4Dq3Fzbx8fGGfwolIvLJJ5/UaEJAIKAngDl6ApijJ4DrvL55AAAAAAB4GwsbAAAAAJZnU1W9vukDBQUFhrsMBapHH31Um69evVqbFxcXa3Oj/eqNdoaq6hxjxozR5p9++qk2Hzx4sDYvLS01PLfV5efn+3SLzGDsSiAw6u+JEye0+e233+7F2XgfPQk869evN7ztoYce0uYTJ07U5u+++65H5mR19MR1oaGh2nzlypXa3Og5VllZmTY32kVt4cKFLsyuZmbNmqXNU1JStPmxY8e0ed++fbV5QUFB9SbmJ1zpCa/YAAAAALA8FjYAAAAALI+FDQAAAADLY2EDAAAAwPJY2AAAAACwPLc/oBPVV79+fW3+zDPPuHWcJ554Qpvv3bvX7Tk98sgj2rxRo0bafNiwYdo8KSlJmy9evNjtOQGBYMSIEdq8bt26tTwTBKoePXpo81tvvdWrxx85cqThY4w2Wv3uu+88MifAaOcwo93PsrOztfmAAQO0udEOlbXh1Vdf1eYRERHafObMmdp8wYIF2nzKlCnVm5iF8IoNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADLY1e0WmS005jRDjZnz57V5lu2bPHYnIwkJydr84SEBG0+YcIEbc6uaAh0kyZN0uaLFi3S5hcvXtTmU6dO9dSUEGB69uypzXfs2KHNGzRo4M3pVOm9997T5rt27arlmSBQxcbGavPy8nJt/vjjj2tzX+5+5q6UlBRtbvTca/Dgwd6cjl/jFRsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYnlsLm5SUFOnVq5c0adJEIiMjZfjw4Te8+erKlSuSlJQkzZs3l8aNG8vIkSMlJyfHo5MG/Bk9AczRE8A1dAVwnVu7ou3atUuSkpKkV69ecvXqVXn22WdlyJAhcuzYMeeOX9OmTZO//OUvsmHDBnE4HDJ58mR56KGH5B//+IdXLiAQ2Gw2bX748GFtXlRU5M3piIjIuXPntHlpaak2N7qGYERPai4yMlKbX7hwoZZn8qM5c+Zo8//8z//U5oWFhdrcaGfBQ4cOVW9iFkVPXGe0E2bjxo21+cmTJ7X5ypUrtbnRjnwRERHa/OjRo9pcRGTcuHGGt6F66Epl7du31+YVFRXaPCYmRpvXqaN/Cnz16tXqTcyLiouLtfk333yjzbt06aLNu3btqs2PHDlSvYn5IbcWNmlpaZW+XrVqlURGRsqBAwfknnvukfz8fFm+fLl88MEHcu+994rItX9IO3fuLHv37pW77rrLczMH/BQ9AczRE8A1dAVwXY3eY5Ofny8iIuHh4SIicuDAASkrK5NBgwY579OpUydp06aNZGRkaI9RUlIiBQUFlQYQSDzRExG6gsBGTwDX8NwLMFbthU1FRYVMnTpV+vbt63xpKzs7W+rVqydhYWGV7hsVFSXZ2dna46SkpIjD4XCO1q1bV3dKgN/xVE9E6AoCFz0BXMNzL6Bq1V7YJCUlyZEjR2TdunU1msDs2bMlPz/fObKysmp0PMCfeKonInQFgYueAK7huRdQNbfeY3Pd5MmTZevWrbJ7925p1aqVM4+OjpbS0lLJy8ur9JuDnJwciY6O1h7LbreL3W6vzjQAv+bJnojQFQQmegK4hudegDm3FjZKKZkyZYqkpqbKzp07JTY2ttLtPXr0kLp160p6erqMHDlSREROnDgh33//vfTp08dzsw4wSilt7nA4tLm7O3lU9SSgf//+2vzZZ5/V5ka78BhdQzCiJzcKDQ3V5l988YU2nzVrljb/+ZtozdSvX1+b33nnndp8yZIlhse67bbbtPmaNWu0+ZQpU7S50W5pwYaeuM7o39e8vDxt/uSTT2pzox38mjdvrs3/8pe/aPMHHnhAm8M76EplRrv+GT2fWbFihTZ/5plntLnRv921oVevXtp8xowZ2vz6+6x+zuhPEINhC3C3FjZJSUnywQcfyEcffSRNmjRxfuMcDoc0aNBAHA6HjBs3TqZPny7h4eHStGlTmTJlivTp04ddORA06Algjp4ArqErgOvcWtgsW7ZMRETi4+Mr5StXrpTHH39cREQWL14sISEhMnLkSCkpKZGEhAR58803PTJZwAroCWCOngCuoSuA69z+UzQz9evXl6VLl8rSpUurPSnAyugJYI6eAK6hK4DravQ5NgAAAADgD1jYAAAAALC8am33jOopLi7W5qdOndLmRruZHD9+XJuXl5dr859/aNdPRUREaHObzabNjV4SP3z4sOE5AKOd/Ix2LTP6c4rPP/9cm1dUVGhzox1mfvGLX2jzM2fOaHMRce429HMfffSR4WMAbzLqz0svvaTNe/furc3Pnz+vzefNm1e9iQFeZLSbWWpqqjZ/8cUXtbnR7ph/+9vfqjexn6nObrFGz72M/hv36aefavMFCxZo84sXL7o9J6vhFRsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABYHgsbAAAAAJZnU9XZtsGLCgoKxOFw+Hoateo//uM/tPlrr72mzWvj/zKjnTn++te/avOpU6dqc6Md3AJBfn6+NG3a1GfnD4Su3HPPPdo8JSVFmxvtFGgkLS3NrXzFihWGxyoqKnLr3LiGntTcuXPntHlUVJQ2N/pvhNHuZw8++KA2P3jwoAuzgyfQE++JjIzU5n379tXmo0aN0uZjxozR5h9//LE2b9OmjeGcjHb4NMqNdp7ds2eP4TkCkSs94RUbAAAAAJbHwgYAAACA5bGwAQAAAGB5LGwAAAAAWB4LGwAAAACWx65ofiAmJkabJyQkaPMBAwZo8wceeECb16tXz/DcGzdu1OYZGRna/N1339XmZWVlhucIVOxiA5ijJzWXmJiozbdu3arNjx49qs2NdiHMy8ur1rzgOfQEMMeuaAAAAACCAgsbAAAAAJbHwgYAAACA5bGwAQAAAGB5bi1sUlJSpFevXtKkSROJjIyU4cOHy4kTJyrdJz4+Xmw2W6UxceJEj04a8Gf0BDBHTwDX0BXAdW7tijZ06FAZPXq09OrVS65evSrPPvusHDlyRI4dOyaNGjUSkWvl6tChgzz//PPOxzVs2NDl3T7YmQNWYbQ7R230RISuwBroCWCuqt2eeO4FXOPKrmh13DlgWlpapa9XrVolkZGRcuDAgUrbSDZs2FCio6PdOTQQMOgJYI6eAK6hK4DravQem/z8fBERCQ8Pr5S///77EhERIV27dpXZs2fLDz/8YHiMkpISKSgoqDSAQOKJnojQFQQ2egK4hudeQBVUNZWXl6v77rtP9e3bt1L+9ttvq7S0NHXo0CG1Zs0a1bJlSzVixAjD4yQnJysRYTAsN/Lz82utJ3SFYdVBTxgM8+FKTzzZFXrCsOJwpSfVXthMnDhRtW3bVmVlZVV5v/T0dCUi6tSpU9rbr1y5ovLz850jKyvL5984BsOV4UrBPNUTusKw6qAnDIb5cHVhw3MvRjAPry1skpKSVKtWrdQ///lP0/sWFRUpEVFpaWkuHTs/P9/n3zgGw5VhVjBv9oSuMKwy6AmDYT5cecLGcy9GsA9XeuLW5gFKKZkyZYqkpqbKzp07JTY21vQxX375pYiItGjRwp1TAZZFTwBz9ARwDV0B3ODSUv7/mzRpknI4HGrnzp3q/PnzzvHDDz8opZQ6deqUev7559X+/ftVZmam+uijj1S7du3UPffc4/I5+K0BwyrD6DcHtdETusKwyqAnDIb5qOo30Tz3YjCuDY//KZrRiVauXKmUUur7779X99xzjwoPD1d2u13dcsst6umnn3b5b0cpF8NKw+jn2uj+nuwJXWFYZdATBsN8VPVzbfQYnnsxgm248jPt1gd01gY+JApW4coHRXkTXYEV0BPAHD0BzLnSkxp9jg0AAAAA+AMWNgAAAAAsj4UNAAAAAMtjYQMAAADA8ljYAAAAALA8FjYAAAAALI+FDQAAAADL87uFjZ99rA5gyNc/q74+P+AKX/+c+vr8gCt8/XPq6/MDrnDl59TvFjaFhYW+ngLgEl//rPr6/IArfP1z6uvzA67w9c+pr88PuMKVn1Ob8rNlekVFhZw7d06aNGkihYWF0rp1a8nKyvLpJ/LWpoKCgqC6Ziter1JKCgsLJSYmRkJCfPe7gWDuihV/bmrCitdLT3zPij83NWHF66UnvmfFn5uasOL1utOTOrU0J5eFhIRIq1atRETEZrOJiEjTpk0t8833lGC7Zqtdr8Ph8PUU6Ipwvf6OnvgHrte/0RP/wPX6N1d74nd/igYAAAAA7mJhAwAAAMDy/HphY7fbJTk5Wex2u6+nUmuC7ZqD7Xq9Jdi+j1wvqiPYvo9cL6oj2L6PXG9g8bvNAwAAAADAXX79ig0AAAAAuIKFDQAAAADLY2EDAAAAwPJY2AAAAACwPBY2AAAAACzPrxc2S5culZtvvlnq168vvXv3ls8++8zXU/KI3bt3y7BhwyQmJkZsNpts2rSp0u1KKZk3b560aNFCGjRoIIMGDZKTJ0/6ZrIekJKSIr169ZImTZpIZGSkDB8+XE6cOFHpPleuXJGkpCRp3ry5NG7cWEaOHCk5OTk+mrG10BN6AnOB2hOR4OoKPfEuekJPrM5vFzZ/+tOfZPr06ZKcnCwHDx6U7t27S0JCgly4cMHXU6uxy5cvS/fu3WXp0qXa21999VV5/fXX5a233pJ9+/ZJo0aNJCEhQa5cuVLLM/WMXbt2SVJSkuzdu1f+9re/SVlZmQwZMkQuX77svM+0adNky5YtsmHDBtm1a5ecO3dOHnroIR/O2hroCT2hJ+YCuSciwdUVeuI99ISeBERPlJ+Ki4tTSUlJzq/Ly8tVTEyMSklJ8eGsPE9EVGpqqvPriooKFR0drRYuXOjM8vLylN1uV2vXrvXBDD3vwoULSkTUrl27lFLXrq9u3bpqw4YNzvt8/fXXSkRURkaGr6ZpCfSEntATc8HSE6WCryv0xHPoCT0JhJ745Ss2paWlcuDAARk0aJAzCwkJkUGDBklGRoYPZ+Z9mZmZkp2dXenaHQ6H9O7dO2CuPT8/X0REwsPDRUTkwIEDUlZWVumaO3XqJG3atAmYa/YGekJP6Im5YO6JSOB3hZ54Bj2hJ4HSE79c2OTm5kp5eblERUVVyqOioiQ7O9tHs6od168vUK+9oqJCpk6dKn379pWuXbuKyLVrrlevnoSFhVW6b6Bcs7fQE3oiEjjX7C3B3BORwO4KPfEcekJPRALjeuv4egIILklJSXLkyBHZs2ePr6cC+C16ApijJ4C5YOuJX75iExERIaGhoTfszpCTkyPR0dE+mlXtuH59gXjtkydPlq1bt8qOHTukVatWzjw6OlpKS0slLy+v0v0D4Zq9iZ7QE5HAuGZvCuaeiARuV+iJZ9ETeiJi/esV8dOFTb169aRHjx6Snp7uzCoqKiQ9PV369Onjw5l5X2xsrERHR1e69oKCAtm3b59lr10pJZMnT5bU1FTZvn27xMbGVrq9R48eUrdu3UrXfOLECfn+++8te821gZ7QE3piLph7IhJ4XaEn3kFP6EnA9MS3excYW7dunbLb7WrVqlXq2LFjavz48SosLExlZ2f7emo1VlhYqL744gv1xRdfKBFRf/jDH9QXX3yhvvvuO6WUUi+//LIKCwtTH330kTp06JB68MEHVWxsrCouLvbxzKtn0qRJyuFwqJ07d6rz5887xw8//OC8z8SJE1WbNm3U9u3b1f79+1WfPn1Unz59fDhra6An9ISemAvknigVXF2hJ95DT+hJIPTEbxc2Sin1xhtvqDZt2qh69eqpuLg4tXfvXl9PySN27NihROSGMXbsWKXUtW0H586dq6KiopTdblcDBw5UJ06c8O2ka0B3rSKiVq5c6bxPcXGx+t3vfqeaNWumGjZsqEaMGKHOnz/vu0lbCD2hJzAXqD1RKri6Qk+8i57QE6uzKaWU518HAgAAAIDa45fvsQEAAAAAd7CwAQAAAGB5LGwAAAAAWB4LGwAAAACWx8IGAAAAgOWxsAEAAABgeSxsAAAAAFgeCxsAAAAAlsfCBgAAAIDlsbABAAAAYHksbAAAAABY3v8DdgKW8coUU6QAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Создаем subplot для 4 изображений\n", + "fig, axes = plt.subplots(1, 4, figsize=(10, 3))\n", + "\n", + "for i in range(4):\n", + " axes[i].imshow(X_train[i], cmap=plt.get_cmap('gray'))\n", + " axes[i].set_title(f'Label: {y_train[i]}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hNRbQ3GJU9fq" + }, + "outputs": [], + "source": [ + "# Добавляем метку как заголовок\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "js1x4HkMVfwm", + "outputId": "82515441-af66-4383-b7d0-24473fd417db" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed X train: (60000, 784)\n" + ] + } + ], + "source": [ + "# развернем каждое изображение 28*28 в вектор 784\n", + "num_pixels = X_train.shape[1] * X_train.shape[2]\n", + "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", + "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", + "print('Shape of transformed X train:', X_train.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7k8dJS06WNfN", + "outputId": "c5527c79-25bd-409a-c8fe-33f5624618e6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape of transformed y train: (60000, 10)\n" + ] + } + ], + "source": [ + "# переведем метки в one-hot\n", + "from keras.utils import to_categorical\n", + "y_train = to_categorical(y_train)\n", + "y_test = to_categorical(y_test)\n", + "print('Shape of transformed y train:', y_train.shape)\n", + "num_classes = y_train.shape[1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ir0bQztHWu9V" + }, + "outputs": [], + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yQ9FXNqXXDHD", + "outputId": "b1735201-eab3-4fcd-8793-861f3dbf9ac3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], + "source": [ + "model_1 = Sequential()\n", + "model_1.add(Dense(units=num_classes,input_dim=num_pixels, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 181 + }, + "id": "RUvTKwOZXfEi", + "outputId": "7d762a7d-7b06-48c1-af64-6310475f1166" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m7,850\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense (Dense)                   │ (None, 10)             │         7,850 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
     Total params: 7,850 (30.66 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,850\u001b[0m (30.66 KB)\n" + ], + "text/html": [ + "
     Trainable params: 7,850 (30.66 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "model_1.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])\n", + "\n", + "print(\"Архитектура нейронной сети:\")\n", + "model_1.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l8f1EiJUYLvl", + "outputId": "8d88ef7c-7d4e-4067-d777-d78aee4c3c39" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.7168 - loss: 1.1499 - val_accuracy: 0.8695 - val_loss: 0.5093\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8763 - loss: 0.4841 - val_accuracy: 0.8858 - val_loss: 0.4226\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8890 - loss: 0.4170 - val_accuracy: 0.8953 - val_loss: 0.3855\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.8923 - loss: 0.3911 - val_accuracy: 0.8990 - val_loss: 0.3649\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8989 - loss: 0.3692 - val_accuracy: 0.9032 - val_loss: 0.3503\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9034 - loss: 0.3525 - val_accuracy: 0.9055 - val_loss: 0.3410\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9026 - loss: 0.3452 - val_accuracy: 0.9080 - val_loss: 0.3325\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9063 - loss: 0.3369 - val_accuracy: 0.9087 - val_loss: 0.3263\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9084 - loss: 0.3280 - val_accuracy: 0.9112 - val_loss: 0.3212\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9097 - loss: 0.3235 - val_accuracy: 0.9123 - val_loss: 0.3169\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9092 - loss: 0.3218 - val_accuracy: 0.9127 - val_loss: 0.3130\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9105 - loss: 0.3134 - val_accuracy: 0.9142 - val_loss: 0.3089\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9136 - loss: 0.3088 - val_accuracy: 0.9142 - val_loss: 0.3076\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9143 - loss: 0.3086 - val_accuracy: 0.9160 - val_loss: 0.3041\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9145 - loss: 0.3049 - val_accuracy: 0.9152 - val_loss: 0.3016\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9159 - loss: 0.3041 - val_accuracy: 0.9157 - val_loss: 0.2994\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9171 - loss: 0.2976 - val_accuracy: 0.9143 - val_loss: 0.2982\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9144 - loss: 0.3051 - val_accuracy: 0.9168 - val_loss: 0.2964\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9173 - loss: 0.3012 - val_accuracy: 0.9173 - val_loss: 0.2954\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9165 - loss: 0.2982 - val_accuracy: 0.9168 - val_loss: 0.2945\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9175 - loss: 0.2946 - val_accuracy: 0.9172 - val_loss: 0.2934\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9174 - loss: 0.2937 - val_accuracy: 0.9172 - val_loss: 0.2911\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9191 - loss: 0.2884 - val_accuracy: 0.9173 - val_loss: 0.2912\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9196 - loss: 0.2908 - val_accuracy: 0.9162 - val_loss: 0.2890\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9191 - loss: 0.2870 - val_accuracy: 0.9183 - val_loss: 0.2886\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9193 - loss: 0.2891 - val_accuracy: 0.9187 - val_loss: 0.2881\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9194 - loss: 0.2837 - val_accuracy: 0.9182 - val_loss: 0.2867\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2867 - val_accuracy: 0.9187 - val_loss: 0.2862\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9217 - loss: 0.2817 - val_accuracy: 0.9182 - val_loss: 0.2856\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9229 - loss: 0.2757 - val_accuracy: 0.9178 - val_loss: 0.2850\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2809 - val_accuracy: 0.9180 - val_loss: 0.2847\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9213 - loss: 0.2825 - val_accuracy: 0.9193 - val_loss: 0.2838\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9216 - loss: 0.2822 - val_accuracy: 0.9197 - val_loss: 0.2832\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9232 - loss: 0.2757 - val_accuracy: 0.9202 - val_loss: 0.2823\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9207 - loss: 0.2836 - val_accuracy: 0.9197 - val_loss: 0.2822\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9220 - loss: 0.2791 - val_accuracy: 0.9192 - val_loss: 0.2823\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9215 - loss: 0.2777 - val_accuracy: 0.9173 - val_loss: 0.2824\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9238 - loss: 0.2752 - val_accuracy: 0.9180 - val_loss: 0.2809\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9250 - loss: 0.2707 - val_accuracy: 0.9200 - val_loss: 0.2809\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9228 - loss: 0.2783 - val_accuracy: 0.9188 - val_loss: 0.2807\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9251 - loss: 0.2679 - val_accuracy: 0.9198 - val_loss: 0.2806\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9235 - loss: 0.2774 - val_accuracy: 0.9188 - val_loss: 0.2797\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9225 - loss: 0.2772 - val_accuracy: 0.9198 - val_loss: 0.2791\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9240 - loss: 0.2749 - val_accuracy: 0.9193 - val_loss: 0.2791\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9265 - loss: 0.2666 - val_accuracy: 0.9197 - val_loss: 0.2786\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9246 - loss: 0.2747 - val_accuracy: 0.9198 - val_loss: 0.2786\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9239 - loss: 0.2721 - val_accuracy: 0.9193 - val_loss: 0.2783\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9224 - loss: 0.2779 - val_accuracy: 0.9200 - val_loss: 0.2787\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.9233 - loss: 0.2755 - val_accuracy: 0.9203 - val_loss: 0.2778\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.9247 - loss: 0.2684 - val_accuracy: 0.9182 - val_loss: 0.2778\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history = model_1.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "UJ5yuJBrZsjT", + "outputId": "02557983-a862-4ac4-baef-8a4e0e35942c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgJVJREFUeJzt3Xd8U9X7wPFPdveATqC0QJkyqiDIUGQryHCiKFNR1hekoMBPpgsVRRwIDhAVUdyKIlARUNkCZZbKbllllO6VJvf3R2ggtEDTJqShz/v1uq8m564np4Un59xzz1UpiqIghBBCCLegdnUAQgghhCg9SdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYRwCLPZzLlz5zh8+LCrQxHipiaJWwhRZqdPn+bZZ58lMjISvV5PcHAwjRo1IiMjw9WhCXHT0ro6AFH5DBo0iO+++46srCxXhyLK4eDBg3To0AGj0cjo0aO57bbb0Gq1eHp64u3t7erwhLhpSeIWN8T58+f58ssv+fvvv/nrr7/Izc3lnnvu4dZbb+WRRx7h1ltvdXWIwk7PPPMMer2eTZs2Ub16dVeHI0SloZKHjAhn+/rrrxk6dChZWVlERUVhNBo5ffo0t956Kzt37sRoNDJw4EA++ugj9Hq9q8MVpbBt2zZatGjBqlWr6NKli6vDEaJSkWvcwqnWr1/PE088QVhYGOvXr+fIkSN07twZDw8Ptm7dysmTJ3nsscf47LPPGDt2LACKohAVFUXv3r2LHS8vLw9/f3+eeeYZANauXYtKpeK7774rtq2Pjw+DBg2yvl+0aBEqlYqjR49ay/bu3UtgYCD33XcfhYWFNtv9+++/Nsc7d+4cKpWK6dOn25SXVDZr1ixUKhV33323Tfnhw4d5+OGHqVatGmq1GpVKhUqlonHjxteqRgAKCwt56aWXqFOnDgaDgaioKP7v//6P/Px8m+2ioqK47777bMpGjRqFSqWyKfvjjz9QqVT8+uuv1rK77767WMxbt261xllk06ZNeHh4cOjQIW655RYMBgNhYWE888wzpKam2uxf0jFfeeUV1Go1S5YssfvcV3P33Xdbty1pufz3DvDBBx9YY69WrRojR44kLS3tmufIzMzkqaeeIjIyEoPBQI0aNRg2bBgpKSk22xX9DV1tufLvZceOHdx77734+fnh4+NDp06d2LRpk3W9oih06NCB4OBgzpw5Yy0vKCigSZMm1KlTh+zsbACOHTvGiBEjqF+/Pp6enlStWpWHH3642OcvilGv13P27FmbdRs3brTGeuW/A+F60lUunOq1117DbDbz9ddf07x582Lrg4KC+Pzzz9m3bx8ffvgh06ZNIyQkhCeeeII33niD1NRUqlSpYt1+2bJlZGRk8MQTT5Q7tuTkZO655x4aNGjAN998g1brmH8OaWlpzJw5s1i5yWSiV69eHDt2jGeffZZ69eqhUql45ZVXSnXcp556is8++4yHHnqIcePGsXnzZmbOnElCQgI//vijQ2IvyYQJE4qVnT9/nry8PIYPH07Hjh0ZNmwYhw4dYu7cuWzevJnNmzdjMBhKPN6nn37K5MmTeeutt+jXr5/d576WGjVqFKv75cuX89VXX9mUTZ8+nRkzZtC5c2eGDx9OYmIi8+bNY+vWraxfvx6dTlfi8VNTU9m1axdPPfUUYWFhHDx4kPnz57NixQq2bNlCSEiIzfYvvvgitWrVsr7Pyspi+PDhNtvs3buXO++8Ez8/P55//nl0Oh0ffvghd999N+vWraNVq1aoVCoWLlxI06ZNGTZsGD/88AMA06ZNY+/evaxdu9Y6rmDr1q1s2LCBRx99lBo1anD06FHmzZvH3Xffzb59+/Dy8rI5v0ajYfHixdYvzmD5HXl4eJCXl1eaahc3miKEE1WpUkWJjIy0KRs4cKDi7e1tUzZlyhQFUJYtW6YoiqIkJiYqgDJv3jyb7Xr16qVERUUpZrNZURRFWbNmjQIo3377bbFze3t7KwMHDrS+//TTTxVAOXLkiJKamqo0atRIqV+/vnLu3Dmb/Yq227p1q0352bNnFUCZNm2aTfmVZc8//7wSEhKiNG/eXGnfvr21vOgzzZw502b/9u3bK7fcckux+C8XHx+vAMpTTz1lUz5+/HgFUP78809rWWRkpNKjRw+b7UaOHKlc+c89Li7Ops6LYrk85uXLlyuAcs8999jsP23aNAVQOnXqpBQWFlrLi+ruvffeK/GYv/32m6LVapVx48YV+4ylPffVXK0eZ82aZf29K4qinDlzRtHr9UrXrl0Vk8lk3e79999XAGXhwoXXPdfl9uzZoxgMBmXIkCHWMnv+hvr06aPo9Xrl0KFD1rKTJ08qvr6+yl133WWz/4cffqgAyuLFi5VNmzYpGo1GefbZZ222ycnJKRbjxo0bFUD5/PPPi8X42GOPKU2aNLGWZ2dnK35+fkq/fv1K/AzC9aSrXDhVZmZmsVZISUJDQwGstxHVq1ePVq1a8eWXX1q3SU1N5ffff+fxxx8v1nWamZnJuXPnbJarycvLo1evXpw9e5YVK1ZQtWrVsny0Ep04cYL33nuPKVOm4OPjUyxGoEznW758OQCxsbE25ePGjQPgt99+K0u416QoCpMmTeLBBx+kVatWJW4TGxuLRqOxvu/fvz+hoaElxrNlyxYeeeQRHnzwQWbNmlXuc5fVH3/8QUFBAc8++yxq9aX/AocOHYqfn99167LofvWiJTQ0lO7du/P9999jNpvtisVkMrFq1Sr69OlD7dq1reXh4eH069ePf/75x+bWuqeffppu3brxv//9j/79+1OnTh1effVVm2N6enpaXxuNRs6fP090dDQBAQFs3769WAz9+/dn//791i7x77//Hn9/fzp16mTXZxE3jiRu4VTVqlXj0KFD193u4MGDADajkwcMGMD69es5duwYAN9++y1Go5H+/fsX23/IkCEEBwfbLEXX/K40ePBg/vnnHzIzM63XtR1l2rRpVKtWzXoN/nL169cnMDCQt956i/Xr13P27FnOnTuH0Wi87nGPHTuGWq0mOjrapjwsLIyAgABrHTnSl19+yd69e4slBsD6xalBgwY25RqNhrp16xa7nnrixAl69OhBdnY258+fv+4162udu7yK6qp+/fo25Xq9ntq1a1+3LpOSkor9rf3444+kp6df8wtjSc6ePUtOTk6xWAAaNmyI2WwmOTnZpnzBggXk5ORw4MABFi1aZJOoAXJzc5k6dSoREREYDAaCgoIIDg4mLS2N9PT0YucJDg6mR48eLFy4EICFCxcycOBAmy81omKR34xwqvvuu4/U1FQWLFhw1W1SUlL47LPPCA4O5o477rCWP/roo+h0Omure/HixbRo0aLE/+SmTp1KXFyczeLh4VHi+bZv387PP/9McHAwTz/9dDk/4SUJCQksWrSIl19+ucRrpD4+PixdupTs7GzatWtHSEgIwcHBbNiwodTnKM0gLUcoKChgypQpPPnkk9SrV6/Y+iuTxfUcPHiQmjVr8sUXX/DHH3/w2WeflfncrhYWFlbsb+2xxx67Yedfu3atdUDi7t27i63/3//+xyuvvMIjjzzCN998w6pVq4iLi6Nq1apX7REYMmQIX331FQkJCfz11182gzpFxSOD04RTTZ48mZ9++onhw4ezf/9++vXrh8lkAiwtl9WrVzN16lQuXLjAkiVLbAY0ValShR49evDll1/y+OOPs379eubMmVPieZo0aULnzp1tyi7vwr3cJ598Qq9evdBoNNx3330sWLCAJ598styfddKkScTExNC3b9+rbtOlSxfeeOMNHn/8cebPn0/t2rUZN26ctU6uJjIyErPZzIEDB2jYsKG1PCUlhbS0NCIjI8sd/+U++OADzpw5U2z0c5GiAVeJiYk2XbxFMV55X354eDjLly8nNDSUn3/+mXHjxtG9e3eCg4PtPnd5FdXVlbEXFBRY73q4Fg8Pj2LbvPvuu/j5+REUFGRXLMHBwXh5eZGYmFhs3f79+1Gr1URERFjLTp06xf/+9z+6du2KXq9n/PjxdOvWzeb3/9133zFw4EDeeusta1leXt41R8zfe++9eHh48Oijj9KuXTvq1KnD33//bddnETeOtLiFU4WFhbFx40buvfde3nrrLW677TYWL15MdnY2kZGRDBkyBE9PT5YtW1Ziq6V///7s27eP5557Do1Gw6OPPlrumO68804AevTowaOPPspzzz1X7HYee23cuJGff/6Z11577Zqt4uTkZEaMGMHo0aN5+umn6dy5M4GBgdc9fvfu3QGKfXGZPXs2YPksjpKZmckrr7zC2LFjCQsLK3GbTp06YTAYePfdd21acV9++SUpKSnFbkerV6+edRzDe++9h9lsZsyYMWU6d3l17twZvV7Pu+++i3LZNBYLFiwgPT39mnVZUot1x44d/P777/Tp08fu7mWNRkPXrl35+eefbS4vpKSksGTJEtq1a4efn5+1fOjQoZjNZhYsWMBHH32EVqvlySeftPkcGo3G5j1Y6vxaXw61Wi0DBgxg165dDBkyxK7PIG48aXELp4uIiODnn3/m1KlTrF+/nlmzZhEfH8/8+fOJiYkhJibmqsmuR48eVK1alW+//ZZ77723VAPd7PHOO+/QsGFD/ve///HNN9/YrNu4caPNNcuiQUIHDx5ky5YttGzZ0rquaCKSa7XWzGYz/fv3p0aNGrz22mt2xdmsWTPrJDVpaWm0b9+eLVu28Nlnn9GnTx86dOhgs33RwLsiSUlJADZl8fHxJZ5r+/btBAUF8fzzz181nipVqjB58mSmTJlCt27d6N27N4cPH+b999+nWbNmPPXUU1fdNywsjFmzZvHUU0/xxBNPWL+UlPbc5RUcHMykSZOYMWMG99xzD7169SIxMZEPPviA22+//Zq3GiYlJdGjRw8efvhhqlevzp49e/j4448JCgoq8/X4l19+mbi4ONq1a8eIESPQarV8+OGH5Ofn88Ybb1i3+/TTT/ntt99YtGgRNWrUACwJ+YknnmDevHmMGDECsFye+uKLL/D396dRo0Zs3LiRP/7447qDIl966SWee+65Un2RFC7m0jHtolIq6XawaxkxYoQCKEuWLCm2rqy3g13us88+UwDll19+sdnuWsvlty0BikqlUrZt22Zz3Ctvb3r11VcVg8Gg7Ny5s9h217sdTFEUxWg0KjNmzFBq1aql6HQ6JSIiQpk0aZKSl5dns11kZOR14798ufJ2MEB5++23bY5ZdPvXlebOnas0aNBA0el0SmhoqPLMM88o58+fv2Y9FOnYsaNSs2ZNJTMzs0znvlJpbwcr8v7779vEPnz4cOXChQvXPEdmZqYydOhQJTIyUtHr9UpwcLDSv39/5dixYzbb2XtL4fbt25Vu3bopPj4+ipeXl9KhQwdlw4YN1vXJycmKv7+/0rNnz2Ix3X///Yq3t7dy+PBhRVEU5cKFC8rgwYOVoKAgxcfHR+nWrZuyf/9+JTIyssR/D1e73et664XryJSnosIbO3YsCxYs4PTp08Umj3CF6dOns3btWtauXevqUIQQlZBc4xYVWl5eHosXL+bBBx+sEElbCCFcTa5xiwrpzJkz/PHHH3z33XecP3++xIFMrhIdHU1OTo6rwxBCVFLSVS4qpLVr19KhQwdCQkKYMmUKo0aNcnVIQghRIUjiFkIIIdyIXOMWQggh3IgkbiGEEMKNVLrBaWazmZMnT+Lr63vD5n0WQgghrkVRFDIzM6lWrdp1Z+CrdIn75MmTNnP/CiGEEBVFcnKydWa8q6l0idvX1xewVM7lcwCXhdFoZNWqVXTt2rXEp0GJq5O6Kxupt7KTuisbqbeys6fuMjIyiIiIsOaoa6l0ibuoe9zPz88hidvLyws/Pz/5g7aT1F3ZSL2VndRd2Ui9lV1Z6q40l3BlcJoQQgjhRiRxCyGEEG5EErcQQgjhRirdNW4hKiuTyYTRaHR1GC5jNBrRarXk5eVhMplcHY7bkHoru6K6y8/PB0Cr1TrkNmRJ3EJUAllZWRw/fpzKPMOxoiiEhYWRnJwsczjYQeqt7IrqLikpCZVKhZeXF+Hh4ej1+nIdVxK3EDc5k8nE8ePH8fLyIjg4uNL+52s2m8nKysLHx+e6E1yIS6Teyq6o7ry9vSksLOTs2bMcOXKEunXrlqsuJXELcZMzGo0oikJwcDCenp6uDsdlzGYzBQUFeHh4SAKyg9Rb2RXVnaenJ2q1Gp1Ox7Fjx6z1WVbyWxCikqisLW0hKgpHffFxeeKeO3cuUVFReHh40KpVK7Zs2XLN7efMmUP9+vXx9PQkIiKCsWPHkpeXd4OiFUIIIVzLpYl76dKlxMbGMm3aNLZv306zZs3o1q0bZ86cKXH7JUuWMHHiRKZNm0ZCQgILFixg6dKl/N///d8NjlwIUdFV5hH07kx+b9fn0sQ9e/Zshg4dyuDBg2nUqBHz58/Hy8uLhQsXlrj9hg0baNu2Lf369SMqKoquXbvy2GOPXbeVLoS4+cXHxzNw4EDq1atHYGAgfn5+pKenuzoscR2HDx9m+PDhNGrUiKpVq+Lp6cn+/ftdHVaF5rLBaQUFBWzbto1JkyZZy9RqNZ07d2bjxo0l7tOmTRsWL17Mli1baNmyJYcPH2b58uX079//qufJz8+33kMHloncwfKtrrzf7Ir2l2+I9pO6K5uy1FvR4DSz2YzZbHZWaE6RnJzM9OnTWblyJefOnSM8PJzevXszZcoUqlatat1u7dq19OrVixEjRrBkyRL8/Pzw9PTE19fX+pmLboUrqgtROs6st4SEBNq1a8eDDz7IJ598QlBQEDqdjsjIyJvid3Rl3ZnNZhRFwWg0otFobLa159+0yxL3uXPnMJlMhIaG2pSHhoZe9dtWv379OHfuHO3atUNRFAoLCxk2bNg1u8pnzpzJjBkzipWvWrUKLy+v8n2Ii+Li4hxynMpI6q5s7Kk3rVZLWFgYWVlZFBQUODEqxzp69Chdu3alTp06fPzxx9SsWZP9+/czdepUli9fTlxcHIGBgSiKwtChQ3n11VcZMGCAzTGKvqhfLjMz80Z9hJuKM+ptxIgRPPnkk0yePNmmvKTfmzsrqruCggJyc3P566+/KCwstNkmJyen9AdUXOTEiRMKoGzYsMGm/LnnnlNatmxZ4j5r1qxRQkNDlY8//ljZtWuX8sMPPygRERHKiy++eNXz5OXlKenp6dYlOTlZAZRz584pBQUF5VrejUtQ7pi+TJn/5/5yH6uyLdnZ2cpPP/2kZGdnuzwWd1rKUm8ZGRnK3r17lezsbMVkMimFhYVKZm6+S5bCwkLFZDKVaunWrZtSo0YNJSsry6b8xIkTipeXl/LMM88oJpNJ2bNnj6LT6ZTnn39eqVmzpmIwGJRWrVop69ats37eOnXqKK+//rpy4cIFawzbtm1TACUxMVFZvXq1Aijnz5+3nmfAgAFKr169rO9/++03pW3btoq/v79SpUoVpXv37sp///1nXX/o0CEFULZt26aYTCYlKSlJefDBB5Xg4GDFx8dH6d27t3Ls2DHr9lOnTlWaNWtmfX/+/HkFUFavXn3VGP777z+lZ8+eSkhIiOLt7a20aNFCWblypU39HD9+XOnTp49SpUoVBbAul3+2K5f4+HilQ4cOioeHh1KlShXlqaeeUtLT063199hjj9nEUVR3hw4dspa1b99eGT16tPV9ZGSkMnv2bOv7VatWKYD1OBkZGYpKpVLGjx+vREdHKwaDQWncuLHyww8/XLVOc3JylE6dOimdOnVScnJyFJPJpGzatEnp1KmTUrVqVcXPz0+56667lK1bt5b678yZS2Fhoc3fXHZ2trJ3714lIyOj2L/Tc+fOKYCSnp5+3fzpshZ3UFAQGo2GlJQUm/KUlBTCwsJK3GfKlCn079+fp556CoAmTZqQnZ3N008/zQsvvFDiUHuDwYDBYChWrtPpyv2IurTcQk7lqjiTZZTH3ZWRI34PlZE99WYymVCpVKjVatRqNTkFhTSe7pqejn0vdsNLr7nudqmpqaxatYpXXnkFb29vm3XVqlXj8ccf55tvvmHevHmcP38eo9HI4sWL+fjjj6lVqxbvvPMO3bt358CBA4SHhzNkyBA+++wznn76aWtdfPbZZ9x1113Uq1ePkydPAljrCCy3zxVtC5Cbm0tsbCxNmzYlKyuLqVOn8uCDDxIfH2+zn1qtxmQycd9996HT6Vi2bBk6nY4xY8bwwAMPsHXrVuuxi7a/8ufVYsjJyaFHjx68+uqrGAwGPv/8c3r37k1iYiI1a9YE4LnnnuPAgQOsWLGCiIgINmzYwIMPPmhz3MtlZ2dz77330rp1a7Zu3cqZM2d46qmnGD16NIsWLbLpsr5WrEXxlvTebDbz3HPP4ePjYy27cOECiqLw0UcfMX/+fJo3b86SJUt46KGH2LZtGzExMTbnURSFfv36kZWVxR9//GGdkyA7O5tBgwbRokULFEXhrbfe4r777uPAgQOlera1MxXV3eX//lQqVYn/fu35f9Blg9P0ej3Nmzdn9erV1jKz2czq1atp3bp1ifvk5OQU+8Mruk6guGAqRw+d5dz5he5/LUaIiuTAgQMoikLDhg1LXN+wYUMuXLjA2bNnrf85zpo1i+7du9OwYUM++OADqlWrxty5cwEYNGgQiYmJbNu2DbBcT1yyZAlDhgwBsCaB3Nzcq8b04IMP8sADDxAdHU1MTAwLFy5k9+7d7Nu3r9i2f/zxB7t27eLzzz+nVatW3HbbbXz55ZfEx8fb/J9nr2bNmvHMM8/QuHFj6taty0svvUSdOnX45ZdfrNvEx8fTr18/br/9dsLCwqhSpco1j7lkyRLy8vL4/PPPady4MR07duT999/niy++KNawKqvPPvuM/Px8evfubS0r+r1NmDCBxx57jHr16jF9+nQ6dOjAm2++abO/oigMHjyYgwcPsnz5cnx8fKzrOnbsyBNPPEGDBg1o2LAhH330ETk5Oaxbt84hsVdELp05LTY2loEDB9KiRQtatmzJnDlzyM7OZvDgwQAMGDCA6tWrM3PmTAB69uzJ7NmzufXWW2nVqhUHDx5kypQp9OzZs9iF/hvBQ2v5EpFnlMQt3IenTsO+F7u57Nz2sOcLedu2ba2v1Wo1bdq0sSbVatWq0b17dxYvXkyHDh1YtmwZ+fn5PPzwwwDUrVsXvV7PV199RWxsbInHP3DgAFOnTmXz5s2cO3fOmniSkpJo3Lixdbs2bdpgMpkICAigUaNG1vKaNWsSERHBvn376Ny5c+kr4TJZWVlMnz6d3377jVOnTlFYWEhubi5JSUnWbWrVqsXy5csZNmzYdZM2WAaINWvWzKZno23btpjNZhITEwkODi5TrEVycnKYPHky8+fP5/vvvy+2/vLfG0C7du1svoiApRdh9erVDB48uNhnSklJYfLkyaxdu5YzZ85gMpnIycmxqZObjUsTd9++fTl79ixTp07l9OnTxMTEsGLFCuuAtaSkJJsW9uTJk1GpVEyePJkTJ04QHBxMz549eeWVV1wSv+Hif0J5RnlijnAfKpUKL33Fnu04OjoalUpFQkIC999/f7H1CQkJBAYGEhwcTGBg4FWPc/lscU8++SQDBgzg/fff59NPP6Vv377WAapVqlRh9uzZjB07lhdeeAGNRkN+fj49evSw7t+zZ08iIyP5+OOPqVatGmazmcaNGxcb8Ld06VISEhKsDY5rxWSv8ePHExcXx5tvvkl0dDSenp489NBDNjG8/fbbPP744wQFBeHl5eXyJ3rNmjWL+vXr07NnT5vEXdrfG1h+37///jsPPPAAffv2pVu3S188Bw4cyPnz53nnnXeIjIzEYDDQunVrtxqIaS+Xz5w2atQojh07Rn5+Pps3b6ZVq1bWdWvXrmXRokXW91qtlmnTpnHw4EHrt8y5c+cSEBBw4wMHPHRFLW5J3EI4UtWqVenSpQsffPBBse7r06dP8+WXX9K3b19UKhV16tRBq9Wyfv166zZms5kNGzbYtHi7d++Ot7c38+fPZ8WKFdZu8iIjR44kPT2dPXv2EB8fT69evazrzp8/T2JiIpMnT6ZTp07WrvqSRERE0K5dO9LS0my60ZOTk0lOTraJyV7r169n0KBB3H///TRp0oSwsDCOHj1qs029evUYNGgQUVFRbN68mU8++eSax2zYsCE7d+4kOzvb5jxqtZr69euXOVaAU6dO8dZbb/HWW28VW+fv709YWJjN7w3gn3/+KVZHX3zxBffccw8vvfQSQ4cOtRl1vn79ekaPHk337t255ZZbMBgMnDt3rlxxV3QuT9zuzEN7scUt17iFcLj333+f/Px8unXrxl9//UVycjIrVqygS5cuVK9e3drT5uPjw9ChQ3nuuedYvnw5CQkJjBgxgpMnTzJixAjr8TQaDY899hj/93//R926dUscS+Pp6UmdOnWIjo62GdgUGBhI1apV+eijjzh48CB//vnnVbvUwdJd3qpVKwYMGMCWLVvYvn07jz/+ODExMXTs2NG6naIo5OXlkZeXZ51voqCgwFpmMpkwm83We3zr1q3LDz/8QHx8PDt37qRfv37F7nfetGkT//d//8d3333HLbfcQvXq1a9Zz48//jgeHh4MHDiQPXv2sGbNGv73v//Rv39/m9t1zWazNa6i1mx+fr61rKT7rufOncv999/PrbfeWuK5x44dy+uvv87XX3/Nf//9x/Tp01mzZg3jx4+32a6oe3zs2LFERETY1H3dunX54osvSEhIYPPmzTz++OM3/cN0JHGXg7S4hXCeunXr8u+//1K7dm0eeeQR6tSpw9NPP02HDh3YuHGjzbXON998kz59+jBw4EBiYmLYuXMnK1euJDw83OaY/fv3p6CgwDqOprTUajVff/0127Zto3HjxowdO5ZZs2Zdc5/vv/+eiIgIOnXqRPv27QkKCuKnn36y6QbetWsXnp6eeHp6Wu+m6datm7Vs8eLFLFu2jKFDhwKW2SYDAwNp06YNPXv2pFu3btx2223W4509e5aHH36Y2bNn25Rfi5eXFytXriQ1NZXbb7+dhx56iE6dOvH+++/bbPfrr79a4yrqGW3QoIG17O+//y52bLPZfM1LmePGjWP06NGMGzeOxo0b88MPP/DDDz/QrFmzErdXq9V8+umnLFmyhFWrVgGwYMECLly4wG233Ub//v0ZPXo0ISEhpfrs7kqluGI4tgtlZGTg7+9Peno6fn5+5TrWyj0neWbxDppU92PZ/+50UISVg9FoZPny5XTv3l1uB7NDWeotLy+PI0eOUKtWrXI9StDdmc1mVqxYQZ8+fUhOTi42+VNF9dNPP/HTTz/ZXDa8kcxmMxkZGfj5+cljPe10Zd1d69+iPbmpYo9QqeAujSqXFrcQFVl+fj4pKSm8/vrrPPTQQ26TtMHSxS9fbsXl5OtTOXhYR5XLNW4hKrKvvvqKWrVqkZ6ezuuvv+7qcOzSs2dPPv74Y1eHISoQSdzlYLjY4pYJWISo2AYNGoTRaGTt2rXXHawlREUnibscPOQ+biGEEDeYJO5ysI4qlxa3EEKIG0QSdzkUDU4rKDRjNleqwflCCCFcRBJ3ORgum3dZrnMLIYS4ESRxl0NRixvkOrcQQogbQxJ3OWg1ajQqSxd5XqEkbiGEcGdFU8tWdJK4y+ni+DS5l1sIIdzMjz/+SI8ePYiKisLHx4c773SPGTAlcZfTpcQtLW4hHGnQoEGoVCrrUrVqVe655x527drl6tDETWDmzJkMHTqU++67j99++434+HiWL1/u6rBKRaY8LSdJ3EI4zz333MOnn34KWB7nOXnyZO677z6SkpJcHJlwZ4cPH+bVV19l06ZN3HLLLa4Ox27S4i6nosSdK4lbuAtFgYJs1yx2PtPIYDAQFhZGWFgYMTExTJw4keTkZM6ePWvdZsKECdSrVw8vLy9q167NlClTil2rPHr0KBqNhsDAQDQajbUVn5aWBsD06dOJiYmxbl9QUEB0dLTNNkWioqJsegJUKhU//fSTdf2KFSto164dAQEBVK1alfvuu49Dhw7ZxKJSqYiPjy923Dlz5ljf33333Tz77LPW94mJieh0Ops4zWYzL774IjVq1MBgMBATE8OKFSvsPteVn6Gk83/xxRe0aNECX19fwsLC6NevH2fOnLHZ59dff6VZs2Z4enpa66ZPnz5cy7x586hTpw56vZ769evzxRdf2Ky/MrZnn32Wu++++6qfce3atcV+b/3797c5zsqVK6lTpw6vvPIKwcHB+Pr68sADD3D8+HHrPlf+TWzfvp2AgACb55vPnj2bJk2a4O3tTUREBCNGjCArK+uan9cRpMVdTkWJO1+ucQt3YcyBV6u55tz/dxL03mXaNSsri8WLFxMdHU3VqlWt5b6+vixatIhq1aqxe/duhg4diq+vL88//7x1m6KHIP7000/cfvvtbNq0iQcffPCq53r//fdJSUm56voXX3zR+qjNKx8dmp2dTWxsLE2bNiUrK4upU6dy//33Ex8fX66naz333HPFnij1zjvv8NZbb/Hhhx9y6623snDhQnr16sXevXupW7dumc9VEqPRyEsvvUT9+vU5c+YMsbGxDBo0yNq9nJaWRt++fXnqqaf46aef8PT0ZMyYMdbnjJfkxx9/ZMyYMcyZM4fOnTvz66+/MnjwYGrUqEGHDh0cEve2bdv45ZdfbMrOnj3Lzp078fX15ffffwdgzJgx9OnTh61bt9o8ehVg//79dOvWjcmTJ/PUU09Zy9VqNe+++y61atXi8OHDjBgxgueff54PPvjAIbFfjSTucpKuciGc59dff8XHxwewJMTw8HB+/fVXmwQ4efJk6+uoqCjGjx/P119/bZO4i1rgISEhhIWF2TzL+0qpqam8/PLLTJgwgSlTphRbn5+fT5UqVazPz77SlV8IFi5cSHBwMPv27aNx48al+NTFrVmzhg0bNvDUU0+xZs0aa/mbb77JhAkTePTRRwF4/fXXWbNmDXPmzGHu3LllOtfVDBkyxFrvtWvX5t133+X2228nKysLHx8f/vvvP3JycpgwYQLVqlm+GHp6el4zcb/55psMGjSIESNGABAbG8umTZt48803HZa4Y2Njee6552x+l2azGY1Gw5IlS4iIiABgyZIl1KlTh9WrV9O5c2frtseOHaNLly48/fTTjB8/3ubYl/dIREVF8fLLLzNs2DBJ3BWdTq0AKrkdTLgPnZel5euqc9uhQ4cOzJs3D4ALFy7wwQcfcO+997JlyxYiIyMBWLp0Ke+++y6HDh0iKyuLwsLCYs8zzsjIAMDb+/qt/RdffJEOHTrQrl27EtenpqZe83nJBw4cYOrUqWzevJlz585hNlt645KSksqUuBVFYdy4cUybNo3z589byzMyMjh58iRt27a12b5t27bs3LnTpqxNmzY2X3ZycnKKneexxx5Do7k0qVRubq5NV/G2bdt48cUX2blzJxcuXLD5XI0aNSIiIgKtVstXX33F2LFjS9W7kJCQwNNPP10s/nfeeee6+5bGTz/9xOHDhxk3blyxL2ERERHWpA0QGRlJjRo12LdvnzVxp6Wl0blzZ44fP063bt2KHf+PP/5g5syZ7N+/n4yMDAoLC8nLyyMnJwcvL/v+1u0h17jLSS+3gwl3o1JZuqtdsVzRBXk93t7eREdHEx0dze23384nn3xCdna29TGXGzdu5PHHH6d79+78+uuv7NixgxdeeIGCggKb45w8eRK1Wk1ISMg1z3fgwAE++eSTqz768/jx4xQUFFCrVq2rHqNnz56kpqby8ccfs3nzZjZv3gxQLKbS+vzzz8nOzmbYsGFl2h8sX27i4+OtS1GL+HJvv/22zTYtWrSwrsvOzubee+/Fz8+PL7/8kq1bt/Ljjz8Clz5XeHg48+bN49VXX8XDwwMfHx++/PLLMsdcXkajkeeff55XXnkFT09Pm3WBgYFX3e/ybvJjx47RqlUrpk+fzpAhQ2y+8Bw9epT77ruPpk2b8v3337Nt2zZrL0dZf9elJYm7nKSrXIgbR6VSoVaryc3NBWDDhg1ERkbywgsv0KJFC+rWrcuxY8eK7bd161YaNGhQ7BrxlSZMmMBTTz1FdHR0ievXrVuHp6enTVK73Pnz50lMTGTy5Ml06tSJhg0bcuHCBTs/5SU5OTm88MILvP766+h0Opt1fn5+VKtWjfXr19uUr1+/nkaNGtmURUREWL8ARUdHo9UW72wNCwuz2ebyZHfgwAHOnz/Pa6+9xp133kmDBg2KDUwDGDhwIA0aNODpp58mPj6eXr16XfPzNWzYsFTxl8W8efPw8fGhf//+xdY1aNCA5ORkkpOTrWXHjh3j+PHjNueuXbs2ixYt4oUXXsDPz49JkyZZ123btg2z2cxbb73FHXfcQb169Th58sb0ZElXeTnJBCxCOE9+fj6nT58GLF3l77//PllZWfTs2ROAunXrkpSUxNdff83tt9/Ob7/9Zm0JgqXls3TpUmbPns306dOvea6DBw+SlJTEwYMHS1x/6NAhXnvtNXr37l1spHlaWhoFBQUEBgZStWpVPvroI8LDw0lKSmLixIklHq+goIC8vDzre0VRKCwsxGQyWbuslyxZQvPmza86Mvu5555j2rRp1KlTh5iYGD799FPi4+Md3tKtUaMGer2e9957j2HDhrFnzx5eeumlYtuNGzcOlUrF22+/jU6nw9fXt1hdXRn/I488wq233krnzp1ZtmwZP/zwA3/88YfNdkaj0VpXJpMJs9lsfX+1a+hvvPEGy5YtKzbQDKBLly40bNiQfv368fbbbwOWwWkxMTF07NjRup2vr6/1S86iRYto2bIlDz30EHfeeSfR0dEYjUbee+89evbsyfr165k/f/41atGBlEomPT1dAZT09PRyH6ugoEDpN/sXJXLCr8rsVYkOiK7yKCgoUH766SeloKDA1aG4lbLUW25urrJv3z4lNzfXiZE53sCBAxXAuvj6+iq333678t1339ls99xzzylVq1ZVfHx8lL59+ypvv/224u/vryiKovz7779K7dq1lZkzZypGo1G5cOGCYjKZlDVr1iiAcuHCBUVRFGXatGkKoLz55pvW4165TWRkpE08Vy5r1qxRFEVR4uLilIYNGyoGg0Fp2rSpsnbtWgVQfvzxR0VRFOXIkSPXPM6nn36qKIqitG/fXlGpVMrWrVutMU2bNk1p1qyZ9b3JZFKmT5+uVK9eXdHpdEqzZs2U33//3bq+6Fw7duywqbPIyEjl7bfftr6/PL4i7du3V8aMGaOYTCblwoULyuLFi5WoqCjFYDAorVu3Vn755RebYy9ZskQJDQ1VTpw4YfM77N27d8m/4Is++OADpXbt2opOp1Pq1aunfP755zbrr1VXly9FcRT93u67775ix7n8Mx46dEjp0aOH4uXlpfj4+Cj333+/cvz48avWtaIoyosvvqhER0cr2dnZiqIoyuzZs5Xw8HDF09NT6datm/L555/b/M0U1Z3JZFIU5dr/Fu3JTaqLH6jSyMjIwN/fn/T09GsOMCkNo9HI0A9WsPaUmmfa12bSvQ0dFOXNz2g0snz5crp3716sC1BcXVnqLS8vjyNHjlCrVq3rdhXfzMxmMxkZGfj5+ZXptqyoqCjWrl1LVFRUsXV9+vQpdn9xWTz77LPExMQwaNCgch3Hkcpbb5XZlXV3rX+L9uQm+S2Uk9zHLUTlEBwcbDPq+nKBgYHo9fpyn0On0131HEIUkWvc5WS5HUwGpwlxs9u6detV1xVNy1pes2bNcshxxM1NWtzlpJdR5UIIIW4gSdzlJKPKhRBC3EiSuMvJmrhl5jRRwVWycahCVDiO+jcoibucZAIWUdEVDXZy9mxOQohrK5p5rbx30sjgtHK69FhP6SoXFZNWq8XLy4uzZ8+i0+kq7S09ZrPZOulJZa2DspB6K7uiusvNzSUvL48zZ84QEBBQ7jsHJHGX06XbwaTFLSomlUpFeHg4R44cKXE60MpCURRyc3Otz4oWpSP1VnZX1l1AQMBVnypnD0nc5SS3gwl3oNfrqVu3bqXuLjcajfz111/cddddMumPHaTeyq6o7tq3b4+np6fD7tGXxF1O8nQw4S7UanWlnjlNo9FQWFiIh4eHJCA7SL2VXVHdGQwGh06sIxcsyklGlQshhLiRJHGXk4wqF0IIcSNJ4i6nyydgkftkhRBCOJsk7nLSXVaD+YVynVsIIYRzSeIuJ5vELQPUhBBCOJkk7nLSqEB98dZGGaAmhBDC2SRxl5NKBR46yzB/GaAmhBDC2SRxO4BBa6lGuZdbCCGEs0nidgBpcQshhLhRJHE7gKeuqMUtiVsIIYRzSeJ2AIP2YotbbgcTQgjhZJK4HcBDWtxCCCFuEEncDiDXuIUQQtwokrgd4NKockncQgghnEsStwNcanHLNW4hhBDOJYnbATykxS2EEOIGkcTtAAZpcQshhLhBJHE7gHVUucxVLoQQwskkcTuAh1ZGlQshhLgxJHE7gEEnc5ULIYS4MSRxO0BRV3m+tLiFEEI4mSRuB7B2lcs1biGEEE5WIRL33LlziYqKwsPDg1atWrFly5arbnv33XejUqmKLT169LiBEdvykK5yIYQQN4jLE/fSpUuJjY1l2rRpbN++nWbNmtGtWzfOnDlT4vY//PADp06dsi579uxBo9Hw8MMP3+DILzHI4DQhhBA3iNbVAcyePZuhQ4cyePBgAObPn89vv/3GwoULmThxYrHtq1SpYvP+66+/xsvL66qJOz8/n/z8fOv7jIwMAIxGI0ajsVyxF+2vUysA5BYUlvuYlUVRPUl92Ufqreyk7spG6q3s7Kk7e+pXpSiKUuaoyqmgoAAvLy++++47+vTpYy0fOHAgaWlp/Pzzz9c9RpMmTWjdujUfffRRieunT5/OjBkzipUvWbIELy+vMsd+uYQ0FfMTNFT3Uni+mbS6hRBC2CcnJ4d+/fqRnp6On5/fNbd1aYv73LlzmEwmQkNDbcpDQ0PZv3//dfffsmULe/bsYcGCBVfdZtKkScTGxlrfZ2RkEBERQdeuXa9bOddjNBqJi4ujTcsWzE/YgcHLm+7d25XrmJVFUd116dIFnU7n6nDchtRb2UndlY3UW9nZU3dFvcGl4fKu8vJYsGABTZo0oWXLllfdxmAwYDAYipXrdDqH/RF6e+gByC9U5A/bTo78PVQmUm9lJ3VXNlJvZVeaurOnbl06OC0oKAiNRkNKSopNeUpKCmFhYdfcNzs7m6+//ponn3zSmSGWStGo8lwZnCaEEMLJXJq49Xo9zZs3Z/Xq1dYys9nM6tWrad269TX3/fbbb8nPz+eJJ55wdpjXdekhI5K4hRBCOJfLu8pjY2MZOHAgLVq0oGXLlsyZM4fs7GzrKPMBAwZQvXp1Zs6cabPfggUL6NOnD1WrVnVF2DYuf6ynoiioVCoXRySEEOJm5fLE3bdvX86ePcvUqVM5ffo0MTExrFixwjpgLSkpCbXatmMgMTGRf/75h1WrVrki5GI8Lra4zQoYTQp6rSRuIYQQzuHyxA0watQoRo0aVeK6tWvXFiurX78+LryLrZiiFjdYpj3Va10+r40QQoiblGQYB9Br1RT1jst1biGEEM4kidsBVCoVBm3RE8JkvnIhhBDOI4nbQTxkZLkQQogbQBK3g1gf7SktbiGEEE4kidtBrI/2lGdyCyGEcCJJ3A4iXeVCCCFuBEncDnJp9jTpKhdCCOE8krgd5PLZ04QQQghnkcTtINJVLoQQ4kaQxO0gnkWJu1C6yoUQQjiPJG4HsY4qL5AWtxBCCOeRxO0g0lUuhBDiRpDE7SDWxC33cQshhHAiSdwOYijqKpfbwYQQQjiRJG4HuTTlqbS4hRBCOI8kbgfxkAlYhBBC3ACSuB1E5ioXQghxI9iduA8fPuyMONxeUYs7X7rKhRBCOJHdiTs6OpoOHTqwePFi8vLynBGTW/KQwWlCCCFuALsT9/bt22natCmxsbGEhYXxzDPPsGXLFmfE5lZkcJoQQogbwe7EHRMTwzvvvMPJkydZuHAhp06dol27djRu3JjZs2dz9uxZZ8RZ4cl93EIIIW6EMg9O02q1PPDAA3z77be8/vrrHDx4kPHjxxMREcGAAQM4deqUI+Os8OQ+biGEEDdCmRP3v//+y4gRIwgPD2f27NmMHz+eQ4cOERcXx8mTJ+ndu7cj46zwZMpTIYQQN4LW3h1mz57Np59+SmJiIt27d+fzzz+ne/fuqNWW7wC1atVi0aJFREVFOTrWCu3SNW5pcQshhHAeuxP3vHnzGDJkCIMGDSI8PLzEbUJCQliwYEG5g3MnRaPK5XYwIYQQzmR34j5w4MB1t9Hr9QwcOLBMAbkrT70MThNCCOF8didugAsXLrBgwQISEhIAaNiwIUOGDKFKlSoODc6dFHWVG00KhSYzWo1MSieEEMLx7M4uf/31F1FRUbz77rtcuHCBCxcu8N5771GrVi3++usvZ8ToFooGpwHkFcp1biGEEM5hd4t75MiR9O3bl3nz5qHRWJKVyWRixIgRjBw5kt27dzs8SHdg0F76DpRnNOFjKFNnhhBCCHFNdre4Dx48yLhx46xJG0Cj0RAbG8vBgwcdGpw7UatV6LVF93LLdW4hhBDOYXfivu2226zXti+XkJBAs2bNHBKUu/LQyiQsQgghnMvu/tzRo0czZswYDh48yB133AHApk2bmDt3Lq+99hq7du2ybtu0aVPHReoGPHQaMvIKpcUthBDCaexO3I899hgAzz//fInrVCoViqKgUqkwmSpXArM+2lNuCRNCCOEkdifuI0eOOCOOm4I82lMIIYSz2Z24IyMjnRHHTUHmKxdCCOFsZbpn6dChQ8yZM8c6SK1Ro0aMGTOGOnXqODQ4dyPzlQshhHA2u0eVr1y5kkaNGrFlyxaaNm1K06ZN2bx5M7fccgtxcXHOiNFtXHq0p7S4hRBCOIfdLe6JEycyduxYXnvttWLlEyZMoEuXLg4Lzt1Yu8plcJoQQggnsbvFnZCQwJNPPlmsfMiQIezbt88hQbmrS9e4patcCCGEc9iduIODg4mPjy9WHh8fT0hIiCNiclseMnOaEEIIJ7O7q3zo0KE8/fTTHD58mDZt2gCwfv16Xn/9dWJjYx0eoDux3sctiVsIIYST2J24p0yZgq+vL2+99RaTJk0CoFq1akyfPp3Ro0c7PEB3UnQfd64kbiGEEE5iV+IuLCxkyZIl9OvXj7Fjx5KZmQmAr6+vU4JzN55yjVsIIYST2XWNW6vVMmzYMPLy8gBLwpakfYlBJmARQgjhZHYPTmvZsiU7duxwRixu79LtYNLiFkII4Rx2X+MeMWIE48aN4/jx4zRv3hxvb2+b9ZXtiWCX85AJWIQQQjiZ3Yn70UcfBbAZiFaZnwh2uUtTnlbeOhBCCOFc8nQwB7p0O5h0lQshhHAOuxP3sWPHaNOmDVqt7a6FhYVs2LChUj89zNpVLlOeCiGEcBK7B6d16NCB1NTUYuXp6el06NDBIUG5K3mspxBCCGezO3EXXcu+0vnz54sNVKtsLg1Ok65yIYQQzlHqrvIHHngAsAxEGzRoEAaDwbrOZDKxa9cu6xSolZVBBqcJIYRwslInbn9/f8DS4vb19cXT09O6Tq/Xc8cddzB06FDHR+hGpKtcCCGEs5U6cX/66acAREVFMX78+ErfLV6SS4PTpKtcCCGEc9g9qnzatGnOiOOmUNTiLig0YzYrqNXFxwIIIYQQ5WH34LSUlBT69+9PtWrV0Gq1aDQam8Vec+fOJSoqCg8PD1q1asWWLVuuuX1aWhojR44kPDwcg8FAvXr1WL58ud3ndYaixA2QL61uIYQQTmB3i3vQoEEkJSUxZcoUwsPDSxxhXlpLly4lNjaW+fPn06pVK+bMmUO3bt1ITEwkJCSk2PYFBQV06dKFkJAQvvvuO6pXr86xY8cICAgocwyO5KG99D0oz2jCU2//FxkhhBDiWuxO3P/88w9///03MTEx5T757NmzGTp0KIMHDwZg/vz5/PbbbyxcuJCJEycW237hwoWkpqayYcMGdDodYLnmXlFoNWq0ahWFZoVco4lAVwckhBDipmN34o6IiEBRlHKfuKCggG3btjFp0iRrmVqtpnPnzmzcuLHEfX755Rdat27NyJEj+fnnnwkODqZfv35MmDDhqt30+fn55OfnW99nZGQAYDQaMRqN5foMRftffhwPnYas/EKycvMxettdvZVGSXUnrk/qreyk7spG6q3s7Kk7e+rX7swyZ84cJk6cyIcffliu1u65c+cwmUyEhobalIeGhrJ///4S9zl8+DB//vknjz/+OMuXL+fgwYOMGDECo9F41UFzM2fOZMaMGcXKV61ahZeXV5njv1xcXJz1tcqsAVT8sWYd1WXg/XVdXnei9KTeyk7qrmyk3squNHWXk5NT6uPZnbj79u1LTk4OderUwcvLy9plXaSk6VAdxWw2ExISwkcffYRGo6F58+acOHGCWbNmXTVxT5o0idjYWOv7jIwMIiIi6Nq1K35+fuWKx2g0EhcXR5cuXaz1MCvhLzLT8mhxRxtujQgo1/FvZiXVnbg+qbeyk7orG6m3srOn7op6g0ujTC1uRwgKCkKj0ZCSkmJTnpKSQlhYWIn7hIeHo9PpbLrFGzZsyOnTpykoKECv1xfbx2Aw2MzyVkSn0znsj/DyY3noLVVaqKjkj7wUHPl7qEyk3spO6q5spN7KrjR1Z0/d2p24Bw4caO8uJdLr9TRv3pzVq1fTp08fwNKiXr16NaNGjSpxn7Zt27JkyRLMZjNqtWUE93///Ud4eHiJSdsViiZhkUd7CiGEcAa77+MGOHToEJMnT+axxx7jzJkzAPz+++/s3bvXruPExsby8ccf89lnn5GQkMDw4cPJzs62jjIfMGCAzeC14cOHk5qaypgxY/jvv//47bffePXVVxk5cmRZPoZTeMh85UIIIZzI7sS9bt06mjRpwubNm/nhhx/IysoCYOfOnXbPqta3b1/efPNNpk6dSkxMDPHx8axYscI6YC0pKYlTp05Zt4+IiGDlypVs3bqVpk2bMnr0aMaMGVPirWOuYp2vXJ7JLYQQwgns7iqfOHEiL7/8MrGxsfj6+lrLO3bsyPvvv293AKNGjbpq1/jatWuLlbVu3ZpNmzbZfZ4bRR7tKYQQwpnsbnHv3r2b+++/v1h5SEgI586dc0hQ7swgTwgTQgjhRHYn7oCAAJvu6yI7duygevXqDgnKnV26xi0tbiGEEI5nd+J+9NFHmTBhAqdPn0alUmE2m1m/fj3jx49nwIABzojRrVzqKpcWtxBCCMezO3G/+uqrNGjQgIiICLKysmjUqBF33XUXbdq0YfLkyc6I0a3I4DQhhBDOZPfgNL1ez8cff8zUqVPZvXs3WVlZ3HrrrdStW9cZ8bkduY9bCCGEM5X5KRgRERFERERgMpnYvXs3Fy5cIDBQnocl93ELIYRwJru7yp999lkWLFgAgMlkon379tx2221ERESUePtWZVPUVZ4riVsIIYQT2J24v/vuO5o1awbAsmXLOHz4MPv372fs2LG88MILDg/Q3cjgNCGEEM5kd+I+d+6c9SEgy5cv55FHHqFevXoMGTKE3bt3OzxAd3PpPm65xi2EEMLx7E7coaGh7Nu3D5PJxIoVK+jSpQtgeZbo5U/tqqw8ZQIWIYQQTmT34LTBgwfzyCOPEB4ejkqlonPnzgBs3ryZBg0aODxAd3PpdjBpcQshhHA8uxP39OnTady4McnJyTz88MPWZ11rNJoK9bAPV7l0O5i0uIUQQjhemW4He+ihh2zep6WlOew53e7OQ7rKhRBCOJHd17hff/11li5dan3/yCOPULVqVWrUqMGuXbscGpw7krnKhRBCOJPdiXv+/PlEREQAEBcXR1xcHL///jv33HMP48ePd3iA7sZ6O5hMeSqEEMIJ7O4qP336tDVx//rrrzzyyCN07dqVqKgoWrVq5fAA3Y10lQshhHAmu1vcgYGBJCcnA7BixQrrqHJFUTCZJFkZrBOwmFEUxcXRCCGEuNnY3eJ+4IEH6NevH3Xr1uX8+fPce++9gOV53NHR0Q4P0N0UtbgB8gvNNu+FEEKI8rI7cb/99ttERUWRnJzMG2+8gY+PDwCnTp1ixIgRDg/Q3RQNTgPLE8IkcQshhHAkuxO3TqcrcRDa2LFjHRKQu9NpVKhVYFYsA9T80bk6JCGEEDeRMt3HfejQIebMmUNCQgIAjRo14tlnn6V27doODc4dqVQqPHQacgpMMkBNCCGEw9k9OG3lypU0atSILVu20LRpU5o2bcrmzZtp1KgRcXFxzojR7XjIg0aEEEI4id0t7okTJzJ27Fhee+21YuUTJkywPnSkMvPQWr4PyTO5hRBCOJrdLe6EhASefPLJYuVDhgxh3759DgnK3cm93EIIIZzF7sQdHBxMfHx8sfL4+HhCQkIcEZPbM0jiFkII4SR2d5UPHTqUp59+msOHD9OmTRsA1q9fz+uvv05sbKzDA3RHnpdNwiKEEEI4kt2Je8qUKfj6+vLWW28xadIkAKpVq8b06dMZPXq0wwN0R0Vd5fkyX7kQQggHsytxFxYWsmTJEvr168fYsWPJzMwEwNfX1ynBuSu5xi2EEMJZ7LrGrdVqGTZsGHl5eYAlYUvSLs5DusqFEEI4id2D01q2bMmOHTucEctN49IzuaXFLYQQwrHsvsY9YsQIxo0bx/Hjx2nevDne3t4265s2beqw4NyVQSZgEUII4SR2J+5HH30UwGYgmkqlQlEUVCqVPNqTy7rKZXCaEEIIB7M7cR85csQZcdxUZHCaEEIIZ7E7cUdGRjojjpvKpWvc0lUuhBDCsUo9OG3btm106NCBjIyMYuvS09Pp0KEDO3fudGhw7qqoqzxfWtxCCCEcrNSJ+6233qJjx474+fkVW+fv70+XLl2YNWuWQ4NzV9aucrnGLYQQwsFKnbg3b95M7969r7q+Z8+ebNiwwSFBuTu5j1sIIYSzlDpxnzhx4pqTrfj4+HDq1CmHBOXuZHCaEEIIZyl14g4ODiYxMfGq6/fv309QUJBDgnJ3houD0+R53EIIIRyt1Im7c+fOvPLKKyWuUxSFV155hc6dOzssMHcmXeVCCCGcpdS3g02ePJnmzZvTqlUrxo0bR/369QFLS/utt97iv//+Y9GiRc6K061Ynw4mLW4hhBAOVurEXadOHf744w8GDRrEo48+ikqlAiyt7UaNGhEXF0d0dLTTAnUnco1bCCGEs9g1AUuLFi3Ys2cP8fHxHDhwAEVRqFevHjExMU4Kzz15Wm8Hk65yIYQQjmX3zGkAMTExkqyv4dI1bmlxCyGEcCy7H+spru/yrnJFUVwcjRBCiJuJJG4nKJqr3KyA0SSJWwghhONI4nYCg+5Stcq0p0IIIRxJErcTGLRqLg66l+vcQgghHKpUg9N27dpV6gM2bdq0zMHcLFQqFQatmjyjmXyZhEUIIYQDlSpxx8TEoFKprjrQqmidSqXCZJIWJlgGqOUZzdLiFkII4VClStxHjhxxdhw3HcsANaNMeyqEEMKhSpW4IyMjnR3HTcd6L7cMThNCCOFAZZqABWDfvn0kJSVRUFBgU96rV69yB+UuVLu+puXhhaj25kFMX5t1Mu2pEEIIZ7A7cR8+fJj777+f3bt321z3Lpq7vDJd41adTSA8fTumk9uKJW7DxcSdW1B56kMIIYTz2X072JgxY6hVqxZnzpzBy8uLvXv38tdff9GiRQvWrl3rhBArsIAoAFQXjhZb5aEt6iqXa9xCCCEcx+4W98aNG/nzzz8JCgpCrVajVqtp164dM2fOZPTo0ezYscMZcVZISmAUcJXELV3lQgghnMDuFrfJZMLX1xeAoKAgTp48CVgGsCUmJpYpiLlz5xIVFYWHhwetWrViy5YtV9120aJFqFQqm8XDw6NM5y2vosRN2jEw27asiwanyTO5hRBCOJLdLe7GjRuzc+dOatWqRatWrXjjjTfQ6/V89NFH1K5d2+4Ali5dSmxsLPPnz6dVq1bMmTOHbt26kZiYSEhISIn7+Pn52XxJKLq+fsP51cCMGnVhHmSlgF+4ddWlFrd0lQshhHAcu1vckydPxnyxdfniiy9y5MgR7rzzTpYvX867775rdwCzZ89m6NChDB48mEaNGjF//ny8vLxYuHDhVfdRqVSEhYVZl9DQULvP6xAaHbn6IMvrC7b3untKV7kQQggnsLvF3a1bN+vr6Oho9u/fT2pqKoGBgXa3fAsKCti2bRuTJk2ylqnVajp37szGjRuvul9WVhaRkZGYzWZuu+02Xn31VW655ZYSt83Pzyc/P9/6PiMjAwCj0YjRaLQr3isZjUayDSF4F5yh8OxBlGq3W9fpNJa6yMkv/3luRkV1InVjH6m3spO6Kxupt7Kzp+7sqV+7E3d6ejomk4kqVapYy6pUqUJqaiparRY/P79SH+vcuXOYTKZiLebQ0FD2799f4j7169dn4cKFNG3alPT0dN58803atGnD3r17qVGjRrHtZ86cyYwZM4qVr1q1Ci8vr1LHejVN9cEAHNoax/4T/tbyk0lqQE3CgUMsNx4o93luVnFxca4OwS1JvZWd1F3ZSL2VXWnqLicnp9THsztxP/roo/Ts2ZMRI0bYlH/zzTf88ssvLF++3N5D2qV169a0bt3a+r5NmzY0bNiQDz/8kJdeeqnY9pMmTSI2Ntb6PiMjg4iICLp27WrXl4ySGI1Gjiz+DYC6QVpqd+9uXXfwz4OsPnmY8Bo16d69UbnOczMyGo3ExcXRpUsXdDqdq8NxG1JvZSd1VzZSb2VnT90V9QaXht2Je/PmzcyePbtY+d13380LL7xg17GCgoLQaDSkpKTYlKekpBAWFlaqY+h0Om699VYOHjxY4nqDwYDBYChxP0f8EWYbLAPo1GlJqC87npdBD0CBCfljvwZH/R4qG6m3spO6Kxupt7IrTd3ZU7d2D07Lz8+nsLCwWLnRaCQ3N9euY+n1epo3b87q1autZWazmdWrV9u0qq/FZDKxe/duwsPDr7+xE2TrL3bzXzE4TeYqF0II4Qx2J+6WLVvy0UcfFSufP38+zZs3tzuA2NhYPv74Yz777DMSEhIYPnw42dnZDB48GIABAwbYDF578cUXWbVqFYcPH2b79u088cQTHDt2jKeeesrucztCjiH44ovzkHepq6PodjC5j1sIIYQj2d1V/vLLL9O5c2d27txJp06dAFi9ejVbt25l1apVdgfQt29fzp49y9SpUzl9+jQxMTGsWLHCOmAtKSkJtfrS94sLFy4wdOhQTp8+TWBgIM2bN2fDhg00auSa68iFGk8UryBUOecsre7wZsBlLW65j1sIIYQD2Z2427Zty8aNG5k1axbffPMNnp6eNG3alAULFlC3bt0yBTFq1ChGjRpV4ror5z9/++23efvtt8t0HmdRAqMsiTv1ssStlfu4hRBCOF6ZHusZExPDl19+6ehY3FdgFJz4Fy6bs9w6c5pc4xZCCOFApUrcGRkZ1lunrjdkvby3WLkj5eJTwi4foGaQrnIhhBBOUKrEHRgYyKlTpwgJCSEgIKDEGdIURUGlUlWq53EXsT5sJPVS4vaQ53ELIYRwglIl7j///NM6U9qaNWucGpBbKkrcl7W4i65x50tXuRBCCAcqVeJu3749AIWFhaxbt44hQ4aUOL1oZWXtKk8/DoUFoNXLqHIhhBBOYdd93FqtllmzZpU4AUul5hMKOi9QzJCeDFz+WE9pcQshhHAcuydg6dixI+vWrXNGLO5LpSrWXV6UuAvNCoUmaXULIYRwDLtvB7v33nuZOHEiu3fvpnnz5nh7e9us79Wrl8OCcyuBUXBmn3WAWlFXOUBeoRkfjd3fkYQQQohi7E7cRU8FK+lBI5V1VDkAgbUsPy/ey100OA0s3eU+hjLdMi+EEELYsDubmM3S7VuiKhcT98UWt1qtQq9VU1BoluvcQgghHEb6bx3lihY3gIdWRpYLIYRwrDIl7nXr1tGzZ0+io6OJjo6mV69e/P33346Ozb1UuSxxKwogI8uFEEI4nt2Je/HixXTu3BkvLy9Gjx7N6NGj8fT0pFOnTixZssQZMboH/whQqcGYDVlngMse7SmTsAghhHAQu69xv/LKK7zxxhuMHTvWWjZ69Ghmz57NSy+9RL9+/RwaoNvQ6sGvBqQnWW4J8w2VSViEEEI4nN0t7sOHD9OzZ89i5b169eLIkSMl7FGJVImy/Ey1vZdbusqFEEI4it2JOyIigtWrVxcr/+OPP4iIiHBIUG7rKreESYtbCCGEo9jdVT5u3DhGjx5NfHw8bdq0AWD9+vUsWrSId955x+EBuhXrALWLLW69JXFnF8gUsUIIIRzD7sQ9fPhwwsLCeOutt/jmm28AaNiwIUuXLqV3794OD9CtXPF4z8gqXgD8dzrTRQEJIYS42ZRpOq/777+f+++/39GxuL9A2xZ3s4gAvth0jPjkNNfFJIQQ4qYiE7A4UlFXefZZyM8kJiIAgD0n0zHKg0aEEEI4gN0t7sDAQFQqVbFylUqFh4cH0dHRDBo0iMGDBzskQLfi4Q+eVSA3FS4co3bILfh6aMnMKyTxdCaNq/u7OkIhhBBuzu4W99SpU1Gr1fTo0YMZM2YwY8YMevTogVqtZuTIkdSrV4/hw4fz8ccfOyPeiu+yAWpqtYpmNQIA2Hk8zWUhCSGEuHnY3eL+559/ePnllxk2bJhN+YcffsiqVav4/vvvadq0Ke+++y5Dhw51WKBuIzAKTmyzDlBrFuHPPwfPEZ+UxuOtIl0bmxBCCLdnd4t75cqVdO7cuVh5p06dWLlyJQDdu3fn8OHD5Y/OHV0xQC0mIhCQFrcQQgjHsDtxV6lShWXLlhUrX7ZsGVWqVAEgOzsbX1/f8kfnjq54vGezCMt17QNnssjMM7oqKiGEEDcJu7vKp0yZwvDhw1mzZg0tW7YEYOvWrSxfvpz58+cDEBcXR/v27R0bqbu4Yva0EF8Pqgd4ciItl90n0mlTJ8h1sQkhhHB7difuoUOH0qhRI95//31++OEHAOrXr8+6deusM6mNGzfOsVG6k6IWd3oymApBo6VZhD8n0nLZmSyJWwghRPmUaQKWtm3b0rZtW0fHcnPwCQONAUz5luRdpRYxEQEs332a+OQLro5OCCGEmyvTBCyHDh1i8uTJ9OvXjzNnLM+e/v3339m7d69Dg3NLavWlqU+LZlAruiUsOd01MQkhhLhp2J24161bR5MmTdi8eTPff/89WVlZAOzcuZNp06Y5PEC3dMUAtSY1/FGr4HRGHqfT81wYmBBCCHdnd+KeOHEiL7/8MnFxcej1emt5x44d2bRpk0ODc1tXDFDz0mupF2oZZS/zlgshhCgPuxP37t27S3zASEhICOfOnXNIUG7visd7AtxaMwCQxC2EEKJ87E7cAQEBnDp1qlj5jh07qF69ukOCcnvWx3setRZdus6ddqOjEUIIcROxO3E/+uijTJgwgdOnT6NSqTCbzaxfv57x48czYMAAZ8Tofi6fPU1RAIi52OLedTwNk1lxUWBCCCHcnd2J+9VXX6VBgwZERESQlZVFo0aNuOuuu2jTpg2TJ092RozuJzASUEFBFmRbLh/UDfHFS68hu8DEobNZro1PCCGE27I7cev1ej7++GMOHz7Mr7/+yuLFi9m/fz9ffPEFGo3GGTG6H60B/C5eNrg4QE2jVtHk4mM945PSXBOXEEIIt2d34n7xxRfJyckhIiKC7t2788gjj1C3bl1yc3N58cUXnRGjeyphgFpMRAAA8fLAESGEEGVkd+KeMWOG9d7ty+Xk5DBjxgyHBHVTCLz4CM/UEhK3tLiFEEKUkd2JW1EUVCpVsfKdO3danw4mKPZ4T4BmFxN3YkomuQUmFwQlhBDC3ZV6rvLAwEBUKhUqlYp69erZJG+TyURWVhbDhg1zSpBu6YrZ0wDC/T0I8TVwJjOfPSfTuT1KvugIIYSwT6kT95w5c1AUhSFDhjBjxgz8/f2t6/R6PVFRUbRu3dopQbqlK2ZPA1CpVDSLCCBuXwo7k9MkcQshhLBbqRP3wIEDAahVqxZt2rRBp9M5LaibQlGLO+s0FOSA3guwXOeO25fCDpmIRQghRBnY/VjP9u3bW1/n5eVRUFBgs97Pz6/8Ud0MPAPBwx/y0i2t7tBGwKUBajKDmhBCiLKwe3BaTk4Oo0aNIiQkBG9vbwIDA20WcZmi7vLUw9aiJjX8Uang+IVczmXluygwIYQQ7sruxP3cc8/x559/Mm/ePAwGA5988gkzZsygWrVqfP75586I0X2FNbb8PPqPtcjPQ0edYB9AWt1CCCHsZ3fiXrZsGR988AEPPvggWq2WO++8k8mTJ/Pqq6/y5ZdfOiNG91W/u+Xn/l+tc5bDZfdzS+IWQghhJ7sTd2pqKrVr1wYs17NTU1MBaNeuHX/99Zdjo3N3dTqCzgvSk+FUvLW4mSRuIYQQZWR34q5duzZHjljuTW7QoAHffPMNYGmJBwQEODQ4t6fzhOjOltcJv1qLb71sgJpZnhQmhBDCDnYn7sGDB7Nz504AJk6cyNy5c/Hw8GDs2LE899xzDg/Q7TXsafm5/1Lirh/mi0GrJiOvkKPns10UmBBCCHdk9+1gY8eOtb7u3Lkz+/fvZ9u2bURHR9O0aVOHBndTqNsV1Do4ux/OHYCguug0ahpX92fbsQvEJ6dR++JgNSGEEOJ67G5xXykyMpIHHnhAkvbVeAZArbssrxOWWYvlfm4hhBBlUerE/eeff9KoUSMyMjKKrUtPT+eWW27h77//dmhwN42G91l+XtZdLgPUhBBClEWpE/ecOXMYOnRoiTOj+fv788wzzzB79myHBnfTqN8DUMGJbZB+Arg0QG3fqQzyC+VJYUIIIUqn1Il7586d3HPPPVdd37VrV7Zt2+aQoG46vqEQ0cryev9vANQI9KSqtx6jSWHrkQsuDE4IIYQ7KXXiTklJueaDRbRaLWfPnnVIUDcla3e55Tq3SqXi3iZhAHy+8aiLghJCCOFuSp24q1evzp49e666fteuXYSHh5cpiLlz5xIVFYWHhwetWrViy5Ytpdrv66+/RqVS0adPnzKd94ZqcDFxH10POZZJawa2jgLgj4QUklNzXBSYEEIId1LqxN29e3emTJlCXl5esXW5ublMmzaN++67z+4Ali5dSmxsLNOmTWP79u00a9aMbt26cebMmWvud/ToUcaPH8+dd95p9zldokotCG0CigkSfwegbqgvd9YNwqzAF5uOuThAIYQQ7qDUiXvy5MmkpqZSr1493njjDX7++Wd+/vlnXn/9derXr09qaiovvPCC3QHMnj2boUOHMnjwYBo1asT8+fPx8vJi4cKFV93HZDLx+OOPM2PGDOv0q26hhNHlg9pEAfD1liRyCgpdEJQQQgh3UuoJWEJDQ9mwYQPDhw9n0qRJKBcfmqFSqejWrRtz584lNDTUrpMXFBSwbds2Jk2aZC1Tq9V07tyZjRs3XnW/F198kZCQEJ588snr3oKWn59Pfv6lx2cW3c5mNBoxGo12xXulov1LfZzoe9CtnYlycDWF2RdA70O72oHUrOJJUmou3/2bxGO3R5QrJndhd90JQOqtPKTuykbqrezsqTt76teumdMiIyNZvnw5Fy5c4ODBgyiKQt26dcv8HO5z585hMpmKJfzQ0FD2799f4j7//PMPCxYsID4+vlTnmDlzJjNmzChWvmrVKry8vOyOuSRxcXGl21BR6KQPwafgDDu+fZNTgS0BaO6nIilVwwdx+/A7sxuVyiFhuYVS152wIfVWdlJ3ZSP1VnalqbucnNKPc7J7ylOAwMBAbr/99rLsWi6ZmZn079+fjz/+mKCgoFLtM2nSJGJjY63vMzIyiIiIoGvXriXek24Po9FIXFwcXbp0ueaI+8upPbbAprm08D6FqbvlsZ935hlZOesvTueaCGzQijZ1qpYrLndQlroTUm/lIXVXNlJvZWdP3ZU0udnVlClxO0pQUBAajYaUlBSb8pSUFMLCwoptf+jQIY4ePUrPnj2tZWazGbDcjpaYmEidOnVs9jEYDBgMhmLH0ul0DvsjtOtYjXrDprmoD8ahVimg1VNFp+Oh5jX4fOMxvth8nPYNin/2m5Ujfw+VidRb2UndlY3UW9mVpu7sqdtyz1VeHnq9nubNm7N69WprmdlsZvXq1bRu3brY9g0aNGD37t3Ex8dbl169etGhQwfi4+OJiHCD68M1bgefUMjPgCOXnl8+8OIgtdX7U0g6L7eGCSGEKJlLEzdAbGwsH3/8MZ999hkJCQkMHz6c7OxsBg8eDMCAAQOsg9c8PDxo3LixzRIQEICvry+NGzdGr9e78qOUjloNDXpYXu+/9NCROsE+tK8XjKLIhCxCCCGuzuWJu2/fvrz55ptMnTqVmJgY4uPjWbFihXXAWlJSEqdOnXJxlA5WNBnL/t/AfGme8kFtowBY+m8y2flya5gQQojiXHqNu8ioUaMYNWpUievWrl17zX0XLVrk+ICcLepO8PCH7LOQvAUiLZcF2tcNplaQN0fOZfPDjhP0vyPSxYEKIYSoaFze4q6UtHqod/GBLZdNxqJWqxjY2pKsF60/Yr1XXgghhCgiidtVirrLE36ByxL0g81r4GPQcuhsNv8cPOei4IQQQlRUkrhdJboTaD0gLQmOrbcW+3pYbg0DWLT+qIuCE0IIUVFJ4nYVvTc0e8zyeuULcPF+dLh0a9ifiWc4ei7bBcEJIYSoqCRxu1KHF0DvC6fiYedX1uJaQd50qF90a5g8NUwIIcQlkrhdyScY2j9neb16BuRnWVcNalsLgG/+TeZMRvFHqQohhKicJHG7WqthEFgLslLgn7etxXdGB9Gkuj9Z+YVM+H6XjDAXQggBSOJ2Pa0Bur5seb3hPbhg6RpXq1W89Ugz9Fo1axLPsnRrsguDFEIIUVFI4q4IGvSAWneBKR/+mGYtrhfqy/iu9QB46dd9JKfKHOZCCFHZSeKuCFQq6DYTVGrY+yMc22Bd9WS72rSMqkJ2gYnx3+7EbJYucyGEqMwkcVcUYY3htoGW1ysmWm8P06hVvPlwM7z0GjYfSWXh+iMuDFIIIYSrSeKuSDq8AAY/OLUTdi6xFtes6sULPRoC8MbKRA6eyXRVhEIIIVxMEndF4hMM7Z+3vF79IuRfStD9Wtakfb1gCgrNjPtmJ4Um81UOIoQQ4mYmibuiafkMVKld7PYwlUrF6w82xc9Dy87j6Xyw9pALgxRCCOEqkrgrGq3+stvD3ocLR62rwvw9eLF3YwDeXX2APSfSXRCgEEIIV5LEXRHV7w612ltuD4ubarOqd0w17m0cRqFZIfabePKMJhcFKYQQwhUkcVdEKhXcc/H2sH0/w/bPL1ul4uU+jQny0fNfShZvrkx0YaBCCCFuNEncFVXoLXD3JMvrX2MhabN1VVUfAzMfaArAJ/8cYcE/couYEEJUFpK4K7I7x0PDXmA2wtInIP2EdVWXRqHEdrk0q9pXW5JcFaUQQogbSBJ3RaZWQ595EHILZJ+xJG/jpSeF/a9jNM+0rw3A//24m5/jT1ztSEIIIW4SkrgrOoMPPPoleAbCye2wbAxcfFKYSqVi4j0N6H9HJIoCsd/sZNXe0y4OWAghhDNJ4nYHVWrBw4tApYFdX8OmD6yrVCoVM3rdwgO3VcdkVhi1ZAd//XfWdbEKIYRwKknc7qL23dDtFcvrVZPh0J/WVWq1ijcebEr3JmEUmMw8/cW/bDmS6po4hRBCOJUkbnfSahjEPA6KGb4dDKmHrau0GjVz+t5Kh/rB5BnNDFm0lV3H01wXqxBCCKeQxO1OVCroMRuqN4e8NPiqn8185nqtmnlPNOeO2lXIyi9kwMItJJzKcF28QgghHE4St7vReUDfL8EnDM4mwDcDIe9ScvbQafhk4O3ERASQlmPk4fkbWbFHBqwJIcTNQhK3O/ILh76LQWOAQ6vhk05w9j/rah+Dls8Gt6RVLUvLe9jibcxauR+TWXFh0EIIIRxBEre7irgdBv8OvtXg3H/wcUfY/5t1tb+XjsVPteLJdrUAmLvmEIMXbSUtp8BVEQshhHAASdzurEZzeGYd1GwDBZnwdT/48xUwW57VrdOomXJfI955NAYPnZq//jtLz/f/Yd9Jue4thBDuShK3u/MJgYG/WEacA/z1BnzVF3LTrJv0jqnOjyPaUrOKF8mpuTwwbz0/7ZBZ1oQQwh1J4r4ZaHRw7+tw/4eg9YADq+DjDpCyz7pJw3A/fhnVlvb1LLeLPbs0nhnL9mI0mV0YuBBCCHtJ4r6ZNHsUhqwE/wjLPd6fdIbd31lXB3jpWTjodv7XMRqAT9cfpdf769mZnOaigIUQQthLEvfNploMPL0OarUHYzZ8/yT8ONx6v7dGrWJc1/p81L85AV46Ek5l0OeD9Uz/ZS9Z+YWujV0IIcR1SeK+GXlXhSd+gLueA5Uadi6B+XfC8W3WTbreEsbq2Pbcf2t1FAUWbThKl9nr+GNfigsDF0IIcT2SuG9WGi10nAyDfrN0nV84Agu6wF+zwGwCoKqPgbf7xvDFky2pWcWLU+l5PPX5v4z4chtnMvKucwIhhBCuIIn7ZhfZBob9A7c8AIoJ/nwZPusJ6cetm9xZN5iVz97FsPZ10KhVLN99mk5vreOLTcdk0hYhhKhgJHFXBp4B8NBC6DMf9D5wbD3MawN7f7y0iV7DxHsbsGxUO5rV8Cczv5ApP+2h69vr+GXnScySwIUQokKQxF1ZqFQQ8xgM+xuqt4C8dPh2ECx5FFL2WjdrVM2PH0a0ZVrPRvh76jh0NpvRX+3gnnf+4rddpySBCyGEi0nirmyq1IYhK+DO8ZaBa//9DvPawvdDIfUIYBl5PrhtLf6Z0IHYLvXw89DyX0oWI5dsp/u7f7Niz2kURRK4EEK4giTuykijg05TYOQWaNQHUGD3N/B+C/g1FjItTxPz9dAxulNd/p7QkTGd6uJr0LL/dCbDFm+jx7v/sHLvaWmBCyHEDSaJuzILqguPfAZPr4U6ncBcCP8ugHdiIG4a5F4AwN9Tx9gu9fh7Qgf+1zEab72GfacyeOaLbXR8ay0L/jlCRp7RpR9FCCEqC0ncAqrdCv1/sNw6VqMlFObC+jkwpxmsmgJpSYBl5rVxXevz94SODL+7Dr4eWo6ez+GlX/dxx6urmfrzHg6eyXLtZxFCiJucJG5xSVQ7eHIVPPY1hNwC+emw4V14pxksfQKOrgdFoYq3ngn3NGDTpE683Kcx0SE+5BSY+HzjMTrPXkf/BZv5c3+KdKMLIYQTaF0dgKhgVCqofy/U7QYHVsLm+XB4LSQssyxhTSxPImv8EN4GD564I5LHW9Vkw6HzfLr+KKv3p/D3gXP8feAcEVU8efC2Gjx4Ww0iqni5+pMJIcRNQRK3KJlabUng9e+FMwmWBL5zKZzeDT+PhLip0HwQxDyOqmod2kYH0TY6iKTzOXyx6Shfb00mOTWXOX8cYM4fB2hZqwoP3VaD7k3D8THIn50QQpSV/A8qri+kIfR8BzpNg+2fw9ZPID0Z/n7LskS0gmaPwS33U7NqAC/0aMTYLvVYufc03287wfpD59hyJJUtR1KZ9ste7mkcRu9mYUhPuhBC2E8Styg9ryrQ7lloPQoSf7Mk8UN/QvJmy/L7BGjQHZr1w6tOR+6/tQb331qDk2m5/LjjBN9vO87hc9n8uOMEP+44gZ9Ow7/mBLo3rUarWlXQamTIhRBCXI8kbmE/jRYa9bYsGadg97ew8ys4s88yjereH8E7BJo8BI36UK3G7YzsEM2Iu+uwIzmN77cdZ9nOk2TkFfLllmS+3JJMoJeOLo1CuadxGG2jgzBoNa7+lEIIUSFJ4hbl4xcObUdDm//BqZ2WBL77W8g+A5s+sCy+4dDgPlSNenFbzTbcVrMJk+6px3tLV5LqXZM/Es5wIcfIN/8e55t/j+Nj0NKxQQhdGoVyZ90gArz0rv6UQghRYUjiFo6hUkG1GMvS9WU4EGdpef+3AjJPwdaPLYtXEDTogUe9HtwSYOTeHrcw84GmbDmayoo9p1mx5zRnMvP5ZedJftl5ErUKYiICuLt+CHfXD6ZxNX/UapWrP60QQriMJG7heBqd5Vp3g+5QmA+H18G+ny3XxXPOwfbP0G7/jG4aH9Tqv9A060ubWnfQpk4Q03vewo7kNFbuPc3axDP8l5LF9qQ0tielMTvuP6p667mrXjB31w+mTZ0ggn0Nrv60QghxQ0niFs6lNUC9rpbFNAeO/gMJv6AkLMOQfRa2L7IsfjWgyYOomzxM85qNaR4ZyP91b8iJtFzWJZ5l3X9nWH/wPOezC6yD2wCiQ3xoXbsqd9Suyh21q1DVRxK5EOLmJolb3DgaHdTpAHU6UNjlVbZ+M5s7vI+jTvwVMo7D+ncsS3ADy8C2iFZU961Gv1vD6deqJgWFZrYdu8C6/87y139nSTidwcEzWRw8k8UXm44BUD/UlztqV6F1narcFhlIiK+Hiz+0EEI4liRu4RpqLWf9GmPq/jzqnm/DgVWWQW3/rYSz++HPl223N/ih9w2ntV84rX2rMbFJdbI6t2CDqREbjmay6fB59p/OJDHFsny20ZLII6p40rxmILdFBnJbzUAahPnKbWdCCLcmiVu4ns4DGvWyLHnpkPCr5Zp46mHLwLaCLMjPsCznEq27+QBd9T50je4EHbpzofrdbDqlsOnweTYfSSUxJZPk1FySU3P5Kf4kAF56Dc1qBHBbZAAxEYE0i/CXVrkQwq1I4hYVi4c/3Pq4ZSmSl2FJ4BknL/1MPQIH4yArxZLk9/1MoErNvTVbc2+9e6DtvWR438HO4+lsO3aB7Ulp7Dh2gcz8QjYePs/Gw+eth68e4EmzCH9iIgJoViOAJjX88dLLPw0hRMVUIf53mjt3LrNmzeL06dM0a9aM9957j5YtW5a47Q8//MCrr77KwYMHMRqN1K1bl3HjxtG/f/8bHLW4YTz8LEtwfdtysxlO7YDE3y1Lyh44tt6yxE3Bz6sqd1Zvzp3Vm8OdzTE/0pyD2QZLIj92gZ3H0zhwJosTabmcSMtl+e7TAKhVUDfEl4bhvjQM96NBuB8Nw30J9jGgUsmtaEII13J54l66dCmxsbHMnz+fVq1aMWfOHLp160ZiYiIhISHFtq9SpQovvPACDRo0QK/X8+uvvzJ48GBCQkLo1q2bCz6BcBm1Gqo3tywdJ8OFY5b7xhOXWx5BmnPecu38wCrL5kC9wCjqVW/OY9VvgxZNyQpsya7zKuKT09iZnEZ8chopGfnWa+VFXewAVb31lkQe5kv9MF/qhfpSN9RHWudCiBvK5f/jzJ49m6FDhzJ48GAA5s+fz2+//cbChQuZOHFise3vvvtum/djxozhs88+459//pHEXdkFRkKrZyyLMc/SAj+x7dJy/iBcOGpZ9nwPWK6Tt/GPoE1YE6jRFFo04Yx3XXZl+rM/JZOEU5kknM7g6LlszmcX8M/Bc/xz8JzNaSOqeFIvxJe6ob7UD/Ohbogv0SE+eOhk2lYhhOO5NHEXFBSwbds2Jk2aZC1Tq9V07tyZjRs3Xnd/RVH4888/SUxM5PXXXy9xm/z8fPLz863vMzIyADAajRiNxnLFX7R/eY9TGTm/7jQQ2syy3DbEUpSXjupUPKqT2y0/U/agSjtmedJZerKlpQ6EAJ20nnTyCUXxCYFqIRRGh3AOf5ILfPkvx4fdWb78fd6fUzlYB8Ct3n/GenaVynLtvE6wN9HB3tQO8qZOsDd1gn0I8NKV+VPJ31zZSd2VjdRb2dlTd/bUr0pRFJc9XPHkyZNUr16dDRs20Lp1a2v5888/z7p169i8eXOJ+6Wnp1O9enXy8/PRaDR88MEHDBkypMRtp0+fzowZM4qVL1myBC8vL8d8EOG2tIXZ+Ocl45+ThF/uMfxzk/DLO45aMV13XwUVWfpgzmirkawK54C5GnsKqrMlvxqnCv2uup+PTiHEA4I9FII8FII9i16DhzTShaiUcnJy6NevH+np6fj5Xf3/D6gAXeVl4evrS3x8PFlZWaxevZrY2Fhq165drBsdYNKkScTGxlrfZ2RkEBERQdeuXa9bOddjNBqJi4ujS5cu6HRlb0VVRhW57kymAkzpx1Fln4WsFFRZZyD7DKqslIvvUyDtGKr8DHwLzuBbcIY6xHN30QG0oHh4kG+oSpbGn1T8OV3oQ1K+N0l5npw3+XM+25cLWb7swpcLii9ZeAIqgnz0RFX1IrKqF1FVvIgK8ra8r+KFp15ToeutopO6Kxupt7Kzp+6KeoNLw6WJOygoCI1GQ0pKik15SkoKYWFhV91PrVYTHR0NQExMDAkJCcycObPExG0wGDAYik+DqdPpHPZH6MhjVTYVsu50OvCoD9S/+jaKAlln4Nx/F5cDl36mJ6EqzMOj8AQenCAIqGc9dsmHM6IlVfEhtcCX1JN+nD/px1klgH2KP+vw55zij+IdgldgGJm5CkneydQM8qF6gCfVAz0J8fVAIw9fKZUK+TfnBqTeyq40dWdP3bo0cev1epo3b87q1avp06cPAGazmdWrVzNq1KhSH8dsNttcxxbC6VQq8A21LLXutF1XkGN5rGn2uYvLWcvDVWzen4ecVMtPYzY6CglVpRGqSrv6OY3AGTAqGg78VYM95ih+UaLYY67FQXUk/v4B1AjwonqgpzWhVw+wLOEBHvKMcyFuEi7vKo+NjWXgwIG0aNGCli1bMmfOHLKzs62jzAcMGED16tWZOXMmADNnzqRFixbUqVOH/Px8li9fzhdffMG8efNc+TGEuETvBfooCIwq3fYFOZB7MYnnnIfs85bEn5UCWZbu+sLMFJTMFDS559GpTDRSHaOR+hiPsA4As6LicFY4ezKjOJoUhgpIwcxZzOxGQY0ZH70KX4MGtWcAOYENMIfcgndYHcL8vQjz9yDE1wO9VqaDFaKic3ni7tu3L2fPnmXq1KmcPn2amJgYVqxYQWhoKABJSUmo1Zf+M8nOzmbEiBEcP34cT09PGjRowOLFi+nbt6+rPoIQ5aP3siz+Na66SdE/VGN+Hn/88iUdGwahPbsXTu1EObUTdeYpolUniebkVY+BGci9uKQChyBT8WS/EsGf5kgSlJqc9IhG8auGn48/gQH+BPn7EuZvIMTPg7CLS4CXTiaiEcKFXJ64AUaNGnXVrvG1a9favH/55Zd5+eWXS9xWiJueWkOuPgilfndo3BsAFUBmCpzeBSfjIeMEqDWgUoNKg6JSkVcImQVmMvPNmDJO45e+n6q5R/All9tV/3G7+j/L8U3AhYtLsqVbPhc9uRjIVQycxsAxlR6zxhN0Hqj1nmgM3ugNXhg8vfHw8sWjanW8g6PQValp+TLiEWC5tCCEcIgKkbiFEOXkGwq+XaBul2KrVIDnxcVmLkKT0TKYLmUPyqndGE/tQpWyF01eqvV2OJ3KhI5c/Mi9+A3hIjOQf3HJvHZoOSov0nQhZHuEU+AVisbTH52nLx7e/nj6+OHjF4je0xf03mDwAZ235bXeG/Q+oNWXo2KEuPlI4haistLoILQRhDZC1fQRrOlRUSxJ3ZgNxlzLUmB5XZCXSXpGJhkZGWRkZZKdlUFudjZ5udkU5GVhzsvCv/AcYZyjmuo8QaoMvJQcvAqOQsFRKP0dL1ZmlRazzgv03qgMPqg9/FF5+IHh4hz2hste67xAo7cke40eNAbL59QaUClqfPJOWgYH+gZbyoVwQ5K4hRC2VCpL4tPqwTPQZpUeCL64XI2iKKTnGjmXlc+hC+lknT2G8fwxlPTjqDNPYc7PgoIsVAXZaAuz8VBy8VHl4UUe3qo8vMjHizwMqkIA1Eoh6oIMKMiArLJ/LC3QCSDh4lTKeh/L5/MMuPgzEAy+oPe1tPz1Phd/+lrKDb7gVQW8gsCrKmjkv0/hGvKXJ4RwKJVKRYCXngAvPdEhvlC/BtC2xG0VRSG7wMS5zHzOZ+dzOLOAc1n5nMvK53xGNpkZ6WRnpZOblUFeTia6wix8yMWXHHxVuZbXqhx8L/70pAAdhegxolcVWl8bVIV4qArxJgdfclCjWJ7zXpBlme62LDwCwDvoUiL3DLh4LV9VVBFFNXLptWK29GgoCqBc9t5sWbjs9ZXrPAMhoKZl8Y+w/PSrLpcSKiFJ3EIIl1GpVPgYtPgYtEQFeV93+9wCExdyCriQU0BajvHiayOp2QUcyjGSllNAak4BF7ILOJ9t+ZldYDt9rRozvuQQoMoigCwCVNn4k0WgKgtvLK3/op+Bmnz8Nfn4qvMsXw7M6XibMlChQF6aZTl/0DmVUyoq8KtmSeQ6D8uARFQXByaqbF+r1JZBi2otqDQXBzBqLE/Zs5ZpL21z8adaURGdcgTVjvPgU/VS70TRovOSwYc3mCRuIYTb8NRr8NR7Ui3As9T75BlNpOUYOZOew8q1/1C/ya1k5JtJu5j0i74EJGUXWBJ/dgEZeZZuekp47oMaMwFkUUWVQRUyqaLKpKoqAz9yLAkd0GlUeGhV6LVqPLRqDFo1Bp0avVaLQadFr9Vg0GsxaDUYdFrLa93FdRd/aqx3Bly8HTbnHKQlQ1qSZUlPhsI8y10EGSfKW7VXpQFuATi5tOQN1DpLb4PBt/i4A4Ov5b1ah6U34YqehqIyrQF0npYvATqvy157WhaV5uKXj6IvIyrbLylaw8WxDZf/NFi+lACYzVB4cbyGMcf2p0p98UtIFctPN7gEUvEjFEKIcvDQaQjz11DVS8MRf4V7G4ddd3pJo8lsac1nW1rzqdmWlnxGrqVVn55rJC3HSFqukaO5RuJzjKTnGsk1Xmzdm4CC8satxsegw9fD0iPh79mAAC8dgb56AkN1BHjqCNNmEGo+QxXTWbzVJgw6NR5a0KtVli8RlydKs+nST3MhKKaLZRd/XlluLgSzCVNhASeOHaRGVR/UeemQe+HSYjZaluyzlqWiUessidlkx8yaBn/wupjIvapYvjhcrRejqMejS/EHWTmTJG4hhLiCTqMmxNcym5w9jCYzWXmFZOYVkpFnJDOvkMyLPy9/n5FbSGb+xZ95lqSflW8iK99IntEMQJ7RTJ7Rcr3/+gJs3qlV4GPQ4uuhw8egxdugwdugxVuvxcugsf2p1+DtpcXboMXXYPlp2dfy2qBW2LFqBeHdu6O+/AuPolharTmpkJcO+ZmQnwF5GZafl782F1Ks257LWtCm/Eut4ILLW8QXF5txAcpl4wEuvjYVQGF+8QRtLqHLROth26I3mywzF+alW9bnp1uWC0dL8yuH4AaSuIUQwl3pNGoCvfUEepd9wJjRZCY735L8s/ItS1Fyv5BttOniL+oVSMspIPPitooCZgUy8govdfmXk0alYVr8GkvyN2jw0l/2U6/By6DF1xCAtyHo0hcAPy3ewZqLXxwufWnwMWgxaNXOmX1PUS5L4hd/KqZLSVrrYbl2XxJToWXMQk7qxR6FVMvrwtyLXxq4oov/4usr7ry4ESRxCyFEBaLTqK2j8u2lKAo5BSZrws/KK0r8heQUFJJdYCIn/4qfBYVk51/6kpCdb7r4peFS69+kqEjLtVwacAS1imKt/8u/BHjpLD0EXnrLT0+dBi+9Bk+9ZbtLry37F7321GlQaQ2Wa9z20mgtdwl4BznkMzqTJG4hhLhJqFSqi61iLaEOOF6hyUxadh7LVsTRqu1dFJhVVyR8kzXpZ+cXkl1QaOnyzzOSnX/pC0TRtkVjAMwKZOYXkplfiGX6PcdQqbAm+SsTvKdOe7H8UpmX3vKlwEOnwVOvxkOrwUOvwUNr2cZTd3Ep2kenQV0BHp8riVsIIUSJtBo1/p46qhigbohPuZ/HbTIr5BovtfazLyb8HKOJnHwT2QWFNl8Mci5uk1NgIrfARE6BiRyjidyCS2XZBYXWngFFwbJNgQNGB16FQau+lPT1GmoHefPRgBZOOdfVSOIWQghxQ2jUl+7bdyRz0ReCyxL+5a+Lkn7uZUnfWm40kXfZkms0kWc0k1tw6X3OZXMB5BeayS80cyHHctlA64IWuCRuIYQQbk2tvnSJAMpwffs6FEUhz2i+9EXgsi8Jes2Nf4a9JG4hhBDiGlQqlfU6d1VXBwPc+K8KQgghhCgzSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG5HELYQQQrgRSdxCCCGEG6l0j/VUFAWAjIyMch/LaDSSk5NDRkYGOp2u3MerTKTuykbqreyk7spG6q3s7Km7opxUlKOupdIl7szMTAAiIiJcHIkQQghhKzMzE39//2tuo1JKk95vImazmZMnT+Lr64tKpSrXsTIyMoiIiCA5ORk/Pz8HRVg5SN2VjdRb2UndlY3UW9nZU3eKopCZmUm1atVQq699FbvStbjVajU1atRw6DH9/PzkD7qMpO7KRuqt7KTuykbqrexKW3fXa2kXkcFpQgghhBuRxC2EEEK4EUnc5WAwGJg2bRoGg8HVobgdqbuykXorO6m7spF6Kztn1V2lG5wmhBBCuDNpcQshhBBuRBK3EEII4UYkcQshhBBuRBK3EEII4UYkcZfD3LlziYqKwsPDg1atWrFlyxZXh1Th/PXXX/Ts2ZNq1aqhUqn46aefbNYrisLUqVMJDw/H09OTzp07c+DAAdcEW4HMnDmT22+/HV9fX0JCQujTpw+JiYk22+Tl5TFy5EiqVq2Kj48PDz74ICkpKS6KuGKYN28eTZs2tU540bp1a37//Xfreqmz0nnttddQqVQ8++yz1jKpu5JNnz4dlUplszRo0MC63hn1Jom7jJYuXUpsbCzTpk1j+/btNGvWjG7dunHmzBlXh1ahZGdn06xZM+bOnVvi+jfeeIN3332X+fPns3nzZry9venWrRt5eXk3ONKKZd26dYwcOZJNmzYRFxeH0Wika9euZGdnW7cZO3Ysy5Yt49tvv2XdunWcPHmSBx54wIVRu16NGjV47bXX2LZtG//++y8dO3akd+/e7N27F5A6K42tW7fy4Ycf0rRpU5tyqburu+WWWzh16pR1+eeff6zrnFJviiiTli1bKiNHjrS+N5lMSrVq1ZSZM2e6MKqKDVB+/PFH63uz2ayEhYUps2bNspalpaUpBoNB+eqrr1wQYcV15swZBVDWrVunKIqlnnQ6nfLtt99at0lISFAAZePGja4Ks0IKDAxUPvnkE6mzUsjMzFTq1q2rxMXFKe3bt1fGjBmjKIr8vV3LtGnTlGbNmpW4zln1Ji3uMigoKGDbtm107tzZWqZWq+ncuTMbN250YWTu5ciRI5w+fdqmHv39/WnVqpXU4xXS09MBqFKlCgDbtm3DaDTa1F2DBg2oWbOm1N1FJpOJr7/+muzsbFq3bi11VgojR46kR48eNnUE8vd2PQcOHKBatWrUrl2bxx9/nKSkJMB59VbpHjLiCOfOncNkMhEaGmpTHhoayv79+10Ulfs5ffo0QIn1WLROWJ5o9+yzz9K2bVsaN24MWOpOr9cTEBBgs63UHezevZvWrVuTl5eHj48PP/74I40aNSI+Pl7q7Bq+/vprtm/fztatW4utk7+3q2vVqhWLFi2ifv36nDp1ihkzZnDnnXeyZ88ep9WbJG4hKriRI0eyZ88em+tm4urq169PfHw86enpfPfddwwcOJB169a5OqwKLTk5mTFjxhAXF4eHh4erw3Er9957r/V106ZNadWqFZGRkXzzzTd4eno65ZzSVV4GQUFBaDSaYiMDU1JSCAsLc1FU7qeorqQer27UqFH8+uuvrFmzxuZxtGFhYRQUFJCWlmazvdQd6PV6oqOjad68OTNnzqRZs2a88847UmfXsG3bNs6cOcNtt92GVqtFq9Wybt063n33XbRaLaGhoVJ3pRQQEEC9evU4ePCg0/7mJHGXgV6vp3nz5qxevdpaZjabWb16Na1bt3ZhZO6lVq1ahIWF2dRjRkYGmzdvrvT1qCgKo0aN4scff+TPP/+kVq1aNuubN2+OTqezqbvExESSkpIqfd1dyWw2k5+fL3V2DZ06dWL37t3Ex8dblxYtWvD4449bX0vdlU5WVhaHDh0iPDzceX9zZR7WVsl9/fXXisFgUBYtWqTs27dPefrpp5WAgADl9OnTrg6tQsnMzFR27Nih7NixQwGU2bNnKzt27FCOHTumKIqivPbaa0pAQIDy888/K7t27VJ69+6t1KpVS8nNzXVx5K41fPhwxd/fX1m7dq1y6tQp65KTk2PdZtiwYUrNmjWVP//8U/n333+V1q1bK61bt3Zh1K43ceJEZd26dcqRI0eUXbt2KRMnTlRUKpWyatUqRVGkzuxx+ahyRZG6u5px48Ypa9euVY4cOaKsX79e6dy5sxIUFKScOXNGURTn1Jsk7nJ47733lJo1ayp6vV5p2bKlsmnTJleHVOGsWbNGAYotAwcOVBTFckvYlClTlNDQUMVgMCidOnVSEhMTXRt0BVBSnQHKp59+at0mNzdXGTFihBIYGKh4eXkp999/v3Lq1CnXBV0BDBkyRImMjFT0er0SHBysdOrUyZq0FUXqzB5XJm6pu5L17dtXCQ8PV/R6vVK9enWlb9++ysGDB63rnVFv8lhPIYQQwo3INW4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFkIIIdyIJG4hhBDCjUjiFqKSMBqNLFq0iHbt2hEcHIynpydNmzbl9ddfp6CgwNXhCSFKSaY8FaKSiI+PZ9y4cYwYMYJbb72VvLw8du/ezfTp0wkPD2flypXodDpXhymEuA5pcQtRSTRu3JjVq1fz4IMPUrt2bRo1akTfvn3566+/2LNnD3PmzAFApVKVuDz77LPWY124cIEBAwYQGBiIl5cX9957LwcOHLCuHzJkCE2bNiU/Px+AgoICbr31VgYMGADA0aNHUalUxMfHW/eZMmUKKpXKGocQomSSuIWoJLRabYnlwcHBPPDAA3z55ZfWsk8//ZRTp05ZlyufHTxo0CD+/fdffvnlFzZu3IiiKHTv3h2j0QjAu+++S3Z2NhMnTgTghRdeIC0tjffff7/EGI4fP86cOXPw9PR0xEcV4qZW8r9kIcRN65ZbbuHYsWM2ZUajEY1GY30fEBBAWFiY9b1er7e+PnDgAL/88gvr16+nTZs2AHz55ZdERETw008/8fDDD+Pj48PixYtp3749vr6+zJkzhzVr1uDn51diTC+88AJ9+/bljz/+cORHFeKmJIlbiEpm+fLl1pZxkTfeeIPFixeXav+EhAS0Wi2tWrWyllWtWpX69euTkJBgLWvdujXjx4/npZdeYsKECbRr167E423fvp0ff/yRxMRESdxClIIkbiEqmcjIyGJlhw4dol69eg49j9lsZv369Wg0Gg4ePHjV7caNG8f48eMJDw936PmFuFnJNW4hKonU1FQyMzOLlf/777+sWbOGfv36leo4DRs2pLCwkM2bN1vLzp8/T2JiIo0aNbKWzZo1i/3797Nu3TpWrFjBp59+WuxYv/zyC//99x/jx48vwycSonKSxC1EJZGUlERMTAwLFizg4MGDHD58mC+++ILevXtz55132owav5a6devSu3dvhg4dyj///MPOnTt54oknqF69Or179wZgx44dTJ06lU8++YS2bdsye/ZsxowZw+HDh22O9cYbb/Dyyy/j5eXl6I8rxE1LErcQlUTjxo2ZNm0aixYt4o477uCWW27hjTfeYNSoUaxatcpmANr1fPrppzRv3pz77ruP1q1boygKy5cvR6fTkZeXxxNPPMGgQYPo2bMnAE8//TQdOnSgf//+mEwm63Gio6MZOHCgwz+rEDczmYBFCCGEcCPS4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHciCRuIYQQwo1I4hZCCCHcyP8DtRbt5d9QrrAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RSH6UjI3aLvH", + "outputId": "176cf10e-718a-4416-98f5-6e7fa32c6aee" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9206 - loss: 0.2956\n", + "Lossontestdata: 0.2900226414203644\n", + "Accuracyontestdata: 0.9222000241279602\n" + ] + } + ], + "source": [ + "scores=model_1.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores[0])\n", + "print('Accuracyontestdata:',scores[1])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oHKekiY0aYy2" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_100 = Sequential()\n", + "model_2l_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_100.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "jOQ74vuTab8l", + "outputId": "3ebe13db-8d47-4256-a8fd-49ee40801aab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_1\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_1 (Dense)                 │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_2 (Dense)                 │ (None, 10)             │         1,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
     Total params: 79,510 (310.59 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" + ], + "text/html": [ + "
     Trainable params: 79,510 (310.59 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_100.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rblSqgG8aoSl", + "outputId": "0eb3fa3d-50a7-4b77-fdf6-7b834228ce17" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.5185 - loss: 1.9076 - val_accuracy: 0.8188 - val_loss: 0.9700\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8349 - loss: 0.8532 - val_accuracy: 0.8565 - val_loss: 0.6222\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8649 - loss: 0.5911 - val_accuracy: 0.8718 - val_loss: 0.4999\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8795 - loss: 0.4889 - val_accuracy: 0.8837 - val_loss: 0.4374\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8879 - loss: 0.4305 - val_accuracy: 0.8913 - val_loss: 0.4000\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8955 - loss: 0.3942 - val_accuracy: 0.8972 - val_loss: 0.3744\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8999 - loss: 0.3707 - val_accuracy: 0.9007 - val_loss: 0.3557\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9011 - loss: 0.3581 - val_accuracy: 0.9047 - val_loss: 0.3405\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9034 - loss: 0.3444 - val_accuracy: 0.9067 - val_loss: 0.3298\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9057 - loss: 0.3285 - val_accuracy: 0.9110 - val_loss: 0.3196\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9096 - loss: 0.3217 - val_accuracy: 0.9142 - val_loss: 0.3112\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9111 - loss: 0.3150 - val_accuracy: 0.9152 - val_loss: 0.3043\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9138 - loss: 0.3049 - val_accuracy: 0.9148 - val_loss: 0.2976\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2993 - val_accuracy: 0.9172 - val_loss: 0.2920\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9176 - loss: 0.2897 - val_accuracy: 0.9162 - val_loss: 0.2876\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9175 - loss: 0.2886 - val_accuracy: 0.9197 - val_loss: 0.2811\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9203 - loss: 0.2774 - val_accuracy: 0.9208 - val_loss: 0.2774\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9189 - loss: 0.2852 - val_accuracy: 0.9228 - val_loss: 0.2725\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9194 - loss: 0.2757 - val_accuracy: 0.9225 - val_loss: 0.2685\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2701 - val_accuracy: 0.9242 - val_loss: 0.2651\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9230 - loss: 0.2631 - val_accuracy: 0.9257 - val_loss: 0.2615\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9260 - loss: 0.2609 - val_accuracy: 0.9270 - val_loss: 0.2578\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9261 - loss: 0.2607 - val_accuracy: 0.9275 - val_loss: 0.2545\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9262 - loss: 0.2595 - val_accuracy: 0.9288 - val_loss: 0.2509\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9269 - loss: 0.2580 - val_accuracy: 0.9292 - val_loss: 0.2482\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9303 - loss: 0.2420 - val_accuracy: 0.9298 - val_loss: 0.2447\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9322 - loss: 0.2410 - val_accuracy: 0.9303 - val_loss: 0.2412\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9324 - loss: 0.2404 - val_accuracy: 0.9313 - val_loss: 0.2386\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9341 - loss: 0.2307 - val_accuracy: 0.9308 - val_loss: 0.2359\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9303 - loss: 0.2417 - val_accuracy: 0.9323 - val_loss: 0.2333\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9342 - loss: 0.2315 - val_accuracy: 0.9330 - val_loss: 0.2305\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9342 - loss: 0.2296 - val_accuracy: 0.9333 - val_loss: 0.2279\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9357 - loss: 0.2289 - val_accuracy: 0.9340 - val_loss: 0.2257\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9378 - loss: 0.2179 - val_accuracy: 0.9347 - val_loss: 0.2230\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9379 - loss: 0.2208 - val_accuracy: 0.9358 - val_loss: 0.2216\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9375 - loss: 0.2193 - val_accuracy: 0.9365 - val_loss: 0.2182\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9362 - loss: 0.2210 - val_accuracy: 0.9373 - val_loss: 0.2165\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9401 - loss: 0.2116 - val_accuracy: 0.9375 - val_loss: 0.2143\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9411 - loss: 0.2100 - val_accuracy: 0.9385 - val_loss: 0.2121\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9402 - loss: 0.2093 - val_accuracy: 0.9385 - val_loss: 0.2098\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9417 - loss: 0.2065 - val_accuracy: 0.9405 - val_loss: 0.2083\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2075 - val_accuracy: 0.9398 - val_loss: 0.2063\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9426 - loss: 0.2033 - val_accuracy: 0.9407 - val_loss: 0.2047\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9448 - loss: 0.2010 - val_accuracy: 0.9418 - val_loss: 0.2028\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9448 - loss: 0.1964 - val_accuracy: 0.9412 - val_loss: 0.2012\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9443 - loss: 0.1986 - val_accuracy: 0.9417 - val_loss: 0.1992\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9445 - loss: 0.1920 - val_accuracy: 0.9418 - val_loss: 0.1972\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9451 - loss: 0.1891 - val_accuracy: 0.9428 - val_loss: 0.1954\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9463 - loss: 0.1912 - val_accuracy: 0.9433 - val_loss: 0.1941\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9456 - loss: 0.1900 - val_accuracy: 0.9433 - val_loss: 0.1923\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_100 = model_2l_100.