From 44d7e6d5deb0299c6a0e4cb1339159024d584e5f Mon Sep 17 00:00:00 2001 From: Elizaveta Ishutina Date: Thu, 13 Nov 2025 04:00:47 +0300 Subject: [PATCH] ipynb added --- LW2/lw2.ipynb | 7634 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 7634 insertions(+) create mode 100644 LW2/lw2.ipynb diff --git a/LW2/lw2.ipynb b/LW2/lw2.ipynb new file mode 100644 index 0000000..fe510e6 --- /dev/null +++ b/LW2/lw2.ipynb @@ -0,0 +1,7634 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "source": [ + "# Подключаем Google Drive\n", + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "\n", + "# Указываем путь, где уже лежат нужные файлы\n", + "import os\n", + "os.chdir('/content/drive/MyDrive/data')\n", + "\n", + "# Проверим, что файлы на месте\n", + "!ls\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tDgEVog3agvp", + "outputId": "f8f2d2da-3669-4228-9f1a-2eb8921f31d0" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n", + "cardio_test.txt letter_test.txt WBC_test.txt\n", + "cardio_train.txt letter_train.txt WBC_train.txt\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Yv7IZ8qqbXhV", + "outputId": "7e9ce504-0533-4912-eb3e-a7687b1ff436" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!find /content/drive/MyDrive -name \"lab02_lib.py\"\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2tQ5JktZbxel", + "outputId": "f231c0ab-9b08-4dc1-e2fc-106dff12f26a" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py\n", + "/content/drive/MyDrive/data/lab02_lib.py\n", + "/content/drive/MyDrive/lab02_lib.py\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2') # <-- подставь свой путь\n", + "\n", + "import numpy as np\n", + "import lab02_lib as lib\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cCHBXku0b08U", + "outputId": "d794211b-9e84-4e54-af71-1f62b6276fe9" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:444: SyntaxWarning: invalid escape sequence '\\X'\n", + " hatch='/', label='Площадь |Xd| за исключением |Xt| (|Xd\\Xt|)')\n", + "/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py:452: SyntaxWarning: invalid escape sequence '\\X'\n", + " facecolor='none', label='Площадь |Xt| за исключением |Xd| (|Xt\\Xd|)')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "k = 5\n", + "data = lib.datagen(k, k, 1000, 2)\n", + "\n", + "print('Исходные данные:')\n", + "print(data)\n", + "print('Размерность данных:', data.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 874 + }, + "id": "5s3W93lhb-36", + "outputId": "4c8b6d1c-660e-47d6-a90b-c4625ab435b9" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo11JREFUeJzt3X+cHVV98PHv7g27AZJNYgRDMBLYkM1uwgIVSkH58byMBozUJDQUhCK87KMWqFBMK2iQnxqqEWi1ICrWp0FKm3aDrwJBAZtailQeIA1mN5sfEBN+Sc0ju2Bkl717nz+mszt3dmbu/Dgz58zM5/165ZXcm/vjzMyZued7zvecaarVajUBAAAAAADaNesuAAAAAAAAsBCkAwAAAABgCIJ0AAAAAAAMQZAOAAAAAIAhCNIBAAAAADAEQToAAAAAAIYgSAcAAAAAwBAE6QAAAAAAGIIgHQAAAAAAQxCkAwBQQBdffLHMnTs31nuvv/56aWpqUlsgAAAQCkE6AAAZampqCvVn06ZNuouae/fee6/cfvvtuosBAEAkTbVaraa7EAAAlMU999xT9/jv/u7v5JFHHpF169bVPf/BD35Q3vWud8X+nrfffltGR0eltbU18ntHRkZkZGREJk+eHPv7TfCRj3xEfv7zn8vu3bt1FwUAgNAm6S4AAABlcuGFF9Y9fvLJJ+WRRx6Z8Lzb/v375aCDDgr9PQcccECs8omITJo0SSZNookAAIAOpLsDAGCYM844QxYtWiRPP/20nHbaaXLQQQfJ5z//eRER+cEPfiBLly6V2bNnS2trq7S3t8tNN90k1Wq17jPcc9J3794tTU1NsnbtWvnWt74l7e3t0traKieeeKI89dRTde/1mpPe1NQkl19+udx///2yaNEiaW1tlYULF8rDDz88ofybNm2SE044QSZPnizt7e1y1113hZ7nvmPHDjnnnHNk1qxZMnnyZHn3u98t5513ngwMDNS97p577pH3vve9cuCBB8o73vEOOe+882Tv3r11+/DBBx+UX/ziF2NTCOLO0QcAIEt0kwMAYKB9+/bJWWedJeedd55ceOGFY6nv3/ve92TKlCly1VVXyZQpU+THP/6xfPGLX5TBwUH56le/2vBz7733XnnjjTfkU5/6lDQ1NclXvvIVWbFihTz//PMNR98ff/xx6enpkUsvvVSmTp0qf/3Xfy3nnHOO7NmzR2bOnCkiIs8++6yceeaZcthhh8kNN9wg1WpVbrzxRjnkkEMalm14eFiWLFkiQ0ND8qd/+qcya9Yseemll+SBBx6Q119/XaZNmyYiIl/60pfk2muvlXPPPVf++I//WP77v/9bvv71r8tpp50mzz77rEyfPl2+8IUvyMDAgLz44oty2223iYjIlClTGpYBAADtagAAQJvLLrus5v45Pv3002siUvvmN7854fX79++f8NynPvWp2kEHHVR76623xp77+Mc/XjviiCPGHr/wwgs1EanNnDmz9v/+3/8be/4HP/hBTURq//Iv/zL23HXXXTehTCJSa2lpqe3cuXPsuf/6r/+qiUjt61//+thzZ599du2ggw6qvfTSS2PP7dixozZp0qQJn+n27LPP1kSktn79et/X7N69u1apVGpf+tKX6p5/7rnnapMmTap7funSpXX7AACAPCDdHQAAA7W2tsoll1wy4fkDDzxw7N9vvPGG/OpXv5JTTz1V9u/fL9u2bWv4uX/4h38oM2bMGHt86qmniojI888/3/C9ixcvlvb29rHH3d3d0tbWNvbearUqjz76qCxbtkxmz5499rp58+bJWWed1fDz7ZHyH/7wh7J//37P1/T09Mjo6Kice+658qtf/Wrsz6xZs+Too4+Wf/3Xf234PQAAmIx0dwAADHT44YdLS0vLhOe3bt0qq1evlh//+McyODhY93/uedte3vOe99Q9tgP2X//615Hfa7/ffu9rr70mv/3tb2XevHkTXuf1nNuRRx4pV111ldx6663y/e9/X0499VT5/d//fbnwwgvHAvgdO3ZIrVaTo48+2vMzkiyYBwCACQjSAQAwkHPE3Pb666/L6aefLm1tbXLjjTdKe3u7TJ48WZ555hn53Oc+J6Ojow0/t1KpeD5fC3FH1iTvDetrX/uaXHzxxfKDH/xAfvSjH8lnPvMZWbNmjTz55JPy7ne/W0ZHR6WpqUk2btzoWR7mnQMA8o4gHQCAnNi0aZPs27dPenp65LTTTht7/oUXXtBYqnGHHnqoTJ48WXbu3Dnh/7ye83PMMcfIMcccI6tXr5YnnnhC3ve+98k3v/lNufnmm6W9vV1qtZoceeSRMn/+/MDPCbOaPAAApmFOOgAAOWGPHDtHroeHh+WOO+7QVaQ6lUpFFi9eLPfff7+8/PLLY8/v3LlTNm7c2PD9g4ODMjIyUvfcMcccI83NzTI0NCQiIitWrJBKpSI33HDDhBH8Wq0m+/btG3t88MEHh5oCAACASRhJBwAgJ0455RSZMWOGfPzjH5fPfOYz0tTUJOvWrVOabp7U9ddfLz/60Y/kfe97n/zJn/yJVKtV+cY3viGLFi2SzZs3B773xz/+sVx++eWycuVKmT9/voyMjMi6deukUqnIOeecIyIi7e3tcvPNN8s111wju3fvlmXLlsnUqVPlhRdekA0bNsgnP/lJWbVqlYiIvPe975V/+Id/kKuuukpOPPFEmTJlipx99tlp7wIAABIhSAcAICdmzpwpDzzwgHz2s5+V1atXy4wZM+TCCy+UD3zgA7JkyRLdxRMRKzDeuHGjrFq1Sq699lqZM2eO3HjjjdLX19dw9fljjz1WlixZIv/yL/8iL730khx00EFy7LHHysaNG+X3fu/3xl539dVXy/z58+W2226TG264QURE5syZIx/60Ifk93//98ded+mll8rmzZvlb//2b+W2226TI444giAdAGC8pppJ3e8AAKCQli1bJlu3bpUdO3boLgoAAEZjTjoAAFDqt7/9bd3jHTt2yEMPPSRnnHGGngIBAJAjjKQDAAClDjvsMLn44ovlqKOOkl/84hdy5513ytDQkDz77LO+9zcHAAAW5qQDAAClzjzzTPn7v/97efXVV6W1tVVOPvlk+fKXv0yADgBACIykAwAAAABgCOakAwAAAABgCIJ0AAAAAAAMUbo56aOjo/Lyyy/L1KlTpampSXdxAAAAAAAFV6vV5I033pDZs2dLc3PwWHnpgvSXX35Z5syZo7sYAAAAAICS2bt3r7z73e8OfE3pgvSpU6eKiLVz2traNJcGAAAAAFB0g4ODMmfOnLF4NEjpgnQ7xb2trY0gHQAAAACQmTBTrlk4DgAAAAAAQxCkAwAAAABgCIJ0AAAAAAAMQZAOAAAAAIAhSrdwXFTValXefvtt3cVAQR1wwAFSqVR0FwMAAACAIQjSfdRqNXn11Vfl9ddf110UFNz06dNl1qxZoVZ6BAAAAFBsBOk+7AD90EMPlYMOOogACsrVajXZv3+/vPbaayIicthhh2kuEQAAAADdCNI9VKvVsQB95syZuouDAjvwwANFROS1116TQw89lNR3AAAAoORYOM6DPQf9oIMO0lwSlIFdz1j7AAAAAABBegBS3JEF6hkAAAAAG0E6AAAAAACGIEgHAAAAAMAQBOlQ7uKLL5a5c+fGeu/1119P+jcAAACA0iJIL5GmpqZQfzZt2qS7qLl37733yu233667GAAAAABypqlWq9V0FyJLg4ODMm3aNBkYGJC2tjbP17z11lvywgsvyJFHHimTJ0/OuITpueeee+oe/93f/Z088sgjsm7durrnP/jBD8q73vWu2N/z9ttvy+joqLS2tkZ+78jIiIyMjOR+v3/kIx+Rn//857J79+6Gry1qfQMAAABgCROH2rhPeolceOGFdY+ffPJJeeSRRyY877Z///5It6M74IADYpVPRGTSpEkyaRLVEgAAAEA5ke6OOmeccYYsWrRInn76aTnttNPkoIMOks9//vMiIvKDH/xAli5dKrNnz5bW1lZpb2+Xm266SarVat1nuOek7969W5qammTt2rXyrW99S9rb26W1tVVOPPFEeeqpp+re6zUnvampSS6//HK5//77ZdGiRdLa2ioLFy6Uhx9+eEL5N23aJCeccIJMnjxZ2tvb5a677go9z33Hjh1yzjnnyKxZs2Ty5Mny7ne/W8477zwZGBioe90999wj733ve+XAAw+Ud7zjHXLeeefJ3r176/bhgw8+KL/4xS/GphDEnaMPAAAAoFwYssQE+/btk7POOkvOO+88ufDCC8dS37/3ve/JlClT5KqrrpIpU6bIj3/8Y/niF78og4OD8tWvfrXh5957773yxhtvyKc+9SlpamqSr3zlK7JixQp5/vnnG46+P/7449LT0yOXXnqpTJ06Vf76r/9azjnnHNmzZ4/MnDlTRESeffZZOfPMM+Wwww6TG264QarVqtx4441yyCGHNCzb8PCwLFmyRIaGhuRP//RPZdasWfLSSy/JAw88IK+//rpMmzZNRES+9KUvybXXXivnnnuu/PEf/7H893//t3z961+X0047TZ599lmZPn26fOELX5CBgQF58cUX5bbbbhMRkSlTpjQsAwAAAAAQpGtQrYpUKrpL4e/VV1+Vb37zm/KpT32q7vl7771XDjzwwLHHn/70p+XTn/603HHHHXLzzTc3nIO+Z88e2bFjh8yYMUNERDo6OuSjH/2o/PCHP5SPfOQjge/t6+uT3t5eaW9vFxGR//W//pcce+yx8vd///dy+eWXi4jIddddJ5VKRf7jP/5DZs+eLSIi5557rnR2djbc5t7eXnnhhRdk/fr18gd/8Adjz3/xi18c+/cvfvELue666+Tmm28eyy4QEVmxYoUcf/zxcscdd8jnP/95+eAHPyiHH364/PrXv244lQAAAAAAnEh3z1B/v8jChSKTJll/9/frLpG31tZWueSSSyY87wzQ33jjDfnVr34lp556quzfv1+2bdvW8HP/8A//cCxAFxE59dRTRUTk+eefb/jexYsXjwXoIiLd3d3S1tY29t5qtSqPPvqoLFu2bCxAFxGZN2+enHXWWQ0/3x4p/+EPfyj79+/3fE1PT4+Mjo7KueeeK7/61a/G/syaNUuOPvpo+dd//deG3wMAAAAAQQjSM7RixXhg3t9vPTbR4YcfLi0tLROe37p1qyxfvlymTZsmbW1tcsghh4yNFLvnbXt5z3veU/fYDth//etfR36v/X77va+99pr89re/lXnz5k14nddzbkceeaRcddVV8p3vfEfe+c53ypIlS+Rv/uZv6rZrx44dUqvV5Oijj5ZDDjmk7k9fX5+89tprDb8HAAAAAIKQ7p6RalWkt3fiYxNT350j5rbXX39dTj/9dGlra5Mbb7xR2tvbZfLkyfLMM8/I5z73ORkdHW34uRWfDQ1zF8Ak7w3ra1/7mlx88cXygx/8QH70ox/JZz7zGVmzZo08+eST8u53v1tGR0elqalJNm7c6Fke5p0DAAAASIogPSOVikhXlzWCbgfmHR3mBeh+Nm3aJPv27ZOenh457bTTxp5/4YUXNJZq3KGHHiqTJ0+WnTt3Tvg/r+f8HHPMMXLMMcfI6tWr5YknnpD3ve998s1vflNuvvlmaW9vl1qtJkceeaTMnz8/8HPCrCYPAIDNxE57AIAepLtnqKfHCsxFrL97evSWJwp75Ng5cj08PCx33HGHriLVqVQqsnjxYrn//vvl5ZdfHnt+586dsnHjxobvHxwclJGRkbrnjjnmGGlubpahoSERsRaIq1QqcsMNN0wYwa/VarJv376xxwcffHCoKQAAgHLLy3o1AIDsMJKeoY4Oka1b89lbfsopp8iMGTPk4x//uHzmM5+RpqYmWbdundJ086Suv/56+dGPfiTve9/75E/+5E+kWq3KN77xDVm0aJFs3rw58L0//vGP5fLLL5eVK1fK/PnzZWRkRNatWyeVSkXOOeccERFpb2+Xm2++Wa655hrZvXu3LFu2TKZOnSovvPCCbNiwQT75yU/KqlWrRETkve99r/zDP/yDXHXVVXLiiSfKlClT5Oyzz057FwCe8njNAcrCa72arVv1lgkAoBdBugZ5bCzPnDlTHnjgAfnsZz8rq1evlhkzZsiFF14oH/jAB2TJkiW6iyciVmC8ceNGWbVqlVx77bUyZ84cufHGG6Wvr6/h6vPHHnusLFmyRP7lX/5FXnrpJTnooIPk2GOPlY0bN8rv/d7vjb3u6quvlvnz58ttt90mN9xwg4iIzJkzRz70oQ/J7//+74+97tJLL5XNmzfL3/7t38ptt90mRxxxBEE6Mmc3+Ht7rek2zmweAPrlab0aAEB2mmomDYVmYHBwUKZNmyYDAwPS1tbm+Zq33npLXnjhBTnyyCNl8uTJGZcQqi1btky2bt0qO3bs0F0UT9Q3pMVOnXWug8EIHWAWzlMAKIcwcaiNOekolN/+9rd1j3fs2CEPPfSQnHHGGXoKBGjiHJHzegzADHlerwYAkA7S3VEoRx11lFx88cVy1FFHyS9+8Qu58847paWlRf7iL/5Cd9GATOX9jhJAWeR5vRoAQDoI0lEoZ555pvz93/+9vPrqq9La2ionn3yyfPnLX5ajjz5ad9GAzPX0jM9JZ4QOMBsBOgDARpCOQvnbv/1b3UUAjMEIHQAAQP4wJx0ACo4AHQAAID8I0gEAAAAAMARBeoCS3Z0OmlDPUFSsJA8AABAdQbqHAw44QERE9u/fr7kkKAO7ntn1Dsi7/n7r3s+TJo3fAxoA3OjIAwBvLBznoVKpyPTp0+W1114TEZGDDjpImpqaNJcKRVOr1WT//v3y2muvyfTp06XCxGEUxIoV44F5f7/1eOtWvWUCYA77utDba90q0nmveACASFOtZLm2g4ODMm3aNBkYGJC2tjbf19VqNXn11Vfl9ddfz65wKKXp06fLrFmz6AhCIVSr1gi628gIC9gBsNgZNvadJ+w7UQBAkYWNQ0UYSffV1NQkhx12mBx66KHy9ttv6y4OCuqAAw5gBB2FUqlYI2PuBjjVHICIdV3o7Z34mFtFAsA4gvQGKpUKQRSQAhpkxdXTM57K2tFhPQYAETryACAMFo4DkCkWFSs+O3V1ZMT6m7mmAJycc9DpyAOAiZiTDiBTzEUEAIiQUQWgXKLEoYykA8iMc+6h12MAQHkQoAOAN4J0AJmx5yLaDTP3YwAAAKDsCNIBZIq5iAAAAIA/VncHkCl7DjpzEQEAAICJGEkHoAUBOgAAADARQToAYAyL+AEAAOhFkA4A4P71AAAAhiBIBwDIihXjgXl/v/UYAAAA2SNIB4CS4/71AAAA5iBIB4CS4/716aCTQy32JwCgLAjSARQSDfpouH+9OszvV4v9CQAoG4J0AIVCgz4e+/71IyPW33bAjuiY368W+xMAUDZNtVqtprsQWRocHJRp06bJwMCAtLW16S4OAMXswLxatdK17eATyEK1anUQuY2MMH0gDvYnAKAoosShjKQDKAwWQINuzO+Px+8cZX8CAMqIIB1AYdCghwmY3x9emOkp7E8AQNmQ7g6gUOw5q729VoDubOADWbKnXMBflOkp7E8AQJ5FiUM9ZnoBQH7ZjXwa9NCN+hfMno7ifux37rI/AQBlQbo7gEIqa4Oe+ffIC6anAADgjSAdAAqAW88hj5hvDgDARMxJB4AC4NZzyDOmpwAAio5bsAFAiXDrOeQdAToAAOMI0gEg55jbCwAAUBwE6QBQAMztBQAAKAZuwQYABcCt5wAAAIqBkXQAKBACdAAAgHwjSAcAAAAAwBAE6QAAAAAAGIIgHQAAAAAAQxCkAwAAAABgCIJ0AAAAAAAMQZAOAAAAAIAhCNIBAAAAADAEQToA5FS1qrsEAAAAUI0gHQBypr9fZOFCkUmTrL/7+3WXCAAAAKoQpANAzqxYMR6Y9/dbjwEAAFAMBOkAkCPVqkhv73iqu/sxAAAA8o0gHQBypFIR6eqy/vZ6DAAAgHwjSAeAnOnpEenosP7d0WE9BgAAQDFM0l0AAEA0HR0iW7daKe6MoAMAABQLI+kAkFME6PnGOgIAAMALQToAABniFnoAACAIQToAABniFnoAACAIQToAABnhFnrIGnULAPKHIB0AgIxwCz11CD6DMa0CAPKLIB0AgAxxC71kCD7DYVoFAORXU61Wq+kuRJYGBwdl2rRpMjAwIG1tbbqLAwAoKW6hF48dmNv7z74lIcZVq1YnhtvICHUOAHSJEodqHUm//vrrpampqe7PggULfF//7W9/W0499VSZMWOGzJgxQxYvXiw/+9nPMiwxAABqECxFx5z+cLymVXR2UucAIC+0p7svXLhQXnnllbE/jz/+uO9rN23aJOeff77867/+q/z0pz+VOXPmyIc+9CF56aWXMiwxAADQgTn94TmnVVQqIn19TA8AgLzQHqRPmjRJZs2aNfbnne98p+9rv//978ull14qxx13nCxYsEC+853vyOjoqDz22GMZlhgAAOjCnP5w7GkAnZ3jmQZpzE0niwEA1NMepO/YsUNmz54tRx11lFxwwQWyZ8+e0O/dv3+/vP322/KOd7zD9zVDQ0MyODhY9wcAAOSTHXyOjFh/2wE7JqpWrRH0NKYHsIAfAKRHa5B+0kknyfe+9z15+OGH5c4775QXXnhBTj31VHnjjTdCvf9zn/uczJ49WxYvXuz7mjVr1si0adPG/syZM0dV8QEAgCakuDfmNR2gpUVk587kn83q8QCQHqNWd3/99dfliCOOkFtvvVU+8YlPBL72lltuka985SuyadMm6e7u9n3d0NCQDA0NjT0eHByUOXPmsLo7AAAovP5+ke5ukeFh63Fzs8iCBclWxGf1eACILsrq7h6XWH2mT58u8+fPl50NunjXrl0rt9xyizz66KOBAbqISGtrq7S2tqosJgAAqeL2bFBl3rzxAF1EZHR0POU9bh2zR+jdt8KjzgKAGtrnpDu9+eabsmvXLjnssMN8X/OVr3xFbrrpJnn44YflhBNOyLB0AACki3m+UC2tFfFZwA8A0qM1SF+1apX827/9m+zevVueeOIJWb58uVQqFTn//PNFROSiiy6Sa665Zuz1f/mXfynXXnutfPe735W5c+fKq6++Kq+++qq8+eabujYBAABlmOeLNKQRULOAHwCkR2u6+4svvijnn3++7Nu3Tw455BB5//vfL08++aQccsghIiKyZ88eaW4e70e48847ZXh4WP7gD/6g7nOuu+46uf7667MsOgAUBqnV2Qna1/bK2+7HHB8kZQfUadQl6iYAqGfUwnFZiDJhHwCKzB6p7e210l+do21QK+y+tlPcnfN8kyzwBQAAzBAlDjVqTjoAIDukVmcn7L5mni8AAGAkHQBKiFsoZSfOvibFHQCAYmEkHQAQKK0VnzFRnH3NcQAAoLwI0gGgpEitzg77GklVq7pLAADIitbV3QEA+qS54jPqsa8RFws8AkD5MJIOACVH0Jgd9jWiYoFHACgfgnQAQCKk4QLpqFatEXT7HHM/BgAUE0E6ACCW/n7rvt6TJo3f39sUBDEoAhZ4BIqP3yt4IUgHgBj4UTUzDdfkjgMgDhYdBIqJ3ysE4T7pABABizhZTL3Put3QsRdosxdsA/KORQeBYuH3qny4TzoApMTE0WMdTEzDZf4uiszv3KJ+A/nD7xUaIUgHgJD4Ua2nKg1X1f4zseMgqazrVlnrch6RKgvkVxF/r6AWQTpyiYYkdOBHtZ6dmjcyYv0dNe0/apAR5rwvyvzdrAMwAr78IasHyLei/F4hHcxJR64wHxi6UQfVCTsfL84+z/v83aznKjI3Ml9MXRMCQHR5/71CeFHiUIJ05AoNSZiCH9VkogQZZTvvsw7ACPjyqWznBQDkHQvHoZCYDwyTELwkE3bqQBnP+6ynVTCNI59IlQWA4iJIR27QkASKJUyQUdbzPusAjIAvf5KuCeFW5I4vAMgbgnTkCg1JoDjCBhllPO9VB2CmfR/USdphxaKBAGAe5qQjl5gPDJQP5z2iUl1nilgH3XPb58+3ppQAANRiTjoKr2iNJACNpX3ek+5bHKpHh4s62uy15kNfnzWlpCjbCAB5RJAOACitajXdAIzAXw/V9xAv6j3J/dZ42L69ONsIAHlEkA4AKDx3sOwMzLu71QdgRR15zQPVdwQo+h0GenqsFHenom0jAOQNQToAoLD8gmXnyOjwsPoAzKSR17IFWqrvCGDyHQZUHNuODqvOd3aauY0AUEYE6QCAwvIKloMCcRXBiSkjr2UezVd9RwDT7jCQxrHdsMGsbQSAMmN1dwBAIVWrVhDjNjIynuJerYo0N1uvGx62AnRnQBaXe8Vs+xZnWTKhDLoVdXX3NI+tKdsIAEXD6u4AgNILSlN2BuILFohs2aL2HuG6R15NGc3XTXWwGfbz0tzPaR9bAnQA0I8gHQBQWH7Bsj3y6AzMVQYnXp+fJZPnURdZFlMMOLZmKVvHF4BsEKQDAAqrUbCcdmCjM3DSPZpfRioWDAwT9HFs9Svzmg8A0secdAAACizOHGPmJUcXtAZCmH1pB/W9veHXRuA46cOaDwCiYk46AMAopITqEyWIY3QwvqRp6HFG4QnQ9WDNBwBpI0gHAKSGoC9fTLq/ex7FTUM3OegzoQymYV0AAGkjSAcApIagLz9MDhTzIu6CgSYGfXSwBWNdAABpIkgHAKSCoC9bSferiYFiXsXZZ6YFfXSwBdN9BwcAxUaQDgBIBUFfNlSOeJoWKJaJSUEfHWzhcT0DkAaCdEAzGj2wFbEuuIO+9ev1lqeIVI54mhQolpUJQR8dbACgF0E6oAnz/WArcl2wgz771kQLFxZvG3VKa8STYAxkVQCAPtwnHdAk7/dY5f686uS9LoRRhm3UhX2LNHGtBwA1uE86YLg8z/cr8qivDnmuC2GVYRt1YsQTaSJAB4DsEaQDGuR5vt+KFSLbtln/ZsXf5EyqC2kFzY22kWA9mSznkXOsAABIH0E6oEkeR796e60/o6PWY0ZE1dBdF7LIjvDaRrIy1EqzY4djBQBAdpiTDmiWp/l+CxdaQblTVxfzX1XRVReynNPs3MZG35unc6PomPcOANniN7B4mJMO5EheLsD2qLkbt9TyFie7QFeKe5bzxZ0p7n7fy6itWVhToFzbCkAvfgMhQpAOICS/ecVdXXrLZZqoP666G/+65sQHfa/K+34jOZPWTcgajWV40X3dRrHxGwgRgnQAEeieO50HYX9cTWr86zquXt/LqK16KvZdWc99GstqFOX8Nem6jWLiNxA25qQDiKwI86TS2IZq1Wq8uY2MTPwuE+f46jqu7u81cd/kkR1U9vZaI9/OQDuuIpz7YUU5n+GtaHWwqNemMp3XeVDUegbmpANIWZ5/zNMcCQmbFmxqT7mu4+r+3rRHbXXv56wsX65+FDjP535UZU7zV0VlJoLuUWxTr9tJ6N6n8FbWzCXUI0gHUCppp6+G+XGl8R8srft+l6VB2t9v1ae+vmIFFDqY3lg25Xh6lUN1UKt76kERr9u69ym8pfUbiHwhSAdQGlmMhIT9cTW98W8C1Y3fsjRIV6wQ2b69/rkiBBQ6xG0spx08m9LhFFQOlUGtKaPYRbpuZ7lPTelMyhuu1+VGkA6gNLIcCWn0mfSUZ8uURn7a/LZr/vx8BxRuWR+3sNeILILnatWcDqdG5VAV1Joyil2k63YW+9SUziQgjwjSAZSKaSMh9JRnw5RGftq8trOz0wrc8xxQ2NJo9KsM+NMMnp3bbkKHU5iOL5VBrUnX7qJcN9Lep6Z0JgF5xOruAEqJ1WzLJ42Vpk0UdTvzdC6oXPVYdX1IezV457Y76Vz9Oa1VqIPqZJ7qa17ovtsJUBas7g4ADdBIKJ8ipaoGCbudeUtFNX0hsjSzNYK2VeeosuqR2DB1kmu3emlN+SpD9hKQFoJ0ADBA0eZGm6wsjcRG25m3VNQ8LESWVvqw37brXtBOdcdX3uokgpk0RQHIG4J0ANAob6OZCE/HHOEorzVhXnNUpi9Elma2hte2m7KgXRrZAnmpk/BXluwlIA0E6QCgESNHxZN1x0uc78trKmrSRr8z4EtzlC+N/Zhk2/NwnclrnURjWR5DOnVQFATpAKAJI0fFlHVAFPf78pyKGrXR79WRkddRPve2N7pe5Ok6k+c6aTNxv5YBWWkoGoJ0ANCEkaPiyTogSvJ9eQ1S4wjqyMjr+RY2KMnTdUZ3nUxynhIk6pWHbBEgCoJ0ANCoCCNHGJd1QJSnAEyXPI0kRxElKMniOqNyf2Zdf1UE2ASJ+hT1HEe5EaQDgEa6R45MlcfGlV3mrDte4n6fisAkD8epiB0ZUYOSNK8zRRhBThpgEyTqVcRzHCBIBwAD0Jiw9PYGN/hNbPS6gxSRbDte4gZgSQKTvAVmaXecZF0v4wYlaVxn8j6CrCLAJkjUj6w0FA1BOgBAOzvoW7jQaiDbz9kNfpODQr8gJesGepjv8wtEogYmeQvM7I6MoSG1HSc666UJQUncemRSZ5uqANuE41FmZKWhaAjSAQDarVghsm1b/XPOBr+pQaFJaa5B3+kOJnfujB+YpLXNae4ze/tbW9UG0zrrpQlBSdQA19TONhUBtgnHA2QvoDgI0gEAWtlB3uho/fN2g1/EnEDYzYQ01zCBj1cwGTcwUb3NWQRuaQTTOjtonN+hOyiJUo9M7WxTGWDrPh4AioEgHQCglV+QZzf4TQiEg/T0iMyfb/076zTXMFkGfsHkvHnxAxOVqb1pB25pBdM66qWJI9FhA1yTsk78mHJNAdJk0jkHfwTpAADtnEFfV5fV2Hc2+E2d72kHlX19Ip2d9eVM+3vtYK1R4NMomIwTmKgaecwicEszmI5SL1Vsk6kj0SLhFq0zubMNKDoTO/ngr6lWq9V0FyJLg4ODMm3aNBkYGJC2tjbdxQEAT9VqORuvjbbbtP1iN3TsctnBa5bf6+RXBjug6+21AqO0OhPiHB+V+9Dv+9Pe/qDtVvXd1arVuHYbGTHrnAiSVT0EMJGu3yuMixKHMpIOAAYpe093nFtI6Urd05W+G/Q9fqO5QSPfzvLHlaTeqsiSaPT9aS/qFVRvVY1+F2EkmsXVAD3yMN0E9QjSAcAgJqezmkZ3h4auoMnve8MEPs6yOfdfa2uy/Zik3qoI3MJ+f5JjE6cxq7phbOq0j6jy1LGQFwRbCFKETr6yIUgHAEPQ0x2NCR0aKoKmOMfX63ujNrac+2942Po7zn4MW28bbWfcxmLa502SziDVDWNGouGmu7OyyIr221uUTr6yIEgHUFh5+4Glpzu8rDs0/D43SdCUpHGdNFgLCqSj7sdG9TbtICLt8yZpZ1AaDWOuCbCZ0FlZNEXt+KCTL18I0gEUTp5/YOnpDierDo2wdSnO96poXMfdXr/9FXc/BtXbONsZtbMlrfNGRWcQDWOkheyrdBS944NOvnxgdXcAhVOEFUxNW8XcRFmsFJ1WXTJhpW7n/mtpsVLek+5Hd72Nup1Jj2ka500RricoLuqnWiZcm1FcrO4OoLSKMrKgujGQt+0PI+0RSpV1yetWaTqnNlSr9ftvaEjNfmw0Mt9oO5cvTzaClcb+I7sFJqN+qqX72gzYCNIBFEZ/v0h3d/1zZf+B1ZX6n2WnQFrHVkVjLWj/62hce5XHuX1pCLOd/f3Wvu3rM6+DjXR1mCxu/dR9XpmMjg+YgHR3AIXhTPuzpZUGnRdZp0JmkYKepaTbE2b/Zzm1QWdqbNB2ep27aZSvaNNIirY9SF/RrtFp4vyCalHiUIJ0AIXAPLKJdOyTos6PjNNYM61OmlYem1+5OjtFNmxQE0BEDUxMb5wTaCGuol6jgTxgTjoAEUk/nc2kdDnmkU2U9T4pynoAXuLsM9PqpGnlCSpXZ6dVd1QFnmFXa05jekga9b/oq08jHUW+RgNFQ5AOFFDa85BNvcWZ6fPIdDSEstwnpgaBOoXZ/1nWC1PPEXe5NmxQ99lRAhOVwW9a10kTA60svptAMjmu0UB+EKQDBZT2KIupozimLvCks1Mj631iahCoi3P/b9lSv/911AtTz5E0yxU2MFEd/KZ1nYyyPWmqVrOpw6Z2CucV12ggH5iTDhRM2vNOTZ3XarIyzgE0fU5vlvzmD6d5D3b2fb2wc7hVHZO0r5MPPmhtz/CwdY/7++8XOess6//Snq/u/PyWFmubRkfTu7aFPSbU+2jYX0D2mJMOlFja6Wyky0VjYmpqFqgP47xGVNOoF4w4+gs7Uq9qlDGt66R9jD/yEStAF7HqzKpV46/JMpNqeNgK0O1yqL62hTlPqPfxcI0GzEaQDhRQ2ulspMuFV8ROjaJ3MKjkF2SIqK8Xpk5DMUmj/asy7T6N6+SKFSLbttU/56xjaXcKBn2esw6r+r4w10/qPYAiIkgHCijteaemzms1VVE6NRixii4oyFBZL8qasZEWFZ1oqq+T9jG1R65t7jqWdSZVS4v1744OkbVr1V8jgs4T6j2AoiJIBwos7dHaPI8GZ6konRqmjFjlrQHuF2SorBdFzNgoirQCZJs7OB4aEpk7d/z/0s6k2rJlvA6vWqX+GhF0nlDvARSV1iD9+uuvl6ampro/CxYs8H391q1b5ZxzzpG5c+dKU1OT3H777dkVFrmRtwY8yiPPDUcTRqzyOpLfKBhXVS/cwdP69Wo+F8mpOk+cx7iry6pP7uB4926R1tZsM6nsFPc0rxF+50kRMpVotwBw0z6SvnDhQnnllVfG/jz++OO+r92/f78cddRRcsstt8isWbMyLCXyIK8NeCAPTBixMmUkP66095UdPNkrXy9cmPxaSPCQjOrfJXeA3NUVvO5Bmtz1Wdc1Is+ZSrRbAPjRHqRPmjRJZs2aNfbnne98p+9rTzzxRPnqV78q5513nrS2tmZYSuRB3hvwgOl0jliZMJKfFytXJr8Wmhw85OmYp3mvdOe/dXeg2XReI/KYqaSr3ZKncwgoK+1B+o4dO2T27Nly1FFHyQUXXCB79uxR+vlDQ0MyODhY9wfFQwMesKRZ53WOWJkUiJgs6rXQ73kTOz1N7jjwktXvUrVqTsp3nke1s6aj3ZK3cwgoM61B+kknnSTf+9735OGHH5Y777xTXnjhBTn11FPljTfeUPYda9askWnTpo39mTNnjrLPhjlowKPssmx86TqvTAlETBb2WhhUX0zt9DSx4yBI2r9LzmO4YoV1PpgSHPPb25iOdkveziGgzJpqtVpNdyFsr7/+uhxxxBFy6623yic+8YnA186dO1euvPJKufLKKwNfNzQ0JENDQ2OPBwcHZc6cOTIwMCBtbW0qig1D2D84vb3WD52zQQ/oUK1m11i1Ay37O+0RrSLKcr+mJe42hHlfmGtho/piWn2qVq1g1G1kxOy6kObvkmnHCNFl2W7J6zkEFMng4KBMmzYtVByqPd3dafr06TJ//nzZuXOnss9sbW2Vtra2uj8oJtLs9NE9wmaarFMKTR35TEueG5Rx60aU9zW6FoapL6ZlLeQ1Wyqt36WynfNFlWW7xe+c6e4m7R0wkVFB+ptvvim7du2Sww47THdRkGOmN9qKhPlt3rJOKcxrAFNGjeqGyjnifsc/TH0xsdNTR8dB2rcPS/J5nPPFkdVx8xqpz0PaO51PKCOtQfqqVavk3/7t32T37t3yxBNPyPLly6VSqcj5558vIiIXXXSRXHPNNWOvHx4els2bN8vmzZtleHhYXnrpJdm8ebPSkXcA4TG/bSJdI1ymjXxioqC60d9vBVlZzREPW19MCvqy7DgwvQOyt1dkaGi8DsydyzmPxjo6RLZsqX/O5CwM089DIE1a56Sfd9558pOf/ET27dsnhxxyiLz//e+XL33pS9Le3i4iImeccYbMnTtXvve974mIyO7du+XII4+c8Dmnn366bNq0KdR3RpkLAMAf89v86ZwrWoT52kXmVTd6eqyU0+Fh6zVZzhHXUV/yUEdNne/tnMNsa24WWbDAjPKploe6Yooo+8rU+u2Wl3ICYUWJQ41aOC4LeQvS+YGCyfgB9aZ6MSDV1wGuK/p41Y3ly0X6+ia+1tnhVYSFMaNug656GtQBKaL33HFec92K1EFahPqelTj7Kg/7l4EAFFFuF47DOFJ8kAekWHtTlZar+jrAdcWiM63TXTfmzfMO0FtaRJwzuUycIx5V2Okxuuup13zv9nYr20HnueOXltzcXLz56EylCi/OvsrD9YR1F1B2jKQbihFK5Il7xCsPI7V5KKPq64Du64rufW7q6NHChSLbtomMjo4/V7QU5rCjYtXq+GrT7nqaZf1x15WhIZHdu/X/JnuNpJtUl1VgBDW8ou8rU6/ZQFyMpOcct1ZB3jhTck0fqc1DGUXUXwd0XlfsBpbufW7q6JxXw3N0tFjX/UajYs7z0queZl1/nCONW7aI7Nplxm+ys650dVllNHUkNC5GUMMr+r7Kw4g/kBaCdAMV/aKL4jI1CHLKQxlF1F8HdFxX+vutdO6FC8dTurdt07PPTe787OiwytLZWezrftD0GOd56VSpWKn/27dbj5Oes1GPd6WSzrkTt965g5aurvhlMBlTqcIrw74q0nUQCIsg3VBluOjCLEmDFZODIJtJZQzznaqvA36fl9b2r1hhjUA66RohzkPn54YNxb7u+42KBZ2H8+dbq94nPWeTZtCoOhdVZfKYVG/TkOYIqkm/SSow2gy3otXxsiJINxQXXWRFZaPR9CDIhDJG2d9e14EkP77uzxNJL/XfDqa8OEeMs5RW56eqBlHervtxt9t97P3Oy5GR8VT3pOds0gwaVccmL5k8YaUdDKi8TuRlqlNcJv3WQo+i1/GyIUg3HBddpE1lozEPGSC6yxhnf1cqan987etKmgGDHUy5tbRYI8Y6qA6C02oQ+V33TRkdSWO73efl+vXj+yHpOasygyZpirspmTxJ+dUBk7elaB0kgBt1vFhY3R0osbRWhtW9incYKssY9rOS7G/VK7NnsSpwf7/I0qXjKe/t7SIPPmj+CHFYSY5JlPpn2grHad4loLdXZOVK721Ncs6mUeY45dF9hwVV3Nsxd65Ia6s5ddSt6KugA9TxfGB1dwChpJX+nYcfBBVljDqiGHd/pzECZy/I5dTSovbYdXRY9/oeGbH+7NxpVsM9ibjHJM4otEmjI2mPBq9c6b+tSeqmygyaJJkEujN5VPCqA7t2mVNHvZgw1QlIU97quMlZN6YgSAdKrgiNRl3iBE9x9ndaq0sPD9c/51ygSyV7hWyTJN3OuMckap0xLUU6zYZgmtuqcqpDnGOYRjmSSNrB5zzmzc31n6m7jvrhtw5Fl4c6zrz58AjSgZIzpdGYN3EDiij72/lZXnN2k8hbr7sq/f3q7rkdtUEUp86YeJzSaghGze7Iek65/Z1hj2FQY1TX8VPVQHbWgQULrKksJtVRL/zWoejyUMdNygwzHUE6ABExr0FluqTBU9DrvBrS9o+vc1X2rIPMvOvvF+nuHr9ne9IGQtQGUZw6U62ad5zSagiGze7QORLjd8y6uyeWw8TGqKoyueuAc60JE+poEH7rUHSm1nHTMsNMx8JxABBTWgt6BS0uZcoCWHnh3LaurvEA3SnLhXXC1hmv182bV9zjZAtTv3UvvuY8NjZ3OUxcxCmLMhX5WgIgOd3Xb92ixKEE6QCQkOqV4v0a0iLmNfxN5Q5y16+3GgdunZ3+93P343e8o9SDRq8tWkMm7L5p1IlhSvAbphwmHkMTy2QiOhuAdJh2t5Kssbo7AGRIZWMuKCXaxPnJYXmls6WZ4uZO61250tpXzY5fvaj3bPdLs46Tft0oxb0oKYFR902jVHpTzoEw5TBtmoKImWUyCYtaAenKw7x5UxCkA4BhghrSeWtkezV6VTWE/YJWvyB3/XprkSsRawR9y5ZoDQS/+byq5x6bEIiq6hCIu2+CttWUc6BROUxrjOaxkydrJq4jABRRHgYXdCPdHQA0i5M+nZd0TK/0WpFkKbdh0uWC0nrj7Du/9OahIZHW1onPJ02/1pUSqPJ7005NN+UcMKUcfpzHtKXFKi/p7hOZMpUCQHGR7g4AOdBoRDmoYZiHRqPfiLbXc+5VvYOEGe0KGuWMs+927px4ezARkeOPT+f2U7pGYVWOJKadEWDKOWBKOfw4j6lztfw8T6NIgwkZLABgI0gHAE1MS61U3Vj3u++1s+Hb3Gw919oaLvU97Hxt1UHuihX+98K2v8/+W2X6ddYp7qrnwrs7S9avT17OLOQlcG1UzqBjSBA6kSlTKXTKS90Hio4gHQA0MGlxsLQWS/K77/X69eMN4UmTxrc5TEdF1NEuVWnVfsemWhXZtcua327K3OO40hhJ7Oiw9o3zFoJedSxKvU/zHAl7LugOZMKW030M7U4xkfIGoXmURX3LYtE83ecNkCcE6QCggUmplWmN6PttY1eXFbQNDcVLv816tCvo2LhX3887lfvW2eg//niRbdvGn7frWJTAIE4QETUoaHQumLL6t7Oc27YFn7POY7pggdoOJdVBl+4gzrTspizrW5rbbsp5A+QJC8cBgCYm3C807cWSGm1jkvs2uxfsSnMBL+d2tLeL1Goizz9f3Pu8qtiXzmPrZWREpLs7/PGPUlfinFt5ufe5Xzm3brW2Neh9qs4P1deuMlwL48iqvqW97SacN4AJosShBOkAoJnu1aGzaED5baOKxnmWDfzeXuue67291m3cNmwoXoCugl+jX2S8jm3ZEj4wiBpExK3Tje4KYEoQt3ChVQed7AyVqOJ0dqm+ZpgSxJlSDpHs61ta227SeQPoxuruAJAjjRoqaaeAZpE+7reNKhZ4yzJFdeXK8e/avl1/OqzJ3FMd3HOho0z5iPLaJOs9NLorgClTVLwW4Iu6poU7BXnjxvDz8VWup2HS+hwmLRyXdX1La9tNOm+APCFIBwBDZTWPT0Wg7GxgxxG3wZZlA9+kYMJUvb3jdXZoSGTuXOt5e+TcXceiBAZhX+u1WFrYoKDRuWBKEGev7ZAk8HF3bi1bFq6zS3XQZVIQp+vWh36yrG9pbrsp5w2QJ6S7A4Ch3OmH8+dPTHHVzZlq3tJiLQQXZQ5w3uY7mpQOaxJnPbA509rDZIuErQthXtvfL7J0qbXyvoi1jsCDD6oLPLKeouL1ff39IsuXi/T1RZ/mETQdwckvJdk57aMoc9JNpntKlCpF2Q4gLtLdASDnvEZt7ca4SSvjOkfj7NutNUo5V50hkOUoDSNC3pz1wGbX4TCiNNzDjoi3to6/dvdutVMTsgo0/M4V+xzr67PWRoga1HqNXre0NB7NtjMlFi60Hm/dqmbU1bQR7LjSyqqJUt9MzuwhQAfCYyQdACLKajTAa3Vsk0ZvG43GqV7UK0x5smoEFnVEKM52+dWD5mbrll866mpRFqvyO1dUnEPu0eu1a0VWrfIezQ7KlDDhWqRb2pkAYbNHyEYAzMZIOgCkIOt7vfb0WCnuTibNg/YbbVOxqFec7csy+MpToBdGkrrtd7wXLNCXaWDKPOck56nfuTI8nHxthGp14uj1WWf5j2avWDF+n3u/8pVZWotXRjkvTbvHO4BkCNIBIKSsG0EdHeO3+tIdbPhxjta4V+/20ih4CtMoJShQL2nddtYD+1ZgutOWdU5NUNGhF3SuxO2A8CqXVyebkx2Mj44Gl6+s0lxQMux5yaKW+cDxQBQE6QB88YMyTmcjyHkvbtPmQTtH44aGws0pDQqeghqlWWcylIWKuu0ele3qSqesUaia5+y1HxrtG1Udes5zZe5c6xzzWjk/7DUhTrn8gnHTrkW6pJW1EeW8NCVzBN747UIcBOkAJuAHZSKdjaA8LKrk3C+N+G1Po0Yp6ZzpUFm3TQwK4pbJ6zoYNtNDVYee81xpbbUWwBOx/m5ttZ7fsiXcNUHV/eNNyZQwSRpZG5WKdVcCp/Z2//rMopbm4rcLcbBwHIAJirCwVxpYmCd9fnWvKAuBmYq6PZFXXRQJd20Mcw31ux56Pe9X/zs7o92CLem1Pe/X8LSp3j/z5o3fRlDECtJ37sy2DEiG3y44sXAcgNjSSOsuysh8Hka04zJlaoPfaBDpnOkqct2Ow+86GPbaGDSqGXRbNb/rpN8t07ZvH39vmNG5pKOtnG/BVO6farU+QBexHje6VnOMzMJvF+IiSAdQJ40flLipXqYEjm66flzT2B+mdaAEBYtZpXOaWu+yoLvhaMq+97sOhr02BtVjv+tho+uks/7Pn2+t8h61M7VRZ4wp+x8Ed0XCVATEQZAOYIIwPyiNGnN+jccwjUnTAkfdouyPqI1sU+fKRQ18VMiq3ukMhEwKwpxl8dr3usvqdR2M2tj2Wyk9zm3VnPXfnpYQN4Bzv073NVf3sTYVwV0xkKmEOAjSAUwQ9IPSqDHn/v+dO6M3Jk0NHHUJsz/iNLLzetuetEaS0q53OgMh3UFYo7K49313t/6yel0Hkza2/UZHW1qiXyfjBnBe57dX3c/iOmBSvTQRwV2xFCELwvT2QZEQpAPw5fWD0iiQ8fr/KI3JoJGmMgobSKu4tVLZ0imd+zCLDgudnU8mdXy5y7J8+cR9b5/vfmXNsqHodT4kOUf8roeNrpPugFYkWgDnFxD71f0sAmeT6qXJynJNhrnoUMseq7sDCK3RKqVh/j9MY8O9AnGlYjXay7rqdKMVmZOsHlvGVb39tjmtuxqI6F3h16TVhYNWKd++3T/4tstapPoaZXV3keT1M+j9flMM3K9TuXK4SfUSQLA0fx/LhNXdAaSi0chrmMdhOBvelYrVaBMp70hLoxG2JCPi8+aVL53SOXq3bdt4nUpz/meUYxR1lDjMas+mZEz4lWXDhvF939Ii0tzs/frly4NHXvOUium3//3qRJJMj0bv9+vscK5qr3oUTUW9zNPxBvIqr1Pj8o4gHUAkjQIZFYGO3UM7NGSNoI+OWs+X9YchzLzEqPvda+2AMnDXodHR8SAk7fmfUdOZGwVCUV6vcv5yUl5lce77LVtEFiyo///+fiuA6+vzbigWPRUzaUDb6P3O/e/1upUr00lLj1svi368AZOY1NFbJqS7A4ilUdqjqrRIUqyiiTuloIj7NShtuLe3/rmurmjbn6R+q0pnjnMMw5Y7i7TyKNcQr3Rs5zaXoT5HPSbu/Rv2/e7XrV8/PgfeSUVaetx6VobjDZikSFONdIoShxKkAzAaPwzqqZgLqnJuqmqN6sxzz1mrh7vpnMMf9ZikPZ/XpCAoaB77hg3WlI2izG0Oc141ek2jOhr23PXrJFFZH+J2NBXleAN5Y/Jvfx4wJx1AYXALGvWSpK7lIc3Ub8Vou+zd3da85zjbn9Zq1FGPSZrph6bMP7S/z2tbOzvHpyhkmYqZ1j6Icl412q5GddT9fr9tcr4ujfUa4tYzUm8BfTjPskOQDiAX+GFQK26j2/RbJgU1/J1ld466hd3+tIPXqMckrYXu4gZBqvaDV8Dq3tYNG+rfE2ZfJClfUBCtYrtVnVdR6miUjoE0OkuTBNtpLvIIACYg3R0oABPSj0woA6KLctzykmbqlUK7ZYt32YeGrFH1JJ+tOg086rkU9fXDw423OUpav+opAEH7OM5aGCrK51Wmnh412636vApbR02Y0uB1bObNK8a0GwBwI90dKAkTUo9NKEOQsq0EH1WUBm5e0ky9Rtn8yh4lQPf7bNWi7s+wr9+4UaS1dfzPxo3+r40ycqoyu6LRSHCcxSqTls+vTI1uBxeW6vMqbFaBCVManPXM7vSI8lti2rUHAFRhJB3IMRNGQkwog5c8LjiX5ahQnO+qVq1btaner2ltd9zVreN8dlaSfG9rqzWKbmtpsTIJkpZHdXbFwoXW/etHR8NdU4KOq6ryua9z8+dbt4NL+rlhtiGuRnXFtGu3aeUBANUYSQdSYtKorAkjISaUwY/pc6edssxGiPNdzvesWGEFECrmpqa93e4AReW82jQD9KTzh70MD9cH6H7PRaV6FLi/3+o4GB21Hs+d2zhbIehcV1U+rznxpmeVNCqLSfO6Tf4tAQAdCNKBEExM6TYh9diEMnjJW4Mvyw6FON/l9R77GCfZp7o6UsKubp21oOtMlH3ltT0tLRNT+72ea8Trs1UGeytWiOzebf27UrFG/xvdC7zRua6ifF4dPKq3O+tzQfedM9z3vDfxtwQAdCFIB0IwdVTWhJEQE8rglqcGX5YdCnG+y+89vb3JOq5M6EgxrfPN7zoTdl812p777x8PyltarMdhBX22qmAvTp0Ic66nlUGhc7tVyvq66FeXTPwtAQBdmJMONJCHFa1NWOHWhDI45WlOepZzMeN8l9d7RJKXWfccVN3f79ToOhOmrGG3J8zq7m4q91XQtSLO95h8roe9LppUF9PWaFtN+y2JIs9lB5A+5qQDCuVhVNaEsphQBifdqZxRZDmCFOe73O9Zv17NyJ/OkTPdo5duja4zjfZVlO2JEqBXq+r2ldcIqvsz4tQJE8/1qFkaZRlFDlOXTPstCcO0rBwA+cdIOhCCySM1KI48rO5uvyfOyJ/fd+oafTJt9DLMdUb1KLTf5znL0tlpjb7v3u392XFGi5ubrYBmeNh7W/M+Ihm3buV9u8Mw7bxToYjbJFKO+ghkiZF0QDETR2qiMmVxrKzkcXuzXvQvyXt6eqzbUIlYfweN/DUaZdLVCDRt9DLMdSZoX/ltj/tcqFYbH5MVK6zboIlYtxrbs8daad352WFGxp3f6RwxHR0dX1nea52PPAcGSTIPTNxu1ddSr8wclbK+9puWlaMCmQGAfgTpQASmNaDCNALK9mNbtu11y6JhaAdVfX1W6nRfX/2iZ26mLrxoaudb3OuMe3tE6s+FjRvHH3d3+x8TO8iwb4MmIvL229axdu4r53Hdts36zKCOGL9pQo2CGlOCnbDlyMMUKS/OIFMkvWupXU+ddVTF5+u69uf1eAcx9ZoNlAlBOoxgSiMsL6I0Ror2Y9uorhRte8PKsoHq3MdBo6Ei+RhlynNj2ou9Pe5zYdmy+uPmd0wqFSvF3a2vb/zfUUfGRawRVHs03l1er6AmSp1Oer/3II3K4VWXTcvSCOLcvtbW8e1cujTda+nKlWo/X+e1P0/Hu5E8XLOBMmBOOrRirnc8Yee/5WFl+rDCztcN2t4iz6/Lak6k3z62edWtPMzXLFrdaHScnLyOSX+/NTJuB79er2mU4u5XF7Ztqx+l9zufw9SbjRutzgd7xfr77xc566xw2+3Fqx74lSPpGgK6uMvkdRybm+uPkU3Vb4fq3yZTfutMPN5x5OGaDeQRc9KRG2Ud9UwiSi93kdLwwtQVv+3dubPYKfBZjnxUKiLt7d7P+9Ut00aZnPvFOYrY1VWcuuF1LrS0WMGXiPW3vcq71zHp6BDZsmV8RN3rNevXjx/XlpbG1xmvNHoR63u8gtswddoO0EWsv5ct89sjwfxGy4PKEfaaZAq/NQS89qt9jNL67VD922TKb51JxzsJ067ZQBkRpEMbUqriidoYKcKPbZS64rW9Re8M8gqc29uzbTAG1S1T5n57BSnOutHXVz9XO++c58LcuSLvetd48HXkkVZwHHRMOjqs88z9Gns/LlxoPd66tT7Q9qsLUa5dYV47PDwxzd3ruTD8rhF+5RDJ3++X1zb6HQP7mpLmb4fq3ybdt3QskqBrdtG2FTBWrWQGBgZqIlIbGBjQXRTUarWurlqtUqnVRKy/u7p0lygftm2z9pWI9fe2bY3fMzKSXnnS/Gxb1Lpil2lkxHqP+49fmbPYljS0t9dvX3t7Ot8TdX+axF2HOju9t6WzU3dJ1XBeJ1paarXmZjXX2qBzsVE9iHLtCvPalpb6Y9fSEn17GtVpv3Lk6fcraBvd9cS9nWmf26o/P8trUZzf4rwq07YCaYkShzInHVoxJz0Z3fPfsjx+cb7L3j9h5tfluS4GzccUUV9H8jhf0W8fdXbWL4hmSzKXNa3zMurnxpkzHqYMKub+RtmWoNeqmpMepk67y5G3a0ajbbSf1/27kid5vBbGVaZtBdLCnHTkhilpsHmluyGVZRp5lLriTmteu7ZxGmSeU+K9UnLb24NviZVEHqdQ+KUtb9gwPjdbxJqrHXcuq4oV9r0C6jifG2WtiihUzf2N8vqg1551lsjQ0PifuIvGhanT7nLk7fer0TY6jykaK9OUvSJtax7LjHJiJB1ALKaspuvFr8ffb4TI5G0Jyz2qNzQksnt3tFGPqCNoeRtx8xv57O8XWb7cGlFPMiIaNNLUaF8FjcrGHcFyv69SsUack4765m0EOQrT6nQa5TFtG/Osq0tk+3Y9o8tZH8e8j6QX+bqF/GAkHUDqTFlN1y2ox9+vbKZuSxTOUb0tW0R27Qo/6hF3BFjVrZiy4jfy6bdAWhR+9a6313tFbTe/TI4kI1jukdNGC8V5bZOXtEaQTRjhMuWcV5GVgfTYx6evb7zOZJVVpKtu5DGDyinP2XIoJ4J0ALGZ+KMdN+A2cVuisAMce8Q0yj7Q0XjRGYQEddbEDRT99vnKlePbtm2b9xSERh1LfquL26/14xVMhwlCwx4bVQEtAelEaZyT7Gd1nMenWrXWtshqyoOuYDNv0zucipSuj/IgSAcKxoSRSd3iBNymbksjfg3vsPtAV+PFtFENFQGMe5+vX1+/L0dHx28PFuY2X/Zj963Uhoascra2Nh6htz8viqyPjWl1IS5V50xa56Tq/Ry3PHHeZ1Iw5XV8+vqyKaMJwaYp2SZRFCFbDuVDkA4UhIkjk7okCbh1bUvcRpZfwzvsPtDReIna0FTZAPX7LBUBjHufd3X570v3Nvf0WAG4/X9DQ+PlcX5ua6u11oDIeMDvN0Ifh+ogoNH7TAg6klJ97U3jnFS5n+Nub5z3mTj6rzPgI9iML+/ZcigfgnSgIIoyGqVSHhouSRqhYRreYfZB1o2XsA1NlQ30oM9SHSg6t8O5b1ta/Le5o8MKwJv/51d5927vc9irXH4j9HHs3Fm/2n3cICDMsXOm8zc7WiMtLVY5wgg6RlkF+mlce1WfkyqDu7jbG+d9pv6u6Qz4CDbjyWu2nG556jAtnJTv2W6cKDeRB/JiZKRWE5n4Z2REd8nyLez+S7Kfu7pqtUrFOl6VivU4y/c7ZVlftm2zyipi/b1t28TXqNy2BQuCP0vld3kZGQne5rDnsLOcQX/iHsuurlqtuXn8c1pavI9NmM/x25/u/fDQQ9b32N8ZZv+7P2PrVv//i1P+sNK+9qo8J+PsF/f3x93eoaHo79P1uxbl83X+xvL7bq4iHJssr6NlEiUOZSQdKICipMCZ0mMbdgQ36UivihFclaMqWdaXRqMaqka3N260Rqi3bQv+rLRHp5y3LPLa5rDnsHtk3v5bxblv75fR0fHnhodF5s0L91735/jtb/fo6Gc/O54J4PV6L87PsFfQt8/BLEdfvY5bZ6e6Ox/4TZWII8pIote1rb/fmlbh1Ki+2Z/T2hq9nmb9uxbneq7zNzZvv+9lYOL0jLhMzWIplQw6DYzCSDqKKs+9nqaVPeyoaqPXhelNd45cViq1WmdnvDLnoec+ahm99m/Uz3CO0PqN1Do/U+d+jHIe2OVsNEIfVdSMAr/v9vscv9HRzs7w3+v3Gfb5k/Xoq3Mf2PUtyXHw26dZXie9jp9XFkejcjjf09wcff/o3mYgiqLUIbIz0xMlDiVIBwomjxdRk37Ywv44Bb0ubMNy27Zarb19/L0HHGBOR4VKcRvazve1t4/vq7Cf4Zdiu2CB9X7TOodscc9hFed+1H3id+4GfY7Xe7xe73XOOT/DmZYfN+BXKe73Bk1pcH5OVtdJv2ubqnT1oaF4ZUoTQQmSKlodMqldViQE6QEI0gGzmPjDlnQkPc77g0Z68y7pj/3ISPzPcI+kt7SoK1faTJ/vGubc9fqcRnPzveasu1/vfI37vNHR+RLnOubXMeEX2MbZ13F5nRvODkW74yzO55gqT2WFmYpUh0ztxM47gvQABOmAeUz7YYsyEh62kR12JN6UjgpVVHTCJPkM56JkLS3WY1XliqvRd+SpcZTk3PXbD+7PbGnxH613Bo7t7RMD/ixF3RdRO/niZC3EtW3b+NQB+zPjBOl5qst5KivMVMQ6VIR2iEkI0gMQpAPmMfWHLe7q7lmNpOflx1NFJ0zSz/BKsXWmTGfRORS2npvWaRVE9bkbNtU6SXZFWqKuKeC3XVHnpDfaD1GvY87v6eyM1vnY6LPzIE9lhZmoQ/DD6u4AckXF/UvTWBk+7Oq5QStwB60U7nxde7v1p9F7qtX8rSCrYuX0pJ/hvPe3iLUi+NDQ+Ermc+eG/8y4dS3MarkqVrWPU74sVgwPw2tFb/eq4J2d1r9V3ts+LK/Pt5+Lsi+CVi73+xyv54PqS9y7VCxdOv7a7dutepp0pfU8rUSep7LCTNQhqECQDsAYcX7YGjVEddzWLWxj3fm6nTutP37vcW5nd7eeW6PoDORUBYP2fly4UGTXLuu5SsW6RVSjz3Qeg66uaJ0jYYPvJMFQnM4bVR0+KhulXh0y9uNKRaSvzzoH2tv13p7Lb9+FLUOjjie/z3E+H1Rfwt5Cyfm6bdus88KrnqZ9m0IAwLimWq1W012ILA0ODsq0adNkYGBA2tradBcHQEJ249i+p7AdzNmN0t5eq9HqbGDmkXM7vYyMpBugFGFfVqtWcLdtW/29wG2N9qH7GLS0iGzZ4r8v3Pe59qurbnH3d9jPT/qerPT2iqxcOb4f3npL5Be/GC/r3LlW50oW9dJrP4mo2Xd+90MPy6u+zJtndR64uet4ter9ukrF+r/mZpEFC+q3K2l5AaCsosShBOkAcsuvgTkyMj7anGbwkVVj1W87RbIJrEwO5MJwBjFewmyT3zHo7Jz4uX5BdtTgO0r9CjoX/D4jznuy5Kx3zc3+HSsi6ZY36PzzKk9W1wT398TtFHK/bvZskVdfFXn7bev/3/MekR/9KJ8dc17oZACgS5Q4lHR3ALnll+opku581aznhLu3s7l5fI512mmnYdO0dUwrCMuZzuslzD50zoV26usTGR72/z5nmnHUlP0ogUScNPmk84zT5K5ndoDuVda0y2t/V3Nz/WOV+y5orrtT0LVHxdoYHR3WtcUO0EVE9uzxT5U3+by32WXM21oeAMqNIB1Arnk1RNMOPsLO9VTJuZ0LFlhp1qoW6wrSaF+a3vAN6qDp6rL2X9h9uGFD/QJ0dmdJa2v9aGSjTo20gso4c4ZNnWfsVe/a2/WUtb/fe5FBFfsuylx3kWjXnjhrY2zZMr5Wg5O7Dpt+3osEL4iX5VoeABAH6e4ACsGdwpjWPGrdKcI6UjWD9qXKVPi0ts2rjFu2xF+ocPlyawS9pcU67qOj9duue3pA0H70+z8V+z7sZ4R9nV+9y/ocaHQ8k5Qnylz3JNeeKPu8u3tidojdoRVUbtPmrYedLqG7nADKg3R3AKXjbmipvjWU83t0pgin/T1eI85++zJo1DhKGmzao3IqR4s7OsZv3zY8PN7wN2kVbK+5yo32cdKFy+Lc6qvRnRj86l2WQVWamRF+n+33fXGuPVHPrRUrJh6H9vb6Oqzitm9pizJdAgBMpDVIv/7666Wpqanuz4IFCwLfs379elmwYIFMnjxZjjnmGHnooYcyKi2APEqjEaY7CEtDmMa1e1/6pSR3d0drpKc9fcAZ7PX0WJ+fNIhoaZl473X7ft5pdRBF5b5t37Zt488H7eOo84zj3OrL+TqVHQiq50in2Snn99lB3xfl2lOtRju3/KaG9PfX1+Gwt33btk1fSrlJ0yWC5GFOPwA9tI+kL1y4UF555ZWxP48//rjva5944gk5//zz5ROf+IQ8++yzsmzZMlm2bJn8/Oc/z7DEAGCuuI2+uIGyO2iw3x/2c8IuTKeCO4hI0iFQrU5MCR4e9h9hdW6fan6f6dxWv1F/pzijoFEWFvR7nYpjkuYIbpqdcl6f7X5u/frx14fpAHLuiyjnVpQOCa9ye41e25kBOrjL+OCDZnSeiZiTcQDAYDWNrrvuutqxxx4b+vXnnntubenSpXXPnXTSSbVPfepToT9jYGCgJiK1gYGB0O8BAKeurlqtUqnVRKy/u7p0l6hW27bNKoeI9fe2beHfOzJivc/9Z2Qk2mdE+Rznc1ntTxXb6fysMOV2HpeWlnjHx0/QMffb1qCyem1PmH0T9vj5fb6KY5JFHWpUj1V+9shIrbZ1a7xz2rkvwhx3p6jXEXe57fc6/wR9p6r9FySL74jKxN8QAOmLEodqH0nfsWOHzJ49W4466ii54IILZM+ePb6v/elPfyqLFy+ue27JkiXy05/+1Pc9Q0NDMjg4WPcHAOLKcuQ3iiSjkSpSeu1bYTX6HPcI0saN1vxue//ZK2enQcV2Oss/NGSVV8R/hNU9mm1/hoo04KBj7nfLOBGR+fMnltWvXocZ6Yt7qy9Vd2LI6pwMqsdJR0K97pZw/PHhpyjYgrY9TBZA0tsEOkf9bXGzNlQdPx3reDR6vYm/IQAMk0Gnga+HHnqo9o//+I+1//qv/6o9/PDDtZNPPrn2nve8pzY4OOj5+gMOOKB277331j33N3/zN7VDDz3U9zuuu+66mohM+MNIOoC4TBsFUTEamWQkPsrnuPddS8v44+bmiftS9ShY0u2MMtocNJoddwS/0Wc7P3PbtvHRe3v/dnaG27aoI7B2mcKW3UlF3cv6nEzr+zo7vY9B2KwUv7LFrWtx3hdm3wS9RtW1KG3btlnHK045TfsNAZCNKCPpWoN0t1//+te1tra22ne+8x3P/48TpL/11lu1gYGBsT979+4lSAeQiImNSFWNvrTSd+3ngoJWZyCS9j6Om+IeNdj2CnxVNcrDptu7Awm/8jr3uYrpD1ElqXtJ60vUbVPd6bJ16/hx8pui4O5g8dvmJMFjo89W8d5G+y8PAaxXB1iUcpr4GwIgfblKd3eaPn26zJ8/X3bu3On5/7NmzZJf/vKXdc/98pe/lFmzZvl+Zmtrq7S1tdX9AYAkTFm920nV4laqUkO9PscrtdleEd39/2mv+B5nO+OkZjuPi70avKrFx8Icc/uWcWFWtnfW67gp6EnSwJPUvbjnZJzyqlzx3f7+hQtF+vomfo9dZyoV6/+dZfQ6R+y/+/qs6Q7OOhJFkvPPPhZDQxNv2Whvi9/+MyUVvNH3LV9ev3CkvUhe2HKa+BsCwCxGBelvvvmm7Nq1Sw477DDP/z/55JPlscceq3vukUcekZNPPjmL4gFAnazusRum4aey0Zdmg9gdWN5/f+NVosM01LNqxEftDHEel6Eh/+MTp/xRjnmUjo9KJX6nT9qdK41EPSdV3dUgbqfLihXj887d5s8X2bLFCrbt+mGX0e8cWb58fHu2b4+3/5MGynbHQ2vr+LoT7o4Qv/2X5i3vopS90Vx5d4eKiHWcopaT+7QD8JXByL6vz372s7VNmzbVXnjhhdp//Md/1BYvXlx75zvfWXvttddqtVqt9kd/9Ee1q6++euz1//Ef/1GbNGlSbe3atbW+vr7addddVzvggANqzz33XOjvZHV3AEHCpKxmtVpw1imRaX1fmHm0zsdhV05Ps8yNqKoDWZU/boq27jTwNKm6q4Hq73emtvu9xp0ab79H1f5PknIetO6E+7O8yqYzFTzOnQpErG30KqepdR+AHrlJd3/xxRfl/PPPl46ODjn33HNl5syZ8uSTT8ohhxwiIiJ79uyRV155Zez1p5xyitx7773yrW99S4499lj5p3/6J7n//vtl0aJFujYBQEGEGUHJ+t62WY9Kqv6+oP3lHkGqVKKvnJ5GmcNSNQKWVfnjjlBGXeFf5yhoVKruapD0+5tdLbG5c0U2bPAvY0uLNUru1NFhvUfV/o+bKeA1Cj887D8q71U2XangUTIInPuns9PKeHCWk/ugA0iqqVar1XQXIkuDg4Mybdo0GRgYYH46AKlWrYai3ZCyH9sNRacwr1FZrkmTJj4/MpJO0JPG90XdX16v37LF//uz3kcq2Q3/LMtvdwL09lrBW9z5yrq/QyXd5e3vF+nuHp/f7HWeOMvY2emdam3Xmd5ekZUr1W2PfS5G4T6P7bnmWVw3k4p6zfLbP1n+VjQqCwBzRIlDjZqTDhQJ9zw1m3Oko6ur8QhK1gsaZT0qqfr7ou4vv9dnWeYsOOtdd7dIe3s65fe7T3baI5R5WxBLd3nnzatfgMzrPHGW0Q6+3XVm587xBehErNer2B4Vo/Be606kKe41uVqNnkHgtX+y/q1g1B4oJoJ0QDF+MPPBmWa8fbv/KuNOWQeEqhan0vF9UQNov//v7g4+h7LeR25RG97u9HYRteV3dz557bugzISwGr02rfMizU4xldsf5XvDnif2c1513l2vVq5UU7443B0fZ52VTUdI3N9e5/tWrLD2Z5KyZt15qHuxRgApSX2GvGFYOA5pC7vwDAvK6NNoMSb3PYftRYza260/eV2kLOvv27o12gJQXvfpDrtoVdb7KOq21WrBC5WpKn/YBa2cwtzXOuxr0xL3e8Ps1yifncb2J9023Qv2mfJbFnexuzTuy276gpAA9IgShxKkAwqF+cHUuXItxvk1zNyNG6/XmdAAMqEMftx1fOvW8O81vdGZpCOhVksnILAFdT7FKZPXtSrN8scpo58o19kon5328Yv7/zqOi0m/ZUnuXpDm9SaL65aucxJAdLlZ3R0omjBpbqSmmSHoPr22OPOk05aH6RRhUm/90oVNn2fudV/rKHNO00zPr1SshcXc+vqirwVQrU48jsuXZzvXNkwZ/SxdOn6u9vZaj5N+dtpzjd113Hlv9EbnvI5pH6b8ltkLpsW9e0Ga15ssrlu6p/wASAdBOqBY0A9m1gvKwF+YBaNMDBhNaRj7aVTHTQ04wrC3ZXS0/vko9SLthco2bLDWV7A1N0dbC8B+LDLxOPb1WZ0AWZ8PUc/DalVk167653bt8r7ORp0TnsX1wH2OLF0afM5Xq9kvgGfCb5l7P61dG++6keX1Jur+CfN63YsfAkgHQTqgWNAPpolBX9k12vcmBYwmNIwbaVTHw3QymNro9Dtf49SLtM55+7Z19oj6ggWNy+ZVx/2O44YN2ZwP7jqd5nkY5bOzuB44z5Ft2+o7GJznvFeHV1a/JSb8lrmvJatWxbtuZHG9iZoBFSdjinYEUCzcJx3ImO778iIeU+5Bq+P+u1H51fE839fc5t629evHR55NE7XOul8fdK1K63xodH30+1738/Pm1Y+mt7dbtykLEmWb0tp+v3PEXn3eec7rvhbo/C3L27Uk6rHSfWzzypTfacBPlDiUIB3QhB8TxJGnTh6vOl6UxqfXthX1nM5yu6LWD7/zIU/niZt7H8ydK9LaWr8t8+aZE6S660dW9SWta4nq8kftUMhbB4QJ8ny+o1yixKGku+eASamsUIcfW/Pk4VwzNRXci1cdD5subPqxcI84m7yYX9J9mdW1Ks50Dr/pE3k6T9zc58iDD07cFhPSzW32d2Z9HqieepBW+aMeK7//7+4279piCtPXagHiIEg3mOkNP5jB9GAmD/J4ruW1k6dR8JTHY2FqAzFv+zLOAnGNgnr7vXm6TvqdI+79YNJ6GSLZnweqO2LSLH/UY+U1EmzStcUkeVirBYiDdHeDFSUtFOkgvUsdzjVz5O1YqEhNTSs9OG/7UiT6da3RNhb9OmkHIro77fKeop1V+aOue5DnfZqlPF7rUE6kuxcAPYNoxNTRu7wp+7mmcjuTflYej4U92tvcXP84TCM6zZHu4WGz96VfOaKOjjYaoczrdbLRcXLWHRPSoE1Kv48jq/JH+TxVZTLlnE+TaVklgAoE6YbK+w8e0pXHYMZURT/X/OqEygBR1WfFSXfWxXnf96Gh8Xunz50bvoGYRgBpH4vWVut+6VnW6zDHI2xdCVvOoKA+L9dJZ3nC7h/3bdqy6HxotN/yHiiZWP4kZcrbdJck8rwGBeAncpD+8Y9/XH7yk5+kURa4mPiDAf36+62RE6eiBZZZU3mumRIANGqgqQwQVX5WT4/I/PnWv/2Ohc7Gp/u7ly4V2b3b+r9KxQqOwzQQ0wogncfCmRar+jckTmDpLp/KkW2va19aHXCqznGv/RZm/7jryuio9bi3V025wpTTiwmBUpJjY0L5VZYpr1kkSZShDWRKGwMZqEX00Y9+tHbAAQfU5s2bV/vSl75Ue/HFF6N+hFYDAwM1EakNDAzoLkpoIyO6SwCTdHXVapVKrSYy/qerq1bbtk13yfIvybm2bZt1HEw5Hs56UqlYj20jI/X1x/4TZ/uDPivq5zn3YWen/z4M2ragcqrg/O7m5mT7Mc52BPE7Fvv3J/tcJ696HnY7VNY7P+56p/K8VH2Ou/dbZ2f4/WOXw/07kAbV9TQNpl1/dcviXEO2qOPFECUOjRyk12q12muvvVb72te+Vuvu7q5NmjSpduaZZ9bWr19fGx4ejvNxmcpjkA7Y+OE1l0kN2TD1RGV53Z/V3h6vMRGmTFHPAZUNG7/vjrsf02h0ufdhS0u6nx8lsPR6v6rzZNs2q97Z39/eXr+9Kq6RKsvuV5c6O8N9x9at2fwW+JVzaEjt9yRl0vXXFOyTYuF4FkPqQbrT008/Xbv88strkydPrr3zne+sXXnllbXt27cn/djUEKQj77hQZydsg9fEzpNG9STNEcb29ngj3VFGEcN+vurzRVWHhJPKeuI8Fi0t46P9aY7Uhw0s3eVTORqU9shyGue4V92Msn+y+i1wZ4+o7vhJysTrrwkYeS0O6nhxRIlDEy0c98orr8gjjzwijzzyiFQqFfnwhz8szz33nHR1dcltt92WPBcfwASsVZC+qHOeTVx8rlE9UTn/0vlZW7aI7No1ca718HDwZ0TZh2HPgTTmfbu/+8EHvfdjmO9I4/ZZ9rEYGrL2ub2gnYpt9ztGGzaEvyalMe/X3jY3e3tVzOFM4xz3qsfu/TNvXrj3z58ffB4k4fyeSZPqF00Mmuec1dxZ1ccmTrlNnCds4hx7xGNiGwMZiNoDMDw8XPunf/qn2tKlS2sHHHBA7b3vfW/tzjvvrOsR6OnpqU2fPj3qR2eCkXQUBT2o6YkzQmXqqIWOehJ35C3qPgyzbWmNNvql+4bZhqzqShrrVwSVXec1ya5jzj8qshycwh63qPvB6/Vhv2vbtvEpB+7Xqa5nQ0PhRvN0XAtVfGeczzD1ul80tHeoa0WRarr7zJkzazNmzKhdeumltWeffdbzNb/+9a9rc+fOjfrRmSBIBxAkaVoZjYmJKde6FnlzlyWLQC1Mp0BWacrOstp/VH2fSfXc75w96qh09nPc9Q+i7LOwdSTodWnUM1Pqt9++VD39II33IDwC04lMuvYiuihxaFOtVqtFGXlft26drFy5UiZPnpzGwH7qBgcHZdq0aTIwMCBtbW26iwPAQHaKe7VqpZPZaYOIZnjYuiWZm/PWYFmxj6X7sfv5Rrq6RLZv964b1aqVDuzm3N4wr1Ep6+/TxX3Ozp8v0tc38XXuY6FyH/hdN+y08N5eq/4408e9hD1mQa8TSee4N9qWtOtb1H0ZVpxyl+XcCqL6HHLjtxhFEyUOjTwn/Y/+6I9yG6ADQBjM+1ejpcWceXT2dzrXG2htDb/uQH+/Vfa+Pv857mHmDUaZW+g3zzXK/NeyzGV0n7MbNvhvd9Q1J8IIWv8g6v2qwx6zoNelddwbzXNOu76lde/vOOUuy7nlJegcUjU/P401RYA8SbRwHABkKasfZxbcUSfrDo9GdcTZyLcXswvT2F+xwhpBd/JqlIfZ3kav8WsAxw0uy9Dp5HXO+m13GoGeX8AmEi/QCHvMgl6X5nEPCkTT+t60g7Y45S7DueXF6xxS3flV5k4QQEQkcrp73pHuDuRPWimOyE7aaZFh6ohfeqrNL03V732dnfUrm7vfE5QmG5Rq75fimTT1M81jkPbxTcJZtjRTlP3qYJLjFna/hqlvWUvje7NIf45TbpPrv2pB10O/qUBx8duPokk13R0AspZWiiOyk3YDNkwdCZs23Oh9lYrVIO3t9W8wen2We6Rp586Jr/EbLRweTj6KGOcYNPp8FaNnaWfIxJ1uEJVfBk6S0daw5WqUlq1DGrdAy2LkOk65yxKgi/hfD4OmAsVFVps+TCvQjyAdKJiiXViZl4ZGotQRZyO/pcX6O0xj32vOc1RxOhLsx1nP728UfNv7NkkHWhpzw8NIO9BzL+6WZqBRpOtgmPqgK2gr0n5WIcoaECqUqRNEN13XZUxEkA4URFEvrMxLm4gGY70odcTZyB8aCt/YTxocxO1IcAaRWc5/9Qu+ndeZrq5kHWi6MmSyCPS8rscqr1lFvN5HqQ9ZXf+LuJ9ViLIGBPKFzEVzMCcdKIgi36qEeWkW9oO/POybqOeo3zzXtOe/Bs3b7u6u3wZ7bn3U646queGmzgVO+3pctOu9qbczK9p+zoKqc9LUc7vITD0Pi4Q56UDJFD0lnHlplqQ93EWpD17i1pEs90nUkaagOfJpirJS+fCwdU9ykWijZ0kzZNK6jZoKaV+Pi3i9NzFjqoj7OQsqFmAke0EPE8/DMiNIBwqgLBfWom1PFEkajGVq9EQJ8rq6st0neeps8upQsK8rzf/TcrAf9/bG26Yk6bFeHVZxg6e83TqqqNf7RvUh6+C4qPvZdKRb68W0BXOQ7g4URB7SfVUrWzpc3NRLUjbr9fdbadv2fdJ17hM78DC1HjvPsf5+kaVLRXbtsh63t4s8+GDy60zU8zjoVnpxrn1pnB9e1+N589Qd5yJf7931Qee2Fnk/m4h0a3OUrX2VlShxKEE6UDBluLCWteEUZ7tp9EzU1WXdLsgty32SVsCbpkbBbJbXHmdZnOLchzzN86NatW61l9b1yn0P+CKe0yZ0MhZ135rIhOMNpIU56UDOJUnrK0NDoqzpcHHSpUnZrFetegfonZ3Z7pMVK8YDdBHr3ybX46DpFjqmU/gFulHnDWeRmp7m9apSKfZ0FtXzwuO+r6zXSx1ItwYsBOmAQYrc2FLF1MV8svz+qA3GvDZ60tin7nnVItY9yOPc9zwuu866mVCPvdgjWn7BrI5OM2eHVdIgO83zI4vrVdT9b6/GnweqOlH4bc2PPK3dAaSJIB0wSFlHiKMwbWQ4D42/vDV60t6nPT0iCxZY/+7sFNmyJdt94lwt3cm0DAf3cVi7dmIwq7vTrFJJHmSneX6kfb2Ksv/7+6158ZMmWX/mzTPzeuWmohOF39b8MelaCOjAnHTAEMwdDs+kOenMn1M/XzOrfdqo3GnOQ00yJz2r+bF+x8G92J0p54Cp84bTvl4FHSfn/li4cGIGR1dXfq5XcY8vv63IgqnXH5iFOelADpk2QmwyU0aGk44i5iXl1E9a96rOamTWueCWUxbZER0d1oJiIyPWn507G9fjLLM2/I5Db6+1Mr6zDM6gc/58fdMpTL1Wpn29co80r107sZ7kbYqFl7jHl99WvfJSv+LKQzYd8okgHTBIXucO66K7kRW38VeUH/U0UkizbFD7HYcsU2MrlfDblnW5vI7DypUTy2Bfqzo7rUX5nOXEuKyuV3/6pxOPUZwpFkUKrvhtzV5RfucaYSoF0kK6O2Ag0qbyI04qqynpwUnETSENU7fTTg+2y+B1HLZsMTM1VmXKbtjri/s4rF9v7TOvMnR3579O55WzHjc3i4yOTnyNna0RZopF2PNP9e9UFr97/Laq02hfFuF3rhGmUiAq0t2BnOPinh9RU1l1L7SlStQR7yijKmmlBzvL0NXlfRxEzEyNVZFhEHVky30curq8yyCSXp3O23mRNfe+tgN0r3oSdopFo5FB1SOkWY64Os8X6lY8YY5XUX7nGmEqBdJEkA4ACoT9Ufb6Uc/6Ht2qREkhjZMSqHqfOMuwfbt16zWvxpWpqbFJyxU3LdN5HLzKkEZDtSypsiLxA5f+fiuDwalSsUbIg+pJ0BSLMMGV6vTerNOFy1S30hDmeJUpeDX19wL5R7o7gERIH4zOmU7a0iIyPKwurVvH8QizSnqYlMA0y+5XBnsetdf+N7VuxymX6rRMdxlUT1EoQ6ps0n3m3Ec25+f41ZMkacqqp12IZJ8uXIa6lZYox9+ku7BkwdTfC5iFdHcAqWM0Ij67UdjZOd5QTTqCpPN4NGqYNBpVyaLsfmXo7fVPq0+jwaUi3TNOuVSPbLnfF2eKgt++KEuqbJIRZL99smWLf4Ae9jwLGhlUPe2iu9sa+c9qxNXkumVCGRqJcvxNuQtLVgjQoRpBOoBYWNE0mWrVGsFV1Vg0+Xj094sMDY1v29y59Q3/rMruF3xUKtH3e9TXm9CplUVaZtgF6bz2hfP+60VPlU0aLPrto507/etZ2POsUXCletqFiHXrvrifF4bJdcuEa0MUUY9/kc5bIEukuwOIjBVN1VCVdmn68XCvPr1gQTrps2E5RxmjpmQ2er1fyqNJKba60zLd+2LuXJHW1vp9KpJOqqyqbVfxOUnrhFddtANg92emcZ6pnHYhYmUWbdigdsTVax+JmJWGbdK1IQrd1xEgj6LEoQTpAGJpNB8Sjamcs5d2Qy9ugyxMcKCzkRr1u/1eH3QsTe9EyZLfvrCzGbzmQKvYR6rONZXnrKrPsvdRo3pmSjDo9dshkk6ZGs2v133+cW0AyoU56QBS59WgVJmqnIf5eUmpnLOXVipz0lTMMPPRg1Lh0xQ15Tjo9UGpxCam2Ori3vbm/2mF+B0DVftI1ZQKlVMzVJ3/fvXK/diUVaiD7ruucn54o/PbhPOPawMAPwTpAGLp6LAWKXJS0cjK2/w8FVQ0yNJapEdFUBIUHKxYIbJ7t/Xv5mYr7TmrTIyoDWS/14s0DvbjBEhF7ahy7osFC9JfOEzVYmFpLTqmcluD6pkpC3k5y5FmgJqXANiUzhMAZiFIBxBbGo0gkxdAywMTgxu/4MD9eaOj4T9fVQAbtYEc5z7h1Wq4AMm50r9fR1URAnfnvtiyReTBB9MNUioVa76z+9zo7o7WCZiHoC9MPTOlvJVK+gFqHgJgUzpPAJiFIB1AIiobQXHSj5GetG/bFefzVWda2A3koaFwDWS/BrXXeeBVVq9tc79u6dKJHVVFyzDp77eC5EmTrO3r6UknSLH3W1+f9y3JonYCrl1bX1/XrlVTTtXSCMTTuN6mHaDmKQA2pfMEgBlYOA6AEqoW4fFa6GfLlvrPVrl4E4Klva/DfL6zbqle/Crq9zcSp6zu1e9HRye+prNTZPt2MxbAirs/nLJaxMz9PV6BZpRFukxZfK0RlXWi0aKIBJcAEA4LxwHInKqGmrMBOHeuNcLpHj0kJT47Oke63KPHvb3q5wQH1aU4o9fOFPcwZfVK+Xd+jp2q3dc38bN6e7MdXY+yPxql7Kcxt9vN63tExheri5oZklW5k0gj48LrHClaZocpTKpLJmM/oQwI0gGIiDk/es6grbV1fFExu3GYh4ayyeLup7RHy7w+3x0crFypNv2+UV1K0hnktYq5V1krFWvhNKc5c+pT5zds8N7ulSuz7ayKsj9MWO3e63va263F6kSiT8/Jw5x01R2YfufI8uV0lKpEp0c47CeUCUE6UHIm/+h5NQ5FzG8om8jk4+zFLzhYvz78GgiNOiSCgi4VnUE9PVY2iIg1Qj405H1/aLeWlonZBe7tXr8+286qKPsjzGuzWtDL/T0PPpgsM8TkhcjS6MD0Okf8MjvK3FGadNvJDguH/YQyIUgHSs7UH72gAMrkhnJSKu8R7GTqcfbjd/y7uhoHWVE6JPzqkopR044OKxvEfs/u3eOLpTnnNu/aVf++XbvG5/ra27JwofV/W7daZVy5sv49aXdWRdkfYV6b1YJeft8Tdz+ZvBBZWiP97nPEL7OjjB2lKjo/yQ4Lh/2EsiFIB0rM9B89vwDK5IZyXKpGur0+x+TjHFSGoM6YoIAgSodEUF1Kem9zr/0+PFxfrkaBlVfKv/M553ak3VkVdn9Uq+Ffm1Vgl0YqvYnS6MD0OkeK3FEahYrOzzxMozCB19Sg9nb2E4qL1d2BksvDasVlWEFY1XHw+xwdxznouEVZNT7qauKTJk18fmTE+jtOPQrz/X7b49zvXkZGRHbu9H6v37b4fU5W54jf/vDaB/PmFf/cNVFW18yo31Oka3nQtSbqNnLHknDmzavPPGpvt66fQF6wujuA0PIwIlKURp0fVSPdQZ+T5XEOkxUQZQQqyvH3WyzMnWbuFrSvw3y/3/Y493tLi/fK4kEp2X4p/3FH3VRkT/h9l9c+KPq5ayr3fk8raybs8Y2aKWRClk8jKkfAi5gdplrQ1CBY2BfFQpAOlByNA/1UNfaCPifL49woAE87/d7dIWGXw6s8caYZNLqNmvOxc79v2RK8srjX8fbqXInT4eJ1O7swwh6T4WFzp1SUmSkLRobtlDOlvGGp7PwsUpZBGpgW4C9v5w3CId0dAAygKt1Rd9pkoxRQuyGaRfq9HSAGlSdKOYL2bZTPidMY93pPlM/xSrsPqh9h65HzdS0t1uebPHWmbEyYzhQlLdyE8saRJMDWfc3OE/aVt7yeN2UUJQ4lSAcAg6gaTUnyOUnL4NVg6Ompb1ytXSuyalU2jS2/BkzUOaVBDSGTG49+29ncbI3sezXmwjb6nK9rbra+Z3jYvH1QRirnTCcVpj6ZVN4sEWBFR9bBuLKeN3nFnHQAcMlL2q2qH9U4n6MqZc4rBdSd7rpqVXbp9ypus9YoRd/kaSN+2zU66p2SHnY6gvv50VErQB8aMm8f5F2c65fu9GBnmcOkhYctb16u5WGYfOcNkxF8jtN9niM9BOkACo25WuGpupe6O2CdN8+/IZpFQ0LFbdbCNoRMbRh5jWoHbUPYbfV6XUtLOttQRkmvXzoWBvUqc9hOrKDyFvFaXoQAiw4F/fKwADCiI90dQKGRShhO2ilzWR4HVXO+3UxOaQ+rt9e613qUueYqXmeL2zFT1vRWVedNlvtPRZm9ylvUa7nJ1xVVt9FENsp6ncwT5qQHIEgHzKbyR4a5WtGk2QjOokGn6jsa1cG8NISCyhl2G1S9Lu6xKXMgkMfrV9Iy+9WjPO6LqEy6roQ574raaQKkiTnpAHInjVTGIqQSZinNlLks5mwnTdcPWwdNrT922mmY7Qi7DapeF/fYqJqCkUdhrl+mpRrHveY2qrNluJabtC26b6MJgCAdgCHSaowzVyu8LALptBqiKhqNpgeEftviDnCWLjVrO+Iem7wFAmmUy+/6ZfL87DjX3DDnHtfybIQ578rQaQLoRro7AO2ySGU0KZUQ6UiSfmlKOq1XPW2Ueuq+Ddro6MTP1Z0WHPfY5CGlNouUfHe9yMN+iTJVIsq5x7U8fY3qV7UqsnNneaeiAHGR7g4gV7LoladRV3xJRtpU18Goo6pBI6NBo4xet0Gzy69iO1SJe2xMGj31O6ZZZGC4U9zzkGEQZapElHNPd10ugzAZHCtWWM+beNtJoAgYSQdghDIvEGWSIoxSxd0GFXUw7mf4jVyFGWV0v3fuXJHWVjPPpTyu7h50TJNkYCTZpjyMpEfB9d9MYTM4ivC7AWSBkXQAuZPFfOgoTBuVSpvJc1yjittYVFEHly+PPqrqNzLa2yvS3V3/Wq9RRveo14MPmnUuOcU9NjoDgKCR8jgZGCrONZMyDFQw7foPS5gMjq6uYvxuAKZhJB0AHMo6olO0kbms9fdbAXpf38T/CzOq6rX/7c91dhgF1ck8jWblpaxhRsqjXjNUnmt52Y+IxtTj6q67lYr177h12dTtBNLCSDoAxGT6Ct9pyMscVxPZ+2jFCpHt2+v/L8p8cPfI6Pr13sdgy5b6VGv395nEq/7kLWMjzEh5lFHgoHMtzvlm2jFPIs3rTV6uZaafH87r1Pz5IsPD8X43TN9OwAQE6QDwP8oarHI7neicjcyuLu96Mn9++DRkd6DX1eV9DLq7RTZuVNfATaNuuxvgvb3j/xenE0z3+Rc2tTzM+eJ1rrW3W8e1rAFLmgFb3oJB0zuJndcpO3Mkzu+G6dsJmIB0dwBwKGvad9w0fxPSFXWUoVHa5/z59cFpnPI6j4lNRYqp+7NVT+uYN09k167657q6rOyAhQsnvt5vOoBpU09U1TP3dg0NiezeXb5rji3Na26eruem3AYyijjnaB63E1AlShxKkA6UnAlBlklMCwyyFieA1LWfdJXBr5HZ2WnNSfcri8oGrVvUBm5awYtfeb3m2Tf63jwFWHHYGQJlDljSDNjyGAzmtc5HbUe0tlqp8raWFquzCig65qQDaChvaYBZKfsqw2EbWrrTFatVfWXwmx7Q2xtcb+KU1+u7WlqSTU3QMa3D/o7168OljgeteK+6XLrYWRFln2qS1vbncd/mddX+qNcfZ4AuUj+3HYCFIB0oKd1BlulUN+SK1ADROXff2bmkc/0Av8a0X71Jss96eqz0efu77r8/WUM+zeDFnmPt951dXeE6wezXu61cmbyMIuZ0Uvb3WyOIdj2YOzc/gVkSzv0/NGRtt4j6wDRvQW8ZOonz2HkC6ECQDpRQWRdI08GUYEAlnY0sZ+dSUJmiilr3ozam4+4zuwOtr89Kp+/pETnrrOQNeRXBi98+e/DB8QC7pcX7O8Icp/XrJz6n6jplSiflihXWfHQRkeZmKw04aWCWh+u4c//v3m1tdxqBaZ6CXudxK3rAmrfOE0AHgnSghIrYk21qw9SUYEA1HY2soM6kuGVI2okS5ZyJs8+c9Wf79vr6k+R8TRK8NNpnzs8eGoofINkj783/01Lxu05FPfcbdVJmdS1xf+/oaLJOiLx0CPrt/0bvScLk37a8HDeV8tR5AuhCkA6UVFF6sk1u4JiQsZDWd+loZPl1LiUpQ5adKFH3WRb1J07wEnafOY9TXD09IgsWWP92X6finvt+9WjnzmyvJao7S/PSIRhlu02+vquSl+OWBpM7TwDdWN0dcCnbaud5317TV8PVVT4TVl9Pg8rt0rH6c9TzzbT6rWvFbK/9lmTfeNUjO1jKcl+rqs95W8k87HabVv9Vy9txA5BMLld3v+WWW6SpqUmuvPJK39e8/fbbcuONN0p7e7tMnjxZjj32WHn44YezKyQKrQw99l7y3BAwYaS6EV0ZC0UdnVE5gp/ltI+41xcTMl7cc2W99tExx6R7zfRKcU9y7rvr0bx5eq4lqupz0rqc9TUzzHbn4fqeVBGnnjkV6VgBWTMiSH/qqafkrrvuku7u7sDXrV69Wu666y75+te/Lr29vfLpT39ali9fLs8++2xGJUWRFTWoKbI8NHB0pIWXpXGrQlZBcNzri865m34dC2vXTtz/fX0i3d3JAvUo9VPVue/3/qyvJSq+J05d1t05HbTduo9JVkzoiFNNd70CikB7uvubb74pv/M7vyN33HGH3HzzzXLcccfJ7bff7vna2bNnyxe+8AW57LLLxp4755xz5MADD5R77rkn1PeR7g4vpJzlV1HTupMqepqoamlO+8jr9cWvDjmfd+vsjH4v895e69ZqUc9h1ed+Ua4lUeqy6deJohyTMPI+9czJ9HoF6JKrdPfLLrtMli5dKosXL2742qGhIZk8eXLdcwceeKA8/vjjge8ZHBys+wO4laXHvojSGmnM+6iz1+hM3rcpTWme63m8vvhlYwwPB2dl9PWFr2f2aNvCheOBvc4sg6KsOB0lxd30jJuiHJMwTL4eRJGHegXkgdYg/b777pNnnnlG1qxZE+r1S5YskVtvvVV27Ngho6Oj8sgjj0hPT4+88sorvu9Zs2aNTJs2bezPnDlzVBUfBVPElLMyUdXAKUqanrNxay+KlfdtypLqBmXeri9+HQstLf4dDFE7H7zueR+nQa86uClKsNRInjqPTCwTvOWpXgEm0xak7927V6644gr5/ve/P2F03M9f/dVfydFHHy0LFiyQlpYWufzyy+WSSy6R5mb/zbjmmmtkYGBg7M/evXtVbQIKpkw99vBXtLUJKpXibVOa0uqkyeP1xa9jwfl8e7vIUUdNfE0jjYLxpPPbEU7SziNGR+Elb52SgIm0zUm///77Zfny5VJxdK1Vq1VpamqS5uZmGRoaqvs/p7feekv27dsns2fPlquvvloeeOAB2Rpysgtz0gH4yevc4SBF3KY0ec2l3LKl3PvKb66s/bwdqEXdR0Fz25nHmq2o86HLNFcc8RVpnj2gQi7mpH/gAx+Q5557TjZv3jz254QTTpALLrhANm/e7Bugi4hMnjxZDj/8cBkZGZF//ud/lo9+9KMZlhxAURUxTa+I25QWv7mUZZ8m4FdXdu4czzrwGvluNMrqDOw6Oye+l3ms2Yl6PSA7B2HwOwPEpy1Inzp1qixatKjuz8EHHywzZ86URYsWiYjIRRddJNdcc83Ye/7zP/9Tenp65Pnnn5d///d/lzPPPFNGR0flL/7iL3RtBoCCKWKaXhG3KQ1BHRgEIhP5BWphpww4pwDYI7J0JpmPhcEAIH3aV3cPsmfPnrpF4d566y1ZvXq1dHV1yfLly+Xwww+Xxx9/XKZPn66vkAAKJY9zhxsp4jalxS9tN0wgUqYgJShQizrKagfidCblA9k5AJA+7fdJzxpz0gEAjXR1WbcTcz/nNUe6rPNzFy4U2bZNZHTUetzSIvLss9bzblHWQGAeq/nKWucBIIkocShBOgAADn6L7W3dagUkbl6LzZVhwbP+fmsu+vCw9djedvv/Gu0PgvH874O8lx8AspSLheMAIIoypRJDL790Xq8A3fT5uWmWY9688QDd/q7eXpH164PT1tO6zV2e6N4HqupFWQL0NM4jU64RAMxEkA7AaLobs1Ajbw1SZ/ru/Pn+86NNnZ+bxXkT1JkRtAZCHlcGV11/de0DrqfRpLG/OAYAwiBIB2C0PDboMS6vDVJ7BLiz05qb7qyHbiYueJbVeRO07X73Vjc588Atjfqrcx9wPY0mjf3FMQAQBnPSARjLb25wlEWooJfq+dpZzoGNWnZT5ufqOG+ibLt7v86fbwWpJkprvQEd6xhwPY0mjf3FMQDKjTnpAArB1FRihKNyxDDrEfk4ZTelXuo4b6J8tnP0vVKxMhVMzLJIc8RbR/YF19NxYY5hGvuLYwAgLIJ0AEYzMZUY4ahskGadIpr3xnSjxdt0skeNOzvHg6W0j2mcwDqoDiQN1O194DdvPy1lv55G7exLY3+V/RgACId0dwC5YEoqMaJRcT9lXSmiebwXtLvM69d7r0qvW1bHNOkxdL9/7VqRVavyVSe8lPV6GneaQRr7q6zHAEhLHs4p7pMegCAdALKX9MdT573I8/DDb8vTPduzKKuq77Dfb1KQh2iYDw4UU5461JmTDgAwStJGsM4U0bw04PO2cnrax1Tl/rBT3KN+Xl7vblBEeZ/CAnOvZdCrqHdMIEgHABjLbpTpmsNrIr+Gat6CkLSPqer9Eefzitp4zCvmg+cTnV3wk7fO6SgI0gEAyqj6YfRrlJkacIaRdN+EaajmMQhRcUz99q3q/RHl89JuPBahEZo1Ovvyic4u+Mlb53QUBOkAgMRUj3QUqVGWdN/YwViYfVK2IKTRvlW9P6J8XlqNR0YVkytCA96tKJ027u0o8kgp1Mhj53QYBOkAgMRUBtVFa5TF3TfOYKyrK9o+KWIQ4iXsvlW9P8J+XhqNxyJ1YCG5onTaBGVPFXWkFGoUtXOa1d0BICZWbLaksWpynlYpD5Jk37j3QXOzyNtvj/9/e7vIzp1qy5sneVqtW9W1Ik/bjGxkda1M+/cuaDvytHo3EITV3QEgRUUZuVAljZGOoqSvxd03XtkEzgC9KJJkR+RphE1VmfK0zUifX9bR8LC678ji965R9lRRR0qBIATpABAR6aYTqQ6qi9QoW7u2Pqhau7bxe7yCMbddu+qD3DxNB1DV8C9KZ04UZdxmeHNfJ5qbRVpaRFpb1QXUWfzehe18ojMKZUK6OwBEQLppMKYATBQ3HdWd4jk0JLJ798TPyWMqqOoU3Sj1rih1tCjbgWSc539Li1UvVJ5XWf3e5fE6BkQVJQ4lSAeAiIoyXxrhxQ2IVDRy7e/2a8TmrT7q6ugiCECRDQ9bI+huSc+rrK8vdD6hyJiTDgApIt20PJKmZauYQ2y/1msKQJyV8HWnxeuaV800FWRB1/nV0pLOeZX17x0BOmAhSAeAiIo0XxrBVAR2qhu5zkZslIDXpAUPs274q76tn+6ODt3fj4lMOL/SOK/4vQP0IN0dAFBqfumVqtOy00rjDJvGbWJafJaprSq2X3fKvO7vhz+Tzi9SxgEzke4OAEADjUa+du60Ukhtzc3J0kfTajSHGelSPZKsSpJ9ErXsKkYZdafM6/7+vMmqfpt2fhGgA/lHkA4AKDyvxnKjgGfFivr3TZpk9voDQQ3zIt1fO25acdK0Xd2BWNLv190hk6WsU8+LdH4BMANBOgCgsPwa640CHq8AaHhYZN68bMuvUlEWPEw6mpwkE0JnIBb3+9MOWE0M/nVkHBTl/AJgBoJ0AEAqTGi8+zXWGwU8qlPdTVCEBaB0j2b39IjMn2/9W0cgFicQTCtgNWGhNC+66kgRzi8A5iBIBwAoZUrjvVFjPSjgyVuquy1MIJLnjoY0R7Mb7Ts7wO3rE+ns1LNom18g6Ff2NANWU+fH68x4YME2AKoQpAMAlDKl8d6osR4U8OQt1d2UjpEsqE4rDrvvnPV6+3a9QaldhxuVPa2ANcvR6jifmXXqeZnOPwDZ4BZsAABlVN+2LKm4t6wy6XZKYeStvCp4jVrGGckMs+9Mq9e2MGVP67ZtKupc0PFSUe6sRrbLeP4BiI5bsAEAtNC9uJZb3HmieVoESvc8bV2cdSruSGbYfWdavRYJX/a05konOUfCHC8VGTlZpbiX8fwDkC6CdADQqIgNORMD3KiN9TwtAqV7Dq4J4gZ0UfZd2Hqd1T6JetxV14ck50ij45WnwNfEDhwA+UeQDgAaFHkOY54C3Eby0tAu8xzcpAFd2H3XqF7r2CdpHfcowXDUcyTM8cpb4GtixySAfGNOOgBowBxGpKGsc3DTnh+dVRniUnXc05q/7qZzLn2aWN0dQBDmpAOAwUxK5TQxfRTxlXUOroqRzCT7Tvc+UXXcs7ozQ9DxyvM1iQAdgCoE6QCQMa9Uzs7ObBt4JqUrI19MTEXWPcXCxH0SVZYdDV7Hy31NWrrUjFs5AoAOBOkAoIFzJKlSEenryzZYNuVe5sgnU+fg6gyKTd0nYenoaHB+tvuatGuXWdkaAJAlgnQA0MAeSersHG94ZhUs607NDcOksmAi3SPXSIeujgava5KISPP/tFLzmJkAAEkQpAOAJtWqNYKedbBscmouafj1TO+sMKHOmKII2Sm6Ol+8rknt7SILFoyXK2+ZCQCQBEE6gFIxKejRGSybmppbhEBHhaJ0Vph0vqUpD9kpUejofHFfkx58kGwNAOVFkA6gFBoFPboa07qCZRPTlYsW6CSR984Kr/OtyMcxqMOtyNutkt81iWwN6hBQRgTpAErBL+jRPWKpO1g2qQFschp+lorQWeE+37q7858V0Ii7w23t2mJkQ2StbOd7EN2/TwD0aarVajXdhchSlJvIAyiGatVq5LiNjFjBgz3KV6mMB83Qw+5A6e21AnRn4FMmztHnKPXSfr1OfuebSDnOMfsYxD2GgI06BBRLlDiUkXQAhec3QiuS/xHLotGdWWCKqNMgTBpxC8qAKMM5Zqe4p3ltKfL+g6UIGTUA4iNIB1AKXkEP6dXmKvsxiNpZEXYOe1YNfOf51tJSvltppXVtMakzBuni9wkoN4J0AKXgF/SYuso5IBKuQR5mxC2t4M4v6Heeb1u2lPNWWmlcW/K+oCCi4fepPMiQgBtz0gFAzJjLC8TVaO6q6rmtcdYOyOocM+1cVlWeoLU1TNpeqGdanYY6rMNSLsxJB4CIaAAhz4JG3NKY29poRNfrs9M+x0xNBVe13aQ/lxfHuLjIjoEfgnQAAAzjFeQGBdVBc9hVB3dBQb/OQLkMjV3Sn4HiYHFABCFIBwDAEF5BbpTA1y/wVhncBQX9ugLlOI3dPDaEufsBUBxkxyAIQToAIJE8Bjum8gpyVQS+qoO7tWvrG5Zr1+odFYrS2DU1LT4KGvFAMZAdAz8E6QCAWIoQ7JjEL8hVGfiqCu5Wraov06pV+keFwjZ2y5AWDyAfyI6BH1Z3BwDEonrFcHjvUxGz9nPQKuM7d+pfqThoJeysVkhnNW4AgBuruwMAUsWCN+nwGg02LR0yaMTchFGhoOA47dF+sksAACoQpANATpgUAOtObQ5i0n6KyivINSHwdWvUcWBCPfCTZqcHqfTQLc/XPwDjCNIBFFZRGiumjs6ZNsJr6n6KwyvINSnwDeo4MP28S6vTg+wS6FSk6x8AgnQABVS0xoqpo3OmjfCaup+KzNlxYMJ5FyUgVt3pYXJ2CYqP6x9QLATpAAqnSI2VPIzOmRCE5GE/mUzFftJ53pnQQSBiXnYJyoHrH1A8BOkACqVojZWko3N53e6oGMWMR1Vwq/u8M6VjzrTsEpRDEa9/ZfntAvwQpAMolCI2VuKMzpkyspglRjGjUxXc6jzvdHcQeMnz9Qb5VJTrXxl/uwAv3CcdQOHYwYbOezWnIcq9l8t8D3PuUR2O6nuG6zzvylzfAae8X/84l1FkUeJQgnQAhZX3xkpcSYOvsu63MkqjQayj/uSpY47zC/CmuuMQME2UOJR0dwCFVdYf9bipx6QZlk8aKbI6zrs8zAXn/AKCFXG6GhAXQTqAXGNxGW9xgi9TFt9CdvIQ3EZhcmOe8wtorChz64GkSHcHkEt5Sm/VKWxqLWmGQHo4v4BomBaCIiLdHUDhMSoVTthGTp7TDMmmgOnyfH4BOnBuoOwI0oESKUowY+Itl4ogb2mGzPFFnuTt/AIA6EOQDpRA0YIZRqXSkbf5yWRTIE/ydn7pQmcrABCkA6VQxGCGUan05KGzg2yKYinTccvD+aVD0TqTASAJgnSg4IoazDAqVW5kU5gjybWEwAy2InYmA0BcBOlAwRU9mCnKdiA6sin0UhFgFz0wy3tnaFaK2pkMAHERpAMlQDCDIiKbQq+kAXaRAzMyBKIpemcyAERFkA6UAMEMVDA1eKIhnz0VAXaRA7OiZwikgc5kABhHkA6USBEav8geo4JwUxVgFzEwK3KGQJroTAaAcQTpAIBAjArCi4oAu4iBWZEzBLLAfgIAgvTco2ceKLe0rwGMCsKPygC7aIFZETMEEA7XRgAqEKTnFOmnQLlldQ1gVBCNUBcmKmKGAILRLgOgEkF6TpF+CpRbltcARgWBeOjAKA/aZQBUaqrVajXdhcjS4OCgTJs2TQYGBqStrU13cWKpVq2eWreRERoEQBnougZUq1xjAMCNdhmAMKLEoYyk5xDpp0C56boGcI0BgIlolwFQjSA9p0g/BcotzWsACx8BQDS0ywCoRLp7zpF+CpSbymuAPY+yt9caBXI2OgEAjdEuA+CHdPcS4YcAKDeV1wAWPgKAZGiXAVCBIB0AwP3QS4xjDABIgt8R9QjSAQAsfFRC3NcZAJAEvyPpMSZIv+WWW6SpqUmuvPLKwNfdfvvt0tHRIQceeKDMmTNH/uzP/kzeeuutbAoJAAXGwkflwvQGAEAS/I6kx+Oujtl76qmn5K677pLu7u7A1917771y9dVXy3e/+1055ZRTZPv27XLxxRdLU1OT3HrrrRmVFgCKqaNDZOtWFj4qA3s6g/uxKcfelHIAALyZ/juSd9pH0t9880254IIL5Nvf/rbMmDEj8LVPPPGEvO9975OPfexjMnfuXPnQhz4k559/vvzsZz/LqLQAUHxZ/bgyh00fU6c3kDoJAPlg6u9IUWgP0i+77DJZunSpLF68uOFrTznlFHn66afHgvLnn39eHnroIfnwhz/s+56hoSEZHBys+wMA0IdAzAwmTm8gdRIA8sPE35Gi0Jruft9998kzzzwjTz31VKjXf+xjH5Nf/epX8v73v19qtZqMjIzIpz/9afn85z/v+541a9bIDTfcoKrIAICEvAKxrVv1lqmMTJveQOokAOSLab8jRaJtJH3v3r1yxRVXyPe//32ZPHlyqPds2rRJvvzlL8sdd9whzzzzjPT09MiDDz4oN910k+97rrnmGhkYGBj7s3fvXlWbAACIiFu9mceUhhWpkwCQT1yn1Wuq1Wo1HV98//33y/Lly6XiOKrValWampqkublZhoaG6v5PROTUU0+V3/u935OvfvWrY8/dc8898slPflLefPNNaW5u3OcwODgo06ZNk4GBAWlra1O3QQCAUOwUd7vn3e6JB+zMit5eK0B3plICAJBnUeJQbenuH/jAB+S5556re+6SSy6RBQsWyOc+97kJAbqIyP79+ycE4vbrNPU1AAAi6ukZD8SYwwYnUicBANAYpE+dOlUWLVpU99zBBx8sM2fOHHv+oosuksMPP1zWrFkjIiJnn3223HrrrXL88cfLSSedJDt37pRrr71Wzj77bM+gHgDSRCARD4FYMmXYb0XfPgAAgmhf3T3Inj175JVXXhl7vHr1avnsZz8rq1evlq6uLvnEJz4hS5YskbvuuktjKQGUDauTq0EgFg31DgCActA2J10X5qQDSIo51dAhzXpXhtF5AAB0ihKHGj2SDgCmYXVy6JBWvWN0HgAA8xCkA0AE3CYKOlQqIu3t9c+1tyevd173rAcAAHoRpANARM7bQhV1dXIyA4qPrBAAAMxEkA4AEdlzgUdGrL+LdB9n0p/NVK2K7NpV/9yuXckCarJCAAAwE0E6AMRUxGCG9GczpRVQlyErBACAvCFIB6Ac6bL5RPqz2dIIqIucFQIAQF4RpANQhlTpfCP92WxpBtQcYwAAzEGQDkAZUqXzj/Rn8xFQAwBQbJN0FwBAMdip0e7H1SpBRZ7Yo7UcNwAAAD0YSQegBKnSxcJxQxDWKQAAID0E6QCUIVUaKDbWnQAAIH1NtVqtprsQWRocHJRp06bJwMCAtLW16S4OUEikSgPFZAfm9jluT48AAADBosShjKQDUI4AHSgebtEHAEA2CNIBAEBDrDsBAEA2CNIBAEAorDsBAED6uAUbAAAIhVv0AQCQPkbSAQBAJAToAACkhyAdAAAAAABDEKQDAAAAAGAIgnQAAAAAAAxBkA4AAAAAgCEI0gGgxKpV3SUAAACAE0E6AJRQf7/IwoUikyZZf/f36y4RoAcdVQAA0xCkA0AJrVgxHpj391uPMY7ArfjoqAIAmIogHQBKploV6e0dD0Tdj8uMwK08TOyo4hwEAIgQpANA6VQqIl1d1t9ej8vMxMAN6pnWUUXnEADAiSAdAEqop0eko8P6d0eH9bjsTAvckB7TOqroHAIAOBGkA0AJdXSIbN0qMjJi/W0H7GVmWuCGdJnSUUXnEADAjSAdAEqMALSeKYEb0mdKRxWdQwAAN4J0AAD+hymBG7JjQjBM5xAAwGmS7gIAAGAaEwI3lIfdOVStUvcAAIykAwCAjDDPOhgBOgBAhCAdAACkjFuMAQAQHkE6AABIFbcYAwAgPIJ0AACQGm4xBgBANATpAAAgNdxizGx0lgCAeQjSAQBAqrjFmHlYJwAAzNVUq9VquguRpcHBQZk2bZoMDAxIW1ub7uIAAFAa3GLMHHZgbh8T+zZwQJa4JqBMosShjKQDAIBM0Bg3A+sEQDcyOYBgBOkAAAAlwjoB0I07PgDBCNIBAABKhnUCoAuZHEBjk3QXAAAAANmy56AzJxhZszM33GsiUA+BcYykAwAAlBSBEXQgkwMIxkg6AAAAgMyQyQEEYyQdAAAAQOYI0AFvBOkAAAAAABiCIB0AAAAAAEMQpAMAAAAAYAiCdAAAAAAADEGQDgAAAACAIQjSAQAAAAAwBEE6AAAAAACGIEgHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAAAAAYAiCdAAAAAAADEGQDgAAAACAIQjSAQAAAAAwBEE6AAAAAACGIEgHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAgNRVq7pLAABAPhCkA0BMBB1AY/39IgsXikyaZP3d36+7RAAAmI0gHQAiIugAwluxYvwc6e+3HgMAAH8E6QAQEUEHEE61KtLbO5514n4MAAAmIkgHgAgIOoDwKhWRri7rb6/HAABgIoJ0AIiAoAOIpqdHpKPD+ndHh/UYAAD4I0gHgIgIOoDwOjpEtm4VGRmx/rbPHQAA4G2S7gIAQN7YQUe1ygg6EBbnCgAA4TCSDgAxEXQAAABANYJ0AABSxsKCAAAgLIJ0AABS0t8vsnChyKRJ1t/2rfsAAAD8EKQDAJCSFSvGA/P+fusxAABAEIJ0AABSUK2K9PaOp7q7HwMAAHghSAcAIAWVikhX1/gCg+7HAAAAXgjSAQBISU/P+H3BOzqsxwAAAEG4TzoAACnp6BDZutVKcWcEHQAAhMFIOgAAKSNABwAAYRGkAwAAAABgCIJ0AAAAAAAMQZAOAAAAAIAhCNIBAAAAADCEMUH6LbfcIk1NTXLllVf6vuaMM86QpqamCX+WLl2aXUEBAAAAAEiJEbdge+qpp+Suu+6S7u7uwNf19PTI8PDw2ON9+/bJscceKytXrky7iAAAAAAApE77SPqbb74pF1xwgXz729+WGTNmBL72He94h8yaNWvszyOPPCIHHXQQQToAAAAAoBC0B+mXXXaZLF26VBYvXhz5vXfffbecd955cvDBB/u+ZmhoSAYHB+v+AAAAAABgIq3p7vfdd58888wz8tRTT0V+789+9jP5+c9/LnfffXfg69asWSM33HBD3CICAAAAAJAZbSPpe/fulSuuuEK+//3vy+TJkyO//+6775ZjjjlGfvd3fzfwdddcc40MDAyM/dm7d2/cIgMAAAAAkCptI+lPP/20vPbaa/I7v/M7Y89Vq1X5yU9+It/4xjdkaGhIKpWK53t/85vfyH333Sc33nhjw+9pbW2V1tZWZeUGAAAAACAt2oL0D3zgA/Lcc8/VPXfJJZfIggUL5HOf+5xvgC4isn79ehkaGpILL7ww7WICAAAAAJAZbUH61KlTZdGiRXXPHXzwwTJz5syx5y+66CI5/PDDZc2aNXWvu/vuu2XZsmUyc+bMzMoLAGVUrYoE9JkCAABAMe2ruwfZs2ePvPLKK3XP9ff3y+OPPy6f+MQnNJUKAIqvv19k4UKRSZOsv/v7dZcIAACgHJpqtVpNdyGyNDg4KNOmTZOBgQFpa2vTXRwAMJIdmNsj6R0dIlu36i4VAABAPkWJQ40eSQcAZK9aFenttf72egwAAID0EKQDAOpUKiJdXeNz0d2PAQAAkB6CdADABD09Voq7iPV3T4/e8gAAAJSFttXdAQDmsuegs7o7AABAthhJBwD4IkAHAADIFkE6AAAAAACGIEgHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAAAAAYAiCdAAAUlKt6i4BAADIG4J0AAAU6+8XWbhQZNIk6+/+ft0lAgAAeUGQDgCAYitWjAfm/f3WYwAAgDAI0gEAUKhaFentHU91dz8GAAAIQpAOAIBClYpIV5f1t9djAACAIATpAAAo1tMj0tFh/bujw3oMAAAQxiTdBQAAoGg6OkS2brVS3BlBBwAAUTCSDgBASgjQAQBAVATpAAAAAAAYgiAdAAAAAABDEKQDAAAAAGAIgnQAAAAAAAxBkA4AAAAAgCEI0gEAAAAAMARBOgAAAAAAhiBIBwAAAADAEATpAAAAAAAYgiAdAAAAAABDEKQDAAAAAGAIgnQAAAAAAAxBkA4AAAAAgCEI0gEAAAAAMARBOgAAAAAAhiBIBwAAAADAEATpAAAAAAAYgiAdAAAAAABDEKQDAAAAAGAIgnQAAAAAAAxBkA4AAAAAgCEI0gEAAAAAMMQk3QXIWq1WExGRwcFBzSUBAAAAAJSBHX/a8WiQ0gXpb7zxhoiIzJkzR3NJAAAAAABl8sYbb8i0adMCX9NUCxPKF8jo6Ki8/PLLMnXqVGlqatJdnEQGBwdlzpw5snfvXmlra9NdHBiO+oIoqC8Ii7qCKKgviIL6gihMry+1Wk3eeOMNmT17tjQ3B886L91IenNzs7z73e/WXQyl2trajKyIMBP1BVFQXxAWdQVRUF8QBfUFUZhcXxqNoNtYOA4AAAAAAEMQpAMAAAAAYAiC9BxrbW2V6667TlpbW3UXBTlAfUEU1BeERV1BFNQXREF9QRRFqi+lWzgOAAAAAABTMZIOAAAAAIAhCNIBAAAAADAEQToAAAAAAIYgSAcAAAAAwBAE6Tlxyy23SFNTk1x55ZW+rznjjDOkqalpwp+lS5dmV1BoF6auiIjcfvvt0tHRIQceeKDMmTNH/uzP/kzeeuutbAoJY4SpL2+//bbceOON0t7eLpMnT5Zjjz1WHn744ewKCW2uv/76Cb8pCxYsCHzP+vXrZcGCBTJ58mQ55phj5KGHHsqotNAtan3ZunWrnHPOOTJ37lxpamqS22+/PbvCQruo9eXb3/62nHrqqTJjxgyZMWOGLF68WH72s59lWGLoFLW+9PT0yAknnCDTp0+Xgw8+WI477jhZt25dhiVOZpLuAqCxp556Su666y7p7u4OfF1PT48MDw+PPd63b58ce+yxsnLlyrSLCEOErSv33nuvXH311fLd735XTjnlFNm+fbtcfPHF0tTUJLfeemtGpYVuYevL6tWr5Z577pFvf/vbsmDBAvnhD38oy5cvlyeeeEKOP/74jEoLXRYuXCiPPvro2ONJk/ybDk888YScf/75smbNGvnIRz4i9957ryxbtkyeeeYZWbRoURbFhWZR6sv+/fvlqKOOkpUrV8qf/dmfZVE8GCZKfdm0aZOcf/75csopp8jkyZPlL//yL+VDH/qQbN26VQ4//PAsigvNotSXd7zjHfKFL3xBFixYIC0tLfLAAw/IJZdcIoceeqgsWbIki+ImQpBuuDfffFMuuOAC+fa3vy0333xz4Gvf8Y531D2+77775KCDDiJIL4kodeWJJ56Q973vffKxj31MRETmzp0r559/vvznf/5nFkWFAaLUl3Xr1skXvvAF+fCHPywiIn/yJ38ijz76qHzta1+Te+65J4viQqNJkybJrFmzQr32r/7qr+TMM8+UP//zPxcRkZtuukkeeeQR+cY3viHf/OY30ywmDBGlvpx44oly4okniojI1VdfnWaxYKgo9eX73/9+3ePvfOc78s///M/y2GOPyUUXXZRG8WCYKPXljDPOqHt8xRVXyP/5P/9HHn/88VwE6aS7G+6yyy6TpUuXyuLFiyO/9+6775bzzjtPDj744BRKBtNEqSunnHKKPP3002NpYs8//7w89NBDY0EYii9KfRkaGpLJkyfXPXfggQfK448/nlbxYJAdO3bI7Nmz5aijjpILLrhA9uzZ4/van/70pxPq1JIlS+SnP/1p2sWEIaLUFyBJfdm/f7+8/fbbEwapUFxx60utVpPHHntM+vv75bTTTku5lGowkm6w++67T5555hl56qmnIr/3Zz/7mfz85z+Xu+++O4WSwTRR68rHPvYx+dWvfiXvf//7pVarycjIiHz605+Wz3/+8ymXFCaIWl+WLFkit956q5x22mnS3t4ujz32mPT09Ei1Wk25pNDtpJNOku9973vS0dEhr7zyitxwww1y6qmnys9//nOZOnXqhNe/+uqr8q53vavuuXe9613y6quvZlVkaBS1vqDcktaXz33uczJ79uxYA1nInzj1ZWBgQA4//HAZGhqSSqUid9xxh3zwgx/MuOTxEKQbau/evXLFFVfII488MmEEK4y7775bjjnmGPnd3/3dFEoHk8SpK5s2bZIvf/nLcscdd8hJJ50kO3fulCuuuEJuuukmufbaa1MuMXSKU1/+6q/+Sv73//7fsmDBAmlqapL29na55JJL5Lvf/W7KpYVuZ5111ti/u7u75aSTTpIjjjhC/vEf/1E+8YlPaCwZTER9QRRJ6sstt9wi9913n2zatClWOxn5E6e+TJ06VTZv3ixvvvmmPPbYY3LVVVfJUUcdNSEV3kQE6YZ6+umn5bXXXpPf+Z3fGXuuWq3KT37yE/nGN74x1iPk5Te/+Y3cd999cuONN2ZVXGgUp65ce+218kd/9Efyx3/8xyIicswxx8hvfvMb+eQnPylf+MIXpLmZmTBFFae+HHLIIXL//ffLW2+9Jfv27ZPZs2fL1VdfLUcddVTWxYdm06dPl/nz58vOnTs9/3/WrFnyy1/+su65X/7yl6HnEKJYGtUXwClsfVm7dq3ccsst8uijjzZc+BTFFaa+NDc3y7x580RE5LjjjpO+vj5Zs2ZNLoJ0WuKG+sAHPiDPPfecbN68eezPCSecIBdccIFs3rzZN0AXsW5/MzQ0JBdeeGGGJYYucerK/v37JwTi9utqtVom5YYeSa4tkydPlsMPP1xGRkbkn//5n+WjH/1ohiWHCd58803ZtWuXHHbYYZ7/f/LJJ8tjjz1W99wjjzwiJ598chbFg2Ea1RfAKUx9+cpXviI33XSTPPzww3LCCSdkWDqYJs71ZXR0VIaGhlIslTqMpBtq6tSpE25Xc/DBB8vMmTPHnr/ooovk8MMPlzVr1tS97u6775Zly5bJzJkzMysv9IlTV84++2y59dZb5fjjjx9Ld7/22mvl7LPPDgzSkH9x6st//ud/yksvvSTHHXecvPTSS3L99dfL6Oio/MVf/EXm5Ue2Vq1aJWeffbYcccQR8vLLL8t1110nlUpFzj//fBGZWFeuuOIKOf300+VrX/uaLF26VO677z75v//3/8q3vvUtnZuBjEStL8PDw9Lb2zv275deekk2b94sU6ZMGRv9QnFFrS9/+Zd/KV/84hfl3nvvlblz546tdTFlyhSZMmWKtu1ANqLWlzVr1sgJJ5wg7e3tMjQ0JA899JCsW7dO7rzzTp2bERpBeo7t2bNnwmhof3+/PP744/KjH/1IU6lgInddWb16tTQ1Ncnq1avlpZdekkMOOUTOPvts+dKXvqSxlDCFu7689dZbsnr1ann++edlypQp8uEPf1jWrVsn06dP11dIZOLFF1+U888/X/bt2yeHHHKIvP/975cnn3xSDjnkEBGZWFdOOeUUuffee2X16tXy+c9/Xo4++mi5//77uUd6SUStLy+//LIcf/zxY4/Xrl0ra9euldNPP102bdqUdfGRsaj15c4775Th4WH5gz/4g7rPue666+T666/PsujQIGp9+c1vfiOXXnqpvPjii3LggQfKggUL5J577pE//MM/1LUJkTTVyG0FAAAAAMAIzEkHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAAAAAYAiCdAAAAAAADEGQDgAAAACAIQjSAQAAAAAwBEE6AAAAAACGIEgHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAgED//d//LbNmzZIvf/nLY8898cQT0tLSIo899pjGkgEAUDxNtVqtprsQAADAbA899JAsW7ZMnnjiCeno6JDjjjtOPvrRj8qtt96qu2gAABQKQToAAAjlsssuk0cffVROOOEEee655+Spp56S1tZW3cUCAKBQCNIBAEAov/3tb2XRokWyd+9eefrpp+WYY47RXSQAAAqHOekAACCUXbt2ycsvvyyjo6Oye/du3cUBAKCQGEkHAAANDQ8Py+/+7u/KcccdJx0dHXL77bfLc889J4ceeqjuogEAUCgE6QAAoKE///M/l3/6p3+S//qv/5IpU6bI6aefLtOmTZMHHnhAd9EAACgU0t0BAECgTZs2ye233y7r1q2TtrY2aW5ulnXr1sm///u/y5133qm7eAAAFAoj6QAAAAAAGIKRdAAAAAAADEGQDgAAAACAIQjSAQAAAAAwBEE6AAAAAACGIEgHAAAAAMAQBOkAAAAAABiCIB0AAAAAAEMQpAMAAAAAYAiCdAAAAAAADEGQDgAAAACAIQjSAQAAAAAwxP8H4+WiiCBgfwAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Исходные данные:\n", + "[[5.13674887 5.16221778]\n", + " [4.94241158 4.94308454]\n", + " [4.99116866 5.07366791]\n", + " ...\n", + " [4.98843693 5.00884997]\n", + " [5.05916488 5.16125265]\n", + " [5.0019012 4.83264375]]\n", + "Размерность данных: (1000, 2)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "patience = 300\n", + "ae1_trained, IRE1, IREth1 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE1.h5',\n", + " 'out/AE1_ire_th.txt',\n", + " 1000, # количество эпох\n", + " False, # показывать процесс обучения\n", + " patience\n", + ")\n", + "\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "CYwFfeekdkiP", + "outputId": "30e855c9-b215-48fa-b448-6799f4a1c0c7" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 1\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 1\n", + "Epoch 1/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1s/step - loss: 21.0803\n", + "Epoch 2/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 21.0524\n", + "Epoch 3/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 21.0245\n", + "Epoch 4/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.9967\n", + "Epoch 5/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.9690\n", + "Epoch 6/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.9413\n", + "Epoch 7/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.9137\n", + "Epoch 8/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.8862\n", + "Epoch 9/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.8587\n", + "Epoch 10/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.8313\n", + "Epoch 11/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.8040\n", + "Epoch 12/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.7768\n", + "Epoch 13/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.7496\n", + "Epoch 14/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.7225\n", + "Epoch 15/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 20.6954\n", + "Epoch 16/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.6685\n", + "Epoch 17/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.6415\n", + "Epoch 18/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.6147\n", + "Epoch 19/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.5879\n", + "Epoch 20/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.5612\n", + "Epoch 21/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 20.5346\n", + "Epoch 22/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 20.5080\n", + "Epoch 23/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 20.4815\n", + "Epoch 24/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 20.4551\n", + "Epoch 25/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.4287\n", + "Epoch 26/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 20.4024\n", + "Epoch 27/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.3762\n", + "Epoch 28/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.3500\n", + "Epoch 29/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.3239\n", + "Epoch 30/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 20.2979\n", + "Epoch 31/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 20.2719\n", + "Epoch 32/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.2460\n", + "Epoch 33/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.2201\n", + "Epoch 34/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 20.1943\n", + "Epoch 35/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.1686\n", + "Epoch 36/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 20.1429\n", + "Epoch 37/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 20.1173\n", + "Epoch 38/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.0917\n", + "Epoch 39/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.0662\n", + "Epoch 40/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.0408\n", + "Epoch 41/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 20.0154\n", + "Epoch 42/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 19.9901\n", + "Epoch 43/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.9648\n", + "Epoch 44/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 19.9396\n", + "Epoch 45/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 19.9145\n", + "Epoch 46/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 19.8894\n", + "Epoch 47/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.8644\n", + "Epoch 48/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 19.8394\n", + "Epoch 49/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.8144\n", + "Epoch 50/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.7896\n", + "Epoch 51/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 19.7647\n", + "Epoch 52/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 19.7400\n", + "Epoch 53/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.7152\n", + "Epoch 54/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.6906\n", + "Epoch 55/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 19.6660\n", + "Epoch 56/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.6414\n", + "Epoch 57/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.6169\n", + "Epoch 58/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 19.5924\n", + "Epoch 59/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.5680\n", + "Epoch 60/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.5436\n", + "Epoch 61/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 19.5193\n", + "Epoch 62/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.4951\n", + "Epoch 63/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.4708\n", + "Epoch 64/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.4467\n", + "Epoch 65/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.4226\n", + "Epoch 66/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.3985\n", + "Epoch 67/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.3744\n", + "Epoch 68/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.3505\n", + "Epoch 69/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.3265\n", + "Epoch 70/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.3026\n", + "Epoch 71/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.2788\n", + "Epoch 72/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.2550\n", + "Epoch 73/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 19.2313\n", + "Epoch 74/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 19.2076\n", + "Epoch 75/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.1839\n", + "Epoch 76/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 19.1603\n", + "Epoch 77/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 19.1367\n", + "Epoch 78/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 19.1132\n", + "Epoch 79/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 19.0897\n", + "Epoch 80/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 19.0663\n", + "Epoch 81/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.0429\n", + "Epoch 82/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.0195\n", + "Epoch 83/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 18.9962\n", + "Epoch 84/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.9729\n", + "Epoch 85/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 18.9497\n", + "Epoch 86/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.9265\n", + "Epoch 87/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.9034\n", + "Epoch 88/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.8803\n", + "Epoch 89/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.8573\n", + "Epoch 90/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 18.8342\n", + "Epoch 91/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.8113\n", + "Epoch 92/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 18.7883\n", + "Epoch 93/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.7655\n", + "Epoch 94/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 18.7426\n", + "Epoch 95/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.7198\n", + "Epoch 96/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.6970\n", + "Epoch 97/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.6743\n", + "Epoch 98/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 18.6516\n", + "Epoch 99/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 18.6290\n", + "Epoch 100/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.6064\n", + "Epoch 101/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.5838\n", + "Epoch 102/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 18.5613\n", + "Epoch 103/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 18.5388\n", + "Epoch 104/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 18.5163\n", + "Epoch 105/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 18.4939\n", + "Epoch 106/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 18.4715\n", + "Epoch 107/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 18.4492\n", + "Epoch 108/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 18.4269\n", + "Epoch 109/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 18.4047\n", + "Epoch 110/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 18.3824\n", + "Epoch 111/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 18.3603\n", + "Epoch 112/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 18.3381\n", + "Epoch 113/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 18.3160\n", + "Epoch 114/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 18.2940\n", + "Epoch 115/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 18.2719\n", + "Epoch 116/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 18.2499\n", + "Epoch 117/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 18.2280\n", + "Epoch 118/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 18.2061\n", + "Epoch 119/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 18.1842\n", + "Epoch 120/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 18.1623\n", + "Epoch 121/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 18.1405\n", + "Epoch 122/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 18.1188\n", + "Epoch 123/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 18.0970\n", + "Epoch 124/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 18.0753\n", + "Epoch 125/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 18.0537\n", + "Epoch 126/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 18.0320\n", + "Epoch 127/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 18.0104\n", + "Epoch 128/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 17.9889\n", + "Epoch 129/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 17.9674\n", + "Epoch 130/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 17.9459\n", + "Epoch 131/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 17.9244\n", + "Epoch 132/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 17.9030\n", + "Epoch 133/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 17.8816\n", + "Epoch 134/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 17.8603\n", + "Epoch 135/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 17.8390\n", + "Epoch 136/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 17.8177\n", + "Epoch 137/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 17.7965\n", + "Epoch 138/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 17.7753\n", + "Epoch 139/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 17.7541\n", + "Epoch 140/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 17.7330\n", + "Epoch 141/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 17.7119\n", + "Epoch 142/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 17.6908\n", + "Epoch 143/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 17.6698\n", + "Epoch 144/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 17.6488\n", + "Epoch 145/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 17.6278\n", + "Epoch 146/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 17.6069\n", + "Epoch 147/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 17.5860\n", + "Epoch 148/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 17.5651\n", + "Epoch 149/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 17.5443\n", + "Epoch 150/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 17.5235\n", + "Epoch 151/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 17.5027\n", + "Epoch 152/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 17.4820\n", + "Epoch 153/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 17.4613\n", + "Epoch 154/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 17.4406\n", + "Epoch 155/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 17.4200\n", + "Epoch 156/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 17.3994\n", + "Epoch 157/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 17.3788\n", + "Epoch 158/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 17.3583\n", + "Epoch 159/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 17.3378\n", + "Epoch 160/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.3173\n", + "Epoch 161/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 17.2968\n", + "Epoch 162/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 17.2764\n", + "Epoch 163/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 17.2560\n", + "Epoch 164/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 17.2357\n", + "Epoch 165/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 17.2154\n", + "Epoch 166/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 17.1951\n", + "Epoch 167/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 17.1748\n", + "Epoch 168/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.1546\n", + "Epoch 169/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 17.1344\n", + "Epoch 170/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.1143\n", + "Epoch 171/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.0941\n", + "Epoch 172/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 17.0740\n", + "Epoch 173/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 17.0540\n", + "Epoch 174/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 17.0339\n", + "Epoch 175/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 17.0139\n", + "Epoch 176/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.9940\n", + "Epoch 177/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.9740\n", + "Epoch 178/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 16.9541\n", + "Epoch 179/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.9342\n", + "Epoch 180/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 16.9144\n", + "Epoch 181/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 16.8945\n", + "Epoch 182/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 16.8747\n", + "Epoch 183/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.8550\n", + "Epoch 184/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.8352\n", + "Epoch 185/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.8155\n", + "Epoch 186/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.7958\n", + "Epoch 187/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.7762\n", + "Epoch 188/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 16.7566\n", + "Epoch 189/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 16.7370\n", + "Epoch 190/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.7174\n", + "Epoch 191/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 16.6979\n", + "Epoch 192/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 16.6784\n", + "Epoch 193/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.6589\n", + "Epoch 194/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.6395\n", + "Epoch 195/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.6201\n", + "Epoch 196/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 16.6007\n", + "Epoch 197/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.5813\n", + "Epoch 198/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 16.5620\n", + "Epoch 199/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 16.5427\n", + "Epoch 200/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 16.5234\n", + "Epoch 201/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 16.5042\n", + "Epoch 202/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 16.4849\n", + "Epoch 203/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.4657\n", + "Epoch 204/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.4466\n", + "Epoch 205/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.4274\n", + "Epoch 206/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.4083\n", + "Epoch 207/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 16.3893\n", + "Epoch 208/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 16.3702\n", + "Epoch 209/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 16.3512\n", + "Epoch 210/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 16.3322\n", + "Epoch 211/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 16.3132\n", + "Epoch 212/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 16.2943\n", + "Epoch 213/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.2754\n", + "Epoch 214/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.2565\n", + "Epoch 215/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 16.2376\n", + "Epoch 216/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.2188\n", + "Epoch 217/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 16.2000\n", + "Epoch 218/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.1812\n", + "Epoch 219/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.1624\n", + "Epoch 220/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.1437\n", + "Epoch 221/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.1250\n", + "Epoch 222/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.1063\n", + "Epoch 223/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 16.0877\n", + "Epoch 224/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 16.0690\n", + "Epoch 225/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 16.0505\n", + "Epoch 226/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.0319\n", + "Epoch 227/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.0133\n", + "Epoch 228/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 15.9948\n", + "Epoch 229/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.9763\n", + "Epoch 230/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 15.9579\n", + "Epoch 231/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.9394\n", + "Epoch 232/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.9210\n", + "Epoch 233/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.9026\n", + "Epoch 234/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.8842\n", + "Epoch 235/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.8659\n", + "Epoch 236/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.8476\n", + "Epoch 237/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.8293\n", + "Epoch 238/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.8110\n", + "Epoch 239/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.7928\n", + "Epoch 240/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.7746\n", + "Epoch 241/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.7564\n", + "Epoch 242/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.7382\n", + "Epoch 243/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.7201\n", + "Epoch 244/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 15.7020\n", + "Epoch 245/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 15.6839\n", + "Epoch 246/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.6658\n", + "Epoch 247/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.6478\n", + "Epoch 248/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.6298\n", + "Epoch 249/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.6118\n", + "Epoch 250/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.5938\n", + "Epoch 251/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.5759\n", + "Epoch 252/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.5579\n", + "Epoch 253/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.5400\n", + "Epoch 254/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.5222\n", + "Epoch 255/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.5043\n", + "Epoch 256/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.4865\n", + "Epoch 257/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.4687\n", + "Epoch 258/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.4509\n", + "Epoch 259/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.4332\n", + "Epoch 260/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.4155\n", + "Epoch 261/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 15.3977\n", + "Epoch 262/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.3801\n", + "Epoch 263/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.3624\n", + "Epoch 264/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.3448\n", + "Epoch 265/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 15.3272\n", + "Epoch 266/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.3096\n", + "Epoch 267/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.2920\n", + "Epoch 268/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.2745\n", + "Epoch 269/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.2570\n", + "Epoch 270/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 15.2395\n", + "Epoch 271/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.2220\n", + "Epoch 272/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.2045\n", + "Epoch 273/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 15.1871\n", + "Epoch 274/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.1697\n", + "Epoch 275/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 15.1523\n", + "Epoch 276/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 15.1350\n", + "Epoch 277/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 15.1176\n", + "Epoch 278/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 15.1003\n", + "Epoch 279/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 15.0830\n", + "Epoch 280/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 15.0658\n", + "Epoch 281/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 15.0485\n", + "Epoch 282/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 15.0313\n", + "Epoch 283/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.0141\n", + "Epoch 284/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.9969\n", + "Epoch 285/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.9798\n", + "Epoch 286/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.9626\n", + "Epoch 287/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.9455\n", + "Epoch 288/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.9284\n", + "Epoch 289/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.9114\n", + "Epoch 290/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.8943\n", + "Epoch 291/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.8773\n", + "Epoch 292/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.8603\n", + "Epoch 293/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.8433\n", + "Epoch 294/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.8263\n", + "Epoch 295/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.8094\n", + "Epoch 296/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.7925\n", + "Epoch 297/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 14.7756\n", + "Epoch 298/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.7587\n", + "Epoch 299/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.7419\n", + "Epoch 300/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.7250\n", + "Epoch 301/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 14.7082\n", + "Epoch 302/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 14.6914\n", + "Epoch 303/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.6746\n", + "Epoch 304/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.6579\n", + "Epoch 305/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 14.6412\n", + "Epoch 306/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.6245\n", + "Epoch 307/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.6078\n", + "Epoch 308/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.5911\n", + "Epoch 309/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.5745\n", + "Epoch 310/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.5579\n", + "Epoch 311/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.5413\n", + "Epoch 312/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.5247\n", + "Epoch 313/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 14.5081\n", + "Epoch 314/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 14.4916\n", + "Epoch 315/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 14.4751\n", + "Epoch 316/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.4586\n", + "Epoch 317/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 14.4421\n", + "Epoch 318/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.4256\n", + "Epoch 319/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 14.4092\n", + "Epoch 320/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 14.3928\n", + "Epoch 321/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 14.3764\n", + "Epoch 322/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 14.3600\n", + "Epoch 323/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 14.3436\n", + "Epoch 324/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 14.3273\n", + "Epoch 325/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 14.3110\n", + "Epoch 326/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 14.2947\n", + "Epoch 327/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 14.2784\n", + "Epoch 328/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 14.2621\n", + "Epoch 329/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 14.2459\n", + "Epoch 330/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 14.2297\n", + "Epoch 331/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 14.2135\n", + "Epoch 332/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 14.1973\n", + "Epoch 333/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 14.1811\n", + "Epoch 334/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 14.1650\n", + "Epoch 335/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 14.1489\n", + "Epoch 336/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 14.1328\n", + "Epoch 337/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 14.1167\n", + "Epoch 338/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 14.1006\n", + "Epoch 339/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 14.0846\n", + "Epoch 340/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 14.0686\n", + "Epoch 341/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 14.0526\n", + "Epoch 342/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 14.0366\n", + "Epoch 343/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 14.0206\n", + "Epoch 344/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 14.0047\n", + "Epoch 345/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 13.9887\n", + "Epoch 346/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 13.9728\n", + "Epoch 347/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 13.9569\n", + "Epoch 348/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 13.9411\n", + "Epoch 349/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 13.9252\n", + "Epoch 350/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 13.9094\n", + "Epoch 351/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 13.8936\n", + "Epoch 352/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 13.8778\n", + "Epoch 353/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 13.8620\n", + "Epoch 354/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 13.8463\n", + "Epoch 355/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 13.8305\n", + "Epoch 356/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.8148\n", + "Epoch 357/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.7991\n", + "Epoch 358/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.7834\n", + "Epoch 359/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.7677\n", + "Epoch 360/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.7521\n", + "Epoch 361/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.7365\n", + "Epoch 362/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.7209\n", + "Epoch 363/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.7053\n", + "Epoch 364/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.6897\n", + "Epoch 365/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.6741\n", + "Epoch 366/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.6586\n", + "Epoch 367/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.6431\n", + "Epoch 368/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.6276\n", + "Epoch 369/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 13.6121\n", + "Epoch 370/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.5966\n", + "Epoch 371/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.5812\n", + "Epoch 372/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 13.5658\n", + "Epoch 373/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.5503\n", + "Epoch 374/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 13.5350\n", + "Epoch 375/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.5196\n", + "Epoch 376/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.5042\n", + "Epoch 377/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.4889\n", + "Epoch 378/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.4736\n", + "Epoch 379/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.4583\n", + "Epoch 380/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.4430\n", + "Epoch 381/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.4277\n", + "Epoch 382/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.4124\n", + "Epoch 383/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 13.3972\n", + "Epoch 384/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.3820\n", + "Epoch 385/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.3668\n", + "Epoch 386/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.3516\n", + "Epoch 387/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 13.3365\n", + "Epoch 388/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 13.3213\n", + "Epoch 389/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 13.3062\n", + "Epoch 390/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.2911\n", + "Epoch 391/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 13.2760\n", + "Epoch 392/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.2609\n", + "Epoch 393/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.2458\n", + "Epoch 394/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.2308\n", + "Epoch 395/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.2158\n", + "Epoch 396/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.2007\n", + "Epoch 397/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.1858\n", + "Epoch 398/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.1708\n", + "Epoch 399/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 13.1558\n", + "Epoch 400/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.1409\n", + "Epoch 401/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.1260\n", + "Epoch 402/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 13.1110\n", + "Epoch 403/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 13.0962\n", + "Epoch 404/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.0813\n", + "Epoch 405/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.0664\n", + "Epoch 406/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 13.0516\n", + "Epoch 407/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 13.0368\n", + "Epoch 408/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 13.0220\n", + "Epoch 409/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.0072\n", + "Epoch 410/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.9924\n", + "Epoch 411/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.9776\n", + "Epoch 412/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.9629\n", + "Epoch 413/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.9482\n", + "Epoch 414/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.9335\n", + "Epoch 415/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.9188\n", + "Epoch 416/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.9041\n", + "Epoch 417/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.8894\n", + "Epoch 418/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.8748\n", + "Epoch 419/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.8602\n", + "Epoch 420/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 12.8456\n", + "Epoch 421/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.8310\n", + "Epoch 422/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.8164\n", + "Epoch 423/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.8018\n", + "Epoch 424/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.7873\n", + "Epoch 425/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.7727\n", + "Epoch 426/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 12.7582\n", + "Epoch 427/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.7437\n", + "Epoch 428/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.7293\n", + "Epoch 429/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.7148\n", + "Epoch 430/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.7003\n", + "Epoch 431/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.6859\n", + "Epoch 432/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.6715\n", + "Epoch 433/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.6571\n", + "Epoch 434/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.6427\n", + "Epoch 435/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.6283\n", + "Epoch 436/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.6140\n", + "Epoch 437/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.5996\n", + "Epoch 438/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 12.5853\n", + "Epoch 439/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.5710\n", + "Epoch 440/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.5567\n", + "Epoch 441/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.5424\n", + "Epoch 442/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 12.5282\n", + "Epoch 443/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.5139\n", + "Epoch 444/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 12.4997\n", + "Epoch 445/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.4855\n", + "Epoch 446/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.4713\n", + "Epoch 447/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.4571\n", + "Epoch 448/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.4430\n", + "Epoch 449/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.4288\n", + "Epoch 450/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.4147\n", + "Epoch 451/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 12.4005\n", + "Epoch 452/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 12.3864\n", + "Epoch 453/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.3723\n", + "Epoch 454/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.3583\n", + "Epoch 455/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 12.3442\n", + "Epoch 456/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.3302\n", + "Epoch 457/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.3161\n", + "Epoch 458/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 12.3021\n", + "Epoch 459/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.2881\n", + "Epoch 460/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 12.2741\n", + "Epoch 461/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 12.2602\n", + "Epoch 462/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 12.2462\n", + "Epoch 463/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.2323\n", + "Epoch 464/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.2184\n", + "Epoch 465/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.2044\n", + "Epoch 466/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.1906\n", + "Epoch 467/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 12.1767\n", + "Epoch 468/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.1628\n", + "Epoch 469/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 12.1490\n", + "Epoch 470/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.1351\n", + "Epoch 471/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.1213\n", + "Epoch 472/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.1075\n", + "Epoch 473/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.0937\n", + "Epoch 474/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 12.0799\n", + "Epoch 475/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 12.0662\n", + "Epoch 476/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 12.0524\n", + "Epoch 477/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 12.0387\n", + "Epoch 478/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 12.0250\n", + "Epoch 479/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 12.0113\n", + "Epoch 480/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.9976\n", + "Epoch 481/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.9839\n", + "Epoch 482/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.9703\n", + "Epoch 483/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.9566\n", + "Epoch 484/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.9430\n", + "Epoch 485/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.9294\n", + "Epoch 486/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 11.9158\n", + "Epoch 487/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.9022\n", + "Epoch 488/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.8886\n", + "Epoch 489/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.8751\n", + "Epoch 490/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.8615\n", + "Epoch 491/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.8480\n", + "Epoch 492/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.8345\n", + "Epoch 493/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.8210\n", + "Epoch 494/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.8075\n", + "Epoch 495/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 11.7940\n", + "Epoch 496/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.7806\n", + "Epoch 497/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.7671\n", + "Epoch 498/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.7537\n", + "Epoch 499/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.7403\n", + "Epoch 500/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.7269\n", + "Epoch 501/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 11.7135\n", + "Epoch 502/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 11.7001\n", + "Epoch 503/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.6867\n", + "Epoch 504/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 11.6734\n", + "Epoch 505/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.6601\n", + "Epoch 506/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 11.6468\n", + "Epoch 507/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 11.6335\n", + "Epoch 508/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.6202\n", + "Epoch 509/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 11.6069\n", + "Epoch 510/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.5936\n", + "Epoch 511/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 11.5804\n", + "Epoch 512/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 11.5671\n", + "Epoch 513/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 11.5539\n", + "Epoch 514/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 11.5407\n", + "Epoch 515/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 11.5275\n", + "Epoch 516/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.5144\n", + "Epoch 517/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 11.5012\n", + "Epoch 518/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 11.4880\n", + "Epoch 519/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 11.4749\n", + "Epoch 520/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 11.4618\n", + "Epoch 521/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 11.4487\n", + "Epoch 522/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 11.4356\n", + "Epoch 523/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 11.4225\n", + "Epoch 524/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 11.4094\n", + "Epoch 525/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 11.3964\n", + "Epoch 526/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 11.3833\n", + "Epoch 527/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 11.3703\n", + "Epoch 528/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 11.3573\n", + "Epoch 529/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 11.3443\n", + "Epoch 530/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 11.3313\n", + "Epoch 531/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 11.3183\n", + "Epoch 532/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 11.3054\n", + "Epoch 533/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 11.2924\n", + "Epoch 534/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 11.2795\n", + "Epoch 535/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 11.2666\n", + "Epoch 536/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 11.2536\n", + "Epoch 537/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 11.2408\n", + "Epoch 538/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 11.2279\n", + "Epoch 539/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 11.2150\n", + "Epoch 540/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 11.2022\n", + "Epoch 541/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 11.1893\n", + "Epoch 542/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 11.1765\n", + "Epoch 543/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 11.1637\n", + "Epoch 544/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 11.1509\n", + "Epoch 545/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 11.1381\n", + "Epoch 546/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 11.1253\n", + "Epoch 547/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 11.1125\n", + "Epoch 548/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 11.0998\n", + "Epoch 549/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 11.0871\n", + "Epoch 550/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 11.0743\n", + "Epoch 551/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 11.0616\n", + "Epoch 552/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 11.0489\n", + "Epoch 553/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 11.0362\n", + "Epoch 554/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 11.0236\n", + "Epoch 555/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 11.0109\n", + "Epoch 556/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 10.9983\n", + "Epoch 557/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 10.9856\n", + "Epoch 558/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 10.9730\n", + "Epoch 559/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 10.9604\n", + "Epoch 560/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.9478\n", + "Epoch 561/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.9352\n", + "Epoch 562/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.9227\n", + "Epoch 563/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.9101\n", + "Epoch 564/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.8976\n", + "Epoch 565/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.8850\n", + "Epoch 566/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.8725\n", + "Epoch 567/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.8600\n", + "Epoch 568/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 10.8475\n", + "Epoch 569/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.8351\n", + "Epoch 570/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 10.8226\n", + "Epoch 571/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.8101\n", + "Epoch 572/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.7977\n", + "Epoch 573/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.7853\n", + "Epoch 574/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.7729\n", + "Epoch 575/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 10.7605\n", + "Epoch 576/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 10.7481\n", + "Epoch 577/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.7357\n", + "Epoch 578/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.7233\n", + "Epoch 579/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.7110\n", + "Epoch 580/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.6986\n", + "Epoch 581/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.6863\n", + "Epoch 582/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.6740\n", + "Epoch 583/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.6617\n", + "Epoch 584/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.6494\n", + "Epoch 585/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.6371\n", + "Epoch 586/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 10.6249\n", + "Epoch 587/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.6126\n", + "Epoch 588/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.6004\n", + "Epoch 589/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.5881\n", + "Epoch 590/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.5759\n", + "Epoch 591/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.5637\n", + "Epoch 592/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.5515\n", + "Epoch 593/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 10.5394\n", + "Epoch 594/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.5272\n", + "Epoch 595/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.5150\n", + "Epoch 596/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.5029\n", + "Epoch 597/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.4908\n", + "Epoch 598/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.4787\n", + "Epoch 599/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 10.4665\n", + "Epoch 600/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.4545\n", + "Epoch 601/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 10.4424\n", + "Epoch 602/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 10.4303\n", + "Epoch 603/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.4183\n", + "Epoch 604/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.4062\n", + "Epoch 605/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 10.3942\n", + "Epoch 606/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.3822\n", + "Epoch 607/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 10.3701\n", + "Epoch 608/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.3582\n", + "Epoch 609/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 10.3462\n", + "Epoch 610/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.3342\n", + "Epoch 611/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.3222\n", + "Epoch 612/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.3103\n", + "Epoch 613/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.2984\n", + "Epoch 614/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.2864\n", + "Epoch 615/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 10.2745\n", + "Epoch 616/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 10.2626\n", + "Epoch 617/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.2507\n", + "Epoch 618/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.2389\n", + "Epoch 619/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 10.2270\n", + "Epoch 620/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.2151\n", + "Epoch 621/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.2033\n", + "Epoch 622/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 10.1915\n", + "Epoch 623/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 10.1797\n", + "Epoch 624/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 10.1679\n", + "Epoch 625/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.1561\n", + "Epoch 626/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.1443\n", + "Epoch 627/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 10.1325\n", + "Epoch 628/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 10.1208\n", + "Epoch 629/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.1090\n", + "Epoch 630/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 10.0973\n", + "Epoch 631/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 10.0856\n", + "Epoch 632/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 10.0738\n", + "Epoch 633/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 10.0621\n", + "Epoch 634/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.0505\n", + "Epoch 635/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 10.0388\n", + "Epoch 636/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 10.0271\n", + "Epoch 637/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.0155\n", + "Epoch 638/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 10.0038\n", + "Epoch 639/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.9922\n", + "Epoch 640/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.9806\n", + "Epoch 641/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.9690\n", + "Epoch 642/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 9.9574\n", + "Epoch 643/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.9458\n", + "Epoch 644/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 9.9342\n", + "Epoch 645/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 9.9227\n", + "Epoch 646/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 9.9111\n", + "Epoch 647/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.8996\n", + "Epoch 648/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 9.8881\n", + "Epoch 649/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.8765\n", + "Epoch 650/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 9.8650\n", + "Epoch 651/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.8535\n", + "Epoch 652/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 9.8421\n", + "Epoch 653/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.8306\n", + "Epoch 654/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 9.8191\n", + "Epoch 655/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 9.8077\n", + "Epoch 656/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.7963\n", + "Epoch 657/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 9.7848\n", + "Epoch 658/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 9.7734\n", + "Epoch 659/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.7620\n", + "Epoch 660/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.7506\n", + "Epoch 661/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.7393\n", + "Epoch 662/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.7279\n", + "Epoch 663/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.7165\n", + "Epoch 664/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.7052\n", + "Epoch 665/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.6939\n", + "Epoch 666/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.6825\n", + "Epoch 667/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.6712\n", + "Epoch 668/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 9.6599\n", + "Epoch 669/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 9.6486\n", + "Epoch 670/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.6374\n", + "Epoch 671/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 9.6261\n", + "Epoch 672/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.6148\n", + "Epoch 673/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.6036\n", + "Epoch 674/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 9.5924\n", + "Epoch 675/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.5811\n", + "Epoch 676/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.5699\n", + "Epoch 677/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 9.5587\n", + "Epoch 678/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 9.5476\n", + "Epoch 679/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 9.5364\n", + "Epoch 680/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 9.5252\n", + "Epoch 681/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 9.5141\n", + "Epoch 682/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 9.5029\n", + "Epoch 683/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 9.4918\n", + "Epoch 684/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 9.4807\n", + "Epoch 685/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 9.4695\n", + "Epoch 686/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.4584\n", + "Epoch 687/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 9.4474\n", + "Epoch 688/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 9.4363\n", + "Epoch 689/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 9.4252\n", + "Epoch 690/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 9.4142\n", + "Epoch 691/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 9.4031\n", + "Epoch 692/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 9.3921\n", + "Epoch 693/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 9.3811\n", + "Epoch 694/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 9.3700\n", + "Epoch 695/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 9.3590\n", + "Epoch 696/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 9.3481\n", + "Epoch 697/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 9.3371\n", + "Epoch 698/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 9.3261\n", + "Epoch 699/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 9.3151\n", + "Epoch 700/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 9.3042\n", + "Epoch 701/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 9.2933\n", + "Epoch 702/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 9.2823\n", + "Epoch 703/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 9.2714\n", + "Epoch 704/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 9.2605\n", + "Epoch 705/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 9.2496\n", + "Epoch 706/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 9.2387\n", + "Epoch 707/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 9.2279\n", + "Epoch 708/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 9.2170\n", + "Epoch 709/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 9.2062\n", + "Epoch 710/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 9.1953\n", + "Epoch 711/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 9.1845\n", + "Epoch 712/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 9.1737\n", + "Epoch 713/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 9.1629\n", + "Epoch 714/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 9.1521\n", + "Epoch 715/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 9.1413\n", + "Epoch 716/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 9.1305\n", + "Epoch 717/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 9.1197\n", + "Epoch 718/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 9.1090\n", + "Epoch 719/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 9.0982\n", + "Epoch 720/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 9.0875\n", + "Epoch 721/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 9.0768\n", + "Epoch 722/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 9.0661\n", + "Epoch 723/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 9.0554\n", + "Epoch 724/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 9.0447\n", + "Epoch 725/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 9.0340\n", + "Epoch 726/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 9.0233\n", + "Epoch 727/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 9.0127\n", + "Epoch 728/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 9.0020\n", + "Epoch 729/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 8.9914\n", + "Epoch 730/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.9807\n", + "Epoch 731/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.9701\n", + "Epoch 732/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.9595\n", + "Epoch 733/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.9489\n", + "Epoch 734/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.9383\n", + "Epoch 735/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 8.9277\n", + "Epoch 736/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 8.9172\n", + "Epoch 737/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.9066\n", + "Epoch 738/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 8.8961\n", + "Epoch 739/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.8855\n", + "Epoch 740/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.8750\n", + "Epoch 741/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.8645\n", + "Epoch 742/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.8540\n", + "Epoch 743/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.8435\n", + "Epoch 744/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.8330\n", + "Epoch 745/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.8225\n", + "Epoch 746/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.8121\n", + "Epoch 747/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.8016\n", + "Epoch 748/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.7912\n", + "Epoch 749/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.7807\n", + "Epoch 750/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 8.7703\n", + "Epoch 751/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.7599\n", + "Epoch 752/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.7495\n", + "Epoch 753/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.7391\n", + "Epoch 754/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.7287\n", + "Epoch 755/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.7184\n", + "Epoch 756/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.7080\n", + "Epoch 757/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.6977\n", + "Epoch 758/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.6873\n", + "Epoch 759/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.6770\n", + "Epoch 760/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.6667\n", + "Epoch 761/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.6563\n", + "Epoch 762/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.6460\n", + "Epoch 763/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.6358\n", + "Epoch 764/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.6255\n", + "Epoch 765/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 8.6152\n", + "Epoch 766/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 8.6049\n", + "Epoch 767/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.5947\n", + "Epoch 768/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.5845\n", + "Epoch 769/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 8.5742\n", + "Epoch 770/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.5640\n", + "Epoch 771/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.5538\n", + "Epoch 772/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.5436\n", + "Epoch 773/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.5334\n", + "Epoch 774/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.5232\n", + "Epoch 775/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.5131\n", + "Epoch 776/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.5029\n", + "Epoch 777/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.4927\n", + "Epoch 778/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 8.4826\n", + "Epoch 779/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 8.4725\n", + "Epoch 780/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 8.4623\n", + "Epoch 781/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 8.4522\n", + "Epoch 782/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.4421\n", + "Epoch 783/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.4320\n", + "Epoch 784/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.4220\n", + "Epoch 785/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.4119\n", + "Epoch 786/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.4018\n", + "Epoch 787/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.3918\n", + "Epoch 788/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.3817\n", + "Epoch 789/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.3717\n", + "Epoch 790/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.3617\n", + "Epoch 791/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.3517\n", + "Epoch 792/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.3417\n", + "Epoch 793/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.3317\n", + "Epoch 794/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.3217\n", + "Epoch 795/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.3117\n", + "Epoch 796/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.3018\n", + "Epoch 797/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.2918\n", + "Epoch 798/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.2819\n", + "Epoch 799/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.2719\n", + "Epoch 800/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.2620\n", + "Epoch 801/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.2521\n", + "Epoch 802/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.2422\n", + "Epoch 803/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.2323\n", + "Epoch 804/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.2224\n", + "Epoch 805/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.2125\n", + "Epoch 806/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.2026\n", + "Epoch 807/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 8.1928\n", + "Epoch 808/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 8.1829\n", + "Epoch 809/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.1731\n", + "Epoch 810/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 8.1633\n", + "Epoch 811/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 8.1535\n", + "Epoch 812/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.1437\n", + "Epoch 813/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.1339\n", + "Epoch 814/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 8.1241\n", + "Epoch 815/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.1143\n", + "Epoch 816/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 8.1045\n", + "Epoch 817/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.0947\n", + "Epoch 818/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.0850\n", + "Epoch 819/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 8.0753\n", + "Epoch 820/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.0655\n", + "Epoch 821/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.0558\n", + "Epoch 822/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 8.0461\n", + "Epoch 823/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 8.0364\n", + "Epoch 824/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 8.0267\n", + "Epoch 825/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 8.0170\n", + "Epoch 826/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 8.0073\n", + "Epoch 827/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.9977\n", + "Epoch 828/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.9880\n", + "Epoch 829/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 7.9784\n", + "Epoch 830/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.9687\n", + "Epoch 831/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.9591\n", + "Epoch 832/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.9495\n", + "Epoch 833/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.9399\n", + "Epoch 834/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.9303\n", + "Epoch 835/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.9207\n", + "Epoch 836/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.9111\n", + "Epoch 837/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.9015\n", + "Epoch 838/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.8920\n", + "Epoch 839/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.8824\n", + "Epoch 840/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.8729\n", + "Epoch 841/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.8633\n", + "Epoch 842/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.8538\n", + "Epoch 843/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.8443\n", + "Epoch 844/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.8348\n", + "Epoch 845/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.8253\n", + "Epoch 846/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.8158\n", + "Epoch 847/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.8063\n", + "Epoch 848/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.7968\n", + "Epoch 849/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 7.7874\n", + "Epoch 850/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.7779\n", + "Epoch 851/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.7685\n", + "Epoch 852/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.7591\n", + "Epoch 853/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 7.7496\n", + "Epoch 854/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.7402\n", + "Epoch 855/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.7308\n", + "Epoch 856/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.7214\n", + "Epoch 857/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.7120\n", + "Epoch 858/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.7027\n", + "Epoch 859/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.6933\n", + "Epoch 860/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.6839\n", + "Epoch 861/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.6746\n", + "Epoch 862/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.6652\n", + "Epoch 863/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.6559\n", + "Epoch 864/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.6466\n", + "Epoch 865/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.6373\n", + "Epoch 866/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.6280\n", + "Epoch 867/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 7.6187\n", + "Epoch 868/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 7.6094\n", + "Epoch 869/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 7.6001\n", + "Epoch 870/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 7.5908\n", + "Epoch 871/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 7.5816\n", + "Epoch 872/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 7.5723\n", + "Epoch 873/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 7.5631\n", + "Epoch 874/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 7.5539\n", + "Epoch 875/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 7.5446\n", + "Epoch 876/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 7.5354\n", + "Epoch 877/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 7.5262\n", + "Epoch 878/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 7.5170\n", + "Epoch 879/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 7.5078\n", + "Epoch 880/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 7.4987\n", + "Epoch 881/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 7.4895\n", + "Epoch 882/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 7.4803\n", + "Epoch 883/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 7.4712\n", + "Epoch 884/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 7.4621\n", + "Epoch 885/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 7.4529\n", + "Epoch 886/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.4438\n", + "Epoch 887/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 7.4347\n", + "Epoch 888/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.4256\n", + "Epoch 889/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 7.4165\n", + "Epoch 890/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 7.4074\n", + "Epoch 891/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 7.3983\n", + "Epoch 892/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 7.3892\n", + "Epoch 893/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 7.3802\n", + "Epoch 894/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 7.3711\n", + "Epoch 895/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 7.3621\n", + "Epoch 896/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 7.3531\n", + "Epoch 897/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 7.3440\n", + "Epoch 898/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 7.3350\n", + "Epoch 899/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 7.3260\n", + "Epoch 900/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 7.3170\n", + "Epoch 901/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 7.3080\n", + "Epoch 902/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.2990\n", + "Epoch 903/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 7.2901\n", + "Epoch 904/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.2811\n", + "Epoch 905/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.2721\n", + "Epoch 906/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.2632\n", + "Epoch 907/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.2543\n", + "Epoch 908/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.2453\n", + "Epoch 909/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.2364\n", + "Epoch 910/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.2275\n", + "Epoch 911/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.2186\n", + "Epoch 912/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.2097\n", + "Epoch 913/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 7.2008\n", + "Epoch 914/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.1920\n", + "Epoch 915/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.1831\n", + "Epoch 916/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 7.1742\n", + "Epoch 917/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.1654\n", + "Epoch 918/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 7.1565\n", + "Epoch 919/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.1477\n", + "Epoch 920/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.1389\n", + "Epoch 921/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 7.1301\n", + "Epoch 922/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 7.1213\n", + "Epoch 923/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.1125\n", + "Epoch 924/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 7.1037\n", + "Epoch 925/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.0949\n", + "Epoch 926/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 7.0861\n", + "Epoch 927/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 7.0774\n", + "Epoch 928/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 7.0686\n", + "Epoch 929/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.0599\n", + "Epoch 930/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.0511\n", + "Epoch 931/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 7.0424\n", + "Epoch 932/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 7.0337\n", + "Epoch 933/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 7.0250\n", + "Epoch 934/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 7.0163\n", + "Epoch 935/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 7.0076\n", + "Epoch 936/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.9989\n", + "Epoch 937/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.9902\n", + "Epoch 938/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.9815\n", + "Epoch 939/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.9729\n", + "Epoch 940/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.9642\n", + "Epoch 941/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.9556\n", + "Epoch 942/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.9470\n", + "Epoch 943/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.9383\n", + "Epoch 944/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 6.9297\n", + "Epoch 945/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.9211\n", + "Epoch 946/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.9125\n", + "Epoch 947/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.9039\n", + "Epoch 948/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.8953\n", + "Epoch 949/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 6.8867\n", + "Epoch 950/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.8782\n", + "Epoch 951/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.8696\n", + "Epoch 952/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.8611\n", + "Epoch 953/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.8525\n", + "Epoch 954/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.8440\n", + "Epoch 955/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.8355\n", + "Epoch 956/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.8270\n", + "Epoch 957/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.8185\n", + "Epoch 958/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.8100\n", + "Epoch 959/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.8015\n", + "Epoch 960/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.7930\n", + "Epoch 961/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 6.7845\n", + "Epoch 962/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.7760\n", + "Epoch 963/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.7676\n", + "Epoch 964/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.7591\n", + "Epoch 965/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.7507\n", + "Epoch 966/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.7423\n", + "Epoch 967/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.7338\n", + "Epoch 968/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 6.7254\n", + "Epoch 969/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.7170\n", + "Epoch 970/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 6.7086\n", + "Epoch 971/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.7002\n", + "Epoch 972/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.6919\n", + "Epoch 973/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.6835\n", + "Epoch 974/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.6751\n", + "Epoch 975/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 6.6668\n", + "Epoch 976/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 6.6584\n", + "Epoch 977/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.6501\n", + "Epoch 978/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.6417\n", + "Epoch 979/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.6334\n", + "Epoch 980/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 6.6251\n", + "Epoch 981/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 6.6168\n", + "Epoch 982/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.6085\n", + "Epoch 983/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 6.6002\n", + "Epoch 984/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 6.5919\n", + "Epoch 985/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.5836\n", + "Epoch 986/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.5754\n", + "Epoch 987/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.5671\n", + "Epoch 988/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 6.5589\n", + "Epoch 989/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.5506\n", + "Epoch 990/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 6.5424\n", + "Epoch 991/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 6.5342\n", + "Epoch 992/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.5259\n", + "Epoch 993/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.5177\n", + "Epoch 994/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.5095\n", + "Epoch 995/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 6.5013\n", + "Epoch 996/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.4932\n", + "Epoch 997/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.4850\n", + "Epoch 998/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 6.4768\n", + "Epoch 999/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 6.4687\n", + "Epoch 1000/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 6.4605\n", + "Epoch 1000/1000\n", + " - loss: 6.4605\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.4605\n", + "Restoring model weights from the end of the best epoch: 1000.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1wFJREFUeJzs3Xd4VMX6wPF3E0JCAqFKb4oICnbFgmAXwYaKBb0KXL12xeu14U9FvXbF3it6Feu1V7CgqCg2LIiIKEiHAAmhhZDs74+5Jztnds7Zs+Vkk/D9PA8Pm2TL2VPmzLzzzkwkGo1GBQAAAAAAAABCkJPtDQAAAAAAAADQcBGABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAHXSzJkz5ZxzzpHttttOmjVrJpFIpObf3Llzs715m6Xx48fXHIORI0fW6mfrxx8AAAD1CwFIAADqkP32268myHLNNdd4Pk8Pxpj/cnNzpUWLFtKzZ0857rjj5LHHHpM1a9aktA3J/stUUOqNN96QnXfeWR588EGZOXNmUtsPAB988IGrbNp2222Tfo9rrrkm5bKwe/fuvu+9aNEief311+XKK6+UQw89VFq3bk0nCwCgQWuU7Q0AAACZVV1dLWVlZVJWVia///67vPzyyzJmzBh55JFH5Oijj8725iW0Zs0aGTlypFRUVIiISIcOHWSfffaRLbbYoib7rbi4OJubmJZrrrlGrr32WhERGTt2rG+gGairunfvLvPmzRMRkT///DNhwK22PfXUU66ff/31V5k2bZr069cvS1sU07FjR1m8eHG2NwMAgFpFABIAgHpu6NCh0qlTp5qfq6urpaSkRKZOnSoLFiwQEZGSkhIZNmyYvPzyy0kFIXffffekGux77rln8A338NZbb8mqVatERKRPnz7y9ddfS5MmTdJ+XwCbh/LycnnllVfifv/UU0+lHIDs2LFjUmVn69atPf9G8BEAsDkiAAkAQD03evRo2W+//eJ+X11dLU899ZScffbZUlFRIdXV1XL22WfLoEGDpLCwMNB7DxkypNYz9L777ruax8OHDyf4WIeMHDmy1ud+dESj0ax8Luqfl19+WdatWyciIk2aNJH169eLiMjzzz8vd955pzRu3Djp9+zZs6fcd999GdvGgoIC2WmnnWT33XeX3XffXdq1ayeDBg3K2PsDAFDXMAckAAANVE5OjowaNUpuvfXWmt8tXbpUXnvttextVABO9qOIGn4NAMnQh19fdtll0q5dOxERWblypbz55pvZ2qwa3333nZSXl8vUqVPlnnvukVNOOUW22WabbG8WAAChIgAJAEADd+aZZ0pBQUHNz59++mkWtyaxysrKmsc5OVRVAAQ3d+7cmjIuEonIiBEjZPjw4TV/N+eGzIadd95ZGjViIBoAYPNCrR4AgAYuPz/ftQLsokWLsrg1dvpqs3qAYNSoUXGry44fP976HmvWrJF77rlHBg0aJJ07d5aCggJp2bKl9O3bV8477zz56quvAm2L/lmOH374QUaPHi19+/aVVq1aSSQSkaFDhyb1HZ3VxZ0FaERErr322kCriY8cOTLu+5eWlsrdd98tAwcOlE6dOkmjRo0kEolIaWmp67XLli2TJ598UkaMGCE777yztGrVSvLy8qRFixbSu3dvGTVqlLz//vuBvsP48eMTrng+efLkmufoUwN89NFHcuKJJ8pWW20lBQUF0rp1axk4cKDcd999rqCzF9txMXXv3j1uFeEFCxbIVVddJTvuuKO0aNFCioqKpHfv3nL++efXLKIS1KRJk+TEE0+Url27SkFBgXTo0EEGDBgg999/v6xdu1ZE3OdypqYvKCkpkdtvv10OOugg6dixoxQUFNQcwz59+siwYcPkjjvukD///DPQ+3344Ydy1llnSZ8+faRVq1aSn58vHTt2lEGDBsl9991XM2TZNHfu3Jrvpu+7Lbfc0noeT548ORNfPylPP/10zXD9ffbZR7p37y6nnHJKzd/fffddWbZsWa1vFwAAmzu63gAA2Azo8yhu2LAhi1sSjrfeekv+8Y9/yJIlS1y/r6iokNLSUpkxY4bcf//9ctJJJ8mjjz4aeA5MERVQuv7666WqqirTm52yzz//XIYPHy7z58/3fd4999wjF110kXXbnZXSZ82aJePHj5cDDjhAXnzxRd/FM1KxceNGOe+88+TRRx91/b6iokKmTJkiU6ZMkSeffFLef/99adOmTUY/+7XXXpORI0dKWVmZ6/ezZs2SWbNmyeOPPy4vvfSSHHbYYQm/w2mnnSbPPPOM6/dLliyRJUuWyGeffSb333+/vPrqqxndfhGR119/XUaNGuWamsDhHMNffvlF/vvf/8odd9xRs/CUzfz58+XUU0+1BgYXL14sixcvlokTJ8pNN90kzz//vAwYMCCTX6VWPP300zWPncDjLrvsIn369JEZM2bIpk2bZMKECXLhhRdmaQsBANg8EYAEAGAzoGc9OvOh1SX9+vWTc889V0RUdtavv/4qIiIHHnig9O7d2/VcPZtTROSFF16Qk08+uSbIlpubK/vss49svfXWsmbNGpkyZUrN958wYYL8+eef8tFHH7mGpXu57bbbajIWe/ToIf369ZPCwkKZO3eu5OXlJfUdjz76aOnbt69MmzZNvv76axHxXmXcbzXx33//XS688EIpKyuTZs2aycCBA6Vjx46yatWquOH1ixYtqtkvW221lWy77bayxRZbSEFBgZSWlspPP/0kM2bMEBGVoXjQQQfJl19+Kfn5+Ul9Nz9nnHGGPPXUU5KTkyN77LGH9O7dW6qrq+XLL7+UWbNmiYiaE+/UU0+Vd955J2Of+8EHH8hZZ50lVVVV0rVrV9lrr72kuLhY/vzzT5k8ebJs2rRJ1q9fL8cff7z8/PPPsuWWW3q+1/Dhw12rKrdq1Ur2228/adWqlcyfP18++eQTmTlzphx22GFy5JFHZuw7fPPNNzJs2DDZtGmTiKiOhD333FO6d+8u+fn5snr1apkzZ4789NNPNYuueJk5c6YceOCBNSswRyIR2WWXXWS77baTJk2ayMKFC+XTTz+V8vJyWbRokRx88MHy7rvvyv7771/zHsXFxTXX6dNPPy3l5eUiInLqqadKs2bN4j6zU6dOGdkPQX322WcyZ84cEVGZ38cdd1zN30455RS5/PLLRUQNwyYACQBALYsCAIA6Y999942KSFREomPHjvV8nvMcEYl+/PHHvu85a9Ys1/Pvu+++jGxDWEaMGFHz+U8++aTvc3///fdo06ZNa57fr1+/6OzZs13Pqaqqio4bNy6ak5NT87zzzz/f8z31fdWoUaNo8+bNo6+++mrc8zZs2JDK14uOHTs26f2r75NGjRpFRSR67rnnRsvLy13P27hxY7Sqqqrm58cffzx67733RhcsWOD53j/88EN0t912q3n/f//7357PffLJJ2ueN2LECOtzPv7445rn5OfnR0Ukuvvuu0dnzpzpel51dXX0rrvucu3vTz75xPOz9ed56datm+uzi4qKov/5z3+i1dXVruf9/PPP0U6dOtU8d9SoUZ7v+dhjj7k++1//+lfcsV+6dGl08ODBru+cietn6NChNe917LHHRleuXGl93vr166Nvv/129Mwzz7T+fc2aNdFtt9225r0GDx4c/f333+OeV1ZWFj377LNrntehQ4doaWmp9T31ff3nn3+m/B0z6fTTT6/ZpmHDhrn+Nn/+fFcZ8MMPPyR8P/1a3XfffUPaauXPP/90nWd1ZZ8CAJApZEACANCAbdq0SUaPHl3zc3FxsZx44omBX//OO+9ISUlJ4Odfd9110qpVq6S2MR3XXXedrFmzRkREtt56a5k4caI0b97c9ZycnBy56KKLJBKJyEUXXSQiIvfff7/885//9M16ExGprq6WN954QwYOHBj3t0xmCSZj06ZNcvrpp8t9990X9zczK/Pvf/97wvfbYYcd5IMPPpDevXvLkiVL5IEHHpAxY8ZIbm5u2ttaUVEhPXv2lI8++kiaNm3q+lskEpHRo0fLZ599Ji+//LKIiDz33HPWfZ2KjRs3ymuvvSaHHnpo3N/69OkjDz/8sBx++OEiIvLSSy/JI488ErcwSFVVlYwdO7bm5zPPPFNuv/32uPdr27atvPbaa7LPPvvUZLdmwpQpU0REnWvjx4+P24eOgoICGTJkiAwZMsT69zvuuENmzpwpIioT9+WXX7Yu8FRcXCwPPPCArFu3Tp566ilZvHixPPTQQ3LZZZdl6BuFZ/369fLiiy/W/KzP+ygi0rlzZ9lvv/3ko48+EhGVBTlu3LjA7z979mw577zzAj//lFNOkT322CPw8wEAaOgIQAIA0MBUV1dLSUmJfP7553LzzTfLtGnTRESkUaNG8sQTTyQ1x9/XX3+dVEDl4osvrrUAZGlpqbzwwgs1P996661xwUfd6NGj5fHHH5cZM2ZIdXW1PPLII3LTTTf5fsawYcMyFhDLlIKCArn11lsz+p7NmzeXo48+Wh588EFZvHix/PLLL7L99ttn5L1vvvlmz8CZiAqSOgFI51zNhMMPP9wafHQMGTJE2rdvL0uWLJE1a9bIzJkz477ze++9JwsXLhQRkaKiIrn55ps9369x48Zy++23y7777puZLyAiq1evFhGRwsJC333op7KysiZYnZ+fLw899FDC1eVvvPHGmsVcnn322XoRgHzttddq9lfr1q1l8ODBcc855ZRTagKQzz77rNxyyy2BV6NetGiR3H///YG3Z7fddiMACQCAhgAkAAD1nD5Hm5devXrJuHHjEi62UZ988cUXUlFRISIibdq0kSOOOML3+Tk5OfL3v/9d/vWvf4mIyMcff5zwM5LJFq0thxxyiLRs2TLp1y1btky+/PJLmTlzpqxatUrWrl1bs1qwiJpv0DF9+vSMBCALCgoSHpedd9655rGzcnUm6PP/2UQiEdlxxx1rFi6aO3du3HfWF2s57LDDpEWLFr7vOXDgQOnatav89ddfKW2zqUuXLvLHH3/IqlWr5IUXXpATTjgh6ff45ptvalZ9PvDAA6Vt27YJX9OxY0fp3bu3zJw5U37++WcpKyvzDe7XBU899VTN4xNPPNE6R+uwYcPk3HPPlXXr1snSpUvl/fffb1BlIgAAdRkBSAAAGrh27drJ008/bV3sJJGxY8fKNddck/mNyoDvv/++5nG/fv0CZTL179/f9fpoNCqRSMTz+bvuumt6GxmCZLfpl19+kcsuu0zefffdwCt5JzPs3k+vXr0SLtajZ+Q6GWyZECSAmuizp0+fXvM4aDZbv379MhaAPP7442uyLocPH14ThNx///0DBRJFRKZOnVrzeMGCBYGHEZeWloqISDQalQULFtTpAOSiRYvkgw8+qPnZHH7taNq0qQwdOlQmTJggIipoGTQAue+++1pXDwcAAMEQgAQAoJ4bOnSoa7XZFStWyJw5c2qGTi9dulQGDBgg//3vf2vmvGsIli9fXvO4W7dugV7TvXv3mscbN26U8vJyKS4u9nz+FltskfL2hSWZbXr//fflqKOOqskUDcpZ3ThdQYJWeoDSWe05G59dWVkZ93f9HOvSpUugz+3cuXOg5wVx5ZVXyuTJk+XLL7+UaDQqr776qrz66qsiItKzZ08ZMGCAHHjggXLEEUdYV6EWkZoV4EVEfvzxR/nxxx+T3o5Vq1al9gVqyTPPPFMTXO/Zs6dvsPiUU06pCUC+8cYbsmrVqpQyigEAQHL8J4ABAAB13ujRo+W+++6r+ffcc8/JtGnT5IcffpAdd9xRRFSwbfjw4TJnzpwsb23mOIvPiKj5+YIwn5co0NakSZPkNyxkQbdp+fLlcsIJJ9QEH7t16yY33XSTfPbZZ7Jo0SJZt26dVFdXSzQalWg06lpspbq6OiPb6pddGrZMfLZ+jhUWFgZ6TapzNdoUFRXJJ598IrfddpsreC6iFkV54okn5OSTT5b27dvLpZdeKuvXr497j7KysrS3I5OB4TDow6//9re/+T734IMPlvbt24uIWiRJn0cWAACEhwAkAAAN1A477CATJ06syY5cs2aNnH766VneqszRAz1r164N9BrzeV5ZYw3Bo48+WhN82nHHHeXHH3+Uyy+/XPr37y8dOnSQJk2auIJ0mcp6bEj0c2zdunWBXhP0XAyqcePGcvHFF8sff/wh06dPl3vuuUdOPPFEV9bzunXr5LbbbpP9998/LgipB90vuOCCmoBzMv/222+/jH6nTPrmm2/kl19+qfl57NixEolEPP81atSoZt5PEXfwEgAAhIcAJAAADVjbtm3l3nvvrfl58uTJ8vbbb2dxizJHH4ocdM49fZGTxo0bN+gA5Icffljz+Morr/Qdai4iMm/evLA3qd5p06ZNzeMFCxYEek3Q5yXLWTTn/PPPl+eee04WLFgg3333nYwaNarmOV999VXcSs3t2rWreawH3hqKdAOIX375pfz2228Z2hoAAOCFOSABAGjgjj76aOnfv798/vnnIqKCUQ1h5Vd99eRp06ZJVVWV5Obm+r7miy++cL0+G0OEa+sz9bn/Ei3IUlVVVXN+IGannXaqCeR+9dVXgV4zbdq0MDfJZeedd5YnnnhCcnNz5bHHHhMRNa/hxRdfXPMcfT7EL774IuHCS0Flc3i9Y+PGjfLcc8/V/NyrV6+EK5U7Zs+eLStXrhQRFcS84YYbwthEAADwP2RAAgCwGdBXsp4+fbq88cYb2duYDNl7770lPz9fRNR8h4kyO6urq+XJJ5+s+fmAAw4Idfu8FBQU1Dy2LXySKTk5sWpeouHDr732WoPMjkuXPvT47bffTjif4meffZaVTNIjjzyy5vHSpUtdf+vfv39NUG7BggXy5ptvZuQza+s89vP222/LihUrRESkUaNG8umnn8qXX34Z6N8VV1xR8z7/+c9/MjbvKQAAsCMACQDAZuCggw6Svffeu+bn66+/PotbkxktWrSQE044oebnSy65xHcew/vuu09++uknEVHBuTPOOCP0bbRp3bp1zeOFCxeG9jlbbbVVzWO/gPPy5cvln//8Z2jbUZ8deuih0rFjRxFRc6jqQSvTxo0bXZmH6aqoqHAtguNn/vz5NY/btm3r+lt+fr5ceOGFNT+fc845SZ13ZkDTUVvnsR99+PXBBx8c9939DB8+vCZIP3/+fPn4448zvn0AACCGACQAAJuJq6++uubx119/Le+9914WtyYzrr766pqFQn777TcZNGiQ/PHHH67nVFdXy9133y0XXXRRze/OPffcuFWFa0vfvn1rHk+cODEjqxTbHHHEETWPb7rpJnnmmWfinvPdd9/JvvvuK/Pnzw+8kvjmpFGjRq7s4QceeEAuu+wy2bhxo+t5y5cvl2OPPVa++uqrmqzcdC1evFi6dOkiF198sXzzzTeez5s0aZJrBfPBgwfHPedf//qX9OnTR0RUsHC33XaTl156yTPrr6SkRB555BHZZZdd5LbbbrM+Rz+PX3rppUDfafz48a4FYfQ5WZNVUlIi77zzTs3PJ598clKv79ixo+y///41P7MYDQAA4WIOSAAANhODBg2SPfbYo2Yuu3//+99y6KGH+r7mnXfekZKSksCfUVhYKLfeemta25mMHj16yGOPPSYnn3yyVFVVydSpU6VXr14yYMAA6dGjh6xZs0amTJniytDac889a3UbTf369ZMuXbrI/PnzZfHixdK7d2855JBDpE2bNjXz6u2+++6u7M5UjBgxQsaNGye//fabVFRUyCmnnCI33nij7LjjjlJQUCA///xzTWBrxx13lEGDBmV1v9RVp59+urz99tvy+uuvi4jIrbfeKo8//rjst99+0qpVK1mwYIF8/PHHsmHDBtlqq63kqKOOkjvvvFNE3MPgU1FaWirjxo2TcePGSatWrWTnnXeWTp06SUFBgSxbtkx+/PFHV8B9m222kdGjR8e9T9OmTeWNN96Qgw46SP78809ZsmSJHH/88dKmTRvZc889pX379hKNRmXlypXyyy+/yOzZs2uCk15TFRx77LHy8MMPi4gKzH777beyyy67SGFhYc1zzj77bOnRo0da+8DLhAkTaoZ+FxUVydChQ5N+j5NPPrlmjs9XXnlFHnjgAdfK57rZs2fLeeedl9T7jxkzxrVaueOhhx6Shx56yPU7M6g9ZMgQady4set3Z511lpx11llJbQMAAHUFAUgAADYjV199dc0CNF988YV8+OGHcuCBB3o+/+uvv5avv/468Ps3b9681oNYJ5xwghQVFcnpp58uS5culU2bNsnHH39sHVI5fPhweeyxx1zz19W2nJwceeCBB+TYY4+VjRs3ypIlS+Tpp592PWfEiBFpByDz8/PlzTfflMGDB9cEqWbOnCkzZ850Pa9///7ywgsvyKOPPprW5zVUkUhEXnjhBRk5cqQ8//zzIiKyYsUK+e9//+t63rbbbiuvvvqq61gmWnncT15enuTn50tFRYWIiKxcudK1srlpv/32k+eee84zk3WrrbaSb775Rs466yx5+eWXJRqNSklJibz11lue79miRQvPBYwOPvhgGT58eM0iMF999VXcQj2HH354aAFIPWNx6NChKWXwHnvssXLOOefIhg0bZO3atfLyyy/LyJEjrc9dtGhR3ArjiZx++unWAOSSJUvkhx9+8H2teZ06rwMAoL5iCDYAAJuRIUOGyG677Vbz83XXXZfFrcmcww8/XH7//Xe5++675eCDD5aOHTtK48aNpXnz5rLtttvKOeecI19++aVMmDDBlaGVze395ptv5Mwzz5Q+ffpIs2bNQllVeJtttpHvv/9ebrzxRtltt92kWbNmkp+fL926dZPDDz9cJkyYIJ988ok1SIKY/Px8ee655+T999+X4447Tjp37iyNGzeWdu3aSf/+/eXee++Vr7/+Wnr16lWzsrKIBF6R2aZTp06yYsUKeeONN+SSSy6RAw44QLp27SpNmjSR3NxcadGihey4445y+umny6RJk+Tjjz+W9u3b+75nq1at5MUXX5Qff/xRrrjiCtl7772lQ4cO0rhxYykoKJD27dvLPvvsIxdccIG88cYbsnjxYhkxYoTn+z377LPy7LPPyuGHHy6dO3eutcD+zz//LN99913Nz8kOv3YUFxe7pioYP358upsGAAA8RKLRaDTbGwEAAAA0BP3795cvvvhCRES+/PJL2WOPPbK8RQAAANlHABIAAADIgHnz5kmPHj2kqqpKGjduLGVlZVkd7g8AAFBXMAQbAAAASFM0GpXRo0dLVVWViIgcffTRBB8BAAD+hwAkAAAA4OPqq6+Wu+++23NF+Llz58rRRx9ds1J2bm6uXHzxxbW5iQAAAHUaq2ADAAAAPv766y/597//LRdffLFsv/320rt3b2nevLmsWbNGfv31V/n+++9rMh9FRK688krXYk8AAACbOwKQAAAAQACbNm2S77//Xr7//nvr35s0aSLXXXcd2Y8AAAAGFqEBAAAAfJSWlsrrr78uH330kcyYMUOWL18uJSUlUlVVJa1atZJevXrJgQceKKeddpp06NAh25sLAABQ52yWAcjq6mpZtGiRNGvWTCKRSLY3BwAAAAAAAKhXotGolJeXS8eOHSUnx3+Zmc1yCPaiRYukS5cu2d4MAAAAAAAAoF6bP3++dO7c2fc5m2UAslmzZiKidlBxcXGWtyazKisrZeLEiXLIIYdIXl5etjcH2CxxHQLZx3UIZBfXIJB9XIdA9jX063D16tXSpUuXmjibn80yAOkMuy4uLm6QAcjCwkIpLi5ukCc3UB9wHQLZx3UIZBfXIJB9XIdA9m0u12GQ6Q39B2gDAAAAAAAAQBoIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABCaRtnegPomGo1KZWWlVFdXZ3tTrCorK6VRo0ayYcMGqaqqyvbmbBZyc3MlLy8v25sBAAAAAABQJxGADGjjxo2ybNkyWbduXZ0O7EWjUWnfvr3Mnz9fIpFItjdns5Gfny9t2rSR4uLibG8KAAAAAABAnUIAMoB169bJ/PnzJTc3V1q2bClNmjSR3NzcOhngq66uljVr1kjTpk0lJ4cR9mFzMmLLyspk4cKFIiIEIQEAAAAAADQEIAMoKSmRvLw86datm+Tm5mZ7c3xVV1fLxo0bpaCggABkLWnSpIk0a9ZMFixYICUlJQQgAQAAAAAANESoEti0aZOsXbtWWrVqVeeDj8ieSCQizZs3l4qKCqmsrMz25gAAAAAAANQZBCAT2LRpk4ioOf4AP85CNHV5jlAAAAAAAIDaRgAyoLo43yPqFs4RAAAAAACAeAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApDIiO7du0skEpHx48fX/G78+PESiURc/3JycqS4uFh23nlnGTNmjCxfvtzzPc3Xev2bPHly+F8QAAAAAAAAKWmU7Q1Aw1dUVCTDhg0TEbVC9Lx582Tq1Kkyffp0efLJJ2XKlCnSs2dPz9cPGjRI2rdv7/l3v78BAAAAAAAguwhAInRt2rRxZUaKiMyYMUP23XdfWbp0qVx44YXy9ttve77+8ssvl/322y/cjQQAAAAAAEAoGIKNrOjTp49cdNFFIiIyadIkqaioyPIWAQAAAAAAIAwEIJE1O+ywg4iIVFZWysqVK7O8NQAAAAAAAAgDAUhkzerVq0VEJDc3V9q0aZPlrQEAAAAAAEAYCEAia5x5Hw899FDJy8vL8tYAAAAAAAAgDCxCkwm77SayZEm2t0JERCIiUhyNSiQSCfaC9u1Fvvkm1G3SOatgP/LIIzJhwgTp1q2b3HPPPb6v2X///T3/1rx5cyktLc3wVgIAAAAAACBTCEBmwpIlIgsXZnsrREQFIAOGHmvNvHnzrAHRfv36ycSJE6V58+a+rx80aJC0b9/e+rfCwsKMbCMAAAAAAADCQQAyEzyCY9kQFZHo/zIgAwUia2Hbi4qKZNiwYSIiUlFRITNnzpQffvhBpk2bJmeeeaY8//zzvq+//PLLZb/99gt9OwEAAAAAAJB5BCAzoRaHMCcSra6W1atXS3FxsURy6sYUn23atJHx48e7fvfKK6/ICSecIC+88IIMHDhQzjnnnOxsHAAAAAAAAEJVNyJU2Owcc8wxcvnll4uIyNVXXy1lZWVZ3iIAAAAAAACEgQAksmbMmDHSoUMHWbFihdxxxx3Z3hwAAAAAAACEgAAksqawsFCuuuoqERG56667ZNWqVVneIgAAAAAAAGQac0Aiq04//XQZN26czJkzR26//Xa54YYb4p5z8803x80hqTvppJPkkEMOCXErAQAAAAAAkCoCkMiqvLw8uf7662X48OFy7733ykUXXSStW7d2Pef999/3fY+ddtqJACQAAAAAAEAdRQASGTF37ty4340cOVJGjhyZ8LUnnniinHjiiXG/j0ajGdgyAAAAAAAAZBNzQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQyIju3btLJBKR8ePH1/xu/PjxEolEXP9ycnKkuLhYdt55ZxkzZowsX77c8z3N13r9mzx5clLb6mzXyJEjU/uyAAAAAAAACKxRtjcADV9RUZEMGzZMRESqqqpk3rx5MnXqVJk+fbo8+eSTMmXKFOnZs6fn6wcNGiTt27f3/Lv5t0gkIiIi0Wg0A1sPAAAAAACAdBCAROjatGnjyowUEZkxY4bsu+++snTpUrnwwgvl7bff9nz95ZdfLvvtt1+4GwkAAAAAAIBQMAQbWdGnTx+56KKLRERk0qRJUlFRkeUtAgAAAAAAQBgIQCJrdthhBxERqayslJUrV6b9ftdcc03N8GuR+Dkk586dG/eatWvXypgxY2TrrbeW/Px8ad++vYwYMUIWLlyY9vYAAAAAAACAIdjIotWrV4uISG5urrRp0ybt99tpp51kxIgR8tRTT4mIyIgRI1x/b9q0qevnsrIy2XvvveWvv/6SAQMGSN++fWXq1Kny9NNPyyeffCI//PCDNG/ePO3tAgAAAAAA2JwRgETWOPM+HnrooZKXl5f2+w0dOlSGDh1aE4A05500vfbaazJo0CCZMmWKFBcXi4jIqlWr5IADDpDp06fLAw88IGPGjEl7uwAAAAAAADZnBCAzYLfddpMlS5ZkezNqRKNR11BkP+3bt5dvvvkm5C2KcVbBfuSRR2TChAnSrVs3ueeee3xfs//++3v+rXnz5lJaWprSthQVFcmTTz5ZE3wUEWnZsqVcfvnlcuKJJ8oHH3xAABIAAAAAACBNBCAzYMmSJcwZ6GPevHnWgGi/fv1k4sSJCYc5Dxo0SNq3b2/9W2FhYcrbtdtuu0mHDh3ifr/tttuKiHBMAQAAAAAAMoAAZAZ4BceyJdkMyLAVFRXJsGHDRESkoqJCZs6cKT/88INMmzZNzjzzTHn++ed9X3/55ZfLfvvtl/Ht6tq1q/X3Tkbkhg0bMv6ZAAAAAAAAmxsCkBlQm0OYE6murpbVq1dLcXGx5OTUjUXO27RpEzcf4yuvvCInnHCCvPDCCzJw4EA555xzan276sr+AQAAAAAAaMiIwCArjjnmGLn88stFROTqq6+WsrKyLG8RAAAAAAAAwkAAElkzZswY6dChg6xYsULuuOOOjL2vs6L2pk2bMvaeAAAAAAAASA0BSGRNYWGhXHXVVSIictddd8mqVasy8r6dO3cWEZEZM2Zk5P0AAAAAAACQOuaARFadfvrpMm7cOJkzZ47cfvvtcsMNN8Q95+abb46bQ1J30kknySGHHFLz87HHHiu33367HHTQQXLAAQdIs2bNRETklltukdatW2f8OwAAAAAAAMAbAUhkVV5enlx//fUyfPhwuffee+Wiiy6KCxK+//77vu+x0047uQKQ//73vyUnJ0deeeUVee2112Tjxo0iInLllVcSgAQAAAAAAKhlBCCREXPnzo373ciRI2XkyJEJX3viiSfKiSeeGPf7aDSa0rYUFBTILbfcIrfccov174m2q3v37il/NgAAAAAAANyYAxIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAFFo9FsbwLqOM4RAAAAAACAeAQgE8jJUbuoqqoqy1uCus45R5xzBgAAAAAAAAQgE8rLy5O8vDxZs2ZNtjcFddz69eslNzdX8vLysr0pAAAAAAAAdQYByAQikYg0a9ZMysrKZP369dneHNRRVVVVUlZWJoWFhRKJRLK9OQAAAAAAAHVGo2xvQH3Qpk0bWb9+vfz1119SXFwszZo1k9zc3DoZaKqurpaNGzfKhg0bGApcC6LRqFRUVMjKlSulurpa2rZtm+1NAgAAAAAAqFMIQAaQm5srXbp0kZKSEikvL5fS0tJsb5KnaDQq69evlyZNmtTJAGlDVVRUJO3bt5fGjRtne1MAAAAAAADqFAKQAeXm5kq7du2kbdu2UllZKdXV1dneJKvKykr59NNPZeDAgcxFWEsaNWokjRpxKQEAAAAAANgQNUlSJBKp01luubm5smnTJikoKCAACQAAAAAAgKyrl5MEXnPNNRKJRFz/evfune3NAgAAAAAAAGCotxmQffr0kQ8++KDmZ4bAAgAAAAAAAHVPvY3aNWrUSNq3b5/tzQAAAAAAAADgo94GIGfPni0dO3aUgoIC2WuvveSmm26Srl27Wp9bUVEhFRUVNT+vXr1aRNSCLZWVlbWyvbXF+T4N7XsB9QnXIZB9XIdAdnENAtnHdQhkX0O/DpP5XpFoNBoNcVtC8e6778qaNWukV69esnjxYrn22mtl4cKF8vPPP0uzZs3inn/NNdfItddeG/f7CRMmSGFhYW1sMgAAAAAAANBgrFu3Tk466SQpKyuT4uJi3+fWywCkqbS0VLp16yZ33HGHnHbaaXF/t2VAdunSRUpKShLuoPqmsrJSJk2aJAcffDCrYANZwnUIZB/XIZBdXINA9nEdAtnX0K/D1atXS5s2bQIFIOvtEGxdixYtZJtttpHff//d+vf8/HzJz8+P+31eXl6DPAFEGvZ3A+oLrkMg+7gOgeziGgSyj+sQyL6Geh0m851yQtyOWrNmzRqZM2eOdOjQIdubAgAAAAAAAEBTLwOQF198sXzyyScyd+5c+eKLL+Too4+W3NxcGT58eLY3DQAAAAAAAICmXg7BXrBggQwfPlxWrFghW2yxheyzzz7y5ZdfyhZbbJHtTQMAAAAAAACgqZcByOeffz7bmwAAAAAAAAAggHo5BBsAAAAAAABA/UAAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISm3gcgb775ZolEInLhhRdme1MAAAAAAAAAGOp1APLrr7+Whx9+WHbYYYdsbwoAAAAAAAAAi3obgFyzZo2cfPLJ8uijj0rLli2zvTkAAAAAAAAALBplewNSde6558phhx0mBx10kFx//fW+z62oqJCKioqan1evXi0iIpWVlVJZWRnqdtY25/s0tO8F1Cdch0D2cR0C2cU1CGQf1yGQfQ39Okzme9XLAOTzzz8v3333nXz99deBnn/TTTfJtddeG/f7iRMnSmFhYaY3r06YNGlStjcB2OxxHQLZx3UIZBfXIJB9XIdA9jXU63DdunWBnxuJRqPRELcl4+bPny+77babTJo0qWbux/3220922mknueuuu6yvsWVAdunSRUpKSqS4uLg2NrvWVFZWyqRJk+Tggw+WvLy8bG8OsFniOgSyj+sQyC6uQSD7uA6B7Gvo1+Hq1aulTZs2UlZWljC+Vu8yIL/99ltZtmyZ7LLLLjW/q6qqkk8//VTuu+8+qaiokNzcXNdr8vPzJT8/P+698vLyGuQJINKwvxtQX3AdAtnHdQhkF9cgkH1ch0D2NdTrMJnvVO8CkAceeKD89NNPrt+NGjVKevfuLZdddllc8BEAAAAAAABA9tS7AGSzZs2kb9++rt8VFRVJ69at434PAAAAAAAAILtysr0BAAAAAAAAABquepcBaTN58uRsbwIAAAAAAAAACzIgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEkBmRaMiX38tsmpVtrcEAAAAAADUAQ1iFWzE23PPPWXp0qXZ3gxsjtauFSktFcnNFWnfPttbkzUbNmyQgoKCbG8GsFnjOgSyi2sQyD6uQyD7NmzYIN26dZNvv/0225uSVQQgG6ilS5fKwoULs70Z2JxVVYlwDgIAAAAANnN0BBCAbLDatWuX7U1AtkWjIpFI7X+uHnRs00YkP7/2t6EOqJe9zcuXi2zcKNKihUhRUba3BkhbaNfhqlUi69aJNGsmUlyc+fcHGoh6eS8EGhiuQyD7NmzYQIxGCEA2WF9++aXk5eVlezOQDRs2iOywg8iCBSKTJon071+7n68HPSdMEDn44Nr9/DqgsrJS3nnnHRkyZEj9uQ6XLBHp0EE9Li1lDk/Ue6Feh045V14usnp1Zt8baCDq5b0QtaOiYrPtoK5tXIdA9unX4eaORWiAhubZZ0VmzxZZv17k8MOzvTWoL6qrs70FABAeyjigbnj1VTXS4qijsr0lAIBaRgASaGhKS+2PAT8bN2Z7C4D6oaoq21uAZH3+ucrwHjpUTU8CIHuOOUaN1nnjDZG//sr21gAAahEBSKChqUtDWupCQ332bJHtthM54oi6sT11VUVFeq/ftEnksMNE+vQR+f33zGwTUBcRrK9/Bg4UWbZM5PXXVTASDcu114p06yby2mvZ3pLNx9q1IvvsI7Lrrmr+6FRRngLAZoUAJNDQ1KX5XdINamXCSSeJzJwp8tZbIi+8kO2tqbvSPVbPPCPyzjsiv/wicuqpmdkmoC6iwVz/6MOvmd+2YamoELnmGpVJd/TR2d6azceNN6pg/nffiVxySfDXrV3r/nnDhsxuFxq2tWtFDj1UzS/P/MtAvUQAsgHqf8UV0qhXL5E99sj2piAbKiuzvQUxdSEA+c03scdk5nlL91j99lvs8dSp6b0XUJfVhXINqWvE+osNSklJtrdg8/Tdd7HHX30V/HWzZ7t/Xr8+M9vTkN1+u8ri/vbbzL7vkiUiQ4aInHlm/Zma4pZbRN5/X+SDD0SuuirbW5Oat99WC4Q+/3zyr738cpGDDhKZMyfz2wXUEgKQDVDh8uUS+fPP2plXZepUdfNKpRBNxscfiwwerCauhj+zdzkM69aJ/P3vqtLiF/Csaw31HIo8T2YWwqZNtfv5ZWUqW/W881gsAnWbmQHJ1A71CwHIhiWd4b9InV7uBalb3X+/yKBBIi++6P49GZD+li9XGaZTpogceGBm3/uJJ0TefVfkkUdEvvwys+8dls8+iz3++OPsbUc6Dj9c5IsvRIYPT+5106apAOyHH4oMGxbOtgG1gNZ4A1TlzAG4bl34H7b33urmlWwhmqwjjhB57z01cXVd6qVbs0bk3HNFxo6tO9tVGwHIceNEnnxSVVruvtv7eQQg6w/zWCV7HqV7/t9+u8hzz6lGyjPPpPdeQJjMa6WulXO1YcECkREjRB56KNtbkrxIJNtbgEzKRADyjjtETjuNYGYy9I7CRHWrsjKRCy8UmThR5Kab3H8jA9LfypWxx2VlmX3vxYtjj8POJN6wQWT0aJExY9LrtNM7kDLZUT5pkmrL1nYgNplRa/oorunTM74pobj/fpFRo0QWLXL/fuNGkX/+U+Tii2s/4QFZR2u8Aapq3Fg9CPumbhYYYRYgejBk3rzwPidZN9wg8sADItddJ/LKK8Ff9/nnImedFc4NJKz5dX75ReTss1WP4+uvx36vPzbVtYY5AUhv5rFas6Z2P//BB2OPzQwJoC4xMyDrWjlXG/72N5Gnn1b3hLp0Tw6COTwblnSDhtOni/zrXyob7NxzM7JJLuXlIpdeqhri2TB1qqpvfv99aq9/8UWR88+PDyDoAcjcXP/3+Osv7zYCGZD+wkwmKS2NPQ67zXj77SL33CNy883q3hHU11+r0VZff61+1s+1TI4+OOQQNZpvr70y955BrFgR/Ll1aY7/IH75RY1qGj9e5PTT3X+76y71b9w49XdsVmiNN0A1GZCVleEGBc359MJqhJk3mJ9+CudzUqFnf7zxRvDX7bOPyMMPi+y/f+qfPXWqmgtk7lz3780AZKYm3D/0UPV9DzjAvdK2X6Wlvjf0Zs4UuewykcmTRa6+unamAFi3TuT669PLAiwvF/m//xN56aXgr8l0AHLGDNXo+vHHYM9v2jRznw2EqT5nQC5frq7Lt99O730++ST22LwH1XX16XghsXQDkPo80cncM4O64QaR225TDXH9uqkte++t6pupzAu/fLnICSeI3HefmnZHp9fNEwUgFy70/hsZkP4ynfXo9d5hj5rTg0zJ1KX331+NturXT/0cVgZkpjh136Bt1WTKLyfBqL7Q54l991333x5/PPY4mQQeNAhMhNMAVekF1Pr1Is2ahfNBZmBhwwaRoqLU36+8XOTRR0V23NE9z4nZO/Tjj2pIdl2g90YFTaPXe4313sdkVFerSqWIGtKiF/K2AGSHDql9jm7+fPvv9d5rcxhuXWvoJVvBOuwwkT//FLn11tjv5s4V6dYto5vlcuutItdeqx5vu63Irrsm/x7nnad6mHNy1ETXHTsmfk26AUjz/D/6aDXZ/N13J38eLFiQ3PNr29q1qkK83XZqTqvNSTSqpl+IRtWwmoaQVRyNqutl40bVS59oiG59zoAcNEhlQt13n8iyZe7Af1BmOV/f5sCs7x1jcEs3AJlOvTWIW26JPX7tNZF99w3387ykskChvtDF+++7/5bMHJB+AUgyIP2ZKz1Ho5mbRqI2MyD1bU5myh69TVNd7Q52ZyoAab5PVVXioLqXgw5Si/s88ECwenQy5VeyUx399pvqVDnxRJEePWK/f+MNlZX8j3+4E0oyze881dtjhYWZ+bwvvlBzhJ5+ukirVpl5z0xYtkzkiSckkq2yvw5qAC0HmKqCZqely+zdSaYS8eGHariLXiH6v/9Tw2AOOkhdrA6zcK5LGZDJBiCnThW58870P1c/ruawmrAyIHV6g1t/bN7E61rDPNl5Df/8M/53n36amW3x4gQfRVLrFdy4MTa8pbpaZNasYK8zr99kA5DmvnVWuty4Mf68mD5dZWSUl6ufKyvdQcc//qiduUxTNW6cyEUXqazgbA0/XbxYDemrjcXGdBMmqLnSTj9dleP1zezZar/p81199pnIyJEiZ5wRbGiYWa7VtQZ0dbWaT/Wdd9y//+CD2P1i/frUAzfmXGFhZuiEoa7dlzLh9ddFnn227sxFXZvM8/jBB0V+/TX468POuDeTAmpTugu6+XUuJJMBqd/fn37aXQ9uSBmQmzapDrpJkzL3nmYA0qk3ZYJXAHLRInWf9Eo88DNlikomMcvZVAOQuuXLwxmCbZ6D+rybyVqyRP3vVYc1tzmZ+3CydY1DDhG58kr3Og2//y4ydKiaVuE//0nu/TIp0wHINWtUwsVll6m5JeuS004TGTNGGu29t0TqYtZuFhCAbIBcGZDppNSXlqphoPokxTpbBmQQv/yisjBOO03kscdiv7/33tjjL76IPTYL56BDOm1KS1WBm6kMKzMAOWeOmkPEVqEqKREZMEBNuKtLpfLlV2Gu7QCkftzNcyDVht7atSrQ8ccfqb3e733TVZvZPqk0Ht57z/1z0CzbdDMg/Z6vzx21fr2aguCss0SuuEL9bv58936NRtUwlrpq7NjY47feUmXSf/+bWoZJqk44QWW6Dh5ce58pInLKKbHHzz1Xu5+drmhUZMgQtd/OOCP2e70SPmpU4vcJkgH555/q/pmN6QTefFOtKH/YYSJffRX7/bhx7uelWj8wOzXeeEM1uIM2KhctUvs8jHuTjbldDS0D8uuvVYPyb39Tma2bG7OOeM45arhm0Hu1eY+0XReffKLO81QCJ02axB7bOvomTAhvGoN0g3vmvtG/fzKL0OgZkH36iLRvH/vZ1nZYvVqVn7XdwZauxx9XQ9UPPVRln2WC2cGTTnDM7731c+WYY9R98vDDk3u/hQtVEskZZ6j5/bwEvY7MsnrhQvdrM1UfN6/5TC1GZbv+zPpCJgKQmzapYe36aLiqqlgHuTN/poiqWzv7MFPnaCr09lgqAciNG1V2p9NWmDkz9je/juTfflP1j0Rl45IlKlEqE+fCW2/VPMxjiikRIQDZIFVnqrf1jDNUY/PII+1///ln989BA5B33hm7aZjBOIc+JMa8+H/7LfUC4fzzRU491T1s8tdfVeUylYqlHoBcs0YFGIcPF/n3v+Of++679ptlKo2wbAcg9WPtlQ1p+zmoq64SOflkNVQpk71FmQhAZrLyl0gq56Qe1BcJPsF1mAFIPUtw1qzYcXAay7ZAczYznaNRlelqlnE2Cxeqxu6wYfH7PkxTpqj/f/ml9j4zGnWfk927u/9eVaWmhAgzK3TdOjWMcenS5F9bURGbu1ifg0r/HkGuuUTlXFWVmrfqlFPUPL217bLLYo+vvjr2WB9OKZK5AOT48SrTwjknEznqKHUfPuus1D4/WWY9qC5kQEajam7hTFy/U6fGHl9wQXzGVH1RWanqSX7DdW1s9cHy8uCr+ppBNjPr6+efRfbbT523Dz+c3LaJiBQUxB6b9eTLL1d1nQMPDKdz06zzJFunMINfen0ymUVo9GPaqZM7KGtrp4wercrPQw+tX1m9TplWXa2SETLBvJ6TWbQkEa8MSKfj6scf1T09aDLA++/HgobmvS+VYePm+btggfu+lan2QaYCkGbSgO1YhRGAfOYZFTTea69Yh7+5aJRDP+Zhj97w6+zT90Mqw93vu0/k+ONF9txTXSNBzoXly9U+OvVUtRq7n2OOUYlSgwenn0muySEDUkQIQDZISQ3BjkZVz4g+5NnhTMatT9CtMxuAQQsyvcfFq3DSg6hm4VxVJXLjjcE+S1ddHVvY45dfVOG3aJHIDjuoyqXfas5e9ADkzz/HskVvuin+uV49PKkEtNINQP7xR3IZZn4ZP/o5lqkApDM8Z8EC75tzdbVaTdwvwGpudyYCkF4ZwWFI9qb35Zcq+0kXtBEWZgBSz2LQJxB32Cq3meqBTsXbb6vg9047Jc5MefLJ2L4755ywt8yutrJyzcCTWZG6/37VubPLLuENoT/7bDW/6IEHJn99mOeoV8M20bYnyoBctiwWhM3UyrdVVSIffaTuy7b7ta5Fi9hj/ToKkunlZ80aFWT0CppdeGHi99i0KVanSGe1+/JyNXQ+yLlvfs8wMiDXrlUBxaDv/eqrKki9yy7pB+zNMv7RR9N7v2y5+WaVobzHHskdI697RdDOV/O6MI+HPu3K2Wcnf2/UA5BmndwpH/74I5y6hVmWJRtwMAOQeiBRL/8TXYfOqKO8PJEttvAPyorEFiyZOTN4HSbbzPvJL7+IfPtt+u9rBiAz1QleXe0ezu3VXhw0SHWyBhlNY2uvVVerUW3664MGlc1rbeFC9zld1zIgzX1oO3fN8z2dAKRTTjojNzZuVHVSkfjsYed61cvFsAOQQeuBqdQX//Uv9f+aNSqJKEjC1dVXx66fRx7xfl5FRaxj79tv7aN9ystVfSjJgGJuXegArQMIQDZASQ3B/s9/1I1l2239CwCzkK+uTq1is369e0hYdbX9dfoFaiucH3gg+UqJMyedo7xc9WY7wyaPPjq59xNxByBTbdRkOgPSPObm+//xh8g224j07ese6u7HPNb6z17ZkCKp7ROzYuJ1U7nlFjWUd6utVOBNV1GhhiKYledkbnJeFaTaDEAmO6T3hhvif5eot/yvv1RnQm0FIG1lki0Amc15oU48Uf1fVZU4gOTM9xPEhg0qs9N2bq1cmfqUA8nOCbV6dWpDb8w5H83rafRo9f/KlSprorQ0lnGYrJkz7eeuM7RmxozE87H+/LM00rfRPEedBpH5PfRhTDaJOlrMMjcTwdixY1XQ9fjj1RBG23tGo+r80heec4KV0Wh6AchoVOSAA0QGDhS54w77c4JkuJj7JpUGZDSqRhsMGKDmt0rE3FdhNACGDVMBxZEjgz3fGf1RUSFy3XXpfbY5pUxtZkVnkpOtu3BhLAN+9Wr1fZzs6x9/jK9XeDXgg2aKmdeF2XA3y/igWZBVVWq+Y314st99LYxON/Pcd675hQu9M6R0fgFIvfxIdL92Xtexo9ofiTIgdZmeikdE3QumT08vs0k/N0XiM3dfeEFkt91Uxn46vIZgz56d3vy7q1e76yLOcbDtkxUr1FQBiZidlDNnqoUV+/dP3HFmkygAmamVuzMVgDSvN1sZlMkApK3u5wTEzHLMeW5tZkB6HR+zDpxuHamoKPG1UFKihlQ7/BboNeut5qjGaFTd7wcOdI84sTG+a25DmwImRQQgG6C4DMhly7yH5IwYof5fudI/A9CssNsKlSAF2eefu9+ruto9b4Pt8/TCeaed1P8bNyY3ybiIO/ApovZJqqucOfSCxC+QuGKF97Ci2h6CrWeNBJ0o2/w8vQdW7/3JRAZk0Mb7xInq/9JS1TDXz/Hhw9Xq0U4gKdF72Xj1aiUTcEpXspVL27DlkhJ1vdrOv2+/VcNPu3aND0glWyEIOgTbLDuiUXsFzFbGLFpUO4HJdCpDP/ygFvowK/HRqKqs7LBDfAb3ihXqOPToIfLxx4k/w6zAJBOAXL9epFcv9c/Jcg/KzAb1O+arVqnOgZ494xdDSeT559UK4716uT/DzLp/9lnv93j4YcnbZRfZ75//jJ1LtuFctt9/+aU6Xr/9Zu8EMPe/ee8zM1RSmc903TpV1lRXq/3+0Uexv5WU2K/1229X59cHH8R+5zT61q+P/y7JNN7WrXPPI2UT5H5qdhx+/XXyw+hKS9V1JqKy5hIJOwNy3brY3Lu2TIm1a+OvHb2eFnShMC9m2R503l8RVTZncHhZ0jZtsmeAbtyorqs+fdS/8ePVQoU77qiG++uv98oIS3UIttlwN38OmtV2xRUiO+/sXszO7/5VGxmQ69er8qhrV5Fu3RJ3EJl1ED3Yrb+33/fasCEWiOnUSf1vy4Bct07ta/P6dAKQ69bF3wPmzk2+E6O6WiVe7LyzCo6lwjw3ReLbGI6rrvJ+n7VrEx93s/1WUqIWwdtmG3V/TbW+Yp73zjH0ui8E6Uw0y7Jp0+xDXaNRdZx//90/GzJRALKiwt3O+Ouv1Dq1zH2YqQCkUwaVlsbKKVsActkyda2tXx/fMfDXX7F7pPlaW9veKc/NctWpJ+ptrKBttGhUTeGS7L3C69w066zpBpKXL7cvGqqbMcNdtvjNO2mex7NmufdVWVnsPuDVIesw9gEBSIUAZAPkyoD88EORDh1U4zZRZUwvWMxCJkivi18FZOVK74UlbD3aXgHI3XaLPU52HpRp09w/l5env/JWkCyxH35QE2472UGmP/5Iv1DXb+CJApB6hTLoXEtBs+G8ApDOasyJetyj0fhKnNcNTM9oXbcu9rqSktj8bnqjXURVAoLOj+V1Yw7YSIhUVSXXELSxvb6kxLvC5lyDenbBH3+oQE7XrvGBoLPPjlUEnekJHOmugq3zy4Bcvdr+WvN5774r0qWLqnTbts1vv6RDbyiJJL5Wd9pJDascNsz9+/nzYwEcM2vrjjtiZepJJyXeJnN/JTPn2yuvxILoxx8f/HUi8WW83zF//PFY2XPYYcl9jrNi44oV7nLbDLq9/LJ3MOnss0VEpGjZMok4nWvmeeNko5rf49VX1Vx6vXqpzHjzvLKVc2VlqpFQUREfsEh2PtPychW87dxZpHlzkS23dM/zJ2KfA/PSS+N/V1lpz34U8a/0r1rlPteDnGO26RVM5n17r71UJnsy126ycxwGyYBMNKzRr75hZhzqAdXKSlUmbLmle2h0jx6xx+bcnMlKNQB53XWqbjh0aOLnrlqVOFBcWhqs8b9mjToG0aia6qJ7d5G773Y/Z8UKdU93Al5//3tsaht9uJ3fcUk1A/KLL9zf1WzI6/vbqduaqqvtwS2/TkW9blFZmZm5/sxrfN06Nb97dbX6jvqCajZ+GZBBA5B6vc8JQJoZkOXlIttvr4Ki99zjfv2cOeoYdeumysTPPlO/v+UWdV0dckhy5cfChbHEhzFjUptHcMoU97kpEt/GcHiVLWvWqABip06xDnUb8xjccENsmqLly1WHZyrM93WOoVeHplc5tXSp2p9VVfGBm88/t7/Gyajv2VPk2mu9t9G8Zy9YYK//rFihFr3p1k0lJCRbFwySARmNJr5P2DIg//pLnbcdO6pOTbM9/ckn6m+tW4sUF6vnvv22+tsDD6jv1L+/+vwgAUinozGTGZCjR4tsvbWarzYZXnUMc/+WlyfXXjKv2RNPjA3J9mK23fw+z9YpqF8vfnOQb9jgPg+MNjhDsBUCkA2QKwPylltURWPVKv9VoUTc2QtmoW9buc9UWhor9J2CctMmkTPPFGnTRjV2bQGvn36KD5J5BSB79449TnYIti0D0gwuJMuvAe7si1NP9a/g/POfqhKezA3T3P/6/jK3yQnUOcdQL0SDrgYeNBhlWwW7ulrdPHv3VhUtv5Xxhg9Xc0DpnO+j33xtFQHn3DKDjroZM1Qw2GteU3PbbYIEIDdulP1Hj5ZGHTrEr0qdDPMGeccdav4kr4nZnQpk586x3336qTrO1dXxAQq/bM7aGoK9fLm9kmL+7tRT1XdYsCA+WPrvf6v9EiR4lyyzghc0+PHaa+7rwS/4rg9NMo/5hg3xx9rc18lkQKbT02y+1q/8S3ZYuMPMxNUDjD/+6P5baan3KqnaPos417u5304+Wa3yaX6PqVNjCyS9/XasMWDbJhHVeGzXTpVvnTrFV9LN7U7kySdVBbeqyvu6WrQo+BQNy5YlF4B86SV1Pe29dywIGeS8TyUDUkTdm5PJ/ko2MzxRBuTVV6vGn9ccrqedpuowXg1lM8CsX8+//hrLHDrjjNhxaNo09px0s+rN+7gts2nhQvVPv685wac333SfS2ZD96WXRFq18l9Z+p13RNq2VVllfvWdmTNVp3iXLup+7EwDY84fumKFf1nlBOf8MsZTzYD88EP3AhpmGePs7+efV995n33iO6acDF2TXwDDuQYqKtS1t8UWapqkdNgyIPVs3ET3A3Pf6HV4vWzyC2To13bHjup/MwPyySdjmY6XXOJ+/axZqt5YUqLOrVNOUb93jtFHHyU+1vp91Cw//OqMXmzH0WvqAz3Yqnv1VbVvolFVp/Nilr1mWZmpDEjnXPC659gCkE88oY7pdtupe58ZNPcatr18eSw4ee218Rni0ai6DhJlQIqoe3ibNqotJaICesmuUWCrlzqdJI6jj1afo0/BsGGD+9q3ZUBecYX6fUWFyLnn2tsWVVXq36ZN6jOdOsS556r/p01TGX5BkoGc9rRXANJrDkivfVRdLXLvverx88+r7aystN8LzPcw94dz7zUDkFOmqLL0jTfs22BKZRFC87opK1Pfbc0aVZ/Sj7VthKV+vZjTCTj3vIUL1fXQqVMsI9MMQJIBKSIEIBskVwakLlEBrF98ZqEWpNA75RQ1PGbdOtWz1bq16vl/5BH13i+/bE/hnzMn/mZuC0Dm56ueIEcyvcPV1fGNhNWr0x+K5Rd0cYJBQRqfn32W3JByrwBxZWV8o/S770Seekpl0pxwgrsQzVQGpHMjsmUGzZ7tnqPRa9jkypVqzhzbZ69erc6l1q3VRP+lpfE97s530Ycf2qxfH2yeLq8A5KpVCa+lyOTJ0mzBApUFOXhw4s9ymMfOrCA6PXwTJ9qHQzqVqOJidbxNZoXEL2Mp06tgO+VL0ACk32Te5pA2Z+4wp3KUjkSTiAedAD4ajQ1vjEa9A2Ui7u+vZ2W/955q+O++u3tl1nQyINPJEjWPk3PMbVmhqQ6VNxss+nllyyQMcB/IcYIUtnP0nXcSLzR05ZXu/WbeNx5+WJUXy5bZtyeZDMjq6mDn2DnnqIqu02j3O65//GEPQHo1XI8/Xl1HX32l/nllUJr0bfDaHq/jZZ4vfpnG5rYkymBKlAHpzO/04IPxr62sjM0bdc017r9Fo2o7zXu83tAxr01nuJa5TUHm47NZuzY+oKLvn6lTVXC8c+dYFo5t2htnO6NRkYMOUg3t999Xv3Mypb//3v5aEZXlXFmpzvV33/Xe3gsvVNfh8uX2jF1HSYn/MEinXPabhkE/14KeT8683o89FltAw1wVe+FCtZ+GD1fP+eKL+Hmoveoh+jaZ93vnvLn1VtVJGo3GOkKCjpIxn2ebA1Kvv/vNgybiPQR740b3dedV3ldXu4/jFluo/80MSL/AwzPPuIP/tvLab/jl5MkquDFggNoe8zulEuQ1z4lVq7zv8fPm2esl+u/8yu9E9/fy8tSmUUg2A3L27Phz9j//iX22LSjkVVc2958+D+7atSqg2aFD/Dz1tgCkLfNUD/oMHSrSsqXIf/9r3xaR+LrNO++ocnPXXdV3XrVKTVMWjcZWOp82TZ3P220X25e2DEh9vyxYECzr0NbJVloaLAPSKWOSyYB88knVbjA7T6PR+DJ/8mR1H+nVy/35d96pOtb0jjyvTmtb2V5ZKXLUUfG/twnSdjXrBWYAMhpV9/bWrVXAcJddYnUDWwakvt/Mc935+bLL1LlSVqYCzyJkQHogANkAeQYgEwUU9IIzUQDS671++klVFCZPVgWPOeT655/jX7NiRXyDS/88p6DaYgtVKXYkkwH511/xjY7y8vSygTZu9M9ASXb4bTIBVXP/OxUHW4OyokIF3DZuVKuO6scgUwFI5++2AKR5nLwqU17ziw0dqoJpP/6ojtcjj9i322kUBJnX0qsRpfO7SSTqfUs2eOcw941+DplZwmbDS++RLCxUN1XT1lu7f/bLWErmO1RV+Qec1qyJDROyBSCDDMHW6eWFuep3ssMzTWY2kXldJnOdTpmihhj17esfhNL3nd4we+QR9bdvv1XTTzjnZF0JQK5dq7IOWrSIz0pNNSvDNlWGw9aZYzsexv6I/PyzyjLzOqdt9yXdDz+4PyfZCuR33wVrIM6cqaZK8BuSpispETn/fPXY77z0CkAGuf8tXqyysfbcM/FznUbTzTerDCczYCfifd/Wz5fTTlMNxlde8f8cR16emhPNSzJzQJp1HbOh7Lx2zRqV7detW/wiE34BSGchJ3ObOnVKPlNWxH4v1I/1+PHua2jlSvs8lc4+nTJFZYStXauyssxrI0hZ41f30adO8ZtTdMUK/wDkihXqn98Ig5ISdV8cMMB//zrb27dvbDi6M8fXkiXx9byKivg6qxkU86qHbNgQK+/N8sgpo26/Pfa7GTNU4KNNGzWayM9336mgzX77xRrftgxI/XOLi/3f07zWnGxdrzqo7q+/1BBpfYFHJwCpZ0D++WewuY8dtjaO3zQGhx6qroHPP1fBcfP8fO65+EUqEzGH5f/0k3cActMm+2gj89h4daQkyvg+7jg1ZUeiOfBMXnNAet0nN26MH6Hglb199dX+U1yZ17Y+PdA996iEjFWr4uf4Xb06WOa/8/6//aaunw0b4qfF0ZnlcXm52u/ff6/qNrag4Zgxal/NmqXqQJ06xaYHcJSUuOvZVVXBhz3b5oq0BSDNOp1zjw0yB6Tzfn//u9qvEya4F64bNkyVi7qDDlKfMWdObCoAEXUPrqpSHXnONiQTgExGkLar+dm2URY33hi7p0+frrJno9HkA5DOe+v3S2f/kwFpRQCyAXINwdYlGuKk33RSDUCKxBfAOucm37x57ObkVCR1TgMvGo39rU0bdwAymUCArTBZvTq+gEpmLphEAZpkA5DJDEFLJgBp0oNvK1YEy1RK9L5Oo8S2CrZ5nLx6V70m8DZ9+629MrdggWpoJ8pmElHBgE6dYnNF2vgFGRIcq4j5nYNmt/gFIM3G2vPPu89X/Vxu0sR9rdjeTyRzAcgg550TMDWvuaOOis8esT1Pbyjpq2KaGXOlpeq8O+ggkW23dVfKp05VDaJRo7y302xEpJoBKSLyj3+obf3lF5Hrr/d+nlcGpN5gXrZMdeyIpDcEO53eV7OsWLVKDY0rL48Ni3OkOv+puX/172rLoLcFtGwNwSlTvM9pff/p03zo9Gs62QpkWZm9gXvFFSorzQlgnX128E4hh9Nw85tOY9681AOQN91kvz5tSktVg2/MGLWPbIFUr/u2U4YsWKCyElavtmckitgb5Hfe6d0w9cuANDOTzO0zAxtOo+K++1RgesGC+HvOEUeoa9+2rV4rr4uoESQdO7oXh1qzRgWAd95ZNdpuvlmdM04Q0XbcS0tjAW/bCsILFsTXdZztMhuGtvI1Eb/rQy/f/DqRg2RAfvedf53tiSdUsOqzz1SgxDbn7caNseugRQt133B88IF3UMnc72Zj329ePqeMM8ujxYvVSCG9HtCtmwqKrlqlOqT8Oj+HD1f3iU8+iS0qaQtA6gGL++9X90Sv+pfXCsy24Jl5LM4/P37/2TIgg3bQOPLy4oMufitl69e7s9iHrqpKzS3tDOENwvxen38euzYGDoxf2f7yy9V1e//9sd+Z579zj/j+e3VMjj1Wfc8gQf9581SZc9ddqm6rr/brJdkApEj8SC2vAORee6nMwKCWLo1dh9OnB3+dl7lz1dRPvXoFe77fvXD+fPu8++bQ/UWL4udUXbHCXc+ePTv4qCjznD70UDWaTTd8ePycqc70FeZ5YwtATpsWm5fV4QSZ583z7gR0eB1/p0PB3G9r16p67Gmn+b9vIkGmDzM/29ZuM4P2s2ap8sF2n9P3m1cAUv/MoqL414lIDgFIESEA2SB5ZkDa0o91fgHIhQvVTXXwYBWM9GvwBplfr1OnWICkpMR7CHZFRaxSU1zszup64glVMQ9SEHkFIG0Nai9VVWoVxj59RN56K3GAZtWq5LKA0glAOgFi/fO22cb+WrPiFCQ4lui7OudDkAzI8nLVcNtxRzUnlnMeek3gbcrP986ATDT8Wrdokcgxx3j/3S9QowcDX35ZBbr0xrJ5cwoSXH37bdWLrXPmKBGJ3z/Llrkbx2YWnS0D0twuv57kIAHIb79VQ+PPOCPxc597Tl1DfhW9Fi1ij81rU2/cONdzNBrLKHKsWqUqaR9+qCrL/1uMRERUsHPuXJUVZCunPvrI3QAViQ9IJBOA9KOXv7YA5KZN8deqsy3pZEAmClZu2qSui733ji8bzGPnFywzj1+fPvHZqjZmGeychxs3+g830tmCBtOmJT6n8/NFBg2y/00/7qkEcadNU9t/wAFq0YTFi1Vwb+HCWIZQ0DLQFI36H4ulS+33Ntu1aJYJQe7njtLS2HQIDnNfJcqA1IPuXsEWr4wg2++ffVZkxAj37/QGgPmabt1E/va32LlmNgKdn7/7zr4NjsceUw0485x1Ps+rHFy8WH2+47bbVMfJ9OlqCo4xY9Sxdua7tR13Z14r2/Y7rzEbWM52mcfrk0/cP/vVkRzm/Fg6r/nwTEEyIJOdC3TWLDXNy3bbxRYE0t+jRQuRgw+O/Txpkrss0bP2zP2u1zGrqvw7yJ2yxCyLFy+OH9lg7m9nLsNRo9Tw0AsvVN/ngQfc2WlO5q5tCLZp7lxVLtkEDUCKxJf55r1ZxJ4BmazGjeM/X5+KYvRolbVlLtwloq59r/PmrruCd5yZ95i33oo93nJLtfK1M3xeRHUYL1woct55qu575pnx57czSmLAAHVMXnlF1bGC3t8//1wFURctigV4Vq4U2X9/yR00SBo5x2f8eFVn1bdPJPEQbBH3966o8N5fvXrF12cT8ZgzLyWXXho/fNuPX71048b4ukOQ+Y5F1P0uJ8VQS9CkDHP+3JIS+zljG4ItEl/Pc8qyIMkcXlmuTlvMlgF5yy2J3zeRIB21ZhkRZK7lWbO86x1+c0DaApAffKCudWP9DYZgKwQgG6DAGZB+WY3mDehf/1IZJO+9p1Yr9GvIBYnud+oUC5DYMiDHjFG9vvqwxWbN4oMqU6f6p9U7bAHISy6JXxBFbxwtWaIao6edpir0Z56p0rV/+UU1HINkQCYzJMJWOH78sQoEPPSQ+/dBMiD33jvYTTJIQZ7ou3plQFZUxB/bNWtUz/iPP6pGgJPyHvRmu2CBdwAyyPBr0+67xyZYNrfdi54VctxxKtB1zjnquw4ZIrlm73eQwMLhh8f/Tm9I2vaPfp3qlf/CQnsG5Lp17nPEr5EUJAA5ZIgKJtvm7jQtXqyuQ7+gfLNmseFVTsXlvffU6ph6RWbhQjXM7Mcf47eztNQ9DMKZx0zEXeH/6y+VMXDggbFODFvFyNlHTzyhevWff97vWwann19m9qqIqvx5zQlqC0Bu2KDOxSOOiD3v7bdF9tjD3WueqDEzfrzKDJ46NTa817adIsllXv7yi8iRRyZ+ntn4cD5DP1f1IIYtoGVmI4moazBRh1BRkTsAodMDkKn0YH/1lcqO+PhjVU45K6fqEs3H5mX2bP9y/J57VMPXZGt0JdMRZlqzxp29JxJ/fBJlQOr3fK8AlFcAwdYY1oN5Dv3aM8+3qioVBNptN7VNXgHIIOdAWZl3ANL5vq1bq+C8buNGlb1z993uxUxs9zevDsTSUtWZ4FwLO+2kAuwi6lwxv7dXANKsl9j2sZm95pelF3SO3iAZkHr507JlsPc98UQ1CsTpNNO/T4sWKnjkzDX+zTfuDu699oo9Xrgwtj9F3HXMFSv8p7q44ALVoW9mFs+da+9Q00Wjag7o8eNVEPzuu9X3cRarcDj3RbPM8+pA8wrAmMe7vFzNlXbllfHPtS1CaHICkLm5sfk2k5WXF/89nOtyyhRV3s2YoYKAJjMAaZaLXvWe779X16RTtzPvMXqwq2tX9b++0r3uxx9VNutjj8X/vqrKfcyWLQu+2Ji5/6urVftl8mTJ+fhj6fDFF7Hg9a+/xmflB8mA1AOQXtd5fr7aB8kGIJ1jmInV35NdpCRRANKWARmEmQGZDGfES7JWrLDXzcrL1bmUqB7klGV+85Y7nACkWa479yrzs9asCd7Wczjn8YEHqvvd668HC2IGyYA0mQFIfd2Js85S9bbVq+PPL+c+aZ5HP/4YdxwJQCoEIBugaq8ApFmRNCvxfgFI/Ub1xRepr3Dq6Nw5FiCpqrIH6l5/Xa266HCCE2Yj7auvVC+hY/FilcFz8cWxG7ItAGmj3/jGjFEVvSeeUAHHxx+P/e2nn4IFIP2GhZhsheMBB6hAwNlnx1ZHu/jiWO+9w5YB2apV4vl9RFQF++OPVcPbDCSNHasml/da3c8xYIAaHmmrgNoCBFOmxB5//LGqeDvPGzzY3tByVk9ctco9zMGpxC5dmtqK0998oxoEiSrPDzwgssMO6vGXX9rnHDr1VPsE/ObcU1VV6jOPPz7xXKZOA8CWiaQfbzOI5dUwdW6clZX+GSRBskv8Ml1slizxr+gVFcUqNM7zBg+2z9H3ySf2BkZpqUgkknhbnn9eNQA++kgdWxH73KDl5ercOO00ddyDrtKXyD77xLJd9LLEqcj5zUFjG4L99tsqG/ett1RgNRpVjdJp01SZ4UgUgNQzu8y57dKZM9cxZEh8+eWIRr0zIPWyWR9WFTQD8tNP44dHmYqKVGDAJhMZkHqGtq2sClJee713skO3RezHM8iIAj9mMMoMIiWTAblkiRp2Zgb9/QKQzj1y2DDv8kkPHnoFZGbPFhk3zjsAGaRxtnq1vZ6lZ4IXFalOAtMXX6jMFr9gqYh7f/bsGXvsrBDvlCc9eqh6l4g6xub3PvpoNYG+WT6YDa3zzlNzSusdXuY1ePfdKvBrqyMFnfsrUQbk2LGxxSBE7Bn/iZiLKzkZ+O3aqf/XrHHv8+23jz0+4wz3sZk1KxaUSPQdJ09WdSDbMEQzsGGrlwSZK9Q5P70yBRPZsEFNq2Gr63//vX1BD79RCw4nACkSLAvSnHNQRO0D81pwvpdeh7VlYFZUuK/Jo49Ww1j1v9uMGqWuybFjVaeAX5aeE7TYckvv59g+69NP44fup9MhtHy56x7edNEi/xFPyQYgvTLKevZUQbdUApDRaHLtpkxJNgNSt+OOquPXZu7c2HQINlde6Z19nMy8qLqKCvuxKS8PluHr1D1tHbkm5xo298+ff6p7k7lf9Wvn8MPjRxzZTJ2q2uEffaTa9v/3f4lfI+Iu+2zz9tqYAUhzCP+TT6rMc3Nu6MWLVZsqQLYyc0AqBCAbIM8h2MuXuysEZkHkF4DU5eSkvsiGQ8+AFAk2AbQTeLRldunBwbvuUhk848apHpOqquABSL0yr6dN6xPtiqhAaG0EIHWrVqlG67hx8X9bv14VfPoKZoWFwTJqFi5UDbYPPlDZAU4B+uuvqrf3nXe8AwaOTZvUHHdBMiBNH3/s7hHr1y82d4bOaz4ZPUjt3HD0obxBDRqkFk1wGgD6d7nyShUE1iuqEyfGv4c+kbbO3Af33aeyLl96SZ1nfpXZ0lJ17doqFPrN3cyA1LM1dM7NNdHN+I8/1Pn0xBOqMXLllarRtXq1OmYnnOD/eocTOHY+26+iV1gYH4D0Yw4PFFH7K8hQC71S6CyW5ZVpELT8SMa336pGujlPqvO9/QKQtgxIvVH68suqTHUqkCUl6ngNHBifTW02ePXhQubfUl3ZWvfuu+o8cs6/m29WgfuSElWmmo1W516kl816pTDBHJClXo3A776Lv5cUFaky8557VGeDfr2feqrqlIpGk8uA3HZb9f+338bPn6Vbty71AKTXvLiJ2K6xVAKZfsxgTDIZkCIqg1k/DiLejajSUnXujxunAiRjxtiflyio5xg7Vr2f7vbbVUaxLTBiWr3a3iBZvTr2fQsL3fcwkx5EtQVH9P2pZ1wdcoh7OO9WW8Xm+iors58vt94avyKwLVvmqafco0dsgd5nn3XPdyeirp2gAchEGZAi7uvQVi9MxAxkOfUGfVihXi8zM1V1q1bFyqJ0F1gQiZ+XzbFhQ7CpfbwCkLfe6v0aPTD32mvxC4slot8fbAtt5Oa662a24fg77uj+uUeP+EVnysriy5H581V5Zl6v5j3M7BRo3tydyWq7xqJRdybyTjvFP0fnZEB26OD/PNOUKfFzN6bTIWQEibt+8IE02mUX7+cHGYKtB6W8sgydjo5kA5Bz5qhrJ9X5o9Phd02tXev990suUdNjvP56ahm9222nAuU33RT/NzPIlQzb8Ony8mDD23/5RQ3l16dT+e672Hmtc64Xr1W7zf2mB1X32MPe1jOvQf1e+9VXwQKjIu7PTtQmcMqA+fPdCVG2OUR//92d9CSi7hPOQqgJkAGpEIBsgDyHYEej7huGWWD4rYKty8lJPwNSnwNSxB7MMTnBNFtPt1450Ccw/uILFYx0buJ6MMSmpEQVdmec4c7kMCs7paXBApBeqy2bqxGLJA5ArljhzhzUbdiggrB676TTmE5k4UJ31pOzMIvfqr02Tz0VbA5I09Sp7smcvW5KtgBk48Zqcn5TkF4106efqkUTnOxL/bs415R+Mwq6Gp9I/E1fXx12wgT/FRxLS72PhV8G5BlnqH1z8MHuhvjSpeoGe9xxibd7wgSVpdG7t8gNN6hA9GOPqR7bF19M/HoRd6UlUQCyqCjWKFm/PvGiULbGfWlpfAXFGY6o0xuvTvaKc53vtJM7OyWV1WmD+uUXdzDYaQTYApC33abmtzLLitWr468Zc9GbF1+0lx/m8dCzR83KVCYyIB2zZ6vvOGaMCnqccIK9cpxmBuTivfe2f35RUXwDydmH55+v7inm3IE336wadclUIJ0hwNXV/ufz0qWpD9X644/MZUCGHYB07gdbbukOkK1dq65Jr3vm+vWqE+S667wbE6Wl7nLJayGG9etVkPnII4NN4WIaOTJYEKiszN4wKytzZ0Dutpv3e/jVC/QyS8Rdr1i61N2A7NHDHdRyOl1MZsPKi744gVcg4n/D8ZvPmSO5//iHmgM26LWzYkVyGfapZECWl7vrPq1aqf/1slTPGNMzIG2cRbLSDUC2bKk6z20qKoI1wJ0yMJkyW294pzKdjR6AtG3jFlu4O7hsGZB6Z7fzfD1r0mEGWKJR1TlgnjNm/bO0NPkApN9ceLbzzqnzNGuW/FyX5sJbQYMtNsYcjwVlZRLxC0BlKgPSCcR5DUH38scf4XT26rymgPC7TlautJf3W28dC+hHIql1gjjnxwUXqGmFMsUrABkkuPv77/HTk3kNqXf2m1dHm7lf9bZev372OST9YhMisfOzS5f413q9Tr+Pmudlbq6a8s3x+eexx0EXMZo+3TsL1kAGpEIAsgHyzIAUcV+EyQzB1q1fn/kMyCCcYJpTSdT99FOssWxmU+pzszjZKF5WrFBZX4ky/qqqEs8xUloav0qaiCo0Z89WmW/6PvjxR5W54bUaYEmJdw/b+vXxDYri4mABSLOC4zQKU6n4mI0l2yrYpk2b3Pt7993jgylNmoh07x7/2iuusN+E9t8/0OZaOQtl2AKQ+s1y3brgk+Drlb5ly9yVgJ49/TNlS0