{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "cjledORN0qWT" }, "outputs": [], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')\n", "\n", "import os\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3')\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "\n", "from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay\n", "from sklearn.model_selection import train_test_split\n", "\n", "import tensorflow as tf\n", "tf.random.set_seed(123)\n", "np.random.seed(123)\n" ] }, { "cell_type": "code", "source": [ "from keras.datasets import mnist\n", "\n", "(X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data()\n", "\n", "X = np.concatenate((X_train_full, X_test_full), axis=0)\n", "y = np.concatenate((y_train_full, y_test_full), axis=0)" ], "metadata": { "id": "ww1N34Ku1kDI" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "k = 5\n", "random_state = 4 * k - 1\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, train_size=60000, test_size=10000, random_state=random_state, shuffle=True\n", ")\n", "\n", "print('Shape of X_train:', X_train.shape)\n", "print('Shape of y_train:', y_train.shape)\n", "print('Shape of X_test:', X_test.shape)\n", "print('Shape of y_test:', y_test.shape)\n" ], "metadata": { "id": "N2SV0m7x1rTT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "num_classes = 10\n", "input_shape = (28, 28, 1)\n", "\n", "# приведение значений к диапазону [0,1]\n", "X_train = X_train.astype('float32') / 255.0\n", "X_test = X_test.astype('float32') / 255.0\n", "\n", "# добавление размерности каналов\n", "X_train = np.expand_dims(X_train, -1)\n", "X_test = np.expand_dims(X_test, -1)\n", "\n", "# one-hot кодирование меток\n", "y_train_cat = keras.utils.to_categorical(y_train, num_classes)\n", "y_test_cat = keras.utils.to_categorical(y_test, num_classes)\n", "\n", "print('Shape of transformed X_train:', X_train.shape)\n", "print('Shape of transformed y_train:', y_train_cat.shape)\n", "print('Shape of transformed X_test:', X_test.shape)\n", "print('Shape of transformed y_test:', y_test_cat.shape)" ], "metadata": { "id": "Ot_8FfXZ1y2I" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "batch_size = 512\n", "epochs = 15\n", "\n", "model = Sequential()\n", "model.add(layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=input_shape))\n", "model.add(layers.MaxPooling2D(pool_size=(2,2)))\n", "model.add(layers.Conv2D(64, kernel_size=(3,3), activation='relu'))\n", "model.add(layers.MaxPooling2D(pool_size=(2,2)))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Flatten())\n", "model.add(layers.Dense(num_classes, activation='softmax'))\n", "\n", "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", "model.summary()\n", "\n", "history = model.fit(X_train, y_train_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1)\n" ], "metadata": { "id": "eDCmBb6p180Y" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "scores = model.evaluate(X_test, y_test_cat, verbose=2)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "oWRp1dA92Itj" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "indices = [0, 1]\n", "for n in indices:\n", " result = model.predict(X_test[n:n+1])\n", " plt.figure()\n", " plt.imshow(X_test[n].reshape(28,28), cmap='gray')\n", " plt.title(f\"Real: {y_test[n]} Pred: {np.argmax(result)}\")\n", " plt.axis('off')\n", " plt.show()\n", " print('NN output vector:', result)\n", " print('Real mark:', y_test[n])\n", " print('NN answer:', np.argmax(result))" ], "metadata": { "id": "HRTwkJ0W69gd" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "true_labels = y_test\n", "predicted_labels = np.argmax(model.predict(X_test), axis=1)\n", "\n", "print(classification_report(true_labels, predicted_labels))\n", "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n", "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)\n", "display.plot()\n", "plt.show()" ], "metadata": { "id": "qGEMo-ZW7IxB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from PIL import Image\n", "\n", "img_path = '../5.png'\n", "\n", "file_data = Image.open(img_path)\n", "file_data = file_data.convert('L') # перевод в градации серого\n", "test_img = np.array(file_data)\n", "\n", "plt.imshow(test_img, cmap='gray')\n", "plt.axis('off')\n", "plt.show()\n", "\n", "# нормализация и изменение формы\n", "test_proc = test_img.astype('float32') / 255.0\n", "test_proc = np.reshape(test_proc, (1, 28, 28, 1))\n", "\n", "result = model.predict(test_proc)\n", "print(\"NN output vector:\", result)\n", "print(\"I think it's\", np.argmax(result))\n" ], "metadata": { "id": "rjfX4LIP7ZTb" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model_lr1_path = '../best_model_2x100.h5'\n", "\n", "if os.path.exists(model_lr1_path):\n", " model_lr1 = load_model(model_lr1_path)\n", " model_lr1.summary()\n", "\n", " # подготовка данных специально для полносвязной модели ЛР1\n", " X_test_lr1 = X_test.reshape((X_test.shape[0], 28*28))\n", " X_test_lr1 = X_test_lr1.astype('float32') / 255.0\n", "\n", " # здесь нужно использовать X_test_lr1 !