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "3xxN78gZbbQG", + "outputId": "987b070c-a1e5-402d-bf9b-65a81c742bd7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgUVJREFUeJzt3Xd8U9X7wPHPbZqke28oLVA2MkRFhl9ACggK4kRRpuAXga/IUOAn04WKIA4UB0MFxI2iiBRkKLKlDBmyZ1taSvdKk/v7I20gtECTpqSlz/v1yqvJuTf3PjktPDnnnnuOoqqqihBCCCGqBBdnByCEEEKIspPELYQQQlQhkriFEEKIKkQStxBCCFGFSOIWQgghqhBJ3EIIIUQVIolbCCGEqEIkcQshhBBViCRuIYRDmEwmUlJSOHbsmLNDEeKmJolbCGG3xMREnnvuOaKiotDpdAQHB9O4cWMyMjKcHZoQNy1XZwcgqp+BAwfy7bffkpWV5exQRDkcOXKETp06YTAYePbZZ7n11ltxdXXF3d0dT09PZ4cnxE1LEre4IS5cuMCSJUv4448/2LhxI7m5udxzzz20bNmSRx99lJYtWzo7RGGj//73v+h0OrZs2UKNGjWcHY4Q1YYii4yIirZs2TKGDh1KVlYW0dHRGAwGEhMTadmyJbt378ZgMDBgwAA+/vhjdDqds8MVZbBz505uu+02Vq9eTZcuXZwdjhDVilzjFhVq06ZNPPnkk4SFhbFp0yaOHz9ObGwsbm5ubN++nXPnzvH444/z2WefMXr0aABUVSU6Opr777+/xPHy8vLw9fXlv//9LwDr169HURS+/fbbEvt6eXkxcOBAy+tFixahKAonTpywlP3zzz/4+/tz3333UVhYaLXfjh07rI6XkpKCoihMmzbNqry0spkzZ6IoCh07drQqP3bsGI888ggRERG4uLigKAqKotC0adNrVSMAhYWFvPzyy9StWxe9Xk90dDT/93//R35+vtV+0dHR3HfffVZlI0eORFEUq7I1a9agKAo///yzpaxjx44lYt6+fbslzmJbtmzBzc2No0eP0qRJE/R6PWFhYfz3v/8lNTXV6v2lHfPVV1/FxcWFpUuX2nzuq+nYsaNl39Iel//eAT744ANL7BEREYwYMYK0tLRrniMzM5MhQ4YQFRWFXq+nZs2aDBs2jKSkJKv9iv+Grva48u9l165ddO/eHR8fH7y8vOjcuTNbtmyxbFdVlU6dOhEcHMz58+ct5QUFBdxyyy3UrVuX7OxsAE6ePMnw4cNp0KAB7u7uBAYG8sgjj5T4/MUx6nQ6kpOTrbZt3rzZEuuV/w6E80lXuahQr7/+OiaTiWXLltGqVasS24OCgvj888/Zv38/H330EVOnTiUkJIQnn3ySN998k9TUVAICAiz7r1ixgoyMDJ588slyx3b69GnuueceGjZsyNdff42rq2P+OaSlpTFjxowS5UajkV69enHy5Emee+456tevj6IovPrqq2U67pAhQ/jss894+OGHGTt2LFu3bmXGjBkcOHCAH374wSGxl2b8+PElyi5cuEBeXh7PPPMMd999N8OGDePo0aPMnTuXrVu3snXrVvR6fanHW7hwIZMmTWLWrFn07dvX5nNfS82aNUvU/cqVK/nyyy+tyqZNm8b06dOJjY3lmWee4dChQ3z44Yds376dTZs2odVqSz1+amoqe/bsYciQIYSFhXHkyBHmzZvHqlWr2LZtGyEhIVb7v/TSS9SuXdvyOisri2eeecZqn3/++Ye77roLHx8fXnjhBbRaLR999BEdO3Zkw4YNtG7dGkVRWLBgAc2aNWPYsGF8//33AEydOpV//vmH9evXW8YVbN++nb/++ovHHnuMmjVrcuLECT788EM6duzI/v378fDwsDq/RqNh8eLFli/OYP4dubm5kZeXV5ZqFzeaKkQFCggIUKOioqzKBgwYoHp6elqVTZ48WQXUFStWqKqqqocOHVIB9cMPP7Tar1evXmp0dLRqMplUVVXVdevWqYD6zTfflDi3p6enOmDAAMvrhQsXqoB6/PhxNTU1VW3cuLHaoEEDNSUlxep9xftt377dqjw5OVkF1KlTp1qVX1n2wgsvqCEhIWqrVq3UDh06WMqLP9OMGTOs3t+hQwe1SZMmJeK/XHx8vAqoQ4YMsSofN26cCqi///67pSwqKkq99957rfYbMWKEeuU/97i4OKs6L47l8phXrlypAuo999xj9f6pU6eqgNq5c2e1sLDQUl5cd++9916px/zll19UV1dXdezYsSU+Y1nPfTVXq8eZM2dafu+qqqrnz59XdTqd2rVrV9VoNFr2e//991VAXbBgwXXPdbl9+/aper1eHTx4sKXMlr+h3r17qzqdTj169Kil7Ny5c6q3t7f6n//8x+r9H330kQqoixcvVrds2aJqNBr1ueees9onJyenRIybN29WAfXzzz8vEePjjz+u3nLLLZby7Oxs1cfHR+3bt2+pn0E4n3SViwqVmZlZohVSmtDQUADLbUT169endevWLFmyxLJPamoqv/76K0888USJrtPMzExSUlKsHleTl5dHr169SE5OZtWqVQQGBtrz0Up19uxZ3nvvPSZPnoyXl1eJGAG7zrdy5UoAxowZY1U+duxYAH755Rd7wr0mVVWZOHEiDz30EK1bty51nzFjxqDRaCyv+/XrR2hoaKnxbNu2jUcffZSHHnqImTNnlvvc9lqzZg0FBQU899xzuLhc+i9w6NCh+Pj4XLcui+9XL36EhobSo0cPvvvuO0wmk02xGI1GVq9eTe/evalTp46lPDw8nL59+/Lnn39a3Vr39NNP061bN/73v//Rr18/6taty2uvvWZ1THd3d8tzg8HAhQsXiImJwc/Pj7///rtEDP369ePgwYOWLvHvvvsOX19fOnfubNNnETeOJG5RoSIiIjh69Oh19zty5AiA1ejk/v37s2nTJk6ePAnAN998g8FgoF+/fiXeP3jwYIKDg60exdf8rjRo0CD+/PNPMjMzLde1HWXq1KlERERYrsFfrkGDBvj7+zNr1iw2bdpEcnIyKSkpGAyG6x735MmTuLi4EBMTY1UeFhaGn5+fpY4cacmSJfzzzz8lEgNg+eLUsGFDq3KNRkO9evVKXE89e/Ys9957L9nZ2Vy4cOG616yvde7yKq6rBg0aWJXrdDrq1Klz3bo8depUib+1H374gfT09Gt+YSxNcnIyOTk5JWIBaNSoESaTidOnT1uVz58/n5ycHA4fPsyiRYusEjVAbm4uU6ZMITIyEr1eT1BQEMHBwaSlpZGenl7iPMHBwdx7770sWLAAgAULFjBgwACrLzWicpHfjKhQ9913H6mpqcyfP/+q+yQlJfHZZ58RHBzMnXfeaSl/7LHH0Gq1llb34sWLue2220r9T27KlCnExcVZPdzc3Eo9399//82PP/5IcHAwTz/9dDk/4SUHDhxg0aJFvPLKK6VeI/Xy8uKrr74iOzub9u3bExISQnBwMH/99VeZz1GWQVqOUFBQwOTJk3nqqaeoX79+ie1XJovrOXLkCLVq1eKLL75gzZo1fPbZZ3af29nCwsJK/K09/vjjN+z869evtwxI3Lt3b4nt//vf/3j11Vd59NFH+frrr1m9ejVxcXEEBgZetUdg8ODBfPnllxw4cICNGzdaDeoUlY8MThMVatKkSSxfvpxnnnmGgwcP0rdvX4xGI2Buuaxdu5YpU6Zw8eJFli5dajWgKSAggHvvvZclS5bwxBNPsGnTJubMmVPqeW655RZiY2Otyi7vwr3cp59+Sq9evdBoNNx3333Mnz+fp556qtyfdeLEibRo0YI+ffpcdZ8uXbrw5ptv8sQTTzBv3jzq1KnD2LFjLXVyNVFRUZhMJg4fPkyjRo0s5UlJSaSlpREVFVXu+C/3wQcfcP78+RKjn4sVD7g6dOiQVRdvcYxX3pcfHh7OypUrCQ0N5ccff2Ts2LH06NGD4OBgm89dXsV1dWXsBQUFlrsersXNza3EPu+++y4+Pj4EBQXZFEtwcDAeHh4cOnSoxLaDBw/i4uJCZGSkpSwhIYH//e9/dO3aFZ1Ox7hx4+jWrZvV7//bb79lwIABzJo1y1KWl5d3zRHz3bt3x83Njccee4z27dtTt25d/vjjD5s+i7hxpMUtKlRYWBibN2+me/fuzJo1i1tvvZXFixeTnZ1NVFQUgwcPxt3dnRUrVpTaaunXrx/79+/n+eefR6PR8Nhjj5U7prvuuguAe++9l8cee4znn3++xO08ttq8eTM//vgjr7/++jVbxadPn2b48OE8++yzPP3008TGxuLv73/d4/fo0QOgxBeX2bNnA+bP4iiZmZm8+uqrjB49mrCwsFL36dy5M3q9nnfffdeqFbdkyRKSkpJK3I5Wv359yziG9957D5PJxKhRo+w6d3nFxsai0+l49913US+bxmL+/Pmkp6dfsy5La7Hu2rWLX3/9ld69e9vcvazRaOjatSs//vij1eWFpKQkli5dSvv27fHx8bGUDx06FJPJxPz58/n4449xdXXlqaeesvocGo3G6jWY6/xaXw5dXV3p378/e/bsYfDgwTZ9BnHjSYtbVLjIyEh+/PFHEhIS2LRpEzNnziQ+Pp558+bRokULWrRocdVkd++99xIYGMg333xD9+7dyzTQzRbvvPMOjRo14n//+x9ff/211bbNmzdbXbMsHiR05MgRtm3bxh133GHZVjwRybVaayaTiX79+lGzZk1ef/11m+Js3ry5ZZKatLQ0OnTowLZt2/jss8/o3bs3nTp1stq/eOBdsVOnTgFYlcXHx5d6rr///pugoCBeeOGFq8YTEBDApEmTmDx5Mt26deP+++/n2LFjvP/++zRv3pwhQ4Zc9b1hYWHMnDmTIUOG8OSTT1q+lJT13OUVHBzMxIkTmT59Ovfccw+9evXi0KFDfPDBB9x+++3XvNXw1KlT3HvvvTzyyCPUqFGDffv28cknnxAUFGT39fhXXnmFuLg42rdvz/Dhw3F1deWjjz4iPz+fN99807LfwoUL+eWXX1i0aBE1a9YEzAn5ySef5MMPP2T48OGA+fLUF198ga+vL40bN2bz5s2sWbPmuoMiX375ZZ5//vkyfZEUTubUMe2iWirtdrBrGT58uAqoS5cuLbHN3tvBLvfZZ5+pgPrTTz9Z7Xetx+W3LQGqoijqzp07rY575e1Nr732mqrX69Xdu3eX2O96t4OpqqoaDAZ1+vTpau3atVWtVqtGRkaqEydOVPPy8qz2i4qKum78lz+uvB0MUN9++22rYxbf/nWluXPnqg0bNlS1Wq0aGhqq/ve//1UvXLhwzXoodvfdd6u1atVSMzMz7Tr3lcp6O1ix999/3yr2Z555Rr148eI1z5GZmakOHTpUjYqKUnU6nRocHKz269dPPXnypNV+tt5S+Pfff6vdunVTvby8VA8PD7VTp07qX3/9Zdl++vRp1dfXV+3Zs2eJmB544AHV09NTPXbsmKqqqnrx4kV10KBBalBQkOrl5aV269ZNPXjwoBoVFVXqv4er3e51ve3CeWTKU1HpjR49mvnz55OYmFhi8ghnmDZtGuvXr2f9+vXODkUIUQ3JNW5RqeXl5bF48WIeeuihSpG0hRDC2eQat6iUzp8/z5o1a/j222+5cOFCqQOZnCUmJoacnBxnhyGEqKakq1xUSuvXr6dTp06EhIQwefJkRo4c6eyQhBCiUpDELYQQQlQhTr3GvXHjRnr27ElERASKorB8+fLrvic/P58XX3zRsqxedHS0Zao+IYQQ4mbn1Gvc2dnZNG/enMGDB/Pggw+W6T2PPvooSUlJzJ8/n5iYGBISEmye2F8IIYSoqpyauLt370737t3LvP+qVavYsGEDx44ds6zRHB0dfc335OfnW+b1BfMkGKmpqQQGBt6weZ+FEEKIa1FVlczMTCIiIq47A1+VGlX+008/cdttt/Hmm2/yxRdf4OnpSa9evXj55ZevuujBjBkzmD59+g2OVAghhLDd6dOnLTPjXU2VStzHjh3jzz//xM3NjR9++IGUlBSGDx/OhQsXWLhwYanvmThxotUaxunp6dSqVYvjx4/j7e1d7pgMBgPr1q2jU6dOpa4IJUon9WYfqTf7Sd3ZR+rNfrbUXWZmJrVr1y5TXqpSidtkMqEoCkuWLMHX1xcwL7Lw8MMP88EHH5Ta6tbr9VYrThULCAiwmrzfXgaDAQ8PDwIDA+WP2gZSb/aRerOf1J19pN7sZ0vdFW8vyyXcKjVzWnh4ODVq1LAkbTAvNq+qKmfOnHFiZEIIIcSNUaUSd7t27Th37hxZWVmWsn///RcXF5frXhMQQgghbgZOTdxZWVnEx8dblhc8fvw48fHxliUIJ06cSP/+/S379+3bl8DAQAYNGsT+/fvZuHEjzz//vGVNZyGEEOJm59Rr3Dt27LBaR7h4ENmAAQNYtGgRCQkJliQO4OXlRVxcHP/73/+47bbbCAwM5NFHH+WVV1654bELUdWoqkphYSFGo9HZoTiFwWDA1dWVvLy8alsH9pB6s19x3RXfkuzq6uqQ25Cdmrg7duzItWZcXbRoUYmyhg0bEhcXV4FRCXHzKSgoICEhoVovjqKqKmFhYZw+fVrmcLCB1Jv9iuvu1KlTKIqCh4cH4eHh6HS6ch23So0qF0LYzmQycfz4cTQaDREREeh0umr5H7DJZCIrKwsvL6/rTnAhLpF6s19x3Xl6elJYWEhycjLHjx+nXr165apLSdxC3OQKCgowmUxERkZW6zXNTSYTBQUFuLm5SQKygdSb/Yrrzt3dHRcXF7RaLSdPnrTUp73ktyBENSH/6QrhXI76Nyj/koUQQogqRBK3EOKmZDAYnB2CsIP83q5PErcQ4qYQHx/PgAEDqF+/Pv7+/vj4+JCenu7ssMR1HDt2jGeeeYbGjRsTGBiIu7s7Bw8edHZYlZokbiFEpXX69GkGDx5sGQ0fFRXFqFGjuHDhgtV+69evp3379oSFhbFs2TK2b9/OkSNHrKZHFpXPgQMHaNWqFYWFhSxYsICtW7dy9OhRGjZs6OzQKjUZVS6EqJSOHTtGmzZtqF+/Pl9++SW1a9fmn3/+4fnnn+fXX39ly5YtBAQEoKoqQ4cOZc6cOQwZMsTZYQsbjBw5khEjRsgkWjaSFnc5LN91lp7v/8WPJ6UaRdWhqio5BYVOeVxrwqUrjRgxAp1Ox+rVq+nQoQO1atWie/furFmzhrNnz/Liiy8CcPDgQU6ePMmRI0eIiorCzc2NO++8kz///NPyeWNiYpg1a5bV8ePj41EUhSNHjrB+/XoURSEtLc2yfeDAgfTu3dvyetWqVbRv3x4/Pz8CAwO57777OHr0qGX7iRMnUBTFMoXz2bNneeSRRwgJCcHb25sHHnjAajGkadOm0aJFC8vrtLQ0FEVh/fr1V43h6NGj3H///YSGhuLl5cXtt9/OmjVrrD5XQkICDz74IIGBgSiKYnlc/tmutHfvXu6++27c3d0JDAzk6aeftloTYvjw4TzwwAMl6u7EiROWso4dO/Lcc89ZXkdHRzNnzhzL67Vr16IoiuXzZGdns27dOgoKCqhXrx5ubm7ccsst/Pjjj1et0/z8fGJjY4mNjbXMRrZ9+3a6dOlCUFAQvr6+dOjQgb///vuqn/VmIC3ucsjIM3AwKQu3AGdHIkTZ5RqMNJ7ym1POvf+lbnjorv/fTmpqKr/99huvvvpqiXUIwsLCeOKJJ/jqq6/44IMPSE5OxmAw8MUXX/DJJ59Qu3Zt3nnnHe655x4OHz5MeHg4gwcPZtGiRQwdOtRynIULF/Kf//yHmJiYMq0umJ2dzZgxY2jWrBlZWVlMmTKFBx54gPj4+BK3+RgMBnr06IFWq2XFihVotVpGjRpF79692b59u90T4GRlZdGjRw9effVV9Ho9n3/+OT179uTQoUPUqlULgLFjx/Lvv/+yatUqIiMj+euvv3jooYeu+bm6detGmzZt2L59O+fPn2fIkCGMHDmy1Nkr7WEymRg7dixeXl6WsgsXLqCqKh999BHz5s2jVatWLF26lAcffJCdO3dafakBMBqNPPbYY2RlZbFmzRrLcs2ZmZkMGDCA9957D1VVmTVrFj169ODw4cNlWtu6KpKmYjm4aTUAFJicHIgQN5nDhw+jqiqNGjUqdXujRo24ePEiycnJmEzmf4AzZ86kR48eNGrUiA8++ICIiAjmzp0LmFuuhw4dYufOnYA5sS5dupTBgwcDWL4c5ObmXjWmhx56iAcffJCYmBhatGjBggUL2Lt3L/v37y+x75o1a9izZw+ff/45rVu35tZbb2XJkiXEx8ezdu1au+ulefPm/Pe//6Vp06bUq1ePl19+mbp16/LTTz9Z9omPj6dv377cfvvthIWFERBw7ZbF0qVLycvL4/PPP6dp06bcfffdvP/++3zxxRckJSXZHevlPvvsM/Lz87n//vstZcW/t/Hjx/P4449Tv359pk2bRqdOnXjrrbes3q+qKoMGDeLIkSOsXLnS6gvA3XffzZNPPknDhg1p1KgRH3/8MTk5OWzYsMEhsVdG0uIuB3dJ3KIKctdq2P9SN6ed2xa2dK23a9fO8tzFxYW2bdtakmpERAQ9evRg8eLFdOrUiRUrVpCfn88jjzwCQL169dDpdHz55ZeWxY6udPjwYaZMmcLWrVtJSUmxJJ5Tp07RtGlTy35t27bFaDTi5+dH48aNLeW1atUiMjKS/fv3ExsbW/ZKuExWVhbTpk3jl19+ISEhgcLCQnJzc60WY6pduzYrV65k2LBh103aYB4g1rx5czw9PS1l7dq1w2QycejQIYKDg+2KtVhOTg6TJk1i3rx5fPfddyW2X/57A2jfvr3VFxGA559/nrVr1zJo0KASnykpKYlJkyaxfv16zp8/j9FoJCcnx6pObjbS4i6H4v+EDKbqN++zqLoURcFD5+qUR1m7iGNiYlAUhQMHDpS6/cCBA/j7+xMcHIy/v/81P2uxp556iu+//57c3FwWLlxInz59LFPABgQEMHv2bCZMmIC7uzteXl4sWbLE6lg9e/YkNTWVTz75hK1bt7J161bAPKXs5b766itefvnlMsVkq3HjxvHDDz/w2muv8ccffxAfH88tt9xiFcPbb79Nfn4+QUFBeHl50b17d7vP5wgzZ86kQYMG9OzZ06q8rL83MP++f/31V5YtW8Zvv1lf5hkwYADx8fG88847/PXXX8THxxMYGFji93IzkcRdDu66oha3rHQnhEMFBgbSpUsXPvjggxLd14mJiSxZsoQ+ffqgKAp169bF1dWVTZs2WfYxmUz89ddfVi3eHj164Onpybx581i1apWlm7zYiBEjSE9PZ9++fcTHx9OrVy/LtgsXLnDo0CEmTZpE586dLV31pYmMjKR9+/akpaVZdaOfPn2a06dPW8Vkq02bNjFw4EAeeOABbrnlFsLCwqwGiAHUr1+fgQMHEh0dzdatW/n000+vecxGjRqxe/dusrOzrc7j4uJCgwYN7I4VzAPlZs2aVWJgIICvry9hYWFWvzeAP//8s0QdffHFF9xzzz28/PLLDB06lIyMDKtYn332WXr06EGTJk3Q6/WkpKSUK+7KThJ3OVgSt3SVC+Fw77//Pvn5+XTr1o2NGzdy+vRpVq1aRZcuXahRowavvvoqAF5eXgwdOpTnn3+elStXcuDAAYYPH865c+cYPny45XgajYbHH3+c//u//6NevXq0adOmxDnd3d2pW7cuMTExVgOb/P39CQwM5OOPP+bIkSP8/vvvV+1SB3N3eevWrenfvz/btm3j77//5oknnqBFixbcfffdlv1UVSUvL4+8vDzLKOmCggJLmdFoxGQyWWYTq1evHt9//z3x8fHs3r2bvn37Wrrsi23ZsoX/+7//49tvv6VJkybUqFHjmvX8xBNP4ObmxoABA9i3bx/r1q3jf//7H/369SM0NNSyn8lkssRV3JrNz8+3lF0ZB8DcuXN54IEHaNmyZannHj16NG+88QbLli3j33//Zdq0aaxbt45x48ZZ7VfcPT569GgiIyOt6r5evXp88cUXHDhwgK1bt/LEE0+UGNB4s5HEXQ6XusqdHIgQN6F69eqxY8cO6tSpw6OPPkrdunV5+umn6dSpE5s3b7a61vnWW2/Ru3dvBgwYQIsWLdi9eze//fYb4eHhVsfs168fBQUFDBo0yKZYXFxcWLZsGTt37qRp06aMHj2amTNnXvM93333HZGRkXTu3JkOHToQFBTE8uXLrbqB9+zZg7u7O+7u7oSFhQHQrVs3S9nixYtZsWKFZTT87Nmz8ff3p23btvTs2ZNu3bpx6623Wo6XnJzMI488wuzZs63Kr8XDw4PffvuN1NRUbr/9dh5++GE6d+7M+++/b7Xfzz//bImrdevWADRs2NBS9scff5Q4tslksnzBKs3YsWN59tlnGTt2LE2bNuX777/n+++/p3nz5qXu7+LiwsKFC1m6dCmrV68GYP78+Vy8eJFbb72Vfv368eyzzxISElKmz15VKaotoz9uAhkZGfj6+pKeno6Pj0+5jnUiJZuOb63HTaOyd1o3tFqtg6K8+RkMBlauXGm5ZUaUjT31lpeXx/Hjx6ldu3a5lhKs6kwmE6tWraJ3796cPn3aqjVZmS1fvpzly5c77NYsW5lMJjIyMvDx8ZEV5mx0Zd1d69+iLblJRpWXw+XXuKvZ9x8hqpT8/HySkpJ44403ePjhh6tM0gZzF798uRWXk69P5VB8H7cJBYNRErcQlVXxlKnp6em88cYbzg7HJj179uSTTz5xdhiiEpHEXQ6X35OaZ5Ch5UJUVgMHDsRgMLB+/frrDtYSorKTxF0OWo2CxsU80CRXErcQQogbQBJ3OSiKgpvWXIV5MrRcCCHEDSCJu5yKu8ulxS2EEOJGkMRdTm6SuIUQQtxAkrjLyd3SVS6JWwghRMWTxF1Ol7rK5Rq3EEJUZcVTy1Z2krjLqbirPE9WGhFCiCrlhx9+4N577yU6OhovLy/uuusuZ4dUJpK4y0kGpwlRMQYOHIiiKJZHYGAg99xzD3v27HF2aOImMGPGDIYOHcp9993HL7/8Qnx8PCtXrnR2WGUiU56Wk5tc4xaiwtxzzz0sXLgQMC/nOWnSJO677z5OnTrl5MhEVXbs2DFee+01tmzZQpMmTZwdjs2kxV1Oco1bVDmqCgXZznnYOKe/Xq8nLCyMsLAwWrRowYQJEzh9+jTJycmWfcaPH0/9+vXx8PCgTp06TJ48ucS1yhMnTqDRaPD390ej0Vha8WlpaQBMmzaNFi1aWPYvKCggJibGap9i0dHRVj0BiqKwfPlyy/ZVq1bRvn17/Pz8CAwM5L777uPo0aNWsSiKQnx8fInjzpkzx/K6Y8eOPPfcc5bXhw4dQqvVWsVpMpl46aWXqFmzJnq9nhYtWrBq1Sqbz3XlZyjt/F988QW33XYb3t7ehIWF0bdvX86fP2/1np9//pnmzZvj7u5uqZvevXtzLR9++CF169ZFp9PRoEEDvvjiC6vtV8b23HPP0bFjx6t+xvXr15f4vfXr18/qOL/99ht169bl1VdfJTg4GG9vbx588EHOnDljec+VfxN///03fn5+Vuubz549m1tuuQVPT08iIyMZPnw4WVlZ1/y8jiAt7nJy00lXuahiDDnwWoRzzv1/50Dnaddbs7KyWLx4MTExMQQGBlrKvb29WbRoEREREezdu5ehQ4fi7e3NCy+8YNmneBGg5cuXc/vtt7NlyxYeeuihq57r/fffJykp6arbX3rpJctSm1cuHZqdnc2YMWNo1qwZWVlZTJkyhQceeID4+Phyra71/PPPl1hR6p133mHWrFl89NFHtGzZkgULFtCrVy/++ecf6tWrZ/e5SmMwGHj55Zdp0KAB58+fZ8yYMQwcONDSvZyWlkafPn0YMmQIy5cvx93dnVGjRlnWGS/NDz/8wKhRo5gzZw6xsbH8/PPPDBo0iJo1a9KpUyeHxL1z505++uknq7Lk5GR2796Nt7c3v/76KwCjRo2id+/ebN++3WrpVYCDBw/SrVs3Jk2axJAhQyzlLi4uvPvuu9SuXZtjx44xfPhwXnjhBT744AOHxH41krjLqbjFLV3lQjjezz//jJeXF2BOiOHh4fz8889WCXDSpEmW59HR0YwbN45ly5ZZJe7iFnhISAhhYWFWa3lfKTU1lVdeeYXx48czefLkEtvz8/MJCAiwrJ99pSu/ECxYsIDg4GD2799P06ZNy/CpS1q3bh1//fUXQ4YMYd26dZbyt956i/Hjx/PYY48B8MYbb7Bu3TrmzJnD3Llz7TrX1QwePNhS73Xq1OHdd9/l9ttvJysrCy8vL/79919ycnIYP348ERHmL4bu7u7XTNxvvfUWAwcOZPjw4QCMGTOGLVu28NZbbzkscY8ZM4bnn3/e6ndpMpnQaDQsXbqUyMhIAJYuXUrdunVZu3YtsbGxln1PnjxJly5dePrppxk3bpzVsS/vkYiOjuaVV15h2LBhkrgru+Jr3NJVLqoMrYe55eusc9ugU6dOfPjhhwBcvHiRDz74gO7du7Nt2zaioqIA+Oqrr3j33Xc5evQoWVlZFBYWlljPOCMjAwBPz+u39l966SU6depE+/btS92empp6zfWSDx8+zJQpU9i6dSspKSmYTOb/G06dOmVX4lZVlbFjxzJ16lQuXLhgKc/IyODcuXO0a9fOav927dqxe/duq7K2bdtafdnJyckpcZ7HH38cjebSwkm5ublWXcU7d+7kpZdeYvfu3Vy8eNHqczVu3JjIyEhcXV358ssvGT16dJl6Fw4cOMDTTz9dIv533nnnuu8ti+XLl3Ps2DHGjh1b4ktYZGSkJWkDREVFUbNmTfbv329J3GlpacTGxnLmzBm6detW4vhr1qxhxowZHDx4kIyMDAoLC8nLyyMnJwcPD9v+1m0h17jLSVrcospRFHN3tTMeV3RBXo+npycxMTHExMRw++238+mnn5KdnW1Z5nLz5s088cQT9OjRg59//pldu3bx4osvUlBQYHWcc+fO4eLiQkhIyDXPd/jwYT799NOrLv155swZCgoKqF279lWP0bNnT1JTU/nkk0/YunUrW7duBSgRU1l9/vnnZGdnM2zYMLveD+YvN/Hx8ZZHcYv4cm+//bbVPrfddptlW3Z2Nt27d8fHx4clS5awfft2fvjhB+DS5woPD+fDDz/ktddew83NDS8vL5YsWWJ3zOVlMBh44YUXePXVV3F3d7fa5u/vf9X3Xd5NfvLkSVq3bs20adMYPHiw1ReeEydOcN9999GsWTO+++47du7caenlsPd3XVaSuMvJMuWp3MctRIVTFAUXFxdyc3MB+Ouvv4iKiuLFF1/ktttuo169epw8ebLE+7Zv307Dhg1LXCO+0vjx4xkyZAgxMTGlbt+wYQPu7u5WSe1yFy5c4NChQ0yaNInOnTvTqFEjLl68aOOnvCQnJ4cXX3yRN954A61Wa7XNx8eHiIgINm3aZFW+adMmGjdubFUWGRlp+QIUExODq2vJztawsDCrfS5PdocPH+bChQu8/vrr3HXXXTRs2LDEwDSAAQMG0LBhQ55++mni4+Pp1avXNT9fo0aNyhS/PT788EO8vLzo169fiW0NGzbk9OnTnD592lJ28uRJzpw5Y3XuOnXqsGjRIl588UV8fHyYOHGiZdvOnTsxmUzMmjWLO++8k/r163Pu3I3pyZKu8nKSFrcQFSc/P5/ExETA3FX+/vvvk5WVRc+ePQGoV68ep06dYtmyZdx+++388ssvlpYgmFs+X331FbNnz2batGnXPNeRI0c4deoUR44cKXX70aNHef3117n//vtLjDRPS0ujoKAAf39/AgMD+fjjjwkPD+fUqVNMmDCh1OMVFBSQl5dnea2qKoWFhRiNRkuX9dKlS2nVqtVVR2Y///zzTJ06lbp169KiRQsWLlxIfHy8w1u6NWvWRKfT8d577zFs2DD27dvHyy+/XGK/sWPHoigKb7/9NlqtFm9v7xJ1dWX8jz76KC1btiQ2NpYVK1bw/fffs2bNGqv9DAaDpa6MRiMmk8ny+mrX0N98801WrFhRYqAZQJcuXWjUqBF9+/bl7bffBsyD01q0aMHdd99t2c/b29vyJWfRokXccccdPPzww9x1113ExMRgMBh477336NmzJ5s2bWLevHnXqEUHUquZ9PR0FVDT09Mdcrxvtp1Qo8b/rPb9eLNDjlddFBQUqMuXL1cLCgqcHUqVYk+95ebmqvv371dzc3MrMDLHGzBggApYHt7e3urtt9+ufvvtt1b7Pf/882pgYKDq5eWl9unTR3377bdVX19fVVVVdceOHWqdOnXUGTNmqAaDQb148aJqNBrVdevWqYB68eJFVVVVderUqSqgvvXWW5bjXrlPVFSUVTxXPtatW6eqqqrGxcWpjRo1UvV6vdqsWTN1/fr1KqD+8MMPqqqq6vHjx695nIULF6qqqqodOnRQFUVRt2/fbolp6tSpavPmzS2vjUajOm3aNLVGjRqqVqtVmzdvrv7666+W7cXn2rVrl1WdRUVFqW+//bbl9eXxFevQoYM6atQo1Wg0qhcvXlQXL16sRkdHq3q9Xm3Tpo36008/WR176dKlamhoqHr27Fmr3+H9999f+i+4yAcffKDWqVNH1Wq1av369dXPP//cavu16uryR3Ecxb+3++67r8RxLv+MR48eVe+9917Vw8ND9fLyUh944AH1zJkzV61rVVXVl156SY2JiVGzs7NVVVXV2bNnq+Hh4aq7u7varVs39fPPP7f6mymuO6PRqKrqtf8t2pKblKIPVG1kZGTg6+tLenr6NQeYlNUvu88w4svdtKrlx3fD213/DQIwf4NeuXIlPXr0KNEFKK7OnnrLy8vj+PHj1K5d+7pdxTczk8lERkYGPj4+dt2WFR0dzfr164mOji6xrXfv3iXuL7bHc889R4sWLRg4cGC5juNI5a236uzKurvWv0VbcpP8FspJpjwVonoIDg62GnV9OX9/f3Q6XbnPodVqr3oOIYrJNe5yksFpQlQP27dvv+q24mlZy2vmzJkOOY64uUmLu5ykxS2EEOJGcmri3rhxIz179iQiIqLUuXKvZdOmTbi6ulpNEOAMlxYZkQlYhBBCVDynJu7s7GyaN29u89R8aWlp9O/fn86dO1dQZGXnLnOViyqimo1DFaLScdS/Qade4+7evTvdu3e3+X3Dhg2jb9++aDSa67bS8/Pzre7zK5760GAwlFhByB6umFva+YUm8vMLcHGxbWao6qq47h3xO6hO7K03VVXJyspCr9dXRFhVQvF/mqqqWqbrFNcn9Wa/K+suKyvLUnblv2Fb/k1XucFpCxcu5NixYyxevJhXXnnluvvPmDGD6dOnlyhfvXq1Q+aSzTdCcTX++Muv6GVAqE3i4uKcHUKVZGu9eXt7k5+fT15eHjqdrtRJKaqLy+f7FmUn9Wa/lJQUCgoKSElJ4eLFixw+fLjEPqXNH381VSpxHz58mAkTJvDHH3+UOmVfaSZOnMiYMWMsrzMyMoiMjKRr164OuY87v6CAF7atB+A/d8cS6Fn+W0KqA4PBQFxcHF26dJH7uG1gb72pqsr58+ctPU7Vkaqq5OXl4ebmVq2/uNhK6s1+V9ZdcHAwTZo0KbUebfm3WWUSt9FopG/fvkyfPp369euX+X16vb7U7kGtVuuwhKFVVAyqQqGqSBKykSN/D9WJPfVWs2ZNjEZjtb08YTAY2LhxI//5z3/kb84GUm/2K667Dh064O7ufs179G2p2yqTuDMzM9mxYwe7du1i5MiRgHlWGlVVcXV1ZfXq1VZzzN5IWg0YCmW+clH5aTSaajvBh0ajobCwEDc3N0lANpB6s19x3en1eof+u6syidvHx4e9e/dalX3wwQf8/vvvfPvtt9dcZq+i6VwgB8gtkIEbQgghKpZTE3dWVpbVSjzHjx8nPj6egIAAatWqxcSJEzl79iyff/45Li4uJRahDwkJwc3Nza7F6R1JV3RTndwSJoQQoqI5NXHv2LGDTp06WV4XDyIbMGAAixYtIiEhgVOnTjkrvDLTSuIWQghxgzg1cXfs2PGaN6QvWrTomu+fNm3addfYvRGK5mCR+cqFEEJUOJmr3AG0LuYvHzI4TQghREWTxO0Aco1bCCHEjSKJ2wEsiVu6yoUQQlQwSdwOIIPThBBC3CiSuB2geHCaXOMWQghR0SRxO4B0lQshhLhRJHE7QPGocukqF0IIUdEkcTuAjCoXQghxo0jidgC5xi2EEOJGkcTtAMUt7hy5xi2EEKKCSeJ2ABmcJoQQ4kaRxO0AWukqF0IIcYNI4nYAGZwmhBDiRpHE7QA6uR1MCCHEDSKJ2wEsU54WmJwbiBBCiJueJG4HKO4ql2vcQgghKpokbgcovo8712BEVVXnBiOEEOKmJonbAYq7yo0mFYNRErcQQoiKI4nbAXSX1aIMUBNCCFGRJHE7gEYBjYsCyHVuIYQQFUsStwMoCrgV9ZfL7GlCCCEqkiRuB3Evmj5NusqFEEJUJEncDuImiVsIIcQNIInbQdyLusrzpKtcCCFEBZLE7SDSVS6EEOJGkMTtINJVLoQQ4kaQxO0glha3dJULIYSoQJK4HaT4djC5j1sIIURFksTtIHKNWwghxI0gidtB3HTFXeWytKcQQoiKI4nbQaTFLYQQ4kaQxO0gl6Y8LXRyJEIIIW5mkrgdxENa3EIIIW4ASdwOYrnGbZBr3EIIISqOJG4Hkfu4hRBC3AiSuB2keOY0uY9bCCFERZLE7SDFi4zINW4hhBAVSRK3g0hXuRBCiBtBEreDSFe5EEKIG0ESt4PIBCxCCCFuBEncDuIm17iFEELcAE5N3Bs3bqRnz55ERESgKArLly+/5v7ff/89Xbp0ITg4GB8fH9q0acNvv/12Y4K9DnedXOMWQghR8ZyauLOzs2nevDlz584t0/4bN26kS5curFy5kp07d9KpUyd69uzJrl27KjjS6yu+xp1faMJkUp0cjRBCiJuVqzNP3r17d7p3717m/efMmWP1+rXXXuPHH39kxYoVtGzZstT35Ofnk5+fb3mdkZEBgMFgwGAw2B70FYqP4cqlGdMyc/Pw0Dm1aiu94npzxO+gOpF6s5/UnX2k3uxnS93ZUr9VOruYTCYyMzMJCAi46j4zZsxg+vTpJcpXr16Nh4eHw2L5Y/3vFFfnz7+uxkvrsEPf1OLi4pwdQpUk9WY/qTv7SL3Zryx1l5OTU+bjVenE/dZbb5GVlcWjjz561X0mTpzImDFjLK8zMjKIjIyka9eu+Pj4lDsGg8FAXFwc3bp2Qb9jA/mFJtp16EQNP/dyH/tmVlxvXbp0QauVbzllJfVmP6k7+0i92c+WuivuDS4LmxP3sWPHqFOnjq1vc7ilS5cyffp0fvzxR0JCQq66n16vR6/XlyjXarUO/SPUarW46zTkF5ooVBX5Ay8jR/8eqgupN/tJ3dlH6s1+Zak7W+rW5sFpMTExdOrUicWLF5OXl2fr2x1i2bJlDBkyhK+//prY2FinxFCaS7OnyQphQgghKobNifvvv/+mWbNmjBkzhrCwMP773/+ybdu2ioitVF9++SWDBg3iyy+/5N57771h5y0LmYRFCCFERbM5cbdo0YJ33nmHc+fOsWDBAhISEmjfvj1NmzZl9uzZJCcnl/lYWVlZxMfHEx8fD8Dx48eJj4/n1KlTgPn6dP/+/S37L126lP79+zNr1ixat25NYmIiiYmJpKen2/oxKoSbJG4hhBAVzO77uF1dXXnwwQf55ptveOONNzhy5Ajjxo0jMjKS/v37k5CQcN1j7Nixg5YtW1pu5RozZgwtW7ZkypQpACQkJFiSOMDHH39MYWEhI0aMIDw83PIYNWqUvR/DoWQSFiGEEBXN7lHlO3bsYMGCBSxbtgxPT0/GjRvHU089xZkzZ5g+fTr333//dbvQO3bsiKpefbKSRYsWWb1ev369veHeEO6y0IgQQogKZnPinj17NgsXLuTQoUP06NGDzz//nB49euDiYm68165dm0WLFhEdHe3oWCs96SoXQghR0WxO3B9++CGDBw9m4MCBhIeHl7pPSEgI8+fPL3dwVU1xV3mOdJULIYSoIDYn7sOHD193H51Ox4ABA+wKqCpzL1ohTLrKhRBCVBS7rnFfvHiR+fPnc+DAAQAaNWrE4MGDrzn1aHVw6T5uSdxCCCEqhs2jyjdu3Eh0dDTvvvsuFy9e5OLFi7z33nvUrl2bjRs3VkSMVYZ70cIico1bCCFERbG5xT1ixAj69OnDhx9+iEZjbmEajUaGDx/OiBEj2Lt3r8ODrCpkAhYhhBAVzeYW95EjRxg7dqwlaQNoNBrGjBnDkSNHHBpcVeOuK7rGLV3lQgghKojNifvWW2+1XNu+3IEDB2jevLlDgqqqpMUthBCiotncVf7ss88yatQojhw5wp133gnAli1bmDt3Lq+//jp79uyx7NusWTPHRVoFyH3cQgghKprNifvxxx8H4IUXXih1m6IoqKqKoigYjdUrgcmUp0IIISqazYn7+PHjFRHHTUGmPBVCCFHRbE7cUVFRFRHHTUGucQshhKhodk3AcvToUebMmWMZpNa4cWNGjRpF3bp1HRpcVeOmk8QthBCiYtk8qvy3336jcePGbNu2jWbNmtGsWTO2bt1KkyZNiIuLq4gYq4xLM6eZnByJEEKIm5XNLe4JEyYwevRoXn/99RLl48ePp0uXLg4LrqqRa9xCCCEqms0t7gMHDvDUU0+VKB88eDD79+93SFBVlftlXeXXWmdcCCGEsJfNiTs4OJj4+PgS5fHx8YSEhDgipiqr+D5uo0nFYJTELYQQwvFs7iofOnQoTz/9NMeOHaNt27YAbNq0iTfeeIMxY8Y4PMCqpLirHMytbp2rzd+LhBBCiGuyOXFPnjwZb29vZs2axcSJEwGIiIhg2rRpPPvssw4PsCrRahQ0LgpGk0qewYivu9bZIQkhhLjJ2JS4CwsLWbp0KX379mX06NFkZmYC4O3tXSHBVTWKouCu1ZCVXyizpwkhhKgQNvXlurq6MmzYMPLy8gBzwpakbU3mKxdCCFGRbL4Ie8cdd7Br166KiOWmULy0pyRuIYQQFcHma9zDhw9n7NixnDlzhlatWuHp6Wm1vbqtCHYly73c0lUuhBCiAticuB977DEAq4Fo1XlFsCsVJ+4cSdxCCCEqgKwO5mByjVsIIURFsjlxnzx5krZt2+Lqav3WwsJC/vrrr2q/epi7LDQihBCiAtk8OK1Tp06kpqaWKE9PT6dTp04OCaoqk/nKhRBCVCSbE3fxtewrXbhwocRAterI0uKWa9xCCCEqQJm7yh988EHAPBBt4MCB6PV6yzaj0ciePXssU6BWZ+5yjVsIIUQFKnPi9vX1Bcwtbm9vb9zd3S3bdDodd955J0OHDnV8hFWMJG4hhBAVqcyJe+HChQBER0czbtw46Ra/iuKucrmPWwghREWweVT51KlTKyKOm4bcDiaEEKIi2Tw4LSkpiX79+hEREYGrqysajcbqUd1d6io3OTkSIYQQNyObW9wDBw7k1KlTTJ48mfDw8FJHmFdnMqpcCCFERbI5cf/555/88ccftGjRogLCqfrkPm4hhBAVyeau8sjISFRVrYhYbgpyjVsIIURFsjlxz5kzhwkTJnDixIkKCKfqk65yIYQQFcnmrvI+ffqQk5ND3bp18fDwQKvVWm0vbTrU6kS6yoUQQlQkmxP3nDlzKiCMm4dMwCKEEKIi2Zy4BwwYUBFx3DTcdearD5K4hRBCVASbr3EDHD16lEmTJvH4449z/vx5AH799Vf++ecfm46zceNGevbsSUREBIqisHz58uu+Z/369dx6663o9XpiYmJYtGiRHZ+g4lgGp8k1biGEEBXA5sS9YcMGbrnlFrZu3cr3339PVlYWALt377Z5VrXs7GyaN2/O3Llzy7T/8ePHuffee+nUqRPx8fE899xzDBkyhN9++83Wj1FhirvK8wtNmEwy+l4IIYRj2dxVPmHCBF555RXGjBmDt7e3pfzuu+/m/ffft+lY3bt3p3v37mXef968edSuXZtZs2YB0KhRI/7880/efvttunXrZtO5K0rxqHKAvEIjHjqbq1gIIYS4Kpuzyt69e1m6dGmJ8pCQEFJSUhwS1NVs3ryZ2NhYq7Ju3brx3HPPXfU9+fn55OfnW15nZGQAYDAYMBgM5Y6p+BjFPzWX3eOekZOPVpFWd2murDdRNlJv9pO6s4/Um/1sqTtb6tfmxO3n50dCQgK1a9e2Kt+1axc1atSw9XA2SUxMJDQ01KosNDSUjIwMcnNzrZYaLTZjxgymT59eonz16tV4eHg4LLa4uDjLc62iwaAq/Lp6DQH6a7xJWNWbKDupN/tJ3dlH6s1+Zam7nJycMh/P5sT92GOPMX78eL755hsURcFkMrFp0ybGjRtH//79bT1chZs4cSJjxoyxvM7IyCAyMpKuXbvi4+NT7uMbDAbi4uLo0qWL5Z72qfHrSMs10Lrdf6gX4lXuc9yMSqs3cX1Sb/aTurOP1Jv9bKm74t7gsrA5cb/22muMGDGCyMhIjEYjjRs3xmg00rdvXyZNmmTr4WwSFhZGUlKSVVlSUhI+Pj6ltrYB9Ho9en3JZq9Wq3XoH+Hlx3PXaUjLNVCoKvKHfh2O/j1UF1Jv9pO6s4/Um/3KUne21K3NiVun0/HJJ58wZcoU9u7dS1ZWFi1btqRevXq2Hspmbdq0YeXKlVZlcXFxtGnTpsLPbQt3uSVMCCFEBbF7yHNkZKSl1b13714uXryIv7+/TcfIysriyJEjltfHjx8nPj6egIAAatWqxcSJEzl79iyff/45AMOGDeP999/nhRdeYPDgwfz+++98/fXX/PLLL/Z+jAohC40IIYSoKDbfx/3cc88xf/58AIxGIx06dODWW28lMjKS9evX23SsHTt20LJlS1q2bAnAmDFjaNmyJVOmTAEgISGBU6dOWfavXbs2v/zyC3FxcTRv3pxZs2bx6aefVppbwYoV3xIm85ULIYRwNJtb3N9++y1PPvkkACtWrODYsWMcPHiQL774ghdffJFNmzaV+VgdO3a85hKhpc2K1rFjR3bt2mVr2BXDZITsZPSGdKtiD520uIUQQlQMm1vcKSkphIWFAbBy5UoeffRR6tevz+DBg9m7d6/DA6zUNs1BO6cRjc99ZVV8adpTkzOiEkIIcROzOXGHhoayf/9+jEYjq1atokuXLoD5HjSNRnOdd99kPEMA0BdaD+OXFcKEEEJUFJu7ygcNGsSjjz5KeHg4iqJYZjLbunUrDRs2dHiAlZpnMAB6Q+mJW65xCyGEcDSbE/e0adNo2rQpp0+f5pFHHrHcI63RaJgwYYLDA6zUihK37soWt05uBxNCCFEx7Lod7OGHH7Z6nZaWVj3X6fYMAsxd5abLBtnJ7WBCCCEqis3XuN944w2++urSYKxHH32UwMBAatasyZ49exwaXKVX1OLWqIWQn2kplmvcQgghKorNiXvevHlERkYC5lnL4uLi+PXXX7nnnnsYN26cwwOs1HQeqDpP8/OcZEuxu85crXnSVS6EEMLBbO4qT0xMtCTun3/+mUcffZSuXbsSHR1N69atHR5gpecRDAXZKNmXljSVFrcQQoiKYnOL29/fn9OnTwOwatUqy6hyVVUxGqtfolKLrnOTfanFLde4hRBCVBSbW9wPPvggffv2pV69ely4cIHu3bsD5vW4Y2JiHB5gpVd0nVvJvryrXEaVCyGEqBg2J+63336b6OhoTp8+zZtvvomXl3m96YSEBIYPH+7wACs9j6IWd07JrnK5j1sIIYSj2Zy4tVptqYPQRo8e7ZCAqhq1qMWNXOMWQghxA9h1H/fRo0eZM2cOBw4cAKBx48Y899xz1KlTx6HBVQlF17iVy1rcbrLIiBBCiApi8+C03377jcaNG7Nt2zaaNWtGs2bN2Lp1K40bNyYuLq4iYqzU1OKu8uzzljJ3WWRECCFEBbG5xT1hwgRGjx7N66+/XqJ8/PjxlkVHqg3L4DS5xi2EEKLi2dziPnDgAE899VSJ8sGDB7N//36HBFWVWK5xXz447bKu8mutNy6EEELYyubEHRwcTHx8fIny+Ph4QkJCHBFT1VLUVa7kXgSjAbh0H7fRpFJglO5yIYQQjmNzV/nQoUN5+umnOXbsGG3btgVg06ZNvPHGG4wZM8bhAVZ67v6oKCio5pHlPuGWrnKAvAITetdqtk65EEKICmNz4p48eTLe3t7MmjWLiRMnAhAREcG0adN49tlnHR5gpeeiId/VB7fCdPPsaT7haDUKGhcFo0kl12DEF62zoxRCCHGTsClxFxYWsnTpUvr27cvo0aPJzDSviOXt7V0hwVUVVokbUBQFd62GrPxCuSVMCCGEQ9l0jdvV1ZVhw4aRl5cHmBN2dU/aAAWuRXVw2chyy3zlMu2pEEIIB7J5cNodd9zBrl27KiKWKitf62N+cvm93EVLe0qLWwghhCPZfI17+PDhjB07ljNnztCqVSs8PT2ttjdr1sxhwVUV+a6+5ieXLzQi93ILIYSoADYn7sceewzAaiCaoiioqoqiKNVyac981+IW9+X3cpurVrrKhRBCOJLNifv48eMVEUeVdqmr/PIWt3SVCyGEcDybE3dUVFRFxFGlXWpxl+wql8QthBDCkco8OG3nzp106tSJjIyMEtvS09Pp1KkTu3fvdmhwVYUlcWddlrh1co1bCCGE45U5cc+aNYu7774bHx+fEtt8fX3p0qULM2fOdGhwVYVVi7tobnK5HUwIIURFKHPi3rp1K/fff/9Vt/fs2ZO//vrLIUFVNQXFiduYD/nmSWmkq1wIIURFKHPiPnv27DUnW/Hy8iIhIcEhQVU1Ro0eVVt0W1zRdW5J3EIIISpCmRN3cHAwhw4duur2gwcPEhQU5JCgqiTPos9enLiLr3FLV7kQQggHKnPijo2N5dVXXy11m6qqvPrqq8TGxjossKrGsi53UeJ2kxa3EEKIClDm28EmTZpEq1ataN26NWPHjqVBgwaAuaU9a9Ys/v33XxYtWlRRcVZ+Hle0uC2JW9bjFkII4ThlTtx169ZlzZo1DBw4kMceewxFUQBza7tx48bExcURExNTYYFWepaucvPsacVd5TKqXAghhCPZNAHLbbfdxr59+4iPj+fw4cOoqkr9+vVp0aJFBYVXdageRV3lWeaFRmSuciGEEBXB5pnTAFq0aCHJ+kpeco1bCCFExbN5WU9ROtVDusqFEEJUPEncjnLl7WDSVS6EEKICSOJ2EMs17mzra9w50uIWQgjhQJK4HaX4Pu7ci2A04K6TZT2FEEI4XpkGp+3Zs6fMB2zWrJndwVRp7v6guIBqgpwLuBWt0S2JWwghhCOVKXG3aNECRVFQi1a+ulLxNkVRMBptT1Rz585l5syZJCYm0rx5c9577z3uuOOOq+4/Z84cPvzwQ06dOkVQUBAPP/wwM2bMwM3NzeZzO4yLBjwCzde4s5Nx9/IHoKDQhNGkonFRnBebEEKIm0aZEvfx48crLICvvvqKMWPGMG/ePFq3bs2cOXPo1q0bhw4dIiQkpMT+S5cuZcKECSxYsIC2bdvy77//MnDgQBRFYfbs2RUWZ5l4Bl9K3AGNLMV5BiOeervuvBNCCCGslCmbREVFVVgAs2fPZujQoQwaNAiAefPm8csvv7BgwQImTJhQYv+//vqLdu3a0bdvXwCio6N5/PHH2bp1a4XFWGbF17mzknFz1ViKcyVxCyGEcBC7s8n+/fs5deoUBQUFVuW9evUq8zEKCgrYuXMnEydOtJS5uLgQGxvL5s2bS31P27ZtWbx4Mdu2beOOO+7g2LFjrFy5kn79+pW6f35+Pvn5+ZbXGRkZABgMBgwGQ5ljvZriYxgMBjQegbgAxsxETMZC9K4u5BeayMzJx1cv4wAvd3m9ibKTerOf1J19pN7sZ0vd2VK/NifuY8eO8cADD7B3716r697Fc5fbco07JSUFo9FIaGioVXloaCgHDx4s9T19+/YlJSWF9u3bo6oqhYWFDBs2jP/7v/8rdf8ZM2Ywffr0EuWrV6/Gw8OjzLFeT1xcHE3PZ1EXOLZnK/svRKNBAyisXruOMMed6qYSFxfn7BCqJKk3+0nd2UfqzX5lqbucnJwyH8/mxD1q1Chq167N2rVrqV27Ntu2bePChQuMHTuWt956y9bD2Wz9+vW89tprfPDBB7Ru3ZojR44watQoXn75ZSZPnlxi/4kTJzJmzBjL64yMDCIjI+natSs+Pj7ljsdgMBAXF0eXLl3QbzsE61dTN8yX6B49eH3/RnLS87i9TTtuqeFb7nPdTC6vN61W6+xwqgypN/tJ3dlH6s1+ttRdcW9wWdicuDdv3szvv/9OUFAQLi4uuLi40L59e2bMmMGzzz7Lrl27ynysoKAgNBoNSUlJVuVJSUmEhYWV+p7JkyfTr18/hgwZAsAtt9xCdnY2Tz/9NC+++CIuLtZd0nq9Hr1eX+I4Wq3WoX+EWq0Wjbe558AlNwUXrdYy7anBpMgf/FU4+vdQXUi92U/qzj5Sb/YrS93ZUrc2X3g1Go14e3sD5sR77tw5wDyA7dChQzYdS6fT0apVK9auXWspM5lMrF27ljZt2pT6npycnBLJWaMxJ8ir3a52w3gVjYIvsSa33MsthBDCMWxucTdt2pTdu3dTu3ZtWrduzZtvvolOp+Pjjz+mTp06NgcwZswYBgwYwG233cYdd9zBnDlzyM7Otowy79+/PzVq1GDGjBkA9OzZk9mzZ9OyZUtLV/nkyZPp2bOnJYE7TfGo8uKFRmS+ciGEEA5mc+KeNGkS2dnZALz00kvcd9993HXXXQQGBvLVV1/ZHECfPn1ITk5mypQpJCYm0qJFC1atWmUZsHbq1CmrFvakSZNQFIVJkyZx9uxZgoOD6dmzJ6+++qrN53a4yxcaUdVLK4RJ4hZCCOEgNifubt26WZ7HxMRw8OBBUlNT8ff3t4wst9XIkSMZOXJkqdvWr19v9drV1ZWpU6cydepUu85VoYpb3IV5kJ95aU3uApMTgxJCCHEzsfkad3p6OqmpqVZlAQEBXLx40aZRcTclnSdoPc3Ps5PlGrcQQgiHszlxP/bYYyxbtqxE+ddff81jjz3mkKCqNEt3eYpc4xZCCOFwNifurVu30qlTpxLlHTt2rBzTjjqbZYBaMn4e5uH9yZn513iDEEIIUXY2J+78/HwKCwtLlBsMBnJzcx0SVJV2WeKODjJ3mx9PyXZiQEIIIW4mNifuO+64g48//rhE+bx582jVqpVDgqrSvC5L3IHmxH3igiRuIYQQjmHzqPJXXnmF2NhYdu/eTefOnQFYu3Yt27dvZ/Xq1Q4PsMq5rMVdJ9icuE+n5lBQaELnKguNCCGEKB+bM0m7du3YvHkzkZGRfP3116xYsYKYmBj27NnDXXfdVRExVi2XJe4Qbz0eOg0mFU5fLPsE8kIIIcTV2LWsZ4sWLViyZImjY7k5XDZ7mqIoRAd6sj8hgxMp2dQN9nJubEIIIaq8MiXujIwMy0pa17tX2xErblVpxYk76zwAtYPMiVsGqAkhhHCEMiVuf39/EhISCAkJwc/Pr9QZ0lRVRVEUm9bjvild1lUOEB1kXohbErcQQghHKFPi/v333wkICABg3bp1FRpQlVecuHNTwVhI7SBz97gkbiGEEI5QpsTdoUMHAAoLC9mwYQODBw+mZs2aFRpYleURACiACjkXqF3U4j4hiVsIIYQD2DSq3NXVlZkzZ5Y6AYso4qIBj0Dz8+zzlhb3ufQ8mfpUCCFEudl8O9jdd9/Nhg0bKiKWm4dXiPlndjL+Hlp83MwdGzIRixBCiPKy+Xaw7t27M2HCBPbu3UurVq3w9PS02t6rVy+HBVdlXbbQiKIo1A7yZPeZdE6kZNMwrJqPuhdCCFEuNifu4cOHAzB79uwS22RUeZErRpYXJ+5jcp1bCCFEOdmcuE0mU0XEcXO54l7u4sVGZICaEEKI8pLJsyvCZbOngbnFDXAiRaY9FUIIUT52Je4NGzbQs2dPYmJiiImJoVevXvzxxx+Ojq3qKqWrHJCuciGEEOVmc+JevHgxsbGxeHh48Oyzz/Lss8/i7u5O586dWbp0aUXEWPWUmD3NnLhTsvLJzDM4KyohhBA3AZuvcb/66qu8+eabjB492lL27LPPMnv2bF5++WX69u3r0ACrpCu6yn3ctAR56UjJKuDkhRya1vB1YnBCCCGqMptb3MeOHaNnz54lynv16sXx48cdElSV51WcuM+DqgIQHSjd5UIIIcrP5sQdGRnJ2rVrS5SvWbOGyMhIhwRV5RW3uAvzoCALuHyAmiRuIYQQ9rO5q3zs2LE8++yzxMfH07ZtWwA2bdrEokWLeOeddxweYJWk8wStBxhyzNe59d6W69yy2IgQQojysDlxP/PMM4SFhTFr1iy+/vprABo1asRXX33F/fff7/AAqyzPIEg7Zb7OHVDH0uKWxC2EEKI8bE7cAA888AAPPPCAo2O5uXiGmBN30SQslq5yma9cCCFEOcgELBXlylvCiganpeUYuJhd4KyohBBCVHE2t7j9/f1RFKVEuaIouLm5ERMTw8CBAxk0aJBDAqyyLltoBMBdpyHc142E9DyOX8jG31PnxOCEEEJUVTa3uKdMmYKLiwv33nsv06dPZ/r06dx77724uLgwYsQI6tevzzPPPMMnn3xSEfFWHVe0uOFSq/t4snSXCyGEsI/NLe4///yTV155hWHDhlmVf/TRR6xevZrvvvuOZs2a8e677zJ06FCHBVrlWNbkPm8pig7yZPOxC3KdWwghhN1sbnH/9ttvxMbGlijv3Lkzv/32GwA9evTg2LFj5Y+uKrti9jSAOjKyXAghRDnZnLgDAgJYsWJFifIVK1YQEBAAQHZ2Nt7e3uWPriqzXOO+rKtcErcQQohysrmrfPLkyTzzzDOsW7eOO+64A4Dt27ezcuVK5s2bB0BcXBwdOnRwbKRVTSnXuGsHeQDm2dNUVS11kJ8QQghxLTYn7qFDh9K4cWPef/99vv/+ewAaNGjAhg0bLDOpjR071rFRVkXFiTsnFYyFoHElMsADFwWyC4wkZ+UT4u3m3BiFEEJUOXZNwNKuXTvatWvn6FhuLh6BgAKokHMBvEPRu2qo4e/O6dRcjidnS+IWQghhM7smYDl69CiTJk2ib9++nD9vHjX966+/8s8//zg0uCrNRVOUvLmiu9wLkBnUhBBC2MfmxL1hwwZuueUWtm7dynfffUdWlnn1q927dzN16lSHB1illXadO9B8nVuW9xRCCGEPmxP3hAkTeOWVV4iLi0OnuzT71913382WLVscGlyVd8XsaXBpZLks7ymEEMIeNifuvXv3lrrASEhICCkpKaW8oxorZRKWS+ty5zgjIiGEEFWczYnbz8+PhISEEuW7du2iRo0aDgnqpuFTVB8p/1qKLl8lzGRSnRGVEEKIKszmxP3YY48xfvx4EhMTURQFk8nEpk2bGDduHP3796+IGKuuWneaf57YZCmq4eeOVqOQX2giISPPSYEJIYSoqmxO3K+99hoNGzYkMjKSrKwsGjduzH/+8x/atm3LpEmT7Api7ty5REdH4+bmRuvWrdm2bds1909LS2PEiBGEh4ej1+upX78+K1eutOvcFapWG0CBC4chMwkAV40LkQHmAWqy2IgQQghb2Zy4dTodn3zyCceOHePnn39m8eLFHDx4kC+++AKNRmNzAF999RVjxoxh6tSp/P333zRv3pxu3bpZbjO7UkFBAV26dOHEiRN8++23HDp0iE8++aRydtN7BEBoU/Pzk5da3bWLVwmTW8KEEELYyObE/dJLL5GTk0NkZCQ9evTg0UcfpV69euTm5vLSSy/ZHMDs2bMZOnQogwYNonHjxsybNw8PDw8WLFhQ6v4LFiwgNTWV5cuX065dO6Kjo+nQoQPNmze3+dw3RHTRRDWXJ24ZWS6EEMJONs+cNn36dIYNG4aHh4dVeU5ODtOnT2fKlCllPlZBQQE7d+5k4sSJljIXFxdiY2PZvHlzqe/56aefaNOmDSNGjODHH38kODiYvn37Mn78+FJb/Pn5+eTn51teZ2RkAGAwGDAYDGWO9WqKj3G1Yyk178R16zzUE39SWLRPpL95xrSj5zMdEkNVdL16E6WTerOf1J19pN7sZ0vd2VK/Nifuqy2OsXv3bsvqYGWVkpKC0WgkNDTUqjw0NJSDBw+W+p5jx47x+++/88QTT7By5UqOHDnC8OHDMRgMpU4AM2PGDKZPn16ifPXq1SW+fJRHXFxcqeW6wmy6A0ryQdb8uIwCrQ/n0xVAw/5TyZXz2vwNdLV6E9cm9WY/qTv7SL3Zryx1l5NT9luEy5y4/f39URQFRVGoX7++VfI2Go1kZWUxbNiwMp/YXiaTiZCQED7++GM0Gg2tWrXi7NmzzJw5s9TEPXHiRMaMGWN5nZGRQWRkJF27dsXHx6fc8RgMBuLi4ujSpQtarbbUfdTE91GSD9ClgSdqwx60TM9j7v6NpBa40LVbF1w1ds08W6WVpd5ESVJv9pO6s4/Um/1sqbvi3uCyKHPinjNnDqqqMnjwYKZPn46vr69lm06nIzo6mjZt2pT5xABBQUFoNBqSkpKsypOSkggLCyv1PeHh4Wi1Wqtu8UaNGpGYmEhBQYHVbG4Aer0evV5f4jhardahf4TXPF50e0g+gOvpLXDLg9QMcEXv6kJ+oYmkrELLbGrVkaN/D9WF1Jv9pO7sI/Vmv7LUnS11W+bEPWDAAABq165N27ZtHfIL1Ol0tGrVirVr19K7d2/A3KJeu3YtI0eOLPU97dq1Y+nSpZhMJlxczC3Vf//9l/Dw8BJJu9KIbgfbP7EMUHNxUagd5MnBxEyOX8iu1olbCCGEbWzuo+3QoYMlaefl5ZGRkWH1sNWYMWP45JNP+Oyzzzhw4ADPPPMM2dnZDBo0CID+/ftbDV575plnSE1NZdSoUfz777/88ssvvPbaa4wYMcLmc98wUUUjy5P2mdfnBqKLbwmTe7mFEELYwObBaTk5Obzwwgt8/fXXXLhwocR2o9Fo0/H69OlDcnIyU6ZMITExkRYtWrBq1SrLgLVTp05ZWtYAkZGR/Pbbb4wePZpmzZpRo0YNRo0axfjx4239KDeOVwgENYCUQ3DyL2h0H7WDL019KoQQQpSVzYn7+eefZ926dXz44Yf069ePuXPncvbsWT766CNef/11u4IYOXLkVbvG169fX6KsTZs2VW8lsuh2RYl7kzlxF7e45V5uIYQQNrC5q3zFihV88MEHPPTQQ7i6unLXXXcxadIkXnvtNZYsWVIRMd4cirvLT/wJXFreUxK3EEIIW9icuFNTU6lTpw4APj4+pKaar9m2b9+ejRs3Oja6m0l0e/PPxL2Qe9Eye9rZtFzyC227vCCEEKL6sjlx16lTh+PHjwPQsGFDvv76a8DcEvfz83NocDcV7zAIjAFUOLWFIC8dXnpXVBVOXZC1uYUQQpSNzYl70KBB7N69G4AJEyYwd+5c3NzcGD16NM8//7zDA7ypXNZdriiKpdV9+HyWE4MSQghRldg8OG306NGW57GxsRw8eJCdO3cSExNDs2bNHBrcTSe6Pfz9meV+7tui/dl7Np3V/yTS45ZwJwcnhBCiKrA5cV8pKiqKqKgoR8Ry8ytucSfshrwMejaPYOGmE8TtTyK3wIi7zvZlUYUQQlQvZe4q//3332ncuHGpk6ykp6fTpEkT/vjjD4cGd9PxrQH+tUE1wakttIz0o6a/O9kFRn4/WPr640IIIcTlypy458yZw9ChQ0tdmMPX15f//ve/zJ4926HB3ZQs63Obr3P3bB4BwE+7zzoxKCGEEFVFmRP37t27ueeee666vWvXruzcudMhQd3UoopuCzthvs7ds5k5ca87lExGnqx3K4QQ4trKnLiTkpKuubCIq6srycnJDgnqplbc4j63C/KzaBTuTUyIFwWFJlb/k3Tt9wohhKj2ypy4a9Sowb59+666fc+ePYSHy8jo6/KrBb61QDXC6S3m7vJmxd3l55wcnBBCiMquzIm7R48eTJ48mby8vBLbcnNzmTp1Kvfdd59Dg7tpRVt3l/dqYU7cm46kcCEr31lRCSGEqALKnLgnTZpEamoq9evX58033+THH3/kxx9/5I033qBBgwakpqby4osvVmSsNw/LADVz4q4d5MktNXwxmlRW7kt0YmBCCCEquzLfxx0aGspff/3FM888w8SJE1FVFQBFUejWrRtz5861LMUprqP4fu6zf0NBNug86dk8nL1n01mx+xz97pT74oUQQpTOpglYoqKiWLlyJRcvXuTIkSOoqkq9evXw9/evqPhuTv7R4FMDMs7C6W1QtxP3NYvgtZUH2X4ilYT0XMJ93Z0dpRBCiErI5rnKAfz9/bn99tu54447JGnbQ1EuXecu6i6P8HPn9mh/VBV+3p3gxOCEEEJUZnYlbuEAlgVHNlmKehVNxrJij4wuF0IIUTpJ3M5S3OI+uwMMuQB0vyUcjYvCnjPpHE/JdmJwQgghKitJ3M4SUAe8wsBYAKe2ABDkpadt3UAAfpZ7uoUQQpRCErezKAo0KJpCdus8S3Gv5pcmYykeuS+EEEIUk8TtTG2fBcUF/l0FCXsA6NokDJ3GhcPnsziYmOnkAIUQQlQ2kridKbAuNHnQ/PyPWQD4umvp2CAYgBXSXS6EEOIKkrid7a6x5p/7f4TkQwCWpT5X7JHuciGEENYkcTtbaGNoeB+gwh/m9cw7NwrBQ6fhdGouu06nOTU8IYQQlYsk7sqguNW99xtIPY6HzpXYRubpY6W7XAghxOUkcVcGNW6FmFjzUp+b5gCXRpf/vCcBo0m6y4UQQphJ4q4s7hpn/rlrCaSf5a76Qfi6a0nOzOebHaedG5sQQohKQxJ3ZRHVBqLag8kAf72H3lXDiE51AZjx60FSZJ1uIYQQSOKuXP5T1OreuQiyzjOoXW0ahfuQnmvg1V8OODU0IYQQlYMk7sqkTkeo0QoKc2HzXLQaF2Y8eAuKAj/sOsufh1OcHaEQQggnk8RdmSgK/Od58/Ptn0JOKi0i/eh/ZxQAk5bvJc9gdGKAQgghnE0Sd2VT/x4IvQUKsmDbxwCM7daAUB89Jy7kMHfdEScHKIQQwpkkcVc2igJ3jTE/3/Ih5Gfi46ZlWs8mAMzbcJTDSTKHuRBCVFeSuCujxvdDYD3IS4Pt8wG4p2kYnRuGYDCq/N8PezHJvd1CCFEtSeKujFw0l1rdm9+HvAwUReGl3k3x0GnYfuIi3+yUe7uFEKI6ksRdWd3yCPjXhuxk+OG/YDJRw8+dMV3qA/DaSrm3WwghqiNJ3JWVRgsPzweNHg6thA2vAzCwbTSN5d5uIYSotiRxV2Y1WkHPd8zPN7wB+3/CVe7tFkKIak0Sd2XX4nG4c7j5+Q/DIGk/zSP9GNAmGoCJP+zhfGae8+ITQghxQ0nirgq6vAy1/wOGbFj2OOSkMrZrfWr6u3M6NZcnPtkq17uFEKKakMRdFWhc4eFF4FcLLp6A757CW6uwZEhrwnzcOHw+iyc/3UpqdoGzIxVCCFHBKkXinjt3LtHR0bi5udG6dWu2bdtWpvctW7YMRVHo3bt3xQZYGXgGwmNfgtYDjv4Oa6cRFejJl0/fSYi3noOJmTz56VbSciR5CyHEzczpifurr75izJgxTJ06lb///pvmzZvTrVs3zp8/f833nThxgnHjxnHXXXfdoEgrgbCm0PsD8/O/3oM9X1M7yJOlQ+8kyEvH/oQM+s3fRnquwblxCiGEqDBOT9yzZ89m6NChDBo0iMaNGzNv3jw8PDxYsGDBVd9jNBp54oknmD59OnXq1LmB0VYCTR6Au8aan//0PzgXT0yIF0uH3kmAp469Z9MZsGAbmXmSvIUQ4mbk6syTFxQUsHPnTiZOnGgpc3FxITY2ls2bN1/1fS+99BIhISE89dRT/PHHH9c8R35+Pvn5lwZuZWRkAGAwGDAYyp/cio/hiGOVWfsX0JzbjcvRNahL+1D42DJqhzZl0YBW9F+4g/jTaQxcsI35/W/FU+/UX/FVOaXebgJSb/aTurOP1Jv9bKk7W+rXqf+rp6SkYDQaCQ0NtSoPDQ3l4MGDpb7nzz//ZP78+cTHx5fpHDNmzGD69OklylevXo2Hh4fNMV9NXFycw45VFq6eD3OX2wF8ss6iLOjGjujhJPm2ZEgMzN2vYeepNB56Zy3/bWREr7mhodnkRtfbzULqzX5Sd/aRerNfWeouJyenzMernM2xq8jMzKRfv3588sknBAUFlek9EydOZMyYMZbXGRkZREZG0rVrV3x8fModk8FgIC4uji5duqDVast9PJvkxmL6fjCuJzbS+vg7mGJfxtT9adqczWDAop0czSzky4RA5jzajAg/9xsb23U4td6qMKk3+0nd2UfqzX621F1xb3BZODVxBwUFodFoSEpKsipPSkoiLCysxP5Hjx7lxIkT9OzZ01JmMpkAcHV15dChQ9StW9fqPXq9Hr1eX+JYWq3WoX+Ejj5e2U4aDP2+h1/Govz9GZq4F9GkHafVPW/w2eA7GLhgG7tOp9Nz7mbeeKgZ3W8Jv7HxlYFT6u0mIPVmP6k7+0i92a8sdWdL3Tp1cJpOp6NVq1asXbvWUmYymVi7di1t2rQpsX/Dhg3Zu3cv8fHxlkevXr3o1KkT8fHxREZG3sjwKweN1jwtatdXAAW2fwpLH6VVqAu/PHsXzSP9yMgr5JklfzPx+73kFhidHbEQQohycPqo8jFjxvDJJ5/w2WefceDAAZ555hmys7MZNGgQAP3797cMXnNzc6Np06ZWDz8/P7y9vWnatCk6nc6ZH8V5FAXa/g/6LC66z3stzO9KLZdkvh3Whmc61kVR4Mttp+j1/p8cSCh7l4wQQojKxemJu0+fPrz11ltMmTKFFi1aEB8fz6pVqywD1k6dOkVCQoKTo6wiGt0Hg34F73BIPgifdkZ7dhvj72nI4qdaE+Kt5/D5LO6fu4nPN59AVVVnRyyEEMJGlWJw2siRIxk5cmSp29avX3/N9y5atMjxAVVlES1g6O+wtA8k7oEF98DtQ2jXeTK/jrqL57/dw+8HzzPlx3/Y+G8Kbzx0C4FeJccACCGEqJyc3uIWFcAnwtzybt4XUGH7J/D+7QSe+Jn5/VsxtWdjdBoX1hxIouPM9cxdd0SufQshRBUhiftmpfeCBz6EASsgsB5kJcG3g1GWPMSghiZ+GNGWJhE+ZOYXMvO3Q3R6az1fbT+F0STd50IIUZlJ4r7Z1f4PPLMJOr0IGr15gZIP2tDk8MesGHY7c/q0oIafO4kZeYz/bi/3zNnI2gNJcv1bCCEqKUnc1YGrHjq8AMM3Q51OYMyHda/g8vFd9Pb8h9/H/odJ9zbCz0PL4fNZPPXZDvp8vIVdpy46O3IhhBBXkMRdnQTWhX4/wEPzwTMEUv6FpY+gX9SNIWHH2DCuI8M61EXv6sK246k88MFf9Ju/lbUHkjBJF7oQQlQKkrirG0WBWx6GkduhzUhwdYezO2DJQ/gu7cGEemdYN7YDj7SqiYsCfxxO4anPdtBp1nrm/3mcDFl1TAghnEoSd3Xl7gfdXoXn9lxK4Ge2w+KHiPjufma2TGHDuI48/Z86+Li5cvJCDi//vJ82r61l6o/7OJqc5exPIIQQ1ZIk7urOK8ScwEfthjtHgKsbnNkGix8kcvkD/F/NfWwZdyevPtCUeiFeZBcY+WzzSTrP2kD/BdtYsfuc3EomhBA3UKWYgEVUAt6hcM9r0G4UbJoDOxbA6a1weiseWk+eaHgvfe97hE1qKxZtOc3ag+fZ+G8yG/9NxkvvSrcmYTzQsgZt6gaicVGc/WmEEOKmJYlbWPMOhXtmmBP49vmw92u4eAL2fo2y92vaewbTvsmDJNzWi8WnA1ken8DZtFy++/sM3/19hhBvPb2aR9C7ZQ2aRPigKJLEhRDCkSRxi9J5h8HdL0Kn/4MzO8wJfN93kJ0M2z4ifNtHPB9Qh3G3Pcg/gZ1ZetyLX/Ymcj4zn0//PM6nfx6nbrAnXZuEEdsolJaRfrhIS1wIIcpNEre4NkWByNvNj26vwdF15iR+8BdIPYby51s05S1eC6rPS+3vZ6tHR5Ycc2fNgfMcTc7mw/VH+XD9UYK8dHRuGEps41DaxwThKjlcCCHsIolblJ1GC/W7mh/5WXDoV/jnBzgSByn/4vrHTNoxk3bBjcjr2ItN+vb8cMqTDf+mkJJVwFc7TvPVjtO4aV1oVzeQoAKFpqk51A31dfYnE0KIKkMSt7CP3guaPWJ+5KXDoVVFSXwNJB/ALfkAnXmDzr61MN7aiX+97uDH9BhW/JvD2bRc1h5MBjR89faf1PR3p23dQNrFBNGmbiAh3m7O/nRCCFFpSeIW5efmC837mB+5aXBoJez7Ho5vgPRTaHZ9RiM+o5Hiwvgat5HSpD1rChoz/4CeEzmunLmYy9c7zvD1jjMA1A/1om1dcxK/Lcpflh0VQojLSOIWjuXuBy36mh8F2XDyLziyFo6uhZR/Uc5sI/jMNh4HHnZxg3qtOePdnL8K6vL9+XB2Jhbyb1IW/yZlseivEwDUCfbk9qgAbov25/boAKICPWS0uhCi2pLELSqOzhPqdTE/ANJOm1cnO7oW9dh6tHnpcHIDtdlAbeAJxYXCWo0549WMrYUx/Hwxkj+SPTiWnM2x5Gy+2nEagCAvPbdH+3NrLX+aR/rRtIYPHjr5UxZCVA/yv524cfwiodUAaDWAwvw8/vz+E/4TrUNzbrt5spe0U7ie30f0+X1EA30AU2AIKX7N2efSgN+zovjxfCgpWfDrvkR+3ZcIgIsC9UO9aVnLj+Y1/Wge6Ue9EC9cNTIxoBDi5iOJWziHi4YMj1qYbuuBRvtfc1lGgmW2Nk5tgcQ9uGSfJyQ7jruJ427gZb0rOf6NOerWmJ2GKNamhrI1K4iDiZkcTMzky23mVrm7VkPjCB+aRvjQpIYvTSN8qRfqhVaSuRCiipPELSoPn3Bo0tv8ADDkwrl489zpp7fBme0oWUl4XthDM/bQDBgEqB5aMn1iOOlah12GmqxLC+Xv/JrsPGlk58lLa4rrXF1oGOZNkwhfmkT40Cjcm3qh3vi4aW/8ZxVCCDtJ4haVl9YdotqYHwCqCmmnzKuYndkOiXshcS9KfgY+aQe4hQPcAvRXADfI1wVwXluDo6YwducEcsgQwomzYfx4JowvuXTLWYSvG/XDvGkQ6k39UG8ahHkTE+KFm1bjlI8thBDXIolbVB2KAv5R5sctD5vLipN5URInaR8k7oG0U+gLUoksSCWSvXRUAN2lQ6Vqgtir1mFrfm12ZcawI7026w95WLa7KBAV6GlO5kVJvUGYF9GBnnLtXAjhVJK4RdV2eTJvdN+l8rwMSD0KF45C6rGin0Wvc1MJMKbQgRQ6aLcBoKJw3i2af5R6bMqLZmteLU6lhLAqJYtV/yRaDqvTuFA3xIt6IV7EhHhRN9iLuiGeRAd6SgtdCHFDSOIWNyc3H4hoaX5cKfcinD8IZ3fC2R1wZidK+ilC844TynHuBiia86VA48UF1xBOq8EczvfjeGEQZ5KCOZoYwmo1nLyiHRUFIv09qBvsSd1gL2oHe1I70JOoIE/CfdxkgRUhhMNI4hbVj7u/9bVzgKzz5lXQzu4w/0z6B3JS0BmzCDdmEc4x7lCAy8axmVBIdgnhX1MEBwojOJIewZGLNfj6UAQZeFn207m6EBXgQXSQJ7WDPIkK9KB2oCe1gz0J9ZakLoSwjSRuIQC8QqBhD/OjWEEOpJ82TxyTdrLo+Snz48JRXHJTCTUlEUoSd7nusjpchosfZwjhiCGIE2oIpy+EcCo5lBVqCIn4o2K+Tu6mdSE60JzQo4M8LQk9KtCDYC+9zBAnhChBErcQV6PzgOAG5kdpslMg+RCkHDL/TD4EKf9Cxll8TGk0Jo3Gmn9LvM2AlvNKIKeNAZxVA0hICSQhOZCDaiDr1EDOqQFk4ImHzpVaAR5EBXoQFWhO5jV89VzIg0KjCa3cxSZEtSSJWwh7eQaZH9HtrMvzMuDicbh44tIjteh1+mm0JgM11ERquCSWPGaRLNWNs2oQ5y4EcjYliHNqEFvVIHOZGsSM3XGE+XkQ6V/0CHAnMsDD/PD3IMhLJ611IW5SkriFcDQ3Hwhvbn5cyVgIGWch/cwVP89Cxhnzz9xUvJQ8GihnaMCZUk9hUDUkZAVwNjOYs6fMCf1PNYgzajBn1SBSNYEE+/lSw8/d/PB3J6LoeU1/d8J83WQWOSGqKEncQtxIGtdLt69dTUFOUTIvur6efsb8PP0Matop1LQzaBUjtZRkapF81cNcyPQmMSOAhJMBJKoBHFcD2awGkEAAiQRi8qpBSIAfNfzNydyc1D2o4e9OuK+b3N4mRCUliVuIykbnAUH1zI8rFBoMrPzlZ3rcdSva7IRLg+UsA+dOo6afQSnMJVDJJFDJpAknSz9PASQn+HDuXBDn1EDOqUGsUwNJVANIVn0xegSh8w3D1y+ICH8PIvzcqOFnbrmH+7kR5KmXEfFCOIEkbiGqGsUFfCIgMApq3Vlys6qa71XPOFf0OGv+mWl+raafgbTTKIW5BCsZBCsZNOdYyfMYgVTIv6AlGV9SVB+SVT/2qf78pgZyXgkm3zMM1ScSt8CahPh5E+7nToSvG2G+bkT4uuPnoZVr7UI4mCRuIW42igIeAeZHWNOSm8E8VWzuxaJu+DOXdcefRs1MxJR5HrLOozFkolcM1CSFmkpKyXPlA8lgOq+QjC8JaiBn1UA2F7Xgk12CKPCMQPGtiad/GKF+HoT5uhHq40aYjznBB3np0UjLXYgyk8QtRHV0eXIPb2a9CbBc3TbkQnayeYKarPOQlQSZCZjSTlNw4RRknEGbdQ6NqYBQ0ghV0mjBUetz5Zkf+Ymu5m54/EhVvflH9WEjvqTig0EfCJ7BuPqEoPcLwycglBAfd0uSD/Vxw8fNVVrvQiCJWwhxLVp38KtlflzGBS6tr6aqkHPBMoCOdPPAOmPaGQovnkbJOIs2Jwm9UkiUcp4ozpc8jxHIKHqcAaOqkIoPKaoviaov+/AlTfGjQB+A0SMYvELQ+oTi7h+Gd2Aowb4+hHjrCfF2w8ddEry4uUniFkKUj6Jcuqf9srnhNVzWcjcaIDPBnNSzk4seKZiykylIT6Iw4zzkpOCam4KbIQ2NohJMOsFKOo0uP5cBSC96nL1UnKZ6kqL6cgBfLuBHjjaAfLcgjB4hKN6haH3D0PuGcijVRNS5DCICPAn0lC56UTVJ4hZCVDyN9vot92JGg3lWuuxkyD4PWckYMhLJSU3AkJGEKSsZTU4KuvwLeBguosGIn5KNn5JNDOeKjgFkFz2uuGMudYEXF1RfjuNNlsafPF0Ahe6BqJ5BaLyCcfMOxN03GO+AEPwCQgn098NTL614UXlI4hZCVC4aLfiEmx9FtIBvafuaTJCXZr7+nn2egowksi+cI+9iAsaMRJTs82hzk3HLT8GrMA0XTAQoWQQoWeb3q5gH2OUDaaWHk69qOY8XWS4+ZLn6k6cPxOAWiOoRjItPCDqfMDz8w/AKDMfPPwAfbx8UV70DK0QIa5K4hRBVl4vLpUF2NEQH6K6yqyE/j99WfENsm+a45F0kMzWBnNRE8tOTKMw8j0t2Mpr8i+gK0nE3ZuBtysAVI3rFQCgXCVUvguGkubs+69phGXAlT3HD4OKOwdUd1dUDk86HQq9wFN8ItP6RuAdF4RkUiat/pHnFOmnRizKSxC2EqB5cNBRofSCkERqtFr+64Het/VUV8jPJSU8h7UISWRcTyUtLoiCj6Fa5nGR0eRfwMFzAy5iGnykdrWIEQEshWjULjFnmbvt8zN32F4HTJU+Vi54MjT8Frl4Uunph1PuguPng4uaL1sMHvZc/bj6BePgEo/Es+qLi7g/uAaAtcbFB3OQkcQshRGkUBdx88HDzwSO0TpnekpeXS0rqRdLSLpKekU5WRjrZWenkZmdQmJ2KLjsJz/xEfArOE2RKIVy5QKCSiTv5uBsTrZN8GRUobuRpfTDo/DDq/cAjAI1nADrvINx8AtF6BZmTvEegOdF7BIK7H7jIlLZVVaVI3HPnzmXmzJkkJibSvHlz3nvvPe64445S9/3kk0/4/PPP2bdvHwCtWrXitddeu+r+Qghxo7i5uVMzwp2aERHX3ddoUrmYU8Dh9Awyz58k52ISeZkXyctOozAnDVNuOmp+Bkp+JlpDFu7GTPyULPzIsvx0VUzo1Dx0BXlQcN7chX/h+nGqKOS7+lCg96PQLQDcA9C4eaPz8EHn4YPGzRt0nqDzQtG4EZp+COV0ABR/CXDzk5a+Ezk9cX/11VeMGTOGefPm0bp1a+bMmUO3bt04dOgQISEhJfZfv349jz/+OG3btsXNzY033niDrl278s8//1CjRg0nfAIhhLCdxkUhyEtPkFcw1Ai+7v5Gk0paTgEXcwo4lm0gNSuPzPSL5GUkk5+RQmHWBUw5qZB7EdeCNPQF6fiQiR9Z+Bcl+gAlEx8lBwUVt8J03ArTIfsqc9kXcQXuBDj2tnU8Gj0mvS+4+eHi4Y+LmzeK3ht0XqD3Nj8uf+7mZ27pu/leesggPrs4PXHPnj2boUOHMmjQIADmzZvHL7/8woIFC5gwYUKJ/ZcsWWL1+tNPP+W7775j7dq19O/f/4bELIQQN5rGRSHQS0+g1+XJ7uote1VVycgr5EJWPheyC/g325z007NyyM1IoTAzBWPWBZTcVFzyUqEgGxdDNh7k4kkeHko+XuTiQR5eSi6+mG+58yEbjaKiMeajyTkPOech1b7PpLq6obj5FSX3oiSvu/x50U8336Jr+n5FP4ta/W6+1bLL36mJu6CggJ07dzJx4kRLmYuLC7GxsWzevLlMx8jJycFgMBAQEFDq9vz8fPLz8y2vMzIyADAYDBgMhnJEj+U4l/8UZSP1Zh+pN/tVx7rzcAUPPz2Rfle2bOuWur/JZE72F3MKSMsxkJpTwMnMPLbt/ofgmrXJzDeSlp1PXnYGak4qal46Sl4aHqZsvJRcvIqSvreSiye5eCp5eGMu91Gy8SEHXyUbHyUHAKUwD7ISzQ87qJjHIRQncdXNr+i5z2XPfVHdfEBvfqhuvkXPi74YVOBoflv+5mz5u3Rq4k5JScFoNBIaGmpVHhoaysGDB8t0jPHjxxMREUFsbGyp22fMmMH06dNLlK9evRoPDw/bg76KuLg4hx2rOpF6s4/Um/2k7mzjBdwdAZiOmW+o9yt64Aa4oaqh5Jsg2wA5hZBdqHCu0Pw6uxByCpWin5ee5xWacCnMxaeoJe9JblHiN7fuL3/tTQ4+Sk5Riz8LHyUbP7LwVPJRUCEv3fygaAEdG6goFGrcKXTRY3TRl/hpdNFTqHHDoHGn0MUdg8bD/Lzop0HjQaHGnVxt4DW/AJTlby4nJ6fMcTu9q7w8Xn/9dZYtW8b69etxcyt9oMTEiRMZM2aM5XVGRgaRkZF07doVHx+fcsdgMBiIi4ujS5cuaLXach+vupB6s4/Um/2k7uxTUfVmNKlk5hWSlltAem4h6bkG0nIMZOSZf17MNXAi10BaroGM3EIy8sw/0/MM5BlMaCnEl2x8lSx8ycZHyS56fallX/zamxy8lRy8yS36mYNOMaKgojXmoDWWPWleSXVxpXBCQqmJ25a6K+4NLgunJu6goCA0Gg1JSUlW5UlJSYSFhV3zvW+99Ravv/46a9asoVmzZlfdT6/Xo9eXHACh1Wod+kfo6ONVF1Jv9pF6s5/UnX0c/n8m4KbXEexre89nfqGR9KKEbv5pIP2yR0augaSi52lFr9NyzK9zC4yAihsFRQk9F3fy8SAfDyUfd/LxJA93JR8P8vBU8vAhBy9y8VZyi3oAcvF1ycFLycWEK4Haa687X5a6s6VunZq4dTodrVq1Yu3atfTu3RsAk8nE2rVrGTly5FXf9+abb/Lqq6/y22+/cdttt92gaIUQQlQGelcNId4aQrxtf2+ewWhO5EXJPC2ngMy8Sy16808DyXmXvhhk5pufZ+YZMKnWx/PWu7L3Bs965/Su8jFjxjBgwABuu+027rjjDubMmUN2drZllHn//v2pUaMGM2bMAOCNN95gypQpLF26lOjoaBITzYMavLy88PLyctrnEEIIUfm5aTW4aTWE+Nh+H7qqqmQXmBN/caLPLzRWQJTX5vTE3adPH5KTk5kyZQqJiYm0aNGCVatWWQasnTp1ChcXF8v+H374IQUFBTz88MNWx5k6dSrTpk27kaELIYSoRhRFwUvvipfelQjcnRaH0xM3wMiRI6/aNb5+/Xqr1ydOnKj4gIQQQohKyuX6uwghhBCispDELYQQQlQhkriFEEKIKkQStxBCCFGFSOIWQgghqhBJ3EIIIUQVIolbCCGEqEIkcQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaqQSrE62I2kquZV0DMyMhxyPIPBQE5ODhkZGWi1WoccszqQerOP1Jv9pO7sI/VmP1vqrjgnFeeoa6l2iTszMxOAyMhIJ0cihBBCWMvMzMTX1/ea+yhqWdL7TcRkMnHu3Dm8vb1RFKXcx8vIyCAyMpLTp0/j4+PjgAirB6k3+0i92U/qzj5Sb/azpe5UVSUzM5OIiAhcXK59FbvatbhdXFyoWbOmw4/r4+Mjf9R2kHqzj9Sb/aTu7CP1Zr+y1t31WtrFZHCaEEIIUYVI4hZCCCGqEEnc5aTX65k6dSp6vd7ZoVQpUm/2kXqzn9SdfaTe7FdRdVftBqcJIYQQVZm0uIUQQogqRBK3EEIIUYVI4hZCCCGqEEncQgghRBUiibsc5s6dS3R0NG5ubrRu3Zpt27Y5O6RKZ+PGjfTs2ZOIiAgURWH58uVW21VVZcqUKYSHh+Pu7k5sbCyHDx92TrCVyIwZM7j99tvx9vYmJCSE3r17c+jQIat98vLyGDFiBIGBgXh5efHQQw+RlJTkpIgrhw8//JBmzZpZJrxo06YNv/76q2W71FnZvP766yiKwnPPPWcpk7or3bRp01AUxerRsGFDy/aKqDdJ3Hb66quvGDNmDFOnTuXvv/+mefPmdOvWjfPnzzs7tEolOzub5s2bM3fu3FK3v/nmm7z77rvMmzePrVu34unpSbdu3cjLy7vBkVYuGzZsYMSIEWzZsoW4uDgMBgNdu3YlOzvbss/o0aNZsWIF33zzDRs2bODcuXM8+OCDToza+WrWrMnrr7/Ozp072bFjB3fffTf3338///zzDyB1Vhbbt2/no48+olmzZlblUndX16RJExISEiyPP//807KtQupNFXa544471BEjRlheG41GNSIiQp0xY4YTo6rcAPWHH36wvDaZTGpYWJg6c+ZMS1laWpqq1+vVL7/80gkRVl7nz59XAXXDhg2qqprrSavVqt98841lnwMHDqiAunnzZmeFWSn5+/urn376qdRZGWRmZqr16tVT4+Li1A4dOqijRo1SVVX+3q5l6tSpavPmzUvdVlH1Ji1uOxQUFLBz505iY2MtZS4uLsTGxrJ582YnRla1HD9+nMTERKt69PX1pXXr1lKPV0hPTwcgICAAgJ07d2IwGKzqrmHDhtSqVUvqrojRaGTZsmVkZ2fTpk0bqbMyGDFiBPfee69VHYH8vV3P4cOHiYiIoE6dOjzxxBOcOnUKqLh6q3aLjDhCSkoKRqOR0NBQq/LQ0FAOHjzopKiqnsTERIBS67F4mzCvaPfcc8/Rrl07mjZtCpjrTqfT4efnZ7Wv1B3s3buXNm3akJeXh5eXFz/88AONGzcmPj5e6uwali1bxt9//8327dtLbJO/t6tr3bo1ixYtokGDBiQkJDB9+nTuuusu9u3bV2H1JolbiEpuxIgR7Nu3z+q6mbi6Bg0aEB8fT3p6Ot9++y0DBgxgw4YNzg6rUjt9+jSjRo0iLi4ONzc3Z4dTpXTv3t3yvFmzZrRu3ZqoqCi+/vpr3N3dK+Sc0lVuh6CgIDQaTYmRgUlJSYSFhTkpqqqnuK6kHq9u5MiR/Pzzz6xbt85qOdqwsDAKCgpIS0uz2l/qDnQ6HTExMbRq1YoZM2bQvHlz3nnnHamza9i5cyfnz5/n1ltvxdXVFVdXVzZs2MC7776Lq6sroaGhUndl5OfnR/369Tly5EiF/c1J4raDTqejVatWrF271lJmMplYu3Ytbdq0cWJkVUvt2rUJCwuzqseMjAy2bt1a7etRVVVGjhzJDz/8wO+//07t2rWttrdq1QqtVmtVd4cOHeLUqVPVvu6uZDKZyM/Plzq7hs6dO7N3717i4+Mtj9tuu40nnnjC8lzqrmyysrI4evQo4eHhFfc3Z/ewtmpu2bJlql6vVxctWqTu379fffrpp1U/Pz81MTHR2aFVKpmZmequXbvUXbt2qYA6e/ZsddeuXerJkydVVVXV119/XfXz81N//PFHdc+ePer999+v1q5dW83NzXVy5M71zDPPqL6+vur69evVhIQEyyMnJ8eyz7Bhw9RatWqpv//+u7pjxw61TZs2aps2bZwYtfNNmDBB3bBhg3r8+HF1z5496oQJE1RFUdTVq1erqip1ZovLR5WrqtTd1YwdO1Zdv369evz4cXXTpk1qbGysGhQUpJ4/f15V1YqpN0nc5fDee++ptWrVUnU6nXrHHXeoW7ZscXZIlc66detUoMRjwIABqqqabwmbPHmyGhoaqur1erVz587qoUOHnBt0JVBanQHqwoULLfvk5uaqw4cPV/39/VUPDw/1gQceUBMSEpwXdCUwePBgNSoqStXpdGpwcLDauXNnS9JWVakzW1yZuKXuStenTx81PDxc1el0ao0aNdQ+ffqoR44csWyviHqTZT2FEEKIKkSucQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaoQSdxCCCFEFSKJWwghhKhCJHELIYQQVYgkbiGqCYPBwKJFi2jfvj3BwcG4u7vTrFkz3njjDQoKCpwdnhCijGTKUyGqifj4eMaOHcvw4cNp2bIleXl57N27l2nTphEeHs5vv/2GVqt1dphCiOuQFrcQ1UTTpk1Zu3YtDz30EHXq1KFx48b06dOHjRs3sm/fPubMmQOAoiilPp577jnLsS5evEj//v3x9/fHw8OD7t27c/jwYcv2wYMH06xZM/Lz8wEoKCigZcuW9O/fH4ATJ06gKArx8fGW90yePBlFUSxxCCFKJ4lbiGrC1dW11PLg4GAefPBBlixZYilbuHAhCQkJlseVawcPHDiQHTt28NNPP7F582ZUVaVHjx4YDAYA3n33XbKzs5kwYQIAL774Imlpabz//vulxnDmzBnmzJmDu7u7Iz6qEDe10v8lCyFuWk2aNOHkyZNWZQaDAY1GY3nt5+dHWFiY5bVOp7M8P3z4MD/99BObNm2ibdu2ACxZsoTIyEiWL1/OI488gpeXF4sXL6ZDhw54e3szZ84c1q1bh4+PT6kxvfjii/Tp04c1a9Y48qMKcVOSxC1ENbNy5UpLy7jYm2++yeLFi8v0/gMHDuDq6krr1q0tZYGBgTRo0IADBw5Yytq0acO4ceN4+eWXGT9+PO3bty/1eH///Tc//PADhw4dksQtRBlI4haimomKiipRdvToUerXr+/Q85hMJjZt2oRGo+HIkSNX3W/s2LGMGzeO8PBwh55fiJuVXOMWoppITU0lMzOzRPmOHTtYt24dffv2LdNxGjVqRGFhIVu3brWUXbhwgUOHDtG4cWNL2cyZMzl48CAbNmxg1apVLFy4sMSxfvrpJ/7991/GjRtnxycSonqSxC1ENXHq1ClatGjB/PnzOXLkCMeOHeOLL77g/vvv56677rIaNX4t9erV4/7772fo0KH8+eef7N69myeffJIaNWpw//33A7Br1y6mTJnCp59+Srt27Zg9ezajRo3i2LFjVsd68803eeWVV/Dw8HD0xxXipiWJW4hqomnTpkydOpVFixZx55130qRJE958801GjhzJ6tWrrQagXc/ChQtp1aoV9913H23atEFVVVauXIlWqyUvL48nn3ySgQMH0rNnTwCefvppOnXqRL9+/TAajZbjxMTEMGDAAId/ViFuZjIBixBCCFGFSItbCCGEqEIkcQshhBBViCRuIYQQogqRxC2EEEJUIZK4hRBCiCpEErcQQghRhUjiFkIIIaoQSdxCCCFEFSKJWwghhKhCJHELIYQQVYgkbiGEEKIK+X8UjWlFv06cagAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_100.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_100.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zPAyv-kzb5s6", + "outputId": "7bf8991c-f122-408d-b657-a62c21c28652" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9436 - loss: 0.2091\n", + "Lossontestdata: 0.20427274703979492\n", + "Accuracyontestdata: 0.9438999891281128\n" + ] + } + ], + "source": [ + "scores_2l_100=model_2l_100.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_100[0])\n", + "print('Accuracyontestdata:',scores_2l_100[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YA-uMXpAb9Lm" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_300 = Sequential()\n", + "model_2l_300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_300.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "XuNfGZBtcB9y", + "outputId": "a7f1866c-6a08-4c5c-dd3c-631aa53926cc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_3\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_3\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m300\u001b[0m) │ \u001b[38;5;34m235,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_6 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m3,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_5 (Dense)                 │ (None, 300)            │       235,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_6 (Dense)                 │ (None, 10)             │         3,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ], + "text/html": [ + "
     Total params: 238,510 (931.68 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m238,510\u001b[0m (931.68 KB)\n" + ], + "text/html": [ + "
     Trainable params: 238,510 (931.68 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_300.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Xitmk0EcDXW", + "outputId": "71ff6e9a-7026-41e7-a488-a70188d483f2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.5528 - loss: 1.7901 - val_accuracy: 0.8203 - val_loss: 0.8592\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8386 - loss: 0.7584 - val_accuracy: 0.8618 - val_loss: 0.5684\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8667 - loss: 0.5470 - val_accuracy: 0.8748 - val_loss: 0.4692\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8820 - loss: 0.4562 - val_accuracy: 0.8857 - val_loss: 0.4180\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8882 - loss: 0.4171 - val_accuracy: 0.8907 - val_loss: 0.3849\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8947 - loss: 0.3853 - val_accuracy: 0.8945 - val_loss: 0.3657\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8986 - loss: 0.3605 - val_accuracy: 0.9007 - val_loss: 0.3484\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9029 - loss: 0.3491 - val_accuracy: 0.9048 - val_loss: 0.3384\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9011 - loss: 0.3418 - val_accuracy: 0.9040 - val_loss: 0.3294\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9073 - loss: 0.3307 - val_accuracy: 0.9077 - val_loss: 0.3223\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9055 - loss: 0.3271 - val_accuracy: 0.9077 - val_loss: 0.3149\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9073 - loss: 0.3190 - val_accuracy: 0.9125 - val_loss: 0.3084\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9110 - loss: 0.3118 - val_accuracy: 0.9113 - val_loss: 0.3046\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9113 - loss: 0.3054 - val_accuracy: 0.9127 - val_loss: 0.2996\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9119 - loss: 0.3018 - val_accuracy: 0.9138 - val_loss: 0.2966\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2951 - val_accuracy: 0.9143 - val_loss: 0.2926\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9143 - loss: 0.2991 - val_accuracy: 0.9162 - val_loss: 0.2902\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9160 - loss: 0.2885 - val_accuracy: 0.9165 - val_loss: 0.2859\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9159 - loss: 0.2888 - val_accuracy: 0.9160 - val_loss: 0.2831\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9192 - loss: 0.2835 - val_accuracy: 0.9158 - val_loss: 0.2805\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9190 - loss: 0.2817 - val_accuracy: 0.9178 - val_loss: 0.2783\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9207 - loss: 0.2744 - val_accuracy: 0.9182 - val_loss: 0.2753\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9218 - loss: 0.2724 - val_accuracy: 0.9188 - val_loss: 0.2742\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2702 - val_accuracy: 0.9198 - val_loss: 0.2709\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9216 - loss: 0.2714 - val_accuracy: 0.9182 - val_loss: 0.2692\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9245 - loss: 0.2650 - val_accuracy: 0.9217 - val_loss: 0.2665\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9237 - loss: 0.2650 - val_accuracy: 0.9228 - val_loss: 0.2638\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9258 - loss: 0.2602 - val_accuracy: 0.9228 - val_loss: 0.2619\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9253 - loss: 0.2593 - val_accuracy: 0.9222 - val_loss: 0.2608\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9264 - loss: 0.2600 - val_accuracy: 0.9240 - val_loss: 0.2580\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9278 - loss: 0.2537 - val_accuracy: 0.9230 - val_loss: 0.2575\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2526 - val_accuracy: 0.9247 - val_loss: 0.2552\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9283 - loss: 0.2503 - val_accuracy: 0.9252 - val_loss: 0.2511\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9291 - loss: 0.2496 - val_accuracy: 0.9250 - val_loss: 0.2509\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9318 - loss: 0.2444 - val_accuracy: 0.9260 - val_loss: 0.2484\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9291 - loss: 0.2486 - val_accuracy: 0.9273 - val_loss: 0.2452\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9304 - loss: 0.2447 - val_accuracy: 0.9287 - val_loss: 0.2437\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9321 - loss: 0.2355 - val_accuracy: 0.9260 - val_loss: 0.2446\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9335 - loss: 0.2358 - val_accuracy: 0.9287 - val_loss: 0.2413\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9337 - loss: 0.2346 - val_accuracy: 0.9288 - val_loss: 0.2369\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9326 - loss: 0.2387 - val_accuracy: 0.9283 - val_loss: 0.2371\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9327 - loss: 0.2357 - val_accuracy: 0.9285 - val_loss: 0.2347\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9345 - loss: 0.2281 - val_accuracy: 0.9290 - val_loss: 0.2327\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9366 - loss: 0.2256 - val_accuracy: 0.9308 - val_loss: 0.2319\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9359 - loss: 0.2239 - val_accuracy: 0.9307 - val_loss: 0.2287\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9377 - loss: 0.2224 - val_accuracy: 0.9320 - val_loss: 0.2273\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9373 - loss: 0.2172 - val_accuracy: 0.9335 - val_loss: 0.2260\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9371 - loss: 0.2191 - val_accuracy: 0.9335 - val_loss: 0.2238\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9378 - loss: 0.2159 - val_accuracy: 0.9342 - val_loss: 0.2205\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9395 - loss: 0.2136 - val_accuracy: 0.9347 - val_loss: 0.2197\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_300 = model_2l_300.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1LkgLfwmdEZJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "72d41f55-dd67-4fd4-c915-63157e2bb252" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgKFJREFUeJzt3Xd4U+XbwPFvmtm9J5QWKBuhCIIoCmgBQRGcKMpUEIFXpgI/QcAFDhAHihsVUdwTkYoMRQQEypAhpWxKKd07aXLeP0IDoQWaNiUNvT/XlavJc07OuXO3cOc55znPUSmKoiCEEEIIt+Dh6gCEEEIIUXlSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCCGEcCNSuIUQQgg3IoVbCOEUFouF06dPk5KS4upQhLiiSeEWQlTZyZMnGT9+PDExMeh0OkJDQ2nZsiW5ubmuDk2IK5bG1QGIumfo0KF89dVX5OfnuzoUUQ3Jycl0794dk8nEY489xtVXX41Go8HT0xNvb29XhyfEFUsKt7gsMjIy+PTTT/njjz9Yt24dRUVF3HLLLbRr1457772Xdu3auTpE4aBHHnkEnU7H33//Tb169VwdjhB1hkpuMiJq2ueff86IESPIz88nNjYWk8nEyZMnadeuHdu3b8dkMjFkyBDeeecddDqdq8MVlbBlyxY6dOjAypUr6dGjh6vDEaJOkXPcokatX7+eBx98kIiICNavX8/BgwdJSEjAYDCwefNmTpw4wf33389HH33EhAkTAFAUhdjYWPr161due8XFxfj7+/PII48AsGbNGlQqFV999VW5dX18fBg6dKjt9eLFi1GpVBw6dMjW9u+//xIYGMhtt91GaWmp3Xr//POP3fZOnz6NSqVi1qxZdu0Vtb300kuoVCq6detm156SksI999xDVFQUHh4eqFQqVCoVrVu3vlgaASgtLeWZZ56hcePG6PV6YmNj+d///kdJSYnderGxsdx22212bWPHjkWlUtm1/fbbb6hUKn766SdbW7du3crFvHnzZlucZf7++28MBgMHDhygVatW6PV6IiIieOSRR8jMzLR7f0XbfO655/Dw8GDp0qUO7/tCunXrZlu3ose5v3eAN9980xZ7VFQUY8aMITs7+6L7yMvL4+GHHyYmJga9Xk/9+vUZNWoUaWlpduuV/Q1d6HH+38u2bdvo3bs3fn5++Pj4cPPNN/P333/bliuKQvfu3QkNDeXUqVO2dqPRyFVXXUXjxo0pKCgA4PDhw4wePZpmzZrh6elJcHAw99xzT7nPXxajTqcjPT3dbtmGDRtssZ7/70C4nhwqFzVq7ty5WCwWPv/8c9q3b19ueUhICB9//DG7d+/m7bffZubMmYSFhfHggw/y4osvkpmZSVBQkG39H3/8kdzcXB588MFqx3b06FFuueUWmjdvzhdffIFG45x/DtnZ2cyZM6dcu9ls5vbbb+fw4cOMHz+epk2bolKpeO655yq13YcffpiPPvqIu+++m0mTJrFx40bmzJnDnj17+Pbbb50Se0WmTJlSri0jI4Pi4mIeffRRbrrpJkaNGsWBAwdYuHAhGzduZOPGjej1+gq39+GHHzJ9+nTmzZvHwIEDHd73xdSvX79c7pcvX85nn31m1zZr1ixmz55NQkICjz76KPv27eOtt95i8+bNrF+/Hq1WW+H2MzMz2bFjBw8//DAREREkJyezaNEiVqxYwaZNmwgLC7Nb/+mnn6Zhw4a21/n5+Tz66KN26/z777/ccMMN+Pn58cQTT6DVann77bfp1q0ba9eupVOnTqhUKj744APatGnDqFGj+OabbwCYOXMm//77L2vWrLGNK9i8eTN//fUX9913H/Xr1+fQoUO89dZbdOvWjd27d+Pl5WW3f7VazZIlS2xfnMH6OzIYDBQXF1cm7eJyU4SoQUFBQUpMTIxd25AhQxRvb2+7thkzZiiA8uOPPyqKoij79u1TAOWtt96yW+/2229XYmNjFYvFoiiKoqxevVoBlC+//LLcvr29vZUhQ4bYXn/44YcKoBw8eFDJzMxUWrZsqTRr1kw5ffq03fvK1tu8ebNde3p6ugIoM2fOtGs/v+2JJ55QwsLClPbt2ytdu3a1tZd9pjlz5ti9v2vXrkqrVq3KxX+upKQkBVAefvhhu/bJkycrgPL777/b2mJiYpRbb73Vbr0xY8Yo5/9zT0xMtMt5WSznxrx8+XIFUG655Ra798+cOVMBlJtvvlkpLS21tZfl7vXXX69wmz///LOi0WiUSZMmlfuMld33hVwojy+99JLt964oinLq1ClFp9MpPXv2VMxms229N954QwGUDz744JL7OteuXbsUvV6vDB8+3NbmyN9Q//79FZ1Opxw4cMDWduLECcXX11e58cYb7d7/9ttvK4CyZMkS5e+//1bUarUyfvx4u3UKCwvLxbhhwwYFUD7++ONyMd5///3KVVddZWsvKChQ/Pz8lIEDB1b4GYTryaFyUaPy8vLK9UIqEh4eDmC7jKhp06Z06tSJTz/91LZOZmYmv/zyCw888EC5Q6d5eXmcPn3a7nEhxcXF3H777aSnp7NixQqCg4Or8tEqdPz4cV5//XVmzJiBj49PuRiBKu1v+fLlAEycONGufdKkSQD8/PPPVQn3ohRFYdq0adx111106tSpwnUmTpyIWq22vR40aBDh4eEVxrNp0ybuvfde7rrrLl566aVq77uqfvvtN4xGI+PHj8fD4+x/gSNGjMDPz++SuSy7Xr3sER4eTp8+ffj666+xWCwOxWI2m1m5ciX9+/enUaNGtvbIyEgGDhzIn3/+aXdp3ciRI+nVqxf/93//x6BBg2jcuDHPP/+83TY9PT1tz00mExkZGcTFxREQEMDWrVvLxTBo0CD27t1rOyT+9ddf4+/vz8033+zQZxGXjxRuUaOioqI4cODAJddLTk4GsBudPHjwYNavX8/hw4cB+PLLLzGZTAwaNKjc+4cPH05oaKjdo+yc3/mGDRvGn3/+SV5enu28trPMnDmTqKgo2zn4czVr1ozAwEDmzZvH+vXrSU9P5/Tp05hMpktu9/Dhw3h4eBAXF2fXHhERQUBAgC1HzvTpp5/y77//lisMgO2LU/Pmze3a1Wo1TZo0KXc+9fjx49x6660UFBSQkZFxyXPWF9t3dZXlqlmzZnbtOp2ORo0aXTKXR44cKfe39u2335KTk3PRL4wVSU9Pp7CwsFwsAC1atMBisXD06FG79vfff5/CwkL279/P4sWL7Qo1QFFREU899RTR0dHo9XpCQkIIDQ0lOzubnJyccvsJDQ3l1ltv5YMPPgDggw8+YMiQIXZfakTtIr8ZUaNuu+02MjMzef/99y+4TlpaGh999BGhoaFce+21tvb77rsPrVZr63UvWbKEDh06VPif3FNPPUViYqLdw2AwVLi/rVu38v333xMaGsrIkSOr+QnP2rNnD4sXL+bZZ5+t8Bypj48Py5Yto6CggC5duhAWFkZoaCh//fVXpfdRmUFazmA0GpkxYwYPPfQQTZs2Lbf8/GJxKcnJyTRo0IBPPvmE3377jY8++qjK+3a1iIiIcn9r999//2Xb/5o1a2wDEnfu3Flu+f/93//x3HPPce+99/LFF1+wcuVKEhMTCQ4OvuARgeHDh/PZZ5+xZ88e1q1bZzeoU9Q+MjhN1Kjp06fz3Xff8eijj7J3714GDhyI2WwGrD2XVatW8dRTT5GVlcXSpUvtBjQFBQVx66238umnn/LAAw+wfv16FixYUOF+rrrqKhISEuzazj2Ee6733nuP22+/HbVazW233cb777/PQw89VO3POm3aNOLj4xkwYMAF1+nRowcvvvgiDzzwAIsWLaJRo0ZMmjTJlpMLiYmJwWKxsH//flq0aGFrT0tLIzs7m5iYmGrHf64333yTU6dOlRv9XKZswNW+ffvsDvGWxXj+dfmRkZEsX76c8PBwvv/+eyZNmkSfPn0IDQ11eN/VVZar82M3Go22qx4uxmAwlFvntddew8/Pj5CQEIdiCQ0NxcvLi3379pVbtnfvXjw8PIiOjra1paam8n//93/07NkTnU7H5MmT6dWrl93v/6uvvmLIkCHMmzfP1lZcXHzREfO9e/fGYDBw33330aVLFxo3bswff/zh0GcRl4/0uEWNioiIYMOGDfTu3Zt58+Zx9dVXs2TJEgoKCoiJiWH48OF4enry448/VthrGTRoELt37+bxxx9HrVZz3333VTumG264AYBbb72V++67j8cff7zc5TyO2rBhA99//z1z5869aK/46NGjjB49mscee4yRI0eSkJBAYGDgJbffp08fgHJfXObPnw9YP4uz5OXl8dxzzzFhwgQiIiIqXOfmm29Gr9fz2muv2fXiPv30U9LS0spdjta0aVPbOIbXX38di8XCuHHjqrTv6kpISECn0/Haa6+hnDONxfvvv09OTs5Fc1lRj3Xbtm388ssv9O/f3+HDy2q1mp49e/L999/bnV5IS0tj6dKldOnSBT8/P1v7iBEjsFgsvP/++7zzzjtoNBoeeughu8+hVqvtXoM15xf7cqjRaBg8eDA7duxg+PDhDn0GcflJj1vUuOjoaL7//ntSU1NZv349L730EklJSSxatIj4+Hji4+MvWOxuvfVWgoOD+fLLL+ndu3elBro54tVXX6VFixb83//9H1988YXdsg0bNtidsywbJJScnMymTZvo2LGjbVnZRCQX661ZLBYGDRpE/fr1mTt3rkNxtm3b1jZJTXZ2Nl27dmXTpk189NFH9O/fn+7du9utXzbwrsyRI0cA7NqSkpIq3NfWrVsJCQnhiSeeuGA8QUFBTJ8+nRkzZtCrVy/69etHSkoKb7zxBm3btuXhhx++4HsjIiJ46aWXePjhh3nwwQdtX0oqu+/qCg0NZdq0acyePZtbbrmF22+/nX379vHmm29yzTXXXPRSwyNHjnDrrbdyzz33UK9ePXbt2sW7775LSEhIlc/HP/vssyQmJtKlSxdGjx6NRqPh7bffpqSkhBdffNG23ocffsjPP//M4sWLqV+/PmAtyA8++CBvvfUWo0ePBqynpz755BP8/f1p2bIlGzZs4LfffrvkoMhnnnmGxx9/vFJfJIWLuXRMu6iTKroc7GJGjx6tAMrSpUvLLavq5WDn+uijjxRA+eGHH+zWu9jj3MuWAEWlUilbtmyx2+75lzc9//zzil6vV7Zv315uvUtdDqYoimIymZTZs2crDRs2VLRarRIdHa1MmzZNKS4utlsvJibmkvGf+zj/cjBAeeWVV+y2WXb51/kWLlyoNG/eXNFqtUp4eLjyyCOPKBkZGRfNQ5mbbrpJadCggZKXl1elfZ+vspeDlXnjjTfsYn/00UeVrKysi+4jLy9PGTFihBITE6PodDolNDRUGTRokHL48GG79Ry9pHDr1q1Kr169FB8fH8XLy0vp3r278tdff9mWHz16VPH391f69u1bLqY77rhD8fb2VlJSUhRFUZSsrCxl2LBhSkhIiOLj46P06tVL2bt3rxITE1Phv4cLXe51qeXCdWTKU1HrTZgwgffff5+TJ0+WmzzCFWbNmsWaNWtYs2aNq0MRQtRBco5b1GrFxcUsWbKEu+66q1YUbSGEcDU5xy1qpVOnTvHbb7/x1VdfkZGRUeFAJleJi4ujsLDQ1WEIIeooOVQuaqU1a9bQvXt3wsLCmDFjBmPHjnV1SEIIUStI4RZCCCHciJzjFkIIIdyIFG4hhBDCjdS5wWkWi4UTJ07g6+t72eZ9FkIIIS5GURTy8vKIioq65Ax8da5wnzhxwm7uXyGEEKK2OHr0qG1mvAupc4Xb19cXsCbn3DmAq8JkMrFy5Up69uxZ4d2gxIVJ7qpG8lZ1kruqkbxVnSO5y83NJTo62lajLqbOFe6yw+N+fn5OKdxeXl74+fnJH7SDJHdVI3mrOsld1Ujeqq4quavMKVwZnCaEEEK4ESncQgghhBuRwi2EEEK4kTp3jluIuspsNmMymVwdhsuYTCY0Gg3FxcWYzWZXh+M2JG9VV5a7kpISADQajVMuQ5bCLUQdkJ+fz7Fjx6jLMxwrikJERARHjx6VORwcIHmrurLcHTlyBJVKhZeXF5GRkeh0umptVwq3EFc4s9nMsWPH8PLyIjQ0tM7+52uxWMjPz8fHx+eSE1yIsyRvVVeWO29vb0pLS0lPT+fgwYM0adKkWrmUwi3EFc5kMqEoCqGhoXh6ero6HJexWCwYjUYMBoMUIAdI3qquLHeenp54eHig1Wo5fPiwLZ9VJb8FIeqIutrTFqK2cNYXHyncQgghhBuRwi2EuCLV5RH07kx+b5cmhVsIcUVISkpiyJAhNG3alMDAQPz8/MjJyXF1WOISUlJSePTRR2nZsiXBwcF4enqyd+9eV4dVq0nhFkLUWkePHmX48OFERUWh0+mIiYlh3LhxZGRk2K23Zs0aunTpQkREBJ9//jmbN28mOTkZf39/F0UuKmPPnj20b9+e0tJSPvjgAzZu3MiBAwdo3ry5q0Or1VxauNetW0ffvn2JiopCpVLx3XffVfq969evR6PREB8fX2PxCSFcJyUlhQ4dOrB//34+++wzkpOTWbRoEatWraJz585kZmYC1mtlR4wYwYIFC3jhhRe4+uqriYuLo169ei7+BOJSxo4dy5gxY3j33Xe59tpriYuLIyYmxtVh1XouLdwFBQW0bduWhQsXOvS+7OxsBg8ezM0331xDkVXOu38eZG6Smg//OuzSOIRwhKIoFBpLXfJwZAKYMWPGoNPpWLlyJV27dqVBgwb07t2b3377jePHj/Pkk08CsHfvXg4fPkxycjIxMTEYDAauvfZa/vzzT9vnjYuLY968eXbbT0pKQqVSkZyczJo1a1CpVGRnZ9uWDx06lP79+9ter1ixgi5duhAQEEBwcDC33XYbBw4csC0/dOgQKpWKpKQkAI4fP84999xDWFgYvr6+3HHHHRw7dsy2/qxZs+w6HtnZ2ahUKtasWXPBGA4cOEC/fv0IDw/Hx8eHa665ht9++83uc6WmpnLnnXcSHByMSqWyPc79bOfbuXMnN910E56engQHBzNy5Ejy8/Nty0ePHs0dd9xRLneHDh2ytXXr1o3x48fbXsfGxrJgwQLb61WrVqFSqWyfp6CggNWrV2M0GmnSpAkGg4GrrrqK77///oI5LSkpISEhgYSEBNtsZJs3b6ZHjx6EhITg7+9P165d2bp16wU/65XApddx9+7dm969ezv8vlGjRjFw4EDUavUle+klJSW2XzBY73kK1gEQ1R0EkZ5bTGqRihNZhTKgwkFl+ZK8OaYqeSu7jttisWCxWCg0ltJ6VmJNhXhRu2b1wEt36f92MjMz+fXXX3n22WfR6/VYLBbbsrCwMAYOHMiyZct44403SEtLw2Qy8cknn/D222/TsGFDXnvtNW655Rb27dtHZGQkw4YNY/HixYwYMcKWiw8++IAbb7yRRo0aceTIEQBbjsBa8MvWBcjLy2P8+PG0adOG/Px8Zs6cyR133MHWrVvx8PCwrWexWCgpKaFPnz5otVq+//57tFotEyZMoH///mzcuBGVSmX7EnPu+y4VQ25uLrfccgvPPPMMer2eTz75hL59+7Jnzx4aNGgAwMSJE/nvv/9Yvnw50dHR/PXXX9xzzz122z1XQUEBvXr14tprr2Xjxo2cOnWKkSNHMmbMGD788EO7L1sXi7Us3opeWywWJk2ahI+Pj60tPT0dRVF4++23efPNN2nfvj2fffYZd955J5s3byY+Pt5uPyaTiQEDBpCfn8/KlSvRarVYLBZycnIYNGgQr776KoqiMH/+fPr06cO+ffsqdW/rmlSWu3PzoCgKJpMJtVptt64j/6bdbgKWDz/8kJSUFJYsWcKzzz57yfXnzJnD7Nmzy7WvXLkSLy+vasVy4qgH4EHywcMsX36wWtuqqxITXVNA3J0jedNoNERERJCfn4/RaKTI6Lr5pvNy8yjVqS+5XlJSEoqiEBMTY/uyfa6GDRuSlZVFSkqKrWc4a9YsunTpAlj/3a9atYpXXnmF6dOnc+eddzJz5ky2bNlC+/btMZlMLF26lGeeeYbc3FxbgTh16pTtWluTyURpaalt/z169LDtPywsjAULFhAXF8emTZto2bKlLY6CggJ++OEHduzYwYYNG2zna998803atWvHjz/+SLdu3SgpKcFsNtu2n5eXB0BhYaFdB+PcGBo2bEjDhg1tcUyePJmvv/6aL774gpEjRwKwbds27rnnHpo1awZgm+gjLy+vwuuIP/roI4qKinj99dfx9vamQYMGzJ07l/vvv58nn3ySsLAwALs4CgoKAOtUumVtpaWlGI1G22uLxUJxcTG5ubl8+umnFBUV0bt3bwoKCsjNzbWt99hjj3HrrbcCMGHCBNauXcvcuXN55513bDnNz89n0KBB/Pfff/z8889YLBbb+zt06GD3eV566SW+/PJLfvnlF2655ZZyn9cVyn63RqORoqIi1q1bR2lpqd06hYWFld6eWxXu/fv3M3XqVP744w80msqFPm3aNCZOnGh7nZubS3R0ND179sTPz69a8Rxancyvx1IIiYiiT5821dpWXWMymUhMTKRHjx6VvsG8qFreiouLOXr0KD4+PhgMBnwVhV2zelz6jTXAU6uu1EQw3t7egLXoVPTvtKwY+fr62r6AJyQk2K17/fXXc+DAAfz8/PDz86NPnz4sWbKEbt268e2332I0Ghk0aBBeXl7Ex8ej0+n4+eefmTBhAgBarRaNRmPb5v79+5k5cyabNm3i9OnTtmKfmZmJn58fPj4+APTq1Quz2UxAQAAdO3a0xdOqVSuio6M5fPgwfn5+6PV61Gq1bftl2/Py8rK1nR9Dfn4+s2fPZvny5aSmplJaWkpRURHp6em2dRo1asTq1asZN24cQUFBtvz4+vpWmMtDhw4RHx9PZGSkra1Hjx5YLBZOnDhB48aNAeziKPv9+Pj42No0Gg06nc722sPDA4PBgEaj4fnnn+fNN9/km2++oaSkxC5fN910k11cXbt25ccff7Rb5+mnn2bVqlUMHTq03DnwtLQ0ZsyYwdq1azl16hRms5nCwkIyMjKq/X98dSmKQl5eHr6+vqhUKoqLi/H09OTGG28sN3NaRV9QL8RtCrfZbGbgwIHMnj2bpk2bVvp9er0evV5frl2r1Va7YHgbrO83mZHiU0XO+D3URY7kzWw2o1Kp8PDwsPW4fNSX7vW6UtOmTVGpVOzbt6/CXuLevXsJDAwkPDyctLQ0ALvPB5T7zA899BCDBw/mjTfe4KOPPmLAgAG2whASEsL8+fOZMGEC06dPR61WU1JSwq233mp7f79+/YiJieHdd98lKioKi8VC69atKS0ttdvPsmXL2LNnD3PmzKkw9rJ1y77AlK1z7s+y52Xnp8teP/HEEyQmJvLyyy8TFxeHp6cnd999NyaTybbOggULeOCBBwgLC8PLy8t2R6/z83Nuns7d//mxnPtF62Kxnpvzc1/PmzePZs2a0a9fP7799lvbOsHBwRfcxvm/uz179vDLL79w5513ct9999GrVy/b+sOGDSMjI4NXX32VmJgY9Ho9nTt3tsuJq5R9GTv386hUqgr//Try/6DbXA6Wl5fHP//8w9ixY9FoNGg0Gp5++mm2b9+ORqPh999/v+wxGbTW//yKTHKrOyGcKTg4mB49evDmm29SVFRkt+zkyZN8+umnDBgwAJVKRePGjdFoNKxfv962jsVi4a+//qJly5a2tj59+uDt7c2iRYtYsWIFw4cPt9vumDFjyMnJYdeuXSQlJXH77bfblmVkZLBv3z6mT5/OzTffTIsWLcjKyqow9ujoaLp06UJ2dja7d++2tR89epSjR4/axeSo9evXM3ToUO644w6uuuoqIiIi7AaIgfVLz9ChQ4mNjWXjxo289957F91mixYt2L59u+3wd9l+PDw8bIfbqyo1NZV58+aVGxgI4O/vT0REhN3vDeDPP/8sl6NPPvnEdm5/xIgRdr3T9evX89hjj9GnTx9atWqFXq/n9OnT1Yq7tnObwu3n58fOnTtJSkqyPUaNGkWzZs1ISkqiU6dOlz2mssJdXCqFWwhne+ONNygpKaFXr16sW7eOo0ePsmLFCnr06EG9evV47rnnAOvh2hEjRvD444+zfPly9uzZw+jRozlx4gSjR4+2bU+tVnP//ffzv//9jyZNmtC5c+dy+/T09KRx48bExcXZDWwKDAwkODiYd955h+TkZH7//Xe7U3Dnu+666+jUqRODBw9m06ZNbN26lQceeID4+Hhuuukm23qKolBcXExxcbFtEK3RaLS1mc1m28AsgCZNmvDNN9+QlJTE9u3bGThwYLkBZ3///Tf/+9//+Oqrr2jVqtUlL4t74IEHMBgMDBkyhF27drF69Wr+7//+j0GDBhEeHm5br+ycdXFxMUajEbAO/i1rq2jg28KFC7njjjto165dhfueMGECL7zwAp9//jn//fcfs2bNYvXq1UyePNluvaCgINv60dHRdrlv0qQJn3zyCXv27GHjxo088MADV/zNdFx6qDw/P5/k5GTb64MHD5KUlERQUBANGjRg2rRpHD9+nI8//hgPDw9at25t9/6wsDAMBkO59svFoLF+7yk2lf+DFUJUT5MmTfjnn3+YOXMm9957L5mZmURERNC/f39mzpxp+88c4OWXX0alUjFkyBByc3O5+uqr+fXXX+3O2wIMGjSI+fPnM2zYMIdi8fDw4PPPP+exxx6jdevWNGvWjNdee41u3bpd8D1ff/01Y8eOtV222qNHD1577TW7Q887duwoV2TOPQxcZsSIESxevJj58+czfPhwrrvuOkJCQpgyZYpd7zM9PZ177rmH+fPnc/XVV1fqs3l5efHrr78ybtw4rrnmGry8vLjrrruYP3++3Xo//fRTuVjPnyjl/H1aLBbbF6yKTJo0iby8PCZNmkR6ejrNmzfnm2++oW3bthWu7+HhwYcffkh8fDz33nsvPXv25P3332fkyJFcffXVREdH8/zzz5cr/FccxYVWr16tAOUeQ4YMURRFUYYMGaJ07dr1gu+fOXOm0rZtW4f2mZOTowBKTk5O1QM/47d/TygxU35Sei9YW+1t1TVGo1H57rvvFKPR6OpQ3EpV8lZUVKTs3r1bKSoqqsHIaj+z2az8/PPPilarVU6ePOnqcCrt22+/tf2f6Apms1nJyspSzGazy2JwV+fn7mL/Fh2pTS7tcXfr1u2iEzIsXrz4ou+fNWsWs2bNcm5QDtDbetxyqFyI2qykpIS0tDReeOEF7r77brtDwLWdWq2WAZzCjtuc466NPMvOccuhciFqtc8++4yGDRuSk5PDCy+84OpwHNK3b1/effddV4chahEp3NVg0FrTJ6PKhajdhg4dislkYs2aNTKHuXB7UriroWxUeUmp9LiFEEJcHlK4q+Hc67gvdq5eCCGEcBYp3NXgeeZQuaKA0Sy9biGEEDVPCnc1lPW4AYqNUriFEELUPCnc1aBVe+CB9RC5zJ4mhBDicpDCXU1lnW5X3ipRCCFE9TlyT2xXksJdTWdOc0uPWwgh3My3337LrbfeSmxsLD4+Ptxwww2uDqlSpHBXk+5MBqXHLYRzDR061HaLR5VKRXBwMLfccgs7duxwdWjiCjBnzhxGjBjBbbfdxs8//0xSUhLLly93dViV4jb3466tbD1umT1NCKe75ZZb+PDDDwHr7TynT5/ObbfdxpEjR1wcmXBnKSkpPP/88/z999+0atXK1eE4THrc1aSzFW7pcQs3oShgLHDNw8H5DvR6PREREURERBAfH8/UqVM5evQo6enptnWmTJlC06ZN8fLyolGjRsyYMaPcucpDhw6hVqsJDAxErVbbevHZ2dmA9b4H8fHxtvWNRiNxcXF265SJjY21OxKgUqn47rvvbMtXrFhBly5dCAgIIDg4mNtuu40DBw7YxaJSqUhKSiq33QULFthed+vWjfHjx9te79u3D61WaxenxWLh6aefpn79+uj1euLj41mxYoXD+zr/M1S0/08++YQOHTrg6+tLREQEAwcO5NSpU3bv+emnn2jbti2enp623PTv35+Leeutt2jcuDE6nY5mzZrxySef2C0/P7bx48fb3ZXt/M+4Zs2acr+3QYMG2W3n119/pXHjxjz33HOEhobi6+vLnXfeybFjx2zvOf9vYuvWrQQEBNjd33z+/PlcddVVeHt7Ex0dzejRo8nPz7/o53UG6XFXk1YKt3A3pkJ4Pso1+/7fCdB5V+mt+fn5LFmyhLi4OIKDg23tvr6+LF68mKioKHbu3MmIESPw9fXliSeesK1TNkHSd999xzXXXMPff//NXXfddcF9vfHGG6SlpV1w+dNPP82IESMAyt06tKCggIkTJ9KmTRvy8/N56qmnuOOOO0hKSsLDo+p9pccffxyDwWDX9uqrrzJv3jzefvtt2rVrxwcffMDtt9/Ov//+S5MmTaq8r4qYTCaeeeYZmjVrxqlTp5g4cSJDhw61HV7Ozs5mwIABPPzww3z33Xd4enoybtw4233GK/Ltt98ybtw4FixYQEJCAj/99BPDhg2jfv36dO/e3Slxb9myhR9++MGuLT09ne3bt+Pr68svv/wCwLhx4+jfvz+bN2+2u/UqwN69e+nVqxfTp0/n4YcftrV7eHjw2muv0bBhQ1JSUhg9ejRPPPEEb775plNivxAp3NWk81AAlcxXLkQN+Omnn/Dx8QGsBTEyMpKffvrJrgBOnz7d9jw2NpbJkyfz+eef2xXush54WFgYERERdvfyPl9mZibPPvssU6ZMYcaMGeWWl5SUEBQURERERIXvP/8LwQcffEBoaCi7d++mdevWlfjU5a1evZq//vqLhx9+mNWrV9vaX375ZaZMmcJ9990HwAsvvMDq1atZsGABCxcurNK+LmT48OG2vDdq1IjXXnuNa665hvz8fHx8fPjvv/8oLCxkypQpREVZvxh6enpetHC//PLLDB06lNGjRwMwceJE/v77b15++WWnFe6JEyfy+OOP2/0uLRYLarWapUuXEh0dDcDSpUtp3Lgxq1atIiEhwbbu4cOH6dGjByNHjix3n+9zj0jExsby7LPPMmrUKCnctZ2c4xZuR+tl7fm6at8O6N69O2+99RYAWVlZvPnmm/Tu3ZtNmzYRExMDwLJly3jttdc4cOAA+fn5lJaW4ufnZ7ed3NxcALy9L93bf/rpp+nevTtdunSpcHlmZma57Z9r//79PPXUU2zcuJHTp09jsVj/bzhy5EiVCreiKEyaNImZM2eSkZFha8/NzeXEiRNcf/31dutff/31bN++3a7tuuuus/uyU1hYWG4/999/P2r12UmlioqK7A4Vb9myhaeffprt27eTlZVl97latmxJdHQ0Go2Gzz77jAkTJlTq6MKePXsYOXJkufhfffXVS763Mr777jtSUlKYNGlSuS9h0dHRtqINEBMTQ/369dm9e7etcGdnZ5OQkMCxY8fo1atXue3/9ttvzJkzh71795Kbm0tpaSnFxcUUFhbi5eXY37oj5Bx3NZUVbulxC7ehUlkPV7vicd4hyEvx9vYmLi6OuLg4rrnmGt577z0KCgpst7ncsGEDDzzwAH369OGnn35i27ZtPPnkkxiNRrvtnDhxAg8PD8LCwi66v/379/Pee+9d8Nafx44dw2g00rBhwwtuo2/fvmRmZvLuu++yceNGNm7cCFAupsr6+OOPKSgoYNSoUVV6P1i/3CQlJdkeZT3ic73yyit263To0MG2rKCggN69e+Pn58enn37K5s2b+fbbb4GznysyMpK33nqL559/HoPBgI+PD59++mmVY64uk8nEE088wXPPPYenp6fdssDAwAu+79zD5IcPH6ZTp07MmjWL4cOH233hOXToELfddhtt2rTh66+/ZsuWLbajHFX9XVeWFO5qknPcQlw+KpUKDw8PioqKAPjrr7+IiYnhySefpEOHDjRp0oTDhw+Xe9/mzZtp3rx5uXPE55syZQoPP/wwcXFxFS5fu3Ytnp6edkXtXBkZGezbt4/p06dz880306JFC7Kyshz8lGcVFhby5JNP8sILL6DVau2W+fn5ERUVxfr16+3a169fT8uWLe3aoqOjbV+A4uLi0GjKH2yNiIiwW+fcYrd//34yMjKYO3cuN9xwA82bNy83MA1gyJAhNG/enJEjR5KUlMTtt99+0c/XokWLSsVfFW+99RY+Pj4MGjSo3LLmzZtz9OhRjh49ams7fPgwx44ds9t3o0aNWLx4MU8++SR+fn5MmzbNtmzLli1YLBbmzZvHtddeS9OmTTlx4vIcyZJD5dWkO3NkSQq3EM5XUlLCyZMnAeuh8jfeeIP8/Hz69u0LQJMmTThy5Aiff/4511xzDT///LOtJwjWns+yZcuYP38+s2bNuui+kpOTOXLkCMnJyRUuP3DgAHPnzqVfv37lRppnZ2djNBoJDAwkODiYd955h8jISI4cOcLUqVMr3J7RaKS4uNj2WlEUSktLMZvNtkPWS5cupX379hccmf34448zc+ZMGjduTHx8PB9++CFJSUlO7+nWr18fnU7H66+/zqhRo9i1axfPPPNMufUmTZqESqXilVdeQavV4uvrWy5X58d/77330q5dOxISEvjxxx/55ptv+O233+zWM5lMtlyZzWYsFovt9YXOob/44ov8+OOP5QaaAfTo0YMWLVowcOBAXnnlFcA6OC0+Pp6bbrrJtp6vr6/tS87ixYvp2LEjd999NzfccANxcXGYTCZef/11+vbty/r161m0aNFFsuhESh2Tk5OjAEpOTk61t2U0GpVhr/6gxEz5SXn2p3+dEF3dYTQale+++04xGo2uDsWtVCVvRUVFyu7du5WioqIajMz5hgwZogC2h6+vr3LNNdcoX331ld16jz/+uBIcHKz4+PgoAwYMUF555RXF399fURRF+eeff5RGjRopc+bMUUwmk5KVlaWYzWZl9erVCqBkZWUpiqIoM2fOVADl5Zdftm33/HViYmLs4jn/sXr1akVRFCUxMVFp0aKFotfrlTZt2ihr1qxRAOXbb79VFEVRDh48eNHtfPjhh4qiKErXrl0VlUqlbN682RbTzJkzlbZt29pem81mZdasWUq9evUUrVartG3bVvnll19sy8v2tW3bNrucxcTEKK+88ort9bnxlenatasybtw4xWw2K1lZWcqSJUuU2NhYRa/XK507d1Z++OEHu20vXbpUCQ8PV44fP273O+zXr1/Fv+Az3nzzTaVRo0aKVqtVmjZtqnz88cd2yy+Wq3MfZXGU/d5uu+22cts59zMeOHBAufXWWxUvLy/Fx8dHueOOO5Rjx45dMNeKoihPP/20EhcXpxQUFCiKoijz589XIiMjFU9PT6VXr17Kxx9/bPc3U5Y7s9msKMrF/y06UptUZz5QnZGbm4u/vz85OTkXHWBSGSaTif97ewUrjnnw4LUNeLb/VU6K8spnMplYvnw5ffr0KXcIUFxYVfJWXFzMwYMHadiw4SUPFV/JLBYLubm5+Pn5VemyrNjYWNasWUNsbGy5Zf379y93fXFVjB8/nvj4eIYOHVqt7ThTdfNWl52fu4v9W3SkNslvoZq0HmfuDiajyoW4ooWGhtqNuj5XYGAgOp2u2vvQarUX3IcQZeQcdzXpZFS5EHXC5s2bL7isbFrW6nrppZecsh1xZZMedzWVjSovkcIthBDiMpDCXU1yHbcQQojLSQp3NcnMacJd1LFxqELUOs76NyiFu5rKruOW+3GL2qpssFNNz+YkhLi4spnXqnsljQxOqybbqPJSKdyidtJoNHh5eZGeno5Wq62zl/RYLBbbpCd1NQdVIXmrurLcFRUVUVxczKlTpwgICKj2lQNSuKvJdj9u6XGLWkqlUhEZGcnBgwcrnA60rlAUhaKiItu9okXlSN6q7vzcBQQEXPCuco6Qwl1NtnPcpXKOW9ReOp2OJk2a1OnD5SaTiXXr1nHjjTfKpD8OkLxVXVnuunbtiqenp9Ou0ZfCXU2267ilxy1qOQ8Pjzo9c5paraa0tBSDwSAFyAGSt6ory51er3fqxDpywqKazva4zTJqVwghRI2Twl1NZT1uRYESOVwuhBCihknhribtORkskWu5hRBC1DAp3NWk9gCNh3WkpcyeJoQQoqZJ4XYC/Zlud7EUbiGEEDVMCrcTeGqtowWlxy2EEKKmSeF2AoPGmkYp3EIIIWqaFG4nMJzpccuhciGEEDVNCrcTSOEWQghxuUjhdgKDbXCaXA4mhBCiZknhdoKyHrdMeyqEEKKmSeF2grJR5XJrTyGEEDVNCrcT6MtGlUuPWwghRA2Twu0Enjprj1vmKhdCCFHTpHA7gUF63EIIIS4TKdxOIJeDCSGEuFykcDtB2eVgMnOaEEKImiaF2wnO9rjlHLcQQoia5dLCvW7dOvr27UtUVBQqlYrvvvvuout/88039OjRg9DQUPz8/OjcuTO//vrr5Qn2IuRQuRBCiMvFpYW7oKCAtm3bsnDhwkqtv27dOnr06MHy5cvZsmUL3bt3p2/fvmzbtq2GI704T7mtpxBCiMtE48qd9+7dm969e1d6/QULFti9fv755/n+++/58ccfadeuXYXvKSkpoaSkxPY6NzcXAJPJhMlkcjzoc5S9X6Oyvi40llZ7m3VFWZ4kX46RvFWd5K5qJG9V50juHMmvSwt3dVksFvLy8ggKCrrgOnPmzGH27Nnl2leuXImXl5dT4ti3eyegJvVUBsuXL3fKNuuKxMREV4fgliRvVSe5qxrJW9VVJneFhYWV3p5bF+6XX36Z/Px87r333guuM23aNCZOnGh7nZubS3R0ND179sTPz69a+zeZTCQmJtKpfTve37cDg48fffp0rtY264qy3PXo0QOtVuvqcNyG5K3qJHdVI3mrOkdyV3Y0uDLctnAvXbqU2bNn8/333xMWFnbB9fR6PXq9vly7Vqt12h+hj6d1+8ZSi/xhO8iZv4e6RPJWdZK7qpG8VV1lcudIbt2ycH/++ec8/PDDfPnllyQkJLg6HLmOWwghxGXjdtdxf/bZZwwbNozPPvuMW2+91dXhAHI5mBBCiMvHpT3u/Px8kpOTba8PHjxIUlISQUFBNGjQgGnTpnH8+HE+/vhjwHp4fMiQIbz66qt06tSJkydPAuDp6Ym/v79LPgNIj1sIIcTl49Ie9z///EO7du1sl3JNnDiRdu3a8dRTTwGQmprKkSNHbOu/8847lJaWMmbMGCIjI22PcePGuST+Mp7nzJymKIpLYxFCCHFlc2mPu1u3bhctdIsXL7Z7vWbNmpoNqIr0GrXteUmpxXboXAghhHA2tzvHXRuVHSoHOc8thBCiZknhdgKt2gONh3X6NDnPLYQQoiZJ4XYST7lDmBBCiMtACreT6M8U7iKj9LiFEELUHCncTuKpO3OHsFIp3EIIIWqOFG4nMZwZWV4sPW4hhBA1SAq3k3jqzhRu6XELIYSoQVK4naSsx11klMFpQgghao4Ubicx6GS+ciGEEDVPCreTGDQyX7kQQoiaJ4XbSTylxy2EEOIykMLtJLZR5VK4hRBC1CAp3E5ytsctg9OEEELUHCncTqKXe3ILIYS4DKRwO8nZucqlcAshhKg5UridpOwe3NLjFkIIUZOkcDtJWY+7RM5xCyGEqEFSuJ3EIOe4hRBCXAZSuJ3EIOe4hRBCXAZSuJ1EznELIYS4HKRwO8nZUeVyjlsIIUTNcbhwp6Sk1EQcbk8OlQshhLgcHC7ccXFxdO/enSVLllBcXFwTMbkluY5bCCHE5eBw4d66dStt2rRh4sSJRERE8Mgjj7Bp06aaiM2tyKhyIYQQl4PDhTs+Pp5XX32VEydO8MEHH5CamkqXLl1o3bo18+fPJz09vSbirPXkULkQQojLocqD0zQaDXfeeSdffvklL7zwAsnJyUyePJno6GgGDx5MamqqM+Os9QznDE5TFMXF0QghhLhSVblw//PPP4wePZrIyEjmz5/P5MmTOXDgAImJiZw4cYJ+/fo5M85ar+zuYAAlpTKyXAghRM3QOPqG+fPn8+GHH7Jv3z769OnDxx9/TJ8+ffDwsH4HaNiwIYsXLyY2NtbZsdZqBs3Z70BFRrOtBy6EEEI4k8OF+6233mL48OEMHTqUyMjICtcJCwvj/fffr3Zw7kSj9kCrVmEyKxSXynluIYQQNcPhwr1///5LrqPT6RgyZEiVAnJnBo0ak7mUIqMUbiGEEDXD4cINkJWVxfvvv8+ePXsAaNGiBcOHDycoKMipwbkbg05NXkmpzJ4mhBCixjg8OG3dunXExsby2muvkZWVRVZWFq+//joNGzZk3bp1NRGj25BruYUQQtQ0h3vcY8aMYcCAAbz11luo1dYBWGazmdGjRzNmzBh27tzp9CDdxdl7ckvhFkIIUTMc7nEnJyczadIkW9EGUKvVTJw4keTkZKcG527kDmFCCCFqmsOF++qrr7ad2z7Xnj17aNu2rVOCclcGuUOYEEKIGubwofLHHnuMcePGkZyczLXXXgvA33//zcKFC5k7dy47duywrdumTRvnReoGpMcthBCipjlcuO+//34AnnjiiQqXqVQqFEVBpVJhNtetAuYpg9OEEELUMIcL98GDB2sijiuCQQanCSGEqGEOF+6YmJiaiOOKUDaqXCZgEUIIUVOqNAHLgQMHWLBggW2QWsuWLRk3bhyNGzd2anDuxjY4TaY8FUIIUUMcHlX+66+/0rJlSzZt2kSbNm1o06YNGzdupFWrViQmJtZEjG7DNjjNKKPKhRBC1AyHe9xTp05lwoQJzJ07t1z7lClT6NGjh9OCczee0uMWQghRwxzuce/Zs4eHHnqoXPvw4cPZvXu3U4JyV2VTnhbLOW4hhBA1xOHCHRoaSlJSUrn2pKQkwsLCnBGT2/LUSY9bCCFEzXL4UPmIESMYOXIkKSkpXHfddQCsX7+eF154gYkTJzo9QHdi0MiociGEEDXL4cI9Y8YMfH19mTdvHtOmTQMgKiqKWbNm8dhjjzk9QHdi0MmUp0IIIWqWQ4W7tLSUpUuXMnDgQCZMmEBeXh4Avr6+NRKcuzFoZOY0IYQQNcuhc9wajYZRo0ZRXFwMWAt2dYr2unXr6Nu3L1FRUahUKr777rtLvmfNmjVcffXV6PV64uLiWLx4cZX372y2c9xSuIUQQtQQhwendezYkW3btjll5wUFBbRt25aFCxdWav2DBw9y66230r17d5KSkhg/fjwPP/wwv/76q1Piqa6zdweTwi2EEKJmOHyOe/To0UyaNIljx47Rvn17vL297ZY7ckew3r1707t370qvv2jRIho2bMi8efMAaNGiBX/++SevvPIKvXr1qvR2aoqn3NZTCCFEDXO4cN93330AdgPRLtcdwTZs2EBCQoJdW69evRg/fvwF31NSUkJJSYntdW5uLgAmkwmTyVSteMreX/ZTjbVgF5lKq73tK935uROVI3mrOsld1Ujeqs6R3DmSX7e6O9jJkycJDw+3awsPDyc3N5eioiI8PT3LvWfOnDnMnj27XPvKlSvx8vJySlxlU71mlgBoKCw2sXz5cqds+0pX16fJrSrJW9VJ7qpG8lZ1lcldYWFhpbfncOE+fPgw1113HRqN/VtLS0v566+/at3dw6ZNm2Z3fXlubi7R0dH07NkTPz+/am3bZDKRmJhIjx490Gq1ZOSXMHvrWkyKiltu6Y2Hh6q64V+xzs+dqBzJW9VJ7qpG8lZ1juSu7GhwZThcuLt3705qamq5WdJycnLo3r17jR4qj4iIIC0tza4tLS0NPz+/CnvbAHq9Hr1eX65dq9U67Y+wbFu+XmcLtUWlRn/mnLe4MGf+HuoSyVvVSe6qRvJWdZXJnSO5dXhUedm57PNlZGSUG6jmbJ07d2bVqlV2bYmJiXTu3LlG91tZhnMKtVzLLYQQoiZUusd95513AtaBaEOHDrXrxZrNZnbs2GGbArWy8vPzSU5Otr0+ePAgSUlJBAUF0aBBA6ZNm8bx48f5+OOPARg1ahRvvPEGTzzxBMOHD+f333/niy++4Oeff3ZovzVF7aFCp/bAaLbIJWFCCCFqRKULt7+/P2Dtcfv6+todmtbpdFx77bWMGDHCoZ3/888/dO/e3fa67Fz0kCFDWLx4MampqRw5csS2vGHDhvz8889MmDCBV199lfr16/Pee+/VikvByui11sItPW4hhBA1odKF+8MPPwQgNjaWyZMnO+WweLdu3VAU5YLLK5oVrVu3bk6bAKYmeGrV5BWXSo9bCCFEjXB4cNrMmTNrIo4rhsyeJoQQoiY5PDgtLS2NQYMGERUVhUajQa1W2z3qOpk9TQghRE1yuMc9dOhQjhw5wowZM4iMjKxwhHldZtCeuUOY3JNbCCFEDXC4cP/555/88ccfxMfH10A47s92qLxUCrcQQgjnc/hQeXR09EUHlNV1ZYVbetxCCCFqgsOFe8GCBUydOpVDhw7VQDjuz3aOu1TOcQshhHA+hw+VDxgwgMLCQho3boyXl1e5adoyMzOdFpw7KjvHXSw9biGEEDXA4cK9YMGCGgjjyuGpk8vBhBBC1ByHC/eQIUNqIo4rhl5z5hy3FG4hhBA1wOFz3AAHDhxg+vTp3H///Zw6dQqAX375hX///depwbmjsz1uOccthBDC+Rwu3GvXruWqq65i48aNfPPNN+Tn5wOwfft2mVUNMEiPWwghRA1yuHBPnTqVZ599lsTERHQ6na39pptu4u+//3ZqcO7IU2dNaYkUbiGEEDXA4cK9c+dO7rjjjnLtYWFhnD592ilBuTPbddxSuIUQQtQAhwt3QEAAqamp5dq3bdtGvXr1nBKUO5ObjAghhKhJDhfu++67jylTpnDy5ElUKhUWi4X169czefJkBg8eXBMxuhXpcQshhKhJDhfu559/nubNmxMdHU1+fj4tW7bkxhtv5LrrrmP69Ok1EaNbkbuDCSGEqEkOX8et0+l49913eeqpp9i5cyf5+fm0a9eOJk2a1ER8bsc2c5r0uIUQQtQAhwt3mejoaKKjozGbzezcuZOsrCwCAwOdGZtb8pRz3EIIIWqQw4fKx48fz/vvvw+A2Wyma9euXH311URHR7NmzRpnx+d25By3EEKImuRw4f7qq69o27YtAD/++CMpKSns3buXCRMm8OSTTzo9QHdjkHPcQgghapDDhfv06dNEREQAsHz5cu69916aNm3K8OHD2blzp9MDdDdl57ilxy2EEKImOFy4w8PD2b17N2azmRUrVtCjRw8ACgsLUavVTg/Q3ZSd4zaWWrBYFBdHI4QQ4krj8OC0YcOGce+99xIZGYlKpSIhIQGAjRs30rx5c6cH6G7KDpUDFJea8dJVefyfEEIIUY7DVWXWrFm0bt2ao0ePcs8996DX6wFQq9VMnTrV6QG6G7vCbbLgpbvIykIIIYSDqtQdvPvuu+1eZ2dny326z1B7qNCpPTCaLXKeWwghhNM5fI77hRdeYNmyZbbX9957L8HBwdSvX58dO3Y4NTh3JZOwCCGEqCkOF+5FixYRHR0NQGJiIomJifzyyy/ccsstTJ482ekBuiPbtdxGKdxCCCGcy+FD5SdPnrQV7p9++ol7772Xnj17EhsbS6dOnZweoDvy1FkLd0mpFG4hhBDO5XCPOzAwkKNHjwKwYsUK26hyRVEwm6VQARg0ZT1umYRFCCGEcznc477zzjsZOHAgTZo0ISMjg969ewPW+3HHxcU5PUB3ZNDJfOVCCCFqhsOF+5VXXiE2NpajR4/y4osv4uPjA0BqaiqjR492eoDuyKCR2dOEEELUDIcLt1arrXAQ2oQJE5wS0JXAU3rcQgghakiVruM+cOAACxYsYM+ePQC0bNmS8ePH06hRI6cG567KznFL4RZCCOFsDg9O+/XXX2nZsiWbNm2iTZs2tGnTho0bN9KyZUsSExNrIsZaS5X8Gy2PL0N14He79rM9bhmcJoQQwrkc7nFPnTqVCRMmMHfu3HLtU6ZMsd10pC5QHVxNk1M/Yz7cCJr3srXLHcKEEELUFId73Hv27OGhhx4q1z58+HB2797tlKDchncYAKqCdLvms/fklsIthBDCuRwu3KGhoSQlJZVrT0pKIiwszBkxuQ3lTOEm/5Rdu23mNCncQgghnMzhQ+UjRoxg5MiRpKSkcN111wGwfv16XnjhBSZOnOj0AGs171CgfI/bUyvnuIUQQtQMhwv3jBkz8PX1Zd68eUybNg2AqKgoZs2axWOPPeb0AGszxaesx51m1y43GRFCCFFTHCrcpaWlLF26lIEDBzJhwgTy8vIA8PX1rZHgar0zPW4KM8BiBg9rT9tTbjIihBCihjh0jluj0TBq1CiKi4sBa8Gus0UbwCsEBRUqxQyFmbZmfdmhcrnJiBBCCCdzeHBax44d2bZtW03E4n7UWowa65SvFJwdoCY9biGEEDXF4XPco0ePZtKkSRw7doz27dvj7e1tt7xNmzZOC84dlGj80ZfmWc9zh7cCzrkcrFQGpwkhhHAuhwv3fffdB2A3EE2lUqEoCiqVqs7d2rNE42d9kn92ZLltVLn0uIUQQjiZw4X74MGDNRGH2yrWBlifnDOy3DaqXM5xCyGEcDKHC3dMTExNxOG2bD3uc85xG+QctxBCiBpS6cFpW7ZsoXv37uTm5pZblpOTQ/fu3dm+fbtTg3MHJVp/65P88oVbruMWQgjhbJUu3PPmzeOmm27Cz8+v3DJ/f3969OjBSy+95NTg3EGJpnzhlruDCSGEqCmVLtwbN26kX79+F1zet29f/vrrL4cDWLhwIbGxsRgMBjp16sSmTZsuuv6CBQto1qwZnp6eREdHM2HCBNt15a5QXFGPW2NNq9FswWxRXBGWEEKIK1SlC/fx48cvOtmKj48PqampDu182bJlTJw4kZkzZ7J161batm1Lr169OHXqVIXrL126lKlTpzJz5kz27NnD+++/z7Jly/jf//7n0H6dydbjLijf4wY5XC6EEMK5Kl24Q0ND2bdv3wWX7927l5CQEId2Pn/+fEaMGMGwYcNo2bIlixYtwsvLiw8++KDC9f/66y+uv/56Bg4cSGxsLD179uT++++/ZC+9JtnOcRecBnMpAAaNFG4hhBA1o9KjyhMSEnjuuee45ZZbyi1TFIXnnnuOhISESu/YaDSyZcsW241KADw8PEhISGDDhg0Vvue6665jyZIlbNq0iY4dO5KSksLy5csZNGjQBfdTUlJCSUmJ7XXZ4DqTyYTJZKp0vBUxmUyUaHxRVB6oFAum3JPgEw6ATuOBsdRCXlEJfnqHJ6i74pXlvrq/g7pG8lZ1kruqkbxVnSO5cyS/lS7c06dPp3379nTq1IlJkybRrFkzwNrTnjdvHv/99x+LFy+u9I5Pnz6N2WwmPDzcrj08PJy9e/dW+J6BAwdy+vRpunTpgqIolJaWMmrUqIseKp8zZw6zZ88u175y5Uq8vLwqHe8FqTwoUftiKM3hzxXfkuvVAAC1ogZUrFy1mnDP6u/mSpWYmOjqENyS5K3qJHdVI3mrusrkrrCwsNLbq3Thbty4Mb/99htDhw7lvvvuQ6VSAdbedsuWLUlMTCQuLq7SO66KNWvW8Pzzz/Pmm2/SqVMnkpOTGTduHM888wwzZsyo8D3Tpk2zu094bm4u0dHR9OzZs8IR8o4wmUwkJiaiC6wH6Tnc0K4pSuObAHh+11qK8kro2LkLraKqt58rUVnuevTogVardXU4bkPyVnWSu6qRvFWdI7mr6FLrC3FoApYOHTqwa9cukpKS2L9/P4qi0LRpU+Lj4x3ZDAAhISGo1WrS0uzvZZ2WlkZERESF75kxYwaDBg3i4YcfBuCqq66ioKCAkSNH8uSTT+LhUf6QtF6vR6/Xl2vXarXO+yP0CYP03WiKM+HMNg1nBqiVKir5Y78Ip/4e6hDJW9VJ7qpG8lZ1lcmdI7l1eOY0gPj4+CoV63PpdDrat2/PqlWr6N+/PwAWi4VVq1YxduzYCt9TWFhYrjir1dYCqSguvOzKJ8z685xpT213CJPBaUIIIZyoSoXbWSZOnMiQIUPo0KEDHTt2ZMGCBRQUFDBs2DAABg8eTL169ZgzZw5gvVZ8/vz5tGvXznaofMaMGfTt29dWwF1B8Q61Pik4e6MR2z25ZRIWIYQQTuTSwj1gwADS09N56qmnOHnyJPHx8axYscI2YO3IkSN2Pezp06ejUqmYPn06x48fJzQ0lL59+/Lcc8+56iNYeVfU47bGLT1uIYQQzuTSwg0wduzYCx4aX7Nmjd1rjUbDzJkzmTlz5mWIrPJsPW6Zr1wIIUQNkwuMneHMtdt285VL4RZCCFEDKtXj3rFjR6U32KZNmyoH467OnuOWHrcQQoiaVanCHR8fj0qluuDI7bJlKpUKs7kOFqqyc9yFGWA2gVp7zj25ZXCaEEII56lU4T548GBNx+HevIJApQbFbJ2z3C8Sw5nBacWldfCLjBBCiBpTqcIdExNT03G4N5UHeIdC/knryHK/yLPXcRulcAshhHCeKo8q3717N0eOHMFoNNq133777dUOyi35nCncZ67lLjtUXiI9biGEEE7kcOFOSUnhjjvuYOfOnXbnvcvmLq+T57jhzMjynbZruaXHLYQQoiY4fDnYuHHjaNiwIadOncLLy4t///2XdevW0aFDh3LXXdcptklYrCPLbee4ZeY0IYQQTuRwj3vDhg38/vvvhISE4OHhgYeHB126dGHOnDk89thjbNu2rSbirP18zi/cMle5EEII53O4x202m/H19QWsd/g6ceIEYB3Atm/fPudG507KCneBfeGW67iFEEI4k8M97tatW7N9+3YaNmxIp06dePHFF9HpdLzzzjs0atSoJmJ0D+fNniYzpwkhhKgJDhfu6dOnU1BQAMDTTz/Nbbfdxg033EBwcDDLli1zeoBu47z5yg1ydzAhhBA1wOHC3atXL9vzuLg49u7dS2ZmJoGBgbaR5XVSWY/7zKFyT53cHUwIIYTzOXyOOycnh8zMTLu2oKAgsrKyyM3NdVpgbqfsHHdRFpQa0WvkULkQQgjnc7hw33fffXz++efl2r/44gvuu+8+pwTllgwB4HHmAEZBOp46GVUuhBDC+Rwu3Bs3bqR79+7l2rt168bGjRudEpRb8vA451ruNNvgtBI5xy2EEMKJHC7cJSUllJaWlms3mUwUFRU5JSi35VN2e8902+A0o9mC2VLxXdWEEEIIRzlcuDt27Mg777xTrn3RokW0b9/eKUG5LdslYWd73CDnuYUQQjiPw6PKn332WRISEti+fTs333wzAKtWrWLz5s2sXLnS6QG6lXOmPdVrzn4nKjKZ8dZX+X4uQgghhI3DPe7rr7+eDRs2EB0dzRdffMGPP/5IXFwcO3bs4IYbbqiJGN3HOdOeeniobMVbetxCCCGcpUrdwPj4eD799FNnx+L+Kpj2tKTUIoVbCCGE01SqcOfm5uLn52d7fjFl69VJ591oxFOrJqfIJLOnCSGEcJpKFe7AwEBSU1MJCwsjICCgwhnSFEVBpVLV3ftxwwVv7SnXcgshhHCWShXu33//naCgIABWr15dowG5tfNuNCJ3CBNCCOFslSrcXbt2BaC0tJS1a9cyfPhw6tevX6OBuaWy67hLcsBUfPae3EYp3EIIIZzDoVHlGo2Gl156qcIJWATWaU/VOuvzglNnb+1ZKue4hRBCOIfDl4PddNNNrF27tiZicX8q1TnnudNt125nFxpdGJQQQogricOXg/Xu3ZupU6eyc+dO2rdvj7e3t93y22+/3WnBuSWfMMg9BvlpNAyJBSAlvcC1MQkhhLhiOFy4R48eDcD8+fPLLavzo8rB7lruxqGtATiQnu/CgIQQQlxJHC7cFoucr72oc67lbhzjA0iPWwghhPM4fI5bXMI513I3DrUW7uPZRRQaZUCfEEKI6qtS4V67di19+/YlLi6OuLg4br/9dv744w9nx+aezrlDWJC3jkAvLSC9biGEEM7hcOFesmQJCQkJeHl58dhjj/HYY4/h6enJzTffzNKlS2siRvdyzj25AVuvW85zCyGEcAaHz3E/99xzvPjii0yYMMHW9thjjzF//nyeeeYZBg4c6NQA3c550542DvXhn8NZHJAetxBCCCdwuMedkpJC3759y7XffvvtHDx40ClBubXzpj1tHGa9XE563EIIIZzB4cIdHR3NqlWryrX/9ttvREdHOyUot1Z2qNyYB8bCs4fKT0nhFkIIUX0OHyqfNGkSjz32GElJSVx33XUArF+/nsWLF/Pqq686PUC3o/cDjQFKi89cy20t5AdPF2C2KKg9yt9ZTQghhKgshwv3o48+SkREBPPmzeOLL74AoEWLFixbtox+/fo5PUC3Uzbtac4RyE+nflQDdGoPSkotnMguIjrIy9URCiGEcGMOF26AO+64gzvuuMPZsVw5fMoKdxoatQexIV78l5ZPcnq+FG4hhBDVIhOw1IRzpj0F5Dy3EEIIp3G4xx0YGIhKVf48rUqlwmAwEBcXx9ChQxk2bJhTAnRLPuUvCQPkkjAhhBDV5nDhfuqpp3juuefo3bs3HTt2BGDTpk2sWLGCMWPGcPDgQR599FFKS0sZMWKE0wN2C+dfyy2XhAkhhHAShwv3n3/+ybPPPsuoUaPs2t9++21WrlzJ119/TZs2bXjttdfqbuG29bjTgLM97hQp3EIIIarJ4XPcv/76KwkJCeXab775Zn799VcA+vTpQ0pKSvWjc1e2c9z2056ezjeSXWh0VVRCCCGuAA4X7qCgIH788cdy7T/++CNBQUEAFBQU4OvrW/3o3NU5NxoB8NZriPQ3AHKeWwghRPU4fKh8xowZPProo6xevdp2jnvz5s0sX76cRYsWAZCYmEjXrl2dG6k78T4ze1p+uq2pcagPqTnFHEjPp31MoIsCE0II4e4cLtwjRoygZcuWvPHGG3zzzTcANGvWjLVr19pmUps0aZJzo3Q3ZT1uUwGU5IPeh8ah3vyZfFoGqAkhhKiWKk3Acv3113P99dc7O5Yrh94HtF5gKrRey633oXFY2bXccqhcCCFE1VVpApYDBw4wffp0Bg4cyKlT1kuefvnlF/7991+Ht7Vw4UJiY2MxGAx06tSJTZs2XXT97OxsxowZQ2RkJHq9nqZNm7J8+fKqfIyadYFruWVkuRBCiOpwuHCvXbuWq666io0bN/L111+Tn28tRNu3b2fmzJkObWvZsmVMnDiRmTNnsnXrVtq2bUuvXr1sXwbOZzQa6dGjB4cOHeKrr75i3759vPvuu9SrV8/Rj1HzKrgvN8DhzEKMpRZXRSWEEMLNOVy4p06dyrPPPktiYiI6nc7WftNNN/H33387tK358+czYsQIhg0bRsuWLVm0aBFeXl588MEHFa7/wQcfkJmZyXfffcf1119PbGwsXbt2pW3bto5+jJp33rXc4X56vHVqzBaFI5lyuFwIIUTVOHyOe+fOnSxdurRce1hYGKdPn670doxGI1u2bGHatGm2Ng8PDxISEtiwYUOF7/nhhx/o3LkzY8aM4fvvvyc0NJSBAwcyZcoU1Gp1he8pKSmhpKTE9jo3NxcAk8mEyWSqdLwVKXt/Rdvx8ApBDZhzT2I5s7xRqDc7j+eyLzWHmEBDtfbt7i6WO3Fhkreqk9xVjeSt6hzJnSP5dbhwBwQEkJqaSsOGDe3at23b5tAh69OnT2M2mwkPD7drDw8PZ+/evRW+JyUlhd9//50HHniA5cuXk5yczOjRozGZTBc8TD9nzhxmz55drn3lypV4eTnnTl2JiYnl2pqlZtMcOLpnC9sLrOfg9SUegAe/rN9K6SHFKft2dxXlTlya5K3qJHdVI3mrusrkrrCwsNLbc7hw33fffUyZMoUvv/wSlUqFxWJh/fr1TJ48mcGDBzu6OYdYLBbCwsJ45513UKvVtG/fnuPHj/PSSy9dsHBPmzaNiRMn2l7n5uYSHR1Nz5498fPzq1Y8JpOJxMREevTogVartVvmsSUNVnxHg2AD9fr0AeDQmhT+WZWMNqg+ffpcVa19u7uL5U5cmOSt6iR3VSN5qzpHcld2NLgyHC7czz//PGPGjCE6Ohqz2UzLli0xm80MHDiQ6dOnV3o7ISEhqNVq0tLS7NrT0tKIiIio8D2RkZFotVq7w+ItWrTg5MmTGI1Gu3PuZfR6PXq9vly7Vqt12h9hhdvyjwTAo/A0HmeWNY2wflFIySiSfwBnOPP3UJdI3qpOclc1kreqq0zuHMmtw4PTdDod7777LikpKfz0008sWbKEvXv38sknn1zwPPOFttO+fXtWrVpla7NYLKxatYrOnTtX+J7rr7+e5ORkLJazo7L/++8/IiMjKyzaLnXetKeA7VrulFP5KIocKhdCCOE4hwv3008/TWFhIdHR0fTp04d7772XJk2aUFRUxNNPP+3QtiZOnMi7777LRx99xJ49e3j00UcpKCiw3ct78ODBdoPXHn30UTIzMxk3bhz//fcfP//8s+0IQK1z7rSnZ4p0TLAXHirIKyklPa/kIm8WQgghKuZw4Z49e7bt2u1zFRYWVjgI7GIGDBjAyy+/zFNPPUV8fDxJSUmsWLHCNmDtyJEjpKam2taPjo7m119/ZfPmzbRp04bHHnuMcePGMXXqVEc/Rs0ruxystAhK8gDQa9Q0CLIOiEuWiViEEEJUgcPnuBVFQaVSlWvfvn277e5gjhg7dixjx46tcNmaNWvKtXXu3Nnh68VdQucNOh8w5ltv72mwnt9uHOrDoYxCDqQXcF3jEBcHKYQQwt1UunAHBgaiUqlQqVQ0bdrUrnibzWby8/MZNWpUjQTptnzCIDPfep47uDFgPc+9au8pDpySHrcQQgjHVbpwL1iwAEVRGD58OLNnz8bf39+2TKfTERsbe8FBZXWWdxhkptgPUAv1BpC7hAkhhKiSShfuIUOGANCwYUOuu+46uSygMoLj4OjfcGIbtLoDOPdmIzLtqRBCCMc5PDita9eutqJdXFxMbm6u3UOco1FX688Dq21NZYX7eHYRhcZSV0QlhBDCjTlcuAsLCxk7dixhYWF4e3sTGBho9xDnaNTN+vPkDiiwzuMe6K0jyNt6zbn0uoUQQjjK4cL9+OOP8/vvv/PWW2+h1+t57733mD17NlFRUXz88cc1EaP78gmDsFbW5ylrbM1ynlsIIURVOVy4f/zxR958803uuusuNBoNN9xwA9OnT+f555/n008/rYkY3Vvj7tafdoXberj8gPS4hRBCOMjhwp2ZmUmjRo0A8PPzIzMzE4AuXbqwbt0650Z3JWh0TuE+M4Pa2cItPW4hhBCOcbhwN2rUiIMHDwLQvHlzvvjiC8DaEw8ICHBqcFeEmOtArYOco5BxAIDGYWcOlcu13EIIIRzkcOEeNmwY27dvB2Dq1KksXLgQg8HAhAkTePzxx50eoNvTeUF0J+vzFOvo8rIe98HTBZgtcrMRIYQQlefwlKcTJkywPU9ISGDv3r1s2bKFuLg42rRp49TgrhiNusGhP6yXhXUcQf1AL3RqD0pKLZzILiL6zPzlQgghxKU43OM+X0xMDHfeeacU7YspG6B26A8wl6L2UNEwxHq4XG42IoQQwhGVLty///47LVu2rHCSlZycHFq1asUff/zh1OCuGJHxYAiAklw4sRWQ89xCCCGqptKFe8GCBYwYMQI/P79yy/z9/XnkkUeYP3++U4O7Ynioy82iJpeECSGEqIpKF+7t27dzyy23XHB5z5492bJli1OCuiLZLgs7v3BLj1sIIUTlVbpwp6WlXfTGIhqNhvT0dKcEdUUqm/702GYoyTvnZiNSuIUQQlRepQt3vXr12LVr1wWX79ixg8jISKcEdUUKagiBsWAphUN/0ujMtKen841kFxpdG5sQQgi3UenC3adPH2bMmEFxcXG5ZUVFRcycOZPbbrvNqcFdcc6ZRc1bryHK3wDAtqPZrotJCCGEW6l04Z4+fTqZmZk0bdqUF198ke+//57vv/+eF154gWbNmpGZmcmTTz5Zk7G6v7LLws4MUEtoGQ7At1uPuyoiIYQQbqbSE7CEh4fz119/8eijjzJt2jSUM/Nuq1QqevXqxcKFCwkPD6+xQK8IDW8ElQec3gc5x7m7fX0+3nCYX/89SW6xCT/DhccQCCGEEODgzGkxMTEsX76crKwskpOTURSFJk2ayH24K8szEKLawfEtkLKGq+IH0iTMh/2n8vl5Ryr3d2zg6giFEELUclWaOS0wMJBrrrmGjh07StF2VNno8pTVqFQq7m5fH4CvthxzXUxCCCHcRrWnPBUOOvc2nxYLd7Srh4cKthzO4uBpmYxFCCHExUnhvtyiO4LWCwrS4dRuwvwM3Ng0FICvpdcthBDiEqRwX24aPcRcb31+Zha1ssPl32w9hkVu8ymEEOIipHC7wvmXhbUIx8+g4UROMRtSMlwYmBBCiNpOCrcrlA1QO/wXmIoxaNX0bRsFyCA1IYQQFyeF2xXCWoJPOJQWwdGNwNnD5b/sSiWv2OTK6IQQQtRiUrhdQaWyuywMID46gMah3hSbLPyy86TrYhNCCFGrSeF2lXMvC8M6A91dck23EEKIS5DC7SplPe4TSVBgHZB2Z7v6eKhg06FMDmfINd1CCCHKk8LtKn6REHEVoMDmdwGI8DfQpcmZa7rlxiNCCCEqIIXblbpMtP786w0ozATgrqvrAXJNtxBCiIpJ4Xallv0h/Cow5sGfrwDQq1UEvnoNx7KK2Hgw07XxCSGEqHWkcLuShwfcNN36fNO7kHcSg1bNbXJNtxBCiAuQwu1qTXtB/Y7Wa7rXvQzA3e2th8t/2ZVKQUmpK6MTQghRy0jhdjWVCm6eYX2+ZTFkHebqBoE0DPGm0Gjml11yTbcQQoizpHDXBg1vhIZdwWKCtS+cd5/uoy4OTgghRG0ihbu2uPkp68/tn0H6f9zRrh4qFfydksn65NOujU0IIUStIYW7tqjfAZr1AcUCa54nKsCTBzo1AOCJr3bI/OVCCCEAKdy1S/cnARX8+y2kbmda7xZEB3lyPLuI55fvcXV0QgghagEp3LVJRGtofaf1+e/P4a3X8NLdbQH4bNNR1uw75cLghBBC1AZSuGubbv8DlRr2/wpHN3Fto2CGXhcLwNSvd5JTJIfMhRCiLpPCXduExEH8QOvzVU8DMOWW5sQGe3Eyt5inf9ztwuCEEEK4mhTu2qjrFFDr4NAfkLIGT52al+9pi0oFX289RuLuNFdHKIQQwkWkcNdGAdHQfpj1+W+zwWKmQ2wQI25oBMD/vt1JVoHRhQEKIYRwFSnctdUNk0DrDSe2wu/PAjCxR1Mah3qTnlfCzB/+dXGAQgghXEEKd23lGw63v2Z9/ud82PUNBq2aeffG46GCH7af4Jedqa6NUQghxGVXKwr3woULiY2NxWAw0KlTJzZt2lSp933++eeoVCr69+9fswG6ylV3w3WPWZ9/PwZO7iI+OoBHuzUG4MnvdnE6v8SFAQohhLjcXF64ly1bxsSJE5k5cyZbt26lbdu29OrVi1OnLn7N8qFDh5g8eTI33HDDZYrURRJmQeObwFQInw+Ewkweu7kJzSN8ySww8sRXOzCWWlwdpRBCiMvE5YV7/vz5jBgxgmHDhtGyZUsWLVqEl5cXH3zwwQXfYzabeeCBB5g9ezaNGjW6jNG6gIca7nofAmMh+zB8NQy9SuHle9qiVav4fe8pRi3ZQrHJ7OpIhRBCXAYaV+7caDSyZcsWpk2bZmvz8PAgISGBDRs2XPB9Tz/9NGFhYTz00EP88ccfF91HSUkJJSVnDyfn5uYCYDKZMJmqN5lJ2furu51L0vrC3R+jWXwLqpQ1mFfOoFnC07w1MJ4xn23n972nGPz+Rt5+sB0+epf+SivtsuXuCiN5qzrJXdVI3qrOkdw5kl+X/i9/+vRpzGYz4eHhdu3h4eHs3bu3wvf8+eefvP/++yQlJVVqH3PmzGH27Nnl2leuXImXl5fDMVckMTHRKdu5lMh6w+l46A3UG98k6aSFgqDrGNkM3tmrZtOhLPovWMUjzc14ay9LOE5xuXJ3pZG8VZ3krmokb1VXmdwVFhZWenvu0T07Iy8vj0GDBvHuu+8SEhJSqfdMmzaNiRMn2l7n5uYSHR1Nz5498fPzq1Y8JpOJxMREevTogVZ7OaplH8yrtaj/eoWrjy+mzc33QGRbuh/PYfhHWzmcb2LxkQAWD21PqK/+MsRTdZc/d1cGyVvVSe6qRvJWdY7kruxocGW4tHCHhISgVqtJS7OfCSwtLY2IiIhy6x84cIBDhw7Rt29fW5vFYh2YpdFo2LdvH40bN7Z7j16vR68vX8S0Wq3T/gidua1LSpgB6f+i2r8S7VdDYOQaro4N5YtRnXnwvY38dyqfge9vZsnDnagf6JwjCjXpsubuCiJ5qzrJXdVI3qquMrlzJLcuHZym0+lo3749q1atsrVZLBZWrVpF586dy63fvHlzdu7cSVJSku1x++230717d5KSkoiOjr6c4buGhxrufBeCGkPuMfj0bsg6RNNwX74c1Zn6gZ4cyijknkUbOJCe7+pohRBCOJnLR5VPnDiRd999l48++og9e/bw6KOPUlBQwLBh1ik/Bw8ebBu8ZjAYaN26td0jICAAX19fWrdujU6nc+VHuXw8A+D+z8AQAKlJsOgG2PElMcHefDXqOhqHepOaU8y9izaw81iOi4MVQgjhTC4v3AMGDODll1/mqaeeIj4+nqSkJFasWGEbsHbkyBFSU2WGsHJCm8GoPyD6WijJhW8ehm8eIUJv5ItHOtMqyo+MAiN3vrWe11btx2SWa72FEOJKUCsGp40dO5axY8dWuGzNmjUXfe/ixYudH5C7CGgAQ3+GP+bB2rmw43M4+jfBd73PZyOvZfIX21m5O435if+xcvdJXr6nLc0jqjcgTwghhGu5vMctqkmtgW5TYNgv4N8Asg7B+z3x27SAtx+I59X74vH31LLreC59X/+T16X3LYQQbk0K95WiwbXw6J/Q+i5QzPD7s6g+vp1+sRYSJ95Ij5bhmMwK8xL/444317PvZJ6rIxZCCFEFUrivJAZ/6/So/ReBzgcOr4c3OxO2dwnvPNiOVwa0tfW+b3v9D974XXrfQgjhbqRwX2lUKoi//8zAtU5gzIOfJ6H6qC93NCghccKNJLQIw2RWeHnlf9w0bw2fbzoiBVwIIdyEFO4rVVAj63nv3i+C1tva+37rOsJ2LOLdB+OZf29bQnx0HM0sYuo3O+n20hqWbjwidxoTQohaTgr3lcxDDZ0egdEboFE3KC2G32aiei+BO6Oy+OOJm5h+awtCfPQczy7if9/upPvLa1jy92FKSuVuY0IIURtJ4a4LAmNg0HfQb6H1PHhqErzTDc8/5/Bwp3D+eKI7M25rSaivtYBP/24X3V9awycbDlFQUurq6IUQQpxDCnddoVJBuwdhzCZofhtYSmHdS/ByUzyXP8ZD9U/wx+PdmNm3JeF+ek7kFDPj+3/p+NxvTPlqB/8cykRRFFd/CiGEqPOkcNc1vhEwYAncsxgCG4IxH5KWwOI+GN5qzzDTF6wb0ZjZt7ciNtiLAqOZZf8c5e5FG7h53lreWnOAU7nFrv4UQghRZ0nhrotUKmh1Bzy2zTqArd2D1svHsg7BmufRL4xnyH9jWZ1wgq+Gtebu9vXx0qlJOV3ACyv20nnu7zy0eDO/7EylyCjnwoUQ4nKqFVOeChdRqSDmOuuj94uw5ydI+hQOroNDf6A69Acd1Ho6NOnBs/1vZ3lJPEuTMvjncBar9p5i1d5TeGrVdG8eSq9WEdzUPAxfg9z2TwghapIUbmGl84a2A6yP7COwfRnsWAYZ+2HvTxj2/sSdGgN3NunJyfg+LMlowbe7MjmeXcTynSdZvvMkOrUHXZqEcEvrCHq0CCfQu47crU0IIS4jKdyivIAG0PVxuHEypP0L/34Du76BrIOw5wci9vzAZK0Xk5r05Hjwdfxc0JRl+1WkpBfw+95T/L73FGoPFdfEBnJDk1BubBJKqyg/PDxUrv5kQgjh9qRwiwtTqSCitfVx0wxI3Q7/fmst5NlHUO3+jvp8xyPAyKBG5Fx9PeuV1nx0ogGb0hT+Tsnk75RMXvp1H4FeWq6PC+HGJqF0aRJCqLf86QkhRFXI/56iclQqiIq3PhJmwfGtsP9XSFkDx/5BlZlCQGYKtwK3oqKkQRv+827PiuLWfHoigqxCEz/tSOWnHdZ7qzcK8SJS7UHp9lQ6NQ6hXoAnKpX0yIUQ4lKkcAvHqVRQv7310f1/UJxrnVI1ZY31kb4X/antXMV2rgIm633IbtCZLdr2fJXTlJUnDKScLiQFD9Z/tROACD8D7WMD6RATSIeYIFpE+qJRy0UPQghxPincovoMftCst/UBkJt6poivhuRVqApPE3g0kQQSSQDMkY05EnAt36eFs1Hfkc0nFU7mFvPzjlR+PtMj99KpaV3Pn6vOPFrX86dRiLecJxdC1HlSuIXz+UVa71AWfz9YLHByOySvsj6ObkSdeYCGmQcYDygFKpR6LTgV1J4kj5b8ktuQ3497kFdcyqaDmWw6mGnbrLdOTasoaxG/qr4fLSP9aRTqjVZ65kKIOkQKt6hZHh4Q1c76uHEyFOfAwXWY/0ukcPdKfEtSUaXvJiJ9N7cAtwBKUCNywq7hoLoRO4tD2ZDtz9pTnhQYzWw6lMmmQ2eLuVatIi7MlxaRvrSI8KN5pC/NI/wI9dW77CMLIURNksItLi+DP7ToiyXuFn5nOX1u7IA29R84/Jf1cXKnbaBbO6AdMBhQtFqMwTFk6OtzSIlgZ1Eof+SGsa0kij2pCntSc4Hjtt2E+OiIC/OhSZgvcWE+tkeYr14GwQkh3JoUbuFaPmHQsp/1AVCUDUc3wZENcPo/yDgAmSmozCXos5OJIpko4DrgERVggELvBpwwxLFHiWFDYRRrc8I5nh/M6Xwjf6dk2u3O16CxFvFQHxqF+tAwxJvGod40CPZCr1Ff5g8vhBCOk8ItahfPAGja0/ooYzFD7nFrEc9IhswUOL3fOjlM3gm8Co4QV3CEOKAvgB7MOj/yDJGke4Rx1BxIcok/uwv8OF4STOrRYHYeCaT0nD9/DxVEB3nRMMSbRiE+NAz1pkGQFw2CvKgX4IlOI+fRhRC1gxRuUft5qK2zuQU0gMbd7ZcVZEDaTji5E07usv48vQ+1MZcAYy4B7KMJcBPAOdOoW1CToQ3nEFHsMYbxX2k4KVmR7MuIZO2+QJRz7r/joYJIf0+igzxpEORFTLA39QM9iQ7yIjrQixAfnRx+F0JcNlK4hXvzDoZG3ayPMqUl1t55zjHIPWb9mXPc2mvPOQa5x/EwGwk1nSCUE1yjwq6omzz0pKvDSbf4c9zkQ5rFj/Q8f07n+ZNxyI99ij/HlVBO4weo8NSqqR/oaVfM6wd6Ui/Qk3oBngR5S2EXQjiPFG5x5dHoIbyl9VERiwXyT5499J6RfPZ51kG0lhKiLEeIAtp6cMGb3+bgw3+WKPZb6pGcUZ/9p+uRaKlHKkHA2UJt0HpQL8CTqABrca8XUFbUvYgKMBDhZ5DJZoQQlSaFW9Q9Hh7gF2V9NLzBfpm5FLIPQ85RyE+HglOQfwoKTp/zPB1yT+BPPtd4/Mc1Hv/ZbaLIw4uTHuGcMAdwxBTASUsQJzODSMsIZKsSxHIliBy8KSvuag8VEX4GogIMtgIfGeBJpJ+BCH8Dkf4G6bULIWykcAtxLrUGghtbHxdjKrL20NP3QfreMz/3QeYBPC2FNLQcpCFw/QX+hRnRkqEK4KQ5gFOKP6fyA0jPC+DU0QD2KgH8pfiRgS8Zij+F6NFp1ET6Gwj31WPO92DHin2E+3sS6qsn1Mdg/emrJ8BTK7PLCXGFk8ItRFVoPSHiKuvjXGaTddR7zlHIPWGd/jXvzM/cE9bnhRnoMBGppBPpkX7JXRUrWjLwIzPPl8xcP07jx8mNQRxRgtmoBHFSCSZVCSITXzQeHoT66on0NxDp70mkv7XXHhXgaf15ptirpbgL4bakcAvhTGothDazPi6ktATy0yAvzfoz/+SZ5yeth+LzTkJhhvXwfGkRBpWJemRQT5Vx0V2XKFpSlSBOF/lTWKinMNVAIXqKFD3H0bP/zPNsfMn3jKTUtz4eAdEE+/sR4W8g3M9AuJ+ecD8DIT7SexeitpLCLcTlptGfvbztUowF1nPqBRlQeJrS3DT+27KOZvX8UeefPDNS/jgUnEKvMhGrSiOWtEtvtxTIAkumilMEcFwJ4ZgSyk4lhN8Vf3IVb/JV3qg8A9B4B6H3CcDTLxh//wBCfK2H5kN89LaffgaNnIMX4jKRwi1Ebabztj4CYwFQTCb2H/enSa8+qLXnXMNWaoS8M4fjC9LBVGgt+saCs89NhViMBZhyTqFkH0abdxy1uYgIsohQZdGe/eX3XwrknHkcB5OiJgM/0pRATimBJCsBpCmBZHoEUWIIo9QnHJVvJJ7+YYT4WQ/Lh505/x56ptAbtDJDnRDVIYVbiCuBRgeBMdbHRXgAttuvKIr1kHz2Eesj56j1Z8FpLEU5lBZmoRRloyrOQW3MQa2UolWZbYW+HBOQZX2YFDXp+HNKCeSUEsC/SqC12BNAidYflWcQGp8g9H4hePmFEOTvZxtgF+ytI8RHT5C3TmasE6ICUriFqKtUKvAOsT7qXW23yAPQndugKNaR9EVZ1svi8k5ae/h5JynNOYEp+wRKbirqgjR0JZloVWaiyCRKZT9XvE3RmceZsXlFio5sfMhVvChCT4qiZxd6TGpPFI0X6Lzw0HmDpz/4RKIOiMIQWA+fsGiCAoMJ8dHjrZf/zkTdIH/pQohLU6lAZy2g+NezW6ThvP9IzKazg+zyywp8GkpeKqU5JyktyISiLDyKs9GacvBQzHiqjHiSSWRFhb70zKMQyC6/OF8xcFIJJF0VRInGB7VGh1qjR6PVodXr0Wn16PR6dDo94enZFG0+jSakPirvUCh7aA3OypQQNU4KtxDCudRaa3E/r8CXzSyrPbdRUaAkz9qTL8qy3q/dVIilpICiglwKC3IpKsijpDAfU1E+FGWgKzqFV0k6/qWn8VYK8VEV46NKpTGpYMb6KKk4tAYAK78o117s4U2RLohC72hKAhpDUBya8KZ4R7XAP6wBGrlznKhFpHALIVxHpQKDn/Vxzvl5D8D7zOOiSvIhP42ijKPknz5KYV4OhUVFFBUXU1xcTElJMcUlJZiMxZhKitGUZOOv5BKsyiFYlUswuehVpRgsBRiKCwgsPgoZf8GBs7soUPTsV0VxShOJSmtAp9Gi02rQazXodRoMWi16nRaDwYAhMBKtXwT4hFtvWesTbj0V4SGFXziPFG4hhPvS+4DeB8/gxng2vfiqJpOJ5cuX06HnLeSWWEjPK2F3bjFZWRkUZqViyjmBPvcwfgWHCC05QlTpMeorJ/FWldCCg7QoPWg9ZO8gCyqKtIGUGMIw+USh+NVHExSNISQGr9CGeAREWwu8hwzEE5UjhVsIUafoNR5EeeqJCvA80xIBtKpwXbPJSFbqfgpP7MV4OoXCYiMFxUYKS0wUGU0UlRgpMpooLjFhNhYRqOQQpsomVJVDqCqbYHLxUCl4mzLxNmVC3l5ILb8fExryPPwp0fhQqvHBrPcHvR9qTz803gHovAPw1qrRY0RVWgylRWAq+1lkndTHOwT8o8/MERAN/md+aj3L71C4NSncQghxAWqtjsAGrQhsUHFhP5eiKOQWl3I6v4TTeSUczDeSkVtAQXYaphzrID1DwQm8i08SYEoj1JJOlCqDCDLRqkoJsmSAMQOMWAfiOYt3qLWYhzSF0ObWR1hza2GXXr5bksIthBBOoFKp8PfU4u+ppXGozzlL4ipc31hqIavQyH+5hdbz89lpFOVmUZKfhakwG3NRDhTnoirJRWPKp8SsUIKOYnQUK2d+nnmYFDUhqhzqqU5TX3WaemcevqqiMzPvpcPxLXb7L1V7UuQfhzmkGZqQxnjqtagBFIvdw8NcSrPUQ3j8kwr+keAddub8fRjofKzjFMRlJYVbCCFcQKfxODM/vAHqB11y/WKTmYwCIxn5JWd69UbS80vIyDdyOr+E3QVG/igwkllQQmaBEZPZgh8FRKtOU191iiaq4zT1OEYT1TEaqVLRm4vwzdwJmTvhvwvvVw00Bzj5XfmFWq+zl9R5BYFnEHgGnnkeeLZN52OdJEhjALXOOu2v7bnBelc+UWmSLSGEcAMGrZp6AZ7UC7j0OWtFUcgrKSUz32gr9pkFRo4WGNmWX0JWXiGanEP45x0gpPgQQaZULIoKBRUWVFjwwELZaw90mAhR5RCqyiEE6/l7b1WJdTrd7MPWR3V4Bp5zfr7BmefRZ58b/GVk/jmkcAshxBVGpVLhZ9DiZ9ASG3Khi+qusT0zWxRyikxk5JecKfTWnvvpfCOn84r5N/kwOr9gsgpNZBYYySo0YlCKCTlTyINVuQSo8gkkj0BVPgHkE6jKJ1CVRwD5eFGCTmVCTyl6lQkdJtRYzoZSdh3/yR0X/lBaL2vPXe9rvZpAV/bT5+xPnc/Z+f31vmd/egWDV4j15xXQu3f/TyCEEKJa1B4qgrx1BHnraHLeMutldAfp0+catGdubGOxKGQXWYt45pnD8xkFRjLzjaQVGNlTYCSjoOTMFwDro9Si2G3XAws6THhSQpgq+8z5+XTb+fmyc/WhqpwzgRRaHwWnqvdhDQHWEfhlhdw3/Jxefoz1uU9YrT53L4VbCCGEQzzOKfSVUTbivuyQ/fm9+uxCI5mFJrYVGFl1pkdfaDQDoKUUHwrxURXhQzHeFJ19rirGh0K8KcFLVYw3xQRojASoS/BTG/FRFeNLIT7mHDxLc1ChQHG29ZGRfOGANYazh+69gq1T4moMZ8/Na8557R0Cre6oflIdIIVbCCFEjTp3xH2j0Mq9p9hkJqvQWuCzCo3n9O6Ntt79wTM9+6xCE1mFRhSFC06S44GFAPIJUuUSTJ71pyqXcFUWDbWZNPA4TZSSTpDlNB6lxZCx3/q4lJBmUriFEEIIg1ZNpL8nkf6Vm0DGbFHILjTair2twJ/pwWefOT+fXWjkRKGR3QUm8krOVPlzir2WUiJUGdQ/c+jejwL0mNCrTBgwoseEQWXCV12Kj7qUUmMEN9fA578YKdxCCCHcntpDRbCPnmAfPXFhlXuPsdRy5jC9tQefWUHP/sSZop99pldfdggfk/VHc1/fulm4Fy5cyEsvvcTJkydp27Ytr7/+Oh07dqxw3XfffZePP/6YXbt2AdC+fXuef/75C64vhBBCVESn8SDMz0CYX+Vv61pSaian0ERWoYnsQiMqFwxic/l8d8uWLWPixInMnDmTrVu30rZtW3r16sWpUxWPHFyzZg33338/q1evZsOGDURHR9OzZ0+OHz9+mSMXQghR1+g1asL8DDSL8KVTo2A6Nrz05DnO5vIe9/z58xkxYgTDhg0DYNGiRfz888988MEHTJ06tdz6n376qd3r9957j6+//ppVq1YxePDgcuuXlJRQUnL25ry5ubmA9RIHk8lUrdjL3l/d7dRFkruqkbxVneSuaiRvVedI7hzJr0pRFOXSq9UMo9GIl5cXX331Ff3797e1DxkyhOzsbL7//vtLbiMvL4+wsDC+/PJLbrvttnLLZ82axezZs8u1L126FC8vr2rFL4QQQjhDYWEhAwcOJCcnBz8/v4uu69Ie9+nTpzGbzYSHh9u1h4eHs3fv3kptY8qUKURFRZGQkFDh8mnTpjFx4kTb69zcXNvh9Usl51JMJhOJiYn06NHDNjGBqBzJXdVI3qpOclc1kreqcyR3ZUeDK8Plh8qrY+7cuXz++eesWbMGg6HiwQV6vR69Xl+uXavVOu2P0Jnbqmskd1Ujeas6yV3VSN6qrjK5cyS3Li3cISEhqNVq0tLS7NrT0tKIiIi46Htffvll5s6dy2+//UabNm1qMkwhhBCi1nDpqHKdTkf79u1ZtWqVrc1isbBq1So6d+58wfe9+OKLPPPMM6xYsYIOHTpcjlCFEEKIWsHlh8onTpzIkCFD6NChAx07dmTBggUUFBTYRpkPHjyYevXqMWfOHABeeOEFnnrqKZYuXUpsbCwnT54EwMfHBx8fnwvuRwghhLgSuLxwDxgwgPT0dJ566ilOnjxJfHw8K1assA1YO3LkCB4eZw8MvPXWWxiNRu6++2677cycOZNZs2ZdztCFEEKIy87lhRtg7NixjB07tsJla9assXt96NChmg9ICCGEqKVcPnOaEEIIISpPCrcQQgjhRqRwCyGEEG5ECrcQQgjhRqRwCyGEEG6kVowqv5zK7qniyLywF2IymSgsLCQ3N1emAnSQ5K5qJG9VJ7mrGslb1TmSu7KaVJn7ftW5wp2XlwdAdHS0iyMRQggh7OXl5eHv73/RdVx6W09XsFgsnDhxAl9fX1QqVbW2VXansaNHj1b7TmN1jeSuaiRvVSe5qxrJW9U5kjtFUcjLyyMqKspu0rGK1Lket4eHB/Xr13fqNv38/OQPuookd1Ujeas6yV3VSN6qrrK5u1RPu4wMThNCCCHciBRuIYQQwo1I4a4GvV7PzJkz0ev1rg7F7UjuqkbyVnWSu6qRvFVdTeWuzg1OE0IIIdyZ9LiFEEIINyKFWwghhHAjUriFEEIINyKFWwghhHAjUrirYeHChcTGxmIwGOjUqRObNm1ydUi1zrp16+jbty9RUVGoVCq+++47u+WKovDUU08RGRmJp6cnCQkJ7N+/3zXB1iJz5szhmmuuwdfXl7CwMPr378++ffvs1ikuLmbMmDEEBwfj4+PDXXfdRVpamosirh3eeust2rRpY5vwonPnzvzyyy+25ZKzypk7dy4qlYrx48fb2iR3FZs1axYqlcru0bx5c9vymsibFO4qWrZsGRMnTmTmzJls3bqVtm3b0qtXL06dOuXq0GqVgoIC2rZty8KFCytc/uKLL/Laa6+xaNEiNm7ciLe3N7169aK4uPgyR1q7rF27ljFjxvD333+TmJiIyWSiZ8+eFBQU2NaZMGECP/74I19++SVr167lxIkT3HnnnS6M2vXq16/P3Llz2bJlC//88w833XQT/fr1499//wUkZ5WxefNm3n77bdq0aWPXLrm7sFatWpGammp7/Pnnn7ZlNZI3RVRJx44dlTFjxthem81mJSoqSpkzZ44Lo6rdAOXbb7+1vbZYLEpERITy0ksv2dqys7MVvV6vfPbZZy6IsPY6deqUAihr165VFMWaJ61Wq3z55Ze2dfbs2aMAyoYNG1wVZq0UGBiovPfee5KzSsjLy1OaNGmiJCYmKl27dlXGjRunKIr8vV3MzJkzlbZt21a4rKbyJj3uKjAajWzZsoWEhARbm4eHBwkJCWzYsMGFkbmXgwcPcvLkSbs8+vv706lTJ8njeXJycgAICgoCYMuWLZhMJrvcNW/enAYNGkjuzjCbzXz++ecUFBTQuXNnyVkljBkzhltvvdUuRyB/b5eyf/9+oqKiaNSoEQ888ABHjhwBai5vde4mI85w+vRpzGYz4eHhdu3h4eHs3bvXRVG5n5MnTwJUmMeyZcJ6R7vx48dz/fXX07p1a8CaO51OR0BAgN26kjvYuXMnnTt3pri4GB8fH7799ltatmxJUlKS5OwiPv/8c7Zu3crmzZvLLZO/twvr1KkTixcvplmzZqSmpjJ79mxuuOEGdu3aVWN5k8ItRC03ZswYdu3aZXfeTFxYs2bNSEpKIicnh6+++oohQ4awdu1aV4dVqx09epRx48aRmJiIwWBwdThupXfv3rbnbdq0oVOnTsTExPDFF1/g6elZI/uUQ+VVEBISglqtLjcyMC0tjYiICBdF5X7KciV5vLCxY8fy008/sXr1arvb0UZERGA0GsnOzrZbX3IHOp2OuLg42rdvz5w5c2jbti2vvvqq5OwitmzZwqlTp7j66qvRaDRoNBrWrl3La6+9hkajITw8XHJXSQEBATRt2pTk5OQa+5uTwl0FOp2O9u3bs2rVKlubxWJh1apVdO7c2YWRuZeGDRsSERFhl8fc3Fw2btxY5/OoKApjx47l22+/5ffff6dhw4Z2y9u3b49Wq7XL3b59+zhy5Eidz935LBYLJSUlkrOLuPnmm9m5cydJSUm2R4cOHXjggQdszyV3lZOfn8+BAweIjIysub+5Kg9rq+M+//xzRa/XK4sXL1Z2796tjBw5UgkICFBOnjzp6tBqlby8PGXbtm3Ktm3bFECZP3++sm3bNuXw4cOKoijK3LlzlYCAAOX7779XduzYofTr109p2LChUlRU5OLIXevRRx9V/P39lTVr1iipqam2R2FhoW2dUaNGKQ0aNFB+//135Z9//lE6d+6sdO7c2YVRu97UqVOVtWvXKgcPHlR27NihTJ06VVGpVMrKlSsVRZGcOeLcUeWKIrm7kEmTJilr1qxRDh48qKxfv15JSEhQQkJClFOnTimKUjN5k8JdDa+//rrSoEEDRafTKR07dlT+/vtvV4dU66xevVoByj2GDBmiKIr1krAZM2Yo4eHhil6vV26++WZl3759rg26FqgoZ4Dy4Ycf2tYpKipSRo8erQQGBipeXl7KHXfcoaSmprou6Fpg+PDhSkxMjKLT6ZTQ0FDl5ptvthVtRZGcOeL8wi25q9iAAQOUyMhIRafTKfXq1VMGDBigJCcn25bXRN7ktp5CCCGEG5Fz3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcIthBBCuBEp3EIIIYQbkcItRB1hMplYvHgxXbp0ITQ0FE9PT9q0acMLL7yA0Wh0dXhCiEqSKU+FqCOSkpKYNGkSo0ePpl27dhQXF7Nz505mzZpFZGQkv/76K1qt1tVhCiEuQXrcQtQRrVu3ZtWqVdx11100atSIli1bMmDAANatW8euXbtYsGABACqVqsLH+PHjbdvKyspi8ODBBAYG4uXlRe/evdm/f79t+fDhw2nTpg0lJSUAGI1G2rVrx+DBgwE4dOgQKpWKpKQk23tmzJiBSqWyxSGEqJgUbiHqCI1GU2F7aGgod955J59++qmt7cMPPyQ1NdX2OP/ewUOHDuWff/7hhx9+YMOGDSiKQp8+fTCZTAC89tprFBQUMHXqVACefPJJsrOzeeONNyqM4dixYyxYsABPT09nfFQhrmgV/0sWQlyxWrVqxeHDh+3aTCYTarXa9jogIICIiAjba51OZ3u+f/9+fvjhB9avX891110HwKeffkp0dDTfffcd99xzDz4+PixZsoSuXbvi6+vLggULWL16NX5+fhXG9OSTTzJgwAB+++03Z35UIa5IUriFqGOWL19u6xmXefHFF1myZEml3r9nzx40Gg2dOnWytQUHB9OsWTP27Nlja+vcuTOTJ0/mmWeeYcqUKXTp0qXC7W3dupVvv/2Wffv2SeEWohKkcAtRx8TExJRrO3DgAE2bNnXqfiwWC+vXr0etVpOcnHzB9SZNmsTkyZOJjIx06v6FuFLJOW4h6ojMzEzy8vLKtf/zzz+sXr2agQMHVmo7LVq0oLS0lI0bN9raMjIy2LdvHy1btrS1vfTSS+zdu5e1a9eyYsUKPvzww3Lb+uGHH/jvv/+YPHlyFT6REHWTFG4h6ogjR44QHx/P+++/T3JyMikpKXzyySf069ePG264wW7U+MU0adKEfv36MWLECP7880+2b9/Ogw8+SL169ejXrx8A27Zt46mnnuK9997j+uuvZ/78+YwbN46UlBS7bb344os8++yzeHl5OfvjCnHFksItRB3RunVrZs6cyeLFi7n22mtp1aoVL774ImPHjmXlypV2A9Au5cMPP6R9+/bcdtttdO7cGUVRWL58OVqtluLiYh588EGGDh1K3759ARg5ciTdu3dn0KBBmM1m23bi4uIYMmSI0z+rEFcymYBFCCGEcCPS4xZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHciBRuIYQQwo1I4RZCCCHcyP8DhBXKXlVLS5UAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_300.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_300.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AJQ9PCjDdIWx", + "outputId": "0465f6cc-a514-447c-a6fb-5d42a75a146f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9365 - loss: 0.2352\n", + "Lossontestdata: 0.23040874302387238\n", + "Accuracyontestdata: 0.9372000098228455\n" + ] + } + ], + "source": [ + "scores_2l_300=model_2l_300.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_300[0])\n", + "print('Accuracyontestdata:',scores_2l_300[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lMwKttpGdRBF" + }, + "outputs": [], + "source": [ + "#Пункт 8\n", + "model_2l_500 = Sequential()\n", + "model_2l_500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n", + "model_2l_500.add(Dense(units=num_classes, activation='softmax'))\n", + "# 2. компилируем модель\n", + "model_2l_500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 213 + }, + "id": "kp_GuJGtdTt7", + "outputId": "cf1cc121-c59a-4d1a-d095-2373226b04b4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_4\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_4\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_7 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m500\u001b[0m) │ \u001b[38;5;34m392,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_8 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m5,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_7 (Dense)                 │ (None, 500)            │       392,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_8 (Dense)                 │ (None, 10)             │         5,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ], + "text/html": [ + "
     Total params: 397,510 (1.52 MB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m397,510\u001b[0m (1.52 MB)\n" + ], + "text/html": [ + "
     Trainable params: 397,510 (1.52 MB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_2l_500.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YdDl5OBkdXYf", + "outputId": "345e610e-0037-424b-e537-e13a3c867f9d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.5493 - loss: 1.7652 - val_accuracy: 0.8298 - val_loss: 0.8146\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8435 - loss: 0.7186 - val_accuracy: 0.8608 - val_loss: 0.5514\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8698 - loss: 0.5216 - val_accuracy: 0.8768 - val_loss: 0.4572\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8831 - loss: 0.4475 - val_accuracy: 0.8865 - val_loss: 0.4084\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8879 - loss: 0.4108 - val_accuracy: 0.8918 - val_loss: 0.3823\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8930 - loss: 0.3828 - val_accuracy: 0.8972 - val_loss: 0.3626\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8983 - loss: 0.3595 - val_accuracy: 0.9015 - val_loss: 0.3486\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9001 - loss: 0.3542 - val_accuracy: 0.9023 - val_loss: 0.3385\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9007 - loss: 0.3479 - val_accuracy: 0.9048 - val_loss: 0.3280\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9042 - loss: 0.3333 - val_accuracy: 0.9060 - val_loss: 0.3242\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9067 - loss: 0.3251 - val_accuracy: 0.9077 - val_loss: 0.3177\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9089 - loss: 0.3189 - val_accuracy: 0.9093 - val_loss: 0.3119\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9082 - loss: 0.3227 - val_accuracy: 0.9117 - val_loss: 0.3078\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9119 - loss: 0.3072 - val_accuracy: 0.9123 - val_loss: 0.3037\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9122 - loss: 0.3064 - val_accuracy: 0.9107 - val_loss: 0.3013\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9133 - loss: 0.3014 - val_accuracy: 0.9138 - val_loss: 0.2988\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9133 - loss: 0.3027 - val_accuracy: 0.9152 - val_loss: 0.2962\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9147 - loss: 0.2972 - val_accuracy: 0.9170 - val_loss: 0.2914\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9154 - loss: 0.2965 - val_accuracy: 0.9145 - val_loss: 0.2898\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9179 - loss: 0.2874 - val_accuracy: 0.9163 - val_loss: 0.2878\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9170 - loss: 0.2921 - val_accuracy: 0.9165 - val_loss: 0.2874\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9187 - loss: 0.2833 - val_accuracy: 0.9163 - val_loss: 0.2845\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9192 - loss: 0.2845 - val_accuracy: 0.9167 - val_loss: 0.2810\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9198 - loss: 0.2798 - val_accuracy: 0.9158 - val_loss: 0.2819\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9196 - loss: 0.2829 - val_accuracy: 0.9180 - val_loss: 0.2782\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9215 - loss: 0.2812 - val_accuracy: 0.9168 - val_loss: 0.2774\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9220 - loss: 0.2716 - val_accuracy: 0.9175 - val_loss: 0.2754\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9220 - loss: 0.2714 - val_accuracy: 0.9198 - val_loss: 0.2750\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9221 - loss: 0.2716 - val_accuracy: 0.9190 - val_loss: 0.2739\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9246 - loss: 0.2690 - val_accuracy: 0.9197 - val_loss: 0.2717\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9223 - loss: 0.2720 - val_accuracy: 0.9217 - val_loss: 0.2701\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9244 - loss: 0.2632 - val_accuracy: 0.9203 - val_loss: 0.2682\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9252 - loss: 0.2610 - val_accuracy: 0.9222 - val_loss: 0.2680\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9247 - loss: 0.2616 - val_accuracy: 0.9205 - val_loss: 0.2654\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9262 - loss: 0.2621 - val_accuracy: 0.9215 - val_loss: 0.2641\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9266 - loss: 0.2599 - val_accuracy: 0.9217 - val_loss: 0.2626\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9273 - loss: 0.2577 - val_accuracy: 0.9230 - val_loss: 0.2596\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9268 - loss: 0.2608 - val_accuracy: 0.9223 - val_loss: 0.2588\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9266 - loss: 0.2571 - val_accuracy: 0.9230 - val_loss: 0.2577\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9263 - loss: 0.2576 - val_accuracy: 0.9247 - val_loss: 0.2567\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9295 - loss: 0.2481 - val_accuracy: 0.9270 - val_loss: 0.2543\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9297 - loss: 0.2504 - val_accuracy: 0.9253 - val_loss: 0.2534\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9313 - loss: 0.2430 - val_accuracy: 0.9253 - val_loss: 0.2528\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9288 - loss: 0.2501 - val_accuracy: 0.9250 - val_loss: 0.2502\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9312 - loss: 0.2430 - val_accuracy: 0.9275 - val_loss: 0.2470\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9310 - loss: 0.2461 - val_accuracy: 0.9250 - val_loss: 0.2479\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9311 - loss: 0.2470 - val_accuracy: 0.9272 - val_loss: 0.2445\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9308 - loss: 0.2468 - val_accuracy: 0.9280 - val_loss: 0.2432\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9310 - loss: 0.2396 - val_accuracy: 0.9277 - val_loss: 0.2417\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9335 - loss: 0.2354 - val_accuracy: 0.9285 - val_loss: 0.2419\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_2l_500 = model_2l_500.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "P1jA4OiUecrl", + "outputId": "83e6a06e-7438-4fb9-a0d7-6d13ebe73993" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAHWCAYAAACxPmqWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfhVJREFUeJzt3Xd4U2X7wPFvdvfeUFqgTJEhKoL4AlJAUBQniiLjBWX4ylThJ9OFiiIOFCeogOACRREpyFBkQxkypOxRyuieSZPz+yM0EFqgSVPS0PtzXbmanHNyzp27hTvPc57zHJWiKApCCCGE8AhqdwcghBBCiPKTwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgghhAeRwi2EEEJ4ECncQgiXsFgsnD17loMHD7o7FCGua1K4hRBOO3XqFMOHDycuLg69Xk94eDiNGzcmOzvb3aEJcd3SujsAUf307duX77//ntzcXHeHIiogJSWFDh06YDKZePbZZ7npppvQarV4e3vj6+vr7vCEuG5J4RbXxLlz55g7dy5//vkna9asoaCggLvuuosWLVrwyCOP0KJFC3eHKBz09NNPo9frWb9+PTVq1HB3OEJUGyq5yYiobPPnz2fgwIHk5uYSHx+PyWTi1KlTtGjRgu3bt2MymejTpw+ffPIJer3e3eGKctiyZQs333wzy5Yto1OnTu4OR4hqRc5xi0q1du1annjiCaKioli7di2HDh0iMTERLy8vNm3axMmTJ3nsscf48ssvGTFiBACKohAfH899991Xan+FhYUEBgby9NNPA7Bq1SpUKhXff/99qW39/Pzo27ev7fXs2bNRqVQcPnzYtuyff/4hODiYe+65h+LiYrvtNm/ebLe/s2fPolKpmDRpkt3yspZNnToVlUpF+/bt7ZYfPHiQhx9+mJiYGNRqNSqVCpVKRZMmTa6URgCKi4t5+eWXqVu3LgaDgfj4eP7v//6PoqIiu+3i4+O555577JY988wzqFQqu2XLly9HpVLxyy+/2Ja1b9++VMybNm2yxVli/fr1eHl5ceDAAW644QYMBgNRUVE8/fTTpKen272/rH2++uqrqNVq5s2b5/CxL6d9+/a2bct6XPx7B/jwww9tscfExDB06FAyMzOveIycnBwGDBhAXFwcBoOBmjVrMmjQINLS0uy2K/kbutzj0r+Xbdu20bVrVwICAvDz86Njx46sX7/etl5RFDp06EB4eDinT5+2LTcajdx4443UrVuXvLw8AI4cOcKQIUNo0KAB3t7ehIaG8vDDD5f6/CUx6vV6zpw5Y7du3bp1tlgv/Xcg3E+6ykWlev3117FYLMyfP5+WLVuWWh8WFsZXX33F7t27+fjjj5k4cSIRERE88cQTvPnmm6SnpxMSEmLbfvHixWRnZ/PEE09UOLZjx45x11130bBhQ7799lu0Wtf8c8jMzGTKlCmllpvNZu69916OHDnC8OHDqV+/PiqVildffbVc+x0wYABffvklDz30EKNGjWLDhg1MmTKFPXv2sHDhQpfEXpYXXnih1LJz585RWFjI4MGDufPOOxk0aBAHDhxgxowZbNiwgQ0bNmAwGMrc36xZsxg3bhxvv/02vXr1cvjYV1KzZs1SuV+yZAnffPON3bJJkyYxefJkEhMTGTx4MPv27eOjjz5i06ZNrF27Fp1OV+b+09PT2bFjBwMGDCAqKoqUlBRmzpzJ0qVL2bhxIxEREXbbv/TSS9SuXdv2Ojc3l8GDB9tt888//3DHHXcQEBDA888/j06n4+OPP6Z9+/asXr2aVq1aoVKp+OKLL2jatCmDBg3ixx9/BGDixIn8888/rFq1yjauYNOmTfz99988+uij1KxZk8OHD/PRRx/Rvn17du/ejY+Pj93xNRoNc+bMsX1xBuvvyMvLi8LCwvKkXVxrihCVKCQkRImLi7Nb1qdPH8XX19du2fjx4xVAWbx4saIoirJv3z4FUD766CO77e69914lPj5esVgsiqIoysqVKxVA+e6770od29fXV+nTp4/t9axZsxRAOXTokJKenq40btxYadCggXL27Fm795Vst2nTJrvlZ86cUQBl4sSJdssvXfb8888rERERSsuWLZV27drZlpd8pilTpti9v127dsoNN9xQKv6LJScnK4AyYMAAu+WjR49WAOWPP/6wLYuLi1Puvvtuu+2GDh2qXPrPPSkpyS7nJbFcHPOSJUsUQLnrrrvs3j9x4kQFUDp27KgUFxfblpfk7v333y9zn7/++qui1WqVUaNGlfqM5T325Vwuj1OnTrX93hVFUU6fPq3o9Xqlc+fOitlstm33wQcfKIDyxRdfXPVYF9u1a5diMBiU/v3725Y58jfUo0cPRa/XKwcOHLAtO3nypOLv76/85z//sXv/xx9/rADKnDlzlPXr1ysajUYZPny43Tb5+fmlYly3bp0CKF999VWpGB977DHlxhtvtC3Py8tTAgIClF69epX5GYT7SVe5qFQ5OTmlWiFliYyMBLBdRlS/fn1atWrF3Llzbdukp6fz22+/8fjjj5fqOs3JyeHs2bN2j8spLCzk3nvv5cyZMyxdupTQ0FBnPlqZTpw4wfvvv8/48ePx8/MrFSPg1PGWLFkCwMiRI+2Wjxo1CoBff/3VmXCvSFEUxo4dy4MPPkirVq3K3GbkyJFoNBrb6969exMZGVlmPBs3buSRRx7hwQcfZOrUqRU+trOWL1+O0Whk+PDhqNUX/gscOHAgAQEBV81lyfXqJY/IyEi6devGDz/8gMVicSgWs9nMsmXL6NGjB3Xq1LEtj46OplevXvz11192l9Y99dRTdOnShf/973/07t2bunXr8tprr9nt09vb2/bcZDJx7tw5EhISCAoKYuvWraVi6N27N3v37rV1if/www8EBgbSsWNHhz6LuHakcItKFRMTw4EDB666XUpKCoDd6OQnn3yStWvXcuTIEQC+++47TCYTvXv3LvX+/v37Ex4ebvcoOed3qX79+vHXX3+Rk5NjO6/tKhMnTiQmJsZ2Dv5iDRo0IDg4mLfffpu1a9dy5swZzp49i8lkuup+jxw5glqtJiEhwW55VFQUQUFBthy50ty5c/nnn39KFQbA9sWpYcOGdss1Gg316tUrdT71xIkT3H333eTl5XHu3LmrnrO+0rErqiRXDRo0sFuu1+upU6fOVXN59OjRUn9rCxcuJCsr64pfGMty5swZ8vPzS8UC0KhRIywWC8eOHbNb/vnnn5Ofn8/+/fuZPXu2XaEGKCgoYMKECcTGxmIwGAgLCyM8PJzMzEyysrJKHSc8PJy7776bL774AoAvvviCPn362H2pEVWL/GZEpbrnnntIT0/n888/v+w2aWlpfPnll4SHh3PbbbfZlj/66KPodDpbq3vOnDncfPPNZf4nN2HCBJKSkuweXl5eZR5v69at/PTTT4SHh/PUU09V8BNesGfPHmbPns0rr7xS5jlSPz8/FixYQF5eHm3btiUiIoLw8HD+/vvvch+jPIO0XMFoNDJ+/Hj++9//Ur9+/VLrLy0WV5OSkkKtWrX4+uuvWb58OV9++aXTx3a3qKioUn9rjz322DU7/qpVq2wDEnfu3Flq/f/+9z9effVVHnnkEb799luWLVtGUlISoaGhl+0R6N+/P9988w179uxhzZo1doM6RdUjg9NEpRo3bhyLFi1i8ODB7N27l169emE2mwFry2XFihVMmDCBjIwM5s2bZzegKSQkhLvvvpu5c+fy+OOPs3btWqZPn17mcW688UYSExPtll3chXuxzz77jHvvvReNRsM999zD559/zn//+98Kf9axY8fSvHlzevbsedltOnXqxJtvvsnjjz/OzJkzqVOnDqNGjbLl5HLi4uKwWCzs37+fRo0a2ZanpaWRmZlJXFxcheO/2Icffsjp06dLjX4uUTLgat++fXZdvCUxXnpdfnR0NEuWLCEyMpKffvqJUaNG0a1bN8LDwx0+dkWV5OrS2I1Go+2qhyvx8vIqtc17771HQEAAYWFhDsUSHh6Oj48P+/btK7Vu7969qNVqYmNjbctSU1P53//+R+fOndHr9YwePZouXbrY/f6///57+vTpw9tvv21bVlhYeMUR8127dsXLy4tHH32Utm3bUrduXf7880+HPou4dqTFLSpVVFQU69ato2vXrrz99tvcdNNNzJkzh7y8POLi4ujfvz/e3t4sXry4zFZL79692b17N8899xwajYZHH320wjHdcccdANx99908+uijPPfcc6Uu53HUunXr+Omnn3j99dev2Co+duwYQ4YM4dlnn+Wpp54iMTGR4ODgq+6/W7duAKW+uEybNg2wfhZXycnJ4dVXX2XEiBFERUWVuU3Hjh0xGAy89957dq24uXPnkpaWVupytPr169vGMbz//vtYLBaGDRvm1LErKjExEb1ez3vvvYdy0TQWn3/+OVlZWVfMZVkt1m3btvHbb7/Ro0cPh7uXNRoNnTt35qeffrI7vZCWlsa8efNo27YtAQEBtuUDBw7EYrHw+eef88knn6DVavnvf/9r9zk0Go3da7Dm/EpfDrVaLU8++SQ7duygf//+Dn0Gce1Ji1tUutjYWH766SdSU1NZu3YtU6dOJTk5mZkzZ9K8eXOaN29+2WJ39913ExoaynfffUfXrl3LNdDNEe+++y6NGjXif//7H99++63dunXr1tmdsywZJJSSksLGjRu59dZbbetKJiK5UmvNYrHQu3dvatasyeuvv+5QnM2aNbNNUpOZmUm7du3YuHEjX375JT169KBDhw5225cMvCtx9OhRALtlycnJZR5r69athIWF8fzzz182npCQEMaNG8f48ePp0qUL9913HwcPHuSDDz6gWbNmDBgw4LLvjYqKYurUqQwYMIAnnnjC9qWkvMeuqPDwcMaOHcvkyZO56667uPfee9m3bx8ffvght9xyyxUvNTx69Ch33303Dz/8MDVq1GDXrl18+umnhIWFOX0+/pVXXiEpKYm2bdsyZMgQtFotH3/8MUVFRbz55pu27WbNmsWvv/7K7NmzqVmzJmAtyE888QQfffQRQ4YMAaynp77++msCAwNp3Lgx69atY/ny5VcdFPnyyy/z3HPPleuLpHAzt45pF9VSWZeDXcmQIUMUQJk3b16pdc5eDnaxL7/8UgGUn3/+2W67Kz0uvmwJUFQqlbJlyxa7/V56edNrr72mGAwGZfv27aW2u9rlYIqiKCaTSZk8ebJSu3ZtRafTKbGxscrYsWOVwsJCu+3i4uKuGv/Fj0svBwOUd955x26fJZd/XWrGjBlKw4YNFZ1Op0RGRipPP/20cu7cuSvmocSdd96p1KpVS8nJyXHq2Jcq7+VgJT744AO72AcPHqxkZGRc8Rg5OTnKwIEDlbi4OEWv1yvh4eFK7969lSNHjtht5+glhVu3blW6dOmi+Pn5KT4+PkqHDh2Uv//+27b+2LFjSmBgoNK9e/dSMd1///2Kr6+vcvDgQUVRFCUjI0Pp16+fEhYWpvj5+SldunRR9u7dq8TFxZX57+Fyl3tdbb1wH5nyVFR5I0aM4PPPP+fUqVOlJo9wh0mTJrFq1SpWrVrl7lCEENWQnOMWVVphYSFz5szhwQcfrBJFWwgh3E3OcYsq6fTp0yxfvpzvv/+ec+fOlTmQyV0SEhLIz893dxhCiGpKuspFlbRq1So6dOhAREQE48eP55lnnnF3SEIIUSVI4RZCCCE8iJzjFkIIITyIFG4hhBDCg1S7wWkWi4WTJ0/i7+9/zeZ9FkIIIa5EURRycnKIiYm56gx81a5wnzx50m7uXyGEEKKqOHbsmG1mvMtxa+Fes2YNU6dOZcuWLaSmprJw4UJ69OhRrveuXbuWdu3a0aRJk8tO3VgWf39/wJqci+cAdobJZGLZsmV07ty5zLtBicuT3DlH8uY8yZ1zJG/OcyR32dnZxMbG2mrUlbi1cOfl5dGsWTP69+/PAw88UO73ZWZm8uSTT9KxY0eHbw5R0j0eEBDgksLt4+NDQECA/EE7SHLnHMmb8yR3zpG8Oc+Z3JXnFK5bC3fXrl3p2rWrw+8bNGgQvXr1QqPRsGjRItcHJoQQQlRRHneOe9asWRw8eJA5c+bwyiuvXHX7oqIi203n4cIdnkwmEyaTqUKxlLy/ovupjiR3zpG8OU9y5xzJm/McyZ0j+fWowr1//37GjBnDn3/+iVZbvtCnTJnC5MmTSy1ftmyZy+a+TkpKcsl+qiPJnXMkb86T3DlH8ua88uTOkWmUPaZwm81mevXqxeTJk6lfv3653zd27FhGjhxpe10yAKBz584uOcedlJREp06d5NyPgyR3zqlI3sxmM8XFxVTXyRKLi4v5+++/adOmTbm/+AvJW0VcnDsvLy80Gs1lz2GX9AaXh8f8FnJycti8eTPbtm2zzVttsVhQFAWtVsuyZcu48847S73PYDBgMBhKLdfpdC4rGK7cV3UjuXOOo3nLzc3l+PHj1bZog/U62aioKFJTU2UOBwdI3px3ae58fHyIjo5Gr9eX2taRf88eU7gDAgLYuXOn3bIPP/yQP/74g++//57atWu7KTIhqjaz2czx48fx8fEhPDy82v7na7FYyM3Nxc/P76oTXIgLJG/OK8mdr68vxcXFnDlzhkOHDlGvXr0K5dKthTs3N5eUlBTb60OHDpGcnExISAi1atVi7NixnDhxgq+++gq1Wk2TJk3s3h8REYGXl1ep5UKIC0wmE4qiEB4ejre3t7vDcRuLxYLRaMTLy0sKkAMkb84ryZ23tzdqtRqdTseRI0ds+XSWWwv35s2b6dChg+11ybnoPn36MHv2bFJTUzl69Ki7whPiulJdW9pCVBWu+uLj1sLdvn37K55zmz179hXfP2nSJCZNmuTaoIQQQogqTPo9hBDXJbnu2DPJ7+3qpHALIa4LycnJ9OnTh/r16xMcHExAQABZWVnuDktcxcGDBxk8eDCNGzcmNDQUb29v9u7d6+6wqjQp3EKIKuvYsWP079+fmJgY9Ho9cXFxDBs2jHPnztltt2rVKtq2bUtUVBTz589n06ZNpKSkEBgY6KbIRXns2bOHli1bUlxczBdffMGGDRs4cOAADRs2dHdoVZrHXA4mhKheDh48SOvWralfvz7ffPMNtWvX5p9//uG5557jt99+Y/369YSEhKAoCgMHDmT69OkMGDDA3WELBzzzzDMMHTq0XNNXiwukxV0Bn/51iNeTNcxed8TdoQhRboqikG8sdsvDkQlghg4dil6vZ9myZbRr145atWrRtWtXli9fzokTJ3jxxRcB2Lt3L0eOHCElJYW4uDi8vLy47bbb+Ouvv2yfNyEhgbfffttu/8nJyahUKlJSUli1ahUqlYrMzEzb+r59+9rdZnjp0qW0bduWoKAgQkNDueeeezhw4IBt/eHDh1GpVLbbDJ84cYKHH36YiIgI/P39uf/++zl+/Lht+0mTJtG8eXPb68zMTFQqFatWrbpsDAcOHOC+++4jMjISPz8/brnlFpYvX273uVJTU3nggQcIDQ1FpVLZHhd/tkvt3LmTO++8E29vb0JDQ3nqqafIzc21rR8yZAj3339/qdwdPnzYtqx9+/YMHz7c9jo+Pp7p06fbXq9YsQKVSmX7PHl5eaxcuRKj0Ui9evXw8vLixhtv5KeffrpsTouKikhMTCQxMdF2D4pNmzbRqVMnwsLCCAwMpF27dmzduvWyn/V6IC3uCjiXayS1QMWprEJ3hyJEuRWYzDSe8Ltbjr37pS746K/+3056ejq///47r776aqlrz6Oionj88cdZsGABH374IWfOnMFkMvH111/z6aefUrt2bd59913uuusu9u/fT3R0NP3792f27NkMHDjQtp9Zs2bxn//8h4SEBLuCejl5eXmMHDmSpk2bkpuby4QJE7j//vtJTk4udZmPyWSiW7du6HQ6Fi9ejE6nY9iwYfTo0YNNmzY5fWlebm4u3bp149VXX8VgMPDVV1/RvXt39u3bR61atQAYNWoU//77L0uXLiU2Npa///6bBx988Iqfq0uXLrRu3ZpNmzZx+vRpBgwYwDPPPHPVK3vKy2KxMGrUKPz8/GzLzp07h6IofPzxx8ycOZOWLVsyb948HnjgAbZs2WL3pQasEwk9+uij5Obmsnz5ctuMmDk5OfTp04f3338fRVF4++236datG/v37y/Xva09kbS4K8BLpwGgqNji5kiEuL7s378fRVFo1KhRmesbNWpERkYGZ86cwWKx/vubOnUq3bp1o1GjRnz44YfExMQwY8YMwNpy3bdvH1u2bAGshXXevHn0798fwPbloKCg4LIxPfjggzzwwAMkJCTQvHlzvvjiC3bu3Mnu3btLbbt8+XJ27NjBV199RatWrbjpppuYO3cuycnJrFixwum8NGvWjKeffpomTZpQr149Xn75ZerWrcvPP/9s2yY5OZlevXpxyy23EBUVRUhIyBX3OW/ePAoLC/nqq69o0qQJd955Jx988AFff/01aWlpTsd6sS+//JKioiLuu+8+27KS39sLL7zAY489Rv369Zk0aRIdOnTgrbfesnu/oij069ePlJQUlixZYvcF4M477+SJJ56gYcOGNGrUiE8++YT8/HxWr17tktirImlxV4CX1vq9p8BkdnMkQpSft07D7pe6uO3YjnCka/3222+3PVer1bRp08ZWVGNiYujWrRtz5syhQ4cOLF68mKKiIh5++GEA6tWrh16v55tvvrG7KdHF9u/fz4QJE9iwYQNnz561FZ6jR4/azd7Ypk0bzGYzQUFBNG7c2La8Vq1axMbGsnv3bhITE8ufhIvk5uYyadIkfv31V1JTUykuLqagoMBuoqratWuzZMkSBg0adNWiDdYBYs2aNcPX19e27Pbbb8disbBv3z7Cw8OdirVEfn4+48aNY+bMmfzwww+l1l/8ewNo27at3RcRgOeee44VK1bQr1+/Up8pLS2NcePGsWrVKk6fPo3ZbCY/P/+6nrxLWtwVYDj/n1ChSVrcwnOoVCp89Fq3PMrbRZyQkIBKpWLPnj1lrt+zZw/BwcGEh4cTHBx8xc9a4r///S8//vgjBQUFzJo1i549e9pu7RsSEsK0adMYM2YM3t7e+Pn5MXfuXLt9de/enfT0dD799FM2bNjAhg0bADAajXbbLViwgJdffrlcMTlq9OjRLFy4kNdee40///yT5ORkbrzxRrsY3nnnHYqKiggLC8PPz4+uXbs6fTxXmDp1Kg0aNKB79+52y8v7ewPr7/u3335j/vz5/P67/WmePn36kJyczLvvvsvff/9NcnIyoaGhpX4v1xMp3BXgpbOmr0ha3EK4VGhoKJ06deLDDz8s1X196tQp5s6dS8+ePVGpVNStWxetVsvatWtt21gsFv7++2+7Fm+3bt3w9fVl5syZLF261NZNXmLo0KFkZWWxa9cukpOTuffee23rzp07x759+xg3bhwdO3a0ddWXJTY2lrZt25KZmWnXjX7s2DGOHTtmF5Oj1q5dS9++fbn//vu58cYbiYqKshsgBlC/fn369u1LfHw8GzZs4LPPPrviPhs1asT27dvJy8uzO45araZBgwZOxwrWgXJvv/12qYGBAIGBgURFRdn93gD++uuvUjn6+uuvueuuu3j55ZcZOHCg3S0w165dy7PPPku3bt244YYbMBgMnD17tkJxV3VSuCvAS3u+xS3nuIVwuQ8++ICioiK6dOnCmjVrOHbsGEuXLqVTp07UqFGDV199FQA/Pz8GDhzIc889x5IlS9izZw9Dhgzh5MmTDBkyxLY/jUbDY489xv/93/9Rr149WrduXeqY3t7e1K1bl4SEBLuBTcHBwYSGhvLJJ5+QkpLCH3/8cdkudbB2l7dq1Yonn3ySjRs3snXrVh5//HGaN29ud/thRVEoLCyksLDQNkraaDTalpnNZiwWi202sXr16vHjjz+SnJzM9u3b6dWrl63LvsT69ev5v//7P77//ntuuOEGatSoccU8P/7443h5edGnTx927drFypUr+d///kfv3r2JjIy0bWexWGxxlbRmi4qKbMsujQNgxowZ3H///bRo0aLMY48YMYI33niD+fPn8++//zJp0iRWrlzJ6NGj7bYr6R4fMWIEsbGxdrmvV68eX3/9NXv27GHDhg08/vjj1/3NdKRwV0BJi7tQWtxCuFy9evXYvHkzderU4ZFHHqFu3bo89dRTdOjQgXXr1tmd63zrrbfo0aMHffr0oXnz5mzfvp3ff/+d6Ohou3327t0bo9FIv379HIpFrVYzf/58tmzZQpMmTRgxYgRTp0694nt++OEHYmNj6dixI+3atSMsLIxFixbZdQPv2LEDb29vvL29iYqKAqBLly62ZXPmzGHx4sW20fDTpk0jODiYNm3a0L17d7p06cJNN91k29+ZM2d4+OGHmTZtmt3yK/Hx8eH3338nPT2dW265hYceeoiOHTvywQcf2G33yy+/2OJq1aoVAA0bNrQt+/PPP0vt22Kx2L5glWXUqFE8++yzjBo1iiZNmvDjjz/y448/0qxZszK3V6vVzJo1i3nz5rFs2TIAPv/8czIyMrjpppvo3bs3zz77LBEREeX67J5KpTgy+uM6kJ2dTWBgIFlZWQQEBFRoX8t2neSpOdu4sUYAi/93h4sirB5MJhNLliyxXTIjyseZvBUWFnLo0CFq165doVsJejqLxcLSpUvp0aMHx44ds2tNVmWLFi1i0aJFLrs0y1EWi4Xs7GwCAgLktp4OujR3V/q36EhtklHlFSAtbiE8Q1FREWlpabzxxhs89NBDHlO0wdrFL19uxcXk61MFlJzjLpBR5UJUaSVTpmZlZfHGG2+4OxyHdO/enU8//dTdYYgqRAp3BRhkVLkQHqFv376YTCZWrVp11cFaQlR1UrgrQEaVCyGEuNakcFeAnOMWQghxrUnhroCSucpNZgWzpVoNzhdCCOEmUrgroKTFDVBULK1uIYQQlU8KdwWUnOMGma9cCCHEtSGFuwLUahUalbWLXO4QJoQQnq1katmqTgp3BenPZ1AGqAkhhGdZuHAhd999N/Hx8fj5+XHHHZ4xA6YU7grSSeEWolL07dsXlUple4SGhnLXXXexY8cOd4cmrgNTpkxh4MCB3HPPPfz6668kJyezZMkSd4dVLjLlaQVdKNxyjlsIV7vrrruYNWsWYL2d57hx47jnnns4evSomyMTnuzgwYO89tprrF+/nhtuuMHd4ThMWtwVVFK4ZfY04TEUBYx57nk4eE8jg8FAVFQUUVFRNG/enDFjxnDs2DHOnDlj2+aFF16gfv36+Pj4UKdOHcaPH1/qXOXhw4fRaDQEBwej0WhsrfjMzEwAJk2aRPPmzW3bG41GEhIS7LYpER8fb9cToFKpWLRokW390qVLadu2LUFBQYSGhnLPPfdw4MABu1hUKhXJycml9jt9+nTb6/bt2zN8+HDb63379qHT6ezitFgsvPTSS9SsWRODwUDz5s1ZunSpw8e69DOUdfyvv/6am2++GX9/f6KioujVqxenT5+2e88vv/xCs2bN8Pb2tuWmR48eXMlHH31E3bp10ev1NGjQgK+//tpu/aWxDR8+nPbt21/2M65atarU76137952+/n999+pW7cur776KuHh4fj7+/PAAw9w/Phx23su/ZvYunUrQUFBdvc3nzZtGjfeeCO+vr7ExsYyZMgQcnNzr/h5XUFa3BVka3HL5WDCU5jy4bUY9xz7/06C3tept+bm5jJnzhwSEhIIDQ21Lff392f27NnExMSwc+dOBg4ciL+/P88//7xtm5KbIC5atIhbbrmF9evX8+CDD172WB988AFpaWmXXf/SSy/ZbrV56a1D8/LyGDlyJE2bNiU3N5cJEyZw//33k5ycXKG7az333HOl7ij17rvv8vbbb/Pxxx/TokULvvjiC+69917++ecf6tWr5/SxymIymXj55Zdp0KABp0+fZuTIkfTt29fWvZyZmUnPnj0ZMGAAixYtwtvbm2HDhtnuM16WhQsXMmzYMKZPn05iYiK//PIL/fr1o2bNmnTo0MElcW/ZsoWff/7ZbtmZM2fYvn07/v7+/PbbbwAMGzaMHj16sGnTJrtbrwLs3buXLl26MG7cOAYMGGBbrlaree+996hduzYHDx5kyJAhPP/883z44Ycuif1ypHBXkF66yoWoNL/88gt+fn6AtSBGR0fzyy+/2BXAcePG2Z7Hx8czevRo5s+fb1e4S1rgERERREVF2d3L+1Lp6em88sorvPDCC4wfP77U+qKiIkJCQmz3z77UpV8IvvjiC8LDw9m9ezdNmjQpx6cubeXKlfz9998MGDCAlStX2pa/9dZbvPDCCzz66KMAvPHGG6xcuZLp06czY8YMp451Of3797flvU6dOrz33nvccsst5Obm4ufnx7///kt+fj4vvPACMTHWL4be3t5XLNxvvfUWffv2ZciQIQCMHDmS9evX89Zbb7mscI8cOZLnnnvO7ndpsVjQaDTMmzeP2NhYAObNm0fdunVZsWIFiYmJtm2PHDlCp06deOqppxg9erTdvi/ukYiPj+eVV15h0KBBUrirOp1aAVQyOE14Dp2PteXrrmM7oEOHDnz00UcAZGRk8OGHH9K1a1c2btxIXFwcAAsWLOC9997jwIED5ObmUlxcXOp+xtnZ2QD4+l69tf/SSy/RoUMH2rZtW+b69PT0K94vef/+/UyYMIENGzZw9uxZLBbrl/qjR486VbgVRWHUqFFMnDiRc+fO2ZZnZ2dz8uRJbr/9drvtb7/9drZv3263rE2bNnZfdvLz80sd57HHHkOjuTA3RUFBgV1X8ZYtW3jppZfYvn07GRkZdp+rcePGxMbGotVq+eabbxgxYkS5ehf27NnDU089VSr+d99996rvLY9FixZx8OBBRo0aVepLWGxsrK1oA8TFxVGzZk12795tK9yZmZkkJiZy/PhxunTpUmr/y5cvZ8qUKezdu5fs7GyKi4spLCwkPz8fHx/H/tYdIee4K6ikq1yu4xYeQ6Wydle743FJF+TV+Pr6kpCQQEJCArfccgufffYZeXl5tttcrlu3jscff5xu3brxyy+/sG3bNl588UWMRqPdfk6ePIlarSYiIuKKx9u/fz+fffbZZW/9efz4cYxGI7Vr177sPrp37056ejqffvopGzZsYMOGDQClYiqvr776iry8PAYNGuTU+8H65SY5Odn2KGkRX+ydd96x2+bmm2+2rcvLy6Nr164EBAQwd+5cNm3axMKFC4ELnys6OpqPPvqI1157DS8vL/z8/Jg7d67TMVeUyWTi+eef59VXX8Xb29tuXXBw8GXfd3E3+ZEjR2jVqhWTJk2if//+dl94Dh8+zD333EPTpk354Ycf2LJli62Xw9nfdXlJ4a4gGVUuxLWjUqlQq9UUFBQA8PfffxMXF8eLL77IzTffTL169Thy5Eip923atImGDRuWOkd8qRdeeIEBAwaQkJBQ5vrVq1fj7e1tV9Qudu7cOfbt28e4cePo2LEjjRo1IiMjw8FPeUF+fj4vvvgib7zxBjqdzm5dQEAAMTExrF271m752rVrady4sd2y2NhY2xeghIQEtNrSna1RUVF221xc7Pbv38+5c+d4/fXXueOOO2jYsGGpgWkAffr0oWHDhjz11FMkJydz7733XvHzNWrUqFzxO+Ojjz7Cz8+P3r17l1rXsGFDjh07xrFjx2zLjhw5wvHjx+2OXadOHWbPns2LL75IQEAAY8eOta3bsmULFouFt99+m9tuu4369etz8uS16cmSrvIKkuu4hag8RUVFnDp1CrB2lX/wwQfk5ubSvXt3AOrVq8fRo0eZP38+t9xyC7/++qutJQjWls+CBQuYNm0akyZNuuKxUlJSOHr0KCkpKWWuP3DgAK+//jr33XdfqZHmmZmZGI1GgoODCQ0N5ZNPPiE6OpqjR48yZsyYMvdnNBopLCy0vVYUheLiYsxms63Let68ebRs2fKyI7Ofe+45Jk6cSN26dWnevDmzZs0iOTnZ5S3dmjVrotfref/99xk0aBC7du3i5ZdfLrXdqFGjUKlUvPPOO+h0Ovz9/Uvl6tL4H3nkEVq0aEFiYiKLFy/mxx9/ZPny5XbbmUwmW67MZjMWi8X2+nLn0N98800WL15caqAZQKdOnWjUqBG9evXinXfeAayD05o3b86dd95p287f39/2JWf27NnceuutPPTQQ9xxxx0kJCRgMpl4//336d69O2vXrmXmzJlXyKILKdVMVlaWAihZWVkV3pfRaFQen/azEvfCL8rbv+91QXTVh9FoVBYtWqQYjUZ3h+JRnMlbQUGBsnv3bqWgoKASI3O9Pn36KIDt4e/vr9xyyy3K999/b7fdc889p4SGhip+fn5Kz549lXfeeUcJDAxUFEVRNm/erNSpU0eZMmWKYjKZlIyMDMVsNisrV65UACUjI0NRFEWZOHGiAihvvfWWbb+XbhMXF2cXz6WPlStXKoqiKElJSUqjRo0Ug8GgNG3aVFm1apUCKAsXLlQURVEOHTp0xf3MmjVLURRFadeunaJSqZRNmzbZYpo4caLSrFkz22uz2axMmjRJqVGjhqLT6ZRmzZopv/32m219ybG2bdtml7O4uDjlnXfesb2+OL4S7dq1U4YNG6aYzWYlIyNDmTNnjhIfH68YDAaldevWys8//2y373nz5imRkZHKiRMn7H6H9913X9m/4PM+/PBDpU6dOopOp1Pq16+vfPXVV3brr5Srix8lcZT83u65555S+7n4Mx44cEC5++67FR8fH8XPz0+5//77lePHj18214qiKC+99JKSkJCg5OXlKYqiKNOmTVOio6MVb29vpUuXLspXX31l9zdTkjuz2awoypX/LTpSm1TnP1C1kZ2dTWBgIFlZWVccYFIeJpOJpz9cyh+pap76Tx3+r1sjF0V5/TOZTCxZsoRu3bqV6gIUl+dM3goLCzl06BC1a9e+alfx9cxisZCdnU1AQIBTl2XFx8ezatUq4uPjS63r0aNHqeuLnTF8+HCaN29O3759K7QfV6po3qqzS3N3pX+LjtQm+S1UkHSVC1E9hIeH2426vlhwcDB6vb7Cx9DpdJc9hhAl5Bx3Bek01g4LKdxCXN82bdp02XUl07JW1NSpU12yH3F9kxZ3BV24HExGlQshhKh8UrgrSLrKhRBCXEtSuCtICrfwFNVsHKoQVY6r/g1K4a6gC3cHk65yUTWVDHaq7NmchBBXVjLzWkWvpJHBaRUkdwcTVZ1Wq8XHx4czZ86g0+mq7SU9FovFNulJdc2BMyRvzivJXUFBAYWFhZw+fZqgoKAKXzkghbuC9NJVLqo4lUpFdHQ0hw4dKnM60OpCURQKCgps94oW5SN5c96luQsKCrrsXeUcIYW7gqx3B5O5ykXVptfrqVevXrXuLjeZTKxZs4b//Oc/MumPAyRvzivJXbt27fD29nbZNfpSuCtI7g4mPIVara7WM6dpNBqKi4vx8vKSAuQAyZvzSnJnMBhcOrGOnLCoIBlVLoQQ4lqSwl1BMqpcCCHEtSSFu4JKBqcZzRbMFrlOVgghROWSwl1BuosyWCSXhAkhhKhkUrgr6OLCLSPLhRBCVDYp3BWkVoFOY722UQaoCSGEqGxSuF3AS2cd5i+FWwghRGVza+Fes2YN3bt3JyYmBpVKxaJFi664/Y8//kinTp0IDw8nICCA1q1b8/vvv1+bYK/AS2tNo1zLLYQQorK5tXDn5eXRrFkzZsyYUa7t16xZQ6dOnViyZAlbtmyhQ4cOdO/enW3btlVypFdmsLW45Ry3EEKIyuXWmdO6du1K165dy7399OnT7V6/9tpr/PTTTyxevJgWLVq4OLryK2lxF0mLWwghRCXz6ClPLRYLOTk5hISEXHaboqIiioqKbK+zs7MB6xyyJpOpQscveb/hfOHOLTRWeJ/VRUmeJF+Okbw5T3LnHMmb8xzJnSP59ejC/dZbb5Gbm8sjjzxy2W2mTJnC5MmTSy1ftmwZPj4+LomjIDcbULFu42YKDsgkLI5ISkpydwgeSfLmPMmdcyRvzitP7kru1V0eHlu4582bx+TJk/npp5+IiIi47HZjx45l5MiRttfZ2dnExsbSuXNnAgICKhSDyWQiKSmJ6PAQDuZk0PjGZnRrHlOhfVYXJbnr1KmT3LjAAZI350nunCN5c54juSvpDS4Pjyzc8+fPZ8CAAXz33XckJiZecVuDwYDBYCi1XKfTueyP0FtvTaPJopI/bAe58vdQnUjenCe5c47kzXnlyZ0jufW467i/+eYb+vXrxzfffMPdd9/t7nCAC6PK5XIwIYQQlc2tLe7c3FxSUlJsrw8dOkRycjIhISHUqlWLsWPHcuLECb766ivA2j3ep08f3n33XVq1asWpU6cA8Pb2JjAw0C2fAcDr/LynMgGLEEKIyubWFvfmzZtp0aKF7VKukSNH0qJFCyZMmABAamoqR48etW3/ySefUFxczNChQ4mOjrY9hg0b5pb4S3hprS1uuRxMCCFEZXNri7t9+/YoyuVHYc+ePdvu9apVqyo3ICfZWtzFMgGLEEKIyuVx57irIoNW5ioXQghxbUjhdgFvOccthBDiGpHC7QIyV7kQQohrRQq3C5Sc45bLwYQQQlQ2Kdwu4CXnuIUQQlwjUrhdoKTFXSRd5UIIISqZFG4XsJ3jLpYWtxBCiMolhdsFSu7HLV3lQgghKpsUbhfwklHlQgghrhEp3C4gc5ULIYS4VqRwu4CMKhdCCHGtSOF2gQstbukqF0IIUbmkcLtAyahyo9mC2XL5m6YIIYQQFSWF2wVKRpUDFMklYUIIISqRFG4XKBlVDtJdLoQQonJJ4XYBjVqFTqMCZICaEEKIyiWF20UuXMsthVsIIUTlkcLtIjIJixBCiGtBCreLyK09hRBCXAtSuF2kZBKWIincQgghKpEUbhfxkjuECSGEuAakcLuIzJ4mhBDiWpDC7SIyqlwIIcS1IIXbRQxaGVUuhBCi8knhdhFvvbS4hRBCVD4p3C5SMl+5XA4mhBCiMknhdpGSc9xyOZgQQojKJIXbRWyjyovlHLcQQojKI4XbRWRUuRBCiGtBCreLSOEWQghxLUjhdhGDViZgEUIIUfmkcLuIXA4mhBDiWnC4cB88eLAy4vB4JTcZkcFpQgghKpPDhTshIYEOHTowZ84cCgsLKyMmj2Q7x22UFrcQQojK43Dh3rp1K02bNmXkyJFERUXx9NNPs3HjxsqIzaNcuBxMCrcQQojK43Dhbt68Oe+++y4nT57kiy++IDU1lbZt29KkSROmTZvGmTNnKiPOKk9GlQshhLgWnB6cptVqeeCBB/juu+944403SElJYfTo0cTGxvLkk0+SmprqyjirPLmtpxBCiGvB6cK9efNmhgwZQnR0NNOmTWP06NEcOHCApKQkTp48yX333efKOKu8C3cHkxa3EEKIyqN19A3Tpk1j1qxZ7Nu3j27duvHVV1/RrVs31Grrd4DatWsze/Zs4uPjXR1rlSZd5UIIIa4Fhwv3Rx99RP/+/enbty/R0dFlbhMREcHnn39e4eA8ie06brkcTAghRCVyuHDv37//qtvo9Xr69OnjVECequS2nsZiC2aLgkatcnNEQgghrkcOF26AjIwMPv/8c/bs2QNAo0aN6N+/PyEhIS4NzpOUdJUDFBWb8dE7lVohhBDiihwenLZmzRri4+N57733yMjIICMjg/fff5/atWuzZs2ayojRI1xcuGVkuRBCiMricLNw6NCh9OzZk48++giNxlqszGYzQ4YMYejQoezcudPlQXoCjVqFTqPCZFZkgJoQQohK43CLOyUlhVGjRtmKNoBGo2HkyJGkpKS4NDhP4yWXhAkhhKhkDhfum266yXZu+2J79uyhWbNmLgnKUxlsl4RJV7kQQojK4XBX+bPPPsuwYcNISUnhtttuA2D9+vXMmDGD119/nR07dti2bdq0qesi9QDeepmvXAghROVyuHA/9thjADz//PNlrlOpVCiKgkqlwmyuXgXM1lUudwgTQghRSRwu3IcOHaqMOK4LttnTpMUthBCikjhcuOPi4iojjuuC3GhECCFEZXNqlpADBw4wffp02yC1xo0bM2zYMOrWrevS4DyNzFcuhBCisjk8qvz333+ncePGbNy4kaZNm9K0aVM2bNjADTfcQFJSUmXE6DEu3CFMWtxCCCEqh8OFe8yYMYwYMYINGzYwbdo0pk2bxoYNGxg+fDgvvPCCQ/tas2YN3bt3JyYmBpVKxaJFi676nlWrVnHTTTdhMBhISEhg9uzZjn6ESnOhq1xa3EIIISqHw4V7z549/Pe//y21vH///uzevduhfeXl5dGsWTNmzJhRru0PHTrE3XffTYcOHUhOTmb48OEMGDCA33//3aHjVhZvGZwmhBCikjl8jjs8PJzk5GTq1atntzw5OZmIiAiH9tW1a1e6du1a7u1nzpxJ7dq1efvttwHrzU3++usv3nnnHbp06VLme4qKiigqKrK9zs7OBsBkMmEymRyK91Il7y/5qddY7wiWX1jxfV/vLs2dKB/Jm/Mkd86RvDnPkdw5kl+HC/fAgQN56qmnOHjwIG3atAFg7dq1vPHGG4wcOdLR3Tlk3bp1JCYm2i3r0qULw4cPv+x7pkyZwuTJk0stX7ZsGT4+Pi6Jq+Tc/sljakDN7n0pLCn61yX7vt5V93ERzpK8OU9y5xzJm/PKk7v8/Pxy78/hwj1+/Hj8/f15++23GTt2LAAxMTFMmjSJZ5991tHdOeTUqVNERkbaLYuMjCQ7O5uCggK8vb1LvWfs2LF2Xyiys7OJjY2lc+fOBAQEVCgek8lEUlISnTp1QqfTsW95CitTDxJTK45u3RpVaN/Xu0tzJ8pH8uY8yZ1zJG/OcyR3Jb3B5eFQ4S4uLmbevHn06tWLESNGkJOTA4C/v78ju7mmDAYDBoOh1HKdTueyP8KSffl6WfdnNCvyB15Orvw9VCeSN+dJ7pwjeXNeeXLnSG4dGpym1WoZNGgQhYWFgLVgX8uiHRUVRVpamt2ytLQ0AgICymxtX2sGrUzAIoQQonI5PKr81ltvZdu2bZURy1W1bt2aFStW2C1LSkqidevWbonnUjIBixBCiMrm8DnuIUOGMGrUKI4fP07Lli3x9fW1W+/IHcFyc3Pt7uF96NAhkpOTCQkJoVatWowdO5YTJ07w1VdfATBo0CA++OADnn/+efr3788ff/zBt99+y6+//urox6gUF+Yqlxa3EEKIyuFw4X700UcB7AaiOXtHsM2bN9OhQwfb65JBZH369GH27NmkpqZy9OhR2/ratWvz66+/MmLECN59911q1qzJZ599dtlLwa41b2lxCyGEqGRuvTtY+/btURTlsuvLmhWtffv2buuqvxqZOU0IIURlc7hwHzlyhDZt2qDV2r+1uLiYv//+u1rfPUzOcQshhKhsDg9O69ChA+np6aWWZ2Vl2XV7V0dyW08hhBCVzeHCXXIu+1Lnzp0rNVCturlwdzBpcQshhKgc5e4qf+CBBwDrQLS+ffvaTWpiNpvZsWOHbQrU6kq6yoUQQlS2chfuwMBAwNri9vf3t5vwRK/Xc9tttzFw4EDXR+hBbF3lcjmYEEKISlLuwj1r1iwA4uPjGT16dLXvFi9LyeVgxmILFouCWl36lIIQQghREQ6PKp84cWJlxHFdKOkqB+s9uX30DqdXCCGEuCKHB6elpaXRu3dvYmJi0Gq1aDQau0d1Zle4ZWS5EEKISuBwk7Bv374cPXqU8ePHEx0dXeYI8+pKo1ah06gwmRUZoCaEEKJSOFy4//rrL/7880+aN29eCeF4Pi+tBpO5WAq3EEKISuFwV3lsbOwVpymt7gy2S8Kkq1wIIYTrOVy4p0+fzpgxYzh8+HAlhOP5LlwSJi1uIYQQrudwV3nPnj3Jz8+nbt26+Pj4oNPp7NaXNR1qdSKTsAghhKhMDhfu6dOnV0IY14+Sa7mLpKtcCCFEJXC4cPfp06cy4rhulHSVF0iLWwghRCVw+Bw3wIEDBxg3bhyPPfYYp0+fBuC3337jn3/+cWlwnki6yoUQQlQmhwv36tWrufHGG9mwYQM//vgjubm5AGzfvl1mVePiO4RJV7kQQgjXc7hwjxkzhldeeYWkpCT0er1t+Z133sn69etdGpwnunBPbmlxCyGEcD2HC/fOnTu5//77Sy2PiIjg7NmzLgnKk9m6yuVyMCGEEJXA4cIdFBREampqqeXbtm2jRo0aLgnKk11ocUtXuRBCCNdzuHA/+uijvPDCC5w6dQqVSoXFYmHt2rWMHj2aJ598sjJi9CgXLgeTFrcQQgjXc7hwv/baazRs2JDY2Fhyc3Np3Lgx//nPf2jTpg3jxo2rjBg9SklXuVwOJoQQojI4fB23Xq/n008/ZcKECezcuZPc3FxatGhBvXr1KiM+jyOXgwkhhKhMDhfuErGxscTGxmI2m9m5cycZGRkEBwe7MjaPZNDKOW4hhBCVx+Gu8uHDh/P5558DYDabadeuHTfddBOxsbGsWrXK1fF5HGlxCyGEqEwOF+7vv/+eZs2aAbB48WIOHjzI3r17GTFiBC+++KLLA/Q0Fy4Hkxa3EEII13O4cJ89e5aoqCgAlixZwiOPPEL9+vXp378/O3fudHmAnkYmYBFCCFGZHC7ckZGR7N69G7PZzNKlS+nUqRMA+fn5aDQalwfoaby0cjmYEEKIyuPw4LR+/frxyCOPEB0djUqlIjExEYANGzbQsGFDlwfoabz1cjmYEEKIyuNw4Z40aRJNmjTh2LFjPPzwwxgMBgA0Gg1jxoxxeYCeRmZOE0IIUZmcuhzsoYcesnudmZkp9+k+78LdwaTFLYQQwvUcPsf9xhtvsGDBAtvrRx55hNDQUGrWrMmOHTtcGpwnksvBhBBCVCaHC/fMmTOJjY0FICkpiaSkJH777TfuuusuRo8e7fIAPY2tq1wuBxNCCFEJHO4qP3XqlK1w//LLLzzyyCN07tyZ+Ph4WrVq5fIAPU1Ji9tYbMFiUVCrVW6OSAghxPXE4RZ3cHAwx44dA2Dp0qW2UeWKomA2S/dwSeEGKJJWtxBCCBdzuMX9wAMP0KtXL+rVq8e5c+fo2rUrYL0fd0JCgssD9DRe2gvfhQpMZtvlYUIIIYQrOFy433nnHeLj4zl27Bhvvvkmfn5+AKSmpjJkyBCXB+hptBo1Oo0Kk1mRAWpCCCFczuHCrdPpyhyENmLECJcEdD3w0mowmYulcAshhHA5p67jPnDgANOnT2fPnj0ANG7cmOHDh1OnTh2XBuepDDoNOUXFMgmLEEIIl3N4cNrvv/9O48aN2bhxI02bNqVp06Zs2LCBxo0bk5SUVBkxepwLl4RJi1sIIYRrOdziHjNmDCNGjOD1118vtfyFF16w3XSkOpNJWIQQQlQWh1vce/bs4b///W+p5f3792f37t0uCcrTlbS4i6SrXAghhIs5XLjDw8NJTk4utTw5OZmIiAhXxOTxvGS+ciGEEJXE4a7ygQMH8tRTT3Hw4EHatGkDwNq1a3njjTcYOXKkywP0RHJrTyGEEJXF4cI9fvx4/P39efvttxk7diwAMTExTJo0iWeffdblAXqiC3cIk65yIYQQruVQ4S4uLmbevHn06tWLESNGkJOTA4C/v3+lBOepLtyTW1rcQgghXMuhc9xarZZBgwZRWFgIWAu2FO3SbKPK5XIwIYQQLubw4LRbb72Vbdu2VUYs140LLW7pKhdCCOFaDp/jHjJkCKNGjeL48eO0bNkSX19fu/VNmzZ1WXAeQbFAcSHodLZFJaPKi6SrXAghhIs5XLgfffRRALuBaCqVCkVRUKlU1erWnuqkF7k3+RMsgWOgwxjbcpmARQghRGVxuHAfOnSoMuLwTDpfVCiQm2a3WC4HE0IIUVkcPscdFxd3xYejZsyYQXx8PF5eXrRq1YqNGzdecfvp06fToEEDvL29iY2NZcSIEbbBctecXyQAqtzTdosNWjnHLYQQonKUu3Bv2bKFDh06kJ2dXWpdVlYWHTp0YPv27Q4dfMGCBYwcOZKJEyeydetWmjVrRpcuXTh9+nSZ28+bN48xY8YwceJE9uzZw+eff86CBQv4v//7P4eO6yqK3/mZ4i5pcUtXuRBCiMpS7sL99ttvc+eddxIQEFBqXWBgIJ06dWLq1KkOHXzatGkMHDiQfv360bhxY2bOnImPjw9ffPFFmdv//fff3H777fTq1Yv4+Hg6d+7MY489dtVWeqUpaXHn2X/RuHA5mLS4hRBCuFa5z3Fv2LCBMWPGXHZ99+7d+eyzz8p9YKPRyJYtW2yzrwGo1WoSExNZt25dme9p06YNc+bMYePGjdx6660cPHiQJUuW0Lt378sep6ioiKKiItvrkh4Dk8mEyWQqd7xlKTaEWBOYm4bJaASVCgCdSgGgwFhc4WNcr0ryIvlxjOTNeZI750jenOdI7hzJb7kL94kTJ6442Yqfnx+pqanlPvDZs2cxm81ERkbaLY+MjGTv3r1lvqdXr16cPXuWtm3boigKxcXFDBo06Ipd5VOmTGHy5Mmlli9btgwfH59yx1sWjaWIewBVcSHLfvmBYo11f7vSVYCGtDPpLFmypELHuN7JPdydI3lznuTOOZI355Und/n5+eXeX7kLd3h4OPv27aN27dplrt+7dy9hYWHlPrAzVq1axWuvvcaHH35Iq1atSElJYdiwYbz88suMHz++zPeMHTvW7uYn2dnZxMbG0rlz5zK7/R1hMpkw7fRGZymgc5tmEFoPgMAD5/h03xa8fP3p1q1NhY5xvTKZTCQlJdGpUyd0F10DL65M8uY8yZ1zJG/OcyR3ZY0fu5xyF+7ExEReffVV7rrrrlLrFEXh1VdfJTExsdwHDgsLQ6PRkJZmP7ArLS2NqKioMt8zfvx4evfuzYABAwC48cYbycvL46mnnuLFF19ErS59yt5gMGAwGEot1+l0LvkjLNQFoSsqQFdwDnSNAfDz0lvXFVvkD/0qXPV7qG4kb86T3DlH8ua88uTOkdyWe3DauHHj2LlzJ61ateLbb79l+/btbN++nQULFtCqVSt27drFiy++WO4D6/V6WrZsyYoVK2zLLBYLK1asoHXr1mW+Jz8/v1Rx1misA8EURSn3sV2pSBdofXLRyHIZVS6EEKKylLvFXbduXZYvX07fvn159NFHUZ0fiKUoCo0bNyYpKYmEhASHDj5y5Ej69OnDzTffzK233sr06dPJy8ujX79+ADz55JPUqFGDKVOmANYBcNOmTaNFixa2rvLx48fTvXt3WwG/1gq1UriFEEJcOw7NnHbzzTeza9cukpOT2b9/P4qiUL9+fZo3b+7UwXv27MmZM2eYMGECp06donnz5ixdutQ2YO3o0aN2Lexx48ahUqkYN24cJ06cIDw8nO7du/Pqq686dXxXKNIFWZ/YFe7zE7DI5WBCCCFczOEpTwGaN2/udLG+1DPPPMMzzzxT5rpVq1bZvdZqtUycOJGJEye65NiuUFjSVZ5TusVtLLZgsSio1Sp3hCaEEOI65PCUp8JekTbI+qSMrnKAIml1CyGEcCEp3BVUWNbgNO2FtMp5biGEEK4khbuCCss4x63VqNGe7x4vLJbCLYQQwnWkcFdQUcmo8vxzUGy0Lfc+311eYJTCLYQQwnXKNThtx44d5d5h06ZNnQ7GExm1fihqLSpLMeSdgcAaABh0GnKKiuXWnkIIIVyqXIW7efPmqFSqy05yUrJOpVJhNlezFqZKDb7hkJMKuadshfvCJWHVLB9CCCEqVbkK96FDhyo7Do+m+EWiykmF3Au395RJWIQQQlSGchXuuLi4yo7Ds/lGWH/mnLItKmlxF0lXuRBCCBdyagIWgN27d3P06FGMRqPd8nvvvbfCQXkcv/O3Jr24xa2VFrcQQgjXc7hwHzx4kPvvv5+dO3fanfcumbu82p3jBhS/8y3u3Itb3OcLt5zjFkII4UIOXw42bNgwateuzenTp/Hx8eGff/5hzZo13HzzzaWmKK02ympxn+8qLzBKV7kQQgjXcbjFvW7dOv744w/CwsJQq9Wo1Wratm3LlClTePbZZ9m2bVtlxFmlKb4lhVvuECaEEKJyOdziNpvN+Pv7AxAWFsbJkycB6wC2ffv2uTY6T+F/vnCXcaMR6SoXQgjhSg63uJs0acL27dupXbs2rVq14s0330Sv1/PJJ59Qp06dyoixylNKRpXnpoGigEp14TpuGVUuhBDChRwu3OPGjSMvLw+Al156iXvuuYc77riD0NBQFixY4PIAPULJ4DRzERRmgnewbVR5kXSVCyGEcCGHC3eXLl1szxMSEti7dy/p6ekEBwfbRpZXO1ov8AqEwizrADXvYDnHLYQQolI4fI47KyuL9PR0u2UhISFkZGSQnZ3tssA8TsnI8vOTsEhXuRBCiMrgcOF+9NFHmT9/fqnl3377LY8++qhLgvJIl1wSVtLiLpAWtxBCCBdyuHBv2LCBDh06lFrevn17NmzY4JKgPJKtcJe0uKWrXAghhOs5XLiLioooLi4utdxkMlFQUOCSoDySf5T15/lruS9cDiZd5UIIIVzH4cJ966238sknn5RaPnPmTFq2bOmSoDxSycjynJLCXXKOW1rcQgghXMfhUeWvvPIKiYmJbN++nY4dOwKwYsUKNm3axLJly1weoMfwu6TFLZeDCSGEqAQOt7hvv/121q1bR2xsLN9++y2LFy8mISGBHTt2cMcdd1RGjJ7B76JJWLj4HLd0lQshhHAdp27r2bx5c+bOnevqWDxbqXPc57vKZcpTIYQQLlSuwp2dnU1AQIDt+ZWUbFftlIwqL8iA4iIZVS6EEKJSlKtwBwcHk5qaSkREBEFBQWXOkKYoCiqVqlrejxsA72BQ68BigtzTeOmCACgwVtN8CCGEqBTlKtx//PEHISEhAKxcubJSA/JYKpW11Z19HHLT8PINBeRyMCGEEK5VrsLdrl07AIqLi1m9ejX9+/enZs2alRqYR/K/qHAH3QiAsdiCxaKgVlfTedyFEEK4lEOjyrVaLVOnTi1zAhaB3XzlJee4AYqk1S2EEMJFHL4c7M4772T16tWVEYvnu2i+ci/thdTKADUhhBCu4vDlYF27dmXMmDHs3LmTli1b4uvra7f+3nvvdVlwHuei+cq1GjVatYpiiyKXhAkhhHAZhwv3kCFDAJg2bVqpddV6VDlYz3GD3R3CcouKZRIWIYQQLuNw4bZYpAhdlq3FfWESltwiuSRMCCGE6zh8jltcQcl85TmX3iFMCrcQQgjXcKpwr169mu7du5OQkEBCQgL33nsvf/75p6tj8zwXz1euKDJ7mhBCCJdzuHDPmTOHxMREfHx8ePbZZ3n22Wfx9vamY8eOzJs3rzJi9BwlhdtigoIM23zlRXKOWwghhIs4fI771Vdf5c0332TEiBG2Zc8++yzTpk3j5ZdfplevXi4N0KNoDdapTwsyrJOwaKXFLYQQwrUcbnEfPHiQ7t27l1p+7733cujQIZcE5dHKmISlQAq3EEIIF3G4cMfGxrJixYpSy5cvX05sbKxLgvJoF03CEuanByA1q9CNAQkhhLieONxVPmrUKJ599lmSk5Np06YNAGvXrmX27Nm8++67Lg/Q41w0CUu9yJYAHDid68aAhBBCXE8cLtyDBw8mKiqKt99+m2+//RaARo0asWDBAu677z6XB+hxLpqEpW4NPwD2S+EWQgjhIg4XboD777+f+++/39WxXB8uOsddL9JauFNO58odwoQQQriETMDiaiWTsOSmERfig06josBk5kRmgXvjEkIIcV1wuMUdHByMSlW65ahSqfDy8iIhIYG+ffvSr18/lwTocS6ahEWrUVMnzI99aTmknMklNsTHvbEJIYTweA63uCdMmIBarebuu+9m8uTJTJ48mbvvvhu1Ws3QoUOpX78+gwcP5tNPP62MeKs+/wstboCEiPPd5WlynlsIIUTFOdzi/uuvv3jllVcYNGiQ3fKPP/6YZcuW8cMPP9C0aVPee+89Bg4c6LJAPUZJi7swC0wFtsK9/3SOG4MSQghxvXC4xf3777+TmJhYannHjh35/fffAejWrRsHDx6seHSeyCsINAbr89zTdgPUhBBCiIpyuHCHhISwePHiUssXL15MSEgIAHl5efj7+1c8Ok+kUtnd3vNCizsXRVHcGJgQQojrgcNd5ePHj2fw4MGsXLmSW2+9FYBNmzaxZMkSZs6cCUBSUhLt2rVzbaSexD8Sso5Cbhq167VErYKcwmJO5xQRGeDl7uiEEEJ4MIcL98CBA2ncuDEffPABP/74IwANGjRg9erVtpnURo0a5dooPc1F13IbtBriQ305eDaP/Wm5UriFEEJUiFMTsNx+++3cfvvtro7l+nHRfOVgHVl+8GweKadzaFsvzI2BCSGE8HROTcBy4MABxo0bR69evTh92lqcfvvtN/755x+H9zVjxgzi4+Px8vKiVatWbNy48YrbZ2ZmMnToUKKjozEYDNSvX58lS5Y48zEqz0XzlQN257mFEEKIinC4cK9evZobb7yRDRs28MMPP5Cbay1G27dvZ+LEiQ7ta8GCBYwcOZKJEyeydetWmjVrRpcuXWxfBi5lNBrp1KkThw8f5vvvv2ffvn18+umn1KhRw9GPUbn87VvcJSPLpXALIYSoKIcL95gxY3jllVdISkpCr9fblt95552sX7/eoX1NmzaNgQMH0q9fPxo3bszMmTPx8fHhiy++KHP7L774gvT0dBYtWsTtt99OfHw87dq1o1mzZo5+jMp10ahygHoR1hH2ckmYEEKIinL4HPfOnTuZN29eqeURERGcPXu23PsxGo1s2bKFsWPH2pap1WoSExNZt25dme/5+eefad26NUOHDuWnn34iPDycXr168cILL6DRaMp8T1FREUVFRbbX2dnZAJhMJkwmU7njLUvJ+y/dj8orFC2g5Jyi2GSiVpABlQrS84ycyswj1Fdfxt6ql8vlTlyZ5M15kjvnSN6c50juHMmvw4U7KCiI1NRUateubbd827ZtDnVZnz17FrPZTGRkpN3yyMhI9u7dW+Z7Dh48yB9//MHjjz/OkiVLSElJYciQIZhMpst200+ZMoXJkyeXWr5s2TJ8fFwzd3hSUpLday9jOl0AJec0S379BVRqgvUa0otUzF28nIQAlxz2unBp7kT5SN6cJ7lzjuTNeeXJXX5+frn353DhfvTRR3nhhRf47rvvUKlUWCwW1q5dy+jRo3nyyScd3Z1DLBYLERERfPLJJ2g0Glq2bMmJEyeYOnXqZQv32LFjGTlypO11dnY2sbGxdO7cmYCAilVQk8lEUlISnTp1QqfTXVhhNsI/w1Fjplv728A3jB/PbWX1v2cJq3Mj3W6NrdBxrweXzZ24Ismb8yR3zpG8Oc+R3JX0BpeHw4X7tddeY+jQocTGxmI2m2ncuDFms5levXoxbty4cu8nLCwMjUZDWlqa3fK0tDSioqLKfE90dDQ6nc6uW7xRo0acOnUKo9Fod869hMFgwGAwlFqu0+lc9kdYal86HfiEQv45dEXpEBRNg6gAVv97lkPnCuSP/yKu/D1UJ5I350nunCN5c155cudIbh0enKbX6/n00085ePAgv/zyC3PmzGHv3r18/fXXlz3PfLn9tGzZkhUrVtiWWSwWVqxYQevWrct8z+23305KSgoWi8W27N9//yU6OrrMou1WF03CAhfdJUwGqAkhhKgAhwv3Sy+9RH5+PrGxsXTr1o1HHnmEevXqUVBQwEsvveTQvkaOHMmnn37Kl19+yZ49exg8eDB5eXm2e3k/+eSTdoPXBg8eTHp6OsOGDePff//l119/tfUAVDllTMICcpcwIYQQFeNw4Z48ebLt2u2L5efnlzkI7Ep69uzJW2+9xYQJE2jevDnJycksXbrUNmDt6NGjpKam2raPjY3l999/Z9OmTTRt2pRnn32WYcOGMWbMGEc/RuW7zCQsadlFZBfK6EwhhBDOcfgct6IoqFSqUsu3b99uuzuYI5555hmeeeaZMtetWrWq1LLWrVs7fL24W1wyCUuAl46oAC9OZReScjqXm2oFuzE4IYQQnqrchTs4OBiVSoVKpaJ+/fp2xdtsNpObm8ugQYMqJUiPdMk5brC2uk9lF5KSJoVbCCGEc8pduKdPn46iKPTv35/JkycTGBhoW6fX64mPj7/soLJq6ZJz3GAt3H+lnJXz3EIIIZxW7sLdp08fAGrXrk2bNm3ksoCrueQcN8ic5UIIISrO4XPc7dq1sz0vLCzEaDTara/opCbXDf/z16Jf1OKWOcuFEEJUlMOjyvPz83nmmWeIiIjA19eX4OBgu4c4zy/C+rMoG4zWqexKRpYfzygg31jsrsiEEEJ4MIcL93PPPccff/zBRx99hMFg4LPPPmPy5MnExMTw1VdfVUaMnskQAFpv6/PzdwkL8dXbbjBy4HSeuyITQgjhwRwu3IsXL+bDDz/kwQcfRKvVcscddzBu3Dhee+015s6dWxkxeiaV6kKrO/fCtK4yEYsQQoiKcLhwp6enU6dOHcB6Pjs9PR2Atm3bsmbNGtdG5+lKznPnlB6gJue5hRBCOMPhwl2nTh0OHToEQMOGDfn2228Ba0s8KCjIpcF5vBDrFxxSt9sWJYTLyHIhhBDOc7hw9+vXj+3brYVozJgxzJgxAy8vL0aMGMFzzz3n8gA9Wu3zI/APrrQtqhcpI8uFEEI4z+HLwUaMGGF7npiYyN69e9myZQsJCQk0bdrUpcF5vDrnC/fJZMhPB58Q6p0/x33kXB6FJjNeuvLfUU0IIYRwuHBfKi4ujri4OFfEcv0JiIHwhnBmLxz+ExrfR7i/AX8vLTmFxRw+l0fDKLnuXQghRPmVu6v8jz/+oHHjxmRnZ5dal5WVxQ033MCff/7p0uCuC3XaW38esHaXq1QqW6t7f5p0lwshhHBMuQv39OnTGThwYJkzowUGBvL0008zbdo0lwZ3XSgp3AdX2RaVzKAmA9SEEEI4qtyFe/v27dx1112XXd+5c2e2bNnikqCuK/FtQaWBjEOQcRi4cEnYASncQgghHFTuwp2WlnbFG4totVrOnDnjkqCuKwZ/qHmL9fn5VnddmYRFCCGEk8pduGvUqMGuXbsuu37Hjh1ER0e7JKjrTt0O1p/nC3fJOe5DZ/MwmS1uCkoIIYQnKnfh7tatG+PHj6ewsLDUuoKCAiZOnMg999zj0uCuG7bz3KvBYiEm0BsfvQaTWeHIuXy3hiaEEMKzlPtysHHjxvHjjz9Sv359nnnmGRo0aADA3r17mTFjBmazmRdffLHSAvVoNVqC3h8K0uHUDtQxzUmI8GPH8SxSTufa5i8XQgghrqbchTsyMpK///6bwYMHM3bsWBRFAayXN3Xp0oUZM2YQGRlZaYF6NI3OOkjt39+s3eUxzUkILyncOUCUuyMUQgjhIRyagCUuLo4lS5aQkZFBSkoKiqJQr149uQ93edRpf75wr4S2w0mIlDnLhRBCOM6pmdOCg4O55ZZbXB3L9a1kgNqRdWAquHAtt0zCIoQQwgEO32REOCmsPvhHg7kIjq63jSw/cCYXs0Vxc3BCCCE8hRTua0WlsptFLTbEB71WTVGxhWPpMrJcCCFE+UjhvpbqXLieW6NWcWONQACSdqe5MSghhBCeRAr3tVRym8/U7ZCfzkMtawLwzaajtlH6QgghxJVI4b6W/KMgojGgwKHVdG8Wg49ew8EzeWw+kuHu6IQQQngAKdzX2kW3+fQzaLmnqXWa2Pkbj7kvJiGEEB5DCve1Vsd+3vKet9QC4NedJ8kqMLkpKCGEEJ5CCve1FtcG1FrIPALph7ipVhD1I/0oNFn4eftJd0cnhBCiipPCfa0Z/KDmrdbnB1eiUqlsre4Fm466MTAhhBCeQAq3O1xym8/7W9RAr1Gz60Q2u05kuS8uIYQQVZ4Ubnewu82nmRBfPZ1vsN6gZb60uoUQQlyBFG53iLkJDAFQmGm9pht47FZrd/lP205SYDS7MTghhBBVmRRud9BoIf4O6/Pz3eWt64QSG+JNTlExS3amui82IYQQVZoUbnexdZevBECtVtHz5lgAFmySa7qFEEKUTQq3u5QMUDu6HozWm4w81DIWtQo2Hk4nRe7TLYQQogxSuN0lNAECY8FshF0/ABAV6MWdDSMA+HaztLqFEEKUJoXbXVQqaPW09fnqN6G4CLgwk9oPW45jLLa4KzohhBBVlBRud7plAPhFQdZR2PoVAB0ahBPhb+BcnpHle+R2n0IIIexJ4XYnnTf8Z7T1+Zq3wFSAVqPm4Zutt/ucL4PUhBBCXEIKt7vd9CQE1oLcU7DpcwAeOT+6/M/9Zzieke/O6IQQQlQxUrjdTWuAds9bn/81DYpyiAv1pU3dUBQFvtt83L3xCSGEqFKkcFcFzR6DkLqQfw42zASg5y3WVve3m49RaJKZ1IQQQlhJ4a4KNFro8H/W52vfh4IMutwQRbi/gdSsQqb+vs+98QkhhKgypHBXFTc8ABGNoSgL1s3AS6fhjQdvBODzvw7x5/4zbg5QCCFEVSCFu6pQqy+0utd/BHlnubNhJE/cZr2ue/R328nIM7oxQCGEEFWBFO6qpOE9EN0cjLnw1zsAvNitMXXCfUnLLuL/Fu5EURT3xiiEEMKtpHBXJSoV3Dne+nzTZ5Cdirdew/SezdGqVfy26xQ/bD3h3hiFEEK4lRTuqiahI8TeBsWF8OfbADStGcSITvUBmPjTLo6ek2u7hRCiupLCXdWoVHDnOOvzLbMh4wgAg9rV5ea4YPKMZkZ+m0yxWeYxF0KI6kgKd1VU+w6o3Q4sJljzJgAatYp3ejbHz6Bl85EMZq4+4OYghRBCuEOVKNwzZswgPj4eLy8vWrVqxcaNG8v1vvnz56NSqejRo0flBugOJee6t82F7fMBiA3x4aX7bgBg+vL9bD+W6abghBBCuIvbC/eCBQsYOXIkEydOZOvWrTRr1owuXbpw+vTpK77v8OHDjB49mjvuuOMaRXqNxd4CrQYBCiwaDP8sBOD+FjW4u2k0xRaFEQuSyTcWuzdOIYQQ15TW3QFMmzaNgQMH0q9fPwBmzpzJr7/+yhdffMGYMWPKfI/ZbObxxx9n8uTJ/Pnnn2RmZl52/0VFRRQVFdleZ2dnA2AymTCZTBWKveT9Fd3PZXV8CU1hDurtc1F+GIBZpUOp14VJdzdk8+F0Dp7N48WFO3m9xw2o1arKiaGSVHrurlOSN+dJ7pwjeXOeI7lzJL8qxY0XBhuNRnx8fPj+++/turv79OlDZmYmP/30U5nvmzhxIjt27GDhwoX07duXzMxMFi1aVOa2kyZNYvLkyaWWz5s3Dx8fH1d8jMqlWGh5ZCY1M9ZjVmnZUGckZwKasC9LxUe71SioaBlmoVddC1q3958IIYRwRn5+Pr169SIrK4uAgIArbuvWFvfZs2cxm81ERkbaLY+MjGTv3r1lvuevv/7i888/Jzk5uVzHGDt2LCNHjrS9zs7OJjY2ls6dO181OVdjMplISkqiU6dO6HS6Cu3risxdsCwcgGbfr7Q+8j7mxxbQrVYb6iSfZMzCf9hyVo13UDgfPNoMX4PbO1HK5Zrl7jojeXOe5M45kjfnOZK7kt7g8vCM/+XPy8nJoXfv3nz66aeEhYWV6z0GgwGDwVBquU6nc9kfoSv3dZkDwMOzYcHjqPYvQ7ugFzz5Ew/dcjNhAd4MnrOVv1LO0Wf2Fr7oewuhfqU/b1VV6bm7TknenCe5c47kzXnlyZ0juXVr52pYWBgajYa0tDS75WlpaURFRZXa/sCBAxw+fJju3buj1WrRarV89dVX/Pzzz2i1Wg4cuI4vkdLq4ZGvoPZ/rFOiznkAUnfQvkEE8wa2IthHx/bjWTw8cx3H0mWCFiGEuF65tXDr9XpatmzJihUrbMssFgsrVqygdevWpbZv2LAhO3fuJDk52fa499576dChA8nJycTGxl7L8K89nTc8+o11ZrXCLPi6B5zeQ4tawXw3qA01grw5eDaPBz/6mz2p5e92EUII4TncPpxp5MiRfPrpp3z55Zfs2bOHwYMHk5eXZxtl/uSTTzJ27FgAvLy8aNKkid0jKCgIf39/mjRpgl6vd+dHuTYMfvD4txDTAvLPwayukLKchAg/fhjchgaR/pzOKeKRj9ex8VC6u6MVQgjhYm4v3D179uStt95iwoQJNG/enOTkZJYuXWobsHb06FFSU1PdHGUV4xUIT/wINW6GggyY8xCsfpMofz3fPt2aW+KDySks5onPN/BT8gm5o5gQQlxH3F64AZ555hmOHDlCUVERGzZsoFWrVrZ1q1atYvbs2Zd97+zZsy97Kdh1zScE+i2Blv0ABVa+CvMfI1CVx9f/bUVio0iMxRaGzU/mqa+3kJZd6O6IhRBCuECVKNzCSVoDdJ8O980AjQH+XQqftMfr3G5mPnETwxProdOoSNqdRuK01SzYdFRa30II4eGkcF8PWjwB/10GQbUg4xB81gntru8YnlifX/53B81ig8gpLOaFH3by+Gcb5LagQgjhwaRwXy9imsNTqyEhEYoLYOFT8OtoGoQZ+HFwG8bd3QgvnZq/D5yjy/Q1fP7XIcwWaX0LIYSnkcJ9PfEJgV7fQrvzc7xv+hQ+vgNNShID2tZm6bD/cFudEApMZl7+ZTcPfvQ3yXKHMSGE8ChSuK83ag10GGst4N4hcGYvzHsYvu5BfPFB5g24jdfuvxF/g5bkY5n0mLGW3p9vYMPBc+6OXAghRDlI4b5e1e8Cz26DNv8DjR4OroKZd6D++Rl6NdKxbOR/eKhlTbRqFX/uP0vPT9bzyMx1/Ln/jAxgE0KIKkwK9/XMOwg6vwLPbIIbHgAUSJ4D799E9NbpvHVfAitHt+fxVrXQa9RsPJxO78830uPDv1m+O00KuBBCVEFSuKuD4Hh4eBb8dznUvBVM+bD6dXjvJmJ3f8KrnaJY83wH+t9eGy+dmu3HMhnw1Wa6vvsnc9YfIatA7sMrhBBVhRTu6iT2FutlYw/PhqA4yD0FyyfCtEZELRvEhBvO8Nfz7Rncvi6+eg17T+UwbtEubn11Oc9+s401/56RkehCCOFmHnVbT+ECKhXccD806AY7FsCW2XBiC/yzEP5ZSFhIHV5o2ZdBzz7Md3sK+X7LcfaeyuHn7Sf5eftJYgK9eOCmmjzUsibxYb7u/jRCCFHtSOGurrQGuOlJ6yN1B2yZBTu+g/SDkDSBwBUvM6BRd/7b47/s1LThuy0n+Cn5BCezCvlgZQofrEzh5rhg7moSRefGUdQK9XH3JxJCiGpBCreA6KZwzzvQ6WXY9YO1FX5yK/zzI6p/fqRpRGOa3jKAFzs9RFJKHt9tOc6f+8+w+UgGm49k8Mqve2gY5U/nxpF0viGKG2ICUKlU7v5UQghxXZLCLS4w+EHLPtbHyWTY/AXs/A5O74ZfR+K1fBLdmz1G9+4DSNXfyG87T5G0O42Nh9PZeyqHvadyeO+PFGICvejUOJKOjSK5JT4Eb73G3Z9MCCGuG1K4RdlimsO970GnlyB5Hmz6DNIPwMaPYePHRNduR/8Wvenf40YyDDfwR0oWSbvTWP3vGU5mFfLluiN8ue4Ieo2aFrWCaFM3jNsTQmkWG4ROI2MihRDCWVK4xZV5B0HrIdBqEBxcaS3g/y6FQ6utDyBYpebBoFo8GJpA8W11OGCO4s/0IBadDGRXtjcbDqWz4VA67ywHH72GW2uHcFvtYEy5YDJb0Onc+xGFEMKTSOEW5aNWQ0JH6yPzKGyeBQf+gHMHwJgDGYch4zBaoMH5xwDAGF2Pg/43s8bUiLmnanKkwItV+86wat8ZQMsHe/6gac1AWtQK5qZaQbSoFUxkgJc7P6kQQlRpUriF44JqQeJE60NRIPc0nEuBc/vP/zwAZ63P9Rn7aZixn4bAQFQU1ryB/T43kVRQn3knozhX7MOmwxlsOpxh231MoBctagXTPDaIG2sGckNMAP5e0iwXQgiQwi0qSqUC/0jrI/52+3X56XBkLRxcDYfWoDq7D++zu2jKLpoCI3UqiqIac8y/GVss9ViSFcdfp704mVXIyZ2p/Loz1XaIOmG+NK0ZxI01AmlaM5DGMQH46OXPVwhR/cj/fKLy+IRAo+7WB0DOKTj0JxxajXJoDarMI3id+4d65/6hHvAoYAmLIT2kBbt1jdmQH8uKc0HszdJy4EweB87ksXDbCQDUKqgZ7EPdcF/qhPtRN9yPOuG+1A33I8xPL5ejCSGuW1K4xbXjHwVNH4amD1NsMvHHojl0rO+H9uQWOLYeUnegzjlJWM5J/sOv/Ad4DrCEhJPlV4djmlrsNEaxNiuUTbkRHE1XOJqez8p9Z+wP46Wl7vliXjfC1/Y8LtRHRrQLITyeFG7hNoX6EJTG3aDZw9YFxjzr9KvHNsCxjXB6D2QdQ51/huD8MwSzgabA4wBeUKwPIMOnDse1sew1x7AlP5z12eGcKAwl+Vgmyccy7Y6nVauIC/U53zq3FvK4EB9qhfoQHeiNRi2tdCFE1SeFW1Qdel+o/R/ro0RRLpz9F87sgzN7L/zMOIzWmE24MZlwkmkBPAZgAIvWmxzf2pzThHLKHMgRoz//5vlwojiAM2eD2H02iNW7AylCf+HQGjU1g72pZSvmvtQM9iY22IfYEG8ZHCeEqDKkcIuqzeAHNW6yPi5mKrCOYD+zz/o4uw/O/AvnUlAXFxCYtZtAoA7QBqz3wdPb7yJX7c9pQjhRHMgpSxBpmcGczgjilBLMDiWYU0oIZwikGC1BPrqLCrkPMYFeRAZ4ERnoRVSAF+H+BumGF0JcE1K4hWfSeUPUjdbHxcwm6zXl51Ksg+FyT1tvX5p72v612YifJQc/cqij5rI3uLWg4pwSwKniYE6dDiEtLZg0JZitSiS7lTgOKdGY0aBSQaivgcgAA1EBXkQFehET5E10oBfRgd7UCPImMtCAQSvTvwohKkYKt7i+aHQQVs/6uBxFgYIMyE2DnFRrQc9JhZxLX59CbTERrsoiXJXFjRwutasi9Oy1xPKPpRZ7CuLYnRfH+pO1yMO7zEOH+RmICfIiwt+LcH894X4GwvwNhPsZCPc3EHb+p69B/mkKIcom/zuI6kelsl6q5hMCEY0uv53FAvnnIOckZKdaf+acguwT1glmTu3CYMqjmfoAzdQH7N5aoA0gT+VPNj6kW3w4a/Ii3eJDdqEv2ak+ZKT6k64EsF/xJwN/zikBZOGLcr7p76vXEHG+Cz7C30BkgBcR/gZCfbQczFKRkJZDVJAvwT561DKoTohqRQq3EJejVoNfuPUR3az0eosFMg7BqZ32j5yTeBdn4002YVjPs3OF7vgSxajJVPzJUPwwosWUrcGcraEYDcWKBjNqTGhpgo6N/87hhBJGmiqUXEM0Rr8YNP6RhPl7E+ZvIMRXT4ivnjA/PSG+BkJ99YT66WXSGiGuA/KvWAhnqdUQWtf6uKHHheX56dZz6YVZUJhp/VmQeeF1Qaa1JZ9/FvLOWp8XZaPFQpgqizBVlmNxmIEsMGVqOKWEcIIwjloiOKJE8pcSwRHF+jwTP7x0GkJ9rd3xJY+S7nlrd72eIB89/l5a/A06vHRqmcxGiCpGCrcQrlbSDe+IYuOFYp6fDhYTmIvBYv8oNhWxO3kjN8QGQ/ZJzBnHIPsE2rxT6DATqzpDLGe4Tb2n1CGyFW+OKpFk5/nglW/EK82EASNeKiNeGPHGiAEjWfhyUInhkCWKw8RwSleTs4ZYMr1i8fL2IcRXbyv41ofedp4+zM8g918XopJJ4RaiKtDqISDa+rgCxWTi0IkgGt3ZDZ1Oh61Emouto+WzTljv3pZxCNIPnb9r2yHISSVAVUAT1eGrhhJCLiGqf7lZ/e/5gwKFYClQcSI9jCx8KUKHUdFZf6LlJDoOoaNI0ZGj9qdAF4LREEyxVwgWnzDUfuFo/cPx9/UjyEdHkLeOQB8dwT7686/10roXopykcAtxPdBoIbCm9VGrVen1xvwLBd2YB1ov0HmBzuf8c2/rT60X5J3BcjYF0+l/MZ/Zjyo9BV3mAbTGHFuL/qrMQP75R/qFxXmKARNairGes7eev1dzCjUWlQaLWodJ7UWxxhuL1htF64NK741K74vG4IvGOxBtQCReQZH4hETjHxqDPjAKtAYXJVKIqk8KtxDVgd4HIhpaH1cTEI06uil2pVBRrOfj0w9YZ7MzF0FxIRQX2R5KcRHGwlyMOecw555ByTuLOv8cuqJzGIwZaBQzvqoioMj+eBc3shWsRd8MGMv/8XLwIVsTRL4mCKPOn2KdP8X6QBSvQFRegai9A8ErAOOpNI7uDiUwLBq/4Ai8fPzLfxAhqggp3EKIq1OpLoywv9wmgOH8oxRFOT8wLwMsZrvz9oq5mAKjkdz8AvLzCyjIz6UwP4eiglyKC3MpLszHXJSHYsxHY8zC15SOf3EGgUomYWShV5nxJx9/cz6YT16x4LcAWPiG7XWhoiNLFUCuOoACbQBo9Gg0GrRaDRqNFp1Wi06rQafVodXr0QVEoQ+ugTYwGvyjrTfO8Y+yTtcrxDUihVsIUflUKvAOtj4uXQX4nH84wmJRyC4wciL9DHnnUsnPTMWUcw5zQSZKQRaqwizUxiy0xhx0phy8irPxKs4ikBwClVx0KjNeKhNenCPScs6hFv6lCtS+5OlCKNb6YdH7oej9weCHxssfjZc/Op9A9L6BePkFW1v/hgDwCjj/8/xrjfx3LMpH/lKEEB5JrVYR5GsgyLcmxNa86vYmk4klS5bQrVs3NGoN2bmZ5KafpiDrNIXZZyjKOUdhYSEFxmIKCo0UGE0UFJkoNBVTZDRSbCzE15ROhCqDSDKJUGUQpUrHV1WEtyUP76I861mAPOc+T4EmgFzvaAp9oin2r4kSWBNNUC10oXH4hMXhHxKBRqu3fgkS1ZoUbiFEtaPWqAkIDCEgMAQox3n/8ywWhexCExn5JjLyjRzJKyI7KxNT5gmKs9MwF+ZgKcxBKcpBVZSDypSH1pSLzpyHlyWfAPLxVxVYu/ZV+fhTgI/Kes7f25yNd2425O6D02Uf34wKI3pMKgMmtQGzWo9F4wVaA5ZLBvJpvXzRefli8PZH6+WHSu9jHYyo87Z27eu8QXf+p8EPfCOsAxZFlSeFWwghykmtVhHkY52kpjYl57WjKE/xNxZbyC40kZlvIqvAxLEC68/svHwKcjKx5KShyz2OV/5J/ApSCTKeIrQ4jXDLGSLIQK1S0KDgTRHeStGFQXwm130+ky6AYp9wLL6RaPwj0QXFoPYNI/bcSVS7jeDld/4qBB9rkdd6X7giQaMDjd76UGukZ6ASSeEWQohrQK9V2yatcZSxqIicnEyyc3LIzcslLzeXvLw8CgryKMjPo6ggD1NhHuaiPMzGfDDmoTIVoC7Ox6AU4aMqwosifCjCW2W0Fn9KlhvxJx+DqhidKRtdVjZk2c+9fxPA0U/LHa+CClVJEdfowDsI/M4P5LMN6rtocF9ADeuVD6JcpHALIUQVpzcYCDVEEhoW6dD7FEUht6iYrAITOYXFZJ9v5R8//zy70ER2QTFZ+UaMuemQl4Y+/wz6ojP4mc4RTibhqkyCyT0/w14RXpisM+2dL/pemDCo7Jv9KhTrJYPm85f+FaRD+sErxlrsEwFBcWhC41EFxUFwHATFWecmADAVWB/FBWAqPP+zwHqVQmBNCKlt/QKgvv5n7pPCLYQQ1ymVSoW/lw5/L53D7y05n38mO58ly1fTuMUtpBotZOabzj+MZBZYz/dn5RvJOX85X35hAQaK0VGMTlWMnmKCyCVSlUGEyjqoL1KVQQSZRJ5/7q8qQJt/GvJPw8lNzn9gjd5a7ENqQ3Bt68/AWDBYR/mjL/l5/qG+yp1/qigp3EIIIUopOZ/vq1MR7w/t64ej0139C4DZopBdYB28l1lgLfDZBdZWf3aBiXOFJg4VFFtb+4XWHgBzXga++ccJLz5FrOq0dYY+1RliVaeJUqVjRk0RegoUPYVc9FD0ANRUnaGm6gx6sxHO7bc+ykHR+YAhAJXt0rzzPw3+F12mpwPFbJ2LwGIGxXL+cf65bzi0+V+Fcu0oKdxCCCFcRqNWEeyrJ9hX7/B7C01mMs+P2M/IM7In38jfecbzy0xkFhgvtPbzTbYvBhYF1FiIUZ2jliqNOFUacarT1FKlEa1Kx5cCfFWF+FGAL4VoVRYAVKZ8MOVb5/l3VnhDKdxCCCGqJy+dhqhADVGB5b8szWJRyDUWk1XShX++uGcVmDhUYGJbvpGs8+f2M8936xcW5GEpzEZlysOPgguX6JGPn6oAfwrwV1kv39NgwYIKC2osqDCjRkGFTqtFr9OhtkTyUCXmpCxSuIUQQngstVpFgJeOAC8dsQ7eTddkttha+Ol51lZ+er6R9FwjaflG9uQZrS398+sz803kFhVb31wMFEIjvwAp3EIIIcS1oNOoCfc3EO5f/kv0jMUWMguMZORZC77aDderS+EWQgghykmvVRPh70WEv/tmmfPMsfBCCCFENSWFWwghhPAgUriFEEIIDyKFWwghhPAgUriFEEIID1IlCveMGTOIj4/Hy8uLVq1asXHjxstu++mnn3LHHXcQHBxMcHAwiYmJV9xeCCGEuJ64vXAvWLCAkSNHMnHiRLZu3UqzZs3o0qULp0+XfSf5VatW8dhjj7Fy5UrWrVtHbGwsnTt35sSJE9c4ciGEEOLac3vhnjZtGgMHDqRfv340btyYmTNn4uPjwxdffFHm9nPnzmXIkCE0b96chg0b8tlnn2GxWFixYsU1jlwIIYS49tw6AYvRaGTLli2MHTvWtkytVpOYmMi6devKtY/8/HxMJhMhIWXPdVdUVERRUZHtdXZ2NgAmkwmTyVTme8qr5P0V3U91JLlzjuTNeZI750jenOdI7hzJr1sL99mzZzGbzURG2t8cPjIykr1795ZrHy+88AIxMTEkJiaWuX7KlClMnjy51PJly5bh4+PjeNBlSEpKcsl+qiPJnXMkb86T3DlH8ua88uQuPz+/3Pvz6ClPX3/9debPn8+qVavw8ip7+rmxY8cycuRI2+vs7GzbefGAgIAKHd9kMpGUlESnTp3KdZ9acYHkzjmSN+dJ7pwjeXOeI7kr6Q0uD7cW7rCwMDQaDWlpaXbL09LSiIqKuuJ733rrLV5//XWWL19O06ZNL7udwWDAYCg9gbxOp3PZH6Er91XdSO6cI3lznuTOOZI355Und47k1q2D0/R6PS1btrQbWFYy0Kx169aXfd+bb77Jyy+/zNKlS7n55puvRahCCCFEleD2rvKRI0fSp08fbr75Zm699VamT59OXl4e/fr1A+DJJ5+kRo0aTJkyBYA33niDCRMmMG/ePOLj4zl16hQAfn5++Pn5ue1zCCGEENeC2wt3z549OXPmDBMmTODUqVM0b96cpUuX2gasHT16FLX6QsfARx99hNFo5KGH7G9dPnHiRCZNmnTV4ymKAjh2PuFyTCYT+fn5ZGdnSxeSgyR3zpG8OU9y5xzJm/McyV1JTSqpUVeiUsqz1XXk+PHjxMbGujsMIYQQopRjx45Rs2bNK25T7Qq3xWLh5MmT+Pv7o1KpKrSvkhHqx44dq/AI9epGcuccyZvzJHfOkbw5z5HcKYpCTk4OMTExdr3MZXF7V/m1plarr/ptxlEBAQHyB+0kyZ1zJG/Ok9w5R/LmvPLmLjAwsFz7c/uUp0IIIYQoPyncQgghhAeRwl0BBoOBiRMnljnBi7gyyZ1zJG/Ok9w5R/LmvMrKXbUbnCaEEEJ4MmlxCyGEEB5ECrcQQgjhQaRwCyGEEB5ECrcQQgjhQaRwV8CMGTOIj4/Hy8uLVq1asXHjRneHVOWsWbOG7t27ExMTg0qlYtGiRXbrFUVhwoQJREdH4+3tTWJiIvv373dPsFXIlClTuOWWW/D39yciIoIePXqwb98+u20KCwsZOnQooaGh+Pn58eCDD5a6RW5189FHH9G0aVPbhBetW7fmt99+s62XnJXP66+/jkqlYvjw4bZlkruyTZo0CZVKZfdo2LChbX1l5E0Kt5MWLFjAyJEjmThxIlu3bqVZs2Z06dKF06dPuzu0KiUvL49mzZoxY8aMMte/+eabvPfee8ycOZMNGzbg6+tLly5dKCwsvMaRVi2rV69m6NChrF+/nqSkJEwmE507dyYvL8+2zYgRI1i8eDHfffcdq1ev5uTJkzzwwANujNr9atasyeuvv86WLVvYvHkzd955J/fddx///PMPIDkrj02bNvHxxx/TtGlTu+WSu8u74YYbSE1NtT3++usv27pKyZsinHLrrbcqQ4cOtb02m81KTEyMMmXKFDdGVbUBysKFC22vLRaLEhUVpUydOtW2LDMzUzEYDMo333zjhgirrtOnTyuAsnr1akVRrHnS6XTKd999Z9tmz549CqCsW7fOXWFWScHBwcpnn30mOSuHnJwcpV69ekpSUpLSrl07ZdiwYYqiyN/blUycOFFp1qxZmesqK2/S4naC0Whky5YtJCYm2pap1WoSExNZt26dGyPzLIcOHeLUqVN2eQwMDKRVq1aSx0tkZWUBEBISAsCWLVswmUx2uWvYsCG1atWS3J1nNpuZP38+eXl5tG7dWnJWDkOHDuXuu++2yxHI39vV7N+/n5iYGOrUqcPjjz/O0aNHgcrLW7W7yYgrnD17FrPZbLtneInIyEj27t3rpqg8z6lTpwDKzGPJOmG9o93w4cO5/fbbadKkCWDNnV6vJygoyG5byR3s3LmT1q1bU1hYiJ+fHwsXLqRx48YkJydLzq5g/vz5bN26lU2bNpVaJ39vl9eqVStmz55NgwYNSE1NZfLkydxxxx3s2rWr0vImhVuIKm7o0KHs2rXL7ryZuLwGDRqQnJxMVlYW33//PX369GH16tXuDqtKO3bsGMOGDSMpKQkvLy93h+NRunbtanvetGlTWrVqRVxcHN9++y3e3t6VckzpKndCWFgYGo2m1MjAtLQ0oqKi3BSV5ynJleTx8p555hl++eUXVq5caXc72qioKIxGI5mZmXbbS+5Ar9eTkJBAy5YtmTJlCs2aNePdd9+VnF3Bli1bOH36NDfddBNarRatVsvq1at577330Gq1REZGSu7KKSgoiPr165OSklJpf3NSuJ2g1+tp2bIlK1assC2zWCysWLGC1q1buzEyz1K7dm2ioqLs8pidnc2GDRuqfR4VReGZZ55h4cKF/PHHH9SuXdtufcuWLdHpdHa527dvH0ePHq32ubuUxWKhqKhIcnYFHTt2ZOfOnSQnJ9seN998M48//rjtueSufHJzczlw4ADR0dGV9zfn9LC2am7+/PmKwWBQZs+erezevVt56qmnlKCgIOXUqVPuDq1KycnJUbZt26Zs27ZNAZRp06Yp27ZtU44cOaIoiqK8/vrrSlBQkPLTTz8pO3bsUO677z6ldu3aSkFBgZsjd6/BgwcrgYGByqpVq5TU1FTbIz8/37bNoEGDlFq1ail//PGHsnnzZqV169ZK69at3Ri1+40ZM0ZZvXq1cujQIWXHjh3KmDFjFJVKpSxbtkxRFMmZIy4eVa4okrvLGTVqlLJq1Srl0KFDytq1a5XExEQlLCxMOX36tKIolZM3KdwV8P777yu1atVS9Hq9cuuttyrr1693d0hVzsqVKxWg1KNPnz6KolgvCRs/frwSGRmpGAwGpWPHjsq+ffvcG3QVUFbOAGXWrFm2bQoKCpQhQ4YowcHBio+Pj3L//fcrqamp7gu6Cujfv78SFxen6PV6JTw8XOnYsaOtaCuK5MwRlxZuyV3ZevbsqURHRyt6vV6pUaOG0rNnTyUlJcW2vjLyJrf1FEIIITyInOMWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGEEMKDSOEWQgghPIgUbiGqCZPJxOzZs2nbti3h4eF4e3vTtGlT3njjDYxGo7vDE0KUk0x5KkQ1kZyczKhRoxgyZAgtWrSgsLCQnTt3MmnSJKKjo/n999/R6XTuDlMIcRXS4haimmjSpAkrVqzgwQcfpE6dOjRu3JiePXuyZs0adu3axfTp0wFQqVRlPoYPH27bV0ZGBk8++STBwcH4+PjQtWtX9u/fb1vfv39/mjZtSlFREQBGo5EWLVrw5JNPAnD48GFUKhXJycm294wfPx6VSmWLQwhRNincQlQTWq22zOXh4eE88MADzJ0717Zs1qxZpKam2h6X3ju4b9++bN68mZ9//pl169ahKArdunXDZDIB8N5775GXl8eYMWMAePHFF8nMzOSDDz4oM4bjx48zffp0vL29XfFRhbiulf0vWQhx3brhhhs4cuSI3TKTyYRGo7G9DgoKIioqyvZar9fbnu/fv5+ff/6ZtWvX0qZNGwDmzp1LbGwsixYt4uGHH8bPz485c+bQrl07/P39mT59OitXriQgIKDMmF588UV69uzJ8uXLXflRhbguSeEWoppZsmSJrWVc4s0332TOnDnlev+ePXvQarW0atXKtiw0NJQGDRqwZ88e27LWrVszevRoXn75ZV544QXatm1b5v62bt3KwoUL2bdvnxRuIcpBCrcQ1UxcXFypZQcOHKB+/fouPY7FYmHt2rVoNBpSUlIuu92oUaMYPXo00dHRLj2+ENcrOcctRDWRnp5OTk5OqeWbN29m5cqV9OrVq1z7adSoEcXFxWzYsMG27Ny5c+zbt4/GjRvblk2dOpW9e/eyevVqli5dyqxZs0rt6+eff+bff/9l9OjRTnwiIaonKdxCVBNHjx6lefPmfP7556SkpHDw4EG+/vpr7rvvPu644w67UeNXUq9ePe677z4GDhzIX3/9xfbt23niiSeoUaMG9913HwDbtm1jwoQJfPbZZ9x+++1MmzaNYcOGcfDgQbt9vfnmm7zyyiv4+Pi4+uMKcd2Swi1ENdGkSRMmTpzI7Nmzue2227jhhht48803eeaZZ1i2bJndALSrmTVrFi1btuSee+6hdevWKIrCkiVL0Ol0FBYW8sQTT9C3b1+6d+8OwFNPPUWHDh3o3bs3ZrPZtp+EhAT69Onj8s8qxPVMJmARQgghPIi0uIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggPIoVbCCGE8CBSuIUQQggP8v+DI2LW5EqQMQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_2l_500.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_2l_500.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s2IdipB3eh3Z", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "df6151d8-b1fc-4e69-8dda-076b2c836468" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9290 - loss: 0.2572\n", + "Lossontestdata: 0.25275251269340515\n", + "Accuracyontestdata: 0.9301000237464905\n" + ] + } + ], + "source": [ + "scores_2l_500=model_2l_500.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_2l_500[0])\n", + "print('Accuracyontestdata:',scores_2l_500[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sPmUCF2q-yKD" + }, + "source": [ + "Лучшая метрика - Accuracyontestdata : 0.9438999891281128, при архитектуре со 100 нейронами." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qB_TMC8KfLxV" + }, + "outputs": [], + "source": [ + "#9 пункт\n", + "model_3l_100_50 = Sequential()\n", + "model_3l_100_50.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_3l_100_50.add(Dense(units=50, activation='sigmoid'))\n", + "model_3l_100_50.add(Dense(units=num_classes, activation='softmax'))\n", + "\n", + "model_3l_100_50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BeZb9kX_fSjT", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 246 + }, + "outputId": "02d33699-95a4-4ceb-e2b2-a849a5b3c16a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_5\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_5\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_9 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m) │ \u001b[38;5;34m5,050\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m510\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_9 (Dense)                 │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_10 (Dense)                │ (None, 50)             │         5,050 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_11 (Dense)                │ (None, 10)             │           510 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
     Total params: 84,060 (328.36 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m84,060\u001b[0m (328.36 KB)\n" + ], + "text/html": [ + "