vdATC9sarfYM0MyC5dVONq4kR3xWHpUhUA9Qpm2+jnQrKBaX0OlWQzIG3nzqWX+n+eM/RQ99prKoPNy5w56hg5AeXWrd3Xpt7BkWlTpriveWf/2FZ8FlGBkxtvdP+uvDz+XDQzmbyYZb0tc8Xctkz47Td34P2jj7yHDYm4G5Jdu8Yq7rYOjv81QqPNmsmfgwZJ1BlSqWva1DsA6bDda/773+QyIC+4IDak08/Spal37P3xR2rZErUdgHzmmdg13aaNe3+vXasan15B2ieeUJ0gY8d6T4Ngu/ZtpkxRgfw337Tv85491SIW6fLKgFy2LNYQLixUc+p5ZZT7BSBHj3bvC7+Mo622imUmiSRfjpuce+JPP8UWxDG1by8iIjvfe6/kPPWUWgQsqE2bkrseUmn8L1jgDiA4C1Dp93n9eujRI36uRV1JierAdVZAT9WAAd714w0bgo2smTdP1YmTWQhRf1+/doQXvQ5i20bzO5kZkMXFqv53zTXqsTPU0rYttve3TbFhPq+01F3/8gpAvvyymuJl+XLvOeuaNo1N36Jz6qSRSLCy329f6wHyREO6TV6dOV4qK9V159e+W748dpz1+7UeWHYyRPXyxkvv3rF7+R9/2IfNO8wMvCD71uT13RIFIG2vM+sLZqDcq1zUOd+9sFBlB6YTcNbZpjULmgFpKixUdSHb/cU5F2xtofLy+PJHf56trScSuz43bFBJIV7zPSY6/vpn6x1JZhygb9/Y9FoiKhnF4bWYq2nePPtUURZkQCoEIBsgzwxIkcQByDffVBe7X7rysmXpByC7d0++wugE02wXb3m5KgA2bIjv+dEDc4mGBJSUBF/1M9HQiOnT7UGEpk3V/6ecom7m+vCriy+OZYOa2XVXXeVeTEK3YYO7AVpYqHp0ggQgzeyuDz9U+zOVeVg++8z9c5AMSF2PHuq8MHvFmjePH5L0ySeqwmkbUpJOANLZ77YApF5hXrcu+FCRlSvVjf+669zz8Ymo/eO3r1eudDcW99wz9tgvA1LXtm3s8bJlcauyJSXZ80KvNC5b5t5OfYVqEfcckOvX28shfZ4zm2XL4hvto0apVbi9bNrkXtm8TRt3+WQLQObkeA/JS6ahYM7z4+yfZCqKXoGOIMyy3KvDIBrNzBBsx6xZ8e+nL+7ksGVAtm4dOz627XWCXltsIZXFxbJp3jyRRo3cz2naNL5BEyQAKZJcBmTTpiLHHpv4ecuWBQu46Ney49dfgw0JdjhZrrbgRDJD/szhkjbOsfjtN3XPc5gByHXr/DON9awEL6tW+WeTB7XLLmpbFi9WGeSFhcHuKeb0Bl7Xpd4YKipSx+P55+MXfUpEXzytuNh+bji23NJ9Dw3YWPLkBE3+9jf/xSgWLZLmQVZTTVcqGZBXXRUrZ085JTbKQj8v9QBk8+Yqq+yYY+zv9/PP6m/Jrs5tGjDAe1Gdiopg9+B167wzt7zo75vK0N+vv1aZ93/9Zd9Gs3PdrKc4AYWxY9U+HD1a/WyW3ea2+jEXoQqSATl/vpqO6Prr1VQ2zqggXd++6toeOtT9+pNOctdf/a5JR79+3mWpXvfwmiswk9avT3wfcjp59PrZs8+q47fNNmrRUhH7cTN17BirL82cKXLHHd7PNffR5Zd7Zwp7sX23d9+Nn+9a53UdOW05hxmADDIE3cyQtWX7emnSxHtKBVvbM2gGpKljR3WPSjYDUs/0N3Xtqso4vwDkuHGqM8KrLNpiC//53vVjpicmmW3GPfZwfzd9HwUNQCaBDEiFAGQDlHIG5Jdfqpvp5ZfHr86mSydTw7HVVvEByN1393+NE0zzCmj99JMqdM1hg3pF+3898p6SyXQyVzo26QsO6PSewkjEXXkRia2MaB6fyZO9e8fWr4/9rUkT9dqOHYMFIM2KXHW1dwUykalT3T/7zQHZuLFaYETnTMZv3pRatIjvTd11V/V///7ufdiypepVTZXzvRNlQE6dqoZkBlFVpRomY8fGZ6YtX+6/r+fMiTXMIxH3deKVAelVsRdJfnVAU6IFiUx+Q7DN61HPgBSxn++2AKR+ns+YEXyFQp0e4DAzIG2dEu3a2RePEPGf081krnTo7B/n+m/Vyl1m2KQbgFy9WjWsv/kmvnx1Go1+mZGpmDUrvjJsDBmr2T4R93a1aRM7PiUlseP9yy9q6ND/ggpR5x6TkxN/rhUVxXdqBAlAbtyY/CrYehawl6VLgx3DCRNUsKlrVxFnePmmTYmnK9A5DafvvotvXAfNgLzsMtUhlmjeSicAad4bTjklPgPSLysvyDQI06dnZgXVTp1UWdu+veoQdEYzJCrvzzxTLQblsC1CI+Kuh+nlXSpBNP21XnMfRyLqfNHPd7/5SINo3FgFavyOy/LlEvHLaNJdeGF622PWJ8eMsY+a0DnHqnFjlWnj0I+Jcz41aRKrB3hl3vgtNpHIv/+tPqNzZ9Vh5hWALCsLfo3+9VfqAUj9M5o0iQUD/YwerYK6Q4eqVZ5NZrlpBl+89qstkOXXoThkSOyxGYjRA5BNmqhjbwYgf/45lqE8Z459upljj1XXVePGIueco353wgnu+ehFgmXptW6tOjoSSTbYloogI9ycAKRel9x7bxUo+vVXFdR1JFqtuEMH9z7yals2biyy777u3zVvrtpZyXSo33CDqiM+9JCqey1apBZD8ZNqADJIR7TZ/tPLGT/du6v7i5nQ4LCNcPLLgLz2Wu9RM06g2S8D0lZ3Wb7cuy7uDG32C0BeeaX9tY5mzeyvd9x4Y+z614f2m/X2fv2862jJzuNq4wTk/4cMSIUAZANUbQ7T1Sud+nAos2JcVeU9/Fe3YIG9R9CLObluu3aq0DAr24luwE6QQS/k9UDLTz/Z5w/Rsw0S9S6lMu9NEHqAxGwomtvkNLST6UVfvz5WKejePVZhCxKAtFmwIFgAsls377mkRFQ2oVfAuG1bNWePcxPPyYnNuWbeVJo3j5+/03lOkybu+SELCoKtgixinyfFOYf0m4QT1NcbJp9/Hl/Z9GMGmhyJApC//hrbx1tv7T5fXn89tpquOQRbp1fw0h1imUxGq4hqUDkBND0AmZcXXwboc0CK2IeRdOoUPxWBPjdXqsOl9QBkmzbu7EZbr3GHDqoya2soOsHxIMwK4aZN7tX0WrRwV+htpk9PfcXEe+5R84Wef76aO9W8Jpzvnsnh1yLqOrPdg0xOg8QrA7KyUl0HVVVqxeR//jP2PP1a0SuSeXlq3h8zAGnLvDaDvwsWBMuAzM2NBSSCBCCXLAk2smDgQBXAmjPHPv+tzitwrZevxxzjDg7arjnT6tUqGLfjjmpbbJmrDqfOoQcXn39eLSyTTADS7z7jyNT92zwvnPLGa2GQnJxYBo1eppWVBcuAdHhl3AbRpo13ALJDB3UPCzIkMqh167w7WR3Ll0uObRoam5tvVvvr9ttT2x7zXtKsWfBsorPPdgcrbY1afd96BZXSGda+337q3jpnjvouXgFIfbVt3b//Hf+7efPsgZPeve0Zd3qwzqkndOqksrP1oJ6IGk7vNSXQ99/bA9NmANKvo1SXKJBs8svM1gOQzn3VDED6DYN17hsXXBD73R13qPd8/vngQVVd8+aJ5y1v1Ehkn30Sv1e6vDIg9QC/LQOyXTu1jWbd+9JL/e8pHTvay63jj3f/3LSpykrVOddpMqPpHnpIZa+efbZaqOvhhxO3e72GYIeRASnife2br7Ptbz9+GZDNm3vPd+jUX5Idgu03kjJRADJIEkGiAOS8ebG5HfXYgJkgsMce9gV2WrZMPBWFecwHD1ads7rbb3fd88mAVAhANkRmgaQHZ/QAZNgrjZ10krroLr/cPbm+U4iZNw2/idhFYsG0225T71dY6A6E/vBD4gmMk0lvtwk6Ia2ud2/3sFmzkT1ypPtn5+aeTABywYLYjUAvSFMNQM6f7z/xtv7+227r/zleN5J27dS5OX++mvh+8WJVIRCJX4yheXP1vZwG9223uf+ur0pou5G89pq9smx77l9/qcZVogzITFm+PH7YYI8eset42rTYse3e3X3D/fxzdcN7/33/IdidO8cqS4kajZlWVBS71vUAZGFhfPaUmQFpnoM77KDKDzMgp08qnUx2th6U0qcPaN1aBRH9An8dOqgMqYUL4ycPD1KB9PPCC7FAb3FxsFXdU10x8ckn1eeJqDLHfB/nnpHpAOTs2cGGmXtlQOr7+OijRd56K37bvQKQzjQLiTIgc3Lis2/++itxBuShh6p735FHqp9t5Yxpzpxgle68PHWNNGqUuIFjWwTgvPPiy7F//CNWhgTpoNDL+8JC/8w95/zRAxIDB6r/zQBkuos9Jbv4h1eGilegzhZMWL5c3buc+Q31MsMrM9krAzKdAKRfBqRz/iWatD8ZK1cGCkBGvDredPn56l9xsX2hF31+Li/mvisoCL4q7VlnuX+23eeDBCDTKSObNlWf6zR4ve4hXkHOK65QZY6+8NKHH7oXZXR07Wq/Zp3RDRUVscVcunRR22Y+/+ij1f3cnI/YpAfNzPcwgy9ew5XvvDO5FYb9FgsKEoD0mke2Xz9VPs6eHX++eWWCBxmCXVKSOLjYo0d8J3wq83SK+N83vDIg9bLSWTTPCTC1aOGftec38qxTJ3u5Zc7T17Rp/P3aaUsFqR/ZVFba5/A0ec1HnokMyHQCkA7nO2y3nf9n+mVAFhV5t2+dzH+vIdjz5tmzJ/3mL3Y+y5bdbFtI0qZZs8TD/GfMUNesExswF8AVUeda+/bx7xXk2jWnZtlzT3ucQbtnkAGpEIDcHNgCkBs3pjdcxGHeAPWMi/btY40+PejmFGJmZSRoAHK33VThNH++mhPFCbZ8843qefWTbgDyzDOTe37PnipDTb9ZmBmQRxzhnr8rlQCkHnjNRADyq69ijXS/Sk7jxipQFmSeDLOC4hTILVqoOTn8CnsnE2nqVJURaKS0y5VXxs4DZ/VfZ8jQXnupQMD8+fE3Sa/ew9mzE88BabJUeqv1wLOXyspYoG3HHdVn//xzbJ/qleHWre09fkcd5Z8B2ahRLEhmVi7NClAyFX0b85wrKIgd22XLYhkZhYXxz9XngBRxByAfflgFY3Ny4iv7nTrFf49IJHGD/uyzY99XDyq1aaP2md+8b06lukmT+GEaXitfBi0/9LnyggYgwxJWAHLDhmAZQ7YMyJYt48tyyzCsqF7RtA2lMQNNtmvLDDYuWZJ4qHSjRu7yLEgA0hwqGImocnj27Nj5oK/UKJJ4lVGzwfrLLyrj1SwfZsxQQdNLL01t+gJ99WURdY06n2FmQLZpE7t29P29YEFsrqdUFhdI5MMP488BrwxSr0xHc7ucwIx+rPWyyWsIdlgZkF5BECeDxdbICsp83YwZsQXbvKxYIZH/BbSjfp23+nbbgo2HHur/OU2bxpe5BQWJp65w2KZnMOllcJCGabLMe6FXEMLpLDLl5KjzWw9A2Ka0EFFlp+07Llyogkt64MC5Fsxzs0MHtY1++6JlS7XwlHOPNbcnaAZkr16qbDDnWPXSoYO701+3cmXsnpJsBmTXrmob/eqBpqBlWVGRWgBTxL7tvXrFd8wHyWju3Dm+/tC/v/fzvQKQ+jXi7D9nCHaiqa38gpO27ROJb1M456vTbm3SJDYnZjr1o6Ajemyj/swApHktmPdfmyABSFtngf66s89Wbchvv/U+70USByDN+8dhh6nRWc4Q9TZt4r/zihXqfDLn/xcJlgFpC8aVlnov/KRr1sydvbrvvioL2fTOO7H6o/O5Tkb3qFHqusrNje+gC3LtmskH229vr0Pl5NS0pXPIgBQRApCbBzMAuWSJCuKluwqiSHyl6eCDYzcbc74Oh1cGpFel3/ZZnTqpClFeXmxC2T/+EHnlFfW4RQv7XHGpBiAjETVfkC3Vv7jYPeSyVSsVdHzvPbWPu3VzVxxsc3X17BmrODqVn1QDkPpwP78ApF/Wip61YA570DnBySCZoeYwmmQq8XpFsVev+MDhVlupwOTPP8eGstxxhwpYTpwYW40w6FCNWbPcc94FyYC8/HIVBF+0SCrnzJEP779foocdFuzzHN26qcZ8QYF9n7ZqZW84VFT4Z0CK2Kc4GDxYnW96hcdruFOQ3tzmzeNv2vn5sd9VVMQaN0EyIPWhO/vsEzsO5uts2T9PPeUeJmVq0kRNUL/XXvF/c64Nv2FRejDDNo+PExArKlJZKDNmJLcKrKN58+Qq2IWFsYDX3/+e/OeZnABSJhegcdiycxxOmbl+verAchoKLVuqYIh5f3nnnfj38MqAdAQJPNgku9BJkHmE9CkA9t1XBST79VPlwRNPqLmBzeCDmZFgNlzMBuu226qy0Kscu//+2ONkJl/fckt3udG0aeyaX748Vu8QURV0p/zW97fe4EhmsQXbXFc2AwbEH1/bAmYi3vcms2xz5orU6WXTihX26yasOSA7drRnqTjlQW5u6sOwbXUJJxBx0kkiX3yhAq4zZ7pHJPxPdJddYiMXiorc9VI9a9S8TzdtGpvr1PHww/HbZnaUBg1A5ubGZ7qnmgGZDrNhn2oWfZDOji22iP88x08/ubOgnfPFFoAU8Q/GtW2r6jR//KHqVGbgK5nhym3bBi+TiopUdq7ZMSKiOkCdAEGyGZBB9q3J6zvttVes7LjqKvX/44+r+4Ats9ipDzojpgYM8D6Gjvbt1QIrZnnmN6Tdawi2GYBcsyYWqEwUgPQbJtypk/1cN4+d812PPFKdo7/95k5iCJttxGCiVbCDdOYHCUCecYYa4ad/T/N1PXuq39nmJXfO89WrveeAt9V9ttzSXe+PROI7Pb//3nvUxLRp9t+L+Acgly5VI3MSMQOQzqg605gx8Z/7yiuqfah3aqSyyrp5v91hB+9O3P/dVxiCrRCA3Bz06BErCJcvV3NrZCL4KBKflr7ddmoY1RdfqMw+G6dXqLBQzcUhonohcnL8C2yvYJo+n4NTGF16qb2ykEoA8sorVUE6ZEj8ja5lS3Vj0G/o0ajIoEHqn1Ox0bMHbPOcicS2t7RU3SiSGSKvZ1AGzYD0qzjq2Tj77+/dY5pMANKcBy2ZSnyiOfBE1PfW5+3LyVG9gXolTV9d0lk9zrawwLx5yWdANm+uAtEdOoh06SJrvCpWib6DI5kApIh7FT/bdtqCaYMHq8qpXkG1Nb4LCtyT9Hvp0CH+WBUUuI+1E4C3BSD95oDU38P8jDZt3BWyzp1VcNErgPjmm6ritOWW9uc4DWC/ycn1oJIt++ZvfxP59FMVFN9xR1U2Jmow2CSbAdm2rQpWvf++e5XcVNkyIBMtPBKUnmliBuv1a2Ht2ti9xgnSHH+8O2hnWSTHlQFpO6/NrK6gAchkpy/xC4TY7nnbb++u2DZqpBoWZpBlm23cWRaDBrn/PmRI7DvpQ82CTCXh3JuDiETcCySsXh27165c6W6I6Blu+nbolfIBA7w/y8xS2GefxMfN6aw0OwpsGZDdu3t3tpgBQlunaVFR7HjrUwLo5UVYGZC5uSqQa05Rol9LQeYjNTVt6h1E2G03dW7ttZeqb/TubQ9AdumiRi589JGqM+nz9OnlSSTiDkB26xa/3/W6lYj6XPPYFhTEB+BtWreO/26pzgGZjqAZkI6//S12LehzjnXunHheOL8A5OuvuwNwzjlulvlBApDOfurc2R48NMs+vf5mE3RET1GR+peow885pkEDkKlcO17nyj77qOvgu+9iWWv5+SrYXlQUf3ycgNyDD6p7+1tveR/nN95Qz/n1V1WOm8fO73sEzYDUA1npXA+2IdjFxaq+pJeH+uKLffu6O1KyNUIk0RDsIGzZoea137Klum/q93qvss12T3NGF1ZVqXPDxinz9GvS9hlB5rV0eE0L5Cy2JWIPQN5zjzp/E2na1B2AbNTIXnbrcQqnXZWfr647vU5lXhdOmeWMqttii/i4QuvWsZFNW2+t6g5/+1vsffVRd/8rKxmCrRCA3By0bRur0M2aFTxjIBVNm6qLVu/dM+mF66RJKqvj7rvVz36p+l6VD7PHp0MHNfzW1uBs00atRGzymxtpzz1jBbh5ozv1VNVg0b+TLeNBb+h6rVaqF37z5yeXAanzC0DqQ5kuuijxezVurCpxr7yijpMTtHM4N6sgAchU0tsdQQKQQRQVqcbwa6/FVt385z/V8Aq9x81caEIPJHsNSbdUgqLJVoz0cyDZAKS++IotwLDttvGZWM7PeoPPnLT+P/9RjVpbpqDJKwBpuxZtQ7DNDEhnqGturvsas2VA6sO1999flT/9+sVn/Gy1lQrMOPvXFoB0Grzduqnz3hYk8gtANmmiPn/AgPjMsGQVF/sHWPTh2s7zO3RQ86lmYs7SGTNUBot+XqQ7lYXNsce6f9bLi1WrYkE/51yNRFRj7eijvd9T384gQdMgq08GESRY77AF24IGePPz1dCn++8XGT8+PjOseXOVlf3GG2qeR4czvYYfv3nUbPQGooh73196aeyxfr/OzbVngOy4o/cK82PGxK4jZ4G7ROWsU/6YZbfZWHv5ZZFPPvEepmz+3haAjERix0/vQNHvy878eiKZnQNSRF0fZpmgf3YqWVxt23pnQB9/fHyZbysfunVT+2b//VWnuL4d5vmu7+eWLeMb5M2auY+5VwakvgCiVza8bVREogzIoKM39GsuETOQlygAOXSoqsu//LLINdfEft+4ceKMa78A5J13qoxWh3OOm/V551wNEoD0ogfiCwoSz4PYq1ewIKRzv0y0D20ZkGvXemd0pXrt2DjznXpNA2F+T6duWFCg7u3Fxd6LpwwerJ7jfD/z+jIzIPXrLUgAsqwsNl+o+bdktW8fX363aqXOz6++UsP2n302vlNF5zXlTdgyEYAMkgHp7B+9jPPKorMFl20LVJmcMu+pp9T/kUj83Lgi/p2DQQ0cGOukO/vs+L/rSQp+zAzInJzEnZHO/NM25vXtLIR0ySWqjTh1avyw+jZtRMaNE3nxRbUQpDMVxjffqFE5w4fHnksGpAsByM1B69axglGvRJ5yihraZc69OGlS6gW6V+XAGWIg4s6UaN9eXeTO61IJQJorWl19tbrQzcpPixYqkHDppaqxptthh9hNdMCAWMp2YaE78GLeGJzKmV4Js2TiuFZmveMO+/fQC7958/wDkM2bi/zf/9n/pvc0m/ts1ChVYZ00KT5bJicnPkg4ZEhsnp/jj4+vaCSTAWkGgpIJQGZy8Zett3av4Ni4sarM63N5LFxoD0CKeFe4bUFSvwqwLctGPwdsUwh4zQFpsm1jJBIfbHOOp15xKilRK+OKqIrqySer6yPI8MC2be0BSNtQR68MSNuxbtvWnUVmvs5sRDplQl6emvvtkUdUEO3RR9WQfP29dt89vuGvv9/xx6tsyTvvdD/Hbwi2V/mZSgCyeXP/RU/OP9/9s1/wyivD/MQT7UNXRFRvdI8e7uHcZkU73eszNzc+Y14vL/SMbPOaMst/nb6dQRqutqFnt9yS+HUiKivjtdfU+eU1tNfmmWfif5dMhumWW4qcc47IiBHqdXowYvBglZF2xBHuRqbXMCydVwbkxRfbf3/ssbGy6eKL3fveaaxuvbXIsGHu19nKs7591X3KWcRHt8suKkj41FOxTiTznDDLIKeRr1+nBQWq/HPKwGOPVf+SCTJ4TRtjO35e76t//3Q62vR9YF6feqPU7/t5Xcft2tnrNSL2e7+lIR416xb6NpnfW28wX3utPQAZJANyjz3UENTXX4/NCW2y3dcSZUAmylY84wyRxx7zD5qYzABf48b+5WrLlmofHnts/P0m0TnsNQekjV5Pc4IP220Xu4f6tRUS1fH0rPd3302cudmsmRpV8MQTahqMhx6yz4kZNADpBOL0c+fPP2OjlMz9n8kh2ImudbMMsX22bTTVxRfHd5SYn2Vuk/7zX3/Zr3X9OWbZnE4AMi/PPrJMRN0vzj1XBcT9roVkVoLOpGQDkAceGD/SI0gGpC1T16tO2LGju36bm6uSaBJlAzvXzAknqGvqo49U3cF0zjn2BWcSueEGNdrszjtjQU4RlRDw6af2ztNJk+zb4AgagIxE1Dk0caJ3wN95P50zWsNpI/boEX+uOm2y445z11m3317Vv/QsUjIgXQhANlDVenBpiy3sBeM++6iAlF6BLCxUQYrvv1dz2pmeeUbkrrtiP5srOHs1sC+5RDVkP/vMfx4+vwCk1w2oe/dYsKZnT5HTTlOPzZussw8KC1VjzaxQvvuuWtHvv/9VKwo6aeB6cMIsfJwGSKKAbb9+qnH65JPuHhGdXsGYO9d/hdgJE1Ql19S/vzswYlvk49hj1THu3t1dyYlG44OEf/ub+2fzGDgByCBz85jvncwckKlOnJ8MvWdr4UJ3sF4/L73Ow2QDkLZrUj8HbHN1tWql9nmioWVe22gGIJ1zRW+ElZSoXufbb1fznjqVO2choESfa14jBQXqnNcDI85zE2VAmtvpMPd169axYIRILIAqos7Nf/xDBWpOPz1+DptGjVT5pDMrMX36xDdg9Uq3LQPSJtUMSL1BYF4LZjnn17DxakDdemt81pTJWSBEJD44bguWO/bZR1Va/TRvru4LzhC8nj3d55F+3prXlM/iZa4h2HpHktdiQLah1eedpzIMr7vO83NERAU7jjrKPteqiHcWQocO8YszpLp4mIjqYHvgAdUb7xUg85scXkQ1Cm1l+j33qA4+mzZtVIPhzjvVtCW28u3KK+OD4Oa15tyXOnd2d9w52rZVQchTT41dd2aZc+CBsWtwyy1jmXB6BomTpfzRR6qsS2W6Aq9Ase0a9DoWenkXZMiwF71BapbTfkOw9c+0TeAvosoYswPGETQAaZY9fhmQRx2l6krPPafmAzWv+bw893brq0c7nHPj0ENVsKR7d3s9LZUMSDPgYXYmHnOMqocGDTJ5dVj4vd4vgGge49tvd/+8xRbx3yFIJt4zz6j30odx+i20kaiOd9ZZqmx97734xRy87LSTardstZUqx20LcQUJQDZtGstQ1et3s2fHHpsZmakMwfbKak7UyWTeA2z3bnP46V13xYaL+n2WeV7pdRmvxT/8gsnpBCBFvAOQyfBa3NRm4EBV7tscd5z7Z7+Ald+8rbYFDHfaKT4r2ta2Mc8ZWwakVxArL899TTZrpq71RCManGsmJ0d1untdj/n5ql3o1WFtc8MNql5y2WWqnm6eSwMGqPLSqee3bavWIdh7b/8Ma1sA0iy7b79dTUn07LPedTOHPve0V8ezea4mU6d3ApAbN6a22F8DQwCygap6+GE11PiLL1SBZGsMONF9fRiEU0nu3VsF4XRNmqhsqNGj1dCPq69WATudV8OpWTOVqeO3+pqIfyDPq5crElFBw7FjVaPLaeCYlZ9EEwTvtJPKfHSGp5x/fnwFxCx8nCBRkFXxjjpKBWy9Ghl6g+/cc92BXsehh6oK2+DB9s90VtFzmMdDLywLC93zgu2/v7sBXlgYv+qqVwCysDDx/D1mAyyZDMjaCEA2bhw7Z778UmUwOFIMQMYNwdazf0eMiH8PvYJrq9i3aqXOd73x0bhx/JAar/NR/3wR+xDsDRvU7//1L3clIycnccWwoMCeAdmoUfzUBwUF8Y2owkL7tpvzztgyIK+8UmXLTJoUbPVB3QUXxMqe7bazlzXm7/RKd9gZkHowXG/s7rFHfDln7ht92gWvIFjHjirQpjeE//lP1clhW1Vx773dk8R7zfUjoir7ega8jXPOvP66yux+8UXvfWWeg7aFBhx6mb/FFqoH/LrrVIXYoQfUbFkChYUqgGpm7pn8MjFF1PV0yy3uDEJnv5hBnHTm2GzSRA1r8mvQ24bY6bp0sXcOnH++f3B0r71UA6N5c3udQ5/3T39fnT5HpO0csL2vWc7uuKM6l667TpXlTrlqy2Tfdlt1bIIsFGTyui/Zjl/v3vbvY5aBQRdKM5l1Kz2DVd8/ZiDjww/Vfpo0SWXKTpgQ36HQrp0K9tx+e/z8jrY5wWzHyMyA7NMnFig1g0iRiKorOQvg2e4Jej0qGk1cBufkqA5wMwCQSgakuc3muWNbydvmyy9VeecsWGbyC0D63UvMc+hf/3L/vMUW8dlztkxs83O6dlXvpX/3bbaxB1tEEtfx8vNV2WqOxkmGWX5EIrFj71df+de/YvdO/dzRFxgzr6lUpkjIyVFBPTOhI1EZr/89P99+TurBl4MPVm0zWxKH+Vnmz3pntz6vsq5lS+/ph9KdEzUTAcj33lP3008+cf9+t93iEyluu02ds+bnjB2rOtl0553n3bYxr8GcHDXF09ixsSw/vX5x9NHBOhfTyYAUcbcjnHtUosXHgmZEO/wyUvX90qiRCjwmasPl5qphzmPHquvFuc/oZZeZDWkGIHNz1TFw7hcdO6rXJ6qbOXbbTWVX33qr9xRl5rmaTPbt//ZZJBr1P36biVpo1SMrOnZ0ZxzZKrVOoarPd6IHicwKnP4e++xjn68llQa2LtU5uLbfPr6Hx8zgMAsOPQDpNS+jySykg2ZABjFggKq4/vij93MefjjWgLBVsM3eO1sGpO7kk9WN6ZVXVAPjuediPaiPPx4fLPUKQIqoG+5996l9+dtv8SugmY2SuhaAFFHHU5+fyxEkAGk7982KxMMPq8Bmr172AIG+TwoKVONIn0DZqQAXFsbmR2zZUm23Pgei1zZ26hQ7xzp1ij0v6Nw1rVrFT+isr8Cenx/faNL33bbbqlVSRVTQyjb5v23bzUau+RktWqjz3ys7K5HCQjW/yyOPxGd1m5/rTI2gX39BMyBTGapcXKyu00mT1M/nnqsChS+/rB6bn23um0ceUdlLBx+sgpElJer46wH23Fx1/k6Zop6bn68qbpGImlvUDDoUFanJ8J0e5eHD3Sso62bOtAel9axO5+89esTKH69VEG2dQI0a2ctwc38ffHB8L7gz3Ua7dv5zkCUKDHnNWeho0iQ2F2KPHuq+63y2GYBMJwMyiNGjY/Mu27RoEX+vSPYeZytTbEE+83P0+7htG7xW69R17Wo/1vp9JEinoc0//qGmchCJ79BxmMfvqqtUhvENN8QHf81z9MMP1b33lFPi59W0KShQ17IZxHvxRTVE9fjj3eWsGYDcZx/3ivLDh6vglJ4R3bat+px//Ut9Nz2D2Datg/EZlbZs9+7d1VC+H3+Mn0YiCL1usmmTdwakbtddVfnmHD+R1DIgRdTogAcfVB0Tjzzi/pveObX//qpjXEQFhX/+Ofa3bbe1Z6w5Us2ATNS43WKL+PJyu+3UNBtPPOH+fZA6/c0328u/MBbrMZnHqqgodr6b9a8ePdS9c5tt3AkWeh1Fr0fpgfgWLVIf6tuvn/qnL3iYKDtWP75eATk9iOw3OsXcR+a1qLeV9ACsuT3NmsUvPCpSNzIge/a0j1I47DCVMasH2J37UOfOsZFmO+8cP0pHRJ3/nTqpubBNtmtw993d5fZll6kOko4dVUD7m28Sf5cgc0D6DePt2jUWSHaSSrwy8B3JBiD97p/FxbH7XIcOwTP799gjvhwZPlzVlTZtUuexPirClgEpolaRf+EF+/ySiYwa5f/3dKZJ0ffZunXpx0vqOQKQmwuzMbDVVrGb0CmnxDIx9EpnXp66oJ0LPEhqe7qBuEwGmvr3V6vYvvWW+tkMSOqfFWRSfpH4CoiTaaVPbOtMXJusnBw1VMycI8R5z8MOc1fszRvA9tvHV6b9MiAd++4ba4Ccf76aH2y77dRcICazIqM3PnbdNRY0GDs2PgBpGzbrRz92PsMsM6pzZzX9gCnIHJC2CqBZsdpqK/fE+AcdpG6WXu/RubM9AGlWTs3eTb/KwRNPqOCDfq3rDVB9+LLJzAB47DE1tOGhh9TPBx/sDkiKuCtNffvGApA//RT//l5DsBNlQCYaGh7ETju5M4JtPvxQDdU0s1dtq2DbpDLEsrhYXfu//aYqYeeco647r8nAzX3TpYt73tnzz1eVQycAqQeFCgvj55bdYQfVWaVXwJs0Uefuo4+qwO1ll6kKvhOcHTs2thDLkUfG748dd3QP9bJV6ryyiMxrqlEj1ePv1XBKJOgK74kaRYkywHXm5O5m4yBTq4x7ueoqdc/zOt+Li+Ovw2QDdmadIyfHHuwxGz5+GZC2oaMiKjD2+OOxldq33da+TXqjLdUA5I03qnNuu+28h86WlMQe9+kTaxi3axefLWz7/n7BYdODD8aPfBBR+8D2PuZ8kLYyydwmPZDktRiNrm9fdc/+X2M7b906sdawTjrJveCJnylTVJnlXDv6dldVBc9CN8/rVDMge/WKjVJ58MHY7/Pz3efo00+rzPP+/VV9Rg9AJuK3uJJfwGDIkFiQ1ckgato0FhRo0cI+f6Ctfhikkdyvn+qAfvZZlWXuyEYAUv/ZLLNvvdVev9HPHT2g0aGDCh4/+aTKhMukRGW83lERJADpV7cwF6sx60u26TYiEfcw0SZNMh+AdAJEmQhAeikri28HOeel/nvb9SASC0B6/S2RwkJ3YDTIvT2dRWhE3O0Bp6MhUQAy2c5xr/tnixbu6ynR5yaSkxPruDUzxZs1U0O3naxVp8Nx773VvzB4ZQEHoe/jIPfRBo4A5ObCbAzoQ6EuuEBNvNyqVXz2j37jChKA9FrkICj9JmBmySQrElEp3bfcoip95nxS+rYGDUCanEK4f3/VMJkxI36+nWQMHqwCVE5mjOO55+IrDWaw1tYDnSgD0tS2bXxvvs4vA1Jny34xgwyJgjEPPaRuPDvtpIKbtcHrZhkkA9LG/I5m4/nGG2MBSNswpE6d3KtbOxUTfXucDEid33W4667xN/LddlPn7bffxq90rjMDkE2bqgyOdetUw3bw4Pj55fTvfMIJIi+9pB7bhqAHzYAMO0DjZddd4xewEolv/KYS3OjSxT6UuXlzdR7pw4b9BCmDmzZV3+ONNxLPbeisXKsHIJ1jdPrp6p+ImrPn3/9WGUHHHSeycqUqv80MLBHVWZIoAHnccWreXKcTwmFrlG+1lTsAedRR3qvepqpRI3WtmXPzOlNrpNN5ZpbtYa/q2bq1yljdd197R1Pz5vHXYboZkO3aBQt26Z0hQSf579ZNLXRz1VUqs85ryJVe6U91H7dpk7ijwulkEXEPG7NlgKa7gFOiFcBtn/f002rUg1fg3dwmPZCkZ6iaC0c5IhF1bzvkEBERWbj33pLEjM925qgbMwAZJAPS2TZd0AxIv6CI1ygiERUMcBZYmDzZ+z1sUh2CfdRRal7jZctiU5989JGqW/7tb2of6FNrOPOSB5kiwMupp6r30Y9DMvN8p8qWAekwj5nXd/EaedW+vbp+g85PmYxEdRj9PuN17h17rFqBV8R/fjuv1bIdtnlct95aZYM6baNmzbwz85Nd/Tk/X50rzjx7fnMppmLUqFgyxJ57xm+3c46aGWk2TZt6j35IJYMtlSHYttXa/QKQtra6WS41aeK+HybbOW5edzfeqOp0l1yihpo7kp0OyY9ZHjZrpuqv5eWqrEk0TU4mBB0taRPkfNuMEIDcXJgFqJ5mXFyssgeSfQ+bdDMY9QBkkybpBSCd7fFaLTqVIdgiarGaW29Vwx91ZtAwFZGImiumf393VmWQDC9boyvZAGQiQQOQtp7v5s3VsKXbbw8WHOjUSfWo16ZMByBF1FCAhx6yL+q0++5qSNhrr8XPkWjbHuec1c/X4uL456UyVMicJ8rGFoBs3dq9qp1fo+mYY9TnzJplvy4LCoLNAZlq9lJYgmZAiqiG/733qorakCGx37dsaQ9AJhtsDbrC3ogR9iCwzR57uBdKsV0DO+2k5uJ1mHMp6czjaQuiFBerfWWWMbbn9ugRG6Iuoq4nkdQ7lry0aeNuGA4YEPusdHXsGJuPOUhnXyYMG6aG05orUBYXq3uO3gmYbgDSa45FvSHVvLn73mHer/waut26ec+l59AbXGGWIcOGxcpEfR5l2z7wa8Qec4y6BkTUPch2bacyJOyUU/wXnfLLgNx/fzWEf84c/87Kgw8WueEGqZ40SWYfeWT6AUhTqhmQpqAZkH5zqB1wQGzuOa9FBkWSD1h4HVt9nkOvv5sdibvvHjuXRFTw6rzz1OJiTqasuX2NGiWX8WN2ftVGBqR5HevHzrxXJBuATGVe2KASXbf6fOxenQxjx6o6Q9Om8Vn1Oq/sPodtHuW+fdWohv/7P9UZaJtGwRGk3bfnnmrOUxHV8fm/zgkRiW/fpBuAHDdO7b8ttlBlsVdwTT93vDLSbAsrOlJdVDAR8/s71+A++8RWfR88OPjrReLb7x06iPzxR+Jt8WJed6NGxdrAzvRQIsl3kPkxr5mmTdW5Y04bEaZE15IfMiBdCEBuLvQARePGanhrsrwaRXpPSrpzgeiBlY4dY429MOYATGUItoiaR01f2CEMieYTC/oac7+lO+dEqgHIggJVyRsyxB10qWu8Kgd+Acj27f0D+Mcf7z8s/8IL3Ss467waPXqjPT8/8QTTmWKWAbbzya/CEYn4ZwgXFdmHV5vzlmU6sJQuswHj12g7+mh3D7HDKyCSbAAyjIqN2bmRStbWK6+obNnRo9XwVX0OLq/GWF6eavSUl8d+Zzu/zEWYwtK6tXuV1FTnLLZ5/301v+DAgfYhcWHIyVGdIwsWqM4hh3POFRWFH4DUp+rQVyoXib+Oks20MekdmmEGIK+5RjXuevZ0DzE290Ek4j9E7cEHVR2oXTtVBtqy09OZk8qLeX3rmWyRiH2BPJsrrpCqSy6Rsnfeydim1Rg4UGT6dPV4r72CZ0CabB3r5rnRuLF/MG30aDUVRePG3h3etvdNxOvY6vMcpioSiV/53byfN22a3uek2+EdRE6OOzivf6YZEE0mANmkSbgjLRJlwu23X2y0hZ6MYL6HE5Dyoy1IVX3IIfGrz7ZpozqXV66M/W6bbdR9X+/YS2du4gkT1EiB7bZLvBpxugHIli3dwXYR1Vny8MPuER8DB8ZGWHhtU05OZgOQQepOXt//rLPU3I4rVviPVNKng3HqEmaQt3379AKQ5vfQkxP0jrJMXkPmccjE1EvJ0hfmPOig5F7bqpVE27aV9dGo5LEKNqtgbzb22EPNxdWnj8h336VWqfDKgPzwQzXf0OjR9lT+ZOhDBXr0UNlSvXvHJvHOJL1RHXTVwtrSuLFqfGy5ZfDeHa95r8z3TYdZgQsagAyjkRQGr8agXpE1GxGzZoUXVPUavqAHIBs3Tn+elaBsGZCmZI/1hx+qStL//Z96/+23dweUqqvjGxJ6R0eqq8ZmktnYDVq+6pOVe5VBQfanXhHyWxU6VeaquKkEb44+Wg3xP/XU+CkV9B5zkxn0tjUGUlmdNBXmuZbJAGTfviqI4QxLq03mdeycc3r5nuwxN+8VXgFIfS5TW2Bel24AsrYyILt3F/n0U9UxpTeSzH3QqZN/oKxtWzV09rnnvDuZwri3+mVA1hXXXafOnQED1NB7s7M1aADSVnbk5rpf36WLf2O3eXM1Mub11/3Pq2QbzF7HNqzFC2wByGQ995yqu/tlwIfJL+iZTACyQ4f0g7ym995T99Jrr00ciLrxRlU/GDTIu4M6qBEjpPqww6R0q62kypk+4q231LZcf72qX5nXuG11e1sA0plSJ5Ett1RZwg8+mHi/ZnIOSMc//qHmpNXr6hdcoDIxd9/dPTe7rnlz73ZtKtdHJKJW4d56azVFmI1XGdKokbq+Jk70vxfuvbf6vtttp55vk+59w9ZJY5PJAGRdaEeefLKKpey8s3shxyBuvlk2LVggkx59tO7FHLKADMjNRW6uqhylwysDcq+91PxLmaCnNzdqpLKl0plT0c+tt4p8/bXaN7bVz7LtrLP8h1WIqB7sa65R2USpLHCRrKA3HXPun7pw4wjiyCPdq1Y69AqT35xDmeZ1864rAUhbJTrZY33AAe6Fa/Ly1GrWf/+7+tmW2bvvvmp44rRp8T3d2ZBqIOqpp9QCM1tuqYbu6auzOoJU4B57TPXgt2mTuMxIhdlgSDfwFom4h5f6zRPUqpV7ZVKvOSAdYTReHOY90NZIq4/MMsw55/SASbIZkOY54zU64vrr1YJU228fu+a9ZDIDMux5Nm3MAGQy54/X/gs7A7Jx47p5/27eXAV5vQQto7yym/QsezMDP1XJBrT8MiDDkIkA5Iknqn+1Sc8mylQAMt3RXDaDBqnF5ILo0CF+IcdUNWokVa++Kp+8844Mcc7lww5zL3jZrp177togAcjFi8PZT+kmSgSVn69GHpg+/FDNlXrYYSqYvtVWahj655/HpklJZzsvvlj983PDDSrT/Lbbkn//SMR/egyR9IYSi/h3tPTsGRspYnZep6Mu3IcaNUo/lgIRIQMSyaiNTCN9CHbYAbXWrdUCH999l9l5KmrTeeeJLF8uctFF3s+56y51s7DNMZgs85h4LXjRooU7I6Eu3DiCyMtTGSd+q+KaQbcwz1Ovyp0ZgMzkRM9+zACkLaMjE8f61FPVAgcFBfa5KSMRNd/gX3+5swizJdVgxrbbqrnUPvzQOyMiSCW3WzcVxP3ii/ACK++9pxqkhx+emUrlgw+q9+nUKbaQjY15ztnK6v33V4275s3d81BmmnkPbCi92GbD3LmG9es73aCzVxbdzjuLzJunhoAnmmqlvmRAekknAOlVroadAdmuXeYzwWqDX7bhiy+q7zhypPd5qTfQ9ZXDa1Mmh34GYZYDYX1OmPwCkF73Rq8MyM2JmTQQJAAZ1siDdIZ6Z8IBB6iFpZwO4UhElRkLFtTeNlxxhcjSpcHn6Q5iyy1jj9OdZ9qvPvDss+r9+/fPbGdEthafRCgIQCK4MDNLHHqlrzYy+iKR+lm51iXa/tGj1RDHMLI8vYIjkYg7oFJfApAOvyFn6a5amgxn5c/8fJE334z9Xp9jpXFj9e+001Sjy5lQPgxBKpyZONa5uWqi8vJy1fPspa5cu+kE/Zzv0K+fOtapvlfY+2LQIDUf3ZtvZuaz2rZVQdN58/wDMeY5Zzu/cnJUgLSkRAUjw2JW2vUVgeszM9DgVPT1e3C692O/gF/Q8yndTlB9GHNtddrozA6lHj2Cv9Yr+Bpk1ftk6UGc2ljJuLYdd5xapMJZKTcRMiDrNr8MyPHjVcfGsGHeQRcCkPF13i5d4p/jtZp0Jrz6qjoO++8vsssumXvfVNmu1dqub2b6815+WV3TPXv6L0IWhN8q3LvvLrJkichnn2V2/YZGjdQoidxc96KIqJcIQCK42qiM1GYG5OYkjEV8RPwrIHqlLts9msnyC0DWZuZMTo4aZlZS4l44yjYH4mOPiZSVBVthPFVBek3z89XwWpH0p08I67zNtEzMBRiJxI716NHqd2Eey1Rk+nhEIonLeTMA6RdwCft8MQNg+mTv9VmQIdj6/MypyETHRLp1kKefVgH+du1ELr00/e1JVpB51rzstJOa7iYSiQXEEg1ZT1V+vpqORMS9iE5DkkxZkakApJ7BE2TUTbYDkLWxiEwm6AFIswNvxAjVceY3V2GjRvHBns09AGm7z4ZZjx86VNV9Pvyw7nQs25x7rvrfNjKnrttlF5Fly9RQ+3SP5dq1sce24xVWXezxx1XnkXMcUG8RgERwtRFEMueARN3mF4DUK4LpzjdS2+pKBqSIurmbDYNnn1WBmxYt3BWhsDsJgg65efll1QNaHytpqcjUYiSRiGr03XWXml8pzGzW+qK2FpgJwhwFUF8yhBIJMgQ7lQCk0+jv1k1NqZCudOsgu+6q5vCaNy87Wfnm/TKZAGQkojJKlixR2794cfKT4CfjtdfUZ/lN71LXnHGG+j/TgdlMBaPOPlt14uXkBJu7uD4uQpMNegDSFgxJ9D0ikfh7+OYWgAySSR12GzDdVddrw333qbI3rLUJwtakiWo77LWXWuBVJLbaejLWrYs9ru02UX0pl+CLACT8OYVs7961M9ystodgIz1BMyD1yf/rA79hZ5lc+TZV/furRui8ebUboAnaaI9E6ubKqWEJo6wKY3L3+qguBSAbKq8h2OkGIIcNE/nzT7VIXarl5l13qf+33jp+9fRUtGxZN8pwEfecXEHk5MTuTe3bh9tYr49l+EMPqWkdMh2YTXfuUUdxsboe5s0LNlVEtjMg60tDXw9ApsosE+rbuZ+uICu01/XgYG1pCHWz3FyR6dNF/vgjtXkm9XMh3fkksVkiAAl/F10k8u23sdWiaxMByLrP7xjpGZD6nIX1QX2ofHbqVPuTMrdpE+uIuOSS2v1sbJ7q0vQNBx8c254nnsjutmRSmEOwu3dPL0PiggvUQnHffdcwRkU40yrstFPDnF8xmyIRkW22yUygxFmIrkcPdawypVkz91ykfryGaROA9JbqsTcDkJkKOtcXp5wSq7O//LL9OfrK8Kj/8vOT7wRzXHFFrH7wzDOZ2yZsNhpAbQ6hikRqd0LgCRPUUK2cHFXAoW7T5+w06QHI+lZxadpUNTqmT49fobe+DSfPpEhE5JNPVDBg332zvTV1R/fu6t/cuZRbmVaXOqKaNxeZMUNlMO29d7a3JnPMQINtCHa2yr1IRK2U3VDcfruq4+y6KxlFddn//Z/IgAEiffuGs9BPEF4djKyC7ZZoCHYQZgAy3QWv6pt27VSm+tKlInvsYX9OfavHIzw9eqi5JNeubVj3Z9QaApCoWw47TOSjj9Swu+7ds701SMQvAHnXXWpVXxGRm2+ulc3JqPfeE/n8c5FDD3X/Pt3FGOq7li1FDjww21tRt+TmqvnZvvkm/nxBeoIMDatNXbrYVwitz8zAg5PlqQd/N/dyL1Py8kQOOijbW4FEcnODDZMOextswsqAND9vcw5Abm4ZkCIqG84vI+7kk0XGjFGByIceqr3tQt20zTbZ3gLUYwQgUbdEItmv9CE4vx7R/v1F3n1XNVydQGR90q5dbDVnHQ1x2HTqpP4hswYPjj12hkUis8yAhpPxlclVsAFkRm3NYVpfApC6TAQgCwrqzwrgtal9e9Up/8cf9roxAARUx1ILANQrfhmQIiobbMiQhjXU7PDDY48vvzx72wFsDtq3F/n0U5EHHhC5+OJsb03D5BVoIAAJZJdtpfTamgu1vgThbrst9vjkk1N7Dz0AucUWDavOmkm77y5ywgnZm5YAQINABiSA1G2Oc8L07Cny+usiv/0mcvbZ2d4aoOEbMED9Qzi8Ag3nnSdy2mnq8Rln1N72AFAmTlSLPFxzTex3tRWArC8ZkOefr/ZJhw4iu+2W2nvoAbVWrTKzXQAAKwKQAJIzapTIk0+qx5vrQiRHHpntLQCAzPBapXrECJEVK1Q20Ekn1e42AVCLPYwdm50AZJMmtfM56crPF7nwwvTeY/362GNnES4AQCgIQAJIzrhxapGCrbcW2XPPbG8NACAd+mq7bdvGHufmilxySe1vDwBvtRWA3JyGIa9eHXvstfo4ACAjCEACSE7LliJ3353trQAAZEJBgciECSKvvCJy9dXZ3hoAfghAZh4BSACoNSxCAwAAsDkbPlzkpZdEtt8+21sCwLTzzrHH224b3ud07x573LVreJ9T1xCABIBaQwYkAAAAANRFL7wgcvrpIrvsEu6CXG++KXLWWSIDB4r07Rve59Q1mzbFHhOABIBQEYAEAAAAgLqoZ0+RTz4J/3P69hX57LPwP6cuIwAJAKFiCDYAAAAAYPPTrVvscY8e2dsOANgMEIAEAAAAAGx+XnxRpE0bkX33FTnuuGxvDQA0aAzBBgAAAABsfvr1E1myRCQ3N9tbAgANHhmQAAAAAIDNE8FHAKgVBCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEplEqL1q9erWIiBQXF6f14WvWrJGPPvpIRESOPPLItN4LAAAAAAAAQN2TUgCyRYsWkpOTIz/++KNst912cX9ftGiRXHnllRKJROTxxx/3fJ958+bJ0KFDJScnRzZt2pTKpgAAAAAAAACow1Iegh2NRj3/tmrVKhk/fryMHz8+7fcCAAAAAAAAUH/VyzkgH3zwQdlhhx2kuLhYiouLZa+99pJ3330325sFAAAAAAAAwFAvA5CdO3eWm2++Wb799lv55ptv5IADDpCjjjpKZsyYke1NAwAAAAAAAKBJaQ7IbDviiCNcP99www3y4IMPypdffil9+vTJ0lYBAAAAAAAAMNXLAKSuqqpKXnrpJVm7dq3stdde1udUVFRIRUVFzc/OKt6VlZVSWVlZK9tZW5zv09C+F1CfcB0C2cd1CGQX1yCQfVyHQPY19Oswme9VbwOQP/30k+y1116yYcMGadq0qbz66qvWFblFRG666Sa59tpr434/ceJEKSwsDHtTs2LSpEnZ3gRgs8d1CGQf1yGQXVyDQPZxHQLZ11Cvw3Xr1gV+br0NQPbq1UumT58uZWVl8vLLL8uIESPkk08+sQYhx4wZIxdddFHNz6tXr5YuXbrIIYccIsXFxbW52aGrrKyUSZMmycEHHyx5eXnZ3hxgs8R1CGQf1yGQXVyDQPZxHQLZ19CvQ2eEcRD1NgDZuHFj2XrrrUVEZNddd5Wvv/5a7r77bnn44Yfjnpufny/5+flxv8/Ly2uQJ4BIw/5uQH3BdQhkH9chkF1cg0D2cR0C2ddQr8NkvlNaq2BHIpF0Xp5R1dXVrnkeAQAAAAAAAGRfWhmQffv29fybE5zMzc1N5yOsxowZI4MHD5auXbtKeXm5TJgwQSZPnizvv/9+xj8LAAAAAAAAQOrSCkBGo9FMbUdSli1bJqeeeqosXrxYmjdvLjvssIO8//77cvDBB2dlewAAAAAAAADYpRSAHDhwYFaHXz/++ONZ+2wAAAAAAAAAwaUUgJw8eXKGNwMAAAAAAABAQ5TWIjQAAAAAAAAA4IcAJAAAAAAAAIDQZD0AuW7dOhk3bly2NwMAAAAAAABACLIWgCwvL5cbbrhBunfvLpdeemm2NgMAAAAAAABAiFJahCYdK1eulDvvvFPuv/9+KSsrk2g0mtUVtQEAAAAAAACEJ60MyHnz5skFF1wg2223nTRr1kxatWolu+yyi9x0001SVlbmeu6aNWtk7Nix0r17d7nxxhultLRUotGotGnTRq6//vq0vgQAAAAAAACAuinlDMhJkybJscceK2vXrhURkWg0KiIiP/zwg/zwww/y9NNPy8cffyzt27eXzz//XE4++WSZP39+zfM6deokF198sZxxxhnSpEmTDHwVAAAAAAAAAHVNSgHI5cuXy/Dhw2XNmjU1vysqKpJGjRrVZD7+9ttvcu6558ro0aNl0KBBsnHjRolGo7LlllvK5ZdfLiNHjpS8vLzMfAsAAAAAAAAAdVJKQ7AfffRRWblypUQiERk2bJj8/vvvUl5eLqtWrZJFixbJeeedJyIir7/+uvztb3+TiooKadq0qdx7770ya9Ys+cc//kHwEQAAAAAAANgMpJQBOXHiRBER2XPPPeXFF190/a19+/Zyzz33SHl5uTz11FOyYMECadGihUyZMkX69OmT/hYDAAAAAAAAqDdSyoD89ddfJRKJyDnnnOP5nAsuuEBERCKRiFxwwQUEHwEAAAAAAIDNUEoByFWrVomIyNZbb+35nJ49e9Y8HjBgQCofAwAAAAAAAKCeSykAWVlZKSIizZo183xO06ZNax63b98+lY8BAAAAAAAAUM+lFIBMViQSqY2PAQAAAAAAAFDH1EoAEgAAAAAAAMDmKaVVsB2jRo2SoqKitJ8XiUTkww8/TGdTAAAAAAAAANRBaQUgv/nmG9+/O0Ov/Z4XjUYZog0AAAAAAAA0UCkHIKPRaCa3AwAAAAAAAEADlFIAsrq6OtPbAQAAAAAAAKABYhEaAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAIQmpTkgr7vuukxvh1x99dUZf08AAAAAAAAA2ZVSAPKaa66RSCSS0Q0hAAkAAAAAAAA0PCkFIEVEotFoxjYi08FMAAAAAAAAAHVDSgHIjz/+ONPbAQAAAAAAAKABSikAue+++2Z6OwAAAAAAAAA0QKyCDQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAwP+3d+dRVpRn/sCfht5AQWRrQEAhiRoV0YALwQRRBJFjJKJGRUQzLjE4CsyowfwUHONgJMYo4pZEcQK4BXA74ARBQCKitKIoismIGpUliOzaNHT9/jDcdNuL4KG46ebzOafPubfet2491fc+x+brW7eA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDU1MoAcvTo0XHUUUdFo0aNomXLltG/f/9YunRptssCAAAAAL6kVgaQc+bMiSFDhsSLL74YM2bMiNLS0ujdu3ds2rQp26UBAAAAAOXkZruAr+OZZ56p8Hz8+PHRsmXLKC4uju9///tZqgoAAAAA+LJaGUB+2bp16yIiomnTplWOl5SURElJSeb5+vXrIyKitLQ0SktL0y9wN9p+PnXtvKA20YeQffoQsksPQvbpQ8i+ut6HO3NeOUmSJCnWkrqysrL4wQ9+EGvXro158+ZVOWfUqFFxww03VNo+adKkaNiwYdolAgAAAECdsnnz5jj33HNj3bp10bhx4xrn1voA8rLLLovp06fHvHnzom3btlXOqWoFZLt27WL16tVf+QuqbUpLS2PGjBlx0kknRV5eXrbLgT2SPoTs04eQXXoQsk8fQvbV9T5cv359NG/efIcCyFp9Cfbll18eTz/9dMydO7fa8DEioqCgIAoKCiptz8vLq5MfgIi6fW5QW+hDyD59CNmlByH79CFkX13tw505p1oZQCZJEv/+7/8eU6dOjdmzZ0eHDh2yXRIAAAAAUIVaGUAOGTIkJk2aFE888UQ0atQoVqxYERER++yzTzRo0CDL1QEAAAAA29XLdgFfx9133x3r1q2L448/Plq3bp35eeSRR7JdGgAAAABQTq1cAVnL75sDAAAAAHuMWrkCEgAAAACoHQSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqamUAOXfu3Dj11FOjTZs2kZOTE48//ni2SwIAAAAAqlArA8hNmzZF586dY9y4cdkuBQAAAACoQW62C/g6+vbtG3379s12GQAAAADAV6iVAeTOKikpiZKSkszz9evXR0REaWlplJaWZqusVGw/n7p2XlCb6EPIPn0I2aUHIfv0IWRfXe/DnTmvnCRJkhRrSV1OTk5MnTo1+vfvX+2cUaNGxQ033FBp+6RJk6Jhw4YpVgcAAAAAdc/mzZvj3HPPjXXr1kXjxo1rnLtHBJBVrYBs165drF69+it/QbVNaWlpzJgxI0466aTIy8vLdjmwR9KHkH36ELJLD0L26UPIvrreh+vXr4/mzZvvUAC5R1yCXVBQEAUFBZW25+Xl1ckPQETdPjeoLfQhZJ8+hOzSg5B9+hCyr6724c6cU628CzYAAAAAUDvUyhWQGzdujL/+9a+Z58uWLYtFixZF06ZNo3379lmsDAAAAAAor1YGkAsXLoyePXtmng8fPjwiIgYPHhzjx4/PUlUAAAAAwJfVygDy+OOPj1p+7xwAAAAA2CP4DkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNbU6gBw3blwccMABUVhYGMccc0y89NJL2S4JAAAAACin1gaQjzzySAwfPjxGjhwZr7zySnTu3Dn69OkTq1atynZpAAAAAMA/1NoA8te//nVcfPHFceGFF8YhhxwS99xzTzRs2DDuv//+bJcGAAAAAPxDbrYL+Dq2bNkSxcXFMWLEiMy2evXqRa9evWL+/PmV5peUlERJSUnm+bp16yIiYs2aNVFaWpp+wbtRaWlpbN68OT755JPIy8vLdjmwR9KHkH36ELJLD0L26UPIvrrehxs2bIiIiCRJvnJurQwgV69eHdu2bYuioqIK24uKiuLtt9+uNH/06NFxww03VNreoUOH1GoEAAAAgLpuw4YNsc8++9Q4p1YGkDtrxIgRMXz48MzzsrKyWLNmTTRr1ixycnKyWNmut379+mjXrl387W9/i8aNG2e7HNgj6UPIPn0I2aUHIfv0IWRfXe/DJEliw4YN0aZNm6+cWysDyObNm0f9+vVj5cqVFbavXLkyWrVqVWl+QUFBFBQUVNjWpEmTNEvMusaNG9fJDzfUJvoQsk8fQnbpQcg+fQjZV5f78KtWPm5XK29Ck5+fH126dImZM2dmtpWVlcXMmTOjW7duWawMAAAAACivVq6AjIgYPnx4DB48OLp27RpHH310/OY3v4lNmzbFhRdemO3SAAAAAIB/qLUB5I9+9KP4+9//Htdff32sWLEijjjiiHjmmWcq3ZhmT1NQUBAjR46sdMk5sPvoQ8g+fQjZpQch+/QhZJ8+/KecZEfulQ0AAAAA8DXUyu+ABAAAAABqBwEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgFkHTNu3Lg44IADorCwMI455ph46aWXsl0S1AmjR4+Oo446Kho1ahQtW7aM/v37x9KlSyvM+fzzz2PIkCHRrFmz2HvvvWPAgAGxcuXKCnM++OCD6NevXzRs2DBatmwZV111VWzdunV3ngrUCTfffHPk5OTE0KFDM9v0IKTvo48+ivPOOy+aNWsWDRo0iE6dOsXChQsz40mSxPXXXx+tW7eOBg0aRK9eveIvf/lLhddYs2ZNDBw4MBo3bhxNmjSJf/u3f4uNGzfu7lOBWmnbtm1x3XXXRYcOHaJBgwbxjW98I2688cYof29ZfQi71ty5c+PUU0+NNm3aRE5OTjz++OMVxndVz73++uvxve99LwoLC6Ndu3Zxyy23pH1qu5UAsg555JFHYvjw4TFy5Mh45ZVXonPnztGnT59YtWpVtkuDWm/OnDkxZMiQePHFF2PGjBlRWloavXv3jk2bNmXmDBs2LJ566ql47LHHYs6cOfHxxx/H6aefnhnftm1b9OvXL7Zs2RIvvPBCPPjggzF+/Pi4/vrrs3FKUGu9/PLLce+998bhhx9eYbsehHR9+umn0b1798jLy4vp06fHkiVL4tZbb4199903M+eWW26JO+64I+65555YsGBB7LXXXtGnT5/4/PPPM3MGDhwYb775ZsyYMSOefvrpmDt3blxyySXZOCWodX75y1/G3XffHXfeeWe89dZb8ctf/jJuueWWGDt2bGaOPoRda9OmTdG5c+cYN25cleO7oufWr18fvXv3jv333z+Ki4tjzJgxMWrUqLjvvvtSP7/dJqHOOProo5MhQ4Zknm/bti1p06ZNMnr06CxWBXXTqlWrkohI5syZkyRJkqxduzbJy8tLHnvsscyct956K4mIZP78+UmSJMm0adOSevXqJStWrMjMufvuu5PGjRsnJSUlu/cEoJbasGFD8q1vfSuZMWNG0qNHj+TKK69MkkQPwu5wzTXXJMcdd1y142VlZUmrVq2SMWPGZLatXbs2KSgoSB566KEkSZJkyZIlSUQkL7/8cmbO9OnTk5ycnOSjjz5Kr3ioI/r165f8+Mc/rrDt9NNPTwYOHJgkiT6EtEVEMnXq1MzzXdVzd911V7LvvvtW+Jv0mmuuSQ466KCUz2j3sQKyjtiyZUsUFxdHr169Mtvq1asXvXr1ivnz52exMqib1q1bFxERTZs2jYiI4uLiKC0trdCDBx98cLRv3z7Tg/Pnz49OnTpFUVFRZk6fPn1i/fr18eabb+7G6qH2GjJkSPTr169Cr0XoQdgdnnzyyejatWuceeaZ0bJlyzjyyCPjt7/9bWZ82bJlsWLFigp9uM8++8QxxxxToQ+bNGkSXbt2zczp1atX1KtXLxYsWLD7TgZqqe9+97sxc+bMeOeddyIi4rXXXot58+ZF3759I0Ifwu62q3pu/vz58f3vfz/y8/Mzc/r06RNLly6NTz/9dDedTbpys10Au8bq1atj27ZtFf5RFRFRVFQUb7/9dpaqgrqprKwshg4dGt27d4/DDjssIiJWrFgR+fn50aRJkwpzi4qKYsWKFZk5VfXo9jGgZg8//HC88sor8fLLL1ca04OQvnfffTfuvvvuGD58eFx77bXx8ssvxxVXXBH5+fkxePDgTB9V1Wfl+7Bly5YVxnNzc6Np06b6EHbAz372s1i/fn0cfPDBUb9+/di2bVvcdNNNMXDgwIgIfQi72a7quRUrVkSHDh0qvcb2sfJfd1JbCSABdtKQIUPijTfeiHnz5mW7FNhj/O1vf4srr7wyZsyYEYWFhdkuB/ZIZWVl0bVr1/jv//7viIg48sgj44033oh77rknBg8enOXqYM/w6KOPxsSJE2PSpElx6KGHxqJFi2Lo0KHRpk0bfQj8S3MJdh3RvHnzqF+/fqW7fa5cuTJatWqVpaqg7rn88svj6aefjueeey7atm2b2d6qVavYsmVLrF27tsL88j3YqlWrKnt0+xhQveLi4li1alV85zvfidzc3MjNzY05c+bEHXfcEbm5uVFUVKQHIWWtW7eOQw45pMK2b3/72/HBBx9ExD/7qKa/R1u1alXpBolbt26NNWvW6EPYAVdddVX87Gc/i7PPPjs6deoUgwYNimHDhsXo0aMjQh/C7rarem5P+DtVAFlH5OfnR5cuXWLmzJmZbWVlZTFz5szo1q1bFiuDuiFJkrj88stj6tSpMWvWrErL47t06RJ5eXkVenDp0qXxwQcfZHqwW7dusXjx4gr/8ZkxY0Y0bty40j/ogIpOPPHEWLx4cSxatCjz07Vr1xg4cGDmsR6EdHXv3j2WLl1aYds777wT+++/f0REdOjQIVq1alWhD9evXx8LFiyo0Idr166N4uLizJxZs2ZFWVlZHHPMMbvhLKB227x5c9SrV/Gf8fXr14+ysrKI0Iewu+2qnuvWrVvMnTs3SktLM3NmzJgRBx10UJ24/Doi3AW7Lnn44YeTgoKCZPz48cmSJUuSSy65JGnSpEmFu30CX89ll12W7LPPPsns2bOT5cuXZ342b96cmfOTn/wkad++fTJr1qxk4cKFSbdu3ZJu3bplxrdu3ZocdthhSe/evZNFixYlzzzzTNKiRYtkxIgR2TglqPXK3wU7SfQgpO2ll15KcnNzk5tuuin5y1/+kkycODFp2LBhMmHChMycm2++OWnSpEnyxBNPJK+//npy2mmnJR06dEg+++yzzJyTTz45OfLII5MFCxYk8+bNS771rW8l55xzTjZOCWqdwYMHJ/vtt1/y9NNPJ8uWLUumTJmSNG/ePLn66qszc/Qh7FobNmxIXn311eTVV19NIiL59a9/nbz66qvJ+++/nyTJrum5tWvXJkVFRcmgQYOSN954I3n44YeThg0bJvfee+9uP9+0CCDrmLFjxybt27dP8vPzk6OPPjp58cUXs10S1AkRUeXPAw88kJnz2WefJT/96U+TfffdN2nYsGHywx/+MFm+fHmF13nvvfeSvn37Jg0aNEiaN2+e/Md//EdSWlq6m88G6oYvB5B6ENL31FNPJYcddlhSUFCQHHzwwcl9991XYbysrCy57rrrkqKioqSgoCA58cQTk6VLl1aY88knnyTnnHNOsvfeeyeNGzdOLrzwwmTDhg278zSg1lq/fn1y5ZVXJu3bt08KCwuTjh07Jj//+c+TkpKSzBx9CLvWc889V+W/BQcPHpwkya7ruddeey057rjjkoKCgmS//fZLbr755t11irtFTpIkSXbWXgIAAAAAdZ3vgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAIAsO+CAAyInJycuuOCCbJcCALDLCSABgD3apZdeGjk5OZGTkxOzZs3aqX3/9Kc/Zfa98sorU6oQAABqNwEkALBHO//88zOPJ0yYsFP7/uEPf6jydbJl9uzZmUB09uzZ2S4HAAAiQgAJAOzhunfvHt/4xjciImLy5Mnx2Wef7dB+mzZtiqlTp0ZExKGHHhpdunRJrUYAAKjNBJAAwB5v0KBBERGxfv36eOKJJ3ZonylTpsSmTZsq7A8AAFQmgAQA9niDBg2KnJyciNjxy7C3X35dr169OO+881KrDQAAajsBJACwx+vYsWN07949IiL+93//N1atWlXj/I8//jhmzpwZEREnnHBC7LfffpXmPP7443HmmWdG+/bto7CwMJo0aRJdu3aNG264IT799NMdqmvatGlx3nnnRceOHWOvvfaKwsLC6NChQwwYMCDGjx8fmzdvjoiI9957L3JycqJnz56ZfXv27Jn5PsjtP+PHj690jC1btsRdd90VPXv2jBYtWkR+fn60atUqTjnllJgwYUKUlZVVW98FF1wQOTk5ccABB0RExPLly+Oaa66JQw89NBo1arTT30VZ1XdYPvroo3HiiSdGixYtokGDBnHQQQfF1VdfHWvWrKn2dY4//vjIycmJ448/vsbjjRo1KnO8qmwfGzVqVEREPPfcc9G/f/9o06ZNNGjQIL797W/HjTfemFkJu920adPilFNOycw75JBDYvTo0bFly5Yd/l28/PLLcc4550S7du2isLAw2rVrFxdeeGG8/fbbO7T/X//61xg2bFh06tQp9tlnn2jQoEF07NgxLrjggli4cGG1+335PSgrK4v7778/evbsGUVFRVGvXj136gYAdl4CAEBy3333JRGRRERy++231zh3zJgxmbn/8z//U2FszZo1yQknnJAZr+qnZcuWyfz586t9/dWrVycnnnhija8REckDDzyQJEmSLFu27Cvnlp+/3bJly5KDDz64xn2OO+645JNPPqmyzsGDBycRkey///7J/Pnzk+bNm1fa/7nnnvvK3/12zz33XGa/mTNnJuedd161dX3zm99Mli9fXuXr9OjRI4mIpEePHjUeb+TIkZnXq8r2sZEjRyajR49OcnJyqqzlu9/9brJx48akrKwsueKKK6qt+eSTT062bt1a5bH233//JCKSwYMHJ7///e+T3NzcKl+joKAgefTRR2s8rzFjxiR5eXnV1pGTk5Ncd911Ve5b/j2YPn160qtXr0r7Dx48uMbjAwB8mRWQAAARcdZZZ0VhYWFEVLy7dVW2j++9995x+umnZ7aXlJREr169YtasWVG/fv0YNGhQPPTQQ/Hiiy/G888/HzfddFM0a9YsVq1aFaecckq8//77lV578+bN0bNnz8wKyy5dusS9994bf/7zn2PhwoUxderUGDZsWLRp0yazz3777ReLFy+O+++/P7Pt/vvvj8WLF1f46d+/f2Z848aNceKJJ2ZW1PXv3z+efPLJWLhwYTz22GPRo0ePiIiYN29enHrqqbFt27Zqfx8bN26MAQMGxOeffx4///nPY/bs2fHSSy/F73//+2jdunWNv8vqXHfddTFhwoTo379/TJkyJYqLi2PatGnRr1+/iPjnCr/dYfr06TFixIg49thjY9KkSbFw4cJ45plnom/fvhER8cILL8To0aPjtttuizvuuCP69u0bkydPjuLi4njiiSfi2GOPjYiIZ555Jn7729/WeKxFixbFT37yk2jZsmWMHTs2FixYEHPmzIlrrrkmCgoKoqSkJAYOHFjtKsYxY8bEVVddFaWlpXH44YfH3XffHc8++2wsXLgwJk6cGN26dYskSeLGG2+MO+64o8Zarrnmmnj22WfjBz/4QYX3YPt5AwDssGwnoAAA/yrOOuuszCqvt99+u8o5r732WmbO+eefX2Hs2muvTSIiadKkSbJw4cIq93/vvfeS1q1bJxGRnHvuuZXGhw0blnn9IUOGJGVlZVW+TklJSbJixYoK28qvXvuqlYf/+Z//mZn7//7f/6s0XlZWlgwcODAz56677qo0Z/sKyIhI9t5772TRokU1HvOrlK8/IpJf/OIXVdbVu3fvJCKS3NzcZNWqVZXm7OoVkBGRDBgwoNLqxa1btybHHntsEhFJo0aNksLCwmTo0KGVXmfTpk2ZFY6HH354lcfaPh7/WFFa1erOWbNmZVZGHnXUUZXG33zzzczKx5EjR1b52dm2bVtmZenee++drFmzpsL4l9+Dqj4bAAA7ywpIAIB/OP/88zOPq1sFWX57+fkbN26McePGRUTEjTfeGF26dKly//333z+uu+66iIh47LHHKnx/4Nq1a+Pee++NiC9WPt5+++3Vfj9hfn5+FBUV7chpVVJSUhK/+93vIiLi0EMPzXzHYXk5OTlx1113RbNmzSIi4s4776zxNa+++uro3Lnz16qnKl26dIlrr722yrqGDx8eERFbt26N+fPn77JjVqdhw4Zx3333Rf369Stsr1+/flxyySUREbFhw4Zo0aJF3HLLLVXuP3jw4IiIeP3112PdunU1Hu/WW2+NVq1aVdres2fPuPjiiyPii++I/PIqyFtvvTVKS0uja9euMXLkyCo/O/Xq1YuxY8dGQUFBbNy4Mf74xz9WW8eBBx5Y5WcDAGBnCSABAP6hT58+mVBv4sSJkSRJhfGysrKYNGlSRES0bdu2wk1f5syZkwmWzjjjjBqP8/3vfz8iIkpLS6O4uDizfdasWZkby1xxxRWVAq9dpbi4ONauXRsRX9xIprrjNG7cOM4666yIiFiyZEksX7682tccOHDgLq3x3HPPrTZ8LR/uvvvuu7v0uFU56aSTomnTplWOlQ9dTz/99MjLy/vKecuWLav2WPvuu2+cdtpp1Y7/+Mc/zjx+9tlnK4w99dRTERExYMCAan93ERFNmjSJTp06RUTUGOD+6Ec/Su0zCADsWQSQAAD/kJubG+eee25EfHFn6Xnz5lUYnzlzZnz88ccR8UXgVq/eP/+UKr8arXXr1pXuQF3+57DDDsvMXbFiRebxq6++mnn8ve99b9eeXDlvvPFG5vExxxxT49zy4+X3K2/vvfeOjh077pri/uHggw+udqx8GLhhw4ZdetyqHHjggdWONWnSZKfn1VTzkUceGbm5udWOH3HEEZGfnx8REYsXL85sf//99+Pvf/97RESMGDGixs9fTk5O5vNa/vP3ZYcffni1YwAAO0MACQBQTk2XYVd3+XVExKpVq77W8baveIyIWL16debx1715y45Ys2ZN5nHLli1rnFv+UuDy+5VXPlzbVRo2bFjtWPngt6ab4+zuWnZFzV/1fuTm5mYC2PLvx674/H3Zvvvu+7VeEwDgy6r/36sAAHugI444Ijp16hSLFy+Oxx57LPN9eZs2bYopU6ZExBeXAB9yyCEV9isfKr3yyivVXor7ZW3btt11xX8NNV2qu6NcprvrfN33o/zn7/rrr48zzzxzh/bba6+9qh3zvgIAu4oAEgDgS84///y46qqrYu3atfHUU0/FGWecEVOnTs3cMObLqx8jInOzloiIFi1afK1gsXnz5pnHy5cvjw4dOnyN6r9a+UuYV65cWeOlw+Uv0a3uexD/1WxfbVhWVlbjvPI3APpXsXLlyhrHt27dmln5WP79KP/5y8vLq3CZPwBAtrkEGwDgSwYOHJhZ/TVhwoSI+Ofl13l5eXHOOedU2ufII4/MPP7zn//8tY77ne98J/N47ty5O73/jq6eKx9OLViwoMa5L730UpX7/Str1KhRRER8+umnNc575513dkc5O2XRokWxdevWasdfe+212LJlS0RUfD86duwY++yzT0R8/c8fAEBaBJAAAF/SunXr6NWrV0RETJs2Ld54442YOXNmREScfPLJ0aJFi0r79OrVK/MdgHfccUelO2jviJ49e2YuiR07duxOf79hYWFh5nFJSUm187p06ZL53sYHH3yw2pWCGzZsiEcffTQiIg455JBUv5dyV9q+cvSdd96p9oYvq1evjhkzZuzOsnbImjVrMnezrsr999+febz9MxrxxeXSp5xySkRE/OlPf4q33norvSIBAHaSABIAoArbL7MuLS2Ns88+OxMGVnX5dcQXN2K5/PLLIyLihRdeiGHDhtV4CfDKlSvjd7/7XaXXuPTSSyMiori4OIYOHVptkFlaWlrpxiPlA8L/+7//q/bYBQUFcdFFF0XEF3e2vvHGGyvNSZIkLr/88syNcbafW23Qo0ePiIjYsmVLjB07ttJ4aWlpXHTRRfHZZ5/t7tJ2yPDhw6u8FHvOnDlx3333RcQXIfJRRx1VYXzEiBFRv379KCsrizPOOCM+/PDDao+xbdu2mDhxYo1zAAB2Fd8BCQBQhR/+8IfRqFGj2LBhQ7z55psR8cVdgU899dRq9/mv//qvmDNnTixYsCBuv/32mD17dlx88cVxxBFHxF577RWffvppvPnmm/Hss8/G9OnTo1OnTpkgcLsbb7wxZsyYEYsXL44777wz5s+fH5deeml06tQp8vPz48MPP4znn38+HnroofjFL34RF1xwQWbf9u3bR9u2bePDDz+MX/3qV9G2bds46KCDMpeTFxUVZS5Pvv7662PKlCnx7rvvxqhRo2Lx4sVx4YUXRuvWrWPZsmVx5513xuzZsyMiolu3bnHJJZfswt9uuvr16xf7779/vP/++3HdddfF6tWr4/TTT4/CwsJ4880344477ohXX301jj322HjxxRezXW4FnTt3jiVLlkSXLl1ixIgRcfTRR0dJSUlMmzYtbrvttti6dWvk5ubGuHHjKu3bqVOn+NWvfhXDhg2LJUuWxGGHHRaXXHJJnHDCCVFUVBSff/55vPfeezF//vz44x//GMuXL4/Fixdn/UZIAEDdJ4AEAKhCgwYN4owzzogHHnggs+2ss86KgoKCavcpKCiIGTNmxAUXXBBTpkyJ1157rcaVg40bN660rWHDhjFr1qwYMGBAzJ07N4qLi3cq/Lv22mvjpz/9aSxbtixOO+20CmMPPPBAJrBs1KhRzJw5M/r27Rtvv/12TJ48OSZPnlzp9bp37x5PPvlkrbojcn5+fkyYMCFOPvnk2LRpU9x2221x2223Zcbr168fv/nNb2LNmjX/cgHkEUccEZdffnlcdtllVX528vPz48EHH4xjjjmmyv2HDh0ae+21VwwdOjTWrVsXY8aMiTFjxlQ5Nz8/v8Jl+wAAaXEJNgBANQYPHlzheXWXX5fXqFGjmDx5cjz//PNx0UUXxUEHHRSNGjWK3NzcaNq0aRx11FExZMiQmDZtWrXfQdi8efOYM2dOTJkyJc4444xo27ZtFBQURGFhYXTs2DHOPPPMmDhxYpU3w7nsssti8uTJ0bt372jZsmXk5lb//5sPOOCAeO211+LOO++MHj16RLNmzSIvLy+Kiori5JNPjj/84Q8xd+7cWnP36/KOO+64KC4ujkGDBkWbNm0iLy8vWrdunQl2r7jiimyXWK2LLroonn/++TjrrLOiTZs2kZ+fH/vtt1+cf/758eqrr8bZZ59d4/4XX3xxvPvuu3HDDTdE9+7do3nz5pGbmxt77bVXHHjggTFgwIC455574qOPPopvfvObu+msAIA9WU7ydb4hHQAAAABgB1gBCQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKTm/wMThVhgwtwpzAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Вывод ошибки MSE, достигнутой при обучении AE1\n", + "print('MSE_stop =', IRE1[-1])\n", + "\n", + "# Порог ошибки реконструкции (порог обнаружения аномалий)\n", + "print('IREth1 =', IREth1)\n", + "\n", + "# Построение графика ошибки реконструкции обучающей выборки\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 779 + }, + "id": "YatIFIdGhQgT", + "outputId": "73517786-2922-4c83-c344-ac09fa26f38a" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop = 3.46\n", + "IREth1 = 3.88\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1wFJREFUeJzs3Xd4VMX6wPF3E0JCAqFKb4oICnbFgmAXwYaKBb0KXL12xeu14U9FvXbF3it6Feu1V7CgqCg2LIiIKEiHAAmhhZDs74+5Jztnds7Zs+Vkk/D9PA8Pm2TL2VPmzLzzzkwkGo1GBQAAAAAAAABCkJPtDQAAAAAAAADQcBGABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAHXSzJkz5ZxzzpHttttOmjVrJpFIpObf3Llzs715m6Xx48fXHIORI0fW6mfrxx8AAAD1CwFIAADqkP32268myHLNNdd4Pk8Pxpj/cnNzpUWLFtKzZ0857rjj5LHHHpM1a9aktA3J/stUUOqNN96QnXfeWR588EGZOXNmUtsPAB988IGrbNp2222Tfo9rrrkm5bKwe/fuvu+9aNEief311+XKK6+UQw89VFq3bk0nCwCgQWuU7Q0AAACZVV1dLWVlZVJWVia///67vPzyyzJmzBh55JFH5Oijj8725iW0Zs0aGTlypFRUVIiISIcOHWSfffaRLbbYoib7rbi4OJubmJZrrrlGrr32WhERGTt2rG+gGairunfvLvPmzRMRkT///DNhwK22PfXUU66ff/31V5k2bZr069cvS1sU07FjR1m8eHG2NwMAgFpFABIAgHpu6NCh0qlTp5qfq6urpaSkRKZOnSoLFiwQEZGSkhIZNmyYvPzyy0kFIXffffekGux77rln8A338NZbb8mqVatERKRPnz7y9ddfS5MmTdJ+XwCbh/LycnnllVfifv/UU0+lHIDs2LFjUmVn69atPf9G8BEAsDkiAAkAQD03evRo2W+//eJ+X11dLU899ZScffbZUlFRIdXV1XL22WfLoEGDpLCwMNB7DxkypNYz9L777ruax8OHDyf4WIeMHDmy1ud+dESj0ax8Luqfl19+WdatWyciIk2aNJH169eLiMjzzz8vd955pzRu3Djp9+zZs6fcd999GdvGgoIC2WmnnWT33XeX3XffXdq1ayeDBg3K2PsDAFDXMAckAAANVE5OjowaNUpuvfXWmt8tXbpUXnvttextVABO9qOIGn4NAMnQh19fdtll0q5dOxERWblypbz55pvZ2qwa3333nZSXl8vUqVPlnnvukVNOOUW22WabbG8WAAChIgAJAEADd+aZZ0pBQUHNz59++mkWtyaxysrKmsc5OVRVAAQ3d+7cmjIuEonIiBEjZPjw4TV/N+eGzIadd95ZGjViIBoAYPNCrR4AgAYuPz/ftQLsokWLsrg1dvpqs3qAYNSoUXGry44fP976HmvWrJF77rlHBg0aJJ07d5aCggJp2bKl9O3bV8477zz56quvAm2L/lmOH374QUaPHi19+/aVVq1aSSQSkaFDhyb1HZ3VxZ0FaERErr322kCriY8cOTLu+5eWlsrdd98tAwcOlE6dOkmjRo0kEolIaWmp67XLli2TJ598UkaMGCE777yztGrVSvLy8qRFixbSu3dvGTVqlLz//vuBvsP48eMTrng+efLkmufoUwN89NFHcuKJJ8pWW20lBQUF0rp1axk4cKDcd999rqCzF9txMXXv3j1uFeEFCxbIVVddJTvuuKO0aNFCioqKpHfv3nL++efXLKIS1KRJk+TEE0+Url27SkFBgXTo0EEGDBgg999/v6xdu1ZE3OdypqYvKCkpkdtvv10OOugg6dixoxQUFNQcwz59+siwYcPkjjvukD///DPQ+3344Ydy1llnSZ8+faRVq1aSn58vHTt2lEGDBsl9991XM2TZNHfu3Jrvpu+7Lbfc0noeT548ORNfPylPP/10zXD9ffbZR7p37y6nnHJKzd/fffddWbZsWa1vFwAAmzu63gAA2Azo8yhu2LAhi1sSjrfeekv+8Y9/yJIlS1y/r6iokNLSUpkxY4bcf//9ctJJJ8mjjz4aeA5MERVQuv7666WqqirTm52yzz//XIYPHy7z58/3fd4999wjF110kXXbnZXSZ82aJePHj5cDDjhAXnzxRd/FM1KxceNGOe+88+TRRx91/b6iokKmTJkiU6ZMkSeffFLef/99adOmTUY/+7XXXpORI0dKWVmZ6/ezZs2SWbNmyeOPPy4vvfSSHHbYYQm/w2mnnSbPPPOM6/dLliyRJUuWyGeffSb333+/vPrqqxndfhGR119/XUaNGuWamsDhHMNffvlF/vvf/8odd9xRs/CUzfz58+XUU0+1BgYXL14sixcvlokTJ8pNN90kzz//vAwYMCCTX6VWPP300zWPncDjLrvsIn369JEZM2bIpk2bZMKECXLhhRdmaQsBANg8EYAEAGAzoGc9OvOh1SX9+vWTc889V0RUdtavv/4qIiIHHnig9O7d2/VcPZtTROSFF16Qk08+uSbIlpubK/vss49svfXWsmbNGpkyZUrN958wYYL8+eef8tFHH7mGpXu57bbbajIWe/ToIf369ZPCwkKZO3eu5OXlJfUdjz76aOnbt69MmzZNvv76axHxXmXcbzXx33//XS688EIpKyuTZs2aycCBA6Vjx46yatWquOH1ixYtqtkvW221lWy77bayxRZbSEFBgZSWlspPP/0kM2bMEBGVoXjQQQfJl19+Kfn5+Ul9Nz9nnHGGPPXUU5KTkyN77LGH9O7dW6qrq+XLL7+UWbNmiYiaE+/UU0+Vd955J2Of+8EHH8hZZ50lVVVV0rVrV9lrr72kuLhY/vzzT5k8ebJs2rRJ1q9fL8cff7z8/PPPsuWWW3q+1/Dhw12rKrdq1Ur2228/adWqlcyfP18++eQTmTlzphx22GFy5JFHZuw7fPPNNzJs2DDZtGmTiKiOhD333FO6d+8u+fn5snr1apkzZ4789NNPNYuueJk5c6YceOCBNSswRyIR2WWXXWS77baTJk2ayMKFC+XTTz+V8vJyWbRokRx88MHy7rvvyv7771/zHsXFxTXX6dNPPy3l5eUiInLqqadKs2bN4j6zU6dOGdkPQX322WcyZ84cEVGZ38cdd1zN30455RS5/PLLRUQNwyYACQBALYsCAIA6Y999942KSFREomPHjvV8nvMcEYl+/PHHvu85a9Ys1/Pvu+++jGxDWEaMGFHz+U8++aTvc3///fdo06ZNa57fr1+/6OzZs13Pqaqqio4bNy6ak5NT87zzzz/f8z31fdWoUaNo8+bNo6+++mrc8zZs2JDK14uOHTs26f2r75NGjRpFRSR67rnnRsvLy13P27hxY7Sqqqrm58cffzx67733RhcsWOD53j/88EN0t912q3n/f//7357PffLJJ2ueN2LECOtzPv7445rn5OfnR0Ukuvvuu0dnzpzpel51dXX0rrvucu3vTz75xPOz9ed56datm+uzi4qKov/5z3+i1dXVruf9/PPP0U6dOtU8d9SoUZ7v+dhjj7k++1//+lfcsV+6dGl08ODBru+cietn6NChNe917LHHRleuXGl93vr166Nvv/129Mwzz7T+fc2aNdFtt9225r0GDx4c/f333+OeV1ZWFj377LNrntehQ4doaWmp9T31ff3nn3+m/B0z6fTTT6/ZpmHDhrn+Nn/+fFcZ8MMPPyR8P/1a3XfffUPaauXPP/90nWd1ZZ8CAJApZEACANCAbdq0SUaPHl3zc3FxsZx44omBX//OO+9ISUlJ4Odfd9110qpVq6S2MR3XXXedrFmzRkREtt56a5k4caI0b97c9ZycnBy56KKLJBKJyEUXXSQiIvfff7/885//9M16ExGprq6WN954QwYOHBj3t0xmCSZj06ZNcvrpp8t9990X9zczK/Pvf/97wvfbYYcd5IMPPpDevXvLkiVL5IEHHpAxY8ZIbm5u2ttaUVEhPXv2lI8++kiaNm3q+lskEpHRo0fLZ599Ji+//LKIiDz33HPWfZ2KjRs3ymuvvSaHHnpo3N/69OkjDz/8sBx++OEiIvLSSy/JI488ErcwSFVVlYwdO7bm5zPPPFNuv/32uPdr27atvPbaa7LPPvvUZLdmwpQpU0REnWvjx4+P24eOgoICGTJkiAwZMsT69zvuuENmzpwpIioT9+WXX7Yu8FRcXCwPPPCArFu3Tp566ilZvHixPPTQQ3LZZZdl6BuFZ/369fLiiy/W/KzP+ygi0rlzZ9lvv/3ko48+EhGVBTlu3LjA7z979mw577zzAj//lFNOkT322CPw8wEAaOgIQAIA0MBUV1dLSUmJfP7553LzzTfLtGnTRESkUaNG8sQTTyQ1x9/XX3+dVEDl4osvrrUAZGlpqbzwwgs1P996661xwUfd6NGj5fHHH5cZM2ZIdXW1PPLII3LTTTf5fsawYcMyFhDLlIKCArn11lsz+p7NmzeXo48+Wh588EFZvHix/PLLL7L99ttn5L1vvvlmz8CZiAqSOgFI51zNhMMPP9wafHQMGTJE2rdvL0uWLJE1a9bIzJkz477ze++9JwsXLhQRkaKiIrn55ps9369x48Zy++23y7777puZLyAiq1evFhGRwsJC333op7KysiZYnZ+fLw899FDC1eVvvPHGmsVcnn322XoRgHzttddq9lfr1q1l8ODBcc855ZRTagKQzz77rNxyyy2BV6NetGiR3H///YG3Z7fddiMACQCAhgAkAAD1nD5Hm5devXrJuHHjEi62UZ988cUXUlFRISIibdq0kSOOOML3+Tk5OfL3v/9d/vWvf4mIyMcff5zwM5LJFq0thxxyiLRs2TLp1y1btky+/PJLmTlzpqxatUrWrl1bs1qwiJpv0DF9+vSMBCALCgoSHpedd9655rGzcnUm6PP/2UQiEdlxxx1rFi6aO3du3HfWF2s57LDDpEWLFr7vOXDgQOnatav89ddfKW2zqUuXLvLHH3/IqlWr5IUXXpATTjgh6ff45ptvalZ9PvDAA6Vt27YJX9OxY0fp3bu3zJw5U37++WcpKyvzDe7XBU899VTN4xNPPNE6R+uwYcPk3HPPlXXr1snSpUvl/fffb1BlIgAAdRkBSAAAGrh27drJ008/bV3sJJGxY8fKNddck/mNyoDvv/++5nG/fv0CZTL179/f9fpoNCqRSMTz+bvuumt6GxmCZLfpl19+kcsuu0zefffdwCt5JzPs3k+vXr0SLtajZ+Q6GWyZECSAmuizp0+fXvM4aDZbv379MhaAPP7442uyLocPH14ThNx///0DBRJFRKZOnVrzeMGCBYGHEZeWloqISDQalQULFtTpAOSiRYvkgw8+qPnZHH7taNq0qQwdOlQmTJggIipoGTQAue+++1pXDwcAAMEQgAQAoJ4bOnSoa7XZFStWyJw5c2qGTi9dulQGDBgg//3vf2vmvGsIli9fXvO4W7dugV7TvXv3mscbN26U8vJyKS4u9nz+FltskfL2hSWZbXr//fflqKOOqskUDcpZ3ThdQYJWeoDSWe05G59dWVkZ93f9HOvSpUugz+3cuXOg5wVx5ZVXyuTJk+XLL7+UaDQqr776qrz66qsiItKzZ08ZMGCAHHjggXLEEUdYV6EWkZoV4EVEfvzxR/nxxx+T3o5Vq1al9gVqyTPPPFMTXO/Zs6dvsPiUU06pCUC+8cYbsmrVqpQyigEAQHL8J4ABAAB13ujRo+W+++6r+ffcc8/JtGnT5IcffpAdd9xRRFSwbfjw4TJnzpwsb23mOIvPiKj5+YIwn5co0NakSZPkNyxkQbdp+fLlcsIJJ9QEH7t16yY33XSTfPbZZ7Jo0SJZt26dVFdXSzQalWg06lpspbq6OiPb6pddGrZMfLZ+jhUWFgZ6TapzNdoUFRXJJ598IrfddpsreC6iFkV54okn5OSTT5b27dvLpZdeKuvXr497j7KysrS3I5OB4TDow6//9re/+T734IMPlvbt24uIWiRJn0cWAACEhwAkAAAN1A477CATJ06syY5cs2aNnH766VneqszRAz1r164N9BrzeV5ZYw3Bo48+WhN82nHHHeXHH3+Uyy+/XPr37y8dOnSQJk2auIJ0mcp6bEj0c2zdunWBXhP0XAyqcePGcvHFF8sff/wh06dPl3vuuUdOPPFEV9bzunXr5LbbbpP9998/LgipB90vuOCCmoBzMv/222+/jH6nTPrmm2/kl19+qfl57NixEolEPP81atSoZt5PEXfwEgAAhIcAJAAADVjbtm3l3nvvrfl58uTJ8vbbb2dxizJHH4ocdM49fZGTxo0bN+gA5Icffljz+Morr/Qdai4iMm/evLA3qd5p06ZNzeMFCxYEek3Q5yXLWTTn/PPPl+eee04WLFgg3333nYwaNarmOV999VXcSs3t2rWreawH3hqKdAOIX375pfz2228Z2hoAAOCFOSABAGjgjj76aOnfv798/vnnIqKCUQ1h5Vd99eRp06ZJVVWV5Obm+r7miy++cL0+G0OEa+sz9bn/Ei3IUlVVVXN+IGannXaqCeR+9dVXgV4zbdq0MDfJZeedd5YnnnhCcnNz5bHHHhMRNa/hxRdfXPMcfT7EL774IuHCS0Flc3i9Y+PGjfLcc8/V/NyrV6+EK5U7Zs+eLStXrhQRFcS84YYbwthEAADwP2RAAgCwGdBXsp4+fbq88cYb2duYDNl7770lPz9fRNR8h4kyO6urq+XJJ5+s+fmAAw4Idfu8FBQU1Dy2LXySKTk5sWpeouHDr732WoPMjkuXPvT47bffTjif4meffZaVTNIjjzyy5vHSpUtdf+vfv39NUG7BggXy5ptvZuQza+s89vP222/LihUrRESkUaNG8umnn8qXX34Z6N8VV1xR8z7/+c9/MjbvKQAAsCMACQDAZuCggw6Svffeu+bn66+/PotbkxktWrSQE044oebnSy65xHcew/vuu09++uknEVHBuTPOOCP0bbRp3bp1zeOFCxeG9jlbbbVVzWO/gPPy5cvln//8Z2jbUZ8deuih0rFjRxFRc6jqQSvTxo0bXZmH6aqoqHAtguNn/vz5NY/btm3r+lt+fr5ceOGFNT+fc845SZ13ZkDTUVvnsR99+PXBBx8c9939DB8+vCZIP3/+fPn4448zvn0AACCGACQAAJuJq6++uubx119/Le+9914WtyYzrr766pqFQn777TcZNGiQ/PHHH67nVFdXy9133y0XXXRRze/OPffcuFWFa0vfvn1rHk+cODEjqxTbHHHEETWPb7rpJnnmmWfinvPdd9/JvvvuK/Pnzw+8kvjmpFGjRq7s4QceeEAuu+wy2bhxo+t5y5cvl2OPPVa++uqrmqzcdC1evFi6dOkiF198sXzzzTeez5s0aZJrBfPBgwfHPedf//qX9OnTR0RUsHC33XaTl156yTPrr6SkRB555BHZZZdd5LbbbrM+Rz+PX3rppUDfafz48a4FYfQ5WZNVUlIi77zzTs3PJ598clKv79ixo+y///41P7MYDQAA4WIOSAAANhODBg2SPfbYo2Yuu3//+99y6KGH+r7mnXfekZKSksCfUVhYKLfeemta25mMHj16yGOPPSYnn3yyVFVVydSpU6VXr14yYMAA6dGjh6xZs0amTJniytDac889a3UbTf369ZMuXbrI/PnzZfHixdK7d2855JBDpE2bNjXz6u2+++6u7M5UjBgxQsaNGye//fabVFRUyCmnnCI33nij7LjjjlJQUCA///xzTWBrxx13lEGDBmV1v9RVp59+urz99tvy+uuvi4jIrbfeKo8//rjst99+0qpVK1mwYIF8/PHHsmHDBtlqq63kqKOOkjvvvFNE3MPgU1FaWirjxo2TcePGSatWrWTnnXeWTp06SUFBgSxbtkx+/PFHV8B9m222kdGjR8e9T9OmTeWNN96Qgw46SP78809ZsmSJHH/88dKmTRvZc889pX379hKNRmXlypXyyy+/yOzZs2uCk15TFRx77LHy8MMPi4gKzH777beyyy67SGFhYc1zzj77bOnRo0da+8DLhAkTaoZ+FxUVydChQ5N+j5NPPrlmjs9XXnlFHnjgAdfK57rZs2fLeeedl9T7jxkzxrVaueOhhx6Shx56yPU7M6g9ZMgQady4set3Z511lpx11llJbQMAAHUFAUgAADYjV199dc0CNF988YV8+OGHcuCBB3o+/+uvv5avv/468Ps3b9681oNYJ5xwghQVFcnpp58uS5culU2bNsnHH39sHVI5fPhweeyxx1zz19W2nJwceeCBB+TYY4+VjRs3ypIlS+Tpp592PWfEiBFpByDz8/PlzTfflMGDB9cEqWbOnCkzZ850Pa9///7ywgsvyKOPPprW5zVUkUhEXnjhBRk5cqQ8//zzIiKyYsUK+e9//+t63rbbbiuvvvqq61gmWnncT15enuTn50tFRYWIiKxcudK1srlpv/32k+eee84zk3WrrbaSb775Rs466yx5+eWXJRqNSklJibz11lue79miRQvPBYwOPvhgGT58eM0iMF999VXcQj2HH354aAFIPWNx6NChKWXwHnvssXLOOefIhg0bZO3atfLyyy/LyJEjrc9dtGhR3ArjiZx++unWAOSSJUvkhx9+8H2teZ06rwMAoL5iCDYAAJuRIUOGyG677Vbz83XXXZfFrcmcww8/XH7//Xe5++675eCDD5aOHTtK48aNpXnz5rLtttvKOeecI19++aVMmDDBlaGVze395ptv5Mwzz5Q+ffpIs2bNQllVeJtttpHvv/9ebrzxRtltt92kWbNmkp+fL926dZPDDz9cJkyYIJ988ok1SIKY/Px8ee655+T999+X4447Tjp37iyNGzeWdu3aSf/+/eXee++Vr7/+Wnr16lWzsrKIBF6R2aZTp06yYsUKeeONN+SSSy6RAw44QLp27SpNmjSR3NxcadGihey4445y+umny6RJk+Tjjz+W9u3b+75nq1at5MUXX5Qff/xRrrjiCtl7772lQ4cO0rhxYykoKJD27dvLPvvsIxdccIG88cYbsnjxYhkxYoTn+z377LPy7LPPyuGHHy6dO3eutcD+zz//LN99913Nz8kOv3YUFxe7pioYP358upsGAAA8RKLRaDTbGwEAAAA0BP3795cvvvhCRES+/PJL2WOPPbK8RQAAANlHABIAAADIgHnz5kmPHj2kqqpKGjduLGVlZVkd7g8AAFBXMAQbAAAASFM0GpXRo0dLVVWViIgcffTRBB8BAAD+hwAkAAAA4OPqq6+Wu+++23NF+Llz58rRRx9ds1J2bm6uXHzxxbW5iQAAAHUaq2ADAAAAPv766y/597//LRdffLFsv/320rt3b2nevLmsWbNGfv31V/n+++9rMh9FRK688krXYk8AAACbOwKQAAAAQACbNm2S77//Xr7//nvr35s0aSLXXXcd2Y8AAAAGFqEBAAAAfJSWlsrrr78uH330kcyYMUOWL18uJSUlUlVVJa1atZJevXrJgQceKKeddpp06NAh25sLAABQ52yWAcjq6mpZtGiRNGvWTCKRSLY3BwAAAAAAAKhXotGolJeXS8eOHSUnx3+Zmc1yCPaiRYukS5cu2d4MAAAAAAAAoF6bP3++dO7c2fc5m2UAslmzZiKidlBxcXGWtyazKisrZeLEiXLIIYdIXl5etjcH2CxxHQLZx3UIZBfXIJB9XIdA9jX063D16tXSpUuXmjibn80yAOkMuy4uLm6QAcjCwkIpLi5ukCc3UB9wHQLZx3UIZBfXIJB9XIdA9m0u12GQ6Q39B2gDAAAAAAAAQBoIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABCaRtnegPomGo1KZWWlVFdXZ3tTrCorK6VRo0ayYcMGqaqqyvbmbBZyc3MlLy8v25sBAAAAAABQJxGADGjjxo2ybNkyWbduXZ0O7EWjUWnfvr3Mnz9fIpFItjdns5Gfny9t2rSR4uLibG8KAAAAAABAnUIAMoB169bJ/PnzJTc3V1q2bClNmjSR3NzcOhngq66uljVr1kjTpk0lJ4cR9mFzMmLLyspk4cKFIiIEIQEAAAAAADQEIAMoKSmRvLw86datm+Tm5mZ7c3xVV1fLxo0bpaCggABkLWnSpIk0a9ZMFixYICUlJQQgAQAAAAAANESoEti0aZOsXbtWWrVqVeeDj8ieSCQizZs3l4qKCqmsrMz25gAAAAAAANQZBCAT2LRpk4ioOf4AP85CNHV5jlAAAAAAAIDaRgAyoLo43yPqFs4RAAAAAACAeAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApDIiO7du0skEpHx48fX/G78+PESiURc/3JycqS4uFh23nlnGTNmjCxfvtzzPc3Xev2bPHly+F8QAAAAAAAAKWmU7Q1Aw1dUVCTDhg0TEbVC9Lx582Tq1Kkyffp0efLJJ2XKlCnSs2dPz9cPGjRI2rdv7/l3v78BAAAAAAAguwhAInRt2rRxZUaKiMyYMUP23XdfWbp0qVx44YXy9ttve77+8ssvl/322y/cjQQAAAAAAEAoGIKNrOjTp49cdNFFIiIyadIkqaioyPIWAQAAAAAAIAwEIJE1O+ywg4iIVFZWysqVK7O8NQAAAAAAAAgDAUhkzerVq0VEJDc3V9q0aZPlrQEAAAAAAEAYCEAia5x5Hw899FDJy8vL8tYAAAAAAAAgDCxCkwm77SayZEm2t0JERCIiUhyNSiQSCfaC9u1Fvvkm1G3SOatgP/LIIzJhwgTp1q2b3HPPPb6v2X///T3/1rx5cyktLc3wVgIAAAAAACBTCEBmwpIlIgsXZnsrREQFIAOGHmvNvHnzrAHRfv36ycSJE6V58+a+rx80aJC0b9/e+rfCwsKMbCMAAAAAAADCQQAyEzyCY9kQFZHo/zIgAwUia2Hbi4qKZNiwYSIiUlFRITNnzpQffvhBpk2bJmeeeaY8//zzvq+//PLLZb/99gt9OwEAAAAAAJB5BCAzoRaHMCcSra6W1atXS3FxsURy6sYUn23atJHx48e7fvfKK6/ICSecIC+88IIMHDhQzjnnnOxsHAAAAAAAAEJVNyJU2Owcc8wxcvnll4uIyNVXXy1lZWVZ3iIAAAAAAACEgQAksmbMmDHSoUMHWbFihdxxxx3Z3hwAAAAAAACEgAAksqawsFCuuuoqERG56667ZNWqVVneIgAAAAAAAGQac0Aiq04//XQZN26czJkzR26//Xa54YYb4p5z8803x80hqTvppJPkkEMOCXErAQAAAAAAkCoCkMiqvLw8uf7662X48OFy7733ykUXXSStW7d2Pef999/3fY+ddtqJACQAAAAAAEAdRQASGTF37ty4340cOVJGjhyZ8LUnnniinHjiiXG/j0ajGdgyAAAAAAAAZBNzQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQyIju3btLJBKR8ePH1/xu/PjxEolEXP9ycnKkuLhYdt55ZxkzZowsX77c8z3N13r9mzx5clLb6mzXyJEjU/uyAAAAAAAACKxRtjcADV9RUZEMGzZMRESqqqpk3rx5MnXqVJk+fbo8+eSTMmXKFOnZs6fn6wcNGiTt27f3/Lv5t0gkIiIi0Wg0A1sPAAAAAACAdBCAROjatGnjyowUEZkxY4bsu+++snTpUrnwwgvl7bff9nz95ZdfLvvtt1+4GwkAAAAAAIBQMAQbWdGnTx+56KKLRERk0qRJUlFRkeUtAgAAAAAAQBgIQCJrdthhBxERqayslJUrV6b9ftdcc03N8GuR+Dkk586dG/eatWvXypgxY2TrrbeW/Px8ad++vYwYMUIWLlyY9vYAAAAAAACAIdjIotWrV4uISG5urrRp0ybt99tpp51kxIgR8tRTT4mIyIgRI1x/b9q0qevnsrIy2XvvveWvv/6SAQMGSN++fWXq1Kny9NNPyyeffCI//PCDNG/ePO3tAgAAAAAA2JwRgETWOPM+HnrooZKXl5f2+w0dOlSGDh1aE4A05500vfbaazJo0CCZMmWKFBcXi4jIqlWr5IADDpDp06fLAw88IGPGjEl7uwAAAAAAADZnBCAzYLfddpMlS5ZkezNqRKNR11BkP+3bt5dvvvkm5C2KcVbBfuSRR2TChAnSrVs3ueeee3xfs//++3v+rXnz5lJaWprSthQVFcmTTz5ZE3wUEWnZsqVcfvnlcuKJJ8oHH3xAABIAAAAAACBNBCAzYMmSJcwZ6GPevHnWgGi/fv1k4sSJCYc5Dxo0SNq3b2/9W2FhYcrbtdtuu0mHDh3ifr/tttuKiHBMAQAAAAAAMoAAZAZ4BceyJdkMyLAVFRXJsGHDRESkoqJCZs6cKT/88INMmzZNzjzzTHn++ed9X3/55ZfLfvvtl/Ht6tq1q/X3Tkbkhg0bMv6ZAAAAAAAAmxsCkBlQm0OYE6murpbVq1dLcXGx5OTUjUXO27RpEzcf4yuvvCInnHCCvPDCCzJw4EA555xzan276sr+AQAAAAAAaMiIwCArjjnmGLn88stFROTqq6+WsrKyLG8RAAAAAAAAwkAAElkzZswY6dChg6xYsULuuOOOjL2vs6L2pk2bMvaeAAAAAAAASA0BSGRNYWGhXHXVVSIictddd8mqVasy8r6dO3cWEZEZM2Zk5P0AAAAAAACQOuaARFadfvrpMm7cOJkzZ47cfvvtcsMNN8Q95+abb46bQ1J30kknySGHHFLz87HHHiu33367HHTQQXLAAQdIs2bNRETklltukdatW2f8OwAAAAAAAMAbAUhkVV5enlx//fUyfPhwuffee+Wiiy6KCxK+//77vu+x0047uQKQ//73vyUnJ0deeeUVee2112Tjxo0iInLllVcSgAQAAAAAAKhlBCCREXPnzo373ciRI2XkyJEJX3viiSfKiSeeGPf7aDSa0rYUFBTILbfcIrfccov174m2q3v37il/NgAAAAAAANyYAxIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAFFo9FsbwLqOM4RAAAAAACAeAQgE8jJUbuoqqoqy1uCus45R5xzBgAAAAAAAAQgE8rLy5O8vDxZs2ZNtjcFddz69eslNzdX8vLysr0pAAAAAAAAdQYByAQikYg0a9ZMysrKZP369dneHNRRVVVVUlZWJoWFhRKJRLK9OQAAAAAAAHVGo2xvQH3Qpk0bWb9+vfz1119SXFwszZo1k9zc3DoZaKqurpaNGzfKhg0bGApcC6LRqFRUVMjKlSulurpa2rZtm+1NAgAAAAAAqFMIQAaQm5srXbp0kZKSEikvL5fS0tJsb5KnaDQq69evlyZNmtTJAGlDVVRUJO3bt5fGjRtne1MAAAAAAADqFAKQAeXm5kq7du2kbdu2UllZKdXV1dneJKvKykr59NNPZeDAgcxFWEsaNWokjRpxKQEAAAAAANgQNUlSJBKp01luubm5smnTJikoKCAACQAAAAAAgKyrl5MEXnPNNRKJRFz/evfune3NAgAAAAAAAGCotxmQffr0kQ8++KDmZ4bAAgAAAAAAAHVPvY3aNWrUSNq3b5/tzQAAAAAAAADgo94GIGfPni0dO3aUgoIC2WuvveSmm26Srl27Wp9bUVEhFRUVNT+vXr1aRNSCLZWVlbWyvbXF+T4N7XsB9QnXIZB9XIdAdnENAtnHdQhkX0O/DpP5XpFoNBoNcVtC8e6778qaNWukV69esnjxYrn22mtl4cKF8vPPP0uzZs3inn/NNdfItddeG/f7CRMmSGFhYW1sMgAAAAAAANBgrFu3Tk466SQpKyuT4uJi3+fWywCkqbS0VLp16yZ33HGHnHbaaXF/t2VAdunSRUpKShLuoPqmsrJSJk2aJAcffDCrYANZwnUIZB/XIZBdXINA9nEdAtnX0K/D1atXS5s2bQIFIOvtEGxdixYtZJtttpHff//d+vf8/HzJz8+P+31eXl6DPAFEGvZ3A+oLrkMg+7gOgeziGgSyj+sQyL6Geh0m851yQtyOWrNmzRqZM2eOdOjQIdubAgAAAAAAAEBTLwOQF198sXzyyScyd+5c+eKLL+Too4+W3NxcGT58eLY3DQAAAAAAAICmXg7BXrBggQwfPlxWrFghW2yxheyzzz7y5ZdfyhZbbJHtTQMAAAAAAACgqZcByOeffz7bmwAAAAAAAAAggHo5BBsAAAAAAABA/UAAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISm3gcgb775ZolEInLhhRdme1MAAAAAAAAAGOp1APLrr7+Whx9+WHbYYYdsbwoAAAAAAAAAi3obgFyzZo2cfPLJ8uijj0rLli2zvTkAAAAAAAAALBplewNSde6558phhx0mBx10kFx//fW+z62oqJCKioqan1evXi0iIpWVlVJZWRnqdtY25/s0tO8F1Cdch0D2cR0C2cU1CGQf1yGQfQ39Okzme9XLAOTzzz8v3333nXz99deBnn/TTTfJtddeG/f7iRMnSmFhYaY3r06YNGlStjcB2OxxHQLZx3UIZBfXIJB9XIdA9jXU63DdunWBnxuJRqPRELcl4+bPny+77babTJo0qWbux/3220922mknueuuu6yvsWVAdunSRUpKSqS4uLg2NrvWVFZWyqRJk+Tggw+WvLy8bG8OsFniOgSyj+sQyC6uQSD7uA6B7Gvo1+Hq1aulTZs2UlZWljC+Vu8yIL/99ltZtmyZ7LLLLjW/q6qqkk8//VTuu+8+qaiokNzcXNdr8vPzJT8/P+698vLyGuQJINKwvxtQX3AdAtnHdQhkF9cgkH1ch0D2NdTrMJnvVO8CkAceeKD89NNPrt+NGjVKevfuLZdddllc8BEAAAAAAABA9tS7AGSzZs2kb9++rt8VFRVJ69at434PAAAAAAAAILtysr0BAAAAAAAAABquepcBaTN58uRsbwIAAAAAAAAACzIgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEkBmRaMiX38tsmpVtrcEAAAAAADUAQ1iFWzE23PPPWXp0qXZ3gxsjtauFSktFcnNFWnfPttbkzUbNmyQgoKCbG8GsFnjOgSyi2sQyD6uQyD7NmzYIN26dZNvv/0225uSVQQgG6ilS5fKwoULs70Z2JxVVYlwDgIAAAAANnN0BBCAbLDatWuX7U1AtkWjIpFI7X+uHnRs00YkP7/2t6EOqJe9zcuXi2zcKNKihUhRUba3BkhbaNfhqlUi69aJNGsmUlyc+fcHGoh6eS8EGhiuQyD7NmzYQIxGCEA2WF9++aXk5eVlezOQDRs2iOywg8iCBSKTJon071+7n68HPSdMEDn44Nr9/DqgsrJS3nnnHRkyZEj9uQ6XLBHp0EE9Li1lDk/Ue6Feh045V14usnp1Zt8baCDq5b0QtaOiYrPtoK5tXIdA9unX4eaORWiAhubZZ0VmzxZZv17k8MOzvTWoL6qrs70FABAeyjigbnj1VTXS4qijsr0lAIBaRgASaGhKS+2PAT8bN2Z7C4D6oaoq21uAZH3+ucrwHjpUTU8CIHuOOUaN1nnjDZG//sr21gAAahEBSKChqUtDWupCQ332bJHtthM54oi6sT11VUVFeq/ftEnksMNE+vQR+f33zGwTUBcRrK9/Bg4UWbZM5PXXVTASDcu114p06yby2mvZ3pLNx9q1IvvsI7Lrrmr+6FRRngLAZoUAJNDQ1KX5XdINamXCSSeJzJwp8tZbIi+8kO2tqbvSPVbPPCPyzjsiv/wicuqpmdkmoC6iwVz/6MOvmd+2YamoELnmGpVJd/TR2d6azceNN6pg/nffiVxySfDXrV3r/nnDhsxuFxq2tWtFDj1UzS/P/MtAvUQAsgHqf8UV0qhXL5E99sj2piAbKiuzvQUxdSEA+c03scdk5nlL91j99lvs8dSp6b0XUJfVhXINqWvE+osNSklJtrdg8/Tdd7HHX30V/HWzZ7t/Xr8+M9vTkN1+u8ri/vbbzL7vkiUiQ4aInHlm/Zma4pZbRN5/X+SDD0SuuirbW5Oat99WC4Q+/3zyr738cpGDDhKZMyfz2wXUEgKQDVDh8uUS+fPP2plXZepUdfNKpRBNxscfiwwerCauhj+zdzkM69aJ/P3vqtLiF/Csaw31HIo8T2YWwqZNtfv5ZWUqW/W881gsAnWbmQHJ1A71CwHIhiWd4b9InV7uBalb3X+/yKBBIi++6P49GZD+li9XGaZTpogceGBm3/uJJ0TefVfkkUdEvvwys+8dls8+iz3++OPsbUc6Dj9c5IsvRIYPT+5106apAOyHH4oMGxbOtgG1gNZ4A1TlzAG4bl34H7b33urmlWwhmqwjjhB57z01cXVd6qVbs0bk3HNFxo6tO9tVGwHIceNEnnxSVVruvtv7eQQg6w/zWCV7HqV7/t9+u8hzz6lGyjPPpPdeQJjMa6WulXO1YcECkREjRB56KNtbkrxIJNtbgEzKRADyjjtETjuNYGYy9I7CRHWrsjKRCy8UmThR5Kab3H8jA9LfypWxx2VlmX3vxYtjj8POJN6wQWT0aJExY9LrtNM7kDLZUT5pkmrL1nYgNplRa/oorunTM74pobj/fpFRo0QWLXL/fuNGkX/+U+Tii2s/4QFZR2u8Aapq3Fg9CPumbhYYYRYgejBk3rzwPidZN9wg8sADItddJ/LKK8Ff9/nnImedFc4NJKz5dX75ReTss1WP4+uvx36vPzbVtYY5AUhv5rFas6Z2P//BB2OPzQwJoC4xMyDrWjlXG/72N5Gnn1b3hLp0Tw6COTwblnSDhtOni/zrXyob7NxzM7JJLuXlIpdeqhri2TB1qqpvfv99aq9/8UWR88+PDyDoAcjcXP/3+Osv7zYCGZD+wkwmKS2NPQ67zXj77SL33CNy883q3hHU11+r0VZff61+1s+1TI4+OOQQNZpvr70y955BrFgR/Ll1aY7/IH75RY1qGj9e5PTT3X+76y71b9w49XdsVmiNN0A1GZCVleEGBc359MJqhJk3mJ9+CudzUqFnf7zxRvDX7bOPyMMPi+y/f+qfPXWqmgtk7lz3780AZKYm3D/0UPV9DzjAvdK2X6Wlvjf0Zs4UuewykcmTRa6+unamAFi3TuT669PLAiwvF/m//xN56aXgr8l0AHLGDNXo+vHHYM9v2jRznw2EqT5nQC5frq7Lt99O730++ST22LwH1XX16XghsXQDkPo80cncM4O64QaR225TDXH9uqkte++t6pupzAu/fLnICSeI3HefmnZHp9fNEwUgFy70/hsZkP4ynfXo9d5hj5rTg0zJ1KX331+NturXT/0cVgZkpjh136Bt1WTKLyfBqL7Q54l991333x5/PPY4mQQeNAhMhNMAVekF1Pr1Is2ahfNBZmBhwwaRoqLU36+8XOTRR0V23NE9z4nZO/Tjj2pIdl2g90YFTaPXe4313sdkVFerSqWIGtKiF/K2AGSHDql9jm7+fPvv9d5rcxhuXWvoJVvBOuwwkT//FLn11tjv5s4V6dYto5vlcuutItdeqx5vu63Irrsm/x7nnad6mHNy1ETXHTsmfk26AUjz/D/6aDXZ/N13J38eLFiQ3PNr29q1qkK83XZqTqvNSTSqpl+IRtWwmoaQVRyNqutl40bVS59oiG59zoAcNEhlQt13n8iyZe7Af1BmOV/f5sCs7x1jcEs3AJlOvTWIW26JPX7tNZF99w3387ykskChvtDF+++7/5bMHJB+AUgyIP2ZKz1Ho5mbRqI2MyD1bU5myh69TVNd7Q52ZyoAab5PVVXioLqXgw5Si/s88ECwenQy5VeyUx399pvqVDnxRJEePWK/f+MNlZX8j3+4E0oyze881dtjhYWZ+bwvvlBzhJ5+ukirVpl5z0xYtkzkiSckkq2yvw5qAC0HmKqCZqely+zdSaYS8eGHariLXiH6v/9Tw2AOOkhdrA6zcK5LGZDJBiCnThW58870P1c/ruawmrAyIHV6g1t/bN7E61rDPNl5Df/8M/53n36amW3x4gQfRVLrFdy4MTa8pbpaZNasYK8zr99kA5DmvnVWuty4Mf68mD5dZWSUl6ufKyvdQcc//qiduUxTNW6cyEUXqazgbA0/XbxYDemrjcXGdBMmqLnSTj9dleP1zezZar/p81199pnIyJEiZ5wRbGiYWa7VtQZ0dbWaT/Wdd9y//+CD2P1i/frUAzfmXGFhZuiEoa7dlzLh9ddFnn227sxFXZvM8/jBB0V+/TX468POuDeTAmpTugu6+XUuJJMBqd/fn37aXQ9uSBmQmzapDrpJkzL3nmYA0qk3ZYJXAHLRInWf9Eo88DNlikomMcvZVAOQuuXLwxmCbZ6D+rybyVqyRP3vVYc1tzmZ+3CydY1DDhG58kr3Og2//y4ydKiaVuE//0nu/TIp0wHINWtUwsVll6m5JeuS004TGTNGGu29t0TqYtZuFhCAbIBcGZDppNSXlqphoPokxTpbBmQQv/yisjBOO03kscdiv7/33tjjL76IPTYL56BDOm1KS1WBm6kMKzMAOWeOmkPEVqEqKREZMEBNuKtLpfLlV2Gu7QCkftzNcyDVht7atSrQ8ccfqb3e733TVZvZPqk0Ht57z/1z0CzbdDMg/Z6vzx21fr2aguCss0SuuEL9bv58936NRtUwlrpq7NjY47feUmXSf/+bWoZJqk44QWW6Dh5ce58pInLKKbHHzz1Xu5+drmhUZMgQtd/OOCP2e70SPmpU4vcJkgH555/q/pmN6QTefFOtKH/YYSJffRX7/bhx7uelWj8wOzXeeEM1uIM2KhctUvs8jHuTjbldDS0D8uuvVYPyb39Tma2bG7OOeM45arhm0Hu1eY+0XReffKLO81QCJ02axB7bOvomTAhvGoN0g3vmvtG/fzKL0OgZkH36iLRvH/vZ1nZYvVqVn7XdwZauxx9XQ9UPPVRln2WC2cGTTnDM7731c+WYY9R98vDDk3u/hQtVEskZZ6j5/bwEvY7MsnrhQvdrM1UfN6/5TC1GZbv+zPpCJgKQmzapYe36aLiqqlgHuTN/poiqWzv7MFPnaCr09lgqAciNG1V2p9NWmDkz9je/juTfflP1j0Rl45IlKlEqE+fCW2/VPMxjiikRIQDZIFVnqrf1jDNUY/PII+1///ln989BA5B33hm7aZjBOIc+JMa8+H/7LfUC4fzzRU491T1s8tdfVeUylYqlHoBcs0YFGIcPF/n3v+Of++679ptlKo2wbAcg9WPtlQ1p+zmoq64SOflkNVQpk71FmQhAZrLyl0gq56Qe1BcJPsF1mAFIPUtw1qzYcXAay7ZAczYznaNRlelqlnE2Cxeqxu6wYfH7PkxTpqj/f/ml9j4zGnWfk927u/9eVaWmhAgzK3TdOjWMcenS5F9bURGbu1ifg0r/HkGuuUTlXFWVmrfqlFPUPL217bLLYo+vvjr2WB9OKZK5AOT48SrTwjknEznqKHUfPuus1D4/WWY9qC5kQEajam7hTFy/U6fGHl9wQXzGVH1RWanqSX7DdW1s9cHy8uCr+ppBNjPr6+efRfbbT523Dz+c3LaJiBQUxB6b9eTLL1d1nQMPDKdz06zzJFunMINfen0ymUVo9GPaqZM7KGtrp4wercrPQw+tX1m9TplWXa2SETLBvJ6TWbQkEa8MSKfj6scf1T09aDLA++/HgobmvS+VYePm+btggfu+lan2QaYCkGbSgO1YhRGAfOYZFTTea69Yh7+5aJRDP+Zhj97w6+zT90Mqw93vu0/k+ONF9txTXSNBzoXly9U+OvVUtRq7n2OOUYlSgwenn0muySEDUkQIQDZISQ3BjkZVz4g+5NnhTMatT9CtMxuAQQsyvcfFq3DSg6hm4VxVJXLjjcE+S1ddHVvY45dfVOG3aJHIDjuoyqXfas5e9ADkzz/HskVvuin+uV49PKkEtNINQP7xR3IZZn4ZP/o5lqkApDM8Z8EC75tzdbVaTdwvwGpudyYCkF4ZwWFI9qb35Zcq+0kXtBEWZgBSz2LQJxB32Cq3meqBTsXbb6vg9047Jc5MefLJ2L4755ywt8yutrJyzcCTWZG6/37VubPLLuENoT/7bDW/6IEHJn99mOeoV8M20bYnyoBctiwWhM3UyrdVVSIffaTuy7b7ta5Fi9hj/ToKkunlZ80aFWT0CppdeGHi99i0KVanSGe1+/JyNXQ+yLlvfs8wMiDXrlUBxaDv/eqrKki9yy7pB+zNMv7RR9N7v2y5+WaVobzHHskdI697RdDOV/O6MI+HPu3K2Wcnf2/UA5BmndwpH/74I5y6hVmWJRtwMAOQeiBRL/8TXYfOqKO8PJEttvAPyorEFiyZOTN4HSbbzPvJL7+IfPtt+u9rBiAz1QleXe0ezu3VXhw0SHWyBhlNY2uvVVerUW3664MGlc1rbeFC9zld1zIgzX1oO3fN8z2dAKRTTjojNzZuVHVSkfjsYed61cvFsAOQQeuBqdQX//Uv9f+aNSqJKEjC1dVXx66fRx7xfl5FRaxj79tv7aN9ystVfSjJgGJuXegArQMIQDZASQ3B/s9/1I1l2239CwCzkK+uTq1is369e0hYdbX9dfoFaiucH3gg+UqJMyedo7xc9WY7wyaPPjq59xNxByBTbdRkOgPSPObm+//xh8g224j07ese6u7HPNb6z17ZkCKp7ROzYuJ1U7nlFjWUd6utVOBNV1GhhiKYledkbnJeFaTaDEAmO6T3hhvif5eot/yvv1RnQm0FIG1lki0Amc15oU48Uf1fVZU4gOTM9xPEhg0qs9N2bq1cmfqUA8nOCbV6dWpDb8w5H83rafRo9f/KlSprorQ0lnGYrJkz7eeuM7RmxozE87H+/LM00rfRPEedBpH5PfRhTDaJOlrMMjcTwdixY1XQ9fjj1RBG23tGo+r80heec4KV0Wh6AchoVOSAA0QGDhS54w77c4JkuJj7JpUGZDSqRhsMGKDmt0rE3FdhNACGDVMBxZEjgz3fGf1RUSFy3XXpfbY5pUxtZkVnkpOtu3BhLAN+9Wr1fZzs6x9/jK9XeDXgg2aKmdeF2XA3y/igWZBVVWq+Y314st99LYxON/Pcd675hQu9M6R0fgFIvfxIdL92Xtexo9ofiTIgdZmeikdE3QumT08vs0k/N0XiM3dfeEFkt91Uxn46vIZgz56d3vy7q1e76yLOcbDtkxUr1FQBiZidlDNnqoUV+/dP3HFmkygAmamVuzMVgDSvN1sZlMkApK3u5wTEzHLMeW5tZkB6HR+zDpxuHamoKPG1UFKihlQ7/BboNeut5qjGaFTd7wcOdI84sTG+a25DmwImRQQgG6C4DMhly7yH5IwYof5fudI/A9CssNsKlSAF2eefu9+ruto9b4Pt8/TCeaed1P8bNyY3ybiIO/ApovZJqqucOfSCxC+QuGKF97Ci2h6CrWeNBJ0o2/w8vQdW7/3JRAZk0Mb7xInq/9JS1TDXz/Hhw9Xq0U4gKdF72Xj1aiUTcEpXspVL27DlkhJ1vdrOv2+/VcNPu3aND0glWyEIOgTbLDuiUXsFzFbGLFpUO4HJdCpDP/ygFvowK/HRqKqs7LBDfAb3ihXqOPToIfLxx4k/w6zAJBOAXL9epFcv9c/Jcg/KzAb1O+arVqnOgZ494xdDSeT559UK4716uT/DzLp/9lnv93j4YcnbZRfZ75//jJ1LtuFctt9/+aU6Xr/9Zu8EMPe/ee8zM1RSmc903TpV1lRXq/3+0Uexv5WU2K/1229X59cHH8R+5zT61q+P/y7JNN7WrXPPI2UT5H5qdhx+/XXyw+hKS9V1JqKy5hIJOwNy3brY3Lu2TIm1a+OvHb2eFnShMC9m2R503l8RVTZncHhZ0jZtsmeAbtyorqs+fdS/8ePVQoU77qiG++uv98oIS3UIttlwN38OmtV2xRUiO+/sXszO7/5VGxmQ69er8qhrV5Fu3RJ3EJl1ED3Yrb+33/fasCEWiOnUSf1vy4Bct07ta/P6dAKQ69bF3wPmzk2+E6O6WiVe7LyzCo6lwjw3ReLbGI6rrvJ+n7VrEx93s/1WUqIWwdtmG3V/TbW+Yp73zjH0ui8E6Uw0y7Jp0+xDXaNRdZx//90/GzJRALKiwt3O+Ouv1Dq1zH2YqQCkUwaVlsbKKVsActkyda2tXx/fMfDXX7F7pPlaW9veKc/NctWpJ+ptrKBttGhUTeGS7L3C69w066zpBpKXL7cvGqqbMcNdtvjNO2mex7NmufdVWVnsPuDVIesw9gEBSIUAZAPkyoD88EORDh1U4zZRZUwvWMxCJkivi18FZOVK74UlbD3aXgHI3XaLPU52HpRp09w/l5env/JWkCyxH35QE2472UGmP/5Iv1DXb+CJApB6hTLoXEtBs+G8ApDOasyJetyj0fhKnNcNTM9oXbcu9rqSktj8bnqjXURVAoLOj+V1Yw7YSIhUVSXXELSxvb6kxLvC5lyDenbBH3+oQE7XrvGBoLPPjlUEnekJHOmugq3zy4Bcvdr+WvN5774r0qWLqnTbts1vv6RDbyiJJL5Wd9pJDascNsz9+/nzYwEcM2vrjjtiZepJJyXeJnN/JTPn2yuvxILoxx8f/HUi8WW83zF//PFY2XPYYcl9jrNi44oV7nLbDLq9/LJ3MOnss0VEpGjZMok4nWvmeeNko5rf49VX1Vx6vXqpzHjzvLKVc2VlqpFQUREfsEh2PtPychW87dxZpHlzkS23dM/zJ2KfA/PSS+N/V1lpz34U8a/0r1rlPteDnGO26RVM5n17r71UJnsy126ycxwGyYBMNKzRr75hZhzqAdXKSlUmbLmle2h0jx6xx+bcnMlKNQB53XWqbjh0aOLnrlqVOFBcWhqs8b9mjToG0aia6qJ7d5G773Y/Z8UKdU93Al5//3tsaht9uJ3fcUk1A/KLL9zf1WzI6/vbqduaqqvtwS2/TkW9blFZmZm5/sxrfN06Nb97dbX6jvqCajZ+GZBBA5B6vc8JQJoZkOXlIttvr4Ki99zjfv2cOeoYdeumysTPPlO/v+UWdV0dckhy5cfChbHEhzFjUptHcMoU97kpEt/GcHiVLWvWqABip06xDnUb8xjccENsmqLly1WHZyrM93WOoVeHplc5tXSp2p9VVfGBm88/t7/Gyajv2VPk2mu9t9G8Zy9YYK//rFihFr3p1k0lJCRbFwySARmNJr5P2DIg//pLnbcdO6pOTbM9/ckn6m+tW4sUF6vnvv22+tsDD6jv1L+/+vwgAUinozGTGZCjR4tsvbWarzYZXnUMc/+WlyfXXjKv2RNPjA3J9mK23fw+z9YpqF8vfnOQb9jgPg+MNjhDsBUCkA2QKwPylltURWPVKv9VoUTc2QtmoW9buc9UWhor9J2CctMmkTPPFGnTRjV2bQGvn36KD5J5BSB79449TnYIti0D0gwuJMuvAe7si1NP9a/g/POfqhKezA3T3P/6/jK3yQnUOcdQL0SDrgYeNBhlWwW7ulrdPHv3VhUtv5Xxhg9Xc0DpnO+j33xtFQHn3DKDjroZM1Qw2GteU3PbbYIEIDdulP1Hj5ZGHTrEr0qdDPMGeccdav4kr4nZnQpk586x3336qTrO1dXxAQq/bM7aGoK9fLm9kmL+7tRT1XdYsCA+WPrvf6v9EiR4lyyzghc0+PHaa+7rwS/4rg9NMo/5hg3xx9rc18lkQKbT02y+1q/8S3ZYuMPMxNUDjD/+6P5baan3KqnaPos417u5304+Wa3yaX6PqVNjCyS9/XasMWDbJhHVeGzXTpVvnTrFV9LN7U7kySdVBbeqyvu6WrQo+BQNy5YlF4B86SV1Pe29dywIGeS8TyUDUkTdm5PJ/ko2MzxRBuTVV6vGn9ccrqedpuowXg1lM8CsX8+//hrLHDrjjNhxaNo09px0s+rN+7gts2nhQvVPv685wac333SfS2ZD96WXRFq18l9Z+p13RNq2VVllfvWdmTNVp3iXLup+7EwDY84fumKFf1nlBOf8MsZTzYD88EP3AhpmGePs7+efV995n33iO6acDF2TXwDDuQYqKtS1t8UWapqkdNgyIPVs3ET3A3Pf6HV4vWzyC2To13bHjup/MwPyySdjmY6XXOJ+/axZqt5YUqLOrVNOUb93jtFHHyU+1vp91Cw//OqMXmzH0WvqAz3Yqnv1VbVvolFVp/Nilr1mWZmpDEjnXPC659gCkE88oY7pdtupe58ZNPcatr18eSw4ee218Rni0ai6DhJlQIqoe3ibNqotJaICesmuUWCrlzqdJI6jj1afo0/BsGGD+9q3ZUBecYX6fUWFyLnn2tsWVVXq36ZN6jOdOsS556r/p01TGX5BkoGc9rRXANJrDkivfVRdLXLvverx88+r7aystN8LzPcw94dz7zUDkFOmqLL0jTfs22BKZRFC87opK1Pfbc0aVZ/Sj7VthKV+vZjTCTj3vIUL1fXQqVMsI9MMQJIBKSIEIBskVwakLlEBrF98ZqEWpNA75RQ1PGbdOtWz1bq16vl/5BH13i+/bE/hnzMn/mZuC0Dm56ueIEcyvcPV1fGNhNWr0x+K5Rd0cYJBQRqfn32W3JByrwBxZWV8o/S770Seekpl0pxwgrsQzVQGpHMjsmUGzZ7tnqPRa9jkypVqzhzbZ69erc6l1q3VRP+lpfE97s530Ycf2qxfH2yeLq8A5KpVCa+lyOTJ0mzBApUFOXhw4s9ymMfOrCA6PXwTJ9qHQzqVqOJidbxNZoXEL2Mp06tgO+VL0ACk32Te5pA2Z+4wp3KUjkSTiAedAD4ajQ1vjEa9A2Ui7u+vZ2W/955q+O++u3tl1nQyINPJEjWPk3PMbVmhqQ6VNxss+nllyyQMcB/IcYIUtnP0nXcSLzR05ZXu/WbeNx5+WJUXy5bZtyeZDMjq6mDn2DnnqIqu02j3O65//GEPQHo1XI8/Xl1HX32l/nllUJr0bfDaHq/jZZ4vfpnG5rYkymBKlAHpzO/04IPxr62sjM0bdc017r9Fo2o7zXu83tAxr01nuJa5TUHm47NZuzY+oKLvn6lTVXC8c+dYFo5t2htnO6NRkYMOUg3t999Xv3Mypb//3v5aEZXlXFmpzvV33/Xe3gsvVNfh8uX2jF1HSYn/MEinXPabhkE/14KeT8683o89FltAw1wVe+FCtZ+GD1fP+eKL+Hmoveoh+jaZ93vnvLn1VtVJGo3GOkKCjpIxn2ebA1Kvv/vNgybiPQR740b3dedV3ldXu4/jFluo/80MSL/AwzPPuIP/tvLab/jl5MkquDFggNoe8zulEuQ1z4lVq7zv8fPm2esl+u/8yu9E9/fy8tSmUUg2A3L27Phz9j//iX22LSjkVVc2958+D+7atSqg2aFD/Dz1tgCkLfNUD/oMHSrSsqXIf/9r3xaR+LrNO++ocnPXXdV3XrVKTVMWjcZWOp82TZ3P220X25e2DEh9vyxYECzr0NbJVloaLAPSKWOSyYB88knVbjA7T6PR+DJ/8mR1H+nVy/35d96pOtb0jjyvTmtb2V5ZKXLUUfG/twnSdjXrBWYAMhpV9/bWrVXAcJddYnUDWwakvt/Mc935+bLL1LlSVqYCzyJkQHogANkAeQYgEwUU9IIzUQDS671++klVFCZPVgWPOeT655/jX7NiRXyDS/88p6DaYgtVKXYkkwH511/xjY7y8vSygTZu9M9ASXb4bTIBVXP/OxUHW4OyokIF3DZuVKuO6scgUwFI5++2AKR5nLwqU17ziw0dqoJpP/6ojtcjj9i322kUBJnX0qsRpfO7SSTqfUs2eOcw941+DplZwmbDS++RLCxUN1XT1lu7f/bLWErmO1RV+Qec1qyJDROyBSCDDMHW6eWFuep3ssMzTWY2kXldJnOdTpmihhj17esfhNL3nd4we+QR9bdvv1XTTzjnZF0JQK5dq7IOWrSIz0pNNSvDNlWGw9aZYzsexv6I/PyzyjLzOqdt9yXdDz+4PyfZCuR33wVrIM6cqaZK8BuSpispETn/fPXY77z0CkAGuf8tXqyysfbcM/FznUbTzTerDCczYCfifd/Wz5fTTlMNxlde8f8cR16emhPNSzJzQJp1HbOh7Lx2zRqV7detW/wiE34BSGchJ3ObOnVKPlNWxH4v1I/1+PHua2jlSvs8lc4+nTJFZYStXauyssxrI0hZ41f30adO8ZtTdMUK/wDkihXqn98Ig5ISdV8cMMB//zrb27dvbDi6M8fXkiXx9byKivg6qxkU86qHbNgQK+/N8sgpo26/Pfa7GTNU4KNNGzWayM9336mgzX77xRrftgxI/XOLi/3f07zWnGxdrzqo7q+/1BBpfYFHJwCpZ0D++WewuY8dtjaO3zQGhx6qroHPP1fBcfP8fO65+EUqEzGH5f/0k3cActMm+2gj89h4daQkyvg+7jg1ZUeiOfBMXnNAet0nN26MH6Hglb199dX+U1yZ17Y+PdA996iEjFWr4uf4Xb06WOa/8/6//aaunw0b4qfF0ZnlcXm52u/ff6/qNrag4Zgxal/NmqXqQJ06xaYHcJSUuOvZVVXBhz3b5oq0BSDNOp1zjw0yB6Tzfn//u9qvEya4F64bNkyVi7qDDlKfMWdObCoAEXUPrqpSHXnONiQTgExGkLar+dm2URY33hi7p0+frrJno9HkA5DOe+v3S2f/kwFpRQCyAXINwdYlGuKk33RSDUCKxBfAOucm37x57ObkVCR1TgMvGo39rU0bdwAymUCArTBZvTq+gEpmLphEAZpkA5DJDEFLJgBp0oNvK1YEy1RK9L5Oo8S2CrZ5nLx6V70m8DZ9+629MrdggWpoJ8pmElHBgE6dYnNF2vgFGRIcq4j5nYNmt/gFIM3G2vPPu89X/Vxu0sR9rdjeTyRzAcgg550TMDWvuaOOis8esT1Pbyjpq2KaGXOlpeq8O+ggkW23dVfKp05VDaJRo7y302xEpJoBKSLyj3+obf3lF5Hrr/d+nlcGpN5gXrZMdeyIpDcEO53eV7OsWLVKDY0rL48Ni3OkOv+puX/172rLoLcFtGwNwSlTvM9pff/p03zo9Gs62QpkWZm9gXvFFSorzQlgnX128E4hh9Nw85tOY9681AOQN91kvz5tSktVg2/MGLWPbIFUr/u2U4YsWKCyElavtmckitgb5Hfe6d0w9cuANDOTzO0zAxtOo+K++1RgesGC+HvOEUeoa9+2rV4rr4uoESQdO7oXh1qzRgWAd95ZNdpuvlmdM04Q0XbcS0tjAW/bCsILFsTXdZztMhuGtvI1Eb/rQy/f/DqRg2RAfvedf53tiSdUsOqzz1SgxDbn7caNseugRQt133B88IF3UMnc72Zj329ePqeMM8ujxYvVSCG9HtCtmwqKrlqlOqT8Oj+HD1f3iU8+iS0qaQtA6gGL++9X90Sv+pfXCsy24Jl5LM4/P37/2TIgg3bQOPLy4oMufitl69e7s9iHrqpKzS3tDOENwvxen38euzYGDoxf2f7yy9V1e//9sd+Z579zj/j+e3VMjj1Wfc8gQf9581SZc9ddqm6rr/brJdkApEj8SC2vAORee6nMwKCWLo1dh9OnB3+dl7lz1dRPvXoFe77fvXD+fPu8++bQ/UWL4udUXbHCXc+ePTv4qCjznD70UDWaTTd8ePycqc70FeZ5YwtATpsWm5fV4QSZ583z7gR0eB1/p0PB3G9r16p67Gmn+b9vIkGmDzM/29ZuM4P2s2ap8sF2n9P3m1cAUv/MoqL414lIDgFIESEA2SB5ZkDa0o91fgHIhQvVTXXwYBWM9GvwBplfr1OnWICkpMR7CHZFRaxSU1zszup64glVMQ9SEHkFIG0Nai9VVWoVxj59RN56K3GAZtWq5LKA0glAOgFi/fO22cb+WrPiFCQ4lui7OudDkAzI8nLVcNtxRzUnlnMeek3gbcrP986ATDT8Wrdokcgxx3j/3S9QowcDX35ZBbr0xrJ5cwoSXH37bdWLrXPmKBGJ3z/Llrkbx2YWnS0D0twuv57kIAHIb79VQ+PPOCPxc597Tl1DfhW9Fi1ij81rU2/cONdzNBrLKHKsWqUqaR9+qCrL/1uMRERUsHPuXJUVZCunPvrI3QAViQ9IJBOA9KOXv7YA5KZN8deqsy3pZEAmClZu2qSui733ji8bzGPnFywzj1+fPvHZqjZmGeychxs3+g830tmCBtOmJT6n8/NFBg2y/00/7qkEcadNU9t/wAFq0YTFi1Vwb+HCWIZQ0DLQFI36H4ulS+33Ntu1aJYJQe7njtLS2HQIDnNfJcqA1IPuXsEWr4wg2++ffVZkxAj37/QGgPmabt1E/va32LlmNgKdn7/7zr4NjsceUw0485x1Ps+rHFy8WH2+47bbVMfJ9OlqCo4xY9Sxdua7tR13Z14r2/Y7rzEbWM52mcfrk0/cP/vVkRzm/Fg6r/nwTEEyIJOdC3TWLDXNy3bbxRYE0t+jRQuRgw+O/Txpkrss0bP2zP2u1zGrqvw7yJ2yxCyLFy+OH9lg7m9nLsNRo9Tw0AsvVN/ngQfc2WlO5q5tCLZp7lxVLtkEDUCKxJf55r1ZxJ4BmazGjeM/X5+KYvRolbVlLtwloq59r/PmrruCd5yZ95i33oo93nJLtfK1M3xeRHUYL1woct55qu575pnx57czSmLAAHVMXnlF1bGC3t8//1wFURctigV4Vq4U2X9/yR00SBo5x2f8eFVn1bdPJPEQbBH3966o8N5fvXrF12cT8ZgzLyWXXho/fNuPX71048b4ukOQ+Y5F1P0uJ8VQS9CkDHP+3JIS+zljG4ItEl/Pc8qyIMkcXlmuTlvMlgF5yy2J3zeRIB21ZhkRZK7lWbO86x1+c0DaApAffKCudWP9DYZgKwQgG6DAGZB+WY3mDehf/1IZJO+9p1Yr9GvIBYnud+oUC5DYMiDHjFG9vvqwxWbN4oMqU6f6p9U7bAHISy6JXxBFbxwtWaIao6edpir0Z56p0rV/+UU1HINkQCYzJMJWOH78sQoEPPSQ+/dBMiD33jvYTTJIQZ7ou3plQFZUxB/bNWtUz/iPP6pGgJPyHvRmu2CBdwAyyPBr0+67xyZYNrfdi54VctxxKtB1zjnquw4ZIrlm73eQwMLhh8f/Tm9I2vaPfp3qlf/CQnsG5Lp17nPEr5EUJAA5ZIgKJtvm7jQtXqyuQ7+gfLNmseFVTsXlvffU6ph6RWbhQjXM7Mcf47eztNQ9DMKZx0zEXeH/6y+VMXDggbFODFvFyNlHTzyhevWff97vWwann19m9qqIqvx5zQlqC0Bu2KDOxSOOiD3v7bdF9tjD3WueqDEzfrzKDJ46NTa817adIsllXv7yi8iRRyZ+ntn4cD5DP1f1IIYtoGVmI4moazBRh1BRkTsAodMDkKn0YH/1lcqO+PhjVU45K6fqEs3H5mX2bP9y/J57VMPXZGt0JdMRZlqzxp29JxJ/fBJlQOr3fK8AlFcAwdYY1oN5Dv3aM8+3qioVBNptN7VNXgHIIOdAWZl3ANL5vq1bq+C8buNGlb1z993uxUxs9zevDsTSUtWZ4FwLO+2kAuwi6lwxv7dXANKsl9j2sZm95pelF3SO3iAZkHr507JlsPc98UQ1CsTpNNO/T4sWKnjkzDX+zTfuDu699oo9Xrgwtj9F3HXMFSv8p7q44ALVoW9mFs+da+9Q00Wjag7o8eNVEPzuu9X3cRarcDj3RbPM8+pA8wrAmMe7vFzNlXbllfHPtS1CaHICkLm5sfk2k5WXF/89nOtyyhRV3s2YoYKAJjMAaZaLXvWe779X16RTtzPvMXqwq2tX9b++0r3uxx9VNutjj8X/vqrKfcyWLQu+2Ji5/6urVftl8mTJ+fhj6fDFF7Hg9a+/xmflB8mA1AOQXtd5fr7aB8kGIJ1jmInV35NdpCRRANKWARmEmQGZDGfES7JWrLDXzcrL1bmUqB7klGV+85Y7nACkWa479yrzs9asCd7Wczjn8YEHqvvd668HC2IGyYA0mQFIfd2Js85S9bbVq+PPL+c+aZ5HP/4YdxwJQCoEIBugaq8ApFmRNCvxfgFI/Ub1xRepr3Dq6Nw5FiCpqrIH6l5/Xa266HCCE2Yj7auvVC+hY/FilcFz8cWxG7ItAGmj3/jGjFEVvSeeUAHHxx+P/e2nn4IFIP2GhZhsheMBB6hAwNlnx1ZHu/jiWO+9w5YB2apV4vl9RFQF++OPVcPbDCSNHasml/da3c8xYIAaHmmrgNoCBFOmxB5//LGqeDvPGzzY3tByVk9ctco9zMGpxC5dmtqK0998oxoEiSrPDzwgssMO6vGXX9rnHDr1VPsE/ObcU1VV6jOPPz7xXKZOA8CWiaQfbzOI5dUwdW6clZX+GSRBskv8Ml1slizxr+gVFcUqNM7zBg+2z9H3ySf2BkZpqUgkknhbnn9eNQA++kgdWxH73KDl5ercOO00ddyDrtKXyD77xLJd9LLEqcj5zUFjG4L99tsqG/ett1RgNRpVjdJp01SZ4UgUgNQzu8y57dKZM9cxZEh8+eWIRr0zIPWyWR9WFTQD8tNP44dHmYqKVGDAJhMZkHqGtq2sClJee713skO3RezHM8iIAj9mMMoMIiWTAblkiRp2Zgb9/QKQzj1y2DDv8kkPHnoFZGbPFhk3zjsAGaRxtnq1vZ6lZ4IXFalOAtMXX6jMFr9gqYh7f/bsGXvsrBDvlCc9eqh6l4g6xub3PvpoNYG+WT6YDa3zzlNzSusdXuY1ePfdKvBrqyMFnfsrUQbk2LGxxSBE7Bn/iZiLKzkZ+O3aqf/XrHHv8+23jz0+4wz3sZk1KxaUSPQdJ09WdSDbMEQzsGGrlwSZK9Q5P70yBRPZsEFNq2Gr63//vX1BD79RCw4nACkSLAvSnHNQRO0D81pwvpdeh7VlYFZUuK/Jo49Ww1j1v9uMGqWuybFjVaeAX5aeE7TYckvv59g+69NP44fup9MhtHy56x7edNEi/xFPyQYgvTLKevZUQbdUApDRaHLtpkxJNgNSt+OOquPXZu7c2HQINlde6Z19nMy8qLqKCvuxKS8PluHr1D1tHbkm5xo298+ff6p7k7lf9Wvn8MPjRxzZTJ2q2uEffaTa9v/3f4lfI+Iu+2zz9tqYAUhzCP+TT6rMc3Nu6MWLVZsqQLYyc0AqBCAbIM8h2MuXuysEZkHkF4DU5eSkvsiGQ8+AFAk2AbQTeLRldunBwbvuUhk848apHpOqquABSL0yr6dN6xPtiqhAaG0EIHWrVqlG67hx8X9bv14VfPoKZoWFwTJqFi5UDbYPPlDZAU4B+uuvqrf3nXe8AwaOTZvUHHdBMiBNH3/s7hHr1y82d4bOaz4ZPUjt3HD0obxBDRqkFk1wGgD6d7nyShUE1iuqEyfGv4c+kbbO3Af33aeyLl96SZ1nfpXZ0lJ17doqFPrN3cyA1LM1dM7NNdHN+I8/1Pn0xBOqMXLllarRtXq1OmYnnOD/eocTOHY+26+iV1gYH4D0Yw4PFFH7K8hQC71S6CyW5ZVpELT8SMa336pGujlPqvO9/QKQtgxIvVH68suqTHUqkCUl6ngNHBifTW02ePXhQubfUl3ZWvfuu+o8cs6/m29WgfuSElWmmo1W516kl816pTDBHJClXo3A776Lv5cUFaky8557VGeDfr2feqrqlIpGk8uA3HZb9f+338bPn6Vbty71AKTXvLiJ2K6xVAKZfsxgTDIZkCIqg1k/DiLejajSUnXujxunAiRjxtiflyio5xg7Vr2f7vbbVUaxLTBiWr3a3iBZvTr2fQsL3fcwkx5EtQVH9P2pZ1wdcoh7OO9WW8Xm+iors58vt94avyKwLVvmqafco0dsgd5nn3XPdyeirp2gAchEGZAi7uvQVi9MxAxkOfUGfVihXi8zM1V1q1bFyqJ0F1gQiZ+XzbFhQ7CpfbwCkLfe6v0aPTD32mvxC4slot8fbAtt5Oa662a24fg77uj+uUeP+EVnysriy5H581V5Zl6v5j3M7BRo3tydyWq7xqJRdybyTjvFP0fnZEB26OD/PNOUKfFzN6bTIWQEibt+8IE02mUX7+cHGYKtB6W8sgydjo5kA5Bz5qhrJ9X5o9Phd02tXev990suUdNjvP56ahm9222nAuU33RT/NzPIlQzb8Ony8mDD23/5RQ3l16dT+e672Hmtc64Xr1W7zf2mB1X32MPe1jOvQf1e+9VXwQKjIu7PTtQmcMqA+fPdCVG2OUR//92d9CSi7hPOQqgJkAGpEIBsgDyHYEej7huGWWD4rYKty8lJPwNSnwNSxB7MMTnBNFtPt1450Ccw/uILFYx0buJ6MMSmpEQVdmec4c7kMCs7paXBApBeqy2bqxGLJA5ArljhzhzUbdiggrB676TTmE5k4UJ31pOzMIvfqr02Tz0VbA5I09Sp7smcvW5KtgBk48Zqcn5TkF4106efqkUTnOxL/bs415R+Mwq6Gp9I/E1fXx12wgT/FRxLS72PhV8G5BlnqH1z8MHuhvjSpeoGe9xxibd7wgSVpdG7t8gNN6hA9GOPqR7bF19M/HoRd6UlUQCyqCjWKFm/PvGiULbGfWlpfAXFGY6o0xuvTvaKc53vtJM7OyWV1WmD+uUXdzDYaQTYApC33abmtzLLitWr468Zc9GbF1+0lx/m8dCzR83KVCYyIB2zZ6vvOGaMCnqccIK9cpxmBuTivfe2f35RUXwDydmH55+v7inm3IE336wadclUIJ0hwNXV/ufz0qWpD9X644/MZUCGHYB07gdbbukOkK1dq65Jr3vm+vWqE+S667wbE6Wl7nLJayGG9etVkPnII4NN4WIaOTJYEKiszN4wKytzZ0Dutpv3e/jVC/QyS8Rdr1i61N2A7NHDHdRyOl1MZsPKi744gVcg4n/D8ZvPmSO5//iHmgM26LWzYkVyGfapZECWl7vrPq1aqf/1slTPGNMzIG2cRbLSDUC2bKk6z20qKoI1wJ0yMJkyW294pzKdjR6AtG3jFlu4O7hsGZB6Z7fzfD1r0mEGWKJR1TlgnjNm/bO0NPkApN9ceLbzzqnzNGuW/FyX5sJbQYMtNsYcjwVlZRLxC0BlKgPSCcR5DUH38scf4XT26rymgPC7TlautJf3W28dC+hHIql1gjjnxwUXqGmFMsUrABkkuPv77/HTk3kNqXf2m1dHm7lf9bZev372OST9YhMisfOzS5f413q9Tr+Pmudlbq6a8s3x+eexx0EXMZo+3TsL1kAGpEIAsgHyzIAUcV+EyQzB1q1fn/kMyCCcYJpTSdT99FOssWxmU+pzszjZKF5WrFBZX4ky/qqqEs8xUloav0qaiCo0Z89WmW/6PvjxR5W54bUaYEmJdw/b+vXxDYri4mABSLOC4zQKU6n4mI0l2yrYpk2b3Pt7993jgylNmoh07x7/2iuusN+E9t8/0OZaOQtl2AKQ+s1y3brgk+Drlb5ly9yVgJ49/TNlS0vdATC9sarfYM0MyC5dVONq4kR3xWHpUhUA9Qpm2+jnQrKBaX0OlWQzIG3nzqWX+n+eM/RQ99prKoPNy5w56hg5AeXWrd3Xpt7BkWlTpriveWf/2FZ8FlGBkxtvdP+uvDz+XDQzmbyYZb0tc8Xctkz47Td34P2jj7yHDYm4G5Jdu8Yq7rYOjv81QqPNmsmfgwZJ1BlSqWva1DsA6bDda/773+QyIC+4IDak08/Spal37P3xR2rZErUdgHzmmdg13aaNe3+vXasan15B2ieeUJ0gY8d6T4Ngu/ZtpkxRgfw337Tv85491SIW6fLKgFy2LNYQLixUc+p5ZZT7BSBHj3bvC7+Mo622imUmiSRfjpuce+JPP8UWxDG1by8iIjvfe6/kPPWUWgQsqE2bkrseUmn8L1jgDiA4C1Dp93n9eujRI36uRV1JierAdVZAT9WAAd714w0bgo2smTdP1YmTWQhRf1+/doQXvQ5i20bzO5kZkMXFqv53zTXqsTPU0rYttve3TbFhPq+01F3/8gpAvvyymuJl+XLvOeuaNo1N36Jz6qSRSLCy329f6wHyREO6TV6dOV4qK9V159e+W748dpz1+7UeWHYyRPXyxkvv3rF7+R9/2IfNO8wMvCD71uT13RIFIG2vM+sLZqDcq1zUOd+9sFBlB6YTcNbZpjULmgFpKixUdSHb/cU5F2xtofLy+PJHf56trScSuz43bFBJIV7zPSY6/vpn6x1JZhygb9/Y9FoiKhnF4bWYq2nePPtUURZkQCoEIBsgzwxIkcQByDffVBe7X7rysmXpByC7d0++wugE02wXb3m5KgA2bIjv+dEDc4mGBJSUBF/1M9HQiOnT7UGEpk3V/6ecom7m+vCriy+OZYOa2XVXXeVeTEK3YYO7AVpYqHp0ggQgzeyuDz9U+zOVeVg++8z9c5AMSF2PHuq8MHvFmjePH5L0ySeqwmkbUpJOANLZ77YApF5hXrcu+FCRlSvVjf+669zz8Ymo/eO3r1eudDcW99wz9tgvA1LXtm3s8bJlcauyJSXZ80KvNC5b5t5OfYVqEfcckOvX28shfZ4zm2XL4hvto0apVbi9bNrkXtm8TRt3+WQLQObkeA/JS6ahYM7z4+yfZCqKXoGOIMyy3KvDIBrNzBBsx6xZ8e+nL+7ksGVAtm4dOz627XWCXltsIZXFxbJp3jyRRo3cz2naNL5BEyQAKZJcBmTTpiLHHpv4ecuWBQu46Ney49dfgw0JdjhZrrbgRDJD/szhkjbOsfjtN3XPc5gByHXr/DON9awEL6tW+WeTB7XLLmpbFi9WGeSFhcHuKeb0Bl7Xpd4YKipSx+P55+MXfUpEXzytuNh+bji23NJ9Dw3YWPLkBE3+9jf/xSgWLZLmQVZTTVcqGZBXXRUrZ085JTbKQj8v9QBk8+Yqq+yYY+zv9/PP6m/Jrs5tGjDAe1Gdiopg9+B167wzt7zo75vK0N+vv1aZ93/9Zd9Gs3PdrKc4AYWxY9U+HD1a/WyW3ea2+jEXoQqSATl/vpqO6Prr1VQ2zqggXd++6toeOtT9+pNOctdf/a5JR79+3mWpXvfwmiswk9avT3wfcjp59PrZs8+q47fNNmrRUhH7cTN17BirL82cKXLHHd7PNffR5Zd7Zwp7sX23d9+Nn+9a53UdOW05hxmADDIE3cyQtWX7emnSxHtKBVvbM2gGpKljR3WPSjYDUs/0N3Xtqso4vwDkuHGqM8KrLNpiC//53vVjpicmmW3GPfZwfzd9HwUNQCaBDEiFAGQDlHIG5Jdfqpvp5ZfHr86mSydTw7HVVvEByN1393+NE0zzCmj99JMqdM1hg3pF+3898p6SyXQyVzo26QsO6PSewkjEXXkRia2MaB6fyZO9e8fWr4/9rUkT9dqOHYMFIM2KXHW1dwUykalT3T/7zQHZuLFaYETnTMZv3pRatIjvTd11V/V///7ufdiypepVTZXzvRNlQE6dqoZkBlFVpRomY8fGZ6YtX+6/r+fMiTXMIxH3deKVAelVsRdJfnVAU6IFiUx+Q7DN61HPgBSxn++2AKR+ns+YEXyFQp0e4DAzIG2dEu3a2RePEPGf081krnTo7B/n+m/Vyl1m2KQbgFy9WjWsv/kmvnx1Go1+mZGpmDUrvjJsDBmr2T4R93a1aRM7PiUlseP9yy9q6ND/ggpR5x6TkxN/rhUVxXdqBAlAbtyY/CrYehawl6VLgx3DCRNUsKlrVxFnePmmTYmnK9A5DafvvotvXAfNgLzsMtUhlmjeSicAad4bTjklPgPSLysvyDQI06dnZgXVTp1UWdu+veoQdEYzJCrvzzxTLQblsC1CI+Kuh+nlXSpBNP21XnMfRyLqfNHPd7/5SINo3FgFavyOy/LlEvHLaNJdeGF622PWJ8eMsY+a0DnHqnFjlWnj0I+Jcz41aRKrB3hl3vgtNpHIv/+tPqNzZ9Vh5hWALCsLfo3+9VfqAUj9M5o0iQUD/YwerYK6Q4eqVZ5NZrlpBl+89qstkOXXoThkSOyxGYjRA5BNmqhjbwYgf/45lqE8Z459upljj1XXVePGIueco353wgnu+ehFgmXptW6tOjoSSTbYloogI9ycAKRel9x7bxUo+vVXFdR1JFqtuEMH9z7yals2biyy777u3zVvrtpZyXSo33CDqiM+9JCqey1apBZD8ZNqADJIR7TZ/tPLGT/du6v7i5nQ4LCNcPLLgLz2Wu9RM06g2S8D0lZ3Wb7cuy7uDG32C0BeeaX9tY5mzeyvd9x4Y+z614f2m/X2fv2862jJzuNq4wTk/4cMSIUAZANUbQ7T1Sud+nAos2JcVeU9/Fe3YIG9R9CLObluu3aq0DAr24luwE6QQS/k9UDLTz/Z5w/Rsw0S9S6lMu9NEHqAxGwomtvkNLST6UVfvz5WKejePVZhCxKAtFmwIFgAsls377mkRFQ2oVfAuG1bNWePcxPPyYnNuWbeVJo3j5+/03lOkybu+SELCoKtgixinyfFOYf0m4QT1NcbJp9/Hl/Z9GMGmhyJApC//hrbx1tv7T5fXn89tpquOQRbp1fw0h1imUxGq4hqUDkBND0AmZcXXwboc0CK2IeRdOoUPxWBPjdXqsOl9QBkmzbu7EZbr3GHDqoya2soOsHxIMwK4aZN7tX0WrRwV+htpk9PfcXEe+5R84Wef76aO9W8Jpzvnsnh1yLqOrPdg0xOg8QrA7KyUl0HVVVqxeR//jP2PP1a0SuSeXlq3h8zAGnLvDaDvwsWBMuAzM2NBSSCBCCXLAk2smDgQBXAmjPHPv+tzitwrZevxxzjDg7arjnT6tUqGLfjjmpbbJmrDqfOoQcXn39eLSyTTADS7z7jyNT92zwvnPLGa2GQnJxYBo1eppWVBcuAdHhl3AbRpo13ALJDB3UPCzIkMqh167w7WR3Ll0uObRoam5tvVvvr9ttT2x7zXtKsWfBsorPPdgcrbY1afd96BZXSGda+337q3jpnjvouXgFIfbVt3b//Hf+7efPsgZPeve0Zd3qwzqkndOqksrP1oJ6IGk7vNSXQ99/bA9NmANKvo1SXKJBs8svM1gOQzn3VDED6DYN17hsXXBD73R13qPd8/vngQVVd8+aJ5y1v1Ehkn30Sv1e6vDIg9QC/LQOyXTu1jWbd+9JL/e8pHTvay63jj3f/3LSpykrVOddpMqPpHnpIZa+efbZaqOvhhxO3e72GYIeRASnife2br7Ptbz9+GZDNm3vPd+jUX5Idgu03kjJRADJIEkGiAOS8ebG5HfXYgJkgsMce9gV2WrZMPBWFecwHD1ads7rbb3fd88mAVAhANkRmgaQHZ/QAZNgrjZ10krroLr/cPbm+U4iZNw2/idhFYsG0225T71dY6A6E/vBD4gmMk0lvtwk6Ia2ud2/3sFmzkT1ypPtn5+aeTABywYLYjUAvSFMNQM6f7z/xtv7+227r/zleN5J27dS5OX++mvh+8WJVIRCJX4yheXP1vZwG9223uf+ur0pou5G89pq9smx77l9/qcZVogzITFm+PH7YYI8eset42rTYse3e3X3D/fxzdcN7/33/IdidO8cqS4kajZlWVBS71vUAZGFhfPaUmQFpnoM77KDKDzMgp08qnUx2th6U0qcPaN1aBRH9An8dOqgMqYUL4ycPD1KB9PPCC7FAb3FxsFXdU10x8ckn1eeJqDLHfB/nnpHpAOTs2cGGmXtlQOr7+OijRd56K37bvQKQzjQLiTIgc3Lis2/++itxBuShh6p735FHqp9t5Yxpzpxgle68PHWNNGqUuIFjWwTgvPPiy7F//CNWhgTpoNDL+8JC/8w95/zRAxIDB6r/zQBkuos9Jbv4h1eGilegzhZMWL5c3buc+Q31MsMrM9krAzKdAKRfBqRz/iWatD8ZK1cGCkBGvDredPn56l9xsX2hF31+Li/mvisoCL4q7VlnuX+23eeDBCDTKSObNlWf6zR4ve4hXkHOK65QZY6+8NKHH7oXZXR07Wq/Zp3RDRUVscVcunRR22Y+/+ij1f3cnI/YpAfNzPcwgy9ew5XvvDO5FYb9FgsKEoD0mke2Xz9VPs6eHX++eWWCBxmCXVKSOLjYo0d8J3wq83SK+N83vDIg9bLSWTTPCTC1aOGftec38qxTJ3u5Zc7T17Rp/P3aaUsFqR/ZVFba5/A0ec1HnokMyHQCkA7nO2y3nf9n+mVAFhV5t2+dzH+vIdjz5tmzJ/3mL3Y+y5bdbFtI0qZZs8TD/GfMUNesExswF8AVUeda+/bx7xXk2jWnZtlzT3ucQbtnkAGpEIDcHNgCkBs3pjdcxGHeAPWMi/btY40+PejmFGJmZSRoAHK33VThNH++mhPFCbZ8843qefWTbgDyzDOTe37PnipDTb9ZmBmQRxzhnr8rlQCkHnjNRADyq69ijXS/Sk7jxipQFmSeDLOC4hTILVqoOTn8CnsnE2nqVJURaKS0y5VXxs4DZ/VfZ8jQXnupQMD8+fE3Sa/ew9mzE88BabJUeqv1wLOXyspYoG3HHdVn//xzbJ/qleHWre09fkcd5Z8B2ahRLEhmVi7NClAyFX0b85wrKIgd22XLYhkZhYXxz9XngBRxByAfflgFY3Ny4iv7nTrFf49IJHGD/uyzY99XDyq1aaP2md+8b06lukmT+GEaXitfBi0/9LnyggYgwxJWAHLDhmAZQ7YMyJYt48tyyzCsqF7RtA2lMQNNtmvLDDYuWZJ4qHSjRu7yLEgA0hwqGImocnj27Nj5oK/UKJJ4lVGzwfrLLyrj1SwfZsxQQdNLL01t+gJ99WURdY06n2FmQLZpE7t29P29YEFsrqdUFhdI5MMP488BrwxSr0xHc7ucwIx+rPWyyWsIdlgZkF5BECeDxdbICsp83YwZsQXbvKxYIZH/BbSjfp23+nbbgo2HHur/OU2bxpe5BQWJp65w2KZnMOllcJCGabLMe6FXEMLpLDLl5KjzWw9A2Ka0EFFlp+07Llyogkt64MC5Fsxzs0MHtY1++6JlS7XwlHOPNbcnaAZkr16qbDDnWPXSoYO701+3cmXsnpJsBmTXrmob/eqBpqBlWVGRWgBTxL7tvXrFd8wHyWju3Dm+/tC/v/fzvQKQ+jXi7D9nCHaiqa38gpO27ROJb1M456vTbm3SJDYnZjr1o6Ajemyj/swApHktmPdfmyABSFtngf66s89Wbchvv/U+70USByDN+8dhh6nRWc4Q9TZt4r/zihXqfDLn/xcJlgFpC8aVlnov/KRr1sydvbrvvioL2fTOO7H6o/O5Tkb3qFHqusrNje+gC3LtmskH229vr0Pl5NS0pXPIgBQRApCbBzMAuWSJCuKluwqiSHyl6eCDYzcbc74Oh1cGpFel3/ZZnTqpClFeXmxC2T/+EHnlFfW4RQv7XHGpBiAjETVfkC3Vv7jYPeSyVSsVdHzvPbWPu3VzVxxsc3X17BmrODqVn1QDkPpwP78ApF/Wip61YA570DnBySCZoeYwmmQq8XpFsVev+MDhVlupwOTPP8eGstxxhwpYTpwYW40w6FCNWbPcc94FyYC8/HIVBF+0SCrnzJEP779foocdFuzzHN26qcZ8QYF9n7ZqZW84VFT4Z0CK2Kc4GDxYnW96hcdruFOQ3tzmzeNv2vn5sd9VVMQaN0EyIPWhO/vsEzsO5uts2T9PPeUeJmVq0kRNUL/XXvF/c64Nv2FRejDDNo+PExArKlJZKDNmJLcKrKN58+Qq2IWFsYDX3/+e/OeZnABSJhegcdiycxxOmbl+verAchoKLVuqYIh5f3nnnfj38MqAdAQJPNgku9BJkHmE9CkA9t1XBST79VPlwRNPqLmBzeCDmZFgNlzMBuu226qy0Kscu//+2ONkJl/fckt3udG0aeyaX748Vu8QURV0p/zW97fe4EhmsQXbXFc2AwbEH1/bAmYi3vcms2xz5orU6WXTihX26yasOSA7drRnqTjlQW5u6sOwbXUJJxBx0kkiX3yhAq4zZ7pHJPxPdJddYiMXiorc9VI9a9S8TzdtGpvr1PHww/HbZnaUBg1A5ubGZ7qnmgGZDrNhn2oWfZDOji22iP88x08/ubOgnfPFFoAU8Q/GtW2r6jR//KHqVGbgK5nhym3bBi+TiopUdq7ZMSKiOkCdAEGyGZBB9q3J6zvttVes7LjqKvX/44+r+4Ats9ipDzojpgYM8D6Gjvbt1QIrZnnmN6Tdawi2GYBcsyYWqEwUgPQbJtypk/1cN4+d812PPFKdo7/95k5iCJttxGCiVbCDdOYHCUCecYYa4ad/T/N1PXuq39nmJXfO89WrveeAt9V9ttzSXe+PROI7Pb//3nvUxLRp9t+L+Acgly5VI3MSMQOQzqg605gx8Z/7yiuqfah3aqSyyrp5v91hB+9O3P/dVxiCrRCA3Bz06BErCJcvV3NrZCL4KBKflr7ddmoY1RdfqMw+G6dXqLBQzcUhonohcnL8C2yvYJo+n4NTGF16qb2ykEoA8sorVUE6ZEj8ja5lS3Vj0G/o0ajIoEHqn1Ox0bMHbPOcicS2t7RU3SiSGSKvZ1AGzYD0qzjq2Tj77+/dY5pMANKcBy2ZSnyiOfBE1PfW5+3LyVG9gXolTV9d0lk9zrawwLx5yWdANm+uAtEdOoh06SJrvCpWib6DI5kApIh7FT/bdtqCaYMHq8qpXkG1Nb4LCtyT9Hvp0CH+WBUUuI+1E4C3BSD95oDU38P8jDZt3BWyzp1VcNErgPjmm6ritOWW9uc4DWC/ycn1oJIt++ZvfxP59FMVFN9xR1U2Jmow2CSbAdm2rQpWvf++e5XcVNkyIBMtPBKUnmliBuv1a2Ht2ti9xgnSHH+8O2hnWSTHlQFpO6/NrK6gAchkpy/xC4TY7nnbb++u2DZqpBoWZpBlm23cWRaDBrn/PmRI7DvpQ82CTCXh3JuDiETcCySsXh27165c6W6I6Blu+nbolfIBA7w/y8xS2GefxMfN6aw0OwpsGZDdu3t3tpgBQlunaVFR7HjrUwLo5UVYGZC5uSqQa05Rol9LQeYjNTVt6h1E2G03dW7ttZeqb/TubQ9AdumiRi589JGqM+nz9OnlSSTiDkB26xa/3/W6lYj6XPPYFhTEB+BtWreO/26pzgGZjqAZkI6//S12LehzjnXunHheOL8A5OuvuwNwzjlulvlBApDOfurc2R48NMs+vf5mE3RET1GR+peow885pkEDkKlcO17nyj77qOvgu+9iWWv5+SrYXlQUf3ycgNyDD6p7+1tveR/nN95Qz/n1V1WOm8fO73sEzYDUA1npXA+2IdjFxaq+pJeH+uKLffu6O1KyNUIk0RDsIGzZoea137Klum/q93qvss12T3NGF1ZVqXPDxinz9GvS9hlB5rV0eE0L5Cy2JWIPQN5zjzp/E2na1B2AbNTIXnbrcQqnXZWfr647vU5lXhdOmeWMqttii/i4QuvWsZFNW2+t6g5/+1vsffVRd/8rKxmCrRCA3By0bRur0M2aFTxjIBVNm6qLVu/dM+mF66RJKqvj7rvVz36p+l6VD7PHp0MHNfzW1uBs00atRGzymxtpzz1jBbh5ozv1VNVg0b+TLeNBb+h6rVaqF37z5yeXAanzC0DqQ5kuuijxezVurCpxr7yijpMTtHM4N6sgAchU0tsdQQKQQRQVqcbwa6/FVt385z/V8Aq9x81caEIPJHsNSbdUgqLJVoz0cyDZAKS++IotwLDttvGZWM7PeoPPnLT+P/9RjVpbpqDJKwBpuxZtQ7DNDEhnqGturvsas2VA6sO1999flT/9+sVn/Gy1lQrMOPvXFoB0Grzduqnz3hYk8gtANmmiPn/AgPjMsGQVF/sHWPTh2s7zO3RQ86lmYs7SGTNUBot+XqQ7lYXNsce6f9bLi1WrYkE/51yNRFRj7eijvd9T384gQdMgq08GESRY77AF24IGePPz1dCn++8XGT8+PjOseXOVlf3GG2qeR4czvYYfv3nUbPQGooh73196aeyxfr/OzbVngOy4o/cK82PGxK4jZ4G7ROWsU/6YZbfZWHv5ZZFPPvEepmz+3haAjERix0/vQNHvy878eiKZnQNSRF0fZpmgf3YqWVxt23pnQB9/fHyZbysfunVT+2b//VWnuL4d5vmu7+eWLeMb5M2auY+5VwakvgCiVza8bVREogzIoKM39GsuETOQlygAOXSoqsu//LLINdfEft+4ceKMa78A5J13qoxWh3OOm/V551wNEoD0ogfiCwoSz4PYq1ewIKRzv0y0D20ZkGvXemd0pXrt2DjznXpNA2F+T6duWFCg7u3Fxd6LpwwerJ7jfD/z+jIzIPXrLUgAsqwsNl+o+bdktW8fX363aqXOz6++UsP2n302vlNF5zXlTdgyEYAMkgHp7B+9jPPKorMFl20LVJmcMu+pp9T/kUj83Lgi/p2DQQ0cGOukO/vs+L/rSQp+zAzInJzEnZHO/NM25vXtLIR0ySWqjTh1avyw+jZtRMaNE3nxRbUQpDMVxjffqFE5w4fHnksGpAsByM1B69axglGvRJ5yihraZc69OGlS6gW6V+XAGWIg4s6UaN9eXeTO61IJQJorWl19tbrQzcpPixYqkHDppaqxptthh9hNdMCAWMp2YaE78GLeGJzKmV4Js2TiuFZmveMO+/fQC7958/wDkM2bi/zf/9n/pvc0m/ts1ChVYZ00KT5bJicnPkg4ZEhsnp/jj4+vaCSTAWkGgpIJQGZy8Zett3av4Ni4sarM63N5LFxoD0CKeFe4bUFSvwqwLctGPwdsUwh4zQFpsm1jJBIfbHOOp15xKilRK+OKqIrqySer6yPI8MC2be0BSNtQR68MSNuxbtvWnUVmvs5sRDplQl6emvvtkUdUEO3RR9WQfP29dt89vuGvv9/xx6tsyTvvdD/Hbwi2V/mZSgCyeXP/RU/OP9/9s1/wyivD/MQT7UNXRFRvdI8e7uHcZkU73eszNzc+Y14vL/SMbPOaMst/nb6dQRqutqFnt9yS+HUiKivjtdfU+eU1tNfmmWfif5dMhumWW4qcc47IiBHqdXowYvBglZF2xBHuRqbXMCydVwbkxRfbf3/ssbGy6eKL3fveaaxuvbXIsGHu19nKs7591X3KWcRHt8suKkj41FOxTiTznDDLIKeRr1+nBQWq/HPKwGOPVf+SCTJ4TRtjO35e76t//3Q62vR9YF6feqPU7/t5Xcft2tnrNSL2e7+lIR416xb6NpnfW28wX3utPQAZJANyjz3UENTXX4/NCW2y3dcSZUAmylY84wyRxx7zD5qYzABf48b+5WrLlmofHnts/P0m0TnsNQekjV5Pc4IP220Xu4f6tRUS1fH0rPd3302cudmsmRpV8MQTahqMhx6yz4kZNADpBOL0c+fPP2OjlMz9n8kh2ImudbMMsX22bTTVxRfHd5SYn2Vuk/7zX3/Zr3X9OWbZnE4AMi/PPrJMRN0vzj1XBcT9roVkVoLOpGQDkAceGD/SI0gGpC1T16tO2LGju36bm6uSaBJlAzvXzAknqGvqo49U3cF0zjn2BWcSueEGNdrszjtjQU4RlRDw6af2ztNJk+zb4AgagIxE1Dk0caJ3wN95P50zWsNpI/boEX+uOm2y445z11m3317Vv/QsUjIgXQhANlDVenBpiy3sBeM++6iAlF6BLCxUQYrvv1dz2pmeeUbkrrtiP5srOHs1sC+5RDVkP/vMfx4+vwCk1w2oe/dYsKZnT5HTTlOPzZussw8KC1VjzaxQvvuuWtHvv/9VKwo6aeB6cMIsfJwGSKKAbb9+qnH65JPuHhGdXsGYO9d/hdgJE1Ql19S/vzswYlvk49hj1THu3t1dyYlG44OEf/ub+2fzGDgByCBz85jvncwckKlOnJ8MvWdr4UJ3sF4/L73Ow2QDkLZrUj8HbHN1tWql9nmioWVe22gGIJ1zRW+ElZSoXufbb1fznjqVO2choESfa14jBQXqnNcDI85zE2VAmtvpMPd169axYIRILIAqos7Nf/xDBWpOPz1+DptGjVT5pDMrMX36xDdg9Uq3LQPSJtUMSL1BYF4LZjnn17DxakDdemt81pTJWSBEJD44bguWO/bZR1Va/TRvru4LzhC8nj3d55F+3prXlM/iZa4h2HpHktdiQLah1eedpzIMr7vO83NERAU7jjrKPteqiHcWQocO8YszpLp4mIjqYHvgAdUb7xUg85scXkQ1Cm1l+j33qA4+mzZtVIPhzjvVtCW28u3KK+OD4Oa15tyXOnd2d9w52rZVQchTT41dd2aZc+CBsWtwyy1jmXB6BomTpfzRR6qsS2W6Aq9Ase0a9DoWenkXZMiwF71BapbTfkOw9c+0TeAvosoYswPGETQAaZY9fhmQRx2l6krPPafmAzWv+bw893brq0c7nHPj0ENVsKR7d3s9LZUMSDPgYXYmHnOMqocGDTJ5dVj4vd4vgGge49tvd/+8xRbx3yFIJt4zz6j30odx+i20kaiOd9ZZqmx97734xRy87LSTardstZUqx20LcQUJQDZtGstQ1et3s2fHHpsZmakMwfbKak7UyWTeA2z3bnP46V13xYaL+n2WeV7pdRmvxT/8gsnpBCBFvAOQyfBa3NRm4EBV7tscd5z7Z7+Ald+8rbYFDHfaKT4r2ta2Mc8ZWwakVxArL899TTZrpq71RCManGsmJ0d1untdj/n5ql3o1WFtc8MNql5y2WWqnm6eSwMGqPLSqee3bavWIdh7b/8Ma1sA0iy7b79dTUn07LPedTOHPve0V8ezea4mU6d3ApAbN6a22F8DQwCygap6+GE11PiLL1SBZGsMONF9fRiEU0nu3VsF4XRNmqhsqNGj1dCPq69WATudV8OpWTOVqeO3+pqIfyDPq5crElFBw7FjVaPLaeCYlZ9EEwTvtJPKfHSGp5x/fnwFxCx8nCBRkFXxjjpKBWy9Ghl6g+/cc92BXsehh6oK2+DB9s90VtFzmMdDLywLC93zgu2/v7sBXlgYv+qqVwCysDDx/D1mAyyZDMjaCEA2bhw7Z778UmUwOFIMQMYNwdazf0eMiH8PvYJrq9i3aqXOd73x0bhx/JAar/NR/3wR+xDsDRvU7//1L3clIycnccWwoMCeAdmoUfzUBwUF8Y2owkL7tpvzztgyIK+8UmXLTJoUbPVB3QUXxMqe7bazlzXm7/RKd9gZkHowXG/s7rFHfDln7ht92gWvIFjHjirQpjeE//lP1clhW1Vx773dk8R7zfUjoir7ega8jXPOvP66yux+8UXvfWWeg7aFBhx6mb/FFqoH/LrrVIXYoQfUbFkChYUqgGpm7pn8MjFF1PV0yy3uDEJnv5hBnHTm2GzSRA1r8mvQ24bY6bp0sXcOnH++f3B0r71UA6N5c3udQ5/3T39fnT5HpO0csL2vWc7uuKM6l667TpXlTrlqy2Tfdlt1bIIsFGTyui/Zjl/v3vbvY5aBQRdKM5l1Kz2DVd8/ZiDjww/Vfpo0SWXKTpgQ36HQrp0K9tx+e/z8jrY5wWzHyMyA7NMnFig1g0iRiKorOQvg2e4Jej0qGk1cBufkqA5wMwCQSgakuc3muWNbydvmyy9VeecsWGbyC0D63UvMc+hf/3L/vMUW8dlztkxs83O6dlXvpX/3bbaxB1tEEtfx8vNV2WqOxkmGWX5EIrFj71df+de/YvdO/dzRFxgzr6lUpkjIyVFBPTOhI1EZr/89P99+TurBl4MPVm0zWxKH+Vnmz3pntz6vsq5lS+/ph9KdEzUTAcj33lP3008+cf9+t93iEyluu02ds+bnjB2rOtl0553n3bYxr8GcHDXF09ixsSw/vX5x9NHBOhfTyYAUcbcjnHtUosXHgmZEO/wyUvX90qiRCjwmasPl5qphzmPHquvFuc/oZZeZDWkGIHNz1TFw7hcdO6rXJ6qbOXbbTWVX33qr9xRl5rmaTPbt//ZZJBr1P36biVpo1SMrOnZ0ZxzZKrVOoarPd6IHicwKnP4e++xjn68llQa2LtU5uLbfPr6Hx8zgMAsOPQDpNS+jySykg2ZABjFggKq4/vij93MefjjWgLBVsM3eO1sGpO7kk9WN6ZVXVAPjuediPaiPPx4fLPUKQIqoG+5996l9+dtv8SugmY2SuhaAFFHHU5+fyxEkAGk7982KxMMPq8Bmr172AIG+TwoKVONIn0DZqQAXFsbmR2zZUm23Pgei1zZ26hQ7xzp1ij0v6Nw1rVrFT+isr8Cenx/faNL33bbbqlVSRVTQyjb5v23bzUau+RktWqjz3ys7K5HCQjW/yyOPxGd1m5/rTI2gX39BMyBTGapcXKyu00mT1M/nnqsChS+/rB6bn23um0ceUdlLBx+sgpElJer46wH23Fx1/k6Zop6bn68qbpGImlvUDDoUFanJ8J0e5eHD3Sso62bOtAel9axO5+89esTKH69VEG2dQI0a2ctwc38ffHB8L7gz3Ua7dv5zkCUKDHnNWeho0iQ2F2KPHuq+63y2GYBMJwMyiNGjY/Mu27RoEX+vSPYeZytTbEE+83P0+7htG7xW69R17Wo/1vp9JEinoc0//qGmchCJ79BxmMfvqqtUhvENN8QHf81z9MMP1b33lFPi59W0KShQ17IZxHvxRTVE9fjj3eWsGYDcZx/3ivLDh6vglJ4R3bat+px//Ut9Nz2D2Datg/EZlbZs9+7d1VC+H3+Mn0YiCL1usmmTdwakbtddVfnmHD+R1DIgRdTogAcfVB0Tjzzi/pveObX//qpjXEQFhX/+Ofa3bbe1Z6w5Us2ATNS43WKL+PJyu+3UNBtPPOH+fZA6/c0328u/MBbrMZnHqqgodr6b9a8ePdS9c5tt3AkWeh1Fr0fpgfgWLVIf6tuvn/qnL3iYKDtWP75eATk9iOw3OsXcR+a1qLeV9ACsuT3NmsUvPCpSNzIge/a0j1I47DCVMasH2J37UOfOsZFmO+8cP0pHRJ3/nTqpubBNtmtw993d5fZll6kOko4dVUD7m28Sf5cgc0D6DePt2jUWSHaSSrwy8B3JBiD97p/FxbH7XIcOwTP799gjvhwZPlzVlTZtUuexPirClgEpolaRf+EF+/ySiYwa5f/3dKZJ0ffZunXpx0vqOQKQmwuzMbDVVrGb0CmnxDIx9EpnXp66oJ0LPEhqe7qBuEwGmvr3V6vYvvWW+tkMSOqfFWRSfpH4CoiTaaVPbOtMXJusnBw1VMycI8R5z8MOc1fszRvA9tvHV6b9MiAd++4ba4Ccf76aH2y77dRcICazIqM3PnbdNRY0GDs2PgBpGzbrRz92PsMsM6pzZzX9gCnIHJC2CqBZsdpqK/fE+AcdpG6WXu/RubM9AGlWTs3eTb/KwRNPqOCDfq3rDVB9+LLJzAB47DE1tOGhh9TPBx/sDkiKuCtNffvGApA//RT//l5DsBNlQCYaGh7ETju5M4JtPvxQDdU0s1dtq2DbpDLEsrhYXfu//aYqYeeco647r8nAzX3TpYt73tnzz1eVQycAqQeFCgvj55bdYQfVWaVXwJs0Uefuo4+qwO1ll6kKvhOcHTs2thDLkUfG748dd3QP9bJV6ryyiMxrqlEj1ePv1XBKJOgK74kaRYkywHXm5O5m4yBTq4x7ueoqdc/zOt+Li+Ovw2QDdmadIyfHHuwxGz5+GZC2oaMiKjD2+OOxldq33da+TXqjLdUA5I03qnNuu+28h86WlMQe9+kTaxi3axefLWz7/n7BYdODD8aPfBBR+8D2PuZ8kLYyydwmPZDktRiNrm9fdc/+X2M7b906sdawTjrJveCJnylTVJnlXDv6dldVBc9CN8/rVDMge/WKjVJ58MHY7/Pz3efo00+rzPP+/VV9Rg9AJuK3uJJfwGDIkFiQ1ckgato0FhRo0cI+f6Ctfhikkdyvn+qAfvZZlWXuyEYAUv/ZLLNvvdVev9HPHT2g0aGDCh4/+aTKhMukRGW83lERJADpV7cwF6sx60u26TYiEfcw0SZNMh+AdAJEmQhAeikri28HOeel/nvb9SASC0B6/S2RwkJ3YDTIvT2dRWhE3O0Bp6MhUQAy2c5xr/tnixbu6ynR5yaSkxPruDUzxZs1U0O3naxVp8Nx773VvzB4ZQEHoe/jIPfRBo4A5ObCbAzoQ6EuuEBNvNyqVXz2j37jChKA9FrkICj9JmBmySQrElEp3bfcoip95nxS+rYGDUCanEK4f3/VMJkxI36+nWQMHqwCVE5mjOO55+IrDWaw1tYDnSgD0tS2bXxvvs4vA1Jny34xgwyJgjEPPaRuPDvtpIKbtcHrZhkkA9LG/I5m4/nGG2MBSNswpE6d3KtbOxUTfXucDEid33W4667xN/LddlPn7bffxq90rjMDkE2bqgyOdetUw3bw4Pj55fTvfMIJIi+9pB7bhqAHzYAMO0DjZddd4xewEolv/KYS3OjSxT6UuXlzdR7pw4b9BCmDmzZV3+ONNxLPbeisXKsHIJ1jdPrp6p+ImrPn3/9WGUHHHSeycqUqv80MLBHVWZIoAHnccWreXKcTwmFrlG+1lTsAedRR3qvepqpRI3WtmXPzOlNrpNN5ZpbtYa/q2bq1yljdd197R1Pz5vHXYboZkO3aBQt26Z0hQSf579ZNLXRz1VUqs85ryJVe6U91H7dpk7ijwulkEXEPG7NlgKa7gFOiFcBtn/f002rUg1fg3dwmPZCkZ6iaC0c5IhF1bzvkEBERWbj33pLEjM925qgbMwAZJAPS2TZd0AxIv6CI1ygiERUMcBZYmDzZ+z1sUh2CfdRRal7jZctiU5989JGqW/7tb2of6FNrOPOSB5kiwMupp6r30Y9DMvN8p8qWAekwj5nXd/EaedW+vbp+g85PmYxEdRj9PuN17h17rFqBV8R/fjuv1bIdtnlct95aZYM6baNmzbwz85Nd/Tk/X50rzjx7fnMppmLUqFgyxJ57xm+3c46aGWk2TZt6j35IJYMtlSHYttXa/QKQtra6WS41aeK+HybbOW5edzfeqOp0l1yihpo7kp0OyY9ZHjZrpuqv5eWqrEk0TU4mBB0taRPkfNuMEIDcXJgFqJ5mXFyssgeSfQ+bdDMY9QBkkybpBSCd7fFaLTqVIdgiarGaW29Vwx91ZtAwFZGImiumf393VmWQDC9boyvZAGQiQQOQtp7v5s3VsKXbbw8WHOjUSfWo16ZMByBF1FCAhx6yL+q0++5qSNhrr8XPkWjbHuec1c/X4uL456UyVMicJ8rGFoBs3dq9qp1fo+mYY9TnzJplvy4LCoLNAZlq9lJYgmZAiqiG/733qorakCGx37dsaQ9AJhtsDbrC3ogR9iCwzR57uBdKsV0DO+2k5uJ1mHMp6czjaQuiFBerfWWWMbbn9ugRG6Iuoq4nkdQ7lry0aeNuGA4YEPusdHXsGJuPOUhnXyYMG6aG05orUBYXq3uO3gmYbgDSa45FvSHVvLn73mHer/waut26ec+l59AbXGGWIcOGxcpEfR5l2z7wa8Qec4y6BkTUPch2bacyJOyUU/wXnfLLgNx/fzWEf84c/87Kgw8WueEGqZ40SWYfeWT6AUhTqhmQpqAZkH5zqB1wQGzuOa9FBkWSD1h4HVt9nkOvv5sdibvvHjuXRFTw6rzz1OJiTqasuX2NGiWX8WN2ftVGBqR5HevHzrxXJBuATGVe2KASXbf6fOxenQxjx6o6Q9Om8Vn1Oq/sPodtHuW+fdWohv/7P9UZaJtGwRGk3bfnnmrOUxHV8fm/zgkRiW/fpBuAHDdO7b8ttlBlsVdwTT93vDLSbAsrOlJdVDAR8/s71+A++8RWfR88OPjrReLb7x06iPzxR+Jt8WJed6NGxdrAzvRQIsl3kPkxr5mmTdW5Y04bEaZE15IfMiBdCEBuLvQARePGanhrsrwaRXpPSrpzgeiBlY4dY429MOYATGUItoiaR01f2CEMieYTC/oac7+lO+dEqgHIggJVyRsyxB10qWu8Kgd+Acj27f0D+Mcf7z8s/8IL3Ss467waPXqjPT8/8QTTmWKWAbbzya/CEYn4ZwgXFdmHV5vzlmU6sJQuswHj12g7+mh3D7HDKyCSbAAyjIqN2bmRStbWK6+obNnRo9XwVX0OLq/GWF6eavSUl8d+Zzu/zEWYwtK6tXuV1FTnLLZ5/301v+DAgfYhcWHIyVGdIwsWqM4hh3POFRWFH4DUp+rQVyoXib+Oks20MekdmmEGIK+5RjXuevZ0DzE290Ek4j9E7cEHVR2oXTtVBtqy09OZk8qLeX3rmWyRiH2BPJsrrpCqSy6Rsnfeydim1Rg4UGT6dPV4r72CZ0CabB3r5rnRuLF/MG30aDUVRePG3h3etvdNxOvY6vMcpioSiV/53byfN22a3uek2+EdRE6OOzivf6YZEE0mANmkSbgjLRJlwu23X2y0hZ6MYL6HE5Dyoy1IVX3IIfGrz7ZpozqXV66M/W6bbdR9X+/YS2du4gkT1EiB7bZLvBpxugHIli3dwXYR1Vny8MPuER8DB8ZGWHhtU05OZgOQQepOXt//rLPU3I4rVviPVNKng3HqEmaQt3379AKQ5vfQkxP0jrJMXkPmccjE1EvJ0hfmPOig5F7bqpVE27aV9dGo5LEKNqtgbzb22EPNxdWnj8h336VWqfDKgPzwQzXf0OjR9lT+ZOhDBXr0UNlSvXvHJvHOJL1RHXTVwtrSuLFqfGy5ZfDeHa95r8z3TYdZgQsagAyjkRQGr8agXpE1GxGzZoUXVPUavqAHIBs3Tn+elaBsGZCmZI/1hx+qStL//Z96/+23dweUqqvjGxJ6R0eqq8ZmktnYDVq+6pOVe5VBQfanXhHyWxU6VeaquKkEb44+Wg3xP/XU+CkV9B5zkxn0tjUGUlmdNBXmuZbJAGTfviqI4QxLq03mdeycc3r5nuwxN+8VXgFIfS5TW2Bel24AsrYyILt3F/n0U9UxpTeSzH3QqZN/oKxtWzV09rnnvDuZwri3+mVA1hXXXafOnQED1NB7s7M1aADSVnbk5rpf36WLf2O3eXM1Mub11/3Pq2QbzF7HNqzFC2wByGQ995yqu/tlwIfJL+iZTACyQ4f0g7ym995T99Jrr00ciLrxRlU/GDTIu4M6qBEjpPqww6R0q62kypk+4q231LZcf72qX5nXuG11e1sA0plSJ5Ett1RZwg8+mHi/ZnIOSMc//qHmpNXr6hdcoDIxd9/dPTe7rnlz73ZtKtdHJKJW4d56azVFmI1XGdKokbq+Jk70vxfuvbf6vtttp55vk+59w9ZJY5PJAGRdaEeefLKKpey8s3shxyBuvlk2LVggkx59tO7FHLKADMjNRW6uqhylwysDcq+91PxLmaCnNzdqpLKl0plT0c+tt4p8/bXaN7bVz7LtrLP8h1WIqB7sa65R2USpLHCRrKA3HXPun7pw4wjiyCPdq1Y69AqT35xDmeZ1864rAUhbJTrZY33AAe6Fa/Ly1GrWf/+7+tmW2bvvvmp44rRp8T3d2ZBqIOqpp9QCM1tuqYbu6auzOoJU4B57TPXgt2mTuMxIhdlgSDfwFom4h5f6zRPUqpV7ZVKvOSAdYTReHOY90NZIq4/MMsw55/SASbIZkOY54zU64vrr1YJU228fu+a9ZDIDMux5Nm3MAGQy54/X/gs7A7Jx47p5/27eXAV5vQQto7yym/QsezMDP1XJBrT8MiDDkIkA5Iknqn+1Sc8mylQAMt3RXDaDBqnF5ILo0CF+IcdUNWokVa++Kp+8844Mcc7lww5zL3jZrp177togAcjFi8PZT+kmSgSVn69GHpg+/FDNlXrYYSqYvtVWahj655/HpklJZzsvvlj983PDDSrT/Lbbkn//SMR/egyR9IYSi/h3tPTsGRspYnZep6Mu3IcaNUo/lgIRIQMSyaiNTCN9CHbYAbXWrdUCH999l9l5KmrTeeeJLF8uctFF3s+56y51s7DNMZgs85h4LXjRooU7I6Eu3DiCyMtTGSd+q+KaQbcwz1Ovyp0ZgMzkRM9+zACkLaMjE8f61FPVAgcFBfa5KSMRNd/gX3+5swizJdVgxrbbqrnUPvzQOyMiSCW3WzcVxP3ii/ACK++9pxqkhx+emUrlgw+q9+nUKbaQjY15ztnK6v33V4275s3d81BmmnkPbCi92GbD3LmG9es73aCzVxbdzjuLzJunhoAnmmqlvmRAekknAOlVroadAdmuXeYzwWqDX7bhiy+q7zhypPd5qTfQ9ZXDa1Mmh34GYZYDYX1OmPwCkF73Rq8MyM2JmTQQJAAZ1siDdIZ6Z8IBB6iFpZwO4UhElRkLFtTeNlxxhcjSpcHn6Q5iyy1jj9OdZ9qvPvDss+r9+/fPbGdEthafRCgIQCK4MDNLHHqlrzYy+iKR+lm51iXa/tGj1RDHMLI8vYIjkYg7oFJfApAOvyFn6a5amgxn5c/8fJE334z9Xp9jpXFj9e+001Sjy5lQPgxBKpyZONa5uWqi8vJy1fPspa5cu+kE/Zzv0K+fOtapvlfY+2LQIDUf3ZtvZuaz2rZVQdN58/wDMeY5Zzu/cnJUgLSkRAUjw2JW2vUVgeszM9DgVPT1e3C692O/gF/Q8yndTlB9GHNtddrozA6lHj2Cv9Yr+Bpk1ftk6UGc2ljJuLYdd5xapMJZKTcRMiDrNr8MyPHjVcfGsGHeQRcCkPF13i5d4p/jtZp0Jrz6qjoO++8vsssumXvfVNmu1dqub2b6815+WV3TPXv6L0IWhN8q3LvvLrJkichnn2V2/YZGjdQoidxc96KIqJcIQCK42qiM1GYG5OYkjEV8RPwrIHqlLts9msnyC0DWZuZMTo4aZlZS4l44yjYH4mOPiZSVBVthPFVBek3z89XwWpH0p08I67zNtEzMBRiJxI716NHqd2Eey1Rk+nhEIonLeTMA6RdwCft8MQNg+mTv9VmQIdj6/MypyETHRLp1kKefVgH+du1ELr00/e1JVpB51rzstJOa7iYSiQXEEg1ZT1V+vpqORMS9iE5DkkxZkakApJ7BE2TUTbYDkLWxiEwm6AFIswNvxAjVceY3V2GjRvHBns09AGm7z4ZZjx86VNV9Pvyw7nQs25x7rvrfNjKnrttlF5Fly9RQ+3SP5dq1sce24xVWXezxx1XnkXMcUG8RgERwtRFEMueARN3mF4DUK4LpzjdS2+pKBqSIurmbDYNnn1WBmxYt3BWhsDsJgg65efll1QNaHytpqcjUYiSRiGr03XWXml8pzGzW+qK2FpgJwhwFUF8yhBIJMgQ7lQCk0+jv1k1NqZCudOsgu+6q5vCaNy87Wfnm/TKZAGQkojJKlixR2794cfKT4CfjtdfUZ/lN71LXnHGG+j/TgdlMBaPOPlt14uXkBJu7uD4uQpMNegDSFgxJ9D0ikfh7+OYWgAySSR12GzDdVddrw333qbI3rLUJwtakiWo77LWXWuBVJLbaejLWrYs9ru02UX0pl+CLACT8OYVs7961M9ystodgIz1BMyD1yf/rA79hZ5lc+TZV/furRui8ebUboAnaaI9E6ubKqWEJo6wKY3L3+qguBSAbKq8h2OkGIIcNE/nzT7VIXarl5l13qf+33jp+9fRUtGxZN8pwEfecXEHk5MTuTe3bh9tYr49l+EMPqWkdMh2YTXfuUUdxsboe5s0LNlVEtjMg60tDXw9ApsosE+rbuZ+uICu01/XgYG1pCHWz3FyR6dNF/vgjtXkm9XMh3fkksVkiAAl/F10k8u23sdWiaxMByLrP7xjpGZD6nIX1QX2ofHbqVPuTMrdpE+uIuOSS2v1sbJ7q0vQNBx8c254nnsjutmRSmEOwu3dPL0PiggvUQnHffdcwRkU40yrstFPDnF8xmyIRkW22yUygxFmIrkcPdawypVkz91ykfryGaROA9JbqsTcDkJkKOtcXp5wSq7O//LL9OfrK8Kj/8vOT7wRzXHFFrH7wzDOZ2yZsNhpAbQ6hikRqd0LgCRPUUK2cHFXAoW7T5+w06QHI+lZxadpUNTqmT49fobe+DSfPpEhE5JNPVDBg332zvTV1R/fu6t/cuZRbmVaXOqKaNxeZMUNlMO29d7a3JnPMQINtCHa2yr1IRK2U3VDcfruq4+y6KxlFddn//Z/IgAEiffuGs9BPEF4djKyC7ZZoCHYQZgAy3QWv6pt27VSm+tKlInvsYX9OfavHIzw9eqi5JNeubVj3Z9QaApCoWw47TOSjj9Swu+7ds701SMQvAHnXXWpVXxGRm2+ulc3JqPfeE/n8c5FDD3X/Pt3FGOq7li1FDjww21tRt+TmqvnZvvkm/nxBeoIMDatNXbrYVwitz8zAg5PlqQd/N/dyL1Py8kQOOijbW4FEcnODDZMOextswsqAND9vcw5Abm4ZkCIqG84vI+7kk0XGjFGByIceqr3tQt20zTbZ3gLUYwQgUbdEItmv9CE4vx7R/v1F3n1XNVydQGR90q5dbDVnHQ1x2HTqpP4hswYPjj12hkUis8yAhpPxlclVsAFkRm3NYVpfApC6TAQgCwrqzwrgtal9e9Up/8cf9roxAARUx1ILANQrfhmQIiobbMiQhjXU7PDDY48vvzx72wFsDtq3F/n0U5EHHhC5+OJsb03D5BVoIAAJZJdtpfTamgu1vgThbrst9vjkk1N7Dz0AucUWDavOmkm77y5ywgnZm5YAQINABiSA1G2Oc8L07Cny+usiv/0mcvbZ2d4aoOEbMED9Qzi8Ag3nnSdy2mnq8Rln1N72AFAmTlSLPFxzTex3tRWArC8ZkOefr/ZJhw4iu+2W2nvoAbVWrTKzXQAAKwKQAJIzapTIk0+qx5vrQiRHHpntLQCAzPBapXrECJEVK1Q20Ekn1e42AVCLPYwdm50AZJMmtfM56crPF7nwwvTeY/362GNnES4AQCgIQAJIzrhxapGCrbcW2XPPbG8NACAd+mq7bdvGHufmilxySe1vDwBvtRWA3JyGIa9eHXvstfo4ACAjCEACSE7LliJ3353trQAAZEJBgciECSKvvCJy9dXZ3hoAfghAZh4BSACoNSxCAwAAsDkbPlzkpZdEtt8+21sCwLTzzrHH224b3ud07x573LVreJ9T1xCABIBaQwYkAAAAANRFL7wgcvrpIrvsEu6CXG++KXLWWSIDB4r07Rve59Q1mzbFHhOABIBQEYAEAAAAgLqoZ0+RTz4J/3P69hX57LPwP6cuIwAJAKFiCDYAAAAAYPPTrVvscY8e2dsOANgMEIAEAAAAAGx+XnxRpE0bkX33FTnuuGxvDQA0aAzBBgAAAABsfvr1E1myRCQ3N9tbAgANHhmQAAAAAIDNE8FHAKgVBCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEplEqL1q9erWIiBQXF6f14WvWrJGPPvpIRESOPPLItN4LAAAAAAAAQN2TUgCyRYsWkpOTIz/++KNst912cX9ftGiRXHnllRKJROTxxx/3fJ958+bJ0KFDJScnRzZt2pTKpgAAAAAAAACow1Iegh2NRj3/tmrVKhk/fryMHz8+7fcCAAAAAAAAUH/VyzkgH3zwQdlhhx2kuLhYiouLZa+99pJ3330325sFAAAAAAAAwFAvA5CdO3eWm2++Wb799lv55ptv5IADDpCjjjpKZsyYke1NAwAAAAAAAKBJaQ7IbDviiCNcP99www3y4IMPypdffil9+vTJ0lYBAAAAAAAAMNXLAKSuqqpKXnrpJVm7dq3stdde1udUVFRIRUVFzc/OKt6VlZVSWVlZK9tZW5zv09C+F1CfcB0C2cd1CGQX1yCQfVyHQPY19Oswme9VbwOQP/30k+y1116yYcMGadq0qbz66qvWFblFRG666Sa59tpr434/ceJEKSwsDHtTs2LSpEnZ3gRgs8d1CGQf1yGQXVyDQPZxHQLZ11Cvw3Xr1gV+br0NQPbq1UumT58uZWVl8vLLL8uIESPkk08+sQYhx4wZIxdddFHNz6tXr5YuXbrIIYccIsXFxbW52aGrrKyUSZMmycEHHyx5eXnZ3hxgs8R1CGQf1yGQXVyDQPZxHQLZ19CvQ2eEcRD1NgDZuHFj2XrrrUVEZNddd5Wvv/5a7r77bnn44Yfjnpufny/5+flxv8/Ly2uQJ4BIw/5uQH3BdQhkH9chkF1cg0D2cR0C2ddQr8NkvlNaq2BHIpF0Xp5R1dXVrnkeAQAAAAAAAGRfWhmQffv29fybE5zMzc1N5yOsxowZI4MHD5auXbtKeXm5TJgwQSZPnizvv/9+xj8LAAAAAAAAQOrSCkBGo9FMbUdSli1bJqeeeqosXrxYmjdvLjvssIO8//77cvDBB2dlewAAAAAAAADYpRSAHDhwYFaHXz/++ONZ+2wAAAAAAAAAwaUUgJw8eXKGNwMAAAAAAABAQ5TWIjQAAAAAAAAA4IcAJAAAAAAAAIDQZD0AuW7dOhk3bly2NwMAAAAAAABACLIWgCwvL5cbbrhBunfvLpdeemm2NgMAAAAAAABAiFJahCYdK1eulDvvvFPuv/9+KSsrk2g0mtUVtQEAAAAAAACEJ60MyHnz5skFF1wg2223nTRr1kxatWolu+yyi9x0001SVlbmeu6aNWtk7Nix0r17d7nxxhultLRUotGotGnTRq6//vq0vgQAAAAAAACAuinlDMhJkybJscceK2vXrhURkWg0KiIiP/zwg/zwww/y9NNPy8cffyzt27eXzz//XE4++WSZP39+zfM6deokF198sZxxxhnSpEmTDHwVAAAAAAAAAHVNSgHI5cuXy/Dhw2XNmjU1vysqKpJGjRrVZD7+9ttvcu6558ro0aNl0KBBsnHjRolGo7LlllvK5ZdfLiNHjpS8vLzMfAsAAAAAAAAAdVJKQ7AfffRRWblypUQiERk2bJj8/vvvUl5eLqtWrZJFixbJeeedJyIir7/+uvztb3+TiooKadq0qdx7770ya9Ys+cc//kHwEQAAAAAAANgMpJQBOXHiRBER2XPPPeXFF190/a19+/Zyzz33SHl5uTz11FOyYMECadGihUyZMkX69OmT/hYDAAAAAAAAqDdSyoD89ddfJRKJyDnnnOP5nAsuuEBERCKRiFxwwQUEHwEAAAAAAIDNUEoByFWrVomIyNZbb+35nJ49e9Y8HjBgQCofAwAAAAAAAKCeSykAWVlZKSIizZo183xO06ZNax63b98+lY8BAAAAAAAAUM+lFIBMViQSqY2PAQAAAAAAAFDH1EoAEgAAAAAAAMDmKaVVsB2jRo2SoqKitJ8XiUTkww8/TGdTAAAAAAAAANRBaQUgv/nmG9+/O0Ov/Z4XjUYZog0AAAAAAAA0UCkHIKPRaCa3AwAAAAAAAEADlFIAsrq6OtPbAQAAAAAAAKABYhEaAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAIQmpTkgr7vuukxvh1x99dUZf08AAAAAAAAA2ZVSAPKaa66RSCSS0Q0hAAkAAAAAAAA0PCkFIEVEotFoxjYi08FMAAAAAAAAAHVDSgHIjz/+ONPbAQAAAAAAAKABSikAue+++2Z6OwAAAAAAAAA0QKyCDQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAwP+3d+dRVpRn/sCfht5AQWRrQEAhiRoV0YALwQRRBJFjJKJGRUQzLjE4CsyowfwUHONgJMYo4pZEcQK4BXA74ARBQCKitKIoismIGpUliOzaNHT9/jDcdNuL4KG46ebzOafPubfet2491fc+x+brW7eA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDU1MoAcvTo0XHUUUdFo0aNomXLltG/f/9YunRptssCAAAAAL6kVgaQc+bMiSFDhsSLL74YM2bMiNLS0ujdu3ds2rQp26UBAAAAAOXkZruAr+OZZ56p8Hz8+PHRsmXLKC4uju9///tZqgoAAAAA+LJaGUB+2bp16yIiomnTplWOl5SURElJSeb5+vXrIyKitLQ0SktL0y9wN9p+PnXtvKA20YeQffoQsksPQvbpQ8i+ut6HO3NeOUmSJCnWkrqysrL4wQ9+EGvXro158+ZVOWfUqFFxww03VNo+adKkaNiwYdolAgAAAECdsnnz5jj33HNj3bp10bhx4xrn1voA8rLLLovp06fHvHnzom3btlXOqWoFZLt27WL16tVf+QuqbUpLS2PGjBlx0kknRV5eXrbLgT2SPoTs04eQXXoQsk8fQvbV9T5cv359NG/efIcCyFp9Cfbll18eTz/9dMydO7fa8DEioqCgIAoKCiptz8vLq5MfgIi6fW5QW+hDyD59CNmlByH79CFkX13tw505p1oZQCZJEv/+7/8eU6dOjdmzZ0eHDh2yXRIAAAAAUIVaGUAOGTIkJk2aFE888UQ0atQoVqxYERER++yzTzRo0CDL1QEAAAAA29XLdgFfx9133x3r1q2L448/Plq3bp35eeSRR7JdGgAAAABQTq1cAVnL75sDAAAAAHuMWrkCEgAAAACoHQSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqamUAOXfu3Dj11FOjTZs2kZOTE48//ni2SwIAAAAAqlArA8hNmzZF586dY9y4cdkuBQAAAACoQW62C/g6+vbtG3379s12GQAAAADAV6iVAeTOKikpiZKSkszz9evXR0REaWlplJaWZqusVGw/n7p2XlCb6EPIPn0I2aUHIfv0IWRfXe/DnTmvnCRJkhRrSV1OTk5MnTo1+vfvX+2cUaNGxQ033FBp+6RJk6Jhw4YpVgcAAAAAdc/mzZvj3HPPjXXr1kXjxo1rnLtHBJBVrYBs165drF69+it/QbVNaWlpzJgxI0466aTIy8vLdjmwR9KHkH36ELJLD0L26UPIvrreh+vXr4/mzZvvUAC5R1yCXVBQEAUFBZW25+Xl1ckPQETdPjeoLfQhZJ8+hOzSg5B9+hCyr6724c6cU628CzYAAAAAUDvUyhWQGzdujL/+9a+Z58uWLYtFixZF06ZNo3379lmsDAAAAAAor1YGkAsXLoyePXtmng8fPjwiIgYPHhzjx4/PUlUAAAAAwJfVygDy+OOPj1p+7xwAAAAA2CP4DkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNbU6gBw3blwccMABUVhYGMccc0y89NJL2S4JAAAAACin1gaQjzzySAwfPjxGjhwZr7zySnTu3Dn69OkTq1atynZpAAAAAMA/1NoA8te//nVcfPHFceGFF8YhhxwS99xzTzRs2DDuv//+bJcGAAAAAPxDbrYL+Dq2bNkSxcXFMWLEiMy2evXqRa9evWL+/PmV5peUlERJSUnm+bp16yIiYs2aNVFaWpp+wbtRaWlpbN68OT755JPIy8vLdjmwR9KHkH36ELJLD0L26UPIvrrehxs2bIiIiCRJvnJurQwgV69eHdu2bYuioqIK24uKiuLtt9+uNH/06NFxww03VNreoUOH1GoEAAAAgLpuw4YNsc8++9Q4p1YGkDtrxIgRMXz48MzzsrKyWLNmTTRr1ixycnKyWNmut379+mjXrl387W9/i8aNG2e7HNgj6UPIPn0I2aUHIfv0IWRfXe/DJEliw4YN0aZNm6+cWysDyObNm0f9+vVj5cqVFbavXLkyWrVqVWl+QUFBFBQUVNjWpEmTNEvMusaNG9fJDzfUJvoQsk8fQnbpQcg+fQjZV5f78KtWPm5XK29Ck5+fH126dImZM2dmtpWVlcXMmTOjW7duWawMAAAAACivVq6AjIgYPnx4DB48OLp27RpHH310/OY3v4lNmzbFhRdemO3SAAAAAIB/qLUB5I9+9KP4+9//Htdff32sWLEijjjiiHjmmWcq3ZhmT1NQUBAjR46sdMk5sPvoQ8g+fQjZpQch+/QhZJ8+/KecZEfulQ0AAAAA8DXUyu+ABAAAAABqBwEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgFkHTNu3Lg44IADorCwMI455ph46aWXsl0S1AmjR4+Oo446Kho1ahQtW7aM/v37x9KlSyvM+fzzz2PIkCHRrFmz2HvvvWPAgAGxcuXKCnM++OCD6NevXzRs2DBatmwZV111VWzdunV3ngrUCTfffHPk5OTE0KFDM9v0IKTvo48+ivPOOy+aNWsWDRo0iE6dOsXChQsz40mSxPXXXx+tW7eOBg0aRK9eveIvf/lLhddYs2ZNDBw4MBo3bhxNmjSJf/u3f4uNGzfu7lOBWmnbtm1x3XXXRYcOHaJBgwbxjW98I2688cYof29ZfQi71ty5c+PUU0+NNm3aRE5OTjz++OMVxndVz73++uvxve99LwoLC6Ndu3Zxyy23pH1qu5UAsg555JFHYvjw4TFy5Mh45ZVXonPnztGnT59YtWpVtkuDWm/OnDkxZMiQePHFF2PGjBlRWloavXv3jk2bNmXmDBs2LJ566ql47LHHYs6cOfHxxx/H6aefnhnftm1b9OvXL7Zs2RIvvPBCPPjggzF+/Pi4/vrrs3FKUGu9/PLLce+998bhhx9eYbsehHR9+umn0b1798jLy4vp06fHkiVL4tZbb4199903M+eWW26JO+64I+65555YsGBB7LXXXtGnT5/4/PPPM3MGDhwYb775ZsyYMSOefvrpmDt3blxyySXZOCWodX75y1/G3XffHXfeeWe89dZb8ctf/jJuueWWGDt2bGaOPoRda9OmTdG5c+cYN25cleO7oufWr18fvXv3jv333z+Ki4tjzJgxMWrUqLjvvvtSP7/dJqHOOProo5MhQ4Zknm/bti1p06ZNMnr06CxWBXXTqlWrkohI5syZkyRJkqxduzbJy8tLHnvsscyct956K4mIZP78+UmSJMm0adOSevXqJStWrMjMufvuu5PGjRsnJSUlu/cEoJbasGFD8q1vfSuZMWNG0qNHj+TKK69MkkQPwu5wzTXXJMcdd1y142VlZUmrVq2SMWPGZLatXbs2KSgoSB566KEkSZJkyZIlSUQkL7/8cmbO9OnTk5ycnOSjjz5Kr3ioI/r165f8+Mc/rrDt9NNPTwYOHJgkiT6EtEVEMnXq1MzzXdVzd911V7LvvvtW+Jv0mmuuSQ466KCUz2j3sQKyjtiyZUsUFxdHr169Mtvq1asXvXr1ivnz52exMqib1q1bFxERTZs2jYiI4uLiKC0trdCDBx98cLRv3z7Tg/Pnz49OnTpFUVFRZk6fPn1i/fr18eabb+7G6qH2GjJkSPTr169Cr0XoQdgdnnzyyejatWuceeaZ0bJlyzjyyCPjt7/9bWZ82bJlsWLFigp9uM8++8QxxxxToQ+bNGkSXbt2zczp1atX1KtXLxYsWLD7TgZqqe9+97sxc+bMeOeddyIi4rXXXot58+ZF3759I0Ifwu62q3pu/vz58f3vfz/y8/Mzc/r06RNLly6NTz/9dDedTbpys10Au8bq1atj27ZtFf5RFRFRVFQUb7/9dpaqgrqprKwshg4dGt27d4/DDjssIiJWrFgR+fn50aRJkwpzi4qKYsWKFZk5VfXo9jGgZg8//HC88sor8fLLL1ca04OQvnfffTfuvvvuGD58eFx77bXx8ssvxxVXXBH5+fkxePDgTB9V1Wfl+7Bly5YVxnNzc6Np06b6EHbAz372s1i/fn0cfPDBUb9+/di2bVvcdNNNMXDgwIgIfQi72a7quRUrVkSHDh0qvcb2sfJfd1JbCSABdtKQIUPijTfeiHnz5mW7FNhj/O1vf4srr7wyZsyYEYWFhdkuB/ZIZWVl0bVr1/jv//7viIg48sgj44033oh77rknBg8enOXqYM/w6KOPxsSJE2PSpElx6KGHxqJFi2Lo0KHRpk0bfQj8S3MJdh3RvHnzqF+/fqW7fa5cuTJatWqVpaqg7rn88svj6aefjueeey7atm2b2d6qVavYsmVLrF27tsL88j3YqlWrKnt0+xhQveLi4li1alV85zvfidzc3MjNzY05c+bEHXfcEbm5uVFUVKQHIWWtW7eOQw45pMK2b3/72/HBBx9ExD/7qKa/R1u1alXpBolbt26NNWvW6EPYAVdddVX87Gc/i7PPPjs6deoUgwYNimHDhsXo0aMjQh/C7rarem5P+DtVAFlH5OfnR5cuXWLmzJmZbWVlZTFz5szo1q1bFiuDuiFJkrj88stj6tSpMWvWrErL47t06RJ5eXkVenDp0qXxwQcfZHqwW7dusXjx4gr/8ZkxY0Y0bty40j/ogIpOPPHEWLx4cSxatCjz07Vr1xg4cGDmsR6EdHXv3j2WLl1aYds777wT+++/f0REdOjQIVq1alWhD9evXx8LFiyo0Idr166N4uLizJxZs2ZFWVlZHHPMMbvhLKB227x5c9SrV/Gf8fXr14+ysrKI0Iewu+2qnuvWrVvMnTs3SktLM3NmzJgRBx10UJ24/Doi3AW7Lnn44YeTgoKCZPz48cmSJUuSSy65JGnSpEmFu30CX89ll12W7LPPPsns2bOT5cuXZ342b96cmfOTn/wkad++fTJr1qxk4cKFSbdu3ZJu3bplxrdu3ZocdthhSe/evZNFixYlzzzzTNKiRYtkxIgR2TglqPXK3wU7SfQgpO2ll15KcnNzk5tuuin5y1/+kkycODFp2LBhMmHChMycm2++OWnSpEnyxBNPJK+//npy2mmnJR06dEg+++yzzJyTTz45OfLII5MFCxYk8+bNS771rW8l55xzTjZOCWqdwYMHJ/vtt1/y9NNPJ8uWLUumTJmSNG/ePLn66qszc/Qh7FobNmxIXn311eTVV19NIiL59a9/nbz66qvJ+++/nyTJrum5tWvXJkVFRcmgQYOSN954I3n44YeThg0bJvfee+9uP9+0CCDrmLFjxybt27dP8vPzk6OPPjp58cUXs10S1AkRUeXPAw88kJnz2WefJT/96U+TfffdN2nYsGHywx/+MFm+fHmF13nvvfeSvn37Jg0aNEiaN2+e/Md//EdSWlq6m88G6oYvB5B6ENL31FNPJYcddlhSUFCQHHzwwcl9991XYbysrCy57rrrkqKioqSgoCA58cQTk6VLl1aY88knnyTnnHNOsvfeeyeNGzdOLrzwwmTDhg278zSg1lq/fn1y5ZVXJu3bt08KCwuTjh07Jj//+c+TkpKSzBx9CLvWc889V+W/BQcPHpwkya7ruddeey057rjjkoKCgmS//fZLbr755t11irtFTpIkSXbWXgIAAAAAdZ3vgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAIAsO+CAAyInJycuuOCCbJcCALDLCSABgD3apZdeGjk5OZGTkxOzZs3aqX3/9Kc/Zfa98sorU6oQAABqNwEkALBHO//88zOPJ0yYsFP7/uEPf6jydbJl9uzZmUB09uzZ2S4HAAAiQgAJAOzhunfvHt/4xjciImLy5Mnx2Wef7dB+mzZtiqlTp0ZExKGHHhpdunRJrUYAAKjNBJAAwB5v0KBBERGxfv36eOKJJ3ZonylTpsSmTZsq7A8AAFQmgAQA9niDBg2KnJyciNjxy7C3X35dr169OO+881KrDQAAajsBJACwx+vYsWN07949IiL+93//N1atWlXj/I8//jhmzpwZEREnnHBC7LfffpXmPP7443HmmWdG+/bto7CwMJo0aRJdu3aNG264IT799NMdqmvatGlx3nnnRceOHWOvvfaKwsLC6NChQwwYMCDGjx8fmzdvjoiI9957L3JycqJnz56ZfXv27Jn5PsjtP+PHj690jC1btsRdd90VPXv2jBYtWkR+fn60atUqTjnllJgwYUKUlZVVW98FF1wQOTk5ccABB0RExPLly+Oaa66JQw89NBo1arTT30VZ1XdYPvroo3HiiSdGixYtokGDBnHQQQfF1VdfHWvWrKn2dY4//vjIycmJ448/vsbjjRo1KnO8qmwfGzVqVEREPPfcc9G/f/9o06ZNNGjQIL797W/HjTfemFkJu920adPilFNOycw75JBDYvTo0bFly5Yd/l28/PLLcc4550S7du2isLAw2rVrFxdeeGG8/fbbO7T/X//61xg2bFh06tQp9tlnn2jQoEF07NgxLrjggli4cGG1+335PSgrK4v7778/evbsGUVFRVGvXj136gYAdl4CAEBy3333JRGRRERy++231zh3zJgxmbn/8z//U2FszZo1yQknnJAZr+qnZcuWyfz586t9/dWrVycnnnhija8REckDDzyQJEmSLFu27Cvnlp+/3bJly5KDDz64xn2OO+645JNPPqmyzsGDBycRkey///7J/Pnzk+bNm1fa/7nnnvvK3/12zz33XGa/mTNnJuedd161dX3zm99Mli9fXuXr9OjRI4mIpEePHjUeb+TIkZnXq8r2sZEjRyajR49OcnJyqqzlu9/9brJx48akrKwsueKKK6qt+eSTT062bt1a5bH233//JCKSwYMHJ7///e+T3NzcKl+joKAgefTRR2s8rzFjxiR5eXnV1pGTk5Ncd911Ve5b/j2YPn160qtXr0r7Dx48uMbjAwB8mRWQAAARcdZZZ0VhYWFEVLy7dVW2j++9995x+umnZ7aXlJREr169YtasWVG/fv0YNGhQPPTQQ/Hiiy/G888/HzfddFM0a9YsVq1aFaecckq8//77lV578+bN0bNnz8wKyy5dusS9994bf/7zn2PhwoUxderUGDZsWLRp0yazz3777ReLFy+O+++/P7Pt/vvvj8WLF1f46d+/f2Z848aNceKJJ2ZW1PXv3z+efPLJWLhwYTz22GPRo0ePiIiYN29enHrqqbFt27Zqfx8bN26MAQMGxOeffx4///nPY/bs2fHSSy/F73//+2jdunWNv8vqXHfddTFhwoTo379/TJkyJYqLi2PatGnRr1+/iPjnCr/dYfr06TFixIg49thjY9KkSbFw4cJ45plnom/fvhER8cILL8To0aPjtttuizvuuCP69u0bkydPjuLi4njiiSfi2GOPjYiIZ555Jn7729/WeKxFixbFT37yk2jZsmWMHTs2FixYEHPmzIlrrrkmCgoKoqSkJAYOHFjtKsYxY8bEVVddFaWlpXH44YfH3XffHc8++2wsXLgwJk6cGN26dYskSeLGG2+MO+64o8Zarrnmmnj22WfjBz/4QYX3YPt5AwDssGwnoAAA/yrOOuuszCqvt99+u8o5r732WmbO+eefX2Hs2muvTSIiadKkSbJw4cIq93/vvfeS1q1bJxGRnHvuuZXGhw0blnn9IUOGJGVlZVW+TklJSbJixYoK28qvXvuqlYf/+Z//mZn7//7f/6s0XlZWlgwcODAz56677qo0Z/sKyIhI9t5772TRokU1HvOrlK8/IpJf/OIXVdbVu3fvJCKS3NzcZNWqVZXm7OoVkBGRDBgwoNLqxa1btybHHntsEhFJo0aNksLCwmTo0KGVXmfTpk2ZFY6HH354lcfaPh7/WFFa1erOWbNmZVZGHnXUUZXG33zzzczKx5EjR1b52dm2bVtmZenee++drFmzpsL4l9+Dqj4bAAA7ywpIAIB/OP/88zOPq1sFWX57+fkbN26McePGRUTEjTfeGF26dKly//333z+uu+66iIh47LHHKnx/4Nq1a+Pee++NiC9WPt5+++3Vfj9hfn5+FBUV7chpVVJSUhK/+93vIiLi0EMPzXzHYXk5OTlx1113RbNmzSIi4s4776zxNa+++uro3Lnz16qnKl26dIlrr722yrqGDx8eERFbt26N+fPn77JjVqdhw4Zx3333Rf369Stsr1+/flxyySUREbFhw4Zo0aJF3HLLLVXuP3jw4IiIeP3112PdunU1Hu/WW2+NVq1aVdres2fPuPjiiyPii++I/PIqyFtvvTVKS0uja9euMXLkyCo/O/Xq1YuxY8dGQUFBbNy4Mf74xz9WW8eBBx5Y5WcDAGBnCSABAP6hT58+mVBv4sSJkSRJhfGysrKYNGlSRES0bdu2wk1f5syZkwmWzjjjjBqP8/3vfz8iIkpLS6O4uDizfdasWZkby1xxxRWVAq9dpbi4ONauXRsRX9xIprrjNG7cOM4666yIiFiyZEksX7682tccOHDgLq3x3HPPrTZ8LR/uvvvuu7v0uFU56aSTomnTplWOlQ9dTz/99MjLy/vKecuWLav2WPvuu2+cdtpp1Y7/+Mc/zjx+9tlnK4w99dRTERExYMCAan93ERFNmjSJTp06RUTUGOD+6Ec/Su0zCADsWQSQAAD/kJubG+eee25EfHFn6Xnz5lUYnzlzZnz88ccR8UXgVq/eP/+UKr8arXXr1pXuQF3+57DDDsvMXbFiRebxq6++mnn8ve99b9eeXDlvvPFG5vExxxxT49zy4+X3K2/vvfeOjh077pri/uHggw+udqx8GLhhw4ZdetyqHHjggdWONWnSZKfn1VTzkUceGbm5udWOH3HEEZGfnx8REYsXL85sf//99+Pvf/97RESMGDGixs9fTk5O5vNa/vP3ZYcffni1YwAAO0MACQBQTk2XYVd3+XVExKpVq77W8baveIyIWL16debx1715y45Ys2ZN5nHLli1rnFv+UuDy+5VXPlzbVRo2bFjtWPngt6ab4+zuWnZFzV/1fuTm5mYC2PLvx674/H3Zvvvu+7VeEwDgy6r/36sAAHugI444Ijp16hSLFy+Oxx57LPN9eZs2bYopU6ZExBeXAB9yyCEV9isfKr3yyivVXor7ZW3btt11xX8NNV2qu6NcprvrfN33o/zn7/rrr48zzzxzh/bba6+9qh3zvgIAu4oAEgDgS84///y46qqrYu3atfHUU0/FGWecEVOnTs3cMObLqx8jInOzloiIFi1afK1gsXnz5pnHy5cvjw4dOnyN6r9a+UuYV65cWeOlw+Uv0a3uexD/1WxfbVhWVlbjvPI3APpXsXLlyhrHt27dmln5WP79KP/5y8vLq3CZPwBAtrkEGwDgSwYOHJhZ/TVhwoSI+Ofl13l5eXHOOedU2ufII4/MPP7zn//8tY77ne98J/N47ty5O73/jq6eKx9OLViwoMa5L730UpX7/Str1KhRRER8+umnNc575513dkc5O2XRokWxdevWasdfe+212LJlS0RUfD86duwY++yzT0R8/c8fAEBaBJAAAF/SunXr6NWrV0RETJs2Ld54442YOXNmREScfPLJ0aJFi0r79OrVK/MdgHfccUelO2jviJ49e2YuiR07duxOf79hYWFh5nFJSUm187p06ZL53sYHH3yw2pWCGzZsiEcffTQiIg455JBUv5dyV9q+cvSdd96p9oYvq1evjhkzZuzOsnbImjVrMnezrsr999+febz9MxrxxeXSp5xySkRE/OlPf4q33norvSIBAHaSABIAoArbL7MuLS2Ns88+OxMGVnX5dcQXN2K5/PLLIyLihRdeiGHDhtV4CfDKlSvjd7/7XaXXuPTSSyMiori4OIYOHVptkFlaWlrpxiPlA8L/+7//q/bYBQUFcdFFF0XEF3e2vvHGGyvNSZIkLr/88syNcbafW23Qo0ePiIjYsmVLjB07ttJ4aWlpXHTRRfHZZ5/t7tJ2yPDhw6u8FHvOnDlx3333RcQXIfJRRx1VYXzEiBFRv379KCsrizPOOCM+/PDDao+xbdu2mDhxYo1zAAB2Fd8BCQBQhR/+8IfRqFGj2LBhQ7z55psR8cVdgU899dRq9/mv//qvmDNnTixYsCBuv/32mD17dlx88cVxxBFHxF577RWffvppvPnmm/Hss8/G9OnTo1OnTpkgcLsbb7wxZsyYEYsXL44777wz5s+fH5deeml06tQp8vPz48MPP4znn38+HnroofjFL34RF1xwQWbf9u3bR9u2bePDDz+MX/3qV9G2bds46KCDMpeTFxUVZS5Pvv7662PKlCnx7rvvxqhRo2Lx4sVx4YUXRuvWrWPZsmVx5513xuzZsyMiolu3bnHJJZfswt9uuvr16xf7779/vP/++3HdddfF6tWr4/TTT4/CwsJ4880344477ohXX301jj322HjxxRezXW4FnTt3jiVLlkSXLl1ixIgRcfTRR0dJSUlMmzYtbrvttti6dWvk5ubGuHHjKu3bqVOn+NWvfhXDhg2LJUuWxGGHHRaXXHJJnHDCCVFUVBSff/55vPfeezF//vz44x//GMuXL4/Fixdn/UZIAEDdJ4AEAKhCgwYN4owzzogHHnggs+2ss86KgoKCavcpKCiIGTNmxAUXXBBTpkyJ1157rcaVg40bN660rWHDhjFr1qwYMGBAzJ07N4qLi3cq/Lv22mvjpz/9aSxbtixOO+20CmMPPPBAJrBs1KhRzJw5M/r27Rtvv/12TJ48OSZPnlzp9bp37x5PPvlkrbojcn5+fkyYMCFOPvnk2LRpU9x2221x2223Zcbr168fv/nNb2LNmjX/cgHkEUccEZdffnlcdtllVX528vPz48EHH4xjjjmmyv2HDh0ae+21VwwdOjTWrVsXY8aMiTFjxlQ5Nz8/v8Jl+wAAaXEJNgBANQYPHlzheXWXX5fXqFGjmDx5cjz//PNx0UUXxUEHHRSNGjWK3NzcaNq0aRx11FExZMiQmDZtWrXfQdi8efOYM2dOTJkyJc4444xo27ZtFBQURGFhYXTs2DHOPPPMmDhxYpU3w7nsssti8uTJ0bt372jZsmXk5lb//5sPOOCAeO211+LOO++MHj16RLNmzSIvLy+Kiori5JNPjj/84Q8xd+7cWnP36/KOO+64KC4ujkGDBkWbNm0iLy8vWrdunQl2r7jiimyXWK2LLroonn/++TjrrLOiTZs2kZ+fH/vtt1+cf/758eqrr8bZZ59d4/4XX3xxvPvuu3HDDTdE9+7do3nz5pGbmxt77bVXHHjggTFgwIC455574qOPPopvfvObu+msAIA9WU7ydb4hHQAAAABgB1gBCQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKTm/wMThVhgwtwpzAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Увеличенный параметр patience и количество эпох для AE2\n", + "patience = 500\n", + "ae2_trained, IRE2, IREth2 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE2.h5',\n", + " 'out/AE2_ire_th.txt',\n", + " 3000, # увеличенное количество эпох обучения\n", + " True, # показывать процесс обучения\n", + " patience\n", + ")\n", + "\n", + "# Построение графика ошибки реконструкции обучающей выборки для AE2\n", + "lib.ire_plot('training', IRE2, IREth2, 'AE2')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "mDaQEmMIjkwz", + "outputId": "1ccafefb-0756-46e2-f4fd-d2e46e8dcb1c" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 2\n", + "Epoch 1/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 3s/step - loss: 24.6131\n", + "Epoch 2/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 24.5228\n", + "Epoch 3/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 24.4318\n", + "Epoch 4/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 24.3402\n", + "Epoch 5/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 24.2479\n", + "Epoch 6/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 24.1550\n", + "Epoch 7/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 24.0615\n", + "Epoch 8/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 23.9673\n", + "Epoch 9/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 23.8724\n", + "Epoch 10/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.7770\n", + "Epoch 11/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 23.6808\n", + "Epoch 12/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 23.5841\n", + "Epoch 13/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - loss: 23.4867\n", + "Epoch 14/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.3886\n", + "Epoch 15/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 23.2899\n", + "Epoch 16/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 23.1906\n", + "Epoch 17/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 23.0906\n", + "Epoch 18/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 22.9900\n", + "Epoch 19/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 22.8888\n", + "Epoch 20/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 22.7870\n", + "Epoch 21/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.6846\n", + "Epoch 22/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 22.5815\n", + "Epoch 23/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 22.4779\n", + "Epoch 24/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 22.3737\n", + "Epoch 25/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 22.2689\n", + "Epoch 26/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 22.1636\n", + "Epoch 27/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 22.0577\n", + "Epoch 28/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.9513\n", + "Epoch 29/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.8444\n", + "Epoch 30/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 21.7369\n", + "Epoch 31/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 21.6290\n", + "Epoch 32/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.5207\n", + "Epoch 33/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 21.4119\n", + "Epoch 34/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 21.3027\n", + "Epoch 35/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 21.1931\n", + "Epoch 36/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 21.0831\n", + "Epoch 37/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.9727\n", + "Epoch 38/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.8621\n", + "Epoch 39/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.7511\n", + "Epoch 40/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 20.6399\n", + "Epoch 41/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.5284\n", + "Epoch 42/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 20.4166\n", + "Epoch 43/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 20.3047\n", + "Epoch 44/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 20.1926\n", + "Epoch 45/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 20.0803\n", + "Epoch 46/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - loss: 19.9679\n", + "Epoch 47/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 19.8555\n", + "Epoch 48/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 19.7429\n", + "Epoch 49/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.6303\n", + "Epoch 50/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.5178\n", + "Epoch 51/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 19.4052\n", + "Epoch 52/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.2927\n", + "Epoch 53/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 19.1802\n", + "Epoch 54/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 19.0678\n", + "Epoch 55/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.9556\n", + "Epoch 56/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 18.8435\n", + "Epoch 57/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.7316\n", + "Epoch 58/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 18.6199\n", + "Epoch 59/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.5084\n", + "Epoch 60/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 18.3972\n", + "Epoch 61/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.2862\n", + "Epoch 62/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 18.1756\n", + "Epoch 63/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 18.0653\n", + "Epoch 64/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 17.9553\n", + "Epoch 65/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.8457\n", + "Epoch 66/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 17.7364\n", + "Epoch 67/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.6276\n", + "Epoch 68/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 17.5192\n", + "Epoch 69/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.4113\n", + "Epoch 70/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 17.3038\n", + "Epoch 71/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 17.1968\n", + "Epoch 72/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 17.0903\n", + "Epoch 73/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 16.9843\n", + "Epoch 74/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 16.8788\n", + "Epoch 75/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.7739\n", + "Epoch 76/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.6696\n", + "Epoch 77/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.5658\n", + "Epoch 78/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 16.4626\n", + "Epoch 79/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 16.3599\n", + "Epoch 80/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 16.2579\n", + "Epoch 81/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 16.1565\n", + "Epoch 82/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 16.0557\n", + "Epoch 83/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.9556\n", + "Epoch 84/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.8561\n", + "Epoch 85/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.7572\n", + "Epoch 86/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 15.6590\n", + "Epoch 87/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.5614\n", + "Epoch 88/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.4645\n", + "Epoch 89/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 15.3683\n", + "Epoch 90/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 15.2727\n", + "Epoch 91/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 15.1778\n", + "Epoch 92/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 15.0836\n", + "Epoch 93/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.9900\n", + "Epoch 94/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 14.8972\n", + "Epoch 95/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.8050\n", + "Epoch 96/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.7135\n", + "Epoch 97/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 14.6227\n", + "Epoch 98/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.5326\n", + "Epoch 99/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 14.4431\n", + "Epoch 100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 14.3543\n", + "Epoch 101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.2663\n", + "Epoch 102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 14.1789\n", + "Epoch 103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 14.0921\n", + "Epoch 104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 14.0061\n", + "Epoch 105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 13.9207\n", + "Epoch 106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 13.8360\n", + "Epoch 107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 13.7519\n", + "Epoch 108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.6686\n", + "Epoch 109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 13.5858\n", + "Epoch 110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 13.5038\n", + "Epoch 111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 13.4224\n", + "Epoch 112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 13.3416\n", + "Epoch 113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 13.2615\n", + "Epoch 114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 13.1820\n", + "Epoch 115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 13.1032\n", + "Epoch 116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 13.0250\n", + "Epoch 117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 12.9474\n", + "Epoch 118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - loss: 12.8705\n", + "Epoch 119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.7942\n", + "Epoch 120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.7184\n", + "Epoch 121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.6433\n", + "Epoch 122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.5688\n", + "Epoch 123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 12.4949\n", + "Epoch 124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.4216\n", + "Epoch 125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.3489\n", + "Epoch 126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.2768\n", + "Epoch 127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 12.2052\n", + "Epoch 128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 12.1342\n", + "Epoch 129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 12.0638\n", + "Epoch 130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.9940\n", + "Epoch 131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.9247\n", + "Epoch 132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.8559\n", + "Epoch 133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 11.7877\n", + "Epoch 134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.7201\n", + "Epoch 135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.6530\n", + "Epoch 136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.5864\n", + "Epoch 137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 11.5203\n", + "Epoch 138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.4548\n", + "Epoch 139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 11.3897\n", + "Epoch 140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.3252\n", + "Epoch 141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.2612\n", + "Epoch 142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.1977\n", + "Epoch 143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.1347\n", + "Epoch 144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 11.0721\n", + "Epoch 145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 11.0101\n", + "Epoch 146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.9485\n", + "Epoch 147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 10.8874\n", + "Epoch 148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.8268\n", + "Epoch 149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.7667\n", + "Epoch 150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.7070\n", + "Epoch 151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.6477\n", + "Epoch 152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 10.5889\n", + "Epoch 153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 10.5306\n", + "Epoch 154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.4727\n", + "Epoch 155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 10.4152\n", + "Epoch 156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 10.3581\n", + "Epoch 157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 10.3015\n", + "Epoch 158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 10.2453\n", + "Epoch 159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.1896\n", + "Epoch 160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.1342\n", + "Epoch 161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 10.0793\n", + "Epoch 162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 10.0247\n", + "Epoch 163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.9706\n", + "Epoch 164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.9168\n", + "Epoch 165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.8635\n", + "Epoch 166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.8105\n", + "Epoch 167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.7579\n", + "Epoch 168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.7057\n", + "Epoch 169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.6539\n", + "Epoch 170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.6024\n", + "Epoch 171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 9.5514\n", + "Epoch 172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 9.5006\n", + "Epoch 173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.4503\n", + "Epoch 174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 9.4003\n", + "Epoch 175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 9.3506\n", + "Epoch 176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 9.3013\n", + "Epoch 177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 9.2524\n", + "Epoch 178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.2038\n", + "Epoch 179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 9.1555\n", + "Epoch 180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 9.1076\n", + "Epoch 181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.0600\n", + "Epoch 182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 9.0127\n", + "Epoch 183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.9658\n", + "Epoch 184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.9191\n", + "Epoch 185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.8728\n", + "Epoch 186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 8.8268\n", + "Epoch 187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 8.7812\n", + "Epoch 188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 8.7358\n", + "Epoch 189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 8.6907\n", + "Epoch 190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 8.6460\n", + "Epoch 191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 8.6015\n", + "Epoch 192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 8.5574\n", + "Epoch 193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.5135\n", + "Epoch 194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 8.4699\n", + "Epoch 195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.4267\n", + "Epoch 196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.3837\n", + "Epoch 197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.3410\n", + "Epoch 198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.2985\n", + "Epoch 199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.2564\n", + "Epoch 200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 8.2145\n", + "Epoch 201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 8.1729\n", + "Epoch 202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.1316\n", + "Epoch 203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 8.0905\n", + "Epoch 204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 8.0497\n", + "Epoch 205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 8.0091\n", + "Epoch 206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 7.9689\n", + "Epoch 207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 7.9288\n", + "Epoch 208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 7.8891\n", + "Epoch 209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.8496\n", + "Epoch 210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 7.8103\n", + "Epoch 211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 7.7713\n", + "Epoch 212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 7.7325\n", + "Epoch 213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 7.6940\n", + "Epoch 214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 7.6557\n", + "Epoch 215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 7.6177\n", + "Epoch 216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.5799\n", + "Epoch 217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 7.5423\n", + "Epoch 218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 7.5049\n", + "Epoch 219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 7.4678\n", + "Epoch 220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 7.4309\n", + "Epoch 221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.3943\n", + "Epoch 222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 7.3579\n", + "Epoch 223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 7.3217\n", + "Epoch 224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 7.2857\n", + "Epoch 225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.2499\n", + "Epoch 226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 7.2143\n", + "Epoch 227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.1790\n", + "Epoch 228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - loss: 7.1439\n", + "Epoch 229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.1090\n", + "Epoch 230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.0743\n", + "Epoch 231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.0398\n", + "Epoch 232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0055\n", + "Epoch 233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.9714\n", + "Epoch 234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.9375\n", + "Epoch 235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.9038\n", + "Epoch 236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.8703\n", + "Epoch 237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 6.8370\n", + "Epoch 238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.8039\n", + "Epoch 239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.7710\n", + "Epoch 240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.7383\n", + "Epoch 241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.7058\n", + "Epoch 242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.6735\n", + "Epoch 243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.6413\n", + "Epoch 244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.6094\n", + "Epoch 245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.5776\n", + "Epoch 246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.5460\n", + "Epoch 247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.5146\n", + "Epoch 248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.4834\n", + "Epoch 249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.4523\n", + "Epoch 250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.4215\n", + "Epoch 251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.3908\n", + "Epoch 252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.3602\n", + "Epoch 253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.3299\n", + "Epoch 254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.2997\n", + "Epoch 255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.2697\n", + "Epoch 256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 6.2399\n", + "Epoch 257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.2102\n", + "Epoch 258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.1807\n", + "Epoch 259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.1513\n", + "Epoch 260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.1222\n", + "Epoch 261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.0931\n", + "Epoch 262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 6.0643\n", + "Epoch 263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.0356\n", + "Epoch 264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.0070\n", + "Epoch 265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.9787\n", + "Epoch 266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.9504\n", + "Epoch 267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.9224\n", + "Epoch 268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.8944\n", + "Epoch 269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8667\n", + "Epoch 270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.8391\n", + "Epoch 271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.8116\n", + "Epoch 272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.7843\n", + "Epoch 273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.7571\n", + "Epoch 274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.7301\n", + "Epoch 275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.7032\n", + "Epoch 276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.6765\n", + "Epoch 277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.6499\n", + "Epoch 278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6235\n", + "Epoch 279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.5972\n", + "Epoch 280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.5710\n", + "Epoch 281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.5450\n", + "Epoch 282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.5191\n", + "Epoch 283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.4933\n", + "Epoch 284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4677\n", + "Epoch 285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4423\n", + "Epoch 286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.4169\n", + "Epoch 287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.3917\n", + "Epoch 288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3666\n", + "Epoch 289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.3417\n", + "Epoch 290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3169\n", + "Epoch 291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.2922\n", + "Epoch 292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.2676\n", + "Epoch 293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2432\n", + "Epoch 294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2189\n", + "Epoch 295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1947\n", + "Epoch 296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1707\n", + "Epoch 297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.1468\n", + "Epoch 298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.1230\n", + "Epoch 299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.0993\n", + "Epoch 300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.0757\n", + "Epoch 301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.0523\n", + "Epoch 302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.0290\n", + "Epoch 303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.0058\n", + "Epoch 304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.9827\n", + "Epoch 305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.9597\n", + "Epoch 306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.9369\n", + "Epoch 307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.9142\n", + "Epoch 308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.8915\n", + "Epoch 309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.8690\n", + "Epoch 310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.8467\n", + "Epoch 311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.8244\n", + "Epoch 312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.8022\n", + "Epoch 313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.7802\n", + "Epoch 314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.7582\n", + "Epoch 315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.7364\n", + "Epoch 316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.7147\n", + "Epoch 317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.6931\n", + "Epoch 318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.6716\n", + "Epoch 319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.6502\n", + "Epoch 320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.6289\n", + "Epoch 321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.6077\n", + "Epoch 322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.5866\n", + "Epoch 323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.5656\n", + "Epoch 324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.5448\n", + "Epoch 325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.5240\n", + "Epoch 326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.5033\n", + "Epoch 327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.4828\n", + "Epoch 328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.4623\n", + "Epoch 329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.4420\n", + "Epoch 330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 4.4217\n", + "Epoch 331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 4.4015\n", + "Epoch 332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.3815\n", + "Epoch 333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.3615\n", + "Epoch 334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 4.3416\n", + "Epoch 335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.3218\n", + "Epoch 336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.3022\n", + "Epoch 337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.2826\n", + "Epoch 338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.2631\n", + "Epoch 339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.2437\n", + "Epoch 340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.2244\n", + "Epoch 341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.2052\n", + "Epoch 342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1861\n", + "Epoch 343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.1670\n", + "Epoch 344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1481\n", + "Epoch 345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.1293\n", + "Epoch 346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.1105\n", + "Epoch 347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.0919\n", + "Epoch 348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.0733\n", + "Epoch 349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.0548\n", + "Epoch 350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.0364\n", + "Epoch 351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.0181\n", + "Epoch 352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9999\n", + "Epoch 353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9817\n", + "Epoch 354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.9637\n", + "Epoch 355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.9457\n", + "Epoch 356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.9278\n", + "Epoch 357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.9101\n", + "Epoch 358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.8923\n", + "Epoch 359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.8747\n", + "Epoch 360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8572\n", + "Epoch 361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.8397\n", + "Epoch 362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8223\n", + "Epoch 363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 3.8050\n", + "Epoch 364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7878\n", + "Epoch 365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.7707\n", + "Epoch 366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.7536\n", + "Epoch 367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.7366\n", + "Epoch 368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.7197\n", + "Epoch 369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.7029\n", + "Epoch 370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6862\n", + "Epoch 371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6695\n", + "Epoch 372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6529\n", + "Epoch 373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.6364\n", + "Epoch 374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6200\n", + "Epoch 375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6036\n", + "Epoch 376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.5873\n", + "Epoch 377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.5711\n", + "Epoch 378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.5550\n", + "Epoch 379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.5389\n", + "Epoch 380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.5229\n", + "Epoch 381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 3.5070\n", + "Epoch 382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.4912\n", + "Epoch 383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.4754\n", + "Epoch 384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4597\n", + "Epoch 385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.4441\n", + "Epoch 386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.4285\n", + "Epoch 387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.4131\n", + "Epoch 388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3976\n", + "Epoch 389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3823\n", + "Epoch 390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.3670\n", + "Epoch 391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.3518\n", + "Epoch 392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.3367\n", + "Epoch 393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.3216\n", + "Epoch 394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.3066\n", + "Epoch 395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.2917\n", + "Epoch 396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.2768\n", + "Epoch 397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.2620\n", + "Epoch 398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.2473\n", + "Epoch 399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.2327\n", + "Epoch 400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.2181\n", + "Epoch 401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.2035\n", + "Epoch 402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.1891\n", + "Epoch 403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 3.1747\n", + "Epoch 404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 3.1603\n", + "Epoch 405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.1461\n", + "Epoch 406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 3.1319\n", + "Epoch 407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.1177\n", + "Epoch 408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1036\n", + "Epoch 409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 3.0896\n", + "Epoch 410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 3.0757\n", + "Epoch 411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 3.0618\n", + "Epoch 412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.0479\n", + "Epoch 413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 3.0342\n", + "Epoch 414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 3.0205\n", + "Epoch 415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 3.0068\n", + "Epoch 416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 2.9932\n", + "Epoch 417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 2.9797\n", + "Epoch 418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.9663\n", + "Epoch 419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.9528\n", + "Epoch 420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.9395\n", + "Epoch 421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 2.9262\n", + "Epoch 422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.9130\n", + "Epoch 423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 2.8998\n", + "Epoch 424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 2.8867\n", + "Epoch 425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.8737\n", + "Epoch 426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.8607\n", + "Epoch 427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.8477\n", + "Epoch 428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.8348\n", + "Epoch 429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.8220\n", + "Epoch 430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.8092\n", + "Epoch 431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 2.7965\n", + "Epoch 432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 2.7839\n", + "Epoch 433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.7713\n", + "Epoch 434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.7587\n", + "Epoch 435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.7462\n", + "Epoch 436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 2.7338\n", + "Epoch 437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.7214\n", + "Epoch 438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.7091\n", + "Epoch 439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 2.6968\n", + "Epoch 440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 2.6846\n", + "Epoch 441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.6724\n", + "Epoch 442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.6603\n", + "Epoch 443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.6483\n", + "Epoch 444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.6362\n", + "Epoch 445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.6243\n", + "Epoch 446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6124\n", + "Epoch 447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6005\n", + "Epoch 448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5887\n", + "Epoch 449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5770\n", + "Epoch 450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5653\n", + "Epoch 451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.5536\n", + "Epoch 452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.5420\n", + "Epoch 453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.5305\n", + "Epoch 454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.5190\n", + "Epoch 455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.5076\n", + "Epoch 456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.4962\n", + "Epoch 457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.4848\n", + "Epoch 458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4735\n", + "Epoch 459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.4623\n", + "Epoch 460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4511\n", + "Epoch 461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.4399\n", + "Epoch 462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.4288\n", + "Epoch 463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.4177\n", + "Epoch 464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.4067\n", + "Epoch 465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.3958\n", + "Epoch 466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.3849\n", + "Epoch 467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.3740\n", + "Epoch 468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.3632\n", + "Epoch 469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.3524\n", + "Epoch 470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.3417\n", + "Epoch 471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.3310\n", + "Epoch 472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.3204\n", + "Epoch 473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.3098\n", + "Epoch 474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.2992\n", + "Epoch 475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.2887\n", + "Epoch 476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.2783\n", + "Epoch 477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.2679\n", + "Epoch 478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.2575\n", + "Epoch 479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.2472\n", + "Epoch 480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 2.2369\n", + "Epoch 481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2267\n", + "Epoch 482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.2165\n", + "Epoch 483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.2064\n", + "Epoch 484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.1963\n", + "Epoch 485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.1862\n", + "Epoch 486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.1762\n", + "Epoch 487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.1662\n", + "Epoch 488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.1563\n", + "Epoch 489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.1464\n", + "Epoch 490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.1366\n", + "Epoch 491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.1268\n", + "Epoch 492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.1170\n", + "Epoch 493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.1073\n", + "Epoch 494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.0976\n", + "Epoch 495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 2.0880\n", + "Epoch 496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0784\n", + "Epoch 497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 2.0688\n", + "Epoch 498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0593\n", + "Epoch 499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.0499\n", + "Epoch 500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.0404\n", + "Epoch 501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.0310\n", + "Epoch 502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0217\n", + "Epoch 503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.0124\n", + "Epoch 504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.0031\n", + "Epoch 505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.9939\n", + "Epoch 506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9847\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.9755\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.9664\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.9573\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.9483\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.9393\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.9304\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.9214\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9126\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.9037\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.8949\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.8861\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.8774\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8687\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.8601\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.8514\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.8428\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.8343\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.8258\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 1.8173\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.8089\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.8005\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7921\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.7838\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.7755\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.7672\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.7590\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.7508\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.7427\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.7345\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7264\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 1.7184\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.7104\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.7024\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6944\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.6865\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.6786\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.6708\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.6630\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6552\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6475\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.6397\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.6321\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6244\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.6168\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.6092\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6017\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5941\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5866\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5792\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5718\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5644\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5570\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5497\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5424\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.5351\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5279\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5207\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5135\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5064\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4992\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.4922\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.4851\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 1.4781\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4711\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4641\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4572\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4503\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4434\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.4366\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4298\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.4230\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.4162\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.4095\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4028\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3961\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.3895\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.3829\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.3763\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3697\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3632\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.3567\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.3502\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.3438\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3373\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3310\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.3246\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.3183\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.3120\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3057\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2994\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.2932\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2870\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2808\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.2747\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.2685\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2624\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 1.2564\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 1.2503\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.2443\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.2383\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.2324\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.2264\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 1.2205\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 1.2146\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.2088\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 1.2029\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.1971\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.1913\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.1856\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.1798\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.1741\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.1684\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.1628\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.1571\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 1.1515\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.1459\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.1404\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 1.1348\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.1293\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.1238\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 1.1183\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.1129\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.1075\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 1.1021\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.0967\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 1.0914\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.0860\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 1.0807\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.0754\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.0702\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 1.0649\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.0597\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.0545\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.0494\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0442\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0391\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.0340\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0289\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.0239\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0188\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0138\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0088\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.0039\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9989\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9940\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9891\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.9842\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9794\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 0.9745\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9697\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.9649\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.9601\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.9554\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9506\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9459\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9412\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9366\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9319\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.9273\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.9227\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.9181\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9135\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.9090\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.9044\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8999\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8954\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.8910\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8865\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8821\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8777\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8733\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8689\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8646\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8603\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8559\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8516\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.8474\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8431\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8389\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.8347\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8305\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8263\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8221\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8180\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8139\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8098\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.8057\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8016\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7976\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7935\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.7895\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7855\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7815\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.7776\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7736\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7697\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7658\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7619\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.7580\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.7542\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7504\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7465\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7427\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 0.7389\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7352\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7314\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7277\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7240\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.7203\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7166\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7129\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7093\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.7056\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7020\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.6984\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6948\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6913\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6877\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6842\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6807\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6772\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.6737\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6702\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6668\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.6633\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6599\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6565\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6531\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.6497\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.6464\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6430\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6397\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.6364\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6331\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6298\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6265\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6233\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6200\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.6168\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6136\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6104\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6072\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6041\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6009\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5978\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5946\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.5915\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5884\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5854\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5823\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5793\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5762\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5732\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5702\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5672\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5642\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5613\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5583\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.5554\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5524\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5495\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.5466\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5438\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5409\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5380\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5352\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5324\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.5295\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5267\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5240\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5212\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.5184\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5157\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5129\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.5102\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5075\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.5048\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5021\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.4994\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4968\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4941\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.4915\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.4889\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.4863\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.4837\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.4811\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4785\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.4760\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.4734\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.4709\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.4684\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.4658\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4633\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.4609\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.4584\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.4559\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.4535\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.4510\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.4486\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.4462\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4438\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.4414\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.4390\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.4366\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.4343\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.4319\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.4296\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.4273\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.4250\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.4227\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4204\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.4181\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.4158\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.4136\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.4113\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.4091\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.4069\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.4046\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.4024\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4002\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.3981\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3959\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.3937\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3916\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3894\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3873\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3852\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.3831\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3810\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3789\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3768\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3748\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3727\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3707\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3686\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3666\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3646\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3626\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3606\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3586\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3566\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 0.3546\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3527\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3507\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.3488\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.3469\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3450\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3431\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3412\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.3393\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3374\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3355\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3337\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.3318\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3300\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3281\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3263\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3245\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.3227\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3209\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3191\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3173\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.3155\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3138\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3120\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3103\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3086\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3068\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3051\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3034\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3017\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.3000\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2983\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2967\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2950\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2933\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2917\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2901\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2884\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2868\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2852\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2836\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2820\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2804\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2788\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2772\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2757\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2741\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2726\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2710\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2695\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2680\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2664\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.2649\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.2634\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2619\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2604\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2590\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2575\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.2560\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2546\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2531\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2517\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2503\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2488\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2474\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2460\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.2446\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2432\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2418\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2404\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2391\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2377\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2363\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.2350\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2336\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2323\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2310\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2296\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.2283\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2270\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2257\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2244\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2231\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2218\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.2206\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2193\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2180\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2168\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2155\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2143\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2130\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2118\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2106\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2094\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2082\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2070\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.2058\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.2046\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2034\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.2022\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.2010\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1999\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1987\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1976\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1964\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1953\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1941\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1930\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1919\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1908\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1897\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.1886\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.1875\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.1864\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.1853\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1842\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1831\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1821\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1810\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1799\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.1789\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1778\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.1768\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.1758\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.1747\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.1737\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1727\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1717\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.1707\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.1697\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1687\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 