\n", " scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_cat, verbose=2)\n", "\n", " print('LR1 model - Loss on test data:', scores_lr1[0])\n", " print('LR1 model - Accuracy on test data:', scores_lr1[1])\n", "\n", "else:\n", " print(f\"Файл {model_lr1_path} не найден. Поместите сохранённую модель ЛР1 в рабочую директорию.\")\n" ], "metadata": { "id": "rnMRFGLs7v-o" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# возьмём оригинальные X, y — до всех преобразований для CNN\n", "(X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data()\n", "\n", "# объединим, чтобы сделать то же разбиение, что и в ЛР1\n", "X_all = np.concatenate((X_train_full, X_test_full), axis=0)\n", "y_all = np.concatenate((y_train_full, y_test_full), axis=0)\n", "\n", "from sklearn.model_selection import train_test_split\n", "X_train_l1, X_test_l1, y_train_l1, y_test_l1 = train_test_split(\n", " X_all, y_all, train_size=60000, test_size=10000, random_state=19\n", ")\n", "\n", "# теперь — подготовка данных ЛР1\n", "X_test_lr1 = X_test_l1.reshape((X_test_l1.shape[0], 28*28)).astype('float32') / 255.0\n", "y_test_lr1 = keras.utils.to_categorical(y_test_l1, 10)\n", "\n", "# оценка модели\n", "scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_lr1, verbose=2)\n", "print(scores_lr1)\n" ], "metadata": { "id": "4aRHHa_v8Rkl" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка сохранённой модели ЛР1\n", "model_lr1_path = '../best_model_2x100.h5'\n", "model_lr1 = load_model(model_lr1_path)\n", "model_lr1.summary()\n", "\n", "# подготовка тестового набора для модели ЛР1\n", "X_test_l1 = X_test_l1.reshape((X_test_l1.shape[0], 28 * 28)).astype('float32') / 255.0\n", "y_test_l1_cat = keras.utils.to_categorical(y_test_l1, 10)\n", "\n", "# оценка модели ЛР1\n", "scores_lr1 = model_lr1.evaluate(X_test_l1, y_test_l1_cat, verbose=2)\n", "print('LR1 model - Loss:', scores_lr1[0])\n", "print('LR1 model - Accuracy:', scores_lr1[1])\n", "\n", "# оценка сверточной модели ЛР3\n", "scores_conv = model.evaluate(X_test, y_test_cat, verbose=2)\n", "print('Conv model - Loss:', scores_conv[0])\n", "print('Conv model - Accuracy:', scores_conv[1])\n", "\n", "# вывод числа параметров обеих моделей\n", "print('LR1 model parameters:', model_lr1.count_params())\n", "print('Conv model parameters:', model.count_params())\n" ], "metadata": { "id": "N1oPuRH69nwK" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from keras.datasets import cifar10\n", "\n", "(X_train_c, y_train_c), (X_test_c, y_test_c) = cifar10.load_data()\n", "\n", "print('Shapes (original):', X_train_c.shape, y_train_c.shape, X_test_c.shape, y_test_c.shape)\n", "\n", "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", " 'dog', 'frog', 'horse', 'ship', 'truck']\n", "\n", "# вывод 25 изображений\n", "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(X_train_c[i])\n", " plt.xlabel(class_names[y_train_c[i][0]])\n", "plt.show()\n" ], "metadata": { "id": "hGnBZelW9y9Q" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "num_classes = 10\n", "input_shape_cifar = (32, 32, 3)\n", "\n", "X_train_c = X_train_c.astype('float32') / 255.0\n", "X_test_c = X_test_c.astype('float32') / 255.0\n", "\n", "y_train_c_cat = keras.utils.to_categorical(y_train_c, num_classes)\n", "y_test_c_cat = keras.utils.to_categorical(y_test_c, num_classes)\n", "\n", "print('Transformed shapes:', X_train_c.shape, y_train_c_cat.shape, X_test_c.shape, y_test_c_cat.shape)\n" ], "metadata": { "id": "VgA73god-gj_" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model_cifar = Sequential()\n", "model_cifar.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape_cifar))\n", "model_cifar.add(layers.MaxPooling2D((2,2)))\n", "model_cifar.add(layers.Conv2D(64, (3,3), activation='relu'))\n", "model_cifar.add(layers.MaxPooling2D((2,2)))\n", "model_cifar.add(layers.Conv2D(128, (3,3), activation='relu'))\n", "model_cifar.add(layers.MaxPooling2D((2,2)))\n", "model_cifar.add(layers.Flatten())\n", "model_cifar.add(layers.Dense(128, activation='relu'))\n", "model_cifar.add(layers.Dropout(0.5))\n", "model_cifar.add(layers.Dense(num_classes, activation='softmax'))\n", "\n", "model_cifar.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", "model_cifar.summary()\n", "\n", "batch_size = 512\n", "epochs = 20\n", "history_cifar = model_cifar.fit(X_train_c, y_train_c_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1)" ], "metadata": { "id": "e3EzTnNS-jhQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "scores_cifar = model_cifar.evaluate(X_test_c, y_test_c_cat, verbose=2)\n", "print('CIFAR - Loss on test data:', scores_cifar[0])\n", "print('CIFAR - Accuracy on test data:', scores_cifar[1])" ], "metadata": { "id": "_1s1v6CUECcw" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(classification_report(true_cifar, preds_cifar, target_names=class_names))\n", "\n", "conf_matrix_cifar = confusion_matrix(true_cifar, preds_cifar)\n", "display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix_cifar,\n", " display_labels=class_names)\n", "\n", "plt.figure(figsize=(10,10)) # figsize задаётся здесь\n", "display.plot(cmap='Blues', colorbar=False) # без figsize\n", "plt.xticks(rotation=45)\n", "plt.show()\n" ], "metadata": { "id": "ElVAWuiyEPW-" }, "execution_count": null, "outputs": [] } ] }