# -*- coding: utf-8 -*- """lw3.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1whkpae-DQ5QCfyJAnjIH0_Zff9zaT4po """ from google.colab import drive drive.mount('/content/drive') import os os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab3') import numpy as np import matplotlib.pyplot as plt from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay from sklearn.model_selection import train_test_split import tensorflow as tf tf.random.set_seed(123) np.random.seed(123) from keras.datasets import mnist (X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data() X = np.concatenate((X_train_full, X_test_full), axis=0) y = np.concatenate((y_train_full, y_test_full), axis=0) k = 5 random_state = 4 * k - 1 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=60000, test_size=10000, random_state=random_state, shuffle=True ) print('Shape of X_train:', X_train.shape) print('Shape of y_train:', y_train.shape) print('Shape of X_test:', X_test.shape) print('Shape of y_test:', y_test.shape) num_classes = 10 input_shape = (28, 28, 1) # приведение значений к диапазону [0,1] X_train = X_train.astype('float32') / 255.0 X_test = X_test.astype('float32') / 255.0 # добавление размерности каналов X_train = np.expand_dims(X_train, -1) X_test = np.expand_dims(X_test, -1) # one-hot кодирование меток y_train_cat = keras.utils.to_categorical(y_train, num_classes) y_test_cat = keras.utils.to_categorical(y_test, num_classes) print('Shape of transformed X_train:', X_train.shape) print('Shape of transformed y_train:', y_train_cat.shape) print('Shape of transformed X_test:', X_test.shape) print('Shape of transformed y_test:', y_test_cat.shape) batch_size = 512 epochs = 15 model = Sequential() model.add(layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=input_shape)) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Conv2D(64, kernel_size=(3,3), activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Dropout(0.5)) model.add(layers.Flatten()) model.add(layers.Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() history = model.fit(X_train, y_train_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1) scores = model.evaluate(X_test, y_test_cat, verbose=2) print('Loss on test data:', scores[0]) print('Accuracy on test data:', scores[1]) indices = [0, 1] for n in indices: result = model.predict(X_test[n:n+1]) plt.figure() plt.imshow(X_test[n].reshape(28,28), cmap='gray') plt.title(f"Real: {y_test[n]} Pred: {np.argmax(result)}") plt.axis('off') plt.show() print('NN output vector:', result) print('Real mark:', y_test[n]) print('NN answer:', np.argmax(result)) true_labels = y_test predicted_labels = np.argmax(model.predict(X_test), axis=1) print(classification_report(true_labels, predicted_labels)) conf_matrix = confusion_matrix(true_labels, predicted_labels) display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix) display.plot() plt.show() from PIL import Image img_path = '../5.png' file_data = Image.open(img_path) file_data = file_data.convert('L') # перевод в градации серого test_img = np.array(file_data) plt.imshow(test_img, cmap='gray') plt.axis('off') plt.show() # нормализация и изменение формы test_proc = test_img.astype('float32') / 255.0 test_proc = np.reshape(test_proc, (1, 28, 28, 1)) result = model.predict(test_proc) print("NN output vector:", result) print("I think it's", np.argmax(result)) model_lr1_path = '../best_model_2x100.h5' if os.path.exists(model_lr1_path): model_lr1 = load_model(model_lr1_path) model_lr1.summary() # подготовка данных специально для полносвязной модели ЛР1 X_test_lr1 = X_test.reshape((X_test.shape[0], 28*28)) X_test_lr1 = X_test_lr1.astype('float32') / 255.0 # здесь нужно использовать X_test_lr1 ! scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_cat, verbose=2) print('LR1 model - Loss on test data:', scores_lr1[0]) print('LR1 model - Accuracy on test