179ms/step - loss: 0.1677\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.1667\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.1657\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.1648\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1638\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1628\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.1619\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1609\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.1600\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.1590\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.1581\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.1572\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1562\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.1553\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1544\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1535\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.1526\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.1517\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1508\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1499\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.1490\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 0.1481\n", + "Epoch 1000/3000\n", + " - loss: 0.1481\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1481\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1473\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1464\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1455\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1447\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1438\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1430\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1421\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1413\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1404\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1396\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1388\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1379\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.1371\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1363\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1355\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1347\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1339\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1331\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1323\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1315\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1308\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1300\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1292\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1284\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1277\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1269\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1262\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1254\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.1247\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1239\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1232\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1224\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1217\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1210\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1203\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1196\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1188\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1181\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1174\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1167\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1160\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1153\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1146\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1140\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1133\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.1126\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1119\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1113\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1106\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1099\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1093\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1086\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1080\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1073\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1067\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1061\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1054\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1048\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.1042\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1035\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1029\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1023\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1017\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.1011\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1005\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0999\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0993\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0987\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0981\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0975\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0969\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0963\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0958\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0952\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0946\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0940\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0935\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0929\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0924\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0918\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0913\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0907\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0902\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0896\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0891\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0886\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0880\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0875\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0870\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0865\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0859\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0854\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0849\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0844\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0839\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0834\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0829\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0824\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0819\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0814\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0809\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0804\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0800\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0795\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0790\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0785\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0781\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0776\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0771\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0767\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0762\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0758\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0753\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0749\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0744\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0740\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0735\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0731\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0726\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0722\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0718\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0714\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0709\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0705\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0701\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0697\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0693\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0688\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0684\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0680\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0676\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0672\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0668\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0664\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0660\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0656\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0652\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0648\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0645\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0641\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0637\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0633\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0629\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0626\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0622\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0618\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0615\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0611\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0607\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0604\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0600\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0597\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0593\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0590\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0586\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0583\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0579\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0576\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0572\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0569\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0566\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0562\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0559\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0556\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0553\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0549\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0546\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0543\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0540\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0537\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0533\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0530\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0527\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0524\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0521\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0518\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0515\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0512\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0509\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0506\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0503\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0500\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0497\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0494\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0491\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0489\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0486\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0483\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0480\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0477\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0475\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0472\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0469\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0466\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0464\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0461\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0458\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0456\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0453\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0451\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0448\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0445\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0443\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0440\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0438\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0435\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0433\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0430\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0428\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0425\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0423\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0421\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0418\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0416\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0414\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0411\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0409\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0407\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0404\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0402\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0400\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0398\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0395\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0393\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0391\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0389\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0386\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0384\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0382\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0380\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0378\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0376\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0374\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0372\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0370\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0368\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0366\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0364\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0362\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0360\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0358\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0356\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0354\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0352\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0350\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.0348\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0346\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0344\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0342\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0340\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0339\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0337\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0335\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0333\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0331\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0330\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0328\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0326\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0324\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0322\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.0321\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0319\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0317\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0316\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0314\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0312\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0311\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0309\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0307\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0306\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0304\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0303\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0301\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0299\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0298\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0296\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0295\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0293\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0292\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0290\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0289\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0287\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0286\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0284\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0283\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0281\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0280\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0279\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0277\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0276\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0274\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0273\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0272\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0270\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0269\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0267\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0266\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0265\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0264\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0262\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0261\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0260\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0258\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0257\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0256\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0255\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0253\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0252\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0251\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0250\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0248\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0247\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0246\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0245\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0244\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0242\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0241\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0240\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0239\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0238\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0237\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0236\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0235\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0233\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0232\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0231\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0230\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0229\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0228\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0227\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0226\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0225\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0224\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0223\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0222\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0221\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0220\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0219\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0218\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0217\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0216\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0215\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0214\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0213\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0212\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0211\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0210\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0209\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0208\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0207\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0207\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0206\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0205\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0204\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0203\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0202\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0201\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0200\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0200\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0199\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0198\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0197\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0196\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0195\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0195\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0194\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0193\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0192\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0191\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0191\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0190\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0189\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0188\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0188\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0187\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0186\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0185\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0185\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0184\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0183\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0182\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0182\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0181\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0180\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0180\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0179\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0178\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0178\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0177\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0176\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0175\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0175\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0174\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0174\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0173\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0172\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0172\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0171\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0170\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0170\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0169\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0168\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0168\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0167\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0167\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0166\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0165\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0165\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0164\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0164\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0163\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0163\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 269ms/step - loss: 0.0162\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0161\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0161\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0160\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0160\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0159\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0159\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0158\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0158\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0157\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0157\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0156\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0156\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0155\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0155\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0154\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0154\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0153\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0153\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0152\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0152\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0151\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0151\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0150\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0150\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0149\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0149\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0148\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0148\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0147\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0147\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0147\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0146\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0146\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0145\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0145\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0144\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0144\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0144\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0143\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0143\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0142\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0142\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0142\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0141\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0141\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0140\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0140\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0140\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0139\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0139\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0138\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0138\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0138\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0137\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0137\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0137\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0136\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0136\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0136\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0135\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0135\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0135\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0134\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0134\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0134\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0133\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0133\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0133\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0132\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0132\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0132\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0131\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0131\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0131\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0130\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0130\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0130\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0129\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0129\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0129\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0128\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0128\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0128\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0128\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0127\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0127\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0127\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0127\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0126\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0126\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0126\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0125\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0125\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0125\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0125\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0124\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0124\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0124\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0124\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0123\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0123\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0123\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0123\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0122\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0122\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0122\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0122\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0121\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0121\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0121\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0121\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0120\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0120\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0120\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0120\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0120\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0119\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0119\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0119\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0119\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0119\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0118\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0118\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0118\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0118\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0118\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0117\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0117\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0117\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0117\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0117\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0116\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0116\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0116\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0116\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0116\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0115\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0115\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0115\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0115\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0115\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0115\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0114\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0114\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0114\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0114\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0114\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0113\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0113\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0113\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0113\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0113\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0113\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0113\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0112\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0112\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0112\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0112\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0112\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0112\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0111\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 285ms/step - loss: 0.0111\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0111\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0111\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0111\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0111\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0111\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0110\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0110\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0110\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0110\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0110\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0110\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0110\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0110\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0109\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0109\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0109\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0109\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0109\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0109\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0109\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0108\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0108\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0108\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0108\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0108\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0108\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0108\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0108\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0108\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0107\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0107\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0107\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0107\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0107\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0107\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0107\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0107\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0107\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0106\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0106\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0106\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0106\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0106\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0106\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0106\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0106\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0106\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0106\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0105\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0105\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0105\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0105\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0105\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0105\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0105\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0105\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0105\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0105\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0105\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0104\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0104\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0104\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0104\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0104\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0104\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0104\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0104\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0104\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0104\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0104\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0104\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0104\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0103\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0103\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0103\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0103\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0103\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0103\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0103\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0103\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0103\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0103\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0103\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0103\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0103\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0102\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0102\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0102\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0102\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0102\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0102\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0102\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0102\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0102\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0102\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0102\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0102\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0101\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0101\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0101\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0101\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0101\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0101\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0101\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0101\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0101\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0101\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0101\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0101\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 167ms/step - loss: 0.0101\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0101\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0101\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0100\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0100\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0100\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0100\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0100\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0100\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0100\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0100\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0100\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0100\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0100\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0100\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0100\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0100\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0100\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0100\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0100\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0100\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0100\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0100\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0100\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0100\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0100\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0099\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0099\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0099\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0099\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0099\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0099\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0099\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0099\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0099\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0099\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0099\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0099\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0099\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0099\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0099\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0099\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0099\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0099\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0099\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0099\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0099\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0099\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0099\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0099\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0099\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0099\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0099\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0099\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0099\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0099\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0098\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0098\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0098\n", + "Epoch 1752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0098\n", + "Epoch 1753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0098\n", + "Epoch 1754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0098\n", + "Epoch 1755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0098\n", + "Epoch 1756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0098\n", + "Epoch 1757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0098\n", + "Epoch 1758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0098\n", + "Epoch 1759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0098\n", + "Epoch 1760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0098\n", + "Epoch 1761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0098\n", + "Epoch 1762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0098\n", + "Epoch 1763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0098\n", + "Epoch 1764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0098\n", + "Epoch 1765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0098\n", + "Epoch 1766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0098\n", + "Epoch 1767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0098\n", + "Epoch 1768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0098\n", + "Epoch 1769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0098\n", + "Epoch 1770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0098\n", + "Epoch 1772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0098\n", + "Epoch 1773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0098\n", + "Epoch 1775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0098\n", + "Epoch 1777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0098\n", + "Epoch 1778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0098\n", + "Epoch 1779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 1781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0098\n", + "Epoch 1782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 1783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0098\n", + "Epoch 1785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0098\n", + "Epoch 1786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0098\n", + "Epoch 1787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0098\n", + "Epoch 1788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0098\n", + "Epoch 1789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0098\n", + "Epoch 1790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0098\n", + "Epoch 1791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0097\n", + "Epoch 1792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0097\n", + "Epoch 1793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0097\n", + "Epoch 1794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0097\n", + "Epoch 1795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0097\n", + "Epoch 1796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0097\n", + "Epoch 1797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0097\n", + "Epoch 1798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0097\n", + "Epoch 1799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0097\n", + "Epoch 1800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0097\n", + "Epoch 1801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0097\n", + "Epoch 1802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0097\n", + "Epoch 1803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0097\n", + "Epoch 1804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0097\n", + "Epoch 1805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0097\n", + "Epoch 1806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0097\n", + "Epoch 1807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0097\n", + "Epoch 1808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0097\n", + "Epoch 1809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0097\n", + "Epoch 1810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0097\n", + "Epoch 1811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0097\n", + "Epoch 1812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0097\n", + "Epoch 1813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0097\n", + "Epoch 1814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0097\n", + "Epoch 1815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0097\n", + "Epoch 1816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 1817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0097\n", + "Epoch 1818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0097\n", + "Epoch 1819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.0097\n", + "Epoch 1820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.0097\n", + "Epoch 1821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0097\n", + "Epoch 1822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 1823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0097\n", + "Epoch 1824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0097\n", + "Epoch 1825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0097\n", + "Epoch 1826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0097\n", + "Epoch 1827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0097\n", + "Epoch 1828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0097\n", + "Epoch 1829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0097\n", + "Epoch 1830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0097\n", + "Epoch 1831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0097\n", + "Epoch 1832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 1833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0097\n", + "Epoch 1834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0097\n", + "Epoch 1835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0097\n", + "Epoch 1836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0097\n", + "Epoch 1837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0097\n", + "Epoch 1838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0097\n", + "Epoch 1839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0097\n", + "Epoch 1840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0097\n", + "Epoch 1841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0097\n", + "Epoch 1842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 1843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0097\n", + "Epoch 1844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0097\n", + "Epoch 1845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0097\n", + "Epoch 1846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0097\n", + "Epoch 1847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 297ms/step - loss: 0.0097\n", + "Epoch 1848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0097\n", + "Epoch 1849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0097\n", + "Epoch 1850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0097\n", + "Epoch 1851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0097\n", + "Epoch 1852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0097\n", + "Epoch 1853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0097\n", + "Epoch 1854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0097\n", + "Epoch 1855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0097\n", + "Epoch 1856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0097\n", + "Epoch 1857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0097\n", + "Epoch 1858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0097\n", + "Epoch 1859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0097\n", + "Epoch 1860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0097\n", + "Epoch 1861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0097\n", + "Epoch 1862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0097\n", + "Epoch 1863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0097\n", + "Epoch 1864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.0097\n", + "Epoch 1865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0097\n", + "Epoch 1866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0096\n", + "Epoch 1867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0096\n", + "Epoch 1868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0096\n", + "Epoch 1869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0096\n", + "Epoch 1871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0096\n", + "Epoch 1872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0096\n", + "Epoch 1873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0096\n", + "Epoch 1874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0096\n", + "Epoch 1876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0096\n", + "Epoch 1877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0096\n", + "Epoch 1878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0096\n", + "Epoch 1879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0096\n", + "Epoch 1880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0096\n", + "Epoch 1881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0096\n", + "Epoch 1882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0096\n", + "Epoch 1883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0096\n", + "Epoch 1884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0096\n", + "Epoch 1886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0096\n", + "Epoch 1887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0096\n", + "Epoch 1888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0096\n", + "Epoch 1890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0096\n", + "Epoch 1891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0096\n", + "Epoch 1892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0096\n", + "Epoch 1893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0096\n", + "Epoch 1895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0096\n", + "Epoch 1896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0096\n", + "Epoch 1897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0096\n", + "Epoch 1898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0096\n", + "Epoch 1899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0096\n", + "Epoch 1900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0096\n", + "Epoch 1901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0096\n", + "Epoch 1902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0096\n", + "Epoch 1903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0096\n", + "Epoch 1904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0096\n", + "Epoch 1905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0096\n", + "Epoch 1906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0096\n", + "Epoch 1907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0096\n", + "Epoch 1908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0096\n", + "Epoch 1909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0096\n", + "Epoch 1910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0096\n", + "Epoch 1911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0096\n", + "Epoch 1912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0096\n", + "Epoch 1913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0096\n", + "Epoch 1914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0096\n", + "Epoch 1915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0096\n", + "Epoch 1916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0096\n", + "Epoch 1917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0096\n", + "Epoch 1918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.0096\n", + "Epoch 1919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0096\n", + "Epoch 1920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0096\n", + "Epoch 1920: early stopping\n", + "Restoring model weights from the end of the best epoch: 1420.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYHVX9x/HP7qaHhBZCCpHQNBSlxdCklyCigqAQEUgUpEXQiD8TC00lIEVUeg2gCIqACAhBeu+hhBAIkJDee9nd7N7fH9e7Ozs75Uyfuft+PU+e7L137sy5U89853vOqSmVSiUBAAAAAAAAQE7UZl0AAAAAAAAAALAiaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAqsaUKVN05plnaocddlCvXr1UU1PT8m/69OlZF69DmjBhQss2GDlyZKrLtm5/AAAAFAtBSwAACu6AAw5oCcxccMEFrtNZAzj2f3V1ddpoo4203Xbb6dvf/rZuvvlmrVq1KlQZgv6LK5D14IMPatddd9V1112nKVOmBCo/APz3v/9tc27afvvtA8/jggsuCH0uHDx4sOt8V69erYceekg/+clPtP/++6t///7q2rWrevbsqS233FJHHXWUbrjhBq1evTrCGgAAIF8IWgIAADU3N2v58uWaNm2a7r33Xp166qnaaqutdP/992ddNCOrVq3SyJEjVV9fL0nq37+/vv3tb+vMM8/UWWedpbPOOku9e/fOuJThWQMhXoFpIM8GDx6c68zn22+/vc3rDz74QK+++mpGpWn1ve99T3379tXXv/51XXXVVXr22Wc1b948NTQ0aM2aNfrss8/0r3/9S6effroGDx6s++67L+siAwAQi05ZFwAAAKTvqKOO0sCBA1teNzc3a9GiRXrppZc0a9YsSdKiRYt07LHH6t5779XRRx9tPO8vf/nLGjZsmPH0e+65p3nBXTz00ENaunSpJGnHHXfUa6+9pu7du0eeL4COYeXKlY7Bvttvvz3Q+cxqwIABgc6dm266qeP79957b8sDGUnaeOONNWzYMA0YMEClUklTpkzRq6++qlKppEWLFumYY47Rddddp9NPPz1UuQEAyAuClgAAdEDnnHOODjjggHbvNzc36/bbb9cZZ5yh+vp6NTc364wzztDw4cPVo0cPo3kfccQRqWcDvvnmmy1/jxgxgoBljowcOTL1viwrSqVSJstF8dx7771as2aNJKl79+5au3atJOnuu+/WH/7wB3Xp0iXwPLfbbjtdffXVsZSvR48eGjFihL7//e9rzz33VG1t2wZzkydP1ve+9z1NmjRJkjR69Gjts88++uIXvxjL8gEAyALNwwEAQIva2lqNGjVKv//971vemz9/vh544IHsCmWgkmUplZuGA0AQ1qbhP//5z7X55ptLkpYsWaJ///vfWRVLkvSjH/1In3zyiW6++Wbtvffe7QKWUjnD/Mknn9SWW24pSWpqatLFF1+cdlEBAIgVQUsAANDOaaedpm7durW8fvbZZzMsjb/GxsaWv51u6AHAzfTp01vOcTU1NTr55JM1YsSIls/tfV2m7bLLLmsJonrZeOON9fOf/7zl9SOPPJJksQAASBy1egAA0E7Xrl3bjJw7Z86cDEvjzDo4jTWoMGrUqHaj8k6YMMFxHqtWrdKf/vQnDR8+XFtssYW6deumjTfeWDvttJNGjx6tV155xags1mVVvP322zrnnHO00047aZNNNlFNTY2OOuqoQL+xMir7hRde2PLehRdeaDQK+8iRI9v9/mXLlumPf/yj9ttvPw0cOFCdOnVSTU2Nli1b1ua7CxYs0G233aaTTz5Zu+66qzbZZBN17txZG220kYYMGaJRo0bpscceM/oNEyZM8B0p/umnn26ZxtptwZNPPqnjjz9eW2+9tbp166ZNN91U++23n66++uo2gWo3TtvFzmlwmFmzZunXv/61dt55Z2200Ubq2bOnhgwZoh/96EeaMWOG0e+uePzxx3X88cfrc5/7nLp166b+/ftr33331TXXXNMy0nMSAy0tWrRIl19+uQ455BANGDBA3bp1a9mGO+64o4499lhdeeWV+vTTT43m98QTT+j000/XjjvuqE022URdu3bVgAEDNHz4cF199dUtzantpk+f3vLbrOtuq622ctyPn3766Th+fiB33HFHS1cCX/nKVzR48GCdeOKJLZ//5z//0YIFC1IvVxj77LNPy98rVqzQkiVLMiwNAADR0KclAABwZO0Xct26dRmWJBkPPfSQTj31VM2bN6/N+/X19Vq2bJkmT56sa665Rt/97nd10003GffpKZWDUL/97W/V1NQUd7FDe+GFFzRixAjNnDnTc7o//elPGjNmjGPZly9fruXLl2vq1KmaMGGCDjroIP397393HUAkrIaGBo0ePVo33XRTm/fr6+v13HPP6bnnntNtt92mxx57TH369Il12Q888IBGjhyp5cuXt3l/6tSpmjp1qm655Rb94x//0Ne+9jXf3/CDH/xAf/nLX9q8P2/ePM2bN0/PP/+8rrnmGt1///2xll+S/vWvf2nUqFFtuk2oqGzD999/X//85z915ZVXtgy+5WTmzJk66aSTHIOJc+fO1dy5czVx4kSNHz9ed999t/bdd984f0oq7rjjjpa/K8HK3XbbTTvuuKMmT56s9evX66677tKPf/zjjEpozh6gz9M5CACAoAhaAgAAR9bsSpOmiWkbNmyYzjrrLEnlLLAPPvhAknTwwQdryJAhbaa1Zo1K0j333KMTTjih5Ya+rq5OX/nKV7Tttttq1apVeu6551p+/1133aVPP/1UTz75ZJsm824uu+yylszIbbbZRsOGDVOPHj00ffp0de7cOdBvPProo7XTTjvp1Vdf1WuvvSbJfXR2r1HYp02bph//+Mdavny5evXqpf32208DBgzQ0qVL2zX9nzNnTst62XrrrbX99ttrs802U7du3bRs2TK9++67mjx5sqRyJuQhhxyil19+WV27dg3027z88Ic/1O23367a2lrtscceGjJkiJqbm/Xyyy9r6tSpksqDL5100kmxNoH973//q9NPP11NTU363Oc+p7322ku9e/fWp59+qqefflrr16/X2rVr9Z3vfEfvvfeettpqK9d5jRgxos1o1JtssokOOOAAbbLJJpo5c6aeeeYZTZkyRV/72tf0jW98I7bf8Prrr+vYY4/V+vXrJZUfPuy5554aPHiwunbtqhUrVujjjz/Wu+++2zLwjJspU6bo4IMP1ty5cyWVA2K77babdthhB3Xv3l2zZ8/Ws88+q5UrV2rOnDk69NBD9Z///EcHHnhgyzx69+7dcpzecccdWrlypSTppJNOUq9evdotc+DAgbGsB1PPP/+8Pv74Y0nlDPNvf/vbLZ+deOKJGjt2rKRyE/EiBC3ffffdlr+7d+8ee1AfAIBUlQAAQKHtv//+JUklSaXzzz/fdbrKNJJKTz31lOc8p06d2mb6q6++OpYyJOXkk09uWf5tt93mOe20adNKG2ywQcv0w4YNK3300UdtpmlqaipdccUVpdra2pbpfvSjH7nO07quOnXqVNpwww1L999/f7vp1q1bF+bnlc4///zA69e6Tjp16lSSVDrrrLNKK1eubDNdQ0NDqampqeX1LbfcUvrzn/9cmjVrluu833777dLQoUNb5v+b3/zGddrbbrutZbqTTz7ZcZqnnnqqZZquXbuWJJW+/OUvl6ZMmdJmuubm5tJVV13VZn0/88wzrsu2Tudmyy23bLPsnj17lu68885Sc3Nzm+nee++90sCBA1umHTVqlOs8b7755jbL/ulPf9pu28+fP7/01a9+tc1vjuP4Oeqoo1rmdcwxx5SWLFniON3atWtLDz/8cOm0005z/HzVqlWl7bffvmVeX/3qV0vTpk1rN93y5ctLZ5xxRst0/fv3Ly1btsxxntZ1/emnn4b+jXE65ZRTWsp07LHHtvls5syZbc4Bb7/9tu/8rMfq/vvvn1Cp3R166KEty//a176W+vIBAIgTmZYAAKCN9evX65xzzml53bt3bx1//PHG33/kkUe0aNEi4+kvuugibbLJJoHKGMVFF12kVatWSZK23XZbTZw4URtuuGGbaWprazVmzBjV1NRozJgxkqRrrrlGP/nJTzyz6ySpublZDz74oPbbb792n8WZjRjE+vXrdcopp+jqq69u95k9+/P73/++7/y+9KUv6b///a+GDBmiefPm6dprr9W4ceNUV1cXuaz19fXabrvt9OSTT2qDDTZo81lNTY3OOeccPf/887r33nslSX/7298c13UYDQ0NeuCBB3T44Ye3+2zHHXfUDTfcoCOPPFKS9I9//EM33nijOnVqW51uamrS+eef3/L6tNNO0+WXX95ufn379tUDDzygr3zlKy1ZtHF47rnnJJX3tQkTJrRbhxXdunXTEUccoSOOOMLx8yuvvFJTpkyRVM74vffeex0Huerdu7euvfZarVmzRrfffrvmzp2r66+/vs2AMHm1du1a/f3vf295be3HUpK22GILHXDAAXryyScllbMtr7jiCuP5f/TRRxo9erTx9CeeeKL22GMP4+ntHnroIT3++OMtrysZrgAAFBVBSwAAoObmZi1atEgvvPCCLrnkEr366quSpE6dOunWW28N1Gfha6+9FigIc+6556YWtFy2bJnuueeelte///3v2wUsrc455xzdcsstmjx5spqbm3XjjTdq/Pjxnss49thjYwuixaVbt276/e9/H+s8N9xwQx199NG67rrrNHfuXL3//vv64he/GMu8L7nkEtdgm1QOrFaClpV9NQ5HHnmkY8Cy4ogjjlC/fv00b948rVq1SlOmTGn3mx999FHNnj1bktSzZ09dcsklrvPr0qWLLr/8cu2///7x/ACVB1+RpB49eniuQy+NjY0tAe6uXbvq+uuvdwxYWl188cUtA9r89a9/LUTQ8oEHHmhZX5tuuqm++tWvtpvmxBNPbAla/vWvf9Wll17aLlDtZs6cObrmmmuMyzN06NDQQcu5c+fqhz/8YcvrQw891PH3AABQJAQtAQDogKx9zrn5whe+oCuuuMJ3wJEiefHFF1VfXy9J6tOnj77+9a97Tl9bW6vvf//7+ulPfypJeuqpp3yXESQrNS2HHXaYNt5448DfW7BggV5++WVNmTJFS5cu1erVq1tGWZbK/SdWTJo0KZagZbdu3Xy3y6677tryd2XE7zhY+zN0UlNTo5133rll8Kbp06e3+83WAWu+9rWvaaONNvKc53777afPfe5z+uyzz0KV2W7QoEH65JNPtHTpUt1zzz067rjjAs/j9ddfbxkt++CDD1bfvn19vzNgwAANGTJEU6ZM0Xvvvafly5d7PhDIg9tvv73l7+OPP96xz9ljjz1WZ511ltasWaP58+frsccey905saGhQccee2xL36ObbrqpJkyYkG2hAACIAUFLAADQzuabb6477rjDccAXP+eff74uuOCC+AsVg7feeqvl72HDhhllTO2zzz5tvl8qldqN0Gu1++67RytkAoKW6f3339fPf/5z/ec//zEefThIlwBevvCFL/gOWGTN/K1kysXBJOjqt+xJkya1/G2aNTds2LDYgpbf+c53WrI7R4wY0RK4PPDAA42Cj5L00ksvtfw9a9Ys4ybOy5YtkySVSiXNmjUr10HLOXPm6L///W/La3vT8IoNNthARx11lO666y5J5UCnadBy//33dxx1PU6lUkknn3yyXnzxRUnl7h7+9re/acCAAYkuFwCANBC0BACgAzrqqKPajNK7ePFiffzxxy3NuufPn699991X//znP1v68KsGCxcubPl7yy23NPrO4MGDW/5uaGjQypUr1bt3b9fpN9tss9DlS0qQMj322GP65je/2ZKRaqoyKnRUJoEua1CzMkp2FstubGxs97l1Hxs0aJDRcrfYYguj6Uz86le/0tNPP62XX35ZpVJJ999/v+6//35J0nbbbad9991XBx98sL7+9a87jt4tlQN6Fe+8847eeeedwOVYunRpuB+Qkr/85S8tAfntttvOM8B84okntgQtH3zwQS1dujRU5nISRo8erbvvvltSOTP89ttv16GHHppxqQAAiId35zQAAKAqnXPOObr66qtb/v3tb3/Tq6++qrfffls777yzpHKAbsSIEfr4448zLm18KgPwSOX+Bk3Yp/MLznXv3j14wRJmWqaFCxfquOOOawlYbrnllho/fryef/55zZkzR2vWrFFzc7NKpZJKpVKbAWeam5tjKatXFmvS4li2dR/r0aOH0XfC9j3ppGfPnnrmmWd02WWXtQm4S+WBYW699VadcMIJ6tevn/7v//5Pa9eubTeP5cuXRy5HnMHkJFibhn/ve9/znPbQQw9Vv379JJUHirL2i5ulcePG6dprr215fc0112jEiBEZlggAgHgRtAQAAC2+9KUvaeLEiS1ZmKtWrdIpp5yScaniYw0OrV692ug79uncstOqwU033dQSsNp55531zjvvaOzYsdpnn33Uv39/de/evU1gL67sympi3cfWrFlj9B3TfdFUly5ddO655+qTTz7RpEmT9Kc//UnHH398m+zqNWvW6LLLLtOBBx7YLnBpDdSfffbZLUHqIP8OOOCAWH9TnF5//XW9//77La/PP/981dTUuP7r1KlTSz+mUtuAZ1Z+97vftRnk6dJLL9Xpp5+eYYkAAIgfQUsAANBG37599ec//7nl9dNPP62HH344wxLFx9pM2rQPQetAL126dKnqoOUTTzzR8vevfvUrz2bwkjRjxoyki1Q4ffr0afl71qxZRt8xnS6oysBBP/rRj/S3v/1Ns2bN0ptvvqlRo0a1TPPKK6+0G+F68803b/nbGqyrFlGDji+//LI+/PDDmEoT3FVXXaVf/epXLa9/9atf6f/+7/8yKw8AAEmhT0sAANDO0UcfrX322UcvvPCCpPJNcd5GzA3DOur0q6++qqamJtXV1Xl+pzLAReX7WTRfTmuZ1r4M/QalaWpqatk/0GqXXXZpCf6+8sorRt959dVXkyxSG7vuuqtuvfVW1dXV6eabb5ZU7qfx3HPPbZnG2r/jiy++6Dv4lKksm/5XNDQ06G9/+1vL6y984Qu+I7xXfPTRR1qyZImkcuDzd7/7XRJF9HTjjTfqJz/5Scvrc845R7/5zW9SLwcAAGkg0xIAADiyjgA+adIkPfjgg9kVJiZ77723unbtKqncf6NfBmlzc7Nuu+22ltcHHXRQouVz061bt5a/nQZ/iUttbWvV0K9p8wMPPFCVWXhRWZtFP/zww779Qz7//POZZKx+4xvfaPl7/vz5bT7bZ599WgJ5s2bN0r///e9YlpnWfuzl4Ycf1uLFiyVJnTp10rPPPquXX37Z6N8vfvGLlvnceeedsfXjauovf/lLmybgP/jBD/SHP/wh1TIAAJAmgpYAAMDRIYccor333rvl9W9/+9sMSxOPjTbaSMcdd1zL65/97Gee/TJeffXVevfddyWVA3o//OEPEy+jk0033bTl79mzZye2nK233rrlb68g9cKFC9tke6HV4YcfrgEDBkgq9wlrDXTZNTQ0tMlwjKq+vr7NQEBeZs6c2fJ3375923zWtWtX/fjHP255feaZZwba7+xB0Iq09mMv1qbhhx56aLvf7mXEiBEtgf2ZM2fqqaeeir18bu677z6NHDlSpVKppSw33nhjLrJXAQBICkFLAADg6rzzzmv5+7XXXtOjjz6aYWnicd5557UMlvLhhx9q+PDh+uSTT9pM09zcrD/+8Y8aM2ZMy3tnnXVWu9GY07LTTju1/D1x4sRYRnd28vWvf73l7/Hjx+svf/lLu2nefPNN7b///po5c6bxCOwdSadOndpkKV977bX6+c9/roaGhjbTLVy4UMccc4xeeeWVluzfqObOnatBgwbp3HPP1euvv+463eOPP95m5PevfvWr7ab56U9/qh133FFSOcA4dOhQ/eMf/3DNLly0aJFuvPFG7bbbbrrsssscp7Hux//4xz+MftOECRPaDIpj7WM2qEWLFumRRx5peX3CCScE+v6AAQN04IEHtrxOa0CeRx99VCNGjFBTU5Mk6Zvf/KbuuOOONpnRAABUI/q0BAAAroYPH6499tijpW++3/zmNzr88MM9v/PII49o0aJFxsvo0aOHfv/730cqZxDbbLONbr75Zp1wwglqamrSSy+9pC984Qvad999tc0222jVqlV67rnn2mSC7bnnnqmW0W7YsGEaNGiQZs6cqblz52rIkCE67LDD1KdPn5ZMqy9/+cttskjDOPnkk3XFFVfoww8/VH19vU488URdfPHF2nnnndWtWze99957LcGwnXfeWcOHD890veTVKaecoocfflj/+te/JEm///3vdcstt+iAAw7QJptsolmzZumpp57SunXrtPXWW+ub3/xmSzPfqIGoZcuW6YorrtAVV1yhTTbZRLvuuqsGDhyobt26acGCBXrnnXfaBOk///nP65xzzmk3nw022EAPPvigDjnkEH366aeaN2+evvOd76hPnz7ac8891a9fP5VKJS1ZskTvv/++Pvroo5aApls3Csccc4xuuOEGSeVg7htvvKHddttNPXr0aJnmjDPO0DbbbBNpHbi56667Wpql9+zZU0cddVTgeZxwwgktfZbed999uvbaa9uMGG/10UcfafTo0YHmP27cuDajvC9atEjf+ta3WoLedXV12myzzdpkwno58cQT2/RRCgBAkRC0BAAAns4777yWQXhefPFFPfHEEzr44INdp3/ttdf02muvGc9/ww03TD3wddxxx6lnz5465ZRTNH/+fK1fv15PPfWUY3PPESNG6Oabb27TH1/aamtrde211+qYY45RQ0OD5s2bpzvuuKPNNCeffHLkoGXXrl3173//W1/96ldbAltTpkzRlClT2ky3zz776J577tFNN90UaXnVqqamRvfcc49Gjhypu+++W5K0ePFi/fOf/2wz3fbbb6/777+/zbb0G7HdS+fOndW1a1fV19dLkpYsWdJmRHi7Aw44QH/7299cM2a33nprvf766zr99NN17733qlQqadGiRXrooYdc57nRRhu5DuJ06KGHasSIES0D4bzyyivtBis68sgjEwtaWjMjjzrqqFCZwsccc4zOPPNMrVu3TqtXr9a9996rkSNHOk47Z86cdiOz+znllFPaBC1XrVqltWvXtrxuampqGUDJxNChQwlaAgAKizYFAADA0xFHHKGhQ4e2vL7ooosyLE18jjzySE2bNk1//OMfdeihh2rAgAHq0qWLNtxwQ22//fY688wz9fLLL+uuu+5qkwmWZXlff/11nXbaadpxxx3Vq1evRPqz+/znP6+33npLF198sYYOHapevXqpa9eu2nLLLXXkkUfqrrvu0jPPPNMmsIL2unbtqr/97W967LHH9O1vf1tbbLGFunTpos0331z77LOP/vznP+u1117TF77whZYRqSUZj2TtZODAgVq8eLEefPBB/exnP9NBBx2kz33uc+revbvq6uq00UYbaeedd9Ypp5yixx9/XE899ZT69evnOc9NNtlEf//73/XOO+/oF7/4hfbee2/1799fXbp0Ubdu3dSvXz995Stf0dlnn60HH3xQc+fO1cknn+w6v7/+9a/661//qiOPPFJbbLFFag8D3nvvPb355pstr4M2Da/o3bt3m24UJkyYELVoAADARU2p0pszAAAAgNTts88+evHFFyVJL7/8MplxAAAAImgJAAAAZGbGjBnaZptt1NTUpC5dumj58uWZdkUAAACQFzQPBwAAADJQKpV0zjnntIwKffTRRxOwBAAA+B+ClgAAAEDMzjvvPP3xj3/UokWLHD+fPn26jj766JYRxuvq6nTuueemWUQAAIBcY/RwAAAAIGafffaZfvOb3+jcc8/VF7/4RQ0ZMkQbbrihVq1apQ8++EBvvfVWS4alJP3qV79qM+AVAABAR0fQEgAAAEjI+vXr9dZbb+mtt95y/Lx79+666KKLyLIEAACwYSAeAAAAIGbLli3Tv/71Lz355JOaPHmyFi5cqEWLFqmpqUmbbLKJvvCFL+jggw/WD37wA/Xv3z/r4gIAAOQOQUtDzc3NmjNnjnr16qWampqsiwMAAAAAAAAUSqlU0sqVKzVgwADV1noPtUPzcENz5szRoEGDsi4GAAAAAAAAUGgzZ87UFlts4TkNQUtDvXr1klReqb179864NPFrbGzUxIkTddhhh6lz585ZFwfocDgGgexxHALZ4zgEssUxCGSv2o/DFStWaNCgQS1xNi8ELQ1VmoT37t27aoOWPXr0UO/evavyoADyjmMQyB7HIZA9jkMgWxyDQPY6ynFo0vWid+NxAAAAAAAAAEgZQUsAAAAAAAAAuULQEgAAAAAAAECuELQEAAAAAAAAkCsELQEAAAAAAADkCkFLAAAAAAAAALlC0BIAAAAAAABArnTKugAdQalUUmNjo5qbm7MuiqvGxkZ16tRJ69atU1NTU9bFqXp1dXXq3Llz1sUAAAAAAADIpcIGLa+55hpddtllmjdvnnbeeWf9+c9/1rBhw1ynX7ZsmX75y1/qvvvu05IlS7Tlllvqqquu0hFHHJFYGRsaGrRgwQKtWbMm94HAUqmkfv36aebMmaqpqcm6OB1C165d1adPH/Xu3TvrogAAAAAAAORKIYOW99xzj8aMGaPrr79ee+yxh6666ioNHz5cU6dOVd++fdtN39DQoEMPPVR9+/bVvffeq4EDB2rGjBnaaKONEivjmjVrNHPmTNXV1WnjjTdW9+7dVVdXl9uAYHNzs1atWqUNNthAtbX0GpCkSubt8uXLNXv2bEkicAkAAAAAAGBRyKDllVdeqVNPPVWjRo2SJF1//fV6+OGHdeutt2rs2LHtpr/11lu1ZMkSvfjiiy1NcgcPHpxoGRctWqTOnTtryy23VF1dXaLLikNzc7MaGhrUrVs3gpYp6N69u3r16qVZs2Zp0aJFBC0BAAAAAAAsChe0bGho0BtvvKFx48a1vFdbW6tDDjlEL730kuN3HnzwQe21114666yz9K9//UubbbaZvvvd7+rnP/+5a0Cxvr5e9fX1La9XrFghqdz3Y2Njo2cZ169fr1WrVql///6qqanJdV+WFaVSqeX/IpS3WvTq1Utz5szR2rVr1alT4Q5HxKhyXvE7vwBIDschkD2OQyBbHINA9qr9OAzyuwoXJVm0aJGampq0+eabt3l/88031wcffOD4nU8++URPPvmkTjjhBD3yyCOaNm2azjzzTDU2Nur88893/M748eN14YUXtnt/4sSJ6tGjh2cZO3XqpH79+qmxsbEl2FkUK1euzLoIHUpDQ4PWrl2rJ598UuvXr8+6OMiBxx9/POsiAB0exyGQPY5DIFscg0D2qvU4XLNmjfG0hQtahtHc3Ky+ffvqxhtvVF1dnXbffXfNnj1bl112mWvQcty4cRozZkzL6xUrVmjQoEE67LDDfJvyrlu3TjNnztQGG2ygbt26xfpbklIqlbRy5Ur16tUrt/1uVqN169ape/fu2m+//QqzryAZjY2Nevzxx3XooYcysjyQEY5DIHsch0C2OAaB7FX7cRgkua9wQcs+ffqorq5O8+fPb/P+/Pnz1a9fP8fv9O/fX507d27TFHz77bfXvHnz1NDQoC5durT7TteuXdW1a9d273fu3Nl3p2lqalJNTY1qa2sL0z9kpUl4pdxIR21trWpqaoz2K3QM7AtA9jgOgexxHALZ4hgEsletx2GQ31S46FSXLl20++6764knnmh5r7m5WU888YT22msvx+/ss88+mjZtWpu+Gj/88EP179/fMWAJAAAAAAAAIDuFC1pK0pgxY3TTTTfp9ttv15QpU3TGGWdo9erVLaOJn3TSSW0G6jnjjDO0ZMkSnXPOOfrwww/18MMP6+KLL9ZZZ52V1U8AAAAAAAAA4KKQQcvjjjtOl19+uc477zztsssumjRpkh599NGWwXk+++wzzZ07t2X6QYMG6bHHHtNrr72mL33pSzr77LN1zjnnaOzYsVn9BPzP4MGDVVNTowkTJrS8N2HCBNXU1LT5V1tbq969e2vXXXfVuHHjtHDhQtd52r/r9u/pp59O/gcCAAAAAAAgsML1aVkxevRojR492vEzp2DUXnvtpZdffjnhUiFOPXv21LHHHiup3E/ojBkz9NJLL2nSpEm67bbb9Nxzz2m77bZz/f7w4cNd+zmV5PkZAAAAAAAAslPYoCWqX58+fdpkYErS5MmTtf/++2v+/Pn68Y9/rIcfftj1+2PHjtUBBxyQbCEBAAAAAAAQu0I2D0fHteOOO2rMmDGSpMcff1z19fUZlwgAAAAAAABxI2iJwvnSl74kSWpsbNSSJUsyLg0AAAAAAADiRtAShbNixQpJUl1dnfr06ZNxaQAAAAAAABA3gpYonEo/locffrg6d+6ccWkAAAAAAAAQNwbiycrQodK8eVmXokWNpN6lkmpqavwn7tdPev31xMtkVRk9/MYbb9Rdd92lLbfcUn/60588v3PggQe6frbhhhtq2bJlMZcSAAAAAAAAcSBomZV586TZs7MuRYua//3LkxkzZjgGUYcNG6aJEydqww039Pz+8OHD1a9fP8fPevToEUsZAQAAAAAAED+ClllxCaZlpSSp9L9MS9/gZUpl79mzp4499lhJUn19vaZMmaK3335br776qk477TTdfffdnt8fO3asDjjggBRKCgAAAAAAgDgRtMxKys2r/ZSam7VixQr17t1bNbX56Oq0T58+mjBhQpv37rvvPh133HG65557tN9+++nMM8/MpnAAAAAAAABITD6iU4Chb33rWxo7dqwk6bzzztPy5cszLhEAAAAAAADiRtAShTNu3Dj1799fixcv1pVXXpl1cQAAAAAAABAzgpYonB49eujXv/61JOmqq67S0qVLMy4RAAAAAAAA4kSfliikU045RVdccYU+/vhjXX755frd737XbppLLrmkXZ+YVt/97nd12GGHJVhKAAAAAAAAhEHQEoXUuXNn/fa3v9WIESP05z//WWPGjNGmm27aZprHHnvMcx677LILQUsAAAAAAIAcImiJTE2fPr3deyNHjtTIkSN9v3v88cfr+OOPb/d+qVSKoWQAAAAAAADICn1aAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJTI1ePBg1dTUaMKECS3vTZgwQTU1NW3+1dbWqnfv3tp11101btw4LVy40HWe9u+6/Xv66acDlbVSrpEjR4b7sQAAAAAAADDSKesCAG569uypY489VpLU1NSkGTNm6KWXXtKkSZN022236bnnntN2223n+v3hw4erX79+rp/bP6upqZEklUqlGEoPAAAAAACAsAhaIrf69OnTJgNTkiZPnqz9999f8+fP149//GM9/PDDrt8fO3asDjjggGQLCQAAAAAAgNjRPByFsuOOO2rMmDGSpMcff1z19fUZlwgAAAAAAABxI2iJwvnSl74kSWpsbNSSJUsiz++CCy5oaRoute8Tc/r06e2+s3r1ao0bN07bbrutunbtqn79+unkk0/W7NmzI5cHAAAAAACgo6N5OApnxYoVkqS6ujr16dMn8vx22WUXnXzyybr99tslSSeffHKbzzfYYIM2r5cvX669995bn332mfbdd1/ttNNOeumll3THHXfomWee0dtvv60NN9wwcrkAAAAAAAA6KoKWKJxKP5aHH364OnfuHHl+Rx11lI466qiWoKW9H027Bx54QMOHD9dzzz2n3r17S5KWLl2qgw46SJMmTdK1116rcePGRS4XAAAAAABAR0XQMiNDhw7VvHnzsi5GG6VSqU0zaTf9+vXT66+/nkKJWlVGD7/xxht11113acstt9Sf/vQnz+8ceOCBrp9tuOGGWrZsWaiy9OzZU7fddltLwFKSNt54Y40dO1bHH3+8/vvf/xK0BAAAAAAAiICgZUbmzZtH/4c+ZsyY4RhEHTZsmCZOnOjbBHv48OHq16+f42c9evQIXa6hQ4eqf//+7d7ffvvtJYntCgAAAAAAEBFBy4y4BdOyFCTTMg09e/bUscceK0mqr6/XlClT9Pbbb+vVV1/Vaaedprvvvtvz+2PHjtUBBxwQe7k+97nPOb5fybxct25d7MsEAAAAAADoSAhaZiTt5tV+mpubtWLFCvXu3Vu1tfkYVL5Pnz7t+pe87777dNxxx+mee+7RfvvtpzPPPDP1cuVl/QAAAAAAAFQroi8olG9961saO3asJOm8887T8uXLMy4RAAAAAAAA4kbQEoUzbtw49e/fX4sXL9aVV14Z23wrI5GvX78+tnkCAAAAAAAgOIKWKJwePXro17/+tSTpqquu0tKlS2OZ7xZbbCFJmjx5cizzAwAAAAAAQDj0aYlCOuWUU3TFFVfo448/1uWXX67f/e537aa55JJL2vWJafXd735Xhx12WMvrY445RpdffrkOOeQQHXTQQerVq5ck6dJLL9Wmm24a+28AAAAAAACAM4KWKKTOnTvrt7/9rUaMGKE///nPGjNmTLvA4mOPPeY5j1122aVN0PI3v/mNamtrdd999+mBBx5QQ0ODJOlXv/oVQUsAAAAAAIAUEbREpqZPn97uvZEjR2rkyJG+3z3++ON1/PHHt3u/VCqFKku3bt106aWX6tJLL3X83K9cgwcPDr1sAAAAAAAAtKJPSwAAAAAAAAC5QtASAAAAAAAAQK4QtAQAAAAAAACQKwQtAQAAAAAAAOQKQUsAAAAAAAAAuULQEgAAAAAAAECuELQEAAAAAAAAkCsELRNUKpWyLgJyjn0EAAAAAACgPYKWCaitLa/WpqamjEuCvKvsI5V9BgAAAAAAAAQtE9G5c2d17txZq1atyrooyLm1a9eqrq5OnTt3zrooAAAAAAAAuUHQMgE1NTXq1auXli9frrVr12ZdHORUU1OTli9frh49eqimpibr4gAAAAAAAORGp6wLUK369OmjtWvX6rPPPlPv3r3Vq1cv1dXV5TY41dzcrIaGBq1bt46mygkrlUqqr6/XkiVL1NzcrL59+2ZdJAAAAAAAgFwhaJmQuro6DRo0SIsWLdLKlSu1bNmyrIvkqVQqae3aterevXtuA6vVpmfPnurXr5+6dOmSdVEAAAAAAAByhaBlgurq6rT55purb9++amxsVHNzc9ZFctXY2Khnn31W++23H/0rpqBTp07q1InDDwAAAAAAwAlRkxTU1NTkPpuurq5O69evV7du3QhaAgAAAAAAIFN0XggAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcKXTQ8pprrtHgwYPVrVs37bHHHnr11Vddp50wYYJqamra/OvWrVuKpQUAAAAAAABgorBBy3vuuUdjxozR+eefrzfffFM777yzhg8frgULFrh+p3fv3po7d27LvxkzZqRYYgAAAAAAAAAmChu0vPLKK3Xqqadq1KhR2mGHHXT99derR48euvXWW12/U1NTo379+rX823zzzVMsMQAAAAAAAAATnbIuQBgNDQ164403NG7cuJb3amtrdcghh+ill15y/d6qVau05ZZbqrm5Wbvttpsuvvhi7bjjjo7T1tfXq76+vuX1ihUrJEmNjY1qbGyM6ZfkR+U3VeNvA4qAYxDIHschkD2OQyBbHINA9qr9OAzyu2pKpVIpwbIkYs6cORo4cKBefPFF7bXXXi3v/9///Z+eeeYZvfLKK+2+89JLL+mjjz7Sl770JS1fvlyXX365nn32WU2ePFlbbLFFu+kvuOACXXjhhe3ev+uuu9SjR494fxAAAAAAAABQ5dasWaPvfve7Wr58uXr37u05bSEzLcPYa6+92gQ49957b22//fa64YYb9Jvf/Kbd9OPGjdOYMWNaXq9YsUKDBg3SYYcd5rtSi6ixsVGPP/64Dj30UHXu3Dnr4gAdDscgkD2OQyB7HIdAtjgGgexV+3FYaclsopBByz59+qiurk7z589v8/78+fPVr18/o3l07txZu+66q6ZNm+b4edeuXdW1a1fH71XjTlNR7b8PyDuOQSB7HIdA9jgOgWxxDALZq9bjMMhvKuRAPF26dNHuu++uJ554ouW95uZmPfHEE22yKb00NTXp3XffVf/+/ZMqJgAAAAAAAIAQCplpKUljxozRySefrKFDh2rYsGG66qqrtHr1ao0aNUqSdNJJJ2ngwIEaP368JOmiiy7SnnvuqW233VbLli3TZZddphkzZuiUU07J8mcAAAAAAAAAsCls0PK4447TwoULdd5552nevHnaZZdd9Oijj2rzzTeXJH322WeqrW1NJF26dKlOPfVUzZs3TxtvvLF23313vfjii9phhx2y+gkAAAAAAAAAHBQ2aClJo0eP1ujRox0/e/rpp9u8/sMf/qA//OEPKZQKAAAAAAAAQBSF7NMSAAAAAAAAQPUiaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCQAAAAAAACBXCFoCAAAAAAAAyBWClgAAAAAAAAByhaAlAAAAAAAAgFwhaAkAAAAAAAAgVwhaAgAAAAAAAMgVgpYAAAAAAAAAcoWgJQAAAAAAAIBcIWgJAAAAAAAAIFcIWgIAAAAAAADIFYKWAAAAAAAAAHKFoCUAAAAAAACAXCFoCSAf3n1Xmjs361IAAAAAAIAcqCmVSqWsC1EEK1as0IYbbqjly5erd+/eWRcndo2Njdp+++21bt26rIuCjmjdOmnx4vLf/ftLtR3zecq6devUrVu3rIsBdGgch0D2OA6BbHEMAtlbt26dttxyS73xxhtZFyV2QeJrnVIqEwpg2bJlWlwJHAFZIdsSAAAAANDB8fCAoCUsNtpoIw4KZGP27Na/e/WSqjCb2QRPtYHscRwC2eM4BLLFMQhkb926ddp8882zLkbmCFqixRVXXKEjjjhCnTt3zroo6Ghqalr//tGPpN/9LruyZKSxsVGPPPIIxyCQIY5DIHsch0C2OAaB7FmPw46uY3YcBwAAAAAAACC3CFoCyBfGBgMAAAAAoMMjaAkAAAAAAAAgVwodtLzmmms0ePBgdevWTXvssYdeffVVo+/dfffdqqmp0VFHHZVsAQEAAAAAAAAEVtig5T333KMxY8bo/PPP15tvvqmdd95Zw4cP14IFCzy/N336dJ177rnad999UyopAAAAAAAAgCAKG7S88sordeqpp2rUqFHaYYcddP3116tHjx669dZbXb/T1NSkE044QRdeeKG23nrrFEsLwJh1JHEAALLywQfSvHlZlwIAAKDD6pR1AcJoaGjQG2+8oXHjxrW8V1tbq0MOOUQvvfSS6/cuuugi9e3bVz/4wQ/03HPPeS6jvr5e9fX1La9XrFghqTz0fGNjY8RfkD+V31SNvw3519nyd9P69WrugPshxyCQPY5DVNQ8/bQ6HXaYSt26af3HH0ubbZZ1kToMjkMgWxyDQPaq/TgM8rsKGbRctGiRmpqatPnmm7d5f/PNN9cHH3zg+J3nn39et9xyiyZNmmS0jPHjx+vCCy9s9/7EiRPVo0ePwGUuiscffzzrIqAD+qbl748//lhTHnkks7JkjWMQyB7HIb52/PGSpJp16zTjzDM1edSojEvU8XAcAtniGASyV63H4Zo1a4ynLWTQMqiVK1fqxBNP1E033aQ+ffoYfWfcuHEaM2ZMy+sVK1Zo0KBBOuyww9S7d++kipqZxsZGPf744zr00EPVuXNn/y8ACdlmm2201RFHZF2M1HEMAtnjOERFnaW1zVaf+5y27IDXpaxwHALZ4hgEslftx2GlJbOJQgYt+/Tpo7q6Os2fP7/N+/Pnz1e/fv3aTf/xxx9r+vTp+vrXv97yXnNzsySpU6dOmjp1qrbZZps23+natau6du3abl6dO3euyp2motp/H/Kvrq5OdR14H+QYBLLHcQirutraDn1dygrHIZAtjkEge9V6HAb5TYUciKdLly7afffd9cQTT7S819zcrCeeeEJ77bVXu+mHDBmid999V5MmTWr5941vfEMHHnigJk2apEGDBqVZfAAAAAAAAAAeCplpKUljxozRySefrKFDh2rYsGG66qqrtHr1ao36X59DJ510kgYOHKjx48erW7du2mmnndp8f6ONNpKkdu8DyFiplHUJAAAdHdciAACAzBU2aHncccdp4cKFOu+88zRv3jztsssuevTRR1sG5/nss89UW1vIRFIAAADkRU1N1iUAAADokAobtJSk0aNHa/To0Y6fPf30057fnTBhQvwFAhAdN4cAAAAAAHR4pCICAAAAAAAAyBWClgDKVq+W3nmHfrwQzPr10htvSM3NWZcEAJJBCwAAAIBMELQEUA447bqrtPPO0nXXZVsWgqbF8p3vSEOHSmeemXVJACAZBC0BAAAyQdASgDRrlvTRR+W/n3wy27KgWO6/v/z/DTdkWw4AAAAAQFUhaAmgbdPepqbsygEAAAAAACCClgCktkFL+iYEAAAAAAAZI2gJoG12JZmWAAC0ok9LAACATBC0BECmJQAAAAAAyBWClgDo0xIAAAAAAOQKQUsABC0BAHBD83AAAIBMELQE0DZQSfNwAABaEbQEAADIBEFLAGRaAkDSSiXp7bel9euzLgkAFM+0adLy5VmXAklYv758fSyVsi4JgBwiaAkgX0FLKiwAqtGYMdIuu0jf+lbWJQGAYnnoIWm77aRttpFWr866NIjbt79dvj6ec07WJQGQQwQtAdA8HACSdtVV5f///e9MiwEAhfP1r5f/X7xYuuOObMuC+D3wQPn/P/8502IAyCeClgDylWkJAECe0KclkB90sQEAHQpBSwBtg5ZZZ1pycwgAAAAntdy+AkBHwlkfQNvsSjItAQBoxcM0ID/q6rIuAQAgRQQtAeSreTgD8QAA8oSgJZAfZFoCQIfCWR9AvpqHAwAAAE7ItKwuJCsA8EHQEgDNwwEAAJB/BC2rC/cdAHwQtASQr+bhKA6ejgMAgDTRPLy60MILgA/O+uh46uulDz7IuhT5QvNwhEHQEkBHQJ+WQDxWrpQ+/TTaPMi0zNb8+eV/cSFZAoAPgpboWEolaZ99pO23l/74x6xLkx9kWiIMgpYAAMDEmjXSNttIW28t/ec/4edD0DI7H38sDRpU/vfRR/HMk2QJAD4IWqJj+fRT6Y03yn//+MeZFiVXrIFKKg8wRdASAACYuOUWaeHC8t9HHBF+PjQPz85ZZ0mNjeV/Z5wRzzxJlgDgg7M+OpbGxqxLkE9kWiIMgpYAOgKahwPRrV0bz3zItMzOihWtf69aFc88ue8A4IOgJQCClgiHoCWAjoCgJRBdXMcRmZbVhRZeAHxw1kfHQpDFGc3DEQbHEwAASBOZltlJot5HsgQAHwQtAeQr05JAWHGwrYBwOHYAIByClvkQV+Zs1vcdAHKPoCWAfAUtURwEXoBwOHYAIByah1cXWngB8MFZHx0LN4rOaB6OMDieAHQE9GkJADQPB5AJgpboWAiyOCPTEmFwPAHhcOwA6GjiOu9x/syHuB7mkCwBwAdBS3QsRa7olErS1KnJBBWtFYasKw95yWhZuFBavDjrUuRbkY8nIEscO0C2KnUqjsXiYZtVF5IlAPggaAkUxS9/KQ0ZIh1zTPzztlYYsq485KEyOnWqtMUW0sCB0owZWZcmv/KwrYAi4tgplrw8TEN8Tj+9XKc69dSsS4KgOH9Wl6zvOwDkHkFLdCxFruiMH1/+/1//in/eNA9v69RTpYYGqb5e+vGPsy5NfhX5eAKyxLFTLAQtq8+NN5b/v+WWbMuB4Dh/ZieJdZ91Cy8AuUfQEh0LFR1neWoengfLlrX+vXJlZsXIPfvxxPEFmOFYAYBwOH/mQ1wPc0iWAOCDoCWA9qOHUyFsxbpwR9ASAACkibpGdhg9HEAGCFqiY6Gi48yeXcl6ggmClkA4HCsAgKKxXrsYPRxASghaomPhRtGZvcKQ5VPPvG0j+jJzR9ASCIdjpVi4DgDRxXXe4/yZDzQPB5ASgpZAEcVdYctT0DIPqBCbIWgJhMOxAgDhcP6sLmRaAvBB0BIdS7VUdOL+HfYgZZYViLxltOStPHli30+oeAJmquVaBABp4/yZHfq0BJABgpboWKqlohN3cIhMS4RBpiVghmOj2Hh4BUQX13HE+TQfaB4OICUELdGxVEtFh+bhzmbPltatiz6fatlPkhZH0LKhQfrss3jKA3/Tpxf3+C4yBjsrNoKWQH5kcf5sbpY++ST95XYEtNIB4IOgJTqWarkwxv078tQ8PGxl9N//lgYNkrbfXmpsjK883Ky6ixq0bG6Wdt1V2nJL6a9/ja9ccPaHP0hbbSUdckjWJel4CFoCQDyyOH8ef7y0zTbSL3+Z/rLzJI3m4VwfAdgQtETHUi0XQjIt2/vGN8rrZfp06b77si5Nx2DfD4MGu597Tnr//fLf3/tePGWCuzFjyv8//bS0eHGmRelw6EoBQEdX5NHD//GP8v8XX5z+svMqqebh1ZJgAiA2BC3RsVTLhTDpPi2Lvp7q66N9n4CCmaiBmLVr4ysLginig4kiI9MSyC+Ox3zjoU914/oIwAdBS3QsRQ/GVSTdPLzoAY04m3TTPNxd1BuJou9ngCluyoqN60B143jMN5oP50cazcOr5V4NQGwIWqJjqZaKDs3DvUW9wayW/SRpcfRpCXQEnFOA/Cp6nafaEbSsbjzUA+CDoCU6lmoJktA83BuZlumI2qdl0fczwBQ3ZUB+cS3Kt/Xr277m/JkP9GkJICUELdGxVMuFMO4KG83DEQbNwwEzBC2LjWtKdbEff1yL8o1My/ygeTiADBC0RMdSLRWdpDMti16B5wYzHTQPL65qORcWBQNJFBvXlOoStZUA0kWmZX4kse55qAfAB0FLdCzVUjFNuk/Loq8nbjDTQaYlYIabMiA/qq3OUxRhz3sELfOJ5uEAUkLQEtVt1qy2F8NquRCSaemNoGU66NMSHdm6ddL8+WbTErQsNrZXdYmjztPUVK5jInk0D8+npIKWbF8ANgQtUb2uu04aNEg66KDW96olSJJ0n5ZZrqc8VFbyUIYioHk4Oqq1a6Vtt5UGDpSefNJ/evb1YuOaUF2iZlqWStK++5brmDffHF+54IxMy/xIo3k410sANgQtUb3OPLP8/7PPSjNmlP+ulooOmZbeGD08HTQPL65qORdm5c47pdmzy/vwwQf7T0+flsXG9qouUes8U6dKL71U/vvUU+MpE9xlnYnH8e+MTEsAKSFoiY6hsbH8f7U8vUu6T8uiB5OiVqSoMJkh0xIdVX19sOlpHl5sbK/qEjWzq1KnRDqyzrTk+E8WmZYAfBC0RMdQqXBUy4Uw7t+Rp+bhcTy5rY3x1EampTv6tCwubsKi6d492PQELYuN7VVdoj6opV4QTtj1RtAyP5JYF2RaAvBB0BIdQ6WCWi0XQjItvXFDkQ6ahxdXtZwLs9KtW7DpaR4O5AeZXcWSdVCL87UzRg8HkBKClugYKhfAarkQVnOflnFUDmkeng6ahxcX+3g0QYOWZFoWG9urukRtJYBwwh5HZFpWN66PAHwQtETHUG1By2oePTwODMSTDjIti4ubgmiiBi1RLBwv1SVPD2rhj0zL/EijeTjXSwA2BC3RMVRb8/BqzrSMA4HGdNCnZXFVy7kwK127Bpue5uHFxvaqLlGbh1PHSBeZlvnE6OEAUkLQEh1DtQ3Ek3SflkVfTzQPTwfNw4uLfTxdNH8rNrZXdam2B7XVjqBldau2exAAsSNoiWzMm5duJbHamocnPXp4Uttm7VppyZJk5m1F8/B05Ll5+Lx5+T7em5uluXOzWz43YdFEzSrO0/pfuFBqbMy6FPmWp+2VtbTrb0mIGiTJen+YP799IK+aZZ2Jl/X2DqNUkubMSWa+cUtj+9bXS4sWxT9fAKkgaIn0/fWv0oAB0t57p1cRqLagZRFHD1+xQho8uLztX389/vlbkWmZjrxmWt52W3k/O+CA/G7Lgw4ql/Hmm7NZfl7XS1FE3dfzsv4ffbS8H+6wA4FLL3nZXlm7667y/rLXXsVeJ1GDllnWJR94QBo4UNpll+IHj01lHaAt4r4+cmR5Pzn//Hjnm8S6SDrTcs0aaZttyueu55+Pd94AUkHQEun73vfKF71XX5UmTUpnmZUKTxErHk6S7tMyiQr5Cy9ICxaUn3b+5z/xz9+KTMt05LVPy+9/v1y2556Tpk1LZhlRTJ8uPfNM+e9TT82mDNXyACcrQa8leb32fPWr5evjtGnSvfdmXZr8yuv2S9sJJ5TXxWuvSW+8kXVpwov6oDbLYOHRR5eXP3myNHFiduUIg9HD03PHHeX/L7oouWUUpU/L666TZs8uP5j76lfjnTeAVBC0RLbSqvhVKjzVcqNexExLaxZPkbIDilhZTUteMy2t6uuTX0ZQechoY7+Oppqah1esWZN1CVAkeTy3mipypqVVRzlmaR5e3ZIePXzFita/V62Kd94AUkHQEtmqq0tnOZULYl4qmlEVsU9L6zyTrgCSHZmOPPdpWVEtx3zcuAmLxr7+/PblIgQt81imvGDdVJciZ1padZTrW9aZlmhlXfdx1bWLcH0EkCmClshWp07pLKfamocXcfRwa6XTq/xx/Daah6eDoGVxVcu5MCv29bd2bbDpWf/FwvaqLtWSadlR9ksyLfMpqebhcR9f1OOBwiNoiWylFbQk0zLY/JLOtPQqf96ClnCX1z4t015GEXETFo19v/JrpkkmSbGxvapL1KAlmZbpyjrTkuM/WVkHpQHkHkFLZCut5uH0aekt6aec9mUknWkZVR7KUARF6NOyWo75uLGPR2NffwQtqxvbq70iPxyM+qA2L9eVjrJfErTMjyKOHg6g8EKlua34X4e2vXv3jrTwVatW6cknn5QkfeMb34g0LxRUbUpx80qFtKgVj6gZbX7SzrTMe9DSqsg3ZkkjaFlceTvOiiZq83AUC9uvulRLpmXR9suw9amsM/Gc6jrUDYszejjbCii8UEHLjTbaSLW1tXrnnXe0ww47tPt8zpw5+tWvfqWamhrdcsstrvOZMWOGjjrqKNXW1mq9/SkaOoa0Kh5Fz7RMuj+0PAUt4xB1/kW7EchKEfq0zMvNZd6wj0dD8/COhe3VXpHXSdCBtOzyUpfMSzlMhd1n8pZpSdAyXmRaAvAROs2t5HHBWLp0qSZMmKAJEyZEnhdSMm2aen/yifTWW+leLAhamkn6gp5G83BrpTPpPi3j3K+omLqLmgEcR0Bx7Vrpf9n/jvJ0zC9fLq1bl3UpyrjuRhM007LoQculS6WGhqxLkZ2ibS94I9OyWPKWaZmneoWTJNdPEvPOevsWxYIF4dZNqVT+btHMn591CZAj9GkJSVLdaafpwDFj1HmPPaTGxvQWnNaFiebh3vKUaZm3oCXcRQ3ERM2wX7RIGjRIGjBA+uAD52nycnPx3nvlcg4aJC1ZknVp8rNeiipon5ZFHj38qaekvn2l7beX6uuzLg3yosgP9Kpl9PC8lCNpecu0zPt6T2v9MHp4em68UerXT/ra14J/9/DDy9+96ab4y5WUM84ol/kXv8i6JMgJgpYos57Q06wMkGlppiM1D89D0LJIAYUsZd08/Fe/khYvllavlkaOdJ4mL8f8ySeXA1uLFkkXXJB1adjHo6rG5uFuZTrooPI19JNPpAcfTLdMeZHH7YXwotZ5yLRMV96Clnlf73mp95iiebi/004r73f/+U+wrMm5c6WJE8vf/eEPkytf3K6/vvz/+PHZlgO5QdASZdUetKxUMIt6IayG5uHWZdA8vDpErcjHkWlZMWeO8zR5Oebnzm39e+HC7MpRkfebrrzraM3DKzp3zroE2Sjq9oIzMi2LJevmw2RaJjvvrLdv0QSpO6fZejIueT++kAmCliir9qAlmZbeyLREGHH2aVmb0OUoL8d8J8u4d3moRHKMRBO0eXhe9sOoNt006xJkg+OlupBpWSx5y7TM+/k8rfIVpXl4tan2437VqqxLgBwiaImyjhK0LOqJPu0+LZMeiCfvQcui7idpizPTMmrQ0m3Zean8ErSsLh2pT0uwvZwUuRUCmZbFknUmXtGClkXLtEy6JUKRz1VOgqyfIv725cuzLgFyiKAlyqo9aFltzcOLnmlJ8/DqEGfQsq4u+PJNtk1ejnlr0DIPWToEYaKx71fV2jx8xYq2r4tS7rh11N/tpcjrhNHDsxG2vGRaBlO0/YJMy2CKtn2Dstc7ABG0REW1By2rrXl40n1aZtk8PA7VfkHPizgH4iHTMl0cI9FEbR6ex/XvVKZZs/yn6Qg66u+uVlEf1OblulK0/bJagpZ5X+9J7p9FzLREsRC0hINId4k1ZCBVj2oPWlYqpEW9EKadaZn0QDx5bx4OM1GD6VGbh5uct/Jyc2kdwKShIbtyVHCMRBN0IJ6i3fRWzJzZ9nVRyh23jvq7q1W1ZFrm5fpmKuxxRPPwYNJaP0Xp07La4hU0D0cH1Ml/Enc77bST62eVgGZdmCZ/SF+1By3JtPRG83CEkadMS5NlZMl6LSRoWXz2c1i1DsRD0BJuingzXBF3pmWplM36KNrxWC2Zlnk/nxd9IJ6i7ddpq/b1Q6YlHES6SyyVSpH/ISfSClpm1W9J3oKW69ZJq1ebT590lk4azcMZiKf6JNGn5eLF5vMpUqZl3pqH52W9FFU1Ng93QtCyLI7fXV8vrVwZfT6ILu5MS7fvl0rla1pSinYeD3McLV6cfVCraEHLog/Ek/f1a5Xk8e0myPop4sMlMi3hIFSm5X777UfT8GqTVtDSfrPeEZuHL1wo7bBDOdvqjTekbbf1/07SF3Sah7vjXOcuzubhdXXSdddJZ50lHXWUdN99/t832TZ5ybS0Ng/PQ9AyD+fCIqN5eMcS9XcvWyZtv720apX08svSjjvGUiyEFPfo4U1NzoPJfe1r0mOPSTfdJH3/+8GWYaJox2PQ8p52mnTjjdHnE1XRgpZkWraVVD3+0kulsWOlUaOkW29NZhlO8r7/RUWmJRyEClo+/fTTMRcDmav2oGWeMi3HjpUWLSr/fcopksnxlPQNb9rNw4sUtIS7uJuHn3lm+e/77y9nJPXqFb4sTsvIUt4yLTlGoonaPLwo63/Jkravi1LuuEX93RdfLM2bV/77+OOld9+NXiaEZ9+eQa8TJq1T5syR/vOf8t8/+EEyQcs81GmDCHocOQUsw8wnqqI9dMp7+eyKOnr42LHl/2+7Ld2gZZDzVRETL8i0hANGD0dZtQctKyf4PFwI589v/XvOHLPvJP2UN40KQ5p9WkaVhzIUQZzNw+19WsYVbMxL0JI+LatL0EzLIgQtncpUhHKnIervtjYh/OyzaPNCdHFnWjp93++cEIeiHY9x1S2zDlrm4V7CC6OHV7cg27eI65JMSzggaImytIKWWXWmnadMS+tvNn0Clvbo4WRatiriU8q0JBm0NJmXybaxn3Oy0inSuHfxK2JFNk86Sp+WRbtZT0rU7WU9V3XUdZgnUes8JpmWaVx7inIeqYirvAQtvaW1fooyeni1qfagJZmWcJB50HLNmjW64oorsi4GrKox07JSeczDyTtM0DLpClMaQUvTgXjiwEA86Yi6X1r3M3t/YEG3Qd6bh1v7tMwD9vFogjYPL+r6LlqzyKRE/d3WhzIddR3mSRJ9Wtqlce0pWnAnyL6fpxY5BC2TlfRDvTSSD9Jc50HOLUXbFyQyLeEos6DlypUr9bvf/U6DBw/W//3f/2VVDFTQPDw9YX5z0hf0amseXsSLdBHlKdMy70FLMi2rSzU2D3dC0LKMTMv2irwvxD16eFZBy6JtgyDl9er7maCltySvN0ms+2rItEyzrlntmZbWoGXe6s7ITOp7wpIlS/SHP/xB11xzjZYvX65SqcRI5HlQ7UHLvDYPtwdqTL4jFTPTkubh1SfugXiizIugZTBFrMjmSUdpHl7UcudNWnWsNBX5d0St85BpGU6QfcareX3WQcu87/tO9wxOo9tHVZTRw9PQ1JRePa/aMy2tzcN79syuHMiVSJmWM2bM0Nlnn60ddthBvXr10iabbKLddttN48eP13JbfwSrVq3S+eefr8GDB+viiy/WsmXLVCqV1KdPH/32t78NtfxrrrlGgwcPVrdu3bTHHnvo1VdfdZ32vvvu09ChQ7XRRhupZ8+e2mWXXXTnnXeGWm5VqvagZeUEn4eTdxzNw+nT0hvNw9MRZ6alnck+aHL8ELR0xj4eTdBMy6Ld9FYUtdxxo3l4e0X+HWRaZiOuTMu0FT3TkvImj0zL+NA8HA5C30U9/vjjOuaYY7R69WpJUul/B8Xbb7+tt99+W3fccYeeeuop9evXTy+88IJOOOEEzZw5s2W6gQMH6txzz9UPf/hDde/ePfDy77nnHo0ZM0bXX3+99thjD1111VUaPny4pk6dqr59+7abfpNNNtEvf/lLDRkyRF26dNFDDz2kUaNGqW/fvho+fHjY1VA9GIgnPXE0D0860zKJ9WTd9kVqHk6mpbuoFXmvfk5N5sVAPOEVsSKbJ0H7tCxqxiJByzKah7dX5H0hjUzLNK49RduXaB6ejiTLm0bz8CKeWwhaxsea+Jb3Yw2pCZVpuXDhQo0YMUKrVq1SqVRSqVRSz549teGGG7a8/vDDD3XWWWfp2Wef1SGHHNISsNxqq610ww036JNPPtE555wTKmApSVdeeaVOPfVUjRo1SjvssIOuv/569ejRQ7feeqvj9AcccICOPvpobb/99tpmm210zjnn6Etf+pKef/75UMuvOnnPtFy/Xlq1Kvxy8xq0DNs8POk+LTt6piXMxNk8POpNJM3Dg8nDubDInJqHe+3/RQ1axl3uVavylUFlikzL9op8DilCpuW6deV/XpLcBsuWxT/PIOXNU9DSLu/7fpKJCGFai/nxKm9jo/S/BKnQ0kg+SLOuWe3Nw62ZlvbyR40HoLBC3UXddNNNWrJkiWpqanTMMcfokksu0dZbby1Jmjdvni6++GJdc801+te//qXXXntN9fX16tWrly6++GKddtpp6hTx5q2hoUFvvPGGxo0b1/JebW2tDjnkEL300ku+3y+VSnryySc1depUXXrppY7T1NfXq76+vuX1iv8dQI2NjWosYoXbR41aI9iNDQ2J3VTUrF3bZqdb39iokt+y1q1Tp113lebNU9Pjj6s0dKj/gkolWcfqbW5sVFNjo2rXr5e1V5cstmVdc3PLui6pvA58NTS0+T3rGxr811sAnZqbZb2kN61fr+aY101dY2PL725ualKTZf5ttpXtM1Nt1o/JfuWhU6nUsj6am5tDlSeoyr5YpPNLTWNj8OPZolNjY8t6LlnWuSQ11tf7nofqSiXHY8m6LzQ1NMS+L4dRV1fn+pQwrW0e5zFSrUyPQ/u1RM3NalyzRurSxXH6dsfK+vW5WP9tjhWH8771eiVF3G/eekudDj5Y2nRTrZ80Kfd9VcVxXaqoLZVa9pdSc7PZdT+H0jqHJH09rGloaHM8NjU2BrpO1DY2tq1LOlyvaurr2ywj0G+ZPVud/lfXXf/669LAgS0fpXF9q/3Tn1T7s5+pdOKJarr55vjm29RkXgdfs6bNb7VKoo7qyVYHN6mfZMqpvAHvvd2OwU5S7PXjuvXrna8zK1ao0y67SCtWaP3TT0s77RRq/rXNzYnc+7VZx+vWJbpPhL4HtO8Led5vJamxUZ0tLVdKpVLr9XL16vL+sHix1j/1lLTzztmUMUVFvDcMIsjvChU9nDhxoiRpzz331N///vc2n/Xr109/+tOftHLlSt1+++2aNWuWNtpoIz333HPacccdwyyunUWLFqmpqUmbb755m/c333xzffDBB67fW758uQYOHKj6+nrV1dXp2muv1aGHHuo47fjx43XhhRe2e3/ixInq0aNHtB+QQ19esEAD/vf3k088oXV9+iSynE0mT9a+ltcvvfiiltj6P7Xb6qGH9KWPP5YkNR1+uB694w7/BTU365uWl7NnzNCbjzyiHaZN03aW9x955BHjssdl74ULtdn//l6xcqWeNihDj3nzZN1T33zzTc3t1i22Mn21vl7WW+3PPv1U78S8bobOnq1KtXvOrFl6wzL/Nttq9my9GWLZ1nm88/bbmrnppqHKKUmHrVunSg743Hnz9HqK+8njjz+e2rKi2vy117Sn5fVrr76qBQGe6B+0YoV6/e/vdWvXypp3/9QTT2it7Rxvt9vs2Rr0v78b6uv16P+2k3Vf+GDyZE3L4Di323n2bA12+Syt85B1vbzy8sta5NcPYwfmdxxuPXmyvmh7b+IDD2j9Bhs4Tr/FW29pd8vrF194QUsXLoxWyBhY94n33ntP0237ovV6JUlvvP665oUc0OHQU09V51WrpFWr9NHZZ+ujY44JNZ+0WNfNrFmz9FaE43SnGTO0TeVFqZRJ3SMO7c4hUTOgfCR1PRzw5pv6suV10OvE56dM0faW1888+aRW2+4/+rz7rvaxvA6yzb986aUasHixJGnhiBF6bezYls+s2+CjqVM1NYF96ZvnnitJqrnjDv37W9+Kbb47fvyxtrW89lonPebOlfMdmvTxtGmakuIxtMHs2TrY8vq5Z5/VyunTU1t+UD3mz2+z7iY++qjWh2zZaD8GD12zRpW74Pnz5+vVGLbDvosWaRPL6zdee03zamu1/Z136vOzZkmS1h51lJ76059CzX+7qVO1g+V1XOdf67H438ceU8NGG8UyX79lvfzCC1psmAndc+5cHWJ5nfdrT6c1a/Q1y+um9etbyvz5e+7R9jNmSJLqv/51PXH99RmUMBtFujcMYo1f10oWoYKWH3zwgWpqanTmmWe6TnP22Wfr9ttvV01Njc4+++zYApZR9OrVS5MmTdKqVav0xBNPaMyYMdp66611wAEHtJt23LhxGjNmTMvrFStWaNCgQTrssMPUu3fvFEudjprbb2/5+6ADD5QGDfKYOsJybBfNvfbcU6V993WZuqz2rbda/u66YoWOOOII/wXZ+hIa2K+f+h1xhGqfeabN+0bzilndVVe1/N27d2+zMvwvaFux2847qxRj2TvZmqlvOXCgtoh53dTddlvL3wP699fmLvMfOGCA+kVc9pe+9CV9McI8OlkCwv379UtlP2lsbNTjjz+uQw89VJ07u+UX5EuNLUD55d13D7RfWtdzt65d23x24H77SdtsY/9KG3X33NPyd5cuXRy305DtttPnMzjO7er+/W/Xz7I4D+0xbJhKBx/sP2EHY3oc1n74Ybv3DvvKV6QBAxymlmqWLGnzeu+99lJpjz2iFTZmO+20k3aw7Yt1f/hDm9e777pr6GtPZ0uQ9gubbabtcnBcmtpiwAD1j1De2iefbPm7plTK5JiP2x7Dhql04IGJzDvp62GNbaCHIZ//fKDrRO2bb7Z5vf9XviINGdJ2GbZyB9nmdePHt/zdr7nZ9bvbbb21tkl4X4pzX619+mnzeduCwKVttlHN/+rC22y9tbZK8xiylWXfffaRvmh/bJUjn3zS5uVhhxwibbhhoFm4HYOdLPdxm8dUP667+OI2r3ffbTeVjjhCdQ880PJeryVLQi+r9r332rxO4vx7yIEHSv37xz5fJ3sOG6bS/vubTTxtWpuXub/22BKZ6mpqWspcawnc9VywIP+/JQZFvDcMYkWAQZdCBS2XLl0qSdp2221dp9luu9Z8tn19glJB9enTR3V1dZo/f36b9+fPn69+/fq5fq+2tralzLvssoumTJmi8ePHOwYtu3btqq62m2hJ6ty5c1XuNM2WoFXnTp2klH5jp9pa/2XZAp1h1n9tc7NqHb6X9basqa01K4Mts6VTXV2828gWfKqVHNdXXMuoralxnb/XZ6aM9itDtbW18a8LD4U6x0TdLy0PF+wB0M4m87L0dVNTKjmut7pSSXU5X59ZbO/YzyFVxvc4dOiPuPP69e7r1DZ9Htd/XV2d77ESV7nrunTJ/XFpFfk6YDtXFuYc7yGNfTix66HteKyTIu2PnZ3qHLa+2AL9Dkv5vOpjUcttItb1b+tb0Hjep5yimhNOkP4XJK+rrU33/GFrWm1UP8lSjOX1OgZr6+riqR/b6n8tdXjLcVCjCPtiCuffNPeJQPc49n0hz/ut1G5btanbW/eHmpr8/5YYFereMIAgvynUQDyV9ue9evVynWYDSxMpr0BiGF26dNHuu++uJ554ouW95uZmPfHEE9prr72M59Pc3Nym38oOLc8D8YQ5SO1NVCvBkTyMhBqmE+ukRy6MOgiKCa9BV6zyNhAPo4e7i3MgHvt3TfZBr9HHg8wnDXnrDD1v5Skap3OYVzOXPFx7wkiq3CGbmKcm7t9tOuhekRRlH3YStU5lUmdKow+yvFzfTIUdPbxz5/TuU5wUbfTwJAfiSULSo4czEE9xeF17i/ZbEKtUhjOtSeBkMWbMGJ188skaOnSohg0bpquuukqrV6/WqFGjJEknnXSSBg4cqPH/a2Ixfvx4DR06VNtss43q6+v1yCOP6M4779R1110Xe9kKKc9BS5eBDTy5VSidRkLNMigVNmiZ9OjhSVRwkhw9PO71w4XRTNT17hV0NNkHTSpuebmpy9tNA/t4NE7rz6uP0Lxtf1NJjXqe9yBe3NeUanz4VdR9Wkpn9HBbN0WJyMv1zRRBy3QkWd4k1n3RgqxO0jwWg6yfotX1inasITWpBC2TcNxxx2nhwoU677zzNG/ePO2yyy569NFHWwbn+eyzz1RrqRSvXr1aZ555pmbNmqXu3btryJAh+stf/qLjjjsuq5+QL9UetKxUHpO6AQsiTKZl0hf0tDMtkw5axqkabzbjErVy4bVPmMyrSJmWeat4Fa0imzdO688r0zIP154wyLR0fh1UNV5HirIPO4la50k609K0Tp7G9S3Oh/tBroPW9depU76Clnnf99O63sS1XySdaZkGMi3jYXqsVeM1FZ4iBS1HjRqlnj17Rp6upqamTVNvU6NHj9bo0aMdP3va1tnzb3/7W/32t78NvIwOI89Byziah1dO8HmoeFjL1lGbh8cdtCxqQKDo4sy0DLMPmmSy5CVombd9Mm/lKZpqbB7uVCaCls6vg8p7ZmkYedyHTaWRaRlX0DJIOZIQZ9AyyD5jvb6TaRlM0cpLpmUwHSnTkubh+J9IQcvXX3/d8/NKs3Cv6UqlUiLNxxFQWpUBe5Ah7T4tixrcqobm4V4BKqs8BC2Lsl9krQjNw9Noomcib5XwvJWnaKI2D8/jOcapTEmVu1POG/rE/bursZ6bx33YVN4zLa3ykGmZxbxoHh5ekkHAJIJIadyDJI2gZTy8jrUwLRVRNUI/+i2VSrH8Q07kOdOympuHm2RflErSihVt34u7AmJfD3FefFetKs+/qJmWYS6Mq1aV/1+7NpmgWWX+VvX1UkND/MvyEjVo2ZEG4slbJZzrbzTV2DzcaR8l09L5dVBkWuZL3JmWTt+vloF4wm5np3oKQctWTusnLmkFWZMKWsYxX+v6ZSCeYJLcN/2Y3h/mOWhZue9FrELVopqbm2P915SXm8qOLM9ByzAZGW4BkDw00Qt60v3Wt6S993afR5zlqYjrmLzvPmnTTaXhw82DlmEkGRAIOq/bbpM23ljaaSdpwABpu+3irQAcd1x5/rfd1vre7NnSoEHS5z4nzZsX37L8RK0Yd6SBePJWgclbeYrGaf/0yrTMw7XHD83DW8X9u/N8gxVWHvdhU2lkWqaR5Z/Gw7Aw2/n735c23FC65prw86rmoOU110gbbVReT0lIq7l1XNsh7vLecEN5/Z54YrT5BFEtmZbXXVdedyNHBvteXEzqIXn2wAPl+96DDy5WuQugCh/9IpQ8By3jyLzLa6alnzlzyidAuzgrIE7zimv+xxxTzv57/HFp0iSz+ech0zJK85fvf7+8v02eLC1bJk2fLl12WbTyVCxbJv397+X5Wyu7Z50lLVwozZ8vnXtuPMsyEWemZZhKK5mW4VGZiiZqpmUemWRaxvU78p55GPfxkfffG0aRzyFF6tOyaM3DS6XyQ9XmZsk+7kC1BC2jLn/06PK2u+22ZH5LkpmWaTQPjzrf008vz/Mvfym3QkpDtWRannlmef63356fe2Sn/TevDwKPPrp83/vUU9K772ZdmqpShbUohJLnoGWYi63bU/C8BS39TrpuF9s4y+108Uvi4mv9LUVqHh7HvOLKfnS7CZo+vfXv2bPjWZaJKBV5vy4DgjYPdztPELR0VuSAQx5UY/Nwk5uFjpJpGffvrsagZd7OaUFEDVqmOXq4lzwGLb3KFGQ9W6/veRs9PKkgYFLzLFrQMs7yNjWls7+keT5Mq0/LrO+R7e/lsd7kJa+B1YKqwloUQsnzQDxxZlrmoYlekKCl2+dFybR0E3fQMu7tGnelLK79zG0+1vfTvDmOcmPv92Q9aPNwtxulvAzEk7fKVt7KUzRO66/ozcPp07IVzcP95XEfNhW1eXjSmZZWRcu09LrmVkumZd6DlkVvHh7nOmluTmd/qZbm4WGXExeTeohUjGtqjx5Zl6CqhBq+8aKLLoq7HDrvvPNinycCINMyPXEELeO+oNslffHNe/PwuOeVdNDS+vvTvJBHqcj7BS2DZlq63SiRaemsyAGHPHDankXPtCRo2Sru312NmZZ53IdN5T3T0lQeg5ZeZSJo2V5zc/znQzIt28672oKWSQ/EE8d341xmZX8o8jUHkYUKWl5wwQWqifnGmKBlxqo9aJnXPi3DHkdxX9BN3otTR2sennTAyjr/NG+Oo9zY24OMYW4irfspQctgqPxFQ/PwaDpa0LIIWSFB5XEfNpVGpmWULH+v/aW2trX8eQxakmkZTBJ1AzItW61fn079qxozLbO+R86yHHHIW72/4EIFLSWpFOMOFHcAFCEQtExPETIti9Y8POmmJVElvZ9l1Tw8yo19HM3D7QPxNDe3//0ELZ0VtRKYF0Gbh+fh2uMnzUzLvIt7e1VjPbfI+0KRMi3t69m6LxG0TEeS58Ek6gZJBlmTkGSm5fr1ZFqGlfU9std7RbimFvkamUOhgpZPPfVU3OVA1vIctIyjj8PKCT4PN2B5y7TMW/PwOOaXt0zLpJ5GO72fZfPwKJmWUZuHV1536RJ8PmnIW+Ul7zcxeRe0eXjetr8Tk5uFpM9leUHzcH9F2KfdRA3qpDl6uF1tbevy8hi0jKt5OAPxhFe0TMu4Rw+3z7vagpbV3KelVz0k79cc+zk/7/WcggkVtNx///3jLgeyllXQ0uSAdnqi7de0LM+ZllZ5yLSkebi3ogUts8y0DDsyaNh52fdTp6BlXgbiyVvlJetzX9F1lEzLpMqdt+PBjubh/vK+Db1EbR5uEhQi0zLavPKcaZn35uFF69MyySArzcPDLyfrxJ4Kp9+bx2vqypVtX+exnldgVfjoF6HkefRw+8mqvr7t63Xr/JsWpDkQT2Ojd2U160xLezYQzcO9y5B20DJIv3hO70e5kNfXR2t2EqV5eJibSKdMS7/lZCVvN/h5qkytW5e/9eMnqT4tveYRF7dlpJlpuX59ebvnVdzHB5mWyVm7NnhZogZJssy0tH6WxnkzzqBlkPJ2pKCl331DUGm1KrPPN+z1K8lMy6I0Dw+y7rJoHl4qRaufrF/f/v7db5n29/JyzXGzfHnb11HPE2GubVWsCmtRCKNUpObh1pPe++9LAwdKQ4ZIq1e3vu+WaZn0hXzBAmnwYGnQIGn2bOdpggSY3MoXttwXXij17i1ZB77KW/PwPAQt456X4Ty+fOml6tS3r3T33c4TuK036/zD3hx/8IE0YID0+c9Lq1aZfSfJ5uFhMi0r55e0M1FM5K3ikZfyvPtueb8bMiSdgF1cojYPd1r/P/95+fx88cXRyubl61+XNtlEuu++9p+Z9GkZ1836j34k9esnvf56PPOLG31a+svDOeSVV8r70a67Bgv6xJ1pGfdAPF6s1/g8Zloyengwc+ZIn/uctOWW0rx58cwzi+bht98ubbSR9L3vBZ9PNYweHqXMt95aXncnnxz/suIIWpZK0iGHSH36SA8/HHw+y5ZJ22xTvjf+5BOzZbqVI89WrGj7Okp5n3xS2mwz1e2/f/Ee6ieEoCXK8hy09Mq0PO44ackSado06cor3b+TVvPwc88tV0Dmz5dGj/af3u9GxiSzLogLLihfwH/zm9b3nCqYRc+0jCruTEuT8s2erQEvvaSahgZpxIhg87G+H3ZU3uOPLx9Ln3zS9ljyEmemZZibArdMy7Rv6kzkrdKRl8rfscdKS5dKH30k/fGPWZfGnNP688ocNLn2/P735f31l7+MVjY3H3wgPfRQ+Rp6zDHtPzdplhXnfrN8ufS1r8U3vzjRPNxfHs4hhx9evlF8+23pL38x/17eMy2taB6ev6BlnMs/++xysHLuXOknP4lnnlk0Dx85srzN/vrX9s1k/XT00cN/8IPyurvjDu9uZsIsK8q6rKy3V14pB9HWrpWOPDL4fM4/X/rsM2nhQun73/eetsjNw+1Byyj73cEHS6tXq/bll9X3zTejlatKELREWZGCltYbw6lTW/+eP9/9O2k1D//ss9a/p093niZI8/C4My2dZJFpmffm4XHPy2QeDQ3+07htlziah7/7buvfCxeafSdKxTipgXgkgpYm8hBwkKQPP2z9e8GC7MoRlGnF2u2zLNa/XwZ1FqOH53Wbx/27aR6ejGXLWv9evNj8e3kfPdyrTt5RMi07ykA81syzGTPimWfWA/EE3S+rIdMyrmPRZD5pZ1oGDULbWVse+mVaetVDgtw/Z8HePDym/a6ztSVpB1aFtSiEkuegpVfzcLfvZ9U83GQ9xtE8vOijhxO0bM/kpjbJ5uHWeXftavadvDUPr8zTmm2al4F48nCDb5W38hRN0L6A87C+/Y4pr2ZZXtNUIzIt/RV5X4jaPDwvfVrmMWhpv+Zayxgl0zJLaWUuxnWeSLK8XsupCFoPTTrTskhByzDJPFHn5/fdNM/1JvUQKZ/X1Dibh6MdgpYoK+pAPG4Xe7esraSzXeJejyZBqiSWkXRWWN77tIy7eXjSQcu4BuKpSCNo6VfBo3l4svJYmcpjJdSN0/rz2tfykGnptw+mOXp43tGnpb8i7wt5z7T0kvdMS/t12boeqqV5eN5HD08y09KkfhzkfJf0PUgRmodbmQTt0m4eHie/8ni1Ysn7NSfugXgqqrH+EAJBS5TlOdMyTNAyqz4trZVJk4BjHjItnS5+WWZahlENmZYmfVEmmWlp1a2b2XRxZlra0Tw8WXmv/OVdEZuH+x0LZFq2ivt3V+N6y9s5LYg0Mi2TyvLPe6al2wB5QeeVp6ClXd6Dlmllhrpth6gPsOPcvkVrHm5yHS5apmWQoJtppmUekWmZKIKWKCNoGQ+TE3OQoGVWmZZFax6e5I11khmzcc3Hur3iCFqGzbSM0qelXZTm4QQt/eWtPEUTNDskD0HLMJmWBC2dX0edXzXI228KUp4iZVp6/a48Bi3dHiZKwdZznoKWSZ4Hi5ZpaRVHYkUamZZFClqaXIfTyrRMYr2FybQsSvPwpDIt83atzQhBS5TlOWhpn8ZthFavoGXlSVvSN2Am6zFvmZY0D/cuQ1qZlibTJDkQj1UemodHybT0ey8Leat05K08RRO0eXjQYyWJ7ZNln5ZF29/iLm/Rfr+JIv+muEcPd/q+tb7bqVOw+XvVJa2v03j4lFWmZUcZiCeNwBCZlvHNz2s5cTC5J0s70zKqIMdukZuHk2mZKIKWKMtz0NI009LrO5X30sy0jKN5eBqZlnlrHp6HoGXc8wqznweZJu7m4VkMxGNnkhVmX17l/GL9LpmWZUXImMvjk3M3UZuH+0ki2J5ln5Z5OQ5NJfkgrFoU+TdFbR4eNNPSpPsXK69zoXW9FyHTshqahycZBCxa83Cv5fi978RpH+7IfVqarI+06pNZ1FuLnGlpD1pmXe+vMgQtUZa3gXisgUmvoKWVX8CwqSkfA/HEkWm5dm18Zc8i0zLvQcu8ZlqaDMQTR9DSdKTOJDMt/fZBrz7E4r6pq6+Pvh/EnV0cVRY3fW7n7iKKGrQslaSGBvfvJDGIh9+xsH69/4PFsNeGOH5PmvtPR2geHvWYzNtvitI8fM2aaNcvvz4t47guV6T9UI6gZfjzoEndwTqvpOr1RWseHuf2Tat5eJLdQKXVPNz0XirJa7FX0DKp7RjX77E3D8/bNbLgCFqiLE+ZlrfeKvXuLf3wh87ThA1aOl248h60dLsIjh8vDR0aTzZOFn1a5r15eNzzKlqmpelvjhLQiDoQj1dT8DiDlu+8Iw0cKH3xi8nd4GfRxC/NytS6deX1N3BgeX1Wg6DnTfv6nj5d2nJLaZttpGXL2k/f0BCldM789rMrr5S22EL6+OPW9+Lab6IGLf/wB6lXL+lnP4s2H1PVHrRsapL22kvq21d68cVw88jbbwrCXvZnn5UOPtj8NwXNtIyziWbeMy2rcSCeMHWd116T+vXzr6sXLdMyrofwFUlnWibVPDxKINFLls3D7b/B7bu9ekkXXGA+37iahyfhxz8u/55rrok+LzItE0XQEmV5yrS8/fbyDdsttzin9UcJWlZLpqUkvfmmdNdd5mVzQ/Pw9kya+QdhMg+TMpv0aRlH0NL0N2fZPDytTMtvfUtavFiaPFm67rrw88k60zLLoOXVV5fX3+LF0ogR6S03SVEzLc85R5o3rxy8HDeu/fRZBC0lacECadQo9+9kFbQcM6Y8j8svjzYfU9XePPzf/5ZeeaV8k3XAAeHmUeQbMqeyP/WU9MILZt83ybSMErT0qhsWLdPS+rojBS2/+tXyA6k335TuvNNs3nE1ec060zJq0DLuTMs0AsNFGYjHa926BS3t32lslC680LwMQfZrr9+fxLHyxz+Wf8/o0dHntXp129d5u+4XHEFLlKVVGTA5eVZu1pqbnS82JgPxOM03jebh1oBR0kFLSVq0yKxcXvLQPDzq/lcNzcOjZFrGPRCPaYUoyaBlXJmWUbORrVln8+eHn09HDlrOmNH69wcfuE+Xxz6K3LhdY9x4bX+ndZJV0FKSpk5t/Tuu/SYvA2KZqvZMS2sztrAB5bz9piDcjoU1a8J93y9oGaVOVU2ZlkHWQ56DlibLX7y49W+vunrRMi29lhNmeU7XhiJkWkbtF9dN3H1aRglaprFvmnxelGuNaRd4ARWoZpwogpYoS6syYHLitb7n1KTbpIlmHpqHxzGIjt8FI+rTK7f3024eHnU7VEPz8CiBzbibh5Np6SzOJn5W1d483BqAMx3kKe+CPuzxWt8rVzpnMsQtzHGdl+bhaav2oGUcx2HeflMQbseC6Xoh09JdXH1aVtPo4XG3LvKTdIKG33yj1gXjzrSkebj7ayvT5uFBBblXNQ1a5vEht31fLnJrhBwiaImyPGVa2rOkkhyIJ+4TStD16Ld8v3kEOWm7XVBpHu6NTEt3USryUYOWafVpGZeOnGlpPWdXS9AyavNwK6egZRKZlmGOhbw0D08bQUt/eftNcTwQ7tIl3Pf9BuJJqk/Bag5a5jnTMs7M2aJlWpq0RIoatIyzvDQP95+/23ydmmVHFSbTslLmvF1z7BIK+ub8V6eGoCXayzpoac+0rOY+Lf0upFllWqbdPNz0MzdxlzeL5uFRApvW98OUN2yTkCQzLfMyEE9c8ha0TPMJcEcJWgZpHt6pU+vfaQUtybQ0l+Q1JQ+qMWgZhNv2tR6XXkyumUk1D897piUD8aQ3LzdZ92nZEZqHV2OmZULNm2PLtLR+1oEyLXP4SzNB0BJlecq09AtamvRpmeegpbUMUTMtgzQFNhnExW/auMQdwMl7pmWULEork20Y5iK5dm3wskj5ax5euckpWtCy2puHW4OWpplMeeeU3RxkG2+wQevfK1a0/zzLoKXXQ5A8BC2LmJmctwAfQUvn902vF0H7tJSCrS+vG/IgD77DiLrvxz0QT11deX1US9AyjYBiWg8pO3Lz8KT6tMxTpmXe+rSMO2gZ936RVNAXkghaoiKrPi1Ngpb2aaI0D0/6xt1kIJ4gy+8omZYMxBNfpmWYipN98IGiD8RjP4fkQdzZxVGluUzrg6Zu3dyny+OTczfW9VfJzvLaZ+3r2xq0XL26/bGdRGZimOM6rnNrnMdhFtll3Hy0l7d1EkfzcNN9K2ifllL49eW1LyZxLEQ95uPOtOzcufx/noKWUZbvFRiK63clGbQ0qR9HrQvGnWlZpObheRqIJ4lMyzBBy6TuSeOebxpB3w6MoCXKipRpGWUgnjxkWgZ5Su5XPvq0LMt7pmWUgKTJNFEzL+LKtEyzT8uiDcSTt+bhad70VeNAPE5By7CZlvb5SdlmWlrFdfMbZxC2iEHLvAX44liHRb4hyyLTMsj68qpLJh20jDvTMupAPJXza56ClnnPtExyGSZB1o6QaZlUYNgkkSRKpmWYoGWax5tXpqUVmZYdDkFLlMVZGfC62TI5eVrfC9unpdN8nZ62mf5W0xvItPu0jNI8vFKOLJqHBwlamqz7JG8w/S7wJusq60xLv3W4fHnb12lkWvoFMZx+q/V35KlPS5N9tCMHLYP2aZlEwC4qe5ms27OurvU9t7Lbt38le8jt8ywH4vE6/4XZbxobkw9axr2+kszed9LYmO4xGccNdpFvyJLItLTvg0ncwCaR3WWvZ0fd972ClkHmnedMyyjHj1c2W1ytDbLOtAyyPKdrg9f3g57rq2H08Cjb0+u79mM/D0E3r7hAHPux9Vob9wMDRg9PFEFLlMVVGXjgAWmTTaTjjnP+PGimpVNFPkqmZZgbsP/8R9p0U+kb3/Cf1q+Jun2ZYdLk3Zbnx62ymEXzcNMAzqWXSr17S7/5TbD5pRG0XLhQ2nZbaeutpfnzzefnJkqfll6B8CeekPr0kYYPdy7H3XdLO+8cvCz25Tq99hK0efhPfiJtuKF0ww3u33d6L+mg5dNPS337SoccEj6DuCP1aekXtDz66PL59uGHky1TEJdeKvXqJV10Uet7TpmWDQ3SxhtLJ53Ufh5+6z+NTMswWWRR95vx48vr7sILg33Pi/13nHhieb3/4x/xLSPNTMu33pL695eGDUuvO4sw58UszyFxczvnmq5/+/q7997yPjhiROt7UTIt3cTdj95nn0mDB0tf+ELrw8uo2zlI8/COGLRMusWX0zKK1jzc7fvnn1++J7j8cvP5JzUQT5p9WibRPHz2bGmrraTttpOWLCm/l1Tz5iDHrtfvj1qeqVOlQYOkL36x3C1W3PtFUs3rIYmgJZxEOciOPrrcP9ff/y598kn7z8P0aWn/jttAPNasQ7csrTCVhSOOkFatkv79b+ntt72nNQkiBsm0jPOE53YydbrQlkrJnmxN5z12bDngcd553tPFXQk0af5y7rnS9OnlSv8553hPa3KhjSuwaZ/mkEPKoxNPnCi99FL76a03WUGWIyUbtLSX4aqrysf+6aeXX7s1D0/q6bfkfHwfeGD5Zu+JJ8r/3JBpWeYVtHz//fKDr1WrpCOPTLxYxm68sXz9uO661vecgpZSuSJ8553tH2T43XSkkWlpGpDxukYF3W9+8Yvy9n/ssWDf82It04IF0l/+Ul7v3/lOfMtIM2j5ta9JixdLr78u3X57tOWYiqOrgCLfkMXdPHzevPI+ePfd0syZ5XUT5QbW7SY/7uvbD39YDl5Mm1YOCEnxZ1p6DcTjtR92lKBlGv0tFq15uFt5L7qofD352c+Czb/ofVpGWZbbvnDWWdKsWeV79XHjnOdb+W7U4y2u0cOt5QuTlfzd75brZpMnS1demXymZZGvkTlE0BJlSVQG7IN7OM07TNDSrZmZX5bj2rXRK2NOv8mtDCYX87w2D3eaPk5hM9LcZJFp+fHH7f82ya41WabbvKJkY0rlYJCJsM3D4+zTMuxAPPYyxZm55Lcdly51/4ygZZlX0HLlyuTLEkYlgGg9fqzb0xq0rLA/XPPLyjC9zkWRVfPwuFl/h0nLizDSDFrOndv694IF0ZZjKkxALY/7glWQ8sTdPNyqvj54k1dTcWd3ffBB698zZpT/J9OyvTj3/TQG68g60zJqXTDuhI0k9pekgpZpZVp++GHre9Onl/8Pel0Is17DzNPvftXU5Mmtf8+eHf+xl9SxnbdrbUYIWqIszwPxhGk25xa0jFrxqPRd5qZIzcP90u2TbLLqFWQsStDSpBwVBpWZGvt3w46o6DWNU3Al6Dys0sy0tMsi09JP2GA8zcPzrbJ9rNcQ6/pzui74nZPsn9sHw8oy09Iqj4Eq6zHtd00OK+5j0nS9BXkQGYVpCxav7+RhX7AKUh63acNmWlrV1UUPWqaVaem0zCT7tAxyPqmmgXjizF4PujynZcY177QzLcOohj4tozysMNkXnDIZnb7rN283cY0ebi07A/F0OAQtURZX589+TCos1veCZFpaOZ2U16yJXlnwu0Gy3nCYPIGMmmkZZfRwt4uU2/RxynumpUnzF5NyVJgEC0wyBKNmWnbp4v99v3lYZRm0dPq+Ux+4zc3pVRy8ypy3TMs0AqUV1qCl6T6YJ5Xjoamp9frjF7T0W9/218uWtX1dLc3Dk5BG0DLNTEurtOpi9nO8XysSKdtziIkgdZYkMy3r6pLLHkuqHz2rqPt+XEHLPGdaRtn303iQmmSmZVzdHVWkMXp4GtmsRRmIp/La6XgKOpBMGs3ure9FXcfWedfUJN88PK75p1UvyDmClihLojLgl0VpMo3TxcbtZs7rRkuKp3m4X6aayXoMErT0K1+QrIw8ZVp6PanNQ9Ayg0xLowpQmPlYme4vYTMtk2oe7rQNTJuHBy1XFHkOWma5TGvQ0msfzGvFzLrtKsEd6/pzui7kMWiZxUA8SYjar5WJrIKWafHL9HWSx33BKo6gpWlg3+86m1Tz8LgDx2Hr6V46QvPwKOs9bD0hiKwzLaPWBeMsL83Dnb/rdO0M2qdl2kHLOJeXRNAyqYF48natzQhBS5SlFbQ0qbCEbR7ulx3nNFJY3JmWJvO2ntTykGkZNeMgDJMATpRgYZyZlkEuam7rLM1MS69pnG6kevUKtxyn6ZLKtHSar1vzcKeyp9VEPGxgsiM1D0+zuX5crNunEtyxvucUtAzaPNzeH2oSfVqGybTMY6AqyDU0LDIt28vjvmCVl0zLUsn5+A2yvkybh0vxZ/Mk2Tw8yLw7YtAyrj64kzxWnfbHuFvdxJ1pmUbQMq7jMOmBeLzWRVJBy6jNw50yLcNcK5M+LpLMcAZBS/xPVn1a+j1RCpJp6Xcjk8fm4WFO3lZRgpaVcmTdPNztIhLlBiRvmZYmFVGTTMuozcOdbqT69w82D6soFQC/oEycmZZJ3QgE+TzrTMu8BC291kNRMy2drgt+HbLnOdPSKo+VcL9zQxySvKbkgf33mQQt89hVgFWaQUu/bLk4+7T0m0fcdbWo14ogo4e7zbtUav1deQxaRlm+1/aKq66S5HnbqX4cJcMsjT4tkzh3FTXTMkzQMur5Mo99WsadaWkSbA4rb9fajBC0RFmeB+Kxn1Tcgh1+2XFxNA/3YzIQT1aZlm6/Pa/Nw4NkGuU9aGlyYQ+TaVkqBXva67ROu3XzX46buJ+uu5UhSKal6bRJyHPz8CyDltZt7bUt8hq0tJa5kmlpXX9OmZZ+fRvZ10Ne+7TMY3ZdNWRaus0vrYF47PsfzcODzcNrujiCllZ+9ZG4r295aB5uPVdV+0A8Vkk9YI3zPOlUN4sSVDPNSg67zZ2ah8exPkwSDeKYb9Rluf12p+PJ7WFrmveJXts+atAyyWtYgsH3nNaMU0fQEmV56tPS+l5jY74yLe0BVTuT9ehUTreKShqZllk3D3f7jUFu2oNs16BZj6VS9H6uwmRaOn3H6Smo/b2gT/HD9p1ZWb5VkAt0kKCl03yDZFrmPWgZpWITJhDl9DqOZZmUpejNwysZaX7Nw/2ClllkWpqObFmkoGVS5Uk6aOl2HKQVuA+TaZnHfcEqyHk0yUxLtzpDHOuriJmWYYKW1u84ZVq6Lc+e1Zl0EDBMf4lkWrZ+x20bxbmfO9ULi5ZpaVLXNr2PrLw2GYgnanJLmP3Z6/dnORBPmPqv034WZp3k7VqbEYKWKMtzpqV9GpM+Ld2CllEvXJXMtq9/XdpsM+nJJ9t+HnQgnlJJGjtW2nBD6YYbnJfnpah9WprcFEcJWrp5/fVyc+h99/Xvk6rivffK2/qpp8KXI0ympUnzcKcKX9BMS5Onum6SzLSMs3l4HoKWXusmzDm3VJKOPNJ834x67hs5Utp4Y+m++5znffjhUt++0rPPei8nD82Lg/JrHu4UtLQfa37Htz1omUSfln5N1p3ez2OTYL9rfRySDlpmfRzQp6Xz+6Y3lGlmWlrFfX0Lm1zgJY5MS6egpdP3Tj21fF36+9+liROlPn2kb32r3CXJ7rtLW2whTZkSrPxOnI7fGTOkrbaSdtxRWrnSfF5Fz7SMI2j56afS4MHSTju1v/a5fd/0+uX0vSSCuEkFLU3q/vbX48ZJvXtL11/f/rtB9oU4+7T85z/Lx+aoUck0D4+D6fx+8Yvy+r36avdpTJqHX3ppeT6XXmpeRkk1ebvWZoSgJcryPBCPaaZlGs3DSyXppZekhx4qX2gPPrjt52EyLS+9tHzDcPrp7adNqkmHtXxuF9q0moe7fZZEpuU3viEtWiQ9/7x0zz3mZVu2TDroIP9yRBmIxyTT0qniYr85spbBK+PBaXq35bhJMmgZpnl4Y2OyQcswla2KuJuHv/SS9PDD5vtmlG01b550++3SqlXSMce0//zJJ6XHHisPJrP//m0/s/ZnKRWzebh128XVPNz+esWKtq/JtHSXRZ+WUeUt0zJM8/Aks7fikKc+LaNmWrrVJePOtLRnHtnfc3rtJ45MS5Pm4UuXSjffXL4uHXecNHy4tHy5dP/90tlnS2+9Jc2f73zNiqq5WfrBD6SZM8tB0d/9znt6a9mLnGnptv2CLm/kSGnWLOn996WLL27/ucnDdNN1lVSmZZrNw/2uH5dcUj6Hn3GG/3e9fnucyS3HHls+NidMKN93mfKKHUQdiMdkWXbNzdL48eX1+6MfuU9ncs82dmx5PmPHBitn3q61GSFoibK0Mi1Ngkt+QUu3DJS0mocvWeL+uclAPEH644oSJPFarnXZSWVammaWuV1Qk+jTcu7c1r9nzfIvmym3UTcrwowebvq01Ss4Yr8RNQ1apjEQT5BMS9OmMJVM6KDLikuaQUuv85DJMoIs0y+g4VUhtX/Xaz0UIWjp1DzcaSAev6Clff2vW9f2dRoD8YS5/uQtaFltmZY0Dw8vT31aRu3fzG0/SPKhXFKjh1tfm87b6fxqv0+xnzOtpk5t/TuJTMtSSZo8ufX1jBnm8ypypqXbOSBopuXbb7f+vWCB/3KkeIOWec60NAnYWl/7LTdKpqXffaLperQ+vA5zX+sXPA3DtHn4woVm80twIB4yLcsIWqKs2pqHO8137drolW63oEhFmObhXqIGNb3m5XcRiHpx8MtEsJfD/jrITXuY7WrPAAvyXTdRboTCZlomEbQMm2kZZJ+Jmmnptn6SvKnzEzYwGeZYS/L4jHNe9mBIEfu0tJbZtHm4X1ajfT3Yz0d5yLQsQtAyqfJUe9CSgXiizcOvfhPlumrnl2mZdFZw0O0cR/Nw62+qJAPY69de5ere3b+cQTgdv05lNPm+1/aKq1uQrDMt/faZIPU/t3kG6cqh2oKW1mV5Be8l921mMhCPV13AraxOTBJ6vD53Cp6mNRCPW4KLXYID8eTuWpsRgpYoy1PzcOt7QZqHpz0QjxO/9VgqtZ1H1KBkkBOi2xM0twtt1AuwaQAnjqBlmO3qdqGPcpGJM9PSZNAcp6ClU4ClokiZlmGah7vdyOQhaBl3pmWYBy5Rl+nG67fZgyE0D3d+XY1By6Qq2tWQaZl183AyLcPPwy9gVipFz7rJItOyIu5My6SCll7Hfrdu/uUMImrQ0iqN5uFJZVq67RtBMy39fqfJPhck0zLqPu0kzaCl1/Y0OXc7fTeNgXgqglzXvOodUR9YWr9jmmk5c6bZvJMafE1kWlYQtERZnjMtTYOWfsHAOIKWQTItTS48fhc5vxNqlKCl38Wo2oOWSWRaRgkAez1JdZumVPIOjtgrM6ajh4fNtIwzaBlmIB77jYTTvJIUNpsy70HLKA9P7Ptg0ZqH28/5SY0ebj8fZTkQT1xBy6SyDLLo0zKtTMu0hBmIJ4kb/zilNRCPSb0szkxLq7iDlmGTC7zEnWlZuS7Y71O8tlXamZZBrl1e+0Heg5Zu2y9o1yN+1zeT8pqOlp1UpmVS2axBB+Lxy5IPcjwHvU9M4jrmdU4KkvTjJ+6gZVLn/DjnU3AELVGWVqalSaXXHrS0T9PQ4P89pwM8jubhbs1PK/zWo/2kFvVpY5QbSKd0e+vNd5LNT72y6Cqvk+jT0vr70mweHlempdM29Mq0TLt5eJB1F6TSahqIdDs+k7oRcFp+mO+mUSFJMkvKa15Fbx5u/21OmZYmfVr6PbBKo09L00xLr8+D7KtJVdjJtIzOvt46WvNwt7KbzMPkYXOcWTfW7yX5UC6pPi29gpYmwRC3TEuvOoTTg6QonMptfS9vmZZJBdTczgFB95morcwk86BlUgPxZJlp6dWiyu+7QYKWlbJEOV/6lcfkc6eWgWH26TD7AZmWuUHQEmV5ah5uPRE1NppX0tJoHh4k0zKOoGUamZbW9zt3dp8+KK/vm6z3JDItu3Zt/TtvzcPDZFo63Rx5ZVom3Tw8yLpLKtMy7kyUIEwD9XZ5z7T0C6R4/bYgzcPzyK0ZbdCgZdBMyzQG4glzYxlkv0nqJo4+LaMLk2mZt2xRu7Sah6eRaWld125/V8R9To2673sNxGM6b6eAYJCgZdznT6dyOwVWTRQ509Ktrh302hJ0OU6CBC2TCOKmGbT0Kn/QoKXXb08q09IrUcWOTMt2CFqWEbREWRJBS5MbHpNMS6f5OFVITDItowYt/U5AfuvR/v2omZZRgpZOmZZxBi1NgzRu+0TSQcu8DcRjkmlp0qdl0KBlZfowWbZRbm6KOBBPlOBd3EHLoJWhJLOkvMpS9ObhbsEdtwz1CvuxloegpV8g1c7kwaMXMi3dv5+3TMtq6NMyjizguDIto97ABgkS5K1Py7QG4skyaNncHCxo6ZctW1HUTMugzcNNl+O177ltf6frRRJB3CyDll4tquzctlmQgXjiDFqGmTaJoKV1vl6sQcvevd2nSzDTMncPCDNC0BJlecq0tL4XJGiZRKalU3m9vuM3QlrczcOjXAicLgLWoGXUk6RpAKeoQUuToHRFmExL0+bh9opb2ObhYQLWaQUtnbZvXgfiCVO5i6OZS9Dp0wpaxjEQTxzbz3Qe9hsc+29LaiAee+Z3XH1aNjZKy5eXyxtH8/AsgpZeN5xBb0bjGB3aPi+nhyV+mUemmZZO+00c69Vv9HCn3xQ1mJW0vGRael2fTJlkIFbkrU9Lr+bhpvuQSdDSqw6Rt6Cllde5vakpnutdUtd7k+0lOQcKg6jMz2seSTcPDzrmQFz1TJNzRxyZlmkOxBPkvsrrgU+cDyzDZFp6DfDlF7Qk8BgZQUuUpZVpaVJhsWdaOk3jl2np9J01a4JfuILe5PkNxBN38/Ag2yrt5uFFzbSMcmGJMhCPyVNbp98Z10A8YQLWSQYtvZqANjVlk2np9/t++lNpu+2kuXODfTfMOTfNoGWUhydBMi2dvPSS1L+/9NWvhr82PfaYtNlm0ne/6z3d+++r0zbbaN+xY1tvLN0y0oIGLf0CQElkWr7wgjRggLTRRtLuu0urV3uXwc6ktUTQ74cRJNPSKyBwySXldXHVVf7L9Dte7r9f2nRT6bDDpK23lnbdtXXfOO+88nJuuMH9+yZBy0svlTbcULryyvLrRYuk7beXhgyRFi70/w1evDItZ82Stt1W2mmncsC7Iu+ZlmkNxJNGpqVpcMikPKbLiatPyzxmWrrV90z5BS1NM6TPOkvaf3/vaTbZRHrqqWDls0sq09Jt37Bv8/32k4YOde+GyXQ5YYKWTteLoOvjl7+UNt5YuuUW92myzLSMErT0WqdB+7QMk2npNq81a6TddpO+9a32nyWVaWnykHPOnLavvab1mn+E/aOGgKckgpaoKFrzcK9mrm7LDtM83KmJX5yZeFlmWlZeZ5FpaRK0TGIgnqyah5tkx4TNtIxrIJ44gpZB9pkozcPdshHcjs8kRmJ288kn0ujR7d83PR5MRT1Pxxl88pqX/aYlaKblAQeUAzSPPipNnOhdDjeHHy4tXSr97W/SlCnu033nO6qZM0ebTJ2q2srNSlKZlnZJDMRz553lQJckvfWW9MQTbT8vSqalV9DSKavGzbhx0qpV0k9+4r9Mv7rKt75VDug9/rg0Y4b09tvS739f/uw3vykv5/TT3b9vcgMzdmx5Pj/9aWv5P/xQ+ugjacwY/+978RoI6te/lj79VHr//XIZKjpC0DKuPi2jNhV0u/4l+VCucv5NMtMyq6DlihXu05pwqutY3zPJtFy5Urr2Wv/pVqyQDjooWPnsotTNgszXKxPvzTelP/wh2nKyyrS8+OLy9jrlFP8yVmQ1EE/Q5uFe+0LQ5uFxtly47DJp0iTnz5yC43Fcf/zmsWxZ2/3M63f4nfOjBC3zdq3NCEFLlGUVtPR7ouTVPNzrJO70nTDNw+2VolLJPGPKpHKZh4F43IKWSWZamgRw7JVOr/UeJmiZ5kA8kv/6DJNp6XRz5PUE1ito2aWLeVkr0sq0NHlyXpnOqQwmI+PGySkwFmT/NRE10zLKA48gn9v3Ja99y+1cX1EJwEWxdKn7Z5Mnt/792Wfl/036tAwzEI9dEpmW9v3efj5IOmiZxkA8QR8Emgpzbvv0U/P5mWRa2n34Yevf1n01DK91+sknrX+/8ELr39UatNxuu2DzSDvT0vq3SRZWVFEzLeMYiCfvQctSybmMXtJ8eJpUpqXb9nM7JrzOiV6ckirsogQt41gf1ZRp6bYd/YKWcWZamlw/48y0NGke7pUUYud3zo9SN8nbtTYjBC1RludMS6dpGhq8O352O+nbA1VhMi29+AUt4860jHIDWSlLUZqHBwmCuq0Xa38kaWZaSsH7x0lrIJ68Ng/3y7QMErQ0GWQiTvbAQ5zHcdjvRNlWcQYtwz7MkOIZpMS04uh20xRX83A7+/kojhtcr+CBFG67FjnTMsoyTX631zne9Aa3so87XZ+s+1nU67PXcTlgQOvfs2c7TyPl70YqTNCySxdpwoRg8zA5bpJqHp5kpqXbMoJu5zw2D08i0zJo0DLNgebSzrR02wfDno+jZFqaPOSOY314XZfinK/fssJmWgYZiMfkOPViErQ0+X6cQUuTsgSpM/llWkaom9A8vIygJcrSGojHr9LrdAPiln3jlcHjdoA7ZU56STrTMmggK+jnXtP6ZVpGPUnGHbSMI1Mtq+bhUvAAddrNw9POtPQLyvgFLd06K3fLso6D6e+z38AEedgRd1ncpk8raBmkYp9Gxcy04uiWYVCk5uFe67q2NvlMyzSClnnKtIwze9kpyGLN6I36O71u4q1ByyVLWv9OKhASlzBBy9ra4MFgk1YTUQficbv+xR20DFNP95NW83CvY8Bev7P2zRpG1KCl371D3JI6Vk3uI6zCPnyrzC9M0NIk0zKObRHXOjZ5oOW1rLCZlk5BdLd6S5yZlmE4BVXTyLQM8tDd757Nb3A+L3l7QJgRgpYoy0umpWnQsrHRPNPSqeme2/LsnE7gpkFLJ0Erl37zC3LSdltfbkHLtJqHu/3GIAFm00p2VgPx+H3mtNw0BuKJGrCOUmkrYvNw02PCbwRguzD7XFGCllGbh8ctrkxL6/txBC2TaB7u9VvDBi3jDMyZ8rqpy1PQ0u2hidP3/abzC1rGnWlpfb3JJt5lc3udtiiZTtagZdBgcJaZlk7zINOyPfs1P+lMS78sSrd9IilJZBZK6WdahkkEcLpeJBHENc2eDzofk0zLOIKWTrLs09KLUznSCFpGbR7ulWkZoPz0aVlG0BJleQla2r/T2OhcniDNw3v2dC9j3JmWcQcnwtxUujG5GFlvvouUaWl6UbYG5uLMtHQbddMqj5mWcQctg6y7IjYPN10vNA93/yzItHZxNK/zGkXWOv/KceQWtLSuP6cHY0Gz+u2fJ51pWVcXbrtGueaE5RWcMjlvhhE209LtN5ve4FZ+q1NmmPX6nGSmpdtvzVvQMmjLFSu3oGVcfVpGHYjHdBuYlMdUXKOHe2Vams47atDSnrmeRKallV+mpT3ImbSkMi3dzgFu8w97njLJtHTb/k4PsoKcu0z39zSDll7LSmMgniAPUfymC3PdqHw/zkxLk7JEzbSMKWiZ+bU2JwhaoiyvQUuv5uFewRrToKXfSSPqjadd0ItanEFQt8qitUxhmgibLs9p2V6fJTEQj3U6t4F4ouz/UYKWJhlDTjeaXoFIvz4to/ZnmmTQ0iswkVWmZdigpd/3ih60DPLkPko2chy89gXrjadTJdn6fb+gZZQKqpTfTMs495uw8/HKtkiqT0vT77j1ZWp641h53ykzLMk+La2v7Z+tXNm2bBVZ30hFySaLErRMI9PS7SY/7kxLk2M8atAy6kA8letpnjIt7a9NgpbVkGlpch9hlYdMS6f7yCgPT92mK3Kmpdt29NsOYdeVE5P7wjgzLU3mEedAPBEestGnZRlBS5SlFbT0q/QGCVp6PQGxzneDDdzLGDTT0u9padxBS7/5BTmR5al5eJhMyyCVDJOKcNTm4U7LCPIE029+TtPHPRCPW9Ayb5mWThU2twpCHjMtqz1oGWS/zzrT0mtfcApaumVaWt9PImiZxEA8VrW14fbLPAQti5RpWbmOBc20zLJPS3vZZs4s/1+NmZY1NclkWhZ5IJ6owek8NA+3P5ROonm4Vd6ClmlnWsYdtDTJtAwyEE+Q9RG2/ht2+5oEP72mSXIgHrd6kFu53ETNtHQKWpZK0ZNM/L6f5EA8AY5JmoeXEbREWdCgpcnJIswT3ChByzCZlkGDlqVStKBl0IpDGpmW1vf9mofHdcPqdQELmmnptE3CBi3juAi6SSrTMkrz8KhZtlEqxkk0D3fbfk5NesMw/X1BB+IJc0MR9bekFbQMko0Q9abO5PiNGrS0Z1ragx4Veci0jDoQT9RrQBrNw03Om06C1l/CBi0r1xm3c6XbtcupOWucQUvT7nWkZIOWXsds0P0zyP5Wmbd9IB6npqR+y3Wad1ID8QTJtGxqKp/v3LJ93ebttZ1NfkMeBuKx132K3Dw8zMOjIJmFUcril4kX9uFb5bwQJmjp9CAryLnL9DiNK2jptW+5Hbt+mZYmiSEmA/GkkWlpem2Vog1m4zRPv/IHOY877Y/WgHmQB/imy+xgCFqiLEjQcvp0abvtpGHDvJ/wmNzw+L12q0AGGYgnSqal041nlIEk4s60jHID6XQRcAtcNTdLhx0mDRokvfWW2fKiZuuZNM3/1a/Kgwbcdpv/tFLb32QPWt55Z3leP/+5f5ndFG0gnjxnWsbZPHz1aunII6X+/aWXXzYvo1eZvFRbn5ZRbuLTah4+e7b0+c9Lu+0mrVrlPp3XNcsaFPIKWlr3s9pa5xtWt8q/qaSbh0vxPHh0+963vy1tu63/tCa8bg7tn5neJG++uTRihPkyTX93kKDl7be3H/TGLdOyuTne5uFe1xv7vGfNKv8f5SGVk08/lbbZRtpjj3aZcTUPP6zDTzpJtWee6f79JPq0vPNOafvtpQULzJfrNO+sMy1ffVXaYovyQ/uhQ6X99iu/fvNN92W69eNbKpXPR3vvLW29tfTRR95ljyPT0vq+0/m1VPI+1u3zTTrTMqmBeJ5/XurXT/rWt1rLcNJJUt++0n//G768Ybk9ZAmSaWlSlrfeKt9v/POf7tMEGYgnSBA360zLSjLCgQdKn/uc9N573uW31/PfeKN8rB9+uHOdOEh9zeuBh9P0bty6iPjPf6TNNpN+8AOzQHKcwXi3+wgrt0Ck2/zsfvYz6YtflJYuJdMyBgQtURYkaPn970sffyy9/rp0+eXu04UJWiaRadmjh3sZ/X6rU+DM6yQd9Ql90OmDzM+krxK35uH33y89/ng5MHDEEWbLM8lGsP5vf98k0/J3v5OWLSvvj37T2stkD1qedFJ5Xnfe6VVqb1EyLZ0C9n7z98u0tDeRKlKflmEyLd2Cln/7m/Tww9L8+dIJJ5iX0atMXorQPDxKlnaQz4M8Xfbb77xuDE85RZo2TZo0Sbr0UvfpDDMta9xu4KXycVV5v6iZliZZBmGDlq+9Jt17r/901rIE+TyOTMuFC6W773Z/CGeavW8vl32dV87BTuewkSPbZ4BVlmt/v6kp2T4trb/X/tn8+e2nkaJnf5xwQjlw+dpr0p//3OajTkcfra4rV6ru5puluXOdv59E0FKSpk6Vxozx/67X50kNxGOaaXnnndK8eeW/33xTeu45ac6c8sNnN5X5OF3Xr71WeumlctLC977nXfakMi2l1muAX9DSzutBlok4Mi3DHLP77lsOoN9/f3n9f/BBedsuWiQdeqj38rxeh+W2/YIEckyubfPmle83vJg2D3dKfokjaBkl09vKqWx//av09NPlB0ZHHeUdILU/iD388PKx/thj0r/+FayenlSflm7b6ogjpMWLpVtvlT75xP37cWQr2rndL1gFefjk9hsnT5bGjmUgnhgQtIQkqRQkaGmt5HudZJIOWnqdANwCcX7lsXPq0zJK0DJov4ZxBkHdKjHW992ah8+Z0/p3pSIcdHmmnwcJWroxfSqYdF9QVnEELYP2ael182CfX5iR46MELf1uOLwCE0GDltasGa9zlp+kgpZhKl5pZlpGCboGqdhHqYC++mrr39Onu08XtHm4U3nXrm3bxMok0zLMA6uoFVWvc06plFym5cKF/tNYRQlampw3naarWLLEbHqT3+10PvZrHu40D6l9Ztj69cmOHu51vnULvEbdP61Z75VsTierVzu/HyVo4BW0lKT333f/bhqZlm4P7UwzLd0yyhcvdl+mV6bltGmtr72yNSXvLHPTYFrcQcuofQT77ftpjB6+ZEnroFh+4j5W/ebr9tuc1rtbf/JBJdU8PA+ZltaA7ccfm2da1tSUA9oV8+a5X3vS7NPS65pd4XVucitH1KBlnJmWXtfkKVMi3X8yEE8ZQUuUpTEQj8kNkMkTMsl/IJ6kgpZRMy2DBi3jzNBye4IWNdvOTdhMy4ogA/G4zduvTHGNKu02f6ug297kpscvaOnVTMv+eV1d681b2EpbkG0UNdPSbf34HRNe5wM/YYOWYYJDfvIUtAyy30dpHu6VaWnNKu7e3X26oKOHO/02az9xpkHLMNs4amDK6/smx4rJg0cnQX9rGpmWbmUyfd80aGnaPHzZMvd5SO0zLdevT69PS9PfELWuaP1+t25m01kllWkpOb9n/67X53E2D/cLWjrtC2H2D6+gpXV+ftdQr37nssq0jHq8pJ1p6bSO6+raPrjwEqVu5sVtPkECOWkHLdNqHh52HTuV169fdLdMS/v+UVPjfsw53fe71VuCZH47Te/WPNzK3jLMaX5xBi2t/U26CdK9gd8DeTItIyNoibIkgpYmlZOwmZZOfVq63ch4XeTjzrSMmlFlEugNMj8rkydobv0ahhm1N2zQsvLar09Lr/mbXmDjGlW6wmvfyGIgHr+gpXV+dXWtFaWiNg8vlfz3u4EDzcrnxHS9BB2Ip5qDlkncLDix3gh17eo+XdSBeKS2mZZuQQ+vY81U3IEpK5NjJWymZdDfGqW/X9NMS9ObK7f3TYO1pgG/GTO8l2vPtGxqCj7KtRev49L+WVJBSyuvYzbpoKVTHdEraGnyANJpmiDryy3Q57QfOy0rzDXcq3m49bjyWjeS9815tQYtTfq0DHJedDoerA+W/cQZ3LHKU6al2/Y3SX7xOhZNj9MkMy3t29lr/7PWaezTeQUtnQRtHu72m72u2W5MgpZeD0SCcjomwySPVPi1bInQtJ0+LcsIWqIsL5mW9teNjc4Htl+mpXU+cQYtk860TDJo6TZvt6Bl3H1muZXHbR/wax4eZjvYvxN30DLtTEv7zYR9Gvs8vAKccWRaxhm0jLN5uNWAAWblcxI20zLqw4w4vpNk0DJI9mSUTEvTMliztuy/M+pAPFL5vFF5P6nm4U7ziPP7pZL3PuB2LJn8jrgzLb3OjaaZlkGDlmGPyahBS69Myzibh3sdl279cgatnwQRJtMySmDGL9PSK3MujUxLtyByHjIt/bL9TOvmTq+dvuMUtJSC/cakg5Z+gmZaWgfFrMhDpqXb9guSaekVnAoiSKZlkPVhuq7CBOacOJXNfk7yOtdZ72OcgulBfntcfVr63Xs4MRnYN+5MS79rWtSBeCrItIwFQUuUpRG0dAsyeL0O0jzc7UYmSvNwp1T5JIOWQZ/EBNlWRWkebhq0jCPTMs3m4UllWno1+Q7Sp2U1ZFrmNWjpV6Yw59ygx2eSQUuvbRnknBalebiVNUslyIOKsM3DTQbiCbONk8y09Mv88cpm9hP0twZ9mOd1bsgy09IpMOHWH6Rf0NIp0zLJ0cO9HnalkWnpFbQ0vTFOq3m4yf4a50A8ecu09AuceZ37ogYtrd/LU6Zl2EC2G7egpV8zdLfyxBW0dAvyBAnkJN083OQ+Mo6gZVyZliZBS69lWe9jTIKWQTIt3ZJL3JZXYd82cTUPj5Ct2I7T/UKSmZZeSSM+6NOyjKAlysIGLf0yNfym9buQxDEQT5rNw6NmRqaZael0U55F83C394uUaVlZPxGClu3S/8MOxGPNoPJrHm79vLa2tUIcttIW5Al1kAC/03LcKhN+83W6GTCVVKZlGkHLKMuMkmkZJBshroqZNQBiP4+YBi0r5XQqr715eDVmWrr195RE0DLodTHOTEvTYKZp0NJ0IJ4wmZamTUNNmD70lYIPJhRGHJmWaQUtqzXT0u1BTdSgZRKZllkHLYMeC6VSsO3v1Dzc75xtn9Yq6UxLt/kHaR4etL/xIAPxBLm3Sjto6XQe8+tiyC3T0s4r09JkIJ40My29gtmVfT/O/drpwW2UTEu/PsRpHh4ZQUuU5aV5uGnQ0qlPS7dKXtwD8UR5QhcloyTM8ryW7XQxSjPT0u0JXuW1X59wYcpnn0flYp/UPm8Vpd82t2n8MjqCBC3DNA8PGmSvMKnAuB3PUrRMy6iVHBMdrXl4kEzLpJqHW3kFLeMaiMda8SdoGXwaqyhBy7xnWoYNWjqNHm6aZWUiTKZl2PO9iSINxGNyLY8atHTLrnSaR9zNw6NmWqbRPDztoKVdmLp6kP3TaR273Q+5Lc/rdVhu2y9IICftoGVSzcPTzLT0ugYGDVpWXgcZiCfOoGWY64bbvXeU/dppvzCpT5j+Zvt3aB4eGUFLtOf2RMOJVwaeSeUkSqalW4XVfnIrcqZl1GCHV9ad0025PWgZ5URpml3mtp8k0Tzcvg4qAYwglV8vXvuGX6U5zMXSLWjpliUWtHm41/Z3OkckFbR0qhw6bX+T81bUSo6dUyAh7oF4nD4Peh5KMmgZNBBpmjll+j27ODIt/YKW1oq/SfPwtIKW1nUUpXm427U3iaBllAc69s9MB2eoMN0X4w5azp3rvVyn5uFx3rh4BZacmrhHOd+b8Hu4bF9+qeQdtLRPa1eZ1m0gHtM+LZ2+61ZPDJIl5xa09LsW+AWRvMpU+U6SmZamx5V1Out9RhxByzDZin71T5N6R5igulWQoKVTeZuby9fDKMdtkkHLoK1gojQP96vbmnC6LpneO3vNp7m5/fnHaXuWSs73wlZR+7T0qgc5Te/2fhxJMHEHLU2yH4N0vcFAPIkjaIkya6Vg+XJpt92kL35RWrAg/DxNAnAmTzmcDla3gXhOOUXq31+aOLH1/bgzLaMELU1vztaskfbYQ/rZz7yn91re4sXSzjtLu+wiLV3qXsmylsm6rl55RRo0SDrqqHCVnKSDlmG2g1umZVx97PgFAYJ8N0qmZWW6KJmWp54q9esnPfZY2++sXVveN4cMkT77rO1npvuJyc2GVzZVnjItnW5ug/Zpecgh0oUXOn92+eXSZptJ11/vXxZJ+ugjadttpf32a7uekwxa+jWLsQvS/1WQclRYz2P2fS2OTMswzcPDnEODBi1POqncZ+szz5h936tMUTItgx5jQYPV550nHXmk8w1iUTIt3VR+k1Pz8LiypaRggeBHHpE231x68MH2ZY2L17wq9aEhQ6SZM6VLLimfE2+8se10ld/wk5+Uy/uvf5WPhYEDy8dGxfHHl+tEknumpVdgzrquevRw/i1BMnSsnn22XN5Jk5y/55Vpef755fXyl7+YnzucgtVO+35e+rS0Bi3DDMTzwgvSFluU9wEv06dLX/iCtNderUF7t/I5vbbze0hk53QtjBK0fPNNafDgcrPzYcOk1avNy2LldB/xi19II0Y4Tx9kIJ40m4cnkWm5bp20007S0KHSypVm83Caj0mmZUOD9OUvS1ttZb4ct+VZubXIC/qg2atPyzDsyUh+yzdx993S4Ye3X44VmZa5YjgMGaqe9Sb7l79sPZh++lPpzjvDzdPkSaRJpqVThdIpaPnhh+V/kjR/fuv7UTItnU4ySQYtK5///vfSq696T1spj5uf/Ux6993y32PHloO5Tt91y7S85Zby/7Nnm49YaFo26+du6yzNgXjSCFr6bXuTi6VThcIpAFiZzq/i4JZp+fHH5X9S+aJuLdvll7fum5XjrcL0IlxNzcOdss2DNg+XpAsukH796/YBsMqDizPOkE4/vfV9t/3pe9+TPvmk/O+GG6TRo8vvBzl+7KIELd2eVLtlKEUpR4X1twbJtHQaPdyp/Pbm4UllWgbJJHr33dZr9QEHmN3U+2XIhg1aJp1pKUkPP1z+l/egpdtAPF7zqK93bl4XZ9AySKalJC1c2P7BSpw3Ul6/7bLLpNdeK/99yimtD6WvvLLtdE1N0qpV0lVXlV8fdVTrZ3feKZ17bvn8es89re+7de9g2qdl9+7ts2KjZFruv7/399wyLUsl6aKLyq9PPFE6+GD/ZVW+a//bqe5una6IzcMr0+67b/m799wj/fjH0p57Ok8/alT5AeBHH5X3J/tvDhO0DJJt5nQea2w0PwfYp3v//da/X3+9fAwdfbR5eSqc6hHjx7tPn4fm4U4BrySCllLrer7gAumKK8zm41Q2v4F4JOmNN/znbToQj1vGbOV9t3ViGsCLo3l41C43TJdjFSRoGedAPLZyMBBPGZmWKLPeZFsPjvfe8/6e18knrqCl08HqNBCPmzibh/tlWka96a58PnWq93Qm86sELCVp8uTgfVpaVbISggiaPWN/P42BeCrb12vUuiDizLSM0jzcNNPSOj/TkSmnTXP/zLQyYnLs+mVaulVgoj448BI209K0wmF92OLH7XdYH3ZUAs9SspmWQc+JYZ5Um3zuNP8kmodbMy3dgh5+ffKaCJKdsGRJ+/eiZK56dcHgJ+5MS7fP58+PHrQ0DWaa/m7TgXi85uGWnRy1iZ19OW6vo9y0x1UeK+vDMa+HuU1N3sfMkiXtl1Nb63wMm/Zp6ZRp6RagCnvj6RX0k8q/2X5eMz13OAUtnfZ96/nMr07ttW9lFbSsrA/r8hYudJ/eup998ol/udPKtAzT7N9J2DpvkHq4FGwgnk6dgg36GeRc73Qv5yaO898HH5jNw2k+TU3BuxhyYzoQj3XZTmWLGrSMGnRzO36SDlrG1Tzc6ZoQJHBOpqUkgpaocLtQRBmtMsjTnQr7gdrY6Pw9p4F43BSxeXiQpmSm3CqSbs3DrZxGMgy6PDu3ZgeV11EG4jHNtKxcZPKYaWnaPNypUmgatHRrHu7FK7AZZ9DS60bHK9Myrmw9J6Z9WgZtHl4xc6Z5Wdx+h9sDqChBy6AZ6VZBKn1xNQ/3ClrGNRBPZZ3kpXm40zW8KJmWYY/Zzp3NHvZ4zSNoszcvTvWDMEFLt8BUkpmWTsErP3GWx2te1uPLfjxbuV0XKkql9nWcyrzt1z7TTMu0g5ZO81i/3rk7AROmmZamzcP9MkxNr0PW95MaiMdvX7Eu0+9eJe5My6jNw8MmDQSdr99+FjTTMshgY27b3+2e0SqOTEuv6YIEX00yLaOca92OOZOBePzuScPW5YIqQqal3z1pkNY3ZFo6ImiJsrBBS68Ts8lFPUqmZRZBS7+KR1xBS1NBLppRMi2zCFqmMRBPZfvGFbT02r5JZVp6NQ8PGrQ0qTBmEbR0Cli7nU/8yhDl4m+aaRn2KXmQoKXbvuYUeJPSy7S0//YgFc24As7W32bf5+MaiMearZCngXisomSuuvUnbfI7gv7WsNfFTp2iZ1qaBE28prMvI46gpVumZZJBQuvruLK5opTHynpcegWqnDJdrbyyAO2BOK/rXNhMyzgCRU7zaGpyHrjJhGmmpWnQ0q/eknWmpdsy7OxBU7/6p0m9I2jQ0uncFkcWYKU8YQTNtAwStMxLpmUSSSNB5uMUtAy7rKgD8cSVaenGdPAlp3O31/LDSirT0inoGkfgvIMhaImyJDItTS7qfhWYOIKWaTYPj9qExK3S6CZIBcZte1jfd1tX1tF4TZkGIMIGLePItIw7aOn1m4MOipGXTMvu3du+Nh1V1UsczcPdKjBxV9bdMhedPnd7Lw9BS7s4g5bW7WkSsM0y07Kx0X3/i7N5eNpByzCZln43LyYPGp0EDbaGzQrq1Cl6pqXbPpdV0NLtwUuamZZxBUa8BDk+rNclr0CVX/Nwp3pQpUuOsJmW9utjZTlhB+LxW55bpqU9aGl6DFqni6NPS79+BuMMWoYZiMdtGXZJZFoG2f5NTe339TxkWsYRtHRrmt6pU7BMS9M+LaVkMi291mGQ4KtJ0DLsucO0T8uKuIKWpsem6b2l2/ETd3AvTPJIhV83SUH6tLQtg0zLMoKWKHM7wYYZgKUiTNDS6YTh9L20Mi2DDsTjlBHm9drt+3E86fPLtHQKbLk99QoTvE460zLroGXQLKSgAZmkBuKxltueIedUYRwwoO1rr30hqUxLp/NE2D4t4860NAlamq6XOJqHW7ePV+A3qaCl33nH7T2T5ZhWkL2ClpJ7E3GndedUVnvzcJNMyzA3iUVtHh40aJllpmXSQcswA/G4BaaqKdPSfgyaBi29+PX76RS0XLzYeRlJ9GkZR6DILdPS3jzcZBvaA+ReD5KjNA+3ztM0QzFPmZZZNA9fv759vdTpHGB6/nIqTxhBv5dFpmUegpZBOG3TNPq0tKpM4xa0NL2nqjDd102Dlm4JQ0lnWiY5EE+ApIKaOFs1FBhBS5SFDVp6HUhxBS3dUv2zGognSPZSmIqNyXSm87OK0jw8zAkz7JPeyvt+zTnCZJG5ZR7mYSCeMBfLoJmW9vdMMi379Wv7Ou99WqYdtIxzIJ5Zs8zLYpJpmVbQMq7m4WGbM3sFQJyClm5NxK1lr+yjbpmWlffzkmnpJErz8DSDlmGD1XFkWppObxq0LMpAPF5N1dK4aQ8StDTNvgqTaVlR9D4tw2Rauj1Ud9r3rfUMr3XjdzyZ1uOyDlpaPzPJVksi09JeL3W6H3JbB2HPqX6CHvNO03sFLePItHQ7RvzK5fX9KNP5cdqXotTXrLz2XZOBePzuSdMMWnoFW03nEXSauJqHO10TggTOCVpKImiJijQG4jE54ZgGLYvSp6XpU1H79EFucEy5BVCt77sFeMNcnE0rTaaZlkHWpelTwbgH4vELAngx+X1O2zDI6OFS233apE9L+3txBC1Nbja8mitmFbR0Wp9xBi3tmZZhsgGy6NMy6+bh9iCkX9DSLdPSqe88p2VaMy3zErQscqZllKClvTxu55agNxpxZVomORBPnA9g3B5meYlyI+V1zNoFCVoGzbSsSCPTMsr28sp4CjsQj1vQMolMS7/6ntv0UsfMtGxqMsu0dBuYyu/YjCPrN6yOkGkZdSCeOM/1bvuuSZ3BLUO6ImxdriJI8/Co51TT7HOrJJuHB9gHaR5eRtASZUkOxONV2TIJWlamsVaUitKnZdjm4aZMKxBO5XZqDuAW4A2T4WGaaen2G+IaiMf6t1umZR77tDRpHu6WaenVtDVo0NL+m9Lq0zJMpqW9uVvQ+QYpU4XTOdC+jkyXYw9ahgmCW8/ZSQUtvc5zJpmWbgGxuIKW1nk7HR9umZZO3zMJWpo0Dw9zDo2SaWmyPK9p3B4Yeu03blnyUcohJZtpmXTz8CQH4gm6nu3zsy/X7TM3fuvI6zd7HbN2QZqHh+3H1WkgHpOAmlOflm432H51Hi9eD7SbmsINxBMk09K6Xjt3dt/WafZpGWT/d6sn+bX4qSzfr/5pUu9IOmjpVu91K08YcQRP4urTMsro4da6Yti6UVzTZZVp6bS/5Ll5uFuigqkwQcu4Mi2d7sFN72HRgqAlypLItFyzRtp3X2nHHaXPPjMLWjoFbioHtvXkllXQ0q/i4fd0zO8E6/ak23R5VtZt6nXCtM4jD0FLt0xLk4uJfdrRo6UttpAmTnQuU56Cll6ZL/X10n77tf4O63fcmoe7Bdgr0194oXT44a3vuzUPt88jrebhXk2b7TfwlX09SKbl009LgwZJp57qPb11fk7bN85MyzlznAdGcBI1aBklS9srwG6SaXnNNVL//tKf/2xeBrd5SfE1D7d8r8aveXhlHbj1BWtdJz/6kbRypfMyvQS5Kbfvc5tt5v8dr30gaKbl1KnS5z8vDR8e/Hxqeq2wq6sze9jjtYy4m4fbj8ugXY+4PXgJkmVlwut6Y3pusE73i19IAwdKDzxQfv3xx9KQIdJBBznvx0n0aSl5HzNBMi1vu0363OekZ55pP61fpqU9yFfR3Cy9/7603XbSEUcE28ec6msVQZuHV+bh9mDFXo5vf7t8fFc8+mjbbT1tWnlbH3KI+/6eRKZl1IF4TjxR2nXX1n5N3crlFPgJEoCozC/INbdUar8uGxvd67AzZ5bvtb7ylfL3wp5TTcoVVVyZln/5i/SDH7R/3+m3288L119f7vroe9+TttpKOv54/6xCO5NMy6uuKi/nhhvcp3W6T4xSX7Nyup54BSJNuhEzKZfpsWkapM4qaMlAPLlC0BJlSQzEc8UV0vPPS1OmSKec4nyC9AvqWSvq1kFiGhvTaR7ulCqfRqZl3EFLp2mdLkZu6ypMRoffSdarEuuVGVrhtx0++6wcHJkzp3wj7VSmovRpec010nPPOX/HLYPArzJxwQVt348j0zJM0NLt3GNdrtMNtnX7V85T9sreRhu5z/fAA6XZs6Wbby7fdDkxqTg6rY+wFc7m5rY3UEEekDiVxyvwGyXT0iu7zWQgnksuKY/ae/bZ5mVwm5cUvHm42/FunX/luHJa5po1rctwy7SsfH/5cunqq52X5ydK8/ClS/2/E2fz8O98p3wcTZxYDvgEETbT0ulGJqlMSxNJZlquX99+3lGClnFmWtbXS+PHS3PnSkcfXX7vuOOkDz+UnnrKeX9Ionl4pSxe5bUvZ8sty/87HcOzZkkHHND+/SiZln/9azmg+5//SK+/Hqzs1v+tmpqCDcTjdm5zy7R0Yt3WI0aUt/UTT7gHZ6IELa3ntjibh0vS229LP/1p+/f9gpZBmhtXPg/68H/16ravvR5c/OAH5XutF14oB8qSyrSMI2jpdt7q3DnYsS5Jt95a3vesTK5b//yntGBB+XicMUO65x7p2WfLn4V5aOPmJz8pL+f0092n8XsoH6RMdl4BUKeH2ibJLSbliruLEbfjJ09ByzgH4gnz0LQDiBCRQlUJm2npdSAtWND692uvOR+gfjf31ieLlYyWSqXe9IYuzj4tgwYtvbIZnPhdINymNxEl0zKJoKVXsxyvplUm8y+VpHnz2r+f5+bhXjffn3zi/h23TEu3fa2x0Xndm2Zaej0JDxO07NzZuRLrlSVor9R17tx6rrC+/53vlMvbo4f0hz+0n2+F/ebAa7l2JoHeIMepdd147TNu2zeLoGXQ5uFhxZVpaVLRjqtPyyjnlqgD8fgJk8nrtt+8807r3x99FKwcpg+4nN6PGrSMs09LpxuTJJuHx5lpGSVo6bQO33ij9W97txdSsKBlkOwrr3XiFLSsZAsGyeb0y7T0usG2/m77dcetr93Kd63/W61f3/67XueOxkapa1f3oGXQG2Rr8NXt2Hcrf5RMyziClpL01lve300raHnQQdKTT7a+th8jXkHLl15qfe/jj8OfU/2E+V6p1PYYdptH0ObhFfaHkGEDPJV7hjgyLYMwybQMuyyveZkELf0yLd32adNrSJB1nUampck9e5jm4U7Hf4CgJZmWZWRaoiyJ5uH2+Zs8/XKrkEltm+EFeWqZZvPwqE1Igp6YogQenC5SWQQtnS6oJk/U/La/UyDK7QY3atCycvyYZDe48dp3vAZIcuv70ito6bRtsurT0ppBbRWkeXjlPGWvoPXsWW4GdMUV3mV061fHJPjodO6M8pTUtHm4SaalX2DfVJBMS5Pm4WG5zcsrAOIW1Pebf1zNw63f79nTebluggQtw2YGunHLtDTZnkG3edjrolPTtyyDlk71gyQH4omzT8vKsq3/+zH9TU7n1yDNw4PsT36BXOu8zj1X2mWX8t9BWhVZ5xE0aOl1bnLrtsK6TLd9I8hAPJV1FCXT0o3fw444m4fHFbT0+71xBS39prnoonLgsiJI0NL6+5y6zbBLs3m4aYuzoM3DK+zHYNj919rNkAmT5uFh5uO0r0QJMrvdZ1vfd3sA5ZXh7VWuuDMtTe8LveSteXiA+nkNmZaSCFqiImzzcNMTc5SgZeWiHDZomXSmpXUeQTKSnMTZp6WVV7ntGWtOwtwchW0Kb5pp6Rc8XrXKv0xpZlr6rUOvQJBX0DJMpqXTZ1k1D3fb56zLdTqurO9V1o89iFE5P/k95XcLnMYVtAxSsXIbKMkuap+WWTYPD8s0aGn9bU5BDJPsAL9My8r7fgPxmDx8cJN00NJr21gHwYu6nCjlkLyDzF77osk83JYd5sFDXEFLp7ImnWlpfS/oDaff+c0paBkk0zJI/cOvibX1t1mP2zQyLe3Lt/+usJmWTU1t+7TcYAPvbegU6LLOO8ox7ratvOp7XtNL8QQtvYKGfvuv00A8fn2uOy3D77iyt3YxCVpW1oF1XTgNUOZUnjDC7Bv2deW27LCZlnFlJVr3rTDLdZqXyfRO98FpZ1q6nfv9zvFRg5ZB7mG9rlkmwgQt48q0dGqFEeRBHUFLSQQtUZGXTEunaSoXPGszvCBBy7gzLb0CkX5BWNOKRBxBS7/ggVMlOM+ZliYBbuu0TkFLtwpfmKBl0CykpDIt4wpa1taaNQ/3OifEGbSU3I8H+w28W5+W1gqw9dxhZ/oU2em7TpXsoBnWVl6Zltb5mAQts2geblek5uHW952CjtblVdafX/Nw6zyDXk+DBC3D3IT6bbcgx0oUptcKp/fznmlZaboY5EbYNNMyzj4tre8FzTTym75r1/bvBcm0DFL/CNI83HrcBjk2rfNwCsg63aBWvucVtIwr07Jnz+wyLdMMWgbtPsP0AYVdmExLk+w5u7q6tnW9IH1a2ltM5SnT0n5Mxp1pGaW+ZRU00zLocvyODevrKA++7d9zu3dyqk/G1ael6bEZ9WFekPViMm2SmZamGcdOyyBoKYmgJSqSGIjHPn+TGyCnaSon+jw0D3cKqHllMwU5SVnnFceTPvt0bidBt8wDqzwGLcNkWroFLdMYiCeJTEu3bIOmJvdKg9OADlL+Mi2ty3ba9k5BXXsFzXpe8wpamlbIwlZmg1Q4TIOWbmWxbh/rvhElaOn3XWuZ46psO3E75oMOxGNS6TTt09It2F8NQcuOnGkZV9AyrwPxeJ0Hg2bJ+O17ecq0jCNo6Vdncquf2pcfJGjpFSC2Z1rW1pp1VeNWP41yjPs9BDA9rtwePobNtDQpmxunoKVf9qDTvU3QTMsgQUurJDMtw3wv6UzLuAI8bkFL0wxJP26Z1E712yBJGl6cgpZhMi1NH+xXJJFpmffm4XFmWtrKQfPwMoKWKEtiIB6TaU1OzG7Nw9MYiMfpJBMkkBAkI8k6fdxP+ryCrZX/3QZikZIdPdxJEpmWToHbogzE49WEOs7m4SaZlnH0aWkts1vTbOv8nI4j63tpBS1N9kun6YJUrLwG4rHO1237WrePNRifVqZl0HNeEG7rMa4+LU2Dlo2Nzi0ArJyClkFvyDpK0DLstcLphizLTEunh0V5bR7udQOYt+bhQY4Dr3ViX4dxZFoGCVra37f/LpPm4W6ZltagpV/9OMlMS7/jL85My6D1UrfpwwQt/TItnV77HVedOgVvHu4WtPT7TWG3cZjzv2n/n2EzLYsStHR7KOG0r8T1m5yukU71ar+gZdDgZNBriMl0QeruYctkkhwTpnm4X+zAaXoLBuIpK3TQ8pprrtHgwYPVrVs37bHHHnr11Vddp73pppu07777auONN9bGG2+sQw45xHP6DieO5uFeJ584+rTMQ/PwqJmWcT/9DDK920Ww8r5bxpCUj0zLIMGQUqn9U2q3yr4UX9DSJLvBjde+E/dAPEXJtHTL/LDefNbWtq1s+gUtTQOPlfl5vTZ9L2zQ0itT2yRoad2vkwxappVp6TavJJqHewUtpdYbkCSbhwftsy0ovwdHTp/nKWjp9SDKdB6mQU6T3+2UDZnXgXjcAqNunzmJErQM0jw8SNDS61puDwZYj9sgrYqs29jtmmkStEyqeXjUoGWUY9yvCXaWQcugDzSsy4wjaOm3HL8+LZ3qbk7Xt7wNxBOkeXiYTMukm4eHCVo63VO7Hd9O98FxZVo6PXx0uveqzN9tIB7TB/vW5Zow/V1e51RTJmXyqtv6LdOvuTd9WkZW2KDlPffcozFjxuj888/Xm2++qZ133lnDhw/XggULHKd/+un/Z++94+Uq6vfxZ3fvzU1PIJ0QEiC0QEiAEHoPRJoiRVQQRIGvCIhGEZEmRQGpFoqg/LAh6AdESighVCEUQ++9JSQhkEbKLbv7++Pcc3d2dsp75sxp987zet3X3T17zpw5c6Y+87zf74fxjW98Aw899BDmzJmDMWPGYJ999sG8efMSznlGYUtastfFRVqyZniuA/HoOjwKaanyG2eqOjKdNJoMmrKBPTwui4ILJE9aUhbLOtKSVR7Izu+pgXhE+UyLtKQoLXWkJdsvxKm0pJI4st1qCqKah7PPrCIto2x4mJCWaSgt2WeNIxAPe1y22dPe3jhexBmIx2ZRo3o3eQnEE1VpSTUPp8AVaSkjFCkqKypcKi1t2nga5uEqpaUJWaLbiJCNv/zcxoa0FJVTezuwYkX9fVTvRBWIRzb/okKnXKYuxrNEWlIC8VBIyzjMw0VlkGfz8CwoLW2IdVFa/HUyJbWorkTZZKamJZpPyuacWTAPN5m72+YpLqWlyDxct4Zl4M3DAzhyWJg8Lr/8chx33HE45phjAADXXnst7r77btxwww342c9+1nD+3//+97rvf/zjH3Hrrbdi9uzZOOqooxrOb21tRSsz+VneSYC0t7ejPcrudkZRLpeFlaFcLqPCPW8TgHBYqVQqKDP+cWT0YBVAR2trw++Vcrnr+uLZZ6N00UXSPFY7yYkCgGq5jEpbGyi6lY5CQVrROzo6UFW8z1JbWx2zX25vR6Gjo+5Ye2trl5KgVKk0/sakX9TkuaOtDdX29oZ0ZKh0dNTKn887arsSlc4JHptmR3s7qu3taCqXgzItldBRqQjfYbW9HexUgtIGCu3tyg6mva2ty8ySvWe1WkXHmjUN+eg6P0y/rU2afqVSQXXp0q6yrpZK4vrX1obqj3+M0jXXaJ8HqH/uUrVaV77l9nYU29ul77fc2trQlupPKNddW21vR0fYNgoFYbodbW0oce8mPF4VlCEAdKxeLfytA0CxWGyod9VyuSsfAFCsVqXPyLZnFQqtrV3vrtrU1JD/EO1r1gC9ejXWpZ/+tJY/tl/ofA/hueVKpavMm0qlrr6Dr1983eoCV2eqlUpdWQBAU7XakH++HFR1lUfHsmUo7rEHCosWofzrX9dd175mTVdQixLXnsO62dTR0ZWf6po1Xfnly1D2rgoPPIDS976Hyle/isollwBAQ73m+7WwDwE62y/7G5MfU7RzfUO5rU3YhopffFGXv3J7e9d5xTVrGupr2M/yYJ+j0NGB9rY27burIqhnonPaW1vr6lC1sw6S8aMfoTJrFsq33aYlVUzqWIgOxTUdne+Y/71uzGeg2Bok5QN33onSiSeicthhqHDzANlY0tHejgJXNyttbeJ6LXlWWb9c7Oio74+5ei0cJzs6GuYlYRskj+nlMspcvQ/zyc89OlatUs5fVGiqVBrqYvuaNcE7J7bZrj6E6yfb29vrvovaW3Hlyvp2ecEFqN5yCzr++U9g883r+13BGCdDefVq6fjU0doKNDXVxodqtevdl7iyZcHPd9h5XIeg7Zc7OlAU5LncWV/D+5TXrKmre4UVK6TtMexzRW2h8vnndXmvdnQozQk7Vq8O3odontXaqp271Z3PvWvZuwrzz4+X4TyUBzvmdFQqXec0FQpdYz0M6gUAtK9eLW63TNsu3HsvSieeWJduuZNwrKtXXPk2jKdcG66Uy6hq5v/tlQpKzBysvGJFQ99W4fqxsA+oGycLBRTKZWV/U+7oUM9HUav3bP03qRtd6axcWTdf4OcuXXkqlVDsnMuZoKO1ta4O2eQRADrK5aD+cmXc3toqJO1U96lUKihz7atj+XJhXW+Ym3WuS+vmNK2tpPUuj3J7O8CNZfjud1GeNw9Fdt7WOc9n50BArZ7I+kd2rlX3TGvWKN9B+eKLUfzd71AgCscqr76K4mmnNf6wyy7ouO02VA84AHjnHTQdfDCqY8agfPvtjZvEkjURC34twHMAQOd4Nm8emvbdF3j5ZWDCBHTccYdyDKl2jjUlPp1O9XTp4INReOcddNx6K7DJJg1jKqrVbsk9ATQ+IUQuScu2tjbMnTsXp59+etexYrGIadOmYc6cOaQ0Vq1ahfb2dqy99trC3y+88EKce+65Dcfvv/9+9O3b1y7jGcbw55/HDoLjH73/Pl6YObPu2L7t7Qi1UR9//DGe6/y90NGBL0vSb21rw38ffhjTuOPz58/H3JkzUWxtxYEKwhIAVq5ejeaODrQAWPnFF/jotdewme7BAPz3ySexu+S3l198ER9wz8di18WLsRbz/fXXXsPQBQswgjk267770N6/PwBgl88+A1ujHn3oIXzx1ltd3zd+/XVlnp984gl8tmIFdli4EMMV54VYuGABnpbkf+clSzCk8/OypUvRCmAk8/vzzz6LeQMGYI/lyzEQwcTssccfx56CtNasWIE+zPeZijILMfaFFzBZ8fujDz+ML955BwPffx97MMerlQoeeuAB7MOd/9/HHsNyZoAbPneusM4CwGefforWtjas2/m9o6UF986ciQO585a89x6GEJ4lBPvcuyxd2vWuly5disdmzsRmb72FjSXXfvzee3heca/N33sP45nvXyxfjgc7z9/grbcwUXDNiy+8gAlffAHe+O6J//4XrYMGYW/BNc888QSWz5+P6XxaL7+MdT/7rKHerV65ErOYfG/85pvSOrx0yRI8Rqkbzz7bVTeWrFoFcS8M3H/vvejo3x/D//c/6bsuA1izejX6A2hbswZzn3wSO3b+9s677+K1zvzs17mp8sWKFXjk9ttxAJPGY488ghXvv9+Qdq/ly7Ev8331ihV1ZQEA09esaSj/5UuW4BHmvKEvvoidJPnnseSnP8WwF18EAKz6/vcxkPmN7WumzJuH0cxvYd3cZ/nyrrb6xeefd9WhIS+9hJ2Z8xcuXCjsO75y0EEAgNJvfoNZW22F1sGDscErr9TVv9mzZqF18OCu73svX45wVKx0dNS1k92WLsVg2OGeO++sG1PeefvtrvfJYuLrr2MD5vt777yDVzrP2/Ktt7A+d/6z//sfPhEo8PdtbQWr+73nrruwnqYfW7FyJZ5/6insKvjt3rvuQr8FC7r61JVr1qC/Ii0RijNn4tkzzsC8XXZRnqfqD2V4WfFsz/3vf2gdOLCuzgDAZ4sX4wlRvTG8N4tnnnwSO1xwAQCgdPnluHfrrdHRv1ZSo+bOxVTBdc/OnYveS5diS+bYwnnzhPV67ddeg6gE33v77a66wmKj11/HBOZ7pVyuq9ei5y23tuKNV17B5uyxVaswc+ZM7LBoEWlM/2TePLz+8MPYizv+2ksvYcSiRRjGHPvfE09goWkE5U7ss3Jl3ZgOAA/cfz/aBg3CnitWYAAhjUWLFuGpmTPRe/HiuvFk5syZdeXz/LPPYl6/fnXXTn7zTYzl0iu89RZa990Xs6+9tu761Uz/osNrL76ILSS/PT93Lsp9+mC7zu9vvPUW3up8p7t9/rm0n+LnO+NffbXrHT/7wgsNdfOtN97AqKVLMYg7/vJLL2HIxx93zUteef55vMekPe6ZZzBJkofZDzyA1rXWwrrPPYdtuN9WfPRR3b3KGsLgyUcfxWdLlmDQu+82zI3vuesujHnxRWyluJ4F/66XL1nS8NwA8OADD2DN0KH4Ckf+PPXkk1gsUKBt+MorXe/x2RdewCed9WfvNWvQF0DrmjVoMaz7D82a1TCvBIDVX3zRNa6H4x+Lt995B8VyGRsp0l74ySd1/U5pzZq6OcbnixdjAfNMIjz82GPYdMECjOn8/jHXRuZ9+CEWce//+aefxrzevevewRvvvIO1FizAKMW9Xn/tNbxNnPvOmjWr67PJXCbE4w89hGUffdT1feonnwjz9sHHH2Nk5/s1Sv+xx7B04cKu7/xch4q5zz6LBU1NDdffe889qAjmC6Ofew5TJGktWLAAc+++u27N8eRDD+GzTz9tOHfwm29iN+b7pwsXYsFLL9X1BW+99ho2NXiWEK+98gqaV67EJtzx0tlnY8Xo0V39fDjPn75qVd189rVXX8U7M2diyvz5dfPNEG+/+SZeF9Sj0XPnSssGAEoCcZkKxT//Wfpb08EH4z+3345dTjsNa7/xBgqvvYYXf/xjfDC9fpUz4KOPhOtbFg89+CBWj6it8Lf+8MOu9hhi7jPPoO+dd2LiSy8FB155BW+cfz7WWbxYupZpb23F/HffxTjm2LP/+x8+6dUL682eja3uuQcAsOLQQ/HYxRej7yef1K3fCpVKXTvsTlilsjDgkEvScvHixSiXyxgxYkTd8REjRuD1118npXHaaadhnXXWwbRpPI0W4PTTT8eMGTO6vi9fvrzLpHzgwIHCa/KMskR6vN7o0Ri93351x5qYznvd0aMxKvxdYarU0tKC3XZtXNatM3IkRuy3X6MprwD9+vVDGCWxX58+2HjDDbXXAMBOu+0m/W2LLbbA5tzzsWg688y675tuvHHDztDee+0FDAnowdKFF9b9tuvOOwMTakuf4ty5yrxuP3UqqnvsgdLvfqc8L8SIoUOxnyT/pV//uuvzoEGDuvIYYvKkSZi0335o6ty9KvXqhV12312YVm/OBEp2TxbFjz9W/r7rLrsEZdNJ0IQoANhDUFd23mknYKvaVJqXy1cnT0bh+ecBAEOGDKnzo9W01lr40t6NFN7aIl9bCrDPXfrVr7o+Dx48GPvttx+Kjz8uvXbMiBFYR1Vus2fXfe3ft2/X/Yoffii8ZMuJE1ESKLB23G47VIcNE1wBbLv11qhObKRAt9xqKxTffLPheJ9eveqeu/jcc9JHGDxoEK1uvPde7ZpRowDBfQFgn2nTgLXXVu68l5qb0a+T4OjV1ISp227b9duG48dj/c78NLW0AKtWoX+fPpjOEUC77LQTsOWWaADnbqRP794Nz9ckmMwO6t+/7rxCpzqSgqHhRAjAQO69773nnsDQoQCAEjeJC+/XxOwu929q6jpe4DbbRgwbpn1Xe22/PbDBBii+8Ub98T32AEbVlh1NzPMVUd9O+D7UBPtybXbDceO63ieL4r331n1ff9w4jO08r3TnnQ3nbz15MqqCdJq4trTvtGkofvJJ1/dqr14ocOPcgIEDsePO4iXSl6ZNA5i63m/AAIBJj4qthgzBJM27slGzTmTGpoZ7brklMLyRZhuy1lqkNm6Cbbepp2H22XlnYJ11ur4XeDPJTmw9aRIKXBsdMWSIMH8Fybxt/fXW66orLIqdY0nX90JB+9ylahWbblRPbZQqFey3337kMX3UiBEYLqhPm228MQpMXQKAKZMmCesxBU0CtxzT9twTGDECTX14OlOM4WEfwvVTfDlN3nLLhvpbuvVWYZr9FyxouL6PgVuFzTbYQPrb5IkTgQE1OnaTzTbDRmG/ec450uv4/BSZPnrrKVPQ8fDDKO2/f1c93WjDDevOCbHFhAkoLF7c9X3zTTbBZuzYymxw89hrjz2AddZBYcmSht8GcvOzksZkcvutt0Z1771REMxH991nHxQExIoMfNkMlNSdPXffHVhvvYbj202diupePEUPFF97revz1tts01XPw7rZ0txsHJxiD8nGj2hcZzF+o420LoQaxlPWXB/A2oMHY62NZVvaAXafNg0lZg45hhPVjB4+HKO4udvkCRMa2tYmEyag8PnnynttutFG2FjTd7S3t2PWrFnYe++90dw5zzGZy4TYebvtUN1uu67vpT/+UXje2E02QfGVVwCD+gcAO+2wQ136/FyHim222grV/fZDgavDX5o+XeiXt7B0qTStkSNHNqw5tt9yS1S/9KXGdDrndCGGDRmCodzYvNFYfouHhs022QSQ5LM/Mwb0aWnBfvvthyauL9ls002xyX77oXTjjcI0xq+/PjYQjbea+uca++23H5qZDYeJffo0ru0FfTKPPXbfHVi/ts1duummhnO2mTwZhcceqzu22bhxKCjSb25qwnqj62nfcB5afPjhrmNrv/FG0I/wY0G1WtcOuxOWE/ifELkkLaPioosuws0334yHH34YvSWkRUtLC1oEnXNzc3O3rDQFyTMVARQVz1ssFmu/KyYQhUIBzYKJZ7FQCK4nTEoLjM+9QrmMEtHHQ7NiAt5ULKp9XnIL1FKx2PCczaWSNI1mPn1NnpsKheB8ol+XrvITgUmjWCg05LspzHdnngrFIpol7aHAybdJbUDzDM1NTcH9uXdfqFaDcuPP58uZPeeXv0Thhz8EOnfji0DdpLHQr19wPZ9FQ59gdc/Nla+qnQBAsVJRnlPmyqtQrdbuJ5koNhUKQj8qTbLgIIrfmnr1EvrnKlQq0ufmoesvusDkuahon13tR+Fbt8D4tCxUKnWTrlJTE0phfsJzqlU08/U5rIs8uPs2lAUgNhti350gHRXqyPiBA+s2dOr6E+6+XfdjzaRaW2vHuTxQ6mxzS4uwP2poi8z7bCijCL54mrn7lgqF2vtUoATUzpO1D1E6fN8O1D17oaWlYUwoFItCAqgr/0xbK5gG4ulEqXdv/XNbBDBQ5aapUBDWW2kbl/mtJoAni5urVXlfz14n8MMr7WclaZQqFXHZcuc3tGkBCh0dDfOSQnu7cO4jQxFAUXB+qVptKN+mSkU9f1FB4E+rq38hkkHFajUoa66e8OXUJJojKeoKfz0//1ChpFDf8WNfqbm59u4N8sP2CU0tLcBuuwH/+Q/QKYIoCeZbXceZ+zTUPQUx1tXnCuoxT+rryqur3gjG8maZb2tZvvh3Jak7zU1Nwnm+dA7OlnFzc+2czuMmdaIrD5K5i3BcZ1BS+XvvREO/yI+3gH5O3Lt3XVkU16ypT6NSQZHLRxPfVwIoEYjFUrFIGksBbt1rMYY19FOStlbq08fKp2XDeG4TzIdNhx+PZGs8xX2Knabudem3tZHmmcVqtSHtkqVv8JJiLcD2G11tgOs/u+ZckvcinZPZ+CaNAL79CvNFqBcNawFBf9ZULAKceEnEDbAoVCoNfWNX38cqDfv0CZ5FtC7upvyTyTPlMhDP0KFDUSqVsJCRgwOBudvIkSMlVwW49NJLcdFFF+H+++/HliJlTU+FrIPRTV7Z63ROiVVBLCgdchyBeHSLLG7SIHSSbxKIR2fOonN6LDtfBP6dyhyFh/9Vk9U4AvHInlXmRF7lILlUagwKxUbTLJXEaboKwCOLOshCV4Yqx9suA/GIgkUA9EA8qmekKh/YclepXVXBB0LYBOKhRq51FYjH1uk9Z01ACsTD9jFRo4fL6nVSgXio5ahyxG8SPZy/Hx+0SrQYlJB7ABoDJ5gG4gmhClYVIu1APJYLRWE+qEFaROOxbIylBF9iYdNeZP1xGJSJgqQC8aiCGkQNxEPpN01Me5MIxGPST4mih/Nz4bgC8YjqEa9E1tW18L6idyCqZyaQvStRQBDAPhCPTd3XBQmSgVIeaQXiEZVDU5ObZxLBZmOKGoinpcVuHHEViEcWCFWWni4QKv++TQLx8Mds/RnK2h0AfPFFYx6Sjh4eF2yD9lAD8TDuDrrStg3Ew6qyQ7c4rup0N0MuSctevXphm222wWzGnLJSqWD27NnYYQe5V6df//rXOP/883HvvfdiyhSVt4UeCBlpadLx6Dpw0e+yjlKWRjigJ0Va8hNgEaGmIhLSJC1ZiPLND0ayKLhAstHDARppyaYvIi1ZyblsIu6KtBTliYeuDE3IQfYcl6Sl6P2bEHDUestuBqhIS9kkkgVLWvJqJFF02EpFHW1adP8QVNLS5l2KwJv4s/lRRYcPEZW0lEVcN9m4iTJ55es2lWBi8xeFtOTbioy0lC20+EWmpdKSpKZzTVrK+sw4SEv+PtT2KVAfGkcIphIZ7HdV2xGNKSakpeiZAHG/7Tp6eHjMlLTky1a02csjLtJSVSauSEtRm2bTEi1Qw+vY+/DPJSM12HuKylLiPkGKsIxkdSDKAlnV/vJKWlLKRDe+UklLdmPLlrSUiURU+aPCZpzh8ygrh5YWO4WebG1jmw51/kapNyxkmxKiORN/zLavV5GWbH7CvPJ9ki1paelr2Rmo60oelDV7pSImLVXpi34P78WSxxLS0kcPD5Bb8/AZM2bg6KOPxpQpUzB16lRceeWVWLlyZVc08aOOOgqjR4/GhZ0+Bi+++GKcffbZuOmmmzBu3DgsWLAAANC/f3/0Zxy+91jYKi1Z2JCWSSgtVeoWU9JS1fGI0hMpd1SgKMtY6MqcPU82EId5zAppaaO0LBbVSkvZApxfXEWFS6UlRVUnawflslpxFJfSkjqwsu1K5T+NQuKz+aYqLU2UXCxE5UbZ0bWdcPD9ctKkpY3SMiRdKOpjHfg6TH1PKjWTSToUpaXKdNAVaRmX0lJ1jWyhLqs3UczBdIoUF0pL08WVqg2bkpZtbdGVliLCIko0UVVfZjr/0JHOovRMSEKTBbCt0tKk/YiUlnxasvJVkZYqpaVqk9d0fNGRli777BCiOWh4XAQdaWlT91UqUBVUxI8sDYp6jkdTU/0YwdcHfjwCxGSWbONDlT8qbOYyfLnL7t27txulpe2zyUhLSh1VpRciitIyCmlpcp5MaUnd2NcdTwq2pCVlE3TNGoCz9EVFo7QU/S4iLUOfy1w+TP33dlfklrQ8/PDD8emnn+Lss8/GggULMHnyZNx7771dwXk+/PDDOn8S11xzDdra2nDooYfWpXPOOefgF7/4RZJZzyZslZZsw6IM/LLrKZPSNMzDTZWWKuIJoCstqVCdryI8gMYFh8o83PWCWPe7C/NwVmkpqy+mSkuWjBFBVSdNlZaURbIs//zzsubxWVBampKWqnt2Z/NwlVmVLC9sHxO+61LJjrSU3UtH5rLtJMrk1QVpmaZ5OH993pSWJgRJnEpL1Xvn82NKTFDVu5S0gPhIyyybh/NpUfrXNJSWfNnGpbSUzTd44s5GaelCcdMdlJau86aCjUJL9N3UPJzvB6lKSxuSlQqbuhG30tLVJnFYP6jpxaW0FL2/OJSW/HmisUc3BzcdV+ME61fSFWkpuuajj8TvTGceLlsXePNwMnJLWgLASSedhJNOOkn428NMNCYAeP/99+PPUJ6RB6Ula4an6yDYa1QLRVWeq1UaaWliGqnLM8UcloWtOoC9NvyvUlraQJc31Q4eRdGmIgNWrqz/3ZV5uIy01JlQAPp3b6O0lOWfV1N2Rs7u+k2UXhZ9WlLNw1lVn43SkrqTTiUtXe38qyb7ojYiqmOtrUDfvvoNFRFkE1bdZkylUivvLJKWMkJBRIBRSEuV0pLfPLBBHszDo5AJNqRXmBfqxqAsDdfm4SL1vilpKTqXSlhQEad5OKV/jWtRmyelJV/3KD4tXShuQrI0SaVlWqRlU1MtT1F8WurumxZpKSL0ZapW/hwbuCAtZXmz9WmZRfNwkYm+rH2L7pcGaakSi+SBtNTF2HCltPzgA/F1OvNwmU9LkdKSy783Dw+QS5+WHjEgiUA8qglLXEpLXdQ/VUcgmiCI7qsil6gLKv58agcVRS3FE8aECIlGcE1ampiHs6bhYV5cKS1Vn1XPHIfSUjaR4Z+XJVuiBuJRtTtqfWQX9lHNw/OgtLSdcKjMqqjqJVkdp+RJ1kZ1EzsK4U6BbJLHQ9V2qEpL0TGqeTg1EE+cpKXNIkG3yZKU0lKnSFG1T8oiQ5UGVWlJtSqJ0zycz2tcSktqmw3PszHvj8vnWVo+LdMMxGOKsIxkgXhcKS35iNEm/Ql7PAppyc4vbJWWFOKHQlrq7uMqEI9Nfqmwuc6EtHShtLR9NtkmuY3S0iQQj2htQyGnKTAhLUXtQ7VOC68TIW3S0pXSkkpasuUnE7bI5skipWUUy6huDE9aegSIOxCP7Pc77gB22QVYulSfvg1pGUVpKVp8qCTeovTiJi2pg7Mq3+F/mXmw7X0pE8EwbzxUg2cIlXk4X5+iqgdCyMgYymIvDp+WKtKSLUPWJ17WzMMpSkvVPflAPOy5rpWWtj4tbese3weplJbVqriOhWnYTIJk9Zrv81SkYdpKS6pPS5lyVUb+h4gaiIeySGPTv+46YNw44I9/rD/Hpo65NA936dPSJBAP/9wvvACMHw/88If1x2XlY0NkmJKWLgLxiMawM88E5swJPs+dC2y6KdDp170Of/tbUGd++9v69ET3kP0myyugVxSZkpZRFmi2pKVJ+9EpLUUL1PAeKp+WtoF4THHKKcBxxwEHHND4m0ulJTvvkJEnf/97fd1cswbYay/g/PNr50QhLdn5RRTzcNP1jWg+R1FaugjEQyFI+fz9979BvymxXpReRwE1oJ6tT8swvWOPBTbeGHjqKfM02HRU8xkWlHrDYtUqYMkSYPvtgR13rLmwEs1f+Hv++9/qe8lAJS3LZfW6S/asV10FfOc79ccuvhj4yU/M8ukCPGl5wgnARhvVxkhX5uEiy112zSWKo6ESPFEC8bjo97sBPGnpESAJ83BZWv/9L3Dqqfr0efPwuJWWosWHquMRpWdqHm6rdBDB1KeliXm4jY8fHqodPAppyS8+2Of97LP6c+MgLR0rLRsGJYrS0sQ8XPZbiCwG4gnLTJVukoF4ROeJ8uaKtDQxD0+LtNQRua4WwKq0VPmLW2mpIi3b2vSkpSpQnChv/+//BTv9xx0nP4cKG/Nw2X2ikJb8OzJRQovq8TvvAL/5DfDuu/o0TExGdaoTINlAPADwhz8E/6dNA954A7jxxtoiLcS3vhXUmVNOqb+P6N6y30SIQlrqTOlsYWIezrbHJHxaRiEtKXXPBPymRwhTpaVqY55VWsra6s0319fNyy4DHnyw/pwopGXfvuK8saBssKehtBStH6ikpWl+d9kl6Devugr48EP5dTb1z0RpSbEq4FGpAI89BvzpT8Bbb9UT3iZwaR7Ophdi9WrgnHMCUnXOHODss8XpUOoKFVTSkhc6sMfZ/yL8f/8f8OSTte8/+5lZHl2B7Rteew249lrg7beBnXcOjtmsW0Vl8skn4uvC9EV1WFS+ItIynA9SifMeBk9aegRIIhCPqtFxPkiF4JWWVJPyPCktTVVJJosLWSdoYx7ukrQUQTV4ivLAKy1F11LyfPrp6t9lZEz4WXWPOJSW1EA8FPNwWVsxUVpS6yNVaRmaTVDNw3mVUlbMw12Rlqo6UamI61hoip8WaZm20lKlKNMdi2oevnq13qelKWkZ5RweLpWWUczDeZLLZFNB9dyff65Pg2oezh5T3dOFT0sZySc6Hi54WOuC+fPV9xDNB8J7h/cCgC22CFQzqnTY60JENQ+PsmBPwjzc1qelzjycMra6IjNU9zG5h2pjnldaUtJ96aXGY1FIy7XXFueNBYV8ckFaqupYuPmlWq9QfVpSylr1u+u2yT+3rBxaWoBRo+zSf+EF8+t4JBGI5+mna99Dok8093dFUkUlLSljHgDMmxf8T8MsPATbT7DCFcr6LARFaSly48GWn4x4l60L2OOSft77tAzgSUuPAGkF4jFBFkhL0WRA1OGIfgPS9Wnp0jyc0vlTCW8XSksdaUlRWh5zDLDPPupzZOpHB0pL5USppyotZeYzLHiynX22rATise370lZayuo1+123wZBF0lJGCvGIqrRcvbr+ehFB6SrIjmvSMkmflrakpcyUmv1dl4ZrpWWSgXgAcZvXETuyvPDm4aUS8NOfBuSlKh2deT+1vanOp0KntBQRjqb35OceorQoSkuqz172nnEvXk2VljILHqCetNS1VRWikJZDhtQ+69q6anxh877NNuJzdN9V7zesR6akpa3S0vZd2FxH3cRtaQHGjKGlec459enpNmoocKm0FPm0XLWqfrwP+27R/VxtTpiQlrKgTux/1fWAeZwAl2D7BpnaUQf+OSlr0fBY+L7Zfk+Vlmpuyt3Dm4cH8KSlRwAXgXiySlramoeLFh9xKy1NJ6a2E232HuHxpM3DVc8qUynIzuHNw0X3ovgT0hEIMqUbhbSMI3p4EoF4+MWGC9KSbVsqpWUYUEmntJQFBGOfJy6lJWVBbjvhUCktRfdQBeKJS2mpIy2jTLZcBOKhkpYyQoi9XlRXVX6TV60SExws0lRaqq6RbfQkQVqatE/qc8vOo9YpgNbPR/VpKXsmWb9tE6BB98zsRiYgf7dUpSV1Y5LPhw3SUlryY5BsscveP4tKS1NXOqpyo/i05CE6xxVpKWsr4fOqfmfzNWiQPA3Vd1W5hm1NNR7wm2iAvU9L9nd+raN6p1khLXnXAy5JS+pcSVXGskA8ItJStLZJWmlZLkdTWobnZYW0lAUZ04FCWorA9vmydaRoE162rvUkpRCetPQIELd5uMqnJRW8T8s8modT1XYuSEueUNZJ003Mw10soqMqLXVml/y5uvwUi3oCQfauKQuKpKOHuwrEw+fNBWkZtq1iUU0Uh0pLVbo82apTWpbLbgPxUJSWtn2fKhCP6B5Z8WmpIw2pyIPSUtVv8kpL0XlZVVqamodH8WnJk1wmgXiSVFrq0gKi+7SUPRM7hrH9uQ1pqSNw2TkB+1+UV1F6UQPxRJkrqhbNPJkTl9JSNN8Kr2OPUwOUsPfMutKShQ1pKQLbt8ShtAzLVjaf4stk8ODGc3Tjq27jnKq05NNoaxPP7U2Ulh9/XP+baxU01Ty8d29g3XVpabJ1q1yumSdHgYwwUo0/lPRCmCgtXbVzk/asClpIJcFFYp+kwPYNIv/ArszDRbAlLWVjJVfeXmkZwJOWHgFslZYUYiVM37XSkjJZz2sgHpMFjgw9KRBPmG8V+a7LD0VpKVsEU3Yjk/Rp6dI8nJoX3W8swny3tKjbJ1VpSSEtwzqimijwoCjNKKSlbd+nUhpSzcOj+LSU1Wv2e5zm4VQlUlykJW+OZ2oeTlFaUvpcfoNJdY4JskpaJqm0TCoQDxWyZ2LrIr8JxUP3LlRKS1YNqFNayha0Uc3Do8wVTQLxxOXTUtZ2dKQlZUMwCdLSpC+hkpZU83DXSkuKT0sdaelCaSkjskOEG+Y2Pi1FFhlUc14A+Oij+t96utKSuulsUsZAo9IyrI+iub8rksqEABXVf2q/kzWlpSvS0kRpGaYvW0eK+vtQmMEeE+Uj7n4/J/CkpUcAW6UllcwA0jEPD59LpxQQgaq01KmfWFAD8bg2D+fNkthr2QUKdULo0jycmr5K9SYy0eKv1eVZp/rj8yAiMFX3iNunJa9qUJmHi8pepbRU1XFZnlVgSUtVnYvLp6WtebjomEwVRUnfFKr+VraRowrWRL1fFFIwyrMnGYhHlDavtBT5KtKZh7P3Eim5TUhLFfllU866PtiEtEwrEE9UpaWsz1Y9u6rc4ooezpJJbH9u49OSWp62SsvuHohHtBHBpiUb6/NiHm4yV1e9R1dKS5c+LUXXh+4bqErLOM3DbXxaikhLk/l30qSlLH0T0pIdS10pLV0G4pH5tGTznYTS0hVpSV3fp0lasv2EaAyKU2nJji2ydaTIcioUZrD5ZP93wgfiCeBJS48AtkpLGYkjSj9qo7M1DwfkE4G8Ky2j7IiLlJZJkpZxmIdHUVqakpai9666R9xKS5WaMimlJbXehuo/HWnpUmnpIhCP6JjtOTawUVqm7dPSpXk4lWDS1VcZKcTDdSAe0ThEccsRPp9r0lL1bmSbG3EoLaME4qH2R7LzdOorUXqqthNnIB6RksOUtFQpvvixQTeuhvkULc5ZJEla2iotbedSImJX5RuRvTargXiizCtZ8Gq4NEjL/v1rnzs65H67y2W6T0uReTiFtHRhHi4iLUXkt4l5OE9aUshzE1DnQy0tNPNw3ipMRP7YwNQ8XFcWon6RzbfKp6XLje4kSMvwWbNCWvLj8Bdf2K1bqUpL9jzZOpLPU6UiV1rGtYbIOTxp6REgCfPwqI2OX9xRTK6oSgER0gzEQ13om0wCZfnm/VfZpCVC3KSlaPGhIi11eY5iHk5RQVDfvehesvfMtgGWUOEnyFEC8fB5c0FamiotdaQlm4YNaUlV8KnOZSHbIIgKFWkp28hJO3p4lH7fVmnJPhtVVSk6RgnEo3KrQTEPVyk1+bypNj5ck5ZJmodnMRCPS6Wlq0A84XF2rDL1aalaEPP3tg3EQ9kUcu3qIISt0tLknqIyYuu/Smlpax5OmWO4gKnS0sQ8nJJ31+bhvDmurC6LFIsheOInrUA83UVpqSIt+/TRp8dbBX32mXmeRHBpHi4LxMOOD1lTWsqEOoA+jbAOZsU8nF+/L18er3k42wapSstKRa605PLhlZYBPGnpESBv5uGAGWmZltKyUgH++ldgww2Ba691T1qqypx/p6KFffgH0P1ZUvNHmTTdfTewyy6Nv7lWWqrUJSGiBOIxVVo+9BCwySbAz38uTo9PS5auirR0GYiHah5OXVCFbat3bzVZTjEPNw3EU6nQotvK7sumT73O5a656h5ZC8TD9i82+MpX5PdVHdflT/deQ7hWWorOo/gSPuYYYMoU4O23G39bsQLYbTfglFPUaYig6hOvvBJ48MHG47J3EMU8XBeIR7VojGqVYOPTUtWelyxpPOY6EA9LWj73XDC/oEK1gcf/ZmsevnJl/XcZCStDGqSliSLcRGnJqw3Z+5sE4vnVr4CNNgLuvJOeTxuYbAQAdNKSQp5QXE+YkJZ9+tTP6U44QU4oi3xDhuCJXEogHtGYFFVpuWQJcO659cdkpKWurK+6Cpg4EXjppeyYh4s2BUXg53wffGCeJxFk7rlefjkoq299iy7UYdMLsWpV/dj26afAZpsBTz9df55pG1TBhLSMorQMScKsBOLhx5dly+I1D7clLXml5W23BX5499xTna8eCk9aegTIi3k4O6CnQVqKdotVREK5DBx1FPDuu8GEiUpamjj/pUBE2vGLozSUlgccIP7NdSAeWZosKEpL2bs2JS333BN4803gwguBRYvE11ImR2wdZSd8NubhKjPVtJSWcZiHV6vufFomTVrmzTw8imm4Kj+64zrSknosKmnpSmkJAHPnAt/8ZuPxc84BHn1Uf70Iuvdz/fWNxyjEgil0gXhU7Yy6iSJ7VteBeERw4dOSVVnxG2zvvkvPi6rMeGLFVmlJIS3jUlramocfcQT9Hjo1qoq0tFVa3nVXsGnx2GP0fNrAVGmpmleZmofLzrElLfv21W9Eh3CttBTNV1V1nhKIR4Q1axrzTVW1vvwysO++tTloCNdt00RpCQBDh6rT4zf6XAThAeQ+LQ88MCirv/0NmDWrdtyUtFy9ulFZ9/rrwTqARZaUllTSMrw2K0pLHnErLWV9PgsRafnFF43nCTY+vdIygCctPQK4UFrGTVombR5OVVqqlFf8pJQaiMeFebhOack/S1rm4dT0RYRwCJ15OKA3o6P4tJQRiRSSRqb2XLGiMT02Tf4zC5lPS/7dUs3DkwjEU626Nw83IS0BsTJBBF09pF7ncgIqu4dMaRleE8U8XHWtirR0Rdby6eqO2ygtRcdaW+uPiwLx6MzD2fuLFtBU0hIA3nuv/nulAjzzDO1aEWzeTxykZVyBeCj9lqzPFp1PXcDxcOHTkiXcdGOVzuxf9cw6Qo4/n/0fQrQ445E1peUVVwCHH067h4nSkm3zPJlkQlq6wsCBwO9+Fyi3RXDp09I0ejhFxW1CWvbr54a0pCgtdRuVug0WitJShBUr7Hxahpg3z0zxG6fSMnzPDz8cqIpl4JWWrtR9MvNwFqyqU9dORM8pspbgkUWlpS6NpEjL6dPlbVongKCUqa3S0oa0LJdpPAaAQhJjQw7gSUsPAEDVhdLS5FwbJG0e7sKnJb8DmKR5OA8RkaJTAVHTEiFKfbA1D1fBBWkZRWmpy4Nqp96UtFQpLdP2ackqhqhKS9U9XZCWJubh1I0ayvszhYqEkSkto5CWFKWlihR0rbSkEkw2pKXoPJ60jCsQj+lCNUS5HM2XpOiZd91VH8hFhCwG4mHHEdl5JkpLym8iuPJpGb4vE9JSNG6qCFyTzcAwbb4eUTaF4iItdYStjLQcMgS4+WZg6lT9PVwpLU0C8bjCPfcAJ50EPPGE+HeV0lK0aePSPDwO0lI3pwshCmjD5stUaakTCfCwJS2XL7fzacmfzyJu0lKXt803B2bOlP/Oz1WJxI8WFNKSrX+qspC9b94cWJaPNJSWonKkbkAnRVr+9a/ADTeIf9O5mkpbaUkVGlDy1UPhSUuPAEkE4nGttKR0juFzuTQPNyEt33+//ruug4qLtJTlWzaBd3HfKErLOMzDdWVvah4uIqV0z6x6LtWkV1ZWNoF4ZEobF6QlpV7wRCvFp6WqrpRK9e9dVqdtlJY6ciuqyssUKvNw2QSIopaUHaOQllk0D2efIyppyR4X+dxSKSVdmoeLEAdpWSiogyHEMXmOEognLqWlqn3ErbSUkXzhcd1YpSJrVeQJ/5uteThlUygu83AVKHMeUVtUbZiKiF3ZApafh6WhtAzzq1pYy/IhKhvXpKVL83ATpaXKpyWfL9E44Iq0pOY3xLJldj4tWVCVkEAypCWgnhfyVkFJkpYsdBtbtvMf0/fnKq0o5uGhyCdu0lK1TnFhHs4/p8tAPKJ7EUlLbx4ewJOWHmqYmIfrdqeiNjpe0ZIV83BVGfAOorMWiCer5uGmSktX5uEmgXhcKy1VpJIsXWogHpfm4VEntLwfTtE7Cxc7cfi05POgSl+ntKQSuK4Wo6o0+Xeuu7fomWULL1Mloy25owOVtLRRWoqOUZSWfPR6FhTSMk2lpeiZC4XAF5wMJm2FiiiBeFT3pZCWrgPxiOA6EI9urGKfSURIqAhcEakXlbRMUmmpgkppGYJCzEVRWrLXmpjluoKuv1CpvJIgLUXImnm4KA+qTfXwu6pe2yot29pqLobYe8VFWtq0TZP0Q+hIyziVllS3WzqlpW0/FuVaUVouzMOpSsu4A/E0Ncnbn85qy0ZpSe2TYyYtvdIygCctPQLkIRBPFqKHi3bPVMorU6VlmBZ1d8dkIaRTWmbJPFxFhIjOSUppKVMWU8lmlfmujdKSGoiHXTzIFq2q908l4ExJS5l5eOgzauVKvY+tOH1a6sgt3aSVcp4JVOSxqXk4RW1IUQFnUWmpIy2px9as0ZOWhYK831m9Wu/GQmVerkPU8pUpLW1Iyyh5EQXioVhxuFBaysZa0flU/1484gjEQzUPF437cSstKT4t01BauiItRRumcQficQVdX2OqtFTNVXmflpQ5YVpKS5NAPKI8iEQB/O+qOm8biAcAFi9uvJdJXeLPda201KlQRUhDaSkLxCODbtM6b0rLPPi0lCktK5XsB+LhUS57paUhPGnpESDuQDz8uTbIQiAenWqHT49XWuo69DiVliJCQjeBlyENpaVq4kNRWurqiyp6tuierpSW4bPaKC1dB+KRvVeqqbMr0nKttWqfV6xwr7RMgrSMwzxcRcbJdm1lpKUo73y7oxDq1EA8tmpC2X1Vx3Uku63SUuTTTdXnxG0erpuo6+DSPNwlaVmp1LdR1XtXtS2KT8skzMNNfVpSlJZU83CR30RqeVJJS74M0wzEowL/7KJ2Jzqm6l90Sks+EI9L0pK6OGbhmrRMQmnJ9nFxkpYyAoGitNQRc3EpLQExaRlFaRl1jqdLP+tKS2o71G1a246Juo16E0QlLWVzQB5JkZZNTXakpY3SUld2bP9rQ1pWKnRSNIkNrRzAk5YeAeIOxJO2ebirQDwqUkCUHm/mppPOuyQtded2J/NwitJSNzhQnl/2rlUDu8zXFZ8vFalEUVq6CMRDUR3pdpd1YNuAzKclG51z2TIz0pJ9hjQD8VDLzAQqItRUaUnxM0chLVUbOexvNgtsXf5E+eG/U83DRedRzcNlSCIQTxTIrk/aPFwEduyUpS0zpQ4Rl3l4WkrL8HmiKC35sUH1GzUQD5/f7m4eHkVpyd4/qnm4TZ8axTxcRACq8sw/u64NyH63VaLH5dPSlrRUlZVr0jIupaVN2zQhRUNk1adl1EA8FKSltIzi0zJt0rJcdh+Ihz1f1I+w80Fb0tIrLY3gSUuPAHkMxJOGebhOAagrL9ekZdTd1KSVlux7iEpaisiAqObhOsjUj6qBXbYbF0JGWurSZa8F3ATiSVppKfNpyZKWy5frFQqyQDxxKC2pZaFyG2ELndmna9LSpXm4C9KS+p5E+WbfvwlpyR6XBeLhET5rdwzEY6pYtAWrvrRVWlLaahJKyzQD8ejGff43E/Nw2aaGblNIt5COa4FmS1pSlJY2gXhkynYq4lBaqupHFKWlboMhvLdL8/C+fdMzD9eJBHjYBuIBgE8/bbx3lLWBa/Nw16SlzVqQApekpe59q2BKOuvSSsI8PKlAPDKLON1cyIa0ZPtnkZUNOx9ky45fk8hgQFrGNibmDJ609AiQhHm4a9LSZOBzZR6uIy11z0iNHu5aMi6aMPLm4Un4tGQnZNTFZgh28DziCOB3v6v9ZhqIR1QfKKTtxhsDw4cDF10kJux1pKXovar86MgIJxGiBuIpFqMrLcN8trcDX/4ysN12wPz59eeY+LQEzJWWFPNwGcl10kmBafoGGwD33Sd+1h/+ENhyS+CZZ5JXWqoUhPw7569JUmkpag9JkpY60lTV1lhQfVry6N8/+P/ee8AJJ9SOuyYtJ04EHnrI7lpA/MwmPi3/+Edg002Bm27qXkrLWbOAG24Q30+VlgzXXAO8+irtXNkz8ebhKnKjvT0YI7fdFnjjjcZ0VIpl0ZzAdSAek3mlS3ilJc083JXSkl3oH3AA8L3vqe8te+9p+7TknzFLgXiA6EpLRf3e+F//QtPEicG8Z7PNgIsvNs9fXszDOzqAb30L+MlP5OfINsh5ZEVpeeutwI030s51obSMMxBPSAbKzMNVdcbGPFwm/AghIy1lwYJ4eKWlMSy2dDy6JZIwD486EbUJWBA+V5xKS5eKqjAtF+bhOrPkuJWWonOam2vlaqu0vP32YJHMwlRp2bt3o+k+dbL46afA2WfXL+xVCtnNNweefroxDyGiKC1ZsAMoX358IB5TpaUpaXnzzcCddwafjzwSePDB2jkU0nLgwNrnOHxa8qhUgA8/BK66Kvi+dCnwq18Bp5zSeO6//x383333RkKWT1P0uVi07wuzaB5OVVqKdqpNoSKvKPcP656onsuUliwxQDUP798fWLKk8bhr8/BFi+yuC2GjtGTL+rjjgv9HHFHfZl2AVVqqTNKjKi1F9ffyy9V5i3MBQVFa6szDb7sNeOyx4PNXv1r/m8pfmsw83HUgnjRJS51LnLijh7NppeHTkh0Td9mlVk9CqOqHaSAePn/33qvOm2ul5c47x6O0BIAddwSeeKL+HBaiMUlV710H4jHpo2Ttc8UKbPb3vwef+c0PE+TFPPzf/6YLRoB4zcPj6gNVyLpPS9Ummk5puWIFrUxlc1tRXyszDw9N2HX3K5fppGWlAk9beqWlR4i4lZZxmIdTrwHkEwFVpxKH0lIHFfkV4ktfMr/f8uWNx2Q+Le+7D9hrL+CKK+TpuVBampKWYXqiyROFtGQHZFPfdDza24OduxCixdsBBwDnnQdMmVJ/HQ9XSkuWROXVlEkF4gl/e//92jFeCUbxacmTrEmQlitW1B977z31s65aRVd5sedFCUgTt3k43+4o5uGiOqNTOtqCQqpT7i96rzLSkj2XGohnwABxPl0rLaNCVp5JB+LRpadS2FLHERVRx+OLL8Tn2iotTSB7po6O2nEdafnaa7XPPLHNL6Z55ZCJeXiYH74MdUpLHTGQptJSpuLh0+HPtwnEw5MTSZCWbD5vuimwiGAD36nGWxPz8ELB3NTZpdLyxz8GDjyQXkbt7WaBeP7xjyD9EKoxMvzOltXuu9f/nkWl5ccfm+fFJH0V0lJamsCEtJTNCUTQzXl5fPnLwC9+QT9fhqxHDw/7E5tAPCoLAxYypaVo7seuq2zNw6l1zistAXjS0iNEHgLxRCEtbczDbQLxRJ1sU0jLe+4Bxo7V3499pyzBxt5LpBjYZx/ggQeAQw/V51MF0Tk64iAExaclC5l5OPtdZi7Np2EDfjeyqSlQGp51VjSfltRdTqCetGxvtyMtXZmHjxolP4eitGQnCKzCSAR+AitT0qgWA9Vq47PPn09356D7jf1s47NKlyagV1rySEJpyZ6XR/NwW5+WJqRlFKVlVIie2cQ8XJdWFMgIx1/+sj4vUZWWogU++33ffevvx/5ncdBBgXItKmSEA78oovq05METd2w6MlLPdSCetEhLvmzTUFryz8aem7R5+LrrAv/5T+Duhs2DidJSlmdZwAwVXJGWN90EXHqpGXFq6tNyvfWAO+4A1l9fnHfRd/YYa30CRCMtY/JpWZg3zywfV19NS5/SvlXlEJfS0hQmpGW4ZgsxY0Z9u+Ovpb6/U08N2vB669HOVyHrgXhUpGW5rO5vZOseHrY+LUVKSx1kQgMBvHl4AE9aegSIOxAP5Xcd4lBaJu3TUgcKaQnUnos6uRcRsPyCjy9bVVmnobQMzxfVVZnSkr0fOziISMsoxAE/sLNlJ8sDf0xUXtRdTqBeHaUiLWWLkmIxutIyzKfKVJQSiIdfSOsIa9NAPDz4CWZ4X5X5N2DnTy8KaRmmKSJrXCgtXfm0FPVjcZqHiwhc/v46f7oulZahT0seaSktZenLzMNtSMuklJbss+gWd9R+i0JKAeoFXLGoLjcqKKSlTmmpi8ytIvNtlJZ8fvm5E/+O0jQPd0FaipSqNoF4AJoaWAZXPi3ZZ3altLQlLV2Yh8vmXyrYBuIJP+tIS6D2rguFxueIEoiHV1rqfP3ykCmJTZWWsrxTyoZHGkpLCkw28Nnfx42r/71vX/U8mTqehudFCcgXQqW01L2zJALxRDEPt1Fa2pKWPhBPbPCkpUeAJMzDo05EbXxaug7Eo1MyufBpqVOPAPKJkgn4BUoSpCU/gTdJ30Zpyd7PpXk4D57cYdOiBuKJqrTkSUvTQDyFgjuflnw67LNRlJbs5DcJ83DRYhIAPvhAfk14nQyyMotCUKnqQ6ViFoiHQtxRCE9VW82q0lJFtLLgA/GUSo0LM1G96tdPnE/Ros5mXDOFjDCW9QNZNg/nN76iKi3589jvPLmgIy1V5UaFjHDgA8mpyA3Vu1ApLXnC1DZ6uM5XY5bNw02ih7PnUpSWog3D8FxToolPmwrVpi8g39SU9VOyutbcbE6kuFJass/jKhCPjLQM80YZX8N6L6pjUZSWovZm0oYk437ho4/M8iEra95Vjqie889tQlq6HntUYPsuE6UlT1r26QMMGiS/nvpMojWHLVz4tIwzEE+a5uFxBOIpl73S0hCetPQI0N3Nw/MSiEek+BJBNlFioes0+QUfX0aqyZMLpaWqvqiUlqoJD1VpKTLzdKG0DMtFRlqa+rQ0UVqqfFpSAvGweeFBbefhb3w6S5fWPvOkpahN6xZ6LFz5tIyTtHTt01JWV7q7T0tT0lKmkrRVWooUbqJ+Vqa4S8s8XFb2sn4gC+bhsnE1DqUlX+9ZUkpEWsrUYHlQWvL9P9/X6vw1sqCqcGRKLur5ruBaaclez36WBXAQPbfK0kKHJJWWInUgIK9reVNaqnxaqpSWMqsn1caDqFyiBOLhoesXReezCM3DTZWWFEW/rJ5TNgPZ+2TBD3QU83Cd0pLq61DUF9kizz4t41Za2gTi0cFEaRnXmJgzeNLSI0DcSkvK7zpkgbRMwqelCWkZ5X5pmIdTlZY6M3wesvcrIwzjVlqy+cmCT0te7UkxA5cdpygt+ffH7tjzgXhcmIfLFoxxk5Y2Ki8X5uEyolBUv2STzqTNw7tDIB6Rwk1Uf2V1TXQ8CfPwJJSWrpUAVPNwKhmpUx+yYNUrSSstZYSDS/NwldLSxjzclITs7kpLFmx/IXruLJKWsvptorTMG2kZVWmpGiNDhO/atdKSR1SlZfjd1KclRWmpqi8sTJSWScJWaTlqVH177dtXrbSkkpZxKy2z5NMyCfNw2dxWF4iH31h1HIjHKy0DeNLSI4CJ0pJtPFTS0oXS0mZx5zoQTxI+LSkdK8U8XJcX/l58GcWhtEzTPJx9dyKlZZRBX+XTMg2lJU9aNjXVJoU2pCWVmJctYlnSkmIezr831fOrTIVMzMNFbTur5uGy9pGGT8ueFIhHRBaJ6tXnn4vzmZZPS9EmDSB+Zp1PS5ONlCiQ+frjzcPjVFrKSEuZ2p8vNxs/YxTCQReIR1cmKqWlqK8yDcTDI27SkkpMJaW0ZKFzDxP22TYmrq7Mw9m8y4hDU/NwqokkC1ndT9s83EZpKXqOuMzDeZgqLSX129g8nKLol7VtE/PwJKwTZKCOKfz6qrkZGD269r1PHzdKS5ekpYhwpI73Sfi0DNuyqA+oVNRlEDUQj848nM+nD8QTCzxp6RHARGkpW4yrOjUXPi1tlJbhc+UpEI8r83BdeevMw+MOxGOyiARqz2oSiMdEaZlWIJ64fFryipkwH6odxySUljaBeFT3jCsQD1Bv1i4ClTBJwjxcNgGKQlq6NA9PMhBPXEpLEVkkqr98YAT2eh5ZMw+nBuKJ24+YC6WlLWnJklKyBRIPkXm4zXyAQlrqlJYq8P2pSmnpyjycLwfX5uFrrUU7zzVpyZ4rm0NTfVp7paVceSQKfKNCkkpLk0A8KvPwKIF4eJgqLflzw3eaZfPwrCsteT/ppRIwZkztexYD8aiih2fBPDzLgXj4fLoOxMPnrYfCk5YeAUyUliKS7g9/AHbcUX2PvJqHs2UTt0/Lcpm2w6YyD587F9h6a2DWLHUa/MTGlXn4eecBW24JPPRQ42/sxOTII+VpiMpg/nxgl12An/2s8TcKaclOSEUDkAvzcJECQ7doWbUK+MpXUJwzp/E3E6WlKhAP6wNItePoyqelidKS4tPSxDzcVmlpQ8LoNg1uvRXYYAPg/PNrx6MsSlRKSx1pySNUqR1zDLD99sDbb7szDxcRWy4ifFJJS9H9eb+uPETHPvmkvh+l+rT87DNxPmWBeOImLWV1X1bnKebhaZGWbBn+9rfATTeZp6E6jz2XL7c0zcP5e9n2Izwxyabzox8Bv/997bvOPPyDD4AvfQlYsUJ9zz/9KZgfvv9+8N210pJKWj71VJCXEFTS8qGHgEmTgF/+sj5/pgk+QlcAALw5SURBVEpLUf+ctNIyik/LtEhLndKS34S2UVpeckmwjpHlS6e05MtMRVqK6liaPi35d9jWBuyzDwq6ds1DZx5+663AhAnicygWDCHyQFry/ayItOyO5uFZDsRDGVfYd2piHs7nk/I+ymUz0jJu65YcwJOWHgFsScvw8/e+p7+HC/Nw6iQzRBTz8LADZ3dTdErLqJ0KVWmpMg+/+mrguef0afBEjQvz8BUrgHPOAV56KSDjeFAn2aJyPv104L//FZ9PMQ9PIhCPaALB54Gvc5dfDtxxhzhdW6UlT0xSlZa77qrOhy4v4W/8+1uwoPY5bp+WNqQltd2JrpOhXA4Wue+9V388zkA8quiPIqXlvfcCN94YLOYPOURuJmurtGTPGzKk8TxTUNwXsN+jmofzoJqHH3SQ+Pq0lJYy5aTombOotLRVKkc1D08jEA9vASFCXEpLALjllvr7sP9FuO8+4Nxz9fedMwc44ohaHlQwnUcNHmx2fgjRc4mOnXgi8OKLwJlnBup7E6Vl1nxa2kYPl6mOVYF4TNVfss1DHWnJbxaw51MV/iqCjkJayjbOWIRlpVrHmPRvsk0SU9KSx4MP6kUPIuhIy0MPlbvc4cdMVd3JYyCeUgnYaKPa92HDgAEDaPfhceihtc877BD8T5u07OgIzslyIB4KoepCaUnt+0yVlp609KSlRydcmIeroPM9RYFMaXnAAcBRR9UPCOw1gJ3SMnx2nXmvjXm4LD8uzMOXL6flIYrSUvbedWqqKKSlCqbRw+NSWob3YJ+TJy35snv9dXm6UZSW/IRJprTs3Rv4v/8LPp94InD00cBhhwE/+EHtHPZ8Vf2UkZbs99Wra5/79hX3Pex70+2QqnxaUpQwYb7jUFqK2qIL0lLWL4sWXirS8t13a99ffDFe8/ANNwwUp3vvLVe06BDFPFznmoLa78qUlvfeC+y2G/DPfwbkxnrrNV5P9Wl5//1uCDAAuOYaoH9/8W+yZ84aaSkzD9dB5hdTdS/2XJlPS1FapVJySkudT0td+jIyX3QfQD82UuvCE08E/3Xju+lckaq05GG6CQ4EfaxM3aSzGsiCT0vdM8vqX5aVlnx/xT5PqQRcf71ZPniozMOT8Gk5ejQwZUrjcRlpYmoezuOTT+yuk5GWsrzsvXdg6XHIIcDFF9Pv09ycDaWlbgOfn4t+73vA/vsDJ50EbLONWgWs6iOvuAL46leBY48N5uth+lFhsuktQmtrPWm5227R88RCZx6uQrlMCyzFPidbHqK2pjIPp/q0NFnretLSk5YenXARiEeFqIMoICct+/YF/vxn4M03gWnTGq9h//Og+IRkJxGufFrKdn9NSUvVxEgHnU9LG6WlLu8mDvNNYKq0dE1ahu+dQlqaPJtIsXbPPeJzVaQlH4iHTe/RR4NJY5jXG28MiBdWvWKitBTVYfYaVoHbp4+472HfDx+I51e/qj/XlXm4KVEeXhfisMOAE06ofZe15bjMw6tVYNky+TUi0pI3b7ExD6cG4imVAjLv/vvlJmI6RCEtXSktZdHDp08HHn44qAdrry1WT4vqoIgMmDgReOABfX50+L//CxZKJubh1OjhcZOWlEA8OkRVWspIyziVlpS5UpxKSxa6QDy2SMs8nIeKPJKB7dcpfsB180eXSks20IcMOnWpbJMwy6Rlv37y84GA3DngALO88PlKk7QcMQK4667G46p1RBSRCBNIbtGkSfTrKNHDWbS0ADfcEIxTKlNp0X3yoLTk5z8jRwbv8Xe/C+qQrE0B9e2AJ92HDAFuuy04Tt1YokDl05LSP61ZU0tj1KhgPjR+fPR8hdCZh6veR0dHvZsqGUxIS5V5uFdaxgJPWnoEUDUw1WBMJdmiDqKAvINnB0r+OaIoLcPf4lBaqgIjRDUPN/GFYqu0NPWJGIK64ExDaekiqrOItOTzYPJsokWyrAx1Pi1l5uGy55YRgbqBU+SXlb2eV1qa+rQUOWyPKxCPDmy+ROSpKM04A/GIlJ0y0rJSaWwHrnxaikhDtmxsy0BW92T+xGTkDNWnJQ+Rwk1Wr6iEiMg83MZ/syoPpqQlRWlpQ/KbwIXS0pa0ZH0TU5WWeSItqUpLinm4bR5USIq0tFFasqQef73OaiDuQDxjx+qv0ZmHy+bqsj5J9i6bm+2ih7s2Dw8RddxNMxCPzIWIirSMQnAsWdL1cfXQofTrTElL237FhhB3hSiBeESglBn/nmWbn1ERxTwcqFdahoSey/ek2kTTWWSVyzTSkk1D51IsadLSB+LxpKVHJ2xJS6pCyQVpKZs0sZ2+jHizIS2pSksTQieEarIRNRCPidJS5dNS5x/E5HiIpM3Dk1Zahvlm66RrpaWsLrODqol5OIW0pCotATFZJ1Na2piHi0hLF0rLqD4teTNf2QLMBTkuIwpNSEtXSkuZ6pP/zSY4Ag+q0lIXiEeUDnWziBKIB1AHW+Cv589VKTBMYEtaZkFpKRtX41Bayuq9zKeljLSUmYuZgDJXEil+TdI3VVq6JghcKy1d+rSkkJYmSkvdpncU83B+HiNyScFDp7SUEV5pKi110cNV5uEhorr/STMQjw1pGWW9xcwj1pj4ovakZQ38/M+UtGTvw48rVF+8pnBBWoZ+I8O5pUtFbFhWsvmb6n2sWGHu05ItD9GcqFcv+SYQhbQsl73S0hCetPQIEEVpSWl0cfq0VCktw+/d1Txc5exbB515uGrhbKu0pJKWaZiHx6W05H1aRVVayvLJKhtUgXiopCVPwIk+iyB6RpnSUmYerlJaipRubD1l752k0pJvL7Kd3yjm4Sqfli7Mw/n3FtWnpax/sW1rsneUhHl4aM4VhbSk+rRMSmkpe+as+bRMKxCPqXk4NeiHCvy4LNtgS0JpGRdp6VppmSRpyfqlplinJBmIZ+RI/TUU83BZ/TYNxGNDWvJ1I+x32e88KErLJEhL9hxRGYrWFCFU5uFJKy0ZxKq0tJ0HZMU8XFXGVNJSdpxtV/w8TdQG4jIPl80fZdeHaYREq8uxg13D8HBV503Mw3v10vf5KnjzcGN40tIjAFVVJ9pNpDQ6Fx1KWkrLOMzD4/RpSe0EdebhsmNA9zQPT8qnpY3jZYrSsqmpdi+V0jJt83Cd0pIncXiflvxCTRWIJ03SUpamC9JSZx4uIpxFpCVflnk1D3dBWuref5h/qnm46D0nbR6uG/+imIenpbRMMxCPKq1SSW4uZgKeIBEpPKIE4jHxaRmXeXhWfFrakJZtbfZKy7gD8VDqhO6Zs6a0pFgAxa20VJmHs+lS/f2r3gF1YwuIT2nJwJuHc0hDacmPK3EpLV36tIxDaclai/HQmYdT4YK0pD4z1bKSPb+Hw5OWHgGoSssopGXefFqaKi1Nni8qaSlSf4RQdYLsfXXm4YDZYld1PESWzcOjDq6sqwRXgXhMfFrqSMsklZYU8/BCIZjYiBYlvHm4zqelC/PwqIF4ePIpafPwVatqdZx1ai97X7yiS5SuivAMoeoTZfUsi6Slrl6H9UcWiIdHFKVlls3DVXXQJbISiIdFEkpLnjQSvYsoSku+X+rJgXiSUFrGGYiHn3tT3pNOpaVSWpqSljY+LW1IS10gHtkxk3xRSEvqPEk1Nsh8WoqOy/ob0dhuCa+05KAS8bCISlqy1yaltIxqHv7FF7XPcfi0TFppqfNpKfPb29RE4wO80tIYnrT0CEBVWooWh1kyD5dNIqOYh+t2ysPycUFaivwBiiDb3QXUCwKezNApWPKitHRhHh51cGXTdxWIR6R0k5Uhq77h78NGD49baUk1Dw9Nw0UbDWyedMogXg3FnsseV01ybZWW/L34MpORQrZQKS2XLq19FkV+FxGPfP747y7Nw7OktBTlmTnWIVLMhXl2bR4ep9LS1jyc4tMyrUA8SZCW4XUy83BRWnGZh4sWS1HNw9NWWro2D8+K0tImEE8U0nLBgvrvlPeUdaUlnx6FtMxCIB6ATlqaKi1tzMNdKS1NfFqaihy6s9KSGoiHYh7OjwGiNhB3IB5KfWLdE8UZiEc2f6P2oarxIknzcFOflj4QjyctPTpBVVrynULWAvHYKi0//xzYe2/goINq8nYTpeWLLwLbbad9hC64CsTD5lOVxxAsmcEvjlyYh6ehtGSJL5V5+NNP1z7HQVqyA5yrQDyiRbJMrcUuZLMWiKdcBu6/H9hqK+Dll4NjoUkXhbRMQmnJXjdggPxcFvy9KEpLJjKnMVQ+LVnSkp2UySadFNLy2GOBQw5pdGCuIy3jCsRD9Wkpur9Mafn3vwf18h//qN1GRFqGdSkJn5ZpKy2bm+V9dZ7Mw6mkpUxhzDvU33ln4P335aSlC/NwPj8ypWWUQDxs+qp0emIgHt2ztrWZKS117oXCsrBpTwsX1j4PHGhPWvJjvSulZXcxD6cqLUeMALbcEnj8cXOlpU0gHll/44i0rJZK6FC5CuEh60tkZWH7Tpqbs0Faqt5xnEpLEVyUh8r9GaVPZgNBxhmIJ6p5+OjR8t8qFeDTT4Fp04Dvfrd23NQ83CstY4EnLT0C2JKWJubhURucbCHHLq5slZYXXgg88ADwn/8Av/xlLc+AfnFQqQQd3P/+Vzs2fLj6GtmC0MY83IS05JWWtubhsnepW4ysvbb6d2o6LNh8q5SWLFTm4XvuSb83C5a0ZO/LTjhWr7ZTWuoCUfCmRSaBeGRtw2UgnkoFmD4deP752rFwMa7zacmTlrpAPC58WvbvLz+XBfvOqUrLUaNoaYugMs11obQU1c3bbgNefVWcD1leRBPdrJqHH3lkUC+feKLrkJC0DNOi+rTMQyAe1VgjU1tGJS2nTKGdJzPDSzMQzyefAF//upzUYdv2wIGAiUqJBYW0TEJpmZdAPCplsAqulZY60tK10nL77WufjzySpsCimIfLlJamgXhszMP5ukHJP0+spWUevnQp8NJLwGWXqUkLm0A8ovKPOxDPwIFm71DWl2TRPNzE7J2FiXm4ThQCyJ+DDViZFGkpgonS8vPPa5/DPjkO8/CxYxt/M6nzqjl4tQr8+MfA7Nn1x30gnkzAk5YeAbJoHq4jJ0K4UFo+/njt2N131+dXNziGOzMsNtkEOP98YLfdgFNPbbzGxqflTjsBM2cGn23Nw3mflnGbh0+YAJx3XkBYnXwyMGmSPG+U9EVQdeSywUOltPzLX4AvfYl+/xCsE2u27rID5Lx5dtHDde8pfM48BOIJES40RBsNvLpZtchWBeJhj5uQlgMHys9lwZKWfP/EpjlwILDXXsBPfgJssw0tbRGo5uGs0jKKebgMVNJS9i6yRFoKICQtw3dNVVqaBOIRtQGXpKVpIB4gPqXl6acDhx8eWDWo4EJpaaKKEX3nSUsAeOopcVqlUqC0uuQSYNddgQcfBO67T5/H//wH2H33+mM60jJqIB6qT8u4zMNdKi1vvNE+f7akpa3S0nUgnuOPD9rSV78K/PrX+k19WR75DUrRXL2nBOIRjf0q83BRukuW2JuHi34L78c/V9zm4Z0ihw7GCkGJvJiH77570D/bIKlAPB9/XPucNmlJrUvvv1/7vM46wf84AvFssQVw1ln1v5koLUUEZIhqNRAw8WhpEYtivNIyUXjS0iNAFgPx8AMyhbSUTXB0pCVLLH3yiT7wCSsbl+1Kn3km8PDDwNZbN/5u49Pyv/8F9t03+GxrHs4v3HU7gVEC8cyYAbzySjC43Hsv8Nvf0gdWG2IPcKO0HD0auOeeYHFtApnScp11avn66CM7QlZXH3l/ezxpyZsTsuWbRCAeFWkp2mhIOxAP1TycV1rKzMPHjw8mQpdcEl3xAbhRWoo2SEQ+jVT5ALIdiEdGdmvaYFnlm7AnBOIB4iMt+/YFbr45UPCq4DoQjyq/sv5KRFoCcqUlEGxMPPJIsDmxzTbAVVep87jVVsBDDwUbnCHYZ48jEI+p0jLJQDyFAn1xdtVVwNFH2/cnNqQlO7ZSlJZxBuLp06fWlvr1syctKUpLU/NwGxNeV6SlzXsNEbqv4fNlQlq2tpqbh7NtTSa+4Pu+uJWWnfOg6iGHAN//vv78PATiOf74oL+dONHuehOlZRTSkl1Xp01aUuvSu+/WPo8ZE/yPQ2kJBGKYc8+tfTchLXVrAVnQK/66Xr2iB+Lx0cON4ElLjwBxKy1dkJaixR1AU1rqzMN50lKn7GDzplr48fkLkZZ5OJsXSvTwKEpL2QKdAtsFcRTSkjI5VkGmtGxurtWvjz5KTmkZ3if8jX33bF6TCMQjusbWPFxEWlIC8aRhHh7mhX0eF4F4THxamigt2eiPKnQn83ABhEpLUTpAvs3DZRtugHwxFTUQT5gXXTuQ9TlxBOKR1R/ep6UqLVkZ696jaI6iCsIQnhvFLyxVaZmGebgJaRlVCWpjRhyX0tJmQUqZs1CU4XEF4jEd60RjEuXdUgLxxKW0FD1jFNJS9LvMYky1jnDh05ItC8qYbWoenobSMmpf5tqnJaVcVcrAEK43lkKYEOAsabnuusF/l2OHapOImk/ZRmSIalVcj0WbMD4QT+LwpKVHgCiBeKjm4aaTMhdKS6p5OO9rUadA1C2A2WtkuzYiUHdeVObhqvfB5psSiCeK0lL03NSB1XZBnCZpKVNaArVdx4ULgVWr6GmKCCdT83CRiagpaWmitDQ1D3cRPdyF0pK9zoXSkl3osMejTOKo5uFUn5Z8OitW0PKhIy1Fajxdn0iBrN8RjUv8+awbAR1pqVJaJhE93JXSUkfqqMijuJSW1Lbgwjw8KmkpW+C4JC1FasY4fVqaKC3TMg+nLs7CMkuSwDCNHs4H4uMRJRCPbJOehWiTjwc/1psE4lH5tHShtLTxaRnFPFw09vMmslGVli7WMWHANBFcKS1ZH/iU8suDeXhUcs919HDKXIjS12fBPFyktIwjEE8I1TpBlYbuvYnKu1cvsXuGKObhVMumEF5p6UlLj05ECcQTV/RwXu1CIS1tlZYi00lR+iF0pKVOaWnj05JFHObhrn1aRlFapkFaUhYgKsiihwO1XUcA+PBDeppUpSUfiEdEWrJ5YvOahHm4SmkpmqCbKC15n5Zs3bFVWlJJS5b85fsndoHKHk/LPJyHSNXiirSMS2kJiMcRitLShLQ0UVrGYR6uUwNQkUWflmz9V9UDmRleHKSlrL/SzRtYUDZ/VL/LNl7S9GkZl9LSlXl4HEpLHdraau+forSM0zzcVOkpO4diHi4LxOPapyWfHt/WXAfioag0w7yJ8iAjLW0D8YjSFJGWKrW1bd/Mg50HUd5lHszDo46rrs3DKc9BKfs4SUtq38TOQeM2DwdoCnFRGrakJf8sMhcY1E15dv1AgSctPWnp0YksmofbBOKxVVryk8mVK2ufRddGJS1li+K4SUvePFyntIxCWoqemzqAdVelJVDvrFoHkUpOVK680pIlDkWkZZzm4VGVljyJ09GRTPRwFz4t2XvIiOEklJa25uGuSUvXgXj4e4eQbTpZkpZKUM3DTQLxZNE8XKXiAdyQlqpnlJnhmdSdOALxyNKSPYtuHBG9oziVljrlOn8fPm8uoKs71PYZh9JSN09ds6b2meLTMs5APDqlpcxfLg9+8W+itJTN/10pLfm64FppyaoJVTBRC65ZY660VG3qiXzzJ0BaVruj0jJqX5ZUIB4WlLVIFkhLNi9xBuJh7xPCldKyUpELjVwrLT1paQxPWnoEyEMgHpnJHEVpKXu+ME/8M7BquCR9WqoC8cjSj6K01Pm0zLt5uEn0cJdKSxVp+d579DRNlZbsfcMBUaS2iqK01NXPOALxZNU8nO03+AUi+5srn5ZRlJZxkZZJBuLh7w2IzZdkpGlYBzR1uKD6nRqIh7oDn2YgHhHiVlpS60GSPi1dBuKhHg8hekdxB+LRjdN83rIaiEe3KU29noXu3ixpmbbSUmc6LfLJKnqXVKWlKWlpWm9EpKUrpaWsjoh8WIpgYsER1adlHpWWKusAmQrOtt02N6entHTt05IynqWptLRxNTBqVO25klJa8hZZonPCNFTPk2QgHk9aGsOTlh4B4lZaxunTkp28ywZ7WQciU1p+8EHts4601Kku4jYP55+NSlry76Snm4dHVVrKAvEAbpWWFJ+WQG1xlbdAPLzyjJ+M6ExpbZWWrgPxyEhLF0rLnhqIR3Q/lbk4v2gI7yvKH4MitQ8F1P0E/5xU83AgPdIyRNRAPJR+RZWvLAfiET27LWkpUjPGHYiHqrSMyzzcVSCeNHxarl5d+2yqtBQhTvNw3nUKpY7KBAY2pKVp+fJWFQCNtIwSiIc61svmFUkG4uGtykwD35iCVVrqxmxZXxnmx0SdrkOaPi3jNg8XvVNKnl1uLPHrS1PBEbvecTl2qOZTMnKV39CwNQ83DcQTB2npA/F40tKjE6oOb7vtgGefDT6LVC4U0nLxYuAHPzDLk00gHtmuchTSUnTfOH1amgbi2WuvIMBLCFuflia705UK8PTTwPbbA7/6Ve24TsGRtHm4idIyKfNwE6WliFwRLR5UpKVIacn7YhSBX8iIPotgah4uWnipSEsRycmm8eab4nNNSEtbn5YUNWuUyeU//wmcc474HbCL6SSVljbm4baEC39v0XdAH4jn5ZeBadOAefOEtyio6jjVPDy8p+5cvt5Q0qUiDqVlCN3CWNaGVAQ+Wy8uugjYbz/g1FOBBx8UX6+DCWn5858DO+4IvPhiff5E7VXUTqIqLZMKxGPi0zIu83Dd+J6mT0sT83DKnEHX18UZiIdKWvLjrYxgipu0FKVlo7Q06U9t5qRRlZa6ekJRWpZK8rr1+uvye5uAVaFS+jGVyEFUv9MgLaP2ZSaBeHTrK6DxHY4d23hO0ubh7JjwwAPAt79tdj273nFpHq7yzyvrt/r1a0zDVSAemU9L6jN7paUxPGnpEUDVKS5dCuy5Z/BZtGC0JZh0sDEPd6W0nD+/Pg2Vgk9HWoo6QJF6IkzL1Dz8hRfqCWETn5Y683DVJGTXXYGnngLOOAP45JPGe0cxD7fdKXYZiMd0EqAKxDN6dO3zRx/R0xQFihLVR5HfypDEEv2WdCAeUZ00iR7OPz+fT8qCRPU+XUUPpygtZW1g2LDa55Ej5fc87zzgrbfU+WIVEmmQljLSUPTZFBTSUufTEgBmzwaOO054i2Xrry+/v2hckoGqtDTpe00g2rDQYbvtgv8qMktUd3jst5/4OPtcIh9RLO65B7j00vpjcfi0fPNN4MILgTlzgN13r8+r6P2yqmZdvqikpUzZ7joQD79ZmbVAPCZWOVFIS1lgGR1MfVrq6qtLpaXOPJziykKltBRdLyMtVco7GURp2fi0NOlPDzyw9nnUqOD/pps2nmdiwaEjLdkNxhAuzcMdocqqUCmKcVOlpe08oDsH4mGDdoag9G8u+2h+HL7tNrPrQ3+WgNt82UQPFyktd95Zfg+TQDwtLckqLT1p6UlLj07oOvJly4L/tj4tbWATiEe282xKWrJkRFTSUjSxEA1MAN2nJV8OM2fWPpsoLdnnpKgP2XyyHe6iRY33jmIengZpSVVaytJUKS3ZgXPVKvH1IkRRWoYT4/BZRaSlauEmW0TbKC1Fg7PMPHzAgMbgBfzz8/mU1dM0A/HISEsZbr452Bw66SRg333V56qI70KhPtBXHKQlm5bKp6VMaRBlImtCWvLm6fx977tPeIv5O+6Iyne+I74/XzdUfZpqks1enwWl5bhxwDe/CZx4YvBdpSjVkZYHHxwoglV5EuVLZoEgu14Har/1+ee1z0uW1D6bkJaUPkgEEfGWFaVlGubhJj7URAFKQlBIFhGiKC1lZJkqL3EG4rFRWsrKPwmlJTuehnCltBQdO+YY4MwzgV/8Athpp2CTBAD+8x9gt93qzzV1O8PWEx4iNyyqTT3TQDyia23Aiisomy9JmofbPhd73eOPAzvsYHZ93D4tRYKWQiGok9ttB9x0kziduJSWKqyzjniuyqobXSotVZtEVPPw5mbgxz8GvvY18T1UPi3Z+zc1AUOHyjeqKKSlqL9TwZOWnrT06AR1ALD1aWkDG/NwV0pL9rvovrpAPOz5og6Qlc+zsPFpCdQGGd2En1dasu+Ooj4MwecxJKVcmYfbds5U83BKZF9Zm5BFflf5tLRdYMqUlqLFiew+4XsVmS6rJhQulZYiZYHMPHzQoGjm4SzyFIhnww0D9d/vfqef6Kn6CH5HWFSHAHFfE6d5OEV1aHpv0XfV/an9T7GI8rXXBgsFHnzgBlWaIifwgnvFRlqGaVDG97vvBv7+d/EGCFCfRxVpeeaZwK23Nppl8Xni0xTdU4Q4fFrK5geyhbgJaWmjtEwyEE/WzMNNSEtV/nTlY0tamvq0LBbVz5M1n5aygBamPi1N+tsQrkhLitLyuOOAG24Ijp9zDvDf/wKTJgW/bbwx8PDDwP771843MQ8HxHOeECLSUpVmFKWlbT8B1K8JKD4tVe9b1OajKC1tr2fLeccdgSeekFsFiBB39HDZHOHLXwaefBL4xjfE6aRBWs6ZA8yYob4+baWlyDy8pQW45ZbASpBHpSIPnss+yzrryOcHcSmgPWnpSUuPTmSRtOTJIYp5uCulJU9a8unqAvHolJZ9+gS7NDyo5vYyck53LR+IJ4rSkkWYjiulpS2oSstSSb/gkOVVpgZSKS0pCiIRoigt+XuLAvGoJn22SktRIB7RBF6mtBw40Mw8XGWWlLRPS5nS0tS8RzcZ16mp+R1oEURmmEkF4hF9p4K/nwlpSbxnNSw/EWHEmt4D+QjEQ4GsTxH9Xq3K66DOJF1FolD6yThIS5n6XfYOXJKWIuIta4F4XI/buo1ZqupQFYhHV5ds25eN0lKFJKOHU83DXSktkzIPFwkceFDnd7JrTALxAOakpWr8D3/jBRpxk5Ym5JNqHgaICWldmrL0okSmlinjqIjbPNzWrZbLPpq6XpHVQfb6pEhLWb8lIi1VeVOZh7Pz/VB4JOMk4gia4wPxeNLSoxO2pCU1EI8NklBahs/DL8B4wkGmbGTTYKEjLZua6v1+sGlFUVqakJa8ebioo6YqLcN0dErLLJGWqkW5KK0QMqWlqizjVlqqSMvwmEgFGIfSUmQeLjKVkvm0FCktVebhqh1+W9KSV27IwJuHi9SsYR51MPH5qHIxwCstsxiIB7AnXVwE4tGgGtYbUT3glZZRScs4lZZhupTJrq7vpCotdaSlyjyc0k/GYR4uIxhkC3GXPi3D9GWBeER1MIpPyzwE4qGSlqr8ycZp/loeJubhFOsM6gaUjXm4jjTl5wqyZ1ZtEoaQiQZkJo5JKi2p/azquwhsOnErLVXvKYrSMkokcRPySefDVLROTIK0pLRRk7kI1TycHyOjKi11cNlHU0nLQkEtlACSMw838Wkpuj6EirRcvLj2XUVaunxmFl5p6UlLj05EUVomFYgnDtLSVmkZlbRsbq4PzsKmFSdpyZuHu1JahjtQrgLxuIJsMiKa8EU1D1cF4jFQedVBprSkBOIJIVJa8teJQCG+RBCZh5uQljqlpa15uOpZ+QlmUxONuHQZiMdEaalSREYhLak+dqIG4hF9p4JCWoZ54ElTKmkZnieqA1GUlqL7J6G0pEx2dQQiv4khG6dEC2zZffhzKIslk3KhLjBdkJa2SkvReXH6tMx6IB7K7yFUSsu4zMOzrLTk72VjHq5SWpoG4jGtN7ZKS5v3YEoEmfq0VJGWK1c2HovLPFzlW1MHE9JSp7QUvVvdHEDnV54yh+DLyGZjgUVWlZYu+2jq2CIbh9JQWso2W1ySliy80jIVeNLSIwCVTMpiIB72PJm5jI605J9B59OSvaeNT0uZ0tI2EI+NeTj/7lyTlnEtxFVIwjzcRmkJ2JmIu1BauiAtw/dNWViJlJai68LFOP8sAwc2BuLRmYe7UFryhLuILOBho7SU1SsTpaVKERmFtKSCfZ/UQDxJk5aiRYMpaSmqAyY+LSkqiiRISxdKSzY/FKUlRdXFn0Mx6TXZ+HJhHh53IB7R9Wy+Zebh3TUQD0AnLVUEua15eBw+LVXIYiCetHxaitJypbSkvCsecZGWIqg2WGWkZRTTbwq6g9JSZ1EFmM1F0vBpSUEapGXaSkuZEpqFirQU5a1aFQtY+GM60jIGFLzS0pOWHp3Iok9LftJJ8WlpuptKUVqKlG1RfVo2NUVTWibl01I24PDPHO7mZs08PEmlpSoQj+yYDlSflmHeqYF4+OtEEJmHUwZNkdJSBFfm4S5IS5Epj6nSks+HafRwE9JSpbSU+bSMi7S0NQ9Pg7Sk3lOltOyp5uFU0jKK0pKijjMpl6ikpWwhHrfSkuLTMgppyZaFaoEV5ilOpaXoOdL0aZknpaVuo9XGp6XMzNKGtDSd79mah9u8B0re4jIPF0FFLof34zc/4wr4EYJtm7qxU/e7jdJSBpNAPK6Vlrakpaye6EhLm/EjKqIqLZMKxCObb7Ow8WnJQzSWhKSlrD7FoYr0pKUnLT06YUtaAtnyaRlXIB6VIsS1T0uKykCm/HTt05KqtAwnaHkJxCMiCqiTWptAPKrrVHDp09LUV46t0lIUiEeEMD9JmYfrlJY8wWWjtIxCWqrIHB5ZUlomHT2cEognPB6H0jKpQDwu+kqTMpb1KaK00grEIyNOZMiC0jIqadncLB6roviENVVauh632fuL3rkLn5ZJBOKhqPeoZE6WzMNF82XZOKsKxONCacmDQjpRSMsoSktKOnEoLXn3TjGTllXTQDwqpBWIJ07zcFWbZd0sqPKp27izUepHhYnSMiuBeGTzERvSkm/rKtIyQaWlNw8HYt6m8cgNopCWZ57pNi8hXPq0VPk9A+L1aSkaANIKxGPq01I2mPN5DBd9OqWla8UGDypp2d7uPhDPBReo72tDWrqMHh5Vafnuu8CRR+rz/O1v688BanWVorRUmYeXSvL2HYW0tPFpyebb1KelymyWh4lPy//+F9h1V2DEiPrzkiAt2fN0pJjJvS+6CLjrLuA3vxEr1gHgssuAM86ofTchLVWBePhjJgsSGTlpo9CiIE3zcJt6rlssdXSYEWivvAKMHQtsthnwySfy80x9WorOj0paygLxFIuB2pL1g1cq2SstL7qo/nvagXhE9zf1aSl6R2koLSkqQB4dHcBvfwuccor6PBF0RJyNebip0jLuQDyifPCwUVpS8iYiRWQuqHi4VFqK1OsJkJbG5uEq2JiHy2CitFSNY3x6FFCVluwYqcqnK6Wly40llz4t4zQPl230sb/z44COiBetwUVjybrrytPwSsvY4ElLjwBRSMu4sNZa9d8HDBB3BEkoLU1JS7YjkyktN9+88bjIH6AIsvyYkJZRfFryzr1FSsssmIfLBt++fd2bh7PQ7T5SQVVaUszDo/q0/PrXgWee0eeZipEjG+8DBEpL/t4683AZKAs2QGwePnRo/Tn9+jU60HcZiMelT0v+Ho891nhenKRlnIF4FiwATj89+LzjjsD774vPYwnL8H4ulJbURWt4T9V3QKz6Do9HhW7TjoVr83CVyj0E/9y6PrJaNS+XDz8M/lQwVVqKQDG9VUGm6ioUgjGH7Xtki0UbqMo8Lp+W7DxBdH9Tn5ahCx92nLQNxCOal7Fw7dPy88/tCEtA3xfZmIerlJai6+M2D+chemZKn0zdlJZdE7ZJ6vxDRVpOmKC+V3ckLUXvVndN1pWWVPNwqjgAoOVXBNeKRr4/FYHi0zIppaWoH2ppUZevTGnJz5dEY9SwYfI04grE40lLbx7u0Qlqx5ikPPnoo4E99gBGjQIOOAA48EB7pWWc5uGixZvOPHzgQGCDDYBzzwWmTq0dr1Ro0f5kqiWdeY2pT0vZgDN/fv33cNGXB/Pw888PVGc2jtkBGmkZt09LPq3w/ccZPdwlYXn66cDGGwefRUpLoN5PaxLm4Tzh/rOfAVtsEeyonn560F558D4t2fKUBeKRQUXm8KCQlpS2FncgHrY/UkWjNsGyZbXPbW30iZwNaVksAr/7HTBlCvDAA+KTVeVMUU3IzMNdkpaUcVuneuQXzDqlZVNToITddlt5OqpxVYY4xhAVaRkVNotOXmnJjzkhgfT73wd1MwrSDsQThbRUmdTaKi2/8hXg2GPl19n4tLzxRnl6774r/00HkTUSCxulpSx6uI1PS9N6Y2MeHub9/vuDtnD11fL8sKDkLQ7ScscdgX/9q/E4xTycf08U0vLWW/XnyODSPDwrgXjS8GlporS0XZe47KNFG9+ye+rWOi6JddUmsGjMaGlRK1lF70U0twmf5+67gW22Aa67Tm2F4FJdysKTll5p6dGJLCotx4wBHnyw/piOtDRRYQH2SsuoPi3DYA5nnx38jRoVKIgqFfkCioWMtEwqEM9HH9V/z4t5+EUXAaedFnzWTRZkExJb0tKF0jJ8Pj4titIyqnm4K5x9dkDWhxD5tAzvHwb10UUPl4FKWoqUlnvtBbz0Uu3Y7NmN11GVlqamaLpJjy4QT3hPV1F6eVDNw12QlldcATz3HPCXv+jzokKpRL5nla03J50U/Mmgerc8QSdTAMW1wWOSBn+uinClkJYA8IMfBH+ydqjz50XJpwvICAYbtRgPm0UnH/RDRFoCwIknBn9R8qhaVCahtIxiHq4i5GxJy0IBuP564LDDgOnTG3+3UVoefXTgniBUiLP47DN1PmXgA66J7m/j05Ifb9lzTEhLG5+WNkrL8B577x38yWAybwhBMQ83IS379QMef1x8vmquEv5mqrT8wx8CktQWJma+NubhtuSOa/NwW9JSN/cIz41iHp6G0jJ0MaR7PopPS5cR7k0D8fTu7VZpud9+wR8LUX9AUanawJOWXmnp0YkskpZU/0BpKC1NfFqKOvUBA8T5pJKWtubhrgLxLFlS/z2rgXj4sldNwvhnldUZCvkYl09LGWlpG4jHxDzcFfi8y5SWYd505uEqRUcUn5Y8RFF8XZqHmygtVe08LF/KJDZun5YqdxHUHXiebOQXttQxSaXIFd2TCpU6iEJaypSW4TUuEIfSUlYHTRQ5tkpL1+OIC/NwGaKSlsViY9/jUsmR50A8qv49aiAe2e+mSsuwDEXjRxSINk9lC2jZ76LjLpWWpvUmitJSBxkRSL3GhdJSteGtGv/D30wD8TQ1RVO6mZj5Jqm0ZDdmdaCQgCZlRDUPB2ikpW7jLg2lZXNzNKUlW29cKi2TMg+n+LSUpRGnywYfiMeTlh6GyDppKfNtYxqIh1dJRfFpyV/fv798UlKp0Bx4yxaYSQXi4SEyD8+iT0vVYEod9NNUWoZ5lJmH50FpqTNpY5WWAC16OGUxlgRpmZR5uAph+VLamq3Skn0fcSstebKxtVV8Lx1szMMpUJnqZ4W0dOHTku8PKEpL3e86olQG1+OIjCxJkrRk70MxD3eFNMzDs6y0DCGrx6p+XTVnpcwbTCAaj3RKS9U4GZ7nSmlpYx5uo7S0JS1dKS1lZSqax6uIa1VdDr/zG0e6/rKpyc1cQpQnHnEoLXXm4ZRnS8s8HKg9cxJKS5djItU8nOLTMm3zcBekJSVYHZ8nr7SMBZ609OhCldJJpd1oRJ2Myu+KbqANOxZ+QHWptATqO8qQlBHls1xOzjw8SiAeHuEELWvm4Sqlpc48XAYK+egqEA+vtAzLz8Y8PCtKSz6PKvPw8N5x+7TklWOichEFZWEJND4fpkpLlU8rE5goLeMyDxf1q7akJb/45UlLat00IS11YyGbd5WpPpXUyILSUkdasnmhBOKRQUXOU/vIuMcR9j5pKC1FgXhs0qRAtagM7xMnaRmXT0sdoaPrfyjPTJlvxkVaitLTkZYqsBvnsjmtqC2kTVraqudt3q/J/U2Vlqq5ioi0pPi0LJWikUYmPi117Un0bm37lTwE4gGSJS1d9tFRfVompbSUzbdD6EhL0XuR9X8yyNbinrSMBZ609KiB0kmlLU82VVqG58tIDxc+LXWBePg8huavonxSlZa25uGmSku+vEeNEqeb1UA8qoWMrXk4xczLVSCeMA9U83DTQDyqiQ77W5xKS/6dha4TZIF4VAtDHrZKS1FZiUhLl0pLFlFISxPTKRekZdyBeHRKS0p/Gd7PldKSde+hUlry/a0IeTEPp5KWUZSWVNIy7nEkhAufljaLziSVlqq04lJaugrEk4bSUnVO2qSlaP4jmu+KED6LLHp4TzcPl10nq0eiMlTNHVUEvIi0BGjm4S7mEqJ789C1p6wE4hFdE7dPS0ofG8LWAsw1aUlJT+bTMiuBeHr3VpPCVKWl6j27Ii0p5e1JS09aetRAamJpNxodaSnboZSRHkkE4gHqO1eR0pKdMMaptGTLiuLTkh8kxo0Tp0sNxJM2aWmitMxCIJ6wbvHm4SZKy/BYVs3DZYsAqk9L9hoeJkpLnXk4hbRk76Ej8FWIMgHNgtIySdKS968rA+8bUwGt0pIlLZcvV9+zK1EFaSl7V0kpCsN8sHARiEcEldKSurHT3ZWWfCAenuxw+fyUMSBOpWUU8/A4fVqauvSQpRmmkxelJT/esr+L0pLNDZIKxJOUebjs/ibPaGseHt6TH0/iVFry7y9qe8lKIJ6oSkuW1PdKS3G/kGWlpU49LArEo3rPsv7IlLSkrA/T5l8yAE9aetSg66Rkk5kk4UJpSSEteZ+WKhWKzqclUK8GcqG0lKkCdZN9dvebV1pSAvGMHStON6uBeFSDqc50MwuBeGRKSxufllkxD9f5tAxBNQ+vVt0rLW19WsomURTzcBZ5Nw+PMxAPT1ouXUpPx9aUkAdVaSkiLUV9VBaUliY+LeMKxJNF0tJ1GpR3zW+a8gRVlP5BdV8e4X3iDMQjeufU8SZOpaUNqaVSWroOxOPSpyV7ranSUgYb83AbpaWtEo1yXRSlpQh5CsRDnaeFiMM8PA6lZdRAPECtf4ojEE8WlJbUQDyy9Uh3C8Sjes8yAZEpKJtaaVu6ZgAxhjnyyB10nVRHR/ZJS9nEhM23C6Ul20lTzMPZc+LwaRmmr5v0hRPJkIAOy0W2K26qtNQF4klSOSQiA1wMpllUWuYpEA9l55u9P09a8nVI5duJqhRwQVry9U1mHp4l0pKySBQhS0rLGEhLZ+bhMtKSJ+HjJi0p7VdHILpSWqo2EpqaGstHl0aciENp2dysnzMkaR6etNLyjjuAmTNr3135tMyC0jLJQDxUpaVJoDLAXGmpSi8O0lJ0HwriUlqa9A9U83BZXk2VljZq1xCmUax1vx93XOMxk7GCRZRAPJR1jg4dHUG6WVJaphGIJyzL5ub6eVmeA/GccUbjMRPzcFulZe/ewLJl6nPS5l8yAK+09OiCtom1t8fTaPr1o59rq7Tcdtvasb33rn2mkJaiHWZ2QBdNtFQdvoi0DJ+htZVGWvLpi5RNIsiUlrIJPv/cI0aIz6UG4oljsclOBNn0RWSAia8V1+bhcfq0VJmHh+dSzP9ZZElpqTIPd6G05JVjonOnTGk8lkWflllQWlIC8VBJfH7xG8U8nEpa6vqpvfaqfd5xR/l5Ip+WeVVauiIt2d9FiiIbsiguxEFaUjZY+EA8vGsKl89PUVq6vN9Pf1r73Nwsdrtho7RUbVDqrhWhO/q0VIHd4DcJxCODjU/LJAPxxO3TUoRdd63/Pnhw7fPo0fI0RaQlNRCPLVwrLUVIQmnp2jwcqPVPuvWwC9IyDaWliU9LoLGM2e826x4ZkgjEI4KNT0tTUMYHT1p60tKDgW4Qb2+PR548ZQowYwawzTb6c0UdKTu4yna+f/AD4KtfDRabV15Z+91Gacn7ieEX0ex9RRCZh48cGfxfswb45BP5tWyeWISDKIW0DK9lSUvZwMLfZ+BA8W5xkoF49tgjIJ5PPjmoM48+Kk5fRDarzMN5RCEtXUcPpyotVU6xWXVYCCppSXGBQIXIp+UVVwCTJwP33187LgvEY+vTUvWsrNJSttj6+teBb30LWGut2jGetGSfjXXzYFpWURYbeQnEE/Z5OrhSWlIJMRCUlmedBRx4YNAPnX22/DyKebhKaZmUohBobJc683CT6OEPPABstRVw2WXq8Zrqgy3PgXgoYy2vtOTbCl9uDz0UlK8NSiXg+uvlv4nuFwXvvFP7fMEFYtLShdJSt1iOqhwTnZM2aSlqT6aknsw83IXS8pBDgn5zxAjxNUkG4rF5v6L7U9JZd93guU8/vf74gw8GgorTTgM23bR2XEaG80GVKEpLW8g2xmWw6SNsSUuTOU4c5uFh/6RbD4fzoCjm4a59Wk6aBNx6q/ocG6Ulf32IpJSWor7DJhCPCDbm4aprRH23aBxksGbQILcEcE7hzcM9aqCQlnEw/cVisJhRKabYc1nwCz7ZhKJXL+C224LPrARbRlryiwZ+Rz+8b7ksJi1VzyFSWq67bu3z55/Lr5WlTyUtQ/M7oD4Qj4xQ4weJgQPFgxA1EI+Lxc9ddwF9+4p/0yktTQbTLATiofq0pCgtVQGgRNCZh/fpA6xcKb9eBlE5/PCHwZ/o/jrzcFdKS5a0FKFYBP7yF+CNN2oLDN48nK0bbNlk1TzcVkHrwjyc7fNU4H1arllT/3sa5uG9ewdmrpR76pCEeThls1G2ESLKi6nScq+9gGef1Z/bE5SWFNKSt/QYM6b+XL6Mdt89KN/jj5cTkKr8HXts0I5OPVV8H5flHT7b/vsHqstvfUt+jg5svlQblEDQXs85B3juOfH5PFwpLcNzXPu0pJCWJkRjeJ7MPNzUp6XINLlvX+D//g946SVgyy0br8lDIB5duiLMmlVPSobYaivg6af1aYbPzJOWOhIj60rLPJuHA3QRTxLm4ZR62Lcv8Pzz+vNMfVryeU4jEI8r83ARbALxqNCnTyNvoCAt2z/4APc99xz2mz5dn3Y3h1daenQhNfNw0YAsg2gBQPEFI7ofQA/EI1JshZ0fv4jm78FDpLTkFyU6RDEPFyktqebhMtKSGojHBVTpJqG0TDIQj0uflqJ6F8U83HYRRt0tTNI8nFdaqsDmn1dasgtJ1s1DTzMPpwTiofZ5/MKbX9jGEYjHlZKPojZXEXVJkpb8+1EpLSsV+0A8qnN7AmlJMQ/nLT34tiJ7fpsFooqYFCm8TKDKT/hMorSpmykmPi35upV3paVo/HVlHu5KaSkTEcjylGQgniTNw6NaWoTX8xtHcSotTX1axmEeLoNr8/C4AvGEiKK0tK3fIlD7AqrSMkQWAvGkRVraKC1FohuV0jJJi5uMw5OWHjWkFYjHpEHqJqaUCYWItOQnS/yigVdaAvV+KFX34CFSvJmSlrZKS3YiWanUnpuqtBw0SK201AXisSVJVHli4VJpKUMWlJY2Pi1dKy1tSUsTX4aAPnp4pSJvb0mTlmyZsJsZPZW0DPsXUVu0JS1j9mlZdUFUsffkYWIe7oqc043bImWFrXm4Sd0VmbNS1alJQFQXTMknqtKSvQ9v6UElLaMQByoFkm09VPX1qvZvo7TU+bQsFtX+z3nYKC1VrkvyYh7uSmkpund4D1nZx6m0pKhiddeI7m+iSKNCRoanaR7uguTnkYbS0qV5uGmQKxGSDMRjQlqavE+VT8u8BeIRwSYQjwoi0lJmPSi6Rw+GLwmPGtI0D7c9VzewUkhLPggHoPdpCdiTli6UljySVFqKFl0dHUH90JmHuyAtVfWFJ6n4ASRvgXhcKi1VUetFiEtpaUpa8j4t+Ty7DsSjqxdsGfMKUFndSNI8PGmflpRAPKJ6Se3z+MVv3NHDXU4QKcHIsmAeLmqTcQXiUZ3LE0syJDWJF6nFNL6nGkBd1Mj620Kh0ZVCUkrLrJOWpkpLUWAsGVyZh+eFtNQpLQsFM/ItKdLSVolmOxYkobSkkJZJB+LRpRWH0lJWT0z6pSyYh6vymdVAPLZKS9YFWfjdFWwC8agsSKjv3XUgHlOlpSctu+BLwoOOuALxmE6EWLhQWoo6JBVpyQc9ceHT0pS0lPngNFVamgbikSktgcBEXGceniRpGZd5eBqBeHRKS0ognijm4WkoLcNn0ZmHA3akJf98NkpLPj1XpGWUSUqSSkuWvBLVFxVpSfVpqVNampCWNkREFFDNw2XvKqnJqkvSMsomZBaVljxM+z0qySEjLYtFYPhwWho2C8QwLVG5RyUtVWNlOOcRjbMufFqK6q/OekCWNvUcFSHCl0XUtu06eniYT1n0cFU/JUsvCfNwW5+WeTQPd6G0NFHbifIgQ5Lm4Sp1OI84lJZxmodTzNlFcKm0pPq0ZM8PofONHQUq83BZIJ60zMNV8Obh1vCkpUcXqmkpLaOYh+v8rlBIS9EEmfdpKTJDStM8nN+RDgdR3aSP3QWjKC35Dl/m0xIITMR1SkvKpFQFE3OSqObhWQrEwystbQLx9OmjNq/goVvgmSqOQpj6tOSVH658WrLvgxKIJ4Ss3lCVlhS4UEhQ+lVb0pJ3WwCIFagq0pInYmTgiSzeh7Bj8/DEScssKC1F70e1QIhTaZl1n5ampCVV4cUe5wPxUNWaNnW3Jykt+TqsgmulJV9voiov41Ja8u5YQpiah4sC8aRpHm6jtKRuOpne2/T88J6mpKUo/1QSydSnpY2C0dY8XHY95XlFacattDQxD7dxYwC4Nw83WZezzxAnaZmWeXgcgXgox2T36MHwpKVHDXkkLXVKS1HaFNIyTvPw/v0bjw0aBAwYIL+GB0/+2ZiHl8u186nm4f36RVNaRiUtTcxJdKSlrdIyjUA8VKWl6r6FQqPakqq0TNM8HGhsjyxckJYulJZZIy0pEzLb9hjWR7ZeiEhLlcm9yWLaldIyjgWm7p6U+6VNWqZlHi4iErJOWkY1DzclLUXns0G+WERRWqpIB9tFk2qDavTo4L+oblID8aiUliJlI29eS02beo6KtOTzE5W0FI2/LkhLl0pLWfm4VFqaPp/JdVlTWvJ9sI3SktpHuFBa6u4VtR/XrQeBeAPxuPBpqSLVALeEVRI+LVX+LaPCxjw8aZ+WcSgtPbrgSUsPOnbZBfjnP92nG8WczIVPSx3Rp1NaiqAaHGQOd6nmkkBjB21jHs7ualOVloWC/LmPPBKYPbv2PQ6flqZKS5UyN85APKJ82gzeMqWlTSAeoFHla6K0jKo4EuVHBZnpB58PVSAeqvmgK9KyWBT/3t18Wj7yCPDXv+pJS5XSkgq+/+XVOMuX26UjQ3dUWuoWV6ak5cEHAwsXitOKMp7HYR4eZTEgIi1NN5+oZImMUBOdP3++OI28KC2HDVOPHzZKS52ZJd/+dW3CRmmpcl3Czzdsx88QcQbicaG0TMqnJbXO2yjYqP03C4rZvg4UstdWaUkdi10oLaP63DRVWor6G4qPSNtAPGE7Mc2n6t62Pi0piEtpydYVGxKPCpXS0oa0pPYdaQfiiUMsllN40tKjC1rz8NWrg4Wqa8SptHRFWqqUlpR8slh7bfFxExNxmXm4idKSVSxRfVoC8ud+4gn9eaG6whYulZZxkpYiJKG01JEPvNKSWofL5cayHzpUfq0Kpj4tgUZzyXHjat/HjYuutDQJxCP7XaaoEd1bh6SUllRFkwhHHSUnLSmBeACaupxf/PLm4VRQCTGXpGVWAvFsu23t8zbbNP5uSlo+9xzwwAPie0U1D3cdiGfYMPq5PER++WR1me2TWPB5FbmHEZ0XIrz/DjvUjsk2OF0qLQuF2r1dk5a6eYALn5aiDW1eqaaCjeJXpbTkEYd5uK0KkT2X3cDjfzf1Py8jGF2SlrZKy7h8WlIUsKb3FZGWlYqegBT1B9T+WWe2TEk3qtJS944oSku+vxVZukU1D4+TtExLaWlLWvJIKhCPaMwYPFhdvtR2ueee8t9ckZaq8cB1ELccw5OWHjWk5TeBve+f/wxMmAD87W/ic7OgtFSZ4oruAQAPPghssQVwwQVBRyoCT1qqOj9+ckc1D2d9WrKkJdU8PEyDAlH+t94aOPlk2vXjxzeS5FGVlkkF4hEhTp+W4TsRTchUSsuRI+X35lUpfFkOHw6cey4wcaKZAjuqeXihANx9NzBlCvC97wUKcBvSkiVwTZSWhYK47Yf3EtUPVZqbbw7ceqv6/LvuCs5T7caGSCIQj+h6G6XlY48BW22lvkexWF8eInccFGTFPFy06HVNWm6+OTBzZu37aacB++4L7LEHcOmljedTSEtb33Em56qI5c03B26/PfhsMldZf31xWt//Pi1//L1E49//+39BPyQCf/1aawHnnRf0mw8/XH8vWR4A4JZbgO23Bw47DPjKV8Tn2iiaw/RVKhabetjUJO/r+/WrfY4SiEfVv4tId37upwLlmflNF5ValUdSSksqwnMrFfHGkAulpYh8M0WSPi1tSEvRezGdM8pUoZS+SPe77fxdV16UMYRH1LGWQloeeWSw4TN4MLDXXsCXv9x4TtRAPLrnUL1/nUI8DdKSD8QzYQLw9a+L1xfh+bJ7pBWIZ9o04KCDopuH77orcPnl8t91444I/DxepAi98cZgjnDBBWau47o5HNYmj9wjC85ejzoq+JOBMjFVfQeSUVryZbnHHsBLL6nvw5OWffsCK1aIz41iHi5SWsoWFyJZOlUJI6tPv/0tcMwxAYGpwiuvAO+8U3/MlLSMorTMAmlJVVqGzymKEM6ey/+uUvfy5uGiBdHZZwd/n30mT4eHaSAeoDEw1oQJwDPP1B8TQbWoZTcPTALxAEGZ8m2QSlry7eLll9XnA8D++wd/55wTEB66vAHJkJarV9c+q3xayt75pEnAs88Cp58OXHSR+ByeyIqitOwJ5uF9+jTWqT59aiSmaBwyDcSjQlSlpex69plMymX48IAkW7ky+D55cqAUfe894Oqr1dcWi41jIF9Wjz8O7LijOg0WhQJw1lnBn+o89nwg6KvnzFHn13SBqFIqqn6joG9f+XW8yp1HHEpLvv27UFry46mJ0jIp0pI6rw+v7egQ97H85r0ONoF4KEiStKRuOrFwQVrKVKGmhJCN+lGWhzhIyyTMw8eObbQCM80Hj7B/4uflMqjef1bNw9n79uoF/OMfwKuvBht+PFREYBqBeE46Cfjd78TXmJCW66wTuEJSwYakFZGWfF722gs4+ujgc9RYEN0IXmnp0QViHDT3SNs8XNchsGZSQHSfljKISEsZogTiCfPGTkxlhNoXX9Q+h7tsFNLJ1sSWBb/bB5iZk4gWwOx3W9LShny0vY7q0zJ8lt69G59LpbRUkZZsWYvMw0XqYwpcKC15RCUtTZSWQDSlZRSflpRyTpK0ZAOCRPFpqSoT3mSYJUpNkBWlJQ+VgskmLzoyRlTWpubhKpgsAEV9io1ZrgotLfX9XPj81PvozMN1eaGapbqoA6ZKS5Wa0rTP4tGnj/w6HWlJdVuh8mkpCsTDWw+oQKkf/HhqQlpSiSxZny8iPUWEHjXCcZhP2aaQjdLS1DycAlvzcIr/UR4UpSXFp2VcSktdHU1SaUnZ+OJhMp+nXC8axyjvOarSMgppqSLVKGmbwNY8XNdu01Jasu+fFzaEUClZdfXPZi5CGYN5P9si0tLlPLQbwZeKRxdS01lGMSfLaiAemw6HJ5BYEyoeLnxaspN2WUcrIi0pg5DNZIoHTxZT0uWvV70HW0WVrdLSxnTPVGlZKDSqP1Q+LU2UlqpJrElZRlVaiiZOsslUXKSlaHIcpi9aTJrWNdn5lLJLIhBPiFC9xt4XaCQtoyxeeCKruyktVap0mwWLjdlrHszDWZiUS69e9f3csmXie4sgyoup+R61PEzJTBFMxxiVUjGqeThVaSmCi+jhOvNwF9HD+fHUZGyiziNk7zQu83AZRPMxXXqy+XiUBXnWlJZ8PeLfS6EQTQHNfqdugISIorRUbfiLEIfSUgeK0jIO0tLUp2UelZbsuWGeZHlh8xwnaamqk7I1QhSlpQ1paaO07N3bk5ZE+FLxqIG6I+sacSotdZPIpMzDKXBBWupUozJzIROlJaVTdqG0BMw7cp1PS5M8ZFlpKfNpCTSqP7KktKSSEnyasl1U1THAzDycGogHUE+OTX1aikCZHMqQBaVltVqvYo+itOTrTBSflpT34JK0pAbicUFYhciT0lK0EeJaDcsrLefNE99bdh/dIixupaXJXCKK0tK1T0sVaanLpwuflkkE4tEpLVVpRFVaxmUervrdVGkpK4+8mIdTlJZ8XeU3LXv3Nn9eqtKSh8wCR5SWbR6o95bd3yRNF0rLODYqedJSdw+VK4gsBuJpbq7vH6O026R8WrLtULU2URGsPGz6CFfm4S7nod0I3qelRw15JC2T8mkp6gRdk5Z8RNA4zMPZQDwsZIQaq6RKWmkJmE9QedJSR4aoIGsPNopJIJno4YAZaTlqlPzevCqFLw8bpaVJ2WXZPDwKaUnpG2RKo7yQlnwE2qjm4UkqLV3ucEdVWsax2y66l+j92JKWUZWWFJgqLdkI4iHpTa0LUc3DKRupqnTyqrTs04emtEzKp2USSksTYoxKWsrmDZTo4Sbm4ZS5lSlpKTPlTsM83FSlCND6b36s5t+LjWWOrB5RSEtW0EDZNJPBBWkZNRBP1s3DXfi01JmHp6W0ZPvHME+y69k+Ji3zcBlpqSpfG6UyD1ekpWl766HIbalcddVVGDduHHr37o3tttsOTz/9tPTcV155BYcccgjGjRuHQqGAK6+8MrmM5giFPJKWUX1aVirZUVr2719PpKhISxfm4SxkE2M2EFAaSsuopGWUPMjag+0OWJw+Ldk88QspVSAeXR0O78eTUGxe+PurYFIGMtJSBAppyecxSiAel9HDReDbdwjXpGVUB98q83BZZHERVHnlFZK2pCV10e1yh5ui1FHlKw6lJbX/TysQj45MCs+joqUlcKhvkwaFtDRdWMeptDRdIFJ9WrpWWurGgbhIy6SVllEsPULI+k6ReiuKWse10rI7BOIR1UNT83AXpKUJ2cQiyliWhE9Lk/k85Xpb0jKq0jJO8/A0lJa9etXP93Xm4WxfqhMWRQHVPNwVaUnpI2xIWq+0tEYuSctbbrkFM2bMwDnnnINnn30WkyZNwvTp07Fo0SLh+atWrcIGG2yAiy66CCNHjkw4tx5auCQtqROT8J5UpaXoWtc+LYF6MzaVeXiU6OFZMA+nDmSmu+pZJi3j9GlJVVraRrEslxvrlmrBKIMtaRnWd1NyR5XHQYNq5ck+W1SfljqzPUp/JzOBpgaw4u8pQ5xKS7aPchmIh+rvTnQPStnHrWzw5uHyNOMgLXv1AkaPbjxuax7enQLxUJWWNgvnKIF4bMzDdQQGT7pFDcRTLDbO0WyIMR2i+rR0ZR5uo7RMgrS07Zco1y1cqL9/HErLOM3Do+aBem/K/ZNQWlLec5qBeLJKWrL9o67dZkFpyeY3j0rLOMaObohclsrll1+O4447DscccwwmTJiAa6+9Fn379sUNN9wgPH/bbbfFJZdcgq9//etosQ2i0ROQltIyijmZjdKSPY9KWop2klQLBNuBhiUtTZSWJtHDRWWSxUA8QLxKS1vyMUml5cknAxMnAsuXB99tlJbsu2WVsxSE6eqUllREJS1l75RynM/vwIG131mCLap5uItAPFFISxOlZVSolJZsmboMxBMFrgkxFxARY1HyElcgHlszTJNzSyXaOzI1DxeRllTVbVJKSxd1IK7o4a6Vlrp8ZiEQj+69suOH7BoXfUkUn5amJKMKqn5Klp4sP3lRWob+b1X315GWKn+GMsjyakocUszbZfCBeOTo6ACuuQZ49dXgu+695M08vLlZbB5OUVrycElaUtWIVNJSBx+IJ3PInU/LtrY2zJ07F6effnrXsWKxiGnTpmHOnDnO7tPa2opWZuG4vJM0aG9vR3tUk7oMor29Hb1SIi0r1SrK1DItl8EOg+VSCRXm2kK1WlepOyoVVAVpNxUKKACoVCqorFmjbAjlahWFcrmL4a8AKLe3o1QsSln/cqVSly8qimPHIuwmy4MGge0y2XpX2n57FF95pet7tVxGR3s7Sm1typ2I9kql69nr8suVY9d9dtoJxX/9Kzhnm21Q0Tx3V36amtChev5qFbrlVXt7e8P7rhaLynRL1WpX3qqFAjra2+uuZ8uwWChIyxcAih0dEA1Z7dS88ygW65+lTx8UVq/WpATg5Zdr1wDoaG9HoVCor+dAVz0v9u9f/1wMgVRYb72u6ypTp2rbXVOphAKAalsbCtzkvFyt1tUZynK52tysrhcM2HpW7egI8tH5ThvA1ZMQ7R0dNfKMO6ejb1+UikUUKpXg+TqPV0olbbmUmpsb2kDY1wh/q1a73g/7Dqobbih8nsLw4bVzRo7sOod/7yK0FwpAeztKiH9XsrxiRVddqzQ11frIchnlVau6yltXpsVKRdjWgKD+8v26DNWmJhQkGzft7e0odXTo+67OyaKLcb5YrTb0MXz/W65UUGlpEfZTpULB+B1Wq1V1G+voaGgrwvfD9XMVYl7aecJaAb4P7qhUUKpUGsan6hZb1D2TaAyrFgpCFzcdG22E6ujRjeVbqWj7rHK1CnB1s8KNf+3lsvp5uX5HNt/h60pX+gZqaEr/wIIdT/k2Vi2Var9VKsaLhUrv3sDy5cI6U25q6ho7SpVKwzlhf68D27/zbaWde7/t5XJdn6htJwCaOscHEaqDBjVcXwTq3iFbhkD9GFkZMoTUnqqdYzCP9mKxsd5xbbuM4N11PTMgfWZdX1OpVlExqAftnS5C+PxUBPM6Ffgxkh8rKoUCbf3A1YeOclm4NmBRHD++oU3yc5Bia2t9fnr1qivHaq9e5DlPV5qor0fh/IF/9nZuflvt1auuroR9cV29GzSIVO/KqI1Dorl4w/mda4i6e5VK6vWIpu8U9fNd+QEa5jgVbu4lnS/yIMzpWXQsWICm73+/7j6q/qrc3CxfD3L35tcXqjbLQ/cMbHk0TZqEwgsvBMcHDUJh2bJaHgoFNJXLtTlxsRi0Ma49d70HZn3cUOb88yjmaDo0jIWS91a3NuHOYddKhY4OZX9GqT98Wy0Xiw3tgEdHr15196306oUqP1dk5lHt3P/uBpPnyh1puXjxYpTLZYwYMaLu+IgRI/D66687u8+FF16Ic889t+H4/fffj74qBVyOsT/zedHkyWgbMADrPvZY7Pedv2AB5s6cSTq392efYTrz/f358/Eyc+16L72ErZjf5z73HBYIdt8OBFAAsHzpUrz83/9iZ8U9X3r1VYxbsgSDO78vWboU/505E9t+9hkEnrIAAG+/+y5eJz4Ti/4TJmDKuHFYPm4clhQK2JL5bSaTXvPuu2PqnDkY2rnT17p6Ne6bORNbf/ABFPGgMfO++7DX6tXozx1/8/338aYgvy377oupL76ItgED8PT48ajOnInJCxdirOY5Vq1ZgwcUz19avRoHaNKYOXMm+nz6KfZhjn2xejUeVKS77aJFXe9kTVsb7p85E+sffzw2uOsuvHbEEZjPXLvhm29iC+5+LCa88w42EuXr3nvxFUW+n/z5z7FQkMcBH3yAPdlnGTIEAz7+WJFSI5avXImHZ87EWm++iV2Z40/NnYvFnQP6hE8/rcv3zHvuqX0pFjFlxx3Rb8ECPPOd72CVpo5Ob25GbwBrFi5EH+63N99+u67OqMokxMr2dswmtotJ8+djXOfnkFSsoPE9AUC/+fMxTZDGA7Nno61Tedpn4cK6ujTn1VexE4J+YOWyZV1t4rMlS/CEJo87rViBodyxF198ER/NnImtP/usoQ0++cwz+Cz0xVitYqs998TA99/H3B/+EF9I7jVp772x1ltvYe4Pf4gVnees+/LL2EaZM2D2Y4+hdfBg7LxsGYZozqXgi3XWwWebbYZB776LzzfbDBsw+X392WexeefnhZ9/jjCs04L58/HSffd19dULPvsMzyjKdKO33sIEyW+PPf44BnzwAbYl5LVSLErJz5kzZ2Lrjz5S9o8AsKLT5H3WrFmEO6qx8VtvYTMuD19qbweru3jl1Vfx3uOPY5Ovfx2j//tfvHj88VjcWVa7LF+OtU1vWq0K20iIvgsXYm/u2AcLFuBFwTVsm/6QaY8qPPjoo1gzhFbzNn//fYxnvj//0kvYeMUKsA4ulm6wAeaecEJdO9n9iy/A6ckDFQlDWpabm/HJ9ttjbu/ewJw52Pgb38C6jz2Gl777XXw6cyZKa9Zox6CXX30VTatXd9VxAPjgk0+wPvP9sccfx4qPPpKm0fzFF9iP+b5g4UJhWxj72muYzB2rFgrKd8lj+PPPYwfy2UBrezvu60x/+Ny5ddeyY/igd97B7gbpAsCHixej72efYbjgt3c/+givdqY9Zf588DrYSlubtB2zeOiRR7D6tdcAADtw95r9yCP4EvP9kccew6YLFiAMdxjOmVTYv6kJTRL/wssBPMxdv8VHH2FD5nt7uYx7mHPWuugiTL76aizaaiu0dnTU1SsZVq5a1TBfA4BHn3oKX8yfX3dswPvv180x3nznHQxcsKCrfNesXo37Jc+845IlGCb8JcBH8+Zh8UsvacefEPfcfz+qxWJdH/LqG2/g3ZkzG9oEj4Vbb43WQYMw8P338Swz/gHAJm+/jU2ZcxcsWqQcW0IMfPdd7MF8f/7FFzGPt0rhUFpvPWw3cSKGvfRS17FVq1fXzW0nvPVW3Xzr48WLsR7zfemaNXjUcC0w4f3369J86eWX8eHMmdjs3XexMXN85syZdeW7orW1ru+cee+9AIC1f/lLTLr2WiyYOhUDPv4YivCLXfjg44/xUucYOGvWLPT/+GPspTj/pTfewAdcfj5bvlxZpx557DGsfPdd6e/7rFnTMO8EanPArebPryvr99vbsQF7IrH/HPjee3V1Q4e3H3mkrg62d3RAZUP06jvv4F1JPvhyfeDhh7Ev833ZihV4hFh/dHPwNWvWdLX/ft/7HqZceim+WGcddPTpg3H339913n0PPYR9Wlu7nmnh4sV4euZM9P7007r1d1i2Uxcu7KpTq1atqmsfLUuW1PXDHb16odmAtHzq5z/HhD//GR/ssw/eEZTDlwWblez6u/fixXV5fuKZZ7Ckk6Bd6/XX69ZRPJZ98YW27Lf8+OO6+cB7H3+MV7h2wOPxZ5/Fbsz3hUuWYPHrr2Mic+ze++9HhVMqu5iTZhGrWDdTOlRzhnnz5lUBVJ944om646eeemp16tSp2uvHjh1bveKKK7TnrVmzprps2bKuv48++qgKoLp48eJqW1tbt/tbuXJltb2lpVoNpv3V8r77Vtva2qrtt9zSdUz11/7Pf5LOE/2Vv/Y1el4//LDu2o4ZM+p+b//jH+vzddttwnQqzc3VKlCtTJ5cbZ85U/1s11xTrUyeXMvvrrtW29raquVDDpFe0/Hzn0d+Jx2//W1dmsLnWH/94DmGDQvydPjhymdpa2urVsaPb8zvr35Fzlf5u9/VvtPKRhup01m+XJtGW1tbte2dd+rT3Wwzdd4OOqh27rrrqsv3kkuU5dsxY4Y0X9I8v/qq/J4vv1xf7/fay7itVLbcMkjrqafq6+isWbV8n3++tt5Q/8K6Uunbt7HOnHde3bmk/E+YQK//xx3XeH1Li/j8114Tv4/582vnvP12/W/PPFOtdPZ5YTuqAtXy3nvr24Dg3bX/6U/Bb9/+duNvDz4YuT9oa2urtv/tb/p2s2BBkI+ddjKuX8J3tskm9e+FqV8dZ5xRKzem7ZW//OVq25tv1r5r+ni+ztY9z0svVdtvvpmW1/795em0tVXLX/uaNo3ypEnV22+/vbpy5crI76vj3HMb8lAZNqy+Hf3mN/J6tsMOVu9Mma+33mpsyyeeKDy37pxjj6Xd+8MP6eXz4x/Xt5O//71a2XTT2rvYZx9xv7Tllo3vvlCoz8eLL6rvv2yZ9lk6rrqq2vHLXzaUVd19nn9efZ9Fi+rr11e/Km7b113X+EzFoln/cM89Zm179OjatXfeWf/bhhvW0n76aeM62HHSSdXy9Oni3372s1odF8yjKk1NtLr29tu1dL70pfrfPv64/vurr1bLX/967R6dcybVX2XwYHk/seOOjfWZmzNU1l5bXve5+Yf0HW2yifjZ33ijMd3nnqsv5/PPr5YPPriWlmJOVJ42TZmP8jHHVNv//Gfy+29rbW3sQy6/PLjfihXqeynGi46zzqo/95BDaO1j7ty669r//nfada2t9e9j/fWV75yfH4vqibZf/OlP6/N6/fXB8dNOqy9jrnwrkyY1/N7wnr/yFXL7XblyZW0s5Oav/F+Yx7pn33tvdR157TV1+1t3XfF14bMcc0x9ni++uL48SiVamT/7LLleV4Fqx8kn199nrbXU5191lfzer75a/2wLFtSX4TbbkOuNLt+VMWPE9Y0f0774oloZMKCWh4MPDs59913xe9hvv9o9xo+vT3/+/Po8jBplVNbaPlowVnSceWbtnA8+qE/vySe7fmt/7DHlvctTpujb6ve+V3/vTk5C+UzPP19/n0MPrXZccUX9OatWdd2jrh0a9iV5+Fu8eHEVQHXZsmVabi53SsuhQ4eiVCphIecgeeHChU6D7LS0tAj9XzY3N6PZZTSsDIHdrSiWSig2NwfO1AlosvHXx9+LAu6dlHr3Rom9lvMn0dTcrIz0W4BebtzU3Bx0I2F+i8Ugv4pnLjU11efLBtyzCOtdp8+NQrkc/K7x09Tc3Cz0ldFQjioQ3nVB104IvlWaBWVcKJXU6TLPVigU1OfqylfiU0SVZnOfPnI/PpxCu7jeeuLzFCgUi8H9uQAATb171+671lrk/GrRqUQoCHbCSs3NxnW80NJCz4/gPOk7lfgMau7Vq5YOd07z0KFd77jAmns1Nen7I8H9uvoaQZ/Z1NLiJooiwT9Wc79+wb0c+YEsNDXVlzlTj0uMC5UiUyZF1JttFVta1GWqalMtLWS/YAWFPyFyvetMw8lYL+pjuL5POVZY+jVS5lvQf1P6/xLRF5SyD2w4uf68pl696sda2dxAULd5tUWzrs1x54tQ6tWr4R2W+H5Edx/ufOkzCfqUrv6eCuJ8rSt9djxVjbUW87tSv37S+ltX3wRzAar5YF3Zc3Wimeszmlta6t5loVrVl63CF11x8ODG98iXoer9Edt2QTYP6d+/sd5x9y/16lVXvgUo+gbNeFEslVA0qAfNon6mV6/gvTc1NSij6+4lKtsQXHskjddAw7uUrg1EaG6uudjh5yDcMxS5Nljs3Zu+vgnBlV1XXjVz1gLfN9lE9O5EiRn/mpubG9pTQ7KCfl/33Nq+U7JO6Houvm/eoE5nSe8/DfvN0mefNdxHeX7fvvLxlbt3M3W80EHQvqR9Ht9X9u1bt5YsNjcHeZDVL7aP4dsH93wFQ0tV7fsrlRpiOdStTfhnY9dKmrRJZc/1m6WWFu1cqplTeBf79m3IS7MgOE935Z9Mnil3nj579eqFbbbZBrNnz+46VqlUMHv2bOywg4lhjEcD2A4ubIjUyhRlgewyEA/Vma2LQDyqwd9FxDdKGmygFIDmS8wkergILgLxUOuLqdN19j3pys9lVL4QqrLhy3iMzlBVAFkQKFUgnijgI5GL8mICkwHXxIl8dwvEI0MagXj4dNiJq6tAPLro4dTy051HCfARtwN0k2AdcfRRtv2/bQAHFXSBeEzbu0k+KO+ZEj3cVSAeUd9oWhfjih7uOhCPLno4Far+XRT92CQQD6AOoCEaG02CV1FNJGVpUKOHU+E6EI8sDSBIR0VeqOYwSQbiCcG+V1UgnmIxW4F4KGnL4CJ6uKt1APV6vt5Q66tpsJhFi8zuYxKIh/9u2+ZEY4GsrxWNaaJAPJTo4Tz4srVpDyqI6mXWA/HwJLkoengcc79ugNwpLQFgxowZOProozFlyhRMnToVV155JVauXIljjjkGAHDUUUdh9OjRuPDCCwEEwXte7fT919bWhnnz5uH5559H//79MX78eOl9ehxMiTkWUQYfk8apixAZV/Rw0UIqC6Rl+HzhxIkyEU6CtNSRA9TyMZ2Em5CWcZATJgonG9IyfCY+LfadqIhGU6gWD3FHDxfVM9k9de1cdM7AgbVjJgQboCYtRRPUJEnLsA66qt983tnnYxW4vPqELVMdmaJqq6USvfx05UMhKly9K4D2DpKenIryRCG74lgAihbGlD6cGvk7yu/hffg6YxrdlboYEZWbad0wJS3ZMlAtnuMkLaOASrqGv7PlSSFLVQtskTqLf4eqOkYNPhCVtLSda/EoFKKPKWx59OlTv+nFwmQOkzZpyc65S6XGOqMirGSQEYa6dxnn5pMNaamr45Q6Z/K7LeFnOubzpKUOqn5E12fYtrlevQDeH6+szxO9O3YNZ0Ja6jb5XJOWonfHlhlfvibzE+rGpmn6oj7Ck5Yk5JK0PPzww/Hpp5/i7LPPxoIFCzB58mTce++9XcF5PvzwQxSZCjB//nxstVUtPMull16KSy+9FLvtthsefvjhpLOfWdQ1EZmiS4a41Smy+yShtOR3nSiErovyMFGTmJCWory5Ji0lzuuNYaJKAtwqLW0UICZKy3XXFZ+nQvj8SZGWqrRsyseknpkoLW1Iy9BEDWhceOigUkWlSVqy5sdxKS3ZCZeMtOSVlrpxRJVXE6WlrnwoSkuXpKWovvLHVP1QFBWaDHErLaMsCmRWDTZ5sVkQM2agXWnwpKWJmk70uwlpmWelZZ8+6SotReSyS6WlCCaENnWOZEJaikgcavlSlJYuSUtXSktqnqKQAux75a/j1wb8e7EhLWXrmCiKPlnaMpiSZ6K+J27S8vPPa5+HDLEnpqlEUxhM8dNP63/TBRIxUVq6Iq9MlJai8Z+t12EeZeWpGrP5sjU0xdciitJSV7ZxKS1FfURSHErOkUvSEgBOOukknHTSScLfeCJy3LhxqMYx+e9uEHU8SZiHR1Fa8p1tEkpLStkkrbQM82ertDRZ7KRJWpooLaNOiFyTlnwZu1RaxmUerkrLIAJgF+IiLWXvSrWoZY+5NA+nKGBsQSEtXd+TT4dqHs7Wj6SUlrrzKESFy8kjhbRU3S+OeYvtplUcqhWRuk801vJwobQM02Hv19LSSFryRLepeTiVpE5baematFQpLV355VItTkVkAHs+pW3FSVpSx88oJHcUVw2ifETtG9nrVaSlarPU1jw8ioKNah5eKsVDWob31PUHlLl5lpSWUTFvXu3z6NH2SktKua29NjB/fvDZJWmpU1rariVF78OWtIyitFRteruAbp2QRdKSL29PWpLhS8mjhrRIS5PGmobSUqb+iNs8nAKvtKwHxR8a9fe4lZYufVqmobSkqNZ4RPVpKXv/snqvUhKxx7qLT0s2X64mQTbm4a6VllT1XtaUliKYKC2TuD+QLaWlK9LShtjkF5elkp60zJLS0tQ3G1VpaVNH+/aVX5eGT8tSKVukJZXQMfHrKmpPrszDXSstVYqrLPu05BEHaWlrHm5DslDT0qVtQ1rqNhF1zxuSiEBAWtq+Y0q5sQEuTTfso5CWtm3OhLQU1W9bpSUP/h0mbR4ehbSklD2fBmUMFhG5nrQkIbdKSw/3SM08PE2flq+8Atx8s/6eWTcPb28H9t8fePppu3RNSEtKnYhKWspMXPMciIfP+8CBQRRwmV8nEZJWWqpIyywpLWV5odYBU/PwrPq0jIO0VCktWasGtl+YNQvYZpva954aiCeqeXgcsFXa25phmpybZCAe0f35tutCaZkkaZkln5ZU8/AoUJGuOgIvqnm46D2a+LSMGoiHcq7LQDyFQvS+imoebqK0tO2X4lBaNjU1kjJJBuJxtZmjyoMMNqSlbuPAhLRcZ514lZYtLebzdfZaGXR5djk/MFFastApLVnozkk7EE9U4YTu/qYbh4BXWhrAl5JHDS4D8Wy0Ef2+Ls3DqQsEdsI0c6b+nmkE4hk7tvZ5vfXkeQsxc6beTIG/JkTWzMPD/EQxD4+6i7bJJurfRTCtE3vvbZZ+mGeVT8sBA8zSVCGqeTivpoiq6JW90/79xcfZ86mkgEmwG1FacZKWunaatNKSRe/e9WV30UW1z1GUlt09EE93Mg83nbCnGYhHdA6/oBKRlt0pEA+V9HNtHu6KtFQpLUXklqnSkq8PLJm25ZaN55vUDdX8YtNNa593311+Hg9bFSKQjNKSah6umsO4UlqatC0Vabn55rXPu+4ar9KSXVdNmtR4Xb9++rRVz80Gpt14Y3EeZBD1PewaRgRVHQCAHXdsPDZ8eO3zbrvVPu+wg/07po4VqvkwWw94mATisSXleey0U+OxqKSlLC9bb137vMMO6rQ6Y484g05pqSIVhwwxT1t1L6DWDqZMqR3TWdV50pIMX0oeXShEMQ/nG9wf/whMnUq8cQo+Lc880+yepkpLF6TltGnAt74FbLEFcPfd4nNsFthZ8Wl5/fXABhuIf5ORlrqO3aXS8rvfBQ480MyMW5e/Sy8F1l8f+Oc/g+/XXgtsuy0wbRoqhx6K5euthzJL9sjyrDJ5aGkBzj8f2HBD4M476XkXIYp5+O67N7azqEpLWfmOGgX89KdqFdTAgcAZZwQT81mzGn9X3ZdHVpWW7GIvCaUli759g/IVIYpPSxOlJV8+V10V9DF/+1vwPW+BeGT45S/rF5hR8yRrl//6V9CPXH55PKSliChLKhCP6BwRaRk1EE8Un5ZJKi1VKr04lZYmxLyKFKSQblGVltdcEyjI99kHOOEEs/zx+M53AuuYrbcGbrih/rebbwa22go46CDg4ouBE08MiMzvfz/oz667TpxmFKUlpR67VFqqzMNVJE8aSkuVSekPfhDUh223DeZzcQbiOeww4NBDA8L8X/8Kjs2aFZCZZ5yhJ2FEabP45z8DMvTQQ4N7Ua8DxGPIV77SmE6I00/X5/fKK4Httwf23BP4+teBCROA+++v/f673wVlcfDBwLe/bf+OKeNWU5N6PnzrreKNDMBMacnDpM3dfHPQP1x5JfCb3wDbbVf/uy1pGeZRlpczzwzm+zvsAPz61+q0xowJ5uquIMo7+95V5tvrrw/MmCFP22YOEaZ/883A5MlB3fzWt9RpeNKSDG8e7iGGKWnJd7zDhgFPPQX84hfAueeqr41TaSnrCE4+GbjnnuCPcs80SMtCAfjLX9Tn2Cyws6K0PPbY4E9FosaptKQ4Nb/jDuCzz4ChQ9XnUtP88Y+DvxAjRnSZ9Jfb2/HQzJnY38btAF8uZ55pRszLYKu0nDkT2HffYFLJIqpphqp8L74YOOmkelUyf/4FFwR/IUTlmWfSkp1UqyZBP/oRcMUVtHvqiJ0QpVLQ399yC/D66/W/paW0/P73g78QeQvEI8OXvwz8/Od244wJaXnoocEfUN9vyWBaz7MQiIdFHObhPGTni9pImkrLLAbiaWqqH3fY8jGNfm1DWo4ZA/zvf/LzTQjt5mbgrruCz488Uv/b+PHAs8/Wvv/+9/q8iu6XNfNwqtJSRaLYKi3jCsTT0gLcd1/9d/53U8gUg8VijawMMW0a8OabwWdKH616h5tuCjz/fO072/eJ8sTOt2Xk0T//CXzjG/VuuGbPDohIHYYOBebMkf++0UbACy/UvsdpHq5TWm6ySZCXc88N5kEsopCWJvX08MODvxBPPgkccEBN9BKX0rJfP+Chh2h5LBSCufq3vx2Q0FGhsnoSgX/Xl10GHH98vbo9RBTz8A03BJ57LvjM1wcenrQkw5eShxhRSctwsHCliJCda+vTEqAHLJGpP+L2aUmBzX2SUFpGhcyHSpJKS9PzXEH1jCYqHRew9WkZ1ie+X4jLp2UInakNjzhIyzQD8bCTatWz68yyWFDNw8PzRGlHVVqKnpt6jEXSPi1FcKG0dB34jtL/J6W0pJCWrnxaJhGIh0ecSsso5vkqwsumjjoIxFPVjf+mSktT83BRfVDB1HVAiKh1KoRL83BXZqqy/KiUlnGQlnGZh/OI0zxcBxtlGPU3lXUPoH5npkF9bBGnebhOaSnLA2DuG9fkd5P8yPo83bihU1ra5MfVukqntORhMs5S2pNKyRlCV796944/AGQ3gSctPcSIah4efrdp9Cbn2iotAXrAEn4hlZRPSwqyah4eFWF+TJUDcZCWSe+A2Uwq4xrwbJWWsmiDcZmHhzAlLUW/Z9mnpSulJU8smtQ52QQ8zFscpKWo/EQLCBeBeOL2aZk2aWmitNRdxyMqaUkNxEMhnGwW8CKlpc483JXSMg3zcDb9OALxyEAcBxpIS/69q3xa8nBhHm5KWlLbKf/ebNu3S6Ul//54ZZ0KsjpODcRjQlomYR7Ovh9dGcQZiMf0OtNzVPVFpigLoep7bMl8U9iSvVTSkrJmFNV9G+JalZ4JTDdqRHBJWrKqYRdwQVpS+isZdO2Cko5XWpLhS8lDDIqakIVMaZk0aRmX0lKk/lAN0kmRljYdXRLm4VERvtc4zcNdTgRdQpXvLCktVQRQ+J6iKC1tAlNkQWmZB9KSd9hvYr6kU1qKyApdvm3Mw0V1M2tKy6jm4bJFRlZJy6jm4bxVQxTSMo5APCLVb5xKy7jNw+P0adm3r705ouy+fHpxKy35+hCX0tIVqROFtOSvNdnY4iGrt2mah7siLXVjSNaVlroNQupvJnO7rCstCwV92ZVK9krLKBGzo85HKH2erpxkIgQbpE1aUjaSQ7giLXXz0uZmT1oS4UvJQwxTpWUU8/AoBF8aSksKoZs3paUJ6ZWk0tKbh9N+y5p5eJjPrJuHi36Pg7R0NSHRqRvYPs1EaamaVFOVlnGah4veSd++5ouhpKOHxzX+uTYPz4rSUjbW8khLaVkqdS/zcBXpF6fSkqhcM1JaUnzDRVVamir9qeUWp3k4VV2lIy1N+imKRQi1fvCwVVra+jsE6t+rat4DxBuIR4eo7rhMfqOYh8us0uIiaKIQ07q+My7zcB2yoLQM03BpHu6qDpj6tBSBsskigwulJYU09wDgSUsPGUxJS9lg4VppyUOntFSl3R18WqYRiMfWib4JbAPxUBa8IbJqHm6jtIxr5zoqacmXXdRAPK4XjXlXWvLfbZWWJqSl7NxQgSJajMYRiKe52cw3J5B8IB4RXJiHR8ljlpWWPMkShbR0EYiH92kpIi3jNA93lbYMcSot+/ShKS1V71JHWkZRWlKQN5+WUUgbnXk4Pw9WoTsrLdMgLantmvJ+bOeQUXxapmUebktMy9KmCF1EJFYUEi0JpaWu3rgkGtNWWoqQtnm4KB0PIXwpeYjhSmlps1NhAt1kT5V2VPPwLCgtbcouDz4tZYF4vE9L8fG43kmp1EhwhegOSkuXpGWYVpyBePh2yj9vHEpLqnn4woXitIF4AvGISEsdKZm0T8uo5uEy9PRAPBTYkKwiZR3bz2VdaWkKNn2VSaotsR6RtHTu0zJp0tLWp6UtRMSz7TwnTaVldyItbUyDbc3DoyjQTTd4u5N5OEBr2zZKSxvSms13FpSWcfi0dLVGTpu05K8V9eVeaekMvpQ8xKAQc6LzQ3Qn8/BCoXsF4omqtEwzEI+uY4+DtLQd6G2RJaUlIG8nKgJItjObNdLS1lWCqL2kobTk8xGHT0uqWnb+/OC/DWmpymuhIFda8gvfrJGWoucyUVpmyaclZVKdpUA8NvcX+bTUmYfHqbSMeyETp9ISiO7Tki8rvn2bKi1N31VaSktb6MzDVe0mK4F4ZP29LG1qGUchtEx8WvJ9SJLm4VEsCSjEiup81Xwt64F4AJp5uE0gnqjvPwmlJXVzP4vm4XGSljaiK6+0jBW+lDzEMO2kZIMFpSHGaR7e3ZWWWSUtx4yhpyfCttsG/+NUWrJ5HDZMfl6chKAINkrLOAc8WTvZbDP5NUOGBP+TDsRjanorKjdK/VaZh8eptNSZhyehtJSV6YYbBv9tAvHo3pOo/JqaGp9Dt6AM+xUVXLalsWNrn8eNC/7HTVpuvbU6T1k2Dy8WgZ13rn2fMEF8nSvSMo1APDKoNkLigmpxHCdpyT7rllvKL9fd10RpWSgAm2xS+77DDurzAfNAPLYqXFcbwTo1nMm1IvNwKqKYhzc3q+s9f53MEkR1b9F3FZI2D49TaWm78a2bi6veWVpKS5N3rDvXNhCPjdI2aaXlOuvUPg8eLE8jL+bhpmVmS+SLrqUG4mH7rREjPGlJhC8lDzHYBnThhfpzo5iHR4FrpeWoUY3HbEjLpDogm/uIFkcuA/EMGQLccYdZnlhsvz1w8cXBZ9NddRPScrfdgCOPDBYy990nP6+lBTjnnIB0uPNOdZouQFVa3nZbQIpccEG8i1vR4mL33YEf/7j+2KOPBsTVySfXCCy+XzAhx0Xkl+t2JSq3ESP016kmSgMGNP6WNaVllEA8Iuy4Y/DeRWkD+vdO8SclStNUaXnJJcDUqQExdtZZ9HvZYr/9gK99Ddh001rfEad5+BZbALfcor5WdL8sBeK57jpg8mRg2rRaneIhW3z9859BnxiOH6b3F5mH63xaZs08XHbNV78KrL9+/TFbpeVPfgJsvjmw//7A9OlB3jfYADj2WGC99YJ3qAJb337+c2DXXYWndfDtW+XTUtQm/v3vYNy+4ILg+7e/HeR54kTgb39T5xHIn9JSZx6uc8PBgh8TkjIP1/VFBx0UbD41NQGTJgX9KwWuVHhZDsQTRWlp2tdEWTPEtT7i06XM5ULw9Zuv/yrz8L/+VZ4Hyvu//vqg3/zDHxrzkoTScocdgKOPBjbaCHjggcbf2ejh550XjLG3326XnzAPcW728WnfcENQvldfLU4jDaXlgw8C48cD3/kOMGWKJy2JSMDO0yOXYBvZz34GHH54MCmVnSsbZONWWupMtUyUloVCoL775JPGNEwD8WRZaSnq5F0qLd96C1hrLbM8hXjiiXoFRBSlJUV5wU42VPjFL4K/JEBVWn71q8Ff3OBJqAsvDPoEHrvsArz9dv0x/llMlJaiRY3rdiUqa4pKWGWS0q9foyld1kjLKIF4ePzwh8AVV9S+2wTioZhmidI09Wk5ZAjw1FPB5yuvFJ5Sde3TUkci2tRpUR7POKNGzpjej9L/6xbrsnyZnF8qAeuuCzz3nPo62eLrsMOCPyp0C0zeXL1YzHYgHqBxkzXEvvsGG12yBbEJabnFFsEGgA4U8/B+/YBHHgnG4qOOqjtNS1rqFvcHHRT8hWhqAu66S5vtLnQH0pIKiuqYiijm4bo5wrBhwNNP0/MSIk9KyzhJSxlM+24KaSkzD49Lacmna2LxxZbxLrsE4zarQJQF4vnkE2DkSHE6AO39H3ts8BciDZ+WN95IS+Oss+QbvhSEm4BJmocfc0zwJ0MUt1u2pOXUqcFaWZaOhxC+lDzE4BuQalIliu5q4tMySmN1qbQcOVI8wPCLgCz5tLQpO1En75K0dOnz0pS0pPhDyzpsfFrGCX5xEWUhZEJaihY1SZCW666rv05lylksNqotXU1IdBE8qebhJn63dO+b70eTVFqakpaUPMU9eYxTaWlzf4DWLtvb9ee4UFomCUognu6itNQFCFCZcNosxAEzn5aCfLf361e/iaBadMdRd/IWiMc2SA2gf8culJbscVulpS1MXcewSDsQDzWvUea/pu0nyjwwKaWlCWnJb4Dw5SdTWorGDNXvpnmJOud16YfSBcI66moun7VAPN6nZazwpeQhholCSkVaxq201Pm0VKXND0DrrivOr0xpqZpoZllpGTdp6XJBbbqoNTEPzyqoSsukwC8uTIgJ16RlEubhtkpLNi2WyCsU3NVFfjJtq7Q0mVjrypzvR7NsHs5CVhfj9mGbdiAeW/PwJEhL6nPFFYhHtADNWyAeWRnqzOhU70JnOikDxael7B7oVFraRod2AVO1YXdSWoraQhKBeFyVhQ5xKS115UiBC6VlnCQkkE3zcP4ZKBvQIfi+UKSgEyktdW4UopKWSZiHm6QRFWkoLXXwgXhyA19KHmKYkpZpmYdHUVryg82YMeLOhVdbUMzDk+qAXJGWJhMQ3aTSJWkZZyCejKKadaWlSV0xUWzzSMM8vF8/sSNyHjrSkiXyXJNgbHq2SksTEkKXf560tAnEY9OniALxuCAtk1ZaujIPt70/QCMtkzAPp5Z9WoF4SqXoC/AkzMNF0CktTczDoyotKX7IALT37Usv3zg2G5IyD48rEI9J3XSptIwSiCcupaUqLzqw70cX7I1HWoF4ZNe42giLsnmdVCAeW6Ul7ws2PGajtLRR2rJpJGUeroLL9+WatCSOJUrEbR5OaSuetCTBl5KHGK6UlpQONy2flvy5Y8bIlZamgXiSgk1Hx5dZU5PZO0hSaRlnIJ6swsRZfhLozubhoj6Acg/d7i5LHroiWET34dsi66vShPyO4tMyq+bhunxnRWnpygTYpJ7xeaBsJmTJPDwppWWpVE/WxmkeLpt7mEJWf3UKkCRJS1EZCJ61o2/fdJWWSZGWrsa1OM3DoxCgovwkbR7Ow9Y83LTvSUtpmQXzcJkrrbyah/fvX3+8qUn/rrqD0tLlnCiso1lSWlL6K+q1tiSqJy1J8KXkIYaJQkqktDQxD4/SWKOaE7NQkZamgXhcExUyuFBami40kyQtTdPu7qRlGs8UxTzcZPODRxLm4baTXJ15I7sjb6rM0EFlHk6d7LokLfmgPnGQlrJAPCrzcF1fIctT3KQlj6SVlqJ7uiItXQTioSAt8/BiMT7z8EKhsZ7HrbRkz1Wpu1wsxHWQKS2Tbo8skvJp6QouzcOjRA+PMxCPK9gqLU2RNfPwNJSWeQvEIzMPLxTq53ayGAgs0vZp6c3D9YjbPDzu2B49CL6UPMSgNMQQIqVlUubhurRckZamgXjyRFqa+hDSmcXHSaz1BNJSVWd7ktIyDfNw6iTXxDzcNfidfhlMSMsogXj4xW0c0cNFz6JTWurSlNXFuPsNF+bhLp3zi8ZvESjm4XkPxEMxD4+LtASiqzgBM5+WaSktRZApLal1Ko45lylp6eL9RUGeAvH0FNIyyUA8SZqH5yEQDxv9Wwed0jJ8hqRJyywoLV2+r3Ae0ZMC8cRtcdqD4ElLDzFEykmVOV1a5uE8oiyChg1zp7Q08a0WBTaDSZykpWsFEA9vHp5cPkK4DMRjUtfSMA+nOm43CcTjGiqlJQuTuhKlzvGLsjiUloC4LqmUlrakZZbMw+Pa/GLvSSUJkiAts660jJu0dGFGaau0VL0L14F4RBCUS+pKS/454zIPjwulEv0dJB2IR2YenlQgHpN2G6UO2pCweTAPj+JSKq52wb8nW6sgmdISqJ/bifpB14F4sqC0zLJ5eJw+LV0pLT2cwZOWHmKYOOvfbjv5IJt1pSXb4a27rjwQj6lPyywrLflOPk+kZVaUlttuG1/aJgq5JOAyEI/JBL6lxY3/PxX49KKQlmxaSSktVeWpq0fsZLqtTX6urs0NH17/PQ6lpSgfokA8m25a+7zTTur0skJapu3yoX9/2jVJmIdT27dofB0xwuzeovuLlJZbbFH7vs020RclJqSlS/PwKD4teSSltOzTB9WpU2sHxo93cy8qkvJpGRdcKy1HjqSlRSEtZe2ouyktXailbfrFuJWWJu0tqUA8rlxTFQrulJZpB+Jhr8+C0lJmHr7VVnbppa20dGUe7kGCJy09xKCQluPHA5MmAVdfLVdaxkFaXn99IPv/7W8bfxMpRFW4557AJPSEE4CNNpIrLUXfvdKyET2FtPzHP4DNNosn7awpLdMyDy8UGgkwyjv929+A0aOBiy+m3YPFgAG0vOl8WialtOzVCzjjjOB5b7+9/jwdacm+i9ZW4MILg371ppv06Tz4ILDeekG/yRMJIqUlT2zysCEte/VqvNePfgTsthswcWIwTqiQlejhru5nsiD52c+CttW3b/CZgiwH4hk/Hrj3XrN7i+4nIqnOOSfYmN1qK+CKK6IrweJWWpqYh1OVljwSIi3b+/VD+aqrgC23BHbeGTj1VPn1ccy5kiQtf//7oP/9wx/o1+ggioIsA0V1vN12wFFHAeuvD9x9Nz0t2fFf/arRhLc7kJb/+EfwXL/8pdl1IdJQWlI3r0T3kiHpQDzNzcDPfx6U/b//bXYtT+7JzH7ZuR2FtKQS/bK8REVeSMurrwYmTzZPr7uQlkkJnXIOr2P1EEPUyNhJb3Mz8MYbtQbLD2BxBuI59tjgTwTTBeFeewEffqg+X6aMUS1ekiItsxaIJ04VCpAd8/ANNwRefTVYaJx8stu0s6a0dGkebrog6dsXWLWq9p3y/EccEfxRYOt/KCs+LUsl4IILgj8eFKXlihXB99bWgLwKCaxvflOdzh57AB98IE6bJxKHDJH7LwtBqVP8Ob16NdbNvn2Bhx/WpwWkF4gnC0rL008P/kyQ1UA8u+1Gf+c8KETNgAHAk0/WjkUd29NSWup8Wpq8i4QC8XT06RMQEC+8EBz4+9/l12dRaWnSHk48MfhziTgC8fz5z8H/ZcvkaVFJgLAfoloPuEScpOXXvx782cIFaWmqtDTdaDUJMJhkgKpf/tKOLObNqGVklKnS0iQYUAgXRKPLtFySljLz8JEjgeeeCzZtvvc9enp5CMTj4Qxeaekhhk5pue66agl7+FuefFrKzs+y0jKNQDy6SPJxQpc+ZdLmEnG85+6ktOTza1rXeFIqbvPwPJCWbJ5V78LEPLy1VX6uaZvm3xll0k6pFxSlpclYkpbSkocqz1nafc9qIJ4o8wcdUUeZD5gibZ+WsiAPGVRadvTrpz0nVohIbBW6s3m4yeI8CgmQRZ+WSRMRcQbikcF0zmIy900qEE8U6JSWtubhWSItbeFyXReS3VE4Axa6uTgFsvroKhAPBVma62UYGew5PDIBUaNnlRZ8RyxTj2TdpyUPmU9L0fcs+LTsaebhWVFahjDZbaYia0rLKD4tXSgtWcQdiIfqf0hnapmUeXgSpKVpH2NDWroyDzfJa1Z8WqrynKWJbBLm4TZKyyh9gu7+cSyus6q0NHkX1H7ShNgQBeIx2bSKo63I1IYyZI20NLm/LhCPyeI8CgnQHZSWUZGGebjpnCWL5uFRYGMeTgnE40nLesjMw23rRJyBeGzMw3WuozwiIYM9h0cmIGpkixbVPus64rRIS6+01CPLgXh0yIpPyxBxkJZZU1pGMQ/n85s10tJWaVkqqdUQSSktVfUhLaUlXz/iIi1F0cPzSFrmZUKb1UA8LpWWSZgxpuXTMkybDzghy5fq2eMglqIqLeMgLU2fM2vkTFpKS6pPSxE8aZlOIJ44lZZJmofbgi2vSkW+iZOE0pLPSxS4mF9E7cfY9y1TWtrmMw/m4XmZ4+UAnrT0EEPUyNjOU9cR20q9oyKq0tIVaZnl6OFZVlrqys2EtExiwdATlZZJBeIB7ALxmMCWtAQa200agXhcKS1V0cOjtqOsKi1l/V7c/UZcpGXcY06WA/HYImtKS75OuiQtRebhqnK03RBhETUQj8mmRBwbxVEtddImZ6KQljqVqc08hdLXJUVaZtk8PA2lpSlpSZn7hnnIm3l4peIuEM/gwdHykgWlZRKkpUvz8DSVlqJ7+0A8zpDBnsMjE9A1snXXpV1vs1MRBUkoLWUmDyzyFD08S4F4dB237nmjTNps0BN8WqYdiIeF6+fny9qEtOSfhc1bkoF4ZNCVFR89XIaoC2/dWAG4C8STR6VlFhdwIlB8WqYRiMeVeXihkD5pmYR5ODXNpAk3Lt/VYhFlnjjLiyuFEGm37SgbjDrz8EJB3m/ngbTsjkrLJAPxdGelZZRAPC42JXsCacmjuygtPWKFL20PMXQdyOjRtOvz5tPSKy31iFNpqZsI9QTz8O6ktKT4e1Ehy0pLvh2lobS0VUp5pWU+lJZZImKSCMQTdYFnCt6nY9ZIS5v7m/i0VNUvF8RCFKXlwIH5JfhDpJ3fOM3DgXhIy6QC8WSZtLTtF9n5s2n79YF4ap9VgXh0Ssvly93nxVVatog6FlBIS1ulZdo+LfNiKdNNkMGewyMT0DXEESPUv5t0QHH6tDRNmxKIJ+9Kyyz7tNSVm+55kyYte4LS0mUgHtPJf1YD8QBq0jIppaVqoqMqq0KBrrTsrqSlrK9KWWGWWSRhHk5t315pKUeWlJZRAvGI+lCvtDRDnEpLQN7eZc+dJaWlSdtKe0xwaR6eBaVl2u1CBGogHrZfEs0X581znxdXadnCpdJSVm/SVFrKzrcxDxfB+7R0hgz2HB6ZgK4hrree+ned0nKTTWqfx40jZ0uLuJSWm29e+77++sF/FdmXxUA822wT/I+qtFSVaZZ8WiYxULDtgK0jUZA1paUr8/BevczzH7d5eFxKS77MXMKV0nKrrWrfJ02Snxu1TetU+UA6gXhk79oH4hFj8mT9OVHNw6mIIxBPsdgzAvGwiFtpaQKR0lJ3DgtPWjaiVAI23bT2feut5efaKC1N1eqU8dWbh9tvnrDvOpzvU2G60cqu2yZOrH1m33EobnGxGRM32DIW+bQM38mQIbVjAwY0pjN8eO3z1Kl2eeH9a0aBi7IeNiza9dttV/s8frz4HNu+Mg/m4WydkJ3P1isPKTxp6SGGqBHfeWcwCP3gB/qFaNgwZQ30ttuADTcEpk8HvvnNaHkV3Vf23fT68Nj//V/Q2e6zD3DkkcHxLCgtqQuLjTYC/vGP4HNU0tJFfmTIG2n5rW8Be+8d1I1bb3WTpqrOZkFpaWtyZrMYybJ5uMrfWqEAnHdeMFn529/s8ycCdUKrIy3POQfYdltgiy2Ayy6j3Y+KW24Jnv2MM2hlKuqDRoyo9VmAe6Vlv37Aqac2Hk/aPNxE3atC3KTN5ZcHdWXbbYF99w02bO6+u/6cqEpLKuIIxGOitPzjH4P6feml5vdMi7Q0DcTDp3PZZcEzX3cdPS98+qNHAw8/LD6X92lpSlrGNee67jr7d522775SCTj9dGD77YNN1WuukZ/Ll60uEA9AMw+/4w5g5EjgJz8Rkzw8PGlpv445/fSAKNO9axFMlZbHHANMmxbMff/v/2rHH3kkGBsOPxzYeefgWNrtgAJqIJ5Jk4CDDgLGjgWOOqoxnaOPBnbcMVhz/fOf0fOSltLysccCf+RHH12/wW2DP/4R2GyzoFxmzBCfk0Wflq6UllOnBrzBmDFBuYowYQLwne8EZS4bIz2QcE/skRuIGvEBBwCffGJm8i1r0BMmAG+9Fb+5pyvSctNNgTffrE8/Cz4tKc934YXAaafV8h41EA+P5uaa6WDUtPJmHl4qAfffLzYnsYXOrDdpuFJa2pDjSZuHm5CWuryddRZw5pnxEq1RlJb9+wNPP62vuzb5/9rXgMMOo1/L16lddgkWP6r+NmogHgD49a+DTTjGhL2atNKSr0cssqQeGzkSePHFWv6rVeDzz+vPybvSkkpafve7wQLDtQ/OpM3DTUjLGTOAH/3Ivrw33xx46SW6qkVEWqYx/h13HHDssW7fRVIolQLycc4cfT+vMw+39Wl54IHA/Pn08vM+Le2Vlv36AU89pX7XsjZvqrTs1QuYNavxXtttB7z/Pn2tlBXo5lXhMxQKwL//LS/jlhbg8cejrQmyQFruvDPw4Ydu+twxY4BXXqG5vsqbT0vqvf76V32d+NOf3K4luyG80tJDjCiOtKnnx9EwoyotVT4tZeYCImRJaVks1uc9qk9LHuzktqcF4onjXllTWtpG+AWiKy2zbB5OIVTj7uOikJaizy4RxWcY32eJzunVK3p/L0o3S6Rl1sDXG768k1JayvJkCvb+poF44mg3cQbiYRfdFIjagekz8/0TZdEaIkvm4bbvOm3SklcSU88FaD4tZX1lFBcYWfRpmbbS0uW6SwZT0lJFMpmslbICHVHIP4OujF2NS2n6tHQ5xsVVXmmbh5vk20Tw5SGEJy09xEhCNRYHovoLkyktqeeGyJLSki8D1+bhbHo9zTw8DmRNackjik9LU8RtHh5FmR133mRwZR5uc7+4QOm3RT4tebggeZI2D4/T/2ncSIu0jCMQj4i0jGOxrRrj4lRaitKy3fSggk1flx6XP2Pz8CyO/VkiLXWwUVouWRL9vjyyaB6etn9Xl/XIVSAekzLJg9JSR1om+QxZUFomjSz6tHSptPRwAl/aHmLkpaPjEbUDEV1vUxZZUlrGTVqy18dNWmbNPDwOZE1pySNJ0jJu8/Ao5Rm3ClQG6oTWVX7SaEcU0tLFZFV0TdJtLE9KSx58WeXdPDyJKLeqNsuPxS59WoawNQ+3gcl7cqm0zMI4CaSfD5O2YaO0XLmSlpYJskha5sU8PAoo/kZZZFmpagO2jEXrtySJ655IWob5NM1v2krLtPv4HgZf2h5iuOrokvbJFQdpaZNmUs9tsxPkmrRk8+CVltGRdaWlrXm4TT2L6rNQhyjpZUFp6cI83OR+ScGWtHShTEtaaalySWAyjqTh/zILSsso4M3dkyALVBuacQbiCZEWaalDVNKSLdcsjJNAPsxiQ+jmiUmNGUn5tMwy6ZbGRpppuUdx/5JF6CxYkqwDOgLVBFnpC3VwqbR05U7BKy0zB1/aHmK46uiSUhyGiJpvV6RlUs+dBfNwlw638xaIJw54pWUNSQbiMZ1Yx503GboracmWv+ieokA8PPLm07KlRV2+WQrEI0JU0jJtpSWvzkuCtEzLPNw0zbSVliJzVer7yMrYn4Xxmgqdzz6TZ4lS/l5pGW8/FMeGjw55U1p68/DkYau0dOUmSARKXvLUx3cD+NL2EKOnKi1VgXhMkCXzcD7/fCcfdTCOQvzwyGsgHpfoTkrLrJOWUQIFZZ20zHo94sH2Q7Y+LV2QPEmSlnn2ZwlEL7u0fVqy401SpKUKcQbiESFupSULQ9KyKjJXzYIfcRPkaUHriuw2PZeHD8QTPRCPCmm0k+6gtPTm4fEiTZ+WMlDW8Xkp326CHI2oHokir6RlT1NaZsGnpWl+VIhqHs4vQvOIrCstOzro50YhBYH4zcPZtmGav7jzJgM1EA81DZfnRgHvX1D1OyB+X21t5vdN0zw876QlXzfyFoiHNyk2jRBrA6+0FIP/3QfiSRa69617lpEj6eeqkBRpaYKeEIgnTuRBaekD8aQL23zGSVpSkJfy7SbI0YjqkSjyah6epk/LrbeufR47Nlo+qKDkjR/0skxarr22+veeYB6edYWcyaKiubn2zvr1M79XkkpL03aQltJSZ8ZE+S2LpCX7XLY+LW36sqSVlix0pOXEierft9qq9jmpMYdFWoF4WLhUWiaxMDUhLW3mM5tv7iYvLt7NhAm1z1tsoT43qnn4BhvUPm+7rT5vSSAL4zUVUcnuvfeufdb1Wypk0TxcNy91jbQV3xRkWalqA928Kq9Ky7zAto6L6par9tJTyj5HyGBP6JEJ2Ey2brghGNzPO692rLsrLa+8ElhrLeDyy4Gbbw4mzjvvDBx/fLR8UEEZSOMgLf/0p+Bdn39+ffo2A/sjjwS79N/8Zj3xK4KJeXgWJ3oUZFFpOXMmMGwY8P/+HzBqFP26lhbgBz8Ahg4FTjjB/L6segOIdxFo2g6yHojHFWmZFHQ+LWWk5T33BHXz+OOBddaJdl/Rd9cwUVpecUU98cPj5puB9dcHdtkFOO44N/kzQd4D8fBKyyT617hJy/POAyZPlv+eZCCeX/0qILA23zyYI6kQNRDPyScDO+wAbLgh8Ne/muc1DpTLyd/zD38I5mYXXWR2na6uiX6/5RZgyBDgJz8BfvObgJjefHPgssvM7s0izkA8//pXMBc59VR1ADQeG2wAHHssMHw4cN998eUvRJLq/6FDgTvuiC99oHuYh6eltOwpgXhsfVoWCo19xvDhbvJEmWckLczq4cjB9odHKrDp6I45Bvj2t9PdJUrap+UppwSkTPjMb7+d7CBh87x8B28zSfzOd4L3XSgA115bO24zsO+6KzB/vhunx1mMIGqKLCot990XWLjQ7v5XXBEsWG2uXXfd+u+un581dc+LT0tqZMk0HO5HgW0gni99yb5uAsmbh7PvTEdaDhsGvPwycP/9wXPy2Hhj4J130usXopqHZy0QTxKI2zx84EDg2WeDerPllo2/J0laDh4MvPBC431F4H1aDhwYtGvFOXVoaQGeeCJ4pqyM/WksaI8/PtjAMC0Dk6jzIb72NeCww2q/vfii/Fwq4iQtDz0UOOQQu/xdfz1w3XXJ1K2kAvH07w8sWhT/M+VBaenNw9NFVJcS7e3B54EDxRteNvCkZeaQUymSR+yw7ej467q70pK/Z9IDhAulpe1gLNoZs13ouPKz1R3Mw7OotASilafttTwx6Pr5WR+IUUnLNHxa9mSlJbu4jfI8SZuHr15d+9y7t/58U1+ASYK/d54D8WRBDcQTNrblI/LPyf5GgcsIrDYbkqZKS/Z+WUFaC9o4fKHKfufnv1HLP25yKI15jCniDMTDp5sGCZtF6OZVST4D1QUQBVnqD1VwtdExZkz0vISg9N9pqOl7MDxp6SFGXgPxpOnTMg3YkJaUKLy2iLusegJpmUWlZZpg1Zau+5MopGVPMQ/PitKS4tPSBkkrLdesqX2mBuLJi2+lvAfiSQJxKy1D2MwNTK93CUognryNf3lS4WRlcyQPqry4kYdAPN3Zp2WWzMN7CmkZwia/y5bVPrskLSnIUx/fDZBhNsYjVeSVtIxDaZnlTt/FZCZOcxzX6AmBeFTPmNdnigKWtFy0yG3aLGmZl0A8nrQM4KrfiqoWNAWrtOxupGXeAvFk3Tw8jjwlaR5uAv5ZRSrkLG8gi5CXdgvUzCtlSGMc6KlIKhBPUqrTvJGW3jw8X2DLyCVp6c3DM4eczQA8EkNeSUvXSsusT5KjqimA6It/Nv2433dPV1r2RIweXfs8b57btNmFmicto58bBWzbFvW7SS3kPGlpj7wH4okL1DbrkrSULabyQlqK3kfW52OA2yAaSYL17yxCUmWfB4IrbiRlHp4U8kBE69ptWtHDe0ognhBR85s0aenNwxNFDmYAHqnAVUeX9KQtar6TWhi7gouBNE9Ky55AWqrqXJ4WQa7AkpYLFrhNmyUto5qHp+HTsrsG4hEhqcVs3O/Rk5Y19JRAPLakpSvTd5s00yYtbc9JG9RAaVlDVpSWeZqPxoU4214aY0keiGgfiKd7gA/eGQVeaZk55GAG4JEKXE0O8660zHqHT3le3TuIOhgnGYioJ5iHq/LdEwdIl5MQHi4D8aThpN9WaZlFsAs10e51UiRK1gLxAPl5l3kOxJMUaamCS6UlRQGSJaWlTbCeLCKvSkt2LBTBKy2TQxpWG3Eib0rLtAPxeNLSHj4QT7dGDmYAHqkgr+bhrn1aZn2S7JWW9fCkZfcDq7R0jZ4aiMf2fnGip5CWbJ3r6UrLLJGW3S0QT96UljrSDMjHmJ5XpaXOPNwH4ukeSGNekPV1FJCtQDw9MXq4K/hAPN0aOehJPFKBq45u2DA36VDR03xaulBa5om01D3vpEm1zxtuGG9e0kBPHCA33bT22fXEMY+BeCZOrH3eZBP5eZ60tEOSfT5VaTl0aLz5cAXTd2Rbt9h+fvx4uzSAdJSWJqRllDrfv7/4+OTJtc8bbCC/PmnSktK352EBnlfScsiQ2ueWlsbfk+oXZfXWww3YNs/2BaZYe+3IWckU2HnmFls0/u7Nw5PBiBG1z9RNXRYuLbOGD9efw87N8rSWzikyzsh4pAZXHd0++wD77x90RAcdBAwaBPz+927SFsH7tDRHnjpa3fPecEMwKdtqK+CnP00mT0kiT4sgV9h6a+Cb3wwWVXff7TbtKD4tedIyqb7iiiuAjTcGNtsM+NWv5OflRZ0XQkdaJrRoqCZJ1vB1SIbttwcOPjiYRD/6aLx5igKbd/SznwGDBwN/+Qv9muuuCzalJk0Cfv5z83uGEJGWV14JDBwIXHKJfbo8qItQfiymLJpkGD8e+Na3gn7zvvtqx//0p2CMnDxZPUYmvdgdOxY4+uiADLnnnmTv7RJs/5Gn8XqvvWpz9Ycfbvw9zvpwxx3Bez/+eGDUqPju4wGcemowp1p/feDGG82ufeihQIhy2GHAlClm155xRrD++//+P7PrksIvfhGQlRttJF6jevNw97j++qBOnHNO7dg++wAHHACMHAk8+CAtnZtuCtL54Q+Bfv3c5G369KA/1GHPPYEDDwz6zUcecXNvDym8Dt9DDFcdXaEA3HVXMHkrFmv/40JPU1pSBrTupLTUTRzGjgXeeiuod1kerG2Rp0WQS/z97/H0HS4D8SRV34YNA15/Pbl7pqG0TDN6Z5L9BlVJUCgAt94a//gZFTak5YUXAr/8pdlzrbsu8Oab0ft5USCeU04BTj7ZbTnbKi2jmrr95S+NdSbLY+SNN9byKwoMk7X8ipBXpSU/Vxf9HhcOPBD49NNs923dBX36AP/7X9APmZb37rsHwRBt3tMFFwDnnZfddzxwIPDii/JySUtp2Z2jhx97LPCd79SXd6EA3Hmn2VznG98ADj/cXd16441AGEBBoRBsumR9btZN4ElLDzFcd3RhY467Ufc0n5aUAS3uQDxJortEGLVFnhZBrhHHe41iHp4WaUm9V97Mw9n32519WrKgmoeHyHrfZlt2Ns/loixk5uGuy9k2EI8LUzfRs1CeL63FbtbruA55DcQTQlb+aQdZ9HCHKBsWUd5T1t+xqly80jIeyOqEaV1xWbds1sRZr9vdBL6UPcTIekcnQ09TWrqYFGf9GVnkIQphnMjjIijLiBKIx2XQjDiQZ/NwUVCI7kha2vhsyjLytAEGZD8QT9JBBbKOrPWxIrgMouHh4ZEN+EA8PQc9fZ2ZYeSIrfBIFHnt6LzSshG6QS9PE+usv4+4IVKgedgjitKSR9bqZt6UluyiQFTPkyrfLAbiyQvyNtkXmYfHgbTMw6Mgr3PAtJFX83APDw85fCCenoO8zWN6EDK2yvLIDPLa0fW0QDwuJsV5Ii17+mDiF0FuEcWnJY+s9Zmu6kpWoocn1U9lMRBPXuCVlmLYkpbDhsWTHwqy1p/lBd2VtPT1waMnI8m1oCct00VPX2dmGBlnZDxSQ0/t6PKmtKQo7/JESurQ0weT7rQIygLYttHdSMu8KS11pGVSdd+bh9sjz6RlFpWWafYpWevP8oK8+7T08PBoRFo+y7tzIJ6soqevMzOMjDMyHqmhp3Z0eSMtvXl4z4JfBMWHqObhWesz89SuAT1pmZRrBG8ebo+8TfbTIC1VWL06vjx0B2StjxXBKy09PDyiwCst00Xe5jE9CD2cAfCQoqd2dD2RtMzTxLqnDyZ5eld5g1daipGG0lJUz1nSMs5+wCst7eGVlnqo2uWCBcnkgYKs9Wd5ga4f8/Dw8FDBk5bpoqevMzOMjDMyHqlh6NC0c5AO8kZaDhkSPY21146eRlLo6YOJXwS5xYYb1j6vt156+YgDo0fXPo8bZ3btwIG1z8OHO8mOFmxfq1NaxtkPJNnnu+i/s4S89c+bbCL+7BrURehaa9U+T5gQX34oGDAg3fuL0K9f2jnQY+LE2uf1108vH67hyQ8Pj2Tgclzy7dYceZvH9CBknJHxSBKP/fKXqA4ZAhxwALDrrmlnxx6nnw707w/88Y/m1/KdVdY7/N12A/bbT23aKlokPfJIQFYeeCCw447x5c81sk4ixw1PWrrFrbcCI0cCO+0EHHWU+fW33BIQfCeckL0F9be/DeywAzBqFHDnnWbXPvBAQFbutRfw5S/Hkr0GmPi0jLMfiHvCetddwKBBwJFH1pPm3QF5U1peeikwfjyw0UbB57hAJS2POgrYaqugzf773/HlR4a77gIGDwa+9a1sEm6jRgHf+U7QftIoHwquvz7YJNp8c+CMM9LOjUdecdllwZzioovSzknPxdVXB2vJc85J9r4XXRSQlRtuCPz2t9HSyvoaNovo6evMDCNnM0yPOPH55puj4+OP0Zx3P1u/+hVw/vl2i8+8KS0LBeDuu4EVK+rVUSxEi6RddwUWLcrfjlLe8usanrR0i0mTgI8/tq9XX/sacMgh2ayXTU3A448HdcY0f9tuC8yfn+xz9RTScv/9gc8+y2adiYq8kZbDhgFvvBF8jrNOsWmrSMvevYG5c4Nz0ph77L8/sHhxtuvmn/4EXHdddvM4ZgzwzjvB3Kw7EQbd6VnygBkzgFNOyW497wk44QTg+OOTfwdrrw289pqbccC3W3P4NpdZ5GyG6RE7uktjtX2OvJGWIVpazK/J47vOy/uIC560dI+o7SDL7ahQsM9f0s/FEl4dHY2/dyfz8CzXmSjI43Ml8b5NfJSlTXbl4R1mPY89fZ7i4QZZr+c9AWm9A1fjgCctzeHbXWbhR1YPDxZ5JS1VCpe8RRFWIS/vIy540tKju8Ikenh3CcTT3ZA3pWUa6E7jsYeHh4dHduFJS3P4OWBm0cMZAA8PDnxnlReSLM18souwuBdkPX0AFpE5Hh7dASbRw/NsHt6d4UlLMVxGg/XwSAM9fe7l4ZFH+HZrjrys+3sg/Jvx8GCRV6WlCt1pkdQd3kcUeKWlR3eFLnp4Uj4te3ofEwWe8BXDk5YeHh4eHh4eHtbws3MPDxbdkbSMG+yCLO5dvZ6+a+hJS4/uCpNAPN48PJvwSksxPGnpkXf09LmXh0ce4dutRzeCZ2Q8PFh0R9KyOy2SusP7MAU76fCkpUd3RVZ8WvbEPsYVPOErhl84enh4eHgkDT/2eHQj+Nm5hwcLT1pmGz1xAG5urn32pKVHd0VWSEtPvNnDKy316E7jsUfPQU+ce3l45B2+3Xp0I3QDRsbDwyHyGoiHx/rr1z6PGhXvvSZMqH0eNy7ee/XqFW/6WcTEibXPcZevh0da0JGWbJ/G9jmukdc+PwvwZSeGNw/38PDw8Egaw4fXPre0pJcPDw8H8DNMDw8WeVZann8+0KcPcMklwH/+A4wYAWyzDfDd78Z73+uuA8aMATbeGDjrLPfp/+MfQL9+wPHHAwMGuE8/67j+emC99YCNNgLOPTft3HjkFZddFvQPWa1DrEqvo6Px97POCvqYMWOCNuESN94I9O0LnHxyvvr8LOCGG4KyO+WUtHOSXXjS0sPDw8Mjaey/P7DnnsDaawMPPph2brKL3/42mB+feWbaOfFQwNvyeHiwyDNpeeaZwM9+Vlv8f/xxoF6K2zxg7FjgvfeCsorjXl//OnDooT3X9HDsWODdd4OyzVN99MgWZswAfvCD7LYjVmkpcoMwaBDw2msB6ePahPvoo4EjjgjKpr3dbdrdHcccA3zrW9mtV1mAJy098g5vZurhkT8Ui8Ds2cFGsB+j5Tj5ZOCEE3wZZRz+7Xh4sMgzaQnUd7hJdr5x+4HryQNJqeT97Hm4QZbbEdvXiszD+XNcI8tlk3X4slPDEz4eHh4eHmnBj9F6+DLKPHLGyHh4xIzu4tPSo/vAE5YePQFsPfdqNI/uCl+3PfIIT7x7eHh4eKQIz8h4eLDgSUo/UfNIG5609OgJ8PXco7vCm4d7eHh4eHh4eFjDk5YeHizybh7u0f3gTRY8egI8aenRXeFJS4+8w2/ge3h4eHikCM/IeHiw8KSlR9bgyRyPngBfzz26Kzxp6eHh4eHh4eFhDc/IeHiw8KSlR9bg66BHT4AnLT26K7xKzSPv8HXYw8PDwyNF+NWwhwcLH4jHw8PDI3l40tKjJ8ArLT08PDw8PDw8jOAZGQ8PFr16qb97eHh4eLjHOuvUPq+7bnr58PBwjU03rX0eMya9fHh42GLAgLRz4OHh4eHRg+FJSw8PFptuCuy+e/C5d2/g6KNTzY5HD8XVVwMtLcCMGWnnxMMjGXz728A22wBDhgD/+U/aufHwcIc//jEg5TfcEPjFL9LOjYcHDXfdBfTrB3zlK8DEiWnnxsPDw8OjB8OHpfXwYFEoAA8+CHz6aTBZ69cv7Rx59ESccALw3e96pa9Hz0FzM/DMM0B7u6/3Ht0LY8cCH3wQuJvxLmc88oL99wc+/9z3xx4eHh4eqcOTlh4ePAoFYPjwtHPh0dPhFwoePQ2Fgq/3Ht0TTX667ZFD+P7Yw8PDwyMD8Fu+Hh4eHh4eHh4eHh4eHh4eHh4eHpmCJy09PDw8PDw8PDw8PDw8PDw8PDw8MgVPWnp4eHh4eHh4eHh4eHh4eHh4eHhkCrkmLa+66iqMGzcOvXv3xnbbbYenn35aef6//vUvbLrppujduzcmTpyImTNnJpRTDw8PDw8PDw8PDw8PDw8PDw8PDypyS1recsstmDFjBs455xw8++yzmDRpEqZPn45FixYJz3/iiSfwjW98A9/97nfx3HPP4aCDDsJBBx2El19+OeGce3h4eHh4eHh4eHh4eHh4eHh4eKiQW9Ly8ssvx3HHHYdjjjkGEyZMwLXXXou+ffvihhtuEJ7/m9/8Bl/60pdw6qmnYrPNNsP555+PrbfeGr///e8TzrmHh4eHh4eHh4eHh4eHh4eHh4eHCk1pZ8AGbW1tmDt3Lk4//fSuY8ViEdOmTcOcOXOE18yZMwczZsyoOzZ9+nTcfvvtwvNbW1vR2tra9X3ZsmUAgM8//xzt7e0RnyB7aG9vx6pVq/DZZ5+hubk57ex4ePQ4+Dbo4ZE+fDv08Egfvh16eKQL3wY9PNJHd2+HK1asAABUq1XtubkkLRcvXoxyuYwRI0bUHR8xYgRef/114TULFiwQnr9gwQLh+RdeeCHOPffchuPrr7++Za49PDw8PDw8PDw8PDw8PDw8PDw8VqxYgUGDBinPySVpmQROP/30OmVmpVLB559/jiFDhqBQKKSYs3iwfPlyjBkzBh999BEGDhyYdnY8PHocfBv08Egfvh16eKQP3w49PNKFb4MeHumju7fDarWKFStWYJ111tGem0vScujQoSiVSli4cGHd8YULF2LkyJHCa0aOHGl0fktLC1paWuqODR482D7TOcHAgQO7ZaPw8MgLfBv08Egfvh16eKQP3w49PNKFb4MeHumjO7dDncIyRC4D8fTq1QvbbLMNZs+e3XWsUqlg9uzZ2GGHHYTX7LDDDnXnA8CsWbOk53t4eHh4eHh4eHh4eHh4eHh4eHikg1wqLQFgxowZOProozFlyhRMnToVV155JVauXIljjjkGAHDUUUdh9OjRuPDCCwEAp5xyCnbbbTdcdtll2H///XHzzTfjf//7H6677ro0H8PDw8PDw8PDw8PDw8PDw8PDw8ODQ25Jy8MPPxyffvopzj77bCxYsACTJ0/Gvffe2xVs58MPP0SxWBOS7rjjjrjppptw5pln4uc//zk22mgj3H777dhiiy3SeoRMoaWlBeecc06DSbyHh0cy8G3QwyN9+Hbo4ZE+fDv08EgXvg16eKQP3w5rKFQpMcY9PDw8PDw8PDw8PDw8PDw8PDw8PBJCLn1aenh4eHh4eHh4eHh4eHh4eHh4eHRfeNLSw8PDw8PDw8PDw8PDw8PDw8PDI1PwpKWHh4eHh4eHh4eHh4eHh4eHh4dHpuBJSw8PDw8PDw8PDw8PDw8PDw8PD49MwZOWHrjqqqswbtw49O7dG9tttx2efvrptLPk4dEtcOGFF2LbbbfFgAEDMHz4cBx00EF444036s5Zs2YNTjzxRAwZMgT9+/fHIYccgoULF9ad8+GHH2L//fdH3759MXz4cJx66qno6OhI8lE8PLoFLrroIhQKBfzwhz/sOubboIdH/Jg3bx6OPPJIDBkyBH369MHEiRPxv//9r+v3arWKs88+G6NGjUKfPn0wbdo0vPXWW3VpfP755zjiiCMwcOBADB48GN/97nfxxRdfJP0oHh65RLlcxllnnYX1118fffr0wYYbbojzzz8fbExe3w49PNzi0UcfxYEHHoh11lkHhUIBt99+e93vrtrciy++iF122QW9e/fGmDFj8Otf/zruR0sUnrTs4bjlllswY8YMnHPOOXj22WcxadIkTJ8+HYsWLUo7ax4euccjjzyCE088EU8++SRmzZqF9vZ27LPPPli5cmXXOT/60Y9w55134l//+hceeeQRzJ8/HwcffHDX7+VyGfvvvz/a2trwxBNP4M9//jNuvPFGnH322Wk8kodHbvHMM8/gD3/4A7bccsu6474NenjEiyVLlmCnnXZCc3Mz7rnnHrz66qu47LLLsNZaa3Wd8+tf/xq//e1vce211+Kpp55Cv379MH36dKxZs6brnCOOOAKvvPIKZs2ahbvuuguPPvoojj/++DQeycMjd7j44otxzTXX4Pe//z1ee+01XHzxxfj1r3+N3/3ud13n+Hbo4eEWK1euxKRJk3DVVVcJf3fR5pYvX4599tkHY8eOxdy5c3HJJZfgF7/4Ba677rrYny8xVD16NKZOnVo98cQTu76Xy+XqOuusU73wwgtTzJWHR/fEokWLqgCqjzzySLVarVaXLl1abW5urv7rX//qOue1116rAqjOmTOnWq1WqzNnzqwWi8XqggULus655pprqgMHDqy2trYm+wAeHjnFihUrqhtttFF11qxZ1d122616yimnVKtV3wY9PJLAaaedVt15552lv1cqlerIkSOrl1xySdexpUuXVltaWqr/+Mc/qtVqtfrqq69WAVSfeeaZrnPuueeeaqFQqM6bNy++zHt4dBPsv//+1e985zt1xw4++ODqEUccUa1WfTv08IgbAKr//ve/u767anNXX311da211qqbk5522mnVTTbZJOYnSg5eadmD0dbWhrlz52LatGldx4rFIqZNm4Y5c+akmDMPj+6JZcuWAQDWXnttAMDcuXPR3t5e1wY33XRTrLfeel1tcM6cOZg4cSJGjBjRdc706dOxfPlyvPLKKwnm3sMjvzjxxBOx//7717U1wLdBD48kcMcdd2DKlCk47LDDMHz4cGy11Va4/vrru35/7733sGDBgrp2OGjQIGy33XZ17XDw4MGYMmVK1znTpk1DsVjEU089ldzDeHjkFDvuuCNmz56NN9/8/9u796Aor7sP4N+VZXe5KSqw3AJCUzUKRoNGKTYEsQbMpBpBqiIXO15iZBRs1WBKNCXWTElqBWOiTdQ0YBwNWGMGbZCbkiAKAQJata1oagNagkRAw23P+4cvT3bdi0CWi/H7mdmZx+ec85zz7POcEX6cyyUAQGVlJYqKihAaGgqA/ZCov5mrzxUXF+Opp56CQqGQ8jzzzDO4ePEibt682U9307fkA90AGjj19fXo7OzU+UUMANRqNS5cuDBArSL6cdJoNIiPj0dAQAB8fHwAAHV1dVAoFLC3t9fJq1arUVdXJ+Ux1Ee70ojItAMHDuCLL77A2bNn9dLYB4n63uXLl/H2229j7dq12LhxI86ePYvVq1dDoVAgJiZG6keG+pl2P3RyctJJl8vlGDFiBPshUTe89NJLuHXrFsaOHQsLCwt0dnZiy5YtiIyMBAD2Q6J+Zq4+V1dXBy8vL71rdKVpL8XyoGLQkoioH6xatQrV1dUoKioa6KYQPTT+85//YM2aNcjJyYFKpRro5hA9lDQaDSZPnow//OEPAIBJkyahuroa77zzDmJiYga4dUQPh4MHDyIjIwP79+/H+PHjUVFRgfj4eLi6urIfEtGgxunhDzEHBwdYWFjo7ZJ6/fp1ODs7D1CriH584uLi8MknnyA/Px/u7u7SeWdnZ7S1taGxsVEnv3YfdHZ2NthHu9KIyLiysjLcuHEDTzzxBORyOeRyOQoLC5Gamgq5XA61Ws0+SNTHXFxcMG7cOJ1zjz32GL766isA3/cjUz+POjs7620S2dHRgYaGBvZDom5Yt24dXnrpJSxYsAC+vr6IiopCQkICtm7dCoD9kKi/mavPPQw/pzJo+RBTKBTw8/NDbm6udE6j0SA3Nxf+/v4D2DKiHwchBOLi4nD48GHk5eXpDd338/ODpaWlTh+8ePEivvrqK6kP+vv7o6qqSuc/rJycHAwdOlTvl0Ai0hUcHIyqqipUVFRIn8mTJyMyMlI6Zh8k6lsBAQG4ePGizrlLly7B09MTAODl5QVnZ2edfnjr1i2UlJTo9MPGxkaUlZVJefLy8qDRaDB16tR+uAuiB9vt27cxZIjur/4WFhbQaDQA2A+J+pu5+py/vz9OnjyJ9vZ2KU9OTg7GjBnzo5gaDoC7hz/sDhw4IJRKpdi3b584f/68WL58ubC3t9fZJZWIemflypVi2LBhoqCgQNTW1kqf27dvS3leeOEF4eHhIfLy8kRpaanw9/cX/v7+UnpHR4fw8fERs2bNEhUVFeL48ePC0dFRJCYmDsQtET3wtHcPF4J9kKivnTlzRsjlcrFlyxbxz3/+U2RkZAhra2uRnp4u5Xn99deFvb29OHLkiPjyyy/FnDlzhJeXl7hz546UJyQkREyaNEmUlJSIoqIi8dOf/lQsXLhwIG6J6IETExMj3NzcxCeffCJqampEVlaWcHBwEOvXr5fysB8SmVdTU5MoLy8X5eXlAoD405/+JMrLy8XVq1eFEObpc42NjUKtVouoqChRXV0tDhw4IKytrcWuXbv6/X77CoOWJNLS0oSHh4dQKBTiySefFKdPnx7oJhH9KAAw+Nm7d6+U586dO+LFF18Uw4cPF9bW1uL5558XtbW1Ote5cuWKCA0NFVZWVsLBwUH85je/Ee3t7f18N0Q/DvcGLdkHifre0aNHhY+Pj1AqlWLs2LFi9+7dOukajUYkJSUJtVotlEqlCA4OFhcvXtTJ880334iFCxcKW1tbMXToULFkyRLR1NTUn7dB9MC6deuWWLNmjfDw8BAqlUp4e3uLl19+WbS2tkp52A+JzCs/P9/g74IxMTFCCPP1ucrKSjF9+nShVCqFm5ubeP311/vrFvuFTAghBmaMJxEREREREREREZE+rmlJREREREREREREgwqDlkRERERERERERDSoMGhJREREREREREREgwqDlkRERERERERERDSoMGhJREREREREREREgwqDlkRERERERERERDSoMGhJREREREREREREgwqDlkRERERERERERDSoMGhJRERERPQAGjVqFGQyGWJjYwe6KURERERmx6AlERERUQ+tWLECMpkMMpkMeXl5PSr76aefSmXXrFnTRy0kIiIiInqwMWhJRERE1EPR0dHScXp6eo/KfvDBBwavM1AKCgqkIGpBQcFAN4eIiIiICACDlkREREQ9FhAQgJ/85CcAgMzMTNy5c6db5VpaWnD48GEAwPjx4+Hn59dnbSQiIiIiepAxaElERETUC1FRUQCAW7du4ciRI90qk5WVhZaWFp3yRERERESkj0FLIiIiol6IioqCTCYD0P0p4l1Tw4cMGYLFixf3WduIiIiIiB50DFoSERER9YK3tzcCAgIAAH//+99x48YNk/m//vpr5ObmAgBmzJgBNzc3vTx/+9vfMH/+fHh4eEClUsHe3h6TJ0/Gq6++ips3b3arXdnZ2Vi8eDG8vb1hY2MDlUoFLy8vhIWFYd++fbh9+zYA4MqVK5DJZAgKCpLKBgUFSetbdn327dunV0dbWxt27tyJoKAgODo6QqFQwNnZGbNnz0Z6ejo0Go3R9sXGxkImk2HUqFEAgNraWmzYsAHjx4+HnZ1dj9fWNLQm58GDBxEcHAxHR0dYWVlhzJgxWL9+PRoaGoxe5+mnn4ZMJsPTTz9tsr7NmzdL9RnSlbZ582YAQH5+PubOnQtXV1dYWVnhscceQ3JysjTitkt2djZmz54t5Rs3bhy2bt2Ktra2bn8XZ8+excKFC/HII49ApVLhkUcewZIlS3DhwoVulf/Xv/6FhIQE+Pr6YtiwYbCysoK3tzdiY2NRWlpqtNy9z0Cj0WDPnj0ICgqCWq3GkCFDuMM5ERER9ZwgIiIiol7ZvXu3ACAAiO3bt5vMm5KSIuX961//qpPW0NAgZsyYIaUb+jg5OYni4mKj16+vrxfBwcEmrwFA7N27VwghRE1NzX3zaufvUlNTI8aOHWuyzPTp08U333xjsJ0xMTECgPD09BTFxcXCwcFBr3x+fv59v/su+fn5Urnc3FyxePFio+169NFHRW1trcHrBAYGCgAiMDDQZH2bNm2SrmdIV9qmTZvE1q1bhUwmM9iWn/3sZ6K5uVloNBqxevVqo20OCQkRHR0dBuvy9PQUAERMTIx47733hFwuN3gNpVIpDh48aPK+UlJShKWlpdF2yGQykZSUZLCs9jM4duyYmDlzpl75mJgYk/UTERER3YsjLYmIiIh6KSIiAiqVCoDuruCGdKXb2tpi3rx50vnW1lbMnDkTeXl5sLCwQFRUFD788EOcPn0ap06dwpYtWzBy5EjcuHEDs2fPxtWrV/Wuffv2bQQFBUkjOf38/LBr1y589tlnKC0txeHDh5GQkABXV1epjJubG6qqqrBnzx7p3J49e1BVVaXzmTt3rpTe3NyM4OBgaeTe3Llz8fHHH6O0tBSHDh1CYGAgAKCoqAjPPfccOjs7jX4fzc3NCAsLw3fffYeXX34ZBQUFOHPmDN577z24uLiY/C6NSUpKQnp6OubOnYusrCyUlZUhOzsbzz77LIDvRxL2h2PHjiExMRHTpk3D/v37UVpaiuPHjyM0NBQA8Pnnn2Pr1q3Ytm0bUlNTERoaiszMTJSVleHIkSOYNm0aAOD48eP4y1/+YrKuiooKvPDCC3ByckJaWhpKSkpQWFiIDRs2QKlUorW1FZGRkUZHS6akpGDdunVob2/HhAkT8Pbbb+PEiRMoLS1FRkYG/P39IYRAcnIyUlNTTbZlw4YNOHHiBH75y1/qPIOu+yYiIiLqtoGOmhIRERE9yCIiIqTRZBcuXDCYp7KyUsoTHR2tk7Zx40YBQNjb24vS0lKD5a9cuSJcXFwEALFo0SK99ISEBOn6q1atEhqNxuB1WltbRV1dnc457VFy9xvh+Nvf/lbK+7vf/U4vXaPRiMjISCnPzp079fJ0jbQEIGxtbUVFRYXJOu9Hu/0AxGuvvWawXbNmzRIAhFwuFzdu3NDLY+6RlgBEWFiY3ijJjo4OMW3aNAFA2NnZCZVKJeLj4/Wu09LSIo2knDBhgsG6utLx/yNXDY0izcvLk0ZgTpkyRS/93Llz0gjLTZs2GXx3Ojs7pRGstra2oqGhQSf93mdg6N0gIiIi6imOtCQiIiL6AaKjo6VjY6Mttc9r529ubsZbb70FAEhOToafn5/B8p6enkhKSgIAHDp0SGc9xMbGRuzatQvA3RGW27dvN7reokKhgFqt7s5t6WltbcW7774LABg/fry0ZqM2mUyGnTt3YuTIkQCAHTt2mLzm+vXr8fjjj/eqPYb4+flh48aNBtu1du1aAEBHRweKi4vNVqcx1tbW2L17NywsLHTOW1hYYPny5QCApqYmODo64o9//KPB8jExMQCAL7/8Et9++63J+t588004OzvrnQ8KCsKyZcsA3F3z8t7Rlm+++Sba29sxefJkbNq0yeC7M2TIEKSlpUGpVKK5uRkfffSR0XaMHj3a4LtBRERE1FMMWhIRERH9AM8884wUCMzIyIAQQiddo9Fg//79AAB3d3edjW8KCwulYFR4eLjJep566ikAQHt7O8rKyqTzeXl50uY6q1ev1guSmUtZWRkaGxsB3N1Mx1g9Q4cORUREBADg/PnzqK2tNXrNyMhIs7Zx0aJFRgO22gHhy5cvm7VeQ37xi19gxIgRBtO0A7Xz5s2DpaXlffPV1NQYrWv48OGYM2eO0fRf//rX0vGJEyd00o4ePQoACAsLM/rdAYC9vT18fX0BwGTQ91e/+lWfvYNERET0cGHQkoiIiOgHkMvlWLRoEYC7O3IXFRXppOfm5uLrr78GcDdIN2TI9z9+aY96c3Fx0du5W/vj4+Mj5a2rq5OOy8vLpeOf//zn5r05LdXV1dLx1KlTTebVTtcup83W1hbe3t7madz/Gzt2rNE07QBiU1OTWes1ZPTo0UbT7O3te5zPVJsnTZoEuVxuNH3ixIlQKBQAgKqqKun81atX8b///Q8AkJiYaPL9k8lk0vuq/f7da8KECUbTiIiIiHqCQUsiIiKiH8jUFHFjU8MB4MaNG72qr2tkJQDU19dLx73dwKY7GhoapGMnJyeTebWnKWuX06YdkDMXa2tro2nawWJTGwT1d1vM0eb7PQ+5XC4FbbWfhznev3sNHz68V9ckIiIiupfxP8kSERERUbdMnDgRvr6+qKqqwqFDh6T1/1paWpCVlQXg7vTkcePG6ZTTDkR98cUXRqcJ38vd3d18je8FU9OIu4tTiM2nt89D+/175ZVXMH/+/G6Vs7GxMZrG50pERETmwqAlERERkRlER0dj3bp1aGxsxNGjRxEeHo7Dhw9Lm+bcO8oSgLRhDQA4Ojr2Khjp4OAgHdfW1sLLy6sXrb8/7enV169fNzmtWXv6sLF1HQebrlGNGo3GZD7tTZAGi+vXr5tM7+jokEZYaj8P7ffP0tJSZwkCIiIiooHG6eFEREREZhAZGSmNMktPTwfw/dRwS0tLLFy4UK/MpEmTpOPPPvusV/U+8cQT0vHJkyd7XL67o/S0A1olJSUm8545c8ZgucHMzs4OAHDz5k2T+S5dutQfzemRiooKdHR0GE2vrKxEW1sbAN3n4e3tjWHDhgHo/ftHRERE1FcYtCQiIiIyAxcXF8ycORMAkJ2djerqauTm5gIAQkJC4OjoqFdm5syZ0pqGqampejuPd0dQUJA0XTctLa3H6zWqVCrpuLW11Wg+Pz8/aR3K999/3+iIxKamJhw8eBAAMG7cuD5dZ9OcukaoXrp0yeimN/X19cjJyenPZnVLQ0ODtAu4IXv27JGOu95R4O5U7tmzZwMAPv30U/zjH//ou0YSERER9RCDlkRERERm0jUFvL29HQsWLJACiIamhgN3N6OJi4sDAHz++edISEgwOT35+vXrePfdd/WusWLFCgBAWVkZ4uPjjQY/29vb9TZf0Q4q/vvf/zZat1KpxNKlSwHc3RE8OTlZL48QAnFxcdLmQF339iAIDAwEALS1tSEtLU0vvb29HUuXLsWdO3f6u2ndsnbtWoPTxAsLC7F7924AdwPPU6ZM0UlPTEyEhYUFNBoNwsPDce3aNaN1dHZ2IiMjw2QeIiIiInPhmpZEREREZvL888/Dzs4OTU1NOHfuHIC7uyk/99xzRsv8/ve/R2FhIUpKSrB9+3YUFBRg2bJlmDhxImxsbHDz5k2cO3cOJ06cwLFjx+Dr6ysFD7skJycjJycHVVVV2LFjB4qLi7FixQr4+vpCoVDg2rVrOHXqFD788EO89tpriI2Nlcp6eHjA3d0d165dwxtvvAF3d3eMGTNGmuquVqulqdOvvPIKsrKycPnyZWzevBlVVVVYsmQJXFxcUFNTgx07dqCgoAAA4O/vj+XLl5vx2+1bzz77LDw9PXH16lUkJSWhvr4e8+bNg0qlwrlz55Camory8nJMmzYNp0+fHujm6nj88cdx/vx5+Pn5ITExEU8++SRaW1uRnZ2Nbdu2oaOjA3K5HG+99ZZeWV9fX7zxxhtISEjA+fPn4ePjg+XLl2PGjBlQq9X47rvvcOXKFRQXF+Ojjz5CbW0tqqqqBnwzKCIiIvrxY9CSiIiIyEysrKwQHh6OvXv3SuciIiKgVCqNllEqlcjJyUFsbCyysrJQWVlpcoTi0KFD9c5ZW1sjLy8PYWFhOHnyJMrKynoUMNy4cSNefPFF1NTUYM6cOTppe/fulYKcdnZ2yM3NRWhoKC5cuIDMzExkZmbqXS8gIAAff/zxA7WTtEKhQHp6OkJCQtDS0oJt27Zh27ZtUrqFhQX+/Oc/o6GhYdAFLSdOnIi4uDisXLnS4LujUCjw/vvvY+rUqQbLx8fHw8bGBvHx8fj222+RkpKClJQUg3kVCoXOkgJEREREfYXTw4mIiIjMKCYmRuffxqaGa7Ozs0NmZiZOnTqFpUuXYsyYMbCzs4NcLseIESMwZcoUrFq1CtnZ2UbXVHRwcEBhYSGysrIQHh4Od3d3KJVKqFQqeHt7Y/78+cjIyDC4IdDKlSuRmZmJWbNmwcnJCXK58b9rjxo1CpWVldixYwcCAwMxcuRIWFpaQq1WIyQkBB988AFOnjz5wOwarm369OkoKytDVFQUXF1dYWlpCRcXFykYvHr16oFuolFLly7FqVOnEBERAVdXVygUCri5uSE6Ohrl5eVYsGCByfLLli3D5cuX8eqrryIgIAAODg6Qy+WwsbHB6NGjERYWhnfeeQf//e9/8eijj/bTXREREdHDTCZ6s+I7ERERERERERERUR/hSEsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokGFQUsiIiIiIiIiIiIaVBi0JCIiIiIiIiIiokHl/wDhwtBPoPlLgQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Определение MSE_stop для AE2\n", + "MSE_stop_AE2 = IRE2[-1] # ошибка реконструкции на последней эпохе (после ранней остановки)\n", + "print(f\"MSE_stop для AE2: {MSE_stop_AE2:.2f}\")\n", + "\n", + "# Порог ошибки реконструкции для AE2\n", + "print(f\"IREth2 (порог ошибки реконструкции) для AE2: {IREth2:.2f}\")\n", + "\n", + "# Краткий анализ\n", + "if MSE_stop_AE2 < IREth2:\n", + " print(\"Анализ: Автокодировщик AE2 обучен корректно, большинство примеров обучающей выборки реконструируется с ошибкой ниже порога. Порог IREth2 позволяет выделять потенциальные аномалии.\")\n", + "else:\n", + " print(\"Анализ: Ошибка реконструкции превышает порог, возможны проблемы с качеством обучения.\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SjGT7uH5nQy4", + "outputId": "6678ebe8-79bf-4b2b-acf3-a6e1aaad0ec7" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop для AE2: 0.12\n", + "IREth2 (порог ошибки реконструкции) для AE2: 0.41\n", + "Анализ: Автокодировщик AE2 обучен корректно, большинство примеров обучающей выборки реконструируется с ошибкой ниже порога. Порог IREth2 позволяет выделять потенциальные аномалии.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "patience = 500\n", + "ae2_1_trained, IRE2_1, IREth2_1 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE2_1.h5',\n", + " 'out/AE2_1_ire_th.txt',\n", + " 2000,\n", + " False,\n", + " patience\n", + ")\n", + "\n", + "lib.ire_plot('training', IRE2_1, IREth2_1, 'AE2_1')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 989 + }, + "id": "xFOTWjKapnWW", + "outputId": "4c710302-f027-47bc-ada5-a7be684c3bfe" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 5\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 4 3 2 3 4\n", + "\n", + "Epoch 1000/2000\n", + " - loss: 0.2436\n", + "\n", + "Epoch 2000/2000\n", + " - loss: 0.0096\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FNX9x/HPvRekCSiigogSS6yxx14jSmKJGk2UGAuWJJbEBE2UX4wtRmONMWpsUTSJSjS2KFERRVFBbGADEZEmRZB6gVt3f3+su3d27/Q+e9+v5+Fh9+7szJnZKWe+8z3n1OTz+bwAAAAAAAAAICVqky4AAAAAAAAAABgRtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAiZo6darOPfdcbb/99urZs6dqampK/2bNmpV08TqkkSNHln6D008/PdZlG39/AAAAdFwELQEASMDBBx9cCsxcccUVltMZAziV/+rq6rTeeutp66231g9/+EPde++9qq+v91UGr//CCmQ9/fTT2nXXXfW3v/1NU6dO9VR+AHjxxRfLzk3bbbed53lcccUVvs+FgwYNspzv6tWr9cwzz+jXv/61DjroIPXv319dunRRjx49tPnmm+vYY4/VXXfdpdWrVwfYAv6sWLFCL730kq677jr98Ic/1KBBg8rWa+TIkbGXCQCASp2SLgAAAPAnl8tpxYoVWrFihWbMmKHHHntMI0aM0N13363jjjsu6eI5qq+v1+mnn67GxkZJUv/+/bX//vtrww03LGXZ9erVK8kiBnLFFVfoyiuvlCRdfvnltsFpIK0GDRqk2bNnS5I+//xz2yBdEh544IGy99OmTdOkSZO05557JlSigp/85Cd64okntGbNmnafNTU1ac6cOZozZ46eeuopXXrppbrrrrv0gx/8IJayDR06VKNGjVI+n49leQAA+EXQEgCAjDj22GM1YMCA0vtcLqclS5ZowoQJmjdvniRpyZIlOuGEE/TYY495Clx++9vf9nSTv/fee7svuIVnnnlGy5YtkyTtsMMOeuutt9StW7fA8wXQMaxatUqPP/54u78/8MADvoOWm2yyiadz5wYbbGD698cee6z0QEaS1l9/fe25557aZJNNlM/nNXXqVE2aNEn5fF5LlizR8ccfr7/97W/6+c9/7qvcXixYsICAJQAgEwhaAgCQERdccIEOPvjgdn/P5XJ64IEHdM4556ixsVG5XE7nnHOOhgwZou7du7ua9xFHHBF7JuC7775bej106FAClily+umnx96XZRHBFLj12GOPlTIZu3XrprVr10qSHnnkEf35z3/WOuus43meW2+9tW677bZQyte9e3cNHTpUZ5xxhvbee2/V1pb3zPXRRx/pJz/5iSZPnixJOv/887XffvvpW9/6VijLt1NbW6vttttO3/72t0v/jj/+eM2dOzfyZQMA4BZ9WgIAkHG1tbUaNmyYrr/++tLfFi1apCeffDK5QrlQzLKUCk3DAcALY9Pwiy++WBtvvLEkaenSpfrvf/+bVLEkSb/4xS80c+ZM3Xvvvdp3333bBSylQob5Sy+9pM0331yS1NraqmuuuSbyst1xxx1asWKFPvzwQ91///0699xz9e1vf9u0jAAAJIkrEwAAVeJnP/uZunbtWnr/6quvJlgaZ83NzaXX3CwD8GLWrFmlc1xNTY1OO+00DR06tPR5ZV+XcbvhhhtKQVQ766+/vi6++OLS+9GjR0dZLEnS9ttvr3XXXTfy5QAAEBR3CAAAVIkuXbqUjZw7f/78BEtjzjhKrzGoMGzYsHaj8lqNXltfX69bb71VQ4YM0aabbqquXbtq/fXX14477qjzzz9fb775pquyGJdVNGXKFF1wwQXacccd1adPH9XU1OjYY4/1tI7FUdmLg/BI0pVXXulqFPbTTz+93fovX75cf/nLX3TggQdqwIAB6tSpk2pqarR8+fKy73755Ze6//77ddppp2nXXXdVnz591LlzZ6233nradtttNWzYMD3//POu1mHkyJGOI8WPGzeuNI2x24KXXnpJJ510krbYYgt17dpVG2ywgQ488EDddtttZYFqK2a/SyXjSMezZs2SJM2bN0+///3vtfPOO2u99dZTjx49tO222+oXv/hFaSAZt8aMGaOTTjpJm222mbp27ar+/fvrgAMO0O23314a6dm4L4fVtcKSJUt04403avDgwdpkk03UtWvX0m+4ww476IQTTtDNN9+szz//3NX8xo4dq5///OfaYYcd1KdPH3Xp0kWbbLKJhgwZottuu63UnLrSrFmzSutm3Hbf+MY3TPfjcePGhbH6njz44IOlrgT2339/DRo0SKecckrp8//973/68ssvYy+XH/vtt1/p9cqVK7V06dIESwMAQHrQpyUAAFXE2C9kQ0NDgiWJxjPPPKOzzz5bCxcuLPt7Y2Ojli9fro8++ki33367fvzjH+uee+5x3aenVAhCXX311WptbQ272L69/vrrGjp0qGM/c7feequGDx9uWvbiCPOffPKJRo4cqe985zv697//bTmAiF9NTU06//zzdc8995T9vbGxUePHj9f48eN1//336/nnn1ffvn1DXfaTTz6p008/XStWrCj7+yeffKJPPvlEf//73/Xoo4/qyCOPdFyHM888U//85z/L/r5w4UItXLhQr732mm6//XY98cQToZZfkp566ikNGzasrNuEouJv+PHHH+s///mPbr755tLgW2bmzp2rU0891TSYuGDBAi1YsEAvvPCCrr32Wj3yyCM64IADwlyVWDz44IOl18Vg5W677aYddthBH330kVpaWvTQQw/pV7/6VUIldK8yQJ+mcxAAAEkiaAkAQBUxZle6aZoYtz333FPnnXeepEIW2LRp0yRJhx56qLbddtuyaY1Zo5I0atQonXzyyaUb+rq6Ou2///7aaqutVF9fr/Hjx5fW/6GHHtLnn3+ul156qazJvJUbbrihlBm55ZZbas8991T37t01a9Ysde7c2dM6Hnfccdpxxx01adIkvfXWW5KsR2e3G4V9xowZ+tWvfqUVK1aoZ8+eOvDAA7XJJpto2bJl7Zr+z58/v7RdtthiC2233XbacMMN1bVrVy1fvlwffPCBPvroI0mFTMjBgwdr4sSJ6tKli6d1s/PTn/5UDzzwgGpra7XXXntp2223VS6X08SJE/XJJ59IKgy+dOqpp4baBPbFF1/Uz3/+c7W2tmqzzTbTPvvso169eunzzz/XuHHj1NLSorVr1+pHP/qRPvzwQ33jG9+wnNfQoUPLRqPu06ePDj74YPXp00dz587VK6+8oqlTp+rII4/U97///dDW4e2339YJJ5yglpYWSYWHD3vvvbcGDRqkLl26aOXKlfrss8/0wQcflAaesTJ16lQdeuihWrBggaRCQGy33XbT9ttvr27duumLL77Qq6++qlWrVmn+/Pk67LDD9L///U+HHHJIaR69evUqHacPPvigVq1aJUk69dRT1bNnz3bLHDBgQCjbwa3XXntNn332maRChvkPf/jD0mennHKKLrnkEkmFJuJZCFp+8MEHpdfdunULPagPAEBm5QEAQOwOOuigvKS8pPzll19uOV1xGkn5l19+2Xaen3zySdn0t912WyhliMppp51WWv79999vO+2MGTPy6667bmn6PffcM//pp5+WTdPa2pq/6aab8rW1taXpfvGLX1jO07itOnXqlO/du3f+iSeeaDddQ0ODn9XLX3755Z63r3GbdOrUKS8pf9555+VXrVpVNl1TU1O+tbW19P7vf/97/q9//Wt+3rx5lvOeMmVKfo899ijN/w9/+IPltPfff39putNOO810mpdffrk0TZcuXfKS8t/+9rfzU6dOLZsul8vlb7nllrLt/corr1gu2zidlc0337xs2T169Mj/4x//yOdyubLpPvzww/yAAQNK0w4bNsxynvfee2/Zsi+88MJ2v/2iRYvy3/ve98rWOYzj59hjjy3N6/jjj88vXbrUdLq1a9fmn3322fzPfvYz08/r6+vz2223XWle3/ve9/IzZsxoN92KFSvy55xzTmm6/v3755cvX246T+O2/vzzz32vY5jOOuusUplOOOGEss/mzp1bdg6YMmWK4/yMx+pBBx0UUamtHXbYYaXlH3nkkbEvv8j4WzudkwEAiAOZlgAAVIGWlhZdcMEFpfe9evXSSSed5Pr7o0eP1pIlS1xPf9VVV6lPnz6eyhjEVVddpfr6eknSVlttpRdeeEG9e/cum6a2tlbDhw9XTU2Nhg8fLkm6/fbb9etf/9o2u06Scrmcnn76aR144IHtPgszG9GLlpYWnXXWWbrtttvafVaZ/XnGGWc4zm+nnXbSiy++qG233VYLFy7UHXfcoREjRqiuri5wWRsbG7X11lvrpZdeajfAR01NjS644AK99tpreuyxxyRJDz/8sOm29qOpqUlPPvmkvvvd77b7bIcddtBdd92lo446SpL06KOP6u6771anTuVV4NbWVl1++eWl9z/72c904403tpvfRhttpCeffFL7779/KYs2DOPHj5dU2NdGjhxpOUhK165ddcQRR+iII44w/fzmm2/W1KlTJRUyfh977DHTQa569eqlO+64Q2vWrNEDDzygBQsW6M477ywbECat1q5dq3//+9+l98Z+LCVp00031cEHH6yXXnpJUiHb8qabbnI9/08//VTnn3++6+lPOeUU7bXXXq6nr/TMM89ozJgxpffFDFcAAEDzcAAAMiuXy2nJkiV6/fXX9ac//UmTJk2SJHXq1En33Xefpz4L33rrLU9BmIsuuii2oOXy5cs1atSo0vvrr7++XcDS6IILLtDf//53ffTRR8rlcrr77rt17bXX2i7jhBNOCC2IFpauXbvq+uuvD3WevXv31nHHHae//e1vWrBggT7++GN961vfCmXef/rTn2xHJD7jjDNKQcvivhqGo446yjRgWXTEEUeoX79+Wrhwoerr6zV16tR26/zcc8/piy++kCT16NFDf/rTnyznt8466+jGG2/UQQcdFM4KqDD4iiR1797d96jOzc3NpQB3ly5ddOedd5oGLI2uueaa0oA2//rXvzIRtHzyySdL22uDDTbQ9773vXbTnHLKKaWg5b/+9S9dd9117QLVVubPn6/bb7/ddXn22GMP30HLBQsW6Kc//Wnp/WGHHWa6PgAAdFQELQEAyAhjn3NWttlmG910002OA45kyRtvvKHGxkZJUt++fXX00UfbTl9bW6szzjhDF154oSTp5ZdfdlyGl6zUuBx++OFaf/31PX/vyy+/1MSJEzV16lQtW7ZMq1evLo2yLBX6TyyaPHlyKEHLrl27Ov4uu+66a+l1ccTvMBj7MzRTU1OjnXfeuTR406xZs9qts3HAmiOPPFLrrbee7TwPPPBAbbbZZpozZ46vMlcaOHCgZs6cqWXLlmnUqFE68cQTPc/j7bffLo2Wfeihh2qjjTZy/M4mm2yibbfdVlOnTtWHH36oFStW2D4QSIMHHnig9Pqkk04y7XP2hBNO0Hnnnac1a9Zo0aJFev7551N3TmxqatIJJ5xQ6nt0gw020MiRI5MtFAAAKUPQEgCAKrHxxhvrwQcfNB3wxcnll1+uK664IvxCheC9994rvd5zzz1dZUztt99+Zd/P5/PtRug12n333YMVMgJey/Txxx/r4osv1v/+9z/Xow976RLAzjbbbOM4YJEx87eYKRcGN0FXp2VPnjy59Npt1tyee+4ZWtDyRz/6USm7c+jQoaXA5SGHHOIq+ChJEyZMKL2eN2+e6ybOy5cvlyTl83nNmzcv1UHL+fPn68UXXyy9r2waXrTuuuvq2GOP1UMPPSSpEOh0G7Q86KCDTEddD1M+n9dpp52mN954Q1Khu4eHH35Ym2yySaTLBQAgawhaAgCQEccee2zZKL1fffWVPvvss1Kz7kWLFumAAw7Qf/7zn1IfftVg8eLFpdebb765q+8MGjSo9LqpqUmrVq1Sr169LKffcMMNfZcvKl7K9Pzzz+uYY44pZaS6VRwVOig3gS5jULM4SnYSy25ubm73uXEfGzhwoKvlbrrppq6mc+PSSy/VuHHjNHHiROXzeT3xxBN64oknJElbb721DjjgAB166KE6+uijTUfvlgoBvaL3339f77//vudyLFu2zN8KxOSf//xnKSC/9dZb2waYTznllFLQ8umnn9ayZct8ZS5H4fzzz9cjjzwiqZAZ/sADD+iwww5LuFQAAKSPfUc3AAAgNS644ALddtttpX8PP/ywJk2apClTpmjnnXeWVAjQDR06VJ999lnCpQ1PcQAeqdDfoBuV0zkF57p16+a9YBFzW6bFixfrxBNPLAUsN998c1177bV67bXXNH/+fK1Zs0a5XE75fF75fL5swJlcLhdKWe2yWKMWxrKN+1j37t1dfcdv35NmevTooVdeeUU33HBDWcBdKgwMc9999+nkk09Wv3799Nvf/lZr165tN48VK1YELkeYweQoGJuG/+QnP7Gd9rDDDlO/fv0kFQaKMvaLm6QRI0bojjvuKL2//fbbNXTo0ARLBABAehG0BAAg43baaSe98MILpSzM+vp6nXXWWQmXKjzG4NDq1atdfadyOqvstGpwzz33lAJWO++8s95//31dcskl2m+//dS/f39169atLLAXVnZlNTHuY2vWrHH1Hbf7olvrrLOOLrroIs2cOVOTJ0/WrbfeqpNOOqksu3rNmjW64YYbdMghh7QLXBoD9b/85S9LQWov/w4++OBQ1ylMb7/9tj7++OPS+8svv1w1NTWW/zp16lTqx1QqD3gm5Y9//GPZIE/XXXedfv7znydYIgAA0o2gJQAAVWCjjTbSX//619L7cePG6dlnn02wROExNpN224egcaCXddZZp6qDlmPHji29vvTSS22bwUvS7Nmzoy5S5vTt27f0et68ea6+43Y6r4oDB/3iF7/Qww8/rHnz5undd9/VsGHDStO8+eab7Ua43njjjUuvjcG6ahE06Dhx4kRNnz49pNJ4d8stt+jSSy8tvb/00kv129/+NrHyAACQBfRpCQBAlTjuuOO033776fXXX5dUuClO24i5fhhHnZ40aZJaW1tVV1dn+53iABfF7yfRfDmuZRr7MnQalKa1tbW0f6DNLrvsUgr+vvnmm66+M2nSpCiLVGbXXXfVfffdp7q6Ot17772SCv00XnTRRaVpjP07vvHGG46DT7mVZNP/oqamJj388MOl99tss43jCO9Fn376qZYuXSqpEPj84x//GEURbd1999369a9/XXp/wQUX6A9/+EPs5QAAIGvItAQAoIoYRwCfPHmynn766eQKE5J9991XXbp0kVTov9EpgzSXy+n+++8vvf/Od74TafmsdO3atfTabPCXsNTWtlXnnJo2P/nkk1WZhReUsVn0s88+69g/5GuvvZZIxur3v//90utFixaVfbbffvuVAnnz5s3Tf//731CWGdd+bOfZZ5/VV199JUnq1KmTXn31VU2cONHVv//7v/8rzecf//hHaP24uvXPf/6zrAn4mWeeqT//+c+xlgEAgKwiaAkAQBUZPHiw9t1339L7q6++OsHShGO99dbTiSeeWHr/m9/8xrZfxttuu00ffPCBpEJA76c//WnkZTSzwQYblF5/8cUXkS1niy22KL22C1IvXry4LNsLbb773e9qk002kVToE9YY6KrU1NRUluEYVGNjY9lAQHbmzp1ber3RRhuVfdalSxf96le/Kr0/99xzPe13lUHQorj2YzvGpuGHHXZYu3W3M3To0FJgf+7cuXr55ZdDL5+Vxx9/XKeffrry+XypLHfffXcqslcBAMgCgpYAAFSZyy67rPT6rbfe0nPPPZdgacJx2WWXlQZLmT59uoYMGaKZM2eWTZPL5fSXv/xFw4cPL/3tvPPOazcac1x23HHH0usXXnghlNGdzRx99NGl19dee63++c9/tpvm3Xff1UEHHaS5c+e6HoG9I+nUqVNZlvIdd9yhiy++WE1NTWXTLV68WMcff7zefPPNUvZvUAsWLNDAgQN10UUX6e2337acbsyYMWUjv3/ve99rN82FF16oHXbYQVIhwLjHHnvo0UcftcwuXLJkie6++27ttttuuuGGG0ynMe7Hjz76qKt1GjlyZNmgOMY+Zr1asmSJRo8eXXp/8skne/r+JptsokMOOaT0Pq4BeZ577jkNHTpUra2tkqRjjjlGDz74YFlmNAAAsEeflgAAVJkhQ4Zor732KvXN94c//EHf/e53bb8zevRoLVmyxPUyunfvruuvvz5QOb3Ycsstde+99+rkk09Wa2urJkyYoG222UYHHHCAttxyS9XX12v8+PFlmWB77713rGWstOeee2rgwIGaO3euFixYoG233VaHH364+vbtW8q0+va3v12WRerHaaedpptuuknTp09XY2OjTjnlFF1zzTXaeeed1bVrV3344YelYNjOO++sIUOGJLpd0uqss87Ss88+q6eeekqSdP311+vvf/+7Dj74YPXp00fz5s3Tyy+/rIaGBm2xxRY65phjSs18gwaili9frptuukk33XST+vTpo1133VUDBgxQ165d9eWXX+r9998vC9J/85vf1AUXXNBuPuuuu66efvppDR48WJ9//rkWLlyoH/3oR+rbt6/23ntv9evXT/l8XkuXLtXHH3+sTz/9tBTQtOpG4fjjj9ddd90lqRDMfeedd7Tbbrupe/fupWnOOeccbbnlloG2gZWHHnqo1Cy9R48eOvbYYz3P4+STTy71Wfr444/rjjvuKBsx3ujTTz/V+eef72n+I0aMKBvlfcmSJfrBD35QCnrX1dVpww03LMuEtXPKKaeU9VEatrfffltnnXVWu78b+8e97LLLdMstt5R9vscee5T6VAUAIA4ELQEAqEKXXXZZaRCeN954Q2PHjtWhhx5qOf1bb72lt956y/X8e/fuHXvg68QTT1SPHj101llnadGiRWppadHLL79s2txz6NChuvfee8v644tbbW2t7rjjDh1//PFqamrSwoUL9eCDD5ZNc9pppwUOWnbp0kX//e9/9b3vfa8U2Jo6daqmTp1aNt1+++2nUaNG6Z577gm0vGpVU1OjUaNG6fTTT9cjjzwiSfrqq6/0n//8p2y67bbbTk888UTZb+k0Yrudzp07q0uXLmpsbJQkLV26tGxE+EoHH3ywHn74YcuM2S222EJvv/22fv7zn+uxxx5TPp/XkiVL9Mwzz1jOc7311rMcxOmwww7T0KFDSwPhvPnmm+0GKzrqqKMiC1oaMyOPPfZYX5nCxx9/vM4991w1NDRo9erVeuyxx3T66aebTjt//vx2I7M7Oeuss8qClvX19Vq7dm3pfWtrq6dg3x577BFp0LK+vl5TpkyxnWbu3Lll3RFIcj34EQAAYaF9AgAAVeiII47QHnvsUXp/1VVXJVia8Bx11FGaMWOG/vKXv+iwww7TJptsonXWWUe9e/fWdtttp3PPPVcTJ07UQw89VJYJlmR53377bf3sZz/TDjvsoJ49e0bSn903v/lNvffee7rmmmu0xx57qGfPnurSpYs233xzHXXUUXrooYf0yiuvlAVW0F6XLl308MMP6/nnn9cPf/hDbbrpplpnnXW08cYba7/99tNf//pXvfXWW9pmm21KI1JLwYI5AwYM0FdffaWnn35av/nNb/Sd73xHm222mbp166a6ujqtt9562nnnnXXWWWdpzJgxevnll9WvXz/befbp00f//ve/9f777+v//u//tO+++6p///5aZ5111LVrV/Xr10/777+/fvnLX+rpp5/WggULdNppp1nO71//+pf+9a9/6aijjtKmm24a28OADz/8UO+++27pvdem4UW9evUq60Zh5MiRQYsGAABiUJMv9gwNAAAAwJX99ttPb7zxhiRp4sSJkWbGAQAAdEQELQEAAAAPZs+erS233FKtra1aZ511tGLFikS7IgAAAKhGNA8HAAAAXMrn87rgggtKo0Ifd9xxBCwBAAAiQNASAAAAUGEAq7/85S9asmSJ6eezZs3ScccdVxphvK6uThdddFGcRQQAAOgwGD0cAAAAkDRnzhz94Q9/0EUXXaRvfetb2nbbbdW7d2/V19dr2rRpeu+990oZlpJ06aWXlg14BQAAgPAQtAQAAAAMWlpa9N577+m9994z/bxbt2666qqryLJE5EaPHq3Ro0cHmscGG2ygK6+8MqQSAQAQHwbiAQAAACQtX75cTz31lF566SV99NFHWrx4sZYsWaLW1lb16dNH22yzjQ499FCdeeaZ6t+/f9LFRQdwxRVXBA44br755po1a1Y4BQIAIEZkWrqUy+U0f/589ezZUzU1NUkXBwAAACGrra3Vcccdp+OOO85x2pUrV8ZQInR0jY2NgeeRz+fZXwEAqZHP57Vq1Sptsskmqq21H2qHTEuX5s2bp4EDByZdDAAAAAAAACDT5s6dq0033dR2GjItXerZs6ekwkbt1atXwqUJX3Nzs1544QUdfvjh6ty5c9LFATocjkEgeRyHQPI4DoFkcQwCyav243DlypUaOHBgKc5mh6ClS8Um4b169araoGX37t3Vq1evqjwogLTjGASSx3EIJI/jEEgWxyCQvI5yHLrpetG+8TgAAAAAAAAAxIygJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVOiVdgI4gn8+rublZuVwu6aJYam5uVqdOndTQ0KDW1taki1P16urq1Llz56SLAQAAAAAAkEoELSPU1NSkL7/8UmvWrEl9IDCfz6tfv36aO3euampqki5Oh9ClSxf17dtXvXr1SrooAAAAAAAAqULQMiJr1qzR3LlzVVdXp/XXX1/dunVTXV1dagOCuVxO9fX1WnfddVVbS68BUSpm3q5YsUJffPGFJBG4BAAAAAAAMCBoGZElS5aoc+fO2nzzzVVXV5d0cRzlcjk1NTWpa9euBC1j0K1bN/Xs2VPz5s3TkiVLCFoCAAAAAAAYEJ2KQEtLi1avXq0+ffpkImCJZNTU1Kh3795qbGxUc3Nz0sUBAAAAAABIDYKWEWhpaZFU6LMQsFMcjCftfZ4CAAAAAADEiaBlhNLafyXSg30EAAAAAACgPYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoiUYMGDVJNTY1GjhxZ+tvIkSNVU1NT9q+2tla9evXSrrvuqhEjRmjx4sWW86z8rtW/cePGRb+CAAAAAAAA8KxT0gUArPTo0UMnnHCCpMLo2rNnz9aECRM0efJk3X///Ro/fry23npry+8PGTJE/fr1s/zc7jMAAAAAAAAkh6AlUqtv375lGZiS9NFHH+mggw7SokWL9Ktf/UrPPvus5fcvueQSHXzwwdEWEgAAAAAAAKGjeTgyZYcddtDw4cMlSWPGjFFjY2PCJQIAAAAAAEDYCFoic3baaSdJUnNzs5YuXZpwaQAAAAAAABC2zAYtb7/9dg0aNEhdu3bVXnvtpUmTJtlOv3z5cp133nnq37+/unTpom9+85saPXp0TKVFmFauXClJqqurU9++fRMuDQAAAAAAAMKWyT4tR40apeHDh+vOO+/UXnvtpVtuuUVDhgzRJ598oo022qjd9E1NTTrssMO00UYb6bHHHtOAAQM0e/ZsrbfeevEXHoEV+7H87ne/q86dOydcGgAAAAAAAIQtk0HLm2++WWeffbaGDRsmSbrzzjv17LPP6r777tMll1zSbvr77rtPS5cu1RtvvFEKcg0aNCjOIre3xx7SwoXJlsGgRlKvfF41NTXOE/frJ739duRlMiqOHn733XfroYce0uabb65bb73V9juHHHKI5We9e/fW8uXLQy4lAAAAAAAAwpC5oGVTU5PeeecdjRgxovS32tpaDR48WBMmTDD9ztNPP6199tlH5513np566iltuOGG+vGPf6yLL75YdXV1pt9pbGwsG+Sl2CS5ublZzc3NtmVsbm5WPp9XLpdTLpcznaZm4ULVfPGF7XziVPP1PzfykvIW6+WXcVsV/589e7ZpEHXPPffUc889p969e1tuX0k6/PDD1a9fP9PPunfvbvvduORyOeXzeTU3N1vui+gYiucVp/MLgOhwHALJ4zgEksUxCCSv2o9DL+uVuaDlkiVL1Nraqo033rjs7xtvvLGmTZtm+p2ZM2fqpZde0sknn6zRo0drxowZOvfcc9Xc3KzLL7/c9DvXXnutrrzyynZ/f+GFF9S9e3fbMnbq1En9+vVTfX29mpqaTKdZd8MNVZvP284nrXIbbqj6r4O4gef1deCwoaGhFBhuaGiQJPXo0UPf//73JRWCyNOnT9eHH36oSZMm6cwzz9R9991nO+9f/OIX2n///S0/XxnSOgTR1NSktWvX6tVXX1VLS0vSxUEKjBkzJukiAB0exyGQPI5DIFkcg0DyqvU4XLNmjetpMxe09COXy2mjjTbS3Xffrbq6Ou2+++764osvdMMNN1gGLUeMGKHhw4eX3q9cuVIDBw7U4Ycfrl69etkur6GhQXPnztW6666rrl27mk/0zju+1ycK+Xxeq1atUs+ePR2biNdKst8C7tXWFsaC6tq1a2m7FrdZ37599c9//rNs+scff1xDhw7VE088oUMPPVTnnHOO5by7d+/u+FslraGhQd26ddOBBx5ova+gQ2hubtaYMWN02GGH0VcrkBCOQyB5HIdAsjgGgeRV+3HoJYEsc0HLvn37qq6uTosWLSr7+6JFiyybAvfv31+dO3cua3673XbbaeHChWpqatI666zT7jtdunRRly5d2v29c+fOjjtNa2urampqVFtbWwrKpV0x47FY7rgZt5Vx+ZVlOeGEEzRlyhRdffXVuvzyy/WTn/xEvXv3dpxnWtXW1qqmpsbVfoWOgX0BSB7HIZA8jkMgWRyDQPKq9Tj0sk7pjuiYWGeddbT77rtr7Nixpb/lcjmNHTtW++yzj+l39ttvP82YMaOsD8Pp06erf//+pgFLpNuIESPUv39/ffXVV7r55puTLg4AAAAAAABClrmgpSQNHz5c99xzjx544AFNnTpV55xzjlavXl0aTfzUU08tG6jnnHPO0dKlS3XBBRdo+vTpevbZZ3XNNdfovPPOS2oVEED37t31+9//XpJ0yy23aNmyZQmXCAAAAAAAAGHKXPNwSTrxxBO1ePFiXXbZZVq4cKF22WUXPffcc6XBeebMmVPWLHjgwIF6/vnn9etf/1o77bSTBgwYoAsuuEAXX3xxUquAgM466yzddNNN+uyzz3TjjTfqj3/8Y7tp/vSnP2nkyJGW8/jxj3+sww8/PMJSAgAAAAAAwI9MBi0l6fzzz9f5559v+tm4cePa/W2fffbRxIkTIy4V4tK5c2ddffXVGjp0qP76179q+PDh2mCDDcqmef75523nscsuuxC0BAAAAAAASKHMBi1RHWbNmtXub6effrpOP/10x++edNJJOumkk9r9PZ/Ph1AyAAAAAAAAJCWTfVoCAAAAAAAAqF4ELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLJGrQoEGqqanRyJEjS38bOXKkampqyv7V1taqV69e2nXXXTVixAgtXrzYcp6V37X6N27cOE9lLZbr9NNP97eyAAAAAAAAcKVT0gUArPTo0UMnnHCCJKm1tVWzZ8/WhAkTNHnyZN1///0aP368tt56a8vvDxkyRP369bP8vPKzmpoaSVI+nw+h9AAAAAAAAPCLoCVSq2/fvmUZmJL00Ucf6aCDDtKiRYv0q1/9Ss8++6zl9y+55BIdfPDB0RYSAAAAAAAAoaN5ODJlhx120PDhwyVJY8aMUWNjY8IlAgAAAAAAQNgIWiJzdtppJ0lSc3Ozli5dGnh+V1xxRalpuNS+T8xZs2a1+87q1as1YsQIbbXVVurSpYv69eun0047TV988UXg8gAAAAAAAHR0NA9H5qxcuVKSVFdXp759+wae3y677KLTTjtNDzzwgCTptNNOK/t83XXXLXu/YsUK7bvvvpozZ44OOOAA7bjjjpowYYIefPBBvfLKK5oyZYp69+4duFwAAAAAAAAdFUFLZE6xH8vvfve76ty5c+D5HXvssTr22GNLQcvKfjQrPfnkkxoyZIjGjx+vXr16SZKWLVum73znO5o8ebLuuOMOjRgxInC5AAAAAAAAOiqClgnZY489tHDhwqSLUSafz5c1k7bSr18/vf322zGUqE1x9PC7775bDz30kDbffHPdeuuttt855JBDLD/r3bu3li9f7qssPXr00P33318KWErS+uuvr0suuUQnnXSSXnzxRYKWAAAAAAAAARC0TMjChQvp/9DB7NmzTYOoe+65p1544QXHJthDhgxRv379TD/r3r2773Ltscce6t+/f7u/b7fddpLE7woAAAAAABAQQcuEWAXTkuQl0zIOPXr00AknnCBJamxs1NSpUzVlyhRNmjRJP/vZz/TII4/Yfv+SSy7RwQcfHHq5NttsM9O/FzMvGxoaQl8mAAAAAABAR0LQMiFxN692ksvltHLlSvXq1Uu1tekYVL5v377t+pd8/PHHdeKJJ2rUqFE68MADde6558ZerrRsHwAAAAAAgGpF9AWZ8oMf/ECXXHKJJOmyyy7TihUrEi4RAAAAAAAAwkbQEpkzYsQI9e/fX1999ZVuvvnm0OZbHIm8paUltHkCAAAAAADAO4KWyJzu3bvr97//vSTplltu0bJly0KZ76abbipJ+uijj0KZHwAAAAAAAPyhT0tk0llnnaWbbrpJn332mW688Ub98Y9/bDfNn/70p3Z9Yhr9+Mc/1uGHH156f/zxx+vGG2/U4MGD9Z3vfEc9e/aUJF133XXaYIMNQl8HAAAAAAAAmCNoiUzq3Lmzrr76ag0dOlR//etfNXz48HaBxeeff952HrvssktZ0PIPf/iDamtr9fjjj+vJJ59UU1OTJOnSSy8laAkAAAAAABAjgpZI1KxZs9r97fTTT9fpp5/u+N2TTjpJJ510Uru/5/N5X2Xp2rWrrrvuOl133XWmnzuVa9CgQb6XDQAAAAAAgDb0aQkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoGWE8vl80kVAyrGPAAAAAAAAtEfQMgK1tYXN2tramnBJkHbFfaS4zwAAAAAAAICgZSQ6d+6szp07q76+PumiIOXWrl2ruro6de7cOemiAAAAAAAApAZBywjU1NSoZ8+eWrFihdauXZt0cZBSra2tWrFihbp3766ampqkiwMAAAAAAJAanZIuQLXq27ev1q5dqzlz5qhXr17q2bOn6urqUhucyuVyampqUkNDA02VI5bP59XY2KilS5cql8tpo402SrpIAAAAAAAAqULQMiJ1dXUaOHCglixZolWrVmn58uVJF8lWPp/X2rVr1a1bt9QGVqtNjx491K9fP62zzjpJFwUAAAAAACBVCFpGqK6uThtvvLE22mgjNTc3K5fLJV0kS83NzXr11Vd14IEH0r9iDDp16qROnTj8AAAAAAAAzBA1iUFNTU3qs+nq6urU0tKirl27ErQEAAAAAABAoui8EAAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKmS6aDl7bffrkGDBqlr167aa6+9NGnSJMtpR44cqZqamrJ/Xbt2jbG0AAAAAAAAANzIbNBy1KhRGj58uC6//HK9++672nnnnTVkyBB9+eWXlt/p1auXFixYUPo3e/bsGEsMAAAAAAAAwI3MBi1vvvlmnX322Ro2bJi233573Xnnnerevbvuu+8+y+/U1NSoX79+pX8bb7xxjCUGAAAAAAAA4EanpAvgR1NTk9555x2NGDGi9Lfa2loNHjxYEyZMsPxefX29Nt98c+VyOe2222665pprtMMOO5hO29jYqMbGxtL7lStXSpKam5vV3Nwc0pqkR3GdqnHdgCzgGASSx3EIJI/jEEgWxyCQvGo/Dr2sV00+n89HWJZIzJ8/XwMGDNAbb7yhffbZp/T33/72t3rllVf05ptvtvvOhAkT9Omnn2qnnXbSihUrdOONN+rVV1/VRx99pE033bTd9FdccYWuvPLKdn9/6KGH1L1793BXCAAAAAAAAKhya9as0Y9//GOtWLFCvXr1sp02k5mWfuyzzz5lAc59991X2223ne666y794Q9/aDf9iBEjNHz48NL7lStXauDAgTr88MMdN2oWNTc3a8yYMTrssMPUuXPnpIsDdDgcg0DyOA6B5HEcAsniGASSV+3HYbElsxuZDFr27dtXdXV1WrRoUdnfFy1apH79+rmaR+fOnbXrrrtqxowZpp936dJFXbp0Mf1eNe40RdW+fkDacQwCyeM4BJLHcQgki2MQSF61Hode1imTA/Gss8462n333TV27NjS33K5nMaOHVuWTWmntbVVH3zwgfr37x9VMQEAAAAAAAD4kMlMS0kaPny4TjvtNO2xxx7ac889dcstt2j16tUaNmyYJOnUU0/VgAEDdO2110qSrrrqKu29997aaquttHz5ct1www2aPXu2zjrrrCRXAwAAAAAAAECFzAYtTzzxRC1evFiXXXaZFi5cqF122UXPPfecNt54Y0nSnDlzVFvblki6bNkynX322Vq4cKHWX3997b777nrjjTe0/fbbJ7UKAAAAAAAAAExkNmgpSeeff77OP/9808/GjRtX9v7Pf/6z/vznP8dQKgAAAAAAAABBZLJPSwAAAAAAAADVi6AlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCU6nlWrpIkTpXw+6ZIAAAAAAADARE0+T+TGjZUrV6p3795asWKFevXqlXRxQtfc3KzttttODQ0NSRcleosWSS0tUq9eUs+eSZcGKGloaFDXrl2TLgbQoXEcAsnjOASSxTEIJK+hoUGbb7653nnnnaSLEjov8bVOMZUJGbB8+XJ99dVXSRcjPitXFv4BAAAAAACkCA8PCFrCYL311qv+g6KlpZBpWTRgQHJlASrwVBtIHschkDyOQyBZHINA8hoaGrTxxhsnXYzEEbREyU033aQjjjhCnTt3Troo0fnkE2nbbdvez5uXXFkAg+bmZo0ePbr6j0EgxTgOgeRxHALJ4hgEkmc8Djs6BuIBAAAAAAAAkCoELQEAAAAAAACkCkFLdCz5fNIlAAAAAAAAgAOClgAAAAAAAABShaAlOhYyLQEAAAAAAFKPoCUAAAAAAIjf9OnSjTdK8+YlXRIAKdQp6QIAsSLTEgAAAADSYdddpTVrpAcekD74IOnSAEgZMi0BAAAAAED81qwp/P/hh8mWA0AqEbQEAAAAAAAAkCoELdGx0DwcAAAAAAAg9QhaomMhaAkAAAAAAJB6BC3RsRC0BAAAAAAASD2ClgAAAAAAAABSJdNBy9tvv12DBg1S165dtddee2nSpEmuvvfII4+opqZGxx57bLQFBAAAAAAAAOBZZoOWo0aN0vDhw3X55Zfr3Xff1c4776whQ4boyy+/tP3erFmzdNFFF+mAAw6IqaRIFZqHAwAAAAAApF5mg5Y333yzzj77bA0bNkzbb7+97rzzTnXv3l333Xef5XdaW1t18skn68orr9QWW2wRY2kBAAAAAAAAuNUp6QL40dTUpHfeeUcjRowo/a22tlaDBw/WhAkTLL931VVXaaONNtKZZ56p8ePH2y6jsbFRjY2NpfcrV66UJDU3N6u5uTngGqRPcZ2qcd3KNDWps+Ft1a8vMqPDHINAinEcAsnjOASSFesxmM9zbwaYqPZroZf1ymTQcsmSJWptbdXGG29c9veNN95Y06ZNM/3Oa6+9pr///e+aPHmyq2Vce+21uvLKK9v9/YUXXlD37t09lzkrxowZk3QRItVr5kwdYng/evToxMoCmKn2YxDIAo5DIHkch0CyYjkGW1t1jOEt92ZAuWq9Fq5Zs8b1tJkMWnq1atUqnXLKKbrnnnvUt29fV98ZMWKEhg8fXnq/cuVKDRw4UIcffrh69eoVVVET09zcrDFjxuiwww5T586dnb+QVe+9V/b2iCOOSKggQLkOcwwCKcZxCCSP4xBIVqzHYEtL2VvuzYCCar8WFlsyu5HJoGXfvn1VV1enRYsWlf190aJF6tevX7vpP/vsM82aNUtHH3106W+5XE6S1KlTJ33yySfacssty77TpUsXdenSpd28OnfuXJU7TVG1r586le/yVb2uyKSqPwaBDOA4BJLHcQgkK4ljkGMeKFet10Iv65TJgXjWWWcd7b777ho7dmzpb7lcTmPHjtU+++zTbvptt91WH3zwgSZPnlz69/3vf1+HHHKIJk+erIEDB8ZZfCTp62A1AAAAACBB3JsBcJDJTEtJGj58uE477TTtscce2nPPPXXLLbdo9erVGjZsmCTp1FNP1YABA3Tttdeqa9eu2nHHHcu+v95660lSu7+jyuXzSZcAAAAAAMC9GQAHmQ1annjiiVq8eLEuu+wyLVy4ULvssouee+650uA8c+bMUW1tJhNJESWe5gEAAABA8rg3A+Ags0FLSTr//PN1/vnnm342btw42++OHDky/AIh/XiaBwAAAADJ494MgANSEdGxcGEEAAAAgOSRaQnAAUFLdCxcGAEAAAAgeSSUAHBA0BIdCxdGAAAAAEgeCSUAHBC0RMfChREAAAAAkkdCCQAHBC3RsXBhBAAAAIDkkVACwAFBS3QsBC0BAAAAIHncmwFwQNASHQtP8wAAAAAgedybAXBA0BIdC0/zAAAAACB53JsBcEDQEh0LT/MAAAAAIHncmwFwQNASHQtP8wAAAAAgedybAXBA0BIdC0/z0uvLL6U1a5IuBQAABYsXc10CgChxb4ZK+bw0ezYBbZQQtETHwskvnV5/XRowQPrGN6T6+qRLAwDo6CZNKlyXNt9cWrEi6dIAQHXi3gyVzjxTGjRI+s1vki4JUoKgJToWLozpdOSRUktLIdvy1luTLg0AoKM77jipuVlaskS6/vqkSwMA1YlMS1S6//7C/zfdlGw5kBoELdGxcGFMJ2MWC5mWAICkLVrU9nrVquTKAQDVjIQSAA4IWqJj4cIIAAAAAMkjoQSAA4KW6Fi4MKZfTU3SJQAAAAAQNRJKADggaImOhQtj+vEbAQDShOsSAESDhBIADghaomPhxgMAADgh6x8Aose9GQAHBC3RsfA0DwAAAACSR9ASgAOCluhYuDCmH78RACBNuC4BQDRIKAHggKAlOhYujNZmzpT+8x+psTHpkiBLliyRHnlEWrEi6ZK0aWiQHntMmjUr6ZIAAABUj/HjpVdfDW9+PBQC4ICgJToWLozmGhulnXeWTjhBuuqqpEuDLPne96ShQ6WTT066JG1+/3vphz+UdtlFam5OujQAAADZN2GCdOCB0kEHSa+/Hs48SSiBEffqMEHQEh0LJ0Jz770n1dcXXl9zTbJlQba8/Xbh/2efTbYcRjfeWPh/xQrp00+TLQuA7GNQHgCQLryw7fXw4eHMk3szGLE/wARBS3QsPM0zV5uiUwEXK4SptTXpEgDIOq5LAFAurIc5lfdmnG87NurtMJGiSAUQAy6E5tIUtATCROUHgB9kVwJA9CrvzUgw6dj4/WGCSAU6Fk6E5ghaoloRtAQAAEgnMi1hxL06TBCpQMfChdAcQUtUKyo/AIKi7gAA0ag8v3K+7diot8MEkQp0LFwIzdXVJV0CIBpUfgD4QfNwAIgemZYwot4OEwQt0bFwIjRHpiWqFc3DAQAAgosioEimJYy4V4cJIhXoWLgQmiOjBNWKyg8AAEBwxvsoRg9HFKi3wwRBS3QsWT4RfvKJdMEF0uuvJ12SaPmtrCxdKl1yifTww+GWB9mW5WMeQDpwEw2E44EHpN/9TlqxIumSIC3ItIQR9XaY6JR0AYBYZflCuN9+0ldfSbfeGv56VMMF4he/kB56qPB6992lb34z2fIgHWgeDsAPWiAA4XrvPen00wuvlyyR7ror0eIgIDItEYVquCdF6Mi0RMeS5QvhV19FN+8sb5eiYsBSkiZMSK4cSBcqPwAAJO/FF9te3313cuVAupBpCSOSDWCCoCU6FgIY5tK0XcKorJAhE48sVCyp/AAIKgvnOgDIIjItYZSme1KkBkFLdCxcCM2xXeBHFvYbKj8A/ODhFxCuLNQZEL/K/YJ6W8fG7w8TBC3RsXAiNMd2gR9Z2G+yUEYAAICOiExLGFFvhwmCluhYuBCaq7btQoZMPLKw39A8HAAAILgo6n30aQkjgpYwQdASHQsnQnPVtl0IWsYjC/sNQUsAQXETDQTHcZR9xt+Q0cMRhSzcWyB2BC3RsXAhNMd2gR9Z2G8IWgLwg4dfAGAtrHMkmZYwImgJEwQt0bFUy4Uw7PWotgsEN5vxyMJ+Q9ASAIDkVUsdHOEi0xJGWbi3QOwIWqJjqZYTYdjrkabtQmUlO9K031ghaAlYmzFDOvhg6Ve/Srok6cZ1CQCiQaYljLJwb4HYEbREx1ItF8Kw16NatksRmZbxyMJ+09KSdAmA9PrBD6RXXpH+8hfp1VeTLk26cB0BgOgRtIQRyQYwQdASHUu1PL2heTjSIAv7DUFLwNoHH7S9/vTT5MoBAOiYaB4OoyzcWyB2BC3RsVTLhZBMS3tkyMQjC/sNT2wBAEheFuoMsBfFb0imJYwIWsIEQUt0LNVyIazmTMtq+Y06gjTtN1bItAQQFNclACg/F4aVIECmJYyycG+B2BG0RMdSLSfCqDMtq2U7IVpZqFgStATcIUO9HNsDAKLHPQiM+P1hgqAlOpYsBFnciDrTMutNarnZjEcWKhZZ35eBuFTL9REAED0yLRGFLNxbIHYELdGxVMuJMOpMy6xnpxG0jEcWKpZZ35cBJC8L5zoAyCL6tIRRtdyrI1QELdGxVMuFMOpMSwI9cCMLFQv2ZQB+8PALCFe11MERLjItYZSFewvEjqAlOpZquRAStEQaZKFiwb4MADDT0JB0CfxpaKie+mxHldV9LwpkWsIoC/cWiB1BS3Qs1XIiDHs9KisIWe8HkAyZeGShYpn1fRmIC+dNdCR/+IPUs6d0xRVJl8SbsWOlDTeUDjkkG9dgtHfPPVKvXtLPfpZ0SbyLYp8j0xJG1NthgqAlOpZquRBWc6ZlGOvGzXc8slDRJNMSQFBpPLchmMsuK1wfrrwy6ZJ4M3iwVF8vvfKK9NJLSZcGfvz0p1Jzs3T33UmXJJiw6tpkWsKoWhKMECqCluhYquVEyEA8SIMsVDTZlwH4wcMvpN3y5UmXwJs01hGSlrVtQqYlolYt9+oIFUFLdCzVciGMOtOS1Hy4kYWKJvsyAKAacXOfffyG2XgAjvhwTMAEQUt0LNVyIazmTEuah2dH5W+VxooGmZYAgqqWugOqSxqvufAmy+eWsOraWXgAjvhwXoMJgpboWKrlwljNfVqGgaBlPLJwPGV9XwaQDK4jSLs0XnPhDb9hNh6AIz78/jBB0BIdS7U0QYg605ImtXAjC8cT+zLgDkE6IFuydnOfxjpC0tgm2XgAjvhk7byGWBC0RMdSLRdGMi2RBpX7TRorGuzLgDtZvR4CHVUar7nwJmvn3SjKm4UH4IhPtdyrI1QELdGxVMuFkaClPTKG4pGFikXW92UAyUvjuQ1gv8w+fsNs1CURH/YHmPAVtFy5cqVWrlwZeOH19fV6+umn9fTTTweeF+AKQUt384uiSe2nn0qffx7+fKMyY4Y0c2bSpUi3LBxPNA9HlJYvl958M537PoLh4RfsrFyZ/LGftUxLzpPtZfk3DOscmYW6JOJTWW9nf4B8Bi3XW2899enTRx9//LHp5/Pnz9cZZ5yhM88803Y+s2fP1rHHHqsf/OAHfooBeFctT2+ylmk5ebL0zW9KW21VCF5GLej2ef99aeutC+WdPj2cMlUjmoejI2ttlXbbTdp7b+mWW5IuDYC45HLSt79dOPZvvDHZciDbsnofEqZquTdDONgfYMJ38/C8zQ60bNkyjRw5UiNHjgw8LyBU1fI0L+yKauV2CDvQc9ZZhf9zOemCC7yVxY+g26dY3nxe+uUvg5enWmXheCJoiai8/35b9vjw4cmWJQxkFlpL47kNyfn447YHmr/9bXLlyNp+mbXyxiHL24RMS0SBoCVM0KclOpZqORFmLdOyubntdUNDuPM2E3T7GMtoLDvKZeF4ImiJqNTVJV0CRIkgLqyk5bpCpmX2pbHeFLcs1CURH85rMEHQEh1LtTzNy1qflsab+zj6GAy6faLos6caVW7nNFY06NMSUencOekSAAiD1zpDWuqOabzmwpu07EtJqpZ7M4SDIDZMELREx1ItFbysZVoStKxOaa1YGPe3tGTEAADSyWvdMC3Xumqp03Zk/IYELVEurfcWSBRBS3Qs1XJhjDrTMsmgZRjrFub2IWhpLa3HU63h0kbQElFh3+o40nJuQzQIWsYjLdstTbK2TaIoL0EqGLE/wARBS3QsaQ2yeBV1pmXY2ZCdOkU3bzNZq8hnVVpHDzcGLWkejqjQ321144FVx0HQEklJy77kR1QD8bBfd2wELWGCoCU6lmo5EWa5eXgc2UlhNg+HtbQeTzQPRxzYt4Dq4PXhVlqCKmkpB/xLS73JLTItETX2B5ggaImOhUxLd/OLMmjpVMlOQ/Nw+rR0J63HE0FLxIF9q+NIy7kN4Qia2ZWW/SEt5YB//IbprUsiGZUPkdgfoIBByxpu5pE1UT+9yeelRx6R/vnPaE+yWWse7tRcN+xzCX1axoPm4e61tEj33y898UTSJUFYKoOWTuedL76QbrxR+uST6MqE8HDur15Bg5Zpua6k5ZoL/7IckAnrHElmHYw4r8FEJ+dJrO24446WnxUDmnXGjBcgaVE/zXv9dWno0MLr/v2lQw8NZ75RlztNA/GEUQkKesGjwuROWp+OG/ehtGTDPfywdMYZhdevviodcECy5UFwlX1aNjRI3bpZT3/kkdKUKdJVV0krV0ZbNgDWgj5wS8t1JWs392mpI6RJ1n7DKKS1LolkEMSGiUCZlvl8PvA/IFZRXxinT297/emn4c036k6qo+7T0jgQT9b6tCTbxlpaKxbGcqTl5vJ3v2t7fcstiRUDIarct9assZ9+ypTC/6tWRVMeAO4EbV2SlkG40nLNhX/8humtSyIZ7A8w4SvT8sADD6RpOLIpjubhRWE2H4o70zLspk9eMi3p0zI70jriYxqDlj17tr0my646mAUtN9ggmbKEgXOdNW6aqku1ZFqmpZk6/MvauSWK8pJpCSOCljDhK2g5bty4kIsBxCTO4F+YAZyoT+Bxjh5u1adlcZ3SELQ04kbeWlorFlE9PAiiV6+21wQtq4PXTEsA6RD0gVtagpZpKQf8S0u9yQ/6tEQU2B9ggtHD0bHEmWkZZtCyI/VpGca6pSXjr9ql9em48fdPy02dMWhJ8+DqQNCy4+DhVXWplkzLtJTDrbTUEdIka9uETEtEjaAlTBC0RMcS9YXReKLNUvPwOPu0zFrzcFhL6+jhNA9HHCr7tSNoWb24JlSXoH1apuW6kpaWBPAvLfWmJBGkghHHBEwkHrRcs2aNbrrppqSLgY4iq83D4w5axt2npTGLJYztRp+W8UhrRTONzcONQUsyLasDmZbVjXN/9QraPDwtA/GkJXgK/9JSb/IjrHMkmZYwSuu9BRKVWNBy1apV+uMf/6hBgwbpt7/9bVLFQEcT9dObrPZpGXXz8FrDqcYsiGRcftoyLblxtZbWimYaMy3p07L6eAlapmU/BEDzcKRHWupNSUprqx0ko/I+kWME8jkQTxBLly7Vn//8Z91+++1asWKF8vk8I5EjPnFmWtI8vE2W+7Tk/GQtrRXNNPZpacy0RHWo3LfWrrWetqEh2rIAcI/m4ckg+NAe2yS9D8CRDDItYSJQpuXs2bP1y1/+Uttvv7169uypPn36aLfddtO1116rFStWlE1bX1+vyy+/XIMGDdI111yj5cuXK5/Pq2/fvrr66qsDrQQyZsYM6aSTpHvuiX/ZcY7CnaXm4ZXzi7t5uF1Z/KBPy3iEsV/+7W/S0KHS55+HU6bKcqTlpq5T7M8IETUvfVo2Npa/T+occ9990oknStOnu5t++vTC9PfdF2250o5rQnXpCJmWq1ZJP/2pdPHF6XmgGMSiRdKpp0p/+lPSJQlX1s4tUZSXIBWM2B9gwvdd1JgxY3T88cdr9erVkqT81zvUlClTNGXKFD344IN6+eWX1a9fP73++us6+eSTNXfu3NJ0AwYM0EUXXaSf/vSn6tatWwirgsw48sjCjdCoUYXXm2wS37KzmmkZZ7BVinYgHrN5p61PS7gT9Mbv88+lc88tvJ46VZo8OZRipbJ5OPtk9fHSPNwsaBl3FveqVdI550hNTYXM33vvdf7OEUdIn30m/fvf0lFHSRttFH0504Is++rVEfq0vPTStuSAb31L+slP4imTnSDXwbPPlv7738LrAw6Q9tsvnDIljboBmZYoR9ASJnxlWi5evFhDhw5VfX298vm88vm8evTood69e5feT58+Xeedd55effVVDR48uBSw/MY3vqG77rpLM2fO1AUXXEDAsiMyZnjMnRvvshmIx938s948nD4t4xF0vzSeC6ZMCV4es3KkJWhZDZkuKOclaFnZPDyJ/WHlykLAUpKWLHH3nc8+a3sd9/UaiEq1ZFra1af+8Y+212PGRF+WqBUDlpL09tvJlSNsWa4bhFU/JkgFoywfE4iMr6DlPffco6VLl6qmpkYnnHCCZsyYoVWrVmnZsmWaP3++zj//fEnSU089pZ/85CdqbGzUuuuuq7/+9a/65JNPdPbZZ6tz586hrggyyhjMikOcA9pEGbQM+4Se9OjhRmkIWhoRtLQW9HiKqmKaxubhUR/DiF/QTMu4Gfc5P8tPy7GUBG6iq0u19GlpV45qfvham9g4suHL2rklivKSaQkjgtgw4at5+AsvvCBJ2nvvvfXvf/+77LN+/frp1ltv1apVq/TAAw9o3rx5Wm+99TR+/HjtsMMOwUuM6hJ3P29ZbR5eTZmWZsGasJuHB50HF0h3ggbiogrcpXEgnsptVV9fPqI4sidI0DKJoLXxmuTnHJeWYykuxusS14TqUi2ZllkLWoZ1HBG0rC4EqWDE/gATvs7606ZNU01Njc4t9kVm4pe//KUkqaamRr/85S8JWMJctWVaRjUQT9b7tDT+zk5lT0OmZRor+2kUdL+MI3CTlpvLym1TMVgdMsjLQDyVzcPTmGnpVKa0HEtJ4KapugR94JaWY8Hu4Xg112OyHLSspqzCsParatomCI6gJUz4OusvW7ZMkrTVVltZTrP11luXXh9wwAF+FoOOIO6gJX1amoszaOmEoGV2pLF5eOU8W1vTUeGpLMPKlcmUA+GptubhBC2tpeEcgvAEbR6ehYF4jKqtHpPloCUBmfbYJjBif4AJX2f95q8v1j179rScZt111y297tevn5/FOLr99ts1aNAgde3aVXvttZcmTZpkOe3jjz+uPfbYQ+utt5569OihXXbZRf8wdlKNZMRd8aB5uLv5h913mZffOQ1BS6Nqq+yHKWi2ShxBSykd/UeSaVl9KgMGa9daT5uF5uFOxyN9WqJadLTm4dWmmoKWaaifJI1MSxhV1jXYHyCfQUuvaiK46R81apSGDx+uyy+/XO+++6523nlnDRkyRF9++aXp9H369NHvfvc7TZgwQe+//76GDRumYcOG6fnnnw+9bPAg7hNRVgfiyXrzcC/lTUOflnAnjc3DzeaZhhvMynIRtMy+IKOHk2mZfmH3tYz06GhBy7Q8fKVPy+xnkcXxsJnzbceW9WMEkcjsWf/mm2/W2WefrWHDhmn77bfXnXfeqe7du+u+++4znf7ggw/Wcccdp+22205bbrmlLrjgAu2000567bXXYi45ysR9IoqzmXWWmodHPRCPl/KmIdOSC6Q7QffLuDIt03CDSaZl9fHSp2UaMi0JWvrHNaG6hN2nZZzHszFgR5+W2VNNWYVh7VcEqWBE0BomAg3dPGzYMPXo0SPwdDU1NRo7dqzr5TY1Nemdd97RiBEjSn+rra3V4MGDNWHCBMfv5/N5vfTSS/rkk0903XXXmU7T2NioRsNNxsqv+x9rbm4uNY+vJsV1imPdOhuX29gYa99Ada2tZZH65qamUJdf29KiYu+Nrc3NyoU176amsu3W0tysfJjlbm6WsdfJXHOzWsOcf2tr2fwr97NOkopVn1xrq69lG7dPa0tLoG3fKZ9vK08+b16eFStU973vqaa1VS3/+5/Up4/v5UnxHoNhqWlqKruItDQ1edovK78fyrpXHCuS1NzQIK2zTvB5B1B5DLQsWxbqMYxweDkOa5uays+bq1dbnrtq6uvL9/WQrz2uNDSUjo1cLqfW5uby86bJNavsutPQ0KH22TCuS/An8uthY2P5vt3Y6Gnfrjz2mxsapM6VV55odKqpadsvbepqruoxMXOqC9op+71yOfvfq6VFdUcfrZp589Ty1FPSFlt4LmtgH3+sTiecoPw3v6nWxx9vC7RW7Ht214KaSZNU95OfKL/vvmodOTLyIhtZHYOdcrnQ96t29aOQ73HU2qq6Y49VzcyZann8cWmbbcKbdwdTe889qr36auUuvlg5mwGZy6xZU7hfqq9Xy7PPSmbdBjY2qu6II1Tz1VfKf/Obkd6rR6nmtddUd/rpyg8erNY77ww8vyzeG3rhZb0CBS3ffvtt28+LzcLtpsvn856bjy9ZskStra3aeOONy/6+8cYba9q0aZbfW7FihQYMGKDGxkbV1dXpjjvu0GGHHWY67bXXXqsrr7yy3d9feOEFde/e3VN5s2TMmDGRL+MYw+vXXn1VK+fMiXyZRXt/+aWMe824ceO0ZurU0Oa/9bRp2v7r13M+/1zvjx4dyny7Ll2qIYb3b7z+upZ99VUo85ak7T77TN80vJ8/d67eCanskrTDZ5/JOGzX6Ip5H622m8P5X3zha9nG/eqTadP0aYDyH752rbp9/XrBokV622ReO911l77x9blt/k9+osnnn+97eUZxHINhGfDee9rD8P71117T8kWLXH9/k3fe0bcN7yv3Cz9qm5t1dMXfxvzvf2q26YM5DpXHwLS33tJnm2ySWHlgz81xuNPMmfqG4f3KRYv0isU+vNk772hXw/sXnn9eLYa+v+PQa+ZMHfL16yVffqkJo0eXnTc//OADzaoov/Hz9956S/MTDv7HaUhTk7p+/XrhggV6K8RrItyJ6nq47hdf6FDD+4lvvKGvPGS/f+vTT2UMgz337LPKxXRsHG0IWi5ZsEATLPbLI1taSjd5c+bO1ZQU7L+VdU0v13zjuWjKBx9ons13Bz33nHb+Ohlm1fe/r/HXX++xpMEdeu656jx/vmpmzNA7l16q+fvvL0mqW7tWRxmme238eK2cO9d0Hkf98IeqaW5WzaxZem3nnbUsgWBb5TH4ndWrVaxNLV68WBND2K++NXNm2fH09ltvaVGI2ZYDx47Vbl93B7fm6KM17pZbQpt3R3PMeedJkup+9Ss9M2iQq+9s+9BD2ubrpLLFP/qR3rrkknbTbP2f/2j78eMlSTUff1z22Utjx6phww0DlDo+xxx7rCSp5r779PKuu6p+4MBQ5pule0Mv1ti1UKrgO2iZz2Dqds+ePTV58mTV19dr7NixGj58uLbYYgsdfPDB7aYdMWKEhg8fXnq/cuVKDRw4UIcffrh69eoVY6nj0dzcrDFjxuiwww5T55ieFkvS/vvuK+2yS2zLq7vttrL3Bx90UKhPYGvff7/0erNNN9WmRxwRzoznzSt7u+8++yi/zz7hzFtS7dcXiqJNNtxQG4dVdkm1L79c9v6IinkbH1xs0q9f4GVvs/XW2jrAPDp17Vp63b9//3bllaS6G24ovR64bJk2CVjmpI7BIGqWLy97v9+++yr/7W+bT2z2/dWry96bbWfPTAZDOeyQQ6SNNgo+7wAqj4HtttlG24R4jCEcXo7DuqefLnvfe911Lffh2tmzy94fPnhw4Oxsz957r/Syb9++7cq64w47aHubfXLXb31Lu3SgfbZTly6l1/022iic8xNcifx6WPGweu8991T+oINcf722IlDz3cMOk1y0PAtDTV1dqXl63z59LPfLurq23LWBm2+uASnYf2srWsP5PaZ23nVX7WTz3dpXXy297jN9eiLHbuf580uvd+vTp+3c+XXLvaL999tP2nln03nUGbKQ9t1yS+VjXA+rY7CTYT/fcMMNQ9m2tS+8UPZ+j913D3Vda996q/S696xZnMtD4nY71j34YOl1/3nzzO+pHnvM8vvfOeQQabPNvBcwYQftsovye+0VaB5ZvDf0YmXF+dCOr6BlLuG+Bvr27au6ujotqsjoWbRoke1I5bW1tdpqq0Kuyy677KKpU6fq2muvNQ1adunSRV0MFdaizp07V+VOUxT3+nXu1Cm2JjWxLN8QfKuTVBfWvDuVH6qd6urCLXdF/0C1+bxqI9oukmz3sdqaGu/LrniIUldbG2zbG+ZXW1trXh7DOvkqs4VMnWPq6sredqqt9bZfVux3oay3SVODzl7LFYO6mprwzg8InavjsKIuVJPPW3+nstl1Etc+4zlLanfOcjpvdpJSdxzFJcxzPNyL7HpYWafyeo2oOPZjvcYYrpu1ra2u9svAdaKwhHTN77TOOvbbu6JuknSdqq6urm37V+x7nV3W5zt17pzI+bfdMWi8jljVjwMK/R4nZftDtXC9HQ37fE0uZ/49m35qk44V+NWpW7fQyp2pe0MPvKxTJnsyXmeddbT77ruX9YOZy+U0duxY7eMh+yyXy5X1W4kExB0Aj3NAmygH4gl7u6Vp9HA/vwmdeCcj6HbvyAPxsI9mX2WA3O68XA0D8dgN+lHtOF6rS+Xx53XfrrymxHlsGB8Cux09PC0YPdx/vanaBlMyon5U3Yz7rlXdx+43z+r+UIVBxiQF6tMyScOHD9dpp52mPfbYQ3vuuaduueUWrV69WsOGDZMknXrqqRowYICuvfZaSYU+KvfYYw9tueWWamxs1OjRo/WPf/xDf/vb35JcDcR94xZ1cMs4vzArsVGXO+mgpZsLmpf5hzl6eDVXFIMKul9GcfwTtERcvIwgXBm0TOL3N16TGD3cWdDrEtKr8vcMOnp4UgH9rI0e3lGDlnYJDVmrC0RR3qxvE9gzHq9Wv201/uYELUOV2aDliSeeqMWLF+uyyy7TwoULtcsuu+i5554rDc4zZ84c1RoOktWrV+vcc8/VvHnz1K1bN2277bb65z//qRNPPDGpVYBEpqWf+Zq9D3v+YVfAs5xpmZbKfhoFzQCOK9MyDRliBC2rj5egZUOD+2mjQqalfxyv1SVo0LIyyzrOY8O4L7rNtExLPYagZXVlWoZVprjvcRAv4/HakTItO2U2zJZKvrbmVVddFXY5dNlll3n+zvnnn6/zLUbsHTduXNn7q6++WldffbWfoiFKcZ+I4sxYzFLQMulMS7/TFgW9AfFThqxeRMOUxkxLs3mmIUMs6i4eEL+sZVoGDVqm4ThKCuf76hL0QW2SmZbG47ijBi2zzG99Pi2/YRTItKxuboKWdtgfIJ9ByyuuuKJstN8w+AlaogpUc6ZlmJXYuJ9CZq15eNgVnjRW9tMo6H5J83BkmZdsqzQELWke7g3Nw6tXlpuHG8uatebhYR1HWbt+2mVaut0mafkN42ghk7XfF/Y6aqZlVsudUr7z6/P5fGj/0IFUVrCqOWgZ5rplvU9Lp21hXB8/61YtfVq2tkpz58a3vKCC3viZ/U5z5gQ7dpIIWs6fLzU12U9DJkH1cZtp2dIizZjhbtookWnpX9TH66JF7bsQQHSqJWjp9pistoCX0+/lZn1XrJCWLQunPF5UU/PwsITdWipOs2cnX5/L5wvlSKuOmmmZ1XKnlK9My5dffjnscqCjqMxMqbbm4fRp6W7++bx1BSwrfVpGUIHc/9JL1XnqVOlvf5N+/vPQ5x+6sDMtb75ZuvBC6fDDpeefD6dMUrQ3lE88IR1/vLT11tLHH0t1de7KlaVKOcy5CVrm89KBB0oTJrT/e9wIWvoX5e/18svSYYdJG28sffqp1L17dMtCQdDzcRaClmm8YU5L0HLuXGm77Qrzef99aautwimXG9XUPDwrfVpG5fLLpauukn74Q+nf/06uHD/+sfTII9Kll0p/+ENy5bBCpiVC4CtoedBBB4VdDnQUlUHLas60zFLz8Lj7tMzl3Ad33EjiKW3Yv8Hcudpg6tTC63POyUbQMmiwuHL6Cy8s/P/CC1J9vbTuusHLJEUbbPnBDwr/T58u/e9/0lFHmU+X1Uo5rLkJWi5a1D5gaTVt1JyahzuViYF4ojFkSGHbzp8v3Xuv9MtfRrcsFFTu61737aQG4snnGYgnjPm89JK0enXh9YsvRh+0tEtooC6Q3W1SHOPj0UeTLccjjxT+v/rqdAYtg3a1kpX9oVJWy51SGRt+DZmXdNAyqwPxxJkhara8sOdfWdFOc5+WboRxQ5DFgEDQ/SaOvpGk+M4zds07CVpWHzdBS6tRbrOYaVl5/a52cfVpadyu9fXRLQdtsto83EurmDQGLcM6joLOx7jd4sggDyNomZbfkD4t4ZWxHmT121bjb16N65QggpaIV9JBSzItzUWdqVhZXrub347ap6VVcCPN0jh6eNzNw52WbfUZlZnsc3M989MUKioELf3jeK0u1RK07KiZlkHrDlHV1d3IetDSKKwyxZ2YgXjRPBwhyOBdMjIt6T4to15eXH1ahh3siTtoGXY/TEmPHh7GfmXVXD7Nogxa+r2RSDLT0m79s9zRPMy5ybS0+p3T2DycoKU1bj6qS9h9WsZ1PPvtyictAa+0NA+Pqq7uddlelp+W3zAKPNT1L8lt5XbZBC0RAoKWiFfSmZYMxONu/lEPxBN18/Awt31cFcUsBi2jbB7u9zf0EjiKE5Xy6hMkaEmmZfrF1Twc8Qvap2VSmZZ+y52WgFdaMi2N34/jt6umPi2jKG/Wt0mSkuxaiqClvayWO6UIWiJeSQct42xmHeaFJM6+OM3eB5XlTEtYizLT0u8+SPNwxMXt6OFmyLTMFo7X6hK0zpPUQDxkWhZ0xObh1Szq+lEc+39Sv2OSQUu3x6GboKWdrBwjlb9FVsqdEQQtEa+kg5ZkWrqbf9TNz9Pep6VXYVSIsnhxC7rd4wpapqF5eNTHGOLnJnCR9UxL47mNoCWqRVb7tPQbtEyLsK57TsejU50si5mWaQk8R6Ea+rRMqk4X5znAbz22o2RaJt0FXpUjaIl4JX1Axxn8y1LQkkxL6+/HVVHM4sUt6H4TRfPwJDMt7SQdWEf4OkLz8E6d2l4TtKye5XR0QbvESUvQkubhwcsRd/3Ab10gjeeGsParaqgfJRW0jHP/jbI/1iz+5pWamsrfV8M6pQhBS0iSah59VFs++aRqb7452hOgm5u81aulUaOk+fPDX36cQUu77ThhgvTSS+6XX7mdnnlG+uAD7+WzknSflkbGdV22THrkEemrr+znH+VT2rgutlm8uAU9nuIKWqYx0zKLv7edTz6RnnyyYwW2OsJAPMagZdayuoLy26fll18WrlsrV4ZfJoQj7EzL1aulRx+VZs0KVKwy48dLr75a/rewm4fn84W66IQJ5X+vry/UwxcudJ53Lif973/Se+85TxvWdS/MTMsgdY0XX5TefNPdtFbLc7v8tLTOiKNPy7SsqxfVErQsHvtm9+B+f6eg91FZqS8TtIwUQUtIkmrvuks7jhypuksuifbGxE3z8N/8RjrpJOnww6PPKIxy/lYn8/fek/bdVzr0UGncOHfzrSznXXdJO+0kLVrkq5jtpDXT8kc/koYOlY45xtv8w3wKH5dqqKSloXm42ffS0KdlNfdjtWqVtP320nHHSbfcknRp4kOmZcfh5fc6/PDCdev00yMrDgIKu0/LESMK9ZXddw/nOHnjDenAA6WDDiq8tipna6u7fdMqaDBmTKEuuu++0vvvt/39ggsK9fAjjnCe9yOPFKbbbTdpzhz7aasp0/K556TDDpP23lv66CP33/NbF8hiHdGtanioWy3Nw887r3Ds77+/872Vn+bhfmRlfyBoGSmCliiIa5RMN0HLyZML/3/0UfQZf0lkWo4Y0fb63HO9z9fon/90932v809L0PLFFwv/v/66/fyTbh5On5YFXvcb+rSsDs8917Y+v/1tsmWJU9YyLQla+ufl/DxlSuH/J56IpiwILuxMy3feKfy/dKk0c6b/chVdeKH567Afyv3sZ22vL7+87XWxHl7cl+2cfHLb69tvt582rPNeGoKWZ53V9vqqq9x/j6BlewQt/Qv7PvnBBwv/f/55vEFLMi3hgKAlCoxBlygPMjd9WkbZ10waBuJpaGh73bWr9/lGIe5My8r9IGjQPOmgZRiyeHFLY6YlfVrGLy39pcXNzUO4NGVaOjUPNytrRw5aRtVHtdtlIjph92lpN++gnPZDN2X3eo4uzjPKdfEi7DpekgPxVFOfllFlzqZxXZ1US9DSiKClNwQtI0XQEgXGE0qcQUuzE16UQcs4My3DDFpazSusYIHfzt3d8ptp6VY1VHiyWOag291uP/O7D2Yl0zKLvzfKucm0tPqdaR6efnaBBmRb2JmWYbNKJDArZxRlKS4nzH6q/cyvqLI+4PR7OdWNw77P8LLeWc+0jOK8WA31o6TKTNAyPZIebLjKEbREQZqah0eZ3ZCG5uFpzLSMuumql87j/axrlOWPK+iQxYtbGpuHp7VPy2puHt5RZbl5uNsAK0HL9q+RfWkPWlrxG7S0G4jHjFNWtl9xBS2dhDEQTxjLlrIXtDQi07JNtfRpaeR0nqRPy3JkWkaKoCUK0pRpGWWzjTQMxLN2bdvrtAQt0zoQj1tRNg9PQ5ZeWkWZaZnFPi3tVEOl3EpHbR5eeR7L590Hp9PYPNzsb3V1ba8JWqJahD0QT1zibh5utUy//B5HZufasMoRd/cxfve9NNRjohJnQklUaB5uLWimZVYQtIwUQUsUJJVpGXeflmlrHt6tm7v5Rn0xDNq/k9f521X409anpdW8wg7UZPHiFjR7MK6gZRozLbP4e1vpiEHLfN58v3J7TCSdaUnzcGc8vKpeUfZpGQarc2rYmZZWnM4Vfvk9jtxktXsRxn2Gl7EA6NPSXjU81K3GoGVYmZZuzj/V0DycoGWkCFqiIKmBeOJuHh5n8C+O5uFR9WkZd6Zl0IyWJIKWYcviU/SsDMSThoBDNQctOyKrQIHbZoxZybQ0Zkh05KAlx2t1CVLnsXpgEYe4gpZpy7SMsnl40pmWWWseTp+W5qqxeXhaMi2zsj8QtIwUQUsUdJTm4WnLtOzSxft8oxB1f3tRBy3p0zIZQY+nKDItvfQrGLaO2qdlR8y0tLpRcFupT+J495NpafwbQcvodcRjKQlBgpZxB7mc6pVRNA+PKtOyozYPt/sNsxa0NCLTsk01ZloStPSGoGWkCFqiIK0D8VRjn5ZxZVq2tkrXXSddf73zdqwsa329NHy49MIL7srnxEvQMm3Nw9MQ8HLS2ir96U+F39ptecePl371K2n6dP/LDZqhW23Nw+2kIZNg1izp17+WXnwx/mVXG7dBS6vfOSvNw6MKWt53n3TppdKqVeHNM2x+rgNhXnvSYsyYwnlj9uykS9LeihXS734nPfCAt+9V/p5erhFOmU1h/IZJNA83TpOWTMs335QuuECaMqX8705lclpfPwPxTJhQKMvUqe6W4WbZUnRBy4kTy8sbhagzLfN56fbbpSuvLB8PII2SOndnoXk4A/EgBJ2cJ0GHkFTzcKebpCxnWlqV3XhSi7JPy7//XbrkksLrDTeUhg2zntZsO/z5z4V/a9a4L6fb+ae9eXhU84pqOffeK40YUXi90UbS6ac7f+fAAwv/jxolLVjgb7lBjyeah8fryCOljz+Wbrml8PDEbaa3k46YHZbFTEs/zcOjCFq+/bZ05pmF1ytWSH/9azjzDZuf61Ias6GCaGiQDj+88HrsWOn995MtT6VLLpHuvLPweuedpV12cfe9IJnvTsdBlC1V/AYtvfIT1PM6Xzf23rvw/623epuP0zXJz33GvvsW/v/HP6SlS63n58Tvvuf1mrHPPoX/R44snGfDEkUGutV187nnpPPPb1vWFVeEs7wokGlpjT4tEQIyLVGQ1kzLqJspJ9E83CjK0cPvvrvt9X332U9rV9bKypkflfO32w/SELR0UymLeiAeL/u+8be+/35vy1240Nv0RkG3e7VlWtqtf9T9xrrx8cdtr1eujH/51cQqcOH2d+7ImZbPP9/2+rbbwplnFPzcnFfbTYrx+v/BB8mVw0oxYCl5yyAPcj52ChKGcb3xkmkZ9ejhaXwInGTz8GXLgi0v7ubhUV7ro860fOyxtr/ddFM4y4pKNfZpGVampRvVcO0kaBkpgpYoiCvT0s0IgFH2aRl183CvFaFOLpOdgwbOvDSV8bsMO1FnWkYZjE4q09LLvm/8bpxZb1lpHp6G7Kc0ZFpGhUzLNmnOtHQKWjo9RAzr5qiuLpz5RI1My2zxckxFGbSMch/oqAPxVGIgnuoS571ZVMi0dD8fr9Nkpb5M0DJSBC1RkNRAPNXWPNxrk5q0VFaiPrF6CVqG0adl0O3lpjxRV6qiDFpG/XTcLbvfye+x7zcTJQxpbx5uFGagkaBlmzRnWvppHm4sZ1iZlkH7t4qLn+tSmBlgaZC28tgJ0kQ3zD4to6y3xhW0TNtAPGHPJ4z7DC/b1O4BSJazuKOuS6Zxna0QtHQ/n6DlSCuClpHKSM0RkesozcPjfJrnpuxRnvCDZB2ELepMyySahxvFkY0apqiyHdLaPDwNGQrVHLTsiKox0zKu5uFkWmZH0ucpL6op0zKJgXiM/GZaOv0GYR0fTvPxUg5GD/cmaH3dTNT3ZnGgebi1jpJp6SYxC74RtERBUpmWcTcPjzpw4PXpbVxPqbx0Su71u25Uzt/u5jcNzcOjqJQ5qdwXvFREvJYxqqfjaW0ensZMy7TcgMCfoH1aErRMPz/XgWq7Sam29SkKErR0Og7iHM03quWlIdPSbtqgQcsokyOcZD1oaZSWVjtO4nhIS6altaAtD7NyHSLTMlIELVGQ1kzLLAct48i0tLsQh5VpGcb+YJdFaHVRDFL+uCvZYSwvyebhfoMRZFq6Vw2ZBFY6Ytam20xLq985K83DO3LQ0mt3L16my4osnaeqKdPSKIzm4UGuzUn1aWm3XC9BSafP3dS1gi7PKMrAT9zizLQMUs+I4jyWltYzcT4kIdPSHkHLSBG0REFcA/F47dOy2pqH+73IBd0OQTIt4w5aFt97+a3C7tPS7XLDFKR5uNegZeX2WbvW/bKslmv23ms53H7mdZ5pzLSspsoMQcs2lfsamZbtZSVomUSmZdrOC3EPUhKXIA8J4x49PImgZRoyLYM81PTyeRhBSy/f91sXCCtLNUxZybSMQpT3HV5kIdMyC79nGAhaRoqgJQrS1Dw8y5mWThWhyhNaWk74acq0DCNoGWYF0836p6lPSz+ZlmvW+FtW0EpbtWVaZql5OJWpYDrKQDyVQcsw9pssDsTj9wGj1985bcdlloKW1Zpp6TTvIEE3q7+nIdMyyqBl2JmWXsTRPDzK84if86KTOBNKwpKWoCV9WqYHQctIZaTmiMilqXl4WH1aTpwo7bOPdP311suLO9OyMjgUZdAyrKeyYdy02PXXGEbQMuxgdBiVsi+/lIYMkU45xd829Ns83M/0foOWQbd70KBlU5P0ox9JRxwhLVtmXYY03HinLZMg6eVnXUcciEcK51jqSJmWXrdXGs5VRgmVp2bSJB1w8cWqvfHGaBZQTUFLN0GLIA8U/azPHXdIe+4pjR3rvxx2+57T8Rh2pqXZ/Ly0ULO7N6ivl449VjruOPu6mJdtl8SD2vHjpb33lm65xfl7X30lfe970o9/XNh/o64fJRm0HDtW2msv6W9/C7a8N94o3NPedFP5393svzfeWPjuxInelhlnpiVBSzjolHQBkBJpzbQMcuE9+GCpsbFwkh42TNpww+hPIFEFLa2mc5vh5zRd3JmWxv3A6qJodnG0utmNMtPS77x++UvphRcKrw84QPrpT90vU4q2eXjlsvw2Dw+63YPud3/9q/Too4XXv/mNdO+92cm0TLoyk1STv2rhZyCe2lp/ffaGxU/QsnJ9mpulTgGrjlkMWvq9Vns99ySdgV0poaBlp/33Vx9J+r//k84+W+rb1/lLQTIt09w83CgLzcObm6Xzziu8HjzYf30qrkxLN8dc0OPSbnlXXinNn194ffXV0jXXtP+O1zIkcR458MDC/2++Wajvdu9uPe2vfy0991zh9T77RJ+1GMX2cFvmwYML/0+aJJ1zjv/l7bdf4f+JEwvnxF69Cu+dzjfLlhXqx1JhWwdJaCFoaY+gZaTItERBUpmWTjdOQSp/jY1trxcsMF9elE/zzMpeGRzym71RlNWBeOwqsWE0D09Dn5bPPtv2etIkx8lr4mweXrl9sto83PjUuFgBdsrejhJBy47Dat+1OyaMwbosNg+XwunXMotBy7gyLQlatrdihbvpwrwZtxM0YBZE2M3DraYNkjxQDMAFLUe1Ng+vnJdxe73yStvrIA+Fk24ebrz/MvO//7W9njTJun4U1nqkpXl4WOeG1avbXlfeK1Su68qV/pcTZ/PwKL8fF4KWkSJoiYKkBuKJsnm40apV5ssLe12N80+6ebhR2gbisdtOVkFLL4HVMC+Qftd/nXXaXldeyMwEyfzwqlqahxszxO0y2NIwEE9a+j8qCvPcl/S6JMHP6OHGYF0aMi3dHL8ELdu/thP0PJ6GIKFR2spjJ8iD2jCDllH2xR5H0DJofWrOnHDKkaXm4V7Ylc0ugSSNmZZhXcfc7HNB+o6PI9PSzbYIqxx2QfcoA+x+90k305FpCQcELVFgdvMfhTibhxvV17eft9n7oJye3iYVtHRiV44wKuB2Fz63zcOTymLzO6/Ondteu7nRT7J5eFiZlmE2D3ez37kNWqahAl/NmZYELdukOdPSKWjpdD2WwglaZnEgHr/XapqHB+c2WBFX0DJowMyNJJuHV/7mXtdn7lzrz7zMK8hDTaf19ZppGeZxGUdXE0nXebwkSrh9gBZEks3DjaI4nzodr0G2JZmW3rhJUIFvGak5InJpyrQMq3m4UTFoGXWmpdNNTth9WrotS5Bpo860dNs8PKlMyzCClm4uZHEGLcNqHh70Br0jZVqmLWiZxE1YNQkatEzi969sHk6mpb0kmoenIUholLby2AkStPSynmRa2osj0zJo83CvmZZxtd4x1t+CBI+TDloGnQ9BS3t298lhrqvT7+L3uuh3mrQj0zJSBC1RkNRAPE43SWE3D48z09JN0DLoCd9tn5ZpG4jHT9DSS2A1DZmWxubhUWdaepWWTMugQUuzzDWnLieiZLecoAHesKXhGMkyP31aGgewoXl4+iXRPDzp80KlLAUtveybQc7Hacu0DDvoFiQIks/bZ1qmpXm41yzqMDM7/Z5LwkpECCqMh/rG/bumJvqEkrQELaMoh1OflkGa1TudJ8PMtPTy0D+t3MQ44BtBSxTENRBP5cnVKcAQVlniClpWlt0pOJSW5uFRZ1raXeisfhMvFeewA0JuKrROv0nQ5uFebha97h9hBS2DHk9Bg+XGhy3F7ZVkpqWXfTTpykyYy09boCUOVg8V7M5bSTcPDyPTMoyHKUnv+26RaZmtY9tL0DLKprdR/oZJNA8PmmlpLJ+Xh+lpyrSMq2VCtWRaegny2l2LwrpWpCVomUSmZZBtSPNwb8i0jBRBSxQklWlZzc3Dzd7H2TzcC7v5Z6FPy7RnWqateXjlsipHtXcryI2fFF/z8DRkWkZ97vGKoGUwfpqHk2lpvZw08pqNZTad12MjbcdS2oKodoIELcN8SBj2b+gUPA+SaWlWdwiyD9fUtM+0NNYv0phpGffo4XGcS6I8j7h5mBP0AXbU92ZhSDJoaRd0j/L+h0xLewQtI0XQEpKkfFyZlkkFLVeubD9vs/dBOZ3gK4NDUT6l8hLIijLTsqHBfrtbfZamoGVDQ/u/O23TtAzEY1b2yu2V1dHDzTLXrG7qrH7HMHnNtIy6PHYIWnpn/L38NA9POtPST9Cyspx+gpaV+3lW9pc0ZFomdY5oaiqUxaz8YZXJrG5gxm3zxmrKtIyyebjT7xe0eXhlpqWxfuFlXlFmWnq9zzCbn5dmt24fgGQh09LNMeu0/Mrm4XG2gotqnnE2DzfOx00LxjCW4+a9FYKWCAFBSxQkNRCP001SkJOvcZ1WrDCfX9RBy8pKR5x9WnoRtJmulaeflvr0kcaPt56n26BlUllsL70k9e0rjRnj7Xteg5ZBMj+s3H+/1Lu3dMYZ5X8Pq3l40O0edL8ze9hiVobmZmnffaUNN5TGjfNURE+8BC2ffFJabz3p3/+Orjx20pCNnCUPPFA4lk47rfDeeKNg99DPuG3iatFgpbJ5uJvjN2im5VVXST17Sldeab+ctHNb5qDnceP3L7+8sO2uvtrbPIKaNUvabDNpyy2lJUvKP3vmGWmDDaQjjgj2O770UuF8fOCB4d1kV1Ofll7m7aV5+IUXFvapP//Z/TK8/M6rV0vLlpX/zVi/iKt5uJffKIzm4V62kd20bq8lQZYRVBYzLeMIWropc1iJOMb5kGmZHgQtI0XQEgVx3Uy5eSIUVqZlz55tr4tBy6QzLf1mnESdaRlV0PKYY8ybHofdPDzIDYgbq1dLhx/uvjxSOjItzzijcBG9/377JlphBS2TbB5enJfZ90aNkiZOLHQTceKJ3srohZegpSQ1NkZbHjtkWnozcmThWHrwwcJ53Hh8Go91moeXu/zywra64grzcqSV32tK0GuR8Zx41VWFbff733ubR1C/+pW0aJE0e7Z08cXlnx19dOF68b//SVOm+F/GoYcWzsevvVaYVxiqKdPSyClLz0um5c03F/ap4cOtpw2S4bd4cfu/+Q1aer2euv1u5ffdrF/Q87XX5UnpzbS0q7/7XX5HybSMo3l4mMHusIKWQe8VsoKBeCJF0BIFcTUPd3PiiiJoGVfzcK+p9H5P+GGz2w5R9GmVpUxLN8wq32kIWlrNr6M1Dzdmfnz5pbuy+RHkJituUTYhqkbFfpGlwvFs3HeN/ddWW/PwKK6ZaTsWzPhd7zAzLZMya1bb688/t56uOMBhUGGdk71cM4P8TnFkWlq1fgqjebiTIPUps7JE0adl0ObhQTMtvZ7D/AQtowysBxFHpmXQ5vhO8w9Dks3DvWRaBtlvomoebnbMVUOmpdNI7giEoCUK4sq0jDNo2aNH2+ukMi3DuphktXm4m3laVQa9VBKTDlqaLS/oQDx+9303fWGlpXm43Tq6WX+3A/EYde3qPF+/shS0JNPSG+Mx0tJSXjl1G7RMOtMyjNHDCVp6+14WRw9fd11304X1Ozr1sej2/JKWTMu4m4eHHbQMkuFnVpZq6NPS7HzgpVstuzqvlbRmWroJWpJpaS6KTEunFoxB9puomodXa9Ayyqb6IGiJryWVaWl2QPu5uJsxZrqtWBHPycPrCd7vjZDX7yQ5EI/TPLOaaZmmgXjcMM6vcll+Rw8P2hQyaLDcT9By002d5+tX3MH/IMI8RjpCxcwuaOm2eXjaMy2dHiJaTROkHGkVVqZlmOfEuBgf+NoJq6yNjfafu932aenTMsrAs1k53fZp6TfDL0iWpmTdPNxJmkYPD3pcuwn0SfRpWfn9sNaj2oKWdpmWYR6/ZFp6Q6ZlpAhaoiCugXi83iQFOcEbv7tihbsbsqCiyrS0ms5tpmWQvoOiqIDbVXqKZfFy4Q3zxjqsQLIxkOEn0zLK5uFZyLR08xsag0BWwe5KAwY4z9cvMi2rl/EYCaN5eBL7Q2XQ0s3xS6ZlQZg3Z3bcPnyJEpmW9oIGzNyIYvRwt3WKsDP8khiIx8vnfoKWQbp9SCLTMqqHlGEFLeNuBReGtGRaRtk8PM5MSy/fTysyLSNF0BIF1dg83DjvlSvd3ZAFFddTqrClMdPSS4UtzAqan/U1q3wbAxlp6NPSWIbKdcxqn5Z+jul+/Zzn6xdBy+oVRvPwpIOWfpqHB80wMpOF/SWsTEu/zcO9DngUprQFLaPItAzyOzntv3FnWkYdtExjpmXQoGXQ5uG5XDTNw+0yLYMEn8I857r5DYNmmFdr8/CwymHcZ2kenh4ELSNF0BIF1dg8vDJo6fUk6YfTCd7vjVDQ5uFO4m7W6iZo6aUSk3TQ0kzQ5uFh3/jEkWkZZlNIv0+tnX57Y+AobB01aJm2dQtbPl/ehYJd83C7Smvam4eTadkmrGu133Oim+z8qBgHMbRD83BzYR/bxuUFaR7uNF3xPiDIdT2uPi2dfoOwgohW03jdRm6yEysFCYCE2frIbt5+My0r5+HmfJv2gXjc/D5JZFoGuRekebg3BC0jRdASBdWeadnaKq1ebb+sMDidmMNqcuYVfVq6F9Y+YQxQuLkBrVwHv5mWVqIIWiadaWm2jeK+oXQ777RVXsi0dK+yOTgD8QSTtmPBTEfOtHTbp2VYv6NT0NLq/FK5/LQMxBNGYCLs5uG5XHLNw9M4erjX+wyn49ppHtWUaWlXf/e7vI6SaZlEn5ZpyLR0c13MQr3ACX1aRoqgJQqSyrSMMmhZ+d1ly+yXFQavJ3i/J3w/ZZEKlfrXX28fRLObfxRNnewqPcXPvFRiwryxDrKtm5ul8eMLlXTjfNxmQhhF2adl5TomlWkZNGhp9v2gNzNBhJGx/Mkn0qxZoRTHVlQ3MdWo8vhoaSnf97p0aXttd0xUQ6Zl0HJ/+KE0b16wecTBzbV8wgSpvt7+e8b9ZO5caepU++WmIdOy1uWtQZDrrDHQ77d5eOVvElfz8LRlWobdPDxIAMmsfFbNw53mm0TQsnhcr1plPb3Z/J1+A6ff0EycQct8XnrzzUL//07CyLQ01lNrasJ/OJbLSW+80ZaskpagpdU0leX1Mp8o+7SMOtMyn5cmTnQeLNf42fz50kcfuVtu3Mi0jBRBS7SXpkzLIBeayu8uX26/rDA4rV/YmZZuy1+sIJx2mrT//tJPfuK+HFnMtAxzv/HijDOkAw+UTjqpfD5xNg9306dlVM3DvR5PQfe7asu0fPttadttpS23lGbODK9cfsvjVkcLWjY3Bx89PInKbBhByyDlfuEF6Vvfkq680rpcaeG03ldfLe27b+GfXZ2l+H7+/MJxvf32hQdbVorn/SSDlm6vPUF+N2Og3+9APJXnfzItreXz7rdPkExLp+bhYQUtg17nrYI+V15ZOKb339/dce1neW4zLcPMeHX67l/+Iu29t7Trrt4CsH4zLSvnEXam5f/9n7TfftKhh7orjx9e72cl62176aWF8h5yiPdm5lnu0/L666V99pH23NPd8f7ll4Xr6I47SmPHult2nAhaRoqgJQriah7u5gbI7gmSF5Un0zQ0D/d7YQ6rCcbDDxf+f/RR9+VIS9DSSxnjzrQsVjT/+c/C/08/bV+pMBNWpqUVu+bhTjeNbpdL83Drz9xsmzPOaJvPb34TTpmClCeJeaWRWaZl0ObhSQTqKpuHuzlvhplpecQR5n/3cq6Li9O57fLLC/9/8IH0xRfW0xW3+ZVXtgWNfvhD6+WmIdPSbb0ryHHftWvba799WgYJWgbZr9N2jQmrT0urZQRt0p2lTMurrir8//77hQcNVvNzk2lp1YLNb1cTXn4Hr/v3r39d+P/zz6X33nM/76AJFVbTB61TXHdd4f833yzUb6Ooo7gJ4LntRuDaawv/v/WWu2xLL5mWQfabqIOWl1xS+H/69MIx5/T9665ru1/5/vfdLTtONA+PFEFLFFRj8/DKeZvdBEQdtAwr09JqOrfp9H7n7/SZX3aVnuLyvFwcw6zwhLW+ixZ5mz6soKWb5uGVy/Lbf1rQDNcomoen7YayyM0+abx5N/YDFgUyLd1zah6eldHDk860tDrek+y/0YqXa7VdRpZZH5V2D4mylGkZVtDSb/Pwyv2mmjItjZxaH0U9enjQbWM1EE+cmZZ2x7PV+tn1xdnaap8VWcltC7KkMi2NnLqHCCPTsrJ5uJvy+h2Ix+wBXRj8BC3DKodd0DLMc1vQDOMiNxmnduen4veN53inh11JINMyUgQtUZDWgXiCnOArTx5pCFqGdcJ3+nvlZ0EG4om7T8ssZlqa8dovodtmJE7f9dOnpd8b5KABDbtt7Wb9qy3T0hjUiuK4MyJo6V5lANlLpqVxO2ctaOnUEiIsWcy0NLK7nnl9sJKlTMsg+4KxebjfgXjCbB6etj4to2ge7jdoGfQBuFWmpddyOC3H7nO749lqOcb+asPMtHQbtIwy+GTHeJ0yE3ampd21KIzrZC4XT9DSrKxeB2wym6+Zamke7lZWgn8ELSNF0BIFacq0tHuCFGRZZhXjqIOWUY8eHlb54860tKvAWQUtvZQxSJnDWt/Zs71NHyTT0g2nTEs/+1LQYHEUzcODNhsLgqBldYqiT8sktpnX0cPdZF6GIetBSzctB4x1LDeZmVkIWgbZF7z0aWm1nGru09LLst02D3e7fYJsGy/Nw83eO83LbZm8tHqyWo5xUBqzbeIlwcJt0NIoqUxLYzcmZtwc9173mTATD9zMPwx+Mi3dnBu8BjazPBBPtSFoGSmCliiwqlCHzc2FKcvNw72e4N0u328TjKIgmZZ+L/Z+M1OK772c/MOs8EQVCPaanRF283C7gXgqP/ezXMn7vhJ283CzQIyf+foVNPif1aBlmE2I0yis5uHGm8E0Zlq6OWeRadmeXUCiuJ+4DVpmKdMyrObhYWVaBukH2st+Hfc1Junm4UEzLe2aWfsNWnr9Dezeuwlamu0vXu5V3GQnSvYJJF6zF43CzLS0q787/d1Ma2u0dYg0BS39Poy3m29YYye4+W7SmZZpr1vSp2WkCFqioCM0D89ypqXVdGnOtLQLgtlVeoqfebk4hlnhiSqo5VQRCXJRdxO0tGseLvm7SQ4aLA6635ndtKY1aOkmUyurQcsosyTSIKyBeJLOtKw87zr9bnFlWmahT0u/mZZmQUsjt5mWcR5TcTQPp09Le26D3G6XZxW0dPNgIsxMSy/XijCbh9st1+php12mZWurfeBI8tc8vHIZRnFlWobRPNzL8lpayLT0Ok3WMi2trnNumQUt/fZxGiUyLSNF0BIFaWoeHmemZdi8PpXy+5TK6e9On3mZ1u9vYLe93WRaeqnEhFnhiWr/9zpCqt/sIz8D8Uj+jo+gweKwm4e7aeaexqBlcT2MD4+iDlqGuR2C3CBlgVPQ0tg83O5GM+k+LcNoHt5RMy2t/iaVb9egD2atMi3jPKbiyLQ0HgtpaB6etj4tvczbTb+pQTItvQagKiXRPNzp93VznDplWjoFIrPap6UTN0FLL+cGs4fNYQcto7jeJhm0zHqfll73R7Pfj6Blh0PQEgVxZVp6bY6WtebhXtcvrqCl08k9ikxLuyCYXaXHKmjppYxBKmhBfpNevayn93pjFvRGvnI9oghaBt3uYTcPb2py/l6cmeRul1u82a6WTMtq66+oo44eHjTT0u201RS0dJNpafdg1irTstqClsb1cbo2Wq17Wvu0jDto6aZvZy9ByyAPgeMKWnoNHPu511i50n5+dtlulfy0IEsq09JLHSqMTEuah9t/x2nZUWZaRhW0rMbm4U4PKBEYQUsUhJVpuWyZdMst0ttvF94/+aR0331tFRmnE2LQpzF23w2refizz0r33GMe5PH6dNft8q22Q1gnxCiClmE3D09zpmXx+DFmXFUKK9Ny8mTp5pulJUvMv1ssi11/X2bbp6FBuvde6Ykn7MtpFHS7B93vKtexqSl9WTBffSX9+c/SjBnW38tC0PLddwvrsXSp87zMtsMzz0h33pnOpsBOnAbiMQ4q4jZoabUfLlgg3Xij9N570l13Sc8/76/MZpwyLZ96Srr/fumttwq/9VdftZ+HsdyffVYo65w55svzGrRcvVq67TbplVfcfe+JJwrljSLo6SXL1K7rDaug5YwZ0g03SLNmmS+j8jiJ4rz10kvS7be337/jaB5u/K7Xa2NRkKBlkLqm035t3H7vvlu4XpsdS3aCjB7+1VfSTTeV/y2fd7994sy09FIOL2VyCq64edAWRfPwKVPa/zZO3ykK8sAozP07ikxLq3UN4x4nTUFLN+fWuPq0zOWkf/xD+ve/3SeLhB207N7d3/f9am6W/v536emn2/42bVqhHjN/frB5u+1+A745DBGGDiOsTMtzz5UeeaTweuxY6bjjCq9bWqSf/jScp59umWVhVfK6rh98IB11VOF1fb3061/bzy/qTMuwLsRZaB7uJYst7qClmwqW1xszs+3e0iLtumvh9dixhQB65XetgpbGGxazdbz11kKgQpLef1/61rfsy2tWZq/bPezm4UkHLc2WfeaZhWCQHbOgZdSZVV5+q8ZGaffdC69ffbV9YNvpWP30U+noowuv16yRhg/3VtakGQeSkOybh9ud890MxPODH0gTJ5b/bdo0aZtt3JfXilOmpSSdcUbb6xdfbP+58Tt77114eHLXXYXf2G5aO8Vt+fvft52D5s+X+ve3/s7rrxe2lVQ4j5x1lrtlueUl09LugZDVcbz//tKiRYWAltn0UWdazpsnHXpo2+trr237rCNmWnqp57gNmBnPmxMnFoIDQbkJjJhdc7xkWgZp4pjF0cOtlhW0eXjl9C0t0i672E9nV6ZqyrQ0fs9t83C/zYGjClq6KXMcfVo6Df5ite6PPiqdemrhda9e0ne/G3+mZc+e7R+aufm+5G9/uO8+6ec/L7yeNEn69rcL9zotLdKoUYUHtn656aYDgZBpiYKwMi2LAUtJ+u1v215ffLH5vP08/XQrikzLBx9se2124+31BB80aGlXfrNAlpUoMi39Bi2tlhtXpqXb75ptU7ttFUbzcGNzpdGj7edXeew4ZVoWgwWS9MAD9vMuClIxlqovaGk2b6eApZT+TMsFC9peP/lk+8+d9oN//avt9YUXul9uWsQ5EE9lwFKSHnvMXTmduAlaGpmdY4zzKGZ7W2URuz3Wivu/8Rz08sv23/nb39pejxjhbjle+G0e7ibTUioELCVp4ULz6aMOWj73XNvrP/3JvAxOgpTJuIzKhwKVrLZ7UgPxuM20nDu37W+PPup+/nbLMytn5XXQ7JrjJmhZ3EeDbBuzZdhlIrsNWu63n/vvmS0naNDSbH5OmZaVyzPW36ykoU/LNGVahiFNmZZuyuE1sOmnv1ZJuuqqttfF7N+4My179nT3/bAY65933134v3h+KrYQ9YugZeQIWqLAqr+lIIwVFbeVoSibh4eRaWnX/NdsfmH1NRK0YuAUtPQSEHQrSNAyn08uaBlknwuSaVm5XLPKv9XvaLZcr83DjTbd1P5zq/mEmWnp54m0mz4t4w5aupH2oGUnh0YZTg+b+vZ1v6w0SrpPy7CuyUEyd/yUxe38gzariqJD/rAyLZ36tKwUV6alXV0m7kzLNWvcP4A1Mssw8htwDTMTzZhp6VeQ5uFmzIKWboLwdtOZMTuW7fp8dRu0/NnPpKlT2957vc67eV9ZFqegpfFvbpqH13q85U4qaGk3rdt9wWl5xm2TRJ+WYczfT9AyjtHD3f72xv2xOE0SmZZevh/0dzPW1cIenJfm4ZEjaImCKAbicRO0dLpQpW0gHqegpdeKUtAKQFgZhWnLtKysEDqVI2jGn5/vWpXbSljNw52+66ZPS6d17NfP/nOr+XjdH4Pud1nItHQj7UFLY7nczKtyO6y7rvtlpZFTn5Zug5ZumodHKYwbtzAzdor89EnppSWBH17O73bn1uJ7t0HLuDItwwhahnWdzeXc1xeMzPYbt9mWQR6Qu820DBK0tFpekKBl5bZx28olaKalXX3PbdCytlbabDP3ZfKTaVlZdmNmpNn0dhnWlfwkGAQJHke1f7v9/bzUw8wyLcM832UtaBm0T0u3v1EagpbG/sDdfD/odT/KoCWZlpEjaImCsJqHG4WRaen3xt1sHZLItAwrk9Rt5dLNd8w+d1tx9MLtTYjZOphlTIRRkXLDz/5vtX8bhdE83Mtv4bV5uJFTkMpqPl63XUdoHu5GcT3iDFp6KavX7iUq3zs1/0w7p+bhdn1aWmVaRhH8cxLGjWFaMi2N804609LN6OFu5iNZZ1qGfT5IU9BSsu/XzG2mpeQ+aOmUHe7lu1afpz3T0up7acm0rDx3ekmu8JpA0Nra/pgLO9PS6zGchUxLqww4p+UZt4Vdn5ZhXPvMMjnDqAfGmWlpV/7KY87tb29WH/F63LjdjlbnW7e/r9l0fq77xiApQcvMIWiJgrgyLb0+tUlb0NKpmaTTDUtYT6mc/l6ppsZ+28edaekUMM3ng2Vaxh20dFPBCmP0cDeZlsXy2w1SEFZgL8h295opYcaseXgWg5ZxZFoGCewHvUGsDEgYbwazIOnm4WEJo3l4FMFWs0CTl+2TdNDSz+jhVuLKtLSry7g994Q5UKJd0NJq3c32G79ByzRnWhqZldNNZpZZ0DKXc5dRHGampZc6g3EfqavzllzhJ0HCa9DSS5+WlUFOu+ms5hlX0NJPgoDX+kXltosiE9Ju/kkFLf3UayX7e0u/3ZAZ7/uL84g709Jr0DLoflGZaRn2flaJoGWoCFqiIKlMS6cLnd+ymH0vjIF40pZpGST7MMmgpXGeVpVmL5WYJIKWUQ/E47d5ePF1kD4t/fZpFnfQsloyLastaOkUkDAOUJEFXgbisbuBcMq0dHN8BxHGQ8G4Mi3DLIcfboI5RW5GD6/GPi3D7L7HLhs7ikzLIHVNt9cup2u+W2YPJY3c9oHnlJFlNb+gQcsw+rQMO9PSa9DSbH9xW4cuft9rX4VhPhSOOtPSa1mN+4nb0cP9iqt5uJtrht/m4Xa/p9PxarWubpqHh5VpaXV/E/Qe2CtjXa2xMdz9jD4tI0fQEgVpHYjHb6XY7HtJ9Gnp92LiNF833/fyhMxLQNCtsAfi8VKRCnKDF+QiavfdMDItrQIiZjc1ds3DwwgYmk3nZbu7yUxwYha0DGvd/Ehz0DLKrFin468y6Ddnjvtlp0FlQCWM0cPNtn/UzejDCFqGGdwp8lPZN36edKalXd92ZpmWdjpin5ZS8s3Do8i0DHI8x9E83G3Q0su1Iqo+LSuDll6vSU51cbOg5apV1sGcyj4t3TQPjzPTMkidOIxMS6flVQYt3ZTB73k+TZmWfpuH2+0LTgNsucm0tNrPo860DPI7hNE8PMzrKpmWkSNoiYIomocbD2C3QcswbqrM5iN1vD4tnaZ1+5Q46j4t3QYt48q09PNdq+4PjKJoHm6WyVHcFkEyLf0GLb1suzCClpXzaG7OdqalWXOdsEQZtHQ6j1dbpmVzs7/m4U4D8dgFbsIQRvPwMDN0i7IetHQzerib+UjxZVracbuspJuHJ9WnpdtrTBTHs9m2cNs8vHLbWG3XsB9GhpVpGWXz8Fyu/TGXz0v19dbzswswSv76tLR7ABJWfT/ItGFlWhrXM2j3IE7SFLT0U681+55dwNzturrp0zLqoKXb3zms/cF4D0/z8MwhaImCOJqH5/P+gnr5vHT55dKpp0pLl7Z9NmeOdNJJ0j77SCNGODehSUPzcD8n/H/8Q/r9790tz0pNjf0Tv6xnWoYZtIwqSzOK5uFmmRzF+cQRtAzSpCeMjMhqbh7utcns5MnSCSdId90lnXGGdNll5dvC7W81dar0ox9JDz7Y9jevv1Xlvlu5n2Yt09KpebgxGOk209Jsm8adaRl10DJIpqWXcvgJWn71lTRsmHTlle4DlG6Clm4yLd0EaqIOWobxoDLM5uG//32hjrdoUftpvWRautmX7rhDeuwx+/LcfXehfjljRvvvO/0WYWRaGoXRPNxNpmXxfZBMSzN2D8hfe006/njpf/9r/z27oGXQ5uFuMi2ltibiZvUz49+cfgOzOq2ZsDItvZzr3Y4qb/eZ1/q6cT5m2/3++6X77rOehxdpClr6zbS0W1YYfVpaBS2N7//2N+mSS+yXZSWs5uFBz0WVfVqGeV0Nu3n43LnSySer9i9/8T+PKuMwqgg6jDgG4nFzE2B2Yhs/XrrqqsL7hgbp3/8uvL7tNmnUqMLriROlo4+W9t238N5tpqVXtQ5xfqfAk9cgz8qVhYq82+VZqamxvhhFFeSp9j4tvX43iubha9ZIffq4ax5urJiGETA0my5oRobXeVVb0NLIa0Bgv/0K+8N//tP2t732ko480rxsVtvpO9+RFi6UHn1U+v73pfXW85b1ZrasyqDfF1/Yzy9t7IKWdXX2wcgwMi2jaP0g+dtf3V43vMzfT6ZN0KDlL38pPfRQ4fXee0tDhjgv303Gn9Wx4LVPS7dZcX7ZnV+SaB7+4ouF/5cvl55+2t1y/AzE8/nn0nnn2Zdn3jzpZz8rvP7oI+mDD8qnjSPTMonm4VZZc0H3vWLCgtl9QPH69Pjj9vXnYtCyOI+wMy2tgpbLlkkDB7b/vpvjM+xMyyBZ7l6Cln4SBLyU1W6QSKMzz5QOP9x6Pm5VBpilcK6pUQUt3fRp6SXT0mpdvTQPnzVLOvdc53JZiSJoWe3Nw4cNk8aOVd1DD6nXLbf4n08VIdMSBVFkWhovRFZBSzcViffea3v/6KNtr7/8snzahQvLv1cpjExLp23jJ5PUjjGz1M3yvCwr6qCl3c1D2JmWXrernSDf9VJRc/qumyyS4k2RWUZd2jMt6dOyTfFYsbthcWJ2g/zqq22v3R4jxvPokiXuyuJ0rFaWLYpRdaNkF7Ts1Mm+rzUvmZZRNw8PM9PSzXfdng+SaB5eDFhK0htvuFu+VZnsWi2ktU/LtGVaFv33v+3/5iXT0iloOX26+d+N62LMrvzww/bTuj0fxtU8PO2ZlsZ5+60jFM+dVl1NWS3P6r3boGXxAZtT/cxNfaYaMy39BLrdBi2lwgOEoMy2fVKZlm6W6zXT0u1xXcmsD3Wr75plnNvN22m6MJqH+7nuZ2n08LFjSy97f/aZ//lUEYKWKIhiIB5jBcAs009yPrnmctImm5jPv3Ja442w20zLsIOWbtbHy/y8ZnZascu0dCpDFH1a2jVbLf7Ny5PbIE+kneblltMyowxaGhXLn/Y+LcPY7yqnyXqmpVPH/l7ZNVuOsim/U9Ay7P46o2bXp6WXoKVTi4a4g5ZBBuLxegNux01miZ2gfVqaXWfDbh7uZj7G70cdtAwj0zLMPi3tWK27n6ClmwxGp3k4nTuL6xbW8exUXwqrT8uoMi0l70EK43ektgBL8ViNonm42e9e7MrEKdMyrObhSfRpGUXQ0m4edq2A7Kat1oF4nFromc3brq4YZvPw4ry8ZH6bCSvTMqjK0cPTnGlpUOe2r+YqR9ASBVE0D6/MtHQTtDQ7sXXrZj7/yhOEU9AyjExLNxUTu+m9ZgQ6BS3DqMSktXm4lyeUaQhaBg3Cuam4uMm0tMqWiCPT0su2o3l4mziCln6yYt1m1TkFarIctMzn7UcPdxrV1rid7YLIUjaah3vJtAwStHRbjjC4DVq6CZ65aR5uxypoGfXAXH6WFeRc6uW7YWZaurn5dupKKI5MS6t1DjPT0up8kOZMy+Kx6vQb+Gn1ZPa7FweNq/y+m5HY/TQPT0Ompd20UWRa2h1vYQRr4gpamu3bboKWdnV1q2V52U/CCFpa3YvGFbS0mo9XxjpY2JmWYfdpaVBL0FISQUsURdE8vHL+ZvN1upFubbWuHFTOzzjQSVSZll4DT04XD6flB8m0dFsWrwEJtzrS6OFuvhdGpqVVMMhr8/CwfvMg252gZZu0Z1p6aaprtqwsBy0rRwqXwmkenoZMSz/7q1Vgw4zbfSxon5ZO10knxt/FbvlumodbBfBpHu5++ZWstrufPi3DCFrGkWkZR9DS6poQxsONSm7rm0ZRNg83O07NfvdipmXl7+E10zKXC55pGeSanaZMSy/Nw/080KpkFrQMMxBv9b64bK/TeM20rNxGbh9QG6+bTs3DowpaBmke7kfleT4jmZYELQsIWkKSlI8i09IoSPPwyhNycXRJu0xLs5NHHM3D/TzdteN0o+O2cpG25uHGZVoFs73cYPvJInNTNjuVgUKn7yXdPNx40XN70+UkyHYPI3Bq1jw8qiC8G2kOWoaZaen14UzlfhrlbxA2s2OspcVf83CngXisRhuOosJu9t6NuDItvQQt09Q83E3GvB2rTMuwjxm7bLq0BS3dZLgW+Q1aGtclDZmWVg92zZbttnm4277voshKS1vzcLPj1EumpVl2YuU8K7vd8pppGeR3CJL5GHWmpZsgnVXZ/Eh783A/QcsgmZZm2ZNOmZZpbB7u57pv3J8IWmYOQUsUJJVp6aYiUXkisKpEpCHT0u5pmNnnQbd1kCBR8X0am4cHzbQMsl39Bi3DzrR00zy8GORIqnl4kO1OpmWbqIKWdgO/BDl3eD2vVQbjspRpaRW0tMq0tNs2SQ/EE0YGlZeMqSBBS68PCIMImmlpl8VefJ/2TEvj8tLWp2Xamoe7fehn9RDCjTRlWsbVPNyuDhQ009JpnZwyLZ2ClmbzrCyP1wexYTYPtytb0pmWdsIKWnpNGHEjzqCl3TReuyHzErR0un4FDVp6zbQMei6qDFqGWY+IsHl4ndM1qYMgaImCKAbiqZy/36Bl5YmgWInw2qdlGpqHe71whpk15jfTMomgpVkFz64cQQIyTvNyM52bCqnDvlNT+X2ah9t/bhbYrqagZRjlDNo83OqGxKkPrGrq09IskNjc7L5PS6ugZRqah/v5HbxkWro9H7g519nNO65MS6t1NpbV6uYsaJ+WYZ+3Krev8aFv0n1auq0n+QlaWgVBvAQt3V4/jcezcQAIN8yu6VbLdhu0dDpvOwUugnATpLALzHjt09JpHczOhWa/+7x5hWmdmodXlrdSmjMtvfRpafWZl+V5CUSGEaxJU6alm2mi7tOyuC+bPUR1E+C0m7eVsDItg173KzPqw7yukmkZOYKWKIijebibzAWzymrlCdwq09KpeXgYA/E4BZacsuW8Bg6CfF55creqECaRaWlVITf+zcu2SiJombXm4XEMxBNn0NKqC4gsBi2Lv03YwTy7IJmX38rphs0pyFBtQcvK5uF2GZRpyrQM48at+B2vN+B23JzrKoUZtIwy0zIrfVo61Z/MRNU83O313E/Q0u7z4nKjGD28a1f777hdRtYzLe1+dy9By7Cbh+dy5nXWpibpyy/dZVra/Q5hZFoGuWZ7CVpGnWnp5bxhzFYOc/TwMPdpq/fFZdu9dzuN3QNHt8d15edZGogniubhbo9Jt8IOWhoedJFpWUDQEgVBm4dff720ySb28zebr5unn24zLZNoHl4ZCPWTaXnNNYVt969/tV+em2wzN9Lcp6XZOmyzjfTJJ9bfqWRVkfrlL6WBA6UxY+zL6nY5Vst00zz8hhukzTaTXn7ZeX6Su+bhXkYP99Kn5UUXSVtvLX34of10YWYCOH1+9dWF42TUqMJ7sxvWMIKW//d/0oAB0lNP2U8nhdfkyCzTMsj8iuwyLb1kynnNtCy+/+QT6ZvflOrryz93e04ZPVradNPC/pgUr83D7c75fjMtw3qQGMb+5XST2tIiHXaYtN120owZ7uZpFgCIM2hpdkNmtm3cBM+CnhP8Zlq+9Za0xRbSySe721/CyLSMqnm42wCDn4F47D6vq5MGD5ZWr7afh7F8nTtbfx4k09JtRpsUT5+Wzc2FbbPddtLMmc7LqxRWpqVd8/Dx46XNN5fOPrv953vvLT35ZNt7p0xL4+86d65zwoLZPCvrZdWQaek2aBlWpqVZsolXcWVamu3bSfRpOWWKtNVW0g9+YJ5Q4SVo6XSf6HY7WgVd3dZtpk0r3Bfed5/ztK2t0ne/W5h++vTyz9wMAvXFF9K3viXtv7+3Lj78BC1XrJD23FPabTdp6dLyzwwPusi0LCBoiYKgzcMvvlhasMB+/m6ClmaBm8oTQXE5dpkCZssKI9PSKWjpdGE0u/n/3e8K6/STn3gvn5cnolZlSSLT0ilouXy5dNtt5X/zkmmZyxWC23/9a6F5z+GHOxbXcl5WvGZaSoXK73e+4zw/yVvzcLP5BMm0lAoBhyOPtJ8mzkzL3/++cJycdFLhvVXQ0msw1GjtWunaa6X586Vjj7Wfj9m8wg5aBq2o2J3X3fxWVhVWt83Dzz9f+vTT9vN1G+w48shCBfKmmwrnhCSYVVqNQUsvzcOdBuKJMtPS7MFKkExLq/X8+9+lF18s3GSceKK7efppHm6UdPPwNGRaHnyw9Pnn0kMPSa+/7rwcu/pTlpuHOwVEnM6pY8cW/tkxls8saGmWael1W0XRPDxIpuXddxe2y7Rp0imnOC9PMs8sD6t5uNl8DjywUO+7915p4cL2nx93XNtrs3sN4zE3aFDb6wUL/DUP91NHtAtGxRW0jDrTMox+Kr1IU/NwN0HLoM3DR4yQPvtMeuIJ6Zln3GVPWmU+Wv2+VuWyYnVOd/v9P/+5fQDSyoMPSs8/X5i+sg5Sua3MHlD97GeFhI3XX5duvNHdMiV/fVpecUXhgeN770kXXlj+mSFoSaZlAUFLFKR1IJ5czjq7rPK7cWRa2i3TbH5OzTuKI6G7XZ7Xz43LdfMEzW3GiRtBgpZO33H6LJ83r7S64ac8biukXpYbNNMySJ+WRcWsZitBKoJRNA9vbAwWhPdaMYg60zJoRcXuN/eSjeU1aFl8P2GC/Xy9SKrSZtWnpbF5uJ8+Lc32lSgzLd1cf91wyqwxZmEtW+Zunkk3Dw86eniYfVoWg8tesp+k8n3HqV5hLFdRtTQPdyqTWbBpyJBCi4yiyowXu/K5zbQMErS0WnZR2H1amgXLjA+f3njDeXlS+baJu09LJ05By1692l6bPQz1GrR0m2lpnKZaMy3j7h4mTUFLv4FNq4dhkv21stgnq9m8vGRaWv1mfoOWXpuHe2Gsg0yeXP5Z5baqbAUkSW++2fZ62jT3y/WTaWlszfb22+WfdelSekmmZQFBSxQkNRCP002/WfPwYuaL10p3GP1NBG0eHlbF1e3nxuncZFoaM4Eqp/PKTd9Rlcu34/Xpr1MTLyt+My2DHjduAmBuRg8PK9PSjSCZll6Ckm62hVR4iBAkaBn0+Exz0DJIpqVTFrDVdujf33y+fm5akuoHM2jzcC+ZlkFGG3YSVtDSLrAhmfcP6STpoKXXPi3tjger399LGXO59sd+2Jmndg9gkw5aBsm0dNqnzeolzzwj/eIXbe+dMp7dZloaj2ev28pLZpPf5uGtreZ1B7OgsZ/jzbhtwsq0dDt6uBOzew3jMbfuum2vzbqdMduP7ILtuVzwTEsv9SsvdZOOkGkZpK5qJapMy6DNwytZrbuXPi2jCloG+R2szkN256fKfc/vfaIZPzEG4zmy8jg0Ng+P+5hJKYKWKIhjIB4/mZZmzcOtMi2dmoebCRq0dMq09JPdZPf9Sm4rF24zLc2Clkn0aen0HafP8nnzJ2hBl1O5DON3wn7y7+bmxG4gHrsmJ2Ed40H2by+Zlm6yTqXgmZZe9/W0By3tAr9xZFpa9XOc9UxLv83D05Zp6ed3cMqs8RO09DqohbEcYfAatKxcd7tzq5+bM7OgZdgZKWFkWgYpU1R9WvoJWtbWlt88OgUt/WRaBrm2mLWkkNrqa2E1D3d6IOGVsT7pJrMqaPNwL8yu3XZBS7tjvshuu+XzZFoW0Tzc+zRWmZZuEibcXKurKdPSLmjppnm4X36ah7sMWtI8vICgJQriaB5udvC6CVpaBWrsAohRrIPZfJ0yLYNW/uLItHQKWvrdlmEHLe2mM1u3OIOWYTQPt6qU2P3NS/Nw4wUxrOMjSNAuqqClUxnCrEyHVRGOqk/LsDItvQYti+sRZqZlmoKWYTQPN9v+UfZp6eZGyA2nm5u4Mi2N4u7T0u4m0+7m0q3KrC+z+QZlV5dJOtPSbdAyrObhNTXldR+nG1ljecwG2DELWoZV9zMLmLr5HXI5931amh3bfjItzQaCS0vzcLPj1LhvhBG0DDvTMq6gpZe6dlYyLdMStHQzjZc+LZ2OfbtBWJPs0zKMoGUYmZZ+7xPNhJ1pSfPwdghaoiCtmZZmFa00ZVp6HYgnzkzLyumsyhZV83C7IINV5oAdrxWpqIOWlYHXJJqHmwXw42weHmT/9hJcdHtzGrR5uNfKdNozLYP2aek3aFl836OH+XyzHrQ0liUrQUs31183rJqLxR20DLN5uNc+Le0CGGHcnFVmfXn9vht2D32jDlo6XS+jbB5u9p2amvKbR2PQ0qmfb6vm4a2t/gLBRWEHLd1kWlod22E0Dw/ap2XxdwirebjZcRq0eXhH7NPSz/I6cp+WfjMtraZxU2e1Os7N6i1WD7fT2DzcStDm4X7LFGHzcDItCzIdtLz99ts1aNAgde3aVXvttZcmTZpkOe0999yjAw44QOuvv77WX399DR482Hb6DidIpqWb6YP0aWmVXRZGpTvu5uF228qs8hskAOP0lNcsIGF2wxlF0LIy4OeGl4pUPh9/n5ZRVKIruQngWz2BTVvQMo3Nw70+zUx70DLoDZBVxdIpM6M4b6sKddaDlsa+6iqbh9vduPptHh6GsIKWacm0NC4/aNDSjN+gpZuHg06CBi399GkZZ/Nwr+foqDMtJeugpVO9zOpBb2X/tF7PeVZ1JOPfi1mebvu0dPuwyelaEVeflmZ107Cah5vda3hpHu61T0u3dUS7eo+XdfZSN+kIfVoGTSAx42aeUTUPd5tpaVYus0xLp2M/aNDS7Hjz8n0zcWRaeqlbhB20NGTxk2lZkNmg5ahRozR8+HBdfvnlevfdd7XzzjtryJAh+vLLL02nHzdunIYOHaqXX35ZEyZM0MCBA3X44Yfriy++iLnkKRUk0zJI0NLppG/XPDyNmZZOgSe75fXr1/5vYWZaWl0YnSrgfp+KJtk8PJ+XVq50N1+nebkpTxRBSzdPbe2ClkkMxONlGwQJWuZy0QzEE3bzcLfbOe0D8fjNtAwStKycZ1JBS7PBcYwPqzp1sg9GGt87DcSThebhdk1IpfCCll6uO0GDlnYBSiOrGzizTPfKz7yeG+NuHh5npqWXc7/Z+6KwBuKRzANskn3zb6vPW1vbH8u5XLCgk9myrcpsNT+zTMvKeozknGnplln5vGTgRdk83GumpZugZRjNw7OWael0PTDjN2jp9zyfpkxLN9O4Oa8VvxNW83Cr4zPNzcOtBOnTMsi9kZ8+LY11QpuHB7VkWkrKcNDy5ptv1tlnn61hw4Zp++2315133qnu3bvrvvvuM53+X//6l84991ztsssu2nbbbXXvvfcql8tp7NixMZc8pZLKtMzlCieNYrDZS/NwuwBi2EHLefMKJxS7ir7Z/LxcKN0OBuD2c6egmtlFKs19WtqVw2zdVqxwN99KfoKoXm9I3CzXS6al1+bhYVUUgjy9diqD8fPKdfn0U/P9y2uflvPmlc87aPPw5culpUutP7eS1ubhVhVLt31aug1aLl7cvvJYeW5NU6al8Vrjt3m42X5qNXp4FFkhkr+gk1NGhtk1xIlZAGDpUumrr8r/Nnt227bw01w1ny+fR5HZtvGTadnYKM2fX/5ZEkFLN9vDrv7kJ2iZy0lz5pR//uWX9oPFWXH7gMXPAE5ugpZGZkFJY3msBuIxW+8og5ZO620WtJw92/waEaQvRSOzgXj8Ng8Pe/TwOJqHVz5M9vqwrnIdly+Xli1znofZd70ELaPOtIyiebjxPtJseVbbY84c/+XxE7QMO9MyzObhuZw0a5b5d7PUPNysS48is3sJI6vy5PPtt02loJmWNt131JFpKUnyUbtMXlNTk9555x2NGDGi9Lfa2loNHjxYEyZMcDWPNWvWqLm5WX369DH9vLGxUY2GStzKr7O2mpub1VyFO08ulyvtDK0tLcp5WcfGRllU90ryklpMpssvXy4NGiStWKHWl19WvmfPsmnyLS3KNTWpLJzX0KDmxkbVtbaWRd3za9eq5ety1zQ2utq53axrzb/+pU7Dhim/007K7btvWVlaVq9W3vD9TrmcjLcLrU1NZfOvy+UsnxTk8/lS+Usctm1ra6tl+TtJpbLkcjm1NjWVzaulqalQdsPf8506qfJ2J9fSolYf+3xdY6P1uuZybb9Vc7Or36qlublsW5ctq6WlfF/I55Vftqz0t3xdXftta6GmqcmyPM0Wv3U+lzPdv62YnUPyLS1l+5ZxGxXVNjaWT7NmjVoqftd8a6tamptVW3Hc5JuaPG9zq7IWdcrny/aXXC7nel9xOkZzra1t82poKN+2226rfO/e7fbVfEODchXbsVJxu9b84x/qdOaZyu+6q1omTizcDK1dW7Ycx3N9xbbX3LnKDxiglrfekrbZRmpudrVP5Bob1drcrE6trWXr1LJmjeU+X8lsOWXnn8rj3+J4MjtHVO4vLWvXln238lxc/F5dU5PpOaC4j0pSzZtvqu6QQ6TevdUybZrUu3dhohUrysviYVsEUfzNi//X1de3W4d8Q0PbubWuTq2traWyVp4vjdumJZ9vu86anLs7rVnTbp+2mtYzk/NTi825zkrpmllxTDY3NkrNzaqVbI8/M7mmJrVWHisPPqj8qFFqefNNafvtVfu736nuhhuU+/GP1TpyZNm1NC+5Or/XnXOOav/+d7Wef375dbylpf2+ZXLsNjc1FW7wK7ZlrqlJrfX16rTDDqqpCNwV94fa1lbX26V59Wp1rrjZKV2vLZQdK62tjsdKbXNzWXla16wp7WOV5yErxn297uijVfv882r905+UGz5cNRMnqu4735HWX18tU6dKvXq1fdHhWtlc8bnp7yOZnl9am5ttj5XahoZ2v0Nzc7NqampMj4V8587tr8OGa0yuU6f254eWFrWsXNl+/2losA6OVjCeN4x1Q2NdJ7/OOqXfqdnwwMNsCblcrnR8lvzwh+2maW1uLls/qXDMK5cr/S1fU1O2TTrV1KjG5ObcWJ8snh8q6wxGzQ0NZQE047o2f13+TrW1qpF5fdnNli2e1yvr6i1NTaptaCgtr7Vbt9L6tn59vTPuHzmT+m1xHc3Kk/+6Du50vjVeGyuPUc2cWahfvP22tPXWtvOp/A3tzh+V9critJXXQknt6hGl36HymLWpr9c0NPgKPlie51euVKdtt5WWL1frSy8pv/feZWVpbWpSbcV+19zUpNqbb1bdhRcqd/DBan3hBc/laXcONbmfrJwm19zcro5cWReuvG+U2t+XlOZTWTeu0JLLqaZiXyhdq2tq2o7pXE75IUNU++KLZd8vrpNVfd3t/WHlvW/xPF15HHpReR4qqjWcq6SK+7aWlvLl3Xtv2Xebv17Psnvn5mbVnXaaah9+WK0XXqjctdealqfynktyjjHU1tW1/QbNzWXrY7wG1FZp7ElycZ9lkMmg5ZIlS9Ta2qqNN9647O8bb7yxpk2b5moeF198sTbZZBMNHjzY9PNrr71WV155Zbu/v/DCC+revbv3Qqdc/w8+0J5fv542dapmjB7t+rt1DQ06ymGalfX1envcOB1a8fcaQ1ZC8zHHaMIVV+g7hs/rV6zQwk8/VeXl+fmnntL+y5ZpPcPf1ixfrhe/Lnefjz7SAS7KPv2TTzTdYV2PGTasUNb339fKNWu0vuGzKZMmaZ5hfzii4kZn+rRpZfPf/6uvtIHFctauXq0xFWXpNWuWDrEp29zZszXFovxDGhtV7MZ38aJFmjZ+vA4yfP7Ga69p2ZIl6rZokQ7/+m+rGxq0bsV8Fnzxhd72sD8UHbx4sXpbfNbU0KDnvp7nhu+9p31dzG/Ke+9pXm/zOe4+f742NbxvaW7Wl598ogHF9126aLTLdej/zjulY6GScR6H1teXttXq1av1xksvlbajE7OybDV9unYwvG9paGg33dYff6ztDe/XLFumF595RscY/rZyxQqNGz1aW3/0Udm0q5Yv18tfz2+Td9/VtwOUteiIigrskkWLNMHldnb63ZcuWaLXv55X1yVLNKTi8xqTTNo1S5dq7vTp2tZmvvnWVo0ePVrHnHlmYT7vvafX7rhDK7/xDfWeOVMHG6Z12mc6rV6tIyvL1dCgFSeeqNevuUa1TU062nYOBfPnzNE7o0fr8NWr1c3w9zfHj9cSlxnDx5j8bdaMGfrw63VYd968svPv5Pfe0xc9e9rO58033tCS1au14ZQpZb/VW2+8oS8ND/X2WrhQxs4t3nnrLS2srdWe8+fLbPzwNatWlc7VQ047TZ1aWqSvvtKMX/1K07++ke62eHHZ8fTWG2/oy8rsywiNGTNGkrTbjBkaWPFZ86pVKuZfLVqyRFNff7103Zo7e7YmG/abvRctUrGmMuGtt0rXJbNz9/cM8zX6bMYMTfVxDjbqsmyZvlvxt/cnT9ZuHuczY/p0TRs9ut21aeyYMWpcbz19Y9o07eRxngvmzdPbo0e324drGhu16sQTNf6663TMDTdIkmofekj//dGPtO/ixdrw6+lWrlqlcS62zzF//7skqe6228r+/uGUKZpd8f3eM2aUnQskafyrr2rVrFnqvHKljjD8fd7s2fpqxAjtWplpKGn+3Ll6Z/Rofevzz7WFYwkLXn7uuXbXkrfefFNf2lTujdvunXfe0UKHjNdvTp2q7QzvP373Xc0cPVrK53WMy+yXL+bM0bujR6u2sVFHP/+8JKnukkv0zLbb6runnlo4rhcv1oxf/ELTTzyx9L26tWtt64xjx4wp21fNfh9J2vOLL9qdX6Z+9JE+s9kXtps2Td+s+Nvo0aPV7/33tZfJ9GtbW9vVy3aYOVNbff166apV6lvxnVUrV+rdsWPb7T/PPfuscmaZmyYOXLasVNdsWLNGL3xdhm/Pn69Nvv57fUODimfw50ePVmu3wtXD7Fqw7OusZav6pyStXLZMr4werZ1mztQ3DH+f9vHH6r54celv+Xy+7Nr4fYv5rVizplRHf/3VV7Xiiy90tE2QYvy4cVo1c2bp/b6LFpWO8edffFGtXbtq8Nq16qHyOmSR2XpXKpbbWH+TpPffe08bzppVOte//9ln2vXr1zOnTdOa5cu1s2H6ebNna7OKeb/68suqL2Zu5fNl5VldX6+P33rLsm5Z1NrcXCrjjjNnasuKz2vWrtXyE0/UG1dfbTuf/2fvu+PtKMr3n1PuvemdVBJC7xCEAKE3DQQQBBVFBFG/+FNRJIigXwQV/YI0C9WGBVQQFUQNIL0I0ptUpYYSQiBASEhuO78/NnvP7Jx3Zt6Znd2z59x5Pp/7uefs2Z2dnZ36zPO+79qPPprohx964AFyvAeAdR5+GJsL3x984AG8Iqxr4rEQQGK9AESkzIIFCxr6y0ceeggLx9O1bfLdd5NtzYRVq1bhOqJtb3D55dh4yZIoP/vth2t/85tE2T/1+OPYQCKd/3n77djtuOMAAOVbbsE/fvc7rBozxio/Gzz1VKIPpcb09R5/PDGvl+cHADD26aexi/D9mf/8p2G8l89Z+OKLeGjBAgx5/fWGubGIfz/6KDqWL0/k4cbrr8eqceOwxYsvDrTp0qpVKEmEJQA8/thjeHbBAkx74AFsQ6T/yssv437G2Lvzm29ClIi98MwzeHTBgoY1sw26e3oa+gAAWP/ppxNrH7GvmrtiBYY0XFHHNQsWYG53N+K43S+/8goeWLAAB/z+9wCAytln42870+zC2g8/3DD3+c/TT+MpTfls9tJLA228JLR9ANhpyZKB/rrS3Y1rhXbYTlhh4RapJUnLtDj99NNx2WWX4ZZbbsGQIXT1/frXv4758+cPfH/nnXcG/GCOEneM2wT9wmJwow02wAbz5mnOlrBsmfGUUaNGYRdFQ48x5M03sfNOOyWOjRg2DOvMkKcGwNydd0Z1RJJeG1apYN7qfJdGyNQbjQ3WXx/rWTzrGCka7pYbbYQthOurkon3Buutl0i/8v3vK9Me2tU1kP8BPPSQNj8z1lwT0xT5rwqT4zUmTMD4OXMSv++w/fao7bAD8NxzA8eGjxoFvPpq4rwpEyc25ouB6le/qvyts6Oj/q6Y5oRbbrFFoqxFVC69NHnvSgVThHdVHTuW/QwlTQAfMY2qMKkbPmwYdt91V+oSYzoxao88kvheFepzjLJUH4Z1dWHe3kkqYtSIEZg3b17DuSOHDKmXuUVk9Xn77KM0N5Tr+4QJE/jlbFgYjxs9up7WCy+w0hxWrWL99dYb+F6rVFCSTDZKtVpDHnfaeWdgiy1QuvfexHHjsyhMtcb390fXMgfjqWusgUnz5qEqqXC222or1ObqpqSroTDRmTl9OmbEz/DEE4nfZm25JbY0PN92s2ejttdeKEn5mj1rFmpiv/aTnyR+33r175WLLho41veDH6B8xhkovfpqVG9XX98hkLIbrLVWvb+UNiBnb7ll4p5ZoaenB9dffz3e//73o6OjA5Vf/rLhnA6hTk2aOhUThLY/fdo0TBXL5vzzBz7PEcY3qu+uKsya1p05E2unfXbZbBnAFptvTpyox3rrrot15s1rGJv23H13YMoUlAnizoQpkyYp29rYnp6G3+bNm4fKD3848H3UqFFOY1SMzTfdFJtK15fuv7/hvJ133BHYfPMGM8Q1J0/GNGKeAgBTJ03CpHnzUL7mGnZ+dt9xx4Zjs9/3Pnb933rrrY3nlqXn22TddbHRvHlWppLTJk/G5HnzGoIZzJs3Dx2CT+kNpkxJzrMM/qb33GOPxPfNNtus4f0AQOVnP2s4tvEGG2BDzbOXb7ut4di8efNQUrS9oeI4FKdx000Dn8dNngw8/nji95FDh2Kn7bdvSGvvD3wAYIoeKgIpNUToLyuCC6wRY8dGLk4AzN1rr7pKncDYsWONpqSjV7ej8t//nji+0YYbAkPr22mlcjlRJqqxfNSECcBqEnKnHXZAbeutteP+zjvsAGxRX/ZXzjln4PPcefOAIUOief9rr6GzWnVq8/E11aFDE8e32GwzlIUYB5vPmQOcey4ARGsQSdm45sSJDWnvsuOOwKar6SFpTB4+bBjeN2uWMX8VIY/l1RsBMiYQcxgZZYH8BYBZW2yhHO/LTz2V+L7Vllti1rx5DWMhgMR6AQAqq+tC6b77Ese32GILbK64X8lx87GLWiMBKN9+e/2cd95pOGfD9dZDWZrD7rhDcst8z+22A9aVKWI9ytIzz5g2rWFML0vz+ulTpybmBwBQGjs28X3dtdZqGO9LklXo9ClTonQee0ybx8222AIlyc3KnnvsAUydivLf/qa9FgA22WgjbDRvHkpvvUX+Ho9vJlQkdeJaU6di+rx5yjkPB52dnXR9+Pe/E98T6zaDz+195s5NrJ2nTZ2Kyfvso0wvcd9nnmk4tv5662Fdi/FITFsss3JPT7IdthHesYg/0ZKk5YQJE1CpVPDaa68ljr/22muYTAUzEXDWWWfh9NNPxw033IAttlDrAbq6utDV1dVwvKOjoy0rTa/wTJVyGRWbZ2Q43i+Vy+gwnFcC0CERWKX+flSIBXlHT0+Dr4jSypX1d8PsCG2fVSbYqr29SXMfKU8VgJ1+qb+/sW4ZCL1yqYSyKn3RiS8iFwqJpMvlKO/Ce5HJiYFrXeq8yj8bpGdlBm4YyC8DpVoNJaEjLA0bxm+3mrrToXjXpVrNWL+V6axGnzSpKvX1NZ4n1/n+fnRI+S3VamT6ifRs8lqr0X69gIaJuVVdMZCW5VqtnhbTZ11p5UpUhPIoVSoNi3CqfDpGjCDrlrHOKNpnqVyOrmX2Q+W+vuhZpbxW+/t5dV7lNqG/v97/SO+8WqkY066WStE5ct9Rq2n7vYG2KjxP5dOfBs4+G4CibgOojBxZz6+0wGaXhScMjPXiAmvIEGDlysSiq9zZibIwV9C1gap4HtV3K8hnm3FECaIuVh0CGwyMmVJ96ojrE1NJlsga1GVWKpUa26v0faC9OaJSKjWWL9FHdlSrDWMmEJmjqd6dy/gpm4YDduNfNc6nBSq9vVEZWPgYG+ijpXokv4uGeZZh/JHH0oF+SAaRV2NbIUjZjo6OBCknotTZqa1bZaK+l2q1qI+U72PxDhPpUXPD1Xnjpl0GjIT0wNgoz2NLpUT/kWiTmvoils3AO9Sc3/AMQpvqGDIkMRap5jkmqPJdBRJjTlVQ3VV6exvqeJmqR+KYKs87+vtZ/a3qXSfO4fR30r20/YfUd8lzg8S6V2qbpdW/N8wRVG02BaixAAAgrdUb+h+g4RnleXNHd7d9fuU6oVuPxeeI81pFOpVarbEPk/I7MK4YNsarlUpj/xy/X0Z9HOi7Fee6rg8rfX1Ruil80w7UPRnSvDxxjmHjpqNSSa6dy+WGtm7T7xg5Bkk4p1pjlle7IGpH/snmmVoyEE9nZye23nrrRBCdOKjOHElNJuKMM87AqaeeimuvvRbbbEMJnQcxmhWIx5RWXx890Vqxwo8jeVsnwPLCT44ebnLMrCsDXbRSm2tU5+UdiEc3mLoE4tGdZwrE4zNADJWma3RNVXqqfFAOu7kOul2jh+veIyfPKpgCq4hpcduzHIiHmmhReYwn4mkD8cj35eY7Jh3lvHGDz6jKXRfV2KY/lq+Vy0mVtnieuLBRlYuoQpLrXRGih8dWFnJwHV+BeNI6u9eBSsMlXVOwDpfo4bp8qBZWLoF4bO5vG4hHZbrtEnCASst3IB45vZiItwlKwQ0GIefH9CzcoB6cgBUybAPxmMhS6ve+PrpMXMpW91kkTE3vgArEQ50j3yP+rgtQoQJFQLZqIB75fqZAPNSYaLsGShOwxma8l5/FZp3iEojHNXq4CqYxhyp7OX8Waq9EurrvgFv0cJtAPBz3Qdx3RoFaJ+ryxc1DXOfSrJtU45xN9HAZ8vOUSmyLKadAPLq6K+dFIwQaLGhJ0hIA5s+fj5/97Gf49a9/jSeeeAKf//znsXz5chy52v/g4YcfngjU8/3vfx/f/OY3cfHFF2PmzJlYtGgRFi1ahHctzCTbGmIjt+1EuAMrp3OjBlpqgFuxQj3p5t6Lup8tbKOH2xBvpvNV16jOUw164j0o0tJ14uSbtLSdSImTEJtncMkPd0Jqc19O9HCKtIzTkc8VJ6a+SEub+i0jK9JSJpMpcEg2DlTvPCaxuHUifjeu0cNV5dOs6OFUeVar9QmaKr+i+42ikJZxPioV2rTTNXo4Vf6qcvERbdWGJNVBR2wAbHUxeS0FTnou0bJN99dtIlKbqybSMu2Gjg/iWoRq09emTsTn2pKWnEjXuu+6dHxHD6cgvgtV9HCqTGzeoWocU93bRI5zSEvVhoS8KctdL1DRw3XQkTdxPxD/Tzt3p/ovsd2JYxEVPdxESlPjrW0ZqOqLy6aEDWmpK1suAaa7n6ocXF2vmVxM6Tb3YzB9hyfgKjSQQW2CcdPh5Juz9lMhPifthqrqGX2Pa4C+fXD7wBi1WuNcVJVnKm1TGdtwAha+H9sVLWkeDgCHHHIIXn/9dZx88slYtGgRZs2ahWuvvXYgOM+LL76YMIe98MIL0d3djQ9/+MOJdE455RR861vfyjPrxYS4MLCdDHA6Ha7SkiJuVKQl1Yn39UULw6xISzkvstLSRDzp8uWihCmq0rKvr7FsVGlmobSs1ZKDuavCgZsfqnxtwZkAyfWvv19dx+TjOgJLhyKQllwysaeH964p0iG+3ga+lZby+dz8ZEVaqkgaE2lJlWelYiYtxf6naKTl0KE0QSGTlro+X3w+G2W9j4m9iypNl5c0CyEqTZsFuk75pYKuLXFJS9UCTqe0NClVKORBWsrpZUlamu5t+t2mXZjStiUtdfVAdZ0PpaWKqExDWprGE1X9ptRHqt9EyEpLU5tVETPiZo/thqAK1FxdLB8XpaVuXsvd2I4J4lJJXV9agbR0UVqOGeOmeOSQlqb5tQtpySljDmmZRmlpKi9q7W0zJvkiLVVKy2aRloTrqIH8yNfLc9H33ktuasRwUVrabKYG0rJ1SUsAOProo3H00UeTv91yyy2J788//3z2GWpltJp5+Hvv0emtWhWpYbIiLeXFRLOVltzJBbXLS01yfZGWJhm7ahLOvcb0W09P8t3kQVrmYR6eRmk5GMzDgcY2aUpb/N5s83DfSkuduVqeSstyOfozkZbi8aKRlsOG0f1jHubhWSktXfp2k7LGlQi1WaDLi1COGlNXf0zElHyMUo0USWnpojzN0jxcdZ0KaZSWrqSlivgwtRuV0tJkPmyCao4kfqbMw1XPb6O0pOYUac3DqbmKDA5p6cs8nFpriO1OVNVTSksX83AbqzQb8YUqDd13EVmYh+vS0JGWDoHcBiVpmUZpGZdFmo1rVdoqFME8XFwHd3bS61Sqr8uStLRZ1wbz8NY1Dw/wjDRKS85AXCrZSdFj9PfzlZaA28TbBrZKS5uB3EZ5o7uG+o2rtKT8a2RNWvpQWpoUrq2otKQGT+q5uARcFqSlDSkvIyvSUqx7qvyoJoC+SUtunSiqebhKPWdSZsh1UHbir8qvmG6rkJai2TvAJy2p9p52YaCDL9IyvkalxnJNU3Udh7TkkHS6+sPdMFQt0Dnm4TZ9YzN8WqZRWpoUfGl9WqrOz8M83ERoU4GnVPNWm3cozy+oNCilZRrSkqu05P6WpdLS9yaxSFp2diaDu/jwaWkzR1T1sTaw2VAuktJSB1W/ZvJpSb0rOX95kZauxKbqXi4+LW3G6iIrLW1JS9WGj+qcOC15PataE7mYh1soLUuBtAykZcBqFEVpSU0kuD4tgfrE27UjNUEe/EyBeOIOacUK4A9/0O8ichdONr+L56kGPZPS0mXiZJKxqybkOrhOnIHGyeQNNwB33mmf1vLlwOWXAy+/3Ei8+iYtqbxQ5uGq9+rLPFw3ULqo92LkobTkKnRURG93N3DFFcA55wD33afPowhTwBkZ994LvPYaTVq+8Qbw+98Db76pvp5DWrq8K9Xk1lZpGfcr8eJCRYaK+ZXrnS1puXBh1Oe+915UJ664AnjmGbs0AB5p6aq0vPHGqG5dd52+TYrvN64PS5ea897TA/z5z9E97r678XeXPqsISsurrgIee8zuHhzS8pVXov793Xf1/bGNeXh3N3D11cAjj6TL6xVXAE89Bdx2G3DLLXZ97dKlwO9+B7z+ev2YD6Wl62aP6R5cAkRHxC9ZQrcTVV6ZkZUbjtmah/f1AX/7G/Doo/T9urujNvvf/ybvF9dN0RzUN2mpasPyBqqrT0tb1VHe5uEiaSmSGhRpaSKl0ygtTe+yVAJefRW47DJg2TL6HGrMvvpqut6lUVr29QF/+lPjeL1gQTSvoaAqBxNpqYJJaUn1zb/7XfJ7XoF4OBstnA0PrtJSZx5uMwfMirRMu/lgAzkwJAXqeeT1rGp9m7XSMpiHt7Z5eIBHpAnEkzVpSXUEJqVlVqSlq3n48ccDF1ygT9uFtLTZueUsMn2Zh5s6V93kTgXdeTak5T/+Aey9d/T50UeBzTbjp3XMMcAvfgGss06j+iHt4Kua8IgTdso8XG4HKvPwLALx5GUebrMo5uxGyu1Wtfj+0Y+Ar30t+lytAv/5DzBzZv13X+bhAHDAAY3nr1oFfOQjwM03A/vuGy12KXDMil2Ulq7m4XJ5yqRl/Lv8rsTyT6O07OsD5syJNhe+9CVg7FjgO98BJk6MNo5EFY0OtVrSpyVlhmwiLcVyFtvyTTdFpEqMK69U50NM86CDIuJq772Ba67R5//CC6M+SwWXDSkVsZEnafnxj5vPkWEiLWs1YKedgOeeA448Evj0pxvP05mHq/qoW26J/mxA5fVPf4r+Ytx1F7D99rz0PvvZiAjbaSfg9tujYz6UlqrNHu51KnDHFR0BcOCBwD//GfWrV11V/91WaWmal9kE4unrA371q+h9ABHxNHly8pzTTwdOOaUxvV13TRKZ8r05pKUvn5bc38T5pC+lZVbm4f39etLS1jycSt+X0rJUAvbcE3jiCeCII6I6pUojxs9/Hm2cdHUBzz+frHc2SkvqGT78YWDHHZPH/v73iLh88klggw2Sv7kqLVVwIS0vuij53YfSkiq3rMzD4+8cslWVz2YrLbMiLFXzAbHecZWWQLakpW68lX8LpGVQWgasRlEC8VAds4vSkjvxtn1WSomlSy/Oh4mwBMw7+hR8mIeblJZFIS11+bC53yGH1D//6Ed29/nFL6L/zz7bqOjLQ2mZ1jw8vod4r6lTo/9DhtD5UpWtyWzOhDzMw1V49136XvLk9sEH6597exvVar7MwwHg/vtp5eHNN0ef//539bVFVVrG56lIS3mh4Iu0XLQoIiwB4NxzI8ISABYvblz46yAuNLu6aIKC69OyVEqe99pryfPuuUefjxi33Rb9v/Zafd4B4KGH9L+nUVr6Ng9PYwrpg7Ts6YkISwD45S/9mYe7gFPXTz1V/Zuc9z//Ofp/xx31Y3J5x/1mFkrLtObhXMW8eO0//xn9/8tfkr/7MA93VVr299cJSwD49a8bz5EJSyCqD1S/JW6+5OnTkitykM3DbTaXxe/NMA83KS2zNA83EdB9fRFhCdB1iLo2VnqvWgX87GfJ39IoLWPE7U0+lwp0q6qHa6yhvq/u3vK6RWfBoUKrmYdzlZbUtTZKSxPBmYa0TLtmUkE1HxDL1cY8PCgtC4NAWgZESGMezp3kuiotbXxa5m0ezvXt5pqXPMzDxeO+fFrmrbQ0DdxiXRHPHT/e7j4iZEIoC9LSZDaiU9DqJj7ivU45JTKVv+suOl+qd2lSoJhgWpiL+fdtHi6TlqrFt/yMCxfqf49hax5O3Zs6pjIF45CWnAm2Kl2TykTV75mUlnK79eXTUkVAADyCK4ZYrpVKOvPwcll/b7lOqvJhA1szXA6KoLR0OcdEWqoU6/J54v8YOvNwF3DSGj1a/ZuYd3kTR7UIzZK0VF2nApe0VBEAuvR9Ky1VPi05gXi446UqzyJp6cM8XLchoSItde1dVoIWQWmp23iI+4iOjuRmFNc8XEda2mzMmJSWnGCDurJ+6aXk9zQ+LU2INw9FqJ5rrbX0aaneuYm05PSnRQrEwzEPj79n7dPSVBdt1cMxfJCWtj4tXZSWorVNDBuflibo6oeQl7u//nXUuJYVbYxAWgZEyFppySV1bMzDqfR8m4frTGzl7xylnA6+lZbyeZxFZl4+LeM8if9N0JWFyURC9QzTptndR4T87n3v/FN5SRM9XDwmE9Vz5gCjRtH5slFa2tR3n+bhYv/FCcSjUlqaSEvZJ61P83AKcn8jk6Yxiqa0lMkMORBPfI2N0tKGFNJFk7bZrRbLtVxOT1rq8qUipMU0bPuYLEhL1aK/6KSlrv709ze2fd0mIrXIzFtpKZsVixDfgdxnqDZ243bhYh7uOxBPGvPw/n59W2qm0tKVtKQg90dx2jpygau0NKnDXEhLmfikYKO0dCU8VBtxstJS/E+ZspqCZVF12JfSkmNNoruXTFqa5j0ibOusfC/qfjFMpKVpvqU6r9VIS59KS8rK0Wbt1a7m4UX1aSnGyVj9W23iRCzabru6VdwgRiAtAyJkHYiHO2BTg0AzA/HIO5ryYsJEWrosAESkkZaL1+oUeeJ5Kv9MtuAQA7YLcV9KSxEjRqjzZYJYF/JSWlLPoZpwUu2Gcn4dt30VodIspaWYvqkdDR9e/8xRWi5fnvyuUgzJ982btJTzowrkpbqPzscW512pFk9pA/HEacubDT59WqrgSlqqlJZc83CT0lJHtMT5kAO/mWDqk4LSMkKtxlMbqQjbZpCWEyaofxPzJ/cZKnLShbR0VVra1ksb8/C+Pv18oNk+LX2hWk32Rz7Mw1X1W7cpqxtHbAPx5GEe7kJa+jIPt1VaZkVayurHvJWWqno4Y4Y+LdUzmfoLTt+cVyAeX8QmV2nJFayoYDrXdf2WpdKSM16olJbUtXJ7U7U/H6SluH4R544BAAJpGRAj60A8nF1W6t6qHev33qM7CCoCps5U0JQneZFoG9ykmUpL8be8zcM5kypfSstajU9achQc3OeVd9WbobQE1ASSTmlJkZbUuwfU7zItaWmaSLqSlj59WsrPKKuWTKQlpy6pyh1ofIdplJYupKVqwmpSZsjlqSIts/JpqSt336QlV2lZKrmbh8dp2Po0ylJpqVpEtSJpaau0pFQveZuH68pZp7SM65APpSWXtEzr05JLVsTHfJKWPpWWLn2wCrEJs3hP6h7ivbhjbhbm4b6UlmnWKmKaVBvOkrR0UVqq2qKNKICCyTzcp9KS2mhzNQ/nuongvCsZraq0NJGturVfuyotVXnimofLfV0a83DbPo9QWgbSso5QEgER0piHcya53AGbS1raKC11kWLTkpY680s5HyboFkk211C/Ubu8FJGXVyAeMd20SkuVf1MR8e+vv07nwXTMBJsJqQocpSWHtNRNMig1Rtz2bZWWeZqHZ01aqhbf8vPIqiXV89ooLYcOVf+WVmmZ1jxcRfan9WkZp60jLeX32AzSUt7QoQgKmbRUkXlpzMPjNH2Tli7KryIqLTnwQVrqSPy8lZY6olDMe5ZKS9UGmakOmO7B7atUBIBuIZ+X0tKnT0sK1aodaclRw+qUlqZrKMg+LW3rhU5pSeWTA90Gto60lM83kdJUGeaptNS9lzfeSH7PUmlJwTV6OJe0bHXzcK5PS45gg9osULVzClmSllkpLTl9YFHNw4PSUotQEgERimIeTnWuaQPxpCEtTQ6vxcGQM2Dp4FtpKSsBOYvMPH1a2i5yVedxzDpiJaSsOuHsaHLgwzyc8/6zVFoW2TzctOCyNQ/n+rSUvy9ZwvOZmRVpaau0TGsermqjPnxaUqSlr0A8RTIPj8s5jXm4q9LSVtHGgWrBM5iUltQiM2/S0uSjM0YzlJY2KnrO7zakpavSUqV496m09G0ebkNa2qh3TUpL6hoKWfq0BPwqLUViMiYr4/znrbRUvQdV2ro0OL/bKC1d+nfd5qQIUz+uurcP0vKdd9JbGXKEB67EJjXerlzJ62vTKC1N43ozSUsVVOlyzMPzJi2D0tIKoSQCImQdiIczYKt2IqkJvCkQj5iOT6WlDJ/m4ZSJse0ujeo37sDVikpL7g5pXx9PKecyEc7KPJwzmZHbR16kpYsyWIRPpaXYDtOYh3MW3yIJoHpem2ABOtJSvn+zlJa2pKVcnu1uHi4HGKLyYlJacqKHF8E8XLWIsVFvUGmq8sqZsLebebhP0pKrtHzvPTs1mJiGnBe5LPM0D6f6FRGqciuV+D69xbqhih6etXm4rU9LTv3kKi25JtpZRg+n8smBSmkpzhuyMg/nti0TAc2B6VrR6ihrpSVHLMCBq9KSozLu62v0dW4Cp5/K0jycs/ah1n5FUVpmsWbS5cklejjQ9EA8gbSsI5REQASbicDKlcB3vgOcey5/kstVolGTdRVpyVVaDhmiz5cONkpLDulkgsrMknu+6jeu0lLn0/KSS4Cvfx245hrgmGOAxx9X37uopKVu8vT009Fz3XILLz05b1nsGnKUlqrFNlX3qEA8rubhl17aeMymDHySlm++Wf9sarMA3zycKm+xDqme15fSUi4juf7+6U/A174GLFpEX6/zackh7F2VllzSkgrEc/XVwFe/CjzzTPI3XX1ZujTqmy65hM6PCJnUfuCBqN0/9FDjuVzSUmw7t94KXHdd/bs48Uzr05JDyIvIgrRU9S/NVFrecQdw7LFqUh8wk5achbvqGX0rLTlpxec8/HBUf0XolJZxHaIWsqtW+VFamkiCLM3DXZWWAE1auigtAbq+FV1paWrbMVx8Wh5/PHD55fr7x8Tmj34EnHpqfe4h9q/i59//Phr/ZHNnHRYtiq6RCSodabl0KfC97yXPt40ebjNHPO44YPFi9/py6aXAmWfqzxH7BdN4/uCDwJe/HI2RLkTThRdGY/orr0TfbQN3ifm6776ov3v0UXV+OQQzBdtgPFmRlnL53H57VP7yvcT8UkFF4/N8KC1tSMs77gC+8pVoTRWDIpLTrpls1Z8u5uGXXgpcfHHy2IoVUZ363veAc86pPxvHp+WDD0b198EHo+9yud5wQ73s4t8CaTkAYgYeMChh49z6hz8ETjkl+rzOOsAaa5jT5ygtAXpRFhORnZ31iaBJaSn+1ipKSyoNU/58mIeblJZ9fVEHe/jh0ffTT4/+X3JJkiwSkQVpqSpLG9JSdkAuprnHHnSkQw58kJac+pPWPDw+V0zXRWm5cCHw+c83Hm+WefiECcBrr0WfOaSlvGCJ72VSDAE8paUv0lLuf8R7v/wy8OEPR59//Wv6ep3yg6OUTePTUuzzuaTlokXAAQc05gvQ15f/+z/grLOiz5ttBowcqT5Xrs9bbx39P+88/QKDax4OAHvvHdWxYcP4Sstm+LT0qbTMirTkKLSAaF5y8800+QyYo4e3qnn4rFmNv4l5l8c8nRm4vBlcqejrkGqsMZWlL6Wlb9KSa2limjMBPNIyjdLINhAPp06pCAqdJYnuGcSyWbQI+H//T3//vr5o0+orX0keV5mHf+pT0f/nngOuuEKfdowjjwTuvbfxuI60pGAy/0+jtPzjH2l1Jwf//jfwyU+az1u4ENhmm+izYTyv7rBDlPdzzwXuvts+TxdcEP2/775IFECV3bbbmtOp1YDZs+tpUvPZ+DwR3L757beBqVN551L35ZCWLsTmLrvQ14j93Nix9MZnf7+6/+X0PyZVJnV8552j/5ddVt9Qp4jkZpKW3OjhVBm9915U/046Kfo+Y0Y0F+coLd/3vuj/j39Mrxu/+tXo/xVXBKUlgVASARFszMPPOaf++fe/53U8VMdJgSIt48lWV1edDFDt0lAqAl30cBPyJi25k3XdPanfdKSlyc9Hfz/w5z83Hl+6VH3voiot5XyJz+5KWAL8+q2Dq3m4asLpyzycuudzz9Hn5mkeft55wLhx0caJrDQygau0pCa7HJ+ZNtHDbZSWq1bV7/nww/XjixfT19tGD+cSURyfluK9VaSl/HxPPtmYpxi6+hITlgBw1VVuPi1Ni4lKhVaiU6QlUN/Q4SotdWR7nIZvn5YuSh7VIiYr0rKnh59PsU3IGKzm4fKcSuXTMv5NLGvT3Inbb9oG6kmjtKQ2Q3R5E8E1DxePqRa/1Nwx7SJdhK15uE3wFqptU3MG3f0A+7l3X1+0ppChMg+P8cc/8u9BEZZAsv/1QVpSZWjz/q++2q1/vuEG3nlifTCsO0o6MtYGt95K32/CBPq9yxDvbTO34fbNtgrQrJSWnPKWN2dUQYyoemdjHu6itIwRCwnEe8Zohnm4q09LGStWRKRjjNjqzIdPyxivvBJISwKhJAIi2JiHixMR7m4gd8CmFm7xBF5cHKoaOqUiUO2EA37NwzkDlgkcYoH7O1dpaZLM9/fXzTq44Cyu47ynVVpyTTpkIkVMM+2Cs4hKS655uIm0pJ5LLPPjj68HwrEpA9PCXMw/9Sxbbhnt4j71FE/tLSKNT0udn8gYpn5KhI3SUsyT6n0dfXS0CADsfVr6Ii1lEkgViMdkFiVCV19EFyAvvaSvh2l8WqpIS2ohLatASiX3SNiDWWnpy2G/ieRLQ1oWORCPXK42Skvd3ElMw6S05KiNdL/bLE7TKC255uHiMRUxR/XdPpWWKvNwVTvi+OtTzR3kcuauF0z1R4Yq7yqlpU/YKi0pyHNuEVxXWqr0uODeQ2yjNvUyLdEk3++BB6L1xTrrmK/jKutM8xXb9LnnmzY4AHvSUkfAuZKWLkpLLmnJVWQ3W2mpMw83lQtlkSCnH8OUlq4MAmnZgFASAQCAmo3SUhzIuSoILmmpMw+vVuuTJdUgRCkt05CWRVdacjq8+DNHaemLtOTs6jdDaalaTKVRWQLZkZYcUietebjJpyX1XGKZr7lm/do8lZbDhkX1tVrVu4CgkEZpqdvhj2Ga6InQkZbUpkmcJxUBNmxYvc9Lq7RMYx7OUVpyJvQxdPVlzTXrn19+OTvSkmojqvYT94Fx2ZjMw3VwVVq2g09L28WNyjdo1j4tbQJFmWDj05KCbkPQp9JStelnIi1t66VJOSMHfNHNCXQbIy5KyzQ+LbMgLdPMQ1SkvKt5uIvSkkovb9IyzrctaWlyx2JLWrooLblqQVt/1zFsg9VQENPv6uLXE67iWu6PuKRlFiITF6WljlAW7y2KB3Skpco8nNNX2JqHc/uJVvFpSUEeJ3UiBVelpZiXQFoOIJREQCOaqbTUmYeLAQ/EzkckLKgJuW5A9Km09EFacs2iOL+7mIdTZdXXB7z6qj4fMorq01JF8MnBCmyhm9Rz4bpLa2MerlNaUioy1T3FMh892s4cOkZan5bDhtU/64JtUVApLTk+LU1tXryOUx425uHi/VUTGdH3om7HPmvzcPEcFWlpQ2boFh7TptU/2ygtTYsUrtISaHwf8lhkMg/XwZW0TLPpZbomT6WlzWJS1Zf7NA+n6q1pg9MGvpSWKjWl7jcf5uGm76Y6wiX3KNKyyEpLH4ph8b6+SUud0jIv83ATaanqQ22DqMjwobQ0mfUWSWmpsxLTzWV1bqG4oDbNba/THZfbHpfIzUJkwlGZ6+ZBqvcpb86MHavOo+r9ctYsurFE/F3MFwXqXmk3+mxJS5/m4VQddiEtg9LSCqEkAiK4Ki2LYB4uRk2jSMtmKi3TTlJMZWZjHq4aGMUBXRU9vAikJUdpqQvAoVNa6qLOcvNWNKVllubhYpmPGlVPI2+lZYxmKS1NpGUzzMNFci2tebhqIWxrHs4lLXVtSFdfRNLy5Zf15S4uTk39u43SUgZFWrpOPuN8FCl6uE/SUqdCslVaqvryLH1a9vbyAoBxkSVpqYoeHv/G3fAV0/dtHm7qX+TjNkpLHz4txbqhWvzmobS08WnJgW+lpYt5uKvSMu3Gc9bm4YC9z8S8lJY27fOtt6yz1ABKpcYB102E3PaaaR7uorQUv6vep7w542IebqO0zIK0TLvRl0ZpqSMtTZvLKvPwQFpmjlASARFsfFrmbR5OKS3FQUgkqigVQRqlpQ1pyVHKmWCz42n63UVpqSItVYE+VMhTackxkQBo0tKn0jIL0pJaHMtwMQ8X7+ViHi6W+ejRbubhpomkibQUyb60pKWqzFzNw03+xURkQVpyzMM5/ZWr0lImgVQ+LbkTXkBP5Ijv/623+EpLE9FkQ1rKdacISsvBaB6epdJS9Yy9vX6VlmnNw3XvIgvzcFO/aUtact6FmK6stBTHJ7HNmUx0uUpLDrHbLJ+WWSktbQmCOI82UL0bjtIy7RzONhAPBZPSMm2gFw58mIfr6qUP0tJVaanaeDUpLVuNtOSYh6dRWtqsvUzjOldoUwSlpU+fllQddvFpGczDrRBKIiCCPLHTIW/z8Bgq83CT0rKVzcNN13MHCN3AZSItXRZjzVJa2pKWvpSWnIHOBFd/OC7Rw8W6kFZp2Yrm4bJfpqyUlpzysCUt47RtzcPTKC0pf0S6tFRKSzHPlNLSNRCPSWkhQuybbJWWOvNw1X18kJZxPooQPVy1iCkKaemitKzV0kcPz0NpKfZzHJ+WeZmH+/ZpaUtaiuSSvJgXVYIm8sJFaZmGtEyDLH1aUuSqeIyzXlBt8ujAIS1Vaaadw/kmLan30A6kJdcdkw7i/VTjp+k6QF3nW808XLd5q1M4cpWWXLKXgi+lJXWvtBt9XOVtDI55OGcd9957uSota4G0HEAoiYAIeZiHczoD3cTfRmkp5qmVzcNdlZZUOhzSkiorW5UlYEdacicKqvNsSMssfVoWTWmZl3m4SFrmaR7eLKWljU/LLJWWKgJMZR7O6Vt8KS3lDQKuebiuv7UhLXWBtbJSWqruE+etVGqvQDx5kpY246ireTgnEI9uAeczEE9a0lI3BvhUWnLNw219WqYxD5cX8+J5LqSlT6Vl2jmCiCzMw3UbEirSUnW/ctmOkAJa3zzct9IyS/NwnZWY+F1+jmYqLWXE/aScf3lcbzWlJYe07OvjB+JJo7TM0jy8mUpLnz4t05CWujYe/xZIywGEkgiIYGMenqXS8oIL1L+Ji0aV0jKeeJiIuBhZk5a2Cjyu1F51z5tuArbbrrEcdaSlyaclB729wCc+AeyzD7BkCW9xbeMMWndevEAplex9WsZl4MOnZR5KSw5pWasB550H/Pe/6nMp0lJFgplIy1GjmhM9XBzI0wbiUSmGXJWWRTQPz9unpUsgHl+k5fPPq89dtgw44gjgAx9obPcLF6Ky996Yde65jeqiZiot77kHeP/7gWeeSR5X1b8rrwS23Ra4/359uu2otFy4EHjhBWCPPYDPf75eRj7Mww84IErbJ/lEQZVXsa/QkRO6d+FTaana7Enr0zKNeXhvb2NQljlzgFNOyVdpyfFp+Z3vRP3QokX6fFHIIhCPTmkppstRWrr48E1jHp52DkeRlraBhHRkH5CP0pLbp+tMkIW8l+Q8NNOnpQwVadnq5uHid65PSxfzcO7ancqj/Lvq+/bbA2edVTyflmmjh1PEu615uEnsEl/rui5vQ1g6HAloW7gqLX37tNShWq1PWMRBaMiQqFH39flXWpqUOHGnUy6rByybhWFapeWee0b/77mHzid1L5N5OAc/+Qnwu99Fn7/ylYgYMMFmt088X0Y8cIvkGQWdebhtoCEZtkrLWq1x8u1LaQkAX/safd/4XGrALZWiP46LAtmnZdbm4aY2pFJa7r47cPPNjcdl83Du4ls+ZpocpSUtddHDVffOI3q4nC/qOo7S0rTY0N1Td3+d6ubxx6M/AHj22eRvn/88yjfdhLUA9F52GbDuuvXfbJWW8SI4Luc0gXgA4IYbGo9R/QgAHHQQL800Ssu8fFr29tqNoa+8Em2g/fOfUdvff39g3jw/pCUAHHUU8NnP8vPjAtUiW+wrenrMlhZplZYbbQQ8/LA6n1y3GmnNw1V1iiItly9vTP/ee6O/uXP19+WSlq5KS+q5r78e+MIXgD//WZ83GdVqci4ez1XzUFpS18jwqbQU+01VH6pT13Mg9g+uSkvThmZWSktxHPBhHi58z4S0pFRqLuCSlnmZh3OEBxxi08Wn5ahR6jyq8mmjtOQShHJ+7747+qPmuXmTlhzzcC5pKdZbrtJSLm8uPxCUlgMIJREQIU0gHp9KSx1UPi3L5bp/O98+LTmdKqVei0EthnTw5dOSOi8L0jLO77/+VT/2hz/UScuJE/V5EtPg3ktGTKCJ5BkFndIyrT8yW9LSpN6IwVnsUfVLVA3svHP9s05pCdCDo05p2dUV/WVhHi6qV+VnvOSS5HcVaXnGGcC++wIf/Sjwuc8l0xbBXXzL5zTDp6UNaelLaSmfK/seNvm0pALxUAthXXnZkJayklYFWbn4978PfCzdc09xlJYqpFV3uxKM1LVZkZaAnRnZe+9FhGWMmKA2mVNzSct//MOvb0IKquft7Exu3KrK2tWnpeyra84c4KtfBcaNo++Tl3m4ylQ/Pi5b/6jwwgvJ79ttl9zU4pqHi8dUi18b8/C//pU+rkO1CkyeXP8ek3Zp6qZuQ8LWPNzFp2V/v7t5uE+fslmZh4v1Wjfux7CZ38fw7NMyc9IyDSGjmgu1k9KS49Ny5Ej1PIRqU1kqLVXn6YLsuqJZSkt5wz2uwybSknrPnPsF0nIAoSQCIhQlEI8OKvPwSkVPWmaptATMpGWeSkvdeaoBllJEcUGRGuIEYa211Nf6Vlq6kJZx/n0MnmncAICYHFLncZWWMXbbDTj00MZzVaSlKnq8DLHMgWzMw8V7i23ouuuAww5LnqcyDx83Dvjb34DLL9ebkKuUls02D6f6nzhPOlO6+D2K7d6n0lJ2/0BNXF18WurAUZbF4Ci9DSjJiq20Pi2zIC3TjqkuBEdWPi1119koMuRz4zL3pbQslfjP+MADwG9+wztXhCqv1Wp9/tXTozcdFP+LiBePHKVlpQKceSZw++36+9gG4jGVn00kdyA5J9WNh2K6H/1otNm62250OtR9TPcWYROIx2XTr1oFZsyof4/V5VkoLV3Nw7NQWqr6UJ8+ZX0oLan3IP5uct0B8PtnDsmly4tOaSmnVyTSkuvTktsmbMfDPEhLXR8vCjZ0Pul9KC3TkpYU0iotAd48lhI/qOZzqrry3e8Cs2fX0/FBWnKtSAJpOYBQEgERbMzDReRJWtooLfPyaQnoSUuKKNOhGaRlGqWl7tkBYOZM9bU+lJbd3fUJim7gju+n8sXH3YnVIQulJYe01E3WKxV6QSfey2R6RQ2qokk+YG8ezt1h5NZR1cJRXODoCCNVPaCeXefAPoYv83BdICCO0lLMA2eCrZqA2pKWclvjmoeboGqnrkpLGeIilSIti6a0TDumtorS0mZxIy9YOaRlrcZr+wAwfDj/GUslN/NHLmlpWkjaKi0p0hJQj6tcpWVa0tJEBnBJS/E3asyg5oompWUan5YxbE174/uuuWb9e+zTMU2fwFVayr9R8OnTkmMeXjTS0mQezukXslRaim2h1X1ayvl3JcPyUFpyzrE1D9cJNqi1t81YbWseblOGPtosZx6rEujYkJbiJkytRr8jk0/LoLRMjVASARFszMPFwa67O1+fltSOhklpaetMW4QNaanqPNOQlqYysyH8VLt5aUjL+NlU+chaaamKYk1BpbR0IU+4+dPlRYZP8/AY5TK9oFOpJjiDeK2W3OEV0+C+S+5khasGLpVoE3HTs8XQTTpk5GkeToGjtKSiyrqYh6smt++9l7yeus630hJQ1xtfpKWoxm0FpWUzzMNNPi1d8uSTtPSltFTlZ8QIfrm5+jFVEW/iJlRa0pKrtBT/y3AlLU3tPo3SUveeqY0UEVkrLW3JWh2q1ai/il3w+FRaUiSWyjxc1d5Vmzw6cJSWqvbkQ7UVIyYrbftrU2BOW9LSRWkZfFoWm7T0ZR6+alW9L9cJNnSCFc5YrRtLxN9N+aXgg7Q0bSoB9DOoSEvR7YgIuT8T09LNyU2kZVBaWiGUREAEG6WlONjZ+LRMu8DSLRpj0jJeTHNJyzzMw9P4tDTljzvIcpWWtubhaUhLGxMF1XmyI2oXn5a+dujTuAEA3JWWOmUJR2lpS1ouX14/5moebktacoh1yvybS1pS5KgKNqRlWqUlBY7SUiwjFYFqQ1pS/ZK4MKB8hJp8WrqQllkrLcU6RBE4aZSWcV30OQENSkvzuXF525KWqr5g+HB+vW2W0lKnjvGptFT1m3L+0/q0tFFa6vpwk9Iya5+WtmStDvFcbfr06P8rrzSaLdpC5/qBq7SKkZXSUjXH80laxvXA1k+mjdKSUz7cd+mbtNQpLV3HVhFimnlED+eilUhLMZikyTxcta60UVoW1Tyco7SkNtdszcN17i7SkJZBaWmFUBIBEWyUlq6kpU+lpQiRtIxJKPFezTYPT0Nm+VJa6kwEbHd/RTRbaamKYk1BpbQsMmmpMxuJoSMtVUrLNKSlrG4V0+C28SxIyyIpLSkVswpFVlqqzMOBpIm4q9LSdkzgKi1dfVrqzMNVi0yT0jIu5/g8n2rLZpCWWfm09EVayvd3VVrqSEvuM5ZKbgsOXz4tfSktTQtiOR/y+0prHm4aGyuVZIAiTrppSEvOpriLebiNm5q4T439Wvb3R8SlD9LSpLSkrpHhSlq6Ki2zMA+ngofoYGsebhoLXJSW3L5SZ4IsKi1tNxY58G0eXhTSkjOHtyU2OXNSnWBDt/azUVpyNy1syrCZpKWLebiKS4j7bVvzcO4mUyAtBxBKIiCCTSAesWHmbR5OdcyieTjQOPFudiCeweDTUvVufZKWJqWlyadlXx+t4CgyacnZxdTln2MebloQ6EhL2adl0ZSWnMWOeB9OW7Xxacnp87JQWnJ8WqYxDwf8kJZ5modz+jahDpGBeGyUlnLAkyxIy2aYhzdDaZkmMnCzzcN9Ki19mofbKC11z9Df3ziuyu8rLWlpWuiLbZNrHs4lLQH9ho8P83AXn5ay0hKI/FqmnWer5ooq83AXZZIKRTMP901aivWP4y6E+y7F87jloJvH6JSWPhCUlvpjHJ+WImwD8disvbJUWubl05ISEehIS6pdZqW0DObhVgglERDBxjxc9tuSF2mpMw8XF/4rVvB2wgHzs77yijlfWZKWvpSWWZGWOqXl6NF1JR4FH0pLHz4ti0xaimmq2pCufskElg+lpaxuFa+jFnfxAvaNN4DXX0/mwwRqB1O1CeFDaanzJRejt7f+TM00D9cpLSnzcNXCWzT19qm05ATiyZO0nDDBnL7JPDytT0vd+S5IO6a6qGhMPi2brbSUwSUtTRGwY9iQlq5KS1U/ZBuIh8qn7EJn+PDkbzZKSyB6N3JZyaQllxCOIT8/1c+K/Y+o6ksTiEc1V9TNy1TjkY3SMoZtIB6gMYK4D/U1pbQU0+X6tMxCaZmHebgP0tI0V+OQljZKy5Urk/MtE3p66udq6nfmpGWRfVqaytKFtIx9Jvb31/OpOqdWawx6SME2EI9P8/AVK/TEnA5FVVqq+qBmmYenaSNthkBaBkRwNQ8HeJ2qL6Ul1clQSkvOpBLQE2YnnQQ8/LA5Xzrlk+3C3NanpQ/SkkMIqaAjLWfM4KnbuPWi3X1amo6p0i+qeXitBuy2G7DGGsCOO0b/J04EjjqKX+YbbUQHRKGQhrQ0KS1Fs+G//AUYPx74+9/9mId3ddmp70xKS9mMRefTsrcX2Gab6L386192O/Jiv2/yaZm3eThFWo4fb05fbCui71bAH2nZ6ubhzVBaplncNNOnpW+lJdc8XLfQjDcp4t+6uurt09Y8HIisKeTNXd9KS7l/+drXkpGzxY0a3+bh1P3F7yZ/nyJM5uGtorQUn9+30lKVFvVZRBHMw02BeFQuDVTgvsubborG8B135Of50kuja269Va+0zMI8vBWUlsccE60pzj1Xfb78jrltfvlyYLPNgClTgEceoc957z1g1ixg113N+bb1aWkjGDGN693d0TzfhgiN0Wo+LU3m4bakZW8vby7hO4BjCyOQlgERXAPxADzHzFmSlqJPS8CfefjPf87LVzOVljbmI1ylpcqxPAUdaTlpkr6z9aG0LJJPS9W7oPLkorRU1SNd/jmBeGzNw0UH4CNGRP8p8/AbbwRuuy3qH+68s/7bL37BVwO8/jpw8cXu5uG+fFrKhOiKFcB++6nfuY15eLlME64quJqHUwvvP/4ReOCBqB194AN2SktxcUT1LVkE4uGSllRb4pCW4qLT1jxcTj8PpWUzzMOb4dPSh3m4jsyi/DLqCJSslZY68/C4bbuahwNR2xXrZaz2dlFaLlkSkSYisjYPP/PM5HdxAcolLal5oWps0c3LbBaUpjmCC2k5ZUr92OLFbuppEVRblI+Jz6Fb5OcZiCcL0vKww+yusw3Eo6s7pRK/n/n4xyM/znfdBdxxB+8aILpmjz30Pi2zUFq2gk/LH/846ku+/GXe+dR3gK7TF1wAPPEEsHRp9O6oc37+84jQ5MDVp6UPpSUQzfPvucd8nowimofrfPRylZYqJTqVL+4aIQBAIC0DYqRRWnKDHujS/eQnzddzlZbihDy+TgXdos/WN4yKdGo1n5b33RcN1BwiRUdadnTw1G0+fVoWUWlJkcBc0pKjtNTVL1lpSZFpYplRg7KcV4qMoszD33yTzlN/v52C4e233c3Dffm0VLUFVd2Nd7e5/mpsSEuT6bkqEA/V/kXSf9kyu8ltM3xaqsqb04foXFXEEPr8kq15+C23JBc4stlU3M7aRWnZbubhcttXkV/yQmPNNYEPfzj6k8Ehbk4+GTjuOOAzn9GfB9ibh+t+j88R+wu5TXJ8WlIwkZY+zMNFiAvKNEpLU2AjOT+2bdn2uXWI35noXmTlSj9KS8pcVUVauizyVUjj01KVj0020buIohDP2Q44ADj7bP51toF4dH1DpZKegOaAIrXy9GmZhXm46yaXbXlzSEtq3Hnxxfrnxx+n77toET8ftj4tRddAJpjGkhjxe8zbPNwmFkBW5uHyHFs8L/i09IpQEgERXAPxADylpXydPNn77GcjUwUddItGnXm4q09LbudrUlqmMRs2TRh8k5bVKrD55sCPfgRst505XZNpsm5SbzNwqs5rhUA8aUhLjtJS9w44SkuTGpEyaRDTF9PgLGYAnkuJGOPH56e0VJWlSn1s6j+4ph9U3lXgKC0pn5bUxFXsN6lzsvZpabsgUp3PSScOGqWDjmwxKS032yzqN2NzTXkcahfz8GYoLYtkHi6367POAq64IvrbcsvkuaWSeVE+bVqUxoEH6s8DkqSlbkPU9C7EZxAXY7K5GkdpSUF+X5zAOiKocVoHcW6o65OpsUv1uwiVeaUv0tJFaRnXA3HsWLXKD2lJtW2VulI3DuUZPVyFD384al82iMf7UgmYP583dgB+A/FUKunfJReadUfmpGWa8VBlllukQDwc37Yms2ITbH1auigtTefGczybMsxbaZnWPJyrtBRFAz58WgbScgChJAIiuAbiAZLmojro1FImwim+hhs93IfSkks26kxBqcWQDln6tFQNlKqJPKej1CktTSoTW6UlVb5pfVr6NA+3IS25kxTxmV1Iyyx8WlLtmDIP90VaAsXyaSnCtEDmTkhczMO5SkudebgcBMjG95EPn5ZplQ2m4yIslZYN37k+LeOxKA54Ip9XJPNwFyWPasFTVNLSNRCPTtmuUgrJfRNHaWlTL0TSElArikwmfeJiSewvfJGWWfu0lKHaUNClS80LVWNpXkpLF/NwcezwQVqq5ibicZV/SxFZKS1ty9wlH/J4z73eJhAPx6dlHkpLQLvuyNSnZdqxsGjRw6m660pa2uQlS5+WHPNw8fe8lZaupKVOaUlBnleLkIUEXKUl16dlIC0HEEoiIEIa83AXpSVFWpomBq4+LV2VltwJZJbm4aZ3wR3YdLttKkLIZhFA5cM3aZmVebiNSZYOWSstVem7KC0pBZj8WZVXWZkrXsdx0A8kzcNNwZ9UwSFk+IgermqrHR1836QxbCYkWfq01Ckt5b7Rp9IyC5+WJnNYHVxIy6VL659NSssYMREclJZ2+dDVBR8+LX0qLbn9J0dpGeePM97K/blq0Wcy6RPLWwwwoDIPt100ye4/8iAtOXmk1N+q33X3dyVdVM+dxqelqLTkmIebTKWpPMjtk6O0zMqnpW2aeZKWpkA8Nj4tuZueWSBrpaXY96RBVqSlq5CCmj/ZkGq6c3QYNcrNPJxzD9NYEsPktohC3qSlvHZRrXeodslRWtqSlkFpaY1QEgER0gTi4fq01JGWuk43hmpiWqkkFUN5Ky2zDMTTDJ+WMXwoLUMgHnqRwCUti6601JmH6wZjkfAyEXYrVvB8WlIm1r58Wqp2WU2bHlmah+uUlpR5OKWmMJlh6ogondJS7vdaRWkpk2OiX1ZbpWV3d7JvKaLS0pVgBPz6tAT042SaPjrOZzNIy6yVlirfwKZ3wVVaxnlK69OSG+RIdb5pXOESZOIimerPbQN9FcGnpa3Scvhw/e9UvZfnj+Lnovi0VKFZSkuOT0vTfDUvpaWMvHxapvFnCfj3ackl6OTzVd9V/YlsaeRDaeliHp6F0tIm30U1D7f1aSnPyYNPy8wQSiIgQt5KS7nxjxrlV2kpPoOL0pIbRANofZ+WKkLIRrmQh3m4SWlpIr6b5dOSWhxxBlo5zWb5tNSRlj7Mw02kpSqirYwszcNFNZIIHz4ts1ZaqiaTHNJSZVoO1N8hR2FeBJ+Wsv9OCj6UluJ9RNcpeSktbYjMoigtAX0/lkaRwSEtazU+sSa3a7FfkeuCb6WlT/PwPH1a+lRaUs/ENQ8X6wB1ftZKS58+LSmlJYe0HDFC/7svpaWrT0sKeZuHy2sGkzVIDNvo4abySbsp5QpRaTkYzcO54hHTek3Vn8hBKn34tLQxD3dRWprObXfzcNUaAGick3N9Wtq4kAoAEEjLgBh5B+KRJxGqDoRzTpro4SrYLLx0JIKteXiWPi2bobTMy6fl8OFqn6cxenpo33tZk5bcgdGktHQxD+coLW3NwykyijIP171XUSHEUVpySMssA/GoJiy6fsJmQuJbaUmZh3OUljbqufgdqiaNnEA8eSotbSPIAumUlkBybMxCadkM0lJVJ1qZtJTrK6Aet3U+LbNWWsqbUCrS0qQYEtU3cvRw6tny9mmp20yh3kvW5uG+lJaq504TiEccPznm4S6kpbyJH5SWNHwqLZuJrJWWRTcP1815qfNV31VjjrgZCrSH0tLFPNzH2su0bgLszMNd+rOszcPTKpLbCIG0DIggNt7+fuC554D//Cf6vmIF8M9/qhf2XNKS8oUnwtQwbaKHm+4VQ+xQnnoKeP75xryakJV5+IsvAo8/zj9fBxfS0sanpYt5eHyND6VlHN1Rd7+bbmo8lofSkusLMQvzcI5PS1ulJdW2imAeXjSlpY15uG+lJSd6OEXUyGZLjz8e9UPUveJzqd+uu472W9rqpKWt0lIcG+O66HOhKte/pUuBf/2Lf71vpeUjjwCvvGKfJqDvx9L4tIyJEF361DjtYh7uorS0McHmKi1NBLKstDQF4klrHu5Dafnii8CTT9J9BpeYMpmHq+pIXx9w1111V0hxG/ClJIzhorQUCba33gJuv11/3ciR+t+pMpCJj/7+qCzvuENdB4vi05LTBmXYkJZifkyk5ZIlyeuKSlqKSsssSMsiKy0XLwYeeCB53NTPit+ffjpaP4v5k/Hoo8nvaUjLoUOjMcHGp6XNBqNpAyyGi9LSx9rr9tv17kTEPHHMw++8k3Z550paPvUU8MwzyXyI+Qrm4VYIJREQQRw8n34aWHddYIMNgIceAubNA3baCTj22Oj3LJSWgLvSUiYtly9Pdloc8/B77wU22ih67mefTXYkpsVuFubhCxdGefnFL/Tn26gUOaSlrXm4jrQslXhEEXdwps6LfVrG/up0k8Bf/rLxWNGVlmnNw/P2adlMpWWWgXhk8jdGM83Ds1BaygqA556L+qEXXmi8j460BICTT65/VgXi4bR9cQHZbNLSVmmZp3l4by8waxaw4478611M/1TKi6uvBrbcEnjwQfs0gWyVliYyiCItdabVKtLSRWkZ14csfFpynkEk47OKHp7Wp+WLL0b90MYb06QcV2lpMg9X1ZNvfQvYYYeobYkbwL58WqYxDxc3vR55BLjgAv11vszDDzsM2Hln4JOfpNPhmuyL4CgtmxE9XCd8EH2Ein2Ybkwqlep/RUSWSktZ5Z0GvknLt94C1l+/cQw1BTyLsWwZsOGGwHrrRUSVam0h99sUScYtd5Ngg1r72QhGuKbkLj4tfZiHH3oo8L//mzzGIS1VfML557v5tBTHBbG/eOyxiEt57DF3pWUgLQcQSiIggtgonn++3mhvvx249dbo87nnRv/lSY1q4ixDvE7sYONFHoe0pDrmSgUYM6b+fcmSZEfAUVp++tPR//5+4MQTk50LFf1ZhM/o4XEa//u/vOt8+7Qsinn4nDmNxyjT7niwj0lL2849D6WlL/NwVcRtn6QlNSjrSEvZPJyrtBTJHNk0esaM5Pc05uFchUZ/v96PravSkjshkYPE6Posnz4t5T7mrbca0+vtBRYsaDyu82kpI43SUiR0XUnLAw90Iy3FxQRXaSnWQ1G5qjIDNo0vOojPfeedEbnjer3tNfK1JoWXCVmSlqYAJzZKS1WwGiCd0tKnebjJpE8koWSlpa5/58K3efidd9bz9eEPN57v4tOS6mPPOKP+OSYDgGghC0QKqUWLGpWWBx5ovjdg/9w6iPm32fQyuSLhmof/8Y/RZ2rMANyVlkUwD5fHCt31w4bRpLNuXMxiA8snRNLSt09LkagpmtLy5z9PBveMwVVaise/9jX+2kL2cQnwNxRNa594bisfE//rYBuIx9Wn5ezZ/OtkiP02oCYtxf5Vp06lYPJpKZax3F/090ccA+XTMigtrRBKIiCCavAUyYUY8qSGO9ESrxMJmNhcJY15uEh0vPiivXm4+JwrVybzmoa0dDUPp8qdAlfZlpVPSx2BYjJ/oUjLr30tIsn32Ud9fgyRUOAoLSn4VFqqJgC+lJZi0KGxY+uf05qHmxYE1O5gDFfSUpwYysqPY44BLr64/j0vpaWunbr6tOSah8tErW5h6Ro9nCItTUpLHSil5QYb0OdS5AeXtEyrtNx330hl7UJaipNqrtJSzK94vWqh2tHhvngV+wybcSaGT/PwtBDr4oknAl/4Qv17WvNwF6Wl+D3e1IzTE5/dl0/LvM3DReJA9GkpL+wA+/rp2zxchOzCAuATZCafllttFZHvN90E7LqrOh1ZafmrXwG//z1w0kl03mL4VFqK9UA1Xsyb1zgumvpBldJSfGfchXYrkpaUAkt3fVdXvUzbhbTM0jxcdk2RBirS0ob8F6HqT7lKSxHy2uLww6O5CAVq3sXtC0xrH52VHWfDmVonXnZZZEa/5ZaN+XU1D587F7jxRmCLLfjXq6AiLcX3O2SIPWmpU1qq5gQxZAvOOF+M9lULpOUAQkkERFA1CmrXyQdpKZJyMWnpah5eqUQkTqzYXLjQ3jxchot5ONX52Ppti9PglqmYf13nR6nIqJ0x3z4tbZWWu+wS/cnKM+oecuRwwM0xfjN8WlLnmpSW4vOOG1f/bFJaUqpM3+bh8X/xXN2ESOxXRPMqIFoEHHpo/XtePi1dSEtf5uEyaalTztgqLdOYh+tAkZYzZkRuNmSkiR6elrQ89NBIie9CWoqTXBVpKfeTYn7F61WKOvl92YC7ScC53vaaLEnLvfdOqu3zMA/XBaXaaaf6/MK3T8tmmYfHv4mbHLVasqzFe9kQP/L7SmsebgJXaSlvQlDYaSdg993Vv3d3NyotR48GPvYxYPLkxvPFvjwL83D5HiI+9KHIpF51HQWO0pIDF4Ujx1ola/NwSqRgIi1FpXIM3dzA1e1CXsjSPFx2TZEG8dxdrjeu44Wq/rmQlpVKcm0xYgRw3HH0uZR5uC1paePT0mbjUT53yhTgkEOANdYAPv7x+nlpzcPLZWCPPWgrOw5EN3Uq0lK8X1eXXfvTjTEc0nLJkuDT0gNCSQREUE0E5M6U6gC5pI/YOMXOg6u01Pm0FNVKstIyLWlJTWLEY1koLbllyt391u22qQihZpiHx/VQNM2Sz48hknhFUFpm7dPSp9LSF2lJKeg4EyKxX5FJy1Ipal9xmu+9524e7ktp6eLT0sY8fPr05DEOacn1aakzD/dNWqqCCqUxDxf7Wp25qwrxe/dBWnJ8MZtIS7mP0pkdmcDdJOBczwXXXMwWYl2U21ta0tKUV8pVguzORlQjqszD5bpg8ussXsNZwGcRPVyuf2Ka4r1sFk4ymZrWPNwEF5+WpjanmkuIEbrlc6g0Oe4tYvgmLSlrF1elpW17574TEUVQWlLzfV1dGTLEnrRsJaVlkc3DVRu4rnN61bPamocDUZ0Q89HR0TjP04HbB8ZrJRvSMo3SUrwPNc801Rex/xHLJ22gwoUL65+zIC1N5uEc607KPJy7RggAEEjLgBiqjkJWWlITGu6gpjrPh9ISqA8IK1YAb7yRvE4FVactPic1yRMniT5JyzgN7jU2SssszMPTRA/XkZYcpaVYN11JyzyUllzS0nRMfF4bpaWo9qHel2lBoJoAADRpyVFi6ZSWcZ5jZZNoHq5zXk8t3Gx8WhbJPFxHWqrMvWPkpbSMiQm5LlHkMRWIh7sQTuvT0idpyTEPV5FKqkl5GqUlt/9XwWVBmofS0jdpmdY8XO5DVaoKmRzhECY2Pi2rVTXBKCJK1zoAALVNSURBVMK0cSSrncQ0RcLRlbTM0jycApeYMpmHy2lSWLVKHT2cyoOstKTGr/iYq09LlXk4NQdzVVratncXpSXHxY7tHM82engapSU3EI8cwLBoyEtpmZV5uOucXtXv+FBadnYCa66ZPi8yOObhPn1aqsY7rnm4alxPS+SL/rzzNg9XBbCTEZSWqRFKIiAC1zzcxW+W6VofPi2B5ML/+efrn11IS5PSUpwkmgLx5GUerruPC2lpswhwUVpSEex0pCVHaemys98M83DuRFCltOSSlvE7jCcK1M60D/NwirR0NQ+P0xJJy/ieJsWDjKx9WvoyD5d34Dk+LXWkJcenJWUSm1ZpWS7bKS057SAtaSm3ARvIdZ0TiMfWPLxcdssb0Bzz8Dx8WnIVhRz4Ji115uEuSsu4j8rCp6Wq/xHLWl6M+SAt5UV+1qQlV9XHMQ+PoVo8r1qlVlpySEvdvdpJaVkkn5Y21+RhHt5KSsssSMusfVoWQWlJkZamIFgiuM+QxjzcJXq4ao3INQ+39fnNRR5KS10/IM9fKFCbeUFpaYVQEgERuObhWZKWHKWlKno4kCQtFy1KXqeCq09LcZKoUz5lbR7um7T0bR6epdLSh3k4Rdy4QjX4cElLG5+WXPNwWWWWh3m4acEM6M3DKdKS2uWVkdanpYn8zSp6eKmUfJ9ANubhHKWlKhIsBRVpSU3MKdKyt5c3aU7r0zKN0lJEVoF4fJmH50VaZqW0lAniZistxfbFJS0ppSXXPJyrtHT1aUm5CQEa+wuVebiNWk1enNn6tHQxD/cRPVyE6n2sXOmutOzv189RfAfi8UVa5unTshXNw20D8QSlZfTZl0/LrElLX0pLG6j6dhl5B+JRjXdc83CxHCjzcFeCzkZpWa1Gebdpf6Z+hLMhJuYR4M+B07aTNkIgLQMiqDqKPEnLND4tAbW/EI5PS7nz8qW0FH/nIO5sueXMXbTqBi5KOQfYkZbUvdOQlrY+LbMIxOOiEuCmwyUtffi0BJpDWurqsNivxOSknJ88ScsslJZc83CqnWQRiIfabW+mT0tuv1gk0jILpaUv8/B282kplknWPi2pTQuVT0u5XZuUllxFXxY+LcX3qyIt5b7Nh9JSHlPzMA/n5M/GPNxFaWnyaTmYlJauPi0piM+QdSAeqnyyUloWVUElKi2L7NNSRVoWIRCP7NMynhfE610TuKRlGp+Wac3DXXxain1VXkrL+Ht8vzgPtkpL3ZghjsWq8557LvmdS64XtZ9oAhxnygFtB65PyzSqtLRKS1P0VtkvXAyO0lKeYIh5TUta2uz6xWnkYR6+ahXw858D115bP5a1T8tSqdHcgPKvmJdPS515+JAhdWKGmxYFjtLyz39GWXwP1HmuPi2B+kT8v/8FLrmEv+gGonKv1erPwfVpqcuX+CwjRtB5Hjo0+i+ah+sWD2nMw02KaJUJr27SZ0NayhAjIcowKS3lRZpvn5blcvTccduQ2y/VX1I+Lbn9YpFIS1ulJTcQj+uktFlKy1tvBf78Z/trdSia0pJrHq4bM7NQWor3VpXL5ZdHY+Kdd9aPdXbW26yOIPZBWlLo76+nkYV5eF5Kyyx9WuZBWrr4tKSIDxPaSWlpmnfIPi1feQU480z1NYNdaZm1ebgrVO1P3hy66Sbg8cf187RqNdnPxvVq9Gg6Wrjpniq4+LS0MQ+XCU6Vefhvfxs9s6kPy8o8nKO0TEtaplVa/vCHye/cdX5R+4kmIJCWARHSBOLhQnXt5MnR/6yUllmbh/skLfM0D7/mmuhPhK1PSxNpKaNSaVR+NdOnpU5pOXSoH9LS9Cy33w4cfLA5TZVPS1t/focfnrxebPuqdy6Sllyflrq+Qnwuk3l4f399Ia1ry80IxGPyack1D6euVaHZSssRI6JxwcY8PK4nzVBapvFpKUI1abVVWlJ+8FzNf9IG4nG55pVXgN12s7/OhGb6tKSih/swD+coLePruT4txXeuUuMsXw784AfJYzqlpXhvlWIkrYlab2+9bWRBWnLGfnGsd/VpqYse7kpaxvAdiIcygXQNxJOXT0tVWtRnDmwD8fhQWn7oQ8A996ivGew+LbNWWrqCo7R88UVgzz3NaanMwzfeGHjpJfP1tqRlXkpL1Xh3443R39y5+vRU87k8oofHZRr3l3mTljKC0tIaoSQCBlCjOouszMPPOCMa6KdMAb7whegYx6elTmk5fjx9ncti1URaUkpL1QDgQlq6KC11AxA3+qPtIsUUiEd3jBo44zrY1QXsu2/y2ix8WuqUlrHSzyYtCkce2Rg1UHzmc89Vp6nyaTlmDC9PKpXZm2/WP3PUiOKzmczD43M5fUWl0kg2yqQlUO+HslJamogNV5+WNkrL666L8rvmmsBBB6nP5/i0pPwGcUhLzjuL3xdFhpbLNHkctyUXpaWv6OGuJtgxfCktKTVeswLxuJj+if2QT+hIyzQWHirz8Hnz6hsmHKVlXH9sAvFwiBsbX15pyFyuT8uslJbiO8jCp6UtaZmF0pJKk7Pp4qK0FN9N1ubhLv1EVkpL2znesGHZ+rTs6mr0aakjLAFaadnZCUycyM9nlhCVllmah1Pv5aSTov+77GJOywdpOW1aMm8UxH72L3/hpasyD7/gAr37nxgc8/AxY4Ddd48+2/i0dAnEY4oeHuO66/TpyZZVMdK6TBAFJlkpLXX9gEhacueagbS0RiiJgDqyJi3FAWHPPaOdkWefrS8cTBML06JR9o0Xw0Vp2SzzcFvSUuycTZMLzuQjD6VlDF30cAC4+mrggQfq3/P2aemLtBw2DPjPf4DPfIY+V/euKdJy+HA+ycFRmXFUDKp6RvkqtPHLOmwY7UIg/i0Gh7Q0TQSzUFqK5XLKKcAJJ9S/25KWH/hApGJ7+mm93yOO0pLyG8QxD+dAJG/kfKh8WqYhLYtkHm6rtBQnsiolQRqfllmYh6+9Nn9h5hMykeZSVyjIGxJf/CLwwgvAX/+aNFfmmofrfFr6VlrK9YIbPZyCWC+5Pi11m5gbbMC/N5AsM1Ndte2XuASZr0A8vpWWac3DbQLxuCgtXeb9rj4tfZuHjx6drdJSNA/nlhOltBw7NvJ5d9hhvDSyRDOVlqeeCjz/PHDZZea04vbsSqw+/zxw8cXm88RxnGt9pVJarrce8Oqr0TxPB13f/sgjkeuPhQvrYp2slJbxOSafllwMH063p7TqY7HtZaG0NFnEiO+L299wx7lAWg4glETAAEilpQxfPi3L5cgsXJxsuSot42OqiZstaSkrMyjSMivz8Kx8WgJ85VsMzoCUhrTUmYfH16+1Vv27i9LS9Awmn5Y2UE0AYpPZqVPpc3XvmjIPt5mEcwgbjhpRzC/XPJxThynSktqEiO9pYx6uSpcCJxCPXIaVSrJOTpyYdAXACQAi53Py5Ijg0z0nR2kp1t14MsVRWnIQ503lk5ZqN/G7TEtaqp45D/NwF6Ul5bOJUuMVKRBPV1dSfZIXdOo/n6RlpRL5vxZVkP39jW2Bax6epU9Ln6SleJ1sJk2Zh1er+rFBHM84sCEti2wenoVPyxhFDcTjQlq6moe3GmmpCsSjA6W0rFajcdK2XWWBZvu0XGst3piYVmm51lq8uuFCWqqUlkBEUJvGWJ3ScsYMYM6cpGpRN3eX2xQ1d1NBjkGg26TjoFymA62mNQ/nkJbN9mkpIygtrRFKIqAOTmfhyzzcRGhRkCfR8nWlUqM6zqR0oDrtVavczMNVA4BNEIE05uFplZbyBLfZpKWchjwQUYF45Hua1Hc6paUtaWkKxKN6Fq7SMn5em0k4h7BJQ1q6Rg+PMXQoj7SMYWMeThEIKvT369sHRSzJ/uVEE1Igen7XyTSHtEyrtDSpS015iwM0mczDRZPWZvi0bKbSkuvT0ofS0kVtQpVbqdScSbKOtPRpHi6m66K09O3TUhc9XD4mm4dzI8wC/OjhcZ2lNmlE2NZZsTx9bLCKcPELm8Y83FVpaQpo4+rTMutAPC7tz6UP4fi0tCU1fJCWujITlZZ9fbz5PrVRQVmtNAtZKi3FNqB7VhvldJo8cuqpOI4vX85LV6W0jGFaX+j6dirPLubhaZWWLnW1VKL9/KdVWuo2xeLNkPh9BNKyZRFKImAALJ1GlqRlWqUl0Eh0mHbgKbJt5Uqz0jJr83CXQDymAci0UHBZlOgIFJNyhENait9VSsvOzvr7kK83TQzy8GkZw4W0jNPs66tHKhw9mj+IZaG05EYP92keHsPGPNyn0pIilmSlpTyp4ZqHU0irtBTLIiulZZymbB4utznxHTfTp2VWSku5nrlED/fh09LlXapIy2YsnHWkZRrIbduVtBTVVCrzcN9KS2pMzto8PH4236Rl1ubhtgs7U/51gXjifp9DCMpKS1WbA/IxD89LaenSh7S60hJI+gtXgRoL4vv66vfSIGulJScQT5FIS5GQ4pKWstJSrlflsn6NoevbbdbPOvNwrtJSZVngUldVSkvdOMiBSWkpvkPXQDzBp2XTEUoioA5Ow2gmaalaNIqdqEx0mCazspNhIOp8xLxyo4erBk6bCbgN4QP4VVpSqg4TTCa1unvYKi1VpKW4aydfn0ZpaUskqMqXMiVTKRep/AGNqlJb83DdIMpZELiYh7uSlnFa1ITORmlpQ1q6+LSsVBoJO3nx70pa6uoeR2kplkVWPi0BWnUmtzmxT2510pLTR9oG4klD0Inv1GVspupnUZSWvohTuW2L6cZ9BNX+XczD0/i0zNo8XEVaqsqaWmSLsH0/WZuH2+aH+15kiEpLF/NwX6RlnoF4XM3DbZGF0nLUqOxJS/GaN94w30NlHi7+byZEpWWWgXjSkpamuRAHWZGW5bJeaQk0znFFX+a2aysbpaWNT0sdaelTaZm1ebj4DrNQWmbp07II6uuCIJCWAQPIVWmpM/NWwUVpySUtxQ7Ht9LSxjzc1qeljXmg6d25KCmyNg8Xv8sDUUxairt2tqSlTmmZZlFGIY3SUg461C7m4cOGqc24KaVllj4t8zIP50yUfCot4/7Hl9JSrEuyvyQb0jIv8/AsfVpS71JFKumUlj7Mw13G5sGitDSZh1NtQWUeXqvxlZYcAtjGPFwmLbMwD6fOV+XFBrpFpe5cDrg+LUVkobQ0bWL4NIvnKi3lcnEhLfM0DzeNmbbpjhiRLWkpmocDPNKSGguKZB7ebJ+WQLGUluI4zvVpKQsiqHWkPMcdM4aXtq3SktqwFv/rILtO0rlD4aBZ5uHiOwzm4S2LUBIBdXAaRlrfUrp7uZqH+1Baih0Ox6dlVoF4mmkeTpEyJtiSlhS55aK0rNWSPh5V13OUlqo6bTtQqMrfpLTk+LSUlZZU3iZObDzWTPNwn4F4YtiYh1MEggocpaUpEI9M9qjMwzkTmrQ+LalAPHkpLSnzcDFvMVoxejiHtFQpLSnftnG6RSMti6C0LKp5uJxX0yIujdLS5NPSNRAPp6yzNA83zUWyih4uwodPS47SktrglpHWPDxrn5Z5Ki19k5a2dcPWp6VsHt5uSkvfpKVK9S6jSKSlSyAeWRDBIS0pMo9C3kpLsb9uB6Vl1ubhgbTMDKEkAuzQzEA8qt10ndKS69NSJi3FvGbh01I3wNigKObhLkpLarePq7RcsaL+POIAKN/TxqclZf5rg7yUlirzcDHSegyOyoyzc2pjHr5iBfD5zwMXX6y+ZwyfPi2rVdr0M4ZJaenDpyXHPDyt0jLOp20gnix8Wr77LvC5z9W/l0qNC2jRBEp8P7feyrtfkUhLH+bhPpWW8Tv80peAL3zB/vpmkJaqZ83KPPzyy4EjjkimHUNHWqrMw4HkmG4iVHwrLcXy4y6ggWS9lPPPIS3TmodfcAHwsY8BzzzT2kpLMXq4rU9LU3/rOxBPpcJTg4potk9LE2lpQ2rEecjTpyWHtKRI7yKRlqvrd/m887DR5Zf7TfuDH6x/Tqu0fPtt4Cc/KWYgHhelZRrSUvUcsnl3nLf4NxNk0jOtT8tSSe/T0pW0rNWAJUuAI48Ennoq+Vve5uHBp2VmKEDvGFAU1DidBXdSNXx4Y+fuIxCPyaxc9hHCUVrWanrz8LQ+LamOqVKhJ4JFIi1tAvH4Mg/XKZnE80TlYRrzcHFi0dmZfCdrrKG/VoYraWnr01JlHj5jBnDvvfQ90yotxWczmYf/3/8Bl1yivp8IW6WlqU6OGgUsXRp9pvoCFWQTGBnUwl6eDFJKS6o9+1JaNss8XMzbWWcBt9xS/26jtOTCl0/L+P24+uhKq7TUkZZpAvGcey5w3nnu18vI2jxc7mdjyJN+n4v3119Pph3DRmmpIi1NyhPTvEantKSsH0aM0KengljH5I0njk/LtErLM8+M/j/xBLDppvpzbedBefq0FM3DOUSu2B+oxnpbX+ZA8v3YBOIx1cdmKy1NG30273n4cPtr8jAPp8bd+L5FMA/v7wdeeAHl447zn7bYF+vqCLf+HH00MHase35slZY2pKX4nrM2D9cJYVTm4S5Ky6zNw9MQdMccA/zud43HZfNwV6Wl7nlVcwIduPPvQFoOIJREQB0c0pLrn/HCC4EttkgeS6u0dPFpOXKkPl1q4S6bh1ODjexcPU6Lgoq0VOXHBuKgk1a9kMY8nOu7jyItZeJHhEppSUn9qettSctbb43Iv//5H2DDDfXXyrAJxCOey1FayruEVNlSE4G4vHXv0odPS/G9cglLICIWVYsq6t2Z+ogTT4zSHDIEOOEEOl0KJqUlRVrKk0Gf5uGugXhKpcYI3irzcJ1rBB3EcpBVGOUy36elCN3z2igtqXou3jON2tJFablsWf2zanc/jSl0rQZceaXbtUCxlJZvvRX9Hz48qjNZKY58kJYq83CXzdj4d47SslIB5swBNt9cnyYF3z4tXcmVRx5Jp4yiYNqcpuDDPJyjYuSYh7uQlq7m4XkpLbMyD7ch7V1IS6pemMzDbQPxUBuPOqXlQQcBG29sThcAdt45mgelQa0GPP00SrbrEVvo3gtXcdfbmyRCTdhpp8gq6fbbo+9FMg/nkpZU2ejm7mmUlq1iHg7QhCXgR2lp2hgL5uG5IJREwABYSksuaTl1KvDww8BXv1o/1ozo4aNGmZWWsl8oTiAe2Qw0TosC1TGpJkG6yfz99zces1Fa2gbiycI8XHzuND4tVZOBNIF4OjuBXXYBXngB+OlP7QlkE2lJEbYAz6eleE5HB/1uqGjbcfnpBkffPi1toFNaUuoRU5382teiSeV770WfqXQpmHxayr7kgKgcdObhKtIyrXm4TmkZl09egXgoNasLaalz48AJZBE/G0VKiuWdlrS0VVpSpKXvQDxpFpY6tW5WMKU9fXq2ak/KhQSlipbNw8V3ZGMeboLK16mcV6DuAuPmm+3vozIP5/q0lPOXhlT2HZHYRWnpIxAPp0w4pGVcHlkE4rFVWlJ5dCGZs1JaUqalKsQEZ1GVllzSct11gccfB379a326kyYBt93mrsaO0d8PLFyYLg0O0pAxJrW2Cr/+NfD88xF5CfDqRlaBeOT5E5e0pODTp+Xf/lbPm2/z8HI5m0A8OvgKxMP1aRnMwzNDKImAOmx3nDhpiWk2I3q4KmhJjFqt8Zlkn5aqSUycrgtp6eLTknqOZpuHNyt6uGoyIN/TVmkpwhdpSeWNax5OLWZsSMv4PF2UWY6/KFV+05p06HxauigtdchCaSmrhHVBajj5iOEaiIciLbMMxCPXOVnlCfglLU1Ky6xJy6IpLdMq1oqktIwxYwbvPB/3j5+TagcuSkuX/kmntFRZP5jGNQo6pSXn3mnNw0X4Vlq6+LR0NQ+3VVpyfFrG47xvn5a+zMNdkJVPS67fPyAf83AXn5ZxGVNWKzprAe4cPm3fWasBL76YLg0O0owzribh8jzfdt0rumrSIUulpQrU/J0iLWO3aLp04nLJ2zw8K9LSRyAerk/LYB6eGUJJBAyARdH4Ii1dlJYu0cNNpCVAP5NI8qgWwvJEwsanpQq6wYTqzH1GDy+CT0vfSkubQDxpA3VkGT1cVlpSZUs9a3yebndYLDMb0pJa/Nti2DC1eo16njSTcZPS0tanJWUenqXSMj4WKzx1SksxKFGWPi3ld+SqtKQI9xg2Pi2phUFaZYCYjq3SUkRcVj59WqY132uGT8sikpbUGO3i09KlH9Qt1lQkuWlco+A7eniaOqJS7rgiC/NwTiAeagNChtgf+DQPF++VtXm4C1zagmocdiUt81BaupCWlNJS59Myfn7Tu9FtgNigViu+0nLcOLfrXEhLceOXS1q6BOJJS1pSz0JZY5gsNMR+Q26TPszDKbW0zuIgLfIIxBPMw3NBKImAOnyah1OkpWq3Joapoat209MqLWXzcCDpbFm1EI7za/IPYkNaygOdCNWAFCOt0tIleratT0uKhPSptEzr0zINbHxa+jYPr1b1k20uaWnKB1B/Tl+kpU+fljqkMQ+nSEvZPDxrn5aymaEpyE9cfnGfnYfSslxuJFRU0cNV58iwIS1NSss0kz8XpaWIIiotqTEra6Ulxzyccx4Fjlkkl7TUmYf7VFqKvrxMJJioxrJ9RyryTGX2liVpSZnFpkEW5uGq8l250k5pKY7XPs3DxXtnHYjHBa59CFVGzVZa6upKGvNwsf/2obSMyyltm+rvz0dpmaYPyZO0jOdQK1bwXVu4KC1t6jYFX0pLcRNIDjiZlU/LPM3DXZWWXPNw36RllpvILYZAWgYMgOXT0nZnIA+lpXhMXvy6mIcDSdJSRQbJEwlfpCVFogJmpaVvn5Y25uFcRZmt0lI8lodPSxFFMg83kZaq4DwcpaVKzSqCym9ahRFQHNLSZB5O+bSUd6vlSY3K1I3zDFTbk80MTYRoPDGL+5Mi+LRUvYO05uHxe6AWBhz3BxxwlZYq1aROadks0pJCUZSWFOFiAoe0pPotU/ARndIyLSmuu143JtuaiIv1UlaKqsg2VT7lvNiCImvSIAvzcBelpYr8zYK0FNEuSkvATFoWzadlHoF4bJWWPszDg9KyjniN+Pbb/PsUSWlJ+bQ0mYerlJbiPVzqWRHMw7NWWnLTZXIDtaC0HEAoiYA6slZa+ogebjKhogLx6J5LRVqKJA91X8o83BdpqSrjIpqH50latqpPyzyUll1d+rbhU2np0zycih4ef28F83CdT0vf5uEcpaWYdh5KS/kdlUr+zcPFBSH1zKJqwERapgFXaakiIVWBeNIoLWs1/5P8oigtAftyiZVVOnD7LRfz8DQ+LanrddYPtibivqOHF420tCl7DiGuqhu2Pi1Fdy4q0snFPFxEu/i0BOj5sk5pqbOQycOnpe9APNS94mNc4UHaTae8lJatQlrGG78q0pLqw2SlJVWvfAbiAfhKS+qYCLHfaKXo4SrkQVrKPi05zxF8WlojlERAHT5Jy7hx5620pOT24q6RDJV5uEjyULv4NkpLqsxU56ryA9DP7jMQj8rpvw55kJaimUIMsbNPo7QUFWtZmYfHcCEtVUpLuWyHDNG3DV0gnmAe7h6IJyvzcA5pmVZpaTKJV0G8B/XuXALx6EhLsSxUpGUM04IzD6WlKh+qifJgU1qa0o6VloB9ubiah1OQzcPFfKvMw136QbFOZqm0VJmHN9unpQ/SUjRn5IBzT5fo4WnNw102kXSgFs+trrSUxxcdeR/3BzZ5sTUPl31acvpk20A8eSstX39dP2f0hTRkjEsgHmps86G0pNS/stKSqlfyenXkyHRzFJXSktqwtjEPz8OnJSV08gVf5uE2Skv5PVLry+DT0hoZeToPaEWwzMObGYhHZQKkU1rGOzrlMr3I55iHx0Et5I5bJi1tAvHoAp64Ki19Rw/nDEjUjnEMDmn5pz8BP/1p/ZhOafnss8AmmwBPPJH8PQ1pKZZfWqXlQw/pf3cxD7dRWuralFifZXDa/cYbA2ecARx/vH/zcLl9xGlRi5Fm+rSUy0n2aUmZh/tUWop1eYstgEWLGs/R+bT0YR4ukwPUu3NRWuoWnqp2Qx3L0jycmrSqnqezs3HRpzIPp1wPcJEVaZnlJNmU9ppr1j/btndb83BdfZCVlmKbfOWV+medUpIDV/Nwn0rLvM3Dm+3TknOuTmkZ9/ty/WmWebhqbtdMpWVWpCUVbFEVHCUP83C5b7ABFYhH59MyL9LyhRfSXc9F3j4tOzvt2wMAvPQS8KUvAfvvT/8+ahTw5pvJY6LSUtU/yevV4cOjemBjnSeCGs+ee67x2AUX6ElfUejzxhvArFn133yYh+tIyyyUlhdeCCxdWv/uqrTk+rSk+t2ursb3+uij/HsHAAhKywARWZOWpntxzMNdlJZy2uK9OYF4VAobrtLShhjQkZaqXbQYrejT8sMfTv6uU1ouXdpIWAJJomKNNZK/TZnSeL4KaZWWIsQJ1SabRP/F8rBx5g2YScshQ/Rt6jOfUd9DzJeOqP3a16L/lHm46+STMg/XKS2zMg9XEYwxKhWa9JPNw2WlJTdAlQydUg+gCUv5nCzMw2WCw5a0VL0/ndKyCKQlZTlAfdflIwulZdro4RSyJi11/ezYscm6UFTzcBE+lZYmUtyXT8simYf7UPXa+rTk5F2VnrgZwVVaxvfTzZ9dle9AkugXQS2e81JaUmV82GHm66gy0r1b3dixxx7Rf9+kpejCYswYP0p5nXl4/Pxz5iTvK8OXebgraWaLvM3D07iPOe+8SDhBwaS0VI158np12LB06xCb8vze9/TpxGm9+Waj5SH1mYt4DimP1Vmah4uEJeBGWpo2xsRxgVK4247XIrIokxZFIC0DBpC50pL63XRMhIq05CotqfM5Pi2pCXFXVzrzcBXSBOIxqW6KSFpyrjHVS3GQ/+hHgf/5H2D77YGjjgIOOUR/rQh5UElDCFx+OfCJTwA//GGdtDQ9OwVKaUm1A5PS8nvfA2bPpu9hOyD69GlJmbXH+aEGebl92yCt0pKqDzoTUpXJOWeiRz07ZzI7bVr9c6zEipVBPpSWMqEl922lkt48vFwG/vCHxnS5pCXVz9iQlq7wSVr69GnZSubhe+wR9YumSLwimmkeLoJLWvpWWup8WrayebjYL/rYLDSZ7slIax6uOkdFWsakhom0NG1mfu97wEEHAddfnzw+eTLws581nt9MpSVF5MyfD3zlK5EZrAoc0lIcLyjF8fDhwHe+A8ydG33XuYiSwSEtr7sO+MhHgF/+MiIPXZXytoF4dt0VOPVU4PDDgZ/8RH2eD/VyHsibtLRV0cr473/p4yrSMu5nfZGW++0HXHut+ndfm41UvxHDhrRcf/3GY3G6KiV/HgRdFubhotCJSjcvMrrN0SI9W0AuyDp6OPW7CFMHqNpNF4/Ji994MFEtDDjm4dR9Ozv5pCVVZjqfljZKyyx9WnIG8zSkJVUGOqWlCuLgN3Jk0txcFYCms7Pxvdia2+kwYwZw6aXJYybFGIW00cPj88aOBX71K2DTTRvPkZXH3Dz5IC2pAEI68/CsSEuOT0sX0tLVpyX17JxJj+gPUCQ1ursb8++yODUpLd97rzGfcp/8kY9EmwmXX14/5ss8PCuflnEebMzDZbRS9PAsJsl/+lO0wP/+99XnuIxBIlyjh5ugMwHV+aTkQEd6ZmUeLkc/55CWPs3Dxb7HlfARUWSlZbVKB56QYVL7A8C8ecA3vkH/9tnPRvc68shk/pqltKSeuasL+MEPgG23BQ49lL6OGmflch4+vP4eqPN/85uI3BVRqfCejePTcuONk5tvpvp04YWRYu1//zd5nOvTUnxnJ50U/b/ttsbzWo20TLPxMWJE9Jw29dVlU3P8+HpwJcrUGqBJS9E8nEtaDh2qn+dddZXZVYEP6Eh+G9LyqqsiV0byPBlobGdZKi1lZGEe/u67yXN9Ki0DaTmAUBIBA8hEaalKs0hKS5N5eOzTUgRFWooLSPF+1KDaCj4tOROftD4tZeh8WqqgG+RtSAWfSktT/U6jtLQxD+eYLtoOiD59WlL5jtPiOC63gUlpaYoeTr0z2U+v/I5dfVq6Ki1VpOXKlY35dzEBk59RTmPZssbno96Z/G51SktTnyGbmurUkEU1D3clbkwO9V2RhdKSU/YuweBENENpKcKl3PIKxKMyD1eZvWVpHt4KPi1V9VXs87g+LSlSQ0Zfn3leYBr/KKK5SErLuHxs+2HdmMI1J+copQE3NZ6pDpdKdLpUgBOdeTj3WKuQlmnImEqFtxkgwoW0nDmz/tmGtOSYh8vzHpPS0pRXn0pLznrBVM+oftmktMyDoPOltBTH4EBa5oJQEgF1cCYSKtNlGVkoLatVMzHjyzw8rdLS9CyqhabOPNyktGwH8/C8SEtqAGkGacklmk3Rw01KS/mzCBulpWhGnZXSUtxx1Zka2yKN0pLyaQno/d6lCcTjSlqKvrbEshODR8RwIS1lFR5FWsrgkJa+lJbUbrhP0jILpWURzcOzUDtwzL/SkpY+fVqK4JKWvpWWOuWprdJSZR7OVVpmYR5uSzaqoFtkU0ijtNSdoyJ/OeQKxzzcB2nZTKVlFqQlNY5Rz6h6bk6fkxVpSa0ZuPfXHcti0ykLpCFjymXeZoCItKSljU9LF6VlR4d+nmdqN77GbV/m4dTcpgjm4a5KS/l5xfcukpaUT8s05uGt0p5zQCAtAwbAUlpmaR5u6kBUJkC2SktOIB6TT0sTaZlmEWqjtBTva5rwmggp3+bhpmBLXNLSVC98kZbyIjANaWl6jvjZiXedaIc2SktTm1KVo80kobfXr3m4TmkJNL4nnSLPBJPSskg+LX2bh69a1djebHztxjCZhxeBtNSRK0VVWhYpEA+QjYk4Jz0TUWaCrdKSWx/yIi2bpbRslnm4aiPaFrbkZxqflrpz0pCWHPNwF9KS22fFyJK0jPNn+87l88XNCVO08Riq+iGXGcc83PZ3ToRxHWnJfZ6slZa+0201peXbb9Pn+ArEUyoVw/chd/w39bnU3KaVzcPl5xXrX1Ba5oJQEgF1tGP0cJVPy/j+HKUldV+ROPJJWqpI1DjfqmvEfLiiGUpLeZHpW2mpupajtEwDrtKSetcy8QU0+gCjzBRMbcoHaSkScT7Mw3U+LePfRTTTpyXHPFyu365KS6pOp1FarlzpR2kpL4J9kZa+ooeblJauUJGWLu4nWkFpCfifKOdhHs5RWvr2aalKm4siRA93MQ9Po/4QN758tU+bdHwR0BQhKNdzG9IyD/PwZiot43unVVqK7Tytebjcrl3Mw03uPVRKS+oeXKWlbo6ZFWmZZtOYQpo+JC/Scvp0c32l8uGitNSdy0EeSsvXX69/zsI8vMiBeOTnFclqeS0QSMtMEEoioA6fpKVqkRfDRWnp4tMyHgBUpCXAMw+39WnpOhinUVqmXcA2g7SUdyh9Ky1VoJ7NZyAeLmlJvWsxbyqlJdc8XGd6qMurCr292ZuHi2nlZR5uMs3jmoeL90gTiIfacfettHQlLbNQWlar6v6mSObhcno2SsusAvH4Ji7j/Pk2SeIsSlrdp2XWSssszMNVpLnJ8iLNQkocQ3wsyChFoQ5ZKS2BxnLi+rTkmIebFr7UO2uWT0uKyHElJmxJyzTm4Vn4tCyX+aQll6DUnZeVOanPjX2gNZSWQ4YAkyfrzxk5svGYi9JSdy4HPpWWqjb6yiv1zy7m4XEem+nTMgulpXxuIC0zQSiJgAFkEojHhrTkSM1tlZbUOXmYh2dBWqrKkusf0QQX0vK116JJLrVw5pCWcp59Ky1VoMwqffq05JiHv/hikhyPQSktXQPx+FZaiu86K/Nw8XteSkuOeThVx12ih3PLSiYlOPV83Lj65yxIS5mYlfsqirSk1BmUikv1fBRp2dsbtR/xWHyujlzxTVq6KC0pYipNIB7KPDINslJactLLI3p40QLx6OqTjsS1XQSl9WlJqQpd5zmiWr+o5uGcusElLX2Zh5vKykcgnrhfTQvqmV3ftZxnk0/LvJWWrj4tqXv48GmZFcnhc2MfaA3SslJJWrBQoMYdcYNf9e6LrLRUlcvLL9c/+/Rpmad5uK9APCNHqseAQFpmglASAXU02zxc1zDjjs80GVENqvKi08Y8PAufli6BeNL6tDTBdcG4885uSstarZEoonzGZKG0pJBnIJ7zzgPWWgvYfvvG8/JWWtoE4hHbipie6+KVehbxe9HNw3WkpYoI5ZaV/Oycei6+y6zMw7NQWpbLfNKyvx/YYYeo/fz0p2alpQ/Via1KOU+lpct71CErpWUe5uEc0jJL83CXjSHxNxulZbOjh7v6PS2X29c8nErbp3m4CT7Mw598Ml0eYlBt0ZfS0jQP8E1a+vBpmYa05FqmZa20LBppmUcgnnI5acFCgXq34jqOGz1cdy4Hvsgtqt+IYUNaUnObIpiHUxaYJlAEbEcH3RcFpWVmCCURMACW0tJH9HCV9FzXAeqiDspKmvHjo8877USfI5OW1KJPJiB9k5Yf+lD98/vel7zv0qX0NaqOKy/z8PXWo6/717/czcNl89oNN2y8Jq3ScuzYxmPrrtt4zGcgHtOzxyYWb7yhP09FWspQBeLhLNBtBkSx/adVWsYqy1YwDy+XgUMPbTwu+7ER75G30nKvvZLfszIPF/Mvp3HWWcm8VKt0feUqLefMaSzT558H7r03+n711fn6tOQep545fj6KiGoF0jLtQpizKKHcBtgg7+jhm2+e/M7ZGJJhUlrutlvyewxbAkEsW3GOMWyYW/RwnRpHh2rVfyAeW9Vnlubh1MLWV/RwE7hKy622SncfDuL3MW9e/Vg8F0tLWh59dP3zGWeYzwfU75wTiMeHT8vdd69/nz9ffQ9bVaUITh87bZr6Nwk12exZR7xwNoxkpPVpSZll60DNMTjE26RJ+nNMpKWqfgwdWn9nc+fqz+XAF7ml25A67zzeeQC9IdZs0nLcuHq9Sau0DKRl7gglEVBHXqSlC3miU1rKx26/HTjzTODyy+lzZNLSNFE0+bSs1ep/cn5VWHdd4PrrgQsuAL7xjfrx/n5g4UL6mqyVlibScsSIiCz4wQ+ARx81p8chLUUy7vbb6UlIWqXlv/4V1YdHH43yfu+99ATLp78eF9+c4rXxuSrzcBmqQDxZKi3TkpaqwCQ6pWVW0cNNSstKBdh4Y+Caa5LHZdLdp3m4jdLyzDOBSy9NHstbaXnOOcDhh0efL700IjAfeoi3sKdIy7POAv7850alpWi+uHJl/j4tVWmLoPyRxveWySaT0vJTnwI++Un6N9WmWxqYFhVp09Uhj0A8vkjLMWOi+inCpYx0SsuOjmgec/bZ0filc51hglgnRfc306e7kZZck3kZImlpq5BUwTYdX+bhvpWWeZCWlQrw179GY0Ye+PWvo/r70ENq8YGJgJfLedttgb/8Bfj5z4FPf7rxfI5yOEZe5uGTJgG33Qacey7w7W+r75EmejjHPHzOHODKK/X5jSHPx3WE2q232teptEpLW1Wiq3m4iUik3hmHtCyXo3Zx1llRO1HlkYusA/GccELjXETXNlzMw03v45hjgP3315+jwpgxwI031vNsU17UeNfRQa9Jgnl4ZsgoxFhA26JZpKVuMJY7ko03jv5UaYvqLi5pqVNaAo2mPaZJTqkUqZH22itJhMiLctUziPBFWprMiCoVYJttoj8A+MxngF/8Qp2ejdJy1ixgxx15+ZJhGuQ32AD46lejz5tt1piPGFkrLW0XyGKQDQ5pabqnj4FPZR7uk7RUmTgDzfVpCQB77w0cfDDwpz9F300+LSn1s2/z8BEj6vVbdX1WPi3FND/3uXrdnDQJOO44dTom8/D1169fL0arlDd15OeidsMdSMu+ahUVsT7YKi3ldyXWY/m9mhZFhx8ePecllzT+lqXS0rdi1YW0tCXFbCN8cxct1ILlpJMarQ/SKi3lMq5WgYkTaWVWGqWliBkzaBc5JtKaUtmUy2aLj46ObMzDbeoK59y8A/HkZR5eLkdqu69+FTj++HT342DChMb6K+dp2DD92oKqIx/8YPRfJOB156v6hrzMw4HIldLOO9Pn+PBpqVt3iXk58MCI+PnrX9XnAY3zLd04tfba9nUqb9KSyr8pD6ZNRYD+XexTdeW2+eZJxX6RzcO/9CV6/qLyq02VnWl+Yep3jzgicmFhqrsUvvnNaK0p35MDFWkZlJa5IpREwABqnIbx3nv1zzrVk27wVHVKHPNwVzIojdLSZB4ORGnYKC1VCxUXpWU80U074ZXLwbSAdPErJD+ryVG1Kh0RLuYUVJqtrLTkmIdT7UvOp4mo9W0eTuVBp7TM0qelyTyc+ixeI5tLqiZy3MU11zxc9VwyaZmF0lKEjSrOZB6uIsRzUlr2y2Ut++Kl0hYhXy++C1ulZbms94Gcl9IyrXl4HkpLTj/kqrSU80KRhqr0XM3DdWNbGp+WIlyVlnJ/B/AW3JWKf/PwIikti24enpW/QxtQpKUOHCss0/nNVFpy6pLOPJy77uGQlvFvnHogK9fTzNMppDUPz0NpmTVpKaMISkuV2bctoW9jHs4NxEOpGLmQ+xmb8R9onk/LIvTZBUEgLQPs4IO0dFFacgPxmPITf/ZpHg7Yk5Yqk7BmKi1NpKV8f5eJpvjcorJAV15plZYUqDqTZyAeHcQdPRulpYkoTZOnGM02D2+20lL+rDMPV5FJ3LKSn13VRlTpyebh8qaGS9Rpiqgw5Y+CL9KSUlrq6iVXaakjLUW4kJaUUsFEWqqQhXl4DN/m4RwUmbSU6wC1CHFRWprMw1VIYx4eY/jwyM+gq3m4C2kp9rW+zMN1mykUsvRpWXTz8CKodgYbacmpSz7Mw21IS0Y9qMlulHTCCBciKW+lZbuTllkrLW19gtqYh3OVlro5qAmupGWMoLRsOkJJBAyApbQUlVa+SUtT52ebnuocF9LSVmnJce5MfV6yJEkMi8jap6V8PWUeLsLkX9D0rsTFtuuiHXAb5Kk0fUZGTEta6pSWVFn5Ulqa4JO05Cgt8zIPB/Tkj6ocsyQt5WdXtRFVX2NSWrpARw7Y1AFqwioe05GWNubhjpM9LWkp1lcf5uGDRWnJQdp72iiauOfH58l5sVFamtKm8gboF7s+zMOnT6dVpNT51AYAtZlrgkjONSt6eF4+LWNVUCtFD88Dcp5c5pLib5xnzJK05ATiMcGHeTjHp6WN0lImLRctMqdrgyKQlhxln+n9Ur+3stJSRQzakpbU3CZO15W0TLPRlVZpSW0qUmuS4NMyM7RsSZx//vmYOXMmhgwZgu222w733HOP8tzHHnsMBx98MGbOnIlSqYQf/vCH+WW03SAu0nUTDReSMS+lpQ+flh0dyWMuPi2pzy+8oL4ma6WlPGHOwjxcfFYuaZmF0pLKm0+lZVrzcJXSUmUa4erT0naSI25a+PJpqVPD5aW0BPTkj6ocZZ+WKlJehKtPS1uyULyeUlq6QGU2ZKuIMyktuUp0k3m4yjTJAK15uAgXpeVgNQ+X06dQZKWlnBdfSktdH521efiMGdF/DsnjYh4eR4sWIQY982keXkSflnGd4UQ5zkJpSc0X8lgAm+ZkPpWWAE8VrmpLnI0C0/19KC3jNLhKS90xXX65AU+ARvPwvElLU7/pi7Q03cdFackJxEOhCEpLVZm4KC1tzcNNz9AM0lKFoLTMHS1ZEpdffjnmz5+PU045BQ888AC23HJLzJ07F4sXLybPX7FiBdZZZx2cfvrpmDx5cs65bSHYTh7zVFqqog7q0lOdY6u0lNUA8UQ7C5+WOtIya5+WJtJSLue0Pi3FxXYaXzm+zMOLFIhHpbRUlZPKPNyktJTzVLTo4fI7ySp6OOBGWoqbOLIay7d5uKp/VB0Xy44KxKM6VweV0tI3aSn7Co3BUVrmaR7uQ2nJUXKo2qUp6n0Mm7G9mUrLtKSlrd9Ml42kGNQiRJUe1zw8S6UlNU5Onx79z8o8fMiQxnmCWGd9mocXRWkpph2XYaXSqFqT0U4+LU2Bh3wqLQFe0DBVW5Lz0izSUufTknuMQ1raKC1l0tI2WJIJNhZp1HXyuzKtBWz9gse/tYp5uE+lpZwWNQYCZp+Wvs3D04wZcj8TSMuWQ0uWxDnnnIP/+Z//wZFHHolNNtkEF110EYYNG4aLL76YPH/27Nk488wz8bGPfQxdPoNttBlY5uExSiV9I3QhLXX31yk3OYOvrApL49MyHlTEY/39etJSp/gRn+n559X5KJp5+GBVWrouZrjtSySGenqiKHmPPhp9V01+VObhvpWWKtLSZSHkEojHlsRQpUshLWnZLPNwjtLSZB7OVbCqyAHb928yD5eJyBhLlwLvvFP/vngx8LvfJc/V5aUIPi1tlZaA+t1ddpn+uhg2iybToiJLpI0ebqu05PZ/1IKNIg1d+sEiKC1dzcNNpGW12khgZWUe7tunJSdfpo1CsQxNJuLt5NPSpCzNmrS0MQ+X80LVDVM/4SMQT3xOkXxayqSliDXWoNO1gavSMn523Tiru84mH66kpTg3bEWlJdW3c3z4yum0g09LVZ6qVbrvovpd03vltNkApFgBNgfd3d24//778fWvf33gWLlcxl577YW77rrL231WrVqFVcIC/Z3VC6Wenh70uAQwKDhsn6nW2YlauaxkvXv6+oCeHpT6+xsqWa1UQi9xv1KtpqyQtUoFvT09KNdqkLvI+F46VEslxF1IbbX0vQSg1t+PWk+Plr3v6e9HpVQaOKfW2Ynenp7EsZ6VK1Hu7R3IW79UNrWZM1F65pmB7321GvpX5zlRRitWqPPR1wdq6Ovp7gZ6elDu7m4oGxv09/WhTyzHWi1xv/5yOfF7qbNT24H0ri5bMY0+4f31r1w5UEZy2iKq5TJ0w1gPYB1UpFwqNdajcjmRTrmvjyzP2pAhKGneEwD09PY25ElXvxPpA0D8zM8/D3zwg/XfOjoG2o5Yrr2VCtDX15B+T39/PR/S+wQa22Klr0/bFnqXLx+4R3+pNPDOqHZpQn9nJ/p6elCS8i2253K1mkg3Vd+raD8D+Vm1SvnsvbUaaqvvLbb7/t7egc+9fX2oCfeorVpF1tv+Wi1xH9UzVTo6Euf1AXR9XN03yihVqwPl2rd8OUqad1sbOlTbxgbOK5XQT7zrWrVK5kGFUqmUeOe9tRrKlUq9j+3tracnlulzzyXzWasBp5468LUfAMR0arVEvqpDhrCeUzYPF/unKjCQhtgGRJQrlUQZxXUdaKzTfYjavKpv6O3tBVR9x913G58FiPqNEtOMvB9AX08PKtVqcgyrVFhlp0JczytS/U/cu1JJlGdFM8cg72Fo40CyT6yAt3Pf09fX0H/3VioDfUIMeb4TP7M4/6DSHsiP9Lx95fLAPEFGqVKxmsD39Pc3lE3v1KnRM1C/lUqJ5ysj2f/09vejItWJWmdn8vvqRV1JNCsVFvP9qxe8aZdkPf397PEVULdbEeX+fuOYFrcVEeJ8RRyvq6NGofTyy8q0eletQqW/Xz/XYfSx4nvs6etraG9i/begUkjUOjpQIvLUP26ctnzlMb9/yBD9HNwwx69Wq4lyo86X+7OBeyNZ/6j5pKpdD/wO/WK6t6+voa8ApDkcEJ1DzNPE+ccAiL5uoF4TaQycg9X9uzCPUaF/6FBlG6hNnYrS668PfI/L3KZOiesgCqq5fzznKZXLiXKvdXWhtGyZ+n79/eT9qpUKWY+BqOxLxHpBRE+ppH3uvkpF+5wi5LlD4j4W69w06FndPuW+nZrjVRXzgvgdNYxpq9+5/JxxG6E4g0Te+vsb+g8uejo6kms85rpFXCcl1rPlMjBkSEMavbUaKtK76JPmfQ336OhASRSFiOmt3sRvR+4JsHuuliMtlyxZgr6+PkyaNClxfNKkSXjyySe93ee0007Dt7/97Ybj//jHPzAsjV+1AmNnCza/t1zGO++8g/GK36/9xz/Q39mJKQ8/jG2l37p7e3HtggUN16z56KPYWpHeO++9h1sWLMA6Tz6JzeV7XX99ow8yCbu++y7GrP787ooV6OrvRyeAd5ctw7JXX8VUzbU33XYbtl22DLF3plW1Gq5bsACzX3994Lqbrr8eUx59FFus/v7m229jgpDG0moV44TvTzz1FJ5ZXQbjnngCO2tzv/o5r7sO+xPHr//HP9AzahQ2fPppbMRIR4UlixbhLuG9lHt6Evd7/Y038C/h90mPP47tNendc999eL2nBwcIx559+WWsv/rzmy+8MFBGi5Yswb1EnQCAPVesgMqwqlYuY8F112lyQWOLhQuxtnTs1rvvxvKXXhr4vsmzzw7kVURPpQLTXmhc/0WM+e9/sSsjbytXrUK5rw+U8d+q/n5ct7qcxHK9++GH0blsGWZL5990yy1YOa5e8z5YKqEkqLb6+vuxQCj32a+9pm0Lj91/P7Zc/fnFV1/Fw6uvXeuxxzDL+GRJLFq6FPcuWICxTz6JXcQ833zzQJ43fOmlRJ1eoKgjHFRWrsR+mt/fWrw40UZFPPTII3h5tX+2LV96CTNXH1+yaBEmrv58591346033kBMMa946y1QOoXXFi/GFOG76pm2WLw4UUf//cQTA2Uv4r2VK3E9kca4xx8f6Feee/JJjFmyJNEniXhpvfUwXbOgjrF8xQo899RTDX1wd38/2aerMPmRR7Cd8P2Bhx/GjDfeQOy8ZfmyZbhxdXpDXn8dc1cf73v2We2k5cWXXsLwt99GrAHp7+tLlO+oT34Suz/4YMN1vZ2dqAqknqy0fPPtt/HP1ensX6sNTEZffe013Ec898yXXkq8q9ffeWeg71zr6acTbeXpZ57B4rvvVvYNd955J95ad118YOxYDFm6FIu33BITH35YcTaNHsDYZw3k9fXX8a8FC7DDO+9A1NKsXLUKoqagt6sLVcUkm0L8HnZ5662BsVTGCy+/jEeE8nzf4sWYzr4DcOvtt2PykUdis1/+UnnOtTfcMNA3z168WNvfxfjnP/+JEQsXYhvh2J0PPICl776bOG+Nhx/GDsL3+Jn31SzErr3uOvSvVgjtuHRpoo0+9vTTeE7RrtZ45JHEvUy48eabsbd07P5nn8WiBQvQtXRpw2/3PPAAXhcUzxs+91yiL37o4YexyapVEGfDb7/33sA8CwCWr1qFnmpV+b7ffPtt9K9YMdCHuuL6G2/ElH//G1sxz3/l9ddxv6G/4oxpry5a1ND+d1uxArGmcmVfH/4R1/ueHmU5AMCdd9yBnTVKy7tOOgmLDXkud3cn5mwLrr0Ws15+GWsJx268+WasWj2+HoB0WDlqFIa+8UbD8Vs++Uks0+R14gMPYI7w/aU338QMzX1u/+c/sUwzPn2gVEr0TbfdcQfelVwtbfvmm4lxN8bSt95KrGOuvfFG9EsqsPGPPYadhO/ymD3q+eexuyb/Dzz4IF4lFFli+T/873/jpQULgFqt4b3cc999eF1yA1JdsQL7Sue98tprUb3u78ce06ZhJFFmC196CQ8tWIBZr7ySqBcU/rtoETYWvj9y1FHY4qc/xXvjx2PheuthA2EcWnDNNUClYlWnnn7mGTytqSf7KUilvloNCxYswKRHHkmsQVb290On2X322WfxOHG/fTUbHvfefz+GLV5Mzr1i3HHXXRj+ta9h2zPOoO/74ovkfSls8PzziTIXYZr/7rpqVaL/dcVNt9yC7YQ1MwB0A+Qc7/0rVoBiRPpLJSxYsABzli5N9O8vvPACHl2wAJu9/DLWFY7/86678Nbrr2P6o4/ifbq83XYbRj/7rHbtqcIt99yDFYJ7ofX/8x9swriutrq+Ack2++Qzz6Dz3Xcb1okPPvwwNu/uTqzhHnnySe341Cdt5Iu4+957gfXWw/XXX8/IbethhUEElECtxfDyyy/XANTuvPPOxPHjjz++tu222xqvX2uttWo/+MEPjOetXLmy9vbbbw/8LVy4sAagtmTJklp3d3fb/S1fvrz2xoYb1mqRdsX41z9uXK1vp52Uv3e/+26tu7u71nP55Y3XrrEGmYeeX/9afb9Zs2rd3d213h/+sPFeK1YYn69/q63qaW20Ua1/woTo87rr1vr226/+27BhjekvXFjr23bb+jnTptW6u7trfQcfXD/nv/9N5K1vjz0SafTttVfie+8ZZ9Sf+7bbWGXevWwZffzll6OyOfFE83tbe+1a39y55G99e+yRLLf33kv+Pm9e8n1dc432Xj3XXVfr7u5OPve3vpV4DwNpf/jD6ne3/vrq5ymXnep77xe+0FiO//lP8pz58+l7Tp1qfler63/i7+67We+5b/r0Wv+0afS911xzIL1EWd9yS63nssvIupsoy0olmd6IEYnf+z74QW3ees86q/75qKPqdeGii1jPlnjOQw6Jrr399mSeX3yx/g6+853kb2n6uXff1beNWbPUdfmSS+p5+p//qT/DbrvVz7nttlr3ypWJd0U+t1TGyjp69NHJPFx4IZ3vddah+9M776y/q89/Xtlf955zDtmv9vzmN7W+efOS99pwQ/Lc/okTrd5Fz1/+krzXH/6Q7IfXXrt+/vPPs+tU71FH1fr23LOeTkdH4/0feyzx3mpArX/jjRPfX54zJ/nOdtut3oaq1YY63PB8V17Z8M4HfvvFL5J5/va3a9333quue7fdFl27aFGt5667yHZu+usfP57fLvfZJ+oLpDGrf621kvX2/vtrPbfdVusfM4aV7kAfI4ylDe/vi19M9keHHdZYHn/9a637jTdq3Y88knjXNaDW/fjjte5Vq2o9d9yRGPMT5wjzBXEM1+b9nntqPZde2nCs4b3/4x/kM1PzioFzli2r52f33ZPlcd556jZ0001WdaD7pZfosuzurnW/8krjb9dfn+yPvvnN5O+XXlrrnzkzWXe23z5ZZzbcsKGtJc7ffXflfMTq2ZYsqfX8/Of8Ov7xj5v7KEV/m0jnox9tnK+Ic82ZM+vvVupTGsr71lvpNvHZz9a677+f17dKc7bu7u5a36c+lTwmzAlsyrjvE5+o9Z5wQvKYNKb0/P73URs0le3f/pZ8xqOO0r/fBx/Upif3392PPtpwTt+HPkQ/l/QM3StXGttaQx4efVT/bi+/nMx34pxf/7r+PF1dyd9Wz6UTf0uXNj6LOB4tWVLrueOOhrLt+8xnovL49KeN73zVaacln3t139r96qu13lNOafjNtk71fvvb+vc6dCh5Xf/o0dF7+fvfk8fXXlt/v/nz6fuMGKF+d3/7m7EvGKif99xD3/eEE3jtt7u71vu976nvY7i2b9ddrcpfeZ9nn20YP/unTKHLbvp0+h0NGRLlae+9k2WxeozvPfbY5D3vvjt6pxdfrM/bSy/Veq6+2u25XniBXdaJZ6lWyTbbe+aZtd6TT26sM7//fa1/8uT69eVyw7yv4R5jxyp/W3HHHbWrrrqqtnz5cnY9aqW/JUuW1ADU3n77bSM313JKywkTJqBSqeC1115LHH/ttde8Btnp6uoi/V92dHSgw8Y/RQvhPQv/dqXOTpQ0fj46uroifw+EArJULtNlqFFLlqrV6Briuo4hQ3jOe+O0BOfApd7ehPKsNHJkg4l2x5AhCb8cpbgOCHnpkPxslKWyKUu+YSrVKirx9UwfJh2K8zqqVbbPlNL7358w6Ujksb8fZTEd+Rmq1eTvBmfr1c7OhnxVxoyp52Xp0nraXV3JtBM3ViuAS7WaW3sk6m7HyJHJ/CruW2L4Eusgnp37nksac/iSov+pDh9Ot42uruTx1WbkA+mVSsn0DGrrimi62dFRr8MO76A8dGj0zqVrE3mW2k2qvtfg8yxhHlQuJ/wqVsU8CXkoC2VZ7ehI+FRSmeOWpXwon0lSZlQV9U7ZnwqBHyoa84vKZpsBguuKgftttx1w223Je1UqqFB9etw/cyH5A6xK9bTU11dPz8J3X0XqC0v9/Y352mQTYL31gFtuqZ+3zjrAE08MfJeVlg19n+E41lkned6wYfXz5LGgowMVjU+3avxMkyZFf6++qjxXhZKFFUW5XI7yKpWBnEbHGmsA73sf28/swHvQjNWVzs56nxJd1HBOdZddorFn3Dhg7aRevqOrK8r3jjsC42k7kMR8gZv3zs6GetgxYoSxj+e0icRYIfUNlSFDkuUhwhTYRb4P4YOzOmxYdG/qt6FDk88nPVu1s7Mhv2UpnVJHB0qaul3u6PDir6tjyBCrMajc0aGebwwkak6vXKk0pkPNFQFjP1YV5qEiKtOno/I+nfZIgDyWdnQ0vCPbsopR3nLLBj+G5XXXBe64Y+B7deONgY1VOjF1PiuGutwwj5EhzCsBxTMqyr8s92vUeaZ2bfDhWVWsXRLniM84ZEjCfzg1l6aeJ1Gvx4+P+kHJ7/HAmMXo+8qSH9aOuG8FGq5XrU90SMwhKSjGilKlEr0DyerRNDevlMv0/TR9ULWry9h2O+K+cvZsYOzYyPe2eF9dPy5D018axxOpHbiio6urod8odXbS91f0WwPvSG7rlUpUFvJ4Gp9reMaOoUOd/X52jB6dTJ+7bpbXSatRUQTDq0qBUUvlcjSe6u6haY/x3L9d+SebZ2o5756dnZ3YeuutceONNw4c6+/vx4033og5c+ZorgwwwiYoBzFhTcAlEI9L9HDK4a0uP/HnOL2enqTzc2ryIUcri6+1iR4ud1iqQDw6qM6L78uJHl6tqgdg+XpT1EmXQDziREM0K9JNoHTloxgwjaDqGjcQDydqa5pAPKoofYB9IB45HSqYgg3E6JFpo4fH5ShfK35P45RchsmBt0gyyvdVBcsQ+464LOPfmT4ElZDrmW0EazkQj6p/qFbVzv8pZ+lUGfqIHi73p+I9uZCd5qvasFxmEvmVOnr4DMnYUXwXVPRwm/JzaWs2QUq40cPjPPt0Es+JHi7ej4pwGkP1zC5jLxVQwCYQj66fFfNgEz3cNhAP9axxPc8qerhuvhH/7qP+mAJwUfc1wXZeGUPMh3gf01im2lhKGxFYN77agJpjrLtu8rtrYAuXuaQIOciRau7JyYvL/U1t0fYe1BghQxeIR3eeRSAe7XvxEanalAfTWtE2EI9qPuAzEI9N3aOQZs5rCvbFBbWuVj2DaY6lqn+ugXjSjBmugXhUIIjzgXTleYapDuiCsIVAPANoOaUlAMyfPx9HHHEEttlmG2y77bb44Q9/iOXLl+PII48EABx++OGYNm0aTjvtNABR8J7HH3984PPLL7+Mhx56CCNGjMB6663XtOcoGmo+SUt5AS9C1QDl46LTXNUCibvYkxc6cQfS22smLeVOkuqM+/qSpICJ4NMtvGJ0diaJDx/RwxWqCtb1ctm7TDRrtWhgXbEiGV0vTfRwF1B54y4C8yAtVc+sGvi6unj3NJGYJqiih7sMqnF564gHV1JahY6O5DOIiI9TBAWHtIyPVypRX6AiLbnPxFm4yPkRIdbTlSv1k0uV+oCK/MhdQOnQbNJSTlMiLRt8JNuWvbx4SBs9XIRLf+gS1Tor0lKXf41qbQCqtih/5zwzdT1F7lP1nhovVGXBJS2pOZAKtqQlVR42pCW14WUiLSsV/XhZqfjp4+WNZRNcoodLQRwA0O9VNS42i7Q0bT5zwSEtuXn1HT08a9LSdI5pTsipm+J7ocYI3fk258XPwqkHOgWsj3m5KQ+20cM5c3MKJtLSRpWddlO3CKQltQaxzVf8jmyjh5vaio06f+hQ4L33ktdS93QFoRgdSNeWtNSJHAJpOYCWJC0POeQQvP766zj55JOxaNEizJo1C9dee+1AcJ4XX3wxIfl/5ZVXsNVWdReoZ511Fs466yzsuuuuuEUwERv0aDZpKadXqdQncvFvPkhL8TqZtKQGaR9KS5ng46g9ZNLSpLTkkJY65YPpeh9KSyAy7ZNNHF2Vlq5Io7TkLBaptmSjqFWdq1NaUvf0rbTMg7QU0+Koh22gIy3jtiYTaHKexM8i8S4uBnp6/JOWqjaSVmmpUvpRZFpWSktZKZWGtBTT8aW05I5ZMeQ6bVJa2hAJLm3N5hqV6XQzlJamhbmu7+CUKaX4koLrDJyXFWmpU4fq2pXtAj0taUn1iT6Ulj4iotq2IRel5ZAhjXk1kUQ2pKVqvPBNWvpUWkpuMAqjtKTqguqdF0VpKeaPs2HJXVulUVpmTVqa8mBLWtpu5HDyYau0pN5VXkpLg8suNjh9ewzTxjCXtIyP+1RajhmTJC1VeXQF4UZnIF1b0lIKtNWQXgCAFiUtAeDoo4/G0UcfTf4mE5EzZ85Ezbdipw3hVWkZg2psqvvoCEmfSstaTU1aqszDqXumIS116ooYXV3JBZSq3GIywrd5uAwfpGWstJTh4NcmFSgVBXdgyGJiJIJSsMTwrbSUy9bUT4rm4arFGRfxolu3qOIQ8TaglFzxZCFeNFKTIvFZxc8UaRlfq5qEcMcirnm4rv+IsXKlm3k4RVraLAhVyEtpqTtPxFprJb6yzcN1eRN3+Zctqx+nVDS2z2gLH+bhqrGXu+nGAcc8XHyWtKSlnHcb0pIiDV3ejW4DMy/zcM5Cmxo7TERuXqSlbRtyqRtdXcl2DNBzE9X7dFVapl2w+lRaymOItNnjrLRMS1rKZI2N0pJTvnmQluJ7kdNTraNKpeR8gmMFEafFqQeS/2XvMJWr6vf4eB6kJcd9y2AwD1flS7cZLv6PodoUjcuNE5+C28+MHav3Ae66yRJDZR4u55FDWurGwUBaDiCUREAdeZGWpoEohtjIVQsk7gRMVt/Y+LSsVpPncEhLE8EnlrWq3MUBWPdubJWWvszDXUx6VKRl3ubhnAVoGp+WFHwsqtKSllkpLV0WQhzz8KxJS/G7SFpylZYq83AdfJuHq46L9XTVKr3qkOvTUkWo+yAtTeXKAWXaT0FOU1qcsc3Dde964sT658WL65+p92rTDrM2D+f6tIx/15GWtrD1aanr31zICNUinapX1AJZ9W647yxL0lJHTFKLVB8+LTnm4T6g8wNNwaWP4JLUYj8rlmlRzMNdF8BDhzZeKyvxiqK0tCGOfJiHm0gJW9LS1Z81R2mps4KTUGu2T8ugtLSDT/NwrtJSBVvzcI7SMt6c4vYzY8fqf8+KtHRRWgafliy0rNIywD9KNqaYWZCWlHm4/NmH0lK8jqO0LJeTqilqBykLpaU4SPgkLVX3s1VauvrxsSUts+iwKRUFF64TI+6iykVpyTUPN01yTYSaT/NwjtIyC/NwEeIzxM9G+UdTtVeVebgOeSktxf7j1lvV96lU+D4tVUpLW/LBZB4ulqutCpGTF4MZbr+u3YjvT5e3SZOAF16IPutIS4ow0qGVlJa28Gkezmln3I247m6e6XZa0lJFDFPwaR4ONKoeTe+fWjxS5uG6fNpuduhg0y5czMO5JLUraZmXeXgapaXsWkWuIzoTR12eiu7TklO3urrSEc+2Ssv4GtNYmUZpqXsvRfRpmcXcnENamnxathppaaO09GUezlFa2rqkMUVTT7u29Ela6hBIywGEkggYQNnGTKeVzcMBdSAeaue4VEqeoyItRYLFR/RwcZDQdVo20cN1gXhkUx8Z1I6tbifWF2mZh9KSmuxMnkxfm7XSUqcaUZVTZ6cfpaUc9ViGT/Nwjk/LNdaof17tszgVdEpLMegXV2mpMw9XwbdPS51ynTMBLoJPSzkPJqWl7pldVFTS++7nqOoAfd+09db1z6L5OUVG6/oUWf3n0h/aqlUBs9JOtZEYw4UkMAXiiU0iY+j6N84mHnfzqqfHzUem6bgpP3mZhwNmwpSjtKT6LN2Y4pO0tCHjXOauXKWlOA8Tfy+KebiYno357/jx5vk3dw2RNWlpo3bjlK/Ot2MMXR/OuYf4DJxAPNRxG9Iy7XMXQWkpv1NTnzhlin0+OIRTUZSWPn1apiUtbZWWqnop5sNk3SGjlUhLHeEcSMsBhJIIGECZu0sKqEnLjg7g2GOFRIkqppqg6JQM8WfXXWP5uji9Wi0Z7EfugOL0qUjXaczDOUpLyjz8yisbyy+eJIuLtEsuUZOD1MA+ZQrw4x/T+dDl05a0rNXogbXZSktqwvmlLwEbbdR4PA/SUlUe4sD3k59E3z/3uegaalJhUlrK7eI734kIlkmTgO9+tzE9G6WlaQLFIS0POwzYcsto8vHXv+rT44ATnZhSB6l8WoptzrfSMq15OJUGhSL6tBQX/tT9VJNRLmlJtYu//x0YOhT9e+yBFz7wAdQ22ST6bdgw4NBD6+dyXHsAwPe+B8ycGRHvp59eP06paCZMiO7R1QVceilw9dXRfffdF9hii8bzbZGF0tJE0rsoukzm4aZNF/E7ZxOPQ1rusguwzTZu6jxb2Cgty2XgqKP4C2KZ8AUalZbiuePH6/NGba5RSsvPfhbYfHM6T2lJy44O4Mtfjj7bjMtZKi3FetcM8/Azzoie74QT6OvFOn/DDfrF8gUXRPPNefOAWbNokmzBguicPfaIxmoXFN08fP31gQMPjJ7zT3+iz9GNtap7/P3v0bPPnQvMnq1Oizv2+/ZpOXYsXtx9d9Q6O4Ff/Sr5Wx6kpWlskdsU1ca++11g3Dhg442BL37RPh9F8Gk5dGg0JzBB15YpK0IVbMzDTaSlah7BNQ8Xv9uOF52d9THyoosaf7dZk1FQBeLh+LTs7IzmFePGRevML3xBff9AWg4glETAAFKTljvsALzzDnDOOUKiFkSXbhc3rXm4CNGnJZA0C5UJQdGMXD6Wxjzc1qdl/NwHHgi8+SbwsY/Vf6PMw7feGnjtNWD+/GSaFGl5zDGRGeO0aXQ+YlCTHF9Ky2YH4qEmnEOHAo89Bpx/vvlcl3uqUCqpy0M8ftRRUXuLB2POosq0Mz92LPDMM8DChY2RQQE70vI//wHOPLPxeAzVrqm80HvwQWDRouSk3hU6pWUMavNCtcng4tOSa/Ke1jwc4NVVG6WlynWBb/Nwk9JSpQBRkarUeSIqlWhh/uab6LvmGvR3dqL3gQeidrB4MbDPPuY0ZYhtab316sdVKprf/hZ46y3gE58A9t8feOMN4G9/M+edgyyUlqa0fZCWJncWaV1LmDavfvYz4JZb+D4T81RaAtHG1Tvv8NIG9CSjWPZTpvgxD69Uoj7o4YeBD33InB8bjB4dPfuPfhR9182xZPjyaWkiLcU0TO/Sl3n48cdHAYPijRIdCbD99tE88Te/odM64IBovvn3v6v7/n32ic654QZ+XuXzXF0NxUgTiIeb5yuvjJ7zoIPo311Iy3nzon7+2muT59iYh5vOS+HTEtUqHjzmGPQuWQIccQSdThqkVVpSmyQyttgCeOUV4N//Vtczk9LS1F+oNrVjpCEt3/e+qN7tv7/5WhVpWakkXdSY4ENpGZepfB13U1Q+H6i/B+4culyuj5Gf+5w6j66oVtWulWTSUq5Db78N3HtvVDcfe0yvevfl+7kNEEjLgAGkJi3LZZ5ZQxqlpStpqVJaAknSUqW05JiH+1Raymo7Mf+y/0KKtIwXC1SZyu+oq4s3qPogLV0C8WSxy8T1z1kuN04gs1Za6kwJ5ONiXjgkl2nRH1+niqZuYx5ererNvuLrTcRqqeROFMvgkJZUvlXt1cU8nAuuebhuQsOpqzrSkppYqt61DdJGD9eRli5Ky/gasW8tl4E110wXQZXqP3QqGl17jlEU83BT2pxFiAxbpaXuO2dhY1LTTZzIV1BT6ZmOy7BRWsawGY90JKPYl1Em3RzzcBWJoHIlk0ZpKbtVkPtsXdm5vEuXQDzi73kG4hHzarq+q0tNmMplrGrTKp/aKlDzcV35NFtpGUPX1nS/6e5BXee6YckhLXWbq6r+lkvY28LUDm2VlpWKev5oIiZ1v5n6KdN6zoa0pMZdbh+vIy1txgmqb1c9g0lpaUtayulRpCU3QKeu/oq/u8KGtFSt3eK6afKrGgAgkJYBAkppSUsOSQK4KS3TRg+XIXYgMRHDJS1VSkudT0udCkBFAojH5Y6c+o3a4acGHi4ZIsOGgFadX5To4Rylper+WSstAZ55uAzO7rzJPNx0vUhampSWlG9I+XcqD1kO0FzzcN0mg/hMRQjEowPXPJyqV5SbAtXkypZ8oBR1NqSYikjkkpa+xhEXcFU0Kri0D5v3kzVpqYOJtDT1X7oxk4JpHBAVXGlISy5slZa20JGi775b/zx9uvlaSn2qm1v46Dd0+ZH7bF3ZufQRLoF4bEhLFXGYdjzk1Mn33uPd29fYbEtamp4hjU9LX3BRWnLT4iotbczDTZuP1ao+30VQWnLmJ5x86vIRb+Jz4VtpaTM3Ublkcplj+PJpySUtORt+8TU2Sss0v1N5kK+nxhKOebhNXgJpOYBQEgEDsFZaciY0NqRllkpLGVylZVbm4aadOZnw0e0+UT4tVSo2SmnJLUNf5uFF8GlpWmzp7u9a57jPUavxlZYiOH6QOEpL1bmAnXm4jogSr28maalSWqo2L4Bk/lzMw337tNTtOvs2D1cpLX2bh4ug6mha0pKz2MsKXDJQBZf24UNpaUtOupSpaVPBt9JSvl4eG0UyJI1PyyyVljYQ05c3RkVQSkuqrE1KS5PZZJp2Z5pj6d6XL5+WVPk126ely/XiZqQIjvmxC+Q8VSrNU1pyVVsm+CQtuRuWLubhXKWlj77H9NxpSUuqHpnGDNt8cOcUurTSkJY2bU5lgeIyxyiyebit0tL1d076HKWlzuVXjKC0ZCGURMAArEjLjg7egOlLaRnfy5VAks2pbc3D0wbi0UUPpwZmlXkudY3KPJxKm/JpyR3QsjQPb7ZPSxvTHtcBhHtdf78baclxzWCzCDGRlibzcBNpqaqjWbzvGL59WmYZPZy7464jZ9Kah1M+LX0opkzm4VReRPj2aZk2IIgN0vYnWZuHx0hLWvpQWpr6K98+LeWxURyr8jAPz1NpqSOJuEpLE2lZVKWlSx/RLKVlHqRl0ZWWrUBapo0eLoKrtOS8H5XykKO01CGtgpHKG/d6nerft9Ky2aSlDeHoawOR07fHsA3EY2seLsLWp6UJeZGWQWnpDaEkAgbgxaelDGrASKO0pHbWOPBJWsbHslZaisd1SkvKPNyGtExjHu4rEE+RlZaudU5G1qSlb6Uldb3KPFylotE9s6pNZwm5nnGVljakpS+lJceUHchWadksn5ZUXkT49mmZp9JSRh5KS5t7tJJPS92Gh2+lpYuPTNNxGVkrLbkkmm+fltT18u+2yNs8nOvTUhWIx1VpmXb+41Np6auf9E1acvoqVX2wWffokKV5eF5KS1mJrQPnmVxJSdM9ikxaNtM8XIVmKC2zMA+3JS1N53H7Vp15uC/SMigtWchRXhBQdFiTlvIki0OSAH59WvowD493uMvl1vFpaVJaxtcW0Ty8iD4tbZSWrpMI7nW+zMNtdt0pmJSWWZmHZwlXn5YqM0exzWVNWmaltNQ5E+f6tHTZyeekK/4uIi1pKafXTNLSdkKa9QS2mebhtj4tdUojH0pL0ZUJZ37USj4tdWlTSkuqrE2bf1mah8vzT5t5jYt5uEv08GAeTsM3ack5P2vS0jUQDyctbh/LaWNxWqb5YRFISxelJWUdYoLJIsjm/aXd1E1jHq6CC2mZVmkZl1kzo4dnTVqqzL7lOhOUlt4QSMuAASRIy6FD1SYjQNQRyR0C1bBsSEud0jKtebgMrlko16flAQcAY8c25jeGb5+WFKFJmYdTiyBX83Ab1Sx1byDKa6v7tMxaaelKWrpED7cdKLmkZazC4ZCWeQ7Ivs3DXXxacidcXNKyCD4t05pXm1S58m86n5ac+tTKSksXEoNLlIvpmwhDU35c2rWpzpuUlrakpclvoZifNKSlq9LSt9sCrnm4q9JStynkW2kpBg6K8zNsGLBiBZ0X2/uaCG3qHMBdaakyD7dpuxTSkJY28wUb+PZpaUofUL/zVlZact6PDWlpaq8iWkVpyak7prmHzRjdDkrLUomvtFQh5g9UJKxL9HDbQDy+SEvd9VylpWnM0b2jPIUdBUegbwMGUBIbuGmxyzUPpxqiKuJ0XkpL2Tw8RqXSuBjWmYfLeVm6tP5Z7qh1SkvVBEvXoVJmcFmbh1OTZxV5APhTWsrpiNfvuqv6Oh3kNHVR0PPwaSnWD1fzcDnaYxZKS3GhKOZFRezqyKZ4YdxMpSU1EatWG+uDirR08WnJhdxOVG1ENzHzbR7uy6cllYctt6x/3333xt9F6JSWLouUZu5k56G0NCluxY2k7baL/nNJc6o/B9zyaWse7ltpqSunNdaofx45kj5n/Hg67aL4tOSSaOKzxiiaefjy5Y3HxH47rU9LE6FNnQO4+7RUKS3T+m/j1L2ttqKP56m01L0vH6SlKv199ql/HjPG7j4iihA93GbOZ2qPPkhL03sz3WPuXPq4qt+gCMbB5NNSBZc00pqHx2uFLMzDxU01XZvNgrQUx5iJE+k5J0Vamvp/XV7y9LlecATSMoCGqZFQpCWluqMm9z7Nw11VgirScupUOn2TT0sZ06Ylv8uLIRO5JAfiKYJ5ODUAyOWlymOMWi26v/ybblCXCaQDDgA+//mI2Pj1r9XX6SC/O5vn8KW07OwEdtkF+PKXkySNTmmpm4CVSsl3y1E+25KW4sJqyhT1uZQaGQBuuAHYcUfgm98ENtzQnAffkMtVRaBzlZZiu+Sah3MxciRwzjnA9tsDd9zhprTkmoerSEu5/85SaXnAAcDnPgfssQfwq1813leEb9KymTvZLqZbMj71KeAzn2k8PmxYVId0ingAuOiiaPH+sY8BX/hCdIxLWn7jG8AWWzSq87IwD/ettJTTGzUK+OMfgdmzgcsuS/42Ywbw7W8DO+wA3Hornd6kScBppwFz5gD/+pc6n9z85BmIZ8GC6Ll//nM6v9TCzKRGzNI8nOr3xHpu40qFAofQ9qm0VJGWacGpe5/6FHDooY3H81Ja+jAPv/56YNtto76MAlUfPvUp4KSTgFNOieYlt9xivo8KPgPxcKOHc0yJi6S0nDiRzosKp58O7Ldfo3WWatOoCKSlb6Wlbd25++5o/KHydMklUR+/ww7mdEwbUjFU46yJtFSN7fJal4oVscUWwIknAjvvHK0pVDAF2XLpz26/PSq/7363vs6nVKOUefi550abwlQ/I+fljjuiuf/ZZ+vFQYMMgb4NoGEasLikJUUKFME8XEVajhkTdRDxLn58nsmnpYy11kp+1y2uVJMH3QLMRFraKC1tfC3KoHxfxaCeq1aL8jR0aN2MK86XCpSD/Qsu0OfVBDlvuufIirTcfXfg2mujzwccUD+uIy1NpkxdXXWzDM4i0Za0FCGSFKrNBPl+s2ZFgzE3D74hl+u4cY3nUObhpsU3UC8DX+bhAHDssdEfADzzDH2OjXn4H/4QkeSLFtWP6ZSWVFRW3+RDnG6ppF5w6hS7VDompMmv2A+mNd0E0quI1lkH+OUvo8+bbAIcd1z9t3vuATbdFLjxRn2aa64ZkVYidD6nxDzsuSfw8MPR52nTgFdeiT77IC1NZvy+A/GMHg0cfHD0R+Hkk6M/HU48Mfpzgfx8eZKW++yTVJ3prgVo1XWeSksKXNKSs5mTtU/LK66IiMqYLMzKPJzTv1SrwG9/G7k4Ov98u2tdkIV5+F57RX8qyPXhhhuivgsAvvWt6C8NmqG05KjyVMSzaRz38e7le9x3n37eKGPMGOCvfwWuuw7Ye+/6cZ2638WnpS4fqvmRTVo2/Th3s1CFbbcF7rwTOPBA4C9/SaZx2GHR39lnR+foYCMsoeCqtJT7O2rtDUSbg4C63wSy8Wm59dbAP/+Z/L2jI+k6q1KhhUlHHx39UZDf8447AnfdFX3OakOrBRGUlgE0fCktKf+FRQjEo3OeKw6qlNLSRFqOHm02M+EE4tENVpTaizIPp5QbrkpLavJM+b6i8ihD5Ts07blcyGVr8xyukzn5OqqeAXrzcNPgJU52OUpL0w6zCpWKXmmpqn9Ums0kLUU/tDFslJYiuObhruZ+qv7AJhDP0KH0gpGqb6USTVpmpbTUwUZp6cNsLU/Y1gedtYFrX0WNyTrSUpUu5xzV+UB683ARrqRlFiiK0tJG+SeDUmyZ1DjNJC11absoLbk+LSn1PUArqMQyUY3tefi0jGEy2TQpl7jIOhAPBW7gD1c0IxBPqyktTf25Ctx+OiulpU0/nFZpKQd3cd1gpUQsNvnhKi1V/VPcn6UNxCOuval86/r5rH1axuAoLU0o0py0wAilFEDDhbSk/AJWq42qGK7SUvyuijTs0qHrfFoCSdXdW29F/6kBQHXvGTPsFuG+fFpyzcN9+rS0JS3jNGyISLle+VjoFEFp6UJa6nYVgeRkN0ul5bRperJE1UaoPLUbaWmqH66LUB8+LYcNo1XfqsWEvOmUpU9LHWyUlpzJXxqlpckfsS1sd9F1/ZGrDzoOaam6pypvpnZCnaML5EKdryt/V/PwZsJlwc1NC/BLWjbbpyUFnW9qEXkpLcXyoRa24u/NNA+PYSIzmkVa+uhn0yrYTGhGIB4X0jJPn5Ym0tLVvZeqn67V3MZAn+bhaZWWQPK9upJZaUnLtD4tVdfZkpZif6qyCFLVxVYiLX33R22KQFoG0DB1alylJdA4wDRDaSmbU+tIS5FMevnl6L+Nefj06eZOiqO05JKWac3D05CWOl+QNkpLXX2zOZeLIpCW4j1l5azqnfhWWrqSlnJ5qdolZwLZTNKSUkRT5uFivk2ETVakpYvS0kRaxupyFTnEVVr6MA+3+b2dlJa2ZIVuDMxSaSnWWw5pyakTpvHctOnR7krLNKDKX5wj2JKW1Ngh3yNrn5YmUlK8v2iupztPBVelJdc8XFaFNTN6eAzTXDAr0tJkHp4Fael7DCiqeXiRlJaum2rcfrq3Nx/zcN2mR1qlpXy+D6Wli4I/b9KS855U/ZPL3Bjg1z9T3qgNkaC0zAShlAJo+DIPBxoHGNXEU7crpzI3dSEtVddRSkuq0zORljNm2C3CVTtzusGKIi250cO5Tr5lUIOTTdRvEUUzD88jericjsq3TxrzcFulpWmypoIp6IaqvXICPGQJjk9LKno4x9eTbjHgA6r3YROIhyItATVpSUVRNy12XJC3eXiRdrXTkpZ5KS05pCVHkaw6H0gfiEcEh7SUr282aemzXlLlL5raZWEerlPK+lBampSwWZKWXKUlN3p4K5iHy0gbyTyGrdLSB1rZPNyn0jI+xzQ/tBFeqODLPJzbT/f2ZmMeLqdp68ogjdKylczDqbyq6qiqPer6O9V4oTpu2mThtktb0jIoLTNDIC0DaJgaUBrSkqu0pMzDdefYQEdaypG/VdfqlJamyV1apaWszAPonTVqUWhaGKryaTt59mUengVpafMsvpSWcjoiOS6b++fl0zIrpaXJhQI3D74RzMNp0lI1gaQI+3YwDy/SrrZP8/C8lJamNuB6jk/SktPO8lJaclFkpSXHPFz3/nz0G6b3I/Z3K1eqz3MxD3fxaRlISxq2SksfaKZ5uG27dlVa2pCWpvlhkczDbZSWLqSlLh8xAUVZ/qnOl9EM83BKxGKTHxelJbWppFJUumwi2JKWrWQeXqQ5aYERSimARpZKS65PS7ER+wzEo4rOzCUtTYTM9On6XX7A7BctjU/LUqn+u5y2rSNj36RljGaTlq+9xj/XF1EuY80165/lck4TPTwGNWD7Ii1lpaWqXQbSshG+zcNtlJZyIB6xX1VNssT2RhEVurxxYaNMB5rr09I3fJqHuyotKaW53FZ0i6AYaSfqgz0Qj896aSItbRfS1NhhGht9m4fbkJY6/88uSksqOKKNT0uKYBJ/L4J5eLN8WpZKQWmpSysvn5acjSk5HR1M/YOr0lIkx8Qxoq8vG5+W8jm6NYgP8/CslZacNZSL0nLkyMbffZqHq8qx2aQlNU8JSstMEEjLABpFU1rmaR6u89MoXqsqo9GjzaSlCBelpc6npZgvm+fm3keGaiDRqRBsgutkQVrGvko58GUeLkOcmMrKWR/m4dS5NrvQPpSWnLJqF5+WOgWDiKL5tIyh8o0oTkQpP3bytS4w1QGT77wY8mRRhSLtavs0D3fZYOnq4qlDbElLDkybaiafaL4D8ajcDqRFO/i0pMgA0/vR+VuVf+cgT/NwSg3IMW919WnZCkrLrEhLoPVJyyx9Wqqu9+3TkuMCxJQn3b2zMA8X08zKp6WcjkmZKcO2nyuCeThXaSmCGj9tA/G4mIe7zI3Fe5oQfFoWBqGUAgbw8g471L+cdFL98557Np5M+VxMG4hHNwH2GT1cTI9Ka7316sf22iv6/5Wv1I/Nm6e/99ZbJ9Ogyk+EasFoSybGHbSYHoe0TKu0/M536ONxPj7/+fqx978/+t/sQDz771//LNZ1Cr7qnAjZlyLXPPyww/TpipNdahFko1TS/SYT+61qHj50KB2YSq5zHF9POgWDOJk78cT658MP1+dXlQcRuoUkRVqqCFhRPSuqgEXSsrvbz6QcADbYoP7ZNCGW76nbKGkFn5af+Uz986672l3r2zxc5c/XhbRUKcvE8VBnZWBSWnLNJgHgC19oPPbhD+uvz2rh8OUv1z+LY48M13q58caNx8Qy32236H/W5uE6kkK12WFDyq27bv3zzjs3/i5u2ulIS455OPVsHELkmGPqnz/xifpnimASy6QVlJazZtU/H3CAU3YA0HlSrQt8oR1JS84z2fi01F3nApPqkfsOdIp4mbTMwqelnI44P5o9O3k+1Qfavv8iRA+XhQmydVWME06ofz755PrneJ2cB2nZbKUl9Sw2qmWg+XPSFoEHyVJAu+CRz30Ok7ffHpU5c4APfQj45S+B//43+rzNNsmTKaWlavHjqrTM0jxcR1oOGwb84x/AggX1Ceh3vhOZJK6zDrDttsnzRfzhD3Xz8quuAu64AzjuODoPMdKah6dVWqYlLY87LiLIxAELqOf/9NMjkm699YD3vS86ZqOetFFlcrHzzsC55wKvvw584xv6c32SlnfcEdWR//f/ksc5SsuzzgIOPlifvom09KW0lM1zW4W0pHwqjR4NLF6cPMe3efgFFwCPPw5ssUW02Pvtb4F//xs4/nj3vMfQTczkxXlnp1ox8JvfABddFP0uEj4iablsmR8zTwC45pqoDe6/v7lNU/3+nXcCH/lIUjXNNQ9v9q72WWcBEydGZNOmm9pdy7FIUJ1LQUVepfVpWSoBN98M/OUvwNFH0+fbmofLCyld33HUUcA770TPN306cP/9je0tr3rw5S9HJNrw4cCECcBf/0qf55qfBQuAH/8Y+MEP6sfGjYvuc8stwPz50bGszcN1Pusc+o1aqYSSWO9GjwauvRa47rrkRnIMrk9LF6VltcojiY4+Gnjvvajf/NCH6sdNpry2imsufJKW06cDf/wjcPfddmMXJ08iEZQFsvZpmaV5uAppzMNNfY0PpSXVZ9jcQ3WduKYU08iStJTvf8010Trx2GP157uILIqgtDzuuKg8Fy4E5s6lN8YA4Otfj9KfPBk45JBo7nzLLfV1r4q0NNUNCr4D8ch5+PKXo3HUFj5Iy2bPSVsEgbQMGED36NHoP/10VOIG+KlPRf+feabx5Dyih/s0D5dhMpN+//vrqkAgmoB+97vq8wFg992jRXSMAw7g7Ua7mIeLv8k+LXXKG50vTwpc8/BvfjMiD37yk8Z7jxrVWHbN9mlZKqkX0jJ8qnF23DH6092DUlrutx9NfsswmYfbTBR0z6kj9YDW8WlZLjeSlibzcBNhQ/2+xhrAaafVvx96KD/PYr4o2CgtRX+3QLIt7bBD9CdDJC3fecef0nKddZIkiw5U/ZozBzj/fODAA5PntYLScswY4P/+z+1a3Rio6qt06gUuaWlrHl6rRQq/WOVHwYb0AsxuKUR0dEQLqhgf/WjjOXn1PZ2dwP/+b/T58svV57nWy5kzgXPOAf7+d+Dpp6Nj5XI0buy3X/28NKQlRYj7UFpq3kHP8OHofPfdZBpz50Z/FMT+zsbXLwVXpWVXF229QRFM4vWtoLQEoo1T0+apC+S27RvNVFra3otDqgP+A/H49mlpOsdVaanyaUmZh6cljCilZaUC7L139CfDxX+kjCKQlpMmRWOKCcOGAd/6Vv37/vsnrQlUpKUMzntS5duXefiPfuSPtNR9p9DsOWmLIFC7AWZQjSkNacn1gUiZh7uSlpyANLadhny+jbmVaXJAOX0XoTMPz1tpGcOmo242aWmDLMzDdfegSEvuM9sqLV3Nw02kZav4tIxJSxHVauPGisqkmjrHlxJRlb4MG5+WAN83UwyRtHz33Wx8Wpqg6vdNDtC56bUSdP2RT6WlXLa25uEcssU0Lst5kE3U0vYdvnz02cA28qwNTBYcYiC3tPMdyr+tC2kpQqqLPbKi35RnLtnjy6elTf1rB5+WvkDlSWV+6guu/hS5yNI8XIU0Pi2pc337tDSVMfcdyPcS55+mQDxZmIfb9OFplZbNMg/3BS5pGR8vonm4i0/LoLTMBKGUAszwTVqq4GIe7kIGmMzDuUhDWopwUVrqzMPF6/IIxBMjDWmZt09LG+RBWprMw7mkUFGUljbm4XkO1lzSUmdK5mIenuUuqq2iKA1puWyZP6WlDVQLAWoh2u4TRN0Y6LLD72IezlFaqhYMOgf1Ps3DOVi2LN31LtCNX1mTlrqFrAl5mIdLZZMZaenSR1Ckpc37MkUPH+ykZasrLVvFPFyltCyX7foHl00pGa6kkWoOk4V5uMp9lwo+CMK8lZZZCgc4dZQL36Slr+c2mYe3+0Z6jgilFGAG1ZhsSEtTxMcYWZqHy+Rbs0lLU4fW0eFOWtoqLXWTj6C0bC2lpVgH0/q01D2nrERUKWyKbh5eqTT2T5VKY55szMPzViLamIcDfMVAjKx8WtrAt9IyTX7FfjAtoeAC3RjIUVrK5ZOVT0tO2diah8tqrLQT/WaQllzLBheY3pHYV9j2SVmZh4vIQ2npapJaraZTWlILW/F5VObhaWHTRzWTtJwyJdt7Zu3TsghKSw5pqZqnVCr+SUsTuO9A12Z9BOKxnafqzvettMyDtMxy/sZVWsbwGT3cZEnBbZe2SksX0jKYh7MQSMsAM5qltMzSPJy6znYB5EtpCdD545ru6szDOeUlmozp8mVLWuo6apvgOs0mLV3US7YwkercZzZNkHwoLYcMMZdJq5uHy7AxD+csHHwiT/Nwnz4tbRDMw+vQbaJw+ipX0tLWp6VJ5UDlL2+lpegvUSbIsoKurXDKTAfxelPZtKN5OEehxiURqHaWRq1Htc08zMNtrs9rbkXVzawX7a0UPdxlkxqwMw83KS1N5dNMpaUIk09LX/MB7mavD6WleI1rPRXXdSYiNct2n2ajx5SW6Xhe7l9M5uHtPifNEaGUAszgkpbc6OHc+1Dm4b5Ub0XyaQnQizeu2bYciEdnHk49t65jtyEtbQajZkcPt0He5uGU0pI78TGd58OnJbU5kcY8vBVIy1Y1D6fyyiFgRYikZa1WDJ+W8XfqfWZtHi7W1zzrbgzd5l6WSkuREFOVn9yPmWAiWeV6JauxfCotxXqeJXRtJe0iy2ahlIV5uGfSst9WEcRRqHHnaRzz8DTtPy/zcBsivJlKy6yRtU/LLH3VqpDGPJw6ztmYisGpV75IS50K2aS0zGI+kKdPSx9KSzm/eZKWOtN+W6jKMmvz8DyUlgEsBNIywAyVebh8XEVacs3Ds1RayiiSeThAPxfXPPzRRyMF1MKFjfniKEyzUlrqEMzDk5CVs66TijyUloORtCyyebhuYkaRIGmUlkD+SlI5fTHisKtPy1ZGkZWWlAWADqYFjclc3KdPyyKQlmmVllmSlhzzcM8+LWs6Nx0UOKSlq9KSMg9P09fISssVK+jz8lRatjNpmfU8jjtf9wmfPi1tzcM58NUH6dx4+DAPb0fSUjde50laysjCPNyVtPSFQFrmhjaf3Qd4AVdpqepcXZ2j+/RpKaJoPi0Be/Nw8fwvfzlJvOhIS+oZfSkt05CWuoFdJsObHYgna/PwND4tbZWWLqQltTmhapdFNw+vVBpJS6qN6IKHyOfkTerp2iU1aUvj0xJovtJSfIeu5uHN8EXpC7oxkDMm52UeripjTluKodtQk9NywfLl9c95kZa6PrrISktq7PCttDRtqvlQWnL7qqyVlpUK7x0MJqVlnuSJ73kc1zLKJ3z6tJTNw/Pwacl9B1zSsq8vH/NwXdn4MA/PO3p4nv4UszAPV+W/WaRlqWRPWgZik4VAWgaYQXUIQ4fyO7o11wTWXjv6PH8+/76zZkX/q1Vg002jz6ZJsgocxWHaSbzN4GRSWpoC8eh+i8uNOi/+fvrp0f/hw4HddlOndckl9c8nnKA+z5QnGTbqyWbuCgL0wum3v1Wff/jh9vcwmYdnpbQM5uHAttsmj221VfT/yCOj/xttZF58A/rgQ1lOCi+/XP3bttsCEyZEn7/97ei/rdLy4x+vP9uFF9L1Ik/SUrwXRXoceGD9/B/+kE4vzYLr97+vfz72WPd0XKEbA1Xt+3vfqx+78MLkOSrSUq4bnOjhP/5x/fOZZ9LnnHFG/fO559LnxFhzzbpJODX+pCUexDya8uILrerTkiIUffu0BIDZswEA/R/9qD1pud9+deJS1fa5m8scn5bcDXkK5TIwc6baF3yMwaS0/POf87k/4J+0XGstYOrU6PNxxyV/c5nj7Lln8j+FIvq0/P73o//VKjB3rj4N7jv4wAeAESOiz2edlfztvPOS985Kacl1C1MUpeXPf17/HM/9VHlqltLyoIOi//GcGwA++MH657PPTl6ryqdqw/EHP+DnJQ18kJYBLOS8+g9oScidcGdn5PCc25lWKsAttwD/+hew//78+x58MLBgQbRomTaNzkurmofLoJ5L19GpfuvoAH75S/N58+cDG2wQkcG6AAQf/CDwj38AY8ZE5+uQFWkpo9mBeCoV4GMfA8aNA668EvjpT+u/XXYZsO++6e5BmYdzJz6msimieXie5rwUabnjjsBNNwEPPghsskk0QQYiAmbvvYGddjKrw0qletp5kZZbbw1897v1/FLo6or63Yceihb0gD1pOX488PDDwH//C8ybB6xc2XhO1jv1KtKSep9jxgD//jfw9NPqtpiGCDjoIODaayMyeJ113NNxhY7IUS1QZ80C/vlPYNWqxjyrxi35Phyl5Y47RmN9pdK4GRBj9mzgjjsiFaW4wUahWgXuvBO49956/dXl0RazZ0f5LZWAHXZIlxYXurbiM3CAqWyyiB5u429VdeyvfwVuvhl9e+2F2kc/aj5fxKhRUV/1xBNR2//KVxrP4Y6lHKUl11+7Kv3hw4EHHog2xlQYTKTlfvsB110HnH8+cPXV2eYhC5+Wd90F3H139Bwi4eLST11xRVQWuvGdE1zIxqelD6XlscdGa4VNNonmxzpw38HIkcB999XbtYiddqqPOdtsk49PSx18Ky1d51bvfz9www0R2bvZZsnfXAN9+oBY1r/8JfDRjwK7714/Nno08OST0d+++yY3AFRlKQfo+9a3IjHOnDl+8uwylgbSMhME0jLADLnTjH1U2nSmM2ZEfzYol4F99mk8JsK1s/URiIcic7ng+LTUTTZVneB3vgOMHWs+r6MD+NCHzPkslaLBj4M0pKVN2TdbaRkv1vbeOyJyRBxySOp7lLL0aenDPJxDWraSeXipFE2axIkTEE325EUzQD9TV5fePDyLOjt7dlQHTVh33egvhkg+cfO1ySbRH9B883DK13GM+B1svHH0l1VeTAqSLKEbA3UkUkzKvfhi8hzuooqzoC2VgF13Nae1447RfzF6twozZ0Z/FNIuNrn59QndWNdKPi0p83CdRQu335g0KdoU7Olx80O44YbRnwo+fVqmJS2BKK8dHepAPGnRSqRlqRSRdA8+mD1pmcVGm8s6R4WxY6N2oINvn5Y2gXhU9aqjI7J24MDmHajatdyH5+HTUtemfCstXce4Ukmt0i2KefioUfSaSfWuVfNMuc3ttlu+4zr1jgNpmQmCeXiAGXKHFk/U8uzoYriSlrKvraIpLdP4tBQh7zjl2Vna3Ev2i2hzbbN9Worv3ZfPFPkeIRBPNqDMOGyhIi1j5KW0zMJBOwfNNg/XkZbcCX47+bTUmYdT9Zvr01JG2npDwQfp2GrIUmkp1mtT2WZBWspwIS0FNATi8VHvfCotuUEmTenr2mA7+rT06R/dFXlaeGTlW2+w+LS0QR4+LXXPXhSlpQ5FMQ+3hSqf8rrXhRdIc54P0rIV5zJNQCAtA8xQkZatFAGwaKQlR2np4thb3nHK8x2lUVraoNlKS/G9+DLnM+3OZqW01L0zVf2j3p3Kt1nRSEsfdYd6piFD9L+3E2nZbKWlylRc/k2HViYtbczDOddzxy0bf2dcDEbSUvfMreTTslw2p8ExDxfboilAYdFISx9KSyBb0rKISkvTvCmQljxk6dOyVUlLF6Wlz/lZUXxa6tBupKW87vX9PHmQlgEsBNIywAy5wcUTte7u/PMyWHxaugbikXec8pyY5UVa5q3w1ZlcthppmbfSsujm4S4wKS3zUiK6ppmF0jJPn5a66OeDgbS0UVpSaCelZZ7jmy/o8pxn9PC0Pi1LJbt7tJrSkrJ+ka9NQ1q65MkFNn1dXnMrE4mXx5ygHUlL6plU81cTaWkqn1YhLX35tHRVWrrM0wJpSYOrtMx7jRhIy9zQgjO+gNwhN7jYJGbVqvzzUiSfllkrLV0C8cQBi0znZYG8SEufwQo4yENpaTIP5y5qiubTsmhKy6xIy1ZVWrr0n802Dxc/cwIRUGgn0pIT2V5EUFo2F3mZh+fh09IHaamLytvOSkvxXRfFPDwvIq8ISss8iY0imYerAvH48mnZbORhHm6TVrN8Wuqg2/jMGmnaAjcQj2/zcBMCaZkbAmkZYI94olYE0tKlsy2ieTi1q+8aPZxzXhawGVxFZZot8lb46hZOvb1+7mEi47NSWrqoeWV/pNS5cRkVzZeLD9KS6icGk09LwN/mERcqNeFgVFrq+qMslZY2poNcBKVlEj4D8fj2aUmNHaZ21E5KS98+LcW5g64N+qwTJgwm0jLPviOrjXYX83BVwMBmmIdnQea6mIfbvp+sfVqK1+RBKOaptEwTcEyVT1lIkbcLsUBa5oYWnPEFNB1FIi1dd1SKRlr6Ulq6nucDNpPANPnKKsqmClT08Bi+Jl3N8mmZtXk4B3kuHpplHt5upKXKh2lWCIF46tC1tbyUlr7ed9rxqRUXA1kqLbP0aUmNHaZ2ZCLUTXnIgrTk1neO0jJNfgaz0tKUp3YjLVtBadkM0jKLcdiFtOSsZbnm4a3g01JGq5OWWSP4tCwMAmkZYI+YtEyjlnNFu/i0FM1JAfuBjjvhKqpPyzRotk9L8f7Dh9c/y+/UBr6ih48cqf89L5+WcX4Hi09Lk3l4kXxaigsT1zTyNi/yHYiHUgu3CnRjYJZKywkT6p/Hj+ddY5uXvK9vBnTzJlG5N3myfdo2C6URI+zSpsaOrJWWWSi6ffq0TANuIB7b9yTDhhjKa05vGi9aUUGtQ1ZkSxrScrD4tMyCtNTBB2lpstzxjTzJwDTWadx8rlzJO89Xf+eDtGwGn9KCaLORISAXxBPrj3wkitpVLgPXXOMn7f/3/6L/Rx9N/+5r570ZpOWVV0Zltf76wP77J3/zobT8wx9452UF23sddVT0X/WuRfzpT1H6G24I7LWXfd7SQFfnPve5aHFZrQLXXefvHq4+LXfbDdh00yi9yy5r/D0rpaWqjEaPBt7//ujzD36gvs9++0WfTztNnR8fyENpmZd5uOuEPwulZdYkoFi/fPi0fP/7gY02itL94x/T5y9P5Bk9/JvfjP5/9KPAz38ekfMjRwJnnsnLKwcHHhj9P/VU+2tbkdyYMiXqpwHg3HOTv82fHxHCHR3AVVfZp21aKP3tb1GZrbMO8OEP26WtszhQISVp+drWW9eJy9GjgV13Nd9TxPe+13jMl09Ll7nVL38Z/d96a2DzzevH5TZ40knRvSZNAr70Jfv7iLBR306erK6bPrHppsDs2dHniy9u/D2rdn3GGdH/ffZJt8nMQfyut9kG2GyzbO7hU2k5blw+Pi3PPz/6v/POjT74fcBlI5NLcnEgl5sobOBizz2j64YOrc+fs0SeQpA0Sktd3/3b30b/N90UeN/7eOlttlnUPoF6PxSPkWnzZdPvAsC22wJbbRV9vuQSu/sPIjRJaxvQ0hCVlk89Bbz1lpsqgMIFFwAnnhiRoRR87LzXas0JxHPggcDChZFixeQs2pa0XLgQWHNN83lZwrajv+gi4BvfUL9rEQcdBLz0UlR2eSstdYu14cOBZ58F3nknWmC4wpd5eKUCPPggsHgxPSH04dOSE0RJfEfXXgu8/HKjs2wRf/lL9H45dSENsvJpKS6A8jIPd23b4mTKdXEoX5c1aany1WdTn0VUKsAjjwCvvw5MnZo+f3lCp3L1rbT8zneAz3wmapelUtSOOzrMim4b/PnP0fjl0vZbUWkJADfcALzySmOfOHo08MILwIoVwBpr2Kdr8mm5775RPztunJ1lCAVb83CHzZzFW2+N3meeQcerr0Ykn63q8BvfAA47DNh+e+DVV6NjaXxaisdcyIhPfSradJ08OZmW/C522SUiK0eOTN+32vg5BdR10ydKJeDOO4FFi/Kdtx5/PHDIIfQ9fUP1rn3Cp0/LGTOAe+6pf89KafmFL0SijazGXRelpS1paWMe7hKsa/r0aKzt7wfGjrW/3hbtYB5+6KHRptYaa/DngaUScNddyX4oHiO/9KVILMOBD6VlqRS1v9dey4bMbxME0jLAHmInPGSIP8ISiBruWmupf/fh0zKrQDycybBqoLZVWsq+r1STsCKTlqZ3LaNZ5IJJ3Tt0aPqFhS/z8Pha1aCXldJSd59y2bwAKpezJyyB5iktm+WLh4IP0lJ+Rk6dSAOVAsRF/RWjo6P1CEsgX6UlkOyjx40zp2+LUsm97bei0hKI3pOqTxw+3I0QA3jqjilT3NKWkYN5OIBoLJs50yprCcyYkTRJdFVaVqsRmRzDtc+j5moU+TRxolv6MmwVP7q66RPVqnremmW7zmOeESNrcpRjacBVWsrvPEufllnWr6xIS65PS/n+LqRlmutc0A6kJeBG9lH90JQpybaVl0/LajUQlga06IwvoKnIszOV4epLrWiBeGTYkrHLlrnfKyu06gLShCyCAcgw1Wtfkwobn5aq5+Qs1opE0oloJ/NwV2ShtMyTtHRRB7cTdGNZlj4tA4qPPJ3/+4genle/6IO0LJf9kJYUOIo5V9gqLYuAVlVQ5w2OebjKGoFSWorIIxBPFjBZsVHwGVRWLlfRT3FR0S6kZVYIgXgKgxYZwQIKhWZ2wr7Mw4tGWlJKO11HJ5KWWUYjtUGrTIhtkUfQEVPZZUVa6u6rqn8cVWmRSDoRzQrEU6S24cOnZd6kpdiPuaiD2xlplZY+g4vkjaIunJuFPAkqrmqP+gxE+ctrMSculF3Nw4EkaemqhqWQJWlpq7QMaB1wSEsZcR2Q61i7kJYqZakOotJSdX7eSss8ked8PY9APD5gU78DaZkbBuEMPyA1iqS0dDEPB+hOxnaSn7XSUtfRvfNO/bOORA6kZXqkMUF1vYcMX8SCjemM6jdOPW9n0pJ6NlFpSRHDWUxaXBcNWZiHZ+3TMigt1cjSp2VAayFPgiqt0jLPBWh3d/0zt75TbWn58vrnLElLn/1YWDy3L1zIbpXSUjbZziN6eBZIax6edi7jw6dl3shz3pRVIJ5mghrLQr+bCQbhDD8gNVqRtJRRNKWlLWkpKi2LQlq2a8fcDPNwGc0wD1dBJOhUKKp5uI86amseXrSyEPsEH+bhXV3Zk9RcBdlgJC0Hs3l4URfOzUKeC6W0Pi2bZZKYRmmZFWkp5ykrpeVg7B/bGS5kt8qnZbsqLW3Nw1VWI+2stMy6XxDLpFWUliKCeXhhEEawAHs0sxP2RSC1Ammpg6i01EVyDUrL9MiDtDQNar4Ga5cJnYxWVlr6gK15eFZl4SN6uGvexOuyNg0H+Hlu1z5Ih6wD8QS0DvImLU3Q1c08xwixXLhjKdWXtLpPy7B4bi9wAvHIUCkt11gj+b1V53AuPi1FpSVnM8Imengr+LTMGuI7aUWfliYE0jI3DMIZfkBqjBjRvHv78mnJibJnQpY+LW2UloG0zBY2fiB93UNGM3xaqjDYSUtb8/CilYXvQDxZm4YDwTxch2AeHhAjT5+WHPNwHWkZj2liGnmot7j13aS0zJK0HOzm4UVV8RUNLhvq8TWmuWC7KC1tfVpylJY2928FpaU4v8oCIqnXKqRl8GlZSAzCGX5AajSzAbqSlptsUv+8zTbRM8jXNpO0lNMyBeLZfPP65+22U58XSMv0KILSMiufli7vbNw4+/u0E2yVlkXbHfbh9y5vpSXXpL1d+yAdgtIyIMacOfXP66+f7b045uEc0nKzzerHtt7aT95kbLNN/TO3XKi+ZNtt65+32ipdnkQEpWWAD9goLak55aab1j+vvbY+HQ7RtdZa9c8bbGA+3wdcrInEdi2urURsv33988Ybq9NqRZ+WWZOWO+5Y/5xmXMrTp6X4jmfP1p9rylfod71hEM7wA5xw8cXAlCnAOec0Nx+uKqYTTog6zs03By68MDqW1o+Qz8XfpEnJ7yal5WmnAbNmRYTlqaeqzwukZXq0s09Lk2r6tNOidv+pT0WO2r/8ZWDaNPN9ikbUifjBD6Jn+sUv3K639WlZNALXt9Iyb/PwQFomEXxaBsT41a8i4mH33YEvfjHbe6lIyyuvjMaIk05K1i25H5w8Ofp/0kkR2brllsCPf5xNXn/7W2DDDYG99waOOIJ3DTX/OvfcqHx32QWYP99f/vIiLQdj/ziYYENajhwJHHts1FYXLIiOXXFFRC7uuy/w8Y/r0+H0vR/9KLD//hFRddVV5vN9wMU8/KKLImHLrrsCxxxDn3PBBdH6cccdgeOPV6dlO8cuArJeJ/7859Hm1M47q8uXgzzXFRRnoEJQWuaGAq8sAwqFI4+M/poNyoyag6FDgTvu0F+bdqKYZvEnR+4zPdfEicCDD5rTDaRleuQRPTwv0lKu4yZ/OyeeGP2lvU+R8JWvRH+uMJGWrWQe7po3sU0En5bNxWBWWgbSMom11gL+/e987qVqawceGP3JkOtmPOcZMQK4806fOWvEBhsATz5pdw31fDNmZFO+WZqH5xlRPqC5sCEtgUiEIgpRNt4YeOqp+nfd+oHT95bLwNVXm8/zCRel5VprAY89Fn2+/376nKlTgUcesb9/K8xJsl4nrrkm8Oij6dPJk7SkOAMVAmmZG1qgNQUEaJCmEysSaSlH7jMpLbkIpGV65EFC5RWIJy/TlaIRdT5BPVszAvG4EjY+lJbd3fXPQWnZXASflgHNAMc8XIQpWnHRkGdfEpSWAT7gsmnliqJuGPkINpkGrdjG8lwnpkFRLbgCaZkbWrB1BQQISDO5801apvG30Q6kZbt2zO1kHp6Xk/CiTi58wNY8vGhl4WMRu2pV/XPePi11/UwrLhjSQqxfQWkZkBfanbTMcz6TJWkZlJaDB7ZKyzQoat+bVumYto204oZ9IC3TIZCWuWEQzvAD2gppOrG0Pi1N6dlANg83BeLhIigt0yMP8/CgtGwdmALx5GUe7qN/cM2bGG2zSNHDB+PkMCgtA5oBTvRwESrz8KKimUrLrKKHt8ocraiEWNGRJ2lZVLj4tPSJViEARbRKnvMMxGMDan0WSMtM0Oa9V0Dbo0jm4WkmA0FpWVwUIXq4L+SltBxspGUrBeIR0SpKS3ECWOTybAbS+rQs6kIgoNiwHbOC0lKNoLQM8IGgtGy+efi77+Z7Px9oFdKyqEpLqr8OpGUmCKRlQGujSObhaUAF4mk10rJdIb+HLAYg00TS1wRRvo8pEI8r2plYop6tVUlL17qcN2nJVVoOxv5uMCsti7pwHgyw7TvkuhmUlnUEn5YBPhB8WgbS0gWtMm8KpOWgRxjBAlobRVJapsHIkcnvvjrnVhmMiow8Jvp5LSaCT8v0sDUPL3JZ+Kh3RSItxfMGCwazT8uA5iGtT8tp0/zmxzeaqbQM0cMDXMCN6O0DRR1r5flW3j4tA2mZHYo6lw6kZW4IpGVAa6NdSEsZlUpQWhYFeQw4pntkpbQM5uH2aCfzcB95yzsQTyAtkwhKy4BWgNzXtHK98w3f/tVFBKXl4AFnvh/Mw7NFIC2zQ1Hn0lSbCqRlJggjWEBrIw1pmaVJjgsmTap/Hj7cT0e38871z5/8ZPr0dCjqJCYt8hhwtt564GP/+98ffVhnnfrvU6f6uU8gLdOjXG58Ph1p6dNn4CGH1D/vsEP69HwsYJodiEdsGxMmZJ+XokGsb5y+qp1Iy4DmYtdd65+PPFJ/biDM1MhyLrr33vXPhx7qL90sERb5fIwfX/8sW2xR8NUOxbVFkepVWtJSVICvvbb9/XfZpf75qKPsr88LH/pQ/fP22zcvHzYoar8wZkz987hx0f9AWmaCgmptAwKYSDO5k/35uaR1443A+ecDX/yiez5i3HwzcPLJwL77RpMPHx3dPvtEaS5cCJx1Vvr0BiPyGHC22QZ9p5+OV665BpN/9rNoN+maa4BvfhOYOxdYYw0/9wnm4X4wdWrUpmKI5uFyGfv0G3ruudG91l0X2HPP9On5WMCIz54VRNJSLt8bbwROOQWYNw8YOzb7vBQNclv705+A3/0O+PrX6fNDIJ4AV9x7L3D66cAnPhF932+/aIx66SXg7LPN1//xj/q6WTRceSVw6aXAiSdme58sScsjjgCeeAJYtizqJ1sB7boBngVuvRX49reBD34wEjuY4Gs+O3cu8K1vAc8/X6y1RVrScuJE4Be/AP7xD+A737G//wEHRP3b4sXAmWfaX58XLroompuuv340n7zoombniMY99wDf/z5w2GHNzokaw4YBv/0tcNVV0XobCKRlRmjzlWVA2yMNOSITNi4TxT32iP58YOONgSuuqH/30dGVStGEJsAdOSlE+ufPxwMbbYR5sXJsgw2Ayy/3exP5WbIinNpZaQlEkW9F0lJUWmapZl1jDeBXv/KXno/3JD57VtApLTfayH87aSXI7/Cgg6I/FeRxpZXbaiA38sU220TEY4xSyW5hf/DB0V+r4MADo7+skaVPy0ql2ORJQDpsuinwhz/wz/dVt0qlYpLgaX1aAsCnPx39uaBUAv7v/9yuzRMTJ9bnkpdd1tSsaDF7dnLMKSoOPTSpOA6kZSYI9hoBrY1mKy0D2h/tNODk5e+n3dvSjBnJ73kpLX3DxwImD9JS9LnUTu3RB2zbWii/gIBioWiuigLaF+3e/zfbp2VAABBIy4wQSMuA1kaaRbesgCqaz6XQ0RUD7fQemhWlvN0wfXryu86nZVYm+D7go243W2k52NHubU2HoLQMaAcE0jIgL7R7nxlIS3uEMvKPQFpmgjD7Dxi88GEeniVCR1cMtNN7yIvwaXeflrLSMi/zcN9oFZ+W4gSwaP10s9HubS0goN2RpXl4QICIdict5fGwnebvWSGUkX8E0jIThJExYPAikJYBHLTTAqKnJ5/7FK0t+Ua7KC3bwaflYEe7tzUd2n0BHjA4EJSWAXlBHEvbEUFpGVAEBNIyE4TZf8DgRdF9WrZaR9euC8hWew86LFuWz32K1pZ8Q1Zairv7rURatorSMpCWarR7W9OhXcecgMGFQFomEdp1dmj3sh3sbccF7bTGKQoCaZkJwuw/YPAiKC0DOGin9/Duu/ncp92JJVlpKUJ+9hCIJz3EQDztXrdsEczDAwJaGzJp2U5zjoBiIZCWATJCf+MfgbTMBGH2HzB4UXTSMqAYaKcBJy/Ssp3KjMK4cerfWklpGczDWx9h3AoIaG3IpGVAQFZod/PwsIkXUAQE0jIThNl/QOth3XWj/xMnpkun6KTl3nvXP3/ta83Lx2BHOw04Bx1U//y972V3n3YqMwqlErDRRtHnrbdO/tZKpKUrAfipT9U/b7KJl6xoccYZ9c+f+1z292sluIxbQ4dG/+W622r4wAfqn7/61eblIyAgDTo6mp2DYmGffeqfTzihefloF3zkI/XPM2c2LRu5oGjruFbALrvUPx99dPPy0U4IpGUmCFsSAa2HG28ErrgiScC4oOg+LddcE7j5ZuDxx5MkQUC+aCdl17rrAtdeCzz3HHDkkdndZzAM0tdcE/VDBx+cPD4Yoof/4AfArFnAnDnAyJFes0Ti05+OFBTjxwPbb5/9/VoJLuPWgw8Cf/sb8PGP+89Pnpg2LYyRAa2PoLRMYsYM4KabgCeeCO3aB37yE2CHHYCdd65vWLUriraOawVMnAjcfjvw0EOhvflCIC0zQSAtA1oPa63lR1VRdKUlAOy2W/QX0Dy024Azd27292gnoleFmTOB449vPD4YlJZjxgDHHOM1K1pUqxFxGdAIF3O4DTeM/toBYYwMaHUE0rIRu+8e/QWkx9ixwFe+0uxc5INgHu6GnXaK/gL8IJCWmWAQrCwDAhRoBdIyoPkIA449BnOZDQbSMqA4CONWQEBrI5CWAQF+EMbDgKJhMK+HPCOsWAIGL2SzxjDYpUO7RiUMA449BnOZyUTg8OHNyQcHgbRsfYRxKyCgtRFIy4AAPwjjYUBA2yKsWAIGL+TBLQx2ARQCsWOPwUxayv1IketPkfMWwEMYtwICWhshEE9AgB+E8TCgaBjM6yHPCCuWgIAYYbALoBAGHHsMZjKslfqRwfye2gXBh1dAQGujlcaMgIAiI4yHAUVDWEN6Q1ixBATECBPHAAphwLHHYC6zVupHWimvATTCOwwICAgICAjjYUDxMJjXQ54RSMuAgICAAL8YzIN0b2+zc8BHUFq2PsIiLSAgICAgIIyHAcXDYF4PeUZYsQQExHjvvWbnoLXRrpOFdg0wlCUGMxm2alWzc8BHMKVqfYQJcUBAQEBAQJjTBBQPYY7mDYN4ZRkQAOCMM6L/660HbLBBc/PS6jj4YGDChOjzJZc0Ny8+MWwYMHt29PnrX29uXoqMs8+O/q+7LjBrVlOz0lRstBGwzjrR57POam5eKPzyl9H/iROBD36wuXkJcMMJJ0T/t98e6Opqbl4CAgLS4+CDo/+HHtrcfAQEtDLaVTwR0LoIpKU3hC2JgMGN444DdtkF2Hjjwa0O84GhQ4EnngBefBHYaqtm58Yvbr4ZeOQRYLvtmp2T4uLYY4GddgI23HBwTxwrFeCBB4AnnwS23bbZuWnEEUcAm28OzJwJDBnS7NwEuOD//g844ABgyy2bnZOAgAAf+N3vgHvvLeaYERDQKgjruICiIZCW3hBIy4DBjXI5EFE+MWFCXW3ZThg+HJgzp9m5KDZKpbDgijF6dHH7lVIJ2HrrZuciIA3K5dAfBQS0Ezo7gR13bHYuAgJaG4EgCigaQp30hrAlERAQEBAQEBAQEBAQEBAQEBAQ4AOBtPSGQFoGBAQEBAQEBAQEBAQEBAQEBAT4QCAtvSGQlgEBAQEBAQEBAQEBAQEBAQEBAT4QSEtvaGnS8vzzz8fMmTMxZMgQbLfddrjnnnu0519xxRXYaKONMGTIEGy++eZYsGBBTjkNCAgICAgICAgICAgICAgICGh7BNLSG1qWtLz88ssxf/58nHLKKXjggQew5ZZbYu7cuVi8eDF5/p133omPf/zj+MxnPoMHH3wQBx54IA488ED8+9//zjnnAQEBAQEBAQEBAQEBAQEBAQFtiUBaekPLkpbnnHMO/ud//gdHHnkkNtlkE1x00UUYNmwYLr74YvL8H/3oR9h7771x/PHHY+ONN8app56K973vfTjvvPNyznlAQEBAQEBAQEBAQEBAQEBAQFsikJbeUG12BlzQ3d2N+++/H1//+tcHjpXLZey111646667yGvuuusuzJ8/P3Fs7ty5uOqqq8jzV61ahVWrVg18f/vttwEAb775Jnp6elI+QfHQ09ODFStW4I033kBHR0ezsxMQMOgQ2mBAQPMR2mFAQPMR2mFAQHPRqm1QzGnPG280LR8BgxfVKVNQevVVAEDf8OHoT1EPW7UdcrFs2TIAQK1WM57bkqTlkiVL0NfXh0mTJiWOT5o0CU8++SR5zaJFi8jzFy1aRJ5/2mmn4dvf/nbD8bXXXtsx1wEBAQEBAQEBAQEBAQEBAZliwoRm5yBgsOOEE6K/AC2WLVuG0aNHa89pSdIyD3z9619PKDP7+/vx5ptvYvz48Si1odT3nXfewfTp07Fw4UKMGjWq2dkJCBh0CG0wIKD5CO0wIKD5CO0wIKC5CG0wIKD5aPd2WKvVsGzZMkydOtV4bkuSlhMmTEClUsFrr72WOP7aa69h8uTJ5DWTJ0+2Or+rqwtdXV2JY2PGjHHPdItg1KhRbdkoAgJaBaENBgQ0H6EdBgQ0H6EdBgQ0F6ENBgQ0H+3cDk0KyxgtGYins7MTW2+9NW688caBY/39/bjxxhsxZ84c8po5c+YkzgeA66+/Xnl+QEBAQEBAQEBAQEBAQEBAQEBAQHPQkkpLAJg/fz6OOOIIbLPNNth2223xwx/+EMuXL8eRRx4JADj88MMxbdo0nHbaaQCAY445BrvuuivOPvts7Lvvvrjssstw33334ac//WkzHyMgICAgICAgICAgICAgICAgICBAQsuSlocccghef/11nHzyyVi0aBFmzZqFa6+9diDYzosvvohyuS4k3WGHHfC73/0OJ510Er7xjW9g/fXXx1VXXYXNNtusWY9QKHR1deGUU05pMIkPCAjIB6ENBgQ0H6EdBgQ0H6EdBgQ0F6ENBgQ0H6Ed1lGqcWKMBwQEBAQEBAQEBAQEBAQEBAQEBATkhJb0aRkQEBAQEBAQEBAQEBAQEBAQEBDQvgikZUBAQEBAQEBAQEBAQEBAQEBAQEChEEjLgICAgICAgICAgICAgICAgICAgEIhkJYBAQEBAQEBAQEBAQEBAQEBAQEBhUIgLQNw/vnnY+bMmRgyZAi222473HPPPc3OUkBAW+C0007D7NmzMXLkSEycOBEHHnggnnrqqcQ5K1euxBe/+EWMHz8eI0aMwMEHH4zXXnstcc6LL76IfffdF8OGDcPEiRNx/PHHo7e3N89HCQhoC5x++ukolUr4yle+MnAstMGAgOzx8ssv47DDDsP48eMxdOhQbL755rjvvvsGfq/Vajj55JMxZcoUDB06FHvttRf+85//JNJ488038YlPfAKjRo3CmDFj8JnPfAbvvvtu3o8SENCS6Ovrwze/+U2svfbaGDp0KNZdd12ceuqpEGPyhnYYEOAXt912G/bff39MnToVpVIJV111VeJ3X23ukUcewc4774whQ4Zg+vTpOOOMM7J+tFwRSMtBjssvvxzz58/HKaecggceeABbbrkl5s6di8WLFzc7awEBLY9bb70VX/ziF/Gvf/0L119/PXp6evCBD3wAy5cvHzjn2GOPxV//+ldcccUVuPXWW/HKK6/goIMOGvi9r68P++67L7q7u3HnnXfi17/+NX71q1/h5JNPbsYjBQS0LO6991785Cc/wRZbbJE4HtpgQEC2WLp0KXbccUd0dHTgmmuuweOPP46zzz4bY8eOHTjnjDPOwI9//GNcdNFFuPvuuzF8+HDMnTsXK1euHDjnE5/4BB577DFcf/31+Nvf/obbbrsNRx11VDMeKSCg5fD9738fF154Ic477zw88cQT+P73v48zzjgD55577sA5oR0GBPjF8uXLseWWW+L8888nf/fR5t555x184AMfwFprrYX7778fZ555Jr71rW/hpz/9aebPlxtqAYMa2267be2LX/ziwPe+vr7a1KlTa6eddloTcxUQ0J5YvHhxDUDt1ltvrdVqtdpbb71V6+joqF1xxRUD5zzxxBM1ALW77rqrVqvVagsWLKiVy+XaokWLBs658MILa6NGjaqtWrUq3wcICGhRLFu2rLb++uvXrr/++tquu+5aO+aYY2q1WmiDAQF54IQTTqjttNNOyt/7+/trkydPrp155pkDx956661aV1dX7fe//32tVqvVHn/88RqA2r333jtwzjXXXFMrlUq1l19+ObvMBwS0Cfbdd9/apz/96cSxgw46qPaJT3yiVquFdhgQkDUA1K688sqB777a3AUXXFAbO3ZsYk56wgkn1DbccMOMnyg/BKXlIEZ3dzfuv/9+7LXXXgPHyuUy9tprL9x1111NzFlAQHvi7bffBgCMGzcOAHD//fejp6cn0QY32mgjzJgxY6AN3nXXXdh8880xadKkgXPmzp2Ld955B4899liOuQ8IaF188YtfxL777ptoa0BogwEBeeDqq6/GNttsg4985COYOHEittpqK/zsZz8b+P25557DokWLEu1w9OjR2G677RLtcMyYMdhmm20Gztlrr71QLpdx99135/cwAQEtih122AE33ngjnn76aQDAww8/jDvuuAP77LMPgNAOAwLyhq82d9ddd2GXXXZBZ2fnwDlz587FU089haVLl+b0NNmi2uwMBDQPS5YsQV9fX2IhBgCTJk3Ck08+2aRcBQS0J/r7+/GVr3wFO+64IzbbbDMAwKJFi9DZ2YkxY8Ykzp00aRIWLVo0cA7VRuPfAgIC9LjsssvwwAMP4N577234LbTBgIDs8eyzz+LCCy/E/Pnz8Y1vfAP33nsvvvzlL6OzsxNHHHHEQDui2pnYDidOnJj4vVqtYty4caEdBgQwcOKJJ+Kdd97BRv+/vbuPirLK4wD+HRhmhjfFBHkNhFo1FdPQlMVdQszQTmmCpCIv7vElk6PQrrrYkhaZnahMMEu31Aqso4GZHXRD3tRCXGaBBl11d0VbN5Q1JAGNF+fuHy5PM86LQAMM+f2cM+c8Pvfe595nnuce4cd9GTECtra2uHnzJjZs2ICYmBgAYD8k6mWW6nOXLl2Cv7+/wTU60nSXYumvGLQkIuoFy5cvR3V1NY4dO9bXTSG6a/z73//GypUrkZ+fD5VK1dfNIborabVajB8/Hq+88goAYNy4caiursa7776L+Pj4Pm4d0d1hz549yM7Oxu7duzFq1ChUVlYiKSkJXl5e7IdEZNU4Pfwu5urqCltbW4NdUi9fvgwPD48+ahXRL09iYiK++OILFBUVwcfHRzrv4eGB1tZWNDQ06OXX7YMeHh5G+2hHGhGZplarUVdXh4ceeghyuRxyuRwlJSXIyMiAXC6Hu7s7+yBRD/P09MTIkSP1zj3wwAP49ttvAfzUj8z9POrh4WGwSWR7ezvq6+vZD4k6YdWqVfjjH/+IuXPnIjAwELGxsUhOTsbGjRsBsB8S9TZL9bm74edUBi3vYgqFAkFBQSgoKJDOabVaFBQUIDg4uA9bRvTLIIRAYmIi9u3bh8LCQoOh+0FBQbCzs9Prg2fOnMG3334r9cHg4GBoNBq9/7Dy8/MxYMAAg18CiUhfeHg4NBoNKisrpc/48eMRExMjHbMPEvWskJAQnDlzRu/c2bNn4efnBwDw9/eHh4eHXj+8du0aysrK9PphQ0MD1Gq1lKewsBBarRYTJ07shbsg6t+uX78OGxv9X/1tbW2h1WoBsB8S9TZL9bng4GAcOXIEbW1tUp78/HwMHz78FzE1HAB3D7/bffLJJ0KpVIpdu3aJU6dOiSVLlggXFxe9XVKJqHuWLVsmBg4cKIqLi0Vtba30uX79upTnmWeeEb6+vqKwsFCUl5eL4OBgERwcLKW3t7eL0aNHi2nTponKykpx6NAh4ebmJlJSUvriloj6Pd3dw4VgHyTqaSdOnBByuVxs2LBB/OMf/xDZ2dnCwcFBZGVlSXleffVV4eLiIvbv3y+++eYbMXPmTOHv7y9u3Lgh5YmIiBDjxo0TZWVl4tixY+JXv/qVmDdvXl/cElG/Ex8fL7y9vcUXX3whampqRG5urnB1dRWrV6+W8rAfEllWY2OjqKioEBUVFQKAePPNN0VFRYW4cOGCEMIyfa6hoUG4u7uL2NhYUV1dLT755BPh4OAgtm3b1uv321MYtCSRmZkpfH19hUKhEA8//LA4fvx4XzeJ6BcBgNHPzp07pTw3btwQzz77rBg0aJBwcHAQTz31lKitrdW7zvnz58X06dOFvb29cHV1Fb///e9FW1tbL98N0S/D7UFL9kGinnfgwAExevRooVQqxYgRI8T27dv10rVarUhNTRXu7u5CqVSK8PBwcebMGb0833//vZg3b55wcnISAwYMEAsXLhSNjY29eRtE/da1a9fEypUrha+vr1CpVCIgIEA8//zzoqWlRcrDfkhkWUVFRUZ/F4yPjxdCWK7PVVVVicmTJwulUim8vb3Fq6++2lu32CtkQgjRN2M8iYiIiIiIiIiIiAxxTUsiIiIiIiIiIiKyKgxaEhERERERERERkVVh0JKIiIiIiIiIiIisCoOWREREREREREREZFUYtCQiIiIiIiIiIiKrwqAlERERERERERERWRUGLYmIiIiIiIiIiMiqMGhJREREREREREREVoVBSyIiIiKifmjo0KGQyWRISEjo66YQERERWRyDlkRERERdtHTpUshkMshkMhQWFnap7JdffimVXblyZQ+1kIiIiIiof2PQkoiIiKiL4uLipOOsrKwulf3oo4+MXqevFBcXS0HU4uLivm4OEREREREABi2JiIiIuiwkJAT33XcfACAnJwc3btzoVLnm5mbs27cPADBq1CgEBQX1WBuJiIiIiPozBi2JiIiIuiE2NhYAcO3aNezfv79TZXJzc9Hc3KxXnoiIiIiIDDFoSURERNQNsbGxkMlkADo/RbxjariNjQ0WLFjQY20jIiIiIurvGLQkIiIi6oaAgACEhIQAAP7yl7+grq7ObP7vvvsOBQUFAIApU6bA29vbIM9nn32GOXPmwNfXFyqVCi4uLhg/fjxefPFFXL16tVPtysvLw4IFCxAQEABHR0eoVCr4+/sjMjISu3btwvXr1wEA58+fh0wmQ1hYmFQ2LCxMWt+y47Nr1y6DOlpbW7F161aEhYXBzc0NCoUCHh4emDFjBrKysqDVak22LyEhATKZDEOHDgUA1NbWYs2aNRg1ahScnZ27vLamsTU59+zZg/DwcLi5ucHe3h7Dhw/H6tWrUV9fb/I6jzzyCGQyGR555BGz9a1fv16qz5iOtPXr1wMAioqKMGvWLHh5ecHe3h4PPPAA0tLSpBG3HfLy8jBjxgwp38iRI7Fx40a0trZ2+rv461//innz5uHee++FSqXCvffei4ULF+L06dOdKv/Pf/4TycnJCAwMxMCBA2Fvb4+AgAAkJCSgvLzcZLnbn4FWq8WOHTsQFhYGd3d32NjYcIdzIiIi6jpBRERERN2yfft2AUAAEJs3bzabNz09Xcr74Ycf6qXV19eLKVOmSOnGPkOGDBGlpaUmr3/lyhURHh5u9hoAxM6dO4UQQtTU1Nwxr27+DjU1NWLEiBFmy0yePFl8//33RtsZHx8vAAg/Pz9RWloqXF1dDcoXFRXd8bvvUFRUJJUrKCgQCxYsMNmu+++/X9TW1hq9TmhoqAAgQkNDzda3bt066XrGdKStW7dObNy4UchkMqNt+fWvfy2ampqEVqsVK1asMNnmiIgI0d7ebrQuPz8/AUDEx8eL999/X8jlcqPXUCqVYs+ePWbvKz09XdjZ2Zlsh0wmE6mpqUbL6j6DgwcPiqlTpxqUj4+PN1s/ERER0e040pKIiIiom6Kjo6FSqQDo7wpuTEe6k5MTZs+eLZ1vaWnB1KlTUVhYCFtbW8TGxuLjjz/G8ePHcfToUWzYsAGDBw9GXV0dZsyYgQsXLhhc+/r16wgLC5NGcgYFBWHbtm346quvUF5ejn379iE5ORleXl5SGW9vb2g0GuzYsUM6t2PHDmg0Gr3PrFmzpPSmpiaEh4dLI/dmzZqFzz//HOXl5di7dy9CQ0MBAMeOHcMTTzyBmzdvmvw+mpqaEBkZiR9//BHPP/88iouLceLECbz//vvw9PQ0+12akpqaiqysLMyaNQu5ublQq9XIy8vD448/DuCnkYS94eDBg0hJScGkSZOwe/dulJeX49ChQ5g+fToA4Ouvv8bGjRuxadMmZGRkYPr06cjJyYFarcb+/fsxadIkAMChQ4fw5z//2WxdlZWVeOaZZzBkyBBkZmairKwMJSUlWLNmDZRKJVpaWhATE2NytGR6ejpWrVqFtrY2jBkzBu+88w4OHz6M8vJyZGdnIzg4GEIIpKWlISMjw2xb1qxZg8OHD+PJJ5/UewYd901ERETUaX0dNSUiIiLqz6Kjo6XRZKdPnzaap6qqSsoTFxenl7Z27VoBQLi4uIjy8nKj5c+fPy88PT0FADF//nyD9OTkZOn6y5cvF1qt1uh1WlpaxKVLl/TO6Y6Su9MIxz/84Q9S3j/96U8G6VqtVsTExEh5tm7dapCnY6QlAOHk5CQqKyvN1nknuu0HIF5++WWj7Zo2bZoAIORyuairqzPIY+mRlgBEZGSkwSjJ9vZ2MWnSJAFAODs7C5VKJZKSkgyu09zcLI2kHDNmjNG6OtLx/5GrxkaRFhYWSiMwJ0yYYJB+8uRJaYTlunXrjL47N2/elEawOjk5ifr6er3025+BsXeDiIiIqKs40pKIiIjoZ4iLi5OOTY221D2vm7+pqQlvv/02ACAtLQ1BQUFGy/v5+SE1NRUAsHfvXr31EBsaGrBt2zYAt0ZYbt682eR6iwqFAu7u7p25LQMtLS147733AACjRo2S1mzUJZPJsHXrVgwePBgAsGXLFrPXXL16NR588MFutceYoKAgrF271mi7nnvuOQBAe3s7SktLLVanKQ4ODti+fTtsbW31ztva2mLJkiUAgMbGRri5ueG1114zWj4+Ph4A8M033+CHH34wW98bb7wBDw8Pg/NhYWFYvHgxgFtrXt4+2vKNN95AW1sbxo8fj3Xr1hl9d2xsbJCZmQmlUommpiZ8+umnJtsxbNgwo+8GERERUVcxaElERET0Mzz22GNSIDA7OxtCCL10rVaL3bt3AwB8fHz0Nr4pKSmRglFRUVFm6/ntb38LAGhra4NarZbOFxYWSpvrrFixwiBIZilqtRoNDQ0Abm2mY6qeAQMGIDo6GgBw6tQp1NbWmrxmTEyMRds4f/58kwFb3YDwuXPnLFqvMY8++ijuueceo2m6gdrZs2fDzs7ujvlqampM1jVo0CDMnDnTZPrvfvc76fjw4cN6aQcOHAAAREZGmvzuAMDFxQWBgYEAYDbo+/TTT/fYO0hERER3FwYtiYiIiH4GuVyO+fPnA7i1I/exY8f00gsKCvDdd98BuBWks7H56ccv3VFvnp6eBjt3635Gjx4t5b106ZJ0XFFRIR3/5je/sezN6aiurpaOJ06caDavbrpuOV1OTk4ICAiwTOP+b8SIESbTdAOIjY2NFq3XmGHDhplMc3Fx6XI+c20eN24c5HK5yfSxY8dCoVAAADQajXT+woUL+O9//wsASElJMfv+yWQy6X3Vff9uN2bMGJNpRERERF3BoCURERHRz2RuiripqeEAUFdX1636OkZWAsCVK1ek4+5uYNMZ9fX10vGQIUPM5tWdpqxbTpduQM5SHBwcTKbpBovNbRDU222xRJvv9DzkcrkUtNV9HpZ4/243aNCgbl2TiIiI6Ham/yRLRERERJ0yduxYBAYGQqPRYO/evdL6f83NzcjNzQVwa3ryyJEj9crpBqL+9re/mZwmfDsfHx/LNb4bzE0j7ixOIbac7j4P3ffvhRdewJw5czpVztHR0WQanysRERFZCoOWRERERBYQFxeHVatWoaGhAQcOHEBUVBT27dsnbZpz+yhLANKGNQDg5ubWrWCkq6urdFxbWwt/f/9utP7OdKdXX7582ey0Zt3pw6bWdbQ2HaMatVqt2Xy6myBZi8uXL5tNb29vl0ZY6j4P3ffPzs5ObwkCIiIior7G6eFEREREFhATEyONMsvKygLw09RwOzs7zJs3z6DMuHHjpOOvvvqqW/U+9NBD0vGRI0e6XL6zo/R0A1plZWVm8544ccJoOWvm7OwMALh69arZfGfPnu2N5nRJZWUl2tvbTaZXVVWhtbUVgP7zCAgIwMCBAwF0//0jIiIi6ikMWhIRERFZgKenJ6ZOnQoAyMvLQ3V1NQoKCgAAERERcHNzMygzdepUaU3DjIwMg53HOyMsLEyarpuZmdnl9RpVKpV03NLSYjJfUFCQtA7lBx98YHJEYmNjI/bs2QMAGDlyZI+us2lJHSNUz549a3LTmytXriA/P783m9Up9fX10i7gxuzYsUM67nhHgVtTuWfMmAEA+PLLL/H3v/+95xpJRERE1EUMWhIRERFZSMcU8La2NsydO1cKIBqbGg7c2owmMTERAPD1118jOTnZ7PTky5cv47333jO4xtKlSwEAarUaSUlJJoOfbW1tBpuv6AYV//Wvf5msW6lUYtGiRQBu7QielpZmkEcIgcTERGlzoI576w9CQ0MBAK2trcjMzDRIb2trw6JFi3Djxo3eblqnPPfcc0aniZeUlGD79u0AbgWeJ0yYoJeekpICW1tbaLVaREVF4eLFiybruHnzJrKzs83mISIiIrIUrmlJREREZCFPPfUUnJ2d0djYiJMnTwK4tZvyE088YbLMSy+9hJKSEpSVlWHz5s0oLi7G4sWLMXbsWDg6OuLq1as4efIkDh8+jIMHDyIwMFAKHnZIS0tDfn4+NBoNtmzZgtLSUixduhSBgYFQKBS4ePEijh49io8//hgvv/wyEhISpLK+vr7w8fHBxYsX8frrr8PHxwfDhw+Xprq7u7tLU6dfeOEF5Obm4ty5c1i/fj00Gg0WLlwIT09P1NTUYMuWLSguLgYABAcHY8mSJRb8dnvW448/Dj8/P1y4cAGpqam4cuUKZs+eDZVKhZMnTyIjIwMVFRWYNGkSjh8/3tfN1fPggw/i1KlTCAoKQkpKCh5++GG0tLQgLy8PmzZtQnt7O+RyOd5++22DsoGBgXj99deRnJyMU6dOYfTo0ViyZAmmTJkCd3d3/Pjjjzh//jxKS0vx6aefora2FhqNps83gyIiIqJfPgYtiYiIiCzE3t4eUVFR2Llzp3QuOjoaSqXSZBmlUon8/HwkJCQgNzcXVVVVZkcoDhgwwOCcg4MDCgsLERkZiSNHjkCtVncpYLh27Vo8++yzqKmpwcyZM/XSdu7cKQU5nZ2dUVBQgOnTp+P06dPIyclBTk6OwfVCQkLw+eef96udpBUKBbKyshAREYHm5mZs2rQJmzZtktJtbW3x1ltvob6+3uqClmPHjkViYiKWLVtm9N1RKBT44IMPMHHiRKPlk5KS4OjoiKSkJPzwww9IT09Henq60bwKhUJvSQEiIiKinsLp4UREREQWFB8fr/dvU1PDdTk7OyMnJwdHjx7FokWLMHz4cDg7O0Mul+Oee+7BhAkTsHz5cuTl5ZlcU9HV1RUlJSXIzc1FVFQUfHx8oFQqoVKpEBAQgDlz5iA7O9vohkDLli1DTk4Opk2bhiFDhkAuN/137aFDh6KqqgpbtmxBaGgoBg8eDDs7O7i7uyMiIgIfffQRjhw50m92Ddc1efJkqNVqxMbGwsvLC3Z2dvD09JSCwStWrOjrJpq0aNEiHD16FNHR0fDy8oJCoYC3tzfi4uJQUVGBuXPnmi2/ePFinDt3Di+++CJCQkLg6uoKuVwOR0dHDBs2DJGRkXj33Xfxn//8B/fff38v3RURERHdzWSiOyu+ExEREREREREREfUQjrQkIiIiIiIiIiIiq8KgJREREREREREREVkVBi2JiIiIiIiIiIjIqjBoSURERERERERERFaFQUsiIiIiIiIiIiKyKgxaEhERERERERERkVVh0JKIiIiIiIiIiIisCoOWREREREREREREZFUYtCQiIiIiIiIiIiKrwqAlERERERERERERWRUGLYmIiIiIiIiIiMiqMGhJREREREREREREVoVBSyIiIiIiIiIiIrIqDFoSERERERERERGRVfkf0itDT68c8o8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Вывод