     Trainable params: 84,060 (328.36 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_3l_100_50.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M6fHvyBifb76", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "abf93d28-a4b9-4814-96a4-9d4d4c531f29" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.2184 - loss: 2.2653 - val_accuracy: 0.4402 - val_loss: 2.0564\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.5373 - loss: 1.9305 - val_accuracy: 0.6475 - val_loss: 1.4814\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.6621 - loss: 1.3505 - val_accuracy: 0.7543 - val_loss: 1.0269\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7630 - loss: 0.9652 - val_accuracy: 0.8047 - val_loss: 0.7883\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8158 - loss: 0.7571 - val_accuracy: 0.8412 - val_loss: 0.6438\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8455 - loss: 0.6224 - val_accuracy: 0.8575 - val_loss: 0.5530\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8636 - loss: 0.5428 - val_accuracy: 0.8652 - val_loss: 0.4939\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8749 - loss: 0.4841 - val_accuracy: 0.8773 - val_loss: 0.4487\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8809 - loss: 0.4496 - val_accuracy: 0.8850 - val_loss: 0.4174\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8883 - loss: 0.4151 - val_accuracy: 0.8903 - val_loss: 0.3935\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8935 - loss: 0.3920 - val_accuracy: 0.8973 - val_loss: 0.3757\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8959 - loss: 0.3821 - val_accuracy: 0.9000 - val_loss: 0.3597\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9008 - loss: 0.3563 - val_accuracy: 0.9027 - val_loss: 0.3473\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9018 - loss: 0.3480 - val_accuracy: 0.9038 - val_loss: 0.3370\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9057 - loss: 0.3381 - val_accuracy: 0.9048 - val_loss: 0.3282\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9060 - loss: 0.3279 - val_accuracy: 0.9077 - val_loss: 0.3197\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9070 - loss: 0.3260 - val_accuracy: 0.9090 - val_loss: 0.3124\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9082 - loss: 0.3208 - val_accuracy: 0.9093 - val_loss: 0.3056\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9121 - loss: 0.3049 - val_accuracy: 0.9112 - val_loss: 0.2994\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9136 - loss: 0.2994 - val_accuracy: 0.9128 - val_loss: 0.2937\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9125 - loss: 0.3029 - val_accuracy: 0.9128 - val_loss: 0.2895\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9147 - loss: 0.2911 - val_accuracy: 0.9163 - val_loss: 0.2839\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9146 - loss: 0.2905 - val_accuracy: 0.9162 - val_loss: 0.2788\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9174 - loss: 0.2865 - val_accuracy: 0.9182 - val_loss: 0.2746\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9193 - loss: 0.2795 - val_accuracy: 0.9190 - val_loss: 0.2707\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9231 - loss: 0.2650 - val_accuracy: 0.9202 - val_loss: 0.2665\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9221 - loss: 0.2665 - val_accuracy: 0.9212 - val_loss: 0.2618\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9243 - loss: 0.2587 - val_accuracy: 0.9222 - val_loss: 0.2583\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9246 - loss: 0.2599 - val_accuracy: 0.9228 - val_loss: 0.2543\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9278 - loss: 0.2529 - val_accuracy: 0.9238 - val_loss: 0.2506\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9254 - loss: 0.2524 - val_accuracy: 0.9253 - val_loss: 0.2472\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9307 - loss: 0.2428 - val_accuracy: 0.9267 - val_loss: 0.2427\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2449 - val_accuracy: 0.9285 - val_loss: 0.2403\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9316 - loss: 0.2332 - val_accuracy: 0.9298 - val_loss: 0.2365\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9322 - loss: 0.2345 - val_accuracy: 0.9307 - val_loss: 0.2325\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9315 - loss: 0.2356 - val_accuracy: 0.9303 - val_loss: 0.2297\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9338 - loss: 0.2272 - val_accuracy: 0.9327 - val_loss: 0.2273\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9361 - loss: 0.2201 - val_accuracy: 0.9342 - val_loss: 0.2240\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9352 - loss: 0.2239 - val_accuracy: 0.9348 - val_loss: 0.2209\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9384 - loss: 0.2145 - val_accuracy: 0.9357 - val_loss: 0.2181\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9375 - loss: 0.2188 - val_accuracy: 0.9373 - val_loss: 0.2145\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9379 - loss: 0.2157 - val_accuracy: 0.9380 - val_loss: 0.2121\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9416 - loss: 0.2053 - val_accuracy: 0.9380 - val_loss: 0.2091\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9418 - loss: 0.2027 - val_accuracy: 0.9397 - val_loss: 0.2068\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2037 - val_accuracy: 0.9403 - val_loss: 0.2036\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9443 - loss: 0.1954 - val_accuracy: 0.9395 - val_loss: 0.2011\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9449 - loss: 0.1941 - val_accuracy: 0.9410 - val_loss: 0.1992\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9431 - loss: 0.1947 - val_accuracy: 0.9415 - val_loss: 0.1964\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9444 - loss: 0.1934 - val_accuracy: 0.9417 - val_loss: 0.1940\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9475 - loss: 0.1858 - val_accuracy: 0.9422 - val_loss: 0.1914\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_3l_100_50 = model_3l_100_50.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hkDzHYXkgPbY", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "ce3685f3-2bdb-406c-cc09-e210e2282c3c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAHWCAYAAACFR6uKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjgtJREFUeJzs3Xd8U9X7wPFPkqbp3htKWyh7KksQZVimgqBfFVABERyAiuBCkeFCURAnuBBREZz4QxEsaEFWQaBskD3b0t2mM03u74/QQOigCS0p7fN+ve6rzZ1PTseTc+6556gURVEQQgghRK2gdnQAQgghhKg6ktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EuGZMJhOpqakcO3bM0aEIUWtJYhdCVKukpCQmTpxIREQEzs7OBAYG0qJFC7Kzsx0dmhC1kpOjAxCiLKNGjeLHH39Er9c7OhRxFY4cOULPnj0xGAw8+eST3HjjjTg5OeHq6oq7u7ujwxOiVpLELmqMtLQ0vv32W/755x/Wr19Pfn4+/fr144YbbuDee+/lhhtucHSIwkaPPvoozs7ObNmyhXr16jk6HCHqBJVMAiNqgqVLlzJ27Fj0ej2RkZEYDAaSkpK44YYb2LVrFwaDgZEjR/Lpp5/i7Ozs6HBFJWzfvp0OHTrw559/0rt3b0eHI0SdIffYhcNt3LiRBx54gJCQEDZu3Mjx48eJiYnBxcWFbdu2ce7cOYYNG8ZXX33F008/DYCiKERGRnLnnXeWOl9BQQHe3t48+uijAMTFxaFSqfjxxx9L7evh4cGoUaMsrxctWoRKpeLEiROWdfv27cPX15c77riD4uJiq/3+/fdfq/OlpqaiUqmYMWOG1fqy1r399tuoVCp69Ohhtf7YsWPcc889hIWFoVarUalUqFQqWrVqVVExAlBcXMyrr75Ko0aN0Ol0REZG8uKLL1JYWGi1X2RkJHfccYfVugkTJqBSqazWrVmzBpVKxW+//WZZ16NHj1Ixb9u2zRJniS1btuDi4sLRo0dp2bIlOp2OkJAQHn30UdLT062OL+ucr7/+Omq1miVLlth87fL06NHDsm9Zy6U/d4CPP/7YEntYWBjjx48nMzOzwmvk5OQwZswYIiIi0Ol01K9fn8cee4zk5GSr/Up+h8pbLv992blzJ/3798fLywsPDw9uu+02tmzZYtmuKAo9e/YkMDCQ8+fPW9YXFRXRunVrGjVqRG5uLgAnT55k3LhxNG3aFFdXV/z9/bnnnntKvf+SGJ2dnUlJSbHatnnzZkusl/8dCMeSpnjhcG+++SYmk4mlS5fSvn37UtsDAgJYvHgx+/fv55NPPmH69OkEBQXxwAMPMHv2bNLT0/Hz87Psv2LFCrKzs3nggQeuOrbTp0/Tr18/mjVrxvfff4+TU9X8yWRmZjJr1qxS641GI4MGDeLkyZNMnDiRJk2aoFKpeP311yt13jFjxvDVV1/xv//9j8mTJxMfH8+sWbM4cOAAv/zyS5XEXpbnn3++1Lq0tDQKCgp4/PHH6dWrF4899hhHjx7lo48+Ij4+nvj4eHQ6XZnn+/LLL5k6dSpz5sxh+PDhNl+7IvXr1y9V9itXruS7776zWjdjxgxmzpxJTEwMjz/+OIcOHWL+/Pls27aNjRs3otVqyzx/eno6u3fvZsyYMYSEhHDkyBEWLFjAqlWr2Lp1K0FBQVb7v/LKK0RFRVle6/V6Hn/8cat99u3bxy233IKXlxfPPfccWq2WTz75hB49erBu3To6d+6MSqVi4cKFtGnThscee4yff/4ZgOnTp7Nv3z7i4uIs/Rq2bdvGpk2bGDp0KPXr1+fEiRPMnz+fHj16sH//ftzc3Kyur9Fo+OabbywfrMH8M3JxcaGgoKAyxS6uJUUIB/Pz81MiIiKs1o0cOVJxd3e3Wvfyyy8rgLJixQpFURTl0KFDCqDMnz/far9BgwYpkZGRislkUhRFUf7++28FUH744YdS13Z3d1dGjhxpef3ll18qgHL8+HElPT1dadGihdK0aVMlNTXV6riS/bZt22a1PiUlRQGU6dOnW62/fN1zzz2nBAUFKe3bt1e6d+9uWV/ynmbNmmV1fPfu3ZWWLVuWiv9SCQkJCqCMGTPGav0zzzyjAMpff/1lWRcREaHcfvvtVvuNHz9eufxfQmxsrFWZl8RyacwrV65UAKVfv35Wx0+fPl0BlNtuu00pLi62rC8puw8++KDMc/7++++Kk5OTMnny5FLvsbLXLk955fj2229bfu6Koijnz59XnJ2dlT59+ihGo9Gy34cffqgAysKFC694rUvt3btX0el0yujRoy3rbPkdGjx4sOLs7KwcPXrUsu7cuXOKp6encuutt1od/8knnyiA8s033yhbtmxRNBqNMnHiRKt98vLySsW4efNmBVAWL15cKsZhw4YprVu3tqzPzc1VvLy8lOHDh5f5HoRjSVO8cLicnJxStZiyBAcHA1gek2rSpAmdO3fm22+/teyTnp7OH3/8wf3331+qaTYnJ4fU1FSrpTwFBQUMGjSIlJQUVq1ahb+/vz1vrUxnz57lgw8+4OWXX8bDw6NUjIBd11u5ciUAkyZNslo/efJkAH7//Xd7wq2QoihMmTKFu+++m86dO5e5z6RJk9BoNJbXDz74IMHBwWXGs3XrVu69917uvvtu3n777au+tr3WrFlDUVEREydORK2++G9y7NixeHl5XbEsS57XL1mCg4MZMGAAP/30EyaTyaZYjEYjf/75J4MHD6Zhw4aW9aGhoQwfPpwNGzZYPTr4yCOP0LdvX5544gkefPBBGjVqxBtvvGF1TldXV8v3BoOBtLQ0oqOj8fHxYceOHaViePDBBzl48KClyf2nn37C29ub2267zab3Iq4NSezC4cLCwjh69OgV9zty5AiAVe/qESNGsHHjRk6ePAnADz/8gMFg4MEHHyx1/OjRowkMDLRaSu45Xu6hhx5iw4YN5OTkWO6rV5Xp06cTFhZm6QNwqaZNm+Lr68ucOXPYuHEjKSkppKamYjAYrnjekydPolariY6OtlofEhKCj4+PpYyq0rfffsu+fftKJQ7A8sGqWbNmVus1Gg2NGzcudT/37Nmz3H777eTm5pKWlnbFe+YVXftqlZRV06ZNrdY7OzvTsGHDK5blqVOnSv2u/fLLL2RlZVX4gbIsKSkp5OXllYoFoHnz5phMJk6fPm21/osvviAvL4/Dhw+zaNEiq0QOkJ+fz7Rp0wgPD0en0xEQEEBgYCCZmZlkZWWVuk5gYCC33347CxcuBGDhwoWMHDnS6kOPqDnkpyIc7o477iA9PZ0vvvii3H2Sk5P56quvCAwM5KabbrKsHzp0KFqt1lJr/+abb+jQoUOZ/wSnTZtGbGys1eLi4lLm9Xbs2MGvv/5KYGAgjzzyyFW+w4sOHDjAokWLeO2118q8R+vh4cGyZcvIzc2lW7duBAUFERgYyKZNmyp9jcp0IqsKRUVFvPzyyzz88MM0adKk1PbLk8mVHDlyhAYNGvD111+zZs0avvrqK7uv7WghISGlfteGDRt2za4fFxdn6TC5Z8+eUtufeOIJXn/9de69916+//57/vzzT2JjY/H39y+3RWH06NF89913HDhwgPXr11t1OhU1i3SeEw43depUli9fzuOPP87BgwcZPnw4RqMRMNd81q5dy7Rp08jIyGDJkiVWHa78/Py4/fbb+fbbb7n//vvZuHEj8+bNK/M6rVu3JiYmxmrdpU3El/r8888ZNGgQGo2GO+64gy+++IKHH374qt/rlClTaNeuHffdd1+5+/Tu3ZvZs2dz//33s2DBAho2bMjkyZMtZVKeiIgITCYThw8fpnnz5pb1ycnJZGZmEhERcdXxX+rjjz/m/PnzpXpvlyjpEHbo0CGrJuSSGC8flyA0NJSVK1cSHBzMr7/+yuTJkxkwYACBgYE2X/tqlZTV5bEXFRVZntqoiIuLS6l93n//fby8vAgICLAplsDAQNzc3Dh06FCpbQcPHkStVhMeHm5Zl5iYyBNPPEGfPn1wdnbmmWeeoW/fvlY//x9//JGRI0cyZ84cy7qCgoIKe/z3798fFxcXhg4dSrdu3WjUqBH//POPTe9FXBtSYxcOFxISwubNm+nfvz9z5szhxhtv5JtvviE3N5eIiAhGjx6Nq6srK1asKLPW8+CDD7J//36effZZNBoNQ4cOveqYbrnlFgBuv/12hg4dyrPPPlvqcSVbbd68mV9//ZU333yzwlr16dOnGTduHE8++SSPPPIIMTEx+Pr6XvH8AwYMACj1wWbu3LmA+b1UlZycHF5//XWefvppQkJCytzntttuQ6fT8f7771vVAr/99luSk5NLPW7XpEkTSz+KDz74AJPJxFNPPWXXta9WTEwMzs7OvP/++yiXDPXxxRdfkJWVVWFZllXj3blzJ3/88QeDBw+2uflao9HQp08ffv31V6vbF8nJySxZsoRu3brh5eVlWT927FhMJhNffPEFn376KU5OTjz88MNW70Oj0Vi9BnOZV/Th0cnJiREjRrB7925Gjx5t03sQ15bU2EWNEB4ezq+//kpiYiIbN27k7bffJiEhgQULFtCuXTvatWtXbjK8/fbb8ff354cffqB///6V6ohni/fee4/mzZvzxBNP8P3331tt27x5s9U905JOTEeOHGHr1q106tTJsq1koJaKansmk4kHH3yQ+vXr8+abb9oUZ9u2bS2D+GRmZtK9e3e2bt3KV199xeDBg+nZs6fV/iUdA0ucOnUKwGpdQkJCmdfasWMHAQEBPPfcc+XG4+fnx9SpU3n55Zfp27cvd955J8eOHePDDz+kbdu2jBkzptxjQ0JCePvttxkzZgwPPPCA5UNLZa99tQIDA5kyZQozZ86kX79+DBo0iEOHDvHxxx/TsWPHCh+lPHXqFLfffjv33HMP9erVY+/evXz22WcEBATY3R/gtddeIzY2lm7dujFu3DicnJz45JNPKCwsZPbs2Zb9vvzyS37//XcWLVpE/fr1AXPCfuCBB5g/fz7jxo0DzLe/vv76a7y9vWnRogWbN29mzZo1V+y0+eqrr/Lss89W6oOmcCCH9skXohxlPe5WkXHjximAsmTJklLb7H3c7VJfffWVAij/93//Z7VfRculj2UBikqlUrZv32513ssf33rjjTcUnU6n7Nq1q9R+V3rcTVEUxWAwKDNnzlSioqIUrVarhIeHK1OmTFEKCgqs9ouIiLhi/Jculz/uBijvvvuu1TlLHm+73EcffaQ0a9ZM0Wq1SnBwsPLoo48qaWlpFZZDiV69eikNGjRQcnJy7Lr25Sr7uFuJDz/80Cr2xx9/XMnIyKjwGjk5OcrYsWOViIgIxdnZWQkMDFQefPBB5eTJk1b72frI5I4dO5S+ffsqHh4eipubm9KzZ09l06ZNlu2nT59WvL29lYEDB5aKaciQIYq7u7ty7NgxRVEUJSMjQ3nooYeUgIAAxcPDQ+nbt69y8OBBJSIiosy/h/IeZ7vSduEYMqSsqBWefvppvvjiC5KSkkoNruEIM2bMIC4ujri4OEeHIoSoY+Qeu7juFRQU8M0333D33XfXiKQuhBCOJPfYxXXr/PnzrFmzhh9//JG0tLQyO1o5SnR0NHl5eY4OQwhRB0lTvLhuxcXF0bNnT4KCgnj55ZeZMGGCo0MSQgiHk8QuhBBC1CJyj10IIYSoRSSxCyGEELWIdJ4rg8lk4ty5c3h6el6zcbeFEEKIiiiKQk5ODmFhYRWOYCiJvQznzp2zGntZCCGEqClOnz5tGVmwLJLYy+Dp6QmYC+/SMZjtYTAY+PPPP+nTp0+Zs3mJ8knZ2UfKzX5SdvaRcrOPreWWnZ1NeHi4JUeVRxJ7GUqa3728vKoksbu5ueHl5SW/8DaSsrOPlJv9pOzsI+VmH3vL7Uq3iKXznBBCCFGLSGIXQgghahGHJvZZs2bRsWNHPD09CQoKYvDgwRw6dKjCYz777DNuueUWfH198fX1JSYmhq1bt1rtM2rUKFQqldXSr1+/6nwrQgghRI3g0Hvs69atY/z48XTs2JHi4mJefPFF+vTpw/79+3F3dy/zmLi4OIYNG0bXrl1xcXHhrbfeok+fPuzbt4969epZ9uvXrx9ffvml5bVOp6v29yPE9UxRFIqLizEajY4OxWEMBgNOTk4UFBTU6XKwlZSbfS4vN41Gg5OT01U/Zu3QxL5q1Sqr14sWLSIoKIjt27dz6623lnnMt99+a/X6888/56effmLt2rWMGDHCsl6n0xESElL1QQtRCxUVFZGYmFjnJ65RFIWQkBBOnz4tY1jYQMrNPmWVm5ubG6GhoTg7O9t93hrVKz4rKwsAPz+/Sh+Tl5eHwWAodUxcXBxBQUH4+vrSq1cvXnvtNfz9/cs8R2FhIYWFhZbX2dnZgPnTlMFgsPVtWCk5/mrPUxdJ2dnH1nIzmUwcP34cjUZDaGgoWq22zv5zVhSF3Nxc3N3d62wZ2EPKzT6XlhuY/2ZTUlI4duwYUVFRpQahqezfdI2ZBMZkMjFo0CAyMzPZsGFDpY8bN24cq1evZt++fbi4uACwdOlS3NzciIqK4ujRo7z44ot4eHiwefNmNBpNqXPMmDGDmTNnllq/ZMkSmd9b1HpOTk6EhIRQv359uWUlhIMVFhZy5swZEhMTS93WyMvLY/jw4WRlZVX4KHaNSeyPP/44f/zxBxs2bKhwRJ1Lvfnmm8yePZu4uDjatGlT7n7Hjh2jUaNGrFmzhttuu63U9rJq7OHh4aSmplbJc+yxsbH07t1bnu+0kZSdfWwtt4KCAk6fPk1kZKTlw3FdVTJkpwwnbRspN/uUVW4FBQWcOHGC8PDwUn+P2dnZBAQEXDGx14im+AkTJvDbb7+xfv36Sif1d955hzfffJM1a9ZUmNQBGjZsSEBAAEeOHCkzset0ujJrKlqttsoSSlWeq66RsrNPZcvNaDSiUqlQq9UVjj9dF5hMJgBLeYjKkXKzT1nlplarUalUZf79Vvb/oEN/AoqiMGHCBH755Rf++usvoqKiKnXc7NmzefXVV1m1ahUdOnS44v5nzpwhLS2N0NDQqw1ZCFGLSP+N65P83Crm0MQ+fvx4vvnmG5YsWYKnpydJSUkkJSWRn59v2WfEiBFMmTLF8vqtt97i5ZdfZuHChURGRlqO0ev1AOj1ep599lm2bNnCiRMnWLt2LXfeeSfR0dH07dv3mr9HIUTNkZCQwMiRI2nSpAm+vr54eXlZOu2KmuvYsWM8/vjjtGjRAn9/f1xdXTl48KCjw6qxHJrY58+fT1ZWFj169CA0NNSyLFu2zLLPqVOnSExMtDqmqKiI//3vf1bHvPPOOwBoNBp2797NoEGDaNKkCQ8//DDt27fnn3/+kY5BQtRCp0+fZvTo0YSFheHs7ExERARPPfUUaWlpVvvFxcXRrVs3QkJCWLp0Kdu2bePIkSN4e3s7KHJRGQcOHKB9+/YUFxezcOFC4uPjOXr0KM2aNXN0aDWWQ++xV6bfXlxcnNXrEydOVLi/q6srq1evvoqohBDXi2PHjtGlSxeaNGnCd999R1RUFPv27ePZZ5/ljz/+YMuWLfj5+aEoCmPHjmXevHmMGTPG0WELG0yYMIHx48fz2muvOTqU64b0cqhmE5ft5tWdGvaezXZ0KEJUmqIo5BUVO2Sx5UGd8ePH4+zszJ9//kn37t1p0KAB/fv3Z82aNZw9e5aXXnoJgIMHD3Ly5EmOHDlCREQELi4u3HTTTZZHaxVFITo6mjlz5lidPyEhAZVKxZEjR4iLi0OlUpGZmWnZPmrUKAYPHmx5vWrVKrp164aPjw/+/v7ccccdHD161LL9xIkTqFQqEhISADh79iz33HMPQUFBeHp6MmTIEM6cOWPZf8aMGbRr187yOjMzE5VKZVXhuTyGo0ePcueddxIcHIyHhwcdO3ZkzZo1Vu8rMTGRu+66C39/f6uhty99b5fbs2cPvXr1wtXVFX9/fx555BHLLVAwP3o8ZMiQUmV3aWWsR48eTJw40fI6MjKSefPmWV6vXbsWlUpleT+5ubn8/fffFBUV0bhxY1xcXGjdujW//vpruWVaWFhITEwMMTExlqedtm3bRu/evQkICMDb25vu3buzY8eOct/r9a5G9Iqvzc5m5ZNaoOJcVj43ODoYISop32CkxTTHtHztf6Uvbs5X/teUnp7O6tWref3113F1dbXaFhISwv3338+yZcv4+OOPSUlJwWAw8PXXX/PZZ58RFRXFe++9R79+/Th8+DChoaGMHj2aRYsWMXbsWMt5vvzyS2699Vaio6OtEm55cnNzmTRpEm3atEGv1zNt2jSGDBlCQkJCmYONDBgwAK1Wy4oVK9BqtTz11FMMHjyYbdu22f3YmF6vZ8CAAbz++uvodDoWL17MwIEDOXToEA0aNABg8uTJ/Pfff6xatYrw8HA2bdrE3XffXeH76tu3L126dGHbtm2cP3+eMWPGMGHCBBYtWmRXnJczmUxMnjwZDw8Py7q0tDQUReGTTz5hwYIFtG/fniVLlnDXXXexfft2qw89YH7CY+jQoej1etasWWO5/ZqTk8PIkSP54IMPUBSFOXPmMGDAAA4fPnzFuc2vR1Jjr2YhXubnEJOyC6+wpxDCFocPH0ZRFJo3b17m9ubNm5ORkUFKSorlsaK3336bAQMG0Lx5cz7++GPCwsL46KOPAHPN99ChQ2zfvh0wJ94lS5YwevRoAMuHh0s7917u7rvv5q677iI6Opp27dqxcOFC9uzZw/79+0vtu2bNGnbv3s3ixYvp3LkzN954I99++y0JCQmsXbvW7nJp27Ytjz76KK1ataJx48a8+uqrNGrUiP/7v/+z7JOQkMDw4cPp2LEjISEhVxztc8mSJRQUFLB48WJatWpFr169+PDDD/n6669JTk62O9ZLffXVVxQWFnLnnXda1pX83J5//nmGDRtGkyZNmDFjBj179rT0qyqhKAoPPfQQR44cYeXKlVYfEHr16sUDDzxAs2bNaN68OZ9++il5eXmsW7euSmKvaaTGXs1CvMyfGJOyChwciRCV56rVsP8VxzxF4qotPTpkRWxpur/55pst36vVarp27WpJumFhYQwYMIBvvvmGnj17smLFCgoLC7nnnnsAaNy4Mc7Oznz33XdMmjSpzPMfPnyYadOmER8fT2pqqiUxnTp1ilatWln269q1K0ajER8fH1q0aGFZ36BBA8LDw9m/fz8xMTGVL4RL6PV6ZsyYwe+//05iYiLFxcXk5+dz6tQpyz5RUVGsXLmSxx57rFJDeB84cIC2bdtaTc518803YzKZOHToEIGBgXbFWiIvL4+pU6eyYMECfvrpp1LbL/25AXTr1s3qgwrAs88+y9q1a3nooYdKvafk5GSmTp1KXFwc58+fx2g0kpeXZ1UmtYnU2KtZsKXGLoldXD9UKhVuzk4OWSrbBB0dHY1KpeLAgQNlbj9w4AC+vr4EBgbi6+tb4Xst8fDDD/Pzzz+Tn5/Pl19+yX333WcZVtrPz4+5c+fywgsv4OrqioeHR6lJqQYOHEh6ejqfffYZ8fHxxMfHA+ZJdi61bNkyXn311UrFZKtnnnmGX375hTfeeIN//vmHhIQEWrdubRXDu+++S2FhIQEBAXh4eNC/f3+7r1cV3n77bZo2bcrAgQOt1lf25wbmn/cff/zB0qVLS3WgHjlyJAkJCbz33nts2rSJhIQE/P39S/1cagtJ7NXMUmOXpnghqpS/vz+9e/fm448/LtU8npSUxLfffst9992HSqWiUaNGODk5sXHjRss+JpOJTZs2WdWYBwwYgLu7OwsWLGDVqlWWZvgS48ePJysri71795KQkMCgQYMs29LS0jh06BBTp07ltttus9wKKEt4eDjdunUjMzPTqpn+9OnTnD592iomW23cuJFRo0YxZMgQWrduTUhISKmniZo0acKoUaOIjIwkPj6ezz//vMJzNm/enF27dpGbm2t1HbVaTdOmTe2OFcwd+ebMmVOq4yKAt7c3ISEhVj83gA0bNpQqo6+//pp+/frx6quvMnbsWMtkXiWxPvnkkwwYMICWLVui0+lITU29qrhrMkns1SzE+0KNXZrihahyH374IYWFhfTt25f169dz+vRpVq1aRe/evalXrx6vv/46AB4eHowdO5Znn32WlStXcuDAAcaNG8e5c+cYN26c5XwajYZhw4bx4osv0rhxY7p06VLqmq6urjRq1Ijo6Girjle+vr74+/vz6aefcuTIEf76669ym+zB3BzfuXNnRowYwdatW9mxYwf3338/7dq1o1evXpb9FEWhoKCAgoICSy/voqIiyzqj0YjJZLKMxta4cWN+/vlnEhIS2LVrF8OHD7fcEiixZcsWXnzxRX788UdatmxJvXr1Kizn+++/HxcXF0aOHMnevXv5+++/eeKJJ3jwwQcJDg627GcymSxxldSGCwsLLesujwPgo48+YsiQIdxwQ9ndi59++mneeustli5dyn///ceMGTP4+++/eeaZZ6z2K2l+f/rppwkPD7cq+8aNG/P1119z4MAB4uPjuf/++0t1uKxVFFFKVlaWAihZWVlXfa5jyVlKxPO/KY1fWqmYTKYqiK7uKCoqUpYvX64UFRU5OpTriq3llp+fr+zfv1/Jz8+v5siqx4kTJ5SRI0cqwcHBilarVcLDw5UnnnhCSU1NtdovNzdXGTdunBIQEKA4OzsrN910k7JhwwarfYxGo7Jz504FUGbPnn3Fa48cOVK58847La9jY2OV5s2bKzqdTmnTpo0SFxenAMovv/yiKIqiHD9+XAGUnTt3KoqiKGfOnFEGDx6seHh4KB4eHsqQIUOU06dPW843ffp0BajUMnLkSMs1evbsqbi6uirh4eHKhx9+qHTv3l156qmnFEVRlPPnzyv169dXPv/8c8t1/v77bwVQMjIyyn2vu3fvVnr27Km4uLgofn5+ytixY5WcnBxLuQ0bNqxScZbEoSiKEhERobi6ulq958vLtLi4WJk6daoSFhamaLVapXXr1sry5cst2y8vU0VRlEOHDimurq7K6tWrFUVRlB07digdOnRQXFxclMaNGys//PCDEhERobz77rvlvt9rwWg0KhkZGYrRaLSsq+jvsbK5qcbM7laTZGdn4+3tfcUZdCojN7+QljPNz5DueLk3fu7OVRFinWAwGFi5cqXlkSBRObaWW0FBAcePHycqKqrOz+5mMplYtWoVgwcP5vTp01a10Zps+fLlLF++vMoePbOVyWQiOzsbLy8vmQTGBmWVW0V/j5XNTfITqGbOTmo8tebPTolZ5T8mI4RwrJJ5sN966y3+97//XTdJHcy3EOTDryghif0a8LlQSZf77ELUXCVD0mZlZfHWW285OhybDBw4kM8++8zRYYgaQhL7NeDjXFJjl8QuRE01atQoDAYDcXFxV+xMJkRNJon9GvCWGrsQQohrRBL7NeCjkxq7EEKIa0MS+zVguceeLZ3nhBBCVC9J7NeAdJ4TQghxrUhivwa8L+k8J8MGCCGEqE6S2K+Bkhp7XpGRnMJixwYjhBDCbiVD99ZkktivAWcN+LiaB4+Q5nghhLh+/PLLL9x+++1ERkbi4eHBLbfc4uiQrkgS+zUSfGGWN+kZL0TVGTVqFCqVyrL4+/vTr18/du/e7ejQRC0wa9Ysxo4dyx133MHvv/9OQkICK1eudHRYVySJ/RoJKZmXXYaVFaJK9evXj8TERBITE1m7di1OTk7ccccdjg5LXOeOHTvGG2+8wbp163j88cdp2bIl0dHRllnkajJJ7NdIiLfU2MV1RFGgKNcxi40dTHU6HSEhIYSEhNCuXTteeOEFTp8+TUpKimWf559/niZNmuDm5kbDhg15+eWXS90rPXHiBBqNBl9fXzQajaUVIDMzE4AZM2bQrl07y/5FRUVER0db7VMiMjLSqiVBpVKxfPlyy/ZVq1bRrVs3fHx88Pf354477uDo0aNWsahUKhISEkqdd968eZbXPXr0YOLEiZbXhw4dQqvVWsVpMpl45ZVXqF+/Pjqdjnbt2rFq1Sqbr3X5eyjr+l9//TUdOnTA09OTkJAQhg8fzvnz562O+e2332jbti2urq6Wshk8eDAVmT9/Po0aNcLZ2ZmmTZvy9ddfW22/PLaJEyfSo0ePct9jXFxcqZ/bgw8+aHWe1atX06hRI15//XUCAwPx9PTkrrvu4syZM5ZjLv+d2LFjBz4+Plbz28+dO5fWrVvj7u5OeHg448aNQ6/XV/h+r5ZTtZ5dWAR7ybzs4jpiyIM3whxz7RfPgbO7XYfq9Xq++eYboqOj8ff3t6z39PRk0aJFhIWFsWfPHsaOHYunpyfPPfecZZ+SJ1aWL19Ox44d2bJlC3fffXe51/rwww9JTk4ud/srr7zC2LFjAQgNDbXalpuby6RJk2jTpg16vZ5p06YxZMgQEhISrmp2tGeffbbUjGDvvfcec+bM4ZNPPuGGG25g4cKFDBo0iH379tG4cWO7r1UWg8HAq6++StOmTTl//jyTJk1i1KhRlubrzMxM7rvvPsaMGcPy5ctxdXXlqaeesswzX5ZffvmFp556innz5hETE8Nvv/3GQw89RP369enZs2eVxL19+3b+7//+z2pdSkoKu3btwtPTkz/++AOAp556isGDB7Nt2zZUKpXV/gcPHqRv375MnTqVMWPGWNar1Wref/99oqKiOHbsGOPGjeO5557j448/rpLYyyKJ/RqxNMVnS2IXoir99ttveHh4AOaEGRoaym+//WaVIKdOnWr5PjIykmeeeYalS5daJfaSGnxQUBAhISEVNrmmp6fz2muv8fzzz/Pyyy+X2l5YWIifnx8hISFlHn/5B4aFCxcSGBjI/v37adWqVSXedWl///03mzZtYsyYMfz999+W9e+88w7PP/88Q4cOBeCtt97i77//Zt68eXz00Ud2Xas8o0ePtpR7w4YNef/99+nYsSN6vR4PDw/+++8/8vLyeP755wkLM39wdHV1rTCxv/POO4waNYpx48YBMGnSJLZs2cI777xTZYl90qRJPPvss1Y/S5PJhEajYcmSJYSHhwOwZMkSGjVqxNq1a4mJibHse/LkSXr37s0jjzzCM888Y3XuS1s0IiMjee2113jssccksdcGJU3xUmMX1wWtm7nm7Khr26Bnz57Mnz8fgIyMDD7++GP69+/P1q1biYiIAGDZsmW8//77HD16FL1eT3Fxcan5rLOzswFwd79ya8Err7xCz5496datW5nb09PTK5wv+/Dhw0ybNo34+HhSU1MxmUwAnDp1yq7ErigKkydPZvr06aSlpVnWZ2dnc+7cOW6++War/W+++WZ27dplta5r165WH4by8vJKXWfYsGFoNBrL6/z8fKum6O3bt/PKK6+wa9cuMjIyrN5XixYtCA8Px8nJie+++46nn366Uq0TBw4c4JFHHikV/3vvvXfFYytj+fLlHDt2jMmTJ5f6kBYeHm5J6gARERHUr1+f/fv3WxJ7ZmYmMTExnDlzhr59+5Y6/5o1a5g1axYHDx4kOzub4uJiCgoKyMvLK9W6UlXkHns1U696jpsPv0GEwXz/TO6xi+uCSmVuDnfEclkT55W4u7sTHR1NdHQ0HTt25PPPPyc3N9cyjenmzZu5//77GTBgAL/99hs7d+7kpZdeoqioyOo8586dQ61WExQUVOH1Dh8+zOeff17u1K5nzpyhqKiIqKiocs8xcOBA0tPT+eyzz4iPjyc+Ph6gVEyVtXjxYnJzc3nsscfsOh7MH34SEhIsS0mN+lLvvvuu1T4dOnSwbMvNzaV///54eXnx7bffsm3bNn755Rfg4vsKDQ1l/vz5vPHGG7i4uODh4cG3335rd8xXy2Aw8Nxzz/H666/j6upqtc3X17fc4y5thj958iSdO3dmxowZjB492uoD0YkTJ7jjjjto06YNP/30E9u3b7e0ktj7s64MSezVTHVuBwH6gwSZzJ+is/IN5BXJIDVCVBeVSoVarSY/3/wEyqZNm4iIiOCll16iQ4cONG7cmJMnT5Y6btu2bTRr1uyKtajnn3+eMWPGEB0dXeb2devW4erqapX0LpWWlsahQ4eYOnUqt912G82bNycjI8PGd3lRXl4eL730Em+99RZardZqm5eXF2FhYWzcuNFq/caNG2nRooXVuvDwcMsHpOjoaJycSjfohoSEWO1zaTI8fPgwaWlpvPnmm9xyyy00a9asVMc5gJEjR9KsWTMeeeQREhISGDRoUIXvr3nz5pWK3x7z58/Hw8ODBx98sNS2Zs2acfr0aU6fPm1Zd/LkSc6cOWN17YYNG7Jo0SJeeuklvLy8mDJlimXb9u3bMZlMzJkzh5tuuokmTZpw7lz1t4RJU3x1czV34HEtzsTdOZjcIiNJWQU0DPRwcGBC1A6FhYUkJSUB5qb4Dz/8EL1ez8CBAwFo3Lgxp06dYunSpXTs2JHff//dUpMEc81p2bJlzJ07lxkzZlR4rSNHjnDq1CmOHDlS5vajR4/y5ptvcuedd5bqKZ+ZmUlRURG+vr74+/vz6aefEhoayqlTp3jhhRfKPF9RUREFBRdb+RRFobi4GKPRaGkSX7JkCe3bty+3Z/mzzz7L9OnTadSoEe3atePLL78kISGhymvK9evXx9nZmQ8++IDHHnuMvXv38uqrr5bab/LkyahUKt599120Wi2enp6lyury+O+9915uuOEGYmJiWLFiBT///DNr1qyx2s9gMFjKymg0YjKZLK/Lu4c/e/ZsVqxYUaojHEDv3r1p3rw5w4cP59133wXMnefatWtHr169LPt5enpaPgQtWrSITp068b///Y9bbrmF6OhoDAYDH3zwAQMHDmTjxo0sWLCgglKsIoooJSsrSwGUrKysqz6X8ccxijLdSyleN0fp9c7fSsTzvykbD6dUQZS1X1FRkbJ8+XKlqKjI0aFcV2wtt/z8fGX//v1Kfn5+NUdW9UaOHKkAlsXT01Pp2LGj8uOPP1rt9+yzzyr+/v6Kh4eHct999ynvvvuu4u3trSiKovz7779Kw4YNlVmzZikGg0HJyMhQjEaj8vfffyuAkpGRoSiKokyfPl0BlHfeecdy3sv3iYiIsIrn8uXvv/9WFEVRYmNjlebNmys6nU5p06aNEhcXpwDKL7/8oiiKohw/frzC83z55ZeKoihK9+7dFZVKpWzbts0S0/Tp05W2bdtaXhuNRmXGjBlKvXr1FK1Wq7Rt21b5448/LNtLrrVz506rMouIiFDeffddy+tL4yvRvXt35amnnlKMRqOSkZGhfPPNN0pkZKSi0+mULl26KP/3f/9nde4lS5YowcHBytmzZ61+hnfeeWfZP+ALPv74Y6Vhw4aKVqtVmjRpoixevNhqe0VldelSEkfJz+2OO+4odZ5L3+PRo0eV22+/XXFzc1M8PDyUIUOGKGfOnCm3rBVFUV555RUlOjpayc3NVRRFUebOnauEhoYqrq6uSt++fZXFixdbfmdKys1oNFqOr+jvsbK5SXXhzYhLZGdn4+3tTVZWVoUdYCrDuPJ5NFsXYOzyBCNPD2TDkVTm3NOWu9vXr6Joay+DwcDKlSsZMGBAqSZGUT5by62goIDjx48TFRVVbZ15rhcmk4ns7Gy8vLzseuwsMjKSuLg4IiMjS20bPHhwqeer7TFx4kTatWvHqFGjruo8Velqy62uKqvcKvp7rGxukp9AdXMzN8Wr8tIJ8ZZH3oSozQIDA616jV/K19cXZ2fnq76GVqst9xpCgNxjr3aK64VnYfPSCA2UQWqEqM22bdtW7rYvv/yySq7x9ttvV8l5RO3l0Br7rFmz6NixI56engQFBTF48GAOHTp0xeN++OEHS+/V1q1blxqUX1EUpk2bRmhoKK6ursTExHD48OHqehsVu1BjJ/9ijV0eeRNCCFFdHJrY161bx/jx49myZQuxsbEYDAb69OlDbm5uucds2rSJYcOG8fDDD7Nz504GDx7M4MGD2bt3r2Wf2bNn8/7777NgwQLi4+Nxd3enb9++Vr1Lrxk3c41dlZdGqKUpXiaCEUIIUT0c2hR/6UQEYH5UICgoiO3bt3PrrbeWecx7771Hv379ePbZZwF49dVXiY2N5cMPP2TBggUoisK8efOYOnUqd955J2AevCE4OJjly5dbhlW8VhTXizV2GS9e1GTSj1YIx6uKv8MadY89KysLoMIxmjdv3sykSZOs1vXt29cyI8/x48dJSkqyGsfX29ubzp07s3nz5jITe2FhodVzjiVDSxoMhlIzQNnKoPVCC5CfScCFDo6p+iL0+YXonKTvYkVKyv5qfwZ1jT3lpigKer0enU5XXWFdF0r+qSqKYhkOVVyZlJt9yio3vV5vWX/533Bl/6ZrTGI3mUxMnDiRm2++ucKxkpOSkggODrZaFxwcbBmgouRrRftcbtasWcycObPU+j///BM3N9vGrb6cSjEyCFChsH3t/+Gk8qVYUfH9/63Cv24/WVRpsbGxjg7humRLuXl6elJYWEhBQQHOzs5lDthRl1w63rqoPCk3+6SlpaEoCkVFRaSmppKRkVFmv7Cyxu8vS41J7OPHj2fv3r1s2LDhml97ypQpVq0A2dnZhIeH06dPn6t+jt1gMFC0xx1nYy69b76BsOPnOZWeT7Mbu9AxsvyxiIW57GJjY+ndu7c8x24De8pNURTOnz9vaa2qqxRFoaCgABcXlzr/4cYWUm72KavcAgMDadmyZZnlWNm/zxqR2CdMmMBvv/3G+vXrqV+/4oFbQkJCSs2BnJycbJkeseRrcnKy1RzIycnJVrMQXUqn05XZBKnVaqskoRQ6eeBszEVblEWotyun0vNJzSuWZFVJVfVzqGtsLbf69etjNBrr9K0Pg8HA+vXrufXWW+V3zgZSbva5vNyuNEZBZcvWoYldURSeeOIJfvnlF+Li4iqcDalEly5dWLt2rdUct7GxsXTp0gWAqKgoQkJCWLt2rSWRZ2dnEx8fz+OPP14db+OKipw8oTDZ/Cy7t3kKwKQs6Rkvah6NRlOnBz/RaDQUFxfj4uIiCcoGUm72qa5yc2hiHz9+PEuWLOHXX3/F09PTcg/c29vbMmvQiBEjqFevHrNmzQLMg/B3796dOXPmcPvtt7N06VL+/fdfPv30U8A8s9PEiRN57bXXaNy4MVFRUbz88suEhYWVO0lCdSvUeJq/yUsjxLsJIM+yCyGEqB4OTezz588HKDV28pdffmkZB/nUqVNWYw937dqVJUuWMHXqVF588UUaN27M8uXLrTrcPffcc+Tm5vLII4+QmZlJt27dWLVqlcPGwS5yupjYLc+yS2IXQghRDRzeFH8lcXFxpdbdc8893HPPPeUeo1KpeOWVV3jllVeuJrwqczGxpxNcX0afE0IIUX3kQeproMjpwtzrUmMXQghRzSSxXwNlNcWfzymg2CgDOQghhKhaktivgcJLEru/hw4ntQqTAin6wooPFEIIIWwkif0auLQpXqNWyZjxQgghqo0k9mugSHOx8xxgmb5VErsQQoiqJon9GrDcYy/KgeJCmZddCCFEtZHEfg0YNK4oqgujeeWlEVrSFJ8tiV0IIUTVksR+LajU4HZhKtq8NKmxCyGEqDaS2K8V19KJXcaLF0IIUdUksV8jyiU19lCpsQshhKgmktivFVd/89e8dEK8zRPcJGcXYDJdeVhdIYQQorIksV8jiltJYk8jyFOHSgUGo0J6XpFjAxNCCFGrSGK/Vi5J7FqNmkAPHSDPsgshhKhaktivlUvusQNyn10IIUS1kMR+jSiu1on94rCy0jNeCCFE1ZHEfq1c0hQPUmMXQghRPSSxXyuWGnvJePHmnvFyj10IIURVksR+jVh6xeemgqJIjV0IIUS1kMR+rZR0njMWQlGuZfS5ZBkvXgghRBWSxH6taN1BY37E7fLR5xRFBqkRQghRNSSxXysqlVUHupJe8fkGI9n5xQ4MTAghRG0iif1acrs4rKyLVoOfuzMAidnyyJsQQoiqIYn9WnIr+1l26UAnhBCiqkhiv5bcA8xfL3uWXR55E0IIUVUksV9Llw1SEyKPvAkhhKhiktivpctHn5NhZYUQQlQxSezXUjk19qTsQkdFJIQQopaRxH4tuVkPKxtqGVZWauxCCCGqhiT2a0nusQshhKhmktivJUtiTwUuJvacgmL0hTJIjRBCiKsnif1aumSAGkwmPHROeOicADgvY8YLIYSoApLYr6WSqVsVIxRmAVhGn0vPLXJUVEIIIWoRSezXktYFnD3M31/oQFeS2NMksQshhKgCDk3s69evZ+DAgYSFhaFSqVi+fHmF+48aNQqVSlVqadmypWWfGTNmlNrerFmzan4nNrhsWFl/qbELIYSoQg5N7Lm5ubRt25aPPvqoUvu/9957JCYmWpbTp0/j5+fHPffcY7Vfy5YtrfbbsGFDdYRvn8t6xvtKYhdCCFGFnBx58f79+9O/f/9K7+/t7Y23t7fl9fLly8nIyOChhx6y2s/JyYmQkJAqi7NKXZbYpcYuhBCiKjk0sV+tL774gpiYGCIiIqzWHz58mLCwMFxcXOjSpQuzZs2iQYMG5Z6nsLCQwsKLo79lZ2cDYDAYMBgMVxVjyfElXzWufqgBY855TAYD3q4aAFJzCq76WrXN5WUnKkfKzX5SdvaRcrOPreVW2f1UiqIodkdVhVQqFb/88guDBw+u1P7nzp2jQYMGLFmyhHvvvdey/o8//kCv19O0aVMSExOZOXMmZ8+eZe/evXh6epZ5rhkzZjBz5sxS65csWYKbm5td76c8Lc98S3TKag4H3c7+evcRf17FkqMamnmbeLyFqUqvJYQQovbIy8tj+PDhZGVl4eXlVe5+122N/auvvsLHx6fUB4FLm/bbtGlD586diYiI4Pvvv+fhhx8u81xTpkxh0qRJltfZ2dmEh4fTp0+fCguvMgwGA7GxsfTu3RutVot64yGIW02jUB8iBwzA9VAKS47uROPuzYABXa7qWrXN5WUnKkfKzX5SdvaRcrOPreVW0pp8JddlYlcUhYULF/Lggw/i7Oxc4b4+Pj40adKEI0eOlLuPTqdDp9OVWq/Vaqvsl9RyLo9AANQFGai1WoK8zS0CGbkG+YMoR1X+HOoSKTf7SdnZR8rNPpUtt8qW7XX5HPu6des4cuRIuTXwS+n1eo4ePUpoaOg1iKwSyuk8l5ZbRA25KyKEEOI65tDErtfrSUhIICEhAYDjx4+TkJDAqVOnAHMT+YgRI0od98UXX9C5c2datWpVatszzzzDunXrOHHiBJs2bWLIkCFoNBqGDRtWre+l0koSe655vPiSAWoKi03kFRkdFZUQQohawqFN8f/++y89e/a0vC65zz1y5EgWLVpEYmKiJcmXyMrK4qeffuK9994r85xnzpxh2LBhpKWlERgYSLdu3diyZQuBgYHV90ZscVmN3c1Zg7OTmqJiE+m5Rbjrrsu7I0IIIWoIh2aRHj16VNj8vGjRolLrvL29ycvLK/eYpUuXVkVo1acksRdkgrEYlcYJf3dnErMKSM8tItyvanvhCyGEqFuuy3vs1zVX34vf52cAMhGMEEKIqiOJ/VrTOIGLj/n7C83xMhGMEEKIqiKJ3RHKHVa2sLwjhBBCiEqxObEfO3asOuKoWy5L7H7u5mfopcYuhBDiatmc2KOjo+nZsyfffPMNBQUF1RFT7Xd5jd3jQo1dL4ldCCHE1bE5se/YsYM2bdowadIkQkJCePTRR9m6dWt1xFZ7uV9eY5fOc0IIIaqGzYm9Xbt2vPfee5w7d46FCxeSmJhIt27daNWqFXPnziUlJaU64qxdLDX2dAB83aTznBBCiKphd+c5Jycn7rrrLn744Qfeeustjhw5wjPPPEN4eDgjRowgMTGxKuOsXcppis/Ik8QuhBDi6tid2P/991/GjRtHaGgoc+fO5ZlnnuHo0aPExsZy7tw57rzzzqqMs3Yp1XlO7rELIYSoGjaPPDd37ly+/PJLDh06xIABA1i8eDEDBgxArTZ/RoiKimLRokVERkZWday1hyWxm8eLL3ncLaewmMJiIzonjaMiE0IIcZ2zObHPnz+f0aNHM2rUqHJnTAsKCuKLL7646uBqrctq7F4uWjRqFUaTQkaugRBvSexCCCHsY3NiP3z48BX3cXZ2ZuTIkXYFVCdc1nlOrVbh6+ZMqr6QtNxCQrxdHBicEEKI65ldk8BkZGTwxRdfcODAAQCaN2/O6NGj8fPzq9Lgai23C+VUpAdDAWhd8Hc3J3Z55E0IIcTVsLnz3Pr164mMjOT9998nIyODjIwMPvjgA6Kioli/fn11xFj76LxBdaG5Pd9ca5dn2YUQQlQFm2vs48eP57777mP+/PloNObkZDQaGTduHOPHj2fPnj1VHmSto1aba+25Keb77F5hFyeCkZ7xQgghroLNNfYjR44wefJkS1IH0Gg0TJo0iSNHjlRpcLVaOY+8ybPsQgghrobNif3GG2+03Fu/1IEDB2jbtm2VBFUnlJPYZfQ5IYQQV8Pmpvgnn3ySp556iiNHjnDTTTcBsGXLFj766CPefPNNdu/ebdm3TZs2VRdpbXNZz3iZCEYIIURVsDmxDxs2DIDnnnuuzG0qlQpFUVCpVBiNxquPsLYqb/Q5qbELIYS4CjYn9uPHj1dHHHVPuU3xhY6KSAghRC1gc2KPiIiojjjqnssngnHXAVJjF0IIcXXsGqDm6NGjzJs3z9KJrkWLFjz11FM0atSoSoOr1UoSe655vPiSGntmvgGjSUGjVjkqMiGEENcxm3vFr169mhYtWrB161batGlDmzZtiI+Pp2XLlsTGxlZHjLXTZZ3nfNy0ACiKPPImhBDCfjbX2F944QWefvpp3nzzzVLrn3/+eXr37l1lwdVqJcPKXmiK12rUeLtqyco3kJFbRICHzoHBCSGEuF7ZXGM/cOAADz/8cKn1o0ePZv/+/VUSVJ1w6T12RQEuTt8qz7ILIYSwl82JPTAwkISEhFLrExISCAoKqoqY6oaSxG4shKJcQB55E0IIcfVsboofO3YsjzzyCMeOHaNr164AbNy4kbfeeotJkyZVeYC1lrM7aHTmxJ6XBjoPGX1OCCHEVbM5sb/88st4enoyZ84cpkyZAkBYWBgzZszgySefrPIAay2VylxrzzlnTuy+ETL6nBBCiKtmU2IvLi5myZIlDB8+nKeffpqcnBwAPD09qyW4Ws+S2C+fulUGqRFCCGEfm+6xOzk58dhjj1FQUACYE7ok9atwWc94vwuD1EhTvBBCCHvZ3HmuU6dO7Ny5szpiqXvcA8xfLYnd/Cy7dJ4TQghhL5vvsY8bN47Jkydz5swZ2rdvj7u7u9V2mdHNBqXGi5dhZYUQQlwdm2vsQ4cO5fjx4zz55JPcfPPNtGvXjhtuuMHy1Rbr169n4MCBhIWFoVKpWL58eYX7x8XFoVKpSi1JSUlW+3300UdERkbi4uJC586d2bp1q61v89ooNV68PO4mhBDi6jh0drfc3Fzatm3L6NGjueuuuyp93KFDh/Dy8rK8vvT5+WXLljFp0iQWLFhA586dmTdvHn379uXQoUM17zl7S2K3Hi8+I6/IMvWtEEIIYQubE/vJkyfp2rUrTk7WhxYXF7Np0yabZn/r378//fv3tzUEgoKC8PHxKXPb3LlzGTt2LA899BAACxYs4Pfff2fhwoW88MILNl+rWlk6z1n3ijcYFbILivF21ToqMiGEENcpmxN7z549SUxMLFX7zcrKomfPnhiNxioLrjzt2rWjsLCQVq1aMWPGDG6++WYAioqK2L59u+X5egC1Wk1MTAybN28u93yFhYUUFl58xCw7OxsAg8GAwWC4qlhLji/rPCpnH5wAJTeVYoMBDeDurCG3yMj5rFzcnNxLHVOXVFR2onxSbvaTsrOPlJt9bC23yu5nc2Ivr4k4LS2tVEe6qhYaGsqCBQvo0KEDhYWFfP755/To0YP4+HhuvPFGUlNTMRqNBAcHWx0XHBzMwYMHyz3vrFmzmDlzZqn1f/75J25ublUSe1kz33nlnaInUJiZyOqVKwFwUWnIRcXva9YRJU8SAmWXnbgyKTf7SdnZR8rNPpUtt7y8vErtV+nEXnIPXKVSMWrUKHS6i7OPGY1Gdu/ebRlitro0bdqUpk2bWl537dqVo0eP8u677/L111/bfd4pU6ZYDYebnZ1NeHg4ffr0sbqXbw+DwUBsbCy9e/dGq72saT07EQ5NRWfMZUD/fqBS88WpLaSdzaZpmw7ENK9hfQKusQrLTpRLys1+Unb2kXKzj63lVtKafCWVTuze3t6Aucbu6emJq6urZZuzszM33XQTY8eOrezpqkynTp3YsGEDAAEBAWg0GpKTk632SU5OJiQkpNxz6HQ6qw8qJbRabZX9kpZ5Li9z4lYpRrTGPHD1xf/CdK1ZBUb5A7mgKn8OdYmUm/2k7Owj5WafypZbZcu20on9yy+/BCAyMpJnnnmm2pvdKyshIYHQ0FDA/AGjffv2rF27lsGDBwNgMplYu3YtEyZMcGCU5dC6gLMnFOVAbiq4+sroc0IIIa6KzffYp0+fXmUX1+v1HDlyxPL6+PHjJCQk4OfnR4MGDZgyZQpnz55l8eLFAMybN4+oqChatmxJQUEBn3/+OX/99Rd//vmn5RyTJk1i5MiRdOjQgU6dOjFv3jxyc3MtveRrHM9gSMuBnCQIaGyZCCZDErsQQgg72JzYk5OTeeaZZ1i7di3nz59HURSr7bb0iv/333/p2bOn5XXJfe6RI0eyaNEiEhMTOXXqlGV7UVERkydP5uzZs7i5udGmTRvWrFljdY777ruPlJQUpk2bRlJSEu3atWPVqlWlOtTVGB4hkHbEnNiROdmFEEJcHZsT+6hRozh16hQvv/wyoaGhVzWISo8ePUp9MLjUokWLrF4/99xzPPfcc1c874QJE2pm03tZPC/c+9dbJ3ZpihdCCGEPmxP7hg0b+Oeff2jXrl01hFMHlST2CzV2GVZWCCHE1bB5rPjw8PAKa9nCRh4XbhFIU7wQQogqYHNinzdvHi+88AInTpyohnDqIE9zj3705kf0LjbFF5Z3hBBCCFEum5vi77vvPvLy8mjUqBFubm6lnqtLT0+vsuDqBM+SGnsicDGxFxhM5BUV4+Zs849ICCFEHWZz1pg3b141hFGHldTYc8w1dg+dE84aNUVGE2n6Itz8JLELIYSoPJuzxsiRI6sjjrqr5B57UQ4U6lHpPPBzdyYpu4CMvCLC/apmrHohhBB1g8332AGOHj3K1KlTGTZsGOfPnwfgjz/+YN++fVUaXJ2g8wTtheRd6j67dKATQghhG5sT+7p162jdujXx8fH8/PPP6PV6AHbt2lWlo9LVGSpV6UfeLow+l66XxC6EEMI2Nif2F154gddee43Y2FicnZ0t63v16sWWLVuqNLg6w6PsQWrkkTchhBC2sjmx79mzhyFDhpRaHxQURGpqapUEVedcVmOXpnghhBD2sjmx+/j4kJiYWGr9zp07qVevXpUEVedcntjdSmrs8iy7EEII29ic2IcOHcrzzz9PUlISKpUKk8nExo0beeaZZxgxYkR1xFj7XT76nIc0xQshhLCPzYn9jTfeoFmzZoSHh6PX62nRogW33norXbt2ZerUqdURY+1nGX3Oerx4aYoXQghhK5ufY3d2duazzz5j2rRp7NmzB71ezw033EDjxo2rI766wTL6XMnjbjpAauxCCCFsZ/ewZuHh4YSHh2M0GtmzZw8ZGRn4+vpWZWx1h2X0OekVL4QQ4urY3BQ/ceJEvvjiCwCMRiPdu3fnxhtvJDw8nLi4uKqOr24oucdemAVFeZam+JyCYoqKTQ4MTAghxPXG5sT+448/0rZtWwBWrFjBsWPHOHjwIE8//TQvvfRSlQdYJ7h4g5OL+Xt9Et6uWjRqFQAZeVJrF0IIUXk2J/bU1FRCQsyPZ61cuZJ7772XJk2aMHr0aPbs2VPlAdYJVqPPJaNWq/B1M8+alyajzwkhhLCBzYk9ODiY/fv3YzQaWbVqFb179wYgLy8PjUZT5QHWGZeNPufrJvfZhRBC2M7mznMPPfQQ9957L6GhoahUKmJiYgCIj4+nWbNmVR5gnVHu6HMySI0QQojKszmxz5gxg1atWnH69GnuuecedDrzo1kajYYXXnihygOsM8qbCEZq7EIIIWxg1+Nu//vf/6xeZ2ZmyjztV+vy0efkkTchhBB2sPke+1tvvcWyZcssr++99178/f2pX78+u3fvrtLg6pTLRp+TQWqEEELYw+bEvmDBAsLDwwGIjY0lNjaWP/74g379+vHMM89UeYB1xmWjz/lLjV0IIYQdbG6KT0pKsiT23377jXvvvZc+ffoQGRlJ586dqzzAOsMy+px55jyZulUIIYQ9bK6x+/r6cvr0aQBWrVpl6RWvKApGo7Fqo6tLSu6xF2SCoUBq7EIIIexic439rrvuYvjw4TRu3Ji0tDT69+8PmOdjj46OrvIA6wxXX9DowFgI+iR83f0ASexCCCFsY3Nif/fdd4mMjOT06dPMnj0bDw8PABITExk3blyVB1hnqFTm++yZpyAnGX8f8+NvGXlFGE2KZYhZIYQQoiI2J3atVltmJ7mnn366SgKq0zxCzIldn4RvvY4AKApk5hXh76FzcHBCCCGuB3Y9x3706FHmzZvHgQMHAGjRogUTJ06kYcOGVRpcnXPJIDVajRovFyeyC4pJz5XELoQQonJs7jy3evVqWrRowdatW2nTpg1t2rQhPj6eFi1aEBsbWx0x1h2lRp+TZ9mFEELYxuYa+wsvvMDTTz/Nm2++WWr9888/b5kURtihjNHnjqfmSmIXQghRaTbX2A8cOMDDDz9cav3o0aPZv39/lQRVZ5UafU6eZRdCCGEbmxN7YGAgCQkJpdYnJCQQFBRk07nWr1/PwIEDCQsLQ6VSsXz58gr3//nnn+nduzeBgYF4eXnRpUsXVq9ebbXPjBkzUKlUVst1M+ucjD4nhBDiKtncFD927FgeeeQRjh07RteuXQHYuHEjb731FpMmTbLpXLm5ubRt25bRo0dz1113XXH/9evX07t3b9544w18fHz48ssvGThwIPHx8dxwww2W/Vq2bMmaNWssr52c7OojeO2VzMl+YfQ5X0nsQgghbGRzxnv55Zfx9PRkzpw5TJkyBYCwsDBmzJjBk08+adO5+vfvbxngpjLmzZtn9fqNN97g119/ZcWKFVaJ3cnJiZCQEJtiqRFKmuLz06G4yFJjl6Z4IYQQlWVTYi8uLmbJkiUMHz6cp59+mpycHAA8PT2rJbgrMZlM5OTk4OfnZ7X+8OHDhIWF4eLiQpcuXZg1axYNGjQo9zyFhYUUFhZaXmdnZwNgMBgwGAxXFWPJ8ZU6j9YTJ7UWlcmAIfMs3i4aANJyCq46juuRTWUnLKTc7CdlZx8pN/vYWm6V3U+lKIpiSyBubm4cOHCAiIgIWw67ciAqFb/88guDBw+u9DGzZ8/mzTff5ODBg5b7+3/88Qd6vZ6mTZuSmJjIzJkzOXv2LHv37i33A8iMGTOYOXNmqfVLlizBzc3Nrvdjr957n8bNkMb6JtPYVNSYBQc1hLkpPN9WxuEXQoi6LC8vj+HDh5OVlYWXl1e5+9ncFN+pUyd27txZ5YndVkuWLGHmzJn8+uuvVp32Lm3ab9OmDZ07dyYiIoLvv/++zN78AFOmTLHqH5CdnU14eDh9+vSpsPAqw2AwEBsbS+/evdFqtVfcX5P8HpxLo2vrRnh63syCg1swalwYMKD7VcVxPbK17ISZlJv9pOzsI+VmH1vLraQ1+UpsTuzjxo1j8uTJnDlzhvbt2+Pu7m61vU2bNrae0mZLly5lzJgx/PDDD5bZ5crj4+NDkyZNOHLkSLn76HQ6dLrSI7tptdoq+yWt9Lm8QuEcOOWnEBxubi1Iyy1CrXGqs+PFV+XPoS6RcrOflJ19pNzsU9lyq2zZ2pzYhw4dCmDVUU6lUqEoCiqVqtqnbv3uu+8YPXo0S5cu5fbbb7/i/nq9nqNHj/Lggw9Wa1xV5pLR54K9XNBqVBiMCucy8wn3u7a3BYQQQlx/bE7sx48fr7KL6/V6q5r08ePHSUhIwM/PjwYNGjBlyhTOnj3L4sWLAXPz+8iRI3nvvffo3LkzSUnmgVxcXV3x9vYG4JlnnmHgwIFERERw7tw5pk+fjkajYdiwYVUWd7UqeeRNn4RGrSLc141jqbmcSs+TxC6EEOKKbE7sVXlv/d9//6Vnz56W1yX3uUeOHMmiRYtITEzk1KlTlu2ffvopxcXFjB8/nvHjx1vWl+wPcObMGYYNG0ZaWhqBgYF069aNLVu2EBgYWGVxV6vLxotv4G9O7CfT8rhZprsXQghxBZVO7Nu3b+eZZ57h119/LdWhLCsri8GDBzNv3jzatm1b6Yv36NGDijrllyTrEnFxcVc859KlSyt9/RrJktjNo89FXKiln0zPdVREQgghriOVHlJ2zpw59OrVq8xe4t7e3vTu3Zu33367SoOrkywTwZhHn4vwN3dOPJWW56iIhBBCXEcqndjj4+O58847y90+cOBANm3aVCVB1Wklo8/lpYLRQIS/ucZ+QhK7EEKISqh0Yj979myFI8x5eHiQmJhYJUHVaW7+oL5wh0R/3pLYT6XlVnjbQgghhAAbEntgYCCHDh0qd/vBgwcJCAiokqDqNLXaal72+r5uqFSQW2SUMeOFEEJcUaUTe0xMDK+//nqZ2xRF4fXXX7/iYDGikkoSuz4JF62GEC8XAE5Kc7wQQogrqHRinzp1Knv27KFz5858//337Nq1i127drFs2TI6d+7M3r17eemll6oz1rrD03r61gYXesafkp7xQgghrqDSj7s1atSINWvWMGrUKIYOHYpKZR7eVFEUWrRoQWxsLNHR8qB1lbj8kTd/N+KPp0uNXQghxBXZNEBNhw4d2Lt3LwkJCRw+fBhFUWjSpAnt2rWrpvDqqEtGnwN55E0IIUTl2TzyHEC7du0kmVeny0afK+kZfzJdErsQQoiKVfoeu7iGLk/sfuYa+8k0uccuhBCiYpLYa6JLHncD83jxAKn6IvSFxY6KSgghxHVAEntNVDL6XG4KGIvxdtXi42aeh1fuswshhKiIJPaayD0AVGpAMSd3Lk4GI4+8CSGEqEilOs/t3r270ids06aN3cGIC9Qac3N8TqJ58Qqlgb87u85kySNvQgghKlSpxN6uXTtUKlW5Y5WXbFOpVBiNxioNsM4qSez6y6dvlcQuhBCifJVK7MePH6/uOMTlPEMgkUumby2ZDEYSuxBCiPJVKrFHRERUdxzicqVGnzM/8nZCHnkTQghRAbsGqAHYv38/p06doqjIesaxQYMGXXVQgjJGnzPX2M9l5lNUbMLZSfo9CiGEKM3mxH7s2DGGDBnCnj17rO67l4wdL/fYq8hlg9QEeepw0aopMJg4m5lPVIC7A4MTQghRU9lc7XvqqaeIiori/PnzuLm5sW/fPtavX0+HDh2Ii4urhhDrqMsSu0qlsszyJiPQCSGEKI/NiX3z5s288sorBAQEoFarUavVdOvWjVmzZvHkk09WR4x102WjzwE0uDC07CnpGS+EEKIcNid2o9GIp6cnAAEBAZw7dw4wd7A7dOhQ1UZXl1lGnzsPJvPtDctkMNIzXgghRDlsvsfeqlUrdu3aRVRUFJ07d2b27Nk4Ozvz6aef0rBhw+qIsW5yDwRUoJggNxU8g4mUxC6EEOIKbE7sU6dOJTfXfI/3lVde4Y477uCWW27B39+fZcuWVXmAdZbGCTyCzAPU5CSCZzANSuZll2FlhRBClMPmxN63b1/L99HR0Rw8eJD09HR8fX0tPeNFFfEINif2y0efS8vDZFJQq6W8hRBCWLP5HntWVhbp6elW6/z8/MjIyCA7O7vKAhOU6hlfz9cVjVpFYbGJ8zmFDgxMCCFETWVzYh86dChLly4ttf77779n6NChVRKUuOCyxK7VqAnzcQHkkTchhBBlszmxx8fH07Nnz1Lre/ToQXx8fJUEJS64bPQ5gIgLj7zJZDBCCCHKYnNiLywspLi4uNR6g8FAfn5+lQQlLrisxg7QQCaDEUIIUQGbE3unTp349NNPS61fsGAB7du3r5KgxAVlJHbLI29SYxdCCFEGm3vFv/baa8TExLBr1y5uu+02ANauXcu2bdv4888/qzzAOs3SFJ9sWWUZfU7usQshhCiDzTX2m2++mc2bNxMeHs7333/PihUriI6OZvfu3dxyyy3VEWPd5RVm/pqTCIYC4OLocyekKV4IIUQZ7Jr7s127dnz77bfs27ePf//9l4ULF9K4cWObz7N+/XoGDhxIWFgYKpWK5cuXX/GYuLg4brzxRnQ6HdHR0SxatKjUPh999BGRkZG4uLjQuXNntm7danNsNYJnCLj6mUefSzkAYJkIJivfQFaewZHRCSGEqIEqldgvfT49Ozu7wsUWubm5tG3blo8++qhS+x8/fpzbb7+dnj17kpCQwMSJExkzZgyrV6+27LNs2TImTZrE9OnT2bFjB23btqVv376cP3/epthqBJUKQlqbv0/cDYC7zokADx0AJ2UEOiGEEJep1D12X19fEhMTCQoKwsfHp8wR5hRFQaVS2TQfe//+/enfv3+l91+wYAFRUVHMmTMHgObNm7Nhwwbeffddy4h4c+fOZezYsTz00EOWY37//XcWLlzICy+8UOlr1RghreH4OkjaY1kV4e9Gqr6Qk2l5tKnv47jYhBBC1DiVSux//fUXfn5+APz999/VGlBFNm/eTExMjNW6vn37MnHiRACKiorYvn07U6ZMsWxXq9XExMSwefPmcs9bWFhIYeHFkdxKWh4MBgMGw9U1d5ccb+95VEEtcQJMibswXjhHuI8L20/C8ZScq46vJrvasqurpNzsJ2VnHyk3+9habpXdr1KJvXv37gAUFxezbt06Ro8eTf369St1gaqUlJREcHCw1brg4GCys7PJz88nIyMDo9FY5j4HDx4s97yzZs1i5syZpdb/+eefuLm5VUnssbGxdh3nmZ9BL8B0bhcrf/8NVGoK01SAho27/iMit/z3VVvYW3Z1nZSb/aTs7CPlZp/KllteXuU6Tdv0uJuTkxNvv/02I0aMsOWwGm/KlClMmjTJ8jo7O5vw8HD69OmDl5fXVZ3bYDAQGxtL79690Wq1tp/AVIzy9is4FRcwoEtz8GuEYVcif/y4B8XdnwEDOl5VfDXZVZddHSXlZj8pO/tIudnH1nKrbD82m59j79WrF+vWrSMyMtLWQ69aSEgIycnJVuuSk5Px8vLC1dUVjUaDRqMpc5+QkJByz6vT6dDpdKXWa7XaKvsltf9cWghqAed2oE3ZD8HNaBjkCcDpjPw68UdUlT+HukTKzX5SdvaRcrNPZcutsmVrc2Lv378/L7zwAnv27KF9+/a4u7tbbR80aJCtp6y0Ll26sHLlSqt1sbGxdOnSBQBnZ2fat2/P2rVrGTx4MAAmk4m1a9cyYcKEaour2oW0hnM7zB3oWt1lmb41MauAAoMRF63GwQEKIYSoKWxO7OPGjQPMvc8vZ2uveL1ez5EjRyyvjx8/TkJCAn5+fjRo0IApU6Zw9uxZFi9eDMBjjz3Ghx9+yHPPPcfo0aP566+/+P777/n9998t55g0aRIjR46kQ4cOdOrUiXnz5pGbm2vpJX9dCm1j/nqhZ7yfuzMeOif0hcWcTs+jcbCnA4MTQghRk9ic2E0mU5Vd/N9//7WaKa7kPvfIkSNZtGgRiYmJnDp1yrI9KiqK33//naeffpr33nuP+vXr8/nnn1sedQO47777SElJYdq0aSQlJdGuXTtWrVpVqkPddSWkJLGbn2VXqVQ08HNjf2I2J9MksQshhLjI5sRelXr06IGiKOVuL2tUuR49erBz584KzzthwoTru+n9ckEtAJV5zPicZPAMJsL/QmKXyWCEEEJcwq4hZdetW8fAgQOJjo4mOjqaQYMG8c8//1R1bKKEzgP8o83fX2iOvzh9q4w+J4QQ4iKbE/s333xDTEwMbm5uPPnkkzz55JO4urpy2223sWTJkuqIUcDFoWUvNMdH+ps7LUqNXQghxKVsbop//fXXmT17Nk8//bRl3ZNPPsncuXN59dVXGT58eJUGKC4IaQ37frbU2Et6xp+SWd6EEEJcwuYa+7Fjxxg4cGCp9YMGDeL48eNVEpQoQ6h1B7qSpvjTGXkYTeX3UxBCCFG32JzYw8PDWbt2ban1a9asITw8vEqCEmUo6RmfdhQK9YR6u6LVqDAYFc5l5js2NiGEEDWGzU3xkydP5sknnyQhIYGuXbsCsHHjRhYtWsR7771X5QGKCzyCwCME9Elwfj+a8E6E+7pxLDWXU+l5hPtVzZj2Qgghrm82J/bHH3+ckJAQ5syZw/fffw+Yp09dtmwZd955Z5UHKC4R0hqOJEHiLgjvRAN/c2I/mZbHzdGODk4IIURNYNdz7EOGDGHIkCFVHYu4kpDWcCS2VAe6k+nyyJsQQggzu55jFw5yWQe6iAuPvEnPeCGEECVsrrH7+vqiUqlKrVepVLi4uBAdHc2oUaOu77HZa6qSDnTJ+8FYTGSAucZ+5LzegUEJIYSoSWxO7NOmTeP111+nf//+dOrUCYCtW7eyatUqxo8fz/Hjx3n88ccpLi5m7NixVR5wneYbBc4eUKSHtMO0rtcQgMPn9WTmFeHj5uzgAIUQQjiazYl9w4YNvPbaazz22GNW6z/55BP+/PNPfvrpJ9q0acP7778vib2qqdUQ3ApOb4HE3QS2bU6jQHeOpuSy7UQGvVtcxxPdCCGEqBI232NfvXo1MTExpdbfdtttrF69GoABAwZw7Nixq49OlHbZ0LKdovwB2Ho8zVERCSGEqEFsTux+fn6sWLGi1PoVK1bg5+cHQG5uLp6eMpVotbhsbvbOUeYy33o83VERCSGEqEFsbop/+eWXefzxx/n7778t99i3bdvGypUrWbBgAQCxsbF07969aiMVZpfW2BWFThcS+95z2egLi/HQOXQmXiGEEA5mcxYYO3YsLVq04MMPP+Tnn38GoGnTpqxbt84yEt3kyZOrNkpxUWBzUGkgPwOyzxLmU5/6vq6cychnx8kMbm0S6OgIhRBCOJBd1bubb76Zm2++uapjEZWhdYHAZnB+HyTuBu/6dIry40zGWbYeT5fELoQQdZxdA9QcPXqUqVOnMnz4cM6fPw/AH3/8wb59+6o0OFEOS3O83GcXQghhzebEvm7dOlq3bk18fDw//fQTer15cJRdu3Yxffr0Kg9QlKGcnvEJpzMpMBgdFZUQQogawObE/sILL/Daa68RGxuLs/PFAVF69erFli1bqjQ4UY7LhpaN9Hcj0FNHkdHErtOZjotLCCGEw9mc2Pfs2VPmBDBBQUGkpqZWSVDiCoJbmb9mnoL8TFQqlaV3vDTHCyFE3WZzYvfx8SExMbHU+p07d1KvXr0qCUpcgZsfeIebv0/eC1xyn/2EJHYhhKjLbE7sQ4cO5fnnnycpKQmVSoXJZGLjxo0888wzjBgxojpiFGUpmRAmseQ+uzmxbz+ZgcFoclRUQgghHMzmxP7GG2/QrFkzwsPD0ev1tGjRgltvvZWuXbsyderU6ohRlOWynvFNgjzxcdOSV2Rk37lsBwYmhBDCkWxO7M7Oznz22WccO3aM3377jW+++YaDBw/y9ddfo9FoqiNGUZbLOtCp1So6RpbcZ5dx44UQoq6yObG/8sor5OXlER4ezoABA7j33ntp3Lgx+fn5vPLKK9URoyhLSY095SAUFwLyPLsQQgg7EvvMmTMtz65fKi8vj5kzZ1ZJUKISvMPBxQdMxebkDlY9400mxYHBCSGEcBSbE7uiKKhUqlLrd+3aZZndTVwDKtXFWvuFDnQtQr1wd9aQXVDMwaQcBwYnhBDCUSo9Vryvry8qlQqVSkWTJk2skrvRaESv1/PYY49VS5CiHCFt4MQ/lg50Tho17SP9WP9fCluPp9EizMvBAQohhLjWKp3Y582bh6IojB49mpkzZ+Lt7W3Z5uzsTGRkJF26dKmWIEU5LDX2BMuqzlEXEvuJdEbdHOWYuIQQQjhMpRP7yJEjAYiKiqJr165otdpqC0pUUsSFD1Jn/oW8dHDzs7rPXt5tEyGEELWXzffYu3fvbknqBQUFZGdnWy3iGvKNNA8vqxjhv9UAtKnvjbOTmlR9EcdScx0bnxBCiGvO5sSel5fHhAkTCAoKwt3dHV9fX6tFXGPNbjd/PfgbADonDTeE+wDy2JsQQtRFNif2Z599lr/++ov58+ej0+n4/PPPmTlzJmFhYSxevNiuID766CMiIyNxcXGhc+fObN26tdx9e/ToYenEd+ly++23W/YZNWpUqe39+vWzK7YarySxH1kLRXmAPM8uhBB1mc2JfcWKFXz88cfcfffdODk5ccsttzB16lTeeOMNvv32W5sDWLZsGZMmTWL69Ons2LGDtm3b0rdvX86fP1/m/j///DOJiYmWZe/evWg0Gu655x6r/fr162e133fffWdzbNeFkDbmZ9qL8+FYHHBxfnZJ7EIIUffYnNjT09Np2LAhAF5eXqSnm5NHt27dWL9+vc0BzJ07l7Fjx/LQQw/RokULFixYgJubGwsXLixzfz8/P0JCQixLbGwsbm5upRK7Tqez2q/W3iZQqaDpAPP3B38H4MYIH5zUKs5m5nMmI8+BwQkhhLjWKt0rvkTDhg05fvw4DRo0oFmzZnz//fd06tSJFStW4OPjY9O5ioqK2L59O1OmTLGsU6vVxMTEsHnz5kqd44svvmDo0KG4u7tbrY+LiyMoKAhfX1969erFa6+9hr+/f5nnKCwspLCw0PK6pBOgwWDAYDDY9J4uV3L81Z6nIqrGfXHa+gnKf39QXFiAVq2hZZgXu85ksflICoPbhVXbtavTtSi72kjKzX5SdvaRcrOPreVW2f1UiqLYNPbou+++i0aj4cknn2TNmjUMHDgQRVEwGAzMnTuXp556qtLnOnfuHPXq1WPTpk1Wz8A/99xzrFu3jvj4+AqP37p1K507dyY+Pp5OnTpZ1i9duhQ3NzeioqI4evQoL774Ih4eHmzevLnMiWpmzJhR5nC4S5Yswc3NrdLvx1FUSjH99jyBszGXfxq/RLpHU349qeavc2q6BJkY2kimcRVCiOtdXl4ew4cPJysrCy+v8gcgszmxX+7kyZNs376d6Oho2rRpY9OxV5vYH330UTZv3szu3bsr3O/YsWM0atSINWvWcNttt5XaXlaNPTw8nNTU1AoLrzIMBgOxsbH07t27Wp/91/zfONR7vsfY+XFMMa/y96EUHvlmJ1H+bvw5sVu1Xbc6Xauyq22k3OwnZWcfKTf72Fpu2dnZBAQEXDGx29wUf7mIiAgiIiLsOjYgIACNRkNycrLV+uTkZEJCQio8Njc3l6VLl1ZqRrmGDRsSEBDAkSNHykzsOp0OnU5Xar1Wq62yX9KqPFeZmg+EPd+j+e8PNP1m0blRICoVHE/LI6PASJCnS/Vdu5pVe9nVUlJu9pOys4+Um30qW26VLdtKd57766+/aNGiRZmD0GRlZdGyZUv++eefyp4OMA9F2759e9auXWtZZzKZWLt27RWHp/3hhx8oLCzkgQceuOJ1zpw5Q1paGqGhoTbFd12Jvg2cXCDjBJzfj7erluYh5k90245nODY2IYQQ10ylE/u8efMYO3ZsmdV/b29vHn30UebOnWtzAJMmTeKzzz7jq6++4sCBAzz++OPk5uby0EMPATBixAirznUlvvjiCwYPHlyqQ5xer+fZZ59ly5YtnDhxgrVr13LnnXcSHR1N3759bY7vuuHsDg17mr+/0Du+ZHjZzcdSHRWVEEKIa6zSiX3Xrl0VDvLSp08ftm/fbnMA9913H++88w7Tpk2jXbt2JCQksGrVKoKDgwE4deoUiYmJVsccOnSIDRs28PDDD5c6n0ajYffu3QwaNIgmTZrw8MMP0759e/75558ym9trlctGoeveNBCA33cnUlQsHeiEEKIuqPQ99uTk5Arb952cnEhJSbEriAkTJjBhwoQyt8XFxZVa17RpU8rr8+fq6srq1avtiuO617Q/qNSQuAsyT3NLdD2CvXQkZxey5kAyA1rX4lsRQgghABtq7PXq1WPv3r3lbt+9e3ftvod9PXAPgPCbzN8f+gMnjZr/ta8PwLJtpx0YmBBCiGul0ol9wIABvPzyyxQUFJTalp+fz/Tp07njjjuqNDhhh8ua4+9pHw7A+sMpnMvMd1RUQgghrpFKJ/apU6eSnp5OkyZNmD17Nr/++iu//vorb731Fk2bNiU9PZ2XXnqpOmMVldHswvCyJzZAfgaRAe50jvJDUeCn7WccG5sQQohqV+nEHhwczKZNm2jVqhVTpkxhyJAhDBkyhBdffJFWrVqxYcMGS4c34UB+DSGo5YU52v8E4N4O5lr799tPYzJd1XhEQgghajibJoGJiIhg5cqVpKamEh8fz5YtW0hNTWXlypVERUVVV4zCVpc1xw9oHYqnzonT6flsOZ7mwMCEEEJUN5tndwPw9fWlY8eOdOrUqfbOmnY9u3SOdkM+rs4aBl6YCOZ76UQnhBC1ml2JXdRwoW3Bqz4YcuHYOuBic/wfe5PIypcZmIQQoraSxF4bqVQXO9FdaI5vW9+bpsGeFBab+L9d5xwYnBBCiOokib22KmmO/28VmIyoVCru7XihE500xwshRK0lib22irgZXLwhNwXObANgyA310GpU7Dmbxf5zpSfzEUIIcf2TxF5babTQ5MLY/vt/BcDP3ZneLcyPJH7/r9TahRCiNpLEXpu1utv8dcdiyEsH4J4LneiWJ5ylsNjoqMiEEEJUE0nstVnjPhDSGor0sPkjAG5tHEiotwuZeQb+3Jfs4ACFEEJUNUnstZlKBd2fN38f/wnkpaNRqywTw0hzvBBC1D6S2Gu7prdDcCsoyoEtHwMXJ4bZcCSVMxl5joxOCCFEFZPEXtup1dD9OfP38Z9AfgYN/N3o0tAfRYEfZWIYIYSoVSSx1wXNBkJQCyjMhi3zAbjvwjPtP/x7RiaGEUKIWkQSe12gVl+8175lAeRn0q9VCJ4uTpzNzGfj0VTHxieEEKLKSGKvK5oPulBrz4L4BbhoNQy5oR4Ac/78T2rtQghRS0hiryvUarj1WfP3mz+G/Ewm9IzG3VlDwulMftguPeSFEKI2kMRel7QYDIHNLtTaPyHIy4WJMU0AeGvVIbLyZNY3IYS43klir0surbVv+QgKshh1cySNgzxIzy1iTuwhx8YnhBDiqklir2taDoGAplCQBfGfotWomTmoJQDfbDnJvnNZDg5QCCHE1ZDEXteoNRefa9/8IRRk0zU6gNvbhGJSYPqv+1AU6UgnhBDXK0nsdVHLIRDQBAoyYeunAEy9vTluzhr+PZnBLzvPOjY+IYQQdpPEXhepNZf0kP8QCnMI9XbliV6NAXhj5UGyC6QjnRBCXI8ksddVre4G/2jIz4C4NwF4uFsUDQPcSdUXMi/2sIMDFEIIYQ9J7HWVWgO9XzV/v/lDOPg7zk5qZlzoSPfV5hMcSspxYIBCCCHsIYm9Lms2AG4aZ/7+l8ch/Ti3NgmkX8sQjCaFab/ulY50QghxnZHEXtfFzIT6Hc2D1vwwEgwFTL2jOS5aNfHH01mxO9HREQohhLCBJPa6zskZ7lkErn6QuAtWT6G+rxvje0QD8Prv+8mRjnRCCHHdkMQuwLs+3PUZoIJ/F8LuHxh7a0Mi/N1Izi7kie92Umw0OTpKIYQQlVAjEvtHH31EZGQkLi4udO7cma1bt5a776JFi1CpVFaLi4uL1T6KojBt2jRCQ0NxdXUlJiaGw4ell3eFGsdcfARuxVO4ZB7hvaE34KJVE3cohanL5X67EEJcDxye2JctW8akSZOYPn06O3bsoG3btvTt25fz58+Xe4yXlxeJiYmW5eTJk1bbZ8+ezfvvv8+CBQuIj4/H3d2dvn37UlBQUN1v5/rW4wWI6g6GXPh+BO2CtXww7EbUKli67TQf/nXE0REKIYS4Aocn9rlz5zJ27FgeeughWrRowYIFC3Bzc2PhwoXlHqNSqQgJCbEswcHBlm2KojBv3jymTp3KnXfeSZs2bVi8eDHnzp1j+fLl1+AdXcfUGrj7c/AIgZSDsGIivZsHWcaSnxP7Hz9tP+PgIIUQQlTEyZEXLyoqYvv27UyZMsWyTq1WExMTw+bNm8s9Tq/XExERgclk4sYbb+SNN96gZUtz8jl+/DhJSUnExMRY9vf29qZz585s3ryZoUOHljpfYWEhhYWFltfZ2dkAGAwGDIar6zhWcvzVnuea0fmiGvIZmm8Go9rzPcb6nRjaYRSn0nL5bMMJnv9pN/7uTtzcyL/aQ7nuyq6GkHKzn5SdfaTc7GNruVV2P4cm9tTUVIxGo1WNGyA4OJiDBw+WeUzTpk1ZuHAhbdq0ISsri3feeYeuXbuyb98+6tevT1JSkuUcl5+zZNvlZs2axcyZM0ut//PPP3Fzc7PnrZUSGxtbJee5VqJD/0fLc8tg1QtsOZJBC/em3OivZkeamke//penWhqp535tYrneyq6mkHKzn5SdfaTc7FPZcsvLy6vUfg5N7Pbo0qULXbp0sbzu2rUrzZs355NPPuHVV1+165xTpkxh0qRJltfZ2dmEh4fTp08fvLy8ripeg8FAbGwsvXv3RqvVXtW5rimlH6Yfs9H89wfdTszDOGwZvft2YvRX29l6IoOvTrjzwyOdCfV2ufK57HTdlp2DSbnZT8rOPlJu9rG13Epak6/EoYk9ICAAjUZDcnKy1frk5GRCQkIqdQ6tVssNN9zAkSPmjl0lxyUnJxMaGmp1znbt2pV5Dp1Oh06nK/PcVfVLWpXnumbu+RK+G4rqWBxO392HxwM/8dmIjvxvwSYOn9cz9uud/PB4F7xcqvd9XZdlVwNIudlPys4+Um72qWy5VbZsHdp5ztnZmfbt27N27VrLOpPJxNq1a61q5RUxGo3s2bPHksSjoqIICQmxOmd2djbx8fGVPqe4QOsKw5ZCwx7mnvLf/g/vlH/58qGOBHrqOJScw2Nfbye3sNjRkQohhLjA4b3iJ02axGeffcZXX33FgQMHePzxx8nNzeWhhx4CYMSIEVad61555RX+/PNPjh07xo4dO3jggQc4efIkY8aMAcw95idOnMhrr73G//3f/7Fnzx5GjBhBWFgYgwcPdsRbvL5dmtyL9PDt/6ifvYsvR3XE3VnDpqNp3D1/E6fTK3fvRwghRPVy+D32++67j5SUFKZNm0ZSUhLt2rVj1apVls5vp06dQq2++PkjIyODsWPHkpSUhK+vL+3bt2fTpk20aNHCss9zzz1Hbm4ujzzyCJmZmXTr1o1Vq1aVGshGVJLWFYZ+B0uHwbE4+PZ/tHrgJxY/3JlHv97OwaQcBn24gY/vb0+Xa9BbXgghRPkcXmMHmDBhAidPnqSwsJD4+Hg6d+5s2RYXF8eiRYssr999913LvklJSfz+++/ccMMNVudTqVS88sorJCUlUVBQwJo1a2jSpMm1eju1k7ObObmX1Ny/uZv2qkOseOJmWtfzJiPPwINfxPP15hMyQp0QQjhQjUjs4jpRktyjuluSe2jWLn54rAt3tguj2KTw8q/7ePGXvRQVy9jyQgjhCJLYhW2c3cz33EuS+9d34bLnW+bd25YX+jdDpYLvtp7i/s+3kKovvPL5hBBCVClJ7MJ2Jcm90W3m3vL/9wSqZffzWHsvFo7siKfOiW0nMhj0wQb2ns1ydLRCCFGnSGIX9nF2g/t/gN6vgsYZDq2Ej2+iJ//yy/ibaRjgzrmsAoZ8vJHZqw6SVySPxAkhxLUgiV3YT62Bm5+EsX9DUEvIS4Wlw4je/AK/jGlDnxbBGIwKH8cdpffc9fy5L0k61gkhRDWTxC6uXkgreORv6PokoIKdX+O9qAef9ijmsxEdqOfjytnMfB75ejtjvvpXnnkXQohqJIldVA0nHfR5FUb9Bt4NIPMkfNmf3mc+IHZcW8b1aIRWo2LtwfPEzF3HB2sPU1hsdHTUQghR60hiF1Urshs8vhHaDgfFBJs+wO3jG3nOYxWrxnWgS0N/CotNzIn9j37z/mHN/mRpnhdCiCokiV1UPRcvGDIfhi2DwGZQkAlrptPou1tYcsN+3r+3JYGeOo6n5jJm8b/0f+8fftl5BoNRnn0XQoirJYldVJ+m/eDxTTB4vrl5Xp+E6venGbRhCOv6p/LorZG4O2s4mJTD08t20ePtOBZtPE5+kTTRCyGEvSSxi+ql1kC74fDEv9DvLXALgPRjuP3fo0w5+Shbh+TxfO+GBHg4czYznxkr9nPzW3/x3prDZOQVOTp6IYS47khiF9eGkw5uegyeSoCeL4HOC5L34P7rQzy+YxBbOm3g3T7eNPBzIz23iHfX/EePOf+w7Kianacy5T68EEJUkiR2cW3pPKH7c/DULrhlMrgHQe55nDbNY8j624kLfpcfb0mkTYgreUVGNp1Xc+9nW7ltzjo++vsI5zLzHf0OhBCiRpPELhzDzQ9umwaT9sO9X0N0DKBCfXwdHbZN5teiMWxot4Yhfqdw1ao5lprL26sPcfNbf/HA5/Es33lW7sULIUQZHD4fu6jjNFpoMci8ZJyEnd/Azm9Q5Zyj/sGFvAu8HdKC/f79WJB+AytPadhwJJUNR1Lx0DnRvWkgvZsH06NpID5uzo5+N0II4XCS2EXN4RsBvV6C7s/DkVhM27+Cw3/ilLKfNin7+RgVBY1uYoNrT+acbc6BDPh9dyK/705Eo1bRPsKXmOZB3NY8mEaBHo5+N0II4RCS2EXNo3GCpv0xNowh9v++p0/9fJz2/wwnN+JydjMxbOY2tZasJj3Y7NSJb1Ki2ZiiY+vxdLYeT+eNlQeJCnDntmZB3BwdQMcoPzx08qsuhKgb5L+dqNEMTh4oN94LncdA5mnY+yPs+RFV8l58TsXSn1j6A4bQxvzn2YmVec1ZnFif46nw+YbjfL7hOBq1itb1vOnSyJ8uDf3pEOmLm7P86gshaif57yauHz7h0O1p85K8H/Yvh6N/wdntaDMO0zLjMC2BZ1ycSfNrz1Z1W37LjGRNVigJpzNJOJ3J/LijaDUq2tb34aaG/rSP8OWGBj5yf14IUWtIYhfXp+AW5qXni5CXDsfXw9G1cOQvVNlnCEjZzAA2MwBQ3HWkebVgt7opq7MiidVH8u9JhX9PZlhO1zDQnRsb+NI+wpcbG/jSOMgDtVrluPcnhBB2ksQurn9uftBysHlRFEg7Yq7JH18Pp7agykslIGMnvdhJL+AtF8hxj+CgUzPi88NZlxPG/pQIfkzJ5cftZwDw1DnRJtyblmHetAj1omWYFw0DPdBIshdC1HCS2EXtolJBQGPz0vlRc6JPPwan4+HUFji9FVIO4Jl7ko6cpCMwQQcKKjJcwjlIFJvy6rHTEMG+I5FsPOJpObWLVk3TEHOSbxnmRbMQL5qGeErHPCFEjSL/kUTtplKBfyPz0m64eV1+BpzeBud2QOIuSNyFKvssfgWn6MopuqqBC7fcs7RBHFZFsrUwnF2GcPafiWDJ6SDgYs29vq8rzUI8aRriSdMQL5qFeBIV4I5WI+M/CSGuPUnsou5x9YUmfcxLidxUS5K3LBnH8TacpwPn6aDaakn2BRp3TjhFscdQn92FIRzJqkdCRn3WHPCiJOE7a9REBbgTHeRBo0B3GgV5XPjeAxet5tq/ZyFEnSGJXQgA9wCIvs28lCjIhuR9kLT7wrIHzh/AxZhLM+NemrGXe7QXd8/TeHJSHc7eolAOFodyNCWMPedD+UMJxHRh9GaVylzDjw70IDLAnagAdyL9zUuYjwtOUssXQlwlSexClMfFCyK6mJcSRgOkHDIn+ZQDkPIfpByEjBO4GXNobtxPc9V+uCThF6u0JKpDOGwM4b/iEI5lhXAsI5TfDoWQgjcltXytRkW4rxuRAe5E+LsR4edGhL87DfzdqO/ris5JavpCiCuTxC6ELTRaCGllXi5lyDf3xk85dGE5CGlHIf0oTsUFhBtPE85pel32F1egcuGcKpijxUEcMwVxKiOYk+nBrFGCSFT8Kb7wJ6pSQaiXCw383Yjwu5js6/u6Ee7nSqCHDpVKeuwLISSxC1E1tK4Q0tq8XMpkguwz5qSfesT8Ne0IpB2GrDO4KAU0VE7SUH2y1FyLRtSkqgI4aQrgpDGA0/ogzuQEcOx4EBsUf1LwoehC04DOSU09X1fCfd0I89aRk6zCuDuRiAAP6vm4EeSpk+fyhagjJLELUZ3UavBpYF4a9bLeVlwEWach/bj5kbyM4+bvL3zVGAsJVs4TrDpPp3L+UrPx4LzJixTFh9RML1IyfEhRfChUfFh2+j/OKAEk4Yda40Sotyv1fFyp5+tKmI8rYd4uhHi7EObjSqi3C54u2rIvIoS4rkhiF8JRnJwvPop3OZMJcs+bp7LNvLBkXPI1+yyYivFCj5daTzTnyr1MsaImCT/O6AM5kxPI2VMBnFEC2KH4c+7CUoAOT50ToT4uhHqbE32Itwth3q6EeLtYXkvyF6Lmk8QuRE2kVoNniHlp0Ln0dpMJCjJBfx70yZCbYv6qT8aUnUTa8T0EaPNRZZ3ByWSgPqnUV6UCB8q8XLriQaLiz7l0f86l+XNe8eUc3uxWvM2tAYo3aXjhrDMn+hAvF4K9XAjx1lm+D/V2JdhbR4C7NPsL4UiS2IW4HqnV5qF03fwgqJnVJqPBwKaVKxkwYABajQb0SZB5yjw7XuZJ8/dZZ8y1/qwzUKTHT2VeWnKywstmKu6kZnqbF8WLVMWbZMWb/Zi/T1O8yFD5oHgE4+3tTZCnjmAvHcGeLgR56QjycrmwzgU/N2f5ACBENZDELkRtplaDV5h5aXBT6e2KAgVZF5N8yaI/b74VoE8GfYr5e1MxPqpcfFS5FTb9A1AEOeddSUn2JgUfUi7U/Lcp5tfnFV9SVb4Uu4fi4ulPoJcrwV46gi58AAj00BHoaV4CPHQ4O8nz/UJUVo1I7B999BFvv/02SUlJtG3blg8++IBOnTqVue9nn33G4sWL2bt3LwDt27fnjTfesNp/1KhRfPXVV1bH9e3bl1WrVlXfmxDieqRSgauPeQluWf5+lzb9556/8DX1ku9TIDcFRX8e9CmojAV4qvLxVOXTkKTyz1sEhalOnE/xJRlfkhRfUhQfdimeZOBJ+oWvBp0vGvcAnL0C8fNyt0r8lsVDh6+0Agjh+MS+bNkyJk2axIIFC+jcuTPz5s2jb9++HDp0iKCgoFL7x8XFMWzYMLp27YqLiwtvvfUWffr0Yd++fdSrV8+yX79+/fjyyy8tr3U63TV5P0LUSpc2/dOs3N1UYG4FKMy5eP9fn3zJ9+dBn4SSk4Qp+xya/HR0qmLCVSmEk1L+9RVAb16yzrqRqniTivl2wHHFm20XXmfgTbGrP7gHoPUMxM3Ln0AvFwI9dAR4lrQEOOPvrsPbVSsfAkSt5PDEPnfuXMaOHctDDz0EwIIFC/j9999ZuHAhL7zwQqn9v/32W6vXn3/+OT/99BNr165lxIgRlvU6nY6QkJDqDV4IUZpKZR61z8ULAqLL3gXQABQXmhN+ThJknzN/1SdDXhrkpaHkpWHSp6LkpaEpyECFgrcqD29VHo1ILPv6xUCWeTEoGjLwJE3xJF3xIhVP/lM8ycSTLDwx6HwwufqhcfdH6xGAs6cfZ89Cwc6zBHm7Eeihw9/D/EFAbgeI64VDE3tRURHbt29nypQplnVqtZqYmBg2b95cqXPk5eVhMBjw8/OzWh8XF0dQUBC+vr706tWL1157DX9//zLPUVhYSGFhoeV1dnY2AAaDAYPBYOvbslJy/NWepy6SsrPP9VVuanAPNS8hN1S4Z7HJaL4dkJeGKtd8K0CVm3Lh63lMuSkYs89DXiqa/DScinPRqowEkUmQKrPskxqxtASQbF6VrziT/Jsv5/HhhOLDVsWX84oPOVp/DC4BaNy8cXbzxs3DB3dPHzy8ffD3cMHf3Rk/d2f83LV4u9St1oDr63eu5rC13Cq7n0pRFMXuqK7SuXPnqFevHps2baJLl4vjcT/33HOsW7eO+Pj4K55j3LhxrF69mn379uHi4gLA0qVLcXNzIyoqiqNHj/Liiy/i4eHB5s2b0WhKj7c9Y8YMZs6cWWr9kiVLcHNzu4p3KIRwFLWpCOdiPbribJyLc9AV5+BcnI1zsR6nYj1qgx4ng968j0mPm1GPM0V2XStHcUWPKzmKK2mKN2l4kqXyRq/2Ik/tRYGTJ0VaLwxaL0zOXjg5u+LhrMLDScFDCx5OIPP/iCvJy8tj+PDhZGVl4eXlVe5+Dm+KvxpvvvkmS5cuJS4uzpLUAYYOHWr5vnXr1rRp04ZGjRoRFxfHbbfdVuo8U6ZMYdKkSZbX2dnZhIeH06dPnwoLrzIMBgOxsbH07t0brVYG97CFlJ19pNzsl5ebxcY/f+aWdo1xKkhDlWPuD2DISsKYnYhKnwIGPZoiPVqjHo1iBDB3FCSfUBXAWeuTmoCiC8sFhYoTaXiRpniRdqF/QJbGhyKtD4qLFyqdF2o3H7TuPug8/HD19MXd2w9vDw/83HX4umnxdHGqMfMDyO+cfWwtt5LW5CtxaGIPCAhAo9GQnJxstT45OfmK98ffeecd3nzzTdasWUObNm0q3Ldhw4YEBARw5MiRMhO7Tqcrs3OdVqutsl/SqjxXXSNlZx8pNzu4e5OnC0YT1Q2nS8quzH+UigLFBVCoh8Jsc4fBgkyKc1LIz0iiMCuZ4hzzLQN1firOBWm4FKXjYspDpyomjHTCVOnW5zRcWHLKDq9I0aDHFb3iSjJuFKjdKHJyx+jkjtHZE5POB9z8ULv74ezhj84rAHfvIDx8A/HxD8LVxaVaPwzI75x9KltulS1bhyZ2Z2dn2rdvz9q1axk8eDAAJpOJtWvXMmHChHKPmz17Nq+//jqrV6+mQ4cOV7zOmTNnSEtLIzQ0tKpCF0LUdSqVefIfrSt4BFpWOwGeF5YyGfIvPCpofkTQpD9PQWYyRVlJGPQZmPIzoSALdVE2TkXZ6IpzcDHlokbBWWXED/NgQhbFF5aCK4esV1zJVnmQp/Yk38mLIq0nxc4+mFx8wNUXrZs3Wg8/XDx8cfP2w8M7AE9vf5zcfEDrcqXTixrC4U3xkyZNYuTIkXTo0IFOnToxb948cnNzLb3kR4wYQb169Zg1axYAb731FtOmTWPJkiVERkaSlGR+RtbDwwMPDw/0ej0zZ87k7rvvJiQkhKNHj/Lcc88RHR1N3759HfY+hRACMH8Q8Ak3L5gn9XO7sJTLZIKiHHOrQGEORXlZ5GZnkpuTQUFOJoV5mRhys1DyM1DnZ+BUlImuKBNXYzYephw8lVzUKgUPVT4e5IMp5eLtgdzKhV2AMzlqb/Qabwq0vhTpfCjW+aO4+mFy86M4OZPDG4vw8PEzdyr08kXn7gPOHuZ5EcQ14/DEft9995GSksK0adNISkqiXbt2rFq1iuDgYABOnTqFWn2xV8n8+fMpKirif//7n9V5pk+fzowZM9BoNOzevZuvvvqKzMxMwsLC6NOnD6+++qo8yy6EuD6p1eDibV4A5wuLbyUPV4zF6LPT0GekkJuVRn52KkU5aRhyM1Dy0qEgE3VBJk6GHLSGHFyMObiZ9HgouXiSj1ql4EIRLqYUAk0p5tsFedbX6AQQV/b1DTiRq/YgX+NFkZMXBmcvjDofFFcf1K4+OLn74ezmjYuHN66e3ri5e6PSeZg/FOg8zV+lxaDSHJ7YASZMmFBu03tcXJzV6xMnTlR4LldXV1avXl1FkQkhxPVPpXHCwzcYD99gm44rNprIyCskKzMDfeZ5CrJSMGSnUKxPhbxU1PlpOBVk4FyUjjo/Ezd1Ia6mPFwVc8uAq8rcY1BLMT6mTHxMmeYPBfm2v4cilY58Jy8Ktd4YnH0w6XxQXH1RufmicfND5+GDzt0HV09fNK5e5g8EOk/QedW5VoMakdiFEELUPE4aNf6ervh7ukJ4WLn7GQwGVpZMPKTVYjIp5BQWk6LPJzs7A312JgU56RTlpFKcm4Ep19xKoCrMQluUhbMhG+fiXLSmPNyUfNwpwF2VjzuFuKnMY4w4K4U4G1LAkFKqtaAyjGgwaFwp1rhidHJFcXIDZzdUzu6odJ5o3HxwcvNB6+6L2tXnYguJi/clHxIuLJqa3UFQErsQQogqpVar8HbV4u2qhUAvIKLSxxYYjGTnG8jIN3A8z0BWbgG5ORkU6jMw5qRizEs39yUoyMSpMBNnQyYuhmy0xlxcTXl4XHj00PNCf4KSDwYajGiMejDqsXO4AotilTPFWneMWg9MWvPtApWLNxpXLzRu3mhdvVG5XGg1cPGGgCYQ1u7qLmoDSexCCCFqDBetBhethiCvS++pl99acCmD0UR2voGsfANnL3zNzs0nT59FQZ6ewrwcCvP1FOfnUFygx1SUi1KYi9qgR2vQ467o8SIPL1Xuha95eJOL+4UPCy4q88hvTkoRTkVFUJRRqbj2ht5Fq0e/vPKOVUQSuxBCiFpBq1Hj76HD38O+jtKFxUb0BcXkWBYDiRe+ZhcUo8/NpyAvC0NuNsUF2ZgKsjEV5KAqysHpwkiGHuThQT6elLQe5JGjiaRVFb/XikhiF0IIIQCdkwadh8buDwaKolBYbCK7wGD5gKAvLKax57V9IksSuxBCCFEFVCrVxVsJ5Y5QVP1k2gEhhBCiFpHELoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EEELUIpLYhRBCiFpEErsQQghRi0hiF0IIIWoRSexCCCFELSLTtpZBURQAsrOzr/pcBoOBvLw8srOz0Wq1V32+ukTKzj5SbvaTsrOPlJt9bC23kpxUkqPKI4m9DDk5OQCEh4c7OBIhhBDCWk5ODt7e3uVuVylXSv11kMlk4ty5c3h6eqJSqa7qXNnZ2YSHh3P69Gm8vLyqKMK6QcrOPlJu9pOys4+Um31sLTdFUcjJySEsLAy1uvw76VJjL4NaraZ+/fpVek4vLy/5hbeTlJ19pNzsJ2VnHyk3+9hSbhXV1EtI5zkhhBCiFpHELoQQQtQiktirmU6nY/r06eh0OkeHct2RsrOPlJv9pOzsI+Vmn+oqN+k8J4QQQtQiUmMXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCT2avbRRx8RGRmJi4sLnTt3ZuvWrY4OqUZZv349AwcOJCwsDJVKxfLly622K4rCtGnTCA0NxdXVlZiYGA4fPuyYYGuQWbNm0bFjRzw9PQkKCmLw4MEcOnTIap+CggLGjx+Pv78/Hh4e3H333SQnJzso4ppj/vz5tGnTxjIoSJcuXfjjjz8s26XcKufNN99EpVIxceJEyzopu7LNmDEDlUpltTRr1syyvarLTRJ7NVq2bBmTJk1i+vTp7Nixg7Zt29K3b1/Onz/v6NBqjNzcXNq2bctHH31U5vbZs2fz/vvvs2DBAuLj43F3d6dv374UFBRc40hrlnXr1jF+/Hi2bNlCbGwsBoOBPn36kJuba9nn6aefZsWKFfzwww+sW7eOc+fOcddddzkw6pqhfv36vPnmm2zfvp1///2XXr16ceedd7Jv3z5Ayq0ytm3bxieffEKbNm2s1kvZla9ly5YkJiZalg0bNli2VXm5KaLadOrUSRk/frzltdFoVMLCwpRZs2Y5MKqaC1B++eUXy2uTyaSEhIQob7/9tmVdZmamotPplO+++84BEdZc58+fVwBl3bp1iqKYy0mr1So//PCDZZ8DBw4ogLJ582ZHhVlj+fr6Kp9//rmUWyXk5OQojRs3VmJjY5Xu3bsrTz31lKIo8jtXkenTpytt27Ytc1t1lJvU2KtJUVER27dvJyYmxrJOrVYTExPD5s2bHRjZ9eP48eMkJSVZlaG3tzedO3eWMrxMVlYWAH5+fgBs374dg8FgVXbNmjWjQYMGUnaXMBqNLF26lNzcXLp06SLlVgnjx4/n9ttvtyojkN+5Kzl8+DBhYWE0bNiQ+++/n1OnTgHVU24yCUw1SU1NxWg0EhwcbLU+ODiYgwcPOiiq60tSUhJAmWVYsk2YZyOcOHEiN998M61atQLMZefs7IyPj4/VvlJ2Znv27KFLly4UFBTg4eHBL7/8QosWLUhISJByq8DSpUvZsWMH27ZtK7VNfufK17lzZxYtWkTTpk1JTExk5syZ3HLLLezdu7dayk0SuxDXufHjx7N3716re3aiYv/f3v2GNLWHcQD/DudM6c8kxQ1JMUxJxbJFtjIi7I1RjIoYlDkRkhLBQCFBrKCgMhCzXhYTUogILAkpS+ciKcHa0siWU9MCS6gsK3WWz31xuYfr1breizI7fT9wYPuds995zsPky9mOO/Hx8XC73fj48SOuXbsGm80Gp9Pp77LmtVevXqGgoAB37tzBggUL/F3OLyUjI0N5nJycjNTUVERHR+Pq1asIDg6e9f3xo/g5EhYWhoCAgClXNr59+xYGg8FPVf1a/uoTe/hj+fn5uHnzJhwOx6RbDRsMBvh8PgwNDU3anr37k06nQ2xsLEwmE06dOoVVq1bh3Llz7NtPPHr0CIODg1izZg20Wi20Wi2cTicqKyuh1WoRERHB3s2QXq9HXFwcvF7vnLznGOxzRKfTwWQyobGxURmbmJhAY2MjzGazHyv7dcTExMBgMEzq4adPn9Da2vrb91BEkJ+fj9raWjQ1NSEmJmbSepPJhMDAwEm983g86O/v/+17N52JiQmMjY2xbz+Rnp6Ojo4OuN1uZVm7di327dunPGbvZubz58/o7u6G0Wicm/fc/7rkjmbkypUrEhQUJFVVVfLs2TPJzc0VvV4vb9688Xdp88bw8LC4XC5xuVwCQMrLy8XlcklfX5+IiJw+fVr0er3cuHFD2tvbxWKxSExMjIyMjPi5cv86dOiQLFmyRJqbm2VgYEBZvn79qmxz8OBBiYqKkqamJmlraxOz2Sxms9mPVc8PxcXF4nQ6pbe3V9rb26W4uFg0Go00NDSICPv2X/z9qngR9u5HCgsLpbm5WXp7e6WlpUW2bt0qYWFhMjg4KCKz3zcG+xw7f/68REVFiU6nk3Xr1snDhw/9XdK84nA4BMCUxWazicif//JWWloqEREREhQUJOnp6eLxePxb9DwwXc8AiN1uV7YZGRmRvLw8CQ0NlZCQENm5c6cMDAz4r+h5IicnR6Kjo0Wn00l4eLikp6croS7Cvv0X/wx29m56VqtVjEaj6HQ6iYyMFKvVKl6vV1k/233jbVuJiIhUhN+xExERqQiDnYiISEUY7ERERCrCYCciIlIRBjsREZGKMNiJiIhUhMFORESkIgx2IiIiFWGwExERqQiDnYgU4+PjqKqqQlpaGsLDwxEcHIzk5GScOXMGPp/P3+UR0QzwJ2WJSOF2u1FYWIi8vDykpKRgdHQUHR0dOH78OIxGI27fvo3AwEB/l0lEP8EzdiJSJCUlobGxEbt378by5cuRkJAAq9WKe/fu4enTp6ioqAAAaDSaaZfDhw8rc3348AFZWVkIDQ1FSEgIMjIy0NXVpazPyclBcnIyxsbGAAA+nw8pKSnIysoCALx8+RIajQZut1t5TWlpKTQajVIHEU3FYCcihVarnXY8PDwcu3btQk1NjTJmt9sxMDCgLP+8d3R2djba2tpQV1eHBw8eQESwbds2jI+PAwAqKyvx5csXFBcXAwBKSkowNDSECxcuTFvD69evUVFRgeDg4Nk4VCLVmv6vmIh+a4mJiejr65s0Nj4+joCAAOW5Xq+HwWBQnut0OuVxV1cX6urq0NLSgg0bNgAAampqsGzZMly/fh179uzBwoULUV1djc2bN2PRokWoqKiAw+HA4sWLp62ppKQEVqsVd+/enc1DJVIdBjsRTVFfX6+cWf+lrKwM1dXVM3p9Z2cntFotUlNTlbGlS5ciPj4enZ2dypjZbEZRURFOnDiBI0eOIC0tbdr5Hj9+jNraWng8HgY70b9gsBPRFNHR0VPGuru7ERcXN6v7mZiYQEtLCwICAuD1en+4XWFhIYqKimA0Gmd1/0RqxO/YiUjx/v17DA8PTxlva2uDw+HA3r17ZzTPypUr8e3bN7S2tipj7969g8fjQUJCgjJ29uxZPH/+HE6nE7du3YLdbp8yV11dHV68eIGioqL/cUREvx8GOxEp+vv7sXr1aly6dAlerxc9PT24fPkyLBYLNm3aNOmq959ZsWIFLBYLDhw4gPv37+PJkyfIzMxEZGQkLBYLAMDlcuHo0aO4ePEiNm7ciPLychQUFKCnp2fSXGVlZTh58iRCQkJm+3CJVInBTkSKpKQkHDt2DFVVVVi/fj0SExNRVlaG/Px8NDQ0TLpA7t/Y7XaYTCZs374dZrMZIoL6+noEBgZidHQUmZmZyM7Oxo4dOwAAubm52LJlC/bv34/v378r88TGxsJms836sRKpFX+ghoiISEV4xk5ERKQiDHYiIiIVYbATERGpCIOdiIhIRRjsREREKsJgJyIiUhEGOxERkYow2ImIiFSEwU5ERKQiDHYiIiIVYbATERGpyB+Ul+3HtbopZQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_3l_100_50.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_3l_100_50.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VdJfu6Djgik1", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2e7b1bd4-e509-4981-fc3e-4974a4908d13" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9423 - loss: 0.2074\n", + "Lossontestdata: 0.20320768654346466\n", + "Accuracyontestdata: 0.9427000284194946\n" + ] + } + ], + "source": [ + "scores_3l_100_50=model_3l_100_50.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_3l_100_50[0])\n", + "print('Accuracyontestdata:',scores_3l_100_50[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EkTKyuyMgviX" + }, + "outputs": [], + "source": [ + "#9 пункт\n", + "model_3l_100_100 = Sequential()\n", + "model_3l_100_100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid'))\n", + "model_3l_100_100.add(Dense(units=100, activation='sigmoid'))\n", + "model_3l_100_100.add(Dense(units=num_classes, activation='softmax'))\n", + "\n", + "model_3l_100_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fVv9bbckg1df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 246 + }, + "outputId": "45c82f28-3212-4241-ce0b-098a23b2bd2f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Архитектура нейронной сети:\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_6\"\u001b[0m\n" + ], + "text/html": [ + "
    Model: \"sequential_6\"\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dense_12 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m10,100\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
    +              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
    +              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
    +              "│ dense_12 (Dense)                │ (None, 100)            │        78,500 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_13 (Dense)                │ (None, 100)            │        10,100 │\n",
    +              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
    +              "│ dense_14 (Dense)                │ (None, 10)             │         1,010 │\n",
    +              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ], + "text/html": [ + "
     Total params: 89,610 (350.04 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m89,610\u001b[0m (350.04 KB)\n" + ], + "text/html": [ + "
     Trainable params: 89,610 (350.04 KB)\n",
    +              "
    \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
     Non-trainable params: 0 (0.00 B)\n",
    +              "
    \n" + ] + }, + "metadata": {} + } + ], + "source": [ + "print(\"Архитектура нейронной сети:\")\n", + "model_3l_100_100.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DBmXBpkEg482", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "59470c59-cc9d-436a-ad18-d2c31dc3755f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.2217 - loss: 2.2757 - val_accuracy: 0.4550 - val_loss: 2.0754\n", + "Epoch 2/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.5328 - loss: 1.9426 - val_accuracy: 0.6695 - val_loss: 1.4533\n", + "Epoch 3/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.6905 - loss: 1.3098 - val_accuracy: 0.7663 - val_loss: 0.9693\n", + "Epoch 4/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.7778 - loss: 0.9031 - val_accuracy: 0.8193 - val_loss: 0.7365\n", + "Epoch 5/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8182 - loss: 0.7111 - val_accuracy: 0.8360 - val_loss: 0.6098\n", + "Epoch 6/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8400 - loss: 0.5970 - val_accuracy: 0.8538 - val_loss: 0.5323\n", + "Epoch 7/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8530 - loss: 0.5334 - val_accuracy: 0.8658 - val_loss: 0.4795\n", + "Epoch 8/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8729 - loss: 0.4714 - val_accuracy: 0.8770 - val_loss: 0.4420\n", + "Epoch 9/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8781 - loss: 0.4415 - val_accuracy: 0.8828 - val_loss: 0.4129\n", + "Epoch 10/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.8848 - loss: 0.4121 - val_accuracy: 0.8882 - val_loss: 0.3905\n", + "Epoch 11/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8926 - loss: 0.3878 - val_accuracy: 0.8930 - val_loss: 0.3729\n", + "Epoch 12/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8940 - loss: 0.3762 - val_accuracy: 0.8970 - val_loss: 0.3591\n", + "Epoch 13/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8983 - loss: 0.3611 - val_accuracy: 0.8998 - val_loss: 0.3470\n", + "Epoch 14/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9010 - loss: 0.3482 - val_accuracy: 0.9030 - val_loss: 0.3364\n", + "Epoch 15/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9049 - loss: 0.3351 - val_accuracy: 0.9047 - val_loss: 0.3295\n", + "Epoch 16/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9049 - loss: 0.3361 - val_accuracy: 0.9077 - val_loss: 0.3200\n", + "Epoch 17/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9069 - loss: 0.3236 - val_accuracy: 0.9097 - val_loss: 0.3141\n", + "Epoch 18/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9081 - loss: 0.3148 - val_accuracy: 0.9110 - val_loss: 0.3077\n", + "Epoch 19/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9100 - loss: 0.3122 - val_accuracy: 0.9128 - val_loss: 0.3004\n", + "Epoch 20/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9108 - loss: 0.3060 - val_accuracy: 0.9145 - val_loss: 0.2951\n", + "Epoch 21/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9121 - loss: 0.3015 - val_accuracy: 0.9167 - val_loss: 0.2893\n", + "Epoch 22/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9166 - loss: 0.2886 - val_accuracy: 0.9168 - val_loss: 0.2845\n", + "Epoch 23/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9152 - loss: 0.2864 - val_accuracy: 0.9177 - val_loss: 0.2807\n", + "Epoch 24/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9170 - loss: 0.2838 - val_accuracy: 0.9202 - val_loss: 0.2750\n", + "Epoch 25/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9199 - loss: 0.2770 - val_accuracy: 0.9218 - val_loss: 0.2712\n", + "Epoch 26/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9224 - loss: 0.2716 - val_accuracy: 0.9233 - val_loss: 0.2663\n", + "Epoch 27/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.9244 - loss: 0.2639 - val_accuracy: 0.9235 - val_loss: 0.2633\n", + "Epoch 28/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9234 - loss: 0.2602 - val_accuracy: 0.9243 - val_loss: 0.2584\n", + "Epoch 29/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9256 - loss: 0.2614 - val_accuracy: 0.9252 - val_loss: 0.2556\n", + "Epoch 30/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9269 - loss: 0.2521 - val_accuracy: 0.9268 - val_loss: 0.2511\n", + "Epoch 31/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9278 - loss: 0.2485 - val_accuracy: 0.9275 - val_loss: 0.2472\n", + "Epoch 32/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9284 - loss: 0.2445 - val_accuracy: 0.9272 - val_loss: 0.2434\n", + "Epoch 33/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9307 - loss: 0.2422 - val_accuracy: 0.9280 - val_loss: 0.2407\n", + "Epoch 34/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9298 - loss: 0.2395 - val_accuracy: 0.9293 - val_loss: 0.2367\n", + "Epoch 35/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9311 - loss: 0.2357 - val_accuracy: 0.9303 - val_loss: 0.2339\n", + "Epoch 36/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9332 - loss: 0.2273 - val_accuracy: 0.9323 - val_loss: 0.2307\n", + "Epoch 37/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9333 - loss: 0.2269 - val_accuracy: 0.9330 - val_loss: 0.2283\n", + "Epoch 38/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9365 - loss: 0.2195 - val_accuracy: 0.9327 - val_loss: 0.2249\n", + "Epoch 39/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9369 - loss: 0.2157 - val_accuracy: 0.9327 - val_loss: 0.2215\n", + "Epoch 40/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9364 - loss: 0.2184 - val_accuracy: 0.9360 - val_loss: 0.2180\n", + "Epoch 41/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9384 - loss: 0.2135 - val_accuracy: 0.9353 - val_loss: 0.2158\n", + "Epoch 42/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9388 - loss: 0.2112 - val_accuracy: 0.9370 - val_loss: 0.2128\n", + "Epoch 43/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 3ms/step - accuracy: 0.9413 - loss: 0.2068 - val_accuracy: 0.9357 - val_loss: 0.2107\n", + "Epoch 44/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9414 - loss: 0.2046 - val_accuracy: 0.9362 - val_loss: 0.2078\n", + "Epoch 45/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9424 - loss: 0.2021 - val_accuracy: 0.9372 - val_loss: 0.2053\n", + "Epoch 46/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9429 - loss: 0.1996 - val_accuracy: 0.9368 - val_loss: 0.2030\n", + "Epoch 47/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9463 - loss: 0.1907 - val_accuracy: 0.9387 - val_loss: 0.2007\n", + "Epoch 48/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.9450 - loss: 0.1945 - val_accuracy: 0.9393 - val_loss: 0.1983\n", + "Epoch 49/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 3ms/step - accuracy: 0.9472 - loss: 0.1869 - val_accuracy: 0.9407 - val_loss: 0.1958\n", + "Epoch 50/50\n", + "\u001b[1m1688/1688\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.9460 - loss: 0.1903 - val_accuracy: 0.9403 - val_loss: 0.1929\n" + ] + } + ], + "source": [ + "# Обучаем модель\n", + "history_3l_100_100 = model_3l_100_100.fit(\n", + " X_train, y_train,\n", + " validation_split=0.1,\n", + " epochs=50\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bRUvSIR0hv9g", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "outputId": "6413487c-9cd1-4e20-a493-3d267049ed43" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAHWCAYAAACFR6uKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjYFJREFUeJzs3Xd4k1X7wPFvmqbp3htKC5QtQ0EQxJchG0FwAiogggP4KUNRfJHlAAeIA8EFiIrgxBdFsKAFWQXBskFaNrSldO+myfP7IzQ0XTRpSqC9P9f1XCTPvHPacuec5zznqBRFURBCCCFEreBg7wCEEEIIYTuS2IUQQohaRBK7EEIIUYtIYhdCCCFqEUnsQgghRC0iiV0IIYSoRSSxCyGEELWIJHYhhBCiFpHELoS4bgwGA5cvX+bkyZP2DkWIWksSuxCiRiUmJjJp0iTCw8NxcnIiICCAli1bkpmZae/QhKiVHO0dgBDlGT16NN9//z3Z2dn2DkVUQ1xcHD169ECn0/Hss89y22234ejoiIuLC25ubvYOT4haSRK7uGGkpKTw9ddf89dff7F161by8vLo168ft956Kw899BC33nqrvUMUFnrqqadwcnJi165d1KtXz97hCFEnqGQSGHEjWL16NePGjSM7O5uIiAh0Oh2JiYnceuut7N+/H51Ox6hRo/jkk09wcnKyd7iiCvbu3UuHDh34/fff6d27t73DEaLOkHvswu62b9/Oo48+SnBwMNu3b+fUqVP06tULZ2dn9uzZw8WLFxk+fDhffPEFkydPBkBRFCIiIrj33nvLnC8/Px8vLy+eeuopAKKjo1GpVHz//fdl9nV3d2f06NGm9ytWrEClUnH69GnTusOHD+Pj48M999xDUVGR2X5///232fkuX76MSqVi9uzZZuvLW/f222+jUqno3r272fqTJ0/y4IMPEhoaioODAyqVCpVKxS233FJZMQJQVFTEq6++SuPGjdFqtURERPDyyy9TUFBgtl9ERAT33HOP2bqJEyeiUqnM1m3atAmVSsUvv/xiWte9e/cyMe/Zs8cUZ7Fdu3bh7OxMfHw8rVq1QqvVEhwczFNPPUVqaqrZ8eWd8/XXX8fBwYFVq1ZZfO2KdO/e3bRveUvJnzvARx99ZIo9NDSUCRMmkJ6eXuk1srKyGDt2LOHh4Wi1WurXr8/TTz9NUlKS2X7Fv0MVLaV/X/755x/69++Pp6cn7u7u3H333ezatcu0XVEUevToQUBAAJcuXTKtLywspHXr1jRu3JicnBwAzpw5w/jx42nWrBkuLi74+fnx4IMPlvn8xTE6OTmRnJxstm3nzp2mWEv/HQj7kqZ4YXfz58/HYDCwevVq2rdvX2a7v78/K1eu5MiRI3z88cfMmjWLwMBAHn30Ud566y1SU1Px9fU17b9u3ToyMzN59NFHqx3buXPn6NevH82bN+fbb7/F0dE2fzLp6enMmzevzHq9Xs/gwYM5c+YMkyZNomnTpqhUKl5//fUqnXfs2LF88cUXPPDAA0ydOpWYmBjmzZvH0aNH+emnn2wSe3lefPHFMutSUlLIz8/nmWeeoWfPnjz99NPEx8ezePFiYmJiiImJQavVlnu+5cuXM2PGDBYsWMCIESMsvnZl6tevX6bs169fzzfffGO2bvbs2cyZM4devXrxzDPPcPz4cZYsWcKePXvYvn07Go2m3POnpqZy4MABxo4dS3BwMHFxcSxdupQNGzawe/duAgMDzfafO3cuDRs2NL3Pzs7mmWeeMdvn8OHD3HXXXXh6ejJt2jQ0Gg0ff/wx3bt3Z8uWLXTq1AmVSsWyZcto06YNTz/9ND/++CMAs2bN4vDhw0RHR5v6NezZs4cdO3YwbNgw6tevz+nTp1myZAndu3fnyJEjuLq6ml1frVbz1Vdfmb5Yg/Fn5OzsTH5+flWKXVxPihB25uvrq4SHh5utGzVqlOLm5ma27pVXXlEAZd26dYqiKMrx48cVQFmyZInZfoMHD1YiIiIUg8GgKIqi/PnnnwqgfPfdd2Wu7ebmpowaNcr0fvny5QqgnDp1SklNTVVatmypNGvWTLl8+bLZccX77dmzx2x9cnKyAiizZs0yW1963bRp05TAwEClffv2Srdu3Uzriz/TvHnzzI7v1q2b0qpVqzLxlxQbG6sAytixY83WP//88wqg/PHHH6Z14eHhysCBA832mzBhglL6v4SoqCizMi+OpWTM69evVwClX79+ZsfPmjVLAZS7775bKSoqMq0vLrsPPvig3HP++uuviqOjozJ16tQyn7Gq165IReX49ttvm37uiqIoly5dUpycnJQ+ffooer3etN+HH36oAMqyZcuuea2SDh06pGi1WmXMmDGmdZb8Dg0ZMkRxcnJS4uPjTesuXryoeHh4KP/5z3/Mjv/4448VQPnqq6+UXbt2KWq1Wpk0aZLZPrm5uWVi3LlzpwIoK1euLBPj8OHDldatW5vW5+TkKJ6ensqIESPK/QzCvqQpXthdVlZWmVpMeYKCggBMj0k1bdqUTp068fXXX5v2SU1N5bfffuORRx4p0zSblZXF5cuXzZaK5OfnM3jwYJKTk9mwYQN+fn7WfLRyXbhwgQ8++IBXXnkFd3f3MjECVl1v/fr1AEyZMsVs/dSpUwH49ddfrQm3UoqiMH36dO6//346depU7j5TpkxBrVab3j/22GMEBQWVG8/u3bt56KGHuP/++3n77berfW1rbdq0icLCQiZNmoSDw9X/JseNG4enp+c1y7L4ef3iJSgoiAEDBvDDDz9gMBgsikWv1/P7778zZMgQGjVqZFofEhLCiBEj2LZtm9mjg08++SR9+/bl//7v/3jsscdo3Lgxb7zxhtk5XVxcTK91Oh0pKSlERkbi7e3Nvn37ysTw2GOPcezYMVOT+w8//ICXlxd33323RZ9FXB+S2IXdhYaGEh8ff8394uLiAMx6V48cOZLt27dz5swZAL777jt0Oh2PPfZYmePHjBlDQECA2VJ8z7G0xx9/nG3btpGVlWW6r24rs2bNIjQ01NQHoKRmzZrh4+PDggUL2L59O8nJyVy+fBmdTnfN8545cwYHBwciIyPN1gcHB+Pt7W0qI1v6+uuvOXz4cJnEAZi+WDVv3txsvVqtpkmTJmXu5164cIGBAweSk5NDSkrKNe+ZV3bt6iouq2bNmpmtd3JyolGjRtcsy7Nnz5b5Xfvpp5/IyMio9AtleZKTk8nNzS0TC0CLFi0wGAycO3fObP3nn39Obm4uJ06cYMWKFWaJHCAvL4+ZM2cSFhaGVqvF39+fgIAA0tPTycjIKHOdgIAABg4cyLJlywBYtmwZo0aNMvvSI24c8lMRdnfPPfeQmprK559/XuE+SUlJfPHFFwQEBHDHHXeY1g8bNgyNRmOqtX/11Vd06NCh3P8EZ86cSVRUlNni7Oxc7vX27dvHzz//TEBAAE8++WQ1P+FVR48eZcWKFbz22mvl3qN1d3dnzZo15OTk0LVrVwIDAwkICGDHjh1VvkZVOpHZQmFhIa+88gpPPPEETZs2LbO9dDK5lri4OBo0aMCXX37Jpk2b+OKLL6y+tr0FBweX+V0bPnz4dbt+dHS0qcPkwYMHy2z/v//7P15//XUeeughvv32W37//XeioqLw8/OrsEVhzJgxfPPNNxw9epStW7eadToVNxbpPCfsbsaMGaxdu5ZnnnmGY8eOMWLECPR6PWCs+WzevJmZM2eSlpbGqlWrzDpc+fr6MnDgQL7++mseeeQRtm/fzqJFi8q9TuvWrenVq5fZupJNxCV99tlnDB48GLVazT333MPnn3/OE088Ue3POn36dNq1a8fDDz9c4T69e/fmrbfe4pFHHmHp0qU0atSIqVOnmsqkIuHh4RgMBk6cOEGLFi1M65OSkkhPTyc8PLza8Zf00UcfcenSpTK9t4sVdwg7fvy4WRNycYylxyUICQlh/fr1BAUF8fPPPzN16lQGDBhAQECAxdeuruKyKh17YWGh6amNyjg7O5fZ5/3338fT0xN/f3+LYgkICMDV1ZXjx4+X2Xbs2DEcHBwICwszrUtISOD//u//6NOnD05OTjz//PP07dvX7Of//fffM2rUKBYsWGBal5+fX2mP//79++Ps7MywYcPo2rUrjRs35q+//rLos4jrQ2rswu6Cg4PZuXMn/fv3Z8GCBdx222189dVX5OTkEB4ezpgxY3BxcWHdunXl1noee+wxjhw5wgsvvIBarWbYsGHVjumuu+4CYODAgQwbNowXXnihzONKltq5cyc///wz8+fPr7RWfe7cOcaPH8+zzz7Lk08+Sa9evfDx8bnm+QcMGABQ5ovNwoULAeNnsZWsrCxef/11Jk+eTHBwcLn73H333Wi1Wt5//32zWuDXX39NUlJSmcftmjZtaupH8cEHH2AwGHjuueesunZ19erVCycnJ95//32UEkN9fP7552RkZFRaluXVeP/55x9+++03hgwZYnHztVqtpk+fPvz8889mty+SkpJYtWoVXbt2xdPT07R+3LhxGAwGPv/8cz755BMcHR154oknzD6HWq02ew/GMq/sy6OjoyMjR47kwIEDjBkzxqLPIK4vqbGLG0JYWBg///wzCQkJbN++nbfffpvY2FiWLl1Ku3btaNeuXYXJcODAgfj5+fHdd9/Rv3//KnXEs8R7771HixYt+L//+z++/fZbs207d+40u2da3IkpLi6O3bt307FjR9O24oFaKqvtGQwGHnvsMerXr8/8+fMtirNt27amQXzS09Pp1q0bu3fv5osvvmDIkCH06NHDbP/ijoHFzp49C2C2LjY2ttxr7du3D39/f6ZNm1ZhPL6+vsyYMYNXXnmFvn37cu+993Ly5Ek+/PBD2rZty9ixYys8Njg4mLfffpuxY8fy6KOPmr60VPXa1RUQEMD06dOZM2cO/fr1Y/DgwRw/fpyPPvqI22+/vdJHKc+ePcvAgQN58MEHqVevHocOHeLTTz/F39/f6v4Ar732GlFRUXTt2pXx48fj6OjIxx9/TEFBAW+99ZZpv+XLl/Prr7+yYsUK6tevDxgT9qOPPsqSJUsYP348YLz99eWXX+Ll5UXLli3ZuXMnmzZtumanzVdffZUXXnihSl80hR3ZtU++EBUo73G3yowfP14BlFWrVpXZZu3jbiV98cUXCqD873//M9uvsqXkY1mAolKplL1795qdt/TjW2+88Yai1WqV/fv3l9nvWo+7KYqi6HQ6Zc6cOUrDhg0VjUajhIWFKdOnT1fy8/PN9gsPD79m/CWX0o+7Acq7775rds7ix9tKW7x4sdK8eXNFo9EoQUFBylNPPaWkpKRUWg7FevbsqTRo0EDJysqy6tqlVfVxt2IffvihWezPPPOMkpaWVuk1srKylHHjxinh4eGKk5OTEhAQoDz22GPKmTNnzPaz9JHJffv2KX379lXc3d0VV1dXpUePHsqOHTtM28+dO6d4eXkpgwYNKhPT0KFDFTc3N+XkyZOKoihKWlqa8vjjjyv+/v6Ku7u70rdvX+XYsWNKeHh4uX8PFT3Odq3twj5kSFlRK0yePJnPP/+cxMTEMoNr2MPs2bOJjo4mOjra3qEIIeoYuccubnr5+fl89dVX3H///TdEUhdCCHuSe+zipnXp0iU2bdrE999/T0pKSrkdrewlMjKS3Nxce4chhKiDpCle3LSio6Pp0aMHgYGBvPLKK0ycONHeIQkhhN1JYhdCCCFqEbnHLoQQQtQiktiFEEKIWkQ6z5XDYDBw8eJFPDw8rtu420IIIURlFEUhKyuL0NDQSkcwlMRejosXL5qNvSyEEELcKM6dO2caWbA8ktjL4eHhARgLr+QYzNbQ6XT8/vvv9OnTp9zZvETFpOysI+VmPSk760i5WcfScsvMzCQsLMyUoyoiib0cxc3vnp6eNknsrq6ueHp6yi+8haTsrCPlZj0pO+tIuVnH2nK71i1i6TwnhBBC1CKS2IUQQohaRBK7EEIIUYvIPXYhBGB8lKaoqAi9Xm/vUOxGp9Ph6OhIfn5+nS4HS0m5Wad0uanVahwdHav9mLVdE/u8efP48ccfOXbsGC4uLnTp0oU333yTZs2aVXjMp59+ysqVKzl06BAA7du354033qBjx46mfUaPHs0XX3xhdlzfvn3ZsGFDzXwQIW5yhYWFJCQk1PmJaxRFITg4mHPnzskYFhaQcrNOeeXm6upKSEgITk5OVp/Xrol9y5YtTJgwgdtvv52ioiJefvll+vTpw5EjR3Bzcyv3mOjoaIYPH06XLl1wdnbmzTffpE+fPhw+fJh69eqZ9uvXrx/Lly83vddqtTX+eYS4GRkMBk6dOoVarSY0NBQnJ6c6+5+zwWAgOzsbd3f3SgcAEeak3KxTstxUKhWFhYUkJydz6tQpmjRpYnVZ2jWxl65Br1ixgsDAQPbu3ct//vOfco/5+uuvzd5/9tln/PDDD2zevJmRI0ea1mu1WoKDg20ftBC1TGFhIQaDgbCwsDo/n73BYKCwsBBnZ2dJUBaQcrNO6XJzcXFBo9Fw5swZ03pr3FD32DMyMgDw9fWt8jG5ubnodLoyx0RHRxMYGIiPjw89e/bktddew8/Pr9xzFBQUUFBQYHqfmZkJGO9/6HQ6Sz+GmeLjq3ueukjKzjqWlptOp6N4kkeDwVBjcd0MistBUZQ6XxaWkHKzTkXlpigKOp0OtVpttn9V/6ZvmGlbDQYDgwcPJj09nW3btlX5uPHjx7Nx40YOHz5s+nazevVqXF1dadiwIfHx8bz88su4u7uzc+fOMgUFMHv2bObMmVNm/apVq+p8DUbUfo6OjgQHBxMWFlat+3pCiOorLCzk3LlzJCYmUlRUZLYtNzeXESNGkJGRUengaTdMYn/mmWf47bff2LZtW6Vj4JY0f/583nrrLaKjo2nTpk2F+508eZLGjRuzadMm7r777jLby6uxh4WFcfnyZZuMPBcVFUXv3r1lRCYLSdlZx9Jyy8/P59y5c0RERFjd9Hez0ul0ZmVUPMmGTABlmetdbqV/bjer8sotPz+f06dPExYWVubvMTMzE39//2sm9huiKX7ixIn88ssvbN26tcpJ/Z133mH+/Pls2rSp0qQO0KhRI/z9/YmLiys3sWu12nI712k0Gpv98tjyXHWNlJ11qlpuer0elUqFg4NDrb8/Ghsby7vvvsvOnTtJTk4mPz+fxMREvLy8gKu3IorLQ1RNTZfbyZMnefvtt9myZQtJSUlkZGRw6NAhmjdvbvNrXU/llZuDgwMqlarcv9+q/j9o199cRVGYOHEiP/30E3/88QcNGzas0nFvvfUWr776Khs2bKBDhw7X3P/8+fOkpKQQEhJS3ZCFEDeYc+fOMWbMGFOP/vDwcJ577jlSUlLM9ouOjqZr164EBwezevVq9uzZQ1xcnCmpixvT0aNHad++PUVFRSxbtoyYmBji4+Nv+qRek+xaY58wYQKrVq3i559/xsPDg8TERAC8vLxwcXEBYOTIkdSrV4958+YB8OabbzJz5kxWrVpFRESE6Rh3d3fc3d3Jzs5mzpw53H///QQHBxMfH8+0adOIjIykb9++9vmgQogacfLkSTp37kzTpk355ptvaNiwIYcPH+aFF17gt99+Y9euXfj6+qIoCuPGjWPRokWMHTvW3mELC0ycOJEJEybw2muv2TuUm4Zda+xLliwhIyOD7t27ExISYlrWrFlj2ufs2bMkJCSYHVNYWMgDDzxgdsw777wDgFqt5sCBAwwePJimTZvyxBNP0L59e/766y+7PMs+ac0BXv1HzcELGdf92kJYS1EUcguL7LJY0u1nwoQJODk58fvvv9OtWzcaNGhA//792bRpExcuXOC///0vAMeOHePMmTPExcURHh6Os7Mzd9xxh6mjrqIoREZGsmDBArPzx8bGolKpiIuLIzo6GpVKRXp6umn76NGjGTJkiOn9hg0b6Nq1K97e3vj5+XHPPfcQHx9v2n769GlUKhWxsbEAXLhwgQcffJDAwEA8PDwYOnQo58+fN+0/e/Zs2rVrZ3qfnp6OSqUiOjq6whji4+O59957CQoKwt3dndtvv51NmzaZfa6EhATuu+8+/Pz8UKlUpqXkZyvt4MGD9OzZExcXF/z8/HjyySfJzs42bR8/fjxDhw4tU3anT582revevTuTJk0yvY+IiGDRokWm95s3b0alUpk+T05ODn/++SeFhYU0adIEZ2dnWrduzc8//1xhmRYUFNCrVy969epl6ju1Z88eevfujb+/P15eXnTr1o19+/ZV+FlvdnatsVflD7jkLzBg9ktSHhcXFzZu3FiNqGzrQkYel/NVXEzP5zZ7ByNEFeXp9LScaZ+/oyNz++LqdO3/mlJTU9m4cSOvv/66qYWvWHBwMI888ghr1qzho48+Ijk5GZ1Ox5dffsmnn35Kw4YNee+99+jXrx8nTpwgJCSEMWPGsGLFCsaNG2c6z/Lly/nPf/5DZGSkWcKtSE5ODlOmTKFNmzZkZ2czc+ZMhg4dSmxsbJl7zzqdjgEDBqDRaFi3bh0ajYbnnnuOIUOGsGfPHqs7oWVnZzNgwABef/11tFotK1euZNCgQRw/fpwGDRoAMHXqVP799182bNhAWFgYO3bs4P7776/0c/Xt25fOnTuzZ88eLl26xNixY5k4cSIrVqywKs7SDAYDU6dOxd3d3bQuJSUFRVH4+OOPWbp0Ke3bt2fVqlXcd9997N271+xLDxj7iwwbNozs7Gw2bdpkqsxlZWUxatQoPvjgAxRFYcGCBQwYMIATJ05cc27zm5H0DqlhwZ7GXo1JWQXX2FMIYYkTJ06gKAotWrQod3uLFi1IS0sjOTnZ1Enp7bffZsCAAbRo0YKPPvqI0NBQFi9eDBhrvsePH2fv3r2AMfGuWrWKMWPGAJi+POTl5VUY0/333899991HZGQk7dq1Y9myZRw8eJAjR46U2XfTpk0cOHCAlStX0qlTJ2677Ta+/vprYmNj2bx5s9Xl0rZtW5566iluueUWmjRpwquvvkrjxo353//+Z9onNjaWESNGcPvttxMcHHzNsUNWrVpFfn4+K1eu5JZbbqFnz558+OGHfPnllyQlJVkda0lffPEFBQUF3HvvvaZ1xT+3F198keHDh9O0aVNmz55Njx49TK20xRRF4fHHHycuLo7169ebfUHo2bMnjz76KM2bN6dFixZ88skn5ObmsmXLFpvEfqO5IXrF12ZBnsZvjIkZ+XaORIiqc9GoOTLXPn1SXDRlx5qojCVN93feeafptYODA126dDEl3dDQUAYMGMBXX31Fjx49WLduHQUFBTz44IMANGnSBCcnJ7755humTJlS7vlPnDjBzJkziYmJ4fLly6bEdPbsWW655RbTfl26dEGv1+Pt7U3Lli1N6xs0aEBYWBhHjhyhV69eVS+EErKzs5k9eza//vorCQkJFBUVkZeXx9mzZ037NGzYkPXr1/P0009XaUCwo0eP0rZtW7Ohvu+8804MBgPHjx8nICDAqliL5ebmMmPGDJYuXcoPP/xQZnvJnxtA165dzb6oALzwwgts3ryZxx9/vMxnSkpKYsaMGURHR3Pp0iX0ej25ublmZVKbSI29hhUn9qRMqbGLm4dKpcLVydEuS1WboCMjI1GpVBw9erTc7UePHsXHx4eAgAB8fHwq/azFnnjiCX788Ufy8vJYvnw5Dz/8sGmQKl9fXxYuXMhLL72Ei4sL7u7uZYa4HjRoEKmpqXz66afExMQQExMDGAcdKWnNmjW8+uqrVYrJUs8//zw//fQTb7zxBn/99RexsbG0bt3aLIZ3332XgoIC/P39cXd3p3///lZfzxbefvttmjVrxqBBg8zWV/XnBsaf92+//cbq1avL3I4dNWoUsbGxvPfee+zYsYPY2Fj8/PzK/FxqC0nsNexqU7zU2IWwJT8/P3r37s1HH31Upnk8MTGRr7/+mocffhiVSkXjxo1xdHRk+/btpn0MBgM7duwwqzEPGDAANzc3li5dyoYNG0zN8MUmTJhgeoY6NjaWwYMHm7alpKRw/PhxZsyYwd133226FVCesLAwunbtSnp6ulkz/blz5zh37pxZTJbavn07o0ePZujQobRu3Zrg4OAyfZOaNm3K6NGjiYiIICYmhs8++6zSc7Zo0YL9+/eTk5Njdh0HB4dKZ+OsioSEBBYsWFCm4yIYn5AKDg42+7kBbNu2rUwZffnll/Tr149XX32VcePGmYYGL4712WefZcCAAbRq1QqtVsvly5erFfeNTBJ7DbvaFC81diFs7cMPP6SgoIC+ffuydetWzp07x4YNG+jduzf16tXj9ddfB4yPw44bN44XXniB9evXc/ToUcaPH8/FixcZP3686XxqtZrhw4fz8ssv06RJEzp37lzmmi4uLjRu3JjIyEizjlc+Pj74+fnxySefEBcXxx9//FFhkz0Ym+M7derEyJEj2b17N/v27eORRx6hXbt29OzZ07Sfoijk5+eTn59v6uVdWFhoWqfX6zEYDKZxxJs0acKPP/5IbGws+/fvZ8SIEWXGb9+1axcvv/wy33//Pa1atTKbGbM8jzzyCM7OzowaNYpDhw7x559/8n//93889thjBAUFmfYzGAymuIprwwUFBaZ15Y0jv3jxYoYOHcqtt95a7rUnT57Mm2++yerVq/n333+ZPXs2f/75J88//7zZfsXN75MnTyYsLMys7Js0acKXX37J0aNHiYmJ4ZFHHinT4bJWUUQZGRkZCqBkZGRU+1wnEtOV8Bd/UZrNWK8YDAYbRFd3FBYWKmvXrlUKCwvtHcpNxdJyy8vLU44cOaLk5eXVcGQ14/Tp08qoUaOUoKAgRaPRKGFhYcr//d//KZcvXzbbLycnRxk/frzi7++vODk5KXfccYeybds2s330er3yzz//KIDy1ltvXfPao0aNUu69917T+6ioKKVFixaKVqtV2rRpo0RHRyuA8tNPPymKoiinTp1SAOWff/5RFEVRzp8/rwwZMkRxd3dX3N3dlaFDhyrnzp0znW/WrFkKUKVl1KhRpmv06NFDcXFxUcLCwpQPP/xQ6datm/Lcc88piqIoly5dUurXr6989tlnpuv8+eefCqCkpaVV+FkPHDig9OjRQ3F2dlZ8fX2VcePGKVlZWaZyGz58eJXiLI5DURQlPDxccXFxMfvMpcu0qKhImTFjhhIaGqpoNBqldevWytq1a03bS5epoijK8ePHFRcXF2Xjxo2KoijKvn37lA4dOijOzs5KkyZNlO+++04JDw9X3n333Qo/7/Wg1+uVtLQ0Ra/Xm9ZV9vdY1dx0w4wVfyPJzMzEy8vrmuPxVkV2bj63zDX2cN0/sw9erjI0alXpdDrWr19veiRIVI2l5Zafn8+pU6do2LBhnRsrvjSDwcCGDRsYMmQI586dM6uN3sjWrl3L2rVrbfbomaUMBgOZmZl4enrKULwWKK/cKvt7rGpukp9ADdNq1Lg5Gr87JWRW/JiMEMK+CgoKOH/+PG+++SYPPPDATZPUwXgLQb78imKS2K8D7yszYcojb0LcuIqHpM3IyODNN9+0dzgWGTRoEJ9++qm9wxA3CEns14GXk7HGLoldiBvX6NGj0el0REdHX7MzmRA3Mkns14FXcY09UxK7EEKImiWJ/TrwvlJjT5LELoQQooZJYr8OimvsCdIUL4QQooZJYr8OpPOcEEKI60US+3Xgpb3SeU6a4oUQQtQwSezXQXGNPT1XR75Ob99ghBBCWK146N4bmST268BFDS4aY1FLBzohhLh5/PTTTwwcOJCIiAjc3d2566677B3SNUlivw5UKgi6MsubdKATwnZGjx6NSqUyLX5+fvTr148DBw7YOzRRC8ybN49x48Zxzz338OuvvxIbG8v69evtHdY1SWK/Tq7Oyy6JXQhb6tevHwkJCSQkJLB582YcHR2555577B2WuMmdPHmSN954gy1btvDMM8/QqlUrIiMjTbPI3cgksV8nxfOyS894cVNQFCjMsc9i4bxUWq2W4OBggoODadeuHS+99BLnzp0jOTnZtM+LL75I06ZNcXV1pVGjRrzyyitl7pWePn0atVqNj48ParXa1AqQnp4OwOzZs2nXrp1p/8LCQiIjI832KRYREWHWkqBSqVi7dq1p+4YNG+jatSve3t74+flxzz33EB8fbxaLSqUiNja2zHkXLVpket+9e3cmTZpken/8+HE0Go1ZnAaDgblz51K/fn20Wi3t2rVjw4YNFl+r9Gco7/pffvklHTp0wMPDg+DgYEaMGMGlS5fMjvnll19o27YtLi4uprIZMmQIlVmyZAmNGzfGycmJZs2a8eWXX5ptLx3bpEmT6N69e4WfMTo6uszP7bHHHjM7z8aNG2ncuDGvv/46AQEBeHh4cN9993H+/HnTMaV/J/bt24e3t7fZ/PYLFy6kdevWuLm5ERYWxvjx48nOzq7081aXY42eXZgU19ilKV7cFHS58Eaofa798kVwcrPq0OzsbL766isiIyPx8/Mzrffw8GDFihWEhoZy8OBBxo0bh4eHB9OmTTPtUzzR5dq1a7n99tvZtWsX999/f4XX+vDDD0lKSqpw+9y5cxk3bhwAISEhZttycnKYMmUKbdq0ITs7m5kzZzJ06FBiY2OrNTvaCy+8UGZGsPfee48FCxbw8ccfc+utt7Js2TIGDx7M4cOHadKkidXXKo9Op+PVV1+lWbNmXLp0iSlTpjB69GhT83V6ejoPP/wwY8eOZe3atbi4uPDcc8+Z5pkvz08//cRzzz3HokWL6NWrF7/88guPP/449evXp0ePHjaJe+/evfzvf/8zW5ecnMz+/fvx8PDgt99+A+C5555jyJAh7NmzB5VKZbb/sWPH6Nu3LzNmzGDs2LGm9Q4ODrz//vs0bNiQkydPMn78eKZNm8ZHH31kk9jLI4m9pmUn4Zl3lvpBDQFpihfC1n755Rfc3d0BY8IMCQnhl19+MUuQM2bMML2OiIjg+eefZ/Xq1WaJvbgGHxgYSHBwcKVNrqmpqbz22mu8+OKLvPLKK2W2FxQU4OvrS3BwcLnHl/7CsGzZMgICAjhy5Ai33HJLFT51WX/++Sc7duxg7Nix/Pnnn6b177zzDi+++CLDhg0D4M033+TPP/9k0aJFLF682KprVWTMmDGmcm/UqBHvv/8+t99+O9nZ2bi7u/Pvv/+Sm5vLiy++SGio8Yuji4tLpYn9nXfeYfTo0YwfPx6AKVOmsGvXLt555x2bJfYpU6bwwgsvmP0sDQYDarWaVatWERYWBsCqVato3LgxmzdvplevXqZ9z5w5Q+/evXnyySd5/vnnzc5dskUjIiKC1157jaeffloS+83M8ev76HH5OLv8PwdcpMYubg4aV2PN2V7XtkCPHj1YsmQJAGlpaXz00Uf079+f3bt3Ex4eDsCaNWt4//33iY+PJzs7m6KiojLzWWdmZgLg5nbt1oK5c+fSo0cPunbtWu721NTUSufLPnHiBDNnziQmJobLly9jMBgAOHv2rFWJXVEUpk6dyqxZs0hJSTGtz8zM5OLFi9x5551m+995553s37/fbF2XLl3Mvgzl5uaWuc7w4cNRq9Wm93l5eWZN0Xv37mXu3Lns37+ftLQ0s8/VsmVLwsLCcHR05JtvvmHy5MlVap04evQoTz75ZJn433vvvWseWxVr167l5MmTTJ06tcyXtLCwMFNSBwgPD6d+/focOXLElNjT09Pp1asX58+fp2/fvmXOv2nTJubNm8exY8fIzMykqKiI/Px8cnNzy7Su2IrcY69hiosPAAFq4x+J1NjFTUGlMjaH22Mp1cR5LW5ubkRGRhIZGcntt9/OZ599Rk5Ojmka0507d/LII48wYMAAfvnlF/755x/++9//UlhYaHaeixcv4uDgQGBgYKXXO3HiBJ999lmFU7ueP3+ewsJCGjZsWOE5Bg0aRGpqKp9++ikxMTHExMQAlImpqlauXElOTg5PP/20VceD8ctPbGysaSmuUZf07rvvmu3ToUMH07acnBz69++Pp6cnX3/9NXv27OGnn34Crn6ukJAQlixZwhtvvIGzszPu7u58/fXXVsdcXTqdjmnTpvH666/j4uJits3Hx6fC40o2w585c4ZOnToxe/ZsxowZY/aF6PTp09xzzz20adOGH374gb1795paSaz9WVeFJPaadiWx+6qMnSUuZRWgN1jWOUgIUXUqlQoHBwfy8vIA2LFjB+Hh4fz3v/+lQ4cONGnShDNnzpQ5bs+ePTRv3vyatagXX3yRsWPHEhkZWe72LVu24OLiYpb0SkpJSeH48ePMmDGDu+++mxYtWpCWlmbhp7wqNzeX//73v7z55ptoNBqzbZ6enoSGhrJ9+3az9du3b6dly5Zm68LCwkxfkCIjI3F0LNugGxwcbLZPyWR44sQJUlJSmD9/PnfddRfNmzcv03EOYNSoUTRv3pwnn3yS2NhYBg8eXOnna9GiRZXit8aSJUtwd3fnscceK7OtefPmnDt3jnPnzpnWnTlzhvPnz5tdu1GjRqxYsYL//ve/eHp6Mn36dNO2vXv3YjAYWLBgAXfccQdNmzbl4sWabwmTpvia5mK8T+euZKF2UKE3KFzOLjA91y6EqJ6CggISExMBY1P8hx9+SHZ2NoMGDQKgSZMmnD17ltWrV3P77bfz66+/mmqSYKw5rVmzhoULFzJ79uxKrxUXF8fZs2eJi4srd3t8fDzz58/n3nvvLdNTPj09ncLCQnx8fPDz8+OTTz4hJCSEs2fP8tJLL5V7vsLCQvLzr7byKYpCUVERer3e1CS+atUq2rdvX2HP8hdeeIFZs2bRuHFj2rVrx/Lly4mNjbV5Tbl+/fo4OTnxwQcf8PTTT3Po0CFeffXVMvtNnToVlUrFu+++i0ajwcPDo0xZlY7/oYce4tZbb6VXr16sW7eOH3/8kU2bNpntp9PpTGWl1+sxGAym9xXdw3/rrbdYt25dmY5wAL1796ZFixaMGDGCd999FzB2nmvXrh09e/Y07efh4WH6ErRixQo6duzIAw88wF133UVkZCQ6nY4PPviAQYMGsX37dpYuXVpJKdqIIsrIyMhQACUjI6Pa5yr67WVFmeWpFK1/Uen0+iYl/MVflNizadUPsg4oLCxU1q5dqxQWFto7lJuKpeWWl5enHDlyRMnLy6vhyGxv1KhRCmBaPDw8lNtvv135/vvvzfZ74YUXFD8/P8Xd3V15+OGHlXfffVfx8vJSFEVR/v77b6VRo0bKvHnzFJ1Op6SlpSl6vV75888/FUBJS0tTFEVRZs2apQDKO++8Yzpv6X3Cw8PN4im9/Pnnn4qiKEpUVJTSokULRavVKm3atFGio6MVQPnpp58URVGUU6dOVXqe5cuXK4qiKN26dVNUKpWyZ88eU0yzZs1S2rZta3qv1+uV2bNnK/Xq1VM0Go3Stm1b5bfffjNtL77WP//8Y1Zm4eHhyrvvvmt6XzK+Yt26dVOee+45Ra/XK2lpacpXX32lREREKFqtVuncubPyv//9z+zcq1atUoKCgpQLFy6Y/Qzvvffe8n/AV3z00UdKo0aNFI1GozRt2lRZuXKl2fbKyqrkUhxH8c/tnnvuKXOekp8xPj5eGThwoOLq6qq4u7srQ4cOVc6fP19hWSuKosydO1eJjIxUcnJyFEVRlIULFyohISGKi4uL0rdvX2XlypWm35nictPr9abjK/t7rGpuUl35MKKEzMxMvLy8yMjIqLQDTFXot7yD+s9XMbQZxn0JI4k9l87Hj7Wnb6vye8uKq3Q6HevXr2fAgAFlmhhFxSwtt/z8fE6dOkXDhg1rrDPPzcJgMJCZmYmnp6dVj51FREQQHR1NREREmW1Dhgwp83y1NSZNmkS7du0YPXp0tc5jS9Utt7qqvHKr7O+xqrlJfgI1rLjzHHlpMkiNELVcQECAWa/xknx8fHBycqr2NTQaTYXXEALkHnvNu3KPnbw0ggOvJHbpGS9ErbRnz54Kty1fvtwm13j77bdtch5Re0mNvaa5eAOgyksl2Etq7EIIIWqWJPYapphq7OnSFC+EEKLG2TWxz5s3j9tvvx0PDw8CAwMZMmQIx48fv+Zx3333nel509atW5eZRk9RFGbOnElISAguLi706tWLEydO1NTHqJzZPXaZ4U3cuKQfrRD2Z4u/Q7sm9i1btjBhwgR27dpFVFQUOp2OPn36kJOTU+ExO3bsYPjw4TzxxBP8888/DBkyhCFDhnDo0CHTPm+99Rbvv/8+S5cuJSYmBjc3N/r27Wv2POh1cyWxqxQ9oc7GkYYSMvLlP1FxwyjuOV/eEKJCiOur+O+wOk8C2bXzXMmpA8H4cH9gYCB79+7lP//5T7nHvPfee/Tr148XXngBgFdffZWoqCg+/PBDli5diqIoLFq0iBkzZnDvvfcCxuEWg4KCWLt2rWkihOvG0ZkiByccDYUEaYwjYeXp9GTmF+HlIo9wCftTq9V4e3ubRglzdXUtd8COusBgMJgGhZHHtqpOys06JctNpVKRm5vLpUuX8Pb2rtaTDzdUr/iMjAyASmdV2rlzJ1OmTDFb17dvX9McuqdOnSIxMdFs5h0vLy86derEzp07y03sBQUFZiMTFU8GodPpyszZbCmdTgdqdxwNqajzLuPtoiE9T8eFlGxcg9yrde7arrjsq/szqGusKTc/Pz/0en2l05DWBYqikJ+fj7Ozc539cmMNKTfrlFdunp6e+Pn5lfv3W9W/6RsmsRsMBiZNmsSdd95Z6exGiYmJBAUFma0LCgoyDSlZ/G9l+5Q2b9485syZU2b977//jqurZTNNlae7ozvoUtmz9XdcVLeSjor/bf6LFt7SHF8VUVFR9g7hpmRNualUKnlGWgg70ev1ld6mrertshsmsU+YMIFDhw6xbdu2637t6dOnm7UCZGZmEhYWRp8+fao98pxOpyPnxHwAbr8lkiaF/iScSKFBszYMaF+vWueu7XQ6HVFRUfTu3VtGnrOAlJv1pOysI+VmHUvLrbg1+VpuiMQ+ceJEfvnlF7Zu3Ur9+vUr3Tc4OLhMc2FSUhLBwcGm7cXrQkJCzPYpOW9wSVqtFq1WW2a9RqOxyS9poaOxyd2xMJNQb1cgheRsnfwBVJGtfg51jZSb9aTsrCPlZp2qlltVy9auvRwURWHixIn89NNP/PHHH5XOX1ysc+fObN682WxdVFQUnTt3BqBhw4YEBweb7ZOZmUlMTIxpn+utUO1mfJGbaprVTUafE0IIURPsWmOfMGECq1at4ueff8bDw8N0D9zLy8s0z+/IkSOpV68e8+bNA4zT5nXr1o0FCxYwcOBAVq9ezd9//80nn3wCGO8RTpo0iddee40mTZrQsGFDXnnlFUJDQyuc1rCm6a7U2MlLI8TfmNjlWXYhhBA1wa6JfcmSJQBlZjtavny5aeais2fPmj0+0aVLF1atWsWMGTN4+eWXadKkCWvXrjXrcDdt2jRycnJ48sknSU9Pp2vXrmzYsMFuM1cVmhJ7KkFXhpVNkNHnhBBC1AC7JvaqDNISHR1dZt2DDz7Igw8+WOExKpWKuXPnMnfu3OqEZzOF6iuJPTfVNKys1NiFEELUBBlJ4DooLNkUf6XGnppTSL5Ob8eohBBC1EaS2K8DU409LxUvFw1aR2OxX8osqOQoIYQQwnKS2K8DnWNxr/g0VCrV1elbpTleCCGEjUlivw5MNfaCDNAXme6zJ2Tk2TEqIYQQtZEk9uvAVGMHyE831dilA50QQghbk8R+HSgqNYr2ytC0ualXm+Iz5B67EEII25LEfr24XJmxLu/qI2+JmdIUL4QQwrYksV8niouP8UVe2tXELoPUCCGEsDFJ7NdLcWIv0RSfJI+7CSGEsDFJ7NeLqcaeatZ5zmCQOdmFEELYjiT260Qx3WNPI8Bdi4MKigwKl3Ok1i6EEMJ2JLFfLy7exn9zU3FUOxDgYZz/Xe6zCyGEsCVJ7NdLiV7xgHSgE0IIUSMksV8nJXvFAzJIjRBCiBohif16MfWKv5LYPWVediGEELYnif16KdErHiBIJoIRQghRAySxXycle8UDpnnZ5R67EEIIW5LEfr0U19h1uaDLJ8hTauxCCCFsTxL79aL1BJXa+LrkePEZ+SiKDFIjhBDCNiSxXy8qVYn77GmmXvG5hXqyCorsGJgQQojaRBL79VRivHhXJ0c8nR0BSJL77EIIIWxEEvv15Go+SE2Ilwsg99mFEELYjiT266lUz/jiR97kWXYhhBC2Ion9eirRFA8Q7GkcL16a4oUQQtiKJPbrqVRTfPCVpvgEaYoXQghhI5LYr6fS48VfeeRNauxCCCFsRRL79VR6vHivK1O3So1dCCGEjUhiv55KN8V7XukVLzV2IYQQNiKJ/Xoq1Su+eJCalJxCCor09opKCCFELSKJ/Xoq1Svex1WDk6PxR5CcVWCvqIQQQtQiktivp5JN8YqCSqXC19UJgLQcnR0DE0IIUVtIYr+eipviDUVQmA2At6sGgNTcQntFJYQQohaxa2LfunUrgwYNIjQ0FJVKxdq1ayvdf/To0ahUqjJLq1atTPvMnj27zPbmzZvX8CepIo0LqI094a82xxtr7OmS2IUQQtiAXRN7Tk4Obdu2ZfHixVXa/7333iMhIcG0nDt3Dl9fXx588EGz/Vq1amW237Zt22oifMupVGV6xvu6FTfFS2IXQghRfY72vHj//v3p379/lff38vLCy8vL9H7t2rWkpaXx+OOPm+3n6OhIcHCwzeK0KRdfyEow9Yy/2hQv99iFEEJUn10Te3V9/vnn9OrVi/DwcLP1J06cIDQ0FGdnZzp37sy8efNo0KBBhecpKCigoOBqr/TMzEwAdDodOl31Em7x8cX/qp29cACKspJRdDo8ndUApGbnV/tatU3pshNVI+VmPSk760i5WcfScqvqfipFURSro7IhlUrFTz/9xJAhQ6q0/8WLF2nQoAGrVq3ioYceMq3/7bffyM7OplmzZiQkJDBnzhwuXLjAoUOH8PDwKPdcs2fPZs6cOWXWr1q1CldXV6s+T0VuP/k+oRl/c6D+SE4F9CI6QcVPp9Xc5mdgVFODTa8lhBCi9sjNzWXEiBFkZGTg6elZ4X43bY39iy++wNvbu8wXgZJN+23atKFTp06Eh4fz7bff8sQTT5R7runTpzNlyhTT+8zMTMLCwujTp0+lhVcVOp2OqKgoevfujUajQf1rFMT+TatGobS4awCFsRf56fQhXLwDGDCgfbWuVduULjtRNVJu1pOys46Um3UsLbfi1uRruSkTu6IoLFu2jMceewwnJ6dK9/X29qZp06bExcVVuI9Wq0Wr1ZZZr9FobPZLajqXmx8A6oIM1BoN/h7GYWXT83TyB1EBW/4c6hIpN+tJ2VlHys06VS23qpbtTfkc+5YtW4iLi6uwBl5SdnY28fHxhISEXIfIqqBUr3gft+LH3eTelBBCiOqza2LPzs4mNjaW2NhYAE6dOkVsbCxnz54FjE3kI0eOLHPc559/TqdOnbjlllvKbHv++efZsmULp0+fZseOHQwdOhS1Ws3w4cNr9LNUWanx4n2u9IpPk+fYhRBC2IBdm+L//vtvevToYXpffJ971KhRrFixgoSEBFOSL5aRkcEPP/zAe++9V+45z58/z/Dhw0lJSSEgIICuXbuya9cuAgICau6DWKLUePHeVwaoyS3Uk6/T46xR2ysyIYQQtYBdE3v37t2prFP+ihUryqzz8vIiNze3wmNWr15ti9BqTqmmeE9nR9QOKvQGhfRcHcFektiFEEJY76a8x35TK9UUr1KppDleCCGEzUhiv96Km+Lz0sFgnIPd21WGlRVCCGEbFif2kydP1kQcdUdxYkeB/AygZAc66RkvhBCieixO7JGRkfTo0YOvvvqK/Pz8moipdnN0AqcrI+CZesZfqbFLU7wQQohqsjix79u3jzZt2jBlyhSCg4N56qmn2L17d03EVnuV6hkvU7cKIYSwFYsTe7t27Xjvvfe4ePEiy5YtIyEhga5du3LLLbewcOFCkpOTayLO2sW1+D77lUfe3K7M8JYjTfFCCCGqx+rOc46Ojtx333189913vPnmm8TFxfH8888TFhbGyJEjSUhIsGWctUupnvG+UmMXQghhI1Yn9r///pvx48cTEhLCwoULef7554mPjycqKoqLFy9y77332jLO2qWCpni5xy6EEKK6LB6gZuHChSxfvpzjx48zYMAAVq5cyYABA3BwMH5HaNiwIStWrCAiIsLWsdYepQap8b7SKz5VesULIYSoJosT+5IlSxgzZgyjR4+ucGKVwMBAPv/882oHV2uVbop3k6Z4IYQQtmFxYj9x4sQ193FycmLUqFFWBVQnVDBevAxQI4QQorqsGis+LS2Nzz//nKNHjwLQokULxowZg6+vr02Dq7VKT916pSk+M7+IIr0BR7UMCCiEEMI6FmeQrVu3EhERwfvvv09aWhppaWl88MEHNGzYkK1bt9ZEjLVPqaZ4LxeNaVN6ntxnF0IIYT2La+wTJkzg4YcfZsmSJajVxpnI9Ho948ePZ8KECRw8eNDmQdY6pqZ4Y2J3VDvg5aIhI09Hem4h/u5aOwYnhBDiZmZxjT0uLo6pU6eakjqAWq1mypQpxMXF2TS4WqtUUzxcbY6XQWqEEEJUh8WJ/bbbbjPdWy/p6NGjtG3b1iZB1XrFNfbCbCgydpjzlmfZhRBC2IDFTfHPPvsszz33HHFxcdxxxx0A7Nq1i8WLFzN//nwOHDhg2rdNmza2i7Q2cfYCVIBivM/uESSPvAkhhLAJixP78OHDAZg2bVq521QqFYqioFKp0Ov11Y+wNnJQg4u3MannpYJHkGmQGpm6VQghRHVYnNhPnTpVE3HUPS6+VxJ7qalb5Vl2IYQQ1WBxYg8PD6+JOOqeUoPUFDfFyz12IYQQ1WHVADXx8fEsWrTI1ImuZcuWPPfcczRu3NimwdVqFYwXL03xQgghqsPiXvEbN26kZcuW7N69mzZt2tCmTRtiYmJo1aoVUVFRNRFj7VRqkBppihdCCGELFtfYX3rpJSZPnsz8+fPLrH/xxRfp3bu3zYKr1cqMF19cY5fELoQQwnoW19iPHj3KE088UWb9mDFjOHLkiE2CqhNKNcVffdxNmuKFEEJYz+LEHhAQQGxsbJn1sbGxBAYG2iKmuqG4xl66KT63EINBsVdUQgghbnIWN8WPGzeOJ598kpMnT9KlSxcAtm/fzptvvsmUKVNsHmCtVWq8+OKmeIMCWflFeLlqKjpSCCGEqJDFif2VV17Bw8ODBQsWMH36dABCQ0OZPXs2zz77rM0DrLVKNcVrHdW4OanJKdSTllsoiV0IIYRVLErsRUVFrFq1ihEjRjB58mSysrIA8PDwqJHgarVSveLBOF58TmEeqbmFROBmp8CEEELczCy6x+7o6MjTTz9Nfn4+YEzoktStVLJXvGK8p+7jZqyly3jxQgghrGVx57mOHTvyzz//1EQsdUtxU7y+AHS5QMln2aVnvBBCCOtYfI99/PjxTJ06lfPnz9O+fXvc3MybjGVGtypycgcHDRh0xuZ4JzeznvFCCCGENSxO7MOGDQMw6ygnM7pZQaUyNsfnXDI2x3vVx0cGqRFCCFFNMrubPbn6GhO7abz44hq7NMULIYSwjsX32M+cOUO9evUIDw83W+rVq8eZM2csOtfWrVsZNGgQoaGhqFQq1q5dW+n+0dHRqFSqMktiYqLZfosXLyYiIgJnZ2c6derE7t27Lf2Y10epnvFXR5+TGrsQQgjrWJzYe/ToQWpqapn1GRkZ9OjRw6Jz5eTk0LZtWxYvXmzRccePHychIcG0lBzxbs2aNUyZMoVZs2axb98+2rZtS9++fbl06ZJF17guKhgvPlUmghFCCGEli5vii++ll5aSklKmI9219O/fn/79+1saAoGBgXh7e5e7beHChYwbN47HH38cgKVLl/Lrr7+ybNkyXnrppXKPKSgooKCgwPQ+MzMTAJ1Oh05XvWbx4uPLO4/a2RsHQJ99GYNOh4fW+D0rLaew2tetDSorO1ExKTfrSdlZR8rNOpaWW1X3q3Jiv++++wBjR7nRo0ej1WpN2/R6PQcOHDANMVvT2rVrR0FBAbfccguzZ8/mzjvvBKCwsJC9e/eaRsQDcHBwoFevXuzcubPC882bN485c+aUWf/777/j6upqk5jLm9K2ZUIaTYBTR/ZxOHM957IBHElMzWL9+vU2uW5tINMBW0fKzXpSdtaRcrNOVcstNze3SvtVObF7eXkBxhq7h4cHLi4upm1OTk7ccccdjBs3rqqns0pISAhLly6lQ4cOFBQU8Nlnn9G9e3diYmK47bbbuHz5Mnq9nqCgILPjgoKCOHbsWIXnnT59utk495mZmYSFhdGnTx88PT2rFbNOpyMqKorevXuj0ZgPE+uw4wRcWk+jEG/CBwzgQnoe7xz8i1yDA/379ym3ZaQuqazsRMWk3KwnZWcdKTfrWFpuxa3J11LlxL58+XIAIiIieP755y1udreFZs2a0axZM9P7Ll26EB8fz7vvvsuXX35p9Xm1Wq1ZC0QxjUZjs1/Scs/l7g+AQ346DhoNAZ7GRK7TK+gUB9ycLL5TUivZ8udQl0i5WU/KzjpSbtaparlVtWwt7jw3a9YsuyT1inTs2JG4uDgA/P39UavVJCUlme2TlJREcHCwPcKrXKle8a5Oapwcr9xnl57xQgghrGBxYk9KSuKxxx4jNDQUR0dH1Gq12XK9xcbGEhISAhhvCbRv357NmzebthsMBjZv3kznzp2ve2zXVKpXvEqlujpIjQwrK4QQwgoWt/WOHj2as2fP8sorrxASElKt+8DZ2dmm2jYYB7+JjY3F19eXBg0aMH36dC5cuMDKlSsBWLRoEQ0bNqRVq1bk5+fz2Wef8ccff/D777+bzjFlyhRGjRpFhw4d6NixI4sWLSInJ8fUS/6GUmrqVjCOF5+UWSA1diGEEFaxOLFv27aNv/76i3bt2lX74n///bfZs+/FHdhGjRrFihUrSEhI4OzZs6bthYWFTJ06lQsXLuDq6kqbNm3YtGmT2TkefvhhkpOTmTlzJomJibRr144NGzaU6VB3QyjZFG8wgIOD6Vl2SexCCCGsYXFiDwsLQ7kyzWh1de/evdJzrVixwuz9tGnTmDZt2jXPO3HiRCZOnFjd8GpecVO8YoCCTHDxLjH6nDTFCyGEsJzF99gXLVrESy+9xOnTp2sgnDpG4wyaKx0Rc1OAq+PFy+hzQgghrGFxjf3hhx8mNzeXxo0b4+rqWqb7fXnDzYpKuAdAWg7kJINfY1PnORkvXgghhDUsTuyLFi2qgTDqMPcgSDsN2cZH9HxkhjchhBDVYHFiHzVqVE3EUXe5X5nAJts4Sc3VxC41diGEEJaz+B47QHx8PDNmzGD48OGmWdN+++03Dh8+bNPg6gT3K731i2vsbtIrXgghhPUsTuxbtmyhdevWxMTE8OOPP5KdnQ3A/v37mTVrls0DrPVKJ/biGrsMUCOEEMIKFif2l156iddee42oqCicnJxM63v27MmuXbtsGlydIE3xQgghbMjixH7w4EGGDh1aZn1gYCCXL1+2SVB1SgU19txCPQVFentFJYQQ4iZlcWL39vYmISGhzPp//vmHevXq2SSoOqVUjd3D2RG1g3GYXhmkRgghhKUsTuzDhg3jxRdfJDExEZVKhcFgYPv27Tz//POMHDmyJmKs3Uw19ktgMODgoMLbRTrQCSGEsI7Fif2NN96gefPmhIWFkZ2dTcuWLfnPf/5Dly5dmDFjRk3EWLu5BRj/NeggPx3ANF68jD4nhBDCUhY/x+7k5MSnn37KzJkzOXjwINnZ2dx66600adKkJuKr/Ry1xjHj89KM99ldfa/cZ8+RpnghhBAWszixFwsLCyMsLAy9Xs/BgwdJS0vDx8fHlrHVHe5BVxN7YAt83KRnvBBCCOtY3BQ/adIkPv/8cwD0ej3dunXjtttuIywsjOjoaFvHVzeUeeTtyj12aYoXQghhIYsT+/fff0/btm0BWLduHSdPnuTYsWNMnjyZ//73vzYPsE6oaJAaaYoXQghhIYsT++XLlwkODgZg/fr1PPTQQzRt2pQxY8Zw8OBBmwdYJ5QZVlaa4oUQQljH4sQeFBTEkSNH0Ov1bNiwgd69ewOQm5uLWq22eYB1gjTFCyGEsBGLO889/vjjPPTQQ4SEhKBSqejVqxcAMTExNG/e3OYB1gmlauze0hQvhBDCShYn9tmzZ3PLLbdw7tw5HnzwQbRaLQBqtZqXXnrJ5gHWCaVq7L5XmuLTpSleCCGEhax63O2BBx4we5+eni7ztFdHmc5zMkCNEEII61h8j/3NN99kzZo1pvcPPfQQfn5+1K9fnwMHDtg0uDqjOLHnpoBeZ2qKz8wvokhvsGNgQgghbjYWJ/alS5cSFhYGQFRUFFFRUfz222/069eP559/3uYB1gkuvqC60vEwJ9k0VjxARp7cZxdCCFF1FjfFJyYmmhL7L7/8wkMPPUSfPn2IiIigU6dONg+wTnBwMN5nz0qA7CQcPUPxdHYkM7+ItFwdfu5ae0cohBDiJmFxjd3Hx4dz584BsGHDBlOveEVR0Otl/nCrlX7kTZ5lF0IIYQWLa+z33XcfI0aMoEmTJqSkpNC/f3/AOB97ZGSkzQOsM8p55O1MSq48yy6EEMIiFif2d999l4iICM6dO8dbb72Fu7s7AAkJCYwfP97mAdYZphq7MbH7XukZLzO8CSGEsITFiV2j0ZTbSW7y5Mk2CajOMtXYi0efMzbFp0pTvBBCCAtY9Rx7fHw8ixYt4ujRowC0bNmSSZMm0ahRI5sGV6dUOPqcJHYhhBBVZ3HnuY0bN9KyZUt2795NmzZtaNOmDTExMbRs2ZKoqKiaiLFuKDP63JWm+BxpihdCCFF1FtfYX3rpJSZPnsz8+fPLrH/xxRdNk8IIC1VQY5emeCGEEJawuMZ+9OhRnnjiiTLrx4wZw5EjR2wSVJ1UwT12GS9eCCGEJSxO7AEBAcTGxpZZHxsbS2BgoC1iqpuKm+ILs6Eg++rUrdIrXgghhAUsTuzjxo3jySef5M033+Svv/7ir7/+Yv78+Tz11FOMGzfOonNt3bqVQYMGERoaikqlYu3atZXu/+OPP9K7d28CAgLw9PSkc+fObNy40Wyf2bNno1KpzJabYjpZJ3fQuBpf51y6OkCNPMcuhBDCAhbfY3/llVfw8PBgwYIFTJ8+HYDQ0FBmz57Ns88+a9G5cnJyaNu2LWPGjOG+++675v5bt26ld+/evPHGG3h7e7N8+XIGDRpETEwMt956q2m/Vq1asWnTJtN7R0erOv9fXyqVsdaedhqyL+HjFQpAep4ORVFQqVT2jU8IIcRNwaKMV1RUxKpVqxgxYgSTJ08mKysLAA8PD6su3r9/f9PIdVWxaNEis/dvvPEGP//8M+vWrTNL7I6OjgQHB1sVk125B11J7El4hxib4vUGhcz8IrxKTAwjhBBCVMSixO7o6MjTTz9ten7d2oRuKwaDgaysLHx9fc3WnzhxgtDQUJydnencuTPz5s2jQYMGFZ6noKCAgoIC0/vMzEwAdDodOl317nEXH1+V86hdA3AA9BkJqDHg6qQmt1BPcmYuro6u1YrjZmRJ2YmrpNysJ2VnHSk361hablXdz+I26o4dO/LPP/8QHh5u6aE2984775Cdnc1DDz1kWtepUydWrFhBs2bNSEhIYM6cOdx1110cOnSowi8i8+bNY86cOWXW//7777i62iahVuUZ/zYpeTQE4mK3c+xSCFrU5KLi16hoIuz7HcquZHwE60i5WU/KzjpSbtaparnl5uZWaT+LE/v48eOZOnUq58+fp3379ri5uZltb9OmjaWntMqqVauYM2cOP//8s1lv/JJN+23atKFTp06Eh4fz7bfflvuYHsD06dOZMmWK6X1mZiZhYWH06dMHT0/PasWp0+mIioqid+/eaDSVN6c7/HUEtm6mSYgnjQYM4OPTO0lLyKLlrbfTvWlAteK4GVlSduIqKTfrSdlZR8rNOpaWW3Fr8rVYnNiHDRsGYNZRTqVSmTp4XY+pW1evXs3YsWP57rvvTNPGVsTb25umTZsSFxdX4T5arRattuyc5xqNxma/pFU6l1cIAA65l3HQaK7Mw55FVoGhTv+x2PLnUJdIuVlPys46Um7WqWq5VbVsLU7sp06dsvQQm/rmm28YM2YMq1evZuDAgdfcPzs7m/j4eB577LHrEF01VTT6nDzyJoQQooosTuy2vLeenZ1tVpM+deoUsbGx+Pr60qBBA6ZPn86FCxdYuXIlYGx+HzVqFO+99x6dOnUiMTERABcXF7y8vAB4/vnnGTRoEOHh4Vy8eJFZs2ahVqsZPny4zeKuMaXGi/eRqVuFEEJYqMoD1Ozdu5cePXqU28afkZFBjx492L9/v0UX//vvv7n11ltNj6pNmTKFW2+9lZkzZwLGOd7Pnj1r2v+TTz6hqKiICRMmEBISYlqee+450z7nz59n+PDhNGvWjIceegg/Pz927dpFQMBNcI+65LCyBoPM8CaEEMJiVa6xL1iwgJ49e5bbmczLy4vevXvz9ttv89VXX1X54t27d0dRlAq3r1ixwux9dHT0Nc+5evXqKl//huN25cuHQQf56fiahpWVxC6EEKJqqlxjj4mJ4d57761w+6BBg9ixY4dNgqqzHLXg4mN8nZ1UYlhZaYoXQghRNVVO7BcuXKh0QBp3d3cSEhJsElSdVqIDnTTFCyGEsFSVE3tAQADHjx+vcPuxY8fw9/e3SVB1WokOdL6S2IUQQlioyom9V69evP766+VuUxSF119//ZrPlIsqKFFj93G7co89R4fBUHFfBCGEEKJYlTvPzZgxg/bt29OpUyemTp1Ks2bNAGNNfcGCBfz7779lOrsJK5RI7EGezqgdVBTqDVzKKiDYy9m+sQkhhLjhVTmxN27cmE2bNjF69GiGDRtmmkZUURRatmxJVFQUkZGRNRZonVGiKV6jdiDU25lzqXmcTc2VxC6EEOKaLBqgpkOHDhw6dIjY2FhOnDiBoig0bdqUdu3a1VB4dVCp0eca+LqaEnvHhr6VHCiEEEJYMfIcQLt27SSZ15RSo8818HVjOymcTa3arD5CCCHqtip3nhPXSTk1doBzktiFEEJUgST2G01xYs9NAb3OlNilxi6EEKIqJLHfaFx8QaU2vs5JNiX2MymS2IUQQlybJPYbjYNDifvsSabEfjm7gNzCIjsGJoQQ4mZQpc5zBw4cqPIJ27RpY3Uw4gr3QMhKgOxLeIVq8HR2JDO/iHOpeTQLrnhYXyGEEKJKib1du3aoVKoKZ2Ir3qZSqdDr9TYNsE4q1YEu3M+NgxcyOJuaK4ldCCFEpaqU2E+dOlXTcYiSSjTFg7FnfHFiF0IIISpTpcQeHh5e03GIkkw1duOz7GHFPeNTcuwVkRBCiJuEVQPUABw5coSzZ89SWGg+89jgwYOrHVSdV8Gz7FJjF0IIcS0WJ/aTJ08ydOhQDh48aHbfvXjseLnHbgNlRp+TxC6EEKJqLH7c7bnnnqNhw4ZcunQJV1dXDh8+zNatW+nQoQPR0dE1EGIdVKbz3JXR59LyZPpWIYQQlbI4se/cuZO5c+fi7++Pg4MDDg4OdO3alXnz5vHss8/WRIx1T6l77CFeV6ZvLTJO3yqEEEJUxOLErtfr8fAwPnLl7+/PxYsXAWMHu+PHj9s2urqquCm+MBsKsnFUO1DP2wWAM9KBTgghRCUsTuy33HIL+/fvB6BTp0689dZbbN++nblz59KoUSObB1gnObmDxtj8To7cZxdCCFF1Fif2GTNmYDAYAJg7dy6nTp3irrvuYv369bz//vs2D7BOUqnKdKALk1nehBBCVIHFveL79u1reh0ZGcmxY8dITU3Fx8fH1DNe2IB7EKSdlkfehBBCWMTiGntGRgapqalm63x9fUlLSyMzM9NmgdV5pWrsxT3jJbELIYSojMWJfdiwYaxevbrM+m+//ZZhw4bZJChBJYPU5NkrIiGEEDcBixN7TEwMPXr0KLO+e/fuxMTE2CQoQZnEHlZi+tacApm+VQghRPksTuwFBQUUFZVNLDqdjrw8qU3aTKmmeC8XDV4uGgDOpUlzvBBCiPJZnNg7duzIJ598Umb90qVLad++vU2CEpSpsUOJ5vgUSexCCCHKZ3Gv+Ndee41evXqxf/9+7r77bgA2b97Mnj17+P33320eYJ1VqsYO0MBPpm8VQghROYtr7HfeeSc7d+4kLCyMb7/9lnXr1hEZGcmBAwe46667aiLGuqnksLJXxg1oIM+yCyGEuAarpm1t164dX3/9ta1jESW5BRj/NeggPx1cfU2J/YwkdiGEEBWoUo295PPpmZmZlS6W2Lp1K4MGDSI0NBSVSsXatWuveUx0dDS33XYbWq2WyMhIVqxYUWafxYsXExERgbOzM506dWL37t0WxXVDcNSCi4/xtQxSI4QQooqqlNh9fHy4dMl4r9fb2xsfH58yS/F6S+Tk5NC2bVsWL15cpf1PnTrFwIED6dGjB7GxsUyaNImxY8eyceNG0z5r1qxhypQpzJo1i3379tG2bVv69u1riv+mUsGz7OdTZfpWIYQQ5atSU/wff/yBr68vAH/++afNLt6/f3/69+9f5f2XLl1Kw4YNWbBgAQAtWrRg27ZtvPvuu6ahbhcuXMi4ceN4/PHHTcf8+uuvLFu2jJdeeslmsV8X7oGQfMxs+lZHBxWFegNJWfmEeLnYOUAhhBA3miol9m7dugFQVFTEli1bGDNmDPXr16/RwMqzc+dOevXqZbaub9++TJo0CYDCwkL27t3L9OnTTdsdHBzo1asXO3furPC8BQUFFBRcnee8+JaCTqdDp9NVK+bi4605j9o1AAdAn3ERw5XjQ72dOZuax8lLmfi7WtVF4qZRnbKry6TcrCdlZx0pN+tYWm5V3c+izODo6Mjbb7/NyJEjLTnMZhITEwkKCjJbFxQURGZmJnl5eaSlpaHX68vd59ixYxWed968ecyZM6fM+t9//x1XV1ebxB4VFWXxMa0u5RAJnDy4iyOpDQFw0TsADvwaHcPlwLrRHG9N2Qkpt+qQsrOOlJt1qlpuublV619lcZWvZ8+ebNmyhYiICEsPvWFNnz6dKVOmmN5nZmYSFhZGnz598PT0rNa5dTodUVFR9O7dG41GY9GxDjvj4Y8NNA50J2LAAAB2Fh3h+J7zeNdvwoBekdWK7UZXnbKry6TcrCdlZx0pN+tYWm5V7aBucWLv378/L730EgcPHqR9+/a4ubmZbR88eLClp6yy4OBgkpKSzNYlJSXh6emJi4sLarUatVpd7j7BwcEVnler1aLVasus12g0NvsltepcXqEAOOQm43Dl2Ah/dwAuZOTXmT8gW/4c6hIpN+tJ2VlHys06VS23qpatxYl9/PjxgLGTWmkqlQq9Xm/pKausc+fOrF+/3mxdVFQUnTt3BsDJyYn27duzefNmhgwZAoDBYGDz5s1MnDixxuKqMeWNPiePvAkhhKiExYndcGUUNFvIzs4mLi7O9P7UqVPExsbi6+tLgwYNmD59OhcuXGDlypUAPP3003z44YdMmzaNMWPG8Mcff/Dtt9/y66+/ms4xZcoURo0aRYcOHejYsSOLFi0iJyfH1Ev+plL8uFtWommVjD4nhBCiMnbtVv3333+bTQFbfJ971KhRrFixgoSEBM6ePWva3rBhQ3799VcmT57Me++9R/369fnss89Mj7oBPPzwwyQnJzNz5kwSExNp164dGzZsKNOh7qbgdeXJg7xUyE01jj7nVzx9ayE5BUW4aWt3z3ghhBCWsSorbNmyhXfeeYejR48C0LJlS1544QWLx4rv3r07ilJxz+7yRpXr3r07//zzT6XnnThx4s3Z9F6asxf4REDaaUg8AI264+mswdtVQ3qujrOpubQIqV7nPiGEELWLxZPAfPXVV/Tq1QtXV1eeffZZnn32WVxcXLj77rtZtWpVTcRYt4W0Nf6bsN+0Su6zCyGEqIjFNfbXX3+dt956i8mTJ5vWPfvssyxcuJBXX32VESNG2DTAOi+kLRz52Syxh/m6cuB8htxnF0IIUYbFNfaTJ08yaNCgMusHDx7MqVOnbBKUKEFq7EIIISxgcWIPCwtj8+bNZdZv2rSJsLAwmwQlSgi+kthT4qEgC4BwSexCCCEqYHFT/NSpU3n22WeJjY2lS5cuAGzfvp0VK1bw3nvv2TzAOs89ADzrQeYFSDwE4Z2v1thTJLELIYQwZ3Fif+aZZwgODmbBggV8++23gHGWtTVr1nDvvffaPECBsTk+84KxOT68M2HF07em5aE3KKgdVHYOUAghxI3Cqsfdhg4dytChQ20di6hISFs4vt50n91s+tbMfEK9ZfpWIYQQRhbfYxd2UKoDnaPagXo+xmQu99mFEEKUZHFi9/HxwdfXt8zi5+dHvXr16NatG8uXL6+JWOuu4sSefAx0eYD0jBdCCFE+ixP7zJkzcXBwYODAgcyZM4c5c+YwcOBAHBwcmDBhAk2bNuWZZ57h008/rYl46yaPEHD1B0UPSUcAGTNeCCFE+Sy+x75t2zZee+01nn76abP1H3/8Mb///js//PADbdq04f3332fcuHE2C7ROU6mMtfb4zZAQC/XbmxL7GekZL4QQogSLa+wbN26kV69eZdbffffdbNy4EYABAwZw8uTJ6kcnripujk88AEhTvBBCiPJZnNh9fX1Zt25dmfXr1q3D19cXgJycHDw8PKofnbiqVAe6MGmKF0IIUQ6Lm+JfeeUVnnnmGf788086duwIwJ49e1i/fj1Lly4FICoqim7dutk20rquOLEnHQa9zjR9a0pOIdkFRbjL9K1CCCGwIrGPGzeOli1b8uGHH/Ljjz8C0KxZM7Zs2WIaiW7q1Km2jVIYp2/VekFBBiQfwzO4NT6uGtJydZyT6VuFEEJcYVU178477+TOO++0dSyiMioVhLSB038Zm+ODW9PA15W03AzOpEhiF0IIYWTVADXx8fHMmDGDESNGcOnSJQB+++03Dh8+bNPgRClyn10IIcQ1WJzYt2zZQuvWrYmJieGHH34gOzsbgP379zNr1iybByhKCGln/PdKYpee8UIIIUqzOLG/9NJLvPbaa0RFReHk5GRa37NnT3bt2mXT4EQpIW2M/yYeBINeErsQQogyLE7sBw8eLHcCmMDAQC5fvmyToEQF/CJB4wq6XEiJp1GAOwBHEjJRFMXOwQkhhLgRWJzYvb29SUhIKLP+n3/+oV69ejYJSlTAQQ3BrY2vE/bTpr4XWkcHkrMKiLuUbd/YhBBC3BAsTuzDhg3jxRdfJDExEZVKhcFgYPv27Tz//POMHDmyJmIUJZk60MXirFFze4RxUKDtcdJaIoQQworE/sYbb9C8eXPCwsLIzs6mZcuW/Oc//6FLly7MmDGjJmIUJZXqGd8l0g+AbXEp9opICCHEDcTi59idnJz49NNPmTlzJgcPHiQ7O5tbb72VJk2a1ER8ojRTYj8AisKdjf2B48ScTKFIb8BRbdUTjEIIIWoJi7PA3Llzyc3NJSwsjAEDBvDQQw/RpEkT8vLymDt3bk3EKEoKaA5qJ+MIdGmnuaWeF57OjmQVFHHwQoa9oxNCCGFnFif2OXPmmJ5dLyk3N5c5c+bYJChRCbUGgloZXyfsR+2gonNjY3O83GcXQghhcWJXFAWVSlVm/f79+02zu4kaVuo++52R/gBsl/vsQghR51X5HruPjw8qlQqVSkXTpk3Nkrteryc7O5unn366RoIUpQRfGaimuANdY2Ni33s2jXydHmeN2l6RCSGEsLMqJ/ZFixahKApjxoxhzpw5eHl5mbY5OTkRERFB586dayRIUUrJoWUVhcYBbgR7OpOYmc/fp9Po2sTfruEJIYSwnyon9lGjRgHQsGFDunTpgkajqbGgxDUEtQSVGnIvQ1YCKs9QukT68eO+C2yLuyyJXQgh6jCL77F369bNlNTz8/PJzMw0W8R1oHEx9o6Hq/fZrzTH74iXDnRCCFGXWZzYc3NzmThxIoGBgbi5ueHj42O2iOukgg50By9kkJGrs1dUQggh7MzixP7CCy/wxx9/sGTJErRaLZ999hlz5swhNDSUlStXWhXE4sWLiYiIwNnZmU6dOrF79+4K9+3evbupE1/JZeDAgaZ9Ro8eXWZ7v379rIrthlUqsQd7OdM4wA1FgZ0npdYuhBB1lcWJfd26dXz00Ufcf//9ODo6ctdddzFjxgzeeOMNvv76a4sDWLNmDVOmTGHWrFns27ePtm3b0rdvXy5dulTu/j/++CMJCQmm5dChQ6jVah588EGz/fr162e23zfffGNxbDe0Uokd5LE3IYQQViT21NRUGjVqBICnpyepqakAdO3ala1bt1ocwMKFCxk3bhyPP/44LVu2ZOnSpbi6urJs2bJy9/f19SU4ONi0REVF4erqWiaxa7Vas/1q3W2C4FsAFWRegOxkoERil/vsQghRZ1k8VnyjRo04deoUDRo0oHnz5nz77bd07NiRdevW4e3tbdG5CgsL2bt3L9OnTzetc3BwoFevXuzcubNK5/j8888ZNmwYbm5uZuujo6MJDAzEx8eHnj178tprr+Hn51fuOQoKCigoKDC9L+4EqNPp0Omqd7+6+PjqnqcMB2cc/RqjSomj6Pw+lMY96RDmiYMKTibncPZyFiFezra95nVWY2VXy0m5WU/KzjpSbtaxtNyqup9KURTFkkDeffdd1Go1zz77LJs2bWLQoEEoioJOp2PhwoU899xzVT7XxYsXqVevHjt27DB7Bn7atGls2bKFmJiYSo/fvXs3nTp1IiYmho4dO5rWr169GldXVxo2bEh8fDwvv/wy7u7u7Ny5E7W67OAts2fPLnc43FWrVuHq6lrlz3O9tT/9EfXTdnEk5EFOBA8CYMEBNWdzVDzSWE/HQIt+tEIIIW5gubm5jBgxgoyMDDw9PSvcz+Ia++TJk02ve/XqxbFjx9i7dy+RkZG0adPGumit9Pnnn9O6dWuzpA7GOeOLtW7dmjZt2tC4cWOio6O5++67y5xn+vTpTJkyxfQ+MzOTsLAw+vTpU2nhVYVOpyMqKorevXvb/Nl/h53x8McumnsX0mTAAACOak6wdOspctzrM2BAa5te73qrybKrzaTcrCdlZx0pN+tYWm5VfaTc4sReWnh4OOHh4VYd6+/vj1qtJikpyWx9UlISwcHBlR6bk5PD6tWrqzSjXKNGjfD39ycuLq7cxK7VatFqtWXWazQam/2S2vJcJmG3A+BwZhsODoBaw11NA1m69RQ7T6Xi6OhY7rj+N5saKbs6QMrNelJ21pFys05Vy62qZVvlznN//PEHLVu2LPcbQ0ZGBq1ateKvv/6q6ukA41C07du3Z/PmzaZ1BoOBzZs3X3N42u+++46CggIeffTRa17n/PnzpKSkEBISYlF8N7wGncHVH3JTIP5PANqH++Dk6EBSZgHxyTl2DlAIIcT1VuXEvmjRIsaNG1du07SXlxdPPfUUCxcutDiAKVOm8Omnn/LFF19w9OhRnnnmGXJycnj88ccBGDlypFnnumKff/45Q4YMKdMhLjs7mxdeeIFdu3Zx+vRpNm/ezL333ktkZCR9+/a1OL4bmtoRWj9gfH1gDQDOGjUdwo1PAMg0rkIIUfdUObHv37+/0kFe+vTpw969ey0O4OGHH+add95h5syZtGvXjtjYWDZs2EBQUBAAZ8+eJSEhweyY48ePs23bNp544oky51Or1Rw4cIDBgwfTtGlTnnjiCdq3b89ff/1VbnP7Ta/1Q8Z/j/0KBVlAyefZJbELIURdU+V77ElJSZW27zs6OpKcnGxVEBMnTmTixInlbouOji6zrlmzZlTUmd/FxYWNGzdaFcdNqd5t4NsYUuONyb3tMO6M9OftjcfZeTIFvUFB7XDz32cXQghRNVWusderV49Dhw5VuP3AgQO17x72zUClgjYPG19faY5vXc8LD2dHsvKLOHghw47BCSGEuN6qnNgHDBjAK6+8Qn5+fplteXl5zJo1i3vuucemwYkqKr7PfjIaspJQO6jo3MjY90Ca44UQom6pcmKfMWMGqampNG3alLfeeouff/6Zn3/+mTfffJNmzZqRmprKf//735qMVVTErzHUvx0UAxz6Abh6n12mcRVCiLqlyvfYg4KC2LFjB8888wzTp0833eNWqVT07duXxYsXmzq8CTto8zCc32Nsju88njsjjTX2PafTyNfpcdaUHXFPCCFE7WPRADXh4eGsX7+etLQ04uLiUBSFJk2a1L4JVm5GrYbCby9CQiwk/0vjgCYEeWpJyixg75k0Uw1eCCFE7Wbx7G4APj4+3H777XTs2FGS+o3CzR8iexlfH/wWlUrFnY2NyfyvE9IcL4QQdYVViV3coNpceab9wLegKPRoHgjAD/vOU1Ckt2NgQgghrhdJ7LVJswHg5A7pZ+DcbvrdEkywpzPJWQX8/M9Fe0cnhBDiOpDEXps4uUIL4/StHFiDRu3AmK4RAHzy10kMBpnGVQghajtJ7LVNcXP84R+hqJDhHRvgoXUk7lI2fx6/ZN/YhBBC1DhJ7LVNw27gHgR5aRC/GQ9nDSM6NQDg460n7RycEEKImiaJvbZxUMMt5jO+PX5nQzRqFbtPpRJ7Lt1+sQkhhKhxkthro+Lm+OO/QX4mwV7ODG5bD4BPpdYuhBC1miT22iikLfg3haJ8OLoOgCf/0wiA3w4lcDYl157RCSGEqEGS2GsjlarEM+3G5vhmwR50axqAQYHPtkmtXQghaitJ7LVV6weN/57aCpnGZ9ifulJr//bvc6TmFNorMiGEEDVIEntt5RMBYXcAChz8DoDOjf24pZ4n+ToDX+48Y9fwhBBC1AxJ7LVZu+HGf3d8APkZqFQqnvxPYwBW7jxNvk6GmRVCiNpGEntt1nYE+DWBnGTY8hYAA24Jpp63Cyk5hXy/97ydAxRCCGFrkthrM0cn6Dff+DpmKSQfx1HtwBNdGwLw+bZT6GWYWSGEqFUksdd2TXoZJ4cxFMGGl0BRePj2MLxcNJy6nEPUkSR7RyiEEMKGJLHXBX1fB7UTxP8Bx9fjpnXk0TuMw8x+sjXezsEJIYSwJUnsdYFvI+g80fh6w3TQ5TOqSwROagf2nU1n96lU+8YnhBDCZiSx1xV3TQWPEONc7Ts/JNDDmfvbG4eZffmng9JDXgghaglJ7HWF1h16v2p8/dcCyLjAC32bE+ChJe5SNvPWH7VvfEIIIWxCEntd0voB46A1ulyImomvmxPvPNgWgC92npH52oUQohaQxF6XqFQw4C1ABYe+hzM76NY0gNFdIgB44bsDXM4usGuIQgghqkcSe10T0hbajza+Xj8NDHpe6t+cpkHuXM4u4KUfDqAo8my7EELcrCSx10U9XwFnL0g6CHtX4KxR896wW3FSO7Dp6CVW7T5r7wiFEEJYSRJ7XeTmBz1mGF//8SrkptIixJNp/ZoB8OovR4hPzrZjgEIIIawlib2u6jAGAltCXhqsHQ8GPWPubEjXSH/ydQYmrY6lsMhg7yiFEEJYSBJ7XaV2hMEfgqMz/PsbbPwvDg4qFjzUFm9XDQcvZLBo07/2jlIIIYSFJLHXZfXbw9ClxtcxSyDmY4I8nZl/X2sAlmyJZ9fJFDsGKIQQwlI3RGJfvHgxERERODs706lTJ3bv3l3hvitWrEClUpktzs7OZvsoisLMmTMJCQnBxcWFXr16ceLEiZr+GDenVkOh12zj6w0vwfEN9LslhIc61EdRYMqaWNJyCu0aohBCiKqze2Jfs2YNU6ZMYdasWezbt4+2bdvSt29fLl2qeLAUT09PEhISTMuZM2fMtr/11lu8//77LF26lJiYGNzc3Ojbty/5+fk1/XFuTndOgttGgmKA78dAwn5mDWpFhJ8rFzPyeeSzGEnuQghxk3C0dwALFy5k3LhxPP744wAsXbqUX3/9lWXLlvHSSy+Ve4xKpSI4OLjcbYqisGjRImbMmMG9994LwMqVKwkKCmLt2rUMGzaszDEFBQUUFFwdmCUzMxMAnU6HTqer1ucrPr6656lxfd5EnXYGh1NbUL5+CKfHf+ejEe0YufxvjiRkMvzTXXwxuj2+bk7XLaSbpuxuMFJu1pOys46Um3UsLbeq7qdS7DgaSWFhIa6urnz//fcMGTLEtH7UqFGkp6fz888/lzlmxYoVjB07lnr16mEwGLjtttt44403aNWqFQAnT56kcePG/PPPP7Rr1850XLdu3WjXrh3vvfdemXPOnj2bOXPmlFm/atUqXF1dq/9BbxKORTncdeI1PPMvkOHSgG1N/sv5Ahc+PKImS6ci1FVhQks97hp7RyqEEHVPbm4uI0aMICMjA09Pzwr3s2uN/fLly+j1eoKCgszWBwUFcezYsXKPadasGcuWLaNNmzZkZGTwzjvv0KVLFw4fPkz9+vVJTEw0naP0OYu3lTZ9+nSmTJliep+ZmUlYWBh9+vSptPCqQqfTERUVRe/evdFoboKMmN4JZUVfvHLO0j/nO/QPfUW3bgU8tmwPF7MLWXnOmy8e74Dfdai533Rld4OQcrOelJ11pNysY2m5FbcmX4vdm+It1blzZzp37mx636VLF1q0aMHHH3/Mq6++atU5tVotWq22zHqNRmOzX1JbnqtGBTSG4WtgxQAc4jfhsOkVmg94m2+e7MzwT3dxPCmbUcv38vW4Tvi7ly2zmnDTlN0NRsrNelJ21pFys05Vy62qZWvXznP+/v6o1WqSkpLM1iclJVV4D700jUbDrbfeSlxcHIDpuOqcs86r3x7u+wRQwZ5P4depRPppWf3kHQR6aDmelMWIT3fJhDFCCHEDsmtid3Jyon379mzevNm0zmAwsHnzZrNaeWX0ej0HDx4kJCQEgIYNGxIcHGx2zszMTGJiYqp8TgG0vBcGvA2o4O/P4cuhNHYrZPWTdxDkqeXfpGyGf7KL5CxJ7kIIcSOx++NuU6ZM4dNPP+WLL77g6NGjPPPMM+Tk5Jh6yY8cOZLp06eb9p87dy6///47J0+eZN++fTz66KOcOXOGsWPHAsYe85MmTeK1117jf//7HwcPHmTkyJGEhoaaddATVdBxHAz/Bpzc4fRf8GlPGnGB1U92JtjTmROXshn2yU7iLsm48kIIcaOw+z32hx9+mOTkZGbOnEliYiLt2rVjw4YNps5vZ8+excHh6vePtLQ0xo0bR2JiIj4+PrRv354dO3bQsmVL0z7Tpk0jJyeHJ598kvT0dLp27cqGDRvKDGQjqqBZf3giCr55GNJOwWe9aPjAMlY/2YXhn+4iPjmHQR9sY/bgljzUIQyVSmXviIUQok6ze2IHmDhxIhMnTix3W3R0tNn7d999l3fffbfS86lUKubOncvcuXNtFWLdFtQSxv0J346EM9th1UNE9J7Lz+PHMuW7A2yLu8yLPxzkrxOXeX1oa7xcpPOMEELYi92b4sVNws0fHlt7dYS632cQ+OdUVo5sy4v9muPooOKXAwkMfP8v9p5Js3e0QghRZ0liF1Xn6ASD3od+b4LKAWK/xmHlIJ5pDd893ZkwXxfOp+Xx0Mc7WfxnHHqD3cY+EkKIOksSu7CMSgV3PA2PfA9aLzi/G5Z04dazX/DrxM4MbhuK3qDw9sbjPPpZDIkZMj6/EEJcT5LYhXUi74ant0KjHlCUD5tm4bmyD+91g7cfaIOrk5qdJ1PovXALS7fEk6/T2ztiIYSoEySxC+v5RMBjP8GQJeDsDYkHUH3akwdTP+aXp9vTpr4XWQVFzP/tGHcv2MLPsRcwSPO8EELUKEnsonpUKmg3AibugVvuN3as2/EBjb7rxdp+RSx4sC3Bns5cSM/judWxDPloO7tOptg7aiGEqLUksQvbcA+EB5YZx5n3rAdpp3H46l7uPzOX6DENeKFvM9yc1Bw4n8GwT3Yx9ou/ZWAbIYSoAZLYhW016wfjd8Ht4wAVHFiD88edmJD+Dn890YBH72iA2kHFpqNJ9F20lRe+28/RhKrNWCSEEOLaJLEL23P2hIHvwLjNENkbFD3s/wbfFXfymv59/hgVSq8WQegNCt/tPU//9/5i2Cc72Xg4UR6RE0KIapLELmpOvfbw6Pcw7g9o2s94//3gt4R/053P3D7i1+H+DGwdgtpBxa6TqTz15V66vf0nn249SUaezt7RCyHETUkSu6h59drDiDXw5BZofg+gwKEfaPVTXxY7vM3uB3SM7xaOt6uG82l5vL7+KHe8sZlZ645wPgcURWrxQghRVTfEWPGijghtB8O+hoQDsPVtOPo/OL4ev+PrmeYezOROw9jo1IsPYhWOJ2Wxavd5wJEfLu5gyK31GNw2lAh/N3t/CiGEuKFJjV1cfyFt4OEvYcIe6DwRXP0hOxHNzkXcs+UeNnjPJ+ruiwxq4YWjSuHk5RwWRv1L93eiuXfxdj7fdopLmTKinRBClEdq7MJ+AppC39fh7lnw7wbYtxLiN6M6s50mZ7bzvtaT00FtuNBoKF9casIfJ3PYfy6d/efSef3XI9zRyI8+LYPo2TyIBn6u9v40QghxQ5DELuzP0QlaDjYuGRcgdhX88yWq9DM0LNhGw33b6Kp2orDZXexzuYPPLzUj6rwjO+JT2BGfwux1R2gc4EbP5oH0aBZIhwhfnBylMUoIUTdJYhc3Fq960O0FuGsqRaf+4vSGj2hcdBxV2imcTm3mDjZzB1AY1poD7l1Ym9Wc7y4GEJ+cQ3zyKT796xTuWkfuauJPj2aBdG7sR30fF1Qqlb0/mRBCXBeS2MWNycEBpUEXDtdPJ7x/fzQZp+D4eji2Hs7vwSn5IB2SD9IBeNXDgyTfjuxUbuGr5EbszfHnt0OJ/HYoEYBQL2c6NfKjU0NfOjXyI8LPVRK9EKLWksQubnwqFQQ0My5dJ0P2Jfh3o/G+/Om/UOVnEJywmaFsZiig8w3ihFsHNuU354eUcM5k+PHTPxf46Z8LAAR5aunY0I+ODX25Ncyb5sEeOKql6V4IUTtIYhc3H/dAuO0x42LQQ0IsnNwCJ6Ph7C40uUm0zP2VlvzKs05Q4BLMKdfWbC9swv9SG3Awsz7r9l9k3f6LADhrHGhdz4t2Yd60C/OhXQNvQr2cpVYvhLgpSWIXNzcHtXEAnHrt4a4poMuDczHGJH/qL0iIRZuXSPO8RJoTxRMaKHJ157x7a/bpI9mZ6cfhgkAOng5hz+k04BQAAR5a2tb3omWoFy1DPGkV6in36oUQNwVJ7KJ20bhAo+7GBaAwFy7shbO74OxOOLcbx8IsItJ2EsFO7gPQGndN1wRyilAO5QcSlxvCv8frs/xoQ7IwPkrn4exIyxBPWoZ60irUi+bBHkQGuuOsUdvhgwohRPkksYvazckVGt5lXMDYdJ902JjkE/bD5ROQcgLy0vDWXeJWLnGrGiiRq8851OfvoobE6hqx/3RjVp1qQAFOADioINzPjSaB7jQL9qBJkAfNgjxo6O8mj9wJIexCEruoWxzUxpHvQtqYr89NvZrkL5+AlDhIPADpZwkznCfM4TxDHf4CQK9y5Iw6gkNF9YjX+XM2NZBzKQGsORJEMl4oOODooCLcz5XGAe40DnQ3/hvgRqMAd7xcNHb44EKIukISuxAArr7QoJNxKSnnMlzYBxf3GZv0L+xDnXuZRkVxNCIOSuXoQjScVwI5Y/DnTFoQZ1KDOHosmA1KMOeVAHQ4EuChpZG/G40C3Gjo70aEn/HfBn6uaB2lWV8IUT2S2IWojJs/NO1jXAAUBTLOGZN9ShyknYb0M8Z/My7gpOhopLpAI/WFMqfS48AFgx+n84M5cy6I+LOhbFXqscwQSiK+OKhUhHq70ND/SqL3dTUufq6E+bjippU/VyHEtcn/FEJYQqUC7wbGpTS9DjLOGxN96iljsk89aVrUulwaOCTTgGTgoNmh2YoLcUoIcdn1icsMJT4+lD1KABcVPzJwA1T4u2tp4OtiSvj1fVyp7+tCmI8rIV7O8iy+EAKQxC6E7ag14NvQuBT3yi+mKJCddDXRp8TD5X8h+TiknsSdPNqpTtKOk2Yd9wBy0XLB4M/FAj8uXvTj4gU/Lij+7FICOK8EkIgvKgc1od7O1Pd2pZ63M7nJKgr+uUiYnzv1fVwI8nSWznxC1BGS2IW4HlQq8Ag2LuFdzLcVFRqTffKxq8k+5YRxQpzcy7hSQBOHCzShbPM+QKGi5qLiz/ksf85lBnLuTAAXFH9+OP8vifiQqPhSqHIiyMOZUG9nQr1dqOftQoiXMyHeLoR6uRDi7Yyfm5M8py9ELSCJXQh7c3SCwObGpTRdnjHBZ543NvNnXDDe4884B2lnIOM8TgYdEaokIkgCDpd7iTTFncR8HxITfEm86MslvDmleLJX8SAFT1IVTzIdvNF6BhDo7UZoceL3cibkSuIP8XLBx1UjyV+IG5wkdiFuZBoX8I80LuUx6CErwZjk089A2hkMqadIOXUAf6cCVFmJoMvFR5WNjyqbFpyr/Hp5kJ7rRsIFX85faerfeeXf80oASeog3L38CL6S8IM8jcm/+N8QL2f83LWoHST5C2EvktiFuJk5qMGrvnHhTgD0Oh071q9nwIABaBwdIT8dMhMg6yJkXlmyL0HuZchJgdzLKDmXIS8VlWLAW5WDtyqnwi8BmdkuJGd5c/m8F6mKBymKJ8fxYofiQYriRZrKC51rEHiF4uvlRbCnM4GezgR7OhPs5UyQp5ZAT2c8tI5S+xeiBkhiF6I2U6nAxce4BLWseDcw1v7z0iEn2dj0n3YG0s8aWwLSz6Kkn0WVk4ynKg9PVR6NSaj4ujrgMqQnu5Go+F5ZfPgbX5IUH9IVN/LVHji6+eDk4YeLpx+e3n4EebkQ6OFMgIfWuLhr8ZbmfyEsckMk9sWLF/P222+TmJhI27Zt+eCDD+jYsWO5+3766aesXLmSQ4cOAdC+fXveeOMNs/1Hjx7NF198YXZc37592bBhQ819CCFudg5qcPMzLuXc71cBFOYY7/VnXzJ+AchNMf6bkww5l1FyktFnXUKVlYC6KNdU+29e0S2A/CtLMhgUFVm4kKp4kKj4cejKl4BLKj9ytUHo3ILBIxStdxABnq5Xkr/xS0DglS8CMm6/EDdAYl+zZg1Tpkxh6dKldOrUiUWLFtG3b1+OHz9OYGBgmf2jo6MZPnw4Xbp0wdnZmTfffJM+ffpw+PBh6tWrZ9qvX79+LF++3PReq9Vel88jRK3m5AYBzYxLOVRc+U9FUaAg03gLIPOCsR+A6TZAEvrcNPQ5aZCfjrogHbU+HweVghe5eKlyaUiS+YmLgIwry3nIUlzIwoVMxY1MXPlXceVvXMlXu1Pg5IvOJQCDezAOniFofUJx9wnG38uNQE8t/u5afFydpB+AqLXsntgXLlzIuHHjePzxxwFYunQpv/76K8uWLeOll14qs//XX39t9v6zzz7jhx9+YPPmzYwcOdK0XqvVEhwcXKUYCgoKKCgoML3PzMwEQKfTodPpLP5MJRUfX93z1EVSdta5YcpN7Qo+jY1LOYrTqgEwFBUY+wLkZ6DKSYasBFRZF9FnXKQo7QJK5kXU2Qk45V/GAQMeqjw8yCNUlVr2xIVXlgwofkJQr6hIwYtLijeHFC9S8CTX0Zt8J1/0Ln4orv6o3QNwdPfnVJIOzeEEAr1c8Xd3ws/NSVoCruGG+Z27yVhablXdz66JvbCwkL179zJ9+nTTOgcHB3r16sXOnTurdI7c3Fx0Oh2+vr5m66OjowkMDMTHx4eePXvy2muv4efnV+455s2bx5w5c8qs//3333F1dbXgE1UsKirKJuepi6TsrHNzl5srEGlcvDAugErRoynKQaPPRWPIRVOUi6M+F40+D3S5KIU5qHWZOOvScSnKwEOfjpeSjlqlEEg6gar0q5dQgIIrS7r51bN/cjZ2DMSLE4on6XiS5eBJntqDIrUrekdX4xMLGhfUGjfUWhectC64Ojni5mic9a8uurl/5+ynquWWm5tbpf1UiqIo1QmoOi5evEi9evXYsWMHnTt3Nq2fNm0aW7ZsISYm5prnGD9+PBs3buTw4cM4OzsDsHr1alxdXWnYsCHx8fG8/PLLuLu7s3PnTtTqst+8y6uxh4WFcfnyZTw9Pav1GXU6HVFRUfTu3RuNRmb1soSUnXWk3Eox6I1PAGQnocpKxJB9mfyMJAoykijKSkaVm4w6LxVtQSquRWk4KtbXOnMVLSl4kqbyJlvtTa7Gh0Jnf/QufuAagKOHH1oPP9w8ffHw9sPL2w8fD1c0N/lwwPI7Zx1Lyy0zMxN/f38yMjIqzU12b4qvjvnz57N69Wqio6NNSR1g2LBhptetW7emTZs2NG7cmOjoaO6+++4y59FqteXeg9doNDb7JbXlueoaKTvrSLkV04C2PvjUN61xqmBPXWEhv/7yA33uvBVNQQZKziUKMpLIS0uiMPMS+uzLKPkZqAoyUBdm4VSUjbM+GxclDwBXVQGuJBNGMugxLvmUaREoKUfRkqJyJ9fBnXy1BwUaT4qcvDA4e6Ny8UHt6ovGwxdnTz/cPHzx9PLF3csbldYDnNyNnR5vEPI7Z52qlltVy9auid3f3x+1Wk1SknlHmaSkpGveH3/nnXeYP38+mzZtok2bNpXu26hRI/z9/YmLiys3sQshBAAqFUVqV/BtDBoNKsD5ylIpgx4KMtFlp5KVepHc1ETy05MoyrqEkn0Jh9zLaPIv41SYgbM+Cxd9Nm4Yvwy4qQpwowAMKcYOBzqgai2uAOSrnClwcKPQ0Q2dkxd6rTeKiy8qNz8c3f3Qevjj4hWAs6c/Klc/cPUzTlPsKB2Kayu7JnYnJyfat2/P5s2bGTJkCAAGg4HNmzczceLECo976623eP3119m4cSMdOnS45nXOnz9PSkoKISEhtgpdCCGuclCDiw8aFx98Axrje+0jQF+EPj+TzLRLZKWnkJ1+mYKsVAqzUzHkpqLkpuFQkI5jYQZaXSYuRZk4G3JwJQ938nBS6QFwVvJx1ueDPsXYXyCraiHnq5zJc/QiX+NNkdYHg7MPuPri4O6PxsMfZ89AXL0DcfIMMH4ZcPY29iuQMQVueHZvip8yZQqjRo2iQ4cOdOzYkUWLFpGTk2PqJT9y5Ejq1avHvHnzAHjzzTeZOXMmq1atIiIigsTERADc3d1xd3cnOzubOXPmcP/99xMcHEx8fDzTpk0jMjKSvn372u1zCiGEGbUjajdffNx8S94luKaCIj0pOYWkZmSRmZ5KVmY6OVlp5Geloc9NhdxUHPLS0BSmo9Vl4FaUjidZ+JCNtyobb7JxVBmMXwh0+aBLqnILgQEHChxcKHRwpcjRFb3GDUXjhuLkRpPsQjJ+3ISThx9aD1+c3HxQuXgbvxA4e4HWw7g4uYGjs3xBqEF2T+wPP/wwycnJzJw5k8TERNq1a8eGDRsICgoC4OzZszg4XO1YsmTJEgoLC3nggQfMzjNr1ixmz56NWq3mwIEDfPHFF6SnpxMaGkqfPn149dVX5Vl2IcRNT+uoNk7M4+UCDcqO9VGevEI9abmFJOUW8m9OAVkZqeRlJKPLukxRdgpK7uUrXwbScCpMx1WXjrshAx+y8FEZvxQ4qgw4YMDFkIOLIcc4tkD+1WsEAxzdUaV4DDgYny7QuGLQuIGTOypnTxxcvdG4eqN29bn6hcDZC5w9Qet59ctB8WvHinpL1G12T+wAEydOrLDpPTo62uz96dOnKz2Xi4sLGzdutFFkQghx83NxUuPi5EKot8uVNYFAObMJlqAoCtkFRaTn6jiaU0BmZho5WZnk5mSQn51JQW4Gutxs9PmZ6POz0GVdxl1VgFNRFh5k40UOnqpcvMjBS5WDG/m4qoxPHzlgwEmfDfpssy8HltI7aNE7uaM4eaBycsfB2R21sycqrTto3cHJ48q/V95rPUu8vtL5UOtpfF+LWhFuiMQuhBDixqJSqfBw1uDhrCHM1xXwqXBfnU7H+isTDzk6OpKn05ORpyM9V8flPB1xuToy83Rk5OaRk5N15YtBFrq8LIryszDkZ6EqyEKjy8STXDxVOXhe+WJQ/N6DPNxVxv4Fble+IKgNBajzCyA/pdqfV1GpryR6D+MXgyuvTV8ISrYUaD1KtCJ4Gl8Xty5oXO3+BUESuxBCCJtRqVS4Ojni6uRovF1gAYNBIaugiIxcHRl5V5fzeToy841fDrLyi8jOy6MgNwtDXgb6vEwoyEIpyMJJn4ubKh83jIu7Ks/4WpWHO/lXvhQYRy0s3s9DZXw6QaXooSDDuFSD4uAIzl6oTLcRvKDZAOj0VLXOawlJ7EIIIW4IDg4qvFw0eLlY9yx8QZGezLwi0xeCzBJfDhLyjV8KjF8Qiq5+UcgrpCg/G0NBFlp9zpUvAsYvAe5XvgAYWwtyTa0GHuThocrFnTw8yMXjSsuCo8qAylBknBwp92orwv78INp2slUpXZskdiGEELWC1lFNgIeaAA/rOkoXFOnJyi+6suhM/2ZeWZear+OM2barrzPzdOgLstEWZV25hXD1VsItHu1oa+PPWhlJ7EIIIQTGLwZadzX+7tY/QVXel4NAK79oWEsSuxBCCGEjtvhyUF0398wDQgghhDAjiV0IIYSoRSSxCyGEELWIJHYhhBCiFpHELoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7EIIIUQtIoldCCGEqEUksQshhBC1iCR2IYQQohaRxC6EEELUIpLYhRBCiFpEpm0th6IoAGRmZlb7XDqdjtzcXDIzM9FoNNU+X10iZWcdKTfrSdlZR8rNOpaWW3FOKs5RFZHEXo6srCwAwsLC7ByJEEIIYS4rKwsvL68Kt6uUa6X+OshgMHDx4kU8PDxQqVTVOldmZiZhYWGcO3cOT09PG0VYN0jZWUfKzXpSdtaRcrOOpeWmKApZWVmEhobi4FDxnXSpsZfDwcGB+vXr2/Scnp6e8gtvJSk760i5WU/KzjpSbtaxpNwqq6kXk85zQgghRC0iiV0IIYSoRSSx1zCtVsusWbPQarX2DuWmI2VnHSk360nZWUfKzTo1VW7SeU4IIYSoRaTGLoQQQtQiktiFEEKIWkQSuxBCCFGLSGIXQgghahFJ7DVs8eLFRERE4OzsTKdOndi9e7e9Q7qhbN26lUGDBhEaGopKpWLt2rVm2xVFYebMmYSEhODi4kKvXr04ceKEfYK9gcybN4/bb78dDw8PAgMDGTJkCMePHzfbJz8/nwkTJuDn54e7uzv3338/SUlJdor4xrFkyRLatGljGhSkc+fO/Pbbb6btUm5VM3/+fFQqFZMmTTKtk7Ir3+zZs1GpVGZL8+bNTdttXW6S2GvQmjVrmDJlCrNmzWLfvn20bduWvn37cunSJXuHdsPIycmhbdu2LF68uNztb731Fu+//z5Lly4lJiYGNzc3+vbtS35+/nWO9MayZcsWJkyYwK5du4iKikKn09GnTx9ycnJM+0yePJl169bx3XffsWXLFi5evMh9991nx6hvDPXr12f+/Pns3buXv//+m549e3Lvvfdy+PBhQMqtKvbs2cPHH39MmzZtzNZL2VWsVatWJCQkmJZt27aZttm83BRRYzp27KhMmDDB9F6v1yuhoaHKvHnz7BjVjQtQfvrpJ9N7g8GgBAcHK2+//bZpXXp6uqLVapVvvvnGDhHeuC5duqQAypYtWxRFMZaTRqNRvvvuO9M+R48eVQBl586d9grzhuXj46N89tlnUm5VkJWVpTRp0kSJiopSunXrpjz33HOKosjvXGVmzZqltG3bttxtNVFuUmOvIYWFhezdu5devXqZ1jk4ONCrVy927txpx8huHqdOnSIxMdGsDL28vOjUqZOUYSkZGRkA+Pr6ArB37150Op1Z2TVv3pwGDRpI2ZWg1+tZvXo1OTk5dO7cWcqtCiZMmMDAgQPNygjkd+5aTpw4QWhoKI0aNeKRRx7h7NmzQM2Um0wCU0MuX76MXq8nKCjIbH1QUBDHjh2zU1Q3l8TERIByy7B4mzDORjhp0iTuvPNObrnlFsBYdk5OTnh7e5vtK2VndPDgQTp37kx+fj7u7u789NNPtGzZktjYWCm3SqxevZp9+/axZ8+eMtvkd65inTp1YsWKFTRr1oyEhATmzJnDXXfdxaFDh2qk3CSxC3GTmzBhAocOHTK7Zycq16xZM2JjY8nIyOD7779n1KhRbNmyxd5h3dDOnTvHc889R1RUFM7OzvYO56bSv39/0+s2bdrQqVMnwsPD+fbbb3FxcbH59aQpvob4+/ujVqvL9GxMSkoiODjYTlHdXIrLScqwYhP/v737DWlqD+MA/h1uE6U/kxIdkrIwIxXLFtXKiFhvimJUxKBMRUhKhAIHDcQKCqoFYtbLYkIKvbNGSEk6jUYJ1pZGtpyaEhhCJVmps3zui8s93F13u96LMe/p+4EfbL9z9ttzHiZfDjvuVFTg7t278Hq9EbcaTk1NRTgcxtjYWMT+7N3v9Ho9MjMzYTabceHCBaxduxZXrlxh337g6dOnGB0dxfr166HVaqHVatHR0YG6ujpotVqkpKSwd3NkMBiQlZWFUCj0Uz5zDPafRK/Xw2w2o7W1VZmbmZlBa2srLBZLDCv7/zCZTEhNTY3o4adPn9DZ2fnL91BEUFFRgaamJrS1tcFkMkVsN5vN0Ol0Eb0LBoMYHh7+5XsXzczMDKampti3H7Barejp6UEgEFDGhg0bcPjwYeUxezc3nz9/Rn9/P4xG48/5zP2nS+5oTm7duiXx8fFSX18vL1++lLKyMjEYDPLu3btYl7ZgjI+Pi9/vF7/fLwCkpqZG/H6/DA0NiYjIxYsXxWAwyJ07d6S7u1tsNpuYTCaZmJiIceWxdfz4cVm6dKm0t7fLyMiIMr5+/arsc+zYMUlPT5e2tjbp6uoSi8UiFoslhlUvDE6nUzo6OmRwcFC6u7vF6XSKRqORlpYWEWHf/o0/XxUvwt79ncrKSmlvb5fBwUHx+Xyyc+dOWb58uYyOjorI/PeNwf6TXb16VdLT00Wv18vGjRvlyZMnsS5pQfF6vQJg1iguLhaR3//lrbq6WlJSUiQ+Pl6sVqsEg8HYFr0AROsZAHG73co+ExMTUl5eLklJSZKYmCj79u2TkZGR2BW9QJSWlkpGRobo9XpJTk4Wq9WqhLoI+/Zv/DXY2bvo7Ha7GI1G0ev1kpaWJna7XUKhkLJ9vvvG27YSERGpCL9jJyIiUhEGOxERkYow2ImIiFSEwU5ERKQiDHYiIiIVYbATERGpCIOdiIhIRRjsREREKsJgJyIiUhEGOxEppqenUV9fj4KCAiQnJyMhIQF5eXm4dOkSwuFwrMsjojngT8oSkSIQCKCyshLl5eXIz8/H5OQkenp6cPbsWRiNRty/fx86nS7WZRLRD/CMnYgUubm5aG1txYEDB7By5UpkZ2fDbrfj4cOHePHiBWprawEAGo0m6jh58qSy1sePH1FUVISkpCQkJiZi165d6OvrU7aXlpYiLy8PU1NTAIBwOIz8/HwUFRUBAN68eQONRoNAIKC8prq6GhqNRqmDiGZjsBORQqvVRp1PTk7G/v370djYqMy53W6MjIwo46/3ji4pKUFXVxc8Hg8eP34MEcHu3bsxPT0NAKirq8OXL1/gdDoBAFVVVRgbG8O1a9ei1vD27VvU1tYiISFhPg6VSLWi/xUT0S8tJycHQ0NDEXPT09OIi4tTnhsMBqSmpirP9Xq98rivrw8ejwc+nw9btmwBADQ2NmLFihW4ffs2Dh48iEWLFqGhoQHbt2/H4sWLUVtbC6/XiyVLlkStqaqqCna7HQ8ePJjPQyVSHQY7Ec3S3NysnFn/weVyoaGhYU6v7+3thVarxaZNm5S5ZcuWYfXq1ejt7VXmLBYLHA4Hzp07h1OnTqGgoCDqes+ePUNTUxOCwSCDnegfMNiJaJaMjIxZc/39/cjKyprX95mZmYHP50NcXBxCodDf7ldZWQmHwwGj0Tiv70+kRvyOnYgUHz58wPj4+Kz5rq4ueL1eHDp0aE7rrFmzBt++fUNnZ6cy9/79ewSDQWRnZytzly9fxqtXr9DR0YF79+7B7XbPWsvj8eD169dwOBz/4YiIfj0MdiJSDA8PY926dbhx4wZCoRAGBgZw8+ZN2Gw2bNu2LeKq9x9ZtWoVbDYbjh49ikePHuH58+coLCxEWloabDYbAMDv9+P06dO4fv06tm7dipqaGpw4cQIDAwMRa7lcLpw/fx6JiYnzfbhEqsRgJyJFbm4uzpw5g/r6emzevBk5OTlwuVyoqKhAS0tLxAVy/8TtdsNsNmPPnj2wWCwQETQ3N0On02FychKFhYUoKSnB3r17AQBlZWXYsWMHjhw5gu/fvyvrZGZmori4eN6PlUit+AM1REREKsIzdiIiIhVhsBMREakIg52IiEhFGOxEREQqwmAnIiJSEQY7ERGRijDYiYiIVITBTkREpCIMdiIiIhVhsBMREakIg52IiEhFfgNPicwMWJotIQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Выводим график функции ошибки\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(history_3l_100_100.history['loss'], label='Обучающая ошибка')\n", + "plt.plot(history_3l_100_100.history['val_loss'], label='Валидационная ошибка')\n", + "plt.title('Функция ошибки по эпохам')\n", + "plt.xlabel('Эпохи')\n", + "plt.ylabel('Categorical Crossentropy')\n", + "plt.legend()\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M9nWMqSXiErG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "92accb15-9c22-46d8-a60a-f5f64488809f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9435 - loss: 0.2058\n", + "Lossontestdata: 0.2007063776254654\n", + "Accuracyontestdata: 0.9431999921798706\n" + ] + } + ], + "source": [ + "scores_3l_100_100=model_3l_100_100.evaluate(X_test,y_test)\n", + "print('Lossontestdata:',scores_3l_100_100[0])\n", + "print('Accuracyontestdata:',scores_3l_100_100[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s7xnJPAsiJ4-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "outputId": "418ceaef-1937-4c15-f327-940560f8866b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Слои Нейроны 1 Нейроны 2 Метрика\n", + "0 1 100 - 0.9439\n", + "1 1 300 - 0.9372\n", + "2 1 500 - 0.9301\n", + "3 2 100 50 0.9427\n", + "4 2 100 100 0.9432" + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    СлоиНейроны 1Нейроны 2Метрика
    01100-0.9439
    11300-0.9372
    21500-0.9301
    32100500.9427
    421001000.9432
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "
    \n", + "
    \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"\\u0421\\u043b\\u043e\\u0438\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041d\\u0435\\u0439\\u0440\\u043e\\u043d\\u044b 1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 178,\n \"min\": 100,\n \"max\": 500,\n \"num_unique_values\": 3,\n \"samples\": [\n 100,\n 300\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041d\\u0435\\u0439\\u0440\\u043e\\u043d\\u044b 2\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"-\",\n 50\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"\\u041c\\u0435\\u0442\\u0440\\u0438\\u043a\\u0430\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.005850374852367438,\n \"min\": 0.9301000237464905,\n \"max\": 0.9438999891281128,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.9372000098228455,\n 0.9431999921798706\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 47 + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "data = {\n", + " 'Слои': [ 1, 1, 1, 2, 2],\n", + " 'Нейроны 1': [ 100, 300, 500, 100, 100],\n", + " 'Нейроны 2': [ '-', '-', '-', 50, 100],\n", + " 'Метрика': [ 0.9438999891281128, 0.9372000098228455, 0.9301000237464905, 0.9427000284194946, 0.9431999921798706]\n", + "}\n", + "\n", + "df = pd.DataFrame(data)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "55eu09I9kA93" + }, + "outputs": [], + "source": [ + "model_2l_100.save(filepath='best_model.keras')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mvjk1vAK8Qaa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 534 + }, + "outputId": "a8cf252d-4e39-49e1-e4c9-c3b71aa0d7d1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 266ms/step\n", + "NN output: [[3.86779779e-04 3.69515050e-08 2.03053992e-06 1.15266894e-05\n", + " 1.57332561e-05 4.79512411e-04 7.92529917e-08 9.95542467e-01\n", + " 1.50878295e-05 3.54681048e-03]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAG05JREFUeJzt3X9sVfX9x/FXC/SK2N6ulvb2SoGCP9gEOsekNCrD0QDdQkRI5q8/wDCIenGDzulqVMSZdLJMCQuDmGwwM0FlEYguYcFqS3Qthl8hbLOjXRWQtigL90KRwujn+wfZ/XqlBc/l3r57L89HchJ67/n0vj2765PTnh4ynHNOAAD0sUzrAQAAVyYCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAy0HuCruru7deTIEWVnZysjI8N6HACAR845nThxQsFgUJmZvZ/n9LsAHTlyRMXFxdZjAAAu06FDhzRs2LBen+9334LLzs62HgEAkACX+nqetACtWrVKI0eO1FVXXaWysjJ9+OGHX2sd33YDgPRwqa/nSQnQ66+/rqqqKi1dulS7d+9WaWmppk+frqNHjybj5QAAqcglwcSJE10oFIp+fO7cORcMBl1NTc0l14bDYSeJjY2NjS3Ft3A4fNGv9wk/Azpz5ox27dqlioqK6GOZmZmqqKhQQ0PDBft3dXUpEonEbACA9JfwAH3++ec6d+6cCgsLYx4vLCxUe3v7BfvX1NTI7/dHN66AA4Arg/lVcNXV1QqHw9Ht0KFD1iMBAPpAwn8PKD8/XwMGDFBHR0fM4x0dHQoEAhfs7/P55PP5Ej0GAKCfS/gZUFZWliZMmKDa2troY93d3aqtrVV5eXmiXw4AkKKScieEqqoqzZ07V9/97nc1ceJErVixQp2dnXrwwQeT8XIAgBSUlADdc889+uyzz/TMM8+ovb1d3/72t7V169YLLkwAAFy5MpxzznqIL4tEIvL7/dZjAAAuUzgcVk5OTq/Pm18FBwC4MhEgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMJD9Czzz6rjIyMmG3MmDGJfhkAQIobmIxPevPNN+udd975/xcZmJSXAQCksKSUYeDAgQoEAsn41ACANJGUnwEdOHBAwWBQo0aN0gMPPKCDBw/2um9XV5cikUjMBgBIfwkPUFlZmdatW6etW7dq9erVam1t1R133KETJ070uH9NTY38fn90Ky4uTvRIAIB+KMM555L5AsePH9eIESP04osvav78+Rc839XVpa6urujHkUiECAFAGgiHw8rJyen1+aRfHZCbm6sbb7xRzc3NPT7v8/nk8/mSPQYAoJ9J+u8BnTx5Ui0tLSoqKkr2SwEAUkjCA/TYY4+pvr5eH3/8sf72t7/p7rvv1oABA3Tfffcl+qUAACks4d+CO3z4sO677z4dO3ZMQ4cO1e23367GxkYNHTo00S8FAEhhSb8IwatIJCK/3289BgDgMl3qIgTuBQcAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmEj6P0gHfFl1dbXnNc8995znNdu3b/e8RpJ27tzpec2nn37qec2f/vQnz2v6u4vddLI3t9xyi+c1kyZN8rymL73wwgue1/znP/9JwiT9H2dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJHhnHPWQ3xZJBKR3++3HuOKMmTIkLjWPfnkk57X/OQnP/G8Jt75AAvx3A07nrvEp4JwOHzRu6RzBgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmBhoPQDs/ehHP4prXbreQBG4HFu2bLEeIWVwBgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOBmpGmmsrLS85rf/OY3SZjE1kcffRTXuk8++STBk/SsubnZ85o333wzCZPYqqio8LymL2+Ce/jwYc9r/v73vydhkvTEGRAAwAQBAgCY8Byg7du3a+bMmQoGg8rIyNDmzZtjnnfO6ZlnnlFRUZEGDx6siooKHThwIFHzAgDShOcAdXZ2qrS0VKtWrerx+eXLl2vlypVas2aNduzYoSFDhmj69Ok6ffr0ZQ8LAEgfni9CqKys7PUH3c45rVixQk899ZTuuusuSdIrr7yiwsJCbd68Wffee+/lTQsASBsJ/RlQa2ur2tvbY65s8fv9KisrU0NDQ49rurq6FIlEYjYAQPpLaIDa29slSYWFhTGPFxYWRp/7qpqaGvn9/uhWXFycyJEAAP2U+VVw1dXVCofD0e3QoUPWIwEA+kBCAxQIBCRJHR0dMY93dHREn/sqn8+nnJycmA0AkP4SGqCSkhIFAgHV1tZGH4tEItqxY4fKy8sT+VIAgBTn+Sq4kydPxtxGpLW1VXv37lVeXp6GDx+uxYsX6/nnn9cNN9ygkpISPf300woGg5o1a1Yi5wYApDjPAdq5c6fuvPPO6MdVVVWSpLlz52rdunV6/PHH1dnZqYULF+r48eO6/fbbtXXrVl111VWJmxoAkPIynHPOeogvi0Qi8vv91mOkrD//+c+e18yePTsJkyTOyy+/7HnN008/HddrffbZZ3Gtg1RUVOR5TTw37szNzfW8Jt6Lm374wx96XrN///64XisdhcPhi/5c3/wqOADAlYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmPP9zDOg7I0eO9LymsrIy8YMYW7Zsmec13NW675WVlXleE8+dreOxZs2auNZxZ+vk4gwIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUj7yODBgz2v2bBhQ5+8Try6u7s9r/nWt77leU17e7vnNbg806ZN87zmjTfeSMIkF/r3v//tec0rr7yShElwuTgDAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMcDPSPjJ06FDPa8rKypIwyYXOnDkT17o//OEPntf861//iuu1EJ8hQ4bEte7ZZ5/1vGbgQO9fTv773/96XvPjH//Y85pPP/3U8xokH2dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkbaR0KhkPUIvdq4cWNc6x555JEET4JE27JlS1zrJk2alOBJelZfX+95TV1dXeIHgQnOgAAAJggQAMCE5wBt375dM2fOVDAYVEZGhjZv3hzz/Lx585SRkRGzzZgxI1HzAgDShOcAdXZ2qrS0VKtWrep1nxkzZqitrS26bdiw4bKGBACkH88XIVRWVqqysvKi+/h8PgUCgbiHAgCkv6T8DKiurk4FBQW66aab9PDDD+vYsWO97tvV1aVIJBKzAQDSX8IDNGPGDL3yyiuqra3VCy+8oPr6elVWVurcuXM97l9TUyO/3x/diouLEz0SAKAfSvjvAd17773RP48bN07jx4/X6NGjVVdXp6lTp16wf3V1taqqqqIfRyIRIgQAV4CkX4Y9atQo5efnq7m5ucfnfT6fcnJyYjYAQPpLeoAOHz6sY8eOqaioKNkvBQBIIZ6/BXfy5MmYs5nW1lbt3btXeXl5ysvL07JlyzRnzhwFAgG1tLTo8ccf1/XXX6/p06cndHAAQGrzHKCdO3fqzjvvjH78v5/fzJ07V6tXr9a+ffv0xz/+UcePH1cwGNS0adP0y1/+Uj6fL3FTAwBSnucATZkyRc65Xp//61//elkDpauPP/7Y85oPPvjA85q2tjbPa5YsWeJ5DfpeYWGh5zW33HJLEibp2eeff+55zbx58xI/CFIG94IDAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiQx3sVtbG4hEIvL7/dZjAEkVCAQ8r9m0aZPnNWVlZZ7XSFJTU5PnNS+99JLnNS+//LLnNUgd4XD4ov/KNWdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJgdYDAFeiBx980POaSZMmeV4T772GX331Vc9ruLEovOIMCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwc1Igct03XXXeV6zYMECz2viubHo7t27Pa+RpJUrV8a1DvCCMyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQ3IwW+JDPT+9/J1qxZ43nNyJEjPa+Jx8yZM+NaF4lEEjwJcCHOgAAAJggQAMCEpwDV1NTo1ltvVXZ2tgoKCjRr1iw1NTXF7HP69GmFQiFde+21uuaaazRnzhx1dHQkdGgAQOrzFKD6+nqFQiE1NjZq27ZtOnv2rKZNm6bOzs7oPkuWLNFbb72ljRs3qr6+XkeOHNHs2bMTPjgAILV5ughh69atMR+vW7dOBQUF2rVrlyZPnqxwOKzf//73Wr9+vb7//e9LktauXatvfvObamxs1KRJkxI3OQAgpV3Wz4DC4bAkKS8vT5K0a9cunT17VhUVFdF9xowZo+HDh6uhoaHHz9HV1aVIJBKzAQDSX9wB6u7u1uLFi3Xbbbdp7NixkqT29nZlZWUpNzc3Zt/CwkK1t7f3+Hlqamrk9/ujW3FxcbwjAQBSSNwBCoVC2r9/v1577bXLGqC6ulrhcDi6HTp06LI+HwAgNcT1i6iLFi3S22+/re3bt2vYsGHRxwOBgM6cOaPjx4/HnAV1dHQoEAj0+Ll8Pp98Pl88YwAAUpinMyDnnBYtWqRNmzbp3XffVUlJSczzEyZM0KBBg1RbWxt9rKmpSQcPHlR5eXliJgYApAVPZ0ChUEjr16/Xli1blJ2dHf25jt/v1+DBg+X3+zV//nxVVVUpLy9POTk5evTRR1VeXs4VcACAGJ4CtHr1aknSlClTYh5fu3at5s2bJ0l66aWXlJmZqTlz5qirq0vTp0/X7373u4QMCwBIHxnOOWc9xJdFIhH5/X7rMZDiBgwYENe6X/ziF57XPP/8857XxPN/u23btnlec/fdd3teI0mnTp2Kax3wZeFwWDk5Ob0+z73gAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIK7YSMtlZaWxrVuz549CZ6kZ7t37/a8ZurUqZ7XhMNhz2uAROFu2ACAfokAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHQegDgUjIzvf896amnnkrCJImzYsUKz2u4sSjSDWdAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJbkaKfm/+/Pme18yZMycJkyTOoEGDrEcAzHEGBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4Gak6PeKioqsR0i4WbNmeV6zdu3axA8CGOIMCABgggABAEx4ClBNTY1uvfVWZWdnq6CgQLNmzVJTU1PMPlOmTFFGRkbM9tBDDyV0aABA6vMUoPr6eoVCITU2Nmrbtm06e/aspk2bps7Ozpj9FixYoLa2tui2fPnyhA4NAEh9ni5C2Lp1a8zH69atU0FBgXbt2qXJkydHH7/66qsVCAQSMyEAIC1d1s+AwuGwJCkvLy/m8VdffVX5+fkaO3asqqurderUqV4/R1dXlyKRSMwGAEh/cV+G3d3drcWLF+u2227T2LFjo4/ff//9GjFihILBoPbt26cnnnhCTU1NevPNN3v8PDU1NVq2bFm8YwAAUlTcAQqFQtq/f7/ef//9mMcXLlwY/fO4ceNUVFSkqVOnqqWlRaNHj77g81RXV6uqqir6cSQSUXFxcbxjAQBSRFwBWrRokd5++21t375dw4YNu+i+ZWVlkqTm5uYeA+Tz+eTz+eIZAwCQwjwFyDmnRx99VJs2bVJdXZ1KSkouuWbv3r2S0vO32QEA8fMUoFAopPXr12vLli3Kzs5We3u7JMnv92vw4MFqaWnR+vXr9YMf/EDXXnut9u3bpyVLlmjy5MkaP358Uv4DAACpyVOAVq9eLen8L5t+2dq1azVv3jxlZWXpnXfe0YoVK9TZ2ani4mLNmTNHTz31VMIGBgCkB8/fgruY4uJi1dfXX9ZAAIArA3fDRr/X2NjYZ6/1l7/8xfOaeH6N4KOPPvK8Bkg33IwUAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADCR4S51i+s+FolE5Pf7rccAAFymcDisnJycXp/nDAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJfhegfnZrOgBAnC719bzfBejEiRPWIwAAEuBSX8/73d2wu7u7deTIEWVnZysjIyPmuUgkouLiYh06dOiid1hNdxyH8zgO53EczuM4nNcfjoNzTidOnFAwGFRmZu/nOQP7cKavJTMzU8OGDbvoPjk5OVf0G+x/OA7ncRzO4zicx3E4z/o4fJ1/VqfffQsOAHBlIEAAABMpFSCfz6elS5fK5/NZj2KK43Aex+E8jsN5HIfzUuk49LuLEAAAV4aUOgMCAKQPAgQAMEGAAAAmCBAAwETKBGjVqlUaOXKkrrrqKpWVlenDDz+0HqnPPfvss8rIyIjZxowZYz1W0m3fvl0zZ85UMBhURkaGNm/eHPO8c07PPPOMioqKNHjwYFVUVOjAgQM2wybRpY7DvHnzLnh/zJgxw2bYJKmpqdGtt96q7OxsFRQUaNasWWpqaorZ5/Tp0wqFQrr22mt1zTXXaM6cOero6DCaODm+znGYMmXKBe+Hhx56yGjinqVEgF5//XVVVVVp6dKl2r17t0pLSzV9+nQdPXrUerQ+d/PNN6utrS26vf/++9YjJV1nZ6dKS0u1atWqHp9fvny5Vq5cqTVr1mjHjh0aMmSIpk+frtOnT/fxpMl1qeMgSTNmzIh5f2zYsKEPJ0y++vp6hUIhNTY2atu2bTp79qymTZumzs7O6D5LlizRW2+9pY0bN6q+vl5HjhzR7NmzDadOvK9zHCRpwYIFMe+H5cuXG03cC5cCJk6c6EKhUPTjc+fOuWAw6Gpqagyn6ntLly51paWl1mOYkuQ2bdoU/bi7u9sFAgH361//OvrY8ePHnc/ncxs2bDCYsG989Tg459zcuXPdXXfdZTKPlaNHjzpJrr6+3jl3/n/7QYMGuY0bN0b3+ec//+kkuYaGBqsxk+6rx8E55773ve+5n/70p3ZDfQ39/gzozJkz2rVrlyoqKqKPZWZmqqKiQg0NDYaT2Thw4ICCwaBGjRqlBx54QAcPHrQeyVRra6va29tj3h9+v19lZWVX5Pujrq5OBQUFuummm/Twww/r2LFj1iMlVTgcliTl5eVJknbt2qWzZ8/GvB/GjBmj4cOHp/X74avH4X9effVV5efna+zYsaqurtapU6csxutVv7sZ6Vd9/vnnOnfunAoLC2MeLyws1EcffWQ0lY2ysjKtW7dON910k9ra2rRs2TLdcccd2r9/v7Kzs63HM9He3i5JPb4//vfclWLGjBmaPXu2SkpK1NLSoieffFKVlZVqaGjQgAEDrMdLuO7ubi1evFi33Xabxo4dK+n8+yErK0u5ubkx+6bz+6Gn4yBJ999/v0aMGKFgMKh9+/bpiSeeUFNTk958803DaWP1+wDh/1VWVkb/PH78eJWVlWnEiBF64403NH/+fMPJ0B/ce++90T+PGzdO48eP1+jRo1VXV6epU6caTpYcoVBI+/fvvyJ+DnoxvR2HhQsXRv88btw4FRUVaerUqWppadHo0aP7eswe9ftvweXn52vAgAEXXMXS0dGhQCBgNFX/kJubqxtvvFHNzc3Wo5j533uA98eFRo0apfz8/LR8fyxatEhvv/223nvvvZh/viUQCOjMmTM6fvx4zP7p+n7o7Tj0pKysTJL61fuh3wcoKytLEyZMUG1tbfSx7u5u1dbWqry83HAyeydPnlRLS4uKioqsRzFTUlKiQCAQ8/6IRCLasWPHFf/+OHz4sI4dO5ZW7w/nnBYtWqRNmzbp3XffVUlJSczzEyZM0KBBg2LeD01NTTp48GBavR8udRx6snfvXknqX+8H66sgvo7XXnvN+Xw+t27dOvePf/zDLVy40OXm5rr29nbr0frUz372M1dXV+daW1vdBx984CoqKlx+fr47evSo9WhJdeLECbdnzx63Z88eJ8m9+OKLbs+ePe6TTz5xzjn3q1/9yuXm5rotW7a4ffv2ubvuusuVlJS4L774wnjyxLrYcThx4oR77LHHXENDg2ttbXXvvPOO+853vuNuuOEGd/r0aevRE+bhhx92fr/f1dXVuba2tuh26tSp6D4PPfSQGz58uHv33Xfdzp07XXl5uSsvLzecOvEudRyam5vdc88953bu3OlaW1vdli1b3KhRo9zkyZONJ4+VEgFyzrnf/va3bvjw4S4rK8tNnDjRNTY2Wo/U5+655x5XVFTksrKy3HXXXefuuece19zcbD1W0r333ntO0gXb3LlznXPnL8V++umnXWFhofP5fG7q1KmuqanJdugkuNhxOHXqlJs2bZobOnSoGzRokBsxYoRbsGBB2v0lraf/fklu7dq10X2++OIL98gjj7hvfOMb7uqrr3Z33323a2trsxs6CS51HA4ePOgmT57s8vLynM/nc9dff737+c9/7sLhsO3gX8E/xwAAMNHvfwYEAEhPBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJ/wPpxromZauT4QAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 7\n", + "NN answer: 7\n" + ] + } + ], + "source": [ + "# вывод тестового изображения и результата распознавания\n", + "n = 150\n", + "result = model_2l_100.predict(X_test[n:n+1])\n", + "print('NN output:', result)\n", + "\n", + "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "print('Real mark: ', str(np.argmax(y_test[n])))\n", + "print('NN answer: ', str(np.argmax(result)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Mc1vi6w59TOw", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 517 + }, + "outputId": "28932b4f-4d56-40c5-d253-59c985f1230e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "NN output: [[8.1927046e-06 9.8501807e-01 4.7102575e-03 1.5754283e-03 5.3024664e-06\n", + " 2.3075400e-03 6.3471968e-04 7.6599965e-05 5.5682263e-03 9.5791329e-05]]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGiNJREFUeJzt3Xts1Xf9x/FXufTAWHtqKe3p4dIV2EDHZYpQ67bKpKGtSrglwuQPMAQEyyIwNmVxsKlJFZO5zFRm1FAXB0xUIMOkCZS1zWbLAgMJURuKdRShZRB7Tim0YPv5/cFvx53Rwk45p+/28Hwkn4Se8/30vP165Om35/SQ4JxzAgCgjw2yHgAAcG8iQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMQQ6wE+rqurS+fPn1dSUpISEhKsxwEARMg5p9bWVvn9fg0a1PN1Tr8L0Pnz5zV27FjrMQAAd6mxsVFjxozp8f5+9yO4pKQk6xEAAFFwp7/PYxag0tJSPfDAAxo2bJhycnL07rvvfqJ9/NgNAOLDnf4+j0mA3njjDW3cuFFbt27Ve++9p+nTp6ugoEAXL16MxcMBAAYiFwOzZs1yxcXFoa87Ozud3+93JSUld9wbCAScJBaLxWIN8BUIBG77933Ur4CuX7+uY8eOKT8/P3TboEGDlJ+fr5qamluO7+joUDAYDFsAgPgX9QBdunRJnZ2dysjICLs9IyNDTU1NtxxfUlIir9cbWrwDDgDuDebvgtu8ebMCgUBoNTY2Wo8EAOgDUf89oLS0NA0ePFjNzc1htzc3N8vn891yvMfjkcfjifYYAIB+LupXQImJiZoxY4YqKipCt3V1damiokK5ubnRfjgAwAAVk09C2Lhxo5YvX67Pf/7zmjVrll5++WW1tbXpm9/8ZiweDgAwAMUkQEuWLNEHH3ygLVu2qKmpSY888ojKy8tveWMCAODeleCcc9ZDfFQwGJTX67UeAwBwlwKBgJKTk3u83/xdcACAexMBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcR6AAD9T0FBQcR7ysvLYzDJrSZMmBDxnn/+858xmAR3iysgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEH0YKxLERI0b0at+mTZsi3uOci3hPXV1dxHtaW1sj3oP+iSsgAIAJAgQAMBH1AL3wwgtKSEgIW5MnT472wwAABriYvAb08MMP69ChQ/97kCG81AQACBeTMgwZMkQ+ny8W3xoAECdi8hrQ6dOn5ff7NX78eC1btkxnz57t8diOjg4Fg8GwBQCIf1EPUE5OjsrKylReXq7t27eroaFBjz/+eI9vnSwpKZHX6w2tsWPHRnskAEA/lOB68+b9CLS0tCgrK0svvfSSVq5cecv9HR0d6ujoCH0dDAaJEBAlvf09oH379kW8Z86cORHv6c3vAeXl5UW854MPPoh4D+5eIBBQcnJyj/fH/N0BKSkpeuihh1RfX9/t/R6PRx6PJ9ZjAAD6mZj/HtCVK1d05swZZWZmxvqhAAADSNQDtGnTJlVVVelf//qX/vKXv2jhwoUaPHiwnnzyyWg/FABgAIv6j+DOnTunJ598UpcvX9aoUaP02GOPqba2VqNGjYr2QwEABrCoB2j37t3R/pYAeumLX/xir/b15g0FvbF9+/aI9/CGgvjBZ8EBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACZi/i+iRioYDMrr9VqPAfQ7EydOjHjPO++806vH6qtPr+/N/9ZbW1tjMAli4U7/IipXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAxxHoAAJ9MVlZWxHv66lOtJekPf/hDxHuuXbsWg0kwUHAFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNIAQOPPPJIxHvKysqiPkdP2traIt6zbdu2iPf897//jXgP4gdXQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACT6MFDCwY8eOiPeMHj06BpN077nnnot4z9GjR2MwCeIZV0AAABMECABgIuIAVVdXa968efL7/UpISNC+ffvC7nfOacuWLcrMzNTw4cOVn5+v06dPR2teAECciDhAbW1tmj59ukpLS7u9f9u2bXrllVf06quv6siRIxoxYoQKCgrU3t5+18MCAOJHxG9CKCoqUlFRUbf3Oef08ssv6/vf/77mz58vSXrttdeUkZGhffv2aenSpXc3LQAgbkT1NaCGhgY1NTUpPz8/dJvX61VOTo5qamq63dPR0aFgMBi2AADxL6oBampqkiRlZGSE3Z6RkRG67+NKSkrk9XpDa+zYsdEcCQDQT5m/C27z5s0KBAKh1djYaD0SAKAPRDVAPp9PktTc3Bx2e3Nzc+i+j/N4PEpOTg5bAID4F9UAZWdny+fzqaKiInRbMBjUkSNHlJubG82HAgAMcBG/C+7KlSuqr68Pfd3Q0KATJ04oNTVV48aN0/r16/WjH/1IDz74oLKzs/X888/L7/drwYIF0ZwbADDARRygo0eP6oknngh9vXHjRknS8uXLVVZWpmeffVZtbW1avXq1Wlpa9Nhjj6m8vFzDhg2L3tQAgAEvwTnnrIf4qGAwKK/Xaz0G8IlNmjQp4j2HDh2KeE9vPoz0ypUrEe+RpK997WsR76muru7VYyF+BQKB276ub/4uOADAvYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmIv7nGIB41ptPti4vL494T28+2fo///lPxHuWLVsW8R6JT7ZG3+AKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwYeRAh9RWFgY8Z6srKwYTHKr999/P+I9vfmgVKCvcAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJjgw0iBj/D7/dYj9OhXv/qV9QhAVHEFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNIEZe+/vWv92rf008/HeVJuvf2229HvGfv3r0xmASwwxUQAMAEAQIAmIg4QNXV1Zo3b578fr8SEhK0b9++sPtXrFihhISEsFVYWBiteQEAcSLiALW1tWn69OkqLS3t8ZjCwkJduHAhtHbt2nVXQwIA4k/Eb0IoKipSUVHRbY/xeDzy+Xy9HgoAEP9i8hpQZWWl0tPTNWnSJK1du1aXL1/u8diOjg4Fg8GwBQCIf1EPUGFhoV577TVVVFToJz/5iaqqqlRUVKTOzs5ujy8pKZHX6w2tsWPHRnskAEA/FPXfA1q6dGnoz1OnTtW0adM0YcIEVVZWas6cObccv3nzZm3cuDH0dTAYJEIAcA+I+duwx48fr7S0NNXX13d7v8fjUXJyctgCAMS/mAfo3Llzunz5sjIzM2P9UACAASTiH8FduXIl7GqmoaFBJ06cUGpqqlJTU/Xiiy9q8eLF8vl8OnPmjJ599llNnDhRBQUFUR0cADCwRRygo0eP6oknngh9/eHrN8uXL9f27dt18uRJ/fa3v1VLS4v8fr/mzp2rH/7wh/J4PNGbGgAw4CU455z1EB8VDAbl9Xqtx0A/MmzYsIj3VFVV9eqxZs6c2at9kfrsZz8b8Z6//vWvMZgEiJ1AIHDb1/X5LDgAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYiPo/yQ1EW2JiYsR7+upTrQH0HldAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJPowUuEt79uyJeM+pU6diMAkwsHAFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4MNI0e9973vfsx7hto4fPx7xns7OzhhMAgwsXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACb4MFL0qTFjxkS8Z+XKlTGYpHv//ve/I97z61//OgaTAPGPKyAAgAkCBAAwEVGASkpKNHPmTCUlJSk9PV0LFixQXV1d2DHt7e0qLi7WyJEjdf/992vx4sVqbm6O6tAAgIEvogBVVVWpuLhYtbW1OnjwoG7cuKG5c+eqra0tdMyGDRv05ptvas+ePaqqqtL58+e1aNGiqA8OABjYInoTQnl5edjXZWVlSk9P17Fjx5SXl6dAIKDf/OY32rlzp7785S9Lknbs2KFPf/rTqq2t1Re+8IXoTQ4AGNDu6jWgQCAgSUpNTZUkHTt2TDdu3FB+fn7omMmTJ2vcuHGqqanp9nt0dHQoGAyGLQBA/Ot1gLq6urR+/Xo9+uijmjJliiSpqalJiYmJSklJCTs2IyNDTU1N3X6fkpISeb3e0Bo7dmxvRwIADCC9DlBxcbFOnTql3bt339UAmzdvViAQCK3Gxsa7+n4AgIGhV7+Ium7dOh04cEDV1dVhv1jo8/l0/fp1tbS0hF0FNTc3y+fzdfu9PB6PPB5Pb8YAAAxgEV0BOee0bt067d27V4cPH1Z2dnbY/TNmzNDQoUNVUVERuq2urk5nz55Vbm5udCYGAMSFiK6AiouLtXPnTu3fv19JSUmh13W8Xq+GDx8ur9erlStXauPGjUpNTVVycrKeeuop5ebm8g44AECYiAK0fft2SdLs2bPDbt+xY4dWrFghSfrZz36mQYMGafHixero6FBBQYF+8YtfRGVYAED8iChAzrk7HjNs2DCVlpaqtLS010Mhfn3rW9+KeM+oUaNiMEn3/vjHP0a859KlSzGYBIh/fBYcAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATPTqX0QFeuszn/mM9QgA+gmugAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE3wYKfrUgQMHIt6zcOHCGEzSvT//+c999ljAvY4rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARIJzzlkP8VHBYFBer9d6DADAXQoEAkpOTu7xfq6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgImIAlRSUqKZM2cqKSlJ6enpWrBggerq6sKOmT17thISEsLWmjVrojo0AGDgiyhAVVVVKi4uVm1trQ4ePKgbN25o7ty5amtrCztu1apVunDhQmht27YtqkMDAAa+IZEcXF5eHvZ1WVmZ0tPTdezYMeXl5YVuv+++++Tz+aIzIQAgLt3Va0CBQECSlJqaGnb766+/rrS0NE2ZMkWbN2/W1atXe/weHR0dCgaDYQsAcA9wvdTZ2em++tWvukcffTTs9l/+8peuvLzcnTx50v3ud79zo0ePdgsXLuzx+2zdutVJYrFYLFacrUAgcNuO9DpAa9ascVlZWa6xsfG2x1VUVDhJrr6+vtv729vbXSAQCK3Gxkbzk8ZisVisu193ClBErwF9aN26dTpw4ICqq6s1ZsyY2x6bk5MjSaqvr9eECRNuud/j8cjj8fRmDADAABZRgJxzeuqpp7R3715VVlYqOzv7jntOnDghScrMzOzVgACA+BRRgIqLi7Vz507t379fSUlJampqkiR5vV4NHz5cZ86c0c6dO/WVr3xFI0eO1MmTJ7Vhwwbl5eVp2rRpMfkPAAAYoCJ53Uc9/Jxvx44dzjnnzp496/Ly8lxqaqrzeDxu4sSJ7plnnrnjzwE/KhAImP/cksVisVh3v+70d3/C/4el3wgGg/J6vdZjAADuUiAQUHJyco/381lwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT/S5AzjnrEQAAUXCnv8/7XYBaW1utRwAARMGd/j5PcP3skqOrq0vnz59XUlKSEhISwu4LBoMaO3asGhsblZycbDShPc7DTZyHmzgPN3EebuoP58E5p9bWVvn9fg0a1PN1zpA+nOkTGTRokMaMGXPbY5KTk+/pJ9iHOA83cR5u4jzcxHm4yfo8eL3eOx7T734EBwC4NxAgAICJARUgj8ejrVu3yuPxWI9iivNwE+fhJs7DTZyHmwbSeeh3b0IAANwbBtQVEAAgfhAgAIAJAgQAMEGAAAAmBkyASktL9cADD2jYsGHKycnRu+++az1Sn3vhhReUkJAQtiZPnmw9VsxVV1dr3rx58vv9SkhI0L59+8Lud85py5YtyszM1PDhw5Wfn6/Tp0/bDBtDdzoPK1asuOX5UVhYaDNsjJSUlGjmzJlKSkpSenq6FixYoLq6urBj2tvbVVxcrJEjR+r+++/X4sWL1dzcbDRxbHyS8zB79uxbng9r1qwxmrh7AyJAb7zxhjZu3KitW7fqvffe0/Tp01VQUKCLFy9aj9bnHn74YV24cCG03n77beuRYq6trU3Tp09XaWlpt/dv27ZNr7zyil599VUdOXJEI0aMUEFBgdrb2/t40ti603mQpMLCwrDnx65du/pwwtirqqpScXGxamtrdfDgQd24cUNz585VW1tb6JgNGzbozTff1J49e1RVVaXz589r0aJFhlNH3yc5D5K0atWqsOfDtm3bjCbugRsAZs2a5YqLi0Nfd3Z2Or/f70pKSgyn6ntbt25106dPtx7DlCS3d+/e0NddXV3O5/O5n/70p6HbWlpanMfjcbt27TKYsG98/Dw459zy5cvd/PnzTeaxcvHiRSfJVVVVOedu/nc/dOhQt2fPntAxf//7350kV1NTYzVmzH38PDjn3Je+9CX3ne98x26oT6DfXwFdv35dx44dU35+fui2QYMGKT8/XzU1NYaT2Th9+rT8fr/Gjx+vZcuW6ezZs9YjmWpoaFBTU1PY88Pr9SonJ+eefH5UVlYqPT1dkyZN0tq1a3X58mXrkWIqEAhIklJTUyVJx44d040bN8KeD5MnT9a4cePi+vnw8fPwoddff11paWmaMmWKNm/erKtXr1qM16N+92GkH3fp0iV1dnYqIyMj7PaMjAz94x//MJrKRk5OjsrKyjRp0iRduHBBL774oh5//HGdOnVKSUlJ1uOZaGpqkqRunx8f3nevKCws1KJFi5Sdna0zZ87oueeeU1FRkWpqajR48GDr8aKuq6tL69ev16OPPqopU6ZIuvl8SExMVEpKStix8fx86O48SNI3vvENZWVlye/36+TJk/rud7+ruro6/elPfzKcNly/DxD+p6ioKPTnadOmKScnR1lZWfr973+vlStXGk6G/mDp0qWhP0+dOlXTpk3ThAkTVFlZqTlz5hhOFhvFxcU6derUPfE66O30dB5Wr14d+vPUqVOVmZmpOXPm6MyZM5owYUJfj9mtfv8juLS0NA0ePPiWd7E0NzfL5/MZTdU/pKSk6KGHHlJ9fb31KGY+fA7w/LjV+PHjlZaWFpfPj3Xr1unAgQN66623wv75Fp/Pp+vXr6ulpSXs+Hh9PvR0HrqTk5MjSf3q+dDvA5SYmKgZM2aooqIidFtXV5cqKiqUm5trOJm9K1eu6MyZM8rMzLQexUx2drZ8Pl/Y8yMYDOrIkSP3/PPj3Llzunz5clw9P5xzWrdunfbu3avDhw8rOzs77P4ZM2Zo6NChYc+Huro6nT17Nq6eD3c6D905ceKEJPWv54P1uyA+id27dzuPx+PKysrc3/72N7d69WqXkpLimpqarEfrU08//bSrrKx0DQ0N7p133nH5+fkuLS3NXbx40Xq0mGptbXXHjx93x48fd5LcSy+95I4fP+7ef/9955xzP/7xj11KSorbv3+/O3nypJs/f77Lzs52165dM548um53HlpbW92mTZtcTU2Na2hocIcOHXKf+9zn3IMPPuja29utR4+atWvXOq/X6yorK92FCxdC6+rVq6Fj1qxZ48aNG+cOHz7sjh496nJzc11ubq7h1NF3p/NQX1/vfvCDH7ijR4+6hoYGt3//fjd+/HiXl5dnPHm4AREg55z7+c9/7saNG+cSExPdrFmzXG1trfVIfW7JkiUuMzPTJSYmutGjR7slS5a4+vp667Fi7q233nKSblnLly93zt18K/bzzz/vMjIynMfjcXPmzHF1dXW2Q8fA7c7D1atX3dy5c92oUaPc0KFDXVZWllu1alXc/Z+07v7zS3I7duwIHXPt2jX37W9/233qU59y9913n1u4cKG7cOGC3dAxcKfzcPbsWZeXl+dSU1Odx+NxEydOdM8884wLBAK2g38M/xwDAMBEv38NCAAQnwgQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE/8H341JvPmYkeEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Real mark: 1\n", + "NN answer: 1\n" + ] + } + ], + "source": [ + "# вывод тестового изображения и результата распознавания\n", + "n = 810\n", + "result = model_2l_100.predict(X_test[n:n+1])\n", + "print('NN output:', result)\n", + "\n", + "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", + "plt.show()\n", + "print('Real mark: ', str(np.argmax(y_test[n])))\n", + "print('NN answer: ', str(np.argmax(result)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KB4fgTJ0_EIL" + }, + "outputs": [], + "source": [ + "#загрузка собственного изображения\n", + "from PIL import Image\n", + "file_1_data = Image.open('ИИЛР1_6.png')\n", + "file_1_data = file_1_data.convert('L') #перевод в градации серого\n", + "test_1_img = np.array(file_1_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "no8ogZL3_t57", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "7640781d-fdca-4355-a086-6ab27b2f9f8a" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGl9JREFUeJzt3V9M1ff9x/HX8Q+ntuUcRIQDFRW11aVWdE4ZcWXdJIJbTP1z4bpe6GJsdNhMXbvFJWq7LWGzSbd0cXYXi25ZtZ3J1NQLE0XBbAMbKcSYbUQYDoyAq5FzFAsa+fwu/O20p4J6jufwPhyej+STlHPOl/P222999sDhg8c55wQAwBAbZT0AAGBkIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDEGOsBvqi/v1+XL19Wenq6PB6P9TgAgCg553T9+nXl5eVp1KjBX+ckXYAuX76s/Px86zEAAI+ovb1dkyZNGvT+pPsSXHp6uvUIAIA4eNDf5wkL0O7duzV16lQ99thjKioq0kcfffRQx/FlNwBIDQ/6+zwhAfrggw+0detW7dy5Ux9//LEKCwtVVlamK1euJOLpAADDkUuAhQsXuoqKivDHd+7ccXl5ea6ysvKBxwaDQSeJxWKxWMN8BYPB+/59H/dXQLdu3VJ9fb1KS0vDt40aNUqlpaWqra295/F9fX0KhUIRCwCQ+uIeoE8++UR37txRTk5OxO05OTnq7Oy85/GVlZXy+/3hxTvgAGBkMH8X3LZt2xQMBsOrvb3deiQAwBCI+88BZWVlafTo0erq6oq4vaurS4FA4J7He71eeb3eeI8BAEhycX8FlJaWpvnz56uqqip8W39/v6qqqlRcXBzvpwMADFMJ2Qlh69atWrNmjb7yla9o4cKF+vWvf62enh5973vfS8TTAQCGoYQEaPXq1frvf/+rHTt2qLOzU3PnztWxY8fueWMCAGDk8jjnnPUQnxcKheT3+63HAAA8omAwKJ/PN+j95u+CAwCMTAQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiYTshg3g/hoaGqI+Zu7cuVEf09jYGPUxkjRv3ryYjgOiwSsgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmGA3bCS9odo5OhXFeh6cc/EdZBCx7NbNTt2pg1dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJNiPFkGJjUXxeLP9uY9koNZZNTyU2Pk00XgEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACY8Lpad/RIoFArJ7/dbj4EESbLL7R7d3d1RHzN+/Pj4DzIMXbt2LepjYtkkNJYNTDMyMqI+RoptPjYw/UwwGJTP5xv0fl4BAQBMECAAgIm4B+iNN96Qx+OJWLNmzYr30wAAhrmE/EK6Z599VidOnPjsScbwe+8AAJESUoYxY8YoEAgk4lMDAFJEQr4HdOHCBeXl5WnatGl6+eWX1dbWNuhj+/r6FAqFIhYAIPXFPUBFRUXat2+fjh07pj179qi1tVXPP/+8rl+/PuDjKysr5ff7wys/Pz/eIwEAklDCfw6ou7tbU6ZM0dtvv61169bdc39fX5/6+vrCH4dCISKUwvg5oNTFzwHdxc8BfeZBPweU8HcHZGRk6JlnnlFzc/OA93u9Xnm93kSPAQBIMgn/OaAbN26opaVFubm5iX4qAMAwEvcAvfbaa6qpqdHFixf197//XStWrNDo0aP10ksvxfupAADDWNy/BHfp0iW99NJLunr1qiZOnKivfe1rqqur08SJE+P9VACAYYzNSBGzhoaGqI+J5RvIvDEAjyqWN0jEimvvM2xGCgBISgQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACTYjRcyG6tLxeDxD8jwA4ovNSAEASYkAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMjLEeAPYaGhqsRwAwAvEKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwWak0Ny5c61HADAC8QoIAGCCAAEATEQdoNOnT2vZsmXKy8uTx+PR4cOHI+53zmnHjh3Kzc3VuHHjVFpaqgsXLsRrXgBAiog6QD09PSosLNTu3bsHvH/Xrl1655139O677+rMmTN64oknVFZWpt7e3kceFgCQQtwjkOQOHToU/ri/v98FAgH31ltvhW/r7u52Xq/XHThw4KE+ZzAYdJJYQ7iSnfX5YbFYsa1gMHjf/7bj+j2g1tZWdXZ2qrS0NHyb3+9XUVGRamtrBzymr69PoVAoYgEAUl9cA9TZ2SlJysnJibg9JycnfN8XVVZWyu/3h1d+fn48RwIAJCnzd8Ft27ZNwWAwvNrb261HAgAMgbgGKBAISJK6uroibu/q6grf90Ver1c+ny9iAQBSX1wDVFBQoEAgoKqqqvBtoVBIZ86cUXFxcTyfCgAwzEW9Fc+NGzfU3Nwc/ri1tVWNjY3KzMzU5MmTtXnzZv385z/X008/rYKCAm3fvl15eXlavnx5POcGAAx30b4l9tSpUwO+3W7NmjXOubtvxd6+fbvLyclxXq/XLV682DU1NT305+dt2EO/kp31+WGxWLGtB70N2/P//4EnjVAoJL/fbz3GiHLt2rWYjsvIyIjvIIPweDxD8jzJrqGhIepjkn2j2cbGxqiPmTdvXvwHQUIEg8H7fl/f/F1wAICRiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACai/n1ASD3jx4+P6bih2kg9ll2gY90xORV3nI5FLLtUT506NepjYjl3sVx3sfx5JHbeTjReAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjxuqHaUfEihUEh+v996DDyEJLt0IsS6+WQsG2pevHgx6mNScQPTVBTLdcQGpp8JBoPy+XyD3s8rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABJuRImZJdumY6e7ujvqY8ePHx3+QOLp27VrUx2RkZMR/EGOx/LuNZQPTb3zjG1EfMxywGSkAICkRIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACbGWA8AJEIsm0hKyb9J6FBJtfMQy+aqknTx4sWoj0nVjUUTgVdAAAATBAgAYCLqAJ0+fVrLli1TXl6ePB6PDh8+HHH/2rVr5fF4IlZ5eXm85gUApIioA9TT06PCwkLt3r170MeUl5ero6MjvA4cOPBIQwIAUk/Ub0JYunSpli5det/HeL1eBQKBmIcCAKS+hHwPqLq6WtnZ2Zo5c6Y2btyoq1evDvrYvr4+hUKhiAUASH1xD1B5ebn++Mc/qqqqSr/85S9VU1OjpUuX6s6dOwM+vrKyUn6/P7zy8/PjPRIAIAl5nHMu5oM9Hh06dEjLly8f9DH//ve/NX36dJ04cUKLFy++5/6+vj719fWFPw6FQkRomHiESyfh+DkgfN5Q/hzQvHnzYnquVBQMBuXz+Qa9P+Fvw542bZqysrLU3Nw84P1er1c+ny9iAQBSX8IDdOnSJV29elW5ubmJfioAwDAS9bvgbty4EfFqprW1VY2NjcrMzFRmZqbefPNNrVq1SoFAQC0tLfrRj36kGTNmqKysLK6DAwCGt6gDdPbs2Yi9jrZu3SpJWrNmjfbs2aNz587pD3/4g7q7u5WXl6clS5boZz/7mbxeb/ymBgAMe4/0JoRECIVC8vv91mPgISTZpRPB4/FYj4AUEMs1zrX3GfM3IQAAMBACBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMcZ6AIws3d3dUR+TkZER9zkwsjQ0NFiPgAHwCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMFmpBhSbCyKRxXLxqJTp06N/yB4ZLwCAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMsBkpYtbd3R31MUO1GWksG1ZK0rx58+I8Ce4nlushlo1FL168GPUxsT4XHh6vgAAAJggQAMBEVAGqrKzUggULlJ6eruzsbC1fvlxNTU0Rj+nt7VVFRYUmTJigJ598UqtWrVJXV1dchwYADH9RBaimpkYVFRWqq6vT8ePHdfv2bS1ZskQ9PT3hx2zZskUffvihDh48qJqaGl2+fFkrV66M++AAgOEtqjchHDt2LOLjffv2KTs7W/X19SopKVEwGNTvf/977d+/X9/85jclSXv37tWXvvQl1dXV6atf/Wr8JgcADGuP9D2gYDAoScrMzJQk1dfX6/bt2yotLQ0/ZtasWZo8ebJqa2sH/Bx9fX0KhUIRCwCQ+mIOUH9/vzZv3qxFixZp9uzZkqTOzk6lpaXd89bKnJwcdXZ2Dvh5Kisr5ff7wys/Pz/WkQAAw0jMAaqoqND58+f1/vvvP9IA27ZtUzAYDK/29vZH+nwAgOEhph9E3bRpk44eParTp09r0qRJ4dsDgYBu3bql7u7uiFdBXV1dCgQCA34ur9crr9cbyxgAgGEsqldAzjlt2rRJhw4d0smTJ1VQUBBx//z58zV27FhVVVWFb2tqalJbW5uKi4vjMzEAICVE9QqooqJC+/fv15EjR5Senh7+vo7f79e4cePk9/u1bt06bd26VZmZmfL5fHr11VdVXFzMO+AAABGiCtCePXskSS+88ELE7Xv37tXatWslSb/61a80atQorVq1Sn19fSorK9Nvf/vbuAwLAEgdHuecsx7i80KhkPx+v/UYSJBr165FfUwsG1bGslFqrM+F2A3VhraxXg/jx4+P6TjcFQwG5fP5Br2fveAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgIqbfiArEKpbdhYdqB+1YNTY2Rn3M1KlToz4mlj9TLLPFau7cuVEfM1Q7W7OrdXLiFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ3xeKBSS3++3HgMjVLJvfDpU2PAT8RAMBuXz+Qa9n1dAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJMdYDAMmEDTWBocMrIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGAiqgBVVlZqwYIFSk9PV3Z2tpYvX66mpqaIx7zwwgvyeDwRa8OGDXEdGgAw/EUVoJqaGlVUVKiurk7Hjx/X7du3tWTJEvX09EQ8bv369ero6AivXbt2xXVoAMDwF9VvRD127FjEx/v27VN2drbq6+tVUlISvv3xxx9XIBCIz4QAgJT0SN8DCgaDkqTMzMyI29977z1lZWVp9uzZ2rZtm27evDno5+jr61MoFIpYAIARwMXozp077tvf/rZbtGhRxO2/+93v3LFjx9y5c+fcn/70J/fUU0+5FStWDPp5du7c6SSxWCwWK8VWMBi8b0diDtCGDRvclClTXHt7+30fV1VV5SS55ubmAe/v7e11wWAwvNrb281PGovFYrEefT0oQFF9D+h/Nm3apKNHj+r06dOaNGnSfR9bVFQkSWpubtb06dPvud/r9crr9cYyBgBgGIsqQM45vfrqqzp06JCqq6tVUFDwwGMaGxslSbm5uTENCABITVEFqKKiQvv379eRI0eUnp6uzs5OSZLf79e4cePU0tKi/fv361vf+pYmTJigc+fOacuWLSopKdGcOXMS8gcAAAxT0XzfR4N8nW/v3r3OOefa2tpcSUmJy8zMdF6v182YMcO9/vrrD/w64OcFg0Hzr1uyWCwW69HXg/7u9/x/WJJGKBSS3++3HgMA8IiCwaB8Pt+g97MXHADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARNIFyDlnPQIAIA4e9Pd50gXo+vXr1iMAAOLgQX+fe1ySveTo7+/X5cuXlZ6eLo/HE3FfKBRSfn6+2tvb5fP5jCa0x3m4i/NwF+fhLs7DXclwHpxzun79uvLy8jRq1OCvc8YM4UwPZdSoUZo0adJ9H+Pz+Ub0BfY/nIe7OA93cR7u4jzcZX0e/H7/Ax+TdF+CAwCMDAQIAGBiWAXI6/Vq586d8nq91qOY4jzcxXm4i/NwF+fhruF0HpLuTQgAgJFhWL0CAgCkDgIEADBBgAAAJggQAMDEsAnQ7t27NXXqVD322GMqKirSRx99ZD3SkHvjjTfk8Xgi1qxZs6zHSrjTp09r2bJlysvLk8fj0eHDhyPud85px44dys3N1bhx41RaWqoLFy7YDJtADzoPa9euvef6KC8vtxk2QSorK7VgwQKlp6crOztby5cvV1NTU8Rjent7VVFRoQkTJujJJ5/UqlWr1NXVZTRxYjzMeXjhhRfuuR42bNhgNPHAhkWAPvjgA23dulU7d+7Uxx9/rMLCQpWVlenKlSvWow25Z599Vh0dHeH117/+1XqkhOvp6VFhYaF279494P27du3SO++8o3fffVdnzpzRE088obKyMvX29g7xpIn1oPMgSeXl5RHXx4EDB4ZwwsSrqalRRUWF6urqdPz4cd2+fVtLlixRT09P+DFbtmzRhx9+qIMHD6qmpkaXL1/WypUrDaeOv4c5D5K0fv36iOth165dRhMPwg0DCxcudBUVFeGP79y54/Ly8lxlZaXhVENv586drrCw0HoMU5LcoUOHwh/39/e7QCDg3nrrrfBt3d3dzuv1ugMHDhhMODS+eB6cc27NmjXuxRdfNJnHypUrV5wkV1NT45y7++9+7Nix7uDBg+HH/POf/3SSXG1trdWYCffF8+Ccc1//+tfdD37wA7uhHkLSvwK6deuW6uvrVVpaGr5t1KhRKi0tVW1treFkNi5cuKC8vDxNmzZNL7/8stra2qxHMtXa2qrOzs6I68Pv96uoqGhEXh/V1dXKzs7WzJkztXHjRl29etV6pIQKBoOSpMzMTElSfX29bt++HXE9zJo1S5MnT07p6+GL5+F/3nvvPWVlZWn27Nnatm2bbt68aTHeoJJuM9Iv+uSTT3Tnzh3l5ORE3J6Tk6N//etfRlPZKCoq0r59+zRz5kx1dHTozTff1PPPP6/z588rPT3dejwTnZ2dkjTg9fG/+0aK8vJyrVy5UgUFBWppadFPfvITLV26VLW1tRo9erT1eHHX39+vzZs3a9GiRZo9e7aku9dDWlqaMjIyIh6bytfDQOdBkr773e9qypQpysvL07lz5/TjH/9YTU1N+stf/mI4baSkDxA+s3Tp0vA/z5kzR0VFRZoyZYr+/Oc/a926dYaTIRl85zvfCf/zc889pzlz5mj69Omqrq7W4sWLDSdLjIqKCp0/f35EfB/0fgY7D6+88kr4n5977jnl5uZq8eLFamlp0fTp04d6zAEl/ZfgsrKyNHr06HvexdLV1aVAIGA0VXLIyMjQM888o+bmZutRzPzvGuD6uNe0adOUlZWVktfHpk2bdPToUZ06dSri17cEAgHdunVL3d3dEY9P1ethsPMwkKKiIklKqush6QOUlpam+fPnq6qqKnxbf3+/qqqqVFxcbDiZvRs3bqilpUW5ubnWo5gpKChQIBCIuD5CoZDOnDkz4q+PS5cu6erVqyl1fTjntGnTJh06dEgnT55UQUFBxP3z58/X2LFjI66HpqYmtbW1pdT18KDzMJDGxkZJSq7rwfpdEA/j/fffd16v1+3bt8/94x//cK+88orLyMhwnZ2d1qMNqR/+8Ieuurratba2ur/97W+utLTUZWVluStXrliPllDXr193DQ0NrqGhwUlyb7/9tmtoaHD/+c9/nHPO/eIXv3AZGRnuyJEj7ty5c+7FF190BQUF7tNPPzWePL7udx6uX7/uXnvtNVdbW+taW1vdiRMn3Je//GX39NNPu97eXuvR42bjxo3O7/e76upq19HREV43b94MP2bDhg1u8uTJ7uTJk+7s2bOuuLjYFRcXG04dfw86D83Nze6nP/2pO3v2rGttbXVHjhxx06ZNcyUlJcaTRxoWAXLOud/85jdu8uTJLi0tzS1cuNDV1dVZjzTkVq9e7XJzc11aWpp76qmn3OrVq11zc7P1WAl36tQpJ+metWbNGufc3bdib9++3eXk5Div1+sWL17smpqabIdOgPudh5s3b7olS5a4iRMnurFjx7opU6a49evXp9z/pA3055fk9u7dG37Mp59+6r7//e+78ePHu8cff9ytWLHCdXR02A2dAA86D21tba6kpMRlZmY6r9frZsyY4V5//XUXDAZtB/8Cfh0DAMBE0n8PCACQmggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE/8HYMK6RNiPcj0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "#вывод собственного изображения\n", + "plt.imshow(test_1_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mpkMp0r0_z_N" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_1_img = test_1_img / 255\n", + "test_1_img = test_1_img.reshape(1, num_pixels)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "brZ2LVVK_640", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "69d1d18e-6241-43b4-9610-bcf1685594d3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n", + "I think it's 6\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_1 = model_2l_100.predict(test_1_img)\n", + "print('I think it\\'s', np.argmax(result_1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "le5KqCc1wMwT" + }, + "outputs": [], + "source": [ + "#загрузка собственного изображения\n", + "from PIL import Image\n", + "file_2_data = Image.open('ИИЛР1_1.png')\n", + "file_2_data = file_2_data.convert('L') #перевод в градации серого\n", + "test_2_img = np.array(file_2_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YVYE-Vkq5wR7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "0c932382-ef82-4388-8197-3419fd063826" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGLRJREFUeJzt3X9MVff9x/HXVeFWW+5FRLjcihS11aRWmjllxNU1kShuMfXHH67rH9oYG+21mbp2i0vUdlnCZpNm6WLW/aVZVm1nMjT1DxNFwWxDm1qNMeuIMDYwcnE141xEQQOf7x+u99tbQbx6L28uPB/JJ5F7zr33zemRZy/3CD7nnBMAAMNsnPUAAICxiQABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATE6wH+Kb+/n5dvXpVOTk58vl81uMAAJLknFNXV5fC4bDGjRv8dc6IC9DVq1dVXFxsPQYA4BG1tbVp2rRpg24fcd+Cy8nJsR4BAJACQ309T1uA9u7dq6eeekqPPfaYysvL9emnnz7Q/fi2GwCMDkN9PU9LgD7++GNt375du3fv1ueff66ysjItW7ZM165dS8fTAQAykUuDhQsXukgkEv+4r6/PhcNhV11dPeR9Pc9zklgsFouV4cvzvPt+vU/5K6Dbt2/r3LlzqqysjN82btw4VVZWqqGh4Z79e3t7FYvFEhYAYPRLeYC+/PJL9fX1qbCwMOH2wsJCRaPRe/avrq5WMBiML66AA4CxwfwquB07dsjzvPhqa2uzHgkAMAxS/u+A8vPzNX78eHV0dCTc3tHRoVAodM/+fr9ffr8/1WMAAEa4lL8Cys7O1vz581VbWxu/rb+/X7W1taqoqEj10wEAMlRafhLC9u3btW7dOn3729/WwoUL9Zvf/Ebd3d169dVX0/F0AIAMlJYArV27Vv/5z3+0a9cuRaNRPf/88zp27Ng9FyYAAMYun3POWQ/xdbFYTMFg0HoMAMAj8jxPgUBg0O3mV8EBAMYmAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGKC9QBAptu3b9+wPM+rr746LM8DDBdeAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJnzOOWc9xNfFYjEFg0HrMTBGPcwPFl2/fn3qBxmAz+cblucBUsXzPAUCgUG38woIAGCCAAEATKQ8QG+//bZ8Pl/CmjNnTqqfBgCQ4dLyC+meffZZnThx4v+fZAK/9w4AkCgtZZgwYYJCoVA6HhoAMEqk5T2gy5cvKxwOa8aMGXrllVfU2to66L69vb2KxWIJCwAw+qU8QOXl5dq/f7+OHTum3/3ud2ppadELL7ygrq6uAfevrq5WMBiMr+Li4lSPBAAYgdL+74A6OztVUlKi9957Txs2bLhne29vr3p7e+Mfx2IxIgQz/DsgIHWG+ndAab86IDc3V88884yampoG3O73++X3+9M9BgBghEn7vwO6ceOGmpubVVRUlO6nAgBkkJQH6M0331R9fb3+9a9/6W9/+5tWrVql8ePH6+WXX071UwEAMljKvwV35coVvfzyy7p+/bqmTp2q7373uzpz5oymTp2a6qcCAGQwfhgp8DUj7K9DAi5CQKbhh5ECAEYkAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMDHBegBgJOns7Ez6Prm5uUnfp6+vL+n7AKMNr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP8MFLgayZPnpz0fZxzSd9n/PjxSd8HGG14BQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMJB2g06dPa8WKFQqHw/L5fDp8+HDCduecdu3apaKiIk2cOFGVlZW6fPlyquYFAIwSSQeou7tbZWVl2rt374Db9+zZo/fff18ffPCBzp49q8cff1zLli1TT0/PIw8LABhF3COQ5GpqauIf9/f3u1Ao5N599934bZ2dnc7v97uDBw8+0GN6nucksVgZs4aL9efJYiW7PM+77zmd0veAWlpaFI1GVVlZGb8tGAyqvLxcDQ0NA96nt7dXsVgsYQEARr+UBigajUqSCgsLE24vLCyMb/um6upqBYPB+CouLk7lSACAEcr8KrgdO3bI87z4amtrsx4JADAMUhqgUCgkSero6Ei4vaOjI77tm/x+vwKBQMICAIx+KQ1QaWmpQqGQamtr47fFYjGdPXtWFRUVqXwqAECGm5DsHW7cuKGmpqb4xy0tLbpw4YLy8vI0ffp0bd26Vb/85S/19NNPq7S0VDt37lQ4HNbKlStTOTcAINMleynoqVOnBrzcbt26dc65u5di79y50xUWFjq/3++WLFniGhsbH/jxuQyblWlruFh/nixWsmuoy7B9/zuxR4xYLKZgMGg9BvDAhuuvkM/nG5bnAVLF87z7vq9vfhUcAGBsIkAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYmWA8AjCTnz5+3HgEYM3gFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY4IeRAl/z/PPPW48AjBm8AgIAmCBAAAATSQfo9OnTWrFihcLhsHw+nw4fPpywff369fL5fAmrqqoqVfMCAEaJpAPU3d2tsrIy7d27d9B9qqqq1N7eHl8HDx58pCEBAKNP0hchLF++XMuXL7/vPn6/X6FQ6KGHAgCMfml5D6iurk4FBQWaPXu2Nm/erOvXrw+6b29vr2KxWMICAIx+KQ9QVVWV/vCHP6i2tla//vWvVV9fr+XLl6uvr2/A/aurqxUMBuOruLg41SMBAEYgn3POPfSdfT7V1NRo5cqVg+7zz3/+UzNnztSJEye0ZMmSe7b39vaqt7c3/nEsFiNCMPMIfx3SzufzWY8AJMXzPAUCgUG3p/0y7BkzZig/P19NTU0Dbvf7/QoEAgkLADD6pT1AV65c0fXr11VUVJTupwIAZJCkr4K7ceNGwquZlpYWXbhwQXl5ecrLy9M777yjNWvWKBQKqbm5WT/96U81a9YsLVu2LKWDAwAynEvSqVOnnKR71rp169zNmzfd0qVL3dSpU11WVpYrKSlxGzdudNFo9IEf3/O8AR+fxRqONZJZHxsWK9nled59z+lHugghHWKxmILBoPUYGKP++9//Jn2f3Nzc1A8yAC5CQKYxvwgBAICBECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwETSvw8IGM0mT56c9H1G2A+UBzIGr4AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJpIKUHV1tRYsWKCcnBwVFBRo5cqVamxsTNinp6dHkUhEU6ZM0RNPPKE1a9aoo6MjpUMDADJfUgGqr69XJBLRmTNndPz4cd25c0dLly5Vd3d3fJ9t27bpk08+0aFDh1RfX6+rV69q9erVKR8cAJDh3CO4du2ak+Tq6+udc851dna6rKwsd+jQofg+X3zxhZPkGhoaHugxPc9zklisjFnDxfrzZLGSXZ7n3fecfqT3gDzPkyTl5eVJks6dO6c7d+6osrIyvs+cOXM0ffp0NTQ0DPgYvb29isViCQsAMPo9dID6+/u1detWLVq0SHPnzpUkRaNRZWdnKzc3N2HfwsJCRaPRAR+nurpawWAwvoqLix92JABABnnoAEUiEV26dEkfffTRIw2wY8cOeZ4XX21tbY/0eACAzDDhYe60ZcsWHT16VKdPn9a0adPit4dCId2+fVudnZ0Jr4I6OjoUCoUGfCy/3y+/3/8wYwAAMlhSr4Ccc9qyZYtqamp08uRJlZaWJmyfP3++srKyVFtbG7+tsbFRra2tqqioSM3EAIBRIalXQJFIRAcOHNCRI0eUk5MTf18nGAxq4sSJCgaD2rBhg7Zv3668vDwFAgG98cYbqqio0He+8520fAIAgAyVistA9+3bF9/n1q1b7vXXX3eTJ092kyZNcqtWrXLt7e0P/Bxchs3KtDVcrD9PFivZNdRl2L7/ndgjRiwWUzAYtB4DeGDD9VfI5/MNy/MAqeJ5ngKBwKDb+VlwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYGKC9QBApuvs7Ez6PoFAIPWDABmGV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAl+GCnwiCZPnmw9ApCReAUEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATCQVoOrqai1YsEA5OTkqKCjQypUr1djYmLDPiy++KJ/Pl7A2bdqU0qEBAJkvqQDV19crEonozJkzOn78uO7cuaOlS5equ7s7Yb+NGzeqvb09vvbs2ZPSoQEAmS+p34h67NixhI/379+vgoICnTt3TosXL47fPmnSJIVCodRMCAAYlR7pPSDP8yRJeXl5Cbd/+OGHys/P19y5c7Vjxw7dvHlz0Mfo7e1VLBZLWACAMcA9pL6+PveDH/zALVq0KOH23//+9+7YsWPu4sWL7o9//KN78skn3apVqwZ9nN27dztJLBaLxRply/O8+3bkoQO0adMmV1JS4tra2u67X21trZPkmpqaBtze09PjPM+Lr7a2NvODxmKxWKxHX0MFKKn3gL6yZcsWHT16VKdPn9a0adPuu295ebkkqampSTNnzrxnu9/vl9/vf5gxAAAZLKkAOef0xhtvqKamRnV1dSotLR3yPhcuXJAkFRUVPdSAAIDRKakARSIRHThwQEeOHFFOTo6i0agkKRgMauLEiWpubtaBAwf0/e9/X1OmTNHFixe1bds2LV68WPPmzUvLJwAAyFDJvO+jQb7Pt2/fPuecc62trW7x4sUuLy/P+f1+N2vWLPfWW28N+X3Ar/M8z/z7liwWi8V69DXU137f/8IyYsRiMQWDQesxAACPyPM8BQKBQbfzs+AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACZGXICcc9YjAABSYKiv5yMuQF1dXdYjAABSYKiv5z43wl5y9Pf36+rVq8rJyZHP50vYFovFVFxcrLa2NgUCAaMJ7XEc7uI43MVxuIvjcNdIOA7OOXV1dSkcDmvcuMFf50wYxpkeyLhx4zRt2rT77hMIBMb0CfYVjsNdHIe7OA53cRzusj4OwWBwyH1G3LfgAABjAwECAJjIqAD5/X7t3r1bfr/fehRTHIe7OA53cRzu4jjclUnHYcRdhAAAGBsy6hUQAGD0IEAAABMECABgggABAExkTID27t2rp556So899pjKy8v16aefWo807N5++235fL6ENWfOHOux0u706dNasWKFwuGwfD6fDh8+nLDdOaddu3apqKhIEydOVGVlpS5fvmwzbBoNdRzWr19/z/lRVVVlM2yaVFdXa8GCBcrJyVFBQYFWrlypxsbGhH16enoUiUQ0ZcoUPfHEE1qzZo06OjqMJk6PBzkOL7744j3nw6ZNm4wmHlhGBOjjjz/W9u3btXv3bn3++ecqKyvTsmXLdO3aNevRht2zzz6r9vb2+PrLX/5iPVLadXd3q6ysTHv37h1w+549e/T+++/rgw8+0NmzZ/X4449r2bJl6unpGeZJ02uo4yBJVVVVCefHwYMHh3HC9Kuvr1ckEtGZM2d0/Phx3blzR0uXLlV3d3d8n23btumTTz7RoUOHVF9fr6tXr2r16tWGU6fegxwHSdq4cWPC+bBnzx6jiQfhMsDChQtdJBKJf9zX1+fC4bCrrq42nGr47d6925WVlVmPYUqSq6mpiX/c39/vQqGQe/fdd+O3dXZ2Or/f7w4ePGgw4fD45nFwzrl169a5l156yWQeK9euXXOSXH19vXPu7n/7rKwsd+jQofg+X3zxhZPkGhoarMZMu28eB+ec+973vud+/OMf2w31AEb8K6Dbt2/r3LlzqqysjN82btw4VVZWqqGhwXAyG5cvX1Y4HNaMGTP0yiuvqLW11XokUy0tLYpGownnRzAYVHl5+Zg8P+rq6lRQUKDZs2dr8+bNun79uvVIaeV5niQpLy9PknTu3DnduXMn4XyYM2eOpk+fPqrPh28eh698+OGHys/P19y5c7Vjxw7dvHnTYrxBjbgfRvpNX375pfr6+lRYWJhwe2Fhof7xj38YTWWjvLxc+/fv1+zZs9Xe3q533nlHL7zwgi5duqScnBzr8UxEo1FJGvD8+GrbWFFVVaXVq1ertLRUzc3N+vnPf67ly5eroaFB48ePtx4v5fr7+7V161YtWrRIc+fOlXT3fMjOzlZubm7CvqP5fBjoOEjSj370I5WUlCgcDuvixYv62c9+psbGRv35z382nDbRiA8Q/t/y5cvjf543b57Ky8tVUlKiP/3pT9qwYYPhZBgJfvjDH8b//Nxzz2nevHmaOXOm6urqtGTJEsPJ0iMSiejSpUtj4n3Q+xnsOLz22mvxPz/33HMqKirSkiVL1NzcrJkzZw73mAMa8d+Cy8/P1/jx4++5iqWjo0OhUMhoqpEhNzdXzzzzjJqamqxHMfPVOcD5ca8ZM2YoPz9/VJ4fW7Zs0dGjR3Xq1KmEX98SCoV0+/ZtdXZ2Juw/Ws+HwY7DQMrLyyVpRJ0PIz5A2dnZmj9/vmpra+O39ff3q7a2VhUVFYaT2btx44aam5tVVFRkPYqZ0tJShUKhhPMjFovp7NmzY/78uHLliq5fvz6qzg/nnLZs2aKamhqdPHlSpaWlCdvnz5+vrKyshPOhsbFRra2to+p8GOo4DOTChQuSNLLOB+urIB7ERx995Px+v9u/f7/7+9//7l577TWXm5vrotGo9WjD6ic/+Ymrq6tzLS0t7q9//aurrKx0+fn57tq1a9ajpVVXV5c7f/68O3/+vJPk3nvvPXf+/Hn373//2znn3K9+9SuXm5vrjhw54i5evOheeuklV1pa6m7dumU8eWrd7zh0dXW5N9980zU0NLiWlhZ34sQJ961vfcs9/fTTrqenx3r0lNm8ebMLBoOurq7Otbe3x9fNmzfj+2zatMlNnz7dnTx50n322WeuoqLCVVRUGE6dekMdh6amJveLX/zCffbZZ66lpcUdOXLEzZgxwy1evNh48kQZESDnnPvtb3/rpk+f7rKzs93ChQvdmTNnrEcadmvXrnVFRUUuOzvbPfnkk27t2rWuqanJeqy0O3XqlJN0z1q3bp1z7u6l2Dt37nSFhYXO7/e7JUuWuMbGRtuh0+B+x+HmzZtu6dKlburUqS4rK8uVlJS4jRs3jrr/SRvo85fk9u3bF9/n1q1b7vXXX3eTJ092kyZNcqtWrXLt7e12Q6fBUMehtbXVLV682OXl5Tm/3+9mzZrl3nrrLed5nu3g38CvYwAAmBjx7wEBAEYnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDE/wHey6QFMggR7wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "#вывод собственного изображения\n", + "plt.imshow(test_2_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iabh56bf52Cx" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_2_img = test_2_img / 255\n", + "test_2_img = test_2_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "184Hvdg26hoh", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "53455b67-6eac-4625-cd82-2eb64ba5ec27" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "I think it's 1\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_2 = model_2l_100.predict(test_2_img)\n", + "print('I think it\\'s', np.argmax(result_2))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ELjlb0b28h8d" + }, + "outputs": [], + "source": [ + "from PIL import Image\n", + "file_190_data = Image.open('ИИЛР1_690.png')\n", + "file_190_data = file_190_data.convert('L') #перевод в градации серого\n", + "test_190_img = np.array(file_190_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nDvEgbbU8wcC", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "7356832f-7b05-4876-c0f2-8996dea2ac2c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGltJREFUeJzt3X9MVff9x/HX9dfVtnARES63oqK2utSKzikjtqxGIrLF+GuJ7fqHLkajw2bq2i4uq7bbEjaXdE0XZ/eXrlnVzmRq6h8mioLZhjZaiTFbiTicGAVbI/cqFjTy+f7ht7e9FdR7ufe+L5fnIzlJuecc7tvjkWcv93DwOOecAABIsgHWAwAA+icCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAyyHuCburq6dPnyZWVkZMjj8ViPAwCIknNON27cUCAQ0IABPb/OSbkAXb58WQUFBdZjAAB6qbm5WaNGjepxfcp9Cy4jI8N6BABAHDzs63nCArR161aNHTtWQ4cOVXFxsT7++ONH2o9vuwFAenjY1/OEBOjDDz/Uhg0btHnzZn3yyScqKipSeXm5rl69moinAwD0RS4BZs6c6SorK8Mf37171wUCAVdVVfXQfYPBoJPEwsLCwtLHl2Aw+MCv93F/BXT79m2dOnVKZWVl4ccGDBigsrIy1dXV3bd9Z2enQqFQxAIASH9xD9Dnn3+uu3fvKi8vL+LxvLw8tbS03Ld9VVWVfD5feOEKOADoH8yvgtu4caOCwWB4aW5uth4JAJAEcf85oJycHA0cOFCtra0Rj7e2tsrv99+3vdfrldfrjfcYAIAUF/dXQEOGDNH06dNVXV0dfqyrq0vV1dUqKSmJ99MBAPqohNwJYcOGDVq2bJm+853vaObMmXrnnXfU3t6uH//4x4l4OgBAH5SQAC1dulSfffaZNm3apJaWFk2dOlUHDx6878IEAED/5XHOOeshvi4UCsnn81mPAQDopWAwqMzMzB7Xm18FBwDonwgQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJQdYDAP3R0aNHo95n9uzZCZgEsMMrIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABDcjTWGnT5+Oep+xY8dGvc/w4cOj3gdfSdbfUyzPM3Xq1Kj3SXVtbW1R78M5npp4BQQAMEGAAAAm4h6gN998Ux6PJ2KZNGlSvJ8GANDHJeQ9oGeeeUaHDx/+6kkG8VYTACBSQsowaNAg+f3+RHxqAECaSMh7QOfOnVMgENC4ceP08ssv6+LFiz1u29nZqVAoFLEAANJf3ANUXFysHTt26ODBg9q2bZuampr0/PPP68aNG91uX1VVJZ/PF14KCgriPRIAIAV5nHMukU/Q1tamMWPG6O2339aKFSvuW9/Z2anOzs7wx6FQiAj9P34OqG9I1t/ThQsXot6HnwO6h3PcRjAYVGZmZo/rE351QFZWlp5++mk1NjZ2u97r9crr9SZ6DABAikn4zwHdvHlT58+fV35+fqKfCgDQh8Q9QK+++qpqa2t14cIF/etf/9KiRYs0cOBAvfTSS/F+KgBAHxb3b8FdunRJL730kq5du6aRI0fqueee0/HjxzVy5Mh4PxUAoA+Le4B2794d70+ZFpJ1I8lY3qDFV1L5hp+xXLjg8XjiP0gPUvlijOvXr0e9j8TFC4nGveAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMJ/42o0QqFQvL5fNZjxF0sh5nf/Jh8KfbPIUIybyyaLMm6gWlWVlbU+0j8G+yth/1GVF4BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMQg6wH6olju4BuL+vr6pDxPOkrW3xF6Z9q0aVHvE8udrZuamqLeJ9bnwqPjFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjnHPWQ3xdKBSSz+ezHuOBknXI2traot5n+PDh8R+kD4r17yiWY56sG1Z6PJ6kPE86SuaXOf6evhIMBpWZmdnjel4BAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmBlkPgJ5xY9Hku3DhQtT7TJ06Nep9YrnpKZKvvr4+6n2uX78e9T799d86r4AAACYIEADARNQBOnbsmObPn69AICCPx6N9+/ZFrHfOadOmTcrPz9ewYcNUVlamc+fOxWteAECaiDpA7e3tKioq0tatW7tdv2XLFr377rt67733dOLECT3++OMqLy9XR0dHr4cFAKSPqC9CqKioUEVFRbfrnHN655139Mtf/lILFiyQJL3//vvKy8vTvn379OKLL/ZuWgBA2ojre0BNTU1qaWlRWVlZ+DGfz6fi4mLV1dV1u09nZ6dCoVDEAgBIf3ENUEtLiyQpLy8v4vG8vLzwum+qqqqSz+cLLwUFBfEcCQCQosyvgtu4caOCwWB4aW5uth4JAJAEcQ2Q3++XJLW2tkY83traGl73TV6vV5mZmRELACD9xTVAhYWF8vv9qq6uDj8WCoV04sQJlZSUxPOpAAB9XNRXwd28eVONjY3hj5uamlRfX6/s7GyNHj1a69at029+8xs99dRTKiws1BtvvKFAIKCFCxfGc24AQB8XdYBOnjyp2bNnhz/esGGDJGnZsmXasWOHXn/9dbW3t2vVqlVqa2vTc889p4MHD2ro0KHxmxoA0Od5nHPOeoivC4VC8vl8SXmu06dPx7RfLDefjIXH40nK86SjFDut78PfbXLFej7EcjPSWL4+pOv5EAwGH/i+vvlVcACA/okAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAm+vXdsFPsj36fdL1DbjJwp3N8Hf/WbXA3bABASiJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATAyyHsBSfX19TPsl64aViN20adNi2i/Vb1qJ5Gpra4t6n6ysrLjPka54BQQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmOjXNyPlhpWIh1huanv9+vWo9xk+fHjU+6B3Lly4EPU+3Kz40fEKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAw0a9vRprquGFl8sVyY9GxY8dGvU9WVlbU+yD5YrmxaFtbW9znSFe8AgIAmCBAAAATUQfo2LFjmj9/vgKBgDwej/bt2xexfvny5fJ4PBHLvHnz4jUvACBNRB2g9vZ2FRUVaevWrT1uM2/ePF25ciW87Nq1q1dDAgDST9QXIVRUVKiiouKB23i9Xvn9/piHAgCkv4S8B1RTU6Pc3FxNnDhRa9as0bVr13rctrOzU6FQKGIBAKS/uAdo3rx5ev/991VdXa3f/e53qq2tVUVFhe7evdvt9lVVVfL5fOGloKAg3iMBAFKQxznnYt7Z49HevXu1cOHCHrf573//q/Hjx+vw4cOaM2fOfes7OzvV2dkZ/jgUCqV8hHpxyKISy88T8HNAvXP69Omo90nWzwF5PJ6o98E9yfo3K/Hv9uuCwaAyMzN7XJ/wy7DHjRunnJwcNTY2drve6/UqMzMzYgEApL+EB+jSpUu6du2a8vPzE/1UAIA+JOqr4G7evBnxaqapqUn19fXKzs5Wdna23nrrLS1ZskR+v1/nz5/X66+/rgkTJqi8vDyugwMA+raoA3Ty5EnNnj07/PGGDRskScuWLdO2bdt05swZ/eUvf1FbW5sCgYDmzp2rX//61/J6vfGbGgDQ5/XqIoRECIVC8vl81mM8UIodsgi8UZ18sVy4kKybXKbjm9vJulBE4mKR3jK/CAEAgO4QIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARNS/jgFSfX191PvEcvfjWFy/fj3qfdLxjsmxStadrWMRy52ZU/nO7X1BLHcgx6PjFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYMLjUuxuhaFQSD6fz3qMuEvlm1wC8RDLjTtjucFqLGK9qSg36u2dYDCozMzMHtfzCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHNSNMMNz1FuovlxqLcVNQGNyMFAKQkAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMDEIOsBEF/Tpk2zHuGBknWz1FhuWClx00ogmXgFBAAwQYAAACaiClBVVZVmzJihjIwM5ebmauHChWpoaIjYpqOjQ5WVlRoxYoSeeOIJLVmyRK2trXEdGgDQ90UVoNraWlVWVur48eM6dOiQ7ty5o7lz56q9vT28zfr16/XRRx9pz549qq2t1eXLl7V48eK4Dw4A6Nt69RtRP/vsM+Xm5qq2tlalpaUKBoMaOXKkdu7cqR/+8IeSpE8//VTf+ta3VFdXp+9+97sP/Zz8RtT0xkUIQP+R0N+IGgwGJUnZ2dmSpFOnTunOnTsqKysLbzNp0iSNHj1adXV13X6Ozs5OhUKhiAUAkP5iDlBXV5fWrVunWbNmafLkyZKklpYWDRkyRFlZWRHb5uXlqaWlpdvPU1VVJZ/PF14KCgpiHQkA0IfEHKDKykqdPXtWu3fv7tUAGzduVDAYDC/Nzc29+nwAgL4hph9EXbt2rQ4cOKBjx45p1KhR4cf9fr9u376ttra2iFdBra2t8vv93X4ur9crr9cbyxgAgD4sqldAzjmtXbtWe/fu1ZEjR1RYWBixfvr06Ro8eLCqq6vDjzU0NOjixYsqKSmJz8QAgLQQ1SugyspK7dy5U/v371dGRkb4fR2fz6dhw4bJ5/NpxYoV2rBhg7Kzs5WZmalXXnlFJSUlj3QFHACg/4gqQNu2bZMkvfDCCxGPb9++XcuXL5ck/eEPf9CAAQO0ZMkSdXZ2qry8XH/605/iMiwAIH306ueAEoGfAwKA9JDQnwMCACBWBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADARFQBqqqq0owZM5SRkaHc3FwtXLhQDQ0NEdu88MIL8ng8Ecvq1avjOjQAoO+LKkC1tbWqrKzU8ePHdejQId25c0dz585Ve3t7xHYrV67UlStXwsuWLVviOjQAoO8bFM3GBw8ejPh4x44dys3N1alTp1RaWhp+/LHHHpPf74/PhACAtNSr94CCwaAkKTs7O+LxDz74QDk5OZo8ebI2btyoW7du9fg5Ojs7FQqFIhYAQD/gYnT37l33gx/8wM2aNSvi8T//+c/u4MGD7syZM+6vf/2re/LJJ92iRYt6/DybN292klhYWFhY0mwJBoMP7EjMAVq9erUbM2aMa25ufuB21dXVTpJrbGzsdn1HR4cLBoPhpbm52fygsbCwsLD0fnlYgKJ6D+hLa9eu1YEDB3Ts2DGNGjXqgdsWFxdLkhobGzV+/Pj71nu9Xnm93ljGAAD0YVEFyDmnV155RXv37lVNTY0KCwsfuk99fb0kKT8/P6YBAQDpKaoAVVZWaufOndq/f78yMjLU0tIiSfL5fBo2bJjOnz+vnTt36vvf/75GjBihM2fOaP369SotLdWUKVMS8gcAAPRR0bzvox6+z7d9+3bnnHMXL150paWlLjs723m9XjdhwgT32muvPfT7gF8XDAbNv2/JwsLCwtL75WFf+z3/H5aUEQqF5PP5rMcAAPRSMBhUZmZmj+u5FxwAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwETKBcg5Zz0CACAOHvb1POUCdOPGDesRAABx8LCv5x6XYi85urq6dPnyZWVkZMjj8USsC4VCKigoUHNzszIzM40mtMdxuIfjcA/H4R6Owz2pcBycc7px44YCgYAGDOj5dc6gJM70SAYMGKBRo0Y9cJvMzMx+fYJ9ieNwD8fhHo7DPRyHe6yPg8/ne+g2KfctOABA/0CAAAAm+lSAvF6vNm/eLK/Xaz2KKY7DPRyHezgO93Ac7ulLxyHlLkIAAPQPfeoVEAAgfRAgAIAJAgQAMEGAAAAm+kyAtm7dqrFjx2ro0KEqLi7Wxx9/bD1S0r355pvyeDwRy6RJk6zHSrhjx45p/vz5CgQC8ng82rdvX8R655w2bdqk/Px8DRs2TGVlZTp37pzNsAn0sOOwfPny+86PefPm2QybIFVVVZoxY4YyMjKUm5urhQsXqqGhIWKbjo4OVVZWasSIEXriiSe0ZMkStba2Gk2cGI9yHF544YX7zofVq1cbTdy9PhGgDz/8UBs2bNDmzZv1ySefqKioSOXl5bp69ar1aEn3zDPP6MqVK+HlH//4h/VICdfe3q6ioiJt3bq12/VbtmzRu+++q/fee08nTpzQ448/rvLycnV0dCR50sR62HGQpHnz5kWcH7t27UrihIlXW1uryspKHT9+XIcOHdKdO3c0d+5ctbe3h7dZv369PvroI+3Zs0e1tbW6fPmyFi9ebDh1/D3KcZCklStXRpwPW7ZsMZq4B64PmDlzpqusrAx/fPfuXRcIBFxVVZXhVMm3efNmV1RUZD2GKUlu79694Y+7urqc3+93v//978OPtbW1Oa/X63bt2mUwYXJ88zg459yyZcvcggULTOaxcvXqVSfJ1dbWOufu/d0PHjzY7dmzJ7zNf/7zHyfJ1dXVWY2ZcN88Ds45973vfc/99Kc/tRvqEaT8K6Dbt2/r1KlTKisrCz82YMAAlZWVqa6uznAyG+fOnVMgENC4ceP08ssv6+LFi9YjmWpqalJLS0vE+eHz+VRcXNwvz4+amhrl5uZq4sSJWrNmja5du2Y9UkIFg0FJUnZ2tiTp1KlTunPnTsT5MGnSJI0ePTqtz4dvHocvffDBB8rJydHkyZO1ceNG3bp1y2K8HqXczUi/6fPPP9fdu3eVl5cX8XheXp4+/fRTo6lsFBcXa8eOHZo4caKuXLmit956S88//7zOnj2rjIwM6/FMtLS0SFK358eX6/qLefPmafHixSosLNT58+f1i1/8QhUVFaqrq9PAgQOtx4u7rq4urVu3TrNmzdLkyZMl3TsfhgwZoqysrIht0/l86O44SNKPfvQjjRkzRoFAQGfOnNHPf/5zNTQ06O9//7vhtJFSPkD4SkVFRfi/p0yZouLiYo0ZM0Z/+9vftGLFCsPJkApefPHF8H8/++yzmjJlisaPH6+amhrNmTPHcLLEqKys1NmzZ/vF+6AP0tNxWLVqVfi/n332WeXn52vOnDk6f/68xo8fn+wxu5Xy34LLycnRwIED77uKpbW1VX6/32iq1JCVlaWnn35ajY2N1qOY+fIc4Py437hx45STk5OW58fatWt14MABHT16NOLXt/j9ft2+fVttbW0R26fr+dDTcehOcXGxJKXU+ZDyARoyZIimT5+u6urq8GNdXV2qrq5WSUmJ4WT2bt68qfPnzys/P996FDOFhYXy+/0R50coFNKJEyf6/flx6dIlXbt2La3OD+ec1q5dq7179+rIkSMqLCyMWD99+nQNHjw44nxoaGjQxYsX0+p8eNhx6E59fb0kpdb5YH0VxKPYvXu383q9bseOHe7f//63W7VqlcvKynItLS3WoyXVz372M1dTU+OamprcP//5T1dWVuZycnLc1atXrUdLqBs3brjTp0+706dPO0nu7bffdqdPn3b/+9//nHPO/fa3v3VZWVlu//797syZM27BggWusLDQffHFF8aTx9eDjsONGzfcq6++6urq6lxTU5M7fPiw+/a3v+2eeuop19HRYT163KxZs8b5fD5XU1Pjrly5El5u3boV3mb16tVu9OjR7siRI+7kyZOupKTElZSUGE4dfw87Do2Nje5Xv/qVO3nypGtqanL79+9348aNc6WlpcaTR+oTAXLOuT/+8Y9u9OjRbsiQIW7mzJnu+PHj1iMl3dKlS11+fr4bMmSIe/LJJ93SpUtdY2Oj9VgJd/ToUSfpvmXZsmXOuXuXYr/xxhsuLy/Peb1eN2fOHNfQ0GA7dAI86DjcunXLzZ07140cOdINHjzYjRkzxq1cuTLt/ietuz+/JLd9+/bwNl988YX7yU9+4oYPH+4ee+wxt2jRInflyhW7oRPgYcfh4sWLrrS01GVnZzuv1+smTJjgXnvtNRcMBm0H/wZ+HQMAwETKvwcEAEhPBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJ/wPlZdvhH8Q1XQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.imshow(test_190_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V954Q-Us82lQ" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_190_img = test_190_img / 255\n", + "test_190_img = test_190_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5uEzkB1N89-i", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e38b9678-2ed7-4d0c-d3ac-76a8769abda1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n", + "I think it's 2\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_190 = model_2l_100.predict(test_190_img)\n", + "print('I think it\\'s', np.argmax(result_190))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cp-Y7YSb9IKI" + }, + "outputs": [], + "source": [ + "from PIL import Image\n", + "file_290_data = Image.open('ИИЛР1_190.png')\n", + "file_290_data = file_290_data.convert('L') #перевод в градации серого\n", + "test_290_img = np.array(file_290_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fHfFgIu49QqP", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "outputId": "44ece705-518a-4b12-e7e0-c1e1144ce02b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGDBJREFUeJzt3X9MVff9x/HX9Qen2sJFRLjciha11aQqzZwy4uq6SBS3mPrjD9v1D22MjfbaTFm7hSVquy1hs0mzdDHt/tItq7YzmZr6h4lFwWxDG63GmHVECBsY+bGacC6ioIHP9w/X+92tICL38ubC85F8Eu8959779njKs5d7xIBzzgkAgGE2znoAAMDYRIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAICJCdYDfFNvb6+uX7+u9PR0BQIB63EAAIPknFNHR4fC4bDGjev/fc6IC9D169eVn59vPQYAYIiampo0ffr0frePuG/BpaenW48AAEiAgb6eJy1A+/bt01NPPaXHHntMRUVF+vzzzx/qcXzbDQBGh4G+niclQJ988onKysq0Z88effHFFyosLNTKlSvV1taWjJcDAKQilwRLlixxkUgkdrunp8eFw2FXUVEx4GN933eSWCwWi5Xiy/f9B369T/g7oDt37ujChQsqKSmJ3Tdu3DiVlJSopqbmvv27u7sVjUbjFgBg9Et4gL766iv19PQoNzc37v7c3Fy1tLTct39FRYWCwWBscQUcAIwN5lfBlZeXy/f92GpqarIeCQAwDBL+94Cys7M1fvx4tba2xt3f2tqqUCh03/6e58nzvESPAQAY4RL+DigtLU2LFi1SZWVl7L7e3l5VVlaquLg40S8HAEhRSflJCGVlZdq4caO+/e1va8mSJfrtb3+rzs5Ovfrqq8l4OQBACkpKgDZs2KD//Oc/2r17t1paWvTcc8/pxIkT912YAAAYuwLOOWc9xP+KRqMKBoPWYwAAhsj3fWVkZPS73fwqOADA2ESAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwkPEBvv/22AoFA3Jo3b16iXwYAkOImJONJn332WX322Wf//yITkvIyAIAUlpQyTJgwQaFQKBlPDQAYJZLyGdDVq1cVDoc1a9YsvfLKK2psbOx33+7ubkWj0bgFABj9Eh6goqIiHThwQCdOnNAHH3yghoYGPf/88+ro6Ohz/4qKCgWDwdjKz89P9EgAgBEo4JxzyXyB9vZ2zZw5U++99542b9583/bu7m51d3fHbkejUSIEAKOA7/vKyMjod3vSrw7IzMzUM888o7q6uj63e54nz/OSPQYAYIRJ+t8Dunnzpurr65WXl5fslwIApJCEB+jNN99UdXW1/vWvf+nvf/+71q5dq/Hjx+vll19O9EsBAFJYwr8Fd+3aNb388su6ceOGpk2bpu9+97s6e/aspk2bluiXAgCksKRfhDBY0WhUwWDQegwAwBANdBECPwsOAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYGHSAzpw5o9WrVyscDisQCOjo0aNx251z2r17t/Ly8jRp0iSVlJTo6tWriZoXADBKDDpAnZ2dKiws1L59+/rcvnfvXr3//vv68MMPde7cOT3++ONauXKlurq6hjwsAGAUcUMgyR05ciR2u7e314VCIffuu+/G7mtvb3ee57lDhw491HP6vu8ksVgsFivFl+/7D/x6n9DPgBoaGtTS0qKSkpLYfcFgUEVFRaqpqenzMd3d3YpGo3ELADD6JTRALS0tkqTc3Ny4+3Nzc2PbvqmiokLBYDC28vPzEzkSAGCEMr8Krry8XL7vx1ZTU5P1SACAYZDQAIVCIUlSa2tr3P2tra2xbd/keZ4yMjLiFgBg9EtogAoKChQKhVRZWRm7LxqN6ty5cyouLk7kSwEAUtyEwT7g5s2bqquri91uaGjQpUuXlJWVpRkzZmjHjh361a9+paeffloFBQXatWuXwuGw1qxZk8i5AQCpbrCXXp8+fbrPy+02btwYuxR7165dLjc313me55YvX+5qa2sf+vm5DJvFYrFGxxroMuyAc85pBIlGowoGg9ZjAACGyPf9B36ub34VHABgbCJAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATE6wHGCv2798/6Mds2rQp8YMkUE9Pz6AfM378+CRMAowcvb29g37MWP3vgndAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJfhgpHtlY/QGKwINEo1HrEVIG74AAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABP8MNJh8uqrrw7L62zatGlYXkeS2tvbB/2YKVOmJH6QFHTx4sVBP+a5554b9GMe5c9I4s8Jw4N3QAAAEwQIAGBi0AE6c+aMVq9erXA4rEAgoKNHj8Zt37RpkwKBQNwqLS1N1LwAgFFi0AHq7OxUYWGh9u3b1+8+paWlam5ujq1Dhw4NaUgAwOgz6IsQVq1apVWrVj1wH8/zFAqFHnkoAMDol5TPgKqqqpSTk6O5c+dq27ZtunHjRr/7dnd3KxqNxi0AwOiX8ACVlpbqj3/8oyorK/Wb3/xG1dXVWrVqlXp6evrcv6KiQsFgMLby8/MTPRIAYARK+N8Deumll2K/XrBggRYuXKjZs2erqqpKy5cvv2//8vJylZWVxW5Ho1EiBABjQNIvw541a5ays7NVV1fX53bP85SRkRG3AACjX9IDdO3aNd24cUN5eXnJfikAQAoZ9Lfgbt68GfdupqGhQZcuXVJWVpaysrL0zjvvaP369QqFQqqvr9dPf/pTzZkzRytXrkzo4ACA1DboAJ0/f17f//73Y7e//vxm48aN+uCDD3T58mX94Q9/UHt7u8LhsFasWKFf/vKX8jwvcVMDAFJewDnnrIf4X9FoVMFg0HoMAMAQ+b7/wM/1+VlwAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADAxKACVFFRocWLFys9PV05OTlas2aNamtr4/bp6upSJBLR1KlT9cQTT2j9+vVqbW1N6NAAgNQ3qABVV1crEono7NmzOnnypO7evasVK1aos7Mzts/OnTv16aef6vDhw6qurtb169e1bt26hA8OAEhxbgja2tqcJFddXe2cc669vd1NnDjRHT58OLbPl19+6SS5mpqah3pO3/edJBaLxWKl+PJ9/4Ff74f0GZDv+5KkrKwsSdKFCxd09+5dlZSUxPaZN2+eZsyYoZqamj6fo7u7W9FoNG4BAEa/Rw5Qb2+vduzYoaVLl2r+/PmSpJaWFqWlpSkzMzNu39zcXLW0tPT5PBUVFQoGg7GVn5//qCMBAFLIIwcoEonoypUr+vjjj4c0QHl5uXzfj62mpqYhPR8AIDVMeJQHbd++XcePH9eZM2c0ffr02P2hUEh37txRe3t73Lug1tZWhUKhPp/L8zx5nvcoYwAAUtig3gE557R9+3YdOXJEp06dUkFBQdz2RYsWaeLEiaqsrIzdV1tbq8bGRhUXFydmYgDAqDCod0CRSEQHDx7UsWPHlJ6eHvtcJxgMatKkSQoGg9q8ebPKysqUlZWljIwMvfHGGyouLtZ3vvOdpPwGAAApajCXXaufS+32798f2+f27dvu9ddfd1OmTHGTJ092a9eudc3NzQ/9GlyGzWKxWKNjDXQZduC/YRkxotGogsGg9RgAgCHyfV8ZGRn9budnwQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABODClBFRYUWL16s9PR05eTkaM2aNaqtrY3b54UXXlAgEIhbW7duTejQAIDUN6gAVVdXKxKJ6OzZszp58qTu3r2rFStWqLOzM26/LVu2qLm5Obb27t2b0KEBAKlvwmB2PnHiRNztAwcOKCcnRxcuXNCyZcti90+ePFmhUCgxEwIARqUhfQbk+74kKSsrK+7+jz76SNnZ2Zo/f77Ky8t169atfp+ju7tb0Wg0bgEAxgD3iHp6etwPf/hDt3Tp0rj7f//737sTJ064y5cvuz/96U/uySefdGvXru33efbs2eMksVgsFmuULd/3H9iRRw7Q1q1b3cyZM11TU9MD96usrHSSXF1dXZ/bu7q6nO/7sdXU1GR+0FgsFos19DVQgAb1GdDXtm/fruPHj+vMmTOaPn36A/ctKiqSJNXV1Wn27Nn3bfc8T57nPcoYAIAUNqgAOef0xhtv6MiRI6qqqlJBQcGAj7l06ZIkKS8v75EGBACMToMKUCQS0cGDB3Xs2DGlp6erpaVFkhQMBjVp0iTV19fr4MGD+sEPfqCpU6fq8uXL2rlzp5YtW6aFCxcm5TcAAEhRg/ncR/18n2///v3OOecaGxvdsmXLXFZWlvM8z82ZM8e99dZbA34f8H/5vm/+fUsWi8ViDX0N9LU/8N+wjBjRaFTBYNB6DADAEPm+r4yMjH6387PgAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmRlyAnHPWIwAAEmCgr+cjLkAdHR3WIwAAEmCgr+cBN8LecvT29ur69etKT09XIBCI2xaNRpWfn6+mpiZlZGQYTWiP43APx+EejsM9HId7RsJxcM6po6ND4XBY48b1/z5nwjDO9FDGjRun6dOnP3CfjIyMMX2CfY3jcA/H4R6Owz0ch3usj0MwGBxwnxH3LTgAwNhAgAAAJlIqQJ7nac+ePfI8z3oUUxyHezgO93Ac7uE43JNKx2HEXYQAABgbUuodEABg9CBAAAATBAgAYIIAAQBMpEyA9u3bp6eeekqPPfaYioqK9Pnnn1uPNOzefvttBQKBuDVv3jzrsZLuzJkzWr16tcLhsAKBgI4ePRq33Tmn3bt3Ky8vT5MmTVJJSYmuXr1qM2wSDXQcNm3adN/5UVpaajNsklRUVGjx4sVKT09XTk6O1qxZo9ra2rh9urq6FIlENHXqVD3xxBNav369WltbjSZOjoc5Di+88MJ958PWrVuNJu5bSgTok08+UVlZmfbs2aMvvvhChYWFWrlypdra2qxHG3bPPvusmpubY+uvf/2r9UhJ19nZqcLCQu3bt6/P7Xv37tX777+vDz/8UOfOndPjjz+ulStXqqura5gnTa6BjoMklZaWxp0fhw4dGsYJk6+6ulqRSERnz57VyZMndffuXa1YsUKdnZ2xfXbu3KlPP/1Uhw8fVnV1ta5fv65169YZTp14D3McJGnLli1x58PevXuNJu6HSwFLlixxkUgkdrunp8eFw2FXUVFhONXw27NnjyssLLQew5Qkd+TIkdjt3t5eFwqF3Lvvvhu7r7293Xme5w4dOmQw4fD45nFwzrmNGze6F1980WQeK21tbU6Sq66uds7d+7OfOHGiO3z4cGyfL7/80klyNTU1VmMm3TePg3POfe9733M//vGP7YZ6CCP+HdCdO3d04cIFlZSUxO4bN26cSkpKVFNTYziZjatXryocDmvWrFl65ZVX1NjYaD2SqYaGBrW0tMSdH8FgUEVFRWPy/KiqqlJOTo7mzp2rbdu26caNG9YjJZXv+5KkrKwsSdKFCxd09+7duPNh3rx5mjFjxqg+H755HL720UcfKTs7W/Pnz1d5eblu3bplMV6/RtwPI/2mr776Sj09PcrNzY27Pzc3V//85z+NprJRVFSkAwcOaO7cuWpubtY777yj559/XleuXFF6err1eCZaWlokqc/z4+ttY0VpaanWrVungoIC1dfX6+c//7lWrVqlmpoajR8/3nq8hOvt7dWOHTu0dOlSzZ8/X9K98yEtLU2ZmZlx+47m86Gv4yBJP/rRjzRz5kyFw2FdvnxZP/vZz1RbW6u//OUvhtPGG/EBwv9btWpV7NcLFy5UUVGRZs6cqT//+c/avHmz4WQYCV566aXYrxcsWKCFCxdq9uzZqqqq0vLlyw0nS45IJKIrV66Mic9BH6S/4/Daa6/Ffr1gwQLl5eVp+fLlqq+v1+zZs4d7zD6N+G/BZWdna/z48fddxdLa2qpQKGQ01ciQmZmpZ555RnV1ddajmPn6HOD8uN+sWbOUnZ09Ks+P7du36/jx4zp9+nTcP98SCoV0584dtbe3x+0/Ws+H/o5DX4qKiiRpRJ0PIz5AaWlpWrRokSorK2P39fb2qrKyUsXFxYaT2bt586bq6+uVl5dnPYqZgoIChUKhuPMjGo3q3LlzY/78uHbtmm7cuDGqzg/nnLZv364jR47o1KlTKigoiNu+aNEiTZw4Me58qK2tVWNj46g6HwY6Dn25dOmSJI2s88H6KoiH8fHHHzvP89yBAwfcP/7xD/faa6+5zMxM19LSYj3asPrJT37iqqqqXENDg/vb3/7mSkpKXHZ2tmtra7MeLak6OjrcxYsX3cWLF50k995777mLFy+6f//73845537961+7zMxMd+zYMXf58mX34osvuoKCAnf79m3jyRPrQceho6PDvfnmm66mpsY1NDS4zz77zH3rW99yTz/9tOvq6rIePWG2bdvmgsGgq6qqcs3NzbF169at2D5bt251M2bMcKdOnXLnz593xcXFrri42HDqxBvoONTV1blf/OIX7vz5866hocEdO3bMzZo1yy1btsx48ngpESDnnPvd737nZsyY4dLS0tySJUvc2bNnrUcadhs2bHB5eXkuLS3NPfnkk27Dhg2urq7OeqykO336tJN039q4caNz7t6l2Lt27XK5ubnO8zy3fPlyV1tbazt0EjzoONy6dcutWLHCTZs2zU2cONHNnDnTbdmyZdT9T1pfv39Jbv/+/bF9bt++7V5//XU3ZcoUN3nyZLd27VrX3NxsN3QSDHQcGhsb3bJly1xWVpbzPM/NmTPHvfXWW873fdvBv4F/jgEAYGLEfwYEABidCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT/wdLTtiH+GUhWwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.imshow(test_290_img, cmap=plt.get_cmap('gray'))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VigLQgvN9Vtz" + }, + "outputs": [], + "source": [ + "#предобработка\n", + "test_290_img = test_290_img / 255\n", + "test_290_img = test_290_img.reshape(1, num_pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OT4Gyq3w9cKm", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7f87b9cb-2d20-4f07-df92-8fdfb155f614" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "I think it's 4\n" + ] + } + ], + "source": [ + "#распознавание\n", + "result_290 = model_2l_100.predict(test_290_img)\n", + "print('I think it\\'s', np.argmax(result_290))" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/labworks/LW1/images/1.png b/labworks/LW1/images/1.png new file mode 100644 index 0000000000000000000000000000000000000000..6219658deb3bfa7bc6bfbf98c9a9689ac5345984 GIT binary patch literal 22917 zcma%jbyU<}yDuo+Dcv2?DcubcBHba~UD6>jgtQF~~6x5D>6cl;w305FV9+$L(k+;O_>*#BuNs zqL+@6EW)R8%5CrklD&+E3<5%33g)dPGWZ(ZUD?nJ0Rg8E{s(c;?Sl;hf+4wzyo{c| z+5S7!d?JPO!I1~1hKfhjR=uwiFi_<2`BCs>8JjoOf2 zG`c7}S+rD!d+u8f_#--bO^6KpKaV^Uuyp?QU0oXp2K-T6K7FL#Kfkd?L{`dsd%2pj z@rJvL=i&aMyU$*AeCOxKv96oHPS+O)G?Kc3<(lstg%-SZ`JH}MALgVT_2Eio_rD>T z^D=MquDrV1EbL>Tr@1-^dvNNy+MsB#8_PY+nLN7Q{hY^;EYdq#C?yqK?(I%v;`8&x z#xG;Hr$?P%cf0P+jZc2QG|!okdYI=ltcO+`H;;eFR=PhP;qIPUI+->P!!BeKmAX4k zZ$0eA)R_Kc3a)ITHyU%SAn31yh{d5At+nj4$=Kli+;N;Bx*SDVt)0c~e&D@5+3&qGHM9e5n2?;iU8Q;8 zSqggyxx`qekNlG0{&06OmosPTw_r;hdTHsk;4__LUl1_R@o;~$%n|j$-|=Ua?c0N; zhkHLKqSKw9BZ0TPRnZ?fn`W#qcNfC`grll2b%l)4#Zp?`@Y|1LnbXPlN8Z-;x*v32 zatO7=zwb3pn{9k3N#S|mec~5f}qo{(L@SiF7Y&UuF%XHgL>G&7l$8vK~#ZT zMd#f7LrBZm_#yIkRJ-C%^oy?o(*45g2 zf4y7tzQFglgWcXt-FXXc0~^s9ER~_po=+59;23zT_S7M#+D`K;bp0ZhWwv7+MsxTFHQ)1){%&-#Pl~WF4Ed#5%|m|pLF(c5L_bE%@2|7%=J}jk zN|Kjs{G!Jol`nb~D-)L2=6K^U<-ye2P z{Ul>dSteFHQEW)hQoBU)GVz0|1!aBd1S1kv3)oS4`ZY$gb-$wDl6z0TeQD;fzLm&7&YJz2 zKjz00xUl`1t_9z@*?0}1l8lQ1#M8g+2Qd>i5e%~cBwy+)ppjB3yCO&t_j2%k=*ViGy>?ys7L ziKnJ*0v}A{7@@rL%ub+%+WGkp8GpOnxB?IBKar8`7igImm=77%aQV&>s5HX zHq>t(Dh*BCXKk~P)0s8u??gm!7lj20F?9x9pEtWM{OLiZ!O~Gwf>)4IEHw_okn2-6 zh-g-ZwgUxUjt;B`Y+xb*m)~EcH5F5+shk_eg!BsnG=^bc__A}$P@SefVT1BY47Mwy zGTZPYQFS&gj_%5#^tTfkM`XAAZeb0cL-tq{LY)44b%T3B#0tZ;XgZ2=-`>kS4sxqD zY+x3rKgM2jh^6vHE7!<-BH2)&OmmzS(lYe~(OJVsWO;_;?EjioCeULB~n; z?P9>@yYn-c4Pz`@q`-{Nv}w&~QLJwI`JcOsrRIljtNw)dFF%|0IDPK4yXo%+}U%rj-O z(sR*)7i)aBrABuHySnL~91W?IP0q8E!}NTTp|}1V=_eaw4G)F6&ym4Rc}iNbdU<;? z5&7h)(aeRNi6&XG%&JvB(F-}A(tm=?^-G^ z$S-rqzlh9{RLjdU3#@!wltE{a9y`wzV8c=-Uo*cVXl0jd|JGKE00J>y$)gvQcRgGi zWIC;zib4&aIFWcR>3^Rpx1t=d?=>MoLXH0deJ#OuVzD!54oT?u2knw-=hjkYRiP0w zopeU8!yeSROW%&uO2kEGTY@0UA-a(o|4*>w^Gd^p^0SpyYz~~oLPi4poNq;8_a~tD z7PE&_hJs=wRF~zEBQG?d3*IbopN7yZR8mn`(eMOD{_$DmP}bXJWgO9%u0&&edZKuD zmdv#V84((5sWymWBl;SCo{SCXEg2SxR?74r(ER3_TwKHxx}hr1J26L2I%3L@Gu5=e zaq220F+Ixcpl4_jD7AC@h4AXz`|wUt-&tD{iq(X0Rc8ms75pw8Jtnl|!E76c_!btF zS15N6qB&5~$ZpV|`wDo&F8gRO_|D_GKbf{SC3z&TLCS6hse?w@cd!vlBFhY!wYB%E zJ_Pa@THP^PZ>IG%r58O_}Tqk%9~`=^EBI|yU1BwDPsiDE3BG1vWNg2%8EL}4wO$@e7=TY!@C)BuGW z<-O97<>UksO>3W`g$c9wwqN&+Y0P7_(o|5J%hhwNP`!z$R2b)xJbDwB$+2(I#F=#C zG%S5nzP~P#*7*UNuHmr;>s%Mw^l?<^J=P)qy7lX;(&fDL^*#12#{;W{VfU@0 zjd}|8J?WYZsqrlxtSA%HFRBp~Jp0VA84E3F-xKBt6sehtLR)O<4~Z)*1~iP}S@D61*FM6HaKBIB6xIE+Ja4-8j0N;uaL;<0W3 z=X~d(vr$;bxzlDrV>`b@&|K&n3fB&sCm=5|4~9`L1PVTjrYe*#JgwN@hVY3 zob_^^!&|j#1cN4%wjM^5XB&w!5W5s+~;)lrkXw-h7=jfNCIPu3=t4h z^3CB<7!07XNt{NEVJhrcL`%Jj5j$6TugaL!c@S&LhNR{{$@_E#08N{ zW+2%T2(=IOT7y`_5cm?R4+CwIx=AZwuaFMLg5(PVPG8y}cwsTnWB4Ro!`SMHQPa7{ zM`EXMj_&BCq{~-i!ytrf=u|Pmh|ll>XdW#$K7t_0lV}uJPbq(>_r1X~>55FMHfzc8JZW)Cqs?Zbt&jb33|9%Rk z5>7m$U~Cjba;nd{!+Vhk2`x0qa*HE;(0A5X_5Mmj!<``r`bKEv6&?7;3X^0qn@FW3 z$cP91or-!=^mlqsW@(QgjHvfnd-Kld!uY{YR7ld~mI;|iGoPH2Tk}0jm8aNodXhC$ zgq(}R75`cfT~G-Bny57$1i*XY53zCkM=mTH3lFrhlhEEoU9mwNf~Bi z8YintEg+fEFFxuc1Mm}gILbeP1b8|Q9MHi@l0l2RWe>iE5Jvulq_^TLx-JKtpvzN`D2gUF1CWC>Kk#{0V) zR z-&rXoqRn@5Zt70IVTx*LbC;E`wb3I#2v7~(PbS|ZRRh;Q~jg0}3AQ8ub(P87V zJ#ffVmYEj!jzGtyiDp21+OP4;s9|S=?MIB#1*K9d3JOQZm3%4i8hELnFcXpclUb?5x>R0rUw`JVm1*p=6Gx#VYvda^4sm7uP4AnPJgDy=v2Yd1rDz=qM_-r=~!pON1 zSl{YS#5nEN^-SYl23cnjsQ9viyMzYJI^TXdO^vJ0Q`tIbY%;JX3Wjn#5Jh=lk0jP} z*hT7yW;?E+qQgP%C}y+!@Unh9exSX55rJ)rY! z#IqFCdIZ~KSe5?zY%UcXjYm9zuS99dtX1F~gH2)Apl}tm63@bJt*1w>9?I2y>-nSE z&HQ8|&+YdigpA*AX3vg}9n+h-Zp3D`fqu3#$d4m$%?~XVHzQz*IlK~VVBefB-3m?L zt1iET#r|K5gvH_xGqpvnH-Fp5(zPTV0?+pxtV=YXZI>Q?z%w_VPoI=-xr`BPiiU@f$9TLi}Q$ zSenq5fZdwr(Zc)Fio=|QWw1l*Z^RyMmL6~lRfLi#goS`?WjdqA?>xiP0FucO(#40~l)KyMfYGG5 z|95oC(L6ZONU!LoGLa<}v%KB*~ewWWp}bMZee|d*xYh z=+%1Gp?0XwZ_>%7(3>$%qc1SH=64={H3v$J##pYPixkDx6S+2kL32Un6xu5bxZbYd zw^9xREa_02{Q5_^24;{$=2K(4CtN0^=aYEtrwe{d(Vb_UW*s8I85>d$SO4gIGauVB zgkmxbx<7Ya4-c&N(A*!Q>V7tpI2n|>|9;+3L^|2~o-pJRyQP2&)=ASIJAU}^aM2Bf zI#z7!Z?{(`eP+jOE?C<@%XG=)Hm5#M>{J8_jo-{0CEn6#8M~&%z}?zr>Q5z~BjZWV z2CD$G2dhi#m8i?*wK2*|6MQHGR@iZhmEZ60d~H^YM^)m6VXO8mZ>g=2^5@QTBYxL; zk$?E2Bt{E3W#=B0!RkIj$|=uwK7hB0^zh|}CT7sC!(?eZIBu3RYJ?RZF2Jz@--`e$ z)aj4ftip_6wEbu;D+wHXU(G-2KfP%NVhEXP56cqP2D->EJg`<=!TkZjoH#vnRNzQy&~uD$W*_`5y^Sv_iF=ep>3XmpVmOJUuj z;As5wWZ2b+Ifge~WKe#VLR`YeH#yv=kUq1{z~~8#RGN%gTH7m}l+AEd>Q`JHhrNku z{9id=+sb9?!9}DFbDbwc)?n{#%zI5V7F+{1%HmW>ZqOW=ql`Qb;+t)9z zzV{|li8WbVEh6Xi5mF6V_&oi{#Ez30iYxL5;YX1i>IpakQ4>#4X1xb(yE#+wT8l?f zwks+kp7^?lRz4t{B%w?@{M1%Q%)KfCGnF+v0`%4;F1f#5-CL|z4vCmb9HMweT#jbO5xT~CykS%4BE*1 zX#hVgv-bVwT!bm^iS08q3ndrwJqF11Q4F=o#r@qu&z#rciaz2+AQyDB`P+G6<~6Cp z5>XsEOm>WB-DATQkP|~W-#SN58-OBU??DG zy=I~HMbSrtDKu`>V5hfxPxyHElxRK1dYox+!W1LGm6>W_C^g%smA~3T^RlfEM{LI5 zjl}8{E#xrgnU5nlW9ZsIWb&I)lgp>5D|-=-&6YSJU!jyjEhNgz6^fhlhFJ~>Mk8?~ zpT}zvqqO#aH;!4xQaw4Jr0tvU=7R1%@ss+4?!4F$Frya91=~;=6{OH1Ej&=A9|zL< zTYSPHgK$bdW`;LW*_RhSK0Oorv>ufqH|Lga5-{e~Hq7o6H_2rp51H7@wzo5j;8z6q z%E(0AEe0NN08JjY=YsD%k|arlK2jJM*SZ>yAunYNPCIl53RcX-KuKwNuLbPJJ!D+$prf|g60d2MC52J#n}# z6L37lQd6-Fcq^aqf_FOA*WiPAJmMiW?oOMREIi|>O4Nm(!)(jibnK{U*=WQ?)p+Uj zD{r+xYXnGOsA3d_twFdx50qa=WA<=~hSeQM4DD37(IHfsY$&;yQXmnOIoroBZ)kD0 zSrkiM&s&t?TEs{)R3NLz45Q;cdubL>7IHhpQfMBrMuf-F4S=y*JI4MJx1S`Tx^tjm!gSv`TMIJ{$M>4&g~d$Kd* zXys??1ad|Mm)TXMa;gz=VXNRy^plMYK;K?Nv5laD*B)%pt?OuSwun6f5;;}UXmd_- zhH)wL;i$_P6BCG-*-?UxoVBu=s!u!}vJ_6*(k%CkW{-V$oCw~d<=!*;x*^-st?y*W zr)>5ayAk6Qy)jToX3P$yTp(zTcGVy7Q8whP(hAp91WATFTOl2rENRzmxL39c6VVGW z$TDL+9d9X9S=9i<^8i?Q;N9n^UjAzLI{=0Mp2hVx;BV_DpHM+j!t;#xq;(cO5#ag7 ziIi^VpH(ju)4Vb+_anw2yHVde)E(K;U;LykyDuxm>#eV&f$h1SWMe04h4Bo&K1N>R zE+V#vSRG#HlruJ7&JES|gm(vNnUoi`zi?KdjT8{(`7>xcOGvRD!N(#ug`D!fP-9%E z^vcA`0L7tSt~gB!eOUj=H=5#^rr#5ZOMrXuVLdm$@aVot=UfSeuV`%+rwt^NDxdfM z?hXD{%G1ylI%{s@+H3cu+kMGdwr_q!S0RTJk#%P=6s~AN4hELzK0E^!pE#t~G<4Gc zp`v)};s5D<7L!iWA6iSzB#$k`W1u}h$4nw@-zI6eu$GR$ve|t>v*VyM_cJ=8bt=Ov z{*A2=)2EhuKC<^V=ovJ=*F;b&pq;mXQhDwB8d$l-Dyzi(L(Xc%xC6F@dd^(MF;_2Z{8 z89|dYG|F}-)|9hEUuiaH=zlKlMS8yFf~M#ceU0_kma1&7E+@=Gy%N(Gdi9N#0Y7)m zx*w8I&GRaKW?9G;rMn;duZP9j6?U15Rr;JV-VsI5k5C54oC|3#X{GC`-T8zt27+JS z19|R;-1i2nYw-wS%|owAY!UBPcE?(tpw`EKUuzPfitji!YL4HL5h(Jdu+A2HVwWys z-b5N1GF$9X-LWlBEt zSTtpH%m)BL2F-9t+-qv&yJc~i_L`Be*r}$`5?xRMR!StPD(5@~Y6IChI|`E^)0>Z< z+Sr3LVi+^1B?19VP<3P%`^i+f4REL6X1ecwEJ%2ybC9G}By zt6J2;W2Ln*QRoJsh&9|z^-OAqA-iI0lJn*emHQYckqh>|B*Cs@Cz|w`1LPf3&`ehc zNOP#h8A~qWn@!Jrc5H%Cb8(N-0nlfk>bgBvYXFB;)@3M-DVlsUpF?D`)oU|%D4it_ zc#Xsfceg+-b-u;!ZQ zIW{=Y*2^X>wY6#6=n$%&gOc`c3_uMzD4$!Q#JHEgge2bQBR z?VHFH6;GY??#MpCHeCw>cPeYM%7HJq@%k|iIPxn55pV{L_4t!kq2zMOehc2LHhI;kUqWybZnGAXaHAWk$Jzd);QbD9y3dfv~A+!yhOTiDa(wZH7K4nj zPWhj0)Evo0Jxj@Wt)i~}MB+LZA5`LzU^Mgn&=Qd1AJaaf0I{|?#*}2 zaK_>^gqV2`+V1i(9ZCtrkze1Or#@(3s>6}Fk@X#T&APzUebl>}r_rpq zJRjzOx4b_3&YPdvZ~ymCxVOF|yOzPuMfyp04O4-<)Zkcb|BLPb^+(R-6+xH9j@C02 z%HYGEUy-paBgiBo{AsUL6xGm*Ih`AS>NlxlHCU5m9vm61lJ&?X^t{fmv)PeTR$+|& zLjMFMDh}DO&-zaw=HW3u-(#@wne3@fd>x;M*i*_~HFTq-r>9n#c ztZY#Q^8k|V-*15ik7iy+-BAp4VT`?^c4eu;0hcyw@zq`w(^?>+ENF>88g(~;<5O*c z-tU;H1)|SCAWx9_;m~Ld1Osp`q4GZg&b<9BfRwB>9eWT{uaD(GEBSCoTNfPa2vGm@_^#GOVqMT0`F^W4_N zKoe*d-K}ouHOpO1ky-@8od{s%>u+D~MNRfoi6unXI!To$nV?F}MPEu}RpH6)LaM+Gv>`BAUQ5?%8btH+l(}!oBICatIqs&(%+gbiJMj@~8Uz_6_!VW}@J+($ zs(o~KCF*o}X&dI%u@4dl6BqQPn8xH#^`<@r=geC9>Z#Yh$k3bK%X~&&T~@t6ikqeJ zXI?#9y-v~LJ-b6DTI`%xZP*H5`Re9)Fk0gm6on}HHJj-SIN!F6p~?)joKdvX;WzI# z0SDda@s!Jb0D^GZ98U)C%)FxW9O&?vf)UF@zr862DwfhvFc95B)^bu3nZ)%ZVbq?a zL&XNTk3}D6EzPsz2z=s5f8NZC$LHQwQ;N~a{`!+NH>C72)}dY{EVCM#<^(o*70O6I zX`!q2%Kk0~Ujcfnhp|e}hc$_X0Y|FiZJ`H#hZn?uwLVF#;?~{}@oiIVf1O!P9#LSD zV8X^y4KtBNZ6$Vj)fI`1wr$1flNZE2S^T0Yt#R6GLAXp4>rJY%XfmGoWA#z=^V8*C7rMp#>gcafeJRZRGqH(n5dP z90@+el^GEEarub)Cubn?U{D-Wo0>KVMn@>IvXv@|<<18?s;ZAT1;lt3-3&O(eGdf1 zw_lYl&z`F4TZtzp2Cz%b1Lek7FnO5MztJF#gx;KWlD5AwvAFYim}9@5y3CK&9IC^! z&UiSrd^{i>0+J?bg6(+4r97AEDq2@qnUR${uklq~3^KQlrWy{eK{~`uFQJccy%H z=mkTBdq$HczU~5!?=XkWq4L)CZZij0~Gtb zJH5pjgGm(jZGH!?Svyf5&^|Qo4gUeUoWtt$dq5lQK*992(lmuK#VA}Pyoyb zq+XG^6=2qhk={sp*fwP&Tt3b(tcL0&o4?M&#=Mnwu;RM&Qd4y%rlV0{5`0VIZ}`#4 zGT3U2=g{TfSiYj>z6^(U;7o3S&CR8Y`n2Rf{-q4BTFJNNTOlZ zNcnd65=qUo$RRP2W1Ao{QHk=Hu4oESM{UgAeN*KWk-Tt zx?se<2^Z+xHBW;N#Sk8=es}5zIq^?(D;-a5655kaXv@c3phooSt_(-0;KUVQOJ}kZ zQa2a9A{)Ki7$Lc=@A`nysSX0fQJE!eBnN>OtkrgwyxbEC!ZW zj0lpxo6!D`yySn#zA74Ywi=EJtKbYY#`AOC|0O`O&k}g<4~@eoyJ@%)Q%5-Z$aVFE zrV6YXD92K@h1Kq1%>pYQ8iUC`Ca_jI^hq}pE2;Pp9tA$|#Pn=EV7T2?B2aNrAdyKW_si^XZ2Xs7gm;sY>Zf*ZCM(~=YtXPV?|`sV#cfPL$o0v?`f>t&d3D55+jDCq-9|MdN~HB@F6Oxo z8P~)F(N*-rT-ND@Qf7V9bm$v~zg~CD^$h=yH-G_%q8qmFSsL||j(n9RhLSI-0KnGF4TXV3)>%?s@R7htcmfM+doL_CVgq(VCk+kIX98L9lvfp9`3 zkkEsvjgNN$QjDA&kuX!D8}mp}vFYh0LHZ?F=2R5EbTRq>b33lY={Gqc%UCB*pq|ey zy_OuDiDyk4a%L2*jQ``&6*~evpjVM2rsp%(DOh9-h)^ci3TA?$nY#hxRd%k~$E!zOX9CM}%I)1%i0Pq;j7+j)&nwhZ`^(EV&;(?3I?&W9x7+8|xp- z0k=dl8fy|B%q6#fC+61_lF?jvwwvZ1DS%_{&-)0#GeV#nUf#b?S>D0Drg${Ba8=L^ zSB6u5r5_ku+VLwNjar}nVG04NGzM8ITOZI0${YXG1%LvJJw|F5P(} zK%32~>!(r`nRBJXpZDteKG?WS-U@j~X-|2bE^sK7?zDw_%(??2*0G%e&Xt>=YNh9W z%T#FdWD>AE#~0fDgq5g#^ynf_fpI7ZRw94jE9qNw|D7bCGUlqi^y6pCi$MoKsdq>epi3@Oc02VtG}jW)i3XY=9_W-yX#$L3Xlli+NRJMRcO9T zL?i$bv&U=Meu~!>P*h8Myk2A3lTHrV3?vlxVK0lQD~n6G_zf4qK~RXLqSdc?@ITFgbu*@vAo}s(vA#N<2 zLE>KwOd;1@rmt#(mc2+nKAU$NOt36+tU-Qtg#?Ki5)_MDyhXaQx+0Q8ze7eO7C zI<1WJa6R1}qZBpc{>*#JVj!8yNlp#U)4kSGl?F5eAsQVwus?8xz98)W>M#zkwG1fs z;NZL907-w&K!SZr5PXtrMkK^FEq`jmF4|e&0o_aA=5^f2F<@hB!NZ8rV&t;BZ zUO<~O5-r6?HJI1Q#A9Mglgh;A#n`gWzs55T1=auwj4qv(Zuku#rUL?wQ?O4@>ae

    yXTAulk;b_OAJ zdN2QF%F)GQM2w3c=Xgy>y4GNY0HLq3N`2W<0{~< z;guZ7?Fpb;b9vOY!jnfiQemMpYA0ZWN2eU8w~*?Pto=x$^RZ+rxWS7g+|(9Iqn6uY zp~4sX0bCLw1BBjP|HAX5+xRhE;?{lV8#5jTxNM)21F8Kgd*l1nTi)1tWOJJ9pE0EE zs92wciUfon+CWbKA}lB@l~X>? zLt4)$Vu^N{9uxfNN(N;T-*-^|-mHG~NT?8sHlDI6nCEBdL{W?B;jy+IpCb%3RWEq^# z%w+YW(mL{sK42@n{5=`*A++{%dziKkR%6syui^;@SDtaPMBJUs z3dQuaL^1Kr9I;!{-i$BY%tEhhjUT-sR__+7z*A8&(*4&EO$GsrpbP6&_SBjjq8Wx& zJERDv`HU+{;PQxx^K%OxCQ(0PD_)A4sRqg7QsMr!VMp)=P{1h9C*5&W7O+{8SJHBa z-!QTWzCfPo_^Nfvuz``|2cJUeQyMC60iaPtW@^8t?)|it@ zEzwc87q4QsvZSX?5xx9U@SKxm0K`V0v4P{9f8vA5VF&%yRvWm?qVI~vXnW1!>0fDj z*%6IN0>oMW+RB`LSyn}Y!4i2ULG*uSgtWi^FL^FLWi>?PoOmw}W0O?76~nj%ZwlTo zaC8_JkSs#heAMd7us9|qY%0e3Y*>??vAo=bbcnyVO-WHvJ;C>zJZ&Sy#uD z{rFAVaMZ&bza&A}cGIhQZ{q;M{!dSSsy@>n918G}SJ5z(mcCshAMSeY_cL0yd5?P8 z6BNwfEB#y<(QF(UGgij3B*SAZ?u2GxcW0pMZ%UIvf@M@Rt_DA~|8*o6at3z(^OPT2 z@U}jC})dG+e6Rf3nWyoG49oHXP$JWm=036j`G4$4auwC0txe6OUm z+=lWEjnN2CuHS;GjOgDWRp7#zHYe{X(_BaO zWp0Mxrwc$vwX>kO4NuMNE@hR8e5-&yZo>{4Ufg$Oc%ri=3}w4c@)&a=f)olm=@&JD znWqx~tDiWwrp1EctB&W!^)@O+NVep@NOfhdAGbQ<;p=Jm_1meRl2vS6ML{6@UK!nC zKE>BEm$@dg$A4px3>xg)3lVrgumIHfPu#-gnC+sbz_798zGAIpn{}6hTgH~$8o&vx z>1cNkxpN8v0}-=9{p%oRflb4N$s|YyxBLwvzpjJe4LVJkjFKy$(Uxv~@go9ueD~n3 z0_ejiP{d*aX;vj4W>4D5oSNzmd%#*aU_n|=Y~88)2&5!k0>*-K#z?v1}8_V%DV@~^lhyXYnF-Bb`ZgFqu6b9g!1wQ`u zF)_Zg73hY}dkY{DxUYzO%jAn%Qlyr}bsmyHzhtEx|KkRX(E%+Dui50gq86}pdzBm< zr#@Id^W6g{tCkn3|HyP8ku06=VM6>QvGXt2yqF3jS4@Tm3q;DQRi#>H5h6j*2~Un$ zA1Y4)h*|UY#mX_Hu2|U<921c)rTlW0Jpy>SI6LFW&N!+7`FN{P0@E2fyq^C z?JJZt4j(~W#%vNFiSxl z;ShjejxSA*!$l%95)DI9y=h`j;fWR&wLKB&xZZpT@TwZp83>3zwX9$`F%l`HVe9A* z+ur=R?UTA}S@oIPMQu&yt8mY1UZha5P`M6Nw~Rh)(1cqAOHC zJ&fXe!f(eL4>vkokdaOw;A4hn{>#V>VAv}9;CVJ9St;Y$CCWBDN&zARKYErr<9YqT z%oo^jOCO8RtSRrW_*JMtRs`HZw@s~cp86xlcIdwA%UMR|%J^B5MJ>Aet7IxVUZ)oKi{o#Qf!gMOJy^NGXtz3IfiPlu!&OX+%A3{t4bx%M8anK!x)`WMbp= zhgS0h?@jN`HqI?4)1|Aacr~v0;cH@ltcabqQ+lC%dU@KnjomtbYBsfY1#^3oQ~$uBdS+n#_95w7A@!7WQsQEs zf3K_uf4Mg#s-ZXfkbH&2bZ7droAtH{sqtl478qU@5B@@(2EE0Ws=@>>Dcy*wPtAsx zlCN-a37qDdds@2;6|tj^L_#p>!krDh;o)Lpia9NOxV4Y@d*MTe(j>KLl~T))h8fdT zXs^BK9(Fm7`%p0G&^vC!)y0q7l5+d#x*A2lxwO2RT4&`D?bl|pwR8P#^70U^83^$G zsCvP{0cGVPLLZP9vi`!}_de=*Thiw36VwE#8*4}+TXT{6CDr_Z1@I0AKCnYXJb!2i z&%O^q5yRqNNeicVcZe@u;g7|muJWFBm{fzn!&8=7>>_o}ALk%#ba*Ciu1Bi z#oBXC$cnY3hP))kjJEHm3l<(Jh3g23wE%^`P%IXi6-PXeGGw$*hczKr-C`|$=MiHF zpU5>a#&J^166R{ZOCs`oimM#+;Z$o9lZ`&({6M4igj zud(cli6&P`iPC6E@>uN7;?Zd>oY$usa)fxMULFl4ucNd8BW?dR4f0C*&|v>So-_)R z8iH(wFqVmbDs{jbK1ZZLq8^HR27W_OhCsccNjxFlFh(G5h!STAV=UuOnVa+dn%Kyn zgyLZx0~5+5#o}KZ2A~iOhEz(OJ7)IoepQ0>QMjp0UZZjtjG?VlPhQH2&wtpS)D|=a zMasN45Td0{Vd7LRM$=xju(qWbICiZx`!4RemEo(ALcY zAUI@a>sFz-eZgDD{wUi;NuWRIk7e^`mD4JxKu6a9Lo|$}RPf)KV>Z6ZO7UgupNjYPP!fTre7P8 z$v&#mG||yjfUK1=C(PY!J_%T+j|)2SgDne&Mo@an)n{R%i-v07u_DQq4uNP}!F##1 zw5ce~^Rsyn+#;7$?ZbGQr`ZDek>(;-Q2$&foz>L@zK3`28+o*pBSsqg^svEYuakse({aiUsA@+THqyj)~lcf6d&=;Zotot~&X|&B5lbHhJA-zn~e(MGk$Lu8ve& zTCOS@a*T14Gf4Z?5~B3am=52h4Ukpcf5MrkoqFRVbIE2>z^w-kvfeX%_QO6&iVV zNh(<&ZUGM-uZHUAN*4VmR{rnLk06pW!iZC$6Y5`YSxx2#!~-;WxnTM_E-nubHV^mH_|{4K}Jn9j8lQXT7y%5&TGt&)^+*4qv+^hrb^rz)F4 z!#!NEr%?D@gqY5o!|z@0M#8?bB*N*;{uLQL0GX@AAIErLg#C> zS?~#XyU9`&z%%AI=!$tjAPec;pxGT4G~@bcZ2slFB2MDMeT#Z(AW8Dg11hXhimRb6 zvM^C8u?v&$uNy+DmYy$GCDx=)E%5K`k@OfYyH*CI&)jlB8Y4F4*D9*PN~hh+RhpAOe^!ajs!<1g3>6 z)L=AQogx1X{UJW=70_6(PBvqeqLd{Kt(CP~ppWqXs8z3mD^Lg1F6!V@D4d;%`~RRb zx`LUE5DCP-K}xU05K5&NARO>#HpOl2`qD$P(edYS9PSzB1&E|zs3^nPPLPBDc#2Usg?=eF(g4S=_6FRnnBwO&6hP1mgdyZ~~6&iJloxPqjwWRL8NaLh7tSFN;$*ATG7DVQfAFuB=fTb`rl*b_f0|=!=K0G1U-a&i7 z@xbBgJe_<*rcP#YezlS<=I6S%`LXi54vGUS+pf&Lj$-#uOL04Oh4awMWz-;X+iVmd z;j%;eR|aft8o?BPUE$~Qn1Y*s53sBPsf)5gK_7zHdBX~> zP5&rU%Sz1QtIhaIz)p=!KJr;M14TRsI9^});x;o}^h##QslzioEIJ?iBZ45QTW6ui zAD6f_9$SaQG<~q;oIFIvleBK|2__yf&ZqT|z zJcp=hmXWVa4u5XZQEROk0jOPzEdeY`2eE#KNJi!ooVLOV^^i7keo-fWAf&_f)u^eU z9oX>apWDLR8$TJ@uY*$}8Tsa-qa{64_x3_cK`4+AtVR(i&TP)miivXn#h*iuu%|<+?4c^&^_}4<#Xck9(wj3~2yHiHC!qosD3>m>{E*LY zn1``KD1)!E*F-JjO8~c88&SftS6gT~p-^VWL!J z+-uy+lp;5^lPU)x$7U!8uJwK+>O3h{um^w8?(K8p$d*TS=O>ExWoW7WjX{|RiZkU8S2?|e#8#bVWf&DoqO9SNn$V+*J; zMw`7lZ}uufqH$TFo0Dbh{U-ecIb6ypf&${lh@9FJvNv8;u*83dg~N4KbCzxXPN`E- z)C6ksXV@aIq@>~2djF$8H2m;EGf<|DZB8d@lAY&-jDVf z{O{9IU2-oB&1+|2=Heu|(@Q{KV$+u0&Jsf$oVP`2buWtXsl6a@o zlVOH(BHpamtZS(xCj7{cUqgEz>q?&EG4h37%X+f|mw}-ou}9rgQn{Kj#r0bOHBIuy z6AjftZaHPv9<8qt$(buT2z%)Ho@8jo^5>HNV_Sr1%?57SgE1b_F;f44zK9w&}`~w9S$AsE_ykCj8wu0;h$2`CAvyLq-1ds};sL zJ%GDilc@hWbp9!{JN{MaVy{&u{b$8|25rsUK0Z?D^xj&m->%bwjlu7;B~Tp<#ADB! zvFjr6REE|d;c0^2a7gdsV!;08i9sEPADSMgF5mat-V?=68P(-9N?aK~mX6~WUH7n|Jw z0CD3dd1-~+PxQs%R_82+7>~}JGBP5YnK^RRvJa6~)coc?v}EY3h8!u34GjIbFVW;^ zuuHp%oEd&K!K>ujC=hqoD$ex2>GdaF^kEit#0MmhS6*6bg_~=fl!5!#TxsOTZ-+q{0Q!n1_Z9ZO>>>q~lOvB5 zB)F*vtSoc)U3RHH{osyd^ z&u3~D>(VRO5qn51Q@0ZFy^GECxoEP^`LS47IbCCAUc)5_%%N?N|9tH8Uq5X;`OJWHoEP$EQc zZmlasehDGIjqeJ}I6T7jw=&IV8}uyfA7c^UzYJisqNV;o-`oT80=|35=CX7rYqEU2 zdccn>;48Yskh%gM9L;DMk@(_XCHqpx5xD{o|A?oGx|{pB3=Gg)!d^5bAW zK~+SQA%d-om`wc-5wpQ9zorYBJmui+uHj^Idwx=u>Bo+r-no;Z51*3_yV_e~sLKGd zQ4rVK5YBW9)R~N(e@Mm$N6h$$=HG3eetvkZxHMYU;CMG27$3?s{$}sKcFEq&xKT9H zA0Bv5wrq8NY@h7ll4$Ffb;X2Uu*GUBC5d(KtRGoaxlEPd zEn+&ybllr7U7wmG$Nuw)Z0i9&l*ivTjsPEu7-#+L_={Cmd9^dK*0G(s@77;Blr|0R zhmnToYk6k-ui{iF3u#E|)?o34vCA4*3K5RUPXp72OzRMDMdf)cs66PwO!msw3!1BP z-BH5z7b1-&JCPb38b9C%9^Wf~Mym?yOD{xh&8u7=2a2|NqHr7yp=IT_FfW)lojRPF zBe*@qTJ5Zlzou23lJ1af6OEzl{5Hs7S$GCb!MXM68eQ=Hyb;Gy34pA6nuH;T$sKl- zQn8Lr_b-t6D_$QiaQd61gysI=YA;l$FT%_S6u&)wW7Ww-P9>JKtMz^T+7uU}*QOoF zCQ_|F$N-b6f^fq+pIY->N$r;pVwgVm@Pt_URZa-13#2_-J0=!_nM91`rXvNC0ZEw!%_kxk9dApE}CRJpK-KSGISJpj8CnvBV5@Y}C zYiGx-RpnhJHK!AdLI-=VZOAwBVq*?bj(R?vR{|vW3KEZ?YU8ONoyS&Yd{BDsm}*p4{Ra=VXk~aYL}u6mH#xYB_d8 z(yd|a4#_YwN2&5Q4ZLEU$i?KaV`cxUU6M~Aap1AZn{4$;FX%b4XkaaRtu1x|X^th` zN=E5$N^-+nbG>D9D+hZ#uO}t#0^O87Wf~DH-QTaXS+E|yZ`vIGUTyiz7Ow;v9p|7hJc%T6XGe=OIy<-;Uq>7gUT$D zP4nCsuHSOoz%c)5-<#y<^+Q6H6EB0>lpD9eIK4f@%MdRA?&5L6$!3Gp&(}17<#!r; zcfjGN%&Q~NUk7cKt#iJxz=ZE%FVra5VrgN@$eP#kHCz&!0h?nfy{pnfveK~$f1r=lJ z8gCo2SJ%q~=oM6F27O1!Z66o{jIPAq;X1Y|oO!p=Ci&BZjBm@Z6h^E)CTw!xV^DnH zt}09Hm#A*225z35O?m_TIC}lJRD3ljI>ufX6RduJxyrRK|faJ zyXl$*A+(mb-93|#v>?*WesHQolex|s=Wy0-ZDM?r5GKPAH#1yX-)YX3D|~OSP|ju+ zVe~P^l;n~U4EBx@&H=E?du7ud*TsvOy6E3ZeE7jsE!0Y#N}Lj(emE^sh?WXl__ixR zFS_Ywao%GZbJO;0*F%$Gn8Rm!o{g<>oF0zyuTfb2}@s8F>9Y;n{b<+NlJsj*0+6n$w zE2%;T4x|%noF)cLW}(Rfm2HB#EZ^yAm(m239iZ~*rw_C*quSKj4q33;U*OEm=)lXa zq^CnO(n3l z5sJo1ngtJ{en^$=`)Y(b_U0qbKP&t|mQgBW^a`ggXU;4Ib$ny4{4y{;NAYn!EO;qj z8r*WP&v?T~&F|*jtU{jCznxYc9m+(iK1F{r^e(Rc_I&5d3)F@VQC&ibKeS*)WhNBC zO_k4@rkI1_;=?*m2p!UKWXIhGw8g4faUXCbj;adUJ+&-tdPfV%NgA<8QF7Bqf>05C zgdY7|n`llaIK4M@ye@+r1p^Cg!A>~(e- zB@B|j(lre7+*NMn>4dOyT^f83nbe(!kZzEq6g&Mpmi=>|&df=or&;=Lmh8Xn}LGl{ro7yL;{+Ii$OnwiVx zupNoy#M7)jcMWS3YXn*!m}efX)f;b-O+-hHLuzS@;w|q?m7^CZKP7zo4TqHX3xy1O ztJ#Hy=7s0^4=e1dJ7#`=22JuH>2jI0DYH1*U}fW6dcbYZp=^6;kMz}x`%ph@2^K8T zxWa=u?1HClS~mBh#1GEOo|;qGRl8!jYbi!D7*ZJ>9ve{vHPakiUYR8HV7Oi7(4sN} zaTvB2Xw2^;gnn<)O0=DIrw;1$f&@fxa><$NW)GqZmm_Z6#hw+Mk8S^wm}k|;!X@;- E0BOkA!~g&Q literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/10.png b/labworks/LW1/images/10.png new file mode 100644 index 0000000000000000000000000000000000000000..0260a2c020fab95d71e78629ec6817ce482cc0db GIT binary patch literal 7815 zcmbVxcT`hd+HVj96)6IWpi-qbrHJ&Zfb=dP1f_;5Rp~{V4W%~$MG`tl3sR$^^w4W) z7P^EQ2oM6_jx)2?JL}$W-nsXWtgK|60=vnYa=3}Ix3MucsybL~2IH~BWKp>T`s1NU-1fNeo)U@z{KxkV@FS2&e zLVE~=?Xs4-ipgUe?DT2h^Yi=dn^Y(6&*E?SQwToiNWsz}BXKpFwUN}3(QIE`&Qm17 z!&Sov87V}V%9I6%y}!Rrwv4h&ZGDh(=W~^q1Jr)@OCr5$A_3LceMvpKGk=|@9=|}4 zSybo=;^WNdX+{MsX5+IvnNKl5J{@005t$(yN*wBBpU61RKxj`HLLMr|od_paWrAF$ z&x3sDFmHRx%g3jE=gu=G;kyP~^W9F+li^coIXR-N&*67cw$k)j^JD}>L`1H+VWh90GypdL!dAN5s#jG4knkupjSfWL&q43Ah5u%l3(L5%OIggby}8 z@??>J{Nd}jZy5(U3PG#p5M|sMtvFsD9<3*oG&xn^{^MR@A34rs>sj>V1zES?ek;i)#U`D@De<*kO&B;2FK=5pS$M~VM0)p$D!5LrqV)w4%c~VF z2gQ;eQ+HXVT)yweKfIs;mze3RN*?a^7GrYAh#c(pb=>`2s2vrn6-l50;RQP{7jNl zZpdiMiI1>>yy$?uNOp9l)b`FsWfGr$*XFNwcl6|FnbrKF(s6wmCo67s!q^d=>EMx` zeBKiDNBH00=+7lOgs<++#NEk-%`poBo2HM$<<^s<-ZnZqFPMbPdPbX;#|{z_67J8G zgyt6%Xd4+NmPNN^NH_)S%Y}T8pju^6<&hgwJZ(5Nx;jyfzPDYP%x|c=GFs;9dMetu zK(DjXuH6l7wY`AGGN?w^Z$nar;L0U%bC^}Jdh5~|9l>Q>g&1NWp{>IRM@=y zUS;i6LVCJ$T9Y3ZW2#74m9TnFdoY#Hb?ezU2J5iMqK%&ks<7TdRQDbBd@?N1&rN-= z@d}e!=N#O|D3J=`h`kxR^nyiV4ouwUOL5;N1JKENxju1g(~agUBPD!81^Uts8{a?s z(?HZwuix~#vQL5y??E|qC0AC2>Jn6jhK6*tw6&97yg2*MAuy}3nWlJeBg}fkEgkmK zh3JUU%6a{o<5%0uB+w|`KfgW4vO?nAdO3@w_p;>!s!n%ss>O5+7a2QDBHjJ5et}X| zDo-dE1oKiG*BZJ>ldy0(Z@xQC`jOPw(4IdQqXiJf9=|pXuI15AO=ds*PPMi4{#6(E zD|v<#H7>}UZZBux-p2iH{wMkQS0|bRsxK>rPF2G*#Gs0e6p(~I8FfCLbPli)sUJVy zWRdeP#VrqMSk^e-A3LG!>yuNNU)Hz1*q1dw2-ntbjiEu8rcd5)8_eDuw|mv8MyFu! zT30|<{Clh-w=7_2;DT%(myi|GE#bOd+qmUuxpkvsT9Z4brW3!4&>VQDM%9_C^c(s7 z=%ta75$L|B3_PoebqU-WcYcqSxudQ8LqkW3O|eF}?<#%){huPp;g8m5kp4lK?7>nC z39D_ywB#%s%uC31wDdZ0`jn^7LQjIIb;G#j(v-_xyL>wgA7qaHUpV~l-TN=7{$xww zf2Ys1A;G9cH91yhH8$E*X5F~k<|Zj7TkSktXo!q?2q$!`zkshk-un>?YU${;4Wg;N zoRW}mPE%8}|2rb;!`JrqNz}uo8u!WFRHf&tPj?y44k)|06cevL{^iT|4;uKt-~Qj2 z;{WB6@37qa!lI&jE@S2Ht~20#IPp_HugaotH~M3H7?mQLc;)m7`8=#`q(;@vl-x8G zG%2)2Q7h|l{jW^*m;1Ngt$gq;-@Y@k<&K+MDNz(6^OT;(4je|3tl!F>AY3~QIeU_W z?;OCdPv&ts@&QJ-<1Y))T)L6`?7UD{8Z;C(7WYQh?@l0Yi8DpWJeBr}Y)5al9I3fO zTU2Y5BTfu9__=1t_#i^&U0Y-6(yAP~yNXRq<`Oj6u15qO;9!jxAbD98^dbOCe8Ko) z>O4K6^=pUw+ayX^o~)~obQ#t>z^{w#Z_Ou(wd{Qf{pJ@)XdE6k(bCeoK98w&C5`2c z0>uGtjd;z#z=q*ci=pA2GnF=Tdn+XsItoKG%|WDoLP$*_bT4IGyB}#y4oN@@s7ooE z9vwoDr5oM=ICUKxDYG(XU|^WbJw7ZbwWz)wLvzV-45DoBb7lbSZC1ZLV925ZIK1;m zYb+Q(K}3!g>UO()D!<{E7ck*_A3yy0Tk|-V?k#}4yu!6RMa=OvODB006mq3Kb1ut2 z?mrCL-*TuwJ|bWrfg#&IpSReXodi8T7#pm#)2M&=BU1kOa9iB=6GTf#Cz*s3fU)PC zln5C;ISN(?-7H7Sr{u~upPsCI8ShFFf&=~qP^y{0WdyL;iu$E5NtzyNx*q56Iro979B5Giz-wZGYl?PME9S+Fc`4&}^CtjEun7DI4hfj61`y_Hg zii@1`>}!wdhR(Qi+&Y_tQWr=ZB|s+tds}zJzd(G}Y1f2X!Ed^E{fAB6V^SSc#VhYcaT*PHQO>DTR6|0w~?37}rPE+9ed z!LH3NNtiyG4XFzTG*lHr@UQlm`snos;}+?gEr1MU`GUhXCV)MFo;fdg_0}_{>)-l5 zkU`=oz|z$WV{gE;jneSzvz{>$u;Ycf&LoHS_$!VaSh28u?IMe6#5!3sgnl_VnxyGp zT#++l3&9ym7+A)N)37T}-Q&jq<&Rq#>85b5br}IW#Dl1P+N37NyAm;?Kk!7%yS+1s z&$C|N!xSe`;q)r>PELVDs<+YY+qXG5IaQpr3{~&`{Phb9y}2j?Z8=OuG4gnKhm(=7 z&Y&@6ElPvheK`u`MMXva)XmW~`b>~5*8fb~|6jbhk5ke1m(f^y6$CbVZo(nzA|TKy8ZcCVTtDkbJLSZ2(gNvTl8ULI*Tr z@cz~Wd}*NCNk2o%H5C}U{ub|`8ujgq3UStr{%G^gj*btr(a!xfFyrO%%J&t6Z&k<% z)*Wa5r91x90y5i|Ruj|HFG6`(o$}PVuUuR&0Cws&P{|?Zr;j&cVY!A}K+CJWgyq(| z0_o`AX$7i)5f(thU! zg!)9KT`T|y;%vFKoK-7!>BYM*(bPcclT*=-^LUbM-rStM)wWrcy_SF#vJ~K;bwiEy zGd7^V-%GwdOg0$ei(Fw+QTpb2?fZdmmqDskGqbAUR)eq_=%SJ;w+Zq6R`w%~A%t!c z>X^7b`*^Ng^mtw@EJ45+(Ghu)dJZtzA7KrC0C1z~;SW_UU0tbyi>wIX7L#!}-|8bg z>bSWlOSO_F(6?!+ci?Vii;SM}w!9QETUh9uzeZ)*1&(%*6x@^P=7;h0WY+ZrFbi zVKXw+-!uW335^du+-yg<0sZ?&xyz}Wms#>uppF{OvPx>oK3a3L8G0u^R&Fi9oGT8X zS_^0?N7pgaBBNWBw3qokn>J$v^yN3B{wXL{iat^n?#2R2+G!gvT0m!I(E}4zQp7I* z*dU%=$wTkAC&K!~!N-UbC(oqk6&yk6X{vN2n!_c5kSKzpT4Z#`IQ3k|%B9q@aKp_| zRH(SuPj!iFreccA9HvA|NC$P*o62Nhpj5XU0j#|SwnrO?E%b6@JmZL&Gw`_RqJuj9 zMNfoMJd5_bF#vzCNn}~sbWYCcvn=9YN1GgM40@i$(qds=VQmYUP*(s6c5PteT44=2jh!3>3o30_naLVZ>z3^|*-j;}Y(lJ-mmh8YwM z`XXb}X2Dd4psu;Zcve!gI`8wG^u=ns^_k`tM3PIKN%_5r(Wd=uu7IsMEgy|416Kg( z9qSJe____Xb@C?rP6n$d%!rT^%Cww+ugY!P7`&5vM`eO`!L)4?-Zo98W>f8u^b?+Z z>2*+gB?Uw#>c0pRShPC~4-D$fZ34c5)Sz`yl_;Ml$0t; zy%_4NSFbuhH0Eczb2rsCjxv(!c9!ML&1|Z_OGf@pCa9!xW+o?J1^R7kqm_;%0324w zE4>$bSQ^dpJ!e}6f$qOFkFA>}g-QnwEO~%By>Uy1EWjh{a^*Fzut@D%;%O2`%gPH)sd%mo0Ch_wVs_v4C7C~Tx>p;a{GA{kx$MwpsQ(%zpm&WUT3PO13 zZ-yNBeg|$o;_KJ1pPB-;PtdSRo_eDYG+N%g2GA@5I3)^@1zfpX>tbr#@tU))DV9B2 z^<9)&XD?AbB-(jHQvMonwaNe<$u;6HgE%2A#sLf;IWW_e6~WBX4hRGOA2zCi#*Wz5 zH*$~4fzdFC{NZ$osC@W7pw96Dxhb+RZqHWQ6^2K=p1iveGhnD3($b}(B|gLbcXQ0lCl1# zeYNz&L@rYFSZYmQ{4|#PnuS&U&CiCSy<`Semo5|7~gii$lO2_o0S$Al&gd{^PljyzimY*W#syH)A z^{gB2g3!=?I0*EQROZxOYhJHlitxa=a2KjV0?ZE1plI`p6Ww%;sQ5GNy$aBf^wZfgc zqC1)YndQsWjy$4E5=*1zapy|;;5l7||Iwb6=#Ks$s;RW08zEipsetAETU zi$*WYL)7z@oY}~fMM>bOa`#Oy6ma4Vk12jW{hVa5h;G3D#5lGE-_4)5BuswyWJn;& zvkzs1wF!k>onZRGT16I~1*Zs__S~?y36}vhMB-jIS3r|+tt8%aUS10z-Kz5YZ6;w- za=$f3x-AAMeUs4&s2GS3uR{ygQO5+-agw-0S9;(_;AYY;-+ZW?n3SY@T(I`OC)D7| zN=?AF;{+-URqs5RcZ<5nq{wI-Pgq$Gp6fX0bE^d`auAp;p9r&%-3cd0YhG;k==JP+ zfiW@R<-H0Sp9PZA>CuB$**`ta9wMQ>0`UtmMjajeb}Y@Hl^&3Oyt6U_fAH1#ptExA)lRL;sToz2tuEY5bG=mOflK0#&VNHh|q5cok}|DAyqGGR*H| zXdFu$y7`TnBz9wnra{E)9Y`n;h5H~%vtt?~slpq`Hss zwQJ-`#ASW*&l_hclwL>JcJuXvsrs~woy3}}=VZ%0qGStNtyI1ib>j0Ab&kD=vlMjn z{_b<9kX=1Trz!Q`I`!p5*gno2Q#wBMsSat#Zs1UVGE!tw`2+mQDK?H13W2y&6mH(FrUL9@1~GrK2D~einieS#GW+t9bnhy+NCrVndOk3>kWIH{ z36?@@-4AmCcK%v*FjorO^_`jz02oOL7K=h)O@`S;n6G>x+ooqu{kh=2bb)BuDRq3x zn#A-Y3}$px?c>mp>XoByY&n&C_7$MbGNnB|ET^g+(c+U#Yrf*KdU^xIw@%)e;?dCz zq~4B1{r;1t&f*@C7T3hzKNu3abv-65D{5wm;X&nWKv-u#p`uI+&Fzg_b`x_t> z`@M}HgB4IEi5T^eX{@Bi2P2fK%TD zL@Umm3_?Yi&5+r>1r|eI>-c19B!-Sv-d$SyY9MG%YzY@g7?RpvUebPl`(+P}D(>J( zDAL=wJhpJ{F-;HYa2t@LIKgJ*LS97ZDXE9J@ANd)sW@Ll4HoBazU{Yfy8|iDiQwh? zL*NmNrq3aPtGF)T4uf5?9Qn z_2yB!br$#(wrk*)(CjhkVm3dsGE0Y}yMcG|i1K~%+d5y7Zoa3`RP4dFmSdRA0W;M! zQEQKT_g^q!%$q^NvJb}DE=G2FLxR}9ax^eB({rD{AtbO-X}aYhO16TC#E2E%(ui;_ zv8>aoxaT^sF)V}+OcPY_8%~AY3<9O0k!LU8?0>_uM5fzl2_|`G_HaRZ!Q^h820qQ- zG>Tx66T0iCB)>nG#LMre1f#a3!x$rUuG5I1&!W#@m9AW~4JY59_3TBq)JZ-(@sXk0BsLTTd@`2y4R!L_;kkot<|-OMuU0=3ARS9fBS(7=67 zy}MIa0cP-=S8?GlL8-eQ2vj2*$I-zUD)Wa`pi2c+G}xACV#FcfRzjOVNbevWMX(|rL^=|X78DXmXt7hI zMj*6+AT81qfl$MF1kWsbX+8}`yS~RYWWeZ!@FPS;IgQ;+|^rF+QLUf^gV)XJv^|J z?6I*zJ;Ulmb;H7YVu{3In2@xkuuS2=twIz=40D7}Tej-3bnE98NuD>{hN7&ul13MI zMNH46Bt>5}!ckXtJ965{bYl;4sRu7S5!8yZ=RI^t;`HgRZl;)@)s2nz=a?0mHzsRmQ<WINV^Vm1TYzC332j2U#Cj){%AAfJUPdKJ`8`*i9*){Q6Zw zO>GFV@4}Rkp`ow*SZ!H=Sw==idqs8gsp`g+2ZE};7oxUD#@oS(>jNBXExdRJ!0k1iz9WJ%3i~*&5_$X8hS7o zY>KeATU}{a*Ok7o;7MSF6d`hBYYGZ3q@<*nQZ?K~ikVB|uf;VsYG$eUX(@2 zp8Av_|I-*Ey49y9ovq{{>Fn%Wx_wf&Fe%%66!$XQibA0%x^x`RQu4@{C-k|fL-Z=t zS)AS7%PX|4&S9~VS=rgLi^JG}&#)FT%N%_o@%bfj`mMXclY$3pf5dn8dT){bN}oBR zE#2BthTITBU53OAUY;%JYi?^1iMHQbrHK19Zx_fLZnAlN(>G-b!tApcAbX|iEYmH5oVHzyagTK_xE@dgT7e|Vcb%k!eFVA z@L~@V+JCLzx`Fuen!#Ts88kmYEVq;;O*K!%3luvv1lM?tC=*uG($WrZwp%xgg^+_X zM?+_Gi51ogf1IPJp<(yn!GmHP&SornFLH#8N$)^!q32Mdk zW1@%xm)6dU)g|(X0#nSO`K)XJ=4e)a{<33fNlCqH&Pge$2Ff>I=dL(;DAdv4-+#xV z6JsYOBh!Y+6|m2W9e#oC=oPK7{)_zj&Xm~4NC>7yAyl<^d3nos8>G|P!LhcRTiLir zd3nHR0m$id|7o>dT4rNobGLNg#=I9jP~6zqXvL&@?B9~}d#11~-Sb2zt?+eEKJ~!o z`LXQq@#e_gil^{=r~|0Auchu*BV=V6nX&=voiA_Glao&%k;s%MPv&NGv}0?apw>js zo;9bsv!OoLL~QyKNI4p;tgQVsyTh<)Ue5Lc45n{c$+CBq8S+0%7C7tQ7W6YugHo46 zXzgMG=Lg`!ue@Y|FxHIq`~w1Nt1DxDaioF5ww3qr zbiLtI6`#{GGBPPSISaootSpUgpO*E1XYN1U z;yu&vw4kP*zt^o%L_}kyL&E@~ztTAKG_ewSRx8N+q@*MaiOkC1U!M6F<$6b#aVq^u zs{hj+xYM48WIBeqRl&Y~OxTr*Y1J_+8pC=H)mTk?W+v{NwZm#79UV_^Zf>Teriu>@ z4f#*LXC>&JR8g@GULK3A7u3Aj^M^LwH{jXI@Vtl>Bg#l!wdXLVO@W6`+4IT4<7X~_ z2wQC5+5Gv-Wc!(&VXz0I;mb`cZ`l<#)bb5su#{U2EcF`u-9lG;4gR|5a|s+}SLf|N zbo>_vf0H?ND&_549kr+(oYQ_tZ)ulQ zfN$^7BNhc}-T2$d=eNZ^8WDstxt9_UM+Ag zDZe}mY9n{z#2aAfn)U~=Z{B_Q_tmY}MD)PfVQyTiSXpXV-a_n4j{AEj`+qEnzvt9K zm|32xpALYFQwoHg8WSKt+7^ib^YeS@bZTiWpSCKMrRe-X&gR7h0D?R8fVaF|^ZdEt z(bM+QC=`l_^SgHJ3GmVskn(jqBmxcFk*$INNO8R@M@C;o7jM4!O z;6t0jsli$eLGzM8xasnCuQm|*MOb2gh4m*ppQdR#VSM>zk3X(=X)HI2e=bF2YR57g z{haBP(9&|EQ#-(Hg6>HPi4RQIoDC9%gYqMH*GLXXLR1qdlS{26xrzfM#@KA{dYPMx zSdyu=k#(gFPar5LRZvOUR_DXl4<41bohmi$oe2hk=({pyL>uP03Mwy*D_H-=m zr{%ZNRjXmosP!S&=`7d0WRN-U`o%1(9h*)HM%DOzy{OXU+AR#&gy3=8x}=i|%EIWT zRFHl)1;Slbe$vL#G4G&&vI!bD$wn$3n9$zanbjh{5cP7=T4@zudFZsGQ&UqjMb9f= z-UjOa3zg-(X|@cFn={!G^73%2Dq9J#{b?Km$~nRcYFFPM!0)b)I4_Si`BTXupYE_8 z8U+mmvYFM<=eV$5nO9+Aihpyv>$hi&kciv=X$gzPLxu4L1+V4e;^F|xx?9Es&|9fL zG2MUYwf+R2L771*gD;=ut2cn0HiE%c%$2q`yQ8~~sGo7Ze%;W@Dg(IwmYQo%K_y}$ z_Z(;n0F{|Zr`?mAC^-0+mOvk1*uT&G7Od@)lUGA&o3qn)<69XKiyls?KfbmYgBRp< zO7VItH-%I^PFcww-}(5<@g<}ag)}6$*B4Wh#SPl0+EShS%Pkdy7i`o*SBmYLLzW%+ zG;h9;v&FO?iR6I1tc01pa{GLd-d*i(Q!^{j^{|f#0#XgZizz!h5q0)H$hC>PBJCOS zcJ}aEqf|-nC}(YM!_ZJXpm}`Ew6Zm%2$>L>#(&c|LoT^1SHl=&NH(d~6`|%gc}LE% zaj;)~Z=*%4elvY>oZ#db@k5{9C~B_tnJY%qB7WI?!_Y9Yag}KNW{u<|LZ_;3*4qGM zm_cQ50JOXv`g4W}fHw!I>8Z@T%N7=gE0ML5HZQO0zlhjexdJ%8e~jU=PNA7tp$+v} zrLy!p_>8Emtn3`Cm9TfL1b&%mw}ey4R((Az-9pLR`n50dITu-S;=hh8E91i~#;u-Tuo3 zX3N@qj7vikQEU(~bGVx2w9KPfTj|3ogxy6SMUR0>#QCb1V305tHZPB-7cxkt?gVep zWqUgSObn(z8Mi4wOz%($d-5cw=*R@b$RkP6X`v&2JakF}<)Eb!MzOvLq(>|^I`peb z1jy%9KzfTiZM;1;YJO!tm9|F_uaDk%C-MtyMiCX%0*ft8UyhIMPMEJPiN^WR$m>9_ zYc!Ewvj-0!lCMS9*4C0u1=u-7pmJQA-(wnSTl22u`$e5K&Y$eFRQ;}+2o@_@INqFK zqV$!ej)sg!{>DRl$_Mn5F`E}|3fp#sF@1N9Te8)Z(dQ;SO*$tK0q*B5GwO+o!!dYQ6T!0a(?Yos~>N zpmrGx*5&}rtL-5FxmKZ$ZyM4bUmIVcFat-}1+X;$m!(Svj7a*4n3ot+{>Mf}Mp37f z=VG_7q1cTnv=WvX!=YvVxQbWZnG~tNB`6I zStu3%gw?oe(c_qrt*xy|Whz=1v_t#_ZP7& zkZ(L-xDfx7xO!SnE)Ap>eR?5RWmlJ>5J@qZ{b6_Ib1CN7*wu&P!_MQak zr0hBPr7N(`XMC(m_k&R)UF=(H^W=KRsLg5reoJfp53I>xZ`*-Kkk6EY5kao71|GBv z$fhtXKtCLnLZePAL?dl6HzrEN`#~0pHiRr^Tx)rZrx}tj9@$M%H<{a|j%R{`#vej~ zD9s379M+G}s-$(Qsi`fQgj85n6@wAdQt|UJ5EbMaw&A+UYr+DyvH2anKQ2`_ZE#fvip2!AM1q(j+sFx(7i##0h1FxcMg|Dt>Hv0)qV~4O8+u3#L!j-L zZ1&~PA#C+mk7^1HU_sU6HzpsV0I&1xNzgH4nl?sq42PTMsGguVc-z_IQQKa0=Oypc z<{Axq8G}X?i@XTZ`W%}<>kNAnk8S}c1yRYpq-!4^`AP8x4Uz#pOF8X+vlgd$;=r0D zsQ=Wx9k3zELK?xi*bH<_DgsJj&hv=*rfpl-9m;pQSgAe!Fz1IaBjdDSZq8QG9TfXp zr6*qo?0h(sea05Xc_QfqGa5-HYpdS4{r#5cfoRI@@7k{w5`-s)(?_5aW~_>eino0) z)Nj&xXTEg4Y-AyXuu$ZEC`MzeHP}k;$CgC?99+hWfK6w1gfZEen zNSvhL9fo&acYQm5J3xww^-WMaAi{VXP(SkogDp4IjAbG=gqySNOK!;6kNijWB9W`f zBc}DHcCS2H>5?6QQ=(LUf6G{xfU)o-#1DLlObfH*9`7wncBx;)3{+xc3`^mvLh1o7 zDz^q|))$7vo5I%om1Zj|R zY_F{qg$*Nvha8^l^D_5y&Zb37r(4^ryai42!up4wg>UHC{(2E}#Ob1!;#{D<)1`C7 zr~;6wpTL~R`QszLCHCi9*erhbz--E(?qaxQebc!ML8Xta!Yl_@DW9hkRK}7(w$`IX zn<_7nWchEL`PQ#G@wACupCfc}y(}W#4rJhbcEVA>oN1SyU2GFi)SUc?D_@S@+eXh{ zr|oQdpI4GwW5a>{(k?ULT;w7?wnG`{=RS@<#NhgDH)wcYm6RH$+ESqj3?H)DpV$

    L-+8)e^)d?ntJ*#vd+p+bGCDt&B`U5b7AAOp@6 zDI_mtgmqFJeIKmS7P|AJW!FAgz#FHHZd`#;#+n)$+~V@MdX}wpJ-!$8B~%n{^cslZ z-Kv5pLq1jMANKDSxjmoTCwdg!)mxIA*F@qs(f>a0;l=vCU1_Vn>YPQ<#Py;jr{S>P zRJE|8XOnVGQPG%(zfZTPd)p!&-Qa+8F(;cENYZD*4!!HKB0FCKYqw46yXvb}3wnC^ zcPi_a9)+#i01Dsc>Ya&QZ_r%r(Y<7++dCme4+wjCq=!TpW^YD?5W3ajfaz)edPLT$ zHJbKQM8(ALt~ceFd0nFNCE0l2xh+c7RN$`IZe`v2Gk2}rqe2da*lP|_=fx}a87_C< znC-$G$CqNjCN&r?pb0~d1w{JrA$f#W30zDsBU6t=RM3+ z+&N&V^~BB0s>A^~+%aI*w>|hxxsUBG`co_y^rqv-djBdF$nhe=Ar8nlzJD=iF1RSR b$8grhqS{+HXAAr%1Y)Fbs)yFOa{Ipk);`?6 literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/190 (2).png b/labworks/LW1/images/190 (2).png new file mode 100644 index 0000000000000000000000000000000000000000..26cd6c244b92dfbc582b60968181fab7a75d32d0 GIT binary patch literal 182 zcmeAS@N?(olHy`uVBq!ia0vp^G9b*s1SJ3FdmIK*jKx9jP7LeL$-D$|SkfJR9T^xl z_H+M9WCij$3p^r=85sD03i%E*9?xHq0u=Q2ba4#v@P2#Fkney22eU)SzyECWjs#Db z;kYu&GIo}tx7q!srw5%nI{FMY8-|KrYI}F=$m>IY14Eba&g|Us#a3Eyg<5(1Hy0QF aiPAId0)iCPgYE*2W$<+Mb6Mw<&;$VHj5}rk literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/190.png b/labworks/LW1/images/190.png new file mode 100644 index 0000000000000000000000000000000000000000..0e0fc258a10f1014a07e2a771ebe0bedf158e0ed GIT binary patch literal 6473 zcmdU!c{J4h+sD6@h|o%8DG_40%T^>y$(BK4Y-1=}_82D17)u*MvP^bG$iA;Jq;6Zb zu@#1tZD#Ddu{|F>&+q^HoagzS^Zfppw3Rm?`uNz;OeZ*+{_RJv1)4E zz6U{c#^9mBbOgL|rer>+VWbn=kFlf!l@Iw}xU9Lcg{#Q>fkb<;5MfFQP} zg9lx+Yqm86ogLM@t#bc~#T<#n?S4OR^Ab)~m0n9ZXkp7(p`hX|{Q-Nzw7Sm$z zcx?xV96=$Wt#ZhXVu(P5{r&Lw-{AzGn~xe&m<e}bHgqT&sC1`#l*$Y z`f}>BG?Any}w{%4%B-Rz1wczl$)m1d%FjOooB=j}e3TLR#@;x+^ z*?Z|L=j1a^i`S%DO#4cgl4NhDjt7-4O(N8^fikn!k3hu+9%5{Jec_h%NY!H(@22Oh zdt8uSDZEfwzos}-kEy_T?nRXZl%zC;rd5=rL#>Qruu)nKoRA5dXTAv%nvO|I? z*$htl`cZv_sC^Bjp<^C*8F!8hGc&WGoE+kkZi=|B(r%f!X<5q#r2H$yv?0ZxM!sig z=$SFa&HQY{-PAO}%*c7TB33{BPU|YU7l}1$KMK9he$P>)lOX;0;y}WifC%%Im6Z>M zxkfG~Wb=}QT=yYLf9|v|bbbk3YAt3#!XOJCyR|aielhZf04EY1g{JhiDjk9-aoG%c z0~Y*Ge$rL1616AG2Q8xc6n$D=p1Amy%A7X8EXR|Cey1nW(%HH9xmMU7965)nk&%&} zzW%sD?)rP#AO^^fgN_Bd!(X(2T|6ufoxNa5*TD4u@n24s z2PDfnC-^P+jwulRm%>n+d{A~GIM#D=E-@aR*VQxO$&?{bd_Q)mPe&hiA|^IgQ$;0k zd*hW<=c1$1nZtqi5r|qNLqnl=djBe3h4b*hv#D2HQr6##tXxj#wyU>yb>U}co#Owp z3c8zgO`k*D_~$`k1fQwL2IBlw(Gv+VF@mkFttBobc`j-D*Wco$)FrAXPVOIz`t|F9 z_d?x9Ms{{fxb6O0A+A-b>&9<|

    _AtG-S!d{6^$Yi?|JX< zZrBVKAc+M?g)v`o-Z^?@fiTksc!IR%->vLjQ+GISZ<+1FN+zOOs;2yD4E#|;?U31|G+*u zXzM6bhFRfMKY@$t5it?G3R>-Put^eTY)w&MYisMOWdqdu?ORN4L5DsFQJnt8~Zhkv%N!ZZ1%HPSBhdiCqzjxWpFCB?Z|K)t0&fC zTnSS}pFgXbl-Wm(cn%_o9}R@P7aJLcL`5}6{kNU>Uo{1te+{HdR8kU?Us6K+qZwMP zUd<7__mD`~+;AnPeT_PZXXBM`QRl}_#5p>RROugK3O>bvtYrQA@9&1W<0d|D=uYu zdTOc-e27F45)yL%VT0d7fIczE4IovzrtU1`2{Dd^bw&sBy+OjH9^<=V92y#G{p(9e ziB;2)twwhL^HO%5K=v~=5@nrt#OTu4nBh^2_Sb+gv8}47_1KpgJDHf6sHmwu)6E|W z(_-a-+{FJ4Qlv@yYQDFm`C)&UOUkwdbimx;mkOYmo9fM3D67$`#}5hU<$hbtCE#A_ z4IyExbsGa_uC1VDcJ4W~x3#@VO5)Mf(OGkJco7i(dhgA}$KWhl892><;^FmrBBz(m z)mhZ}?45A?wOYp+vbVe4o^;&V=Lb=^Iuy;lrU^Z*W@cg%&m)g+k;God!fkCcQCi1HHJ;Jaskl)|UKCyeDL^wK zEibzd3KT#1%DlB+NtnaGW`a}jd`1X_ww2Yp?KY$$J@2kcXIB?SeKDcJu8R-IoTouP zz0oa?wiwan#U^&`jd{{!F#F9#MS);O_Bj7tS}QO*^F&48iUqoWnvX_wi9jwZNnXR8 z1M!r>!UcHbS{Z7%Zex_{3#GZ_7&gc{eba>wdY86FB;au5 zk?K-&_g0~+UbDvkBh0={ta4S4)Q2*45-)jsd#8Tv$yw=C(4G1gf6;NUz!Q7w(%r>B zlgUw}-g`Yoo;5cor>*e%-Tfhd01MLg-3{f1@@sU^FBNe2hYYgp$V~V7T}MCt&}k+5 zP@;8jic$yiqX8|n>f&eya%8h;VeUCr043I&i{m9|@;$=T;>7&e?mXrydPa}4 zNd9tvZOWYp9#NoSYhCh2??>&sD_zH4&eOCsHKP(;YFZ`LB0F^=Chi=n6M6Jl_{T@| z_%qJ7hmnd?_y}FefjjQ$fqN+eb!TgBJGc*Q4y7t^t>+x8^b9-%^u4v6onuw6y|n4w z3b%$Mw^~DAnYTxw6(E? zRn54qc9iwP>Vs za=64MO!^V=Hn*&kh!~;(O|9{yPVLQoFHSFW`f(3P`7{dqHX>-udz#mKcWn^44F>EF z>=vSucuRd;qz6$*&g*}N1f*2&;m@Kk(IS=_tM(hx=LBm^zq|j-??^4!t79v zVJ`4Y!ShOQ!i}FyaG7J*`Wv++>(JISpR8Noq#-0a&U_UrvqJ+~x7^7#YWbs>yt_ z%C-Vzt@+2F_NKPkh{BYNjEt(x$-|Jw{S(6G0PYT~r&Dpm978GWEgSWr!sHaS+vzq& zJR)~!gM>IB-+$~lX=lC~(nElf$^ZH^mEb5SC1nsNiIM=i7u}zW;E!LB2V+C-&5Cpy zuF!F*p5!>-KQng7GfwhM68diM`yTt^QMd!}spHrG4LOC6OW@mHho}S)MU$yxfssyO9FzqJHxMmz+zI)95D? zW)>DCPUQ5P$eT2cgHF6t!OAV|Mvdh7L*&|qhOsQRSXM|dr|^Dof0`dKvy59W*xp1% zjSqN|iE4n21X(!5-O@*{drVcWsSlSs;%}_=8C?%AO1Q_b@*RNky^!4>$Cnlat!tHG}j@J2N7p%bSHin)N3lh?fI~>L- z$@ZL$mwP5sIUN-Gdr3)25P-H+%W_0+0Bh>BcOL!ZUF5Uo zK$tTASKJB*EmCG|FU(zZ0?$-tEAKcU9xvyb@-(=o-@0l4Awoh#Oe`8qbSsFc)?@Y9 z11T9yjgKdzSRqf{H<@`jKXaf2aVd(vHQjw-=4+IG4;kZRSlYP4gD*^)y1JM^@U{il zUzPzQKGgiZ{$}EI$J;Bn=Iggz2uGj?+D{IPjhA};H?0W&3h3{lB*-}K5UsLO{cDmu z2TTCV%-Wuw(JR;bOME zO8#9xf8)eV<*|Jr$gyIexK(3(Ji5y(E6Cc#&n!S=TMNTcw4Tu-t6*TJ%0uOj(}RD@ zb%dW0Gio_Nwfg>{H+y>kheW}Sq3a;@6y_%za1`YL9%rER@OJ}HIf&CXTg#JEgofx3 zWo3QXx-GB`ASEiEm>sUvrEM%oN)mRK5&kP*6V$>us%0Pl`ttNzmE&2(r7x$5^;qAn zadzC>_uZk*3Q*$exr*VDmK*x?UgMviEe|;swgOv@J5HAyj6cYR5|(S0 zZ<*+F?ckV^$1fC^Oc|Y|zf4poM=YNl?{F&vh!1;Lp;@UGIU7=@!<_@t#fEms1sNF` zD=lZOF;^euNc;w}Zc)!S565$Am2>djEk+DlD`qIgrMY@Kg-W>-Qlew3JrLD1NZ4C@ zdelU*w)-AnJX=+#XqQ`H<3hUWK+Fh1of|_Z4wXIneN}+3GwDGApxqFGE6)v}LAk`laxylpI5I^V!VAGpA2i+0^|^Gw3e6#Gwlm!UiOWaE_^);6-Tx{CqQ(Z*$$G#>Y`{{_Flh*^bG6cDi*pWONMgqmFVpwB^Y2HAU_-W^2a z48T-ZP<8{U-XM;F?>>liz8mxN4~l(OI^>Wj*8F5@Qor#jDb8xN|8SUOy@E;n zgoXE4hUj|zU!Lyu_2c~5Red=;JnP#`A_34MvBXAu|J5c4f&4A0d#l2jqV7XK!J>wG zGn>1Lusi2Ul25jf1Jv+nq^dXx>@BYBkMDNj_I~@1;w^kM55x|E^o-q(2NZodQfaSB z;q?q1%JpQ=T*%s?y85nF%PghR(d_i$rQ`*_W~|rh5@6X82BYM?&Gli|_R9LT{I{vd zG^J9$kqwZ~aNEOU)?gtpZ<#f`1U$d?9Gmo$wVwss!k4m~$xN~wPn)Ex$eD>jZbe7N z*&UDbU11nRVvt2%bEe=fqVagn5%+eO%C)qhMLIzyoN@4CW7Edpk&E`7bE$4;84g0+ zHDeOZrai8Du6M2vyWXs{cV%-a66cqp6c-y4QMp`xm(5Y-HpMA={sIr;H|FlWw2}m_NVh;y_ zam}tryYvFE2?D27-#(=g#AMR!07q04H>tZJUkK6bJMJI^zN$SVH9F&m;1%V;s%vl7{dQ^U6P2ndM5mJLd-ZD~BJ_GNvi1GsL zjCnYlSz;*@Nw-GF=XvgS<`i6GcLOXe-6kVcf{#>hJP;3!4}e|1?C!drz+Rj(G~=!V z6X$!B>Sp6nWotff!UlOfQmXZeoa*OkdN0eWQNm&ljS?{HcS5n8p}z zA&++NDK%(q;6tYsUZ8ImY|jElK+AjsK3Z#vx^Xz~`ILdK;-rL2IL~!res2$|BmO=s zmPe8^vV30N>hs}^=2Skgu_PE}APOzqd(=2Jv*5`i{11DmytE&oGFMI&(K5UL+THve zNh*n0M#~09(4PwQSC)CT+7QKr@gR$4cRuevVbDQ$i=P^={(gt`C<(!RXUQ$fa17;B zk-=HLO0U+|K9KIk`>}-BxMp?yQFQ&lPl{CyLxC zIPm40I6d|hwZ~!U*VlQ@k6G7E5j7yQ{r0+@(HpS0Gp$ssUmX#IMn4A8j;H!0w`7@Y zy>;u!gYDi38kVe@#cxki^0|zZioH{*yDymTg39X>=$0=YxKK`ZI>Q@Il_j6?a^}vH zZ&KbjeVYv8-Rnr=BcV+9Uapni+MT8P zSM9D3BVSVdiBXk&-NL#lvq!8FxDw8o7V_SBQUqG;0jFCX?3tgBK;#gJ#z3*ACRpjUP(N70FA@CHbnuSF`VReT^~Ha?L_>0*z5S!;=u!lLIr6FO;4k}EHq!D zZqi==hQCO`i$64^A4{ttt4k0y%~X*7jMb5Ne2a;hXZDDg_#xyhG@RBfmtH2)Eq+l_ z0Ucwf|7Pplfj{%HJT02V`C{s*lTTAdOBVY{#<|tztMKUuGU`M!&fL_yufb1sgQ&=? zJf_H1Z%sJ(L^PdmR?HNcS5Hk00iU{0zs@j6<}sDYb*rc=KGxOMooV%h@bL1MzKqO6 zMk0o6&`wNFLM;bLwjU3f6Z_|CcGl_O}w%3{EvB+#jNI=t3%7%sp8(1wnwfFW@=J4d7$EVZA zYin_0JxZJ{!KgS-bZm)bFkbxW(fsu3(?@Wc`9Ko0=VrR~Sew7U<~I!)Ow-2c4|g{n z*9ZQ0iDw1GtXj+8f0T7B`QO>!yp(=?&~zXQRnvI=dc53NtoizQuyS#8(dVGsJWk~K zAkkD5XDiw6RB7TtL_|dW%^7UG##Z|>Bbik@?{%@t#cp|<1w=tX0iXNgc#yO7rTERi z)4LPDUtiS)_NpfjyGf08Y(MH&S*`r}Q7+pViqoxVKVQ!+dVMHmyW4IzUypyjHBY|_^!WKhSV_Fd96ox$@lV!sBiu0um^6O@G<%se3qVLfWomEf64bGriS=p zJyCUCcyl;|5w=r?jfdC!GvLuP|Dp4)2*UWpMEa`}p%b!ZD~rjZSM@tZ8C-TVT$imD z{RFeE-ly*_M|Qh>`j-TVzWAMyf9A7ixwjR>6ndcBc- zbYPe5d#oTB>WAAb+N|Ywb(XwA1##~a6-L{P(K?HT$6 z-J-YBR2+?%(G>H(Ot(t=-<`?A!<*}qQJLU@RL;1uF*VInJ>pa&?{DEmSj(ro)AXXE zMwoXpQ6w96JL(U%MzW$<%j%K5yu4;weE1U*5-c)su=2AY9s@jBawO8Tv$GnW>SX+m zi)>}DZ#n9!s0P~-QR9?sC)<9W-l?<~$veVoUm>R+9x&$#Z+?9E=n%|U$J!BP?b!Z1 zc@?u`ELNgkF`j)+N(+3rIn{Q9&v1)z-d4nbwQ|=z%)i7os;H;;S(yLs`XtV7 z%aMCjIQzyY2n{b~t6!9Q^s4z}B++v7i{!6XzpHCZJl4m;sO2>N2VgCBO%y7PxA=HC zUsdu{_+Gl;>)nd@XKW2#NqDLZ(V+YyQK#O5IkqM5ZuzScdw~5Iekd&~t5|w1E-5M5 zwfa>DN=L$`^AVGnC0u{9R#b;eV_PwqB}A)KPuG8=>P)8(s%Bl;-9fW2rDSt^eYq;R z!5xc=`7k8GL0ivr-5NP@9ASltc_jS+=i>jw$dUgrxQ-5R;J@f@Z3A$!sO z*GFODn$pt2H6&&s6RWwu#RnruUP}n(?->qz)GRn@-mkuOaY)NUDmC`yh6(p+AYC|JA zOf1F5JWmI^A4g#hI(m#!q1gBj^K05&MTpomnP+Y#B?5}YsmplO$gX|#p0W*jWnJeA zobX?>VqW{f*cG<_6#PiLytv%@f;IH$fY8v-jb_4|8TZlTn>XcrTdJ7@#u3H~&+vJ#h&-f_x0!pf#jPJH$Qn*7n`1nYugxo$^$4%`9 zw2ek0eX-PP{cwFG2j#Js(4LQp%%a1&W24lex27PrJz!(l97?B;xpmuerZ7wou5lol zCt|HVJ%XT2(qLj4>Q&>Wy_+g|Yd?z@#y9r6+x=-{>owLzUPs^;2en%gEDL{~aOiMs z3R9^vtlNW$iJ)5Z2Etci7!l&@9Qsf>OXy9B5@vSWSNt=ljf2^}aJKnb4xMir&n{Iw z{k;5`tbYH{CMC^p>z01FEac8%y0P+e*Qwx8R8CGV3N{y-LQ#%l7=_Y)v*$C6%iC;J zt%XNa5x9I>2urqq>s}a0jBLcK*LcS5DGH)ZOZDK<>`5KZEJk<=HSE~4ocSM0&G7N{ zPOZg(SuOrMytQSCZk71Jh&|d-k#owa65SxEd2eJ?f(X~_c)+f%?OC}(6)$F~5avp{ zbvCosuXstU_!^JKES*o#qCGtJCnVR(aL*3OtdKH)YoyvLXq}0KgWCRREyZRW3ALeC z$t6vsZCQgXaw-Zl)*?Btm3#(1jLCj5DTE8MG_xh66c+ORCTnX8uda%b)-cN5vOUyH zSt(A0SyyM$JA=zKa6LlA$bS25{ov$Zm5cZ}txx*gm`3iWs{GNFIfkf#e#S3s=Sdt^ z?n$}ZhvdsO=4eHaOkr>kBA#E3Q}r)q5AlxHFliBp;&Mg z-=gM)=M}d-QkVv{F5D|Bh)Q03c(z^eTbA|WXC%ssmfw8 z;!~cb#9-9kJGg+e2~HLY9fWf1bB?8sTDykkjI0b+wBhE>LOL8O_tavwVf;_-?yt7V zhtmsAoj53wWN5vw#dYOL)@4N=>wSUaE5w`2h4s?-8J-~npz3z%CfG4jbsEEN&!hf4d{)wx0?QroyYN!AOHSyOY-h{z?O=G`l5ZO#Q_ z&-(c|^~9S|o6oA3nR%*b@Pf}jW_fy_{&^^QUJ2!6*VZjcPmL<@VS<%`hgUpw7 z^hFJZuOk?L^=gu1{0S7|Fm+H8qDJ6EMYKXng(3fwQkv z0V^nkC?p_@_Ts$ux0H?j1bdG(YZS_}5ZIy$R{WMX)Au#?9m-_ z2cEtpwbwq4OqZ}BelaiK%@`Cu*dKJ6sOji0LwI%L?0vgGZGWDaw%dEO<}UL%HjB-x zV5Lc#knRh6-1g)e#8ykEU!3z*r|h*s%ZUvem79x&X&|a-X8QBOoJJIp&kkA^&iZ|i zD7|Rl!iQ6!+M5wq++xD0=Nnb+n8|JL?an`KaHHR)oM&7eInFXioX4Jj z-c1+VoNY7fxoW?;XeQD$)tC>8%yN-FbT&2Z>PXi@Eft@-jUy$}apw^r_#pvc{6g9Q ze)}9hEOoom{94vsULd=oG?eZKQ=|*SSIc5be0X91VjN{u_x^R*laoTGNR0$F=xYS} zkK65zoi%@Sz9OUtU_Vn>nB}(xul|U7Be(!=7(U<3;42hWb)t>FT;&Q<)-d$h7Q3v_ zUC7r8AKqTk@kWToOw4C|q1a8wEZmck_Lh+MRUQ<+-votMezvc)BlW_aFG2@*f1#POc1+yU zGFR+p)-o%aij=N9(t&2%4~_M3Lq#UK+8}dn@4Y9Q(X1DP1W`^zI29MOVq>fR8v;Op zhzJ`41a8N0BD_o~R3u>Y*)}ai)uLnxSswg#x~MW4RIpvL=5u)%-1B7CO3v85;__%V zw4Dzk+kjWg2jQEl8Xn13J9Xl+dt%Poxbe~q4H+~0HOw-WWKqmr(Tq*A@oyl;W)`;^ zxm1!RgLw{5(bv28CK*(ZJG#A#oGXJ^VC2E-9ro85!3V@m`BL3wPS7IJ4Ploxs z|7wBtfE1?ReH$D_Wr&vfF}`MJBnx6bk|{_g~9#a?rUs8`qN}>BW7ND*XNcp z>ao;Q>kISDE7JMXb?Z(Y-LWxO(FQ+f3pg9r3GgePDW#YIayLaSDlnEx$hqhav#$qW z$$8c?)pR^hW@_rrOw2^tpmyaro*^T!wn1c;sCsy>zbMBZttbI?G=ig;UB9+(z1FR& zlB!2kyOAlC)0m^GqwejbtQCE6YVht2bA%U!nh0QCR{_|EFQR@_*LGs-l++0Bf_G^~{C|c8gl)?T_UK)sR+L4L?a|N~+RywKA(MG<5DJ z=E-Ukvy(G@@t}1(_zOUl1$!)P4=$PjtMKT~8K4i~WXF>Ew-dyC;7cXI%15z_ z_cEga=L?=u@t@y6Qp5Qm*^n=%+~z$dYdtZ?SsdR0dFsE?ta2f1g zNp$vPWIx(uYeybdmxWtS+@cVDr9;V2JxF0>?448A_=n}~`KqgC0_6H)E9*RaW%Yvc zLTvKyPiGDV`zlt{=J4jPXKpuaI|v6;MT>(T3q3TqOHw(U%XDeQ!adP zOMdsljrrw&v+|ABc7t2Qy0$i16#a}+Kh^$}myr#VT zbZpuJ=<)4qLUWu*5%j&l08W16ze4Z-P&)7V%zsu^UWyM^G8@cjD}PstgX>8%6FV^5 zrxf_xrFq%4(;CVI&NN7KhJEx7>%N28+(9q z;tU4R{BXH_bs^{XfZtrLJ?jC+xuqzRX7i}=hs$R`0(q7^3PxML7K$Wf+JVd*oUV=8 zUZPud2nJM%|NSkMf6&xJAJG%X^0r%Ve3I5;J6r3=rhM8JLFACnM~=*F!lH5A&#|d9 z0%hClS3)TYCX|lWng;E$HHNdxqu)UM{<)<;`$A2<8BaCOM0rgW+24sL#Rqd|omMI9eS{}WOZ|O~yCB5N zlzix_$5QVUXfVQG`HLn6S5l~&>W{4^M~AUSp5WRlH6N8coqfrw_p#*R5sFo1sn}xX zqZN12ZRJ}@n>%~;*U~ynF40G6$!o4?D6cD-Z8BhquOwi&%D0CwsB-HaE{>tHZ|b&I z&1lRQB6N~^HZ|S&g1!aUQ4xZ_X?dNJ*?Gf8BX(%TTfqku>{+{IO)AYSL@#Q~Y0z1b z?Nkuz#d!7G*MfZANs_%wMGrL6KHOefH-jLtDpdHU$JKOsqtki$bYtkk4F@P3{q-j! z5X&n-uPkB4{x{EhTbBc|oaWvZ-^i`o>9neuq!)7-HiqkH2r!GIc_&07mG8uf-7-B) zU``88mgZ|yD`9f4rhSV66B+Wtb!*iNase)yENj$=j(*eaR$LMK4+sYeF%d6iG3TIkLi0hwQ{FB$ z{K+n!bg#O%&yBXICW$ORtT|QKhnva%=%V>xZ7TEBqBP6QMj!j==%_OGs^V1~6^o6t z6Rv!u1yH;SQ~ZI5whC~2JL4B$x{!(m{m=G6k5IA2%Z*yb>Ku)o%_}3?N$?u?w~Gq6 z#{NAOR=u49+nSX>3Y&nU%L-m|mGeUF8c*4D_)@o^)H0BSkVgf6e3Q*LY#n0PN!=-DB} zkV2~4K92)axb_UNp)vj$$$B5%_p8f&gWeV*(1$*)_BJWEOM1e84dH?9!@+mzY}FACRrqU(7M+j~K+!Zqj^}8*3oQE zh`<`Q?&c#YZ4AT5cE$NGJxgw8$7SKZDGTjo8Zyjp5B*Fi9zz1h8gtR13o-jVXBL}~ zuEiR-r{rLagQ}h(5kn+x-6V1U2!8bpLKoQWdklpywlr1mL6H>4mv4zAYadlM1ZZKg zi}}yY|1{73@NY*$Vnft!&FrZvKTGc67(qdeytCEQ(YW5E*_3A5T{bK#Dx<2Y-piJqii4&-g0}jXn;uFLZk} z*PJg6iI>Iwo>f{0>==;x>}`#WLLhn!^UIpL&`M%4opGAcp~oFc4vxmPM8Su z*XG5umlmyQ+Ir2+?rz1${|<#`O?w>BG?9Y6#teo*9By7{e1G!!$>*A)ZDqrT1z66V z>LPyIjd>{swes*3l>FR(Jqadg`-z5Olt|=X=5xjUCr$e}BIV&ILBv;4j+}E88DwBlObL`y} zAOGAxa3h`=R?s$7_*kaWXtcl+lHjtc28CdcD?&uXYvH+J$u+QvTpJL*JO)K8n;IqH!jlf=~(^iK^12tJ7X)~K0MJ2@rkW3{v1`P zlw_>0o%u4!16R5Q9(>8|C3_Y6bRelS-%J~w2!bmDIFzCg_S^2A5`k`PEHPA5t0X*? zs{Hy#p&aH(q>Hw=_@+c8i{`R!>i0L19;+neFFNbf#C-(evMi>8X$GrkP^R{bnP7)? z3;rS#je0#a!_BBG&O6pGKrM)a2mH%hYo(vcZ;9a zBVBtm83`*L7yRyK%JLloDVYo@RnHF%1mZG8>`57uH=5s{4WVEw4qvVc$WgBFtmzQ+ zw5~h4v56(BE9DG8Jv$H1*`b&8!>Enht$fPQLuvnTy=w zbMKlnxyq1OTy%c_m`(KieqkOqeTl;~Z2z9!-gI4^9a?O(9xgjK5duA{vl0$$`C;1g zA;$A9!I`$m**K7@4f2FnZ$mBkWMclTHc;Gd$Z5TDq~hg z)A&Wvnzh=4!F<3y%=K7_3Ta(<0=B+W!=&3;kt6Y~iA-`8xK~P$qr=VQ7OX99fS9DX zqRRRykq%Z-VQrw)Gg+WxKT{zg9TGx^W!_=Zz1AC-+L6*`*?C4kLNF4T4P~^idxB+3 zvI-vZZG!+iE{byCOAG5k=e;#2s%pg6&Nu&uzg+9-3>Mp7v_kv?ukMmvhF#S@<3k&sw>zs~KIwcTo^tfD2E#@J!=0-Io@`N%WVjxS9O%8HB+$#-k`z*(C|8O%r| zP&x>GmEB<-ZEdQ;o&TnzBRWLTn$5&?;6W!5L>6Y9J7hU^Yp?T($A&kE4JHwHv%)P< zOj$g$x;}7w=s}L19w8BDzisrxu&GvuelUeS@#|gn{Dr+mbY0eIZd@;u)KXoH9wTZebTt zATvZxcYU&rchXNgN+he72Z9tKewEBWc@xo{z|9-;2X8xEmqolm>0{$s01G=v6-Kyn z?C7aV&X&Pz=rr)0!iZHbxfw6>CXjIUpD}42V)xfWR3VbW3}2qD z!wVi)6~GcK<(pa-d{4qoOH#`g&K#JTnM{Jp&IGHZB_fjD6w{PYA$PMc$k}oqoLt*)vlQAU zL`d4{y95(I(6gMEjfz2%xX{l`jdPILOx_yc%aoMkLDdIvPmwW^&y6^-iX@@2y04=8Ebk->tt~@iVy% zL?LdH9K&T%jL+S8&-NNW=Tufb=e-1LR7f^Ek6pQ$JeQs{p4fE-QNry@pGaDnwV&Vo z>;zs57H69_WsBMEnm--&TDi{sITl&qIWb^jI(V|;_%CWScUe@JF%qAhg(92gM7FLF z$G_Ko8oyS5BBr-s0;}% z)7{(x^e>^`e%9T(^Q2(LwL`Zyh&$9qLQUG!U_{m0*uOE#iwa%l)A`5C!uJDbk{l;b zsL)~SOasE%IHU1|+LJOsHP7@--Sarh^mUi{XkRWBhMR0YW;v{goqLsX9x%;5gZ{E6 zIbf=ibtQ<)|JFCXdc4hDn@H!;jl=#E3!l6(sI#SJIO}}OI!T%bi6q?1-NbaoUFX5L zP^Im4SRe--$+jD7a+0mIx*pUlBpkUrsO8^`gETY;7I&V^A*1Jc7QG06DbKz70n}8J z=0wl)Sw9`%$b>m?j%bYdr90|z+TpD>b*pf&U6Zou(6$ZQwyRLWPy0uhtKl<=pYps1 z+3Uh`ouQQ=$Mzm+kr?mB-@ti4J_>iHbBsLvWkG1siv1LP0 z1{YO4DQmsP^YYUs{;k-p5aCDS-Gy#R{fO}I+%?}yy>bfFi^PW=UqH?pD(n-rvc-I@ zJU_rGUs#V&_KU#|W>5!g2l&KmpYpV^#d*G}S7uG_%}YDx_wsFgwG;Z>?Z?D-D^aGe z%_^DcS-k~^uqnQ~Sg&HH<7>}@3$~NFvEvOvXchLsOaHJo>n~yUe#hPu38!_k4Otxn zOUIVw2<{=XC1v;nO<7;9e^sv^Mw_Qs&Iz%&G zfumGDBFEH}oJ>!M9>QLcDIca=FEal!*yJ5%&c0^#ArjXju?ZnLon?B9tet$rG_yqU z8o(GAT02#LvAi z^0_w0p6#1L+OZ=4q=^GL10xasjrIV2{aQ^pW;>~bOlJr)n$&I($|IN$Q8!LSOUh^! z1-tEDjtkk0MBzbNL|P*&YWdPHN_&;>Cic!^a}tGzxGZc$WExR8mu@W$4@FPd4zJN- z&>l6X!UOt!$fKz=XC8)7sm?q~%}SbK{e9QsA%#W^fYwjayKm==W)o*j&CZiMHrh-4 zTF=QqZZd$Q`#`xv^YxAL>GxuGNIdTZqywb51J&V7E+rMvtYj$?+~zwLcifzMGyd)T zhzoafhQ<0zw`xb7elQK1@W|)xUG6va4{_10+k3dZ+BLUNytZ`2d*XyAj_OsyMmc*~ zU6h}*{|nr2!WBVBdJ!0@L3TSXl$o7IT04!95F?0F0;kZVDo^$|F=GLo*cL#zS+)?F zqjfRO$YM9x9RR^t88F05?hKHy@ln4)@I_=5BC|$PwalaoHgLIY>3>6DN=y)h(O)W( zlKhb%SxEc-9&x5LICBQVJkMlg<(~ZxVW5#x2dBnC;dGtCeM2kofhk3Ve@6Z53~`_w z8w9VC$^9J+SZM?Zz}1$?2GRB08{j$MygUJX@J)^-sVN)eZPn`KwMPEeS+dO{a3^Vz+6bG4XS|KU4q{r_0Eo0PUfP4#~eYt zAeqE7y0)Om8V!W&hv@#w|AU{4q{FF-yYBw&mOG!#TIWjyp>B`oqw(3#S=cX(wwy0U z0o_UAyLvuqM@PqDAAOvTejJY3?Av-S@Mdza>AD<_R=Yh9TF%FSGX~-5=^GyI23kO1 zNeP=R9!+`6*^}GbD@O$&+dX1=^F27jv2}K?ktWjG-MyB9!zV`3dG3<_)ip%V-E>nd z($L}IRsBougMu7;2i2jgaZz3s)%MJD6Tiju$OMmKLNjVO;k)v~EoM6)pmrdI>GRvF5KVFQ!n}h@eU7iA(i_%c5|4Vn>G(BsLOsn+fZ*BO2G9XPe%bkf?z6Ru_ae(9L z%NPX6TXAit%Vg4dEY)%)QEcrGE6jUw;jlWq_kVt2ut3+EM1gYWwJ0SeRa(>jaOt$c zbt~`953MlY>DR#C)cD?34(KNPgppo-&E?I}rvvyZJTEc%2_#=OewS24@Ij@GXN zuEBa)#NuooYjWLEu^rA$=XcDm1B&e;V%lGguPiC2y_kh~UTZj>SU>kkJfphg&Qt_b z?s0u_bWE`n7gPWd;ozWl~)2TfQB^7#h?l6hkNL{fT&2WfW`e z`c+o1%AtoPFGtpbVY@Ff-nNjhB=GS`PSY=>qv)F1^_t_rqj^U@`Nh60ng1vBwF1y9 zHN-lnV>Ezov%CdnDn5t#aIxEqM*yP+K$*r06bQSzy24pq+XGRi7R5C*5_}z}%d+Z) z<6fTmy2EqKSemBv5Ia{PDLiGyYWTAP#r$%6kaPdD)bJXQ-O@Tm#(?tHf0%$O*PQ*W zX}7ep%6mIm)LZyUqGy(TkYgI%F!tV1N6(CJ)+;-X5D|rnKs8m2jN2?Yx{yBc`Kt~p zkNKyA1ppbOahW0^YW<~xwZUor(K(V6RjwNdTb?t?GfB82&kO3Eo^@;Ql=~|Zf(V0T z+Ea;j8hr1{6CfgPqI&?yjhm{cUY%h2V~i18s?qf?;NNDvL8&%=lux)$!=m53YAA#O+aHQ4)8Q3@hN z(qn|rSXx-fyRfck*$rXWARdxZLA=XhzTUYWUOC9+4%bOnn76mdKpb5Kjz%opx&?QN z#Sd5Z)i&cuqoP-ADQvodU|-R4j$R@?ZQ-sNMg%@6vNRlo0OzeN53{-Ix1QiGwvu}}!!EkL60B8+XAik-Rva&RA=5-I~w|KwI_P_Ol z{>_ZkanF4!KRJU?8e$n}&EzDS&KG^gTm5{X``Z(gyjIxW=le0m+1{9-lJavPnYFYf zE3A5UJm#DIeQp7#oFBB^MY6gAzu|q|1E*Z0P!Yr-aRUQNhsK@f)%LKdIhfZBZ?df; zV*0EJ9z&bf6O<0;T}Pkt@)Gg_f)7NUf`yUYQ@So4X~rx!f_J~aTkh=%lc9eOOpQ-u z^wL1gvy6BbhoB%ikp6|Jec;^9M?Dl1veTdhGxSAlX|8kj0^}c;ljc62K!mkZAnIc{ zRcXV{WU+bQr>At@^s>?7fbxw4$<`Lnx)Ys6_8|B#6g5IGs*)oJx@VDs3UBL;!K^344? zzG<%Pu4MGgH%svN_m4y=JW`+L*n0W=-{~&nN=NI(Di$`C5K)WwX~K~^n3C@`b-cNj zavslpELad}kdD?&yTQe>+F?O&4lXeCF{qFEqy1cUe64U%Br&U=4}=gOa*|&5-^9_= znx&?sgo3%F2F}WGY(dY%b~J8aWFWWOCn*SuXVqoGpJfgpaxi zLG}!DlV98C#e01LsdQ`F`|V#i<)kT27}aU%*hln zo?wW2aajnTD}SO+%bbple+^$JslMNb4PYMv&)>5>*XTTrB4u(AYu6d;9y3F^f8P(9 zG#IqZsjZ?6hYm!6X(u;~nt(NKZEs%ELMOa@SY_)zGEqLnhct4v0XFA+5)u-kucF?Pv^Cim%mtuFo5C*34XZ~!<&fw69QX>44 zear?{Px$P}jC}T9YU8jh(NMewHfW;mw?z7I7R|38ajAs*Xpe`6lnaWA6ctredVt@y zv;`NhcjMWAYkvl6j^^UxQo?@sjFS@&)FC>+K7ziTd=8TG=$s22Ol)Q4$)~MTJ>XGR zCt_5ygVGa$tn00qS3D2Abax6N61fy&ADaIz7Qjvru47fPo8bBRJ3TccdM@zJ^oacq ztgvz&@l>O_#CC(RJgHgt4(?S3Fw!Smqom`j*YEAhPgFzVlad%*SDd|b;_2m9Q}i9$ z5l&uEU)S-u&;fcdWgE!hh#Xa~AXs+biBJ6`P%Yox%ge}uina?(x?=xxFzZjza47hs zL0$XV<7$5v>_{rZY`37wb1Q(JEVq#ilW!|Jm13T}Jlv~WT8(5a`}w21RnG+eO7G*& z&d%k&rV79GIiq2|T%xD&hlz=3>~q>_U)8}rAsaFN=Ne<){ES+27tMzsNUIlyBfP9z zgSZcrgQs&4h%jU$3zn%8&O8*gmv{x7uHAp~-cNyIoNZ}b2eKn@mU)8Oa~Gz?6%A~i z+V8J=x=b!GU{4u6Cf#Z}Xl3QiHFj!8F`ISff)o=Rhpk?My6GCIDkmRAkM`@53CxJR z_{9&qi2r#M2n?H*!iTD^lP5zB)#x&_@@K<>d620?}G$sN=T2W|J06<(kL; z#I&whxhq4X08eN6u-Hx?0sjVrKZY-iiruj}bLl=>b`!e|=_*i2EGZ1k#d2Hz8Ng$a z3pU71gDWGo*E+r%2y=j^SDzsvEYWYP^qW1QMADR#9#?yH<{%{KbE3lJhGOsP!vY*QD&k#b zAVq5sW(#}qh~8e9L&qZjY!%Kx+4u9~L_0uiK3t9B%ronbv>D5JnC-Pm9{uE{;#m`@ z<`>$>*}qpxVT(Tn9`4(?Hy$MsxWzMG@yYq>0O_b_N{c52O5uT6pWD$BOT{`xJ}mot=5kVqMqcfptUa`c)`h{#C+~VA_o*0Tn*#fPq%o zeK<@+gu{hBU@Ptpqxq0_aAG++v@w`E=we#o_puX)%sjDd?DI?80q@$X(><7W3Wi?~ zwor@BI34tXV9nSOgHXpBg?G+92+Bvqa2L!i=!xTurCZ|Kj+rpEbQs0p2$sc<`vk{? zlqZWwqk$+`6%GqRmm}24@XQH-J1+N0@;XK4tPpuc9PI9Bi;fYxX#-arVEzw^;%Jm_ zFeHA3;!>Tv4JZA)<7J; zR?p|ovBDJ?M(vG$vN>FJ=7h$rm66rR4MGzFVmPdHgy=N7ePdGv77WyIQ2E*+9E7JEoD6x7aRvqXRLDJm~_}_u#rsXYOz6AdH^(w$V z+c(-9pKTnJwR^y8j88i z_wi$>dASnMwZ3^by6w=ZS7-1$a!mfI$ACO`bB|S7{0>G65eF&NMyS)Gb1J<~tTH_o zz07uq`C8&8!`1IOb37O!t#Tvw$zwG*SxLIXD?P7Fli#n#Dkmj2{%^7in959ybwcU_ zT?qyykP(aJ=Xq|CG~f~B0A@1}BO0;nT|ou$vs>3X>)F2Y*@PS6gq5|ZYcv2M_f;rt z@D%p2+U`VE(Fo8Tvkdq^>NgL8v;6=x>IyK@@E8RbmzKUlv3u~34Dw%3kKJTZ%+T|Z zF;igpMpFTniip&m=N-aN6I`OlxDj1BBeVdjBqardo){S`!5m9|&`%?L+((}#;!|4_ z20_QbkkFL=ir*;wAJUcva|p~_Jgk?1Ju~E;10I)e-W%%)xPPh0yp&rS+HAwSdn6G7 zP(ps8(_=xyR7w*gsF}=8eE(AnhaeH2S&3)by>kd85&AJai;5yKXb>=9z*AA9Dfn?g zZm2$U!lQHV`94?^dT%Iv_61xEE&hwk05h3@6K$jWUL*kHqyRxmwSBlL5t)A!MkDX2 zOyv#AcdKMzlzh(M?I@%MA3?cSp@|9xU-aH(Cr?=B^Gz|#{txGbgZK)pFI=vh%7~s1 zkSx}?WyNUxn%g__= z94bVZpp^O#IwP89s((X=M^r#@0<3&Io{?B7y#IC(H&`Ef)iwdZL5AEJhL>7l+TwGb z^6Q5-r!C(3&rha6Pyz}aphLMcW~tfPv0uM3VUYIVGAkQc!4}A^Gfnq4sJmkNo!#$` ziUmjYD(LsdQe}vBR^E=@21Y?18lnI*|n1~y+EWgm1X7{F?5!vNhJ z&|9PS#n-&&Wtq~@?$|0y%^zCB|7vM)rIz{Xo(2uPzXyo<0KIhg_L_sYn5w%`+pZtB zmktflTZ6waNCWusHTX5c<3_-43G8=>Mi|h^69SrZ%s?YW{qX?cF!NH?)wBO0Z3gf# zluD%3)Unhe-s^FtYc6hXFB&}#9KZ`514ydY04`|`E(vXkb)DgM)}txXHufV1>8G+9 z)_`N2k%bST(kw&FE8?|Unn0+xS!jH@->^lkV6Z9V;7W0MGW(4JEctG30I33TWYu!V zEGgO%uFTAU$OU`?;?0NljU|+vzY-CM8(R||`>D?fZ#!#vVEAQT@jJwjAxA!Q2bsPb zKd7Y^nsL1B_4fVg~N9;-|rj!|HPYDU6 ztuOPaK54SSp%+~vdf=jYNp|2wZf@@IsHj2J=xiRK(*vD_QA{xX)62whn@&0OS?Ii; z)Zj?CVOsCBRdLZhy+x4WNXq;ox9zcqSwinSKnq(0;QzRQ!DiHi@nR_GME-%?J#a6t zof@lr)FCC(*Qa$Kf|$V)vl`8gfy3=UL&_synd}4!KN1LXD*(>co;fjX>^>6IMORR$ z(9%iC!fz_c6#ja@3xmL308*8u)iD4S5w?j?o^oIuMD&VHQHNC7&GI0++ByMFjsw&g z``fo~pe1G~3!=U1IJdLkbWmGMNzuHait54}py?05Dls09tH57zgaCmAVo)fml9CeP zZW(Arp>xUn^?QwZZiOG{DYrLQ^mKGcq=s(zh^!q=BX%oR^(7G)29+So2tU^jsKitu zu5G#7p0On(KgVIdLO#x05u_*pgIlOI3?Rmf5Cr;~cfS=0LUMq;hm7BW67+i+3Ijt8 zNYmCJ|4p=qIE(@W`J`^?0|a5Ux`)l?V%1N`O&S5Yv6(1{s5xs>3ua1Ez76c!pjSYT zlJ=JNqGiWejBcrnO)<3iYB@_)(Uy?_TwwFrc9?TT{VmLC2VUyO`)-oT&m*(2A^~oX zMaM^p8>~K-l#=S!gHT?>!2R?~nyjTYF#X3an?&jPWf3c#1OIKUd#nn~adw!3JkT4|69*wR^ z^A$tUhRIlY20kf%Y=Ga@VVvX@rDghLE_on_X;UV|L7v7T^B^8o7=@ z8|0vpBohk|zTzz7*bKYpyzOR4 z-x~dkW(c+@>hov{!t9-Wn~#_(Ui5IwbKu`J2f)B{J2&i@T~O~`X16a8fRAs~4!7iD zDVbLVJP%EvaG*to0$^=81-!b8b0;P<3WWf_AsoatJ!o-nt)n<5Knj+dhzH&fHEq8! z!dD6YLFaSh;#uzUii470%I{V`*aZ**)%*1tZ-pj3XT?O&80n0ROcVi`Qd(b&SBl{MN-0bJNEt zsTq<5(w<+7|J_ZUo3d`TO?-4yK2{aTwqR)&19|tWMj<9bXhQUkrSVusx@nr?1P1+{ z0QYs?&YfoG~h8%JvQ+`m8FUVge7f1zu>JKl z{%=n+2>VCCO4vWsYOY|UgWb$6dzes{#wn=LX=23PFWnd%l6!p<#n$C!BzsoOyRgs`xC8HR&sUEd%I`*FUj6VF9|u` zr-CrYSBj8w3cCmaChU3`8?shVO34R`BW>5~n0adfeG{^9t*iMoE#aZRc1u595XV}8 zW7q2I5PdpUtOB5g)Cq*{Ek^Cf_H0dk8fLSz4$2>jEWh1rHvwQt^|miK_fnxe*M4kB z5}s#y9_Nd55={H+YnC1Yf*=54FYR}PaQKRUfnjpL+IAY3v-KjctHuq52-3(+I6a`# z#AQAk67mEJ3{Qwj0I7$B!+?pKmD!D`L5|uB89}Oau?-$Viq#HXcrDODrHLAk=hwZW z3xH`8=uwrM+wwkxGas>&GbVEL2+BmWnmjVxdAG?6l;*q0H>B^7RqqKwrUW1auC&ho zs8mkPtAMT*k-qapahgjz%B&7|rRO`=r6Gn_ZkIz)1U82#cO_W>lnAuYgdsMS@qDGk#9C2c%&iBBwnW6>L3gaf(1NYH zC?Aq#UMJLZjoLOJ#4n8mASTBH*VZN_+` z7?SI2z_4jApCpga4euq7bC5jqL9;W@Ql|gv16P$+Apiz!Rna;Z)1nI!k|Qyne*3B+ zL;!hRS;0Jx^K=|wm-$zK*8<$hbNLQve@CFtbim}e(sFPWXn)BnEZ7vapt;u8F|30+ z9g%x^@IR+~M17;E6gMQ3@hcf19gPX_xS$gpe=E}!7ok4k3t=vTM95;k2S4)2-2Q!} z`4w;73W*su{#B7Vz3a3*Mqx@8v7QP5A5l_JXa}97%cmKQ8R~DC0)e>4WZWuTS!Fop z3YB~Wh1)^R8Is%T80aC|)?#WzGR*y85qy5}mTu1lD1!Wpo@+S5pgpG^v-l3Ejg=Ji8$!T zKs4DWF~3Fy4VvvBe>m>#nQZs0Gn6qymX9`bEwd_TQj?=3(19gu@&^Su><8Tu*%5qft8@lB)Z@2_!nXT5aVY`@eZim^#1;JLwi zW&|})2K)CI7#IZfiBk9o8;LC*scDp!pBde;e{$78>}S zJi;sw!|`mf(W9sSmfkRvnG`GB<{WyzRzWuC<#r?DLk;`@x*ia8x!)5Kiseehz2V23 zT5QK_mKqgVNcT)-^Uof0U;i6K{}*!vnEB0-EY{q1fo@eGz+0dr_0EgjLog0HHUg$M zDDsO)>l<{>>4;8QdQ3y`A@^Fp1`l{ppdBiQK3U(`5o+9(Z8q0$oeV^Y?ivNs9}NaKneuaH8)X2VFW=Vb*)sD^*s3(+z7vGa_24cb8;D$IrFAhR%4Y7vUPinNaNRO#e z;Q!>b-mnvfU>4F@(oM73*CB?}84M@TBIy&WRlbN)fxm3f4T!46_Cqm4j7O4k-H$Rh z2eccxe)P(jJ2s+*fQGC42@rtifM#`15c#_Yd;l(!zP@I3eNT)~(1j}gQjqJ6xHp9+ z3#Qwmll&P%XcEs5GJa4k+2dS;!GrtfYJ{OJPA3fDTGgm%;`_3$b^PJRi=H|A zf3JnUXTGTuo~U$*o_QMwiUUarfFkdMc-gU$YRsXPg_8=(*^1FrkSV=24VBiht%3PQ z`OW&Zd3U(~K!xefoWuRz15CEmxXs8)K;RS5@(?Iwia(V=cL3c;&SXo`WE3?iCPw_^ ziDiYEJ|^G(lsicFNePnBZVna}Ob|K%;dUa>cGqBL;k6nPFILGK1M>9FjM=ES(PIie zyHA2A`}J$Mw!;_&N6F%O`0r(3A9*_~?at{y{WwV+=kgO9K+Z{e47Ld-|8kM4<**n+5Ac)qe?w0KBZo-!Un(w+kPx_O>UB;}|#` zXDelpBuPWMqe!Dz|MpNgCSjPog*uB1g`9{NsbsNqcpr6>(!Y4|OYh2%gh z!vNB#)KJnQU4k@7H%JUH(skZ(?|sfb*ZHx}?p){GcakTjwSb&LkJDj) zhsulEAkeI6Lx~epJ#2)JQwPU)%VZRbM8B~>v51XWN92cRHnEKqJp9A-0>;w2)W&kd zx~J>SIhmPJK+6?3+&g#8)liEau;UVi%i>F}3-M-@Wr3yzIYB%-SZsaWmIPk@-dVy9 zf65JNiVH!h^Zuv&8K~%|nt=#!R~h{OFd~O351x_M${2y(H(9TbbtN_JSrm>~n)xZ#*q;?hmwFMXl$@6kn$d3E$YyR(ChMZm2Zkf&WHe z60#88Ry04_oF&5x_nnSCqT8tW-_S^zB!Ac@Qg#D1*Jp!jh&51&3m-h+4RU#l9 z00Dqc1zWt=2P6_b>3~r0qY-G)lupfS;|l}`eee5nip!a2J!>|c%HF- ze7pjc0(ycApu3kFw{reXSb*Uw4>UdeWh+H##*dE*>;i+3WU(@irUD-qfs{wnhdi5~%6=ODgwbl9aLIwQiZ5Qgx{(v`;raA`r zHjMIGAZrXh3IVT|jn{U2nB=6Stb?~2bh95yyB^WtLS2~?axm<3Sij~o%D5mh>MR2; zqRRUptEhnqkl1Z98O#m+MI~zW>BW87nww!~mn4peSe(xF4a~j)ms@@CfF=S|2&od; zi=wvzrVE0my&MKQ+)@-WSKSjysIwvHSF!fHt09a{5?+OPbVR6 zw!mD-po&UpLD#>m!;z1O#E?x(6&fuxByTyIqZl%7p8IWp+*Mt$t9E~CQ7GP^ah*S! zY3=#;#fR%a9L{8Exn;Ips56t8-zor3OdKAb+4=Ko7GVZ z!HVv*+t;z;l%%)K0{h7vE*;6~&T!w5aH19`7Ega?B zJ1qZ6l-9O2-F#v?{>H%9FqU88kb+Kx7eC$)_Q)fM1n9su%QbxaO$=1kX(A>H5ZI-Lb8Rs+!f**H36nu5D0_XC)vGnTq_Cl$4sodS; z0qe=pyK03#J_Zr54y@}s7yMdGkX^tG%=Oex9SpvK`LnWa8!y`@NXzj!+v~XBE=NXF zGSD-l%K8}w3W>iedxoTGqJpCqA_F=JhT(Q)EvfCRBR&>~$F7Cpo5VlA6utuf3w&UjBbI}PfaJoO(gCdp@fpMY~l2YNY%V6fj;^^;G zF_fH;{dMgSY$6VvZbD^y^yLAOm}MO_meU8;nHv*mA(THXLQ)iYO5;I*#HCLSn#s^y zNNw4hU3~D9lNq0PAINDT)RwEK1O9La+RDampPsl&tp;|ETA0Q|&_sl;Ep~$maq5SB4S>Aq38{i@tfLpV%S^L!lMYht8B~iC6{Tn%c zj8TBjT-_S-wn+qR{$o=;wI)Gcf8vI9c{*>x!wrYA*W*b^flb8bN0%>tjuu(raxJ9> zJ$!bBJ$^g;`3QMdq9US~8;&-2N14l$Q59}vw?x@0tdRz3-Ow%vO#!ng)i{(6>Y*&Rt^-enx z!QOhw9WTcYEQ#Am274hS;ydu8bSA|zf8ZWu0sDxz)YHjeQJd!{}E8^bOSp zLOx3c+)r~}k=IP^^@LWcclWvpn|i)Y#W6r$)jr_Q-DP4@^zLLBz2GQ69nq#n(AtD` z7so0CYZppMXk+Q81-k<{DGD?v$H>gfTCSurc-M}F57fucGr{&B5QDi248?gzV>$o1 zw0fA+6ar5BB>#+iRfgYrfn4Zl>|IHoUdaRg^XrR9&R@GxPN{AcW@NF@2G-JMEWO51d@mg zH~$(5l%i_Sf@yi&qvz8CE+dWaG>g;(!^l z=PoQzWUH5RjX!Mti+DSKcwisdEaq^cZn@(w1NH}pSp3@$b*>Z&R8lEaiFzv0GfX-O zit}9yFos;dXb?~-Cl6;Sdd0V0oy1pncHz~f?@O#IA9eWd&RL3wT8g^Bx~y~9y|VUf zWBp4%XenwmVQvCc$$kfGJ!4lW4S$(G?YxuzgJ=5Y<#OlO0CrSOmvPH^&$l#fe-`g| zI@-s*29IX`(G{<&_&TyCHni5Z3rhIUH__yGd&wBw-hXzriMj*9ixjnp1NEoV=?kK{ z3y0-Zdg+v6@RSOmrAe-DoiWLkyZXz%y(IjA*JPS##AE@@;cJMgq6&-g)dua~+xL+% zbClO>Sl2D?&BI^8E*5COuvxZ;%ciJAZ-g0rIs-qHpzgm1T9eeu)n}0osTQ1f{;jmx zGPhkDLIQl7^#X@3X96x4wmL9tMGh%wt8oZ?Km@X!6Ti8(i=LHGB_b>S4fKlnnlNky zQC;3@L5+IhU-hicBk=Zx?b8x!b5U14Ii9$mLxS?dbDiFtFdlIDnrCx)^@Tk zjC2tH{0gQGIEX3MygN@-mqk_o4o~d_IvG0#^JL~lQ+$FS;Aw3t5MH8=sdHtAOKaR!53qgtZW~gtxRIEUi zy!vzLR)}OtZJz(~rG%s-xfH+dGMv*>i7Bm>e0C}x6eLvsGA$46W>Ww}NsA=R7rnQr zL&C#f+eIsQcnBk94j?hm=H)3o3W|V2?XUT6v1^@P;pSmR2iEzMMLUr^BF0ayd?=SD zplb^CSt2Eg=Qe=NB$G#c}hmjEt_De`eN($~zVl4m)=<~CRtY2(k@1m$v^Gf9ytB^*MNPtEi`k-*5=M4*<+u8Pvx$h05AQ{o zaGx%P&jBVj7|^f=udx-ln+t-cy~YZa8_rjw@eSr=tvRYZu@hQm(;iP>25FVpKdc_A zpXd5?;4Qs2tW@bilFA%vI@}{Tw2&ND7nuPDh~Y8NHL<=YfNhQ0@MRs|q#-61+& zWbmT{p+?@?x>y2A)C?vL1;{8tnup+B>Q1D*hZUr2(y`S3z~aKeV41MJ@I=~JSfe7R z3-MRiCPGqEsOo7ek#0$k>5KP*!X=>=iYlqfe1Q zw6e+rS~?(Sy6UElqZMg=i9kH&*ScQtZlk7FH>0e2yVk~>=5i;E_jA-O(=9+@{_gpU6&LpR^OquwoH86W5D(rP=PGXq; ztmf;%is8$(ZhV8&AsfAwp$F3f|HR3NoA0&f`UCGr6-W)007;V(k&!=;nl*q6qoiTK z*dsv9oa%E4>mjm6Wnl@L(2pVs*Fcf<0@|p&biBfz^)NINzz66>Gov35W?*Zh(b>4P zuofye4T}>#tKx|5Q2U(d1a8ENvi>GvPZb8H{XTB2Trn$!fhKVxfe~hgW=aB)Aq{2C zpsDv;_Mus=2dYVoiQ$hz!o44vp$&U@PVse2e{y9PEF}sLOIa&qRI|4n9eKvf`!c5- z^rtja7Rw6f2lh*CMqL$tHkNEi3y0ok%l4ElhMv3p4i`o3-*JtO8I4-j;Rl(T{5qqbh=_g@2kzDJX+{oCO*H-x zh71S?&)vn)^Y{AfdxE;lPqll;pqb|aH7rw`$>F4VeYi(-)4R{(l)Vo>xmyBc`-8^f zd`}b~O$|<$VhCBFpt)_xSlUqaBu}3T-onlg-5>N^=lV=&uLEBOT^R9l!MU)3fb-d0 zkLuhtmW=N{7+)dBkMa#bRS(UR4LAS0JzA=f7gSe*AGHQTpkRJC?~#NvgV#TnVNy@r z%51}FcJxwf@Stz`-7T22IRpNZ<}PR?3$oZ|i3nq+XIh9b&OBisY$o`aX)5K}|K5O= zo!pqw)nKIvHbNL)*h03~7bnb))xW5}Cm&Ntb#+KyAm%_KsVt z35Oxy0_F>O{6+gqgyAGdK{5<$Ex#jbpXMDFpiZ$32jhs>v3VNk*tnZNYn7;od6x2j zbQ}WD=PxtFX+Zpvx!wR6deSialJ6Nca!Ay2v6=M>gBr`w8A;>Ji0S}Gpwf#{e{|#oI81|iAo)!t;(@q> zZMIQ!y+=MVvpe!{vRV48H!f?Z5lQ)qU!9lK5f8FPCLG!q_xay2c*2FfwCd>vInf&r z=?GW){$^TAeJfx{{h%%*qr~jut?<4jLNHz~S-Ge{A|fVER$=ymbjr9!#jAJPoRq;| ztn#TK1YbZT88PtU-&?6djiNFUj#@;<_GP2ZjDK`+2MT{H21z(g6{|I%Ra~ZxJdvZ1 zDFQ6yPC7$p&@r5hX>JWpNe8SQWV_2^+g1qoq-C)`X4|o4`Z2U0=BgPp7Us;`6HJsZ z9_wf7k@|nwWuPyX>QL2t-gxe%9l;CsqCm3|C-e!$#%lghUJTi>*Jje{68C8Zfte93F~_zoN3esqrY@CnRAqIoO!+Fu%A*%f9<$H_DnVPubDPHGjI&FoAhS)+!safnNXBJYJGkqFxy zFU0sxWR1n;?^2uk4X!5lrN2YDL{JeUo|*}nCMQPoFCLDkJ$PWYGr5xDS!{};CwuST z*?zkz#P~Op3OP&_6=m7618Su?7)fK~?uznaP|Hv&M!%YTDM43hi*JO0IT`84IDO0X zdd{p6=ds#ZX?C%@69h-L{{Y zGOQ}1;~vIg=#nncMQ2&D&d*SRBK>eJwmTBR$$-U@P8kJ zGXTMOCYC?y<2s8``;f?hF`Y-ohs9##91B#s>TGbw1@=r}NIG8mZ8rw(vg0?G@brlWZ?G0fmBHS_*1&kSTmu zU3>3M(7#i=73XXQg*;(qoGYaIZs|Xg>iyuX_-YE0?t4~POwY|oI7*PGz@|mu$kkT` z^*tsxmy&gjIZ0286n#lzo)IJ3L$(srFObSIw3I<)H6>38i;=EZ!m49P?ziAlNIECy z2tF-;nPll(>NI=%_Yhy+M$KHqMPbp*$&5{*r=Ji!jzHn>23MoNaG zpbf37z&Mi?#F}o7sBmxFwQA-fGOKKf*Yy-)+3=8$V1*xUW^Yr`V5b_$j%y|RN@F-H zrwW>JxTdrnDE;sfd^eCb+t^k6L;|q`ZDc!?SKd zll61kj}h6*L_!xY{Pe%SIPM-!790CIMIw?nD>}cM=F-#IB8e)NPuH#Z*b#@T$ZBGY0PIE|HVdE9|9Rn z<93$}9Nh$aW={RU?1o$zmant@r`&e&felzauBG`q+(=*1T<9bR+&EV<66mEgtN$~e1EefgTxw{)fv?ccKk z1X0T2N`7)KCjU{ep>+1;B~?w8xDciC)lf;H8dI?~Jv+DR=~@{XLqoA3!uP$r>fXDS z%G3I5D@1N+tBb*_>BxXg_^4T4k0=7O+9vv9gthC= z$g}k2>@-vn16}+5erB@WWBI82y)?D8x7RC;T1vC1GwMWU1Zp+0bL@q>G@6Zk8aFsg z)uB<@s$lx~R2w8lKm~{6%oR!P-s|#!44L0_0^3nSOO4Q+{VXog1$)GP7VA}H^weIB z?XGZgr9P&Z0!mHn?7%F7dBZEwihHm`tk}u>PKryOT~~7@PxrWwm6dMTgmm+@;+cIi zfx>Wa-;L<&hi6G}Xm=-*xU_e=rs;*?!;w2jv=L)o9@82%ktb)cH1ZABq08ou|8rkN zWhZr2h*qHu^$m0s_G>viUg7o7VDa7G}KlEtpke{<<|+Wt1|5+ zR!}bZ_pUuI@O0%BgRdFw|5-hXrnnT=|8HNf-aXuSC|2C9G+LnXiV4K0d=3`4ydvZ> z_ms9P0VD8LcYV#gx#}Q-Z-xr<>YoiMxZkEoDs2aWH!%{4||T<)%?%A z*?%^G|6#QWR<iwmslD3P%0`MQupo<(*X1IFqN#G|CfgcMHo0ZKh zC#ltYl{g8Pz;dIc@g|@W!wA%$Di7H^Q|A5@Zn>$kfO}H8x=QuA4GwxUB$+KB36GbEl?cJM`oq zx=%_!V@h-mMA<>elOLpaVAEZo&n_4Gfg0)ubYp!W%yK;>^qGEkz8w7N1E4h}fVH*p zK{x|H|Kpd>ZUh+^7=Wj_^CXqJruY7y&D+n=KkH>R!yOAobU(2YG6MCw+auHG0VObO$nT65l{@{A_wi{_Go-X1 zkyv_XDDva70*Uxn_)iO{IgkTIWQac+}3dU+tP zEDoNi{Rp`F(*d-r{h9(oE5qPjI#m&MlG`_mqk_L zI8|T1OnY7jnq@n`ThW8<1<$3FdML8T2CsV07veOCA;^cbgN2VJz#&0|l;I_I=TAY~ z$_VVWfObx_UlZm0_T%abe0&h$4;l*PEvh(yb&y8$x_%j8mF?W$<{3~P%-_p(iOb&5 z;OIDQ1nZ#uQw66E0ML{CVFb?*!1;r`sPjP}EG<9;cnJi_?pu7gn7b^ z?H5}N-dnmriP48QL66@FFcN2=z7Lx2f}b|8gX+Y7jKq&Y5^p4O`~w=!i(tElcvKOz ze&;Bp#$NPDm$djngX~mu;KYP>B#G-RkM zlxqVBwyXkj`RpcG^M(E4I51dMvfr~5~8JTS&TwFuVz)*E@ zzyg+^X$4@^889G~7+dVTe^G9HJhJ5n$a!O}!~RxJLVyOJApL8`TJ0ZVPgs`p$_+Oh zfXUwz9Qo>a0@+5MVg|OQ>^Rs&E4Y?U;=o1T3{08u3Zv#0u$YXi)5YRT;0rxfRZ=?4 z#7gi4fWh$scd3=$z2b!4?{~LZCc9>&_HkksA%UhrLcSiV#a60hgp~lksHk=R*&G1w z%@=P(-61eeVFYp~2Ty@*d!;Z*J?Jw=pQng4DNA`;nu(vmYQWfwkvw70KoL%}BztBYibbpeROE}{mhtkDJT}JwM^!xbyoUuZbEV7|Zoq~3 zYHGB)Zm=2f|H_NAWh*Qo1twrqD#^cH>vDhLZwD!Q{cKh2*!R{jvvEA* zS|r)G$)yJLUGFdnA(fukK0O8rSG_1!dA(N-@!!nNMxp{i2%VJ?I2iTqZ)k137eofVyY`el9nDF%e?ld|q zDlR?x@hxo@GxUIq#LpdGMql;phXfHNgOvzf;&AlnWx8JLku+Qyf)1o|>VDQ#;xG{N}Vo zlk0PgIV^!t+ktl2+Iw+}N|FuUpDW*SXR|4*MMy$!XQ+ORAdTC*AG2ZS*%kJNSHL$` zcRNNMf>($z6vL<=t-2Cw&aPomdgc$Tm_~@PtInW!qr;2inn#~zj*7lnpjU?jS2)t* zEcsUyr<2<(^r`0om$w;rs^sJhWuj4q?GM;JQ+lPuJK(`{?k3h-1{}w?+p*aeuzpcG zShQq4<19Ora?WLY(E>d{(uv)D4~7g>SOoxHJ^0w6F@m~yn-3=W(dB){($Fp>PbQY+wnY41G_Zl8Z98bX)`&{w+lxx{<|Y{c`aL4@6(; z2*tL_sH63ma8{*<0J_Kl3V&kXB-8U zlR_FvIdxp!dOBwm{d9A8k-TaO301j>A-rs+O6z_!Dv1}-^ZF$hulwba&D4VqAc!D> zdHjnGXX7__9j$HlAV63?&T~7aa=bk>vbIX~Uca%tok59yA?!0{+kd=>p#G$@#gZoZ zUlq$g*V%t8f%QMvGqU(ZMP!F3vsGrOENbZqv=W)4o)wLo6y$|vfG3s){_!Z3hwE-K zYGJ146J82A@m#8EU1bMJOfZ`T_`sT4poF*%opY2SQ*<<%JK$#@j z29vpj9TAhmf?Qa{Qt%*MEWrC-BWG%4iQ-M3bpi^b)bs3^x5vxD z_?wD;X8N3A9_G>zc}+a997#SAY7d?jMk8{`45}B!AWA_&=85m$QN`*Jz^-tZ^@@@% zf+rNaiyo%zD_nAZH1On13K)-RSprc%FgyS$ITAFZpgvHdQtikfzs?&>7APN&(#C#; z47$wDN4xi6*2-Q}e6(DdfB{Mq{v({+?Fm><N2)MARd>Z{G z2TodvLIy~(05jhZP(EOT`TUm#S}}SXP%V_VVug{+0`{1fFrp1uleZ_ok|OP>B=lQE zYZ7h}B;4{?3|q7{D^R<=uGQ2X2+@Xq0rEOYcQ!ZikXnKIha`P>&3Q6R*!#{tc&)|8 zUDMU%v|&AFYrYLEnst3KKBJY?NjlRQ>fl0D4T!8kKC$mqXB$+(Z#Jnu07R(HJz?cY zl-CG2y{$~Z306R+6oAV6U#<&S;^F_Nrhw_nf`gUTf`%eEv*{gy;?t1_lPnQ)PKA3=B*J_!B^Y2mWVP z8X5uq!gSYClEWzJzqbK?z_F24m&L#+i-%lV;DVnCU6c*nF)(hmq5oiZy~=-qf$?hY zsl2StYtx-H+#ubN(XN|eDPj`l9Qa$_{Bfeyia!-pzw<1|+GMtOq1(RSEu(wdFrF%? zJpZtJFLx^`=hI+waCX$%wnvDTzr?6#oU)FsFa*kw6Ji` zy`;4H+SjS^cy#l3!TUPzy%L6izpZnqhcPZ?#&B1h;&ZcrGX;jg%QAZ3btb8^<@cM@ zwG|>0FDR{FzC1UgyJ3ZC-<FVg%p3ZoWDbScKb7?PStQ1$z4yp1rX4mgE8JX039jDw0 z(`5L`MvKn_L(1rz`s9QW(`DU#)u1_M>Q_8jX}83sWvpu!cvV$Wzx!ycS-|J;#eLUy z^7FH`jH~8k$}0C?Qey^0MS8_U!ehqY{B~=*cuD`BHs2KYLhFAvD%~S}w9a^SeX+Ou zXDCP2bJ8wvVUubr|kdf(#_ zeSL{I>|0_od(AgZHwBwD^l$cMZ?s3Gjop5*88*GCbw9nDySd7k4Y+U$EIvBy<*UD< z6}JCi6u-sC#-<=T?Gh{@9e43wLt4|vr*Bc_sZLA}y!P3tT}z*IuHW%E=%A_J zDDm8CWHbEkm}*2L6IyON$b6bk6xWlDK>XB|iJ01+ zs7Sk;IA<+&^+*_-^sgzR=~L3nzF!egIf+-Zk{q8}=2$}BthKzw_MG!S<>cpgO{3aN zO}AyHh!};|Z!gOK?VvI9XeQmJ*{#QjgSZm4JX#SGSNg(W9MF2b@9jO~nIbWoIrPE^ z=bd}lfcN&e=GFPJ`xwqRM^mtS$J|`N#g4Oh7VbTkt%+MTP?!_J-sJq>Gl_ns=VV0v zHpsctxxi*{nMMTPCh?-w883KdYhWM?&2lb=+08j z9sGa%TlZ$%dUaJX;DNDd7R8E?H-r=XxP z?rpa2O}-=eGRCmdcELF0EtSkl7;I&EIbSKB{@P5}z(hw!=jVq^R4L(#@s(q6vlfwEYU%o)iu1eHysNL*BANjE0x63chjWUhAFK$s4SY)})5au9r z=h~IzUBL@QrtZZ-B?eEFOsJZ|)wKJsS|=7;~&`#jg}o-vT_6JIgp(BB~+oQK6or1~#>SF8?mYOK?a2=|8}A zF>c+v+A_O2Owmijmyc=ELd^a7^?2@nSLfYV+qBxqf`};83|yV>>^ZesUZdQ2q5u_@l2+ z)zyzvdJKYL^p&$^=13lU%6<&vj2b!eCJe)k%54Wj&EvN{^qL(#wv&|wMv7J#UgH+{ zr}Zt;e^PsdFjRxAmiFv!yENG^fq3cO?EaI#s|HWmzg4&QApOnZkCBV+J?F|n#a-jE z&L}GG!cyVgCm|VE7IRy0JQAq9@f+D-cqb%F@f!;gRYQGS{%GI{=?I8ZTgmthXRDug zFUv_I9-Rt}L4*8gic;O%52XJ56zt!bLKp}JLRcpGTcfZ=W<0dlMB0)n*(0c~cqHeg z{7yW2ZDXzM7UZ&p19VVp^#;7Fe z7GzAEg{7@F2pgFxMpLt4AG{OnpiV}x1}Sn?Cod%F=Yy)9C&R-qnSY75EfO~cU-|4c zo*F-8_-;#xY^js`={4(PW7CJ=gV|SRxh_1X8(b_VOvX(T4K*j?ddb!Q z>HhMO1bK(vXVrwAjo$gc$V!)+0W7n-N(}y$lxOqVEFMWxeTH75~r%O5AkTo5$hzqTF# zgdoA4kx4V{2YU~5s5y*?TfXBK>k`YXEPsg$eLS56+mOFwDP<8`G9iW$5bZ}(mW65F zPR$N;#VUSnxaM)9Jve~s!ph2sG!GIs>d~?H$Qmx}k}E29BcM5VM1~M_m2BK$O(f?3 zhI|EMs9|#O%C6WBp?sFF8$pW^OQ1D4vYKd2iI8DFCgXav$Jc!6X5%>+$pC}ZkYv1G zjNH7+a?2iJcvC{BMM^;39J^H@BIX6BBD-h0Q6$G0|M>cKVDw1qof(@9e`A=093}zv zV)OSon3>DoAbtoNN_>9W>M6@@Sib{GnDOCC6nBY>#WgH=TJVEQD;G;m@HJ<@)aZk` z@Dcftxjxak?Gj894g~a$wh%qRNz0`Co7au=aL9C%RatTIt0?#WvVjcic4`q9v0DqR zHjcN8M?I_FmDX)?jSc0o-6K#me>`Az#@igfjH&;2UX+!*r4B_Lgk(T@xFtQi+0{epcG-XluzKvqaxq=a;aqAq;8qw*4P=}stoUTgtw=2B?uFhnVCH@06-L7Tv#^Lj{ zf1mZUt+Ca3kH=Z9d>oHkT96n|_6t_jROc3sm|m6$YF_cJxF4vRNir7a(B~ExZ&fl; zv*?Swf2!&fOV3jGuvI`WcYbWRDm%ePTwKblx~w!2!a*^BIqZ=W^#&!$DZI8jD