data:', scores_lr1[1]) else: print(f"Файл {model_lr1_path} не найден. Поместите сохранённую модель ЛР1 в рабочую директорию.") # возьмём оригинальные X, y — до всех преобразований для CNN (X_train_full, y_train_full), (X_test_full, y_test_full) = mnist.load_data() # объединим, чтобы сделать то же разбиение, что и в ЛР1 X_all = np.concatenate((X_train_full, X_test_full), axis=0) y_all = np.concatenate((y_train_full, y_test_full), axis=0) from sklearn.model_selection import train_test_split X_train_l1, X_test_l1, y_train_l1, y_test_l1 = train_test_split( X_all, y_all, train_size=60000, test_size=10000, random_state=19 ) # теперь — подготовка данных ЛР1 X_test_lr1 = X_test_l1.reshape((X_test_l1.shape[0], 28*28)).astype('float32') / 255.0 y_test_lr1 = keras.utils.to_categorical(y_test_l1, 10) # оценка модели scores_lr1 = model_lr1.evaluate(X_test_lr1, y_test_lr1, verbose=2) print(scores_lr1) # загрузка сохранённой модели ЛР1 model_lr1_path = '../best_model_2x100.h5' model_lr1 = load_model(model_lr1_path) model_lr1.summary() # подготовка тестового набора для модели ЛР1 X_test_l1 = X_test_l1.reshape((X_test_l1.shape[0], 28 * 28)).astype('float32') / 255.0 y_test_l1_cat = keras.utils.to_categorical(y_test_l1, 10) # оценка модели ЛР1 scores_lr1 = model_lr1.evaluate(X_test_l1, y_test_l1_cat, verbose=2) print('LR1 model - Loss:', scores_lr1[0]) print('LR1 model - Accuracy:', scores_lr1[1]) # оценка сверточной модели ЛР3 scores_conv = model.evaluate(X_test, y_test_cat, verbose=2) print('Conv model - Loss:', scores_conv[0]) print('Conv model - Accuracy:', scores_conv[1]) # вывод числа параметров обеих моделей print('LR1 model parameters:', model_lr1.count_params()) print('Conv model parameters:', model.count_params()) from keras.datasets import cifar10 (X_train_c, y_train_c), (X_test_c, y_test_c) = cifar10.load_data() print('Shapes (original):', X_train_c.shape, y_train_c.shape, X_test_c.shape, y_test_c.shape) class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # вывод 25 изображений plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(X_train_c[i]) plt.xlabel(class_names[y_train_c[i][0]]) plt.show() num_classes = 10 input_shape_cifar = (32, 32, 3) X_train_c = X_train_c.astype('float32') / 255.0 X_test_c = X_test_c.astype('float32') / 255.0 y_train_c_cat = keras.utils.to_categorical(y_train_c, num_classes) y_test_c_cat = keras.utils.to_categorical(y_test_c, num_classes) print('Transformed shapes:', X_train_c.shape, y_train_c_cat.shape, X_test_c.shape, y_test_c_cat.shape) model_cifar = Sequential() model_cifar.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=input_shape_cifar)) model_cifar.add(layers.MaxPooling2D((2,2))) model_cifar.add(layers.Conv2D(64, (3,3), activation='relu')) model_cifar.add(layers.MaxPooling2D((2,2))) model_cifar.add(layers.Conv2D(128, (3,3), activation='relu')) model_cifar.add(layers.MaxPooling2D((2,2))) model_cifar.add(layers.Flatten()) model_cifar.add(layers.Dense(128, activation='relu')) model_cifar.add(layers.Dropout(0.5)) model_cifar.add(layers.Dense(num_classes, activation='softmax')) model_cifar.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model_cifar.summary() batch_size = 512 epochs = 20 history_cifar = model_cifar.fit(X_train_c, y_train_c_cat, batch_size=batch_size, epochs=epochs, validation_split=0.1) scores_cifar = model_cifar.evaluate(X_test_c, y_test_c_cat, verbose=2) print('CIFAR - Loss on test data:', scores_cifar[0]) print('CIFAR - Accuracy on test data:', scores_cifar[1]) print(classification_report(true_cifar, preds_cifar, target_names=class_names)) conf_matrix_cifar = confusion_matrix(true_cifar, preds_cifar) display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix_cifar, display_labels=class_names) plt.figure(figsize=(10,10)) # figsize задаётся здесь display.plot(cmap='Blues', colorbar=False) # без figsize plt.xticks(rotation=45) plt.show()