ошибки MSE, достигнутой при обучении AE2_1\n", + "print('MSE_stop =', IRE2_1[-1])\n", + "\n", + "# Порог ошибки реконструкции (порог обнаружения аномалий)\n", + "print('IREth2_1 =', IREth2_1)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZZS63lBoqubQ", + "outputId": "52e5e740-05cc-4343-cd72-a82e6bc3d340" + }, + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop = 0.19\n", + "IREth2_1 = 0.42\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "patience = 500\n", + "ae2_2_trained, IRE2_2, IREth2_2 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE2_2.h5',\n", + " 'out/AE2_2_ire_th.txt',\n", + " 2000,\n", + " False,\n", + " patience\n", + ")\n", + "\n", + "lib.ire_plot('training', IRE2_2, IREth2_2, 'AE2_2')\n", + "\n", + "# Вывод ошибки MSE и порога\n", + "print('MSE_stop =', IRE2_2[-1])\n", + "print('IREth2_2 =', IREth2_2)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 972 + }, + "id": "37ZriFtHtxJM", + "outputId": "a1eb62e2-ff8a-4298-fde0-195e1a3309db" + }, + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 5\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 5 4 4 4 5\n", + "\n", + "Epoch 1000/2000\n", + " - loss: 0.0699\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYVNX9x/HP7tKRIpIIokIsib0Hu2JB1FgTE0WjQqLGgpoQo5KfEXuJNbF31MQWY4sSBVGMBcWGFQsqTbr0trvszu+PcWbvzN7e78z79Tw8zM7cuffMred+7/ecU5PL5XICAAAAAAAAgJSoTboAAAAAAAAAAGBE0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAJGry5Mk6/fTTtcUWW6hLly6qqakp/ps6dWrSxatKo0aNKm6DIUOGxLps4/YHAABA9SJoCQBAAgYMGFAMzFx00UWW0xkDOOX/6urq1L17d2266ab65S9/qbvvvlvLly/3VQav/8IKZD3zzDPafvvtddttt2ny5Mmeyg8AL774Ysm5afPNN/c8j4suusj3ubBfv36W812xYoWeffZZ/eEPf9Dee++t3r17q3379urcubP69u2rI444QnfccYdWrFgRYA1419zcrNdff10XX3yxDj74YPXr10+dO3dW+/bt1atXL+2777669NJLNWvWrFjLBQBAuTZJFwAAAPjT3NysJUuWaMmSJZoyZYoef/xxjRgxQnfeeaeOPPLIpIvnaPny5RoyZIjq6+slSb1799Yee+yhH/zgB8Usu65duyZZxEAuuugiXXzxxZKkkSNH2gangbTq16+fpk2bJkn65ptvbIN0Sbj//vtL/v7ss880ceJE9e/fP6ES5f3617/Wk08+qZUrV7b6rKGhQdOnT9f06dP19NNP64ILLtAdd9yhn//855GX6/rrr9c111yjOXPmmH4+d+5czZ07Vy+//LIuvfRS/d///Z8uuOAC1dXVRV42AADKEbQEACAjjjjiCPXp06f4d3NzsxYsWKAJEyZo5syZkqQFCxboqKOO0uOPP+4pcPnTn/7U003+Lrvs4r7gFp599lktWrRIkrTlllvq7bffVseOHQPPF0B1WLZsmZ544olW799///2+g5brrbeep3PnOuusY/r+448/XnwgI0lrr722+vfvr/XWW0+5XE6TJ0/WxIkTlcvltGDBAv3iF7/QbbfdplNPPdVXud0aM2ZMScCyffv2+ulPf6q+ffuqU6dOmjp1ql577TWtWrVKjY2Nuuiii/TFF1/owQcfVG0tjfQAAPEiaAkAQEacffbZGjBgQKv3m5ubdf/99+u0005TfX29mpubddppp2nQoEHq1KmTq3kffPDBsWcCvvfee8XXgwcPJmCZIkOGDIm9L8uCXC6XyHKRPY8//ngxk7Fjx45atWqVJOmRRx7RDTfcoHbt2nme56abbqqbb745lPJ16tRJgwcP1m9+8xvtsssurYJ+n3zyiX79619r0qRJkqRhw4Zp991319Zbbx3K8q3U1NTooIMO0kknnaSDDjpIHTp0KPl8wYIFOuuss/Twww9Lkh566CHtscceOu200yItFwAA5XhcBgBAxtXW1mro0KH661//Wnxv7ty5euqpp5IrlAuFLEsp3zQcALwwNg0/77zztO6660qSFi5cqP/85z9JFUuSdOaZZ+rrr7/W3Xffrd122800S3HLLbfUSy+9pL59+0qSmpqadMUVV0RaroEDB+r999/Xc889pyOPPLJVwFKSevbsqX/+8586/PDDi+9deumlPFAAAMSOoCUAABXid7/7XckN6P/+978ES+OssbGx+JpmhwC8mDp1avEcV1NToxNPPFGDBw8ufl7e12XcrrnmmmIQ1c7aa6+t8847r/j36NGjoyyW/vjHP2rbbbd1nK6mpkZXXnll8e/Zs2fr/fffj7JoAAC0wh0CAAAVon379iUj56Zx5FfjKL3GoMLQoUNbjco7atQo03ksX75cf//73zVo0CCtv/766tChg9Zee21ttdVWGjZsmN566y1XZTEuq+CDDz7Q2Wefra222ko9evRQTU2NjjjiCE+/sTAqe2EQHkm6+OKLXY3CPmTIkFa/f/Hixfrb3/6mvfbaS3369FGbNm1UU1OjxYsXl3x33rx5uu+++3TiiSdq++23V48ePdS2bVt1795dm222mYYOHaoXXnjB1W8YNWqU40jx48ePL05j7LbgpZde0jHHHKONNtpIHTp00DrrrKO99tpLN998c0mg2orZdinXr1+/4jRTp06VJM2cOVN/+ctftO2226p79+7q3LmzNttsM5155pnFgWTcGjt2rI455hhtuOGG6tChg3r37q0999xTt9xyS3GkZ+O+HFbXCgsWLNC1116r/fffX+utt546dOhQ3IZbbrmljjrqKF1//fX65ptvXM1v3LhxOvXUU7XllluqR48eat++vdZbbz0NGjRIN998c7E5dbmpU6cWf5tx3f3oRz8y3Y/Hjx8fxs/35IEHHihm/u2xxx7q16+fjj/++OLn//3vfzVv3rzYy+XH7rvvXny9dOlSLVy4MMHStNh888219tprF/8uHGsAAMSFPi0BAKggxn4hV69enWBJovHss8/q5JNPbjXybX19vRYvXqxPPvlEt9xyi4499ljdddddrvv0lPJBqMsuu0xNTU1hF9u3119/XYMHD9aMGTNsp/v73/+u4cOHm5a9MML8559/rlGjRmnffffVY489ZjmAiF8NDQ0aNmyY7rrrrpL36+vr9eqrr+rVV1/VfffdpxdeeEE9e/YMddlPPfWUhgwZoiVLlpS8//nnn+vzzz/XPffco3/961/62c9+5vgbfvvb3+of//hHyftz5szRnDlz9Nprr+mWW27Rk08+GWr5Jenpp5/W0KFDS7pNKChsw08//VT//ve/df311xcH3zIzY8YMnXDCCabBxNmzZ2v27NkaM2aMrrzySj3yyCPac889w/wpsXjggQeKrwvByh122EFbbrmlPvnkE61Zs0YPPfSQfv/73ydUQvfKA/RpOgcZy5amcgEAqgNBSwAAKogxu9JN08S49e/fX2eccYakfBbYZ599Jknab7/9tNlmm5VMa8walaRHH31Uxx13XPHGua6uTnvssYc22WQTLV++XK+++mrx9z/00EP65ptv9NJLL5n22VbummuuKWZGbrzxxurfv39xJN22bdt6+o1HHnmkttpqK02cOFFvv/22JOvR2e1GYZ8yZYp+//vfa8mSJerSpYv22msvrbfeelq0aFGrpv+zZs0qrpeNNtpIm2++uX7wgx+oQ4cOWrx4sT766CN98sknkvKZkPvvv7/efPNNtW/f3tNvs3PKKafo/vvvV21trXbeeWdtttlmam5u1ptvvqnPP/9cUn7wpRNOOCHUJrAvvviiTj31VDU1NWnDDTfUrrvuqq5du+qbb77R+PHjtWbNGq1atUq/+tWv9PHHH+tHP/qR5bwGDx5cMhp1jx49NGDAAPXo0UMzZszQK6+8osmTJ+tnP/uZDjvssNB+wzvvvKOjjjpKa9askZR/+LDLLruoX79+at++vZYuXaqvvvpKH330UXHgGSuTJ0/Wfvvtp9mzZ0vKB5122GEHbbHFFurYsaO+/fZb/e9//9OyZcs0a9YsDRw4UP/973+1zz77FOfRtWvX4nH6wAMPaNmyZZKkE044QV26dGm1zD59+oSyHtx67bXX9NVXX0nKZ5j/8pe/LH52/PHH6/zzz5eUbyKehaDlRx99VHzdsWPH0IP6fs2aNask63ODDTZIsDQAgKqUAwAAsdt7771zknKSciNHjrScrjCNpNzLL79sO8/PP/+8ZPqbb745lDJE5cQTTywu/7777rOddsqUKbm11lqrOH3//v1zX375Zck0TU1Nueuuuy5XW1tbnO7MM8+0nKdxXbVp0ybXrVu33JNPPtlqutWrV/v5ebmRI0d6Xr/GddKmTZucpNwZZ5yRW7ZsWcl0DQ0NuaampuLf99xzT+6mm27KzZw503LeH3zwQW6nnXYqzv/SSy+1nPa+++4rTnfiiSeaTvPyyy8Xp2nfvn1OUu6nP/1pbvLkySXTNTc352688caS9f3KK69YLts4nZW+ffuWLLtz5865Bx98MNfc3Fwy3ccff5zr06dPcdqhQ4dazvPuu+8uWfYf//jHVtt+7ty5uYMOOqjkN4dx/BxxxBHFef3iF7/ILVy40HS6VatW5Z577rnc7373O9PPly9fntt8882L8zrooINyU6ZMaTXdkiVLcqeddlpxut69e+cWL15sOk/juv7mm298/8YwnXTSScUyHXXUUSWfzZgxo+Qc8MEHHzjOz3is7r333hGV2trAgQOLy//Zz34W+/KtXH755cVyde/ePdfY2Jh0kQAAVYZMSwAAKsCaNWt09tlnF//u2rWrjjnmGNffHz16tBYsWOB6+ksuuUQ9evTwVMYgLrnkEi1fvlyStMkmm2jMmDHq1q1byTS1tbUaPny4ampqNHz4cEnSLbfcoj/84Q+22XWS1NzcrGeeeUZ77bVXq8/CzEb0Ys2aNTrppJN08803t/qsPPvzN7/5jeP8ttlmG7344ovabLPNNGfOHN16660aMWKE6urqApe1vr5em266qV566SWttdZaJZ/V1NTo7LPP1muvvabHH39ckvTwww+brms/Ghoa9NRTT+nAAw9s9dmWW26pO+64Q4cccogk6V//+pfuvPNOtWlTWgVuamrSyJEji3//7ne/07XXXttqfj/84Q/11FNPaY899ihm0Ybh1VdflZTf10aNGtVqHRZ06NBBBx98sA4++GDTz6+//npNnjxZUj7j9/HHHzcd5Kpr16669dZbtXLlSt1///2aPXu2br/99pIBYdJq1apVeuyxx4p/G/uxlKT1119fAwYM0EsvvSQpn2153XXXuZ7/l19+qWHDhrme/vjjj9fOO+/sevpyzz77rMaOHVv8u5DhmrRZs2bpqquuKv59yimntDpuAACIGlceAAAyqrm5WQsWLNDrr7+uq666ShMnTpQktWnTRvfee6+nPgvffvttT0GYc845J7ag5eLFi/Xoo48W//7rX//aKmBpdPbZZ+uee+7RJ598oubmZt15550lo+CaOeqoo0ILooWlQ4cO+utf/xrqPLt166YjjzxSt912m2bPnq1PP/1UW2+9dSjzvuqqqyyDbVI+sFoIWhb21TAccsghpgHLgoMPPli9evXSnDlztHz5ck2ePLnVb37++ef17bffSpI6d+5cEqwp165dO1177bXae++9w/kByg++IkmdOnWyXYd2GhsbiwHu9u3b6/bbbzcNWBpdccUVxQFt/vnPf2YiaPnUU08V19c666yjgw46qNU0xx9/fDFo+c9//lNXX32164DbrFmzdMstt7guz0477eQ7aDl79mydcsopxb8HDhxo+nvi1tTUpBNOOKHYLcC6665bbHIPAECcCFoCAJARxj7nrPzkJz/Rdddd5zjgSJa88cYbqq+vlyT17NlThx56qO30tbW1+s1vfqM//vGPkqSXX37ZcRleslLjcsABB5SM3OvWvHnz9Oabb2ry5MlatGiRVqxYURxlWcr3n1gwadKkUIKWHTp0cNwu22+/ffF1mKMQG/szNFNTU6Ntt922OHjT1KlTW/1m44A1P/vZz9S9e3fbee61117acMMNNX36dF9lLrfBBhvo66+/1qJFi/Too4/q6KOP9jyPd955pzha9n777acf/vCHjt9Zb731tNlmm2ny5Mn6+OOPtWTJEtsHAmlw//33F18fc8wxpn3OHnXUUTrjjDO0cuVKzZ07Vy+88ELqzokNDQ066qijin2PrrPOOho1alSyhfreeeedp3HjxknKHz/333+/r3MRAABBEbQEAKBCrLvuunrggQdMB3xxMnLkSF100UXhFyoE77//fvF1//79XWVM7b777iXfz+VyrUboNdpxxx2DFTICXsv06aef6rzzztN///tf16P8eukSwM5PfvITxwGLjJm/hUy5MLgJujote9KkScXXbrPm+vfvH1rQ8le/+lUxu3Pw4MHFwOU+++zjKvgoSRMmTCi+njlzpusmzosXL5Yk5XI5zZw5M9VBy1mzZunFF18s/l3eNLxgrbXW0hFHHKGHHnpIUj7Q6TZouffee5uOuh6mXC6nE088UW+88YakfHcPDz/8sNZbb71Il+vGbbfdVtKcfuTIkRo0aFCCJQIAVDOClgAAZMQRRxxRMkrvd999p6+++qrYrHvu3Lnac8899e9//7vYh18lmD9/fvF13759XX2nX79+xdcNDQ1atmyZunbtajn9D37wA9/li4qXMr3wwgs6/PDDixmpbhWafwblJtBlDGoWRslOYtmNjY2tPjfuY25HSF5//fVdTefGBRdcoPHjx+vNN99ULpfTk08+qSeffFKStOmmm2rPPffUfvvtp0MPPdR09G4pH9Ar+PDDD/Xhhx96LseiRYv8/YCY/OMf/ygG5DfddFPbAPPxxx9fDFo+88wzWrRoUWqyBYcNG6ZHHnlEUj4z/P7779fAgQMTLpX0yCOPlAS7TzvttJK+XgEAiJt9RzcAACA1zj77bN18883Ffw8//LAmTpyoDz74QNtuu62kfIBu8ODB+uqrrxIubXgKA/BI+f4G3Sifzik417FjR+8Fi5jbMs2fP19HH310MWDZt29fXXnllXrttdc0a9YsrVy5Us3NzcrlcsrlciVBiObm5lDKapfFGrUwlm3cxzp16uTqO377njTTuXNnvfLKK7rmmmtKAu5SfmCYe++9V8cdd5x69eqlc889V6tWrWo1jyVLlgQuR5jB5CgYm4b/+te/tp124MCB6tWrl6T8QFHGfnGTNGLECN16663Fv2+55RYNHjw4wRLlPfvsszrhhBOK54Rjjz3WdBAwAADiRNASAICM22abbTRmzJhiFuby5ct10kknJVyq8BiDQytWrHD1nfLprLLTKsFdd91VDFhtu+22+vDDD3X++edr9913V+/evdWxY8eSwF5Y2ZWVxLiPrVy50tV33O6LbrVr107nnHOOvv76a02aNEl///vfdcwxx5RkV69cuVLXXHON9tlnn1aBS2Og/qyzzioGqb38GzBgQKi/KUzvvPOOPv300+LfI0eOVE1NjeW/Nm3aFPsxlUoDnkm5/PLLSwZ5uvrqq3XqqacmWKK8l156Sb/85S+LWciHHXaY7r//fseBnAAAiBpXIgAAKsAPf/hD3XTTTcW/x48fr+eeey7BEoXH2EzabR+CxoFe2rVrV9FBy8KAGVK+mbFdM3hJmjZtWtRFypyePXsWX8+cOdPVd9xO51Vh4KAzzzxTDz/8sGbOnKn33ntPQ4cOLU7z1ltvtRrhet111y2+NgbrKkXQoOObb76pL774IqTSeHfjjTfqggsuKP59wQUX6Nxzz02sPAWvv/66DjvsMK1evVpSfhCnxx57zPVo6wAARImrEQAAFeLII4/U7rvvrtdff11S/qY4bSPm+mEcdXrixIlqampSXV2d7XcKA1wUvp9E8+W4lmnsy9BpUJqmpqbi/oEW2223XTH4+9Zbb7n6zsSJE6MsUontt99e9957r+rq6nT33XdLyvfTeM455xSnMfbv+MYbbzgOPuVWkk3/CxoaGvTwww8X//7JT37iOMJ7wZdffqmFCxdKygc+L7/88iiKaOvOO+/UH/7wh+LfZ599ti699NLYy1HunXfe0cEHH1zMGt5tt9309NNPq3379gmXDACAPDItAQCoIMYRwCdNmqRnnnkmucKEZLfddiveRM+fP98xg7S5uVn33Xdf8e9999030vJZ6dChQ/G12eAvYTE24XRq2vzUU09VZBZeUMZm0c8995xj/5CvvfZaIhmrhx12WPH13LlzSz7bfffdi4G8mTNn6j//+U8oy4xrP7bz3HPP6bvvvpMktWnTRv/73//05ptvuvr35z//uTifBx98MLR+XN36xz/+UdIE/Le//a1uuOGGWMtg5qOPPtKgQYO0dOlSSdIOO+yg0aNHu+43GACAOBC0BACgguy///7abbfdin9fdtllCZYmHN27d9fRRx9d/PtPf/qTbb+MN998sz766CNJ+YDeKaecEnkZzayzzjrF199++21ky9loo42Kr+2C1PPnzy/J9kKLAw88UOutt56kfJ+wxkBXuYaGhpIMx6Dq6+tLBgKyM2PGjOLrH/7whyWftW/fXr///e+Lf59++ume9rvyIGhBXPuxHWPT8IEDB7b67XYGDx5cDOzPmDFDL7/8cujls/LEE09oyJAhyuVyxbLceeediWevfvHFFxo4cGAxA3WLLbbQCy+8oG7duiVaLgAAyhG0BACgwlx44YXF12+//baef/75BEsTjgsvvLA4WMoXX3yhQYMG6euvvy6Zprm5WX/72980fPjw4ntnnHFGq9GY47LVVlsVX48ZMyaU0Z3NHHroocXXV155pf7xj3+0mua9997T3nvvrRkzZpBJZaJNmzYlWcq33nqrzjvvPDU0NJRMN3/+fP3iF7/QW2+9FVoT2tmzZ2uDDTbQOeeco3feecdyurFjx5aM/H7QQQe1muaPf/yjttxyS0n5AONOO+2kf/3rX5bZhQsWLNCdd96pHXbYQddcc43pNMb9+F//+per3zRq1KiSQXGMfcx6tWDBAo0ePbr493HHHefp++utt5722Wef4t9xDcjz/PPPa/DgwWpqapIkHX744XrggQcSH9xm+vTp2n///YtB6k022UQvvvhiSb+uAACkBX1aAgBQYQYNGqSdd9652DffpZdeqgMPPND2O6NHj9aCBQtcL6NTp07661//GqicXmy88ca6++67ddxxx6mpqUkTJkzQT37yE+25557aeOONtXz5cr366qslmWC77LJLrGUs179/f22wwQaaMWOGZs+erc0220wHHHCAevbsWcy0+ulPf1qSRerHiSeeqOuuu05ffPGF6uvrdfzxx+uKK67Qtttuqw4dOujjjz8uBsO23XZbDRo0KNH1klYnnXSSnnvuOT399NOSpL/+9a+65557NGDAAPXo0UMzZ87Uyy+/rNWrV2ujjTbS4YcfXmzmGzQQtXjxYl133XW67rrr1KNHD22//fbq06ePOnTooHnz5unDDz8sCdL/+Mc/1tlnn91qPmuttZaeeeYZ7b///vrmm280Z84c/epXv1LPnj21yy67qFevXsrlclq4cKE+/fRTffnll8WAplU3Cr/4xS90xx13SMoHc999913tsMMO6tSpU3Ga0047TRtvvHGgdWDloYceKjZL79y5s4444gjP8zjuuOOKfZY+8cQTuvXWW0tGjDf68ssvNWzYME/zHzFiRMko7wsWLNDPf/7zYtC7rq5OP/jBD0oyYe0cf/zxJX2Uhumoo44qydjdfPPNXffzucsuu+jXv/51JOUCAMAMQUsAACrQhRdeWByE54033tC4ceO03377WU7/9ttv6+2333Y9/27dusUe+Dr66KPVuXNnnXTSSZo7d67WrFmjl19+2bS55+DBg3X33XeX9McXt9raWt166636xS9+oYaGBs2ZM0cPPPBAyTQnnnhi4KBl+/bt9Z///EcHHXRQMbA1efJkTZ48uWS63XffXY8++qjuuuuuQMurVDU1NXr00Uc1ZMgQPfLII5Kk7777Tv/+979Lptt888315JNPlmxLpxHb7bRt21bt27dXfX29JGnhwoUlI8KXGzBggB5++GHLjNmNNtpI77zzjk499VQ9/vjjyuVyWrBggZ599lnLeXbv3t1yEKeBAwdq8ODBxYFw3nrrrVaDFR1yyCGRBS2NmZFHHHGEr0zhX/ziFzr99NO1evVqrVixQo8//riGDBliOu2sWbNajczu5KSTTioJWi5fvlyrVq0q/t3U1FQcQMmNnXbaKbKg5bx580r+9tL36fLlywlaAgBiRfNwAAAq0MEHH6yddtqp+Pcll1ySYGnCc8ghh2jKlCn629/+poEDB2q99dZTu3bt1K1bN22++eY6/fTT9eabb+qhhx4qyQRLsrzvvPOOfve732nLLbdUly5dIunP7sc//rHef/99XXHFFdppp53UpUsXtW/fXn379tUhhxyihx56SK+88kpJYAWttW/fXg8//LBeeOEF/fKXv9T666+vdu3aad1119Xuu++um266SW+//bZ+8pOfFPsDlOR6JGszffr00XfffadnnnlGf/rTn7Tvvvtqww03VMeOHVVXV6fu3btr22231UknnaSxY8fq5ZdfVq9evWzn2aNHDz322GP68MMP9ec//1m77babevfurXbt2qlDhw7q1auX9thjD5111ll65plnNHv2bJ144omW8/vnP/+pf/7znzrkkEO0/vrrx/Yw4OOPP9Z7771X/Ntr0/CCrl27lnSjMGrUqKBFAwAAMajJFXqGBgAAAODK7rvvrjfeeEOS9Oabb0aWGQcAAFCtCFoCAAAAHkybNk0bb7yxmpqa1K5dOy1ZsiTRrggAAAAqEc3DAQAAAJdyuZzOPvvs4qjQRx55JAFLAACACBC0BAAAAJQfwOpvf/ubFixYYPr51KlTdeSRRxZHGK+rq9M555wTZxEBAACqBqOHAwAAAJKmT5+uSy+9VOecc4623nprbbbZZurWrZuWL1+uzz77TO+//34xw1KSLrjggpIBrwAAABAegpYAAACAwZo1a/T+++/r/fffN/28Y8eOuuSSS8iyRORGjx6t0aNHB5rHOuuso4svvjikEgEAEB8G4gEAAAAkLV68WE8//bReeuklffLJJ5o/f74WLFigpqYm9ejRQz/5yU+033776be//a169+6ddHFRBS666KLAAce+fftq6tSp4RQIAIAYkWnpUnNzs2bNmqUuXbqopqYm6eIAAAAgZLW1tTryyCN15JFHOk67dOnSGEqEaldfXx94Hrlcjv0VAJAauVxOy5Yt03rrrafaWvuhdsi0dGnmzJnaYIMNki4GAAAAAAAAkGkzZszQ+uuvbzsNmZYudenSRVJ+pXbt2jXh0oSvsbFRY8aM0QEHHKC2bdsmXRyg6nAMAsnjOASSx3EIJItjEEhepR+HS5cu1QYbbFCMs9khaOlSoUl4165dKzZo2alTJ3Xt2rUiDwog7TgGgeRxHALJ4zgEksUxCCSvWo5DN10v2jceBwAAAAAAAICYEbQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApEqbpAtQDXK5nBobG9Xc3Jx0USw1NjaqTZs2Wr16tZqampIuTsWrq6tT27Ztky4GAAAAAABAKhG0jFBDQ4PmzZunlStXpj4QmMvl1KtXL82YMUM1NTVJF6cqtG/fXj179lTXrl2TLgoAAAAAAECqELSMyMqVKzVjxgzV1dVp7bXXVseOHVVXV5fagGBzc7OWL1+utdZaS7W19BoQpULm7ZIlS/Ttt99KEoFLAAAAAAAAA4KWEVmwYIHatm2rvn37qq6uLuniOGpublZDQ4M6dOhA0DIGHTt2VJcuXTRz5kwtWLCAoCUAAAAAAIAB0akIrFmzRitWrFCPHj0yEbBEMmpqatStWzfV19ersbEx6eIAAAAAAACkBkHLCKxZs0ZSvs9CwE5hMJ6093kKAAAAAAAQJ4KWEUpr/5VID/YRAAAAAACA1ghaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWiJRPXr1081NTUaNWpU8b1Ro0appqam5F9tba26du2q7bffXiNGjND8+fMt51n+Xat/48ePj/4HAgAAAAAAwLM2SRcAsNK5c2cdddRRkvKja0+bNk0TJkzQpEmTdN999+nVV1/Vpptuavn9QYMGqVevXpaf230GAAAAAACA5BC0RGr17NmzJANTkj755BPtvffemjt3rn7/+9/rueees/z++eefrwEDBkRbSAAAAAAAAISO5uHIlC233FLDhw+XJI0dO1b19fUJlwgAAAAAAABhI2iJzNlmm20kSY2NjVq4cGHCpQEAAAAAAEDYCFoic5YuXSpJqqurU8+ePRMuDQAAAAAAAMJG0BKZU+jH8sADD1Tbtm0TLg0AAAAAAADCxkA8SdlpJ2nOnKRLUVQjqWsup5qaGueJe/WS3nkn8jIZFUYPv/POO/XQQw+pb9+++vvf/277nX322cfys27dumnx4sUhlxIAAAAAAABhIGiZlDlzpG+/TboURTXf/0uTadOmmQZR+/fvrzFjxqhbt2623x80aJB69epl+lmnTp1CKSMAAAAAAADCR9AyKRbBtKTkJOW+z7R0DF7GVPbOnTvrqKOOkiTV19dr8uTJ+uCDDzRx4kT97ne/0yOPPGL7/fPPP18DBgyIoaQAAAAAAAAIE0HLpMTcvNpJrrlZS5cuVdeuXVVTm46uTnv27KlRo0aVvPfEE0/o6KOP1qOPPqq99tpLp59+ejKFAwAAAAAAQGTSEZ0CXPr5z3+u888/X5J04YUXasmSJQmXCAAAAAAAAGEjaInMGTFihHr37q3vvvtO119/fdLFAQAAAAAAQMgIWiJzOnXqpL/85S+SpBtvvFGLFi1KuEQAAAAAAAAIE31aIpNOOukkXXfddfrqq6907bXX6vLLL281zVVXXdWqT0yjY489VgcccECEpQQAAAAAAIAfBC2RSW3bttVll12mwYMH66abbtLw4cO1zjrrlEzzwgsv2M5ju+22I2gJAAAAAACQQgQtkaipU6e2em/IkCEaMmSI43ePOeYYHXPMMa3ez+VyIZQMAAAAAAAASaFPSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtESi+vXrp5qaGo0aNar43qhRo1RTU1Pyr7a2Vl27dtX222+vESNGaP78+ZbzLP+u1b/x48d7KmuhXEOGDPH3YwEAAAAAAOBKm6QLAFjp3LmzjjrqKElSU1OTpk2bpgkTJmjSpEm677779Oqrr2rTTTe1/P6gQYPUq1cvy8/LP6upqZEk5XK5EEoPAAAAAAAAvwhaIrV69uxZkoEpSZ988on23ntvzZ07V7///e/13HPPWX7//PPP14ABA6ItJAAAAAAAAEJH83BkypZbbqnhw4dLksaOHav6+vqESwQAAAAAAICwEbRE5myzzTaSpMbGRi1cuDDw/C666KJi03CpdZ+YU6dObfWdFStWaMSIEdpkk03Uvn179erVSyeeeKK+/fbbwOUBAAAAAACodjQPR+YsXbpUklRXV6eePXsGnt92222nE088Uffff78k6cQTTyz5fK211ir5e8mSJdptt900ffp07bnnntpqq600YcIEPfDAA3rllVf0wQcfqFu3boHLBQAAAAAAUK0IWiJzCv1YHnjggWrbtm3g+R1xxBE64ogjikHL8n40yz311FMaNGiQXn31VXXt2lWStGjRIu27776aNGmSbr31Vo0YMSJwuQAAAAAAAKoVQcuE7LTTTpozZ07SxSiRy+VKmklb6dWrl955550YStSiMHr4nXfeqYceekh9+/bV3//+d9vv7LPPPpafdevWTYsXL/ZVls6dO+u+++4rBiwlae2119b555+vY445Ri+++CJBSwAAAAAAgAAIWiZkzpw59H/oYNq0aaZB1P79+2vMmDGOTbAHDRqkXr16mX7WqVMn3+Xaaaed1Lt371bvb7755pLEdgUAAAAAAAiIoGVCrIJpSfKSaRmHzp0766ijjpIk1dfXa/Lkyfrggw80ceJE/e53v9Mjjzxi+/3zzz9fAwYMCL1cG264oen7hczL1atXh75MAAAAAACAakLQMiFxN6920tzcrKVLl6pr166qrU3HoPI9e/Zs1b/kE088oaOPPlqPPvqo9tprL51++umxlyst6wcAAAAAAKBSEX1Bpvz85z/X+eefL0m68MILtWTJkoRLBAAAAAAAgLARtETmjBgxQr1799Z3332n66+/PrT5FkYiX7NmTWjzBAAAAAAAgHcELZE5nTp10l/+8hdJ0o033qhFixaFMt/1119fkvTJJ5+EMj8AAAAAAAD4Q5+WyKSTTjpJ1113nb766itde+21uvzyy1tNc9VVV7XqE9Po2GOP1QEHHFD8+xe/+IWuvfZa7b///tp3333VpUsXSdLVV1+tddZZJ/TfAAAAAAAAAHMELZFJbdu21WWXXabBgwfrpptu0vDhw1sFFl944QXbeWy33XYlQctLL71UtbW1euKJJ/TUU0+poaFBknTBBRcQtAQAAAAAAIgRQUskaurUqa3eGzJkiIYMGeL43WOOOUbHHHNMq/dzuZyvsnTo0EFXX321rr76atPPncrVr18/38sGAAAAAABAC/q0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQMkK5XC7pIiDl2EcAAAAAAABay2zQ8pZbblG/fv3UoUMH7bzzzpo4caLt9IsXL9YZZ5yh3r17q3379vrxj3+s0aNHR1K22tr8am1qaopk/qgchX2ksM8AAAAAAABAapN0Afx49NFHNXz4cN1+++3aeeeddeONN2rQoEH6/PPP9cMf/rDV9A0NDRo4cKB++MMf6vHHH1efPn00bdo0de/ePZLytW3bVm3bttXy5cu11lprRbIMVIZVq1aprq5Obdu2TbooAAAAAAAAqZHJoOX111+vk08+WUOHDpUk3X777Xruued077336vzzz281/b333quFCxfqjTfeKAaH+vXrF1n5ampq1KVLFy1evFjdunVTx44dI1sWsqupqUlLlixRp06dVFNTk3RxAAAAAAAAUiNzQcuGhga9++67GjFiRPG92tpa7b///powYYLpd5555hntuuuuOuOMM/T000/rBz/4gY499lidd955qqurM/1OfX296uvri38vXbpUktTY2KjGxkbHcnbv3l0rVqzQtGnT1LVrV6211lqqq6tLbXAql8upoaFBq1atSm0ZK0VhXS9cuFBr1qzR2muv7WqfQmUr7APsC0ByOA6B5HEcAsniGASSV+nHoZfflbmg5YIFC9TU1KR111235P11111Xn332mel3vv76a7300ks67rjjNHr0aE2ZMkWnn366GhsbNXLkSNPvXHnllbr44otbvT9mzBh16tTJVVlramrUuXNnLVq0SG3btiUYiKLm5matWrVKy5cv1+eff550cZAiY8eOTboIQNXjOASSx3EIJItjEEhepR6HK1eudD1t5oKWfjQ3N+uHP/yh7rzzTtXV1WnHHXfUt99+q2uuucYyaDlixAgNHz68+PfSpUu1wQYb6IADDlDXrl09LT+Xy2nNmjVqbm5O7WjRa9as0RtvvKHddttNbdpUxW6RmJqaGtXV1bGeUaKxsVFjx47VwIED6eMUSAjHIZA8jkMgWRyDQPIq/TgstGR2I3NRk549e6qurk5z584teX/u3Lnq1auX6Xd69+6ttm3bljQF33zzzTVnzhw1NDSoXbt2rb7Tvn17tW/fvtX7hUF2vDJbRpo0NjZqzZo1WmuttSryoACywu85BkB4OA6B5HEcAsniGASSV6nHoZffVBthOSLRrl077bjjjho3blzxvebmZo0bN0677rqr6Xd23313TZkyRc3NzcX3vvjiC/Xu3Tv1wUQAAAAAAACg2mQuaClJw4cP11133aX7779fkydP1mmnnaYVK1YURxM/4YQTSgbqOe2007Rw4UKdffbZ+uKLL/Tcc8/piiuu0BlnnJHUTwAAAAAAAABgIXPNwyXp6KOP1vz583XhhRdqzpw52m677fT8888XB+eZPn26amtb4rEbbLCBXnjhBf3hD3/QNttsoz59+ujss8/Weeedl9RPAAAAAAAAAGAhk0FLSRo2bJiGDRtm+tn48eNbvbfrrrvqzTffjLhUAAAAAAAAAILKZPNwAAAAAAAAAJWLoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFTJdNDylltuUb9+/dShQwftvPPOmjhxouW0o0aNUk1NTcm/Dh06xFhaAAAAAAAAAG5kNmj56KOPavjw4Ro5cqTee+89bbvttho0aJDmzZtn+Z2uXbtq9uzZxX/Tpk2LscQAAAAAAAAA3Mhs0PL666/XySefrKFDh2qLLbbQ7bffrk6dOunee++1/E5NTY169epV/LfuuuvGWGIAAAAAAAAAbrRJugB+NDQ06N1339WIESOK79XW1mr//ffXhAkTLL+3fPly9e3bV83Nzdphhx10xRVXaMsttzSdtr6+XvX19cW/ly5dKklqbGxUY2NjSL8kPQq/qRJ/G5AFHINA8jgOgeRxHALJ4hgEklfpx6GX31WTy+VyEZYlErNmzVKfPn30xhtvaNdddy2+f+655+qVV17RW2+91eo7EyZM0JdffqltttlGS5Ys0bXXXqv//e9/+uSTT7T++uu3mv6iiy7SxRdf3Or9hx56SJ06dQr3BwEAAAAAAAAVbuXKlTr22GO1ZMkSde3a1XbaTGZa+rHrrruWBDh32203bb755rrjjjt06aWXtpp+xIgRGj58ePHvpUuXaoMNNtABBxzguFKzqLGxUWPHjtXAgQPVtm3bpIsDVB2OQSB5HIdA8jgOgWRxDALJq/TjsNCS2Y1MBi179uypuro6zZ07t+T9uXPnqlevXq7m0bZtW22//faaMmWK6eft27dX+/btTb9XiTtNQaX/PiDtOAaB5HEcAsnjOASSxTEIJK9Sj0MvvymTA/G0a9dOO+64o8aNG1d8r7m5WePGjSvJprTT1NSkjz76SL17946qmAAAAAAAAAB8yGSmpSQNHz5cJ554onbaaSf1799fN954o1asWKGhQ4dKkk444QT16dNHV155pSTpkksu0S677KJNNtlEixcv1jXXXKNp06bppJNOSvJnAAAAAAAAACiT2aDl0Ucfrfnz5+vCCy/UnDlztN122+n555/XuuuuK0maPn26amtbEkkXLVqkk08+WXPmzNHaa6+tHXfcUW+88Ya22GKLpH4CAAAAAAAAABOZDVpK0rBhwzRs2DDTz8aPH1/y9w033KAbbrghhlIBAAAAAAAACCKTfVoCAAAAAAAAqFwELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BLVZ9ky6c03pVwu6ZIAAAAAAADARE0uR+TGjaVLl6pbt25asmSJunbtmnRxQtfY2KjNN99cq1evTroo0Zs7V1qzRuraVerSJenSAEWrV69Whw4dki4GUNU4DoHkcRwCyeIYBJK3evVq9e3bV++++27SRQmdl/ham5jKhAxYvHixvvvuu6SLEZ+lS/P/AAAAAAAAUoSHBwQtYdC9e/fKPyjWrMlnWhb06ZNcWYAyPNUGksdxCCSP4xBIFscgkLzVq1dr3XXXTboYiSNoiaLrrrtOBx98sNq2bZt0UaLz+efSZpu1/D1zZnJlAQwaGxs1evToyj8GgRTjOASSx3EIJItjEEie8TisdgzEg+pCF64AAAAAAACpR9ASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUtUF/q0BAAAAIB0WLxYeuYZaeXKpEsCIIUIWgIAAAAAgPgdeqh0+OHSyScnXRIAKUTQEtWFTEsAAAAASIfXXsv//9BDyZYDQCoRtAQAAAAAAACQKgQtUV3ItAQAAAAAAEg9gpYAAAAAAAAAUoWgJaoLmZYAAAAAAACpR9AS1YWgJQAAAAAAQOoRtAQAAAAAAACQKgQtUV3ItAQAAAAAAEg9gpYAAAAAAAAAUoWgJaoLmZYAAAAAkDzuzQA4IGiJ6tLcnHQJAAAAAADcmwFwQNAS1YWneQAAAACQPIKWABwQtER14cIIAAAAAMkjoQSAA4KWqC5cGAEAAAAgeSSUAHBA0BLVhQsjAAAAACSPhBIADghaorpwYQQAAACA5JFQAsABQUtUFy6MAADASWOjdM890nPPJV0SAKhcJJQAcNAm6QIAsSJoCQAAnNx2m3T22fnX770nbb99suUBgErEvRkAB2RaorrwNA8AADj5wx9aXo8alVgxAKCicW8GwAFBS1QXnuYBAAAvuKkGgGhwbwbAAUFLVBduPAAAAAAgedybAXBA0BLVhad5AADASU1N0iUAgMrHvRkABwQtUV14mgcAAAAAyePeDIADgpaoLjzNAwAAXnBTDQDR4N4MgAOClqgu3HgAAAAnNA8HgOgRtATggKAlqgsXxnRauVK6+mrpoYeSLgkAAACAOJBQAsBBm6QLAMSKC2M6XXGFdPnl+debbir99KfJlgcAAABAtEgoAeCATEtUFy6M6VQIWErSU08lVgwAAAAAMSGhBIADgpaoLlwY049tBAAAAFQ+EkoAOCBoierChREAAHjBwzQAiAbnVwAOCFqiuhC0BAAAThg9HACix70ZAAcELVFdeJoHAAAAAMnj3gyAA4KWqC48zQMAAACA5HFvBsABQUtUF57mAQAAL6g7AEA0OL8CcEDQEtWFp3nWHn9cOvNMaebMZMtB5SVb3nhDOvVUadKkpEvSYto0adgw6amnki4JgKyiT0sAKLVmjXTJJfl/a9aEM0/uzVBuwoT8vcX77yddEqREm6QLAMSKgJi5+fOlX/4y//rdd/OBKMCN3XfP/3/HHek5vn7+c+m996RbbpEWLZK6d0+6RACyLC3nNgBI0j33SCNH5l/37CmdfnrweRK0RLnddsv/n6Z7CySKTEtUFy6M5r7+uuX1hAnJlQMIw3vvtbxOOnMYAACgEjzwQMvr++8PZ54EpQA4IGiJ6sKF0VybFCVds40QpqampEsAIItoHg4A0SOhBIADgpaoLlwYzdXVJV0CIBoc8wAAAMEZEwvCerBTnqxA8gKAMgQtUV24EJpLU9CS7BaEiUxLAACA4KIIWpY/XOZhM4AyBC1RXbgQmqN5OCoVQUsAAIB0ItMSgINMBy1vueUW9evXTx06dNDOO++siRMnuvreI488opqaGh1xxBHRFhDpQ9DSXJoyLYEwccwDAACkU3k9jaAlgDKZDVo++uijGj58uEaOHKn33ntP2267rQYNGqR58+bZfm/q1Kk655xztOeee8ZUUqQKF0KgupBpCSAo6g4AEM25kExLAA4yG7S8/vrrdfLJJ2vo0KHaYostdPvtt6tTp0669957Lb/T1NSk4447ThdffLE22mijGEuL1Mhy1tXbb0u//KX0n/+EP+80VRD8lmXWLOmEE6Qbbwy1OMg4gpaAtdmzpRNPlK6/PumSpA/9KwPhu/pqaehQySHJBBkQVZ+WabonAZAKKerIzr2Ghga9++67GjFiRPG92tpa7b///powYYLl9y655BL98Ic/1G9/+1u9+uqrtsuor69XfX198e+lS5dKkhobG9XY2BjwF6RP4TdV4m8zqlmzpmSnz9Lvbdu/f/7F44+rsaEh3Jk3NKit4c+414tx2U1NTWr2sfy6449X7UsvSQ8+qMY99pC23Ta8AsYgq8dgkvuNFWOZ1jQ0KJeSciH9snoc+lV3wgmqffFFScqfN7ffPuESpUcbSYVb8qbmZl/XJfhTbcdhtah57TW1Of98SVLzwoVqevzxhEsEK1bHYF0uV8x4as7l1BTCMVrT2Fh6b9bQINVmNq8KQeVyqby3SEKlXwu9/K5MBi0XLFigpqYmrbvuuiXvr7vuuvrss89Mv/Paa6/pnnvu0aRJk1wt48orr9TFF1/c6v0xY8aoU6dOnsucFWPHjk26CJHq++GH2s7w9+jRo5MqimeHG16HXe4uM2Zo3wjn78T4277++mt96mP5h7/0UvH1Rw8+qBnffhtCyeKXtWMwyv3SL2OZJk6YoPkrVyZWFmRT1o5Dvw7/PmApSR8/8ICmz56dYGnS5ZDmZhV6e54+fbo+TMn5rZpUy3FYLTZ58klt+f3r2mee0X84plKv/Bjca9Eirf3968WLFunVELbh2p99pr0Mf7/w3/+qqX37wPNFRjU1pfLeIkmVei1c6eH+LJNBS6+WLVum448/XnfddZd69uzp6jsjRozQ8OHDi38vXbpUG2ywgQ444AB17do1qqImprGxUWPHjtXAgQPVtm1b5y9kVO3MmSV/H3zwwQmVJJjQy/3JJ9HO34ONNtpI/QIuf5ttt9XWGdu2mTwGy5rwpPF46r/jjsodcEDSxUBGZPI4DMnW22yjrVJ4DCel1pDps+EGG2h91k1sqvk4rGS1n35a8nca6wzIszoG6y67rPi6e48eoWzDmrXXLvl70AEHSJ07B54vMqqsNWE1nycq/VpYaMnsRiaDlj179lRdXZ3mzp1b8v7cuXPVq1evVtN/9dVXmjp1qg499NDie83f95/Rpk0bff7559p4441LvtO+fXu1N3nK07Zt24rcaQoq/feV97+S1d8aernblJ4KklwvdXV1qgu4/DZt20oZ3raZ2S/L+iFKY7nb1NRkdl9AcjJ1HIakTZs2HCtGhvpCXW1t4OsSvKvG47CilTX5ZdumX6tj0HBerK2tVW0Y27B8v+BaVN3K+qLnPFG510IvvymTHUa0a9dOO+64o8aNG1d8r7m5WePGjdOuu+7aavrNNttMH330kSZNmlT8d9hhh2mfffbRpEmTtMEGG8RZfCSJzp3NpWm9pKkssJeFbZXlwbcApEMWznUAkEUMxAMj6u0wkclMS0kaPny4TjzxRO20007q37+/brzxRq1YsUJDhw6VJJ1wwgnq06ePrrzySnXo0EFbbbVVyfe7d+8uSa3eR4XjRGiu0tYLo77GIwv7DaOHA+5w3izF+gDCRTAKZsr3C/aT6ka9HSYyG7Q8+uijNX/+fF144YWaM2eOtttuOz3//PPFwXmmT59e0h8RIIkLoZVKWy/cbMaDoCUAAEB1iOJ+gUxLGGXh3gKxy2zQUpKGDRumYcOGmX42fvx42++OGjUq/AIh/TgRmqu0CgJBy3hkYb9ZsybpEgDZwHkTAOBWWNcMMi1hxL06TJCKiOpSKRfCsH8HFwj4kYX9hkxLAACSVyl1cISrvC6ZhbolokO9HSYIWqK6VMqFMOzfUWkVSTKG4pGF44lMSwAAkldpdc1qFMU2JNMSRlm4t0DsCFqiulTKiTDsC3r5/JJcT2H8NoKW8chCxZKgJeAO500AgB1jvS+sawZ9WsKoUu7VESqClqgulXIhjLp5eGNjuPOPGzff8chCxYKgJYCgKqXuACSJ46iy0KclopCFewvEjqAlqkulnAijzrQk0AM3slCxZF8G4AcPvwAgemRawog+LWGCoCWqS6VcCKMOWiaZaUnz8OzIwkMAgpaAO5w3AQBxI9MSRlm4t0DsCFqiulTKiZBMS3vcfMcjC8dT1vdlAAAqAcGo7ItiGzJ6OIzY/jBB0BLVpVIqTJXcp2UYAUeClvHIwvFE0BJwh/OmtSyc64C04ziqLAzEgyjQPBwmCFqiulTK0xuahyMNsnA8EbQEACB51O9ghubhMMrCvQViR9AS1aVSLoQ0D7dXy6ktFlmoaGZ9XwbiQqZlKeP6SOO5DdXp44+lnXeWhg9PuiTwa8wYafvtpZtuSrok3sXRPJzzbXUjaAkT3NmjulTKibCSm4eHgZvveGShoknQEoAfXEeQRgcdJE2cKN1wg/Tuu0mXBn4MGiRNmiSddVbSJfEuinpeFh6AIz40D4cJgpaoLpVyIaR5uD1uNuORhc7TCVoCACrFzJktr6dOTawYvlRKHTxMWV4n9GmJKKTxXgKJI2iJ6lIpJ0KahyMNsvB0nH0ZcIeHPUC2ZK1Om8Y6QtKyvE7CumaUr4Os7dcIF9sfJghaorpUyomwkjMtGT08O8i0BAAgGWm85sIbtiGZlihF83CYIGiJ6pKFzDA3wq7klM8vyUAPzcOzIwsVTYKWAIBKlLWAVxrrCEljnVTOvRnCkbXzGmJB0BLVJQtBFjcqOdMyDAQt45GFJj0ELQEEldW6AipbGq+58CZr5xZGD0fUOK/BBEFLVJdKeZpH0NJeVrdr1mShoknQEnCHhz1AtnBzn31Z3oZR9WmZxrok4kPzcJggaInqkoUgixthl7vSmodndbtmDZmWQOUgaFmK9YG0S+M11w51s9aytk7ItETUsnZeQywIWqK6VMrTPDIt7QVdPwsXSv37S7vtJi1bFk6ZKlEWKpppCVp++620/fbSPvtIq1cnXRqEZdgwaaONpFdfTbokALy46y5pww2lO+7w9/3f/z5/7L/8cqjF8iRrN/dprCMkjXVSOfdmCEfWzmuIBUFLVJcsBFnciDpomZZAj19B188550hvvy1NmCCNHBlOmSoRo4e7d/bZ0qRJ0vjx0l//mnRpEIZvvpFuuSX//157JV2a4MgsRDU55RRpxgzp1FO9f3f6dOlvf8sf+/vuG37Z3ErjNRfeZG0bGuvXYV0zslCXRHzY/jBB0BLVpVKe5kXdPDzrmZZBL3jvvNPy+sMPg82rkmXheErLvvz22y2v338/uXIgPMuXJ10CAElYtCjpEuRl7eY+jXWEpGV5nUQVtMzyOkFw9GkJEwQtUV0q5cJI83B7QddPVveLuKX16bixIp2WTMtOnVper1qVXDkQnvbtky4B4sI1AUZp2R/Scs2Ff2nZl5KUhQfgiA/nNZggaInqUikXxkpuHp6GgXiiaP5SidIatKyra3mdlqBlx44tr1euTK4cCE9thVWhONeVMq6PrNYVEI20XOvSUg74x7mlchJKEA7OazBRYTVuwEGlXBjJtLQX5vrhRt5aWh8CpDFoSaZl5aEJU2Xj3A8rabnWZe3mPi3rLU3YhumtSyIZ1K1ggqAlqkulXBjp09Je0EpgVveLuJFp6R6ZlpWHijVQndJSR0jLNdettKy3NMnyOqFPS0Qha+c1xKKNny8tXbpUktS1a9dAC1++fLleeuklSdJhhx0WaF6AK5VyYazk5uFhoHl4PNL6ECCNQUsyLSsPQUugOqXlWsfNffalZV9yK45MS/br6sb2hwlfQcvu3burtrZWH374obbYYotWn8+aNUsXXHCBampqdM8991jOZ9q0aTriiCNUW1urNWm5sURliyNomcvl/4XZ31nUF3Sah1sjaGmNTEv3jEFLMi0rQ6UFLTnXAe6k5dhPyzXXrawF6OKQtW0YhUpJKEE40nJ+Rar4jqrkbE4oixYt0qhRozRq1KjA8wJCFXVm2MKF0uabSz/5iTRvXnjzjbrc5RWGtAR6/GL08HiktaJpfGCQln2ZoGXlKa9Yp2Vf84ugJeBOWo51bu6zLy31JreiaImU1lY7SAaBfJigT0tUl6iDLOefL33+uTRlivT734c336jLnaZMyzB+W5h9WnIjby0LTXrScnNJ0LLylAcMVqxIphyIHjfRMEpLa5Q0XnPhTZbPLfRpiShwXoMJgpaoLlE/zfvii5bXkyeHN9+oy5100DLswCDNw+OR1oqmsRxpCVoaB+IhO6YyVFrQknNdKdYHrKTlupK1m/u01BHShHVCpiVKldet2B8ggpaoNlH3wWdslhrmSTbuTMu4K+RR/564v18t0pppmcagZfv2SZcAYau0oCUAd9KSaZm1B2DUrVpLS70pSWl9AI5ksD/ABEFLVJeon+YZMzPCrIjE3adl1puHM3p4PNJasTCWKy1BS1Se8oBB1pv9p+X4BdKOoCXCkrXzbhTlTWtdEslgf4AJgpaoLlGfCI0BrjDnTfNwb3hyHY+0jh6exkzLtKwbhKfSMi25MQDcSct1JS3lcItzTGtZWydxDMRDfam68TAGJghaorpEHfyjeXhwZFpmR1ormmkMWmbtxgTOCFoC1SktmZZpub7Bv7TUm5JEZh2M2B9ggqAlqkucmZY0D/cnDUFLI4KW1tJasUhj8/C0rBuEp3z/J2hZuVg3lSXo9kzLdSUt5YB/nFsYiAel0npvgUQFClrWcDMPv1asSOYkFGemZZhBy0rPtAw72MtAPPEIo3l4Lhd+sCcLmZZkV2Sfn0zLpAObdseb1Xkvqet10qLq7gXJC3r+JdPSH46j1rK2TqJoiUSQqvKtWSPV17ublv0BJgIFLbfaaivV1dW1+rfNNtsUA5pmnxunQxV66ilpnXWkQYPiPxHRp6W7+Wc90zLoDQnNw90Jul/mctK++0o9e0rPPRdNudJyU1e+blatSqYcCI/XgXiuu07q2lU688zoyuTkZz/LX3///W930z/+uNSjh3ToodGWK40491euoHVBgpb+EHxoLcsPMKPq05L9pLIsWiT96EdSnz7SV185T19et2J/gAIGLXO5XOB/qEJHHpl/2jJ2rPTRR/Eumz4t3c0/60FLmofHI2im5ZtvSuPHS6tXS4ccElqxMtE8POmMOwTnNdPynHPy++bNN0dXJjvz5kn//W/++vvww60/Nztv/vKXUkND/qHC559HX0YgDkHrVGm5rqSlHG5x39ca64TMuko3cqQ0c6b03XfSb37jPD37A0y08fOlvfbai6bhCIfbVPGw0Kelu/knWRGmeXh2BN0vly0LryxW5UjLTV35unHKykP6ZW0gnoaGltdmx4XT8Zv23we4ZfbArdZDHgeZlggL9U26z6l0s2a1vP76a+fp2f4w4StoOX78+JCLgarVxtcu6F9Wm4eH0XegnUprHs7o4fGIer/0KwtBSwJA2Ze1oKWxvGbnSKfzJjfXqBQ0D0daZO28GkV5yayrbF7vjWkeDhOMHo5kxR20zGrzcPq0jH8eBQQtrQWtaEZVESFoiThkLWhpPF7NHjA4HY/lvxfIqqAP3NJyXUlLOdwi+JD9rMIoHurTp2Vl8xq0JIgNEwQtkay6uniXl9Xm4XH3aZn10cPDHIgH1oJWvqNaz8ZyNDamY3uWr5u0B7jgLGtBy6CZllm7uQ5TGs4hCE+WMy2N9SWCltlDQKY11kllI2iJECQetFy5cqWuu+66pIuBpMQdtIz6aR6jhweXhkxLmoe7k4VMSykdwRYyLSuP19HDk2Y8DghaOuPcX7mynGlpbNGTtaAlCMiYYZ1UNq+tEGkeDhOJBS2XLVumyy+/XP369dO5556bVDFQbaK+MBpPzFnKtGQgHmvcuFpLY5+WZts+DTd2DMRTebxkWqZhH6RPSyAv6LUryQe7WQ5acg5J50NVL2geDq/ItEQIYg9aLly4UH/5y1/Ut29fXXjhhVqwYEHcRUCaxH2xJtPSXPl2iKJCvmSJtHy583R+flvY68ft95ctk5YuDbYso+Zmafbs8OYXtTRWNLMStCTTMvu8BC1XrYq2LG4EDVpWc5+WaTi3ITxhNw+Psy6b5aBlnFavlr77LtkyLFggNTSUvldJAZmwgpZxPACvr89vDwQ3a5b//dZP0DJr5syp7vpSRAIFLadNm6azzjpLW2yxhbp06aIePXpohx120JVXXqklS5aUTLt8+XKNHDlS/fr10xVXXKHFixcrl8upZ8+euuyyywL9CGRY3CcmMi3NRd08fMoUqU+f/L9Zs7yVxY2wn1y7eZI8Y0bLb5o6NdjyvrfbhReqbd++0l13hTK/yAWtaEZRWSdoibh4CVquXl36dxI3qjQP9y/LgQW0Fnbz8DhvUAlaOlu2TPrRj/L1s7feSqYM48dL660nbbpp6fm/koKWYYn6AfjKldLGG+e3x2uvhTvvajN8eP64OvNM99+ppubhDz+c38923jlb5c4A30HLsWPHauutt9Ytt9yizz//XCtWrNDixYv1wQcf6IILLtAuu+yiOXPmSJJef/11bbXVVrrsssu0fPly5XI59enTRzfccIOmTZumESNGhPaDkDFxH9BkWrqbf9gV4VNPzd/QL12av+CVCzoQT5SVQKug5Vln5SvGy5dLp50WfDkzZugHH3+cf33KKcHnF4c0DsSTlaBleRAL2VNesbbbpmkIWjplWjohaIlKEXbz8DivMVkOWsZ1HP3tb/lsp/p66bDD4llmuf33z+8n06dL993X8n4au9VJWtSB3Ntuk779Nr89Dj443HlXmxtuyP9/yy3uv+P1Hi/Lgf1jj82X9913pffeS7o0FaWNny/Nnz9fgwcP1nJDU8/OnTurTZs2xQzLL774QmeccYbOPvtsDRo0SA0NDcrlcvrRj36k888/X0OGDFHbtm3D+RXIrkrOtAxz3nFnWoa9XebPb3k9b563srgR9vpx831jM5MwmpxksSlBGgfiyUrQMkuVMJgrP2btzpvlQcvm5tLrRRyCZlpW8z5bzb+9EgW9dpFp6U9cgxwaW/s51TmjYtwnli1reZ3lgIwUT70t7GUYu3EybgvEo1r7tMxquVPKV435rrvu0sKFC1VTU6OjjjpKU6ZM0bJly7Ro0SLNmjVLw4YNkyQ9/fTT+vWvf636+nqttdZauummm/T555/r5JNPJmCJvEru0zLM3xZ3n5ZhV8CNo8Q7zTttQcu4BuKJO4ARhjRmDJiVIQ03dgQtK0+QoGUaMy3p07JUVC0nkLywMy0JWsKO8fyR9YBMFPXjrK8T2PN6Lc1y83Cj9u2TLkFF8ZVpOWbMGEnSLrvsoscee6zks169eunvf/+7li1bpvvvv18zZ85U9+7d9eqrr2rLLbcMXmJUlkrLtKyU5uFhb5c2hlONWSU77ObhYZbfqlIW9jYwBnazIo2BuLRmWqYxwItggmZaxs1YXrPl06dlqageQiJ5YQ/EE2fQ0rhfJjmKuR9JPBBOGwJ0raWxLonwVGumZbt2SZegovhK7fnss89UU1Oj008/3XKas846S5JUU1Ojs846i4AlzMV9IqJ5uLny+YVdATcGLc3mbVx+2jIt41KNmZY0D0eWlZ/L7M6baci0ZCAe/zheK0vYA/HEeY0x7otpuLbBGx5gtlYpQSqYCxq0zKosJqOkmK+75EWLFkmSNtlkE8tpNt100+LrPffc089iUA1oHu5O1JmQUVeijCdup0p22oKWVtkAYWcJZDHrIOjxFEXFNCvNwyulUlbNvJw305ZpSZ+W3lTzb69EWW4ebixrGq5tcEbzcPfzlKgfVRqvCT1ZP0YKslrulPIVtGz8/mLdpUsXy2nWWmut4utevXr5WQyqQaU1DyfT0pxTn5ZZHD086m2QBWRaukemZeXJWp+WQTMtq61PSyOO18qS5YF4shy0rNbm4ZUUtDSiT0u44fUer1L6tMxquVMqlvaINdV0YYI9NyeiXE765JNo+uqplEzLLPdpGcdAPEHLn3RAISuiyHD99FOpoSHYPMpFfWP35ZfSihX205BJUHmCNA/PYqZlNe+zUV8TvvmmdMRjRMvLAwczZpmWkydL9fXByuVGNQctv/66dCToLPJaF/jyS2nlyujKkwY81K1sbpuHf/edNGNG5QSxs1rulMpgJ2rItPKKntnF+uKLpa22kgYNCn/5WR2IJ+py0zzc+vtxNQ/P4sUt7EDcFVdIW24p7bef/3nE3Tz84YelH/9Y2mIL+wctVMorT7VlWhK0jMbzz0sbbZT/t3x5dMtBi7Cbh19/ff4asMsu0R/bWQ5aBvHss9LGG+f/ZTmI56W++s9/5usXW25Z2du6UoJUcGa1befNkzbcUOrXT5owwd130i6r5U4pX6OHFwwdOlSdO3cOPF1NTY3GjRsXpCjICrdBS0l6+eV8xlWYo29FHTiIqnl43JmWcQ/Ek7bm4W6CljQPD77ey6e/4IL8/6+9Ji1bJtl0QeJ6nlK0lf1jj83/P3269N//Socd5q5c1RwAqhRegparVrmfNipOmZZOsniOCiKu0cMPOij//8KF0p13SsOHR7cs5IXdPPzvf8//P2mSNGWKZOjXP3RZDloGybQ89ND8/wsWSPffL512Wnjliprf5uG//nX+/6lTpTFjpIMPDr1onsXRF3m1XWsqnZt744svbnkY8eabpZ9ldX/IarlTKlDQ8p133rH9vNAs3G66XC5H8/FqUt7sM+6O/+PMtAzzJifuPi3jzrQ0Lj8rmZZhy+LFLSt9WsbV35hds3YyLStP1jItgzYPp0/L6MXRvBjhZ1oGmZdXWQ5ahiWK7qOiFEaflmnZ1nEMxEP9qLK4aYXo1MVSFrEfh8p30DLHhoAfbjItvXzuFZmW7uYf90A8dmVxI8rm7QQtrQUNdscVtIwrq81uOVTKK0/W+rQ0LtNs+QQtrXG8VpawMy2Noq4zELQsrWtnjd/6aiUn+ETdRRWSFbTrtKxcf8vPx1kpd0b4Clo2czKBX+WZSE77Utg3SWRaupt/3APxpLl5eFyyeF6Ncr/0uz7MvpeGYAuV8spTbZmW1Rogkbj5qDRRZlpGKZcr3RezdkyGlaWXtaBlGJmWlRy05KFuNuVy7vZLNwk9dts8K/tDeTdAWSl3RmTsrI/M85ppGXawIeoLY1QD8VRSpmWlDMRjFEZlMosXtyi7FfC7DybZPNxLpSuL2xulggQtk860pHm4NxyvlSXLQUsjgpbZk/WgZRTNw+nTMpv8ZAlXctAyDQ+nK1iGz/rIpPKKXtyjlUZ9YTRWpLKUaRl1n5ZOmZZ2ZXEjyvXjplIWxvKyeHELeyAeu3kHmWdcASIvlS4yLbMvSPPwLGZaErREpYiyeXiUysudtaBlWJyClmk+Xmke3hoPdbPJTz22kpuHp6GeV8EIWiJeSTcPJ9PSXPl2iHL0cLNKdtjNw4MGhJK40GTx4hblQDxZbB5OpmV1qbbm4dUWtIxr9HDEL6uZllkPWlZrpmWlNg8n07K6ua0TVEvz8DTU8yqYrz4tL7nkkrDLoQsvvDD0eSKFkm4eHmempd28v/oqP0roFlu4m295ud95J//d3r29l9FM1FlgfgfiaWiQJkyQdtlFat/e+js0D09G0ECc3fSV3jy80oIg8+dLX38t9e+fzpurKFRb8/CsBUiC8vsQctUqaeJEabfdpLZt/S8T0QlaZ4gjaPnFF/n/f/zjlveiCFp++qnUoYO00Ual833jDWnHHaXOnYMvI2wELStLVh/qrlkjvf669NOfSp06JVeOlSult9/2d80p19SU/0077CCttZb9tH6yhCut7muUhnpeBfMVtLzoootUE/LJk6BllSjPtIw7syMNA/F89VW+EtrcLL31Vv4m30l5Oc8/X7rsMunbb6WuXf2X12r+SY4eblxvQ4ZIDz8sHXmk9MQT7r4jxd88PAxZvLhFObhMmM3D0xi0zEql3I3Vq6Utt8wHLu++W/rtb5MuUTxoHl49vGyvww+Xxo6VTj5ZuvPO6JYD/4Jeu6IePfzjj6Wtt86//ugjaaut8q/NgpZuB8MwM3GitPPO+SDgl1+2BC6HD5duuknac0/pf//zN28zYe3fWQ7gZb15eBTnqKxmWp51lnTbbdI++0gvvZRcOQ47TBo3TjrlFOmOO4LN69xzpeuvzyeLTJhgP22YfVraycr+kIZ6XgXz/agql8uF9g9VxGumZdiBnDQEDv7wh5bfdcop7r5jth6WL5fuuSecMkU9srHfgXgefjj//5NP2n+nEkYPz+K5MMrjiT4ts2P06HzAUpJOOinZssSp2jItCVq6M3Zs/v+77oqmLAgu7c3DTz+95fVpp7W8NitnkHPJr3/dMo9zz215//XXS/8PS7U2DzdKw31IEFGUN+r6UVQB39tuy///8svRzN+tcePy/3t9SGbm+uvz/7/5pvO9VZgBd5qHw4GvTMuXkz44kV2V3jzczfxWrLAuj9f5hnVhjzrT0qlPS7uyuBFln5ZxPd3O4sUtyj4t/e6DSfZpaSfrNyp2KikA60Wl9Wnp5fvVJq7tlZZsqkoX5UA8YZwPjXVl42uzea9ZU/pg2O9yjMd34XWU/adXU9CyUpuHh7V/ZDXTstI51VvjyhLOyv6QhnpeBfMVtNx7773DLgeqRdLNw6MOHLiZn3EdtGsX3nyDiPopp9Po4UH7OymfZxwXiiT2nbTJyujhaWgeHnU2c5KydgMZFi/Nw1etKv07ie1vLJ/Z8unT0loWz8+wFmWmZRjHtlVzSqugpV2f335EFbQMa35Zu+aEEbSsZKwT/6JcV3EGLcm0hIOMnfWReUk3D4/6wuimvH6CllHf4JpdmMJcN16yAMLItAyzeXhSTYuzENQKWma76Su9eXglVWbSmAESh6xlWtI83L9KOl5ReUHLsAXNyrYSVisWv5mlaZD1Pi2Nwto30pBQklVRXped9lU/o4dXsjTU8ypYlexFSI2km4en4cKYxkzLsPtJKpfloKXVvMKuQEYxKmjUgq53u30si83Dq7VPyzTeTMXBbL+y2gfS0KclA/F4Uy0jnlajtDcPtzqnxhW0NC4nDQPslctaEKSSmoe7qR97Raalf1HeKzjVW8m0LEXQMlIZO+sj88qbh1djn5ZhZlqGVYmJukmtlwqmn0ptlE1vrbZp1PtOFoOWac20TGPQspIqM2m5mYqbl4c9aajMkmnpXyUdr0h/pqVRlJmWVvt12jMts8zvfUgaz0FZybSMQ1JljvJegYF4vCnvBigr5c4IgpaIV3lFz+mAztro4VnNtIy6Sa2X8qct0zKppsVZCBAEzR6Mq0/LNDYPr6TMrWq9+TQ7Rq2O20rItMzCg5SocPNRWYLUGZqbo7l2GaWpeXgaMy2zfP30GzBP42+OKtMyjb/VSVJlzkKmZdjlSKs0PJyuYAQtIUmqefpp/ei551R7883RBksqPdMybX1avvmm9NZb/uYf5rrPctAyrubhQTMt3W7rMEXZPNzvPp+V5uGVVJkhaNnCbP/79ltp6tTS95LY/mlqHj55sjRmTHZuTivpePVq9mzpqaek+vqkS9Jac7P0wgvSZ595/57d33bssiy9zsuKl6ClVXlyOemVV6RJk9wtxyjtmZZO6zht16Qwmoen5VwZRfPwSqgfVWLQ0uk86fY3u2ltVwmZlgQtI0XQEpKk2ptu0jZ33aW64cOjPQHSp2Vp0NLtiI9+yvnWW9Kuu0q77CK98473+ceZaRm077Aog9FJNQ/3su+/+WbLtn7vvXDLZSdo9mAUfVom2TzcTiVnWmatf7GwuAlaNjVJu+/uPF0c0tI8fN48aeutpUGDpIceCmeeUYurCWfagi3NzdJuu0lHHimNGJF0aVr7xz+kAw+Utt1WWrDA/fcqKWhpVWd/4QVpwABp++2lKVPMp3HTPDyqumCUQcu0IWhprxL6tKzEoKXTPXNcg0hlZX8gaBmpKr3TQCtxdTifdPPwNPRpacxWiLJPy2HDWl7/4Q/284860OO0HYNWgsJuspCG5uFeKiJnnNHy2mlbhymNmZZZaR5eSZWZtAVa4uKmefjChdK0aa2nq+ZMyzvvbJnX8ceHM8+oZbnfuSDmzGnJEr7hhkSLYurEE/P/NzRIo0a5/16Qa5fTtTktA/Ece2zL60sv9bbMqDItaR6e/aClEZmWLSoxaOl0b+W2TlAtdUSClpEiaIk8Y6ZMlAcZzcNLg5ZRZloGbZIdZ6Zl2EHLDDYPrwkStEzqwshAPM7Ltvqskioz1VIhLecm09JqP04609Js+XEFLdu0CWc+UfPzMLeSjmspW7/Ha7+Udn/bccq0jPJhuJegpdesRqvlJNW/uZ00BvDc8putluXf7KQSMi2TKnMW+rSsloF40tB3eQUjaIm8pDItq715eNR9WhY4XTCS7tMyaGZjlBUeq/KkqXm4UZwBpKDHk930fn9/Wvu0rISO5q0QtGzhdjunIdPSaxnCujmqqwtnPnHKcjZUEFm5WZTiC1rGnWnpN2hpNT83st6nZdpUUvNwIzItW1RjpmVcD/Oysj+QaRkpgpbII9MyHG7mZ7zARDl6eJYyLZ36WnOSRKalURhBmyCZlkkh09J52VafVVJlhj4trd9La6alWdAyrkzLrAQt/bQAqKTjWqq831MQpM6QlT4tvW47q+bhYZ6rjPMiaNn6Mztp+c1x9GmZlt/qRSUGLcPq09LNflKJmZZZKXdGVOmdBlqplj4tow4ceC1v27bRzLecU+Uw6kBP3M3D427OFMZ+FFamZZzo09J52VafZbFSboVMyxZZyrT0evxWW/NwP9elSjqupWzddKWleXha+rQM0jw8jkzLILJ8nPnd99L4m8m0bFGJQUsyLb0haBmpTActb7nlFvXr108dOnTQzjvvrIkTJ1pO+8QTT2innXZS9+7d1blzZ2233XZ68MEHYyxtysWVaZl08/A0ZFqmab4FZtshqqfrZtLWPDxoefwoX04W+rQMGoizm77SmodXQqXcCkHLFm47qk9D0JJMS3tJZFqmLTCRpfNUkKCll+/G0Tzcy7zDCloaMXp4uCop09IoqiB0Vu7NjCoxaBlWn5ZkWiIEmQ1aPvrooxo+fLhGjhyp9957T9tuu60GDRqkefPmmU7fo0cP/d///Z8mTJigDz/8UEOHDtXQoUP1wgsvxFzylIor0zLp5uFRBw7CzDTzM53fsqQx0zKuGxC35bGTpubhcQaQspJpmYasVTItK0+1NQ+vtj4twwhaej0npuFcZZS28tippExLozCah7s5R1vdB8T5ADvu+SQh60HLOJqHJ90Kzo+kAlRxZlpG2Ty8EhC0jFRmg5bXX3+9Tj75ZA0dOlRbbLGFbr/9dnXq1En33nuv6fQDBgzQkUceqc0331wbb7yxzj77bG2zzTZ67bXXYi55SiWVaRl38/C0Pc0LesK3q4h6qbBG3aTWT9DSy/Kj3K6TJkkPPtj6YuS0vKYm6d//ll55xd1y4m4ePnWqdPfd0sKF/ucRNBBnt50qvXl4JVVm6NOyBc3DnVVT83Cv5560BQmTKs+yZdpw3Djp88+jmX81DMQTVqZlks3DZ87M11Pmzy9930vrHavPn39eevbZ+M/FZvve6NH5f2HWiWbMyK+7BQu8l9GO1Xlx6VLp3nulKVOc59HcLD35pPTSS63nU/73+PHSE08EOxfFUQesxkxLt9vEzboh0xIOMlJzLNXQ0KB3331XI0aMKL5XW1ur/fffXxMmTHD8fi6X00svvaTPP/9cV199tek09fX1qq+vL/69dOlSSVJjY6ManZ6yZlCNWiLYjfX1zk+SfapbvbokUt7U2KjmsmUZe3lcU1+vXIhlaZPLyVh1W9PYGOr869asKfl9ZvuK8fc1rVnT6vebqWloMD1Ym5qaLL9v/K3NuZyabJZTXm5Jaly9OrT9oLapScbcmsaGhpJKtHGd5JqatKaxUWpsLHm//DtG5eunec0a29/rpGQ/mTZNOuEENX38sZovu6w4TV0uV1xnZuu35tFH1eb44/Nlf/ddaeutbZfZ1NhY8hvWrF7tet9s09zselsXv7PnnqqZOVPNTzyhpqefdrWccrVr1pRsV7Pj2fb7jY2yyrla09Dg79hsaFB5T7FNDQ2eyuWF2+O5rrm55BgLuo+mSc2aNSX7bpavkYWyu/kNbdasUfkZqdX1s76+1f4oBdi/AzAer7lcTmvKjhWz/df4eXNjYyj7bI2Uif3FeB0oXpeclK3TxtWrHQfcK9kGHs+hkVu9uvT3xFS2mj/8Qds/8IByN9+sxmXLLNehn/qUJNWUX2891AVrVq2yvXkK49iuU0udPNfc3LLvmZxP1qxaZbq8NpJjvaBkmubm4jRtmpqK74d5T1DX1NTyu2pqHI+pNgccoJrJk9X84IOO9w5Greqc5fWzV19Vm4MOkiSt+c9/lBs0yMOvcMdq32xVX33hBdV+313ZmhdeUG6ffUzn4XW/arPHHqqZPl3NDz2kJh+tCq2uhVb7TN3JJ6v2sceU69hRaxYutM2or/nXv9TmuOPy8584sWS/kAzr66OP1Pb79bHmvvuU+/47XpXXNcM6j5WcGyO8d7ZTs3p1qNfTVvddNvWZVp9bcDoeJbXaB4zcLidpdStXlvyGMGIMXuqkWeTld2UyaLlgwQI1NTVp3XXXLXl/3XXX1WeffWb5vSVLlqhPnz6qr69XXV2dbr31Vg0cONB02iuvvFIXX3xxq/fHjBmjTp06BfsBKdR/wQL1/v71uLFjVd+9eyTL2f6bb7Sh4e+PP/xQU0ePLpnmcMPrd956S3NDfFJxcNkJd+Jbb2l+eZP1AHacNUvrG/4eXfbbpNLfN/Xrr/WxyTTler/7rvqbvP/pp5/qa4vv7710qbp///q7hQv1hs1ytps+XX3L3nvl5Ze14osvHMvmxjZTp+pHhr//+5//KFfItsnlStbJsmXL9PLo0aptbNShhvdHP/ecZUbXuhMnahfD3zNnzND7LtarlUMNQcCCur/+Vc/utlvx7z0WLdI6379esmSJ/le2vINPOaX4eta552rSmWfaLrPHJ59oT8Pfb7z6qhZZdHdRbsDSper2/WunbV1w+MyZkqTa//5X//G5rrb66ittbPjbbn80s/Gnn2ori88mvvmm5hseHLnVbcoUDSh778vPPtPnAfYHO8Z995OPP9Y3FsvZbf58/cDw96xZs/RuRGWKW88PPtDuhr/NzntZM3bsWMdp9lmyRF3L3hv/0ktaaaibrDVzpvYz+e4br7+uReXZQxHbcsoUbfL961UrV+ql55/XIYbPp3z5pT6zuR7PnjlT74SwbTf4+GPtYPg7rfvLgfX1av/966VLlmi8i3K2WbFCPzP8/fxzz6m5fXvL6aXSdTzliy9abYMkdZk2Tfsa/o5rWx3+wAOSpJpcTuMffFAre/c2n87w+ovPP9cXLsu34aRJ2t7w9zsTJ2quy0yptT//XHvZfP72W29pXsAbzF0XLNAPv39dqBNJUtevv9Y+ZdO+89ZbpmX/meFh0vTp0/WByboZuHKlCnc0c+bO1dvfZ/sdbpjfuBdfVP3aawf6PQU7z52rXt+/bmhs1PMO2+vwyZMlSbX/+1/J+59+/LFtXaO8blK+3+72l78Ur8crzjxT42+80UXpvTHum19/9ZU+/b4Mvd95p6Q+X2sYX2HJ2WfrtauuMp3Hh5MmaUaPHu6XP316fv4vv+y7jie1vhYe2NBQPC8uWLBAE76f9+GPPSYpH9Qf++9/q3GttSzneeBppxX3zTl/+pM6fvedeho+//STT/T16NHa7qabWu5NTjtNo33uh1tMmaJNDX+HdR4zbp9xY8eq3sP2Ccs6H32kPQx/B/1txt/00osvanXPli3Tcd48HWD4/I1XX9XiOXMc57nlV18V6x5WZfzpnDlaz+L7r/7vf1r2/f6cZnsvWFC875bCjTG4qZNm0cqVK11Pm8mgpV9dunTRpEmTtHz5co0bN07Dhw/XRhttpAEDBrSadsSIERo+fHjx76VLl2qDDTbQAQccoK5dy29Tsq/mnnuKr/fbd1+pVy+bqf2re/TRkr+32nJLbXHwwZbT77TDDsrZfO5Vm7Jmaf1/+lPlDjjAYmrv6v75z5K/D3Yoe78NN9SGLn5fzapVpu9vscUW2szi+21Gjiy+XmeddWzLUvfkk63e23uPPaTNN3csmxu1zz1X8vdBAwdKHTvm/yhrXtClc+d8WctOZAcfdJDlk9uasuYR6/fpo94B9psai4xO4zqsM1Qsu3Xv3mr9tunSRfp+u23Qs6fWcyhPU4cOJX/v1r+/crvvbjF1qTYXXlh87bStzXidvqB23LiSv7f4yU8s90fT73/6qeVn/XfcUbkDD/Rcppp332313qYbb6yNQzyPWNlyiy20ucVy6v72t5K/11t3Xa0bQ5niUFMWlPG7P6VBY2Ojxo4dq4EDB6ptW7McyRZtzj231XsD9txT2sRQPbfYx3fbZRfldtnF9LOo1L74YvF1x/btNajsoe0mG2+sjWy2Xe8f/CCUbVuzeHHJ32ndX9oYtn/XLl3clbPstx04cKBkc/NebpMf/ch2G8Tugw9K/kxiWw0YMEDaeGPH6X686abaxGX5asputHfacUfXdc0ah8DET3fcUbnvs/j8qrvlluLrLmut1bLe33+/1bQ7bbedadnrDA95N+jbV31MpmljSMLote66+eWU1cn222cfaT2rcII3dXfcUXzdrl073/vTFpttZlvXMJ7rpNb7bd1NNxVfdy3UOSO00Y9+pH7fL6PGpquhtXv0sCzLNltvra19ltPP77O6FrYxZD33tKhvDhw4ULIJMBrn0adPn1ZZdIXtW/fUU8X36tq08V9XLeumKYrtvd8++0h9+oQ+XydR1r/23WcfaYMNWt6YOrXk89133VW5/mYpNaVqX3655G+zMtbdd5/l9/fcYw9pm20cl5M04323FE6MwUudNIsKLZndyGTQsmfPnqqrq9PcuXNL3p87d6562QTbamtrtcn3NxPbbbedJk+erCuvvNI0aNm+fXu1N3k63rZt24rcaZoNlZu2dXVSVL+xLLhUV1OjOptltampCbcsZU+j20T5W6XW+0pZ1midZPv7iywyDOvq6lx9v7amRrV205kE6ULdD8rm31ZqmXfZZzW5XH69lQUobctTtn4cf68Ti+zeku1pKLfp8gpBWUm19fWO5akp+71t8gt0VVwjP789rHNaXW2tu/25wKafrTa1tf72P5PAtuvjLCDb31+2TwXeR9Ok/FitgN/l6lpvkt3U6jxl8aAl6muPk5pcTm3LHuI5Hb+1uVw4+2xZ3Sq1+4vhmK2Ry3KWHwsez2NxnatcK7u2JrGt2rZr52oderr+lF17PF1vHPrw9X3tMjKUr2TfM1m2m3qym7pibW1t/vguu1a1bdMmknNVTU2N7/3J6d6hXKvlGI7TYp0zQiXr32b/KW4DE0Huh4L8vlbXQsP+USuZlrdt27auy1prsj6Kx7LVcRBQFNs7quPEczlCLINTfcb1ua78HtDsOzbHRVrWraMIYwyVGn/y8psy2Xt+u3bttOOOO2qcIcunublZ48aN06677up6Ps3NzSX9Vla1pAbiqfTRw8v/Lk8T9zsiqdfvOHXCbrYdohw93LgfWK0zL4NEBB38oFwYI4YbMyftBvGxWqbf9e+mw/2w9vsoB+Lx+/uj3pfteOlIPC0jgYahkn6LF24G4rHa95JYZ+WDayQ1snUlD8QT9DzOQDz+xTV6eNBBYNxIciCesOtTUczLaT5OnxvveeLex+32D7uAeBqvs3GOHu51MCm7+UehGgficfub07jvRqF8WzAQT6gyUnNsbfjw4TrxxBO10047qX///rrxxhu1YsUKDR06VJJ0wgknqE+fPrryyisl5fuo3GmnnbTxxhurvr5eo0eP1oMPPqjbbrstyZ+RHsaLQZQnl/KgXdxBy7hHD29qKr1BK2/mHfSE7/YinrbRw40ndquLYpCgZRwXCqdlGDItW213N/OLsyLiV9D1brePhTl6eBpuvCt59PBK+i1euAmQp2n0cGNZzIKWZmWqrW35XljHkc0ADamSRNAybTd3UV6H3HJbz/HSj2SQa5fTtHGPHu7mwYiXgE/5/JIcPdxKmEHLOI45p21YYLed0nZukKJ7AG423yDLimLdpeVBdJTnaKfzpNvrm5ttVwmjh0d57kR2g5ZHH3205s+frwsvvFBz5szRdtttp+eff744OM/06dNLUs5XrFih008/XTNnzlTHjh212Wab6R//+IeOPvropH5CuiSVaRlH5c9ufnEHLcsz7tz+vqhPfFEHesLItPQS4Aq6vsJY30llWroR1Y2D1+M1rqBlXJXJas20rNaKmZtMS6vtnIZMSzfnTWPQMqyboyzuL34fMJJpGVwcQcswMy3jDlq6OS6DBC2jeoDt52F6QdBtYHxwEve52O/yvHwvynOsn4c5TqyuRUGyK+3mH4a01OmykGmZhnuyOER57kR2g5aSNGzYMA0bNsz0s/Hjx5f8fdlll+myyy6LoVQZFVemZaU3D3c6ofsNWkZ94jObf5RNgqJuHh7HBc6pMuU107L8N3ipiHj9vWbr3E/lMOjxZLePZbF5uN1yKjnTslorZkGClklsf6fm4VZBS7PvB5GV/YVMy3QELd3yMkprkKBl3JmWTvO22kZ+zzFRZgt5yf602/eqIdMyyn00CDfnxTDqpH7mYyWKbRxlNwpexJlpGWXQkkxLOMhkn5aIQFyZltXYPNwozkzLoM2drr5aMhmJ2Re7ps9WF0EvT6ySqDw4rV9jpmXUzcOtshfmzpX++tdWI8C2Wpbfvn3TkGn56KPSPfe07C9WWcPjxkl/+5u0fLm3MnphV+a0PJWPQjVUzObNk665pnT0XrPrk9vzVhLb32/z8AI/1+Ovv85fS77+2n45aeQnaBlmpuVXX0lXXSV98423eQTV1JQ/pz7ySHRBy+XLpRtvlMpGlQ0krubhcWRaepl3kD4t3bSy8fp73nhDGj5cuvhiafZs5+VZCVI/8BK0jDswb1c2u3KFmQ0clrCClm7qkmnr0zLuANX8+dK110rvvVf6vpt7hXffzX93wQJvy3SqI5BpWYo+LSOV6UxLhCipTMu4m4dHne0UVdDSajq7i3jQZjj//nf+X3291K6dcxm9zL8SMi2dGDMtk2oePnhw/qbwvPPyF9NCk6jy9bVqVWmQ1a2g6z1I8y9JeuUV6Zhj8q/r6qQhQ8zn+fXX0v7751+vWCH9+c/eyumWl6BlGvbRsFTSb7Hy619LY8fmXxeOpaxnWrptHm72fbf22CMfuLjxxpYARlb2l6QzLXfbLR8sv+OOeAOXzz4rnXRS/vUf/hDNMi66SLruuvzrb7+V1lvPelq3wYq4Mi3jDlrG1Ty8ME2QdbNihXTggdKyZfm/J0/OB78LvNRLo8y0TGvzcOM6yULQ0krQoGXUreCimGfU6/zEE6X//jf/2nhf5nT819dLO+2Ufz1+fP787lZYmZZupiPTEg7ItEReXJmWXi/CWcu0jKp5eNCnmUH6DvL6ZM7N/O0G4slK0DLs5uFBMi2tGLNYjPte+bLcBFXNBM0eDNo8/JZbWl5fcIF5mSRp9OiW1//3f+7K5gdBy8pVCFhK0sqV+f+zNnq4n0xL43nOzzmpEKicM8e8HGmWRNDSOP28efn/p071No+gLr205fUNN0SzjELAUspnwYeBgXhKeQkQGqcPcuM9d25LwFKSPv649HMv66bam4dnIWhptW94XX7U9aNKCFoWApZS6X2Z03XZeO197jlvy3Sq48fVPDwrCFpGiqAl8uLKtPR6wstan5ZxZ1qGxW0lyi8vmZaFsnjZV5IIWjotI2jQ0u++7+XmpMBv0DLoeg/aPNw4yFWh4pZkQCRtXRjEpZJ+ixuFYzPLmZbNze6uh8b3wroeZ6Uin3Tz8KRssEG8y3O6Prpd9wzEU8pr0LIgSLCs/LuLF/svUyU1DzeWJ+tBSzfnRadjtnweZFp6Y1w/TkHLMJvV+72+VUvzcIKWkSJoiby4njp6vTCFWRanG7IolhF1n5Zum4f7nb9Uum/4Vf47K615uNl2aNu25bWboGD5bwi7c+3ypqFGacy09Bq0LOxTTtt+ww2d5+sXmZbVoXBsVkOfllEELbMS5HabHWX1HSmbA/HEHbR0uv64Pb9UUvNwq7qdm3NOgdfzcmGZQW68y3+7XdDSSVzNwwla+he0FZjV9AQt7RnXj5eHNUGWY/Z3XJmWWalj0qdlpAhaIi+u5uFJZlrGEbSMqnl40IthkObhYQijeXhcWWx+1kUYN/tBmoe7KXMUQcug6z2KTEunddG3r/N8/fIyengaghNhqbaKWeEmIcuZlm6zW8i0bP3aTliZlkmuox/8IN7lhRW0rKTm4VbLizLT0qp5eJBMyxUrSreLcV7VNHp4tQUtg9YFsxi0jPOc7SXT0u98Jef6TJhByyi/HxcyLSNF0BJ5cTUP93rjHmbQ0mxZSWda+u0nK+zvBA0eeS2LVSXW+HdSmZZh7RNB+/QJ++l/HEHLoE/Xjdz8fmO2hNvm4euv7zxfv6o107KSArBuVErQ0mv2A0FLb9+R/Gdahp1p70Xc26fSMi3DWH9hNA+3mp+TMDMtpdJsSy+B1EoKWro9l2QhaBlG83Cn6Qt/J1Uf9zPPtDYP9ztfs78JWtojaBkpgpbII9MymmWkpU/LIJmWYWwDu6Cl1UXSy8k/zKCln99rtn6DBi39VkTcNCurxObhbjMtjc32w+YlaFlJgb5qq5j5bR4e941yOT/Nw43fCevmKCv7fhJBy8L09fXevhemuPvVdOrT0u3+4iXTMsjNZRyZlmEMxON3mUGCMWZlsQpaOglSP6B5uPtpvXJzXgxaFwy7/FGsjyDbJ6iogpZO28FvPdbNdJXQPJygZaQIWiIvqYF44mxmk0SmZfkyyyvnQZ9ShTFIjt38pWgyLaNuHh5ku/r5vU43+37mUQ2ZlkkELeM8vxlVcqZlJf0WNxobrTMV7ZoHG/fXNGRa0jzcXhjNw72ebwrr2EvWYNjizvL0m2lp9zDUSZSZlnEHLbOUaRk0AOp2Pl6ClmlqHm43QFCWgpZO+4xxf6ypsa4fhXWPU2mZlkZRBi3TkmmZFQQtI0XQEpKkXCVmWs6aJZ1zjnTCCdK//x1P0NLuhlWKN9MyrCfaQbbB3LnS//2f9N//lr7vZ/RwL4HVIJWHsCoeXstU/nm192npZr8zBoGs9ptycZ7f7JZrNm1jo3TttdKtt6avsvPyy9Kf/yx9+23rz9JW1rCZPXSx2j/tjgmz/TVOfjIt4whapnX/sbs5nzlTGjEif1xYfUdyXmdW54VKz7Rs167ltdNvtdo/ysuZlubhYQctnebtZnsV5vfuu9J550lffGE9rddg2cqV0hVXSA88EG6mZRLNwwvH9SuvOJfPi7RnWhbq6i+84Dyt125F3LCq71dC8/BvvpHOP1+aMMF6XtOm5ad57TV3y/aSaekl8Os1aBl09PDZs/P1yrFjs59pmcsRtIxYG+dJUBWSyrSMMmh58cXSnXfmXz/4oDRlSutpstI8PGg5gzQPD7I/nHCCNGZM6/crLdPSbP2abftOnaznEXXzcLtKc1jNw5PMtHRbhjRnWt59t/SnP+Vf9+4tHXlkeGULYuVKad9986/Hj5feeKP086w09/WrPIOrsdH62mR3o5m2TMukgpZmNz5mx3LS7IKWv/yl9Oab0lVX5VtQdOiQf9/rTZ3V9ElmWsYRtOzQoeU3+m0ebnZcuhWkzhD3NSbMTMuddsr//+CD+Qf7ZrzeeF9xhXT55fnXN97Y+nOroGWQ9Rhm0NL4e485Rnr99dbHdVBpD1oOGSI9/3x+Wy5cKK29tvW0UTQPd3MtCpJ1GUfQ0mpdHHhg/iHB1VdbT3PYYdKHH+anaWx0vh4al+10/AdJYAmrebjZ9q2pkU45RXr2WenKK6Xdd3f//TSKIzGqypFpibykMi2jrPxNnVr694wZraeJO2jptxISdaal3bRBbmDMApaSuz4tg2RaprF5+IoV3uaRxebhQSuqXuflJ2gZ5fkt6Ojh11/f8vqee8IpUxjmzWt5bZYtUOkVs/Ljwy5oaXdMxN0ksZyxzM3N7s6bXm6O3ArrAU3U7IJFb77Z8nr+fPPvSN6DltWSadmxY8trv83Dy/cbmoe7m5+Uz3Cy4rWeWghYSvlWTeWsmoc7XTeSaB7++ustrxcssJ+HEy/b0EycQcvnn295bZbgYRRG8/ByYdbh3cw/inlaLcOY1Ww1zYcftrx2Ux837hvlx3+QZIK4mocXvvfssy3vffaZ+++nkZuBGREIQUvkpSXTMszATfm8zW4Cor4wRvWUyut3ksq0tBJ18/C4g5Zu5uM1aBln83CnTBe3yw0z09Jr83C3ZUiqebibfTTuwQHccnrqn4UKZRDlNxFhNA9PYp35aR5uFFXzcC/BpqS4vf54rcNYPdis9D4tjRlsTtcfq3Vfvt/E1Tw8jkzLsAfiCbOJqJfvSv4zLZMePTzoecnqvsqubFH1aellG3rJ8gsraBl1lyFJBi2N3Jxb3fx2u4eJfu8zzab1+rff+Uql54lyWahjmp2vslDuDCFoiby09GkZZtCy/LtxBC2dyh/WU6qwBQ0eeWW8yFrtA14qbEEz/oJ+183o4XFlWsY5enjQ9R6k+Zfk78lmnA9ljNxUJNMatDSWy0ylP032kmlpd95KU6alm6Bl2NnfVln0Wci0tLsG2wWV/AYtKz3T0hi0dLr+WB0rYWZaBg3MefncDS99Wro9ftxu1yDBMrNlLFpkPq8om4c7/VY3QUu/D3PNuA1a2iWQpCVoGXbzcLOs/7Cvj1Fcb/0cJ26OVTfHqV2mZZT7TVj3sGa/0UtLpTQy27ZZKHeGELREXloyLaMMPqUhaOn3CVjUN7hpyrTMYvNwN/NZudLb9GHfyFfi6OF+KglJZVq6ySQwGw09DWodqgqVXjELq3l41jItww5aFpaflUxLt0HLIJmWVvtLWvu0DGu/NQYt/Q7Ek1SmZdoejLnNtHR7nIUdtExjpqXTgzjJ+UGzEz+ZllH1aenl3B1G0NLLeWLNmnDr8GaylGnpZlt5ybQM8kDGaxDTSpDsz6wg0zJyBC2Rl5Y+LbOeaRlVUDZoxSBI8/Aosi78NA/3EuBKY9AyyubhbkQRtAxaEUkiaEmmZfgqvUJq1jzc6jfa3SwmPXp4+TnA6w1J0HNSYfmVHLQMK9OymoKWYTUPZyAeazU17vepICPgOjX79DKvuJqHWwkatDRy2oYFUQUtvXzXKaAbRdCyEpqHuymzm2PVa2AzyubhUWVaet0eWQj+EbSMHEFL5LlpKhEGr09xstanZdyZll6CJH7m7/SZX35GD89apmX5to+yebib35vG5uFBg+VmlTunMqQ50zKtQUuvN+mVHrTMaqalU/PwclFlWkadVR6FqDItrQITaW0eHtax3a5dy2sG4mktij4t48i0dApa2h0rTuVw+5lVOYzc9PEZZtAy6UxLL991WjdutqGX5dllWoZ1naymTMsg90NeE23c1gmC1iWyEPwjaBk5gpbIi6t5uFPQLuuZlk7l93sx8fM00/hZJWRaeglaBtmHg2a/Ws0nrkzLwra2q1xElWmZhebhUZ7fgo4entWgZdjBrbTxMhBPmvu0LL/ZjLt5eJYyLb08YLQ7t2Yx09Lu2hNFSwSnTEurZaa1eXgY9cooRg93e5wFCXqE2Tw8SP0gjG3k1KWPE6v7Krtl2wUtvZx//QaXzL5bzs26S3umZRjzjypomWSmpdc6gd/Em0rMtKRPy8gRtESeVQXJq6lTpVNPlf797/x8rr5aOvfclot/VKnnZtKQaen191qxms5r+SdOlE46SZowwf180pJp6aUCm4ZMy6BBy7ACBGZ/l5dt9er8jeM550hXXeV+/QU9XpMIWqY50zLqPi2nTJFOOUX6z3+8fc/rTYzZ9DfcIP3hD9KyZd6WnQZxZlp+/HH+HP2vf+XX1803ey+vFafm4XfcIZ13XksQKexz0tKl0h//KF17ben7WQha2p037AaWs1pnr72W385vv20+fRyZlnfdJZ15prRggXkZzIT1QMI4H7+ZlpXcPDyKoKVZUNfst0SZaeklaBll83A32zuKPi2fe04aOdLdd5LKtPRShwqrebjV8ehl1Hujzz6TTj5Zev75/N9RtAZJMmhpl2np9j6zoUH6v/+TLrnEOlnE699WrMrUpYv3719/ff5exU9dcvly6U9/kq65Jvx7ATItI+fQ2y6qRliZlkceKU2alL/5ufde6fzz8++3bStdfrnzCS/rmZZONyxhnfCd3rey8875/++5x33lMepMS6t9wEu/SkkELb00oZGiHYjH7PeWf98p0/KCC/KVAUn66U+l/fZzXm7Q9e42e8mKWWUtyUzLoEHLqDMtBw7MP1i66658YMrYr5ydoJmWr7wiDR/eMu2NN7pbblqEFbR0k2m56675ivU997S8t8MO0m67uS+vFadMS0n661/z+8XFFwc7J5k57zzpwQdbv5/G5uF+g5Zu6zB77pn/37idpZZ1HnWm5ccf5x9gSNLcudJjj7V8FkfzcOMynK6NbpuHpyXTMuygpdO83V4r/DYPDzPT0m3GodW8zOYTxedS+M3D6+ulQw6xny4NQUsvAd+wmocHyQ40M2BA/rx2993mQdHmZneDMdlJ6+jhbq9dN90kXXFF/nWfPtJvfxtdYpHVfLp2dRd8LHz/hRfyDz6l/Dq44QZ3yy+4/PKWh6ZbbCH97Gfevm+HoGXkyLREXlgD8Uya1PLamCFy2235/+MMWqYh0zLJPi2NvAbY/CzDC7sAmtsnfnafxRG09Bocc7phCGvfL2xrr0HLQsBSkl56yd2yglY0w860rK+Pp+meFS+/x2zaqIOWU6e2vPbylNrrvl7+9wsvtLz+29/cLzctypuv+m0e7ibTcvny1u+5PR6duO3T8vbbW6YpF+R6YBawlKoz09JKXJmWb73V8vpf/zIvg5koWiI4BYeslmmWaRlHK4G4H4xFmWlpVjcMO9PSqjugOJuH+6mrhD0Qj5vm5mkYPTxNmZbG+XjJupw7t+V1Y2M8mZZufnMcmZZuf+t997W8fuQRd98NK2hZ2B+7dXP3/YLnnmt5fdNN3r5b/p2nn/b+fTsELSNH0BJ5UfRpaTyArfrZi7J5eBb6tIwy0zKs5k5+gydu+8Vy2zzcS6ZlkP3Gz3fNKlNeK43lvy9o9pHXoKVR377ulhE0WBy0W4Ly37h6NZmWbnm5AQiaaWkcdCOLgmRapnX0cLsyFN5303Q0DNWYaWklrkzLtm2tP4ujT0vjelm1ytu5s8CsnG7Xd5BrV9yZlk5ByyCZlm6O8aCZll6yK53mZTZPN5+72d7l04TdPNzNNdeYQJLGTEu350WvQUsv51uvmpvjCVqmNdPSqlxm+5rTceI3UcEu09LL9/0GsQui7IKJPi0jR9ASeWFlWhoZT2ZWQctKy7T0+vuCZlq6DVoGGYjH78XdLlPELoAWRtAyjkxLp+WVz8frBTLu5uFGPXq4W27QiqDd9H6ah7sJWiaVaenm2I+6T0u/vGavlk9vFyDJgiiah4f1UMkLt8er2Q1CQdTdhaRFUkHLuDIt7Y7JOPq0LN/37AbjsVr3ZvuN22BvVEEdr/OyEnaflrlccqOHW/WnHWfzcDfbu3zfCXsgHjfn8bQ3D3d7XvSyfewyLcOQtaBl2H1aWq1Ls+5qvB43fh8SFf5u47KXwiwELcm0jBxBS+RFkWmZdNCyGjIto9hW5fxuA7vO9e0qrm4vnnafxR20NFO+3pwukEk2Dy+vnLtdf0GfjnvZpmbMgpZx3FD6mXclZ1o6VWQrLWhZ3jzcbrsZ103WMi2DZHV5UUlBS783deXfLw+ghF1Xsct+jrtPS8k+q81L0DKOEbLjyOaPImjpN6AbVaZlnM3D3dQny+8Rwu7T0u8DDOM8vCzP73e9tODym2lp3GejzrRsaqq8oKVdpqXbcvnJtAzrHtZqeU7fz1rQMol6XgUjaIm8KDItjSeEwvyjykQ0k0SmpVPgKc5MSy+iyLS0C1pWWqZlGM3Dg2ZmlvMStJw2zb4sVqLMtPQbtEwy09JuG7s59uMMWnrhdZ0GDdykjVOmpTEAlKVMS6dsUTcZ3GFIU1ZxgZdrdRyZlmGft/xmWiYRtLRaptl+U4mZlk7zdrOPNTc7B3QLy4wy09JL0DLpTMuwm4e73U4FSfVpGUaCgNegZZSZlkkGLct/R1jNw5PKtAy7ebjXBImsBS3JtAwVQUvkJZVpGeXNbhoyLf1UnNzM1+n98s+CNA+PO9PSKmjppSIVZrDbjTCah4eZZWy2PLt1PnOm9bR2osy0jKp5OJmW3nkNWnoJSGSBU6alMQBkdy5yMxBPlOLu09Ltb0xjpmW5uDItC9OXB1DCPm8l3adl+XySzrRMW9DSKO5MyyDBMqdsI7t6iJt5uS2T1+CLFH7Qsnx5SQYtw9q/3Z7TnZZnPE7NBsrJQtDSTd+vXltcuZ0m7D4trYKWUWVaeg1ami0vbUFL+rSMHEFL5EWRaelmIB6nE2SYfVqaVdjCPqE43bAklWmZxOjhbjMtrZ5OeukMPulMSzfziXIgHjcZUXaZluXiyrQMmuFb/hudBnRwWmZQXir7SWdahpnp5/TbKi1oWZ5p6TZoaZbZ4EZUmZZRBy3d/sY0Bi39Ng8P2lqkMH3UmZa1NtX/tGVaVnvzcKd5uzkmczn/fVp6WTdZzrQsP+aC9mlZvjw3+0VYQUsv3/VyrourebjfoJaZJDMty+uoSWRauglaWjXXjirxplqahxO0DBVBS+TFlWnpdDL1UuGfPl0aPFi68Ubn5UvmmZZRPhGXnCt/XlPjy4XxRNRp2iiClk5P23M5bzcVSQctjcfPRx9JP/+59PrrpdN4zbT0G7QslKX8BsUpUGzkN2gZZqalmzKU/8Y0Zlp+8on0y1/mz1dGTpmWfitUCxdKQ4dKF1zg77j+9NN8eUeNcp7W6nOngEQamwPb8dI8vPy3W40ebnXei5Jd2YxWrMjvA5984jwPO25/T2F/mDFDOvZY6frrnb/T3Cyde6508snSsmXuy+RWWEHLtGZa+s1yj2ogngsukI4/Xpozx3naAr/Nw2++WXroIftl3HGHdPTR0pdfui9PQZQtePxmWjY3xzMQj9fRw197LV9fGj3a/ntePjP73E2wpXzf+e9/pT/9yf+xl5Xm4eX7RRgBTqdtZ/yeWfPw22+X7rmn9D0/QSope0HLsPu09NI83Gn7hpV44zUoHWXQ8umn8+egt97yPj8jgpaRczlsEype1JmWVn1aBmke/pvfSOPGSY88Iu23n7T11vbfzXLz8KgzLaNoHm43GqhT1p9Z0NJLBTbuoKVxeTvvbP7bHSoiNVE3D48i0zKsrCK/ZUhbn5ZmZb7iCunxx91Na+R3+w8fLt1/f/71LrtIhxxiPp3Veth3X2nu3HyZjzhC6t49/EzLpUvdj1CfBlE0D/cSfIjimmz2t9Hjj0tPPdX6/aAZ4GYKN83HHSe9+qr08MPSwIGtr+lG//iHdM01+dedO1s/vPTLb9DSa4Z9ubgyLf0GJqPKtHzxxfz/ixdL//lP6WdhZlp+84105pmt3zcuY+ZM6dRT868/+ij/IMdNeQrCzrSMu3l4kPqUU6ZleQBzzz3zr5980lvAP2jQ0uw3md0jXHuttNde0qGH2i/PTJqClnbf9TLoVxiZlmaBPLPpTzpJOvhgd/O0k6agpZsHB2GPHu4m07IwTZj36G7mk4ZMyyOOyP9vdg7ygqBl5Mi0RJ7ZySuo8ubhuZz3TEu7E+K4cS2v33mn9eduMi2z0jzcbxMMt9KWaWnWlMZLGYPsw0H3f6tgbZoH4nEqi9vpwgxaRtWnZdxBy3nz3JfD+Hv8Bi0LAUspn8VixWrdz53b8nrBgvz/QTPky5vZLV5sXa40Msu0NN7odejQ8tpt0NLtTXOYvB6vZuegKDMtX3215b2PP7b/zpgxLa//+U/3ZXIrbZmWUddVjOLo09JqvTz7bOv3rH67n0zLKVPM3zf+rq++ank9ebL9tE7z8itNzcODBMuMyzf+X/7aTTm8lCmMTMuCN9+0X5YbZnVaM8bfHFfQ0kumpdt6udegpdUyv/3Wej5upSloGVbzcC99WlptizQ0D48709L4gJnm4ZlD0BJ5UTQPN54QCkHLckGClkZLl7Z+Lw2Zlk6VjqBBSy/NOOwEDR6Z8Tt6eOG9LGVaWo26aRTXQDyFsiQRtIy7ebhZ0DKOG0orZtvMajs63XyG0QzTbrCNIN1HODVHcmoeXslBS7tzvlOfllY3zVFlWvo5FtLSp2XQmxcv85fc3/S7yURx07KhvL4S9nkr6UzLMAJhfjItrfrytMtcclset597lXTzcC/nH6t9xyxIEaQeEnbQMpezfmjUp4/9stzI5bxnWgYJtHnJiIu7ebjbTMvyadPePNzsN5Sv27Cah9udr9z+Vjejh3ttPWglikxLu36ZrTAQT6YRtEReFM3DjSfrmhrzk1NYJ0SzoGUSmZZOgaew+gOxmp+VIM3Dk8i0NAtaeilj3EHLArunwlEOxGMmC83Dg+53Wci0tNruZuWwe3ruR1hBS6csYK/Nwxctcr/sNDBrHm68nnTs2PI6SKal2+abfnm5kbUSRaalWTDFy/4ZR9AyzExLN+e9qDMt/QYtw+rTMoz9yE/Q0nijbrUMp3nE0TzcKrgXJNPS7T4VRaalWZAiyUxLs+PU6vzbtav9sqzQPNycl0zLMM43lZ5pWX6+8tM83G2mZVitBQvf83pdC7N5eNgDAJJpGTmClsiLItPSeEKorTWfb1iZlmYd8SeRaRlXar3T+06feZk26kxLq/3Cy9P+JIKWZjcVU6daTx/XQDxW389apmVUzcOjzLT0kgUTR6ZlG5tuq72sB6d90+m8XemZlm6Dlk6ZllaZPmnKtIyiT8s0DswUZdDSzXkv6kxLv+feJDItw2we7ibT0ulmNo5MSy9BS7d9WrrNqEtLpmWczcPLH0SVf+ZH+X2Vm/0iiaBlFJmWXoOWfjI23YoqaOlm+7gJWjo9FDZjl2npdhvFmWlp9cA0SKaln6Bl+WCXYcYACFpGjqAl8pLKtAwStDRmEVVrpqXb7zud3O3mk5ZMSy9lDFIhCRK0/OYb6+njah5utbw0ZloG3e/8NA9Pc6ZlGH1aGgXNtDSrKEremyNVWp+WdpmWdoPdJJ1pGXfz8CCZlkFaB4TBb9DSTTZrGjMt3Z57wgpapi3T0kvQMouZls3N7kekD3KecOoOJUiGv5cy+QlaWp1/w8jISjrT0m7ZbvcLL2Wwm85L0LIaMi3tzsVW7FrluP2tbgbiiSrxxuv5IKygZXnzcIKWmULQEnlRZ1r6DVralaVLl5bXacm0dAo8xZlp6UWSmZZZbR7uNdMyroF4wujT0u02jzLT0m/QMm2Zlkn2aUmmZTjCyrR0Gj086kxLLzeyVtLSp6VR1pqHu8ly9BJI8MOufhTHQDxesrmspjXbb5wC/27qUmnLtHSad9iZlkGu606BULsH1l4e3GYx0zKtzcOdmhfbfRZGpqXd8RZGFn7WgpZe95MwRg+3ynx02t5Bg5ZBMi39KA9ahnldpU/LyBG0RF4UmZZuTuhOJ0C7k7exnxmzoGUaMi2DBGXdTBekebjbZjpJZFo2NwfLtExj0DJNmZZh3XQFrQi6uXm3U8l9WoZRTrugpZdMS6eAutN5LetBy1WrSv9ubMxmn5ZpzbT0c2Mad6al3TK9Zlq6Oe+V11eizrQ07uNJ92npNjBitt84BRzddNeRtqBllM3Dna5DVsu04hQItat3xhm0NHsQF3amZflv9dpXYTU1D3dbNj+SHIgniUzLMJuHO/3t9noQVqalcfl+BuIxCjtoSaZl5AhaIi9opuXDD0t77239uVWflmvWSKeeKh12mDRvnrdKizFoGdfo4c3N0mmnSYcemi+v2ed2ZTC7APzjH/l19+KL1ssNmmlploniVBEuyHKm5Q03SPvuK733nn1Z7eblZrrCa7vm4VEOxOOmsuQlIDZ8uHTQQdL06d6W6/V4ChosjyLT8o47pAEDpDfecF5+ObNt7DfTUgpe4Ylr9HCvmZaVMBBPFKOHW2X6hCWMTMso+rRMYvTw2bPz1/Ezz3QfoHQTPHNTh3Fz3vOaafnll9KgQdLIkfbTWc3PuI8n3Tzc7bXfT/Nwq/133rx8PfTUU/1naxbEHbSMunl4oT522mnS4Yeb133dztMuaOkl48xsOZ98Iu2/v3Tlla0/32sv6fXXrb/vJtOyvK6+eLH0i19IQ4c6Z1mZPYg3Y5dp+dxz0tFHS8uXe5uP2byMohiIx+63ermGhPEgr9oyLb/5Jl9/P+8863JJ7pqHOz2Q9ptp6bVPy2+/lQ45JH8MFvi57hvX1Zo14T2Ek7w/oJTy193jjssf1+XdKE2ZIg0apFq31/QqYJOGgaoSNNPy2GPtP7dqHj56dMvrs87KVzaM7A54p+bhUWRa/vvf0u2351+feqr0xBP283PTp+Xxx+dfDxzovQLg5Ymo2XcL2z1tmZZeg5ZmgYK5c/PBNyl/Mzd/vn15zcpmx6zybTd6eJQD8RiF1Tz8+eelwYNLK/rlosy09BO0XLXK+Xt2v72+Pn9cS9Luu7s7P9TUWGckmpXRrhxmzabatXMugxW7J9FebqDKy+qUmWH8u6Gh9e9assR52WkSRfPwuDMtzc6pUTcPjzLT0sjPzcvJJ+eDAFL+wdaRR5Z+HmXQMopMy8MOkz77TBozJv9bttvOfvrycsUdtPRy7rea1s9APFb72kMPtby2e/hYXh7j+d/sc7/iyrQ0O3bM6lOPPNJS923bVnr8cedlls/D+H+hTOXLNT5o81o/OOAAadYsady41p9Nny7tsYd96wGnTMvyuvr557fcA+y0k3TGGaXfK99uQZuHS9Jjj0kbbihdc437+Zj9beQl09JtvdxLpqUd43nQbzcgZgHjNActg2ZaHnNM/sHC889LP/uZu0xLqyCi17+tWH3PbR1h2LDW74URtEw60/L661uuPT/6kXTVVS2fDR4svfOO6saMUXen471KkGmJvCj6tCyfv9PB+9hj3m6qOnVqeR1XpqUxY+/JJ53n53SCL292aMVPxaA8E8WubF4Cgm7Z/TanpspmFTyvFakZM1r+XrDA+rtO83IzXWH92VU2vAYtgx6HQYKWBU7ZhkEzLcMOWjY2BsuCcXs8GjmdO/02D5eCZ955aYJpxqpi6SXTsvzpsXG+WVGeKeq3eXiSo4dbnWe98lIWt/MPmmnpRyFgKUmTJgVbZpjNw/1mWn72Wcvrr76yn9asXMagZRx9WkaVaelUX3ETEHjnHfvPjeUzy2YP43j18gDbTR0tlzPfp9w2D3/77Za///1v5+VJ5kERL3VN499nniltv31pmcrNmuWuXGblsMu0tDo/PfVUy+vXXrNfRlhBSykfjPIyH7O/jbyca6JoHm7HWDa/x1VUmZZu7lGiClraZVoaM6E/+cRbpqXT9vV7n2L1vSDbIWjQsrEx3Lqonz4tX3qp5bWxTiKVXIe6OrV6qxIELZEXRZ+WRlaZluW8NA83Tutm9PAw+pto397+c6dlli/PbTNJq3UXpImnXTMdN8t2Emempdm0ZvuEG0EyLd1k0Lhdrpf1HnbzcLeizLT006dlQ4Pzb4siQF/g5YbSzbRBM++CBh+snr576dOyPODndtlpUv4byrNy/AQt4860DCtoGfS8ZCbpgXicuk+xe08Kt3l4XH1alm/HNGVaug2MmO03TuVzExAwHs9mjOUxy4SPIovL7n23QY7y9eX22pTL+dv/zLIm7eqddvXn3XbLJw0U5hl0HTtlWp5ySulnZozlM2vVEHbzcC+CZFr6aR7uJZiVRPPwMPpzLhdVpqXXvk+d1qeboGXUmZZW18Ug17WgQcv6+uQzLY3nSJt6UG3U/Z1nBEFL5MWRaRl20NL4WXnzcLeVrLCDlk7l97tuvTYbdzMP43eDBo/MBOnT0mtzDrNKtpt+f9zMy4pZk60gT5e97PtulC/PbWatF1EGLf1mWjp9L+x93anpXpKZlnb7XJiZlnY3m1kPWjY3exuIx+4GJMnRw/30t2QmiqBlGCPEBuEUcLB7T0pHpqVXfpuHh9EHmNlDSSO31xU3AQA33yln7KPWjFOmZRjbKonm4YXlmNVbgwYtzYIiXurLhWO08H8UQUvj+bdz55bXVsEEs/JZfZ7LhZdp6SZY4+Y8VBDGQDxeWt1E0S+ynUociMcu07Kc1bZx0zzca+tBt2VIQ6bl6tWZCVrWEbSURNASBWZp4mHP30/Q0m2AYdUq54qdm+U58Rq09JItaCdopqVZ0NhtECuLmZbNzeb9nLrh9vea/YYgWXxhNQ+3aqoeRaZl0ObhQfc7P83Dw6pMm83Pyw1lHJmWQTOmrJ6GV1OmpVmXAX4zLZPs09JLQN1OkOx+K0k0Dzfymmlpdzy4efjkFLDL5eIfPTzOTEuvD5a8ZFrGEbQ0licNQcuwmodbBS3L17/bYIFTpmU5uwc+hQBLWEFLs2PYuH7Kg5ZODxmNASCzZTQ3hxe0dMNLcMnLQDxu70XCrmdJ/jPqK3EgHmOQ0enaYFVONwPxOJ2L3e6jVnXEJDMt3fSB7wWZlpEjaAlJUi5I83A307vNtPTydLB8WmPfaX5PpE68VGbNyhF2pqWXZhx+g5ZJZFoGDVrmctEHLc0q+3bfjatPyziDllFmWkbVPDzINirnZpt5ybQ0+z1BxJVpaXfey3qflmZB1/JMS+N1IUjQstIyLd1Om8To4UZeMy3NsrSsvudnvTc3R59pWT6/OPu0jDJo6TTvMLJ6s5hp2dzsnFHnNtPST9DSKpPLrjxRBi29ZFpaDdjhlGlZvt28PCgsf23kJ9PSbtlhZFp6WV7cmfVpD1raXU+clu00rV3Cipvm4WFlWlod20kGLZuawn1Q7KdPS7eZlkG70KkQBC2RF6R5uJvpo24eLpX2D5lUpqVT0DXsTEu3lQuzgXjcZqYmkWlpVsHzUsZcLt4+Ld08NYwyaGlWliSCll7nG2S/y+X8NQ+3K6PXioGb81WQPi2THojHbZ+Wdsdq1jMtrYKWVpmWdg+qnAbiyUKfllFkWvqp7IcZtHTKkiqwykaxax5uto7dPFip5ExLr/07W/32qJqH29VdpPQELQvLbmpyd7w4BcILf6cl09IsKBhl0NK4ftZaq+V1Y6Pzwwezc4jx8+bm9DYPD2MgnjgyLf1Ke9DST/Pwwnfcdg1hVCinWX3E6Tf5XY9WZQiyHYIGLSXzh+p+Bc20tKn/kWmZR9ASeUEyLaMMWnrJxFq82Pozt8tzYlYxsZtfWEFLP5mW5bKWaell3Znd5CxZ4lxGN/NyM52bTEuvN2p+17ubTMuwgkZBs0ODBC2tgj5ZzrQM2jzcS+XXzbayutH0kmlZiUHL8qycrGZa+jnH+H2YYsdPxpxR3APx2B1nYWRammWAhH3MJNmnpdcHS1bTR9U83CloaSxfVAPxWB07xnkbl+1mnbrNtAwrwGOWaZmW5uFOQcsoMi3T2jw8jIF4vDzArpSgpZuWdFE1D3ebaWlWLrOgpdtMS791/jQ2D5eSD1oaz+Hlx6Fh+9CnZR5BS+QFybR0c4J126elXeDmT3+SdthBevdd82mNQcuoMi2D9kvo90Jp9T235W9uti+bl4CgW24zLa0yUYJkWjY3l+4PXvjZd6yeNhtVQ/PwMB94lB9rN90kbb21dO650rbbSiNHtv6Olz4t335b2n576fzzS7/vhZ8n7QXLl0vbbSe99lrLe0EyLceOlX78Y3fLlrxlWnoNWoaVafnKK/ltfdll7qaPglml1i7T0m6fSDLTMs1BSz8Zc37cf7+01VbSww+Xvh9G8/BcTvrtb6Wjjy79zE/Qcs0a52MsKL9By4kT8/Ww884rff+aa6RttpFefDH/98yZ0h57SMcc4/2mPEimpZt168SsH1urZaQh01Iq/V3/+1/+2lJepvLr2zbb5LdT+XLMHhj72f/MMi291OPi7tPSeL3t1KnltVWmpZc+Lc0exJuJKtPSS9DSyzayqvuG+XDYSVNT/ry7xx6l+7Px8/Ly7LJLvi65zTbSFVf4W66b81TWMy2N3z3nnPw6M5uX1zK46S7CidVx0NwsHXectNtu0rRppZ+Vr69ttmn9/XnzpAEDpMMP91YnC7tPS8PD8Fqah0uS2jhPgqpgNoKgW1FmWhZOAp9/Ll17bf71/vvnm4KXnyCMzYGjyrR0ukA4ZcvFmWlZXmGyuxhFkWlpV/F3CqA1Nwd7cpvLlQYtjU/Nnfi5CLt5ahg04O21LEkMxOO1AuIlWH7WWfn/P/44//+HH7b+jpugZWG+u+ySfz1pknTaaVLfvvFmWkrSBx9Ie+5pHWj2UmE64ABvy44r09Is49ntfjJgQP7/Dz+Uzj5b6tLF3ffC5KZPSz+jh8edaemUKeRWkOx+K34y5vyskyFD8v8fe2zp+14zLc2Cls8/L917b+vv+LmRMXvgF3amZfn8Cst0Cq78+c/5/99/Px+k/fGP8/tt4WZ24MD8PH7zG+n11/PvHXhgy7qXwgtaJpVpmWTQ0vj7jFk6xvf33tt8fuXXE2OXSsblOGWQBenTMq3Nw8sfRJUPxOM109KsbuA1cSPMTMs0NQ8POwDz4IPSY4/lX//mN9KYMaWfmwUtpfyDFkn66CPpjDOkbt28LdfPQ+uwMy3dZAq6KadV0LLw9yefSNdd5zxvK3FmWj76qPTQQ/nXxx+ff4hT4Ob8f+aZ+QfmkvT3v+eDtW6EnWnZoUOx/kmmZR6ZlsiLOtPSTdDSrN/FwnfmzWt5rxCMsns6FVWmpddsubCz58p5+Z12Fy4vT1bdMrvZN5un1c2hl6BleYA0lyutkHsJdrj9vWa/IcjTZTfNCt0IO9PSS2AxzAcefva7hgbn75ltq8K+GrRPS69BS6dpg/ZpGVampVmQxsju3FL+pNtsejfiblJWYNU8POjo4WnItPSzHaLItAx63MQ9EI9Z3eOzz8zn7We9m+0HcWVaetm+s2fn/zcr79ixLa8LD5oKnJbhNkvMT/awm/OIMRDQxiS3w7gtksy0NN7wunmg7nR9K8w7ykzLNDcPtxuIx2uflmZ1A5qH54U9evinn7a8Np53CqyClkbffee9PFEFLd308Vz4jln9qpxVOc32Navt+O235vP2myDkJvPaidl1WyrdH159tfQzN/veuHEtrydNcl+eoAPxlK9LQ72STMs8gpbIi6NPSzfNNq2eDppVHO1upKPKtAyaLef3xsNqHXvJtLQrW+EzsyYufitOdk8A3fRp6aXSVR5YKM+0NHaq7sRPwNvqabNRlJmWZt8rv8j5DVraBVK8bCM33zfy0wenl+bhRoXKQRTNw4MELYMGseyW7WYfCCPTcupU6/l6EUVzYTe8Zlq6DVqmIdPSzzoN64GHkZ+yhRnEczsQj12mpdWxmrWgpZ/zldf9KKxMS79N771wCkqafR7GtnITtLS74TWbn9P1JI5MS7fX/PK/42gebjcQTxiZlm6OEzf1nrCbh0eRaRnkAb7bZReY3R8auQlaLl/uvTx+gpZussPddHtR+NusfmVkNwirm9ZihfftmmK7YXVvH0Wmpd3x4ac5vVtBm4eXMzQPJ9Myj6Al8tLSp6XVza9ZU2O7Ck5cmZZOlTsvFQe7JsxW5XRbfqfMxcJrN8Fht4JkWjY3ewv4li+ruTmZPi2DVNSCBADNyhJWpqXddvTSJMiM20xLtzfFfgfiKbwXtHl40H4D48y0dLN/hdGn5TfftJ6vn0phUkFLs4cv5Te4bgfiSVufllnOtDTOO66BeKyyQ7wGLZ3WS9CBidwon1+QoKXTebN8/brNhrf6u3z5Tu8ZhRG0jDvT0mreXjItcznnh3Jug5Zuec20tApsSMlmWpr1aVn+fTeZlm7KHFWmpd28vGRaWv2GODItrYQRtDR2L+ZWVJmWbq4ZhWmcgpZm5bLLcvSaaOP3XjuMTMswBuIx47du4aeOZTe4L0HLVghaIi+to4cXTgJmgRO7E31cmZblN7RBMi3tsgHdVhTsvm93gS28Nrv4+6042QW74s60DBI4smK2/oJU1NLaPNwuYzbKTEs/lXerjAgjs99emH8UzcO9VNCD9GnpZn5GYWZa2t0gFSrVPXpYT++mfGnNtKypkdq3b/nM7ubWKdPSanuHEQTJWtDSy3Lc3FjYlSWM5uFWDxiykmlZeDDs5Xzl97wZZaZl2EFLpwe5cYwe7qZ5uJt16rZ5uNn6D9o8vKnJeR5J9mnpdfTw8rI6BeZzufCahyc5EE+SmZZWwgha+klycHOeCqt5uNX2NHsoXM5q29g9mLP622n6MMrgVlRBS7/L8POA0m79MRBPKwQtkZeGPi0l6xObWVDKrhIRV6alWbmMvFwA7E6OfjIt/TQPDyvT0i7zpHyeZvM3q+B5ybQMErQMkmmZpubhcWRaen0qW87tE30vQUs3lQSrdR120DLouTRopqXdevOSaWl2g2dktR6WL5cWLMi/3mgjb8su3+/SFrQsnN/atbPPoPSSaWm1vcMIgvjJZjTj5Rj38lCtXNjNw+3mF3QgnvJBPJyW67Re4si0DLN5uNcbQa9BS6vfnlSmpbE8Wcq0TLJ5uNl1t1xa+7Q0y7R0enDnt3l4VJmWdusr7oF4wu7T0q6JreQuaFk+KJUbbjKSo8q0LCyLTEv370vRNg/306el3TFuzLQMei9QIQhaIi8tmZZWgcjybK/Vq+0rEVFlWnoNWnq5kLvNOnM7v/Lp7CoxhfmE1aelXaCrfJ5hNA832z+MXQrEFbQM8nQ5rKBlks3Dw8y09JM57aZ5eC4nLVtmviyvlWmnG4Ogfb1lJdPSTdOljTduPV875TcRaQpaGm9w27cvvX7a7QN+My3D+O1pzrQM2q2CmyCK3QMJqw79y1md57PYp2V5GYIELYP2Bez0uZdMS6d5Z6V5uFn9rPz9uJqHx5VpaXfujLNPy5qa0i4/zDItnYJRldo83Oqexkt9PexMS7smtm6XF0ampdn2LV+3YWVaFr7jJtMySNAyqkzLKPu0tCuDm2MqzObhQYKWhv2aTMs8gpbIs7vpchJHn5blN46LFyfTp2X5Ms36UvTyt9vPosi0NKsIh5VpadekuHyeQZuHm90wLlnSehq3/GQHuWnq4DVzyEuF1Wxb2gUtvWxTL5mWYQYtjZ+53X5umoc3N7euoEaVaRk0aBllpqWbc59VxdJtpqUxaOk107J8G6Vp9PDyTEvj9dNt8/CsZlpGEbQMq2x27B4AeB2Ix+wm0+rc4edGxqys1ZxpmWTz8DRnWnoZiKe5ObxMS7eCZloalxtH83Djgyhj2d1kWjplXoaZaZnkQDxWx2YYzcPXW8/6O3acmoe7qddFFbSMavTwwv40fbpzOYM0Dw8r09JL4NQtr0FLtwHLtAQtDZ/Rp2UeQUvkBWkeHmampdvm4YsX2wcIwsy0fPVVqW9f6eSTgzcP9/IEs2D4cOnxx80/8xKcdZNpGVaflkEzLc3Ka7V+nJZVvry5c6Vtt5V23dX8u3br9MknpT59pL/8JfxMSy+VzL//XerdW7r77tLlG1/H0aell0xiM24rx2FnWpZXUP3efJcva/ZsabvtpHnzvM1vvfWkK68079Pyb38r3dZeBB2Ix22mpZssgKBBy6QyLY37f+GG2dinpVOmpVXQ0kumpXEet96a3x9uv9257O+8I/Xrl7/+7rVX68+jbh4eJGh53nn58/TcuaXvf/ihtMkm0tNPuy+HZH/jWqj/XHhh/vz+xBPemofbZVp+8EG+vIcf7u46YVXWIBkpo0blzzHXXdfyXphBy7AzLd0GQOyCljfdlD9O7rqr9PMw+rR0k2mZy0m/+lX+3LDuutLzz+c/mzxZ+vGPpUMP9fageuTI/L75r3+1vBd2pmWhPE5d8/gdPdxpuyfdPNz4IKo8aBlGpqWbY8vtfcxll+WP6UcfNf+8vLyTJuXPQ0cc0fqzMPq0LP/Or38t7buv+YM4q331Rz+yXq4dp+bhWQtauskgb2qSvv3W3SBobgOGI0ZIxx9vv9xyfu+13SR6OPHaPNzNflD+ewvzuuaa/PXk/vutvxtG0PKSS1rO84ayELTMI2iJvCDNw92ctII2Dy8PLi1aFF+m5V575Z9m3X239MknpZ95HYjHa6blggXSDTdYf8fLTaHfoKWfyqFTINEp09KpvF6WJZXuG6edlr/xffPN/IXIrmzlfv5zadasfIXReBGxetps5LV5uF2TrLPPlubMyQfSreZjF1gKq3l40ExLt5mpbitGbvu0DCvT0uz3fvCB9Mc/5l+7Lffs2dKf/9x6fvX10u9/b72tnRj3AT8B5kL5nW7YrM57s2e3vNe3b+vP7aQlaGnc/7t3z//f1NRyMxZHn5bG337GGfn94bTTHIuue++Vpk3Lvy70LWpVNre8fMdvFkbBhx9KZ55Z+t5BB0lffVX6npsgil2lv6Ymv09femn+/P6LX4QXtJw3L1/eZ55pCVw5rZewMy2HDs0fi+ec0/Je+fHkZyCewrRpGoin8N2zzsofJ6ecUvq516ClWdcBxvJZDcQzeXL+xjOXy+8Dt96a/+znP5e+/FJ69lnrgJPU+jdfckl+3zTykmnppXm42TksaPNwN/OwS0SIo3l4+YOownllzRrvmZZm19swMy3/8pf8MX3MMc7zkaQbb8yfh55+Ov9QxiiM5uFm33n5Zenaa1u/b3UMGh9seuGUaenmmPfTp6Wb81SUmZbl5wMrVnWS8nledZXzcp3mbcWqJVmcmZZu9oPy81RhGeeem7+eDBnibf5eg5YjR+a3669+VfJZLUFLSQQtUZDWTEsvzcPj6NOy/Ebaa/Nwr5mWhewHL98x+8ypeXjagpZRZlq+/nrL688/ty+bHeNFxM1TQ6/Nw72Uxew7WRiIJ+xMSzdBS7tMy6DNwwvefbd0vn4FbRJt9yAnzExLq/O2MQjXqZO3ZacxaNmtW8vrwgOr8kxLuyaOxqCl30xLL4z9+oY137gyLQsmTiz92+xGLWiflpLzPi1ZZ6g4DTxX8N131vM2CjvT0kz5byjsz3E0D3fa74IELcNuHm5WVuN7VpmWy5eXvlc4j3z2Wct7doNouNneXjItm5v9Nw8PK9My7c3DjZmWUkv5w8q09Jq4YbUvew1+ljPug1I0A/EU/O9/rd8LO9Oy0pqHu820dLq+S+b3flbXMTNO0/oNWkaZaWnFT9BScl/GsJuHGzMtGYhHEkFLFESdaWkWhHIzTeHv8ozGpPq0LL84eh2Ix2umpVOzBy+/0+4CW3gdVvNwpz4t3TQPd9uvktOypNKLlTEQ3LFj62ndrlNjRSiM5uFBgpZRNg9PaiAe42dubzQbGtzdEFtlWgZtHl5QqEwFDbR5abZlxvh7/ASY3fZpaXVuMZa/bduW9eInaJmGPi3NgpblfVranWf99mnpt9N6r8GhMOZpFEbQ0m1LDid2N67Nze6yjayCOm6Dll26tCzPThKjhxf28ziah3vNtLT67VZBS7t1FUY2vZvm4eXL8RqIDjtoGaR5eFiZlk77cNLNw42ZllKwoKXZPhxWpqWbc43d+lm6tPRvL5mWXoNXhUx/o7AzLZ0G4okqaOnmHiWsTEuz/ckpqcXuu2bvm7G65lnN22k+fspgxWoAPav6gHG9brml+TTl5ampcb+eowxarlmTXB04RQhaIi/qTEu3TxnLb9rsMi3NnjyZvbbjtSJWfjIMs09Ls/XjdDPmJdPS7kagMK1TUyi3vGRaWmUyRJVpaXw6aRwh0q48Zrw2D/cTwHJTCSqfrlIyLf0ez24yWsPKtLQqv7FZWRDl3y8f9dzIbF+22+ZutlXQTEvjMdK2rbcbzjRmWhaahxu1b++vebifTEuvTYSCVJitRBG0dFlxD8Ru3eVy7jIt/TQPN3IbtIxy9HCrm1A/QcvCOktqIB6ruoNdBlIYD6acMi1zudbb0GvTQTfb22vz8LAyLd0KmmlpF7QMej0wu6aVZ1oWHjKF0Tw8zUHLKDMtwwxaWt0P+clcL5emTEs354qmJnfBtJoa79vMyOmBvtvrs9X9elKZlmbdekitH9DU1LS+B7Ja736Cll4e2Lq5161wBC2RFyTT0m3Q0s18y08GXpqHx5FpWX7xC7NPS7ubJC/fsZrOrmx2QUs/lcM0D8Rj3IZBMi3NfkOQTEurG7ByZtlYUWZaehmIJ6pMSy/7oFMziubm1v0XmWUGuhF3pqVdxdqsLHaZlm62VdA+LY3lN2Ykutn/yrdRUkHLwv7fpk1pE/cCp9HDjX87DcTjlGnptdIaRaall3OH3xsao7C2e5iZlmbHg5tzRyHwkmSmZeHYLZ9fYd/yEtQL+2FPgdsHLFaZlnbHSVzNw9OWaWlWJqtlOmWQ+Wke7uYewC4RIe7RwyX7TEunoHSUzcODBi2XLCn9O4qBeArMAjx+m4d7OQ8YZS1o6aZ5eHmmpdlDa6dyesm0DBq0jCLTMkjQsnCMl3MTtLTq/zSMPi3Ly2JE0JKgJb4XJNPS7dNDP5mWhe96HYgnqkzL8vKF2ael26CVl8+N09mVpfCZ2UUg6kxLq0wGt0EWr0FLoyCZlmbfccq09HqTYlZus0pgVjMt3R4PYQYt7TIt09483K6zeLOyB20e7jbT0upms5IyLTt3Nu8+w+/o4WbrwCnTMg1ByygyLd0+vLASRvNwL5mWfpuHu80uCTPTsryshXlnqXl42oKWxvJYDcRTvg29BqLDzrQ028etymOWaZlE83CzLPWogpaNjdZ9WpplWpbvY06BPzetQCR39zFJNg/3k7XnVH8o6NHDeh52/DwEKpfkQDxOD4XN5l2eaWmWgFH4XpCgpdU5wVgON6yCllFkWrppHu42aCmZJ02ZCbt5ePlnbrpCq3AELZEXR6alm+msAjJmfVraneijyrQsryyE2Tw87EzL8uw7N5mWZif7Ssi0NJufFF7Q0m1zC683KWbTOwUt3WRaevmNUY4e7jZY4eVG002mZVijh0cdtCz/3VaVJasbIrtt7iXT0ummw2umpZ+gZdJ9WnbqZJ5V5WX08KCZll4rrV6DBGHM0yiMoGVYwWq7G/0wMi3ddJTv9mYxaKalsezl5SrM2+qGyE/QMuqBeKymz1KmZRTNw71kWroJdFnt32FkWobdPDzsoOXq1S3lKwQ0Cudrs0zL8nNxlpqHl2daemkeblUvt/vOwoWlf1vtq077ldXnTvcKbup1S5YEr78mmWlpF7QMEjCMKtMyjObhVtwELb00DzeLP5hxs93cfMfqu2RaErTE99KSaWkWkDGrhDo1D48q09IuaOkm6Og1o8RpnXlpHm53gbULWvqpHDrdXDtlWppVEq3K4fZG3myfKL/Qr1njP2jpZlvY3VgECVpG2Tzc6kLpJbBsxW2wwsuNtJt+u7xkWtptM6vyx9083Go5cWVaWlVIywfiiTLT0m47rVxp3/zL7rvGTEuzAIWXTEu74KYUf6aln/3TbdaM2bRW0pBp6SZoaRV0dJtp6TZoaZdpafaAwm4blF8vCr+zvAyrVrUOrFgNdFCQxkxLs4fcRmFk0xvfi6J5+Jo14Qct3QTV3TYPd8u4bhoa3D/ULezjboKWfh5mma1f4z5jNnq4U6Zl2pqH203jJ9Oy8Pv8ZFp+8435vMp5be5b4LS/ujk/5XL2fYabiSpoaTZN+W9wm2lptt95ybS0OieUz6uc2wfbQR4+OF2f7MpkF7QsV368FOqSTU3Ox2uImZY1ZFoStMT30pxp6SdoGVamZfl87JqHuwk6eW0eHmampV1ZCq/T0qdl//7SBx+Uvhck07J8mQXGTMu775a6dpX+9Cd38zMya1LgtgwFZt83m95skAHjtrWqzIfZp2Vzs7TvvvblcMNtsCLsPi3dZlqOGyf94AfSYYd5y4QOayCe8t9iFXj7f/a+PMyOolz/PcvMZCMJISQhISSBhE0gYQs7KFsgcBGBK3IVkR+goigaVOCCIriACApu4BVR71UEFcQt7BB2ZN/DviQEsidkI5mZc87vj56aU12nlq+qq/v0man3eeaZc/p0V1dX1/rW+32f6j66PpHyPEl9WmZlHv7oo8BmmwH779943jXXRGZnG28MHHdc47Xf/37U7i+7TJ62yTzc5NPSp9Iyb+bh3/lOVHY//nGy9HXzA1+kpc9APK7m4VSFi0ppuWQJsNVWwJQpwKJF0fHLL4/eAQ++PMTxQmUeDkR9PV8OMkKOh6vSstXNw/ljVPNwqtLyzjuBkSOB++83583GPNxGaZmGefgnPgEceqj+/EolIo4+9KHIv+Ebb9R/E31aVipReqNG0cqK4Z57ojF97tz4cX6eIyotZZvZJqWljCjKQmlZqQAHHBCNaypYKi2LP/hB1Mf88IdupOVbb8W/q9qgLQnF4ENpCdj7taSQ+z5Iy7POAsaPb7wXv16W+dtmaatIS5uNaxul5de+BgwbFs29VOfZ5EGFLHxa/upXwEEHxc9ZsQJYsCAKHLXddnESU0QS0jIoLRsQSMuACHlWWlarjY119erG9NJQWooTE3Fw53+nkJa6MqAq7Wx+59PWqT7Z52b4tFSl//jj8e9pkJZ8mqedpo86qoPK/FyErWqPqrSUKVd9kZayMrnnHmDOHH0+KGgGaSnbUVcphg4+OJqQ/OMfwL//LU9LBl9Ky6SkpW0gHurEkurTMol5uOodyXDsscDSpdHi9YYb4r/98pf1crzxRmD+/Pjv550X1XHZZgVPPgwcqCYtXaKHy8pAtbhKS2npqipn+Na3orKbNct8rg6iqkr8zQfSDsRj49PSVWn5pS9FqqU336yTEl/7mn7cUiktZeW6dm38OJW0pAZ4YTA9P/X8PJCWvpWWhxzSSCqp4Ns8nD2XiYxxMQ8HgMce059fqUT1eu7cqJ/mN65FpSUA3HFHRCAccAAtP0C02SobR/k6k5bS0pa0VNV73RznxhuB++7T30NUjhnG89I3vxn1Md/4hpq01LXphQv19wOAb37TXWlpmttQScu8KC3F7z/6kfwavt9XkZYyQYWL0tKGtLz88mhtfNppjekwUNxFmJDEp6WN0lLEypXA5z4HzJsHvPIKcNFFjekzeFRaBtISkMzAA/oldOZtJmShtBTJQ1mHp1qgl8vqDtfUoYidhDjx4/ObN6WlmLZugNWZhzdDaSmDqv4kIS197Pax65tpHp6m0lKWB9Ui2bYcdefz+bVZaFLMw1WLMt19li5tPKaqk75IS/Fdp620VJGPtubhPpSWFJ9wDO+8U/8smqKJ/cPy5Y2qBRVE80SedGTo6NBv+vFpmJSWpveYB/Nwm/mBTd9ua37GIw3zcBmSkpbUxaKKtLz33vp3kXxXQexDdEpLkbSUkfQ88moe7pO0dDUPpwTiSTrv4C1F8q60pKBabey/GWSkJUPScgTkSktd9HBbn5bUjW3XzVqG994znyOSlrL3rYLqGahzOfH78ccDEycC55/vzzzcVWmZdO1LGdNdzcNl987CPFy1kSH+boJsjpgWaamCi09LGVauBJ57rv6dKYlTVFq+u+eeGDVqlD6tfoCgtAyIkMQ83KfSUraDKNs5lw1CKqWlbuJtq7QU88cPGjbKJWpebBUJqt9kk06qebiLGiepT0sZkiotdVH7ZISUDagTUh/m4eIiVBxkfSstZXmQkTcsLzZohtJS1hdRFt82EX3TIi1VES75d33kkfUJWVpKS5MqzYfSUld/dRAXZCLBbmMCRiEt29uj96165+IGmuw4g0nN4DsQj0vfnjVp6UtpaQrEk9Q8nLIwpm6SqczDecXS2LHq6/n0qT4tgah+2SgtWZmZFtni4tK2XppIS75d5lVpSYkabINSyU5pmYSUd82nLWmpU1+xsUM190gKfpxg5cqbh4ttPq1APPy1afXPpverS0M19lPncuL3b34TuOSS+jjqAtkmEo+sSMs0lJa6vo9iHq5TWlLGZ5PS0tWqkcoJ6JCWebgpXytXxtNi/URKPi1rY8fisXPOQW2vvfRp9QME0jIgQhLzcJ9KSxnh0NlJ27VWqYqSkJZJlZY6opCSH9P5VBJURqrJ1HmtqLSUOVA33VM8JvrcsQV11zANpaXos8Y3aSnLgy44jw18kZZ8G6eYh6vagm/Sshk+Lcvl+sLONhCPavJsWhRQyrNcrpeLb9KSb/ciaUlVq8rA57NUkm/qsMmvipAV02CgblLwx/NmHp70/vx5qnOTLmwY+oJ5OA+d6oJP39Y8XLYYU4GdSyk7Hr6Vlnz7zytp6Vtp2dYWfz+mMrUh1U3KNVfzcBN0z6BTWvqALhCPbFPDZB5usyklgpWDy9zbRQRA8c3IIG6csnRclZb8+/RFWorzplYjLXXzNv54HpWWqnqQpdIyC/NwcUMbSE9pmdZGTQsikJYBEfKitJSZvsr8jNgoLXUTp6zNw20XkUmUluJ5urR15uEui0Ybn5Y+lZZDhqivl+3is3yoTJKooJpP2SotXUhL9rkZpKXPDQ9Ve5aBn7CZyAOd0lK3qLBZdDbTPLxclu/8+lRaUqOHs3fBCMu0lJbDhtU/i/7gqGpVGahKS/Y7oC7DYtG8OWhSWvZH83BKHpOah9dqNKWlarHn2zxcpbTUfeehU1ramIebSCeWT+omBoMtaal6VpYOn89qNdvo4dRAPL5JS9GXrum5KM+tUhK7Egw+lZZZkpaieTjQSITZKi0Be/IszU0lPv9U4gmI3KvIzrUxKVdt5Jn6cdXvYvqqjRoTsiAtTWtX8Rpd35eUtPShtKT21bIxoJlKyyTm4StWxNOSiQQYPCgtU+vzWhChJAIiZKG0pHSQMtJSVM4A8o5f1dHnibT0rbRMYh5OJS3zorT0QVrKTKuB5EpLqnm4bSAeinl4d7fcPFxsIz7Nw1WLwrSUlqYFF28aQ1FaqpQFtkpLVf75CKdJQCUtRUWjbBJF6VtU5IItaSmWJ5sgsnJxUSXr6gAfPdlGaWkzoaQqLVV1q1jUbw7K6qWYD1vSMolS35SmzYLHBB1pSUkjafRwW6WlbJGZtk9LkYzX9XMUpaVqM8rFPFw31vDnyfInA3UelFelZa1GMw/3qbT0aR5uo7TUPYOtQki3ThCjh/uGTGmps+CwDcQjO0cFk7qNcq0J/Dhoo7RUkZbUDWjxu43S0tQPMOSZtLQ1D0+qtJRtBNi4H1CJIFT5U6WZpdJSBap5uAmi0jIt8/CgtGxAIC0DIgSlpRzixEQ836dPS5fzqbubsvKXLT59+bT0ET2cmg/+XhttpL6+u7sxXzkyDy+krbR0KXPVub6UltT6a6O0TOLTMm9KS1fzcIrS0kYZnlRpyfrgtJSWKtKyVtOTlqb3Y6O0NJmHm5SWFALft0/LJItiyrU+SEtfSNs83NTvAOpNABEy0lK0BtCRpDqlpc48XPRpaTIPZ2mZSEvTdxEm0kw8L2vSks9PEvPwJEqjtrZGX546JAnEo5vfqO6r6i91aKbSkvdp6UNpaaOkF5GF0pIfB23EFS7m4VSlpSt8KS2Trn0pRLUv83Abn5aq8qfUL1WfoMqfDWmZltIyqXm4qR6IPi3TMg8PSssGhJIIiGCrtFy3Tr9jL4LaQS1e3HhMRlqaOn7+Xkl8WvKO72WwUVquWuWftNT9LqrvKISESmnZ1QW8+mqdEJCpX3mYFtdpKS0HD9bfU8wXKwMf5uGU+q0zTfVFWqrMOfLm09JkUu9qHp6WT8s1a6Kyr9XqfZKJtMyzT0uefFqzRn6OL5+WOmJv5cqobzFN7l1IS9lCnU04+TFMBRulpco8nJ946jYHdXWlszNqczZKy9Wr0yUtqRFOKahUaHlRjTusvenGJR+BeFTtBKCVx4YNETliKhdZvXzjjfh30/Mw2JqH88/hah5uIilNz09VZsrMw32TlqZxmWoeLht3kpqH2ygtbdqrTT5V70bs7yjIm09LvnyXLYuf76K0pJJnTFWdR6Wlag7rQ2lpQl8wD89aaSkj4VSb0arrAf9KS90GBRWq61V58ElaZqm0DKRlL0JJBESwUVrOnRtFrtxyy2hw9am0vOWWxmNU83DfSstZs4DPflb9O0APxPOb3wAjRgAvvqhPz6d5uEhkUQYu2aRg6VJg4kRg662BzTYDdtwRGD4cuPRS9b0pi2sbM0M+vyLYZHPAAP2urWwxw9L0YR5OeY7p04E//UmdhgiKeXjapKVqcSuDzaTPxnTV1Mfwu8w2ATHE77rJ7de/DowfD0yZAowcCfztb/oJpew+thBJS0r0cF5paQrE09UF7LQTMHo08OCD/pWWrDxVSsvZs4ExY6K+ZcqUeL3yQVrKlPsLFkT32mwz4Mkn1WmK90xbaal7vvvvj/L70EP6/DJ8+9uRn88779Sfl0TJY+MjzwSK0vKSS6JxR4WvfCX6/Xvfk//uQ2k5fTrwyCPuCpGTT47eo2keQCEtdZszFKWlajMqDfNwW6UlhQDi0+EXoNVq883DZfUJsA9YpEMagXh0SkseFJGDi9JSRxiwe6oW8EkJEJNPyzPOUJ8P+DUPHzsW+Mc/kivRdNApLXX3Fc3DAfP8N22lZV8zD8/Kp2WrKy2TkJZtbeoYDrakZfBpmRlCSQREsFFafuYzEVn5zjvA97/vV2kpg+jLCbDzaemqtPzxj815o5qH/7//Ryd3dd9F2JCWqt1z0Tx8xIj4eU8/Dbz7bvR53Trg+eeja84+W31f2cRGBNVUTsyvCGbWM3CgvnOXkZYsD0uW0PKgAmWgYzj+ePlxV6Wl6NOSXSOSd3lTWtqoiE2T/a23rn/mF/OqTQeVksd0n6VLgddfj8r26KPVz6tTM9lAfNerV5sXQzaBeG64ISJQ1q0DDjxQTaTZkpZiHVSRln/+c/19vfUWcN999fRsiA5eYW0iLf/yl+heq1YBxxyjTlO8p0ppKT6basFfKul9wZnq3urVjSSrqv5deKGdisIGNkpLn6TluefqCY0rr4x+P/98+Tk+AvEAwBFHJGvX778PfPWr+nOoSkvKoi1JIJ7996fls9mkpai09BmIR9ZGKObhss0zsZySLNrb2+NEBZsnq9JMSlraEgSuSkvZffgNnyxISzF6uAxpKi0B4Kij3PoZajnwFmw6M2cxPdXcnmo1I373QciYlJa2Zvmu95VdT/Ftm1RpWSjofTQmIS1N471pg0PlUkU3flFhEg2IEOfJru7QVq9uTAtwU1rq7sfPHQMABNIygMFGafn66/XP777rV2kpg2yQzMqnpQm2gXhMsDUf0qUvTjxUxAKfRqEQKa5mzTLnVYVFi+pEhM5Rso2Jgu48Xs2lu5/Mp6XNAtyUt6S7hiZFBwPvewlQT5ZVBC1/jmu++An+0UfXlY42ZeC6y9vWBsyZA3zrW8CJJwK/+hWwxx7133nS8nOfAy67DLj6amCfferHVSo+m0UFnz8ROr9xNpCRbrK66mIeXqvVzV2BaBKpmoCaCDYV2WkyDxcX9qxuy8qN2kb5TS5Z+fEQ3ZHo1I8q5RA7Rokezo+zNkpLFdKa9FOuyZq0TAofgXiAaD5CLTd+M0WFL30JOO884NBD68dkeZUpLVVlxuddHC90fZNIWm65JXDzzcB++8nvQzUPtw3EQyH3+GOuPi3POUefD8q9bZSWVDKWgrY2YIst6t+ZtUiSdqSyEHAxD3f1aalKi0FFciXtP/g2xwggneAhqU/LI4805ylJ/2wCXz915Jv47mXWHqb5b9pKSzF9UYWeldKSoq6VrYWTKi0HDFC3C9mGg83ay2RZYSJuVRvf69alp7RU9QW+SEvRuk3n09KUnq7fYvkNSstehJIIAADUbJSWovPvtJWWLqSlaVLJkDfSUjW4UM9XXavbbRPNw7fdVm/6bQJvar3llurzbJWWpt2zcllPWup8Wiad8FLNw01piKAqLcVrajV/pKXJPPyKK4DNN7dPl3Iuuzefhx/+EDjggEhN9r//C5x6anzRyi8+2tuBs86KyEt+4HdVWoowqVp8m4erjrkG4hkwIH5MNeEUj9tGD1cpLVVmXRQ1girf/LUm0tJ0D4rSUvS1piMtkygtZUja5yQhSn36tExKWlKiiPowD+fPp+CnPwWuuUZ/zujRwHe/Cxx+eP2YjLQUy7uzk7aQTBqI56MfBS66SH4flXm4aVHuQ2mpmuNVqzTScrPNgIsv1udDdW+K0jIL8/BJk+rf2bwrCRHg0zzcRWmpUnRSSMukBAiPtJSW/Dk//KE5H2luZPF1UfO+C2K5qkjLZiotW8k8HDD3hxTSkldaDhyoHgNla3QXpaWreTgre7F+rF2bzppJlgcxL0By0pJHWj4t2TwgKC17EUjLgAi6xZQIvgFRFxtUclMGGWkpu2czlJaVSn2AoSrldLBVWup+F5WWqrRF83D+vwv4oDY60jJrpaXOPNyHyieNXUNZvkwTslotOqabGPk0Dx882C4qtC5d1Tky/zE8+DbOT/j4eszXjbSVlmyykVTBK3v/JkKDjyprCsQjmhRRNjbEdGW/s3yzvKqUlmmQlnx+fJOWOqWlyTw8DaVlGupu6jWURXpWSktKOzORljYqOGpeCwXzWMp+5+sWpR/asEH93HzeVebhqn5dFhVV9QxpBeKhkHt8mi5KS1NkdAYblSf/u8o83MaqSYf2dmDUqLqJuA+lpYq01JFSvpWWKvNw2WfxWl+Q+bQU4eLTkq/XlLJJU2lpssLoQQNpqfJpmSelZVakJaVfM1nGyNKhmIfbKC2p8zoZkiotWT+YhtJSR+jKoLJIolzLQ3yWtHxa9lxbC0rLXoSSCIigW0yJyIPSUgZVR58kejgFzPwqyaJNdb6pzKgTBRvzcPafol6RwVZpaaPGkYEnLW19Wroq7GzyR4Wr0lIWpVS2aEuTtGR1JQvSUtaeVZEA+TrM1w3VZDNv5uEy2CgtTQsTqtLS1jycKWZEpaVYT8R0fJGWbEEpmsaa0N+Uli59lmoR46Iy4K8lTN6VoATf0p3D11UGm0W4ChS1mYy0pD4PRf1io7QUzcNNpGVagXhsSUtT9HD+et+kpa15uI1Vkw5sk3bixOj7W29Fz+nDPNxERPDPoLqfz+jhFKWl7QaVDrLo4SJMSkvZuxVJS9McOw9KS4pPS5PSUrdBl4VPy7wpLW3caeiIOTa/GTBAH1mdsvZToS8pLX2Zh4tIS2nJEJSWvWhp0vLnP/85Jk6ciAEDBmCPPfbAo48+qjz3V7/6Ffbbbz9svPHG2HjjjXHwwQdrz+93SGIeTml0WZCWfIeUldISqA+QPszDfSotRdKSstumInlskLXSkmoervNp6YNc8mFiLoJCWsomyybS0qZeqswIgai8+V3epGSo6t4y9Q8PVRvn6wNFaWlLHJmUlmmQlialpU0gnjSVlrxqxod5uO7diPlmkVFtF7K6xYRKOSSSTqoFmriI90FaJt0oSaLu9ElampSWprKhkHy2SksbklyFQsG84JAFGMlCaemDtKQG4rH1aUk5X9zI4jdEVOM8n1cqaelqHq5SWtpYNenAiDVGWn7wQeSjN0mf4FNpWSz6U1pSSEudutYWWSktTaQl9V3KSHkTXJWWqvZgo0x3VVrqTKB5tBppqSN1qUpLHWmpyqeNqtBVacnKXjzug7TUlY0MaZGWuvv6IC2D0rIXLVsSN9xwA2bNmoULLrgATz75JKZOnYoZM2ZgsehYvwdz5szBCSecgHvuuQcPP/wwxo8fj0MPPRQLFizIOOc5hY3JiqhYou7WuHZQeVdapklamq5X5V887kJauu7u8EpL3ueSCJWKS4U0zMNZvUy6+GfpJ4FpYcZAMQ/PSmk5aFBclZuF0tKGtFSZlakmjWJZmiYLJvVvs5SWMnMVWZ9gUnZTlZaydPiypJqHM+VAUqWlK2npQ2mpWqCJi1TdQoWKvJOWNip6im8n6u+y/s02EI8uP9Ryy7PSUvZuZD4txbzJ0rI1DzeVH4UAUrXNSkXtu5pPm0payu5vUlrKlLvs3r5IS3ZfRloC0YZxGubhLqpjVX+pg2qdQDEP10WMt4UPpaXsOUTXNabyob5L/h1Q+g6ArLQk5cHWPNxVaUklzptFWpreueqYq9KSSlrK5n6q/IowkZamvkJlHr52bfL5S1KlpWxcc+k/2TVBaZk6Wpa0/NGPfoTTTjsNJ598MrbffntcffXVGDRoEK699lrp+X/4wx/whS98AdOmTcO2226La665BtVqFXfddVfGOc8pWkVpufHG6vPWrYsiV7N8MVCVlsuXA6tX2+ePDRwmMyIKVIML9XzVcerARZkcqrB2LbBsWZ203GgjYJNN1OfbKi1NBBGFtBQntlTSnYJmKS1lZo1ZkZaDB0f/VUrLri7gvffq3+fPt3vvq1ZF/02kJcU83MWnpWlhayLSfbgdEGGjtOTbvWyCbSITliyJIoyL11KUlnxZikpL1eLYl3k4CxbQDJ+Wqs2hNJSWfcU83ERayoh6HmKbUKncdPcXf7dR9qpg49MyK6WluKEyaFD9N1uflkuXAu+/33zzcL5tyjYnFyyoP5cLaanbTLYNxOPLpyW7rxiMJw3SUswnNRBPX1ZaysZT/phJdedTaVmpRPOszk46Qbd2bX1upqnfDUpLGbJSWqrgi7S0bY9JlJbr1kXKaEBePqp5GwMfiM3Vp6WrcIDHypXx8VmltOzL5uGqjVxAvu6eN0/d18oQlJa9sBi184POzk488cQTOPfcc3uPFYtFHHzwwXj44YdJaaxbtw5dXV0YMWKE9PcNGzZgA9cQV/Usnru6utBl6/esBdBdrYINz9VKBRXNM5aLRRS4c6tdXcaKVKtWUSGcJ712+fLe+9WGD0dBFr0OAO69F7Vx41D5179Q6OoCGwqrpZKSne991pdeQnn6dKCtDd3PPw+MGQPNdCWGrtWro465s7PhGpY+Oa0NG2IDbKGzU1tmynfV3R27Z61aRUVIq7uzE7WuLmDDhvq7B3rTK5dKMEyp6m1h2TKUt98eWLMGhZ5jtYkTUalWlfnvWr8e6OpCsbsblGlLpbsbVclipq1noKj2TAJV77p7wwYUVq2K3avS3Y3qBx+Q348OXVw5Gs+VvLNCpdKQ9953xKH0wQex87o/+CBWxrVaDZVVqxrKvVapoLsnrUJ3N7kt8tcxlNeuRQFAbfBgdPe06wKietbNLYrLU6cCr72Gyh//iMKrr6J0/vmoHnkkKjfdFKt3ynuPH4/uhQtR7OzsfW/dtVpDmRQKBenzdHV397anErhdOmEiUenqivqxrq5Yna+VyyholAtdirZd6+xEd1eXsf26oGvt2oZJeGH9+t77VAoFFIrF3mftWr8+mqAJ/VN3T9vn89dQh//4R9Rmz0b1zDNj7abW1RWrEyWh7la7u1FZu7ber7S1Rf1/oRCrJ6Wurth1lXXrojYuaZOVzs7G9q+4f/fSpah1daGwZo1V+XetX9/bNru6ulDgyqcCALVaQ1/VXa2i1tXV21/G2gCAcrUaHS8W0c31yw199/r11v1Q14YNUsKemk61u9t655q1FfEdda1f3+AjtUAc82vVKipCXeTRxdUl6fVCu+1au7Zhol/asEH5rJXubmDDhti77dbkp5vYrrt7Fp+6cyvVKqo9+Wfn1TZsMI69tQ0b0K0Yu/ixsrRuXbyNffBB1NdVKlG9HDAA6OxEobsbtTVrUJX1tdz8MIbHH0dt3DjUdtopdo8uoS5Xu7tjdb3Izc9kqKxfHx+nWZ3jwd2jWiigwNrf+vWNffakSajttBO6H3sM5e7u6LxSCd3EuVlXZ2eM5CxVq/X+tVBoSKNWraImqW9d69b19oEAUOmZP/Mgt91yGZWuLhQ237zeR732Gqr77us8n2F9F6sbvffq7gZqtd7nqQH1Pk4xjtdKJe38T4ZKZycKXNnyabH7xcZxDt2SOY8ruotF1Lq6UCwWSXNThq516+qEp2w90NlZrzfVaqwuyFAT3oMyvzfeiNKnPgVsuSWqH/kILc/f/jZqF12Eyl/+gpJwH1Yvu7q6Gn1aStBlmOuIc/cSN+50CRuc2n6+UGiYiwJoWENU1q5tmK+QylEy39ahYd4jWY+x/oZH16JFKE+bBixfjsqdd8bWq73nsHmbqn2tW1dfh3d0oFatSt97pbsbEOoxe042N9GBPVOJq7sNedlpJ3Q/80xEQAv5ZfPVcq0Wn1uvW4duizWT9L6StQnQOL6wOV2RG+O7CwWUOC6DgTq28+hdP0jaq1gnimeeidJVV6Fy+umoXnml9BoRLBBPX+SeALvnaknScunSpahUKhg9enTs+OjRo/HSSy+R0jj77LMxduxYHHzwwdLfL774Ylx44YUNx2+//XYM4nem+wiGvPMODur5/M68eXhq9mzluQeuW4eNej4vXbgQC55+Gjsb0q92d+P5Z57BNIe8MRKsa9AgrO/s7L239NxKBaWZM/Hsqadias+xhcuWYazi/Hfmz8dTs2dj33POwSbr1wPr1+O9k0/G01/8Io4i5u+hu+/GyvnzMWD5cswQflu5YgXunz0bHyWmddedd2IDR6SPmDsX+2nOX7F8OR6QvKtCd3cs/2vWrMFzjz6KvbljTz7+ON4rl1FeswZH9BxbsnQpHulJb6ZqocJhds+5O1xzDbYSyOQlxSJeefRR7Ku49u4778T6ESMw8bnnet+VDq++/DJeFp61UKn0PueKNWtQ6erCKMX1jz70EMa89BJ4L5vz3nwTL8yejSMJ9zfh3rvvhrw3acRsyTvbdeFCbC4ce+TBB7Hs/fdjx/Z97z3w+tVHH3ww9l47N2zAE3PmxI4BQGXDht77bvHMM8Y2y7B29WrcJeT3iJ4FwupKBffMno0D1qzBcESTCHaPUY8/jr1eeQUAUD7++N5ri//8J/7xz3+ifc0aHG64d6FWw8tnn41asYgde449/fzzWCDkZ+Qzz2AfyfVz7r0X63rysOeyZRgtOQcAXnrhBbw2ezYOXLky1r90Qz+Jfuj++3GA7IeuLsz+178w4emnnfo8HR6eMwcrFi6MHRv72GPYvefz3FdfxZj338fInu+3/vOfqLa3Y/hrr8Xy+twzz6Br8GBM547df++9OFC4X+H991G66KLYsXXLluFO7h3suWhRrGzfe+cdPHfrrTis5/uiZcvwKFdPqt3dmD17NvZevBibcte9/dJLeG72bAx+772GtvTaSy/hJcW4JN7/6fvuw4JCAeMffRS79BzrGjQIbQYTwrtvvx3rR0Yld8cdd2DjV17B/ixv8+dj3YYN2EG45slnnsF7gwbhIxs2YCiAypo1sfY944MPMADAuvXrMefOO3v72qWLF+Nh7ryhb72Fj2hz14jbb7sN3ZL5CHW8Wb50aW89oeLVV1/Fy7NnN9SnO269FV1Dh8bOHfXkk9iLkGa1uxsPPfBAb1mLuOe223Co5vra+vWxif+d//oXOoW87DZvHsYprn/7zTfRuWQJtuWOPf7II9hTcf6zTz3VW690ePiRR9CxcmWsjYl48aWX8Mbs2dj8ueewa8+xtStXYogh7bUrVuDhu+7CIZLfXnjuObzZU7f2mD8fY7jfXp07Fy/Pno2DV6/GYACdlQqKbW1o6+7GmqVL8fYLL/TW8SeffRbvDRmCYW+8gQ8r8lFYuxYFQSxw/5w5sX5k6cKFsbo+6dlnsZPm2V564QV8iPv++muvYa7Q9juWL6/3L0uXYtMecnjd8uUYLMvns8/i4R//GPv1bHKuXLsW9xHnZrf861+ocaq7/ZYvB5ul3TlnTsM41t3ZifcXLWpoWw/ddx/24Yi8eW+/jWeF56K23XeXLMETs2djxNtv984R33zsMbw+blzDPJSK9evW4fbZs/EfwkL6nXfeQaFaxfie713d3bilJ98DliyR3m/d+vV4+vHHpeOyCq++8gqGL14cq68AsL6zE7f33G+X997rzQePRyVzHlc8/OSTWP7BB9jmrbdifYIJt/3rX6j0bNwMffPNhv581fLlGN7z+c577sGhgJZg7NqwAQobkhjK//Vf0YfXXkNl4UIy0VqoVlE+5hhUy+XY+37r9dfxfE95dxCUZ7fecguGv/aacq0y/8038QxXz/ddtqx3DnvLbbehxqktdfW/s7MTt0rmAFPfegsTue9vvPgipnDfa52dJNLyiccew0KLAKR7LlwYm3csXbQo1s8BwGHr1kHwHI6FX/kKxveoLLs/+lG8t/feEB1psXnboEWLpH38huXLwbYIF69ahcUvvijtU+e98QZqpVJs3cPWfh9+/30MMzwj4wN2mT9f2u4AoPDKK3jkiiuwfLvtMHDx4thY/cA992DVW2/hyEolTiyvWoW777rLua8ConXt3ZL6sNObb8bKk83HprzwArbvOfb4009jWnc3BgjXPvzgg9o1twxvvfYanp89G4etX48OROQ6I/vfXbAAT3B5/OhVVwEASlddhX/OmIFD167FQEP6y3vW1nfccYdlzloD6yxce7QkaZkUl1xyCa6//nrMmTMHA8ToqT0499xzMWvWrN7vq1at6vWDOVSYDPcFdL/4Yu/nzceNw2YzZyrPLQ8bBrzzDgBg5IgRGPGhDynPZSgC2FFzXuWMM1D62c+0aZRHjsQQAmFcqFaxw/bb934fs7lIBdXBnrX81a/Wjw0ciM0O1S2R4thn111R23ff3jLhMXzoUMzUlKWIgz7yEWBcfWlVGKYfUjYePlyevmBON2TQIEzfddfYsV123hm1mTPrppQANh09uje9ckeHMfruzMMOi3bx/vSnht9GbrYZRuylXrIeeMABwPjxKM6bp70Hw5TJk7GV+KycGcjGm27aGA2Zw/Rdd0VReEdbbL45NldsXNjigH3l9GytWGwwsZG9s8L//V/DsT2nT0ftwx+OHSsLmynTd47Tj+3lMqZz9Z+hVCj03rfA+f6tXHQR0NGB6oc/jPL++6Mg1J3BAwfG81utotyjZBkyZgxmzpzZS2oVuGcraOrOzMMPj1wJELDd5MkxM61pu+6KqUL5FTaSb2V8+MADe83nSj2TBRm23XprbD1zJspC/Sl3dGh9Ze2zt3yZVKjVMHPGjIb65gN777YbavvH6Z0CM6MHsN2OO6Lw9tvACy8AAA475BBg8GAUHnssds2OO+wQuXDgsJ/ieUQM6uqK1QmxbDcbPRqj9qtP/UZvvnmsnhQR1ZPSZZfFrps4ZgzGz5wJSDYfJ0+ahC0VfWnp5z+PfZ+2/faYOnNmrPzLG29s9Ht24AEHoGvsWNxxxx045JBD0M65I5mw1VbAhAkN1+yy++6ozZyJ0g9+AMyfj/KGDZh5yCG9dbbc83/QkCE4dEZ9ij5yk03i7eqpp7R5k+HQgw8Ghg+3vo5hhMO1U7bcElvNnInCv/8dO37IQQcBm24aO1YgLgCLtRr2nq6m9j5iqJdFwSzr4P33B8bGtypLv/618voJW2wBCGPtbtOmKc/faccdlb/x2GvvvesmgApsv8MO2HbmTBSYH1YAg1XuLjgMbmvDhxVjzoe23x7b9dSt0k9+EvttyhZbYCuur2tn/tA++ABDBg7EdlPqy/1ddtstmiM8+6wxPzzEfmTkxhvH6nrx9de112+71Vax71ttuSUmiW2fa9ujx45FYe5cYP16DNKY9O69yy69i8lhI0eS52aHz5gRm1uUvvc9ANHi9ODDDms4v1wsYsSQRtp5n+nTUepRvQPAhM03x+YW80MeYydOxOiZM1HgxBuTxo7FhAOk22gkDBgwADNnzmyYr2y+2WYxs8m2trZ62fE+zDkM2mgj7KGZ/8kwZdKk2FjWm6/Bg3vvV/rLX6TXTiesQ6jY64ADUNttNxSfftrquhkHHVTvRyTXDhtYpycOPvRQFA2m0W0OZqHta9ZYXyO+74kTJ2KLmTPR1dWF+6+/3nj9YTNmoKBxBbXF5ptjHD9fuPji3s+HH3mk2Uy+B+3t7dI2W7r55tj3LcfFt6fE8UGFXdmaiAhxzdowpgMoS9xQbM65PBvw/vvYQrJGZfM2KPrKDs6seNT48dhUMSZtMX58gyuMXaZNQ23mTJTPO096TSyvPWvk0h/+oD1vzwMPBHbeOR6IFcB+e+6J2q67oii843JnJw7cX7VNScMQcW3Sg6JAZLJzik8+2Xtstz33ROm3v42tfwFgrz32kN6rNno0alOmoPjAAw2/TdxiC2wxc2b9XZdKvabiYzfbDKMVdWrmzJm980MdRvTMqw455BC0Ec5vNayS9PkqtCRpOXLkSJRKJSxi/gt7sGjRIowZI+7RxXHZZZfhkksuwZ133omddlLv9XZ0dKBDjKyKaLDui5WGJwWKAIq6Z+Q6wCJnMqJDoVpFSTMwlQ47DLj++shHkiqNjTcm+/3i71WUvMfe3wqFhmctFovGyQSPcnd3VH6SwalYq+nLUkBbqRT3o2OYtCjTF/xkFBBNpGP5Lhaje3HPWiwW6+kRJkxtQJSG5NxiqYSiZvHV+6zEiVmpWERJfFaOtCy2t2vTKhcKDfWn1JOuD7Qp6kyhra2BRJb1IVWJGU7vO+Ih+OspC9cVajWUJT7gCpVK/b7cM5fGjAFOOy3aBZWURaFajeeX8x1VHDw4qi89zx47V+MzrE3lH1CC0siRkd+0HpQ7OhrLZKB8r7Ktvb1+ruZ+JSCqW6LZtcHvWVmTZhvgJ9CXeM9KRetrq9TRESv7tkJB2s7KxWLDYqGNaKZRWLkSbXzEXuE5xXGhOGCAvJ4Ii6ViZ2d0nmSs6H1HMgj3L3d1Rc/Mu9oYOjTybadBG9fe2traYn1mqa1NWu5lVsc4grNt3TqgR7HJ+uJCsYg2bixqGGctFB699xHHC0sUHepnqVCQvoc2WV9FbOOFHlNJFdos89lWrTbmReM7qgQ01EVdfnS/xc5rb6+bi6ruXS5H5cmdp3NJgWIRqFZR2LBBSWrE3pEwFpSq1eg3Vi9Lpd7+olCpoMSVdXnAgKgcDc8gQsxXsVq1mgeVhHchHfu5e8T6Fk3Z8WNlsa2NnKeGdtaTTqFYRJtko7RQraIgmauWa7VYO5fNP6kodnRE1w6u60pL3d2J5jOFajXq18V+WajvhUKhPs6r5j3FYjRWW6AUJd6YVqlknFfI5jyuKA8eHL1vzSa4DL1jLSAtlwLXB7Xpgqew8335WzdAvE9srCXkoU0V1KQHDesUrh22ETZoevMJ+dxZRIkajEiAdL6tgzjvgWTtLBl3CsI8pCQZ33rrkqp9CfNwVbuQXW3znL3PZKgHvXNtIb9lNhZLrm9zfE8MyvoglGfvOeLYJukrxXVy773OOguFRx6R/laq1aL20vOMBY601PXxbdw4rANbh/RV/snmmVrSu2d7ezt23XXXWBAdFlRnL83O3qWXXorvfOc7uPXWW7HbbrtlkdXWQRbRw3XnDRhgXuAMH053SCuLgCmD6lltnJn7jB7uKxCPzPGyKgJmkujhKifLQPSuTIFxVNfKICtLMdiHrn5UKo0BGqpVf8FSVHWGOikzBRtgcA3Ew5ef6p3Lyk/MA5+2LBAP5X3K6qMKYpRcH4F4ZPkB5GWpg+4ZurrSiR5uE4gHqOeBEoiHGoisWo0C9PBpib/rAvGoHJf7CsTD0uHbCsVCIkkgHj5IHKeaiwXi0QWwaEYgHpf6mVYgHl1bsyUkZG3ENnq47n1Qyy2NQDxsg4YPxCCCL3dR8S4G4hGD2Mj6WlsizHf0cFndUEUP1703sZ+kQjV3KhTk6agC8aQRPZwf+zo7kwUWVEWBFtsnJRBPX4gebpt/vn6ZIklTyieN+QMFvgPxiGnwfY8PqAL62cK27VAC8cjeIR9cVnUOqyuqPPHlbRs93CYQDzVgjGqeqVsjOqiCpXkTQQ3EI6t/usBiqjFDfHY+3RA93CtakrQEgFmzZuFXv/oVfve732Hu3Lk4/fTTsXbtWpx88skAgE9/+tOxQD0/+MEP8M1vfhPXXnstJk6ciIULF2LhwoVYk7TR9BW4Rg+vGqJ+8ueZSEvTAG5DWvL3okYP59Es0pIyCPKgdtqyyaiJtKSUNRsEVBEfdWnI7q+DaRLIK79kqFQaF7/iIi0JqKSlKo++oofXavIJvCp6uGlBIOZBR1ryaZsmsdS2IUa0lU0cVG2cstgB6mUjLnhNRJLuGUSy1RdkBI5uMqaa/Mr6bippCcTNamTRw3mSSLYIlJGmOtLSJpqzjLRUuBDQ3kNFjPBgZc2bWvNlw09kdZuDLnUlqRLHZ6TMJKSlrC7wsCUtZeeboodT236P0pEEMWK86hwg3mZ1BCsjLXXRw/n8ieMFS5sn032TlmL+KSQkjyTRw3Xv2ZW0lM2nAPVCtlpVR7DX9QE2JCbrU3k144YNyaOHy67Xjde6RX6rRg9nZWtwj9QAE2nJ103Tpj6QvH93BZd3MmmpO08VPdxXVGTV+J80HdvzdaSlztWXrM2pSEAZTKQlZe2ngmq8F6HKL+sH0yAtbfukJNHDCwV1fyY+Oz8mmN4fpb92sMLpq2hJ83AAOP7447FkyRJ861vfwsKFCzFt2jTceuutvcF55s2bhyJXIa+66ip0dnbiuOOOi6VzwQUX4Nvf/naWWc8n0lZasnNVSFNpSSEtRUWWzeDFBkjZNbY76arJsQqq32WTYdUEmb8nX74+lJYUosin0lK32OvulistsyYtVapAX6SlSmnJ6oBYv01EtS1pWa2a26ktacnXxSyVlqaJWisoLVWkZRKlJRCpCbfYop4WD5PSkp2jIi1lxIOL0pJfdKattORJy6yUlnknLW3S15FNtuSBrdKyVqO3fZv5gW6hw58DxM+jKi1VbYJvj6rxglc7sedJi7S0VVomIS1NcwCGJKQlr7RUqXVk77CrS98H2LQXldIyDdJSR0r5VFqq8k4hLX0qLRkRbEuq8PXLNF8tlcxkRB6UlpT5eVZKS6pII0+kJTs2fnzjBjyDi9KSh0700x+Vlqq8JiEtdZswQWmZGVqWtASAM844A2eccYb0tzlz5sS+v6VwFh3QAxulJd8IbRbmukUZVWlJbby2Skv+mUyqDxFsQZWGebjpeupEshlKS9NOsg+lpUiM6BZ7MqWlT9JS9S5EQk3lJ8nVPFxsV7WaWnVQqUSDdRLzcH5xoCItTbAlLTm/XdI+QNXGqfWZPaNP0rKZSkuKeXhSpaWMmOPvyZMH7P2I44yN0jKpeThFaWkiLWV1iB2jkJa+lZZ9xTwc0PfdtoSEi9JS/F1VNjZKyzTNw2WbcAwUpaWKtJQRe7aLJhNpaSo/F/Nwlkddn82Xqw/zcNXGrEppaTIPt9m4UCktk2xkqMZl8ThlvdAXlJa2adooLSmkZbOUljxpmSelJZWkyhNpyfLW3h4Rl0Kgmtg5smNJlZYyYZENaZlUaakjLW3mm7q8UY8nNQ/3TVpS10G+FMl9AKEkAiLYKC35gXf9enpHbyItTROcjTdujk9L0z3TNA+3VVrWasAzzzQu2lxIy7wpLSnm4br7PfFE4yRUXKQlgWqRKxJqKoJNt0vLsHq12kcZg0ha8kFqZGWeRGk5aFDjdWmQliaflhTzcAqB7tM8vKvLX93iwS+G16wB5s51Mw/3obTk0+IhkkAy8/BqVe7Tct26qA8TkRVp+dprGPX441HQnrSVlvPmAQsXAqtWAc8/b86fCEqfoUMSk3QdablsWRT1tFmkpco0VwVZXdSZh1PLzdU8XJc+35+rFKgUpSVfL9kcqbs7H0pL2UacCNWGgq7+uyotK5Uogro419Opm1RKS/6aJUuAN96I/05Fs5WWlQrw1FPqPGft09InacmIYN+kJR9olNI3NIu0tDUPf/HFvqO0XLkSeOUV2vliW9H1U6USMHEiLR3AXmmZlnm4apNSRDPMw5P6tJS1P9ncE1D7LwYan53Kp4jjrQpBadmLQFoGRLAhHfgJ6fr19EmSaSKeJ5+W1OsBvXm4DTkjy4+N6hUAzjsPmDYNOPTQxnRU5uE2/g1F6CbZVKUltXxM5jaKqMO9uPxy4KGHGtPM2jxc9bwm0ruzE9hqq8ZzZCbv/CKfN4v1TVrqlJamSSyV0Fi3zrzYpJiHuygtTXWjGebhbEOiuxvYYQdg++2Ba66p/65SWsraf1akpcw8XHb/tWuBnXcGvvSlxvvpylKltLANxHPbbWjbfnvs9d3vojx5ckQIM5h8WvKBeHiflixvYn/45JPApEnAZptF/q6+8hVz/kQk3ShzWRSblJbLl0eLs8mTAS5YohFpKy19BeLJQmmpA09aqspFp7TMIhCPWP4UVa4sjww25uHUdG1Iy4svBqZOBfbbL07g6eYbFKXl7NlRO7n//vrvVLA+tRk+LQsF4DOfAXbZBTjpJHlafUFpmcQ8nOJmK6++6myVlnvvDfzqV+rffSktqco6V9JyzZpojr3NNsA//mGfH9nGMKsHpVI03ssgm3exukRpz7bm4TLXYCrwKnwd2O/ieV1d6raQVGmZhnn4OefIr6UoLfl3bcojyw/l/QalZS9CSQREsDEP5yd+H3yQndJy0KDmKC2ppKVqAWkzibRVWornX3xx9F/cLdIpLVVmP5QJp+6dNkNpaTsJ9ElaqtqBSKhR/JDJ0nz55UiZIcKktOQVZi6kpc70hpm6N1tpqWrjNj4tbd1CAOmZh+v6HLYYvvtu4O23o88vvlj/PUkgHptFms48fPlycyAe2f3nzlWrHLIIxHPbbb0fC5VKnHRTESM25uF8HbSxUlAhqdLS5f4mpeXPf16vRz//OT1dHanow6elrdLSh3k4hbiR+bTUgUJa8v2SWBYy8/C0A/HYmofL/DSLcCEtXZWWl18e/X/88WgMNiktAbWLAnEcqtWAj32sMX8msD6VHyuSRg9XzYdk88ff/z76r1ImtbJPS1a2551nd53JpyUDe568kpZ8/0GtT7ffrv5NtfbwpbT0ZR5+zTX1yN5HHWU+30Ra8t+LRWDcOHk6y5Y1HhMV8ToMG+amtKSkTVVaqtLs7FS/t6wD8Ygui2z6J5tAPFTSkipsCErLXgTSMiCCjXm4q9IyqU9Lm0lQUqUl/0wyFRefDx1pKXPwr4NpEJSlT0FaPi115uEmnz02Jgr8+bL7A2alpSrNrJWWNgsTPk3VdTL/Xzxp6Vtpyd9PFWBFTFeWpqpun3km8NOf1r/7Ii119VlGWlCga5/UCcmpp9bN7BlUfk+B+mJYlXZWgXh00cPfesstEI8ONubhjOSyVVqKix3+u030cBlpSfFhZos8moe7ukRopk9L2TitC8RDLbc8KC3F55CZh/Okpax/9+3T0rd5OMXUVkzXhrTkwfsA9UFaAvXFu4vSslCozzGaET1cBRelZR7Mw3kF1s47A3fcQb+WqrR03QzICrZKS0Be3xlU7d+XT0uVSbItbMcZ03pNnLfy1hg8ZKQlewZK+U+cqCctVRZ8lLWXTmk5fnz9s86nZVqkJbU+sO/8fG7gQLv+yYdPS9d6mtd+ogkIJREQwVVp6cunZUeHuQOhTkwBulLSVWk5ZEj9s8k83GYiqpLxU8/XnWdrHt4KPi1FYsRlZz9tn5ZU0tKktFRdZ1Ja+iYtKWSUeA9Zmqp+Y+BA4HOfq3+nkJaqukr1aVmp2G0uMJiUlpS6ddppwNix8WM60pJNdFR1vRmBeMRyWLEi7r9LVU9cCXwRvpSWJtLS1qcl3+/aklMU5NE8XFd3dUjbp6WtebgPpaUNaUldQPHla1JayvIpU1ryPi1lxF7WSksKacmnkbbSUswLZWNO5adOF8zLRWnJf/bh01L2bsTjlM0XV6Wlq3m4L6Ulb24PAAcfHCnZKKCSluwZ8qq0dCEtTf2r7HtaPi11BKoOtm3HRmlZKsXnCDx8kJY68/C0lJannlr/3AzSkqq0ZHkTrcRslZY6n5aiKwAG/tldFcFBadmLQFoGREgSiMdFaSl2FpQJjg1pmVRpabpeRlqqJtY2E1FbpSV1QuFiHm6jXFCRlmlHD28F83BxoFPdz6Sa4p9VdL7PQyQt+brqwzycSlrqoCMti8UoXZb22rXmxaZqUE9baenL9IMaYR6oT8hVdT1JIJ5Vq8z5ZdCZhwPAq6/WP1PNw3XIgrQUzZD57y7Rw2UbQj4XqkmVli6kpUlpmQfS0iV6eF8yD1e9I8Ds0zIL0rJZPi19kJY8sWZbLiqlpQtpyc9LGdGWlnl4VkrLJObhvpSWMssqal3pg+bhBer8XIeslZbNIi3F/IlqcBVp+f77jcfYM5jaXaEAbLGFW/RwG6WlrG+SBY+TqQlVz5CW0lJV35KQlialJZ8XKmlJradBadmLUBIBEWyUlvyEtFKhS5z5Ts9GLcVgMwny6dNSNonJC2lpY1pNMRHIc/TwVjUPF4/bKC1V5uG8GkBmHs4Ws4MGmYOymEyvdObhskUtlbRUvXeWFjOZXrfOXWlJ9WmZhtKSSloWi43qDvE7j1ZQWgJx35Q+zMOT+LQsFOpBo3QQSUsbpSWvxmGm83y+8qi0TMM8PA3S0odPS5+BePJiHq4ianTqGKZ84VUhrA6L5eCLtLQNxCMb00SIY0JW5uE8CWA730iLtEzbPFzc9Kb0MVlHD09LaQnQ1x225uF5JS1dlJbE9GLfXdwHyOBKBpnSsT3fZB6uIi1loCotx46N6qyLebiN0lJWNhTSMg9KS5l5OCWOBg+dT0txUycoLVNDIC0DIrgqLQH6DqdpwpgXpaUY0Ut2Pb8A9klapmkeTtlta4bS0kYtKiIpaSkGHkgCVTqy968ywdKdpyItdebhgwebJxZ5Mw9nabE2lsSnJWWxw/LjQlrq6i7VVM9VaakjLalKS/GYayAeE2nZbKXlwIHqCPOy6xgoSktW1uVyXc3JykZGWqattPRVpiq0gnm4D6Wlj+jhlDlLGubhLH+y9ysqX8TNYJ5wZP2qb5+WpvLLW/Rw8b6uSksxejhDnszDKUpLilDBZr7OkMQ8PG9KS4p5eF4VVLzS0gdp2V+UlibSUuXTUgaq0pJFJE8rEI8PpSX/3vi2lJVPS5Y3fj7X3u5XaZkmaZnXfqIJCCUREMHVpyVAX1CoSEvqpN3Vp6Wt0lKc1CfxaVmr5UNpKSMoZH6vXH1aypCF0lKsUy47+2mTlrIyktUJE2nJp6MjLYH6BH7QIPnEIs8+LV1IS9V7t1Fa2pqHl0pmpSUlzVKpUd3h06dlMwLxAP6VlklIywEDaKRlEqUlUFdSMNJSNA/j//tAHs3DKeUsQzOjh9dqdJ+WhQK93HTqDP4cgFYvRFW2yaelSmkp9qd8f8HX+WAeLr8ve/95Mw/PKhAPhbSkvhMeSczD86a0bGXzcFtVrU16/Pf+5NNSZx4uA1VpOXFiPX0ZdKQlZe3lW2nJr51t5pu6vIkwmYcPGECzguBh8mnpQloS62ktKC17EUjLgAii0vKll4Dnn4++r1kD3H13vfPxobTkG6FMhaPKYxZKS3HiJ1uEZaG0fO014Kmn9OfbqBRlJgJPPAG8+Wb9mM/o4ab3ZTNwqs7zYR7uKxCP6l3IJvjiPV99FYWnn248T2UezpNassU428EcPDj+DlxJS/582cKPb8+UXVxb0tK02FRNQKikpYvS0kRaUlUvxaJ/n5ZZm4fL3iVfnuz5xM2xNAPxrFhRJ04HDNCPA/x1qu8mn5ZAfVGycCHw3nvyiazPhapY/5YsAebMoV+fhtLS1QdamoF4TJuHeTAPpyxMRFW2jrScPx948MHG38R+SSSXfJCW4mLMVmlpMg9ftw64/fb6d19KSwrhbmseLrpySdM83IdPS9XmexZKS5V5eF9TWrYQaZk7peW6dcCdd8b7KZ3fdRukrbS0IS03bIj68Ece0Z9HUVr6MA83KS1ffDHiDMQ0b78dWL68/p0nLZMqLVeuBG64Abj55nh9MJmHs/m1z+jh/D35/qJWi9bYjz0WlJYe4LjVGNDnwHd4L74IbLdd9Pmxx4CvfhV44AHgC18Arrii8VoXpSXf+NmkrplKS3FCZjIP5ztepgLx6dPyrbeAbbc1D6JJlJazZwNf+lL8mK1PS515eKlEi67ZzEA8WZiHy47zx3retXRy6GIeDtTbpMo83NYlQK1WP4+qtDSRTFTSsqsrvghW1ctSqTFNKgnvorQsl/WTPptAPL6VllkE4lEpLcvlxrLM2qflBx8A++xT/04lLcV78Ao/1aRVprQEgMmTgTfeiF/P//cBUYm9887AggVu19teoyItXfvTNM3DTYtYG/Nw2Viqgm/zcKrSctkyYPvt5YvCrq5GBRCfR77s8uLTUhz7P/axRtLSZpMVkM8LBw40E3K25uGDB9fLtKtLv/Hhah6etdKSOq65KC1dfVomJUAYZErLYB6eDD6Vlv/5n9Ha5YQTgOuuk6fviqSkpS4QT6kEDB1KT3vhwmgNaBr7mNLSxTzcZyCeCy+M/i69NH7Oww8De+5Z/84HREyqtKxUgE98Ivr8n/8J/OlP8Tzz5wGNpKWt0tLFPPy996L32NkJ/PrX8euoiuCgtOxFTnvMgMzBN9758+ufH3kkIiwB4Be/kE/oqDucKhPPPCgt+efasMF8Pe8Mn02EVaSTC2l57rm0AdTGtFrM3y23NJ5H9QHIkJbS8sMfVp8vuz+Q30A8J53USELxdeLcc9WTLlfSkqG9Pb64kb0vCrGnyocuEI+JtKQG4gHikxsdaalKC8heaWlDWu6+e/37wIHAjjuqz2d9la3SUrbbnkShwO8Ss7Tb2oBNN208N2vz8MWLgblz6993393NbJkvD5NPSwDYa6/653Xr4nlIw6cl/04ffNCOsASSkZYqc+o0SEuqIoFBnKdQSEuqeXh3t1/zcBsCg6q0vOoqNYkjMw/n8ygjLfPm05InLAE6QSZ7Nh78vE4FmdLyhBPU54tzRVn7Z3lPqrSsVNxVZgA9EA8Frj4tZaAoLX3N42Tz/RCIJxl8Ki1nz44+//GP9eN5IS1139n8gUqAX3klbbNu7Njov27uroqVYKO0NJmHM3zjG43H3nmn/plfC9m6fdHhoYfqnynm4YBfn5aq4KbPPFMfD085JX5dUFpaI5REQATV4ClOgHSqLhNUA7qN0tIlergtaSkqLWWLXf6YTjHoah4uW3BQiTxVuhSC03f0cFul5QUXAP/+N3DwwY3np2Ue7muyq3oXI0dGAxdPNPL31A3crubhDKVS/FyZKwMKacnnw6S0pJAX4s4kD1FpCQDvv1//rKqXKrNxMV1VfkztlCdRWT74cjz0UODMM+vfbQLx/Pd/A3/9a7Qx9PTTcuKPweSgPYnS0gb8tfwiXqYSlW1M2d7fhrQUSZNrrqEpLXVQESP8M110ETBmTP0731bSVlq6vEuXxZ7KXIyyWaGDrh+jmKPySFNpaaPOpxA3rI/yqbTUQWYe3oo+LXm4kJay/oASRErm0/JXv4r67333bTyfHzfSCsTD14kkRIBqPqSzjFDBp9KSQlqqcNVVwK670s/3ZR6uK69WIi1d3X0o0ot9Tyt6uA4XXwz885/J05GdrzMPZ/WWunlKbccsuI+qLsnm2jbm4VSlJRV8v5tkg0WEbD4qfs/KPJyabogebo1AWgZEUE0EKJN/F5+WsqAizVRa8s8pmtjIrucJMh1p6RqIRzZgfexj8vQpoO6U+44eTlFa8vnaYw9g+nR5lD1Z/k2BeEyTTRezYF1aMhSLwNZbA4cdVj+magsiVApHKmlZLPohLUUzVIYszMOBuNmyjdLSxqelrh7ssw8wbVr8WLkcL8cPfxjYZZf6d2ognmIxKsejjwZOPz2qK7o+y+SgPUkgHhvw17JyKBTkaiUVuZ0WacnjiCMidx6uAWIYKErLjg7g4x+vf5eRlmlFD3d5l0mIzizNw20DK5jMk0XIfHWrrrFVWlLNw30qLXWQmYerlJaydkuByaelrXm4qbyp5uF8vTBZ0KggMw8fPDjqvzfZpPF8nrRMW2kJJCMtm620VFlg2FoA8Zg6NRoDqMhSaZlXBVWrRA/XWbmpMGWKuj7YPqtJaSmzLqRunlLHPOaSJi3zcFulpQn889tuRuqg2zDwZR7uEohHB+o7zms/0QSEkgiIQCUtk5iH850K/5lNuJrp01KntFRNYlhedAOAq9JStgMjG5RsSMs0lZYyuCgt2fkyh9UuSkuTciIL83BWT2REEuBGWlLNwymkJWVBkIZ5uCtpqWrPJhVcEqVlqdTYD4g+NAuF+OLRRmkpQjexpSgtXQPx2ILVI560pCotbTcLbHxa8mD3TEtpKR7jnzFtpaUuMiUFPpWWaZKWWSgt0yItqebhzVRamszDffu0NJWfzqelSonXTPNwBlk5iaSlL5+WsujhQDqkpYvS0sYyiiENpeXw4XbXJFFa8n0IxadlKygt8+bTkgezwLHJo25NkLZ5ONAc0jJJIB7fSkuZuyof4N+djCSvVuvjEuvnfZqHp6m0zGs/0QQE0jIggqpRiBMgX0pLGWlp6kCou+mAndKyVtP7tFRNYljHpCIF2DFfSkvZs/tWWtruaPtQWqZJWpoWIVmYh8tIS5W5tQiVeXhS0lIk28S86vKRldKSX+w1W2lZLDb2A4VCY90VTV9cSUvdIon1Vaq0szIP5/PAK49kiwJZPbGdsLoqLW0XC7p0dISDeD8gW6VlEv+ULteoSEvXRSN9elYAALuQSURBVG6aSksX83BVfdO5thDh2zzcl9KSSlq6mrHKSGYbVbDOPFxW9lTSkl8kuioteRJAfLeyd81vvqVlHu5TaSkrXxelpc18nSGJT0sVbElLWb3ob+bhpvZmC5XyLanSkgUDtJnHpEla6gLx2JqH25KWOsFBEvNwavRwKvj25cvKTUxL9rx8ebqYh7sG4tEhBOKxRiAtAyKoOjxxJ8CXT0s+nWYrLcVnovi0lJGWPqOHU0lL6oSCulNuax6u82npEj1cR1pSzMPF+8kiQYp5yEppKSOSgORKSxPZ5ts8nL9fEtLSFIiHX+xRAvGk6dNSprQU1cvMzJuBSlrK8tUqSksxbZXSspmkpe1iQQWq0lJFWqZhEthfzMOTKi1NY7Ct0pL6jL7Nw0WlJXXDmIdoHq7yacnPtyjPwUP2vnQ+x0TolJmqxbOtebhsvDDNFwC5T0sGWR4ogXjyorQEmqu0NG1kip8p8KG0DIF4kkHl+zEpGbNyZTw9CnQbE76VlknMw6l5YW0/7ejhvszDqRsAttCNL5VKnMtIIxBPMA/PBKEkAiKoOry0zMP5DqbZPi3FZ6Kah7OOKZiH50dpKd6PYh6etk9LVo4uSkvVYs3GpyU/SfPt0zIr83A+v81SWor9gPgMMvNwSt1yVVrqSMs0lZayd+1iHm5LRCUlLdNSWupIS/79p6G0TGoe7nJNK5iHpxk9HKCPGZQ5i415uA+lpfisKp+WYh9ks3CSLcZ05nsidEpLFWnZjEA8tubh3d3+zMPTUFqq8pCl0tJEjtimOXBgc5SWFPPwvJIRaZqH83Up6fO7kJZZmocnIS0p4J8lLfNw30pL0SLJF1T8AvuelLRMw6dlCMRjjZz2mAGZI4nSkjpgqCZkNkpLauOVmbDKUKs1TrBF83DVJIaVmc4szmcgnlY0D7dVWrJ7UpSWb70F/PnP9e8ypWWefFqmpbS84w719b6Uljbm4ZUKcO+9wIMPqvNlS1ryaJZPS1GBIU4GfZqHU5SWqrTb2tINxCOS7/feC7z4YvQ9TfPwpD4ts1JamnxapmEe/tBD0Xtwvd4Gjz0G3H574/vr6gJuvRV4+mn7NNn1Ktiah3/wAXDLLcALLwBPPRV9Zhg5svF82TitaxtUEpXi05LVBxelJTOPtAU/r1OZhychLWXlo1pUytqDjLR8/HHg7rvl9YRKWpoC8VCVlq7m4ao67lNp+bvf0dOQQTXHz0JpqXK9kIS0tL3GRyCeVauAG25Qn8fqfF6VlnwgHh/Rw994A/jrX6O+hbIBTYVv0tIWJtKS/+5rHsJjo40a0xcha1PNVFrqyL8kMAXi4dfUQWnZskhJpxvQclANniJpmSTal4m09Km0NO2oM8iUltVq/JjKXCRr83DZO6IO1s0KxOOqtJRFD+fP6+oC9toLWLiwfqzZgXhMJJxLIB6KT0sd0jYPlykt58wBzjxTn68kpGWelJZiOboE4rE1D/cVPdy17pfL9TzcdVcUNZchz+bhzF2F6yLMl09LnxNQRubss4/79bZ44w1gxgxgxIj48d//Xr+BYoJP0vK226I/GUaOBJYujR+zMQ8H7EhLEzGRRGnpCn5+IRJ+7Nl8k5Yq871y2Vz2L70E7L579Pn3v29M21cgHlvzcIrSUjQPl/VVSUlLvk7Mn09PQ4ZmKi1VY5KrebhLwA3bQDzt7fX6zurxF78IXHed+hpWxnklLX0rLT/4ADjmGOCb34z+GHwpLX35tLSFyuxd9jvrn2SCDFcMHVr/nKbSUuXOyXUDIQ3SkuWxUJDPdWVKy2b7tAxKS2sE+jagFzVZp0dRWsowa1bjMdWEjE0Uffq0NE1OGWRKSyA+qVcpLdM0D2+W0tLVp6UMJqWlbOBk5w8YAOyxR/x8/lmfey5OWAJupGWWPi19modTSUuRRGL1ypd5uIyMMhGWLD1Vu2BpqXwPNcunpUxpKe6ki2ShrE6IddTWPJzi01IWoTENpeWpp8Z/U5GW7F3yz541aQkkM0tK6tMyLaWlbKzNAsuXx78nISwBv+bhOmy6aeMxWX/kg7T0bR5eLAK77EK7tw78nEelIBH7IJuFk4m0NLnfEcv+qafqnz/1qcbzqXND2Wb2OedE/3fdNU4CqKDzaSlr26J5uG7x72oeTp0PUCDLg6vSMg3zcEqwJIYhQ+p5ocLWPJwf71gZyYh1HqaNRxGTJ9PO8wXfpCXDd75jJnc+/3l6ekxp7qK0/OQno/829UmE2FZ0gXjYs/7iF/Vjo0a53xugk5YqpSWl3HRz9TwpLQG11WNefVpSScugtOxFKImAOnySlvvsAzz/PHDwwfVjaSktZR1gEqUlQCMtKebhrkpLWZ5MPi11BCZ10smXL6XjTRI9XBeIp1AA7rwzburE5182Seffie48Hln4tEzbPFyHNMzDTYF4KJApm8Q8yCaTOuWSWF/F87JQWvJ5UBGhOmUeA0VpqfOhaooYz74nJS3F51OZh7OFezOVlkAylRrVp6XJPNznBLRaTWcBoDNtTAs6ItAnaSkzD5eRJVmZh9vUi1IJ2GQTdxN8BjFCuKwOZam0FGHbNyTxafnd7wL33x9ZCFA2gW3Nw0X/02krLZPCF2npQmhQzMNlVjgqMPPZpEpL3bPw77dSofUNrH5Tx98ZM4BnngF++EPa+UnhO3o4D1lEbR4//Slw333A3/9uTiuJefi110YuVXgXU7YQBS8683BWh6ZOjZTjL79cV48z2KowedJSJzhIYh6u29zOK2mZtU9LmYCBghA93BqBtAzohVRpSQnEI0OpBHzoQ8CUKfVjqo4vaSAe2STDp9IyS/NwivNuMX0G3QTIxTzcRmmpih7uah4ORLvk++9f/86fJyN1Wsk8nL+nrk2pyEKqiUsa5uGmQDwUiC4YeLC0ZM+oa8sm0jKp0pJCWoq+PSl+gFx9WqoWv5R3zr4nJS1FcqFQkJPNzNS/2aRlGkpLqnl4GhFjazX/E9ohQxpV7lnAtj64QqZuMflgpJwvA0VtxuoDVWkJAFttRbu/CiJpSVFais+x5Zbq9G18WjaLtGT3LZWAffeN6j2lP7Q1DxdJS9Vcif1ORZZKSxfzcJfNGcqYaUPsuJCWtkpLfryrVIB588z3YO+ZujYolYCddgImTKCdnxRpKS2FtJX9zn77qd0D8UhiHt7eHq0vXJWWsrWdzjycr4PbbANsvXXjM9oqL3mfljbm4ew71adlqygtda6QkpqHm5SWfFlSny8oLa0RSiKgDlmnJ5opUydVMvVAWubhJtLSRWnJR+U0mYfrSEvXQDwymJSWJtLS1jzch9LSNhCPbhHA51/2LHk3D8+r0pLiL8rGPJwCitJS9u50dTJtpaUpEI84qaH455J9B9yjh7PrZC4B0jAPF8tMZh7e1mb2aUmpz0kD8bC8uMIlengWSkvfpKVucp4msiItZUqttEhLcSNDBlulJZDcLxuff6p5uJg/Sh/FI4l5uAlU/4mmeSFljpREadndHZSWOlDGzGaQllSlZbUaBYg0wZa0lG18pwk+EE/WSkvKbwwuSktxruE6Hsv6OIpPSx4iaTl6tF0ekpiH27gWaxWlpYq0bHXz8KC07EUgLQN64dWnpQ1pmdQ8PAlpWa26+bTkJ8k6qX2tZrcYoy6++fQZfJOWSZWWJpWJSWkpfjc9a16jh7N8uwTiSYu0lPkRZefb5CNPpKU4EcpCaSmWo2geTlFayvKli2zLFr5U0lJnHu6yIFEphgE5aclPzJOQlj6UlkkmfzI1l8xdgWrMY8fzrrSkmDQngaodZkVamuYLDFmbh9soLflNUxe4KC3Fc5KQlibzcNsAUVSlJZ8v2X2ppKWN0lIMxOPLpyX/vEFpKYeLT0vbQDyieTiFtDS5eBHBnj8r0rKZSksGyjuz9WnZ1kabf1FAIS1Nz8r7uwXSUVqKKkCWL2qZ+VZaFoutax7um7QM0cOtEUoioBdezcNdSEvK5F52TlLzcJNPS9UkRlRaqgYBG39cusl6UqUlZSFgu8A3kZa6Sb1MaSl2zirSUlaX2toar88raUkNxJOX6OGq/GZtHm6jtNTVJVl+svJpaVKEAvI+i5/gqiKT25CWaSgtxfoGxPOtIi0pyjEfpGUSyNRcJuVlUFo2QrWJmBVpKbt/HszDbZSWQDK1pQ+flmkqLW2RxKclD1vSktIf8PNHn0pLftzwqbSUtcM8+bRMm7RMEoinUgHefNN8D1ufli71Iwl40tJ2A8GENJSW1HKU9Zmu47GMcNIF4pHdx6fSUic4SLJhrbMWbBWlpWgezjaSbM3DVfkW+y1qnQpKS2sE0jKgjv6otPQRPVxnHg7YkZa2i28bn5ZpKC1tA/GI5rP8f/H+Yh5Mz+qitDQp7GygKl9WNj7Nw/Pi0zJrpWUSn5YmVwUmpaX4jCbzcKrSUgZZn8Mrdjo7/Sgtk5KWImyUlny/qCPh2W8+SMskKkcZMSJ7lybS0nf0cN8LgLSVlnkkLWVzgKzNw22UlkAy0pLPv6tPS129MylX+fbqi7TMq3l4uVy/l0+lJY++orSkmIcPG0ZPL+tAPLbm4bZKyzVraOcnRZqBeHwqLW3Nw32SlmmYh9sqLYN5eBxpRg+3UVrKBDsyBKWlNTLSmge0BCikZRpKyzR8WvL5dlFamnxa8hN9nXk4YE9aqhZvSZSWLG0TbH1a6haaso67XG6csFHNw7u6gOuvB158UV6mzQ7E46q01NWPLHxaUkjLX/wCmDUrcgTP58NVafn73wNr16rzDPj3aWlyVWBSWppMbKjm4ZSykvU5vGJxw4bkpKUPpaWINMzDOzqi5/Xh0zIpaanbhJEdS1tp2Yrm4ar688or6d3TdH+TMlAENXo3RbVqQ1qmobRU5dG30vKJJ6KowJ/4hDkQjy2SBOLhkYZ5OHMt0tXlN3o4D59KS1m9z1Jpadros3nWLALxuCgt2TPa+rRcvZp2flI89BDwrW+hMGUKir7Vnc30aWlLWl59NXDIIcBdd0XBurbfPjr+yCPALbc0nl+pADfdFN1n5kx70nKTTaLzqPMyKmmZJ/PwLJSWaZiHm9xLyUhLEzH8wAO0ewelZS8CaRnQC68+LVkjo5CWrOPNq9JStfPK8mIyD7dRkNRqZjJHPJ/BNNBRBsK0o4fLlJbUQDz/+Ef0p4KMtDSRe1mSliqlpW7y4MM8nFfouZKWP/kJ8Ne/RpEx2TsvlexMG3n87nf6PAP+fVomVVqKEF0uuPq0lEE2qePf44YN+rSbRVrKzMN9kJZA883DZeSOLG3VM6altGw18/Cs/LKp4MM8nAqK0tKmD/WltPQRPdyWtDzhhOj/8883j7SU+WPmQSUtGahKS/aMraC0lM1Xs/RpaTIPt8Gmm9rnJUkgnkoFePtt+r1slZZZ4jvfQRnAuC239JtuM31ayiKF6+5z+un1zx0dwKpVwJIlwF57yc9fvx449tjo8/33m02GRZ+WG28crTfFALgqbLKJPn2gfyktdYF4+DJ1iR6ehtKSiFpQWvYilERAHVmah//qV9H9RoyoDwyuSkuTuVdSn5ay69vb0zMPtyEtqebh4rkq8JNfysBiGz1cpjakKi1NKJcby8hkSuQzeripfHW+AClp2gYuAfwpLQFg/vzoP8s73+58Dqq+lJamRTcPitJSBr7u+FRayt4vJQot22BJ0zxc9w5clZY6AsZEWpr89TZTaSkbh3y2lTRIyzSVlgcc0LhQyxrlMnDNNfFjskWiL9LSVOdsFLhJlJZ8+i4+LW0C8ejmiVdcEVcq+qhrVNKSh2zeSOkPZRsRfD5ElMt134pr1vhRWp54Yvy7jfrQVE6+oofLxrAf/1g/d6GYhwO0uenGGwNf+pL8eh2SBuKxUUPa+rT89KejNRMAHHUU/T4JMHTePL8J+lRass3bLHxabtgAvPtuZCVEwcUX2ysthw+nt+XNNweOO67+3dY8PG9Ky//6r+RjgUpAJPq0dFVa2vi09Lk5HZSWvQikZUAvUg/Ew0/2DjsMeOONyJSC6ixbRVrKjtmQlialpWyx2tGRjnl4rRY3TeeR1DycMrDzgyhl8LSNHs6/C1ulpQkypSW/EymDiayygat5uA5JfVqKJFIS0pKBvXP+ebIiLW18WoqLUt9KS6AxOrRLIB4ZZM/Ot0eVIoUtCGXq2maZh/MkFf8OfPm0NCkGfJKWtj4t+Ykye3++o4f7Vi2kpbT87neBO+5ovn+mtjbglFOAl1+ul52snfrYzGKLF8ri3IbgBOxJS/58vu2lYR5uAitbXq2fBFSfljxczcP5uqLblOXzxoLHrFyZXGn56KPAb38bP6bqP3/yE2C33eLHTPM6Xz4tRUIGAKZMiTY/P/Up+TVU6wS2ZlDhssuitQXbtM7KPFw1nzz/fODMMxuPU+ee7PmHDInWTW+8EZkfZwDv5uE+lZaA2lWODLI+06b/aW8H3nuPfr4LaUkRJHz3u8BLL8XPTcs8PInSct99G4+pyL+pUyNLrq99jZYvGdI0D2+i0rLpc6YcIZREQB0mJR/gT2lZLAITJ8Z9clCUlrJzTJ2DrrOhKC1li9X29kbz8GYoLW1IS8rkgx9EKQ7yVYME4Ka0FJ/RpuOXkZYjR+qvyYN5ODVNV/NwPmgUq9c+SMv+prSU1cW0lJYU0lKWNjuHrx++lZa6fqFQaDTBUiktqfWZlYXq/Zgm31krLVWKNtegVTqkpbRMY5K8/fbyPjprsPew9dZyYoXBx7hAMf3mfzO9S/53mamjDnyfkrZ5uAmszbqQjTL4UlpSFvI6paVKscpIy7Vr5fNBG9Jyp50a76siIrfeupHgcyEtXZSWsrZVLkcm25tvLr+Gah6ua7cAsNVWcSubLM3DZeW3+ebAZps1HrdVWgLRc02a1LpEhk+lJRDNb7IKxFOtAgsX0s4tFMzm4a5KyylTGq9VjauyNmVjHp5EaSlumABqpWWxCIwda16z6WAbiMdmzNBt5oplTNmAtEGrtvUUEEoioBekLiwJaWkarFyVlqZrxEUY/5mitJR1VrzS0uTT0hdpKesE+XuaBm7KwO6qtFSRM7pFPkVpaWsebqu0bJZ5uKnOyNJ0JS2B+iAtI7BUbUOFrMzDC4XG57QhLW2Vlrq+rVSST/JcSEtXpSX/PCalJe9HTaauZd99m4eL7ggAfz4tVRPtLElLik9L/hyZb2TfSstW8WlpYwadJvh+WPcubINk6H7TnWMT/C6J0pJvY80mLVm/4zKnk8GFtGyG0hIA3n9ffo6Ytgqy51T1nzJSuNmkJaAnWCgbfSalpXh+mubh/OaBirQsFNxJcsC8OdZKMKkPGWxIyyzMw4Ho3VJJS8D8rKKrFKrS0mb9LJs32SinazV30lKlbJW1J1f/+DxUPi19mIebXJmI/EYgLVNBKImAOigNw1f0cNNiT5WmC2kp3k8kLU3Rw1VKS948XOdXrZUC8dgqLU2kJUVpKe5QiWlQ0dbWeD7FPLyZSksZYc4jLdLSVWlZq2VnHg40TnpsAvFk7dNSZh7uqrSUqagopCW/4NIR1ex7XqKHU3xaAvJntiEtk8DFpyU/Ue7vSksfixIfoG62+CAtbZWWprJJ4tNSZx7u26elCWkoLW3TcSWRdPNYk9LSJm0VZO1dRUTK5mDNNA83kZaqMcnWPJyyuaRCEqVld7d8HVAoJIvw7iLyyCvEvkeFPCotfZOWrkpLWftJ06elq3m4bB6rU1qy312RdvRw3fOKCvzg0zIVtGivF5AGUlFaqkxifSotdZ0Du7+4MGDXUM3DZbvVIvnpyzw8LZ+WlEGK3/lLwzw8a6XlxhvLz2Xvrlk+Ldk9TVECk/q0tCUtTYMjX15pKy0BO9IybZ+WsutF1Y0vn5ayiauNeThQLztWx5rl01JFWlJ9Wpp8wTZTaWlSwMhIS9/Rw337tGT5S4MM5f83C9R+y8V0UwSlLG3Mw7NUWor9Z19TWjbDPFwFNh6b5iIqs0Od0lI83zSv86W0lAXcclVa2pqHZ6m0VLld4KFSWlJh2hxrJYhrKxWo7+yDD/JJWorm4RTSctAgd6WlLWlpEz28VZSWtubhtkpLavC5oLRMDaEkAurwqbSUkYUm/x6uSktd56BSWvKkZVLzcECtfALsA/HkRWmZ1DzcZHJGiR5uu0MuXq9aLLAJZBZKSwbZs/MDqSnNLEhL00DLm1E3Q2mZJBBP2kpLn+bhMvLPJhAPYFZapkFayszD+cWri3m4jOznYVoY+CQtKYthUyAen22FuvCwgWzD0QfyorSk9lu2QTJksDUPp2zcMiRRWvowD0+yMOMD8fQH83DV5ql4X1OdUz2jaq4mK18T2SwTJvhWWqpA9WmZtdIyKWlZLAalJYO4tlIhj+bhK1fK3TuoYHKJJvNL6aq0tDEPz0ppqSrvtJWWVPNwXz4tgUbS0mf7bNUNihTgeYs+oM8jiU9L2e+mY+Lvth2BL6WlzjwciDp1X0pLlfrO5NOyGYF47r0XeOghuhmsbfRwmwFMtohSLezYeVn4tNSZh5tIyzVrgCuvjBxvZ2EebgJPWuZdaSlOjNKIHp5WIB4genYZ6QWoJ52tZB5+5ZX1z7r6LJYpADz8MHDffcCpp8brYbnc+Ew+zcMpSkuTebhvpaWv/oshLaUlhcDLAr7Nw3XllGYgHl+kpWoxRiEti0W3+sf6Ip9Ky6zMw9NQWiYlLVVzT9mcyEQcqjaGbN+zT/NwsZzTVFomMQ9XzfWTmof3JZ+WvpWWWZqHv/Ya/VzA3qcl4F9p+f77jUSrL6WlqexszMOzVFqyfPk0DxctSYPSMhUE0jKgFzVKwzD54GNwIS0pSkvZORSlJX8db2KjUlqKPi3F/HZ0NKpIfZGWa9bIf0uqtEwaiKejQ15WBx0EjBvXeNxEWlKUlrYdP7Vz7+ioT3bSJi3ZAOmitLzxxugPACZMqB9vJmmZV/NwcSLkW2kpW3iKExVfSkvArLSUpd1spaUNacnDhrRctw7Ye+/o+6OPAr/+dTxvYh+VptLShrRMKxCPL/cWDGkrLZttHk4NxENtG1tsAbz4ov6cvJuHu/i0ZJs0Ln1IXpWWlMi1tqRlqZQ+aak7X+eiRwbZ+8zKpyV1zBw/Xn9vG6VlW1v8naZlHs5HM5dh8GA7K6tWVV/5Vlp+8AGdgEtKWr7+Ov1cF/NwwL9PSxlslZZZmIf7VFqafFqysdDWPDz4tGw6An0b0IsapZGZSBaGvCgtmRmJTmkp65BN5uEypaVqEJCpU48/Hpg0KZowfeIT9eO1GrBggTydpD4tKYsLnU/LbbcF9tuvMR/r1wNvv92YlmmiJVNaJtkhB+RldNJJ0f/x46Pf990X2Hrreh7S8Gk5Y0b0rB/6EHDYYdExF6UlD76MXUlLRjqqSEvT5K/Z5uHN9Gn5+c83kvMmpaUsTRulJQ+KebhKaSlbdKahtJSZh1NISx0BI5bpW2/Vv990U/y5ZCoZn6QlZTHMH8siEE9aSsskPth06ZrewaabRvVh5Eh6ABMb+FZaXnddlN9NNgE++1n5Ob7Mw30pLVesqH8eMsRNaZkkYJPvQDwmFYwMsvr9wx8CQ4dGfdbnPy+/ztY83KfSUlVW228P7LFH43Ff5uFZRg+nmIeff369n/j4xxvPt5lHivUgidJSZx5++OHRfLBUAm6+ufGcL38ZGDtWfn1QWqqhigEggw/zcBuYzMMHDAD+4z+izz/8YfTfd/RwGWzaMx98k8dll5n7XBelZRrm4ZVKvG2yMrY1Dw8+LZuOUBIBdVAamSlwCENaSksbWTxQnyzqSEvZok+U9VN8WtooLQcMAF56CXj3XeDgg+vHq9X4opyHqizZfX0rLcXJW6kEzJkDvPdeo1kDlZyxjR5u2/HLnvE3v4nKed686P+999bfnU+lEl/+Rx0VldPTT9fvJfPNZ0Na8qASCuwd8JMHRmIxtJJ5uI1PS9/RwwcPjnba99mnflwkLfl7pK20pPq0ZM/WLKWlyqclDxuflmL58c+l28Fn+XMFVbXEH+PHS5V5+PTpwKWXuuWpr5GWO+4YBTpg/fUmm/jNA+BGWv7sZ8B558nPmzo1yu/8+Wqlnqt5uK4PS0JaLl1a/zx8uLt5uKsCJI1APLbpyPI+bly0afzuu8DkyfLr8mgeXigADz4InHFG/Lhs8Wx6ZyrzcFv/ua6kpew+YjlvvHHUPyxYoCZrdd95iP1cWkrLUimaD777LvDRjzaeM2wY8MYbwL//3fhbUpIqT/CttLQhLWUkmk052tyrUDCbhwPA3/4W1YmvfS36TlFa2q6DRZja8z/+USfQq9V4n/ed70T5Pessc18im9epglKlaR5ercbbpssGclBa5gLBPDygFy2rtExKWlImiuJ9RaWlrXk483EzcmQ8/9Uq8Oab8nR0pKU4QMqQNBAPK4fRo2nktYm0pPi0tB3AVq1qPFYoAJttFn0eMyb6z787qp9WE8Rd1U03jf/uYh6uAnUQE5WW7J46dasOfF3Om3l42kpLIJqE8e9VfOcU0jJrpSUg9/uUFmkpvgffSksxjSxJS/afN29VnQfQAvFstBEwapRbnlzfoQ4sf0l8sOnS1WH8+Og8Frgkjck6VSHOl+uQIcCIEepzTfmlKopkJBjfL/lSWoqk5fLljeenqbRstnl4uazuC5h1jup3fr6Ql0A87DfRbFq20eLi09Klj3GJHq6aQ8uee8CA6M+krpd9l+WJIY1APOx5y2V1X18qRfML2e+mcaaV0MpKS9v5OoW05NcnAE1pmbZ5+Lhx8TWyGDSR5ddUB8vlRvcLKsWiL/Nw2XNVKvW1S3u7G0Fq2qRLW2npe57XomjRrZqAVOBTackat6pTkN3LVWmpg6vSUsyXTGkpEhQ2pKVqoVKrqZWWpomej0A8OvNwMZ8mmNQbafi05EnLoUPV5/HPkgZpaarfSZSWsoWICuw8frL2wQdqdavpvfKT8ryZh4sTId9KS9lnmakgy6OqT3BVWvLt0canJSAnLdMKxCOCJy1V9dbGp6XYXm1ISyKk/p1lY5rJbE+2uy8jEVwJQp/uLRiaqbQ0tWEfcFFamlQWpvSo5uFpKi35NtZspSUfiMfH4s6WtKTUbdU7E/0Y82iW0pJB7Eepfnh5+CItZao21/Zso5SUna9rf2Lfm5Z5uAnsHhQSlppmHtFMpaXKxyIV1PUvAz83oT5PHpSW/IZUtaoWK1DW7OLzpB2IR0VasrbJ95E2Y4aN0pKPm0GFjRVZP0aL9noBaaBPKi3ZDreotrEhLWWTcxufliqlpezzypVxf1NiPmTwaR7OP5NMaWkD3cKfz49P0pKPkqdzfM7nzSZQkg46M3eArLSsUXYvqaAoLW3KWOajj7+PD/DPLy58mqW0VJGWMqKa5UNVr1xJS0p/w7dZnUsAwC24gpgPEbJ64FtpqSMtPfm07JaRqLzSUpa2eB4gD/AgIzpcCcI0lZZpkZY6yFyS+AZ/D12eRNKS0u+6kJY6paWuPGSkkA4qcmX4cPdAPK2qtExCWurMw1WEl4m0ZH1zUtJSNmfzobR02RjRzYFs53U2pKPsfN31Ps3DddHDTWD3UKl1RfQF0tKH0lIVvEgGKiGsgoq0VJFwFKWlCFelpc1zmOZ+orCH7/NsSUvxedIOxCN7Lp545du3rdJS1w8kjR7ug8DvBwglEVBHK/i0tF3EsMmiuNC0VVqazMN1SkuZkk+1UHnjDXU+VO+HddI+zMN5JF1AmszDKUpL286ad5StIy35Z/FFWpqcblOVlnkmLWXKMf4+PqBTE9nsRvqMHq4iqmTvvJmkZd6Vlqp3oFMXiH2GWK4pmIdXZBNtmRLAxmxPp7R0JQjT9Gnp2zzcZuHOYDvmUPJMVYiL7SWJ0pK6OM/KpyWPjTduntLSJ2lpkw5lDFXVV5dAPKbI0aw8TFYftqSlbKM/K/NwGVyJiTSVlhTz8KRKS8rz2iotdXmS+RPNC5qptJS9Hx/m4aoNJBfSMiulpYm0ZPeo1eJzLj5/aSgtk5KWqhgVMqWlzbtP26elbh0alJa9CKRlQB19UWnpy6cl32mUy415cfFpyeeHQUdaJlVa5oG0zKPSMivzcGogHtOiIk3S0mQezuc3b+bhpgV/GkpLnXm4ahJCLSudylRlHq7yaSm6BADcVXo6gk1WxpRAPKWSul6LZL/YXvlnSIu0VJHWNgoYlfP3pObhrRaIR4ekY47Mj57uHtS2mJXS0rTxksSnpUrBM2yYG2npQ2npsriTIS9KSxVpWS7XfWXKkKZ5uI9APL5cUKRBWjZbacmP01mSlrpn0tW1ZiNN0tI0jsrm2z6Ulqq+lZ9zpa209GkezvfLYiCetJWWSdYSOvNwmdLSZswwbdKF6OGZIJREQC9I5uG+lJat5NNS7KxYJ5zEPFy1kHZRWlJJy5tv1v8upp+GebgperhsYWQD3qdlWqSlqhxMSktqIJ5mkpYmZGEe7kpamhQTuuf0obT0TVqmrbT8y1+AJUtoeVHlQ4Ts2ShKSyppKTMP/+pX65+Tmn/1oFtX9qoNJ9m5PFh/6lNpSdl0c0VagXh07VAsB1sfeBTS0mWzJU3SUlef0lZasmAmWSstefPwZpCWSd6lSyAeQB+Mxxdp6cM8/K9/bTzmq49xVVPZkI6AndJSvN42EA+fdhKflj7NwzfayHy/ZiFN83AT4ZeUtFSJdlR9sWlNIIOr0tLmOWyVljI3N4Cb0rJYTFdpqTIPz7vSUoegtOxFIC0D6shKaekysWe/y86ZMEF9ja9APPz1rBOmmofLJjKqhYoqCI94Hg+qebgJJtKnGebhqmMqbLFF/fPWW6vPS2IerjIFMfm0lJmHy0xb0jYP/+ADP+bheVda2piHp+HTMonqAkju09JEWrrC1jycorRkaiQZxOcW2yu/yDYpLbfaSn4PAQ1KSx3ZSjkGBKVlFubhaSotKXlRnePLPNy30pLNj7L2ackH4vEBW/NwSt2mmIdTlZaAfhM1LaWlbM7ssgCmBF6kQLVxY4KteXgSpaWteTh/fhKflj6VllOnmu/XLPhWWvKkpalP3GQT9/sAatGObE2QtU9L3+bhvNIySSCerJWWKvPwtH1aBqVlJgglEdALr0pL1pnZDLauSssf/AAYN05+jSoQD/tOWfSJu/isE+bTtDUPVyktdQNJUqWlCWKHrFNa/vCH5vRk75NfVLK6xE/UdTtwOlx5ZfT/F7+IJiYTJgDf/rb6fL78bUlLyq4qNRDPO+80npcGacmX+7p1fszDm6G0HD1afV0S83BXpaVsAWtSWlIXgCbSMmn0cFdQSMtf/CI675RT1GXHQ6W0/OlPG9uNThltWvD94hfAqFHq69ltdObh/PuzIS3TUFo2k7TcZhu3dHVIulFGCU5DDcTDQ7XQ+trX4t9dNmRVGyKAfuPFh9JS5vObISulpQ/k2Tyc5UtHRuRJaekbv/1tVN7/9V/mgEQq2JqHJ1FaUszD//jH6Lyjj46LJnyYh1NN+lVlMnEicO21wEc/GuVRVF0edVR0TrPgW2nJb/zL+rhzzok2DKZMAU47zf0+gHr9K9ssKxTczMNd+ybf5uEqpaXNvL9Uyt6nZVrRw23Nw23q1ZQpwGc+o/49KC17EUjLgDpslJYmZUiWSssxY4A33wTuvrvxN5XSknUCqsW/eF++01ApLVWkgGyRbTIxVOVDBl+kpWnHmX/er30NWLZMn57JVJRNNlSmB7p0ePz1r8CXvxx93mabiAh8/fX0zMNdTUFkSkuZsjYN83Cx3Fs1EM+kSerrmqG0dPFpSUUrKi1Z2Zx+euRf9ppr5L+LkJGWb70FnHFGY7vRlauJtNxiC2D+fGCzzdRpwGAerkpbd4zPm4zo0C1U/vQn4G9/k/+WRvRwaiCeP/0JePtt+3R1yEJp6WoeLublkUcaN+9c5jZ8uaSptPRNWvpQWjaLtExiHu4SiAfQ549qLePDp2XWpOVJJ0UBEv/wh/qxPCstKebZn/gEsGJFNPeUzetM+ZGBj6wuM6mlpHnMMcBrrwFDh0buoFasiPLKY9iw6JwTTzTnKQ2kqbSUbQzsvDOwcCEwd658fLDpw1SWhqrARy7m4a5Bwmyew1ZpqVujmYhn39HDf/rTxjrNoCItOzvrx12VlmmZh//+91Hd1PmhDUrLXoSSCOiFldLSpGhwIS1dlJbsWFubfOAwkZYmhRXLF8WnpavS0mbhJEOzzMNHjNAvnGTPxXfMbLKhMj1gMNXLoUPj31U+ulR5y8o8XKa0fPPNxvPSVlquXRuvq66TtmaYh+sUAmK52CgtAT157dOnJRVp+7R0BdU83GaBICMtWbs2+bQ05U28Z3u7kZCrUElLF/NwGYmgy8+AAeoyp4xfrjApPkolO99plEVJFj4tfQXiGTGi8bykSkubjRcf5uHMEsVVaenS7/Nmk77GjTTMw30rLXX5S0tpKXtHzVDtiO3Sp0/LpEpLyjxB9l7ZM1HK00ZpCcjJZxGyZxo0KH6u+J1dVyrR+so0kLXSslDQrwl8KC1VhJOLeXgelZa6NZrpHdoqLU3vY8AAdRmpREj8e3P1aWkiIl1Jy002MW661QJp2YtQEgF1UBoZ6+hME+a0lJY6JYKsI5QpCfgOWezkZISUOCFmHSafpjgI8L+ZoodTOzeT0jIpKWEyk5F1qjrn8ialJSMtVaYHunRM+TKBvyYrpaUYPbxWa47Scu1aM8GqQrOVljrSMonSElCbdonXiiSaeA77XTUpTNM8vNlKS1NdUr0DmU9L3lyOwQdpqcsHuw1l0ag6bjIPt1Va6vKahtKSwaS0tFW35dE8PAlpKRsHXPpB3QZmVkpLV5+WrmMv6wPzbB7u26clhbTMm9LS9f2Y6maelJaUZ0wy5lHP4e9BUVpSxx4Vgdssk1Oq0pKaPxNpSVlXUpFEaUl9HlelZZo+LX0qLYvFZEpL3WaZSmnJ17kkSksdXElLVnd8EPj9AKEkAnphxeYnUVqqGrOL0pKfsMgmLzKfljz5KS7+ZYOPOCGWTUJFpSXfKZtIy6RKy7R8WlIWkDofRaqJFqs7MqWlbKFs6vxdzJ2SKC1dfVqKZkQrV8ajnTP4JC1ZPkTS0tWnZbNJyyTm4aZ6pKsHKqWlzjw8KVrRPNxUxrq+n0paJjEPJ+YzEWmpaguuSstiUd0um+nTUraJSElXh1YyD/dFWurMw9NWWib1aZn0eXV12wZ9xTw8C5+WPsndLbeUH282aWmjtKSUh+4cipsESjvxobSkkJtURVta4Ik/H0SNKRCP65xEBhvSUvRpSX2erJSWNtHD86S0lPVpDKp5sUppadMXmvIlbmb5JC2btcGQQwTSMsANaZiHmzoF2eSA70BlHSEzMeSv4xcg4qJPNviIHZBsEip2lqIKU5am7LMOJqVlK5CWhUK9jGU+LV3Mw106dD5vaSgtKebhMtNwMW8y+FBauvq0VJmH+xxUdQtzWfRHVR5Mi24RVKWluFnBQCUtqeUtPrt43zyah7su3nSkpahQzkBpmcinpck8XKbOci3TNEhLBop5eN6UlhTSkk8zSSCevqS0dCEtXZWWKtV6EqShtFS9yzybh1Oih9vMH0zlNHmy/LgtaUldT8hA8YOuu57SZk1l5mPM59Nw9WlJITdbRWlJ7Ut5paVsY8bV+sMGKtIyS/Nwm+cwmYcXCmqlpS1p6dunZV6VluJmFnVuweYsPtpCP0AoiYBeZKa01C1cbdPjOz+xM91oI7kqku/0xAAcMt8kpVJ88JGRluIgQCFgZZ91UKXpy6eli3l4EtJSNA9XLYJ8kngMMvN96qRCNSE37aqKSkuZaThgHvD6UyAe2YRHhWYoLXXm4UmhI85UZBXfZvk+ev16P4omIB3zcF9KSyppmURpmUb0cF1+dGq0Ws2/T0tqIB5boojSR2Th01Jn5aCa11CVlqryMPkPU12vU1pSTOF55FVpaau6U6VpkxdXE0wgvoA3KS35fOnaCnXj2fSMvpWWpnJSuQeyrZu6zUggXaWlLaEog818XwW+rClKS+pcOc/m4T6Ullmah6tAETLkyTy8VrNTWiYxD/cdPVw3ZnR3p+vTUgeTebgqz0FpaYWMw8gF5Bo2nZ5pUqLbXXZRWqpIS515OE+oiaSlrXm4bPARyQvTYpaHi9Ky1czDZecXCvWFpWge3tbmNhj7UlqWy40klGxg9xGI55VXgGOPlafDFjqq9+k7EI+NeXjWgXhWrqRfZ6q/KvKKPbOL0tLFPNyHT8uzz5aXjUpp+de/RtGOfaDZpKVOaUk1D/eltPRlHm4a+7I0D2dIyzzcZkPGtm+3JUvEch88WB5sQbbQohLkNnkwqcV9Ky0Z6ZSlT0udOXwSZKW0tPFpqdrsEkFVWprGDt8+LV0VhqZ2KOZpxAjgnXfs7wMEpaUpH3kmLX0rLV3Mw33MXWX9iWiCnbbS0mb9/sADwK236tPnlZY683DTO6SSljqhkypvIlQWSHwd4fPj01LERFoOGCCfWwSfllYIJRHQC1L0cIaODrM6hP8v+02Ei9KS70DFiRK/e0slLVURb/nJJMU83DTJ8am09EVaTp0a/56G0rJYjCst+V081WCdhtKST1OltFT5T/QRiOepp/R507WFvJiH+1Ja6lQRfGT4sWPt0rGNCqojLSlKS98+LcX+jE9XReaqfFr6IiyBdMzDRRNplUIpq0A8aZiH6wLx6BSCxaJaidTsQDw+zauAbMzDechISxlkCy3Z8/hQHvLQqR1lykkdZOPWsGHRf1fzcJfndVnIU5BH83CqCxWqtcyaNfrfZXM2MY8+lZaq36dN018nIy110NWzpEpLSh02lVlSJSYQ7+PT9GlJJYfSAlVpSZ2X8j4tZX1iFkpLWR0U15bU+7gGCbN9jvPOU//mU2lJDcRjo7TUbSjZ+LRMqrTkn51CWsrA5vm6vASlZS8CaRlQhy1p6aKMVB3THed/0xETo0YBn/pU9HngQOCMM+q/iX6sWHq8UqVUUpt8UUjLZiktfZiHb7UVcOWV8WOUBaRqkQeodwPZNbVaRBSxzl61SDbVy7TMw7/0JWD69MZrVSoCm0A8PHbfPU4YmxaD7Hn/93/jpJ4MvknLNMzDZZMahqOOAvbZBxgzBrjlFn06NqaVsnOy8mlJBZU448GXpS2BI0JVL7JQWvLPKvq0zMA8fM1mmzXmTwaq2R6vSttoo/hvbW3Rov1zn4s2gW68Mf57sQjstRdw9NHAyJHAl79c/62ZgXhkSlhKujpQlJY6FZcPpaUMVFWhaWPRdI14Dx15USwCX/uaOU+qtAC9ysPUf9oqbRl0pJ8L/vu/o/8+FYSA3gRRdY6OtPShtFy9Wv+7bCwV89jeDvzqV+a5A0DrA+6+O+q/9t8f2GYbYMqUxrmkCFvS0tY83LfSMqlaT3X9XXdFZOV//iewyy7142lGD08yT/HhyoGqtKSC71ub5dNS1p+IpKVP8/CkSktK+lSflnlTWprMw336tOTnGy6k5Zln1tMISksSQkkE9MJKadne7qaMVB0DaD4ddEpLAPi//4t2o1esAE45RX7PWi2utGQTxXLZjrTk0zT5tBw9Ov5dp65QIS2l5ZFHRubKYh4pC0idiZqJtAQiAo03D6emY8qXCWJ9kKUzcGCkUPv1r+PHfSgtedx7b/zZqaTliSdG9VwHCmkpKwsV0jAP15GW5TJw//3AggXATjvp03FRWvLl7sunpa8JhgtpyU/IbEhLWZ1euBC44orG41mQlioiJwOlZW3UKKwXF9F8HkybUyZyXFSnszxffTWwbBlwzDGN6RUKkYn/okXAAQfUf2t29HCA3v+y83V1hLJRtmKF2peeLVEv5kW3CZck4jSVtBSv1wXjAoAf/hC44QZzvmRp8cfSVFqKZepTaTlvHvC970WfKQolhqyUlvzz+VBamkhLik/Ltjbg1FPNcweAprT8yEeAJUuiecyLLwIvvxxtrugg5imJT0vZZrdvpWVSF0Wq6w88EFi8GPjTn+LHs1BaqjbXdPCxIcu3H98KMpmLKVdCmWHHHWn3FaELzmqbloikPi1NEJWWOvNwUzrUQDxUpaXOwsNWaWlT/2T35MdUW9LyxRfj82sK/xEQSMsADq2gtDRNEoFokqwjQgC5ebhKaVksxklLla81fmEi5ouZYcnyQ1U0peXTUuVTjeLA3YW0FP0rNkNpSSEV2YRffG7X6OGqgadcblQCU5UFVNMXvszXrTP731QhDfNw084tdXHs4tOSSlqqiAUXn5ZUJFVa6ggY3XUMqqjWSUy6qKSl6n6mQDwUU0FAm8/ahAnoEssuqXk437eJhJuJ/BfrnuiDNqtAPOJzpaG0pATiUfk+BtI1D0+itNRB5+OR0gdQxz9ZG2fpU3xauiotRWWxLk1b8HXUZ1RswA9pmbXSUqZqUm30U8reVE7iBr5OBSXmi8egQXp3FLq85kFpmcQ8XPZbFj4tbTbWGXwF8xPz4jM96rqJmg+Ket+neXjelZZi3TRtyNkG4rHJmwgVaanyadlMpaWtYjUAQCAtAzh4VVqytHwpLVUDLXXXR0VaiubhsgGKah6u21XTRUFWlQdl4gIkJy1tlTI8slBaprH7m2Ryp/IlZhOIR7yvqOSiKC0p4HfVWb7zZh4uwjUtk3m4SWlJTVultMwDacn3GUlJS9kCAMjGp6VKzZiFT0sb0pJqokdRWqqgU45kGYhHNYZmaR5u2sBISlqqrlcttEQkNbk0kZa2dZmHjrSkkKGUdyErIx1pmbSv1AVi1CGJatbGPNxWaWkiLU2/U8gMk69aHkkD0FBRKtkHdWRIqrSkEHFpmYer0Kzo4SYrCt9jjW8FmWzOQukfdedQ2ous3MRI1mkrLX3Pwfl7ZKG0pOafV4GKSNM8PKnS0tSmg9KShEBaBtRhS1rqGrwLaemitHQlLdl3itKyVIp3hDLSUjQPN5GWKuUWDwrpwu4NJFNaUmCrtFRNqnhCYN265gfiYVANIhTFKeBmHs4GYLEu+SYtgcYASAyickuHrKOH28BkHm5SWlLzpCItdYsBF1AWLrpr0iItdWXmS2mpUq1nYR4+cSJqbW2o8QRWUtKSnyjnnbRUmYer2pMtaZnEPFzVJzOk6dMyLfNw3fWUjQvqvE3WbpOYh8uUlrIFfpqkJZ9H30pLVbmmqbRMYwNCZh5OhWsgHhNkcypX0jKp0pKiVE/LPFyFZkUP173PNIgT3woymcVGUqUlhbSkKC19kpZZKC35e+hIS1ulZbEof0aWf9NY6aK0bIZ5uO1YThFtBQTSMqAO6+jhruZSPpWW1EkTf53o09I1EI9IXtiQlnxZq/yTUHcMs1Ja+jIPF5WWeTEP90laUs3DZQR4GkpLgEZamtDXlJYuhD2fvzTNw22iNMquSerTUmWynYV5uKovNQXioSxgTfmcODH6zy+ibUhLEzluS1qKEDcZsooentQ8nNKuTeo+071sVGSyPOlIS5f0bJGm0lJWz3z7tJQtUG2D9dmAz2NWSkt+cWpSWtpGD/ft6gEwvyMd0lJayjZiXElLmesGG6Ulpf/MmrRM06elTlCSNWmZJE1VmfhWWqosq3ioAvHwBFqSflpEFj4t+fT4eb9N/5GW0lL1rGKZM+QxEE9QWjohkJYBdfhUWjLYLBgpSksTMUHJB09a8j7BVIF4ikX/5uEmpaXMz2RaPi2bTVo2IxAPZUeafRfv76q01E0SRfWU7plsSA6+zvggLdNQWto6TlfB5NMyiXk4RWnpm7SkBCURwfczxaK+ffJQ9Xu+zcNVda1UUr+LjM3DaxMmRB94hZiq7KmbEz5JS7GvSIPoAJpjHm5Sd5ruZdv2xDyplJqFAq2ck5JwLkpL6j2zUFrKyBYdaelTaZlVIB6+Hpg20VWbXSKYpU7elJZUn5a2sCUtTXXcpExMW2lpyp9tv5BHpWUaaq8kaQ4ZIk/PRWmpO6dVlJY+34+4IcWTluJzNMOnpa5vNpmHi3NkKkxKS1HAYEtaUviPgEBaBtRRsJkw5UVpSZ2A6YgRtgi2VVry+f3oR4Hrrotfw0PWcavyxq6nTrySmhZlTVqKgXhY2TZbaalacFCVliafljJFQJZKS1bu69b5MQ/Pu9LSp3m4avGZN9JSbENUE3FfPi1dF3c2Pi11SktP5uEAUONJS75tm9qIyTxcF4iHgrSVlraBeKjtleKHy1TnWVnpyG8biPfXkZY6slyVHgPVPLxZSktKO5cptihKS53i26fSMu/m4bq6WavJFUIATemlQ5rm4T6VlmK/aHMf0wZLX1RaUjcwbEhLXd3Im9JSNreRWYdkobSUlVuaPi1trUdsISoF2Zyrvd3uPlkrLVXm4Tz4Mcqm/snuyY/P//63Po9BaekFgbQM6EXRRrGRRGmpuo6y02CaJFLBdwKsQ9aRlrLBR8zLU0/J0wfyrbRMy6clRWm5cmX9c5aBeCiTO9+kJaBe1CQhLadNU5/Lp8PKvVKJ75zaTEJ8ROETIS7ofZGWWSgtZaobU33cYov65/Hj1ecNHRr/TqnnYt2gkpY2Sss8+7QslWjKXV0+2fvhy98Utdd0vzSVlj5IS0rbsFn8Uu9h2mig9smq800Q35VqgVoo6JVgqvRs4aK0pPbfvs3DZUpLGdGtUyolWYyJpGkeAvHo2oxJaamaf2+1Vf2zOCZQYCKWdUhLaSnCpLQ01RN+g2ngQDvrjREjjNkznuObtMyj0jIN4iQvSsukpCXFPJxafnkxD5cpLWX9gW+lJWVTWPW+VObhPNJSWorniu/DNRCPzgqpHyKQlgG9KFKUBAwqpeUWWwCXXcYlSlC0MaSptNTdy0RaFotmpaUI8Rlto4fbKC1byTy8WLQnLU0DSx59WuoUZbLvfJq25uF//jOwww7yc2WkJQCsWVP/bDPZeeut+uexY+X3SYoslZZJfVq6KC0PPxw4/nhg222Bf/1Lfd7w4cC55wKTJgG33uq2aEhKWlIVHvw1OriQlvz9urv1pKXMdIiy4Js2DZgwAfj2t+tqO34hbENampSWeSQt+fevCsSTlLRk5+usDKiBeFRIUpaAejwrFCLy6ItfjP7ff7/8vKQL+zSVlrpFlwtpSVFaypRP4u+uMLkD0SGJebjuHHGxauPTUtWOd90V+OxngcmTgdtuM+fpd7+L5uE/+Un0vRUC8ZhIS9O7OPdcYNiwiMg6/3y767fZBvjCF6J2/cAD8nMmTAC+8hVgyy2BOXMafzfVY9s5TZo+LVVrKSB78/Ak7V8W4EtGWiZVWspI/kGDgK9/PZqb3XEHzTycWn55MA8X+7EkpKVMsKNTWiYNxGOaD/n0aWlDWtqah48YEdWzs8+2DzDYh+FpmyygLyCx0vK44yICJZaoQXViOlf8zZfSkk+HkZZJfFqKSGoeLlNaqsonr+bhKlWIirTM0jycQsaoFLUU0lKVZ5XPtiRKy8mTgeeeA374Q+Ab34j/piIteRLGZuB+//36ZxawxDYNEXnzaVksNu7WqpSWLqRloQBcf73+HIbvfz/6A4AHH6Rdw4MajEdlHm6rxvCltBR/YzCZhzPS0rRYEPN5zDHAN78ZfWakKIW0dPFpOWxY/Lek5uFsbJo2DTjkkKgfsEVHR9zvE6A3D+cn5UmUlqbxnOqyQ5ZHCqgqNHa/n/3MLj0GX+bhVPJCBqZwYfWlra2eXlpKy2JRvwhPMm6Y6ooOvkhL1dyN9SFUv886pWWhAPzyl+a8MHz609Gf6r55DMRTKiVTWn7xi9GfCrqyr9WAn/9cnz4A/PjH0Z9t+kA6SkvqhqLMrYPqXN1z5E1pKVMdp6G0lLWXtjbg0kujPwD4y18az3H1aZmm0nLqVOBvf4vP3VXpy5SWLoHu0vBpaRuIh0ezlJYi8WjakF22rP7ZRlDWxxGUlgG9SKy0pPqpoARcUKXjQ2nJB+IB9EpLdp4pergqvwy25uEypWVfCcTDEyk+lJa+zMNV5KRPpSWFtKxW7UhLBhMpQFFaUhfXHR3AmDHy+ySFL6Wlyc+V7BxAPjGjKC2pyjNXM56slZYyH6xANj4teYikpUlpadrBlh2TnBPzablqlfqeIkzkeBKyBVArLXVmUyZQlJaqMYt3NaFDHn1amky4VOepkLQfNCk/KQS8Dnxd49P25dNSphDLo9LSlRgQYVKr8c/nqrRMavaZRGlpqs9ZKS2TEmYmwjgp0jYPT0NpaVumaZCWSdIUN/9Yeln4tBTbkMqnpYt5eJo+LSsVmpsTMZCMT6WlyaclRWmpel9Z+7TUrVl9mYcHxBBIy4BeJFZaUklL1UTHRWnpEohHJC1ZJycjLdn9+Amlb/PwpEpL1sm7Tr6SdJY62bpqYPXt09JloSi7ZsmS+PckpKWtT0uRiLCpW7p78umKAZBMedVhwgQz8U6FL6WlaROFOumQkZaqZ5X5N/NtKsaQJmmpmlBlFYhHR26IPi0pSkvTPSnn8D6zbPpWitksjySkJR+Ip1Ry78tlpKVu4cx/fu892j1YujrXKEnNw9NWWtqmZ4s0lZaAmrSkzNNclJYm0rLVlZYmksiX0jIJkpCWvA9rGXwpLU2kpe/NAB7UjVod0jYPdyUoZcdUaykTKOs90zW2v+tANQ9PQ2lJ2TBJ0zzcVWnZ3R2Vm22ZBKWlnQBLlsck0cMDehFKKaAXMaWlyaywWUpLyj1loBBPOqWlzMeajXl4XwjEIxsMfAbiSbpgtIHs3b37rvwclQJTBCUQj0ppKZKWLkpL08TWh09LBtG8JMmAm1UgHmpfJDtGUVramIe7IE3S0kaNYaMwp/5ONQ/35dOSMh7IFkUAbZFrqos8kpiH80RHEtKSoiahqsZUoCy8qYF4VEjq0zItpSWVGDHlh0peqKAiLQHz3Eo2HzGRvqVSehGJ01ZaUsrVtFFoo7RMi7S02UARMW+e/nefSssk0cNNSJu0NNWVNJSW1LE5LaWlbu7PYGqTSd5rs83DeagC8aRlHu46DnR3R+fJVKoiWlVpmaVPy6C0zByBtAzoRUxpaVrstprSknKvUsnsdwJw82mZZiCerHxaytLPInp4GjtQlDRVSkvVtUkC8fD3aAXz8EmT1PdJirRIyzSUllmah7uUC5W0VN1LZhKqe74sfFpmZB6uJC0pMCnQeNj223xe+bIol/0qLV0jIavgYh6eF5+WrukxuPq0dA3IoYJP0lLW1mTX5NE83FXNJMJU9lSlJe+b1iUfOiRRWr79tv73vEQPp6SvQh7Nw30qLVVjXVLS0jWqtiwvLpCRlnkyD3eNHp6m0pLNNXQbBAyikEKVt2ZED1c9K8U83KfSUjVfoCgtqWKYgBgCaRnQi5jSkkJa+lZaZklaqshIig8pik9L06KVv5ZqHt5sn5Z9SWmZhLRMYh5OUVqK7gtE+FBa8hODZistxfu7vm+TuSB1A8XGp6WLeXiWSktqIB6V2lVGACaZXOnIfJ+BeEz3JJxTS0Ja2oxTvKsGCvj6w4/Zso0uKmQLM6p5OBUU83Cq0jIt0jKp0jLpwsPGQoPBh09L8TfZd4rSUva++pt5OP8+VP4tZVBtxvgmLW2IeZPLqGAeHsH3mJ+mT0uWF9u+xIW0TFNpKVMLZqW0bLZ5uOs4wNoz1a+lCFlZ+I4eboKMEGSgmIe7bkzK7qmau8nyKAqifLnF6mcIpRTQi5KN0rKjw11p6TMQj8tOr4oU0pmHy+5po7TUqb6SKi2zIi1tlZaydGu1OJGyYkX9c5ZKS8ozs/u6kJaqPKdpHm7afVW16WaTliJ8kXpZKy3zSFpSlZZdXXJiVrYASKJa0ZFNquezVVpS+s0k5uG6dFTp6RYivOqZAhVp7moerlp85kFpaesOxvb5qYROVj4tTcrPpEpL/npbpSVFdW1LWpZK7qSRLH/U95SmebiYJ2p6aZGWvjb6ZfBlHl4qNU9pmYV5uG2/QNmsoJqM+zIPd1GlZ620lBFiSduxq3m4aKrs0zycMpbKYENaUtfuWSstZXM8Bop5OIVsV+VNhOhSjD/fZB4uIigtSQikZUAvCvyC07RgS6K0bHYgHtW9dKTlhz9cP7bjjvHfZDDtxKlIEP56qtJSZh5Okf/z96JARkjoOmLV++QDXFBIy6yUlrJJkOxc1Xun+LSkBuLxRVry6ahUd/x1e+xR/zxtmjoPW2yhvo8t9t/f/VoetuaNgJx0748+Lbu64hNZ1v/bmoebSEtVPdERDvx77O7OTmk5ZUr9y/jx3A8OPi3FiTvftiZMaLyeb6ujR8d/4/MqKi19kJbsPegIM9W7GjdOfR8fpCX7fsgh8nvIxnAeYln7VlqaNhZNcFFa2vS9fD5MpKXOOoR9N7WjYlE/jvhUWgL0+WCa5uGuSktVv9ZM83C+D5TBp9JS52cvTdKSzeeToJWUlq6kpe0GEuWcJO9VtkYtlWib1SKyUFr6NA9PqrS09WnJ4BKIx9anJSVNX0pLl3Gdv37vvdXni89j8gEbSEsSAmkZIIdpJ4aqtKQGugDyobQUO3N23m9/G5ErJ58MHHusPC88RNJQZ7JANQ+3UVr+8Y90MiiJeTjlnfGo1aK6wzr+Dz6o/9ZM8/BSCfjHP2j3T0JaUpWWusmBasJhmsRSFuRnnQV87GPAoYcCl1+uzoNIhrkuPmfOBL75TbdrRbgoLTffvPFYUp+WprJwVXbo2tquuwJ33dV4nEpadnYC3/9+ROpMnAh873vye6ZBWl5+eVTmFNWiL5+WlE2sHXYAzjkHmD4d+Pvf1fdU5YOHWBf/8hdgn32Az34W+MhHGq+///7ovuefD2y5pTrvPNEhGzMo6OiQ10kdgcjn4dZbgZ13Bn76U32/RXkPJpNfRub+6Edy4rJcjspu660bf9tzT+Bf/9Lnqb0duP56cz5VaIbS0mZ85JW5OtKyowPYZBN93qhKy+OOAz7zGXl+bNSRImRzP+p80Jd5eCsoLZOYh193HbDppurffQbisbXasYGq7D/5SeDEE5OlDfgnLbOIHp4H0jIvSkuTSMA0nqsC8bj4tKSc5+rTkvX/FLdBzVJaUvKlU1ra+LSkgs/bAw8Au+8OfPvb0XrpyCPleTT5tBQRSEsSPHlRDuhzMCn1ZEpLqqllEp+WNmZ3PCjEU7ncSNay+06YANx7rzkNhhEj4t9tlZYysykbn5Ysv2edFS3wdEhiHq6D6n0WClE5L14cP95M8/C5c9WqAippyUOVZ9Vkh79HtaofWFVt06RkUqUpnnPTTdHnZ55R54ESmduEffaJSIS33rK/VgYbdTPDVls1Hkvbp6Vv0rKjA3j8cflvNkrLz342+tPdUzdhBOxJy4cfjsgkHVSk5ZgxwMUXRxtJuvw5Ki0BROm7wKRa22qraPKrwi67AP/+t/w3Vf3zrbTUtR++r5kxI/oD9GMNxaelSWnJ6vMmmwC33w5ceilw9tnx83fbDXjiibgSp1SK6poImdLy+OOBUaOAAw9szLsJSccqW7Wj7T15YkwXdHDCBJqK0mSFwEjJ3/wGWL0auPFG97yLSKK0pBB3SckOQK+0PPVU4PXXgXvuib7n0Tx8t92AF16I2oMMPklLHXxvBgDR/NiXlYfv/GehtLTNk4tgpC/4tGRp8huE1EA8FD/3Ihipp/Mn66q0ZPmhRH6nulPSwYW0pJiHq57VNno4FXx577478Oij9e833ijfZLAlLdNY5/ZBhFIKkEMk3UQkUVpSAi6IUA20vqOHb7RR/DddnnS/NVtpyfJGGciyJi0BuZK3mUpLHbljWpjJkMQ8vFbTD6wqFbRpEmtbvjYmMy4DLitHX4O1SQkge05RxQbI+xTVJoMsoFHWpKWu/KiBeFSmibIy9Km05MuaqrRkeW1vl6sqXEhLX2aOqvR8+pHj8+7DPLy9XV4nXczDdX21D/Nwk8Jb1aeo2ohK2agick0wjdEmmMzDqeSFCjqlJR8UT/RZLLs3RWlpmkslIS3yoLQ0kQe66OGif2BVH5x0fExiHg7o50a+1EGmZ0xDaemTJGiG0lJ2nNLGdPMUXT/VCkrLUsm/0lJGhFLMw3kCTUe0yeBSbjZKS1fS0jYQT6HgPxCPTp1PMQ/n82NDJKugepbg0zIVBNIyQA6K0pJCWiZRWsrUTS67fSJ05uFMBSjLgwhdJyuWn4vSkrrwkvm09EVa8tf7IC3ZACerX1kqLW1IyyyUlvz5JqWlirR0VVpSiRcePpSW7BpfpLSJKEpDaSlLP63Jhypd3f1slJaUtE2kJWWXnAeFtBR9WrK8trXJFyi+zMOTwNfmmgx83n1EDxfNw1VKyyxIS1PwF7E+q/pm6tipWljI1CEU+FbFUTaHfJmH86SZjLR0VVqqrpedb4O0lZaUcrUxDzep1vNoHg40KnJ5ZKW0TDqmysrQ5zjtm7SkKC0BWj9HNQ8vlfRzfBfSMs33SjUPT6q0lBGhtubhSU3xRbiMv4CatKSMzYCdeXihEP1lHYjHxqcldTPRRGrL+jPRoiRN1XE/QiAtA+QwkZYdHbRBLInSUmZG5roYpBBP7BhPCpkGMxkGDmyc6NlGD7cJxJNUaWmK7slgGgxE2CotswzEI747nSLNhbS0VVqK5uEuSkvTxCOvSsusSEvZfYYNa/TdZuPTUpZ+1qSlruzTIC119zNtbOhIqmYqLX2TliYz3yRQER3lslvfpCLoXJSWOsg2KWyVlmI/rapPJgWg6vqkSsukfVkzlZY8KKQl1ael6jdZmjZIOxBPFkpL/ty0AvEk3UDR3d+XQt1U1j6I2zQ3qlpJaalaSxWL+jm+D8GIKU0byALxyEjLZiktefNw2+c0nU/dhBOhIi2pPiZt5jEsj1kH4uHnoFSXdSbYbE4BbqRlGuvcPoiWJS1//vOfY+LEiRgwYAD22GMPPMr7GBDwwgsv4Nhjj8XEiRNRKBRwxRVXZJfRVoVoJi2CqrS0CcSjW0gmJS1FyAZ3ln+q0lL12/Dh5rLhf1ftAlMX1mmahychLWX3ZnnNm3m4rB6x+1ImhqprRah84fhQWprIGVulpa79+1Ba+iYtTRNLFakrLtBdlZZ5NA/XqWR4UElLmZKRRxLzcBVE0tKktKT0my4bEQwu0cOzUlq69E1JA/Ho0jb9Zhonxe9pm4enpbR0VXT49mnJk5a6xdukSeb7UJSWps2evmgervrdpLTMKnq4zw0UX0pL36SfDGluVLmSTCpQlZYUqwIbpaVu/HZRWpqQhPQeMqTxeBpKS1matj4tbZ/TlGeXOTtQf78U0jKp0lJVz1TWOmkoLUVi29WFjqlcZfNQkbQ0tZdAWpLQkqTlDTfcgFmzZuGCCy7Ak08+ialTp2LGjBlYLAb26MG6deuw5ZZb4pJLLsGYMWMyzm2LoqNDr9KhKi1tzMNdlJau5uG6wZ1XmfLRrVXni5CRlmkqLXXm4ZTJEtUE3tY8XAcbpaVvFZRtmlmYh/P3cPVp6Vtp2R/Mw0ulxgV62kpL36SlqwsLHirS0tanpa15uIvS0od5eNZKy7R8WroE4qEqLV1IS5v7yo6ZSDDf5uG+lZYquPq0NClPAbu6y+dDVyd9+bRMU2lpsyEuIivzcB6y+ZxKNe16D8r1PvuirMzDfcBl85mKVlRayo77Ng83wfW9l0rRhqys//ettHQ1D6/V6uOzbV1LS2nJ4Kq0tOk7VPN7pnpW1cukgXh0pGVabl9MSstSyW+/24/RktHDf/SjH+G0007DyT1RQ6+++mr861//wrXXXotzzjmn4fzdd98du+++OwBIf5dhw4YN2LBhQ+/3VatWAQC6urrQpZpctDC6urrAN6nuUgmlwYNRWL1afn6hgFKhEGO9K4UCqpKyEZtqpViUnodKJXZuDQBr9tVCAZWuLqBajZ2jTEtAqVbrzWutJz1xGGH3KA0dWj931Sp0K9IvVKvSBlQdPhxV4bfuQiH+vVpFjaUrPDcAVEslQCjfLsl5ANDd1YVaVxdKXV2953dVq0BXF4rVasNzNlwP1PMioFwq1d9Bd3f0DgSoumLWTmLvq1JBtasLxY02ashXpVSSvssy6vUAAGrFIgrcwOTSHgu1Wux9yPLa3d2NWlcXCpVK/N0J18rQxfve41AqFmPvtFosotLz3nrLo1ZDta1NuaPU1dYmTVt8JkCoZ8Wi9F11dXfLB2VFfQOi9h/Lg+ZcFdizi9c6969C39BVq8XyKL5HIGpTxS22iNXFarncUPasPQHqdt/VQ6jF3qUErL1aQ3g+hlqxqO6jurtJg3yts1OehnDPWqGAbkU+AKBaqUj7iF6I7xroLVexr+qtB7Va/Zprrqnfq60NVaChXy0VCrH+oosnOntQQnzHlm8nXcJ/EXx/VKlW5X2WkAdV3+YErgyrnZ29z1EtFFAl9E21YhEFbnFabW9HYe3aej9fq0XvsFCIvasq13fVCgVpfRH7ah6sT4yNxcVi/F0JaYp9WmXAgFg5Fmu1eJ3h2mm5UEChZwFUK5Wk+RXbam+/Jjx7d6VCa7Pd3dK+TFsuuucR0ov154p7qiDO8cT5Wizf48Y1tBkxb5Weso0dE+ZVvX08GtscAFQQ9acu1EW1VGroa8rlsrKceXQXCub3SRjTKrVaQ7vm2z7fH4p1rYKoTrBn7163Ttp2ZfewQUOdAnrfren5ZPMiHt21mtNY1jCn6qnX5QEDUFi/XpmPJCiLfY1kXHCFuBYSoZoPKiH0P12KSNLiM8n6h4Y+tGfMEucxtR6fliw9cZ5dFeeupZKx3fJrOBn4/loGVb2rlUro7u5GedAgFNau7T3eXauhKOSTUvbieM2ju1pFSehX+H5Nl9daVxcK0M/RpPkR3qsI1TPpnqP32q4uFNvbY31CTXi+rq4ueX9dLjf2d7Wa9J41oPeZY+NOT39WbmuLzUPYM5nmrF2VinJdW3vjDRROOqn+fciQ+NqxoyP2HsjzY8V8h0Ecd7p7xjR+ntMNaNc5Yl74301z0laHzXO1HGnZ2dmJJ554Aueee27vsWKxiIMPPhgPP/ywt/tcfPHFuPDCCxuO33777RhEjcjaYjhg0iQMf/NNAMD9S5dieq0Gldby9jlzsPuKFRjFHXv+pZfw1uzZ8RNrNRzFLR4A4I158/CieB6AttWrMZP7Xq1Uejum5StX4sHZs9GxYgUO4855bu5cvC1JS8QeixeDaWzXrlmDRfPnYyvhnHcXL8YTs2dj2urVmNBzrLBmDWYr0t/0mWewt+T44s5OvPvcc9iFO/bEM89gDz7fzz+PeT3pDlyyBIeKaSxdivK6dRjJHbvl1lsxY+hQdPQQ6AwPPfggVixdij0WLux9xjvuvhtdQ4diuzfewNbS3HN5efHF3ryImLbHHphw110AgKcHD8Z8yXkfVaTLyo3//cUXX8Qbs2dj8uLF+JBw/rNz50rzsf/q1eC0r6i0taHMbSio3o8OW7zwAnaW5PXQTTbBwGXLAAB3v/IKPlixAps89xz25c599IknMHHPPTH2kUeU6d//4INYvWBBw/FdlizBeO77gsWL8eTs2dhx/nxs2XOsVqng7ffeg8RAL8rrLbdIj49/9tlYnQOAh//9byzvqS+DFyzAwZLrbrn11mjCKmDg4sUN9bL3mjvvjF0zYPlyzFCcq8KipUvx6OzZ6Fi5MtamXd4nALStWRPrP2bfemvs9+GvvooDhGtuue02jN+wIVYX3lqzpvddMNx1zz3Y0KPAHvfss9hNcv975szBB3PnYts338Q2mnw+9dRTeNdhDCl98AGOlBzf0NWF2xRlNnDRIuU75PHadttJ++SO5ctj76aruxt33HknjlCks2LpUjygeX+D33svVgfvuu8+bOhRDm/7xhuxcmP1QFVvl69ejVeefDLWBz/z3HOYsm4deBf99z3wANa89Vbs2t0WLcI47vvTzz2HBUK+77jjDukzHMlNmOfNm4dnJc974Pr14Pf45772Gl53rNciNpo/Hwf2fH5/6dLevnHee+9h+fPPN/QBALBkhx2w6fPPAwDe2203jOXmSktWrkTH++9jeM/35cuX48HZs4FaLdZ3L1m+HKN7Pq/fsAG3S57noHXrIDHaAwDccddd6BoyBPutXIkRPcfWCueLbX+zZ57BdO77i2+/jTe4cya++CKmcr/fdtddqPSolP6Dm3d0dnfjVkl+d5o3L9bP3n7vvegeMgRtq1bF+pKHHn4YK5YvVzxZHUPfeAMfkTzPwevWKedS/DNPfu212Lg4e/bs2Dt49IknsEQgMIbMn4+DDPlaP2wYbhPSev3ttzGXuzf/2+wnnmjYyBLL+rnnn8fghQsxhTs27513YuW5YtWq3v5g6oIFmCjka+6rr2IkNzezweIVK/Bv4Z1+eN06DCNc+8Cjj+L9pUu15/DtTIUXXn4Zbwp5OKyzE0wnt2DBAjzZ8/vkV16Jvdu33n4bg5YuxWY935994glp233rrbfwfIK+Y8orr2B77vvsO+7oVQap5m6950rmcDweefxxLOPmYlRs/swz2JX7/sxzz+Gd2bMxdb/9MFHS77rOCXgcgfiC94GHHsKqd99NnC7QOJ6IuPf++7H29dfJ6Q1Ytiw2n1I9/+HVKnjt2BNPP42Fgopu+CuvxOY9z73wAt6ePRubPP98bF7bXamg+sEHvXW3Wi6jxLksWPb++xg4diyG9JTZ221tyjkqw5q1ayHxPNmLe++/H2vfeEP5u7h2ZKggKpMZ5TL4p33mhRewybvvxvqZe++/H2tfe02bzwPWrOkd/0Q8+cwz+NCGDbH++90lS/AE905KGzZI52YfvP8+BiEiZ2+xqMOHdXdDF2v61ttvR1Wi3DsS+g1zICq3LV59NTbn7axWY/ebPXs2dlm4MLZWAYC3FyzAc8JzHKEg/mrd3dL+47nnn8fbs2c3tMf7HngAa95+G8OXL++tr6u22AJD582LpXv3nDkY9/LL2EFyT7GuLO7o6J2zAMCGQiE2V6auW7q5Z5HhMKH8HnjoIeywYkXv+r27WsUDjzwinRswjHzuOeyj+R1Qz0lbHevWraOfXGsxLFiwoAag9tBDD8WOf/3rX69Nnz7deP2ECRNqP/7xj43nrV+/vvb+++/3/s2fP78GoLZ06dJaZ2dnn/tbu3Zt7Y6rrqp1z5hR677wwlpnZ2etusMOtVok1m7461y5slY55JDYsa5f/EKadrW9PXZe97nnyvOxeHHsPP66yv77R+e88078ntdcQ3q+yhFH1NPdaqta95e/3PBMlU98otbZ2Vnr/upX48+qSLPr9tulZVP5xCdqXddeG8/n3/+uzvcbbzSmcdRRtcr++8fzsX59rfPJJ2uVGTNq1UKhnta990bPeOih9XMXL46e5ZxzlO+w9/pf/1pddosW1SrHHVfr/uxno/tLzlHWEcnv3ZdfHuXr5z9vzMe118rf3W67xevFxhuT3o/ur+tXv5Kn8fTTtcqMGbXuH/ygfu5dd8Xzedtttc533qlVPvaxWnXyZPmzP/mk/FlOPDH+nk88MSqPL36x/nylkrR+GuujUOf4utHZ2VnrfPVVeXqK99r5+uvS86uFQq1zw4b4ufPmGeuZrI7L2rRzP7ZsmTadrocfbnz2DRuivuzjH69Vt922VvnYx2pdDz3UeN6CBfV0/u//5OX46qvRuzz/fH17+8Mf3J7v/ffl72PsWO113ZdcEtXpyy6rVQ48sPE9HH98rXPZMvn1wrupjhhR61y+XP1O99pL/wxz58bL7L336vk87zz5+xOu6b3XQQfVuu64I162v/tdw7jV+fzzje3wuOOU72Tt2rW1m2++ubZ27VrpM1Tb2ur92ec/Lz9n++3j/d5Pf+per8W/Z5+tv4+pU+v3OO20WtdvfiOvc3/6U63ymc9EY9xTTzW0w+q0afXvbKztjPfdlcMPr993/Hj5c0+Zou63esakyp571tPZZht9m73ppvhzCHOM7p/+NH796tXS91TddFN52/jCF+LXr1wp7Uu67r+f9m4ee0z6PNWJE9XlIrRV8bdYPm67rfGezz0n7xfGjYva/IwZveNRrE7+93/Hy/r222uVAw+sdf3v/8rL6mc/i+fl6qtr3V//ejxNoTwr++5bv/600xry2H3ppbXKzJnKstH9dX/2s43tetddSdeqxufY3zPPxMuTm3P1lsGf/9zYBkaOrD//CSfUn//SS+P5//KXa5WjjoqVp/Q5v/zlRP1F93e+o6xvxnIynNd1991OeRL7qd46t2RJQ98s6xdc/qpDhtjXAeJf5eMfj9eVcjl+rxdftEtzwQLS81dHjIiX4403Np73yCPxc375y+gd3HNPPM8jRsTSqw4bFm/Ln/pUrfO552qVww6rdX/ve7XuH/7QWH/E/r3hvc6dq39nkjZXA2rVoUOj3ydNij/bHXfUuj//eat7dHZ2xsa/hjr+pz81jGuVT30qnsbatfJ8jh4d/VeMP8r8jBqlL7c1a+TX8WPejjs21EtWl8T2Vx07tuEcca1SA2rdX/lK4z0HDpQ/e6Eg7T+6rroquo7rJ2tArfPZZ+t91re+VavMnCkd2zrnzWvoS/nn7n1H06fXun796/ix3Xdv7B97xsjuyy+Xzo/5+kZ9X53//netst9+sbYkjicNfaIwl+V/M81JW/1v6dKlNQC1999/38jNtZzSMit0dHSgQxK4oq2tDW191DfB2s02Q/Uf/0BbW1u0WyNzdNyDtoEDG/xglDs61H6GuB27UkcHSrLzhB1Cfp+/WCqh2NbW4OulPGCAtVP1AiC9f7G9PbrHiBGx48r3rfCLVBwxAkXht7LwbOW2tnq+JekU29oa/GS0tbcDO+8M3HorcNZZwI9+FKXF/GVwphxt7F0Q/M4o3xsAjBoF/PnPAMw7eCJk5VYqlaKyFyM2AygPGiTPh1AOBaG8fLTH3jSmTo3KF9zzCumXOzqAceOAm24CZs8GjmjUnbWpylTIe2+d499TtYqSJrKr8nklx8vt7fXjCh+1be3tcvNwRR4KbW3RNTx0gYMUKLa1Rc/u630K+W1IR9LO2trbo+M33ACgx1zv7bcbz+Pfp6Ld955j8JdWdvVvU6tJDxeKRX2ZnX129AdE/cbmmwNMBbzDDihef73azEvskwsFtGnqZrFWi96pCkI9aePbvNjfseOK+xXb21EU+9X29sZ0ZG1RHLv4dsLd31QXS8WifCwT8lAaPFh+ngu4+lXgVHclTd0rDx4M/OY3AICioFwQy7BYKEjfYZF7pkKhIC8bjS+uNlbGXF9TUL1zBnG8Hzo0/p7EdzZgQDyCOHPpUCrJ8yvUg7YhQ6LrhLlPbLzWwaEva9M9j2zsIfRrQPTMpbPOAs46S9q+G+ZhhxwCHHKIui8Q81IuN9xbrOPFcrlel2TzAVlARyJKW27Z2KaIbaxNNdfgIdS9Qns7IKgKy5Mna9OJtSXhvJLgK6+sCILSO2dyhaFO6S/Vn0uefxvy1Nv/jhwZzTd/8AOAc+XlZc0l1LM217zLIKRTKJdj/obbJOOLFkL/o3x+4Zmk/YPYh7K+TGi7hWIxlueCcF1xyy1R3GEHgFn6EALaFgy+AJXz5HoC0nlPb38uWKyUJ09u7INN9wC0Pidlc4PeeXvvSfJ1VqFn3WucozVcSCg32T150+fRo1G44QZgp52A88+vX9vW1lC/CuI4KFlrA4q1u2peWqtJn7lcLkflKc7X+ffUY+ValLkjGziwsb21t8fN5QsFFO+7D8U774ydV5w0qXFu0zNGAgBmzZKWvXK+U3+oxmfhOYdSKco3f45hTiq7X1/ln2yeqeUC8YwcORKlUgmLFi2KHV+0aFEIsuMbukA8skAxKoJMnFQTB2Dpbz4C8QB6h9V8IB7bNIBsAvGIgVuAuANiX4F40oJNIJ40HMlL/CYpoQvEY+sQWzVQ8Qv5Wk1NAurapCkQj6/o4ZZkhRK+o4fbOsOnOrcX004aiMcVLtHDZeDLwdR/ygLx6O6XJHq4qh6o8ijblJFFlpTlN0n0cArE9DRErzVcAvHw18iih/Og9AdpRQ8X4RqIR0zbNpCFbrxOE6Z6SAkqZTrOYDuOmqJfy84x9ZtJArDIIpxTn4kSiEfMm2z8lAUsoga2a1YgHp9IK3p4FsEXfd7D17qEgRrh3Xf0cD4Qjzhmie3NR6Aq1wBG7Dp+PCgWow3ZZkQPV92DiXV8B+KhPBN7f7J7UwLx2ATRtQHLu5gHaj9VLpuDCY4dKw8mLBszfMA0NhYKIRCPJ7Qcadne3o5dd90Vd/X42QOAarWKu+66C3vttVcTc9YHoSJI2GSLGk3OsKPQC0oUXBMZSEGtph/cVdGZVeeLGD7cTLSZFlQy0lJ1PSMtZdHDKQNB0gmWy+RPVsbU6NbUCZ0OuqjwInQLM9vFu1jW7Lsqiq0InS9E06LQttxU79UUXZsKG2LdJj0VqNFDTeRKUtJSsTNthCs5oTvflFdKxGAetqSlbfRwHirSMsvo4dQ8p0Va8kSHK2nZ3h6vk5Q+zYW0lEUTTUpa6jb2XEhLWTqy7yqozuPLlzLPUcEmArepbduO+7KyNkUPN/U1STYLZIQhdT5oaZ0DoJG0HD5cPo+hbgKKC1vOGomUHhU+xlfXOqaCaQOx1UhL01pIF5VbBupcjTKnkY3hsuPFYnz8Fscssb35IMNdyTkZaTlyZFTuaUQPp65hRaRFWlKeib0/WV4ppCXBUgyA/XyW5V3MA2VzGZCvjcV8sboqzhdkY4YPyOqcOBcxjTlZbYy2OFrSPHzWrFk46aSTsNtuu2H69Om44oorsHbt2t5o4p/+9Kcxbtw4XHzxxQCi4D0vvvhi7+cFCxbg6aefxpAhQzB58uSmPUfuoSJIVESLb6Ul3xkmJS1FZaJucB82jJamauCQKS11u3+yzqpU0g9M/DVsouFKWiZVGbW1NZhNKcHeqUzNSq0XSUlWIJnSkqI4oqoUVW1JpYrUuGwwkm2yCYeufujIIt19qJCRGEnQbKWlSsHgC4WC3FzK9n58ObQyablypT+lpe9FspieT9KSzztPdOg2ukxKSwppqcoD5bjqN1O5i+9XnJNQN/ao5KQKPs8rl9UkhovS0nYM4vNhA1m7MinmTP2mb9KS+kyUeaNJkUxZAOvIatafM+RZaTlwIMBFae6FL6VlM0hLn+O0b9KS+vyUclOdI2ur/PitIoIYfNQr13fAype3NBg1Kv4bQxZKSxVYm04yR3P5HUiHtMxaaakiLU2ioDySlj7WrQGtSVoef/zxWLJkCb71rW9h4cKFmDZtGm699VaMHh3FiZo3bx6KXCf07rvvYuedd+79ftlll+Gyyy7DAQccgDlz5mSd/daBSmnJ+4ySHRdB9TtEUSBQ7ymCYg7I0ho6tPE3GVT5HTTITK4mVVrKzMNbgbRkaLZ5uI3SUld3bBfvVNJStdOuMw83TVhl5UZRRonwrbT0RVqa0qEujEzl2CylJUtbiB6caIFnS1rKiAoetqRlkv7p3XfdScs0F7Cy9PJsHk5V9fDv1qXNUhclPGzNw1XXJnWt4FMFoRsvbdsj0FylpemepneQpO/adNPGY2mah5vMZRnyprT0UXcHDJCTlr76zVZXWprm+7akJRUmpbPsmEoAUizG8ymS9JtvHv/uUq/a2+P1PKnScvHi+jHWH+SJtKSk7+N8GZKSlrI+0ofSktWxJEpL0xyG9c3iJmeW5uGiOCCYh3tBS5KWAHDGGWfgjDPOkP4mEpETJ05ELclCsb/CRFpSFXBUaT1FNeGqtKTci3U8G21ES0M1YZM5l9f5QHFRWvK/yUhLGxVb0omnjdkxy6tMzapKJ29KSxvVnQiqebhKaakzDzcpmQqFxkmjC2mZV5+WJiRRWvYl0lLm+1YF1QJA9H8lS1sG6kYMD1UeFyzwR1ralCHl/bWyebgKtibklN9sSTqTebjqN9t+WoRP83DdeGl6D5S6bDrOYDuOJvGfRz3fBrKyztI83IfSkkJaJiUwfBAgQhCJXrSy0tLnPUxiCtO46ArKM9n4tOTzKdZ3FzJQ7M8GD47X86Q+LZcsqR9TKS0p79mWtEzad5rgSx0NpK+0tK3b7P27Ki1la2OqefgWW5CzacwHDx9Ky2AeTkIKI0NAn4EvpSXVPJxCoPgisHQ7klTSUkfqmPLpU2kpmodTSDUePpSWtujoaJwIU+uFb9LSRLrqVFm+lJZU9VOSQDwAPegG0Hrm4dT7Mdj4tKS0qaxIS8oxHfhJpqktqdRVqnumQVqq8rhqVeNvMuKOsoPve5GcJmmpMil1JS2pfYKtCbkuD9R0+gppyUPX5kyKrLwpLU2uKtJUWspAfSbKRqsP83AeJqXl979Py4ctfBIgIlqZtMyzeTgVlGeikpai0tJmY18FGWkpy4stWN6XL68fS8s8vFRKrrT07dOSgrwG4mFzForSUkSp1OhWA6CTlqp+LClMSksKaRlAQiAtA9Tw5dOSah6ug0+lpcmn5Wab1Y/pJqaqgWiHHcwmzWKHJiKJeTiFVBPvlQQ9vmStMWJE/LtqIUElvW1w0EH1z5/9rP5cndKSGjyIIal5+Mc/Lj8uS4OSblrm4ZQ6xcoxjQWKDGkrLVWLARG+Scs0lZbiOawMVfdMQlrut1/98wknyO/P45RT5G430lZannZa/TPfj+jSy0JpSfVpKesTslRaysYuFcR+xLd5uG+flmPG1D9PmFD//KlP1T8ffbT6elFFLcKG+JWdO3Nm/fNuu+nvZUpPRlrqSBSVCuw//qP+nWq1cfDB8uNZKi1tzcNNSksVmkVa8vPgE0+Un+NK/JncNaUxJxDrls97yOY/W29d/z5unL978dC5nWKQ1TvZueI4wK19qtOnN6ZLqVd7713/fNxxcRPzQYP0lkO6e7Bxgbe2ZP1IHpWWtnXNJ2m5++71Y4cdFv2nCEaox/j5UI+LPi1UpCVFaalaL40dG79m222jz/xzUudgM2bQzpPli0FGWvL9jyw2wZZb1j/vuKN9HvoJAvUboIZpd9XVpyW1w/cZiEdMV0daDh4MXH89cPPNwPnnq9ORpXHVVcDkycDcufHjuoHUxTzcJ2mZdMf5m98EVq8Gfv5z87n8O50wITLxZFC9S9GXjo8dq2OOAc47D1i6VK1wYNBNsMePl1+jendJzMO/9rX4BMGUT0q6VKUSD4rS8rjjokn7Y48Bt9wiTycN8/DZs4Hf/haYNcucRyppOXAgjbQ0EXo+4IO0pEYy5s9hfYuJmE1CWh5wAHDxxcCrrwI/+IE+j1tvDXz3u40KFlfS0qYPvPji6DlHj1YTUH1Fafnoo8Dll0ekBd+/m9qAzW9/+xtw3XXAN77R+Jv4PL4D8fhWWo4YAfzv/wK33gpccEH9+HnnRcrgwYOBY48F/ud/5NebSMukSstrrgHOPRfYeefozwayduVDaXnKKcDrrwPr1kVqqW99S52HAw+MCKBLL5X/Tt0sc1FfJTUPNyktVUg6PrqMRyecEJ/7fuMb0VzpD38Ali2rH28lpeX48cBbb6VzD9la6O9/B7797YhgZypAG9x7b9Tnfv7z6nNEN0tJlJZbbBFft0yahMqVV+Ldm27CmGuvbVQ4UerlfvtFBNLLLwOXXBKN7d//ftTWTz3VPC6aNgAuuCDytTp5MnDIIdGxPPq0bIZ5OCvbadOAK64AnnqqvtZxNQ+XrUsuvjiah222WdQ3/Oxn+nyxOYvIL9gIbMRzv/vd6JlWrACOP76+SVAoADfdBPzxj9G4R8FvfgP8939H6wgqqObhN94I/PnP8rxsvnk0Pt9zD3DRRfR79zME0jJADdWAklb0cB1UpKVrIB6VupHh+OOjPx3EgegXv6hPMEzkalKlJf9bs0nLQYOigWrzzekDAxBN+h96qP5dVS9ERYOvCHbf/S7tXB3BMW6c3L+fb6Xlj38MfOUrdvmU5cNGaanz2Wq6d6kEXHhhREqLpLN4jU/S8vDDoz8ZTOoO1Xmiust0XZpKS4qSwgRZwC4dyuW6H6Kk5uGmd33OOY3HZPf6wx8iVduiRfHjxWL65uHDhgFXX60/R8yDT7MkPq/UQDw6H8o6ddvuu0cbeEB8MeLSZlXXHHVU9CeD+Dy6cVSEzUaDCTbPe+KJjcq0QYOAn/40+vz00+prXZSWNoTsZpvZLcZ4qBRbunNM74DVWbZJ8eMf6/Pw3/+tVjcDtLkBVc3pSlrmTWnpguuui3/v6ACuvBLYdVfgpJPqx30pLbMgLSdNAu6/v/49bfPwyZOB3//ePc3994/+dBADWlLmByrSUqzPxSKqp5+OJydMwEzZ5jy1XvKbUZtuCvzzn7TrdPdgeR85Erj22vhvLkpL0zy4lc3DAeDMM9W/AXTzcBlpOWwY8MtfRp9lYgERtubhvKJfRVruvDPw17/Kr//Yx6I/KjbbLCIuFy1SCy5EyPp2Po/s92OOif5UOOWU6C9AiRQlIQEtDxNp2QylpcnsWgUKYZF0YOHzYiItKZN5qtJS59MyC9KSgTLQKsxPAKgXE+J5WfsG0dWdclnu3Nm30pLyjnz7tEyitFQ9F480lJY6uCotqeoukwrRB2SEp+0E18anJWBnHu4SSMQE2TWsDjYjEA8FYnppmYfz0I0ZJqWlrXm4CpT+xKa9m9oSpX/RpUP1NeczkKPumVyUljbm4UmQhtKSOodkMLUjynzQdc4ojp0U3+d5UFqa6pQNXEUDtummQVpKSDlvsK3HviCSljZKS/H5RXGAqe/NYt5G3QDgYbOxxWCrtLR9v7Zt0DdpKcIUZAmQ95OmDR9K32oTiEc8rlpXpFEXbdI0EeVpWl/1M4SSDFBDFcG4mUpLEa6qOx+kpXg+/5ymstEpX9j5VNJSp7SkdJZpTTxNECeRqneZZ9ISkCsubJWWJvUT5ZkppKUPn5YU0pKVka5NZU1auvq0pDqPz0JpKbvWtvxczMPFe7mSQC6Tt0JBrbhzJS2pqltXZGUezqNcdjMPp/YJOgKGApd2bhsoSvWb6jzqYpI3w0+KJKSljdLSd78qWyjakJaUvJvet0mxTBknXZWW/PeRI2lp8GiW0tInaanyMZc0nVYnLdMic01IWWmpBaVepuWPVdeHZuHT0nbdybvBosCnebgMFBKWqrQ0pSPCRWkppi+WT9qkpSl9WRvjxQGBtPSGUJIBaphIS5Ppluq4T9LSZXJQq/kxs9Q9v0kRajIPNykt82QeLssTBeLOrmoxkYZ5uA105uFAOqSli9KSsii0UVqqfqMs+mxIy6wGdF/m4XkjLW3TSxKIR6XSkKUtg+u7Vm0QyRYoFPPwtBfJYh5Mk30b6JSWrj4tKUF2fAXiUaUpQxK1D4W0pJKRTB3iA7q65tOnZdqkJUVpyV9D2Sg2ve8slZbi8/KuKFS+rAG68rUvKC1bzTycR9rm4Vlg4431+ZAdU81T0iAtk0K3QadCHqOHr1hhd37aSksRWSotbQLxiKBYcPmCzT1k81B+Az+Qlt4QSjJADV8+LX2ah5vSpkI2uCeNCKdTWupIy6RKy7yYh9umQ1Va8lEsgfwpLWVRRKkkO9WnZTOUlipQ2hyFtHQxF00C6sIobaVlEshIHhNRqDuf6tOSgT2jaiGchnk44F9pmbV5uM867ts8XIwamxZpaXMOQ9rm4WIgIxV8kpa6+7golan9WFK4+LT0rbT0QVq6+kGfP7/+WUda8tCp2kW/Z9R82CKP5uF9TWmZF/Nwn0pLH/OYtOZ2zVZapv1+syYtZfejBuIxXSOmn4bSMg0kNQ+3nWcHkBBIywA1fPm0TNM83HUCmoZ5uM6npS6fsmezIS3ZINBs0pIy0PKTeHHir6oXzZoQMmRhHm5SRFKe2bfSUgWK0pIyuehr5uGqxYAI30rLJKSlq09LFYmTltJSzKdOaZlH83Cf0JnMuSotKeDfbVZt1tRWqMpOitJSNy/JirR0MQ9PQiDbwEVpaevTMqnSktKfUecP4vO+8079s8yPNUNfVlr66jdN6aRBWooBAfuieXgSn5ZihPO+Yh6ehk/LtK298kBayub5prk/hQPw4dMyi/mHzTswmYdnNV/qBwikZYAavnxa+jAPVw1SLmllYR5uY0aT1Dz8mGOAl15qDdKSh1i/qL6mVq+2u09SuJCWVGUwVWlJeUd5VFrqSIesSUtXpSU1EE9/MA9nz6gyq00aPZySB6BeB2XvNI/m4T6h28Bz9WlpW4d8EWWm+27YoP+durGnOo8ndHREQ158WubJPJzi09Jkom+7IemDtKS2TV3d8qW0bDXSMiulZRpwUeBR0YpKS5M1QBLXHL6QB5+WMvPwvqa0lJWnT/Nw/rgPpWUW/UVSpWVSH+ABUoSSDFBj223lx5MqLV06/KTm4WkoLW3Mw8X7m0ztbJSWAHD66W6BeIrFxh1WV7h0zLzpt+5dHn54/fPnPlf/fNpp9ve0hYmAFnfwAbovHqpPy7SUli7vzIa05Am/LbeU35vPw5gx9vmhQixj1aTO1aelziT+qKPqn/fcU51HE3woLZME4mHP7kpa8mmNHWu+t+w6oF4HZYtfF6Vl2ubhPqFbyFGIeFf1NcU8/JRT6p+3205+js1igB8fdt+98XdqOavqOU/oiP0aP+bssAPtPhRsumn984c+FP/tiCPqn7/2tcZrbczDW0Fp6ds83NbdhQ5i+X3+8/XPM2eqr/viF+ufP/7x+uc8Ki0//Wm7tNLqN7Na1I8bV//sUy2nEzCkiSSkJT+v2Xrr6D8/tz74YP29s1BaqpClT8tisXGOT920YNh/f7vzfZRbM8zDVe/lq1+tfz766Oh/X1daBp+WqSBjO8uAlsKoUcCNNwLf/Cbw4ov142kqLR99FLj2WuDUU4Hp0+vHk5qH86jV0jcPN3WqpgWgztRPds199wFDhkSf+YFFt7hctiyaVPOLqCRw6ZjvuQe44grg2GP1Zfbb3wLf/360cP3oR4H/+R/glVeA885zzS0dJsJbNpAnNQ93UVpSonrbKi3vuw+47jrg6qvVacjA8tveDtx6K/D3vwOzZgGTJzeeUygAd94J3HQTcOaZ5rRdIZaFysTPxTy8VKqXi+xd/fKX0bPvtJOazKEgLz4tVQo5inn4HXdE7/orXzHfm0HMp6oOyogAClmSpnm477R1pHmaSkuKudPnPheNK8ViFOlZRrzZYNgw4Oabo/7h619v/J26eKGYh4tzid/8Brj4YmCPPYAJE2j3oWDQIOBf/wJmzwbOOiv+20EHAT/5CfDuu8D55zdeK3u/zTIPpygtTRuoBvPwarGIIl/vTItm200YHcT8XnRRtNDeeWc9iT1rFvDBB8BGGwHHHae+L1VpmXTBqyMtf/zjaP73xz9Gdc42L651zER+JrFG0OGee6JnPvrodM3DxTlDWqAE4hHLmn3v6AD++c+oH2L99CWXAEOHRnOVPfbQK8ybaR6u6wfS8Gl5+unRuPbGG8B++wF7721Ok2GffaI1rQ1U+fn854GTTqKlMXAg/X6ycnYxD1et7c85JyLxNt4YOPLI6FhfV1qG6OGpIJCWAXocc0zU0Rx4YP0Y65ioSkubQDy7715XVOQ9EI9uIW3qpMRJmdjJ2SotC4W6rxA+H6qO95pr9PlzAaVjFp97m22Aq64yXzdqVERuMmShsGQwkZaygZxKsvv0aSk7x1VVxbDfftEfT1raBjuYMSP6E8GX40EHRX9pQnxWWQAl2XkU0nLQIL15+KhRwOWX0/KpQ158WlLSVuHgg80qDhFUn1Iy83CK24Q0zcOpbi+o8E1a+lRalsvAt74Vff7JT+Tn2OKjH43+ZNC9N8r8QefTcvTo+JjjEzNnqtV6X/qS+rpmKi0pbhc8Ky2r5TKKvD9RE+FIaceupOWmm0aElwkdHRHBaUovD0rLESOAyy6L6v4ll5jT8tVPNou0nDIF+MUv/Kcr1inRpUxaoCgtRfDnHHFEXN09fDhw6aW0ezfTPFw3pqYRPXyTTWhtX4bf/hbYaiu7a1T5oayVGGyUlrJ5m89APAMHAt/9bvyYS/RwlYVNGgiBeHKJQP8GmKGaWFKVlmkG4nE1D6dMuE2w8Wlpgpg/E2kpm+Qx/18UpWUa6Ku7SSZVlqwO+lZaUsilNJSWMtgoLXXIur6I95P5IgUay4Ti05InNl0VNRTkxaclJW2fEPOgI+dciIA0zcN9k5Y6wtBVaUkBhbRU3ZOSZppwIS3zCBuflr7horTUuSWQnS98r9luJKdJWiZFHnxaquq4KWq9r7yo0mn1uaP4brNSWlIC8YhIi3h2Pcfl+qyVlkngQmBnbR4u8x3tMxCPDKIS1EZp2Qrm4UFpmQpCSQaYoSInXZWWPklL184gDZ+WNqSlTGkp5sVGaVmt1tOkKC3TAKX8slqk+oRJaUkhC1XnUpWWrubhrqoq2/uI8Gmm5wtUpaUIitJSR1r6fM5mmIfb+MjNgrRsa1PXWyppmbZ5eJpkmE5pSZn4y/oESr9sS1qqytTnmKTLN38fik/LrIJnJIHs/TbLPLxY9B89XFRa2rYdn+NOFub1WZOWqjpOJS3TIrzEd9Jq88RmmYcnVVomgevmlw/4VlrqzklaXi51wcc7siEtZW4AfCotZaAqLfm+qVnm4aY6JKtzwadlKgglGWCGb6Wlz0A8LhO6tHxa2piHi7BVWurADyxZdpZZEqRZwqQKkE2gkgbisXGpoDsnDaVlq5KWVKWliDyRljJSMMtAPHlQWurqnytp6bufTJO01AXi8aG0pJiHZ7k41oFa31TP1JeVlq3g05JgHt4L04JZdQ8R1Pln2krLZpiHq56dP0d3v6yUlq1GWjZLaemyuZ2W1Uca/acPpaWPQDxJ4FIXslZa8i44GFyih9vMdak+LWWkZVBa9luEkgwwo1lKS9tFkg58J1erydNL6tPSNRAPYK+0XLpU/VuzlJZ9FaYJtk1wBKrS0kUJRlF8+lBaUnbUXaOdpwnxWbMiLX0quHyYh/OwXeQ3i7Tk86Crf8Uira2kbZ7ILwJawaclRUXpS2mpStMF1OsppGVQWurh4tOSP4eyUSwG4kmDtGyWeXizlJZ8HVc9O08M6MonrTG71Rf1zfJpKSKL+sRAIS3TMg+3UVom3WBLuunsU6Rjg6SkpYt5uE2+W0lpaULwaZkZWnykCMgESZWWPszD056Aq47poFOxJTUPNykt335b/VuzfFpS0Go76ID5XRYKjYN5UvNwEUFpmRxiWYwcSbuOGoiHIe/m4TxsF/lBaUkDvwjIg3m4SWlpS1pSkCelpQp9QWnZLPPwrJWWvnwp58U8vFjMxi+grXm4bq6Rlmlxqystm2UeLqKZSksbi6OkaCWlpQt83JOyycNAUVpSrP/SUFqKeQBaLxBPq2/K5AihJAPMoCotVR2WD/Nw3zt2PkhLnUmvLWlpax6uIy2D0tIvbKLama6hRg8X4UtpmadAPM3efaQ+e9JAPH2JtDQtJrMgLU1KSxe1SSv5tPQdiIe6uLG1fMiifSetb5QgJXmCzeKnGaSlzkKAoswUA/Hw37M2D/eNZgXi4QlJVR3n24Gu3QbzcDmaZR4uglJufcE83EZpSUHeSEsf7cwm3xSlpa/+l8ElenheSctgHp4ZQkkGmEFVWlLVZUkHtxEj9PeT4eST65/POYc2gbZFkujhtubhZ56p/s2ktJw2zSpriXHWWfXPM2dme28fcCEtbZWWBx3Ue6jyuc81Xucrerg48XAZTFtVackvJPbay+06IH+kZZIFnq2Zr4wk4vvWCy5wzws1DyalpYvapJV8WgLy9zZxortPyzQC8ajK9AtfqH/WjWMUJCU3vvQlf3lJCzvtVP9s05dkoRT8+Mfr3y+8MLl5uG6coyya0xp3tt7a/hoRsvLLgrT8zGfqn889V37OJz9Z/6zrw4PSUo5mkpb77lv/vNFG5vPTIi232qrxnDxED6fAh3n4rFn291Xhi190u47q8ggwr8vEeYsvsQJDEtKy2a6lRIRAPJmhBZz4BDQdVKWlCj6Uljweegj4v/8DPvEJ+jUzZgC//jWwahXw+c8D99zTeE5SciGJebit0vKYY4ArrgAWLQIuvpiej/PPBz77WX3efOPCC4FNN40mNTvumO29fYAy4FAVjGLdZxODrbZC91/+glf++ldM+d730FAT+6J5eNYDeVsbcN99wO23A6efTr/OlrR08UdKhWwxR438KoOtMklGWh50EHDggVFfdMYZ7nnRoZXNw9OIqlosxt/7ZZcB22yj9nXMP5/4rFSVuC+flv/5n8CKFRGxe+KJ5nR0SKq0PP74KC+FAnDCCcnSSgv//Cfwq18BRxxh11+n7VKnUAD22AP4wx+ABQsiAviBB9TXOJiHF/j3m7VPSwB4/HHg5puBU06hX0O9b1ZKyxkzgGuuAdasiea+Mnz4w8BvfwssW6bvw9MiLZttdZEUzSQt//Qn4KqrgEMPpY01aZGWv/wl8PvfA9/7np/0gdZSWl54YeRyaM6caI6ZBMcdF73TO+8EbryRft2ddwK/+U10vQksv5Mnx5XWDHkmLfNmQSh77qC0TAWBtAwwg6q0VMG30nKbbYDvftfumkIB+H//r/5d1skkJVOzDMRTLkfKkIULG0lLndLyO9/R5ysNDB4MnH129vf1hSyUlgBqRx2FV8tlTBk6tPG6vhiIpxkLlf32i/5skNSnZdrmiFmah8vu1dYWV1ylAb4MfZCWrWweDjTmn6ldXZSWxSJN2cS/+yRKy0IBkKnJXZBUkVUsxpWfecT48cBFF9lfl4XSEgD+67/qx3Qqc4dAPDH4ImRs2vquu0Z/PtAspWWhQCNdTzop/byo0ml1paWY/ywD8Wy2mV3/4OsdinOBbbeN1mU8aZkHn5YU+CAthwyJlMwjRiQnLQuFaINh223tSMuttqKvjQcPjqwOAeCGGxp/z7N5eN5IQFmd8xlIOKAXoSQDzEiqtKQSOjrkMRCPCP45bdVPsjKmlJMsQlzwaekXlDKkKhg1pKUWvszD86S0bBV1RZ58WsqQdvRwCmmZNvg8mAJF9AfzcDG/AwdG/ymkpQlZRg9PirR8qPYFZOHTUoTnQDzWSss8jzvNUlr6RFqL71YnLfPi05KCtJSWMuQhejgFPszDGTZssL+/Cs1s+2krLW0CBTFkqbS06YNkdS4oLVNBKMkAM5IqLdMwj0uKNHxamhb3PEzm4SalJYOMtMxz9PBWBOU9JA3EYwKlbsrSMgXdaGYgnlYZyPPk01KGJMSND5+WWfTvJvKDRx7Mw3nSMo3yUbVrVV2zVf6bzkkakdUXAmmpRlZKSx5JfVqK39MwD29WIB5XpWWekJXSstXQH0nLLPrePPi0tC2vViQtVRtQ/HFfm0YMLvUwr0pL2XMHn5apIJRkgBm+lZZ5QBpKSx4mpaXJPJyqtJQNJEFp6Rc+o4e7Ki1dzcNlQTd0v1PQ35SWfZm09KG0zIK0pJra1Gr5MA/Pwqclnz777mNy3EpKy1ZTZGUJ3wulZigt+ffbDPNwn3BVWuYJIRCPHGL++wNpmYXSUgXfSktdPm3La/16+/vnEYVCfK6fpb9UFfLq0zIoLTNDKMkAM/qi0jINn5Y8siItC4VG4pIv71ab/OUReTAPpxBTOpULgw+lJYW0zKtPSxeIaua8kZb9wTycOgGsVvufeThfP9Osa0Fp2VpI26UORWlp69Myb4F4fKIvKC0DaSlHf1RaZvGOXMzDXcZbXV9p21/4JC2bqbQE4v2xb6WlC/JKWpoC8bTKWqcF0GIjZkBT0BeVlmmYh/Ow9Wnpah4ONJIq/OASFnXJYau01J3vah5OqU+FQjw9Wf3xobTsb+bhFFO2vhyIh3/+ZiktbUhLF6VlK5uH+yAtKYRkHpWWYXxTIw8+LflrbElOCKSlzBWOKY8ytJrSstUIPAr6unl4loF4bOGrX2gmaenbPJy3jBDRTKVls0lLHnlSWuatvwhKy8wQSjLAjKRKSx+kZSsE4uGRldISaJzMB6WlX1DeA7XMXZWWVBKcT7+ZSsu+ZB4uIm9Ky7RJS/4cWd3OWmmpK08qaSmek6Z5eJZKS9fJcRqkZRYT9TC+qZEHn5YmpaXJPJwf91o9EI+s/PKmGDIhrU0C8Z20WrsW3y2FYG8WWsk8PKtAPB98oP4tiU/LZvnPtQVlzA9KSzUCaZkZQkkGmJFUadkq5uEuHe5WW0X/J06MH99pp/rn//f/ov+zZtWPfeQj8fOD0jK/cPFpqYJhkRbDiSfWP0+eTEvfVmnpMpj6UlrmmbTceuvo/5ZbNv5mIi1HjgRGjKh/32Ybv3kTkXYgHv55GYlw8sn1Y9tt535/KnROzY8/vv55iy3yYR5+6aX1z2ec4TdtQK20LBTk73TYsPj3jTaK/k+fHv23DcSTF0XboYfWP599dvw3Pr+tRoL4QB6UliafloYNnqKtYpmfV/HzLR7NIhL6gtLS13zSpLQ84oj65//+bz/3TBOyd5tXpB2I58wz65/339/PvUT4Vlr6JC1PPbX++ac/tc8LD9k6Mg3w74l/f7Y+hXfYof6ZnyOqsOuu0X9+vqxDXpWWIRBPZmiRbYCApiIPSkvfkOXdZbC76y7gxhuBY4+NHx86FPj3v6O/k06Kjl10UUQ+7bgjMGaMPj82SsuBA+Pf+cHF1kw9oBE+SUsxLV2d+8lPgN12A/bZh25ulBelZav7tLztNuCmmxrbNWAmLQcMiK7/y1+ifiDNySbQHJ+WP/4xMG0asPfewJAh7venQrdrfdVVUT723Tcq+zyYh3/qU9E9hg8H9trLb9qAWmkJAC+8ANx6KzBjBnDHHcCBBza2x8cfB/71L+ATn2hMu5WUlmPHAvfeGz0zG2cDIuTBpyV/joPSMkZaUpQ+o0YBDzwAPPNMVB9+9CNzHrOCq0/L/khabr45MGcOMHdua7TrPM9lRKSttPze96JN36lTo/aYBHlQWtr2o9OmAf/8J7B4cVx44IKhQ4FHHwUeeSTddrDppsCDDwJPPx2/j63ScqONgMceAx5+GPj0p83n//3vwPXXA0ceSctnlhtONvMdk9KylfqHnCOQlgFmBKWlGhMmqHf0p0+vK1mAiNg4/XT5uT7Nw4PS0i9szcNtoBuEhw8Hvvxlu/RMpGWeoofnWY0wcaK6XZt8WgIR2bzbbt6zJUWSNm77nti9hg2zr5tJoCMtN944nhcX83DfBFu5nO4iQ6W0BCLlK1O/br+9/Pqtt66riamwJU+ymqjvv79c0cOXUZ77mrTQikpLYTwsdXfXv1AWzUC0ybfPPurfW01pmSdkRVoCwAEHRH+tgFZ7jz6gGg8GDwa+8AU/93DxaenyLnxH/OaVwkmx++7RX9rYe+/oj4et0hKwm/uOHaueZ8vA+u68rWtNgXj6Y/+QEkJJBpjRF5WWafu0tIVP83B+cMmyc8+TIsAnfCotRfheQJnMw30oLX2ZfrcqkWBSWmaNLM3Dm9XGbSaALkrLVquLvALNh/+0NMzDw0S9uWgFn5Y2gXh8bX7nRWkZzMPraPW+opWUVL7qUzOJI11f4NLv6ZSW/RkupGWayKuP0ODTMjOEkgwwIw+kZdoTcKC5Ew9ZGVOfWae0zNOEt1XhK7KeDL4H4SyUloG0bDzWTNIybfNwmU/LrGFjatOXIterwAf68R30QdUu+XeQl+jhAWrkQWlpih5u4+OZqrQ0oVltX1Y2gbSM0Or9cSvNZXy9w7xGD3dBIC3lsDUPTxtsfMhTnwjIx63g0zIVhJIMMMNmYilDHnZoRLSC0pIKndIyS5KhlSZuNkhTaZmGWaou7TwpLVsVeSMt044eLvNpmTV8Ky1bfRLJk5aiT2MX2CotKWj1Mm515MGnZUKlZQy+Fs3NUuu4Ki3zhKyih7ca+P64v6CZpKXvNWUgLeXIm9KSrbPyRloG8/DMEEoywAyxwdl2HHmckMjy1EzpeVpKy7z5/mhFUAYcV9LS98KSz4cs7ayUli4muq0Cik/LLJE2aSnzaZk10jYPbzXwY29WSstgHt5ayIPS0uTTUjymG1ta3Tw8KC3raHX3HCJ8+0RME33BPDwoLbOB7ZifNlpJaZm3susjCCUZYIZKaUkdtPI4Icmb0jKJmjUvPi37M/KwCwlkEz3cFymUx36BAtkmTjP99mZpHt6syaKNqU1/MA/n0QyflsE8PP/IG2lJmXPp2qUvoqLVfFrmCYG0lKM/kpZ9VWnpw3Khr8B2zE8beSUtg9IyM4SSDDBDRahRO448dHYi8ubT0qd5eFBa+gWlnucl2JTJPFyc7LkMpv1ByaaD+PzNNA0Hkk3gbAPx5MGnZTAPj8M3aUlRWtrWm4Ds0YxAPLpzks65Wt08XEbQtto4mRZp2eoIpGU6aIZPy2bP5/KEQFpGMD17CMSTGUJJBpiRVGk5Zgyw8cbR589+1i0PaftnApqrlttxx/rnceOi8nI1D2+W0vLII+ufL744u/umjYEDgZEjo8//9V/yc2zqzowZ0f8PfShZvmRIyzz8jDOi/4MHA5Mmmc/vy0rLQiH+7nbeObt7/8//NB773/91T8+W4Avm4flDVubhP/lJ/fMFF5jTCUrL5qIVlJayNCZPBgBUjzgCz51ySv34cccRM2rAqaf6SccWVKXlhz8c/54nVRGfN0ofoEJf6n+B+Nz30kublw8VvvjF6P+AAcCWW/pJM4t6+dOfyo+b5tu77x7932sv2n2uvbb++eyzadf0N+SBeGslpWUIxJMKcho/PiBXSKq0LJeBxx8HHnoIOPpor1lzhqyTaeYO29VXAx/5CLB2bVRGSczDm6W03GQT4JlngJdeys979oFCIaq/992nfi4bpeV11wH/+Adw6KFesqfMh6x9lkrRHxtQqYuHSy4B9tgD2HNPGkHb14mjW24B/vKXqJ1+/OPZ3ffkkyMCffz46B0uXBhfMNmiL5KWwTzcHpSx/LDDono/YEB9UahDXyrjVkTeAvHIVJiyPM6ZA9x5JyqHH443778f2x10EMrbbQeMGuWU7V5ccQWw997AhAnJ0nEFxaflZZcBn/508mdNC0OHAs8/Dzz3HPCxj7mn08pjvwwjRgBPPw28/HI+576XXhoReHvs4U+ckQVxNHMmMHs28MgjwEUX1Y+blJb//Gc0Vs2cSbvPxz4G/O1v0dzq/ffd89uXkYc228y4EzqYlJZhA9cbcloDAnKFpEpLINrd87XD5wOyXW/fihUbjBgBnH56/FirKS0BYKedor++hgkTgBNPVP9uQ1qOGAGcdFLyPMnAD54qU9729ro5DLWODR4MfOpT9Hz0ZaUlEJGGX/1q9vctl5MtFkW0ik9LmwlgXyfMRWSltCwUIuKSijBRby7yoLTkr6H6rxw3Lhofu7pQK5dRO+ooP+5Xjj0W2Hzz5Om4QubHUSyDU08Fhg2LH8ubquhDH0rHSqTVMXVq9JdHDBoEfPKTftPMYm1RKACHHx5ZO/GkpWlsGTXKbo5dLAJHHRV9vu02+3wGZIMslZY29zCRqWED1xtCSQaY4YO0zBvEQW/w4NZdyOZFadmfkcdAPCrSkq8fadX5Vm1L/Q22pGWzfFramNoEn5b5QF8q41aE7z5YTC+p0jJrUrvZ9VFWfpQAjHkjLX0gzA9aH1muLbIM3NTsfiKvyEObzSv34GMjPYCEUJIBZiQ1D88jxE5m0KDm5EMH6iAhRrsL0cOzRx4D8ajePV8/mkla5mES1N9hG1ClFczD+1uQmKzMw20RlJbNRRr9K99ukvq0zLoN5q3Ny5SWeZlHpI0w9rc+slz/ZVlf8tZP5AV5aLOtZB7OI9QpbwglGWBGHpSWaZs6tXLEuKC0bD6C0jKO/mai26poFVWi70iMfanuZWUebos81Jv+jDTquE45Kf4untPflZYigtIyoJURSMv+hTyUS16jhwelZWYIJRlgRn9QWuaRtGxFn5b9FXlRSPD5yLvSMqD56K+kZR6eyRdEpb0LgtKy76EZSksdMalTYWaBvLV5mdIyb3lMC2F+0PoIpGX/Qh7abF65B5PSMsyFvCG0zgAz8qC09I1WIC2pCKRl85EX0pISiCcvPi3zMAnq7+iLpGV/q3tBaSkHv7DJ2yInC6RNWsrer3hPU/TwLNHs+ihCprSUoS/W3b7U//ZXZFkvs2y7eesn8oI8tNkQiKffI5RkgBliZ5XX3Q4btAJp6aq0zIMPuv6GVjIP5/Oa1mCahwlOgBmtQlryY01QWsYRfFoGyNAMpaWIPCkt8zYmyZSWMrTyPDug76KvKi3z1k/kBXmYM+WVewjm4ZkhlGSAPVjH8clP1sm+3/423XumHQkzj6QlFbpF61e/Wiey/vrXbPLTH9FKSsu0CNbvfS/6v/nmwLRp8nMuuyz6P3o0sO++6eQjQI+rror+Dx8O/Md/mM/Pw4Trhhui/8UicMEFydPLwzP5gg/S8o9/rH/+zneSpwc0v4z5Mb4/LkSb4dNShE6ZudFGfvJERbPro4hisX/WS6D/Pndfwpe/XJ9L/vnP6d4rmIc3BzfeGP1vb4/ed7PB1jczZgCbbBJ9vvLK5uWHQaa0ZG2ivR344hezzU8fRk5DMQXkGqyBDhsGPPcc8OabwIc/3NQsWUMcBPMYPZwK3aJ19OjoHS1aBOy3X3Z56m/Io9JStRvJ57W729+9v/ENYJddgKlT1eYSX/kKsMMO0V9eyqy/4bOfBbbaCth6a9pmTR4m8YccAjzwQES0TpyYPL2+tGj2QVp+5CPAQw8BQ4dGdcMHgtKyuci70nLSJD95oiIP/RiP/qy07Ev9b3/FqFHR2uK994D990/3XoG0bA4+9jFgzhxgzJhoLdlssHXFgAHAU08Bc+cCBx3U3DwB8rnOscdGZTd2LLDppplnqa8ikJYB9uAJiUmTsp98poE8Ki1dzcNFbLNN9BeQHvKitKTkgz+nq8vfvctl4LDD9OeUStEuaUDzUCxGJKDN+c1GoQDssw/9XBPy8Ey+4IO0LBSAvfZKng6PvlTGrYhm+LQUoVNm+th8sEHe6iOVtOyLCKRl38DWW0d/aUNlNZQG+mublKFQAA44oNm5qIPnHsaPj/7yAJlII29l10cQWmeAPUxOZ1sReSQtqfAdiCHAHnkhLSltk1c4dnaml5eAvoG+OInvS8+U1/4/KC2bizwoLfnzg9IyDmognr6IQFoG2MDn5roJ/bVNtgLyyj2EuU5mCK0zwB7N6DjSnuTkkbT0pbQMSB95MXVuptIyoG+iL07I+tKiOa/9f1j8NRd58GkZlJZqBPPwgAAaAmkZAOSXtAz9WWYIrTPAHoG0zBfyumjtT8iL0pKSj6C0DLBBX5yQ9aWFSV77/75Uxq2IPCgtdT4t+ztp2Z+VlgEBNgikZQDQPNLSNNaFOpMZQkkH2COvux1JkMdAPEFp2TrIi9KS0jaD0jLABn1xQtaXiNi89v99sd60EvJAWup8YPZ38/CgtAwIoCHLzfW89RMBdeSVewj9WWYIrTPAHnntOJIgj0pLakfY0ZFuPgLMyIvSMpCWAb7RFyfxfemZ8kpahol8c5G3QDyi0nKzzfzkiYq8tXmq0jKQlgH9HVnOU0PdzC+y5B5s+t28jS19GKGkA+yRVcfBDx5p37OVScu+SCK3GvJCWlL8DwbSMsAGrebTsr9FD8+LyltEs8uYJ3PzWkZpIo1nTmIeLp6fdf3IGxkRoocHBNDQF4n7AHvkda3banPkFkY/HTEDEiErguaWW6L/AwcCX/1quvfKI2lJxYgRwM47R5/PP7+5eemvyMuimDJ4Bp+WATYIC8z84eyzo/977JFfpeXAgVH+AOCcc7K//7XXRv+LReBHP8r+/lnim9+Mf+/oAM47z/99kgTiKRSAffaJPp95pt98qXDWWdH/fffN5n42oBKWfZGwCWNKgA3+4z+AUaOiz7/7Xbr36ovtra8gL+IQEaNGAdOmRZ8vuKCpWenryCltHZBrZLXbMWMG8NxzwMiRETGXJvJIWlIndoUCcP/9UVlNn55ungLkyMtgGpSWAb7RX9VAecb3vw8cfTSw0075JgDuvht49tnmjEs77wy88kq0STNhQvb3zxLf/jZwxBHADjsA8+YBw4bVF/k+kcSnJQDccQfw1FPZ1YdLLwWOPba+oMwTCgWgUml2LpqDPPdZAfnDgAHA3LnA22+n35YDaZlf5DUQT6EAPPAA8PzzYQ2eMgJpGWCPLDuOHXbI5j55JC1tMHgwsOeezc5F/0UrKS150rK/LpoC6Gg10rI/LIiLxdbo7wcNam4+p0xp3r2zRLFYV7Vut12695F9VkEcjwYOBPbe22+edCgWgb32yu5+NigWge5u83mBRAkIiIQraYtXAvKNvJqHA9EanI3BAamhxVYjAblAnjsOV7Ry9PCA5qOVlJZ5IVgDWgOtRlpSEIiAgAB7JPFpGRBHoQBUq+bz+mJfFea2AQEBtuiL3EOAFfrgaiQgdfTFRWyrKy0DmotWIi3zkteA1kBf7O/7IhEQEJA2bH1a9sW+wxeKxf5r6RBIy4C8IswN8ou8Rg8PyAxhRhFgj7444QikZUAS5EW9SFkk5iWvAa2BViMeKONTmJAGBNgjKC39ISgtAwICAugISst+jxZbjQQEpIQ8kpZhYtc6yIt6MSgtA3yj1UhLCvoiERAQkDYCaekP/VlpGRAQEGCLQFr2e/TB1UhAgAPySFoGtA7yol6kEEyBtAywQV8kLQMCAuyRNHp4QBz9lbQMm0YBeUWom/lF2ATr9wgzioAAIJ9EzsCBzc5BABV5qT9BaRngG3kMUqbDgAHmc8LCJCDAHmx8oZKRwVpEjVpNPRbzc7++OA+kmMUHBDQDQc2XX4RNsH6PUAMCaPjSl6L/J5zQ3Hz4xDe+Ef0/+uimZkOJ//xPYPPNo88339zUrAQYUCgAhx8eff7Wt5qXjxA9PMA3+H7or39tbl4oOOYYYPz46PNNN8nPCaRlQIA92Bh32GHqc7773ej/QQcBHR3p56lVUasBhx4KbLll9P366+u/3XJLtEAfMaI+9+5LCKRlQF6xww7AtGnR56uvbmpWAgCcf370/4gjmpuPgFwgbCkE0HDllcAXvgBsvXWzc+IPl1wCnHwyMGVKs3MiR3s78PLLwOLFwMSJzc5NgAn/+Afw2mvNbSPBPDzANzo6Wqsfam8HXnpJn99AWgYE2OPCC4FPfhKYPFl9znnnRRsdjIwLkKNWi1Rdzz8PLFwITJpU/+2AA4C33waGDQM22qh5eUwLof8NyCsKBeDf/wbmzdP3cwHZ4KKLgE99KryLAACBtAygolAAtt222bnwi1Z4pkGDWoMoCIhUjtts09w8UExbgtIywBat1g+1Wn4DAloBhQJtjOtLm9tpgRF3AwfGCUsGpm7viwikZUCe0d4eSLK8gDrm+AbfRwU3J7lBMA8PCAgI6CsIPi0DAgICAgLyjf5M3PXnZw8ICAgIcEIgLQMCAgL6Cijm4UFpGdDfERbNAQEBzUR/7oP687MHBAQEBDghkJYBAQEBfQVBaRkQYEZYNAcEBDQT/bkPCoF4AgICAgIsEUjLgICAgL6CEIgnICAgICAg3+jPpGV/fvaAgICAACcE0jIgICCgryAoLQMCzAiL5oCAgGaiP/dBQWkZEBDQKgiBeHKDQFoGBAQE9BVstJH5nKFD089HQECeMWhQs3MQEBDQn9GffUt3dDQ7BwEBAQFqjBxZ/zx2bPPyERBDIC0DAgIC+gr23x/YZRegXAZuukl+zm67AXvtFakyr78+2/wFBOQBBx8MTJ0atZO//73ZuQkICOgPuO66yIXLvvsCO+7Y7Nw0D9tvD+y3X1QWv/99s3MTEBAQEMdFF0XE5eDBwO9+1+zcBPSg3OwMBAQEBAR4QrEIPPoosHIlsMkm8nMKBeCBB4Dly+O7iQEB/QXFIvDEE/p2EhAQEOATJ5wAHHIIMGJE/zY5LBSAOXPCHCQgICCf2GQTYP58oLMzWKflCIG0DAgICOhLKJXMREyxGBYLAf0blHYSEBAQ4BNh3I0Q5iABAQF5xoAB0V9AbhDMwwMCAgICAgICAgICAgICAgICAgJyhUBaBgQEBAQEBAQEBAQEBAQEBAQEBOQKLU1a/vznP8fEiRMxYMAA7LHHHnj00Ue15//5z3/GtttuiwEDBmDHHXfE7NmzM8ppQEBAQEBAQEBAQEBAQEBAQEBAABUtS1recMMNmDVrFi644AI8+eSTmDp1KmbMmIHFixdLz3/ooYdwwgkn4JRTTsFTTz2Fo48+GkcffTSef/75jHMeEBAQEBAQEBAQEBAQEBAQEBAQoEPLkpY/+tGPcNppp+Hkk0/G9ttvj6uvvhqDBg3CtddeKz3/yiuvxGGHHYavf/3r2G677fCd73wHu+yyC372s59lnPOAgICAgICAgICAgICAgICAgIAAHVoyenhnZyeeeOIJnHvuub3HisUiDj74YDz88MPSax5++GHMmjUrdmzGjBm4+eabpedv2LABGzZs6P3+/vvvAwCWL1+Orq6uhE+QP3R1dWHdunVYtmwZ2tramp2dgIB+h9AGAwKaj9AOAwKaj9AOAwKai9AGAwKaj77eDlevXg0AqNVqxnNbkrRcunQpKpUKRo8eHTs+evRovPTSS9JrFi5cKD1/4cKF0vMvvvhiXHjhhQ3HJ02a5JjrgICAgICAgICAgICAgICAgICAgNWrV2PYsGHac1qStMwC5557bkyZWa1WsXz5cmyyySYoFApNzFk6WLVqFcaPH4/58+dj6NChzc5OQEC/Q2iDAQHNR2iHAQHNR2iHAQHNRWiDAQHNR19vh7VaDatXr8bYsWON57YkaTly5EiUSiUsWrQodnzRokUYM2aM9JoxY8ZYnd/R0YGOjo7YseHDh7tnukUwdOjQPtkoAgJaBaENBgQ0H6EdBgQ0H6EdBgQ0F6ENBgQ0H325HZoUlgwtGYinvb0du+66K+66667eY9VqFXfddRf22msv6TV77bVX7HwAuOOOO5TnBwQEBAQEBAQEBAQEBAQEBAQEBDQHLam0BIBZs2bhpJNOwm677Ybp06fjiiuuwNq1a3HyyScDAD796U9j3LhxuPjiiwEAZ555Jg444ABcfvnlOOKII3D99dfj8ccfx//8z/808zECAgICAgICAgICAgICAgICAgICBLQsaXn88cdjyZIl+Na3voWFCxdi2rRpuPXWW3uD7cybNw/FYl1Iuvfee+O6667D+f+/vTuPiupI2wD+NDTdLIKo7CIoiUtUXAIuBBODMq7H0Yg6KiKacYnBo+CMGk0UM8TBSBxH3E3iMgF1NOB60AmCgEZEQUAEl8yIOirIGEQQla3r+8OPm27pJmiaTZ/fOX3O9VbVvVX0fU/gTdWtzz7D0qVL0bFjRxw8eBDdu3dvrCE0KUqlEsHBwTWWxBNRw2AMEjU+xiFR42McEjUuxiBR42Mc/kIm6rLHOBEREREREREREVEDaZbvtCQiIiIiIiIiIqJXF5OWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUnYuHEj2rdvD2NjY/Tr1w/nzp1r7C4RvRJCQ0PRp08fmJubw8bGBmPGjMHVq1c16jx9+hQBAQFo06YNWrRoAR8fH9y7d0+jzq1btzBy5EiYmprCxsYGCxcuRGVlZUMOheiVsGrVKshkMgQGBkrnGINE9e/OnTuYMmUK2rRpAxMTE7i6uiI1NVUqF0Jg+fLlsLe3h4mJCby9vfHTTz9pXKOwsBC+vr6wsLCApaUl/vjHP+LRo0cNPRSiZqmqqgrLli1Dhw4dYGJigjfeeAMhISFQ35OXcUikX0lJSRg1ahQcHBwgk8lw8OBBjXJ9xdzFixfx7rvvwtjYGO3atcPq1avre2gNiknL19w///lPLFiwAMHBwbhw4QJ69uyJoUOHoqCgoLG7RtTsJSYmIiAgAGfPnkVsbCwqKiowZMgQlJaWSnWCgoJw5MgR7N+/H4mJibh79y7Gjh0rlVdVVWHkyJEoLy/HmTNnsGvXLuzcuRPLly9vjCERNVvnz5/H1q1b0aNHD43zjEGi+vXgwQN4enrCyMgIx44dQ05ODtasWYNWrVpJdVavXo3w8HBs2bIFKSkpMDMzw9ChQ/H06VOpjq+vL7KzsxEbG4ujR48iKSkJs2bNaowhETU7X375JTZv3owNGzbg8uXL+PLLL7F69WqsX79eqsM4JNKv0tJS9OzZExs3btRaro+YKy4uxpAhQ+Ds7Iy0tDSEhYVhxYoV2LZtW72Pr8EIeq317dtXBAQESP+uqqoSDg4OIjQ0tBF7RfRqKigoEABEYmKiEEKIoqIiYWRkJPbv3y/VuXz5sgAgkpOThRBCxMTECAMDA5Gfny/V2bx5s7CwsBBlZWUNOwCiZqqkpER07NhRxMbGioEDB4r58+cLIRiDRA1h8eLFYsCAATrLVSqVsLOzE2FhYdK5oqIioVQqxZ49e4QQQuTk5AgA4vz581KdY8eOCZlMJu7cuVN/nSd6RYwcOVJ8+OGHGufGjh0rfH19hRCMQ6L6BkAcOHBA+re+Ym7Tpk2iVatWGr+TLl68WHTu3LmeR9RwONPyNVZeXo60tDR4e3tL5wwMDODt7Y3k5ORG7BnRq+nhw4cAgNatWwMA0tLSUFFRoRGDXbp0gZOTkxSDycnJcHV1ha2trVRn6NChKC4uRnZ2dgP2nqj5CggIwMiRIzViDWAMEjWEw4cPw93dHePHj4eNjQ169+6Nr7/+WirPzc1Ffn6+Rhy2bNkS/fr104hDS0tLuLu7S3W8vb1hYGCAlJSUhhsMUTP1zjvvIC4uDteuXQMAZGZm4vTp0xg+fDgAxiFRQ9NXzCUnJ+O9996DQqGQ6gwdOhRXr17FgwcPGmg09Uve2B2gxnP//n1UVVVp/CEGALa2trhy5Uoj9Yro1aRSqRAYGAhPT090794dAJCfnw+FQgFLS0uNura2tsjPz5fqaIvR6jIiqt3evXtx4cIFnD9/vkYZY5Co/l2/fh2bN2/GggULsHTpUpw/fx7z5s2DQqGAv7+/FEfa4kw9Dm1sbDTK5XI5WrduzTgkqoNPPvkExcXF6NKlCwwNDVFVVYWVK1fC19cXABiHRA1MXzGXn5+PDh061LhGdZn6q1iaKyYtiYgaQEBAAC5duoTTp083dleIXhv//e9/MX/+fMTGxsLY2Lixu0P0WlKpVHB3d8df//pXAEDv3r1x6dIlbNmyBf7+/o3cO6LXw759+xAZGYndu3ejW7duyMjIQGBgIBwcHBiHRNSkcXn4a8zKygqGhoY1dkm9d+8e7OzsGqlXRK+euXPn4ujRozh58iQcHR2l83Z2digvL0dRUZFGffUYtLOz0xqj1WVEpFtaWhoKCgrw9ttvQy6XQy6XIzExEeHh4ZDL5bC1tWUMEtUze3t7dO3aVePcW2+9hVu3bgH4JY5q+33Uzs6uxiaRlZWVKCwsZBwS1cHChQvxySefYOLEiXB1dYWfnx+CgoIQGhoKgHFI1ND0FXOvw++pTFq+xhQKBdzc3BAXFyedU6lUiIuLg4eHRyP2jOjVIITA3LlzceDAAcTHx9eYuu/m5gYjIyONGLx69Spu3bolxaCHhweysrI0/oMVGxsLCwuLGn8EEpGmwYMHIysrCxkZGdLH3d0dvr6+0jFjkKh+eXp64urVqxrnrl27BmdnZwBAhw4dYGdnpxGHxcXFSElJ0YjDoqIipKWlSXXi4+OhUqnQr1+/BhgFUfP2+PFjGBho/ulvaGgIlUoFgHFI1ND0FXMeHh5ISkpCRUWFVCc2NhadO3d+JZaGA+Du4a+7vXv3CqVSKXbu3ClycnLErFmzhKWlpcYuqUT0cubMmSNatmwpEhISRF5envR5/PixVOejjz4STk5OIj4+XqSmpgoPDw/h4eEhlVdWVoru3buLIUOGiIyMDHH8+HFhbW0tlixZ0hhDImr21HcPF4IxSFTfzp07J+RyuVi5cqX46aefRGRkpDA1NRURERFSnVWrVglLS0tx6NAhcfHiRTF69GjRoUMH8eTJE6nOsGHDRO/evUVKSoo4ffq06Nixo5g0aVJjDImo2fH39xdt27YVR48eFbm5uSI6OlpYWVmJRYsWSXUYh0T6VVJSItLT00V6eroAIP72t7+J9PR0cfPmTSGEfmKuqKhI2NraCj8/P3Hp0iWxd+9eYWpqKrZu3drg460vTFqSWL9+vXBychIKhUL07dtXnD17trG7RPRKAKD1s2PHDqnOkydPxMcffyxatWolTE1NxQcffCDy8vI0rnPjxg0xfPhwYWJiIqysrMSf/vQnUVFR0cCjIXo1PJ+0ZAwS1b8jR46I7t27C6VSKbp06SK2bdumUa5SqcSyZcuEra2tUCqVYvDgweLq1asadX7++WcxadIk0aJFC2FhYSGmT58uSkpKGnIYRM1WcXGxmD9/vnBychLGxsbCxcVFfPrpp6KsrEyqwzgk0q+TJ09q/VvQ399fCKG/mMvMzBQDBgwQSqVStG3bVqxataqhhtggZEII0ThzPImIiIiIiIiIiIhq4jstiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiaofbt20Mmk2HatGmN3RUiIiIivWPSkoiIiOgFzZ49GzKZDDKZDPHx8S/U9ocffpDazp8/v556SERERETUvDFpSURERPSCpk6dKh1HRES8UNvvvvtO63UaS0JCgpRETUhIaOzuEBEREREBYNKSiIiI6IV5enrijTfeAABERUXhyZMndWpXWlqKAwcOAAC6desGNze3eusjEREREVFzxqQlERER0Uvw8/MDABQXF+PQoUN1ahMdHY3S0lKN9kREREREVBOTlkREREQvwc/PDzKZDEDdl4hXLw03MDDAlClT6q1vRERERETNHZOWRERERC/BxcUFnp6eAIB//etfKCgoqLX+3bt3ERcXBwAYNGgQ2rZtW6POwYMHMX78eDg5OcHY2BiWlpZwd3fH559/jgcPHtSpXzExMZgyZQpcXFxgZmYGY2NjdOjQAT4+Pti5cyceP34MALhx4wZkMhm8vLyktl5eXtL7Las/O3furHGP8vJybNq0CV5eXrC2toZCoYCdnR1GjBiBiIgIqFQqnf2bNm0aZDIZ2rdvDwDIy8vD4sWL0a1bN5ibm7/wuzW1vZNz3759GDx4MKytrWFiYoLOnTtj0aJFKCws1Hmd999/HzKZDO+//36t91uxYoV0P22qy1asWAEAOHnyJMaMGQMHBweYmJjgrbfeQkhIiDTjtlpMTAxGjBgh1evatStCQ0NRXl5e55/F+fPnMWnSJLRr1w7GxsZo164dpk+fjitXrtSp/b///W8EBQXB1dUVLVu2hImJCVxcXDBt2jSkpqbqbPf8d6BSqbB9+3Z4eXnB1tYWBgYG3OGciIiIXpwgIiIiopeybds2AUAAEOvWrau1blhYmFT3H//4h0ZZYWGhGDRokFSu7WNjYyOSk5N1Xv/+/fti8ODBtV4DgNixY4cQQojc3Nxfratev1pubq7o0qVLrW0GDBggfv75Z6399Pf3FwCEs7OzSE5OFlZWVjXanzx58ld/9tVOnjwptYuLixNTpkzR2a8333xT5OXlab3OwIEDBQAxcODAWu8XHBwsXU+b6rLg4GARGhoqZDKZ1r6888474tGjR0KlUol58+bp7POwYcNEZWWl1ns5OzsLAMLf3198++23Qi6Xa72GUqkU+/btq3VcYWFhwsjISGc/ZDKZWLZsmda26t/BsWPHhLe3d432/v7+td6fiIiI6HmcaUlERET0kiZMmABjY2MAmruCa1Nd3qJFC4wdO1Y6X1ZWBm9vb8THx8PQ0BB+fn7Ys2cPzp49i1OnTmHlypVo06YNCgoKMGLECNy8ebPGtR8/fgwvLy9pJqebmxu2bt2KH3/8EampqThw4ACCgoLg4OAgtWnbti2ysrKwfft26dz27duRlZWl8RkzZoxU/ujRIwwePFiauTdmzBgcPnwYqamp2L9/PwYOHAgAOH36NEaNGoWqqiqdP49Hjx7Bx8cHT58+xaeffoqEhAScO3cO3377Lezt7Wv9WeqybNkyREREYMyYMYiOjkZaWhpiYmIwcuRIAL/MJGwIx44dw5IlS9C/f3/s3r0bqampOH78OIYPHw4AOHPmDEJDQ7F27VqEh4dj+PDhiIqKQlpaGg4dOoT+/fsDAI4fP46vv/661ntlZGTgo48+go2NDdavX4+UlBQkJiZi8eLFUCqVKCsrg6+vr87ZkmFhYVi4cCEqKirQo0cPbN68GSdOnEBqaioiIyPh4eEBIQRCQkIQHh5ea18WL16MEydO4Pe//73Gd1A9biIiIqI6a+ysKREREVFzNmHCBGk22ZUrV7TWyczMlOpMnTpVo2zp0qUCgLC0tBSpqala29+4cUPY29sLAGLy5Mk1yoOCgqTrBwQECJVKpfU6ZWVlIj8/X+Oc+iy5X5vh+Oc//1mq+9lnn9UoV6lUwtfXV6qzadOmGnWqZ1oCEC1atBAZGRm13vPXqPcfgPjiiy+09mvIkCECgJDL5aKgoKBGHX3PtAQgfHx8asySrKysFP379xcAhLm5uTA2NhaBgYE1rlNaWirNpOzRo4fWe1WX4/9nrmqbRRofHy/NwOzTp0+N8uzsbGmGZXBwsNZnp6qqSprB2qJFC1FYWKhR/vx3oO3ZICIiInpRnGlJRERE9BtMnTpVOtY121L9vHr9R48eYePGjQCAkJAQuLm5aW3v7OyMZcuWAQD279+v8T7EoqIibN26FcCzGZbr1q3T+b5FhUIBW1vbugyrhrKyMnzzzTcAgG7duknvbFQnk8mwadMmtGnTBgCwYcOGWq+5aNEi9OzZ86X6o42bmxuWLl2qtV8LFiwAAFRWViI5OVlv99TF1NQU27Ztg6GhocZ5Q0NDzJo1CwBQUlICa2trrF69Wmt7f39/AMDFixfx8OHDWu+3Zs0a2NnZ1Tjv5eWFmTNnAnj2zsvnZ1uuWbMGFRUVcHd3R3BwsNZnx8DAAOvXr4dSqcSjR4/w/fff6+xHp06dtD4bRERERC+KSUsiIiKi32Do0KFSIjAyMhJCCI1ylUqF3bt3AwAcHR01Nr5JTEyUklHjxo2r9T7vvfceAKCiogJpaWnS+fj4eGlznXnz5tVIkulLWloaioqKADzbTEfXfSwsLDBhwgQAQE5ODvLy8nRe09fXV699nDx5ss6ErXpC+Pr163q9rza/+93v0Lp1a61l6onasWPHwsjI6Ffr5ebm6rxXq1atMHr0aJ3lH374oXR84sQJjbIjR44AAHx8fHT+7ADA0tISrq6uAFBr0vcPf/hDvT2DRERE9Hph0pKIiIjoN5DL5Zg8eTKAZztynz59WqM8Li4Od+/eBfAsSWdg8MuvX+qz3uzt7Wvs3K3+6d69u1Q3Pz9fOk5PT5eO3333Xf0OTs2lS5ek4379+tVaV71cvZ26Fi1awMXFRT+d+39dunTRWaaeQCwpKdHrfbXp1KmTzjJLS8sXrldbn3v37g25XK6zvFevXlAoFACArKws6fzNmzfxv//9DwCwZMmSWp8/mUwmPa/qz9/zevToobOMiIiI6EUwaUlERET0G9W2RFzX0nAAKCgoeKn7Vc+sBID79+9Lxy+7gU1dFBYWSsc2Nja11lVfpqzeTp16Qk5fTE1NdZapJ4tr2yCoofuijz7/2vchl8ulpK3696GP5+95rVq1eqlrEhERET1P9/+SJSIiIqI66dWrF1xdXZGVlYX9+/dL7/8rLS1FdHQ0gGfLk7t27arRTj0RdeHCBZ3LhJ/n6Oiov86/hNqWEdcVlxDrz8t+H+rP3/LlyzF+/Pg6tTMzM9NZxu+ViIiI9IVJSyIiIiI9mDp1KhYuXIiioiIcOXIE48aNw4EDB6RNc56fZQlA2rAGAKytrV8qGWllZSUd5+XloUOHDi/R+1+nvrz63r17tS5rVl8+rOu9jk1N9axGlUpVaz31TZCainv37tVaXllZKc2wVP8+1J8/IyMjjVcQEBERETU2Lg8nIiIi0gNfX19plllERASAX5aGGxkZYdKkSTXa9O7dWzr+8ccfX+q+b7/9tnSclJT0wu3rOktPPaGVkpJSa91z585pbdeUmZubAwAePHhQa71r1641RHdeSEZGBiorK3WWZ2Zmory8HIDm9+Hi4oKWLVsCePnnj4iIiKi+MGlJREREpAf29vbw9vYGAMTExODSpUuIi4sDAAwbNgzW1tY12nh7e0vvNAwPD6+x83hdeHl5Sct1169f/8LvazQ2NpaOy8rKdNZzc3OT3kO5a9cunTMSS0pKsG/fPgBA165d6/U9m/pUPUP12rVrOje9uX//PmJjYxuyW3VSWFgo7QKuzfbt26Xj6mcUeLaUe8SIEQCAH374AZcvX66/ThIRERG9ICYtiYiIiPSkegl4RUUFJk6cKCUQtS0NB55tRjN37lwAwJkzZxAUFFTr8uR79+7hm2++qXGN2bNnAwDS0tIQGBioM/lZUVFRY/MV9aTif/7zH533ViqVmDFjBoBnO4KHhITUqCOEwNy5c6XNgarH1hwMHDgQAFBeXo7169fXKK+oqMCMGTPw5MmThu5anSxYsEDrMvHExERs27YNwLPEc58+fTTKlyxZAkNDQ6hUKowbNw63b9/WeY+qqipERkbWWoeIiIhIX/hOSyIiIiI9+eCDD2Bubo6SkhJkZ2cDeLab8qhRo3S2+ctf/oLExESkpKRg3bp1SEhIwMyZM9GrVy+YmZnhwYMHyM7OxokTJ3Ds2DG4urpKycNqISEhiI2NRVZWFjZs2IDk5GTMnj0brq6uUCgUuH37Nk6dOoU9e/bgiy++wLRp06S2Tk5OcHR0xO3bt/HVV1/B0dERnTt3lpa629raSkunly9fjujoaFy/fh0rVqxAVlYWpk+fDnt7e+Tm5mLDhg1ISEgAAHh4eGDWrFl6/OnWr5EjR8LZ2Rk3b97EsmXLcP/+fYwdOxbGxsbIzs5GeHg40tPT0b9/f5w9e7axu6uhZ8+eyMnJgZubG5YsWYK+ffuirKwMMTExWLt2LSorKyGXy7Fx48YabV1dXfHVV18hKCgIOTk56N69O2bNmoVBgwbB1tYWT58+xY0bN5CcnIzvv/8eeXl5yMrKavTNoIiIiOjVx6QlERERkZ6YmJhg3Lhx2LFjh3RuwoQJUCqVOtsolUrExsZi2rRpiI6ORmZmZq0zFC0sLGqcMzU1RXx8PHx8fJCUlIS0tLQXShguXboUH3/8MXJzczF69GiNsh07dkhJTnNzc8TFxWH48OG4cuUKoqKiEBUVVeN6np6eOHz4cLPaSVqhUCAiIgLDhg1DaWkp1q5di7Vr10rlhoaG+Pvf/47CwsIml7Ts1asX5s6dizlz5mh9dhQKBXbt2oV+/fppbR8YGAgzMzMEBgbi4cOHCAsLQ1hYmNa6CoVC45UCRERERPWFy8OJiIiI9Mjf31/j37qWhqszNzdHVFQUTp06hRkzZqBz584wNzeHXC5H69at0adPHwQEBCAmJkbnOxWtrKyQmJiI6OhojBs3Do6OjlAqlTA2NoaLiwvGjx+PyMhIrRsCzZkzB1FRURgyZAhsbGwgl+v+/9rt27dHZmYmNmzYgIEDB6JNmzYwMjKCra0thg0bhu+++w5JSUnNZtdwdQMGDEBaWhr8/Pzg4OAAIyMj2NvbS8ngefPmNXYXdZoxYwZOnTqFCRMmwMHBAQqFAm3btsXUqVORnp6OiRMn1tp+5syZuH79Oj7//HN4enrCysoKcrkcZmZm6NSpE3x8fLBlyxbcuXMHb775ZgONioiIiF5nMvEyb3wnIiIiIiIiIiIiqiecaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KT8H3566E0DdXPzAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop = 0.22\n", + "IREth2_2 = 0.46\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Параметры обучения\n", + "patience = 500\n", + "\n", + "# Обучение AE2_3 с 3 скрытыми слоями: 5 4 5 нейронов\n", + "ae2_3_trained, IRE2_3, IREth2_3 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE2_3.h5', # путь для сохранения модели\n", + " 'out/AE2_3_ire_th.txt', # путь для сохранения порога\n", + " 2000, # количество эпох\n", + " False, # не показывать процесс обучения\n", + " patience\n", + ")\n", + "\n", + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE2_3, IREth2_3, 'AE2_3')\n", + "\n", + "# Вывод MSE_stop и порога IREth\n", + "print('MSE_stop =', IRE2_3[-1])\n", + "print('IREth2_3 =', IREth2_3)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 972 + }, + "id": "pTMcpadGuh2M", + "outputId": "5ccb48c9-9bbd-49ef-b8a9-633f075bff87" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 3\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 5 4 5\n", + "\n", + "Epoch 1000/2000\n", + " - loss: 