    Q-{ z!d#4n99J%Tf{nS8^`!`jCF|%9I{6?tQ7q4j@QxQ3<2XLe_5Wgf16HK zG4E>)bReSs_J^*zO)P#=&TR{eJ1#;Due0<0Jh_S*HDM>y$XbJfV90Yyc2mJGQl^YC zX*T&Ub7NlzU8G@7v--wWU!-xRAH>HL8&8!{I(Cddb~9EybSLMBE3o4!&c1&eV>VXG~pmgYgZnpWkL@@kYtV}*#7bRgplk!x0YF3nwA;sk5s-`?WQ zsTz95$mN+ujq*YX75j!4neu3ve#>BK;}D(FvkX6d(35}cqP2@&{xXf=dK_}5!~DjJ z-FoO5n@9@;)f+^;I2h7dOB@@#+ z-$#c`rLk6SEm35D?YN?YyqhFCC7n36^X!65?+L+w4AX8TxZDU$*R$%dvj^=aO>TPIS(>esS%w12vX%%d(3bYn7u)`JzsZSp` zZwRlMMCrZ${(66Uzo^A&3Rr&7JvCS8`(q9tQT}K?LQ09K z!;Owg%VgjZr$2$!JSH;*2V{Y{?3SKDENS9==QndEW%(%P$4XI3O$}G@U?quveVZrle%Y#&An`k=j9-|8%&-IPCwCR4BCCn| zBb>6%0z_H`Vravtg-1gNAC8|nfhv}mB`Oo%?%(EdRa5S2FvQpDmU+l(gjpd$Nfq{a zEkTLi)mdg~ukDP@LH_3Y%7o(8ODA?!(h|LI3;f`-9>9AJ!|pn}ytltzdwkDhS{(t&JAMG{#DYP*Z zxszN&jX0>#UoUuNW3Tu2Sd-RM+t73{lMR_Til;X;<2|>-Q)uK|tME(mPfSVUiQ$;$ zvw8ABjY0vuSwX2QQ1cdoYGBTZRNu_M%7{S*ht*O^y5FIsHrKa4fko+25%D_WW-st& zE93wL;q%bO#htQPNq83f&h9%4%>zLJ#(Xt4oS2KndNQ4pSM3qxz8g6y#xfASAD~Vw za9!%Gbqe0IGW@z#Qs195Ks0|*_M%_v)L3+dEL1Yn0VUAsR?e{fC&etlz{x~l_YWwz zy!Iv-zAyM$3}nhWFKU_pT$k8uSekWrB$YaPw_CRbt-i79it}7cdGmpQCNQ`IB1FC0 zcxrl@n#q10_9tFf#P7t>y97jKx~G&e#~dZN4x8{KU%TJ;`gr$gXgdub9N<{b`CX4? z=8Rv&ddhyMb#tWmo_2*MaB7-PIab8RNggWew`zUW;tv1^7fQ4}ZWTWQg3tP)H%0%m zjvoykm<052)FZA9a|9ih;;uMBr;0#OM#FoZ^EVt1OE$o?U9rNVw?Sg_(9F9ev23|U z_6>Y}G6Pe~)KaR1@B8w|v{O+-jn@UHkaIAe2DhI<>y6jvTaQ*hT6v6Hgxht$V+wR_ zJMg=tMn%@g5h|1KEVPB!A2;C1wFV>%Fp^32b6esNfauA?!pY-9a29ZqFgHKV;D0pe zoJ`oy^23T;AdzK1O?1ZNy+rtneWvq|-IAT@ZfYSZr#n;ChJR!CBOO{*)Sqb?C@5Qx z+Stou!n9)2?8ZvcnzOkUqxpq(0*GC5t>bOy@g(Piu)l1*i@IZx<#_|%&7-$1M2r<` z&)*7EzLmXjfCn*>&D43iFLrygh{;;3D#RMaFi{XJeGR8C#Kgv{*~>~aW9SZY|GN+_ z!Owmm+@%s>2 zM9w4c1j6D>V-XC zG(-w$zYo<*3P+Ik=HKNx4CB#>*n;=a=+n7(3{K+X5O00c&U^Ok0WGmQ+uaDm`JpG3 z`Hlr|$_&%}PYlMo+60;?i)>39Pu!qD zPC|fO0F6HV{#CZ{;w27Ns0^MQ-aWy!#3h;a;2pTtxAUhoEnvqq$aKYE|yEE4_)Hq>o3mg?1aU7h__yW;Ytn~O+GUb&lIBr*5 zG$tMix1|4?>mO7|St^kDME1D-vy?tvngEsAbFT0xY{IDkQH)r%Z^Dh{;tHsun_wbar*3c#Yb}`i|YtL7slJG6>6e znq>Xvyg1GFk!Lb;MK@NVEy9+JENf{!B`YJO=R<^8)~|IVtaj|v`zX0UvR(djgZzh> zqKqXHSfZob_(VLoJc;Itmd0T)Q-T%$)0w=A{zttA_^`V$UfAt7q!+;sfL+t@@K=<- zS)jJM+rA#b66dnp4JfNw^?NEAx0u7Ll#Up%R9vtz8Ga76>Z|V1FuOt z4sV`&_!rM9rH6l^X|0+}Ql7{1ANMfhASujQZMCvTWMa}wcqE__iO$|#Y;cnv4`-AW z_4lbcCSyL&hIO6gFpz03zrkO7x3mZ=lN9%^VHbbAy|!DwN1q~SdgIjanX`~i*j^`J zBSV_0G-sKQFhjhT=tK`96EgR@DX*{^hxl3Kr##=p2fo5x)vn}S&P7rs!ua-#S zd^)12cJH~6zNWV9t}wl-(%qkMzzJ#SeA~<_5cx+M!D?fXq`O#JYWR}2j0h?Kr$Zu< zUd)(?dx*4_oR_p)%q6(oELDZyDjS$te>J)7k+A4(41NoDuU`;o-=QL$7io{BlNY|z zSr>thk}A)&Ea5#;5XhiF3@l8V@;qSO`)hO0!>rgEY99K@m=E%zuWL|f%u3AS2I4B# zG~AjhDLu)$YzLsPgc!nP8w(~q0Jy^}GPQqe}*{OD}?qM_(0^XWmkt4lFmfXsK|68=V2I<@d+luEk-X=K z{~(_&WeI(tg@;*trR-J@$eGgQ-uT~Ym+H^Ezv3@n)$e?tGXCy;68e9bi9qhn&HA_aX`6Ym z32Nog_W5=5IdM_eGqwUgAMB@y-qVA|Z0ACsnC1JdBviGS;)+`4BY1O93pxAens2UN zjk#cG@g*D*iPD=hC0vjxqw1I9BE(1FUdg}T$e=-`l|F31%V*~RYHMOeT?LsznJ)R8fs&rO+UCcj%ivUKqYh*Ad% z{*vL87rd`!?xudG=)!K7jn#F>DiMXj<#>pZ7)aKd3ic=^9+wE04x{YWd~2{t=#N*p z0~siteVx(eO^C6MPPR@v>w@*DY3{O2$X`>6pNEaDr^uLJ+xYuwI+Kn{=`vi)<|sus z^78naw){8bOmRtjG8p8|7!*Btl=9_Yjveu9RLK)%YJR-F`K_%{TU)REyVu9kNT4Aj z;CutB&w>^A{C9F@@*g?VC+rcdnEbUA$1B;<$?%jL}eE;`t{oFMrAp@lhGbCRGMEisJ0y16==f`gz z0tH4lSniAOr9Lsj3t~?lqiZb4Pd0|T2sIfix3Ie+B~rF%)Q-BPU1FV^ue_=Q)fAti zX3PcDuEQKu;N}8Hf+lJhYeZXdTQZ{o>=g(fQ_HtCGzbsWWFMRDZw0L=k8FJlkrz*| zw|MFtFGE982*UEog4 zyd`3Ywg=+PNy;T5ug_{Ms(ev&f*Qg&oiB27S2Yx|*_s^zW4ttd$i&K+wH=7ztTg@R zcDoQVAA`K>k>&kl$|T8sqn}%$(Xm$6W*dTXNHLM=H!$}vW?UDO=0-!xxWh>KdJ9I9~}9Ehytott?{_b)Y(Ao)zHwB`z$Wy3vPlV2B!Lg3eThxjZ~je&Mjl2tT;QtZzEJN8A7HHa=e^#mSJ z@@e2yL7}ffOIVf_xk@Huc%k!go3zmKyn7hS7Yh z&7rh$wS@eFA-iX>?l9ef$XI_CKNdFte~jlXT@9`)2i9UodwLCb?Mdr(xcmJqLQ0;o zaBJ#h^7{jcN;3KDu9Sl|tqoc)B$RB|w`6Ma2jJ_nJiK!AW!?7ACSjD*hHAbMo|^9I zoLn!?b6t)tS`X@Bk17}KT3L9uNsF(6s4=FC5|&+e89b;y>U)mKawp<;7wXi);`h(d zXQ8p<@A7G?>EA+*(#T&>1j#Hce)~ObHt&wS70pJ5J^kh0uP%nbZT6aMKJK6^d1R_b zVgQpHbQDjnaSF43UczlKasvcJYj<;QB*dJ;q6j$SsM!_xW$nr|9H<) zA4QMJI2jXgo9m6St+D>JJIt{4XM=nN(*wt`dhb_bn=d7%?IlGC@S&_P@4hsOyUPu~ zCQs+Z63uVvilJKyNO6}n#~O^lF*dg#UkH0BkRz#wog_A(-#%9+MU9Dt5{y<*2z`ck zW-jnF;QciV^XfW-9Bb-)f&Z`-6m|*mF<72B3mRP@xdb1mK=ImGhpxt-wXImz83Y&$hJPe3 zO_2<5sk+bFvk-Pv<@B!0)%HZT*$ML|Kl4R+UuUkzbmW<3P+pW5vdJpV= zuG&xOl-5xR=~^@-Wd6B`>Fmw*hD(>L%Tv}mTq3OJkzPMJ73HYr!F~8}saf*~ zm)JR+AS8dI2ZE1r1k`@!?xYAEd z_3}6tNh2I8`=?1sb^acq=gvvlCX?+cpRrowmv4=RVPT@!sQRx^LC@fV5p{y1dLB=7 zXxG21%D0(@fVImV^o{euJA7f6=u2Pp!Jr^*QHt-f3f0PTh4R!9!RFI+N zoJv4eNNd91uks8p#K-?GR`MElm8jCT{4zaISqbF-#S#Tc1wu;$ms0Yud)aLUG(r*G zpUAlBu*n?K(>|s0EMjhwp#Cn2tGrXBxr!rx3)B7p(`cK+DZ+E09-x3g5THj&MJecIv5{ptco{2oZ_BerKr{&W29};;vx$T z?JhyC5MvvbwD$Dt7i_Cc%nR&R5)bmyygoT#3cy_Z5Q8^Dv^oTOu5`S%fnNb7OztXF zW4>?^crsx#lmA*xT|nY}DRDJ1RHmKSwpAc8U9OO3TG&C*?B?m0(3LAv2>0@pARwHX z-vh!~KAe-Zdzk9>(1oB%01#ZEtt+426-9@9j!me;mGXefR-oM{%%AXR5Xu}#WK>$H zHDER6x!7UpupAvD7`p))Wk(Sv>nHw12>^e}Yc=E>NKxhV`M>*8YiM|$$+%f6cUV)i z*@B_|_!zp9REYHY?_=pGc{C7(f+io$(eRvy9cKEKv?$_%tTq~;M*wLWiCk|JXheT5 zObywfH50B|)s1$+$Sj&7;mg&~luXWK3tGi?OX_5OV|#XpgDChVaLg3)@~HN``1d?> zAKX^1Qi6h?++d`NFDwDb47K;Uovf$R$d8`dElQr!hqt%~wM$S#hlQc&i`vOg;kZAZ zMyfoMNB%b}9W|t+RwBiR7jQ6r^1+YhKCFIl1x_CRluU4awk3QeA@QRvHF_)|R`8Vr z8-`>9*#BM`r6`X7TYu1(koNNYn_VYPFAH0wG(uhj$#unser&b{e1#ka!~Jii%D_X& z*leM)U@5x6#n=$;NLMsw_-`>J!NNd*BZ#G(zxB|CIytoJE?7b#b{Kuk|MLsRVFg`S z{r?$C_<#S>2!`kx7^F5`9;%uEE5qh+UOfA=FYBcSX>)-$CTN}yS~HJj5^%P1zWiQe zdQJpSgaJLZ<>3c#VXIDJ;a9W9Ku1hp?fbk2ZUSZ@S=AKi2vhjIEKrI(6Pw zpKgXUe`{D}Uo~pA)|6QiOW4WNQwR&}a+Fd-a)Bpr%DG;h*XaAv*d-yU zF>=bPGiFd*Ln;SgpaxUw(Q@lvA@^0a#=ok{dsjjlZ6(u6JBOCd%-=?iCu}k{g0OEz zNI)EVK5*KPB2o>jop<fS_O<;rNgL6->qU6 zQzXjXz5xL7^RedZ9JEMmz)C{cd;ls#4Si$R4nq@>FCOiYC_j2h!&}F^m;Sygi4+Zi z9oAnBt0Su@bo8oL0WJFPW12PLT!tG z@#zIcvia4?)T@3K=APA@6jL{U!w_YPJ73b$ios^m1YVN*W>1erIF#bW1QZ=0KOk|o z=7UMSuwN6#m?JmxHNP1@rj{kI8T@DeIE;QdBnjy~wn+UK!&$*d2j488)o+*g8b7A= z*CXD(FXda=tZ<}lZK0cE148*j=6ECyq-Yau{lfMkhsyohNZFigZU)yZ@$eYKN5j!E zHX(!!CXYL$R5hY!RNKUzb@@ze0jKYiaPJ)R`P0+3$!I`if=H;0qTr#h?oX2#TiIjb zpqdyHJJWIku)4yG255 zZ0`8I#Ca*>ig-Q}Zk_sXnUjz>4%_2p{kYvBQTisHN$1B~Yj7Ugcq;B}{DM@Kt$yiO zAoB`ITM&){|KP51kkWn651(JAUIxMpei~76|Ndf{&7UWX&S@wXo>t&%aT82}8kD#9 z5yV8ldr{r@S@g6zBA_sr=IL_-g`9>PaA6DqxRSXD_dS$?M0t)X0WMEGlmQ;d#=pg` zov)hXkUE7nosPSJ(Z8^Myz)VNx{{H#)|!hG7!K4sl5hZU3cM$<5mcV11b+p-2~T`V@BS{-$&waB!Z3lkgjD zfhrnjK2yWmcZn^W!nI8ARLit!>~n>=$4AvPq%(BFEe!71T+@ zEEI&QNZ*s~0*;I~L$PhXmj_)l%dxVNYy!g+MaFQETWILANT7;zb9W!9wA1##K3hX8 zm%nq>?}9j8FB4P87&;8zVLmpg@*YhSRjE;m`#bjs5OS`LS;?SXr-G8oDM{zQMI%0LMTn44IR6s%TV^y-K)Cp z?(PA!SFYSLJ1_4-^`-|*GYe``SEII%4xp4ZRiSw`U#ayFJR#p3-vaYSGXM|{T0nXlP@o@5Mu-Alb`tONWb$d-Y zt+_!2E*?^o4+bxw4Q5iO)9#xy_0`SG8t12bd(R9XaxQl#uy_LTvexmAaNgptU%$Ms z?3OxX-7|n?x$yUI9TWFHVQBQ_ISTOuK%k!9UiS=**M3bWn;#3@y?*N2Yb6DBFn@7) znczJ2y_kZs&Az%FXL=WQJ}oGeyBLc?$&Gbe#Yuz}wFBG1pS54!GjsKUDh?-S|MpX$_4|=UF&{7 zv4Sk%@<8c$bEKEhTD=#6s(3@j9|8erG#}){ffZ2%r{jWL6erhiiAjCk(!|c}!le6f z?j4u?mp#vn0x@H##o}3o*jM!YL!=ECyfUQy>pn+(sI)rh1Xg4d>|#KMyRyL|j({n1 z<|_Tehh@H4($}N>7`{jAWurD}9)4;AcQ@c2*v1^QnBk^=J5>XEMov_Rh7Z1a?M#No zNuRF|EOta+@uI8%hj_~$*qN{MMry&vlk>kgIer{E?e*EQJo3hFC+3bY*Y7-yjCVGi zXR4#5zvLi3qn{)c*Ij#QzWy<#r!>@i-nyw|rv1yc<(KNNJ}r#eOIR zT<6~Oi-fy>fVBBwnJ}f9HDLbZ=<8!nzoSO8#BE4HT6M!p; z35m<+NUp5*JO_}R_&~(1c}~WqrZDXrQb2ic!9ety+9A9p0xiVZr2FJj7NgDc$NK!V zsZIRn-!R;7GjRE%Ezj?58f(Wo!v;>=G>|=XvLMr0$PlEotiXM(zwWSyyQn!hpb+@}e-qMPX&%KUG$UmX5cwfl zIVy#J1%IdG)L5s({tJ!N;G@$j2}skDV&a+i7lC=&9ZQGCV_RVT!?tns4sI@E&8gs(Rl6_eCbDypt62!9q65|698S!oe z)@jgXUy9~^?r0%CO$|L&4j7@e?$@2xmIb%}dm)_XBP9CyNv->ueTs>fYl&1a)wqj*!|0@FG<;(%`1aL*?15Fb0{}in*Xvq$kFJ!#RHU?_VX=o z0T%WjVoNbz96DB#GT^<;jOK!H&$#^qYXEYNMv${iZ==wp6(#iWl0R=mU36yo6?w;t z!EoL6ByjC8t_keJzgiunwuBM*TT~5Z@MWMp5ydY3PKacyp%h{UD0->Pb6Geb^fN~y zak#tLx-l$s4by?RGz--DuwS{ev@gED<5I~<)NS9Zm*!bDhaThfI`aJQRAHI9pKRn@ zaM!t}wa?)gjn>hXhP%Fk#MeqkUDj+Bh293zBo)=C9us^jJzUd&1<|6V07!z#d}bxU zld-Xpm*I5=gYI7NH;&6-eYjQq~$R$q9MrjrGm@2YMg2dp1;SdGSpB9a!I{p_C| zvkWR;g2x58VbX@w;LL#^rmkq;mX8kSjxqT5o&ycHPq zo}V9WEWILc)M19z;9x^~wGqFU<*6hfy|>XxT?@>|YuZ(*@$#@2jdo0;azQ2@O5!f5 zLCrDyx>D;=Q0vW89HF89fA9J>06dzS2}8rfCid)bo(Bzid=7x_I;@T|)) z`NPsf0m$_K$EnDt!8_VxO95wae8k)m(*`sCV4K&2Lb0tACVR)=m}IkY6l4=adRhMs zCtn-+5lLRe#mV`@j9D~c3D6D&0Q3x-Q8em6s3)L3L}{u6#}+>5;s_k^-<+@)HgjmP zOe0V(LSic`?YUeQR|Lg}Je?xyGiqv!o&V~Sr{F>#AD?qjI$UW4!eM1lcI9Ip#0L)z zwWqAe#t-HX5n(^>2?Z_uH}b>n<_{nyXaI~5ztt5*s3pK=W3fPiAgV)3|J$iq&sr^wwVa(x zyk+5lsj4odq65;RD&gMzEM=tp<7KpoG2|2K%h8p8~qf z`bEOKv!2I?|C!A6`-wIIe~_-T=aV;Zv(g*Pzj~L zM>FA>?9%<~*BG!s?V=X=8jrM0ye6!jor{HWG5PC(Te+~JH3Kw%IA7`qKiOAS6x>y^2XX)gypbFzGAmd8b8g&yi8{`w0KKnJtR+qoidv}C{s}ctAW7dib%hAr4^;mv zeeFC_s9OU1d>)-zg5A^z2{cO`Z8v}=o&EW+OlK?)S*1z-UFVOuo$utslTuzT;N4i; zWpBjL8)~&yvve@d*&?3rWP(Vki%atyl!0?#czXS2)WOET^&1UH#obr)K{L-Yo^CIG z(Df8pG`aBN;Q@=YEDr)e!q|J_T4<`SV&HE{P+}rQb>F`>EIVLT8Uh_L#b3VM3xw3# zouS?7{%0#GyY6;&1>dKfB}{-cS!DfzG$r$Jv*yyz>1;~-yy}Y3SNPz07;J>@{L z@_OG~-??T158y#nG{Go+bLmcX`*uEPF1yyNYQvVBZN-I9ub*#~>Kht@P)%kO! zxJtm@J>A`LrM=3_YP^QWn(=8hjVGJud6}IQLaa@H7a=>%H`lJZKCU8zUMMQj;Wl9OHE!u`+k;_ zn_CqS4!WMN-~39KI-YbW6^F#g#46GIw5xY9?CxFi3KV7Gq*8LTaSl=<kwtko z^oV`-RW-9(^~1 zrV3=#f8}sHS+Y5rEUMkL_xdSpHzfb-@lC@Gr((C=5}{t|Q12g;@6jDaDwk9sYITOO zgQAg#Vyo~aj-*xY=)J#pkHuQK^xwD3S?6&$OrmtJi9jr}dP13O&i`_0EhEsYm3sN) z8!5!wd~de#iq{ecz&*9T#HbIS)3fFzTMH3>A3uR;I!FLsB_Mi>qi4S{Y}IX*xF`6< zd}>;Z;=Tm;%%OU8-+p?LYinmwkW8%;dmpXvi0}Zsyx7iYN-;*!-_LEa8S^8Gv%Cl= zIy3rv?FKYso*^1?ne=baFVf%&pKg__y=$@sL@=}%;%<&@$?@!{I)>bB@=;1= zRC1BYFfkh&yX`siKOCxTo(4x#oAqzrqTQQxoc7%Op?efM2Sio9e{dbja7{sGlE>Nt znW<1Y<2R^WIi9f=75{nz(|qE^UH(la=WJ3;bRxFnKP5u|mS@g?jPG;#@jh(|BOM=T ze5^2x=#=iHt|_Wa!%~XY`-_bn^TU(_JO9zVaqY; zgTDQB)JWbT(2pM8$w1;1IZb_cPBs%L-Yf5gIyV)9>kR;z*Ap$-+N1e2l>^4DjuyB? zgaG&ir#%-0%*Ig)_rFlt^6%cV$R6%W^Uzu}l0;uYJ**lC8lBN?x--UlYE-D-4FCFY zBbdH~>aG(~LuGM_dQjy!>S$D#jKqna2;2ikYYsgEDoUO>hR3GW({9nt3dFJu$$J#r zbC?Q3v`wG*c?7Og{b zdicI?9HNJVCTJ-|N{nlV)CDP!FMd#@SUp^AVS{NhC%s!>&Q>>kVP_zlsz;roTZ~={ z5dtv5XA(QhFKMOMzPKL&`U{Q6q4w{7@hkb36a@m{ zZymIdLad#yim?Pb5_RqE3!6p4T;NF@RA=xJX4N80~U8<0M+_lU1U)4u2VKzOU8?xF&Cd>YY6i5ma#_C0F0lmoG5^~wjDWig2xvmX{pTbp zv=e+}WC;zIlTHz;8u~rG;B5E!sS^M;)-0jL2>Yp`EKuHT$2*k`{ zSeYCUa)QvdFB8uZ-4cy0Fz(-I&FU4oRkrn0&W&{QK5vH4FLSs!q!hGieDzY$xKS3A z5P(0%2fU=eK7^XbMI4vV9esj8bd0&JflQQY?K#Ee7VMxzyihkWN0;(tU%@?O1!xM+ zk%sVZx8!=gVVy^TAA`FXgj?HCyvyHl)c{sY$NA|yBc4en*gcvc{*M5JU}Hf}LLiS9 z0Jxn=%V^%|wT~>{YKBKYk2?r9gl* zUQc)rh(Wq3Wm3jy6?Jt0-5G*TLUtpCli0NAP6IqPN)e5~2|T)YU&ds6oLTzLTh#^S zzDFmE+gZ}0L)x_>_-sWhAkFZ161g&;?SO4v1e)bXW4oAzwZ$H`d?b6FxI*vJf{7+c zg#b>{)hm%MiEQm!X8$7kDjl8rz}s|o4s!eU1m@S<*LeT1-EJ4QfMd<9^pfG)sZ4TWd;8Dfrx z>ay14c1qCXXooLhzEfJ#IPbxmzBcg_TgKL@!AGaJnK*fPJe=#YvstTSWMa~#{OmzV zx%+2QMu$G|($&U#=Jir6)L<7J>8jQ)#|aY&eAH? z#-@giLx%e2^}@!fb0Y;lV;Tx-cW27~;XSA8Q&UrW`udIm+LJVseDV+Ywc}6ku}Y4E z4*aFf0Q@+Apd&+Fp!v;XI7!U`WLW<9)LQo`}F|= zt!Xj2tebyv5adDuzl%G@xZ5mT<#w>x@l4X?@hs@bhmHrAncWR(ct*71j0mBs$WE$A z3r*TKfCch!9-U0hbpj>ER%o*l**y@aN)~Mc&V#oe0V>$K5{Q#^2e2)8Y2e`xj+xsR z=yXwm3?sR_`tspR@kn=UGy%KzNS<*4^uBvz(xXX5dtU4&!EvYQSYq?s-(4u?L-MUx z;7ct``cUu?jnd?RfG1zu=(QBao>X3>nQ?Lp8@$S>{(LB)eOa7E**Sz(Js$z}V#{+j zi)!~Xr*>{l=ko>wx`*IvA4KS;tT`uiYeSr}o49OUdlQ2C7`2-elgi*JZ@j_l`hG z00^{jfT%YR<%E>%HBIHhuaGiAoWcx`X2p^+2(ZgN(8+?Vs4i778JW@KO zp+RyD-ab+TyxkISm#*+wc$MtecBT&Lpz7LVqc9kiA@X11`4@}{?7HRxua3tg9HMO> z;~?U8OGh$GqooVc1U#Ca1YhPb{l7{(@1Q2S|KD5SQA9<$f}p6hKtL%XU1>r9sR$*0R6EqMoV~n%P5q8 zkz*@wA4P1B(jF3GtMOn}H%cvEDX`rUg9=)V9SPsy z(N6FN@=6l4rzG!>2BSGyr1S0NRH5r>FeL-lWm?>M99UMOAc- zb8wv#Nx?CrU~OMZ_~;V&I6V)omihXiU!0*%YJ#FiM61QJc7+7CfJpy5t~i+mFsZs$V( zuP0wiqQ-08+&H=J*luaK{r7YQPulWMqW=U!ZXG>T%AM2{F;rI_)+VA24BgQ}M#`#z z9zK-huX%+;9lHJB1(YxtZc7YwUhlF*OHjs8)Mf$Uj`%4Re^v8ne~h9k;vgtA`C`fN zhISXi?)x*b(a&|PVneZ{D`Pbj->7|!cV+U2cty!wCw>*)kC+FhADm)A33ppbjx zNNQjP0@;4Oz1N1NQ4=E;*4J3X(FOV{8aXE8F82xVkAF_X*8K7W1K^)F3Y^THJ1P@7 z{8sZSmZrK9BmN${3Jx1P7A?}&b#h#WU=W@>;L_hO{K`eV{1(Bt#ACN}PNL+oWNp7X zDd|Je->eggFgj(!sK#c@Q``#oxQHVfqwuDOM?a@@g;SVTYZI!UyFLb|3%W{=Zu_gd*((+hk{W6fZMY~N@@+I>Pkbf743pu&kEWHoL4Nx3#(jK|8ci6XYc zruER|cZb#Ac&2lvgJNwnSl`j3AVbEi`f(Hg2KPGgk*t~-w%+(ucxx7T_}le&+YXxU zt}CaU#fCa8uOl>gNVF66!zf3${m*)>_U)Mq$KlYG&$Lmj<^20KQt}6ggYlFOPUUDIbIJDLvHg)&t2m}g94=@nPfYj3C`spss%)-SI2tycx)>}t%_jEg z9|i!_{80!0jdw>v`LQ%d;R0f2y8I)-Qgo}LbVNiL`QlY}q1ocn-|}((aq82fr00_+ zs{tXp6@&XWwW{#Jj+RE-gV{6Ecb{P~_$n24kXEh6P>sp%AXk(!!Xirm=(l5wiwAoITk!x$3yP670Js@_Jy>S|XLq2Q9~)al3?!k{_kMlQ z=|0{+Yf^i{B~fHvT&7(f4B{Xvq~w9jJ|6_s(|M=`mUz7=rZ1l05SI61RxXW{Y`YevT#GbF=wcioOh zUVNe60e(5Ii-Ai~V?`3Vev$#=J}))+95U#qMdL1$urA;qk5Ad&>7j({>~K)uApeEY7hqOzUx zr+Qw1J)bQw$heEwE`9Jf|55t8(&>{@V_AL#v946xqjM3B`1(*f>UHL zSXfxJY^2ym_+>qo5f}ezMkmX_%*-b(J$1rhHsbMPgc3^50Z^F|Sw??Lsp7(g3pGpG zevoU{I0*grfk%n`mkM*I45-YgC-6gnTh^8~mQ4~hAWhC>2U(_X)a5hELE`|BT!&Q# zWp-cSR6A6QGMoN(^kow}d4htkxMn)B38{ja#mvvkF&9TOZoHmh1>?Qfc9I_+F*f#^ zLw*EUOf_JeZQrP6Ng&lT?jzU6N{ym!-L6%5~Yn%8Pc`C04cy5uZ!ayk>CMoGxn-t;aoZ(nE1Qn6- zc(AtXfH1Qf*gP?DTc4JCmZ^E14UuhuAsH3#7B-KMBvkFw6YC_@s3NA{hW?b~vs*5; z7u_&7Y0}eSYZ~rk5q2X8_^sJoN~_XGPcIbjOR^L{bnLMtI1f;cAsyGiUw&Nol46&n zd~goJ2(?L-Bz(;6G{7`dSmR3Th`njTqVCI@N1#~DBIR9CZF_~4zZlRm#lU6^P#+PK zHr;k_vx)%erv--ZTUS@tKQCgmZM&SR;@y9JATCBITW0IvzKc1$H}z>;d<};RN*OYl z1(LE^v$xKJmoB!I$kPHcW~f14jX95e8|K%|`?i7SAwO^X7lSdtoi1T>pDN}a5D0|I zxklR|q{Q-ly9k{EGa0S14DRLBpSZpER1*%v7z1CsUl+4>iMB@~6LgCpPs6L^pJ(D) zf(Vm?GN_dRs@l2$9CTijIoi|70+O?h0CgbapKPTt{zzc}FEl+{U@}miZhG=NWYlrY z!S^8biA3(F&I6C{uq^V9ev6n>9Et&5V(xbpTzFoD5-q>wC2gU?fCIm=u`KN#ctN=n za_lYhS`mC{c`V2=44LQT>1&8 zexI9g;>$WH+bj2*`chiMaWwk9FT}%*G_(Kb#6zpT?(2c)xCPtsR(-$81M{C3Qk3go zMhrnv`9<*C6hp5iv$>9Da72M6-<-k%a{o}jW!d2H#1WR2?38CBW>+T2EjZE@5~z9N z)w$MkV`-J#K?xJ{0(AYoI4Tq*L`fVoQfVnmiSsue-$mFh7+VEMKm63&sP0vNqfCBDR>J$eb^Ry^XtkH@9M@yVmSoMA5KFEfgYq%Vw zFurn;lR<#ENWVcM^lXe~sc0-`7j3SL!$*&T{DwT|CXwC!uO|{fB|6o+@`MXV!5pUEQyg9n^82$zm&3$NJI;TaUo- zxvXiTPLsgUqB{Nl(F@hR<-rwSPefjvuYah3w+DWjMOZavC+0{HVl<`HDlCF2c*R?~ zt-hEuue@%;9yG=IJyOXcqn=nq-A~^w`N`rH#h&fgtmGu5Jm4g(G9}E!qg$aYtCm)B zdNWQh-l%mXmnI;;N%pW~KcLS@>&Ik7$6inx%@AmWfIEs$OkXiDJxPoUdL*&Nw^Gbq zFeQkQI^DyQS}I*MQ*P5!PJE4`Ss8sbGbGvMYGuJ<-+G)4VuUM*5m}Zpn+H9^n*($}emxAhId#7z}lVVmf6%bF)Sv4pV;E?V6jbas2I=5BE z-nHJTJHSjbId-I=WO(n7SL<4MTha(QY)E1+_l3uS+ij1TrPk%1F6x@QtsnXCez<$= z0!&R)yD7>G(=dEi^_cPJ@crf6Y=?OF6^fNVv5sV z#`INb<5W$pqv=?`s9OmLnL)EzTcVV<;Md>+2(^g$4JXN7%jZ`68sLC}x4v?ig@aGyK310H zHN7f&uCuawmFZ8@z~_jO9CXyyQWCQZ zehUZb9oE4|%Sx$G&7dG1%t#AdlHwz;;A_7d=)+7`s4+HZ$|I|nsRR-MSw4M0)J){o zzt&At=z!$;&_ZLH!e@j_%)s4g3F~gw{(Sf{6aQQA#xP8=NH&*{^64!63m*JLejKO>^Ep5a$$7cSvjzP=-roXIdn zj-U5v6<_<}Xn+mxRe zOa+5(G@J@`+dLR4J1bXV|8ioA(&X7&tU5-|T#uYJ6u%e`=QCJABavf9C1k|+fNccQ zJE&D8IbSiC%kX;lu*HIJjvF#F6E}~y?*43t?fqeFMIb7an5rNKkUa2DetlZjzSyea zM4YO?f-rgKTzPZ&DYV4$PM{3^4JgC28%6^mv;gj`Y6MDwK|Bhy6@&`I7>4N=XZiv zWkmGkRIoRtQ5IF*^uslGatW9__lK)OrQoX1R}nr+s+@~;D8p%`ZpR^%WBN1u{ATxB z$Hd&C>^G(5%m2q61uvM-b*6ZOA)!{mS2DF}*ez4q8c47 za*WvXoVJx%Z4-j?acB{&&o;OF$9+VJb`eUxzP*v@&@ESZ3dWLJMIQe!Wqb)Y zBIp7tS5TjFdMOXqhUL*cbNaSo_8_Bx&USPM%&7LuemSSlnN-6@V>@)%&JR(>2qN%{ zKywzAD^^q`|Da+$dZDNy4pZqu8rakGN^7VX^d)14jjs{<&{;|OH6rD~s*yizK7m=8 z@78}z&a{B7+N^Ojvh3p(yE0>0BXkBWX?E5}7}?+)J}#!J(?%q~^o8^a`L4#cJXBFs zO*XAFHel>Qv%^XbBsfv%&^uvtEz#3{>hD`plkp1Wvl=^?@1Fcmly&SZin^18k!k7q zJH2Cw&lCD3a0xyf(xy;!vp5vbG(GboHBgwIpB^6xEY|{4pLP^K9ewoW5py=BUX4Wp z2A;hXTKep_e;BG?&-MG6LS{j2&)?djrN(6+HPc`)K52Cz5GXgL@(DH=-9(k$*$hau z8Rqm08!`OdrH;h>pfY3`Go!`R#y91;{p+dU^rC@?qTE zkEfcv^ngh2sJ7Pf?-K-dnkb&OyxCiuK7Ax?FcP+ha2bN3eK;#^(`-uNNYq!M1zmof zaI&FkgWLjV7)%hZrD#xTv*&{{R*a&9btfAetace7RWxqK2ZeRhYa`P$3!{^thY?-T zsR_8`Ua3Os`&x3oW!&DTkA5|KF!E+wr6iYi&%1MabKc`bs&ti1AL@eM)23dszdr6H(P_9TuFHBvL0T`nTN)PnqfoyRU@ITVPIauP? zw~!sm;DD6FNsUaf~3Q6tg{rUGI#QnA~N zpjODojI~&}#mN9i$!)uGV#>6wi!}|XI-Yzxli-kEf$%Y0z&|KI(E04QNbjFw>EW{f z@5w6W_gWSo(GMl{^7gNSRYpER9{->G?_!Izt%aAy+{;&{mly`}CLV$>bk6?>^hHX5 zOZ=#T0T52I07GZ`TNtqy8zv)$?;HPCUqCYk^4&QmVv}TndmVYO?PC-@WCFbU@*I0{ z%HKZr?qZ)Cjk6RL)6zDmfeizvbS5vrb`wA!y=OWO7$)?K80C%XrbyUixy)aBhohKGP1PHe~i(c?y%ZzBC=t z@cu)_O*v%Ct%{BG?XQQ{B$h3F{B?2SwNqd8w% zrbZjT0VPHYb(tz;j--hanBDJ(xQY>geC9|90%a&2`c&K1|k&qg^zQA5ym?=8Z_Xrzl60?v|0dtbS)p11U{=k zmrd1^KgNdIKU$dha_L<7_W7IXthjWkOd6?`N_^GH6!9cA#-@Gb1S8*sU(WYZ)yYNu zLbl&;TI-Qpcp5edU10xCmVo1dedIU=^>hH)q-D2X(sw@LaVFm)MB*QDLxNI=mC<>i z^(6h;o||$2hCgfm#dsQAp#BZazIjK+Q^&{(&x3iXS8f8`tHzd!I)oClg7!r?6S=sdJdKrRq?iqA*sEraGbRSVF0aBM1sKLI0a5d6bR9Yko#t%Lqk&f~c2 zE73OHjUEn`BgI;|G64sn2vyZ1&b3cqJjz2Vrb9Z7WHdVL9~$-_rgKySv;Q$LGhjJR z{AB^uxf}!S?n@lm-((;wE4ggv->McNRXfpxiAc`em6#p*Icovxqq@5@X1mfRndAJlKF0&cGr{q{`$lXG-1NfvruZ@wp!TN62y{|2-s-XUv z%BODxH6qM7NS4)jT@R;(()EcYyClrln6rH7;-QL zzoPXD>a&K^GXAwWxT^K?|K-O=YQR^B`tyYouWs3GwjtdI)83McZy>>#Thx*Rdw=EQ zvsyXnc7Tg)1Sp_804+!P7A_2@-F?e6ocd7*%R;PG1L$I*Wz<_;(aDY87$BHjvA!HB z20=)(vlc0>!qXdG+O96GpL8zVe;BJwP>?7CUHVCSNa&5DAIp4nJ2CQrj|AwwEa!Hr z{dZK%aKi#f8m%?l{_E|{`f=d_sX6di%67qs`?mNnM(m1%wUPB@0?&)LWnw`7<_qcs za~lAeNK2a#Kj&~84p)anc^O|s5~F;nW2WBHVP817fJa|88wk49b1*7?;aFmK=lJLD z?j2z9Qd4v8^7UfSELk->IY?<034ChW2==FFyw*6^Rn?h91oSpZGpatVs4_b>6D+hr zx}HDBs|h+ON(a)k05p*6Pyx8Q#`nz-?TG_@0nLdWeZg(t$z<;qlK7%`%f@$hKM|3q zd8QS|0((~9P!|R4o8Mnzd7*=)r~$ePP`y2V`|FmV;D9=g4$N!ldnl!5HnFYP7hng2 zd)xTOK;5?)?C>1yM&ZKj{*u)L?7pzU5yw3=>q#^DW}C-wo5j8DD2}fNkTWhM<+(3! z)zb0+B718!UV4KPz+@jHFV7C#cm`F!{zIlJ>0TiTw1Hl<5&%2O)<_S4ZVKuabUrH< zJew~ID!{MUr44y`c^jAWVn)hLB^k@AuDCS zKhVhHft&i56Wo{Jdl-mUR04Am%IDb2sJ;jk)tMzvq|#GiBu z)ZC^f8=?M_hRp8*;LB48S_%XYEh;9Il-f-iu2FyoT z;PG!8@;lJ0s+sbf2m=nJlH{-Sb%UU%!?weJk1RfxDjO7N3wT-@05jd5M;dYrj9>Jz zSReC&Z)k%4#4@-~?m3oGiHV7W;I~;JoLoM;uo*ScjCDAk1n z@$I!8*ve}gMZy3i%d`cpq>IpQH%_b?gOfhnEN&ZaHFE~Nx#0B`-UD|m0u=ffL6GVK zLe_Q@qwGTt`S6ByCVu@ZJ1qBdAq(7rAq8VYeN)9!XaQ~9f8;G_nRu0oU1M;TYo3vs z{xioIIB{x?NQ>WJdjz+LZ!EWZQ!Ho9BiJSnUfmy8hIG7A_q=i}Pfxzor-c+MJsFWb z8JVt-iqehVb;hkXv~g)^=`e`#$azwK;ICMI;qrSVP}xz7g;GB7G@ifc7D?%RTFCgc zMtjil?hPBO0D!`jm3?TxxY~p&H6&QRjk!4{v;Ex6|mWm2U@hmSGl8O`yYxPOUexw*j%~~eMv*Zbes2e*z=E>$;ir6 zue1(|okQ5c1{=pjnDeV7K0)QS@Ta@e)eonZY$K9&A{m@aS$JFg$ez4QQZYm}hrVRp zk$@rnnU2Dz+wZlthOV)`@4K$r_Rsf+vj3nB`w;2mN{o^7@?dV`0>)_aLldO*w$eAy zbrOva06>_N5B{M8D_=-A4ved^Tlsl;g4|bl`cKb>Id`0q8rEmrGogLvHXFsg3SJQ} z!fl^-cCjwK|7z~apj@emzwS8Dkk~ZZfd}wvT>P*;h9D*ChNl-U^;7E5YcW#@wA-H3%KP5u*1!FIe8~e?xVSkz zJQMpX*61qE57d;&Cqll;ji+s1T$jtC%xwu38NT&lGXT74oxLGO^f1BpCZB(OUeofk zPu{F&NeJ1qxx^y!Suu`w_QpD|@fiqy^Wv}Jih6Sk5$9~m&&zHB6AC>52CXAtU>1Qe zr2nL6c@ZoeBuK%3&uyyY%`)jdGCY!=Hd>!n#jEq0jcs+`{oNCxM&MNjHqc@?SW;pGUM8N9`$(Q^ysZP;DXMXfbB7H2(rzfG0THr<{DTL_U@;wt5|ft# zPk}u`aRJhRk+V_f+s;*LYmq4U62)5~PE@c2aVjQ0gNX$6jK(n;=dSY!gD|4^r7nFi z&DHo&zw@||O7GaNM}zw8d>b76O8mTd9=t6Jw|mWQgN_}?vppNygSb(~y|s@l5H`!C z7|$*}S=+H5qksDu)IPLeTyc9CMm->ONjolKt!tZBSAl$vEWyM{%Cm-jfGD*jgU###IH^Aw%q&So5o|B0#`{ zKl_h~FfaRx(`Qfh@Yii2=bBEJJVQi{o~{q4jrwb?cG}<%*f>irr7q^jse(qIZ!gao z=M6z@s=9%k^_88W1cQH@{nh5$dh51;ZiH}=r9j4l_>j1GD#{yBpMEK!$;KGS@3hBD z`DYZsE#FAUpW_Wx&X=b%`Vi>_zK12-Ylj4P6KL}4kyQ2p6Rk;O2D6#}kmCo2-2!h5 zfl{D%{;*I&K|GlRT!52=YvPZ@dw-x@2{jH*xlZ8#q3@eFUTeMMYPgYh@0vqDzxW4` z@Wxi$tmGkF4GE69!g0E2@#c4!_;^)yHEvhyA0Jp+N(nGbZ-fj{?mN2bC$???TG!cU zL*~zxJXj$%1${26bjN5WHZ#QZ-<@Rx%8K)670!~LYF@c%ZDYzDdEKp?vMba_gF}V) zwKKCr%(}8vGZ*9#0)`F72Iui$4(Cmf%Tlb z5uk|skV!RoY2C`CxF{i)hgRhJ(`)M>VRWKv16i;UF!>3K1G|yfq}}7D-PPST(SIJv zvdc_)*M|P(wMwD=F!Mk3`ua`gBd3%6=rr3h&EHeJ?iKzhrNf`E5$%I^CRf4}{_QpH zJy48cLJqVlP;lgKQ#>CO3%j}w1TGtrX*to3Y5B3_-XV_>t;d8nH1FblN+H|vI?-6~ zj{k0m*9#eonJZ9&y8!qa-M={a|KE?Ni6>|8rn$PAvpjJJ`~QKR`<^J2$vqAJA0IA) AY5)KL literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/4.png b/labworks/LW1/images/4.png new file mode 100644 index 0000000000000000000000000000000000000000..2f94f2f17ff4eb21e54d2ea382a1b9c4b3788579 GIT binary patch literal 28561 zcmZsDWmHw)7cJe5bcm#MDIFr+lG1ev>5?w#2I=lrx>LFlBm_~qOFE_AzWn}gjQ8Pv zU{EX@#qwNd>gVhWDf*rIkHHCq(r(?xHk*1H1&$%9|j`(J-~!56*EEqxY8En}Y- zLR-jiyJ+FW&Q^^sI|MhM6}oKfcGNN7ad9^>mdQQ1?S|9KfzexPX0q`9=^G6NBaB{- zsA?lP2yuvU5F$P?_%#hnY8Uv4*ti>EfTKr2RyLePw^1P?GIEhF1eYSUO9C}GIJnmR z#H7YxcQw>`tmWI;xS-il$5rxdh3=>rG6ikt-DzZ7u(1R(4;Fn--cKRtErpxCuT>jm zCE4*r2JT|6^JYZzE_3>HbaefTBc+PfnszOlgxXDZS$f_l{Y)H=j*e4bG?)dqrPPh# z@Vlv40+BG|hZ7j&?d&SYazqU;|JaK%va_f3VvFikwrr7B+(rG~48#`s%)9KZM(J~| zVmVit)i%SCkL?^M`Eq`KeyYk)ltje4dBJ%?*y;9fll*kCV#8Xm%h`IY=m>?|Lf(o0 z?sUm07$1}0!%fNUTt4;3euDQOFUwzi{hZ8{LI!>@tO8SeFLHM*?p86RYu{0H z%W2$$pdZW3A|hgN`0dtCSS03lzp692ww7x#`)th3Vccl7C)jDpV|y51Stu{3L?JDI z|MB70{(j73P3M#>?|S+1f#LR`F4hiT>vxkqJM;U>k4<!n_V+HnJ`b?at-MH;enfcJbPi_hF`Q0ti#0pWXl_({N`1~uC z$A!)2u}zO4^P8}*>(s+G%Hb1{7{zD%wp|b_GId7et{D9{5LF@QtyxZLYH7tp^vR9) z?^?T=(zv^a+oP#!V{w->j|v+mnm#&VVSNGDgPjMBA`S8Ww~}%vOgnFWg%Cd4citBt z@_#F!e|JNz)O=oTB~*I;OO#2NNmQr*V(+K(oE;h=c@oYc6BFa*ZU8#l4^5u8wGHnq zX&k%`YC?U@mtP`WfW4(%F;w=ZOv}*cLSu0N9=CTSjoTsygP7w@`YX$|${V6_20|ig zNg88koaI%pgg(c)J(B9U+Lt$AGo<8+hgt?)Yrl2 zMv;dP}M`3Z05@YMaJpQu4H<`0^itl|s1S56x;1R+5| z2ySJi4U(hTvz&x*tXD>FxBZ!M=BVCoiZQ1qJLe{;;+JOPis_taYiqY+oP^w8EgSj~ z{jv~IyYcujwe{=TOCs}(AS%c2LECRz^zkN^hu8|OQa+~1Vj_G0DsI_!sl6q8->6)_ z&Go)vAS>iuo#?@BaxQFuJZ4JD987MFKgy)caXEPwoM!F+DN#7#3uji$4_EW8U!$X2ivSdYkzv z{WJEDfdkP2InSHqjEZzLN^Kl#PIT1+{NFj^1a`0Wq@ONG=jECVP@`jD;WOl#ET*&d z7Dz>_GNZ+zKEunkpzPf44=#Nde)h_4K}!^VJLN3!(*X#$d*9INF-kvbOMRm3Ub+@i zC#rOIa;j~W5Uzg5N7P&q(0#eoP&^I0jsDdJGKqq;O_V}egR4A*Yc@_om~};QFu{=H zo$p9^*zv|XBIcRat3LDQSrpr9EwbBK`6z?9KJRjijhO#J!6(C8e`Lzf^K}-ZV4W)t z**#-$SdbjaC8pU8=nPSsTZn$^oP}6 zqd#{-+cJT8d7qF!PsTXJ(P_@(TaV&a-zaS_J@Eav%McBV<9y1(!6YKU;eIO_nH@29 zJNAIsbVKM$FhfL3z^Y`n5T31wkyJ*zvB?dM_x7ZOK&*g6|w3|VwM zM365`w!iBqts`#Z$C1>}7vM7m1^jI=Y8s#WUW+yL{*+{Y9h2r$5#iFs^9twN?V(^p z{;sKi8@e^7HOd@e$98jw9*tfw3W{)#5E1dAV7ZZJzHye(Ut5-~E_=r#YBrR{nsp-p zU4FBs*=_asF)t0xYB`Y8`cjZoQ9Wfk~3eY(c?BC(*o1rJ9&xkcoiq=u40gtCrcB zxOILmZFjLved;>?(`*vZU4u_9P32BE8<3mjb2)!VNEXoGc0MU>&1=Tw`o;)n|6Qkw zzJnWXZ!U;^D+`b^)fz~e9md?J7#!Zkj|r}S27a$)=cyBvQwreY7_Kfr{+{?~(VfEp zm~wkg`r}9Um%Nj}U(+ox)>t(w7hk?sPWcQ{qY>z?W;(OEr@bR@Yc)Y3WJOKG!p-xQgPfM{`<63bR**R@8zSty} zi~jT2vR8#y*O#8nx83QvPH$N{F0|erSihXZOrjecf2i)%LI|ruX5D4&hg|zI@jXyp z5p{ldJR7-kwo#AoGl0ok$vhc3sm4md-}ZOzdU&VpNkNRm9}~Ub>&YU_WLWjqZ22bo z-60DL8=BvdzsAmev|FVEk!o}CL9Cks*}8V}0ns*+|JrY_8kU$ypA7-`!7eu^Hh%V{ zj$T)C=D|K!a_r^q#s#uhCU6yRsw|!_!``vZW&FL?6>xR<+dRv%ea*MkHGnf0__x_G z;I(R$Z76C~UJ@z+3;}h8WjTdT%O5m}=r^`5I)fp`2iK{QV?Q+MPv92BHb$vS+gQ7= zVya0(aJ5qrAs>#oJZ(8O11dZ72224gS4aLINS~4QH%>vtvt!e;1;4hT+*7TBm*Fc- zfD;$>kn)@s9F!Q~z$p0l?qd2jW);EUsOxvJ64K2s+VC%g^3=VzDe_Vga~t;i0_1}5 zON}#hyi+S;`OIen@bm?U12aE54kx{2xNI3c3dsxiX&S^ z3RrgIe5OZd4(x2_B+>{LImOt6%-HiO_EO;5@o>$>FBo3i)@HbcIlGrwuT#o@k8~X3IZLuG(dbevX{4aeS6a82=<$x2N^`Mi`RBR) zzGn?2b{rDBh4+1~ooSHL&W1e7m^cKN5HJ@SlxAY$=g&}sA>9nmZS)I?bauOwrNvKT ze7pv7_iQjiuF+A^zLEv52H^*G^OD&5YI{%h84YEV*>V!YW%n7i%XaY~Gdd5MX&^t3 z&c*4IH0{~6SXNp6H(3+7;M^RUj~bJe>AYc65JS67&c6UR0nbT{q!G%E1cAesOzpDK zHsX^ueYN5rl_(LuaE20<62`5QyQ$Qp9B&|1&_zW>t3b#2GMb(%5_t)pp5q0Fe;Elq zhb|#;E#Y)gS}3RLxJtba2MR{V_J@Ayf-Z-HFy^COSs5N15ic8b{~BU2PpP1~4un}i z!>BQI%KvazlkNVxsSu#&2&oAa4-OFw+|5Y)j7dc4>yiwgv{-LB{qgcgFP5OfBISh8 zSyXF(R7L37XnA?llIK^Y$?xU4W343PxW{pCwGcwcGUBG8Tw**Y=F#4{TKKGq+l^Pm zp_k(!c;xS4+tIA-3Y3#&$z898KG)2H6`s%tpwfMHMS_ z8aBRkGeBlPl*$SDIAUi{uT1mG7?;>-fdg59SK!Qcy7f2t24UNNW!uLXJ2f1lL?DB_qd3?NH#}@8XIEngk%&V37sTrH}m5k_gcu42!9pvJ3Vv6(k z8prQL@Wi%3l14jm4u>t*R^%dz-t(A-7f?bgF)3%6oQ)D_m2~P4>X3}C&BHfBh0^ltP3vr-r9B? zw)^cCrPSva<(H^lG(xfU-ElAWzihPBvo3{#L2~D)cEABoZ?<#x1zOvD?=R;5k((%X z02-OTA334EbbvkldN{DZamg)~j91Ao!J5-*=4At#Rwywi!y}1BW}fg{ex;Z+m#{gI zTE6Zp3GC8-XAY66VXHpYwTbj{SoXQnh`R@uzYsWWQ$Mg7d}s%hX@4JkoOx~3OCqSp z%d<@6q!0ge(QSG6go=emI%dY%@8538*H4a=^C<+(nmeu^LyNyb46*n(aDg# z*bc`2WDVdUdrp4cN78Dq?(rxcHCsz8!%OM#7-hm+&4g%6kqIfN_vyA8YAL@rXNq#_ zRPI>}6&0PZyrB{e z)?9c!-eoPb=-=-EXwKe=6NZ-R!SlBVw!QW>%j(VTB|R27rSjKf%=^jghLy<*x0in} z+;DUsDgpV|k#@xLH*E{Uy#4+UTv-p1baLzNBnzrywEpDtB}Hgv@4Ua%CHQL#JEwI7 z+0LxaS%CM?@2Ra`&zz~A%9lj%oIZ6BwGDF?yBiO`60CsfoVGd^L_KNoyk*X>jS zcOgj7<_GxZgIFNajs3S9b011AUXN4LNB-^1^&EcZViDdHJ*V);il(Jg!L_xcUo{16 z>y$f-ZB37WlpYHPtRMYpsuJrhL(t!g_Ic=XuL+7<;`#l6zzmkF}YO)Yre!L?&S zlXbTs_dp+~a*R&3lYb@3IfrgKe;+y@{>jHq)a2g1H}EL(`}@1W)Az$=%Wx?QdzzE=|W3G~XEP=dVKpK+*J^o-+2emSmKMPGa7u+xq(9{2);n+hgds`~m5 z9Y6MRIryj=x&x7|7Xt51mbJITa*7ies>el~7X1C>S3NleDA zzgqDb(CO|NI9h9jkSrge1QuuJjhm2Y!d7{UR%QB)ZvsiAs^(=mLNerMbrhuVShzdp zgwre+8l`U&Y>^Frprm|mDeTqe#}Yfh zTELEaj{yv&mXZSes$)4OL3FgSp`)RrNSHY8@(UzM@*tNk`;)e8uc1HK$;fXlkQRJQ zZ%`22NDejD6hFSDdI&gPFGesKY(Bsx5_nZZ;UKaL8+MJ0Ph)^@8`O}&)xmo#`fxhR z?zzf8c^-5^iNS`(OIrk_r{7j9Ye;QzR*{LjZ8^Tj+F% zM&s9qU_+;2y5Bp!|8jpSMP?lt`?;G>2p$PVhfWD%V8j2RqU@vCX?Nbvas#lUDH%m!_na8alHB@CQ5D5UKJyd{hj=zFDhFZDju8@VBT zU|pY$Ox(qZ`XQ0kMa$5~54WB&b*giPK{|kiObNT-(=3($UD4FWFJIYcMpDzVJLtt7 zl+`p#^Gc&^Q_W zhN~UnewkFyZTgx@SW%zB3Q>xc7@rt|9O@sB@sb{%hX6}Em_%*MjF5Lvq_E<}ADFrH z!wpmT6;iLXjD0Q@77p`nV%<*$Aw`I*tQtGRL(RCg?4Qv#ftWZq!>E9>wRxSdN{u<1 z7fSgh34c^*NM*KCUy#C7Hk(zo@N-CT%RAz8j3{@8GP>POcxV4OrjX7PH2&sK?Z((5 z*SW=$7KW)okq6|*008e(SvSJsiE~AF&6KHKa32kmA#ISZ^A1a+Xj#{<-6(Nkx$}28 zP;gS5LxqkU|8-Mcs@Ld&vK>C#3mhLZW^PRhUc}Ka4_?K~(H|2J>q_a6Bl$Z=6>gv+ zEz9najX#I)$MvKlz+iNDu!bc>X_@{Mg{T1Oa;z1;UAgBO9MGad>M`lyNYA#R&lH@R z{QNIxf9QkP)Qr2f%7+gQSZNSsnK|)2vY6=GPtFZAxJhvMv0Z#?CWKKn+9MH?lphF} z0)}j05k4vOtE;Q8jN$eUd9x>B&WEL`N1+i}hsrhxl^PAxNRiSb1l$;w4wZ$K!uSV8 zjjg{$9JKeq!8WooVtVi7vdY`PPg_7CE%*i5_`- zU(Q>k_k`|$T5-mdF^wQgOw>W)qwew85ad^GmKydCId)cfqlti*=Vaskye{!jMxqRH z{gN8pJrx6jZ(<^ODJWU!BochOe0fn?4V`3Rhr<9- za$@z}kP4A|l)ppf2Df-rb+hNyVMWg>D#T@l&(YrLerN*a0Ddm4tYBW${DQWdeh%@P ztdg2C>ETn>C_O=7A z2Bi;WTr||IK1_T}qCugwwe^KH&)NxJy$equ<51rW_X<%M+CVz1WrrttMJOLh$htuH z_*Ooxd`FAzj{eV7Po-5A!zG#gr@lsmcuAe>JIdrVu;XC`=d73l%G%u4Pr4Rxf*W*6vjKkppdIt=EelukfTicOSpP&msB0_*0j{ zge?C|zAv(cil+kF#OLmv3`NIOa}_SZxq3$1gUc90|*1Z;IxQW zSu|jngCkNkU(F&AM8B`W_oJe~VD+QlFEBx~>82J^pCK#Ry)sI7ni|3{K@IwaN${1o zvmH4}U=}Yx(mEY2=6;nIp84)wHRf#)j1j+kwI4Yd8z;8!pfe(@<4Zk>XP3+lJuH|0 zzfks5&j#>e`*7l3#E9u3jehdUr79g;4dBD=?V18-IGDp-_^R|*H-6?`SN*Ua&E>NE z;<}mFRyy2V(p7fznP4;1F3P72j4M(q9tEt>+ZgMkzkV8(y^YjNi1d?W$PhTl4D1I+ zwN*9Fb)N3+@pdLt8Y$xApER%3-xwTmv5>UBf}9{IaS@`}QPS_`Ur_Q*pb@;RA<#3_ zlDT6`MyN2=8A5@*75|!U$zS>kUM$r?`=qIlu#}^01D7Bs_^1H!d8%R>8lfWp z#(g2^5bCK$u|m2b;IQQS%7g;3^N)|A#mWXZ0|q{(hTCst9i1G-R93`q68z?|#ZxbR zM%f}{{2|-jC4*xF*dGde#bXIp8f?VZ#x3ZTanVcCW8I8h2j43BJ8O>fAqa zVnYd<){TY{CBzWU#i`8}_Okk#DMu9Ma_nZK9GQWZV?h`hjFyTqv9w`vM}LCtsgAq+ zW+wG>l=Y|mh*X5z7#a6{|DzWn{+j`xCPysb#F^}vydOgDy9HM4`9zmaYB3YOynyL5 zzoxJ^4AU_Fj?g3A`!LyUa(8{=dDjOCvvgDn-^IaSb1#eKV`v{FU2ntT@J%=xqzjG2 zcbGR8b|McW-VP@bx>4$ztz)_ojG=g8^4RRUFq%omB6Jy!g{)`o8@haU*;`l3m!oCl zuSv9z%k9hj?$|1!T7i$yuF<@QlWm-C!j~qJnalKe{&rY|wTIVhD+VbkOp%XJA3p|` z0ChHy=;#+73O?Lqll?L#6Rime!V7#Ak9V`E|aQQL4ij3-C1L`~M|C4VUw;QRkF;`N8arW37`nO6Jow+11%)HB|xE zkl)q5;V4mL!baKIWlF(s4cFIENGwC0n^dCM)Vt~^A#1bY2+iANrf|rrQt*26o-vNB z1)M|5I5{iA!pOTjV)m_F+rGL8HwCIjl-_679`*(SLe3AcQw=^4H^mJIT%DOetmpD) z?yp!Pq+(@u?6orf`_gXat+qh;qhfg#AC@uM;jzAN4~HL6L69oF{GelyK~V)a4Vf76 zelz(ARpBQBl2FrI+AbE>YC= zLy<&ogxrHOm=mKH1syDG&A7^7|8-$=`NAZT8d$_A2b?6h^$(G>ef=_^+RahS4mF9q zkV70`K#d_$(=+FM`VhbZ;#FuY#4d4Zs8A$Fm_I8?c%;Qa2e1?Hm_+Zm#P#14mL^&n zECz!MNLAn!v2hhE#%Q1q{9_~op9n2&Fj}iIdWE#k_6ndrtEAHCZk&xd;wV(8BB~Xp zN|g3TF^xE?Z4ByV(a)a?m~`ZrRh$RT6+NJ$mDZ=JL5Ab$xa^mN7+F|8&e_N~I@Yil ze$#`hl_0-NwU9MR1{=;tjv?ugg8L;@qbR7T#6guMr$v{!U2pg?d7LOt$iUFwre(IK z1*gab_w{I}{fee9zkLXXwZpK_E2+-iT$Y1<@ErRfR>wkTECUC?VvVN&-wf7 zQ&1Eg$`uRzh}5VodOxFo%dYi$Y$TLUqWjdCBw=r+(5Rd5A9a7xrYfPS4=oXRG*jqT z=w}cFU83FK^_W=*GCd`FBiod`MvU-6kdM@8GOO;$*Q#$!i*0UhDF~s9%|Li_8R!Pu zXPZ2;cAa^&4j+wF)Q^cU#ZWAYkGJV#>M3=VG9tRf>~&6ePJhH44S@^KBEJ%OD)Fa{+=sr7cB0%V{V%0!qN?)as9=#5rKV2{XdFrt&US!~O@vWfp zt+n~}@v0|lep&76!#@xR>6n@2(_e*WGuHZBgfb?ChXW?=+BR<2T(Ro=2$beR5Y|-~ zDrb@kq+^q5V)&>{DTal`#D&*N6tZ7g#I?!ZVmEqfoEIkD51y@%Ll@Xgevnem-74WP z8;2GRJQBta%>m%TsYIr>ArO8ZtIz`L`ZmU~*4@@#8xl=w6}zTFUWs5Rsu*U|Vqg zW6R}sxNs3{^am(@xrfyZ+3s(f3XtKu=eqvx)RNn^t8>2Tkq7Rr0#NVcO#SQ6yGnd- zi6-}C@ahp$N5kkF{6{;hLJF-OMIGZbz~OIeaezvKG4U#mCo8eE-dd)rmg*K87&eDh z!cL=6rs@a6{|=lT`hW$9!XN+>=+%tlq?{AA<$ z?+(WQ`=%PFpN$JiXFx`*?CJdSg;}8w=$Ssbj@DGNvi)@&*d8z~%`kGqVB<+2PcXzkw;?1}}(P&tD*J{er|M zp|iKY3&9}CSEE?=I_lsu8+kT7JRBDhf#&wLHL@rI`fS)=AkuSltFe8%HX#xAtQP{t znOdh!IeuVyDpJl70ne;z=zMp&sJ;EL@u9{509@$xbumua4cfK(O@U}Q)o82RVEzC+ zQyx2cp)>hqUvV}D0~lGay`gm6d6@1q@d^-)jl{VW! z(L@&PxP^*+`fx|i@fuKC1ThTjE!r3u#wOI6M`qV7mhJn`GP*_2=i=unSlt%g86UiL z3V+83g5;+s{d5~GR>(k998i(p1#it;bU$(sUoHXfX~ zv+aqLs?GD(u?W+#HsE?o+6r1mIW2X13R191uHq zZvm$p{#6561k;oy4aCj(2$BR1M$j{2B=z{vgEWimI1n+dzoY{HoiY*@`AcZMJ0^7A zx~c=ZGN_K@tAc21Hc&gH%03tuy<)lyP?cXHiKmz%X;KS>Qn;oLn7@oBeeKj#nL!Kc zG6t+>oggj!#aA^#Lqpq0P!@>;g)XHw21A#h8cv{qu?sUM1B*Uj@^sW*fTw#h_tj}->>FG>hcO_|j)!ZFRZXT1do6i-4fBK-e8L!#s|6OA+#+2k_ zD|=28_H)_-X_AvvneP7*VC-i&@!1V@w&pkEeCrsBR`bByM?fNVCXHtB|NgxRE7Ttb zRo&P+&Q-G(dOX<_2))&kzgOqW@0rzu$m zOD@H&Y!8rn7aCSexb#Km6BVJ3RjUjzq{3uNi*{Sx$>0otWd%-=aVO(m3@)o#G7nR3D&bM8RV^Y6N)tbqB zT>N}r1oq!yyx)rpQRLn5S+HrDpye1AU=xFXPwp{k;J%8e*p6!INiQX#@RE&9DMf?8 z*B+Q1)61wzO5axA+9kbGj7*Yll~g)ve&=wYRb)C46OKCH7{=G!UsKp(@!?K_>>Q>@ zB{@6$Tema$u0tm~aO0-)*pg~o2|7$96s9U%=fz~*=7Y*6m-E(GwJ^~O#1OgEjChLk zl>o&wE=jLcjim3WV^H5ntgZ`jO<>p5@1Z&Chv<5bXY#9783`BuGlWz3RLY^lK8Mx$hspl_{yOpMe%k_N`y7 zzKXh2D(E}XvOkR9>9MT7u^3Cu+kTP0BJv2dXx`G^e8iX=P{8_gP`w zo9tiw8P|W{z`DHKEZ43x-584dcN6;D_cPGk753(;j_e3Xx4nMe^&|!V4DUiv<)+!350gQa*{tbD=|^`y%{vv)0TEY3*B6v=O0{3 zFen7nMe)5$Qi#g_H6i$48~29nW^#s&L1KlAPm-a&D#4@nf|F-mLcPc`EWvsfz>zyM zXN$N5w-r=&9GRGy_7pwn#ULE&=LrnTnt6O68O+_nHh~NP%-@ zAU0)0cXLq4^FcU32oK5y5Ra5x9Of4;T7X!!kGuoEg_)Vz>?^%?h9I!nEO=esm1`mXc;@MP7| zqFmH?01dGPi9V2uq^gIHxD|nWKJ`6yxF3XLi<%q!pW<6I1u3ZzSF+;gH&DC5I`YnY zr4`Y58QHLD;{VMo1q3u+vsT&!`YpgZX2ZL*TtPXaRaXKD;iiHp?SC0&r??$jy9Yk* zZ@%?H!Xw3s8O295!HE*iaU_7r1b&7Cp>Qe#xtN6NyL{pIukT0#YvQ0_wn0&*fvN-j ztoTO)2GsBj>+AGK01&pEWKWN4R zT|Z-x&MS)#7~t8RyP#-s?SB_a0%Leqhk|aInRa;%V$Nq!l9Ym;S36vi zLM?VEjI72{HKJF_dWVPHEwpEG+{^LD7GA19@P&*%5LBR%8Q&i@CWN3c z2W*nDMenLJK_ymTkel(Ys^e0}EpmwJ1)J2GiMOieVak7CR|jBHj-mK$NYsV}#ri$?sjAjLsfkMUM@8322Z-90Dr&-8rZues&a6$hXj-nVuAjyF} z>IK$#szjZy!jqWOBq;Oal&n=hl)R=$;`JGij4;nA0?cGQg9UpBg+ z2rc~@wPY426%Xmg@ndvD{0YeMFHZpP0IOnaT6E1g0M4ybK;h&(JzHaKm4*I&j?J*W&Hey7IKNI&^?Z-%KcO*ondS)Ps&7-H&c>scth zedWbPh;epi2)Yos>=yU{>Ik>rT%K~ju&4GIU7+hTS_6#g3A8mx%lMOs`nHc7-0T#@ ze)%DEF{3us;pNr>kQl&&^xx79hbYesi3~4u4)IzU*QvSDp}3X@oaU(C7DjY-oJjgS zRx>hQ@smC+N(t)9YjS6O@2f}jS6YUiusQUYMWsYW!KQ$Q4=%q4?;C(c%&r#Q+?q-= zuBX$()f2;?Rk)<6W7U@{5I{Pf@KYq%tz9F+m%qfJJrcV=zozH`4+bFgjJ_0yD8X2@veV=%YvSk`dgqVz1819yczutB_^e> z{|Dqj6>;VlIwx_}`QhT9#r#86^7j+CsV)I3)d?F0q*|Ge;@C=qLQ^1#PV zV9wYDUJD@r@dSpon^lOkjXp0o{BMYVan*sbZ=v18`D(iJhgq77Zb1D*pBC>I-(!HTn5PgUe-4y#?^YO>m0ePo@HPN$)Xc4)DZV*VSO65zaw! z8bHtU71Cb~>$kmF!pL~Gf2CDx*KyG6ewWwF67pk@!0%&r#6}CeL9>m#;>NXPAmFwU9cq%Z!q79 zOzHkc-|eTr*3{i{X962HlFaxEUU|DVZnLG|sx2G${8Lxe^iCt$7jy&LcI3uXxb55e@KbgGSGG~ z-%|LmSeksR0^Tt>;5=`ucSQwu&wae-&#N49?GMn8=EH#*t64WVgra0kSw`l^gq|K& zZGFAEsMm2913&}nV<^Pfa18VZeSEh`8(N&fU$cIf^zfsK$cA0WI;Q=X1|o9_F(OY- zPwN{Zt1&@|w%>yX>(2(Gk&zM8v2A<#6iMaCDn;IttLFDxn~B3D;sdfr zy}F|W(tqh4ajklcI(*K)^Ew^W3~JuC|1@j1cNpaQD^cID=8wfIG~xcd@%%svPiP+s zE6#T&X-t_#R9CeJ_r-n4_OvG^Cg$=O{wxHn()T6(C{tr-0p7~`<7_jH7O}e8+K=Rz zYbvU$`Gja4y$&fAfZh5ibFxsd5PnNo)8-d@r91~gRe`(ezWwuskdDWImS3&Vhyab5 z^Bb{jRI~~@Qo#NHe}kb$LgJIDYm%XEnTkY!XtiPl5BcWJQuH^Hb?qj{#y&mTFSUC( z0SrD0I*!bCe&ktg2K_PIiw(zr^d!=58PHo>XF~i>$Y~JQvT`aPRNKP&uJwf%{HRqT-hRycaN`v;RmHh;i_sf1y1f<)YjZ1|n zOXjUjRN|AKp<-=A%@I}3fYaWhx*Z-(BuY5uNtC9HCq$(E`8pQ(hE;rcaG$up0cfuK zo-BY(h`~uLbw;!e8o7$Po+YI}g(qEb6@<;ea5GPOSq{E|5L{OKf`f@97=J1J*_Oddv_OA%OE}9FlVrDr!v?b z5U%WqfJBr=w$bzy#X)i~BDPf~S{sNa`}!w}lcglv^9xkMJ|uJ@p9nZH;n??zYuN`O zIjVvh;9A1s+}t-6#8N9XED92YoZ7PZj|9Zg&;_i6S}UxAKU+=KK%`mKzd_x?P=W0f zutBScyRbLDn`dJan^HOcedI)n{8V4aw4E& z{fD;3WNrX;+mVobGh#uH;swg*7tUFsFrr2EZ%iW2^!#fKpirwpQpVqyjd&{#B~v;N z?C;ax)>SPzdwiVZj&W=QL^R)A=F=-XCA{L&dZ4%m3E&=7>uLiyXJ-N;B6(xuyjw;% znX)Q4{5rc}9gZRbUq)tLe`rR;1Os*EhtfaNg&d$A4;VSbx*RPnE>gqESgxQcG@@ZV zOHADT3U)<}3jjXFG7rE5Ti}=~c-SlsZ6eLu-Ym|rb7~5M!AVWkI@z?4_h#WXqvqH= zlmk;c6e?9s+7q+=nE*zX z*Z+a9UlK+_IPt;gL{=C`DJ0?S9eA88l=999b@}Re^3Dwm^CRshZbi@)d<|Am>KK?= zw*@A(I(_d8{T?6o*SyjYR!=E(1ntX|^T?sp3GVs+9!LK$Ic zqpfni5?S`AeGX7~Vp7sD$e1jEJ7tqQbiq!wI9qrC_3UHiLl|{0ZfXRVEZaoFz;1ZD zqQ_x`%hQuACd3Nu8CLaV#!boAI}X$7O`~ z(}Y#j0N?_Wz^f%EAOh{vLN@4V80JBz%eo!zi)O;8XZ&z#qLOV)6FPQKSYOis)`y;W z^!xXp_4kxOhn*rf!$s^EQa75F8y)L=@)v+T^%bC9keYMHjXXds9tL6}BS6+EmrU!< z5_y5F36gTBMP{waY6D~XElMLyHU?11xB`fZ2aSL1PG{7V%YLk|LGo*0;gN>uQuNlq zSUwksR)ou(2n@@;O!>!%T3gwyp!w?)s1!WKg*W@N70{06&lcGpQt%H9Ss&wp(%fuK z6ZTQsh#Z~1xcr@~eL7oz5kc)oTZHcmmS8FrVB=6hyhKk6B8|v?G{jCfcY}o z%n&{ys?{nL*1!AB`~7o%t&?`V+D7G59q+A-KeXw)$m48l3YzEu0dx6erm2}s4xSL{ z4ujbk=wJXUET3ic&j1yFOYRoY3$3H+NuPhlmb_pD^RCFwM<07%M3i{4X{8-(B5*^ zrUmMzW#6`$ukV#9y^qECfrl5U)O^iDGDK>L%(OJt(=Qb@w^L;7@}BA>ieM|e8F>Ju z0K>t~c5qPAxk82qzrYN&a^L5>yOn}<$2y=BE1z~g-YbV-lFBHbgM|QaBpxK(B z5VTV0LwN4K1690HcC0u*|1DTJTJ~?(`F6aZs+uP1_pQy943CTBRxSwE%Ypq}iRs;XZ@fy1Lg4B#X%adP3YHf0P?^=u{*xb$E>`@-EUor5bR2 zGPD?g%B}G=*ue5!wG9+DH>-QGKnt+A38?!Q>*<)&30CC`509{#K?_pR$2ah8;fTjT zgR*iO{aV>7x6TR5g_?1B`&|4ZJcB?{DDoIJ@Vzm!oXihKd$#+)4qixrxyGX)9EH7RybuRxs=`Wl16>9>LGqPp>&2h8!R zhG;Qfs)U=7djH0ArYd~ITefy)<8j)wl})nz&xXiF!}x|33J~p1_?@>t9Dt7h5FmOQ z1DSX4H$8V~?2L>G+{8c7;(P9Um3{HS-{KxDaT3rfLcC{Dbvef4R_TX_l?ntvp&}Iw zRuxK28bpZoWOMyyN>xsmypAk4zwuWqQ2JgQ|E2AM|4wVB^%9Da$U!&sp=LgH(0-Kq zt1$G+TBu>$9wDH*{kR8RKpNBNMOu#~=xuE(x^z7NQ z4`%Y>Z0QIgw?6Z=W>etImIA!*l^r51>?2MgcqKWJE!-5_^$r#4fz_fCF#zrWzh;Va_QXG zTk$Omd!C00pqmdwk*Ie1`q*kokiBC1P}pGmhi8w4Sb%hrpOKXHN#IbCrfASc4_SS= z`YiQxZOo~$@#lm1H+P^`RJLwhn%acGXx1EODGam4ziv+Y+Nv-|*mc>*O+y76iw{&E zOV^y@aq!WOZhRZR+MQ5VVmwO-@mAk}i;wT=c}~0Fv72>+LR235YAUCJYhq$l@*dZYdlva-j?dMlY(OvFlvYkmHf@s@syw~` zXz7i>V*Clj(4-Ua|d_1IiE@f4F{d3yRDFBTk@Gys8>+wLT388Mj_P0@WPV=-0nX98}#w6hV8 zEG(d;KIStgaXHZdmN%%Qa)ENJi;D*xby;VmjFfZSe6Qq)Jnb}YN_iqeR)(L8|Mv-d zFj0MgB?~Tg|MsWiBI$Cu$J>pxOVOID+x;l!LaMX*($_yAQ#VE%9)2=>u-T380$e4; zc_4m&R55?|8@#)tY!<`c9f6^*d8}1gpt4|zx|6#Cv0PkNSmAejnS!W<8hCET&5mZeDsEn;*b8o;)wFCZ5an{`6# zxrhI!v9pef>g(J7PXrM~kwyfRc3|jkrH7P~4k<-Ir5gkhX_#S#j-SBLAt2HzHKY!W zl%%wjNc!&M{jU3Y-v8d^Kdj|iGiT1(XYcR+UZ3mQd|hq)6o0_3@zM8)XH!}8S2Z$O z`SsW&WR*=M9&0>7)J1~1I!wnS7w-KSTgy{E(ps_dIp2MJWH@Z3CfeMR7x>+pcls;i3{ z4ErR|za#&z+=4@Mi>g_OTdQ7fK#na8Rvy1O%>whVfNIGi&`(MxiaFr#SHy){Y0!nu z^DEeappBVQmgFTklH)WSer6y@afV0Xx?Qi?83aZ&KyO3^J9H_PP(}@J{STJ97nnVQssgHuE2&B`lt<1S!%0iMo79PdP?xg^^ureT-Vl=|LMrU4%M(R8 zf_>0kB90kQWN^W;#2k&}CRP5VmGCUj)75{>Ou14jDh7!H)FfQ|{iBTlDNzN}uEbfj|0R0vU>UIj% zb8{s@Pl}ZDCR_G!hS|K}{{F!PIoeVWF{oM>?Y1Z4C_*^vr=*qKH?&SVXJ%x$o~QJ< zvQgGEQ}Y2N;S*_C$$xj#((HS~-M~G>#Ox*-_zGkwqAwDqya_H!>*=u_x`!`AwU5){fJ0WJDy zToBneC0E7`yG^;`+>UxU#Fupt+N%ps>g8H+BRg9h3Hr}X?A1=~Zwop+iOq`xJ4gNy z!0WLCV*6&3nk`NdS!csGwwfgLYYt%#?@KVA^by5CUD2x=Rz>aG-G&@3XNw{kp(SqL zlu?;ECl4uyHI>IZ5Qdo-Zqcm=F#Na8Hzs%70gx{W||NBj%orHN@ zfSUd&^*C3@52-ga?kf`?Tbhm>{?w0)gN{u0t>K$wew8o?tg7K=+q( zCa;v3Dn_h(sA?A4MLz`Q;+u?vrTvxCTSAl7{$&hbxb*UPahNA9Jm|e^*N?ytC$uKe zV+`+f-{wSR@k9*Eq5pU~!KLgta9^@kp4R|963jo~H}z%a>#y8DJvDXMFok<%G$!?1 z8r*vsoyJ)_K8c1lrA!?BqijVbQuT3-f=hdQxuj-ONk zTr5hAS(hrN|cb&FG+K-N3`v?apdKOKyp@Y!LwmCujO70WTjOHem6E|<~DN^m1jYy z9^|=Vo^l-+Us7e$ z5NfY!h&<(2M345HrIrknUV*JUIN}yQ^u}D;eV@0TZGSwar~s~rQU@EUS-xen;(Hsc zb+0xVyo8ygh{TE8#*};~@fB6P)4$VuKaD96ZJvQ`Y~c$*I9&+}l;#FNf|3QzH^W?= z9OZgOxpN?Q_5uwqXKVmyqc8x>WcY)qiuzfbfm9LK#Tc>PaB|iIH;_UG?KjJS0v8bz zGio<_iJJ=s!=39(<)TZ_O{>lKQ;Iop9b<+)=_e|;u*&pSSj8z1VK0Kjld= zB_KSfzd-)FE1Nrw`&tMM4Kx(l1sVm*K-^CRyRCK4tKC3hE2~HX)foS?!VD*Vt|c7yu@FJCCWhACSSpO>9I_Z`kR(clZB-lnx8LF-$+C z6>Q2uyx3qL zuX9XY>t-zNz8S9m!2@XlQ8gS+4+G7N+_k$7-*$qn?aOD;L;`hybz25Q02v)kTDM+Q zyabwWc=^86$28dqDAYor9%IPZle8BsGTUxchkQsfU&P7g&~jvsXM(KCCJR^*k+S95 z@jl$nAAxv=)Se*B1HoGBOdtm!+06Z`k}Fj6fVZnWvUh?`!_x#~By7Zq1_@!+{zV(V zrrulKT9JJkk-nE}!^IZqKca#Un`24Z$zo}`>Bz3`8o9Jd+l5mJf}{L5p4ihV6H zUpfmS+=?iMNWOsipJS#kamG(2Fh7+cCKSScj`SGALX-WnV6I(Jn3?4KM$U*VOPJwK zhXl*U4a6wOV> zzBFVB!JJ$0{LOK*<`cJ+>9aOlALmW!v~P3#(cvHtZ8}$!O5(R5ayXL~;R&zJ%8LKR z%9r%*7f<}V!3opHOG!O8bA$TtD<(iyh72X?|MX9i@y2H*-@tp7tAz`F7kav~jSsZ$ zpQ$xB_}>*ntZ+%#^ceX({|yKIoBN%jL*SlzFi<8tlZ^GR#j?BM^;m99g#$11dR*;8 zCaG63(;iNalf^z^(sCzvC5}3G_om~jJm^;{T`7V3zRtnH|Bc=^Wy_-S?YzOc&e0Cr;z4T4<0p)lz%IrVtomfPZo`uY z#Ujs++>i(M3wQpMY#yu`yRKJ0UE0l|Sc-6yRDCX=-gw?eP`4B_w_GU}nDBkL66-Id z#{_ErO;zv_+6ySfRF7MA^9o4T7mvR0YWgb(&PgiQYu9SX{z&I}6Z?{dXIPO#@^L@) z%X3~88A;vDJI8TnRVH3I)|$)S!jGV(bTDwX?*4&&=76K;R?Cr~S0uce2-z1yNcv+H zm4%S!gR~OIB;e6eN?eeG+ER7lfNc3o%Qn(9Dht(3VVS7nnZc6(i8l#%eY}S;O9PWO zn^iKCp2Z+w+BIa%u7t%P9)hA3ir122*@dxyWmjUpy?5}RfM(h?&wLKJQ{9j2YZX=> z4oqD$NF9Hp8oef1BuX6Ko_#kG7>Y^fF>F43m%i6Ol*&F&tK!t#J5VG*YIABuP{q0! zRqCE4GNHLNudc*eC@Xr-Jt-oq}NCbshhD2>E8_&rGQL&7ik@aMe9*}3ra z!_*#~n&-_`9Y!q-ADoh1)jZ27qCrl6xLk& zx?_)PXyHYFt$N&3vMG(@fm09P0b0f#%H(=AT^Xc#9L1Xdn;wTDNjp_LiR~wd+2aS3 zb7FdBd_m?+QGOOoQ9%|=nm&4EI678mt`!`a9&L|#);at6Y}P{8%e)>1OYNj5Ee4)+ zMx~5brsp70ftiCJ`Hw(a*p}jyd$~I{L%g6;W$Nu+MEk|6>c*1wnvS#?ufE#{-L(CbcvSAPn=>o3nA@7!tH}{u@ zy1aS|WaN^%z0S?GdVi~+#(6-?exn zW7zo0f=hNs6FRXDl~Y+9hr@bUrE@BW6buVbB?@cY#O4s6c;6VdtINm!P%t6GFu$YA zY0hW9t`p=W@Ph2Pq&!W=?=ganBo}~H&QCZ~x<0+rui^m&SLK(N{*595Tw{Gq^h4$>KBwkSA$y&u0vii>-B-_d46-P5NYejnjsv4L=Ky}Zjlo^*g#q)ygQaY}v4p}y~{ zJ?tbS$`Zzf*O*J7OndDP9#98C9&& z(7jZ2D+_(PklTNkm0b&V*sYe*q4u87n5KK1O{h1m?<3w`aC}^srdv2^VM0G5F2*HN zn6+iJU^JSWkQg{fL|5 zeFGEGf{(B9s0ICh7p&74!u8Ff^$zw|xHTz351BGqQy`cmm_%csKqPpQflHSAk4Jf_ zhq-fyccd#<>3h7#w&VN#^+qqk!jZ|E<=BZ^8^%j7OUl);@0Zl-myQ#1AE4MoCCqj4 z>k{mGc)U<XcBTz z*>$pX)@=}Bb*-kyQU0qhhCEBM-fFqPS$M8v+b2IgKp9x=aiMH8SOwAkL6yxbYN;i= z`G_(;b2SPWgQvlriQx{Ag(AsX=MH;>b3sWxQ6*Cs46FwfoxQmDJbU zZ9dKq%f(j%s(f)MI?E%!y|mWkRzk3-6LRp2*u0}jUT@_w{W!L@wSsPBA1u~8sM@c8 zp=9?`yrXyLY7(o(GM3#P5l+*1mbiC3&9GsALQVa{F}r?gOp-?T zg{~fKXu=p(nW~;s;)^e^NY&HLK(QDXA_mXj5m9kBCmX4hShIDx(10C z)K(+RR?trQCAV5wwWtT@PNMcY3{iXn%Y$ALRES0sg>bU+x6N#@I0Y-+&ed=YgmoTO z_fs`wA{?gGLltCQ|C<3Bsa?2wRX=Y;UDM(&YqpdaBh4q}(7yu^tYdFpZe()-XALrpGZ0>7wM&z&aEsys7T;5OrN>2zeHQCD45 zjD5AczUlXNe|D!)<%_pn#t``@x=2=Ii3@#WjvH)ZqI%W~;6;?xS)im~XBI$!F0jGK zg03L;xXe!tUX_<8LLTIr_}hk(!6jg z{OrP4@bcP7YZoVG#2!W!g%)q8;AXFI&_$1^_To*$`GzaP=|3ihmSotPJB6XUI0{8N z;YFlQF?J8QGw7@r*?3`^{;?wLBrulUK}WM}y@XBgL?lTxiAKzS!q&*ezu?Kqf^d>5 zR;~c#b0^Bv;7(Qxh9!&^KUQ@Kj1}%xOQKLIi5y#2doueRh67spMkRZxccJk8fkfpC z%mQW062hdKFmD4$!wG%u@!p1k4jxsgk)K zkaCEL8BTq4=A<4Rwy@B7pBU4Utzn~9K^2tJkw}dQ{N)5QlGeQDmWZoww>CD^XCdmu zYQd25`Bo1_&?5Me8s$`R?E4af^Hvs?>oww?w0CwA#bGfBRO5sOEJ8hLufumiyB}RU zq7k9pheGGFb*FMs-_3x3n5OgY;}$57&QPp0X|SV3e(b{N>F8gE=4^T}aD_CivJI`C zbN39@ndv<$a=XMc#GOd(xR13O(B1lSE2~Boe=SLT?2E3$!cd|;H8)#x_M-T{_B)dMfz%5hsqjNy?o(k+|=&A z;p$&*QruxmvD`Vj8^i!JZ@8P|0#n)LQi{}~CXXfQe+;@m;EFV?J}L1DK1a9XU2#13 z6GN)GvG;>w&{Vfrdxy(ra<5xEkq=p06l%MwS=%}zmL0VmqNy-wH8qFW+@w<1-sgpU z61v*g*ghNHOF?lS2Kb=Zk16hg%#jiM1+P%f*@{TvHJDskX9fOjxzc)>-eI~|VteF- z1!s(57szp?F;e7~#gX5y`I%zaePY6={2arqw!JC|D)awdpJ(oiUTT1qz`2v!QN6mY z#jF}9lRiB7BRiC(8JFGLV_luv$JS9}sv2LPN5IV3Nj4JIp0`;S8lre2s5jC#8sD>b zoO*X(>viwAKfFq{Dl%!9Ewds@MQ3OvU17|}UshYtD!xOhr=)wwkxv@ob*&tY4jY`? zGGb%|H|IZ-jtzkxZFd|0s6rj9@*P@h)s8sp^pMdi!4{*(kM`6KsKsXc>!QG_s_D9S zo&Bl#do}|qRU6A#Vb_xEE6rxz^u3rXWd1)ahnTYY$XG+y%sYh7 z&Wn#`$$9d)x+T?IEf1?qDZDk^lBCLUu}YXJuwfH_+a@R&Jb6vS>UkLSatV`tT$1g9 zDTb@rVz`yL_tO{rAG_d>I#GI$xUkFA8*lqp`4WCdTH_8@Ro(u$IxtUGCdipunw~r^ z5NDPbh@AnG`c^^fQHAVL)lu&+Qv9+nn^?hS$Lo21tq83f=o2l3*S2BDb#fcin7g~{ zG^=Uh57$I5fh`;nSP(yh_l+Z!D6a@Dk&Uv{=W=8e=;eVA8>(ei!D|ZoVS|28eJm<$ zBrqt|Y9oIvkyha*3GMGpVMWqRO_!4QA15dfF)$1j3`rFf%!XN2M^Pav_ivAzqo~x2 z%2n4psSsBv4aC27++(QyuFFW?j_qD;4KXcuCPOx9c^x%VP$rkQ66V=MvmkisL0nj8 zN4y%h{xdEcWs9?db|0SMagWYexYZGh=_$HUWc>OQtu^HqOE zn72ya&^Ow>wR&N~E*04tTB;yUdjuusE0D?PzuW{Sv|h-USN#XFJ*w8cn6U+lVEkZ) zR3E_Qi#ee-BgKQ^HTeuWT2>rMMJi(&eDY9_(!FEo5vWrhz#(wZjSci6Y&| zUa$u=e8fm;%^EVvlqWR0JJ9<4sb949{-d{)bUKLE@ycYrJL6p`9b`-4Tu0udM5WPbymouNpZhIW#N3=OhYBt8f$QFJ6WS7gir+WMQ-D{?Abr7qEIfK0Y@4VC^JC>lC1GQ}fL94eK z;4uZ>2IHfj5$4VQb;1sKwxVgG)(SrJdi_)p$2^I=Y@%%yUF@r&&_3!9ta^_gQ1lBT zw6)`k{4)Ov=Ib;ud8drEt5sE1SkR_rj{A>w%Y*OAo9aDaA5_!Qik%KT-AWbo2iXmK zATzo5%XJIQ-;R4{j2b;!)%{uiIpIi?DhtT$i8PXd( zrk~JmgA)15VmD;QvPEo!3WXr7CLo5xdqP!Ck*xFCWfykMn~Q_%R;I4S^Tt8oaER>f zK;qbA(A2k(`yxY^`?DSh@*Y1_YYP%+NE|U6{xWd!jkvu7)y;z z_5qpzoZRoa2;camNG^0xYD1&*ZomO@WrtP5N!Yl|;zER;=4;{-)kbLWRsx46o|NnT zzq~hAWpp@!t?X?=2$5bw`y8<;(+#2!p11>w(r(S~fpJ}avyQK?0MkFVsGDi~ib@7m za%nK-6qxZ2Y44@ZhfM*<{!nDfDl(*%bmlAJuuXiW?9{eTriaPy*OL;VL)@>xv5nj) zC&!;5mS8UQ8!`CEAO-XF{*k>lQP(L`V2yarMn(mf2a-A3rDVH^AUoE2 z+8p3em%%h1om@-W-QU#oe3VNjk5WtgA>^iR8aF-yRBjJwq+nIznCfF)ZXvIXAA!t= z(bGSX++|;G-i*F%tsw%MDiCzGAz200B8vR?!{l`3n7#~)#Dqa9g@Y{}&2r#j?D-gK}WeIA=gm(bAqaxUVe)0a*1cR%zAC zq}=yx`Uprxhf^EqI! znRKq1=^(c}XCRqp%E4TK0pTz!V%F;3HwWO(QRl9JA%S6!loA>wL3fOYF9=j|7&jv` zQvu5j8fcI|p2jjJ3CxVKUNW?oy?5{Tfo_(WYQE)C%F{af@ zO_v~{{`zRe)wXh^&&4rLGtPL+XjY0QGq7wUo`6`V zZ3~f;4OT8mzYjJQYZX`Wdfsn;8#^=~xk^e#M}56bj_gIV>a`b!L}x$s<%2O?JFGln zlRZdQDBE-VT`6$1){}CF_1^zEVOVBX*vCp_QuT46(1~97*}v3e)YmJnYCjSu4!N8H-q&1=u(=Y7IYOe+qPtjdL3P_k>kx{|baz+0#KS^H zTzi`G8>)bu&V;A7Eeb%n<=3-tQ(YU9cZLwYx>@^DR6!s_}5l)b(c@vE%D3^g;Udypw-bds$G=N6(!dW2stBrc4sW{CZHIn6lu?%Iu7mA-GxrI= zYvlX?63N>sc$qVaGf5MM5fAhYC=LlO{LRtMRC1r3&4jT(Pk;=mac{@yWt@H}DIICR zshK3Xm_iSM)iVjG%Ep6|8}K8(4N*YgBfsXTYzVl`6h8Xdw3d8 zou_JpjBCD|?31zzQ!S|HDq5?N!952*gE3vs@>wK*_22QI1sn5w%|N0(@Ls!p0->~} zbeRs@9`#FZXAtZh$z%SjhFwSOW>~L12&p(>!f;M7!l)hZ899J+I8e)dNe${;l(Gvs zSS6vrGjHdwdk?HTl~7U95)TNNCkDK4O|ySozkR(k`6^-fGID{pjpeg$n_8P1R^Xvk zl1jSTmG8_<3WoM2^nASJ4uDf|jA{Z%tgo}n8;#MnQ>4AiIh34OB;b;`tk{qHOekmz@xZEB;S%J}6QC zd*;_ho)g`jHdX=1F$s(VNO~2Nl65!d zSt%8BZ$1)^o`Nhu738*)%|JC5iMf@Ng=hlCJ?&@KZIH(-|DSvNmyS#5Bs4Af@C!n2 zEdC(VJ(c;jK3v09iJt7FKfZLlFJSjmv_v#353#w4o7JzOf#CZBNAXG0=p!l=1p$d@h5baVV$K~mVBqMh=w>P&=Au(JhmbeX zkir{1526~b{~%UKw5}YZ;GSf#g(*t|>tY!VS<{zf$zY8!{~f5v43JIu7payZ;VT_J z!~a&k+@gs^@N*4$z=Sz?f)7*op~RHGbOlI}Ujj3#;W$l#(IH4qnBfvPVuEaMTE2(C zeA^4L*Wh*kWFp&-Ym?^jr==lh={RF#>Nl2Gd98|Ie@O@Vy+c}U-3foD2oWcLi1rap ze)`s~LqFM&@QC&sUN1UDz_`V_GxBgh?#t)svO)J-_dbPqyRVNRS`vNc~S)Od5VBSFt@KW@|aH S3y#tI2ce{;SSD{3@_zu@7>_pq literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/5.png b/labworks/LW1/images/5.png new file mode 100644 index 0000000000000000000000000000000000000000..fad0136c2e01f30cfd312aeab4466659e65a567d GIT binary patch literal 27910 zcmZs@Wmr|+_XR3l(%p6FkdW?@LrHg+fHX)+cXvydg3{dxf|OEHhmaIdN;BTL~(!_2>~oIrw>vjtaif^W}UA zej#{jDat;oouK*&J|Nr4sL4Ef)R2sIYl#9rW4J*LJs&;7`2_z#7oxnizY`sp0RYJ3S|hn?df2Fq8(1V{EaD=bHEph?oq; zPpf8((IMq_O*fPL{;noGADPqC8vSXgd@jG|ts3tZcO=4t+%KA?ORb}HZj8Ll027A zrPH&sA7NPB^FF^? z)4Z-U@tV_ZZPfARrVaXA(tWj)#~1L|?dM8IQ|_?zzloVn}CJOG{Um1nc@~ zRnt>z+BLRc*LPHX$1!SAm6*w`zISVn<*2Co_^IuSX0yPUnqXVRt#AUhhql9l7c0Wx%Al{R5~jNzDW3 zC5t9qCjEBAgzf4Bt~^BctDCk@hH2Z1g8$w5bOqhtUS06-#yXC=I>m!Gt9Y^Esote# z4+HxK;oumDDQ~wdn57p=_>X<}KjzXm4{W(Rid*kpr=s#0p}*)Z@IUI{^S^Mib9SS> zDy#`kc09e>EfO=1RV|V*@v=%8VEdyJzlyYa@@O9 z*#tg5zH-H6nhA518fJC|cC$F+lIQ_J1ERkB>knR}r_{QkV-&ofhGOQnWtm3rHI=js zXMWY{*A+Hh6j{(~Ic!LlX;~LtUmm*}pP*0nMJm(CtOQ=J9@( zX8tt^WV{2I(h6C~yF^$&OXIm4cdt5j3!C(Cb_=#VH`-U$#P0uY6;$+}g+QnEWB^dl0k!G1xXd)=iB8nsO%wF-6Wrhj`~@ZSxzE}FFT z^cv!kyRn}55O=fH{gPQ1_`VtC=)71Ci_TUKMWeVRz?E_ls3tHfPG?ciDoYX_3rfZ! zUI;-zsveTT@apU6{<|69I+RR_eW|8fvbGN_zDYJMCufh7*zv2S$kg>`#D2a?D4D67 z+U9%tMH745Z+y5dVeb($MM`5cr;25ex*j(~gH2nw=dPa&c-#1@glV$jcShyB8Sc24m`4PCI5abG`~QY-YMK!>To-@`s0x#+zY}2 ztkafK&}q-9WcCHvfCwCFQG+&;+QJ%{guUH$1j)ba;fH)i-wc%7|JtiDK98miYQMuF zHLBHN)uGCWGdkBnZ;rx$y3nI-Soy`RtKRjTIwEX5Rqwvu@>BK5)Jr?_HWXsoQVOG7 z#(|i{3uJ%A-Fd|8J3hEOF4|ohY2)$qqV0Pr)*m~OUi*g#ckG+gzqL20ciy{; zii{QecUwlN(P!63j_hTTWPDkoakbT3lBwn}_dXNYD>}z;jhqyUOW~BVut{aU z`_+lD&YKdA>8a=lh3J-@&ZbrrVi6K^dpqGfDxJZ9%*Z!4$9-*j6s1J$;?mm;eY+Qq znh4+2=b9a~Z^(uF@@bLnvQ51kj+!;b!U3LwON1(SojSj=I!IxJ_6Y6_c8egc^q0QCZZaj)heyaFCH=Wny#9Yt%ok%x6R9&^XcJjq;ZMb}UC^pujEF`tC{S z)+en22|29S#`zv&YX?7dyx}k^QwPn_}KFv-_68Q9=CI9Q_%?n2WCcV*#7EZaoS9K zr3zV}?(qszzF3%9YgF$51|jp}p<56B&@gXP-G%|JlU%sfO1t~KGD{`$CFMNbJV~u! zDON|638P6iIu5>PtqP70gPvgOYXd2RbmMrb-^MFlG5Cmev(&)c(Tz5mYk#V~VKvDN=X(6D{|7uEi)`E!D41Mgpvc(t1||+;$8(vG<1FpULfX zSf4)rt*~7=!tO!tf~`lD>Vl46u(eY0A;M_+ z{+yN(kH&o*+fk8&9@B^~M)g~Nb)VE2K=}~2j&U6=d})v#K&yv~?{WFvzpe-MX+r%Q zd(LTLx*SADeD{q%aU8YvH%UV+HNEr`BEz!5X<9y0p$)v4xPsQ<_FgV^k^WnWLQ7eq zT!#91CRm7Vsmp%2@>LB9y)4yu5s%|T=bvb}TW4=MEwJ^9Z9{mu<#1gj=qKyu-i7h=%RnCXQL20aTv$Te187-YZXt1zu(>g=40j z;EJY)L5%c$0ZTP&{2QObO_{#)4J5mE;z-tADUSU^^Xg1d}XCbaE*f}tDtFx z)sm7CEPYO`>71ZTpYht*+6usRZ|48ObvkzBSh-^DSN;WO0KSi1lyG|?nY|3F#Djch z<4G&pVttX#26 zDiW~!mEUtl)Tdz-vj-b5Y%G!&x0m7V+J~bhPyMbzYyXUy;K1-o5_73EGwddx%BSIP zwda?|W8c3wJ?Hr*ak-+sp^*T^$H$62L3r$4j%e|F8MrA|LRJ^7wC8-ND3(_1Tk~aW zZBaPBjmZ24lhkJf+zFZ%c+6#;jx#zn80{jX)v9sD!TftIwf$V`j1lgf8;{>63a&hT zX5*X8l#Dnj3S-JSW+y4~BEaHbe{DP|YW*b#JH$bfEM1RKeo)p*nl=l+tl8%&Ph!7+ zIkL#fAYq%ap+;5lHPQDo3*O>neJ-PB`)RE!t#9((xUsWb<+W8KvJC!@NQla6bAN^8 zs=>S+v0^oURZ5io4b|6LUx08kt=+a74FNeVY2*TJsH7OF-VHl?8W{!HT$@WPsiq6l zXI*Dg8iEQ{)*1+#W|pE}QR3@b<>nzjq<=t#rJBxYK;AQt9j-zpRB(E{am%-V@>OWf z>D?EW1gc4OwHLxMBp}VMNRqMjT`={5DG|DM{$v(wxkSPhw}`|*AMpLV5nZ8{CwMv` zcDyJ#qr%+**|~;(h_@Zj8U=XVo-t(2cMJOpWN3#(*GH-y%5$-PGH<$tjeAWfQWW;j zKvv%9tQ=rFXJo=*XKeA~F|Fi^k-S_qP9{KHhAv%)g3I`77P!Ic(s-e=+rBpSf9;9_ zU$jLVyL1fI`dCVfSY3cHGFsF2-KcjpgH3x3DRJ*Hi#}w)=SQag(yaNBw}FHF00Gyy zxBO?mB)oo`k0L2T$;Yxhu)d<;d&BPmXKIu@VY(*+SWiYk7IN5nbcs#zbY!O&BEA-R zJWSAW&^Uguol1oI%@uoG^6p%_i}rxu@2Tnj?>`IXZ9hjs?kp*LNuMQ=5Iz zHkLdpnbFxprsI8)s9bQ2+$b4vGDNCZ>}Hutlv}BGA2n78R#WOkK8d2U6q807l!OxP zJJ9L1f3V1NK^Y&epG1x);9*tx`d8IVow*dbRM4%|ip?!eUnI}wbL$cGQgOdio328A zee}gTud`EY`Tlb{Kl~)jgp%z7jgx^!5MZDHg#E*Uu7W{7{q(y2Ks{6CooaSWH1S zhkY1XU2K&V5|-oWkH#iT7SD>|>Q|>)9*iYC6paWyW?pmv zmZhIYw+QUd!yQqhn&VX4cX88#H⪻5FR z-_f(cqbQz?;0;wp+cJ_dAay}W9y$Yb%HmiTI7!~*H>0i~r(6ueA!T=$Pw(Xo!io<^ zeEfF!`Xfa@_D<)LtPCffk^G|%$f>qGl2)3T#YhoUST*`}W*4_wf1gLyw_AJF%lF^i zuLb`z?frM}-z7PVI8gd&b);cKv?4TQuKZT*3zn8g*h2GbdF44-t$|1JouXL8-!F&0sA|fsEOXVfJ)7)x(F+q%gB^?|8Y|z!!gh?Fhyr2=H0(aXg|qy#-qFbSRYr}ELTI9^^GN5V`Jh2 zD+~3_Qj?v!zvQ0cC#{mceUPCy?}w~y`j}!(t|r$EZ2~JvV+1VfG@)*RMB~mA^HeW<`wy! z?76mvA%W(zbCN)@5aD$*IpGz*p}pN=S>%;h?epjfi=DKeoqt+u;>|y9Kd;Zn8&IST zoPA!Xv`^!R@Zr&YcasVITc|~d$!jsqBhX$k{u0*9d~PkER|#VU094|4ZcLQ zG=aFZ^bnvX9D|D_DZ#iO{6Fc`k7pv9Tq3h3HR+1fN{pc3(E z#}Sb_*e!{sd7o?F`gw)btFTJ@9V+T$GCUqGYCEOBw>++D#b?geNRz4t>zuLFs#v@{ zFK1bAC{%Jt{46dGUo=FK_1UUkZdLIp*Auu9O%)E)*=Xtd^ z^>L;`rGRNJydebfvuMMD)cksmr-#RZ$T|%ViP=YkqKPHC06_*?p3P&P2~+4wn) z@|-3X8~t}9XvIr#n_=y#gW@W zVdW)jW8QRo70t!3RmegG5|-)J@T%NvfxFIAj{b?eLglVwRsKT+a4OEWpZQ2VR=kc@ zU^sD1>XdAr(D6?u(&fzv9^er2al?aG19w+a~fwrd#OIo5_R(~MZp$wvJZ-#|RRxhIs{zen#)*Ma8u zsXXbK6?_~rD_w3g@D6n2TK5qMf)~QD!a%p+JZo!C5~S>gq!Ae?CesA<&)6K# z*nKF2{tOB49NHAm234owoYI;+J0vObCd5-WTSJB~!x&0o`_2j1ykR7e>wO!Yve=`3 zx^zKeN@7V^`)K$2i#+DCr|G{nWvtbBF$%DV`TX`qf}@K$O*?1xZgos_a-;N6;{1k3aMtRA_xN-$mQ{qVL=;+Yy^Ni+j{FJ2c@06B+TZc zEJI~z5JUmSOj9>v_DUt@zoxcR8ctZQPm|qbE3CF5IN7Uw4SEjES?8@fuRFJGW&>4@m{%1WS&c+LPKR%D<}snpve zX>=3(PmK`%*L%EC1MX?U#3uu#lspz8#1#5a4y57OuFU=2=i9@QZizW#1$WksG6bES z>C~q}CfWp3X&VJUe(0f&Cd!U4ZXrFCTK}@wZ&mJ z_1t2KjoJeUSZ_sD$ShDa-M=Xh8q+C(q=uE(8TAj(_oExG*5=8=vaW6dbc4Yhhk-1k9`wiVUgQjA52BbElL_R?4^cq zXWw4UdO&){*HMpqepsI*Qe-kMEsoE0ZMmmEaB4xziq7LnM*rfx-$F?jc`Y)fJv9*> zp&e0|{JY;SwSVGbuuvx9LguB3_Il^(cjw2y#oC`^1blRk?!v`mVRjiT7-{jjl*-@N zFb1a=86~zDl^9ZSA*VtWTFfwdR;^Jkd!!V(vh>_Rac_e@!`w0q6D+ALk-k?*^V(aKJS1_)P3?xdIt=>SGWY1{;0{ z8lacJdaF|K2?_c)y%~8zdO5;`P4MVU+%l%_P$awd>xEawXoMic{N4u!VxjbbO56u5 zVPDF_&c{>E>KH2buFQ6XJSL@TH7AhhbWD(vNI8=4Ilg-)wMI!YM5G^kTGIMo9yzZz zARF@ZGu$a1Fown%{qR~O<&BHY4jD4H6CPvE zWsemDgmd-ZPWWUpC=$*~Pj9;Nu|)4Tr1N>&BdOB2{`t!N z8|u&$de(4M?4?q~vL{i};TrnJ!c!X)fr?Kl7wEJ!8niXLxEl<@{0prWRsALzLrjK;2Z`(Bk^qMmnbe^XiV+OzJY92zp^2J$?b!I0DMq`9ca}NI0{; zZYxTSFOAtXEfEt%@xPRt4nd}q}$VtQ--rRtl3%yu{3?8g9IfxuA))Xdm3>e`M2A^y0vBs9s`B$`3*jI z@1H;VGD}Lg#xfMwpGi+Q8X+9e9v{bF)v-Z3DFcKMw^gd?N8v_Q0c1@?D#ZMkV%8NS zmwK?1I4|lW^Ut2VFR;hkOZRIn*IJOj&K4iUOjSSf>T%;dr`2iZUcyR@i_038bx-aQ z6p{s77yGuMd{mbhfH@Lk2$H6E48FDo5I(R900I^vn>vF`CN3?=5wN17(Ey5l&qqnCBY7B@qJh^2o7%&k6%C3@JUJt?MUS!(xuD5gi6O z135}f(4~R)Y4*rfBhir$Dhp(Me8_-m?uV^VG@42`ntvLA=n*I9f00lC zP3X|hS!(a3$K<1@!5V$?{^22V^2it;_Ub?3q<_Md3W&ebX+_0~yV3>f3P+X&D+2Zx zvMUs*f_zI<r~xw8Dg*$0-MFa-8Y5t2L8U+WR$=9+7^web|*@>JP&> zk5g&@znJZo)blph_bn>3=%;JT`LV-(=xb(V|KI&+hY4vVJjUCAl<6Bf|AJ0-HllBf zd@-h`aQcO+?qFe-k)`Ewi7wgzK_)ORpA5pkhelKd^Rx!BUq`hrT13ZA|17*{I)!6N>ap(sT@ee-=eKqMjTbN zeyrmpZf99{LA3&$bhMhY_9nNC2DN@fczrzo)}EZpEt<6sqxZtQx&j&sBG0ODX4M?J z9{X}F6+9_4Wa98RIl*%u7+F%WlngfN zTCve(v$0fv%AoV>UEhaI=h7Bwh4HeE-_o7)nhN`69c~9yKAbdSD8gufg1u-gvtG;6 zP)LhGC#Y!z44q+vOw~e-v0V+_br8CRFA#7Xcw>=rH#1us8ND%a>qpV^#l*xs==>G2 zrj&3AZFmL)qMKPV@cJWmtKJo+0XA-C-PbovYe6?P3DjcqE|-9q8f$mo z+6Kg724j-2EL?LT<{IqvNvVD-MS1+`*mJm=Cnkn&I@Noa+Gk`elcR=Kh=W5V==MYr z26P*6eM%Of@m5`;|4ucu2Hm}ORMXreeeZH0T>e*>joB-uNfmC=ocQ?VOE`C(j}vUE zv?8pm57zVESN!L zPC3jgj+q-_5L(vk%%TEk^hhxWxeG z1cQ)+LB_Pv93JjU#A~G^CMJdv)MVJb)X0Vp1pg`!ve_7>#2@RT=9 z8BL(tq+=#d-P^nM)vwu6BbBq=$!t)zSu;}g$~~xsM)6h)&i1w_{!;=WJE6(t$+019Hnn=TICA6m#P+s&RsB~ zAR@%Z$EO1U0d#-927c2yttEYC)|E3bNKFQn#juR@bVj(~%*1Ea>l9wfkSqfs(FnJy7KzY+H@0LJCP(4cFpAeSIdSZU$qSJc|MK~;Z4^RM2)^>_q+;I#o|+Bgt3Imz{* zJtnglU-enz0*bzd<0n8|miyEpt;uT@!uB0Kts!OB_T7K?Ku|xX4Icp)l4b1LGxrwf zHE>MZfWArV4@X-*fdW1)`oFsz4;Z~3ToSS+mKKotY!`>)GzLN=eEIQ6Qbo5@}+&cCVuc;i^xu<>2r#65Dw|G3Bdqf@hmsrOFN z!&!oF&p8mP8IrEL4^y)M4OH1 zS134qZ_OY`O!X=MdAb+CSh6?`txR75)ZTc$H!X)Fb?e4K0oc=?rlD4ul$bHc*~-+G zM!h<-!)jO>Hl^Sqkvx#Kbv`2Bmxq{_qZ>gVilPECCLt?QmeLW_o1df?QL!l&MN*)R zqBbLVK(k|>U*oL`-p}@&zIi5q#lkB0QB;1a&i!;Iz8jIG+rVAdU!BQXzKJL1&|4gl z`nX9U@w!Fs(W>35S*ThNh?925l|{+q=8VB~;~iam2p!Eb4_$$3Arn`<#i`zVq)? zbFC6%ohA1D{QLx;uY;<7Mn(paor4XqD0pnc75^Qwy|bg7C+K{Do#=lE7yaGe-G~_< z<{V-Wa7$djhilSqa`PS(J>jl$u5=OT4OXf|Joed;I{AOPtyT&Ke$p6Af87lm#HF|t z?_DpSiuhf=vWwq~v>rCHO=%h?Y;7>v-N@RN+$pT8LaSrmATRTn7#WFSli3V1Z+emV z)b+dg+asU#Lc3d5CG1wOgB4OB8G62o2jPa)D4Q+RnY+^NaGQ1-4Ams)HcH5J-e2!C z2?)%gs(ef!=ija@OKSAwVPaufw&fPrII6YYfXkb_1()9&K+EL^P()mgUX$N$9D68D zdVBoQEXe07B{fnr5B!q}7eMmb(evsme~Q9(mV?X}= zXkhZF%S|bu@S;~1M&!+p;Ij&7t8Ji|%m8Y_#R;1DpT>p=i!{xPIRvYb(NToy85!H0 zSCr4$`_wiha7o6@VVjaE-RjTXhUu^VHJColnzBxA8EDY|Q&_dnl$9)@ckH7qJZ$zY zq6ZBbGS$fNJA@7e6W?v)S%1ltlgj?=o&WcAh5Tl@`bo)~MM>-|xWoT~i$)vZ<~L-x z3gP3Kzs-6GFtOs`ECTodw&nA)dEO@k zh0C6k5{E>jx2T)1{>b(>Vk0D^^%fEb474y0R zc=AAJ>q{q;#1)ac6a#tm8LSGf0)Kc!y{l}u66I5mZ73TjXY=^T2(?-{p6%|!L)?WD zw$kBW^bFJZj{pI!nWPFQzRyDtDnr?C3mvACcYWbj`pqiWuZ#%6c zI7<%zSZPEJv-5Imro*?lFsK+@U5jlGl&0BtR9whq2M-l4IB*18!QaN`PD8lwywt3e zB(g(h*z>yOF*)BLj6oEt6q6nD07~Wa>rpTkRzPHScvt-Qbo|Mo3G_+tUn`xj(a18{ z1^-?1rXIxsxLLgzEiJ8b-4A-FpDA4z9lpGKUhvBapBg|+`^7d8m&?Jcd8=N;4Z>gJ zao^uftkJQtG@y&rhe!Wx1*{)P)?U{bz+7Soz$R!awzndyJrvDofqL3!8kt+{_Z3p>1G=UMpba3oA6dpO zsV=LXqd=<4K~7HY?KA^U@)39!5MPP6gD`ift*Edb*cB`A@a;x106(_dx00G1A^_SG z`#Dt-{?(P#88YlYWH(r;$^}Q?G5D=?&MWPjG=AIod8?FIKO;%aQXFeLo-wNz9ysAk zKv*bb25jF2Lg6U`qm#@v5S||%)B``)HgFCE15=xBn!AESD=0QaUIK`!=WMuQ!mSJqzLhD+f+-^sDXgBUp>$!WbxA{Qyk} z=^(-h8_VO$FBxJzBu5Wxc^t6{?CD2s*HIeQlWq-o%fJ=L&bEOf-wQn04VL-x!4la*9f>@XadICl-7^kDpL2JX3+i!cu#pv??oI0?BHvsh&^mYSTdm}iJ(A|lG3Q&^} zq!M4Ucn&FAt9!T*AL1kc@2TK4?=^Wbk?(*+g^uK-vO0{ezJ7dP>Vc(%_L&{5BB36I zjfF)~@_LVP*+-r>%@|bm)}1tkPHshvy#MVB#2Q~-ereN7Nr)_e$UR2D#vB5~25%=A zB~%x;)J9)*`-I&JR|djLlhRr=jBM^8X+2YhcnOUha}POE3_%thF$syXhex9twLBhD ztmA+2rJj6Hj*XkU6@d^mj5f1f*fDi|8|3sQ^v}wHhbRD9k%ARWZ^Yv#2j=1taT_K8X|ny zbNSr^cnnwiHyi6G#L7i%yQ6V00&QGw;vsmunXcJ4wqLaROq!$hy&ds(oyZI5_So3i zCf+TUG&j$Fx6bS_FGXOdq4B2(Za~Gh?4-3yrKT41>d(|SV++2&vP+!9u*4uRq`<>8 zlasL*4gp1CQ5AM(6Pas3A^k{G;ZB8@u)SBk^!}z7^v3UZYk$T@xMO;{BF;C%I)5Lp2(U;tEm7~+cKo1K}W=r zdP)ce^z07vUkpZgktZkK2sqk+Y;&ecn+4>AN2vO&E60S)swv-l{DrcLA5S z{DOK^LgrI1GYT7LHg&BayFVhnpwprSitY9J&sOu8N0HRi?e5n8{8QP;F&ODLpeOq7BCrKNdpAwykdOp$M!KFu6^b+5sA5ycLtDt8YvRjfIk{MR~mc|h}Nm#q}+H?QlPOcvC;qm z6Cje=Y5fQN&L6Gc2O`Ac{AZ)hLRz(brAd-!R6*LA_ir@bJBnUcM zD$V=Wj{b8L>g#gGU9mbWBLb63n|qK zxoRp12Pa|99qwLJA)GR@czfd_d&S|^l!*iWS&@t+?TU*uCx*@TsR8#_yWTEL_au%E zi}jY?T?q+~JAfR#Ch{rhvZ7oa_MTJIl)WpC)FEh2(IV*4OQ=r++4TcLQxF?MpV1>B z0MzV~`$#lsOKao@6cJG;N!qvQjO{;U`(N!dCeaCE_2HQAB_M`0s9ce&o=UMQqb9RF zCrD%^&gL`w#0{X9=KEY~%$duzVArzsR{dY1Oc>JMJSO}Ig*D;!7$~q0TeyWn%*yw z4pxl%9~PjV4Z%w-2o=|OY}B(JhPB=N?RnGH-Y-!EYkCwd3Q)Q}rw7-1{HS7p!>tGa zZ%(&I1@V6Zk))0GeaieUXuoP9Z`~I!#KRg*9)Av@mwX=Q4im|PN8vd*1(KKNXcxo8 zLhT~%v3z&g_b(H8@?}^l&Q=BPr~&k zrWd22_rsoL0g3sQQM+47LHQGQs4A%v6n|7E1^p#DX4(TAp9+x18-BZ_YS1e-@$~0F zLLCs9y*aB&vPNOkwK*FDXzGE1g~#q#5m-Z#Y}o|pVyvj=5w?{pK+C2M%jnXI`BtAx z@#;Us2ZEi~uUREHHmCf;WBvK@a&$yjt$LB<1c_JvU^8BJfi?Zr*cZ$PViXEEyF&or zJb-gs3MvP*hiMcpE%)f?D4*|d3%hvH=V@Dwu{of|1T1AJQgUWu~+Hp3J_l5KEo%XG%gml|2@qph(h<{-5>W1M4}x3gC0!l!tdf z+JJ=np{WtDKCFg@h7%;3(l6y0p=PPKUIet!c?AELXM}-+2tvjwDBv3M%Er`o>`+_* z4VEovt%Kj=(X;LgF;5-55v0_NOD`pO;KXAA;WiV7g5?xE4Wg$5%MZpnYLUa<+fx<0 zc-D{B)ny4g3;^z!=M%nyWmdwgM(~3GVcs79`nBboM!VBueg95-JUgFJ++P)@p==JN z6B@%j&@)&=-c}ddLDf}?Y3-QZEK6nW9 zzXvZL8E|sNAgA+K^;#GOjU>)URL?=nmy)XLtNCXbxzB)unEjak!y*2Y!3l7N7q9AIrNBMOv2uGlJu(LafFKa}wiXm zvB1u*ZG_lc|=Y}7y-*I zjIMR^LJ2bi8qMtBjTtwWhgpyb22u6`z6e2EBOmOq_w6*LYd65@yoTn&>qnGQLEYUz z-+Bt@Y^a&pkPFXBkks9IIygXLr=Wf?p2nn-FMtoB#u}y4cL+WB&Y&HaNLQotP*%|c zW|E&zwi-MqN`|9A3tAgTAp^t?`*uQhe_ zT*61aA7v>LHg?Jbs%=MNY%(5cR9qTPKp!`Odf5f-{A9UOdbO_nERALWya5^Bc|5U% z4oDDmts0OuR_jza~!qp0~aiJzdzyXWuT+546k0~ z04DmY|0S5fI7r!Eq9p$004duH*L6XCFJ3P|E@E$EL)*5$l&!H71^K}Hf|Zeag8?T! zAI7*@$A`xz3`pRg-+Q_W-coP=qvERCs!b2uD$4BE>)Bq9W>M66yLBH-M;vp(a1B1TiKH(%Z0(2$5q8ExU8(R7yOo7KR1Ym~x2 zY}#+3$uttJSJmGV2ZXhwj?2rD(-Gz2ga>GA;{)uO<0=nX*2k#hzJF!_6i9HOE+dWa zf@*WU48G1I)nCylvp_ce6V#BJG7Y8&G8JDk45BZrzSsS5;2IHz*8_U;y_1+fA~Hte zhkJ4uH*7L*BRJ1j8(w|NZE$aWb^VjwuzQlL(P5!%`%RsY@>WL3t?R$nGpquy*7*-E#-v5vn62@{*4SWEprJL9b;&%^<1@ z-75nnan|M+IX)Qr8}nQgG^{=g4Q_aK;3(B9lgxk)WqXCzTcP<$!bufH<>E;Rf<0ah z?%-V?!FS1+?@R+ur1=LWANcXF()CS>0TxfVWkTAUJ;x5B2NfBNg8)J#GU zs*7wrRQfR{l0Wf8>L( zl?C#4E2*wmKWB#CH)FA|3JA2wD(sdsNP^y@J12cOziiB@4s8v$-og}GB%G}gpIa_av--~5+WiE!|o5SazQ@c%!Gcz;W??2S0t$Hu3N#6gp&ZDQ&H`mfiI{@@dt0(cVg*w+^ z+6IY%Inc*&x65KqW0;mF=w(h@^!IEmVsmH^+Q``x;W*w6Cx?TTzOkJdN_@e_v8TDmJHk$&sl zXGWd$=41acyYIt6qL1hN_Q^Z-=t~1(17*7cuPp461ko|Ba!xCSL^?m)?Ca5I|EpVb z4;;x2h*}+d26Al(Sb-=Db;D`v|kNFMMAkFgx zp=jtjIa@FHNg{GtY-0vlVz+CXX(`{aC_nS){$g0L?*u?W>47Rh1&w@oi_-UXfaHY} zCqDy&KrRko1S1SxOZLskXWI+wvU5mPb{d_h-UHvOg9avMxvWYmBeEWXv<RnE9_6pXJsIPUKUfoN<3fGUP~*@aqD=Of|I^r;RT7t5|~vc#F? zf+P+rhUKh^Hgm46|0*qw!nQO2+UO=dp9ev-u?aBvP~5?8`J=~mE*_st{9eUcUon4tTHet1Nl? zE^pEk=2*@G)=iEqLF{jk?^~%Tj%WGUz;ZGQ6b!=70eydGJ+EgE+N}%x_+M77JuBB# zOwG?^fW?<5J|q`&&kVvc^7EbSC|4+Ugc$1SU!M3Xh+Y!2O%NO2b$P*tC}oV=xhG#d zNX5Nr029*mIE_0d*DO~$8RG(v^+m|xw|B`+x*0Q9QVdL2&rQ-B&y#@5v{MJJ3F`RyHqU9}4v0IP)8;DQ!e|)Cx#Sy3p(g#WVLb|O)##gF zroY7l#s7-rq!aSsl$~G zwswSBbi50%ySxv#^F1dTVs+V6Ehidd)Ss9Uz7kiq`F|=q�!pwcD!{K}6{)y(B>B zy@*m2Fd-lkklqYUKzb3R30PWbd`t-uqee`OUfJFgUHAkPz@*PDt|<0uAi$ez3xKSMdk^d8cqnE_eH3;p9hN ze=jbN3mIwn2Rd>sdoKQS5i}?;l?%J~xN>&ig?wXu60!f>fK@~h|LZC=iDPkegaX>qx;N7+%G z=bPv|(AlEiaXwc|M}FSnP7zjJe1-FVHDoLTR*?b^i)$N|i*%m@>HE_GQ5r&+do(1 zgjxXkgU;^m{Q`FGX;qxs46?>-1@$&>S>nO;lYPhAjTJa3CFj0gtUzc62V$&loj6D0 zKJToxUWwv3s!Ml04;D2G7TF_>HAE*Z$-bIVqw`45b9{3Y!&teu9f3&5zI zk~0#zpH39_1ceOg6s92hR&zVW&C0!%#@Sg;7Li8AuhwJSPa5K|1h;Cef z@wbXGmi9g)!8XOFe;p2BSl*wL?DSU9vi{7COWDwvi-O75>(ZxG^7j~PfRoZ#&{27R zp_jXd5YYEA-2XHi#%PC*@utoV)Cj4U_sxGd0zph$?>O%>x=*Z6YZJa2s?ul0JNFF{ z(AyXH{TBsNDz1-=0Vqg~5@fr)zvcSb+>Z3Q{jVh=!Ll*EZl)MBFBtd3qOW2|7m_%B zyb1Z^f^-oedXysjFNCN4En^+2!qMiMS#RY~Z}p3!b1OATSixP^qDHnnQ@&)+Exbc( z^t%e?oGf_z?&$67GFnNO^NL~-=<+HhNV(C}i#-vp{q@9L6#o%pJ#C2E+FOXGue(6s z)%g1}b}Y7}80r?jA>Ja+4ez;l-(?U=~=QmKF)zCUp>pMYayLTR3OSp z-!1+%gd)bxE#OL)dXB2nGG0ON-H5Pc&c1YcT?qGqLX2$IM$4e!B$tN2iGV4PGda?N z+Cn7&6+&aNITfC0npz?eW8xDNwtsx0apmNafU!Y7wh(su$v`7}*_nIJIj(tQqi4F0 zZeeAb4K7$>XucPSE1WUa+ngD`H)h{qex9ns{F`51agw3pj$y+L;s>jr7QLNwufxXo z?|d{_050kJ{o^wvoJSDTTpAHzt(4A~dCxrH?|q{(>~k0&U(bA3+yZEhc@LA0f#nz! z7$p&K;CU#opfGXa3ib*IhYLV2t~>yXE@GjPq}9)>=%pFUXi4X9Qp<9?2$bygy1G?( zdHqT7)|#l1#7zbB=v9ox$pn`pAR5swHD&)m$+wim^JSFQV?@1p^7ZEAe~#X3YEf##C*j;X3@Z0UAW<;^dV;~3YHCg9LCDQPX+od$T(E1~a z{iZQ{(2*Moi7f4Dd4Aplm??-2evdbwJdVb|Z2Iu6Wd>;b{_BWeyHSNM?qN6f{&J^? zxn%r#WTDM2=X-f#KyS#Eo$qcs|4UYPWbX5Nkl2U6LIf2xH+VRB$#i9lJtelWm2Xf4#NgFkMHHOLDZhLHky{r z1-j=7WEn^M9Ppq5ZGNZoX3bIPfpPcQp)ks;t6z-hOaPxIAqMypKXxqTuWfOw_O(g7 zhUjMTwDx1~EU%&F%asn_1T2N%cBuLAu&IdfFvd!NLryG_)Q-7MJvWw0jshUv+j^i! z4{IEJ54}7O77MXZ$-!in5v*_ba+>?j6aqhfZ@xm1uwRFA*KQKo3YvPHV3BCuv!2zT zs5CM^y8xQ6Iu`-hIe8ACU3i`=9Bt-6Nqp2yW>VxOM?Qm{U;IJEQ$i%>X#z^3)8CJR!BcyUPFy922Q;AXR(!e$ z!lGjBGJVyJYn+`%0zkXL9Vqz|yRS{X$81h19=`LiM0m+*%zsT%W3HA=B%0wRykpa6 zgi*!v@887l9k~y#Hg(Ucw;;`W?5)p~lpEq=55?L1pLa&&<8PcWjoGaQEl8XyY>lI|7J}|n zCqWfgS;-RmG${z@IGw>2$7E}-6qm!V1BwWzmN-uQpyqt1i7L52ynNS)J1`5T>3i2Z zVB_lkO#2Us7CM_{Z0p9rq0e5)u@TbNHxXN4Oa3vIjb z2d-I?CMNlV>F*57Xg<_IC;dELdbe}p@Q5qs@5N5}skAZF84hXvp=+Xd6VsFq%%;=p z^>{_cIUU`vJ}j6e@M}ydljT?Ix+G-_ZnW~L-F>1zAC?A+Hu&7z2SmSVGxsFBXE*AX zG(K$9R=aDCES6iEWnN@sS#!*pRCp5YFYj2z$mg|=h`^+QYeQuzj+3r;(#Cx*rj(@M1LOLl#qZp#SH(t%9?=|$ZxmMcrYd;lV9nrJ>)7WO4vNvhDqG&S62ZW`3R3l=;UMj_dKmZKRb3 z8gux|R8;fCN}M4c))#b?=fT^o?I(|sbQ@b;+&zIZ!(R`wU2%KgECfyn|F_pRh2D|)R> zO7r+r5Sw`1BXcd3)}M$G`jl=RG8FhMXT9TGhkFaV>;Lnx&RY;IF%fk9~Q*Q5{nmDC%>kF5+Q{mLD980uKtws+7B}=p_gZCS=XH@P4?_OQ97mZ2-o8eBWPX;At6d3@gz zLl-qcqnIFHl8<*uWF(`5%Zsb5lA z&$6J45ovU(or`DESt&q;;}6s{-KgDH+t`}ZVMFSJE zZV)yS#xkpRs&D`Fq{xTI!JNmGvRvlNmpZDr`asm~9;{E7dwCkuB~}v7-c%UrC=_|_ zV>fo}zCK?yt}woOR@)v%JrwuI`Ze`%Cla5Rl9#+o9hFQ=ZbAQ!GoSPRvkSz#x5)Ax zzRH7J(Y5E4=iONyo&qxGmbJD|z`evoX0aV*^CFwer@c<1s&;$DZJH%&l+52b`_8>1 znLSDCP-~5{vepO^%EfQO;lmlpE`?>Y1oc_8y-@HUTe_?6)GhpYV|x9F0b<< z9B(NkDiJ_deXuTPe$#w=kin(im&Ijf!l@dh@BY8>dT{}htm93E+ zn5%!&nBtx+%62!-`ncT`A@UdfcB)PT>z?W}C%D`D6(}EivD_gSFyFvavc1%0Ri@XA z6w#XS(41sZnjiT|@9si~p2M?}(W6(Z5uVk;B8Y^RSu8?CKq6OJBa$kLOW*ob5fEc1 zGTNAc4|t|gp_E{M5U4z<7}1CKPy4%U>Qmglm79ja39*X(xo#N+GrgDeH7? zx21A?nfNzlKC9RJ^m$V*tFLL|^mL=nXkcGd5mzn<0OFrk1zb^3QkAg|3B?2NfQ6R;dUzb3dkx&DgHhE%9OKBNUGR8_`XvV~IQQ^ts%fyAd}UvIS6Z8I$) zvG&ohH2kj_7oa?hXg z8XdA*3VypDkwTY+(WV<(LA$Hpb}SPAZG>4#Gl=kYF^j<60e2;W8+zWR`WYM>S5~ZlD(L>6Kw30lo zC$rg%SGc3%h4VpZ8s`an7g#Z(5{(Uc8363NC)$ zCQ>vgbe)Ro3x{olmr^35#*H=uOEaALcDG*)LXpS$PnR!R79Aq0jql!qe{+dQUeE0{ zcFe_dHrA4E`tgT*W4e|7%Uj{F$PR{sJ~})Grii#do8Bl@!MV4>WL30ZHcp4pLeXnu z>ekU|atpHZYp&ac6%G4=o2iG>RR^UsuSUm4#0Jo2DrAU|e?||yt5+h*-{>QRx6wFS z@pJqU0f7j_UzB}#*?WzxD9#1>ka#=Nd}VxJLCM34c^0ao(pU_CTic%$Mh$zn*NhTD z`OrYRHDVnz;MbNl@c8eJtQ%z0k(*sTrY^Ur%Or}NZX3c4gAcj?xA_}fmuxS z)dVU!thH*FhzDs;9V^Q?N)%o-IP-jfQd-x|fQgYn0c133=pJ#<9hD8R4s0sJ9|i3u zky&Ul+DxA}3;nbkX5#!H{E-a2CR^3rM_5SYG(9Ux@TAWXUS|0UcBLrpg$)bA$h2At z-=|&}0axRP<7ex&WkS>+&CMilW3^xHb8s(2==)NNZ0AZR)xKD7o2YFF^GzVnBgjgh zpQ~VcbG4w+q4`_#9Sfr}?X3tjys1`mt8eLu zPS?l9e7m=fm~###U@V%FYlIo7QIT-!!mC}&| z47bJ_vN{`&*ByWY`F}4b&;@T+mlVchb{=o;=gR&0W)zdmc;(8(rfudd>t^bRoNjl- zc4&ZYUOWS%MvCM^=EvCg3}k55jnJ%RzT5sGn^7vOJyy{OMJ^p?4%gI5rGxVC{qkU` zN&_mC*Pvh^gfJLg)m@Z*p_vju9p6-5-}|-o(}`qz#(tZ@Vg*PP+m5uhGRIk`VJ)_) z`VO(H&Xcir!&lnNd|Q_NV4Cpp)kT z4V(xX(xjg`YOnyemw58$;m1Cp(m;4pKQlzOrGhm-NE9=NbdLR%f)eXbA!JZ0JIhqH zSL_TV`au9fp<&srMu6Xc071NPS=kYz0!Zf&q@{=5swnezZuqMYbwePh5FY3=hCrH2 z7Y;FXYh!djT(9Yo9x>$s2B0{|SqDPKGO8f`xsnd&hCFHoA_*rDV&Z|M12M=|(V6~R zsE_r4yvC?TmX0e@1EAz(K^ahB)9MXd1wDsuQ z*8#ec6J#kQ+X9i(WTaFGaq+>-bfB0SK#HtAkq}<7Fk@|J*8_asLXN|QIDnA2MaFgR za#|Z|H&^@f&6tfvBs^-lk=>Un9hv`zW?F+2PoP8&oCncr-e*XsZf&1`E zN=RT=GM571Dn1bN6q*9j5=|iZ-hRAtStcgqa2E7@!UI)i)j8u@%58e)p*AZM-LWdf zgfgZTndDbamuBi0n<5~@Vy$kqxIeY&N3i>2Hma8!KV;uyxsLbdV%&j1-CeRbtPbYMSt!r2Wd^ z(hx`vgYrTlrTWFwp_KM=AR68Qp2XQBHJYQ;fP+77ipTWV11^cXyj^CmZ7-xdO6s_fXxJ~7_8 zSyN<};WvxB!(Qff?l@9fMU^bSuKD;5h5WCN-HMi`&p@QSGH^*&YwRk0^K#9a_L+MH z;b-@MUVo+kF8QkG)a%>l$2qb~R-q!4dhS;gH2kK;X4l14;SlVZKV>1ss&)HX9QY(|B<3@!_thQX}Z0q@Bk#K9_MC?>s%(ZF;wC zFq{0LMi$`aG0Tw0P=;*#K~` zjASQpjXi2H7Z9jjE&e#aJ)l%WDchCh1F66ZgJ<&VIyGDuQ|!iHkiVkId&(tA849S3 z0cpOBkYyt^3=9##?`&m>4&ZOD253Tn?Dr11kLH9)T^PL6zaBy~0o++U~; zZu4Ymj-u+tH=BB1jIuQ=BB4U)L)&zmTjZ+RI1UW51Rb!mx<+FIgPMTzAc1z}2mtsA z-6(i`lF;+rt;~AmN(L-SOk#=g$E;4k-N_4iElB}v#w?bAX*P^J%hT?iVK07uc5aRY za++kl37?&vRW31aI0vjE-pz(lXNRs=cMJq5VOztV=BKY!#qjDE88ga($TX5Xx=U9D zI|EO^2$0*hFJXSzlj28+f$LO)?K5 ztHL?}*;vG0#W#a)*80-;tzKg!foNFyP{(&Q__sm(yck|SF}qC@$4LsGk1dM?={sy?8WaBcBRV}Rdk`&{Ev zG9?+GBdW65&FWZUTk3VcNNsuYul5Y$3#*RjePT}^p1H#I zOlE-3v?H3TNrtu}}Vq?nQ zZRI*a_0}`j&qN9?gmeX8Y-y?$wN{Gil)=Qx$7DtrJ5qrAx`J7)(VKipCDxyJvWXXp zp80Y(eOOOUk6PaLm4l*_k{-Zye4n!`3@ujNFwU-uN>E+^iJ?3uIy$t2NwXJdmd?0E zB+j?o7&0XL!$#ZcK5S&y1tr{iT-ov;8l6o(%e5F#IbZ$8Z4403ep8#I>8>r5J9|I1 zTUnY5sFuS0a-d;QEugrddcRUT%qRqDfH!USC6_4O4DYq+horLL-o0Z z^A~!OCeF(nf3K4mVEV)iBa-!>JWWE!IbDYSLVFdN4~0+e*RWt487PbXOd64cdssPpFbST$#H& z%GE%Kiyb2%@N5s@G_k-E+;w_9b1ENXRP#XN6l|>XiCuCe<3d;xG=_ktRMuPLdRi|Mpz$yYyrZ@`q|)K5z&#y73zZ1F!!vQ^f|BIA@jD z_6OXD6HJnq#q_aKAJ)wM)}@!sXs+*GiwQj>F9yXvxgs zX}#U4i{R4x!$->;{cV1yK$XRDq_~Pn1)!8`Rc*qNS9$b`OlqpJ48q$yn?gh1=dXUq zWaUs%@YHrKv7&Wf_a!flc1ZIx_JAT2_^U#a|H;Xkyn;3W(_El5>e_PaM!X#jP6Qwqt6nUF&3UnR$*2Kj$E|8>3DYQM>F!Ilu%SDZ zm-z3;Bi{i3-Pl>{;HIr^K__E`dQDu!0+aw8F0}D+Ls21@EJe8UWqYU3R*QHaiDX<0 zz+i18m19$1qJAJ(&%vHdfm`4a9_@|*VMSvyGwfsZ#kI2$TNmjGwOoBvC=4Uixx&P= zDHkgdQNTr}EwjP4@FqsFeAy7x7t|lAb)UwCgnfvg4mu4;Rb0*FH6h`4<{RAH7ef#5BP&yvl{Ma>&ULK-#V)~rF=`< z{aNnYw@FL4J-1;JqS_$5U>=m26=TU=uaPH}pu%ZhG-3hq3Lr4zCx`DJB-pM1&q^Pu zsgrXJ;MtV)s%J+sOlYp!j!dzKUG;GJ(B#4dqcoH@@n?NvTD*+mbqU{DKxj5re2#O?y z`KkPS)1Q7=jaaaR5EGF6BG^6r)2x_Z;c4YDM5aQ47h7Nr)D4Eo!OThXK*sgEvRy&M zr*a6-UWd6shI){>(F3A5oP`A!2@f*48>u3x2C*m1R~FZ}esdY;so#rdd;MT0f{t8s z8rgi#L;WoMk@&#H?Tckmid>7|KCyLFs}jYxg@DV$!b0)%60Og(XnGoz85*ny=**98 zSO;=f+e8aYOWqj*g!H3Ofjz}V=@md9PwDIA&_W5c(Z1f)Z9=q@R#_l&>) z^L{W!hkNebbI#stt-ba{X{syYVv}PdAtB)^y^zyJLP9PEzXCAP!M`|?dU$|8klnQv zpCeTcQ*MJ7sIO$yWRQ?*;&E=Q(7Q??&~=~r$8x`Cq~_l+h4p|I-G45Sw7(7 z9IX8*VIdVU+kBxupLW`+0o{b5O4vRQw|YDjIkTK^1^y;Lp$dK2`}BidL{uVpJ-YW4 z!UtYwP%*26w<&z>g?)eeu-D!zP2>sU#~u-}^x7*t-FwQzqv5{s6N{Vo!xjwoy(Bpd zhsl%L1O#+FIL2?7nnFm2HE^zpM7Qj<5i z@A0GzdD@ObcAxTeTv`X7&%WYj?pcuh9nR-GFLHa)c|UpBd0(lOukbp8%F8wQ`sR3m zW)56gz^VuJ;-(ve#$)Qal2VlaT_2f+J$RPs5$XHAZ0Vb$Ua{SZuckL>)jQO|H;^pf zjdXTyZm&Unooq4^lIG0-YN}hh2ugT1N|v<#a*B!bHYWl3wISK$Xq;0CW54u=t$ExZ3-Xf>NDghoj~0VKod5iQ~{X5jf_B zux0wm;(K&lw~?#i(~TkbfwV(G%PyoW??vAO^zI0o;GNQ9^c*Fg&YRk6)i{1r5LdCQ zwZw&`qs^S)mRpJay73T|J6!86n)qK{(`MeKZEf>Tz21`dH>V4)oLcuA{0^Eo^(#!0 z*9TKu4@F#;pLthQwH~yPY(5IdrO@BqwBj1h5}$VJ^b%3|7R*2ayLa^+2K6s<|NZrOpDb~2udJ5}3gLgx_jkoo z>gohGgXkaic)7HnrR;tT*eaOqaQfZA&cWeMWn!<`zvS`!j?Y}BIDYE`mG~4E0WX={ zs70s!DE&0s)vwV|ZVpyf*BV~b#7DcU@zPTU7J=(x{>$wyE!)h~=?ttF^X~Dxw!Ugk zM;(#O*5N*uTw}*nep|WDId4UvOI8o4c7CSwzaMcpcb}>-;*d){+;bVZ@V&d*6ns6# z*ogb<9Ye#kseA18&(%2b;RRIMwLO~Zk$_j`8Uud&_0uhfO_Ta2&1aN~!8sz2gcp7C zuT{+r$Z$wGT_1Gu<}N@6sD@*Ab96e0rhD+DZW}%`|A_NF9)e@!IsWN=llMnfv5kKWbZQzgTR2{_`@L7;m6{fpq5>U8q2NupzD3%#$ZRBtmVd~pj|Nw8Zo6f6nFqQi>+~I z;8aemeNQ~QyFSEd{JUv*+&+_+G)0zdE}qYPo1RNk?7F&aTKLxCe`6D>s7L zZJKcD37uTPO(x0mM#Sy&pUvS$Bemh?-u*2gA-lo`2B!TtBb$y;ifmXOh3#TPtVOA~ zNzuHgrRImmMSofSs(z^7zFL&HJe;PE9%JPM=Q32>|J~?46_F#?l_lmq*5qHLk#lgc z=t!hQBgQMXsM$zMWgkPzCE&L9Z8;&ldo$>$8)IkoYcY`~&3!BU@9Di=;6NOeAOtRV zL0K&aGKAZ!*R+iF?{J7>!ZI;n)=phqN)-gV*diBDcd;`~gLFLjcgLI4*e+LG)pWi> zeHBN&YKNw9*Y8)tWP7sZ`d{=7i)LqM)oBShIN>^Tvi=?nuRz;5d1I$h{` zYZ4!>l9owO;TzY;lr10)3Kd4yQJHtTl!sr_&n?5|Ycx~7&bzfeaQ+N)5NEqmoy}@ZMiz4YI@&aMn5d8sIsY- z`fSBKFU&X|lQM66pq?B%i;-J26s`MDE`!36taRdPD21RvGNogrjm8us_r%<@Py!z7 zFh`v0L2sOPt7TDo-OQPzECSv80HSMIQ<16M%Gnl63tzkh*MKG~_^E6>%I~9WOh$db z5)#$D{aE2eS8AmBJj3e>yxRb|6h|^)p#xiKjxqZnP-7nj%|xOdqnQfZ9@0r@NS-AT zRX(B;6S<(ELSNp+n17KIeAn#08QP+-Wx7q<6jMBE^kql=dL;O6Rf^1e__s^veggg0 z%@isOH6|nu6Zv6S+=pecNkp<@d{JByL-{9VLS$O*6G9x8WQNdSi>-)zZF|7h{@- zE6mO)kDqCLmH`)A>0bxM4I->q-&`Ae79W+kvaF~qL<;hOcE}*i6_a{(qlfR&-{917K! zBHl_F8Kd4r_2L_pI*Bi<=cw|ZW2G`d$T-CgHe_u?JbdoF=?yhDH>C&m>&ptCVMJdh zXpuQQLCSl7d3x&_Pp{onfnV{<=7)Da5!2U)7i>n+xdX^GaQE{?|3eaCd`Fb@_j_cO zym35K(!vC=0FjIGkdFiw^imP>YBvvKBKCXVfeJM&zI!%p;e8X z7Mg_y!wu207?Iu1UwT&KF;Z9}yJDzoW{)ti(f+wr(m%4{z+_+g9US+f(%1-P6l_-_ zqyT(6P9(X+5jl?+50?EecBgroCZ#Rw@dtbJR^~6cg(}EVJ)Ah(H1TQW-rlkd%ZiDo zrx`le8FEALF}smqfoA zBJYk+hRG^*sGAjD1a&_z!{vJ_T9vCrt8m(bzCvCfg7#Ltf25;47LjY@f4JBqWsBQc zb2d4+q98*aq!931rRVsm)*`1ooI#QY{F@1(G>9_y97rnv)>yYSaT4N%Cr>aS$;ixbQQpyGvE!Eyiw1Z{wgtX z+wXopaIYE{6FfZvu@M~@$AG|Zjym=ju3>)nB1e)+u2_L;tZmt+UAymYR|0QVM?_a{ zj-)X0Mru@NBIYUGZsWDBu>a0>P=^6VKHU2aYEhuakaTRJKWU^@zEprlk(aA_Le9yZCdvlv@pj`3#@s58p{j3&u^af zZPYh$RL)o%Zz6ihO}=BNHI^g(^%viHuI5n!I}&k?t@`6&ZJ{(Frwnu7brJ)VIE8jT zRY>ns5I=iDNKbuunr7m|n%n~t{*bASR=KW{L3#N%s%ks21Q$rrKH3&B+B^bf#Bw&K zUH0a#R7B$+lENo-f1kW?nU`A~u5>ah5U!x77DXQ_)No2jBNA6JB){ZHgFG@glv?NKB{8_#g6>g&u5tZAp7e3|RqLzSQ1&-HfhZx4gj1w?#wGo|*bd+$8) zu^b5JQRgGtFuHHUBZ+hrHFL%1LV8U}RmTQ+%gcT23qnM+2(os_&Z3Bfr99S%N!RVz zwZ+_{8x_XxLUB61jdfC19k?wqf5o4)Uc}%hVv_jbKIK0JV2ivNF869=&80ZYDib=jS>Ig)|lQDTxY1 zQszugba$QMUJs*1vnu}1V${bM7SScGs(NonrK6(BCY~VX7Q{d5#gA@!3ca=;{1y7k zeRwIy|THxm?!oH#5(UO^Od#G7(=|o*h1DMI@4jPkJ^W5BQD3x{BV?SVy0d{ zuL!Zdr8_dinuy&SKISjs4@M~sawbds)&3sk&-cX4jEZC+V*5!~&N&02WoI=eq+2mz zIUHq^s&O&nk?8EN6=+0@nDo`t?`t-?Np{%lEumQW%wibKBB!sq zO-Z;JO}*;Vmpxc1B{Dh}HNs5C`@fet`3eY}OB!EDLvQUUj^f9|=bEr^0uP8aFF3%;9K#m);Y&B{|v=a1hVYN+@mS=4^v^XvYO7yPt7fcEy|7qP%5D>;5lyeL^!_n_IAsiM=uI-Or1dgHn> zd^?P0n@&%R;f)m9S6Y2H9bwZ6=t0Y#bHlXhfVuPWPJI3&W&oi#g%ae-eruSq#@VFb z3@5U3oItv)ZIR*h9JPwqB1G$7HdZv&#@dFXE z%`PIofJ@iSbH!&aowr^HI=HjY+SvM}4_owl@9V;K%|2LXqm3N}{h{k@3u7VDG)Fc` z{|jr$ljcZR*)hR+CL~p-SY2;(IBOv^omgP~nqPGtL3xG885H9@et&F|_d#;Og?t+l z`mJhU3JGhCqL%Qf{;KKHab@S-eiT@pCL&}?w1*d_ExKXKVOVif^q9UEvV7_GaMr-N zhmG@X;h@VwD3Q8-f)CG9jIP@-ngYl<@R?aR2mf(sh{CHuzEEVD!eimHQ$vKZ(DEpA z_|NHxw70Xz=kaw>DtHCdStiq&`=||z?Q&i; z0UR$ng7pBKaj^|>rvn%BUa5~lQLfYyT?ioZ2MfV&uR zffHuqF{x+JEXM*vd)IW(vODj^h(`XB|FNr$HYw6*w{PeN4e_w7a8#R1et z(9uZAHOflBV#}0_+jOgfRIVqY)k;i>6GhBhO!wdq0nvOAg-crvb-*u5HL`(tKQCI4T7~P1l>P1mw%&I`6`7KDVh(*HYl$KM+q2BSnm;Fu7X7O11gG zhe^d>2l}ESSE76NSKpWah=*7)(S~4#;pxv2X-KS8)B!f!_^_MdCN?t^p^d$LYPz5#ekeer`dD=+V-iJzkzzA_BCyM}yddU6!cLn~zX zTq;1?)O#9|%`hr;JR@+M>i= zmF?`S4UQ(pWz=v~R28fkvWM$v^HvlVQArAq5eNMF!KM@1Z~gPQE*LmKP@&k2n*Z#`EG_Viyzqs z7UF}gcc+wg)R=3-pdbvHyBn#621kid5bv^XfbR8i>OU|m*%>$qL<6>->Vp) z??wj}DC5d%eWSL+_uK*+QRax8$j#w;%xApxI7UBwm(vw-ct3;hgGMG&%7M@iN;LBc zj1)&yB~4vwNUlV0Ki0Sys*lD+=}0b5^}1zb8tmLYqZcb3jl};ZmOoz5`|^fXA4k6% zl>GKQ%5lMI(^XC?)NLU8dDnBumRGx8s9PgbNn|;(N+^E(_OW*%!d^=di6g{^=zvSi zg8GWH1EYq%LQHH=L+T3VG~iA5sMo)S+NyUaKaMF18Ix@U0)D!aZjSdnKZnM3%f(fsaSSqQ)J*DL^GWjX#3(AScw6sV=gD%A!70%K6w? zY^*nSs|WU4(3S}uI@?Gt_syhah9z8MrQmIGzap(KZO|MHl3BAXIU7RjzuTOydV#^s^BTP zk@;jEyjc077c2(zS1j>V$WxZE`oVKs%=p1dK#?`GSA?l3^s$&nNx8qGJcOav@)!T) z#A{unVyI4m6`UBI%3WL6*u1bUA$TY3iGq8m1Ga9!=N^if%$z$p!!1JTD;* zdr8fpeE3vNTwYu05_yBvno!ct>1Cc&QQ_wjjn;ir=w$-b@2j$~?- z^w;VUV^ODNC8H%aZbz{F`kySXx$l!TC>_FKPJyfu9=*82O`Yj^A%rg|QP@K@wHA2t zVpuh;Bi$4L+a&tCAp1n8FW2ugMMu9|=Yx z@n1AA0yoJl%x39VnL$kTUM zj&W%sVKM_yT_TqJpsnSB4#tHs=Y@Jhl%81PsFrpo5luAZ zzklwr#fbc=XRc*A1ZUnhU?MVK7DY^){Y5qIdympPHCzdc8J~hZyvYUtt6s4@48U6^ zAdoR-6&o~@9`wOId?MC|ku$(&Nf8z+^o1`QJKfW!StriBALo(vX_1jqksp%yi+Qt5PojN`F zQ1#yyit?Towro%ph8L0V1Y2T6lSfi(C)J{F-a7ULSyFbv^(BrvA4q^ysYiNS2F-5kuCm)P@y^xIWdaT zk63Wz7`G<2e!dlV;l%E2IWKcHh)eEyQ|IB9dt~n6mY$y8&2-=O3O<+j@hO!=&Hz+% zrH7b;2bBeWiW5iQ5Sc6OOGj&-tN%EsZ}ZoT5b^nMi%k=)fZ#ZiDaHf-DXVvug7lb8 z$Csv@0_-iP?GEp4WCjjp`*0T>)mHc+?@rp&e*MDGTBE$0diuQ2Jy^l=oWiPKFe+>} z2Jbr5((25L>no2bQ8{(yMhGZBu%B1*X0JL*hm*hRnj7s$=`@$MfgR)!1bHB`@~D#X)q)65E- z#6I_UYe;A)LS_+A<1T%?(9>?B_$_jDIT|4LTw|&0sNF#f1M?C?UXm6X?