0.0292\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FOX9/vH7FLogIgq2QCyJvSL2LqJGEwu/2KJCNDEqCUpMlHyNvffeC/YSY4sSkVhRUcSCitilSZfeTt3fH+vumbNnep/d9+u6uNjdMzvz7OzUez/PTFUul8sJAAAAAAAAAFKiOukGAAAAAAAAAIARoSUAAAAAAACAVCG0BAAAAAAAAJAqhJYAAAAAAAAAUoXQEgAAAAAAAECqEFoCAAAAAAAASBVCSwAAAAAAAACpQmgJAAAAAAAAIFUILQEAAAAAAACkCqElAABI1OTJk3Xaaadp8803V9euXVVVVVX8N2XKlKSbV5FGjhxZ/A4GDx4c67SN3z8AAAAqF6ElAAAJ2HvvvYvBzAUXXGA5nDHAKf1XU1Oj7t27a5NNNtH/+3//T/fcc4+WLVvmqw1e/4UVZD3//PPabrvtdPvtt2vy5Mme2g8A//vf/1ptmzbbbDPP47jgggt8bwv79u1rOd7ly5frhRde0Jlnnqm99tpL66yzjjp06KAuXbqoT58+Ouyww3TnnXdq+fLlAeaAd59//rnuvvtunXbaadp7773Vt29frbbaaqqtrVX37t216aab6thjj9WTTz6p+vr6WNsGAIBRbdINAAAA/jQ3N2vx4sVavHixvvnmGz311FMaMWKE7rrrLh1++OFJN8/RsmXLNHjwYNXV1UmS1llnHe2+++5aa621ilV23bp1S7KJgVxwwQW68MILJUnnn3++bTgNpFXfvn01depUSdL3339vG9Il4YEHHmj1/IsvvtD48ePVv3//hFqU97vf/U7PPPOMVqxY0eZv9fX1mjZtmqZNm6bnnntO5557ru68804dccQRkbdr/vz52mKLLSz/XtinfPnll3rssce00UYb6d5779Vee+0VedsAAChFaAkAQEYcdthhWm+99YrPm5ubNX/+fI0bN04zZsyQlD8hHTRokJ566ilPweWOO+7o6SR/5513dt9wCy+88IIWLlwoSdpiiy30/vvvq1OnToHHC6AyLF26VE8//XSb1x944AHfoeW6667radu55pprmr7+1FNPFX+QkaQ11lhD/fv317rrrqtcLqfJkydr/PjxyuVymj9/vo488kjdfvvt+tOf/uSr3X5UVVVp44031i9+8Qutvfbaat++vX788Ud99NFH+vbbbyVJ3377rQ444AA999xzOvDAA2NrGwAAEqElAACZMWzYMO29995tXm9ubtYDDzygU089VXV1dWpubtapp56qgQMHqnPnzq7GffDBB8deCfjhhx8WHx9zzDEElikyePDg2K9lWZDL5RKZLrLnqaeeKlYydurUSStXrpQkPf7447r++uvVvn17z+PcZJNNdMstt4TSvs6dO+uYY47R73//e+28886qrm59Za5Jkybpd7/7nT7++GNJ0tChQ7Xbbrtpq622CmX6Ztq3b69TTz1VBx98sHbffXd1797ddLg33nhDQ4YM0ffff6/6+noNGTJEX3/9tVZbbbXI2gYAQCmuaQkAQMZVV1dryJAhuuqqq4qvzZkzR88++2xyjXKhUGUp5buGA4AXxq7hZ599tnr16iVJWrBggf7zn/8k1SxJ0p///Gd99913uueee7Trrru2CSylfIX5q6++qj59+kiSmpqadNlll0Xarm7duum2227TIYccYhlYStJee+2l0aNHF4Pf2bNn67nnnou0bQAAlCK0BACgTJxyyinq2LFj8fmbb76ZYGucNTQ0FB+bndADgJUpU6YUt3FVVVU68cQTdcwxxxT/Xnqty7hdffXVxRDVzhprrKGzzz67+HzUqFFRNsuTTTbZRHvssUfx+UcffZRgawAAlYgzBAAAykSHDh1a3Tl35syZCbbGnPEuvcZQYciQIW3uyjty5EjTcSxbtkw33XSTBg4cqPXXX18dO3bUGmusoS233FJDhw7Ve++956otxmkVTJw4UcOGDdOWW26pHj16qKqqSocddpinz1i4K3vhJjySdOGFF7q6C/vgwYPbfP5Fixbpxhtv1J577qn11ltPtbW1qqqq0qJFi1q9d+7cubr//vt14oknarvttlOPHj3Url274t2AhwwZotGjR7v6DCNHjnS8U/zrr79eHMZ42YJXX31VRx99tDbccEN17NhRa665pvbcc0/dcsstrYJqK2bfS6m+ffsWh5kyZYokacaMGfrnP/+pbbbZRt27d1eXLl206aab6s9//nPxRjJujRkzRkcffbR+9rOfqWPHjlpnnXW0xx576NZbby3e6dm4LId1aYX58+frmmuu0f777691111XHTt2LH6HW2yxhQYNGqTrrrtO33//vavxvfLKK/rTn/6kLbbYQj169FCHDh207rrrauDAgbrllluK3alLTZkypfjZjPPu5z//uely/Prrr4fx8T158MEHi5cS2H333dW3b18df/zxxb//97//1dy5c2Nvlx+77bZb8fGSJUu0YMGCBFvT2lprrVV8vHTp0gRbAgCoRFzTEgCAMmK8LuSqVasSbEk0XnjhBf3hD3/Q7NmzW71eV1enRYsWadKkSbr11lt17LHH6u6773Z9TU8pH0JdcsklampqCrvZvr399ts65phjNH36dNvhbrrpJg0fPty07ca7AY8cOVL77ruvnnzyScsbiPhVX1+voUOH6u677271el1dncaOHauxY8fq/vvv1+jRo9WzZ89Qp/3ss89q8ODBWrx4cavXv/zyS3355Ze699579a9//Uu/+tWvHD/DSSedpIcffrjV67Nnz9bs2bP11ltv6dZbb9UzzzwTavsl6bnnntOQIUNaXTahoPAdfv755/r3v/+t6667rnjzLTPTp0/XCSecYBomzpo1S7NmzdLLL7+syy+/XI8//nirarqsePDBB4uPC2Hl9ttvry222EKTJk1SY2OjHn30UZ1xxhkJtdC90oA+Tdugzz//vPg4bXeOBwCUP0JLAADKiLG60k3XxLj1799fp59+uqR8FdgXX3whSdpvv/206aabthrWWDUqSU888YSOO+644gl9TU2Ndt99d2288cZatmyZxo4dW/z8jz76qL7//nu9+uqrrbrMW7n66quLlZEbbbSR+vfvr86dO2vKlClq166dp894+OGHa8stt9T48eP1/vvvS7K+O7vdXdi/+eYbnXHGGVq8eLG6du2qPffcU+uuu64WLlzYpuv/zJkzi/Nlww031Gabbaa11lpLHTt21KJFi/Tpp59q0qRJkvKVkPvvv7/effdddejQwdNns/PHP/5RDzzwgKqrq7XTTjtp0003VXNzs9599119+eWXkvI3XzrhhBNC7QL7v//9T3/605/U1NSkn/3sZ9pll13UrVs3ff/993r99dfV2NiolStX6re//a0+++wz/fznP7cc1zHHHNPqbtQ9evTQ3nvvrR49emj69Ol64403NHnyZP3qV7/Sr3/969A+w4QJEzRo0CA1NjZKyv/4sPPOO6tv377q0KGDlixZom+//Vaffvpp8cYzViZPnqz99ttPs2bNkpQPxLbffnttvvnm6tSpk3744Qe9+eabWrp0qWbOnKkBAwbov//9r/bZZ5/iOLp161ZcTx988MFihd0JJ5ygrl27tpnmeuutF8p8cOutt94q3t26Q4cO+n//7/8V/3b88cfrnHPOkZTvIp6F0PLTTz8tPu7UqVPoob5fI0eO1CeffCIpvxwdccQRCbcIAFBxcgAAIHZ77bVXTlJOUu7888+3HK4wjKTca6+9ZjvOL7/8stXwt9xySyhtiMqJJ55YnP79999vO+w333yTW2211YrD9+/fP/f111+3GqapqSl37bXX5qqrq4vD/fnPf7Ycp3Fe1dbW5lZfffXcM88802a4VatW+fl4ufPPP9/z/DXOk9ra2pyk3Omnn55bunRpq+Hq6+tzTU1Nxef33ntv7uabb87NmDHDctwTJ07M9evXrzj+iy++2HLY+++/vzjciSeeaDrMa6+9VhymQ4cOOUm5HXfcMTd58uRWwzU3N+duuOGGVvP7jTfesJy2cTgrffr0aTXtLl265B566KFcc3Nzq+E+++yz3HrrrVccdsiQIZbjvOeee1pN+69//Wub737OnDm5gw46qNVnDmP9Oeyww4rjOvLII3MLFiwwHW7lypW5F198MXfKKaeY/n3ZsmW5zTbbrDiugw46KPfNN9+0GW7x4sW5U089tTjcOuusk1u0aJHpOI3z+vvvv/f9GcN08sknF9s0aNCgVn+bPn16q23AxIkTHcdnXFf32muviFptbcCAAcXp/+pXv4p9+gVNTU25H3/8Mffaa6/lhgwZ0mo+/t///V9i7QIAVC4qLQEAKAONjY0aNmxY8Xm3bt109NFHu37/qFGjNH/+fNfDX3TRRerRo4enNgZx0UUXadmyZZKkjTfeWC+//LJWX331VsNUV1dr+PDhqqqq0vDhwyVJt956q84880zb6jpJam5u1vPPP68999yzzd/CrEb0orGxUSeffLJuueWWNn8rrf78/e9/7zi+rbfeWv/73/+06aabavbs2brttts0YsQI1dTUBG5rXV2dNtlkE7366qtabbXVWv2tqqpKw4YN01tvvaWnnnpKkvTYY4+Zzms/6uvr9eyzz+rAAw9s87cttthCd955pw455BBJ0r/+9S/dddddqq1tfQjc1NSk888/v/j8lFNO0TXXXNNmfGuvvbaeffZZ7b777sUq2jCMHTtWUn5ZGzlyZJt5WNCxY0cdfPDBOvjgg03/ft1112ny5MmS8hW/Tz31lOlNrgp3kF6xYoUeeOABzZo1S3fccUerG8Kk1cqVK/Xkk08WnxuvYylJ66+/vvbee2+9+uqrkvLVltdee63r8X/99dcaOnSo6+GPP/547bTTTq6HL/XCCy9ozJgxxeeFCte4nHzyybr33nst/96pUyddfvnlrfYvAADEhdASAICMam5u1vz58/X222/riiuu0Pjx4yVJtbW1uu+++zxds/D999/3FMKcddZZsYWWixYt0hNPPFF8ftVVV7UJLI2GDRume++9V5MmTVJzc7PuuusuXX755bbTGDRoUGghWlg6duyoq666KtRxrr766jr88MN1++23a9asWfr888+11VZbhTLuK664wjJsk/LBaiG0LCyrYTjkkENMA8uCgw8+WL1799bs2bO1bNkyTZ48uc1nfumll/TDDz9Ikrp06aIrrrjCcnzt27fXNddco7322iucD6D8zVckqXPnzrbz0E5DQ0Mx4O7QoYPuuOMO08DS6LLLLive0OaRRx7JRGj57LPPFufXmmuuqYMOOqjNMMcff3wxtHzkkUd05ZVXtgmqrcycOVO33nqr6/b069fPd2g5a9Ys/fGPfyw+HzBggOnnScpuu+2mhx56yPFHHwAAokJoCQBARhivOWfll7/8pa699lrHG45kyTvvvKO6ujpJUs+ePXXooYfaDl9dXa3f//73+utf/ypJeu211xyn4aUqNS4HHHCA1lhjDc/vmzt3rt59911NnjxZCxcu1PLly4t3WZby108s+Pjjj0MJLTt27Oj4vWy33XbFx4U7fofBeD1DM1VVVdpmm22KN2+aMmVKm89svGHNr371K3Xv3t12nHvuuad+9rOfadq0ab7aXGqDDTbQd999p4ULF+qJJ57QUUcd5XkcEyZMKN4te7/99tPaa6/t+J51111Xm266qSZPnqzPPvtMixcvtv1BIA0eeOCB4uOjjz7a9JqzgwYN0umnn64VK1Zozpw5Gj16dOq2ifX19Ro0aFDx2qNrrrmmRo4cGXs79t133+J1fxsbGzV//nx98MEHmjJlit5++21tscUWGjZsmC688EK1b98+9vYBACoboSUAAGWiV69eevDBB01v+OLk/PPP1wUXXBB+o0Lw0UcfFR/379/fVcXUbrvt1ur9uVyuzR16jXbYYYdgjYyA1zZ9/vnnOvvss/Xf//7X9d2HvVwSwM4vf/lLxxsWGSt/C5VyYXATujpN++OPPy4+dls1179//9BCy9/+9rfF6s5jjjmmGFzus88+rsJHSRo3blzx8YwZM1x3cV60aJEkKZfLacaMGakOLWfOnKn//e9/xeelXcMLVlttNR122GF69NFHJeWDTreh5V577WV61/Uw5XI5nXjiiXrnnXck5S/38Nhjj2ndddeNdLpmjj32WB177LFtXn/11Vd12mmn6csvv9QVV1yhjz76SC+88ILrilUAAMLAXgcAgIw47LDDWt2l98cff9S3335b7NY9Z84c7bHHHvr3v/9dvIZfOZg3b17xcZ8+fVy9p2/fvsXH9fX1Wrp0qbp162Y5/FprreW7fVHx0qbRo0frN7/5TbEi1a3CXaGDchN0GUPNwl2yk5h2Q0NDm78bl7ENNtjA1XTXX399V8O5ce655+r111/Xu+++q1wup2eeeUbPPPOMJGmTTTbRHnvsof3220+HHnqo6d27pXygV/DJJ58U7/rsxcKFC/19gJg8/PDDxUB+k002sQ2Yjz/++GJo+fzzz2vhwoW+KpejMHToUD3++OOS8pXhDzzwgAYMGJBwq1rbd9999fbbb2vHHXfU999/r9GjR+vqq6/WiBEjkm4aAKCC2F/oBgAApMawYcN0yy23FP899thjGj9+vCZOnKhtttlGUj6gO+aYY/Ttt98m3NrwFG7AI+WvN+hG6XBO4VynTp28Nyxibts0b948HXXUUcXAsk+fPrr88sv11ltvaebMmVqxYoWam5uVy+WUy+Va3XCmubk5lLbaVbFGLYxpG5exzp07u3qP32tPmunSpYveeOMNXX311a0Cdyl/Y5j77rtPxx13nHr37q2///3vWrlyZZtxLF68OHA7wgyTo2DsGv673/3OdtgBAwaod+/ekvI3ijJeFzdJI0aM0G233VZ8fuutt+qYY45JsEXW1lxzTV100UXF59dff31o2wwAANwgtAQAIOO23nprvfzyy8UqzGXLlunkk09OuFXhMYZDy5cvd/We0uGsqtPKwd13310MrLbZZht98sknOuecc7TbbrtpnXXWUadOnVoFe2FVV5YT4zK2YsUKV+9xuyy61b59e5111ln67rvv9PHHH+umm27S0Ucf3aq6esWKFbr66qu1zz77tAkujUH9X/7yl2JI7eXf3nvvHepnCtOECRP0+eefF5+ff/75qqqqsvxXW1tbvI6p1DrwTMqll17a6iZPV155pf70pz8l2CJnxgrQefPm6euvv06wNQCASkNoCQBAGVh77bV18803F5+//vrrevHFFxNsUXiM3aTdXkPQeKOX9u3bl3Vo+corrxQfn3vuubbd4CVp6tSpUTcpc3r27Fl8PGPGDFfvcTucV4UbB/35z3/WY489phkzZujDDz/UkCFDisO89957be5w3atXr+JjY1hXLoKGju+++66++uqrkFrj3Q033KBzzz23+Pzcc8/V3//+98Ta41Zpl/off/wxoZYAACoR17QEAKBMHH744dptt9309ttvS8qfFKftjrl+GO86PX78eDU1Nammpsb2PYUbXBTen0T35bimabyWodNNaZqamorLB1psu+22xfD3vffec/We8ePHR9mkVrbbbjvdd999qqmp0T333CMpf53Gs846qziM8fqO77zzjuPNp9xKsut/QX19vR577LHi81/+8peOd3gv+Prrr7VgwQJJ+eDz0ksvjaKJtu666y6deeaZxefDhg3TxRdfHHs7/Cjc3bygR48eCbUEAFCJqLQEAKCMGO8A/vHHH+v5559PrjEh2XXXXdWhQwdJ+e6JThWkzc3Nuv/++4vP991330jbZ6Vjx47Fx2Y3fwlLdXXL4ZxT1+Znn322LKvwgjJ2i37xxRcdrw/51ltvJVKx+utf/7r4eM6cOa3+tttuuxWDvBkzZug///lPKNOMazm28+KLLxYr/Gpra/Xmm2/q3XffdfXvH//4R3E8Dz30UOzXZHz44YdbdQE/6aSTdP3118fahiBeeOGF4uNOnTq5vhkaAABhILQEAKCM7L///tp1112Lzy+55JIEWxOO7t2766ijjio+/9vf/mZ7XcZbbrlFn376qaR8oPfHP/4x8jaaWXPNNYuPf/jhh8ims+GGGxYf24XU8+bNa1XthRYHHnig1l13XUn5a8Iag65S9fX1rSocg6qrq2t1IyA706dPLz5ee+21W/2tQ4cOOuOMM4rPTzvtNE/LXWkIWhDXcmzH2DV8wIABbT67nWOOOaYY7E+fPl2vvfZa6O2z8vTTT2vw4MHK5XLFttx1112JVq966d49ZcqUVjfiOfjgg1N50zIAQPkitAQAoMycd955xcfvv/++XnrppQRbE47zzjuveLOUr776SgMHDtR3333Xapjm5mbdeOONGj58ePG1008/vc3dmOOy5ZZbFh+//PLLodzd2cyhhx5afHz55Zfr4YcfbjPMhx9+qL322kvTp093fQf2SlJbW9uqSvm2227T2Wefrfr6+lbDzZs3T0ceeaTee++9YvVvULNmzdIGG2ygs846SxMmTLAcbsyYMa3u/H7QQQe1Geavf/2rtthiC0n5gLFfv37617/+ZVldOH/+fN11113afvvtdfXVV5sOY1yO//Wvf7n6TCNHjmx1UxzjNWa9mj9/vkaNGlV8ftxxx3l6/7rrrqt99tmn+DyuG/K89NJLOuaYY9TU1CRJ+s1vfqMHH3ywVWV0Eg488ECddNJJGjt2bDFMLdXQ0KDHHntMu+66q+bOnStJateuXWa6tAMAygfXtAQAoMwMHDhQO+20U/HafBdffLEOPPBA2/eMGjVK8+fPdz2Nzp0766qrrgrUTi822mgj3XPPPTruuOPU1NSkcePG6Ze//KX22GMPbbTRRlq2bJnGjh3bqhJs5513jrWNpfr3768NNthA06dP16xZs7TpppvqgAMOUM+ePYuVVjvuuGOrKlI/TjzxRF177bX66quvVFdXp+OPP16XXXaZttlmG3Xs2FGfffZZMQzbZpttNHDgwETnS1qdfPLJevHFF/Xcc89Jkq666irde++92nvvvdWjRw/NmDFDr732mlatWqUNN9xQv/nNb4rdfIMGUYsWLdK1116ra6+9Vj169NB2222n9dZbTx07dtTcuXP1ySeftArpf/GLX2jYsGFtxrPaaqvp+eef1/7776/vv/9es2fP1m9/+1v17NlTO++8s3r37q1cLqcFCxbo888/19dff10MNK0uo3DkkUfqzjvvlJQPcz/44ANtv/326ty5c3GYU089VRtttFGgeWDl0UcfLXZL79Kliw477DDP4zjuuOOK1yx9+umnddttt7W6Y7zR119/raFDh3oa/4gRI1rd5X3+/Pk64ogjiqF3TU2N1lprrVaVsHaOP/74VtcoDVNDQ4Puu+8+3XfffVp99dW1zTbbaP3111e3bt20atUqTZ8+XR988IEWLVpUfE9tba0eeeQRbbbZZpG0CQAAK4SWAACUofPOO694E5533nlHr7zyivbbbz/L4d9//329//77rse/+uqrxx58HXXUUerSpYtOPvlkzZkzR42NjXrttddMu3sec8wxuueee1pdjy9u1dXVuu2223TkkUeqvr5es2fP1oMPPthqmBNPPDFwaNmhQwf95z//0UEHHVQMtiZPnqzJkye3Gm633XbTE088obvvvjvQ9MpVVVWVnnjiCQ0ePFiPP/64pHxX2n//+9+thttss830zDPPtPoune7Ybqddu3bq0KGD6urqJEkLFixodUf4Unvvvbcee+wxy4rZDTfcUBMmTNCf/vQnPfXUU8rlcpo/f36raxOW6t69u+VNnAYMGKBjjjmmeCOc9957r83Nig455JDIQktjZeRhhx3mq1L4yCOP1GmnnaZVq1Zp+fLleuqppzR48GDTYWfOnNnmzuxOTj755Fah5bJly7Ry5cri86ampuINlNzo169fZKGlsUJ48eLFevPNN22H33bbbXX77bdr5513jqQ9AADYIbQEAKAMHXzwwerXr1+xwu6iiy6yDS2z4pBDDtE333yj++67Ty+88IImTZqk+fPnq1OnTsVuoCeccEJkJ/xeHXLIIZowYYJuvfVWvfXWW5o2bZqWLVtm2S3Tr1/84hf66KOPdOutt+rpp5/Wl19+qfr6evXu3VtbbbWVjj32WP32t791vOt6pevQoYMee+wxDRkyRPfcc4/GjRunuXPnao011tDGG2+so48+WkOGDFGXLl2Kd6SW5PpO1mbWW289/fjjj3r11Vc1duxYffDBB/rmm280b9481dfXq2vXrurTp0+xKnf//fd3HGePHj305JNP6rPPPtNjjz2m119/Xd9//71+/PFHVVdXq3v37tp44421/fbba//999eAAQNsA/5HHnlEhxxyiB577DF9/PHHmj9/vlatWuX7M7v12Wef6cMPPyw+99o1vKBbt2469NBDi93bR44caRlalru33npLb731lt58801NmDBBX3/9tWbNmqXly5erQ4cOWn311bXxxhurX79+OuKII7T77rsn3WQAQAWryoV91AwAAACUud12203vvPOOJOndd99NTVAOAABQLggtAQAAAA+mTp2qjTbaSE1NTWrfvr0WL16c6KUIAAAAyhF3DwcAAABcyuVyGjZsWPGu0IcffjiBJQAAQAQILQEAAADlb2B14403av78+aZ/nzJlig4//PDiHcZramp01llnxdlEAACAisGNeAAAAABJ06ZN08UXX6yzzjpLW221lTbddFOtvvrqWrZsmb744gt99NFHxQpLSTr33HPVr1+/BFsMAABQvggtAQAAAIPGxkZ99NFH+uijj0z/3qlTJ1100UVUWSJyo0aN0qhRowKNY80119SFF14YUosAAIgPN+IBAAAAJC1atEjPPfecXn31VU2aNEnz5s3T/Pnz1dTUpB49euiXv/yl9ttvP5100klaZ511km4uKsAFF1wQOHDs06ePpkyZEk6DAACIEZWWLjU3N2vmzJnq2rWrqqqqkm4OAAAAQlZdXa3DDz9chx9+uOOwS5YsiaFFqHR1dXWBx5HL5VheAQCpkcvltHTpUq277rqqrra/1Q6Vli7NmDFDG2ywQdLNAAAAAAAAADJt+vTpWn/99W2HodLSpa5du0rKz9Ru3bol3JrwNTQ06OWXX9YBBxygdu3aJd0coOKwDgLJYz0Eksd6CCSLdRBIXrmvh0uWLNEGG2xQzNnsEFq6VOgS3q1bt7INLTt37qxu3bqV5UoBpB3rIJA81kMgeayHQLJYB4HkVcp66ObSi/adxwEAAAAAAAAgZoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApEpt0g2oBLlcTg0NDWpubk66KZYaGhpUW1urVatWqampKenmlL2amhq1a9cu6WYAAAAAAACkEqFlhOrr6zV37lytWLEi9UFgLpdT7969NX36dFVVVSXdnIrQoUMH9ezZU926dUu6KQAAAAAAAKlCaBmRFStWaPr06aqpqdEaa6yhTp06qaamJrWBYHNzs5YtW6bVVltN1dVcNSBKhcrbxYsX64cffpAkgksAAAAAAAADQsuIzJ8/X+3atVOfPn1UU1OTdHMcNTc3q76+Xh07diS0jEGnTp3UtWtXzZgxQ/Pnzye0BAAAAAAAMCCdikBjY6OWL1+uHj16ZCKwRDKqqqq0+uqrq66uTg0NDUk3BwAAAAAAIDUILSPQ2NgoKX/NQsBO4WY8ab/mKQAAAAAAQJwILSOU1utXIj1YRgAAAAAAANoitAQAAAAAAACQKoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaIlF9+/ZVVVWVRo4cWXxt5MiRqqqqavWvurpa3bp103bbbacRI0Zo3rx5luMsfa/Vv9dffz36DwgAAAAAAADPapNuAGClS5cuGjRokKT83bWnTp2qcePG6eOPP9b999+vsWPHapNNNrF8/8CBA9W7d2/Lv9v9DQAAAAAAAMkhtERq9ezZs1UFpiRNmjRJe+21l+bMmaMzzjhDL774ouX7zznnHO29997RNhIAAAAAAACho3s4MmWLLbbQ8OHDJUljxoxRXV1dwi0CAAAAAABA2AgtkTlbb721JKmhoUELFixIuDUAAAAAAAAIG6ElMmfJkiWSpJqaGvXs2TPh1gAAAAAAACBshJbInMJ1LA888EC1a9cu4dYAAAAAAAAgbNyIJyn9+kmzZyfdiqIqSd1yOVVVVTkP3Lu3NGFC5G0yKtw9/K677tKjjz6qPn366KabbrJ9zz777GP5t9VXX12LFi0KuZUAAAAAAAAIA6FlUmbPln74IelWFFX99C9Npk6dahqi9u/fXy+//LJWX3112/cPHDhQvXv3Nv1b586dQ2kjAAAAAAAAwkdomRSLMC0pOUm5nyotHcPLmNrepUsXDRo0SJJUV1enyZMna+LEiRo/frxOOeUUPf7447bvP+ecc7T33nvH0FIAAAAAAACEidAyKTF3r3aSa27WkiVL1K1bN1VVp+NSpz179tTIkSNbvfb000/rqKOO0hNPPKE999xTp512WjKNAwAAAAAAQGTSkU4BLh1xxBE655xzJEnnnXeeFi9enHCLAAAAAAAAEDZCS2TOiBEjtM466+jHH3/Uddddl3RzAAAAAAAAEDJCS2RO586d9c9//lOSdMMNN2jhwoUJtwgAAAAAAABh4pqWyKSTTz5Z1157rb799ltdc801uvTSS9sMc8UVV7S5JqbRscceqwMOOCDCVgIAAAAAAMAPQktkUrt27XTJJZfomGOO0c0336zhw4drzTXXbDXM6NGjbcex7bbbEloCAAAAAACkEKElEjVlypQ2rw0ePFiDBw92fO/RRx+to48+us3ruVwuhJYBAAAAAAAgKVzTEgAAAAAAAECqEFoCAAAAAAAASJXMhpa33nqr+vbtq44dO2qnnXbS+PHjbYdftGiRTj/9dK2zzjrq0KGDfvGLX2jUqFExtRYAAAAAAACAW5m8puUTTzyh4cOH64477tBOO+2kG264QQMHDtSXX36ptddeu83w9fX1GjBggNZee2099dRTWm+99TR16lR17949/sYDAAAAAAAAsJXJ0PK6667TH/7wBw0ZMkSSdMcdd+jFF1/Ufffdp3POOafN8Pfdd58WLFigd955R+3atZMk9e3bN84mAwAAAAAAAHApc6FlfX29PvjgA40YMaL4WnV1tfbff3+NGzfO9D3PP/+8dtllF51++ul67rnntNZaa+nYY4/V2WefrZqaGtP31NXVqa6urvh8yZIlkqSGhgY1NDTYtrGhoUG5XE7Nzc1qbm72+hETUbjjdqHdiEdzc7NyuZwaGhosl0VUhsJ2xWn7AiA6rIdA8lgPgWSxDgLJK/f10MvnylxoOX/+fDU1NalXr16tXu/Vq5e++OIL0/d89913evXVV3Xcccdp1KhR+uabb3TaaaepoaFB559/vul7Lr/8cl144YVtXn/55ZfVuXNn2zbW1taqd+/eWrZsmerr611+snRYunRp0k2oKPX19Vq5cqXefPNNNTY2Jt0cpMCYMWOSbgJQ8VgPgeSxHgLJYh0Ekleu6+GKFStcD5u50NKP5uZmrb322rrrrrtUU1OjHXbYQT/88IOuvvpqy9ByxIgRGj58ePH5kiVLtMEGG+iAAw5Qt27dbKe3atUqTZ8+Xauttpo6duwY6meJSi6X09KlS9W1a1dVVVUl3ZyKsWrVKnXq1El77rlnZpYVRKOhoUFjxozRgAEDipexABAv1kMgeayHQLJYB4Hklft6WOjJ7EbmQsuePXuqpqZGc+bMafX6nDlz1Lt3b9P3rLPOOmrXrl2r7rebbbaZZs+erfr6erVv377Nezp06KAOHTq0eb1du3aOC01TU5OqqqpUXV2t6ups3KC90CW80G7Eo7q6WlVVVa6WK1QGlgUgeayHQPJYD4FksQ4CySvX9dDLZ8pcOtW+fXvtsMMOeuWVV4qvNTc365VXXtEuu+xi+p7ddttN33zzTatrNX711VdaZ511TANLAAAAAAAAAMnJXGgpScOHD9fdd9+tBx54QJMnT9app56q5cuXF+8mfsIJJ7S6Uc+pp56qBQsWaNiwYfrqq6/04osv6rLLLtPpp5+e1EcAAAAAAAAAYCFz3cMl6aijjtK8efN03nnnafbs2dp222310ksvFW/OM23atFZdnDfYYAONHj1aZ555prbeemutt956GjZsmM4+++ykPgIAAAAAAAAAC5kMLSVp6NChGjp0qOnfXn/99Tav7bLLLnr33XcjbhUAAAAAAACAoDLZPRwAAAAAAABA+SK0RKL69u2rqqoqjRw5svjayJEjVVVV1epfdXW1unXrpu22204jRozQvHnzLMdZ+l6rf2YVuXYK7Ro8eLC/DwsAAAAAAABXMts9HOWvS5cuGjRokCSpqalJU6dO1bhx4/Txxx/r/vvv19ixY7XJJptYvn/gwIHq3bu35d9L/1ZVVSVJyuVyIbQeAAAAAAAAfhFaIrV69uzZqgJTkiZNmqS99tpLc+bM0RlnnKEXX3zR8v3nnHOO9t5772gbCQAAAAAAgNDRPRyZssUWW2j48OGSpDFjxqiuri7hFgEAAAAAACBshJbInK233lqS1NDQoAULFgQe3wUXXFDsGi61vSbmlClT2rxn+fLlGjFihDbeeGN16NBBvXv31oknnqgffvghcHsAAAAAAAAqHd3DkTlLliyRJNXU1Khnz56Bx7ftttvqxBNP1AMPPCBJOvHEE1v9fbXVVmv1fPHixdp11101bdo07bHHHtpyyy01btw4Pfjgg3rjjTc0ceJErb766oHbBQAAAAAAUKkILZE5hetYHnjggWrXrl3g8R122GE67LDDiqFl6XU0Sz377LMaOHCgxo4dq27dukmSFi5cqH333Vcff/yxbrvtNo0YMSJwuwAAAAAAACoVoWVC+vXrp9mzZyfdjFZyuVyrbtJWevfurQkTJsTQohaFu4ffddddevTRR9WnTx/ddNNNtu/ZZ599LP+2+uqra9GiRb7a0qVLF91///3FwFKS1lhjDZ1zzjk6+uij9b///Y/QEgAAAAAAIABCy4TMnj2b6x86mDp1qmmI2r9/f7388suOXbAHDhyo3r17m/6tc+fOvtvVr18/rbPOOm1e32yzzSSJ7xUAAAAAACAgQsuEWIVpSfJSaRmHLl26aNCgQZKkuro6TZ48WRMnTtT48eN1yimn6PHHH7d9/znnnKO999479Hb97Gc/M329UHm5atWq0KcJAAAAAABQSQgtExJ392onzc3NWrJkibp166bq6nTcVL5nz55tri/59NNP66ijjtITTzyhPffcU6eddlrs7UrL/AEAAAAAAChXpC/IlCOOOELnnHOOJOm8887T4sWLE24RAAAAAAAAwkZoicwZMWKE1llnHf3444+67rrrQhtv4U7kjY2NoY0TAAAAAAAA3hFaInM6d+6sf/7zn5KkG264QQsXLgxlvOuvv74kadKkSaGMDwAAAAAAAP5wTUtk0sknn6xrr71W3377ra655hpdeumlbYa54oor2lwT0+jYY4/VAQccUHx+5JFH6pprrtH++++vfffdV127dpUkXXnllVpzzTVD/wwAAAAAAAAwR2iJTGrXrp0uueQSHXPMMbr55ps1fPjwNsHi6NGjbcex7bbbtgotL774YlVXV+vpp5/Ws88+q/r6eknSueeeS2gJAAAAAAAQI0JLJGrKlCltXhs8eLAGDx7s+N6jjz5aRx99dJvXc7mcr7Z07NhRV155pa688krTvzu1q2/fvr6nDQAAAAAAgBZc0xIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElhHK5XJJNwEpxzICAAAAAADQFqFlBKqr87O1qakp4ZYg7QrLSGGZAQAAAAAAAKFlJNq1a6d27dpp2bJlSTcFKbdy5UrV1NSoXbt2STcFAAAAAAAgNQgtI1BVVaWuXbtq8eLFWrlyZdLNQUo1NTVp8eLF6ty5s6qqqpJuDgAAAAAAQGrUJt2ActWzZ0+tXLlS06ZNU7du3dS1a1fV1NSkNpxqbm5WfX29Vq1aRVfliOVyOdXV1WnBggVqbm7W2muvnXSTAAAAAAAAUoXQMiI1NTXaYIMNNH/+fC1dulSLFi1Kukm2crmcVq5cqU6dOqU2WC03Xbp0Ue/evdW+ffukmwIAAAAAAJAqhJYRqqmpUa9evbT22muroaFBzc3NSTfJUkNDg958803tueeeXF8xBrW1taqtZfUDAAAAAAAwQ2oSg6qqqtRX09XU1KixsVEdO3YktAQAAAAAAECiuHghAAAAAAAAgFQhtAQAAAAAAACQKoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAAAAAAAAAKlCaAkAAAAAAAAgVQgtAQAAAAAAAKQKoSUAAAAAAACAVCG0BAAAAAAAAJAqhJYAAAAAAAAAUoXQEgAAAAAAAECqEFoCAAAAAAAASBVCSwAAAAAAAACpQmgJAAAAAAAAIFUILQEAAAAAAACkCqElAAAAAAAAgFQhtAQAAAAAAACQKoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAAAAAAAAAKlCaAkAAAAAAAAgVQgtAQAAAAAAAKQKoSUAAAAAAACAVCG0BAAAAAAAAJAqhJYAAAAAAAAAUoXQEgAAAAAAAECqEFoCAAAAAAAASBVCSwAAAAAAAACpQmgJAAAAAAAAIFUILQEAAAAAAACkCqElAAAAAAAAgFQhtAQAAAAAAACQKoSWAAAAAAAAAFIl06Hlrbfeqr59+6pjx47aaaedNH78eMthR44cqaqqqlb/OnbsGGNrAQAAAAAAALiR2dDyiSee0PDhw3X++efrww8/1DbbbKOBAwdq7ty5lu/p1q2bZs2aVfw3derUGFsMAAAAAAAAwI3MhpbXXXed/vCHP2jIkCHafPPNdccdd6hz58667777LN9TVVWl3r17F//16tUrxhYDAAAAAAAAcKM26Qb4UV9frw8++EAjRowovlZdXa39999f48aNs3zfsmXL1KdPHzU3N2v77bfXZZddpi222MJ02Lq6OtXV1RWfL1myRJLU0NCghoaGkD5JehQ+Uzl+NiALWAeB5LEeAsljPQSSxToIJK/c10Mvn6sql8vlImxLJGbOnKn11ltP77zzjnbZZZfi63//+9/1xhtv6L333mvznnHjxunrr7/W1ltvrcWLF+uaa67Rm2++qUmTJmn99ddvM/wFF1ygCy+8sM3rjz76qDp37hzuBwIAAAAAAADK3IoVK3Tsscdq8eLF6tatm+2wmay09GOXXXZpFXDuuuuu2myzzXTnnXfq4osvbjP8iBEjNHz48OLzJUuWaIMNNtABBxzgOFOzqKGhQWPGjNGAAQPUrl27pJsDVBzWQSB5rIdA8lgPgWSxDgLJK/f1sNCT2Y1MhpY9e/ZUTU2N5syZ0+r1OXPmqHfv3q7G0a5dO2233Xb65ptvTP/eoUMHdejQwfR95bjQFJT75wPSjnUQSB7rIZA81kMgWayDQPLKdT308pkyeSOe9u3ba4cddtArr7xSfK25uVmvvPJKq2pKO01NTfr000+1zjrrRNVMAAAAAAAAAD5kstJSkoYPH64TTzxR/fr1U//+/XXDDTdo+fLlGjJkiCTphBNO0HrrrafLL79cknTRRRdp55131sYbb6xFixbp6quv1tSpU3XyyScn+TEAAAAAAAAAlMhsaHnUUUdp3rx5Ou+88zR79mxtu+22eumll9SrVy9J0rRp01Rd3VJIunDhQv3hD3/Q7NmztcYaa2iHHXbQO++8o8033zypjwAAAAAAAADARGZDS0kaOnSohg4davq3119/vdXz66+/Xtdff30MrQIAAAAAAAAQRCavaQkAAAAAAACgfBFaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAAAAAAAAAKlCaAkAAAAAAAAgVQgtAQAAAAAAAKQKoSUAAAAAAACAVCG0BAAAAAAAAJAqhJYAAAAAAAAAUoXQEgAAAAAAAECqEFoCAAAAAAAASBVCSwAAAAAAAACpQmgJAAAAAAAAIFUILQEAAAAAAACkCqElAAAAAAAAgFQhtAQAAAAAAACQKoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAAAAAAAAAKlCaAkAAAAAAAAgVQgtAQAAAAAAAKQKoSUAAAAAAACAVCG0BAAAAAAAAJAqhJYAAAAAAAAAUoXQEgAAAAAAAECqEFoCAAAAAAAASBVCSwAAAAAAAACpQmgJAAAAAAAAIFUILQEAAAAAAACkCqElAAAAAAAAgFQhtAQAAAAAAACQKoSWAAAAAAAAAFKF0BIAAAAAAABAqhBaAgAAAAAAAEgVQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAOnw6afSrFlJtwIAAAAAAKRAVS6XyyXdiCxYsmSJVl99dS1evFjdunVLujmha2ho0GabbaZVq1Yl3RRUolWrpB9/zD9eZx2pujJ/T1m1apU6duyYdDOAisZ6CCSP9RBIFusgkLxVq1apT58++uCDD5JuSui85Gu1MbUJGbBo0SL9WAiOgKRQbQkAAAAAqHD8eEBoCYPu3buzUiAZP/zQ8rhrV6kMq5nd4FdtIHmsh0DyWA+BZLEOAslbtWqVevXqlXQzEkdoiaJrr71WBx98sNq1a5d0U1BpqqpaHv/5z9KllybXloQ0NDRo1KhRrINAglgPgeSxHgLJYh0EkmdcDytdZV44DgAAAAAAAEBqEVoCAAAAAAAASBVCSwDpkssl3QIAAAAAAJAwQksAAAAAAAAAqUJoCQAAAAAAACBVCC0BAAAAAAAApAqhJQAAAAAAAIBUIbQEAAAAAAAAkCqElgAAAAAAAABShdASAAAAAAAAQKoQWgIAAAAAAABIFUJLAAAAAAAAAKlCaAkAAAAAAAAgVQgtAQAAAAAAAKQKoSWAvIYGadq0pFuBrMnlpO++y/8PAOVkzhxp2bKkWwEAAFCxCC0B5AOn/v2lPn2kBx5Ivi3IjhNPlDbaSPrb35JuCQCE5913pfXXz+8XFy9OujUAAAAVidASgPTDD9LHH+cfv/BCok1Bxjz0UP7/a69Nth0AEKbDDpMaG6UFC6Srrkq6NQAAABWJ0BKA1NTU8rixMbl2AACQBnPntjxevjy5dgAAAFQwQksAUnOz+WMAAAAAAIAEEFoCaB1UGqsuAQAAAAAAEkBoCaD1zW8ILQEAAAAAQMIILQFQaQkAgJHxxzwAAAAkItOh5a233qq+ffuqY8eO2mmnnTR+/HhX73v88cdVVVWlww47LNoGAlnBNS0BADBXVZV0CwAAACpSZkPLJ554QsOHD9f555+vDz/8UNtss40GDhyouca7PZqYMmWKzjrrLO2xxx4xtRTIACotAQAAAABAimQ2tLzuuuv0hz/8QUOGDNHmm2+uO+64Q507d9Z9991n+Z6mpiYdd9xxuvDCC7XhhhvG2Fog5bimJQAA5qi0BIDovPOOdPrp0qefJt0SAClUm3QD/Kivr9cHH3ygESNGFF+rrq7W/vvvr3Hjxlm+76KLLtLaa6+tk046SWPHjrWdRl1dnerq6orPlyxZIklqaGhQQ0NDwE+QPoXPVI6fDS7U1andTw+bGxvVFPNy0M7wuKmpSc0VuBxmdR00fndZaztQKqvrIcLXar/U3FyR+6WksB4CyYp7HWy3226SpNx996nxp3NuoNKV+77Qy+fKZGg5f/58NTU1qVevXq1e79Wrl7744gvT97z11lu699579fHHH7uaxuWXX64LL7ywzesvv/yyOnfu7LnNWTFmzJikm4AEdPv+e+3z0+NFCxZo7KhRsU7/N4bH3373nSbHPP00ydo6aPzuRlXw94bykrX1EOEzbtu+//57TWL7FjvWQyBZca2Dhe1t1apVHEsCJcp1X7hixQrXw2YytPRq6dKlOv7443X33XerZ8+ert4zYsQIDR8+vPh8yZIl2mCDDXTAAQeoW7duUTU1MQ0NDRozZowGDBigdu3aOb8B5eWjj4oPu3ftqoMPPjixpmz085/r5wlOPynlsA4mudwAYSiH9RDh+/mGG6oP27fYsB4CyUpyHeRYEsgr933hEg9V1ZkMLXv27KmamhrNmTOn1etz5sxR79692wz/7bffasqUKTr00EOLrzX/dOOR2tpaffnll9poo41avadDhw7q0KFDm3G1a9euLBeagnL/fLBQU1N8WN3crOoEl4GamhrVVPAymOV1MKvtBkpleT1E+Gqqqyt6v5QU1kMgWUmsg6zzQGvlui/08pkyeSOe9u3ba4cddtArr7xSfK25uVmvvPKKdtlllzbDb7rppvr000/18ccfF//9+te/1j777KOPP/5YG2ywQZzNB9KHG/EAAAAAAIAUyWSlpSQNHz5cJ554ovr166f+/fvrhhtu0PLlyzVkyBBJ0gknnKD11ltPl19+uTp27Kgtt9yy1fu7d+8uSW1eByrST5XHbR4DAAAAAAAkILOh5VFHHaV58+bpvPPO0+zZs7XtttvqpZdeKt6cZ9q0aaquzmQhKRA/Y1BJpSUAAACAqBl7ewGAicyGlpI0dOhQDR061PRvr7/+uu17R44cGX6DgKwitIQfHGgCqARVVUm3AADKEz28ADigFBGVJ5eTli1LuhXpwjUt4QehJeDN8uVJtwB+EFoC4WhullasSLoVCKK+Pv8vLISWABwQWqLyHH641KOH9NhjSbckPbimJfwgtATcu+46qVs36c9/TrolABC/hgZpm22kXr2kceOSbg38mDVL+tnP8v9mzgxnnJx3AHBAaInKMm2a9Nxz+QOnY49NujXpQfdw+EFoCbj317/mt7W33JJ0SwAgfg89JH32Wb6304ABSbcGfpx5pjRnTv7fX/4SzjgJLQE4ILREZVm5MukWpBOhJfwgtARQCegeDgQ3f37LYy6VkU3TprU8nj49nHFy3gHAAaElAEJL+ENoCQAAUHnC+jGHSksADggtUVkIWcwZ5wsHD3CL9QkAAAB+cd4BwAGhJSoLIYu5NFVa8h1lB98VAAAA/Er6vANA6hFaorIQsphLU2iJ7GB9AgAAqAxRHPdRaQnAAaElAEJL+ENoCaAScCMeAGh93Mc1LQHEhNASQOsDBg4e4BahJQAAAPyiWAKAA0JLVJYshyzTp0uXXip99ln44zbOFw4e4BYBN4BKQKUlEFyQY/AVK6QbbpBGjQqtOfCBSksACahNugFArLIcWv7qV9Knn0rnnhv+56B7OPzI8voEAACy4aKLpCuvzD/+6itpk02SbQ8ILQHEhkpLVJYshyyffhrduAkt4UeW1ycAAJANhcBSkl58Mbl2IHycdwBwQGgJgGtawp/S0JIQE0A5ons4kB41NUm3AGHivAOAA0JLVBZCFXPG+ZLLMZ/gDqElAACIE6FlcqI4ziO0BOCA0BKVhVDFXOkBA1014AahJeAP6woA+FPN6WsqhFWBzjkHAAds9VFZOFE0R2gJP0rXJ34tB9xhXwSg0oS13aPSsrxw7AjAAaElKku5nChGefdws+eAGSotAX9YVwDAH0LL5NA9HEACCC2BLIo6tKTSEm4QWgKoBNyIB0gPQsvkGI/z6B4OICaElqgs5RKqhP05SseX5AFEkM8W5nzhhkTO6B4O+MO2JVsILcsT62E2EVqmQ1jbRY4dATggtERlKZcD1LB38OVQaTlhgrTBBtKhhwb/nufNk7bcUtp2W2nRojBaV56otAT8YV0BknXTTdKaa0o33JB0S+AVN+IpL4SWAByw1UdlKZcdI9e0bGvffaUffpBeeEEaPTrYuM44Q/r8c+mTT6T/+79QmleWCC0Bf1hXgGQNGyYtXCideWbSLYFXVFqWl9JCCfaPAEoQWqKyZDGMM0OlZVtLl7Y8njs32Lg+/bTl8RdfBBtXOaN7OOAPJ2XZQvdwILiwtntUWiYnjhvxsH8EUIKtPipLuewIy/malmHgBDMeHGgC/rCuAIA/VFqmQ1TXtGT/CKAEoSUqS7lUgpXz3cMJHLOD7uGAP6wrAOAPoWV5KT3nKJdzNQChIbREZSmXHWHU3cOTnE9hnMwHDT6NbSBEtUb3cMAfQksA8Ifu4eWFSksADtjqo7KUS6hSzpWWYQgzaCS0tEalJeAO6woAhINKy+TEcU3LcjlXAxAaQktUlnLZERJa2guz0hLWCGIAd1g3so0frwAgmp5I3D0cgANCS1SWctkRhh2+ciOeeMZVbugeDrhD97dsYz8ABBfWdo/tZzpEdSMejiUBlCC0RGUplx1h1JWWWZ9PnGDGI4xKy0mTpEcekVatCqdNQBoRWgLl5auvpIcekpYvT7ollYftZ3lh/wjAQW3SDQBilfUwriDqG/FQaQk3goaWS5dKW26ZfzxpknTZZeG0C0gbTsqA8lFXJ22xhdTYKL33nnTLLUm3qLKw/UxOFPOeu4cDcEClJSpLuewIy/malmm7ezisBQ0tx41reXz55cHbA6QVoSVQPr78Mh9YStKttybblkrE9jMdouoezvcLoAShJSpLuewIw/4cXNMynnGVm6DXtCyXHxEAJ5yUZRv7ASA92H6Wl3K7RBWA0BFaorKUy44w6u7h5TKf/OKA2J2glZaVvpyhchBaAuWDENsfbsSTfXF0D+f7BVCC0BKVpVxCknLuHh4GKi3jQWgJuENoCQDhYPuZDtw9HEBMCC1RWcplR0hoaY+gMR5BDzQ58UClCBrwA0DWhbXdK5dj+SyKYt9FaAnAAaElKku57AjL+e7hYQSOhJbxoNIScIdlPdvYp5QXfkTINr6v8kL3cAAOCC1RWcplRxj1jXiSPMHm7uHZQWgJuEP38GwjtCwvVHZlG9vP5BjnPd3DAcSE0BKVpVx2hOVcaRkGrmkZD+4eDrhDaAmkByFJtrH9TIeoQku+XwAlCC1RWcrlwJRrWtqj0jIeQSsto5rP77wjbbutdN550Ywf8CqtJ2VffCHtuKP0xz+mp01A1LJ8PeZPPpF22EH6y1+Sa0PS2FaVl9JzjigKM447TtplF2nKlHDHDSAWhJaoLISW5ggt4xlXuUlr9/DddpMmTpQuvliaOTOaaQBepDW0PPRQacIE6e67pddeS7o1QDyChpZJHiMNHCh9+KF0883S++8n144kpWX7iXBEvX988knp0Ueld9/Nh5cAMofQEpWlXA50wg570nRNyzAQNMYjC93DFyyIfhqAk7SGlt980/L4+++Ta0fasU8pL1kOLWfPbnk8bVpy7fDD73aPGyelRxbvHj55csvjd94Jd9wAYkFoicqS9TCugEpLpEFaKy3jngbgJK2hJVCJshxaGlXKdoTtZzqF9WMOdw8H4IDQEpWlXAKMcg4tuXt4dqT1mpZGaTm5RGXjpDvb+L7KS9D1MS3HkmlpR9QaG1s/Z30sL1FXWlIpD2QeoSUqS7kc4JXz3cPTEFpGNa5yk4Xu4YSWSAO6N2Yb31d5odIyW6jES484uofz/QIoQWiJylIuoWXUlZZJzqc0hJYcMLmThe7haTm5RGUrl30PUA7KJbSslO0KlZbpYZz3UXUPr5TlGoBrhJaoLOVyoBP1jXiotIxmXOUmC93DOfhFGlBJkm18X+WlXELLSlkuCS3TKazjY/aPABwQWqKylEuAUc7XtAwDBzzxCHrix414UCk4Kcs2vq/ykoV9lxtpaYdbftej0tAya58b9tLU2wtAKhFaIn5NTdKrr0pz50Y7ncZGacwYaf78lteyuiOM+npoaQotOTnMDrqHezNhgvTll8lNv7BNXLAguTZUKkLLbOP7Ki9UWmZLGq5puXSpNHq0VFcX/7TLXRq+X6TLsmXSSy9JK1cm3RKkBKEl4nfdddJ++0k77ND219MwXXyxdMAB0q67thyQZjW0jPpXyDT9yhnGwUrQcXDA5A6hpXuvvy7tuKO0+ebS998n04Z//jO/TdxjD5bxuBFaZhvfV3kpl9Ayq8e0XqWhe/ihh0oHHiidfnr8006TOG7Ew93DMWiQdNBB0kknJd0SpISv0HLJkiVasmRJ4IkvW7ZMzz//vJ5//vnA40KG/P3v+f9nzJA++CC66Vx0Uf7/r79uCQmyeoBHpWX84yjgYMca17R073e/y//f3Cyde24ybbjiivz/n38uzZuXTBsqVRZCS7Z11tL4fcG/cgktK2W5TENo+cYb+f/vvTf+aacV17REVEaPzv//2GPJtgOpUevnTd27d1d1dbU++eQTbb755m3+PnPmTJ177rmqqqrSvTYb96lTp+qwww5TdXW1GqOsuEN61fpaBL0r7BCzuiOMOrQstxvxUGkZj9L5lMbrgqXx5LKhIbl2IBlZOClLY5vSgnlTXrimZbakIbREdLh7OIxYv2HCd/fwnM0CtXDhQo0cOVIjR44MPC6UuXbt4pkO3cO9jb/SQ0sjqo+sZaF7eFrWeeMPNISWlScLoSWs8X2Vl6DrY1p+DEvL/i1qhJbljf0jjDhGhgmuaYlkEVq6E3f3cK5pGbwNlSALoWVaTi6N2zp6FlSeqLfhYeAHGmtp/L7gX7l0D8/aMa3f9YgbtaRHFq9piWxZsSLpFiCFCC2RLEJLd6i0jH8ccBa0e3gc31NaTi6N27o0/IpMQBWvLOx72G6iUpRLaFkp6yyVlulhnPdhHUdEHUpzvJMthJYwQWiJZMW1I+Galt7GT2gJN7JQaZmWsIhKy8pG97ds4/sqL1zTMlsILdMpqhvxVMpyDXOEljBBaIlkxXXgUQjhsroj5O7h8Y+jgF9orQVdLuNYztJSEWO8pmUaQktO+uKVhdCSbZ21NH5f8I9Ky2whtEyPOLqH8/1WtuXLk24BUojQEsmKa8dE9/Bkx+9FGkJLDpjc4e7h7nEjnsrGSVm28X2VF0LLbCG0TKeouodn9VwN4aDSEiYILSFJqjnpJO3z5z+rduutpfr6+CZMpaU75VBpmctJw4ZJv/2tNH++/XBhTCssVB9Zy0L38LScXNI9vPyMGCFttZV0wAHSpEn2w2Y1tPz0U+mgg6Qbb0y6JcnKyvcFd8oltMzqMa1XSd+IJ4vr/7/+ld83vf560i1xltX94xtv5Ofx448n3RJ7d96Z349/9FHSLXGH0BImap0HQUWYMkXdpk/PP45zZxHXAVehsimrB3jlEFo+9ph00035xx06SA89FP40Cqi0jEcWuoenJSCk0rK8TJokXXFF/vFnn0nXXCPdf7/18Fk9KTvuuHxw+dJL0mGHSX36JN2iZGTl+4I7YV/TMpdL5gfOSlkuS/fjcR/LZ3E+//a3+f/HjEl/+6Pu7RXVunn++fngcuJE6eijo5lGUIsXS3/6U/7xa69Jq1Yl2x43CC1hIlClZRUVSOWj2rAoxLlzi2tahQOetO+4rUS9Q4/jRjxvv93y+Mkn3bfFj6x+z1mThWqVtISWaau0ZB0JZsGC1s/nzLEfPquh5aeftjyeODG5diQtK98X3Al735XU8pG1H+L9zqeku4ez/reIYl6kZX3yauHC1v+n0aJFLY/r6hJrhieEljARqNJyyy23tPxbIdCsqakJMgnExRhAx3kQFHdombUDvIK4Ky2jmE/Gg5Jqm99LCC2zIwuVlmnpxseNeMpL6TbS6SA7q6Gl0YwZSbcgOVn8vmAtaEhS+v6mJvvjmqhUynJJaJkexnlR6XcPL8yLNLc3iwVmhJYwESi0zLERLx/GjVo5VlpmvXt43DfiiSLoMY7T7seMNISWURyUlaMshJZpCAil9HUPZ/8dTOn8q4TQsnAJmUqUxe8L1sKutGxqal1NH5esHdP6XY+SrsRj/Y9W1PvHqI7js36T17QitIQJX6HlnnvuSdfwclPuoSWVlvbiCC2N06DSsjwEvXt4JYWWaesentVtYVp4rbTM6jape/eW7mXTpiXZEiA8YV/TMqmK/qxtV+geDjNZr7TM5ZK7rq2TNLbJCaElTPgKLV/Pwp3I4E1coWVSv5Zm/ZqWUYeWcVzTMkuhJZWW7lBp6R6VluWlUrqHb7BBS2hJ93CUi7ArLZMKWbIS7hQQWmZfFMfHSVfS+mVsZ3OzfS8yuEdoCRMJXIAFqRRXaFl6sk73cHfi7h4exXwyjjPt3cONCC2tZSG0TMs1LdNWaZmVk4K0qpTu4b16tTymezjKRRTdw5OQteWS0LK8VPo1LY3tTGubs3gOQ2gJE4SWyIsrtKyvb/2c7uHulEP3cG7EU37oHu4elZblpRwrLc1ObozbakJLlIty6R6etWNaQkuYycL+0UxppSXCQWgJE4mHlitWrNC1116bdDMQV2hZV9f6eVwb+bSFlnPneutqVw6hZZa6h8OdsCstcznps8/a/rhhZ948+3UpraFlXZ30+efJtYd1JBizSku7eZqFkzKzNhlfa2yUli2Lrz1pksbvKylffCGtXJl0K4LJQqXlrFnS7Nn2w0R1TJvLSZ9+Gv7+02t7GxulTz5JrpdWQVrOHdzK2vbK7nILP/4Y/HrKUVUbxhla5nLSpEltz6OdUGmJMpFYaLl06VJdeuml6tu3r/7+978n1QwUUGkZn+nT89cJ69s3fzDmRjncPTxLoWXWDviSEnZoeeml0lZbSfvu6+79P/yQX5f69JE++sh8mLSElsbu4Q0N0i67SFtsIV1/fTLtYRkPxmybaRe2ZyG0NFPa7kq9GU9Wvq+o3X23tNlm0nbbpeN4yq+0X9Pyq6+kn/0sv3/76iv37QjLP/4hbb21dMgh4Y7X63r0299K22wjnXZasPEElbX1P8p1M4p5YbV/nDs3vx707SuNGxf+dIMytjvqauurrpK23FLac09v3wGhJcpE7KHlggUL9M9//lN9+vTReeedp/nz58fdBJgp99Cy8CttGg48xo7Nz4emJsntTa3ivhEP17RskcUdflzCDi3/+c/8/2+/LS1e7Pz+f/wj/6tzc7N0/PHmw6QltDQu86tWtYSsw4cn054sBw5pYDb/7A60sxBamm3rStvpZr0sR2n8vpLwxz/m///yS2n8+GTbEkTaKy1PPz2/72psbBvYRTndgiuuyP8/enS44/W6Hj3zTP7/pM4dkppeUHHt36O+puXFF7f0Yhg0KJxphSnOSstzzsn/P368NGeO+/dl8Rxm+fKkW4AUChRaTp06VX/5y1+0+eabq2vXrurRo4e23357XX755VpccmC7bNkynX/++erbt68uu+wyLVq0SLlcTj179tQll1wS6EMgBOUeWqap0tIYorhtTzlUWmbpmpZZO0BNSpTXtHTzHRgPbKzClLTciCdtWMaDMZt/WQ8tnbqHWw1TCSr1c9vJ8rY17de0NF6Gwe6SDFn7DsJajwgt7UXZ3ijGbXX3cOM+dckS/+Mvh+7hRl7W+6wtuxKVljBV6zyIuTFjxujII4/U8p9OGnM/rRQTJ07UxIkT9eCDD+q1115T79699fbbb+u4447T9OnTi8Ott956Ouuss/THP/5RnTp1CuGjIBBCy/gYdzZu21MO17Q0jtOu0jIMVFrGI8q7h7sZl5vtVloqLdOw7THK4oFsmpRjpaWZrN7VNWxZ+b7gTtD1MepKS7fH5ISW8cja+p+17XRW9zNJ3T3cy/KYtWVXan0s1bFjcu1AqvgKLefNm6djjjlGywy//nXp0kW1tbXFCsuvvvpKp59+uoYNG6aBAweqvr5euVxOP//5z3XOOedo8ODBame8xheSVe6hZaF7eBp2hJUaWmbpmpZwJ+wTP6/jMi5HVusSoaU51pFgvFZaZmF+u+kenoXPgXhkeVlI+zUt3f5YWs6hpZcbm0XNbDuY5h+046q0jKp7eFa2LcZ2xrkuVlJomeb1DLHy1T387rvv1oIFC1RVVaVBgwbpm2++0dKlS7Vw4ULNnDlTQ4cOlSQ999xz+t3vfqe6ujqtttpquvnmm/Xll1/qD3/4A4Fl2hg3ClEeDCRdaZmGjbdxx+a2PVH/Chn3NS0JLctDmN3DSw9Myq3SMm3LZNrakzWVUmlJaJlXqZ+7XKX9mpZGSVdahrnse5nPdvvupCst0/YjZKmsXdMy6h8BopJU9/BKCi2z2H5Ewlel5csvvyxJ2nnnnfXkk0+2+lvv3r110003aenSpXrggQc0Y8YMde/eXWPHjtUWW2wRvMWIRrlXWtI93F7clZZpvxEPO0l3wuweXl3tfd1ws91KSyVKGrY9RizjwVRKaJnVdoetUj93uUr7NS3TVGkZZlWhl/UozaFlU1P0lzkKIm3HG07oHu5NJYWWWVkWEDlflZZffPGFqqqqdJrNHe3+8pe/SJKqqqr0l7/8hcAy7ZIKLePaGFl1D09iY16poWWWbsRjRNcEa2GHllZ/s0KlpX8cCAZTjjfiMUOlZV6lfu5yRaVlONOPclxpCi2zFqplbXtVDvtHQsvwUGkJE75Cy4ULF0qSNt54Y8thNtlkk+LjPfbYw89kEKdKrbTMSmhZDncPj7J7eNgn1uwk3Ymye7ibcXFNS/9YxoMpx0pLszYRWuZV6ucuV1m6pmWlhpaFYoOg4wkD3cNbRDHv03KNWK+4pmU0CC1hwldo2fDTjqRr166Ww6y22mrFx7179/YzGcSpUkPLJA48slBpmbVrWkY5f7JQadnQIJ1zjvSPf8Qb0lFp6V7aTnI4EAzGbP4tX249PKFltlXq5y5Xaa+0TFv38CTGlaZKy7BDy88+kwYPlkaNCjYeK3HNH27E0/K4XCotJ03KL5svvujtfWFpapLq6lqeG9ufy0lXXikNGyYtWRJ/29yYNk06+WTpoYeSbknZ8XVNS6+qsnDSX+nKPbQs/GKbhhOwLNyIJ2vXtMzqAU9Ybr45vyOXpPXXl2wu3RGqKEPLsK5pmZbQMm3LZNrakzWVUmmZhXbHoVI/d7lK+zUtjSq10rKcQ8tddpGWLZMeeCCaz5K2H0mdpKGgxI+krmnpZVpel69ddpGWLs0vm83N8RdurFzZ+rmx/f/9b75Ao/D6TTfF1y63jjhC+uAD6d57pQMOkHr1SrpFZcNXpSXKULmHllnvHs41Le2l4XtN0sMPtzx+4on4phtm9/CglZZW0+ZGPOYqbR0JWzle05JKS2uV+rnLFZWW7oW57HuZz+XcPXzZMutxhyHK+RNH9/CsbG+TqrT0st57nZdLl/p/bxjsLhXw0kstj2+9NZ72ePXBBy2Pf/ghuXaUoUCVlkOGDFGXLl0CD1dVVaVXXnklSFMQFKFlfIy/HldqaBl2pWWlX9PS2N44fxUNs9LSzzUtrbZbVVUtz6m0NJe29mRNOVZamn0mQsu8Sv3cdrI8T4Kuj1Ffg8+ISstg4wlDlL2RmpvDvxN5XMtjVN3D0/Yjr5WkrmkZZWgZ1nujmGZS5zp+2VxGEd4FCi0nTJhg+/dCt3C74XK5HN3H04DQMj5ZuBFP1q5pGeX3moXtUzmEln4qLa1uxFNd3fL+tISWaTsIT1t7ssZraJmFgIfu4agUVFq6R2gZfqWl3bjDkLX9e1b3M+XYPTys94Y5zVyu7TYxC+dmdue68Mx3aJnLygYF7pR7aJn1a1pG3e64r2mZ9tAyy9u3JEPLMLuHB6m0rKlJX2iZtmUqbe3JGrqHV5ZK/dzlKsvXtDT2JCjn0LKcu4dHNa4Cs+12mkOeqCuXo1peyrF7uFES4bddaJm1/XDW2ptyvkLL5qz9ggNn5R5aZr3Sshy6h7u9EU/QcUuVXWmZ5HTjrrS02m4Zx5WW0DJt+00OpoIpx+7hbkLLtC3HcUnj9wX/slxpaexJUM6hZaVUWkbds6nwPKzjbuO8COt7iHr/GNV+K6nQspwrLe0uU5O17uEcN4Qq03Wrt956q/r27auOHTtqp5120vjx4y2Hffrpp9WvXz91795dXbp00bbbbquHuB19C+NJfpyhZVwb+ayHlnF3D+dGPNGMKyrl0D3czzUtrbZbxoNzbsRjLgvLdZqVY6Wl2TKahXbHoVI/d7kKO7SM85qWxn1lpYaWce9PozwGj2LbEtePTVGFllmptDS2k2tahsPNZWqkdIaWpdustB33Z1xmQ8snnnhCw4cP1/nnn68PP/xQ22yzjQYOHKi5c+eaDt+jRw/93//9n8aNG6dPPvlEQ4YM0ZAhQzR69OiYW55Sbu7CG4aku4en4QQsC5WWXNPSetxplFRoGeaJX2m7vV7T0iq0TEulZdpCj7S1J2sqtdIyje2OQ6V+7nKVpUrL0mXPuN8r59CS7uHhjTPtoWXUdw+n0jL66YTF7jgk7fvhJUtaP097ezMms6Hlddddpz/84Q8aMmSINt98c91xxx3q3Lmz7rvvPtPh9957bx1++OHabLPNtNFGG2nYsGHaeuut9dZbb8Xc8pSKq3t4XV3r53FcZ0SKt9JyxQpp+XLrv1dapeWPP+bHn6XQMqzuL0uWtF3mnaY7f77/6UnZrbT0c11VqwNGuoc742AqGLPv0267n5bQsrnZehsTR2i5eHH+x8uGBmnRomDjilMY39eqVW1PahDcwoXet/NxXdPS7z7dbj+ehUrLXE6aN6/t617mc5q7h4d99/CwZS20jKK98+ZFH3Zl4ZqWQYQ531atkpYu9TfNrByvLl7c+nlW2p0Rvq5pedFFF4XdDp133nmuh62vr9cHH3ygESNGFF+rrq7W/vvvr3Hjxjm+P5fL6dVXX9WXX36pK6+80nSYuro61RnChiU/HWg2NDSowe7Xv4yqyuWKCXZD4YQiAtWrVsl4VZXGhgblophWc7PaGZ/W16upoUE1TU2tkvrQP+vMmardbjupqUmNH3wg9enTZpDqhobiPGhqalKzi+lXNTS0WlkbGxtDnW+1zc0yHiI3NzaqKYTxVz3xhGoGD1Zup51U1dhYnEZzdXWr8bf6rpqbvU+7rq7VOJoaG13NVyu1Uktbm5r8zYuJE1W7115St25q/OwzqVs328EbGhq0ywUXqPbTT9V4xx3KDR7svr2G7685lwvlu3OjqrEx0HJZa1gmcrlcq2Wwsb7ecVw1DQ3F9TmXy6nxp+Frq6tb5kdDQ2zzw07ptscorn2KcR1xM38rUeG7cPpOqhsbVXqFsOblyy2XNeN2X4pw32cnl1PN/vur6u231XTffcode2zr7WZDQ5vtZm1TU+v1Mki7P/xQtfvsI3Xpkg9eli5V0+jRyu2yi7/xRazVfsnvfqBg0SLVbrWVtGyZGseOlbbcMnD7ktBqGxLycYiR2/WwauxY1Rx8sLT++mr8+GOpQwdX4w+6Phr3PZLUWFdn+v6aQw9V1csvq+n225X7/e/dj99wTJ5rbi7u26SS/VtIx2qljN+zn+PkmuOOU/W//qWmK69U85lntrxeegxuM96qVassT1LdHjuHpr6+9Typqwt07tBmXB07+h6XKbP21no75bdaB2sNx2qBt4uFcZbuZ37attQ0N7esB1Kr9cBO9S23qGb4cDUfdpiannyyzf46rGMu47F31MdUvo/fSpcFh/e1Wffbt3fbRGvz56t2662lVavUOG6c9MtfWg9b0t5iO6qrVd3UVPwec1VVrpeH2MyfH3jbWcrtvjCrvHwuX6HlBRdcoKqQq3m8hJbz589XU1OTevXq1er1Xr166YsvvrB83+LFi7Xeeuuprq5ONTU1uu222zRgwADTYS+//HJdeOGFbV5/+eWX1blzZ9dtzYrtZs/Wz356/OYbb2jZN99EMp2tvv5aGxqevz9+vOZGUAlV1dSkXxuez5s1S++OGqUdZ87UuobXXx49Wo1duoQ23X5XXaX1Fi6UJC046ii9a7Jcb/3dd/r5T4+nfPutPhs1ynG8a3z5pfY0PP904kRNc/E+t/ZdulRdDc+XLFigN0IY/2+OP16SVPXOO61en7dggd41jP83hr/NnTNH73mcdodFi3Sg4fnkzz/XtwHaP3DVKhUOIWfPmqX3fYxrk3/9S5uvWCGtWKEPrr9ec3bc0Xb4jvPmaeDEiZKk2j/+Uc+tvbbrae2zdKkKkej8+fM1LsRlw87PJk7UdobnXpfLvRct0uo/PW6or5fx0OidsWO10KxSw2C7KVOK261cc7NG/TTtgxoaiuNavGCB3oxpftjZafZs9bb426iY2mdcz955+20tDFrVW8bGjBlj+/e+n3yibUpeWzJ3ruV2c+PPP9cWhufvvfuu5tt1J49A1+nTte/YsZKk2sGD9Vz37q2Wic8//1zflbS/dN/wwYQJmm1XKW/jgJNOUruVK6WVK4uv5Q46SKMefdTX+KJmnDczZ87UBwHW081HjtQmc+ZIklb+5jd67eabA7YuGcZ5Mm7cOC2IuHLUaT08ZNAgVTU2St9+q0lnn62pBxzgaryl66/XfVfp9vyD999vs150/PFHDfzpElS1f/qTnutttQdoa9cff9RaPz1esnSpXje07VfNzcWTt/mzZ0eyvzd+zy+PHq3G1VZz/+ZcTr/5178kSTVnn60XDAHFdtOnF/fZkv2+b62PPtKuFn/7/ttvNSnG/Xrn2bNlPFt847XXtNzmfNNJoPnrQudZs1q19+WXXlJjp06+xlW6Dg5cubJ4fDxnzhyND+F7MB4LStJnEydq6qhR2nb6dBVKP5oaG10fK/1m+HBJUvWzz+rF557TL776SsaYLKxjrl8Zfrh3c8wahHGZefftt/Wjy54KXadN076G506fvc2y6XO5Mdr69tv185+ON5ceeaTGXnWV5bAdFixodT4nSS/9979q7tBBW0+dWjx/bs7lYjt2dmvNzz7T7obnY994Q0unTAll3E77wqxa4eE42FdoKeWrWsISdgBqpWvXrvr444+1bNkyvfLKKxo+fLg23HBD7b333m2GHTFihIb/tNGT8pWWG2ywgQ444AB1c6iYyqKqnw4wJGnPPfaQNt00kunU/Oc/rZ7v2K+fcgeWbp5CUHLtzLXWWEMHH3ywau6/v9XrBwwYIHXvHtpka667rvh47aYmHXzwwW2GqX7xxeLjvn366Gcmw5SqWmONVs+32nJLbenifW7VluyUVu/a1bTtYVmrVy/L8a+91lrepz17dqunm226qX4ZoP21hmqN3jZttVP9wQfFx/222UY5h3E0fv11q+depll7zjnFxz3XXjvS786oquQawl6Xy9p//KP4uF3JnS133Xln5Xa1OmXJq3niiZa2qGWe1RoqCrp36RLb/LBTc+edln9Lon277rKLcjvvHPt0066hoUFjxozRgAED1K5d6e/9LaqnTm3z2uqrrWb5XVZ/9lmr5zv176/cvvuaDhuVKsM2SWq73G2+6abatOS12pIf9XbYfnvHbZmVdj/+2Pa1FStSsX46Wbd3b/UK0M6aZ58tPu66aFEmPrOTXXbZRbndd3ce0Ae362GN4UfvrX72M23hcr5Wl5xIet131dx2W6vnO2y7bdv14quvWj318p3X3HRT8XG3ku1KTbt2xcvO9OzRI/Jl6YABA6SSY1BbJZUzrdr+739b/q1U6blhbpttVPXTD7s///nP1SfOdejbb1s93WuPPaRf/CKUUR+w//5Sjx6hjKuopPDkgP33l1Zf3WJgc1brYK2hKrSXn+N1E8ZjQSm/Pm5x8MGttps1tbW+pnXggAGtjsel8I65agw/VLg5Zg3Lzv37K7fXXu4GLjn28PLZ/Sw3ZmpGjiw+XmPlSvs2/PBDm5cOPOAAqUuXVufP1dXVqduPVpV0299j992lrbYKNE63+8KsWuLhh09foeVrr73m522h6dmzp2pqajTnp1+tC+bMmaPeNr9kVldXa+ONN5Ykbbvttpo8ebIuv/xy09CyQ4cO6mDSzaRdu3ZludA0GwKDdrW1UlSfsaSqsramJppplWw4qpuaVG0yndA/q2E+Vknmy4oh8K/RTwegHsYr5bsHhdrukh8hqpqbI13Oq2tqTL8PKX+hXau/WSqZPzU1Ne7mqwvVVVXe2yO1uu5UbS7n/H2VdMHwNP8N06qurvbXXj9KKks8L5eGawBVlSyDtVVVzuMyvt+4zBrGVdXUlPptdhLti2zbWyYc9/UmP7babjdL15Uo97NWStpQ2taaqqq2283S9TKC5SaV62fJ5w68XTUeG+Ry6fzMHsWxDfFyzO1pv1+y/rra3xj52F95+s4N62pVVVXr9xr3983Nke/vPR8nl4SWVm1v8zc7l12mqr32knbbTZLFtipKJV2r24W47Ic5rqKSY+Ig07BbB0M73ixZn4rfr3E9kL99RbuaGsd9n2+GY9DQz8tseNpelS67HtoY2jmym3PjApPLGBTbYdh+tNkupkHJdc3DzBjKNX/y8pl8hZZ7uU33I9K+fXvtsMMOeuWVV3TYYYdJyl8H75VXXtHQoUNdj6e5ubnVdSsrWlw34onr7uGlF0QuHERFfSdUN3dht7v5iJWo2x3lRcbNpP1GPHbj9vM+N5dA8NnlUlJyF3uO8kY8bua71fu9zvs4cCOe8mL2fdp9x2m4EY/TMsjdw1uE/bmN2/dKmYdpFsfdw0uPd/0qXV7SfiOesG6gYww/a2vjO08xE+Xdw6P4LFHeiCesG1UaRXn38KYm7h7uVxTLptM43d49PM6bjrpVeiOetB33Z5zv7uFJGz58uE488UT169dP/fv31w033KDly5dryJAhkqQTTjhB6623ni6//HJJ+WtU9uvXTxtttJHq6uo0atQoPfTQQ7r99tuT/BjpkVRoGdUKXTreuO4e7mY+Vtrdw82kPbQM46DMOA/jDC2TvHt4kBM/P8ugcb5afWdpCS3TFlSkrT1ZYzb/7JZZQstsiTK05EQmeWGHlmbvD3LjBLtjSeOyFMf+LczQ0u/dw5MOLaM8Ro5iexBlyGo3Hb+iPMdpaqrsu4enIbT0cl7C3cNhIbOh5VFHHaV58+bpvPPO0+zZs7XtttvqpZdeKt6cZ9q0aao27NiXL1+u0047TTNmzFCnTp206aab6uGHH9ZRRx2V1EdIl3KvtMx6aBn1iWPUoagXaQgtwxiXsU1uTl6ChI1pCS3jrrS0OjkyjiuOShQ30hZUpK09WVOOlZZuPlOlHISHvc910wsja9K2LHhpT9BjHjchVpCeXG7342mstLQ73vEyLuP+vaRraFlVWkaxPYjrmD6q0DLM77exMZ4CmTiPNeOqtIwjUHfz90I7slZpmbZ9ZMZlNrSUpKFDh1p2B3/99ddbPb/kkkt0ySWXxNCqjCK0DIebLmBUWtrP9zSElmFUWnrtohzWr6HlElp6rbS0akdaKi3TFlRwMBUMlZblLezvqxy7h6dtm+ZFlruHxx2U0D08e93Ds1Zp6aZyOci4qbT0J4pKS7qHw6cA/RFRVso9tCwc/MRZaenmmpZprbSM+kA46tA1DZWWXruHZ/FENszu4WFWWqbxmpZp+37T1p6sKcdKS0LLFnQPd5blZSGO0DKs7uGl4u5J4HXehBVapql7OJWWLcL4Ub9UlPvHcgwts3ZNSy8Bo9lny8q+ZtGi1s+z0u6MILSEJCkXVxWAm9By6lTpH/+Qxo1ree3RR6XLLpNWrHA3HatKy6hPwLx2D3cz/ddfl/7v/1q/dskl0pNPem6ePv9cGjFC+uyz1q/7qXILIu2VlkHGNWNG/vt6442W19ycvAQ54Anj89bVSVdfLd13n//pBqnI8BOcWw1DpaUzDqaCMfs+s15p6eZkIW3LcVQILZ1leRsSxzUtK7XSMqru4UlWK/vZDi5bJl16qfOxemOjdPPN0i23hLdtSKJ7eOHY9623vI8nyvZG1T08zH3j9On5effOO+6GT7LScvLk/Hnkp5/6H6/XaWa10jLL+8gUynT3cIQorustuQktf/1r6ZNPpMsvz2+YJ06Ujjsu/7elS/OvOymXa1quXCnts0/b1+fMkY46Stp8c2nLLd23b4cdpFWr8uGUXWAU9UlVlkJLr/PiiCOk999v/VoWuodff33+QESSNtpI2msv5/cEne9hV1rmcvnPH3clihtpO3hJW3uyxu66S2ayEFq6+UyVstyEHVqW4zUt0/Y5vHxHWbqmpd2ymMbQ0mq/7HVcdpWWcS97fo5P/vlP6YYb8o8320zaaivz4R5+OD+sJPXoIR17rO9mFsXVnd34+De/kT78MF9gUl+fD5rdivru4XF0wQ+yLh56aP5c97LL8st9TY398Ele07Jfv3wB0ZVX+luuyrl7+JIlrZ+nbR+ZcVRaIi+ubhdudkyffNLyuKFB+s9/Wp5fcYW76STVPTzsa1rOnm3/99Gj3bWrYNWqtm0wa0eS3cP9fCdhn2AG6f5SGlhK7kLLsHZufnfk55/f8viJJ9y9J8ru4X6uaWlWUU2lpblKCZ+iUo6VlnQPbxHlNS3LRZaXhTB/cDN7LrUcb/lhtx9Pe6Vl6T7XWHnpZT+Y9WtaFgJLSXrpJevhbryx5fGtt3pqlqUkKi0//LDl8bJl3sYTZXvjCi2DtHnixJbHK1c6D59kpWWhx6OX8Qa9pmXajp+txHUJvApVhkdR8CWugwGvJ0BNTVLHjt6nk4ZKyzCuaekUQIX1SxM34rEWxrjcdA9Peudm3Nm6XeeCBhphV1oW5jOhpbO0tSdrvB5YJ71+S+F0D0/D54hDlD9olossb0PiuKZlkEpLo6xVWpYe7xiPLYJ0D09TaOl1vtu117jshXVMH1elpRWvnyPKY/gsdA+3G6+ZqCoto9rfV8qNeMyqzBGaMjyKgi9JhZZOG96GhmhDy7B3ZGF3Dy/X0DLsk/uwD3iCVFqayUL3cKMkQsswrmlpVlGdltAybQcvaWtP1mSx0tJpnaJ7eIuwT97KMbTM8rIQxzUtg1Ra2slapWUYoWXSlZZRnjtk7UY8Rlbfg9fj0CzePTyqeeymrVFVWqZhf5/l0DLK5RiElvhJXAcDXjeIjY3hhJZmFVhupu9V2DfiiWujHOWvsm6m5/ZvVsohtAzrRjxJhpZhdg+n0jJaWQ4c0sDs+yzHa1pSaWn+3Ks0nmAFlbZlIcjJeRTXtAyre3jWKi3DCi2z3j3c7bii+A6zFlpGXWkZR/fwsL7HJCst0xC6uenxkVZUWkaK0BJ5ae0eHlZoGVf38LCvaVkplZZBl79K7x4edmjZoYP36Zo9dxL2NS3NQsuofmX3Kg1tMEpbe7LGbP6lvdIySLcst+MoF1RaOkvbDzFepL17eJLXtAy67FdC9/Agy75dMJS17uFhfQ9RX9MyS93D/fQyshMktKR7uDdR3lAKhJb4SVpDy6i7h0dZack1La2lvdLSbtx+xHkjnjAk0T28lJ9Ky8LJUdyVw26koQ1GHEwFk8VKS6ftupvPVCnLTdifO40nWEFleVmII7QMq3t43JWWQffr5dg9PMxjCrtlL6pj+rgrLYOuT2F+v1nrHu5mPFnrHh7WjXiyFlqm7bg/4wgtkZfm7uHt2gWfTlx3D+ealv6mZ5S20DKu7uFpqrSMo3u407B+Ky3N5mMauoin7eAly4FDGmSx0pLu4e5Raeksbds0L+K4pmVUlZZRh5ZBt1V2oaWX+Vyu3cPjCDbi+uHW6nvw+v1EGbJm7UY8btbpqL7PNFQKujkOSSu6h0eqDI+i4EtaKy3dXIvEbBizEC6Xi/4ELOxrWsYl7so0L5WWfqoUg85Xt91fmpvdHWC46R6epmtatm/vfbpmz+34qfpyGkdSoWXUoXQUoljH7eZDLpeO8DgsUVVaRjmPnJZBs+0ZoaX5c6+ctstRXXfNTtB1Mm3LQpCKojCuaVk6L6OotPRzGRUnpd1nowwt4+weHuY+J+h8N76/Eiotg4aWWai0jGJdlJKttHQK1OM4hkuie3hYnyvs0LecjplDQGiJvLSGlg0N9hvwr76SfvYzaZttpJUrW143e4/ZdU3C/qxhX9MyaCWmW2ntHn7NNVK3btKll9qPL4lKy/nzpV/8QtpkE2nOHPtxZK3S0m1bogwts1Jp+eab0tprSwce6Bxwp0nY68jAgdJaa+XnR6m6OqlfP2n99aVJk8KbbpKs9jFuhzeb/xdcIHXtKl1/faCmWXJap668UurTR/r++5bX0lAhmoQ4Ky0//lhad11pl13iO0lpbpb22kvq1Ut67z1/48jyshB2peXTT0trrCH97nctr4VVaWkXeAU9Vps+Xfr5z6XNNpMWL247PbPnTqK4pqXXSsu6Omn77aUNNpA+/9z9NK1QaWk+7rBCS+4e3iLsSssgx+XGsPDXv5Z69nQ/LqOwrmlpNc4g/v73/HnmXXcFH1eYoeVbb0lrr62agw7K9r42RISWyEtz93C7Dfgxx0izZkmffirdeGPL62bvMesiEGWlZRjXtHRqX1ShpVlVapjcfg9/+1s+jD73XPvxhX2C6eag7G9/k779Nn+Cf+aZ9uPL2jUt3bYl6UpLt6FllCH8XntJCxdKo0dLr71mPVzaDjrCbM+rr0ovvywtWpSfH6Vuu0368MN8uH/sseFNN0lm8y9opeWFF+ars4YPD9Y2K27Wgx9+kH7/+5bnVFqaP/fKLrQ85BBp3rx8ePjQQ8Gm49YLL0hjx0oLFkj77edvHGnaZ3kV9FiwdF2aOFFatkx65JF8ECiFd/dwo7Cru045Jd/er77K/2gipafSMkj38Lffzv8YMHu29OST7qdpJcrQ0vg8C5WWUYSWUZ6bZa17eNSVll5+XC8MO2GC9J//tPyw4ZWXddfs85tVWobl6qvz55mnnBJ8XKXbviDLxJ57SgsXqvqVV7TWxx8Hala5ILREnpsKwTB43cg77WwmTmx5/MMP9uM1q9pMunt4WistpWiDHi/dw91IotLy66/NH5vJWqWl2+8+yEFbuVRaGv34o/Xf0naCH+Y6smCB/d+NlXuffhredJNkdWBtNV/TULHodr02ViZFWbGTZmF/X3ahpfHYZfbsYNNxa+HClsfLl/sbR5YD7LArLY0KFZbGSssg1zSNstLSuK5PmdJ2embPnUTVPdzLeYoxMDb2wvIr6PJi9x0aZSG0NAojtDTbb2ah0jKqNkddaWk3L6wqXo37C7fj8svuB+GouoeHJcxKS8N72y9d6n88ZYTQEm1FeVISRvdwq51/TY356wVxV1qGEVomVWlp9VpYsnQjnjDmg5trWqYptHT7mYPM93K6pmVB2GF8lOII9guMJ+8dOoQ33SS5DSedho+Tnx8jwtq2Zi3sjPLYIIzhggpjPUzDMm3kZRkL+5qWRoVjUWNw5vY60U7CrrQ0E3SdLz3eMW7/w+oe7qbgocAYmvoVZaVlFJL+sSnIuiiFu22Jq3t4Vq5p6SW09NOVOyi33cPTKA03MipjhJbIS3P38NL3WP1qa/wV1iq0jLqrm9drWiaxQ3A7HSotwxuXn0pLr79UF8QZWkbZPdxvpaXVuh8HL92Dk0ZoGYzVD2ZWy20aKi3drgfGtoa1zwwjOIhTnN3D/QwXVBjrYdq2aV6OWaKstCx8h8bQsl07b+OP65qWZsqhe3iaQ8s41pssdQ+Pumgia93Do660tHuv3TUtg7QjrGtapr3SMszu4UaEn5IILVGQ1hvxmO1sVqwwH9YptIy7e3gY17SMo3u4m3A1bGGfFIf9vbo5KPPCT2gZx6/xBaWVEWnoHp6Va1oaVWpo6aQcQ0vj/KutbXls9T173Ua5qc72yu16QGiZXGgZ14lYx47Bx5G2EykvP05FGVoWfsQwbve8VlpaHZOb7XPD+h4K04yye7iX+Rzk7uFRh5ZBjins3hvW+h9XpWVUoWUWKi2jmsdpvKZl0HZEcSOeNIqo0jKF8WwiCC2RVwmhZaV3D/f6S1lclZZpDC3tTtr9cBFAVJV+Bi8nYEF/fSy95lOWKy3pHu5OVJUXZsoxtDTOP2NoGValpdV+Lgi360EU3cMJLYO9P2xhdFdO2w8xaam0LAir0tIojkv5hN09PIm7hxu/nyxVWlbiNS3N1qUsVFpGNY/TVGlpdi1JP+0Ieq4a1TUtwz4uLz3GSttxf8al7CgKiUlr9/CGhrYbUUJLf9yeTDu9HgYqLe2nKfn/JdXPjrx0nUpDaBlmpSXdw9ui0jIYq9AyrErLKEJLKi3dC3ufkrZrWoaxPUrbCVmcoaWbbb1xuxeWOHoSRFlpSffweHp+0D28RVyVlpV4Tcs4ut0bXws7tAy7/VahL0JBaIm8Sqi0NAs0wv6sTm2QvF3TMszu4VbjSqJ7uJuKtCAHPWmrtHQTmgW5VlXQkLV0nUpD93A/oWbS17TMUqVlUqFlGN1S08Cqe3hYlZZ+7+hsx896XamhZbl3Dw9j/562bVpaKi0L88VYaRnk5NWu8tmpLV7GbTWNpELLIJWWaQstnb7Dgix0D48jtKzk7uFpqrR0Oh/zs+3xc94b1b4mzPHG2e4KRWiJvLBCy8WLpdtvlyZONP97lKFlJd493AuvFZVJdw/3slOOstJywgTprruChQh+7h7uN2jzc+CUhUrLb76RbrlFmjs3/9xs/lBp6V6Y2xancRlP3ksrLRsapIceksaMCa89YfvhB+mmm6SpU1teC1pp2dQkPf649J//mA+flu7hQcO76dOlm2+Wvv3W2/tKzZ6dH8933wUbj1thh5blWGmZtm1akNDyjjuk8ePDmZZZpaXXeeX2mpZObfEjjd3D03ZNy0qutHTzo77T9JqapEcflV58Mbvdw+MMLZ2qOr/9Nr9/nDPH+b3Gc6x//Ut69tmWv3ld9/10D3caZ5SVlo2N0sMPS6NH55+HvZyVIrQMVa3zIKgIYYWWf/mL9OCD+ccrVkidOrX+u5/u4WFWWmYttIyj0jKJ0NJN98MgF9UPs9JSkk45RZo8Wbr+evPhnb6HOCstyyW0LP379ttLS5fmD7LeeCOdoaXd50/bCX5auoffc4902mn5x59+Km25ZXztcuuII/KBxo03toRvQSst//3vlpOFN96Q9tyz9d/T0j086LZ1v/2kr7/29h4zv/lN/ju46CJp3rzg43OSVKVlXKi0bPt8p52kH3+UevTw9t5SYVRaur17uET3cDOVfk3LtFdaPvKIdOKJ+cf//a/393sRVaVlVMGwm4q90mF23FFauFB65hnp1VfdvffZZ6Xf/jb/+JVXpH33Te81LcMKLe+/X/rjH/OPP/pI2mwz7+OwEnX4Diot8ZOwQstCYCmZV1Z43ZF6qbR0unN3XV30oaXxxCSOSssoQ8soN7ZuKnm83D037BNMs/ffcIP/8cV5TcswQss0dA8vHdfSpfn/33wz/7+X0DKKOzGbsfv8SZ/gh72OeGEXWhYCS0m699542uNVoQLLWOVn/K6NN9lwuz01VjdcfXXb4ZMMLcOstAwjsJRavoP588MZn5OojxWs0D3cvyChZcHbb/t/b+nfwwotjaKstCxMM8ru4V7mQ5q6hwf5UblUHHcPT/s1Lc84o+WxWTFA1Ne0DGPbFeSY3Y6b8Kv0MmMLF+Yfv/Za2/daffZzz2157corzaft5ccBt/xUWoa1PPzlLy2P77wz/OWsVFj7yLTtaxNCaIm8Srim5YoV8VZauqlgTDK0dOqGTaVleKLuHh40tCzt+p7GSks3f7cKLeO6nl6au4fHVXlhppxuxFNY7qy6h1stt3bzqL6+7d/j6B7upnoiybA7SWF/TrfjSyq09PPDTtLbtFJejlmiCp2kcLqHO43bS3u8CrqvSMPdw9PWPTzoMZpXcYWWfocxtifqbrVm55FhzI+ojqm8Vlo6Ld9W7zVbn7xe0zKObvdW7fCzryx9P93DM4XQEnlpDS293D3c6ZqWy5dHfwLmZj4aN2xeduxO03MSxwWW3XJTyZNkaBn2chF193C78biRhe7hpawqLc3aHldoaff5/f4tLFFu+yoptCxU/Fp1D/dTuV5XF09o6fbOlnYn2JVyEB5H9b6ZpK5puXKl93GkbVkIo9IyjOkU5ksUN+IJu9LSTVVTmJWWXsZVCD9ravLrRZZDS6M4rmkZ5Y+Ubq5p6aVCz+xYLupKyzDGH1Uw7LXS0ulYwWpfZrY+lfs1LUvfH+Y+LMru4Wnb1yaE0BJ5bro1h8HrBjHLlZZuwsCglZZeWO1gk660tOKl8iPtlZZ0D2/Lz93Bjbx0D09DaJl0FWaSFXPG0NLYlbpUXIFNEIsX5//3Wmlp9x3X17vfzwXhtutX0stqGpR7aOn2x2A7aVsWwggt3XxPbvZdjY3ejvVKJXlNyzhDS7txF8ZT2L56OU9Jc2gZxzUt09493LjMRtmttjD+KM794qy0tPs+vYaWdpWcXq9p6XbbE/RSZlEdr2alezgkEVqiwE23Zq/sfi2xG8Yoa6Fllq5pafXLmtXwYUpzpWUUOxk3AWzpZ4ize3jaKy3NxpvG0NJv2FNJlZZxVJlEqRBahllpGVdo6bV7uJt9eBKyuL6UY2iZhmXBKK5KSzfHbcZtnp/pJXlNy6DLvpfu4W5Cy8IPXV7OU4zzpPS78COuSsuwvssoKy3dhJZO0zP+PY67h0cxP6Kax17vHh5GpaXVtMOqtPQyzrgqLd20xQu6h0eO0BJ5ae4eXrpRLL3+XoFT9/AsXtMyqi4dknNoWandw6NY/rNWael2HEHmu5dKS7P2ZC209FuFGZa0VFrGcROCKJVTpaVTtVmcFQ9exLG+JHXJEUJL/9LSPby5uW1QFta8qqRKy0L4Wdi+lkv3cLv3ejnu9TKNMJeRsCstow57oroRT1TzOOxKS6txxXlNy6B3DzfrGZi2a1py9/DIEVoiL67QMsru4U6B4YoV0f76WNoGN5WWfn5x8vJ3I6udXtCyfz/srolTeJ5U9/CkQssglZZ243Ejjd3DndaTNN6Ix28wmcXKMS/KqdJy0aL8/2GHlqXfR5KVlnYnKmkIqpK4Jly5hZZhhORpOyFLU2hpvJ5l0Ok5hURhX9My6LLv5e7hbiot0xhaRnUjp6hCy6gKIMIILeOotIxifmS10tIutPR6LhXX3cOdimz8TDuO0DKk46UM/JwfC0JL5KW10jJr3cOd5qPXHWfQ7uN244q60tKubWmutAzr5MLIz93Ds1BpGeTkJqpKS7Nh0xBapq3SMqruYmacTlCyJMvdw712/SK0tH4edHxJo9LS/HU3nynu7uFO+/e0VVrG0T086dDS6/fp9hgtrNAyrv2939DS+Pc4rmkZxfyIah67qbQMo3u42Wter2kZV6Wl2flqGD/whbmc0T08coSWyIsitHRzwuO0wfNy93CngwK/oeU770ibbCKdfrrzsE7XtDTbIVx7rdS3r/Tkk22Hd2pfkMo2p9Ay6A7Y7v1uKi3T3j3cS8VDmHcPP/dcacMNpZdeMm9L6Xjefz+//P7+9+bjGz1auuIK+7ZYiTK0TMs1Lb//XtpmG+mQQ4LdPCjrlZZnny1ttJH0yivBpus0D//85/zy+tZb3qYTl0roHm739zQchKchtBwzJr8+jBjR9r3XX5/fpz/2mPX7rRiPxe68U+rTR7r3Xnfv9cLuuGrOHKlfP2mvveyXwzQsC0ZhhJZu9tXlVGlpJqvdwwvH6qedFn5oGVal3j//Ke2+u/Xfs1BpGUZoaRR1pWVc3cPjrLT00j3cS6Vlkte0rKuTBgyQ9t/f+j3G9gUNLb1UWt5wQ35f/Oij1sNwI57IEVoirxy6hztVZvkNLXfbTfrmG+m226QvvrAf1qmLutlJ41lnSVOnSkcd1XZ4P5UwVqx2sFFVWtq9301Fmpfu4WEekERxrSI/17Q0e8/SpdKll+aDtIMOMn9vaRsKy+/990uffdZ2nDff3PY1v93D01BpGXZoedxx0iefSC++KI0caT+s39AyiUpLL9/VvHnSVVdJ331nfkBpp3Te233vX38t3XJLfnndYw9v04lLXJWWVtduDsJt93C7v6fhIDwNoeUBB+TXhyuukBYsaP234cPz+/Rjj7V+vxXjMcSf/iRNmyadfLL7drtVOg+Ny9vFF0sffCC9+aZ03nnW4yjH7uFujjucpmNWaZnLeVt3vFQ2pe1GPFHdPdzpPKVwrHP77dKnn5pP368wquqWL5cuucR+mHK5EU/QY8GwK+Di6B4e5zUtw660NBuvcVir9/i5e7jVuG66Sfrf/8z/5lRk45Zx2lVV7pezM8/M74uPO856GLNzkrTtIzOO0BJ5WeoebnUnwKhCS6PC9cyseP1FPGj3cC8bxLi7h5d7paUZq3kWVvfwlSudx1M6L4zTLq3+kKRly5zHYSXIgbHT9+un0rK5OfzQcty4lsfffGM/rJsw3uvfwhLkRNRsGXE7Li/XS50/332bkuK30tJuHsV1TUuv+59KDi29bMvcfFd+Qsso2f0Y/MknLY/HjLEeRxqWBaO0hJbNzcG7Cnrpvp62Sss0dA+fNct8+n4FDQHNgmwzaa+0dLssBD0WzEKlZVTBcJKVll7X/TC/p0mTnKcTtHt4aWjppv1u10kqLSNHaIm8tIaWZteoMwteJHehZdAdl/Hk1KkNZsK4ppiX6dkNG9YvaG6nZzZts+knHVomVWnptnu4GbtKS6OamravBTlgDLI+Oc0Tp/XZqktR2KGlF3afP8uVlkGCFC+hZXUGDkmcQku3lZbGeZrWa1rSPdz6udu/FXhdx90EHEHYdQ9fb72Wxz/8YD2OtFWRxBVaugn7g3Z5tTpGirLS0mx6Zs+dJFVpaTXNpqbwr9HuZ9l3sx/NWmhpdR6RpkrLpqZo5kdU8ziuSks33cML0/VS+R0Fs/bFdU3LJUvcjYvQMnIZOENALOK6pmUY3cOtDuaNG4yoKi2dQkun8YVR6eLl73bTSrJ7uJtKyyzePTzINS1Lp+ulUsPqpKZ0HprNU7M2p6F7uN9KS7PlOa7Q0m1Q7+VvYYmi0sDNuLyElnFVmXlR+tnMuocXKoEk99e0bN++5XFcoSXdw90LO7T0WmlZWM6iYhdarr9+y+Mff7QeR9LLgpveCVairrSMKrQMu9IyjOP0UqXbGeMxu5dxe72mpV0bvBxPmgmyrFmNw0zab8RjtV0MsszEcffwKOZHWiotnS4l46XS0usPm2F2D7djtZz5HU+Bm/G53RdHWTGc9L42JQgtkZfWSkuz0DJIpWXQgzHjyakZrxt4L9Vmfv5uN6zTTiDoxjbsSksvVWxpq7S0qrywe6+XAzmrwH7mzNbDmR24h1lpGWb3cLtg2+r9SVda+q2mTKLSMsxp2o0r66Fl6WcLq9KyNOhMotKS7uHW/Ib8bn5YcvP+JEPLNdZwN46kl4U0h5ZBT2C9VFqGFXSZTc/suZM0dA+3a4MfYew/3Syfaa+0dHse4WWZMVvnwq60jOJH2zCCbDNxVVqa8XpNS7fLVRShZVw34nG7L46y0jLpfW1KEFoiL6m7h7s58CjdEPgNLZcvDx5umXWv9TI+r6FlmJWWXu8enrbu4XGFllFUWkrev2svFZBWy/60aa2Hizq09DLvvFzT0u2JWlZDy7RXWjodHIYVWqZRaXudbsTjttKytGqf7uHupS20dAqVnN5vVHh/1KGl3fLmdjlJunt4aTvTElpa/UjpZd3xMs/Tdk3LMLqH53LhdQ83e+5VXKFl2m/EY/X9ed23GJldqz3MbUvWuofHdU1L4+V4rM4HnXrkxbUPKEwnzG2d2xvxpCC0TOHP+YkgtESe2cYrqDC6nYR9I54ofm2zaoOZ0o2a0wFylJWWTtcqSepGPAWl88ZLaBlEFJWWkveqWrPhrb4Tq4Bv6tTWw7kNLePoHh6k0tKu+12SoaXbYKNUEpWWhJbulH62ws3YglZaOn0f5dA9PKqAM4kb8bhdt/3ciMlsuklWWpb+rfTu6AVJB9hJhZZujsuCdnn1En6HfffwNISWxs9UDqGlm942UvorLa2+vyDLjFloGWbhgVn38CgqLaOqZjV7La5rWkZd3GI2Lbu/hVlpWTo+K2noHp70D4QpQWiJPOPKH+VK5rSRN9vZlA6TZPdwP93pjMKutAxyEBz1zsju/W52TuVWael0MuSm0tJqebEKLd1UWgY5uQpy0Bak0rKpKZlrWgapfM5ypaUTu+U+693DrSotrUJLt5WWTs/T2j08jOAlqCxVWjp1rytVeH8hHI+KXWhZ+hlK9yMFlRpauqm0jLN7eNpuxBNG93Dj/Ct0D/dSXBF29/CgIWAu5+495XJNSy/TMytECdJes2PpKOZHVPM4rkpLs2G8hpZuP3Narmlp5LbS0u2+OMpKy6T3tSlBaIm8KLqHuwktnZ6b3T08SKVlWKHld99J//mPt2pAyXulZZCQRJLGjZPefTf/2GtoGXTn4LfSMsrQsrlZGjVK+vxz9+Nyw6pCwchrQO22AjKXsz6pibp7eJD1ycs1Ps0OQr12D//yS+mFF6INPN59Vxo71nuFmt91zWo7ZCbK0DKsSsuoQsv6eum556QpU7y/t/SzOd2I5+mnze+4bFcpYfb3cqi0TFtouWiR9O9/u6uc8BtaWgVpYVVavvuu9M477sZlx0ul5bvvSs880/YH4yirP+rq1Pvdd6UZM6yHcVqn7EQZWoZRaWkVWkZZaVmQhkpL4zjMKi2d5mXarmlptUyUKp13jY3545bvvvM+Pbvnfrk9j3jlFWniRP/TsfqxZ+HC/Dbc7o7Obopfoqi0zNo1Lc2Ot8IMLVetkp59Nn88ZJUx1Nfnh7H6Yaz0PU6XjfIqzEpLN6Fl4RjE64+ShJaSCC1REFdo6bTjMOsi67bS0mljtnx58BP3XC6/g9hmG+nXv5ZuvLH13502gHF2D3/3XWnXXaVddpHef9/6ICaqSku3lWVW34mXQNjt9zpypPSrX0k77ijNmeNuXF4EuaalmxMwNydCYYSWaegebrc+NzZ6Cy1nz5b695cOPVS64w73bfTqhRekPffMB5dmbbPiZ5lbsULaeuv8duj6652HD/JdBdkOpSG0vPJK6bDD8ttDryevpe1dtqztNbKMlZY335yfjlMo6fTc6Y6gfhjbVFPj73vNcmh55JHSoEHSccc5D+tlfTG2p7RtheUtjNBywoT8/ny33Vp+jPTLbnkr/QynnSYdcYR07rmtX4/wRKr6/PO10xVXqHa33dxdFsXsuZ2shpZhV1q6+WEiaGhpLDRwO27j9+Cne3jUoaXXee42tCwd5qab8sct22/v7YesqEJLt5WWZ58tbbut9P33/qZTGF/p9AYNyv874QTn9xZEVWkZ1jx2s2xFUWlptj6FeZ547rnS4Yfn91lW77/kkvww/fvbr6Nm7Qu6/wn7RjxuCkCOPjq//B51lLtx/qQqa5dVigihJfLSUmnpJrT0W2lpdhLop9Ly1VfzJ66S9Le/eRtfnDfi+fOfWx4PH+690jLK7uF+Ki3dVm6ajbPgpJPy/69YYR1eBTmYsXtvVN3D7cKR0p1tudw93Gul5ejRLb/MDx3qvo1+nXJK29fCrrR89dWWbdrZZzsPH+S78vpjjFHp9jqJg6/zzsv/P2uW9OGH3t7r5gew0pvqTJvWttrSaf6X/j2K67Aa572brlHlVmn56qv5/1980XlYv+tHlKHlGWe0PDbu3/2waqfZ3wquvbb18wgrLWuuu06SVDVrlnWFdFqvaZnLhds93On1tFVals5Dux8grcZd+gOL5O08xa7a04+kKi3/+tf8/4sXS//7n/vpRRHSmY3XafxXXBFsOqXTK2zDn3vO+b0Fae8e7qZgwW2lZemxiOSu0tKsktH4up9Ky8L+Yvp0aeZM82Euvjj//5w50qRJ1uMyC0+DfodJ3Ihn9Oj8/y+/7G6cP6F7eB6hJfLiunu40zClz+3uHm63wzDbmJkdtPiptPRS8VcqqWta5nLWOyM3B41+BK20jKJ7ePv2LY+tup2lpdLSbQWkXWjpprI3zGtaxlVp2dTk7UY8cSutGAzy40NY7wnyXQXZDnkJFuK4pqXXA12z9pZeasTsRMFrZaXZNizsZdm4zlVXpye09Po503ZNS7ttlVVo6XTyb3aiVAhvzKbjld16GdX3Fra0hpZhVFp6CQnSFlraHbu5XQ+MrxeuZRnkPCUNoaWb99gdF1V7OGWPu9LSahn0O9+tKi29vLcgru7hYVVauin4saq07Ngx2PiTvKal2Q2Z7NoXRbWsmSCVliHtIwkt8wgtkRdHpaWbEyA3O5vGxrbd80rfG9VBt1Mo4jW09HJdPz9/txs2rJ2R2+lZ/c3qICjI3cOthl1vvZbHZtedMxuXF3bv9RpQh1Fp6Sa0LIzTGOjG0T08yDUt7bqHO31/PXu6a58Zt6Fa6clFmOtxQZyhZZD2py209NOtr9SKFfaVlmbvc6qmiCOMiLt7uNthvYanYd2swss03e5/3FZa+gktjduVsHtC2HVxtxLXiZTb6q60dA8Pu9LSLvSTwlsfCtvfIPsKs/a4Od4rZXxPuYSWfiotjYw/WjiJqtLS63mE3/nuNF437y2Iq3u4321ymJWWZsdQbiotrabt9D34+cxW665dN3ezdgTd/8RRaRnVelehCC2RF0do6fXXI8k8tJTyXQ7tDoyiCi2dql+cput1Ax9mhZbV9xHmzsjt+90Ev1FUWkYdWtp9Zq/XLw3jmpal89BtaOl3/fEy77xUWpodhHrpHm60/vru2hdEuVVaBtmuBamGioLX6futtHQKJUvnv9nJXZShZZoqLb3+eJfmSku3oaXVZygMV3qi1NwcbqWl3Tx1O3+TPpEq50pLq6DSbBxhh/hhV1r6CRoqNbS0O4ZJc6Wll9DSzXcXpNLSbFub5krLoOfKxrDPz3m2cRiv54lhnmtb3a/C+H4/5/l23IyDu4enBqEl8tJaaWl293Apv3ErPbiMIrQ0a1+YlZZOkqy0LMfu4cbQMoru4WFWWsbVPTzM0NLLvPPSXd7sBNtvaLnBBu7aF0RpaJn1SkunYbNUaWnXBcmMVaWlU2hpt39y266ww7m03j3c6/qRttDST6Wl1WcojKv0RKm5uXIrLa1kLbQMY5sbZaWl1TS8fs92275KrbTM5dwvn1bDZTG0NLsHgZvltTBeP9sYs+KXKCotowotg1RaugktzSotC69F1T3crgihIO7u4WZhtpnSHxCt2h9h9/DE97UpQWiJvDiuaenmBMgsuHFbaWm1MevUyX0bS5kFQnGGllFWWpodFLRr1/I4ytDSzUFsFN3Djdd7WbDA3bismE0jzGtalnv38CCVloVLRJRyE1quvrq79gVRaZWWXkJLu+89jtDSyx1YJetKS+P8MwstS0+S0xBalq5Tfr7XSqm09FKZ4+aalm4/Q2G40hOlpqbKvaal1XSSCi3j6B7uJSQIElqazduggRfdw9tqbnb/Hqvv00toGUVIZzZeP5WWbr4Ls0pLt8cHZj8QRTE/wgqGvVRCmg1jvMmslypWL6Gl1TYvaBBvZBdamlV8Bt3/uDlfkMz3xWYi7B5elXSvhpQgtEReUt3DnYaxCi1XrXLfPXy11azb6PRZS3euuVy6QssgB8FmOwFjaBn2SZFRUpWWbgKUqCot3ZwMGbntHm4XWrrpHl54f6VUWsZxop2Fa1qGcQJdEFb38DSGln4rLbMQWlJpaS3qSkunUMqse3jaKi2TPpEKslwkUWnpZX5ZHSN5/bHUC6sAyuu+xu7Yze240xZaBt0GWS0TZsIILaOqtLT6/sIOLc2KKtxWq5sNF3SZdjsdP9JQaWk17bAqLY3LdJAf6e3OC7zyW2npJbQM6XyD0DKP0BKSpFxau4fbVVq67R4eZmjpFIoEObn3M74gwYPZTsB48p10pWUcoeXMmc7j8iJIpaVZNaGb8dsdnHqptOzQwXqcVoIEYU7Ll99rWjq1IY7Q0mv38LRXWgb58cRLaBnHd5PWSkuzdkXZPdzvulIplZZe1pcwr2kZV6Wl3Tyle7i/9xbkctm8pqVZdZvZcydp7B5u1k3ZizAqLYOGll6W73KptHTzg5DVewuy1j3cS6VlY2Pr+eDnPNs4jJviFqdxmfFatFHKrOIzjNAyzEpL7h4eOUJL5Hk5GPjxR+nQQ6UTTrDfifoJLUufNzSYT4NKS3d/t5u22U7Krnv4GWdI++8vTZnibnp2OxSnygHJW/dwPwfCkjRtmvO43CisP3afOY3dw40nV36qbJOqtLS7e3iY1cl+lVZERNEmq3HOmiUddJD0hz/4O1n0075yCS1nzlTNIYdom1tvtT8ZK620NK47BWmotPzyS2mvvaS+faUhQ1qv/24qLd2cPHl9v5/hnLaN110n7b67NH68+7Y58VtpWdpWq9DykUekLbaQNt3UfFyVUGn544/5bZXTsaTbHyHDCC3dBCpuQvas3D3cLBA1O3ZvbpZOPlk6+GBpzhz7ccbZPfymm6TddpPeece+TV4rLefPl371K+nEE8PpXuwltNxjD2nSpLave/meo6q0tPr+rD6b39Dy+++lAQOkJ59sec1taGn2A1HQIN5MWPPYzQ9aVvvA0uOG5mbpu+/y52pnnmk+/nKptAz6HbqptGxoaHvM6LfSMkh7qbSUJJmUB6AiGQ+GnVaOM86QXngh/3iXXaRTTzUfLsivRwVh3D28Sxfz9plNv5TZiafbMM5M2ruHW1VavvKKdOON+cdHHy29+67z9LwE2kZUWlqPK+zu4cb3ZumalkG6h8ex80+y0vLUU6WXXso/3mcf6dhjzYcPM3wKq3t40qHlgw+q+uWX1VdS4/vv50+GrSotrbabBWY/eNmJIrS8/XbpzTfzj0eObNsePz+KBdnn+B3OLrRcvFj661/zj3faKbxlyO8Pgm4rLf/2N/PvvLk5/57S5accr2l58skt26pf/Uo66ijz4azak9ZKS6uAym9o6TSOsCotC20221c88oh0773556eeKj39tPV4wg4tjfvTqqqWbdfSpdKwYfnXd9vNuj2S99DyL3+RRo3KP95999brXmn73HBT2V7w2Wf5wpDvvmv9ehpDS6fxm1W4uvkuvv46/89uGl4qLaOYH2motCw9nsnl8tvRCRPy522//rX1e8O4EU+Y17S0Y9aOoN+hm3Vy6dK2r/m9pmWAeUClZR6VlsjzUmn5n/+0PH7vPevh3Byc+A0tvdw93BjGlHLaYHmtlgk7tAwyPafgxGwnZXVdw88/b3ls953bTc9s2qWPjc/jCC3NTlCi+jXM6WTIbNkv5TW0dPq8xr/H3T3cS6Vl6XSC3Ignjp2/1xvxhFlp+dxzLY8/+MB6eC/zIUj7gwQLUbALLY13bC7cqMuq0tI4T9J6TcvSO1AbuTlgd7PPtuN2uQ7SPdx4EwI7Xtd7t/uU0mHdhpZWNx2wC7zSVmkZdFv67LMtjydPth7ObZVPWkJLYw8GL+9zM2zYlZZm0zRb9t9/v+X588/bj8eul0yQSkupda+W0mpkO15DS+NnfP/9eCstpXylYSkv33NYgVopq+2il8plv9cXDbPSMorQMolrWpodZ0yY0PL8iy/cVVr6DS39VFr6UZhO3N3DzZYxv93Dg+yzCS0lEVqiIC3XtCx93tBgHVq6rbQ0O6G0a5OR1+7hQSqSzERZaekUWlbCNS2DduFyGr/TtAza/JLmtnu43a+0TpWWxr/7uRGPlxP7Ul4qLc0O2MzamESlpVkXm7Rc09LPyaIZr5VwRklXWpYuZ3ahpbFthW2/m0rL0iocqW2FidM8jOKalk7z2s+6EkVoGaTS0qxrvpmg+167z+2n0tKKVZicxmtahrktXX9967+5rWyJK7RMsnu41bIRBrvQ0jgNuxvCmAW2fiotja+bhZa5nLfwy2tQVlrpGXdoaSbI8h1VpWWcoWXptK2uU2p2LB3kWNVKWPPYzbJldX7gNC/dLrtW36PVNsFuXGbCuqal3bbEK7fdw83eZzW+UsY2ejmnLcGNePIILZGX1N3D/VZamnUPtwo5wgwtnUKRuCstg4SWZr9chRlaug0nrA6CvFzT0u0BiZtfNKOqtPR6TUs3lZZOJwhOv0xbhZZxdA/3Ul1ldsBm9Wt0mOtMKbPPZ3YCl5a7h9utZ2FU/RR46R5utw2NIrRctar1c6+hpdlnX768dbWCWWiZhkrLoKFl0EpLt8MGqbR0y+s65mXbZvWDqeQ9tMzlrIOpcqu0NOre3fpvVt9dWruHh1FpabXtjrLS0q57uPHzmG3vSsdhZLd++K20zOXabtvteA3KSkPToFV1YYSWaai0jDK0tDtXcztus7Zk7UY8brYdhede7sRe+jyMa1q6Xaatlt1Ondy936wdUVRamhVOmb3PjNMPVXbnag4ILfMILdGW04Go2YbOjJ9KS7ehpZfu4XaVGH4qLe02Hk4bwLArLYNUvSRZaekmtLSrpHWalttKy6AnFk7jN3I6GfJTaWl2IGy3kwy70jLIQVuQSsukuoebfT6z0NJr9/C0V1oGqV71so5FEVqWVmPYdSf2U2lZXW2+DGQhtHTapgYNLeOotIyqKjzJSkuzYZuby+ualn5DYaO0hpZWlZZ+t7lOlZZxdA+3ChFLWc2/wmdw+727CS2tLrFgJulKS6ftrRtpuKal1XY0jNDSeIkiN5K+EU9UoWVclZZxdg+32jZ7DS3D7B5uVuQQJLR0KoIJsL/impZ5hJbIS6p7uJsNhtmK7eVGPEEqLc26+Hnp3uh1I+V1x+plo221M7LqahfGDsGO00FsUt3DvVTEOLXDaVp27zVbVsyWJ7vQ0suNeNJ893AvlZZhrjOlzKbpJrSMs9LSalse5LsK0n43y7Hb6fjht9KysK6YtckYWoZVaRl393DJ+Xtzc/Lkd/yl0/IyHj8nLl6rHMIKLQvHEF5Cy6xUWgZZX3/80f243G4vgoQ6BV67h3fsaD7uMCstnV4P++7hQSotrdpiN2674SXr0NLt9WylYJWWVVXBQ8C4Ky2jCi2tvj+rz+blRjxm65IdL6FlFPMjrHG6KVjwW2lpFlqaVVpGHVoGrbQ0+0ElaFbh5rIBUXYP97K8UGkpidASBX5DS7uqSze/QgWptEzimpZWv6CbTdfsudeTM68nVn7GnUT3cMn5oDyK7uFJVlp6vXu4m+7hTgdjXiota2tbTg7i6B6exWtams0XN9e0jLPSMonQ0kv3cLvhw6oYMvIZWlY5VVoW5l9WKy0l56AoC5WWXsJAq3G4Gd7t/ieMSkurbZsxLAq7J0Tc3cOnTrVvj5u/paHSsnPntn8vDfmcpuk0DafXgy4LpeMxW/aDhpZRVFrabctLBQ0tg1bV+Qkt3YRZbt8bdWgZRqVlWKGl2XlkFPMjyPdj15a4Ki3Nxm/VFrfbYCtW29VK7h5OpaVnhJbIS8uNeNyGll4qLcPuHh5lpaWXEyWz4f2MO4nu4ca/x1lp6ebENcjyb/eZo+geblZxaHfy6RRaFk5G/FZaBqn8LWX3i6pd9/Awg/5SfkNLKi2dX7N7PYjSSo8wrmlZLpWWTj+yZCG09DuNqCotS8cbVvfwcqu0nDbN/biyFlpa/bjtt9LSqbooju7hbkNLq/kXRaVlXKGl2TUt4wgt3fQMspue3XO/ogwt6R6eF2alpeSu0tJq2lFXWroNqs3OV8MILZ3Wk5R0Dw8tl8k4QkvkRRVa/vCD9MUX1uN18yuHVaWl22taxllp6bQTCzu0dPtd5XLpCy2dfnn3ElpajWPpUmn8eOuuD8ZpNDVJ48Z5OxAuFaTS0s2yEmb38FWrpLfeanleU9NyctDcLC1a1HreGc2YIX35ZbKVlkG7h+dy0oQJ0uLFzm01a1NBGDfieftt6+Wuvj6/XLpdH6IILYP8eBJnaPnVV23DkKA34gmj0nLp0vz6ZCeJSkunCtm4Qkuv+8UPP5Tmzw82Da89Aew+9+ef57eJZuO1C7/N2FVaGpezME7YrJ77+dFqxQrp3Xdbv/fzz6VZs8zf6yW0dLu9KGz/ly9vaYvZdn7hwpblp1RhH7lkSf59VgFyQdiVloX2GrcXTtVFVvvSDz+U/v3vlmXTiV2waJxu3N3Djfu0oKFlLid98IH19ri5WXrvvdbfn1212ldfSdOnO0/fzQ+qVm0uKMzbxYul99/3dkzc3Cx9/HF+eXDTXitW5xFeKvGiDi3Njhe9hrirVuWPu7wUqfjdJluNZ+5c6bPPzIcJo9IyDde09BpaOv2A48Xs2dLEiebTKTCbvwl0D+dGPHmElsiLIrT84Qdpww2lzTbLhyNuSt6DVFpaHXSHGVrmct5Cy6CVlmFWaFmN29imMK9p6fazWh3EBu0e3tws7bRT/t+VV5q3yfj8r3+Vdt1VGjjQvt127OZZVN3DrULLXM6+q8OBB0rHHdfy3Ng9vK6uZd5dc03rccyYkV+vN900H7bZfQY7XkJLs/UqaGh5003SjjtK223nPhxyG1p67R4+bJh06KHmfzv66PxyefLJ7sbpNrQMsu0oFVb38CAh3XvvSb/8pbTRRq27niZdaZnL5dcjJ2nrHm61701DpeWNN0q/+EXr78HrNLyGlnb+7//y28SZM6PrHt7UFG738DAqLY2fad99pV12kc49N/98zBhpiy3y66NZQBhGpaVVuLvHHvm2nH++dNtt+e381lvnl+mGBmmrraynVbiO+rbb5t93883207WqtPQbWt5xR366X31l/j63lZaPPCLtsIM0aFB+2fzhB/PpmVUCOVVa2t2Ixym0dPvDfFSVlvfcI/XrJ225pXkV1cUXSzvv3Po1s+Cnqalln7Phhm2X51J+Ki3NQsumpvwxS//++e2g3fSMnngi/75Bg6Sf/7zt5RncctuLyY5V0Na+vfsbvdqNx+xY2uuPtocemj/uOuMM62HCqmY12zctXixtvHF+W/XCC/4rLYNe09JqvTW21Yyb85nSNtgxCy2DnqOOGyedeab5dArS0j2c0FISoSUKoggtzz+/ZYP629+6q9pwG1p6uaZlmN3DnSotnU6M6B7edvphVFqafbZJk6TJk/PPR4zI/2/3fRQOAJcutW+3Hbt55tTtzM1JtVlQ7yaMNmvDG2+0/puxe/jkyS0nTX//e+vhLrywZTylv9h7WR6D3IjHarvgJbQsHIx+/33bX1utRNU9XJJefbVtVaAkPfNM/v8HHmj9upvtdFiVlkF+PPESWgbp5njUUS3juOSSltejqrQsfGanSsv581u2Q3aWLLFvjx/lWmkp5avlHn/c+YdCq3F4XaadPndDg3TBBeGElmbDhl1pabe/8do9fPnyfIAjSZdfnv//4IPz/69caR6ulFa6+Qktzdq5cKH00Uf5x5dcIg0dmn88bZr0zjv56kOrAE/Kf4/jx+f3C1L+ByW79lhVWvrtHn7aaebjsxuH2bSM+/eGhpbvx824zfYVbruHp/2aln/8Y/7/H37IB+ulLrig7WtW1WpHH51/3NiYP9+xE1ZoOXFiy7JZGriUTs9o9uyWx4VeRX5YfX9etkdmN+eR8ucfdoF4qShvxPO//+X/v+UW62Hc7nucmLXtjjtazkUOPTSaSksjq+/Rb6Vl6etOl41wYnZeY1aYEVSQ0DLKSsuwP2dGEVoiL4rQ0lg5smqVuxMgsw2z2UFQUt3Drbr9WI3Pa3WH1x2rl+/Kquw/baFlQdDQ0ix8NAvFwxRmpWXQ7uFm0yusM2bz0lhpaccufI2q0tJsPfJbaWn2d+Ny77ZNBWHciKfAbTc+u3FmuXt4kCBm7tyWx8blOKpKy8I8qa62r7R0+5kWLrRvjx9ZCS2DhOKlf7M6IY6ye3jBypVt2xNmpWWYVSZhVlo6Vf9ZfR4jr9sQq9ft2t7cLHXtav13Kb9/87JvMruRRJBKSzNOlZZufuB0Ew7aVUMaX4uje7jx9aiuaen2+M/qmpbGH5rcHNt72Z5XVbVtc1OT/fmMkZ/jID/jtarQsxN1paXZ8WKQniZWwhqnm55EfistzcZvVmlpnLbZsF5Dy9LxOP2Y4cQpVHXDzfcTZWgZoNIy9HA2owgtkWc8KAhr5bDa+Nm9ZrZRMdsoe7kRT5LXtHS74TaO30v70lxpmXT38GXLnNsU9DM6jd/I63fvt3t44ddHu0pLs3lpvKalHbsTliAheimnSkurk0I/AYjbOxi67R7u9ZqWBU5dzIziDC2d2p+G7uHGH8mMwYTfSsvCuuJUaVlVZV9paZx3dtdvMrvGWta7h3sJ6uxYfY6amrbvNatWNpuG1x8E3XwWs+2x19CyNCAqKN22RRlauh23289kdgzmJbT0UmlpdxLvpr1W11G3ak/Y3cOt2IUHZscKbqt6jK/H0T086UpLN9MuZVWtZjxGtevRVRjey/ffoYN5paXb6z4G+SHIy/v8VFrahZZRVFr66R7uhtd9ipfxOP3wHUalZRjXtHTba8ZtN3IrhfOaIN+jm+MpNxWiYXUP91JpGUbIXgYILZFn3HhFsXJUVVkfiNs9l8w3yl66h8cZWjp9nrC7hwcJHszK7cO8pqXfKtHC61FUWnoNkb2y+8xx3T28MC670NKsncbu4XbshvGyzCR9Ix4jtwfKbkNLP93DJW/XmUpTaBlWpWVYPyIYQ0uzSkurzx5FpaVxnHb7oqxUWgb5ocxPO+zGU1vrvtLS6744qdDSahtmtc3zK4xKS6vKvFJRhZZujxcLnHrKSPl9pJd9SNjdw52m6VTVWmDXE8nIbD9rtuwH7R4eVmhpvFlg0NDS7fdhdv7S3Nx6nE6hpZtlz6h9e/PQ0u2xSpgFD3bjDTu0jKrSMqyA0SisSkuz9jr98O220jLqa1pavV66HXDaLjix+zHPLTfrX5SVlm6DXDftqlCElsiLont46fjdVFqaDWN2ElJX5757eJjXtLQ6GLUan9fKPq871jRXWrptu9UyEDS0jLPSsrD+JFFpabUjtzuRsQotzQ6Ie/Vq/TysSssg17S0+9x+gv4g4UqY3cPDrrS0m4dhVsyFFVqG9SOCXaVlLueuC7Hba1p6qbS0W3fMTsDTGFqG3R3LzXBWfy/HSkuriiyvlVpupmMUpHt4UqGln0pLp7aGEVpaVVoGOba2Cw/CqrS0moaX0NJq2Ymi0nL5cut2lAoaWjpVWjpdYsZqmbBiVWnp9QcFv3+34ie0LH1PuVRauik08Dsep9DSS6VlKbN10ep7dPp+g4aWYfRAcCvp0JJKy8AILZGXltAySKWlVWVWkt3Do660zHJoWZi+1cFEFN3Drb6PsMJLu88c1zUtC+3wU2lpdsC4/vqtn8cVWtpVWtp1D/ezzgQJLcOstAw7tDSuQ0GqApy2S1Zdisz+ZvWa3eterbZay2OzEMuqQscw/SqnSsvCsF6uaemmktmiPb4k3T08jkrL0vaEdU1Lr/viwjhL3xfmNS0rtdLSy/YiaGiZyzn3ijBON65KS6vjpdL2FLj90dfse3eqtPTTPdzpeK+Um9Ayye7hpeu6m+7hcYaWYfbSsnufm9CydJmI++7hZj/AeQlZrYRVvWk2ntJ1zKr9Qa5p6WZb4vT9Bv0BOuh+McxzDrPxcffwVCG0RF7UoaXkboPjNrRM6pqWTl08wq60DPPAw2oHG1Vo6fazuq209FKJkct56x5uvB5eEHafOc7u4U6hpdnfrLqHGwMgKT2VlmGGlm7b7bbS0umA00ppaOklqDdrj3H7FaTSwGm7ZHfwnkRoaXcjHsm6QsdtpaXUcsLsdPdw4/vd3kTBrD1+UGlpPY4oKi3NtrtprbQ0Ozl1WzlpfI/ZuEqZLfdB9u8FXkNLq/d4HYffSssg35/XSku33cPdVlq6/fHFqRuo22PcOEJLt9+H1Y14jMK+pqVZ93CrHiZW0wvyd7fvc7PNKN0HR11paVac4OXcyuv2z+v7nKbnpdLS6ke6ArtrWpodY3sNLb2GmaW8VFoG3aYmXWnpZZ9X0g7uHp5HaIm8NFdamm2Uvdw9PMzu4U6Vlk4nRnF2Dy8NU6x2RsbXk7impdvQ0mulpfHOjgVWIbKXg187QSotzaoJS3mptPTaPdzqRjylw9odVIZ5AGFXaWn3ub2GEWbjd9OmgiivaekUKpkxTtu47QwSWjoF6mkLLY3T91lpWZx3Vt9doZK7qiq7lZZpCS39VloGCS2dpulnfTHbLmXlmpbG17yecEZdaenlhDlopaXTOEqnG3doabZsBOkebrafdaq0jPualsZ9WloqLf2Ell7X3yx1D7drV+k2Oe5KS7Pu4X62N07TCbPS0ukSQ24rLd2GlgVW22WvoaXbSksv89rqxzy33Kw7peMLWmlp1+vIrj1eC5gqBKEl8owbyMZG6cwzpdNPtz4B8DN+NydAZsNYhZZpvBFPWJWWzc3S2WfnvwM7YVRLuam09LPBdHvQZLUMuOke/uyz0pFHSu+913bYxYvbDh91aGn3/YbRPdys0tJqR25XaWn2Hqvu4aXDpqHS8pRTpMcfN3+Pm0pLrz8OFLittPR7Tcuvv5b+9Cdp112lP/zB/OYsBVZtDlppOXmydNRR0oMPWk/Ly3MvoaXZMjFjhvS730nXX2/+HjPG6ZvtP9yElk6VloVqTadKyyCh5QknSJdc4n74u+6SjjlGGjlSGjRImjjRfninH1nM/u52Wb71Vunoo90N6/cE28uNeEq/x6OOku64w3qafvZ5YYWWVtv0oD8klo6vlNfQ0umEtsBNaHnZZdKJJ0pz5rQdtqEhfzx0yin5Hwteeim/fI8d23bYMELLk06y/3uQ7uFz50qDB+c/rxd287owrWefzc+X99+3Pj5+8cX8MdO4cW3HZzWNpEPLqCot//IXaejQYNVqBWFf07KpyTy0dHvs4qfHiRtuvq9SbistO3SI5pqWZut94fn06fnjixtvbPs3J6XDLVsmnXaaNHy4t+/a7NjfqdKyoUE66yzp/PPtx213Ix7j61Y/QKWle/i8efnjIb/vd9umsCstr7tOGjYsP54AP9TRPTzPY18llC3jie6tt0qzZuUfr7OOdO654YzfzQmQ2TCFHV7Hji0hqlP3cLdd8vx0D4/jmpYPPyxddZX9sGbj9zJs4bmb0NJPhYfXSpbS191UWh5+uPU4jKFloYuzVTVjHKGlU/dwN8tKlJWWVt3DS8efxDUtg1YplQ5T+mNM1KGll/X0zjvz/48bJ22+ube2lE7bT2i533757f+TT0q//rXUvbvziZLdwVjQSsvf/U564w3pkUek/feXttrK+X1hVFraXUrByKnS0u3JvpmFC6V//lPabTdpn33sh50+PR/qSOaBvpmoKi2//TYfBrjlN7SsqWnbHreVlhMm5P8ddJDUp0/b4f12Dy+dTlauaWl8zWulpdPwZlVope+ZOzf/Q8miRdJzz7X+28MPt7zWpYv9Dxh2AZRVF8NSixbZ/z1IpeXpp0tPPZV/vuuu0t57O7dHsu6ZIrVUkhWOh55/XtplF/P3H3JI/v+nn267rBXabLa9N34eu2DJav469awpFUdoOXdu/nxnzz2l3/7W+r1JVFo2NrqrtFy1ynoZtOO3csvq+7ObnttKy3btorl7uGRdBHHssdJbb7UcX2yxhbcuy0bz5km3355/vMkm0qmnuhuP2frm5pqW117rr51mP06YnQ8a3xtVpaXbeT1ihLfpm0mie7gk3XRT/hhj663dt4dKS1NUWiLPuKMoBJZSy8FVGOP32z28sPGrrW1pp1koY1VpGWf38LAqLf/7X/vhSof3M6xZOGicV0FDS7cHTWF0Dzcbt1loafV9eLkLpR2nyiU7Zl1aSnkJLaOqtLT7EcDL8uil0tLLL9/G+XjqqfmQy3gCZ3ay43bZ8ts1y++vpMZtsdM0CoKGlsZpLlhgPmxUlZZmn+mNN1oef/qp+ftKr1/rVGnppjrA7kY8RlFWWhYUqqLsfPed9/E6VYb7DS2/+CK8dkj2oaXbSkurcXz9tbvhk+4eHnalpd166XY6YXYPL3j++bavvfRSy+MHHrCflpeu3X4Zx9GpU9u/W4Wjzc2tj6nfecf7NK0CbWMw1NBgfnzs9rIeTpVqcVRaGl8PI7S0C7Pt9rOF6YcRWnoNWNxc09JqHkRVaem1Ek9qO++t1v2OHaOptJSsLyf21lstr02a1PpvTuzm8QsvuBuH2fTcVFq6lct5C5rDCi3DuoxBmO+POrS0O6d5+mkqLUNAaIk8q1+3/J5kmbE6EHcaprDRMJ4cNje33ZiYXZtHivdGPF4rkqzeH8ZO02rcpe+1qrR0Ch68Ts/q7367h9uNvzS07No1/3+Y3cPN5n2Q7uFulpWwbsRjNu/cXtMyrEpLp2XKS6VlYR0vPeFfZ518F9l33mk9TOn3HaTS0suBn1elB/vG8XittPQTpBp/JLJ7b1ihpdMyYXVCU3opCKdKSzfTd+oebmyT2Tphdk1Mv/tTLydyXjhVWpotI24rDr3wW2lp1u3PqtLS6zJnF67YVYdZhZZefnhxW2kZpPoijEpLt8crbir47ZRevsiOl+7hf/+7+zYYOXUPt/pxO8iPWVbHS1J+WqXbQLPQsvQ631btMTtWjDu0NE4vqkrLAqfu4WbbGaceKGbHq167h5e2y6zS0moe+N2mOgmj0tJq2A4dvFVaevmByk0RhPH80o2wgiSzZcXvzRxLmf0IZraeW1XNO23j4+oeHsb73bSp9HOGUWlZmLbZ+ZvLdhBa5hFaIi/q0DJI9/CC0tCynCsto9hpWh2gJt093G+lpd34S0PLQmBV+p6wu4fbfR9h3D3cbHkym6bVcpql7uFW67OZwjpeesJfVdWybTMGcG5DSzffiZsfY/wecJhtf5zGaXw96N3D3YaWdmGKm4phu2GNrMK70u6cTqGlmwNws7DJ6qZLUd09vMDNftjLyV6B3XIZpHu41xMRv5WWZgGf10pLt+u+8bnd8hO00tIsIClM0+uPoHbsTuzD7h5uxst7jOuX0/u83D3c748BxnnXpYv53938wOWmd0Xpe62+t9LQ0qyyrHQYq+NTs2XfOGxa7h7upYeM3XLhdO1+u+DH6rnTPHRi1T28dDrlFFomUWlpVFiuoygasWO2XQ+r0tJs2bU69zKbTlq6h1vxMl+S6h5e+JuXSsuSdnD38DxCS+TFEVr67R5ekMXQ0utJht2v6W6mZzecVbAQVWjp9qDJ6jOEGVpadXsLUmlpJkilZZzdw83+FsaNeLwcQHj51dNvpaXx8xQem53suDlxktyHlmFVRJl1D7Nri9T6ICus0NJp3bM7gQuz0tJqP2V3Mu6le7jh9Sqz0NHsZgtWlZZhdg93cyLnJ7SMqnu41+U9jkpLr5UifkPL0r9Fefdwpx/C7MRZaWn2d7+hZZiVln7XR+M4OnY0n46bfUXpMHbhmdfQ0uz42K4i3W4aXkJLq+81C5WWVm0x+wHHKbQ0e+610tLNNS2tglun7U3YoaXdZ3PbPdxrpaWX0NLND8leKy2jCi2bm/3fzNFs3EEqLaMOLYNWEIZ9zhEktLQbv9m666HSMrRlLeMILZFndVLkpTLEbqUKcvfwAqfu4VahZZBr8Jl1zyyXSsukQ0unSkun7uFO34NZaJlkpWVauodbVfK4DS3tApSoump4qbQ0tsF44GfcdrittHSz/kZZaWl3sG81zihCSz8naAVp7B7ut9LSLLR0qrSMK7T0w6kywG9o6XV5D1JpWdoet3cPdxq33fpiF7SUTscpEDEbh9tKy6hCS68n7VGHllF1D/e7XjkFeFY/bjttN51uImT838hNaFl6TCS57wpaGlrazTer78fpeK9UnKFlYR9hVyUatNLSar22EnWlZZAQzGw8aaq0dDOfzT6/8YdtN5zOed0yO2+Mo9LS7JzZa2jpt9eM3fbMCy/vT7LS0qx7uN13WvI3uofnEVoiL4xKSz8Hrl4qLY3X3PNSaRnmNS3NTkrsKjD8VlrGEVqa7aTCvKal3xPRAqdKS6euVMYDdKsdcpyVll67hwettLSaP1Zdymtq0tU93Dhtp/G6CS39dA/3G1p66QZix2ulZemPKkFDywKv2zW/oaVTm/yElj4rLU27d/uptDS+P8ru4X7YLZdW2wk3y7LX5d3PsYMUbaWlXQhhN67S8UV59/CkKy3dVFlJwUPLsLqHhxVaOv0QYVVp6bQd9Vtp2dTkr9LS6hprZvsKt5WWUV/TsvB45Upv+7DCD7b/n73vjpejKt9/dve29IQEEhICSSCUUEJNqCIQCARBpQiIwA8RFEFUFBWUJipFQPwqChb8Al9QBBUVIxC6SO8Qeg2EFAIJ6bfs7u+PuXP3zNn31DlTdu95Pp/7ubuzM2fOnDn1Oc/7vhTCMULUnnSUljrWB3GVllQfkHYgHh0CjAc/BstIy6SUljxEc2DRb7pp2ICqK2n7tBT1/ao1qem4yl8Xl7Q0eQdZk5ZeaRkbnrT0COCCtHShtJR1QHkwD6eUlmzHk7bSMg7xkFelZXgsDmm5YkX0fNGA7Jq0lD2zC6UllX8RsSB6Z93d9DW6SkvZpNL1BEK3Pch8WoZgd9F1o4fz70xHPUMds51wmCot+fzFJS1FbVS1+LYlLVVIU2lJ+X/15uFm9UYXtqQlRfBlbR7ugrQUbYTw941DWsqIRN32qds/uyQtVTDxaenCPFw0ZuqQliJVruyeukpLHZ+Wa9bQ96DGL91+LAnSktp8XLlSnAcRRO0l7DNEv8uIH5PvcUnLZvFpKTMPT8qnpc45Ls3D46zNslRaiuaupqSl7nonLvFrcr2rQDyidEzNw2V5537zPi0DeNLSI0DSSksd0rJSAd5+W5yGTvTwnh7g3XejeXGttJSRpaa7sTxMO3JVmcvOVZGWr7wCPPJIMJFOgrSUTcKr1Xjm4XxgDpHZm2vzcBUJEDctikQzMQ8Hgjodh7R0NVFzqbRkAy3lwTw8K6Ul32ZckZY2CzRZPtMkLZNWWqZtHl6tBuOki0msa/PwhQsDIsS0vtuq8imlZVLm4TrXUCSqK6Ul1afz7X3+fHohT9UZl0rLpElLF+orIBnzcNGYaWMenqRPy9WrgZdfjh575RX6HiqlJfXMixYF95C1M1F/wtfNFSuAxYvp+4V1QRXxm4KobqhIS6ovVI3x1FrApM6LzMN1lZY2bfLdd9UbIabkFZC+0lJn/CmX69ebSfi0rFaBt94ymzdXKukoLXWEHUmZh8vWfyaQcQY8XCstP/ooutZUrf9kgqc1a4AFC2rfedLSds7cZPCkpUcA0UDh0qcl1emx1xxwAPDFL4rTUCkty2Vg552BDTcE/va32nGXpGVaSkvdjtyFiSebJ1aV+sorwC67AFtuaTdBVD1rXKWlLH0RaZml0tJ0MpiUebhMaaljHi57RtekpW57EJmHU4udNEhLE6JXBhlpSeXZhLTUmZiLFsqqzZi0Scu0oofHNQ93QVqefDIwcSLwta9Fz0kierhqzGZx//3ABhsAkyaZq6BsVUHUgiwNpaWoDFwpLUUkn4y0/OtfgfHjga23rj/vu98N6sz/+3/R9Kh7hHnQgS5pqbOxIzvfFWnJl23W5uH8c8bxacn3gfz4euaZwI9/HD22997R76L3zz8P/8wPPRS0/QkTgKVLa8f5zRYq79/5TlA3jzsu+P7BB0FabP9GjeM2ENUNlXk41c+o5gbUmGm6mcP3ZSZKS1V/w/9+zTXB2mn6dDOCzUZpKTo3TaXl178e1Dvb6wE90ciJJwZjIj9ey9Ipl9WiE12YKi1NSUtbpaWsPzPB7rsDl12md65L0vLFF4ExY4Ix9/33g+OyZ6bG77Dsli8P6siGGwL33hv9rRdeaRnAk5YeAdLwaSlTbaxcCdx5p/x6lrQMVZUsXn8dePLJ+uvimIdTO4Qy0tJ0cc/DpdJSda5KaRnijTeA55/Xv49u3mSDFrWzrUPqhRApr0QTTVEERlPEUVrqkLJxA/EAwSBM/aartJQ9o0l9NFFaqtIVRQ+Pax6etdJSZh6ehtJS1B/pLNBk+bQlLUXjFG/mSJGPOvdvBKXl1VcH/6+80i4tFqr+ykRpOWtWkN7CheZ5S0Npabq4khFMMgJUZPIb1zycIj3Y9n7oocF1r74K3H579Lyf/jT4f9110bxS+Wf/jxypzqsoLeo86l4657syD+ffT6kEzJypn3YInvjcbrv633WUlnwZuPRpaeM6QHQPFWl50EHB837wAXDppbXjvI90ql6Hi/Trrw/+n3NOsIhnkTRpaaO0VKkHqe+m4x41riWltDzhhOD/008Dr70mvs6GtJRtvrJIU2m5ZIn4OpdKy9//PvgvGxNVdUf3XqK0RWspap4mmtuZkpau17oyfPvbeue5jB5+zDHBbytXApdcUjsuArXuCr//7GfBvKmnB/jSl4JjroQPTQZPWnoEyMqnpe6kF1ArLUWIo7SkJiYyIsOV0jIJ0lK0g6ZalANqP1EUdCdN1DugBgqVefgZZ4jvJRqQ45iHU8ob2TOb+rTUIcNEaigVaUldwwa6kuUrb0pLVummQ1qmobR0RVomqbQ0IS1VGwhpkZYimN4/LaUlT6o1c/Rwtk3xpIMKcZSW/G8i4kf0rLpqHR3SkspPZ6dYZaabBiBXcfKQkV/sfah7sP/Hjg0UtCIkZR7On5+k0vL66wOlzhNPAKeconcPNu/FIvDPfwIzZtSO6Sotdesue65IaakyD9eB6B58P8a/j48+qn1mFZ+sYEBEWvJglZoh8qC0VCkcVfM3HdLyqqvk93CptJS1WdE6gEqXWkfw0J0Ppam0pGCrNNeF7rui5vW2c0iq3cmUlqJ6bEpOpmUebgKXSktWyBO+V9UmsEjwxLrtCPtxrrx99PAAnrT0CJC10lKnM1FFDxchDmnJTyIps2X2uVWLe9ekZRzz8KRJS9WzyvJOvVsZaXnsscDFF8vzQi0cwzy6Ii1VO2266QF6Cz2Z0jLP5uG6CxidSSRPWooWV0mZh4tIYxZJmIfrKC3ZRY5LpaWqX2PTlpGWpuWiu9vPftdxs0AdD0lHVf/IbqaxCK9lr2+k6OHUAhkwqzcu8iH73YXS0iVpSfXH1ao8cjF1X1Gfwh9POnp4qQR84hPAnnvSaYj6B50xIyulJU9arrsucPrpwA47BK4XdMBvRIwbF900FRFUlUr0WXTrLnsuVZY8aVko2JGWovGW7wdl7VXUX+qO+RTyqLSUqfsBdRlSOOggYJ99xPdIyqelztxT9ZvJNaJz04weTsGUtDQd5959Vy8dGdFoCiotak4oEnYkZR6eV9JSZ4wtl6PHR40K/tsG4nnvvdqxceOC/67ef5PBk5YeAVz4tJR14CqfljZKS121Tprm4XGVlqaLeZNBUzRxYPMkKqs4pkaq322VljwZIJvsiBSJcUhLnV1KFqbm4SJFBQsZaWmqtNQ1D7eZ0PLQbbs6Ext+M8NGadks5uHUJD5sS0mSlrLvMnLEdKPLhrS0VFoWwkUmey7VPxYKYlKRD3qVpNLSRr3qUmnJwrS+627mUcf530x9WiZNWgI1taUOROQOlXZSpGX4fGF9FdU/0fyNCmCoc3/R+a5IS35c5Nuj7nyXJz7Z/+Hvoo1XGWnpSmk5eHC8ORtV93VJS/a5bZSW1Dl5UFry+VL5aaS+q/rFUilaBynSkk/DBWn54Yf614rGBF0im/oewpXS0na+lbTSct48+ji16WMy75ZBRoBSaxjR3LUZSEuX5uEsBg6kj/P3FnEHLGm5wQbBf65cvU/LAJ609AiQlXl4eExngpWFebiO0lI2mTMlLXXILz4/uqB2fvk8pWkeHt7fhXm4arEhIvFcm4erBi0ZdCYpJkrLLEhL3fqo23Z1JpEy0pJ9HplPSw0Si/wepsdD1NZMEdc8nE0jj+bhpqSlqE7b3l91vKvLXmkZXu+CtAzHZ9k7s1nUJEVamqq8TBbYfF5UZEII0bPakJayTQ7qPmvXmql3qHOp40krLSlCjoVIhaMTLdiEtDTpP02Vlix0SUs271QZiVR1lYq90lKmeOJJy46OeObhVPmzx2Tvg/2N7S+ptqqLPCoteajqrI7Qgrd2oczDdZWWqvyyv/NkmiyfLkhL0bl5UVqaqOJFoJ7jnXf00pERjaYQjSX8b7ZKS1Fd0RVp2JKxNtDZ2OXLWccneri5oFr/mSgtedIyzXLKMSxtlTyaDkmbh6tIS50JVl58WpooLVUkJg/T3SeTjkyHtBQpLZMwD5c9qy1pKapnosVknpWWuqSlaFIiMw+n2nuplJ55uG7b1WkPLpSWrklLV0rLuObhbBomJmD8OSqSUva8ss0CU7JKd7ef/a4TECMERVqy54oC8ciUlrwiPA5kJJVNHVP1V9TvOm3cdLxwqbR0ZR4uIyFEaYk2hEyVlqK+Pw2lJUsuqZSWov7BtdLShIBTKS1Z8M8ls8oRpROWETvWiAgqFWlpq7Qsl6OkpWheoEI4flJ1X1dpycLGPJw6h3LzYgOXSkseqjFfh7Tk52CUCTqfrgulJU9ams7xXJKWjeTT0rSNNYLSUjTu6c69Qrhe67qAK6XlBx9Ev4dt0DR6ePidva69PfjvSUsSDa20vPLKKzFhwgR0dHRg+vTpeOyxx4Tn/va3v8Uee+yBESNGYMSIEZgxY4b0/H6HpJWWgHwBlCRpGcc8nDIBkQ3Acc3DdcgvFiY7gqJBUGdRnbbS0tSnJbVwYCGaxJsqLUVqGx2lpWqBqaMuyXv0cN36qGvKqrPzzfcLItJS5tNSppySfRdd62rCKTMPp9JMSmlpQlLy3+MoLXXrnuy8ZlBahmmoVGSmaAalpS7xY0paytqLLC2R0tKEtBT1Kfx945CWOsRoXszDXZGWoucL4co8nLLICa9Lw6elzXwtBKWI5ElL3brMm4fbjoNxlJYhCQCkq7S0IS1bWqJ1UEdpuWoVnZZJfk2UlqJ1nOzd6o7j7e3pRQ+nYEpa6iqOQ5iQli6VlqINa2qeZqq0FB3Po3m4jdKS6hPeeiv63TYQT6VSn76KPO7naFjS8qabbsLpp5+Oc889F0899RSmTp2KmTNnYvHixeT59913H4466ijce++9ePjhhzF+/Hjst99+mD9/fso5zylEk1KXPi1dKC3ZgBu6izRbpSXVoVCTURmRYEL4sOcnsdMnGoxkk/gQafu0NCUtWaUlBVdKS2pnkv2sUi7JYKu01CEt2Yl7HnxamiotZenyUc/Z56aUltVq/URfd7dYVNaq65IwD4+rtGxE83DdiTP7PY7SsrMzeq6N0jIt0tJmoZYUaWk6XqShtBTdw0atY0pa5klpGZJSontQ9dXUPNw1aWnynKbRw1nEMQ+3UVry59gqLbu7o1G745CWVP2zVVrmwadl6G8OyN48XFVuKqVlUj4tebNl2bW6G7yy30TpZ620TEo0EkJEWurUFVsilmp3lGCEErGwx3XnTCF0SUvb57KBDmegM/bYkJZ8Hxqez3NQgnLxSssADUtaXn755TjxxBNx/PHHY8qUKbjqqqswcOBAXHPNNeT5N9xwA7761a9i2223xeabb47f/e53qFQquPvuu1POeU4hmgiYTBBU/j2o3//+d+DQQ4HvfledftrRw6nFD3Vf2Q60rdIyK/Nw2eKbulYG1bPKlJY2gXgAcX0VLSJMSUuR2kZHaamor3WDEp/+L38J/Pe/0XNkpCV7vwEDap/zED3c1Kelrnk4ew2QnXm4qwmnC6VlmIYNaSkiJVSbMSrS8okngK99DXj8cfn9TzlFfh8+n7r3T1NpqdO/qpAFaXnaacDbb9vdx5Q0qVSCe518MnD44cAf/6h3T0oVlobSUtR2Pv4YuOyy+uOmSksqr9Tx7m7gmWeCtqQLmekwP55QhByfJ/Z/CJ35QlZKSxlpGcc8XNenJdsH8M8pIy3vuSdok6++Wv/b2rXRMopDWlIE3ZlnAitW1L7PmRPk5Y035Gkl4dPShNQC9EjLRjEPnzsXOP/86LFwLrN2LXDuucDPf65WPgLR58mLT0tTpeWyZcCttwaff/3rYC35jW8ACxfqp8FCZ77JQiXU4SHyaUnNp/g8nHqqXp6otPm0vvlN4D//0aujKqXlzTcDN90UPfbAA8FYrsoXm34acGUe/uab0e865uEA3Q74tnfPPcF4/tJL8nz1UzSkT8uuri48+eSTOPPMM/uOFYtFzJgxAw8//LBWGqtXr0Z3dzfWWWcd8vfOzk50MgvG5cuXAwC6u7vRHcckJ6col8tkZah0d6PMPW8LgLA7rlQqtd87OyGa8lUBlLu66Ar3179q5bFSKKBQKKAAoFqpoNrdrcW6dwPCfJV7elARvc8VK+quK/f0oNjdDXY46l67tq9ja6lUIr/1dHWhyqRf6umR5jk8v1Quaz1bpPw5lKrVvjQqvQpRNs2+ezHl2F2pkGVV7eqqf2aFKqHY3Q3ZEr27qwvo7kahp6euXnSvXl2Xj57u7khZFtau7buuXCig0t2Nlt76Qd5vzZq6NKvd3ejp7kbLypXC6yJpMIoZ9l1Xy2X0dHej2NMjfObwXiIUuHderVb7zi/cfTdaiIVpuasL6Oqqu2dP7/GwfKodHX157VmzBiiV6sq8p7e+8PWuWqlE8i19RibPUhDvgkL36tVBHRH1HQCqpRKqhUJfvnuYc8vVal/7bmH7jlWrom2Bq1t9WLs2ks/wPbNoqVbr6g5/XqG722qwrWt3nZ19fU2J6/+6u7tRWLOmvi2tWhWUIZeHSrlM9h3s84Z9BN+Ww7Ybgu/32Hy2lMv1bevqq4P/v/xl3f0j+P3vI1/5/jQE36+y/Tp1/3J3N9nv8+d2r1oVefZKS0td+6gUCigL+s3ulSsjdbfC1FMT9NXPVasi92HnIoXOTuM6Vib6jgi++c26Q6IxJ9JOuDFSmY/ubhS+/30Ub7wxuP4vf0HPHnsAo0cDgLD98/0cAFTXrCH7IFEa5bVrybrA93ORvk0y16HQs3IlipWK1ruv9rZLPq/lri4UufrZs2YNWrbbrv5+PT2RdhKpM73zWir/PZ2dqDJ9XqVYRLm3/lN5D+sCX/e6uXpKtTeyX2DyGKlPPT3a9amydq2wnMtdXUCh0Pdee4Bof1Kt0u2Yyzvb33SXy0H/WqnUxp2eHhSJPJe7u1EsFmvz556eSFsqrl4tbo9f/7roF6fo7uysn7vxm2fVKvCLX6A6ezZ6XnpJ2BYqra2Rcbna1SVtN91dXeTct6d3vg9E1x86qA4YUJv7rF5N9gHVtWvR092NguD3Snc3qpJ5D0CsJfg6rLFm6a5WUSoW+86prl5d/6ycyquyalVQr37yE5QuuAAA0LPxxsr+hm2TpXffjc4lesf3sN5Hxhmib+ru6pLO98tdXZGyEa2DuksltLS2mr3fo45C+fbb0fLVr9aObbedURoh+uYX3LsTrfllc+FKpYIyV9+r774bjFkcocmPTdVKBRW+PC03Isrd3QCVz098AtXx4+vmbfxcLqzX0jXpkUeie4cdgI02AgC07rmnMl9hHaPmzzbQ4WV05kh1c1tuDg4A+OijyNewDYZjWrVYJJWR5c7OyHvo6ewE3normqdXXw3+uLlxoVptSu4J0Ht3IRqStFyyZAnK5TJG905oQ4wePRovv/yyVhrf/e53MXbsWMyYMYP8/cILL8T5/I4WgDvvvBMD2Z27JsGIl1/GJ4jj782bh6dnz44cO6C7G+H+6Xvvvdf3e/vSpdhfkP6q1avxzMMPY/cYefx4xQq0rFmDIQga+/IPPsBIjevueeABzBT89tKLL+IN7vlCUM/z6ssvY8MVKzCIOfbAffdh5WuvAQD2WbUKg5nfnnnyScwfXDuy88KFiNbaKB575BF80NmJPT76CDSdHsXSDz/Eg4L877FsWV8ay5Ytw4p33sFGbN6efhrzBw/G9IULMab32F333osDiLQqa9dGOtvb//UvVBSqhC3feAObSH7/73/+g4/ffx8j586tqxcP3X8/+GHv4YcewkdLl/Z9X/eZZ7Br7+fX334bL8+ejU9Vq8JJxD23315XD1atWIF7b70VB334ofRZQtz+73/3PffeK1ZgSO/xFStW4N7Zs7HNW29houDartWrcbvgXQHAtu++G3k/nWvW4I7e87f+zW8wibhm7nPPYdDChdiYO/7f//wHw956C9v2fl9TLiPstR5/5BH0DBiAPbhrHnzkEWz2wQdYnzte7u7GbCbfW735Zt39QqxZtQpzJM8YYsCiRdhPeRbw2D/+gSVvv40NnnkGOwjOWdvVhVVLl2JU7/e5zz6Lqb2fn587F+/05mfGmjUYBKCrsxNrPvwQw5k0nnjsMSwi0h7++uuRelju6oqUBQAcxE3yAKBz9eq+dwcAox9/HDvLHlQAfuLz0AMPYFmvimC7efOwIfPb7Nmzse7TT/e1iRD/vfdefDxvXqS9AMD777+PJ4l39Wn2fg8+iKWLF2PjF1/EVuzx//wHyxYs6Ps+Y+XKSJ/44AMPYPm77wIAPqXYvDDBc08/jXeJjcYd3nsPGzDf5731Fp7rfbZZHPEMAC8+/zzeJJ79II5oePCee7DB669jcu/3dxYurGvfS5ctw0N33omDiPw+dP/9GLRgAXbs/f7eggWRd6aLuc8+i7dnz8agBQvAzljYujjm8ccx3TDdN5ln08UHixbhEUW9MTVleumFF7D+00/3jeeFahUP3nILlk8MSnv8M89ge+K65559FuWODuzEHFu1fDnuJvI37skn+94Di3dffx3PEudvPHdupM5XK5W+8h64aBH21XqyAI8+8AA2WbxYOvaH+HjZMrz06KPYhTv+0ty5mMjNPZ55/HHymZ566iks6Ojo+86+m9v/9S+gUCDr62OPPIKlH32EA3u/L/noIzw8ezamLVlSNy4AwIeLF+Oh2bOx3hNPRPL70H33RfrNV19+Ga9yZXygZCPq7jlzInOvgoHS8qOFC/vGAh4vPPccUCj0jQ/PPf883mXyVezsJMuF7/PZ/ube++/Hmpdfjsyh337jDWxELJBffOEFbNrTg9BZy/x338VTTNpbzJ2LTdWPmCju+Pe/Mfm117CZxrmFN97A7NmzI/WLxUfLl/e9i0ceeggfL1zYV7cozL7tNuy0cCHGcsefee45zB8+HACw16pVGKqRtxDLCgWM6P381KOPYhp1UmcnZv/rX1hf8PuiBQuwqlqVzmffffvtSD8yYPHiyBxn9cqVWPbeexgnSWP27bdju4UL+8aIzhUr0CE5HwBWLFmC+2bPxoEXX9x37L1f/AKDFi/GupLr3nzjDbzYm989Fy+OzIfYeQYAzJkzp+/zek8+Wdc33f7vf2Pjl17CFNG9Xn+9714AsPuHH5Jrt9l33omJO+2ErZ5/HkVN91+FtWsx98Yb+9o0AHS98QbahVeI8cIzz+Cd2bMx5J13sDebr94+k8fGL70UGSNYLF68GI/ddhsOZvPa3Y07/vpXlFnLJwDrP/lkpN6tWbkSr7/wAraxeAYer7/6KgqVCtmvdK5cGalft//rX9hv1apI2b3x+ut4afZs7PrBB9L69NTvf4+FO+8MVKvC/oDFPXfdhbWjRmGWYiNDF3wfTWH800+T8wgW/3ngAaxgFLF7L1vWt84T4aP33sN/Z8/GAWvXog1ApVRCiZgDvfHaa5H38Nwzz6DQ04P6bcd6FCqVSDtsJqw2CITbkKRlXFx00UX405/+hPvuuw8dHfSQcOaZZ+L000/v+758+fI+P5hDh5oMmY2B8rBh5PEN1l8f68+aFTnWwpBVG4wbV/v9/feF6Q8aNAg7TzddUkUxbMQIFHrVfS2lEkYMUXUlAfbeV7y82GLzzbEZ93x9IEzjNt1kExT/85/IsU/sthswJRiuW7jBaNtttsFUJv2SQlk0bccdUZ05E6Uf/Uh6XogRw4djliD/pZ/8pO/z8OHDMXxcdLq07dSpmDprFkq//nXfsRkzaXqXn0Dsv+++UbMb6pp77pH+vttuuwHbb4/C4MH1vxF1ZZedd0Z1t936vhcYM6FNNtsMk2bNQrFUEkr0996Dp+mAQR0d2H/LLaX5ZLH/fvv1mVq3MM8/ZNAgzJo1C6V//lN4bVuxKHxXAFD4y18i39tbW/vOLz7wAEAMyltuvjkKhNnAbrvsggJTFwcMG9YX8W6n7bcHiD5stz33ROmBB+qOl4BIvot33il8hgEdHdJn7IPKrKwX08eORXXWLBQkpHLHoEFoX7c2ndpqiy1qn7feGlv25qdlyBBg0SK0tbSgbdCgSBo7br89qkS+C1ywNr4sAJDlz747IFDRusBuO++M6s4B/Vn6858jv82aNYvMy+7TpqE6fToK3CbD2NGjMVrxrnbtvV+R2wzcbZddUN2pRhW1tEeXCLvvuivQqwArOjRr2WbrrbE1kefSDTdEvm84fjw2CN87sdiYstlm2Jx639xEc4/p01FgJrAbblxP148YORL7H0gvxXebNi1iSrTBRhvVnVNtaVGSMltNmYIps2YBL74YOR6pYxa78JMmTDC+Zt1119Vr4wbYYrPNUHz66cgxtg4Vliwhr9tm663rxqFBgj6owGx4sdhwzBiMI87n63wBTHlr9l8hpk+dWjdvEGHYkCHYaYf6LZotNt0UxXvvjRzbVjB2bS/oz4DeMUyAadtv39e/AMCoMWOCcU3gdmnkyJFkv7PbTjtFvm+6ySbYhMuPbCNjn732kvwqxzqSeeFWW2wRMS/eZttto/2JoB3y9al0/fV9n/eaMQMYPx6FUTWqdMKECaQqacrmm6PY0dFnaj1u/fUxhh1b779fmHdXqE6ejELvJjuFmTNm1LVFGWR9wTrrrx+YNAPYedo0VAlVcCSt/fePlG2Ibbffvm8e3fL972vnDQCGTZ4M9D7v9oL2UqhWMWvffVEQLJ5HjxqFqqKv3HDcuGg/wq0fBnZ0YMBo8bZFtVQK2lpo7gygXcMUfmh7e3Ad0/+P33RT5XgwacIETAjL9OyzI7/ttssuqE6fju7ubsyZMwf77rsvWnvnDwViPN1/5kwUe9+z6l4AULrwQvK8WbNmAbNmofyTn6Dyj3+g5YQThGlW29pQ6FUfbrVplJJrM3Uh0Iutp0wJ5ovPPRfN1/77k65ditx4zGK99dbDAcR6aubOOwPcWoyvdwPa27ElM4+Ng00mTRKadrfz67r99qsjhTaeOBETZ81C6fLLpffZYccdgzFHc4Np709+EthwQ7TYuszhoDMnKSyipAlR7LHbbsA2NbqYn9tSWKd3ztHSW++KbW2kWfnG3Pxvm622QkEWfI1BoVKJtMNmQmjJrIOGJC1HjRqFUqmERVwFXLRoEcaMGSO4KsCll16Kiy66CHfddRe22Ua8j9He3o52orK2trY2ZaXhF7QhitUqipLnLQK13yXmwoVisa9B26LI+HspVCp6ao5iEa0CYhoASsUiSqLnI9IvFYt1nXJrsVjzhcRN3lsKhXpn5BK0sGlpQPp+mMlFkZho9N2LyZOorHjSpdUwnxT60iAGrRaC6KgrG+aZSu3twXuU+MNpJdIs9PSglVGMKfPc0kK+60K1GvQLEoKm0N0t7TsqvMlImCYgJIhLAOkHi29rBaYvaykUyHJqHTCAbMOFSiWab9kzsnmWQdNvUct77wnrSF9SpRIKzO8lJn8t7PvqvWeB8A0nbHf8OymX65+Pqld8mTmamNX1JwxE9a+lUiHLsFgoSPt2gCkXrhzqyosrz0g7cUTYAr0TFo36VapWa/06cf9SoVDf7xM+11o4f1Alon8sFosoCia2LdVqhCQpEj4xCy0tyol+X365/LUK+kNd2NTKyJjvCCWgzn9ba6lU13Z5tBD+RMk2Cgh94RV7eujn4dNl+zbD9txi0AYK1Sq5kCsVCvX9lqAvjvR7HFol87CWQiFaX0uloGwEc7u+usD3D1w+yfYmKZPWGP1lUdKWSnw+29qi5SR4TtmY1treHqTBnFMC6H6Hq691bSmOL0pNFAQusUK0lkpGfYmsbNj+roUNpCm7N1E/I+/JcB1RZIhCvl5G7i3xW1kElGVS9y65Zy1Uq+SmYt/vLS1BWTJpFDTqQ9+8kh2nBg5U+sArAbU2yfcr3Dwjsu4l3mFrS4u0fCLjMXE/9j4AgFGj6og9HoWRI4HeuTuvajNRZkfyid4y4Z4xMhaxkNTFYrGIIvF76+rV9WkRY1gp5no5RInr0yP3Wbkymrdisc4VRN8aWVGfWsK6q1n2fWXqaFPbFS/Tyo+dGpvBxTVrgrbf2+eL+JQSxQ8YBH1qVv7J5JkaMhBPW1sbdthhh0gQnTCozi678ML1Gi655BJccMEFuP3227HjjpRRTT+GLOqyDGyDUzkljts5sRM+3UA8siAJgDxPlFN000A8qoAVVPrUdarzKfDvNE70cB42Udh4xA3EYxI9XJRmuSyO6EeBCr7DfpY9s240Peo7p+DtQ7lMBxHi6ylLllARKIHsoofLBqzw3cjStYkezr8L3YiYuoF4TIIXmSAv0cN1gg5Qx+NC1O/I6ijV7nSD8/DRv00D8fBBr6j+VWfCJgrEIwoMpgsbQjkJh/BUcCydaMUU0SDqZ+NGD9cJxCOCi0A8ttHDqTmJLBAVNR8Q1W/dQDyi5xEhzkaHrExE0dFDFAp6cyAqWJFuIB5Z9HBN1U0siOYSIXSCzujCNBCP6N5xooczVhjS8mV809fBJnq4aSCesN6x9U+nfVP9V3u7Or+ysUM2logC8biIHs5CRdrJyH5L0lIYiEdUlrIyFhFSH39cf4wqf1dzJ1l7ptanojmGKj/h+9K1+NBN1yV0xhWdQDw8Vq0K/of1TiTgotYTmnVVtuHRn9CQSksAOP3003Hcccdhxx13xLRp03DFFVdg1apVOP744wEAxx57LMaNG4cLe2XoF198Mc455xzceOONmDBhAhb2+usYPHgwBhPmqf0OLkhLVQcet9HZRA+PQ1pSExyK8JCVgW30cIPdF23waWZNWsqixyVBWlKTu3JZHNGPgmiiF36OET1cSniL1MIy0pLNC6sEE0WP5SNXsueL8sVDtz7ypKVoYhCSlrJ0+TZOLSjZz9TiQfRM1HnVqnrhJGprcWETPdwFaala1IjK06HKkryv6Dj7XUQe8BCRljrRw0X1obtb3b8qApoBEJOWlUotzUYmLal+TGdDlIpaq0tsh9AlLXXSEoEJ4KaEaMFKHddZUJnMQUxJS9HCk587Uf2hy/JlIVOn8elSz9XSYjbvpcpINMbypCV/jix6uCuofPLLosubgu0vdchQ0X3Z/jUOaSmrG0zwODJfqryLRAFsGjqkJTse2JKWHR3682/ArI+g0qX6Ydk1LkhLtm65Ii115zshTOsEQJOW1LrR1Thbqei3GdGaN0xHhvAeuqSlbP2XFFxFD+cRzl3C9y2a01HcgW5dTZPczTEalrQ84ogj8MEHH+Ccc87BwoULse222+L222/vC84zb968iDT717/+Nbq6unDYYYdF0jn33HNx3nnnpZn1fELUqZkMfCbn2sBWaSkj4myUlrIB3nRxT6VPXac63+ZcilhwSVqqzpGVPfVuZaRlmG9TpWVPT1RpOWBAnZliBHGUluGiU6VaodKPS1qyEzzRokSktAzzEpZtEqSlCCGhLEtXV2nJ5t+WtAzPDeubrkKzUZSWIuJcR0VCfXdNWpoqLUWLTZdKS1Wfw15PTWZdkZY2ZW1TL9NSWurMLSgizxVpKVqcm5h0hTBVWorqrK7Skr1etPFCQaREVJGW/D34uZPtPMgGKqUl++zUc7W2qhWPbP7CNNh+QDQ3Zdsrnw5grrSUbfiJkKbSkjcJzlppKSMt01Bayup1OA6w9UPnPbggLU1IRdG8QXaNqXgDMFNa8u8trtJStzxU5UT9noXSUtfUXLTmZf/L7gPkm7RMSmnJk5aiNQ3VDjTLyystAzQsaQkAp556Kk499VTyt/vuuy/y/W0iqIpHDdVGUFrypKXuwOfSPJxSWsrMw73SUoy0zcNFSkuWtNx0U+DZZ8VpxFFaAkGeKeKDT5tP34a0FJmH25CWuoou3XrLlpPKPFw1IeZJS/a5XZuHh8dUZSEjoOMgaaWliGxVub1Ii7TULW/V/al04igtRdAxDw/HKJ1FH9+Hlcu19mOzyMmL0rKnp36zSIe0pPqGpMzDRXnTwdq1ZhuR1LnUcRHJJdvckBEwPDFKmT7zeWL/h8gracmna6t8VpWRTLHHjkmqclPBhrRUKS1dEiampKVIgRuHtGSDjNqSlrqEq+q7qXm4DkSkpUl+TdYpuqbGsvR06pfqPSfhC1ZEWtqYh7PpsdAhLbNSWlKCDV2lZdh2TElLV32NDnTIbD4/uqQlOxfRNQ/n12kSaMXw6AdoSJ+WHgnABWnJOfWtS981aZmFeTh1XxlpaTtZN1Fl6EKHtNTdkcuDeTibB1uflqzScvBgQBHIK6IIMlVahveTpS36Lopg59I8vKVFPGFWkWUhbJSWFBE0dmzwv7MziHruQmlpYh7O75yykLV36hwqfVu4VFrqEHeieq3q15IiLUXpiZ5NdL6t0lIjWFMEvHk41b/q+NHr7g4W1SJfgeHvpsgLaRn6hGKh0+dQz52kebhso02GZcvik5aU0lIUDTXs49esoQkJWbugNjFFdVzXPFy1mcsjSaUlpZJkYaJ8BugykpFfLs3DbYIyqJSWSZmHr1qlNyd0TVqycx9b83CdMolrHh7WO536x4J6prY2vbIO5zkm6xRRvyhb/5koOUOYmIebEvcihO9ZpvpnoRLqUOW4bFnwzt5+O/hbsYKuKy6VlrrjlUioE6YjQ1gP86S0rFaj7zKO0lIkNqHuI+qXqU1nT1oawZOWHnLoTi6/8Q1AEo3dyqSKB0tAVqt6naPKPFyWJ91APDK1adJKyzikJb+wN9nhdWkeTg1apubhtkpLlrTcaCOxojHEVVcBQ4cCxx1np7SU1VkZqSQjx6gFv4q0pPIpiNxZlxebXXgeKvPwiRNrn+fNk9dzmU9LG/Pwo48O1Bm/+509aWkzSddBVkpLXWUl/12lUjSFrtIyvG/elJbUglQjqi5+8ANg/fWBJ56IHq9UAuJqo42AE0+Up0HBpl4mschYsaL+mI7S8utfB04+OXosDdLStNzOPx944AG9c0WLTIo4+Z//odPo7AS23TbYhPvvf+vTF+VfRFqqxoU8mYerfFqqNhGo8UjW35kqLdm2zpeDjXm4KXSUlq7aONtffu5zwK67qu9NwZa0HDhQ7vuQRaMqLUWBFVX5vfpqYL31gPvuM9tkpX774heBX/5SfE3S5uGulJadncD22wN77x09rjvv0Pn9xReB8eODOe7EicE7+Oc/o+e4VlrqphVHaWlKWtpuAOqiWgVmzABGjqyVrylpyVplqdaG7BxG1C9T1iSm5dXP4UlLjwC6fvZEv//85+p7uFRaAvqkpWulpWwANlUkUelT14lgUqainWCetFxvPfO0KCSttHQRPXzt2tp7Hj1arUL4/veDZ7/uumj9SEJpKTJFZ5GmebgqL6rfWFDvjkWotASAxYvtlZZUIB6ZefiSJcCNNwa/n3iiO6VlEubhcZWWcczDVYucpEhLXUIq/C6qZ7ZKyyTMw3UjFi9bBlxwQfRYuQx861vAggXq6ynkRWlpS1pSMDUPFxFFMiIgSdWDiFRUkR4srr0WeP55YPly4IADor+plJZUfTUNxJNX83DR87GgxiNZ/lWkJW8OLpvDmpIvNn1qVubhAPDmm+p7u1RaDh6sT1qqlJZsvrbdtv4cHdJSVq62pCVQn2/dd7hqFbDXXvGVlrfcIr+PjeVJFqTlddfR7qFcmof/3/8Fc9oQa9cCf/lL9Jw8KS1116S2SsukxtLHHwfuuSd4poMPDo6ZBuJhzzchLUVqaX6tZqK09KQlAE9aeoRwYR6uSt81aakzULn2aUl1MDISI89KSxFpec89wOmnA1/9qjgtF6SlS6WlTiAeVX1pbY36P1KBVThSpvYUZAOUTGlpQ1ramIfHJS112zibN2pXUie/IVyah7/3njif1LFGUFqK2plLpaWOeXiaSkvq/rx/NR62SktVn6MiSXSUliJUKlGfvKbIC2lJmRbqmIdTyKPS0gQiH74yspGHyGwckJOf/D1UPi0bjbTkyQBd83BZ/6cyD+f7HZH/ZcC8PSahtHSp8jLt810rLQcNSkZp+aMfAaedFlXkyTadw9/Z93vKKdHfbc3DAdrsNE6f6WKOZ5t+iCzMw1kykYUov6bqW0DfSk23nMeMAc4+O7B2FOUhTaWlLoEsE624wIcf1h8zVVqy9SoJ0pIXl8iQ5JyjgeBJS48AjUBa8uSEC/NwU6UldU8ZiZEnpaUuabnllsBllwHTponTcmEeLnvGtJSWLFpazEhLdgDSfW+25uGidHt63EYPz4tPS3YxpprA6QbiYc3DRS4e3n03elxFWuqqTrNUWoomhzqbBbqkpapvAbJRWsragE7aLpSWbLrUZFZXaUmhUjH38cZfz2P77YH99jO7Ji4o0tJWaSnqLxqFtBQtMlnCbfx4eRqyhZBKadnM5uH82KdrHi4jXVRKS7bNV6vRti5zNaSDRlNaqqCjtNT1uw6YkZYmSsvx4wPrsj/9KXoOC2pMZM+54oro73GUlpSv4zhWWLL2aVM3TNs/kE0gHt1NUdXxEDabgmG6uuV8/PHAD38IDB8uTivPPi1dgU9PJTDSSceWtNQ1Dy+XffRwQ3jS0iNAHNJSpzG59mkJ6CstZYOfqdKSuqeMnODLT7WrYrr7ZEJuqhb2/GRJNnlKWmmZRCAeVX0plcxISypvVLmwA5itebioPlD+LMO02HulpbTUrY8qn5Z8mcnS1fVpyZqHi8y3edWardISsCddZLBRWobX9CefluF3ETmeltJSN3q4LWlZLscjLalnLhblE/S8m4eLzheNWWkE4jGBaMHKEooqNyaqPpr9nXebYEJa5lFpqRpjqedjYWseLlJa8v2OLGBPGkpLnbpjUv6yc5tVaRnmga0/OmNi+H4pC7AwLRdKy7jvsBGUlmmSljbm4XHWvCZKy3Bub+vijUXaPi1djqN8HRPFMFAhSaUl5dPSm4cbwZOWHgFEEwFVR8VPAmXIyjyc/W+SJxulpWrwbwTz8BCySYML0lJG0GahtIxDWsreGzuAuTYPpxb74fmmSkuZKwVdAsFGaUkN8HGUltSCkv1M+bQMn+mdd6LH45CWtuatMrhUWuoQO7rXpmUe3ohKSxVpWSjYLVSBIG0T5REP6pkLhegmBw9RnY9Dnro0D+evVaWRR6UllT57XLWAko3PPDEpGxtsSUtqcaabP+p8V9BRWtqah4uUljK3FFmYh6uuMTUPl82rbEhL6t6UxYQOkvJpGeZBFgmeGjPDc0ql+ucI653NBhblKy8ppWVSpCXf7rKKHk7BlMxUpRcnLzzCcpCt4V34tFTlx0Zp6bKf5/O3fLn6HAppmoeXy/qkZZy61ETwpKVHgDhKS12pv2vSUvcaQDwRMFVampqHm0wGAHPSMgnz8BBxlZaqc0yVlrIJvwuflkkpLdkBTOVvi0qT+i2ES9JSZqaapHm4SmkZh7QULXZEpKVLpaXueSaQkZbVanzz8GZTWoru71JpGdc8PK5PS9dKy0LBTmkZJx+ulZbUQsCUtKTOz5K07Omp3T8OacmPDbwKn9r0UW1mmSotdS1OXIMvWxfm4RSBJVNastfGNQ+3IS1Vc2hTMkE2p7ExD6eQV6WlaN4RXsN/Z5WWhUL0WeKYh3/8cf298qy0VM2TgXwpLU2P6/4+erT4N11fh+F5sj46TZ+WJqRlkkrLZcvU51BwQVqamIfrvmevtATgSUuPEHFIy7QcycYhLW2Ulrrm4TJyIk9KS5UaKk/m4aaBeERKSxMfqHlTWrLHbEhLmXm46P3pKC1d7MKriCAT83DTQDwUKPPwESMayzy8WpW7r3BJWqrKIGulZXieyDzcVmlJTUbjmofH8WmZhHm4rdIyDlz6tAT03y9gprS0zY8JRIs5fryTqXNNfFryG0Q25uF82WZpHi6D6PlYmJiHi8g0mdKSTSuuebhNn6pDWrpSWpoqyEUmoy6jh4ue30RpSYkhdDby+Lk2RVraqO55gsaUtDQRV9i0TR1SlH/uPPm0tDEPp9wQ8ZD5JtZdV4d9bVJKy0YlLXkiH8jePJwKxON9WhrBk5YeAZImLbNWWiZpHs525q6UlrpllWelpe4uZJI+LU0mNln7tJSRP2koLYF8+rRUKS35fkEUiEfWd4T5Zs3Di0U1+SF73mZQWoo2FlQkdtpKS1H+ROSMrtKyszO+0lKl7MpSaSlSXOdBaenNw6Ng23apJG9PKtKBTZ8fGyhST+U+yFRpmRVpqaO0NDEPFwWI0SUt86i0lM0PKIgW3TIf2SKkobQU5UmltFSpa0Xza/Z3fq7NXh/HPJwnLU3Nw9NWWlLp83U5C/NwEUzJTNV1QBAQa+RI8e+6pGW4Tk1KaakrpMmbeThFWpquW5P2aWmitExyztFA8KSlR4A4Pi3TIi15RZUOXJuHq5SW1OT8zTeBn/wEePXVbJWWpqRlXJ+Wrs3DbZSWJhObUkkcgU8FXaVlmIclS4BLLgEee6z2m4y0FNVTdqDkd/1tSMu8mIez+U1DaVmpBG17wYLaMd40OMR99wGXXhosFHTUWB98AFx4ofg8E8jeg2jXVkVa/vvfQSTU1avtzMOpd5O10jL87lppaROIR2UenmX0cFF5pk1ayvo+/rMOLroIePhhcXosurvlBCV1LEnVgw5pWSzak5Y8MRnHp+ULLwDXX19/P37DV7WZyyNJpaWKtKTGo0WLgvH6iSei+WPbrW4gHhlpaaq0zLN5uC1p6VJpSZGWousffxy47jr6N54EtDUPp+pNiDjm4WkoLRcsCOYxzzxjmrvGMQ8XQVSWsjIuFOTtefhwuUjClLQU1eubbgKuvlovrTSVli++6G5eDARl3dkJ/OpXwD/+kb7SkvWh6QPxJAZL7+8eTQdvHl4Pm0A81OR8330D4vKGG/JFWvIL+6yUlhRckZZ5UFpS5uEnnBAMrEAwkHV0xDcPHzKkNnnl26VO9HAgPaUl+37TCsQjW+xUq8D770fvw6vsQpx4YvD/xReByy4Tpxle++UvA2+9JT7PBDZKy/A8irR8801g1qzg+6JFwDHHRM/JG2mpu3hQ3V9XaenCpyVFAuler0KezMPj5INCHNLy4ouDv+XLg34RkI9Z3d317zZLpaVqIy+u0lJGWlL9p6yOHnss8IlPRI/lWWlpYx5+9NHAs88Gn9lxIa7Sku+v86C0NFFmAWKSwkZk4Fppuf760fq9dq04T3/5izxfFGlpYh4O1PsfZNMM650r83DXSstDD63fCNKFjtJygw2i3/NEWtqYhwPy9jxsmBvSMhzfROVlokJN06fll76kny8dlMvB5vt3vxt8nzQp+ju/gSyCiLSUzYkAPZ+WPMplbx5uCK+09AhgS1ryk1wRRL5qTJAHn5ampGVXV0AMAAHJ4Zq0zMo8XGdAVT2DS5+WIjM23SA4YRppkZYhYQkA770X/JeRPzqk5eDB0etMlJYnnRT8T4u0XLSo9nnddet/50nLNJSWvL8ZkdIyxB/+oKe0/NvfxOeYQqW0lPkGpMzVZs+ufb/wQvHiwoV5+MCB9eeZwlRpKWsDPKg+x4S0/N73gv9Tp9Z+S9qnZVylpahdpa20pBDHPDzEq6/qpSHzBcuiGczD+TlbHJ+WIR54IPqdL8+8kJY6SkuKNAoJSwD48MNaGjY+Ldlnj6u0tPVpec454t+zNg93pbQcNw445ZSgjEJih513mEBHaSmaX7PgBQLU2GAzFixdWp9f10pLW8ISEI/Po0YFvsM7OgLFNgsT8/CslJaq9ZesPatIS9l65fLLAxJt5Ejg298OjrkYf9MkLV2jXK4RlkBt3R1izRp6fsyDfads/6xSWrIiJ92NBxOlZZJzjgaCJy09AiSttDTd+aOQdvRwSmmpWtzwHQtrbgqkq7Rkf6tW3ZKWLszDRYQI4C4Qj8nEplSqTW5NIXtvKuJUVg6q+sASbTxpKTONZdP78Y+Bq64KPovaly6BoLvoYgPeTJhQ/zvvB5QtmxNOiJ7L9wu2pCVV56iNC/46EURlEVdZJ0q/WqVNYkT1q1qtn4i5Mg+nSHzbtiW6r+w4ryIH7JWW7Lky8/ALLwTmzweuvbb2WyNGDwfSD8RDIY7SMgRbNqakpanSctYsYPp0s/xRoMZqwJ15OE+K6vi0NO2z8kpa8s+uax5OpQNE220j+bQ8//ygr6LgSmnZ0mLeN7lSWv7wh8AbbwTm4YUCsOGGwfF588yJYUBMWrJ50VEThmUV1hs2TZekpWjjQxc6yksTiEjR0aOBd98N1klbbhk9J4tAPCLozjtMfh82TO6OSrau3m67oMzmzQPWWSc4FmdeGYKa7+quSdMiLW+4ATj77Prjqna9ejU9P+Yh6p9VG0RsHdQlLctlT1oawpOWHgF0FFYh2IFWl7QUTcRN0IhKS1bpwZ9LwaXSkn9PKjWSa5+WcZSWSQTi0VFa2pIHpkpLFrJ3buJDTaa0lEUP32CDWrnpKNlU714nryxpudFG9b/LlJb8+bzSUhSIR2UeTj0XtfPMXyeCqP7b1jFArbRMi7RUkdiU0tEFaamrtAzPM1FaujAPHzu2vs9JUmkZ1zycendZBOKh4IK0ZCHrt0xJS+q3YcOA9dazyxsLEWmUlNIyjk9LEVRmz65JywED9M4TkbIsVAtO1ledqXk4Pw+OGz2cJy3HjVNfE+Zz7Fj6d1PCKw2lpe44HmK99aJznnDO0Nmpb3YryxdLWobPqEP0iVwxAdmah/Pg6+HChfZpUemxSuVBg2jyzsQ8PGmizMY8nPdpOXp09Pc45uHFYqBQZa1X+ovSctQoutxckZbsOxWtoSiI+nwZKhWz8vIm4p609OiFidKSX0w0gtLSFWmpCsSjIi1VZUUt9nXOp8DmhSJlklZa6u5CJhmIx9SnpS10lZYy0tJGacnC1jxc5peJOq7Ki07dCKN0DxigZx7Olg0/IXBlHu6atBSVg82ihErThdKSn4i5Ng9n6/ugQfXnmcJUaSkyg01CaUndR9enZRylpSvlboi8+LR0YR7OImmlpYpI1IWINDJRWsrmGbKxoacn+puOT0sKaZOWuq4nbM3DebCkSwhd8/AklZaU1QKP/hA9nO9PQ6WlLURKSzZvOqRlWFZUubgMxGP6Dnlw1xbefdc+rTA/VPqyZ20G83D2uokTo7/FIS2pNuBCadkIpGVbG/38qjFl1ap4pKWKiExYaQkgOQuEBoInLT0CNAJpmXb0cBeBeHgfGrqkpW5Hpqv0ohZCPGnJd7RJm4fHVVqakpY6Sktb6CotZebhMsWaDWmpax4ui4BJHY9LWlarNaXlhhvSbZpfSFMO60PoBuKxMQ+Pq7QUkRu2yIvSUkViU6RhS0t8v5a6SkuqH3WhtKQmrny94vsclXl4o0UPF7X/PCot0zQPT5O0VN1L9qy82tCFT0seaZuH6/YrfNnamIez46eOeXiS0cP5OsAHM6GQ90A8Kp+WOmny58QlLfl8UfkRiQJY8ObhLMJjeVRaspYxNhC1f9m7zFMgHlvSki1Hl6QlVTb9RWnZ1kY/f7ksrzOrV9e3Ewoin5aqTRh+fNaBLn/Cnt/P4UlLjwBxSEtd1V3cBpcHpaWMdOI/28CUtNRVWlLlzxMLaSstZWXvKhBPIygtw7I0XSTzMDEPNyUtTeq46vePPqr54txoI7rvkZmH84tKXZ+WskldUkpLyvG3K9KSIhgp0lJUv6rV+kVvkqRlqRSftIyjtEzap2WINJWWeTIPdw2X4ypgbh5O3VPWH7e0uCMtVRt5KqWlKn1RnXZFWjazeTibhkgByI7zaUYP16kTOqSlK6WljU9Lqm6YKi1dk5b8HITNAxVUh/oOyEnLsN65UFrGXW/xSsu4pKXMPFwEE5+WSRNluvMOFrwrCH5DIY9Ky0bwaRmHtIyjtKTch7FjBTuHKJX0+qly2ay8PGnpSUuPXogamGxBGn5uVvNw3UA8MqWlKVySluxvokA87PG0fVqKFGBAdj4tbSFTWvJBZXiEx1wrLXXNw12Tlqq6wU6AN9yQ7nvYyYCpebjIp6WsPot8WvIRxXmo2h81SUpKabl6da1/ohRmMhNvKn32GlvzcNekpahuifInawM6abNKy0JBHEiHhYy0FCkk8qS0bCbzcN1+S1dpKUsrT0pLGXjirhl8WrpUWuqQlhTpohuIh332uEpLvpxtVIg8+PHWNA8hbMzDReNw1ubh/PrF1jxc5tMyT+bh/DvIm3k4P2YmrbS08WkJyK00vNLSDjLzcFkZLF8emIirIJrbtrTU11d2c5cfn3Xeh1daGsOTlh4BkjYPDwmyOEg6ejifPxeBeEwRTo50O6c4gXj4+7hUWnZ3q+uFjXm4TLoPZKe0VClwQlDPFR6T+bQ0DcTD+0rJ0jycb2M8aaljHi5TWrryaenaPLxcpknLpHxasguXESNqn0V1iOpn+DTD766UlnH9WiZlHi5aLLNKS1Ggrrjm4XmMHm6jtHStwHShtGTfvwvSUjZmuVJaisZ/l0pLGWlJudcwrWP8OCfbcBTl0QQufVq6MA8XKVn5eRj/rk2fmw+Q4oK0dKm0tDEPz6vSUkVa6piHy8yi82Qezs0ZnCotVe1P5zeeQMqjeXihIF9ftbY2htIyj6SljdJSN5gUO8bz1nz8O2Q3d3mlpc774NdpOuf3c3jS0iNAGj4t4+4SJKm0XLAA2HJLYIcdgBUrgmMufFqaQjRpk52v8xu1EOLv5Yq0PO20YNH7+OPic9j86ZKWr78OTJ4M7L57fRRIHdLy5ptrn6kFnwvzcKpcVObhH38MTJuG4oMP1v+WlHk4tTANf6OgUtaxYM2RDzssMIt5+GHgppuCqJ5f+ELtXJHSMolAPGmbh6ettFy6tPZ5nXXqz7MhLb/6VWDatHozdxWJTbUHFz4tdc20wvvqmIdfcUUQDOoXv6hPl1VaisjFuObheYwebqO0dD2hdk1ampiH//WvdH2YMAGYOzdZpSVA5zUppWUSPi3zrLRMwzychcw8HNCvoxTYhfiIEfkiLW19WiZBWo4bF4/UkSktTczD+WtYxDEP5xVkcddba9YAu++OlilTMHDBgviBeER9uS1pydetpF2W6M47eIjm2UCg/PNKS3PYkpYLFuilX60GyuIttgA+/enacYq09ErL1OFJS48Aafi0zLN5+BlnAC+9BDz1FHDeecGxkLRkr6V81LlYXLHXm3RiJkpLlbrIBWm5ahXwy1+Ky4GaaFDPQJXBD34AvPEG8N//Aldeae7TkoWMtDziCPoaGWQD+3bb1T5Tz/XjH4sJ3jA9nXrFqthUahoRkaIzOVPlJfz9jjuAv/wFeP994Mgjg78lS6JtaOxYuu8xUVrKfFrqOvAXKe2SUFom5dPSRmkpUlayePzxKOHPpim6RqS0TDsQj455+De/CXz4IXD77fXp8krLYrG+vpqYhycRPTwvSkvXpKUL83DdNHjS8tBD6fNWrgwWMrqk5dZb6+WTBzVOeJ+WYqQZPVzHPFyUHkUmsWVl+twHHlj7fNppjW8e7oq0pHzPjR5tlhcWOkrLuKRlHPNwHqbvkMcvfwn8978ovPEGtv3Vr+IH4hH1w7bm4TaEeBzYWBdQlmzHH1/7vuuuwNCh4usp0UyI/uzTsrVVbB7uirT88peBV16JHqfMw2VKS+/TMhHEsFPzaCro+rTkTXRNlJZxScsko4c//3zt2FNPBf/DZ29pqXVIlI8710pLVzsvKqWlirS08WnZ2VkrgxEjApXWHXdE0+QHQV2lJYtXXtFTWooWdjLS8sorgSFDgN/9Tp4HFuGzsHk6/nhgp52iZCL1XC+8oE6XfXejRwOLFtWfyw6gfD3Kwjz8uedqx0STXhE5wqt/2IWfSfTwLM3DKxU6WqEr83CZ0tKVebgIKhI7KdJSV/FAtUdVIB4KXV2198WOJSK/qUBzRA9vRqWl7lipwhtv0Oe3tNSX21/+Amy6qTy9a68F7roLuP762rE0lZZJ+LTsj9HDs1BaHnVUQKR3dwNnnRUQlyr0x0A8gPq9qvLlwjw8hGn08EmTgP32A666Sj+/cQiODz/s+7guuzayhWiz1TYQj8hVS1IQlaWKtOSf9bLLgnxPmBBYjMmul0W6bhSl5aRJwJtvxs8Xi9bW5JWWTz5Zf9xUaakzZnqlpTG80tIjgK7Skgp40Ag+LVVKS3bSG5paUBNTCi4Xa7rKVfZ8EXR8WrpWWrJ1Ybfd6tVLuiYdKtKyp4cmA1woLUeOBH77W+C735XngQdbnhtsAFxzDXDyyWrzcJk/HkqNyi5uWfCkZZgXPoCIDWlpQiCEacyfLz8PEE9AkgjEk4R5OFsWRxwRvG8233lQWrLm+iwo0pLaaaegqg9UYKqslZY8Ea4DXmkJ1C8q+frLjlN5jx5OlYNN9PAkJtMiNa/uwh3QJ4RM80+VAUUkTp5Mm5mz2GQT4LrrgD33rB1TkZZxlJYq0pIiFZpJaZmUebiojNh7UH2uLrFOoa0NuPRS4Oc/F5tN8tAhLUVzM8o3ZBpKS91xPITMZ6QKl11Wf0ymtLQxD5fNeah8jhgB/PrX8n6Zv3fSJtMmEG22ujIPTxq6m6UsqPXViBHB2uL73w+OFQriflxGWjaKT8ubb47vT5aH6N27Ii1FG8GmPi11lZaetDSCJy09AuiSltTA3Mg+LcM8sWo4nrTUmcQCbiYJpjsvuubhafm0VC0I+Ak8n88QOqSljtJS9O50fFqakgHsJEWkDDQlLSmlpWjQFpGWvFmDjLTUmZzZkJYi0yyRqUfagXh4p9shTJSWvGKuUsm3T0uqTw79+aogIpT437NWWorIGROlJU9Q6CjSwzqatE/LJJSWNj4tXass+TTZMjRRKiehtBSdL1I/quYslJpRNU7EUVry434SPi1V88Y8Ky11NqnDNGzMw/lnZ+c6pu1I5aqCgo55uKj8qbLJg3k4fx/V3FMGihjkSUDqvZuQlqbm4eE9dPs+2TvMAqL5YzObh+v0NYBYWMHO53g0itKytdW9Ilak4FZt4L7/vl761SqdTkkooJ4AALd6SURBVFLRw715uBE8aekRIA3SMkulpco8nCItw99UnS5FLNnCpVycnyikobRUkZYUQabr05L/nSItediYh4ewIS3DPLFpsZMSla8yHlTdEimzeFKGzYsuaenCPDz8/b33asc22IA+V0RamgTikfm0NDEPt1Fa8qQln488KC1F7YzayLAhLan6kBRpaaq0ZNsbH4xKBzpKS1n9TSN6eNwAEzxslJZJkJY2C10euv2W6dyESksUPVz1fqiN1SR9WvL9fxI+LXnkhbSUjX0hVOO+qXm4yqdl+K5t5seUytv0Gh6yuTrVf+UhEA87f+fPlx2jQPV9/Fw5CfPwsGxFLkRE11FwIRJxiSSUlnk3D1eJQkKISMvly8VpJ6W0lM3l8kRaJm0eLtrMkpGWaSgtk5hnNRg8aekRQKVElH3XaUhZk5Ym5uGh38pmV1om4dPShLQ0DcTD/55UIJ4QcfwxsWmx9cfUSXUc0pLNC09aivwK6ZBCqvZOKS3HjqXPFZGWMnN2E6Wlri8sV6SljtIyzz4t805a6iotw/uKFGVpKS1Z0pO6Fsg2erioLeeZtExDaTlggH7eQtgqLak5iso83KXSshlIS9X7YtPVIRJkMDUP1yUtbdpQEkpLGeFFtT2RpUiaSkt+XIljHi5SmYtISxvzcFulpQlpmVfzcNH8jEeelJa68w7+tzhKSxnikPKm0HXtFgYOYvsDkfunOLAlLUVKaeo8kXk43/95n5apw5OWHgH6q3m4TGlJ7aZTsCEtRQNVkkpL6l1maR4uU1q6Mg+PQ1qa1jVb83BVmkD0XYpIDlvzcOqd8FCRVCwo0lJUlyg/XLwPzp6eaB1JIhCPC/NwSvGZldJSxzycih6uS1rK8sHeMy2lJWX6zp8vih4uA6W01NncMDEPj6u07G/m4SZlZevTUrTJIjo/zBc1rqjej655eFo+LamFdt5JS5dKS5M0dDbFZP6Zgdp7tZkfJ6G0lJkWU9e6DMRDjUn8fXVIS9fm4YB6XmFCWspIVZEaX/QbhWYwD1cF4mkE8/A4SksZqLJxYR5OgdrcppAH83DdOjFkiPg3E/NwHz08dXjS0iOAqIFR0cJZ6JJsLgLx2AxUuubhpkrLUaNqn12TliYLQF2TNxulZdLm4XF9Wob3Ys1ys1Ra2pqHy0ARTiKSg1eSZWUeXi5Ho8jL0qWUlvzzmSotRYF4kjAPl5HJIqVlGj4t+7vSMvweN3p4uVybjIoWjiqfljp9YlakJVUOeSEts1Rayp4foMsgafNwvh6p8igC39fp+LSMuyDmyysr0lJH/aR6VtbHMttudZSW1HPnUWlJ1W/e/UmIPPi0TENpqZpXuDIPb3alpe6mQaObh/Pzq0ZWWur0x2G/mDRpKeIBTKxOhg4V/yaaU6nMw219WnqlpRE8aekRQNbAZAtlE6Vlns3DKchIy4kT688z6VBECy/TTozK/5o1wI03Am+9FU03b6TltdcGarzrrqs/T0Vasr5A2LLUJS2piWkjm4fzAyqfl7ikpYnSslKpjxwuukZEWsrUKZQiVkdpaWMernpWG5+WcczDr78eeOmlWvos+gNpqVM/Rfdny/3hh4G//12PKAh9IYmUljLS8v33gX/8o3a8UczDKVVBCLasFy0K+vFFi/Tvqfus99wDzJ5dX09tlZY6pOXbbwfPI4vcKkorrnk4+x5V9bLRfFo++ijw17/qE3RpKS1F7VGVBmUerqO0pOZ24bG8KC1FVlHFIv2Mafu0pNJM2qcl0Fjm4U88AaxcqXduGmh08/DOTuDPfwaeeSZ6XDWmNIPS0sRKsrs7WdIynGPbmIezUCktqXRUSksb83B2HasDT1oixurJo6mgWtBTn8PvOgs/k45PBFFnVSiIyUdd0pLqOKjd9BATJgCPPx58zpt5+A9/CFx0UfSYTfTwpH1aPvigOECLiXk4e5+8KC1F5uGmpCVlHk6RlrzvGHYwNCEtRRN2E9KyXAbmzas/RkFHaclHD+fPT9I8XAWZT8ukzMN32AH48EO5eThLWor6J6pPbrbo4bwLiVKplqfPfAa44Qb9e4sWjqpAUqGvJ+raMN08mYeH6OiouUphwdajAw4Ann4amDJF/57Fot6c4T//Cf5uu81eaalyYxAi3FTdY49oADHZ+TxsSUtd83Cde+mAH/fTIC3XrAEOPRS4+mrgpJPU799UdWiitNQlTUQQmYcD9FxUNf6Hx/KitKRM2MPr8qq05EnLOObhtkpLV6SlC/Pwl1/WOy8t2Lj6yBNp+T//U9t8/OCDmqWdSfRwl6RlHpWWQGCVwpOWLvMlcgMGmJGWY8YAL75I/ybzaSlTWvLn6szLRP6ARfCkpVdaevSikZWWssm7LmlJTbxkSsskzcNt/R6G4AnLMN08KC11J44mgXhslJZJBeKhiG52QUWRAKo02f9hvvg6SfmtDMuH3+2UkZYXXlgjEg87LHoNnycRKLJORlpSCz8+vzw5yEJGWqoUGiF0N194yHxaVirA2rX114jawOmnB/9HjAAOP1x8zzVrAqKIb/ds3WJ3kvOktOQXl6aIo7SkFjpf+IL+vUWLSpnSkocoMmyeSMswPdG4ytajp58O/osWABRMn/WUU9JRWi5erEdYitKy9WlJzVGSVlrKSEtqbHC18Pzyl2v3kcF0DpS2T8uwDehs9PIbcDzimIfHVVr+9a/1v4sEBoWCmdLSxqdlHszDOzqA//u/+uOqzVAT83CRkkuUT1OlZd4gmi/I6qvKp2XcsvjVrwKBhw5Ya4m//7322cSnpUvz8Dz6tARo0tJlnQ3bSFyl5ZVXijcAZNHD+YBvog0OXdKS3dDWQRJueBoMnrT0CJA0aenCp6WItJT5dlIN9iKlpWxiyt/TNWkp6pgeeCD47ZlngKlTa8d17puFT0vZjrEKJj4t80JaUoGBAGDYsNpnSnknA0U4FYv1z9XSEj3GmmlQpKVoMrXRRoGJ5BtvADvuWJ+P8HoZyuX6wdhUaSkLxMPXIV2lpY15uAo8mSwr5xCiydIhhwTkz+uvy33uAHQ7Csucf98mpOXy5fL78mnyn9m0geyUluF9+fvzbdykzzZRWooIJddKy7jm4bLFiKjvdOGb2gR8MKOkfFry6vAQ++9ff0ykREsyejgLl0pLHZ+WrlU8WZGWOuonVXviAyKpruXHBB5xzMPjKi0/+1lg7lzgsstqx2Tm4VkpLVXjuGuflkcfDTz/PLDbbrXjIqVlHs3D84Y8mYd/+cvBGuorXwF+8APgySfNxhTed7wIum5N8q60lFlJ/va3gbVFCJ60bGtzW2dl45EJabnxxsE6Z+ed638TbQS3tETXcoBcaamTF1PS0istPWnp0Ys0lJZJmYe7UFryz8CaWlKdLhXUweT5bHxa7rRT8BxTpwKDB9ffXwZqMqgyD89SaakiLbu7k1damk4CeJ8mIeKQliLz8LikpWy3e+zYwGcrrxqkPlOgFIaia2wC8VDni0wr0zYP58uMaieiNlAqAVtsEUT+VrUTqr8Oy5yPyJ6E0lKlvE3KPNxUaclvJGi26YrJwtFEaenap2VcpaVIUQXkh7Tk3UPYKi1V5uEUabn++vULlfB8HpQCHkjGPDyu0pLNfxrm4VQeZEhSaakiTVTtiTXp01E6qnxaxjEPj6u0BALXDiNH1r6LrKJMScukfFraRg/XzUtIRGy1VdTNCvvuKAuOPJmH5w15Mg8fMiRYQ4XK4e23N7MAYcfFZlVasqIcmdJyxx2jG+w8aelCEctCpbTULYNSCRg3Dpg0qf43mXk4PxdIW2npSUtPWnr0Io5Py6zNw2WdvmrSLTIPZ4NaUBMFfqLPpqUDG/NwEQGTlNJSNilw4dNSBhVpuXq1HmkpWtglobRMgrSkCHGKtGxttSctRZMKkfJHxzycJy1F9YUyIaNISxdKy6TNw3WVljLSUnVOCNni14S05PPXbD4tVUpLAcpU/xCOCa7Nw+MoLSsVvT5VlB+Zqikp0tJ0scmTlrY+LVWqGIq0FC0+RKSlzZhHbaw2m09LHnlRWtos9EXjPGBHWiattNTJIz9+ipSWpubhaZGWOoF4TMzDqWuyjB4e3o/9zYbsygqifjiO0tJ2zIxTNwAz0rJRlZa6pGWhEB0/WNIyFCS4zJcrn5Yy5bIJaRnXp6UnLY3hSUuPAHGUljqLfRekpWh3TUdpaWoezpKWKqVlFqQl+1lXaZm2eXgc0lK1aGFJS/Y+WZqHs5N3dqHS2lpbVCVFWqqUlvyCWGfiSJkY858p6JqHh4QlZWLHL/RkC01XPi3TUlrqlLdqEk35ygyRhtJSVR/yorRU+bQU3YbqHz74oJYOC1UgHhaulZY8oS+CCWmpuoZSf5tA9qxUWbpSWtqYh5uQloCd0jJt8/AsfVqy95HBtC/mfY3J7hs+n4iEc20erktaJqW01Nlk4cf6LAPxUGVkqrSMax5OpSPaDLUxD5f5utZV+cfpA9KGaJNTVj9UPi1t+ySVCwcVklZa6rzTpJWWLBknIy15xT9PWgLpKi116gSbH+p8WfTw4cOjx2RKS528+EA8xvCkpUcAbx4ePW6jtDR5PhvSUkTA2CotG9k8XFdpKVLlJO3Tkk8r3KH7+GMzcpsiCAoFc9KSJdR0gxHYmodTSkuqTof5TUtpKXuflOpQB/wCVkdpKarb7DOo2smaNeLfeNJStKlC9cl5Jy1FdY96NoCOHq5zG9mYEkdpKVqQxlFa6ow7svGGh67SUtVHiyB7VuqecZSWJubh77xTf9yF0tImEE+S5uH8uM+WZ39QWob3tn2mOObhsujhSSgtqcWzSqUl6lPSCMQjGoddmIcnrbQ0IS3ff7/+WFhPdM3D4/QBacPGPFyGOKRlXKUlC9VGmI3SknVJIEKaSkvZHEOltAQak7T0SsvcwpOWHgEaORBPEtHDTZSWIiWTDDKflqIJvcjUtRmVliqsXl27l415OLVDlpR5OBAlLU3IMapu6ZiHs6QhP3mwIS1NzMMrlfrBmNpRNCEtZUpLvl+w8Wlpax7OPhdPWojSFO2umigtVaQlpZLVUVrqlkFW5uFpKS1lwd3ypLTUJS1F/WAc8/CsSMs0lZai+kK1YVvzcIoYTNI8nOr/2bGBGsNdR6Z1TVrq+qTjlZYUTJSWOn1BlkpLG9JSZh5OXSsaz9I0D9dRWurmRaS01CEt2TFW1t+89179MVOlZdqkJa8yMwG7/tM1D5chjnl4XKUl2/5laz5+faWrtNQp57z4tExbaSkbj3R9WqpIy0rF+7TMMTxp6RFAtaCnPoffs/ZpqeMXJY55eB59WpqahzeaT0sVdJWWonKmjidlHg7UBrsVK8wGKlvz8NWra5/D42GedEnLOObhvNJSRlpSi6okoofHMQ9nAxWw4BcyfD6odiJ6/y5JS1vzcF3kTWmpQ1oaKC1J8/AQOv1kWkpLEcGgmx+ba+KSlrJ2SI21rpSWLs3Dqfbn0qelisByqbRkCYBGVVramIeL2lwc83CV0jJtn5YUcejaPFw2nqVFWrr0ackSEfzmKZUH9hy23GTrgSVLxPkzCcSTJmmpowCUISw/XfNwGbI0D9clLW2Vluuso85DmkrLOD4tXecrS6VlDqKHFzxp6UlLj16kYR6eFGkpa8guzMPz6NPS1Dx82TLahDIOafnQQ8B22wHnnRc9LkpPlaYJ1q6tRXh3FT2cnxAmobQEopHpVbCNHk6RlqKFqal5uGrBSZGW1ODsSmnJTxBEiog45uGjRtHH2Xeuq7R0QVom5dNSFyrlbdJKy3PPDfqehx+m8xCex7tscKG0dG0eHkdp+aUvAX/8o/o8E9Iyb0pL3cUfhc5O4PDDgT32oNVNIVatqvks5fNK9Rts/xrCNnp4+Dt7n6SVliLS8plngCuvrM9b3klL0eKRxxtvAM89F3y2fSbXPi2TjB7u0jy8WKSfTzQWZam0jGMeLiIkdSw4TDZ3ecgC8VDii2q1sUhLagO+Ec3D2fav2gizUVrqlHNefFrmyTy8p8cdaSmqI7qkpa5rDO/T0hgGW9YeTY2kA/HEWSCHSJO0ZAOmUAsRdlFr49NSpNxKSmlJQaW0DI9R77dcBnbfPUjjmWeAk04Cxo5159PSBGyauqSljnm46aRIl7T86CP9NKmJHuXTkjcPV5GWOhNHW/NwKhCPKWkZLpDCOsoHvGHBEwsiFWkc83BRe+VJSx2l5eTJQZvhwV6bltLSZqHMpgmYmYfrKqJk9124EPjhD4Pvu+4q9tdL3T+O0jKcoMYxD9eNHj56NLBokTqjurBZ3OaFtATslZa//S2tauIxfz593FRpOXp07fuQIbXjMlBqxrSVliNG1J6JfbZGUVqGfa/JXEj0TNttJ7+OXWjqzBlExFeIOD4tdUhL1TX8MX68DSGKBCzahLPxaWk69w2/8+SBCTHV3i5+BlMLjnK51j/J3ueee4rz16ykJbVOyot5uEk+klZa8sQYhTSVljIXNPw41NmZDmkpMg83JS2pvJkoLeOah5vOvz1p6ZWWHr1IWmlJXWuKjg570lJlHs4vwGQEFBAdaESkgAxbbw18+9sBgTF+fDQtVfRE/rutglWXtKTAT2wXL64dl13revED2CktdUhLU+iYhwN2pKXKpyWvtFy1qvbZ1qelrXl4pWJmHs6/s1A1Ed5fZR4u2szg045jHj5kCF1nZIF4WHJg2DBg5kzge98Ddt6ZvkcjKS3Z66h3S/Wrra1BPf3tb4F117W7b7kc3VBi70XljzcP11Va8ovBXXYB7rwz+BzHPJw6l1JazpkD7LOPVl614NI8PCzbrEhLk35ah7AEov0lC5G6TLRpsN56wOWXA3vvDdx/fy0NGWzMw+MqLfn+/7LLxPfh8+YCquczqVvXXRf8N82jqB7NmgV8/evi60zNw0UmxiFCwsxmA4mvA7bm4XwwJhOlpYy0jLPxy0I2jpdK9WOzCakjU+mKCGfRBiNbbqJ5+Y47Ar/5Tf3x8BlleWffU7Vq16/bIk/m4TZ1K0TefVrmIXo4HyFdprRkVc5r1qTj01JkHu7Cp6WrQDxJrHU9aelJS49eyBq7irDQnWDaqnpCtLeLOxkRbJWWoglKiLjm4aUS8NOfAq++Cjz4YO24SPFF7S6z1+hi++1rn3VIS1G58XkMiYtGIS2pwYbPrykZrBM9HDAjLW3Nw12QlrZmT5TS0sSnJU9a6piH6/gnU/Vxsv5p4EDatJkPxCNSWm6yCXD77cCFF+qRxC6VlqL+KUnSkiK2wvf9pS9F+zwVrriipnQtl+vrvsw8nW+TmhPouujhDz0UmBgDem4kRD7hRCoPPl9bbw3cdVd8c/oQeTIPl40BrpWWuhC1J1OlJQB885vA3XfXFHs2pGWa0cNLJeDII4Eddqg/N+9Ky9/9DjjmmOCzaR5lG11XXAFcdRX9u6l5ODsuUG0mHCtN++K2NnfRw3lyTkRaUteKNtBsFu46fQo1/vPzOZMNeBlpKWqTcczDH3wQ2HRT8b0oRatIaZk30vLWW8W/UUpLW0LLhLRUtRHTfLDzHZV5uI3SUmd8S1ppqUtaFotRf7KrVmXr05ICv6GhIi0rlfQC8ZjCk5aetPToha3SEtD3y2Bq8sMjjtLSlLTkJ6b89ZR5uMyElYeo4xQpvvhFsK3SkleIxlFastAlLZMwD88LaSlTWrIRAeOah1OkZRzzcB3S0tQ8PI5Py5CoCcvQNBAPC12lZbUq759EpCW/kBEpLXXqvUulJaX+oHzaZkFaAmb9ANv/Vir171H0DNSmjK3SkoWO0pIitUSkpcgXoihtG5gQXHnzaQm4WejKYEpainxaUlC9Q4oYTNunJftflTcXcEVaivwP6kCXTOZhah7O9l/Uc4V9uemmPjWHcUFaiszDRaRlGkpLFhQJpaO0FNUPmcsSkdJSZh4eQjQuidotm46IDM+StNSJai3Lj2guawODoHp1eUozEI+N0lKHtExaacnWUROl5erV2ZqHU/mUbWiIRFAiNTpPWra2iutTEqRlXOFXE8CTlh4B4pCWSSkt+Y5DRFrqKC1NzcN5pSVfPpTSki0ble82dmDSIS15iHZ3VeDNS9ImLZNQWvJqNxZJkJaiSWdaPi11lJYuSEtb8/C4Pi1tlJZxSUtbpaXMpyVLtupM3EQmZxTyFD3chrQ0UcuxCklqYip6Bv6dmkQPlwXi4dPQJbVEE1lKaSm6ly3ypLSUPZOoXiSttKTeF2CntOQR1zxcRIS5VFqy/1kkRVqKCCDqdxlkRI8KqrYl+t1UaakiLW2VljqkZaOZh+u8dx2lpQlpKevrRW1SRJbrmIeL+gkZAU+ZhwPpkpY6/Y2sb87KPJwvo7hKS1vSslGVliqfluy8eNWqWhtOOxCPS9JSV2nZ2ioeN73SMhF40tIjQBpKS1PSku/MRebhWSgt2QGcIgVU0SzjKi1F5uEqdWBSpCXllykt0vL992ufXfq0NCUtdc3DP/yQvp4CZR5OBeIJJ3Fh+SYVPVxn0KR8WlLXmZCWtj4t2eNJmIfLooeLSGxRPlwqLZMmLdmySpq05JWW/HsSPUO5bB09vCLLn070cIoEkyktRe/bVX/p0qdlMyotRaSl6J2ZKC1VixdqjsLWW6pM4iotqU2rrJSW1POlQVraKi1NfVompbSk5jCU0tLUPJa3bAghCsQjix5uunBP0jxc9D5tfFomET1ctmlJtdG0lZY67UvWJ7k0DzdxPZCk0tLEPFyUX77MdN4plZZLkoxfJ+oqLZcvr33OgrSk+lCXpCVl4RaXBDeBJy09aenRC12fllSnkBZpGUdpaUpa8kpLGWlJmYfHIS2pctI1D1dN9k3Nw0XlxueRmnjngbQUTaJ0lJYi6Cgtkw7Ew+chvF94nFU/hMdEajUdwoSacIpAmYdTUPm0ZM3DZUpL0WKKP1dW92zNw2WbG6pgXjzYc1SkXp6ih6ettOTzLOr/qf5Ns40XZPVcxyRURFpSkCktXfWXeTIPlz1THs3Ddc9PyjxcFHE+TfNw16oRV6RlM5mHu1Ba8vnRVVry5uF5C8TDgiIt45iHy8YikdJS55z+SFrK8uMyeriJeTjfT2YViMel0jJuBHQVdElLXmnJBklMwqelbDwS9Vu81aNKHCCLHs5DprS0DZArgyctPWnpoYGslJZ8J9HeTncQOkpL0YBBLa7579RkTUVaqgYeU6UlD5HSUvUuklJahov0LHxaskhDaSkyJ8rSPDz8Tj2vS/NwXdJStJBhEbYhU6Ulf77IBw1/rmzylITSUra4peBSaUn1D41qHs6SeiZKyxjm4UVZH6wTiMfEPDxvSktd0lJ33OcRR2kpIk7iIm/m4SrSMo7SMg/m4XlQWubNPDwppaWpebhpIB7RWG+ihgth69Myjnm4DDxJSN3f1DxcBFldDr9nGT08LmkZlk1/Mg/XmWe7Mg93rbQM72GitKRIy6yVljaBeHTriExpmQTB6ElLT1p61FAVdXp5IS3jBOIRwVZpyQfiqVSA++6rT1eEuKQle83jj9c+m5KWMpNm0TEA+Nvfot91ScsklJYs+DpsEuBCd3DNI2kZPqdL0pJS6+kMmg8+CLzyivo8W5+WfH51Scu45uGUn1qZT0tT83CZ0oKHSmnJppdl9HD2N9tAPOzil5qYykhLS/NwKWkZR2lp6tPSVX9ps6DJQmkp6q+feKJ2bRJjiGkgnueeqz9mS1qG17HX82Q7lWazBOLpT+bhFFwqLW1JS15pKQrEQ9VxmXl4VkpLk7msrG/UIYfYcxYtAu66K3gO0/ep49My70pLlU/Lzk7gjjtqx2wJrTikZVyVool5eCMrLcN7yHxa8qTls8/WPufBpyW1VlKRlnffDSxdWn9c1KekKc7xpCUS8Gju0bAoFOjJSlaBeHR9WspgS1qqlJZs3spl4Fe/Ar72tfp0Q7S1iZVXvHmJKWn5mc8EE4H99lOTlq6ih/N5zKvSUrSwo+qxS6WlzDw8KZ+WQHKkpYl5+NVXq89h82UaPdxkwubSPJyqS3lVWgLB87ITzjxFD89CaWlgHi7ddOLTEJkq8ZDV0aRJSxtTpaRISxlJoFqEJ0Vamvq0NIHq+vB3kZlpEkrLZvFpqdu/U7AlLWX9umhsktWBJJWWlF9JHdKS6lMbyaeliDzWSY9PW5UO+33nnYMNkLPOUruIkqXbqKSlyjz8xBOB6683S5OCiYo3y+jhjaq0ZDfrTMzDn3669jlJ0pICtaFNmW+rSMt//EP/3p2d4v7Um4cnAq+09OiDUGmpci4dV2m54YbAyJH1x3WVlpddVvu88cbR33RJS1X0cJXSkiUsAWD6dGDMmODzRRfVLzBkSksd01r+XR1xRPDfVGnJnk8tgnQnBjLS8o9/DP63tweTFte44ILaZx3z8PHjgSlT6o/rkpY20cMHD659XrGCvp6CyKdlns3DdaHyaSkyDzdRWuoqcXiCi19wDBpEl21SPi1dKC1Zog9IV2lJ9atsuzH1aSlTWorGFV5paaDOeHv//VEN3/ctt0R/5PM+ZEh9Ar/7Xf0xkT8mmdLSxYR/882BddbRP19kHs6aiwF2pOXWWwO/+Y34dx3SMgnzcFOlJY+hQ4FDDqF/0x1D2fPYeku5pQjrzHbb6aXNolmVlqZtJQnzcBFZtuOO4vvkQWnJm4eLlJYmlk6N4NOypQX4859rc/ULL1SnIzMPD/uRn/wknnm4iLS0MQ/femuzfBAoX365XvtSkZYsYQnY9ysmPi2zMg9vdJ+WOqQlr7RksdNOwf8kSEsqP9Rmiw1pKUJ43fnnB/832ACYPFk8biZBWtr6oG8ieNLSo4aszMMHDwaeego477zocd1APNtsE+zwPPwwsNtu0d/4hRYPHfNwaoeZ8mnJ5/Xxx4HZs4FvfcuMtBSpPlhQxA1gTlqy9xo0qP58vkP+4Q/pdGWk5RFHAPfcAzz/PLDuuvL86WCXXYCHHgLmzQP+9S/ge9+r/aYyD//Od4BHH6VNfZMkLdkFxqpV9PUUkjIPt40e7nLQ1FVa8pMRW6WliXn4xIn1eaImk2x7y6PSEkiGtGTLitpkSVNpKerzKHJGcwK9Zp110PPUU0G/xZNRfBobblifwIwZgZsEFuH7oAJJJaW0/N//Be6/3+5akVmVLWn5z38GplfbbAM8+WTQD4cLG9E9eeTFPJzF978PPPNMdGOKhQ1pydbbESPE+brzTuBHP9JLP4T3aal3vivz8EIB+MtfxPexVVomaR5uEohHBBM1XAhXPi11rHymTw/cPEyYUJurf/vb6nR0lKsAXYYiKx0+XdE745WWKrX1yScD554rP0eCnn//Gw+dey4qX/mK3ruU5UfHukkXrs3DbUlLlXm4jdKS6g9/+cvo96SVlro+LXmlZYjddw/WWmFarsBvxLNwpbQUIXyOM88M1p2PPiquh44tCstf+QqeOflkVLfZxmm6jQhPWnr0Qbgv4Iq0FE1Ei8Vg4TdrVvQ4FYhHtEu87baBaYaOvzEWuj4tKTKMVf/wKBSCnZgDDgjOdU1aisg5U/Nw9l7U4MOX54QJNPEoIy0LBWCvvYJdKRcD6y67BH/jxwd1hq0nqgnlZz4DrL8+PTHQHWhEE09Z8AR2Uq3zfkNQ5uEuSEudaLy25uG60PVpySs/TJSWtubhkybV54mafMk2N0yVliaqIROfljLSMqvo4SaTOpXSUtSeKHJGd5JaKgGbbRb0WzJlDQBstFH99YVCsIG23nq1YyLSUqa0jEsWHXxwNA86SEpp+alP1caO7bcHpk2rf+5GVFrOnFm/ycEirtKSIi3Dc0eNCsY0EzST0rJRzMOHDQP22INOz1ZpqWsebkNamigtRUhTacnPr3WIhE9+Ethii+AzO1dXpaNLWlIbizKTcdn4H97TtL886CBzM3UG1UmT8MF22+m/S53o4SziKC11r80qerhLn5YHHRT9nlefliG+8IXac7gkLVkhAw8bpaXpPDRMc9YsYOxYcRqOlZaVL38Z78ycGay/+zk8aelRg63SMq5PS2oXEdAnLWU7J7pKS1X0cGoHm/W5x4MvS90IZrZKy3Dgi6O01CEt29vpQSjNQDyy3VwVwRBeq0Nauowezt4vCaVlEubhlNKSvS6uPyXbQDxpRA/XVVpm5dPSFWmZpk9L9plE/tEoqJSWorKgzMM1J6kVWd74ejBunPhcto1kobTk1ZE6UJGW1Lu1hWgck52fhNJS9Cw6JKkt+SU7j623w4fXn2u78AIaw6elbt0y2eiRXWvyu415OCCu23lQWupGDzfZMLAhLU39uQP0xoLsPcjO4RFHaTlvXv0xW9Iy/I0fe1T9pYkZNQVq/FLdTwTXpGXezcP5fjYOaanzDK6Vlro+LVtb6/PMjllpmocnqbQ0maOVSm4FHknMeRoUviQ8asjKp6Vop59X5oiUMiZKOx62SkvW1FCktGSRtHl4UqQlf5+ODnqiFBJxKtLSxcCaNWmpYx7OD+KFQm3CakIgUGRh3EA8QH39psCeT+Ujxg5+JF/8/UM3BaJAPDoLkhAm5uE2SktZ9HARaSnKhyx6KA8T8/Aso4eH5dPaqnbdIAKvtBQFAaPyYKm0rMrOozZyRKDUpWkqLW1IyxCuzcMpUMow1flJKC1F0FFaxv09BKVsB+RKS8B8UZg3pSU1nqZhHq4qN9HvMtJSpoASEUxhX55EIB5dQk/HPNxkowlINxAPD51jOnnTIYdE9eTtt+uPyeZMsvE/zIfpJg8rrrCBKWkpy49L83ATq4ksA/HouGGyIS2TVlqy/YbKpyVQ71qMDTyahNIyS/NwHrr9Txx40rIPviQ8+pC4eXgcpaWI4ODPM91NDTtkfvBRKS1bWuRSdf78pM3DdUnLuObhHR1eaWnj0xKQkxsihHlQBeIxJS1lCy/qOGUe7oq0TFJpqbuo5U2lbUhLnnwyVVqySENpmWb0cKpempCWtkpLS5+WVdl5uoQKoLfoS0NpaQKR0jIJ0tLU3LFcTncCr1N+SSstRT4tqc86sPFp6ZoobmSflrJ+XbahJpo3JBmIpz+Yh+tuYuq8K9U1uvcH4pGWonemE2iShcGYR8KEtFTVj6zMw5NUWsraLE/2uVRaUv1xVj4tgfq1Y1KkJTsP5EFttlCK3LSUlqYbxbK27EnLPviS8Kghq0A8aZCWMvNwaqJkorTUMQ9PWmkZloEq8njcQDxxzcPTVlqKyGNKgRDXPJytB9Sz25B8SZiHA+akZZJKSx3Skn0XeTIP5wPx6CgtdRCHtAzrJz/By1ppyUN3MssuhqjddBPzcBdKywULap9V/iJ1zMNlSsu4O/aq8Y9CktHDeZgqh1auzJ/SMgvSspmUlq58WsoWpxRs31tezMN1lZY6atAkzMNN1HAhXCktXZGWOkpLUTrsOBEirnm4KWmZpnm4qq/Mi3l4XJVi2krLYpG23OLhso828WkJpEdamiotqQ1hG9KyUBDXbdG4aUpayta1nrTsgy8JjxqyIi11zMPDzko1GbEhLakJso5PS1fm4ey5SSst4/q0FJmH55W0FCktAbGSSAUdn5bUQG2jtEwiejifV9GASJmHs++XisBuAt3o4YDanN0Facneg3d4rRuIR1TGOubhLFR1UbY5kUeflnECX/FqEV3z8BjRw6Wk5fz5tc8yf5aAnnl43nxahkiDtDRVWso2KJKADlHjirRk76MTPZz6rAORT0uqf5PNu+IgDaWljgrN5vekzMOTUFryxKHOWN9oSktd0lKHYOahk7ZJ+0ubtEzTPFz1vql1ki2h2iiBeGyUlhTJqpO/LHxa5o205I+7Ii1lzxBXuRvCZF3bj+FJSw81VD4tdRcvf/87fVyktGQ7b12lpc4uKHuOiLTkSRJK2SgzDzclLdldrSR9Wpqah/P3ESktV6wATj0VOPvs2rGszcOpAcsFaWlrHm6jTKSih7vwaRnWE9kOIvuuymXg3XejkWpdkZZ8neCVlkA9OchCV2kpG/h583BedezSp6UO4qgjeNLyrbeCyM0vvxw9L0708HvvBf70p+BzmkpLNs0QOubhIfmkq7SUlf/779c+m5CWNkrLuP1lnOtF/WNPD3DUUcDixfZphzAlmoD8KS2z8GkZh7RsJqVlHNLSlmy2NQ+XKS3/8Afg0EPl+eGhGz1cZ+NOR2kpmyuI0szKp6UOkeDKp6VJ22hmpaXqfYvUuzZoBPPwJJWWFFwrLdlNyjjm4XGtRfh8AfpKS+r+NmOn7DxXSkuZqMUrLfvgkAL3aHRUk1ZaiiAiLZPyaVkoRH0FUhMlfjddttCkJtgU2ceCmpSEO0WyIBui9G1Iy2o1Gsk6jk/Lp54K/mTXAukqLSkywIS0dBk9HEjWPNxWaSkbDNnfKhXg//0/4Mkna8dGjZJmXQld83Cgvj1usAHw3nvB9/Hj3SgtZRPMAQOALbesv85l9HAWLklLAPjXv+rPi6O0BALi6sgj0/VpCdTfTxaIJ+ybZcQMAanScrfdapFhP/lJeULUc6eptGTVEqbX8P0sm5eQsJZh+nTg0Ufl51AkiwppTuCzMg9nkUT0cB3SkiWpXJc5O2dKyjw8KdLStdJy2TLgi1+U54VCkkpLEcGUR6WlDrEI2JmH68xhTZ5xl12i39vba1YTY8aI04yjtLQFPy7FJS1dmocbWE1gyJDod511jgxpRw/PQmnJjnuUH3H+nnyZspv+SSgtx46t/y1JpaWs/EUkuDcPTwS+JDxqyIq0FE2adUlL2W4gb9LGn6OjtOQVOiGJaWIevv760e+iCVSlEiUSRUjCPJyaBPP5bG/XU8NQ1wLmne+Pf1x/zERpyd/PBWlpEz0ciGcergrEY+vTUvY+ePPwe+6J/j56NPCDHwCbbQaccYY4HRFMzMN5cnD2bGCbbYDjjwf23FP8HDoLNqCe4CoUgH/+E5g8OaiDLS3A5z9fr4bhF7Bs3WA3H+KSlr/4RZAXHVCkJYW4pGUIqs/hTYizVlqaKsZk5110EbDjjoF69bTT5OnwynYgXaVlCJfm4TrYc0/gJz9Rn0ctKFT3cbE423RT4KCD1OflgbSklJbsfCIppaXN4k4Xy5fX0qUU+y6UlqrxNgnzcBmBJpo36VjWULAJxKNLWlLkIbV5LwPVlk85BdhnH/E1cZSWf/97MEZecok4Pyx06rQOIarT/kql4LlZSyQAeOABYMoU4Gtfi26K5sE83LT/tyEtVWUnSs+EEP/CF4AddgjmlXvsARx8sHk+WOiSlrwlSxylpa0qmMKkScD118vP4c3DRXMskdKSzW8SgXh22AH4yleiis4kfVrKnsGV0nLwYPFvnrTsgy8JDzWyUlqyHZ9rpWUIXfNwqhM2MQ/fcMPodxlpGScQjy1pOXCg3u60SGlJIa7S8tlnA7UOj7TMw/MQiCcp83AbpSX1+wUXBGbHM2aI0xHBxDycXyhuvXVQP665Rm72a2MeHt73U58CXn0VOOus2vFbbgF+8xs6X4VCtH6xEz3eHYQKfP055pggL0OHqq/VJS3jRA8PUa3mW2kZvtPwXhqLk6oqXxtuCDz+eEBqqxaN7O9hXtJUWtpARLLoLuxuuQW4777ogkIEarxOmrScOhV45RXge99Tn0stGHfeuf4cVRo6MCEtx4+vfbZRWlI+LdMkLT/+OPg/bBj9PtMgLW3fm2vzcFvYBOIR1RXePJzq010oLQcPBu66C7j9dvqaOKTlwQcHY6RoA1VnbcDDldLyv/8Nnpsnd6ZNA+bOBf7nf+T31SW8eMQxD5cp7SmoNngoP9y2fb0JaTlhAvDEE4EY5IEH1Mp1FUzMw135tNSB7nmvvQYcfbT8HJ60FM2xKKUlP39KQmkJAL/+NfDii7XvlC/evCotqXfFK4JV9+in8CXh0QehebjKp6XuBFME0aSZj/zKnssel5mA6pCWOtHDqYmfiXm4a9LSVmkp8mlJmUyw+Qoh8mlJIa7Ssr2d7tzjmIez35NUWlLP7iIQT2iylzZpqTLtsZkYx1FayvLCwsY8XPUssnzpkJY64M8PJzSyuh8iPEd1TxdKy3LZnrQ08fVnq7TkzcNtF6q2iKu0dJUXl9HDVTAxxaf6Z1v1jS7C59CtC/z9eGVg2qTliBHRBU6jKS2r1ShpSdVNF+bhqk1C2/fm2jzcFjbm4aK2wystkyItw/uI8uHKpyWFLM3DTduPSMDRyEpLUZ2SQUZaihRupvcQXSdC0tHDbeqpyXk6vml5n5aiNWl4DjsmqpSjccCnJRI2iM7hv2eltKTEB15pqQVfEh41iBqGSmkZF2EHyjd+thMSqbJUu1Jsx8sfC4+bRg/nVTsulZblcrKBeGRKSwrUQiCOebjJgrOjIx5pqfIFk6RPS2qQc+HTUkQopGEezkPH7EwGEWkZlpNMaSnLCwsT0jLsB1STrCxIyzDvJqSl6p24IC27u+1JyyVL9O5hq7RkyZk4RFoc5EVpmQVpabOY1yVG4pSLa9JSNaaZkPMUBg6M1g/VXEIF0WI6LdKyUomSlhSayTw8S6UlTyTpkJadnXR/oUN2yO7N3keUjs57t/UpKbPkEkEleqDS1U3H5Pzwuw1paTuepUFa2uaNJ+NDUPMjG8sWGZL2aWlTT12fx457MiFNeA77LmwtNHQgIy2p+lUoyK9xobT0pGWq8CXh0QdhE2sk0tJGaWlqHh7mM+wMqev5gWGjjaLfRaREZ6deRN+sSMu4SksTVa4L0lI2QNsuym0D8dgoLdmAUYB4AWQbPVxXaakiLV0qLan+wIXSUlYX0lRaxplE69ShNElL1pSQJ7nZvpWql6FfOxXiKC1583CdNu5SGUCRljxkSsssJ6u2i4+4SkudZ46jtoyruk1baVkqReuOai6hAkXmU+kkRVquXFnrM7IkLW3fGzvHahalJTvHlamq4iotReRbiGZVWpr2V6K8mpKWcczDbUhL2Tk25uGm97IlLU3yoWsebuvTMmmlpQ50zcPDe1JrdTYtV5CNUVTfQW0Iy9zJ6d6XBZWGqs1RpuCetNSCLwmPGkSde1akJRVh0pa0lCktdaKHUwSNidKS9UHFXsvnaeXK+rQopGUeTg0ScUhLE/+nLszDdUlLKq+uA/G4UFq6Ii3DvOoOxion6nFIS9GAzPvZCmFCWuqqQVmCTVW/ZQpQtm6wE724SssQrpWWOhskMrCkJVu/WeUqoF5crbOO+DeV0tLEPNwrLdVI0zycGq+TUC5R1+oqOkXuK3TzEnfRaWq1oQKrAJJtPJlutOjiww9rn5M0D0+KtJRtTuZNaam7CRCeC8iDbpjUA+reKqVlkqSljqBBdQ11/ySU4a5IyzTNwylVOos0fFpS8yNbcloEdv6RhNJSZyOEgkvynCctRcFhw3Nka5+0zMNFa0vZuKb73r15eG7gS8KjBluflq7uK1NaipQySSkteTKCvUYnEA9/X75DiktaiiaDJkrLrq7as+v6tOTTkIHqzKmJiwgulJYyqEhLEWx9WiZJWpqah4fvXTYYmpiHu1RaUmmmYR6eJ5+WokV7ns3D2UV0pSLffefBq8dY8JtGNoF4TNR1SSkDRKRlGkpLF9HDk1Ba2pIscUg0E9JSxzzclPwSlYtMBcdCtQGqQtZKS560pJAHpaWoXEUb4ED+lJYmAUt0SMu4SksXpKVue+Jho2Cjxhab+7siLXk0u3m4jLSkLKnyZB6ettJS5zlNSEtW8KMyD09LaWnq05LaEHZtHk6NAYWCfG5NkZaDBonPd7lp2ODwpKVHH4Td79y5tc9ZkZaihbiuT0vROSLSkh9sZEpLHfNwFeIqLcP3YkJasrtnukpLIJ5PSxOlZVsbXY66ZtaqAYl9Dupc19HDbc3D33oLWLYs+C5SQZkqLUPIyoj9LU2fliHSMA9n/fa4Ji1V9UEG0c62S9LSRfTwnp7aRgSvtDQhLSdMEP/GL7x0zcPXrAHefz/4bDJxdqm0zAtpaYO4pKWNwkWXGIlTLqb5E/ncDWHq01JUF3XU4gAwapTZ/Xm89lrNp2R/Ji1VfZ9NPUxTaalrHm5CVABygsKUtDT1aWmjtLQlHnTKZf588/vHCTonStNWaZm2ebhrpaXsXtT1aZOWqj5EJWQA1FHas1ZavvtubR4lSk8213M5n7LxaeliXNMVd1DfKfCk5YAB8jlqErxLg8KTlh41iDq0K68Efv3r4HOj+rQ0NQ/n05CRliKn5TLwQShMB2/+/HBBbGIezhKkol0eqoPXJQCo80xIS9EC1sQ8XAYqsi+LPATi+ec/gUmTgHfeCb6LFkBJk5ZJRA8P36NsNz1EEtHD2fplYh6uS1qyMC0f0eZF3qKHy8zDTUhL3uSVha3Sco89ap/DstB53qRIS1H0cG8eHr1W57oslZaqRabofiFEbUGnDwPERJ8uFiyojSd5IC2zMg9X3cOWdBel0yjm4TL/dSbtrhl8Wi5YoL4/nw7l6sSV0jLP5uFJRA8XQTTGpGEerqu0BOpjI1DIo9KSH/duuEF+frMrLWXlJlJey+oG79Ny4EB5XuK6cWoieNLSowZZw/zqV4P/SZCWYWPlOxe2w49rHm4aPZwFb4bAm4eLruHxgx8E/zs6gF12kedbBT59XdIyjtIyLOs45uGf+ITetSGoctQt9/BzaHrK39uWtLQ1D7dRWv7jH9HvogWQqXk4nx4FnnCRtTXRpG/SJHH67EZEqB466CA6zbCN6ppQUsdlCzoTpaXMbF1UN1Vp7rZb9Pvee9c+n3127bNLpSXg1jx8yJDaPZctU5OWJ54Y/B86tN7klYWt0pLFllsG/3We1+UkmyL+824efvrpwf80SEtTpeWnPmWWFwpTpgT/dRU4aZGWMrPx884LPg8aBOyzj/x+JsiCtPzoo9rn4cPpc3T7pThKS9VCUKf+8nVBpuZ3rUCyMQ+X1fkwPyLiUFcFzaYnWtA3ik/L004zv3/eSMtGVlqqNrSzVlryATJ56Fjb6Pq03HHH4P/kyXQ6SSktdXDuubXPP/tZfVquIBujklRayuZPovRNfFpSpGW4Bmhrk/t872dwWJs8+gWSVFryjTaN6OF8wAgKKqWl6Boe3/9+QOJstVX9ZD2u0tLGPJxVc+n4tJQRYxSo8hk+HHjySeCMM4B77lGnQQ2csnKnSMsHHgBmzwYOOSR6roq0FEFEHKkmKDZKSx7h++DzEL5XKm8y5Z2u0rJSCe4h8i1JpX3bbcCf/gS8+SadPmse/sgjwF13AYcfTqcZ3leHnGQhMw9vaaktXF2Zh4dqS74dsmny+bjqKuCzn40eGzECePxx4IUXgCOPrB13TVqa7uAOHRqN+t3ZWUtj4EBg7FjgvfcCkyIVaXnJJcAOOwCf/CRwxx3ie/Kknq7SksVvfhP813nepMyZbALx2PiitMHUqcGm2tChtcVRXnxaXnstMH06cO+9wKGHBsdMlZY/+lFQH0eOBI45hr63KH9pkZbU4i689owzgA02ALbbTkz02UDWh2dpHq6LOKSlC6Uln38TpeXAgcCKFep7iOBaaakiF2yUlqbm4TqWOGkqLbffPpjHhJsl1P35dEaMqE8nK9KSneOYwnUgHtc+Lak8pa20DNcNLS3087lUWt52G/C3v0XrIoukfFrqYJddgvx1dgIHHFCflivwabF5TFJpKZuHiTZmZNAhLa++Olgj77mn2zJscPiS8OhDVadDS5K05MEOAi5JS15pqWMeTpkh6ZJnITo6gOOPF9/DBPz5cc3D01JaAsFE8MQT7UlLWVlR5sAbbgh85Sv156ZtHm6jtOQhWgDZmofrEu/lcpCOKLgM/04mTgQOPBC4+WZx+mxeN944+GNBkYOmSkuZeXipVHvHrszDgeA9y0hLHl/+Mn18xx1rBFKIrEnLjTYCpk0Dfv/74DtbH9ragrb23nvABx9EyU2qXg4fXnv2OXPE9+QX3qZKy69+FRg9OvisM365JGh0zMNlSktXUJGfHR3AYYdFj8VVWuqSgvx3tizWXx849tjg82abmeclxN5721k3JKG0NFFjh/ceOBA44QT5fWyQV/NwXWRtHs6TlrL5Ct+eBgyIR1omFYhHBFOlJVXPk1Ba2j6f7nUHHhhcK1PKs6BUUXF9WobX2ygtbV1pNILSUqfNu1Za9vQEfVahUOu7RNerAkgC+krL0aPpdYwqfSotFUyVlkDQTkRpuYKoTymXk40eLkNSSst11gFOOin4rNMv9hM4nIl4NDyyIi11pPW6pKVoQhHHPJyfrNmah6vuwcOEFLUxD1+7tvZZRFqy93FFWpqk4UJpKYJqwheHtExKaSkyNUvDPFy2y8mnLZpUitJX/a4yw7ElLcNjrpSWAE0suiKlXJOWur7jQhSLYhcTbW3RKOCswlbV1lSKX5nSUkVassSCDkmbtnl4oSB+fldKS1U6VL3KwjycJ6hlJtMmoBR9rkhLVV50iQaZ0jIp5IG0jIMklZY69VfHYkamtIwDXaWliR87GWT9FAVZfRblSWc8cqW0NOlD2Henun+SSktZvkTpiOZmKtiQljK4DMQj2hizDYJkOj8L66mKtAzPkz1nI/i0jIOkLFf49JNUWsogUlrGJS2THvsbFL5UPMyQptKSUq65UFqy99MlLV0oLVX34DF4sH76NqQlC9EEmjLxjGMersoHjzhKy6RIyzR9WvJwrbRUkUUhTH1ayu4ZQvV+qDoSR2lJmYeHx9IkLeNMBrMmLQuF6POzptmh0jLEG2/UPschLeMqLVliJMtAPCLCVGZ2mZZ5eFakJTVe65CWphN6yqTa1mwwrtJS9Ez9hbRkgxAOGxavP0yStLRRWpqQlgMGqNOXQTd6OHtMVtZJmIfzUCktkyQt45ACMtJSR2npirS0MQ+XBS+RwQVpyebXxjxcdS8+T7bm4abvJ5yDhOOzqO2E9VnXoon6rtvmslZaytJiEaffk/UpSfq0lMGF0nLQIHuyup/Bl4pHHwqqBZ2LaLPkjTVIy6R8WsZRWpoMRCqYkpb8AljXp6VokmNCWrpQWuoSn3GUlqp3oCKARIOOKO9JRA/nkRVpWS7bKS3jDLwyc0keOgpM2YLOxDyczRdl/pOl0pJVJerc09Q8vFiM1jEZafn669HfVOnKfpMpLVU+LU2VlkmRlmF/QiktXS0QRHChtDRVNNkqLdljoraYltKSImrSJC2TrheyPtzVRgsPNhBPfzYPT0NpmaV5OJWeirTUQdrm4UD03anWGNQGienz6pKWJvOBELbzdxvSkj1mEz08j+bhQG3ex/q0pKCjtFTlJQulpalPS1VaLHjCzgSyPiVvPi3jKi1dzkObCJ609NDHypWNS1qKOhBdn5bU5D5p83AZaclPAMLFOGWCwcJUaUlFcM/aPDwtpaUIOv5rkjIPT5O05M3DZW2NWiyJ7qkLk/zqKC1lpGWzmIezv+tMyGxIS5l5uK3SUtZWVUpLE9JSY/yqJmUeHoJadDcCaWlKDtgoXJJSWlLjm67SMi3S0rR/doGklZZUvc6LebiL6OFxlJaDBqnTl0FHVcb3nTLkQWmpA1fm4a6Ulny6lJIsrojBVmlJXZMUaUm9B/ZezRI9HKhXWqrWBCbpN7vSUrauNU0LkCst2d+p7y5ISxdKS28erg1fKh41qBY2H3+cLmlp49NSV2kZ3lNXackiD+bh/MK9P5mHy9Jl63CWpGXagXhk70ZGsusqLZMwD1chTfPwcllt6kPlq7+TlrzSkvVp6co8XKW0VD1DXpSWIUyUls1uHk5N+HVIS1PyxHTzi72/a9JSdH4zmodT9SovpKULpeWQIdHvJkrLuObhOnXahLR0qbQU+b8UkW8myBtpqVPvTNuPK/NwCrpzb1MShUqXzR9FWqrenQvSUrefNwFPWoruoWMerspLVkrLpHxaJkVaUv15lj4tZfCkpTV8qXjUkDfSkl1gugzEw56nS1qyz50HpSU/AUiTtMzaPFzWmbPvSdXp2/q0FD3X/Pnyc1wG4hGZ/FBkpuga0bEQbPlR5uGyBW/aSktRe9NVWqpUsizYcmD7jkYkLZ980uz+hYK+eXhaPi35/PEw9WnpUmmpQ1rKyIA8BeIxJQd0xkBqoq5jHm4yoRcp2lyRlqrn1DVnzcI8PGnSkmr3YcTsUil4N41qHj5kiB7BICIt45qHU6AsHkyCb8hg4sZC1G6zVFraKtgAM9KSmuclZR5uQ1raig5sSEs2jT//uf53235FtDGWptLyL38B5s2T38PGPDwPSktq3DO5nkVaSksKKtLSxbw8KaWlNw8n4UlLjz4UsiItRZ3tttvWPk+YQJ+rq7TceOPasa23jpKWKvPwQiHaAekoSUwHY2qCLVMh8OSkrk9L0WRStOufFGnZCErL8ePp47Y7ty6VliKTH5ECU5QnFVkUwlRpqePTkvL9JLp/iDhKyyRIS+peKtJyzJjaZ1OlkYq0lPnecgGevObNw4cNq6mP2LYYl7SUKS1ZUO8mS6Wljnl4oSDuf12RlptsUvs8eXL973kJxJOE0lJEWlJpUCpK10pLUX6yUFrKyjop0jJE3CA8QLbm4bp+UkXjQhqkJd+eZOWtYx4eV7XpgrS0VSSlZR6epNJy3LjasQkT7EhLW5I3rnm4zj10kbXSctky4LDDat9VpGUjKi1NhTSytFiMHm2eRgjTOrbFFsmbh1MbRapreIW+V1pqw5eKRw1sI9t3X2C33aK/p6G0vOSSoGO87DLgxhuDQXr6dODLXw5+tyUtzzorICsnTAB++9t4SkuZco16Jh2cfHJ0h3affYDttxefLzKRVD2LKM86EbFlfhNN7sWmpYKp0tIlafnVrwI77VR/XGcCknQgHh4i8/A4pCVvHi5TGIjapaisDj0U2G478b0Bs0X8eusBxx5bf1xGWra3135XmfazED1TmL6KtDz4YGDGjGDyNmeO/F48VHXWVGlpCp60ZJWW4WJtxIj661T5Vm0A6SotqXfHkuNZRg8PQbWjddYJxrhhwwIFR1wMGQJcd13t+/nnA1OmAJMmAb/+df35uv7xdBC+67Y24OtfD1QFN95In0st0HRIS1Hd/v3v6xcEooUWlQbfRydhHr7uusBJJwXv+q9/rR3vL+bhIcaOtUuTRRzSMq7SUjfgikhpuf768vRFGDwYuPhi+jcVaSmDS/PwPCot0zIPp+Z5pmSPaB1zzDHA7rsHdefvf0/WPNy0vGT+1HXvwcPUPJzaCEhCafnBB9HvorIJ5yqqsrv00qCOXHJJskpLXYgU2jZ+ePn6NnEi8P/+n1W2lMGeWEyeHJRr0ubhNkpLvo8YOLA+naStLBoUnrT06ENEadnWBvznP0GjDyEjLf/2txg3ZhrnGWcEu1innx7skrzzDvDww7XJry1pOXgw8OyzgcnihhvGIy3DNF2ah3/lK8DSpcGzf/wxcNdd8vRFpKWOeoDqqEWDNuVXNA3z8PAepkpLl+bh7e3Ao48C992nf3/ZOS6VljySUFqyv5XL9XVLR2lJ3fO114BbbhHfV5QmIG9X114L3Hab+Hf+2o6ObJSWxWJAVs6fT5PiMqjqbBpKS5l5OEAvHOIsXkyUllQ6pkrLtM3Dw+9XXRX4+zvkkPj3Xbo0WOCGGDYMeOGFoO1RZJFKwQvoL+zY8rviiiBa9FFH0eeqSBbT6OFf/GLw7LvvXjtmQlry5ZAEaVkoAFdfHbzrz342ei8ezWgeHoJ1JWELE/PwW26J1sO4pKWu0lJEWk6cKE9fhGXLgO98h/6NUv24JC3jmoeLLEVMkDfSkl8T8YREoWBOWooIjJaWYF327rvANtvI53siJOXTkrp3XKWlirTkyykt0nL5cr176Cotv/WtoF2fcUZ+lJbUuS6UloUC8Ic/AD/9afy0ALrenXQS8PLLwQZh0qSlaHNXRlryz0EpLT1pScLh7Nyj4cE2snCCss46tWPLlolJyzgO1WWKDlUHrvIvxZvGhL+bmIcXi/VlQ+VNlg8ddHREJzyyNESBeHRISypd0eQiK/PwcMEhWwRQcB2Ip1CQ+3IUgTrHpU9LHmmYh7siLXXJW5tFPKXyC0EpcbIgLXXvQ8GEtEzCJ05Pj9w8HLAjLWX9QRylZbEYnWinrbTUMQ+XtSNb83BR2ykU9Mg6CraEhYqQZqGr7lT1W2y9NPFpaUNamvq0VPklVuXRJfJAWsZxgSBTWvLjbUtLtIyTMA83UVqOHh3kce1a+X1M8kW1n7hEYwhR32GSVpZKyzikgIy05P3L8/OboUPdmYfzv/N1qq1NvZ5JU2mZNGmpo7TUKXvT9/Pxx9HvoZ9eHiY+LcPyTlJpGdc83Malhage2WwO65KWbP6TNg+3UVpSpGUSVqxNCK+09OhDgfLbyE7MZEpL3iTL6MYGkwdbpaXonkmZhye92BD5tNQxDzdRL8aJHi4rA9WAFS4Ms/RpKUpH5902o3m4CWkpCpwF6E9WbBbxss0TalFrYx7uirS0QR6UlrLo4UC2Skv+3QwdGm2/eYgezkPWTyURPVzHl6PudRRMTBapxTj7zKZKyxC2pCVPOOgQmzZKSwr9zaflRhvZpcnCxDy8WBQHUVOlTSGu0rJU0lObmvRHKqWlrN2kobRMgrS0VZLaKi35PnnNmuh3fp5nI+jQzStFWqqQJ6Wl7VgrIvjSUlouWxb9vnQpfV443zBJPw9KS9E60WY+QiktAbsxRZe01B3XXKgZbZSWVL1NeqxvEvhS8qiBUhPqkpY2vi5skAfSMgnzcNM00jIPt1Vaqia4OqbZQDyflqpBwHaHvpnMw3WJd8o8XLaolSktbc25AHW7ki0QXJmHi37vL6Qlew9XSktVPdRVWvL34etDXn1apomkSUsTBQU1XlObp6rreKSptEyStMyLebhtPvJkHl4sRs/JmrQsFvWI27ibALakHpV23LSyVFq6Ii35eRCvlOXrnQ1pqbuOSZK0zIPSUgTR/JLq65MgLXmlpQomz5kXpSV1rs6mL5UWlQebd0+9J6reuR7XbJSWMvD39aSlNhq2lK688kpMmDABHR0dmD59Oh577DHhuXPnzsWhhx6KCRMmoFAo4Iorrkgvow2EWEpLG4fQIeJ06C5ISx3zcIq0dG0ebpJGnEA8JubhbHrhOTqTHlsT2xC2SktKESuC7Q5mlubhrklLWRmw7hRcmocnqbSURSSnlDjhMbbe2NbdMC1q4eDKT2LWpGUW5uFxlJb8gjGv0cNFSEJpqUPWUUiCtKQm/DpqeVVeVq6sfc7ap6Xu+/bm4eaIo7RMyzw8PEbNVXWCEcVRWro0DzchLZvZpyU/x+bNw9NUWvLH86a0VI37pn1nCNfm4UmTlo2mtMwraelaaekCNkpLHgMGeNJSEw1ZSjfddBNOP/10nHvuuXjqqacwdepUzJw5E4sXLybPX716NSZNmoSLLroIY8aMSTm3DYQ4Sss4Da7RzMN1SMukO6A4Sss0zMPjkpYypaXuIt8VaWmjtKSeL0mlZRLm4ezvlUp9O5FNDGTRw+P4RFW9U5nim39W1jychTcPFyML83ATpaWKtGw0pWUjmoe7VFqK7mmitMyatNS5b3gv3XNdIWnSUlavXCgt45CWaSgt2e/UXHXUKPk9gHjtKc4GApV2WubhMt95rnxauiItVUpL2UaqCLbEVd6UlrZWKyFckJZeaWmelsinpQvSMkw3SdIyaQsCUXrsd5O5G28F4CFEQ5KWl19+OU488UQcf/zxmDJlCq666ioMHDgQ11xzDXn+TjvthJ/+9Kc48sgj0e6COGhSKJWWzzwjXvTFaXAuSUvdBWGzmYeH+XNtHs7ex8Q8XFUfbM3DVRNnE/Nw2x1M253bRgvEw/7+2mv1dUtmmieaVLK/qWCTX1nd4H9jlZaq+7Lo76Rl2tHD+Qld0krLrKKHp4UkSUsTNRaQnNKSHdPjmIfrnGP6/vJkHq6rSHGttCyV9FSGKpiYhxcKbs3DKTJKNlewJS3jKi11F886BFJcpaUuaSkzm3fl09KkbemSlu3t6Soteeisb9NUWsrGap00Re8oLJ+szMPnzzc7v9GUliJxi6rPFKVF5SEPpKUu4gbi0bmnV1pqoeGih3d1deHJJ5/EmWee2XesWCxixowZePjhh53dp7OzE52M7H/58uUAgO7ubnSrzIkbEN3d3WhnGlkFQLm7Gxg4EH1dwty5wR91fbkManpa7ehAQREdse9eOuDuUy4WUWGuLVSrkUrdU6mgSqTdUiigAKBaqaDS2QlZl9JTqaBUrSLswivVKsrd3SgCwuvKlUokXzYoViqR9Nl619LZCXZIqZbL6OnuRktPD2TDUnel0vfskeMCM3k2vUqphHJ3NwpQdxxVAD2y569WyfoSotLWFtSJnp7IedViUZpuqVzu24lR5aFYrQrLN5qZSiQP3dx3Ct2VSn15VqtB2cdQT1ULhb5niuSJeX/s8UpLS1/bot5bpVCQtr2WUgmF7u5gZ5nbXS53dkbqONUuqTZClg2BQqFQl1/2+UWIlAvbN1QqkfTKbW0oFot1baFSLMr7I0Hd7SmXUe3uRrGlpe6Ze6pVsh8yBVUmLNj3XSoUnO9KVnt6UEatHlVXruwrv55iMXj+AQPqn79QkD6/rE/p7umJtNVqbx9E5q9UivxWGTIk8i5V/SMQtAlA0h8YgOpj+P5XVjdK1arVO5TmnRiry6USOV5F+hKNvFRbWpTtkwVfPj2VCkqVSm3MAT03oMYwoPbckb6oo4Mei7mxBQAqra2RZ+ypVlHo7o6+w0Ih2sdoLOT4ciT7F6JfUY13VPomYPs6fu7Ejw0296i0tJB1pjpuHHp6xyx2zKbyV5Soo7vL5b6xhB9ruovFSJ57KhUUikW9Mb8XsvG6Z9CgunZbQlQJwr+/SH6qVWCdddRzqZaWSF03ads91SqKlUptTiQZP0vForR9lwGAm5MK88w8N5+fKjGv41HZcEMUX3qp7zv7zPy8uAzozbW5eZtobUChVCrVyrCnJ1KGpTVrar91dKCHq3flIUOM1wJUvyjKa2R+LKgrkf5H8Z5DlAuFvuu7u7vJcSNyfu+cL5KfBQvk6xGm/VJoAeh+vrfvqBtL29oi7UlnvgjU931K3HGHydna+QBQV87KtVTfifI1FZ8P2bndvfWPryfVclm/LxLkK1wbG5c56LVDiRhjytVqX5ur4wSY+VahXNbKg+wd8ONOOKa2MuNGtaUFBWbDvJtrJz09PQC3PmHLNtIOmxAmz9VwpOWSJUtQLpcxevToyPHRo0fj5ZdfdnafCy+8EOeff37d8TvvvBMDZaYLDYxPMY3svQUL8PTs2QCAGaNHY9CiRdJr77n/fswkjs/bbTdsdPfd0mvffe89PNN7LxXaly7F/sz3V958E68x145//nlsz/z+6OOPYwnvcwbAAdUq2gCs+vhjLH7tNUyS3PO555/HZitXItzDW/TBB3hs9mxs/vbb2ExwzcuvvILXNZ9JhE1efhlbMt9ns885Ywa2ZyZ1natW4Y7ZszFz9WrI9Hxz7rkH+xEd9QP//S9Wvv123fmTDj0UW//udwCAhzbbDB/Ono0xzz2H6Yq8l7u7I/nl0bJqFQ6UXP/Unnti/uzZGDR/PmYwxyuFgjTdXRYvxnq9n1esWoV7JedOevllbM18F6U77M038Unm+5133y3NOwDcftddqBDqpQPb29HCkPhv7b8/Jt5+uyK1GpavXIn7evP5yQkTMKz3nc3uTaNl5Urs39aGUu8O9/yODjzVe/7IRYuwO5feh0uX4iFJGe09ahSGvPce+dvLL7wQqeOfZn575/338fzs2Zj06quRMgaA2XfeqbXzuMHcudiBO7amsxNzFO1q33XXxcAPPkC5pSXyTteZOxd7MOe9vWABRq9ZA9549N0FC5T90cHEYvaZ557D/OHDseV772ET7vxHn3iC7IdMMW7uXOwo+X3xRx/h0d6877BwITaIfccoutaswbPPPYdpvd+7Fy1CWMufevVVLJg9G1u8/z425a578rnnsHDAAGG6I+fOraubIWbPno3Jr7+OKb3fK2vW9E0Sezo6Iu1p+Zo1YHUtby9fjuf5fvPFF6XP+H6vm5k5c+ZIz9PBoPb2vv7rjYMOwguzZ2Of1asjde7555/HPEF92+Ojj7COxX1lfeSADz7Aftyx515+mczDPmPGYPDChQCAhYsWQaWNKxeL0nvzmPTKK5H+4dEnnsA2K1ZgSO/3JUuW4GEivb3XrOk7h0V4782OOAKb33QTAOD+kSOxgkij2N2Ng7hjSz7+uG/8AIAnn3kGQ996C1swx+bcfz9mEfeUge0bFyxciCeIawYsWlT3XlavXYu7NNLfffPNMdJi/rvko4/6ynfU889jN+a39xcvxpPMvQ8uFlHQca/Apr9sWaQ8QywdMAD/6U172qJFWF9wfbm9HUU+OjODu+65B129isct33kn0u/e+9BDkfJ89PHH0TN2LPbs/f7S0UfjVUXZHtjWhhZBv/3Ea69hEXf9dgsWgDV6r1SrffWjtGYNPsXlZ+XYseS8mUVnd3dkTierb63Ll0fq5hPPPINx8+djfO/3rq4u3C64fqclS6Tt+51587B67VpspcgvEPTD4TyFrfuPPPYYPly1CkPeeQd7S65/t6cHrNaSfeYxH34YmX8+s3w53tNoI0PmzYvc8/Enn8RizQ3kHZYs6RtLe9asieRn5Cab9I1dLxx2GN578EEcwFz7xgcf4CXDtcBmb76JzZnvTz3zDBYILHXY8l22Zg1G9H6uMnNl9pwPly3Duhp5eHvePLzQOwbOmTOnrvx4vPzGG3h99uzIveZPmYIN/vMf4TX3P/ggVr35pvD3A7q7++YXLP49Zw6qLS34xIoVfc8LAP99+um+9g0AUKwXQqz/7LN9cxoRyi0tKAk2qJZOnowRr70mvHbFmjXStQgLflz6eMUK3K957acVv3d2deGO3rSmfPazmPy3vwEAPthqK6z7wgt9591+113YffnySNkCwAv77outGYtWnbItdHfjYOb7a2+8gVdmz8aGzz+P7ZRXR3Hvf/6DNa+8Ejk2felS8E7/Xn/rLbzcmzf+3T77wgt9/cWIl1/GJzTuu2b1auG6gx93lixdioe5dlDmxAazZ8/Gtvvs08eN3LV0KdZ9/vnIeocqWxdz0jxiNWuxpUK1wTB//vwqgOpDDz0UOX7GGWdUp02bprx+o402qv7sZz9Tnrd27drqxx9/3Pf37rvvVgFUlyxZUu3q6mq6v1WrVlXLpVK1Goiaq+Xjjqv9/uijfcdFf13z5kW+93z5y9Xum2+u9lx6qfLa8vHH6+f1vfei97n44sjv3X/4Q+T37jlzyHQqY8dWq0C1ssEG1fIJJ0jz1/2HP1QrG25Yy++nP13t6uqq9vzgB8Jrei66KPY76bnwwmgZs7+vWVPt+Z//6futst56wXONHCl/T4sXVytDh9Yff/FFOh8rV1Z7Lrus2v2HP9TK+O9/V77TSnu7/PmWLqXrwjHHVHuuvLLatXZtcN7cudF0BwyQplveZ5/auVtuKS/fK64Qly/79/jj0fM+/FDdHlatouvd+utHz3v66WrP5ZdXK5tuqkyzClQr225bS+/116s9P/hBteuRR6Jt4F//qvaceGK154wzql1vvln7rbOz2nP22dHy3mcf+Xvinj1Sx887L3Ju5LevfS0o48svry+bzk6t+t/95z/XP/+GG6qvffnlas/3v1/teuKJaHr33hvN47e+Va1MnlxfB7/4ReU9Ku3t9f3E9dcHz/yd79T/dvfdsfuDrq6uavdNN8n70s98ptYWjjpKq06Z/FWGD692/+Uv5G/dDz4YPP9559X/9ve/y5/r/vvFbamrq9pz0UW1PBSLtc/rrhvN33bbRd8x3w/39pvlgw4S3q/72GOrt956a3WVoA0bv7O//rXa8+MfV7s+/DCoO5tsEr3f734n7s+mT7d6T9I8vfFG/TMz/Xvk79VXg7b02GPV8iGHqOvHsGFGZcP3D91z5lQrm21Wq8/77Ue3v803lz/30qXVngsvrHb/+c/i+69aVd9+Zs2K5ufWW+vGeb7/13nOyD0OP1z7vVQmTtQry7ffrvacfXa1fPjhRvWkPHNmrZ7efXf0t6OOipZ5S0u0bZ1xRrUydao8/f32o4/vv3+tjkva4lpirhIp+/nza3Xp9NOjv73zTl3d6urqqnbfcEO155JLql3LlyvLVTYud997b317PeaY6Ptj5ysrVkSvv/POID//+Id03lYZP16/vi1aFL3H3/9eLR99dC2tkSPFfY2iffecemq156c/1apXle22I+t+9333Bcefflp+ry9/WfzMq1dXe37+82r5i1+s9lx6abVr5Uq9NvLss9G8/Otf2v1UpAwHDar7vfv3v6/2XH55MO/j+oeeH//YqE/s6qofQ7tvvlmvb9ltt1o+CwX6HEGbrHsHX/96ddWqVbWxkCu/uvMvu6zuXj3f+550ztL10kvy9rfOOvR1veuD8rRp0eNcvaq0tGiVd/cttyjLo3zkkdXypz9df3yHHapdL70kbw9bbaX//rlxqbz99trXKtvlmDG185curfZcdFG1+89/rvacemq0HFetqpZ32in6Ln/5y2rX66/r90Xh39q10XTOPjso89/+VqseRu731lv1bfPgg+vr4ve/L3y33dddV/vtP//Rum9l/HhxW+XGnfKBB9a9i8qwYfXltmhRtef88/v6oe5rrxWWbaQdGvYljfC3ZMmSKoDqxx9/rOTmGk5pOWrUKJRKJSzilH+LFi1yGmSnvb2d9H/Z2tqK1jiRsvOMarXvY7G1FcXwOadNA3bfHXjwQeGlrdwuYOn73wfGjwd+/nPlbYulUu1eKnDvpNTRgRJ7LZdOS1sb7fOiVy1bWL06MH8NMWAAwO3st7S1RXxaFltagvxK/ICVWlqi+bIBp0Zr5Z/za18DrrgCePNNFCqV4HeFqVqrIPhI64AB4uh/p58ePabhm7EvPyII1MrFk08GdtmlJrfnyrhQKsnTZepwoViUn8v9JjyXy0Orht+g1o4O2kfJ8OHAggW18wYPBr75zcDk4bvfVaYbeaaNNwYuuKDeXGvWrOAPhPuCc88FLrig76uy7e24Y/D3xBN1P5XKZWEdL7W1Bb/xv7e0oFXHfx4ADB1ad6hQKKj73802A370o/pn5+5bGjSIVHwW29rU/VFbW13U0JbweQlFYUt7u14AKxUkakUAKLa31/Lu0jdjLwo9PWgRtP+WjTcOnnFIvQauRdS/hJC0qdbW1sjvrNqrwJVHgXvm0qRJ9ePD174GTJ4M/POf5P3C8nM21n/2s8BnP1urj1z/29LS4qZuMJDmmyjrlkGD6DxMnlxrSxr1qdDSYlZm/HjN5a1YLNJtUaDU7rv38OHA974nvzfRPxe5+7cQfVUr5zfNtI4I+1yibSvHsBAbbQT88IfAb34D3HyzXV74smfngEBdeZW+972gnJ99Vpo+eXz48FraEj9rVYUiv5XtV7n62coFYOrrnz//+SD/0pR7sdFGwKuvkj+1jBxJjm8sIu+Pe5a+uelBBwXj8mmnkfcpyOaBPPj6294eKd+C7HrFuFwqlbTHlIKg7+wbB1X34tpC3dyXKSttD3XcuNVXH3TAjj89PfXP9sUv1vLCj0HrrGO+FuDKR7iO4cD2X6K+Q3etVWL68tbWVuW8t24t1psGPve5YM7JKPlCtKrmRYK+oS8vfNvg/MxqzRcBLV+gxYEDgTPOAP7+9+jxyy5DcfPNBVf15sNkXOSeyWh9rECk/Q8fXltzPPJI5LzWjo6o/+899kDplFNQ4nx52syP+tbGFteS61Ti3fWtP4jfI3NxzTyY9JvFAQPq3hc/L21tbQXWWw845xxhOtT9mpV/MnmmhvP82dbWhh122AF3MybHlUoFd999N3bZZZcMc9b4iJg76kRlYyFy2uwyohmVnm308PB5Vq+OOtKmnjOPgXhChANcUtHDKeh0MCozMlUwE9F3VX1i63CW0cNFafNO2cO0bPNiilIJGMEYfeikJ3pXMifroujhJkSaqC3agoouaxOIB6AXXf0lEA/1DtvagkkY4D4QDyCuNzzRw58nilAsqYfVBMheKdJ2wJ5kIB7TCTUVdECnD3cxvupGD+fHsriLBpNAPKZ1w9R1kUnAAiqqrW30X83gJBVVW5RFD7cNaMFCFhCGegbZfMUksjgLl9HDZe1GJ3p4WoF4dDc2TRCnPrDvRzXH5t+lTSAe20jn7L1VQWxUcBE9PLxG9D7jzov4PPHzAZPAMyq0tNDvUqfPNalrSQbqY8dWFtS7ZsU8GhtM2kgjEI9ugDldiMqNvxdAi3p05gw+ergWGk5pCQCnn346jjvuOOy4446YNm0arrjiCqxatQrHH388AODYY4/FuHHjcOGFFwII/Li82OvHqqurC/Pnz8czzzyDwYMHY5NNeO9j/Rdk9PAQqo45ToSwJElLUUcQPs/atVFl5cCBwIcf1qdJLaRknUyeSUtboiaEziRaRVqqorqLvqvyKSPedfOgylOcwSVr0hIANtgAWLo0+Lxqlfp80YArc54c1pE4Ewaqz4nTrvhrBarj2KQltWvfTKQllYfx42v3syEtVX1KiqRl4pPHZo4ebkr4qqIdi+7pom7rlANFWsa9d5LRw5MkLal6q0N0UXBFWsqih9sSPyxE/QdAP4PJPdMgLeNELabSjksChflTpaMTBdsUrkhLVeAt/tnSjB7ucsx3ET1ctpGrk6YKbDkVi/blpktackpOAHp9rkk7LBSCv3AcdPlOReQb1cdQpKWLvJgImnhQ5RgnerhufyYjLfn0qb5Lpw/30cO10JCk5RFHHIEPPvgA55xzDhYuXIhtt90Wt99+e19wnnnz5qHIVID3338f221Xc/l66aWX4tJLL8Wee+6J++67L+3sNwaSVlqynXKWSkugRuDwx9k0KKWlbCBKqwPiSUvVhEqktDSZGOucK+vkZVApK1Xlyr6nLJWWIuSFtHz++eCzIMhOBDZKSxFp2QhKS508UpNwmaogC9IyCfKtp4cuH1aRlITSUvS7irTkAvZp5Sdt0lJWp237URl0FIYUkiAtVUpL3c0tW/Bjuw5pGRfNorSkSAIeOqSlpI7XmYe3tETnOLpKRlleZJCRloQbDKO2zT5bWkpLGXRUrWkpLZMgLePUhzjq6qxIS9E1ov5MtM7RzUMSpKXJHL61lVaD60CXtCRcFoFzF0LCtO+xXR+rYEJasv1sf1dayqCjtPSkpTM0JGkJAKeeeipOPfVU8jeeiJwwYQKqSUz+mxkmSstSyVxpaaKIY5En0jIP5uFhXsL85cU83BXiKC1dkZamJuoyiEhL3fJ3RVqGiENaypSWop1Zk0UUNRmM066oyYWt6ri/modXKvQ7ZBf3eTIPF5WBrB4mbR5uorRMYt6SJ/NwW6VlWqQl/7sLmJhtJk1amizuKEIgbaVlXkjLAQPo9JJQWsbZ1M9KaakiLVXIs9LSFGmSlmy5i96VzESY7evyYB5uSlomqbQslYJ7DBwYuBUL4VppCUSfOw9Ky/B3lxYOSZKWJptxccGnZ2se7klLLfhS8qBhorSkFv+6ZiC654jyxXcGugQT+zwffVT7TAW6EKk/8mYeXq2qF1ih6YEoHR0kuah36dNSdW4WJjdxlZYu6hVLWsqIxxAuzcOzVFryZccFKeiDJy3N8xCXtHRlHq7j7kB1v6Qnjy43QVzcH8iPeTg/1iYN/v55U1rmyTw8A9KSVFqK0tfJrylEPi25ID/Ce+aBtNRtTzqm+I2stFS5O5AhDmlJmRSr4IJwFz2fTGkZJw82SktV3VS9I16tbPuOdZWWQH3f5dqnJRDNdxruY6jn7w8+LV2Yh1MWXDx06pcnLbXgS8mDhonSsqMjvz4tTZSWbW1iEy1T8/C0/JSxpKVKZRnC1iTW5lxTxPVpmYR5uMt3mTelpQ5slJZ59Gmpq7S0NQ9vZNLS5FyVeTilkE1LablggTwdnfzkyadloykt45qH8yRL0hP5vJOWps+vY6rIgi1/StUoy4sr0lJSx+uUljIiMgml5bhx9HERaWmyIZEGaRknEA9V9nGVa7pihiSsefqD0lJn/qsbjCUNpaXumkUENk9tbdmQlpTQxSZ9FnlTWvZ3n5YmefLm4YnCl5IHDb4hyibDkyeLJ4g6DTEL83D2ecLo4e3tdKdYKNCTgaTVOqZKS90JQJ7Nw10G4lGVn+4OeBpKSzaid9J5MQ0+JqrnI0eKrxFFDzepZ9TgH+f5qR1Rbx4ewETZQtWH8eNrn9P0acnfi11ATJ4sTi9P5uGy92RDWq67rvx36n6NZh7uiszl01eRlkmO65T5bdLm4Un7tBQ9KzsOjhkjvLzCp8/PcZI2Dxf1i7pKS1mbybt5OOUqwZV5uCydtjY7daIKcepDnDFBVFdkcGHmLCpjUV0rFqPzUH5+l4TSMu68yJV5uM55FGnZ0pKMii4ppWWefFrapEVdE0dpqTteynwb6ygtdfqPpDfLmwSetPSgoWsePmwYcN11ja20DCFSXmVlHq4DNr86pr5AOoF4dHDGGfXH0jQPP/BAYNttg0HmjjvE57l8l/xkPKxDhx6K6pZbotzWhvKll4qvd7Fo3n334K+lBfjzn9XnU5OCMWOAs88WXyPygaOzKx2iWKw/P8674K8VRQ9XkT5AYwTiMakrOqSVLA/sAofqW1Vl6so8/JRTgLFjg02pW28Vp0cR4iEaWWk5aBBw221m9wfyo7TMm3m4yMrivPOC/6edFv+eLOKYsALyRdi0afK8qEhLvg2rlJatreL6wI6DF14IrLceeVqdebiMtNQhWW1AjXMiIsqENEmCtDTd5GXBvyuqLaRhHt7WBhx2GLDVVkE/fffdevdUIU2l5U9/Gjzj8cfbzVlM+oFrrgnOP/jgaBtlr/m//wveycyZwMSJ4nvedlvQh0yeDJxwQvR316Tlpz4l3bCIXC8C34ba2qLBcpJWWqoCn4YwVcC7UFpeckm9SEJkNZBnn5aXXx5c8//+H/17HKXlFlsA++wjv/+wYcD//q/4dx2lpQ680lILvpQ8aOiQlvPmAe+/HwxwInKpEXxahhApLbMyDzdRWgL6pKWtuiyEK9LykkuiQZCAdM3DSyXgySeBxYuB/fYTn5eG0rKlBT1PPonb//d/UdlrL/H1LupVsQg88ADwwQfA4Yerz+ff9667Au+8A6yzjvoaE8U2Bb6dpmEeLttVDUHtpuZNaWlyTxlppTIbBaLviX9nI0bQkXZZ2JqH8xPEESOAN98M2vSUKeL0ZPUwbdLSVf9y0EGBeTxFTsnuD+THp2UezcNZoiw8/9xzg7Hr5z83v6esHHUDSYkgIy2/9KX68dZEacn3iyrSctgwMQHNjoOjRgVzyTvvrDutzjycX3TLFvcmmwMy/PCHgd9ztj8RkZYm7y8J0pLKj+4mgEppWSikp7RsaQGefRZYtAjYe2+9e6oQZ0PAdEz49reDOnPNNWbXhTAh3I8/HliyJNikE81/jz46OOff/5bfc9ddgYULgZdeqp/juDQPv+su4B//kKcHqN8R2zeH99CZv/HQeb/hOTYqYNNrXCgtp0wJ1uczZqjPpdprV1ftc5Y+Lb/5zaAt/eEP9O9xfVrOmQPMnUunfeqpQRlutpk4fzpKS51y86SlFnwpedDgGxk1GV5vPfEkOSmlJX+ua6WlCWmZh+jhbH47O+3TTctUhodqMI+jtNQdKNidWZ08xIGItOzNS8/AgfoLnTgoFPQnUvz7HjJETXKISEtT80X+/DTMw3Umvf3JPJy/pylpqVOeNkrLUolWA7W3q+uZ7PekzcN5uOpf2trU5DCQL/NwldIyaYsFU9KSza+tCWuSpKVMyd7aKlb685+p73w7VpmHDx8uVvbw42B7O0kEGiktVWUVZ+wYMQJYubL23QVpyT5bUqSlCVGnYx5uY6bMp6HKR3hfnbmZCeIoLW3GhDgm7qZ5HT5cTdIPGxYcU/m0HDJEvA6SwURpOXKkm76d8rvI9lPLlumlE8enpQ5Mr3GhtAwjnbNzO11/pkC+fFrK2pJKacm3XapPFKXf0aGeS+ooLT1p6Qy+lDxoqEjL9nb5QtekY8oLaSkiMXjSMsyDbKBLqwNi88DujMnAl6HphKxRfFq6egdpKC1Z6PrBSguqQZ+CyKdlXNIyDfPw/khaykgr/p5UHtj3xBMnOuVpo7QUkZY6kJE7eVJamphK6z57IyktRXBlQq5SSaTp0xKIT1rKzo9jRgfYKS1FpCVFrhN5r1Na8qSlyeI+7rtjSUvR5kDW5uGq/MiQJ/PwJBDHXUDaG1m2BGscf8Bx248Jaalbnqq6ryItdZFn0tK2/VNEo4lPS/bcvEQPp2CqtKSeVfRcOnmkLLhs4ElLLfhS8qChMg9XdcJJkZY8mllpadph6pKW1ELRBFlGD1eViYl5uC6SJC1FJHkaedEF38ZMJng6biZkSFtpOWSInkKi2UhL2QaUqXk4/zsbWVwEm0A8cUjLlhbx4jjtQDyufFomTVrqpB+XtBSNtUlBpbRMIj8mpKVLpWkcMzqgvh0XCvLykJGWmkquOqUlD7Z8VG3FJWnpQmlJkQIU4uTbpD2mEYjHRGnpGmkrLePANq9x5r+qthbHPJyfX7gqzyxISx1rBh5ZKS35601IS+p3l+NfkqSlyWYcmydZOiLw53jz8EThS8mDhkppqeqETTqmOI01rUA8jeDT0lZp2UikpYnS0tWCL0nzcFNT/UZRWiZlHp60T8sNN9S7R7MF4olrHi7bXU7bPFwXorqYJ6WlCXTTybN5uK45a1JKyyyjh4f3Y+Gyv09Cablmjfh+Mp+WFARKSyVx2XeygCCVpG8Edn4l8olrQlqyqtE8KC1dmoeL+vPwWTxpKUccVWgI074zCdKymZSW4Tk2lmaNqLSk0moGpaWJ6wOvtMwdfCl50HCltNTp5FwqLXUXhKaBeCgyLGnSUgf9zTxc1bHn3Txcx0eTrO6kVa9Y5Mk83LXSki9P3Qlvsykt4wTiGTBAfq88mocD+SEt86C01OnT0zAPF421ScGUtHRRN5I0D5chCdJyxQrx/RyQltVSSX++wZuO83BZl1woLdMgLU0C8ajMwwsFtXsmUVpsGux/Kp20zMNNyrVRlJZ5Mw8XbeTq9qM2pKWOZQcPk434tEnLuEpLF+N21j4tZWgEpaUOsljbNSA8aelBQ6W01A2gkrR5uGrRmqTSUtbRJ63ICGFDWjayebgqr0mYh7scTHTKLm9Kyzjm4XFJS17R4tqnJV+euhPeRiAt4/gzk/3G50H1ThuNtEzbPDztzRVq08rVOG1adtSCQqcPb1alZdrm4SaLuw02iH4vFKIm0zxk5uEUKKWlS9LS5djpgrRky0ZG1LlUWpqofHWUlirflTxEpCXrYzgp0pJHnpWWjWAezn9PQmmpArvmiRM93MT1SaOQlmxAqxC2KluXSssQeVJaJu3T0hOSzuBJSw8arpSWjWQeLlJaFgrZmIfrgH2+ZjAP52FqJpOESidtojBvpGUc83BVP6JCkkpLkXm4DrIiLVUmerZKS1n+VEpL1TvNo09LQJhvbXNUW2QdiEdF1ImQhHl41kpLPv28+bRMWmlpsrij6omKtDSpv0S7q8p8z/LIA2lpQhI2g3m4aC6oUlr29ESPs/XEk5bJKi1FMFVa8nnMwjycXfOE9x87Vi9tFnlWWqZhHq6ronUxHof9nldaRuFqI7bJ4UlLDxpp+rR0aR6elNKS+t4sPi1NJ2RJLiT5jjuOT0tXgyL1vKeeKj5/9Gj39wvRaKRlnn1atrXVp6c74ZX5tKR2Wl0SYWyfJ1NBmtQV9lw+/7vtVvt8+OF6pOWWW9Y+67SHYpF+tyE50F/Nw48/nj4+Zow6Xd37yyKpq9LfeOPod9fRw/NmHt5spKXp4o4n6/bdt/b5a1+L/iYiLdn+hIVAaVk5+eTagb33pq8FkvdpeeSRtc+7706fo3p/O+1U+8xu5siIkClTap8/+UlpFpX5MTmXX3xTfbSOefiECbXPYRCTESNqx6ZOjZKYeSQtkx4TeJhu1oeIYx6uqisqwtrEPDzJQDxs2iLfszxM5rSf+ETt2Be+oJd+3gPx6KbFltPIkXZphaQlXz9nzLBLL68+LU86qXbsm9+sfbZ9Tg8AQMrbRx4NA1dKy6QXHa59WlK79aIJRNpmhBTYDrizUy/duObhSYJfeJiaUqYVPfzHPw7qy9NPA/fcUzt+4onAN74hT++pp4Bf/Qo45hj9+4XIwszAxjxcROxnSVpSdYkva93IkDKlJeW31DVpGbb11tbogk+XtDzmGOD666Pn3nMPcOONAfkwdWrtt622An7/e+CZZ4Czzw6es1Sq9ZXUO/3zn4Gf/Qw47DD9Zy+Vos9y4onA178efNYlLU3qR15IS9l7OuUU4MMPgXvvBf7739rxe+8Nyvc3v9FLR3b/8ePtrjvlFOBznwP23LN2LK55eNpKSx3Skp0TJE1amij1ROjoANaurT/ugrR85JGg3n3uc8H3T34SuOwy4P33gfPOA37xi9q5lHn4yScDZ51F55siLVtaUPnOd1Dq6Qn61eHDo+Mti6R9Wv7858CoUcD220eJRBYq0vKWW4CLLgL22itIK4SMtBw3LuiXH3xQXHYi8JsAqnNZUEEDbZSWd94JXHopcPDBNSJ02LBgjLj77uCZ2M2PtEjLRvJpqZvXOH2nam6m6h+yDsTD3uPhh4Hf/S6YQ+jARFG31VbAb38LPPdcMB/SgcqdGg+XSkv2+rikZaEA3HFH0I+xRJwJwjGB70vOOAOYNi3o695+2zxvLPKgtLz44mCTb+JE4POfD8r+4YeB739fnaaHEJ609KCRptIyL+bhHR10NEw+jfDZZB2aagLtCi6UlnkiLflyi+PTMkml5dChwUT8lluiiyiWRBBhu+2CSY8IzWAenhRp6dI8nDqmmz8ZadnREfRL7ITaZRtj89zaGu2zdEnLX/wiSlqWSsFCeq+96s8tFIAvfjF6jJ38UmqGKVPkdZxCS0uNtNx222hbaialJQ/ZoqS1FbjggmChsP/+teObbw5cfbUb0lLXJQJ/3S9/Cbz2Wn1+TWCrtOwvPi1t7pckabnllgEZwOL00+l88ErLTTcNNutEIJ61WioFz3PhhcEBWZ+StHn4eutFSVkKqve34YZ0GcjaTbUKHHVU8GeKOObh/ByfUlrq+LScPDnoq3gcfnjwB+RfaZk1aZmG0lI191HNxU1IS1djLKW0BICddw7+dGGitASAL31JP20gP0pLEVTjKfvs++0X/NlCRFoOGBCIQSZO1CebgWRJS52y49MLlZbDhwcbeiGOPjr484gFbx7uQUO1o6rbCTeaebiOdFzHPNzEAb0IOuXiwqdl2hMyGeIqLdOOHq5b5iZoBvPwMJ+ufVq6NA+njrkgLQsFesHnCmwZ8PnQJS1N2hVV5mw7NX2nIrD1SqePalTS0iYQjw5JZ+vTUjf4FFUP+LJqNqUl79PSRd2QvScXpKXIp5aKUHa9mTl8uBnhK1Baqs6pnZywebgObMkmGz95OjAJ7KSa41OWCSKiOM6c0pOWzUNaxjUPN1FaxmlDpqSladq6Zuoh0vZpqZuWC4h8WsZ9Tham5uFxlJYi83CPROBJSw8aqg6kGUnL9nY9YkPHPNyF0jItn5bNqrR0teCVpaNrkm+CvCktbczDRWpk08mbS6Ul9R5VinIRZKQlEO0fXbcv9j78uzEhLdnf47gkcEVasv2pTrtPirRM2+2HTj/lkrR0pbSk7pmWT8v+orS0NQ+nQC3uZOUYt9/izcMtSMu6oFiyNNIMxCOCLemcFGlp8sw2SstFi+i0PGkZD7rrGB5Jmofz0PFpmaZ5eF5Jy6FDzd9F2j4tVflrNNIyS6WlbSAeDy140tKDhqoD0fXRkTRpqZrUiu7f3l5/37wpLXVgQ1rm2aelirQ0UVom6dMyRBJKy7yRlnkyD09aaalLqsoC8QDR/tH1O2PT4/PBflcFCssbaWmjtKSCRehC9K6bXWnJw4a0FG1KmC5u8q60TJu0tFVYsTBRWsrmKS5IS5N3qaO0jOOSJ8+kpey54hD0Ju1Hh7SUPQ87DsQh+dJa9OeZtExSaSmC6Tiu43czrtJSBSp6uA2SJC1NTcOB5lZaiszDbftn1Vw8TiCeNJWWPnq4Fjxp6UHDldLS1MTZFCrViijtQqF+kO6vSsu4EwiXC0uVebhqEEkreniItM3Dk17EU7AhLUWkRn/waQlE+0dWDeACbJ7jKC3Zd5M30lJHweeVllHYtg1d83Cqb/VKS3Ok4dOSArXwlM1TGk1pqdooTmPsTCL6e9y6rns9n3demEAF4mExcaI4LRP4QDz5NA/noVMmIqWlrVUAD1EQQlPYKOp0kTVp6aLfc1n/G0lpaROIJ0/u1poQnrT0oKHqxPNiHq66n+z+vNJGV2mZp0A8bN6yMg932Uk3SvTwEF5pSUNEauQpejh1LAnS0jVcmYe7MEEC0jEP7+8+LXWQtNKSIqDiTtip8TpPSstisfHMw5tJaWlrHq7jyiAJ5JG0ZGGi8tUxD2cxYYI4LRN48/BsSEtT1z0mm9dpvNM498iz0tIW4TPpKC1VfUwaSkvWJ7wJkvRpqdPusliT9WP40vagoeo4hg51k47uObowIS11lZaiRWYeAvHkwTzc5SI/rk/LNBe8QP8gLW18WroyD+cn0nHeKdUm01BaukYSPi1VpuQy+EA8Zsib0nL0aL3zKPIurtKSMjFMU2nJp9/flJZJkpYdHWaWD5TS0tY83MQE0CV0TGZNkZbZoE0gHhYsadkISkuT+pC2CyVb09ksfVpSEJmH68LkGZrVPNy2/Ydp5M08XKS0tO2fVUpLnfWuS6WlR6LwpKUHDVUHouu3QaeTHDBALy0dxCEtZUpL9nhIpMgGMRekpU655ME83GWnrZr0q+plEubhMrCTsTTM0RtFaRlOJPJkHq5DWur2RXkhLeNED8+zebgPxBOFzqLBliDRLTMdpaXp4oa69zrr1D4PGWKWnin4+1MbNGwedH1528IFabneevTxtElLwKzsdHxa6s7nRo3SSt85XCkt2XEo7vxYl6iIq7RsNPNwk3eTdkRgW6Xl4MG1z2w/ysKVeXgaSssRI+S/s6pyXSENhSRJS5sxwwVpGYKtO6L+XlW/Xa7RwzyI5kGulZY6c8k8KC2TCsbWZPCkpQcNqhFfemnwf9o0YIMN6n//9reD/4ccUjsmMpO+887gHqNGAV/5ilnewvOPPbb+NxOSi5/YdnSI/d7dcUfwf+RI4OSTg+NJm4cffnitnP/2N/ocNg+6kaxdmId/61vB/0MOoa//y1/007r22uD/ppsCu+0W/c00r0mYhw8YAOy1V/D5xz+O/nbSSUGdKBSAOXPc3C8OgZQEdEnLq68O/m+9NTB1Kn2u6cSYb6Nxnn/ddYFddgk+X3YZnZ7uBETl/Dst0lJGupgoLfNAWsryo6u0NKkfeVFa6pTfPvsAG28cfL7hBvock8nzQQcF/8N+XAds3xqWUVzzcKqs//zn4PjgwcAPfqCflmiMlEGlwigUgr6ivT1oW9dcY34PHiYRu236u8svp03E0/Bp+cUvRv///OdBG21trY0PIhB9qpF5+He/G5CkpRJdF/Lu0/K444L/J50EzJ4dXLvOOsBpp5nlITz/qKOC/65IS6r8zj8/+P/JTwKf/WzwDtvagL331s5uHfLo03KrrYBttw0+/+pXiWQnAtt+4Cc/CearLS3AddeZ3TNNn5a6uPba4D7hHwDcfHPt99tuC+4xciRwyil29wjzqSrjrHxampCWp58e/D/0ULO0Zs6sbTr88Y/B/3BdttlmwCc+oZ8HFdL2aanzm6ifTlNpOW0aMGVK8Pn3v3eTZhPCewz1oEE14m99K1jsTJxIdzCXXAKccEJAPoUQTYr33Rd4++1gUsbuDurgV78Cvv716H1E+ZZNGvkABO3t4g5tn32C/A4fXstv0qRlWxvwyivA4sVR0xs+byFszcNtdhB/+lPgS18K3sHIkbXj220XEJbsrrsKxx4L7L47MHasfTT4EEmZh995J/Dmm/V1bsgQ4K23gGXLgPHj3dyrUc3DTzopWKyMH0+bpgDmE2Pe316c5y8UgPvvD9rx5Mnx0stSaSnLM/uuGi16uGx3vJnNw3XqSksL8MILwPvvA5Mm0eeYPPvf/ga8+iqw+eb61yRhHk7ledo0YN684P3oqFQ+8YlggSUaI03uT737DTcE5s8Pgj7omtLbwoVSL8zvXXcBRx5ZO85Gkw3fpWul5e9+B5xxRm2cnDgReO+9YFwWKUBDED71jMzDR44E3n0XWLkSGDeu/ve8Ky2vuQb43vcCkqBQqM03TdXGV1wRbKxT82MT1wSU0pLH2WcDn/tcsKHS2qr/rmXIo9KyUAAefTTolzbZJLk8hbBVWo4dG7yDri5gzBj6nDSVlnHNw7faKmjTbW2BqGTRoujaYsaMoJ2MGGG+juRRKkUD+/BoBPPwSy8FTjwx2vZ16k5rKzB3LrBgQW1+ceyxgYhk3LhkXIAlSVrKnjmvSstiEXjqqaD9hhvUHnXwpKUHDVEjpiZC7DX8Ikg2KdYNAKBznxAmJBd/f5nSEqgnpZI2DweCiYRsMebCPNxmQBK9g8GDzQjLEKKFeByfli4XKS0t4ro/ZIhbM8a8kZYmC0d+Qh9Xacmb/MQloltba4QlYF+elJIpC/Nwvjx0TUzyaB6eF9Iy7aALunWlo0PcTwLmPtq22EL/fCC6EZekeTgQLL5lYPt51Rhpcn/Ru2c35uJCtgh1ZV48cmR9GaZBWlLzgnXX1bu2rS2aNxgqLYGgLYnaU95Jy2IxWna2m6Cy+bFJIB5+7C0W6+sufy/ddy1DHklLIMhXGoQlYE9aAmKz8BCNZB4ORMlXam1hu47k0QykJdX2devOgAH184skyDNRIJ6kfFryoPrAvPi0bG/3hKUC3jzcg4arCZ4r8k4XcUhLmdKSQtKBeHSQFWmpkx8XMDXfTcI8PG00g09L0bk2flso1YwrsGVt8lx58WnJgy1f2WRXxxxK536AO39HMtKSqvfNorR0teGRdN9AmYfHVVq6KOs4/byO0tI1TEhLl89Gqd+T9mlpgkKhrk3WKS3j1PE0xs44ZFPWULl6SOtZ8kpapglXhI4JkjAPD5HWO40DVX/XCKQlhTzUc7ZsVdHDTWGqtKQQR2nZqOvMBkUOarNHLuGqIbowkzaBSUdoqrTkkbR5uA5cRA+PqyyyJX5M09ZJP+3o4Ukgb0pLm+jhNueKwPrPXbw4fnos2PI0Id9UpGWSATt0lZYyQoI3D1edKwOlOrWBylydIs8TIC2raZKWra3u+sw0SUuR0tKFebgOXEVUzhtp6ZL0El3LHnft0zIuuDZZp7SMk6e8Ky2zhqrtUkrLJOBJy2zI77wqLdOCqow9aekmDyrzcBeBeEzHCdE9dfIiU+d6OEcOarNHLuGqo0ubtDTp8Ex8WlKQDWJpPbeNT8tmVlqmHT08CcQx1U0CcZSWLt4Bayb33nvx02PBEjEmEULzEoiHhwlpyb7HOBNjVwsSmdISSI20TFVpGSfiKY+k+zvKPJy/p6mSOm9Ky6zHjDSUhZTqRXVeWkhSaZn3QDxJwTYQD4+05h55DMSTNpIkLdM0Dw/hamMzSaiepxEC8ajSygps2YlIS5fm4a6Uljro7ra/1sMYORhRPXIJVx1d1ubhMvA+gzo6vHm4y/y4QB6ih6eNZjYPtwHbThctip8ei7Vra5/jkpZ5C8SjMg/XVVxlobTUJS3jkASetDRDEtHD86a0zBpJmodTx3NOWhr7tJTBKy3j1yevtEwHjUBamtSlRlBaNqt5eB7WQdSYk6R5uKuxS6fsPWmZKnLca3tkiv5AWvLR5trb6etFZZFGIB4V8mAeLspPEjBRWuZhsLaBNw+PwlVUdgosaenSPDwrpSVbP0xIyzjm4UkoLam8U6SlqRKbhYikTjoQD2tO5LKeZKG01AmYJEMWxBgLmauFpO6TRiAeQFy2jURaxtkw45GFT8tGmoOsWiX/vdl8Wub53TSCT0uTNY4nLc3QbKRlkj4tTYRGpvCkZe7gSUsPGs3i09IEIv9ijeLT8uab9a5pJKWlafqetHSPOAtHF+8gLdKyUZSWukSLalGhayaqeoc2wZUoqMgUHf92LkjLpPuwFStqn10qLZPu7yifljxcRQ9PCyo/qq6QBWnZBD4t6/zLevPw5OBJy/ygEZSWJmRa0huBLpAUaWnj37zZSEtqzBFtOJvmt1CIJ6yQwZOWuUMDjageqcLVILnllm7S0YVpvtdfv/Z56NB4gXjWXbf2eZddzPJhC5v35Dr4ADvIJD05UT3vEUfUPu+9d7J5SQp5Nw+3jRppW8+23772edo0uzREWLOm9jmu0pJ9NyYEqCl0J3Uq0lJGXnzyk7XPU6fWXztpUu0zH9DMFioSVYc8N2kfIsIwabJm+XJ1HmyQhXk4j7TMw11B5ZLAFXQXoWkEnvn852uf2XauyksaSNI8vL+SljNm1D4fdpj4vMmTa5+nT6//vdnMw/NMpCWp2N1rL/p4EkpL2+AqWSCuT8sDDqCPe6UlcNRRtc977hn8d6W0BOpJS1cb6TrYfPPaZ9frE4865LjX9sgUrjq6bbcFfvIT4Mkng8Fy9mzgW99ykzYF03zfdRfwve8B++8PjBwZT2l5zTXAH/8IjBsHfPrTZvmwhc3CgvdB10jm4ar0f/ITYOXKYHfzuOOSzUsWaLRAPO3twP/+L3DLLcD559vdf9Ik4Be/AObMAS6+2C4NEVySlvy7+fOfg2c/6yyrrAmhuxA2IS35c6+/HvjmNwPCklrA3nZb0G/OnBnd+IkDldJSpx6atI+ODuDaawOF+m23ie/jGh9/XPvcqKSlTXA6CnkKxBOmc+edwBVXAF/7WqxsRaCbR7784tQP0Tv6yU8C4lw1RuaAtKwLxGOap0ceAX70I+Doo2NmTBN5JC2/9CXghRcChfcPfyg+b+utg7rxxBPAz35W/3tac48kCYfHHw/mIUcc0Vikpct6dMwxwNNPB2uyBx+sHR80yCwdUxdYN98czIfOPNPsurTAl/mnPw38/e+176r68vvfA9/4RlCub7xRO25KBgPNR1pedBGwejUwYgRw7LHBMVfRw4H6PmPs2Oj3u+4CLr8cOOUUs3R1yn7rrYELLwz6lssvN0vfwxg57rU9MoXLQZIdpEw7DVOY5nvKFOAf/5BfL0qT71zHjwduuMHs/nFhs7DgVWCNZB6uer/DhgVERLMiiwlIXNOL446LTyCfemrw5xpJmYcDwOGHB3+uoVsHVBMumQ/JDTaQu5vYYovohN4FXJCWpv3/sccGf2yZpqm0TNKNgGvkyTw8iUA8YR3Yd9/gLymYmIfHqR+ish06FLjuOvX1OSAtYystp08H/vnPmJkyQB5Jy1Ip2PTTgYxQKhTSUVomSVruuGO69cEWSfq0LBaDTZl33gEmTKgdN9m0BcxJy8MOkyt9swbb1+y7L3DrrWZWZOuvD9x0E3DjjdFNEps5u0vSMg+g1mUu6zjbZ4wZUy/M2Wef4M8UumX/ve+Zp+1hhRyMqB65RB52Z2wQd3CPsxC22VGLCxdKS5fm4VkrLZsdWUxgXAZDyBtYpaVr0jIppGEengXS9mkpQtL1mw2Y5lJpmTT6i9IyCdj6tEyCtNRFFnNAldIyDySgDEkq5LJGWvUhzwrItJBGPeLTNCWLTczDGwGqsUC3Xrp4V82mtKTg0jycLaONNrJPR5auRy7QRCOqh1M06mQrbr5NlJY8siAtbZ6XJ2caaZLYqPXSFTxp6Ra20cOpCX7eSEsTpaWpaiIJqEjUJJSWFNLsD12Slkn3DVT0cB5p+bRMUmmZBGx9WmZJWmYx1nAmqk59WqaBRiNZTeBJy/SQRr2PO4/Lw5zBJdjyoMpbt166aCeetDTDhx/WPrvysQ540jKHaKIR1cMp8trRqRA33/1BaZmkeXjSaKS8JoEsJopJRebLA2zNw6mIhWktUF0pLXWjh6eFLMzDKaRZvxtVaSkqoyyihzea0lIGl0rLRlxwufZpmTaanbRMo0550jLZQDwhGnFTI0moSEvdvqezM35e+iNp6aqv9KRlU6OJRlQPp2jUyVZ/U1rmzTw8aTRqvXSFLMilRls4msDWPByoNxFPqx2kEYgnC6QdiEeERiUtk55g58k8vNGUlixMzMOHD7e/Tx5cPpgiyejhaaCZSUvAk5ZpwaUKTfcepsjDnMElVKSlbnmxPqtt0Ww+LSm4DMTDwpOWTY0mG1E9nKFRJ1tJ+LTU7UQpP3dJw4XS0uUkMelOvpkIMxt483C3YP0LNgppyd5Hds9GNg+3JS1dPEejmocnjTyZh7OI0+5021JcZOHTsglIS+/TMkfwSsv0kMYcyysto2DLPM5YsGJF/Lz0R6Wlq3x6n5ZNjSYaUT2cIq8dnQpZKi2zKDOb521kpWUzEWY28ObhycE0embeSctmU1rqBOLp6YmfjzTrt8vo4WkqLV2Zh+dJaZkkweRJSz2olJZ5H3v499eo8+gs4UnLdMjuuHWz2QLxqJSWusgbaZnXjRO+boT5zJPS0iN3yGlt9sgcee3oVMgyengWyJvSMmnk+V2kAa+0TA6m7h2yIi3ZTQfZu1C1lbyRliofmzr1sNFIy0YyD09CaZn1ojZvPi1dBuJpRIWOirTMur6o0GjKUBMUCuk8TyPNR5NCGvW8uzve9c02D3RFWrJzEF4goov+rLSM28eMHx/vehZ5Lbt+jCYaUT3i4pmTTw4+rLsuMGtWtpmxRdxOxlRpeeihwf9DDol3X1uYTBxuuy3471ppycKbhycL79PSLW65Jfg/cCDw1a+aXcuTnGktUH/729rnX/8a2GGH4PO3vx097+STa+rRm2+uT0cVrTttmJqHh/3YBRcE/zfZBNh4Y7t7f+Mbwf9p05Kv3z/+cfB/442BqVPdpduIPi0BYNddg/+nnmp+bVxk4dNSBpdKy222ASZMCD5ffLHeNRdeGPyfNAmYMsX+3rbg+9RGIy2b3Tx8v/2A9dYLvv/61+7SPv/84P9mmwV1zyN5jB4NbLFF8Pnss82vP+20mgDiH/9wl6+sQJmHH3988H+//fTT+cY3av14uOYyRX8mLQ85BFhnneDzNdfopfXNbwb/t98eGDnSTf6GDwc+9zk3aXk4g9/S8ujDO/vth62OPBItm29uv0OUNdJWWv7f/wVkR7jwShs6C+yTTwZOOKFGbriOHu4D8aQHT1q6xSGHAI8+CowdW5so6YInFNJqB9tuC8ydG7yHzTYD7rkHeOopYPfdo+etsw7w6qvAggXAjjvWp9Po0cMHDQr+n3UW8IlPAFtvbd8//PSnwMEH0+XkGt/7XvCuttyysVRFSZiHA8AddwCPPw7ssYddvhohejgLE/NwUz+7LEol4IkngBdfBHbbTe+a73wnmMtstVU2/bxK7Z7XBXgIkcljs6C9HXjhhWBccTnn/cEPgD33DIj2ZiuzvKJQAB56CHj22fq5gw7WWy+oB4sW1dYWjQxKaXnVVcAxxwDTp+unM3ZsUC7LlgHbbWeXl/4ciGfAgGB++9ZbwM4766V1ySXApz4VkJYuxog//jHoj8I5pkdu0EAzZo/EUSigussudguPvCAJn5ayTrCjA9h773j3jAOd591gg+ikgiekfSCexkEWExi+/jfTOygUAnWdDbIiLYGoCmroUOCTn6TP22CD4I9C3szDTUnLkOAoFgPSMg5aWoC99go+xzWbU8FFfik0onk4AAweXCt7XTRa9HBbn5ZxMXKkGRmcVN3UhamLjryjmQi4sA6vu27w5xLFYkASeKSL4cPty71QCExxXZrjZgnKv3Fbm/nYBAATJ8bLS39UWrLfx4wJ/nTR0uJ2Hb7rrsD667tLz8MZmmhE9fCAe6Vl3iedOgQSP+i5Vlqmiby/j6SRB3KpkepLkhg+PPo9r5NDEfJMWlLm6ny9azaCIy4a1Tw8LhpBaZkVadloaHSlJY9mmq80Wtl7JItmqw+uooe7AHv/uHOzrJ9FhKSih7uAX+PkFk00onp4wL1Py7xPOvNAWvro4ekhD6Yi/f0dhMhSaekCeSYtTZSWHumA7XtE42JaVhqNrLSUIe/zjaThScv8otHK3iN7NFKdcRWIxwX6g9KSz1ee8unXOLlFE42oHh6I3/H1B6VlI5uH5/19JI08kEt+QA/Ak5aNVjc9adlcaFTz8LhwtdjJg0/LtWvTyUNe0WxtutHGBA8PXeSJZHKBZiUt84o8+//1a5zcIke1xMPDAbzSsh7NZB7eSHlNAnkgl/r7OwjRTErLRowe3mwER96hE4gnLdLS1UKOTScP5uGrViWXh0aAV1rmF41W9h7JQqc+NFKdyat5eLMqLXnkKZ9+jZNbNNGI6uHhAHxnlaeOlILOpFiltGwk8/BmWgTYIA+7rn5AD9DopGWjRQ/3Pi3lyINPyyyC+MVpdzom7y6guwhduTK5PDQCVNFaG62PbbT8ytBMz+KRDvIwX9VFsyotG6Xd5imfWb9/DyH8m/HwYNEflZaNZB7e3wmzPEwC+/s7CNHopKU3D28u9Ffz8Dhg65lXWmaPAQOyzoFb5H3+aIJGG988kkWz1QdPWmaLrMuchV/j5BY5qiUeHjlAs/i0nDCh9nnKlOhvXmnZuMgDueQH9ACN7tNyl11qnz/5ycyy0QdPWsZD0qQlW0fYusOi0dpAFubhMmy5Ze3zAQckk5c8Q1V/hg9PJRvO0GjtQYZGIT888oNGqjPePDxb5Cmffo2TWzTRiOrh0YurrgK22w7417/Mr20W0vLGG4FPfAI47jjg8MOjv3mflo0LT1rmB42mtLzlFmDbbYHrrgu+n3EG8JnPAPvtB1x0UZY5C6AyV/ekZba46KKgrnz600HdCXH77cF4+4tfpJeXRvNpKbonj6OOCv723BP4/e/TyU/ecPXVwHbboefWW+t/GzUK+PGPgR13BP7739SzZoy8zx898os//SkYr2+4Ieuc0Mj7fMcUbFvNut32h0A8PPJUn/waJ7doMFseDw8NfPnLwZ8NGs08XJS/iROB+++nf/PRwxsXeZjA+AE9QKORloceGvyFaG8H/va37PLDwyst4yHpvmHECOCOO+qPz5wZ/GUFVz4t86C0LJWCDcf+jJNOAk46CdXubmD27Prfzzor+GsENNN8Je/jW7PhiCOCP4904M3Ds0XWZc4iT3nxiMC/GQ8PFs2itJQRS66VlmkOiv2RMGODW3ilZX7Amyo2yuQwr/CBeDx00axKS4/mQt7njybw45sHCx89PDn0R9IyT/n0a5zcoolGVA8PB2g0pWUeSEsWXmnpHm1ttc+etMwPGk1pmXd4pWU89FcyrJmUlh7NhWaar/g67NHM8ErLbJGnfGb9/j2E8G/Gw4NFoyktbaK4JmkenjT6I2HGvi9PWuYHQ4dGv+e9r8g72PJjI1WH4PspfvPFo//AKy09GgF+TPBoVuSJZHKBZiUtGwVZl7lHQ8DXEg8PFo2mtOzpoY/LiCUfPbyxwJqH95cJTCOAfS9A803i04ap0tKXdxT9tW9oNKVlf31P/RHN1Ec107N4ePDw5uHZolHy6ZEp+iED4OEhAU/g5b0j7eykj8uISH7x30jm4f1R5Zc30jIPecgj8t5X5B0saUnVsf7Y9j1oJKG0THJDzJOW/RPN9K79+ObBotnqQ7MqLbN+Fl00W33ySAQNUps9PFJCoyktRaSlicl3I5mH5/19JAH2/eTBPDwPecgj/KQrHkzNwz2iaCaCJC2wfZlXWnq4RjONlX588zBFI9WZZiUtG+UdZF3mHg0BX0s8PFg0mk9LG6VlnHMp+OjhyYJ95jwsePOQhzyimRaoWYCt5zrm4R5R+HZpjixIS4/+g2YaE3wd9mDRbPWBXetl/Wz9kbRslHx6ZIqcMzIeHimD9/eYd9Jyxoz6PANmA0BcMuCqq2qff/CDeGmpkPf34QqHHBL833RT4Mora8fPOy+T7OC004L/w4cDEyZkk4c84oQTgv+TJgGDBmWbl0aHaqLeHzcsVLjuutrnk0/OLh9p4+qra5/jjDk+EI9Hkmh00vK73w3+t7YC226baVY8coBzzgn+l0rArrvS5/z4x7XPM2YknydXyJPS8qKLap9/9rPs8pEmsiYtDzgg+L/11tnmw0MKL13w8GAxbFj0e9aDlwpDhgBPPQXceivw/e/bpRGXDJg1C7jjjoC0mTo1Xloq9Bfi4pprAuJy772BMWOC8h0wANh++2zyc9FFwC67ANOm1Qeg6c+44orgHe2+e/77irxDVX6e7KnH5z8PjBgR9BH9aTPhwAOB228HBg8GttnGPh0fiMcjSTQ6aXneecB22wXzjgEDss6NR9Y46yxgq62CPle0Sfvtbweb7VtuWb+eyjPyRFruvDNw331Adzew117x0sqaDNRF1vm84QbgX/8C9t0323x4SOFJSw8PFo1GWgLAlCnBBCIr0rJQAPbbL14aumiE9+ECw4YBRx9d+55W+YowYABw5JHZ5iGPGDw4II484kPVD4lcYfRnlErApz6VdS7SR6EAzJwZPx0fiMcjSTQ6adnRARxxRNa58MgL2tuBww+Xn9PWBhx2WDr5cYk8RQ8HgD33dJNOHp6lETBiBPCFL2SdCw8F+gkD4OGhiY6OqJKsUUiyjg77axvJV1x/UVp6ePQ3qPrarq508uHRf+CVlh5Jwr9rD4/GQJ6Uli7hSUuPJkITtUwPDwcoFKJqy0YZvCi/lrpolGcEGiuvHh4e+vCkpUfayMKnpUf/QaMrLT08+gualbT08Ggi+Jbp4cFj+PDa50YZvOIoLctld/lIGl5p6eHRnFD1tax5uPer6uECnrT0cA22H/OkpYdHYyBv5uGu0EzP4tHv0SCMjIdHimgk59Eh2trsr+3pcZePpNEoJLKHh4cZTJSWcfo7D48Q3jzcwzXYd91IG8IeHv0Zzaq09KSlRxOhiVqmh4cjsKTlmjXZ5cMEcQbZ7m53+UgaXmnp4dGcMAnEE8cdhodHCFYJ5wPxeLiAV1p6eDQe2HbrSUsPj1yiiVqmh4cjsKTlihXZ5SMteKWlh4dH1lBNrlmlpSctPVwgC6WlR3OD3XzxBLWHR2PAm4d7eOQengHw8ODRH0hL1ifcyJHZ5cMUXmnp4dGcmDix9nnKlPrfN9us9nnnnZPPj0fzIy3Scocdap/ZeuzRfPBKSw+PxkOzmod7eDQRfMv08ODBkpasSWLeccUVwHrrAVddpT73gQeA8eOBo44Cpk9PPGvO4CcTHh7Nic9/Hth/f2DjjYFbbqn//TvfAaZNA7bcEvjVr9LPn0fzIS3S8le/ArbaKhhrzzoruft4ZA9PWnp4NB6albTMs9LyuuuA0aOBn/wk65x4NAhass6Ah0fuwEYPbyR8/evAaafpDVI77wy8806+BzQKXmnp4dGcKJWAf/87IJKofmnwYODRR8W/e3iYIi3Scv31geee8/W2P4B9x5609PBoDHjz8PRxzDHAF76Q7zx65ApNtJ3g4eEIjRg9PIRJ59+IA0Uz7YB6eHjUQ9UvNWK/5ZFPpEVappG+Rz7AzlG8T0sPj8aAV1pmg7znzyNXaKKW6eHhCEOHZp0DDxG80tLDw8PDwwXSJC09+ge8ebiHR+OhWUlLD48mgm+ZHh48hgzJOgceIvjJhIeHh4eHC3jS0sM1PGnp4dF48ObhHh65h2cAPDx4eNIyv/BKSw8PDw8PF/CkpYdrsPWoXM4uHx4eHvpgNxuaSRzhxzWPJkITtUwPD0fw5uH5RTNNJjw8PDw8sgOrhPNji4cLeKWlh0fjoVnNw5vpWTz6PXxt9vDg4ZWW+YVXWnp4eHh4uIBXWnq4BjtH8YF4PDwaA81KWvpxzaOJ0EQt08PDEbzSMr/wpKWHh4eHhwt40tLDNbzS0sOj8dCsPi09PJoInrT08OAxdmzt82GHZZcPj3o00w6oh4eHh0d2OPPM2ufvfje7fHg0D370o9rnU07JLh8eHh762HTT2ufJk7PLh2vst1/t87e+lV0+PDwcoCXrDHh45A5tbcBTTwH33AMcd1zWufFg4ZWWHh4eHh4u8OlPA9dfHyhrDj4469x4NAOOOSZQ8A4ZAuy5Z9a58fDw0MG0acBNNwGrVwMzZ2adG3fYYINgLTt3LnD88VnnxsMjFjxp6eFBYbvtgj+PfMErLT08PDw8XKBQAL7whaxz4dFMKJU8OeDh0WgoFIDPfS7rXCSDvfYK/jw8GhyeAfDw8GgceF8zHh4eHh4eHh4eHh4eHh79Ap609PDwaBx4paWHh4eHh4eHh4eHh4eHR7+AZwA8PDwaB15p6eHh4eHh4eHh4eHh4eHRL9DQpOWVV16JCRMmoKOjA9OnT8djjz0mPf/mm2/G5ptvjo6ODmy99daYPXt2Sjn18PBwAk9aenh4eHh4eHh4eHh4eHj0CzQsaXnTTTfh9NNPx7nnnounnnoKU6dOxcyZM7F48WLy/IceeghHHXUUTjjhBDz99NP4zGc+g8985jN44YUXUs65h4eHNTxp6eHh4eHh4eHh4eHh4eHRL9CwpOXll1+OE088EccffzymTJmCq666CgMHDsQ111xDnv/zn/8c+++/P8444wxsscUWuOCCC7D99tvjl7/8Zco59/DwsIb3aenh4eHh4eHh4eHh4eHh0S/QknUGbNDV1YUnn3wSZ555Zt+xYrGIGTNm4OGHHyavefjhh3H66adHjs2cORO33noreX5nZyc6Ozv7vn/88ccAgI8++gjd3d0xnyB/6O7uxurVq/Hhhx+itbU16+x4ePSBrY3dK1Zklo+k4dugh0f28O3QwyN7+Hbo4ZEtfBv08Mgezd4OV/Su66vVqvLchiQtlyxZgnK5jNGjR0eOjx49Gi+//DJ5zcKFC8nzFy5cSJ5/4YUX4vzzz687PnHiRMtce3h4xIZvfx4eHh4eHh4eHh4eHh4eDY8VK1Zg2LBh0nMakrRMA2eeeWZEmVmpVPDRRx9h5MiRKDShX73ly5dj/PjxePfddzF06NCss+Ph0e/g26CHR/bw7dDDI3v4dujhkS18G/TwyB7N3g6r1SpWrFiBsWPHKs9tSNJy1KhRKJVKWLRoUeT4okWLMGbMGPKaMWPGGJ3f3t6O9vb2yLHhw4fbZ7pBMHTo0KZsFB4ejQLfBj08sodvhx4e2cO3Qw+PbOHboIdH9mjmdqhSWIZoyKgWbW1t2GGHHXD33Xf3HatUKrj77ruxyy67kNfssssukfMBYM6cOcLzPTw8PDw8PDw8PDw8PDw8PDw8PLJBQyotAeD000/Hcccdhx133BHTpk3DFVdcgVWrVuH4448HABx77LEYN24cLrzwQgDA17/+dey555647LLLcOCBB+JPf/oTnnjiCfzmN7/J8jE8PDw8PDw8PDw8PDw8PDw8PDw8ODQsaXnEEUfggw8+wDnnnIOFCxdi2223xe23394XbGfevHkoFmtC0l133RU33ngjfvCDH+Css87C5MmTceutt2KrrbbK6hFyhfb2dpx77rl1JvEeHh7pwLdBD4/s4duhh0f28O3QwyNb+Dbo4ZE9fDusoVDViTHu4eHh4eHh4eHh4eHh4eHh4eHh4ZESGtKnpYeHh4eHh4eHh4eHh4eHh4eHh0fzwpOWHh4eHh4eHh4eHh4eHh4eHh4eHrmCJy09PDw8PDw8PDw8PDw8PDw8PDw8cgVPWnp4eHh4eHh4eHh4eHh4eHh4eHjkCp609MCVV16JCRMmoKOjA9OnT8djjz2WdZY8PJoCF154IXbaaScMGTIE6623Hj7zmc/glVdeiZyzdu1anHLKKRg5ciQGDx6MQw89FIsWLYqcM2/ePBx44IEYOHAg1ltvPZxxxhno6elJ81E8PJoCF110EQqFAr7xjW/0HfNt0MMjecyfPx9f+MIXMHLkSAwYMABbb701nnjiib7fq9UqzjnnHKy//voYMGAAZsyYgddeey2SxkcffYSjjz4aQ4cOxfDhw3HCCSdg5cqVaT+Kh0dDolwu4+yzz8bEiRMxYMAAbLzxxrjgggvAxuT17dDDwy0eeOABHHTQQRg7diwKhQJuvfXWyO+u2txzzz2HPfbYAx0dHRg/fjwuueSSpB8tVXjSsp/jpptuwumnn45zzz0XTz31FKZOnYqZM2di8eLFWWfNw6Phcf/99+OUU07BI488gjlz5qC7uxv77bcfVq1a1XfON7/5Tfzzn//EzTffjPvvvx/vv/8+DjnkkL7fy+UyDjzwQHR1deGhhx7Ctddei//93//FOeeck8UjeXg0LB5//HFcffXV2GabbSLHfRv08EgWS5cuxW677YbW1lb8+9//xosvvojLLrsMI0aM6Dvnkksuwf/8z//gqquuwqOPPopBgwZh5syZWLt2bd85Rx99NObOnYs5c+bgtttuwwMPPICTTjopi0fy8Gg4XHzxxfj1r3+NX/7yl3jppZdw8cUX45JLLsEvfvGLvnN8O/TwcItVq1Zh6tSpuPLKK8nfXbS55cuXY7/99sNGG22EJ598Ej/96U9x3nnn4Te/+U3iz5caqh79GtP+f3t3HxTVdf4B/Luw7PIiigosIEGliRoVowFfCDYEoYo6qUaUqohoxpcYGAVbJZoSTY01U5JawWg0iZoG1NGAVTNogyCoCaJsgIBGbSuamoCUIPKi4W3P7w9/3Oy6LwGyvOn3M7Mzl3uec++5e+8Z4fGce8aNE5GRkdLPzc3Nws3NTWzZsqULW0X0aCovLxcARHZ2thBCiKqqKmFlZSUOHz4sxXzzzTcCgMjJyRFCCJGWliYsLCxEWVmZFLNz507Ru3dvUV9f37kXQNRD1dTUiKeeekqkp6cLf39/sWrVKiEE+yBRZ4iNjRUTJ040Wq7RaISLi4uIj4+X9lVVVQmlUikOHDgghBDi8uXLAoC4ePGiFHPixAkhk8nEd99913GNJ3pETJ8+Xbz88ss6+2bNmiXCwsKEEOyHRB0NgDhy5Ij0s7n63I4dO0Tfvn11fieNjY0VQ4cO7eAr6jwcafkYa2hogFqtRlBQkLTPwsICQUFByMnJ6cKWET2a7t69CwDo168fAECtVqOxsVGnDw4bNgweHh5SH8zJyYGXlxdUKpUUM2XKFFRXV+PSpUud2HqinisyMhLTp0/X6WsA+yBRZzh27Bh8fHwwZ84cODs7Y8yYMfjggw+k8pKSEpSVlen0wz59+mD8+PE6/dDBwQE+Pj5STFBQECwsLJCbm9t5F0PUQz333HPIyMjAtWvXAACFhYU4d+4cpk6dCoD9kKizmavP5eTk4Pnnn4dCoZBipkyZgqtXr+LOnTuddDUdS97VDaCuU1FRgebmZp0/xABApVLhypUrXdQqokeTRqNBdHQ0/Pz8MHLkSABAWVkZFAoFHBwcdGJVKhXKysqkGEN9tKWMiEw7ePAgvvrqK1y8eFGvjH2QqONdv34dO3fuxOrVq7F+/XpcvHgRK1euhEKhQEREhNSPDPUz7X7o7OysUy6Xy9GvXz/2Q6JWeO2111BdXY1hw4bB0tISzc3N2Lx5M8LCwgCA/ZCok5mrz5WVlWHw4MF6x2gp034VS0/FpCURUSeIjIxEcXExzp0719VNIXps/Pe//8WqVauQnp4Oa2vrrm4O0WNJo9HAx8cHf/7znwEAY8aMQXFxMd5//31ERER0ceuIHg+HDh1CcnIy9u/fjxEjRqCgoADR0dFwc3NjPySibo3Twx9jjo6OsLS01Fsl9fbt23BxcemiVhE9eqKiovDZZ5/h9OnTcHd3l/a7uLigoaEBVVVVOvHafdDFxcVgH20pIyLj1Go1ysvL8eyzz0Iul0MulyM7OxsJCQmQy+VQqVTsg0QdzNXVFcOHD9fZ9/TTT+Pbb78F8FM/MvX7qIuLi94ikU1NTaisrGQ/JGqFNWvW4LXXXsPcuXPh5eWF8PBwxMTEYMuWLQDYD4k6m7n63OPweyqTlo8xhUIBb29vZGRkSPs0Gg0yMjLg6+vbhS0jejQIIRAVFYUjR44gMzNTb+i+t7c3rKysdPrg1atX8e2330p90NfXF0VFRTr/YKWnp6N37956fwQSka7AwEAUFRWhoKBA+vj4+CAsLEzaZh8k6lh+fn64evWqzr5r165h4MCBAIDBgwfDxcVFpx9WV1cjNzdXpx9WVVVBrVZLMZmZmdBoNBg/fnwnXAVRz3bv3j1YWOj+6W9paQmNRgOA/ZCos5mrz/n6+uLMmTNobGyUYtLT0zF06NBHYmo4AK4e/rg7ePCgUCqVYt++feLy5cti2bJlwsHBQWeVVCJqnxUrVog+ffqIrKwsUVpaKn3u3bsnxbzyyivCw8NDZGZmiry8POHr6yt8fX2l8qamJjFy5EgxefJkUVBQIE6ePCmcnJzEunXruuKSiHo87dXDhWAfJOpoFy5cEHK5XGzevFn861//EsnJycLW1lYkJSVJMW+//bZwcHAQR48eFV9//bWYMWOGGDx4sLh//74UExwcLMaMGSNyc3PFuXPnxFNPPSXmzZvXFZdE1ONERESIAQMGiM8++0yUlJSI1NRU4ejoKNauXSvFsB8SmVdNTY3Iz88X+fn5AoD461//KvLz88XNmzeFEObpc1VVVUKlUonw8HBRXFwsDh48KGxtbcWuXbs6/Xo7CpOWJBITE4WHh4dQKBRi3Lhx4vz5813dJKJHAgCDn71790ox9+/fF6+++qro27evsLW1FS+99JIoLS3VOc6NGzfE1KlThY2NjXB0dBS///3vRWNjYydfDdGj4eGkJfsgUcc7fvy4GDlypFAqlWLYsGFi9+7dOuUajUbExcUJlUollEqlCAwMFFevXtWJ+eGHH8S8efNEr169RO/evcXixYtFTU1NZ14GUY9VXV0tVq1aJTw8PIS1tbXw9PQUr7/+uqivr5di2A+JzOv06dMG/xaMiIgQQpivzxUWFoqJEycKpVIpBgwYIN5+++3OusROIRNCiK4Z40lERERERERERESkj++0JCIiIiIiIiIiom6FSUsiIiIiIiIiIiLqVpi0JCIiIiIiIiIiom6FSUsiIiIiIiIiIiLqVpi0JCIiIiIiIiIiom6FSUsiIiIiIiIiIiLqVpi0JCIiIiIiIiIiom6FSUsiIiIiIiIiIiLqVpi0JCIiIiLqgQYNGgSZTIZFixZ1dVOIiIiIzI5JSyIiIqI2Wr58OWQyGWQyGTIzM9tU9/PPP5fqrlq1qoNaSERERETUszFpSURERNRGCxculLaTkpLaVPeTTz4xeJyukpWVJSVRs7Kyuro5REREREQAmLQkIiIiajM/Pz/86le/AgCkpKTg/v37rapXV1eHI0eOAABGjBgBb2/vDmsjEREREVFPxqQlERERUTuEh4cDAKqrq3H06NFW1UlNTUVdXZ1OfSIiIiIi0sekJREREVE7hIeHQyaTAWj9FPGWqeEWFhZYsGBBh7WNiIiIiKinY9KSiIiIqB08PT3h5+cHAPjnP/+J8vJyk/Hff/89MjIyAACTJk3CgAED9GL+8Y9/YM6cOfDw8IC1tTUcHBzg4+ODN998E3fu3GlVu9LS0rBgwQJ4enrCzs4O1tbWGDx4MEJCQrBv3z7cu3cPAHDjxg3IZDIEBARIdQMCAqT3W7Z89u3bp3eOhoYG7NixAwEBAXBycoJCoYCLiwumTZuGpKQkaDQao+1btGgRZDIZBg0aBAAoLS1FbGwsRowYAXt7+za/W9PQOzkPHTqEwMBAODk5wcbGBkOHDsXatWtRWVlp9DgvvPACZDIZXnjhBZPn27hxo3Q+Q1rKNm7cCAA4ffo0Zs6cCTc3N9jY2ODpp5/Gpk2bpBG3LdLS0jBt2jQpbvjw4diyZQsaGhpa/V1cvHgR8+bNwxNPPAFra2s88cQTWLx4Ma5cudKq+v/+978RExMDLy8v9OnTBzY2NvD09MSiRYuQl5dntN7D90Cj0WDPnj0ICAiASqWChYUFVzgnIiKithNERERE1C67d+8WAAQAsW3bNpOx8fHxUuzf//53nbLKykoxadIkqdzQx9nZWeTk5Bg9fkVFhQgMDDR5DABi7969QgghSkpKfjZWO75FSUmJGDZsmMk6EydOFD/88IPBdkZERAgAYuDAgSInJ0c4Ojrq1T99+vTPfvctTp8+LdXLyMgQCxYsMNquJ598UpSWlho8jr+/vwAg/P39TZ5vw4YN0vEMaSnbsGGD2LJli5DJZAbb8txzz4na2lqh0WjEypUrjbY5ODhYNDU1GTzXwIEDBQAREREhPvroIyGXyw0eQ6lUikOHDpm8rvj4eGFlZWW0HTKZTMTFxRmsq30PTpw4IYKCgvTqR0REmDw/ERER0cM40pKIiIionUJDQ2FtbQ1Ad1VwQ1rKe/XqhVmzZkn76+vrERQUhMzMTFhaWiI8PBwHDhzA+fPncfbsWWzevBn9+/dHeXk5pk2bhps3b+od+969ewgICJBGcnp7e2PXrl344osvkJeXhyNHjiAmJgZubm5SnQEDBqCoqAh79uyR9u3ZswdFRUU6n5kzZ0rltbW1CAwMlEbuzZw5E8eOHUNeXh4OHz4Mf39/AMC5c+fw4osvorm52ej3UVtbi5CQEPz44494/fXXkZWVhQsXLuCjjz6Cq6urye/SmLi4OCQlJWHmzJlITU2FWq1GWloapk+fDuCnkYSd4cSJE1i3bh0mTJiA/fv3Iy8vDydPnsTUqVMBAF9++SW2bNmCrVu3IiEhAVOnTkVKSgrUajWOHj2KCRMmAABOnjyJDz74wOS5CgoK8Morr8DZ2RmJiYnIzc1FdnY2YmNjoVQqUV9fj7CwMKOjJePj47FmzRo0NjZi1KhR2LlzJ06dOoW8vDwkJyfD19cXQghs2rQJCQkJJtsSGxuLU6dO4be//a3OPWi5biIiIqJW6+qsKREREVFPFhoaKo0mu3LlisGYwsJCKWbhwoU6ZevXrxcAhIODg8jLyzNY/8aNG8LV1VUAEPPnz9crj4mJkY4fGRkpNBqNwePU19eLsrIynX3ao+R+boTjH/7wByn2j3/8o165RqMRYWFhUsyOHTv0YlpGWgIQvXr1EgUFBSbP+XO02w9AvPXWWwbbNXnyZAFAyOVyUV5erhdj7pGWAERISIjeKMmmpiYxYcIEAUDY29sLa2trER0drXecuro6aSTlqFGjDJ6rpRz/P3LV0CjSzMxMaQTm2LFj9covXbokjbDcsGGDwWenublZGsHaq1cvUVlZqVP+8D0w9GwQERERtRVHWhIRERH9AgsXLpS2jY221N6vHV9bW4v33nsPALBp0yZ4e3sbrD9w4EDExcUBAA4fPqzzPsSqqirs2rULwIMRltu2bTP6vkWFQgGVStWay9JTX1+PDz/8EAAwYsQI6Z2N2mQyGXbs2IH+/fsDALZv327ymGvXrsUzzzzTrvYY4u3tjfXr1xts1+rVqwEATU1NyMnJMds5jbG1tcXu3bthaWmps9/S0hLLli0DANTU1MDJyQl/+ctfDNaPiIgAAHz99de4e/euyfO9++67cHFx0dsfEBCApUuXAnjwzsuHR1u+++67aGxshI+PDzZs2GDw2bGwsEBiYiKUSiVqa2vx6aefGm3HkCFDDD4bRERERG3FpCURERHRLzBlyhQpEZicnAwhhE65RqPB/v37AQDu7u46C99kZ2dLyajZs2ebPM/zzz8PAGhsbIRarZb2Z2ZmSovrrFy5Ui9JZi5qtRpVVVUAHiymY+w8vXv3RmhoKADg8uXLKC0tNXrMsLAws7Zx/vz5RhO22gnh69evm/W8hvzmN79Bv379DJZpJ2pnzZoFKyurn40rKSkxeq6+fftixowZRstffvllafvUqVM6ZcePHwcAhISEGP3uAMDBwQFeXl4AYDLp+7vf/a7DnkEiIiJ6vDBpSURERPQLyOVyzJ8/H8CDFbnPnTunU56RkYHvv/8ewIMknYXFT79+aY96c3V11Vu5W/szcuRIKbasrEzazs/Pl7Z//etfm/fitBQXF0vb48ePNxmrXa5dT1uvXr3g6elpnsb9v2HDhhkt004g1tTUmPW8hgwZMsRomYODQ5vjTLV5zJgxkMvlRstHjx4NhUIBACgqKpL237x5E//73/8AAOvWrTP5/MlkMul51X7+HjZq1CijZURERERtwaQlERER0S9kaoq4sanhAFBeXt6u87WMrASAiooKabu9C9i0RmVlpbTt7OxsMlZ7mrJ2PW3aCTlzsbW1NVqmnSw2tUBQZ7fFHG3+ufshl8ulpK32/TDH8/ewvn37tuuYRERERA8z/l+yRERERNQqo0ePhpeXF4qKinD48GHp/X91dXVITU0F8GB68vDhw3XqaSeivvrqK6PThB/m7u5uvsa3g6lpxK3FKcTm0977of38vfHGG5gzZ06r6tnZ2Rkt430lIiIic2HSkoiIiMgMFi5ciDVr1qCqqgrHjx/H7NmzceTIEWnRnIdHWQKQFqwBACcnp3YlIx0dHaXt0tJSDB48uB2t/3na06tv375tclqz9vRhY+917G5aRjVqNBqTcdqLIHUXt2/fNlne1NQkjbDUvh/az5+VlZXOKwiIiIiIuhqnhxMRERGZQVhYmDTKLCkpCcBPU8OtrKwwb948vTpjxoyRtr/44ot2nffZZ5+Vts+cOdPm+q0dpaed0MrNzTUZe+HCBYP1ujN7e3sAwJ07d0zGXbt2rTOa0yYFBQVoamoyWl5YWIiGhgYAuvfD09MTffr0AdD+54+IiIioozBpSURERGQGrq6uCAoKAgCkpaWhuLgYGRkZAIDg4GA4OTnp1QkKCpLeaZiQkKC38nhrBAQESNN1ExMT2/y+Rmtra2m7vr7eaJy3t7f0HsqPP/7Y6IjEmpoaHDp0CAAwfPjwDn3Ppjm1jFC9du2a0UVvKioqkJ6e3pnNapXKykppFXBD9uzZI223PKPAg6nc06ZNAwB8/vnn+OabbzqukURERERtxKQlERERkZm0TAFvbGzE3LlzpQSioanhwIPFaKKiogAAX375JWJiYkxOT759+zY+/PBDvWMsX74cAKBWqxEdHW00+dnY2Ki3+Ip2UvE///mP0XMrlUosWbIEwIMVwTdt2qQXI4RAVFSUtDhQy7X1BP7+/gCAhoYGJCYm6pU3NjZiyZIluH//fmc3rVVWr15tcJp4dnY2du/eDeBB4nns2LE65evWrYOlpSU0Gg1mz56NW7duGT1Hc3MzkpOTTcYQERERmQvfaUlERERkJi+99BLs7e1RU1ODS5cuAXiwmvKLL75otM6f/vQnZGdnIzc3F9u2bUNWVhaWLl2K0aNHw87ODnfu3MGlS5dw6tQpnDhxAl5eXlLysMWmTZuQnp6OoqIibN++HTk5OVi+fDm8vLygUChw69YtnD17FgcOHMBbb72FRYsWSXU9PDzg7u6OW7du4Z133oG7uzuGDh0qTXVXqVTS1Ok33ngDqampuH79OjZu3IiioiIsXrwYrq6uKCkpwfbt25GVlQUA8PX1xbJly8z47Xas6dOnY+DAgbh58ybi4uJQUVGBWbNmwdraGpcuXUJCQgLy8/MxYcIEnD9/vqubq+OZZ57B5cuX4e3tjXXr1mHcuHGor69HWloatm7diqamJsjlcrz33nt6db28vPDOO+8gJiYGly9fxsiRI7Fs2TJMmjQJKpUKP/74I27cuIGcnBx8+umnKC0tRVFRUZcvBkVERESPPiYtiYiIiMzExsYGs2fPxt69e6V9oaGhUCqVRusolUqkp6dj0aJFSE1NRWFhockRir1799bbZ2tri8zMTISEhODMmTNQq9VtShiuX78er776KkpKSjBjxgydsr1790pJTnt7e2RkZGDq1Km4cuUKUlJSkJKSonc8Pz8/HDt2rEetJK1QKJCUlITg4GDU1dVh69at2Lp1q1RuaWmJv/3tb6isrOx2ScvRo0cjKioKK1asMPjsKBQKfPzxxxg/frzB+tHR0bCzs0N0dDTu3r2L+Ph4xMfHG4xVKBQ6rxQgIiIi6iicHk5ERERkRhERETo/G5sars3e3h4pKSk4e/YslixZgqFDh8Le3h5yuRz9+vXD2LFjERkZibS0NKPvVHR0dER2djZSU1Mxe/ZsuLu7Q6lUwtraGp6enpgzZw6Sk5MNLgi0YsUKpKSkYPLkyXB2doZcbvz/tQcNGoTCwkJs374d/v7+6N+/P6ysrKBSqRAcHIxPPvkEZ86c6TGrhmubOHEi1Go1wsPD4ebmBisrK7i6ukrJ4JUrV3Z1E41asmQJzp49i9DQULi5uUGhUGDAgAFYuHAh8vPzMXfuXJP1ly5diuvXr+PNN9+En58fHB0dIZfLYWdnhyFDhiAkJATvv/8+vvvuOzz55JOddFVERET0OJOJ9rzxnYiIiIiIiIiIiKiDcKQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG3wqQlERERERERERERdStMWhIREREREREREVG38n+3RUmJhgmfMAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop = 0.14\n", + "IREth2_3 = 0.43\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Параметры обучения\n", + "patience = 500\n", + "\n", + "# Обучение AE2_4 с 5 скрытыми слоями: 6 5 5 5 6 нейронов\n", + "ae2_4_trained, IRE2_4, IREth2_4 = lib.create_fit_save_ae(\n", + " data,\n", + " 'out/AE2_4.h5', # путь для сохранения модели\n", + " 'out/AE2_4_ire_th.txt', # путь для сохранения порога\n", + " 1500, # количество эпох\n", + " False, # не показывать процесс обучения\n", + " patience\n", + ")\n", + "\n", + "# Построение графика ошибки реконструкции\n", + "lib.ire_plot('training', IRE2_4, IREth2_4, 'AE2_4')\n", + "\n", + "# Вывод MSE_stop и порога IREth\n", + "print('MSE_stop =', IRE2_4[-1])\n", + "print('IREth2_4 =', IREth2_4)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 972 + }, + "id": "DeVIkRp4vMN7", + "outputId": "0d24f8ba-b5a8-4af5-b829-92e960db7747" + }, + "execution_count": 33, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 6\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 6 5 5 5 6\n", + "\n", + "Epoch 1000/1500\n", + " - loss: 0.0220\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe8FNX9//H3vZcmSBFRQUSwxRp7sMUalcRoYv0qNiDB2PhKJP4SSfK1JRG7RsXYBWNNjC1KoogSNYLYsCCioPQu0uG23d8f6+6d3TszO73svp6PBw/u7k45OzvlzGc+55yabDabFQAAAAAAAAAkRG3cBQAAAAAAAAAAI4KWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAACBW06dP10UXXaTddttNnTt3Vk1NTeHf7Nmz4y5eVRozZkzhNxg8eHCk6zb+/gAAAKheBC0BAIjBEUccUQjMXHXVVZbTGQM4pf/q6urUrVs37bTTTjrttNN0//33a+3atZ7K4PZfUIGs559/Xvvss4/+8pe/aPr06a7KDwCvvPJK0blp1113db2Mq666yvO5sF+/fpbLXbdunV544QVdeumlOvzww9WrVy+1b99enTp1Ut++fXXiiSfqnnvu0bp163xsgWCtXbtWffv2LfqOdtcoAADCRNASAICUymQyWrVqlWbOnKmnnnpK5513nrbbbjs988wzcRfNkbVr12rw4MGqr6+XJPXq1UunnXaaLrroIl188cW6+OKL1aVLl5hL6Z0xEMJNP9KqX79+ic58Hjt2bNHrzz77TFOmTImpNC3OPvtsbbnlljrhhBN022236fXXX9fixYvV0NCg9evXa+7cuXruued0wQUXqF+/fnr66afjLrIkaeTIkZo7d27cxQAAQJLUJu4CAAAAZ0488UT17t278DqTyWj58uWaNGmS5s+fL0lavny5Tj31VD311FM66aSTHC/7e9/7nvr37+94+gMPPNB5wS288MIL+uabbyRJu+++u9555x1tsskmvpcLoDqsWbPGNNg3duxYV+czo6233trVuXPzzTc3ff+pp54qPJCRpM0220z9+/fX1ltvrWw2q+nTp2vKlCnKZrNavny5TjnlFP3lL3/RBRdc4KncQZg0aZLuuuuu2NYPAEApgpYAAKTE8OHDdcQRR7R6P5PJaOzYsbrwwgtVX1+vTCajCy+8UAMGDFDHjh0dLfu4446LPBvw/fffL/w9cOBAApYJMnjw4Mj7sszLZrOxrBfp89RTT2n9+vWSpE022UQbNmyQJD3xxBO69dZb1a5dO9fL3GmnnXTnnXcGUr6OHTtq4MCB+tnPfqYDDzxQtbXFjdymTZums88+W1OnTpUkDRs2TIcccoi++93vBrJ+NxoaGjR06FBlMhntsMMO6tGjh95+++3IywEAgBHNwwEASLna2loNGTJEN9xwQ+G9JUuW6Nlnn42vUA7ksyylXNNwAHDD2DT8N7/5jbbaaitJ0ooVK/TPf/4zrmJJkv73f/9XX375pe6//34dfPDBrQKWUi7D/NVXX1Xfvn0lSc3Nzbr22mujLqok6U9/+pM+/fRTSdLdd9+tDh06xFIOAACMCFoCAFAhzj///KIbzddffz3G0pTX2NhY+Nvshh4ArMyePbtwjqupqdGgQYM0cODAwuelfV1G7cYbbywEUe1sttlm+s1vflN4PW7cuDCLZWratGkaNWqUJOmss87S0UcfHXkZAAAwwx0CAAAVon379kUj5y5cuDDG0pgzDk5jDCoMGTKk1ai8Y8aMMV3G2rVrdfvtt2vAgAHaZptt1KFDB2222WbaY489NGzYMMdNGo3ryvvwww81fPhw7bHHHurevbtqamp04oknuvqO+VHZr7766sJ7V199taNR2AcPHtzq+69cuVJ//vOfddhhh6l3795q06aNampqtHLlyqJ5ly5dqoceekiDBg3SPvvso+7du6tt27bq1q2bdtllFw0ZMkQvvfSSo+8wZsyYsiPFT5w4sTCNsduCV199VWeccYa23357dejQQZtvvrkOO+ww3XnnnUWBaitmv0sps8Fh5s+fr//7v//TXnvtpW7duqlTp07aZZdd9L//+7+aM2eOo++dN378eJ1xxhnadttt1aFDB/Xq1UuHHnqoRo8eXRjpOYyBlpYvX66bbrpJRx99tLbeemt16NCh8BvuvvvuOvXUU3XLLbfoq6++crS8CRMm6IILLtDuu++u7t27q3379tp66601YMAA3XnnnYXm1KVmz55d+G7GbbfddtuZ7scTJ04M4uu78vDDDxe6Evj+97+vfv366Zxzzil8/q9//UtLly6NvFxeHHLIIYW/V69erRUrVkS27kwmo6FDh6qxsVHdu3fXrbfeGtm6AQAohz4tAQCoIMZ+ITdu3BhjScLxwgsv6LzzztPixYuL3q+vr9fKlSs1bdo0jR49Wmeeeabuu+8+x316Srkg1B//+Ec1NzcHXWzP/vvf/2rgwIGaN2+e7XS33367RowYYVr2VatWadWqVZoxY4bGjBmjo446Sn/7298sBxDxqqGhQcOGDdN9991X9H59fb3eeOMNvfHGG3rooYf00ksvqUePHoGu+9lnn9XgwYO1atWqovdnzJihGTNm6IEHHtDf//53/fjHPy77HX7+85/rkUceKXp/8eLFWrx4sd58802NHj1azzzzTKDll6TnnntOQ4YMKeo2IS//G3766af6xz/+oVtuuaUw+JaZefPm6dxzzzUNJi5atEiLFi3Syy+/rFGjRumJJ57QoYceGuRXicTDDz9c+DsfrNx33321++67a9q0aWpqatJjjz2mX/7ylzGV0LnSAH2U56A77rhDkydPliTdcMMN2mKLLSJbNwAA5RC0BACgghizK500TYxa//79dfHFF0vKZYF99tlnkqQf/OAH2mWXXYqmNWaNStKTTz6ps846q3BDX1dXp+9///vacccdtXbtWr3xxhuF7//YY4/pq6++0quvvuqob7Ybb7yxkBm5ww47qH///urYsaNmz56ttm3buvqOJ510kvbYYw9NmTJF77zzjiTr0dntRmGfOXOmfvnLX2rVqlXq3LmzDjvsMG299db65ptvWjX9X7hwYWG7bL/99tp11121xRZbqEOHDlq5cqU+/vhjTZs2TVIuE/Loo4/W5MmT1b59e1ffzc4vfvELjR07VrW1tTrggAO0yy67KJPJaPLkyZoxY4ak3OBL5557bqBNYF955RVdcMEFam5u1rbbbquDDjpIXbp00VdffaWJEyeqqalJGzZs0P/8z//ok08+0XbbbWe5rIEDBxaNRt29e3cdccQR6t69u+bNm6f//Oc/mj59un784x/rJz/5SWDf4d1339Wpp56qpqYmSbmHDwceeKD69eun9u3ba/Xq1Zo1a5Y+/vjjwsAzVqZPn64f/OAHWrRokaRcQGzffffVbrvtpk022UQLFizQ66+/rjVr1mjhwoU65phj9K9//UtHHnlkYRldunQpHKcPP/yw1qxZI0k699xz1blz51br7N27dyDbwak333xTs2bNkpTLMD/ttNMKn51zzjm6/PLLJeWaiKchaPnxxx8X/t5kk00CD+pbmTNnjn73u99Jkg477DD97Gc/i2S9AAA4lgUAAJE7/PDDs5KykrJXXnml5XT5aSRlX3vtNdtlzpgxo2j6O++8M5AyhGXQoEGF9T/00EO2086cOTO76aabFqbv379/9osvviiaprm5OXvzzTdna2trC9P97//+r+UyjduqTZs22a5du2afeeaZVtNt3LjRy9fLXnnlla63r3GbtGnTJispe/HFF2fXrFlTNF1DQ0O2ubm58PqBBx7I3nHHHdn58+dbLvvDDz/M7r///oXl/+EPf7Cc9qGHHipMN2jQINNpXnvttcI07du3z0rKfu9738tOnz69aLpMJpO97bbbirb3f/7zH8t1G6ez0rdv36J1d+rUKfvXv/41m8lkiqb75JNPsr179y5MO2TIEMtl3n///UXr/tWvftXqt1+yZEn2Rz/6UdF3DuL4OfHEEwvLOuWUU7IrVqwwnW7Dhg3ZF198MXv++eebfr527drsrrvuWljWj370o+zMmTNbTbdq1arshRdeWJiuV69e2ZUrV5ou07itv/rqK8/fMUhDhw4tlOnUU08t+mzevHlF54APP/yw7PKMx+rhhx8eUqmtHXPMMYX1//jHP45svQMGDMhKyrZr167VcRv39QEAgGw2myXTEgCACtDU1KThw4cXXnfp0kVnnHGG4/nHjRun5cuXO57+mmuuUffu3V2V0Y9rrrlGa9eulSTtuOOOevnll9W1a9eiaWprazVixAjV1NRoxIgRkqTRo0fr0ksvtc2uk3L9uj3//PM67LDDWn0WZDaiG01NTRo6dKjuvPPOVp+VZn86yZDac8899corr2iXXXbR4sWLddddd2nkyJGqq6vzXdb6+nrttNNOevXVV7XpppsWfVZTU6Phw4frzTff1FNPPSVJevzxx023tRcNDQ169tln9cMf/rDVZ7vvvrvuueceHX/88ZKkv//977r33nvVpk1xFbi5uVlXXnll4fX555+vm266qdXyttxySz377LP6/ve/X8iiDcIbb7whKbevjRkzptU2zOvQoYOOO+44HXfccaaf33LLLZo+fbqkXMbvU089ZTrIVZcuXXTXXXdp/fr1Gjt2rBYtWqS77767aECYpNqwYYP+9re/FV4b+7GUpG222UZHHHGEXn31VUm5bMubb77Z8fK/+OILDRs2zPH055xzjg444ADH05d64YUXNH78+MLrfIZr2P76178W+ri9/PLLW2W6AwCQBAQtAQBIqUwmo+XLl+u///2vrrvuOk2ZMkWS1KZNGz344IOu+ix85513XAVhLrvsssiClitXrtSTTz5ZeH3DDTe0ClgaDR8+XA888ICmTZumTCaje++9tzAyrpVTTz01sCBaUDp06KAbbrgh0GV27dpVJ510kv7yl79o0aJF+vTTT/Xd7343kGVfd911lsE2KRdYzQct8/tqEI4//njTgGXecccdp549e2rx4sVau3atpk+f3uo7//vf/9aCBQskSZ06ddJ1111nubx27drppptu0uGHHx7MF1Bu8BVJ6tixo+02tNPY2FgIcLdv31533323acDS6Nprry0MaPPoo4+mImj57LPPFrbX5ptvrh/96EetpjnnnHMKQctHH31U119/fatAtZWFCxdq9OjRjsuz//77ew5aLlq0SL/4xS8Kr4855hjT7xO0ZcuW6dJLL5Ukfec739Fvf/vb0NcJAIAXBC0BAEgJY59zVnbeeWfdfPPNZQccSZO33npL9fX1kqQePXrohBNOsJ2+trZWP/vZz/SrX/1KkvTaa6+VXYebrNSoHHvssdpss81cz7d06VJNnjxZ06dP1zfffKN169YVRlmWcv0n5k2dOjWQoGWHDh3K/i777LNP4e/8iN9BMPZnaKampkZ77bVXYfCm2bNnt/rOxgFrfvzjH6tbt262yzzssMO07bbbau7cuZ7KXKpPnz768ssv9c033+jJJ5/U6aef7noZ7777bmG07B/84Afacssty86z9dZba5dddtH06dP1ySefaNWqVbYPBJJg7Nixhb/POOMM0z5nTz31VF188cVav369lixZopdeeilx58SGhgadeuqphb5HN998c40ZMyaSdQ8fPlxff/21JOnuu++OLZscAIByCFoCAFAhttpqKz388MOmA76Uc+WVV+qqq64KvlAB+OCDDwp/9+/f31HG1CGHHFI0fzabbTVCr9F+++3nr5AhcFumTz/9VL/5zW/0r3/9y/How266BLCz8847lx2wyJj5m8+UC4KToGu5dU+dOrXwt9Osuf79+wcWtPyf//mfQnbnwIEDC4HLI4880lHwUZImTZpU+Hv+/PmOmzivXLlSkpTNZjV//vxEBy0XLlyoV155pfC6tGl43qabbqoTTzxRjz32mKRcoNNp0PLwww83HXU9SNlsVoMGDdJbb70lKdfdw+OPP66tt9461PVK0osvvqjHH39ckjRo0CBHD8MAAIgLQUsAAFLixBNPLBql9+uvv9asWbMKzbqXLFmiQw89VP/4xz8KffhVgmXLlhX+7tu3r6N5+vXrV/i7oaFBa9asUZcuXSyn32KLLTyXLyxuyvTSSy/ppz/9aSEj1an8qNB+OQl0GYOa+VGy41h3Y2Njq8+N+1ifPn0crXebbbZxNJ0Tv//97zVx4kRNnjxZ2WxWzzzzjJ555hlJ0k477aRDDz1UP/jBD3TCCSeYjt4t5QJ6eR999JE++ugj1+X45ptvvH2BiDzyyCOFgPxOO+1kG2A+55xzCkHL559/Xt98842nzOUwDBs2TE888YSkXGb42LFjdcwxx4S+3jVr1ujCCy+UlMtaN+u3FQCAJLHv6AYAACTG8OHDdeeddxb+Pf7445oyZYo+/PBD7bXXXpJyAbqBAwdq1qxZMZc2OPkBeKRcf4NOlE5XLji3ySabuC9YyJyWadmyZTr99NMLAcu+fftq1KhRevPNN7Vw4UKtX79emUxG2WxW2Wy2aMCZTCYTSFntsljDFsS6jftYx44dHc3jte9JM506ddJ//vMf3XjjjUUBdyk3MMyDDz6os846Sz179tSvf/1rbdiwodUyVq1a5bscQQaTw2BsGn722WfbTnvMMceoZ8+eknIDRRn7xY3TyJEjdddddxVejx49WgMHDoxk3VdccYXmzZsnSbrpppvUo0ePSNYLAIBXZFoCAJBye+65p15++WXtu+++WrBggdauXauhQ4c66ssxDYzBoXXr1jmap3Q6q+y0SnDfffcVAlZ77bWXXn/9ddus0qCyKyuJcR9bv369o3mc7otOtWvXTpdddpl+9atf6aOPPtLrr7+ut956S2+88UZhkKD169frxhtv1Ouvv67XXnutKLBtDNRfcskl+vOf/xxo+eL27rvv6tNPPy28vvLKK4sC8OWMHTtWF1xwQRhFc+xPf/pT0SBP119/faRlyne1UVNTo7/85S/6y1/+YjmtcVvff//9+ve//114PXny5PAKCQCAAUFLAAAqwJZbbqk77rhDJ598sqTcwCIvvvhi4gaf8MLYTNppH4LGgV7atWtX0UHLCRMmFP7+/e9/bxuwlKQ5c+aEXaTUMWaczZ8/39E8TqdzKz9w0F577aX//d//lZQLNt1xxx166KGHJElvv/22Ro8ercsuu6ww31ZbbVX4Oz/oUCUxZll6MXnyZH3++ef6zne+E1CJ3Lntttv0+9//vvD697//vX7961/HUpZsNqu3337b8fQLFiwoBM4BAIgSQUsAACrESSedpEMOOUT//e9/JeVuiishaGkcdXrKlClqbm5WXV2d7Tz5AS7y88fRfDmqdRr7Miw3KE1zc3Nh/0CLvffeuxD8dRrMmTJlSphFKrLPPvvowQcfVF1dne6//35JuX4ajUFLY/+Ob731VtnBp5yKs+l/XkNDQ2HwGCk38FO5Ed7zvvjiC61YsUJSLvD5pz/9KYwi2rr33nt16aWXFl4PHz5cf/jDHyIvBwAAaUOflgAAVBDjCOBTp07V888/H19hAnLwwQerffv2knL9N7744ou202cymUJGmiQdddRRoZbPSocOHQp/mw3+EpTa2pbqXLmmzc8++2xFZuH5dcQRRxT+fvHFF8v2D/nmm2/GkrH6k5/8pPD3kiVLij475JBDCoG8+fPn65///Gcg64xqP7bz4osv6uuvv5YktWnTRq+//romT57s6N9vf/vbwnL++te/BtaPq1OPPPJIURPwn//857r11lsjLUPexIkTC33blvt3+OGHF+a78soriz4DACAqBC0BAKggRx99tA4++ODC6z/+8Y8xliYY3bp10+mnn154/f/+3/+z7Zfxzjvv1McffywpF9D7xS9+EXoZzWy++eaFv8NsWrn99tsX/rYLUi9btqwo2wstfvjDH2rrrbeWlBuUxxjoKtXQ0FCU4ehXfX190UBAdvKDqEi5LiGM2rdvr1/+8peF1xdddJGr/a40CJoX1X5sx9g0/Jhjjmn13e0MHDiwENifN29epH39Pv300xo8eHAh0Ddw4EDde++9icheBQAgDQhaAgBQYa644orC3++8807RAAppdcUVVxQGS/n88881YMAAffnll0XTZDIZ/fnPf9aIESMK71188cWtRmOOyh577FH4++WXXw5kdGczJ5xwQuHvUaNG6ZFHHmk1zfvvv6/DDz9c8+bNczwCezVp06ZNUZbyXXfdpd/85jdqaGgomm7ZsmU65ZRT9Pbbbxeyf/1atGiR+vTpo8suu0zvvvuu5XTjx48vGnjmRz/6UatpfvWrX2n33XeXlAsw7r///vr73/9umV24fPly3Xvvvdp333114403mk5j3I///ve/O/pOY8aMUU1NTeGfsY9Zt5YvX65x48YVXp911lmu5t9666115JFHFl777RvTqX//+98aOHCgmpubJUk//elP9fDDDxdlRgMAAHv0aQkAQIUZMGCADjjggELffH/4wx/0wx/+0HaecePGafny5Y7X0bFjR91www2+yunGDjvsoPvvv19nnXWWmpubNWnSJO2888469NBDtcMOO2jt2rVFoyxL0oEHHhhpGUv1799fffr00bx587Ro0SLtsssuOvbYY9WjR49CptX3vve9oixSLwYNGqSbb75Zn3/+uerr63XOOefo2muv1V577aUOHTrok08+KQTD9tprLw0YMCDW7ZJUQ4cO1YsvvqjnnntOknTDDTfogQce0BFHHKHu3btr/vz5eu2117Rx40Ztv/32+ulPf1po5us3ELVy5UrdfPPNuvnmm9W9e3fts88+6t27tzp06KClS5fqo48+KgrSf+c739Hw4cNbLWfTTTfV888/r6OPPlpfffWVFi9erP/5n/9Rjx49dOCBB6pnz57KZrNasWKFPv30U33xxReFgKZVNwqnnHKK7rnnHkm5YO57772nfffdVx07dixMc+GFF2qHHXbwtQ2sPPbYY4Vm6Z06ddKJJ57oehlnnXVWoc/Sp59+WnfddVfRiPFGX3zxhYYNG+Zq+SNHjlTv3r0Lr5cvX66TTz65EPSuq6vTFltsUZQJa+ecc84p6qMUAIBqRdASAIAKdMUVVxQG4Xnrrbc0YcIE/eAHP7Cc/p133tE777zjePldu3aNPPB1+umnq1OnTho6dKiWLFmipqYmvfbaa6bNPQcOHKj777+/qD++qNXW1uquu+7SKaecooaGBi1evFgPP/xw0TSDBg3yHbRs3769/vnPf+pHP/pRIbA1ffp0TZ8+vWi6Qw45RE8++aTuu+8+X+urVDU1NXryySc1ePBgPfHEE5Kkr7/+Wv/4xz+Kptt11131zDPPFP2W5UZst9O2bVu1b99e9fX1kqQVK1YUjQhf6ogjjtDjjz9umTG7/fbb691339UFF1ygp556StlsVsuXL9cLL7xgucxu3bpZDuJ0zDHHaODAgYWBcN5+++1WgxUdf/zxoQUtjZmRJ554oqdM4VNOOUUXXXSRNm7cqHXr1umpp57S4MGDTadduHChRo8e7Wr5Q4cOLQparl27Vhs2bCi8bm5uLgyg5MT+++9P0BIAANE8HACAinTcccdp//33L7y+5pprYixNcI4//njNnDlTf/7zn3XMMcdo6623Vrt27dS1a1ftuuuuuuiiizR58mQ99thjRZlgcZb33Xff1fnnn6/dd99dnTt3DqU/u+985zv64IMPdO2112r//fdX586d1b59e/Xt21fHH3+8HnvsMf3nP/8pCqygtfbt2+vxxx/XSy+9pNNOO03bbLON2rVrp6222kqHHHKI7rjjDr3zzjvaeeedCyNSS3I8krWZ3r176+uvv9bzzz+v//f//p+OOuoobbvtttpkk01UV1enbt26aa+99tLQoUM1fvx4vfbaa+rZs6ftMrt3766//e1v+uijj/Tb3/5WBx98sHr16qV27dqpQ4cO6tmzp77//e/rkksu0fPPP69FixZp0KBBlst79NFH9eijj+r444/XNttsE9nDgE8++UTvv/9+4bXbpuF5Xbp0KepGYcyYMX6LBgAAIlCTZQg4AAAAwJVDDjlEb731liRp8uTJZMYBAAAEjKAlAAAA4MKcOXO0ww47qLm5We3atdOqVati7YoAAACgEtE8HAAAAHAom81q+PDhhVGhTzrpJAKWAAAAISBoCQAAACg3gNWf//xnLV++3PTz2bNn66STTiqMMF5XV6fLLrssyiICAABUDUYPBwAAACTNnTtXf/jDH3TZZZfpu9/9rnbZZRd17dpVa9eu1WeffaYPPvigkGEpSb///e+LBrwCAABAcAhaAgAAAAZNTU364IMP9MEHH5h+vskmm+iaa64hyxKhGzdunMaNG+drGZtvvrmuvvrqgEoEAEB0GIgHAAAAkLRy5Uo999xzevXVVzVt2jQtW7ZMy5cvV3Nzs7p3766dd95ZP/jBD/Tzn/9cvXr1iru4qAJXXXWV74Bj3759NXv27GAKBABAhMi0dCiTyWjhwoXq3Lmzampq4i4OAAAAAlZbW6uTTjpJJ510UtlpV69eHUGJUO3q6+t9LyObzbK/AgASI5vNas2aNdp6661VW2s/1A6Zlg7Nnz9fffr0ibsYAAAAAAAAQKrNmzdP22yzje00ZFo61LlzZ0m5jdqlS5eYSxO8xsZGvfzyyzr22GPVtm3buIsDVB2OQSB+HIdA/DgOgXhxDALxq/TjcPXq1erTp08hzmaHoKVD+SbhXbp0qdigZceOHdWlS5eKPCiApOMYBOLHcQjEj+MQiBfHIBC/ajkOnXS9aN94HAAAAAAAAAAiRtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCht4i5ANchms2psbFQmk4m7KJYaGxvVpk0bbdy4Uc3NzXEXp+LV1dWpbdu2cRcDAAAAAAAgkVIbtBw9erRuvPFGLV68WHvttZfuuOMO9e/f33L6lStX6ne/+52efvpprVixQn379tVtt92m4447LrQyNjQ0aOnSpVq/fn3iA4HZbFY9e/bUvHnzVFNTE3dxqkL79u3Vo0cPdenSJe6iAAAAAAAAJEoqg5ZPPvmkRowYobvvvlsHHHCAbrvtNg0YMEAzZszQlltu2Wr6hoYGHXPMMdpyyy311FNPqXfv3pozZ466desWWhnXr1+vefPmqa6uTptttpk22WQT1dXVJTYgmMlktHbtWm266aaqraXXgDDlM29XrVqlBQsWSBKBSwAAAAAAAINUBi1vueUWnXfeeRoyZIgk6e6779aLL76oBx98UJdffnmr6R988EGtWLFCb731VqFJbr9+/UIt4/Lly9W2bVv17dtXdXV1oa4rCJlMRg0NDerQoQNBywhssskm6ty5s+bPn6/ly5cTtAQAAAAAADBIXdCyoaFB7733nkaOHFl4r7a2VkcffbQmTZpkOs/zzz+vgw46SBdffLGee+45bbHFFjrzzDP1m9/8xjKgWF9fr/r6+sLr1atXS8r1/djY2GhbxqamJq1du1a9evVSTU1NovuyzMtms4X/01DeStG5c2ctXLhQGzZsUJs2qTscEaD8eaXc+QVAeDgOgfhxHALx4hgE4lfpx6Gb75W6KMny5cvV3Nysrbbaquj9rbbaSp999pnpPF9++aVeffVVnXXWWRo3bpxmzpypiy66SI2NjbryyitN5xk1apSuvvrqVu+//PLL6tixo20Z27Rpo549e6qxsbEQ7EyLNWvWxF2EqtLQ0KANGzbo1VdfVVNTU9zFQQKMHz8+7iIAVY/jEIgfxyEQL45BIH6VehyuX7/e8bSpC1p6kclktOWWW+ree+9VXV2d9ttvPy1YsEA33nijZdBy5MiRGjFiROH16tWr1adPHx177LFlm/Ju3LhR8+bN06abbqoOHToE+l3Cks1mtWbNGnXu3Dmx/W5Woo0bN2qTTTbRYYcdlpp9BeFobGzU+PHjdcwxxzCyPBATjkMgfhyHQLw4BoH4Vfpx6Ca5L3VByx49eqiurk5Lliwpen/JkiXq2bOn6Ty9evVS27Zti5qC77rrrlq8eLEaGhrUrl27VvO0b99e7du3b/V+27Zty+40zc3NqqmpUW1tbWr6h8w3Cc+XG9Gora1VTU2No/0K1YF9AYgfxyEQP45DIF4cg0D8KvU4dPOdUhedateunfbbbz9NmDCh8F4mk9GECRN00EEHmc5zyCGHaObMmUV9NX7++efq1auXacASAAAAAAAAQHxSF7SUpBEjRui+++7T2LFjNX36dF144YVat25dYTTxc889t2igngsvvFArVqzQ8OHD9fnnn+vFF1/Utddeq4svvjiurwAAAAAAAADAQiqDlqeffrpuuukmXXHFFdp77701depU/fvf/y4MzjN37lwtWrSoMH2fPn300ksv6Z133tGee+6pSy65RMOHD9fll18e11fAt/r166eamhqNGTOm8N6YMWNUU1NT9K+2tlZdunTRPvvso5EjR2rZsmWWyyyd1+rfxIkTw/+CAAAAAAAAcC11fVrmDRs2TMOGDTP9zCwYddBBB2ny5MkhlwpB6tSpk0499VRJuX5C58yZo0mTJmnq1Kl66KGH9MYbb2innXaynH/AgAGW/ZxKsv0MAAAAAAAA8Ult0BKVr0ePHkUZmJI0bdo0HX744VqyZIl++ctf6sUXX7Sc//LLL9cRRxwRbiEBAAAAAAAQuFQ2D0f12n333TVixAhJ0vjx41VfXx9ziQAAAAAAABA0gpZInT333FOS1NjYqBUrVsRcGgAAAAAAAASNoCVSZ/Xq1ZKkuro69ejRI+bSAAAAAAAAIGgELZE6+X4sf/jDH6pt27YxlwYAAAAAAABBYyCeuOy/v7R4cdylKKiR1CWbVU1NTfmJe/aU3n039DIZ5UcPv/fee/XYY4+pb9++uv32223nOfLIIy0/69q1q1auXBlwKQEAAAAAABAEgpZxWbxYWrAg7lIU1Hz7L0nmzJljGkTt37+/Xn75ZXXt2tV2/gEDBqhnz56mn3Xs2DGQMgIAAAAAACB4BC3jYhFMi0tWUvbbTMuywcuIyt6pUyedeuqpkqT6+npNnz5dH374oaZMmaLzzz9fTzzxhO38l19+uY444ogISgoAAAAAAIAgEbSMS8TNq8vJZjJavXq1unTpopraZHR12qNHD40ZM6bovaefflqnn366nnzySR122GG66KKL4ikcAAAAAAAAQpOM6BTg0Mknn6zLL79cknTFFVdo1apVMZcIAAAAAAAAQSNoidQZOXKkevXqpa+//lq33HJL3MUBAAAAAABAwAhaInU6duyo//u//5Mk3Xbbbfrmm29iLhEAAAAAAACCRJ+WSKWhQ4fq5ptv1qxZs3TTTTfpT3/6U6tprrvuulZ9YhqdeeaZOvbYY0MsJQAAAAAAALwgaIlUatu2rf74xz9q4MCBuuOOOzRixAhtvvnmRdO89NJLtsvYe++9CVoCAAAAAAAkEEFLxGr27Nmt3hs8eLAGDx5cdt4zzjhDZ5xxRqv3s9lsACUDAAAAAABAXOjTEgAAAAAAAECiELQEAAAAAAAAkCgELQEAAAAAAAAkCkFLAAAAAAAAAIlC0BIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQUsAAAAAAAAAiULQEgAAAAAAAECiELQEAAAAAAAAkCgELRGrfv36qaamRmPGjCm8N2bMGNXU1BT9q62tVZcuXbTPPvto5MiRWrZsmeUyS+e1+jdx4kRXZc2Xa/Dgwd6+LAAAAAAAABxpE3cBACudOnXSqaeeKklqbm7WnDlzNGnSJE2dOlUPPfSQ3njjDe20006W8w8YMEA9e/a0/Lz0s5qaGklSNpsNoPQAAAAAAADwiqAlEqtHjx5FGZiSNG3aNB1++OFasmSJfvnLX+rFF1+0nP/yyy/XEUccEW4hAQAAAAAAEDiahyNVdt99d40YMUKSNH78eNXX18dcIgAAAAAAAASNoCVSZ88995QkNTY2asWKFb6Xd9VVVxWahkut+8ScPXt2q3nWrVunkSNHascdd1T79u3Vs2dPDRo0SAsWLPBdHgAAAAAAgGpH83CkzurVqyVJdXV16tGjh+/l7b333ho0aJDGjh0rSRo0aFDR55tuumnR61WrVunggw/W3Llzdeihh2qPPfbQpEmT9PDDD+s///mPPvzwQ3Xt2tV3uQAAAAAAAKoVQUukTr4fyx/+8Idq27at7+WdeOKJOvHEEwtBy9J+NEs9++yzGjBggN544w116dJFkvTNN9/oqKOO0tSpU3XXXXdp5MiRvssFAAAAAABQrQhaxmT//ffX4sWL4y5GkWw2W9RM2krPnj317rvvRlCiFvnRw++991499thj6tu3r26//XbbeY488kjLz7p27aqVK1d6KkunTp300EMPFQKWkrTZZpvp8ssv1xlnnKFXXnmFoCUAAAAAAIAPBC1jsnjxYvo/LGPOnDmmQdT+/fvr5ZdfLtsEe8CAAerZs6fpZx07dvRcrv3331+9evVq9f6uu+4qSfyuAAAAAAAAPhG0jIlVMC1ObjIto9CpUyedeuqpkqT6+npNnz5dH374oaZMmaLzzz9fTzzxhO38l19+uY444ojAy7Xtttuavp/PvNy4cWPg6wQAAAAAAKgmBC1jEnXz6nIymYxWr16tLl26qLY2GYPK9+jRo1X/kk8//bROP/10PfnkkzrssMN00UUXRV6upGwfAAAAAACASkX0Baly8skn6/LLL5ckXXHFFVq1alXMJQIAAAAAAEDQCFoidUaOHKlevXrp66+/1i233BLYcvMjkTc1NQW2TAAAAAAAALhH0BKp07FjR/3f//2fJOm2227TN998E8hyt9lmG0nStGnTAlkeAAAAAAAAvKFPS6TS0KFDdfPNN2vWrFm66aab9Kc//anVNNddd12rPjGNzjzzTB177LGF16eccopuuukmHX300TrqqKPUuXNnSdL111+vzTffPPDvAAAAAAAAAHMELZFKbdu21R//+EcNHDhQd9xxh0aMGNEqsPjSSy/ZLmPvvfcuClr+4Q9/UG1trZ5++mk9++yzamhokCT9/ve/J2gJAAAAAAAQIYKWiNXs2bNbvTd48GANHjy47LxnnHGGzjjjjFbvZ7NZT2Xp0KGDrr/+el1//fWmn5crV79+/TyvGwAAAAAAAC3o0xIAAAAAAABAohC0BAAAAAAAAJAoBC0BAAAAAAAAJApBSwAAAAAAAACJQtASAAAAAAAAQKIQtAQAAAAAAACQKAQtAQAAAAAAACQKQcsQZbPZuIuAhGMfAQAAAAAAaI2gZQhqa3Obtbm5OeaSIOny+0h+nwEAAAAAAABBy1C0bdtWbdu21dq1a+MuChJuw4YNqqurU9u2beMuCgAAAAAAQGIQtAxBTU2NOnfurFWrVmnDhg1xFwcJ1dzcrFWrVqljx46qqamJuzgAAAAAAACJ0SbuAlSqHj16aMOGDZo7d666dOmizp07q66uLrHBqUwmo4aGBm3cuJGmyiHLZrOqr6/XihUrlMlktOWWW8ZdJAAAAAAAgEQhaBmSuro69enTR8uXL9eaNWu0cuXKuItkK5vNasOGDdpkk00SG1itNJ06dVLPnj3Vrl27uIsCAAAAAACQKAQtQ1RXV6etttpKW265pRobG5XJZOIukqXGxka9/vrrOuyww+hfMQJt2rRRmzYcfgAAAAAAAGaImkSgpqYm8dl0dXV1ampqUocOHQhaAgAAAAAAIFZ0XggAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBESXXQcvTo0erXr586dOigAw44QFOmTLGcdsyYMaqpqSn616FDhwhLCwAAAAAAAMCJ1AYtn3zySY0YMUJXXnml3n//fe21114aMGCAli5dajlPly5dtGjRosK/OXPmRFhiAAAAAAAAAE6kNmh5yy236LzzztOQIUO022676e6771bHjh314IMPWs5TU1Ojnj17Fv5ttdVWEZYYAAAAAAAAgBNt4i6AFw0NDXrvvfc0cuTIwnu1tbU6+uijNWnSJMv51q5dq759+yqTyWjffffVtddeq91339102vr6etXX1xder169WpLU2NioxsbGgL5JcuS/UyV+NyANOAaB+HEcAvHjOATixTEIxK/Sj0M336smm81mQyxLKBYuXKjevXvrrbfe0kEHHVR4/9e//rX+85//6O233241z6RJk/TFF19ozz331KpVq3TTTTfp9ddf17Rp07TNNtu0mv6qq67S1Vdf3er9xx57TB07dgz2CwEAAAAAAAAVbv369TrzzDO1atUqdenSxXbaVGZaenHQQQcVBTgPPvhg7brrrrrnnnv0hz/8odX0I0eO1IgRIwqvV69erT59+ujYY48tu1HTqLGxUePHj9cxxxyjtm3bxl0coOpwDALx4zgE4sdxCMSLYxCIX6Ufh/mWzE6kMmjZo0cP1dXVacmSJUXvL1myRD179nS0jLZt22qfffbRzJkzTT9v37692rdvbzpfJe40eZX+/YCk4xgE4sdxCMSP4xCIF8cgEL9KPQ7dfKdUDsTTrl077bfffpowYULhvUwmowkTJhRlU9ppbm7Wxx9/rF69eoVVTAAAAAAAAAAepDLTUpJGjBihQYMGaf/991f//v112223ad26dRoyZIgk6dxzz1Xv3r01atQoSdI111yjAw88UDvuuKNWrlypG2+8UXPmzNHQoUPj/BoAAAAAAAAASqQ2aHn66adr2bJluuKKK7R48WLtvffe+ve//62tttpKkjR37lzV1rYkkn7zzTc677zztHjxYm222Wbab7/99NZbb2m33XaL6ysAAAAAAAAAMJHaoKUkDRs2TMOGDTP9bOLEiUWvb731Vt16660RlAoAAAAAAACAH6ns0xIAAAAAAABA5SJoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWgJAAAAAAAAIFEIWgIAAAAAAABIFIKWAAAAAAAAABKFoCUAAAAAAACARCFoCQAAAAAAACBRCFoCAAAAAAAASBSClgAAAAAAAAAShaAlAAAAAAAAgEQhaAkAAAAAAAAgUQhaAgAAAAAAAEgUgpYAAAAAAAAAEoWgJQAAAAAAAIBEIWiJ6rNmjTR5spTNxl0SAAAAAKheGzdK//2v1NQUd0kAJFBNNkvkxonVq1era9euWrVqlbp06RJ3cQLX2NioXXfdVRs3boy7KOFbsiR3UezSRercOe7SAAUbN25Uhw4d4i4GUNU4DoH4cRwC8Yr0GFy+XKqvlzp1krp1i2adQAps3LhRffv21XvvvRd3UQLnJr7WJqIyIQVWrlypr7/+Ou5iRGf16tw/AAAAAEB81q3L/QNQwAM8gpYw6NatW+UfFE1NuUzLvN694ysLUILMEiB+HIdA/DgOgXhFegwuWNDyN/dmQMHGjRu11VZbxV2M2BG0RMHNN9+s4447Tm3bto27KOGZMUPaZZeW1/Pnx1cWwKCxsVHjxo2r/GMQSDCOQyB+HIdAvCI/BmtqWv7m3gyQVHwcVjsG4gEAAAAAAACQKAQtUV0YdwoAAAAAACDxCFoCAAAAAAAASJRUBy1Hjx6tfv36qUOHDjrggAM0ZcoUR/M98cQTqqmp0YknnhhuAZE8ZFoCAAAAAAAkXmqDlk8++aRGjBihK6+8Uu+//7722msvDRgwQEuXLrWdb/bs2brssst06KGHRlRSAAAAAAAAAG6kNmh5yy236LzzztOQIUO022676e6771bHjh314IMPWs7T3Nyss846S1dffbW23377CEsLAAAAAAAAwKk2cRfAi4aGBr333nsaOXJk4b3a2lodffTRmjRpkuV811xzjbbcckv9/Oc/1xtvvGG7jvr6etXX1xder169WlJu6PnGxkaf3yB58t+pEr9bkYYGtTW8rPjvi9SommMQSDCOQyB+HIdAvCI9BrNZ7s0AE5V+LXTzvVIZtFy+fLmam5u11VZbFb2/1VZb6bPPPjOd580339QDDzygqVOnOlrHqFGjdPXVV7d6/+WXX1bHjh1dlzktxo8fH3cRQtV53jwdZXg9bty42MoCmKn0YxBIA45DIH4ch0C8IjkGm5v1U8NL7s2AYpV6LVy/fr3jaVMZtHRrzZo1Ouecc3TfffepR48ejuYZOXKkRowYUXi9evVq9enTR8cee6y6dOkSVlFj09jYqPHjx+uYY45R27Zty8+QVtOmFb087rjjYioIUKxqjkEgwTgOgfhxHALxivQYbGoqesm9GZBT6dfCfEtmJ1IZtOzRo4fq6uq0ZMmSoveXLFminj17tpp+1qxZmj17tk444YTCe5lMRpLUpk0bzZgxQzvssEPRPO3bt1f79u1bLatt27YVudPkVfr3U8l3q+jvilSq+GMQSAGOQyB+HIdAvCI5BrPZVusE0KJSr4VuvlMqB+Jp166d9ttvP02YMKHwXiaT0YQJE3TQQQe1mn6XXXbRxx9/rKlTpxb+/eQnP9GRRx6pqVOnqk+fPlEWH3EquTACAAAAAGLAvRmAMlKZaSlJI0aM0KBBg7T//vurf//+uu2227Ru3ToNGTJEknTuueeqd+/eGjVqlDp06KA99tijaP5u3bpJUqv3UeG4MAIAAABA/L5t/QgAVlIbtDz99NO1bNkyXXHFFVq8eLH23ntv/fvf/y4MzjN37lzV1qYykRRhImgJAAAAAPHj3gxAGakNWkrSsGHDNGzYMNPPJk6caDvvmDFjgi8QAAAAAAAoj0xLAGWQiggAAAAAAKJFpiWAMghaorpwYUyuL76Qli+PuxQAAOTMnCktWxZ3KQCgcpFpCaAMgpYA4jd+vPSd70jbbSetXBl3aQAA1e4//5F22knq148HagAQFhJKAJRB0BLVhQtjMv3oR7n/166Vbrst1qIAAKCf/jT3//r10vXXx1sWAKhUZFoCKIOgJaoLF8Zkam5u+buhIb5yAAAg5R6i5dXXx1cOAKhkJJQAKIOgJaoLF0YAAAAAiB8JJQDKIGiJ6sKFEQAAAADiR0IJgDIIWqK6cGEEAAAAgPiRUAKgDIKWqC4ELQEAAAAgftybASiDoCWqC0/zAAAAACB+3JsBKIOgJaoLT/OSj98IAAAAqHzU+wGUQdAS1YWnedbWr5c+/TTuUgAAAACoBtybASiDoCWqC0/zzGUy0r77SrvvLt19d9ylAQAgOag7AEA4OL8CKIOgJaoLT/PMvfeeNGNG7u8LL4y3LAAAAAAqH/dmAMogaInqwtM8c1QYAABoUVMTdwkAoPJxDwKgDIKWqC5cGM3VcioAAAAAECESSgCUQaQC1YULo7kkBS35jQAAAIDKR0IJgDISFKkAIkBAzBzN4AAAAABEiXszAGUQtER14WmeuSRlWgIAAACofNybASiDSAWqC0/zzBG0BAAAABAl7s0AlEGkAtWFp3nmaB4OAAAAIErcmwEog6AlqgtP88yRaQmvmpuladM4tgAAACrdkiW5f0Gh/ohSmQz3FihCpALVhad5QLDOOkvaYw9p+PC4SwIA4eDGCQCkWbOkPn1y/774Iphlcm+GUmefnbu3GDYs7pIgIQhaorpw42EuSRUGfqN0efLJ3P933BFvOQAgSHSbAgDFLr5YamzM/bvggmCWSb0fpR5/PPf/XXfFWw4kBkFLVJckBeeShAoDAAAAACurV7f8vXZtMMssvTfjngRACYKWqC5cCM0RzAUAAADgRFDZ6KX3ZtyrAShB0BLVhQuhObYLAAAAgCiRaQmgDIKWqC5kFJpjuwAAAACIEpmWAMogaInqwoXQHNsFAAAAgJUw7hdKEydIpABQgqAlqgsXQnNJ2i4EUAEAAIDkok9LABEhaInqwoXQHNsFAAAAQJTo0xJAGQQtUV2SlFHoVjYrzZghNTcHv+w0bxejOXOk9evjLgWSYNYsqaEh7lIAqATcRAPBWLdOmjs37lIgSci0hBG/P0wQtER1SfOJ8He/k3bZRTrllOCXnebtkvfss1K/frltRLCqut11l7TjjtLBB1fGvg0gekE1fQSQs369tMMOubraSy/FXRokBZmWMKqURBoEiqAlqkuaT4SjRuX+f+654Jed5u2Sd9JJuf/nzZOefjresiBeF1+c+/+996TPP4+3LAAAQHrwQWnJklxQ6oc/jLs08MIYUKRPS4QhjBaFSD2ClqguXAjNVdp2qa+PuwRIisbGuEsAAADovif9wghakmkJo0pIpEHgCFqiunAhNFdpFwia9UUjDccTT2wBAACSiUxLGFXaPSkCQdAS1YUTobkkVRCSVBbYS8NvRdASAAAgmci0hBH1dpggaInqwoXQXKUFc8m0jEYa9ps0lBEAAKAakWkJI+rtMEHQEtWFE6G5SqsgELSMRhr2G455AADil4Y6A6JHpiWMyLSECYKWqC5cCM1RYYAXadhPCFoCAAD4F0a9j0xLGFFvhwmClqgulXIiDPqCXrq8tG8nMi2jkYb9hCe2APziJhoAijF6OMJAvR0mCFqiulTKhTDo71FaYeCCASfScDyxLwP2FiyQNm6MuxTJw8MvAAgfQUsYpSEhApEjaInqUiknwrAzLeMM9FBZSY80HE9pKCMQlxdekPr0kXbeWWpoiLs0AIAko3k4wka9HSYIWqK6VMqFkExLe2TIRCMNxxOVH8DaCSfkjuO5c6W//z3u0gCoZGmoM8C5sJqHU2+rbmm/B0UoCFqiulRKhSnoC3rpdmlqCnb5USNoGY00VCzTUEYgCWgiDgCwQ6Ylwka9HSYIWqK6VMqJkExLewQto5GGimXa92UAACpBGuoMiB59WsKIejtMELREdamUC2El92mJ9EjDQwD2ZQAAgGAFlSBApiWM0nBvgcgRtER1qZQTIZmWSII0VCwr5ZgHAACoNGRawoh6O0wQtER1qZQLIUFLezQPj0Yajqe078sAAFSCNNQZED0yLWFEvR0mCFqiulTK05uwm4fHORAPlZX0SMPxlIYyAkg2rksAEA4yLWFEvR0mCFqiulTKhZBMS3tkWkYjDccTlR8AXnAdAYBijB6OsKX9HhShIGiJ6lIpAQwG4rHHzWY00nA8xZk1DKQJ501Uk2xWmjvXe32quVmaPz/YMjm1cKHU2BjPulHdjMdLUNcMMi1hlIZ7C0SOoCWqS6VcCMm0RBKk4XgiaAkAKHXJJVLfvtLFF7ufN5uVvv99qU8f6YEHgi+bnaeflrbZRtpzT+pqiBejhyMMBC1hgqAlqkulXAiDPqGTaQkv0vB0PO37MgAgeHfemfv/L39xP++MGdLkybm/hw4NrkxOnHJK7lr72WfSSy9Fu26/klhHQPzSUJdEdKi3wwRBS1SXSnl6E3amJdlpcCINT8fZlwEAQaqvj7sEOevXx10CwL801CURnUq5V0egCFqiulTKhbCS+7SslN+oGqTh6ThPbAEAQUrKtS4p5QD8SENdEtGh3g4TBC1RXSrl6Q19WtqjeXg0SvfDJB5fZFoCACpREq+5qGyMHo6wcV6DCYKWqC6VciGs5EzLIBC0jEYaKpoELQEAQUrKtY6be8QprNHD2a+rG78/TBC0RHWplBMhmZb2CFpGIw1NetK+LwNR4bxpLYnnNsQnKXXJpJQD8CMND8ARHertMEHQEtWlUi6EYWdakp0GJ2geDlSOSrk+BoUgLqwk5VhJ4jXXTlK2G5IlDQ/AEZ20ndcQCYKWqC6VciIk0xJJkIaKJvsyACBISbnWJaUcTqWtvGiNPi0RNurtMEHQEtWlUi6E9GkZvtWrpTVr4i5FsqWhopmkTMtvvpHWr4+7FIjTwoXJPE4AOJeUY7hSHsRXo7ReC4xlDqtPyzRuFwSH8xpMELREdamUC2HQJ/QkZVoG8Rv5XcasWdLWW0u9e0sLFvgvT6VKQ+fpSQlafvxxbn/aZhvp66/jLg3icNVVuX3g3HPjLgkAP5JyrUtKOeDODTfkrgWnnhp3SZIhDQ/AER3OazBB0BLVpVJOhPRpac/v9jn/fGndulym5aWXBlOmSpSGimZSsoZ/9jNpw4ZctuXvfx93aRCHq6/O/f/II/GWA4A/SakjVUqdttr85je5/59+Ot5y+EWmJcKQlHo7EoWgJapLGoIsTtCnpT2/22fp0pa/V6zwt6xKlobjKSk3l8Z9avHi+MoBWGHgGcCZpNSR0ha0TGIdIW5sk3TUJRGdtJ3XEAmClqgulfI0jz4t7aX1d02bNBxPSdmXO3Ro+XvjxvjKAQAo5vbalZSHYUm85sIdAjTpqEsiOkmptyNRCFqiulTK0zwyLe353T5p3S+iVrqdklj5TsrN5SabtPy9YUN85QAAFEtr0DKJ11y4Q32zcu7NEAzOazBB0BLVpVKe5pFpac/vBS+M0RErURqOp6TcXBqDlmRaAumSxHMbguO2zpCUOhI39+mXtnNLGOVNQ10S0WF/gAmClqgulXLiCzvTMs5ATxJGDzciaGktDU/Hk3JzaWweTqYlkHyc+6uH2+tEUh6GEbRMvyTWm6JGkApGSam3I1HaeJlp9erVkqQuXbr4WvnatWv16quvSpJ+8pOf+FoW4EilXBgrLdOypibY75TW3zVtSo+nJN5AJeXmkkxLAEgGv12bJOWmOonXXDvUzVpL2zYJoyVSGh6AIzpm9+o8RKx6noKW3bp1U21trT766CPtttturT5fuHChfv/736umpkYPPPCA5XLmzJmjE088UbW1tWpKyo0lKlulXBgruU/LJGRapnW/iFoajqekXFsYiAcAksFv0DIp15UkXnPhTtoCz0ZBBZIqJaEEwSi9B2V/gHw0D8/a7EDffPONxowZozFjxvheFhCoNARZzIQ94EncmZZGSQhaGvF0z1oQFc3mZmn58mDKY7X8JKB5eGXKZKRly+IuRTA416Fa+G0lkJSgZZoDXl6sWCE1NsZdimCl5T4kTGm9N0M4CGLDBH1aorqk9UQY9gWdTMvgy1AN/AbTs1npwAOlnj2lp54KrlxGSbm5pHl45clmpe9/P7f/Pvpo+WntXgOIjt8HtUl5GFZNQcuJE6VevaRddpHq6+MuTXDSdi2IYiCeatqv0Vpa79URKoKWqC5pvXEM+wReury0D8TD6OHR8Hs8vfmm9O67uRvA004LrlxGSbm5JNOy8kyfLk2alDvfnH22/bQ0dwKSg0zL9DnqKKmhQfryS+mRR+IuTXC4FqT33gzhoL4EEwQtUV3S+vSGTMvol4Hy/B5P69YFVxYrSbm5NGZaJqVM8MfN/l7apDGJ56gklgkIg9+gZVIehqUtaOnnHGOcd+1a/2VJirT9hkb0aYkwsD/ABEFLVJe0Ps2rpqBlEBU4+rSMRhDNw8OWlABh+/ZxlwBBq3VRhUpD0BKoFmRaxiOo815dXTDLSQKuBem9N0M4kvJQCIlC0BLVJa1Pb6JuHh71BcMYGExCpmVa9ou4+d0vw9rOxmASlR+Exc2AEKXTpi3YUO24JlSWSglaVuv1zc0Do6Tj3JLeezOEg/0BJirorA84kNanedWUaZm0oCWZltb87pdhBW6MWRhJublMy7kGzjU0OJ82DZmWnOuKGbcHQebKUikD8STl+hY1gpaVJa33ZggHQUuYqKCzPuBAWi+MYZe70gbiScvvmnZkWjpH0KPyuMm0LD2nco5KF36vykKmZboRtIxPFKOHp22bIFgMxAMTvs76NTyVR9qk9cIYdrnJtIQXfvu0DCuQZ7yhScrNJftk5SnNtNy40XraNGRawhq/V2WplIF4knJ9cyqo46iSgpZpe6AZRkuktCaUIBxpvVdHqNr4mXmPPfaw/Cwf0KyrpM6SkX5pvTD6DQ65XX7ag5Z+tw/Nw51JQ6ZlUm7q0nKugXOlQcvVq6UOHcynpU/LdOP4rSxkWqZbJd1bpvncwujhCAOZljDh61FVNpv1/Q9VasWKeG7aorgwbtggrV8f7DIroU/Ldety26acpGVaErS0loY+LZNyU5ekBwMIRmnQctUq62mTkmmZzeauv26sWMFNQ7V//0rjt86TlKBlUsoRtUrKtOTcEk1CSWOj/TUaycFDXZjwlGl52GGH0TQc3v3tb9KZZ0oHHSS9/nq0QaGwL4wLF0rf/W7uhDt1qtS3bzDLTfvo4V9+Ke27by6YNG2a1LNn8edBD3jA6OHRoHm4c6XbasMGadNN4ykLglEaiFy92vm0cZxjslnpqKOkN96Q/vpXaeDA8vM89ph07rnSoYdKr75avQ9xuCZUFpqHpxtBy8oS9j3Ohg3S7rtLixfnrmMHHhjs8hEsMi1hwlPQcuLEiQEXA1Xl9NNz/7/5pvTRR9Jee0W37rCf3owf35LF8tJL0i9+Ecxyo860DLoiPGxYyxPOX/1KevRR62nJtEyPpDYPN0rKzSVBy8rjJtMyCQPxTJ8u5etvZ57pLGh51lm5/ydOzM2/225hlS7ZuGmqLH4fuJkdz3HUFZJyfYsaQcvKEvY9zj33SF99lfv7xz+Wvv462OUjWHQXABMVdNZHKrkZfTUIYV8YjRXIIAN/UY8eHnRFePHilr/nz3dXFi/ItIyG3/0yrO1srPAkJROltBIWdBcSiJ5Zn5ZWktCnZbnuOcoFXdauDa4sacM1obIEnWkZV3PGpFzfnGIgntbS1hQ2jaOHf/NNy99uu0dB9AhawkQFnfWRSm18jQXlXpSjcAcZ+Ev76OHt2rX8XXqjXyoJQUsjMi2t+b3xC6siYlxuUm7qSr8rQcv0S1ufln7XmZRjKQ7cNFWWoAfiiSvjkUzL9OPckt5BUhEOmofDROxn/fXr1+vmm2+OuxiIS9RByygzFoN8epr2TMuog5ZBjh4Oa0kdiMdYjqTc1Jk1D0e6+cm0jOMcU+54K1emagtaBt3XMpIj6IF4yLSMFqOHJ0NYo4dzvq1uZFrCRGxByzVr1uhPf/qT+vXrp1//+tdxFQNxq+SgZZDBkrSPHp62TEvj/GRaWvNbsYgiaJmUmzoyLStPGgfi8fN51N25JAk3TZUl6ObhcT0cS8r1LWpkWsYnjPKSaQkjMi1hIuKIkbRixQrdeuutGj16tFatWqVsNstI5NUs6opHlKNwpznTMuiKsJugZRJGD4czfgcziKJ5OJmWCIufgXjiyCQhaOkd15TKEvRAPFFeZ2prW8qblOubU/Rp2RrnFjLrUIxMW5jwddafM2eOLrnkEu22227q3Lmzunfvrn333VejRo3SqpLK+9q1a3XllVeqX79+uvbaa7Vy5Upls1n16NFDf/zjHz2tf/To0erXr586dOigAw44QFOmTLGc9umnn9b++++vbt26qVOnTtp7773117/+1dN6EaCoL0xpzbQMu+lE3JmWxgcXSci0hDNJzbRM4kA8ZFpWnrQ1Dydo6R3XlMqS5oF4jPWlpFzfnOI4ai1tAZowWiKRaQkjgtgw4TnTcvz48TrllFO0bt06SVL22x3qww8/1IcffqiHH35Yr732mnr27Kn//ve/OuusszRv3rzCdL1799Zll12mX/ziF9pkk01cr//JJ5/UiBEjdPfdd+uAAw7QbbfdpgEDBmjGjBnacsstW03fvXt3/e53v9Muu+yidu3a6YUXXtCQIUO05ZZbasCAAV43A/yK+kQU5YA2ac60pHl4y99kgltLQ5+WSbmpI2hZedI2EE+5463c5wQtUSnSPBBPbW3L+tKWaRmUtAX67HBuIUiFYjQPhwlPmZbLli3TwIEDtXbtWmWzWWWzWXXq1Eldu3YtvP7888918cUX6/XXX9fRRx9dCFhut912uueee/Tll19q+PDhngKWknTLLbfovPPO05AhQ7Tbbrvp7rvvVseOHfXggw+aTn/EEUfopJNO0q677qoddthBw4cP15577qk333zT0/oRkKgrHmnNtKRPS3cYPTwaNA93rnTb0Dw8/aqtT8ukPACIAzdNlSXNA/G4ybRct658nSuNnByPTU3S2rXhl8WvNJ9byLSsTitXup+nocH5w/q0B7FXrUpfmVPAU6blfffdpxUrVqimpkannHKKrrvuOm2//faSpMWLF+vaa6/V6NGj9dxzz+mdd95RfX29OnfurGuvvVbnn3++2vgcfKWhoUHvvfeeRo4cWXivtrZWRx99tCZNmlR2/mw2q1dffVUzZszQ9ddfbzpNfX296uvrC69Xf3sz0tjYqMYKzDbIf6covltb43rr6yPN3qhraiqK1Dc2NAS6/tqmJuXHNGxubFQmqGXX1xdtt6bGRmWDLHdzs4xjMWYaG9Uc4PLr2rQpbPdsY6OaSpbdRlK+6pNpbva0buP2aW5q8rXt22SzLeXJZALdFlaiPAaDUtPQUHQRcbtf1jQ2Fs0f1Hc3/n7ZpqZW+1scSo+x5jVrgjs/IDBujsPaDRuKz5srV1qeK2o2bize1yO+9knmx1u582bRdWfDhkCvO0kXxHUJ3oR+PSytUzU0uNq36xobi+uSGzdGdjy3qa1t2S/t6mrTp6vNoYdKm26qpg8/lLp2jaR8dkqvg25+X1e/1/r1arPPPtKyZWqaMEHaZx/XZQ1T0X1QwPchQbE6Bovqx9lsIOdF472TFP49Tprq2UlTe8UVqrvuOjWPGKHMddc5m2nFCrXZe29pwwY1vfWWtNNO9utobCz+vRJ6jJipeeYZ1Z19trIHHqjmV17xHdhP472hG26+l6fo4csvvyxJOvDAA/W3v/2t6LOePXvq9ttv15o1azR27FjNnz9f3bp10xtvvKHdd9/dy+paWb58uZqbm7XVVlsVvb/VVlvps88+s5xv1apV6t27t+rr61VXV6e77rpLxxxzjOm0o0aN0tVXX93q/ZdfflkdO3b09wUSbPz48aGv46eGv994/XWtmTs39HXm9V+yRL0Mr1+dMEEbe/QIbPnbffKJ9vz27y9mzNCMceMCWe4my5bpWMPrSW+9pRVennRZ2HP2bG1neL14/ny9E1DZJWnPxYsLy89s2KBxJcs+wVAJWrRokd71sG7jfvXZp59qpo/yH7N+vfJH+eKlSwPdFuVEcQwGpdf776u/4fV/33xTK5cscTz/th99JOOtROl+4dUJmUxhf2rcuFH/ivD3s7LXnDnqZ3g9fepUzUpAuWDOyXG4x+efawfD69WLFuk/Fr/pth98ULSvvzphgjZuvrm/Qrq0+bRp+r7h9bhx44rOm598/LFml5Tf+PlH772ned26hVjCZPlxU1Ohkrx40aJIrwPICet62HnuXB1leD35rbf0tV33DiX2mzdP2xhevzp+fGTH84/VcvO2fPFiTbLYLw+/9FJ1W71aWr1as887T58OHhxJ+ezsOmuWvmN47eaabzwXffD++1pocy+249NPa/evvpIkNR5/vMbfd5/LkobL+F3+M3Gi1s2YEVtZyik9Bn+wbp02/fbvpUuX6u0Azoul9aN333lHSwLMVNt55kztYngdVF2zGv3020Bl3S236IXDDnM0z3fvvVfbL14sSVp9yil6s0ywc8+vviq6J53wyiuqT0nd46enny5JqnnjDb0+erRWfZvU51ea7g3dWO+iqyxPQcvPPvtMNTU1uuiiiyynueSSSzR27FjV1NTokksuCSxg6Ufnzp01depUrV27VhMmTNCIESO0/fbb64gjjmg17ciRIzVixIjC69WrV6tPnz469thj1aVLlwhLHY3GxkaNHz9exxxzjNq2bVt+hoAcesgh0l57Rba+unvvLXp91JFHSn36BLb82i+/LPy90/bba4fjjgtmwXPmFL086MADlf3+9y0mdq/2xReLXvfcYgsdF1TZJdWOHy+99FLu76amVsuuMTyJ6rXVVr7XvcvOO+s7PpbRxtBtRc8AyuNEXMegHzXf9mmcd8jBByv7ve85n3/RoqLXQW3nGkNlt21NTSS/Xzl1//xn0etdd95ZOyegXCjm5jis/de/il537dzZcl+rnTev6PVRRx4pbbON6bRhqdl006LXpWXdY/fdtZvNPrnn7rvru1W0z9YZWgVFdR1ATujXw48/Lnp5YP/+yh5+uOPZ6x5+uOj1UUccEWhd0nbdhv2yx2abWe6XbQxByh06d1a/BOy/tW+9VfTa6zG1z157aW+beWtff73wd8dly5J17JYE4w4/9FDpO9+xmDg+Vsdgm06dCn9vueWWgWzbuueeK3q9/377KRvkPcg77xS9TtT+kGJOt6PxfNl9zZqy85Xek/7gqKOknj3dFzBm3z/wQGX339/XMtJ4b+jGartulUp4Clp+8803kqQdd9zRcpqdDKm/hx56qJfVWOrRo4fq6uq0pCSjZ8mSJepps1PX1tYWyrz33ntr+vTpGjVqlGnQsn379mrfvn2r99u2bVuRO01e1N+vbZs2UozbM/D1G4JvdZLqglp2XV3RyzZ1daFut9psVrVBLt9wLNVkMq33McN2q5Xcr7ukElhXWxvYtq+trQ12W5SRqnNM6X5ZW+tuvyxpNhHY9zbsDzVNTcnYniXfNch9FMFzdByW9INXk81az1PSR1Ms177a4m7MS8tabp9sk83Ger2Ok6frEnwL7XpYeu2qqXG3b5cez26vfX4YjuPaTMZ6vzRcB2vr6pKx/5Zsd6+/bdk6cJlzXayScC1wwe4YrK2pCWW/CvweJ6D9DsUcb0fDgxbbelJeyT1d27ZtE32MWGnTsWNg5U7VvaELbr6Tp4F48u3PO3fubDnNpoYn+naBRC/atWun/fbbTxMmTCi8l8lkNGHCBB100EGOl5PJZIr6rUQMKnkgHkYPb2EciMdtWZwIutNmRg93xu92r6aBeOhovvKUDnBhd84v7bcnjtFv/Q7EU6F9Klkynvs5XitL2kcPtyqHlaTUY4I6jsotJynf10zaBxkJo7zUjyqb22tp2o+RPDf3vijL34g4DtWEcPEYMWKEBg0apP3331/9+/fXbbfdpnXr1mnIkCGSpHPPPVe9e/fWqFGjJOX6qNx///21ww47qL6+XuPGjdNf//pX/eUvfwm8bHAh6hu3sNdXKaOHBz1KrEnWsiWClunhd7+M4vhPyojHlVIJQws3QcvS/TCNo4dXW9DSiOO1svgNWpbW7+J4CCHZX9+SuM8GVaa4tncQKilAF1T9mPpRZXMbtCw9v6Z1f6jAzMg4RRK0DMPpp5+uZcuW6YorrtDixYu1995769///ndhcJ65c+eq1vA0ct26dbrooos0f/58bbLJJtpll130yCOP6PRvO0xFROI+EaU10zLsC3rYmZa1LpK6vXy3SqoEponfG78wbjxKf/tMJvde3MFns3Ih3fxkWhK0TBeuKZXF7/k4zkxLpw/Hk/jwNapMyySrpABdUPsVdfjKZrwHdHKuraRjBIHxFbQcMmSIOhk65PU6XU1NTVFTb6eGDRumYcOGmX42ceLEotd//OMf9cc//tH1OhAwNzd5YYgy+BdmpmXQ2610eUFXwN1s5yAyLQkIRcNvRTOMiojZb9/cXNSnTiyolFeetAUty50Xy5UpKVnLceB4rSxpzrQ0rstppmWlBS3TXMejvtoaQarKZjz/VFPQMq3lTihfd3Hvvvuu7ef5ZuF202Wz2VCajyOh4r5xi7KZNX1atnCzLWgenh5JbB5uVoamJoKWCF7p9czuvEmflunG8VpZ/D6ojTPT0lj2tGVaBnXeo0/L+NCnJdwyZlpWU/PwtJY7oTwNxCPlgo1B/ENCLFigTosWSV98Ee5BRqalN2GXO0mZll72iTArPHaV34YGKcjBvLJZae3a4JYXNr8ZA2a/k9/vb7bMsG8o1651HxAiuyL90pZpSdDSO+qrlSXoTMu4gpZ2mZbG6dx00ROmqDItkxK0XLeu/L5Wbps4qV+kXZqzT9NUZ4+L00zLpiZpw4Z0/f52KuV7JISnq1gmkwn0X3NSRnetYnXnnqujL7xQbXffvfWNWJDiDlqmtU/LKDNEpeCbAbp5Kp60TEsrixdL224r9ekjLVjgb33f6j9qlNpstZX06KOBLC90QWdaPvCA1K2bNHBgcGWSwm3W+vLL0pZbSgcfbH/Mk0lQedI2EI/f5uEELVEpgh49nObhzlRTn5aTJkk9e0p77ll87nRTX/33v6UttpC+//10fGev0lo/uvVWqWtX6cIL4y5Jsjnp03LNGmnHHaWtt5amTSv+LC37Q6m0ljuhEvLoDbHzGzRyqvQmL+oDOq2ZlmlvHh51n5ZRZFpeeqm0ZIm0bJlk0beuKwsWqNeUKappbJTOPtv/8qLgd7uXTj90aG7fe+KJXIaCF1EHLQcMyD0ZnjxZeuUV5+WiMpN+1ZZpSZ+WqBR+M98ZiMebaurT8oc/zGXhTZsmjR3b8r6busCPfiRt3Ci99Zb02mvhlNOPah89fMSIXNnvvjvukiSbk+bhf/qTNGeOtHIlQUuYImiJnLiClmRaul+u2Wu/om5+bsfLuoPePk7mnz/f/G+vwsxwDovfGz83mYl+lhnVDeXq1dafpbn5E8y56acyCX1allun2efGmw0yLVEp/HaJw0A83ng9jtL40M9YH1ixouVvr3WBNWv8lymp0vj7wjknzcMXL7aeP637Q1rLnVAELZHjtpNcr+LONoky+JemPi2jzrS0K3/SMi2jkpQ+p9zwu92dZom4EXWmZbl1W32Wxn0Uxaoh07Jt25a/qy1o6XbEU6RH0M3Dk9inZRKDll6Po0qo4+V5/S5prCM6VUm/L1pzEmMI+r4wDuzHofI0nOo111wTdDl0xRVXBL5MuBBV5TzuTMsog39pzrQM+ncpLW9TU/HNsN20TgRd/jgq+2mskAbdp6XTz+zEMRCP3bqtPqMyk37VErTMDzaWxmzwoHC8VpZKGYinWpqHu+1DNCnfN8/u3sDpNknKdwrjXEj9KJ2yWWf7pZM+LSshaFk6MGtayp0SnoKWV111lWoCPnkStIwZzcODX36a+7QMO2hZXx9s0DLM5uEELa0FfePnZ1l5acm0JHMr/dI2EI/fTEuClqgUaR2Ix+wBsJNp0x7wKq0rpO14DCJomRRh7Fdp3yaS8wBeJXH6nZ0kRhG0RBmegpaSlA3whwg6AAoPGIgnGGFlWoadCRn18uvrpU03bXntN9M3jgpP0OtIY9AyiZmWZvMlMWhJZSb9Kq1PS7N9so2hmkjQEpXC70OkuJqHu+nKp5KClnGO1h40r3WBpPyGRkGVqRLqR9UYtMxknN27+G0enhYELUPlKWj5WhJHMIM/cfVpWWmZlmH1aRl1pmXYfVpu3Oh8Wicq4SltGvndL6PKtIyy6Z6VSqiUo1i1NA/Pq7Y+LY04XitL0APxRHWNKS13tWRaJiFTPShekwSS8huGoRLq8E4DeJXEy77rpW6flv2BoGWoPAUtDz/88KDLgbjF1aclmZbul2v22q+o+7QsPbHbTetE0L+rk8p+0BXINF7cwhyIx+tNYJzNw+0wenjlSVvQ0kumJc3Dc9J4foa1tDYPT3vQ0ut2cjtae1K+b14l9WkZhkp4qFsNdTqvGepO+rR0s96kKk3ISUu5U6LKHgnAUtL6tFy/Ppj1lS4nKX1aNjXZB+5KlW6nDRuCLXscfVo6ndbL8oPcNlFVFNN4cfO73zAQT/SCOreWymZz56Vq4vR6ls1Kq1a1fi9qBC29c/t7uT3ONmyojpvepAhjIJ6gz62NjeVbJzm9ttnVYxoazIOfYVwrvJz31q8PJ9PSbPs6KYtfUQYtw7reB60SMi3jLnOQv7XVsoIIWnppHh73tnWKTMtQEbRETpKClvfdJ3XtKv3sZ/7W9fjj0mabSaeear++IDnJtFyxQtpuO6lPH2n2bPfLlaSBA6W99w6uuV4cfVpaCSLTMsjRw/1M40Yab1jDzLSs9IF44qjMPPyw1K2bdOaZwS43k5EOPVTaYgvplVeCXXaSOQ1annSS9NZbzqYNU7kAB31aWnNzvP7yl1KXLtIttzib/p13pF69ctf0at7GUQo60/KJJ6Tu3XPHehAWLZL69s39W7So5X03mZZOfPWVtM020vbbS9980/L+XXfl6uEXXOBv+aXcXvdGjMgdS9dd5285pZYulfr1y9XDFyxwNs8ll+TKcttt/tYdVYAufx669dZglxtGeZNQP/Irzjr88OHB/db33ps79ocObf2Z16ClkxgDQUuUQdASOVEFLZ00kfvFL3IVsYce8heUO/PM3A3AP/4hzZ9vvr44Mi1HjsyVZ9ky6aKL3C8376OPpEcfdV9GJ8sPO9MyTX1auh0Zz6s0XtyS2KclA/FYGzQod059/PHiG1S/XnlF+u9/pXXrpGOOCW65Sdbc7Oy8uXSp9Nxzrd9PS6alMWhJn5bO/PnPuf3jV79yNv1xx+UycT/+WBo71lv54I7ffrxLryl//WvuhvXZZ6U5c3wVTZJ06aW5YOWiRbmARJ7ZfujkWmlVRxk6NFcXnTdP+r//a3l/7NiWeniQ3J73br0199vcfnvx+37rqP/v/0kLF0pLlkgXX+xsnjvuyJXl0kvdr8/4vb3WBdzWM/PnoREj3M0Xh0rItIwzaHn77cH91uefnzv2H3igfB0nyP5YCVqiDIKWyImrT8ty6wqqWefatbn/o+wb0uq7ffVVy99z57pfrtHXXzub3+3ywx6Ixy7TMoj+TqK+UASxvjRe3Pxmq9hNH2SflkkciCfuzNogA7mlTZ+rgVlGnNlv6iWrICxegpZG1ZYFGFW9aPly878RnqCbhxvZPZR1yhj4NNYTvT6UswoafPlly9/GjMP8sR70g4qgznvlllMuSDJvXsvfTls8BYWBeFqLuw4fhLjrdGEoV291+jtVywBF9GkZqirZi1BWXM3Dy60rqLLkK15RDsRjVak1bgNjf2FOlxuGuPu09Lv/hTkQT1TSeHFLYqal10yUICQ90zIslXwzZcVv0DKOGxwvQUvje9UWtDSqpOMVwTcPj0rQQcty60lqNzh+B+LxOzCIW3ZdR6Xt3GKXNepVJQxUGFeZw9x/yv0uZFoWI9MyVAQtkeOkk9wgxJVpmQ9aRtk83Oq7GZ9c+w1aBhUsqLQ+LYMMWjIQjzW/xxMD8VQGgpY5Sc+09NKnJUHLnKh+r0o6LyRZmJmWQbA6p5qV00lZ3J6jjcsMcp+MKtOynKgSNcxUUrZaWL9nGs+DcQUtw1xvUM3Dney7BC1RRgLPgIhFpTcPz6+XTEtny6/20cPdBi2rtU/LMG/8Ki1ombRMgmoMNAbJrNmk2W9qN6J41Mi0dCeMjCIkQ5oyLcs9DHdSFrcBL+N6khi09Hv9jDpoGUSmZVKu2VFkWqbxfBtXnS7Mc1G5eysyLYsRtAwVQUvkJGkgHqNKz7Rs187Zcq2WlZZMy9LtbNfvRxIyLeMQdxDLiyQ2D/eaiRKEas20rEZWATynlfo0Bi2rbSCeOIKWSQlMVLrS39PNNSKTsd8fgvgNrZbh9aGcm+VJyQhahhnEiCpRw4zXukAS6wxkWraoxKBlUM3DybREAAhaIieuPi2jbh4ednDLuHwnmZZOg5ZRZ1pGPRBP0EHLICsPNAu05vd4quaBeNL4e6OFVdCydF+z2seT2KdluebtZFqiUvipM8R5PYmqT0vjd4yrPhXGQ828JDUPd/pdKvkcROKBd1FmWoYZtHRTjqRiIJ5QEbRETlx9WkaVaZlfb9IyLZPSPDzuPi393hyG2TycoKU1v90KVFPz8LC7YHAryIyuaswOswrgOT2XpjHTkqAlKoWfOk/Ug/AE0Tzc60A8pev3K6jgcLkylfu+boOWQdYpvQbo3Gy7tNVbK+GhLkFLazQPRwAIWiKn0vu0TOro4UlpHh53n5Z2FTq7/i+t5klKH0wNDdE9RW9qiv5myu92DyJo2dxc/CAgLUHLuCszQa6/GoOWVk2lnR4Tcfz+SRqIJ5t1dm6Pk5egZZDBDThTX+8/yz/ITMsgfkOroFocA/E42TZOf4OgMi2DbB7uZFl2SQhu6xdm1wgn9bdKDlraXTczmXQ8MIsiaGl2zXTabYuX621SmoenBUHLUBG0RE5cfVpGFbTMn0iSkGmZxIF4ou7T0mmm5ahRUufO0pVX2i8/zNHDvS7rs8+kbbaRdt1VWrfO3TrdWrRI6tdP2n57aelS78txy+/x5Hf08JUrpZ12kvr0kb76yroMBC1bi3v9aVctmZbGeYLq07KhQdpnH6lXL+n994NZZhi8XAfizqCuNlOmSD17St/7nruHdqW/k5trRLn1hHlsJzHT8uOPpd69pe9+t3XzyFJpbR5uNs2XX+bqHt/5jrRqlfP5S8uer79tt520ZIm7MliJ6jwUdtBy7Vppl11ydekZM4JZV1jC3uaPPSZ17Sqdc07x+06O/zPPlLp1k554wt06y9Vb6dOyGEHLUBG0RE5cfVpG1Tw8jqClVdm9DMRjVc6wMi2T0qflb3+b217XXGO//DgyLcut4+yzpWXLpM8/l2680ft6nLjkEmnBAmnePOn//T/vy3Er7tHDr7kmF6xcskQaOtR6viT0aZm00cOpTPnjNNMyTX1alsu0bGwMZr8ZM0b68EPpm2+kH//Y//LC4uQhpN08XlRj1rIfxx2Xe3j13nvSo486n89P65IgM+Lc8vpQzsl+ZdXiqtz3Oflk6euvpWnTpLvusp82KZmWbrvEMtsGP/95ru7x5Zfl66hGpesbPjxXf5s/X/rVr9yVwek6ghRGtxlW92bXXy998UWuLn3WWcEtPwxhX9PPOit37/TII9Ly5S3vlzsfLVkiPf547oHCwIHu1hll83A35UgqgpahImiJnLj6tPQyMIAX+RNJlAPxOOnT0m/z8KBE3aelXfDYy28SZjDa67YwPhWeP7/89H7KPGtWy99z5nhfjlthZlo6uRGbN6/l7/z2LpctFhcyLSuL1Y1CpWValr4XRLblsmUtfy9e7H95YSHTMvm+/rrlbzetDMJsHh7EQzKrm/w4BuIpt+/PnNnyt12moJNlGfltiWHHbZdYZuX+/POWv53U8azWZ8zSzLcYcTKfm3UEKYxrl9U9woIFLe/5ybSM4nob5TXdeC9d7vgvl/1sJ8rm4XbSUl9lIJ5QEbRETlx9WlZjpmUSm4f7yTrwsvygg5ZBB12dlKfcTUCbNi1/O7mp8FNmYxmjzNTxezz5zbQ0VoTy09M83Jkgj/FqzA5zmkFZaUHLIPoW83sDExUv16W4j2s4E+ZAPGHWn5LYPNzrcsvxk2lZ7vMkDcTjVFIyLcNYT5T3ZmFhIB5rDMSDAKSk5ojQVUuflmFfVJxUTIIMWgYVLIi6T0u75QcRtAyygul1WcagpZP9OGlBLSfiHoinrq719GkJWsadkRXk/lWNQUurfaqSB+KRgsm0rOSgZZAPzBCeMDMtwzy3B939idX+5nYgHr/rK1eGUn5baQU1EI9TToOWdtfSpGRaGgV1voqyFVxYCFpaI2iJAKSk5ojQxdWnZSUPxOPkpjYpzcOd3KwGuXy7p/hevmvQv6uTm9Vy63CbaVm6PDf7flwXRr+/nd/mX8bgR357pSVoGXdlJu71p53ToGUl9WkpkWnpZh5Ey0/T4yAH4ok6aJmmTMuggpZpy7Q08hq0DKppfZDItGwR5TXd+H3CDFq66drLjt9jLC3XVYKWoUpJzRGhi6tPy6iah+f7mQj7aZ7bJiDGwJbT5RqFlWkpBRvosbuRD6KyEsdAPEZmv4MxC9BJdlJQQcsos97izrQ0ax4e50A8BC2rh9+gJc3Dky+OTMtqzFoOiptjys8DtyiCllZBNa8P5fwELSsx0zKIgXi8tsjxeu5PSvPwIFoilXJSl/Rzbqy0TMuogpZBZVp67Tc2bQhahiolNUeELq4+LSst09L4fYIMlIR94jP7HcKsqNpVepIWtPR6sY0r07JS+rR08v2T1qelHYKWlYWgpXfGBzpJRqZluvjJRGMgnmJuBuJxI6pMy6CbhwfZeofm4eWXQ/Nwe8btE0SXLU7WI3k/bwZ5/CQZA/GEiqAlcqqleXjSMi2DfErlh9l2CDNoGXSmZRzNw8vdBBj7K/XSp6XXfT/OTMs4m4cnIWhpt9+F3W+sW0Ge+6oxOyyNQcsg+rQk09Je2HUMWIsqaFltzcOD/D5RDcQTRZ+WxmWU275u7w2clsHJ+tIg6n71w1gmmZbOl+N2mrTsz2RahiolNUeELq6BeKJqHp6kPi2N/J7wy1WUmpu9l6P05OtVQ0P4Qcs4moeXW4ffTEs3FRGv39dvACLMTMtKH4gnmw0mAOQVQUt/qqVPy9J5GIjH+TxS/A8ngmI8V0V03qpxu68lJdMyzICL1+5PnJyjjdMEkWlptp8kpXm429ZlUbXeSXumpZtzQ1OTdb0t/zqs5udhLDPKc73x2IiyT0uClvYIWoYqJTVHhC6uPi39VjyciiNoGWRFyEs5lyyRtt9e2nFHadky98vv1k0aPNj9eo1efFHafHPpiSes1xdG0NLvfuP2ZrVcn5YOKhU1UTcPHz5c6tpVuu8+5+sp5TdY7DfT0uwmK+ysYTtuKl2PPSZttpn09NPhlslpeZKyrLRI4+jhSWkenpagpZHXVhGVELQcPDhXH3jiCelf/8pd03/601BXWfP00zru7LNVN2hQOCso/V2SNhBP3M3D/WZaDhsmdeki3X9/8ft+AstulhNFpqVXXpcV1LYLkrFMjz2WO08MHVp+vi+/lLbdVtptN2nt2mhbwYW1zCjP9cZ1RZlp6fU7E7REAFJYc0QoourTMq5MyzgG4ok703L4cGnuXGn2bOmyy7yVY+zY8gFPO8cfn6uQ2K0vic3Dg1hWlH1aGjm9Obn99txx8YtfeFuP5L/SFkafll4zUYLgttK1fr10yinhlcdOEo6RNHOaQZmk5uFeHhKWlrNaMi29XlOCOo8nxddf5+oBGzZIAwdKxx2Xu6Y//7z04YehrbbNGWeoTX29ah9/XFqwIPgV+Ll2RdGnpRWz/dBL/aIcuzpaOU1N0ujRuRv4887zXo4kDcQTRZdD5SSlebjVdznrrNx54oEHpDVr7JcxeLC0aJE0Y4Z07bXhJ5RUWqZlXEFLMi3tuR1sGK6koOaIKGSjah7u9oTnp/JnrJTEMRBP3H1azpzZ8veXX9pPa7cdwmgKZlch9vJdwwxGe82YZSCe8iqtebidpFVekpA5kmZp7NMyiEzLIMpdyUFLPxl8SVQ6sIBRucBEFGUwiqp5eFQthJwu20uf2eWm8dM83G6/CCpoGWSmpZc6np/zYNqbhzsJwJbbJz/9tOXvefPCTyiptKClm+bhQe6rYQYtK0Hpfl+NdeMQpaDmiEhEFbR0G6DyU+E3DoQSx0A8QVUk3UznVdQn1rCbhyfhqbgxaBn2QDxxBS3jbh6epoF4klZpizqwX2nS2KdlaZmdnHvDaAJXyUHLOJsMhqFSz2l+Ag5+A2ZuGdcXZtDSalq332fVKuvPgspoDbJPSy/Nw8MKWgY1X1THZhBZo7W14SeUhLE90pJp6ee7k2npTrk6FnxJQc0RkYiqT0u3F/6gg5ZRXhjNTuZBn/CdBqjcjGwYBSfNw/3cgEQdtAygT8tW6wlzIJ6gfu8wm4enMWhpJ2nBC4KW/lRCpqWXoCWZlvYqLdPSTtKOez91Bje/UxSZllZBtTCDlvl1+rnxzmal1av9lSMvSaOHm9V13NQTy/2GZuUqlZRMSyfc3HPU1Dirw/t5IF/NmZZ+yhVl0DLM+aNC0DJUKag5IhJR9WkZZaZlu3Ytfycl07K0k94wm4f7qcAbhZG5F3TQMugb66AzLZPWPDyoY9zv8RRk0NJuvyHTsrUgy5O07xYFq33KrtIaVYsGK0kJWhof6CQVmZY5aTqn+QnqJDnTstyyg8609BuMscu0DCpoGXempZ/f2Ou8cT7ItxLEcmtq0plpGXaZ7Rh/33L9TAeZFez1+kamJQJA0BI5cfVpGWampTFolO8TKe5MS68ji3nJtHQTyIr6YuEkaBnVDUg5UQUtg8rQcRK0DOo48Lscu9/Jyfc3+65eb+qCkKZKF5mW/hj3KbOMX7PXxnNCWoOWNA+35/c8nrTzRJqObT+tE4LMYkv7QDx+Al41Nc4zLcvVVZKcadncXLwMN3Vsu/UFlWkZ1cMTq+/iJvNUok9LP+uulEzLNNWfrRC0DFUKao6IRCUOxGMUx0A8QWZahn3i8xs8csuuApd/7ae5VhICMnH1aelleq+DLcWdaWk2f5yZlnZlTlrlJQnHSJoZ9yljVyR21zizgaOiFESflkHsN5UctPRzHpeSdyyl6ZzmZmT7pGdaWgWvosi09DuYRGnQ0hhUCSrTMuqgZVSZlmE1D09y0NIu0zKoc0ylBS2jGognyqBlmPNHhaBlqFJQc0QkourT0u3TPz/BBuOyk9I8vHQUzDCbh7thtx3CCPjYZVrmP/NzExHkBTKqTEu/N7t5XpqHb9jgbV1+n+bbTe9kWWbblaClMwQt/THuU8auSJwGLdOSaRnGNTPKwcK8CirTMshzYhz8BI6iFlXQ0m/TZLfKteAJu3m429+5tHm4sX7hZtv4eahZrsx+Rw93+xuX+w3NBBlYD6v1kdV2dvP7OO3T0o+wW4yZvQ5TVJmW5b6j39aCTqdJ2rXGCkHLUBG0RE5UfVq6PeEFdbK1yrQMmtvm4X6fUnkZiMfsAuc3eOSWk+bhbk7+YVZ4sll3zc7yjAEKJzdTpWUOaiAeJ4G99eudr8so7kxLp0HL/LK8/I5uELSsbMb9x0umZVQPB63E1TzcuN2ampJ3LJjx+r3tHj5ls+UDTKWfh33OsitHufIm7bj3E7QMsmVDEjMtrcrk5CGf22BZaaalsX7hJ3hauh6v80ruz8VRZVoGtc5KybT0w3jujDvT0sl53M25PqxMy3K/Q1zNw0uni+u6WA5By1ARtEROVM3Dqz3TMug+Ld3Oc+ONUpcu0qhRzpcfV/NwN79V0L+rcf5XX5W22EKaONHdMpIwEM+jj0rdukkXXWS/Lq9BS78Vzaiahzc2SkcfLW25pfTmm87L51a1Bi2T9t3C8MQTuWPp/PNzr42/tfFYtzsXJa1PSyfnTb/H+A035K45110nffaZtO220tlnu1tGHILKtMyfo9atk/bcU+rbV5o1y9n8116b23Y33uhs3UGZN0/afntpl12kFSuiXbcfbm5kw8y0DDOzP42ZllZBSz99WvrNdg2iT0s3vGRa+gmAhBm0DCIAFXam5SOP5K7Xw4YFszwzTu9nx4yRunaVLr3UellWdXUrYWVaun2wGVXQMv/Zxo3Svvvm6hGffeZs3VEiaBkqgpbIqcSBeJxkWoYZtAwy09JqOrcD8fz617mmOr/9rfNyRN083Cpo6SYgFPTvunKldOSR7tZhzL4Ku09LI+M+cfbZuZvlv/zFvolWEpuHO/n+TrOGn3pKmjBB+uYbaeBA5+VzK+qMZT+CLE/SvlsYBg7MHUv33pu7CU9jn5ZBZFq6Pbf+5je588vIkdKpp0qLFrmbPy5BBS3zr2+8UfrkE2nBAmnQIGfz/+53uW336187W3dQLr1UmjtX+vxz6fLLradL2g1ZJfVpabU+s2UnfSAeY/0iqKCl39/Ab9DSz29stz67Vm+V3Dw86Dr8OefkrtejR+f6bI8z03LIkFyd4bbbrL+XVV3dybqDzLQs95287pNeumAw++zOO6WpU3P1iDPOcLbuKIWdGFXlCFoiJ6pma25PeEEFLfN9SYZ9QikNxpUuP6kD8bjJYgxCmpqHe2UMUIQ9eriTGwG7zvDT2jzcaablnDktf8+fX365XlVrpmU1BC2Nmpv9By3j2B+CGIjHz289bZr3eaPm9Sba6uHT3Lkt733yifX8UfW/a+eLL1r+/vBD6+mi2oeddoPjJmjpZ7/2m+XnhNV3NtvmSRuIx2mmpdtyuClT0EFLs/O6k+Cd27IZy+Xnd4gq09Lqe4eRaem1L+Tm5vibh7uZxsnxbNc83E8AuNzvEGbzcCfzG6+jH3/sb5lhINMyVAQtkRNVn5ZuK4ppzrQsLYPUeiAerzdCQYs609Ku0mOVaekmaOl3H3ayvd1UoOJqHm5VhrAyLd3up34zE532aWlkHDQlaAQtq0NTUzqDlnFkWqZV0JmWToMkSTiWNt205e/SrDmjqPYFp+uppD4t3Sw7ac3D7TIt3WybSsq0LJcta8Zv36Je53Wz7LAyLYMubxjnKi/3HUHdTxnXVXre83M/FGfQ0kmmpVESB/QjaBkqgpZoLcpMy3Lr8nOCNy67oSH3OuyMvHKBpyibh7uZLg2ZllE2Dw9iv3DTfMNsnUENxGO2vLAyLd3uK1ENxGPUu3f55XpF0LI6ELSsfEFnWjpdVhIyLY1BS7c3kmFwen5h9HBny7CSrydWQ6ZlEAPxGOvVburYTjMtwww++RFXpqVXScq0dJtF6WSaSsm0dHKtSXr9g6BlqAhaIqfSB+KRcoHLcuXxq9z3i7J5eFDNVaLu0zL/mZ9MyyguFG6e9Cch09J4QxdU0NJvQMPuO3qt3BG0dCasm5hq4CZoadw21dinZVoFlWmZ30/cZlrGuZ07dXI2XdIyLaMaiCfMh+15bkYPT1KfllJwo4dHlWnp5Lf3Uz8r5TXT0s9vGFampZ9p8uyClk7qtuU0N4dzrvKSHRpU0NLu/iLIYLfbIKaVoPaZIPaHMBG0DBVBS+TE1adlmJW/ck2znazfLbeZll6zN/LcDsTjdvlSOpuHJ+FCYSxTXAPxGBmDlkE1D/e73YNuHu7kifrWW5dfrlfVGrQk07Ll7yRnWpbLoDL7HcNstpdkQWVaem0e7iYAF7SkBS3JtLRfdtjNw/1mWlbCQDxBBgHt1hdUn5ZhnredZFq6aR7u5LUfScq0dHJe9xu0TEOmpZO6RrnPCFpWHYKWyImqT0u3J7wgg5ZmgZmgTyjlvl9SB+LxGzzysz6rC6ybClvQQcsgtndcmZZWosi0jLp5eOn8jY3lt4UxwBS0qI8jPwhaepfWoKWXTMskPhCKQlyZlvnp3QTggmZsHm4naZmWUQ3E4zdg5ofZusMeiCeJmZZ+A8dJ7dMyrObhUQcty23T0uA1zcO9TxNmpmWUQUs38ycVQctQEbRETlKbh/u50MQRtCwXeCrN9nT6/aymC+pCHHWmpZOgpZtKTNBPaZ3MX+4pX5IzLUvXFVemZdB9Wub7rrUT9Q2lk8/iQNDSudJgiNegZZs2LX+nJWgZZgZMkgXVDM5r83Cz7myiUo2Zlm6ut1FnWpZbdtIyLe2ClkFltLq9ztudx5yUye82cbs+Kd2Zlm6DlmFnWoZxrvJS/42ieXiQmZZuX1vxe3+Tnz/p9Q+ClqEiaImcIIOWbgIR5dblNXCTzbZedhzNw8POtHRafjcBNjefeRV2pqXfMjuZv9yNp9sylE5vl53p5cJoN3p4/qYik3F3TPitaPrd77wELcOsRPi5yTIuI4qKjpd1WJ2PnR4vSRhkxIvSoH5Tk3Uw0mmmZRyB3iCClpUeoM5zsm3M9mer399pU7b8MqMKWpp9B6fZ6H7PU37rP6XzR9U83G3AzMt5z6pOHkTQ0ji9k/3aze9cX9+6nmvVPNxP/d9t4Nju3OckoOI36GJcv9dkhTRlWrr5fci09DdNuUzLcvcqdueXsDItjeXPL8PJQ//SYLcXYQWx88s2ImgZKIKWyAmqT8sXX5R69JAGDTL/3O0Jz0/QslQSMi2D7tMyqMyuqDMt7So9XjItg6zweJnXePH8+9+lbt2kf/7T33qttvuFF0rdu0tPPWU+r9dMyy+/lPr1k/bd13lzcb8BjaAH4nHSPDzqLJg8J/vVggXSjjtKe+zROlslaG7386FDpc03l557zv2yGhqkAw+Utt1Wmj7d3XqToPR4aGz0NhBPVH1HWyHT0rly3/uZZ3LHw/nn20+X1EzLTEY6+uhcH7/vvGNehnL87Av//a+01VbSccd5f9BUerOelD4tjeeG887L7SfPPON8+VJ4A/FccUWufnLPPdbT+qlPmV23rJqH+wlaur3OOw1aPvVUrn51wQX264sj0zLKbFmny/abUCGFn2kZ1oNgL/uE2yxKJ9OUy7S0Wt6iRdJ3viPtvru0cqX5tOV+F7/Nw194IXd+HDTI/f2sl6DlzJnSdttJ++9vnsjkh5P6E3whaImcoPq0PP743Mnv4Yel2bNbf+72wuQ1YGb2HeIIWpaWo/RGxG/zcKcneT+ZlkEGjs3WZ7XN4moe7mVe4zz/8z/SmjX+12u23Vevlu6+O/f/aaeZL8fLQDzr10tnnSXNmydNnSqNHu2szH6DxWFkWiat6V6ek20zbJj01VfSp59KV14ZXLnMuNkOS5ZIDzyQG2DhxBPdL+u++6QpU6SFC6WBA10VMxHMMi3T2KdluZtggpYtyn3vk0/OHQ/33istX97yvpNMyyQELT/+WJowQVq6VHrkkeLPnF7z/ewLxx2X227/+pf00kv201qdX0rP/0kZPTy/rCVLpPvvz+0nJ5/sfPlOlm3kJtPyD3+Q1q5tHZSzW4ebbbN2bev3kphpaVUHPe20XP3qnnukFSucL68cJ4E+KX0D8Vgpt77S/aBaMi3DGIin9GGN0215ySXSrFm5B8m/+535vG6C/3as7m9OOKElZjBzpvP5vRo0KHef8/770q23BrPMPCcZ2vCFoCVywujT0uyJa1SZlmbLLc1ylII/oZRrFhRUan25991yk8XolNMKp9XNYVwD8Tj9vm6f8rnNJjHbflYVHr+ZluvXS5Mnt7xetMi6nFbrNXtdTtAD8cTdp6XXoGV+vmnTWt77/PNgyuSlPKXKPZEut03nzGn5+8MPna83KUozLau5T8swj58kcXNuswrKSMkdiMd4TJcGmqIIWhrrh8bzg5v1+Mm0dNqywYzTgFk+eylIZtsiSQPxmJUliEzLq67KBbqdzlvuvOXkO61b53x55ThtHl6NA/GYNdfNvw7iOpmkoGUUzcOd7qufftryd76+We7YD6N5eN6SJe6X49bUqS1/f/WVv2WVImgZOoKWyAkjaGl2MnN74Q87aBk0txUlr0+prJbvVRiZlnZPFO0qPfnXSW8e7vbmodwNlZ+bKL9By9JMMqejx/rd7pU2EI/XoGV+Oxgz8cLu/9HNb1VbpqpQ6YGsMDIt49hmQWRNVEsl3M212viZ1YPLpGVaGstZWjeKImhpZJadZ+Q00zJpfVoG1fzQbv+SgmtyajWtn3kl7wPxGL/XDjvksv2dLsdtxpgZ4zHo99xZ7jc0k4ZMyyASKsyCikE1B84vP4zrVpxBS+O6vPZpadZdTbl5gwpaOokPmH3mpgWhmTDr2AQtQ0fQEjlh9LVlthy3F/q0ZVqWCzx5PeFbTef0RiqOgXjsgpZeMi2dftdy05bj5fvmt+/ixdbTuA1amm0/q+PByfd1MhBPXufO5Zdntl4/2QduPsszu2l1m4ERJK/fh6BlsrnJtLQ758fdPNztQzQnmZdBSGLF3mvQ0u/NWVQD8aQpaGm1ntJratL6tPTzoDyMgXjKTZdfZ5B9KUr2mch2jOWoq3OXXFGu1ZOTchiDzm7r9nblcZpp6SdoGXempdvgdJB1eLPlk2nZmllWr9tgf5CZlm7mlwhaViGClsgJqk9LI7PluD3hpT1o6fapldPllnvfLSc3UW75DVq62VfiaB5uZt4868/K3YSWq2RbvSelM9Mym/Wf4VspzcPzx4oxOJimoGWlV8z8NA83bpu4B+Jx26elkwePQUjiqPJJy7QMen8xbvOkBy2TlmnpNEAVRuses3U7HYjH6fbxs23cNA83e221rLo6d+fPIIItxnpRufnLHTNOg5Z25xI/weMkZ1o2NQVbhy8VVqall/s5Mi3dzVc6v9/fMcw6NkHL0BG0RE4YzcOdZGlUe6al0/V7qRiUBrLstr3f4JGZOJuH+6mgedkn8vP4CVo6eRLp5ObEa5+WRk6Dln6ejrtt3mWmUgbiyX+PKJsPB3nuC/OGIwmCah6epD4tnYzYGlWmpZsBVKLi5txm9xAu/5nboGVpgCno7R5EpqWfm7727Vv+9pppmfSBeKIKWjrNtPQatAwz09LpcVWaaen2Ou/lO9kFW93uP04CfaWfVVPz8ErNtCz9HmEMxBNmpmW53yVtmZbGoGXQ+wRBy9ARtEROVH1aur3Qez2pmH2HOAbiCSq13mq6oJ68ugkIOhV083A3AaG4Mi3nz7f+LIigpZ/m4eVGDzcyBs/sRJGtYoc+Lb0LM8AcdsA1akENxJOkPi2dBC2d3IQFIQ2Zll6zo7wOxFN6vQgzK6S070Wn6/KzDxsfjK1Z4209SR+IJ6jm4UZm+07QQcuoBuIpt2zjsmprg820DDpoGVSmpXE5QdavgjxvO1mW2+zcMOsQTvvMdMtJmd3uJ1bT2J2v0pBp6WU7mJXD7+8WZh2MoGXoCFoiJ4ynD05ueMqtK8hMS7NO0aPOtAzqKZXb+c2m9VKJcsNr0NLpEz+r5ZWbthwv+3/+BiPsTEs3zcNLl+emebjX/dLvzY3bMlRa8/CkBi3dblM/GSJJZJZpafxOXoKWac20DOO3rORMy6Cahwe93YPItAwqaBlUpmXSBuIpPW94Va5VjJOb5WzW+XEW9MPIoJqHB5lp6eQ7uWke7qY8dtMaP6umTEur+YO4TpplcgaxPZzsA6XHXFBBS7tMS6f3Q3H2ael2+4cRtAy6jh3VQ94qRtASOWFlWmaz9hWuchUY40nF7uLo5ISYhD4to8y0LA1k2W17pxVHN+xuILxkWiY5aJlnF7SMaiAeq8703QzEE0XQMoxMyyQPxFPNmZZBjaIbl9Ljo7HRf6alk3N3mC0BzK4J+Wt2aTnMyuaE02nTHrR0kh1lljlnlzUXZ9DSb73EiTQHLZ0+bC89b7hhlWnpNGhpVicy2z5OMjf9Xivsgn9ugpZ+Mi29fCe7YGvp8tw8hLWb1vhZ1APxOP2d7ervbtaX53S/9CqTiS/T0u1+YrUcu/25XFciVr+F2X1/WJmWVsePscsct/w2D3cSX3AjjExLgp5FCFoiJ4yg5fr1Uv/+0o47SrNn595zG8Rrbs6dkA89VOrbV5o+vfjzWbOk7beXDjyw+MY4KUFLtwMfmLngAmnkSGfrs2O3rd0EBJ0Kuk9Lp0+nzZbphp95o860NCtr/li2u6Ernc9r0NLPjV+5ylulDcRj91kUmZZ+nnS7DQSXLjuojKO4BDUQj5Og5V//KnXvLv30p7lr3pFHBrcvlDt/PP+8tNNOLeexqIKWaWge7jS44iTTUpJGjZI220y6667i9/P7T+mNaNDnrSAG4okqaGm1nmrJtDRbtpFZXctp0NLJOvxe16sh07LcMZP/nsOHS7/7nfV0dhmZQdX3zbzyirTlltK555ZfdtCZlmEHLcPKtHSyTC/97jp5CBFEpmWcA/Hkv2Pnzt7ml/yPHp4v+xVX5OpcY8e6X55R0EHLyZOlrbdW3UknEbz8FkFL5IQxqumNN0rvvit9+aU0ZIj5sp1kWj72mPTmm7kbqRNPLP787LNzAdEpU6S77255PylBS78Vp6VLpXvucb4+q8+ssmrKLUOKvnm404un3WdxZVouW2b9WRgD8dhV9krntwtalpbb6+ixbrZ7EM3DkzYQj5t91CiOoGWUmZZ+Mo6SIKiBeJz0p3TuudLKlbkA4rx50sSJuUBmEErPu2b7wKxZ0tChLdOUCnK/yUt7pqVdFrtV0PK3v5VWrZIuvth8+jQ0D/dzjjLerCZhIJ4w+rQM6rxn/P5BZ1qa3fgHnWlpTCgIKmjp9uGklwCg34F4SoOsa9dKt99uv067jEw/gfVy8x5zjLR8ee5aM2OG82UHEbQ0O26DClJJ0fVpabbMoJqHuwlaesm0zE/j9rjxGrTMz+cnaOmFWVd4f/hDrs41eLC/ZQcdtDz6aGnxYtW++KK2+PBD78upIAQtkePmCaZTn3/e8nf+gHN7QmxulhYvNl+mlHsSkWccBKVcxclqfX6Vqwi7DVqWe1IfxJPXsII8QQ/E4yYb1M8+7GdeuwpJuaClk5uo0vfy+7RZJdIuwFm6Lq83yEFmArj9XGIgHjfiDFpWc6alVdDSzfZfsMD5tHacBC0laerUlmnsluFmfXYqOdMyvw2c3nDnp6/0gXjatWv52+tAPKVBuKYm58dVmJnnQQQt/Q7Ek6RMSyf1vXLLKm0eHkWmpfH385tpmck42/5xNg/PK/cQwcv67USRaRnkPYLVMpw8UAgqaJm2gXiCyrT0u1+EWccOOmi5bl3hz/bffON9ORWEoCVywmgebjyRWg0O4iRoaWxGZKdjR+vlSsnItHQbOKgtc4gGUYmJI9PS7kmt1cXT7rsG+RQ1rHnD6NMyv0+7DVoGFdjzc+MXxkA8Tvq0TGLQMopMSz/HiNttWlr2tGdaxh20DIrToKXdDUKQ+01e2jMt7fq0tMq0tGIVtExipmVQDweDyrS0eq/c+s1eu5m3VH77RdU83GnQ0uu28fuAK6igZdSZlsbfr1xLGCfNw52cA4zl9LOP+qmbGa9n5ZYbZaalV5UwEE9cmZZhBS3z8zm9vzerkwTZp2UQwujT8lu1Yd63pAhBS+SEEbQ0BknMRio1W5dZhb9TJ2frS2LQ0m+mZbmTstPmqHYD8TitgLsVZaalnywyu7IFOW8YfVqaBS3zZbAbiCeowJ6fm5sg+rT0kmkZZrDIb9AyzApVnJmWpUG/JGbW2QmjeXg1BC2dnkcqKWjp9+Y4Tc3Dg7pWGjJKXK3HbL+JIpswikxLq/U5DVqa1Z+8DsTj92GkXVDfa6al3wdpQWdami2vNCjk5NyZhExLu8FRwghaxpFpGcTyqyHTMojgv9l0+fKXS8yxW09QfVoGJcSgZU3a6swhIWiJnDD6tCzNtCz3BNZs3ZlMuoOWbp9alSp3Qndafj99Wno9sXsNWubfiyvT0uuTw3LzRh20dNM8vJTXbRBmIMxMmgbicXJzFmaFys9v5TYQXFr20qBf2kYTD2MgHrPfN+zt4vRBkF3QMsjgjlW5kiDuTMs0DMTj53ezC5qWcpNpGUXQ0um1y0+mpZvRw8MeiMdv1pzXTEvjfLW17rqxclsXN3vPLtMykyleppOWI06OF7tMSz/1q7CDlm7ubez6W7dajx/VNhBPGjIt89/R7e/sd7+Iunl4QNdtgpY5BC2RE0afll4yLc1ObMaTjJ0OHVr+TkrQstyT0nLr9xO0dHqxiSPT0lg2p0FLp5XbctOWE9a8YQzEY9dPq5uBeEp5zbT0m5HhdllJG4jHb6ZlUpuHB51pmbbm4maZlsbvaLzJ85NpuXq19zI64fR4tbs2VGumpdV7kn0Wu9ugpVWmZZjng8ZGdwEYs2X4Wb9kH7h0k2nptQm0m+2bhkxLL0FLL61cSgUZtAwy09LJ9a+07OUG4rELMJYyq9OasTsO/TwwcjOv3X2H06Clk/pOnl3QMoh7tDgzLcNqHh5Xn5Ze9yur+dzOb1yO3+bhTrOfnSLTMnQELZETRfNwL5mWzc3OK6F22Q5SPAPxuH1dKsisMasKUFIzLZPePNzsgmk3r9s+Lcm0LL8Ms++Y1ExLJ5kHlTIQT2nZS4N+aQtalpa3sTGc5uFJC1q6Cdw5WZ+VJFbI3Xx3u7pH/nXS+rS0upaYfWbFT5lK17FqlfW0YWRa+gnqOD0fGs8bTh++l2O2LYIOWvp5GOk2aGnHrk9Lvw/SzOYv3T7lmofbNeWWWpfXbcAqrubhXurabtbnJPvQrAxBjh4exPnUyTKdNA93Uve3O1+Vy7S0+j3N7vuDvoe1KoPbTMug7tVLu2AK8rrq9yGvjZow71tShKAlcsIOWtbWOmtqZnbz67QCbTxxO820DFq5i4/birLfoKbdssLOtLSrIDsJWrq5OAb5FNXrRbjcvG4zLb0OxOMkaBlUYM9PIMxvpqXZU9K0Ng+PItPSz2/lN6ulNOiXttHEgxqIxy4jU7IO3AR1TXZ6TrXLcgnq5tco7ZmWdn1apmEgHqm4fuR0XUFmWtoF7MMIWoYV1JHMB+Jp39758u14zbTMZMofZ1Z1Qr+ZlnbHR1SZlk4egpfuO+UG4ikXtCwtj9tMyyD30aCC8uUedFmt38hNpmUQzOqKUQUtnWRaOlmO3TTluhKx+q5m9/1u71n9Bi3dzu93vyjtoiclmZa1SXywGwOClsiJq0/LchUYs6ClVfnKZZIF2Tzcaj63J/hy2Y7lyuf0iajdQDxOK+BuRZlpGeRT1LDmZSCeYl4G4jEu3+zzpA7Ek81GG7T08oDIbn6/WS2V2Dw8jZmWTjN38vurk8Cdm/OyFTfnpnLlCUpQmZZuj+P89GH3aWkXtIyjefjq1dbb12o9foKWXjKgypWn9HPjec7YfZETVokETgIjkvOBeEqnMZs3yExLszqDk+PKaaal14yxbLZ12dets1+e3fcq5TRoWSmZlkkKWiZ9IB4n09hdV9xmWuZflzaVNltPufsSr0HLcve+5eaX/A/EE3SmJc3DQ0fQEjlh9GlZysnTIydBy3xF0K7PvrCClg0N0mGHSTvuKM2cWX555QJv2ax0zTXSFltIY8e6L5/T8tsNxOM329NKlH1a+skiK7csJ/LHj928YQYtzZYTR/PwoJ7mm31+5ZXSlltKjz6ae+01aBl1puWLL0o9e0pr11rPl/8uQYwePnNm7vx02GH22bVW2+lf/8qV9+KLy09r9XnpQ4nSoF8lZVrW1NgPsGPcNuUeDlplWnptFlfK6Y3smjW5fWDcuNafGct9yy25a9fdd5svx+m5NL8tp0yRtt1WOvnk8vNu2CAdeKC0yy7SvHnO1uNGUJmW+W2ctEzLIJqH+7mRKv0+Bx8sbbed9PHHrad18qDa7r1SZ50lvfxy8Xtffy2ddlrLugYPlrbeWnr1Veflyct/N+N5rl278uUycjMQT+nv8MILubIbmQUtndYJ/WZa2j2kvv/+3Dnkuutaz2cXtDQr08SJue89aJCzIGXp56XbZ8IE6aCDcr+j2fRumoebPYg3Uy7A61SQ89otx2mQ2CiOoGVSMi2dDJrlNhuzXJ+WVvuCk4F4jK/PPlv65S/tl20lqExLI799WprtF36EGbQM874lRQhaIieM5uGly/eStWEWtMxno5QGAco1fw2iT8uxY6U33pC+/DJXwS23PCdPe6+8MldhHjy49fLKnajcBPLcZnnmxZFpafZU2m5bBPkU1cvFwariZhTmQDxOMi2jGIgnyEzL0mVfc420fHmu4iSZ719JHIjn+OOlpUvt58t/F+P8Xo+7M87InZ/eeEO67z7rsln9VscdlyvvXXdJixY5m9fuWDX7TSop07K02WKSMy3dZAEuXSqdc479Mn71q9y168ILna3PSn7/P+ooaf586ZlnpNdes5/nhhukt9+WPv9cGjrU2XrccBO0tOuaxm3z8Pz0UQ7EI8WfaVlfL82ZI/34x87X42Ugnvfflx57zPyzp56SJk2SPv00V9dbvFj6wQ+cl6f0c7uBXLxyErQ84YTW0zgJWkaRaVm6HfLnkJEjW89XGrSUWo4jszIdeWTuN3v4Yemrr6zLYPa6udk8ePb229KDD5rP77ZPSyfb0a4O4CdbMsmZlmZ14zRkWjrZxl6ah4edaZlflpuBeD74oCVhwK5cVoLKtPT7u5XW1ci0TBWClsiJImjpJNPS7MRcekLOZ6OU3uBFkWm5YEHL31Ontv683MWn9PNyFewgs8a8ZlqmsXl41EFLJ/OW245+Mi3NgpaV3qelVdPApGVaOpHfFm76yLLy3nstf8+Z0/K3l98qf9Pt5OGLkbHsZlmVaQtall47vAYty/VpmZSBeOwElbFjlN+W69a1vLdkif08X3zR8vcHHzgvk1PVlmlpfKgbRdDSah1mWbNOgsV55TItV6yw/3zRImnZMvtpnD7oNZ7ngrrpNFu3k2WbBS2t6qdBZ1oal+G1jlAatHRbx/OSaZm3ZIl5/cwuK9Js/U5+pyQ0Dw8i09JN0NKsFYpZGSp1IB4vzcP9ZFqaXZPKHftff926TGbTW7GqI7r9HYz7ld/m4WkKWpJpKYmgJb6VDaNPSyOnA/G4ybQsbUrnZSAet9+1Uyf7z8s9eSv93HiTZsZPpmW5ZTl90uX1ZBl08/CoMi3Dmtdt0NLNQDxmy4mieXhYFePSz53eqDU1pTNomf+t7PrG88Ius8/Nfl5u37TbD8wClGlrHl6apW8XtLS70SyXaWk3gnIQog5aOp3Wy0A8YdRTyi3fSdDSb6Zlfv5q69PSy7RegpblRvFevtz5gDXlPjee5/xsK7OHkkZOg5blzttemvqWstp2+TL6DVrmz7Vuj/9yAUCrTEtJ6tXLW6alkVmd1oxdIDRNmZZ26yvdzmb3QZXaPDyoTEu7oGW5ul7+tZtMSzfdVZixSspwm2lp5CVoaVxOipqHMxBPDkFL5ITdp6XXgXjMnk7mg5ZxZFpuuqn95+Wy5UrLVS5oWa58TisXdgPxVEKmpZ+AjF3ZnLJrspTnNqvWb6Zl6bRhDMQTZqZluQCe10zLMIMdXpdtFrQMopJid153Ularc0S581q5oGW1ZlrG3TzcT+aOl3mcTus3aBlUn59Wy7d7T7LPtHR7HFs1D09i0DLIPi3tBJlpWS5oOW+e8wFrrOS/m/E85yejqFzQ0snxY5Zpmck4qzsEkWlplcllxzht/hzrpK5VblmS+XFqVfYuXczvTcplWnppHp62TEuredxkWtqtJ4j6WljNw50sM6xMS7vm4UFmWppNa7dsK1ZBY6/ze1V6fKUk0zLUZIsUIWiJnKQ0D3eSaZnPRinNSokiaBl0pqXd4Bxm07v9PM9uIJ44Mi2dBC3dVDKCyCAKe94yFbVW6f9hNg8PKtPST9DSTRmcbAuJ5uGl7DLo3QQty2Va2p33zLIq05Rpmc22vnY0NrZ8x9pa+6ClcdtUW6al0+V72dfjCFpafR+7ByxOr7Ol04fdp6Vd1n41Z1rOmxdcpqWf5uFOg0NOl20WtLQKTvoJ8JQLWsaVaVnuO2Uy1vuOWQuO0iwtJ31aOvmd7Oo9UQUtw860dBO0DEKSMi2jGIjHaaal2X1/0jMt/e4XpcFeMi1ThaAlcpIyEI/Zybv0hOw10zKIgXjat7f/3G2mZbkKdrkLgpvKhdVFL45MS6ssAuN7bipBQT5FDWveIPq0dDIQT/7v0vmjGIjHTUXQTZ+WbjItgwrIeuE3wB900DKo5uGl36vck31j2dOeaWlWsS3NtLQbPdwq09JsX6m0Pi2dTusl09Io7kxLuyx2tzdnacq0jCpoGWSmZbl9Zd4899fqUvmsOuM29ZsZaPe+16Cl1fnAT7As7KBlUJmWZtcsu6Blubp7FM3D/Zx77dbt5vd2GrQMKtMyCGFlWjrZxmEPxOMkIGv1eRKah7ud3+/DSuPv4WTgTjfMluVnPzP0gc5APDkELZETdp+WYWRaxtE83G1AxO9NYpBZY14zQOJoHm72VNrL018vYsq0dBS0dNKnpZNMy6D2Kz/b3U3Q0kkAV0p/pmW57+yW0wzAcspVqu3Oc2kfiMfsGEtr8/CkZlqaHctBtTLwyk3Q0kmflm4fBMU5EI/Xh1Z+1m/HTdCy3HW23Hrnz3f3MNnsxrm5ufV5L6hMSydNUK3mKxdACTPT0knw3q4OFHamZbmgZen0bvucdZppGUfz8NJzjZtWTVYZcEkKWuYfIpS+F8Ryyy3TS/NwJ/fKVvV8yXkQ00mmZf61VYDQbaZk6XK9zu+VcVs7SXLwuuw8P+U21BcZiCeHoCVaC+PgsMq09BK0tBqIJ4qgpd9sObfrC/LGzUmmZa3JKcHr/mBX8S8XtDR7Ku2lIuVFUoKWbgbiMc7rJGgZVHZtkIEwu8+dNg9nIJ5idg+j/GQ6VdNAPGYZ+mEFLcNuHu7kBqqcIDLkSvkN0MedaRlG83AG4ik/rZdMy3LXYbd9WrZr1/rzTKb1Oc7PA2uz67tR0JmWfgI8Vvu5k+PA7uGY30xLJw/ags609NKnpV2mpZ/fwU3QMohMSz91YeNygwhWJal5eFCZlnZBSy+ZllbHflgJDm4f5pktx8t137htGxqCz+gtRaZloAhaIieI5uF283kdiMcuaFmalVJu9HAn67didWEutzy/T/fcrs/qM7uBeIzTGU6SBXE1D3fzlNnuQht0Nq0du3UF0TzcSdAy/3fptG4H4nGy3fxUBMttj3IBvCQOxBNk0NKL0u/mN9PS6rznJtPSSfPwsLPm/CDTslhUmZZmNyRW53U3Ny9Orw1eg5Z+b87S1Dzcz/kqiECYWZDJb9By40ZpyRL7aYxlb9vW/PPSc5yfm/Nyy/EzEI/ZOu0etns9V1sFRezKYxe0TFqmZVDNw5Oeael0vwwq0zKooGWQiQ15YWVauglsWmVa2j3oMMu0LBe0NEtoMZveitW9gpv5S5cRRNAyyIewXoOWZt9NKrq20KdlDkFL5PgNWl5/vdSrl/3ynQQSzU7MVs3D3WZamnHyXV9/Xdp2W+nnP29dlnIX+6RkWtoNxGN1U106nVtRDsRjFfweNkzaZhvppZfsy+p0PeWmCzLT0k2flmZl8NM8/PrrpR12kD7+2H46PxVBP83DM5nKbB7u5yblmWekrbcufi+pA/EYb+i//FLadVfpyCPLBxzi4Ddoadw25fq0ZCAea2PH5uoY11/fetlOb15uvz23jLvvlj7/XNp5Z+nYY503T48y07KaB+Jx+jAsjExLSfrqK/vPnWRalgYt3f5+Vt85yExLq+uNVRbikUfmztWzZpVfXyknx4Fd8Cbo5uFmr632DbNMy3KtDaT0DMTjJqvbaaal36Dl3/4mXXSR/8w6KVmZll4H4rEqv9nypk7N1d9PPNE8IGaWaVkuYzbugXimT5e+8x3pscecTW/Fa6blDTfk6g5jxjhbdl655a9aJX3ve9I++0hff138GZmWrRC0RI7fPi0vv9z+6bTTgXjMTmxWA/GsW1f8flhBy8MPz/Vz9OCD0iefmJfFanlJybS0K4vx/agyLZ0ELf1mWs6dK40eLS1cKP3wh+XL62Q9dqyeluW5CdJZTe+meXjptG6Pj6++ko47zn4aL4GwPDfbo7S8jY3m81fSQDySuyDeySdLixcXv+d3IB6riqybgXjMAnHGYPtZZ0kzZkgTJ0r33Ve+TFGLMtOy9JoWtCCyTdwE4Zwu38lN7ODBuTrG5Ze3/szpzezw4bllXHihdNpp0hdfSOPHS3/9a+tp3QQtnQzEU4mZln7KZLcOp+cqL31aOtnXFiyw/9z4vc2Cls3NrR8olqsflLLKbgwyaOkm0/Kee3Ln6BkzpLPPLr++Uk7OG24yLf3WpaPOtMxk3Gda+jlfuwnS+cm0LBfsMuO0XvOXv0gzZzqb1k5YmZZOtnHYA/GU/nZSLtj71VfSc89J//xnMJmWbjK/zfi9Lt54YzD7gvH3cNOn5W9+k6s7DBliPY2XoOWVV0rvvSd9+KH0q18Vf0aflq0QtESO2ckr6OU7ybQ0O7FZZVr66bPPq9InIaVBy3IXH7flCjJrzEkGiFlTp7CDlmbcZlqafbfSAI5TXrOPyv1WYQ7EYxbg85NpmTd/vv3nfoLy5baHXcZBQ0N1ZFqaVUjdsDuvO9kHrCqybpqHm+1Dxt9u8uSWv8tlOMUhyj4t/Y6iXU6QmZZO5nW6/DgG4vnoo5a/5851No+XTEu3GSX5+cPu07L0GDbu53FnWjrdT51kLZUyC5icdpq0114tr8s9PCgXtLTK2nOzvaz2F7P3nQYtywVQ7DItjQED4znbKSfHQZyZlnZBS7PghpPjMy2ZlmH0aek30zLPaz3eyCxoGVWmZVjNw/Ovy/UPvmCBv0xLqwcZVuWyYlUGP9fxqJqHOy2jl6DltGktf7//fvFnZFq2QtASOUH0aWmnttZZc1qzE5tVn5Z2lYggMy2NSk+SpVlE5Z68uV1fkDduTiqoUTUPt8oiML7nZtuZVaS8Zi053aal3yHooKWbgXjMMlejCOr7ybQs97Tdrm+nhgbr5vNRBi2DanIURKalGbvzupPfyupG081APPPmWS+3lFmmd9zMMi2Nmb5ugpbG7+fkehg0vw/RJHdBSz+VfTfL9jsQj9l+5ybT0q5PS6tAkJX8dJWeaeklMFLKS2CwdJ5NNsk1RTVmD5r1w2tVHqs+LZ0EHpyuo9wynAbDnGZamr3v93hzEqSwOz/lz7FBDcRjdpwat8+xx7b8HWWflkEFLZOcaekmaLl2rfNprSSpeXhQmZZOg5Zm85plWpb7HYMOWrrNtDTjN2gpOUsMcJo84CVoaax7lJ5TjEFLMi0lEbREXthBS6cD8ZidvK0yLUvfdzPQiNvprJRrHu73JtFJRqKTz5I2EI9ZkK30c7/Nw70GLb1chJ1USJ1UastNbxW0NMv0CeL4KCfMoKVZ9mien0zLIM9vYQct/WZa2h1nUWVaVmLQ0tjHWW2tt0xLs30l7Iqpk5sjp8twmzVkx0vwKalBS7+ZlmlqHu4n+yOsTMtyZbKqlxgzJssFLb1mWrrZXlbnbieBETPZrHnQ0mzZZgE+43RWg3LYcRK8tzs/BZ1paVbfMm6fTTZp+TspzcP9ZFraba8k9mmZF1TQ0m8CiRkvQUsn5wU3gc1y5yqzrtnyy3IStCz3kNJv0DKMeIMdq3soO04Cw5KzGEcp40Mvm6BlbditcFKCoCVy/PZpWU6QzcPzgUK/ffaZra+c0pujsPu0DCoA43QgnqQELd1mWppN67Wy4zYjJr8+txkepZwELc0G4rHa54JoHl6On4qgm6Cl2bGehObhQQUtw2oebtxGXn4rq+wYNwPxVGrQ0kumZbnrbJhNgMyywcPOtHS6fCfnOjtRBS2tjge7TEu3GSVWmZZB7xt2N29eroFuJSXTMn8dchO0NJYn6ubhXjMtzYKWpRlodtlWxvecHm9m3ZO4ybQ0vvabaVmuLt7cXPyblQYtS6d3MhBP6YPXtDQPd5NpabX8oIKWQZz3SoPz+feCWG65Zfpp+u1kGi9By/xrs3qLVUZyWM3Do84gLN33nAQty23jPL+ZlqVlo3l4KwQtkRNFn5ZOMhfMKvxWA/GUljOJzcPLNUkpx0/Q0mkAtVympd/ssXJls9ov3Gw7s/0oac3Dw8q0dFrJiKJ5uJvl+glaWjUPj3ognqAzLc0ySv2wC6b4ybR0OhBPJtMyqEXv3ublMqrEoKVxO5fr0zLMCnxQ63MTtHR6LnWblebkfOuG20xLuyC+k+usnfz3DrtPyyAyLf2UyW4dTgMgQQQt86+NGS/lMmuM67DqBzzI5uHlMi29Bi29Zlo6DVoajys/Qcva2pZ1hpVpmcn4y7Q0C4y5bY1Tuhw/D4Xd1E3cZHU7zcSzW4bXrDE/o4eHkWnpZBuHPRCPl+bhbjItrc4JVsu2EkamZRDNw836LC/lNNPSS9DSLtPSUF8k0zKHoCVy/DQPdzq9m6dHeWaVvzVrzJ9aRhG0tAqgWq3Xb6ZlkAEYJ5mWZn1aen3CYxeU8pJp6bYiFXamZWllP4pMS7OgpdV2SnqmpZuBeMyCeUnItAyqImyVaem3T0snwRQ7VkFLp83Dlyxp+Q79+pmXyyiJQcsgB+Ip16dlmE/T/QZRSudxs/+U43YU6NIMMSc3L3ZlcRu0tDsewsq0DDpoaXfzlrQ+La2mNTs/er0OGzMmyz3w9Jpp6bV5uNW68+cdp0FLswCK2XXW7BzmJWhpvCF3EqSwOq6M9dKg+rQ0W5dd0NLJA0W7+oDZPYsVqwfPQdT3zYTRp2VQmZZBMAtaBnE+dfKdnWRa+snGdJIF6CbT0mlQ2qpcTsvgph5hJaqgZZiZljQPdyXVQcvRo0erX79+6tChgw444ABNmTLFctr77rtPhx56qDbbbDNtttlmOvroo22nrzp+gpZOTjpeB+IxC1rmA1JJCFomOdOylJMMkKgyLb0ELd1UdjOZaIOWTp6iuwnSWU3vJmhpd3wEFbT0kr1nVh4zxvI7zbSstIF4gmwe7uW3srrRdDoQj7Fp+HbbtV5uqSQGLYNsHh5nn5ZBra9cczGzactx2zzcS9DSbnlBBi2dXGftRBW0LF1ekvu0DDPTMs9rn5ZWA/FE0Tw8v24n9Q+rTEuzupjZ9vcbtHRyHFgFb8yClnFnWjr5fd0+2C5dTlRByyT3aRmE0uuFFE7Q0myZSRyIx64uYPU7+s20tPqOQbaYcMJLn5al1wOrMvttHl56HBrOswQtc1IbtHzyySc1YsQIXXnllXr//fe11157acCAAVq6dKnp9BMnTtTAgQP12muvadKkSerTp4+OPfZYLcg3Xat2fvq0dFJxdToQj5OgpZQLFtoFecIKWpaeVMLu09JJRdTJZ077tAwy0zLo5uFub3JKA8pOeckcdtJcMerm4XYdgLvZD+0CZ372bz8D8VRan5ZhBS3Dah7uNNPSGLQ0ZlqmPWhp3M+8Bi2dPMSzm9atoIOWTuZ1uny3WWleMr+iClr6zbTMTx9nn5ZpybSMayAeJ5mWTq7fTtdRGvwyW7eT+kW5Pi2DCJYZmQUt3dTjzIKWQTUPN1uXcft06NDyt1mmpVn9xW67OQksly7HT/0qrObhToOWboKkYQurebiXoGXUA/FI1r+Z2TnGajtZ/Z5e77XdXhfNBJFp6WUgHqtriN9MS5u+4msIWkqSEniH4Mwtt9yi8847T0OGDJEk3X333XrxxRf14IMP6vLLL281/aOPPlr0+v7779c//vEPTZgwQeeee26r6evr61Vv2JlXfxucamxsVGPUJ9wIZDKZws7Q3NiojJvvWF8vk2fNRbKSmkymy27cqOzRR6tm4UI1Pfus1NBQNE22uVnZxsZW0fXGr79WXVNT0fvZhgY1fVvumoYGRzt3c1NT2e9qLE+mvr5onc0rVxbN3yablfE02tzQUPR5XXOz7ZOC0n2rprHR9ns0Nzdblr+NVChLJptVpmSbNDU2KtvYWLTNs3V1Kr0MZBob1exhn69raLD8rtlMpuW3MvmO2V12UfaHPyyav1Bes3WVbNdsNqvMypXKV3WzNTWF9WnpUrX58Y+V3WQTNY8bJ226adGy7PYd4+/TJpMpbKtsJmO6fxd55hll+/VT8/33K3v44a0+zjY1qa7kdVPJ962try+eZsOGVuvNNjerqbGx9bSNjbbb3Erj119LPXqYfla6v2cyGcf7Su3GjTIJkbeU99vvIUnauLF42/bvr+wOO7TaV7ONjcqUbMdWy81m1dTYqJo33lDdz3+uzLHHKnPnnS3luuIK1T7yiJpvv13Z44+XZs1SmxNPVHbbbdX83HPFAY6S85U++UTZffdV0wsvSFtsIUllz41Sy3miTXNz0XdqWr/ecp8vZbaeovNPyX7S1NRkuuyiaRoalG1sbLW/NG3cWDRvXSZTfKzW1+fO27NnF36Lpj59CsvINDUV9hPj+ppraqTzz1ftyy+r+cEHpbVrVXfxxcqcdpoy111n+/3t1Lz+eu63HjCg6Lc2kz/G8//Xrl/fan/KbtzYcm6trVVzc3Phe5ReU4zXqSbDdTazcKFq9t5b2U6d1Pzii9Imm1juK66vyXnvv682AwdKs2cr+73vtTofNzm8TpqWpWR/amxoyN1ENDWp7qc/Vc38+Wq+4gpn1+Fv99OifaG+vug7F61r48aifa7o/G5lwwbL7dsktToWzM6RjQ0NuRvuku/e3NCgTEOD6k4/XbXPPls0T/76We7an5fNZNS0caPaltzMNTU0KLt8uep+9CMpm81duzbbrKW8772nurPPVvaAA9Q8ZkzZ9dSWnCczGzYUjsnS85AV43Fce+WVqv3rX9X85z8re8IJ0pdfqs1JJynbu7ean3++VWDYbh2NpdvXop5mVscod6yYXXcaGxtVU1vb8nuXbPvSeplx22Xatm1VhkxzszIbN7bef+rrHQdsivZvqbB/G88n2bZtC9uw0dDM0Ww/z2QyUkn9VfvsUzRNvl5W29hYtI2av80sN61PWaxPkrJt2rSU79vvXlpnMGrcuLFo+7RpalKNcvXS/Pra1NTk3jPUIcuVQ5J09tlq6tBB2Z/8JLccQ/1Nyl2zagx1puZ27Vp+4/r6VvWz0nuBwnc0BFiN3zXb3Kzm+npH58PG+nqptla1DQ3F++rkycrst1/uerH55rbLaPUbTp2q2p12UnaPPdT85JNFAZ+a9etN7w1Kr4WSWt+jfVufalUXOvNMZe6/P3fslwT2S+umThmPgyKNjblrzoIFufvI7bYrPn80Nqq2ZL9ramiQnn9edcOGKXP66cpce63r8pRuY+P5sDBNyW9odj9Ves9hdg4rnSa/rto1a2y3ZVMmo5qScuaPReM1yfLY/7YsNRb7bqa52VGdv7SOmF+u3fmgHMv9oblZdSefrJovv1TT009LO+1U+Ch/Tin49nyQ19jQIC1apDYnnKBs165qHjdONatXF333xvXrpY4dW6221fGq8jGG2tralvNqyT2f8RpZ29xckbEnqfX11U4qg5YNDQ167733NHLkyMJ7tbW1OvroozVp0iRHy1i/fr0aGxvVvXt3089HjRqlq6++utX7L7/8sjqa7Kxp1/PDD3XAt3/P+OwzfTFunON56+rrdXyZaVatWaP3X39dR5W8X/Pxx4WDcuUpp+jj888vmqZh40YtnTNHfUrmm/TSS9p5yRJtZXhv3apVmvBtuXu9+676Oyi7k+/6U8PfSxcuVE/D64Wffab3DfMfu2GDDI1K9Plnn+lzw+cHLVumLW3WNa6kLJt99pkOs5l+3pw5+tCi/MayLFq8WHPfflsHGT6f/NZb+nrNGnX56isd+e17q9atU7eS5SxauFDvutgf8vadO7fV75bX3NhY+K49PvpIh5R8XrNunWr+8Y+i996ZMkVLLZ427bdggbYxvK7fuFHLP/us8F5z+/aF9fX/05/U68MPVSNp+i9/qZknn1y0rC0++EAHW5Tb+PscuXq1unz79+rVq/Xfl17ScRbzFb7XnDlqc8wxeq7kxlaSdvriC+1meL129Wq9WrLdd585UzsaXq9ftUoT//Uv/dg435o1enXcOO346afa3fB+pr6+UP6e77xTON7Lmfj881rfs6fpZ8euX1+0vy9bulSTHe4rO378cVH5Sq1auVL/+XZZXb78srCP5tXMmtVqnuYNG/TZp59qD5vlNjc0aNy4cfrpiSdKkuruvVev7rOP1vfqpdr6ep3wbXCszckn67lnn9Whv/mNus+YoZoZM/Thb36juT/4QWFZZue+mg8+0OIzz9T7l14qqfj8YeWrmTM1bdw4Hbt2bdH2fPuNN7R85UoHSzBfT365ktR57tyic+vHH32kuSa/lXE5k996S1+vWtXqfPrOpElaaniod9DSpUXntffeeUeLa2u166RJ+s63701ZuLBwXH2zfLne/HbdxvV9NWGCdnz+eUlSm6NaSlt3yy369777qqnkAYNTZr91OePHj5ckbT91qr5b8tn6b75Rp2//XrFqlT76738L27b0nLzvggWF8+D7H31U2I61zz0nKfdg6ctBg/TpoEEqrj63+GLGDM3wcA7e8557tN1XX+XWY9Idzofvv6/9XC7zy1mz9Om4cWq/cqV+aHh/3AsvSHV12nb8eO3z7barPessR8ucNWOGpo8bV7QvfDZtmmYavrPxs5f/9S/tt2RJ4Vq8bt26wrXfSts1ayzPzx9Om6b5JfN3//RTHVoy3asTJmhjjx6q27Ch6LifPXOmll91lQ4wOa8vmD9f748bp73nzFFf2xJ+q7lZ//7nP3VCydvvvfOOtrzvPm337ruSpDmDB+uj888vfP7jM85QzcaNqpk1S//97ne1YtddbVfz3a++0vaG10vnz9fb48ZJ2ax+6jD7ZcG8eXp/3DjVNjbqhFGjJEltTjml+Lw5fbo++tWvNGfAgKJ5f2zz4Gz8yy8X/VaffPSRZpv8vv0XLFDpkfzptGn60mZf2HHatFbXnXHjxjm+7kvF227xihXaumT6lcuXa6ZJHXTC+PGqNwSa7Ry2YoXyU27csEEvf1sG435Un8konw/40rhxav42O9DsWvD1smVqbttW5lfynNWrVmniuHGt6hmffvKJOs+fr37fvm7OZIq2idU1bmNjY+F69sbEiVrz1Vc6oSRYaPSfV1/Vus8+K7z+wZo12lRSYyajf327vmPq69VRUv2GDXqp5Hcpd61tc+qphbqXsf72/9n77ni5ivL9Z/fem5tOQoCQXoBQQ09oIihVmmBDREVAUH+gKIqKBRREqogIgmLBgsgXFbAEJHSVDtKL9BJJ6CEkJLllf3+cnLuzs+/MvFNO2b3zfD73c3fPnjNnzpypzzzv+wLArf/+N9Z8+GGkrebRZ58dmEe8+NxzeHPIEGwqnL/wxReb3vu1V1+NXsGsfD9BKbXkrbfwGHNd8o9589A3bFjTewCA6r334sWPfQz/OeYYbRrrPvpoQz3v+NnPAACVJ5/E3SecgJe2q68GJt15J7YWzr3rjjvwsqAaS8dCABi2aBF2F87t7e3FvHnzsNpTT2FnOa833IBHjj4aT60af1PMfOCBpjGVgxUrVjS9cwCY9o9/YPPrrgMALNlvP/zz9NMb6sLzTz+NyRKpeuu//413f/WrAICOs87CNZtvbj2/WEeaa6Z9vYhZjz4KsSd+8bnn8B/DOu/5Z57BA9I58jrplYULcfu8eVjvvvsa1g0yHnrwQXQtW9ZQF2668UYse/RRbPXii/U10qo12YwHH2yo5w89+CCenTcPk+65p6GOpPjfggW4hzE32eG11yBKHx5/5BE8MW8e3rdiBQitOgvLly8f6BdFTLn+emx59dUAgKX77oubzz574Lf9DIr0eX//O7b5/vex9ipu4vHPfhZLJk9uaLfX/u1vZF1Z75FHmt7FU08+iUc15TN7wYKBsaS2am2SQuyjqr29De2wnbCM6zMULUpavvrqq+jr68P48eMbjo8fPx6PCQOeDl/72tcwceJE7LrrruTvxx9/PI499tiB72+99daASfno0aPJa1oZ/YJ5wPqzZmG9vUz0iwCG78DVVlsNO+4gU1ONWOPRR7Hju97VcGxIRwcmEYTJ9htvjKpEOI8YMgR7rcp3heNcF/bPupY04Zw0fjzWFq7vlHYUZ62zDtYVfu/40Y+Uade6ugbyn6Ky2mra/EydPBmTFPnvFMxbJqy9NsZv1bg83XbuXNTe8x7gvvsGjo0eNw6QyKAJa67ZlC8OOiR1c8NvlUr9XYlmOBrM2Wor1N73Pjq93/2u4Xv3kCGYKAwqHWPGDNyv84ADBo5vMHw4ZsllTpnIr4JYDp3f+MbA59EjRmA3gcwygSrP2n/+0/B95LBhTedVb7ih4fvw7m7sLvVh6XXV++9vvLavr17mQnvvP+gg4J13UNtoI3QQu807b7FFkyIjRWd3d8P3NceNY9eV6oMPan9fbeTIelpS2ajQUathw/XX159TrTblceettgI23xyQCMK99toLXcKEe9ORI7GJeK2i75u8aFFDv2DCjKlTMW2vvZr6j2223BK13XZjp9OU7pQpmJbm46GHGn6bvckmjc9CYNs5c1Dbeeem/nTOlluipunXttpiC9T22gvVW24ZODZXUBePHTWKrCczR4xoOpZi9x13BBhkowk7b7mlsj4Dya7v/Pnzsdtuu6Grq4usp8MF1djqa6yBHYVnmzpxYkOf3HHppQOft5wzh7znOs89h2m7707+BgDrzZyJdVz6YGnjR8Zms+2XjjNnzMD0vfYCXnqp4fhee+4JdHWheuutA8eqTPJrnWnTMEN6vg3WXbepb06x+y67NIwvI8S+QgWF6yAA2GzLLbGpPA4Q87z3vuc9wJQpTW5hpk+diukK5VM6R+ggCE0KlVoNexJtfqsttkBVWLRMe/NNTBbHI6GNbjdjRkP7pFCVFlJrjR6dlKGFCfOkCROSfk7qB+V+c/awYdhYyk+HxrRPHks32XhjbEQ8T8dFFzUd22j99bGB5tnlcTHNb0XR99Q6OprH4X/8Y+Dz2pMny5dgzGqrYUuibe2y887ApEnKvIno+N73Bj4PFea2Yj3qHjFiYMzaY9ddAc3aZNy4cUb3G6NXtSN5nrHRhhuiIryvjs5O1jg/dPRo4LXXACCZ/2+6qVZVtdOOOwLC+N25igDs6u6uz99WiUa6hTKxwUA6gugFALafOxcVoV1vuNVWwK9+BQCYPH48Jm3USEesTQhedt9lF2DMmIHvFYG0HDV8OLbcbDNWHvfYbTdg9Oim95BiyiuvYIKpfT/8sPK3rUaORL9wfeXVVxt+n7P11qjttVfTWAgAWLUJlqJzVfuo3HMPea+NVq7E+nL7+e9/yXNrXV2oaFRX3UI9aEjvn/8c+Lz6449jL2mdMHXyZFSlef32227b8H33bbYBprG2ler3lfiGSWuv3TTvq951V8P3yRMmNL07eayZNmlSQ98OABV5rr3GGklbNcTm2GT2bFTeeKPh2M7vfjew7rro+P3vB451rHqP1aefbrx+Vd9bUbjbmjh+PMYz2mHHmWc2fF9/vfWw3l57odPDJdBQYo0EoKFMxjz9dP2cWg0Vw5xkrz33ROcRR9Tz2d+P/g02aDhn9513BtZqlh9RY8s6M2c2zW0arrnppvrn/v7GNaZgNVzt6Wlsh22Et2Q3exq0JGnpi9NOOw1/+MMfcNNNN2GogjDp7u5Gt9RJAEBXV1dbVppe4Zk6qlV02Dxj1Wz0VOnoQJehc6pUKk3nVPr6Ggb+FJ3LljWZ8FR6eurvhpEnwP5ZZWe41f5+VMXrpbx2AOz0Kx0dzXVLQ6ABQLVSaby/6jwkamQRndVq4k9DuEeVeEdVgHWPJmgGh0qtVn9WwzOm6OzooJ3eA02+TSq1GipLltS/jxhRv5/wjjomT25+P5r8dCnedQUw1m9lOqvQJz9Df3/zeVL9qvT3o0vKb0WRfqWvL8ljpdL4zrfYAjjuuISsJkjLrnfeUZe7lB+rumKYPDQ8P9N3TaWnBx2Gtk+Va9eoUU1tAWgux46hQxvri+KdV6pVq3Gio78/SVciDDr7+9Vlb5Mu0PRsA+1fA6qPAFZNHDT93sB1wjvuHDYs6Zf7+5v7zVXQvbmuvj6vshhIZ8gQVjoDYz2h7q4IKtNqZyeqwlxB1wZkkn8gvf/9r6kdi+ioVOzGZCY6meNkQ17SMVO6tivtn5mbUA1ponmc7KjVlM/cJd27UqmY25umD+ns6mquE8T76OrsJNtDh8ZfXbVWsx4/qbM7q9WGulgdMkRdz9J8WqC6cmWSnoWvt4FnM/WbnZ3N71LT/8tjqbL+E3k1zrmIa7q6ukhzP0AxLxMDJBD1vVqrkX1Zl24OowE5FwBQEY51VSratKuAMQBKw7xMQEe12mhOzGlvcv7SZ9fUry55TFo1Hja8g1VtX5VXE1TXdEp+3zuETe9qf39Tf0dtyDS8X3muBn5/ayor3/6uY9myxjYiPYs8N2hY98prtPQ9KJ6tunRpcz+lei6BhCd/h+L9SW1QHkup/ll+F10rV9q3TamMybFfniNT44Fct6hzpGcaOMfg97xT9rkNYRwT23T6HqVnGuh7FfXJdX040E97+LRUtgN5fp9+Z2zIyWNPdZWbhoZzajW6rhBlZOQYJKGCao1Z7e1FR5vyTzbP1JKBeNZYYw10dHRg0aJFDccXLVqEtRVmjCnOOussnHbaabj22mux6aabas8dVBAbW+hgMWn6pvOoCOM2gXjEHbq8AvHI330C8egc/9tcQ/1GLarS7+J5FAmTRSAe2UE5B7rzTIF4VJNFSa1NpsXJj42TdRU4dYVy2K1y/k6Vf3pMTDtt+6oy0u2C+Tg3twnEYxMYwnQuVa7poGlydi23D9Xz2joIb9dAPGJ5dnbWJ94ukSgtTEi04ETbFEE5ahePdXToo4KrAvGIeOUVuwAVXLi0BRNUdSL97jKptg2oIv/GaW+6/oYqB12gJKofVqXPCUAiQxXkQzzuu3hRBSSwyadurBFBvR+b+m4TrdWUf04gHhHUnEi8hyp6eCsE4lHdk+rfbQNfAfaBeGyih2cx3xLLR44ebhuIh1oL+AbiScEpf934LmzoA2ieZ3DXFeJ3VV7lewHqNqixtACgfm4TKUqVvXyOhdqrIV3dd8AtEA+VTshAPFRbVLVPVZ+gyysnD1lGD1fVE07/Sz2PPGdU9aO+0cM1eamEDsTXomhJ0nLIkCHYaqutcP311w8c6+/vx/XXX4/ttttOed0ZZ5yBk08+Gddccw223pryzjCIITZy36h8qvRN51HnqEjLt95qPl5E9HBNtC8AfhGwTedT99OdpxqMxONlJi1tyq6/v3ESonoG28WUiNCkpanuAM1lSkVF1C0k0/pLLUBUpKUuCrtP9Gwb0jJkujoywnQtUzHAVXoPQLVI8SUtdX2iD2kp1y3VhFosz7KQlrbpcEhLl+jhMkzRsl2QBWlpihbrYu7F6evk823Hbu54lMImenhvrzmiqE1+qXbf3994Dx1pySE15GdI67TNeO9DWuruw91gCUlaqsrTpPCkyM6+Pvo+LoSw7jOhSlSCQ1rqiAsX0lLsCzjPrhpHKNLSl+yg5lviO5Ojh8vnu5CWNpuvcnoiXNq3CBNpaSOuMJGWlAsdVRt0jRdhmpdR44Wc36xIS5/I4Jx7meYz1Lqaih5uIi1V79d1re2ymceFav7NicDd39/cvuQyVs3LXUhLphhHtvIcrGhZ8/Bjjz0WhxxyCLbeemvMnTsX55xzDpYuXToQTfyTn/wkJk2ahFNXOQc//fTTccIJJ+D3v/89pk+fjoULFwIARo4ciZGOzv3bClmTlpx0VUpLqrFSpKWL0tIEOT9yZ2VavNsQBWVVWrqWpW6CrFIR6GC7+yuSbWldkQkI7mLVdE95Uu8CDgFIkeDyMd3OKEVapgO8ilBpJaUlYCb6dJsDtoSnSWnJLQ+V0tI3WqBpEWUC1UcA5s0aiszgkJa692yrkAyVDkVainXMRFqKZaMjLW0USFyY3nEWpKVKsaaDi9LSlkTJkrTMQ2kpK8F05HDepKWpn5IXkabxkkMGAK2ntLSpAxylZWjSMkulJWejgaO0TOtSGZWWus14m43t9Ll9SMuslJa25FVIpaUKJgsY3eZ+Ct3mvAqcORUlNJDhQ2xy5jMcwtA0rpdRaalqByrSkjO2UfnJkrRkinGqvb3IgN5tObQsaXnggQfilVdewQknnICFCxdi8803xzXXXDMQnOf5559v8OF3wQUXYOXKlfjQhz7UkM6JJ56I73znO3lmvZwQG3mRSkuqY3MxDxfTGToUUAXmMT2rSVmZtdLSp8OT01ENRiYlUKsqLcUd3vQZFixoPM9nYSGrH0IrLbm7ti5KS/GakErLkKSl+Kw2ZetDWpp2M+UJoipftiZsWZmHi8/j8q5UClBX8/B0caEq5yyUlnI9s03HFNQtlNKSWtyp0uTC1He79O0qEi79Hso83EZpWQbSMg+lpXjchRym8pUirec2dSI911ZpabsZm4fS0oa0NCkt+/vtiXjdPVRKSzFvHFW16T3p1FbUnMEE2Tzcdj6bt9JSR1raKi2p/tFWaWmaX3DSoCCrH+VnaTWlpdwGOUpL+Xu7Ki2pa8ugtDS5QOBA1Q58zcPlvMrz/pCkJdPCJpKWCVqWtASAo48+GkcffTT5201CRCYAePbZZ7PPUCvDx6clpyOgVJRUHrikpY3S0oe0lDsnW/NwGyWajkxRwYbwc1VaZkFapvel3rnufBXkZ1u6lJ7ov/CC/jrVMVN+bHbROekB/B1Zm51RF/PwrJSW3AUUEFZpSal8uIohefJiUlpy861SVpTFPNyktOSSlkUoLeX666O07O5uVl6GIi2fe079m2vfYrrOJV2dGgtwIy1tzcNdlF+69LhWDi5KS5fFmYrw4pqHcyDnJ0vzcHlssa2XNgtmU/5V78lVaWlDWtrUARVpKR4X6wBnvsVVWprK39U8PKTS0pe0NLVhk9LS9H6pOYbthnhR5uG2Vk26+1Gbcap66Kq0NAX5ykppyemnOEpLF9IyPYdjHu6jtNRZblHnq6DKg287puCjtKT6Oh+lpal8mKRlJd30aMNAPDZoSZ+WERmgDD4tV0WWbQI1OaCUlrUavUBQRGwduEYHU+CdkEpL6npbRYLqN7Fs5Lyodu7l82zBmUSL/02wmUipJr8vvqg/zzU/JnM32/QA3oKM2r1P0+EG4kkH+DL7tAxJWgLq+mLKkzx5CUVatlogHq5PS5lkkUlLm/7RVWkp118fn5bUoqrMpCVHfWULE7HhqrTkbNqofiuD0tJkHu6rQu/v55uHcyCXYZ4+LTmmzLrvunTKorTkbDrqoCLAVIRpCPNwFVkmz2+46wVZaWm7gNcpLUNvEsvtSyQte3rslZZUHebmuWjz8KKUllkF4qFIy7yUli6BeGyUlqZNWGrtTY1JpnE9K/Nwn3Zsmn/LcDUPzzIQj+755d983UW1ASJpGZGgDKSlSnVHLdwppSVAkzKiQ20ZeSstbUnLUEpLasJEkYYqpWWtBhx4ILDRRsDDD/PuyVXS2ahFXX4D6nVFVlqKdehPfwKmTwdOOUWdzl//CsyYAZx0UjFKyyIC8ZTBpyVnwyMFh+hTkW5ynmRVHZe0TPPDXaT+8Y/AmWfS6vHzzwemTQN+/evm6444Apg1C7jrLjpdX/NwFWnpah4uk5YcH7MpXElLuf5mTVr+6U/A175W/x6CtBTL+6KLkn7q5z9Xn09dR8Glz1LVifS7ayAeOa8//jEwZ04SWV3G+usD115b//7II8DMmcB116nvUVQgngcfTMbNyy5T319G6EA8v/td0oece25jeiLyJC1DKS11i/uf/CR55l/9qvF320A8Lj4tVe4C+vuBxx8HNtkE+OAH6ee6/fakT3/oocbrvve9ZO5xxRX0vUOQljriwoW0lM3XbRfw6Xexf/VVWt51V9J/yNZ38juTA/HIeaPaqI60VBHZFNZdF7jjDnW9r1SA005LxoE//Yk+R9fGZCIxS6WljesPjtLyJz9JnlucD3F8WsrHdtut8XsI0pIqtzKYh6vembyGOeEE4Nvfps9Vvd8ilZaqe/sG4pER0qdlOn+76CL1Naq8+IoY2gCRtIxIkIdPS1O6KhNyqqEuWaI3fw2ltLQlLU2Dj+2kLaTSUjXomRbV/f3AVVcB//d/wKOPAgcdpM9TCiqABXX/EEpLrn/EVQG4mvIAAB/6UEIc/Oc/6nT22y+Z7J54YuPzhSAtOQs1jtJStzOqC8SjGuh1vvZciDA5LyrYKC3FYGqcgX3pUvpecp5klV5W5uEA8NWv0kTC0UcDzz8PfOpTjb/dc09CXD3xBPDud9Np6nxscd5Ver18rmsgnnRxoSItdZPKoszDRdciVNC+arW57ZxxBvDaa8lnsWx0pKXsb1eE+O6OPDLpp444Qn0+dZ3L7xRMigxVP6JDby/dVu6+G/jiF3lpPPNM80JUvocKWSotFy5Mxk0bhFZafuITSR9yzDGN6YlYsYK2yNAhK9IyhNLyqKOSZz7ssMbfbZWWlGrHVWnZ35/MMx5+GPjzn5PNKhk77JD06SL6+hIy4dln1cR1KygtTWNOHkrLnXYC/vtf+t5i+XR31/sySgluMg+n+kdunnt7gfe8R/9Ojz8+GQekOA0DsFFaZunTkoIraVmrJe36ueca50PyuGqj2k/RzoF4OGs/ADj55OZr02cMrbSkBEa2sCUtXczDgbCkZTp/O/JI9f1UeYmkZSQtI1Yha5+WoZWWqgkARVrqFAm+pKX83VdpaUsscN8VVV7UBFWlGhAXXQ8+yLunjuwS7x+CtDTdS2X+a7NAkyH7CwyttOSQlq5KS/Eak9LSZgJrUwY2gXhM72nq1PpnzsAuKw1UZWZS6emUEIBf/TJdv2hR/bPKZ29ZlZbpcZm01NWJMpiHU6SlrLRMkb4TrtKyiEA8IUlLSr3BhawiFHHbbX5qjBRFBeJxAScQjy+oNqwij01plElp2ddHm6SmsCUtqXpgml+q6nNfX6OC8umn9WmnUL13m0A8tRrfZQ/VtlWkpe5dZkFa+iotVSSPvCnQ1dUYOM7XPNxGaZnmU1W2LsFXRIT0acm5H/fc1VbTX6e6t2luwzGrbedAPBylpQo6EQSVL24eKAGFLUzzbxlc0lLOEzcQD3ceocuTeL6cXjQPj6RlxCpkbR7OUaKpfFqKHUQ6eVEpAihSRqdIMD1raJ+WtspJW0WC7jwOaUlN3Pv6mpVpHJh2Lm0XubqyME04VD6CfEglOVq978KaszvMIS11O6Mu5uE2O4E2ZWATiMfUDmbOrH92IS1VpLaJ8AqptKSg619s/fi5vCvVxgI3EI+sDJPNw2WyNQvSMqR5OBXdVEVaUj6bdGORjmgpE2mpWsSoCG5umrakoi10dYu72NCR+CEXFCpCRCxz1/vplFErVriRD2VTWsq+q0XYmoeb6oZPIB7ueKlqx+K9QwTi0bVtF9LSNhCPirzJwqelDLkNy6Qlh0AI5dOSSk8Eh2DT3UueI4XwaWlDdKrSHzNGnYbuHibykLOhVKZAPFQ6qrbhQlrajNWhzMMp1WDoNVMKjtJym214aVKBeEL6tJSvEdtiVFo2IZKWEQmyNg/nkDompaW4OFTtWoYmLfP2aWk7qQ1hHm5SWvb325OWtZp5YhVSaWmacKgUIT4TX5m0zENpSdU3FXmg8yVkYx7uMoHlIJR5+JAhwIQJ9e8hzcNNpsUm0tK3TsjvUKWoVMG0iDJBNbl1CcTD8WmpqxOu5uEmE38T0jwOGUL3jyrSMr2Oq7TU9bGu9ch0nQupbjIPd0nTpEIKQVAUFT3cBSqlpQju/eS0VEG/gKTO5mEebkum25KWsu9qEaq8Vir8QIQmpSXlozU9LsJ30Z6XT8tQ5uG2/ZGOtAyhvhYRQmkpPh81nwtFWposi6j765ClT0uA77vapLTkKq5Nm6wUBlMgHhvBiMk83HX9FoK09FFa2mxShTQPN91PbCuRtGxCJC0jEviYh3PO5wzYKp+WaSPu7GwkA3QDRFakpWkAMqnl8iQt5fM4ijzVBFxcUItRFVVYsYJPSuWptFTtepr8b1IQ60YWpCVn0QOo/RGFMg/XvR9bUp7KCydtXbqTJzcqTrL0aZlVIB4VdPmxVVraqrjFc1SkpCotqg5ySEvduytaadndTY8lNubhOn+PuoWoSiluQp7m4VkpLTmuZTgoKhCPC0yEiOqcFGLfINd/ql6mcCUtTX25XO9tlZZcsiI914W0BGjVpInQzkNpqUJWPi2ptu2rtOzrs1vAqzZ7ROFCSMgbD6IPZhelJVWGtv236hk5pKUNQWyjtFTVYd018jwqa6Wli3l4VkrLLM3DazXzfIYSDBWhtKTeiW8btiUtxT5Z5Q6ESpNrHh5CaSnHSuDcdxAhkpYRCbI2D5cnPao8cJWWeZmH+wbi8SUhbSf3uvN8lJbiwMiJ8MeZANiah+vUFjrTSkCtAkqPu+yyhjYPl8GZAMn5SPNiOjeUeXgZlJZTpjTW2zIpLUObh9vWU1/z8DT/JuWCqt9SBeJx8WlZdCAeW9IyfTaxbHRKS455uO3miu0mGQd5k5a2aaraXFGBeFzgS1qKkOs/pQAWfyujT8s8lJaAmoDUHbMNxCMiC9JSlaaN0tJGEWqjtLRZwIuf81Bayn5pTUpLEylNzY1CKS1tyCYVROLT5Jtf9xuHtJT7oNBKS1O7ykpp6WIdxXX7ZLpXXx9vPkAJfGzWXqq1k/y7CRQBF1rokYJjHq5SWlL1O0ulpY60dB3z2xiRtIxI4ENacp3bcpSW1Dkq83Dq3KxJS9vFe9ZKS26nT5UXl7SUlZYc0tLG544vacnZdTYpLX0jB3Lqtwkuu7aAv9LSxzzcZxEWKhCPC2nJDcRjUlqadnpDk5ZifjhRmrMyD7dVWlYqSf9t8mmZhdIyVCCeoUPdSEvuWJQFaclRX9nCtAHkSlrqzM9s0lSNB61OWsrlw1V2yvU/rUNUeS9fno15eFZKS9UYqfNpqXtPWSstQ5uHU4F4dGXFnX+GUlpmQVr6BuJRob+/XjfS8SotX0oVlnUgHjk9W5jetdgvhPBpWYTSUnXvwaK05AZkCqG0zIK0LNI8XDUXy1tpKd9PnBNLv1UiaRlJy4hVyNqnJWfCxFFaiubhXKWlTt1ielZTJ2Hr09K2A/NRWoq/6ZSW4vFQpCVnAmBLWqrKgjvZoOpM+t1ll1VEFubh1GTDhrQsQmlpUwahAvGMH+9PWqZlZVJaFh2IR8yPr3m4DWlp2qxRTbrT89IJoo9Py1YzD7f1aVkEaZmF0tLVp2UopaWqL2+l6OFUO+AGAwD05uEhlZYq0tJWXaJK15ReGZSWNtHDfecIMqhAPKp7cBa8OqWlr3k4h7QU0zIpLUOXpbjxkL5TW6WlibS0zbPPM5quFfuFrKOHZ6W0VNV5F4Xa0qX+5vvUc3F8WrqQln19fNJS1Z9y5oBZmYeHUFqqrvdRWspp5h2IJ/q01CKSlhEJsvZpyTGfVU1qymQeLiO00tKWWAhBWnLMw0XSkoqgK4NDAoYyD+cSjtTCMi2DEKSl766hSdEB6NWT8jV5BOLJUmmpWsDIWG21xjaepU/LvM3D5Wexrac6H1s+SkuuW4yQpGXRgXhC+LR0JS1dfe9ylVU2yMo8XNVWKhW7duRCWnL6XvFY1kpLqg+T+ywuaWmjtAxFWpoW4bb1UnU+h7SU1Vu6eqCa/+iOUURnXx/PDDQL83BVWXHGRZ3SUjzmEoinr8/83lXjldi/+ggsTPeWScv0P+XTkoJuo1W1ZjHlyRWmsgmltORcw1Vajh6tTgNoLo/0fZlU6NwNJdv5lQtp6WoeTt2LM5fRKS2LNA/v6clmzQT4BeKhyoprERRCaRlJSy0iaRmRwMY8/KWXgLlzgT335O+WcHYZVXLxdGDq7DSbh1OkTJGkZZrH664DZs0CHn9cn54tsWBD+KnSzsI8PAulZRakpY95uIgslJYAbzITKhCPaqC3ea6iSMu8fFrmHYhHJqlCBuLhEDWqRaytebhMWqbtJZTS8tFHgdmzkw2V3XZLJpnf+lbS5/71r/x0nnkGnXPnYu6ppzYThd3ddP9YrfKVljqTft0CJE2DGz3+t78F1l0XuOce/Xmuqkjxv+k4N81QSktVX85J/9RTgfXWA/72NzvSMo9APGecQZ/zm98k71qEmHefQDw6kl1Mw0QSZLV5yyEtORt/KVzMw32UlmUjLXXmttRGp+5+QOPc+8MfBj79af39+/qS+rn77skaIwWltASAww8HRo4Epk8H5s/Xp21Cf3/jWkP8TyktKZRBaVmrAQcfDPz4x/rzxH7B4NOy8otfAOusA1x8MV0O3/8+8JGP8O4FuJOWcptK67SO+AHc/f+awCEtQ5iHn3kmcMQRzdeIcxldYBkXk375XBvS8gc/SMakz38+mYN961v5Ki1VbdUlEM/vf998zsqVwGuvAdtvD7z3vfX3EEJp+b3vJXOQq65yUwy3OTRsTsSggg1pedRRwF13JZ/PPRfYcUdz+ioVpQhTJ+ZqHq4jLU0wTfRUhFGKNI+77ca7H1dhkMKHtHRVWnKih2fh01JVFlzCkVI/lNk8HDBPZoBw5uGVCu2iwWZiYFMGoaKHb7stcPPN9e9im50zp95XieCSlpQZeU9PvZ1krbSUJ99ZB+JR1TfTwl9VZ1SLwDRtm+jhOlLvV78CHnoo+XzddcBllwGnnGKfzqGHonLffZgAoPd3v0sWxekzDBlCkzihAvHokJYnV2n5yU/apWuDrJSWKjLJtm91NQ/v6wO+8Y3k+777AldcQecFoMeRrH1aqs455JDm38TyUiktVaSlOAfo6tL3YSZf0arvWSot33670a8pRTCr0A6BeFRlxdnwUM0ddObhXKUlAPz5z+b7//CHzQQk5dMSSPp9IBnPzzlHn7YJtubhqjRShCAtXeYPf/87TbTIENuIQWnZ+bnPJR8OPRS4447mtL75Tf69iPQHYCIt5X5RRVrKdZ27ocTxjy+CM1cOobT86lfpa8SxbtSohEij8qjqT7MyD//KV5L/552X/D/llMSNk4gsfVpyxguueTiFlSuBY48Fbrst+X7mmcCJJ9LXyhaP8m/yu07nHfvv38xdRKVlVFpGrIKNycUtt9Q/339/9krLFHIgnjzMw0P7tDTBdlLLTZ8qfy5pKSstOfdsNfNwX6Ulh5Q3IRRpqTMPp0hLse1TpIrNxCCk0lJ8Vuq5R44ETjopUWSolJYnnQR84hPAZz+bEBEpVIF45DxRZSjubqvKJpTfLZ3SMotAPFwiyldpmaYhLy5clZYyCf3yy27pCOR35ZFHmqPJupCWaVlUqzx1LAVb0tI2XRuoiDtf0lK3QM9Dacnxy6hrDyEXFJy0dG1FzJ/KpyVV3nIgHtOGbxmVlnIb0ZGW73sfcPvt9e+tFoinu7s5bZ/NXd2GhIq01L1LFTGgQl9fsqaQIfavqj40xBxODLoGNJKW3HVOCg5BYZMeF08+yTvPdkOT85sK3E0I06Yepdaj0pM3Jrmkpe96zZW01KWjM8cXA45Nnqw+z0dpqRNBcNMAmudoWUYP9yEt5Q0aCj09jUKJtM8yKS0pclpXBsJvb86cmax5BjkiaRkBAKjZ+LSUF56hSEuTjwvZpyWVXtE+LWXYTlK4k3XO7/IOD4e0VPlnEgcczjOVMRBPKyotfczDuaS+2PYp8sVGaRmStBQnD1Qe/vEP4NvfTj6rSMvRoxPzyQsuaKzbqkA8nAmmSHqFUFp+6Uvq33RKS05Z25qHc3fkfQPxpOeEMg+32SzSpSPW/5UrmwkcFWlJLaTblbRUEXemxY0pzawD8ZhIPoOJZMMxqr5zTfc54CgtueVlq7QMQVqaxi1THeGSKGk6Yrsy9U3p78OGAfPmAdtsU//NxaelaqM3D/Nwm0A8XP93gJ3SUtc2ba2cVJu/HNLSd9NAHI9SMthHaUn1j76kWMhrTHnlXOeaJ9+5cor0nct5kus6VwWfhcjE5G+TSse0YZ8eF91gTJumzmOeSkvTnDhFqyktt922/nnlysb3mPYTLqQlY7O2f+5c3Hz22ajtvLP63EGCSFpGJLAxD3chLTm7F7WafnDJwjzcl7QUBwRfc1nqfFtFguq3kObhnF3LLMzDs1RaloG0NC2OAF4gHtVCUjymWoDYkJbUcZtJCKce6fzpiAGhxDYuEjvis4mfuebhVH8kTohNO72cCb5u91RHWnLqm+3CRHWOqR6qrgtJWnJ8PqbQkXu6dEQSQJ6YqhSVKnWI7DvQh7RM32NIYgxw67OyMA/XTd4rlTCkpSkQjy9pGZJQtjEPpyDmT+XTUqVS5Czs5PuYFOq+SkvTIlTMp5wXFWlAzQu55uEcpSXHDNRn0d7Z2exuI723K3QbEiHMw01Q9QGqQDwisiYtbVRpAF2H81Bacq9xVVq6zJV1pJwPqPUe4G4e7vt+qLL3NQ9X5b2/v5G0nDpVfZ6P0lI3B6fSUJ0n56GnJ5s1k+64SaCju1ZUtYckLTllwLGqGiSIJRHRDBvS0mYw55ynW5RxAvHkTVoCar9v4m9c2O7E2xB+qgmzeJxagMuKI84EIM9APFylJaXmSZ+rnQLxpGlxA/GYFgQ2SkubMuAszHXkn0haqpSWKkKWS1pS7Z+jtEzLntP+dYGt5P5QrKectH0D8agWwqHMw2WiR9cX6BSS8v11xKTcn4kQJrIVG6UlBVnRVqm4Tz7LpLRULXhsFkJUPkL5tHQ1D/chLXt7W4e0DKm0VCnUfUlLW6Wl2P+bNlRkP7siuObhYpo25uGhFGZAc3+UloUPIWRq2xR0z+RCWroqLX3bX3+/mrQEeG1S547FRWnJeZepKbt4Hw7E+mnTPl3myrbtnwuuT8u8lJbU9Zw5vIvSsr+/0TxcR1r6KC1NG/Bc0pKaW+ettJTd/dhcK7Yzam4IhFdapoik5QBiSUQksPFpKU+UOI2O2u2hoCMJZfNw6r6UiYxu4sTxXWGCzizHdhC0MXOkzlf9xlVaUgvwN99s/M5531n4tFSVhXgvcTdMRtbm4b4DMIcEtCEtdeeWQWlpswig7iUGhFIpbXxJSyqPHNLSZgGpIy19lZZ5mYer+q30PDmwQfqbzULznXf4PoxMikQVqRlSaSkH4hks5uGhSUvbNF0D8XB8Wrai0tLHPJyrtLQlKUMpLdPjOqUlRTADxSgtbTeldVCRliGUltT7c1FaupiHU+AoLX3bX09Pve5QpKWNgAGgx1tfUoyC7Zohhat5uAtpadv+uQgdiCeL9VpWSkvRPLxaBSZNos/TKS2zMA+3IS2zEHpQeUrBGdtUaYqkpdhXAPV+OJKWmSOWRESCMvi0BPQTjyIC8XAmKpTJbYqslZa6MhV/0+22qVR3qnuU2Tx8tdXU1+vMw0M4cS+T0lJFApgC8ZTJp6V4bxulpXiuirRU+bS0NQ837ej6kpZy/yPWU0590y1MbEhLW6WlrMDiBuLRoVZTjw82SktArdrUkZa+SssykpYuqiyVuZhJkaGDajyX0+agCKVlaNKyLIF4XElLWx+XqnRT2CgtDZGQmzZSRLgoLVUudTiBeHwg90cmn5Yc6JSWKtIytNKSQh4+LcUxIyUodGQ4BXnOLUK1kcxNj3uOi9LSZt0hixg4yJu0LMqnpStpqZtfcczDJ0zQmzv7bDCazMNV1jlUPkSEUFqqxCI+pKVKYCUrLV3Mw6n3wHkHrvPGNkQkLSMSZO3TMhRpKfq0pNIrG2npOwj6mIeHUlrK4Ey8ijIPHzNGfX3WSsssSEvOLqaKtOSS+ialpc1upk0Z+JKWKqWlCBUhq4oeLk8QizYP1yktszAPV/URJqWl6jpb83ATVGSjnD8TGcolLTnm4apd8JA+LbMiLV36LBWxYbMQovKhWpzl4dMyBGkZA/Go8+ZrHm5ahOrMw4HGd6lTWnID8ZiUloB6XFalY4uurux8WlKuhFxIyywC8WTl01IcE7IwDwf4ir8UthuT3Gvk63TtTX6OMikt03cil0GZSEs5b6EC8SxbBrz8cvJ5yhT13IJqU1kqLbllGMKnJZANaUlB9mkZzcMLQSyJiARlCMQD6Cf+stKSSq8I0pJSr6Ww3VkNaR4uTzxCkZahlJZZmIfbKi3TZw/h09Jz17DCGXypsqfqaK2WfSAeX6Ulpx7piBBx51PVxosKxGNjHl5UIB4fpSWXtJT9x/mSlioFpXx/V/NwWVkTwjxcJC1dJ5/pe5SfKyufUJxrQpOWoZSWRQTikc3FfJGl0tImEE9W0cNN75MizWSIcxqTIk68XwjzcJPSEqDfIee5uMjCPFy3IaGyYNA9QyspLU2kJSd9HdkH2JOWLq63uGsOnU9LIb2KXBdclJac9m9LcAN883AufJWwrkpLF/Nw8Z1PmaKeW1BrZZuxWiccoNLglmEIpSVgR1qKZanabKrV6D6Go7Q0bXBR75nzDiJpOYBYEhEJfHxahlRaHnOM+jcxEI9qwh6VlnRaFGlJyf45pOWDDwIbbgj86U/qc4pQWlaregJIZx5eBqUlZ5eWmhCodm6zMg9fuRLYZx/ah47Nu7QhLannFvOqWhy1eiAemdTLOhCPagJqmphSk3fxHWettJTvbzIP32MPYLvtEkf2v/oVsMEGwG9/m615eKXirrS86SZg222Bp55qPF4EaZm30tK2b83SPPxd70regZyfV17h54+DIn1acudOQLMbiBS+SkuTf9ELLwTWX7/+3URabrIJcOyxjWn7BOLhKC2pscM0v7Op51n6tKTyqSItdffLIhBPVj4tTaTlH/5gTqMIpaV8HvcanXm48L2JtHTZ4D/xRGD2bOC229R51M2DVAhNWorp/PjHyTrniit451PfAd4cnkqnvx846CBgyy31eQbMSktVv2OjtFTNN59+Gvh//6/+nUta9vSEcZfBKXPquG8gHnlDW3XfqLQMilgSEQl8fFq67Aa6QDQPVw3+1IRcR8SZ8uQbiCdrn5ZFmIcDwGOPAR/6kPr3119P/ot+B2XYkpaqepnea7XV9J27zjx8yRJeHlQoo3k4NXFzMQ+X83DDDcDf/06XmcuEWQfuQsyWtJTJLxvS0kZpySkPG9JSLHNO2kUG4qHIDzkQj606JpTS8oUXgNtvB444AjjsMODxx4FPftJsAuRCWqZl42MeDgB33AGcdVbjsSw2SkxQLWKyIi1tzchUfXmIQDwA8LGP+Ze7CVzSUpVH8bjsCsPGPHz2bH0eslJampTcn/sc8MQT9e8icUiV3WOPAT/8YfI/tNJS1f5dzMNt1LqdnY35TfvGEEpL6n25KC2580nxPhTyVlqmBIWt+k9n2QBkR1qa7mt7jai0lOuCi9ISAB56CNh+e/p+QELQ2YLr05ILMZ0vfCHpLz7wAfX5nE0Hqi+Tr6P6yz/+MSHKFy0y53vixOyUlibzcAC44ALgP/9JPtuseX3bLGDun0VwrAg4pKXcT+ssqyJpGRSxJCIS2JiHy350QiotdRDN81SDf7pgaVWlpe3Ou+53efc1JGmpw+LF9YXSlCnq82zNw1Xlu2BB8nnSJD0poFNa+vojC0HKc9wLcEnLFSvq/m6oc33Mw0VSYK21gPe8p/6dWwa2Pobk55ZVvrakpWrSwTEPF4+p2l9WSktx8cjpW7IyDzeREHJbUyktQy3iXJUWN9zQ+D2L6OFp3nxJSwplVFq6qCdkUkSELWmpGrNNykSO0hIA7ryTnx+duxIduKQlpz3IbcwmEM/WWwPf/W6j/2DqPiZfwJxxTASXQE7BDZiyaJG9T0uT0tJG+WcyD7fpDzs7kwAcKdJ5UIjN0xBKS1V/qYOPeTiH8NTBpLTkQMyDSWk5bpw+rc7ObElLrtJSfie+rpTk+33qU8CBBwKnn26fDrUJD4QhLV3O5xLVpuv6+ho3ZUwYNSo7pSV3XE+tDWzG/xA+ul19WqratsrVl6y0FJF+dyEtOXUukpYDiCURkaAsgXhM96VIS3GimZr5is/QztHDi/BpaUIa0Q4Apk4158+HtHzllfo70plIAHqlpe/gWTal5Qsv1NMTiWNqkmdrHi62veOPT4ifdPGUB2k5f37z7rdtIB75/tzFt3xtCPPw7m67ha9uggQAX/lKYvqc5k/Vzjg71FylJXUdh7T07R9TyPnjLlrk/kIgLSu+SksqEE/oyadvn+NKMFL3zkppuXJlGNIyhHm4eD4Ht90G/PKXvHNFqPrHtdYC5s5NPvf26iPLUp8BO6VlRwdwwgnAvHn6+8j5lTcNQistZZgC8YiQ/eyKcFFa2ij/QistxbE9nXeFmIfYKC11ZKELaelqHq7CN76RqOZMEF3GuJKWNubhN96oT6ujoxxKS/k3V6WlCDHNn/88URSOHm2fjmouFMI83OV8Lmlp6t/6+uzq+fDh2SstTXOFdPM9b9LSVWmp2lRRXSuOMXLfrgoIBUSlZWDEkohIkLVPS9XuhQ1E83Bxcjd2bP1zugvYqkpLziAooijzcB1efLH+edo09Xm2pCVVFiJBaiItqYVxOmjYKr5k5EVacgPxPPdc/fOMGc3X+ygtqfqSpuGyy68DNbmi6qhtIB7VJI5jHs4hLXXmIjI6OvRuFGSoTKLE9KiosiF9WtqSlumELyvS0lVpKdf3VlNa+vY5WSgtXUlLVV3Ig7Ss1bIhLatVtzFV9QxdXfrFUwrdu7AJxJPmXbcgBtRqTvk81XcZWSktKT+7Ilx8WqrKhsqHSWlpS1pOnlz/Hoq0VCmzVESt6t10dLiZh1PpqcZxDqpVHvmYB2kpvl9O2tzxUTyPe40uEI9OaRmatPQhZFoxEA91H+q7LWmpahcq5bT4XweOeThQbzM2Zehr4QbYkZbyRroNadnRUR8fQiotOeUVet7YwoikZUQCV5+Wvb18n5a+kymxkxHTEknLVGnJJS1NsPFpqVJa2pC1eSotqcGo1ZSWNqSlyjw8lIlCFqQlx6yOmhQ9/3z988yZ9c8hAvFQJhZpueehtKTyaGserrqPrXl4CKVlpaI2v6Sg29UFmheLKp+7WZqHZ6W0VJ0v35+rtJSvE/NXpkA8KrQTaRlKaanqW4pQWlYqboty1TPIpKVq0Uf1mymoein+ZkNapufKZZu30lKc43EDFHFJS0CvUvdRWsqwJS2HDgXWXDP5nm4Wh5iHUG27VZWW3I2DEKSlTuEM0GOiClxBCOe+FHTm4cI7qMq/hTYP9xkTswrE4yqkcCUtqfmVTbkMG+amtAxpHs49T0ReSktKLWqrtKxW6+ODStxgIi2p+sJpr1FpOYBYEhEJ8jAPD6G0pBqvD2kZUmmp6jxtVHwcNRT3dxelZYjOkUtahvBpKao6p0xxC8QTirTMwqeliSwC6IWOibRUTRpdlZbpdaFJS0rpRy1AfElLG5+WuuA2cnpc048slZaqTRUb0tJkHi7/rvJpKeeraKWlzveeHN2y6EA8FEwqMBNcCUZAvfByNTnXBeKxSbNM5uGuLgFU/WNnpx1pSeVTJi3FDRMVaamq41ylpS1paVIkyjAF4kmhcitEpSNCt+FjQ1qGVloCdbXl//5nR3SpQKmeZZNxeW5JwaXu6wiDFHkoLVP/dS7Rz1OYNqFNRKrNuwxtHi5+l+uCb9BKMX3f9UZWgXhc1yQmlwAp8lRaUsSYzQYjV2mpssrRIS+fltR8XMUn6JTj6fgg5ztrpWUkLQcQSyIiQav5tBRRtHk4pV5LYWt6zNm54/wuk2i6gStLn5ZlMg+n3kUo0jJE/aaulyfB1ABnMg83KS2LMA9vF6Wl6nltlZZ5mIeHVFqG8mlp22Z8SEuO6aeYZ655uMkfqbhAy8OnZdakZd7m4YBdH+1KWtqYJHNJVFelJdc8XLU45ygt09/EvkcOxONqHm5SWprKT9e/UO+Fax5uUrqpxpGslJamzSAd0rymfi37+oCXXspGaSnPPTjKvqwC8dimWanw5rV5BOIR66YpT6IrAxPkzTYOXJWWIRCKtMwqEI+LwpX6rlIOc5SWWfq0dDEPN/XZNhv1KfJSWlLzcZ3SUqX2TvvcVByVIgbiyQ2xJCIS2Pi0FMEla0KRltQEsbu7rhYoUmmpIgFsds85xALnd2qQKoK0zNM8fPJk+0A8/f3FmIdzFVKcxYFJaSn6tAxhHi4TOUC+5uE2SkvuYke1+M4jEE+1amcebgrEozIP56gCuGZEHPNwyn9XkYF4dFHaxTylyCIQTx7m4Tb9UEjSkqvIUOVDt0C3Mffr7eUrXsT7c5WWNgEyQistu7oa5zMuSku5XnKUlqFJS1P56Qhk6lpuIB4TaWnyESrnR/du8wjEAzQH4zGVbUrIqUBtIMjHOPOSrMzDW8WnJVUu1NxJB876Q76vyzWa9tkUiCcEQist5fz7+rQMRVqq+iKO+wtb83Cd0lI1r+Ou3QH+RlMZfVrakpYURPNw2UWCijwHotIyMGJJRCSw8WkpO3Dmdny+5rMqx7kdHfXIc6GVliF8WtpMREOZh5eBtBwxAlh9dfV5tubhJqUlh7TMSmkJ+CucTKSlanCj6leqtOzoaHTWT7kyEMuMev82SktuGRQdiEd1H1VUcRE2gXi4u6g2SkvdBClNL89APJRrBK7SMiufltRkeORIc/pinlesaF5k+vi0zMs83KZMXQlG6lpfpWUo0hIwu3WQUavxScvOTv4zclVeMrhKS9XYZaO0lElL8dnS+VbRPi11Cz8gnNJy0SL6OlVd17XnPALxAPakpWiZRMFWaakj910C8VDw9WnJIR/Fss8jejhnPMiStGQqLZsC8YRAaNKSM/5zEFppqRpzOMpzm/WESWmper82SktTmRSltLSZx3IC8ejcXXDNw1UisEhaeiOWREQCcfBctgzYay9g113pSHFiw+f6JbNVolHQRW9NScuQSstf/Qq48UZzvrJQWq5cCey/P3DMMfrz5Xtecw0wezZw9tnN56kGrhCkZU8PcMABwE47Af/9b3LM5GMypNJy3Di9XxeAJi37+8Ps9qXpU6DyxCUtdbvhKaiJ0UsvJf8nTqz7ZwLCm4enbUvl0/ILXwC23hp48MHG49w28YEPNA/seZqHU/jBD4CttgLuvTeM0tI2EI+r0pJq/7UacOihwLbbAk8+ySeiTIuzrEhL1Riiy18KjtJSfP/Ll/MmuTaBeMT/ISA/91e/Cmy+Of96lwWpahHz9NPA9tsDF11kn6apLtj20Y8+mtTpQw6p57eVlJaqvGYRiEf0k2nr03LFCuB972tWnoQmLVesSOZDO+9ME4tc34Om6M0q0lK14eOrtDznHGDHHRN/lHL+TKBIy69+FdhiC/11JtKSIjlaXWlpO6/Nyjyc425EBJeAfPBBYM4c4HOf49ehn/40ueaRR7TkWyakJUXuuKBspOUbbwC77ALsvXdi7aHz0/yRjwDbbZf45eeuB1Qw+bT0UVpmaR4eYu21ySbAddc1HstaaSlDnpOL/caf/wzsuWei5HY1D4/RwwfgEVY5oq0gNoq//a3++VvfAs47r/Fc2e9XXkpLlXl4tQqstlry+a23mgk6V9Lyu9/l5UsXiMdWaZmmce65wFVXmc+X8/++9yX/v/rV5vNUC4cQpOX55wNXXtl4bOLE7EnLlJybNCn5b2seHlJpqRqsu7rogB/yQiuk0jLFxIm0CoVS08ifVfni+rS86y7gxz9OPr/vfY1Bk7ht4oEHgFtuMddR1WTCNxCPCvfeC7znPcC8efr0uLuoRQXiueYa4OKLk+8f+hBw6aWN56jaqFifOb588w7EQ4GjtBT6gkpvb+OkOkQgHiCpk75jYQrxuR9/HDjzTPfruVAtYkwbbKZ86EhF2z56//2BZ58F7rgjqdf77muOKp0FaRk6enjIQDwicdDdndzT1jwcSPoQ1T1S+Pq0vO464JVXks9yH5Xms1q1I0OpeeGOOwKXX9583EVpqZoPyu3/X/8CjjwymXf7BOIBGn1Zq5Bu8KtAzRVdlJaupKUqrRQupKVtPtKNXlvS0hSkz1Zpya0PH/xg0hfcfXc9mjwHd98NvP/9eqWlr9iEQiilZdl8WgLADTck/884Azj6aPq63/2u3s8ceigwfXrzOTZzBFP0cB+lpW4DTERRSstFi4DddtO7EKHypiMtVTyDanOMIi3FOfI//gGceGIi7JHzFZWWVoglEZFA1Sj+/e/mY7IJHZe0zENp2d+f7GiEIC1lZ7sqmJSWLtHD77qLd77N4KqaeMsd+dVXJ4pJDtL83ntv829Dhug7W1/z8J6e+qRl1Kjkv4m0pAazPEhLGSGVlrrd+O5umrQMpbTUmYc/80z984IFjWmIk3H5nh/5SOP3N99Uk6wpVErFLJSWKdINEgqpYoQ7ITEtJEW4BuKhSMunnqp/v/9+vtJSJEuofMj9XloH81JaUuAoLeW+4O2365914w/Q3G9SPi2BsLvm4jtNN3Bs4DIm2y7suGmGVFo++2z985NPJv9DBeKxMQ/nECZHHZVYtYgB0/IIxJOe09FRT1PeSOCQlhRCKy1FJedrrzWfzw36YiItjzgC+NjHkjFo++3rx01Ky/nzExWoCarnvvba5L8LaWlSTsrg+LSkxgGVulI3DmURPdzFPDwvpaXO5Fr+nUNacvsZsb2l5D4XOgsLZGwe7uuOSmV1wlWoyrAd23Rrl7vvVo85KbEJJBsyRSkt28E8nIKP0lK3CaPqD2TynDrvhhvclZaRtBxALImIBKoOj2p8ZSMtRaUlkExwxXvpTId0nTa38w3p0zLNN5fotFEpcknLPfcEbropUauYoPPdZ5qU+SotxQVbqlRzMdcqC2lpOqYzNVFB3h3MKhAPZR6ua+9inuXyWX994Ic/rH9XqX9EqEhL30A8Jpj6D655uNh/mZCWna95eH9/c9mrCGr5OcVIqxzSMu9APBRcSMslS+qfTUrLtN/cdNPGtLIkLTmKJx18rglNWob0aSkirXuhzMNVpOWeeyYm6SI4Pi033TQhvb7+9fqxPAPxiIuxrEhLDSlCQn5X4nfqmblqOhNpOXQocMklwGWXNfYXJqXlrrsmroQOPlh/f5WKJz1mM/6k+ddteH3pS80qLpMpva3SUkc0lsU83JZ8dCUtTf6u5blTWcw+Nb5WS620VG3g2qy5RKjWMy6bpdWquj3Lbtd8fFqmm04uSkvOu+WahxcViIcCl7RUue5S9UGq/kBnHp7i7bejT8sAiCURkcCVtFy+nNfoVB2BDTo76XyKSksgUUCJnZZu0ZA1aUkthnTgSvFThCAtVSo2zi6o7tlNk1Zf0lIkTlLSSjcJpMjJPJSWlOkyd2dVPM/FPFxlKiymG8KnJWUerqvDYp7l8knNFVPIGyNUvZSvSeEbiMeEEKRlkUpLuey5SktxwyBP0lJ1fiilpTyJFtX23EA8aT1csaKx3zUFNXGB74LS5fp2JC1rtea2r6prKtKSCobAIW7SfkmsR76BeHQLTco8PDRpaTIPtyUtxfOpusBV9ek2y2ToglOqSBdTHlR1Kr2Xi9JSN3ZQG8cmIk6ltHQxD2+lQDwi0j6c6ys1hYm0lC1MykJaqpR4GGSkpWq+4zLvkElLsQ4+/7w5He66KBVsRKVlHar3x/FRruuDVP2ZXA+p85YsMferKkTScgCxJCIS2JCW4oAgq6BUyDoQj05p6Woe3u5KS1MgHs6Ek1LupQittNQRJ6aBG6AXgn192QfioUhL7s4qxzzcRFqKO4p5mofr2rtYvzmkpXhP1QBO+YXMyqdlCl3d5fpstFVacgLxmIhqwI+0XLZMP5nl+LRsBfNwWWnJCcST1t1aLSkDWZVVJqWly5isU/G5wjR591ncuCotde2LevaRI5vrAsenJUVm65SWoQPxiP2FirS0JZ9Cm4fr0gb4pKU4BzARWaoIsOJ3uS2b8mBSWtqMP2k9sCUtOUpLaqywVVq6mIdnpbR0NQ+37VNtfFq6lE9eEPJezdI8PCuflr6kpfzMqvRMpKV43YwZ9c+vvtp4LlXG3PHVZGXmq7TkCml0VncqlNE8XEdampSWOtJSpbTklFdZ+4kCEEsiIoGqUZiUlrUaz39ICKWlzjxcVlqK98qatFQNnOkxmwE0zU+R5uEpbMytXJSWtj4tdUpLDmlJDZD9/eUxD89CaZmWf5qHEObhOiWOi3m4TJxVKo2kpazmVi1AKBPxUD4tVffUPWORSkvKPJxaeJvMw3UbC3KgGfk6KlKvnC9b4suHtLQMxAOAZx4u1yuZcKcC8YSC75jqsiDlmovZoGilJTVOq85XkZYjRvgpLV1IS5NPSyqfaZ0U62XW5uHUYk0H3buinlmlgpbhSlqGVFqGIi3FPlW1IeOqtLQxDw8diIdKjzuOq/Jhq7RMA/HYBnQR359qM0/MV1mUljKi0rLxuKo/slFaij6LZSxa1HyMO7abrMxCKS25pGUZlJaq8cbXp6VqjJFdNkXz8MwQSyIigarDoxqp3IFzB3bfRQ5XaSmbh7uSltzBukilJTePKpMfwE9pqctnNA9P4GMeHkJpCTSTluL9QyotOSSrnOcQ5uGAn9LSRFqmixgZJqUldxfVhbRUla+8SNOZh8tlyVVaAvX2p9qsydOnZVakpY95OJCQN/ICrdWVllmZh+vqgg9pmb4f20A8tubhI0b4KS055uG20cNVSku5P03bZ09PPqRlKygtxXbKVVqa5kwqpWWadxfSElAr9UMpLeX2mZXSUqdySpGnT0txjslBq5qHyxB9WpZZaRk6EI9KLajqj3RjrkxaTpqkbnti4DjTPWVwlJaq/oszhmdpHl60T8s8lZby/dPvkbS0QiyJiASuPi0BPmlpG+RChspxrrzoD20ebpqIhowezpXipyi70rLs5uEhlZaqwS6U0tI1EI+YhxDm4VQgHlvzcBNpKZKEXPNwSmnJ9YWVFWmZhXm4TtkN8APxUAEXVAQ19ZxFkJaq80MF4pGfxcU8XK678gItK5+WrU5atorS0oa05Jim2pqHhwjEIx6XlZbyb3LeOCgraSmO9UUoLVWkpU8gHkC96eVCWnKUlpxx3sUsm2Me7qK0dDUPX7rU7rpWDcQjo9WVlqGjh4dQWg4ZkhCXFJ57rvmYLWmpqku6tR9nzsBdk7oE4gmptNSpnG1JyywC8cj3T78z2lctkpYDiCURkUDV4VETHLkz5e5Gckw8ddAtGkMrLcXrTZO8kErLMpmHhwjEo5uUZWEeruvci1JaFmkenr5DeeFOLUzlz6q8ivlI06XMw0MqLTl9h0lpySHQVe2OCvIDtEYgHp15uC7ghfidule6aZA1aSnWDx+lJYe0lCGSli5KS4q0LJN5uMuCVFcnfPJRtkA8LqSl3H9ylJZUIB7Vew3h07K3t1nxFdqnZehAPCJU5uF5kpayywfqGgoq83BfpaUNackxD6fMSfMyD1ellaKVlZZivY5Ky8FlHt7ZCUyZQp9Lpc99hnSzPmulZRbm4SGVlrrgkGmeOIF4XMzDo9IyN8SSiEjg6tMSyI+01JmHi5O2Y48F7rij/p0zYXnjDWD33YH9928mSXxIS0rBoYOJPJFRdCAeE2mpg6/S0tY8/Gtfaz7W15d9IB6qHLiOt7MyD88qEI/ObGyddYCpU4Fzz7UPxKMiWUVkGYjHhbQsSyAenXm4ibT8v/8DPvhBmtjXKS37+hrTTuufTKZyykcs+yJJS9tAPEBj3VUF4rGNUCuiSKVlaJ+WuvR8NpY4Yyo1TuvaF1VuVCAeDnFjo2bkRg/v6wM+/Wlg++3p38UFXkdHPc1W8GmpUlpy5is2pKXYTm+5BdhqK+C005LvcptOYeofTErLLMzD5TyZ+hvq3eQViEenckphS/RVKvbrjVQtb6u0FOstVS5iABYXUjcviErLMpOWKqsT1zz39QFHHNHcb7qQlh0dzSTZ5Mn8vHDVopzo4T5KyyzNw0MqLcX1YN7m4amFQlpWNqQlZw5W1n6iAMSSiEiQh3l4CNJStUs9YULjsQUL6p85Ssuvfx2YPx+46irgrLPcSEvV4r2spGUe5uE62JKW8nm25uGqPGSttKTyxCULxPNU5Kou/xzzcB+lpbyo1S1mnn4aeOEF4PjjG/NsIi3LEIhHZR6ue48+SktdXl0D8VCbFnI/Q7XFP/8Z+P3vm4+n7U8VpCeU0lLsf31IS45PSxmcQDy+Pi0pn7dc+KodB4N5uGlDIr0/V2lJLQIBYNNN3XxaUoF4VOAG4rnySuAXvwDefJP+XbyOo7S0XTT5Ki11/YKP0tI1EM+BBwL33puMXYsX2yktxfatUlr6kpYhzcOpei/X+SKVlrZpypt4HKR9+A47mM8VN0tNSssUoVX3PmMIBVFp2Yrm4a7429+An/8cePHFxuNZKy0p2JKWLkrLkObhrUBayu4ZbElLHW/B2RCLSktvxJKISJBHIB5qEZvi2982X69TWm62GfCxj9HXcUjL66+vH7vttuKUlrbm4TbkVxHm4TqYBs5116XPT2GrtKSQh3k4Ba55uJimSMSLvnFUC1MgTCAeMdKsnCdd9HBVeSxb1kgGyQpJk9KyiEA8XV103QqhtKRIS5WyU8yjr9KSIopsJv86peWCBe1hHi4r0lzMw1OoFHU+SkvxnealtMzKPNyWqOKCMg2j7s8NxEMF2Pra1xKCgyKxuD4tOeMtNxDPf/+rT0dcEIv9Ra3W+Ft6L1+lpWruoYItgc0lyMT2aGp3qrnEO++olZbUO5T7r7yVlrbm4VTZ56m0pOCjtBw1yp20/Oxn1euKFOLY7UNaDh2a3M8FLiIQHUSlZSuQlq7Kym23TSxJUjz8MH1eiEA8tqQld13CMQ9X9b825uFlV1pyzMNloYutebiuHxHHJVOU8RS9vbx5WyQtBxBLIiKBj9KSax5OBfBIcdJJwOzZ+utVk6B0YnbBBfR1HNJSjhQZirSUzSRN4O5qpQihtFSZ3nImepRyL4VpcqlTWk6cCDzxREIgy+enCKG0zIO05CotTT4tX3ih/nnatPpnXf0KYR4un0+1Y47SUoQYlVkmk6rVYgLxqBRU6bVUPxDKPNyGtMxSaWnjwF7n0/LFF2lVk6/SMutAPDLEiahLIB5Z0QbQRIfrotPXPNxlsZeF0pLyKSnCR2lJqSxk2Cgt5Xp7xRV1s2Gf6OEuSkvXcoVF4qkAALgKSURBVFH5tJTTlH0Wc9EKgXhM8zrdWKhSWlJzJs6mi0sgHjH/eSgtbUlLDmEvI4tAPKut5h6IZ8gQ4JJLEuJTl34KLmkpu9UBkvdywQXAl79sl1f5viHQKubhvkrLW29NVNQpbINdmpSW4nW2pCW3b+eYh/soLXXuYC69tP7ZJRBPSJ+WHKWlOB8bNsxOaWlSbItpq84T1z1ivkwoq+/bAhBJy4gEqsFDnuBQC91QPi1NE4vOTrrxptepTCQ4pKX4/BzSUryXjrgzLcZklMk8vEifluk7k8lkEVQgHhfz8FADp83EyZe0nD6dd5/0HcjBKGzMw+XzTYF4OD7vbJWWWQfiMW0uiH7fRIQIxFOpNPdRvqSlayAeGx9eOqVlTw/wv//Vvw9WpSWHtHQJFJFCfG6XxWVZzMMB/Tjps7HEUVraBOJRRdiWP6ffuebhnPGWGz3cBHFDgUNa2pI+WZKWPubhYr5cScueHnelZRnMw0MrLcseiGf0aLv+leqPdfVfpbQ0EVpA47PIQRNtYEN2cyC802qZlZYqn5ZcyP5Odep6Clmah3P79qyVljohDVV2Nu8iL/PwNG/ymjGkeThHafnGG43fuf19VFoOIJZERAKu0pLquHx9WnJ383Xm4YB6EuqitBQ7LipdcWGqI+4Au455MJGWut0+qk60qnk4lSeVs3vdeaKfHVFpqYOtebjqnavIEcrnGYe0NCktizAP100gslRaUuCQlroFHjcQj/zMoUhLAHjmmfrnND8ymcqZ4IYKxOPi01ImcKi6J9crFWmpCsTjQ1py3DHo4GMeHlqBk5XSkmsezg3EI9db3ZiZtdLSdexSmYcDtGIktNKy1QLxiFi5Uq20dDUPT9PJwzzcVWkp9jVZmocXrbSk/FdzSUux7DhKS8qyKbSptwsGi9JSzkMrkpZ5KS2pZ6VIyzKah6fvQV4zhjQPF59F1YZff73xO9eyKZKWA4glEZFA1eHJx6nO25e0TCcJpsFaZx6u+92WtJRNYajrxYmNLhAPYLfgso3M6kNaUvcqs9KSYx7uMklWDZw2EZ0B9cSGax5uOqYyD9chLQ+RtJR9VHKIPRvSkrOLKyotTaSlHIjHxjw8FGmpMg3RPSOXlKPA8WmZhXn422/z86gLxAPQpGWRgXio+mGCi3m4SWlJqfGi0lI/gS+CtNSZh6uUli7Rw7MIxGNCK5uH+ygtQ5iHr1zZ2kpLF9JS5/u43ZSW1Nirmwu7mIdTSktqY68otFogHh9iNSvSslJpvK6rC1hjDf3cToQtaambu1P+zMX/OujWpC6kpZjPvAPxpGNH6hvaJkiqSWnJMQ93VVpG8/ABRNIyIoGqUcgdkA9pqer4UwLQV2kJ0Cbiuo6G2jGXScsilJbcQZg7oZCfSXWvspGWRSotKeWeKS0uuObhYpopaTl6NDBmDO8+lApZt+jOi7T08WlZhNIyS/NwCrqFpWmizg3Ek6V5OBCOtAxlHu5rdsc1D7f1aRlJywStQlramIfL5ocUxE1XE7iBeEzQKS1DkJa+0cNNpvwysiAt21Vp6WIeLueLq7R08WlJwVdp6Uta6q4PRVqmZdXuSkvR1UCrKy1tA/FUKsDkybx82ZqH65SWKsGKb/Rwap5pqi9ifxjSpyUnEE86Z9URvTrS0jcQj0xaRqWlNWJJRCRQNQq5s6Y6b5dAPGJjtSEtdT4tAZq0zMKn5WAwD+dM9GxJSzF9HWlJOSrnKC2LJC1Vg12IQDy1Wt08fMoU/sSWIi1TtSWVPw5pqQvEI56blXm4jdKSu9gpm3m4Li+ugXg4pKWL0lLMx9pr1z8/+2z9c1p2vqSlTyAeXwVLKKUlRVq6RhBXtUuX622vyZO09FFkcAPxcKOHh1Za+piHhwrEo1JvllFpSSFPpaXOp2WegXiKVFoC5s0LF6Wlyjyc65uawrBhdkSgrdJSDNLD9WlJzW8Hi9JS7D/LQFpm5dOyo6OZtAT4JuLcvt20ftYpLUOah3MD8ciChFCwUVqaSEvVepZLWqrOi+bh3oglEZHAR2npEohH7Ky45uGqRaN4jCItdZM01+jh4n1CkpZpGkWRlroFGAVb0pJSTnJJS5dAPKYJYH+/enIQSmnp49MyfUevvFKvRzakZVresi9B20A8KkUXtajlEO8iaSmXcxqYJk2TGz28VQLxcBZduj7DNRBPaPNwSmkpui2g6kmrKS3l68sWiMfXp2VZoocD2Sot5TFdRqhAPC4+LdsxEI9K6aL6LsOFtOTkMUQgHh+lZVbm4aro1qFISypfJuLD1TzcNJe0JS2pQHc62JKWw4c3BzoE3JWWZSAts1RaiqSlr6rUNxAPkK9PSyA8aZlax7goLYswD5cFCaFgE4hHF7xI15/FQDyFI5ZERAIdafmznwFz5gD/+Ec4n5auSkuT0oWakPn6tPRVWtosLPJUWi5YAOy6K3Dnncl3uaPNgrTkKi1DmYdTTtVF5GEeblJa9vQAH/0oqjfeqE5T9Gc5ZQp/EFMpLcX7Z+XTUjcgm5SWQL2NLV/euDOv6qvKZh6uUlraBoyQUWbzcNWEnFKRnHhio29TFcpCWnLNw8WxQeyjVL4Lfc3Dly0D9t8fOPhgt+ttYet3mYssA/GYxlOq/XMD8ZjMw7NUWj76qPkaClzz8PRevoumMiotfQLx2Pi0lAOJ6ZSErqSlakyhrJNcSMv7728+Nn06sMEGwGWXqe8dSmnpah7uYnJtG4hn+PDmQIdAawfiaRWl5VtvJfOIwUxavvZa/X4U8lJaFk1avvNOfU177bWNv8mBeHRKyyOOoOelpnmayIPEQDyZIZZERAJVo+jrAz7zGeDuu4E996Q7b27naiItOYF4dP6AgDDm4TJpSaVJkZaqAcyFtMwjEM+//w1cf339uwtpmU7SQpOWu+yS/Pc1D7clLcePr3+eMUN/LZUWhdmzm4+Jz3LeeeqJf3rewoX1YxMnFmseziUtdQtPcVIgk40yaSkqLXWDd5aBeFQTFt2k1Za0nDOn/nn99dXp2gbiUbVRyiTW1zx8xAhg9dWbz/VZkIUKxFOEebjY92fl0/KUU4CrrnK/3vWa0ItZ3ThZBGkZIhAPx6elbSCesWPN55mQdSAeGSorDxVsCXGuqi9UIB4bpaXOn3QKF9JSTHfCBPqcUD4tKbz4IvD448Af/qC+t4vSUpVWChul5ciRyX+b/tXWL76otGyXQDyi0rLMpCUAnHxy4/zYFtTcVYaqXZpIS/G69L2uuy4vX7oxb/fd65833TT5r2oXOis7zrvVrUldSEtxns610uRg2bKEcBTXtClS67J0zqpTWqpgo7RUteFXX238HklLa8SSiEig6vDkHQcXv1mma7lKS86i0ZW0tDUPFxemOuIOyNY8nDuhoEwEZHAm4DJ8lJaUefjQocABBwAnnJB855qHqwYhU6S+/v76++noAK65BnjXu4Dvfpc/uUihGqz33BM4+ujm+6a47TZzmuLkZ9gw/iCWnqcjLW3Nw7k+LTlKyyFDmttnmlbaL4ikpWnxIMOGtNRNtkKah6vy8X//B7z3vcBRRwG77aZOl6O0FPtBFckZSmkp1yVZOQv4kZYcn5amvu2qq/JTWuYZiKdWA26+2e1aQF1uom9S6p66a12xeHH98557AhttVP/OndxT6Oszk0E2pKWN0lJ1jPqdG4hnzhxgr73M5+pgG4jHN3ppGZWWroF4dD4tOYF4QpGW4jubOjUhb2S4kJahFNRlCMSTjkVZBuIZNoxWWpoILaC8gXiEMb0aWlEvuiei3uXVVwPbbgucfz4vvVqtWcFmA059ChWIBwA+8hHg/e9P/nbYQX29jrT8yU+APfYAPvYx4KCD6vejQCktbQLxUJYV224L3Hgjzw2RjNVXp9fpX/4ysM8+5vyo8M47Sd2h0NfXqJA3RVynYOPTUtWG5XlMNA+3RiyJiASqCZo8GBRJWnZ1uZGWuklAHoF4QpmHU+SWeE/dYEHttsmQy6mIQDx//nPyRw0q8j1SQkD08+WjtOzuBjbfHPjnPxPS1CWoD4VqFfjxj4EvfrF+TKVclEHVB5vFQNbm4TqflroBWZw8UCQO0Ki05PhA8lFamtRY1aqZtDzrrMaFo63Scvr0ZJf4vPN40cNV7blapUnLPALxVKv6RZ8vaal6Zt3k++9/B/bbLzulpW6jJI/o4T6EElWeG2ygJ0KzIi3ffDP5P2ZMsvj4/e/rv/ksnHt7eaRlFoF45N8p2CotKxXg4ovN5+qgU1pSgXg4Zu46tCJp6aK05ATi0ZGWroF4AOBb3wI+9KHGYxRpaeqDfeb48r2zMA93UVrajDsuSktX8/BWUFpm6QaEqh977pmsdQ4/XJ/O1Kn1zz6KPRtxhgxdP1ap0KTliBHAlVcmf+PGqa/XrRvXXDMRWFxyiXljiepzTErLH/yg/lke77fcMnk/O+/sprSsVoFJk5qPjx0L/PWvwJFH6q9XQVcHenvpGAhZkZbcNhxJS2vEkohIwCUtbXaCZag6M5tAPCbzcHkiyp04yYo+sTOnOiCRDMsrejj17FmSlj6DOeBGWsrPqDMPl/2TUNebSMv+/vpgI5MttmSAqnypRanYFmxJS1VAEArpPXWBeIrwaZli2DAeackxD6eUltzFDkVaiOAoLWWH/ypTQE5/pJv0cALxiAsv1flU8BFfn5ZFkZYcVYtrhO4UoQLxyO/fl7T0gYpA4Wz0hV7Mpk7q00jIoRbvHPNwm0A8MtnvS1raKC3TOuxbl20D8aTnuaLdAvG4Ki1NY4Kr0lJ1f4q0NL3HIknLMigtbUlLUWnZLoF4svRpaSItOb8BjfM9rpssl/sAbqSlPE5Q/Q210Z5CR1raKPpVSksOqZ5eD9BzcBfSslKh/XqqNnW50JGWfX2Nc7GszcO589xIWlojlkTEAGpUZyFHu/KZ0JhIyyzMw00TJ45PS1+lZSjSknoObvTYrEnLUObhugm2yjxcHPhdSMv0/cjnhppwp6AmAqbrqImASlWim2yHNA8PSVoOH06TOEBjIJ4ymodXq83lKOZPpbT0JS3TctWZh4t5TQmK0IF4KKVlpaInLV0WZL6kJVVHXRAqEA9FdISIHu4CF9IyK5+WKbIgLV3Mw3X9gUz6UZ91x6jfuUpLgO7rbaAzD09/k9WV7aa09AnEY+PTUg7EkyVpSbla4eRRRCjS0iUQD2ejz4bUSElLm80yar6fp9KyDObhRSotU5jKwTZQpgpZkZbyRjjVXnXPYPKxLkOntKT8mXNIdaBOcFLWTiFJSxuLAwq6gMB5KC05gXhkRJ+W1oglEVEH1emFNA8PobQ0LQpcScsQ0cNVA5iLT0sKpijUZSMtqfyGVFqmg4SP0lJMx1dpafJ7QxF7QDil5ZgxzceyNg93DcSTIqTS0jcQj615eGdncznKilbX6OFZKC1Dm4fbKC3TsisiEI+4g+9DhHED8Yh9DjcQj6tyzpc4pOonV2npem9Tv7raasn/oklLXX+gWnhzSG0ZtubhgBtpKY8BKVT1T+Vr2BVifSmKtBSf21VpaevTMqtAPFzSskilpW1/byJ1ATfSsohAPJwxibLoikpL828A7TvbBWUlLXWwVVpSVja6taaYV/ncVlRa9vbSgVuzMg/npsslLX19SrcRImkZMQCyC5M7tqID8ZiIMFfSUuxoe3qK92lJwcc8XDUZFJG30tKWtFQpLXWkpSkQj5iOL2mpGqx9SEtqIqAiLamospRprE5pqYtAmCJEIJ4UOp+Wab9Qq9UH9yKVlvKEpaPDbB6ehdIyy0A8LqSlXJeojYIiA/GI9/RZELooLfPwaekDHfGtgi9paXrWsigtdXMdldIyL/Pwjg778YnayEjT4hJgPhDbblGkpQjXQDy2Sss8AvGo7l8kaemqtDSNmTZphooe7hKIh6NkE+tCmczDs1RaqvpOW4RSWvq4wdK9Yw5pqTMP14Hqm0IqLeV1GiVUAOhAPL5KS1eCTqe07OvjBW7VwdY8nPMc0TzcGrEkIurgNLKiSUsTEUaZcOqeK+24xYFUVHZRaQKNE5sszMMp5G0eXkQgHq55eK3GMw/Pk7Q0BQkRn8XHp6VqMZAqlETYKi11Ex8qv9SCm4p4rgInEA9Qf0dFBeKhzMMp0pJjHm5DTlDIUmnJMQ9P30uZAvHkQVqqNgvkepW3T0sfE/EizMNNdSC00jJ0IB5ArRZyMQ+3UVqKQRds1bnURkZ6X6qsqf7OB9wxD8jOp6WILHxamgLxqJ67XZWWtovtrJSWNnUjz0A8VFDDMpiHl0FpaUK7m4frEEJpyZ0zyedmZR6etdIyz0A8Jt4hRTQPt0YsiYgBkD4tZbSieXilYlaQ2ZKWvj4tOYo2zjVFB+JRqbgAM2nJ8WmpMg8Xy1Qc+OV7cszDU8hki4tKQAcXn5ahzMO5gXhU9Y/Kr7ib6Kq05JiHA/UJh+6dZBmIR2Ue7qK09DUP17W5NH1Xn5YcpWWqXilTIB6uf6bQ5uHU5DRPpaWvT0uVWw9b6wQbmOpAEUpLm0A8QH5KS/mY2K5tTcRVSktV/WtH83ARWUQPNyktVfUwRPRw6v5U/5SXT0sX0pLj09ImTRfzcFuflj6BeFpBaRlJS3W7NZGW4nUhlZZUnrNSWtZqtFBBPq/MpKUciCetOzb3Mm2MRaVlLihB7xhRGhRNWoZQWsoTeZFUoe5fFGnZ2Ul3WD7m4WXzaclRWt50E3DqqfVjOtJy4UJgzz2BCROAM8+sH/cJxKM7N5R5eIpQ5uGqBRrXPHzffYG5c+l8qaAiLak0Fi8G3v9+4C9/MacbUmnZ3Z2kZRsZHWitQDy25uEqZSY1ceUQUSNGAK+9lkwCFy9O6lMKE2lZZCAe1/uL6XD6SNtAPGUzD+f4tPz614ErrnC7Z97m4T/5CfB//6c/J8tAPKZxVKXATa9VzUVCkZbtYB7uQpD5BOKx8WlJzRVV97JRWnL9kLaDeTjHGoRCHkrLrq76u+jrS/rH+fOBD31IfQ2lVi+T0rK3F/jUp9B5442Y+fzzYdO2nXuqUKTS8stfBv7zn+aYDyLKorS8++7mY2eeCUybpk6fax4ufv7d74AlS4BJk9TpAkn7nTyZPg641wmbQDyu5uHcQDxRaZkZImkZUUdI0nLcuGRhq7p2/Hhg0aLk8xZbJP9Ng3VXl5tPy/S/jrQUJ4titOL0vjLEiahJ+UT5tOzoUJOWKvKT6rhCBuLhqAZk+JKW73lP4++6CfaNN9Y/izt1voF4UqgIby5cfVqadmsBntJSZx4uEpqLFyeT6hSc57QhLb/5TeBvfzOnCfCVlil0dbJSSRYpolowy0A8stkNNxBPKNJSVW+qVb55uItaLm1vy5YBZ50FvPxy/bdKJbzSUg5kQYHrViO00pJ6HpdAPD6kpY+TdhfS8oUXgNNPd78n1zzcNTgRhVdfpY8PHZq8oyJ9WuoWayGVlrpAPK1OWuaptBTdq3D6A1W5i4jm4Qk45uE2ac6Zk/wPHYhH3BwdPbox/Z4eYI899PegNh7LFIjn+uuBFSuQefiPIknLdHPMlrS8+Wbg7LPN12RJWtr4tFTh6KPVv7mYhwPAVVeZ71upJPxAd3ejoCdr8/C8A/FEpWUmiCURMQCWoRl3QvPDHyaqOBHiAH3xxcDOOwOf/jRwwAHJMVelpc483NQ5hfBpSflmFEEpLVULN8pMLUUZzcN9SEtOxHFVxy+qfHSkJWUyrQLH/6UOeSktVaSlzjz64IPV97A1D0/fuYq05BKWAK20TL9ThLOpj5gwgU7LdK1K4ZGCUiPJGwyUeTjXbYKMvALx2CySU6T9YaqUFlGt0u8t3dku2qelDxFGKS2pdynmN2uflr7m4bo6lBXyNg+XseWWwNZbA+edV7+HibRMXSKkkJWK1OcUPubh8rVi/fXxaemitAzp07IVSEtOIJ5QSkuX4FZZBeIJFXiFayIp39u00cdN87DDgA9/OPkcOhDPrbcmisFTTgHWWINHTItI6wHXPPyAA4BddjGnu+aawAc/aD7PBBs//D4ogrScMgXYbruEfATs1jkAcP/9vPvIftKp/kY2Dx81ipc2hZDElpiWzjzcZYxO3bWpLNtcSUvTOioG4mkLxJKIqMPHt4eM1VcHrr4a+Oxn68fEDnz69EQ5d9FFfFm4SyAeU+ekIi0psw0RlPrHJnq4qvPr71dLxqln4JqHc36X82QTiIcCR2kpgzvBfvrp+medefjqq6vzJ0OerNoSAjakZRaBeCj/OGl5T5wIXHKJOV+mfAD1/Ir1w3VQ5ZqHpzBNMClfOXK6FExKS8o8PDUFSxEyEE9RPi05SPPW19dMEqvMw9MFRtGkZehAPNTzVCr1PLdi9HCT0tIXpmcNHYhHxp57AnfdBRx1VP1dmALxXHEF8LGP1b/nFYhHNyb7mIe7KC3lvHzmM3b3b6dAPCqfllQ5UlY5MtJ2aEMYtoLS0hahfFr+6U/AL35Rf3abusHxabnttsAddwDf+EbzNW++ab5HWg+4gXgmTQKuu67RlRKFoUOBP/4R+N73zHkoA4ogLU8/PSGdN9+cnwexTVDrOQouSst11uGlTcHH4kKGi3k4hdtvby5fVZv0VVrq+q0iAvFw0o7m4daIJRFhB+6Ehto1Ue3WpDB1gJ2ddIeWhdJSJomoHfU0TRNpaaO01JGWPj4tOb8X4dNSBldpSQ1A1PmUn0cVfM0RTUFCVM/OUVpyzMN1pKX8WYRPIJ4UroPqsGG08gygyS/TfShfOZxrXc3D8wzEk/ZtWUYP50BUp02c2PibirRM62ZWPi2LCsSjepdpGYj9VCQtExSttBTbsTiGy21VbBty2263QDwc/4gu8wMRraa0VKUnzuc4SkuOCi8tmzyUlqb3ViRpGSp6OEWUcPNj69MSaHzHzz5rvgeltNSZh6d5N/WJOrVmGVEEaekScFNsEzrfiSI4pKU8Z585k5c2hZDElhi8VrbSM413IigVv6ou+yotTaRlCPPwgpSWtUhaDiCWRMQAjNHDKxX+hIYyhRMnrSbykYJLIB6TWSLl0xJo7oCoxWqaZkjzcMpMLYWPeThgfnd5kJay2YEMLmkpQhz45XuqSEuTWacLsjAPpxQYKtLSZE6tep+uSssQpGWeSktT9HDbQDyy0lImn0L7tEzreahAPL6kJdCsZKZIy66u7KOHc5WWPmQcpeZSpUe1RV0gHtcNE1/z8DIrLbl+oXzun7ZFaqNQJi3FMrEhLU1lqXIbQF1bZCCediMtXQPxUH7YxHzI6Oqqn6d6rlCkZZmUli59SCjzcBdRRApf0vKZZ8z3oKwl0nvoNj64fUmW/XdI+OQzDbJkC3lsLpK0LKvSUuw3ZPNwm/kUNWcyKS1d1xJ5mIfHQDyFI5ZERB1Zk5bita5KS1vSkqO0rNWaOw+xg6MmxKL82zThpEhLXX5szMO55Bfn9zxIS7HT9zEPF+GitKQmpr7m4SZ/VT6kpck8vLPTbNakKssilZY60pIifspkHk4F4gllHq7zf9Tbq1akpOlTpqAhlJayYkW+ngrEI7ZPX9LSJRBPiHqapsPtI3UqYWos8VFa+hCXqj44y0kyV2kJZKMYopSW1Bgtb7LKwTbkNOTPumMidCasOtLSlugOHYjH9t3YkJa2fhWLUlpySEtx3mpSWoY2D6cUP2U2D3cJxGMKzpmCW19dSEsxbdF1kQo683CdgpZDEqnSKCPKoLS0WecA5SUtQ47Z4vrWJhCPDGpDLG2vrai05JqHc5WWkbS0RiyJiAEYlZY6FaAMk9LSZXLPMQ+XJ6Ic0pLq7EykpbiANZmH20xEfczDW0FpGco8XERZSMssfFpyA/F0d5sn76HMw02BeGxgGz3cdB9X0tIUiIeasLiah7sqLUUSt6fHXmkZirRUKc6AZOImk80hSUsXpWWICV+6c25rHk7loxXMw0XzsNBoFdIylNLSVI5lVVrKcyk5L1mSlmUwD1e9N3FxyjG9FsfrrJWWHPPwdlNacgP2+ZCWpmvFumRDWnID8bSr0rIMpKWt0jKkT8uQ5uEhx2tx/JetkMTy4rgrUCktVZtieQTiCWUeLtYleTMrBuLJBLEkIurIYmdApcrJ2zxcNelRKRs5pGV6zGQeTkFHDpXFpyVnkqdScQFmYjoUaekSiCcL0tK04MhSadndbS7v0Obhgz0QD0VacpSWvubhQNLudEpLimAJYR4u7sADzWTPggXN703Mt8tiSix3E2lpGh9cVYkq8/Z2JS2B7Ba+pnRT83Age9IyfVZqzA2ltDShVQPx2NYPG6sQl37JNj9ZKC1V5ZiF0pLjh5RaPJvKqdUC8XBJS2794ATi0V3jq7QMYR4+GJSWlA93DlxIS7HdUkpLqrxlkQ9HaVkWn5Ziv+FrHq5SVKrIzDwC8YQyDxffX5bm4VltILcgImkZUQenYXB3mbIIxCP6BhIhHuOYh8tpUBPJpUsb8+WjtLRBraae2FLPHpK05KqIRPgoLTk+LX3Nw8UFsAhqwecbiEdVvqZAPDrigRuIR0VaZqG0DB2IpxVIy2qVrh86YiN0IB5xcbZypbrepBMmOXCP/G5Nz6xKWyxHedJFkZZi+8w6EA/VrkNM5tN8l01pWav5TWh1fXBWpKXpWUWlpW+fTIFSWnJ8WroG4jFBR0jkobTMi7S0UVrazqVslZYc8z0OaclVWqZpFaG0lJ+j1c3Di1Ba2pCWHJ+W1LyZE4jHhGgebkYWPi0p/5ouSsupU815UaHVzcN9lZZFBOIR66DJPJx6Lq7SMpKWA4ikZcQAWNNEyoyKgsk8vEilpUycuSot03RclJYqZGkenrdPSyq/tj4tfZWWqskbRSr4BuK59Vb6OOXT8s47gZ13Bn74wzCBeIYOdVdackhLihzP2qeli3m4iqQG/APxUOUn++nNIxAPkPQROvNwwBxtXLdBooKsJpWvd1Va6hZZNj4tTUS36+RP5VNM9Ty6QDwUiVCU0lKHrEhLXf3v6mosuywW3yEC8fzvf81pAH6kpan/Bvx8WoYOxGP7bk4+GXjve4EHHwxfb21JS07ZhQrEk6d5+GAIxOOqtMyLtHzxRd59VPfQKS1Na4zBZB7uGojHRWl5wQXAuusCX/ta49owxciRzcdk0pLqc2TitavLfR2SVSCet98GPvjBxt9ScJS/KkWl6ngWptBZBeIR57YiaUn1u5QyOJqHW6NFtmMicgGnYfiQliEC8Zj89nF8WrqQltRiNU3TZcLpYh5OlVmrBeJRqQ1ThFZaqp4hC/NwFaZNS/6Lz/LjHyf/b76ZnvCksDEPd/Vp6WoeHkppKdeDNC2XQDy6iZsuj319ZvNwqj7oiI00YA6VlgnUBJertJRJy5CBeExKy513dlNaDhmizouNT0sXdS4HKtM9VZ3S5YPqo8pEWhaptBw1qrF88vJpSUGnohYRyjyco7QMZR5ehNLykkuS/+9/P7Dtto338SXKbElLTr1SpWfr07Krq35cNX/OKhBPkaQldZ/11wcef1x9Dcc8XOdXTnWO6hgFF5+WIfopTiAeU38flZZmuATiAYCnngLOOANYa63m3zikJcc8HEj6C67ZsIiQxJbo0/Kppxp/k+f9lYp6rZSn0lKHlSuBJUvq31PCO6R5uElpOWxYM+EdA/FYI5ZExABYFA3XPNyktOSoCmSolJa25uG2pCVlYjNkSHbm4WUJxMOZ+NiSluIxjjrTNhAP13wza9Ly0kuBbbYBjjkGmDuXzluKt99Wp1NG8/A0LyF8Wg4dGlZpCQBXXQVsuilw4YX8aznm4VTZyMSGWMY+5uEUYSuWhyptcbKZkjMhA/HIO+diXzVyJHDKKfpAPNVqoi6WQb3rFCbSUnwu1zpjgo5wpEDlY9QoOg1f8/DQUC0qfDFtGvCDH+jJNvk32zwcdxwwaxYwZoz6HC5pqduQEJGl0rKjA7j2WmDzzZN2o7MqMUF8bnHMGTYsH6VlimeeUftIc4VKCa9CVkpLVTmmbV81f077tbwC8fzlL8Bmm9HphiItKWXRSScB++6rvkZl8SCWs0wQhVZa+vq0dIWOcEyfh+s3fTAoLfMMxCPi5Zebj7mah3d2JmPiZpsl/Tyg79c32wz41a/o30IrLVXlwl1jpb+pFJWu0cN1Y7sKS5YkVkBAYo2V9k02ZWYyDxfnYlS/S9XXqLS0Rotsx0TkgpA+LU1Ky1Y3DxdJS8o8XLf7pIMuQnvegXjKoLS0NQ+Xn9GGtJQnnj6EwOzZwO238/KiA2UeTk0EigjEE0Jp2d3drD7RkZacMtxvv+RPhom0NJmHhyItbdXDKcTy4Kg4OebhLtHDxfyL7+6f/wQmTNCbhwPAF78ILFwInH56/Ri18ExhCsQjHnMx7eNAnGB3dNBtQARVd1NfjRSJ4LrozVJpGZq0/M9/gLFjgT/+UX2OfE/bPOy7b6KGWblSTYRnqbR0qWumQDy77ZaUnQwfpaWoOhk+nBfUJRRpCTTW285OvgWPClmYh6vSc/FpKfpppZCn0rKjI2kn++5Lz69CkZbUGDZiREKYXnop8LGPNf+uUlqK+ZTLkrtR5aO09CUtf/7zZMz71rfU53AC8XBJy6i0VMOXtKTgSloCwLHHJn8pdP36ffepf8vKPFwGtU5U9Rk6paXKasX0HPPnA3ffDXzuc/rzRCxeXHfbIPq9D6m0lM/lmIfb3DsCQFRaRojgdHrcyWUWgXg45uEuSkuKJDSRlmJQIEppaZo0hDIPtyEtTfAhLbnkTNbm4bJq0Udp6QMXUp6CSmnpYh6uun+IQDyuxBCVb1/SUgUfpaWLeXho0lKsny6kZdbm4WmfpzMPl89NoSMtbZSWeZGWprSp50n9rcrv30dpmSVpGToIDqfe+5KWHNN2Kno4BV0gHhG+5uE6dRT3OTgQ28Zbb9U/Dx/OJ8C4eTNBrLehVGpFkJacMrEhLfNSWuqQJWmZ5lnV7jiBeOSy9FVaymWWBWlZqZjP4SgtTRvpgc3Da1kHAPEhY1x9WroE4jHB1Tycgs86JNT7Ei12ZNisE23Mw7lKS8r02oSnnqr32z6kpU5pacpjJC2DIJZExABYA1QZA/HozMMppaVsouyrtKRIS9cJfZbm4SbkQVqaCDJfpaWoIBk1qjjS0sX9AQXfQDxZmIeHVlqq3nloU1+fQDwq83DZT6+YP46pmwrUBIdjHk6RliF9WuoC8ahIS+pZXElL6pnFupm1ebicXiilpY95eGjiMiulJec9yAt72zzoTK2pNMtkHm7adJLho7TkmIfL78LXp6UIVTRaV2RBWqrGC1uflp2d+gBxgBtpqbqXiCJJS6rfN71r1Zgk5lkuS1/SUq4LWZCWnD4+vYdu8yLvQDypW4Os4DM2Dxnidr2rT0sdOKQlN68+65BQ5FYe5uEqpaXpGWz7egBYtKj+OaTSUmfhFknLTBBLIqKOrElLn0A8qVmi6bqsAvFQpKVssiGbPLnANno4UJ/IFKG0TEkLLjkjkzoyfH1aigqSUaPUnX3WPi1Dk5acQDx5mIerFpuug6rOp6VLIB4dTKagJqUlBRelJecZqAm5rXm47NMyhHm4TmmZ3jtvpaWJtJT7exfYKi2pfKSL7ZCkpUkh7IKsSEuOksJXaSkSgKr2zjUPF+tVHoF4qDxnRVqK8ziu0jJL83Bf2C5kfQLxZKG07O9P+iabORzVjspEWrooLQHa8kmntPQNxCOvGTiuEmx/5ygt02f08WkZWGlZatKyo0PvC5sCJXzJUmmZ1mWVlSAFH+V5KKUl1W+ksBkHslBa6ghVDiZPbkyLC+pZOjvVmxyRtMwEsSQi7BBKaWlL6qQduUmhyTEPz0NpmZd5uJhWaNLSJhCPi9JSFUjElIYMcXIsKy1V11OTnZA+LbM2D6d8WpqUOhylpQoUeRoiEI+tebjP4G0iKMoUiKdSaZ7kyIpDU5vLyjxczD9lHq4LxJNCbms60lKsZy6kZYgJn6quF620zIK0TJGV0lLXr8r3tF3AiWXLUVZx60YeSksqP1mRliLyDsQDNFsO+IIy3dMhVCAe+RxVOZqUloDaNNoGIczDfeeRKXQKex/SUi7Lzk6zKwPx3jLyUFqGMg/P26clRcaFhO98zpa0zGp+YPJpafM+yqC01JmHL17c+D2UebjO4kBO04ecDWkeriItqX7X1Qdrml4EgEhaRghgmYf7BOIRYUvqpB2cSWnJNQ9P76/yabl0aWP68n27uur3pQLx+CxCbQLxiPf1nfDaLJhS+JCW1GI7tHm4CtQEMmulpcuCNo9APDbm4aqor3mRlln6tDQF4qHaV1aBeIDmSY7Yp9j4tEyfTT5f19eooAvEo1JacszDdYsPkzrb5B9PLBPXyW5I83BK6VEm0jJrpaUOoZSWAE9ZZUNacnziufRPYrnYqIB8fFqKcFVa+iykilZals2nJaAeL2zADcSjQ5ZKy/TeIZWWFDFiM/+Sry2KtEzzTN3LlrQMZB5e49RbH7j2ISmpptvspFAUaWnTV5fBp6VOafm//zV+D2UebuPT0uedhTQPtyEto9IyCGJJRNSRhXm4Kk1bUseVtKSUluIuUgjz8Lx8WuattMyCtBSPUZNTF6WlOHHhkpYUyujTkhuIJ5RPSxUGA2mZRSAeU1ABHcRFn7wwsyEtgaStlTkQD5e0pPoZ8bmoiaVDnennkmeqtHWBeEL7tOS8Q5syyNqnZR7m4QCPtOQu8vIIxAPYjcG245Vq4exKWupM8HXo7Gwf0pJDCHZ18ZSWqvHCBiGUlkWbh1PjrJhnefHvq7SU21FWPi3zDMQTiuQoq3m4aoPUBK7/U1tQilTR5VCrKS3leZ4IG9KSmtuo1MA2SsuiSEtKaanaKBefo1Kxr6vyvSMARNIyQkDQQDxpWnkoLcVjcgfCUVoWYR6ugo9PyyIC8fzzn8A55/DJGfEZOKSlqU4OG9Z4H5G01O0SU5O/MpKWqkA8cloqpaWJtJTLVzUp3nNP4LLL8iUtQ08wdXXJpHKpVnmBeDhKSy5RIi7OZNLywAOB559vvkZFWq5c2Zx/l8VpEYF4KKXlOecAu+0G3HdfY99DLQ4d6kyfKQiJKe28zMM/8xngkUfM59koPYoMxJMHaeni1iKah4cjLUeMaO1APCJCKi1DmIeXyaelLhCPrSJMFh3IaXI2qoo2Dzf1ZTqVZHqMG4gnlOJOJuMCKTgHkDdpGXojPIUpEI/NOFZ2n5ahlJYqs3FTnfAlLV19WvooLV38r8rpRQCIpGWEiKwD8VC/i+AoLU1++7g+LU2k5TvvNJ6vIy05gXjE3R0AWG+95numaajKWPV+KGLLBSbSctw4+rovfQl49dXm43mRliJ23LH+efvt1deNHdt8LKR5uIdPy4bNA1UgHjl9lU9L04LaZjD86EfDkpZdXfpFVdmUlhtt1HzcJRAPd2IpKy3FtBcsoK8RJ7zi55UrmxfEtqbhgF5pqVpI+AbiEZ+7vx9YuDDpc667LiHTTaSli9JS7gtslZbUgl1HWvosVDgoA2mZh3m4vFCgENo83FdpqctzHqTl8OG84COUis/leYcPD+/Tkloc6+ATiEcER2lZNvPwsistKZgEDZyNKk5/QH1P76EDJxDPOuvUv8vrAUCtQBN/mzWrfmzGjObzslZahh6nykBahiD6BpNPy/e+t/G7ayAelbuRLH1ajhvX2C9lRVrKeaxWI2kZCLEkIuwgknk6uJCWIZSWKtJSJlh8fVqazMPlzm3MmMbv++wDfOpTwJw5wMUX14/Xao1qQRGq8skrEM/kycC3vgVsumnztVSeTe8qlHm4iDPPTIjL/fYDvvjF5NgFFySE01e+kuT9m9+kJ40hA/HYkvIixHJXmYfLyFppmSJkIJ50EJev1ZGWWfmF4ZCWBx6YELciXHxauigtazXexHftteufTUpLV9JSfEbXQDw+SkuRsF20SE9a6ibfGvTpSEuOGxDxPQCNJrhUfQ9NEMpwIS2LWKBySEtdcAjxHnkF4uEQpTq4Ki2L9mmpKxMdRoxo7HtCWDiURWnpE4iHYx7+y18mcxlxziiCYx6el09L10A8FHTtorOzuU+g6kLRSstttgGOOgrYckvg739X34MiZdLn+cAHgI9/PEnr8sub09CpNR1Qk0lL3Th13HH0xq4Opnyq6klo0tKXuKTSLYK0DKm0pNrQuusCP/hB4zFb83CT0tL0DJSlGReiyjLNHxcq83CO0tKXtAz1XtsAGc+UI1oJNU4DbrdAPIDaHFtMX76vGIiH49OSmlT96lfJ59tvrx/v72+OzpYia/Nw04KpowM4+eTkb8SIRhN6CqZ3TJW7rdJSJl7GjwduuaXx2Gc/m/wBCakJACed1JxW1oF4uANkR0f9uVTm4TI4pKVJ+QqYnzmk0jIdxG2UlllF4DMF4kkncZdemjz3JZckx7MkLcVnXbGCtxARyfgsSEvZJFRUhfuYh9sE4pHHILHfkwMeOE5um0hLVdmrjsubIiJpEdI8nAsXApJaVIRQn/v6tHzwQWCzzYC33mr+jWOqHVppKcKFLJAXN9z0Qikthw6ln82kXnM1D+/ubiTGykpallFpeeihyZ8KFNEcSml58MHA9OnAKafor0/hGoiHgpznESPq7b+3t5kU9lFaZuXTEgDOO898DpC8R3F8FlVov/1t8plaJ5jWXbawIS0PPhg44wy7d2vKp2rMSd9HiEA8aT58RB9UnWllpSW12QEA997bXCd0blOoja0QSkvX55TnZTbpUHOAri667VOkpW1dldOLABCVlhEisjAPV6Vpq0TjmofLHYgqEE8KXeAbMX2d0pITPVy3EyybA1OLMfk8EaGUljLpqTNV49QDE0kWwjzchXgB6LyF9GnpYR5uVFpS7WTo0OzNw8X8yOllQVpS76NIpSX1WTYPlwm2UKQlV2mpIi17esKZh6uUlqJSRERIpWVfXzNpKQfiEccAOS9M0q1fHkdslZbyjr5IWhRBWtqkr1JC+Kp3OPVeV+4pdO3Y1jyc2xa5pKVLP6jro7MmLYcNUz9bVj4t+/rqfU+oul8UackhmUMqLU2gzMNVlgwqqMbB1J0LF1mah4vmuMuWNZPCZVRamqBbx+j8XFLHiiAtffs+m99VSktTOavmGb5jm4q0TPu5VvNpqVKf2rhsSo9nobR0fU5X0jI9L5qHF45YEhF2EBeMukmzyamuLamTduQmBVson5YiVKSl7GvNVmlJfa7V1KSlqnxCkZby9aqdMO69TB0th7RUHUvhaspEDbRlCcQjDoymqN0p8jIPF9+ZL2mZTiBVpGW1qm7PLtDVI04gHuqzLhBPby9dni7m4YA9aSn7tMxCaUkF4pFBvTN5Ym7j01J2RSGbh/u6LUAApaVMWraS0lK1qMhj4kwpGWSoVCDpbylCKy05C9s8zcNDRA9P+xgX0pIixDjo7a33G11dYRbaRZmHh1Za+iiZqftTbSUv0pLq012VlvL54piydGkzKax6DxTkc1XRgHUIQVqKZevqo5OrVuOiaNLS1jzc1CfqlJY+aEelJaWst2kbqk1s0/zC9Aw+5uEyacltJ+n9sjQPN5nZRwCIpGWEAFb0cJG01KmeTB2Qq9LSdJ3cgaQTJ1nZmAVpqQvEI5OWKpMwF/NwKhCQC0ykpe2CzETccczDVcdShCQtuT4tXRQY3OuA5noF1J9TtWBXkZamRbwtaUkp6+T7cGFSWornpMjSPDyE0lL8TUUKuigt5fuqoDMPl/sHU79HQZ7MioprVf5CRw+XN3V0Pi0dFRRapaUIVfpDhzY+k0haUMqnSFrS91QpLX1IS9fo4XmYh+s2CmWEUFqmfUyePi1l0jJEvZI3jEwIpZoNqbR0tRqR7yUiJGlpSxbo1I4hlZZLl/KUltyNJ5dAPFzzcO45HNJS94yB+morn5Z5kpbpdWUhLan33+o+LeW0VME+TXOjLALxhCIty6S01PUhkbQcQCyJiDo4HZ4YiIez0LQhLXUNk2seLncgKsWnSFqaJosqn5ay8jBr8/BQSksV2Sxf77toNb1jrtIyiw6bSpPr05Ljm8RUT3XQmYerJgiqCYVJaWlbtpQPQ5d0ADfSsgzm4SrFsbyIdyEFRbgoLUWFn8mnpStpSZG2OiKJYx5u49NS3tSxIS2Zk/o+OT+25uFA40JaXGRT6qzBYB7OAZe0VEEs27wC8XDzxrnGRmkZIhCPL2np8ryieXi7KS1VRB1Haek7XgA8paWpHqvmkSEI5pA+LVMsW8bzaanqDzguiUxlZupffc3DbZWWofpqed1SFtJSpbR0JYayVlra9NVlUFpS5uGqstX5tASKNQ+X7+FLWlJKS65Py0haBkHLlsT555+P6dOnY+jQodhmm21w5513Ks99+OGH8cEPfhDTp09HpVLBOeeck19GWwjWSksf0tKWnNIpLcVjqg5fR1raKi3TBYzYgdmSljqlpatPS47SsqMDmDSJ/i0PpaXJp6WPD0AbcMzDVaQlxzdJaKVlWi460tI0sW0VpaX4PU+lpYt5uI609FXOhFRa9vRkYx6eQreYCR2IR6e0lE2YHCd7bPNwXfoiUSEGLSvCPNymHNpdaZllIB6XMlLNBYB8fFoC4UhLThn19jZuwoWoV2XxaUmR211d6mBHIsqutAxBWnKJCRl5Ki1dzgltHs7pe3WkZai+uqxKy/TZ5TWoqU90Gcc5KIt5eEilpVwmtqSlyTw8D6Xl2LGN312jh6vmRDbm4SaxSyQtWWjJkrjssstw7LHH4sQTT8S9996LzTbbDHvssQdefvll8vxly5Zh5syZOO2007D22mvnnNsWAqfDExeIHPNwG3NfahdD/mwavDk7abWaHWkpq4uGDGmenIb0aekaPZyjtJw4UV1G8vU2CygKJtKSKndRyUtdEwocpaUKWZOWOqWlzhzVdM/QSssizMPLoLTkmoer+hWu3zKZtORMfCdMqH+WfVpmEYgnha5vCB2IRyYtbQLxMKE1D9eZ84oQF9JinuV6KOc5C5SJtNT15xzSkuv7iUNacscWLmnpMlbp8pw1aZm2TY5JLMenJSdPstIyRL2yVX1mFT0coOexlYrZRHwwkJZcYkJ1XQqZtAzp09LlnCIC8VBquMDm4U2kZWhiJW+lpQ9xrQPV74k+zfMKxBPqvVP9hitpGVppaUNajhnT+N2VtFSdH9I8XA4wqbvvIEZLlsTZZ5+NI444Aoceeig22mgjXHjhhRg+fDh++ctfkufPmTMHZ555Jj760Y+i2yeCU0QjdAtNlVm2+JsMlRoS4CstVYNDSKVl2knJi2mdT0t54a4iLbM2D58yRV3+8vW2k10Zpnd1223Nv1OkZRYdNsenpQoc8/BQSssXXgAOOAB49NHke9FKy5CkpSkQj3hOirwC8ejIAzF/ukA8vqSli3m4eE4W5uEuSsuQpCXHPFxFMFpAq7TkmoeLC2kxz0UoLW0WZWn+OAvn0Cir0nLpUt7zq/Klq4equQAQlrTUBeLhtGmO0pIzv84iEA+VPx1CmYdzFHDpOSYT8RCkJcc83FTnn3mGPh5SaSnDNKeS7ysH4vGJHs55Jl/S0la1yzEPp/LlSgorUJPnIDprrjKQlqY+UXW/LJSW4vyqFZWWclqqNqqaz5qUli6BeFIy0EVpudZazfXF9r3LZRIyEI9ojUOlFwEAyHimHB4rV67EPffcg+OPP37gWLVaxa677orbKBLEEStWrMAKYYH+1ioiqaenBz0hJhclQ09PD2qWDaO/u1vJeves2k2v1GpNlaxWraKXKEP53FqthrTZ93d0oK+nB9X+fsjTh57+/oYJnzjcp++qo1IZyGttldKyAqDW34/+FSua0pTTb7i+sxO9PT3oqFYHjvUsX45KT89A/vs7OhrKpq+7u+Eeff396E/z3Ns7kOf+5ctRVXRePcJ5DcdXrEjKWri/Cv0TJqCyeDGooa2/rw990nsR79dfrQ78zqH3evv7UevpaTi3b9gwfVmPGtU0ee9c9a4o9G+zTVOeOagCzfWoUmm4d7W3l8xrbcgQZX4G0hIXZqtAtQUKtWq1nv5zzyV/6W8dHQNtRyzX3o4OoL+/Kf2GttHf3/TeapVKQ1usbrYZOv7yF2XeepcuHbhHX7U6UIep8jShv6sreXd9fY1tVlDidEpl3TtkCGqu/a90HxG1VXV1oI0PHYrK0qX1+676HQCqlcrAs/YL1/T29aEmlHFtxQplOxP7BtV4UpX6jF6YB2wxrWpHx8D1vcuWodrf771LWatU0F+rNb1rsV4CUh/c0dHcFtD4LL3VqvLZenp7kz6gVkN/Xx/w5puN5bdiRb3/BIDOzvp77O9vyFfHttui+sgjhqds9mmZjj9Yle+BcalSUfY/1Z12QseNNybp7bjjQFvpQONucV+thhoay6O26nlDoabpQ2X012rok8Y3QOqXHDAwFtdqynoo9ilAMrdr6qf7+pRjgtjvdkhjsHh9uvgWx3Vt3js7m+rswG9Cfit9fQ3npL91at6nmOdOqYx19atSqVhN4Hsqlab+r3/o0Hq97uxERdiEaXoXQr8HJP1dR0dHQ345Y2Nt1T0qAGpdXagx34EOPT09qBL9kgrys1GoEOOpjLStiOgUyqTW2YneVc/bOWqUtmx633lHez/WXKdWaxpL5fYmzgk6N9gAlcce06e5Cn2VCiCVcW3EiIZxUkRa9xvy09mZzFWldlIbORIVjdJInBMAQHWrrdBx6aUAgP53vQv9w4c3tjvpfEDd1vul49R4LLf9pnOItiWit6+PnLc0zOGEOUbnqv6G+k1EZ0dHQ5sd6C9Gj1bPdTo6UGH6v+8dObIhndqyZco6nJa5jU6wr1bTtkNVP5+uIatdXY310dD/9ANkG5L7XVv0oHlNJM7/xPmDCeK8rSE9aY5Fwfc5UgzMucT7DxlC3r9Dms8OnL8qv/IYnvaZ8pohbSPUGl9OU+4/VOgfNQqV7m5UVqxA//TpTe+AO2aI66SG9Wy1igoxz+it1dAhlF+tWkVfR4c2z7UxY1B5803yt55V7bUduSfA7rlajrR89dVX0dfXh/HjxzccHz9+PB5jDr4cnHrqqfjud7/bdPzaa6/FcB+1T4mxs8W5/R0deOOttzBO8fv1N96IFWPGYOpDD2EL+VoA8+bNa7pm8oMPYivhu0havvbmm7h13jxMe/hhbC5dd/X8+agJO5MzDzsM0//xDzz6iU/gpVX32e6117DWqt/fXroU3bUahgBY+tZbePnJJzFT86z/vPVWbLZ48cCzruzvxzXz5mGbV19F6mzgumuvxfj778eWq76/8sYbEGvoA0880VAODz/6KJ5ZlbeRL7yAXVYdX/Tf/0Iw8GzAvKuvxtjTTsPmP/kJRj///MDx6+bPx8rRozH9/vuxmeY5AODF11/HakuXgjJUemXhQtwuvZf3i7+/+urA7xO++lXMPeMM7b3uuOsuvLpyZUMaj7z9NkbusQdm/OMfTec/tc8+eOjZZ4Fnn204vre0eHhj3XWxdMIEjFywAHcfcgiWEnXJhGmPPNJUj6654Qb0C7tmGz31FNYjrn1r5Uqy/ET8Y/589Ek7k2MffxzvZuRt2TvvYIRikbuirw//WPW8Yrne/p//AADeJZ1/8z//iaVPPgkAqPb0YF/p956+PlwtlF91k02wzeabo2PFCry85ZbY8JJLGs6/59Zbsc2qz8+98AIeXHUt1S7fXGcdjHnqKeVzvvTGG7h73jyMevZZvFc4Pv/669Gzyp3Cju+8g9WF3+544AG86ribPOyVV7C74rdaXx9eW7gQa676vqKzE+Lbu+e++7BwVd3Y+LnnsO6q468tWjRwzZ133YVXVq7Efqve3bLFiyEYsQ1g0aJFDW2c6gsBYOqTTzb0GQ88/PBA/yJjyaRJeOjww/GykNY6Tz+NTVZ9vveOOzBt4UKMpy9nY8myZVj47LOYJR1P+8QU47/5TWx88cV4ftdd8eTVVzelM/axxxrawn0PPogtOztRFRZgSyZNwiOHHIKF8+Zh31VluviNN7DiySchOnm55YYbBvrPBS+9hKGLFw+8k97lyxvKt+u978Xc22/HGgbicvm4xpHt6WXL8PCqdPbu7R3oj1546SXcp3h/1Y02wjabb47Od97BHTvsgJWrztv69dchehV+6tln8b/bb28Yf/95+unY/Lzz8MasWRjx0ktY4+GHtfk14c0lSzDWfBoA4JVXXsHt8+Zhs5dewnTh+IreXjA05kqk7+Fdr7+unDc8v2ABHhDKc5MXXsA60jnXXncddu3pAaVbuOGmm7B8zeTtv1vxzPOE+rj9668P1BUVntlzTzzw/PNY/ZFHsKNw/O2118aTBxyA54T8jnnySewk3mvVb/sCysXkNddeOzDuvPeddyAaZD6/cCHuV9SvMU880XAvE265/faBdpLipcWLcfeq9PeRFpcPPvpow7PNfv75hnnSvffdh02WL4c4G36nr6/h+5szZ6JnxAiMfeIJdK4ipfpWrhzYzHx7+XK88+qrA3MzW/R2d+PRj38cT8+bh3X/+19szLzumRdfHGjPKkx+4IGG+SiFFxYsaGr/71s1twSSjd60Duy4fHnDWCbj9ltuaRq/U7yx7rq467DD8I4hz8NefrlhjLvuhhuw8YIFmCocE+cmIz//eWz1gx9gtWeeMW6SPP7UU+jv6hoYUwDg7TFjMEpBWqbPveZ3v4vZF12EF3fcEf+95RYAwFr33ovthHPfqVSgW1Vdf+ONWLF6vfQq06djzpw56F68GHftsw9We+IJbCucP//665MNcAGb/u9/mEGk/cprrzWMi9R4PPGBBzBHc86Il17Crpr8333PPVhEzFvEOdx/HnwQ/1ulzt/pnXcwRvjt3vvuw0vEunNvNC7ixfq44Qc/iLXvvBPvrLkmxt9778A5T7/vfRixcCHWvvtuTY4T3Hj33Zhx8MGYfPPNePDww7H12WcP1G0Zad/7fsXvFB7773/xpKZO70VstAPAknfewY3z5mH9F1/EBsLxN995RzvOLXjpJdxL3G+Pnh7t2Pbiu96Fyf/6l/L3m2+7ren9r3jrrYE0X1m8uGltpcKsp5/GhtKxt6ZOxX1HH403DGnsvnw5PBwoDeDmf/4T2y5bBtGp2eLly3Ezcf93v/EGWebLV67EtfPmYfaCBQ3jxvMvvoj7583DBs89h/WF47ffeSdeW7YM0x9+WLmO7atUMG/evKb+Q4VX3ngDrx54IKZddx0e2nVXLJLyv94TT2AjRjp9/f0DbV6s3w8++ijGLFrUME8CgLvuuQezhfJbvmIF/vPAA9hekf5Lc+di+dix5LoYSMoGM2di/vz5jNy2HpbpVKYyai2GBQsW1ADUbr311objxx13XG3u3LnG66dNm1b74Q9/aDxv+fLltcWLFw/8vfDCCzUAtVdffbW2cuXKtvtbunRp7Y0ZM2q1ROxt/OsfOrTWt9NOyt9XLlhQW7lyZa3noouar+3uJvPQ85vfNJ7X2TnwuW/33ZNzfvrT5nu9847x+fp2372e7qxZtf4110w+z5hR6/3MZ7TPuvK++2p973pX/foJE5I099mnfs4LL9R6fv7zen732qshjZ7f/a7he++559bz9+CD9eve/W51PlasqD+PkH5a1r0/+pHxvfV96lO1/s02o3/bddemcmv4fa+9Gt/X/Pnae/Vce21TGr1nnllbuXJlrb9abTx+zDHKd9c/cmRjPrbd1ru+91x4obEe9R57LF1Oc+YYy3nl4sXN9/z3v1ltq2/WrIa639AmJk8m303PP/9Z67nppuZ8PP54PQ/LljWnN26cuowuuKD5nV5ySf2dfeEL9XOpdvncc7Xez35W/ZwHHZRcf++9jde98kq9nkvtoeeWW9zf+9NPK/PSX6k09Gf9667beN8rrqjXiy99qf4MO+5YP+eaa5L62tGRpDFpEv3cUt+gLP9f/7oxDxdfTKe3/fbk9b1nn12/9je/qfXtsQer/un++jfeuNZ7/PHNx9de2679SW2h53e/q/UPH15Pb9asxj6gqys5vvnmtb4ddmgsv7vvrpfFxz/e8Jz9o0bR48Ghh6qfcdy42n1HHtlwrPess+p5GTGifr/DDrOuh30HHdSY9te+1vAMVJ3oufpqr/fWN3cu/9z3vS+pP1IZ9E+c6JWHgecXxlL5r/fznzf2wSvfeGNg/G767Zln6vfZdlttPlauXFnr22UXfVnss0/9Hdxyi/YdrVy5srbyjjvIc9I+gczPkiX18zbcsLE8jjxSXZfuusuu/B97rPn5PvGJ+r2lcbbnoosa38XnP9/4+2WX1fqlOaPcb/btvHM9/U03Tc7p7q71DxuWfN5kE69+SXzfvaedxr6u98tfNvdRUv9L1o/DD2+6rn/cuHp5jBxZr2tSvyX/qdp477e/ze9fnnmmsXxeeqnW98lPNh6j5iaKsaUhH9//fq33zDMbn1+YV+vaWdP9/va3xnoj1fumtF54QZ/eddc1nv/yy83joWIuwhmPey67TH/Oiy/q3+1VV5HpNpxz6aX1urL11o2/XX45eX3/qFHG+tj7ve81vsevfCW5x4EHGt/50pdeql155ZW1pUuXJvcbOlT9jp5+uumZjHXq9NO177V/9Gjyuv5NNkme7fvfb3z+7bbTt9dPfpK+z4QJ6nd30021nptv1tfPJ59szuNqq9Xvu/fe7Dbce8opjemstRb72v6pU63KX/k8jz1W6581q6lsyXtusQX9jqZNI8eNtI72fvObjeV8/fXJ8R//WJmvdD7X8/e/s55DXrM2lbVUf5T3HTGCbrM/+xnZr/T89a+1/vXWq18/dWpTHzXQBk4+OcnLUUcp77/s9tsb2mG7/b366qs1ALXFixcbubmWU1quscYa6OjowKJFixqOL1q0KGiQne7ubtL/ZVdXF7qydppfEFZaKJgqXV2oaPx0dHV3J35ZiLKqVKt0GUq+IcTcVIcMQbWri/QN0tXdzXPeK6a7Kp2KwgS4If2hQxuv7+xM8i88Q5fk97IqPV+n5HOno6sLHek5wnNXVUF4AHSJ5SPkp6uzk+0bqjpkiNI/T7W/vynfDb93dTX+LjvpltA5ZEjT++/o6Eiee8iQBsfDDeUhQ3qupny4gPBZ1yX7bFG4S6gyfFp2Ec/O9VVTqVRQUdy70tFBtp3OESNIB/oD7RAg206lUlH3Z8T5nYJZUcM7I9LoGjpU6+upOnx48h6lcmnIs+RTqXP0aHdH5RqfMpVarcHMqiLV7U4xT8L9q4KPp860T+joAPr6UFGZDUv1WVn+Up/Rqah31Y4Ouj0I53fKgcIcUenoQAdRj1X1Ugn5vXZ3N9S3pvRWtYdKrYbKkiUN13YJ760q+Riq9PfT+dL5mJo0CTXp945p08j+SVn2OkjP3tHVhQ7pWFOePf1JVi1cv1SrVbJdqvokLgaeSTNOdQwZ0ljO1BxM044b+l3FO6bqlQrVYcPq71dqf2S9ko5xnlnXR3d0d6vHxRGUjluNLuL86siR9eeT7t3Q5wFNz9ZJ+DisSHWm2tlZT3/V/4rgP7gyZAgqHnW7YYyxaIcdQ4eqyzUFY7wm2z81VwSMPs06Ff4COzo7zXlNIfcj3d1NfUeX/F4BVtl1DBnSVEeqM9U2StrxQPqtIgeqlE+n8ixCUsaTcw/F+6xKz0TmW3p3TeessYY6b6DnwtpzpLwqr5feLTk3ltIaqE8MP4tdq+rTwLpXY8JvfEcEtPN+QNlvDrQrqd5UDW1MuXbQ9EGdmjVTCqpvFd0dVIcO5c8TpHFGuV6mEMinZdeQIU19u/IZFP3WwBxOHhPSPlN6VwN1XFMvqbW3Dsb5GTOdCuh+obO7m/T12SnFGKhUq8kajUDH2LHG9ti5qgzblX+yeaaW8+45ZMgQbLXVVrj++usHjvX39+P666/HdttxBMMRSth0eKZBTxcJjBuIR4QqKp4cpcuUnxRpI+ntNQewkQPxUEGB5EA88iAnO7RWOd9X+LRognhNSkZw/NToyksXPVm+J2AOikK9zzSv8gRSV5eoiG2+kNO0GQiyDsQjR6EWoQvEo4piJ6Zr45Sf+s0mEI8pyl/e0cNN/YRIMsqLKG4gHvHcvALxqMrYFIhHBJc4cAnEQ4EK8qEjk9L8UYF4RNMSOaiNKnCApl7WJk9Gv1weU6YIJ3iSv5QzeFP5+d7TJRBPVtHDdeAG4lGBE4iHmxbQ+K58AvFw82AzLtkuXnSBeABz2bsE4qECwfX21vtN30A8pkBzKuQViEcVGI2Cyq+XTfm4BuLhBqORz5s+nT7XNsCKiYA3pVd0IB7V/CuFbV3iBuKRj9sEhgrx3KZ7+15jWivKa5AsAvFwxmeqPxHnyjbBdbjvnkKoMbpabU5Lte5RrTvTuqN6HlX0cN0z6ALyUjCd51teqWCISpcbiCcN2KjLS6gAS22AllNaAsCxxx6LQw45BFtvvTXmzp2Lc845B0uXLsWhhx4KAPjkJz+JSZMm4dRTTwWQBO95ZJUPq5UrV2LBggW47777MHLkSKy77rrK+ww21EKSlrqBkRsJT1yoqUhLFwKrVqtf50JaUlHR+voa82uKHi53aCneeIPOg/zc4vXpwlwX2U/Ml6r8TdfL78dEWurqky46rymdEDtN8v2oSYWKKHAlLX2JIV0aKrUxFQVbJNq4UW1TiBMxsY6rnlf3zC6kpY8/YdMEJSUZq9XmRZSKDKHKMhRpKT+rqixVx21Iy+HDAUnBSIKazOryoIItaZl+7+8HVgXFG8A77zSeJ6aj6tM0+a1NmdKktGwgLX1BKbpN5cfp23VwmZz7kparFMde9/SJHs6ZG5ieSXxXnPRcooeLv8n1QDfW2UaZpc4X+xgX0lI+piMtqfLzJS11hK8OnDkEJz3TmCveJw/Skmqz8vVUX8N51s7O5rRmUF4iYZ4jyekYlJbG/KULf935Pmp1Tvmsthrwyiv0b1mRltT8znSOvLmqg67P6+ykN21t4EpapnmXN3ZNEZqzIi1NbbsVSUu57FVla9oYVpGTqnqpaysqHkCFUKSlKk+q6OEyZ6AjLdMNF117zGPDuEXQkqTlgQceiFdeeQUnnHACFi5ciM033xzXXHPNQHCe559/vsEc6n//+x+22KIe0uCss87CWWedhZ122gk33XRT3tkvL2xJS04jsyEtOTsNch5dVXc+pGV6rfj8svmlnC+d0lJ8JnlBTp0jf7dVWqrKmVMOIkyqN53SUh6YOapdzrlcyHmzIS1NEyOAbks2A63qXJ3SUpWWiJCkZaspLbmkZUeHnjAU0xHbjDwZUy1Ci1Ba9vToia+hQ/mkJdXv+yotZbJRRVr29YUhLXV1YfJk9MtqTinwnxcopaWn+bcRNpNeldLSNo/Vav6kpY4ApGCjtMyDtLRRWoYmLU1jMrXINI2jHNLSR0VsGoNU8HmXIkyKPvGziShVbXLZPBdHaWlj/aRLG1ArLU3jtC1pacqfj9KSsyHEeQejR/uRliqyW3d/FfGjO4ejaDPdF0jemWgZVgRpKc/T2pG0dLGS8AVllWVLWqb5VpGWquO6Z0iv4T5nHkpL6t3K/W5Hh5m0NNXBCAAtSloCwNFHH42jjz6a/E0mIqdPn45aAH9eEQJ8lJamgcgmPRv1mggVaTl0aLPflmqVJiRl8iKE0lIFndLShrTUKS1N18vXuZiHpyjaPNxHackhLW3Iehku5uFDh9KTB9NOvO1AKS6siiAts1RapiRjZyeftNQpLVWkJVc1J6tVVO9eVVfEya9JackhLIHizMPT70uWNPdTYn9dqTSmYzJdIlCbPBm1t99mn28NirQ01U3f+YsLaemj+HA5Hyi3ebir8k53XP7NZqwLQVpmbR4upkG9D1+rCd0Y1NWl7oPzUlrmbR5ObQbp5o429+jsbB67Jk+mz7VVWvqah3OIHlVbMrlF4twfaFZ72l6vIy25VhYc0lK3NpOv09WLESP8SUtTH21LWpramK21CtC8EUrB93cRPhYOIZWWpr49hWmOxSUti1Ba+pK8XNKyWlX3iWm/EZWWLMSSiKjDZmHU2Zm90lLMj2p3MLR5ODV5ktVplNJSJi1NptSydNwWFGnpax6eh9IyhY95eBakpc2kImulpat5uMmnJfU9a6Wl7r2mg7iOtJQHeo5pvgomsi19to4OvTJabvcpVGYvMrj9LLeNcJSWJtJS42C/6V4cEzQTKEJE524gTZ/y+RtaaTllShIshAOXSS9FWprS8TUPt0Eon5aq8zlKCtX39HqOebiLr2u5fxHfFadO+C6CbMYlW8KPIiF05uEm4sTWpyX1LimTYxvoSGrdPCEUaWkiiYomLU3EU4rXXjOfQ21Cqp4pb9KSc75qjArVrmW1p+31Yp65fa+PebipTE3zbFkdW4TSUp6nuZKWvkpL03PkZR4eSmlJzUlsScs031zzcBulZSjSMiulpdzvVqtRaRkIsSQiBsBeqAF+gXhcJPqq9EIrLSkll0xaUrs9/f2NC0sb83BOhyQTDuI1oQLxmBbG1ITVtqN1CcRTlHm4Cq7EmQ2xY6u0VJGWJmWy7fvLwjxcpaoTz0nhMymjrpXViIC70jI9Hso/oU61pMqbCLE+/PrXQAhXKEUrLZcubU7riCMaz/P0ZVibPBnduoBoWQTiyVppaXN9KPNwF3WqibQ0qTGocVEHk/WA2NerzHdFuCgtdfkJaR5ObTiE9mmp22gpQmmpQqhAPHkoLW0WrBzzcAoLFvDS5ooGTBu7WZOW1DOr8sqZN3PuH5K0zNI8nDtPMf2u8/vNhSupVDbzcBPawaelbSCedCPcVmmpewZb83BTHfYtL1Ukc0ppqaoDo0aZ8xJJywHEkogYQDUkaanrgEKah/v6tOzpaex0KfWgi9LSxjxcVR66AVi8JiVBfM3D587VX0stWnTmuqGUlqHeuQh5oKEGlPXXp691JS25A0+tZq+07OriKS3ldH2UllkF4hG/c1StXJjINp15uErRQ5mHhyKgZHMzH6Xlk0/q77Xmmrw8qQi2EEpLDmnJyR+HkNDld+JELF999fr3LbdUn+tColOBeEyL9gkT7O8jwmbRlLXSUgcuafmud9HXUxYIOphIS7H/0Zl/phg71pwvHbJUWlLpi/Mdk09Lqk2aNv9MSktf0lK3+atL22Vjg7MpCKif2fSsIZSW1DviXD91qvkcFWlJpa9qnylsfVqGIC1Vff64ceb0OPfX9Q+qdyDWqbXXrn8OGYhHNedzUVqK46Lsz7QVlJYbbmifDy5pufHG6t/yIi1DubHhqOhTqDbhUxc7IZWW6TXcOXQopaUqTyGVltE8nIVYEhEDqNiYoOUdiCcr0hJonCxylJYugXiohSr1WYSYF7mTdjUP7+igO8/ttgNOPdV8rQydibjufRYdiGettRq/UwPP4YcD++7bfNyVSFOVh1w3+vvV54rPftVVwDrrAKed1uzLT3XPPM3DdWbugJq0pM4JASotsTzFQDxyvVY9a5bm4WPGAN/+NrDuusA//mEfiCfdwTVh7FjgpJOaj48f37hISe9l4y9MBcr0VEeChyYt5fS+/31g5kzge98Dhg7FS9tsg/599gE22wz44x959+aCUlqOGQN861vAeusB117bfM1WWwFHHpksus49l3+vri7ghBPMpKgIrtLy2GOTuqmCy0RbfneqBdx55wHbbKO/Z2jScuZM4Jhjks2sf/+bTm/iROCrXwVmzXJTNtsQb9VqMmavsw4/fd1mqhxsysWnZZkC8ej6JM7GozwuUXMdk6LPRmmpUvL6Whdwrv/EJ4Ddd9efQ214d3QAd9wBbLABcNBBwI47JoTlGWeY8yUihNLyyivr8yEKqvowaxbwhS8k7frWW93vr1Naqq6/5Zak7I4+Gthkk/pxLnEl1ykbpaXpmahx/uqrk/x+7nOAENyWlR4FVzImbYscn5a//GWS1333BQ47zD4fXNLyT38CNt2U/s1mc8YnEI+8rnEFtdlhS1qmVjG+Pi3F7+k1XK4iFGmpgo1Py+5u4OSTkz7qqKOS/yedVB+LotKShZYNxBMRHtakZdZKS45PS9edJXFgEIkYFWkpkhOcQDw2CjcOmcUhLblKS3nw+cQngN/8xnwtlc9QSsu8A/FMmdL4nZpUdHYCf/kLcMklwMc/Xj8eUmn50EPJDu173wvceGNyrL+fZx6+337JXwrqGUw78bYDJTcQD8dhdt6kJTW5CGkeziUtbXDSSXVC8c476XNUZaxbRIm4++6kHsp46CHgwQeTupkiS/PwEJM2FXkvQ35HBxwAHH988rmnB+joQN+f/4wqlVYW5uFAMqE9+WT1dT/9afL/9tv593rqqaSv+8AH+NdwSctTTgF+8ANgjTVon3iqd+bj0zJNc621knL4/OcTApO6p0tUYJmYkt/VOeeY0zz99ORPhKt5uKldff3ryZ+rklN8XnlMbIVAPK5KS5dgesOHA4sX688B+ObhP/kJ8PrryWYFEEZpSV3Lub67O9kYGzECWLaMPkeltJwzB3j0Uft8iQhBWr7//cmfCqq21N8P/OhH+rQ5ZeiitNxmG7rsuMQVh9wM6dNy7tx6fk85xXxvE1xJJRVpSeV5+nTg3nv199HN2eQNVRXWXx+4//7k/3//2/ibjdLSx8JB7sNdYUNaqtadqdJSrqOq+YVKaVmp1Odc6XvichWmdpsnaQkkfX3a38uISksWYklEDMDKp2UegXio30Ko7sRAPEAjackJxJM+t415uAzxWVUdq44cc1VaUqQll2ShzrMlLVU+LXV5kMvHd6EDNKtKdJMK7uBtAlUeaVqyapdrDiSnb1po5qW0pNqIDI5/Gp/AOzIqleb3TJGWlNJSfD653Yvpy79TcCW9VOmq2j3HnBVI3oNKpUuZyVP5CGEeripXm/RV+aPOc0lfhguh4Nr/utzTZbLLNQ83OcVXHdfVfy5pmUKnyuCMh7rANEDYTRMObMzDQ6QvPm8WpKVJaekTiEcm5OT86eZgrqQllQfdMfH9Uao4Mc8qpaXvgtWmfE0m9a4+5U0I7dOSgiqvLopsCr4+LUVwiSvOPFo15zMJSkxrGPmZsiAtVeWWtkVqnqYiw1zzwVVa6tLKyzw8FGlJ9e22Pi3TNTPXPDwLpaUJIUhLlViEI0zi5iWSlgOIJRExgKBKS51/Cu4ih/L76Kq605GdHKUlxzxcF4hHhk4hkEKntKTM4LiBeLgBPqhrZdiah5clEE9HR6MfvzxIS6r80ncs/lar8ZSWFEzmQnmTlrrBNj3HRnnlC/ndiROOtG6WJRCPDFVZqBQ6XKVlZyedNkVa5qW0lMuIO2mjFAKq83T54cKFgFYpLbmwOT89N0QgHlUbV5W3y0TblrTUfXdRWsrkSahNE1elZZlJS2qDIM9APCarAV+lpYnQpu4JNLY18XcTaZmF0tL2el2ZUUpL18W0rU9L3zIA1H18GUnLPMzDTQSnaR7DIS1t1kGce6RQkZby5qcuDW4+bElLqtxajbS0UVqaxlmuebhqjU+JgbhzaNvgsraoVu2Ulq55iaTlAGJJRAwgaPTwFKbdPBE683CVctN1p9eHtKQIGVulJadDyyoQj6vSh8qnq3m4jd+WUASDDFFtKb5fGaHUBVylpS4Qj+nZTRMeX/NwbiAejtKSQ1qG2lFNwSHsTaSl+NnFPNz1mVTpqha73d18U2nqvEqFVjJwFkace8rp6pSWNqQl51yTAjlL6Pwbc2Bzvs9zmfpoU0AH1fEQ5uGqtKjNPB3k9Ezm4a5wNd/OmrTM2jyc49PSFSYCLbR5ONenpep3amxuddLSFbbm4SFIy6yVljrLBttycyUtOUpL1VoKUPtjpaBTxKUwtW9X0jJti9T44GJenbXS0senZbuSllylpZh+eg13E9Z0HrdsVfWQst4CknyqNq9UiObhLMSSiBhA0EA8KajGZrvIAdTKzRCBeEykZbVK+7SUlZY6n5ZUmik45uGhAvF0djYvmrkLWyqfroF4ilZaAo2k5csvq88LRZRzSUtX83CgsVxtTIUoUL+plJYqEshXaRmatJTrPlWXTObh8mZFiqzNw22VlpUKz0Q8hHm4bZukNgJCkZYu45JrnxLCPNx2QupiHp6F0tJ03KWf9FVaUuOiDvL1WZmHl0VpqQvEE4K0zDMQj2kDzjcQj6luUOcA6udpBaWlrsyoQDyukPM0dGj2G0etrLRUlY2LT0vdZpPJB60ORSgtqfRczMNt3S7pQD2Tj9LS5j1kaR5u69Myha3SkrOpyRVYZa20BNRKS1vSMiotWYglETGAoObhKXyUltQ1WSstqR1fFWmpU1raDMaqc219Wrqah/tMFvMIxJMVaSlG2lu0iH9/1wFER1qKv3ED8VAQy9XGVIgC9VvIQDwcn5ZZKy1VAZjKEohHzhcF1WIX4JmIq5SWFGkZyjycykMIn5aq/FH3E2GT/6wC8XBhc75LXxWKtHS5t4m0NG26yP2oCXkpLbnIyqoghU5pOXly428cpa1pYZtlIJ4ymIdTYxcVQBJwJy19F6ytoLSkLIBCQxeIxwROGboE4lGhqOjhoZWWRZCWWZiHVyp+Fml5BeKR+3BX2CgtxbkaJWLhkpYqpaWI9B3kbR6uU1qq5s4hlZYhlOZtgkhaRgwgaCCeFD5KS455eOhAPJSPFMA+EI/KqXoKlXJLRBakpa15uKmz1JGWugm9TSCerBZya69d//zGG+rzsjQPT8tBNmvMSmmpUyaZzgXCBuLhKC1t+iQOOKSlSWmpIteyVlqq0tW5NvBVWlLlwFHw2sJWaalaXLsqLV3zX4TSMmvSMoWJMDTdIwvS0tR/UW5TdDARU+1uHi4+76hRjb9xVK5yerZKS59APKY2HDoQj2pDW4YNaSler5ozlsU8PEulZR6kZdbm4Tq/nLbvMGQgHpU63TSO25KWFLIiLVUWXq5KS87mPXfdEVppadPmuMEXTaBIS9V6VBxnqU1yrnm4jdIyb/NwFUKah0elJQuBt3EjWhlVcaHY0aEnDLhKS6oDclnkqHZhsg7EQ5GWlHn47rs3nqNTPwGNz6rqpHUDnUxyAbxFGqW05JYhNQC0i3m4DqFIS/m67m56oM5TaWlLWv7rX3ReVBNjXR3gqDFbSWnJeWYgv0A8AE9pqSMt5XaapdJSp5KT77nuusCjjzanQ022KWStaNPB16dlq5iHhyAtTQs4HYkZQmnZzoF4VAprVV58zcMHu9LS1aelr7I7Ki3r96AQirTU9RW25Zal0jKUeXiRpKVKLCFvfurS4OZDJC3FtaJNWnn5tAylyKtU3Hxajh7dbLWmmke4KErLFogH4JmH+9bB0OugFkakbyPqsIl+7WMe7qIiUxECrgSSODCIA5HK36PJPFxWO40dq7+/yTzc5DOUWpxReZTho7SkJncc8/CNNqofmzEj+S8PzLq6lBXBsNlm9c9iHk33dx3o5OvEusZVWtoE4rFxyk7B9Jyi8sRFaZkqXXUDelpfAGD2bH1+OAgdiIeamJj6pO23r3+28UGkSldHWnJ23js66HKgCEBZHWTKGxe2Sst11qHTUeWPup+IdjUPd3kvm2yS/M+KtNxii/rnDTZo/M1XaSmCek9jxujTk99NuyktxfIcNkyfrxDm4Ryflq5Q+VHmpB0qEI+v0lLMs0ppWRbScq21siUtQ20QqKDqC9dbz3zt6qv7nZOXebjNnM9EWpZBabnttvRxlViiUskmEA/AL5vQSsusfb1SoOZRqj5zxx3rn3ffvf45zbf8PCalpQ7pNaKVnA6mvpPbLlXnjR3LU1r6+lXNc1O95IikZcQAqiJpaWpkFKlWqQBTpwJnnSUkSlQxlcJNN3CodgdDmod3dKhJS5PSUsb66wP/7/8li+t//7v5d/E5VIMcpzwAWmn5xz/WF58ibAPxmOqBbFImIs3/n/8MbLwxsP/+wIc+lByzMQ+X8xBqIbfHHsDBByeT1t/+ln//UObhYjuQVWaqZ/Q1D/dVWqYYOxbYdVf1uSoV5a9/najkPvOZOgmpy8OHPpTUm402Ai6/XH0eF6ED8YjQkZYf/WhC0Bx0UNI/Hnhg8v3vf+fnvQifluL/9DP1fFn7tJTLfI016HRU+aPOk+/vglYxDzdN3n/5S2DLLYH3vAf48peTY77m4arzTzoJ2GEHYO7cxrkCYN7MstlAkp951izguuv012dlHs5FnkpLasPxxhuTjaIvfKF5YeiitMzSp6VuPJXvLSNUIJ48fFra4je/SebhP/qROo8qyGV2+eXJHPaoo5I5bbspLd/3PuDww83XTpsGfPGLwMyZwE030eeMHw8cdxwwfTpw7bWNv/mSlqq+1CUQD5e0DPGuTWmYfv/Rj4Ctt24+rhJL9PRkE4gHaEx30iTgK19J+sr58+nzReRlHg4kY9z06erfp05N6qkO1Ia1ai75858Dm26arKd++MOkr5g5E7jhhuR3W5+WOqTXzJkDHHZYMqb/4hfq87NQWt54Y/J8xxyT9AtZBeK5+uqkfh1/PG8eP0gQ6duIAVRsSUu50znySODCCxuPUY1VpS7iEFehFpsq0lKlFDD5tJRRqQDnn8/Li2qQs1VAigv9WbOABx9MBidxYah7RhOoha9OyZU+1/rrAw891PhbGczDKxXgd7/jnSciFGkptgOZtFRNcmzMw6k2HIq0/Pe/G4k9rtJyhx2AJ56wy8MVV6h/t0Vo83AROtJy882BSy+tf//DH4xZJfNFwYe0TIkHHWk5dCiwbFnj+dy8cWEiLeUyVT2XKn/U/US45t9FBVVGn5brrAPcc0/jsax8Wo4aVXczcccd+nv6KC3F+cwOOzS6tlCll1UgHlelZZaBeKiF/847A08/bb4W4Klx8lRayvNKHVEQyjw8pNIylHn4Jz6R/OnyqIL8Pt79buDJJ93S0qEMpOVVVwH77ce//oc/TP50OOOM5E9GqygtOZuzKVzIwOefT0gz7j3WWgu46y7gH/8A9tyzflxFWq5Yka15eIquLuDMM5M/Tlp5BeIBgF12AZ55Bthtt+ZNOgB47rnEtQ6V9xSUebhqzjVtGnD//fXv553X+Lstaanr78R3m5KVjzyiPj8L0nLnnYGnnqp/pzbAQigt99yzPhaH2tBqA0SlZcQArEhLKhAPRWDZkJacgSOET0tZaZmCS1pS5uG6+1EwdWhdXfZKS9knKZV26EA8OlJEl/8yBOLhgjKRdYFukcUlLW2UltSAHco83ORLSaW0pPIfyg8PB66BeEy+2QA9aRnCxEeVhk8gnrQtUeWQPo/sxiCL55PTNSktVf0O1zw81OaXC3xJSxefliZQi0Du4km1MHBRvNqSlrrnE/Nl2mhIIZdDO/u01PmjNl0LJM8kH7MlLX3Gcrms1lyTn7aLeXhopaW8UaMyD/f1Z+ZjHm7T3mxQhkA8oZ6FA9t7uQbi4SgtuW5sTL+7EDGm7yqYNpdSrFiRTyAeG1/AQL5KyxS6mBQc03/unMsE20A8NmlR6YjIOhAPQPdbstLStw5GDCCWUoQbKKUl1alRjXXyZDpNDknnSmBxyE6KtEzvZ2se7quGMZmHi79R5uE60ihkIB6O0pKCjU/LrJSWXIQiOPJQWorlSk1aQiktXUlLKs2ykZaUCwWOAiE9nhVpmYXSUkVais8olkVZAvGo+h1X0tK1Drpc5xuIx+b8tN6ZJu/UIpC7eHr5Zfp4iIBIoZSWqvPKprTMk7TU+aM2XQuUMxCP+L58fYTJ78zXp2UrBuLJiuijXP7krbTMkyTIS2nJIS11SkvOPVO4kJau70C3uSSmsXy5W53lrLXEd2JLWuYViEeEbrPDpf9zjUyehXm46ViKPALxRNIyV8RSiqBhakBc0tJGackhAUMRSCrS0jUQjwxfpaWNT0sqEI9Omerq05KaPIdSWpaZtAyltNSRlvL7VE1ybMzDOaRl1kpLzs56nqQlx6dlZ6e+nymb0tInEE+apm4CKZZZX192pKWN0tKXtPR5H74kgu/i2eZ8btviKC1VZfbWW/Rxl8ViSKUlZ9FgUtPl7dNSLuOsA/HYgENaFmkeDgATJ9Y/v/MOfV1Xl9sikqu0VP2el09LXR5M8NkksEEZAvG0EmnJ9Wnpax5OnadCkaSl2HeJ9cZVaWnr07IVAvH4KC0B3qYNByGVllRZ6J4llNJSlzdqjhDCPDyCRCQtI2i4BOIps3m4DFvzcLED4vq01CEkaVmkebir0rKVzcNDKS1FxbH8PkOYh2eptDTtBreKeTjX3ISjtMyatCyD0pLyGQX4P5+JtJTT15mHu5glu8Kl7vpugtjcMz3XRWnpS67mYR6uKwuOI/y8SMt2VFpSGwQ6C4rQSkvqnU6aVP/80kv0ddx7yumPGMHLg6qtUaSleP1gVloW4dOylUjLkEpLldWa+JvuntS53HNc65OunxbrzfLl2ZmHi3lvBfNwX6WleN+ODvd5etZKS908Iyot2w6xlCJocEjLPJWWqoE2pNJSNi9Spc8xD7chLdN7i3DxaUn58KImDSED8QxGpaVrnZPTUZmH60hLG6Ul5evQZtGfhdLSNFHOGlzzcBmtqrQ0kZZpmnI5iO9EJC3feaccSsvQgXiKRJZKSy58fFqqEEJpaVrAcc3DuaSlTN7mPdZkrbT0IS2psjflt0il5f/+R1/n6lKou7v5mI9Py1YwD7dRNvug3UlL23uFDMSjeoemMTCL8snCPFysN1kG4hGRJWkZaqNAR9hx+l2x3EaOdMsDwCctORustubhefi07OigrVKi0jITRNIygkZWSsvu7maH6apzqd9CqO5qNXUADhvSUpffNNquLg8i5LRaRWnpSlramEAUrbTMauLu4tPSBLFciwzEo2qvnEl1lghBWpqUlhy1gwtUbVEXiMc02bRVWlI+o4AwSku5DajyA4QPxGMDXxJBRhlIS47SktMGRIQgLYsOxBMKrkrLLKOHZ2EernMHEoK0FPtv6p2KpKXK16qr0rKri0cmqXypmnxaqgLxRKVlGLSyeXhIpaVqbiajzErL0ObhunxQ1nZZ+rTkpMdBSJ+WrkF4APWGuEtdsJ175kFaAnQsjKi0zASxlCJomBpZZ6dbIJ7Jk/n+pah0XFV3nOtsSUtdZ7lgAS9fqvzZBOI59FBg8WL3QDw+hEMo8/DBoLSUIZadTNioJjk6PzWAmey02YXW/eZqHt4KSktX83CdgiHLXVSd0tI0EUrbkqya0pGWWSgtZbLRpLRUkbF5kJYiQtRd27rhck+TeoFD3nPawJgxvHuq0ik6EE/ZSMsyKS05pKWO6Lb1R0ZB7ItMSksVuGVKzTs4JJHKLYFJafmf//DyZYuQSsssfVq2s9LStty4eeWQmzbm4Zx7yunYnJO10jLLQDwislRactLjwJe0FOeVo0a55YG6l0lpaZOW6liKPMzDgUha5ohYShE0Zs6sf6bISK55uDwxnjZNfU95sJk7t/553XWT/xzlFgcq0lJWH6Tpb755/dg665jvvcYa+vuHVFo+9BDwjW+4B+LhEobUIlQ3mGVFWoZeyJng64OOA67SMk/SUvWcnZ3mMlGZhxft01Ku+3mZh2c5Idl+e/VvKlV7CjGvIhGoUjJkRVrK5uEmpaVqgVutNiqY11pLfT9X7LBD/fN667mnkyIPpeUmm9Q/z5rV+JtKcedCWu67b/3zVluZ82Ui6eS8yd91ZSHef9NNefd3DTZggtjH6epeSPNwE0noq7SkNgiyVlqKeaaeb7PN6p/TOaPrPSlClkNairAxD1chT6VlXsQetRGcVdsT76HLQ5bIKhAPxzy8SKUlNy8m6NYA225b/7zxxtkF4qHiGujOF+FDWrrOVSjCbu21k/+c+drbb9c/50Fauiotiw7EA9BCoGgengkiaRlB46CDgH32SRY4V13V/DvXPHzWLOCjH006hzXXBL78ZfU95Q7kkkuADTcEdt89URNS54QOxDN+fPMxALjsMmD99YH3vQ84+GA6L6NGJefssgvwkY/o7x/SpyUA/OIX2ZuHUwOA7Y5jisEYiAcATjkFmDAhqdsiuKSlzhQYsCctbXeYVffgKi2LJi3luj9hQvM5aR7//OcksMO3v80jbLL2aUlhww2Biy9W/77RRsCnP51sFh1ySLMSSWxLX/96snAcPjz5nCKrQDxXXZUo77/5zeS96Hxayul3dwOnndacZrUK7Lpr0v+usw5wzTX0vX0W4xdfnCyO3vte4LOfdU/HNS/U+bvskoyTKnz728B22yWbb+ee2/gb13+uSkH2f/+X1KsTTwTOOSchC+fMAU4/Pbnv5MnAFVfwnkW+5+qrA0cfnRwfOxb40pcaf9f1HWefDWyxRbKoPfFE3v2HDwd++tPkec47T522D2zGOi7B9te/NgZ2A8ybL3koLUMH4jGZh++2WzJ3nTED+P3v6TRCkpaU4tsmEE/ZSEuTcs+kXOKC2vSU596hMRh8WpbNPNx0jat5uIizzwa23DIRuZxwQnjzcOp6283+Migt11kHmDcv+cxZQ731Vv1zFqSlahPB1qelrg/NS2kpiyGi0jIz5Lz6j2gZDBmSTIQB4NVXm3/nKi0rFeDSS5M/E+TOZ911gUceaTyWtdJyjTWSDmj58sb0Z80CHntMf+9Zs4C77+bdP6TSMgVlHp51IB4ddB11K5mHh6pzQKKI/cY3mo+Lz5gnaemitLQhLTkkaZGkJaX8TuvXAQckfzJclJZZkJb77FPvo3W46KLG75ttBjzwQHO+vv71RrIyRVaBePbbL/lLoSMtKaXl176WnPfNb9aPVyrJ32WX6e/t8z6mT0/U7aHgS1oedliyaQUk71VUm6UYORK49dbks2yGqiJx5OMqpcmHP5z8pRDHwJNOSv5U4GxI/fjHyR/nehFrrgnce6/6d+r6YcOAI49M/kJC7ON0eXZVWu6zT/KnattU+iFIS/mYzjw8hNLSZB5eqajJSl0+KHDMw6k5r2qxShFRnLEvtA9dHXQB2ULmhXpuVYDOUGgl8/CQgXhUczDTGJhH+YRQuq2+OnDPPfXvLopaTj64JJStObkJIUjL974XuP76+nfO/GfJkvrnsigtW8k8nOOeRkRUWrIQqd0IGpwdcrmzkHcbbMHpQEIQWLWamrSsVBoVCzZKNJuBSZ782fq0pDpBrnl4SJ+WOujybxOIp2jSMm/zcFWgKMBsHm6qg1kpLVVmgWVXWk6f3nyOqX6VRWnp2g7E8uakkUcgHjkNrnm460K0TLvatuolnfLbZQxV9RlcpaUPfFX0vn1HEYF4srQqoOYAIsR7t2IgHpN5OAc+Skv5WhvS0lVp6QsbotFUNlkpLYHsSUtX0+QQKFMgnjx9WpoQyjxXRGilZQouaRnCd6+IEKSlnIacf+p5siYtXZSWtnNPU98Xau1BWQBEpWUmiKUUQYPjQD30hIvTaLM2DwcaSculS9VphPQ/Zau0pH6jzMOpRUVI83AdbMzDde+xnczDOfcou09Lqp63qnk4pbR0VSDoFAxZ1BnX/saXtAyltJRhQ+akeWoH0lIXSImCrk1x6lk7kZa++VCR4aHhSlraPh9lbSEipNKyWjW/P8480gZiX+T67l2Vll1dzeMr5RLJhrS0JUtcEEnLBK2ktNS1IxEugXhU5uGVil0fnydpafOuQvlK1MFm3jxkiF9ZhfBpaSoDqk/MirRM8xJKaam7LpTS0sanJUW+RtIyGGIpRdDg7JCHJo84nbOrqS5HrZemLU6eXnpJnaYPaRnapyVAD1JZB+LRIRRpWTalZRYElFhW0Tw8O8h1f+JEe+KkLObhIZSWnHyJ6qbe3vBKghQ2ZrO+SssymeKEJC1DWivIx02EmAuKVlqaFChZQFd2vuUqviOTKV3e0cPLorTk+pejns3WPFx3X67SMk/S0tT+sjQPl32yhkaRpKVps1lGHubh1DhiUmqL4PSVpnOyUFrmYR5uk5aPP0sqPS5s3iXV7sXrqX6OC9vo4bYq1kpF3W+FUlrakJZpucVAPJkgkpYRNDjm4UUoLUMRWDqlpUhaLlumTsNnwZW1ebjKp6VPIB5b2Pi0zNJkzhe+6hfLe1RqNXfS0rQItHmWEKQlhxQoUmnZ2dkcnMZVadmKpCUnDcpfj4zQ5uEyVH3AYFRa6jZRslRa2ig3uCgbaZkVXJWWtrBRWtqah1N9uc4cHMg/EA8HIQPx2CgtKfKobKRlkUpLKqhRSBRpHp4XaUmdp5qDUeVh08fnqbQ0zXtFFG0eHoK0FNPIwjxchqkfysM8nDKrNqWVQpX/UP2VCZRrvKi0zASxlCJocCabtostE7JUWsqgJmdpWjKJoUKWSsssA/HY+JP0ga6jlvMQlZaN31V1yTR5s1UJZqW01JlKc++TBSjzT07UXREmpWVWpJ6MvJSWVGTEUHkR4ULmtIPScuVKu/N1RF9e5uFZKS1t0w1tHp4HslRa2vi0zNs8PI9APBz4BOKx9Wkplg/lGzv6tMwPUWnZmBY1ZwtNWoZSWqaBUTnIQ2lpM292ceNjaz1BgRKxqGDqE31IS9X7cCGXuVYhKfIiLU1uZSJpGQyxlCJocEhLnQrRBZxGG0J1pwvEA/BJS5/BKQvSUhykVFL7zk53Ek41+XWZeNsoLbmL7KyQRyAeSmlLwTT5Nb2LvM3DXdTTWYKaXMi+tLIIxJNFnXElCk0mpDJk0jIrJWkI0pJbl8o0QSzaPJxLWury4Apf9VPoQDxZoQilpYm0jIF49OAoLSl1oA25EZWW+aEdlZYhfVrKpGUehHoWpGVUWiaweZdZkpaqoD8qoYNtIB7d8SIC8VD35twnlOuNNkeJZu4RpYLYCVQqNPmlC1LjgizNw2XfjCFIy5BKS2ohabO4WbECuPPO5nxxSF4uYajqVEeMUF+vQgzE0wjuRCc0aeliHu4TiIdC2UhLV/Nwnbq0TEpLsQ65kJZlUlpyF3cyilg0q1BW83C5LPMIxNNq13NRRvPwvH1ahvCFW2QgHpm0pObFgB25wSFjfInCSFomKFJpaVtuXOItZPTwjo7ymof7kJace4Scn4UgLUPkxzcQjwgf0lKGqt60m9LSlrSMYCGSlhED6BU717XXbvxR7hS6uoA111Sf7wKXHTFu584hO9O0pk/npWlLWorknlxeIZSWVL44hJtuwNpmm/rn9dajz3n3u9XXq2BDWsqkie1iyxdUndtyy2zvoZrobLCBPp2ymIen93EhUbIE5XtGbu+m+mUyDy87aWmrppgxo/550qQw5IPpPhtt1PibKp9FLkR9ILokmDDB7lrdGOjS3lTvTj4vD5+WtvDtO/Ja1Gy1Vf3zxhurz/PtJ8TnWWON5t/Fvo3yx6iDL2npoLTsk8eaUaPq79xWKZoiVCAe1f233rr+WTded3Tw8lKmQDxrrVX/7FNXVe32Pe9xT9OEIscKW9KHK4BodfNwbh0aN67+2SSSyMo8nIvQSktblW4KcY2y4Yb6c6l2LxJxU6e65YGC6n34kMuqfmv2bLe82J4XgrSMxCYLLTLDj8gDt558MmpTpwIf/Sjwrnc1/kgRdHvuCey7b7Lov+aafDIZSnWnIy3Hjwe++MXk/1/+ws+LaaJx443AtGnAhz8M7LyzPi0f0lLnR8lWafmLXyQD3g47JGVC4Wc/ayYZTLDxq/m5zwGrr548y0c/CsycaXcvX1Dm4ZddRpO448cnv9mCU5e23hr45jf16eShtAxtHl6tJs+19trAH/9oPt8H1OTiox+tEwmzZgEHHqhPw8U8vJVJy733Bg44IOnn//pXnprDBR/7GLDHHsA66zTXA5W5lOtCtGhTnHnzEpJ2n32SMdQGeZmHy2hHpeWKFX7Xc/GTnyR9zDbbAN/+tvq8kErL9dYDjjgi2Wi4/vrk2CGHJHOQ/fcHNtnELm1q7NCZgwPegXiWjx3beGC11YCjj06I/s9+1pBhBXzMw8VrqQ0wADj//GQ+tM02wPHH69PfYgvgIx/h5ccVNsS8qWy23Tbpp6dMAf75T/c8qeavv/2teWPWFXmbh19/fdL2jjwyGdNs4Epa2piHU8fLqrTccUfgQx9KyLObbtKfWzbzcF+flq6k5fnn18ccXT8E0HPJ+fOTzdVPfrJxI8YXWSgtqbFls82AM87g5wto3JSxQYhAPBEs5GxnGVFmvLH++uh94gl0UaQERVpWqwmpV6vl1yhdlZYyTOTdD38InH02X9GoSlPEnDnAM8/QaVKkpc5s0JW0tCVUpk4FHn5Yf78JE4CHHgKOOw74wQ/U54ngTLZSvP/9wCuvJPWsiAAaVBmuuy7w+OPABRcARx1V/+2ll9zagml39thjeWVbNp+W3Pf1ve8BJ5+cfT9CkZZrrgk8+GAyYa9W3dUBeZOWrr5dbRy0A8lz/fnP9X7+qaeazwllHn7NNfR4ItYv8blblbScPTspxxB9RVaBeGRk4e+saKWljdmhDyZMSPqYSiX5r0JIpWW1mmwoiu1pyy3VcxATClBavrPGGhixaFH9QLUKnHsu8KMfub97H/Nw8ZiKtJw4MZkPcYKQVCrJJufjjwP330+fVyaflgBwySXZzfknTQIeeaR5XhUCeSst3/te4IUX3MqJ2ydzNv9tlJamQF4i8gzEU6kAl1/Oq3dZKS3z9GkZgrScOLE+5phA9Yk77gg8/3z4du6jtOSah998c5J/27wvXOjWL0Tz8NwQlZYRjVA1Lp0pdJ4N0tWnpQzqOrmzsh0cORMN7i5TSgrbpgM0BkjyVVqa7iWeY9PZ2w7klKojL6iI30qlWcXg2hbk6+Ty4U5iQ5KWqt9C+7Tk5CUUVFH+KpUkzz4T3LxJyxAO2l3eT9bPZ9rU0ZGW3DqUl1mwDqH6iryUlmU0Dw+ptMy6/1H5khMRUmmZpiU/l+tz5hGIR7r+HdnEXRx7XeGqtOzqaiS5debptuOILk9lIy0B/7ZimndkQSi6kFm+cL1HlkpLVT9UhHm47Xt2IeA413DmL0UF4vGZq3Drn2kjPiR8lJbcQDzcuXyosTGSlrkhkpYRPNiqCrNCCPNwUyAe17z4RLW2NQ/nDvac8ipCNeMykBcFanKXwnUX1HQPG5+fImyDyJTBPDxPqNQxNlA9k8rsSnXMF64TIVulpQzq+bMeD8SJezsoLX2Ql09LGWUkLX0XA++8U/8com/gIG/SMhSoTV3TeGIbiEcaW5pIyxDP5ErMdXbySUsOWpm09IWp3WZFlqjcjJQN3HGZQ1qqrBaotppl/0Ehi3u4zAnKprQMRVpyked63qdtc5WWeQtcok/L3FDiXjuiVKAC8RQBV/NwjrrEtqNzUVqqQA10Lio403nUM4aaONh0uq1EWurKMBRpaaqf3LrVioF48oRKaWkD0650Vj4fVfezha+Zb1aBeHQQXWUMdtJS1x9laR7uS3ZTKJq0FEmovEhLXdmVmbSkzExN97BVWsqkpRiAg8qDC3x8Wookd16kpS9sSI+8yItQ8yZbiM9XZtKS269xAvHIyNM8nJuXkChbIJ6ifFraoEykpW5uxg3E4+oCxPW86NMyN5S4144oFUISdD7I0jy8SKWlyTzYdD73PGpw7u3lpWWCzcBfNjJLB10ZtprSMi/SUjUxLhohSMuymIe7wmZhQiEvUlZEJC3riObh4a4XzcPzIi11fa5vvfRt2zpwzMNl6Pytpi45REh1sVClpYm09K0v4rvWje/tqLQsirS07SvLDhvf8ClU8xRb8/AQyILMcTEP18UPSNFqPi1tkGdbyEJpaQoIp0KoeWA0D88NbdBrR+SCspCWIczDVdf5Ki19dqvyUlpSKIK0bKVOXEcSZFV2rqSljfLFdL7qNxuflmUi64B8lJZZqpmp+9miFc3DVaSlXBcHA2kpo4hAPGUhLVtRaal7Zt8FahZqWFV6lYq5HemUllS9k8a95auvrs+DC1xVOB0dYc3DxblDXubhpvaS17w+1LzJFq2itOSCE4hHhk5padPHhxhDsxiHXZSWL70U7v6tSFoWGZdChq5OtLN5eAQLbdBrR+SCspKWWUUP5yBL83BTWq1OWrYSdHUulL+ZUKRl2czDy1YnQpBrra60zMI8vCxKy1YKxBMKg9k83Pd6kYQKsaHBga7sfBeoWUR4V6WXA2nZO2JE4+9FKi2r1bDm4eK7HmykZVRahoHLpl0on5acemmqb1mMwy5zggULzOe0s0/LPDdxfQg8rnm4q9s4V0TSMje0Qa8dkQvKEognhHl4GQPxUObhIczIOJOYSFrqUYR5uFyXsjIPDxWIR2We0Y51oiyBeFyRhXl49GlZHHzNw4sMxJNlFGIOyqa09F2g5u3T0uYazhxSOqdHJgaLDMQDFKO09IXY15nKr91Jy3ZTWnLcP6muKYPSMg/SklMmg520zBNlMg/nwpTnGIgnN7RBrx2RC4YPr3+uVPKb4MtwVVquv3798+abl09pKadlIi1FX1w6qNIQj48dy0vLhHaYBFLQmYdPmVL/vMEG7vcIpbQcP17/e1ZKS1UZlYmsCwUX8/CyBuJxabNlVlpyn2fNNe2vKSt81UNFmof7TtR987HhhvXPW2zhlxYXsnpQhO8Cdeut65/XWccvLRmhlZaMcaRJaRmin5k5k3ceVbe23LL+eeON/fIxcmT9s64NTp3qdx+xTpnaW15ihFGj8rmPjHYjLWXYmIdTmxBiezalpWr7Yl3eaqv65xkzms/1Jf4puJiHz55d/7zNNvQ54rPMmqVOqxUD8eQJU7tbe+36Z7GPBNR1UuQnAH69GjOm+ZjskgTIJxAPdd+IJrRhrx2RCT7/+aRjqFaB//f/spt0/PCHSeM991z6d1efll//ejLozJoF/PSn9HW2k5iQpKW4iAbMu3OimZKMH/+4/lnVWf7rX8CECcCHPgRsuy0vjybYlt/ZZyfvWsxvGaEjyj/xCeA97wGmTwf+/Gf3e5gCMXHr+dy5wEc/mgz8//xn8+9ynZUnBSJCkJZlXBicfnpS7y680O16U7m0O2lJXZO1aW1o0nL77ZO+b8IEup20EuS69Y1vAOPGAZdeSp9vYx5+8cVJW/nOd7IzPf7mN5P8XnKJ/bW+pOcppyTk0yabAGed5ZcWF+PGJfOpNdcE/vKXxt98Sctf/zohK7fbLrlHSLiQljp/q2utRV/zne8Aq6+O3p//HP2uPmtTXHppUt4HHJCM0TvvDBx6KO9a6l4/+UlSvnPnAl/+sl1eAOC665KNxU99ClhvvfpxuR/72c+S/O60E3DYYfb3UaEs5uHrrJM811prAddem889gdYyDz/33KTvPfts/jU+5uHyXNBVaXnzzcm4+oEPAOefD+y6a0K8X3VV8vtf/5r0fUcd1bzuCQEX8/Azz6z3m8cfT59z4YXJ+nHrrZP1pApyP+dCzOZNWuZpeSLe65e/TOr4SSfVj+26K/D+9wOTJgE33NB4rWod9P/+HzB6dPL5oIOAadN4eVl33Xo/NH9+cuzaa4HJk3nXp6DmvzabRUAyD/nEJ5LxQX7uiAEUZOMb0XL4zGeAww9PGqKL3J2LL34ROOYYnkIQ4JM5I0YAd91VT+PFF5vP8TUP99mlFhV7QDJ51HV0opmSiFdeAcSIm6o0tt8+MYkIKUm3nQR+6UvJ+y67LF5ngtPZmQwwtZrfc4QiLYFkoabKj1zHV1tNnY5NIB7VfcqotPzqV4HjjnN/XypSUvfMZSItswjE02qkZaUCXH65f7stA+QyOOUU4Hvf44+huvZ8yCHAJz+ZXDNvXv14yAX/974HnHyy23vwfXfjxgEPPhgmLRucey7wox8139N3gTpzJvDEE9k8i/zOfZWW8pwnxYknAiecgFpvb2Odk9Pj4KMfBQ48sJ5Xm3Khzp0+3a98d9klCfphaoMbbgg8/XSY91jG6OEA8Itf5N//tpLS8vOfB44+2q58bHway8+fkj4pXEnL7bZrXFvMn9/4nvfZB1i0KLv37qK0FPvN666jz5k8GXjsMXOacrnJKkAOsvCbXxaIY9yhhyYbOGJ5VirAlVfSfYNqHfThDycbU3199nNRuR/aaivg+eeBj30M+MMfeGmE8mn5m9+0x5w0Q0TSMoKPvExHbAYEm0msmC41OSvSPFyewJvMw1VKS5mEChGBnAuXSWArdM4683DVObYwmZTY1i1VfkwTVd25KTibFmVWWgJ+74t6JtE8pOw+LbMIxJO1uxCRtBTHIddAPK7nlxG2/ZFtIJ70/Cz9JRb5Hoq6N3XfEKqavJ7H1qcll7QE+OMXB2latuViCrjmCup6Kgp0qPdYxkA8KfJue62ktATC1VnqHPlcee3g49NSzrfpe0i4zglUZK5tWvL1LkrLLPzmlwXy83A3VwH9fLWz052joOqnzWZPyEA87TAnzRAt0GtHRAgIpW4sWyAeW9JSpbT0NafyQStMAl3g4uzcFqF8Wpog1/HBSlr6wKQ0pH4vE2mZRSCeVlNathNs61aZAvH4op0CKgGtparhLK50gXh0pKUKeda7PBePWc7bbNptUQE280IrKS1d4ENahlJaFg3fOYFvvQihtGznQDw+JGxZ+ycTadmOfU1BiCUZ0VrwUVqKKFsgnlCkpYw8J97t2jGHqnM298iLtNSZh6vqDoe01EXSbnVQzyROWqjfs2gbRZmHm54/C4ikpVj/itykKQt8SUvuuOVbbyLMaKUFqq1PSxulpQrcAIQhkGdfQiktQ8FG8VNWUiAU2p209AnEY6u0LGtf5WIerrveFqHNw9tdaWmDovqnPALxRLDQhr12RFvDVSUio+ykpSktXSAeEZG09AfHPNwXJtVuEUpLFWx8WrZjnTApDVvJPDwqLVsfeZGWZVRathvKSgRQsPVpGUJp+fbb9te4Is86nmU/ZrN4LtM4lQXE52tHIoFTb7L2aVk0fF3GhFZaxkA8jfB5nrL2T5SQI5KWmSDOPCNaC2U2D/chluRoZVFpWR7k4Y9HLruQdUuEjdJShcFuHu6itGynQDzUfSNpWRxs+4ZIWpYXraSqqVb9AvHYRmgFgKVL7a9xRbuYh9ssntu9XUelZfubh7eb0jKPjaw8N8taUWlpApWvSFpmgjbstSPaGu1qHr766o3fXQPxyMizs2zXjjmP58rLbCuE0tKGtGxHtHogHnEy5Zov+bo8ScuQgXjaAYPZPLysC2dXtBJpWYRPyyVL7K9xRZGkZVbm4SYiqh2JPBGtFognC+QRiKdItIPSMu9APHmOO62itLSp39QcKpKWmWCQ9toRLYtQ5uHUwGQ7WIUkLW0XklylZQzE4488nisvB/l5Ky3bEWUxDw8xEXKt2+J1XV3Zt5GotFRjMAfiaTe0s3m4XM+YCqSauOjP0zy8XZSWYp2KSsv653Z8Vg4hlNYB0wZ2u5CWtu/Zt923YiCeVjEPj0rLQY827LUj2hqhlJaVSnNHU2T0cBkmpeWGGzYfo+4fzcP9kUcZTpgw8LE2dmzz762qtAzZJsqCIknL9darf3Yxr5Th2mbF58laZQkAm29e/zxrVv1zJC3zU1puskn98/rr290zgodp0+qft9qquHxwwCEtxfaoaptinybWsVWobbdd/YuLOrMVUJZAPCNGhLtvGZES4B0d7bmxyunLdUrLmTPr301trawbLL7m4b4IQVpuvHH9M7XWC4GpU+ufhfVH5ujtdb82T9Jy3XXrnzfdVH/uyJHNxyJpmQkG4Qw/oqURSmlJXVukeTgA/OUvwNixwOGHA2usoe/ozj47mexvsgmw887AWmsBN97YfF4kLf2RRxnuuy/699gDy8eORd/f/978eyjyz1ZpecIJzefYBOIZORL4/OeBMWOAyy9nZ7PUqFSaibq8SMsrrkjIyh13BD75Sf/0Qigt8yAtL7oImDEjIXKOO65+PJKW+fm0/PGPk4n8JpsA3/2u3T0jePjc54BttkkWlJdeWnRu9FD5tPzDH5L+/ktfatzgqlSStrvaasBvflM//t3vArNnJ/OZ889vSq7voosSMmWzzZI088TxxzfnNwuUxaflGmsAn/1sMg+94opweSgLPvOZpG5+4QvlVW3Z4oorkvf12c8C48aZz9f5tLzySmDSJGCnnYCPf1yfTqsoLYsmLV3Mw7//fWCjjZIN2rPPDpMvGX/9a/Kud94ZOOigbO5BoVXMw7/xjWSzfObMZP6pw+qrA0cdlbTDP/0pORZJy0zQJr12xKCFz8Sjq6vRzLpopeW++wKvvsqbsE6YADz2WNIZVirJrid1XZ67oe1KGOTk07Lvr3/FP/72N+y19dbNv4eaYMvvyKSs+O53gRNPbGwbtubh554LnHNOe9WP4cOBFSvq3/MiLTfeGHjuuXBl6ZqvvEnLGTOAJ5+s93dUPqjvgwF5KS0nTgQef7z5HUSEQ3c3cNttyYKn7HVZVQcOPBD48Ifp/J9xBnDaaY2/jRoF3H+/+pmnTAGeeKKYevf97wPf+17276Is0cMB4IILEvK47PXPBbq62arYf39gv/34z6SLHj57NvD88/Xfyqqm1MFXaVkG8/CxY4GHHgqTHxU23bT+ri++OJt7UGgV8/ARI4B77+WPxeedl6x10nMjaZkJ2qjnjhiU8CEDQistQ3SoYufI8T+kmoCkiKSlP8rgFzQr83DOs8nncEjLdieT5N1zMRBPCH+5OoRMK0QgHvHZs4TY36UwfR8MyIu0BOh3UCTKqvbxQaXSGv2lrh7o8k/9ZnrmIutdHu8iS/NwF1+0rVD/XNGOz2bzTKo1Q2pRw02rrH1v2ZSWLqQlkM8mTZrXPMuoVZSWgP1YLJ4bSctM0Ia9d8SgQjuZh2eBSFr6owwDTlakpQsGeyAeoHkiqlNallmZ1irm4Vy0ax+kQ16BeCIiRHB8WkbwUBbz8IjBA1//5mVt+0W7jAlhHt7OaBWlpS9iv5sJBuEMP6KtUKTSMstAPECYjs5ngLBFuxIGZRhwykRa2vi0bFfYkJZlLosQSstIWhaLPJWWZUNZF86DASqflhH2KEsgnoj2R1ofKPNwl3TKhnYwD88beSk6AT8hTSuRliJivxsMg3CGH9FWaGelZYiOLk+lZbt2zGV4rjIRXxxiqEz5zQLy7nmrkpYhSL5IWhaLvALxRESIiErLcMhSaRkRIUJFWtqOA2X1d1k28/BWUFrmSVq2knl4KJRhDdkmiCNjRGsjJGlpO1FsBfPwPJWW7YoyLCBCLQ6XLvVPgzNxaNXJBReDXWkp9iuRtCwWg1lpGVEc4kIsHPIKxDMY+8eIRqRko29dKOuGha8aL7TSshXUgVn35eIcZbCYh4uIY2UwxBEsorVRJvPw0B1qqykt2xVlGHDKRFpGpaU+EE8rkZauC5eenvrnvALxcFCGtpo3ImkZUQSi0jIc8grEMxj7x4hGpG3Wt46Vte0XPd+KGwPNENfGvb3u6RT9bl0R+91giK0rorURzcP1iKSlP8ow4ISaIL79tn8akbRsH6Wl6wRbnHhGpWWxiIF4IopCWYmLVkMMxBORF9L64FsXytr2ix7PWnEO0ipKyzLPpXWI/W4wtGDriogQ4NOJ+e5uZ61YabVAPO2KMgw4oZx5r7FG/fPUqW5pjBxpPqdVJxdctAtp6Zo3UWkZSctiUbZxK2LwQBxDNt20uHy0OrJUWs6cWf+8ySbh0s0S48fXP3PmGxF8pHOXdiUtfduObUCi0PcvAlmvcTbfvP7Zdd0BlGMt5oJWzXcJMQhn+BFtBZ9dNdms0XewKSNpGZWW/iiKCPn734ExY4CDDwbWWSdMmh/9KLDddsDaawN//Sv/uquuAlZbDfjUp4DJk83nt+LEzQa6QDxyfSlzWbjW7ejTsjwYzIF4yrpwblf86lcJifSVryTfP/c5YOutgUmTgMsuKzZvrYwslZbf/Caw8cbA9OnAz38eLt0ssd9+wC67AGutBVx/fdG5aX385S/J/O2QQ+qk0dixwKc/nZB0f/qTfZpl7Xt9lZbrrgt8/OPJ3Pvvf7e/fjDOQUy4+OKk3s2eDRx3nN216Zjz1a9mkrVcEEnLYIh2QRGtDZ8BSlZLlY20DIGotPRHUQPOXnsBr74alvTq7AT+/e+EzLZJd7/9gNde41/T7hM3ue/Q+bQsc1mEqFtl8mlZ5rLOClFpGZEXPvUp4BOfqNe5IUOAO++0H08iGpFlIJ5Ro4AHH0xIplbpH6tV4LrrkvlrrFf+2Hdfev520UXAhRe6lXFZBREhzMN/+1v3uteKBFXWeZ4xA3j66aRd295LHnNaEa1YJ0qKSFpGtDZ8OjJZLeXbKcZAPO2JIgecLAbqSsUtXZtrWnmCwYFOaTkYzMNFlElpORgnh5G0jMgTcn1zHU8i6sjSPBxI3lEr9o2xXoWDqixdy7isSstQdcY1HZ9AM0Uhj77B5720ej/Qin1vSdEi224REQr47ByXXWkZSctyIA449mj1SYYJ7eLTMoTypkykZasoiUKibJtteaKsC+eICBtkaR4eEZEFytr3Fj2eLV9e7P0jyoe4hgyGODJGtDZ8OgNZLeU7USzjRDOah/ujjO+17CgzURcC7UJatpvScjC21ai0jIhobWSttIyIGCwouu2sWFHs/V0QSbVsEcs3GAbhDD8iYhVCKy1DIyoty4E44NijbG0pNKJ5eB1lIi0HIwZzIJ6IiHZAVFpGtBqi0pJGKyot4xonW8TyDYY4MkYMXgwG0jIqLf0RBxx7lK0thYZNIJ4yl0WIxXGZAvEMxv4uKi0jIlobWQbiiYjIAmUVRETS0h5xjZMtYvkGQxwZIwYvQgfiKSPKOrFoJcQBxx7t2JZEtIvSst18WkbS0gy5Pyt6keeDsqp9IiJsEDcOIloNZe17i55vtaJ5eES2iGvIYIikZcTgxWBQWkbS0h9lnZyVGe0+SLeLT8t2Iy0HY38XlZYREa2N2AYjWg1lnRcXvQkXlZYRMmL5BkMkLSMGL8qutFxzzfpnVxPMCRPqn2fN8svPYEXZ6kVE8dCRljKJVyZSD2icQIl9jCvK9HxlMlXPC7bEczuRlmusUf88ZEhx+YiI8EErt8GIwYmJE+ufZ84sLh8yip6vi+Wy5ZbF5cMG48YVnYP2w4wZ9c9inYjwQiQtI1oPZ52VEI4nn+yXTgil5amnJnk59VS/vFDYd19g552TAeWGG9zSOPJIYIstgPHjgT//OWj2Bg26u4HPfQ4YMQL43e+Kzk1EGaAzD19rLeAjH6kfP+KI/PLFwc03A2PHArvtlvz5ougF9xVXACNHAgcfDEyZUmxe8sJvfpOMX0cdZV/+MmnZyiqAvfdOxsjVVwduvLHo3EREuKHoPjQiwhaf/jSw1VbJ2uLKK4vOTR1FKy0//3lgk00Swcgf/lBsXrjYeWdgzz2BMWOAm24qODNtgiuvTNYCc+YAhx1WdG7aBi3szChi0OLLXwaOOcZ/cApBWn7968BXvpLNQFmtJgux3l739Lu7gXvuSXy9FT2YtzJ+8hPg3HNjGXLRykQIB7pAPABw2WXAhRcm6q8RI/LLFwc77gi8/HK4ulz0gnv//YE33hhcbfMTnwAOOsjtmdupbYYYIyMiikbRfWhEhC2GDAHuuqt8a4ui8zJsGPDAA+UrFx0qFeDqq+M4GhKbbgosWJDwCu005yoYsXZGtCZCdKyyWsrVv1vWnbxv+pVKHIhCIJYhH+0+SOvMw1OMHZtPXlwQsi6XYcE9GNum6zO3Y9scjO8/on0Q629EK6KMa4sQfrp9UcZy4aAV81xmxPIMjhK07oiIglD2QDwREa2KdiRGROjMwwcbykBaRkRERLQqYh8aERERERGhRSQtIwYvyh6IJyKiVdHupCVHaTlYEHeTIyIiItwRScuIiIiIiAgtImkZMXgRlZYREdmg3UnLqLSsIy64IyIiItzR7uNlRERERESEJyJpGTF4EUnLiIhs0O6LMJmkHDKkmHyUAZG0jIiIiIiIiIiIiIjICJG0jBi8iObhERHZoN1JS/n52v15dYikZURERERERERERERERoikZcTgRVRaRkRkg8FM4g02RNIyIiIiIiIiIiIiIiIjRNIyYvAikpZhMW5c/XM1di2DGiNHFp2DiLyw2mpF5yAiIiIiIiIiIiIiok0RmYWIwQvZPDwSbX7Yay/g3e9OSIybby46NxF54y9/AUaMAA44ANhgg6Jzkz1OOy3xZXniiUXnJH9cdVXyrj/wgcHxrtsNX/pS4pf1Jz8pOicREREA8J3vJOPJqacWnZOIiNbG976XjG+nnFJ0TiIiIgKis+gMREQUhqFDG79HpaUfqlXgppuAnp7BHZhksGLffYHXXx887/5rX0vIn8HyvCL2229wvet2w9ln10n3iIiI4nHiicDxx8c2GRHhi29+EzjuuNiWIiLaDFFaFjF4Ifvdi6SlPyqVOFEYzBhs736wPa+Iwfzs7YD4/iIiyoXYJiMiwiC2pYiItkMkLSMiUkTSMiIiIiIiIiIiIiIiIiIiIqIUiKRlRESKSFpGRERERERERERERERERERElAKRtIyISBFJy4iIiIiIiIiIiIiIiIiIiIhSoKVJy/PPPx/Tp0/H0KFDsc022+DOO+/Unn/55Zdjgw02wNChQzF79mzMmzcvp5xGtAQiaRkRERERERERERERERERERFRCrQsaXnZZZfh2GOPxYknnoh7770Xm222GfbYYw+8/PLL5Pm33norDjroIBx++OH4z3/+g/333x/7778/HnrooZxzHlFayIF5IiIiIiIiIiIiIiIiIiIiIiIKQcuSlmeffTaOOOIIHHroodhoo41w4YUXYvjw4fjlL39Jnv+jH/0Ie+65J4477jhsuOGGOPnkk7HlllvivPPOyznnEaXFypVF5yAiIiIiIiIiIiIiIiIiIiIiAkBn0RlwwcqVK3HPPffg+OOPHzhWrVax66674rbbbiOvue2223Dsscc2HNtjjz1w5ZVXkuevWLECK1asGPi+ePFiAMDrr7+Onp4ezycoH3p6erBs2TK89tpr6OrqKjo7uUF80p633gJee62wvEQMbgzWNhgRUSbEdhgRUTxiO4yIKBaxDUZEFI92b4dLliwBANRqNeO5LUlavvrqq+jr68P48eMbjo8fPx6PPfYYec3ChQvJ8xcuXEief+qpp+K73/1u0/EZM2Y45jqi9Jgzp+gcRERERERERERERERERERERLQ9lixZgtVWW017TkuSlnng+OOPb1Bm9vf34/XXX8e4ceNQaUPfh2+99RamTJmCF154AaNHjy46OxERgw6xDUZEFI/YDiMiikdshxERxSK2wYiI4tHu7bBWq2HJkiWYOHGi8dyWJC3XWGMNdHR0YNGiRQ3HFy1ahLXXXpu8Zu2117Y6v7u7G93d3Q3HxowZ457pFsHo0aPbslFERLQKYhuMiCgesR1GRBSP2A4jIopFbIMREcWjnduhSWGZoiUD8QwZMgRbbbUVrr/++oFj/f39uP7667HddtuR12y33XYN5wPA/PnzledHREREREREREREREREREREREREFIOWVFoCwLHHHotDDjkEW2+9NebOnYtzzjkHS5cuxaGHHgoA+OQnP4lJkybh1FNPBQAcc8wx2GmnnfCDH/wAe++9N/7whz/g7rvvxs9+9rMiHyMiIiIiIiIiIiIiIiIiIiIiIiJCQsuSlgceeCBeeeUVnHDCCVi4cCE233xzXHPNNQPBdp5//nlUq3Uh6fbbb4/f//73+Na3voVvfOMbWG+99XDllVdik002KeoRSoXu7m6ceOKJTSbxERER+SC2wYiI4hHbYURE8YjtMCKiWMQ2GBFRPGI7rKNS48QYj4iIiIiIiIiIiIiIiIiIiIiIiIjICS3p0zIiIiIiIiIiIiIiIiIiIiIiIiKifRFJy4iIiIiIiIiIiIiIiIiIiIiIiIhSIZKWEREREREREREREREREREREREREaVCJC0jIiIiIiIiIiIiIiIiIiIiIiIiSoVIWkbg/PPPx/Tp0zF06FBss802uPPOO4vOUkREW+DUU0/FnDlzMGrUKKy11lrYf//98fjjjzecs3z5chx11FEYN24cRo4ciQ9+8INYtGhRwznPP/889t57bwwfPhxrrbUWjjvuOPT29ub5KBERbYHTTjsNlUoFX/ziFweOxTYYEZE9FixYgI9//OMYN24chg0bhtmzZ+Puu+8e+L1Wq+GEE07AhAkTMGzYMOy666544oknGtJ4/fXXcfDBB2P06NEYM2YMDj/8cLz99tt5P0pEREuir68P3/72tzFjxgwMGzYM66yzDk4++WSIMXljO4yICItbbrkF++67LyZOnIhKpYIrr7yy4fdQbe6BBx7AjjvuiKFDh2LKlCk444wzsn60XBFJy0GOyy67DMceeyxOPPFE3Hvvvdhss82wxx574OWXXy46axERLY+bb74ZRx11FG6//XbMnz8fPT092H333bF06dKBc770pS/hr3/9Ky6//HLcfPPN+N///ocPfOADA7/39fVh7733xsqVK3Hrrbfi17/+NS6++GKccMIJRTxSRETL4q677sJPf/pTbLrppg3HYxuMiMgWb7zxBnbYYQd0dXXh6quvxiOPPIIf/OAHGDt27MA5Z5xxBs4991xceOGFuOOOOzBixAjsscceWL58+cA5Bx98MB5++GHMnz8ff/vb33DLLbfgyCOPLOKRIiJaDqeffjouuOACnHfeeXj00Udx+umn44wzzsCPf/zjgXNiO4yICIulS5dis802w/nnn0/+HqLNvfXWW9h9990xbdo03HPPPTjzzDPxne98Bz/72c8yf77cUIsY1Jg7d27tqKOOGvje19dXmzhxYu3UU08tMFcREe2Jl19+uQagdvPNN9dqtVrtzTffrHV1ddUuv/zygXMeffTRGoDabbfdVqvVarV58+bVqtVqbeHChQPnXHDBBbXRo0fXVqxYke8DRES0KJYsWVJbb731avPnz6/ttNNOtWOOOaZWq8U2GBGRB772ta/V3vWudyl/7+/vr6299tq1M888c+DYm2++Wevu7q5deumltVqtVnvkkUdqAGp33XXXwDlXX311rVKp1BYsWJBd5iMi2gR777137bDDDms49oEPfKB28MEH12q12A4jIrIGgNoVV1wx8D1Um/vJT35SGzt2bMOc9Gtf+1pt/fXXz/iJ8kNUWg5irFy5Evfccw923XXXgWPVahW77rorbrvttgJzFhHRnli8eDEAYPXVVwcA3HPPPejp6WlogxtssAGmTp060AZvu+02zJ49G+PHjx84Z4899sBbb72Fhx9+OMfcR0S0Lo466ijsvffeDW0NiG0wIiIP/OUvf8HWW2+ND3/4w1hrrbWwxRZb4KKLLhr4/ZlnnsHChQsb2uFqq62GbbbZpqEdjhkzBltvvfXAObvuuiuq1SruuOOO/B4mIqJFsf322+P666/Hf//7XwDA/fffj3/961943/veByC2w4iIvBGqzd12221497vfjSFDhgycs8cee+Dxxx/HG2+8kdPTZIvOojMQURxeffVV9PX1NSzEAGD8+PF47LHHCspVRER7or+/H1/84hexww47YJNNNgEALFy48P+3d/dBUV13H8C/K8vu8qaowPIWEJqqUTEaNEqxJYi1aCbVCFIVYbHjS4yMgq0aTImmxJopSa1gTLSJmgaMowFrzKAN8qYmiLIBAlq1rWhqg1KDREDDi3ueP3y42XVfAmSBNX4/Mztzveece87de88IP84LFAoFXF1dDfKq1Wpcu3ZNymOqj3amEZFl+/btw2effYYzZ84YpbEPEvW+S5cu4c0338Tq1auxfv16nDlzBitXroRCoYBGo5H6kal+pt8PPTw8DNLlcjmGDBnCfkjUBS+88AJu3bqFkSNHws7ODnfv3sWmTZsQGxsLAOyHRH3MWn3u2rVrCAgIMLpGZ5r+UiwPKgYtiYj6wIoVK1BTU4OTJ0/2d1OIHhr/+c9/sGrVKuTn50OlUvV3c4geSjqdDhMmTMAf/vAHAMD48eNRU1ODt956CxqNpp9bR/Rw2L9/P7Kzs7F3716MHj0alZWVSEpKgre3N/shEdk0Tg9/iLm5ucHOzs5ol9Tr16/D09Ozn1pF9MOTmJiIjz76CEVFRfD19ZXOe3p6oq2tDY2NjQb59fugp6enyT7amUZE5mm1WtTX1+OJJ56AXC6HXC5HSUkJMjIyIJfLoVar2QeJepmXlxdGjRplcO6xxx7DF198AeDbfmTp51FPT0+jTSI7OjrQ0NDAfkjUBWvWrMELL7yAefPmISgoCHFxcUhOTsbmzZsBsB8S9TVr9bmH4edUBi0fYgqFAsHBwSgoKJDO6XQ6FBQUICQkpB9bRvTDIIRAYmIiDh48iMLCQqOh+8HBwbC3tzfogxcuXMAXX3wh9cGQkBBUV1cb/IeVn5+PgQMHGv0SSESGIiIiUF1djcrKSukzYcIExMbGSsfsg0S9KzQ0FBcuXDA4d/HiRfj7+wMAAgIC4OnpadAPb926hbKyMoN+2NjYCK1WK+UpLCyETqfDpEmT+uAuiB5st2/fxoABhr/629nZQafTAWA/JOpr1upzISEhOH78ONrb26U8+fn5GDFixA9iajgA7h7+sNu3b59QKpViz5494ty5c2Lp0qXC1dXVYJdUIuqZ5cuXi0GDBoni4mJRV1cnfW7fvi3lee6554Sfn58oLCwU5eXlIiQkRISEhEjpHR0dYsyYMWL69OmisrJSHD16VLi7u4uUlJT+uCWiB57+7uFCsA8S9bbTp08LuVwuNm3aJP75z3+K7Oxs4ejoKLKysqQ8r776qnB1dRWHDh0Sn3/+uZg1a5YICAgQd+7ckfJERkaK8ePHi7KyMnHy5Enx4x//WMyfP78/bonogaPRaISPj4/46KOPRG1trcjNzRVubm5i7dq1Uh72QyLrampqEhUVFaKiokIAEH/6059ERUWFuHLlihDCOn2usbFRqNVqERcXJ2pqasS+ffuEo6Oj2LFjR5/fb29h0JJEZmam8PPzEwqFQjz55JPi1KlT/d0koh8EACY/u3fvlvLcuXNHPP/882Lw4MHC0dFRPPvss6Kurs7gOpcvXxYzZswQDg4Ows3NTfzmN78R7e3tfXw3RD8M9wct2QeJet/hw4fFmDFjhFKpFCNHjhQ7d+40SNfpdCI1NVWo1WqhVCpFRESEuHDhgkGer776SsyfP184OzuLgQMHikWLFommpqa+vA2iB9atW7fEqlWrhJ+fn1CpVCIwMFC8+OKLorW1VcrDfkhkXUVFRSZ/F9RoNEII6/W5qqoqMWXKFKFUKoWPj4949dVX++oW+4RMCCH6Z4wnERERERERERERkTGuaUlEREREREREREQ2hUFLIiIiIiIiIiIisikMWhIREREREREREZFNYdCSiIiIiIiIiIiIbAqDlkRERERERERERGRTGLQkIiIiIiIiIiIim8KgJREREREREREREdkUBi2JiIiIiIiIiIjIpjBoSURERET0ABo2bBhkMhkSEhL6uylEREREVsegJREREVE3LVu2DDKZDDKZDIWFhd0q+/HHH0tlV61a1UstJCIiIiJ6sDFoSURERNRN8fHx0nFWVla3yr733nsmr9NfiouLpSBqcXFxfzeHiIiIiAgAg5ZERERE3RYaGoof/ehHAICcnBzcuXOnS+VaWlpw8OBBAMDo0aMRHBzca20kIiIiInqQMWhJRERE1ANxcXEAgFu3buHQoUNdKpObm4uWlhaD8kREREREZIxBSyIiIqIeiIuLg0wmA9D1KeKdU8MHDBiAhQsX9lrbiIiIiIgedAxaEhEREfVAYGAgQkNDAQB///vfUV9fbzH/l19+iYKCAgDA1KlT4ePjY5Tnb3/7G+bOnQs/Pz+oVCq4urpiwoQJePnll3Hz5s0utSsvLw8LFy5EYGAgnJycoFKpEBAQgKioKOzZswe3b98GAFy+fBkymQzh4eFS2fDwcGl9y87Pnj17jOpoa2vD9u3bER4eDnd3dygUCnh6emLmzJnIysqCTqcz276EhATIZDIMGzYMAFBXV4d169Zh9OjRcHFx6fbamqbW5Ny/fz8iIiLg7u4OBwcHjBgxAmvXrkVDQ4PZ6zz11FOQyWR46qmnLNa3ceNGqT5TOtM2btwIACgqKsLs2bPh7e0NBwcHPPbYY0hLS5NG3HbKy8vDzJkzpXyjRo3C5s2b0dbW1uXv4syZM5g/fz4eeeQRqFQqPPLII1i0aBHOnz/fpfL/+te/kJycjKCgIAwaNAgODg4IDAxEQkICysvLzZa7/xnodDrs2rUL4eHhUKvVGDBgAHc4JyIiou4TRERERNQjO3fuFAAEALF161aLedPT06W8f/3rXw3SGhoaxNSpU6V0Ux8PDw9RWlpq9vo3btwQERERFq8BQOzevVsIIURtbe135tXP36m2tlaMHDnSYpkpU6aIr776ymQ7NRqNACD8/f1FaWmpcHNzMypfVFT0nd99p6KiIqlcQUGBWLhwodl2Pfroo6Kurs7kdcLCwgQAERYWZrG+DRs2SNczpTNtw4YNYvPmzUImk5lsy09+8hPR3NwsdDqdWLlypdk2R0ZGio6ODpN1+fv7CwBCo9GId955R8jlcpPXUCqVYv/+/RbvKz09Xdjb25tth0wmE6mpqSbL6j+DI0eOiGnTphmV12g0FusnIiIiuh9HWhIRERH1UExMDFQqFQDDXcFN6Ux3dnbGnDlzpPOtra2YNm0aCgsLYWdnh7i4OLz//vs4deoUTpw4gU2bNmHo0KGor6/HzJkzceXKFaNr3759G+Hh4dJIzuDgYOzYsQOffPIJysvLcfDgQSQnJ8Pb21sq4+Pjg+rqauzatUs6t2vXLlRXVxt8Zs+eLaU3NzcjIiJCGrk3e/ZsfPjhhygvL8eBAwcQFhYGADh58iSeeeYZ3L171+z30dzcjKioKHzzzTd48cUXUVxcjNOnT+Odd96Bl5eXxe/SnNTUVGRlZWH27NnIzc2FVqtFXl4enn76aQDfjiTsC0eOHEFKSgomT56MvXv3ory8HEePHsWMGTMAAJ9++ik2b96MLVu2ICMjAzNmzEBOTg60Wi0OHTqEyZMnAwCOHj2Kv/zlLxbrqqysxHPPPQcPDw9kZmairKwMJSUlWLduHZRKJVpbWxEbG2t2tGR6ejrWrFmD9vZ2jB07Fm+++SaOHTuG8vJyZGdnIyQkBEIIpKWlISMjw2Jb1q1bh2PHjuGXv/ylwTPovG8iIiKiLuvvqCkRERHRgywmJkYaTXb+/HmTeaqqqqQ88fHxBmnr168XAISrq6soLy83Wf7y5cvCy8tLABALFiwwSk9OTpauv2LFCqHT6Uxep7W1VVy7ds3gnP4oue8a4fjb3/5Wyvu73/3OKF2n04nY2Fgpz/bt243ydI60BCCcnZ1FZWWlxTq/i377AYhXXnnFZLumT58uAAi5XC7q6+uN8lh7pCUAERUVZTRKsqOjQ0yePFkAEC4uLkKlUomkpCSj67S0tEgjKceOHWuyrs50/P/IVVOjSAsLC6URmBMnTjRKP3v2rDTCcsOGDSbfnbt370ojWJ2dnUVDQ4NB+v3PwNS7QURERNRdHGlJRERE9D3Ex8dLx+ZGW+qf18/f3NyMN954AwCQlpaG4OBgk+X9/f2RmpoKADhw4IDBeoiNjY3YsWMHgHsjLLdu3Wp2vUWFQgG1Wt2V2zLS2tqKt99+GwAwevRoac1GfTKZDNu3b8fQoUMBANu2bbN4zbVr1+Lxxx/vUXtMCQ4Oxvr16022a/Xq1QCAjo4OlJaWWq1OcxwdHbFz507Y2dkZnLezs8PSpUsBAE1NTXB3d8cf//hHk+U1Gg0A4PPPP8fXX39tsb7XX38dnp6eRufDw8OxZMkSAPfWvLx/tOXrr7+O9vZ2TJgwARs2bDD57gwYMACZmZlQKpVobm7GBx98YLYdw4cPN/luEBEREXUXg5ZERERE38MvfvELKRCYnZ0NIYRBuk6nw969ewEAvr6+BhvflJSUSMGo6Ohoi/X87Gc/AwC0t7dDq9VK5wsLC6XNdVauXGkUJLMWrVaLxsZGAPc20zFXz8CBAxETEwMAOHfuHOrq6sxeMzY21qptXLBggdmArX5A+NKlS1at15Sf//znGDJkiMk0/UDtnDlzYG9v/535amtrzdY1ePBgzJo1y2z6r3/9a+n42LFjBmmHDx8GAERFRZn97gDA1dUVQUFBAGAx6PurX/2q195BIiIiergwaElERET0PcjlcixYsADAvR25T548aZBeUFCAL7/8EsC9IN2AAd/++KU/6s3Ly8to5279z5gxY6S8165dk44rKiqk45/+9KfWvTk9NTU10vGkSZMs5tVP1y+nz9nZGYGBgdZp3P8bOXKk2TT9AGJTU5NV6zVl+PDhZtNcXV27nc9Sm8ePHw+5XG42fdy4cVAoFACA6upq6fyVK1fwv//9DwCQkpJi8f2TyWTS+6r//t1v7NixZtOIiIiIuoNBSyIiIqLvydIUcXNTwwGgvr6+R/V1jqwEgBs3bkjHPd3ApisaGhqkYw8PD4t59acp65fTpx+QsxZHR0ezafrBYksbBPV1W6zR5u96HnK5XAra6j8Pa7x/9xs8eHCPrklERER0P/N/kiUiIiKiLhk3bhyCgoJQXV2NAwcOSOv/tbS0IDc3F8C96cmjRo0yKKcfiPrss8/MThO+n6+vr/Ua3wOWphF3FacQW09Pn4f++/fSSy9h7ty5XSrn5ORkNo3PlYiIiKyFQUsiIiIiK4iPj8eaNWvQ2NiIw4cPIzo6GgcPHpQ2zbl/lCUAacMaAHB3d+9RMNLNzU06rqurQ0BAQA9a/930p1dfv37d4rRm/enD5tZ1tDWdoxp1Op3FfPqbINmK69evW0zv6OiQRljqPw/998/e3t5gCQIiIiKi/sbp4URERERWEBsbK40yy8rKAvDt1HB7e3vMnz/fqMz48eOl408++aRH9T7xxBPS8fHjx7tdvquj9PQDWmVlZRbznj592mQ5W+bi4gIAuHnzpsV8Fy9e7IvmdEtlZSU6OjrMpldVVaGtrQ2A4fMIDAzEoEGDAPT8/SMiIiLqLQxaEhEREVmBl5cXpk2bBgDIy8tDTU0NCgoKAACRkZFwd3c3KjNt2jRpTcOMjAyjnce7Ijw8XJqum5mZ2e31GlUqlXTc2tpqNl9wcLC0DuW7775rdkRiU1MT9u/fDwAYNWpUr66zaU2dI1QvXrxodtObGzduID8/vy+b1SUNDQ3SLuCm7Nq1SzrufEeBe1O5Z86cCQD4+OOP8Y9//KP3GklERETUTQxaEhEREVlJ5xTw9vZ2zJs3TwogmpoaDtzbjCYxMREA8OmnnyI5Odni9OTr16/j7bffNrrGsmXLAABarRZJSUlmg5/t7e1Gm6/oBxX//e9/m61bqVRi8eLFAO7tCJ6WlmaURwiBxMREaXOgznt7EISFhQEA2trakJmZaZTe3t6OxYsX486dO33dtC5ZvXq1yWniJSUl2LlzJ4B7geeJEycapKekpMDOzg46nQ7R0dG4evWq2Tru3r2L7Oxsi3mIiIiIrIVrWhIRERFZybPPPgsXFxc0NTXh7NmzAO7tpvzMM8+YLfP73/8eJSUlKCsrw9atW1FcXIwlS5Zg3LhxcHJyws2bN3H27FkcO3YMR44cQVBQkBQ87JSWlob8/HxUV1dj27ZtKC0txbJlyxAUFASFQoGrV6/ixIkTeP/99/HKK68gISFBKuvn5wdfX19cvXoVr732Gnx9fTFixAhpqrtarZamTr/00kvIzc3FpUuXsHHjRlRXV2PRokXw8vJCbW0ttm3bhuLiYgBASEgIli5dasVvt3c9/fTT8Pf3x5UrV5CamoobN25gzpw5UKlUOHv2LDIyMlBRUYHJkyfj1KlT/d1cA48//jjOnTuH4OBgpKSk4Mknn0Rrayvy8vKwZcsWdHR0QC6X44033jAqGxQUhNdeew3Jyck4d+4cxowZg6VLl2Lq1KlQq9X45ptvcPnyZZSWluKDDz5AXV0dqqur+30zKCIiIvrhY9CSiIiIyEocHBwQHR2N3bt3S+diYmKgVCrNllEqlcjPz0dCQgJyc3NRVVVlcYTiwIEDjc45OjqisLAQUVFROH78OLRabbcChuvXr8fzzz+P2tpazJo1yyBt9+7dUpDTxcUFBQUFmDFjBs6fP4+cnBzk5OQYXS80NBQffvjhA7WTtEKhQFZWFiIjI9HS0oItW7Zgy5YtUrqdnR3+/Oc/o6GhweaCluPGjUNiYiKWL19u8t1RKBR49913MWnSJJPlk5KS4OTkhKSkJHz99ddIT09Henq6ybwKhcJgSQEiIiKi3sLp4URERERWpNFoDP5tbmq4PhcXF+Tk5ODEiRNYvHgxRowYARcXF8jlcgwZMgQTJ07EihUrkJeXZ3ZNRTc3N5SUlCA3NxfR0dHw9fWFUqmESqVCYGAg5s6di+zsbJMbAi1fvhw5OTmYPn06PDw8IJeb/7v2sGHDUFVVhW3btiEsLAxDhw6Fvb091Go1IiMj8d577+H48eMPzK7h+qZMmQKtVou4uDh4e3vD3t4eXl5eUjB45cqV/d1EsxYvXowTJ04gJiYG3t7eUCgU8PHxQXx8PCoqKjBv3jyL5ZcsWYJLly7h5ZdfRmhoKNzc3CCXy+Hk5IThw4cjKioKb731Fv773//i0Ucf7aO7IiIiooeZTPRkxXciIiIiIiIiIiKiXsKRlkRERERERERERGRTGLQkIiIiIiIiIiIim8KgJREREREREREREdkUBi2JiIiIiIiIiIjIpjBoSURERERERERERDaFQUsiIiIiIiIiIiKyKQxaEhERERERERERkU1h0JKIiIiIiIiIiIhsCoOWREREREREREREZFMYtCQiIiIiIiIiIiKbwqAlERERERERERER2RQGLYmIiIiIiIiIiMimMGhJRERERERERERENoVBSyIiIiIiIiIiIrIp/we2oE98QyozSAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop = 0.18\n", + "IREth2_4 = 0.41\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# AE1\n", + "print('AE1:')\n", + "MSE_stop_AE1 = IRE1[-1]\n", + "print('MSE_stop =', MSE_stop_AE1)\n", + "print('IREth1 =', IREth1)\n", + "lib.ire_plot('training', IRE1, IREth1, 'AE1')\n", + "\n", + "# AE2_2\n", + "print('\\nAE2_2:')\n", + "MSE_stop_AE2_2 = IRE2_2[-1]\n", + "print('MSE_stop =', MSE_stop_AE2_2)\n", + "print('IREth2_2 =', IREth2_2)\n", + "lib.ire_plot('training', IRE2_2, IREth2_2, 'AE2_2')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "4ghKLruQzVzn", + "outputId": "826b9b86-fd9e-4c63-d0fb-20c0844aa42e" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "AE1:\n", + "MSE_stop = 3.46\n", + "IREth1 = 3.88\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAALXCAYAAACdJe4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1wFJREFUeJzs3Xd4VMX6wPF3E0JCAqFKb4oICnbFgmAXwYaKBb0KXL12xeu14U9FvXbF3it6Feu1V7CgqCg2LIiIKEiHAAmhhZDs74+5Jztnds7Zs+Vkk/D9PA8Pm2TL2VPmzLzzzkwkGo1GBQAAAAAAAABCkJPtDQAAAAAAAADQcBGABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAHXSzJkz5ZxzzpHttttOmjVrJpFIpObf3Llzs715m6Xx48fXHIORI0fW6mfrxx8AAAD1CwFIAADqkP32268myHLNNdd4Pk8Pxpj/cnNzpUWLFtKzZ0857rjj5LHHHpM1a9aktA3J/stUUOqNN96QnXfeWR588EGZOXNmUtsPAB988IGrbNp2222Tfo9rrrkm5bKwe/fuvu+9aNEief311+XKK6+UQw89VFq3bk0nCwCgQWuU7Q0AAACZVV1dLWVlZVJWVia///67vPzyyzJmzBh55JFH5Oijj8725iW0Zs0aGTlypFRUVIiISIcOHWSfffaRLbbYoib7rbi4OJubmJZrrrlGrr32WhERGTt2rG+gGairunfvLvPmzRMRkT///DNhwK22PfXUU66ff/31V5k2bZr069cvS1sU07FjR1m8eHG2NwMAgFpFABIAgHpu6NCh0qlTp5qfq6urpaSkRKZOnSoLFiwQEZGSkhIZNmyYvPzyy0kFIXffffekGux77rln8A338NZbb8mqVatERKRPnz7y9ddfS5MmTdJ+XwCbh/LycnnllVfifv/UU0+lHIDs2LFjUmVn69atPf9G8BEAsDkiAAkAQD03evRo2W+//eJ+X11dLU899ZScffbZUlFRIdXV1XL22WfLoEGDpLCwMNB7DxkypNYz9L777ruax8OHDyf4WIeMHDmy1ud+dESj0ax8Luqfl19+WdatWyciIk2aNJH169eLiMjzzz8vd955pzRu3Djp9+zZs6fcd999GdvGgoIC2WmnnWT33XeX3XffXdq1ayeDBg3K2PsDAFDXMAckAAANVE5OjowaNUpuvfXWmt8tXbpUXnvttextVABO9qOIGn4NAMnQh19fdtll0q5dOxERWblypbz55pvZ2qwa3333nZSXl8vUqVPlnnvukVNOOUW22WabbG8WAAChIgAJAEADd+aZZ0pBQUHNz59++mkWtyaxysrKmsc5OVRVAAQ3d+7cmjIuEonIiBEjZPjw4TV/N+eGzIadd95ZGjViIBoAYPNCrR4AgAYuPz/ftQLsokWLsrg1dvpqs3qAYNSoUXGry44fP976HmvWrJF77rlHBg0aJJ07d5aCggJp2bKl9O3bV8477zz56quvAm2L/lmOH374QUaPHi19+/aVVq1aSSQSkaFDhyb1HZ3VxZ0FaERErr322kCriY8cOTLu+5eWlsrdd98tAwcOlE6dOkmjRo0kEolIaWmp67XLli2TJ598UkaMGCE777yztGrVSvLy8qRFixbSu3dvGTVqlLz//vuBvsP48eMTrng+efLkmufoUwN89NFHcuKJJ8pWW20lBQUF0rp1axk4cKDcd999rqCzF9txMXXv3j1uFeEFCxbIVVddJTvuuKO0aNFCioqKpHfv3nL++efXLKIS1KRJk+TEE0+Url27SkFBgXTo0EEGDBgg999/v6xdu1ZE3OdypqYvKCkpkdtvv10OOugg6dixoxQUFNQcwz59+siwYcPkjjvukD///DPQ+3344Ydy1llnSZ8+faRVq1aSn58vHTt2lEGDBsl9991XM2TZNHfu3Jrvpu+7Lbfc0noeT548ORNfPylPP/10zXD9ffbZR7p37y6nnHJKzd/fffddWbZsWa1vFwAAmzu63gAA2Azo8yhu2LAhi1sSjrfeekv+8Y9/yJIlS1y/r6iokNLSUpkxY4bcf//9ctJJJ8mjjz4aeA5MERVQuv7666WqqirTm52yzz//XIYPHy7z58/3fd4999wjF110kXXbnZXSZ82aJePHj5cDDjhAXnzxRd/FM1KxceNGOe+88+TRRx91/b6iokKmTJkiU6ZMkSeffFLef/99adOmTUY/+7XXXpORI0dKWVmZ6/ezZs2SWbNmyeOPPy4vvfSSHHbYYQm/w2mnnSbPPPOM6/dLliyRJUuWyGeffSb333+/vPrqqxndfhGR119/XUaNGuWamsDhHMNffvlF/vvf/8odd9xRs/CUzfz58+XUU0+1BgYXL14sixcvlokTJ8pNN90kzz//vAwYMCCTX6VWPP300zWPncDjLrvsIn369JEZM2bIpk2bZMKECXLhhRdmaQsBANg8EYAEAGAzoGc9OvOh1SX9+vWTc889V0RUdtavv/4qIiIHHnig9O7d2/VcPZtTROSFF16Qk08+uSbIlpubK/vss49svfXWsmbNGpkyZUrN958wYYL8+eef8tFHH7mGpXu57bbbajIWe/ToIf369ZPCwkKZO3eu5OXlJfUdjz76aOnbt69MmzZNvv76axHxXmXcbzXx33//XS688EIpKyuTZs2aycCBA6Vjx46yatWquOH1ixYtqtkvW221lWy77bayxRZbSEFBgZSWlspPP/0kM2bMEBGVoXjQQQfJl19+Kfn5+Ul9Nz9nnHGGPPXUU5KTkyN77LGH9O7dW6qrq+XLL7+UWbNmiYiaE+/UU0+Vd955J2Of+8EHH8hZZ50lVVVV0rVrV9lrr72kuLhY/vzzT5k8ebJs2rRJ1q9fL8cff7z8/PPPsuWWW3q+1/Dhw12rKrdq1Ur2228/adWqlcyfP18++eQTmTlzphx22GFy5JFHZuw7fPPNNzJs2DDZtGmTiKiOhD333FO6d+8u+fn5snr1apkzZ4789NNPNYuueJk5c6YceOCBNSswRyIR2WWXXWS77baTJk2ayMKFC+XTTz+V8vJyWbRokRx88MHy7rvvyv7771/zHsXFxTXX6dNPPy3l5eUiInLqqadKs2bN4j6zU6dOGdkPQX322WcyZ84cEVGZ38cdd1zN30455RS5/PLLRUQNwyYACQBALYsCAIA6Y999942KSFREomPHjvV8nvMcEYl+/PHHvu85a9Ys1/Pvu+++jGxDWEaMGFHz+U8++aTvc3///fdo06ZNa57fr1+/6OzZs13Pqaqqio4bNy6ak5NT87zzzz/f8z31fdWoUaNo8+bNo6+++mrc8zZs2JDK14uOHTs26f2r75NGjRpFRSR67rnnRsvLy13P27hxY7Sqqqrm58cffzx67733RhcsWOD53j/88EN0t912q3n/f//7357PffLJJ2ueN2LECOtzPv7445rn5OfnR0Ukuvvuu0dnzpzpel51dXX0rrvucu3vTz75xPOz9ed56datm+uzi4qKov/5z3+i1dXVruf9/PPP0U6dOtU8d9SoUZ7v+dhjj7k++1//+lfcsV+6dGl08ODBru+cietn6NChNe917LHHRleuXGl93vr166Nvv/129Mwzz7T+fc2aNdFtt9225r0GDx4c/f333+OeV1ZWFj377LNrntehQ4doaWmp9T31ff3nn3+m/B0z6fTTT6/ZpmHDhrn+Nn/+fFcZ8MMPPyR8P/1a3XfffUPaauXPP/90nWd1ZZ8CAJApZEACANCAbdq0SUaPHl3zc3FxsZx44omBX//OO+9ISUlJ4Odfd9110qpVq6S2MR3XXXedrFmzRkREtt56a5k4caI0b97c9ZycnBy56KKLJBKJyEUXXSQiIvfff7/885//9M16ExGprq6WN954QwYOHBj3t0xmCSZj06ZNcvrpp8t9990X9zczK/Pvf/97wvfbYYcd5IMPPpDevXvLkiVL5IEHHpAxY8ZIbm5u2ttaUVEhPXv2lI8++kiaNm3q+lskEpHRo0fLZ599Ji+//LKIiDz33HPWfZ2KjRs3ymuvvSaHHnpo3N/69OkjDz/8sBx++OEiIvLSSy/JI488ErcwSFVVlYwdO7bm5zPPPFNuv/32uPdr27atvPbaa7LPPvvUZLdmwpQpU0REnWvjx4+P24eOgoICGTJkiAwZMsT69zvuuENmzpwpIioT9+WXX7Yu8FRcXCwPPPCArFu3Tp566ilZvHixPPTQQ3LZZZdl6BuFZ/369fLiiy/W/KzP+ygi0rlzZ9lvv/3ko48+EhGVBTlu3LjA7z979mw577zzAj//lFNOkT322CPw8wEAaOgIQAIA0MBUV1dLSUmJfP7553LzzTfLtGnTRESkUaNG8sQTTyQ1x9/XX3+dVEDl4osvrrUAZGlpqbzwwgs1P996661xwUfd6NGj5fHHH5cZM2ZIdXW1PPLII3LTTTf5fsawYcMyFhDLlIKCArn11lsz+p7NmzeXo48+Wh588EFZvHix/PLLL7L99ttn5L1vvvlmz8CZiAqSOgFI51zNhMMPP9wafHQMGTJE2rdvL0uWLJE1a9bIzJkz477ze++9JwsXLhQRkaKiIrn55ps9369x48Zy++23y7777puZLyAiq1evFhGRwsJC333op7KysiZYnZ+fLw899FDC1eVvvPHGmsVcnn322XoRgHzttddq9lfr1q1l8ODBcc855ZRTagKQzz77rNxyyy2BV6NetGiR3H///YG3Z7fddiMACQCAhgAkAAD1nD5Hm5devXrJuHHjEi62UZ988cUXUlFRISIibdq0kSOOOML3+Tk5OfL3v/9d/vWvf4mIyMcff5zwM5LJFq0thxxyiLRs2TLp1y1btky+/PJLmTlzpqxatUrWrl1bs1qwiJpv0DF9+vSMBCALCgoSHpedd9655rGzcnUm6PP/2UQiEdlxxx1rFi6aO3du3HfWF2s57LDDpEWLFr7vOXDgQOnatav89ddfKW2zqUuXLvLHH3/IqlWr5IUXXpATTjgh6ff45ptvalZ9PvDAA6Vt27YJX9OxY0fp3bu3zJw5U37++WcpKyvzDe7XBU899VTN4xNPPNE6R+uwYcPk3HPPlXXr1snSpUvl/fffb1BlIgAAdRkBSAAAGrh27drJ008/bV3sJJGxY8fKNddck/mNyoDvv/++5nG/fv0CZTL179/f9fpoNCqRSMTz+bvuumt6GxmCZLfpl19+kcsuu0zefffdwCt5JzPs3k+vXr0SLtajZ+Q6GWyZECSAmuizp0+fXvM4aDZbv379MhaAPP7442uyLocPH14ThNx///0DBRJFRKZOnVrzeMGCBYGHEZeWloqISDQalQULFtTpAOSiRYvkgw8+qPnZHH7taNq0qQwdOlQmTJggIipoGTQAue+++1pXDwcAAMEQgAQAoJ4bOnSoa7XZFStWyJw5c2qGTi9dulQGDBgg//3vf2vmvGsIli9fXvO4W7dugV7TvXv3mscbN26U8vJyKS4u9nz+FltskfL2hSWZbXr//fflqKOOqskUDcpZ3ThdQYJWeoDSWe05G59dWVkZ93f9HOvSpUugz+3cuXOg5wVx5ZVXyuTJk+XLL7+UaDQqr776qrz66qsiItKzZ08ZMGCAHHjggXLEEUdYV6EWkZoV4EVEfvzxR/nxxx+T3o5Vq1al9gVqyTPPPFMTXO/Zs6dvsPiUU06pCUC+8cYbsmrVqpQyigEAQHL8J4ABAAB13ujRo+W+++6r+ffcc8/JtGnT5IcffpAdd9xRRFSwbfjw4TJnzpwsb23mOIvPiKj5+YIwn5co0NakSZPkNyxkQbdp+fLlcsIJJ9QEH7t16yY33XSTfPbZZ7Jo0SJZt26dVFdXSzQalWg06lpspbq6OiPb6pddGrZMfLZ+jhUWFgZ6TapzNdoUFRXJJ598IrfddpsreC6iFkV54okn5OSTT5b27dvLpZdeKuvXr497j7KysrS3I5OB4TDow6//9re/+T734IMPlvbt24uIWiRJn0cWAACEhwAkAAAN1A477CATJ06syY5cs2aNnH766VneqszRAz1r164N9BrzeV5ZYw3Bo48+WhN82nHHHeXHH3+Uyy+/XPr37y8dOnSQJk2auIJ0mcp6bEj0c2zdunWBXhP0XAyqcePGcvHFF8sff/wh06dPl3vuuUdOPPFEV9bzunXr5LbbbpP9998/LgipB90vuOCCmoBzMv/222+/jH6nTPrmm2/kl19+qfl57NixEolEPP81atSoZt5PEXfwEgAAhIcAJAAADVjbtm3l3nvvrfl58uTJ8vbbb2dxizJHH4ocdM49fZGTxo0bN+gA5Icffljz+Morr/Qdai4iMm/evLA3qd5p06ZNzeMFCxYEek3Q5yXLWTTn/PPPl+eee04WLFgg3333nYwaNarmOV999VXcSs3t2rWreawH3hqKdAOIX375pfz2228Z2hoAAOCFOSABAGjgjj76aOnfv798/vnnIqKCUQ1h5Vd99eRp06ZJVVWV5Obm+r7miy++cL0+G0OEa+sz9bn/Ei3IUlVVVXN+IGannXaqCeR+9dVXgV4zbdq0MDfJZeedd5YnnnhCcnNz5bHHHhMRNa/hxRdfXPMcfT7EL774IuHCS0Flc3i9Y+PGjfLcc8/V/NyrV6+EK5U7Zs+eLStXrhQRFcS84YYbwthEAADwP2RAAgCwGdBXsp4+fbq88cYb2duYDNl7770lPz9fRNR8h4kyO6urq+XJJ5+s+fmAAw4Idfu8FBQU1Dy2LXySKTk5sWpeouHDr732WoPMjkuXPvT47bffTjif4meffZaVTNIjjzyy5vHSpUtdf+vfv39NUG7BggXy5ptvZuQza+s89vP222/LihUrRESkUaNG8umnn8qXX34Z6N8VV1xR8z7/+c9/MjbvKQAAsCMACQDAZuCggw6Svffeu+bn66+/PotbkxktWrSQE044oebnSy65xHcew/vuu09++uknEVHBuTPOOCP0bbRp3bp1zeOFCxeG9jlbbbVVzWO/gPPy5cvln//8Z2jbUZ8deuih0rFjRxFRc6jqQSvTxo0bXZmH6aqoqHAtguNn/vz5NY/btm3r+lt+fr5ceOGFNT+fc845SZ13ZkDTUVvnsR99+PXBBx8c9939DB8+vCZIP3/+fPn4448zvn0AACCGACQAAJuJq6++uubx119/Le+9914WtyYzrr766pqFQn777TcZNGiQ/PHHH67nVFdXy9133y0XXXRRze/OPffcuFWFa0vfvn1rHk+cODEjqxTbHHHEETWPb7rpJnnmmWfinvPdd9/JvvvuK/Pnzw+8kvjmpFGjRq7s4QceeEAuu+wy2bhxo+t5y5cvl2OPPVa++uqrmqzcdC1evFi6dOkiF198sXzzzTeez5s0aZJrBfPBgwfHPedf//qX9OnTR0RUsHC33XaTl156yTPrr6SkRB555BHZZZdd5LbbbrM+Rz+PX3rppUDfafz48a4FYfQ5WZNVUlIi77zzTs3PJ598clKv79ixo+y///41P7MYDQAA4WIOSAAANhODBg2SPfbYo2Yuu3//+99y6KGH+r7mnXfekZKSksCfUVhYKLfeemta25mMHj16yGOPPSYnn3yyVFVVydSpU6VXr14yYMAA6dGjh6xZs0amTJniytDac889a3UbTf369ZMuXbrI/PnzZfHixdK7d2855JBDpE2bNjXz6u2+++6u7M5UjBgxQsaNGye//fabVFRUyCmnnCI33nij7LjjjlJQUCA///xzTWBrxx13lEGDBmV1v9RVp59+urz99tvy+uuvi4jIrbfeKo8//rjst99+0qpVK1mwYIF8/PHHsmHDBtlqq63kqKOOkjvvvFNE3MPgU1FaWirjxo2TcePGSatWrWTnnXeWTp06SUFBgSxbtkx+/PFHV8B9m222kdGjR8e9T9OmTeWNN96Qgw46SP78809ZsmSJHH/88dKmTRvZc889pX379hKNRmXlypXyyy+/yOzZs2uCk15TFRx77LHy8MMPi4gKzH777beyyy67SGFhYc1zzj77bOnRo0da+8DLhAkTaoZ+FxUVydChQ5N+j5NPPrlmjs9XXnlFHnjgAdfK57rZs2fLeeedl9T7jxkzxrVaueOhhx6Shx56yPU7M6g9ZMgQady4set3Z511lpx11llJbQMAAHUFAUgAADYjV199dc0CNF988YV8+OGHcuCBB3o+/+uvv5avv/468Ps3b9681oNYJ5xwghQVFcnpp58uS5culU2bNsnHH39sHVI5fPhweeyxx1zz19W2nJwceeCBB+TYY4+VjRs3ypIlS+Tpp592PWfEiBFpByDz8/PlzTfflMGDB9cEqWbOnCkzZ850Pa9///7ywgsvyKOPPprW5zVUkUhEXnjhBRk5cqQ8//zzIiKyYsUK+e9//+t63rbbbiuvvvqq61gmWnncT15enuTn50tFRYWIiKxcudK1srlpv/32k+eee84zk3WrrbaSb775Rs466yx5+eWXJRqNSklJibz11lue79miRQvPBYwOPvhgGT58eM0iMF999VXcQj2HH354aAFIPWNx6NChKWXwHnvssXLOOefIhg0bZO3atfLyyy/LyJEjrc9dtGhR3ArjiZx++unWAOSSJUvkhx9+8H2teZ06rwMAoL5iCDYAAJuRIUOGyG677Vbz83XXXZfFrcmcww8/XH7//Xe5++675eCDD5aOHTtK48aNpXnz5rLtttvKOeecI19++aVMmDDBlaGVze395ptv5Mwzz5Q+ffpIs2bNQllVeJtttpHvv/9ebrzxRtltt92kWbNmkp+fL926dZPDDz9cJkyYIJ988ok1SIKY/Px8ee655+T999+X4447Tjp37iyNGzeWdu3aSf/+/eXee++Vr7/+Wnr16lWzsrKIBF6R2aZTp06yYsUKeeONN+SSSy6RAw44QLp27SpNmjSR3NxcadGihey4445y+umny6RJk+Tjjz+W9u3b+75nq1at5MUXX5Qff/xRrrjiCtl7772lQ4cO0rhxYykoKJD27dvLPvvsIxdccIG88cYbsnjxYhkxYoTn+z377LPy7LPPyuGHHy6dO3eutcD+zz//LN99913Nz8kOv3YUFxe7pioYP358upsGAAA8RKLRaDTbGwEAAAA0BP3795cvvvhCRES+/PJL2WOPPbK8RQAAANlHABIAAADIgHnz5kmPHj2kqqpKGjduLGVlZVkd7g8AAFBXMAQbAAAASFM0GpXRo0dLVVWViIgcffTRBB8BAAD+hwAkAAAA4OPqq6+Wu+++23NF+Llz58rRRx9ds1J2bm6uXHzxxbW5iQAAAHUaq2ADAAAAPv766y/597//LRdffLFsv/320rt3b2nevLmsWbNGfv31V/n+++9rMh9FRK688krXYk8AAACbOwKQAAAAQACbNm2S77//Xr7//nvr35s0aSLXXXcd2Y8AAAAGFqEBAAAAfJSWlsrrr78uH330kcyYMUOWL18uJSUlUlVVJa1atZJevXrJgQceKKeddpp06NAh25sLAABQ52yWAcjq6mpZtGiRNGvWTCKRSLY3BwAAAAAAAKhXotGolJeXS8eOHSUnx3+Zmc1yCPaiRYukS5cu2d4MAAAAAAAAoF6bP3++dO7c2fc5m2UAslmzZiKidlBxcXGWtyazKisrZeLEiXLIIYdIXl5etjcH2CxxHQLZx3UIZBfXIJB9XIdA9jX063D16tXSpUuXmjibn80yAOkMuy4uLm6QAcjCwkIpLi5ukCc3UB9wHQLZx3UIZBfXIJB9XIdA9m0u12GQ6Q39B2gDAAAAAAAAQBoIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABCaRtnegPomGo1KZWWlVFdXZ3tTrCorK6VRo0ayYcMGqaqqyvbmbBZyc3MlLy8v25sBAAAAAABQJxGADGjjxo2ybNkyWbduXZ0O7EWjUWnfvr3Mnz9fIpFItjdns5Gfny9t2rSR4uLibG8KAAAAAABAnUIAMoB169bJ/PnzJTc3V1q2bClNmjSR3NzcOhngq66uljVr1kjTpk0lJ4cR9mFzMmLLyspk4cKFIiIEIQEAAAAAADQEIAMoKSmRvLw86datm+Tm5mZ7c3xVV1fLxo0bpaCggABkLWnSpIk0a9ZMFixYICUlJQQgAQAAAAAANESoEti0aZOsXbtWWrVqVeeDj8ieSCQizZs3l4qKCqmsrMz25gAAAAAAANQZBCAT2LRpk4ioOf4AP85CNHV5jlAAAAAAAIDaRgAyoLo43yPqFs4RAAAAAACAeAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApDIiO7du0skEpHx48fX/G78+PESiURc/3JycqS4uFh23nlnGTNmjCxfvtzzPc3Xev2bPHly+F8QAAAAAAAAKWmU7Q1Aw1dUVCTDhg0TEbVC9Lx582Tq1Kkyffp0efLJJ2XKlCnSs2dPz9cPGjRI2rdv7/l3v78BAAAAAAAguwhAInRt2rRxZUaKiMyYMUP23XdfWbp0qVx44YXy9ttve77+8ssvl/322y/cjQQAAAAAAEAoGIKNrOjTp49cdNFFIiIyadIkqaioyPIWAQAAAAAAIAwEIJE1O+ywg4iIVFZWysqVK7O8NQAAAAAAAAgDAUhkzerVq0VEJDc3V9q0aZPlrQEAAAAAAEAYCEAia5x5Hw899FDJy8vL8tYAAAAAAAAgDCxCkwm77SayZEm2t0JERCIiUhyNSiQSCfaC9u1Fvvkm1G3SOatgP/LIIzJhwgTp1q2b3HPPPb6v2X///T3/1rx5cyktLc3wVgIAAAAAACBTCEBmwpIlIgsXZnsrREQFIAOGHmvNvHnzrAHRfv36ycSJE6V58+a+rx80aJC0b9/e+rfCwsKMbCMAAAAAAADCQQAyEzyCY9kQFZHo/zIgAwUia2Hbi4qKZNiwYSIiUlFRITNnzpQffvhBpk2bJmeeeaY8//zzvq+//PLLZb/99gt9OwEAAAAAAJB5BCAzoRaHMCcSra6W1atXS3FxsURy6sYUn23atJHx48e7fvfKK6/ICSecIC+88IIMHDhQzjnnnOxsHAAAAAAAAEJVNyJU2Owcc8wxcvnll4uIyNVXXy1lZWVZ3iIAAAAAAACEgQAksmbMmDHSoUMHWbFihdxxxx3Z3hwAAAAAAACEgAAksqawsFCuuuoqERG56667ZNWqVVneIgAAAAAAAGQac0Aiq04//XQZN26czJkzR26//Xa54YYb4p5z8803x80hqTvppJPkkEMOCXErAQAAAAAAkCoCkMiqvLw8uf7662X48OFy7733ykUXXSStW7d2Pef999/3fY+ddtqJACQAAAAAAEAdRQASGTF37ty4340cOVJGjhyZ8LUnnniinHjiiXG/j0ajGdgyAAAAAAAAZBNzQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQyIju3btLJBKR8ePH1/xu/PjxEolEXP9ycnKkuLhYdt55ZxkzZowsX77c8z3N13r9mzx5clLb6mzXyJEjU/uyAAAAAAAACKxRtjcADV9RUZEMGzZMRESqqqpk3rx5MnXqVJk+fbo8+eSTMmXKFOnZs6fn6wcNGiTt27f3/Lv5t0gkIiIi0Wg0A1sPAAAAAACAdBCAROjatGnjyowUEZkxY4bsu+++snTpUrnwwgvl7bff9nz95ZdfLvvtt1+4GwkAAAAAAIBQMAQbWdGnTx+56KKLRERk0qRJUlFRkeUtAgAAAAAAQBgIQCJrdthhBxERqayslJUrV6b9ftdcc03N8GuR+Dkk586dG/eatWvXypgxY2TrrbeW/Px8ad++vYwYMUIWLlyY9vYAAAAAAACAIdjIotWrV4uISG5urrRp0ybt99tpp51kxIgR8tRTT4mIyIgRI1x/b9q0qevnsrIy2XvvveWvv/6SAQMGSN++fWXq1Kny9NNPyyeffCI//PCDNG/ePO3tAgAAAAAA2JwRgETWOPM+HnrooZKXl5f2+w0dOlSGDh1aE4A05500vfbaazJo0CCZMmWKFBcXi4jIqlWr5IADDpDp06fLAw88IGPGjEl7uwAAAAAAADZnBCAzYLfddpMlS5ZkezNqRKNR11BkP+3bt5dvvvkm5C2KcVbBfuSRR2TChAnSrVs3ueeee3xfs//++3v+rXnz5lJaWprSthQVFcmTTz5ZE3wUEWnZsqVcfvnlcuKJJ8oHH3xAABIAAAAAACBNBCAzYMmSJcwZ6GPevHnWgGi/fv1k4sSJCYc5Dxo0SNq3b2/9W2FhYcrbtdtuu0mHDh3ifr/tttuKiHBMAQAAAAAAMoAAZAZ4BceyJdkMyLAVFRXJsGHDRESkoqJCZs6cKT/88INMmzZNzjzzTHn++ed9X3/55ZfLfvvtl/Ht6tq1q/X3Tkbkhg0bMv6ZAAAAAAAAmxsCkBlQm0OYE6murpbVq1dLcXGx5OTUjUXO27RpEzcf4yuvvCInnHCCvPDCCzJw4EA555xzan276sr+AQAAAAAAaMiIwCArjjnmGLn88stFROTqq6+WsrKyLG8RAAAAAAAAwkAAElkzZswY6dChg6xYsULuuOOOjL2vs6L2pk2bMvaeAAAAAAAASA0BSGRNYWGhXHXVVSIictddd8mqVasy8r6dO3cWEZEZM2Zk5P0AAAAAAACQOuaARFadfvrpMm7cOJkzZ47cfvvtcsMNN8Q95+abb46bQ1J30kknySGHHFLz87HHHiu33367HHTQQXLAAQdIs2bNRETklltukdatW2f8OwAAAAAAAMAbAUhkVV5enlx//fUyfPhwuffee+Wiiy6KCxK+//77vu+x0047uQKQ//73vyUnJ0deeeUVee2112Tjxo0iInLllVcSgAQAAAAAAKhlBCCREXPnzo373ciRI2XkyJEJX3viiSfKiSeeGPf7aDSa0rYUFBTILbfcIrfccov174m2q3v37il/NgAAAAAAANyYAxIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAFFo9FsbwLqOM4RAAAAAACAeAQgE8jJUbuoqqoqy1uCus45R5xzBgAAAAAAAAQgE8rLy5O8vDxZs2ZNtjcFddz69eslNzdX8vLysr0pAAAAAAAAdQYByAQikYg0a9ZMysrKZP369dneHNRRVVVVUlZWJoWFhRKJRLK9OQAAAAAAAHVGo2xvQH3Qpk0bWb9+vfz1119SXFwszZo1k9zc3DoZaKqurpaNGzfKhg0bGApcC6LRqFRUVMjKlSulurpa2rZtm+1NAgAAAAAAqFMIQAaQm5srXbp0kZKSEikvL5fS0tJsb5KnaDQq69evlyZNmtTJAGlDVVRUJO3bt5fGjRtne1MAAAAAAADqFAKQAeXm5kq7du2kbdu2UllZKdXV1dneJKvKykr59NNPZeDAgcxFWEsaNWokjRpxKQEAAAAAANgQNUlSJBKp01luubm5smnTJikoKCAACQAAAAAAgKyrl5MEXnPNNRKJRFz/evfune3NAgAAAAAAAGCotxmQffr0kQ8++KDmZ4bAAgAAAAAAAHVPvY3aNWrUSNq3b5/tzQAAAAAAAADgo94GIGfPni0dO3aUgoIC2WuvveSmm26Srl27Wp9bUVEhFRUVNT+vXr1aRNSCLZWVlbWyvbXF+T4N7XsB9QnXIZB9XIdAdnENAtnHdQhkX0O/DpP5XpFoNBoNcVtC8e6778qaNWukV69esnjxYrn22mtl4cKF8vPPP0uzZs3inn/NNdfItddeG/f7CRMmSGFhYW1sMgAAAAAAANBgrFu3Tk466SQpKyuT4uJi3+fWywCkqbS0VLp16yZ33HGHnHbaaXF/t2VAdunSRUpKShLuoPqmsrJSJk2aJAcffDCrYANZwnUIZB/XIZBdXINA9nEdAtnX0K/D1atXS5s2bQIFIOvtEGxdixYtZJtttpHff//d+vf8/HzJz8+P+31eXl6DPAFEGvZ3A+oLrkMg+7gOgeziGgSyj+sQyL6Geh0m851yQtyOWrNmzRqZM2eOdOjQIdubAgAAAAAAAEBTLwOQF198sXzyyScyd+5c+eKLL+Too4+W3NxcGT58eLY3DQAAAAAAAICmXg7BXrBggQwfPlxWrFghW2yxheyzzz7y5ZdfyhZbbJHtTQMAAAAAAACgqZcByOeffz7bmwAAAAAAAAAggHo5BBsAAAAAAABA/UAAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISm3gcgb775ZolEInLhhRdme1MAAAAAAAAAGOp1APLrr7+Whx9+WHbYYYdsbwoAAAAAAAAAi3obgFyzZo2cfPLJ8uijj0rLli2zvTkAAAAAAAAALBplewNSde6558phhx0mBx10kFx//fW+z62oqJCKioqan1evXi0iIpWVlVJZWRnqdtY25/s0tO8F1Cdch0D2cR0C2cU1CGQf1yGQfQ39Okzme9XLAOTzzz8v3333nXz99deBnn/TTTfJtddeG/f7iRMnSmFhYaY3r06YNGlStjcB2OxxHQLZx3UIZBfXIJB9XIdA9jXU63DdunWBnxuJRqPRELcl4+bPny+77babTJo0qWbux/3220922mknueuuu6yvsWVAdunSRUpKSqS4uLg2NrvWVFZWyqRJk+Tggw+WvLy8bG8OsFniOgSyj+sQyC6uQSD7uA6B7Gvo1+Hq1aulTZs2UlZWljC+Vu8yIL/99ltZtmyZ7LLLLjW/q6qqkk8//VTuu+8+qaiokNzcXNdr8vPzJT8/P+698vLyGuQJINKwvxtQX3AdAtnHdQhkF9cgkH1ch0D2NdTrMJnvVO8CkAceeKD89NNPrt+NGjVKevfuLZdddllc8BEAAAAAAABA9tS7AGSzZs2kb9++rt8VFRVJ69at434PAAAAAAAAILtysr0BAAAAAAAAABquepcBaTN58uRsbwIAAAAAAAAACzIgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEkBmRaMiX38tsmpVtrcEAAAAAADUAQ1iFWzE23PPPWXp0qXZ3gxsjtauFSktFcnNFWnfPttbkzUbNmyQgoKCbG8GsFnjOgSyi2sQyD6uQyD7NmzYIN26dZNvv/0225uSVQQgG6ilS5fKwoULs70Z2JxVVYlwDgIAAAAANnN0BBCAbLDatWuX7U1AtkWjIpFI7X+uHnRs00YkP7/2t6EOqJe9zcuXi2zcKNKihUhRUba3BkhbaNfhqlUi69aJNGsmUlyc+fcHGoh6eS8EGhiuQyD7NmzYQIxGCEA2WF9++aXk5eVlezOQDRs2iOywg8iCBSKTJon071+7n68HPSdMEDn44Nr9/DqgsrJS3nnnHRkyZEj9uQ6XLBHp0EE9Li1lDk/Ue6Feh045V14usnp1Zt8baCDq5b0QtaOiYrPtoK5tXIdA9unX4eaORWiAhubZZ0VmzxZZv17k8MOzvTWoL6qrs70FABAeyjigbnj1VTXS4qijsr0lAIBaRgASaGhKS+2PAT8bN2Z7C4D6oaoq21uAZH3+ucrwHjpUTU8CIHuOOUaN1nnjDZG//sr21gAAahEBSKChqUtDWupCQ332bJHtthM54oi6sT11VUVFeq/ftEnksMNE+vQR+f33zGwTUBcRrK9/Bg4UWbZM5PXXVTASDcu114p06yby2mvZ3pLNx9q1IvvsI7Lrrmr+6FRRngLAZoUAJNDQ1KX5XdINamXCSSeJzJwp8tZbIi+8kO2tqbvSPVbPPCPyzjsiv/wicuqpmdkmoC6iwVz/6MOvmd+2YamoELnmGpVJd/TR2d6azceNN6pg/nffiVxySfDXrV3r/nnDhsxuFxq2tWtFDj1UzS/P/MtAvUQAsgHqf8UV0qhXL5E99sj2piAbKiuzvQUxdSEA+c03scdk5nlL91j99lvs8dSp6b0XUJfVhXINqWvE+osNSklJtrdg8/Tdd7HHX30V/HWzZ7t/Xr8+M9vTkN1+u8ri/vbbzL7vkiUiQ4aInHlm/Zma4pZbRN5/X+SDD0SuuirbW5Oat99WC4Q+/3zyr738cpGDDhKZMyfz2wXUEgKQDVDh8uUS+fPP2plXZepUdfNKpRBNxscfiwwerCauhj+zdzkM69aJ/P3vqtLiF/Csaw31HIo8T2YWwqZNtfv5ZWUqW/W881gsAnWbmQHJ1A71CwHIhiWd4b9InV7uBalb3X+/yKBBIi++6P49GZD+li9XGaZTpogceGBm3/uJJ0TefVfkkUdEvvwys+8dls8+iz3++OPsbUc6Dj9c5IsvRIYPT+5106apAOyHH4oMGxbOtgG1gNZ4A1TlzAG4bl34H7b33urmlWwhmqwjjhB57z01cXVd6qVbs0bk3HNFxo6tO9tVGwHIceNEnnxSVVruvtv7eQQg6w/zWCV7HqV7/t9+u8hzz6lGyjPPpPdeQJjMa6WulXO1YcECkREjRB56KNtbkrxIJNtbgEzKRADyjjtETjuNYGYy9I7CRHWrsjKRCy8UmThR5Kab3H8jA9LfypWxx2VlmX3vxYtjj8POJN6wQWT0aJExY9LrtNM7kDLZUT5pkmrL1nYgNplRa/oorunTM74pobj/fpFRo0QWLXL/fuNGkX/+U+Tii2s/4QFZR2u8Aapq3Fg9CPumbhYYYRYgejBk3rzwPidZN9wg8sADItddJ/LKK8Ff9/nnImedFc4NJKz5dX75ReTss1WP4+uvx36vPzbVtYY5AUhv5rFas6Z2P//BB2OPzQwJoC4xMyDrWjlXG/72N5Gnn1b3hLp0Tw6COTwblnSDhtOni/zrXyob7NxzM7JJLuXlIpdeqhri2TB1qqpvfv99aq9/8UWR88+PDyDoAcjcXP/3+Osv7zYCGZD+wkwmKS2NPQ67zXj77SL33CNy883q3hHU11+r0VZff61+1s+1TI4+OOQQNZpvr70y955BrFgR/Ll1aY7/IH75RY1qGj9e5PTT3X+76y71b9w49XdsVmiNN0A1GZCVleEGBc359MJqhJk3mJ9+CudzUqFnf7zxRvDX7bOPyMMPi+y/f+qfPXWqmgtk7lz3780AZKYm3D/0UPV9DzjAvdK2X6Wlvjf0Zs4UuewykcmTRa6+unamAFi3TuT669PLAiwvF/m//xN56aXgr8l0AHLGDNXo+vHHYM9v2jRznw2EqT5nQC5frq7Lt99O730++ST22LwH1XX16XghsXQDkPo80cncM4O64QaR225TDXH9uqkte++t6pupzAu/fLnICSeI3HefmnZHp9fNEwUgFy70/hsZkP4ynfXo9d5hj5rTg0zJ1KX331+NturXT/0cVgZkpjh136Bt1WTKLyfBqL7Q54l991333x5/PPY4mQQeNAhMhNMAVekF1Pr1Is2ahfNBZmBhwwaRoqLU36+8XOTRR0V23NE9z4nZO/Tjj2pIdl2g90YFTaPXe4313sdkVFerSqWIGtKiF/K2AGSHDql9jm7+fPvv9d5rcxhuXWvoJVvBOuwwkT//FLn11tjv5s4V6dYto5vlcuutItdeqx5vu63Irrsm/x7nnad6mHNy1ETXHTsmfk26AUjz/D/6aDXZ/N13J38eLFiQ3PNr29q1qkK83XZqTqvNSTSqpl+IRtWwmoaQVRyNqutl40bVS59oiG59zoAcNEhlQt13n8iyZe7Af1BmOV/f5sCs7x1jcEs3AJlOvTWIW26JPX7tNZF99w3387ykskChvtDF+++7/5bMHJB+AUgyIP2ZKz1Ho5mbRqI2MyD1bU5myh69TVNd7Q52ZyoAab5PVVXioLqXgw5Si/s88ECwenQy5VeyUx399pvqVDnxRJEePWK/f+MNlZX8j3+4E0oyze881dtjhYWZ+bwvvlBzhJ5+ukirVpl5z0xYtkzkiSckkq2yvw5qAC0HmKqCZqely+zdSaYS8eGHariLXiH6v/9Tw2AOOkhdrA6zcK5LGZDJBiCnThW58870P1c/ruawmrAyIHV6g1t/bN7E61rDPNl5Df/8M/53n36amW3x4gQfRVLrFdy4MTa8pbpaZNasYK8zr99kA5DmvnVWuty4Mf68mD5dZWSUl6ufKyvdQcc//qiduUxTNW6cyEUXqazgbA0/XbxYDemrjcXGdBMmqLnSTj9dleP1zezZar/p81199pnIyJEiZ5wRbGiYWa7VtQZ0dbWaT/Wdd9y//+CD2P1i/frUAzfmXGFhZuiEoa7dlzLh9ddFnn227sxFXZvM8/jBB0V+/TX468POuDeTAmpTugu6+XUuJJMBqd/fn37aXQ9uSBmQmzapDrpJkzL3nmYA0qk3ZYJXAHLRInWf9Eo88DNlikomMcvZVAOQuuXLwxmCbZ6D+rybyVqyRP3vVYc1tzmZ+3CydY1DDhG58kr3Og2//y4ydKiaVuE//0nu/TIp0wHINWtUwsVll6m5JeuS004TGTNGGu29t0TqYtZuFhCAbIBcGZDppNSXlqphoPokxTpbBmQQv/yisjBOO03kscdiv7/33tjjL76IPTYL56BDOm1KS1WBm6kMKzMAOWeOmkPEVqEqKREZMEBNuKtLpfLlV2Gu7QCkftzNcyDVht7atSrQ8ccfqb3e733TVZvZPqk0Ht57z/1z0CzbdDMg/Z6vzx21fr2aguCss0SuuEL9bv58936NRtUwlrpq7NjY47feUmXSf/+bWoZJqk44QWW6Dh5ce58pInLKKbHHzz1Xu5+drmhUZMgQtd/OOCP2e70SPmpU4vcJkgH555/q/pmN6QTefFOtKH/YYSJffRX7/bhx7uelWj8wOzXeeEM1uIM2KhctUvs8jHuTjbldDS0D8uuvVYPyb39Tma2bG7OOeM45arhm0Hu1eY+0XReffKLO81QCJ02axB7bOvomTAhvGoN0g3vmvtG/fzKL0OgZkH36iLRvH/vZ1nZYvVqVn7XdwZauxx9XQ9UPPVRln2WC2cGTTnDM7731c+WYY9R98vDDk3u/hQtVEskZZ6j5/bwEvY7MsnrhQvdrM1UfN6/5TC1GZbv+zPpCJgKQmzapYe36aLiqqlgHuTN/poiqWzv7MFPnaCr09lgqAciNG1V2p9NWmDkz9je/juTfflP1j0Rl45IlKlEqE+fCW2/VPMxjiikRIQDZIFVnqrf1jDNUY/PII+1///ln989BA5B33hm7aZjBOIc+JMa8+H/7LfUC4fzzRU491T1s8tdfVeUylYqlHoBcs0YFGIcPF/n3v+Of++679ptlKo2wbAcg9WPtlQ1p+zmoq64SOflkNVQpk71FmQhAZrLyl0gq56Qe1BcJPsF1mAFIPUtw1qzYcXAay7ZAczYznaNRlelqlnE2Cxeqxu6wYfH7PkxTpqj/f/ml9j4zGnWfk927u/9eVaWmhAgzK3TdOjWMcenS5F9bURGbu1ifg0r/HkGuuUTlXFWVmrfqlFPUPL217bLLYo+vvjr2WB9OKZK5AOT48SrTwjknEznqKHUfPuus1D4/WWY9qC5kQEajam7hTFy/U6fGHl9wQXzGVH1RWanqSX7DdW1s9cHy8uCr+ppBNjPr6+efRfbbT523Dz+c3LaJiBQUxB6b9eTLL1d1nQMPDKdz06zzJFunMINfen0ymUVo9GPaqZM7KGtrp4wercrPQw+tX1m9TplWXa2SETLBvJ6TWbQkEa8MSKfj6scf1T09aDLA++/HgobmvS+VYePm+btggfu+lan2QaYCkGbSgO1YhRGAfOYZFTTea69Yh7+5aJRDP+Zhj97w6+zT90Mqw93vu0/k+ONF9txTXSNBzoXly9U+OvVUtRq7n2OOUYlSgwenn0muySEDUkQIQDZISQ3BjkZVz4g+5NnhTMatT9CtMxuAQQsyvcfFq3DSg6hm4VxVJXLjjcE+S1ddHVvY45dfVOG3aJHIDjuoyqXfas5e9ADkzz/HskVvuin+uV49PKkEtNINQP7xR3IZZn4ZP/o5lqkApDM8Z8EC75tzdbVaTdwvwGpudyYCkF4ZwWFI9qb35Zcq+0kXtBEWZgBSz2LQJxB32Cq3meqBTsXbb6vg9047Jc5MefLJ2L4755ywt8yutrJyzcCTWZG6/37VubPLLuENoT/7bDW/6IEHJn99mOeoV8M20bYnyoBctiwWhM3UyrdVVSIffaTuy7b7ta5Fi9hj/ToKkunlZ80aFWT0CppdeGHi99i0KVanSGe1+/JyNXQ+yLlvfs8wMiDXrlUBxaDv/eqrKki9yy7pB+zNMv7RR9N7v2y5+WaVobzHHskdI697RdDOV/O6MI+HPu3K2Wcnf2/UA5BmndwpH/74I5y6hVmWJRtwMAOQeiBRL/8TXYfOqKO8PJEttvAPyorEFiyZOTN4HSbbzPvJL7+IfPtt+u9rBiAz1QleXe0ezu3VXhw0SHWyBhlNY2uvVVerUW3664MGlc1rbeFC9zld1zIgzX1oO3fN8z2dAKRTTjojNzZuVHVSkfjsYed61cvFsAOQQeuBqdQX//Uv9f+aNSqJKEjC1dVXx66fRx7xfl5FRaxj79tv7aN9ystVfSjJgGJuXegArQMIQDZASQ3B/s9/1I1l2239CwCzkK+uTq1is369e0hYdbX9dfoFaiucH3gg+UqJMyedo7xc9WY7wyaPPjq59xNxByBTbdRkOgPSPObm+//xh8g224j07ese6u7HPNb6z17ZkCKp7ROzYuJ1U7nlFjWUd6utVOBNV1GhhiKYledkbnJeFaTaDEAmO6T3hhvif5eot/yvv1RnQm0FIG1lki0Amc15oU48Uf1fVZU4gOTM9xPEhg0qs9N2bq1cmfqUA8nOCbV6dWpDb8w5H83rafRo9f/KlSprorQ0lnGYrJkz7eeuM7RmxozE87H+/LM00rfRPEedBpH5PfRhTDaJOlrMMjcTwdixY1XQ9fjj1RBG23tGo+r80heec4KV0Wh6AchoVOSAA0QGDhS54w77c4JkuJj7JpUGZDSqRhsMGKDmt0rE3FdhNACGDVMBxZEjgz3fGf1RUSFy3XXpfbY5pUxtZkVnkpOtu3BhLAN+9Wr1fZzs6x9/jK9XeDXgg2aKmdeF2XA3y/igWZBVVWq+Y314st99LYxON/Pcd675hQu9M6R0fgFIvfxIdL92Xtexo9ofiTIgdZmeikdE3QumT08vs0k/N0XiM3dfeEFkt91Uxn46vIZgz56d3vy7q1e76yLOcbDtkxUr1FQBiZidlDNnqoUV+/dP3HFmkygAmamVuzMVgDSvN1sZlMkApK3u5wTEzHLMeW5tZkB6HR+zDpxuHamoKPG1UFKihlQ7/BboNeut5qjGaFTd7wcOdI84sTG+a25DmwImRQQgG6C4DMhly7yH5IwYof5fudI/A9CssNsKlSAF2eefu9+ruto9b4Pt8/TCeaed1P8bNyY3ybiIO/ApovZJqqucOfSCxC+QuGKF97Ci2h6CrWeNBJ0o2/w8vQdW7/3JRAZk0Mb7xInq/9JS1TDXz/Hhw9Xq0U4gKdF72Xj1aiUTcEpXspVL27DlkhJ1vdrOv2+/VcNPu3aND0glWyEIOgTbLDuiUXsFzFbGLFpUO4HJdCpDP/ygFvowK/HRqKqs7LBDfAb3ihXqOPToIfLxx4k/w6zAJBOAXL9epFcv9c/Jcg/KzAb1O+arVqnOgZ494xdDSeT559UK4716uT/DzLp/9lnv93j4YcnbZRfZ75//jJ1LtuFctt9/+aU6Xr/9Zu8EMPe/ee8zM1RSmc903TpV1lRXq/3+0Uexv5WU2K/1229X59cHH8R+5zT61q+P/y7JNN7WrXPPI2UT5H5qdhx+/XXyw+hKS9V1JqKy5hIJOwNy3brY3Lu2TIm1a+OvHb2eFnShMC9m2R503l8RVTZncHhZ0jZtsmeAbtyorqs+fdS/8ePVQoU77qiG++uv98oIS3UIttlwN38OmtV2xRUiO+/sXszO7/5VGxmQ69er8qhrV5Fu3RJ3EJl1ED3Yrb+33/fasCEWiOnUSf1vy4Bct07ta/P6dAKQ69bF3wPmzk2+E6O6WiVe7LyzCo6lwjw3ReLbGI6rrvJ+n7VrEx93s/1WUqIWwdtmG3V/TbW+Yp73zjH0ui8E6Uw0y7Jp0+xDXaNRdZx//90/GzJRALKiwt3O+Ouv1Dq1zH2YqQCkUwaVlsbKKVsActkyda2tXx/fMfDXX7F7pPlaW9veKc/NctWpJ+ptrKBttGhUTeGS7L3C69w066zpBpKXL7cvGqqbMcNdtvjNO2mex7NmufdVWVnsPuDVIesw9gEBSIUAZAPkyoD88EORDh1U4zZRZUwvWMxCJkivi18FZOVK74UlbD3aXgHI3XaLPU52HpRp09w/l5env/JWkCyxH35QE2472UGmP/5Iv1DXb+CJApB6hTLoXEtBs+G8ApDOasyJetyj0fhKnNcNTM9oXbcu9rqSktj8bnqjXURVAoLOj+V1Yw7YSIhUVSXXELSxvb6kxLvC5lyDenbBH3+oQE7XrvGBoLPPjlUEnekJHOmugq3zy4Bcvdr+WvN5774r0qWLqnTbts1vv6RDbyiJJL5Wd9pJDascNsz9+/nzYwEcM2vrjjtiZepJJyXeJnN/JTPn2yuvxILoxx8f/HUi8WW83zF//PFY2XPYYcl9jrNi44oV7nLbDLq9/LJ3MOnss0VEpGjZMok4nWvmeeNko5rf49VX1Vx6vXqpzHjzvLKVc2VlqpFQUREfsEh2PtPychW87dxZpHlzkS23dM/zJ2KfA/PSS+N/V1lpz34U8a/0r1rlPteDnGO26RVM5n17r71UJnsy126ycxwGyYBMNKzRr75hZhzqAdXKSlUmbLmle2h0jx6xx+bcnMlKNQB53XWqbjh0aOLnrlqVOFBcWhqs8b9mjToG0aia6qJ7d5G773Y/Z8UKdU93Al5//3tsaht9uJ3fcUk1A/KLL9zf1WzI6/vbqduaqqvtwS2/TkW9blFZmZm5/sxrfN06Nb97dbX6jvqCajZ+GZBBA5B6vc8JQJoZkOXlIttvr4Ki99zjfv2cOeoYdeumysTPPlO/v+UWdV0dckhy5cfChbHEhzFjUptHcMoU97kpEt/GcHiVLWvWqABip06xDnUb8xjccENsmqLly1WHZyrM93WOoVeHplc5tXSp2p9VVfGBm88/t7/Gyajv2VPk2mu9t9G8Zy9YYK//rFihFr3p1k0lJCRbFwySARmNJr5P2DIg//pLnbcdO6pOTbM9/ckn6m+tW4sUF6vnvv22+tsDD6jv1L+/+vwgAUinozGTGZCjR4tsvbWarzYZXnUMc/+WlyfXXjKv2RNPjA3J9mK23fw+z9YpqF8vfnOQb9jgPg+MNjhDsBUCkA2QKwPylltURWPVKv9VoUTc2QtmoW9buc9UWhor9J2CctMmkTPPFGnTRjV2bQGvn36KD5J5BSB79449TnYIti0D0gwuJMuvAe7si1NP9a/g/POfqhKezA3T3P/6/jK3yQnUOcdQL0SDrgYeNBhlWwW7ulrdPHv3VhUtv5Xxhg9Xc0DpnO+j33xtFQHn3DKDjroZM1Qw2GteU3PbbYIEIDdulP1Hj5ZGHTrEr0qdDPMGeccdav4kr4nZnQpk586x3336qTrO1dXxAQq/bM7aGoK9fLm9kmL+7tRT1XdYsCA+WPrvf6v9EiR4lyyzghc0+PHaa+7rwS/4rg9NMo/5hg3xx9rc18lkQKbT02y+1q/8S3ZYuMPMxNUDjD/+6P5baan3KqnaPos417u5304+Wa3yaX6PqVNjCyS9/XasMWDbJhHVeGzXTpVvnTrFV9LN7U7kySdVBbeqyvu6WrQo+BQNy5YlF4B86SV1Pe29dywIGeS8TyUDUkTdm5PJ/ko2MzxRBuTVV6vGn9ccrqedpuowXg1lM8CsX8+//hrLHDrjjNhxaNo09px0s+rN+7gts2nhQvVPv685wac333SfS2ZD96WXRFq18l9Z+p13RNq2VVllfvWdmTNVp3iXLup+7EwDY84fumKFf1nlBOf8MsZTzYD88EP3AhpmGePs7+efV995n33iO6acDF2TXwDDuQYqKtS1t8UWapqkdNgyIPVs3ET3A3Pf6HV4vWzyC2To13bHjup/MwPyySdjmY6XXOJ+/axZqt5YUqLOrVNOUb93jtFHHyU+1vp91Cw//OqMXmzH0WvqAz3Yqnv1VbVvolFVp/Nilr1mWZmpDEjnXPC659gCkE88oY7pdtupe58ZNPcatr18eSw4ee218Rni0ai6DhJlQIqoe3ibNqotJaICesmuUWCrlzqdJI6jj1afo0/BsGGD+9q3ZUBecYX6fUWFyLnn2tsWVVXq36ZN6jOdOsS556r/p01TGX5BkoGc9rRXANJrDkivfVRdLXLvverx88+r7aystN8LzPcw94dz7zUDkFOmqLL0jTfs22BKZRFC87opK1Pfbc0aVZ/Sj7VthKV+vZjTCTj3vIUL1fXQqVMsI9MMQJIBKSIEIBskVwakLlEBrF98ZqEWpNA75RQ1PGbdOtWz1bq16vl/5BH13i+/bE/hnzMn/mZuC0Dm56ueIEcyvcPV1fGNhNWr0x+K5Rd0cYJBQRqfn32W3JByrwBxZWV8o/S770Seekpl0pxwgrsQzVQGpHMjsmUGzZ7tnqPRa9jkypVqzhzbZ69erc6l1q3VRP+lpfE97s530Ycf2qxfH2yeLq8A5KpVCa+lyOTJ0mzBApUFOXhw4s9ymMfOrCA6PXwTJ9qHQzqVqOJidbxNZoXEL2Mp06tgO+VL0ACk32Te5pA2Z+4wp3KUjkSTiAedAD4ajQ1vjEa9A2Ui7u+vZ2W/955q+O++u3tl1nQyINPJEjWPk3PMbVmhqQ6VNxss+nllyyQMcB/IcYIUtnP0nXcSLzR05ZXu/WbeNx5+WJUXy5bZtyeZDMjq6mDn2DnnqIqu02j3O65//GEPQHo1XI8/Xl1HX32l/nllUJr0bfDaHq/jZZ4vfpnG5rYkymBKlAHpzO/04IPxr62sjM0bdc017r9Fo2o7zXu83tAxr01nuJa5TUHm47NZuzY+oKLvn6lTVXC8c+dYFo5t2htnO6NRkYMOUg3t999Xv3Mypb//3v5aEZXlXFmpzvV33/Xe3gsvVNfh8uX2jF1HSYn/MEinXPabhkE/14KeT8683o89FltAw1wVe+FCtZ+GD1fP+eKL+Hmoveoh+jaZ93vnvLn1VtVJGo3GOkKCjpIxn2ebA1Kvv/vNgybiPQR740b3dedV3ldXu4/jFluo/80MSL/AwzPPuIP/tvLab/jl5MkquDFggNoe8zulEuQ1z4lVq7zv8fPm2esl+u/8yu9E9/fy8tSmUUg2A3L27Phz9j//iX22LSjkVVc2958+D+7atSqg2aFD/Dz1tgCkLfNUD/oMHSrSsqXIf/9r3xaR+LrNO++ocnPXXdV3XrVKTVMWjcZWOp82TZ3P220X25e2DEh9vyxYECzr0NbJVloaLAPSKWOSyYB88knVbjA7T6PR+DJ/8mR1H+nVy/35d96pOtb0jjyvTmtb2V5ZKXLUUfG/twnSdjXrBWYAMhpV9/bWrVXAcJddYnUDWwakvt/Mc935+bLL1LlSVqYCzyJkQHogANkAeQYgEwUU9IIzUQDS671++klVFCZPVgWPOeT655/jX7NiRXyDS/88p6DaYgtVKXYkkwH511/xjY7y8vSygTZu9M9ASXb4bTIBVXP/OxUHW4OyokIF3DZuVKuO6scgUwFI5++2AKR5nLwqU17ziw0dqoJpP/6ojtcjj9i322kUBJnX0qsRpfO7SSTqfUs2eOcw941+DplZwmbDS++RLCxUN1XT1lu7f/bLWErmO1RV+Qec1qyJDROyBSCDDMHW6eWFuep3ssMzTWY2kXldJnOdTpmihhj17esfhNL3nd4we+QR9bdvv1XTTzjnZF0JQK5dq7IOWrSIz0pNNSvDNlWGw9aZYzsexv6I/PyzyjLzOqdt9yXdDz+4PyfZCuR33wVrIM6cqaZK8BuSpispETn/fPXY77z0CkAGuf8tXqyysfbcM/FznUbTzTerDCczYCfifd/Wz5fTTlMNxlde8f8cR16emhPNSzJzQJp1HbOh7Lx2zRqV7detW/wiE34BSGchJ3ObOnVKPlNWxH4v1I/1+PHua2jlSvs8lc4+nTJFZYStXauyssxrI0hZ41f30adO8ZtTdMUK/wDkihXqn98Ig5ISdV8cMMB//zrb27dvbDi6M8fXkiXx9byKivg6qxkU86qHbNgQK+/N8sgpo26/Pfa7GTNU4KNNGzWayM9336mgzX77xRrftgxI/XOLi/3f07zWnGxdrzqo7q+/1BBpfYFHJwCpZ0D++WewuY8dtjaO3zQGhx6qroHPP1fBcfP8fO65+EUqEzGH5f/0k3cActMm+2gj89h4daQkyvg+7jg1ZUeiOfBMXnNAet0nN26MH6Hglb199dX+U1yZ17Y+PdA996iEjFWr4uf4Xb06WOa/8/6//aaunw0b4qfF0ZnlcXm52u/ff6/qNrag4Zgxal/NmqXqQJ06xaYHcJSUuOvZVVXBhz3b5oq0BSDNOp1zjw0yB6Tzfn//u9qvEya4F64bNkyVi7qDDlKfMWdObCoAEXUPrqpSHXnONiQTgExGkLar+dm2URY33hi7p0+frrJno9HkA5DOe+v3S2f/kwFpRQCyAXINwdYlGuKk33RSDUCKxBfAOucm37x57ObkVCR1TgMvGo39rU0bdwAymUCArTBZvTq+gEpmLphEAZpkA5DJDEFLJgBp0oNvK1YEy1RK9L5Oo8S2CrZ5nLx6V70m8DZ9+629MrdggWpoJ8pmElHBgE6dYnNF2vgFGRIcq4j5nYNmt/gFIM3G2vPPu89X/Vxu0sR9rdjeTyRzAcgg550TMDWvuaOOis8esT1Pbyjpq2KaGXOlpeq8O+ggkW23dVfKp05VDaJRo7y302xEpJoBKSLyj3+obf3lF5Hrr/d+nlcGpN5gXrZMdeyIpDcEO53eV7OsWLVKDY0rL48Ni3OkOv+puX/172rLoLcFtGwNwSlTvM9pff/p03zo9Gs62QpkWZm9gXvFFSorzQlgnX128E4hh9Nw85tOY9681AOQN91kvz5tSktVg2/MGLWPbIFUr/u2U4YsWKCyElavtmckitgb5Hfe6d0w9cuANDOTzO0zAxtOo+K++1RgesGC+HvOEUeoa9+2rV4rr4uoESQdO7oXh1qzRgWAd95ZNdpuvlmdM04Q0XbcS0tjAW/bCsILFsTXdZztMhuGtvI1Eb/rQy/f/DqRg2RAfvedf53tiSdUsOqzz1SgxDbn7caNseugRQt133B88IF3UMnc72Zj329ePqeMM8ujxYvVSCG9HtCtmwqKrlqlOqT8Oj+HD1f3iU8+iS0qaQtA6gGL++9X90Sv+pfXCsy24Jl5LM4/P37/2TIgg3bQOPLy4oMufitl69e7s9iHrqpKzS3tDOENwvxen38euzYGDoxf2f7yy9V1e//9sd+Z579zj/j+e3VMjj1Wfc8gQf9581SZc9ddqm6rr/brJdkApEj8SC2vAORee6nMwKCWLo1dh9OnB3+dl7lz1dRPvXoFe77fvXD+fPu8++bQ/UWL4udUXbHCXc+ePTv4qCjznD70UDWaTTd8ePycqc70FeZ5YwtATpsWm5fV4QSZ583z7gR0eB1/p0PB3G9r16p67Gmn+b9vIkGmDzM/29ZuM4P2s2ap8sF2n9P3m1cAUv/MoqL414lIDgFIESEA2SB5ZkDa0o91fgHIhQvVTXXwYBWM9GvwBplfr1OnWICkpMR7CHZFRaxSU1zszup64glVMQ9SEHkFIG0Nai9VVWoVxj59RN56K3GAZtWq5LKA0glAOgFi/fO22cb+WrPiFCQ4lui7OudDkAzI8nLVcNtxRzUnlnMeek3gbcrP986ATDT8Wrdokcgxx3j/3S9QowcDX35ZBbr0xrJ5cwoSXH37bdWLrXPmKBGJ3z/Llrkbx2YWnS0D0twuv57kIAHIb79VQ+PPOCPxc597Tl1DfhW9Fi1ij81rU2/cONdzNBrLKHKsWqUqaR9+qCrL/1uMRERUsHPuXJUVZCunPvrI3QAViQ9IJBOA9KOXv7YA5KZN8deqsy3pZEAmClZu2qSui733ji8bzGPnFywzj1+fPvHZqjZmGeychxs3+g830tmCBtOmJT6n8/NFBg2y/00/7qkEcadNU9t/wAFq0YTFi1Vwb+HCWIZQ0DLQFI36H4ulS+33Ntu1aJYJQe7njtLS2HQIDnNfJcqA1IPuXsEWr4wg2++ffVZkxAj37/QGgPmabt1E/va32LlmNgKdn7/7zr4NjsceUw0485x1Ps+rHFy8WH2+47bbVMfJ9OlqCo4xY9Sxdua7tR13Z14r2/Y7rzEbWM52mcfrk0/cP/vVkRzm/Fg6r/nwTEEyIJOdC3TWLDXNy3bbxRYE0t+jRQuRgw+O/Txpkrss0bP2zP2u1zGrqvw7yJ2yxCyLFy+OH9lg7m9nLsNRo9Tw0AsvVN/ngQfc2WlO5q5tCLZp7lxVLtkEDUCKxJf55r1ZxJ4BmazGjeM/X5+KYvRolbVlLtwloq59r/PmrruCd5yZ95i33oo93nJLtfK1M3xeRHUYL1woct55qu575pnx57czSmLAAHVMXnlF1bGC3t8//1wFURctigV4Vq4U2X9/yR00SBo5x2f8eFVn1bdPJPEQbBH3966o8N5fvXrF12cT8ZgzLyWXXho/fNuPX71048b4ukOQ+Y5F1P0uJ8VQS9CkDHP+3JIS+zljG4ItEl/Pc8qyIMkcXlmuTlvMlgF5yy2J3zeRIB21ZhkRZK7lWbO86x1+c0DaApAffKCudWP9DYZgKwQgG6DAGZB+WY3mDehf/1IZJO+9p1Yr9GvIBYnud+oUC5DYMiDHjFG9vvqwxWbN4oMqU6f6p9U7bAHISy6JXxBFbxwtWaIao6edpir0Z56p0rV/+UU1HINkQCYzJMJWOH78sQoEPPSQ+/dBMiD33jvYTTJIQZ7ou3plQFZUxB/bNWtUz/iPP6pGgJPyHvRmu2CBdwAyyPBr0+67xyZYNrfdi54VctxxKtB1zjnquw4ZIrlm73eQwMLhh8f/Tm9I2vaPfp3qlf/CQnsG5Lp17nPEr5EUJAA5ZIgKJtvm7jQtXqyuQ7+gfLNmseFVTsXlvffU6ph6RWbhQjXM7Mcf47eztNQ9DMKZx0zEXeH/6y+VMXDggbFODFvFyNlHTzyhevWff97vWwann19m9qqIqvx5zQlqC0Bu2KDOxSOOiD3v7bdF9tjD3WueqDEzfrzKDJ46NTa817adIsllXv7yi8iRRyZ+ntn4cD5DP1f1IIYtoGVmI4moazBRh1BRkTsAodMDkKn0YH/1lcqO+PhjVU45K6fqEs3H5mX2bP9y/J57VMPXZGt0JdMRZlqzxp29JxJ/fBJlQOr3fK8AlFcAwdYY1oN5Dv3aM8+3qioVBNptN7VNXgHIIOdAWZl3ANL5vq1bq+C8buNGlb1z993uxUxs9zevDsTSUtWZ4FwLO+2kAuwi6lwxv7dXANKsl9j2sZm95pelF3SO3iAZkHr507JlsPc98UQ1CsTpNNO/T4sWKnjkzDX+zTfuDu699oo9Xrgwtj9F3HXMFSv8p7q44ALVoW9mFs+da+9Q00Wjag7o8eNVEPzuu9X3cRarcDj3RbPM8+pA8wrAmMe7vFzNlXbllfHPtS1CaHICkLm5sfk2k5WXF/89nOtyyhRV3s2YoYKAJjMAaZaLXvWe779X16RTtzPvMXqwq2tX9b++0r3uxx9VNutjj8X/vqrKfcyWLQu+2Ji5/6urVftl8mTJ+fhj6fDFF7Hg9a+/xmflB8mA1AOQXtd5fr7aB8kGIJ1jmInV35NdpCRRANKWARmEmQGZDGfES7JWrLDXzcrL1bmUqB7klGV+85Y7nACkWa479yrzs9asCd7Wczjn8YEHqvvd668HC2IGyYA0mQFIfd2Js85S9bbVq+PPL+c+aZ5HP/4YdxwJQCoEIBugaq8ApFmRNCvxfgFI/Ub1xRepr3Dq6Nw5FiCpqrIH6l5/Xa266HCCE2Yj7auvVC+hY/FilcFz8cWxG7ItAGmj3/jGjFEVvSeeUAHHxx+P/e2nn4IFIP2GhZhsheMBB6hAwNlnx1ZHu/jiWO+9w5YB2apV4vl9RFQF++OPVcPbDCSNHasml/da3c8xYIAaHmmrgNoCBFOmxB5//LGqeDvPGzzY3tByVk9ctco9zMGpxC5dmtqK0998oxoEiSrPDzwgssMO6vGXX9rnHDr1VPsE/ObcU1VV6jOPPz7xXKZOA8CWiaQfbzOI5dUwdW6clZX+GSRBskv8Ml1slizxr+gVFcUqNM7zBg+2z9H3ySf2BkZpqUgkknhbnn9eNQA++kgdWxH73KDl5ercOO00ddyDrtKXyD77xLJd9LLEqcj5zUFjG4L99tsqG/ett1RgNRpVjdJp01SZ4UgUgNQzu8y57dKZM9cxZEh8+eWIRr0zIPWyWR9WFTQD8tNP44dHmYqKVGDAJhMZkHqGtq2sClJee713skO3RezHM8iIAj9mMMoMIiWTAblkiRp2Zgb9/QKQzj1y2DDv8kkPHnoFZGbPFhk3zjsAGaRxtnq1vZ6lZ4IXFalOAtMXX6jMFr9gqYh7f/bsGXvsrBDvlCc9eqh6l4g6xub3PvpoNYG+WT6YDa3zzlNzSusdXuY1ePfdKvBrqyMFnfsrUQbk2LGxxSBE7Bn/iZiLKzkZ+O3aqf/XrHHv8+23jz0+4wz3sZk1KxaUSPQdJ09WdSDbMEQzsGGrlwSZK9Q5P70yBRPZsEFNq2Gr63//vX1BD79RCw4nACkSLAvSnHNQRO0D81pwvpdeh7VlYFZUuK/Jo49Ww1j1v9uMGqWuybFjVaeAX5aeE7TYckvv59g+69NP44fup9MhtHy56x7edNEi/xFPyQYgvTLKevZUQbdUApDRaHLtpkxJNgNSt+OOquPXZu7c2HQINlde6Z19nMy8qLqKCvuxKS8PluHr1D1tHbkm5xo298+ff6p7k7lf9Wvn8MPjRxzZTJ2q2uEffaTa9v/3f4lfI+Iu+2zz9tqYAUhzCP+TT6rMc3Nu6MWLVZsqQLYyc0AqBCAbIM8h2MuXuysEZkHkF4DU5eSkvsiGQ8+AFAk2AbQTeLRldunBwbvuUhk848apHpOqquABSL0yr6dN6xPtiqhAaG0EIHWrVqlG67hx8X9bv14VfPoKZoWFwTJqFi5UDbYPPlDZAU4B+uuvqrf3nXe8AwaOTZvUHHdBMiBNH3/s7hHr1y82d4bOaz4ZPUjt3HD0obxBDRqkFk1wGgD6d7nyShUE1iuqEyfGv4c+kbbO3Af33aeyLl96SZ1nfpXZ0lJ17doqFPrN3cyA1LM1dM7NNdHN+I8/1Pn0xBOqMXLllarRtXq1OmYnnOD/eocTOHY+26+iV1gYH4D0Yw4PFFH7K8hQC71S6CyW5ZVpELT8SMa336pGujlPqvO9/QKQtgxIvVH68suqTHUqkCUl6ngNHBifTW02ePXhQubfUl3ZWvfuu+o8cs6/m29WgfuSElWmmo1W516kl816pTDBHJClXo3A776Lv5cUFaky8557VGeDfr2feqrqlIpGk8uA3HZb9f+338bPn6Vbty71AKTXvLiJ2K6xVAKZfsxgTDIZkCIqg1k/DiLejajSUnXujxunAiRjxtiflyio5xg7Vr2f7vbbVUaxLTBiWr3a3iBZvTr2fQsL3fcwkx5EtQVH9P2pZ1wdcoh7OO9WW8Xm+iors58vt94avyKwLVvmqafco0dsgd5nn3XPdyeirp2gAchEGZAi7uvQVi9MxAxkOfUGfVihXi8zM1V1q1bFyqJ0F1gQiZ+XzbFhQ7CpfbwCkLfe6v0aPTD32mvxC4slot8fbAtt5Oa662a24fg77uj+uUeP+EVnysriy5H581V5Zl6v5j3M7BRo3tydyWq7xqJRdybyTjvFP0fnZEB26OD/PNOUKfFzN6bTIWQEibt+8IE02mUX7+cHGYKtB6W8sgydjo5kA5Bz5qhrJ9X5o9Phd02tXev990suUdNjvP56ahm9222nAuU33RT/NzPIlQzb8Ony8mDD23/5RQ3l16dT+e672Hmtc64Xr1W7zf2mB1X32MPe1jOvQf1e+9VXwQKjIu7PTtQmcMqA+fPdCVG2OUR//92d9CSi7hPOQqgJkAGpEIBsgDyHYEej7huGWWD4rYKty8lJPwNSnwNSxB7MMTnBNFtPt1450Ccw/uILFYx0buJ6MMSmpEQVdmec4c7kMCs7paXBApBeqy2bqxGLJA5ArljhzhzUbdiggrB676TTmE5k4UJ31pOzMIvfqr02Tz0VbA5I09Sp7smcvW5KtgBk48Zqcn5TkF4106efqkUTnOxL/bs415R+Mwq6Gp9I/E1fXx12wgT/FRxLS72PhV8G5BlnqH1z8MHuhvjSpeoGe9xxibd7wgSVpdG7t8gNN6hA9GOPqR7bF19M/HoRd6UlUQCyqCjWKFm/PvGiULbGfWlpfAXFGY6o0xuvTvaKc53vtJM7OyWV1WmD+uUXdzDYaQTYApC33abmtzLLitWr468Zc9GbF1+0lx/m8dCzR83KVCYyIB2zZ6vvOGaMCnqccIK9cpxmBuTivfe2f35RUXwDydmH55+v7inm3IE336wadclUIJ0hwNXV/ufz0qWpD9X644/MZUCGHYB07gdbbukOkK1dq65Jr3vm+vWqE+S667wbE6Wl7nLJayGG9etVkPnII4NN4WIaOTJYEKiszN4wKytzZ0Dutpv3e/jVC/QyS8Rdr1i61N2A7NHDHdRyOl1MZsPKi744gVcg4n/D8ZvPmSO5//iHmgM26LWzYkVyGfapZECWl7vrPq1aqf/1slTPGNMzIG2cRbLSDUC2bKk6z20qKoI1wJ0yMJkyW294pzKdjR6AtG3jFlu4O7hsGZB6Z7fzfD1r0mEGWKJR1TlgnjNm/bO0NPkApN9ceLbzzqnzNGuW/FyX5sJbQYMtNsYcjwVlZRLxC0BlKgPSCcR5DUH38scf4XT26rymgPC7TlautJf3W28dC+hHIql1gjjnxwUXqGmFMsUrABkkuPv77/HTk3kNqXf2m1dHm7lf9bZev372OST9YhMisfOzS5f413q9Tr+Pmudlbq6a8s3x+eexx0EXMZo+3TsL1kAGpEIAsgHyzIAUcV+EyQzB1q1fn/kMyCCcYJpTSdT99FOssWxmU+pzszjZKF5WrFBZX4ky/qqqEs8xUloav0qaiCo0Z89WmW/6PvjxR5W54bUaYEmJdw/b+vXxDYri4mABSLOC4zQKU6n4mI0l2yrYpk2b3Pt7993jgylNmoh07x7/2iuusN+E9t8/0OZaOQtl2AKQ+s1y3brgk+Drlb5ly9yVgJ49/TNlS0vdATC9sarfYM0MyC5dVONq4kR3xWHpUhUA9Qpm2+jnQrKBaX0OlWQzIG3nzqWX+n+eM/RQ99prKoPNy5w56hg5AeXWrd3Xpt7BkWlTpriveWf/2FZ8FlGBkxtvdP+uvDz+XDQzmbyYZb0tc8Xctkz47Td34P2jj7yHDYm4G5Jdu8Yq7rYOjv81QqPNmsmfgwZJ1BlSqWva1DsA6bDda/773+QyIC+4IDak08/Spal37P3xR2rZErUdgHzmmdg13aaNe3+vXasan15B2ieeUJ0gY8d6T4Ngu/ZtpkxRgfw337Tv85491SIW6fLKgFy2LNYQLixUc+p5ZZT7BSBHj3bvC7+Mo622imUmiSRfjpuce+JPP8UWxDG1by8iIjvfe6/kPPWUWgQsqE2bkrseUmn8L1jgDiA4C1Dp93n9eujRI36uRV1JierAdVZAT9WAAd714w0bgo2smTdP1YmTWQhRf1+/doQXvQ5i20bzO5kZkMXFqv53zTXqsTPU0rYttve3TbFhPq+01F3/8gpAvvyymuJl+XLvOeuaNo1N36Jz6qSRSLCy329f6wHyREO6TV6dOV4qK9V159e+W748dpz1+7UeWHYyRPXyxkvv3rF7+R9/2IfNO8wMvCD71uT13RIFIG2vM+sLZqDcq1zUOd+9sFBlB6YTcNbZpjULmgFpKixUdSHb/cU5F2xtofLy+PJHf56trScSuz43bFBJIV7zPSY6/vpn6x1JZhygb9/Y9FoiKhnF4bWYq2nePPtUURZkQCoEIBsgzwxIkcQByDffVBe7X7rysmXpByC7d0++wugE02wXb3m5KgA2bIjv+dEDc4mGBJSUBF/1M9HQiOnT7UGEpk3V/6ecom7m+vCriy+OZYOa2XVXXeVeTEK3YYO7AVpYqHp0ggQgzeyuDz9U+zOVeVg++8z9c5AMSF2PHuq8MHvFmjePH5L0ySeqwmkbUpJOANLZ77YApF5hXrcu+FCRlSvVjf+669zz8Ymo/eO3r1eudDcW99wz9tgvA1LXtm3s8bJlcauyJSXZ80KvNC5b5t5OfYVqEfcckOvX28shfZ4zm2XL4hvto0apVbi9bNrkXtm8TRt3+WQLQObkeA/JS6ahYM7z4+yfZCqKXoGOIMyy3KvDIBrNzBBsx6xZ8e+nL+7ksGVAtm4dOz627XWCXltsIZXFxbJp3jyRRo3cz2naNL5BEyQAKZJcBmTTpiLHHpv4ecuWBQu46Ney49dfgw0JdjhZrrbgRDJD/szhkjbOsfjtN3XPc5gByHXr/DON9awEL6tW+WeTB7XLLmpbFi9WGeSFhcHuKeb0Bl7Xpd4YKipSx+P55+MXfUpEXzytuNh+bji23NJ9Dw3YWPLkBE3+9jf/xSgWLZLmQVZTTVcqGZBXXRUrZ085JTbKQj8v9QBk8+Yqq+yYY+zv9/PP6m/Jrs5tGjDAe1Gdiopg9+B167wzt7zo75vK0N+vv1aZ93/9Zd9Gs3PdrKc4AYWxY9U+HD1a/WyW3ea2+jEXoQqSATl/vpqO6Prr1VQ2zqggXd++6toeOtT9+pNOctdf/a5JR79+3mWpXvfwmiswk9avT3wfcjp59PrZs8+q47fNNmrRUhH7cTN17BirL82cKXLHHd7PNffR5Zd7Zwp7sX23d9+Nn+9a53UdOW05hxmADDIE3cyQtWX7emnSxHtKBVvbM2gGpKljR3WPSjYDUs/0N3Xtqso4vwDkuHGqM8KrLNpiC//53vVjpicmmW3GPfZwfzd9HwUNQCaBDEiFAGQDlHIG5Jdfqpvp5ZfHr86mSydTw7HVVvEByN1393+NE0zzCmj99JMqdM1hg3pF+3898p6SyXQyVzo26QsO6PSewkjEXXkRia2MaB6fyZO9e8fWr4/9rUkT9dqOHYMFIM2KXHW1dwUykalT3T/7zQHZuLFaYETnTMZv3pRatIjvTd11V/V///7ufdiypepVTZXzvRNlQE6dqoZkBlFVpRomY8fGZ6YtX+6/r+fMiTXMIxH3deKVAelVsRdJfnVAU6IFiUx+Q7DN61HPgBSxn++2AKR+ns+YEXyFQp0e4DAzIG2dEu3a2RePEPGf081krnTo7B/n+m/Vyl1m2KQbgFy9WjWsv/kmvnx1Go1+mZGpmDUrvjJsDBmr2T4R93a1aRM7PiUlseP9yy9q6ND/ggpR5x6TkxN/rhUVxXdqBAlAbtyY/CrYehawl6VLgx3DCRNUsKlrVxFnePmmTYmnK9A5DafvvotvXAfNgLzsMtUhlmjeSicAad4bTjklPgPSLysvyDQI06dnZgXVTp1UWdu+veoQdEYzJCrvzzxTLQblsC1CI+Kuh+nlXSpBNP21XnMfRyLqfNHPd7/5SINo3FgFavyOy/LlEvHLaNJdeGF622PWJ8eMsY+a0DnHqnFjlWnj0I+Jcz41aRKrB3hl3vgtNpHIv/+tPqNzZ9Vh5hWALCsLfo3+9VfqAUj9M5o0iQUD/YwerYK6Q4eqVZ5NZrlpBl+89qstkOXXoThkSOyxGYjRA5BNmqhjbwYgf/45lqE8Z459upljj1XXVePGIueco353wgnu+ehFgmXptW6tOjoSSTbYloogI9ycAKRel9x7bxUo+vVXFdR1JFqtuEMH9z7yals2biyy777u3zVvrtpZyXSo33CDqiM+9JCqey1apBZD8ZNqADJIR7TZ/tPLGT/du6v7i5nQ4LCNcPLLgLz2Wu9RM06g2S8D0lZ3Wb7cuy7uDG32C0BeeaX9tY5mzeyvd9x4Y+z614f2m/X2fv2862jJzuNq4wTk/4cMSIUAZANUbQ7T1Sud+nAos2JcVeU9/Fe3YIG9R9CLObluu3aq0DAr24luwE6QQS/k9UDLTz/Z5w/Rsw0S9S6lMu9NEHqAxGwomtvkNLST6UVfvz5WKejePVZhCxKAtFmwIFgAsls377mkRFQ2oVfAuG1bNWePcxPPyYnNuWbeVJo3j5+/03lOkybu+SELCoKtgixinyfFOYf0m4QT1NcbJp9/Hl/Z9GMGmhyJApC//hrbx1tv7T5fXn89tpquOQRbp1fw0h1imUxGq4hqUDkBND0AmZcXXwboc0CK2IeRdOoUPxWBPjdXqsOl9QBkmzbu7EZbr3GHDqoya2soOsHxIMwK4aZN7tX0WrRwV+htpk9PfcXEe+5R84Wef76aO9W8Jpzvnsnh1yLqOrPdg0xOg8QrA7KyUl0HVVVqxeR//jP2PP1a0SuSeXlq3h8zAGnLvDaDvwsWBMuAzM2NBSSCBCCXLAk2smDgQBXAmjPHPv+tzitwrZevxxzjDg7arjnT6tUqGLfjjmpbbJmrDqfOoQcXn39eLSyTTADS7z7jyNT92zwvnPLGa2GQnJxYBo1eppWVBcuAdHhl3AbRpo13ALJDB3UPCzIkMqh167w7WR3Ll0uObRoam5tvVvvr9ttT2x7zXtKsWfBsorPPdgcrbY1afd96BZXSGda+337q3jpnjvouXgFIfbVt3b//Hf+7efPsgZPeve0Zd3qwzqkndOqksrP1oJ6IGk7vNSXQ99/bA9NmANKvo1SXKJBs8svM1gOQzn3VDED6DYN17hsXXBD73R13qPd8/vngQVVd8+aJ5y1v1Ehkn30Sv1e6vDIg9QC/LQOyXTu1jWbd+9JL/e8pHTvay63jj3f/3LSpykrVOddpMqPpHnpIZa+efbZaqOvhhxO3e72GYIeRASnife2br7Ptbz9+GZDNm3vPd+jUX5Idgu03kjJRADJIEkGiAOS8ebG5HfXYgJkgsMce9gV2WrZMPBWFecwHD1ads7rbb3fd88mAVAhANkRmgaQHZ/QAZNgrjZ10krroLr/cPbm+U4iZNw2/idhFYsG0225T71dY6A6E/vBD4gmMk0lvtwk6Ia2ud2/3sFmzkT1ypPtn5+aeTABywYLYjUAvSFMNQM6f7z/xtv7+227r/zleN5J27dS5OX++mvh+8WJVIRCJX4yheXP1vZwG9223uf+ur0pou5G89pq9smx77l9/qcZVogzITFm+PH7YYI8eset42rTYse3e3X3D/fxzdcN7/33/IdidO8cqS4kajZlWVBS71vUAZGFhfPaUmQFpnoM77KDKDzMgp08qnUx2th6U0qcPaN1aBRH9An8dOqgMqYUL4ycPD1KB9PPCC7FAb3FxsFXdU10x8ckn1eeJqDLHfB/nnpHpAOTs2cGGmXtlQOr7+OijRd56K37bvQKQzjQLiTIgc3Lis2/++itxBuShh6p735FHqp9t5Yxpzpxgle68PHWNNGqUuIFjWwTgvPPiy7F//CNWhgTpoNDL+8JC/8w95/zRAxIDB6r/zQBkuos9Jbv4h1eGilegzhZMWL5c3buc+Q31MsMrM9krAzKdAKRfBqRz/iWatD8ZK1cGCkBGvDredPn56l9xsX2hF31+Li/mvisoCL4q7VlnuX+23eeDBCDTKSObNlWf6zR4ve4hXkHOK65QZY6+8NKHH7oXZXR07Wq/Zp3RDRUVscVcunRR22Y+/+ij1f3cnI/YpAfNzPcwgy9ew5XvvDO5FYb9FgsKEoD0mke2Xz9VPs6eHX++eWWCBxmCXVKSOLjYo0d8J3wq83SK+N83vDIg9bLSWTTPCTC1aOGftec38qxTJ3u5Zc7T17Rp/P3aaUsFqR/ZVFba5/A0ec1HnokMyHQCkA7nO2y3nf9n+mVAFhV5t2+dzH+vIdjz5tmzJ/3mL3Y+y5bdbFtI0qZZs8TD/GfMUNesExswF8AVUeda+/bx7xXk2jWnZtlzT3ucQbtnkAGpEIDcHNgCkBs3pjdcxGHeAPWMi/btY40+PejmFGJmZSRoAHK33VThNH++mhPFCbZ8843qefWTbgDyzDOTe37PnipDTb9ZmBmQRxzhnr8rlQCkHnjNRADyq69ijXS/Sk7jxipQFmSeDLOC4hTILVqoOTn8CnsnE2nqVJURaKS0y5VXxs4DZ/VfZ8jQXnupQMD8+fE3Sa/ew9mzE88BabJUeqv1wLOXyspYoG3HHdVn//xzbJ/qleHWre09fkcd5Z8B2ahRLEhmVi7NClAyFX0b85wrKIgd22XLYhkZhYXxz9XngBRxByAfflgFY3Ny4iv7nTrFf49IJHGD/uyzY99XDyq1aaP2md+8b06lukmT+GEaXitfBi0/9LnyggYgwxJWAHLDhmAZQ7YMyJYt48tyyzCsqF7RtA2lMQNNtmvLDDYuWZJ4qHSjRu7yLEgA0hwqGImocnj27Nj5oK/UKJJ4lVGzwfrLLyrj1SwfZsxQQdNLL01t+gJ99WURdY06n2FmQLZpE7t29P29YEFsrqdUFhdI5MMP488BrwxSr0xHc7ucwIx+rPWyyWsIdlgZkF5BECeDxdbICsp83YwZsQXbvKxYIZH/BbSjfp23+nbbgo2HHur/OU2bxpe5BQWJp65w2KZnMOllcJCGabLMe6FXEMLpLDLl5KjzWw9A2Ka0EFFlp+07Llyogkt64MC5Fsxzs0MHtY1++6JlS7XwlHOPNbcnaAZkr16qbDDnWPXSoYO701+3cmXsnpJsBmTXrmob/eqBpqBlWVGRWgBTxL7tvXrFd8wHyWju3Dm+/tC/v/fzvQKQ+jXi7D9nCHaiqa38gpO27ROJb1M456vTbm3SJDYnZjr1o6Ajemyj/swApHktmPdfmyABSFtngf66s89Wbchvv/U+70USByDN+8dhh6nRWc4Q9TZt4r/zihXqfDLn/xcJlgFpC8aVlnov/KRr1sydvbrvvioL2fTOO7H6o/O5Tkb3qFHqusrNje+gC3LtmskH229vr0Pl5NS0pXPIgBQRApCbBzMAuWSJCuKluwqiSHyl6eCDYzcbc74Oh1cGpFel3/ZZnTqpClFeXmxC2T/+EHnlFfW4RQv7XHGpBiAjETVfkC3Vv7jYPeSyVSsVdHzvPbWPu3VzVxxsc3X17BmrODqVn1QDkPpwP78ApF/Wip61YA570DnBySCZoeYwmmQq8XpFsVev+MDhVlupwOTPP8eGstxxhwpYTpwYW40w6FCNWbPcc94FyYC8/HIVBF+0SCrnzJEP779foocdFuzzHN26qcZ8QYF9n7ZqZW84VFT4Z0CK2Kc4GDxYnW96hcdruFOQ3tzmzeNv2vn5sd9VVMQaN0EyIPWhO/vsEzsO5uts2T9PPeUeJmVq0kRNUL/XXvF/c64Nv2FRejDDNo+PExArKlJZKDNmJLcKrKN58+Qq2IWFsYDX3/+e/OeZnABSJhegcdiycxxOmbl+verAchoKLVuqYIh5f3nnnfj38MqAdAQJPNgku9BJkHmE9CkA9t1XBST79VPlwRNPqLmBzeCDmZFgNlzMBuu226qy0Kscu//+2ONkJl/fckt3udG0aeyaX748Vu8QURV0p/zW97fe4EhmsQXbXFc2AwbEH1/bAmYi3vcms2xz5orU6WXTihX26yasOSA7drRnqTjlQW5u6sOwbXUJJxBx0kkiX3yhAq4zZ7pHJPxPdJddYiMXiorc9VI9a9S8TzdtGpvr1PHww/HbZnaUBg1A5ubGZ7qnmgGZDrNhn2oWfZDOji22iP88x08/ubOgnfPFFoAU8Q/GtW2r6jR//KHqVGbgK5nhym3bBi+TiopUdq7ZMSKiOkCdAEGyGZBB9q3J6zvttVes7LjqKvX/44+r+4Ats9ipDzojpgYM8D6Gjvbt1QIrZnnmN6Tdawi2GYBcsyYWqEwUgPQbJtypk/1cN4+d812PPFKdo7/95k5iCJttxGCiVbCDdOYHCUCecYYa4ad/T/N1PXuq39nmJXfO89WrveeAt9V9ttzSXe+PROI7Pb//3nvUxLRp9t+L+Acgly5VI3MSMQOQzqg605gx