^AI%8f)D< zG3yt)bc#>{6l=8rYESg^(XRVSOg=#jQH2PaAfK$szrJcEFC&u)|1R{RX~Axlp^uPH zy47OzHe(2^BWFCe$ND5UXP(+TH42zdT7H0PT2F}qH^7uU>}|dn33l&=l}f=ANhpXk z{rU(C8T()RLc)mHdhLfTC6`lr`sAVEaUU2l#Y9ZSZI5`V(2t3wXOXP(WMzLjWRj#j z%9z2Jk}c6g;(T?$U`=zg&tmkkx{LUsYWv&z^Zmvpu^8t`UeQSA9>x6L_12F8NFFDK zDwy)DZHGV+-S6N(rX$3fiJM8pJ7!I}n$l;@-Sy$2rH-h6sziIt1Q+$#k}?d6eCn=B zXPNu_F*X)i080nOwVE5OFx8yg)P#Y#jZ7bRGkS*h`hZ37($&<}BEgVAEDS@5RD7@c zeP;D1_wN_o?E|ogF3}|8Cw z4La(YARKymM>8+*!SQ*(w*-`sQx8)Q<2|AWJz{)IY4h=WT=S-FajJrFwj2G(@nv>d z55xFE*R@ZIE$XvN-eS^rzGqwyL!%T1B1H}W(yn9}fIqkYCc@w>%ZE-M>DhH|$SKev ztxx?tdU9aXdV9169%S7voynE+?&Gmog(TcE0I#7pp$py>jdUKXo*npk{8cBU5&5ut zH`0u*024jkJwT(#a=`le$E$3KgW5rE^?CfjINU0%u#4x^apY8F1b{=@&G3@V({|dXDTus_mzo=bXczp1R;vja;!Wy=b8NJK z)tz#erV_uve^~(AZFqlOuBWi3A@=R1RU)p!wC($@J6dH-qre_Y?62dCpeI+!f06r@ zAyPxxe@kFv<(Uwru$&>S8rD*}yGtUj{*3MWp=`#(N{%W1>lo59PrC&7-Q;wWk*E40 zuSc3eOGDhb_M5&L^&?nxWW&*%|}1#H63ps@~+m`D<@E z-XZ%H^ja6eE6bgrGWnm<==zvg`-xa83dte0fBnJB7Ey2@{U^0gaDI7Je4#t&Si8-ugnuCGNU zeuY9sl1-k60>ni0ixCbp!|xVGuUbi!I_g3(dpe3&7XI80=cOK|`55bn41r3&A^ryj zl4MI}YsDj1SR_HW!5vBp>EXUG?TeP8FMQm3?`C}Zh2`wA1KCTHY5GZkKuK(sFbrX9L?MUv>x{(>ptP#1q`t2FrjDlLZ z-uud?yKgO`K+T(Xui*NT^f6qSdGtF=&K^4QgLloqmM~wa9RA#OissYMCP9p)yPC@IuCf+ z6n-X#Hy6$N9jIGvbt`8`D>GdDHGCD+B)56k@F|YE&27h?vFBy?vP^|}$lU0Jkrgha zUCXaX%4*{=B#_s+u=J39n&eLEQ{fY*2YtSq;U9?i>_gnuqs42ahDEPO@I&;f0{=QW zpeaB_tlBkcVq}6JKCEyg7UPyoU@j@ZSvzzGZ48C_M8@uAe&Xyk%zoCRAkP}1(lrke zCLZd-Kk2=KK~=&Y=c$u(!O#57YB&44x#-EbaR90pPnIBFI(vduP4giu_nEzp$Fm`< z=eTz>h4zGY!=l1AA7oac?nBcJ_XO$6alVmoKHAt?THAA1?~Q9gwnPo1;Ln`j9IM(l zviT!p34X!K0snYU&lb`hFcCqIE{{>m%@*?t-{Kit^3@MzrC&E~!2{nvY@uIJOHaLc zJ)btwATdU9OPJ;6v`gPUN_M(M^M2zQI14CkFR+UHNtqO1ps-|7(lFC1+}V2((yEJX zGaAIi^hbJ_qeM`;MG`TXt6&A)J>oK`#CJfdVuE4g{Fe zmwUjPRG|V`iEQjT@#?Ks$sX)2p(G@ud4iJ#u~ZadsW>%FS~l4-b{($(`Co2)2$z## zYMRIw(h&z`My|C_>EyB0u|G?d;W4`H?R(XB79N(V*M~S%CR}06dm7K6COJK z80;T!%>P|HGD_z$>KH*WUm>dUf?@HGowq5(Mo$xME^*!EiQ{`()m;Z{B(lAY2^G>1%T z0~=A2q~@7_7OzXNi0lXNG;KGi36HR7zg`q8XSuGHubwLkXm;fD@)|Y_HX+ZXDvMk}mq>(z6?z^RBrdjSfy4qTW62RL59t*%M5uZ8T)hSsh z`vjZtu+bj?pWb6Fj$MY^q$MBMuWyG!Q9L8oZ zib(YjZ5F^fkGSdbm`z5S&x}#ISpI(v!%OG(jL^t9QMR(ONA}Gu>Jor%K8}q6t6yRf zkT6viGWByXu*slhi_EqmOl)A!=otF!Bqgm-eGw_OP4~~p+KJLJDr7JFXMH2jWF{z% zj>c|3`N1*gf7o6>sz9+_Ue$qJX_O9ZBPKwS)ogTL(62)fw=bDuo@Kz;_L*ex`fRtj zanWz^iz6XnLVF5536E#EZXAocZqz>uoqYh}2+5=-B^3bgn*RFwIy)O1R;AGsnB(Qq z%HONa96`6W7yH1rMJ{0f(PUuPCkHr*Cch{y1CJL?W2MsP26O9-SE5|UFg69F(kON} zxGgUt&i$Z1vGMY1VbBCr$4Q*LC@e0#LoX{Yr|_X3jBE)qV7fEkEnJ~ORK9jJ8#c3hecK&?gMXEG~J|ls8w(HHgF2L2OH?? z?;s3Dz_7Ceb5UFN=QOVShGpll^3ap&R65!2V$9-}XY8xZi6BHPjC)qdgo+RTzABP( z#@iVmzPg&6kwI=sPIbg!T5b7muEFWL%8_GirH#k5>DK~nf4_pkiy-yuWtDy-tCL{yyx%;nB^J3iOyVdL=5;LymBR z1v7~7wEsx}3NRVMSoLFg_)$kKx)`Y(T69cIJ?J7dqqG)faps8H{d|l|DWVw__BHur zyRS_BhxTZ2&KS|s&=`fy=Jsgsb?K|!x@8V}4DOgG{B}(?{X;SW-DiRh6Rb|{XH%ZW zo1d_!Z?;DB>u2pUn<*0Qt+&StD}i^Cp$rz~9;X=rz*2t3pK+}0+6|1FaW^PwaozK=uvGfz+2qxp+*luXlWCCi(=_3keWI3s?Ts@W2v zPyHJjm$Ve*<>i+V6<||(&N8R-=43F#QR>GLXMa~H7SVh?jhgGQ^wk=X_rml*6J+&) zB2A!2q8WvnU84;y#2`d@mD{)@pg9IhEkodYsTXTi`+0_#$JS>xp;^WzIpc;m>4P(a zBO~6&%y4xs<2rk>)WjTotu|O;!e#+;SyS7OWL|_Vl{}T1fMuQ$7XMGs;zU^OxSQ7q zZviXiZuqnO9uK{-;`mw$v{Z)o$ucB(o#q4VRK1ag zhj!p=elilX3y1g>EiKzH6z= zWfUr}8LMt4!Kal`mt%kx9n1myWGV2BwrvOWLZSrWx-FC}U$hC~ZKUOe@`AH(K?YJ- z9c6@vzWrGDtKM;%aFQV6NV=nA@zSY5F8cEki9- zgsDLJox_NqaRuzsu#maW(Wu7gUpiAGIzONgF|<#58m;mXn~e245sSkf7Z*E@vn8UR zPihsDD2+~A201%(0EvQI{k0NgV+v7SFhaT1!JhdPL&1wbRn>y;$yj)ABgzDd8evKz zqRc7S5H*PKemnz7V>(eoY8!paEco_}T-X_^g5|PPOS+4@Ii>Q@SiQq!#QMKmnSskG z;b}LrHAO$8Q&yyegsR{n{BLHWblUw48FJDabx+gq35pB*>_kD477%iT;&+QMp$~H# z)xy+*Yx+n{wt!`G%&Bo<<43lfK-1Yxn$A-?>-2v`j6AElFKXu@!q4Zm==46rQe_#W){y;5bUjtSr0qwU93l?PRxv~*h>0RA$Gjg-68;C#Zuo<**@!Kc2o{aHN0>~To5sL) zI4l#=xe~|6jFf4(dst5pJ2<6MQCdY-qVMO{MpTN1rj>2&0t(zW5L{x@z{`~g&u%ob zCSxB=lER1}5Q}9}Eu{4rYe`7iA6Q9+=C+a`yzc1|IviB3fA^T&3l5XY0%(@{Ex*Hn zYB~X9EcYU@Ago`7E&V4yeKI#rw9W?>_5UJ>cq$$Jhtv`?B$iB5a#^jic#^t^lkQBw zR8V(xcM2QwfloBMzY^}{+=ff=If?1yxHK+!sW;jG)TKBs*qD+a zy-rE|FWi~n$*~?R`EF9Bst3WNSX#OpRsFk(AK#sV&q%Dv6E$(iNWJMy-w^!vU+F}| zDnY*BBaveZsGgpyvBE9B>7d!hZ5D9c=lq}x83i4+G0qaYPE1_S`Hs& z1;GN9%8i$$Nd0g$Kf>>PZyVL|w^O5MrKEADkQ4Y|p2DCKPS2ry352Gxl0bd~(c-p> z(Sbl}fZ8C5XxegzK@~O@fg|q8JiT()mrc&%!pi5UDLO%~3xBZZ7hHZpP%-=l5v_MO zz`_c74`DO%0JXKetn7zcI<;Pf>n@jpb^uhHXm$SCngj=uBe*epaAW*-KQ-^~Zau%z zMc9{rX&8GXzPF6J1LPS@5Mx?(Mmb_0lEl@G0;ZN?A+uJ*=_Y6pDJ&{#AwKDgA!~gC zft;#kOBjiYigt75g%WeJXe6^o7yjT|FJf-OpK$w%@Y|Eeg2=65%o_lAZhDNMndhWl z<%iMN#aX1_Szf%TELAtxV@@VxoBj&z`UhhB8Qwth{$7H-4mF8KZf?5d2DT_F-?dL* zjmSSj*^_HV%8@!Phg1B62u;2Q(*z3Yt#~YzxIR$qI@LwjiG^Q^Z?8t`PkdVR3tLZ0 z%vd8$N0|Brs6kkrohxHRdDTFY4|4=irBa^iiPL=zbSzR74fO8(5GYDv1`Z1i$q6`# z8vNA?^jZ%fjaS&0=eM-X#YR{|CvbS$K8w0D->o7w)AU-P`?UW0?_nfUSJauK9+C7fcS_T}L6SPNZI zpZ_>0Ov@?2Xy=l__cEHhWs9E0QgvE}&bTaBSd@DM09+d=5pl9!+5CTr2Adc8q_-Ez zU@n141!@WF>uY|g%f4hC!!=bBs*f<71ImYk=QanB~oip>M8ba_kd+1r&@& z9!uX@oc|gq-!2Oz?|WqZxW*f8@D8lX{xa@)ZxxuFm4H9*&>KGZ04Ld||Hf<-b?R@4 zR({>tlu1?7R6bgzZ;;7DDy;U6eB?HM0f&hGr#({2%TWIGz0Wf5cO*B7SkxzgH>d1X zwr~Fv%H51=Skx0&>H8aZG9mzc-$PxG_?XFI?dO9$ov4kblEC$IID%}y)Y0yLD1O*B z-b?^Nb9=_DmQj%D(lP6q_Qo4wTR%}E&c#Ke>%GPB5TFUV%+2&?7Zsi5!XY~+_|!XR zlM|?YT3mi1T*&S6 zu&*_#guEHJ(i1kUL+Cf8h(b*EnV=!E=yX_=r9orm;4dKImwyU}l%a8AJFK_27fa53 z-RA9n%|wd%t3B+Z8)-HnCY9NLVXyV7r%E;z31Q%g_7Z5FTla-t+S)eNc@gsC7auIN zVpwRQct7xXs%dCg0t&SK!F)4rEi^Kjm+DrTCExXv_2G75*RTO=b#I^8&bF4Zv2N~l z{NvB&PJAI0PBX4XuDpbfYj$)Q%i-u8f#ASLDGx?jG0YPS$zx1FmlcSuisGY%244de z=)kXP#EstIZAWV5K!m+6^m-5xp#FK;Y`PBd_j znbaK!51qH4dw!bl*=NX1sFuQQoEjECtN?&!(MSUmHTF%*?AKQqjb#+l$v0p#xK;J$ zjAXG{zbE8x<^H?~oc(o~S{H!COsnv;*FC>UQ^e*4rk035pmn?ZNs)RK_zt$`Q&u*cehGh zcp0daS%-u~ z({SWU-tZNIq`wknYQBO-|8N{z1d_ssdWO9>l4A`uhShHR_4+0C)23|f>~1{@T~&0v z#m2XXli8TX0f1JT+q=| z)Uh-%hQCKJHl|{Qf@o6T5$mL^jFJa{pO^e6o0#;FvS@!#Psrj^kd1icDY$Fs1^m7k zjgfqWIu1pSJci44>?~ZlMVICOv=hYjwUCm@y&lG$jbr*>9DI?!yX?KC@`N#{8)dK8 zAvw9F5b+jAv;V8|6XRf|{aK@(0%TDuyazLZ`F`+>ZD~q5^ z-?|=q`9Dd(5D~cOI|6rle$#0Vg9X|0`G4+68imyU$}Er zp3H1bdr*mGASButx}LPg$pT~J`Y+i1v>+gr)L$17(=Xgv&=$W;=ay2H=t$#)uM&gb z0pMIuN?9{f@B243=%_LS7XbDtgQMgmH@jqn5pjW1g9ccjTw_>6;Z-o`iJc#ucoW?C zCnf|||KDex!ez3NK)>j>%e4t-(1~X!(28*p<;wX|AOe!&hV4Hg46&K?3=BB%OV}Kg z*{=ZctD^Fr*NP$I@fyq{B&3fNCHbjm{ieR}AIgfV?gL|R>g2rEp>dMuhQfON;92tl zN@?QkC}CnVQ-0z3-j#^s#G&@=pSQu#5wW!gs@hJJ$zJ&ZIGdE7zTGdyJD@W`xJo5e z5Ak4RlNX)AzPwL&m0lm~k6<_0w)8-;`O%w^GGiZB>ewx1if|J^C~18~~|%z*8JjF0C`P-t6se22qY zWS={hxSEVlRvz|WU;&m90HT3f+SBe>_ZDCbI|H280g&l2(8eYQ&{63E7A5!Txdt>L z1fFC;Zu%O*ghBzfWRv^?EhmEKb2lwNU~xsL4q%O&KjRwCCq1BQ=px#t{(o==Peg3L z;b(bH8MOdWA#c!|kY=;V+G!yZ)h2M_JV_8lzTn*TNMy$KMTKPEJqF3Nh#X1>_h_5tD<~`T%Eo zyDIG;)mOG2h+SNOfKL$ z1&b12DV4eL%gy)T-Jh#c=0EgF^*!eO#1udlwJYai!+hJ+( z>%)A^${gT*?QhP@A9b?^WZW|EOX3E)4?v4MlxX9Yg zI<@%S^1^u~`?QGh4TN08^)paQ%P^>Yo*}He2t{l9TbT(JCZ;!&p$*;p{nY!JIyhh zEuxp?XTfKY<>ts)Z#4LyMxbm64`sC!yh5>l*J%L;D;k|WY2SQ+^z0l{%xYp%PLUOU zMC$Ho!Cp839Z8Sf>iJ0ie|jFPqO}4T*)?fg#4=WAA2isU*B#MLvg6@+R4IVyeI!-G zu)N7rR7*xab=G`d1Vv^!ft9({Jyrx@Kt!iuv2*r6%_OZFwha`FGC`Y|I_G|AdC4dH zZTHqt5zpahVFX*Y;Q|qPL6RfnWPCI$z3gRUUR=V$Eu-wT0xJ#lgThy>>nfU_hrJZs z-b2JMgCIqOcP3fp%fpaDB+mE7U@mf38S_i!n5=Hs+oC%CY!NPl5cUZ{VYR-OdO|M| z3IPgY0bR>KPiG-FYO5~&s7H+}pB9bTjkxtvN?&DqkR%&8D19P%D+ug$m{w6l^^*t@ z#lRqn*m!CBr&}E8FHc>I46}qMeM(SbzJzOZDXQREal#)5uA8f@<(Q8S< zR!?^GsN;}RbV^@|>d~ohXNy>g{zvt}o4*@U$w07M&iv}Xd!&pL0#sMnk^nTB8ZcZ$ zj`CqZfU`KjfGtl}J$i7)MBA|Fq%0Vn8_{}Ov4T&q;=4Pr=^6MGRWBnYODZqu`3KwtU)IAB!}`rv z;yaGviU9zbqzl5=N_7UH#HsjN+U6wlUEnJRFjFU^#}TEyoHh(xt(&OWRs)J%4Yi*5 zZlwM)d)?L<(Mv;I47OMEGkiywUG8apU%d2PQ{EG5P@n;(3<45EVc$ACr{KSCpH7c@ zm)3w^)oA|5A5dUG;Q*c( zzwc@SkE;nW1z{|ckwl4)NO{gUi$&^HRVIEG3T=NzY(&Ba5hpOhP}x9j3IwFT01M0~ zJppt1Stg`sFrNrMCX;BDq?8d|cIWm#j6=ry#Q%#dKt+1x`iLpnBU>qDRwr``;}`O{9-zW-JuN6?TA0VQyfT9lO?=5=AvG^$i3%vf4BfZ~Az z0+24)K-o*bJc^Ivfl)>pAa;(=0bubxu^q|~RDnPs-Aryec5R?P0lp?eI%S+QReh13 zOX)inawZeeW-%T1yjaZ^4ADjl?pW0G%(h-LFX4b4UkaI=KOLrzB`mD ztTC9vHJ&FQBM|u41EENDbM1zU=xJ*w06072x2g-igJTqYjGH?b2s;Wnz;e-Ln*md5 z!V7Ctys;P~IX-Z#i=ZL&ezE$4-bX4pEX}r&Q%}B^ooA02IVaPDJlX?JkO!#1h*n*` zV*C`?dB%<=R8dh;Vt{OWB8*KxHaw5lQ!UCs$FF5AL1q5!5|O%y3>ai-Fo}4YK!t#B zXS>rHh#{{2cp8iHGr1G=De@sQ9@GXpT&pimzFA++m=}xDhz*~9mpn{M+^ch#N`MEu z{QgOC-O+zdL&s%&k!g2revPP!=bzM+K6vx(e36#h%*o6w2hBQ!;421(V#$E4ZMFal*2cF%!pr(lpr5BCnslNkJy4A1Y6h+`Q_=k8L~JT? z+SLgT9sDjzWe`;ofK%9XFSzwc2Na-CF8?ByoDoRw46u${llq+c$|Po z6&kG}sh#MdVPc_)y+}%i5E#1EPB#gjHQt5cNI9gV>hgd{Bqsxd!x+_${|nq=uDugb-yvLP`f?y1QSOGdha0UCqnfvCT+FpK0`1VyuEOe^d@4%{ zgjzChixep#_QRWvFHi9M^CZUlne3}`bDspDm>-Y(bHTvCAjQSSMF(&3f{vL$g}5S# zo@!AT!Bukd0^>#xp6QV{Nn{jbkigRTSYo*CRljjl4h>J7N3%3*i?GfB1^Hq#mku+irzeUdQCcOKE%VRAEwA!R_=zB5kqk3B7sM6Lz&8qd1Ghvoq!|Nb~GnX`auwA zaJ!XC6I>E$a~9_5u$Swof5+ijeEH{Sgbvt9iGDyg$*}BF61h;(3syA&)DN-woRm30 zen@~v8~{q@EiiP#yC&8jW6U0{Lfdn7yx-}Oh^3i`s-}v2yy!x%wduX&(5{n^QDBO$ z)d2XiZytLk8v;8%5RjTjTw80`rcgPNZ>T4E=|$$yv_y#IO3R7(@mREO^7mX#ucam6 z4@c0s^V?whdhMFEv2P(FBrDyZ_WRpua=xKx}WW$Nj6x5N@4l>#dQcd0>c{! z4AYXB{y>AJv%5MmQCx}ngU~*@_tMUk1P_4^o@9K?$->JlJ!UpJohVMTR$)TCi(QaK zjxq1V*VY>r!z>*vh7WvZDWRYoG5}O`D8qMku|tf?{R;I%E%VE|zn&{D^>G-FW}Fl7 z+gJ*lgI84M4(tl(Fj}wa(-S_+B|T<15wf!qfFQJTha1>bh3sassu9_>v$G0lJp5as z5I?l+mrDwFOPo-SU4+x24??z9Iw^RCNL`;jQfvbA(7zuX=(UNZILWQm|H5PLc<)}p ziHWve)g)BZdz5g!O+gaJtng?_5)j`cbWPt`dWUjcWBa72{8z`wvO;hzCVNRrD%oYn#D3*R9dAqpzeIJ}~&|RVQbS zvnjH;V5x(Gsb4kvUL!zb2>psFxZ^S5J~B-qm+rQXwW$R#tj2Q0NVn6vgS5*Hy1@Jh z0j1z;;y%@aQ+}@LUbqlZh&D26YJzQx8@U`!T}-Dqz1i5#635DLV@(2iqTK<*zx6T( z#T|=!MlmE96>B$J?{CcY)L0bIYb$t!_4K3 zBzJ8cZT2pM;KPlVC1apR;?N!u>R{qESa~N+S=h}$k!HESl$2U{X|y0^USDmW!V?O7 zc=#a$a@0?9hD!`Ng@i^zNP2w%A7Y`dzK5B)LUuJTS<|K&XJ%IIooKIWX!L8`7kQMO zFPYUWenlVs`EDLn|MCLgcKO?&i&R-VD?jk-_?BKeo6^)e75p^d>$VwsobI}{8)L@J z&PC(^FSzO6OBz=*vwKUwKwxB8dg?d$Fe|dCOutno#tq1(98itrm^|rEKPO;ga_?W| zZGH}Rgle0C@to%X)y4BPZD~dTSqm9bBr&k+?=8gUQA4%WyP2Gr~$+tdjHV?sqE zG`t9Xp!*QRm1MD1%>9arnWl3?%wEJ~S62bG^8rpl0BBL&>|1dVd8P_vkmjcuHEIUKDG33b%0WWSc*U6?5gjtZGQ@+6?d``P>`7{E2@?ARQy4Vi47_N=sZI zKW8Q8@%xwUF*7ssxsju@i>pwhbEaJG8p(O3`Qt#qHdN#7gcN%Xntz_zGPk|RuuHqU z_twzEFhbj>-98QyH6>LP$=q>c!}2~=$E7U-%)FEMLE9k@pB~o)fJ@4%!U(|A(t+O3 zpPdFC`+PZ1J>C_iHF?h1VB?m{LBZe3E8m6fo+Q%K7$vQD?Nat)@2*9m4RP-n-c^U%s5~cbEU(@;>k^zAY#M z-5-Y9i>uvi3oLSQcWMPeq_FcJ&y3x7WEX1erIUHhgT$_>oLvLe%MW2*M%OnY=qtit znkEb!q#&%GGUA;(7n;1@lu9Ke#(a;F#qp-|9oPd|80@=jP@P>}>E%vVO%06~C2-KV z^urDPDt^1Qd`)qu}uk@&9A*Fw^<*y7&WEx z#f}_LC}5n9%4vn0`vi@iVc2-AmgMA8w?7E<5>G*OK4J~e?93OG3h`i_<5YfS+HKM# z)91@g5LIG54*;^QNdj52JEp@4z3;T45bU*%rF@~h6!av7WQIkW$*JZT=+z!>g@rl@ z`HRo>wK|3nzEzpPs~&WKSxpL2Oz&o z6!pb*Ma`D`=;z-3N9$t^hNY=&yN3l~;&$lAWblPqvvN5zylSk?Iaf@d>u?#L>t>6Bt3v1BGe$*F)47JMhmuYW|YxW#_z>_F?*b)G60fX#$I)>LZ)vyDJ1>(f)o$Nj0 zwBO652&w&W?{Z1@l~jFLcy1rvN(|ddR%&@WyMVw@{ZE}&mM7P8oNk`;`+K}Q0_e_4 z4E52qZ*U|ROg8y8w!A~o55V$`buurrSR$fNsFs$J%p;u_f3+7%Pk2yYd?FO@(jek& zOQoChLTLGIvT~?^Pi}-a?BvhNeLT)s#<5F>2Or)(32w>s-_c(w|9GjjB)mK%B2n-l zij0-~>xkkHPhC(VS&4INDDHQ@hyj2sD;j`E@C3P%(?U@yjO1RHt_!V7bWl;*T?oWF zWaLwFuYc_gaUhIX5wb1N7)Z3~*@&4&Xr?}8JsiBntU>}}tJQ)}#)RvrOGOf*e?H=W zHcqQaRCc^y&xzOg_nF6muVOUISA7%Y#Agfz*fDtbO}i8oeK8B*W2$1=pM^drsk`3H zE*UIsX~*PsYCajGS56lvTKc%Y`J5Wg4VhbZIb6Y439eM<_IO7L$5iFip3PZuvDx@! zn;Dx`(lEc2DoJT)l3}?*6+|+TG+HHLBl$qdkuid*u==I2&^)`ih>5zt7&j&mpffi! zT(yMFfNtmSo833q=X%`}wB&oA``B&W;I5@|A^sR_rjjq_yiqFO6dza`Qj(O z)!!;{F8;iWQ?s4O*LsdDZ(B9<7>$v!Il7IF;~qIVJI2W)C`YHBR@P5Qy=n2kuhVQJ zB(>xjT>Zz>rgLHGhv0of_wK%GS=sACUHzSKDK(X}l(S+F>9JmUW*e_V+4ZyTcup!1 z5h`sDOeq^ef$awa?X)==9S<#2eU2e+MVDcT1y zJ27|A4>M4HDpL3t?aM0eBrdOE|9*9adY6PdNmziA&9Zu3qCf6dj()aLNmE?AaFb-f zWT?JBvJBuCnwQoL8uWe0E}(nx`?`BqG!Ny6BpgYfg73f~<3$E*)<4C2Sf z{3ukaZ}08!Umw~F>I3HncTd^0GGR{yjPe|&Q0XpO#){b?uJDz^87U(OA4Oc)wB{3W zHQ!@4LzF50*OLFCbwEJDX-EH7YBUJ(UD1DMG|f`@H|Vjb_+RZSjT|EMI_iGns&nx=0&Ta$KX<@A^;hQc z|FK?Nb3~KW6MV zR)1Fz#aR|uSC~EZQh4on_1k>9E5F$WL(|dbMKU(HatsSuURD-^I5g!5gXTW-igF3c z!x1=oPndaNYe*KHaMLnIj(0@k*DB!B)=>$maOx1=8tH(UIS*oIHjLo&#fJ3iS?2!V z8cKU}1QWi$Se7RFRMi9S7-y=d+@emgyC#>@XMx*-fIk~>52z&}*<7qr$ktsIpo50( z3`vGH_66wug)$oO9A!iu2bcnqzN%bh)jJGl2dxqHjJ=1Os_FNNTZNm|rVX~4lZdk@ zJ@aHHcNiLkV5St6v|QEHT-adpAz>DRc+s^}0lo+hxxfFHw(ic;6TjmH$-jNDrItYD zjIqQV?)kzIkIGX^AIz4&jHubKi@4+%(kXd+*Ao&E8E<0CK+SiLxT~~wPIZ#BN?T;l z9%bbb7xb{~^jx<4PR|4i93)jH*GodG5{FJ2YOJBO>e)8X(9l>uPca@9-$$&S#})Z~Xy-rZgC-SKS5JUUkwhX~LRp}*xr zzx7v0kF~G_7o8Xaem`ul0nJv7nEp)dhwWL`yDau><`#$ zWMtVG3}!m!SKyvCU@U+1-TKBMm8q?TN?AeS0#68STm597dS)ra8mawbYj0$;kg*!M zVRjrKLl%uj+W-aLfJiK%?Ju$$DQ)G}4H`kj&uaNdU5=naqM%-@hBm2j8*_xD7!lKm z4vO!tubq0Prwcu-fK|^8M3M^C%&SmKL9aj4^RBHvd7K`Dv!VMtw5YnJl1^jCZ{}Kj z+k>71H4}2&ZrI7DA$l=pjPu8t%4rsQh;@a;(91j#moNdCQqW&7>q1HsNsP+K@Of*7H1qMjrh z5n_zf{05!v__-=*BNw5p_27sSi*j#&n-!_I#xRN#wmBrqdDX({{C!5$W|nZJ$;Pnh zjz^@L{|qHJ4|HFUqgOElZ>!9ij}T~*4bdbr!2M%D<6ID{Ci+ERJtuf!Zb$|H9_d-L z8tB@W5q%v`BXpGGCHI3r?|j61ZgvYbUW;qtSqfH9s1-$x?bxrq?bcmowfdEHntZIv zk@|RRS2O+3Z#JmxtX!q2f-3IyGx6qa6Y%CC;<$?+g4)wAoB|p)dTK6W=gpxGy=*Z1q7nLBN5e}Egqp^##Q_TJYm2-4Ag6hx&68VzM3m#&=1`* z#;IyG@(l|aZ6a_Uf(Pb@i-62SD%HL+#MM=nD9tsd_m4^m&pblq%jtamqW8MpoAOKT z0_IvAg{sb2aFM%1)P94{)TG09H{D6;YdIAS-ayzp!-?_8@)T|kH~tt+yEZ7R_7*oO ztaixdt5`=@9&M1vx)@z{(ogOfStlH4dX4%bi(0g_bS3{U{>8VS&^antf6uz};SEOW ztFiC6#jF+w6gS;*uGw2Fak7tPsUXLk*Ey8wPweiPmgoti&4(*C^OtQm7Z-hOt87I5 zmnk?niuy-yMfE+Q`&-I;CsDso4>HfW;TjjTp8R$;?{=f+bynIx;!D@xsdkvEHSl%p zS1LQYtCiTyYZB#uoJjFA@%%$*v-|vRJBMn=@Z|*HE6X=?ZI9m%i8UFakW53{X-*9j z$vbB0^>+H~brpy%?myhxrVBIjKr&TaTie-V=rtG`tK7a<^*^Q4P*JMwmy;}gGC76% zSesT%c0Sj})FfKXYt@S8q&@1ogm)ld7e!+)J8y??hlglY-=4l;^VzPyCsDb6BJQ|* zyMbwqLj0R=%%!P(gDyg4_eoCkCP6tkN(}+49Xn+L>?}2lTAz%LyiMa~&RM!>k0vE& za@p&5=S(JYr(Uq6#|e_^W+-Tppyt;u<-;CO8EmS{3Li(dUC-}6(ChN;a! z&w|-Cxh*r?)sibwolDwUcX!&Rj8!<^O|aO;|4rRFSkd%PaEhi~+(P?wd>!5r*>oFS zHs8+lZ5e(-r#_rXL}+9ms_j-)02UTX$jH@9W7R(Xt1i0azW6st$uKjwz1U++d`+M! z#j9%4{%>VZ@4m^|tvrdneNUP{)1IQo*oWI6g4qu&aDJ*8nPpinRfRyf-i0j9rwR(u z4GwD^^5-u3$q>~xEA1QaYJciX7A@H$n27(Aw5sH%savzBNfX9u_x-b^`)KN{`}*>% z`+h3f*3Y_ut*$9$lo>f2+!we{!=K(qhm5awE|7`GVj&JSsC@qr1 z$3%$2q|7t6bbzeHWJG6ZmfsJjGI2bbDeC^KY;3mK(QUHGd~5jEsKcAG`V;s_E%->E zV2zuTRk{6!%1t|OPS(yX{?-VcIF>`ZPe`wjg$W4%B{NR+Ea}KgFWEJaESQaH*4Wr6 zIIwB6nAn?FA6u;Lt(iKWT6#)%TuRb%>)Tf}7PQH$ONaV}4W`%JO>q{*RLLuLe8-VK z_eB?77oWY(X|>{LUanmt7m{B@SEWAQwk`j1e%bUzlD!j6MMo?##jWUs z-nfm&%F20)L@eGbLN;HnqS(}w&0GZX818Qt@zpTBi^#=XDWuFk%<6TmNkuXaF4jt@F=HrZX-C{_edzwnHQd1gt%)+3B{bSd9LZHuZu)doKN(`EZSFq9!)06= zlce3PW2ahX|88`MTR@k)<}+FGd#Q$mbNz8|GK#8y>vVqY)L1U&ujx|qaA^A-C!>zR z#m|LMo=Hgl9ir!V{7&b;Tn}nk)Qk&P*X7VyR+S4^pDuLABy@vrAfKe_xp(1(b{||^ zF51L!Rp6yHpiKDfv8a3keIu6MK!soy5V9e!|n)l%>aY?hfZAoRXWO|v_ZVYmwoJF z`q(fl+ubLES|bTmwrd1b%h{)q?+m6x*jj+7MXri8&xt_Wm(|bto2)RpLsh}>cg;rI zb&dN!b?)l;loe=3YgWG%H6%JS%2Qi&^G&vQpi%e5>h+h!@k(X`gB+a3D=v4M5=v`F zscd6ob8AHwdzO^IY~yDiK4K#P zUip>DY{jFD5eke~LRA|_Xp?*y>MHxR_^n%dSvgY4h2nPHl5YxSH(qv;mC2eI-uS$c zVP#`;bAUis+BP?4pfWxtqhPRF1)XEbHgqV)&8@olB}7R%RM#MDBnCG=g}JQN)Dku93vWCAkabaf^ zIkvdU+N455aO`IKZ4kF_e~<257?x%;?)kG*le&ki*?6=I{`sidsqVDQ{U zi!45NUSN%P#8+h-ucY8m;Xgg|!C)=!;pYs>YQx;!abZ5V8DKuwY>BGlm5N+ zHik{wCilQ44$8lUn)a$hfA)Gemy(3zeb3Z#u_!B>8CpB5lu{SJ7aq3b<&IDMu2ey_ z5|Q2oCQvsl7v%@j78-eO4oSq<>M~yxQX@u6oGc_Jp!gGDSQ61~1Aq>1mOToQ0vu4zQPA_B&W z?2Afjikl~DT4pXOW~7=|6%=%ecdwCU7O#^%9jJX#t0`w&36|Hm7`@m(B#TMHvIWA3 zjbJCM~mR zdp2hJ`?#O14mVXUXp7*qi<1Z)jSE=Kn7gjt4==W;-^Hj5VY|p5>Fa0U-mh?y=k-fv zDaGY$rtAtu#XBpO9^A!UO-;(ms(glX70c)1l}8hdmd1ORaIkBwe_70Ui{@mG&xzu< zL^E-4icAu_$$b|5sYc^$fN^?vu(hbQM(mh#Pg2ON{lY@GLAr3?L-{yFuD%S?#zDaE z+#&5vIQp8HM=>HzsjC92o!FtC51OiGgzonT$^-cMejs9Vpxo}B_%iFW2NHKc7t}>K zIpd)HH;%fy5qy|BVF>s|Rr7!BPs8x8c!{Q3QwI}52dSi{c1gl+{*Cn7c;MgaBq?;5 zcm2X-1Ex@u88y#Yz~G2AH?s`HaS&cztC1-~YY&7bv0<_89LDxs5FJ^D^-6aSXO*a^ z)+^hL)N;3fA8OvO{jvrvc6 za{kW>Z7LoUIYWwNeTxhfg~HBDPG-aPMG>V=>w@a9MwS+H9ITA0A~uRjiW>p08Eoh8 zM*ob)B>xRo=;*+TMYng_gfEkIg$y@(t^ur%A;89Bw@n^OzMgXfiIH5L;ToVV!-zL= z+yh1fC6SVmy|6nuJ%a)9)LQtTCs0(wPFGY$~I+m2vb@j6uDv`XXu=umDNa+{8#4Dt;O}a+z$++^JyNwY_ z+X6QGUkZa&bx=m3g`}F~3M#rPF1a|(%D6Wv=(zA3Xm4&_fsa3U6yteK!c?^d9F)qw zVEbao)s>ZW%rpyeWU=CBuk;<(CFy@<4<%zLZ9Z6vCuM-i1N1m(fOT2|j*aZ`A4-Oh zAs+8bB0sMHRU+&f`(hpRq@3;LX!h-&f(48u|wysd#&PFM*T< zF^C{@CDh87+S&_DlZ2Cn1&#&Q++~CH-D^CLXE=&o=ugw0oy-m^^6v8Yq>qY6zv3{e zeQ>UeqJYWqomCUJ4r+!pas8TZ!&kCOKW1Otky+^`^dG~=x$Cky-i zjbbropQsErhYK=I!X>x<@8iue-n1k~8JIlCKSC3s-une|Y*2Vf*FNBt4ZHfVQpOoe zB!17ZwD={VRXi*Ko@xEZsAj3*_WmnMFDvBOnsgZ5d7_yF_v#Mcf4>^v?)y9;X|@oD zf0s8*)$Sdh`nQ+?&=$>zt9Qr5+~rl?p%uSJgl8Nn;4Ii{;Mx|V;1hMP!idC|=n0S9 z@a^TEb{laxcWxsGa@I=9lag-d*l@AEw zv7u!=C_hwz8K?5qS%U(OE@eBTM2EWu1+Gsze15c(8Gd|4m47p&B^RrWi*w7=CnqcG z{GJnU6w6Cc5UQ%AYsAO>v8tzEoIV>p#P8Tds%2+FmipGVjGae=cU^JPF7|3y_K04G zhmsv?)AI`O2mq{q1TU6z=woMtftSIBOV2tvi%A^m1b@hoNapGeX9DqncXdknH~ z=tKy6w^d1}k?NA>Wo_|MTp3#!Nr*|RS*G+z>`a<#L$e+=B8?d^D zje|nt3m7chuX6Ha#|w)7^r>0tYnc!8f=naU|Fb+|Lk5D><5`_vS;lwXS~swHHPGO| zJup7VEzyli3(i6$JtP-o1K4?o*o9E3)xDZ6m-IOav|Ky>`_MPgJB>oah}en5{^|Pv ze<#L8=9946VtJiMQ}|5=-i*j9h3y$QYGqViT5%NRZJt6?=Pfcu_Oo?Q|pgCmR5n)UJtztWdlf+N=-h(KDT3a?z4Vm_) z4Lg97;?^_aV-RJ*-U4#ca@cV2qB1w#QFI6o-1dcjU0u9i(Ie^>Aj})u?FEK zVkL$G$F4s|5jm<6lyyFtVIIUop$&E!Q~NOO?04zmL2hI)zmk&DV3n0RL<)?mMpucZ zbf#V*mmrGEINOj*d~eh6$ueV;?B>aR{#BvFi(oX_q9_>=eWKdqtwlnP8+;&4(&V!p zDmo?hhw;fkZbW5Om9Cp!-s9r_E9*V=@B5~60CEjC3k2F zYI{d7d}D=x(0`8>BvtuNm9ZxY*d9tEC?lcpis|F)@`4lY5<hR;HkM4v>P|L^^wTmcvouN*x-%~JdlgHj@BtLSj5amY5@-Yyeyn+FG3QE zs-=;#%t$bVQ9h+dAHfZII?p4Du`!SgGqTjAO$i^00gk?#w!B|Gpf>RA^x0~+MNM(w zc~+C&T<`$9#mjhu=F;0;1(y`gV-TV4v#T07Gk@^$K{zoBrM-qmG{r3wL}P@Br0R&I zDT3KVoyPfy|7x{q*F;ExSMx1l`*^);4ODv~>-9hgY=H=^;W)4IGqKS4wCE~4p^;;2 z2wnIx%_-#fUEV?JUmSqajn{~S4iSgL8CD828{`{*SB5E*3PTU`qAZjPGhe^|v+fvj zF&ixr;P!CB^^Vf>Q)l;JLeko>?3tsE(GmLlLBC)u+#nJJ=%Dg!*&kR3#1^rQ1g69& z^Eh{nP*2L*4nFscK7UDk>)QuJIlKwuc>2Y6S8FFW6@G#s{j!n&_RwkdXJ;pAET*AU zz3fG!1>r*D+>O9;ot-?loFRYxcP4AI!(U}(<+DiA$%n(}QsF7kzPLXEevH6NC(f7F z=4+;;B)l?Wc<&=Q%i&4lBdko_`102?NZdioYlRp7KYb)%o}-S@0!+tKodypep*9M2 z?mczv2Wa*v;JXzY-&FWe6?E2jrAGHdhP|4@?*HfO8E364S7P0Ei`1l3nU*5-tyr+pf?9Ck;~IM>%O)X zUnc#p&+1MU5fHU`4pmKId?1b-gzopuQja!3=eEp?l4-PFKN*}J&f-1{u&TleSE?pxbO*gaceIOlNt7Wgq2deAEI zmq+d{2vu8vKiUHveti|;>MgkLRB01|2X`3Yzw)bVdP zJ<9-#MdH!@AdV5Sge@>dP-w(UV-iM%9ICz2K-@$&RZ=_FxxzS_YJWeMrNuW!dYIBV zBgE7Hk0T@A>g_*u0ibqSb%-I_fBWK+fio#1!MNyU@vS#q+F6VYu0)g+&7S?XBy0iY zH=+>s$o*0D2Sf+tw+hT|5on=*Rwk7vh`BHQ?2)9|3?^YrV{3sTmj`{lFBI?BGo;N- z43U$6Ij8WRcscNsJgs;8L{jt@xdlHkKjA;DpZVBLo^W>fX2dcrXN-UE*RO;Bf?E0^ z_i3bO!X4%j%7o7;{C=~aB)oRwn7W)Y=F>iO&E&%s!XVPyZqH{Jmx-tsv@hee?9aI1 zV~w|w2{EgD48&Y`xr7%ir#}Ri_T7s$>7)^)yzQwOZ6>nL$V7khs^pUl|DTwfdKf`y zp-QHR`d&er%>VibztE$r`*SIuw4O6#RoO=HzDQw?hV!U@{GUQb4+*OO&r@vw zhk~YD+XWE)Bi{S`=bvaQ#Cg94sAOJv{w+>qm>g|!g(CFZhQi{_+)om-;djQr zz8{n_U!{54G5LT^rSm|6OTk`72%Ob@7ap}fxJ#iNEcctBbz|Y(wlk4rb=$M z7q6dA~CC*-oN|APX|u0_9qq=;f> z7}4uI5VA+6x$)WUh7|K|!_A^7+i5)|71KcGSJZE=kt6p5c4)I`dKM z4&vsis%5Z@WdC>p`|s(n%r!0*7P)~Ft{&3|s|!cUlw=cM|7Ph7rwvSt@c~-hSo7>A zXY^4yV%qm2ud0fP?6I$TzdN8Vxl+vbhc$vxv8{h7LZQ7w1isHU^siu%1R4xy zFV8$WQ+Myh`I4lZXbS=}8Du0a8Dp-zyqnW(bcOs5-SgM7Sl7q7*z4vSVrE(vC((Yb z;|3}L1c+hkFg4^1F(c`}I0&Rjx(v(me;l^_KP=P#`yv1A@&9j9^J9g-muXK#T|C}x SzJ{sNrxaz?WJ;wUJ^x?pL}w2G literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/690 (1).png b/labworks/LW1/images/690 (1).png new file mode 100644 index 0000000000000000000000000000000000000000..4668195174b1de62deab71b63cbb7467182f5c32 GIT binary patch literal 327 zcmV-N0l5B&P)Px#1ZP1_K>z@;j|==^1poj532;bRa{vGi!vFvd!vV){sAK>D0NhDLK~zXf?UB(D zgD?z3xlRE455ovB0vo^vtw17Yh~q-9cl_ji(8xxzNt?=(^nI_>U4~(p=UKwQI-YNX z`{o&X@>f$Z3u9II}S`(ksI=#}C&9x$J2<8E{fVAa`Q{o8f(SNlWi%v{+ zFOIE}QK7DriLNtnt*{NGk8qunIT$8r%bg&#T#9Rw*lgi~Jjfh#D_WlGF#Q*2rSeaj Z<^xbLy?UejRgC}u002ovPDHLkV1i8ViAewe literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/690.png b/labworks/LW1/images/690.png new file mode 100644 index 0000000000000000000000000000000000000000..1e085c0b080b8c77dd7001cac43e674499da164f GIT binary patch literal 7824 zcmcgxXH-*Lw+)~m-GXu{f`AGr9RaDKO7BgGfQ8!c zcaI`l2!!K?rmB)jfc5$ewa;br)$hNdL6e;quTX1Wu=scl_NK^Di9uel4jXwbQjNj6 z%Y zpKAO@`7fFH3_h2i4L|bVSuq{CD*&r^9o*9FB=|LYEowdNh@xhlW}u<9wkt2Sy%G4t4q_!D1k&BPs=RSU2fHKT~u@==@}IxRuFRD z!iyd0FqjqpUhR$bDivD6klvJjSf{6_M=WU9l|{-u>n$hL+N{jdt^uNG+w(Ln<(8>d z`GY2}ve-L3Je^~2F5k9axuu|BP07e1U|gstK`O@HfI#B;zCU7RV{@^5pI*3w<(3aU zYBVW-fEi1ULHD-GAPWrgl>KNSswoeiJ8drw*ljKJR0sTijGt<#nD!o$AI(*w_{UDz zky!J?QEg$(8v6m;#opx6_iD5(cRjB?(Iivll?{Ln+1c8jxp?uSyUc31a-M;5p3gc~ zA}%M#-FS6;q0x>8vQP6L!uZd4{(lab&Yi(5$`zapOnI~m4k-{nT2Upp`W zZym^#8VaT)6SivcOLjsbHRHL})>u!@8Ap}fd&k<-_;lWN05(XKAk_u}U~kW;95;VKp8@V<1 z{KgAZ(ETrUTba0{Z|-E_%Zc+MGcEoVW5vemH}!K|wLo63U4gt*Xp$Ld_neEo&dZw_ z)|Y(SVIowGsJWvjZwb$6I^yK3#M zpx43j0@4hq*OzZ=J*T_g$B&LMQ8(hCek5=PAIDECNVJ)G-ejp<~WUq5m{3Z8O z%A}lhovgbfV817_N#r#D^~H@PBe-FAK=E=J>^Ck1jD4*YD|%**L+}IJgbK zu16PB;=a9Oa~sHvvDszg3q8n&OZ%&U6&u~) zH+&ye7Kk#Grl6#&tXuB%F@khEMDauJDyET#Q~cM1&$%RlHB8NSp+FSbxXiGOEIg%We*bD8zwj+%YiU*L}mnV6s}YV!Ws`<6xAb>M0?Y0-hw zWF1>qp!AHgeraG+^~@)(cwGBW08qh0$FTO$Pgbwl`@?%FLQe$XPu8?kg)o-mg9zv* zF#;a1(K)v1gKf>ViK)PONHLMt9H8P<#!zQ;iCtMx7EiE%@J#e$*+$wLb2-=S3Yu2a8 zw}+ux&kLb6J)SFEo@5Nsux{~NcOA%7SVwQlh03ShV?`#C|J`R~F^Gj8H-e^t0@m6 zB7Ke!f+4_x+s0w(WWFDYoYSueJ(!HjNBo(p(6(n^aRMI+e|hK7t_{;>Z|W}Tab&+J zc@@_=J8i&lHSZ0OHrDeBx1$nY`fv8t0uvuIdj6{`Q&-pHbEPf$*)>Z2wu&nv)|9ef`uo z%);1=2EA+j^;Vt1e>Rw)7-JOJwkz{#)UC| z6;d^FZrR~h#p^e3cyvPUKK(Q5Iw-7+2Fp5UFctRY{YKBcvgeY21!9{HCET{JOi9mb z>ppAIwq4 z7BnwqU|G?$I+lcv#GLw}9C;W6``w4f=-;6@(uV)~ZL(|40nvESb`~1iNo8_d-8@Sc z>cXwRA_*&K?ZGT*9-ez|!gV&m6(>=+fYMBZmc;dI!zL@$FH!l ztp<%p+w_NTK`DCcKuY&?GD2Nly0xqa!kwoZtE{%ho4g&;W&O)R*#35npO$|_C8KeO z>uUwGF8!wY7}>SbAIi?oC2P}7D057mOKQkvWs4@SMfby*CW|lcIuvwvMsC4fpwO+ej3c>kTD5mTv;%}lSgm+Uqj0|q6qrSk3xOKuBp#AhUt;-;leg;)8-ac zkDr6(()GTA+}<lJR8HE{EK2&Og@064^eL-oGnvx3>t($#%_FN@M3J2g9 zGDzEn|HNMZGuw$G(G|f)s-CE)OL^pgsp$B^-0djGK*oTs(luU<9O4?Kx^;MgnVHwT z{6SUSve#|#T)nKjT$-Ai0L`DyfAi~M6VHYGz12i0Zl#V_*a(BVtgriM)f!-UNWedF z8BupoT*tNJ##=7~KAp6-ERYPC2PnOS8`@$Ny;P(uWI+KYLn=FB={rgvDoA@ppt5c_ zC6mP<%1H>{`JKRJi;)gHZXGK!>>Pg|8;$=*hts>Tv#llwnDjr|BtG?-i0^8Dy0~8t zES5vwcCO=j{T1w%t4#4=!MOT$P8lB!1`fFZ6-Rbx=ydHJu{VSGv*C`5EJ)V4OE+~y zq_!PrTbo>Gn$hkT@aWQ1pXFgCN(Oev-YjYFzxYkgBTJ+XOW>cccx?f4`3;zZK7Gro z*+;Z+!!jrAII!g`z*e5+L^Fv zfI+TRFWl9cYVZ&igw@}%>rLXX2I$9jXkt3k>^p$ocAKhCck6t?`0rO%m;=-oC*W6A z^nLE?R6Xv>5BU8ja>2Hd3=%~#B!c!F<1)lnk1d7}cheskU{9p&`~SeSg|xV0Yc)fU zw-MR{84`=LL7R0IXTq2Nly-zlOIuLV{c+7@qP)&UHAB+PIVTX%9_S?`790HQ3zgk) zu98t(a3Ikb$5i}mw+?Y%_?w+NqvG%1zw57r_}oK*-tIauHRF$SyO&_A4h^cRssaqC zCF@A;nHJT1gp6)$J-mKBnfBei$+z7EYegw~3tP__ zw-08^^4j&K)JX)S%lMYCOk@F4VN$4f6}G+PUq3im^`sN&0R<8Wv;dRh1eWx9b^C@a z&QKMptY3=q|C;3dlmDDIMQQHb8~Z>+8DXQc~>OC@>@GQfhCm)JaJBm?bKd z%)~DCrS<{w={7J0Ds0VY;RilH@bjk6AmB%uK#-J?NfjEuA_b$}7xB5F1xVzfLY#h% z97Zlf+EVoIJhF%*l=hVGfjDKGF8;K*dq|hxveDcJ_{e8BQlM%~QWBHRvt8fa#I}>r z2cO_*p}?so@4~Fp0JoCnIZxsMuwX0+k0?$4-~&9j_2ifc(8hhH+33A0HH^Z2a5HHh zob^=O^|{hpr;(k79K8K|N~j?o=RjQOGBL_VHrfxc!nVyoM%ai~61dzBgSnt$Vq*F5 zot1h@=A%&God|enVa`2SWFj|=70D*)S_$IINS1w^ah2XU+k4|hv=fjMuJq@01I4mU zV(o96eT-|Eg=^o`NxQb$M%WtSfPNEPmwWS5pAY-9Z`mQz@`{ivF-hB3Ad*)g?f z3vN182<>LN13~CcAd=pxL$6eMTnzj#EOD z@MAz}7D2iopGn@l`RzDL0|=(Jr=ovOH+e7BX{QK?+M$rTf2lXuP9IR6TUeJ0O+a@G zfRwej!c^NWZY}mLahoEye-4Gs(|7_=vY2dc9dG#IUixUUF)si{?l%r;EBwur#k;8r zhsz%(qG|6qjed>7rwGDyNS`Apya>yN-pyh1>$mt!isG066-{dW14<3ayVmD}qSgHb z-w}JlutTtVagVguej=gro{)6h^fMrZf67evYg}!eU zU1X>tI@(_>iUcBgJpuGAO4q)admSG!=OO{=1^awMhHbLG4!Tk2@1Ymo@wV)0?jIVW>(2J&Ly9q2IzfuhVa0LKTCVCMkM-Hc*O+V#PMoP*} zKnq5JaAy&>f9pC~sT57e!VM5gateBK}^38Sa>Dm-elzt7rfBe1U1H z*=Xe>6&4wvqP3|8eLaMNTfKv=Z8spVcEsIvWS3=Yz|)#zc!Z*2x%H=8fQN{3eXJl0 z*H|bWGEsR763nQ@&yC+0`PRaJ^V420V5PPoWsy5F9U1k%^DM|OsO`_SPAKws ztP(WrGCtkqq?_~uzb#2fGdJf@f)%DqT8LLzDN`Fg#svm{WnZHdQyL>pedo3r%U+Y@3q1DlLr1 z>2rFVl-iKAKmhG04*jP(Oz_*g5^@zMV%C7cW=Oc)1g)Wa8#=z8kdfic@hark52fud zF=tNW#fu0wN)fO~_`qn%2ZUrYKae&rUs5zt4go8v060JZ01IEbyA{XsXiJ%;Fu=qJfV+U7Gm#rHTTqFC*y1NS#wYMLS45(zDE2@ypZu>AnKX_-QW$HvzbE` zQ;WfQVfjE_W`5AiCv@RMr+p`^kO*F*T}@(WUDtM*N678R@wzDfaID9vzrNzJAmX^kh?K}==AdV`0^z=F;I2{mB`U97bz?>N&-K_@RYm=gw zTBk(JgzRRkF{`BOA6J;4o+=h#&WozF0_q*+=IR7|@L1^0ZNR43PuJ3Bvut9C{{#gQ!(Sf0AeW zF4o2VV+Moq2qPR=o+c$GJ;$m6lg+-RN9!J8;#8FKlk%s^Si5)*bgBC_dM|1P?^i1J zrU>2!nNNKnyh6np{4f*;0@VYOVj=GZhgkbIh|1zSsaX*!diloHDB2l>0kmlKrw*g* zq3mit^Gxg}pk+%fANqi=Daj1=?FL>#C?D7p^+D+oxFq5T*ml)`M`D13D_w~XC2Y)0 z(alc8p(&c$pj=WWS}^1R*B@CCoG1I=BObn_jI`-jth~YG2%PDM;MnEu7y?L24kh9B zDZYr%oMF5Y@q=0Xyqv*g*&NTLmiVT=NB}wD1@vcB#y;8r6AuHO(GM9qKAdQ$gcFvZ zx&`rRYif$NJBUP)f7w;J7Emd^$}DWn4*b<;n4g~Tp-90MMG=#J;(6By%1A-HV&&r1 za~yo+Kxa{(VT4Eg_#$^+?lV=S66^g2_v{e6Wf`x9mw^Z$M7;-&qsXeI9wSwNXaSui zb5BEiiO8(ARW@W2D`ZLV(S9MfOlW9qyesa)_W*yvM4wp}kb_gthK@z-tByIHluV8Z z3^FlvhC0-&-$d;y^8IFVo5SI((<%&hDNj$I*>`eyqUCyR-Klx*G@Ad)DMCL}a$wE4 z2&Ks-)1!u?lCMFT)z^>L)|KG6NOUWhs2m0tZP`DNyUBUlLkxtF(U4Jb^AHa)hx04# z;`aR_R#%4Pw%;BIL}vukqQo5r(-{4hn9cO{YjZIEmt$&eoF^+ERr}zL(&YlH4-!_| z;acp}1bI|dI+pn(fixP2W(;i{#rOj|I|0<6_Q^3xw;@qa6iuR`V$G3R>%4J*oCfo5ZNciZ%4JJQDZudsscV+; zR2%_{8%;ksoQ88Fnl8MuMhtJ7@%1!_pc%s{e*yNiO6Z{*?e>{O#SPd$miU9>}zP&?Hs-A}~HP3`*_gp3Bhdbr>;abIlXoKAjTH&;iK){##(<3=1 zYiaK>x>}yhY=%1M#ruYVAPc=UfUcr8+u9hjW&I^1iZ>JMi*|m!7h;s!%!DN<9^i=kT+KN52 zxlLW2Fy4TBy>s-D@u@QL|2j%q1uy1)mhwuY4t?4xezTnFHSi6;(-B9FL*?(*I*xEJ zFfId&;)uR*OAA&6kGR)jL&z;x$tTbmv}6*Pq{kQoSdkMbcX9cGi63LcYpX#;?=H@y z7UsZjEqo&vm*Rx5pF0_pgPbG#uRkpOQ*;0OU?HRXgzRR;=lc;8C*QzVWQeAko@%-B H!^nRFStY+W literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/7.png b/labworks/LW1/images/7.png new file mode 100644 index 0000000000000000000000000000000000000000..6e76cb60989df2578077704f547b2f2e30ca1bdf GIT binary patch literal 31321 zcmZ_0Wmr|;*ELLcBi$hIqq|E|8YQHW4v{YD?(Xgoq*EH{4naWaPU-Gv9k2iWetSQh zOAoNl-h0KIV~jcG34f>j79E8c1quoZT~1a?6$%PE9lU&z5Wr6|n;YJPf1sUI-%3DL zO_1(`H*gl>O5#vZwXvv=M)2T0vc0Uf6BHCiFXRP1Xjf_q1?7G$Cnc`_#o#C#-b+v8 zde9g5hP%v@f#sFk0=0sFzu8ZCe7D=pwtoH8jpLf;S8iYX^OIB=)%{y_m$+VTI?@SB zs5s>^6UMUa#J;DypNx;qJhbg*c}}9kiI@_G7!g*!(c7yw0{^RUQ8Y#CWsmyMD>cB5 z)@#Z0|NnLYDT;1rbadwN?m|)lt?sbep!mDQP zqpvqQF}Ext`IkI-1qDf6LYapF1QX(zZ{HZlGx=2N&Bv$v2|iXlKRp~SIZe*`LBswk zQ~NsgVPIiroNx74Fo8j-@6+MO1*b`orxiNOCpUM2OQ}5yEdoG69qkXpb^&fd< zWsFLWsJ-q_=#q9FS1Gp5>j+0pi?$wDvzm?Lyo-Brk{CZ{RK$)LJJ)+d4+~>O9XVii z7C)0rOp3i!_&#n@WN?~A_}s1|9<^Ug95+rjSj{w?bUu9A=nFr7>bO}s)H$K0r9FP4 z&-E%0x&AF_G7#l(a?ZkVfCe9Ge+ps#W>%*z;0Hd*=S1eoIKyMb7G9p zar2bWel*|8lzFBNz6bqymVlaM2%5t&+n25Qx6a_zI`3CJmGHs;|Rksk7BOqGTH9_*IaU)a|t4UO90IErx>T>rIyBxVbO=hdNCD|t0bShZG!LU@33hyG!5K~AI3Lh#a6-v0>;ju z2ggJ&+!=?;t6E2nHoNoeeaU=z z+!b5)ITxs++K36GA=PpLd%23W?JwsInbs72wsS&``wkI3s~%?4vSnfPk_d{}(`6zj zC+Fpf@5|y5?5f*tw%c3;&cjfLIL$~`Xy?nbC;g??@w4l|!l2ZEJB{AGD{r{iIn)~e@;h^GJU)>gBbIx+Lxr2jgbgL-+@HwMW)D{!G1 zU3|)E$8tn;bA9g1npQllY3b-%&D2jx304)hL&M%v@ob$Jz9qn4CbGy{XB1~fVJsU? zq;K2QRVy9qd^}gs48MQ($AKK{&!Sz|vPRsb=tD(`a`w0Ht3E;vvlP1#Pa9e>0y}9_ z8MAkP>nF3q))zjb8H+Tm2++T(2V*${{KHfRF|^DNeoQTKuR*YzkC=6txqh3a z>Mx0e@JO0KIfz~TQcF%w-k!_-vJu`2=6tE6Pn5mu2KBY98IX$_`|*i(bJ3-LZjX=`u5|@%v()Dy?x8VEoq`&U6j7Supzi}{K99d7O zg8~yk5S^j$ONoX!&)4CA0V8xDodD8D+Ox5ih%#KUZTB{Y9FW!9#o&-1SwmMw| zxj$Reh6s

  • C))VibZ_%#nsnVnue~N-ZXHCMx>_F>iaIZ^i~GeE%-JUS~yQlp}Z6 znSI5W-D>-->*eX>*v%oa{rUco^;U&;juZ=C=T`kcByE0mS-5xy@%Ocx^7#R0x+5;) zdG;Ol=ZOAV`dbo_%8fJLV$5Y<(5B**u)d zA;!;S%V(?I@D3;OOb8unZpZief?_^D2m!I%*O<@cgy9&Mn38YhOQH4FuU%^1IaWH( z5YOLxB7Lxm!LnG%goxs*OK-JMIuGIOP1Y9j_;6T0dxY>1EZKUcdT2X?;Crs) ze~4m|@G7!(J=Qt3QC&7S@SFD$S&kXne01o?J0{=e>ht$_sr;Ccj~Ti0Rkx{YlKMOW~jePE1ssW z(%h0gKf!H3{f6xs@_9JHZfi})!J_aH6P`K>Oq-&9`*^F=7ih@$(6L{V8PaqQTY+S( zuSKXwvg#6??2lCy-j9bNAz?OghKra_!XtuMTXbN3=Y)YYFvAoj!PaG6)iS^%MGehC zIS|kv?lNje-P}IFDLICXujc@F5I$KW(zD~{x$Ci>u*G(Rlr3DNbr47%s5gH)fgy8f z6vz=RCLT%37rLrjAu1D1tg$%DEj*=&nnDQ2inYY#N0DvT_eyKW&7HP1#!UP$HzMc* z9UhYCO=~jG)M(`KO!FMl)=b7A^|?O37h9J~@Q__yj>#ztQU%o#t22%zl22xj=vjxB zZYNWmx3RujELzv3-MQyq+|_l>39p>(bz7DdC*fy1M}x-?{JYWHSt=A#A&0#;j!~qz zhffzje5T`R9=X;}-K$`85o1D6&L+j?gTU`8Dcc8C*9Z^l;r@tS&&1}wYjIk6x(Inl z-Zb%jG}EHYLOn(%7Vtt`yxk@5Ugy&u?5vse`nsC8erx}=7JamNWl8c;y8Vx4XQb0` z%Z3(~S&YC^&-!iiY70HJ!x7Oq$eot>!lmlOXlZ>s0lI}%B&CgS4DA=E)JEB(uKim^ zqs+zaSeNA0FX7z1tb1`jD6QPy{6Y3`F}CbWIb zvz!C&{CCy`)DI}W0*IB^k)N;9&;%mV>@q7lw|J>9820}R3uq8Hs>M%a-Zh28$8pCc zoxVAjN;r<+MIM@n@QvFKAnA!6j=L$%H+4rB-xgO4QLL*aOw6BwLX{F-e-sCwOtmqoAXghklS`M$dkHcujm+k5A(j2N7q+_t$hY z2h@T8#hoP~XUduns#odB(zQ{?>+}1VtM3F*R`M0}WYH=zOHCr|Wcogy4K6pSLwS8P z!SfGS9A%HU(lNy%NRUtP5RTjW}K}XeGTXWkbOC8Eex$}RxVUoA+k(U&PMenWKHHw zHziA0D)QKk1)FH6xMszycD^l2{c4PFI&R3`=ds0fh?;x8(opa0;*1z%t7Y+ZyC-uNNgck^d4$J`Pk_q)9j z`PSzFMx8m16OuBxjpYpdnyF3@%@4G@)=eY&T6c*cu*ctHg z(YV%vC&g7$0a_bZ${bbnQ*1n7s_^BsS2ILEYMeK)RsCjPN{NL?NiOwbr~FQVnaDiM z6sB6sbFZ1!a@>A`I3w}3&N{hC4|jquulexW;EvJ7Zl6`PeQqcP{UloDoh8nM?3%Fs z5sCF}Q&8*fcb1Jd*_ItGC*gM*M8(#G`6~sM$+e$+fXo_W_iN2 z4a_G#>}J|^I=K7>%!J_YYL~BlPY`l`qYY+^+w3=u#`&xZcJF&~Rs5<@fq)upW2t}YHdmp|dIW1r z`WUEIqUhjML=y5Ic5-$oo@V*7-+)Guz~D=Mq)}beF4pPmsr`_$q;%Z9wv*2Ked0Ol zz6<^v2;(>KzS5ZYFY7F8FbTi4-s_o-m>Rz*EsSwA=XZ|}OI6I`e@|l55Rb~s5zMwj z;N*t8MPCxIKhRH2F3B96gE1Cyd)kZHHc6vcp!{+= z_M%a4wdx?Q(^YBj8j4kJ%&e7n0LNf-g2!_2=Wi|Mn62`)HllCeIuPD#G(Id62lHy{ z>20!B#DXBDsqd1EOCV*s>V4xfNhk@;yXxh%3)780UIVo=Wr5*K?ChLJ^^v3(ju7XE z#p$rv-B#l9?=+pebc>w$c}}+~iV&hNAF8akIF_LJP$pR}jxN0WzS-N&XopVldC^Bp z^hF=>cL~2Vm&lr20KBNu8-ngM$<#|`|Ff=otbN2O_Aue3P&p6d%XYG+-V#)5n;02a z2h~Z(jRAcDAhoSdCsS5mtIAO{1s}wFQwJCy29jo){|Lx<6rQit%jmI5UMHU9`77%8 zc^ohVrC;o5M;?1^IvOupS9g3M`CQ{~jish?MiioJ|IxwckKHkgs=mXD{ddQT<{fvH z|NO1F41Ykmki3KaA-sCtSF^T4!mq<%IuQJy%mKvDo53DL34_m$J*}z1Wb3>w z!2L`-?L~iL1!q^=k8ewe0MjENE{x^WnRp+0A?vN z8%S&o2wtNB2Ev`jGbrEMSRzmwN?X$Rtp;|V@J+4b(-YQ?JhOHxE39gXWpqR29fuQW z7rtypYkIQQ43z%e8&IKD>X)rnl=8>tpF_fb^YZ+(oc5ni`RBlGaoBh>;av48^#T|1 z3M?L-6>j`8(^_gTtVW2E)Y8EQbfjGwkAt$Wdc{i8p#`Nl}4RKQO5b1 z^}EqX1R|h2jvfST_jDTd*Gy`CA*DB-!@W4CEJ`WBb(OOBDc zn0oXQ&|x&Yz2Ex?Q-gUz=R?NMxSIqzEh(GscX$K;{*t0~r{V2=9 zRiopR81H)tnqwhi8!a+*W0!n-(qpVu+8#rTH6B)S#H*N@M;CD#Z2EE{Re)o(?$l)f<4WH>rGEprA%l7H@;#X@ejKW;k_rAK?5d%9UY zfs6KrU-ECxz`}~j7rhm^?sco3(UN}ilxFYrLnNdz$ZW@#Vi)QC%_JKou@;@^Uy9?m zF=9)qMt3c{IfpUm@$1b?CSG7^7N-MLbi>1Zf?5BmHMT>;9IFm4N6oh5;Gp-Ca{)f&vlPjZKP$(fL z>u2WIov7vgyFs|h_V~D~hp3dvBDproW6(w>f0uy5cWlfEgq)o6UjhjH+evCm4nLpT z^GDKGO~kwiNFMxMLimbX)~+QKiKy2HkFhW&G@31`TGs<7zAwA#(zoi-2qN4b^Do(= z33lz~cDbZmi0qS#O?*-Hb}xDu zN%{Y-QAZKKle6;XNfd8?MG)X{;fDk2?b3= z>rj)T3s_tik^8+u)+&-tif6lvOeDXqkDY0EQ(Sf+_d2tBQCwr+5N5;KBO1SVP~KbL z4Qz{@K==zANP_M3W(@mv47vhc20&X-yQ~*d=Hdq7ZiUr8fkZO8L4Dr=;cb0#>vfP z5zf_S@n6K+R~5{R1|b|ZWDgQq0Vl>HFu`~OKP+I@kf=`_$c#Fs)MChW;U4W;_vx~| z&W9%&LoL_nq`vIE4?&vdiazNpFsA4+>Z*BV?}D8u5w!2;R~~m_B=9h3XVT&gRKN+C zEshwk$5=v35EZ{1lpWMJ(>?Kn!?N zrq$8=9dib&@`{TkvqKzPVq0Dv#AkFI2E3Kvm)+jggVf;Q`{U{51O!e1DgA$S1DSYVydr(tL79~7+g9L?R43)?qaOZO(M2M>_itLvi zsEoI%)3Olt618;0sxecH6>v>6XlI}tR-#jmvK3x^krR)`TwpK2tAO5MY;FjvY=HNN zW+tqFh7<*6kpASHZ6J5hbNb%;pwkd{M>}nV(+kE^(HrVQ-w-S(L|;dSE7F+Ka!d=B z7SnOcBuRP&8N4&)u^UpdBxLE9D!~>s9RA{~1SyH=gn&OyYa3%nGZ_cV9rQP@Z46Q) zDKtwP;)Y3yf|>rd;i#c5J-Daa%f29H>PVT+;68tV;b&tF{y-wZ&6V)(qw4$O#{@A| z7ecT-oav&RsHDZL4u_d!5X@*=4NsZ=6f&45(~T?Z4uDG&CeAX^YZT+nj<7w^P$U{P zNE4DxBKgStO$>_v`4T0}SAdA1oRAQ5CaJ0C5UlWOVMHyUl7o&@$!{nrDU;TOTfA`| zsq8=74pky;y*M=VEpnmVEGIpxx9Pd;30vu7g%a|wb}XpVUvs=Qw8f>{G{%2R_lG)L zbeL^;Rr-KXXZ%O$EksCTwTaG^PE&+_?X$)8it!B{DeR6a6^qymdR#;<_T!rbrOw0_ zGp{tX=&iUnwj9^1lZJ{5gmn^J=cM-7@d3dCTC$6idMs}ae6PiX)wrEhIuG?hoGLhOF7$5*!lh z(Zwa8_&L)q8r!nes_zpd~_NJ*@!&#Xq)KJmRkyhu6< zn&p+6)eH&(%wT7-WbvS2f=B|?Os*mmX=f(G&%5W=Q+Ltb$uEbS^d3cZ*NNKq^`B%= z@bPF~v>K_q>#)BdQC&nD{-5F2cFel*gnlXu9-B#`N*lp;T zcBK)HBRXsn-_0=u^m_V+yo(|6@81sX-;YEZ3_3LoHtKL>Ucz;mRI&z7h$UyBz{)DF zzlox^CRSb46aCB=<Ehz1hschcPAC`D1(d(q&8C$a7#Jb6A=9~N_OvI%9?X-V{;eV%JQ_r9 zQFKPXvW7T|O~^0>`Jyt{zGwbS|4loJ zzhNE623wy{X_|LUAC}rqvv^n!JPWBHevQgsl0hYUsGaj0@mII36=+p>wOldFm@5zV z2KK1a{*+z^(1N&sK{?iTgRhGAA#gDY`In!yB8DI{kzTR0)!V<=f3*JuKpzv#W%t7R09JZ+2wk*#!WwETk3i(sQOIAYEc4N zZpq*Xp>T33A9!^N;pR8;k4>B}NXM81{gl*~2QUFs>TlFVNpU592zq?tkR$Afwx>7~ z@c4jjx28=M>@Nqh7t>DEJ`5DanXt zglr5fE}g^AvGC$XFSV^$QWfkz1f!8CINvc2pZ>7ip~Hnw8hK;W8;kvpNfE(^s`Oa< zU0NZ4z-Sjk!iRrK<`wfBBS5xaMTPA;u`IdP5bMKrVi%;EiObNJ>C|h{v)+aU6GH(F z^aPVE_`Z%lw;9x!!`_d_WE1Fvez%Us+q4pJ@{_k1OSU zN=)H-bM@B_@5_;Tvdij+P&Sc%7qiawweepZ2y|?lDK&DV#@5rEYhSPk;L14s(L?_* z0^NR{(TswTC1BRM7$Y}_A7`&ax)&kRP`^ji>Bwff4kfeUbGCmQv*>&O4YPx+^a>4H zJjUwJPn79K4fJUfX(4+24SxGq>Td3@u@tNZ z7YR{;b*U0Y3#QL4-?SP2cS@nzu%ylD-oKp#0qTSyKS_1;O~WGNYB2pNo26q3JotXm zW5JCeiQ;h63`uD!AVfh!i!0j0m|tGe;Yls$Fk0iS>VJ4&T4e>j%gR*F?w0-@_Su^F z-E9LpjSeMUugEeEQv;Qb$f=4Qyodd5w-nq4sMou}R_uKuz-Wm=V*lxlMaZHsiR7WO zWZ#Qk6$&dZqYP(7qV@LUO^84-O$5l~zEp7vfp#Q{qn$ot7wrg3OV*?vPH^?s<5;bU>EtP|r{8#L_oL`Jb=4!f@Q~?%nvKxs3b{4k z>>JhxpzSQnnpO}!Hmy&I#H}!H3BugZ&dg_ZE=M)c-u%oDB|n(^iAh!-Qsl8tDfRq@ zmJz1)Vcpd_eCTzjM>{9JPq~VlkDP_KYDxJGS?Lq+5zYd&$9jq(8vJgQZAC2{wWOOy zt3NLt=X39HbEwNBQX?@bqQ2q&2C)Jj%W1pXFz2He)N671B}<0F^wE)aNy9X76IDpvho@+9mdoT6 zPIPq?4EuV@?!NrimYhE+wZ{0(-ynV2!_uu3Ofp2#fX_6=Zp5A=w#S;XmSbT^2}@v7 zDIMF)`6FIDuhz8RVO;FtFPB@_{1Gi7#xW;C)Av6PoUapUs(SuYlld`6&;DaiO)T@j zDQLg=VRhGAq~UfHb+|q>Sp+QtMg(OTcw8*Yk3z4T_Z`psG*z zKP^VD6j;-MoSPNT$$rPMUaVLFhyi6+C-OWf{@;_cKX+8)(TEZTs2@jTI;>wj<=2xx?BbMf<`IcBB_wE3j9nfJ`;jp25~ zMU`fBptRYBlI7Z57a`8p_@;*f!^zW{iv1Xv^;$8Vnwds(e~(*=PrptWOuhg5qQdc#L zrd89{uPnYZ9|vAAsR+P$)UguJbgulTg#7U2QI-L@@9tHyDT$H!Y}; zY<3X$F2CrDQz}u25jP@kIvrAp+qYT(#pUSeOpZChM}>ipig2DxKn_Rq_gymkxwyXw z_}3ALesJPaC3Sj#khfXs>g$>%Xz`Ns8zEC;0&sn>Q))6pS*v=BmE5-~j89hn(aE6n z69$KyUV_vzs{X#BN}HiaO{PGx7tl8=Mbiw*J&)AjaK$O+|GWK&cPE_5p45p)x|}J| zf7sDza3Ft`w$k5kT4UO3M%$KSroil*4z4E!t_Po@=#p$P{Hn~_Ji%fZuCZteLJa?n zp=OYbP;tE*Z7mrTQZRQHPyhDKrX~uEQv>6qe+Wr4{881;cT|Oumy1$+@17hnYE$ul zzlO&pEOxa|QS_=&6{%O#&;i^L=idaEu*Zi7y^<=C{Z^%39b?6KCPi1>K;1A6G3+6M zX*^>lS~AO_E&PUZHPM|=cFj!mf5WUI*xj_Fhl)a%%>LB?m5iuoUQ;QQpt+^fbGGEC zDVFs^xNb&|R0)G{wDxj>9G3#*Q6#|Q!zt{<{_vg5QrFN>C>M^et%Vd3qfMx1UiF!N zf_>SRSBcToQEf+2VA6F4K; z5aDIP>T7mVLPEjKs;^jsxeG+5w`tukIhgqx%cQNXz3{nye5n;w^`(KetOW1fI2ZQE)STv#39;wilXFeIy%8aS|K4_g;Z7-v+9m(l*(ijR8$urnjZj(y}I*u z164yqBY3VtSz0<+US9qaYK@Ho3T{%%ygwW~?u@#AgPz9h?1-YAJx6+7#E6(TosN8? zTUOHjoU~I}MaAQ0>!4xyw#lx~?mehZW+)WRw->{;Q)pR;<^q487O)kyT?0G9RDxJ< zu+L7q1-Hkg<+8&d*~swlPhhaS1U9@7_c^ z^^k|_MLV7^r-rmuS!K6;lj=1O_}_ltur5EJp?R~r*OH5xGok-Yz`mEd{2`Dd;8Zd_ zGc()ac_XGDXo;Y3JIdDe3mDgMoM1*pVn;oO;;1+@|J<)6iU%S*m8}zxPo))!Pd*wP`#~6fRjtv_)A1XO zj=B$*HC+KF!6Q)KV>Q@t!;E2&Wk^h-f^VPEXs;MZkdtSJM65z&YMgXnw9}{0vJXIA zvum9F(7KaheF>_M)}SD1i>0RcMv+eRJ)@p+3MAeJNxkMQ^2paD2z13F?%N)siFFR7 zCGr+?Ki~2gtdPRf;&jLvdc~qaoubG|ZSrr32^b<8WoMLyBGL!)cAibsADOP_`*K?_ z>Cq&7tPL7Ts@B8Im9?fg4yoz15GYNE9ge0SDt9H3pin{N7-H0|=loN;bt8gFPySgh zkuJC?Mm38zaZQ_3L4qUwOJxJ=7$n5v#1B1!lVI!o^p?VVOJ)lMm=)G5Q3gH2MaSFq z&^A4j_eyp2oLZdHR0;zvqrmY20&G;6lsS;boM9=$+q}SP-LHpI=y?#T4#eGYi1BYNCL~tdUC-6vjcXzFzn4m9D=&PLSG$AmkM2^q3#)_)V8J-fu)#jG#*Wbx22s|$s4ch~ zH+Lg#OIS#*WyKC38%btbCdD1=R$&eikiii8%bwcIX^vEHT9h}PxG54zmq!bap9*<` zurR3-m0VHQana?ZI|Uqt>B~esBIpA4LIZV49U_lZjaTl)zi`vxX#4uDw8hcBE`s>4$*=~`pJmstV=)x>zF@1o837Vc+AdAaGgapct8Px&|U<7MvJ312UZh~557 z!$b~)RL3nPMLpBvWI>Sl$23u?0r>FR(wVSxK(gp=8T(K1HU1TUe0PHOKFkYp4sCtI z)RGw_Jz~cXy&@nu1V;AhyWQNAR#vq=D_-yW%PD*g2_4($whGha>8v(1g@OO?&*L2K zfD_(6kW-G<2^_WZZ{Or;WTKF4uxW~dmduLX^H3&#?wAktdGop)sBdot z>0H;sa1a4&#}D5CoXw4f_EM0vRsc3b+f)I&1@3P6r^{JCL7UdtcIwCD>Cr5ZW%5~! zgBDiI%9Ao)Rc{6H=d-~Vr|3Wqr6`!=I+hnm1r(rn^9{katpo+=rH-%w;@=V=k zV8wd(;Zwm4YiTN81*(XY2s)EBdwAFY51TX4+}))|N%tz~KZO;NXfuR6gL6?-mH zvHY}}V9eBnT)_Yw`=up4f<&qgUyyZ~fH%FW@6|*CvTSm{sz!_Bbix#2>iH@_O1E6# zFybb9pLQcwz5N3cYN@VmOL0@*tMD=dxeKWQ-1&3B%?4;D|A9ge5OyFg=Skn^ndsBW zi3!(^@kbmdQ)kx?XyKefMII?Y8~xurQdN${za=lbm=Kyw2K@^2+B|K4>l7>_L%JIW z-b{d=gSW5Z8cW$W?I*VhJl|&fdz(%5xz7?;7)ihJ$>b^4?z) z7dzuKUvquFahMD=*MYW%Ru?2J{jY9|Hhj^f0@EG7pdH{K8u`p~c6PS0KXiMXVZEYB zc)8w`aTJevFhS0~WAsCCiBU|+hT5ti(@*W5GCS`E0-@sp1qI|U6t`f%b(K3e%oCp_6tsfIHA_{%~tiK~PHlrvpxt0kqVn5VXnWUEU>oNgI&qm8VvG zU%Y`q->DV!GAtEY{ha|7^}j1Odp~I|(RtWuFM$zw%YY^*YQGyrUQW(olsec1cvDL5 zZ%(RjZ*Qkm8Ey^_lR9q^S(f(&m5|V;iK?Hfyb-qddh}aEo5C>m_QW^yBttRsX=|bP z6PgKHZkp#!!b6VlwDM|dre+-!hh$9zKjcw~+AMHuuJXEeaos+HgE)_?BAnmXm!aic z#C`V)v}~BzRuPsM0;lodvZoKydbdkcldO``ELAA!1|#2+X(zw^CYyF$pBcfa$r~~u zSLYNJ$q(<#18CJWs@_P~I!+VPn*ec!Ju1X>cwzh+5 z4a8sIvmoaEoCYir^t(Pi6-8Uy+bx763jv53^62sTqnCN&f!uD#dKNuK{e~m=9E6Tv z9V8A&&_>XEEFL#{&v%mSKj)n#`jM9W23Y(Ju!}`_y$N6yjoKkpH{ANRu86K5%&i*ScnxAxvIl_P7pHzg7 zxcMy5KSbvG;g*}NwOVwazL^}kP)9rfsKt+pKO<`R z2XIA|ee`|OfOta=9e$DCdgxhev57Xf+V@iFX>n`Owwsgm^~c_rnwiaJSSfP&;q_iO z&(;`coTuX^=6^@}pz4GeW9)Lrkv{7c*Uwa}doS0fw~-v_yx=6Z|Gikc^)QU3(Q5MV zl*|!H6;XYTV@|kLKTa)a;(E@F3Fr7#+jqCH;i>&FhMoC7o?k0#8NTPk^i|la>WVv{ zvSyQ=h8E|N&iXkjHJ!_1;!`n0vmp`;D_hs)!R)9D1KnJ}4=8_kxO}_SPFs<5_#QUi zMcg2Bk&e;lIuy!bTqf1gB!VxRr4rek!U`og|I1V^AXe^e2h&PU)<8P1S}H)Gr1aV+ z6PaOLZ5h{7EQx>=l0dLL0LbPu*zdNdG@GX6UZ>(?1<;8U6!CKbZke|c$~^a8-` z=0I7^-wf+2WE*S~_Jgi5+;n-V5;{6HJ@bDUP9G#BM}LmG=d!Ok-;T83d^dJn=_4)I z<^(cq{DwBC_%5q;U1kng%qWnp*{5??4A%AMYs`(y%2z3Fsnu|ACzUK*$MQ(%)ii84 z0mQ>r21wwm3dIxXhGLauf^?f<3ZMENs!(`Rast6tIz0h*Gbtx2ub@tzAQK=K_Gbu$ z;-Di+NNxIv!fDRyKga06MU8(CMeALq!R^q?_zyyRAUB!|ichLNbbaO6w0_Iq61u7TkIx z!huf!(?nfb#CQk107jqTlntKl{R@YjmvJ;LZdfV`{(m$A;%EMT=kg}(OpRb)(0~CT zd)mqy01^g`NSX&Jnd>xtPS?dxEHd@PS4v3Y`#2naCa)CneC6Vy30qzI#JhuYZm?|>-a%7^=PWTYkFjF`}qhHu!lOD zSfrWInV(71P2#2p`AugJr9n6bWCKe6@C9sl0URd%i1hb`K-ygG6x;}-kmNL*?CJ*u5kh^bTXZt?i-2-V}5{z0uu7i`JGjRVm z^A$1xlYvxi30fR&v&KL%w950OLleBd+XCSRpi9}xw$Gh7wWbOG7NJxD+!7ln!beVc zCtKSp)Z2%u`n3L*(Hc|y{}@E`8v4FeGIIQrnXY6(4OnW}Vr0wb!3!hi=vY5ccw-2Rkg+J1vL2tij|!J&rC=}SQ*D~ioecF={z z>Kf?x2zo4Ck$Decp=ko4=6-GsC%P=V%(s};7D8Exn@N*x?~`3^7?FYYyG zWVD40o8uFZW8A;bn@Sqnqz%_SxjFZO}nhx==+_bkS5DqdxbTe?X3QVSBqLJ z&dz^)9*&kD9znjCJw?wW1P>M06arU=)D|W7m^IwkqwtJ<=^|KwAiB>e=sA5$T!`H~B0 z_{~?D^P|Lhfo4QA7N7v}F}KMYMH$sN_^O{j|9(&K5dA94IoI6Iqbi5_r7b5{J&(zC zWR6Zh<3`s8J*Fcs?}z^GPK1+ZC?PdE9x;2Z`X8uyZ(x8tSZZ+!yzy#K)zLYScXf4D z)OV{Akc(||JzCh~`I@h+zwn9r0)m72(UQGxj+d>aLn6<>25g&;#|j_9I&1-a+6AOt z>sXQNQceBz>-J)je)!RoJff{2%4?O#FXU zJK`LJY(4D0*@`-=9kp5AOyM8l+9KP2i;6Wu$;?W-T%tp&8ga{OZCeu)! zbFGHAmhY%*e!Z_XACBXUdguTUQ%ms5MnQ_MUCa<5E@s%X)AXsNoAY z^e;gB3jmEyZ>*TgKOd&3-#_k`8`nDydz}A(+uW82WjUeeX8!vUoBvqV%6CM({|u_4 zUY+paZZuTXw6EAK>aPFJ6nwU1sr6WTC3Jm1FYOfG5c8Qq$tM9N8zpmY9JD6yp;YhN zG=Z+_pr%iRU8r2F?98Z-%MGv6wQZA@i#U?!UI+z{bqyL3g&0S-V{V9`Ee7 zs2HTa&(EsUB1|YkHI`+g`YD72Q*|(h1D^>))@O=_ut>Ti&h+2?I0Q_+yV4q^saS!N zgDl|G`TfB6P^$)va1B2Yv;h-DuJd6tv`Wm({AF{qFm=9uzECeQ zEuI!BjEsL#Kpp)w2Vw=`#M7_;Ku&%;RnI7K@@xo9?cIRD(O*{CY-lTstKs{*>87e=Jc0H}So;zsGJ#_#^U#W^&L6;t-=gUZserpKw$PGR1cX z*_+`}H5dv;H4{f~=jWP)JxaohT_;{UGvhY~D|t3#?T6lPxJarZSxtt8hlf>R%(qnI}LpD10AJ zMMPVcO~MrN*299H(;15JH;-EXHmJ;)hI66=5d|+Dq9GUpH&i^t7zCE(2JkS_uN z1&#J8{MxaDl(BmV6#QV_LJxq-B@aZ@1+X_gAOHqZM`7&{W92T976l!&S0hZ-K}}&s zUT)g%@tP5{93pb*49GeLT2-nlp8--eP6sF?ogqD>rJz6pV(Nz^+K#gU65CGiUYg=S zdft^XW`mOEWJums%-U*?_4ld5QMoM?N%~9q@^eTvS2ik;KvU0;G>aJ+nS5 zwAemV2HH_=&bXAUyrrnu`{bY-^ZtmdbfTnFK_%b%ec#`+iaizp-Qg|e3!uiP@m=jw2{>1 zMXSvO>ax1fQ9~kb`Tt6Bw`6nZM4VD2w$1sX@u7uc&Y~adQ1*MzGr|v|p5X z2{2Ssc6XltZASR$22SzgU1Q4F5*`F7VlQ$tazc9LK~;>$c8Omfh}~ByC1H_~PRC8) zL&ZTyIugqhR~R9z2wVH91dye5m7U2w_NcyN)PkTp=nRTlt?gC<0{^eIw+@Ojext=L z!oUClDNz)VZctKE8i}Ptx|@|20YyrY4hd;kIz$>&KsuHZBm|@dBv(M-KCj>J{N{J( z&fJ+h_s;&Mz`nb0d_Lzn&pGFLur9JcG=3>qQ3B9(iHsRGYC@X=i|~WUvwLZ~7d;Le zd7GxzzI%!PWZEqXTL>7QNM5~ZPahYNa+tDeG+k@O9%;B8NBsNQd%3hhNH$o}H@8f7 z4kCFSR}PQMDv@D#Swc#+!jG^rx3ndp(0 zy-Ss}i`rS&M)e6jOXhF3rI;&TvS~^N87xzOrC-?%tAD{!-x$aEHnaKfw%4prH5}TE z3XOjvUUj(R>wtw4C;6^8r&Rp(s1F)!ice$^nDBY}r zdS+BfGwA!T@-FrQHrtEL6=M~aucqXna?<+xhQ^?g_r>d8f_v<@WVAJQKU71{&c<@< zt~W2zb&a+4?OJ8oq^P-Y_byBE6Mye%dLgBJxy=K6&w;cm`ztRAUa$5Np{5V4*r**{ zi@hsjwMCx-Q`j(l=fQd$@Dy%q<0vF^B&EH-oKY^vC@DbG847@f?!-CWkV-N#R_!0> z0u#Cr%Ax9xgJeY6sF9z+V2+Zj>oDg<#wSI$xX&G3qpMn;ZfZg-BM1Da{ZBkpcD8K1 zTF{-cYBnbI7VJ!J8?cL*M8Yz=$%*K38?u==zb<_ic3XPflf#ph#Nq#T-x*9wwlDARr@kk7iR`X03 zw7ARCN)VA53C`rSQ|6wYaz_&rrpM49jvW_E4ei4e|!7GDiI!RBzIsR?OzTdw^em-=%xgI_X((WB-_ zWUxq0SFlHiOPdEZEY8+m;Jgips)Z8B2yxn49_URj^kSRQ{N|n4Ej@1-yM6D@jvbgy z62~;SU?;xs#~HT4;sr&1dhP&3+2kNh`fJpuN$GySp*+=ewo3$bnVgXwN@%~uqVgSN zd1QchX6Nv7o8jNS%}yM4v`m$4+a9IEZ-8OeqGhGnNc*?5FvFG^r{}Qj^(s>37ua>4 znrb*Dg8R@J-tv)*B~xyiM!iI*k;W=}g&nltT9DuOS}n>2)nOOfD3!}JC^R%Qxi0)u zq72Q!uUoOjQCkbOHOF#n75AGo=3|Hdv*W#jGuuw_6!_#ihnDb8OWwwsu9ftS$NA?X z6LSl%s~s~I7D&WpNYX)1CKE+m_O->g zSm=rE4C5_T$dT^^$wq!hF0_WODZswty4Z`B+g`7pyDZR2`;nrAg5^s!au&EU&Uc#x zJa?C`vjh68A{*nVZzuJ0M`+OT?2YxG&}Hi$v3g%%_{;Y=j1pbZij4Kux(R1 zNGg%OfVb2(r^}#ff+P_nBA}NF#shX~!QT^TcY_5}ZpJyvLukHaBL1142LVgJz$BGk zWJ;rA<}$k7YZpKj)4|&fg09{urd?J_08!d>bdjf7V?m@U|IZ)Mr$YIxt?S0_+i~&E zb$Yg>rK!D6IrR2Xyf!~_4WM5d6vGY8hzQ^?7%V^iP90-HO2~e)HXBf1HKerv5Lq3& zJ&bpZxIu#XkPr9FnEeK}gH^Y(U1>1Xd>fYaS5=&vUl3A@H8txY`a^|T9C<7vNeNH5 zLlOo}lu{Nl(-DV!ZCO~((xVTKj zbeI|9=O|k+|MWjgP>Yi>5Wd~JJQt#rbEcwcAjp8{IxTsB%f4s&E^#z5yRtm!cn3a)Sf)XNKQ8k-Q@E^UTQ(>z9oE(Wc|s<>CO zxAD~^LSw{?Hs|-p9U7=n-Wfa#?yKe&H)QOtswxJZ?`&7!LsF!q5)sR`Js0I|QMr{G z`<~>Jf(7d(FPao%o~I-7sKhR~5pDq8i_~NjKg}{9MT|(38)U&sCth8ZiLG8xJJ*2xu-~3W{AaPp*YQeIo7be9d>l{NfKDMYk$oCRTwU z8i97>PnY*ED-PG|R!<;|OkZ3U2~47=_Z)dnARzz=KI6O9s|g1+J%g5c8qkvLIPXkZ zWo#+%vAdf-?$bDD_!1*s?5)?A=)UCnxx{g)j*;ovrPKQT<*JmPQ%vCeG%qX!4_8V% z(jTVev(d0mqNH`nvQSLaqczn)D)@ioOlNn{+)zSXRNVoD}Z;fhv z>&n$KC?oWtzxv^<=(Oh|4Nipcin<7o9^+(QS>fmXv}PIGZFG1c-@VuX#aUOkw=5?b#48e4y# zFg0em)Ss>#v$Win%uh(VURkB`@Dn?gkUNFzaV|rvZI|I#QcdM!7FHG@!Ux_kp6O|; zxEhe^bWS9akj?r=l_#L_0BB=rmI6`6wq5x82Y_s{otBn{E3ej&V(!PaN7UDLbO+P3 z3%>9JMs@xT9M~1M{j(#UXBI+7xzBr%X_e;XwX-=YgS_q1o0}qn+J=UP8wc$QD9%5v zG@pJbH3SS-G`V)IAKJ+{ZQF`oI_CA3PO<+kGc(~yN1H6*XxOltS>x0IC;iKNOSaKE z(WHyGzo0%D`7APhd;#49fO)dP2tjcZi@=*Nf=UtaP-M8Tp%S35vF^DfPIZHc>Z1D8SJO)!cce`Q}9 zyd?avq#Sfmb>bQ58C+??e_NYyXL@e#rT0B)l=7dJsWaExS^r_tkz7^HX;)W;`d@EM zrO<9Lxc-pAy*ixnczqadXcAdEX7R4({V_ZbIS^@wLc%XxU(RfZZFlo%9o}S+m3)DJ z<);2Bxs0}~t)vgWJ0e(EibIq@>yGbUg?ER?@6RjcVpAdZsc1gNU zQG0omJo&4jvHXH;Gu>^yQ=g^wEDSeb_w2Wvg$mo{9%qI`3{tS+tg5C%9G;A`ATuxOa{=x(x77!A@(HE%#45Qe0eH z+D-d~_`I8lC?eJ9=K5NFOVs2HLSf(&QT{YUV!u8>=vuX*m1u$u61IToe-IUBF_l}I zsIR8$s}I(*A}po2CmUu9@}@U6UsXyG{g$$jdzP5P&Pr$xocc9iUL6GfQnQXu82VcSnJFZU;=U zL7kvG89PVZwQhl=Pi+LACwN(jv;`_MkHKHVYbuw%P{f+A11#A!b0EK3Bnd~Nr|?*U zuAL}0b?5zfNG)f;Q;R2uD>{s1%KHVVToG#CzsX}H0Z%>rKR9<|WT{3>5#a#l$pcY zEno|PIj=>^!r+TyV&EQ*HIXZ{D=l}%+ddD~N=hkWpC8)EEJ+0zT#A5!dzDiE^;uj@ z=Y^~X(>4``W8=;b8DFP1wg{erBcK!7|C0VJW<-CNIG88eICBo&^0a|(nk0cE=VM@^ zC=@A4{vq8);uZq=xTo09Y1#DZm2wfR_M;qH97mj^`WA2uQU-26ycTmWM~-YW1=E|V z@rBm~*tP@ei5vJGo>|?2`(`f!-UE*=dRQ`vQ|-Jt0Mz9S!w1&2tI^BMyvUci_epA@ zgsvfM$k8%CLpy2f4ZfT5sPb7M8&B1mso#YZ3cRK_WO$#@ZEKZ}&8WG=@gD0iIi|ju zD2~8J&F=2Kzyt1zY`h(qJ1_%pYhmqqte3{H86nu8qr9c2QO9M{D)D{4-X-#$#0;@x(2UX1`2-4RqHyBLla+f1_kJ5iYV#gr1FhBScXpK4m|acCn@jFxMI> zNn+JQT}JEeJ0b-PN?sch_7hz1MfjI7?hLH`t8)u4`ME*L=9kc3iPvsfbvr@e#?DlkzYKW2@KpLSh zQaMFs^G#WzLeH-ZBb3t+gcV#3%v%_ZirO3CeYff)8H1GL}N{n?l z3!ZG8oy6#gCFGQc+Th0Ftc!r}kZk!wQROffwvZ$1WA8B8WEA>We`8W(^~2F79vxB? z1225CD^aX<@GaDOG(SG0q*M)y^qHKM_+lp37M4&?%2CR}5dFPQ0 z^aC-NQ0xt9wOZbvm#j0->Kj(HIId%FQ(0Os`lswnBs}n%%iZUH2Dj4FPlDGH=ey!p zp$pLu{9`6alqVaG!HJ<^(BKv314*NlqCVAITU$0^eMqwpz=9QQ9h5v4;l&Mmx;-gE z0+sw1I)1UQJ(D$-z-^tqVfeuv9bCi#Dl?ajFP-aBW)BIW*9*gslnA_o z7>E*tHCUOf`)CNwZ|EIZ)&eOW^X?thxV+cgYXKxTQ;)}@n~*IMA~7eY5nc?C!3Zd{ zHB?p8VV`*X&b}(K_rW6d$En=<`U%o|tgJ)$RCez@w-=b$*m~H)t{2{AE&dcpz{17F zRk_3Q{z=)a(S1e#*?G*wiJ>p~$LwA&<9blOp$EmO>L~aqEGqbC;u8Kpy|nwr;poa1CTa?Uf6Ou8B|0o1DUVN z%gf!M7+5X+a#>wYE~Hm*m6gWhhrb{aLQn+&Ev>@lruQ!{+!VnzF9?R1uzg0wvI6V2 zhKozN-Uv1Hz;$AT(Uo2^~GTBjpC^EF=@<)OEt^lC@s{=&TGst2cwR&tqwu; z{?&Nx0;|(n4j{x|GO!!aT;E3%8InrzkF=1|)l6?b1OTIDuWnZDfyD7z^dx0Nj-3op z&j-+}o3x!k_-jL}uB3!+$U7b`(i1q^8C0oV!4xDvu`BOj5QL2y-9}+)1%TG|J8^|4 z6z~S&4AiqaiE*eF8;qO+^tZ0Mory>1Vn%{4yjFJkzi>0P_ zVr(Wo`g6vupD@xF(r3@aH78|>KmYNSctXs`XY*wc5fxcXOnpiA|>QyWf4+Un;Y`nt|e-Uy{inmMmB_v`1JeM_Nmc^1Z}>FAB26M z2xxyXd+1wHYpAJ3x%%z@_VsZz_!c++>@*~-wmNp4%+oVTJHPuYIX)wd7pIKs%q#fd zxM*H$mL|?zlsBTZp)$P46X(e&RD9g`@x7D%J%k7S95`Z8d}#C-QM^yr93%flyv*mw zv?^s*s%S<3MCX)94`&Be1-q3}iFVoNMCZyp@7>l_B&I=Je>5+PZ<@y zut!_?=KsX?4vLPs?zTIBw~|(^aqzGVZ9M5=5ahX(XoeS-6CwD{F+dDzLFEMA1hvz#ra2%C

    =3M}Cjm&Irb7HlkP=+&U_u!kg>rMMX%7c`5!dOnkCEB7O9 z>blUcQpxX^0yMScx1Ys`)+y_98pgh(#>gG144aa$>~zG?j~5%g>7}k}3@Vsh-D zoU0JAfO%i4h@^t)S^Y9?tQ)5eiI|)B3-8qR@4QPUT)+FSo)@GTXnsvvy^!X!6#}h) z9K+d@9YTj_f4|Jw;BALs(eDZ;KDy(7ZqX}xi0i#+&_1DwOP}#}cz=F-%dK}?Y&qZ2 zB2n7(Mw=1jW7M_TI%lI}_V!D7f3jL{a&-EbFs9r%@n66HK0?s^?n>=P#?`;%Uv2lc zOu(x14P0anT#+I8Q59Ln*^%~BHxSp{okPn76;>3b}ZXgmK`lU zP1Nu5KqE?9E1_NLVu&?%;UwmG^Es7DW-G~unQsMX$#I2Rn_M^Z?7J&_5xKU1x=510 zv2tMK8W8P$68sTW&8nPG3J1;Jif{Tn3s-Wy;(8*A z>ne2kU}Iun;2t2Hv-Y|Y_r_Q0;QPx^4xQrOG{g5Kehm+eXm0l34#e($kMc?R^Ycc^ z{;!CGW88cvOMYo#?|*{SGbqZ>U8<83JTSNZ9-S3M+WBmk&_K^K{^mEkoXhJRN9DIv zzKU%I_WI5+HvIWQt)!>%Bszm4sB8rMU3gx0^hZaO%kK$NmhS%S8+mJe#|=H~TU&%1 z74+VIPqrAp)aIUR^`}d$uE}(9q07RH|B|T^oK4bF8!v}DYi|CQWA$`IB6<`BIo5~M z8>7n=$3?k9!s&YW@tDF4wZ3O!j|BY66c_7{3vQllxwCbgY_sM7I*EKjM`8PHO;gq> zq{lO7W-qBcoeB`}MTjD6^qA84ScRSPadpn>_Q+SJtA!&~>M~3IahpwNB~$G}ksSLo$(rL7qn+Nqi@fgA zW#_@TSYQk>^`{Ne>Ky3oonMgIdp2tRozq!P7>%u*Ngcn%X+#j$knMV59ZQ0WUtPQG zzBEx8p;7$=Lp9;Kyh?&z3Y=c*Cukh7r&S(wZ(?(I-~;ZEiiBdW@7$~gX&Po_hh6Q& zAnR!3Z7)r3Ggk=&zVY{wQRlXnYbi#o7LFgM9TfvKEeGm zj><27Vgu(-4#gvU_TK@}QVZLX|A49f+~aOa7Gd0i5Aif+{X#^a#x|ZV?{L_(P5tr= zteoeP-zZOg8geLyyE~Dsx~yeo_Uh2hU`3YZ@qU@wV))2mnh(a6)>Gw?FsJ-tJ*Vxn5Y)|BQnG?)K<%;4civTOUkq_KoDFYQBmP8*R1N&*u_GK)ZAAPt8Y zM9M2wajf>=*wn}Ji@ezs&5+mee-9E)7N)2kLoV0lx0||@pSt8>zWIW(i$EO1x_ca# zFQ{EKJ$qnnBCT?yJB+FbnAF!vS40sI4?hr+Tt%sduYG9|~eQz6wbWcF9*7B!% zoOq+bQ4R&S61=u870oCC51UsewGTb=Ovkd^gLrE=}CVgLc-zIody=%QzVIToAIHFzD{A9S{~%BEXPJBV!?f((^-%b z@Z!+EgTv6C%V2momibDn&mTP|lZPR?vmt$F&;uFIwPtH=#PtQ(2;By^{wR0KD!HT( zdAZA?#zJexeSgQTeD4r?w&ANjqEh(;PUhfM$UB3wfqOi;otNNTaP<|DiR2|ksJ1o> z=~Uh(%c4fEpM1c5gzr)Fi9Lz*7iP>bajwDe>aU-%Z#u7--4oz3m~`b{iE%@BD66}u zMa|C5#$2U+e8z9CzG)r(eiEgLoJJz>y`Ey=X3I1PQ*7|~=%J(fnyR>;MOvYuDJ=U; z$&Vlw`s3&glZWCZG32aT<(6j$DAKb8<+@^*O~hCN5_|dLX%%tDIr)z%)a0wwc*%82o%*ZcGbhf@e$}Hk3bF11^`DLO9kd^6OBYy-w!G3jUOzfA5XaAnBhQz2 z_KSJqv$neO9HNLfnJ;JA%Dt~3`-*n)i}&)|KC7dgK+Ge=%vV=Y?kbq?{fZa8EyQBR zz`{dsT%;BB?_>`wNCy$%0Cc$u)i}*aASksKB#XmMekc88e8RvBBNRX4ADCZQSQ%1R z8Ad|Wy!J~S{`{W#KyV-Ed=Ut|L>$51MznC*zDQZH?XXL}aOxT$xqOZJQq9tZ_O-YU5c?CE!Oor+U0}BCL*x(0(;a45Ksz68XqB? ze%0%3-NfbP<#osV$-FYLk|6&B%DDiH2bHpBjmHPJL^OiD4AK^D;S}qX|JC?CG(#p# zP)Za{y`=Cr7QSlobHbUAy~d_b5W~*)_$JKqzSk4 zOq62Qn4rrP8Qqm;*$izgOt<;5RCL@5ajXO2OrmzB+eTcThYd`THDD(DUff;}jf>u> z8l?UGcxX3V(^PDlh=pXO^db z(wIMgNkX#i1!&5;E=<@;-5VfDdaP`RYdt8$pZQeaq6I6N>%f(ntgZE~!`T8Ns zZ{Gu735LQ(jT~8>bz%TvbS37V!b3##PR7{)f$YlpZ=H$&`Txb5?^GQ z(bF^Bi~V(Bt=^EGjSUT^Z=oEiAWIsRD`*?jUFz4$D_DLeZsE!Z(StmT-sF5pJsm;m zf|_m=J!-Hhm1ETOES*hj5!yZ@V4BT`$uScKe?Z}C7|p2ibe&4kt1uh}Ty*P*%sdvq zb@{Qr{;%$bNWyR;gyVL=+Qj6;`9FWBZ-jUt{Ps!~lymm>*>MZJMw8YHT6roaJyHA6N$2(W{X=H828^uBP+o>#jx=`nXdl}{=J^1xt$QHUhYOQKQNx z5_2Kmv*#!_l%-2uP1;|r;G&557AvbtJ*I%UL2Z6nH_!Bi*43)#jHcx$ruP2wgp6RyOkH>0iJ)Y*Zw4wkCAWT9Um8q!izQ?u%!buwWGsSotHfB5#RZO@_zVpe@1^?XtvnDe)gC zp)AGPY`<0dQ=3nq2UY^qz6J~e8i2;kj36Pk=g&xlXo*cqS}|dw9)b+wrK!0_3IT^? z8Hg)7hj@oC9d#m`KLxUe+wP|3zS5V5l!(^Uc8`ELcvwz z-ZcubQxWv)A20IIIYUoW=p(t``SCk~inP8c^}78p z3IOpXWRte4U93slR$%#1o~Kx_wT*iFv9lsdGk=I>UV0zHdONoNf=Y56lTf4n@~1QA zC~xVPojZoP1Yxn%JFFZp`dA1J`dOx^Hog~-F3u_shhDj*^Gx9U30i4azONp0SH(_v z^2UCdDwa z?kUFb<$j{PiqM5FX4_CkW$AUt{7(7Ml&+HULRpk~>xDRSmf{TA^Qcz&yq#lg>_lvm z`DQGAv4&P0)6#{rj$Nc$N{_afOEgB}vK}ru=G_gN8vNLY_K|JgT^u$Jx0GQfHXLhkAImf7?sA)hv0DWd6Ax`h#d-5=zU+Dp(kY`jEsv6}eTBcBEW@O&@`dau zOlO0druvzAv#;A1O1dVdDEsgv%JhUpPIf<67w?7+i!9! zX;+#)TTQ2tJK$xfX1d_H&>=oX1p?Zq$p^c7B^Hl_70pJj{%1i!fbg++mJ@__J?>0N zC>mv&R1%n}V3!JNe+!1LYvylH@v+dWHn^yLaE`FEALsGr^Vb1Z1jNiYih@EA)7OB_ z|II&JUbMdr3-i2{r2a=yL6n@0ek4LHF3iB4Wj8jCc=$ZGR*~*Ju^BhYRZVT%B4;iO zJSFNN1bx;`FaI+R9Hb#p(a|ucjmFhARplMO5-9uBlHctxJ^hiI1_CP3$X<2D`M?A% z@XrhbPo7XaU9*4$yW_mU3o=#jc>p|`L4e}QOPD#Ka*c5g%sMuzGCE-LHu6P*ryDH2 zXX&-6k0almLuB0J*B z1#ohn?KM&LV&b^T&e8yvd*60)6UZpm8y#8aeJfSf)G|P;W3w`p?_d*=V-9{x*G1-P$E(9>265%E%&47xR&P_^`ki;pMKQFjIN;-0R(D zF$ofdAJJdYSHt}MiiLPGW<^6jm`3b2pU6Sxl&jwDizzHAoFGva1jt+KRS5tlWbdF%F1;0(j8?j>#WW-;(iVV5%92jR3_$S@e zX3-|U z{WHr@R=mzraJ`#AuYToRgJbm!J~^S3e)V!H)E;@%@4vp*0-7EM>4DwpnF}dvIIWl= zg7NESs-~ZLBP|YxQr*htyko%WRzU8%)471>W*Ka7ZeLY$g8w1DW@OBO_n(^(tK84{ zU5xq;Q3yC%CqphS&VacL3&|I|@a_J!po;6(R{~}r8{1(?eE<(9{8~134KeAPBZh46 zb!!b`Ld#pY7w1VPYOS7ICYv51dZd%XrjtRiM9)&*Xg(4JMKv;(0up^9+(0*6J8z4( z5yZ3dW76&u4B=zF4{#Cp4EXQ$hS3A`MrP!-J2K}=s%JyrGiHgGNR!ut)F;pokA#(j z!@bJ^wAb(5=W1{R_+J-8@`R2dg6GG#GSk4RFPh#BVjw#C0X-e6okB{S=(u*Jm8ugw zGMBwbA3H%?3gRcdCtdvf|Ws38-*g>p}g@4 z?y>tGpjxTM4Lr9@!G~LDlyR!`_~_CoP>{YPeJgZV?l!VC;^Kt}Xn zG#FP}<18^*i*{XIZo8~qJ#dD-ALR1mI!l#P6w6o4z=sMW*jC@r2-TWKFkB=nohmc2 z8aQNkdP7CdTzsccSU-cQz0IA~8>>Hv^@ zR^QV0EJ>nQv(jfd+}E#IhT@0M+riN7tM)%Ge_?EZ%U)}% z{8CZ^HBGLP{bkFlbGa4WLZjFk8j-r%#rNv>Hxk^b@6s1}uft%pGm8xLzHhJKghvI0 zW3S>)l^WgUL7?9?He~zrS3yRa5xb8D1wjkxeww;iqd%B zyo;D;ldBxNIkS-Ive~^nP7qG@hJbS%A2SJM7$sys7DIi8yDFiq{HDO^XjKJIN|-&# zB~dl~7N*5y9dn%L9##%j3{r2 zPHbyb4Y>4eE8><1b4Mhy)z8LJ?$Vg72yj0SY8~%1vZPbLk`R+@rt3j?X)O5KjcH#p zrCW5=cS!T6ljgKNPjO}DI}t`HC-HXda&PJ3)@W|tW7e8rFf&;A<|94{Lg3`C>sn{7 zOoL#~XcaAFx z2eQII`Z|#hXjgj~8(>DJHFztFM~OykLDn_7n;US1j2EnK1j9oy3&$)8(c?&DjAQZQ zb^T zcZVzpt>Cg@ePCkSP4EScOS50Mb&0>`o}njXfLs2o9Pb;%R!C%*ta$e7&-v3?(vmFh zh#v<-Yu|6e*y?#7u`RJ^RKh5o)~?sGT@1Rc6gL^pOwat8{O~}g_u}Wku2R2~<8cV8 z*4ozjXjz?_wT%7(pJ%#It4@l|%bFv2Ek~(4 z!0S&%i^W=%~K^pr5{7$2sx&b11L1p;=GLwoa@JqPmlRnua8sK%asD3vf_b;Z)Q!feDfp@5S(qaucP1dPTnnT6=ft(@a@u(OuogLl)eK~Y_)m+``W zY5Ri03Z(~xNb9S~Twq%8ztpEKl=bJ~E!mL{Beh!2wKbUKvTU((_v>|6zdt-4L6T=4 zjXW}))x6^ck$K^K=fVQ+zSCy7Zo)$tAx2B^VB_kUP%(pZ>NL@JE^^(T+ePe^TbaH< zHnH|YLs*B z6t|YZxrYAsXW{b_E558$6Sgf*OTXoW7h#l9KLWYDin%7APe(pqgVv&f<&jhuwSdeH z%^&oTde>(~J|LsrdvrY)e>K^h}jSiq-9P}wUX=SNmi6;U70|h@F AjsO4v literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/8.png b/labworks/LW1/images/8.png new file mode 100644 index 0000000000000000000000000000000000000000..6a0663b712ab6e11e538be6ea1791d76097ab141 GIT binary patch literal 8151 zcmd6scT|(zw(eg96y*b~AVolFB2pt#1fn3)K|w*JM7kJ?(v%uSDS}8ZK>?AbKtOs8 z0SiS!??FIX=pcj|2)Qesea;>G?z_kR_J5Z#GC~+3S?^kNKJ)iH@2i{o8Z1Y+jzAE^ zqNRD=5Q6CJ!9$1XAo$DlN#T9)MCWd(p$ZkW^UQ%43=Y@yu0c>yB=epXBY1uIk*29T z1hIalJ?NTTKiWbNpOe=0Yqy_TE{z;cI{AI4X_bS$YQ@auniNmiks}9!LyxSTCmvI$ zpHOFDV7SE}dY0+OjnH!{bhjU!xW*bEGC9r^a$4%y`CFlGKO$POJZ=&-t;_AGu@4DO z+cnB<)g`@nKX`{xq{YY!nN7TFZeCvX8lz0JU4MZEvI6>O-tUYY?0$p_y*2sO#W%q66yZ^gvMPA4M^ihQAZmbtmP?6?be zwAZFv9kzm_4wCv3l9Rbk!vkvfuiiX=GAwqwsEL>P-IXWp*~Slo^2H|C=X%x(Q4}5f z_IILU#`#et4jlvmDq??cC+pGpm-2(qvgpnCS5qyzLIjhH3=O9yBjE{JvBE9=7&E&s zFAuL(;3#?$=9TvmbWpRtX5dcmC!^x0tJZUbvb?`|mF@^tGfO*O z*JAGORcCeNUF54*uZlDv{_3EMN!)TS7guo9x{HW9^Mfp0f}Zoe(cpRT&(*}-moUr> zU0)b5nD5II;S1PK?=3_ig4y`m@7h7Xzv^GA%I)syp@01NG5pGKuxk2E^YfAL{ipmw zLf>iopZWbSs97P96XH>mqJL)dZ;tsW9{P3q|LZrY9>=#Ph{u9sv%FxGqhF>0K@Bej zli<6HFjHIrwl~kDBko~e?vMcV>^^w!4rwNlys^-l5vlUf)Cm=I6qC$qdBy6y%n9Tvs4# zW_EV+q^PLqb5PWb>xF9RH_uBXH1VN++TO8b(h66|do6daDUvVooO;-xG6z_Yfwi@D z=GEs1vLE0sLHyS(IOz}mC1t_MhuSMr+UPZk>9S5R#@rjqfFMawzKs#wtpye}woPx& zbf>Ew+WGZ@4bO57dd60+Gnw1HPpqu0Oj{ZNUwV>5`}&47Jyh_2>GOXr09}<7JL`%< zE{fP5Wd)V!kmldNe9f{uM3aTu1TQ_a_EZpTBg(B=Z5~k-OXXwrGyHb zrZ-w{Zp9co$+Kr0@-t7cYR8?o;+;RG`#tPb7C57FBF39U^jerdt?W}evX2m^7w>+2p`dU|DLzxL{ksn~$og)erwg=uqx+8s4x?r9u7!PxDT z7-ip0r=eoIa7>lBWRC3#yj8Yl^tn3RJ7+@a>IR;Hg{b0B9!#zf+gTCt*t#Y$bP>RAeUQ5NY71AWOq501A7jcpZa5+FDw3cgDRLtnt^nv;I;F_pf;Pp_AutUR}m+S(=eH$qR)#paq=U-s+D?-2NDanZ~%!w71mx z?>dQBg7WKfnSMi>>1cgUf5@qA_-B=Sn?t9kEV4hY+H--BTya({co6f`eRI)N0n`M> z8#(wn9h~pXoHqLsHaThM5OnKeQ-dFQ-4P9Qctg`}^41C!E}r`B+jaCM#~9P&sNRpa z+!hC=f!ZF`ee=Rp5_#!0viGA^0)Gcr-AdhV!Nt3u>y?U}db0Jp!Tx-%GN*f%C*IUx zo~3=td-XddMIchix_kg*CW1gw%KX2h9C4PQ+eODan+`$V zX9sqZwibtM?)5})$;xb4e-CSkkQ+TeT;VFWp(~>QE((+>`fb2H<3da4Na(6Z>&BnS z;vMDFA5w*sN8;R#399e<$}%%E2L+&`BW}t`Kt7Pw!lixh=D?&f{BZrSS6}M@8Ep2fO>_jZk`#~o*(3ZVpJ`3WoIDNB5 zxiP;IN-Pivh18uK|3-x0YS6c)reWoC@nR+kUP}Zt`)@E7+oYEWoi1T9LOKK!3W{tJ zN<^a+udEoL$gvpj1u$Q4=iYAVubq3Xs?1R}x4VLqvl)D$;4vFz`k+VB-`}M>Pr+Gf zJ6$f{eOtEq6c}&CW}}31XXFjVovva#otkOA8lH{Z0k$(18#^;;!^sszHcbR^SD)0< z1sKog)5y3k?kt*^%ep=p@l1>pHEQf%OMR26;5HSCu`@7HNmcSL#xOovpS@Lc%D?p5 zWRBPh+95R>lpmxj!G$jtIS^+j8)4S3mCPg}a~MquI~s zc70H93w$4N$>rzWFb+u}2(@somypGc4Dn$+yfU6{%v%nD( zH+Pm?QDS2OyBHvm3JOCPgP;9U^qBp%fEFfG_dn&N7MJ~$_9uIg)-~YkwTKpy!8sPA zVmkh?V}EB#OOYfGd92=slh@}2*x-Ag!A3gx%Q_Q!``se@$#`2O0qROMm(>|Zw={KzRARlZv;HPcIxsJ)DQODqA@LKq=O zKc%>A7DxvaYW+W;_|FRW&zOPVYkdxA5uDbGgDf&7L4mYlHuqgBD<_JJi?_KjR-mW> z3Vz#Qt&&1Q>byR)XU$02;o0DaaL=QQGdZB2Xw;W`CpJ~t7aTl?<sl8b!7WF) zx4Ay{X&iDT2ld8xP&(raJ=Gt>U2qgHgb}8vr$=u!!+E&et92Mm{;9ztoAQH_|4~)( z{MTgb&(`C1?9P0JnSS#8>RULX>S9IYgRU3x93mOODT07MvQKpt*=P*a`PV3)ld=BBRJFTYBN-2; z?sNb(;ZNc@_;$0yFXj0kuDO3U260SYL*rMo2w18v<=IhOpRzWt>@k-*0)00Cz@5HJ7D$@ zpI_&?(U>2p?T={k94ZNR20%?S7*1(`)lV+L`d1UG5jC*&#`gtL>HghAU0LxE#4#ZARf<+`4(do^1w9w~%TULmUqVeVs)to$ z>j1NuMRn;xD=4Vbt}I#z@h|8?{3l>-@DMfsu+y+m9VtJae#<+gi^Vg%2I4%wrl@lZQrhYcXIsGSX$u53xP~4T)TSrb^07#QBR{zwr&aY}^ zZdlRTl8^sX1dT;$HjSv4s6m1W?WX!JM}tW)2BhE%TT4qzIdQ2~61QG<^QFYM-MO4J z(4aulhs3AYvu){dQ7U<=d{-8l@=Z&0qYfE?G5yIBTMahi)9-+s_DF8I_WX$x_+S?9 zsf9vZx$KlI_@}EU1^&r{{u^ll?Qt%qy^}VkFy7n>ZkeWCBWyTCB4u~0HB&1VwAyS} zMuykCpZuRjlKxxv#(w{7e%$$6Uk31bH2d&-{Ht@D8K8SV@y1-{cd7D^zx3BG4Hl^Z z)AT&vu615=2^2=%gM$Fnt24E3#z0pa0h&h+wWi3%t+;S zt?b_WJ2SK+j9RWAIC@P=i2H94Ba{8hc+eqeE#U@jP%~M;9MpxSwFu1v26LNgK88?t zV48PQfd{n+Rr0{7zZh`g>5Ywz+8H+@K!Mt|Cd6M^uKe2X)>Qd;(iSu(I86={Wv|5~ z%-Q2oBsS>7-8X?di$f(uI&s3es*Qd#yI=LsW1^z&M~3kz``iY2CoDJmG((B9-c!f7 zcK~X(k`fUSdAl3}2Ko=+@9oCw{AHX5rAiRHc=F~FlDwR)i?+5LC_|diXdA@^x=W+M zyue(cXJDY#+nw}O-C4S+si}3YCuh3;IeoF)w04PsS&wVoPPP-FRO_1fJ!TIwqJK!-oj_gD(qssB#?7H!Uy*tf;pD|?8h+{wKy?cY{Sc+tIlx-0TxVmxZ;2KzC>*h8vBMTsc+44=XkSOm*h!2W?Ul}szi=mphL%@T zuRJN>%*YkE1kCL8`6M7w5{1~!WMD8&8eek?jMO}lqhIlCj4glZi78WXCu*jt_}i{c zwGhj=`k`mP+%Ay}YD6S(=$z;IayuTzuit#`j8Z}E?`2U4EAP%w!~hEv&t7uCmF(Q^ zNL5}+kn^`lQS_uq)>wZ>Dj%{xUplSfz6xdCsHgL{T1bSjurPt^+;b98xW?2sUz+cg zM#_^U^Uvn{w~-lh!OU zg*t%xOe}w^;n;1|HD^6$Thq=bok>x_^rTQagE-f##u{eT%8DhP5T~aT5u36`DQWukFC_uUcR*ID4P^ZU0}^wiN4m=330qP6gtP{kbZzegu>W*J0qjLppWy|1TMYt}Ys_5dV0K+&sD zBZ1*|7JuS2T&`zrW8>U54Eo@(1;h9Mgp0nOsv@;t$pU7xJOK+LpXO(D^iJaPaB90) z`T_;Gk{|uGdT5y-G>Rzwq$y0;n%7 zP6P%NJqhqF>Q0_<3oul)j0V1&q~wpc*47Ra1S&+!<7l0_``sVU^%*}J0_jFPxQy0XZ&Ie~SlvIEgamMFs!eVzj=DDk zFTUS!K-8q*owD01-87n7J08rfD;KmW>u~DC2>~JPI4O*ixOzA{$gudULECQ#r;Yvu zEVm+f`Eviu+~uCPfdH{(_Zj7+ta8xX`mZT4Wvc z8cg5CLc^>ukYs5jNLbKPR2gQA(SY5hO@jkapjEt+`7ug#8;}3wbb^_Sv|IqClT-+w z2$*G~06+tg1;{Xu^YOVNN83}CkrmGt|8Adwu+e^hJZv@}4i~$>VEvJ7dky!7SNUN@ z?a~;I+O4f%+1=gkht;1$KEJ=_MobHyxRaQg${QLU-owXqBuMpfu`Pr9KN8Nac)I_0 zPW1Xj0}m5}ptABvKUA-rY;WP}#{W{M0tiub^P60^-Ih>i#ZuW-kbqLdJsQaU89!nrcn#SY|KVT7E1>k|GgD8D)t46N&3_QR*V5?@V1;At0&2&{S*QaLX zPG~;>6Cix%J_dhJX!c&fRNx&}K>Qva%J()d?qpBB_fpwFrX|+L%k{wn-G?pVH;vmF zNF7?*+A(iksSMfp~o)^sqhlK|kP*-YS+^;lZY&dR6aG_NSJJAm6S z+nYDR$!t7&41y=q8ZV4D9|8AdCgq7`b$aH^Jb>FvGX+2kx&gy}KArU#fE-NFD6yiu zC>I1dvXn&Mt!3HC1y8|U0s9R*%{>;Jxn$+t0VTD{FvASFXuJbDpMzW)&{+ zK*6>0j4_#jB-*z!P@qI4*7 zPi%Wj4=69&w$yU5>v!}jBbzOQ>wVyr>{&`*^Kq4+fC4@T6d)hfl`B277;B(%SZQY} zmS|ork#UN>dHc(u8?R3vI}LoDg4{!JZ;7Zpw~BXXXO$_qdw|ml*{;^uca=XQi?8{C z`rECpPewUcZ#;TSditxLj)c7j)Q}Rp+`W~FLiro`ZZ00~&AlTQ)uny8Y27#eSg#cY zTm3FpuN<@n+SmlNub!B?@wSLcehG8m)ZJBgT<$dAICEEqwIfd z^PpRGQ{>%26DGT7&*)2DDKq=(so1OCv~4-s-Ay6b^?Xog?g>gaarR-HQCxECk`Pp8 zBU2F_@o!)QT6zTM9+2pl7<442ieP^{PN@@7<|C)B&*uXlZLgWp-Qoa%RAy%Gl}Kt7 zxPdgf$mY;~uq5>*zD@@_HNa*lZ|-KNvHRVlxia7xmykESB~!%^tfk_XCrvB zW_0MUWCYpFk83)lya5Io9D)dH`zxRBz-vpHh20~E2vH#1e!adp)bo?Av*X^4@HNBt zqAapl>M@B@SHIcL^zND`uCQA=b6$<7lD!W`jM7Y3h~r=oOyq?rT%Lf68wYX!TmPDWl!-xMIq#M|ywg%Sl?eFb z2k>BD&n0bG1_u|HhaFq8^>I+Dscg z+GFbG^Xc7?XZkQf_NZtHe*KV!nU!hHBlD~@N#{HBeLt8bYacmYiVZ+{#5LyL$oP>oLgN}GF&zCTf99yIq5>PiWI)I#o+Fh!cu3jjJ zm9VIO>CCLV@_WI83Ug>rN;f4SXm@Oq1BxCUaiGX7e0&W&(2dJZgZJ;5k<~jLixdsj zaI<7yPupjkcJsUL{(>*O#OBn(jSI{j$&xU*jpD_dTXTsPH879sU)?*D9kNqvbj@NF zCsb>sO6lHw9*&cbzgjbBlCs zci&Sm?9IXMJj10?CWrPnHvQvv1in0fZL;}cmTA07)}u@tYuTg?Vt6pxl6}m7Ys6}+ zl@|a2ZxA}ZjsyGY(~NcpI>6DxFMt2{1CEe|^^rVZ{xQ)MbJD zVC{0OrSX0{l+!F1mQ;KAx~kk~lDPx8+9OrSAHBW87vQO6f!O%q;(g8eJI`2$d)+^> z@c2uT_cm|B(-eB28Xtt@h4-$=)A4`#H|fCt+{RX)qC#5cM>+lSMY6%oct}fK|9XMy H{lNbPY-rSZ literal 0 HcmV?d00001 diff --git a/labworks/LW1/images/9.png b/labworks/LW1/images/9.png new file mode 100644 index 0000000000000000000000000000000000000000..e9e8aefc6082e3b5be3c7de3ee0de9cee3b6ea14 GIT binary patch literal 7174 zcmch6S5#A7n08R4$Oi(72uiUaN)ss}2!!67AT<<~CWa8DDP54FfFd12N2(BduYw|- zNa($nP^5(x2+Ynm|6I&kvu3>dFS1xk7W?e8&+|SlA9b{pY0tBshd>~-swxV)5D1wZ zctNQsz$d~C9q+*(GACVSIY>dzH5_l4(@Q3J%&E#&PhRB)sBoJY4GQSuZpJ?6zfk<1R(Ay*pbBe(-WOuEzW&ZKEmtl-J#OyC>c{4Da=L)=N+!RS5|0`8NbyMF?&08sObezEFG3QT_AbvH?ksVMi5V8utnk!QLT<=E zdzN;${N+GIRn@~Bg3Q zs=u+ZF}B!Jxo-h6m>=Jdh8ccldt~Dy*A)={RXMEVgm|PW?nNk*Is@r#5~ji=J>sUO zrf!+@mY~S-TBTtYh^vusS&7QX$Y_hymbUBYh~`~qfPA1!mNi0~h*mq}B3O8zxQ|q) zrhfOg)alF8wEh*!QerXXM~OhCyVU?}$;=x~}uwtK0O;w`erKtr5qGHYtywW0M$8fxKH@V)6g@ z@uQIInvvaD1)9&KOl7nZc~37}%esK`-SBg6gCIrlAbe(;12TISv%tZt+<8xVVQ*<+ zVWgjDcH{;*gqhwSlBi67<`ugv)ps}Y>yRae|8E~KFI^}an?jxF->b(*NFHzgaJ@i3 z0iO6R0Gtw0q*;wKL(086L`ax4q0Paqv$HeO&+iQEeQeWv%FcAfkoj+U1tlI-a^LlI zbt6oDh`SYwh=FhVy48->Fq$v}w8;oRGFv+(CNc3E_$RF2mxB9$b9cohA64g#`{!dCtG@hJOj;1pHr{uot{SvtP$x#fj0a#eisNK6NXVw^in!-Nk(9|TUf#}e$?c>!llQIn z|4e|LC{SWJ?S~4I%Ix}-P+~{{Fm{nYe=3YrJ7r6mWIX#3NJ5oxi;Vi|3Gu(+9Wi7nB)NR|5=Qzce?qRR=qDXSP4@o;cWVdZ&rqG%Dq1#)C+uGM$FQBOybBQ#5%&C& zC)=@&ZS(Dsi0*{RMY@@m4o1kGbALA}e8uuz%L93aD(Y(#w5+$l`Id?z3Ht%tZ@#&# z4yww^`l6!|yDI~W)ZuAu7)&LMiaBQZdR9woYtR!i|g%6gAA}xP~-j7V}blT|_Q{R}Z2e;6WEpN=9p6pG)eKGL!B;c~Q zn$I`pYFLXo;y`EKI5pzhqChqu?ol)H9q>j(1NXC0B#G(y= zk&BQ#DJ^x;VJ2zJU_9D zMzpefXefoTBi=Ceeouh;EG;jB_tKAfw^tygG(Mmhf(H{RQrLaxZ#Vv?iv^9RuWGeYl#9RzHCRPnJpDyp9{pzaC-q3Ft@dlf z>RSl$m%X)TgFM)oAx}gsw6s3gZT-3`jL3{v{%(qq`fp~kU+i`<6NW5$5waqDGg#cpMb%Q z@%JZ(@g{h0Wo2Xl^u+MP0{d_Fvg_pZeFqH0sh6cuEQ-uCETlV>)js&Mxp`Y5^tL8S z1#mN9&l-D&o1B(%nm}n25#P;>A$B5O3Zvr=B-#u3Cw4_$g`zW3H@Aovkyj@Xj z**c1<1jnhqI*3N_OEw(L((JJFg*7P4dkL{Wzrd^hS2II?z4@C>H|lyc*xtw#RSFQK zcH0y$0|#;M<0>L;DwXVqA}n`%fG*Icb)-KAI2kz}U@OWR$u3=|B6}FdNj@#Up=$yB3cdy|ytN}pJ*0m#=jMIFY6C8J=ih634^-b+16k-)#H zxVlzU!`l|{w$7$Xotf&f8AV0E!N4z1iz^L()91bTjwCJA7jMTI%q$EU=<4ZNpBx`< zk4>EnI%gW9O-L&{Z~h~^S^7e_)EB?lSUK2J~mWFae-a(McC!uTH4izvr_xxmcLkPT~=-WUD>Y6tnO`Z z7aF@xa)#-a-pXO@qDSQ(`OLc8J3ET4mpU0c>I5MlM5OE0@*`<{h^rO}ztvS$!Quc)WkzP^h}jKQRaI=JI&&{E zK0bbS=P<)zq6S-F_DEGlr3kvKIht-|t?K+ch#Tj|ANKiF3nkJ%*zsn{Yadvkv_1B{ z^)cIDIr3@DD*}yihO9{w^d09f{mjA|#1#GPc}xhntVX}L-1`GhA(zSA)ocg6$@Wgl z>G)vX`gpZ)2B-g+(Q`^jCg=Z%p8t+7w#+;=fW%II_k?mlB7vswUMSE@d@K9Si++MO z(MO5cF*=f^GyI)`O4hYM2Baa(tK8u<1Y@!QX^9>T8;-O zMKr7E%P1HlkcO#itX>W(cNUHhcWg?W-4uQ3a$fKihg^UC`Zc!dwI!HC_0Sq;+;h0K zx{Asdlk%4%CWl&y51&=m(Q-(eRv^Z}emgOkSfC!Tvkg))!(=jdJtMibW3D3W9@o6t z5YU#~^3TZ18kK*}Uir{|SP(Z}T`GzHE$_IuW(;iO^C0coQm3V!XhRFHfpJ=^j;Om4 z2?@Lb0RbfQD4dM%;4O@E*!Xf?ejea&&ybAs!GTRz+;y?>SMSS^QVeC>o0F*ZQ zwm>UvQYtRncB8mRf@@amI%2_}PL?~9V<`?4&xZ3FBwcmuN*cu|*xYr*XjwQ)6y7me z@6j#e))~X!y#+W#1^A?H;*6REpf`<#2i?wTyEi`4$(@lAxl7j!CE~QR&K(R}hN%Ky zurS*aLdr=szhrAHU|w9fZYd7WP1!!jYf$gH>KSf`!o?Jdgh{fuEx}CNgw;azoyG2M zUqCkT#m&?G=hjcMGBZ`{-FG#lasatvD-bZ;XnEdUO_T`9l1m)m<=UoBPu_sZ3m+|q zCv5gPIA&`l-4Yi!2HC>;%x1UP)TI=RZ2{+58NMye6lpU$4r#tpTg-zq_cx@rrbR0_SqfZb7XE)U)#mrGlM_J>##TCTp`7%>^aZ}jJy%2Y+w zlqeK3#_~!0Vm>CLm15(yANUq+T(iLB_u-$KYXVW}!e{WFF@|!qO{r^ZYhQx3DtW5+ zs`BNiX4Rg4Wc!;?#NdBlA@&DOs7)uhfR9YapELA6uNt-Il>-dCX~p*O7fU z3>YNimz1Vv)zE@L`7OLO)8|1LNFS8h&5&bNhQ zGgL3y{Z94$cha`!RXtSZe_cfaxEPw^8NNX1;hrS;0|(O4%Hd=GM@h(S+o~GaYjGps zzT?G^$$<6ag{(U+m2yCyf7~DmLxEYXTAl%V-WGZkZ^y90AMwQ7yTN|4&Nzn8_y(-f zfk;5W`5LG0fk^`s3_o9KaE2Zc+)5?-+uZxm8rPp2c?)z7UeJT43-ehC4nkwXwmnhe zPK$Bt5p?X5cfKlp5`uaF5o})@DJ2Cy#zh-bvc|)1Z$|A|2J<+*Iyx}zxex>fz)OU51rUUj(ReaBd&FDy?ws18scw#EfsD^_FY z;JMjE={Vssqzbx|3D|x7sYRv3gw=4-vxqNWp6&;VQ$dTD~T zNeJ`!wBV;UZP6H$67(qw&kw5zjW6c*Vq=qV7Mv3)-bR(RWGv+XUb=tr8mk`xwK7!5 zAzY|xLDG~=;LlyPo%?pMAbj?9)Yo;oXPSls(oiTFe$fH>UMT~Z$~@rBCsLEh;e`*6 z#|#ublgAC@#j;%aWB_bLi8s+*98`+At95O_f+Y;L$#^=PcLLVIFe9xnevhra4G=8~yz6NKUE(qQ6RyH=M zb+?_xcw+Ag9@kg$YDP|YKtWzdUBsME{Ox9{+nila<8}wHRL}BG%l!-88y?CzClKeWtm62Lna=>0r9S=v$3f zy>3ZiOJWqU!`@QW)D*Qak)YJh&Q+{AM{~I?{HAhOESA&~zG*y4iucGrAq+L5#8a9u z15EY7`TWhnj4xacz{oiGOlKVK?CcOvPxc#$pg6Ae0sGnGPS>8kI_v}ROgP;w^f{zC ze_n&y^U>JX-kY1g+mwDijjrn^r_)XEiM~(8j>M3YYmH#BV_zh~smI)7UG(&KntXS4 zsI#v@Aas*#M;llfsLRR|Cx?D;^xbgmT$9sf+B5u)KAhuSZd7HiMBkWv=x;TV!nu>9 zjeSZ#Y+@@2KXI4=;G)-%N&;S*gsH+p99Z>au{+`DELz4%18V5|^jJ&UkZClky{%0U z9SpKV9P-(E@QZz;TJv7D#>_HUy6{Z7ap6>luUNVis}%mKVeJ!wt zA1rBLl3Xpz60YH#R|0y9YwNhuj$EjwNfKf9d_DTb1um=|vw6@hyyWt!kCdSVMvr@I zRZynUo7g2SW#OJ&#>9cci{cJ{4`tMcfd)~yMHTlvWXQs2A~Bni!&8S8d`nN&ayB{p znc1#+U(j07^$oiPR`pXmkG&zC=(U<;j@J@4cl0v zq+3ZSt7r$GhE5IJvTvN|vBU#n+s&}J!2W2RG}#<(wWHIf*R%*#J7O(LgoRF`XsjG= zD4eE$+P|AD@jZ`>k)|vz z%U)K$(UkZ8<2j$M~fqRX|SibDqqd&C^GeH~`9*Q7f+6hRk%!UA5 zqFj!T_BSe(c?|+U>#Hg!e{Yy+FecUYahb<88vOeVqzvtWk&#(CGrcoYpliLK*|Ukk z0-OB&=fB?#87Q@1_f^T9$RnO(-4oB_2;`2#1d+}saIo*DO5B1LLPw@ z=Ds05=mLlNqOPphDXtn@umkR1eXWe?_44oQP9bc>FWvFN$|hwmuD_?C4IaH5Xztse z7Xf}7vH2GGS!}`yBV}WH6V2PFnR>a#l(uO)PDTVPZpZ2`VT7JZo5+9kr)n Shape of X train: (60000, 28, 28) +> Shape of y train: (60000,) + +## 4. Вывод элементов обучающих данных +* Создаем subplot для 4 изображений +``` +fig, axes = plt.subplots(1, 4, figsize=(10, 3)) + +for i in range(4): + axes[i].imshow(X_train[i], cmap=plt.get_cmap('gray')) + axes[i].set_title(f'Label: {y_train[i]}') + +# Добавляем метку как заголовок + +plt.show() +``` + +![отображение элементов](1.png) + +## 5. Предобработка данных +* развернем каждое изображение 28*28 в вектор 784 +``` +num_pixels = X_train.shape[1] * X_train.shape[2] +X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255 +X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255 +print('Shape of transformed X train:', X_train.shape) +``` + +> Shape of transformed X train: (60000, 784) + +* переведем метки в one-hot +``` +from keras.utils import to_categorical +y_train = to_categorical(y_train) +y_test = to_categorical(y_test) +print('Shape of transformed y train:', y_train.shape) +num_classes = y_train.shape[1] +``` + +> Shape of transformed y train: (60000, 10) + +## 6. Реализация и обучение однослойной нейронной сети +``` +from keras.models import Sequential +from keras.layers import Dense +``` + +* 6.1. создаем модель - объявляем ее объектом класса Sequential +``` +model_1 = Sequential() +model_1.add(Dense(units=num_classes,input_dim=num_pixels, activation='softmax')) +``` +* 6.2. компилируем модель +``` +model_1.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_1.summary() +``` + +> Архитектура нейронной сети: +> Model: "sequential" +> ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +> ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +> ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +> │ dense (Dense) │ (None, 10) │ 7,850 │ +> └─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 7,850 (30.66 KB) +> Trainable params: 7,850 (30.66 KB) +> Non-trainable params: 0 (0.00 B) ' + +* Обучаем модель +``` +history = model_1.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history.history['loss'], label='Обучающая ошибка') +plt.plot(history.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](2.png) + +## 7. Применение модели к тестовым данным +``` +scores=model_1.evaluate(X_test,y_test) +print('Lossontestdata:',scores[0]) +print('Accuracyontestdata:',scores[1]) +``` + +> - accuracy: 0.9206 - loss: 0.2956 +>Lossontestdata: 0.2900226414203644 +>Accuracyontestdata: 0.9222000241279602 + +## 8. Добавили один скрытый слой и повторили п. 6-7 +* при 100 нейронах в скрытом слое +``` +model_2l_100 = Sequential() +model_2l_100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid')) +model_2l_100.add(Dense(units=num_classes, activation='softmax')) + +model_2l_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_2l_100.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_9" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_1 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_2 (Dense) │ (None, 10) │ 1,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 79,510 (310.59 KB) +> Trainable params: 79,510 (310.59 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучаем модель +``` +history_2l_100 = model_2l_100.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history_2l_100.history['loss'], label='Обучающая ошибка') +plt.plot(history_2l_100.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](3.png) + +``` +scores_2l_100=model_2l_100.evaluate(X_test,y_test) +print('Lossontestdata:',scores_2l_100[0]) #значение функции ошибки +print('Accuracyontestdata:',scores_2l_100[1]) #значение метрики качества +``` + +> - accuracy: 0.9436 - loss: 0.2091 +>Lossontestdata: 0.20427274703979492 +>Accuracyontestdata: 0.9438999891281128 ' + +* при 300 нейронах в скрытом слое +``` +model_2l_300 = Sequential() +model_2l_300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid')) +model_2l_300.add(Dense(units=num_classes, activation='softmax')) + +model_2l_300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_2l_300.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_3" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_5 (Dense) │ (None, 300) │ 235,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_6 (Dense) │ (None, 10) │ 3,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 238,510 (931.68 KB) +> Trainable params: 238,510 (931.68 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучаем модель +``` +history_2l_300 = model_2l_300.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history_2l_300.history['loss'], label='Обучающая ошибка') +plt.plot(history_2l_300.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](4.png) + +``` +scores_2l_300=model_2l_300.evaluate(X_test,y_test) +print('Lossontestdata:',scores_2l_300[0]) #значение функции ошибки +print('Accuracyontestdata:',scores_2l_300[1]) #значение метрики качества +``` + +> - accuracy: 0.9365 - loss: 0.2352 +>Lossontestdata: 0.23040874302387238 +>Accuracyontestdata: 0.9372000098228455 + +* при 500 нейронах в скрытом слое +``` +model_2l_500 = Sequential() +model_2l_500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid')) +model_2l_500.add(Dense(units=num_classes, activation='softmax')) + +model_2l_500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_2l_500.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_4" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_7 (Dense) │ (None, 500) │ 392,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_8 (Dense) │ (None, 10) │ 5,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 397,510 (1.52 MB) +> Trainable params: 397,510 (1.52 MB) +> Non-trainable params: 0 (0.00 B) + +* Обучаем модель +``` +history_2l_500 = model_2l_500.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history_2l_500.history['loss'], label='Обучающая ошибка') +plt.plot(history_2l_500.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](5.png) + +``` +scores_2l_500=model_2l_500.evaluate(X_test,y_test) +print('Lossontestdata:',scores_2l_500[0]) #значение функции ошибки +print('Accuracyontestdata:',scores_2l_500[1]) #значение метрики качества +``` + +> - accuracy: 0.9290 - loss: 0.2572 +>Lossontestdata: 0.25275251269340515 +>Accuracyontestdata: 0.9301000237464905 + +Как мы видим, лучшая метрика получилась равной 0.9438999891281128 при архитектуре со 100 нейронами в скрытом слое, поэтому для дальнейших пунктов используем ее. + +## 9. Добавили второй скрытый слой +* при 50 нейронах во втором скрытом слое +``` +model_3l_100_50 = Sequential() +model_3l_100_50.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid')) +model_3l_100_50.add(Dense(units=50, activation='sigmoid')) +model_3l_100_50.add(Dense(units=num_classes, activation='softmax')) + +model_3l_100_50.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_3l_100_50.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_5" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_9 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_10 (Dense) │ (None, 50) │ 5,050 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_11 (Dense) │ (None, 10) │ 510 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 84,060 (328.36 KB) +> Trainable params: 84,060 (328.36 KB) +> Non-trainable params: 0 (0.00 B) + +* Обучаем модель +``` +history_3l_100_50 = model_3l_100_50.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history_3l_100_50.history['loss'], label='Обучающая ошибка') +plt.plot(history_3l_100_50.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](6.png) + +``` +scores_3l_100_50=model_3l_100_50.evaluate(X_test,y_test) +print('Lossontestdata:',scores_3l_100_50[0]) +print('Accuracyontestdata:',scores_3l_100_50[1]) +``` + +> - accuracy: 0.9423 - loss: 0.2074 +>Lossontestdata: 0.20320768654346466 +>Accuracyontestdata: 0.9427000284194946 + +* при 100 нейронах во втором скрытом слое +``` +model_3l_100_100 = Sequential() +model_3l_100_100.add(Dense(units=100, input_dim=num_pixels, activation='sigmoid')) +model_3l_100_100.add(Dense(units=100, activation='sigmoid')) +model_3l_100_100.add(Dense(units=num_classes, activation='softmax')) + +model_3l_100_100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) + +print("Архитектура нейронной сети:") +model_3l_100_100.summary() +``` + +> Архитектура нейронной сети: +>Model: "sequential_6" +>┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ +>┃ Layer (type) ┃ Output Shape ┃ Param # ┃ +>┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ +>│ dense_12 (Dense) │ (None, 100) │ 78,500 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_13 (Dense) │ (None, 100) │ 10,100 │ +>├─────────────────────────────────┼────────────────────────┼───────────────┤ +>│ dense_14 (Dense) │ (None, 10) │ 1,010 │ +>└─────────────────────────────────┴────────────────────────┴───────────────┘ +> Total params: 89,610 (350.04 KB) +> Trainable params: 89,610 (350.04 KB) +> Non-trainable params: 0 (0.00 B) ' + +* Обучаем модель +``` +history_3l_100_100 = model_3l_100_100.fit( + X_train, y_train, + validation_split=0.1, + epochs=50 +) +``` + +* Выводим график функции ошибки +``` +plt.figure(figsize=(12, 5)) + +plt.subplot(1, 2, 1) +plt.plot(history_3l_100_100.history['loss'], label='Обучающая ошибка') +plt.plot(history_3l_100_100.history['val_loss'], label='Валидационная ошибка') +plt.title('Функция ошибки по эпохам') +plt.xlabel('Эпохи') +plt.ylabel('Categorical Crossentropy') +plt.legend() +plt.grid(True) +``` + +![график функции ошибки](7.png) + +``` +scores_3l_100_100=model_3l_100_100.evaluate(X_test,y_test) +print('Lossontestdata:',scores_3l_100_100[0]) +print('Accuracyontestdata:',scores_3l_100_100[1]) +``` + +> - accuracy: 0.9435 - loss: 0.2058 +>Lossontestdata: 0.2007063776254654 +>Accuracyontestdata: 0.9431999921798706 + +Количество Количество нейронов в Количество нейронов во Значение метрики +скрытых слоев первом скрытом слое втором скрытом слое качества классификации +0 - - 0.9222000241279602 +1 100 - 0.9438999891281128 +1 300 - 0.9372000098228455 +1 500 - 0.9301000237464905 +2 100 50 0.9427000284194946 +2 100 100 0.9431999921798706 + +Наилучшую точность (0.9467999935150146) показала модель содержащая 100 нейронов в скрытом слое. + +## 11. Сохранение наилучшей модели на диск +``` +model_2l_100.save(filepath='best_model.keras') +``` + +## 12. Вывод тестовых изображений и результатов распознаваний +``` +n = 150 +result = model_2l_100.predict(X_test[n:n+1]) +print('NN output:', result) + +plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) +plt.show() +print('Real mark: ', str(np.argmax(y_test[n]))) +print('NN answer: ', str(np.argmax(result))) +``` + +> NN output: [[3.86779779e-04 3.69515050e-08 2.03053992e-06 1.15266894e-05 +> 1.57332561e-05 4.79512411e-04 7.92529917e-08 9.95542467e-01 +> 1.50878295e-05 3.54681048e-03]] +![alt text](8.png) +>Real mark: 7 +>NN answer: 7 + +``` +n = 810 +result = model_2l_100.predict(X_test[n:n+1]) +print('NN output:', result) + +plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray')) +plt.show() +print('Real mark: ', str(np.argmax(y_test[n]))) +print('NN answer: ', str(np.argmax(result))) +``` + +> NN output: [[8.1927046e-06 9.8501807e-01 4.7102575e-03 1.5754283e-03 5.3024664e-06 +> 2.3075400e-03 6.3471968e-04 7.6599965e-05 5.5682263e-03 9.5791329e-05]] +![alt text](9.png) +>Real mark: 1 +>NN answer: 1 ' + +## 12. Тестирование на собственных изображениях +* загрузка 1 собственного изображения +``` +from PIL import Image +file_1_data = Image.open('ИИЛР1_6.png') +file_1_data = file_1_data.convert('L') #перевод в градации серого +test_1_img = np.array(file_1_data) +``` + +* вывод собственного изображения +``` +plt.imshow(test_1_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![6 изображение](10.png) + +* предобработка +``` +test_1_img = test_1_img / 255 +test_1_img = test_1_img.reshape(1, num_pixels) +``` + +* распознавание +``` +result_1 = model_2l_100.predict(test_1_img) +print('I think it\'s', np.argmax(result_1)) +``` +> I think it's 6 + +* тест 2 изображения +``` +file_2_data = Image.open('ИИЛР1_1.png') +file_2_data = file_2_data.convert('L') #перевод в градации серого +test_2_img = np.array(file_2_data) + +plt.imshow(test_2_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![1 изображение](11.png) + +``` +test_2_img = test_2_img / 255 +test_2_img = test_2_img.reshape(1, num_pixels) + +result_2 = model.predict(test_2_img) +print('I think it\'s', np.argmax(result_2)) +``` + +> I think it's 1 + +Сеть не ошиблась и корректно распознала обе цифры на изображениях + +## 14. Тестирование на собственных повернутых изображениях +``` +file_190_data = Image.open('ИИЛР1_690.png') +file_190_data = file_190_data.convert('L') #перевод в градации серого +test_190_img = np.array(file_190_data) + +plt.imshow(test_190_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![alt text](690.png) + +``` +test_190_img = test_190_img / 255 +test_190_img = test_190_img.reshape(1, num_pixels) + +result_190 = model_2l_100.predict(test_190_img) +print('I think it\'s', np.argmax(result_190)) +``` + +> I think it's 2 + +``` +file_290_data = Image.open('ИИЛР1_190.png') +file_290_data = file_290_data.convert('L') #перевод в градации серого +test_290_img = np.array(file_290_data) + +plt.imshow(test_290_img, cmap=plt.get_cmap('gray')) +plt.show() +``` + +![alt text](190.png) + +``` +test_290_img = test_290_img / 255 +test_290_img = test_290_img.reshape(1, num_pixels) + +result_290 = model.predict(test_290_img) +print('I think it\'s', np.argmax(result_290)) +``` + +> I think it's 4 + +При повороте изображений сеть не распознала цифры правильно. Так как она не обучалась на повернутых изображениях. \ No newline at end of file