8Z/7yiuqfah3aqSyyrp5v91hB+9O3P/dVxiCrRCA3Bz06BErCJcvV3NrZCL4KBKflr7ddmoY1RdfqMw+G6dXqLBQzcUhonohcnL8C2yvYJo+n4NTGF16qb2ykEoA8sorVUE6ZEj8ja5lS3Vj0G/o0ajIoEHqn1Ox0bMHbPOcicS2t7RU3SiSGSKvZ1AGzYD0qzjq2Tj77+/dY5pMANKcBy2ZSnyiOfBE1PfW5+3LyVG9gXolTV9d0lk9zrawwLx5yWdANm+uAtEdOoh06SJrvCpWib6DI5kApIh7FT/bdtqCaYMHq8qpXkG1Nb4LCtyT9Hvp0CH+WBUUuI+1E4C3BSD95oDU38P8jDZt3BWyzp1VcNErgPjmm6ritOWW9uc4DWC/ycn1oJIt++ZvfxP59FMVFN9xR1U2Jmow2CSbAdm2rQpWvf++e5XcVNkyIBMtPBKUnmliBuv1a2Ht2ti9xgnSHH+8O2hnWSTHlQFpO6/NrK6gAchkpy/xC4TY7nnbb++u2DZqpBoWZpBlm23cWRaDBrn/PmRI7DvpQ82CTCXh3JuDiETcCySsXh27165c6W6I6Blu+nbolfIBA7w/y8xS2GefxMfN6aw0OwpsGZDdu3t3tpgBQlunaVFR7HjrUwLo5UVYGZC5uSqQa05Rol9LQeYjNTVt6h1E2G03dW7ttZeqb/TubQ9AdumiRi589JGqM+nz9OnlSSTiDkB26xa/3/W6lYj6XPPYFhTEB+BtWreO/26pzgGZjqAZkI6//S12LehzjnXunHheOL8A5OuvuwNwzjlulvlBApDOfurc2R48NMs+vf5mE3RET1GR+peow885pkEDkKlcO17nyj77qOvgu+9iWWv5+SrYXlQUf3ycgNyDD6p7+1tveR/nN95Qz/n1V1WOm8fO73sEzYDUA1npXA+2IdjFxaq+pJeH+uKLffu6O1KyNUIk0RDsIGzZoea137Klum/q93qvss12T3NGF1ZVqXPDxinz9GvS9hlB5rV0eE0L5Cy2JWIPQN5zjzp/E2na1B2AbNTIXnbrcQqnXZWfr647vU5lXhdOmeWMqttii/i4QuvWsZFNW2+t6g5/+1vsffVRd/8rKxmCrRCA3By0bRur0M2aFTxjIBVNm6qLVu/dM+mF66RJKqvj7rvVz36p+l6VD7PHp0MHNfzW1uBs00atRGzymxtpzz1jBbh5ozv1VNVg0b+TLeNBb+h6rVaqF37z5yeXAanzC0DqQ5kuuijxezVurCpxr7yijpMTtHM4N6sgAchU0tsdQQKQQRQVqcbwa6/FVt385z/V8Aq9x81caEIPJHsNSbdUgqLJVoz0cyDZAKS++IotwLDttvGZWM7PeoPPnLT+P/9RjVpbpqDJKwBpuxZtQ7DNDEhnqGturvsas2VA6sO1999flT/9+sVn/Gy1lQrMOPvXFoB0Grzduqnz3hYk8gtANmmiPn/AgPjMsGQVF/sHWPTh2s7zO3RQ86lmYs7SGTNUBot+XqQ7lYXNsce6f9bLi1WrYkE/51yNRFRj7eijvd9T384gQdMgq08GESRY77AF24IGePPz1dCn++8XGT8+PjOseXOVlf3GG2qeR4czvYYfv3nUbPQGooh73196aeyxfr/OzbVngOy4o/cK82PGxK4jZ4G7ROWsU/6YZbfZWHv5ZZFPPvEepmz+3haAjERix0/vQNHvy878eiKZnQNSRF0fZpmgf3YqWVxt23pnQB9/fHyZbysfunVT+2b//VWnuL4d5vmu7+eWLeMb5M2auY+5VwakvgCiVza8bVREogzIoKM39GsuETOQlygAOXSoqsu//LLINdfEft+4ceKMa78A5J13qoxWh3OOm/V551wNEoD0ogfiCwoSz4PYq1ewIKRzv0y0D20ZkGvXemd0pXrt2DjznXpNA2F+T6duWFCg7u3Fxd6LpwwerJ7jfD/z+jIzIPXrLUgAsqwsNl+o+bdktW8fX363aqXOz6++UsP2n302vlNF5zXlTdgyEYAMkgHp7B+9jPPKorMFl20LVJmcMu+pp9T/kUj83Lgi/p2DQQ0cGOukO/vs+L/rSQp+zAzInJzEnZHO/NM25vXtLIR0ySWqjTh1avyw+jZtRMaNE3nxRbUQpDMVxjffqFE5w4fHnksGpAsByM1B69axglGvRJ5yihraZc69OGlS6gW6V+XAGWIg4s6UaN9eXeTO61IJQJorWl19tbrQzcpPixYqkHDppaqxptthh9hNdMCAWMp2YaE78GLeGJzKmV4Js2TiuFZmveMO+/fQC7958/wDkM2bi/zf/9n/pvc0m/ts1ChVYZ00KT5bJicnPkg4ZEhsnp/jj4+vaCSTAWkGgpIJQGZy8Zett3av4Ni4sarM63N5LFxoD0CKeFe4bUFSvwqwLctGPwdsUwh4zQFpsm1jJBIfbHOOp15xKilRK+OKqIrqySer6yPI8MC2be0BSNtQR68MSNuxbtvWnUVmvs5sRDplQl6emvvtkUdUEO3RR9WQfP29dt89vuGvv9/xx6tsyTvvdD/Hbwi2V/mZSgCyeXP/RU/OP9/9s1/wyivD/MQT7UNXRFRvdI8e7uHcZkU73eszNzc+Y14vL/SMbPOaMst/nb6dQRqutqFnt9yS+HUiKivjtdfU+eU1tNfmmWfif5dMhumWW4qcc47IiBHqdXowYvBglZF2xBHuRqbXMCydVwbkxRfbf3/ssbGy6eKL3fveaaxuvbXIsGHu19nKs7591X3KWcRHt8suKkj41FOxTiTznDDLIKeRr1+nBQWq/HPKwGOPVf+SCTJ4TRtjO35e76t//3Q62vR9YF6feqPU7/t5Xcft2tnrNSL2e7+lIR416xb6NpnfW28wX3utPQAZJANyjz3UENTXX4/NCW2y3dcSZUAmylY84wyRxx7zD5qYzABf48b+5WrLlmofHnts/P0m0TnsNQekjV5Pc4IP220Xu4f6tRUS1fH0rPd3302cudmsmRpV8MQTahqMhx6yz4kZNADpBOL0c+fPP2OjlMz9n8kh2ImudbMMsX22bTTVxRfHd5SYn2Vuk/7zX3/Zr3X9OWbZnE4AMi/PPrJMRN0vzj1XBcT9roVkVoLOpGQDkAceGD/SI0gGpC1T16tO2LGju36bm6uSaBJlAzvXzAknqGvqo49U3cF0zjn2BWcSueEGNdrszjtjQU4RlRDw6af2ztNJk+zb4AgagIxE1Dk0caJ3wN95P50zWsNpI/boEX+uOm2y445z11m3317Vv/QsUjIgXQhANlDVenBpiy3sBeM++6iAlF6BLCxUQYrvv1dz2pmeeUbkrrtiP5srOHs1sC+5RDVkP/vMfx4+vwCk1w2oe/dYsKZnT5HTTlOPzZussw8KC1VjzaxQvvuuWtHvv/9VKwo6aeB6cMIsfJwGSKKAbb9+qnH65JPuHhGdXsGYO9d/hdgJE1Ql19S/vzswYlvk49hj1THu3t1dyYlG44OEf/ub+2fzGDgByCBz85jvncwckKlOnJ8MvWdr4UJ3sF4/L73Ow2QDkLZrUj8HbHN1tWql9nmioWVe22gGIJ1zRW+ElZSoXufbb1fznjqVO2choESfa14jBQXqnNcDI85zE2VAmtvpMPd169axYIRILIAqos7Nf/xDBWpOPz1+DptGjVT5pDMrMX36xDdg9Uq3LQPSJtUMSL1BYF4LZjnn17DxakDdemt81pTJWSBEJD44bguWO/bZR1Va/TRvru4LzhC8nj3d55F+3prXlM/iZa4h2HpHktdiQLah1eedpzIMr7vO83NERAU7jjrKPteqiHcWQocO8YszpLp4mIjqYHvgAdUb7xUg85scXkQ1Cm1l+j33qA4+mzZtVIPhzjvVtCW28u3KK+OD4Oa15tyXOnd2d9w52rZVQchTT41dd2aZc+CBsWtwyy1jmXB6BomTpfzRR6qsS2W6Aq9Ase0a9DoWenkXZMiwF71BapbTfkOw9c+0TeAvosoYswPGETQAaZY9fhmQRx2l6krPPafmAzWv+bw893brq0c7nHPj0ENVsKR7d3s9LZUMSDPgYXYmHnOMqocGDTJ5dVj4vd4vgGge49tvd/+8xRbx3yFIJt4zz6j30odx+i20kaiOd9ZZqmx97734xRy87LSTardstZUqx20LcQUJQDZtGstQ1et3s2fHHpsZmakMwfbKak7UyWTeA2z3bnP46V13xYaL+n2WeV7pdRmvxT/8gsnpBCBFvAOQyfBa3NRm4EBV7tscd5z7Z7+Ald+8rbYFDHfaKT4r2ta2Mc8ZWwakVxArL899TTZrpq71RCManGsmJ0d1untdj/n5ql3o1WFtc8MNql5y2WWqnm6eSwMGqPLSqee3bavWIdh7b/8Ma1sA0iy7b79dTUn07LPedTOHPve0V8ezea4mU6d3ApAbN6a22F8DQwCygap6+GE11PiLL1SBZGsMONF9fRiEU0nu3VsF4XRNmqhsqNGj1dCPq69WATudV8OpWTOVqeO3+pqIfyDPq5crElFBw7FjVaPLaeCYlZ9EEwTvtJPKfHSGp5x/fnwFxCx8nCBRkFXxjjpKBWy9Ghl6g+/cc92BXsehh6oK2+DB9s90VtFzmMdDLywLC93zgu2/v7sBXlgYv+qqVwCysDDx/D1mAyyZDMjaCEA2bhw7Z778UmUwOFIMQMYNwdazf0eMiH8PvYJrq9i3aqXOd73x0bhx/JAar/NR/3wR+xDsDRvU7//1L3clIycnccWwoMCeAdmoUfzUBwUF8Y2owkL7tpvzztgyIK+8UmXLTJoUbPVB3QUXxMqe7bazlzXm7/RKd9gZkHowXG/s7rFHfDln7ht92gWvIFjHjirQpjeE//lP1clhW1Vx773dk8R7zfUjoir7ega8jXPOvP66yux+8UXvfWWeg7aFBhx6mb/FFqoH/LrrVIXYoQfUbFkChYUqgGpm7pn8MjFF1PV0yy3uDEJnv5hBnHTm2GzSRA1r8mvQ24bY6bp0sXcOnH++f3B0r71UA6N5c3udQ5/3T39fnT5HpO0csL2vWc7uuKM6l667TpXlTrlqy2Tfdlt1bIIsFGTyui/Zjl/v3vbvY5aBQRdKM5l1Kz2DVd8/ZiDjww/Vfpo0SWXKTpgQ36HQrp0K9tx+e/z8jrY5wWzHyMyA7NMnFig1g0iRiKorOQvg2e4Jej0qGk1cBufkqA5wMwCQSgakuc3muWNbydvmyy9VeecsWGbyC0D63UvMc+hf/3L/vMUW8dlztkxs83O6dlXvpX/3bbaxB1tEEtfx8vNV2WqOxkmGWX5EIrFj71df+de/YvdO/dzRFxgzr6lUpkjIyVFBPTOhI1EZr/89P99+TurBl4MPVm0zWxKH+Vnmz3pntz6vsq5lS+/ph9KdEzUTAcj33lP3008+cf9+t93iEyluu02ds+bnjB2rOtl0553n3bYxr8GcHDXF09ixsSw/vX5x9NHBOhfTyYAUcbcjnHtUosXHgmZEO/wyUvX90qiRCjwmasPl5qphzmPHquvFuc/oZZeZDWkGIHNz1TFw7hcdO6rXJ6qbOXbbTWVX33qr9xRl5rmaTPbt//ZZJBr1P36biVpo1SMrOnZ0ZxzZKrVOoarPd6IHicwKnP4e++xjn68llQa2LtU5uLbfPr6Hx8zgMAsOPQDpNS+jySykg2ZABjFggKq4/vij93MefjjWgLBVsM3eO1sGpO7kk9WN6ZVXVAPjuediPaiPPx4fLPUKQIqoG+5996l9+dtv8SugmY2SuhaAFFHHU5+fyxEkAGk7982KxMMPq8Bmr172AIG+TwoKVONIn0DZqQAXFsbmR2zZUm23Pgei1zZ26hQ7xzp1ij0v6Nw1rVrFT+isr8Cenx/faNL33bbbqlVSRVTQyjb5v23bzUau+RktWqjz3ys7K5HCQjW/yyOPxGd1m5/rTI2gX39BMyBTGapcXKyu00mT1M/nnqsChS+/rB6bn23um0ceUdlLBx+sgpElJer46wH23Fx1/k6Zop6bn68qbpGImlvUDDoUFanJ8J0e5eHD3Sso62bOtAel9axO5+89esTKH69VEG2dQI0a2ctwc38ffHB8L7gz3Ua7dv5zkCUKDHnNWeho0iQ2F2KPHuq+63y2GYBMJwMyiNGjY/Mu27RoEX+vSPYeZytTbEE+83P0+7htG7xW69R17Wo/1vp9JEinoc0//qGmchCJ79BxmMfvqqtUhvENN8QHf81z9MMP1b33lFPi59W0KShQ17IZxHvxRTVE9fjj3eWsGYDcZx/3ivLDh6vglJ4R3bat+px//Ut9Nz2D2Datg/EZlbZs9+7d1VC+H3+Mn0YiCL1usmmTdwakbtddVfnmHD+R1DIgRdTogAcfVB0Tjzzi/pveObX//qpjXEQFhX/+Ofa3bbe1Z6w5Us2ATNS43WKL+PJyu+3UNBtPPOH+fZA6/c0328u/MBbrMZnHqqgodr6b9a8ePdS9c5tt3AkWeh1Fr0fpgfgWLVIf6tuvn/qnL3iYKDtWP75eATk9iOw3OsXcR+a1qLeV9ACsuT3NmsUvPCpSNzIge/a0j1I47DCVMasH2J37UOfOsZFmO+8cP0pHRJ3/nTqpubBNtmtw993d5fZll6kOko4dVUD7m28Sf5cgc0D6DePt2jUWSHaSSrwy8B3JBiD97p/FxbH7XIcOwTP799gjvhwZPlzVlTZtUuexPirClgEpolaRf+EF+/ySiYwa5f/3dKZJ0ffZunXpx0vqOQKQmwuzMbDVVrGb0CmnxDIx9EpnXp66oJ0LPEhqe7qBuEwGmvr3V6vYvvWW+tkMSOqfFWRSfpH4CoiTaaVPbOtMXJusnBw1VMycI8R5z8MOc1fszRvA9tvHV6b9MiAd++4ba4Ccf76aH2y77dRcICazIqM3PnbdNRY0GDs2PgBpGzbrRz92PsMsM6pzZzX9gCnIHJC2CqBZsdpqK/fE+AcdpG6WXu/RubM9AGlWTs3eTb/KwRNPqOCDfq3rDVB9+LLJzAB47DE1tOGhh9TPBx/sDkiKuCtNffvGApA//RT//l5DsBNlQCYaGh7ETju5M4JtPvxQDdU0s1dtq2DbpDLEsrhYXfu//aYqYeeco647r8nAzX3TpYt73tnzz1eVQycAqQeFCgvj55bdYQfVWaVXwJs0Uefuo4+qwO1ll6kKvhOcHTs2thDLkUfG748dd3QP9bJV6ryyiMxrqlEj1ePv1XBKJOgK74kaRYkywHXm5O5m4yBTq4x7ueoqdc/zOt+Li+Ovw2QDdmadIyfHHuwxGz5+GZC2oaMiKjD2+OOxldq33da+TXqjLdUA5I03qnNuu+28h86WlMQe9+kTaxi3axefLWz7/n7BYdODD8aPfBBR+8D2PuZ8kLYyydwmPZDktRiNrm9fdc/+X2M7b906sdawTjrJveCJnylTVJnlXDv6dldVBc9CN8/rVDMge/WKjVJ58MHY7/Pz3efo00+rzPP+/VV9Rg9AJuK3uJJfwGDIkFiQ1ckgato0FhRo0cI+f6Ctfhikkdyvn+qAfvZZlWXuyEYAUv/ZLLNvvdVev9HPHT2g0aGDCh4/+aTKhMukRGW83lERJADpV7cwF6sx60u26TYiEfcw0SZNMh+AdAJEmQhAeikri28HOeel/nvb9SASC0B6/S2RwkJ3YDTIvT2dRWhE3O0Bp6MhUQAy2c5xr/tnixbu6ynR5yaSkxPruDUzxZs1U0O3naxVp8Nx773VvzB4ZQEHoe/jIPfRBo4A5ObCbAzoQ6EuuEBNvNyqVXz2j37jChKA9FrkICj9JmBmySQrElEp3bfcoip95nxS+rYGDUCanEK4f3/VMJkxI36+nWQMHqwCVE5mjOO55+IrDWaw1tYDnSgD0tS2bXxvvs4vA1Jny34xgwyJgjEPPaRuPDvtpIKbtcHrZhkkA9LG/I5m4/nGG2MBSNswpE6d3KtbOxUTfXucDEid33W4667xN/LddlPn7bffxq90rjMDkE2bqgyOdetUw3bw4Pj55fTvfMIJIi+9pB7bhqAHzYAMO0DjZddd4xewEolv/KYS3OjSxT6UuXlzdR7pw4b9BCmDmzZV3+ONNxLPbeisXKsHIJ1jdPrp6p+ImrPn3/9WGUHHHSeycqUqv80MLBHVWZIoAHnccWreXKcTwmFrlG+1lTsAedRR3qvepqpRI3WtmXPzOlNrpNN5ZpbtYa/q2bq1yljdd197R1Pz5vHXYboZkO3aBQt26Z0hQSf579ZNLXRz1VUqs85ryJVe6U91H7dpk7ijwulkEXEPG7NlgKa7gFOiFcBtn/f002rUg1fg3dwmPZCkZ6iaC0c5IhF1bzvkEBERWbj33pLEjM925qgbMwAZJAPS2TZd0AxIv6CI1ygiERUMcBZYmDzZ+z1sUh2CfdRRal7jZctiU5989JGqW/7tb2of6FNrOPOSB5kiwMupp6r30Y9DMvN8p8qWAekwj5nXd/EaedW+vbp+g85PmYxEdRj9PuN17h17rFqBV8R/fjuv1bIdtnlct95aZYM6baNmzbwz85Nd/Tk/X50rzjx7fnMppmLUqFgyxJ57xm+3c46aGWk2TZt6j35IJYMtlSHYttXa/QKQtra6WS41aeK+HybbOW5edzfeqOp0l1yihpo7kp0OyY9ZHjZrpuqv5eWqrEk0TU4mBB0taRPkfNuMEIDcXJgFqJ5mXFyssgeSfQ+bdDMY9QBkkybpBSCd7fFaLTqVIdgiarGaW29Vwx91ZtAwFZGImiumf393VmWQDC9boyvZAGQiQQOQtp7v5s3VsKXbbw8WHOjUSfWo16ZMByBF1FCAhx6yL+q0++5qSNhrr8XPkWjbHuec1c/X4uL456UyVMicJ8rGFoBs3dq9qp1fo+mYY9TnzJplvy4LCoLNAZlq9lJYgmZAiqiG/733qorakCGx37dsaQ9AJhtsDbrC3ogR9iCwzR57uBdKsV0DO+2k5uJ1mHMp6czjaQuiFBerfWWWMbbn9ugRG6Iuoq4nkdQ7lry0aeNuGA4YEPusdHXsGJuPOUhnXyYMG6aG05orUBYXq3uO3gmYbgDSa45FvSHVvLn73mHer/waut26ec+l59AbXGGWIcOGxcpEfR5l2z7wa8Qec4y6BkTUPch2bacyJOyUU/wXnfLLgNx/fzWEf84c/87Kgw8WueEGqZ40SWYfeWT6AUhTqhmQpqAZkH5zqB1wQGzuOa9FBkWSD1h4HVt9nkOvv5sdibvvHjuXRFTw6rzz1OJiTqasuX2NGiWX8WN2ftVGBqR5HevHzrxXJBuATGVe2KASXbf6fOxenQxjx6o6Q9Om8Vn1Oq/sPodtHuW+fdWohv/7P9UZaJtGwRGk3bfnnmrOUxHV8fm/zgkRiW/fpBuAHDdO7b8ttlBlsVdwTT93vDLSbAsrOlJdVDAR8/s71+A++8RWfR88OPjrReLb7x06iPzxR+Jt8WJed6NGxdrAzvRQIsl3kPkxr5mmTdW5Y04bEaZE15IfMiBdCEBuLvQARePGanhrsrwaRXpPSrpzgeiBlY4dY429MOYATGUItoiaR01f2CEMieYTC/oac7+lO+dEqgHIggJVyRsyxB10qWu8Kgd+Acj27f0D+Mcf7z8s/8IL3Ss467waPXqjPT8/8QTTmWKWAbbzya/CEYn4ZwgXFdmHV5vzlmU6sJQuswHj12g7+mh3D7HDKyCSbAAyjIqN2bmRStbWK6+obNnRo9XwVX0OLq/GWF6eavSUl8d+Zzu/zEWYwtK6tXuV1FTnLLZ5/301v+DAgfYhcWHIyVGdIwsWqM4hh3POFRWFH4DUp+rQVyoXib+Oks20MekdmmEGIK+5RjXuevZ0DzE290Ek4j9E7cEHVR2oXTtVBtqy09OZk8qLeX3rmWyRiH2BPJsrrpCqSy6Rsnfeydim1Rg4UGT6dPV4r72CZ0CabB3r5rnRuLF/MG30aDUVRePG3h3etvdNxOvY6vMcpioSiV/53byfN22a3uek2+EdRE6OOzivf6YZEE0mANmkSbgjLRJlwu23X2y0hZ6MYL6HE5Dyoy1IVX3IIfGrz7ZpozqXV66M/W6bbdR9X+/YS2du4gkT1EiB7bZLvBpxugHIli3dwXYR1Vny8MPuER8DB8ZGWHhtU05OZgOQQepOXt//rLPU3I4rVviPVNKng3HqEmaQt3379AKQ5vfQkxP0jrJMXkPmccjE1EvJ0hfmPOig5F7bqpVE27aV9dGo5LEKNqtgbzb22EPNxdWnj8h336VWqfDKgPzwQzXf0OjR9lT+ZOhDBXr0UNlSvXvHJvHOJL1RHXTVwtrSuLFqfGy5ZfDeHa95r8z3TYdZgQsagAyjkRQGr8agXpE1GxGzZoUXVPUavqAHIBs3Tn+elaBsGZCmZI/1hx+qStL//Z96/+23dweUqqvjGxJ6R0eqq8ZmktnYDVq+6pOVe5VBQfanXhHyWxU6VeaquKkEb44+Wg3xP/XU+CkV9B5zkxn0tjUGUlmdNBXmuZbJAGTfviqI4QxLq03mdeycc3r5nuwxN+8VXgFIfS5TW2Bel24AsrYyILt3F/n0U9UxpTeSzH3QqZN/oKxtWzV09rnnvDuZwri3+mVA1hXXXafOnQED1NB7s7M1aADSVnbk5rpf36WLf2O3eXM1Mub11/3Pq2QbzF7HNqzFC2wByGQ995yqu/tlwIfJL+iZTACyQ4f0g7ym995T99Jrr00ciLrxRlU/GDTIu4M6qBEjpPqww6R0q62kypk+4q231LZcf72qX5nXuG11e1sA0plSJ5Ett1RZwg8+mHi/ZnIOSMc//qHmpNXr6hdcoDIxd9/dPTe7rnlz73ZtKtdHJKJW4d56azVFmI1XGdKokbq+Jk70vxfuvbf6vtttp55vk+59w9ZJY5PJAGRdaEeefLKKpey8s3shxyBuvlk2LVggkx59tO7FHLKADMjNRW6uqhylwysDcq+91PxLmaCnNzdqpLKl0plT0c+tt4p8/bXaN7bVz7LtrLP8h1WIqB7sa65R2USpLHCRrKA3HXPun7pw4wjiyCPdq1Y69AqT35xDmeZ1864rAUhbJTrZY33AAe6Fa/Ly1GrWf/+7+tmW2bvvvmp44rRp8T3d2ZBqIOqpp9QCM1tuqYbu6auzOoJU4B57TPXgt2mTuMxIhdlgSDfwFom4h5f6zRPUqpV7ZVKvOSAdYTReHOY90NZIq4/MMsw55/SASbIZkOY54zU64vrr1YJU228fu+a9ZDIDMux5Nm3MAGQy54/X/gs7A7Jx47p5/27eXAV5vQQto7yym/QsezMDP1XJBrT8MiDDkIkA5Iknqn+1Sc8mylQAMt3RXDaDBqnF5ILo0CF+IcdUNWokVa++Kp+8844Mcc7lww5zL3jZrp177togAcjFi8PZT+kmSgSVn69GHpg+/FDNlXrYYSqYvtVWahj655/HpklJZzsvvlj983PDDSrT/Lbbkn//SMR/egyR9IYSi/h3tPTsGRspYnZep6Mu3IcaNUo/lgIRIQMSyaiNTCN9CHbYAbXWrdUCH999l9l5KmrTeeeJLF8uctFF3s+56y51s7DNMZgs85h4LXjRooU7I6Eu3DiCyMtTGSd+q+KaQbcwz1Ovyp0ZgMzkRM9+zACkLaMjE8f61FPVAgcFBfa5KSMRNd/gX3+5swizJdVgxrbbqrnUPvzQOyMiSCW3WzcVxP3ii/ACK++9pxqkhx+emUrlgw+q9+nUKbaQjY15ztnK6v33V4275s3d81BmmnkPbCi92GbD3LmG9es73aCzVxbdzjuLzJunhoAnmmqlvmRAekknAOlVroadAdmuXeYzwWqDX7bhiy+q7zhypPd5qTfQ9ZXDa1Mmh34GYZYDYX1OmPwCkF73Rq8MyM2JmTQQJAAZ1siDdIZ6Z8IBB6iFpZwO4UhElRkLFtTeNlxxhcjSpcHn6Q5iyy1jj9OdZ9qvPvDss+r9+/fPbGdEthafRCgIQCK4MDNLHHqlrzYy+iKR+lm51iXa/tGj1RDHMLI8vYIjkYg7oFJfApAOvyFn6a5amgxn5c/8fJE334z9Xp9jpXFj9e+001Sjy5lQPgxBKpyZONa5uWqi8vJy1fPspa5cu+kE/Zzv0K+fOtapvlfY+2LQIDUf3ZtvZuaz2rZVQdN58/wDMeY5Zzu/cnJUgLSkRAUjw2JW2vUVgeszM9DgVPT1e3C692O/gF/Q8yndTlB9GHNtddrozA6lHj2Cv9Yr+Bpk1ftk6UGc2ljJuLYdd5xapMJZKTcRMiDrNr8MyPHjVcfGsGHeQRcCkPF13i5d4p/jtZp0Jrz6qjoO++8vsssumXvfVNmu1dqub2b6815+WV3TPXv6L0IWhN8q3LvvLrJkichnn2V2/YZGjdQoidxc96KIqJcIQCK42qiM1GYG5OYkjEV8RPwrIHqlLts9msnyC0DWZuZMTo4aZlZS4l44yjYH4mOPiZSVBVthPFVBek3z89XwWpH0p08I67zNtEzMBRiJxI716NHqd2Eey1Rk+nhEIonLeTMA6RdwCft8MQNg+mTv9VmQIdj6/MypyETHRLp1kKefVgH+du1ELr00/e1JVpB51rzstJOa7iYSiQXEEg1ZT1V+vpqORMS9iE5DkkxZkakApJ7BE2TUTbYDkLWxiEwm6AFIswNvxAjVceY3V2GjRvHBns09AGm7z4ZZjx86VNV9Pvyw7nQs25x7rvrfNjKnrttlF5Fly9RQ+3SP5dq1sce24xVWXezxx1XnkXMcUG8RgERwtRFEMueARN3mF4DUK4LpzjdS2+pKBqSIurmbDYNnn1WBmxYt3BWhsDsJgg65efll1QNaHytpqcjUYiSRiGr03XWXml8pzGzW+qK2FpgJwhwFUF8yhBIJMgQ7lQCk0+jv1k1NqZCudOsgu+6q5vCaNy87Wfnm/TKZAGQkojJKlixR2794cfKT4CfjtdfUZ/lN71LXnHGG+j/TgdlMBaPOPlt14uXkBJu7uD4uQpMNegDSFgxJ9D0ikfh7+OYWgAySSR12GzDdVddrw333qbI3rLUJwtakiWo77LWXWuBVJLbaejLWrYs9ru02UX0pl+CLACT8OYVs7961M9ystodgIz1BMyD1yf/rA79hZ5lc+TZV/furRui8ebUboAnaaI9E6ubKqWEJo6wKY3L3+qguBSAbKq8h2OkGIIcNE/nzT7VIXarl5l13qf+33jp+9fRUtGxZN8pwEfecXEHk5MTuTe3bh9tYr49l+EMPqWkdMh2YTXfuUUdxsboe5s0LNlVEtjMg60tDXw9ApsosE+rbuZ+uICu01/XgYG1pCHWz3FyR6dNF/vgjtXkm9XMh3fkksVkiAAl/F10k8u23sdWiaxMByLrP7xjpGZD6nIX1QX2ofHbqVPuTMrdpE+uIuOSS2v1sbJ7q0vQNBx8c254nnsjutmRSmEOwu3dPL0PiggvUQnHffdcwRkU40yrstFPDnF8xmyIRkW22yUygxFmIrkcPdawypVkz91ykfryGaROA9JbqsTcDkJkKOtcXp5wSq7O//LL9OfrK8Kj/8vOT7wRzXHFFrH7wzDOZ2yZsNhpAbQ6hikRqd0LgCRPUUK2cHFXAoW7T5+w06QHI+lZxadpUNTqmT49fobe+DSfPpEhE5JNPVDBg332zvTV1R/fu6t/cuZRbmVaXOqKaNxeZMUNlMO29d7a3JnPMQINtCHa2yr1IRK2U3VDcfruq4+y6KxlFddn//Z/IgAEiffuGs9BPEF4djKyC7ZZoCHYQZgAy3QWv6pt27VSm+tKlInvsYX9OfavHIzw9eqi5JNeubVj3Z9QaApCoWw47TOSjj9Swu+7ds701SMQvAHnXXWpVXxGRm2+ulc3JqPfeE/n8c5FDD3X/Pt3FGOq7li1FDjww21tRt+TmqvnZvvkm/nxBeoIMDatNXbrYVwitz8zAg5PlqQd/N/dyL1Py8kQOOijbW4FEcnODDZMOextswsqAND9vcw5Abm4ZkCIqG84vI+7kk0XGjFGByIceqr3tQt20zTbZ3gLUYwQgUbdEItmv9CE4vx7R/v1F3n1XNVydQGR90q5dbDVnHQ1x2HTqpP4hswYPjj12hkUis8yAhpPxlclVsAFkRm3NYVpfApC6TAQgCwrqzwrgtal9e9Up/8cf9roxAARUx1ILANQrfhmQIiobbMiQhjXU7PDDY48vvzx72wFsDtq3F/n0U5EHHhC5+OJsb03D5BVoIAAJZJdtpfTamgu1vgThbrst9vjkk1N7Dz0AucUWDavOmkm77y5ywgnZm5YAQINABiSA1G2Oc8L07Cny+usiv/0mcvbZ2d4aoOEbMED9Qzi8Ag3nnSdy2mnq8Rln1N72AFAmTlSLPFxzTex3tRWArC8ZkOefr/ZJhw4iu+2W2nvoAbVWrTKzXQAAKwKQAJIzapTIk0+qx5vrQiRHHpntLQCAzPBapXrECJEVK1Q20Ekn1e42AVCLPYwdm50AZJMmtfM56crPF7nwwvTeY/362GNnES4AQCgIQAJIzrhxapGCrbcW2XPPbG8NACAd+mq7bdvGHufmilxySe1vDwBvtRWA3JyGIa9eHXvstfo4ACAjCEACSE7LliJ3353trQAAZEJBgciECSKvvCJy9dXZ3hoAfghAZh4BSACoNSxCAwAAsDkbPlzkpZdEtt8+21sCwLTzzrHH224b3ud07x573LVreJ9T1xCABIBaQwYkAAAAANRFL7wgcvrpIrvsEu6CXG++KXLWWSIDB4r07Rve59Q1mzbFHhOABIBQEYAEAAAAgLqoZ0+RTz4J/3P69hX57LPwP6cuIwAJAKFiCDYAAAAAYPPTrVvscY8e2dsOANgMEIAEAAAAAGx+XnxRpE0bkX33FTnuuGxvDQA0aAzBBgAAAABsfvr1E1myRCQ3N9tbAgANHhmQAAAAAIDNE8FHAKgVBCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEplEqL1q9erWIiBQXF6f14WvWrJGPPvpIRESOPPLItN4LAAAAAAAAQN2TUgCyRYsWkpOTIz/++KNst912cX9ftGiRXHnllRKJROTxxx/3fJ958+bJ0KFDJScnRzZt2pTKpgAAAAAAAACow1Iegh2NRj3/tmrVKhk/fryMHz8+7fcCAAAAAAAAUH/VyzkgH3zwQdlhhx2kuLhYiouLZa+99pJ3330325sFAAAAAAAAwFAvA5CdO3eWm2++Wb799lv55ptv5IADDpCjjjpKZsyYke1NAwAAAAAAAKBJaQ7IbDviiCNcP99www3y4IMPypdffil9+vTJ0lYBAAAAAAAAMNXLAKSuqqpKXnrpJVm7dq3stdde1udUVFRIRUVFzc/OKt6VlZVSWVlZK9tZW5zv09C+F1CfcB0C2cd1CGQX1yCQfVyHQPY19Oswme9VbwOQP/30k+y1116yYcMGadq0qbz66qvWFblFRG666Sa59tpr434/ceJEKSwsDHtTs2LSpEnZ3gRgs8d1CGQf1yGQXVyDQPZxHQLZ11Cvw3Xr1gV+br0NQPbq1UumT58uZWVl8vLLL8uIESPkk08+sQYhx4wZIxdddFHNz6tXr5YuXbrIIYccIsXFxbW52aGrrKyUSZMmycEHHyx5eXnZ3hxgs8R1CGQf1yGQXVyDQPZxHQLZ19CvQ2eEcRD1NgDZuHFj2XrrrUVEZNddd5Wvv/5a7r77bnn44Yfjnpufny/5+flxv8/Ly2uQJ4BIw/5uQH3BdQhkH9chkF1cg0D2cR0C2ddQr8NkvlNaq2BHIpF0Xp5R1dXVrnkeAQAAAAAAAGRfWhmQffv29fybE5zMzc1N5yOsxowZI4MHD5auXbtKeXm5TJgwQSZPnizvv/9+xj8LAAAAAAAAQOrSCkBGo9FMbUdSli1bJqeeeqosXrxYmjdvLjvssIO8//77cvDBB2dlewAAAAAAAADYpRSAHDhwYFaHXz/++ONZ+2wAAAAAAAAAwaUUgJw8eXKGNwMAAAAAAABAQ5TWIjQAAAAAAAAA4IcAJAAAAAAAAIDQZD0AuW7dOhk3bly2NwMAAAAAAABACLIWgCwvL5cbbrhBunfvLpdeemm2NgMAAAAAAABAiFJahCYdK1eulDvvvFPuv/9+KSsrk2g0mtUVtQEAAAAAAACEJ60MyHnz5skFF1wg2223nTRr1kxatWolu+yyi9x0001SVlbmeu6aNWtk7Nix0r17d7nxxhultLRUotGotGnTRq6//vq0vgQAAAAAAACAuinlDMhJkybJscceK2vXrhURkWg0KiIiP/zwg/zwww/y9NNPy8cffyzt27eXzz//XE4++WSZP39+zfM6deokF198sZxxxhnSpEmTDHwVAAAAAAAAAHVNSgHI5cuXy/Dhw2XNmjU1vysqKpJGjRrVZD7+9ttvcu6558ro0aNl0KBBsnHjRolGo7LlllvK5ZdfLiNHjpS8vLzMfAsAAAAAAAAAdVJKQ7AfffRRWblypUQiERk2bJj8/vvvUl5eLqtWrZJFixbJeeedJyIir7/+uvztb3+TiooKadq0qdx7770ya9Ys+cc//kHwEQAAAAAAANgMpJQBOXHiRBER2XPPPeXFF190/a19+/Zyzz33SHl5uTz11FOyYMECadGihUyZMkX69OmT/hYDAAAAAAAAqDdSyoD89ddfJRKJyDnnnOP5nAsuuEBERCKRiFxwwQUEHwEAAAAAAIDNUEoByFWrVomIyNZbb+35nJ49e9Y8HjBgQCofAwAAAAAAAKCeSykAWVlZKSIizZo183xO06ZNax63b98+lY8BAAAAAAAAUM+lFIBMViQSqY2PAQAAAAAAAFDH1EoAEgAAAAAAAMDmKaVVsB2jRo2SoqKitJ8XiUTkww8/TGdTAAAAAAAAANRBaQUgv/nmG9+/O0Ov/Z4XjUYZog0AAAAAAAA0UCkHIKPRaCa3AwAAAAAAAEADlFIAsrq6OtPbAQAAAAAAAKABYhEaAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAIQmpTkgr7vuukxvh1x99dUZf08AAAAAAAAA2ZVSAPKaa66RSCSS0Q0hAAkAAAAAAAA0PCkFIEVEotFoxjYi08FMAAAAAAAAAHVDSgHIjz/+ONPbAQAAAAAAAKABSikAue+++2Z6OwAAAAAAAAA0QKyCDQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAAIDQEIAEAAAAAAAAEBoCkAAAAAAAAABCQwASAAAAAAAAQGgIQAIAAAAAAAAIDQFIAAAAAAAAAKEhAAkAAAAAAAAgNAQgAQAAAAAAAISGACQAAAAAAACA0BCABAAAAAAAABAaApAAAAAAAAAAQkMAEgAAAAAAAEBoCEACAAAAAAAACA0BSAAAAAAAAAChIQAJAAAAAAAAIDQEIAEAAAAAAACEhgAkAAAAAAAAgNAQgAQAAAAAAAAQGgKQAAAAAAAAAEJDABIAAAAAAABAaAhAAgAAAAAAAAgNAUgAAAAAAAAAoSEACQAAAAAAACA0BCABAAAAAAAAhIYAJAAAAAAAwP+3d+dRVpRn/sCfht5AQWRrQEAhiRoV0YALwQRRBJFjJKJGRUQzLjE4CsyowfwUHONgJMYo4pZEcQK4BXA74ARBQCKitKIoismIGpUliOzaNHT9/jDcdNuL4KG46ebzOafPubfet2491fc+x+brW7eA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDUCCABAAAAgNQIIAEAAACA1AggAQAAAIDU1MoAcvTo0XHUUUdFo0aNomXLltG/f/9YunRptssCAAAAAL6kVgaQc+bMiSFDhsSLL74YM2bMiNLS0ujdu3ds2rQp26UBAAAAAOXkZruAr+OZZ56p8Hz8+PHRsmXLKC4uju9///tZqgoAAAAA+LJaGUB+2bp16yIiomnTplWOl5SURElJSeb5+vXrIyKitLQ0SktL0y9wN9p+PnXtvKA20YeQffoQsksPQvbpQ8i+ut6HO3NeOUmSJCnWkrqysrL4wQ9+EGvXro158+ZVOWfUqFFxww03VNo+adKkaNiwYdolAgAAAECdsnnz5jj33HNj3bp10bhx4xrn1voA8rLLLovp06fHvHnzom3btlXOqWoFZLt27WL16tVf+QuqbUpLS2PGjBlx0kknRV5eXrbLgT2SPoTs04eQXXoQsk8fQvbV9T5cv359NG/efIcCyFp9Cfbll18eTz/9dMydO7fa8DEioqCgIAoKCiptz8vLq5MfgIi6fW5QW+hDyD59CNmlByH79CFkX13tw505p1oZQCZJEv/+7/8eU6dOjdmzZ0eHDh2yXRIAAAAAUIVaGUAOGTIkJk2aFE888UQ0atQoVqxYERER++yzTzRo0CDL1QEAAAAA29XLdgFfx9133x3r1q2L448/Plq3bp35eeSRR7JdGgAAAABQTq1cAVnL75sDAAAAAHuMWrkCEgAAAACoHQSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqBJAAAAAAQGoEkAAAAABAagSQAAAAAEBqamUAOXfu3Dj11FOjTZs2kZOTE48//ni2SwIAAAAAqlArA8hNmzZF586dY9y4cdkuBQAAAACoQW62C/g6+vbtG3379s12GQAAAADAV6iVAeTOKikpiZKSkszz9evXR0REaWlplJaWZqusVGw/n7p2XlCb6EPIPn0I2aUHIfv0IWRfXe/DnTmvnCRJkhRrSV1OTk5MnTo1+vfvX+2cUaNGxQ033FBp+6RJk6Jhw4YpVgcAAAAAdc/mzZvj3HPPjXXr1kXjxo1rnLtHBJBVrYBs165drF69+it/QbVNaWlpzJgxI0466aTIy8vLdjmwR9KHkH36ELJLD0L26UPIvrreh+vXr4/mzZvvUAC5R1yCXVBQEAUFBZW25+Xl1ckPQETdPjeoLfQhZJ8+hOzSg5B9+hCyr6724c6cU628CzYAAAAAUDvUyhWQGzdujL/+9a+Z58uWLYtFixZF06ZNo3379lmsDAAAAAAor1YGkAsXLoyePXtmng8fPjwiIgYPHhzjx4/PUlUAAAAAwJfVygDy+OOPj1p+7xwAAAAA2CP4DkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNQJIAAAAACA1AkgAAAAAIDUCSAAAAAAgNbU6gBw3blwccMABUVhYGMccc0y89NJL2S4JAAAAACin1gaQjzzySAwfPjxGjhwZr7zySnTu3Dn69OkTq1atynZpAAAAAMA/1NoA8te//nVcfPHFceGFF8YhhxwS99xzTzRs2DDuv//+bJcGAAAAAPxDbrYL+Dq2bNkSxcXFMWLEiMy2evXqRa9evWL+/PmV5peUlERJSUnm+bp16yIiYs2aNVFaWpp+wbtRaWlpbN68OT755JPIy8vLdjmwR9KHkH36ELJLD0L26UPIvrrehxs2bIiIiCRJvnJurQwgV69eHdu2bYuioqIK24uKiuLtt9+uNH/06NFxww03VNreoUOH1GoEAAAAgLpuw4YNsc8++9Q4p1YGkDtrxIgRMXz48MzzsrKyWLNmTTRr1ixycnKyWNmut379+mjXrl387W9/i8aNG2e7HNgj6UPIPn0I2aUHIfv0IWRfXe/DJEliw4YN0aZNm6+cWysDyObNm0f9+vVj5cqVFbavXLkyWrVqVWl+QUFBFBQUVNjWpEmTNEvMusaNG9fJDzfUJvoQsk8fQnbpQcg+fQjZV5f78KtWPm5XK29Ck5+fH126dImZM2dmtpWVlcXMmTOjW7duWawMAAAAACivVq6AjIgYPnx4DB48OLp27RpHH310/OY3v4lNmzbFhRdemO3SAAAAAIB/qLUB5I9+9KP4+9//Htdff32sWLEijjjiiHjmmWcq3ZhmT1NQUBAjR46sdMk5sPvoQ8g+fQjZpQch+/QhZJ8+/KecZEfulQ0AAAAA8DXUyu+ABAAAAABqBwEkAAAAAJAaASQAAAAAkBoBJAAAAACQGgFkHTNu3Lg44IADorCwMI455ph46aWXsl0S1AmjR4+Oo446Kho1ahQtW7aM/v37x9KlSyvM+fzzz2PIkCHRrFmz2HvvvWPAgAGxcuXKCnM++OCD6NevXzRs2DBatmwZV111VWzdunV3ngrUCTfffHPk5OTE0KFDM9v0IKTvo48+ivPOOy+aNWsWDRo0iE6dOsXChQsz40mSxPXXXx+tW7eOBg0aRK9eveIvf/lLhddYs2ZNDBw4MBo3bhxNmjSJf/u3f4uNGzfu7lOBWmnbtm1x3XXXRYcOHaJBgwbxjW98I2688cYof29ZfQi71ty5c+PUU0+NNm3aRE5OTjz++OMVxndVz73++uvxve99LwoLC6Ndu3Zxyy23pH1qu5UAsg555JFHYvjw4TFy5Mh45ZVXonPnztGnT59YtWpVtkuDWm/OnDkxZMiQePHFF2PGjBlRWloavXv3jk2bNmXmDBs2LJ566ql47LHHYs6cOfHxxx/H6aefnhnftm1b9OvXL7Zs2RIvvPBCPPjggzF+/Pi4/vrrs3FKUGu9/PLLce+998bhhx9eYbsehHR9+umn0b1798jLy4vp06fHkiVL4tZbb4199903M+eWW26JO+64I+65555YsGBB7LXXXtGnT5/4/PPPM3MGDhwYb775ZsyYMSOefvrpmDt3blxyySXZOCWodX75y1/G3XffHXfeeWe89dZb8ctf/jJuueWWGDt2bGaOPoRda9OmTdG5c+cYN25cleO7oufWr18fvXv3jv333z+Ki4tjzJgxMWrUqLjvvvtSP7/dJqHOOProo5MhQ4Zknm/bti1p06ZNMnr06CxWBXXTqlWrkohI5syZkyRJkqxduzbJy8tLHnvsscyct956K4mIZP78+UmSJMm0adOSevXqJStWrMjMufvuu5PGjRsnJSUlu/cEoJbasGFD8q1vfSuZMWNG0qNHj+TKK69MkkQPwu5wzTXXJMcdd1y142VlZUmrVq2SMWPGZLatXbs2KSgoSB566KEkSZJkyZIlSUQkL7/8cmbO9OnTk5ycnOSjjz5Kr3ioI/r165f8+Mc/rrDt9NNPTwYOHJgkiT6EtEVEMnXq1MzzXdVzd911V7LvvvtW+Jv0mmuuSQ466KCUz2j3sQKyjtiyZUsUFxdHr169Mtvq1asXvXr1ivnz52exMqib1q1bFxERTZs2jYiI4uLiKC0trdCDBx98cLRv3z7Tg/Pnz49OnTpFUVFRZk6fPn1i/fr18eabb+7G6qH2GjJkSPTr169Cr0XoQdgdnnzyyejatWuceeaZ0bJlyzjyyCPjt7/9bWZ82bJlsWLFigp9uM8++8QxxxxToQ+bNGkSXbt2zczp1atX1KtXLxYsWLD7TgZqqe9+97sxc+bMeOeddyIi4rXXXot58+ZF3759I0Ifwu62q3pu/vz58f3vfz/y8/Mzc/r06RNLly6NTz/9dDedTbpys10Au8bq1atj27ZtFf5RFRFRVFQUb7/9dpaqgrqprKwshg4dGt27d4/DDjssIiJWrFgR+fn50aRJkwpzi4qKYsWKFZk5VfXo9jGgZg8//HC88sor8fLLL1ca04OQvnfffTfuvvvuGD58eFx77bXx8ssvxxVXXBH5+fkxePDgTB9V1Wfl+7Bly5YVxnNzc6Np06b6EHbAz372s1i/fn0cfPDBUb9+/di2bVvcdNNNMXDgwIgIfQi72a7quRUrVkSHDh0qvcb2sfJfd1JbCSABdtKQIUPijTfeiHnz5mW7FNhj/O1vf4srr7wyZsyYEYWFhdkuB/ZIZWVl0bVr1/jv//7viIg48sgj44033oh77rknBg8enOXqYM/w6KOPxsSJE2PSpElx6KGHxqJFi2Lo0KHRpk0bfQj8S3MJdh3RvHnzqF+/fqW7fa5cuTJatWqVpaqg7rn88svj6aefjueeey7atm2b2d6qVavYsmVLrF27tsL88j3YqlWrKnt0+xhQveLi4li1alV85zvfidzc3MjNzY05c+bEHXfcEbm5uVFUVKQHIWWtW7eOQw45pMK2b3/72/HBBx9ExD/7qKa/R1u1alXpBolbt26NNWvW6EPYAVdddVX87Gc/i7PPPjs6deoUgwYNimHDhsXo0aMjQh/C7rarem5P+DtVAFlH5OfnR5cuXWLmzJmZbWVlZTFz5szo1q1bFiuDuiFJkrj88stj6tSpMWvWrErL47t06RJ5eXkVenDp0qXxwQcfZHqwW7dusXjx4gr/8ZkxY0Y0bty40j/ogIpOPPHEWLx4cSxatCjz07Vr1xg4cGDmsR6EdHXv3j2WLl1aYds777wT+++/f0REdOjQIVq1alWhD9evXx8LFiyo0Idr166N4uLizJxZs2ZFWVlZHHPMMbvhLKB227x5c9SrV/Gf8fXr14+ysrKI0Iewu+2qnuvWrVvMnTs3SktLM3NmzJgRBx10UJ24/Doi3AW7Lnn44YeTgoKCZPz48cmSJUuSSy65JGnSpEmFu30CX89ll12W7LPPPsns2bOT5cuXZ342b96cmfOTn/wkad++fTJr1qxk4cKFSbdu3ZJu3bplxrdu3ZocdthhSe/evZNFixYlzzzzTNKiRYtkxIgR2TglqPXK3wU7SfQgpO2ll15KcnNzk5tuuin5y1/+kkycODFp2LBhMmHChMycm2++OWnSpEnyxBNPJK+//npy2mmnJR06dEg+++yzzJyTTz45OfLII5MFCxYk8+bNS771rW8l55xzTjZOCWqdwYMHJ/vtt1/y9NNPJ8uWLUumTJmSNG/ePLn66qszc/Qh7FobNmxIXn311eTVV19NIiL59a9/nbz66qvJ+++/nyTJrum5tWvXJkVFRcmgQYOSN954I3n44YeThg0bJvfee+9uP9+0CCDrmLFjxybt27dP8vPzk6OPPjp58cUXs10S1AkRUeXPAw88kJnz2WefJT/96U+TfffdN2nYsGHywx/+MFm+fHmF13nvvfeSvn37Jg0aNEiaN2+e/Md//EdSWlq6m88G6oYvB5B6ENL31FNPJYcddlhSUFCQHHzwwcl9991XYbysrCy57rrrkqKioqSgoCA58cQTk6VLl1aY88knnyTnnHNOsvfeeyeNGzdOLrzwwmTDhg278zSg1lq/fn1y5ZVXJu3bt08KCwuTjh07Jj//+c+TkpKSzBx9CLvWc889V+W/BQcPHpwkya7ruddeey057rjjkoKCgmS//fZLbr755t11irtFTpIkSXbWXgIAAAAAdZ3vgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAAAAAFIjgAQAAAAAUiOABAAAAABSI4AEAIAsO+CAAyInJycuuOCCbJcCALDLCSABgD3apZdeGjk5OZGTkxOzZs3aqX3/9Kc/Zfa98sorU6oQAABqNwEkALBHO//88zOPJ0yYsFP7/uEPf6jydbJl9uzZmUB09uzZ2S4HAAAiQgAJAOzhunfvHt/4xjciImLy5Mnx2Wef7dB+mzZtiqlTp0ZExKGHHhpdunRJrUYAAKjNBJAAwB5v0KBBERGxfv36eOKJJ3ZonylTpsSmTZsq7A8AAFQmgAQA9niDBg2KnJyciNjxy7C3X35dr169OO+881KrDQAAajsBJACwx+vYsWN07949IiL+93//N1atWlXj/I8//jhmzpwZEREnnHBC7LfffpXmPP7443HmmWdG+/bto7CwMJo0aRJdu3aNG264IT799NMdqmvatGlx3nnnRceOHWOvvfaKwsLC6NChQwwYMCDGjx8fmzdvjoiI9957L3JycqJnz56ZfXv27Jn5PsjtP+PHj690jC1btsRdd90VPXv2jBYtWkR+fn60atUqTjnllJgwYUKUlZVVW98FF1wQOTk5ccABB0RExPLly+Oaa66JQw89NBo1arTT30VZ1XdYPvroo3HiiSdGixYtokGDBnHQQQfF1VdfHWvWrKn2dY4//vjIycmJ448/vsbjjRo1KnO8qmwfGzVqVEREPPfcc9G/f/9o06ZNNGjQIL797W/HjTfemFkJu920adPilFNOycw75JBDYvTo0bFly5Yd/l28/PLLcc4550S7du2isLAw2rVrFxdeeGG8/fbbO7T/X//61xg2bFh06tQp9tlnn2jQoEF07NgxLrjggli4cGG1+335PSgrK4v7778/evbsGUVFRVGvXj136gYAdl4CAEBy3333JRGRRERy++231zh3zJgxmbn/8z//U2FszZo1yQknnJAZr+qnZcuWyfz586t9/dWrVycnnnhija8REckDDzyQJEmSLFu27Cvnlp+/3bJly5KDDz64xn2OO+645JNPPqmyzsGDBycRkey///7J/Pnzk+bNm1fa/7nnnvvK3/12zz33XGa/mTNnJuedd161dX3zm99Mli9fXuXr9OjRI4mIpEePHjUeb+TIkZnXq8r2sZEjRyajR49OcnJyqqzlu9/9brJx48akrKwsueKKK6qt+eSTT062bt1a5bH233//JCKSwYMHJ7///e+T3NzcKl+joKAgefTRR2s8rzFjxiR5eXnV1pGTk5Ncd911Ve5b/j2YPn160qtXr0r7Dx48uMbjAwB8mRWQAAARcdZZZ0VhYWFEVLy7dVW2j++9995x+umnZ7aXlJREr169YtasWVG/fv0YNGhQPPTQQ/Hiiy/G888/HzfddFM0a9YsVq1aFaecckq8//77lV578+bN0bNnz8wKyy5dusS9994bf/7zn2PhwoUxderUGDZsWLRp0yazz3777ReLFy+O+++/P7Pt/vvvj8WLF1f46d+/f2Z848aNceKJJ2ZW1PXv3z+efPLJWLhwYTz22GPRo0ePiIiYN29enHrqqbFt27Zqfx8bN26MAQMGxOeffx4///nPY/bs2fHSSy/F73//+2jdunWNv8vqXHfddTFhwoTo379/TJkyJYqLi2PatGnRr1+/iPjnCr/dYfr06TFixIg49thjY9KkSbFw4cJ45plnom/fvhER8cILL8To0aPjtttuizvuuCP69u0bkydPjuLi4njiiSfi2GOPjYiIZ555Jn7729/WeKxFixbFT37yk2jZsmWMHTs2FixYEHPmzIlrrrkmCgoKoqSkJAYOHFjtKsYxY8bEVVddFaWlpXH44YfH3XffHc8++2wsXLgwJk6cGN26dYskSeLGG2+MO+64o8Zarrnmmnj22WfjBz/4QYX3YPt5AwDssGwnoAAA/yrOOuuszCqvt99+u8o5r732WmbO+eefX2Hs2muvTSIiadKkSbJw4cIq93/vvfeS1q1bJxGRnHvuuZXGhw0blnn9IUOGJGVlZVW+TklJSbJixYoK28qvXvuqlYf/+Z//mZn7//7f/6s0XlZWlgwcODAz56677qo0Z/sKyIhI9t5772TRokU1HvOrlK8/IpJf/OIXVdbVu3fvJCKS3NzcZNWqVZXm7OoVkBGRDBgwoNLqxa1btybHHntsEhFJo0aNksLCwmTo0KGVXmfTpk2ZFY6HH354lcfaPh7/WFFa1erOWbNmZVZGHnXUUZXG33zzzczKx5EjR1b52dm2bVtmZenee++drFmzpsL4l9+Dqj4bAAA7ywpIAIB/OP/88zOPq1sFWX57+fkbN26McePGRUTEjTfeGF26dKly//333z+uu+66iIh47LHHKnx/4Nq1a+Pee++NiC9WPt5+++3Vfj9hfn5+FBUV7chpVVJSUhK/+93vIiLi0EMPzXzHYXk5OTlx1113RbNmzSIi4s4776zxNa+++uro3Lnz16qnKl26dIlrr722yrqGDx8eERFbt26N+fPn77JjVqdhw4Zx3333Rf369Stsr1+/flxyySUREbFhw4Zo0aJF3HLLLVXuP3jw4IiIeP3112PdunU1Hu/WW2+NVq1aVdres2fPuPjiiyPii++I/PIqyFtvvTVKS0uja9euMXLkyCo/O/Xq1YuxY8dGQUFBbNy4Mf74xz9WW8eBBx5Y5WcDAGBnCSABAP6hT58+mVBv4sSJkSRJhfGysrKYNGlSRES0bdu2wk1f5syZkwmWzjjjjBqP8/3vfz8iIkpLS6O4uDizfdasWZkby1xxxRWVAq9dpbi4ONauXRsRX9xIprrjNG7cOM4666yIiFiyZEksX7682tccOHDgLq3x3HPPrTZ8LR/uvvvuu7v0uFU56aSTomnTplWOlQ9dTz/99MjLy/vKecuWLav2WPvuu2+cdtpp1Y7/+Mc/zjx+9tlnK4w99dRTERExYMCAan93ERFNmjSJTp06RUTUGOD+6Ec/Su0zCADsWQSQAAD/kJubG+eee25EfHFn6Xnz5lUYnzlzZnz88ccR8UXgVq/eP/+UKr8arXXr1pXuQF3+57DDDsvMXbFiRebxq6++mnn8ve99b9eeXDlvvPFG5vExxxxT49zy4+X3K2/vvfeOjh077pri/uHggw+udqx8GLhhw4ZdetyqHHjggdWONWnSZKfn1VTzkUceGbm5udWOH3HEEZGfnx8REYsXL85sf//99+Pvf/97RESMGDGixs9fTk5O5vNa/vP3ZYcffni1YwAAO0MACQBQTk2XYVd3+XVExKpVq77W8baveIyIWL16debx1715y45Ys2ZN5nHLli1rnFv+UuDy+5VXPlzbVRo2bFjtWPngt6ab4+zuWnZFzV/1fuTm5mYC2PLvx674/H3Zvvvu+7VeEwDgy6r/36sAAHugI444Ijp16hSLFy+Oxx57LPN9eZs2bYopU6ZExBeXAB9yyCEV9isfKr3yyivVXor7ZW3btt11xX8NNV2qu6NcprvrfN33o/zn7/rrr48zzzxzh/bba6+9qh3zvgIAu4oAEgDgS84///y46qqrYu3atfHUU0/FGWecEVOnTs3cMObLqx8jInOzloiIFi1afK1gsXnz5pnHy5cvjw4dOnyN6r9a+UuYV65cWeOlw+Uv0a3uexD/1WxfbVhWVlbjvPI3APpXsXLlyhrHt27dmln5WP79KP/5y8vLq3CZPwBAtrkEGwDgSwYOHJhZ/TVhwoSI+Ofl13l5eXHOOedU2ufII4/MPP7zn//8tY77ne98J/N47ty5O73/jq6eKx9OLViwoMa5L730UpX7/Str1KhRRER8+umnNc575513dkc5O2XRokWxdevWasdfe+212LJlS0RUfD86duwY++yzT0R8/c8fAEBaBJAAAF/SunXr6NWrV0RETJs2Ld54442YOXNmREScfPLJ0aJFi0r79OrVK/MdgHfccUelO2jviJ49e2YuiR07duxOf79hYWFh5nFJSUm187p06ZL53sYHH3yw2pWCGzZsiEcffTQiIg455JBUv5dyV9q+cvSdd96p9oYvq1evjhkzZuzOsnbImjVrMnezrsr999+febz9MxrxxeXSp5xySkRE/OlPf4q33norvSIBAHaSABIAoArbL7MuLS2Ns88+OxMGVnX5dcQXN2K5/PLLIyLihRdeiGHDhtV4CfDKlSvjd7/7XaXXuPTSSyMiori4OIYOHVptkFlaWlrpxiPlA8L/+7//q/bYBQUFcdFFF0XEF3e2vvHGGyvNSZIkLr/88syNcbafW23Qo0ePiIjYsmVLjB07ttJ4aWlpXHTRRfHZZ5/t7tJ2yPDhw6u8FHvOnDlx3333RcQXIfJRRx1VYXzEiBFRv379KCsrizPOOCM+/PDDao+xbdu2mDhxYo1zAAB2Fd8BCQBQhR/+8IfRqFGj2LBhQ7z55psR8cVdgU899dRq9/mv//qvmDNnTixYsCBuv/32mD17dlx88cVxxBFHxF577RWffvppvPnmm/Hss8/G9OnTo1OnTpkgcLsbb7wxZsyYEYsXL44777wz5s+fH5deeml06tQp8vPz48MPP4znn38+HnroofjFL34RF1xwQWbf9u3bR9u2bePDDz+MX/3qV9G2bds46KCDMpeTFxUVZS5Pvv7662PKlCnx7rvvxqhRo2Lx4sVx4YUXRuvWrWPZsmVx5513xuzZsyMiolu3bnHJJZfswt9uuvr16xf7779/vP/++3HdddfF6tWr4/TTT4/CwsJ4880344477ohXX301jj322HjxxRezXW4FnTt3jiVLlkSXLl1ixIgRcfTRR0dJSUlMmzYtbrvttti6dWvk5ubGuHHjKu3bqVOn+NWvfhXDhg2LJUuWxGGHHRaXXHJJnHDCCVFUVBSff/55vPfeezF//vz44x//GMuXL4/Fixdn/UZIAEDdJ4AEAKhCgwYN4owzzogHHnggs+2ss86KgoKCavcpKCiIGTNmxAUXXBBTpkyJ1157rcaVg40bN660rWHDhjFr1qwYMGBAzJ07N4qLi3cq/Lv22mvjpz/9aSxbtixOO+20CmMPPPBAJrBs1KhRzJw5M/r27Rtvv/12TJ48OSZPnlzp9bp37x5PPvlkrbojcn5+fkyYMCFOPvnk2LRpU9x2221x2223Zcbr168fv/nNb2LNmjX/cgHkEUccEZdffnlcdtllVX528vPz48EHH4xjjjmmyv2HDh0ae+21VwwdOjTWrVsXY8aMiTFjxlQ5Nz8/v8Jl+wAAaXEJNgBANQYPHlzheXWXX5fXqFGjmDx5cjz//PNx0UUXxUEHHRSNGjWK3NzcaNq0aRx11FExZMiQmDZtWrXfQdi8efOYM2dOTJkyJc4444xo27ZtFBQURGFhYXTs2DHOPPPMmDhxYpU3w7nsssti8uTJ0bt372jZsmXk5lb//5sPOOCAeO211+LOO++MHj16RLNmzSIvLy+Kiori5JNPjj/84Q8xd+7cWnP36/KOO+64KC4ujkGDBkWbNm0iLy8vWrdunQl2r7jiimyXWK2LLroonn/++TjrrLOiTZs2kZ+fH/vtt1+cf/758eqrr8bZZ59d4/4XX3xxvPvuu3HDDTdE9+7do3nz5pGbmxt77bVXHHjggTFgwIC455574qOPPopvfvObu+msAIA9WU7ydb4hHQAAAABgB1gBCQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKRGAAkAAAAApEYACQAAAACkRgAJAAAAAKTm/wMThVhgwtwpzAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "AE2_2:\n", + "MSE_stop = 0.22\n", + "IREth2_2 = 0.46\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYVNX9x/HP7tKRIpIIokIsib0Hu2JB1FgTE0WjQqLGgpoQo5KfEXuJNbF31MQWY4sSBVGMBcWGFQsqTbr0trvszu+PcWbvzN7e78z79Tw8zM7cuffMred+7/ecU5PL5XICAAAAAAAAgJSoTboAAAAAAAAAAGBE0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAJGry5Mk6/fTTtcUWW6hLly6qqakp/ps6dWrSxatKo0aNKm6DIUOGxLps4/YHAABA9SJoCQBAAgYMGFAMzFx00UWW0xkDOOX/6urq1L17d2266ab65S9/qbvvvlvLly/3VQav/8IKZD3zzDPafvvtddttt2ny5Mmeyg8AL774Ysm5afPNN/c8j4suusj3ubBfv36W812xYoWeffZZ/eEPf9Dee++t3r17q3379urcubP69u2rI444QnfccYdWrFgRYA1419zcrNdff10XX3yxDj74YPXr10+dO3dW+/bt1atXL+2777669NJLNWvWrFjLBQBAuTZJFwAAAPjT3NysJUuWaMmSJZoyZYoef/xxjRgxQnfeeaeOPPLIpIvnaPny5RoyZIjq6+slSb1799Yee+yhH/zgB8Usu65duyZZxEAuuugiXXzxxZKkkSNH2gangbTq16+fpk2bJkn65ptvbIN0Sbj//vtL/v7ss880ceJE9e/fP6ES5f3617/Wk08+qZUrV7b6rKGhQdOnT9f06dP19NNP64ILLtAdd9yhn//855GX6/rrr9c111yjOXPmmH4+d+5czZ07Vy+//LIuvfRS/d///Z8uuOAC1dXVRV42AADKEbQEACAjjjjiCPXp06f4d3NzsxYsWKAJEyZo5syZkqQFCxboqKOO0uOPP+4pcPnTn/7U003+Lrvs4r7gFp599lktWrRIkrTlllvq7bffVseOHQPPF0B1WLZsmZ544olW799///2+g5brrbeep3PnOuusY/r+448/XnwgI0lrr722+vfvr/XWW0+5XE6TJ0/WxIkTlcvltGDBAv3iF7/QbbfdplNPPdVXud0aM2ZMScCyffv2+ulPf6q+ffuqU6dOmjp1ql577TWtWrVKjY2Nuuiii/TFF1/owQcfVG0tjfQAAPEiaAkAQEacffbZGjBgQKv3m5ubdf/99+u0005TfX29mpubddppp2nQoEHq1KmTq3kffPDBsWcCvvfee8XXgwcPJmCZIkOGDIm9L8uCXC6XyHKRPY8//ngxk7Fjx45atWqVJOmRRx7RDTfcoHbt2nme56abbqqbb745lPJ16tRJgwcP1m9+8xvtsssurYJ+n3zyiX79619r0qRJkqRhw4Zp991319Zbbx3K8q3U1NTooIMO0kknnaSDDjpIHTp0KPl8wYIFOuuss/Twww9Lkh566CHtscceOu200yItFwAA5XhcBgBAxtXW1mro0KH661//Wnxv7ty5euqpp5IrlAuFLEsp3zQcALwwNg0/77zztO6660qSFi5cqP/85z9JFUuSdOaZZ+rrr7/W3Xffrd122800S3HLLbfUSy+9pL59+0qSmpqadMUVV0RaroEDB+r999/Xc889pyOPPLJVwFKSevbsqX/+8586/PDDi+9deumlPFAAAMSOoCUAABXid7/7XckN6P/+978ES+OssbGx+JpmhwC8mDp1avEcV1NToxNPPFGDBw8ufl7e12XcrrnmmmIQ1c7aa6+t8847r/j36NGjoyyW/vjHP2rbbbd1nK6mpkZXXnll8e/Zs2fr/fffj7JoAAC0wh0CAAAVon379iUj56Zx5FfjKL3GoMLQoUNbjco7atQo03ksX75cf//73zVo0CCtv/766tChg9Zee21ttdVWGjZsmN566y1XZTEuq+CDDz7Q2Wefra222ko9evRQTU2NjjjiCE+/sTAqe2EQHkm6+OKLXY3CPmTIkFa/f/Hixfrb3/6mvfbaS3369FGbNm1UU1OjxYsXl3x33rx5uu+++3TiiSdq++23V48ePdS2bVt1795dm222mYYOHaoXXnjB1W8YNWqU40jx48ePL05j7LbgpZde0jHHHKONNtpIHTp00DrrrKO99tpLN998c0mg2orZdinXr1+/4jRTp06VJM2cOVN/+ctftO2226p79+7q3LmzNttsM5155pnFgWTcGjt2rI455hhtuOGG6tChg3r37q0999xTt9xyS3GkZ+O+HFbXCgsWLNC1116r/fffX+utt546dOhQ3IZbbrmljjrqKF1//fX65ptvXM1v3LhxOvXUU7XllluqR48eat++vdZbbz0NGjRIN998c7E5dbmpU6cWf5tx3f3oRz8y3Y/Hjx8fxs/35IEHHihm/u2xxx7q16+fjj/++OLn//3vfzVv3rzYy+XH7rvvXny9dOlSLVy4MMHStNh888219tprF/8uHGsAAMSFPi0BAKggxn4hV69enWBJovHss8/q5JNPbjXybX19vRYvXqxPPvlEt9xyi4499ljdddddrvv0lPJBqMsuu0xNTU1hF9u3119/XYMHD9aMGTNsp/v73/+u4cOHm5a9MML8559/rlGjRmnffffVY489ZjmAiF8NDQ0aNmyY7rrrrpL36+vr9eqrr+rVV1/VfffdpxdeeEE9e/YMddlPPfWUhgwZoiVLlpS8//nnn+vzzz/XPffco3/961/62c9+5vgbfvvb3+of//hHyftz5szRnDlz9Nprr+mWW27Rk08+GWr5Jenpp5/W0KFDS7pNKChsw08//VT//ve/df311xcH3zIzY8YMnXDCCabBxNmzZ2v27NkaM2aMrrzySj3yyCPac889w/wpsXjggQeKrwvByh122EFbbrmlPvnkE61Zs0YPPfSQfv/73ydUQvfKA/RpOgcZy5amcgEAqgNBSwAAKogxu9JN08S49e/fX2eccYakfBbYZ599Jknab7/9tNlmm5VMa8walaRHH31Uxx13XPHGua6uTnvssYc22WQTLV++XK+++mrx9z/00EP65ptv9NJLL5n22VbummuuKWZGbrzxxurfv39xJN22bdt6+o1HHnmkttpqK02cOFFvv/22JOvR2e1GYZ8yZYp+//vfa8mSJerSpYv22msvrbfeelq0aFGrpv+zZs0qrpeNNtpIm2++uX7wgx+oQ4cOWrx4sT766CN98sknkvKZkPvvv7/efPNNtW/f3tNvs3PKKafo/vvvV21trXbeeWdtttlmam5u1ptvvqnPP/9cUn7wpRNOOCHUJrAvvviiTj31VDU1NWnDDTfUrrvuqq5du+qbb77R+PHjtWbNGq1atUq/+tWv9PHHH+tHP/qR5bwGDx5cMhp1jx49NGDAAPXo0UMzZszQK6+8osmTJ+tnP/uZDjvssNB+wzvvvKOjjjpKa9askZR/+LDLLruoX79+at++vZYuXaqvvvpKH330UXHgGSuTJ0/Wfvvtp9mzZ0vKB5122GEHbbHFFurYsaO+/fZb/e9//9OyZcs0a9YsDRw4UP/973+1zz77FOfRtWvX4nH6wAMPaNmyZZKkE044QV26dGm1zD59+oSyHtx67bXX9NVXX0nKZ5j/8pe/LH52/PHH6/zzz5eUbyKehaDlRx99VHzdsWPH0IP6fs2aNask63ODDTZIsDQAgKqUAwAAsdt7771zknKSciNHjrScrjCNpNzLL79sO8/PP/+8ZPqbb745lDJE5cQTTywu/7777rOddsqUKbm11lqrOH3//v1zX375Zck0TU1Nueuuuy5XW1tbnO7MM8+0nKdxXbVp0ybXrVu33JNPPtlqutWrV/v5ebmRI0d6Xr/GddKmTZucpNwZZ5yRW7ZsWcl0DQ0NuaampuLf99xzT+6mm27KzZw503LeH3zwQW6nnXYqzv/SSy+1nPa+++4rTnfiiSeaTvPyyy8Xp2nfvn1OUu6nP/1pbvLkySXTNTc352688caS9f3KK69YLts4nZW+ffuWLLtz5865Bx98MNfc3Fwy3ccff5zr06dPcdqhQ4dazvPuu+8uWfYf//jHVtt+7ty5uYMOOqjkN4dx/BxxxBHFef3iF7/ILVy40HS6VatW5Z577rnc7373O9PPly9fntt8882L8zrooINyU6ZMaTXdkiVLcqeddlpxut69e+cWL15sOk/juv7mm298/8YwnXTSScUyHXXUUSWfzZgxo+Qc8MEHHzjOz3is7r333hGV2trAgQOLy//Zz34W+/KtXH755cVyde/ePdfY2Jh0kQAAVYZMSwAAKsCaNWt09tlnF//u2rWrjjnmGNffHz16tBYsWOB6+ksuuUQ9evTwVMYgLrnkEi1fvlyStMkmm2jMmDHq1q1byTS1tbUaPny4ampqNHz4cEnSLbfcoj/84Q+22XWS1NzcrGeeeUZ77bVXq8/CzEb0Ys2aNTrppJN08803t/qsPPvzN7/5jeP8ttlmG7344ovabLPNNGfOHN16660aMWKE6urqApe1vr5em266qV566SWttdZaJZ/V1NTo7LPP1muvvabHH39ckvTwww+brms/Ghoa9NRTT+nAAw9s9dmWW26pO+64Q4cccogk6V//+pfuvPNOtWlTWgVuamrSyJEji3//7ne/07XXXttqfj/84Q/11FNPaY899ihm0Ybh1VdflZTf10aNGtVqHRZ06NBBBx98sA4++GDTz6+//npNnjxZUj7j9/HHHzcd5Kpr16669dZbtXLlSt1///2aPXu2br/99pIBYdJq1apVeuyxx4p/G/uxlKT1119fAwYM0EsvvSQpn2153XXXuZ7/l19+qWHDhrme/vjjj9fOO+/sevpyzz77rMaOHVv8u5DhmrRZs2bpqquuKv59yimntDpuAACIGlceAAAyqrm5WQsWLNDrr7+uq666ShMnTpQktWnTRvfee6+nPgvffvttT0GYc845J7ag5eLFi/Xoo48W//7rX//aKmBpdPbZZ+uee+7RJ598oubmZt15550lo+CaOeqoo0ILooWlQ4cO+utf/xrqPLt166YjjzxSt912m2bPnq1PP/1UW2+9dSjzvuqqqyyDbVI+sFoIWhb21TAccsghpgHLgoMPPli9evXSnDlztHz5ck2ePLnVb37++ef17bffSpI6d+5cEqwp165dO1177bXae++9w/kByg++IkmdOnWyXYd2GhsbiwHu9u3b6/bbbzcNWBpdccUVxQFt/vnPf2YiaPnUU08V19c666yjgw46qNU0xx9/fDFo+c9//lNXX32164DbrFmzdMstt7guz0477eQ7aDl79mydcsopxb8HDhxo+nvi1tTUpBNOOKHYLcC6665bbHIPAECcCFoCAJARxj7nrPzkJz/Rdddd5zjgSJa88cYbqq+vlyT17NlThx56qO30tbW1+s1vfqM//vGPkqSXX37ZcRleslLjcsABB5SM3OvWvHnz9Oabb2ry5MlatGiRVqxYURxlWcr3n1gwadKkUIKWHTp0cNwu22+/ffF1mKMQG/szNFNTU6Ntt922OHjT1KlTW/1m44A1P/vZz9S9e3fbee61117acMMNNX36dF9lLrfBBhvo66+/1qJFi/Too4/q6KOP9jyPd955pzha9n777acf/vCHjt9Zb731tNlmm2ny5Mn6+OOPtWTJEtsHAmlw//33F18fc8wxpn3OHnXUUTrjjDO0cuVKzZ07Vy+88ELqzokNDQ066qijin2PrrPOOho1alSyhfreeeedp3HjxknKHz/333+/r3MRAABBEbQEAKBCrLvuunrggQdMB3xxMnLkSF100UXhFyoE77//fvF1//79XWVM7b777iXfz+VyrUboNdpxxx2DFTICXsv06aef6rzzztN///tf16P8eukSwM5PfvITxwGLjJm/hUy5MLgJujote9KkScXXbrPm+vfvH1rQ8le/+lUxu3Pw4MHFwOU+++zjKvgoSRMmTCi+njlzpusmzosXL5Yk5XI5zZw5M9VBy1mzZunFF18s/l3eNLxgrbXW0hFHHKGHHnpIUj7Q6TZouffee5uOuh6mXC6nE088UW+88YakfHcPDz/8sNZbb71Il+vGbbfdVtKcfuTIkRo0aFCCJQIAVDOClgAAZMQRRxxRMkrvd999p6+++qrYrHvu3Lnac8899e9//7vYh18lmD9/fvF13759XX2nX79+xdcNDQ1atmyZunbtajn9D37wA9/li4qXMr3wwgs6/PDDixmpbhWafwblJtBlDGoWRslOYtmNjY2tPjfuY25HSF5//fVdTefGBRdcoPHjx+vNN99ULpfTk08+qSeffFKStOmmm2rPPffUfvvtp0MPPdR09G4pH9Ar+PDDD/Xhhx96LseiRYv8/YCY/OMf/ygG5DfddFPbAPPxxx9fDFo+88wzWrRoUWqyBYcNG6ZHHnlEUj4z/P7779fAgQMTLpX0yCOPlAS7TzvttJK+XgEAiJt9RzcAACA1zj77bN18883Ffw8//LAmTpyoDz74QNtuu62kfIBu8ODB+uqrrxIubXgKA/BI+f4G3Sifzik417FjR+8Fi5jbMs2fP19HH310MWDZt29fXXnllXrttdc0a9YsrVy5Us3NzcrlcsrlciVBiObm5lDKapfFGrUwlm3cxzp16uTqO377njTTuXNnvfLKK7rmmmtKAu5SfmCYe++9V8cdd5x69eqlc889V6tWrWo1jyVLlgQuR5jB5CgYm4b/+te/tp124MCB6tWrl6T8QFHGfnGTNGLECN16663Fv2+55RYNHjw4wRLlPfvsszrhhBOK54Rjjz3WdBAwAADiRNASAICM22abbTRmzJhiFuby5ct10kknJVyq8BiDQytWrHD1nfLprLLTKsFdd91VDFhtu+22+vDDD3X++edr9913V+/evdWxY8eSwF5Y2ZWVxLiPrVy50tV33O6LbrVr107nnHOOvv76a02aNEl///vfdcwxx5RkV69cuVLXXHON9tlnn1aBS2Og/qyzzioGqb38GzBgQKi/KUzvvPOOPv300+LfI0eOVE1NjeW/Nm3aFPsxlUoDnkm5/PLLSwZ5uvrqq3XqqacmWKK8l156Sb/85S+LWciHHXaY7r//fseBnAAAiBpXIgAAKsAPf/hD3XTTTcW/x48fr+eeey7BEoXH2EzabR+CxoFe2rVrV9FBy8KAGVK+mbFdM3hJmjZtWtRFypyePXsWX8+cOdPVd9xO51Vh4KAzzzxTDz/8sGbOnKn33ntPQ4cOLU7z1ltvtRrhet111y2+NgbrKkXQoOObb76pL774IqTSeHfjjTfqggsuKP59wQUX6Nxzz02sPAWvv/66DjvsMK1evVpSfhCnxx57zPVo6wAARImrEQAAFeLII4/U7rvvrtdff11S/qY4bSPm+mEcdXrixIlqampSXV2d7XcKA1wUvp9E8+W4lmnsy9BpUJqmpqbi/oEW2223XTH4+9Zbb7n6zsSJE6MsUontt99e9957r+rq6nT33XdLyvfTeM455xSnMfbv+MYbbzgOPuVWkk3/CxoaGvTwww8X//7JT37iOMJ7wZdffqmFCxdKygc+L7/88iiKaOvOO+/UH/7wh+LfZ599ti699NLYy1HunXfe0cEHH1zMGt5tt9309NNPq3379gmXDACAPDItAQCoIMYRwCdNmqRnnnkmucKEZLfddiveRM+fP98xg7S5uVn33Xdf8e9999030vJZ6dChQ/G12eAvYTE24XRq2vzUU09VZBZeUMZm0c8995xj/5CvvfZaIhmrhx12WPH13LlzSz7bfffdi4G8mTNn6j//+U8oy4xrP7bz3HPP6bvvvpMktWnTRv/73//05ptvuvr35z//uTifBx98MLR+XN36xz/+UdIE/Le//a1uuOGGWMtg5qOPPtKgQYO0dOlSSdIOO+yg0aNHu+43GACAOBC0BACgguy///7abbfdin9fdtllCZYmHN27d9fRRx9d/PtPf/qTbb+MN998sz766CNJ+YDeKaecEnkZzayzzjrF199++21ky9loo42Kr+2C1PPnzy/J9kKLAw88UOutt56kfJ+wxkBXuYaGhpIMx6Dq6+tLBgKyM2PGjOLrH/7whyWftW/fXr///e+Lf59++ume9rvyIGhBXPuxHWPT8IEDB7b67XYGDx5cDOzPmDFDL7/8cujls/LEE09oyJAhyuVyxbLceeediWevfvHFFxo4cGAxA3WLLbbQCy+8oG7duiVaLgAAyhG0BACgwlx44YXF12+//baef/75BEsTjgsvvLA4WMoXX3yhQYMG6euvvy6Zprm5WX/72980fPjw4ntnnHFGq9GY47LVVlsVX48ZMyaU0Z3NHHroocXXV155pf7xj3+0mua9997T3nvvrRkzZpBJZaJNmzYlWcq33nqrzjvvPDU0NJRMN3/+fP3iF7/QW2+9FVoT2tmzZ2uDDTbQOeeco3feecdyurFjx5aM/H7QQQe1muaPf/yjttxyS0n5AONOO+2kf/3rX5bZhQsWLNCdd96pHXbYQddcc43pNMb9+F//+per3zRq1KiSQXGMfcx6tWDBAo0ePbr493HHHefp++utt5722Wef4t9xDcjz/PPPa/DgwWpqapIkHX744XrggQcSH9xm+vTp2n///YtB6k022UQvvvhiSb+uAACkBX1aAgBQYQYNGqSdd9652DffpZdeqgMPPND2O6NHj9aCBQtcL6NTp07661//GqicXmy88ca6++67ddxxx6mpqUkTJkzQT37yE+25557aeOONtXz5cr366qslmWC77LJLrGUs179/f22wwQaaMWOGZs+erc0220wHHHCAevbsWcy0+ulPf1qSRerHiSeeqOuuu05ffPGF6uvrdfzxx+uKK67Qtttuqw4dOujjjz8uBsO23XZbDRo0KNH1klYnnXSSnnvuOT399NOSpL/+9a+65557NGDAAPXo0UMzZ87Uyy+/rNWrV2ujjTbS4YcfXmzmGzQQtXjxYl133XW67rrr1KNHD22//fbq06ePOnTooHnz5unDDz8sCdL/+Mc/1tlnn91qPmuttZaeeeYZ7b///vrmm280Z84c/epXv1LPnj21yy67qFevXsrlclq4cKE+/fRTffnll8WAplU3Cr/4xS90xx13SMoHc999913tsMMO6tSpU3Ga0047TRtvvHGgdWDloYceKjZL79y5s4444gjP8zjuuOOKfZY+8cQTuvXWW0tGjDf68ssvNWzYME/zHzFiRMko7wsWLNDPf/7zYtC7rq5OP/jBD0oyYe0cf/zxJX2Uhumoo44qydjdfPPNXffzucsuu+jXv/51JOUCAMAMQUsAACrQhRdeWByE54033tC4ceO03377WU7/9ttv6+2333Y9/27dusUe+Dr66KPVuXNnnXTSSZo7d67WrFmjl19+2bS55+DBg3X33XeX9McXt9raWt166636xS9+oYaGBs2ZM0cPPPBAyTQnnnhi4KBl+/bt9Z///EcHHXRQMbA1efJkTZ48uWS63XffXY8++qjuuuuuQMurVDU1NXr00Uc1ZMgQPfLII5Kk7777Tv/+979Lptt888315JNPlmxLpxHb7bRt21bt27dXfX29JGnhwoUlI8KXGzBggB5++GHLjNmNNtpI77zzjk499VQ9/vjjyuVyWrBggZ599lnLeXbv3t1yEKeBAwdq8ODBxYFw3nrrrVaDFR1yyCGRBS2NmZFHHHGEr0zhX/ziFzr99NO1evVqrVixQo8//riGDBliOu2sWbNajczu5KSTTioJWi5fvlyrVq0q/t3U1FQcQMmNnXbaKbKg5bx580r+9tL36fLlywlaAgBiRfNwAAAq0MEHH6yddtqp+Pcll1ySYGnCc8ghh2jKlCn629/+poEDB2q99dZTu3bt1K1bN22++eY6/fTT9eabb+qhhx4qyQRLsrzvvPOOfve732nLLbdUly5dIunP7sc//rHef/99XXHFFdppp53UpUsXtW/fXn379tUhhxyihx56SK+88kpJYAWttW/fXg8//LBeeOEF/fKXv9T666+vdu3aad1119Xuu++um266SW+//bZ+8pOfFPsDlOR6JGszffr00XfffadnnnlGf/rTn7Tvvvtqww03VMeOHVVXV6fu3btr22231UknnaSxY8fq5ZdfVq9evWzn2aNHDz322GP68MMP9ec//1m77babevfurXbt2qlDhw7q1auX9thjD5111ll65plnNHv2bJ144omW8/vnP/+pf/7znzrkkEO0/vrrx/Yw4OOPP9Z7771X/Ntr0/CCrl27lnSjMGrUqKBFAwAAMajJFXqGBgAAAODK7rvvrjfeeEOS9Oabb0aWGQcAAFCtCFoCAAAAHkybNk0bb7yxmpqa1K5dOy1ZsiTRrggAAAAqEc3DAQAAAJdyuZzOPvvs4qjQRx55JAFLAACACBC0BAAAAJQfwOpvf/ubFixYYPr51KlTdeSRRxZHGK+rq9M555wTZxEBAACqBqOHAwAAAJKmT5+uSy+9VOecc4623nprbbbZZurWrZuWL1+uzz77TO+//34xw1KSLrjggpIBrwAAABAegpYAAACAwZo1a/T+++/r/fffN/28Y8eOuuSSS8iyRORGjx6t0aNHB5rHOuuso4svvjikEgEAEB8G4gEAAAAkLV68WE8//bReeuklffLJJ5o/f74WLFigpqYm9ejRQz/5yU+033776be//a169+6ddHFRBS666KLAAce+fftq6tSp4RQIAIAYkWnpUnNzs2bNmqUuXbqopqYm6eIAAAAgZLW1tTryyCN15JFHOk67dOnSGEqEaldfXx94Hrlcjv0VAJAauVxOy5Yt03rrrafaWvuhdsi0dGnmzJnaYIMNki4GAAAAAAAAkGkzZszQ+uuvbzsNmZYudenSRVJ+pXbt2jXh0oSvsbFRY8aM0QEHHKC2bdsmXRyg6nAMAsnjOASSx3EIJItjEEhepR+HS5cu1QYbbFCMs9khaOlSoUl4165dKzZo2alTJ3Xt2rUiDwog7TgGgeRxHALJ4zgEksUxCCSvWo5DN10v2jceBwAAAAAAAICYEbQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApEqbpAtQDXK5nBobG9Xc3Jx0USw1NjaqTZs2Wr16tZqampIuTsWrq6tT27Ztky4GAAAAAABAKhG0jFBDQ4PmzZunlStXpj4QmMvl1KtXL82YMUM1NTVJF6cqtG/fXj179lTXrl2TLgoAAAAAAECqELSMyMqVKzVjxgzV1dVp7bXXVseOHVVXV5fagGBzc7OWL1+utdZaS7W19BoQpULm7ZIlS/Ttt99KEoFLAAAAAAAAA4KWEVmwYIHatm2rvn37qq6uLuniOGpublZDQ4M6dOhA0DIGHTt2VJcuXTRz5kwtWLCAoCUAAAAAAIAB0akIrFmzRitWrFCPHj0yEbBEMmpqatStWzfV19ersbEx6eIAAAAAAACkBkHLCKxZs0ZSvs9CwE5hMJ6093kKAAAAAAAQJ4KWEUpr/5VID/YRAAAAAACA1ghaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWiJRPXr1081NTUaNWpU8b1Ro0appqam5F9tba26du2q7bffXiNGjND8+fMt51n+Xat/48ePj/4HAgAAAAAAwLM2SRcAsNK5c2cdddRRkvKja0+bNk0TJkzQpEmTdN999+nVV1/Vpptuavn9QYMGqVevXpaf230GAAAAAACA5BC0RGr17NmzJANTkj755BPtvffemjt3rn7/+9/rueees/z++eefrwEDBkRbSAAAAAAAAISO5uHIlC233FLDhw+XJI0dO1b19fUJlwgAAAAAAABhI2iJzNlmm20kSY2NjVq4cGHCpQEAAAAAAEDYCFoic5YuXSpJqqurU8+ePRMuDQAAAAAAAMJG0BKZU+jH8sADD1Tbtm0TLg0AAAAAAADCxkA8SdlpJ2nOnKRLUVQjqWsup5qaGueJe/WS3nkn8jIZFUYPv/POO/XQQw+pb9+++vvf/277nX322cfys27dumnx4sUhlxIAAAAAAABhIGiZlDlzpG+/TboURTXf/0uTadOmmQZR+/fvrzFjxqhbt2623x80aJB69epl+lmnTp1CKSMAAAAAAADCR9AyKRbBtKTkJOW+z7R0DF7GVPbOnTvrqKOOkiTV19dr8uTJ+uCDDzRx4kT97ne/0yOPPGL7/fPPP18DBgyIoaQAAAAAAAAIE0HLpMTcvNpJrrlZS5cuVdeuXVVTm46uTnv27KlRo0aVvPfEE0/o6KOP1qOPPqq99tpLp59+ejKFAwAAAAAAQGTSEZ0CXPr5z3+u888/X5J04YUXasmSJQmXCAAAAAAAAGEjaInMGTFihHr37q3vvvtO119/fdLFAQAAAAAAQMgIWiJzOnXqpL/85S+SpBtvvFGLFi1KuEQAAAAAAAAIE31aIpNOOukkXXfddfrqq6907bXX6vLLL281zVVXXdWqT0yjY489VgcccECEpQQAAAAAAIAfBC2RSW3bttVll12mwYMH66abbtLw4cO1zjrrlEzzwgsv2M5ju+22I2gJAAAAAACQQgQtkaipU6e2em/IkCEaMmSI43ePOeYYHXPMMa3ez+VyIZQMAAAAAAAASaFPSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtESi+vXrp5qaGo0aNar43qhRo1RTU1Pyr7a2Vl27dtX222+vESNGaP78+ZbzLP+u1b/x48d7KmuhXEOGDPH3YwEAAAAAAOBKm6QLAFjp3LmzjjrqKElSU1OTpk2bpgkTJmjSpEm677779Oqrr2rTTTe1/P6gQYPUq1cvy8/LP6upqZEk5XK5EEoPAAAAAAAAvwhaIrV69uxZkoEpSZ988on23ntvzZ07V7///e/13HPPWX7//PPP14ABA6ItJAAAAAAAAEJH83BkypZbbqnhw4dLksaOHav6+vqESwQAAAAAAICwEbRE5myzzTaSpMbGRi1cuDDw/C666KJi03CpdZ+YU6dObfWdFStWaMSIEdpkk03Uvn179erVSyeeeKK+/fbbwOUBAAAAAACodjQPR+YsXbpUklRXV6eePXsGnt92222nE088Uffff78k6cQTTyz5fK211ir5e8mSJdptt900ffp07bnnntpqq600YcIEPfDAA3rllVf0wQcfqFu3boHLBQAAAAAAUK0IWiJzCv1YHnjggWrbtm3g+R1xxBE64ogjikHL8n40yz311FMaNGiQXn31VXXt2lWStGjRIu27776aNGmSbr31Vo0YMSJwuQAAAAAAAKoVQcuE7LTTTpozZ07SxSiRy+VKmklb6dWrl955550YStSiMHr4nXfeqYceekh9+/bV3//+d9vv7LPPPpafdevWTYsXL/ZVls6dO+u+++4rBiwlae2119b555+vY445Ri+++CJBSwAAAAAAgAAIWiZkzpw59H/oYNq0aaZB1P79+2vMmDGOTbAHDRqkXr16mX7WqVMn3+Xaaaed1Lt371bvb7755pLEdgUAAAAAAAiIoGVCrIJpSfKSaRmHzp0766ijjpIk1dfXa/Lkyfrggw80ceJE/e53v9Mjjzxi+/3zzz9fAwYMCL1cG264oen7hczL1atXh75MAAAAAACAakLQMiFxN6920tzcrKVLl6pr166qrU3HoPI9e/Zs1b/kE088oaOPPlqPPvqo9tprL51++umxlyst6wcAAAAAAKBSEX1Bpvz85z/X+eefL0m68MILtWTJkoRLBAAAAAAAgLARtETmjBgxQr1799Z3332n66+/PrT5FkYiX7NmTWjzBAAAAAAAgHcELZE5nTp10l/+8hdJ0o033qhFixaFMt/1119fkvTJJ5+EMj8AAAAAAAD4Q5+WyKSTTjpJ1113nb766itde+21uvzyy1tNc9VVV7XqE9Po2GOP1QEHHFD8+xe/+IWuvfZa7b///tp3333VpUsXSdLVV1+tddZZJ/TfAAAAAAAAAHMELZFJbdu21WWXXabBgwfrpptu0vDhw1sFFl944QXbeWy33XYlQctLL71UtbW1euKJJ/TUU0+poaFBknTBBRcQtAQAAAAAAIgRQUskaurUqa3eGzJkiIYMGeL43WOOOUbHHHNMq/dzuZyvsnTo0EFXX321rr76atPPncrVr18/38sGAAAAAABAC/q0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQMkK5XC7pIiDl2EcAAAAAAABay2zQ8pZbblG/fv3UoUMH7bzzzpo4caLt9IsXL9YZZ5yh3r17q3379vrxj3+s0aNHR1K22tr8am1qaopk/qgchX2ksM8AAAAAAABAapN0Afx49NFHNXz4cN1+++3aeeeddeONN2rQoEH6/PPP9cMf/rDV9A0NDRo4cKB++MMf6vHHH1efPn00bdo0de/ePZLytW3bVm3bttXy5cu11lprRbIMVIZVq1aprq5Obdu2TbooAAAAAAAAqZHJoOX111+vk08+WUOHDpUk3X777Xruued077336vzzz281/b333quFCxfqjTfeKAaH+vXrF1n5ampq1KVLFy1evFjdunVTx44dI1sWsqupqUlLlixRp06dVFNTk3RxAAAAAAAAUiNzQcuGhga9++67GjFiRPG92tpa7b///powYYLpd5555hntuuuuOuOMM/T000/rBz/4gY499lidd955qqurM/1OfX296uvri38vXbpUktTY2KjGxkbHcnbv3l0rVqzQtGnT1LVrV6211lqqq6tLbXAql8upoaFBq1atSm0ZK0VhXS9cuFBr1qzR2muv7WqfQmUr7APsC0ByOA6B5HEcAsniGASSV+nHoZfflbmg5YIFC9TU1KR111235P11111Xn332mel3vv76a7300ks67rjjNHr0aE2ZMkWnn366GhsbNXLkSNPvXHnllbr44otbvT9mzBh16tTJVVlramrUuXNnLVq0SG3btiUYiKLm5matWrVKy5cv1+eff550cZAiY8eOTboIQNXjOASSx3EIJItjEEhepR6HK1eudD1t5oKWfjQ3N+uHP/yh7rzzTtXV1WnHHXfUt99+q2uuucYyaDlixAgNHz68+PfSpUu1wQYb6IADDlDXrl09LT+Xy2nNmjVqbm5O7WjRa9as0RtvvKHddttNbdpUxW6RmJqaGtXV1bGeUaKxsVFjx47VwIED6eMUSAjHIZA8jkMgWRyDQPIq/TgstGR2I3NRk549e6qurk5z584teX/u3Lnq1auX6Xd69+6ttm3bljQF33zzzTVnzhw1NDSoXbt2rb7Tvn17tW/fvtX7hUF2vDJbRpo0NjZqzZo1WmuttSryoACywu85BkB4OA6B5HEcAsniGASSV6nHoZffVBthOSLRrl077bjjjho3blzxvebmZo0bN0677rqr6Xd23313TZkyRc3NzcX3vvjiC/Xu3Tv1wUQAAAAAAACg2mQuaClJw4cP11133aX7779fkydP1mmnnaYVK1YURxM/4YQTSgbqOe2007Rw4UKdffbZ+uKLL/Tcc8/piiuu0BlnnJHUTwAAAAAAAABgIXPNwyXp6KOP1vz583XhhRdqzpw52m677fT8888XB+eZPn26amtb4rEbbLCBXnjhBf3hD3/QNttsoz59+ujss8/Weeedl9RPAAAAAAAAAGAhk0FLSRo2bJiGDRtm+tn48eNbvbfrrrvqzTffjLhUAAAAAAAAAILKZPNwAAAAAAAAAJWLoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFQhaAkAAAAAAAAgVQhaAgAAAAAAAEgVgpYAAAAAAAAAUoWgJQAAAAAAAIBUIWgJAAAAAAAAIFUIWgIAAAAAAABIFYKWAAAAAAAAAFKFoCUAAAAAAACAVCFoCQAAAAAAACBVCFoCAAAAAAAASBWClgAAAAAAAABShaAlAAAAAAAAgFTJdNDylltuUb9+/dShQwftvPPOmjhxouW0o0aNUk1NTcm/Dh06xFhaAAAAAAAAAG5kNmj56KOPavjw4Ro5cqTee+89bbvttho0aJDmzZtn+Z2uXbtq9uzZxX/Tpk2LscQAAAAAAAAA3Mhs0PL666/XySefrKFDh2qLLbbQ7bffrk6dOunee++1/E5NTY169epV/LfuuuvGWGIAAAAAAAAAbrRJugB+NDQ06N1339WIESOK79XW1mr//ffXhAkTLL+3fPly9e3bV83Nzdphhx10xRVXaMsttzSdtr6+XvX19cW/ly5dKklqbGxUY2NjSL8kPQq/qRJ/G5AFHINA8jgOgeRxHALJ4hgEklfpx6GX31WTy+VyEZYlErNmzVKfPn30xhtvaNdddy2+f+655+qVV17RW2+91eo7EyZM0JdffqltttlGS5Ys0bXXXqv//e9/+uSTT7T++uu3mv6iiy7SxRdf3Or9hx56SJ06dQr3BwEAAAAAAAAVbuXKlTr22GO1ZMkSde3a1XbaTGZa+rHrrruWBDh32203bb755rrjjjt06aWXtpp+xIgRGj58ePHvpUuXaoMNNtABBxzguFKzqLGxUWPHjtXAgQPVtm3bpIsDVB2OQSB5HIdA8jgOgWRxDALJq/TjsNCS2Y1MBi179uypuro6zZ07t+T9uXPnqlevXq7m0bZtW22//faaMmWK6eft27dX+/btTb9XiTtNQaX/PiDtOAaB5HEcAsnjOASSxTEIJK9Sj0MvvymTA/G0a9dOO+64o8aNG1d8r7m5WePGjSvJprTT1NSkjz76SL17946qmAAAAAAAAAB8yGSmpSQNHz5cJ554onbaaSf1799fN954o1asWKGhQ4dKkk444QT16dNHV155pSTpkksu0S677KJNNtlEixcv1jXXXKNp06bppJNOSvJnAAAAAAAAACiT2aDl0Ucfrfnz5+vCCy/UnDlztN122+n555/XuuuuK0maPn26amtbEkkXLVqkk08+WXPmzNHaa6+tHXfcUW+88Ya22GKLpH4CAAAAAAAAABOZDVpK0rBhwzRs2DDTz8aPH1/y9w033KAbbrghhlIBAAAAAAAACCKTfVoCAAAAAAAAqFwELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BIAAAAAAABAqhC0BAAAAAAAAJAqBC0BAAAAAAAApApBSwAAAAAAAACpQtASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUsAAAAAAAAAqULQEgAAAAAAAECqELQEAAAAAAAAkCoELQEAAAAAAACkCkFLAAAAAAAAAKlC0BLVZ9ky6c03pVwu6ZIAAAAAAADARE0uR+TGjaVLl6pbt25asmSJunbtmnRxQtfY2KjNN99cq1evTroo0Zs7V1qzRuraVerSJenSAEWrV69Whw4dki4GUNU4DoHkcRwCyeIYBJK3evVq9e3bV++++27SRQmdl/ham5jKhAxYvHixvvvuu6SLEZ+lS/P/AAAAAAAAUoSHBwQtYdC9e/fKPyjWrMlnWhb06ZNcWYAyPNUGksdxCCSP4xBIFscgkLzVq1dr3XXXTboYiSNoiaLrrrtOBx98sNq2bZt0UaLz+efSZpu1/D1zZnJlAQwaGxs1evToyj8GgRTjOASSx3EIJItjEEie8TisdgzEg+pCF64AAAAAAACpR9ASAAAAAAAAQKoQtAQAAAAAAACQKgQtAQAAAAAAAKQKQUtUF/q0BAAAAIB0WLxYeuYZaeXKpEsCIIUIWgIAAAAAgPgdeqh0+OHSyScnXRIAKUTQEtWFTEsAAAAASIfXXsv//9BDyZYDQCoRtAQAAAAAAACQKgQtUV3ItAQAAAAAAEg9gpYAAAAAAAAAUoWgJaoLmZYAAAAAAACpR9AS1YWgJQAAAAAAQOoRtAQAAAAAAACQKgQtUV3ItAQAAAAAAEg9gpYAAAAAAAAAUoWgJaoLmZYAAAAAkDzuzQA4IGiJ6tLcnHQJAAAAAADcmwFwQNAS1YWneQAAAACQPIKWABwQtER14cIIAAAAAMkjoQSAA4KWqC5cGAEAAAAgeSSUAHBA0BLVhQsjAAAAACSPhBIADghaorpwYQQAAACA5JFQAsABQUtUFy6MAADASWOjdM890nPPJV0SAKhcJJQAcNAm6QIAsSJoCQAAnNx2m3T22fnX770nbb99suUBgErEvRkAB2RaorrwNA8AADj5wx9aXo8alVgxAKCicW8GwAFBS1QXnuYBAAAvuKkGgGhwbwbAAUFLVBduPAAAAAAgedybAXBA0BLVhad5AADASU1N0iUAgMrHvRkABwQtUV14mgcAAAAAyePeDIADgpaoLjzNAwAAXnBTDQDR4N4MgAOClqgu3HgAAAAnNA8HgOgRtATggKAlqgsXxnRauVK6+mrpoYeSLgkAAACAOJBQAsBBm6QLAMSKC2M6XXGFdPnl+debbir99KfJlgcAAABAtEgoAeCATEtUFy6M6VQIWErSU08lVgwAAAAAMSGhBIADgpaoLlwY049tBAAAAFQ+EkoAOCBoierChREAAHjBwzQAiAbnVwAOCFqiuhC0BAAAThg9HACix70ZAAcELVFdeJoHAAAAAMnj3gyAA4KWqC48zQMAAACA5HFvBsABQUtUF57mAQAAL6g7AEA0OL8CcEDQEtWFp3nWHn9cOvNMaebMZMtB5SVb3nhDOvVUadKkpEvSYto0adgw6amnki4JgKyiT0sAKLVmjXTJJfl/a9aEM0/uzVBuwoT8vcX77yddEqREm6QLAMSKgJi5+fOlX/4y//rdd/OBKMCN3XfP/3/HHek5vn7+c+m996RbbpEWLZK6d0+6RACyLC3nNgBI0j33SCNH5l/37CmdfnrweRK0RLnddsv/n6Z7CySKTEtUFy6M5r7+uuX1hAnJlQMIw3vvtbxOOnMYAACgEjzwQMvr++8PZ54EpQA4IGiJ6sKF0VybFCVds40QpqampEsAIItoHg4A0SOhBIADgpaoLlwYzdXVJV0CIBoc8wAAAMEZEwvCerBTnqxA8gKAMgQtUV24EJpLU9CS7BaEiUxLAACA4KIIWpY/XOZhM4AyBC1RXbgQmqN5OCoVQUsAAIB0ItMSgINMBy1vueUW9evXTx06dNDOO++siRMnuvreI488opqaGh1xxBHRFhDpQ9DSXJoyLYEwccwDAACkU3k9jaAlgDKZDVo++uijGj58uEaOHKn33ntP2267rQYNGqR58+bZfm/q1Kk655xztOeee8ZUUqQKF0KgupBpCSAo6g4AEM25kExLAA4yG7S8/vrrdfLJJ2vo0KHaYostdPvtt6tTp0669957Lb/T1NSk4447ThdffLE22mijGEuL1Mhy1tXbb0u//KX0n/+EP+80VRD8lmXWLOmEE6Qbbwy1OMg4gpaAtdmzpRNPlK6/PumSpA/9KwPhu/pqaehQySHJBBkQVZ+WabonAZAKKerIzr2Ghga9++67GjFiRPG92tpa7b///powYYLl9y655BL98Ic/1G9/+1u9+uqrtsuor69XfX198e+lS5dKkhobG9XY2BjwF6RP4TdV4m8zqlmzpmSnz9Lvbdu/f/7F44+rsaEh3Jk3NKit4c+414tx2U1NTWr2sfy6449X7UsvSQ8+qMY99pC23Ta8AsYgq8dgkvuNFWOZ1jQ0KJeSciH9snoc+lV3wgmqffFFScqfN7ffPuESpUcbSYVb8qbmZl/XJfhTbcdhtah57TW1Of98SVLzwoVqevzxhEsEK1bHYF0uV8x4as7l1BTCMVrT2Fh6b9bQINVmNq8KQeVyqby3SEKlXwu9/K5MBi0XLFigpqYmrbvuuiXvr7vuuvrss89Mv/Paa6/pnnvu0aRJk1wt48orr9TFF1/c6v0xY8aoU6dOnsucFWPHjk26CJHq++GH2s7w9+jRo5MqimeHG16HXe4uM2Zo3wjn78T4277++mt96mP5h7/0UvH1Rw8+qBnffhtCyeKXtWMwyv3SL2OZJk6YoPkrVyZWFmRT1o5Dvw7/PmApSR8/8ICmz56dYGnS5ZDmZhV6e54+fbo+TMn5rZpUy3FYLTZ58klt+f3r2mee0X84plKv/Bjca9Eirf3968WLFunVELbh2p99pr0Mf7/w3/+qqX37wPNFRjU1pfLeIkmVei1c6eH+LJNBS6+WLVum448/XnfddZd69uzp6jsjRozQ8OHDi38vXbpUG2ywgQ444AB17do1qqImprGxUWPHjtXAgQPVtm1b5y9kVO3MmSV/H3zwwQmVJJjQy/3JJ9HO34ONNtpI/QIuf5ttt9XWGdu2mTwGy5rwpPF46r/jjsodcEDSxUBGZPI4DMnW22yjrVJ4DCel1pDps+EGG2h91k1sqvk4rGS1n35a8nca6wzIszoG6y67rPi6e48eoWzDmrXXLvl70AEHSJ07B54vMqqsNWE1nycq/VpYaMnsRiaDlj179lRdXZ3mzp1b8v7cuXPVq1evVtN/9dVXmjp1qg499NDie83f95/Rpk0bff7559p4441LvtO+fXu1N3nK07Zt24rcaQoq/feV97+S1d8aernblJ4KklwvdXV1qgu4/DZt20oZ3raZ2S/L+iFKY7nb1NRkdl9AcjJ1HIakTZs2HCtGhvpCXW1t4OsSvKvG47CilTX5ZdumX6tj0HBerK2tVW0Y27B8v+BaVN3K+qLnPFG510IvvymTHUa0a9dOO+64o8aNG1d8r7m5WePGjdOuu+7aavrNNttMH330kSZNmlT8d9hhh2mfffbRpEmTtMEGG8RZfCSJzp3NpWm9pKkssJeFbZXlwbcApEMWznUAkEUMxAMj6u0wkclMS0kaPny4TjzxRO20007q37+/brzxRq1YsUJDhw6VJJ1wwgnq06ePrrzySnXo0EFbbbVVyfe7d+8uSa3eR4XjRGiu0tYLo77GIwv7DaOHA+5w3izF+gDCRTAKZsr3C/aT6ka9HSYyG7Q8+uijNX/+fF144YWaM2eOtttuOz3//PPFwXmmT59e0h8RIIkLoZVKWy/cbMaDoCUAAEB1iOJ+gUxLGGXh3gKxy2zQUpKGDRumYcOGmX42fvx42++OGjUq/AIh/TgRmqu0CgJBy3hkYb9ZsybpEgDZwHkTAOBWWNcMMi1hxL06TJCKiOpSKRfCsH8HFwj4kYX9hkxLAACSVyl1cISrvC6ZhbolokO9HSYIWqK6VMqFMOzfUWkVSTKG4pGF44lMSwAAkldpdc1qFMU2JNMSRlm4t0DsCFqiulTKiTDsC3r5/JJcT2H8NoKW8chCxZKgJeAO500AgB1jvS+sawZ9WsKoUu7VESqClqgulXIhjLp5eGNjuPOPGzff8chCxYKgJYCgKqXuACSJ46iy0KclopCFewvEjqAlqkulnAijzrQk0AM3slCxZF8G4AcPvwAgemRawog+LWGCoCWqS6VcCKMOWiaZaUnz8OzIwkMAgpaAO5w3AQBxI9MSRlm4t0DsCFqiulTKiZBMS3vcfMcjC8dT1vdlAAAqAcGo7ItiGzJ6OIzY/jBB0BLVpVIqTJXcp2UYAUeClvHIwvFE0BJwh/OmtSyc64C04ziqLAzEgyjQPBwmCFqiulTK0xuahyMNsnA8EbQEACB51O9ghubhMMrCvQViR9AS1aVSLoQ0D7dXy6ktFlmoaGZ9XwbiQqZlKeP6SOO5DdXp44+lnXeWhg9PuiTwa8wYafvtpZtuSrok3sXRPJzzbXUjaAkT3NmjulTKibCSm4eHgZvveGShoknQEoAfXEeQRgcdJE2cKN1wg/Tuu0mXBn4MGiRNmiSddVbSJfEuinpeFh6AIz40D4cJgpaoLpVyIaR5uD1uNuORhc7TCVoCACrFzJktr6dOTawYvlRKHTxMWV4n9GmJKKTxXgKJI2iJ6lIpJ0KahyMNsvB0nH0ZcIeHPUC2ZK1Om8Y6QtKyvE7CumaUr4Os7dcIF9sfJghaorpUyomwkjMtGT08O8i0BAAgGWm85sIbtiGZlihF83CYIGiJ6pKFzDA3wq7klM8vyUAPzcOzIwsVTYKWAIBKlLWAVxrrCEljnVTOvRnCkbXzGmJB0BLVJQtBFjcqOdMyDAQt45GFJj0ELQEEldW6AipbGq+58CZr5xZGD0fUOK/BBEFLVJdKeZpH0NJeVrdr1mShoknQEnCHhz1AtnBzn31Z3oZR9WmZxrok4kPzcJggaInqkoUgixthl7vSmodndbtmDZmWQOUgaFmK9YG0S+M11w51s9aytk7ItETUsnZeQywIWqK6VMrTPDIt7QVdPwsXSv37S7vtJi1bFk6ZKlEWKpppCVp++620/fbSPvtIq1cnXRqEZdgwaaONpFdfTbokALy46y5pww2lO+7w9/3f/z5/7L/8cqjF8iRrN/dprCMkjXVSOfdmCEfWzmuIBUFLVJcsBFnciDpomZZAj19B188550hvvy1NmCCNHBlOmSoRo4e7d/bZ0qRJ0vjx0l//mnRpEIZvvpFuuSX//157JV2a4MgsRDU55RRpxgzp1FO9f3f6dOlvf8sf+/vuG37Z3ErjNRfeZG0bGuvXYV0zslCXRHzY/jBB0BLVpVKe5kXdPDzrmZZBL3jvvNPy+sMPg82rkmXheErLvvz22y2v338/uXIgPMuXJ10CAElYtCjpEuRl7eY+jXWEpGV5nUQVtMzyOkFw9GkJEwQtUV0q5cJI83B7QddPVveLuKX16bixIp2WTMtOnVper1qVXDkQnvbtky4B4sI1AUZp2R/Scs2Ff2nZl5KUhQfgiA/nNZggaInqUikXxkpuHp6GgXiiaP5SidIatKyra3mdlqBlx44tr1euTK4cCE9thVWhONeVMq6PrNYVEI20XOvSUg74x7mlchJKEA7OazBRYTVuwEGlXBjJtLQX5vrhRt5aWh8CpDFoSaZl5aEJU2Xj3A8rabnWZe3mPi3rLU3YhumtSyIZ1K1ggqAlqkulXBjp09Je0EpgVveLuJFp6R6ZlpWHijVQndJSR0jLNdettKy3NMnyOqFPS0Qha+c1xKKNny8tXbpUktS1a9dAC1++fLleeuklSdJhhx0WaF6AK5VyYazk5uFhoHl4PNL6ECCNQUsyLSsPQUugOqXlWsfNffalZV9yK45MS/br6sb2hwlfQcvu3burtrZWH374obbYYotWn8+aNUsXXHCBampqdM8991jOZ9q0aTriiCNUW1urNWm5sURliyNomcvl/4XZ31nUF3Sah1sjaGmNTEv3jEFLMi0rQ6UFLTnXAe6k5dhPyzXXrawF6OKQtW0YhUpJKEE40nJ+Rar4jqrkbE4oixYt0qhRozRq1KjA8wJCFXVm2MKF0uabSz/5iTRvXnjzjbrc5RWGtAR6/GL08HiktaJpfGCQln2ZoGXlKa9Yp2Vf84ugJeBOWo51bu6zLy31JreiaImU1lY7SAaBfJigT0tUl6iDLOefL33+uTRlivT734c336jLnaZMyzB+W5h9WnIjby0LTXrScnNJ0LLylAcMVqxIphyIHjfRMEpLa5Q0XnPhTZbPLfRpiShwXoMJgpaoLlE/zfvii5bXkyeHN9+oy5100DLswCDNw+OR1oqmsRxpCVoaB+IhO6YyVFrQknNdKdYHrKTlupK1m/u01BHShHVCpiVKldet2B8ggpaoNlH3wWdslhrmSTbuTMu4K+RR/564v18t0pppmcagZfv2SZcAYau0oCUAd9KSaZm1B2DUrVpLS70pSWl9AI5ksD/ABEFLVJeon+YZMzPCrIjE3adl1puHM3p4PNJasTCWKy1BS1Se8oBB1pv9p+X4BdKOoCXCkrXzbhTlTWtdEslgf4AJgpaoLlGfCI0BrjDnTfNwb3hyHY+0jh6exkzLtKwbhKfSMi25MQDcSct1JS3lcItzTGtZWydxDMRDfam68TAGJghaorpEHfyjeXhwZFpmR1ormmkMWmbtxgTOCFoC1SktmZZpub7Bv7TUm5JEZh2M2B9ggqAlqkucmZY0D/cnDUFLI4KW1tJasUhj8/C0rBuEp3z/J2hZuVg3lSXo9kzLdSUt5YB/nFsYiAel0npvgUQFClrWcDMPv1asSOYkFGemZZhBy0rPtAw72MtAPPEIo3l4Lhd+sCcLmZZkV2Sfn0zLpAObdseb1Xkvqet10qLq7gXJC3r+JdPSH46j1rK2TqJoiUSQqvKtWSPV17ublv0BJgIFLbfaaivV1dW1+rfNNtsUA5pmnxunQxV66ilpnXWkQYPiPxHRp6W7+Wc90zLoDQnNw90Jul/mctK++0o9e0rPPRdNudJyU1e+blatSqYcCI/XgXiuu07q2lU688zoyuTkZz/LX3///W930z/+uNSjh3ToodGWK40491euoHVBgpb+EHxoLcsPMKPq05L9pLIsWiT96EdSnz7SV185T19et2J/gAIGLXO5XOB/qEJHHpl/2jJ2rPTRR/Eumz4t3c0/60FLmofHI2im5ZtvSuPHS6tXS4ccElqxMtE8POmMOwTnNdPynHPy++bNN0dXJjvz5kn//W/++vvww60/Nztv/vKXUkND/qHC559HX0YgDkHrVGm5rqSlHG5x39ca64TMuko3cqQ0c6b03XfSb37jPD37A0y08fOlvfbai6bhCIfbVPGw0Kelu/knWRGmeXh2BN0vly0LryxW5UjLTV35unHKykP6ZW0gnoaGltdmx4XT8Zv23we4ZfbArdZDHgeZlggL9U26z6l0s2a1vP76a+fp2f4w4StoOX78+JCLgarVxtcu6F9Wm4eH0XegnUprHs7o4fGIer/0KwtBSwJA2Ze1oKWxvGbnSKfzJjfXqBQ0D0daZO28GkV5yayrbF7vjWkeDhOMHo5kxR20zGrzcPq0jH8eBQQtrQWtaEZVESFoiThkLWhpPF7NHjA4HY/lvxfIqqAP3NJyXUlLOdwi+JD9rMIoHurTp2Vl8xq0JIgNEwQtkay6uniXl9Xm4XH3aZn10cPDHIgH1oJWvqNaz8ZyNDamY3uWr5u0B7jgLGtBy6CZllm7uQ5TGs4hCE+WMy2N9SWCltlDQKY11kllI2iJECQetFy5cqWuu+66pIuBpMQdtIz6aR6jhweXhkxLmoe7k4VMSykdwRYyLSuP19HDk2Y8DghaOuPcX7mynGlpbNGTtaAlCMiYYZ1UNq+tEGkeDhOJBS2XLVumyy+/XP369dO5556bVDFQbaK+MBpPzFnKtGQgHmvcuFpLY5+WZts+DTd2DMRTebxkWqZhH6RPSyAv6LUryQe7WQ5acg5J50NVL2geDq/ItEQIYg9aLly4UH/5y1/Ut29fXXjhhVqwYEHcRUCaxH2xJtPSXPl2iKJCvmSJtHy583R+flvY68ft95ctk5YuDbYso+Zmafbs8OYXtTRWNLMStCTTMvu8BC1XrYq2LG4EDVpWc5+WaTi3ITxhNw+Psy6b5aBlnFavlr77LtkyLFggNTSUvldJAZmwgpZxPACvr89vDwQ3a5b//dZP0DJr5syp7vpSRAIFLadNm6azzjpLW2yxhbp06aIePXpohx120JVXXqklS5aUTLt8+XKNHDlS/fr10xVXXKHFixcrl8upZ8+euuyyywL9CGRY3CcmMi3NRd08fMoUqU+f/L9Zs7yVxY2wn1y7eZI8Y0bLb5o6NdjyvrfbhReqbd++0l13hTK/yAWtaEZRWSdoibh4CVquXl36dxI3qjQP9y/LgQW0Fnbz8DhvUAlaOlu2TPrRj/L1s7feSqYM48dL660nbbpp6fm/koKWYYn6AfjKldLGG+e3x2uvhTvvajN8eP64OvNM99+ppubhDz+c38923jlb5c4A30HLsWPHauutt9Ytt9yizz//XCtWrNDixYv1wQcf6IILLtAuu+yiOXPmSJJef/11bbXVVrrsssu0fPly5XI59enTRzfccIOmTZumESNGhPaDkDFxH9BkWrqbf9gV4VNPzd/QL12av+CVCzoQT5SVQKug5Vln5SvGy5dLp50WfDkzZugHH3+cf33KKcHnF4c0DsSTlaBleRAL2VNesbbbpmkIWjplWjohaIlKEXbz8DivMVkOWsZ1HP3tb/lsp/p66bDD4llmuf33z+8n06dL993X8n4au9VJWtSB3Ntuk779Nr89Dj443HlXmxtuyP9/yy3uv+P1Hi/Lgf1jj82X9913pffeS7o0FaWNny/Nnz9fgwcP1nJDU8/OnTurTZs2xQzLL774QmeccYbOPvtsDRo0SA0NDcrlcvrRj36k888/X0OGDFHbtm3D+RXIrkrOtAxz3nFnWoa9XebPb3k9b563srgR9vpx831jM5MwmpxksSlBGgfiyUrQMkuVMJgrP2btzpvlQcvm5tLrRRyCZlpW8z5bzb+9EgW9dpFp6U9cgxwaW/s51TmjYtwnli1reZ3lgIwUT70t7GUYu3EybgvEo1r7tMxquVPKV435rrvu0sKFC1VTU6OjjjpKU6ZM0bJly7Ro0SLNmjVLw4YNkyQ9/fTT+vWvf636+nqttdZauummm/T555/r5JNPJmCJvEru0zLM3xZ3n5ZhV8CNo8Q7zTttQcu4BuKJO4ARhjRmDJiVIQ03dgQtK0+QoGUaMy3p07JUVC0nkLywMy0JWsKO8fyR9YBMFPXjrK8T2PN6Lc1y83Cj9u2TLkFF8ZVpOWbMGEnSLrvsoscee6zks169eunvf/+7li1bpvvvv18zZ85U9+7d9eqrr2rLLbcMXmJUlkrLtKyU5uFhb5c2hlONWSU77ObhYZbfqlIW9jYwBnazIo2BuLRmWqYxwItggmZaxs1YXrPl06dlqageQiJ5YQ/EE2fQ0rhfJjmKuR9JPBBOGwJ0raWxLonwVGumZbt2SZegovhK7fnss89UU1Oj008/3XKas846S5JUU1Ojs846i4AlzMV9IqJ5uLny+YVdATcGLc3mbVx+2jIt41KNmZY0D0eWlZ/L7M6baci0ZCAe/zheK0vYA/HEeY0x7otpuLbBGx5gtlYpQSqYCxq0zKosJqOkmK+75EWLFkmSNtlkE8tpNt100+LrPffc089iUA1oHu5O1JmQUVeijCdup0p22oKWVtkAYWcJZDHrIOjxFEXFNCvNwyulUlbNvJw305ZpSZ+W3lTzb69EWW4ebixrGq5tcEbzcPfzlKgfVRqvCT1ZP0YKslrulPIVtGz8/mLdpUsXy2nWWmut4utevXr5WQyqQaU1DyfT0pxTn5ZZHD086m2QBWRaukemZeXJWp+WQTMtq61PSyOO18qS5YF4shy0rNbm4ZUUtDSiT0u44fUer1L6tMxquVMqlvaINdV0YYI9NyeiXE765JNo+uqplEzLLPdpGcdAPEHLn3RAISuiyHD99FOpoSHYPMpFfWP35ZfSihX205BJUHmCNA/PYqZlNe+zUV8TvvmmdMRjRMvLAwczZpmWkydL9fXByuVGNQctv/66dCToLPJaF/jyS2nlyujKkwY81K1sbpuHf/edNGNG5QSxs1rulMpgJ2rItPKKntnF+uKLpa22kgYNCn/5WR2IJ+py0zzc+vtxNQ/P4sUt7EDcFVdIW24p7bef/3nE3Tz84YelH/9Y2mIL+wctVMorT7VlWhK0jMbzz0sbbZT/t3x5dMtBi7Cbh19/ff4asMsu0R/bWQ5aBvHss9LGG+f/ZTmI56W++s9/5usXW25Z2du6UoJUcGa1befNkzbcUOrXT5owwd130i6r5U4pX6OHFwwdOlSdO3cOPF1NTY3GjRsXpCjICrdBS0l6+eV8xlWYo29FHTiIqnl43JmWcQ/Ek7bm4W6CljQPD77ey6e/4IL8/6+9Ji1bJtl0QeJ6nlK0lf1jj83/P3269N//Socd5q5c1RwAqhRegparVrmfNipOmZZOsniOCiKu0cMPOij//8KF0p13SsOHR7cs5IXdPPzvf8//P2mSNGWKZOjXP3RZDloGybQ89ND8/wsWSPffL512Wnjliprf5uG//nX+/6lTpTFjpIMPDr1onsXRF3m1XWsqnZt744svbnkY8eabpZ9ldX/IarlTKlDQ8p133rH9vNAs3G66XC5H8/FqUt7sM+6O/+PMtAzzJifuPi3jzrQ0Lj8rmZZhy+LFLSt9WsbV35hds3YyLStP1jItgzYPp0/L6MXRvBjhZ1oGmZdXWQ5ahiWK7qOiFEaflmnZ1nEMxEP9qLK4aYXo1MVSFrEfh8p30DLHhoAfbjItvXzuFZmW7uYf90A8dmVxI8rm7QQtrQUNdscVtIwrq81uOVTKK0/W+rQ0LtNs+QQtrXG8VpawMy2Noq4zELQsrWtnjd/6aiUn+ETdRRWSFbTrtKxcf8vPx1kpd0b4Clo2czKBX+WZSE77Utg3SWRaupt/3APxpLl5eFyyeF6Ncr/0uz7MvpeGYAuV8spTbZmW1Rogkbj5qDRRZlpGKZcr3RezdkyGlaWXtaBlGJmWlRy05KFuNuVy7vZLNwk9dts8K/tDeTdAWSl3RmTsrI/M85ppGXawIeoLY1QD8VRSpmWlDMRjFEZlMosXtyi7FfC7DybZPNxLpSuL2xulggQtk860pHm4NxyvlSXLQUsjgpbZk/WgZRTNw+nTMpv8ZAlXctAyDQ+nK1iGz/rIpPKKXtyjlUZ9YTRWpLKUaRl1n5ZOmZZ2ZXEjyvXjplIWxvKyeHELeyAeu3kHmWdcASIvlS4yLbMvSPPwLGZaErREpYiyeXiUysudtaBlWJyClmk+Xmke3hoPdbPJTz22kpuHp6GeV8EIWiJeSTcPJ9PSXPl2iHL0cLNKdtjNw4MGhJK40GTx4hblQDxZbB5OpmV1qbbm4dUWtIxr9HDEL6uZllkPWlZrpmWlNg8n07K6ua0TVEvz8DTU8yqYrz4tL7nkkrDLoQsvvDD0eSKFkm4eHmempd28v/oqP0roFlu4m295ud95J//d3r29l9FM1FlgfgfiaWiQJkyQdtlFat/e+js0D09G0ECc3fSV3jy80oIg8+dLX38t9e+fzpurKFRb8/CsBUiC8vsQctUqaeJEabfdpLZt/S8T0QlaZ4gjaPnFF/n/f/zjlveiCFp++qnUoYO00Ual833jDWnHHaXOnYMvI2wELStLVh/qrlkjvf669NOfSp06JVeOlSult9/2d80p19SU/0077CCttZb9tH6yhCut7muUhnpeBfMVtLzoootUE/LJk6BllSjPtIw7syMNA/F89VW+EtrcLL31Vv4m30l5Oc8/X7rsMunbb6WuXf2X12r+SY4eblxvQ4ZIDz8sHXmk9MQT7r4jxd88PAxZvLhFObhMmM3D0xi0zEql3I3Vq6Utt8wHLu++W/rtb5MuUTxoHl49vGyvww+Xxo6VTj5ZuvPO6JYD/4Jeu6IePfzjj6Wtt86//ugjaaut8q/NgpZuB8MwM3GitPPO+SDgl1+2BC6HD5duuknac0/pf//zN28zYe3fWQ7gZb15eBTnqKxmWp51lnTbbdI++0gvvZRcOQ47TBo3TjrlFOmOO4LN69xzpeuvzyeLTJhgP22YfVraycr+kIZ6XgXz/agql8uF9g9VxGumZdiBnDQEDv7wh5bfdcop7r5jth6WL5fuuSecMkU9srHfgXgefjj//5NP2n+nEkYPz+K5MMrjiT4ts2P06HzAUpJOOinZssSp2jItCVq6M3Zs/v+77oqmLAgu7c3DTz+95fVpp7W8NitnkHPJr3/dMo9zz215//XXS/8PS7U2DzdKw31IEFGUN+r6UVQB39tuy///8svRzN+tcePy/3t9SGbm+uvz/7/5pvO9VZgBd5qHw4GvTMuXkz44kV2V3jzczfxWrLAuj9f5hnVhjzrT0qlPS7uyuBFln5ZxPd3O4sUtyj4t/e6DSfZpaSfrNyp2KikA60Wl9Wnp5fvVJq7tlZZsqkoX5UA8YZwPjXVl42uzea9ZU/pg2O9yjMd34XWU/adXU9CyUpuHh7V/ZDXTstI51VvjyhLOyv6QhnpeBfMVtNx7773DLgeqRdLNw6MOHLiZn3EdtGsX3nyDiPopp9Po4UH7OymfZxwXiiT2nbTJyujhaWgeHnU2c5KydgMZFi/Nw1etKv07ie1vLJ/Z8unT0loWz8+wFmWmZRjHtlVzSqugpV2f335EFbQMa35Zu+aEEbSsZKwT/6JcV3EGLcm0hIOMnfWReUk3D4/6wuimvH6CllHf4JpdmMJcN16yAMLItAyzeXhSTYuzENQKWma76Su9eXglVWbSmAESh6xlWtI83L9KOl5ReUHLsAXNyrYSVisWv5mlaZD1Pi2Nwto30pBQklVRXped9lU/o4dXsjTU8ypYlexFSI2km4en4cKYxkzLsPtJKpfloKXVvMKuQEYxKmjUgq53u30si83Dq7VPyzTeTMXBbL+y2gfS0KclA/F4Uy0jnlajtDcPtzqnxhW0NC4nDQPslctaEKSSmoe7qR97Raalf1HeKzjVW8m0LEXQMlIZO+sj88qbh1djn5ZhZlqGVYmJukmtlwqmn0ptlE1vrbZp1PtOFoOWac20TGPQspIqM2m5mYqbl4c9aajMkmnpXyUdr0h/pqVRlJmWVvt12jMts8zvfUgaz0FZybSMQ1JljvJegYF4vCnvBigr5c4IgpaIV3lFz+mAztro4VnNtIy6Sa2X8qct0zKppsVZCBAEzR6Mq0/LNDYPr6TMrWq9+TQ7Rq2O20rItMzCg5SocPNRWYLUGZqbo7l2GaWpeXgaMy2zfP30GzBP42+OKtMyjb/VSVJlzkKmZdjlSKs0PJyuYAQtIUmqefpp/ei551R7883RBksqPdMybX1avvmm9NZb/uYf5rrPctAyrubhQTMt3W7rMEXZPNzvPp+V5uGVVJkhaNnCbP/79ltp6tTS95LY/mlqHj55sjRmTHZuTivpePVq9mzpqaek+vqkS9Jac7P0wgvSZ595/57d33bssiy9zsuKl6ClVXlyOemVV6RJk9wtxyjtmZZO6zht16Qwmoen5VwZRfPwSqgfVWLQ0uk86fY3u2ltVwmZlgQtI0XQEpKk2ptu0jZ33aW64cOjPQHSp2Vp0NLtiI9+yvnWW9Kuu0q77CK98473+ceZaRm077Aog9FJNQ/3su+/+WbLtn7vvXDLZSdo9mAUfVom2TzcTiVnWmatf7GwuAlaNjVJu+/uPF0c0tI8fN48aeutpUGDpIceCmeeUYurCWfagi3NzdJuu0lHHimNGJF0aVr7xz+kAw+Utt1WWrDA/fcqKWhpVWd/4QVpwABp++2lKVPMp3HTPDyqumCUQcu0IWhprxL6tKzEoKXTPXNcg0hlZX8gaBmpKr3TQCtxdTifdPPwNPRpacxWiLJPy2HDWl7/4Q/284860OO0HYNWgsJuspCG5uFeKiJnnNHy2mlbhymNmZZZaR5eSZWZtAVa4uKmefjChdK0aa2nq+ZMyzvvbJnX8ceHM8+oZbnfuSDmzGnJEr7hhkSLYurEE/P/NzRIo0a5/16Qa5fTtTktA/Ece2zL60sv9bbMqDItaR6e/aClEZmWLSoxaOl0b+W2TlAtdUSClpEiaIk8Y6ZMlAcZzcNLg5ZRZloGbZIdZ6Zl2EHLDDYPrwkStEzqwshAPM7Ltvqskioz1VIhLecm09JqP04609Js+XEFLdu0CWc+UfPzMLeSjmspW7/Ha7+Udn/bccq0jPJhuJegpdesRqvlJNW/uZ00BvDc8putluXf7KQSMi2TKnMW+rSsloF40tB3eQUjaIm8pDItq715eNR9WhY4XTCS7tMyaGZjlBUeq/KkqXm4UZwBpKDHk930fn9/Wvu0rISO5q0QtGzhdjunIdPSaxnCujmqqwtnPnHKcjZUEFm5WZTiC1rGnWnpN2hpNT83st6nZdpUUvNwIzItW1RjpmVcD/Oysj+QaRkpgpbII9MyHG7mZ7zARDl6eJYyLZ36WnOSRKalURhBmyCZlkkh09J52VafVVJlhj4trd9La6alWdAyrkzLrAQt/bQAqKTjWqq831MQpM6QlT4tvW47q+bhYZ6rjPMiaNn6Mztp+c1x9GmZlt/qRSUGLcPq09LNflKJmZZZKXdGVOmdBlqplj4tow4ceC1v27bRzLecU+Uw6kBP3M3D427OFMZ+FFamZZzo09J52VafZbFSboVMyxZZyrT0evxWW/NwP9elSjqupWzddKWleXha+rQM0jw8jkzLILJ8nPnd99L4m8m0bFGJQUsyLb0haBmpTActb7nlFvXr108dOnTQzjvvrIkTJ1pO+8QTT2innXZS9+7d1blzZ2233XZ68MEHYyxtysWVaZl08/A0ZFqmab4FZtshqqfrZtLWPDxoefwoX04W+rQMGoizm77SmodXQqXcCkHLFm47qk9D0JJMS3tJZFqmLTCRpfNUkKCll+/G0Tzcy7zDCloaMXp4uCop09IoqiB0Vu7NjCoxaBlWn5ZkWiIEmQ1aPvrooxo+fLhGjhyp9957T9tuu60GDRqkefPmmU7fo0cP/d///Z8mTJigDz/8UEOHDtXQoUP1wgsvxFzylIor0zLp5uFRBw7CzDTzM53fsqQx0zKuGxC35bGTpubhcQaQspJpmYasVTItK0+1NQ+vtj4twwhaej0npuFcZZS28tippExLozCah7s5R1vdB8T5ADvu+SQh60HLOJqHJ90Kzo+kAlRxZlpG2Ty8EhC0jFRmg5bXX3+9Tj75ZA0dOlRbbLGFbr/9dnXq1En33nuv6fQDBgzQkUceqc0331wbb7yxzj77bG2zzTZ67bXXYi55SiWVaRl38/C0Pc0LesK3q4h6qbBG3aTWT9DSy/Kj3K6TJkkPPtj6YuS0vKYm6d//ll55xd1y4m4ePnWqdPfd0sKF/ucRNBBnt50qvXl4JVVm6NOyBc3DnVVT83Cv5560BQmTKs+yZdpw3Djp88+jmX81DMQTVqZlks3DZ87M11Pmzy9930vrHavPn39eevbZ+M/FZvve6NH5f2HWiWbMyK+7BQu8l9GO1Xlx6VLp3nulKVOc59HcLD35pPTSS63nU/73+PHSE08EOxfFUQesxkxLt9vEzboh0xIOMlJzLNXQ0KB3331XI0aMKL5XW1ur/fffXxMmTHD8fi6X00svvaTPP/9cV199tek09fX1qq+vL/69dOlSSVJjY6ManZ6yZlCNWiLYjfX1zk+SfapbvbokUt7U2KjmsmUZe3lcU1+vXIhlaZPLyVh1W9PYGOr869asKfl9ZvuK8fc1rVnT6vebqWloMD1Ym5qaLL9v/K3NuZyabJZTXm5Jaly9OrT9oLapScbcmsaGhpJKtHGd5JqatKaxUWpsLHm//DtG5eunec0a29/rpGQ/mTZNOuEENX38sZovu6w4TV0uV1xnZuu35tFH1eb44/Nlf/ddaeutbZfZ1NhY8hvWrF7tet9s09zselsXv7PnnqqZOVPNTzyhpqefdrWccrVr1pRsV7Pj2fb7jY2yyrla09Dg79hsaFB5T7FNDQ2eyuWF2+O5rrm55BgLuo+mSc2aNSX7bpavkYWyu/kNbdasUfkZqdX1s76+1f4oBdi/AzAer7lcTmvKjhWz/df4eXNjYyj7bI2Uif3FeB0oXpeclK3TxtWrHQfcK9kGHs+hkVu9uvT3xFS2mj/8Qds/8IByN9+sxmXLLNehn/qUJNWUX2891AVrVq2yvXkK49iuU0udPNfc3LLvmZxP1qxaZbq8NpJjvaBkmubm4jRtmpqK74d5T1DX1NTyu2pqHI+pNgccoJrJk9X84IOO9w5Greqc5fWzV19Vm4MOkiSt+c9/lBs0yMOvcMdq32xVX33hBdV+313ZmhdeUG6ffUzn4XW/arPHHqqZPl3NDz2kJh+tCq2uhVb7TN3JJ6v2sceU69hRaxYutM2or/nXv9TmuOPy8584sWS/kAzr66OP1Pb79bHmvvuU+/47XpXXNcM6j5WcGyO8d7ZTs3p1qNfTVvddNvWZVp9bcDoeJbXaB4zcLidpdStXlvyGMGIMXuqkWeTld2UyaLlgwQI1NTVp3XXXLXl/3XXX1WeffWb5vSVLlqhPnz6qr69XXV2dbr31Vg0cONB02iuvvFIXX3xxq/fHjBmjTp06BfsBKdR/wQL1/v71uLFjVd+9eyTL2f6bb7Sh4e+PP/xQU0ePLpnmcMPrd956S3NDfFJxcNkJd+Jbb2l+eZP1AHacNUvrG/4eXfbbpNLfN/Xrr/WxyTTler/7rvqbvP/pp5/qa4vv7710qbp///q7hQv1hs1ytps+XX3L3nvl5Ze14osvHMvmxjZTp+pHhr//+5//KFfItsnlStbJsmXL9PLo0aptbNShhvdHP/ecZUbXuhMnahfD3zNnzND7LtarlUMNQcCCur/+Vc/utlvx7z0WLdI6379esmSJ/le2vINPOaX4eta552rSmWfaLrPHJ59oT8Pfb7z6qhZZdHdRbsDSper2/WunbV1w+MyZkqTa//5X//G5rrb66ittbPjbbn80s/Gnn2ori88mvvmm5hseHLnVbcoUDSh778vPPtPnAfYHO8Z995OPP9Y3FsvZbf58/cDw96xZs/RuRGWKW88PPtDuhr/NzntZM3bsWMdp9lmyRF3L3hv/0ktaaaibrDVzpvYz+e4br7+uReXZQxHbcsoUbfL961UrV+ql55/XIYbPp3z5pT6zuR7PnjlT74SwbTf4+GPtYPg7rfvLgfX1av/966VLlmi8i3K2WbFCPzP8/fxzz6m5fXvL6aXSdTzliy9abYMkdZk2Tfsa/o5rWx3+wAOSpJpcTuMffFAre/c2n87w+ovPP9cXLsu34aRJ2t7w9zsTJ2quy0yptT//XHvZfP72W29pXsAbzF0XLNAPv39dqBNJUtevv9Y+ZdO+89ZbpmX/meFh0vTp0/WByboZuHKlCnc0c+bO1dvfZ/sdbpjfuBdfVP3aawf6PQU7z52rXt+/bmhs1PMO2+vwyZMlSbX/+1/J+59+/LFtXaO8blK+3+72l78Ur8crzjxT42+80UXpvTHum19/9ZU+/b4Mvd95p6Q+X2sYX2HJ2WfrtauuMp3Hh5MmaUaPHu6XP316fv4vv+y7jie1vhYe2NBQPC8uWLBAE76f9+GPPSYpH9Qf++9/q3GttSzneeBppxX3zTl/+pM6fvedeho+//STT/T16NHa7qabWu5NTjtNo33uh1tMmaJNDX+HdR4zbp9xY8eq3sP2Ccs6H32kPQx/B/1txt/00osvanXPli3Tcd48HWD4/I1XX9XiOXMc57nlV18V6x5WZfzpnDlaz+L7r/7vf1r2/f6cZnsvWFC875bCjTG4qZNm0cqVK11Pm8mgpV9dunTRpEmTtHz5co0bN07Dhw/XRhttpAEDBrSadsSIERo+fHjx76VLl2qDDTbQAQccoK5dy29Tsq/mnnuKr/fbd1+pVy+bqf2re/TRkr+32nJLbXHwwZbT77TDDsrZfO5Vm7Jmaf1/+lPlDjjAYmrv6v75z5K/D3Yoe78NN9SGLn5fzapVpu9vscUW2szi+21Gjiy+XmeddWzLUvfkk63e23uPPaTNN3csmxu1zz1X8vdBAwdKHTvm/yhrXtClc+d8WctOZAcfdJDlk9uasuYR6/fpo94B9psai4xO4zqsM1Qsu3Xv3mr9tunSRfp+u23Qs6fWcyhPU4cOJX/v1r+/crvvbjF1qTYXXlh87bStzXidvqB23LiSv7f4yU8s90fT73/6qeVn/XfcUbkDD/Rcppp332313qYbb6yNQzyPWNlyiy20ucVy6v72t5K/11t3Xa0bQ5niUFMWlPG7P6VBY2Ojxo4dq4EDB6ptW7McyRZtzj231XsD9txT2sRQPbfYx3fbZRfldtnF9LOo1L74YvF1x/btNajsoe0mG2+sjWy2Xe8f/CCUbVuzeHHJ32ndX9oYtn/XLl3clbPstx04cKBkc/NebpMf/ch2G8Tugw9K/kxiWw0YMEDaeGPH6X686abaxGX5asputHfacUfXdc0ah8DET3fcUbnvs/j8qrvlluLrLmut1bLe33+/1bQ7bbedadnrDA95N+jbV31MpmljSMLote66+eWU1cn222cfaT2rcII3dXfcUXzdrl073/vTFpttZlvXMJ7rpNb7bd1NNxVfdy3UOSO00Y9+pH7fL6PGpquhtXv0sCzLNltvra19ltPP77O6FrYxZD33tKhvDhw4ULIJMBrn0adPn1ZZdIXtW/fUU8X36tq08V9XLeumKYrtvd8++0h9+oQ+XydR1r/23WcfaYMNWt6YOrXk89133VW5/mYpNaVqX3655G+zMtbdd5/l9/fcYw9pm20cl5M04323FE6MwUudNIsKLZndyGTQsmfPnqqrq9PcuXNL3p87d6562QTbamtrtcn3NxPbbbedJk+erCuvvNI0aNm+fXu1N3k63rZt24rcaZoNlZu2dXVSVL+xLLhUV1OjOptltampCbcsZU+j20T5W6XW+0pZ1midZPv7iywyDOvq6lx9v7amRrV205kE6ULdD8rm31ZqmXfZZzW5XH69lQUobctTtn4cf68Ti+zeku1pKLfp8gpBWUm19fWO5akp+71t8gt0VVwjP789rHNaXW2tu/25wKafrTa1tf72P5PAtuvjLCDb31+2TwXeR9Ok/FitgN/l6lpvkt3U6jxl8aAl6muPk5pcTm3LHuI5Hb+1uVw4+2xZ3Sq1+4vhmK2Ry3KWHwsez2NxnatcK7u2JrGt2rZr52oderr+lF17PF1vHPrw9X3tMjKUr2TfM1m2m3qym7pibW1t/vguu1a1bdMmknNVTU2N7/3J6d6hXKvlGI7TYp0zQiXr32b/KW4DE0Huh4L8vlbXQsP+USuZlrdt27auy1prsj6Kx7LVcRBQFNs7quPEczlCLINTfcb1ua78HtDsOzbHRVrWraMIYwyVGn/y8psy2Xt+u3bttOOOO2qcIcunublZ48aN06677up6Ps3NzSX9Vla1pAbiqfTRw8v/Lk8T9zsiqdfvOHXCbrYdohw93LgfWK0zL4NEBB38oFwYI4YbMyftBvGxWqbf9e+mw/2w9vsoB+Lx+/uj3pfteOlIPC0jgYahkn6LF24G4rHa95JYZ+WDayQ1snUlD8QT9DzOQDz+xTV6eNBBYNxIciCesOtTUczLaT5OnxvveeLex+32D7uAeBqvs3GOHu51MCm7+UehGgficfub07jvRqF8WzAQT6gyUnNsbfjw4TrxxBO10047qX///rrxxhu1YsUKDR06VJJ0wgknqE+fPrryyisl5fuo3GmnnbTxxhurvr5eo0eP1oMPPqjbbrstyZ+RHsaLQZQnl/KgXdxBy7hHD29qKr1BK2/mHfSE7/YinrbRw40ndquLYpCgZRwXCqdlGDItW213N/OLsyLiV9D1brePhTl6eBpuvCt59PBK+i1euAmQp2n0cGNZzIKWZmWqrW35XljHkc0ADamSRNAybTd3UV6H3HJbz/HSj2SQa5fTtHGPHu7mwYiXgE/5/JIcPdxKmEHLOI45p21YYLed0nZukKJ7AG423yDLimLdpeVBdJTnaKfzpNvrm5ttVwmjh0d57kR2g5ZHH3205s+frwsvvFBz5szRdtttp+eff744OM/06dNLUs5XrFih008/XTNnzlTHjh212Wab6R//+IeOPvropH5CuiSVaRlH5c9ufnEHLcsz7tz+vqhPfFEHesLItPQS4Aq6vsJY30llWroR1Y2D1+M1rqBlXJXJas20rNaKmZtMS6vtnIZMSzfnTWPQMqyboyzuL34fMJJpGVwcQcswMy3jDlq6OS6DBC2jeoDt52F6QdBtYHxwEve52O/yvHwvynOsn4c5TqyuRUGyK+3mH4a01OmykGmZhnuyOER57kR2g5aSNGzYMA0bNsz0s/Hjx5f8fdlll+myyy6LoVQZFVemZaU3D3c6ofsNWkZ94jObf5RNgqJuHh7HBc6pMuU107L8N3ipiHj9vWbr3E/lMOjxZLePZbF5uN1yKjnTslorZkGClklsf6fm4VZBS7PvB5GV/YVMy3QELd3yMkprkKBl3JmWTvO22kZ+zzFRZgt5yf602/eqIdMyyn00CDfnxTDqpH7mYyWKbRxlNwpexJlpGWXQkkxLOMhkn5aIQFyZltXYPNwozkzLoM2drr5aMhmJ2Re7ps9WF0EvT6ySqDw4rV9jpmXUzcOtshfmzpX++tdWI8C2Wpbfvn3TkGn56KPSPfe07C9WWcPjxkl/+5u0fLm3MnphV+a0PJWPQjVUzObNk665pnT0XrPrk9vzVhLb32/z8AI/1+Ovv85fS77+2n45aeQnaBlmpuVXX0lXXSV98423eQTV1JQ/pz7ySHRBy+XLpRtvlMpGlQ0krubhcWRaepl3kD4t3bSy8fp73nhDGj5cuvhiafZs5+VZCVI/8BK0jDswb1c2u3KFmQ0clrCClm7qkmnr0zLuANX8+dK110rvvVf6vpt7hXffzX93wQJvy3SqI5BpWYo+LSOV6UxLhCipTMu4m4dHne0UVdDSajq7i3jQZjj//nf+X3291K6dcxm9zL8SMi2dGDMtk2oePnhw/qbwvPPyF9NCk6jy9bVqVWmQ1a2g6z1I8y9JeuUV6Zhj8q/r6qQhQ8zn+fXX0v7751+vWCH9+c/eyumWl6BlGvbRsFTSb7Hy619LY8fmXxeOpaxnWrptHm72fbf22CMfuLjxxpYARlb2l6QzLXfbLR8sv+OOeAOXzz4rnXRS/vUf/hDNMi66SLruuvzrb7+V1lvPelq3wYq4Mi3jDlrG1Ty8ME2QdbNihXTggdKyZfm/J0/OB78LvNRLo8y0TGvzcOM6yULQ0krQoGXUreCimGfU6/zEE6X//jf/2nhf5nT819dLO+2Ufz1+fP787lZYmZZupiPTEg7ItEReXJmWXi/CWcu0jKp5eNCnmUH6DvL6ZM7N/O0G4slK0DLs5uFBMi2tGLNYjPte+bLcBFXNBM0eDNo8/JZbWl5fcIF5mSRp9OiW1//3f+7K5gdBy8pVCFhK0sqV+f+zNnq4n0xL43nOzzmpEKicM8e8HGmWRNDSOP28efn/p071No+gLr205fUNN0SzjELAUspnwYeBgXhKeQkQGqcPcuM9d25LwFKSPv649HMv66bam4dnIWhptW94XX7U9aNKCFoWApZS6X2Z03XZeO197jlvy3Sq48fVPDwrCFpGiqAl8uLKtPR6wstan5ZxZ1qGxW0lyi8vmZaFsnjZV5IIWjotI2jQ0u++7+XmpMBv0DLoeg/aPNw4yFWh4pZkQCRtXRjEpZJ+ixuFYzPLmZbNze6uh8b3wroeZ6Uin3Tz8KRssEG8y3O6Prpd9wzEU8pr0LIgSLCs/LuLF/svUyU1DzeWJ+tBSzfnRadjtnweZFp6Y1w/TkHLMJvV+72+VUvzcIKWkSJoiby4njp6vTCFWRanG7IolhF1n5Zum4f7nb9Uum/4Vf47K615uNl2aNu25bWboGD5bwi7c+3ypqFGacy09Bq0LOxTTtt+ww2d5+sXmZbVoXBsVkOfllEELbMS5HabHWX1HSmbA/HEHbR0uv64Pb9UUvNwq7qdm3NOgdfzcmGZQW68y3+7XdDSSVzNwwla+he0FZjV9AQt7RnXj5eHNUGWY/Z3XJmWWalj0qdlpAhaIi+u5uFJZlrGEbSMqnl40IthkObhYQijeXhcWWx+1kUYN/tBmoe7KXMUQcug6z2KTEunddG3r/N8/fIyengaghNhqbaKWeEmIcuZlm6zW8i0bP3aTliZlkmuox/8IN7lhRW0rKTm4VbLizLT0qp5eJBMyxUrSreLcV7VNHp4tQUtg9YFsxi0jPOc7SXT0u98Jef6TJhByyi/HxcyLSNF0BJ5cTUP93rjHmbQ0mxZSWda+u0nK+zvBA0eeS2LVSXW+HdSmZZh7RNB+/QJ++l/HEHLoE/Xjdz8fmO2hNvm4euv7zxfv6o107KSArBuVErQ0mv2A0FLb9+R/Gdahp1p70Xc26fSMi3DWH9hNA+3mp+TMDMtpdJsSy+B1EoKWro9l2QhaBlG83Cn6Qt/J1Uf9zPPtDYP9ztfs78JWtojaBkpgpbII9MymmWkpU/LIJmWYWwDu6Cl1UXSy8k/zKCln99rtn6DBi39VkTcNCurxObhbjMtjc32w+YlaFlJgb5qq5j5bR4e941yOT/Nw43fCevmKCv7fhJBy8L09fXevhemuPvVdOrT0u3+4iXTMsjNZRyZlmEMxON3mUGCMWZlsQpaOglSP6B5uPtpvXJzXgxaFwy7/FGsjyDbJ6iogpZO28FvPdbNdJXQPJygZaQIWiIvqYF44mxmk0SmZfkyyyvnQZ9ShTFIjt38pWgyLaNuHh5ku/r5vU43+37mUQ2ZlkkELeM8vxlVcqZlJf0WNxobrTMV7ZoHG/fXNGRa0jzcXhjNw72ebwrr2EvWYNjizvL0m2lp9zDUSZSZlnEHLbOUaRk0AOp2Pl6ClmlqHm43QFCWgpZO+4xxf6ypsa4fhXWPU2mZlkZRBi3TkmmZFQQtI0XQEpKkXCVmWs6aJZ1zjnTCCdK//x1P0NLuhlWKN9MyrCfaQbbB3LnS//2f9N//lr7vZ/RwL4HVIJWHsCoeXstU/nm192npZr8zBoGs9ptycZ7f7JZrNm1jo3TttdKtt6avsvPyy9Kf/yx9+23rz9JW1rCZPXSx2j/tjgmz/TVOfjIt4whapnX/sbs5nzlTGjEif1xYfUdyXmdW54VKz7Rs167ltdNvtdo/ysuZlubhYQctnebtZnsV5vfuu9J550lffGE9rddg2cqV0hVXSA88EG6mZRLNwwvH9SuvOJfPi7RnWhbq6i+84Dyt125F3LCq71dC8/BvvpHOP1+aMMF6XtOm5ad57TV3y/aSaekl8Os1aBl09PDZs/P1yrFjs59pmcsRtIxYG+dJUBWSyrSMMmh58cXSnXfmXz/4oDRlSutpstI8PGg5gzQPD7I/nHCCNGZM6/crLdPSbP2abftOnaznEXXzcLtKc1jNw5PMtHRbhjRnWt59t/SnP+Vf9+4tHXlkeGULYuVKad9986/Hj5feeKP086w09/WrPIOrsdH62mR3o5m2TMukgpZmNz5mx3LS7IKWv/yl9Oab0lVX5VtQdOiQf9/rTZ3V9ElmWsYRtOzQoeU3+m0ebnZcuhWkzhD3NSbMTMuddsr//+CD+Qf7ZrzeeF9xhXT55fnXN97Y+nOroGWQ9Rhm0NL4e485Rnr99dbHdVBpD1oOGSI9/3x+Wy5cKK29tvW0UTQPd3MtCpJ1GUfQ0mpdHHhg/iHB1VdbT3PYYdKHH+anaWx0vh4al+10/AdJYAmrebjZ9q2pkU45RXr2WenKK6Xdd3f//TSKIzGqypFpibykMi2jrPxNnVr694wZraeJO2jptxISdaal3bRBbmDMApaSuz4tg2RaprF5+IoV3uaRxebhQSuqXuflJ2gZ5fkt6Ojh11/f8vqee8IpUxjmzWt5bZYtUOkVs/Ljwy5oaXdMxN0ksZyxzM3N7s6bXm6O3ArrAU3U7IJFb77Z8nr+fPPvSN6DltWSadmxY8trv83Dy/cbmoe7m5+Uz3Cy4rWeWghYSvlWTeWsmoc7XTeSaB7++ustrxcssJ+HEy/b0EycQcvnn295bZbgYRRG8/ByYdbh3cw/inlaLcOY1Ww1zYcftrx2Ux837hvlx3+QZIK4mocXvvfssy3vffaZ+++nkZuBGREIQUvkpSXTMszATfm8zW4Cor4wRvWUyut3ksq0tBJ18/C4g5Zu5uM1aBln83CnTBe3yw0z09Jr83C3ZUiqebibfTTuwQHccnrqn4UKZRDlNxFhNA9PYp35aR5uFFXzcC/BpqS4vf54rcNYPdis9D4tjRlsTtcfq3Vfvt/E1Tw8jkzLsAfiCbOJqJfvSv4zLZMePTzoecnqvsqubFH1aellG3rJ8gsraBl1lyFJBi2N3Jxb3fx2u4eJfu8zzab1+rff+Uql54lyWahjmp2vslDuDCFoiby09GkZZtCy/LtxBC2dyh/WU6qwBQ0eeWW8yFrtA14qbEEz/oJ+183o4XFlWsY5enjQ9R6k+Zfk78lmnA9ljNxUJNMatDSWy0ylP032kmlpd95KU6alm6Bl2NnfVln0Wci0tLsG2wWV/AYtKz3T0hi0dLr+WB0rYWZaBg3MefncDS99Wro9ftxu1yDBMrNlLFpkPq8om4c7/VY3QUu/D3PNuA1a2iWQpCVoGXbzcLOs/7Cvj1Fcb/0cJ26OVTfHqV2mZZT7TVj3sGa/0UtLpTQy27ZZKHeGELREXloyLaMMPqUhaOn3CVjUN7hpyrTMYvNwN/NZudLb9GHfyFfi6OF+KglJZVq6ySQwGw09DWodqgqVXjELq3l41jItww5aFpaflUxLt0HLIJmWVvtLWvu0DGu/NQYt/Q7Ek1SmZdoejLnNtHR7nIUdtExjpqXTgzjJ+UGzEz+ZllH1aenl3B1G0NLLeWLNmnDr8GaylGnpZlt5ybQM8kDGaxDTSpDsz6wg0zJyBC2Rl5Y+LbOeaRlVUDZoxSBI8/Aosi78NA/3EuBKY9AyyubhbkQRtAxaEUkiaEmmZfgqvUJq1jzc6jfa3SwmPXp4+TnA6w1J0HNSYfmVHLQMK9OymoKWYTUPZyAeazU17vepICPgOjX79DKvuJqHWwkatDRy2oYFUQUtvXzXKaAbRdCyEpqHuymzm2PVa2AzyubhUWVaet0eWQj+EbSMHEFL5LlpKhEGr09xstanZdyZll6CJH7m7/SZX35GD89apmX5to+yebib35vG5uFBg+VmlTunMqQ50zKtQUuvN+mVHrTMaqalU/PwclFlWkadVR6FqDItrQITaW0eHtax3a5dy2sG4mktij4t48i0dApa2h0rTuVw+5lVOYzc9PEZZtAy6UxLL991WjdutqGX5dllWoZ1naymTMsg90NeE23c1gmC1iWyEPwjaBk5gpbIi6t5uFPQLuuZlk7l93sx8fM00/hZJWRaeglaBtmHg2a/Ws0nrkzLwra2q1xElWmZhebhUZ7fgo4entWgZdjBrbTxMhBPmvu0LL/ZjLt5eJYyLb08YLQ7t2Yx09Lu2hNFSwSnTEurZaa1eXgY9cooRg93e5wFCXqE2Tw8SP0gjG3k1KWPE6v7Krtl2wUtvZx//QaXzL5bzs26S3umZRjzjypomWSmpdc6gd/Em0rMtKRPy8gRtESeVQXJq6lTpVNPlf797/x8rr5aOvfclot/VKnnZtKQaen191qxms5r+SdOlE46SZowwf180pJp6aUCm4ZMy6BBy7ACBGZ/l5dt9er8jeM550hXXeV+/QU9XpMIWqY50zLqPi2nTJFOOUX6z3+8fc/rTYzZ9DfcIP3hD9KyZd6WnQZxZlp+/HH+HP2vf+XX1803ey+vFafm4XfcIZ13XksQKexz0tKl0h//KF17ben7WQha2p037AaWs1pnr72W385vv20+fRyZlnfdJZ15prRggXkZzIT1QMI4H7+ZlpXcPDyKoKVZUNfst0SZaeklaBll83A32zuKPi2fe04aOdLdd5LKtPRShwqrebjV8ehl1Hujzz6TTj5Zev75/N9RtAZJMmhpl2np9j6zoUH6v/+TLrnEOlnE699WrMrUpYv3719/ff5exU9dcvly6U9/kq65Jvx7ATItI+fQ2y6qRliZlkceKU2alL/5ufde6fzz8++3bStdfrnzCS/rmZZONyxhnfCd3rey8875/++5x33lMepMS6t9wEu/SkkELb00oZGiHYjH7PeWf98p0/KCC/KVAUn66U+l/fZzXm7Q9e42e8mKWWUtyUzLoEHLqDMtBw7MP1i66658YMrYr5ydoJmWr7wiDR/eMu2NN7pbblqEFbR0k2m56675ivU997S8t8MO0m67uS+vFadMS0n661/z+8XFFwc7J5k57zzpwQdbv5/G5uF+g5Zu6zB77pn/37idpZZ1HnWm5ccf5x9gSNLcudJjj7V8FkfzcOMynK6NbpuHpyXTMuygpdO83V4r/DYPDzPT0m3GodW8zOYTxedS+M3D6+ulQw6xny4NQUsvAd+wmocHyQ40M2BA/rx2993mQdHmZneDMdlJ6+jhbq9dN90kXXFF/nWfPtJvfxtdYpHVfLp2dRd8LHz/hRfyDz6l/Dq44QZ3yy+4/PKWh6ZbbCH97Gfevm+HoGXkyLREXlgD8Uya1PLamCFy2235/+MMWqYh0zLJPi2NvAbY/CzDC7sAmtsnfnafxRG09Bocc7phCGvfL2xrr0HLQsBSkl56yd2yglY0w860rK+Pp+meFS+/x2zaqIOWU6e2vPbylNrrvl7+9wsvtLz+29/cLzctypuv+m0e7ibTcvny1u+5PR6duO3T8vbbW6YpF+R6YBawlKoz09JKXJmWb73V8vpf/zIvg5koWiI4BYeslmmWaRlHK4G4H4xFmWlpVjcMO9PSqjugOJuH+6mrhD0Qj5vm5mkYPTxNmZbG+XjJupw7t+V1Y2M8mZZufnMcmZZuf+t997W8fuQRd98NK2hZ2B+7dXP3/YLnnmt5fdNN3r5b/p2nn/b+fTsELSNH0BJ5UfRpaTyArfrZi7J5eBb6tIwy0zKs5k5+gydu+8Vy2zzcS6ZlkP3Gz3fNKlNeK43lvy9o9pHXoKVR377ulhE0WBy0W4Ly37h6NZmWbnm5AQiaaWkcdCOLgmRapnX0cLsyFN5303Q0DNWYaWklrkzLtm2tP4ujT0vjelm1ytu5s8CsnG7Xd5BrV9yZlk5ByyCZlm6O8aCZll6yK53mZTZPN5+72d7l04TdPNzNNdeYQJLGTEu350WvQUsv51uvmpvjCVqmNdPSqlxm+5rTceI3UcEu09LL9/0GsQui7IKJPi0jR9ASeWFlWhoZT2ZWQctKy7T0+vuCZlq6DVoGGYjH78XdLlPELoAWRtAyjkxLp+WVz8frBTLu5uFGPXq4W27QiqDd9H6ah7sJWiaVaenm2I+6T0u/vGavlk9vFyDJgiiah4f1UMkLt8er2Q1CQdTdhaRFUkHLuDIt7Y7JOPq0LN/37AbjsVr3ZvuN22BvVEEdr/OyEnaflrlccqOHW/WnHWfzcDfbu3zfCXsgHjfn8bQ3D3d7XvSyfewyLcOQtaBl2H1aWq1Ls+5qvB43fh8SFf5u47KXwiwELcm0jBxBS+RFkWmZdNCyGjIto9hW5fxuA7vO9e0qrm4vnnafxR20NFO+3pwukEk2Dy+vnLtdf0GfjnvZpmbMgpZx3FD6mXclZ1o6VWQrLWhZ3jzcbrsZ103WMi2DZHV5UUlBS783deXfLw+ghF1Xsct+jrtPS8k+q81L0DKOEbLjyOaPImjpN6AbVaZlnM3D3dQny+8Rwu7T0u8DDOM8vCzP73e9tODym2lp3GejzrRsaqq8oKVdpqXbcvnJtAzrHtZqeU7fz1rQMol6XgUjaIm8KDItjSeEwvyjykQ0k0SmpVPgKc5MSy+iyLS0C1pWWqZlGM3Dg2ZmlvMStJw2zb4sVqLMtPQbtEwy09JuG7s59uMMWnrhdZ0GDdykjVOmpTEAlKVMS6dsUTcZ3GFIU1ZxgZdrdRyZlmGft/xmWiYRtLRaptl+U4mZlk7zdrOPNTc7B3QLy4wy09JL0DLpTMuwm4e73U4FSfVpGUaCgNegZZSZlkkGLct/R1jNw5PKtAy7ebjXBImsBS3JtAwVQUvkJZVpGeXNbhoyLf1UnNzM1+n98s+CNA+PO9PSKmjppSIVZrDbjTCah4eZZWy2PLt1PnOm9bR2osy0jKp5OJmW3nkNWnoJSGSBU6alMQBkdy5yMxBPlOLu09Ltb0xjpmW5uDItC9OXB1DCPm8l3adl+XySzrRMW9DSKO5MyyDBMqdsI7t6iJt5uS2T1+CLFH7Qsnx5SQYtw9q/3Z7TnZZnPE7NBsrJQtDSTd+vXltcuZ0m7D4trYKWUWVaeg1ami0vbUFL+rSMHEFL5EWRaelmIB6nE2SYfVqaVdjCPqE43bAklWmZxOjhbjMtrZ5OeukMPulMSzfziXIgHjcZUXaZluXiyrQMmuFb/hudBnRwWmZQXir7SWdahpnp5/TbKi1oWZ5p6TZoaZbZ4EZUmZZRBy3d/sY0Bi39Ng8P2lqkMH3UmZa1NtX/tGVaVnvzcKd5uzkmczn/fVp6WTdZzrQsP+aC9mlZvjw3+0VYQUsv3/VyrourebjfoJaZJDMty+uoSWRauglaWjXXjirxplqahxO0DBVBS+TFlWnpdDL1UuGfPl0aPFi68Ubn5UvmmZZRPhGXnCt/XlPjy4XxRNRp2iiClk5P23M5bzcVSQctjcfPRx9JP/+59PrrpdN4zbT0G7QslKX8BsUpUGzkN2gZZqalmzKU/8Y0Zlp+8on0y1/mz1dGTpmWfitUCxdKQ4dKF1zg77j+9NN8eUeNcp7W6nOngEQamwPb8dI8vPy3W40ebnXei5Jd2YxWrMjvA5984jwPO25/T2F/mDFDOvZY6frrnb/T3Cyde6508snSsmXuy+RWWEHLtGZa+s1yj2ogngsukI4/Xpozx3naAr/Nw2++WXroIftl3HGHdPTR0pdfui9PQZQtePxmWjY3xzMQj9fRw197LV9fGj3a/ntePjP73E2wpXzf+e9/pT/9yf+xl5Xm4eX7RRgBTqdtZ/yeWfPw22+X7rmn9D0/QSope0HLsPu09NI83Gn7hpV44zUoHWXQ8umn8+egt97yPj8jgpaRczlsEype1JmWVn1aBmke/pvfSOPGSY88Iu23n7T11vbfzXLz8KgzLaNoHm43GqhT1p9Z0NJLBTbuoKVxeTvvbP7bHSoiNVE3D48i0zKsrCK/ZUhbn5ZmZb7iCunxx91Na+R3+w8fLt1/f/71LrtIhxxiPp3Veth3X2nu3HyZjzhC6t49/EzLpUvdj1CfBlE0D/cSfIjimmz2t9Hjj0tPPdX6/aAZ4GYKN83HHSe9+qr08MPSwIGtr+lG//iHdM01+dedO1s/vPTLb9DSa4Z9ubgyLf0GJqPKtHzxxfz/ixdL//lP6WdhZlp+84105pmt3zcuY+ZM6dRT868/+ij/IMdNeQrCzrSMu3l4kPqUU6ZleQBzzz3zr5980lvAP2jQ0uw3md0jXHuttNde0qGH2i/PTJqClnbf9TLoVxiZlmaBPLPpTzpJOvhgd/O0k6agpZsHB2GPHu4m07IwTZj36G7mk4ZMyyOOyP9vdg7ygqBl5Mi0RJ7ZySuo8ubhuZz3TEu7E+K4cS2v33mn9eduMi2z0jzcbxMMt9KWaWnWlMZLGYPsw0H3f6tgbZoH4nEqi9vpwgxaRtWnZdxBy3nz3JfD+Hv8Bi0LAUspn8VixWrdz53b8nrBgvz/QTPky5vZLV5sXa40Msu0NN7odejQ8tpt0NLtTXOYvB6vZuegKDMtX3215b2PP7b/zpgxLa//+U/3ZXIrbZmWUddVjOLo09JqvTz7bOv3rH67n0zLKVPM3zf+rq++ank9ebL9tE7z8itNzcODBMuMyzf+X/7aTTm8lCmMTMuCN9+0X5YbZnVaM8bfHFfQ0kumpdt6udegpdUyv/3Wej5upSloGVbzcC99WlptizQ0D48709L4gJnm4ZlD0BJ5UTQPN54QCkHLckGClkZLl7Z+Lw2Zlk6VjqBBSy/NOOwEDR6Z8Tt6eOG9LGVaWo26aRTXQDyFsiQRtIy7ebhZ0DKOG0orZtvMajs63XyG0QzTbrCNIN1HODVHcmoeXslBS7tzvlOfllY3zVFlWvo5FtLSp2XQmxcv85fc3/S7yURx07KhvL4S9nkr6UzLMAJhfjItrfrytMtcclset597lXTzcC/nH6t9xyxIEaQeEnbQMpezfmjUp4/9stzI5bxnWgYJtHnJiIu7ebjbTMvyadPePNzsN5Sv27Cah9udr9z+Vjejh3ttPWglikxLu36ZrTAQT6YRtEReFM3DjSfrmhrzk1NYJ0SzoGUSmZZOgaew+gOxmp+VIM3Dk8i0NAtaeilj3EHLArunwlEOxGMmC83Dg+53Wci0tNruZuWwe3ruR1hBS6csYK/Nwxctcr/sNDBrHm68nnTs2PI6SKal2+abfnm5kbUSRaalWTDFy/4ZR9AyzExLN+e9qDMt/QYtw+rTMoz9yE/Q0nijbrUMp3nE0TzcKrgXJNPS7T4VRaalWZAiyUxLs+PU6vzbtav9sqzQPNycl0zLMM43lZ5pWX6+8tM83G2mZVitBQvf83pdC7N5eNgDAJJpGTmClsiLItPSeEKorTWfb1iZlmYd8SeRaRlXar3T+06feZk26kxLq/3Cy9P+JIKWZjcVU6daTx/XQDxW389apmVUzcOjzLT0kgUTR6ZlG5tuq72sB6d90+m8XemZlm6Dlk6ZllaZPmnKtIyiT8s0DswUZdDSzXkv6kxLv+feJDItw2we7ibT0ulmNo5MSy9BS7d9WrrNqEtLpmWczcPLH0SVf+ZH+X2Vm/0iiaBlFJmWXoOWfjI23YoqaOlm+7gJWjo9FDZjl2npdhvFmWlp9cA0SKaln6Bl+WCXYcYACFpGjqAl8pLKtAwStDRmEVVrpqXb7zud3O3mk5ZMSy9lDFIhCRK0/OYb6+njah5utbw0ZloG3e/8NA9Pc6ZlGH1aGgXNtDSrKEremyNVWp+WdpmWdoPdJJ1pGXfz8CCZlkFaB4TBb9DSTTZrGjMt3Z57wgpapi3T0kvQMouZls3N7kekD3KecOoOJUiGv5cy+QlaWp1/w8jISjrT0m7ZbvcLL2Wwm85L0LIaMi3tzsVW7FrluP2tbgbiiSrxxuv5IKygZXnzcIKWmULQEnlRZ1r6DVralaVLl5bXacm0dAo8xZlp6UWSmZZZbR7uNdMyroF4wujT0u02jzLT0m/QMm2Zlkn2aUmmZTjCyrR0Gj086kxLLzeyVtLSp6VR1pqHu8ly9BJI8MOufhTHQDxesrmspjXbb5wC/27qUmnLtHSad9iZlkGu606BULsH1l4e3GYx0zKtzcOdmhfbfRZGpqXd8RZGFn7WgpZe95MwRg+3ynx02t5Bg5ZBMi39KA9ahnldpU/LyBG0RF4UmZZuTuhOJ0C7k7exnxmzoGUaMi2DBGXdTBekebjbZjpJZFo2NwfLtExj0DJNmZZh3XQFrQi6uXm3U8l9WoZRTrugpZdMS6eAutN5LetBy1WrSv9ubMxmn5ZpzbT0c2Mad6al3TK9Zlq6Oe+V11eizrQ07uNJ92npNjBitt84BRzddNeRtqBllM3Dna5DVsu04hQItat3xhm0NHsQF3amZflv9dpXYTU1D3dbNj+SHIgniUzLMJuHO/3t9noQVqalcfl+BuIxCjtoSaZl5AhaIi9opuXDD0t77239uVWflmvWSKeeKh12mDRvnrdKizFoGdfo4c3N0mmnSYcemi+v2ed2ZTC7APzjH/l19+KL1ssNmmlploniVBEuyHKm5Q03SPvuK733nn1Z7eblZrrCa7vm4VEOxOOmsuQlIDZ8uHTQQdL06d6W6/V4ChosjyLT8o47pAEDpDfecF5+ObNt7DfTUgpe4Ylr9HCvmZaVMBBPFKOHW2X6hCWMTMso+rRMYvTw2bPz1/Ezz3QfoHQTPHNTh3Fz3vOaafnll9KgQdLIkfbTWc3PuI8n3Tzc7bXfT/Nwq/133rx8PfTUU/1naxbEHbSMunl4oT522mnS4Yeb133dztMuaOkl48xsOZ98Iu2/v3Tlla0/32sv6fXXrb/vJtOyvK6+eLH0i19IQ4c6Z1mZPYg3Y5dp+dxz0tFHS8uXe5uP2byMohiIx+63ermGhPEgr9oyLb/5Jl9/P+8863JJ7pqHOz2Q9ptp6bVPy2+/lQ45JH8MFvi57hvX1Zo14T2Ek7w/oJTy193jjssf1+XdKE2ZIg0apFq31/QqYJOGgaoSNNPy2GPtP7dqHj56dMvrs87KVzaM7A54p+bhUWRa/vvf0u2351+feqr0xBP283PTp+Xxx+dfDxzovQLg5Ymo2XcL2z1tmZZeg5ZmgYK5c/PBNyl/Mzd/vn15zcpmx6zybTd6eJQD8RiF1Tz8+eelwYNLK/rlosy09BO0XLXK+Xt2v72+Pn9cS9Luu7s7P9TUWGckmpXRrhxmzabatXMugxW7J9FebqDKy+qUmWH8u6Gh9e9assR52WkSRfPwuDMtzc6pUTcPjzLT0sjPzcvJJ+eDAFL+wdaRR5Z+HmXQMopMy8MOkz77TBozJv9bttvOfvrycsUdtPRy7rea1s9APFb72kMPtby2e/hYXh7j+d/sc7/iyrQ0O3bM6lOPPNJS923bVnr8cedlls/D+H+hTOXLNT5o81o/OOAAadYsady41p9Nny7tsYd96wGnTMvyuvr557fcA+y0k3TGGaXfK99uQZuHS9Jjj0kbbihdc437+Zj9beQl09JtvdxLpqUd43nQbzcgZgHjNActg2ZaHnNM/sHC889LP/uZu0xLqyCi17+tWH3PbR1h2LDW74URtEw60/L661uuPT/6kXTVVS2fDR4svfOO6saMUXen471KkGmJvCj6tCyfv9PB+9hj3m6qOnVqeR1XpqUxY+/JJ53n53SCL292aMVPxaA8E8WubF4Cgm7Z/TanpspmFTyvFakZM1r+XrDA+rtO83IzXWH92VU2vAYtgx6HQYKWBU7ZhkEzLcMOWjY2BsuCcXs8GjmdO/02D5eCZ955aYJpxqpi6SXTsvzpsXG+WVGeKeq3eXiSo4dbnWe98lIWt/MPmmnpRyFgKUmTJgVbZpjNw/1mWn72Wcvrr76yn9asXMagZRx9WkaVaelUX3ETEHjnHfvPjeUzy2YP43j18gDbTR0tlzPfp9w2D3/77Za///1v5+VJ5kERL3VN499nniltv31pmcrNmuWuXGblsMu0tDo/PfVUy+vXXrNfRlhBSykfjPIyH7O/jbyca6JoHm7HWDa/x1VUmZZu7lGiClraZVoaM6E/+cRbpqXT9vV7n2L1vSDbIWjQsrEx3Lqonz4tX3qp5bWxTiKVXIe6OrV6qxIELZEXRZ+WRlaZluW8NA83Tutm9PAw+pto397+c6dlli/PbTNJq3UXpImnXTMdN8t2Emempdm0ZvuEG0EyLd1k0Lhdrpf1HnbzcLeizLT006dlQ4Pzb4siQF/g5YbSzbRBM++CBh+snr576dOyPODndtlpUv4byrNy/AQt4860DCtoGfS8ZCbpgXicuk+xe08Kt3l4XH1alm/HNGVaug2MmO03TuVzExAwHs9mjOUxy4SPIovL7n23QY7y9eX22pTL+dv/zLIm7eqddvXn3XbLJw0U5hl0HTtlWp5ySulnZozlM2vVEHbzcC+CZFr6aR7uJZiVRPPwMPpzLhdVpqXXvk+d1qeboGXUmZZW18Ug17WgQcv6+uQzLY3nSJt6UG3U/Z1nBEFL5MWRaRl20NL4WXnzcLeVrLCDlk7l97tuvTYbdzMP43eDBo/MBOnT0mtzDrNKtpt+f9zMy4pZk60gT5e97PtulC/PbWatF1EGLf1mWjp9L+x93anpXpKZlnb7XJiZlnY3m1kPWjY3exuIx+4GJMnRw/30t2QmiqBlGCPEBuEUcLB7T0pHpqVXfpuHh9EHmNlDSSO31xU3AQA33yln7KPWjFOmZRjbKonm4YXlmNVbgwYtzYIiXurLhWO08H8UQUvj+bdz55bXVsEEs/JZfZ7LhZdp6SZY4+Y8VBDGQDxeWt1E0S+ynUociMcu07Kc1bZx0zzca+tBt2VIQ6bl6tWZCVrWEbSURNASBWZp4mHP30/Q0m2AYdUq54qdm+U58Rq09JItaCdopqVZ0NhtECuLmZbNzeb9nLrh9vea/YYgWXxhNQ+3aqoeRaZl0ObhQfc7P83Dw6pMm83Pyw1lHJmWQTOmrJ6GV1OmpVmXAX4zLZPs09JLQN1OkOx+K0k0Dzfymmlpdzy4efjkFLDL5eIfPTzOTEuvD5a8ZFrGEbQ0licNQcuwmodbBS3L17/bYIFTpmU5uwc+hQBLWEFLs2PYuH7Kg5ZODxmNASCzZTQ3hxe0dMNLcMnLQDxu70XCrmdJ/jPqK3EgHmOQ0enaYFVONwPxOJ2L3e6jVnXEJDMt3fSB7wWZlpEjaAlJUi5I83A307vNtPTydLB8WmPfaX5PpE68VGbNyhF2pqWXZhx+g5ZJZFoGDVrmctEHLc0q+3bfjatPyziDllFmWkbVPDzINirnZpt5ybQ0+z1BxJVpaXfey3qflmZB1/JMS+N1IUjQstIyLd1Om8To4UZeMy3NsrSsvudnvTc3R59pWT6/OPu0jDJo6TTvMLJ6s5hp2dzsnFHnNtPST9DSKpPLrjxRBi29ZFpaDdjhlGlZvt28PCgsf23kJ9PSbtlhZFp6WV7cmfVpD1raXU+clu00rV3Cipvm4WFlWlod20kGLZuawn1Q7KdPS7eZlkG70KkQBC2RF6R5uJvpo24eLpX2D5lUpqVT0DXsTEu3lQuzgXjcZqYmkWlpVsHzUsZcLt4+Ld08NYwyaGlWliSCll7nG2S/y+X8NQ+3K6PXioGb81WQPi2THojHbZ+Wdsdq1jMtrYKWVpmWdg+qnAbiyUKfllFkWvqp7IcZtHTKkiqwykaxax5uto7dPFip5ExLr/07W/32qJqH29VdpPQELQvLbmpyd7w4BcILf6cl09IsKBhl0NK4ftZaq+V1Y6Pzwwezc4jx8+bm9DYPD2MgnjgyLf1Ke9DST/Pwwnfcdg1hVCinWX3E6Tf5XY9WZQiyHYIGLSXzh+p+Bc20tKn/kWmZR9ASeUEyLaMMWnrJxFq82Pozt8tzYlYxsZtfWEFLP5mW5bKWaell3Znd5CxZ4lxGN/NyM52bTEuvN2p+17ubTMuwgkZBs0ODBC2tgj5ZzrQM2jzcS+XXzbayutH0kmlZiUHL8qycrGZa+jnH+H2YYsdPxpxR3APx2B1nYWRammWAhH3MJNmnpdcHS1bTR9U83CloaSxfVAPxWB07xnkbl+1mnbrNtAwrwGOWaZmW5uFOQcsoMi3T2jw8jIF4vDzArpSgpZuWdFE1D3ebaWlWLrOgpdtMS791/jQ2D5eSD1oaz+Hlx6Fh+9CnZR5BS+QFybR0c4J126elXeDmT3+SdthBevdd82mNQcuoMi2D9kvo90Jp9T235W9uti+bl4CgW24zLa0yUYJkWjY3l+4PXvjZd6yeNhtVQ/PwMB94lB9rN90kbb21dO650rbbSiNHtv6Olz4t335b2n576fzzS7/vhZ8n7QXLl0vbbSe99lrLe0EyLceOlX78Y3fLlrxlWnoNWoaVafnKK/ltfdll7qaPglml1i7T0m6fSDLTMs1BSz8Zc37cf7+01VbSww+Xvh9G8/BcTvrtb6Wjjy79zE/Qcs0a52MsKL9By4kT8/Ww884rff+aa6RttpFefDH/98yZ0h57SMcc4/2mPEimpZt168SsH1urZaQh01Iq/V3/+1/+2lJepvLr2zbb5LdT+XLMHhj72f/MMi291OPi7tPSeL3t1KnltVWmpZc+Lc0exJuJKtPSS9DSyzayqvuG+XDYSVNT/ry7xx6l+7Px8/Ly7LJLvi65zTbSFVf4W66b81TWMy2N3z3nnPw6M5uX1zK46S7CidVx0NwsHXectNtu0rRppZ+Vr69ttmn9/XnzpAEDpMMP91YnC7tPS8PD8Fqah0uS2jhPgqpgNoKgW1FmWhZOAp9/Ll17bf71/vvnm4KXnyCMzYGjyrR0ukA4ZcvFmWlZXmGyuxhFkWlpV/F3CqA1Nwd7cpvLlQYtjU/Nnfi5CLt5ahg04O21LEkMxOO1AuIlWH7WWfn/P/44//+HH7b+jpugZWG+u+ySfz1pknTaaVLfvvFmWkrSBx9Ie+5pHWj2UmE64ABvy44r09Is49ntfjJgQP7/Dz+Uzj5b6tLF3ffC5KZPSz+jh8edaemUKeRWkOx+K34y5vyskyFD8v8fe2zp+14zLc2Cls8/L917b+vv+LmRMXvgF3amZfn8Cst0Cq78+c/5/99/Px+k/fGP8/tt4WZ24MD8PH7zG+n11/PvHXhgy7qXwgtaJpVpmWTQ0vj7jFk6xvf33tt8fuXXE2OXSsblOGWQBenTMq3Nw8sfRJUPxOM109KsbuA1cSPMTMs0NQ8POwDz4IPSY4/lX//mN9KYMaWfmwUtpfyDFkn66CPpjDOkbt28LdfPQ+uwMy3dZAq6KadV0LLw9yefSNdd5zxvK3FmWj76qPTQQ/nXxx+ff4hT4Ob8f+aZ+QfmkvT3v+eDtW6EnWnZoUOx/kmmZR6ZlsiLOtPSTdDSrN/FwnfmzWt5rxCMsns6FVWmpddsubCz58p5+Z12Fy4vT1bdMrvZN5un1c2hl6BleYA0lyutkHsJdrj9vWa/IcjTZTfNCt0IO9PSS2AxzAcefva7hgbn75ltq8K+GrRPS69BS6dpg/ZpGVampVmQxsju3FL+pNtsejfiblJWYNU8POjo4WnItPSzHaLItAx63MQ9EI9Z3eOzz8zn7We9m+0HcWVaetm+s2fn/zcr79ixLa8LD5oKnJbhNkvMT/awm/OIMRDQxiS3w7gtksy0NN7wunmg7nR9K8w7ykzLNDcPtxuIx2uflmZ1A5qH54U9evinn7a8Np53CqyClkbffee9PFEFLd308Vz4jln9qpxVOc32Navt+O235vP2myDkJvPaidl1WyrdH159tfQzN/veuHEtrydNcl+eoAPxlK9LQ72STMs8gpbIi6NPSzfNNq2eDppVHO1upKPKtAyaLef3xsNqHXvJtLQrW+EzsyYufitOdk8A3fRp6aXSVR5YKM+0NHaq7sRPwNvqabNRlJmWZt8rv8j5DVraBVK8bCM33zfy0wenl+bhRoXKQRTNw4MELYMGseyW7WYfCCPTcupU6/l6EUVzYTe8Zlq6DVqmIdPSzzoN64GHkZ+yhRnEczsQj12mpdWxmrWgpZ/zldf9KKxMS79N771wCkqafR7GtnITtLS74TWbn9P1JI5MS7fX/PK/42gebjcQTxiZlm6OEzf1nrCbh0eRaRnkAb7bZReY3R8auQlaLl/uvTx+gpZussPddHtR+NusfmVkNwirm9ZihfftmmK7YXVvH0Wmpd3x4ac5vVtBm4eXMzQPJ9Myj6Al8tLSp6XVza9ZU2O7Ck5cmZZOlTsvFQe7JsxW5XRbfqfMxcJrN8Fht4JkWjY3ewv4li+ruTmZPi2DVNSCBADNyhJWpqXddvTSJMiM20xLtzfFfgfiKbwXtHl40H4D48y0dLN/hdGn5TfftJ6vn0phUkFLs4cv5Te4bgfiSVufllnOtDTOO66BeKyyQ7wGLZ3WS9CBidwon1+QoKXTebN8/brNhrf6u3z5Tu8ZhRG0jDvT0mreXjItcznnh3Jug5Zuec20tApsSMlmWpr1aVn+fTeZlm7KHFWmpd28vGRaWv2GODItrYQRtDR2L+ZWVJmWbq4ZhWmcgpZm5bLLcvSaaOP3XjuMTMswBuIx47du4aeOZTe4L0HLVghaIi+to4cXTgJmgRO7E31cmZblN7RBMi3tsgHdVhTsvm93gS28Nrv4+6042QW74s60DBI4smK2/oJU1NLaPNwuYzbKTEs/lXerjAgjs99emH8UzcO9VNCD9GnpZn5GYWZa2t0gFSrVPXpYT++mfGnNtKypkdq3b/nM7ubWKdPSanuHEQTJWtDSy3Lc3FjYlSWM5uFWDxiykmlZeDDs5Xzl97wZZaZl2EFLpwe5cYwe7qZ5uJt16rZ5uNn6D9o8vKnJeR5J9mnpdfTw8rI6BeZzufCahyc5EE+SmZZWwgha+klycHOeCqt5uNX2NHsoXM5q29g9mLP622n6MMrgVlRBS7/L8POA0m79MRBPKwQtkZeGPi0l6xObWVDKrhIRV6alWbmMvFwA7E6OfjIt/TQPDyvT0i7zpHyeZvM3q+B5ybQMErQMkmmZpubhcWRaen0qW87tE30vQUs3lQSrdR120DLouTRopqXdevOSaWl2g2dktR6WL5cWLMi/3mgjb8su3+/SFrQsnN/atbPPoPSSaWm1vcMIgvjJZjTj5Rj38lCtXNjNw+3mF3QgnvJBPJyW67Re4si0DLN5uNcbQa9BS6vfnlSmpbE8Wcq0TLJ5uNl1t1xa+7Q0y7R0enDnt3l4VJmWdusr7oF4wu7T0q6JreQuaFk+KJUbbjKSo8q0LCyLTEv370vRNg/306el3TFuzLQMei9QIQhaIi8tmZZWgcjybK/Vq+0rEVFlWnoNWnq5kLvNOnM7v/Lp7CoxhfmE1aelXaCrfJ5hNA832z+MXQrEFbQM8nQ5rKBlks3Dw8y09JM57aZ5eC4nLVtmviyvlWmnG4Ogfb1lJdPSTdOljTduPV875TcRaQpaGm9w27cvvX7a7QN+My3D+O1pzrQM2q2CmyCK3QMJqw79y1md57PYp2V5GYIELYP2Bez0uZdMS6d5Z6V5uFn9rPz9uJqHx5VpaXfujLNPy5qa0i4/zDItnYJRldo83Oqexkt9PexMS7smtm6XF0ampdn2LV+3YWVaFr7jJtMySNAyqkzLKPu0tCuDm2MqzObhQYKWhv2aTMs8gpbIs7vpchJHn5blN46LFyfTp2X5Ms36UvTyt9vPosi0NKsIh5VpadekuHyeQZuHm90wLlnSehq3/GQHuWnq4DVzyEuF1Wxb2gUtvWxTL5mWYQYtjZ+53X5umoc3N7euoEaVaRk0aBllpqWbc59VxdJtpqUxaOk107J8G6Vp9PDyTEvj9dNt8/CsZlpGEbQMq2x27B4AeB2Ix+wm0+rc4edGxqys1ZxpmWTz8DRnWnoZiKe5ObxMS7eCZloalxtH83Djgyhj2d1kWjplXoaZaZnkQDxWx2YYzcPXW8/6O3acmoe7qddFFbSMavTwwv40fbpzOYM0Dw8r09JL4NQtr0FLtwHLtAQtDZ/Rp2UeQUvkBWkeHmampdvm4YsX2wcIwsy0fPVVqW9f6eSTgzcP9/IEs2D4cOnxx80/8xKcdZNpGVaflkEzLc3Ka7V+nJZVvry5c6Vtt5V23dX8u3br9MknpT59pL/8JfxMSy+VzL//XerdW7r77tLlG1/H0aell0xiM24rx2FnWpZXUP3efJcva/ZsabvtpHnzvM1vvfWkK68079Pyb38r3dZeBB2Ix22mpZssgKBBy6QyLY37f+GG2dinpVOmpVXQ0kumpXEet96a3x9uv9257O+8I/Xrl7/+7rVX68+jbh4eJGh53nn58/TcuaXvf/ihtMkm0tNPuy+HZH/jWqj/XHhh/vz+xBPemofbZVp+8EG+vIcf7u46YVXWIBkpo0blzzHXXdfyXphBy7AzLd0GQOyCljfdlD9O7rqr9PMw+rR0k2mZy0m/+lX+3LDuutLzz+c/mzxZ+vGPpUMP9fageuTI/L75r3+1vBd2pmWhPE5d8/gdPdxpuyfdPNz4IKo8aBlGpqWbY8vtfcxll+WP6UcfNf+8vLyTJuXPQ0cc0fqzMPq0LP/Or38t7buv+YM4q331Rz+yXq4dp+bhWQtauskgb2qSvv3W3SBobgOGI0ZIxx9vv9xyfu+13SR6OPHaPNzNflD+ewvzuuaa/PXk/vutvxtG0PKSS1rO84ayELTMI2iJvCDNw92ctII2Dy8PLi1aFF+m5V575Z9m3X239MknpZ95HYjHa6blggXSDTdYf8fLTaHfoKWfyqFTINEp09KpvF6WJZXuG6edlr/xffPN/IXIrmzlfv5zadasfIXReBGxetps5LV5uF2TrLPPlubMyQfSreZjF1gKq3l40ExLt5mpbitGbvu0DCvT0uz3fvCB9Mc/5l+7Lffs2dKf/9x6fvX10u9/b72tnRj3AT8B5kL5nW7YrM57s2e3vNe3b+vP7aQlaGnc/7t3z//f1NRyMxZHn5bG337GGfn94bTTHIuue++Vpk3Lvy70LWpVNre8fMdvFkbBhx9KZ55Z+t5BB0lffVX6npsgil2lv6Ymv09femn+/P6LX4QXtJw3L1/eZ55pCVw5rZewMy2HDs0fi+ec0/Je+fHkZyCewrRpGoin8N2zzsofJ6ecUvq516ClWdcBxvJZDcQzeXL+xjOXy+8Dt96a/+znP5e+/FJ69lnrgJPU+jdfckl+3zTykmnppXm42TksaPNwN/OwS0SIo3l4+YOownllzRrvmZZm19swMy3/8pf8MX3MMc7zkaQbb8yfh55+Ov9QxiiM5uFm33n5Zenaa1u/b3UMGh9seuGUaenmmPfTp6Wb81SUmZbl5wMrVnWS8nledZXzcp3mbcWqJVmcmZZu9oPy81RhGeeem7+eDBnibf5eg5YjR+a3669+VfJZLUFLSQQtUZDWTEsvzcPj6NOy/Ebaa/Nwr5mWhewHL98x+8ypeXjagpZRZlq+/nrL688/ty+bHeNFxM1TQ6/Nw72Uxew7WRiIJ+xMSzdBS7tMy6DNwwvefbd0vn4FbRJt9yAnzExLq/O2MQjXqZO3ZacxaNmtW8vrwgOr8kxLuyaOxqCl30xLL4z9+oY137gyLQsmTiz92+xGLWiflpLzPi1ZZ6g4DTxX8N131vM2CjvT0kz5byjsz3E0D3fa74IELcNuHm5WVuN7VpmWy5eXvlc4j3z2Wct7doNouNneXjItm5v9Nw8PK9My7c3DjZmWUkv5w8q09Jq4YbUvew1+ljPug1I0A/EU/O9/rd8LO9Oy0pqHu820dLq+S+b3flbXMTNO0/oNWkaZaWnFT9BScl/GsJuHGzMtGYhHEkFLFESdaWkWhHIzTeHv8ozGpPq0LL84eh2Ix2umpVOzBy+/0+4CW3gdVvNwpz4t3TQPd9uvktOypNKLlTEQ3LFj62ndrlNjRSiM5uFBgpZRNg9PaiAe42dubzQbGtzdEFtlWgZtHl5QqEwFDbR5abZlxvh7/ASY3fZpaXVuMZa/bduW9eInaJmGPi3NgpblfVranWf99mnpt9N6r8GhMOZpFEbQ0m1LDid2N67Nze6yjayCOm6Dll26tCzPThKjhxf28ziah3vNtLT67VZBS7t1FUY2vZvm4eXL8RqIDjtoGaR5eFiZlk77cNLNw42ZllKwoKXZPhxWpqWbc43d+lm6tPRvL5mWXoNXhUx/o7AzLZ0G4okqaOnmHiWsTEuz/ckpqcXuu2bvm7G65lnN22k+fspgxWoAPav6gHG9brml+TTl5ampcb+eowxarlmTXB04RQhaIi/qTEu3TxnLb9rsMi3NnjyZvbbjtSJWfjIMs09Ls/XjdDPmJdPS7kagMK1TUyi3vGRaWmUyRJVpaXw6aRwh0q48Zrw2D/cTwHJTCSqfrlIyLf0ez24yWsPKtLQqv7FZWRDl3y8f9dzIbF+22+ZutlXQTEvjMdK2rbcbzjRmWhaahxu1b++vebifTEuvTYSCVJitRBG0dFlxD8Ru3eVy7jIt/TQPN3IbtIxy9HCrm1A/QcvCOktqIB6ruoNdBlIYD6acMi1zudbb0GvTQTfb22vz8LAyLd0KmmlpF7QMej0wu6aVZ1oWHjKF0Tw8zUHLKDMtwwxaWt0P+clcL5emTEs354qmJnfBtJoa79vMyOmBvtvrs9X9elKZlmbdekitH9DU1LS+B7Ja736Cll4e2Lq5161wBC2RFyTT0m3Q0s18y08GXpqHx5FpWX7xC7NPS7ubJC/fsZrOrmx2QUs/lcM0D8Rj3IZBMi3NfkOQTEurG7ByZtlYUWZaehmIJ6pMSy/7oFMziubm1v0XmWUGuhF3pqVdxdqsLHaZlm62VdA+LY3lN2Ykutn/yrdRUkHLwv7fpk1pE/cCp9HDjX87DcTjlGnptdIaRaall3OH3xsao7C2e5iZlmbHg5tzRyHwkmSmZeHYLZ9fYd/yEtQL+2FPgdsHLFaZlnbHSVzNw9OWaWlWJqtlOmWQ+Wke7uYewC4RIe7RwyX7TEunoHSUzcODBi2XLCn9O4qBeArMAjx+m4d7OQ8YZS1o6aZ5eHmmpdlDa6dyesm0DBq0jCLTMkjQsnCMl3MTtLTq/zSMPi3Ly2JE0JKgJb4XJNPS7dNDP5mWhe96HYgnqkzL8vKF2ael26CVl8+N09mVpfCZ2UUg6kxLq0wGt0EWr0FLoyCZlmbfccq09HqTYlZus0pgVjMt3R4PYQYt7TIt09483K6zeLOyB20e7jbT0upms5IyLTt3Nu8+w+/o4WbrwCnTMg1ByygyLd0+vLASRvNwL5mWfpuHu80uCTPTsryshXlnqXl42oKWxvJYDcRTvg29BqLDzrQ028etymOWaZlE83CzLPWogpaNjdZ9WpplWpbvY06BPzetQCR39zFJNg/3k7XnVH8o6NHDeh52/DwEKpfkQDxOD4XN5l2eaWmWgFH4XpCgpdU5wVgON6yCllFkWrppHu42aCmZJ02ZCbt5ePlnbrpCq3AELZEXR6alm+msAjJmfVraneijyrQsryyE2Tw87EzL8uw7N5mWZif7Ssi0NJufFF7Q0m1zC683KWbTOwUt3WRaevmNUY4e7jZY4eVG002mZVijh0cdtCz/3VaVJasbIrtt7iXT0ummw2umpZ+gZdJ9WnbqZJ5V5WX08KCZll4rrV6DBGHM0yiMoGVYwWq7G/0wMi3ddJTv9mYxaKalsezl5SrM2+qGyE/QMuqBeKymz1KmZRTNw71kWroJdFnt32FkWobdPDzsoOXq1S3lKwQ0Cudrs0zL8nNxlpqHl2daemkeblUvt/vOwoWlf1vtq077ldXnTvcKbup1S5YEr78mmWlpF7QMEjCMKtMyjObhVtwELb00DzeLP5hxs93cfMfqu2RaErTE99KSaWkWkDGrhDo1D48q09IuaOkm6Og1o8RpnXlpHm53gbULWvqpHDrdXDtlWppVEq3K4fZG3myfKL/Qr1njP2jpZlvY3VgECVpG2Tzc6kLpJbBsxW2wwsuNtJt+u7xkWtptM6vyx9083Go5cWVaWlVIywfiiTLT0m47rVxp3/zL7rvGTEuzAIWXTEu74KYUf6aln/3TbdaM2bRW0pBp6SZoaRV0dJtp6TZoaZdpafaAwm4blF8vCr+zvAyrVrUOrFgNdFCQxkxLs4fcRmFk0xvfi6J5+Jo14Qct3QTV3TYPd8u4bhoa3D/ULezjboKWfh5mma1f4z5jNnq4U6Zl2pqH203jJ9Oy8Pv8ZFp+8435vMp5be5b4LS/ujk/5XL2fYabiSpoaTZN+W9wm2lptt95ybS0OieUz6uc2wfbQR4+OF2f7MpkF7QsV368FOqSTU3Ox2uImZY1ZFoStMT30pxp6SdoGVamZfl87JqHuwk6eW0eHmampV1ZCq/T0qdl//7SBx+Uvhck07J8mQXGTMu775a6dpX+9Cd38zMya1LgtgwFZt83m95skAHjtrWqzIfZp2Vzs7TvvvblcMNtsCLsPi3dZlqOGyf94AfSYYd5y4QOayCe8t9iFXj7f/a+PMyOolz/PcvMZCMJISQhISSBhE0gYQs7KFsgcBGBK3IVkR+goigaVOCCIriACApu4BVR71UEFcQt7BB2ZN/DviQEsidkI5mZc87vj56aU12nlq+qq/v0man3eeaZc/p0V1dX1/rW+32f6j66PpHyPEl9WmZlHv7oo8BmmwH779943jXXRGZnG28MHHdc47Xf/37U7i+7TJ62yTzc5NPSp9Iyb+bh3/lOVHY//nGy9HXzA1+kpc9APK7m4VSFi0ppuWQJsNVWwJQpwKJF0fHLL4/eAQ++PMTxQmUeDkR9PV8OMkKOh6vSstXNw/ljVPNwqtLyzjuBkSOB++83583GPNxGaZmGefgnPgEceqj+/EolIo4+9KHIv+Ebb9R/E31aVipReqNG0cqK4Z57ojF97tz4cX6eIyotZZvZJqWljCjKQmlZqQAHHBCNaypYKi2LP/hB1Mf88IdupOVbb8W/q9qgLQnF4ENpCdj7taSQ+z5Iy7POAsaPb7wXv16W+dtmaatIS5uNaxul5de+BgwbFs29VOfZ5EGFLHxa/upXwEEHxc9ZsQJYsCAKHLXddnESU0QS0jIoLRsQSMuACHlWWlarjY119erG9NJQWooTE3Fw53+nkJa6MqAq7Wx+59PWqT7Z52b4tFSl//jj8e9pkJZ8mqedpo86qoPK/FyErWqPqrSUKVd9kZayMrnnHmDOHH0+KGgGaSnbUVcphg4+OJqQ/OMfwL//LU9LBl9Ky6SkpW0gHurEkurTMol5uOodyXDsscDSpdHi9YYb4r/98pf1crzxRmD+/Pjv550X1XHZZgVPPgwcqCYtXaKHy8pAtbhKS2npqipn+Na3orKbNct8rg6iqkr8zQfSDsRj49PSVWn5pS9FqqU336yTEl/7mn7cUiktZeW6dm38OJW0pAZ4YTA9P/X8PJCWvpWWhxzSSCqp4Ns8nD2XiYxxMQ8HgMce059fqUT1eu7cqJ/mN65FpSUA3HFHRCAccAAtP0C02SobR/k6k5bS0pa0VNV73RznxhuB++7T30NUjhnG89I3vxn1Md/4hpq01LXphQv19wOAb37TXWlpmttQScu8KC3F7z/6kfwavt9XkZYyQYWL0tKGtLz88mhtfNppjekwUNxFmJDEp6WN0lLEypXA5z4HzJsHvPIKcNFFjekzeFRaBtISkMzAA/oldOZtJmShtBTJQ1mHp1qgl8vqDtfUoYidhDjx4/ObN6WlmLZugNWZhzdDaSmDqv4kIS197Pax65tpHp6m0lKWB9Ui2bYcdefz+bVZaFLMw1WLMt19li5tPKaqk75IS/Fdp620VJGPtubhPpSWFJ9wDO+8U/8smqKJ/cPy5Y2qBRVE80SedGTo6NBv+vFpmJSWpveYB/Nwm/mBTd9ua37GIw3zcBmSkpbUxaKKtLz33vp3kXxXQexDdEpLkbSUkfQ88moe7pO0dDUPpwTiSTrv4C1F8q60pKBabey/GWSkJUPScgTkSktd9HBbn5bUjW3XzVqG994znyOSlrL3rYLqGahzOfH78ccDEycC55/vzzzcVWmZdO1LGdNdzcNl987CPFy1kSH+boJsjpgWaamCi09LGVauBJ57rv6dKYlTVFq+u+eeGDVqlD6tfoCgtAyIkMQ83KfSUraDKNs5lw1CKqWlbuJtq7QU88cPGjbKJWpebBUJqt9kk06qebiLGiepT0sZkiotdVH7ZISUDagTUh/m4eIiVBxkfSstZXmQkTcsLzZohtJS1hdRFt82EX3TIi1VES75d33kkfUJWVpKS5MqzYfSUld/dRAXZCLBbmMCRiEt29uj96165+IGmuw4g0nN4DsQj0vfnjVp6UtpaQrEk9Q8nLIwpm6SqczDecXS2LHq6/n0qT4tgah+2SgtWZmZFtni4tK2XppIS75d5lVpSYkabINSyU5pmYSUd82nLWmpU1+xsUM190gKfpxg5cqbh4ttPq1APPy1afXPpverS0M19lPncuL3b34TuOSS+jjqAtkmEo+sSMs0lJa6vo9iHq5TWlLGZ5PS0tWqkcoJ6JCWebgpXytXxtNi/URKPi1rY8fisXPOQW2vvfRp9QME0jIgQhLzcJ9KSxnh0NlJ27VWqYqSkJZJlZY6opCSH9P5VBJURqrJ1HmtqLSUOVA33VM8JvrcsQV11zANpaXos8Y3aSnLgy44jw18kZZ8G6eYh6vagm/Sshk+Lcvl+sLONhCPavJsWhRQyrNcrpeLb9KSb/ciaUlVq8rA57NUkm/qsMmvipAV02CgblLwx/NmHp70/vx5qnOTLmwY+oJ5OA+d6oJP39Y8XLYYU4GdSyk7Hr6Vlnz7zytp6Vtp2dYWfz+mMrUh1U3KNVfzcBN0z6BTWvqALhCPbFPDZB5usyklgpWDy9zbRQRA8c3IIG6csnRclZb8+/RFWorzplYjLXXzNv54HpWWqnqQpdIyC/NwcUMbSE9pmdZGTQsikJYBEfKitJSZvsr8jNgoLXUTp6zNw20XkUmUluJ5urR15uEui0Ybn5Y+lZZDhqivl+3is3yoTJKooJpP2SotXUhL9rkZpKXPDQ9Ve5aBn7CZyAOd0lK3qLBZdDbTPLxclu/8+lRaUqOHs3fBCMu0lJbDhtU/i/7gqGpVGahKS/Y7oC7DYtG8OWhSWvZH83BKHpOah9dqNKWlarHn2zxcpbTUfeehU1ramIebSCeWT+omBoMtaal6VpYOn89qNdvo4dRAPL5JS9GXrum5KM+tUhK7Egw+lZZZkpaieTjQSITZKi0Be/IszU0lPv9U4gmI3KvIzrUxKVdt5Jn6cdXvYvqqjRoTsiAtTWtX8Rpd35eUtPShtKT21bIxoJlKyyTm4StWxNOSiQQYPCgtU+vzWhChJAIiZKG0pHSQMtJSVM4A8o5f1dHnibT0rbRMYh5OJS3zorT0QVrKTKuB5EpLqnm4bSAeinl4d7fcPFxsIz7Nw1WLwrSUlqYFF28aQ1FaqpQFtkpLVf75CKdJQCUtRUWjbBJF6VtU5IItaSmWJ5sgsnJxUSXr6gAfPdlGaWkzoaQqLVV1q1jUbw7K6qWYD1vSMolS35SmzYLHBB1pSUkjafRwW6WlbJGZtk9LkYzX9XMUpaVqM8rFPFw31vDnyfInA3UelFelZa1GMw/3qbT0aR5uo7TUPYOtQki3ThCjh/uGTGmps+CwDcQjO0cFk7qNcq0J/Dhoo7RUkZbUDWjxu43S0tQPMOSZtLQ1D0+qtJRtBNi4H1CJIFT5U6WZpdJSBap5uAmi0jIt8/CgtGxAIC0DIgSlpRzixEQ836dPS5fzqbubsvKXLT59+bT0ET2cmg/+XhttpL6+u7sxXzkyDy+krbR0KXPVub6UltT6a6O0TOLTMm9KS1fzcIrS0kYZnlRpyfrgtJSWKtKyVtOTlqb3Y6O0NJmHm5SWFALft0/LJItiyrU+SEtfSNs83NTvAOpNABEy0lK0BtCRpDqlpc48XPRpaTIPZ2mZSEvTdxEm0kw8L2vSks9PEvPwJEqjtrZGX546JAnEo5vfqO6r6i91aKbSkvdp6UNpaaOkF5GF0pIfB23EFS7m4VSlpSt8KS2Trn0pRLUv83Abn5aq8qfUL1WfoMqfDWmZltIyqXm4qR6IPi3TMg8PSssGhJIIiGCrtFy3Tr9jL4LaQS1e3HhMRlqaOn7+Xkl8WvKO72WwUVquWuWftNT9LqrvKISESmnZ1QW8+mqdEJCpX3mYFtdpKS0HD9bfU8wXKwMf5uGU+q0zTfVFWqrMOfLm09JkUu9qHp6WT8s1a6Kyr9XqfZKJtMyzT0uefFqzRn6OL5+WOmJv5cqobzFN7l1IS9lCnU04+TFMBRulpco8nJ946jYHdXWlszNqczZKy9Wr0yUtqRFOKahUaHlRjTusvenGJR+BeFTtBKCVx4YNETliKhdZvXzjjfh30/Mw2JqH88/hah5uIilNz09VZsrMw32TlqZxmWoeLht3kpqH2ygtbdqrTT5V70bs7yjIm09LvnyXLYuf76K0pJJnTFWdR6Wlag7rQ2lpQl8wD89aaSkj4VSb0arrAf9KS90GBRWq61V58ElaZqm0DKRlL0JJBESwUVrOnRtFrtxyy2hw9am0vOWWxmNU83DfSstZs4DPflb9O0APxPOb3wAjRgAvvqhPz6d5uEhkUQYu2aRg6VJg4kRg662BzTYDdtwRGD4cuPRS9b0pi2sbM0M+vyLYZHPAAP2urWwxw9L0YR5OeY7p04E//UmdhgiKeXjapKVqcSuDzaTPxnTV1Mfwu8w2ATHE77rJ7de/DowfD0yZAowcCfztb/oJpew+thBJS0r0cF5paQrE09UF7LQTMHo08OCD/pWWrDxVSsvZs4ExY6K+ZcqUeL3yQVrKlPsLFkT32mwz4Mkn1WmK90xbaal7vvvvj/L70EP6/DJ8+9uRn88779Sfl0TJY+MjzwSK0vKSS6JxR4WvfCX6/Xvfk//uQ2k5fTrwyCPuCpGTT47eo2keQCEtdZszFKWlajMqDfNwW6UlhQDi0+EXoNVq883DZfUJsA9YpEMagXh0SkseFJGDi9JSRxiwe6oW8EkJEJNPyzPOUJ8P+DUPHzsW+Mc/kivRdNApLXX3Fc3DAfP8N22lZV8zD8/Kp2WrKy2TkJZtbeoYDrakZfBpmRlCSQREsFFafuYzEVn5zjvA97/vV2kpg+jLCbDzaemqtPzxj815o5qH/7//Ryd3dd9F2JCWqt1z0Tx8xIj4eU8/Dbz7bvR53Trg+eeja84+W31f2cRGBNVUTsyvCGbWM3CgvnOXkZYsD0uW0PKgAmWgYzj+ePlxV6Wl6NOSXSOSd3lTWtqoiE2T/a23rn/mF/OqTQeVksd0n6VLgddfj8r26KPVz6tTM9lAfNerV5sXQzaBeG64ISJQ1q0DDjxQTaTZkpZiHVSRln/+c/19vfUWcN999fRsiA5eYW0iLf/yl+heq1YBxxyjTlO8p0ppKT6basFfKul9wZnq3urVjSSrqv5deKGdisIGNkpLn6TluefqCY0rr4x+P/98+Tk+AvEAwBFHJGvX778PfPWr+nOoSkvKoi1JIJ7996fls9mkpai09BmIR9ZGKObhss0zsZySLNrb2+NEBZsnq9JMSlraEgSuSkvZffgNnyxISzF6uAxpKi0B4Kij3PoZajnwFmw6M2cxPdXcnmo1I373QciYlJa2Zvmu95VdT/Ftm1RpWSjofTQmIS1N471pg0PlUkU3flFhEg2IEOfJru7QVq9uTAtwU1rq7sfPHQMABNIygMFGafn66/XP777rV2kpg2yQzMqnpQm2gXhMsDUf0qUvTjxUxAKfRqEQKa5mzTLnVYVFi+pEhM5Rso2Jgu48Xs2lu5/Mp6XNAtyUt6S7hiZFBwPvewlQT5ZVBC1/jmu++An+0UfXlY42ZeC6y9vWBsyZA3zrW8CJJwK/+hWwxx7133nS8nOfAy67DLj6amCfferHVSo+m0UFnz8ROr9xNpCRbrK66mIeXqvVzV2BaBKpmoCaCDYV2WkyDxcX9qxuy8qN2kb5TS5Z+fEQ3ZHo1I8q5RA7Rokezo+zNkpLFdKa9FOuyZq0TAofgXiAaD5CLTd+M0WFL30JOO884NBD68dkeZUpLVVlxuddHC90fZNIWm65JXDzzcB++8nvQzUPtw3EQyH3+GOuPi3POUefD8q9bZSWVDKWgrY2YIst6t+ZtUiSdqSyEHAxD3f1aalKi0FFciXtP/g2xwggneAhqU/LI4805ylJ/2wCXz915Jv47mXWHqb5b9pKSzF9UYWeldKSoq6VrYWTKi0HDFC3C9mGg83ay2RZYSJuVRvf69alp7RU9QW+SEvRuk3n09KUnq7fYvkNSstehJIIAADUbJSWovPvtJWWLqSlaVLJkDfSUjW4UM9XXavbbRPNw7fdVm/6bQJvar3llurzbJWWpt2zcllPWup8Wiad8FLNw01piKAqLcVrajV/pKXJPPyKK4DNN7dPl3Iuuzefhx/+EDjggEhN9r//C5x6anzRyi8+2tuBs86KyEt+4HdVWoowqVp8m4erjrkG4hkwIH5MNeEUj9tGD1cpLVVmXRQ1girf/LUm0tJ0D4rSUvS1piMtkygtZUja5yQhSn36tExKWlKiiPowD+fPp+CnPwWuuUZ/zujRwHe/Cxx+eP2YjLQUy7uzk7aQTBqI56MfBS66SH4flXm4aVHuQ2mpmuNVqzTScrPNgIsv1udDdW+K0jIL8/BJk+rf2bwrCRHg0zzcRWmpUnRSSMukBAiPtJSW/Dk//KE5H2luZPF1UfO+C2K5qkjLZiotW8k8HDD3hxTSkldaDhyoHgNla3QXpaWreTgre7F+rF2bzppJlgcxL0By0pJHWj4t2TwgKC17EUjLgAi6xZQIvgFRFxtUclMGGWkpu2czlJaVSn2AoSrldLBVWup+F5WWqrRF83D+vwv4oDY60jJrpaXOPNyHyieNXUNZvkwTslotOqabGPk0Dx882C4qtC5d1Tky/zE8+DbOT/j4eszXjbSVlmyykVTBK3v/JkKDjyprCsQjmhRRNjbEdGW/s3yzvKqUlmmQlnx+fJOWOqWlyTw8DaVlGupu6jWURXpWSktKOzORljYqOGpeCwXzWMp+5+sWpR/asEH93HzeVebhqn5dFhVV9QxpBeKhkHt8mi5KS1NkdAYblSf/u8o83MaqSYf2dmDUqLqJuA+lpYq01JFSvpWWKvNw2WfxWl+Q+bQU4eLTkq/XlLJJU2lpssLoQQNpqfJpmSelZVakJaVfM1nGyNKhmIfbKC2p8zoZkiotWT+YhtJSR+jKoLJIolzLQ3yWtHxa9lxbC0rLXoSSCIigW0yJyIPSUgZVR58kejgFzPwqyaJNdb6pzKgTBRvzcPafol6RwVZpaaPGkYEnLW19Wroq7GzyR4Wr0lIWpVS2aEuTtGR1JQvSUtaeVZEA+TrM1w3VZDNv5uEy2CgtTQsTqtLS1jycKWZEpaVYT8R0fJGWbEEpmsaa0N+Uli59lmoR46Iy4K8lTN6VoATf0p3D11UGm0W4ChS1mYy0pD4PRf1io7QUzcNNpGVagXhsSUtT9HD+et+kpa15uI1Vkw5sk3bixOj7W29Fz+nDPNxERPDPoLqfz+jhFKWl7QaVDrLo4SJMSkvZuxVJS9McOw9KS4pPS5PSUrdBl4VPy7wpLW3caeiIOTa/GTBAH1mdsvZToS8pLX2Zh4tIS2nJEJSWvWhp0vLnP/85Jk6ciAEDBmCPPfbAo48+qjz3V7/6Ffbbbz9svPHG2HjjjXHwwQdrz+93SGIeTml0WZCWfIeUldISqA+QPszDfSotRdKSstumInlskLXSkmoervNp6YNc8mFiLoJCWsomyybS0qZeqswIgai8+V3epGSo6t4y9Q8PVRvn6wNFaWlLHJmUlmmQlialpU0gnjSVlrxqxod5uO7diPlmkVFtF7K6xYRKOSSSTqoFmriI90FaJt0oSaLu9ElampSWprKhkHy2SksbklyFQsG84JAFGMlCaemDtKQG4rH1aUk5X9zI4jdEVOM8n1cqaelqHq5SWtpYNenAiDVGWn7wQeSjN0mf4FNpWSz6U1pSSEudutYWWSktTaQl9V3KSHkTXJWWqvZgo0x3VVrqTKB5tBppqSN1qUpLHWmpyqeNqtBVacnKXjzug7TUlY0MaZGWuvv6IC2D0rIXLVsSN9xwA2bNmoULLrgATz75JKZOnYoZM2ZgsehYvwdz5szBCSecgHvuuQcPP/wwxo8fj0MPPRQLFizIOOc5hY3JiqhYou7WuHZQeVdapklamq5X5V887kJauu7u8EpL3ueSCJWKS4U0zMNZvUy6+GfpJ4FpYcZAMQ/PSmk5aFBclZuF0tKGtFSZlakmjWJZmiYLJvVvs5SWMnMVWZ9gUnZTlZaydPiypJqHM+VAUqWlK2npQ2mpWqCJi1TdQoWKvJOWNip6im8n6u+y/s02EI8uP9Ryy7PSUvZuZD4txbzJ0rI1DzeVH4UAUrXNSkXtu5pPm0payu5vUlrKlLvs3r5IS3ZfRloC0YZxGubhLqpjVX+pg2qdQDEP10WMt4UPpaXsOUTXNabyob5L/h1Q+g6ArLQk5cHWPNxVaUklzptFWpreueqYq9KSSlrK5n6q/IowkZamvkJlHr52bfL5S1KlpWxcc+k/2TVBaZk6Wpa0/NGPfoTTTjsNJ598MrbffntcffXVGDRoEK699lrp+X/4wx/whS98AdOmTcO2226La665BtVqFXfddVfGOc8pWkVpufHG6vPWrYsiV7N8MVCVlsuXA6tX2+ePDRwmMyIKVIML9XzVcerARZkcqrB2LbBsWZ203GgjYJNN1OfbKi1NBBGFtBQntlTSnYJmKS1lZo1ZkZaDB0f/VUrLri7gvffq3+fPt3vvq1ZF/02kJcU83MWnpWlhayLSfbgdEGGjtOTbvWyCbSITliyJIoyL11KUlnxZikpL1eLYl3k4CxbQDJ+Wqs2hNJSWfcU83ERayoh6HmKbUKncdPcXf7dR9qpg49MyK6WluKEyaFD9N1uflkuXAu+/33zzcL5tyjYnFyyoP5cLaanbTLYNxOPLpyW7rxiMJw3SUswnNRBPX1ZaysZT/phJdedTaVmpRPOszk46Qbd2bX1upqnfDUpLGbJSWqrgi7S0bY9JlJbr1kXKaEBePqp5GwMfiM3Vp6WrcIDHypXx8VmltOzL5uGqjVxAvu6eN0/d18oQlJa9sBi184POzk488cQTOPfcc3uPFYtFHHzwwXj44YdJaaxbtw5dXV0YMWKE9PcNGzZgA9cQV/Usnru6utBl6/esBdBdrYINz9VKBRXNM5aLRRS4c6tdXcaKVKtWUSGcJ712+fLe+9WGD0dBFr0OAO69F7Vx41D5179Q6OoCGwqrpZKSne991pdeQnn6dKCtDd3PPw+MGQPNdCWGrtWro465s7PhGpY+Oa0NG2IDbKGzU1tmynfV3R27Z61aRUVIq7uzE7WuLmDDhvq7B3rTK5dKMEyp6m1h2TKUt98eWLMGhZ5jtYkTUalWlfnvWr8e6OpCsbsblGlLpbsbVclipq1noKj2TAJV77p7wwYUVq2K3avS3Y3qBx+Q348OXVw5Gs+VvLNCpdKQ9953xKH0wQex87o/+CBWxrVaDZVVqxrKvVapoLsnrUJ3N7kt8tcxlNeuRQFAbfBgdPe06wKietbNLYrLU6cCr72Gyh//iMKrr6J0/vmoHnkkKjfdFKt3ynuPH4/uhQtR7OzsfW/dtVpDmRQKBenzdHV397anErhdOmEiUenqivqxrq5Yna+VyyholAtdirZd6+xEd1eXsf26oGvt2oZJeGH9+t77VAoFFIrF3mftWr8+mqAJ/VN3T9vn89dQh//4R9Rmz0b1zDNj7abW1RWrEyWh7la7u1FZu7ber7S1Rf1/oRCrJ6Wurth1lXXrojYuaZOVzs7G9q+4f/fSpah1daGwZo1V+XetX9/bNru6ulDgyqcCALVaQ1/VXa2i1tXV21/G2gCAcrUaHS8W0c31yw199/r11v1Q14YNUsKemk61u9t655q1FfEdda1f3+AjtUAc82vVKipCXeTRxdUl6fVCu+1au7Zhol/asEH5rJXubmDDhti77dbkp5vYrrt7Fp+6cyvVKqo9+Wfn1TZsMI69tQ0b0K0Yu/ixsrRuXbyNffBB1NdVKlG9HDAA6OxEobsbtTVrUJX1tdz8MIbHH0dt3DjUdtopdo8uoS5Xu7tjdb3Izc9kqKxfHx+nWZ3jwd2jWiigwNrf+vWNffakSajttBO6H3sM5e7u6LxSCd3EuVlXZ2eM5CxVq/X+tVBoSKNWraImqW9d69b19oEAUOmZP/Mgt91yGZWuLhQ237zeR732Gqr77us8n2F9F6sbvffq7gZqtd7nqQH1Pk4xjtdKJe38T4ZKZycKXNnyabH7xcZxDt2SOY8ruotF1Lq6UCwWSXNThq516+qEp2w90NlZrzfVaqwuyFAT3oMyvzfeiNKnPgVsuSWqH/kILc/f/jZqF12Eyl/+gpJwH1Yvu7q6Gn1aStBlmOuIc/cSN+50CRuc2n6+UGiYiwJoWENU1q5tmK+QylEy39ahYd4jWY+x/oZH16JFKE+bBixfjsqdd8bWq73nsHmbqn2tW1dfh3d0oFatSt97pbsbEOoxe042N9GBPVOJq7sNedlpJ3Q/80xEQAv5ZfPVcq0Wn1uvW4duizWT9L6StQnQOL6wOV2RG+O7CwWUOC6DgTq28+hdP0jaq1gnimeeidJVV6Fy+umoXnml9BoRLBBPX+SeALvnaknScunSpahUKhg9enTs+OjRo/HSSy+R0jj77LMxduxYHHzwwdLfL774Ylx44YUNx2+//XYM4nem+wiGvPMODur5/M68eXhq9mzluQeuW4eNej4vXbgQC55+Gjsb0q92d+P5Z57BNIe8MRKsa9AgrO/s7L239NxKBaWZM/Hsqadias+xhcuWYazi/Hfmz8dTs2dj33POwSbr1wPr1+O9k0/G01/8Io4i5u+hu+/GyvnzMWD5cswQflu5YgXunz0bHyWmddedd2IDR6SPmDsX+2nOX7F8OR6QvKtCd3cs/2vWrMFzjz6KvbljTz7+ON4rl1FeswZH9BxbsnQpHulJb6ZqocJhds+5O1xzDbYSyOQlxSJeefRR7Ku49u4778T6ESMw8bnnet+VDq++/DJeFp61UKn0PueKNWtQ6erCKMX1jz70EMa89BJ4L5vz3nwTL8yejSMJ9zfh3rvvhrw3acRsyTvbdeFCbC4ce+TBB7Hs/fdjx/Z97z3w+tVHH3ww9l47N2zAE3PmxI4BQGXDht77bvHMM8Y2y7B29WrcJeT3iJ4FwupKBffMno0D1qzBcESTCHaPUY8/jr1eeQUAUD7++N5ri//8J/7xz3+ifc0aHG64d6FWw8tnn41asYgde449/fzzWCDkZ+Qzz2AfyfVz7r0X63rysOeyZRgtOQcAXnrhBbw2ezYOXLky1r90Qz+Jfuj++3GA7IeuLsz+178w4emnnfo8HR6eMwcrFi6MHRv72GPYvefz3FdfxZj338fInu+3/vOfqLa3Y/hrr8Xy+twzz6Br8GBM547df++9OFC4X+H991G66KLYsXXLluFO7h3suWhRrGzfe+cdPHfrrTis5/uiZcvwKFdPqt3dmD17NvZevBibcte9/dJLeG72bAx+772GtvTaSy/hJcW4JN7/6fvuw4JCAeMffRS79BzrGjQIbQYTwrtvvx3rR0Yld8cdd2DjV17B/ixv8+dj3YYN2EG45slnnsF7gwbhIxs2YCiAypo1sfY944MPMADAuvXrMefOO3v72qWLF+Nh7ryhb72Fj2hz14jbb7sN3ZL5CHW8Wb50aW89oeLVV1/Fy7NnN9SnO269FV1Dh8bOHfXkk9iLkGa1uxsPPfBAb1mLuOe223Co5vra+vWxif+d//oXOoW87DZvHsYprn/7zTfRuWQJtuWOPf7II9hTcf6zTz3VW690ePiRR9CxcmWsjYl48aWX8Mbs2dj8ueewa8+xtStXYogh7bUrVuDhu+7CIZLfXnjuObzZU7f2mD8fY7jfXp07Fy/Pno2DV6/GYACdlQqKbW1o6+7GmqVL8fYLL/TW8SeffRbvDRmCYW+8gQ8r8lFYuxYFQSxw/5w5sX5k6cKFsbo+6dlnsZPm2V564QV8iPv++muvYa7Q9juWL6/3L0uXYtMecnjd8uUYLMvns8/i4R//GPv1bHKuXLsW9xHnZrf861+ocaq7/ZYvB5ul3TlnTsM41t3ZifcXLWpoWw/ddx/24Yi8eW+/jWeF56K23XeXLMETs2djxNtv984R33zsMbw+blzDPJSK9evW4fbZs/EfwkL6nXfeQaFaxfie713d3bilJ98DliyR3m/d+vV4+vHHpeOyCq++8gqGL14cq68AsL6zE7f33G+X997rzQePRyVzHlc8/OSTWP7BB9jmrbdifYIJt/3rX6j0bNwMffPNhv581fLlGN7z+c577sGhgJZg7NqwAQobkhjK//Vf0YfXXkNl4UIy0VqoVlE+5hhUy+XY+37r9dfxfE95dxCUZ7fecguGv/aacq0y/8038QxXz/ddtqx3DnvLbbehxqktdfW/s7MTt0rmAFPfegsTue9vvPgipnDfa52dJNLyiccew0KLAKR7LlwYm3csXbQo1s8BwGHr1kHwHI6FX/kKxveoLLs/+lG8t/feEB1psXnboEWLpH38huXLwbYIF69ahcUvvijtU+e98QZqpVJs3cPWfh9+/30MMzwj4wN2mT9f2u4AoPDKK3jkiiuwfLvtMHDx4thY/cA992DVW2/hyEolTiyvWoW777rLua8ConXt3ZL6sNObb8bKk83HprzwArbvOfb4009jWnc3BgjXPvzgg9o1twxvvfYanp89G4etX48OROQ6I/vfXbAAT3B5/OhVVwEASlddhX/OmIFD167FQEP6y3vW1nfccYdlzloD6yxce7QkaZkUl1xyCa6//nrMmTMHA8ToqT0499xzMWvWrN7vq1at6vWDOVSYDPcFdL/4Yu/nzceNw2YzZyrPLQ8bBrzzDgBg5IgRGPGhDynPZSgC2FFzXuWMM1D62c+0aZRHjsQQAmFcqFaxw/bb934fs7lIBdXBnrX81a/Wjw0ciM0O1S2R4thn111R23ff3jLhMXzoUMzUlKWIgz7yEWBcfWlVGKYfUjYePlyevmBON2TQIEzfddfYsV123hm1mTPrppQANh09uje9ckeHMfruzMMOi3bx/vSnht9GbrYZRuylXrIeeMABwPjxKM6bp70Hw5TJk7GV+KycGcjGm27aGA2Zw/Rdd0VReEdbbL45NldsXNjigH3l9GytWGwwsZG9s8L//V/DsT2nT0ftwx+OHSsLmynTd47Tj+3lMqZz9Z+hVCj03rfA+f6tXHQR0NGB6oc/jPL++6Mg1J3BAwfG81utotyjZBkyZgxmzpzZS2oVuGcraOrOzMMPj1wJELDd5MkxM61pu+6KqUL5FTaSb2V8+MADe83nSj2TBRm23XprbD1zJspC/Sl3dGh9Ze2zt3yZVKjVMHPGjIb65gN777YbavvH6Z0CM6MHsN2OO6Lw9tvACy8AAA475BBg8GAUHnssds2OO+wQuXDgsJ/ieUQM6uqK1QmxbDcbPRqj9qtP/UZvvnmsnhQR1ZPSZZfFrps4ZgzGz5wJSDYfJ0+ahC0VfWnp5z+PfZ+2/faYOnNmrPzLG29s9Ht24AEHoGvsWNxxxx045JBD0M65I5mw1VbAhAkN1+yy++6ozZyJ0g9+AMyfj/KGDZh5yCG9dbbc83/QkCE4dEZ9ij5yk03i7eqpp7R5k+HQgw8Ghg+3vo5hhMO1U7bcElvNnInCv/8dO37IQQcBm24aO1YgLgCLtRr2nq6m9j5iqJdFwSzr4P33B8bGtypLv/618voJW2wBCGPtbtOmKc/faccdlb/x2GvvvesmgApsv8MO2HbmTBSYH1YAg1XuLjgMbmvDhxVjzoe23x7b9dSt0k9+EvttyhZbYCuur2tn/tA++ABDBg7EdlPqy/1ddtstmiM8+6wxPzzEfmTkxhvH6nrx9de112+71Vax71ttuSUmiW2fa9ujx45FYe5cYP16DNKY9O69yy69i8lhI0eS52aHz5gRm1uUvvc9ANHi9ODDDms4v1wsYsSQRtp5n+nTUepRvQPAhM03x+YW80MeYydOxOiZM1HgxBuTxo7FhAOk22gkDBgwADNnzmyYr2y+2WYxs8m2trZ62fE+zDkM2mgj7KGZ/8kwZdKk2FjWm6/Bg3vvV/rLX6TXTiesQ6jY64ADUNttNxSfftrquhkHHVTvRyTXDhtYpycOPvRQFA2m0W0OZqHta9ZYXyO+74kTJ2KLmTPR1dWF+6+/3nj9YTNmoKBxBbXF5ptjHD9fuPji3s+HH3mk2Uy+B+3t7dI2W7r55tj3LcfFt6fE8UGFXdmaiAhxzdowpgMoS9xQbM65PBvw/vvYQrJGZfM2KPrKDs6seNT48dhUMSZtMX58gyuMXaZNQ23mTJTPO096TSyvPWvk0h/+oD1vzwMPBHbeOR6IFcB+e+6J2q67oii843JnJw7cX7VNScMQcW3Sg6JAZLJzik8+2Xtstz33ROm3v42tfwFgrz32kN6rNno0alOmoPjAAw2/TdxiC2wxc2b9XZdKvabiYzfbDKMVdWrmzJm980MdRvTMqw455BC0Ec5vNayS9PkqtCRpOXLkSJRKJSxi/gt7sGjRIowZI+7RxXHZZZfhkksuwZ133omddlLv9XZ0dKBDjKyKaLDui5WGJwWKAIq6Z+Q6wCJnMqJDoVpFSTMwlQ47DLj++shHkiqNjTcm+/3i71WUvMfe3wqFhmctFovGyQSPcnd3VH6SwalYq+nLUkBbqRT3o2OYtCjTF/xkFBBNpGP5Lhaje3HPWiwW6+kRJkxtQJSG5NxiqYSiZvHV+6zEiVmpWERJfFaOtCy2t2vTKhcKDfWn1JOuD7Qp6kyhra2BRJb1IVWJGU7vO+Ih+OspC9cVajWUJT7gCpVK/b7cM5fGjAFOOy3aBZWURaFajeeX8x1VHDw4qi89zx47V+MzrE3lH1CC0siRkd+0HpQ7OhrLZKB8r7Ktvb1+ruZ+JSCqW6LZtcHvWVmTZhvgJ9CXeM9KRetrq9TRESv7tkJB2s7KxWLDYqGNaKZRWLkSbXzEXuE5xXGhOGCAvJ4Ii6ViZ2d0nmSs6H1HMgj3L3d1Rc/Mu9oYOjTybadBG9fe2traYn1mqa1NWu5lVsc4grNt3TqgR7HJ+uJCsYg2bixqGGctFB699xHHC0sUHepnqVCQvoc2WV9FbOOFHlNJFdos89lWrTbmReM7qgQ01EVdfnS/xc5rb6+bi6ruXS5H5cmdp3NJgWIRqFZR2LBBSWrE3pEwFpSq1eg3Vi9Lpd7+olCpoMSVdXnAgKgcDc8gQsxXsVq1mgeVhHchHfu5e8T6Fk3Z8WNlsa2NnKeGdtaTTqFYRJtko7RQraIgmauWa7VYO5fNP6kodnRE1w6u60pL3d2J5jOFajXq18V+WajvhUKhPs6r5j3FYjRWW6AUJd6YVqlknFfI5jyuKA8eHL1vzSa4DL1jLSAtlwLXB7Xpgqew8335WzdAvE9srCXkoU0V1KQHDesUrh22ETZoevMJ+dxZRIkajEiAdL6tgzjvgWTtLBl3CsI8pCQZ33rrkqp9CfNwVbuQXW3znL3PZKgHvXNtIb9lNhZLrm9zfE8MyvoglGfvOeLYJukrxXVy773OOguFRx6R/laq1aL20vOMBY601PXxbdw4rANbh/RV/snmmVrSu2d7ezt23XXXWBAdFlRnL83O3qWXXorvfOc7uPXWW7HbbrtlkdXWQRbRw3XnDRhgXuAMH053SCuLgCmD6lltnJn7jB7uKxCPzPGyKgJmkujhKifLQPSuTIFxVNfKICtLMdiHrn5UKo0BGqpVf8FSVHWGOikzBRtgcA3Ew5ef6p3Lyk/MA5+2LBAP5X3K6qMKYpRcH4F4ZPkB5GWpg+4ZurrSiR5uE4gHqOeBEoiHGoisWo0C9PBpib/rAvGoHJf7CsTD0uHbCsVCIkkgHj5IHKeaiwXi0QWwaEYgHpf6mVYgHl1bsyUkZG3ENnq47n1Qyy2NQDxsg4YPxCCCL3dR8S4G4hGD2Mj6WlsizHf0cFndUEUP1703sZ+kQjV3KhTk6agC8aQRPZwf+zo7kwUWVEWBFtsnJRBPX4gebpt/vn6ZIklTyieN+QMFvgPxiGnwfY8PqAL62cK27VAC8cjeIR9cVnUOqyuqPPHlbRs93CYQDzVgjGqeqVsjOqiCpXkTQQ3EI6t/usBiqjFDfHY+3RA93CtakrQEgFmzZuFXv/oVfve732Hu3Lk4/fTTsXbtWpx88skAgE9/+tOxQD0/+MEP8M1vfhPXXnstJk6ciIULF2LhwoVYk7TR9BW4Rg+vGqJ+8ueZSEvTAG5DWvL3okYP59Es0pIyCPKgdtqyyaiJtKSUNRsEVBEfdWnI7q+DaRLIK79kqFQaF7/iIi0JqKSlKo++oofXavIJvCp6uGlBIOZBR1ryaZsmsdS2IUa0lU0cVG2cstgB6mUjLnhNRJLuGUSy1RdkBI5uMqaa/Mr6bippCcTNamTRw3mSSLYIlJGmOtLSJpqzjLRUuBDQ3kNFjPBgZc2bWvNlw09kdZuDLnUlqRLHZ6TMJKSlrC7wsCUtZeeboodT236P0pEEMWK86hwg3mZ1BCsjLXXRw/n8ieMFS5sn032TlmL+KSQkjyTRw3Xv2ZW0lM2nAPVCtlpVR7DX9QE2JCbrU3k144YNyaOHy67Xjde6RX6rRg9nZWtwj9QAE2nJ103Tpj6QvH93BZd3MmmpO08VPdxXVGTV+J80HdvzdaSlztWXrM2pSEAZTKQlZe2ngmq8F6HKL+sH0yAtbfukJNHDCwV1fyY+Oz8mmN4fpb92sMLpq2hJ83AAOP7447FkyRJ861vfwsKFCzFt2jTceuutvcF55s2bhyJXIa+66ip0dnbiuOOOi6VzwQUX4Nvf/naWWc8n0lZasnNVSFNpSSEtRUWWzeDFBkjZNbY76arJsQqq32WTYdUEmb8nX74+lJYUosin0lK32OvulistsyYtVapAX6SlSmnJ6oBYv01EtS1pWa2a26ktacnXxSyVlqaJWisoLVWkZRKlJRCpCbfYop4WD5PSkp2jIi1lxIOL0pJfdKattORJy6yUlnknLW3S15FNtuSBrdKyVqO3fZv5gW6hw58DxM+jKi1VbYJvj6rxglc7sedJi7S0VVomIS1NcwCGJKQlr7RUqXVk77CrS98H2LQXldIyDdJSR0r5VFqq8k4hLX0qLRkRbEuq8PXLNF8tlcxkRB6UlpT5eVZKS6pII0+kJTs2fnzjBjyDi9KSh0700x+Vlqq8JiEtdZswQWmZGVqWtASAM844A2eccYb0tzlz5sS+v6VwFh3QAxulJd8IbRbmukUZVWlJbby2Skv+mUyqDxFsQZWGebjpeupEshlKS9NOsg+lpUiM6BZ7MqWlT9JS9S5EQk3lJ8nVPFxsV7WaWnVQqUSDdRLzcH5xoCItTbAlLTm/XdI+QNXGqfWZPaNP0rKZSkuKeXhSpaWMmOPvyZMH7P2I44yN0jKpeThFaWkiLWV1iB2jkJa+lZZ9xTwc0PfdtoSEi9JS/F1VNjZKyzTNw2WbcAwUpaWKtJQRe7aLJhNpaSo/F/Nwlkddn82Xqw/zcNXGrEppaTIPt9m4UCktk2xkqMZl8ThlvdAXlJa2adooLSmkZbOUljxpmSelJZWkyhNpyfLW3h4Rl0Kgmtg5smNJlZYyYZENaZlUaakjLW3mm7q8UY8nNQ/3TVpS10G+FMl9AKEkAiLYKC35gXf9enpHbyItTROcjTdujk9L0z3TNA+3VVrWasAzzzQu2lxIy7wpLSnm4br7PfFE4yRUXKQlgWqRKxJqKoJNt0vLsHq12kcZg0ha8kFqZGWeRGk5aFDjdWmQliaflhTzcAqB7tM8vKvLX93iwS+G16wB5s51Mw/3obTk0+IhkkAy8/BqVe7Tct26qA8TkRVp+dprGPX441HQnrSVlvPmAQsXAqtWAc8/b86fCEqfoUMSk3QdablsWRT1tFmkpco0VwVZXdSZh1PLzdU8XJc+35+rFKgUpSVfL9kcqbs7H0pL2UacCNWGgq7+uyotK5Uogro419Opm1RKS/6aJUuAN96I/05Fs5WWlQrw1FPqPGft09InacmIYN+kJR9olNI3NIu0tDUPf/HFvqO0XLkSeOUV2vliW9H1U6USMHEiLR3AXmmZlnm4apNSRDPMw5P6tJS1P9ncE1D7LwYan53Kp4jjrQpBadmLQFoGRLAhHfgJ6fr19EmSaSKeJ5+W1OsBvXm4DTkjy4+N6hUAzjsPmDYNOPTQxnRU5uE2/g1F6CbZVKUltXxM5jaKqMO9uPxy4KGHGtPM2jxc9bwm0ruzE9hqq8ZzZCbv/CKfN4v1TVrqlJamSSyV0Fi3zrzYpJiHuygtTXWjGebhbEOiuxvYYQdg++2Ba66p/65SWsraf1akpcw8XHb/tWuBnXcGvvSlxvvpylKltLANxHPbbWjbfnvs9d3vojx5ckQIM5h8WvKBeHiflixvYn/45JPApEnAZptF/q6+8hVz/kQk3ShzWRSblJbLl0eLs8mTAS5YohFpKy19BeLJQmmpA09aqspFp7TMIhCPWP4UVa4sjww25uHUdG1Iy4svBqZOBfbbL07g6eYbFKXl7NlRO7n//vrvVLA+tRk+LQsF4DOfAXbZBTjpJHlafUFpmcQ8nOJmK6++6myVlnvvDfzqV+rffSktqco6V9JyzZpojr3NNsA//mGfH9nGMKsHpVI03ssgm3exukRpz7bm4TLXYCrwKnwd2O/ieV1d6raQVGmZhnn4OefIr6UoLfl3bcojyw/l/QalZS9CSQREsDEP5yd+H3yQndJy0KDmKC2ppKVqAWkzibRVWornX3xx9F/cLdIpLVVmP5QJp+6dNkNpaTsJ9ElaqtqBSKhR/JDJ0nz55UiZIcKktOQVZi6kpc70hpm6N1tpqWrjNj4tbd1CAOmZh+v6HLYYvvtu4O23o88vvlj/PUkgHptFms48fPlycyAe2f3nzlWrHLIIxHPbbb0fC5VKnHRTESM25uF8HbSxUlAhqdLS5f4mpeXPf16vRz//OT1dHanow6elrdLSh3k4hbiR+bTUgUJa8v2SWBYy8/C0A/HYmofL/DSLcCEtXZWWl18e/X/88WgMNiktAbWLAnEcqtWAj32sMX8msD6VHyuSRg9XzYdk88ff/z76r1ImtbJPS1a2551nd53JpyUDe568kpZ8/0GtT7ffrv5NtfbwpbT0ZR5+zTX1yN5HHWU+30Ra8t+LRWDcOHk6y5Y1HhMV8ToMG+amtKSkTVVaqtLs7FS/t6wD8Ygui2z6J5tAPFTSkipsCErLXgTSMiCCjXm4q9IyqU9Lm0lQUqUl/0wyFRefDx1pKXPwr4NpEJSlT0FaPi115uEmnz02Jgr8+bL7A2alpSrNrJWWNgsTPk3VdTL/Xzxp6Vtpyd9PFWBFTFeWpqpun3km8NOf1r/7Ii119VlGWlCga5/UCcmpp9bN7BlUfk+B+mJYlXZWgXh00cPfesstEI8ONubhjOSyVVqKix3+u030cBlpSfFhZos8moe7ukRopk9L2TitC8RDLbc8KC3F55CZh/Okpax/9+3T0rd5OMXUVkzXhrTkwfsA9UFaAvXFu4vSslCozzGaET1cBRelZR7Mw3kF1s47A3fcQb+WqrR03QzICrZKS0Be3xlU7d+XT0uVSbItbMcZ03pNnLfy1hg8ZKQlewZK+U+cqCctVRZ8lLWXTmk5fnz9s86nZVqkJbU+sO/8fG7gQLv+yYdPS9d6mtd+ogkIJREQwVVp6cunZUeHuQOhTkwBulLSVWk5ZEj9s8k83GYiqpLxU8/XnWdrHt4KPi1FYsRlZz9tn5ZU0tKktFRdZ1Ja+iYtKWSUeA9Zmqp+Y+BA4HOfq3+nkJaqukr1aVmp2G0uMJiUlpS6ddppwNix8WM60pJNdFR1vRmBeMRyWLEi7r9LVU9cCXwRvpSWJtLS1qcl3+/aklMU5NE8XFd3dUjbp6WtebgPpaUNaUldQPHla1JayvIpU1ryPi1lxF7WSksKacmnkbbSUswLZWNO5adOF8zLRWnJf/bh01L2bsTjlM0XV6Wlq3m4L6Ulb24PAAcfHCnZKKCSluwZ8qq0dCEtTf2r7HtaPi11BKoOtm3HRmlZKsXnCDx8kJY68/C0lJannlr/3AzSkqq0ZHkTrcRslZY6n5aiKwAG/tldFcFBadmLQFoGREgSiMdFaSl2FpQJjg1pmVRpabpeRlqqJtY2E1FbpSV1QuFiHm6jXFCRlmlHD28F83BxoFPdz6Sa4p9VdL7PQyQt+brqwzycSlrqoCMti8UoXZb22rXmxaZqUE9baenL9IMaYR6oT8hVdT1JIJ5Vq8z5ZdCZhwPAq6/WP1PNw3XIgrQUzZD57y7Rw2UbQj4XqkmVli6kpUlpmQfS0iV6eF8yD1e9I8Ds0zIL0rJZPi19kJY8sWZbLiqlpQtpyc9LGdGWlnl4VkrLJObhvpSWMssqal3pg+bhBer8XIeslZbNIi3F/IlqcBVp+f77jcfYM5jaXaEAbLGFW/RwG6WlrG+SBY+TqQlVz5CW0lJV35KQlialJZ8XKmlJradBadmLUBIBEWyUlvyEtFKhS5z5Ts9GLcVgMwny6dNSNonJC2lpY1pNMRHIc/TwVjUPF4/bKC1V5uG8GkBmHs4Ws4MGmYOymEyvdObhskUtlbRUvXeWFjOZXrfOXWlJ9WmZhtKSSloWi43qDvE7j1ZQWgJx35Q+zMOT+LQsFOpBo3QQSUsbpSWvxmGm83y+8qi0TMM8PA3S0odPS5+BePJiHq4ianTqGKZ84VUhrA6L5eCLtLQNxCMb00SIY0JW5uE8CWA730iLtEzbPFzc9Kb0MVlHD09LaQnQ1x225uF5JS1dlJbE9GLfXdwHyOBKBpnSsT3fZB6uIi1loCotx46N6qyLebiN0lJWNhTSMg9KS5l5OCWOBg+dT0txUycoLVNDIC0DIrgqLQH6DqdpwpgXpaUY0Ut2Pb8A9klapmkeTtlta4bS0kYtKiIpaSkGHkgCVTqy968ywdKdpyItdebhgwebJxZ5Mw9nabE2lsSnJWWxw/LjQlrq6i7VVM9VaakjLalKS/GYayAeE2nZbKXlwIHqCPOy6xgoSktW1uVyXc3JykZGWqattPRVpiq0gnm4D6Wlj+jhlDlLGubhLH+y9ysqX8TNYJ5wZP2qb5+WpvLLW/Rw8b6uSksxejhDnszDKUpLilDBZr7OkMQ8PG9KS4p5eF4VVLzS0gdp2V+UlibSUuXTUgaq0pJFJE8rEI8PpSX/3vi2lJVPS5Y3fj7X3u5XaZkmaZnXfqIJCCUREMHVpyVAX1CoSEvqpN3Vp6Wt0lKc1CfxaVmr5UNpKSMoZH6vXH1aypCF0lKsUy47+2mTlrIyktUJE2nJp6MjLYH6BH7QIPnEIs8+LV1IS9V7t1Fa2pqHl0pmpSUlzVKpUd3h06dlMwLxAP6VlklIywEDaKRlEqUlUFdSMNJSNA/j//tAHs3DKeUsQzOjh9dqdJ+WhQK93HTqDP4cgFYvRFW2yaelSmkp9qd8f8HX+WAeLr8ve/95Mw/PKhAPhbSkvhMeSczD86a0bGXzcFtVrU16/Pf+5NNSZx4uA1VpOXFiPX0ZdKQlZe3lW2nJr51t5pu6vIkwmYcPGECzguBh8mnpQloS62ktKC17EUjLgAii0vKll4Dnn4++r1kD3H13vfPxobTkG6FMhaPKYxZKS3HiJ1uEZaG0fO014Kmn9OfbqBRlJgJPPAG8+Wb9mM/o4ab3ZTNwqs7zYR7uKxCP6l3IJvjiPV99FYWnn248T2UezpNassU428EcPDj+DlxJS/582cKPb8+UXVxb0tK02FRNQKikpYvS0kRaUlUvxaJ/n5ZZm4fL3iVfnuz5xM2xNAPxrFhRJ04HDNCPA/x1qu8mn5ZAfVGycCHw3nvyiazPhapY/5YsAebMoV+fhtLS1QdamoF4TJuHeTAPpyxMRFW2jrScPx948MHG38R+SSSXfJCW4mLMVmlpMg9ftw64/fb6d19KSwrhbmseLrpySdM83IdPS9XmexZKS5V5eF9TWrYQaZk7peW6dcCdd8b7KZ3fdRukrbS0IS03bIj68Ece0Z9HUVr6MA83KS1ffDHiDMQ0b78dWL68/p0nLZMqLVeuBG64Abj55nh9MJmHs/m1z+jh/D35/qJWi9bYjz0WlJYe4LjVGNDnwHd4L74IbLdd9Pmxx4CvfhV44AHgC18Arrii8VoXpSXf+NmkrplKS3FCZjIP5ztepgLx6dPyrbeAbbc1D6JJlJazZwNf+lL8mK1PS515eKlEi67ZzEA8WZiHy47zx3retXRy6GIeDtTbpMo83NYlQK1WP4+qtDSRTFTSsqsrvghW1ctSqTFNKgnvorQsl/WTPptAPL6VllkE4lEpLcvlxrLM2qflBx8A++xT/04lLcV78Ao/1aRVprQEgMmTgTfeiF/P//cBUYm9887AggVu19teoyItXfvTNM3DTYtYG/Nw2Viqgm/zcKrSctkyYPvt5YvCrq5GBRCfR77s8uLTUhz7P/axRtLSZpMVkM8LBw40E3K25uGDB9fLtKtLv/Hhah6etdKSOq65KC1dfVomJUAYZErLYB6eDD6Vlv/5n9Ha5YQTgOuuk6fviqSkpS4QT6kEDB1KT3vhwmgNaBr7mNLSxTzcZyCeCy+M/i69NH7Oww8De+5Z/84HREyqtKxUgE98Ivr8n/8J/OlP8Tzz5wGNpKWt0tLFPPy996L32NkJ/PrX8euoiuCgtOxFTnvMgMzBN9758+ufH3kkIiwB4Be/kE/oqDucKhPPPCgt+efasMF8Pe8Mn02EVaSTC2l57rm0AdTGtFrM3y23NJ5H9QHIkJbS8sMfVp8vuz+Q30A8J53USELxdeLcc9WTLlfSkqG9Pb64kb0vCrGnyocuEI+JtKQG4gHikxsdaalKC8heaWlDWu6+e/37wIHAjjuqz2d9la3SUrbbnkShwO8Ss7Tb2oBNN208N2vz8MWLgblz6993393NbJkvD5NPSwDYa6/653Xr4nlIw6cl/04ffNCOsASSkZYqc+o0SEuqIoFBnKdQSEuqeXh3t1/zcBsCg6q0vOoqNYkjMw/n8ygjLfPm05InLAE6QSZ7Nh78vE4FmdLyhBPU54tzRVn7Z3lPqrSsVNxVZgA9EA8Frj4tZaAoLX3N42Tz/RCIJxl8Ki1nz44+//GP9eN5IS1139n8gUqAX3klbbNu7Njov27uroqVYKO0NJmHM3zjG43H3nmn/plfC9m6fdHhoYfqnynm4YBfn5aq4KbPPFMfD085JX5dUFpaI5REQATV4ClOgHSqLhNUA7qN0tIlergtaSkqLWWLXf6YTjHoah4uW3BQiTxVuhSC03f0cFul5QUXAP/+N3DwwY3np2Ue7muyq3oXI0dGAxdPNPL31A3crubhDKVS/FyZKwMKacnnw6S0pJAX4s4kD1FpCQDvv1//rKqXKrNxMV1VfkztlCdRWT74cjz0UODMM+vfbQLx/Pd/A3/9a7Qx9PTTcuKPweSgPYnS0gb8tfwiXqYSlW1M2d7fhrQUSZNrrqEpLXVQESP8M110ETBmTP0731bSVlq6vEuXxZ7KXIyyWaGDrh+jmKPySFNpaaPOpxA3rI/yqbTUQWYe3oo+LXm4kJay/oASRErm0/JXv4r67333bTyfHzfSCsTD14kkRIBqPqSzjFDBp9KSQlqqcNVVwK670s/3ZR6uK69WIi1d3X0o0ot9Tyt6uA4XXwz885/J05GdrzMPZ/WWunlKbccsuI+qLsnm2jbm4VSlJRV8v5tkg0WEbD4qfs/KPJyabogebo1AWgZEUE0EKJN/F5+WsqAizVRa8s8pmtjIrucJMh1p6RqIRzZgfexj8vQpoO6U+44eTlFa8vnaYw9g+nR5lD1Z/k2BeEyTTRezYF1aMhSLwNZbA4cdVj+magsiVApHKmlZLPohLUUzVIYszMOBuNmyjdLSxqelrh7ssw8wbVr8WLkcL8cPfxjYZZf6d2ognmIxKsejjwZOPz2qK7o+y+SgPUkgHhvw17JyKBTkaiUVuZ0WacnjiCMidx6uAWIYKErLjg7g4x+vf5eRlmlFD3d5l0mIzizNw20DK5jMk0XIfHWrrrFVWlLNw30qLXWQmYerlJaydkuByaelrXm4qbyp5uF8vTBZ0KggMw8fPDjqvzfZpPF8nrRMW2kJJCMtm620VFlg2FoA8Zg6NRoDqMhSaZlXBVWrRA/XWbmpMGWKuj7YPqtJaSmzLqRunlLHPOaSJi3zcFulpQn889tuRuqg2zDwZR7uEohHB+o7zms/0QSEkgiIQCUtk5iH850K/5lNuJrp01KntFRNYlhedAOAq9JStgMjG5RsSMs0lZYyuCgt2fkyh9UuSkuTciIL83BWT2REEuBGWlLNwymkJWVBkIZ5uCtpqWrPJhVcEqVlqdTYD4g+NAuF+OLRRmkpQjexpSgtXQPx2ILVI560pCotbTcLbHxa8mD3TEtpKR7jnzFtpaUuMiUFPpWWaZKWWSgt0yItqebhzVRamszDffu0NJWfzqelSonXTPNwBlk5iaSlL5+WsujhQDqkpYvS0sYyiiENpeXw4XbXJFFa8n0IxadlKygt8+bTkgezwLHJo25NkLZ5ONAc0jJJIB7fSkuZuyof4N+djCSvVuvjEuvnfZqHp6m0zGs/0QQE0jIggqpRiBMgX0pLGWlp6kCou+mAndKyVtP7tFRNYljHpCIF2DFfSkvZs/tWWtruaPtQWqZJWpoWIVmYh8tIS5W5tQiVeXhS0lIk28S86vKRldKSX+w1W2lZLDb2A4VCY90VTV9cSUvdIon1Vaq0szIP5/PAK49kiwJZPbGdsLoqLW0XC7p0dISDeD8gW6VlEv+ULteoSEvXRSN9elYAALuQSURBVG6aSksX83BVfdO5thDh2zzcl9KSSlq6mrHKSGYbVbDOPFxW9lTSkl8kuioteRJAfLeyd81vvqVlHu5TaSkrXxelpc18nSGJT0sVbElLWb3ob+bhpvZmC5XyLanSkgUDtJnHpEla6gLx2JqH25KWOsFBEvNwavRwKvj25cvKTUxL9rx8ebqYh7sG4tEhBOKxRiAtAyKoOjxxJ8CXT0s+nWYrLcVnovi0lJGWPqOHU0lL6oSCulNuax6u82npEj1cR1pSzMPF+8kiQYp5yEppKSOSgORKSxPZ5ts8nL9fEtLSFIiHX+xRAvGk6dNSprQU1cvMzJuBSlrK8tUqSksxbZXSspmkpe1iQQWq0lJFWqZhEthfzMOTKi1NY7Ct0pL6jL7Nw0WlJXXDmIdoHq7yacnPtyjPwUP2vnQ+x0TolJmqxbOtebhsvDDNFwC5T0sGWR4ogXjyorQEmqu0NG1kip8p8KG0DIF4kkHl+zEpGbNyZTw9CnQbE76VlknMw6l5YW0/7ejhvszDqRsAttCNL5VKnMtIIxBPMA/PBKEkAiKoOry0zMP5DqbZPi3FZ6Kah7OOKZiH50dpKd6PYh6etk9LVo4uSkvVYs3GpyU/SfPt0zIr83A+v81SWor9gPgMMvNwSt1yVVrqSMs0lZayd+1iHm5LRCUlLdNSWupIS/79p6G0TGoe7nJNK5iHpxk9HKCPGZQ5i415uA+lpfisKp+WYh9ks3CSLcZ05nsidEpLFWnZjEA8tubh3d3+zMPTUFqq8pCl0tJEjtimOXBgc5SWFPPwvJIRaZqH83Up6fO7kJZZmocnIS0p4J8lLfNw30pL0SLJF1T8AvuelLRMw6dlCMRjjZz2mAGZI4nSkjpgqCZkNkpLauOVmbDKUKs1TrBF83DVJIaVmc4szmcgnlY0D7dVWrJ7UpSWb70F/PnP9e8ypWWefFqmpbS84w719b6Uljbm4ZUKcO+9wIMPqvNlS1ryaJZPS1GBIU4GfZqHU5SWqrTb2tINxCOS7/feC7z4YvQ9TfPwpD4ts1JamnxapmEe/tBD0Xtwvd4Gjz0G3H574/vr6gJuvRV4+mn7NNn1Ktiah3/wAXDLLcALLwBPPRV9Zhg5svF82TitaxtUEpXi05LVBxelJTOPtAU/r1OZhychLWXlo1pUytqDjLR8/HHg7rvl9YRKWpoC8VCVlq7m4ao67lNp+bvf0dOQQTXHz0JpqXK9kIS0tL3GRyCeVauAG25Qn8fqfF6VlnwgHh/Rw994A/jrX6O+hbIBTYVv0tIWJtKS/+5rHsJjo40a0xcha1PNVFrqyL8kMAXi4dfUQWnZskhJpxvQclANniJpmSTal4m09Km0NO2oM8iUltVq/JjKXCRr83DZO6IO1s0KxOOqtJRFD+fP6+oC9toLWLiwfqzZgXhMJJxLIB6KT0sd0jYPlykt58wBzjxTn68kpGWelJZiOboE4rE1D/cVPdy17pfL9TzcdVcUNZchz+bhzF2F6yLMl09LnxNQRubss4/79bZ44w1gxgxgxIj48d//Xr+BYoJP0vK226I/GUaOBJYujR+zMQ8H7EhLEzGRRGnpCn5+IRJ+7Nl8k5Yq871y2Vz2L70E7L579Pn3v29M21cgHlvzcIrSUjQPl/VVSUlLvk7Mn09PQ4ZmKi1VY5KrebhLwA3bQDzt7fX6zurxF78IXHed+hpWxnklLX0rLT/4ADjmGOCb34z+GHwpLX35tLSFyuxd9jvrn2SCDFcMHVr/nKbSUuXOyXUDIQ3SkuWxUJDPdWVKy2b7tAxKS2sE+jagFzVZp0dRWsowa1bjMdWEjE0Uffq0NE1OGWRKSyA+qVcpLdM0D2+W0tLVp6UMJqWlbOBk5w8YAOyxR/x8/lmfey5OWAJupGWWPi19modTSUuRRGL1ypd5uIyMMhGWLD1Vu2BpqXwPNcunpUxpKe6ki2ShrE6IddTWPJzi01IWoTENpeWpp8Z/U5GW7F3yz541aQkkM0tK6tMyLaWlbKzNAsuXx78nISwBv+bhOmy6aeMxWX/kg7T0bR5eLAK77EK7tw78nEelIBH7IJuFk4m0NLnfEcv+qafqnz/1qcbzqXND2Wb2OedE/3fdNU4CqKDzaSlr26J5uG7x72oeTp0PUCDLg6vSMg3zcEqwJIYhQ+p5ocLWPJwf71gZyYh1HqaNRxGTJ9PO8wXfpCXDd75jJnc+/3l6ekxp7qK0/OQno/829UmE2FZ0gXjYs/7iF/Vjo0a53xugk5YqpSWl3HRz9TwpLQG11WNefVpSScugtOxFKImAOnySlvvsAzz/PHDwwfVjaSktZR1gEqUlQCMtKebhrkpLWZ5MPi11BCZ10smXL6XjTRI9XBeIp1AA7rwzburE5182Seffie48Hln4tEzbPFyHNMzDTYF4KJApm8Q8yCaTOuWSWF/F87JQWvJ5UBGhOmUeA0VpqfOhaooYz74nJS3F51OZh7OFezOVlkAylRrVp6XJPNznBLRaTWcBoDNtTAs6ItAnaSkzD5eRJVmZh9vUi1IJ2GQTdxN8BjFCuKwOZam0FGHbNyTxafnd7wL33x9ZCFA2gW3Nw0X/02krLZPCF2npQmhQzMNlVjgqMPPZpEpL3bPw77dSofUNrH5Tx98ZM4BnngF++EPa+UnhO3o4D1lEbR4//Slw333A3/9uTiuJefi110YuVXgXU7YQBS8683BWh6ZOjZTjL79cV48z2KowedJSJzhIYh6u29zOK2mZtU9LmYCBghA93BqBtAzohVRpSQnEI0OpBHzoQ8CUKfVjqo4vaSAe2STDp9IyS/NwivNuMX0G3QTIxTzcRmmpih7uah4ORLvk++9f/86fJyN1Wsk8nL+nrk2pyEKqiUsa5uGmQDwUiC4YeLC0ZM+oa8sm0jKp0pJCWoq+PSl+gFx9WqoWv5R3zr4nJS1FcqFQkJPNzNS/2aRlGkpLqnl4GhFjazX/E9ohQxpV7lnAtj64QqZuMflgpJwvA0VtxuoDVWkJAFttRbu/CiJpSVFais+x5Zbq9G18WjaLtGT3LZWAffeN6j2lP7Q1DxdJS9Vcif1ORZZKSxfzcJfNGcqYaUPsuJCWtkpLfryrVIB588z3YO+ZujYolYCddgImTKCdnxRpKS2FtJX9zn77qd0D8UhiHt7eHq0vXJWWsrWdzjycr4PbbANsvXXjM9oqL3mfljbm4ew71adlqygtda6QkpqHm5SWfFlSny8oLa0RSiKgDlmnJ5opUydVMvVAWubhJtLSRWnJR+U0mYfrSEvXQDwymJSWJtLS1jzch9LSNhCPbhHA51/2LHk3D8+r0pLiL8rGPJwCitJS9u50dTJtpaUpEI84qaH455J9B9yjh7PrZC4B0jAPF8tMZh7e1mb2aUmpz0kD8bC8uMIlengWSkvfpKVucp4msiItZUqttEhLcSNDBlulJZDcLxuff6p5uJg/Sh/FI4l5uAlU/4mmeSFljpREadndHZSWOlDGzGaQllSlZbUaBYg0wZa0lG18pwk+EE/WSkvKbwwuSktxruE6Hsv6OIpPSx4iaTl6tF0ekpiH27gWaxWlpYq0bHXz8KC07EUgLQN64dWnpQ1pmdQ8PAlpWa26+bTkJ8k6qX2tZrcYoy6++fQZfJOWSZWWJpWJSWkpfjc9a16jh7N8uwTiSYu0lPkRZefb5CNPpKU4EcpCaSmWo2geTlFayvKli2zLFr5U0lJnHu6yIFEphgE5aclPzJOQlj6UlkkmfzI1l8xdgWrMY8fzrrSkmDQngaodZkVamuYLDFmbh9soLflNUxe4KC3Fc5KQlibzcNsAUVSlJZ8v2X2ppKWN0lIMxOPLpyX/vEFpKYeLT0vbQDyieTiFtDS5eBHBnj8r0rKZSksGyjuz9WnZ1kabf1FAIS1Nz8r7uwXSUVqKKkCWL2qZ+VZaFoutax7um7QM0cOtEUoioBdezcNdSEvK5F52TlLzcJNPS9UkRlRaqgYBG39cusl6UqUlZSFgu8A3kZa6Sb1MaSl2zirSUlaX2toar88raUkNxJOX6OGq/GZtHm6jtNTVJVl+svJpaVKEAvI+i5/gqiKT25CWaSgtxfoGxPOtIi0pyjEfpGUSyNRcJuVlUFo2QrWJmBVpKbt/HszDbZSWQDK1pQ+flmkqLW2RxKclD1vSktIf8PNHn0pLftzwqbSUtcM8+bRMm7RMEoinUgHefNN8D1ufli71Iwl40tJ2A8GENJSW1HKU9Zmu47GMcNIF4pHdx6fSUic4SLJhrbMWbBWlpWgezjaSbM3DVfkW+y1qnQpKS2sE0jKgjv6otPQRPVxnHg7YkZa2i28bn5ZpKC1tA/GI5rP8f/H+Yh5Mz+qitDQp7GygKl9WNj7Nw/Pi0zJrpWUSn5YmVwUmpaX4jCbzcKrSUgZZn8Mrdjo7/Sgtk5KWImyUlny/qCPh2W8+SMskKkcZMSJ7lybS0nf0cN8LgLSVlnkkLWVzgKzNw22UlkAy0pLPv6tPS129MylX+fbqi7TMq3l4uVy/l0+lJY++orSkmIcPG0ZPL+tAPLbm4bZKyzVraOcnRZqBeHwqLW3Nw32SlmmYh9sqLYN5eBxpRg+3UVrKBDsyBKWlNTLSmge0BCikZRpKyzR8WvL5dlFamnxa8hN9nXk4YE9aqhZvSZSWLG0TbH1a6haaso67XG6csFHNw7u6gOuvB158UV6mzQ7E46q01NWPLHxaUkjLX/wCmDUrcgTP58NVafn73wNr16rzDPj3aWlyVWBSWppMbKjm4ZSykvU5vGJxw4bkpKUPpaWINMzDOzqi5/Xh0zIpaanbhJEdS1tp2Yrm4ar688or6d3TdH+TMlAENXo3RbVqQ1qmobRU5dG30vKJJ6KowJ/4hDkQjy2SBOLhkYZ5OHMt0tXlN3o4D59KS1m9z1Jpadros3nWLALxuCgt2TPa+rRcvZp2flI89BDwrW+hMGUKir7Vnc30aWlLWl59NXDIIcBdd0XBurbfPjr+yCPALbc0nl+pADfdFN1n5kx70nKTTaLzqPMyKmmZJ/PwLJSWaZiHm9xLyUhLEzH8wAO0ewelZS8CaRnQC68+LVkjo5CWrOPNq9JStfPK8mIyD7dRkNRqZjJHPJ/BNNBRBsK0o4fLlJbUQDz/+Ef0p4KMtDSRe1mSliqlpW7y4MM8nFfouZKWP/kJ8Ne/RpEx2TsvlexMG3n87nf6PAP+fVomVVqKEF0uuPq0lEE2qePf44YN+rSbRVrKzMN9kJZA883DZeSOLG3VM6altGw18/Cs/LKp4MM8nAqK0tKmD/WltPQRPdyWtDzhhOj/8883j7SU+WPmQSUtGahKS/aMraC0lM1Xs/RpaTIPt8Gmm9rnJUkgnkoFePtt+r1slZZZ4jvfQRnAuC239JtuM31ayiKF6+5z+un1zx0dwKpVwJIlwF57yc9fvx449tjo8/33m02GRZ+WG28crTfFALgqbLKJPn2gfyktdYF4+DJ1iR6ehtKSiFpQWvYilERAHVmah//qV9H9RoyoDwyuSkuTuVdSn5ay69vb0zMPtyEtqebh4rkq8JNfysBiGz1cpjakKi1NKJcby8hkSuQzeripfHW+AClp2gYuAfwpLQFg/vzoP8s73+58Dqq+lJamRTcPitJSBr7u+FRayt4vJQot22BJ0zxc9w5clZY6AsZEWpr89TZTaSkbh3y2lTRIyzSVlgcc0LhQyxrlMnDNNfFjskWiL9LSVOdsFLhJlJZ8+i4+LW0C8ejmiVdcEVcq+qhrVNKSh2zeSOkPZRsRfD5ElMt134pr1vhRWp54Yvy7jfrQVE6+oofLxrAf/1g/d6GYhwO0uenGGwNf+pL8eh2SBuKxUUPa+rT89KejNRMAHHUU/T4JMHTePL8J+lRass3bLHxabtgAvPtuZCVEwcUX2ysthw+nt+XNNweOO67+3dY8PG9Ky//6r+RjgUpAJPq0dFVa2vi09Lk5HZSWvQikZUAvUg/Ew0/2DjsMeOONyJSC6ixbRVrKjtmQlialpWyx2tGRjnl4rRY3TeeR1DycMrDzgyhl8LSNHs6/C1ulpQkypSW/EymDiayygat5uA5JfVqKJFIS0pKBvXP+ebIiLW18WoqLUt9KS6AxOrRLIB4ZZM/Ot0eVIoUtCGXq2maZh/MkFf8OfPm0NCkGfJKWtj4t+Ykye3++o4f7Vi2kpbT87neBO+5ovn+mtjbglFOAl1+ul52snfrYzGKLF8ri3IbgBOxJS/58vu2lYR5uAitbXq2fBFSfljxczcP5uqLblOXzxoLHrFyZXGn56KPAb38bP6bqP3/yE2C33eLHTPM6Xz4tRUIGAKZMiTY/P/Up+TVU6wS2ZlDhssuitQXbtM7KPFw1nzz/fODMMxuPU+ee7PmHDInWTW+8EZkfZwDv5uE+lZaA2lWODLI+06b/aW8H3nuPfr4LaUkRJHz3u8BLL8XPTcs8PInSct99G4+pyL+pUyNLrq99jZYvGdI0D2+i0rLpc6YcIZREQB0mJR/gT2lZLAITJ8Z9clCUlrJzTJ2DrrOhKC1li9X29kbz8GYoLW1IS8rkgx9EKQ7yVYME4Ka0FJ/RpuOXkZYjR+qvyYN5ODVNV/NwPmgUq9c+SMv+prSU1cW0lJYU0lKWNjuHrx++lZa6fqFQaDTBUiktqfWZlYXq/Zgm31krLVWKNtegVTqkpbRMY5K8/fbyPjprsPew9dZyYoXBx7hAMf3mfzO9S/53mamjDnyfkrZ5uAmszbqQjTL4UlpSFvI6paVKscpIy7Vr5fNBG9Jyp50a76siIrfeupHgcyEtXZSWsrZVLkcm25tvLr+Gah6ua7cAsNVWcSubLM3DZeW3+ebAZps1HrdVWgLRc02a1LpEhk+lJRDNb7IKxFOtAgsX0s4tFMzm4a5KyylTGq9VjauyNmVjHp5EaSlumABqpWWxCIwda16z6WAbiMdmzNBt5oplTNmAtEGrtvUUEEoioBekLiwJaWkarFyVlqZrxEUY/5mitJR1VrzS0uTT0hdpKesE+XuaBm7KwO6qtFSRM7pFPkVpaWsebqu0bJZ5uKnOyNJ0JS2B+iAtI7BUbUOFrMzDC4XG57QhLW2Vlrq+rVSST/JcSEtXpSX/PCalJe9HTaauZd99m4eL7ggAfz4tVRPtLElLik9L/hyZb2TfSstW8WlpYwadJvh+WPcubINk6H7TnWMT/C6J0pJvY80mLVm/4zKnk8GFtGyG0hIA3n9ffo6Ytgqy51T1nzJSuNmkJaAnWCgbfSalpXh+mubh/OaBirQsFNxJcsC8OdZKMKkPGWxIyyzMw4Ho3VJJS8D8rKKrFKrS0mb9LJs32SinazV30lKlbJW1J1f/+DxUPi19mIebXJmI/EYgLVNBKImAOigNw1f0cNNiT5WmC2kp3k8kLU3Rw1VKS948XOdXrZUC8dgqLU2kJUVpKe5QiWlQ0dbWeD7FPLyZSksZYc4jLdLSVWlZq2VnHg40TnpsAvFk7dNSZh7uqrSUqagopCW/4NIR1ex7XqKHU3xaAvJntiEtk8DFpyU/Ue7vSksfixIfoG62+CAtbZWWprJJ4tNSZx7u26elCWkoLW3TcSWRdPNYk9LSJm0VZO1dRUTK5mDNNA83kZaqMcnWPJyyuaRCEqVld7d8HVAoJIvw7iLyyCvEvkeFPCotfZOWrkpLWftJ06elq3m4bB6rU1qy312RdvRw3fOKCvzg0zIVtGivF5AGUlFaqkxifSotdZ0Du7+4MGDXUM3DZbvVIvnpyzw8LZ+WlEGK3/lLwzw8a6XlxhvLz2Xvrlk+Ldk9TVECk/q0tCUtTYMjX15pKy0BO9IybZ+WsutF1Y0vn5ayiauNeThQLztWx5rl01JFWlJ9Wpp8wTZTaWlSwMhIS9/Rw337tGT5S4MM5f83C9R+y8V0UwSlLG3Mw7NUWor9Z19TWjbDPFwFNh6b5iIqs0Od0lI83zSv86W0lAXcclVa2pqHZ6m0VLld4KFSWlJh2hxrJYhrKxWo7+yDD/JJWorm4RTSctAgd6WlLWlpEz28VZSWtubhtkpLavC5oLRMDaEkAurwqbSUkYUm/x6uSktd56BSWvKkZVLzcECtfALsA/HkRWmZ1DzcZHJGiR5uu0MuXq9aLLAJZBZKSwbZs/MDqSnNLEhL00DLm1E3Q2mZJBBP2kpLn+bhMvLPJhAPYFZapkFayszD+cWri3m4jOznYVoY+CQtKYthUyAen22FuvCwgWzD0QfyorSk9lu2QTJksDUPp2zcMiRRWvowD0+yMOMD8fQH83DV5ql4X1OdUz2jaq4mK18T2SwTJvhWWqpA9WmZtdIyKWlZLAalJYO4tlIhj+bhK1fK3TuoYHKJJvNL6aq0tDEPz0ppqSrvtJWWVPNwXz4tgUbS0mf7bNUNihTgeYs+oM8jiU9L2e+mY+Lvth2BL6WlzjwciDp1X0pLlfrO5NOyGYF47r0XeOghuhmsbfRwmwFMtohSLezYeVn4tNSZh5tIyzVrgCuvjBxvZ2EebgJPWuZdaSlOjNKIHp5WIB4genYZ6QWoJ52tZB5+5ZX1z7r6LJYpADz8MHDffcCpp8brYbnc+Ew+zcMpSkuTebhvpaWv/oshLaUlhcDLAr7Nw3XllGYgHl+kpWoxRiEti0W3+sf6Ip9Ky6zMw9NQWiYlLVVzT9mcyEQcqjaGbN+zT/NwsZzTVFomMQ9XzfWTmof3JZ+WvpWWWZqHv/Ya/VzA3qcl4F9p+f77jUSrL6WlqexszMOzVFqyfPk0DxctSYPSMhUE0jKgFzVKwzD54GNwIS0pSkvZORSlJX8db2KjUlqKPi3F/HZ0NKpIfZGWa9bIf0uqtEwaiKejQ15WBx0EjBvXeNxEWlKUlrYdP7Vz7+ioT3bSJi3ZAOmitLzxxugPACZMqB9vJmmZV/NwcSLkW2kpW3iKExVfSkvArLSUpd1spaUNacnDhrRctw7Ye+/o+6OPAr/+dTxvYh+VptLShrRMKxCPL/cWDGkrLZttHk4NxENtG1tsAbz4ov6cvJuHu/i0ZJs0Ln1IXpWWlMi1tqRlqZQ+aak7X+eiRwbZ+8zKpyV1zBw/Xn9vG6VlW1v8naZlHs5HM5dh8GA7K6tWVV/5Vlp+8AGdgEtKWr7+Ov1cF/NwwL9PSxlslZZZmIf7VFqafFqysdDWPDz4tGw6An0b0IsapZGZSBaGvCgtmRmJTmkp65BN5uEypaVqEJCpU48/Hpg0KZowfeIT9eO1GrBggTydpD4tKYsLnU/LbbcF9tuvMR/r1wNvv92YlmmiJVNaJtkhB+RldNJJ0f/x46Pf990X2Hrreh7S8Gk5Y0b0rB/6EHDYYdExF6UlD76MXUlLRjqqSEvT5K/Z5uHN9Gn5+c83kvMmpaUsTRulJQ+KebhKaSlbdKahtJSZh1NISx0BI5bpW2/Vv990U/y5ZCoZn6QlZTHMH8siEE9aSsskPth06ZrewaabRvVh5Eh6ABMb+FZaXnddlN9NNgE++1n5Ob7Mw30pLVesqH8eMsRNaZkkYJPvQDwmFYwMsvr9wx8CQ4dGfdbnPy+/ztY83KfSUlVW228P7LFH43Ff5uFZRg+nmIeff369n/j4xxvPt5lHivUgidJSZx5++OHRfLBUAm6+ufGcL38ZGDtWfn1QWqqhigEggw/zcBuYzMMHDAD+4z+izz/8YfTfd/RwGWzaMx98k8dll5n7XBelZRrm4ZVKvG2yMrY1Dw8+LZuOUBIBdVAamSlwCENaSksbWTxQnyzqSEvZok+U9VN8WtooLQcMAF56CXj3XeDgg+vHq9X4opyHqizZfX0rLcXJW6kEzJkDvPdeo1kDlZyxjR5u2/HLnvE3v4nKed686P+999bfnU+lEl/+Rx0VldPTT9fvJfPNZ0Na8qASCuwd8JMHRmIxtJJ5uI1PS9/RwwcPjnba99mnflwkLfl7pK20pPq0ZM/WLKWlyqclDxuflmL58c+l28Fn+XMFVbXEH+PHS5V5+PTpwKWXuuWpr5GWO+4YBTpg/fUmm/jNA+BGWv7sZ8B558nPmzo1yu/8+Wqlnqt5uK4PS0JaLl1a/zx8uLt5uKsCJI1APLbpyPI+bly0afzuu8DkyfLr8mgeXigADz4InHFG/Lhs8Wx6ZyrzcFv/ua6kpew+YjlvvHHUPyxYoCZrdd95iP1cWkrLUimaD777LvDRjzaeM2wY8MYbwL//3fhbUpIqT/CttLQhLWUkmk052tyrUDCbhwPA3/4W1YmvfS36TlFa2q6DRZja8z/+USfQq9V4n/ed70T5Pessc18im9epglKlaR5ercbbpssGclBa5gLBPDygFy2rtExKWlImiuJ9RaWlrXk483EzcmQ8/9Uq8Oab8nR0pKU4QMqQNBAPK4fRo2nktYm0pPi0tB3AVq1qPFYoAJttFn0eMyb6z787qp9WE8Rd1U03jf/uYh6uAnUQE5WW7J46dasOfF3Om3l42kpLIJqE8e9VfOcU0jJrpSUg9/uUFmkpvgffSksxjSxJS/afN29VnQfQAvFstBEwapRbnlzfoQ4sf0l8sOnS1WH8+Og8Frgkjck6VSHOl+uQIcCIEepzTfmlKopkJBjfL/lSWoqk5fLljeenqbRstnl4uazuC5h1jup3fr6Ql0A87DfRbFq20eLi09Klj3GJHq6aQ8uee8CA6M+krpd9l+WJIY1APOx5y2V1X18qRfML2e+mcaaV0MpKS9v5OoW05NcnAE1pmbZ5+Lhx8TWyGDSR5ddUB8vlRvcLKsWiL/Nw2XNVKvW1S3u7G0Fq2qRLW2npe57XomjRrZqAVOBTackat6pTkN3LVWmpg6vSUsyXTGkpEhQ2pKVqoVKrqZWWpomej0A8OvNwMZ8mmNQbafi05EnLoUPV5/HPkgZpaarfSZSWsoWICuw8frL2wQdqdavpvfKT8ryZh4sTId9KS9lnmakgy6OqT3BVWvLt0canJSAnLdMKxCOCJy1V9dbGp6XYXm1ISyKk/p1lY5rJbE+2uy8jEVwJQp/uLRiaqbQ0tWEfcFFamlQWpvSo5uFpKi35NtZspSUfiMfH4s6WtKTUbdU7E/0Y82iW0pJB7Eepfnh5+CItZao21/Zso5SUna9rf2Lfm5Z5uAnsHhQSlppmHtFMpaXKxyIV1PUvAz83oT5PHpSW/IZUtaoWK1DW7OLzpB2IR0VasrbJ95E2Y4aN0pKPm0GFjRVZP0aL9noBaaBPKi3ZDreotrEhLWWTcxufliqlpezzypVxf1NiPmTwaR7OP5NMaWkD3cKfz49P0pKPkqdzfM7nzSZQkg46M3eArLSsUXYvqaAoLW3KWOajj7+PD/DPLy58mqW0VJGWMqKa5UNVr1xJS0p/w7dZnUsAwC24gpgPEbJ64FtpqSMtPfm07JaRqLzSUpa2eB4gD/AgIzpcCcI0lZZpkZY6yFyS+AZ/D12eRNKS0u+6kJY6paWuPGSkkA4qcmX4cPdAPK2qtExCWurMw1WEl4m0ZH1zUtJSNmfzobR02RjRzYFs53U2pKPsfN31Ps3DddHDTWD3UKl1RfQF0tKH0lIVvEgGKiGsgoq0VJFwFKWlCFelpc1zmOZ+orCH7/NsSUvxedIOxCN7Lp545du3rdJS1w8kjR7ug8DvBwglEVBHK/i0tF3EsMmiuNC0VVqazMN1SkuZkk+1UHnjDXU+VO+HddI+zMN5JF1AmszDKUpL286ad5StIy35Z/FFWpqcblOVlnkmLWXKMf4+PqBTE9nsRvqMHq4iqmTvvJmkZd6Vlqp3oFMXiH2GWK4pmIdXZBNtmRLAxmxPp7R0JQjT9Gnp2zzcZuHOYDvmUPJMVYiL7SWJ0pK6OM/KpyWPjTduntLSJ2lpkw5lDFXVV5dAPKbI0aw8TFYftqSlbKM/K/NwGVyJiTSVlhTz8KRKS8rz2iotdXmS+RPNC5qptJS9Hx/m4aoNJBfSMiulpYm0ZPeo1eJzLj5/aSgtk5KWqhgVMqWlzbtP26elbh0alJa9CKRlQB19UWnpy6cl32mUy415cfFpyeeHQUdaJlVa5oG0zKPSMivzcGogHtOiIk3S0mQezuc3b+bhpgV/GkpLnXm4ahJCLSudylRlHq7yaSm6BADcVXo6gk1WxpRAPKWSul6LZL/YXvlnSIu0VJHWNgoYlfP3pObhrRaIR4ekY47Mj57uHtS2mJXS0rTxksSnpUrBM2yYG2npQ2npsriTIS9KSxVpWS7XfWXKkKZ5uI9APL5cUKRBWjZbacmP01mSlrpn0tW1ZiNN0tI0jsrm2z6Ulqq+lZ9zpa209GkezvfLYiCetJWWSdYSOvNwmdLSZswwbdKF6OGZIJREQC9I5uG+lJat5NNS7KxYJ5zEPFy1kHZRWlJJy5tv1v8upp+GebgperhsYWQD3qdlWqSlqhxMSktqIJ5mkpYmZGEe7kpamhQTuuf0obT0TVqmrbT8y1+AJUtoeVHlQ4Ts2ShKSyppKTMP/+pX65+Tmn/1oFtX9qoNJ9m5PFh/6lNpSdl0c0VagXh07VAsB1sfeBTS0mWzJU3SUlef0lZasmAmWSstefPwZpCWSd6lSyAeQB+Mxxdp6cM8/K9/bTzmq49xVVPZkI6AndJSvN42EA+fdhKflj7NwzfayHy/ZiFN83AT4ZeUtFSJdlR9sWlNIIOr0tLmOWyVljI3N4Cb0rJYTFdpqTIPz7vSUoegtOxFIC0D6shKaekysWe/y86ZMEF9ja9APPz1rBOmmofLJjKqhYoqCI94Hg+qebgJJtKnGebhqmMqbLFF/fPWW6vPS2IerjIFMfm0lJmHy0xb0jYP/+ADP+bheVda2piHp+HTMonqAkju09JEWrrC1jycorRkaiQZxOcW2yu/yDYpLbfaSn4PAQ1KSx3ZSjkGBKVlFubhaSotKXlRnePLPNy30pLNj7L2ackH4vEBW/NwSt2mmIdTlZaAfhM1LaWlbM7ssgCmBF6kQLVxY4KteXgSpaWteTh/fhKflj6VllOnmu/XLPhWWvKkpalP3GQT9/sAatGObE2QtU9L3+bhvNIySSCerJWWKvPwtH1aBqVlJgglEdALr0pL1pnZDLauSssf/AAYN05+jSoQD/tOWfSJu/isE+bTtDUPVyktdQNJUqWlCWKHrFNa/vCH5vRk75NfVLK6xE/UdTtwOlx5ZfT/F7+IJiYTJgDf/rb6fL78bUlLyq4qNRDPO+80npcGacmX+7p1fszDm6G0HD1afV0S83BXpaVsAWtSWlIXgCbSMmn0cFdQSMtf/CI675RT1GXHQ6W0/OlPG9uNThltWvD94hfAqFHq69ltdObh/PuzIS3TUFo2k7TcZhu3dHVIulFGCU5DDcTDQ7XQ+trX4t9dNmRVGyKAfuPFh9JS5vObISulpQ/k2Tyc5UtHRuRJaekbv/1tVN7/9V/mgEQq2JqHJ1FaUszD//jH6Lyjj46LJnyYh1NN+lVlMnEicO21wEc/GuVRVF0edVR0TrPgW2nJb/zL+rhzzok2DKZMAU47zf0+gHr9K9ssKxTczMNd+ybf5uEqpaXNvL9Uyt6nZVrRw23Nw23q1ZQpwGc+o/49KC17EUjLgDpslJYmZUiWSssxY4A33wTuvrvxN5XSknUCqsW/eF++01ApLVWkgGyRbTIxVOVDBl+kpWnHmX/er30NWLZMn57JVJRNNlSmB7p0ePz1r8CXvxx93mabiAh8/fX0zMNdTUFkSkuZsjYN83Cx3Fs1EM+kSerrmqG0dPFpSUUrKi1Z2Zx+euRf9ppr5L+LkJGWb70FnHFGY7vRlauJtNxiC2D+fGCzzdRpwGAerkpbd4zPm4zo0C1U/vQn4G9/k/+WRvRwaiCeP/0JePtt+3R1yEJp6WoeLublkUcaN+9c5jZ8uaSptPRNWvpQWjaLtExiHu4SiAfQ549qLePDp2XWpOVJJ0UBEv/wh/qxPCstKebZn/gEsGJFNPeUzetM+ZGBj6wuM6mlpHnMMcBrrwFDh0buoFasiPLKY9iw6JwTTzTnKQ2kqbSUbQzsvDOwcCEwd658fLDpw1SWhqrARy7m4a5Bwmyew1ZpqVujmYhn39HDf/rTxjrNoCItOzvrx12VlmmZh//+91Hd1PmhDUrLXoSSCOiFldLSpGhwIS1dlJbsWFubfOAwkZYmhRXLF8WnpavS0mbhJEOzzMNHjNAvnGTPxXfMbLKhMj1gMNXLoUPj31U+ulR5y8o8XKa0fPPNxvPSVlquXRuvq66TtmaYh+sUAmK52CgtAT157dOnJRVp+7R0BdU83GaBICMtWbs2+bQ05U28Z3u7kZCrUElLF/NwGYmgy8+AAeoyp4xfrjApPkolO99plEVJFj4tfQXiGTGi8bykSkubjRcf5uHMEsVVaenS7/Nmk77GjTTMw30rLXX5S0tpKXtHzVDtiO3Sp0/LpEpLyjxB9l7ZM1HK00ZpCcjJZxGyZxo0KH6u+J1dVyrR+so0kLXSslDQrwl8KC1VhJOLeXgelZa6NZrpHdoqLU3vY8AAdRmpREj8e3P1aWkiIl1Jy002MW661QJp2YtQEgF1UBoZ6+hME+a0lJY6JYKsI5QpCfgOWezkZISUOCFmHSafpjgI8L+ZoodTOzeT0jIpKWEyk5F1qjrn8ialJSMtVaYHunRM+TKBvyYrpaUYPbxWa47Scu1aM8GqQrOVljrSMonSElCbdonXiiSaeA77XTUpTNM8vNlKS1NdUr0DmU9L3lyOwQdpqcsHuw1l0ag6bjIPt1Va6vKahtKSwaS0tFW35dE8PAlpKRsHXPpB3QZmVkpLV5+WrmMv6wPzbB7u26clhbTMm9LS9f2Y6maelJaUZ0wy5lHP4e9BUVpSxx4Vgdssk1Oq0pKaPxNpSVlXUpFEaUl9HlelZZo+LX0qLYvFZEpL3WaZSmnJ17kkSksdXElLVnd8EPj9AKEkAnphxeYnUVqqGrOL0pKfsMgmLzKfljz5KS7+ZYOPOCGWTUJFpSXfKZtIy6RKy7R8WlIWkDofRaqJFqs7MqWlbKFs6vxdzJ2SKC1dfVqKZkQrV8ajnTP4JC1ZPkTS0tWnZbNJyyTm4aZ6pKsHKqWlzjw8KVrRPNxUxrq+n0paJjEPJ+YzEWmpaguuSstiUd0um+nTUraJSElXh1YyD/dFWurMw9NWWib1aZn0eXV12wZ9xTw8C5+WPsndLbeUH282aWmjtKSUh+4cipsESjvxobSkkJtURVta4Ik/H0SNKRCP65xEBhvSUvRpSX2erJSWNtHD86S0lPVpDKp5sUppadMXmvIlbmb5JC2btcGQQwTSMsANaZiHmzoF2eSA70BlHSEzMeSv4xcg4qJPNviIHZBsEip2lqIKU5am7LMOJqVlK5CWhUK9jGU+LV3Mw106dD5vaSgtKebhMtNwMW8y+FBauvq0VJmH+xxUdQtzWfRHVR5Mi24RVKWluFnBQCUtqeUtPrt43zyah7su3nSkpahQzkBpmcinpck8XKbOci3TNEhLBop5eN6UlhTSkk8zSSCevqS0dCEtXZWWKtV6EqShtFS9yzybh1Oih9vMH0zlNHmy/LgtaUldT8hA8YOuu57SZk1l5mPM59Nw9WlJITdbRWlJ7Ut5paVsY8bV+sMGKtIyS/Nwm+cwmYcXCmqlpS1p6dunZV6VluJmFnVuweYsPtpCP0AoiYBeZKa01C1cbdPjOz+xM91oI7kqku/0xAAcMt8kpVJ88JGRluIgQCFgZZ91UKXpy6eli3l4EtJSNA9XLYJ8kngMMvN96qRCNSE37aqKSkuZaThgHvD6UyAe2YRHhWYoLXXm4UmhI85UZBXfZvk+ev16P4omIB3zcF9KSyppmURpmUb0cF1+dGq0Ws2/T0tqIB5boojSR2Th01Jn5aCa11CVlqryMPkPU12vU1pSTOF55FVpaau6U6VpkxdXE0wgvoA3KS35fOnaCnXj2fSMvpWWpnJSuQeyrZu6zUggXaWlLaEog818XwW+rClKS+pcOc/m4T6Ullmah6tAETLkyTy8VrNTWiYxD/cdPVw3ZnR3p+vTUgeTebgqz0FpaYWMw8gF5Bo2nZ5pUqLbXXZRWqpIS515OE+oiaSlrXm4bPARyQvTYpaHi9Ky1czDZecXCvWFpWge3tbmNhj7UlqWy40klGxg9xGI55VXgGOPlafDFjqq9+k7EI+NeXjWgXhWrqRfZ6q/KvKKPbOL0tLFPNyHT8uzz5aXjUpp+de/RtGOfaDZpKVOaUk1D/eltPRlHm4a+7I0D2dIyzzcZkPGtm+3JUvEch88WB5sQbbQohLkNnkwqcV9Ky0Z6ZSlT0udOXwSZKW0tPFpqdrsEkFVWprGDt8+LV0VhqZ2KOZpxAjgnXfs7wMEpaUpH3kmLX0rLV3Mw33MXWX9iWiCnbbS0mb9/sADwK236tPnlZY683DTO6SSljqhkypvIlQWSHwd4fPj01LERFoOGCCfWwSfllYIJRHQC1L0cIaODrM6hP8v+02Ei9KS70DFiRK/e0slLVURb/nJJMU83DTJ8am09EVaTp0a/56G0rJYjCst+V081WCdhtKST1OltFT5T/QRiOepp/R507WFvJiH+1Ja6lQRfGT4sWPt0rGNCqojLSlKS98+LcX+jE9XReaqfFr6IiyBdMzDRRNplUIpq0A8aZiH6wLx6BSCxaJaidTsQDw+zauAbMzDechISxlkCy3Z8/hQHvLQqR1lykkdZOPWsGHRf1fzcJfndVnIU5BH83CqCxWqtcyaNfrfZXM2MY8+lZaq36dN018nIy110NWzpEpLSh02lVlSJSYQ7+PT9GlJJYfSAlVpSZ2X8j4tZX1iFkpLWR0U15bU+7gGCbN9jvPOU//mU2lJDcRjo7TUbSjZ+LRMqrTkn51CWsrA5vm6vASlZS8CaRlQhy1p6aKMVB3THed/0xETo0YBn/pU9HngQOCMM+q/iX6sWHq8UqVUUpt8UUjLZiktfZiHb7UVcOWV8WOUBaRqkQeodwPZNbVaRBSxzl61SDbVy7TMw7/0JWD69MZrVSoCm0A8PHbfPU4YmxaD7Hn/93/jpJ4MvknLNMzDZZMahqOOAvbZBxgzBrjlFn06NqaVsnOy8mlJBZU448GXpS2BI0JVL7JQWvLPKvq0zMA8fM1mmzXmTwaq2R6vSttoo/hvbW3Rov1zn4s2gW68Mf57sQjstRdw9NHAyJHAl79c/62ZgXhkSlhKujpQlJY6FZcPpaUMVFWhaWPRdI14Dx15USwCX/uaOU+qtAC9ysPUf9oqbRl0pJ8L/vu/o/8+FYSA3gRRdY6OtPShtFy9Wv+7bCwV89jeDvzqV+a5A0DrA+6+O+q/9t8f2GYbYMqUxrmkCFvS0tY83LfSMqlaT3X9XXdFZOV//iewyy7142lGD08yT/HhyoGqtKSC71ub5dNS1p+IpKVP8/CkSktK+lSflnlTWprMw336tOTnGy6k5Zln1tMISksSQkkE9MJKadne7qaMVB0DaD4ddEpLAPi//4t2o1esAE45RX7PWi2utGQTxXLZjrTk0zT5tBw9Ov5dp65QIS2l5ZFHRubKYh4pC0idiZqJtAQiAo03D6emY8qXCWJ9kKUzcGCkUPv1r+PHfSgtedx7b/zZqaTliSdG9VwHCmkpKwsV0jAP15GW5TJw//3AggXATjvp03FRWvLl7sunpa8JhgtpyU/IbEhLWZ1euBC44orG41mQlioiJwOlZW3UKKwXF9F8HkybUyZyXFSnszxffTWwbBlwzDGN6RUKkYn/okXAAQfUf2t29HCA3v+y83V1hLJRtmKF2peeLVEv5kW3CZck4jSVtBSv1wXjAoAf/hC44QZzvmRp8cfSVFqKZepTaTlvHvC970WfKQolhqyUlvzz+VBamkhLik/Ltjbg1FPNcweAprT8yEeAJUuiecyLLwIvvxxtrugg5imJT0vZZrdvpWVSF0Wq6w88EFi8GPjTn+LHs1BaqjbXdPCxIcu3H98KMpmLKVdCmWHHHWn3FaELzmqbloikPi1NEJWWOvNwUzrUQDxUpaXOwsNWaWlT/2T35MdUW9LyxRfj82sK/xEQSMsADq2gtDRNEoFokqwjQgC5ebhKaVksxklLla81fmEi5ouZYcnyQ1U0peXTUuVTjeLA3YW0FP0rNkNpSSEV2YRffG7X6OGqgadcblQCU5UFVNMXvszXrTP731QhDfNw084tdXHs4tOSSlqqiAUXn5ZUJFVa6ggY3XUMqqjWSUy6qKSl6n6mQDwUU0FAm8/ahAnoEssuqXk437eJhJuJ/BfrnuiDNqtAPOJzpaG0pATiUfk+BtI1D0+itNRB5+OR0gdQxz9ZG2fpU3xauiotRWWxLk1b8HXUZ1RswA9pmbXSUqZqUm30U8reVE7iBr5OBSXmi8egQXp3FLq85kFpmcQ8XPZbFj4tbTbWGXwF8xPz4jM96rqJmg+Ket+neXjelZZi3TRtyNkG4rHJmwgVaanyadlMpaWtYjUAQCAtAzh4VVqytHwpLVUDLXXXR0VaiubhsgGKah6u21XTRUFWlQdl4gIkJy1tlTI8slBaprH7m2Ryp/IlZhOIR7yvqOSiKC0p4HfVWb7zZh4uwjUtk3m4SWlJTVultMwDacn3GUlJS9kCAMjGp6VKzZiFT0sb0pJqokdRWqqgU45kGYhHNYZmaR5u2sBISlqqrlcttEQkNbk0kZa2dZmHjrSkkKGUdyErIx1pmbSv1AVi1CGJatbGPNxWaWkiLU2/U8gMk69aHkkD0FBRKtkHdWRIqrSkEHFpmYer0Kzo4SYrCt9jjW8FmWzOQukfdedQ2ous3MRI1mkrLX3Pwfl7ZKG0pOafV4GKSNM8PKnS0tSmg9KShEBaBtRhS1rqGrwLaemitHQlLdl3itKyVIp3hDLSUjQPN5GWKuUWDwrpwu4NJFNaUmCrtFRNqnhCYN265gfiYVANIhTFKeBmHs4GYLEu+SYtgcYASAyickuHrKOH28BkHm5SWlLzpCItdYsBF1AWLrpr0iItdWXmS2mpUq1nYR4+cSJqbW2o8QRWUtKSnyjnnbRUmYer2pMtaZnEPFzVJzOk6dMyLfNw3fWUjQvqvE3WbpOYh8uUlrIFfpqkJZ9H30pLVbmmqbRMYwNCZh5OhWsgHhNkcypX0jKp0pKiVE/LPFyFZkUP173PNIgT3woymcVGUqUlhbSkKC19kpZZKC35e+hIS1ulZbEof0aWf9NY6aK0bIZ5uO1YThFtBQTSMqAO6+jhruZSPpWW1EkTf53o09I1EI9IXtiQlnxZq/yTUHcMs1Ja+jIPF5WWeTEP90laUs3DZQR4GkpLgEZamtDXlJYuhD2fvzTNw22iNMquSerTUmWynYV5uKovNQXioSxgTfmcODH6zy+ibUhLEzluS1qKEDcZsooentQ8nNKuTeo+071sVGSyPOlIS5f0bJGm0lJWz3z7tJQtUG2D9dmAz2NWSkt+cWpSWtpGD/ft6gEwvyMd0lJayjZiXElLmesGG6Ulpf/MmrRM06elTlCSNWmZJE1VmfhWWqosq3ioAvHwBFqSflpEFj4t+fT4eb9N/5GW0lL1rGKZM+QxEE9QWjohkJYBdfhUWjLYLBgpSksTMUHJB09a8j7BVIF4ikX/5uEmpaXMz2RaPi2bTVo2IxAPZUeafRfv76q01E0SRfWU7plsSA6+zvggLdNQWto6TlfB5NMyiXk4RWnpm7SkBCURwfczxaK+ffJQ9Xu+zcNVda1UUr+LjM3DaxMmRB94hZiq7KmbEz5JS7GvSIPoAJpjHm5Sd5ruZdv2xDyplJqFAq2ck5JwLkpL6j2zUFrKyBYdaelTaZlVIB6+Hpg20VWbXSKYpU7elJZUn5a2sCUtTXXcpExMW2lpyp9tv5BHpWUaaq8kaQ4ZIk/PRWmpO6dVlJY+34+4IcWTluJzNMOnpa5vNpmHi3NkKkxKS1HAYEtaUviPgEBaBtRRsJkw5UVpSZ2A6YgRtgi2VVry+f3oR4Hrrotfw0PWcavyxq6nTrySmhZlTVqKgXhY2TZbaalacFCVliafljJFQJZKS1bu69b5MQ/Pu9LSp3m4avGZN9JSbENUE3FfPi1dF3c2Pi11SktP5uEAUONJS75tm9qIyTxcF4iHgrSVlraBeKjtleKHy1TnWVnpyG8biPfXkZY6slyVHgPVPLxZSktKO5cptihKS53i26fSMu/m4bq6WavJFUIATemlQ5rm4T6VlmK/aHMf0wZLX1RaUjcwbEhLXd3Im9JSNreRWYdkobSUlVuaPi1trUdsISoF2Zyrvd3uPlkrLVXm4Tz4Mcqm/snuyY/P//63Po9BaekFgbQM6EXRRrGRRGmpuo6y02CaJFLBdwKsQ9aRlrLBR8zLU0/J0wfyrbRMy6clRWm5cmX9c5aBeCiTO9+kJaBe1CQhLadNU5/Lp8PKvVKJ75zaTEJ8ROETIS7ofZGWWSgtZaobU33cYov65/Hj1ecNHRr/TqnnYt2gkpY2Sss8+7QslWjKXV0+2fvhy98Utdd0vzSVlj5IS0rbsFn8Uu9h2mig9smq800Q35VqgVoo6JVgqvRs4aK0pPbfvs3DZUpLGdGtUyolWYyJpGkeAvHo2oxJaamaf2+1Vf2zOCZQYCKWdUhLaSnCpLQ01RN+g2ngQDvrjREjjNkznuObtMyj0jIN4iQvSsukpCXFPJxafnkxD5cpLWX9gW+lJWVTWPW+VObhPNJSWorniu/DNRCPzgqpHyKQlgG9KFKUBAwqpeUWWwCXXcYlSlC0MaSptNTdy0RaFotmpaUI8Rlto4fbKC1byTy8WLQnLU0DSx59WuoUZbLvfJq25uF//jOwww7yc2WkJQCsWVP/bDPZeeut+uexY+X3SYoslZZJfVq6KC0PPxw4/nhg222Bf/1Lfd7w4cC55wKTJgG33uq2aEhKWlIVHvw1OriQlvz9urv1pKXMdIiy4Js2DZgwAfj2t+tqO34hbENampSWeSQt+fevCsSTlLRk5+usDKiBeFRIUpaAejwrFCLy6ItfjP7ff7/8vKQL+zSVlrpFlwtpSVFaypRP4u+uMLkD0SGJebjuHHGxauPTUtWOd90V+OxngcmTgdtuM+fpd7+L5uE/+Un0vRUC8ZhIS9O7OPdcYNiwiMg6/3y767fZBvjCF6J2/cAD8nMmTAC+8hVgyy2BOXMafzfVY9s5TZo+LVVrKSB78/Ak7V8W4EtGWiZVWspI/kGDgK9/PZqb3XEHzTycWn55MA8X+7EkpKVMsKNTWiYNxGOaD/n0aWlDWtqah48YEdWzs8+2DzDYh+FpmyygLyCx0vK44yICJZaoQXViOlf8zZfSkk+HkZZJfFqKSGoeLlNaqsonr+bhKlWIirTM0jycQsaoFLUU0lKVZ5XPtiRKy8mTgeeeA374Q+Ab34j/piIteRLGZuB+//36ZxawxDYNEXnzaVksNu7WqpSWLqRloQBcf73+HIbvfz/6A4AHH6Rdw4MajEdlHm6rxvCltBR/YzCZhzPS0rRYEPN5zDHAN78ZfWakKIW0dPFpOWxY/Lek5uFsbJo2DTjkkKgfsEVHR9zvE6A3D+cn5UmUlqbxnOqyQ5ZHCqgqNHa/n/3MLj0GX+bhVPJCBqZwYfWlra2eXlpKy2JRvwhPMm6Y6ooOvkhL1dyN9SFUv886pWWhAPzyl+a8MHz609Gf6r55DMRTKiVTWn7xi9GfCrqyr9WAn/9cnz4A/PjH0Z9t+kA6SkvqhqLMrYPqXN1z5E1pKVMdp6G0lLWXtjbg0kujPwD4y18az3H1aZmm0nLqVOBvf4vP3VXpy5SWLoHu0vBpaRuIh0ezlJYi8WjakF22rP7ZRlDWxxGUlgG9SKy0pPqpoARcUKXjQ2nJB+IB9EpLdp4pergqvwy25uEypWVfCcTDEyk+lJa+zMNV5KRPpSWFtKxW7UhLBhMpQFFaUhfXHR3AmDHy+ySFL6Wlyc+V7BxAPjGjKC2pyjNXM56slZYyH6xANj4teYikpUlpadrBlh2TnBPzablqlfqeIkzkeBKyBVArLXVmUyZQlJaqMYt3NaFDHn1amky4VOepkLQfNCk/KQS8Dnxd49P25dNSphDLo9LSlRgQYVKr8c/nqrRMavaZRGlpqs9ZKS2TEmYmwjgp0jYPT0NpaVumaZCWSdIUN/9Yeln4tBTbkMqnpYt5eJo+LSsVmpsTMZCMT6WlyaclRWmpel9Z+7TUrVl9mYcHxBBIy4BeJFZaUklL1UTHRWnpEohHJC1ZJycjLdn9+Amlb/PwpEpL1sm7Tr6SdJY62bpqYPXt09JloSi7ZsmS+PckpKWtT0uRiLCpW7p78umKAZBMedVhwgQz8U6FL6WlaROFOumQkZaqZ5X5N/NtKsaQJmmpmlBlFYhHR26IPi0pSkvTPSnn8D6zbPpWitksjySkJR+Ip1Ry78tlpKVu4cx/fu892j1YujrXKEnNw9NWWtqmZ4s0lZaAmrSkzNNclJYm0rLVlZYmksiX0jIJkpCWvA9rGXwpLU2kpe/NAB7UjVod0jYPdyUoZcdUaykTKOs90zW2v+tANQ9PQ2lJ2TBJ0zzcVWnZ3R2Vm22ZBKWlnQBLlsck0cMDehFKKaAXMaWlyaywWUpLyj1loBBPOqWlzMeajXl4XwjEIxsMfAbiSbpgtIHs3b37rvwclQJTBCUQj0ppKZKWLkpL08TWh09LBtG8JMmAm1UgHmpfJDtGUVramIe7IE3S0kaNYaMwp/5ONQ/35dOSMh7IFkUAbZFrqos8kpiH80RHEtKSoiahqsZUoCy8qYF4VEjq0zItpSWVGDHlh0peqKAiLQHz3Eo2HzGRvqVSehGJ01ZaUsrVtFFoo7RMi7S02UARMW+e/nefSssk0cNNSJu0NNWVNJSW1LE5LaWlbu7PYGqTSd5rs83DeagC8aRlHu46DnR3R+fJVKoiWlVpmaVPy6C0zByBtAzoRUxpaVrstprSknKvUsnsdwJw82mZZiCerHxaytLPInp4GjtQlDRVSkvVtUkC8fD3aAXz8EmT1PdJirRIyzSUllmah7uUC5W0VN1LZhKqe74sfFpmZB6uJC0pMCnQeNj223xe+bIol/0qLV0jIavgYh6eF5+WrukxuPq0dA3IoYJP0lLW1mTX5NE83FXNJMJU9lSlJe+b1iUfOiRRWr79tv73vEQPp6SvQh7Nw30qLVVjXVLS0jWqtiwvLpCRlnkyD3eNHp6m0pLNNXQbBAyikEKVt2ZED1c9K8U83KfSUjVfoCgtqWKYgBgCaRnQi5jSkkJa+lZaZklaqshIig8pik9L06KVv5ZqHt5sn5Z9SWmZhLRMYh5OUVqK7gtE+FBa8hODZistxfu7vm+TuSB1A8XGp6WLeXiWSktqIB6V2lVGACaZXOnIfJ+BeEz3JJxTS0Ja2oxTvKsGCvj6w4/Zso0uKmQLM6p5OBUU83Cq0jIt0jKp0jLpwsPGQoPBh09L8TfZd4rSUva++pt5OP8+VP4tZVBtxvgmLW2IeZPLqGAeHsH3mJ+mT0uWF9u+xIW0TFNpKVMLZqW0bLZ5uOs4wNoz1a+lCFlZ+I4eboKMEGSgmIe7bkzK7qmau8nyKAqifLnF6mcIpRTQi5KN0rKjw11p6TMQj8tOr4oU0pmHy+5po7TUqb6SKi2zIi1tlZaydGu1OJGyYkX9c5ZKS8ozs/u6kJaqPKdpHm7afVW16WaTliJ8kXpZKy3zSFpSlZZdXXJiVrYASKJa0ZFNquezVVpS+s0k5uG6dFTp6RYivOqZAhVp7moerlp85kFpaesOxvb5qYROVj4tTcrPpEpL/npbpSVFdW1LWpZK7qSRLH/U95SmebiYJ2p6aZGWvjb6ZfBlHl4qNU9pmYV5uG2/QNmsoJqM+zIPd1GlZ620lBFiSduxq3m4aKrs0zycMpbKYENaUtfuWSstZXM8Bop5OIVsV+VNhOhSjD/fZB4uIigtSQikZUAvCvyC07RgS6K0bHYgHtW9dKTlhz9cP7bjjvHfZDDtxKlIEP56qtJSZh5Okf/z96JARkjoOmLV++QDXFBIy6yUlrJJkOxc1Xun+LSkBuLxRVry6ahUd/x1e+xR/zxtmjoPW2yhvo8t9t/f/VoetuaNgJx0748+Lbu64hNZ1v/bmoebSEtVPdERDvx77O7OTmk5ZUr9y/jx3A8OPi3FiTvftiZMaLyeb6ujR8d/4/MqKi19kJbsPegIM9W7GjdOfR8fpCX7fsgh8nvIxnAeYln7VlqaNhZNcFFa2vS9fD5MpKXOOoR9N7WjYlE/jvhUWgL0+WCa5uGuSktVv9ZM83C+D5TBp9JS52cvTdKSzeeToJWUlq6kpe0GEuWcJO9VtkYtlWib1SKyUFr6NA9PqrS09WnJ4BKIx9anJSVNX0pLl3Gdv37vvdXni89j8gEbSEsSAmkZIIdpJ4aqtKQGugDyobQUO3N23m9/G5ErJ58MHHusPC88RNJQZ7JANQ+3UVr+8Y90MiiJeTjlnfGo1aK6wzr+Dz6o/9ZM8/BSCfjHP2j3T0JaUpWWusmBasJhmsRSFuRnnQV87GPAoYcCl1+uzoNIhrkuPmfOBL75TbdrRbgoLTffvPFYUp+WprJwVXbo2tquuwJ33dV4nEpadnYC3/9+ROpMnAh873vye6ZBWl5+eVTmFNWiL5+WlE2sHXYAzjkHmD4d+Pvf1fdU5YOHWBf/8hdgn32Az34W+MhHGq+///7ovuefD2y5pTrvPNEhGzMo6OiQ10kdgcjn4dZbgZ13Bn76U32/RXkPJpNfRub+6Edy4rJcjspu660bf9tzT+Bf/9Lnqb0duP56cz5VaIbS0mZ85JW5OtKyowPYZBN93qhKy+OOAz7zGXl+bNSRImRzP+p80Jd5eCsoLZOYh193HbDppurffQbisbXasYGq7D/5SeDEE5OlDfgnLbOIHp4H0jIvSkuTSMA0nqsC8bj4tKSc5+rTkvX/FLdBzVJaUvKlU1ra+LSkgs/bAw8Au+8OfPvb0XrpyCPleTT5tBQRSEsSPHlRDuhzMCn1ZEpLqqllEp+WNmZ3PCjEU7ncSNay+06YANx7rzkNhhEj4t9tlZYysykbn5Ysv2edFS3wdEhiHq6D6n0WClE5L14cP95M8/C5c9WqAippyUOVZ9Vkh79HtaofWFVt06RkUqUpnnPTTdHnZ55R54ESmduEffaJSIS33rK/VgYbdTPDVls1Hkvbp6Vv0rKjA3j8cflvNkrLz342+tPdUzdhBOxJy4cfjsgkHVSk5ZgxwMUXRxtJuvw5Ki0BROm7wKRa22qraPKrwi67AP/+t/w3Vf3zrbTUtR++r5kxI/oD9GMNxaelSWnJ6vMmmwC33w5ceilw9tnx83fbDXjiibgSp1SK6poImdLy+OOBUaOAAw9szLsJSccqW7Wj7T15YkwXdHDCBJqK0mSFwEjJ3/wGWL0auPFG97yLSKK0pBB3SckOQK+0PPVU4PXXgXvuib7n0Tx8t92AF16I2oMMPklLHXxvBgDR/NiXlYfv/GehtLTNk4tgpC/4tGRp8huE1EA8FD/3Ihipp/Mn66q0ZPmhRH6nulPSwYW0pJiHq57VNno4FXx577478Oij9e833ijfZLAlLdNY5/ZBhFIKkEMk3UQkUVpSAi6IUA20vqOHb7RR/DddnnS/NVtpyfJGGciyJi0BuZK3mUpLHbljWpjJkMQ8vFbTD6wqFbRpEmtbvjYmMy4DLitHX4O1SQkge05RxQbI+xTVJoMsoFHWpKWu/KiBeFSmibIy9Km05MuaqrRkeW1vl6sqXEhLX2aOqvR8+pHj8+7DPLy9XV4nXczDdX21D/Nwk8Jb1aeo2ohK2agick0wjdEmmMzDqeSFCjqlJR8UT/RZLLs3RWlpmkslIS3yoLQ0kQe66OGif2BVH5x0fExiHg7o50a+1EGmZ0xDaemTJGiG0lJ2nNLGdPMUXT/VCkrLUsm/0lJGhFLMw3kCTUe0yeBSbjZKS1fS0jYQT6HgPxCPTp1PMQ/n82NDJKugepbg0zIVBNIyQA6K0pJCWiZRWsrUTS67fSJ05uFMBSjLgwhdJyuWn4vSkrrwkvm09EVa8tf7IC3ZACerX1kqLW1IyyyUlvz5JqWlirR0VVpSiRcePpSW7BpfpLSJKEpDaSlLP63Jhypd3f1slJaUtE2kJWWXnAeFtBR9WrK8trXJFyi+zMOTwNfmmgx83n1EDxfNw1VKyyxIS1PwF7E+q/pm6tipWljI1CEU+FbFUTaHfJmH86SZjLR0VVqqrpedb4O0lZaUcrUxDzep1vNoHg40KnJ5ZKW0TDqmysrQ5zjtm7SkKC0BWj9HNQ8vlfRzfBfSMs33SjUPT6q0lBGhtubhSU3xRbiMv4CatKSMzYCdeXihEP1lHYjHxqcldTPRRGrL+jPRoiRN1XE/QiAtA+QwkZYdHbRBLInSUmZG5roYpBBP7BhPCpkGMxkGDmyc6NlGD7cJxJNUaWmK7slgGgxE2CotswzEI747nSLNhbS0VVqK5uEuSkvTxCOvSsusSEvZfYYNa/TdZuPTUpZ+1qSlruzTIC119zNtbOhIqmYqLX2TliYz3yRQER3lslvfpCLoXJSWOsg2KWyVlmI/rapPJgWg6vqkSsukfVkzlZY8KKQl1ael6jdZmjZIOxBPFkpL/ty0AvEk3UDR3d+XQt1U1j6I2zQ3qlpJaalaSxWL+jm+D8GIKU0byALxyEjLZiktefNw2+c0nU/dhBOhIi2pPiZt5jEsj1kH4uHnoFSXdSbYbE4BbqRlGuvcPoiWJS1//vOfY+LEiRgwYAD22GMPPMr7GBDwwgsv4Nhjj8XEiRNRKBRwxRVXZJfRVoVoJi2CqrS0CcSjW0gmJS1FyAZ3ln+q0lL12/Dh5rLhf1ftAlMX1mmahychLWX3ZnnNm3m4rB6x+1ImhqprRah84fhQWprIGVulpa79+1Ba+iYtTRNLFakrLtBdlZZ5NA/XqWR4UElLmZKRRxLzcBVE0tKktKT0my4bEQwu0cOzUlq69E1JA/Ho0jb9Zhonxe9pm4enpbR0VXT49mnJk5a6xdukSeb7UJSWps2evmgervrdpLTMKnq4zw0UX0pL36SfDGluVLmSTCpQlZYUqwIbpaVu/HZRWpqQhPQeMqTxeBpKS1matj4tbZ/TlGeXOTtQf78U0jKp0lJVz1TWOmkoLUVi29WFjqlcZfNQkbQ0tZdAWpLQkqTlDTfcgFmzZuGCCy7Ak08+ialTp2LGjBlYLAb26MG6deuw5ZZb4pJLLsGYMWMyzm2LoqNDr9KhKi1tzMNdlJau5uG6wZ1XmfLRrVXni5CRlmkqLXXm4ZTJEtUE3tY8XAcbpaVvFZRtmlmYh/P3cPVp6Vtp2R/Mw0ulxgV62kpL36SlqwsLHirS0tanpa15uIvS0od5eNZKy7R8WroE4qEqLV1IS5v7yo6ZSDDf5uG+lZYquPq0NClPAbu6y+dDVyd9+bRMU2lpsyEuIivzcB6y+ZxKNe16D8r1PvuirMzDfcBl85mKVlRayo77Ng83wfW9l0rRhqys//ettHQ1D6/V6uOzbV1LS2nJ4Kq0tOk7VPN7pnpW1cukgXh0pGVabl9MSstSyW+/24/RktHDf/SjH+G0007DyT1RQ6+++mr861//wrXXXotzzjmn4fzdd98du+++OwBIf5dhw4YN2LBhQ+/3VatWAQC6urrQpZpctDC6urrAN6nuUgmlwYNRWL1afn6hgFKhEGO9K4UCqpKyEZtqpViUnodKJXZuDQBr9tVCAZWuLqBajZ2jTEtAqVbrzWutJz1xGGH3KA0dWj931Sp0K9IvVKvSBlQdPhxV4bfuQiH+vVpFjaUrPDcAVEslQCjfLsl5ANDd1YVaVxdKXV2953dVq0BXF4rVasNzNlwP1PMioFwq1d9Bd3f0DgSoumLWTmLvq1JBtasLxY02ashXpVSSvssy6vUAAGrFIgrcwOTSHgu1Wux9yPLa3d2NWlcXCpVK/N0J18rQxfve41AqFmPvtFosotLz3nrLo1ZDta1NuaPU1dYmTVt8JkCoZ8Wi9F11dXfLB2VFfQOi9h/Lg+ZcFdizi9c6969C39BVq8XyKL5HIGpTxS22iNXFarncUPasPQHqdt/VQ6jF3qUErL1aQ3g+hlqxqO6jurtJg3yts1OehnDPWqGAbkU+AKBaqUj7iF6I7xroLVexr+qtB7Va/Zprrqnfq60NVaChXy0VCrH+oosnOntQQnzHlm8nXcJ/EXx/VKlW5X2WkAdV3+YErgyrnZ29z1EtFFAl9E21YhEFbnFabW9HYe3aej9fq0XvsFCIvasq13fVCgVpfRH7ah6sT4yNxcVi/F0JaYp9WmXAgFg5Fmu1eJ3h2mm5UEChZwFUK5Wk+RXbam+/Jjx7d6VCa7Pd3dK+TFsuuucR0ov154p7qiDO8cT5Wizf48Y1tBkxb5Weso0dE+ZVvX08GtscAFQQ9acu1EW1VGroa8rlsrKceXQXCub3SRjTKrVaQ7vm2z7fH4p1rYKoTrBn7163Ttp2ZfewQUOdAnrfren5ZPMiHt21mtNY1jCn6qnX5QEDUFi/XpmPJCiLfY1kXHCFuBYSoZoPKiH0P12KSNLiM8n6h4Y+tGfMEucxtR6fliw9cZ5dFeeupZKx3fJrOBn4/loGVb2rlUro7u5GedAgFNau7T3eXauhKOSTUvbieM2ju1pFSehX+H5Nl9daVxcK0M/RpPkR3qsI1TPpnqP32q4uFNvbY31CTXi+rq4ueX9dLjf2d7Wa9J41oPeZY+NOT39WbmuLzUPYM5nmrF2VinJdW3vjDRROOqn+fciQ+NqxoyP2HsjzY8V8h0Ecd7p7xjR+ntMNaNc5Yl74301z0laHzXO1HGnZ2dmJJ554Aueee27vsWKxiIMPPhgPP/ywt/tcfPHFuPDCCxuO33777RhEjcjaYjhg0iQMf/NNAMD9S5dieq0Gldby9jlzsPuKFRjFHXv+pZfw1uzZ8RNrNRzFLR4A4I158/CieB6AttWrMZP7Xq1Uejum5StX4sHZs9GxYgUO4855bu5cvC1JS8QeixeDaWzXrlmDRfPnYyvhnHcXL8YTs2dj2urVmNBzrLBmDWYr0t/0mWewt+T44s5OvPvcc9iFO/bEM89gDz7fzz+PeT3pDlyyBIeKaSxdivK6dRjJHbvl1lsxY+hQdPQQ6AwPPfggVixdij0WLux9xjvuvhtdQ4diuzfewNbS3HN5efHF3ryImLbHHphw110AgKcHD8Z8yXkfVaTLyo3//cUXX8Qbs2dj8uLF+JBw/rNz50rzsf/q1eC0r6i0taHMbSio3o8OW7zwAnaW5PXQTTbBwGXLAAB3v/IKPlixAps89xz25c599IknMHHPPTH2kUeU6d//4INYvWBBw/FdlizBeO77gsWL8eTs2dhx/nxs2XOsVqng7ffeg8RAL8rrLbdIj49/9tlYnQOAh//9byzvqS+DFyzAwZLrbrn11mjCKmDg4sUN9bL3mjvvjF0zYPlyzFCcq8KipUvx6OzZ6Fi5MtamXd4nALStWRPrP2bfemvs9+GvvooDhGtuue02jN+wIVYX3lqzpvddMNx1zz3Y0KPAHvfss9hNcv975szBB3PnYts338Q2mnw+9dRTeNdhDCl98AGOlBzf0NWF2xRlNnDRIuU75PHadttJ++SO5ctj76aruxt33HknjlCks2LpUjygeX+D33svVgfvuu8+bOhRDm/7xhuxcmP1QFVvl69ejVeefDLWBz/z3HOYsm4deBf99z3wANa89Vbs2t0WLcI47vvTzz2HBUK+77jjDukzHMlNmOfNm4dnJc974Pr14Pf45772Gl53rNciNpo/Hwf2fH5/6dLevnHee+9h+fPPN/QBALBkhx2w6fPPAwDe2203jOXmSktWrkTH++9jeM/35cuX48HZs4FaLdZ3L1m+HKN7Pq/fsAG3S57noHXrIDHaAwDccddd6BoyBPutXIkRPcfWCueLbX+zZ57BdO77i2+/jTe4cya++CKmcr/fdtddqPSolP6Dm3d0dnfjVkl+d5o3L9bP3n7vvegeMgRtq1bF+pKHHn4YK5YvVzxZHUPfeAMfkTzPwevWKedS/DNPfu212Lg4e/bs2Dt49IknsEQgMIbMn4+DDPlaP2wYbhPSev3ttzGXuzf/2+wnnmjYyBLL+rnnn8fghQsxhTs27513YuW5YtWq3v5g6oIFmCjka+6rr2IkNzezweIVK/Bv4Z1+eN06DCNc+8Cjj+L9pUu15/DtTIUXXn4Zbwp5OKyzE0wnt2DBAjzZ8/vkV16Jvdu33n4bg5YuxWY935994glp233rrbfwfIK+Y8orr2B77vvsO+7oVQap5m6950rmcDweefxxLOPmYlRs/swz2JX7/sxzz+Gd2bMxdb/9MFHS77rOCXgcgfiC94GHHsKqd99NnC7QOJ6IuPf++7H29dfJ6Q1Ytiw2n1I9/+HVKnjt2BNPP42Fgopu+CuvxOY9z73wAt6ePRubPP98bF7bXamg+sEHvXW3Wi6jxLksWPb++xg4diyG9JTZ221tyjkqw5q1ayHxPNmLe++/H2vfeEP5u7h2ZKggKpMZ5TL4p33mhRewybvvxvqZe++/H2tfe02bzwPWrOkd/0Q8+cwz+NCGDbH++90lS/AE905KGzZI52YfvP8+BiEiZ2+xqMOHdXdDF2v61ttvR1Wi3DsS+g1zICq3LV59NTbn7axWY/ebPXs2dlm4MLZWAYC3FyzAc8JzHKEg/mrd3dL+47nnn8fbs2c3tMf7HngAa95+G8OXL++tr6u22AJD582LpXv3nDkY9/LL2EFyT7GuLO7o6J2zAMCGQiE2V6auW7q5Z5HhMKH8HnjoIeywYkXv+r27WsUDjzwinRswjHzuOeyj+R1Qz0lbHevWraOfXGsxLFiwoAag9tBDD8WOf/3rX69Nnz7deP2ECRNqP/7xj43nrV+/vvb+++/3/s2fP78GoLZ06dJaZ2dnn/tbu3Zt7Y6rrqp1z5hR677wwlpnZ2etusMOtVok1m7461y5slY55JDYsa5f/EKadrW9PXZe97nnyvOxeHHsPP66yv77R+e88078ntdcQ3q+yhFH1NPdaqta95e/3PBMlU98otbZ2Vnr/upX48+qSLPr9tulZVP5xCdqXddeG8/n3/+uzvcbbzSmcdRRtcr++8fzsX59rfPJJ2uVGTNq1UKhnta990bPeOih9XMXL46e5ZxzlO+w9/pf/1pddosW1SrHHVfr/uxno/tLzlHWEcnv3ZdfHuXr5z9vzMe118rf3W67xevFxhuT3o/ur+tXv5Kn8fTTtcqMGbXuH/ygfu5dd8Xzedtttc533qlVPvaxWnXyZPmzP/mk/FlOPDH+nk88MSqPL36x/nylkrR+GuujUOf4utHZ2VnrfPVVeXqK99r5+uvS86uFQq1zw4b4ufPmGeuZrI7L2rRzP7ZsmTadrocfbnz2DRuivuzjH69Vt922VvnYx2pdDz3UeN6CBfV0/u//5OX46qvRuzz/fH17+8Mf3J7v/ffl72PsWO113ZdcEtXpyy6rVQ48sPE9HH98rXPZMvn1wrupjhhR61y+XP1O99pL/wxz58bL7L336vk87zz5+xOu6b3XQQfVuu64I162v/tdw7jV+fzzje3wuOOU72Tt2rW1m2++ubZ27VrpM1Tb2ur92ec/Lz9n++3j/d5Pf+per8W/Z5+tv4+pU+v3OO20WtdvfiOvc3/6U63ymc9EY9xTTzW0w+q0afXvbKztjPfdlcMPr993/Hj5c0+Zou63esakyp571tPZZht9m73ppvhzCHOM7p/+NH796tXS91TddFN52/jCF+LXr1wp7Uu67r+f9m4ee0z6PNWJE9XlIrRV8bdYPm67rfGezz0n7xfGjYva/IwZveNRrE7+93/Hy/r222uVAw+sdf3v/8rL6mc/i+fl6qtr3V//ejxNoTwr++5bv/600xry2H3ppbXKzJnKstH9dX/2s43tetddSdeqxufY3zPPxMuTm3P1lsGf/9zYBkaOrD//CSfUn//SS+P5//KXa5WjjoqVp/Q5v/zlRP1F93e+o6xvxnIynNd1991OeRL7qd46t2RJQ98s6xdc/qpDhtjXAeJf5eMfj9eVcjl+rxdftEtzwQLS81dHjIiX4403Np73yCPxc375y+gd3HNPPM8jRsTSqw4bFm/Ln/pUrfO552qVww6rdX/ve7XuH/7QWH/E/r3hvc6dq39nkjZXA2rVoUOj3ydNij/bHXfUuj//eat7dHZ2xsa/hjr+pz81jGuVT30qnsbatfJ8jh4d/VeMP8r8jBqlL7c1a+TX8WPejjs21EtWl8T2Vx07tuEcca1SA2rdX/lK4z0HDpQ/e6Eg7T+6rroquo7rJ2tArfPZZ+t91re+VavMnCkd2zrnzWvoS/nn7n1H06fXun796/ix3Xdv7B97xsjuyy+Xzo/5+kZ9X53//netst9+sbYkjicNfaIwl+V/M81JW/1v6dKlNQC1999/38jNtZzSMit0dHSgQxK4oq2tDW191DfB2s02Q/Uf/0BbW1u0WyNzdNyDtoEDG/xglDs61H6GuB27UkcHSrLzhB1Cfp+/WCqh2NbW4OulPGCAtVP1AiC9f7G9PbrHiBGx48r3rfCLVBwxAkXht7LwbOW2tnq+JekU29oa/GS0tbcDO+8M3HorcNZZwI9+FKXF/GVwphxt7F0Q/M4o3xsAjBoF/PnPAMw7eCJk5VYqlaKyFyM2AygPGiTPh1AOBaG8fLTH3jSmTo3KF9zzCumXOzqAceOAm24CZs8GjmjUnbWpylTIe2+d499TtYqSJrKr8nklx8vt7fXjCh+1be3tcvNwRR4KbW3RNTx0gYMUKLa1Rc/u630K+W1IR9LO2trbo+M33ACgx1zv7bcbz+Pfp6Ld955j8JdWdvVvU6tJDxeKRX2ZnX129AdE/cbmmwNMBbzDDihef73azEvskwsFtGnqZrFWi96pCkI9aePbvNjfseOK+xXb21EU+9X29sZ0ZG1RHLv4dsLd31QXS8WifCwT8lAaPFh+ngu4+lXgVHclTd0rDx4M/OY3AICioFwQy7BYKEjfYZF7pkKhIC8bjS+uNlbGXF9TUL1zBnG8Hzo0/p7EdzZgQDyCOHPpUCrJ8yvUg7YhQ6LrhLlPbLzWwaEva9M9j2zsIfRrQPTMpbPOAs46S9q+G+ZhhxwCHHKIui8Q81IuN9xbrOPFcrlel2TzAVlARyJKW27Z2KaIbaxNNdfgIdS9Qns7IKgKy5Mna9OJtSXhvJLgK6+sCILSO2dyhaFO6S/Vn0uefxvy1Nv/jhwZzTd/8AOAc+XlZc0l1LM217zLIKRTKJdj/obbJOOLFkL/o3x+4Zmk/YPYh7K+TGi7hWIxlueCcF1xyy1R3GEHgFn6EALaFgy+AJXz5HoC0nlPb38uWKyUJ09u7INN9wC0Pidlc4PeeXvvSfJ1VqFn3WucozVcSCg32T150+fRo1G44QZgp52A88+vX9vW1lC/CuI4KFlrA4q1u2peWqtJn7lcLkflKc7X+ffUY+ValLkjGziwsb21t8fN5QsFFO+7D8U774ydV5w0qXFu0zNGAgBmzZKWvXK+U3+oxmfhOYdSKco3f45hTiq7X1/ln2yeqeUC8YwcORKlUgmLFi2KHV+0aFEIsuMbukA8skAxKoJMnFQTB2Dpbz4C8QB6h9V8IB7bNIBsAvGIgVuAuANiX4F40oJNIJ40HMlL/CYpoQvEY+sQWzVQ8Qv5Wk1NAurapCkQj6/o4ZZkhRK+o4fbOsOnOrcX004aiMcVLtHDZeDLwdR/ygLx6O6XJHq4qh6o8ijblJFFlpTlN0n0cArE9DRErzVcAvHw18iih/Og9AdpRQ8X4RqIR0zbNpCFbrxOE6Z6SAkqZTrOYDuOmqJfy84x9ZtJArDIIpxTn4kSiEfMm2z8lAUsoga2a1YgHp9IK3p4FsEXfd7D17qEgRrh3Xf0cD4Qjzhmie3NR6Aq1wBG7Dp+PCgWow3ZZkQPV92DiXV8B+KhPBN7f7J7UwLx2ATRtQHLu5gHaj9VLpuDCY4dKw8mLBszfMA0NhYKIRCPJ7Qcadne3o5dd90Vd/X42QOAarWKu+66C3vttVcTc9YHoSJI2GSLGk3OsKPQC0oUXBMZSEGtph/cVdGZVeeLGD7cTLSZFlQy0lJ1PSMtZdHDKQNB0gmWy+RPVsbU6NbUCZ0OuqjwInQLM9vFu1jW7Lsqiq0InS9E06LQttxU79UUXZsKG2LdJj0VqNFDTeRKUtJSsTNthCs5oTvflFdKxGAetqSlbfRwHirSMsvo4dQ8p0Va8kSHK2nZ3h6vk5Q+zYW0lEUTTUpa6jb2XEhLWTqy7yqozuPLlzLPUcEmArepbduO+7KyNkUPN/U1STYLZIQhdT5oaZ0DoJG0HD5cPo+hbgKKC1vOGomUHhU+xlfXOqaCaQOx1UhL01pIF5VbBupcjTKnkY3hsuPFYnz8Fscssb35IMNdyTkZaTlyZFTuaUQPp65hRaRFWlKeib0/WV4ppCXBUgyA/XyW5V3MA2VzGZCvjcV8sboqzhdkY4YPyOqcOBcxjTlZbYy2OFrSPHzWrFk46aSTsNtuu2H69Om44oorsHbt2t5o4p/+9Kcxbtw4XHzxxQCi4D0vvvhi7+cFCxbg6aefxpAhQzB58uSmPUfuoSJIVESLb6Ul3xkmJS1FZaJucB82jJamauCQKS11u3+yzqpU0g9M/DVsouFKWiZVGbW1NZhNKcHeqUzNSq0XSUlWIJnSkqI4oqoUVW1JpYrUuGwwkm2yCYeufujIIt19qJCRGEnQbKWlSsHgC4WC3FzK9n58ObQyablypT+lpe9FspieT9KSzztPdOg2ukxKSwppqcoD5bjqN1O5i+9XnJNQN/ao5KQKPs8rl9UkhovS0nYM4vNhA1m7MinmTP2mb9KS+kyUeaNJkUxZAOvIatafM+RZaTlwIMBFae6FL6VlM0hLn+O0b9KS+vyUclOdI2ur/PitIoIYfNQr13fAype3NBg1Kv4bQxZKSxVYm04yR3P5HUiHtMxaaakiLU2ioDySlj7WrQGtSVoef/zxWLJkCb71rW9h4cKFmDZtGm699VaMHh3FiZo3bx6KXCf07rvvYuedd+79ftlll+Gyyy7DAQccgDlz5mSd/daBSmnJ+4ySHRdB9TtEUSBQ7ymCYg7I0ho6tPE3GVT5HTTITK4mVVrKzMNbgbRkaLZ5uI3SUld3bBfvVNJStdOuMw83TVhl5UZRRonwrbT0RVqa0qEujEzl2CylJUtbiB6caIFnS1rKiAoetqRlkv7p3XfdScs0F7Cy9PJsHk5V9fDv1qXNUhclPGzNw1XXJnWt4FMFoRsvbdsj0FylpemepneQpO/adNPGY2mah5vMZRnyprT0UXcHDJCTlr76zVZXWprm+7akJRUmpbPsmEoAUizG8ymS9JtvHv/uUq/a2+P1PKnScvHi+jHWH+SJtKSk7+N8GZKSlrI+0ofSktWxJEpL0xyG9c3iJmeW5uGiOCCYh3tBS5KWAHDGGWfgjDPOkP4mEpETJ05ELclCsb/CRFpSFXBUaT1FNeGqtKTci3U8G21ES0M1YZM5l9f5QHFRWvK/yUhLGxVb0omnjdkxy6tMzapKJ29KSxvVnQiqebhKaakzDzcpmQqFxkmjC2mZV5+WJiRRWvYl0lLm+1YF1QJA9H8lS1sG6kYMD1UeFyzwR1ralCHl/bWyebgKtibklN9sSTqTebjqN9t+WoRP83DdeGl6D5S6bDrOYDuOJvGfRz3fBrKyztI83IfSkkJaJiUwfBAgQhCJXrSy0tLnPUxiCtO46ArKM9n4tOTzKdZ3FzJQ7M8GD47X86Q+LZcsqR9TKS0p79mWtEzad5rgSx0NpK+0tK3b7P27Ki1la2OqefgWW5CzacwHDx9Ky2AeTkIKI0NAn4EvpSXVPJxCoPgisHQ7klTSUkfqmPLpU2kpmodTSDUePpSWtujoaJwIU+uFb9LSRLrqVFm+lJZU9VOSQDwAPegG0Hrm4dT7Mdj4tKS0qaxIS8oxHfhJpqktqdRVqnumQVqq8rhqVeNvMuKOsoPve5GcJmmpMil1JS2pfYKtCbkuD9R0+gppyUPX5kyKrLwpLU2uKtJUWspAfSbKRqsP83AeJqXl979Py4ctfBIgIlqZtMyzeTgVlGeikpai0tJmY18FGWkpy4stWN6XL68fS8s8vFRKrrT07dOSgrwG4mFzForSUkSp1OhWA6CTlqp+LClMSksKaRlAQiAtA9Tw5dOSah6ug0+lpcmn5Wab1Y/pJqaqgWiHHcwmzWKHJiKJeTiFVBPvlQQ9vmStMWJE/LtqIUElvW1w0EH1z5/9rP5cndKSGjyIIal5+Mc/Lj8uS4OSblrm4ZQ6xcoxjQWKDGkrLVWLARG+Scs0lZbiOawMVfdMQlrut1/98wknyO/P45RT5G430lZannZa/TPfj+jSy0JpSfVpKesTslRaysYuFcR+xLd5uG+flmPG1D9PmFD//KlP1T8ffbT6elFFLcKG+JWdO3Nm/fNuu+nvZUpPRlrqSBSVCuw//qP+nWq1cfDB8uNZKi1tzcNNSksVmkVa8vPgE0+Un+NK/JncNaUxJxDrls97yOY/W29d/z5unL978dC5nWKQ1TvZueI4wK19qtOnN6ZLqVd7713/fNxxcRPzQYP0lkO6e7Bxgbe2ZP1IHpWWtnXNJ2m5++71Y4cdFv2nCEaox/j5UI+LPi1UpCVFaalaL40dG79m222jz/xzUudgM2bQzpPli0FGWvL9jyw2wZZb1j/vuKN9HvoJAvUboIZpd9XVpyW1w/cZiEdMV0daDh4MXH89cPPNwPnnq9ORpXHVVcDkycDcufHjuoHUxTzcJ2mZdMf5m98EVq8Gfv5z87n8O50wITLxZFC9S9GXjo8dq2OOAc47D1i6VK1wYNBNsMePl1+jendJzMO/9rX4BMGUT0q6VKUSD4rS8rjjokn7Y48Bt9wiTycN8/DZs4Hf/haYNcucRyppOXAgjbQ0EXo+4IO0pEYy5s9hfYuJmE1CWh5wAHDxxcCrrwI/+IE+j1tvDXz3u40KFlfS0qYPvPji6DlHj1YTUH1Fafnoo8Dll0ekBd+/m9qAzW9/+xtw3XXAN77R+Jv4PL4D8fhWWo4YAfzv/wK33gpccEH9+HnnRcrgwYOBY48F/ud/5NebSMukSstrrgHOPRfYeefozwayduVDaXnKKcDrrwPr1kVqqW99S52HAw+MCKBLL5X/Tt0sc1FfJTUPNyktVUg6PrqMRyecEJ/7fuMb0VzpD38Ali2rH28lpeX48cBbb6VzD9la6O9/B7797YhgZypAG9x7b9Tnfv7z6nNEN0tJlJZbbBFft0yahMqVV+Ldm27CmGuvbVQ4UerlfvtFBNLLLwOXXBKN7d//ftTWTz3VPC6aNgAuuCDytTp5MnDIIdGxPPq0bIZ5OCvbadOAK64AnnqqvtZxNQ+XrUsuvjiah222WdQ3/Oxn+nyxOYvIL9gIbMRzv/vd6JlWrACOP76+SVAoADfdBPzxj9G4R8FvfgP8939H6wgqqObhN94I/PnP8rxsvnk0Pt9zD3DRRfR79zME0jJADdWAklb0cB1UpKVrIB6VupHh+OOjPx3EgegXv6hPMEzkalKlJf9bs0nLQYOigWrzzekDAxBN+h96qP5dVS9ERYOvCHbf/S7tXB3BMW6c3L+fb6Xlj38MfOUrdvmU5cNGaanz2Wq6d6kEXHhhREqLpLN4jU/S8vDDoz8ZTOoO1Xmiust0XZpKS4qSwgRZwC4dyuW6H6Kk5uGmd33OOY3HZPf6wx8iVduiRfHjxWL65uHDhgFXX60/R8yDT7MkPq/UQDw6H8o6ddvuu0cbeEB8MeLSZlXXHHVU9CeD+Dy6cVSEzUaDCTbPe+KJjcq0QYOAn/40+vz00+prXZSWNoTsZpvZLcZ4qBRbunNM74DVWbZJ8eMf6/Pw3/+tVjcDtLkBVc3pSlrmTWnpguuui3/v6ACuvBLYdVfgpJPqx30pLbMgLSdNAu6/v/49bfPwyZOB3//ePc3994/+dBADWlLmByrSUqzPxSKqp5+OJydMwEzZ5jy1XvKbUZtuCvzzn7TrdPdgeR85Erj22vhvLkpL0zy4lc3DAeDMM9W/AXTzcBlpOWwY8MtfRp9lYgERtubhvKJfRVruvDPw17/Kr//Yx6I/KjbbLCIuFy1SCy5EyPp2Po/s92OOif5UOOWU6C9AiRQlIQEtDxNp2QylpcnsWgUKYZF0YOHzYiItKZN5qtJS59MyC9KSgTLQKsxPAKgXE+J5WfsG0dWdclnu3Nm30pLyjnz7tEyitFQ9F480lJY6uCotqeoukwrRB2SEp+0E18anJWBnHu4SSMQE2TWsDjYjEA8FYnppmYfz0I0ZJqWlrXm4CpT+xKa9m9oSpX/RpUP1NeczkKPumVyUljbm4UmQhtKSOodkMLUjynzQdc4ojp0U3+d5UFqa6pQNXEUDtummQVpKSDlvsK3HviCSljZKS/H5RXGAqe/NYt5G3QDgYbOxxWCrtLR9v7Zt0DdpKcIUZAmQ95OmDR9K32oTiEc8rlpXpFEXbdI0EeVpWl/1M4SSDFBDFcG4mUpLEa6qOx+kpXg+/5ymstEpX9j5VNJSp7SkdJZpTTxNECeRqneZZ9ISkCsubJWWJvUT5ZkppKUPn5YU0pKVka5NZU1auvq0pDqPz0JpKbvWtvxczMPFe7mSQC6Tt0JBrbhzJS2pqltXZGUezqNcdjMPp/YJOgKGApd2bhsoSvWb6jzqYpI3w0+KJKSljdLSd78qWyjakJaUvJvet0mxTBknXZWW/PeRI2lp8GiW0tInaanyMZc0nVYnLdMic01IWWmpBaVepuWPVdeHZuHT0nbdybvBosCnebgMFBKWqrQ0pSPCRWkppi+WT9qkpSl9WRvjxQGBtPSGUJIBaphIS5Ppluq4T9LSZXJQq/kxs9Q9v0kRajIPNykt82QeLssTBeLOrmoxkYZ5uA105uFAOqSli9KSsii0UVqqfqMs+mxIy6wGdF/m4XkjLW3TSxKIR6XSkKUtg+u7Vm0QyRYoFPPwtBfJYh5Mk30b6JSWrj4tKUF2fAXiUaUpQxK1D4W0pJKRTB3iA7q65tOnZdqkJUVpyV9D2Sg2ve8slZbi8/KuKFS+rAG68rUvKC1bzTycR9rm4Vlg4431+ZAdU81T0iAtk0K3QadCHqOHr1hhd37aSksRWSotbQLxiKBYcPmCzT1k81B+Az+Qlt4QSjJADV8+LX2ah5vSpkI2uCeNCKdTWupIy6RKy7yYh9umQ1Va8lEsgfwpLWVRRKkkO9WnZTOUlipQ2hyFtHQxF00C6sIobaVlEshIHhNRqDuf6tOSgT2jaiGchnk44F9pmbV5uM867ts8XIwamxZpaXMOQ9rm4WIgIxV8kpa6+7golan9WFK4+LT0rbT0QVq6+kGfP7/+WUda8tCp2kW/Z9R82CKP5uF9TWmZF/Nwn0pLH/OYtOZ2zVZapv1+syYtZfejBuIxXSOmn4bSMg0kNQ+3nWcHkBBIywA1fPm0TNM83HUCmoZ5uM6npS6fsmezIS3ZINBs0pIy0PKTeHHir6oXzZoQMmRhHm5SRFKe2bfSUgWK0pIyuehr5uGqxYAI30rLJKSlq09LFYmTltJSzKdOaZlH83Cf0JnMuSotKeDfbVZt1tRWqMpOitJSNy/JirR0MQ9PQiDbwEVpaevTMqnSktKfUecP4vO+8079s8yPNUNfVlr66jdN6aRBWooBAfuieXgSn5ZihPO+Yh6ehk/LtK298kBayub5prk/hQPw4dMyi/mHzTswmYdnNV/qBwikZYAavnxa+jAPVw1SLmllYR5uY0aT1Dz8mGOAl15qDdKSh1i/qL6mVq+2u09SuJCWVGUwVWlJeUd5VFrqSIesSUtXpSU1EE9/MA9nz6gyq00aPZySB6BeB2XvNI/m4T6h28Bz9WlpW4d8EWWm+27YoP+durGnOo8ndHREQ158WubJPJzi09Jkom+7IemDtKS2TV3d8qW0bDXSMiulZRpwUeBR0YpKS5M1QBLXHL6QB5+WMvPwvqa0lJWnT/Nw/rgPpWUW/UVSpWVSH+ABUoSSDFBj223lx5MqLV06/KTm4WkoLW3Mw8X7m0ztbJSWAHD66W6BeIrFxh1WV7h0zLzpt+5dHn54/fPnPlf/fNpp9ve0hYmAFnfwAbovHqpPy7SUli7vzIa05Am/LbeU35vPw5gx9vmhQixj1aTO1aelziT+qKPqn/fcU51HE3woLZME4mHP7kpa8mmNHWu+t+w6oF4HZYtfF6Vl2ubhPqFbyFGIeFf1NcU8/JRT6p+3205+js1igB8fdt+98XdqOavqOU/oiP0aP+bssAPtPhRsumn984c+FP/tiCPqn7/2tcZrbczDW0Fp6ds83NbdhQ5i+X3+8/XPM2eqr/viF+ufP/7x+uc8Ki0//Wm7tNLqN7Na1I8bV//sUy2nEzCkiSSkJT+v2Xrr6D8/tz74YP29s1BaqpClT8tisXGOT920YNh/f7vzfZRbM8zDVe/lq1+tfz766Oh/X1daBp+WqSBjO8uAlsKoUcCNNwLf/Cbw4ov142kqLR99FLj2WuDUU4Hp0+vHk5qH86jV0jcPN3WqpgWgztRPds199wFDhkSf+YFFt7hctiyaVPOLqCRw6ZjvuQe44grg2GP1Zfbb3wLf/360cP3oR4H/+R/glVeA885zzS0dJsJbNpAnNQ93UVpSonrbKi3vuw+47jrg6qvVacjA8tveDtx6K/D3vwOzZgGTJzeeUygAd94J3HQTcOaZ5rRdIZaFysTPxTy8VKqXi+xd/fKX0bPvtJOazKEgLz4tVQo5inn4HXdE7/orXzHfm0HMp6oOyogAClmSpnm477R1pHmaSkuKudPnPheNK8ViFOlZRrzZYNgw4Oabo/7h619v/J26eKGYh4tzid/8Brj4YmCPPYAJE2j3oWDQIOBf/wJmzwbOOiv+20EHAT/5CfDuu8D55zdeK3u/zTIPpygtTRuoBvPwarGIIl/vTItm200YHcT8XnRRtNDeeWc9iT1rFvDBB8BGGwHHHae+L1VpmXTBqyMtf/zjaP73xz9Gdc42L651zER+JrFG0OGee6JnPvrodM3DxTlDWqAE4hHLmn3v6AD++c+oH2L99CWXAEOHRnOVPfbQK8ybaR6u6wfS8Gl5+unRuPbGG8B++wF7721Ok2GffaI1rQ1U+fn854GTTqKlMXAg/X6ycnYxD1et7c85JyLxNt4YOPLI6FhfV1qG6OGpIJCWAXocc0zU0Rx4YP0Y65ioSkubQDy7715XVOQ9EI9uIW3qpMRJmdjJ2SotC4W6rxA+H6qO95pr9PlzAaVjFp97m22Aq64yXzdqVERuMmShsGQwkZaygZxKsvv0aSk7x1VVxbDfftEfT1raBjuYMSP6E8GX40EHRX9pQnxWWQAl2XkU0nLQIL15+KhRwOWX0/KpQ158WlLSVuHgg80qDhFUn1Iy83CK24Q0zcOpbi+o8E1a+lRalsvAt74Vff7JT+Tn2OKjH43+ZNC9N8r8QefTcvTo+JjjEzNnqtV6X/qS+rpmKi0pbhc8Ky2r5TKKvD9RE+FIaceupOWmm0aElwkdHRHBaUovD0rLESOAyy6L6v4ll5jT8tVPNou0nDIF+MUv/Kcr1inRpUxaoCgtRfDnHHFEXN09fDhw6aW0ezfTPFw3pqYRPXyTTWhtX4bf/hbYaiu7a1T5oayVGGyUlrJ5m89APAMHAt/9bvyYS/RwlYVNGgiBeHKJQP8GmKGaWFKVlmkG4nE1D6dMuE2w8Wlpgpg/E2kpm+Qx/18UpWUa6Ku7SSZVlqwO+lZaUsilNJSWMtgoLXXIur6I95P5IgUay4Ti05InNl0VNRTkxaclJW2fEPOgI+dciIA0zcN9k5Y6wtBVaUkBhbRU3ZOSZppwIS3zCBuflr7horTUuSWQnS98r9luJKdJWiZFHnxaquq4KWq9r7yo0mn1uaP4brNSWlIC8YhIi3h2Pcfl+qyVlkngQmBnbR4u8x3tMxCPDKIS1EZp2Qrm4UFpmQpCSQaYoSInXZWWPklL184gDZ+WNqSlTGkp5sVGaVmt1tOkKC3TAKX8slqk+oRJaUkhC1XnUpWWrubhrqoq2/uI8Gmm5wtUpaUIitJSR1r6fM5mmIfb+MjNgrRsa1PXWyppmbZ5eJpkmE5pSZn4y/oESr9sS1qqytTnmKTLN38fik/LrIJnJIHs/TbLPLxY9B89XFRa2rYdn+NOFub1WZOWqjpOJS3TIrzEd9Jq88RmmYcnVVomgevmlw/4VlrqzklaXi51wcc7siEtZW4AfCotZaAqLfm+qVnm4aY6JKtzwadlKgglGWCGb6Wlz0A8LhO6tHxa2piHi7BVWurADyxZdpZZEqRZwqQKkE2gkgbisXGpoDsnDaVlq5KWVKWliDyRljJSMMtAPHlQWurqnytp6bufTJO01AXi8aG0pJiHZ7k41oFa31TP1JeVlq3g05JgHt4L04JZdQ8R1Pln2krLZpiHq56dP0d3v6yUlq1GWjZLaemyuZ2W1Uca/acPpaWPQDxJ4FIXslZa8i44GFyih9vMdak+LWWkZVBa9luEkgwwo1lKS9tFkg58J1erydNL6tPSNRAPYK+0XLpU/VuzlJZ9FaYJtk1wBKrS0kUJRlF8+lBaUnbUXaOdpwnxWbMiLX0quHyYh/OwXeQ3i7Tk86Crf8Uira2kbZ7ILwJawaclRUXpS2mpStMF1OsppGVQWurh4tOSP4eyUSwG4kmDtGyWeXizlJZ8HVc9O08M6MonrTG71Rf1zfJpKSKL+sRAIS3TMg+3UVom3WBLuunsU6Rjg6SkpYt5uE2+W0lpaULwaZkZWnykCMgESZWWPszD056Aq47poFOxJTUPNykt335b/VuzfFpS0Go76ID5XRYKjYN5UvNwEUFpmRxiWYwcSbuOGoiHIe/m4TxsF/lBaUkDvwjIg3m4SWlpS1pSkCelpQp9QWnZLPPwrJWWvnwp58U8vFjMxi+grXm4bq6Rlmlxqystm2UeLqKZSksbi6OkaCWlpQt83JOyycNAUVpSrP/SUFqKeQBaLxBPq2/K5AihJAPMoCotVR2WD/Nw3zt2PkhLnUmvLWlpax6uIy2D0tIvbKLama6hRg8X4UtpmadAPM3efaQ+e9JAPH2JtDQtJrMgLU1KSxe1SSv5tPQdiIe6uLG1fMiifSetb5QgJXmCzeKnGaSlzkKAoswUA/Hw37M2D/eNZgXi4QlJVR3n24Gu3QbzcDmaZR4uglJufcE83EZpSUHeSEsf7cwm3xSlpa/+l8ElenheSctgHp4ZQkkGmEFVWlLVZUkHtxEj9PeT4eST65/POYc2gbZFkujhtubhZ56p/s2ktJw2zSpriXHWWfXPM2dme28fcCEtbZWWBx3Ue6jyuc81Xucrerg48XAZTFtVackvJPbay+06IH+kZZIFnq2Zr4wk4vvWCy5wzws1DyalpYvapJV8WgLy9zZxortPyzQC8ajK9AtfqH/WjWMUJCU3vvQlf3lJCzvtVP9s05dkoRT8+Mfr3y+8MLl5uG6coyya0xp3tt7a/hoRsvLLgrT8zGfqn889V37OJz9Z/6zrw4PSUo5mkpb77lv/vNFG5vPTIi232qrxnDxED6fAh3n4rFn291Xhi190u47q8ggwr8vEeYsvsQJDEtKy2a6lRIRAPJmhBZz4BDQdVKWlCj6Uljweegj4v/8DPvEJ+jUzZgC//jWwahXw+c8D99zTeE5SciGJebit0vKYY4ArrgAWLQIuvpiej/PPBz77WX3efOPCC4FNN40mNTvumO29fYAy4FAVjGLdZxODrbZC91/+glf++ldM+d730FAT+6J5eNYDeVsbcN99wO23A6efTr/OlrR08UdKhWwxR438KoOtMklGWh50EHDggVFfdMYZ7nnRoZXNw9OIqlosxt/7ZZcB22yj9nXMP5/4rFSVuC+flv/5n8CKFRGxe+KJ5nR0SKq0PP74KC+FAnDCCcnSSgv//Cfwq18BRxxh11+n7VKnUAD22AP4wx+ABQsiAviBB9TXOJiHF/j3m7VPSwB4/HHg5puBU06hX0O9b1ZKyxkzgGuuAdasiea+Mnz4w8BvfwssW6bvw9MiLZttdZEUzSQt//Qn4KqrgEMPpY01aZGWv/wl8PvfA9/7np/0gdZSWl54YeRyaM6caI6ZBMcdF73TO+8EbryRft2ddwK/+U10vQksv5Mnx5XWDHkmLfNmQSh77qC0TAWBtAwwg6q0VMG30nKbbYDvftfumkIB+H//r/5d1skkJVOzDMRTLkfKkIULG0lLndLyO9/R5ysNDB4MnH129vf1hSyUlgBqRx2FV8tlTBk6tPG6vhiIpxkLlf32i/5skNSnZdrmiFmah8vu1dYWV1ylAb4MfZCWrWweDjTmn6ldXZSWxSJN2cS/+yRKy0IBkKnJXZBUkVUsxpWfecT48cBFF9lfl4XSEgD+67/qx3Qqc4dAPDH4ImRs2vquu0Z/PtAspWWhQCNdTzop/byo0ml1paWY/ywD8Wy2mV3/4OsdinOBbbeN1mU8aZkHn5YU+CAthwyJlMwjRiQnLQuFaINh223tSMuttqKvjQcPjqwOAeCGGxp/z7N5eN5IQFmd8xlIOKAXoSQDzEiqtKQSOjrkMRCPCP45bdVPsjKmlJMsQlzwaekXlDKkKhg1pKUWvszD86S0bBV1RZ58WsqQdvRwCmmZNvg8mAJF9AfzcDG/AwdG/ymkpQlZRg9PirR8qPYFZOHTUoTnQDzWSss8jzvNUlr6RFqL71YnLfPi05KCtJSWMuQhejgFPszDGTZssL+/Cs1s+2krLW0CBTFkqbS06YNkdS4oLVNBKMkAM5IqLdMwj0uKNHxamhb3PEzm4SalJYOMtMxz9PBWBOU9JA3EYwKlbsrSMgXdaGYgnlYZyPPk01KGJMSND5+WWfTvJvKDRx7Mw3nSMo3yUbVrVV2zVf6bzkkakdUXAmmpRlZKSx5JfVqK39MwD29WIB5XpWWekJXSstXQH0nLLPrePPi0tC2vViQtVRtQ/HFfm0YMLvUwr0pL2XMHn5apIJRkgBm+lZZ5QBpKSx4mpaXJPJyqtJQNJEFp6Rc+o4e7Ki1dzcNlQTd0v1PQ35SWfZm09KG0zIK0pJra1Gr5MA/Pwqclnz777mNy3EpKy1ZTZGUJ3wulZigt+ffbDPNwn3BVWuYJIRCPHGL++wNpmYXSUgXfSktdPm3La/16+/vnEYVCfK6fpb9UFfLq0zIoLTNDKMkAM/qi0jINn5Y8siItC4VG4pIv71ab/OUReTAPpxBTOpULgw+lJYW0zKtPSxeIaua8kZb9wTycOgGsVvufeThfP9Osa0Fp2VpI26UORWlp69Myb4F4fKIvKC0DaSlHf1RaZvGOXMzDXcZbXV9p21/4JC2bqbQE4v2xb6WlC/JKWpoC8bTKWqcF0GIjZkBT0BeVlmmYh/Ow9Wnpah4ONJIq/OASFnXJYau01J3vah5OqU+FQjw9Wf3xobTsb+bhFFO2vhyIh3/+ZiktbUhLF6VlK5uH+yAtKYRkHpWWYXxTIw8+LflrbElOCKSlzBWOKY8ytJrSstUIPAr6unl4loF4bOGrX2gmaenbPJy3jBDRTKVls0lLHnlSWuatvwhKy8wQSjLAjKRKSx+kZSsE4uGRldISaJzMB6WlX1DeA7XMXZWWVBKcT7+ZSsu+ZB4uIm9Ky7RJS/4cWd3OWmmpK08qaSmek6Z5eJZKS9fJcRqkZRYT9TC+qZEHn5YmpaXJPJwf91o9EI+s/PKmGDIhrU0C8Z20WrsW3y2FYG8WWsk8PKtAPB98oP4tiU/LZvnPtQVlzA9KSzUCaZkZQkkGmJFUadkq5uEuHe5WW0X/J06MH99pp/rn//f/ov+zZtWPfeQj8fOD0jK/cPFpqYJhkRbDiSfWP0+eTEvfVmnpMpj6UlrmmbTceuvo/5ZbNv5mIi1HjgRGjKh/32Ybv3kTkXYgHv55GYlw8sn1Y9tt535/KnROzY8/vv55iy3yYR5+6aX1z2ec4TdtQK20LBTk73TYsPj3jTaK/k+fHv23DcSTF0XboYfWP599dvw3Pr+tRoL4QB6UliafloYNnqKtYpmfV/HzLR7NIhL6gtLS13zSpLQ84oj65//+bz/3TBOyd5tXpB2I58wz65/339/PvUT4Vlr6JC1PPbX++ac/tc8LD9k6Mg3w74l/f7Y+hXfYof6ZnyOqsOuu0X9+vqxDXpWWIRBPZmiRbYCApiIPSkvfkOXdZbC76y7gxhuBY4+NHx86FPj3v6O/k06Kjl10UUQ+7bgjMGaMPj82SsuBA+Pf+cHF1kw9oBE+SUsxLV2d+8lPgN12A/bZh25ulBelZav7tLztNuCmmxrbNWAmLQcMiK7/y1+ifiDNySbQHJ+WP/4xMG0asPfewJAh7venQrdrfdVVUT723Tcq+zyYh3/qU9E9hg8H9trLb9qAWmkJAC+8ANx6KzBjBnDHHcCBBza2x8cfB/71L+ATn2hMu5WUlmPHAvfeGz0zG2cDIuTBpyV/joPSMkZaUpQ+o0YBDzwAPPNMVB9+9CNzHrOCq0/L/khabr45MGcOMHdua7TrPM9lRKSttPze96JN36lTo/aYBHlQWtr2o9OmAf/8J7B4cVx44IKhQ4FHHwUeeSTddrDppsCDDwJPPx2/j63ScqONgMceAx5+GPj0p83n//3vwPXXA0ceSctnlhtONvMdk9KylfqHnCOQlgFmBKWlGhMmqHf0p0+vK1mAiNg4/XT5uT7Nw4PS0i9szcNtoBuEhw8Hvvxlu/RMpGWeoofnWY0wcaK6XZt8WgIR2bzbbt6zJUWSNm77nti9hg2zr5tJoCMtN944nhcX83DfBFu5nO4iQ6W0BCLlK1O/br+9/Pqtt66riamwJU+ymqjvv79c0cOXUZ77mrTQikpLYTwsdXfXv1AWzUC0ybfPPurfW01pmSdkRVoCwAEHRH+tgFZ7jz6gGg8GDwa+8AU/93DxaenyLnxH/OaVwkmx++7RX9rYe+/oj4et0hKwm/uOHaueZ8vA+u68rWtNgXj6Y/+QEkJJBpjRF5WWafu0tIVP83B+cMmyc8+TIsAnfCotRfheQJnMw30oLX2ZfrcqkWBSWmaNLM3Dm9XGbSaALkrLVquLvALNh/+0NMzDw0S9uWgFn5Y2gXh8bX7nRWkZzMPraPW+opWUVL7qUzOJI11f4NLv6ZSW/RkupGWayKuP0ODTMjOEkgwwIw+kZdoTcKC5Ew9ZGVOfWae0zNOEt1XhK7KeDL4H4SyUloG0bDzWTNIybfNwmU/LrGFjatOXIterwAf68R30QdUu+XeQl+jhAWrkQWlpih5u4+OZqrQ0oVltX1Y2gbSM0Or9cSvNZXy9w7xGD3dBIC3lsDUPTxtsfMhTnwjIx63g0zIVhJIMMMNmYilDHnZoRLSC0pIKndIyS5KhlSZuNkhTaZmGWaou7TwpLVsVeSMt044eLvNpmTV8Ky1bfRLJk5aiT2MX2CotKWj1Mm515MGnZUKlZQy+Fs3NUuu4Ki3zhKyih7ca+P64v6CZpKXvNWUgLeXIm9KSrbPyRloG8/DMEEoywAyxwdl2HHmckMjy1EzpeVpKy7z5/mhFUAYcV9LS98KSz4cs7ayUli4muq0Cik/LLJE2aSnzaZk10jYPbzXwY29WSstgHt5ayIPS0uTTUjymG1ta3Tw8KC3raHX3HCJ8+0RME33BPDwoLbOB7ZifNlpJaZm3susjCCUZYIZKaUkdtPI4Icmb0jKJmjUvPi37M/KwCwlkEz3cFymUx36BAtkmTjP99mZpHt6syaKNqU1/MA/n0QyflsE8PP/IG2lJmXPp2qUvoqLVfFrmCYG0lKM/kpZ9VWnpw3Khr8B2zE8beSUtg9IyM4SSDDBDRahRO448dHYi8ubT0qd5eFBa+gWlnucl2JTJPFyc7LkMpv1ByaaD+PzNNA0Hkk3gbAPx5MGnZTAPj8M3aUlRWtrWm4Ds0YxAPLpzks65Wt08XEbQtto4mRZp2eoIpGU6aIZPy2bP5/KEQFpGMD17CMSTGUJJBpiRVGk5Zgyw8cbR589+1i0PaftnApqrlttxx/rnceOi8nI1D2+W0vLII+ufL744u/umjYEDgZEjo8//9V/yc2zqzowZ0f8PfShZvmRIyzz8jDOi/4MHA5Mmmc/vy0rLQiH+7nbeObt7/8//NB773/91T8+W4Avm4flDVubhP/lJ/fMFF5jTCUrL5qIVlJayNCZPBgBUjzgCz51ySv34cccRM2rAqaf6SccWVKXlhz8c/54nVRGfN0ofoEJf6n+B+Nz30kublw8VvvjF6P+AAcCWW/pJM4t6+dOfyo+b5tu77x7932sv2n2uvbb++eyzadf0N+SBeGslpWUIxJMKcho/PiBXSKq0LJeBxx8HHnoIOPpor1lzhqyTaeYO29VXAx/5CLB2bVRGSczDm6W03GQT4JlngJdeys979oFCIaq/992nfi4bpeV11wH/+Adw6KFesqfMh6x9lkrRHxtQqYuHSy4B9tgD2HNPGkHb14mjW24B/vKXqJ1+/OPZ3ffkkyMCffz46B0uXBhfMNmiL5KWwTzcHpSx/LDDono/YEB9UahDXyrjVkTeAvHIVJiyPM6ZA9x5JyqHH443778f2x10EMrbbQeMGuWU7V5ccQWw997AhAnJ0nEFxaflZZcBn/508mdNC0OHAs8/Dzz3HPCxj7mn08pjvwwjRgBPPw28/HI+576XXhoReHvs4U+ckQVxNHMmMHs28MgjwEUX1Y+blJb//Gc0Vs2cSbvPxz4G/O1v0dzq/ffd89uXkYc228y4EzqYlJZhA9cbcloDAnKFpEpLINrd87XD5wOyXW/fihUbjBgBnH56/FirKS0BYKedor++hgkTgBNPVP9uQ1qOGAGcdFLyPMnAD54qU9729ro5DLWODR4MfOpT9Hz0ZaUlEJGGX/1q9vctl5MtFkW0ik9LmwlgXyfMRWSltCwUIuKSijBRby7yoLTkr6H6rxw3Lhofu7pQK5dRO+ooP+5Xjj0W2Hzz5Om4QubHUSyDU08Fhg2LH8ubquhDH0rHSqTVMXVq9JdHDBoEfPKTftPMYm1RKACHHx5ZO/GkpWlsGTXKbo5dLAJHHRV9vu02+3wGZIMslZY29zCRqWED1xtCSQaY4YO0zBvEQW/w4NZdyOZFadmfkcdAPCrSkq8fadX5Vm1L/Q22pGWzfFramNoEn5b5QF8q41aE7z5YTC+p0jJrUrvZ9VFWfpQAjHkjLX0gzA9aH1muLbIM3NTsfiKvyEObzSv34GMjPYCEUJIBZiQ1D88jxE5m0KDm5EMH6iAhRrsL0cOzRx4D8ajePV8/mkla5mES1N9hG1ClFczD+1uQmKzMw20RlJbNRRr9K99ukvq0zLoN5q3Ny5SWeZlHpI0w9rc+slz/ZVlf8tZP5AV5aLOtZB7OI9QpbwglGWBGHpSWaZs6tXLEuKC0bD6C0jKO/mai26poFVWi70iMfanuZWUebos81Jv+jDTquE45Kf4untPflZYigtIyoJURSMv+hTyUS16jhwelZWYIJRlgRn9QWuaRtGxFn5b9FXlRSPD5yLvSMqD56K+kZR6eyRdEpb0LgtKy76EZSksdMalTYWaBvLV5mdIyb3lMC2F+0PoIpGX/Qh7abF65B5PSMsyFvCG0zgAz8qC09I1WIC2pCKRl85EX0pISiCcvPi3zMAnq7+iLpGV/q3tBaSkHv7DJ2yInC6RNWsrer3hPU/TwLNHs+ihCprSUoS/W3b7U//ZXZFkvs2y7eesn8oI8tNkQiKffI5RkgBliZ5XX3Q4btAJp6aq0zIMPuv6GVjIP5/Oa1mCahwlOgBmtQlryY01QWsYRfFoGyNAMpaWIPCkt8zYmyZSWMrTyPDug76KvKi3z1k/kBXmYM+WVewjm4ZkhlGSAPVjH8clP1sm+3/423XumHQkzj6QlFbpF61e/Wiey/vrXbPLTH9FKSsu0CNbvfS/6v/nmwLRp8nMuuyz6P3o0sO++6eQjQI+rror+Dx8O/Md/mM/Pw4Trhhui/8UicMEFydPLwzP5gg/S8o9/rH/+zneSpwc0v4z5Mb4/LkSb4dNShE6ZudFGfvJERbPro4hisX/WS6D/Pndfwpe/XJ9L/vnP6d4rmIc3BzfeGP1vb4/ed7PB1jczZgCbbBJ9vvLK5uWHQaa0ZG2ivR344hezzU8fRk5DMQXkGqyBDhsGPPcc8OabwIc/3NQsWUMcBPMYPZwK3aJ19OjoHS1aBOy3X3Z56m/Io9JStRvJ57W729+9v/ENYJddgKlT1eYSX/kKsMMO0V9eyqy/4bOfBbbaCth6a9pmTR4m8YccAjzwQES0TpyYPL2+tGj2QVp+5CPAQw8BQ4dGdcMHgtKyuci70nLSJD95oiIP/RiP/qy07Ev9b3/FqFHR2uK994D990/3XoG0bA4+9jFgzhxgzJhoLdlssHXFgAHAU08Bc+cCBx3U3DwB8rnOscdGZTd2LLDppplnqa8ikJYB9uAJiUmTsp98poE8Ki1dzcNFbLNN9BeQHvKitKTkgz+nq8vfvctl4LDD9OeUStEuaUDzUCxGJKDN+c1GoQDssw/9XBPy8Ey+4IO0LBSAvfZKng6PvlTGrYhm+LQUoVNm+th8sEHe6iOVtOyLCKRl38DWW0d/aUNlNZQG+mublKFQAA44oNm5qIPnHsaPj/7yAJlII29l10cQWmeAPUxOZ1sReSQtqfAdiCHAHnkhLSltk1c4dnaml5eAvoG+OInvS8+U1/4/KC2bizwoLfnzg9IyDmognr6IQFoG2MDn5roJ/bVNtgLyyj2EuU5mCK0zwB7N6DjSnuTkkbT0pbQMSB95MXVuptIyoG+iL07I+tKiOa/9f1j8NRd58GkZlJZqBPPwgAAaAmkZAOSXtAz9WWYIrTPAHoG0zBfyumjtT8iL0pKSj6C0DLBBX5yQ9aWFSV77/75Uxq2IPCgtdT4t+ztp2Z+VlgEBNgikZQDQPNLSNNaFOpMZQkkH2COvux1JkMdAPEFp2TrIi9KS0jaD0jLABn1xQtaXiNi89v99sd60EvJAWup8YPZ38/CgtAwIoCHLzfW89RMBdeSVewj9WWYIrTPAHnntOJIgj0pLakfY0ZFuPgLMyIvSMpCWAb7RFyfxfemZ8kpahol8c5G3QDyi0nKzzfzkiYq8tXmq0jKQlgH9HVnOU0PdzC+y5B5s+t28jS19GKGkA+yRVcfBDx5p37OVScu+SCK3GvJCWlL8DwbSMsAGrebTsr9FD8+LyltEs8uYJ3PzWkZpIo1nTmIeLp6fdf3IGxkRoocHBNDQF4n7AHvkda3banPkFkY/HTEDEiErguaWW6L/AwcCX/1quvfKI2lJxYgRwM47R5/PP7+5eemvyMuimDJ4Bp+WATYIC8z84eyzo/977JFfpeXAgVH+AOCcc7K//7XXRv+LReBHP8r+/lnim9+Mf+/oAM47z/99kgTiKRSAffaJPp95pt98qXDWWdH/fffN5n42oBKWfZGwCWNKgA3+4z+AUaOiz7/7Xbr36ovtra8gL+IQEaNGAdOmRZ8vuKCpWenryCltHZBrZLXbMWMG8NxzwMiRETGXJvJIWlIndoUCcP/9UVlNn55ungLkyMtgGpSWAb7RX9VAecb3vw8cfTSw0075JgDuvht49tnmjEs77wy88kq0STNhQvb3zxLf/jZwxBHADjsA8+YBw4bVF/k+kcSnJQDccQfw1FPZ1YdLLwWOPba+oMwTCgWgUml2LpqDPPdZAfnDgAHA3LnA22+n35YDaZlf5DUQT6EAPPAA8PzzYQ2eMgJpGWCPLDuOHXbI5j55JC1tMHgwsOeezc5F/0UrKS150rK/LpoC6Gg10rI/LIiLxdbo7wcNam4+p0xp3r2zRLFYV7Vut12695F9VkEcjwYOBPbe22+edCgWgb32yu5+NigWge5u83mBRAkIiIQraYtXAvKNvJqHA9EanI3BAamhxVYjAblAnjsOV7Ry9PCA5qOVlJZ5IVgDWgOtRlpSEIiAgAB7JPFpGRBHoQBUq+bz+mJfFea2AQEBtuiL3EOAFfrgaiQgdfTFRWyrKy0DmotWIi3zkteA1kBf7O/7IhEQEJA2bH1a9sW+wxeKxf5r6RBIy4C8IswN8ou8Rg8PyAxhRhFgj7444QikZUAS5EW9SFkk5iWvAa2BViMeKONTmJAGBNgjKC39ISgtAwICAugISst+jxZbjQQEpIQ8kpZhYtc6yIt6MSgtA3yj1UhLCvoiERAQkDYCaekP/VlpGRAQEGCLQFr2e/TB1UhAgAPySFoGtA7yol6kEEyBtAywQV8kLQMCAuyRNHp4QBz9lbQMm0YBeUWom/lF2ATr9wgzioAAIJ9EzsCBzc5BABV5qT9BaRngG3kMUqbDgAHmc8LCJCDAHmx8oZKRwVpEjVpNPRbzc7++OA+kmMUHBDQDQc2XX4RNsH6PUAMCaPjSl6L/J5zQ3Hz4xDe+Ef0/+uimZkOJ//xPYPPNo88339zUrAQYUCgAhx8eff7Wt5qXjxA9PMA3+H7or39tbl4oOOYYYPz46PNNN8nPCaRlQIA92Bh32GHqc7773ej/QQcBHR3p56lVUasBhx4KbLll9P366+u/3XJLtEAfMaI+9+5LCKRlQF6xww7AtGnR56uvbmpWAgCcf370/4gjmpuPgFwgbCkE0HDllcAXvgBsvXWzc+IPl1wCnHwyMGVKs3MiR3s78PLLwOLFwMSJzc5NgAn/+Afw2mvNbSPBPDzANzo6Wqsfam8HXnpJn99AWgYE2OPCC4FPfhKYPFl9znnnRRsdjIwLkKNWi1Rdzz8PLFwITJpU/+2AA4C33waGDQM22qh5eUwLof8NyCsKBeDf/wbmzdP3cwHZ4KKLgE99KryLAACBtAygolAAtt222bnwi1Z4pkGDWoMoCIhUjtts09w8UExbgtIywBat1g+1Wn4DAloBhQJtjOtLm9tpgRF3AwfGCUsGpm7viwikZUCe0d4eSLK8gDrm+AbfRwU3J7lBMA8PCAgI6CsIPi0DAgICAgLyjf5M3PXnZw8ICAgIcEIgLQMCAgL6Cijm4UFpGdDfERbNAQEBzUR/7oP687MHBAQEBDghkJYBAQEBfQVBaRkQYEZYNAcEBDQT/bkPCoF4AgICAgIsEUjLgICAgL6CEIgnICAgICAg3+jPpGV/fvaAgICAACcE0jIgICCgryAoLQMCzAiL5oCAgGaiP/dBQWkZEBDQKgiBeHKDQFoGBAQE9BVstJH5nKFD089HQECeMWhQs3MQEBDQn9GffUt3dDQ7BwEBAQFqjBxZ/zx2bPPyERBDIC0DAgIC+gr23x/YZRegXAZuukl+zm67AXvtFakyr78+2/wFBOQBBx8MTJ0atZO//73ZuQkICOgPuO66yIXLvvsCO+7Y7Nw0D9tvD+y3X1QWv/99s3MTEBAQEMdFF0XE5eDBwO9+1+zcBPSg3OwMBAQEBAR4QrEIPPoosHIlsMkm8nMKBeCBB4Dly+O7iQEB/QXFIvDEE/p2EhAQEOATJ5wAHHIIMGJE/zY5LBSAOXPCHCQgICCf2GQTYP58oLMzWKflCIG0DAgICOhLKJXMREyxGBYLAf0blHYSEBAQ4BNh3I0Q5iABAQF5xoAB0V9AbhDMwwMCAgICAgICAgICAgICAgICAgJyhUBaBgQEBAQEBAQEBAQEBAQEBAQEBOQKLU1a/vznP8fEiRMxYMAA7LHHHnj00Ue15//5z3/GtttuiwEDBmDHHXfE7NmzM8ppQEBAQEBAQEBAQEBAQEBAQEBAABUtS1recMMNmDVrFi644AI8+eSTmDp1KmbMmIHFixdLz3/ooYdwwgkn4JRTTsFTTz2Fo48+GkcffTSef/75jHMeEBAQEBAQEBAQEBAQEBAQEBAQoEPLkpY/+tGPcNppp+Hkk0/G9ttvj6uvvhqDBg3CtddeKz3/yiuvxGGHHYavf/3r2G677fCd73wHu+yyC372s59lnPOAgICAgICAgICAgICAgICAgIAAHVoyenhnZyeeeOIJnHvuub3HisUiDj74YDz88MPSax5++GHMmjUrdmzGjBm4+eabpedv2LABGzZs6P3+/vvvAwCWL1+Orq6uhE+QP3R1dWHdunVYtmwZ2tramp2dgIB+h9AGAwKaj9AOAwKaj9AOAwKai9AGAwKaj77eDlevXg0AqNVqxnNbkrRcunQpKpUKRo8eHTs+evRovPTSS9JrFi5cKD1/4cKF0vMvvvhiXHjhhQ3HJ02a5JjrgICAgICAgICAgICAgICAgICAgNWrV2PYsGHac1qStMwC5557bkyZWa1WsXz5cmyyySYoFApNzFk6WLVqFcaPH4/58+dj6NChzc5OQEC/Q2iDAQHNR2iHAQHNR2iHAQHNRWiDAQHNR19vh7VaDatXr8bYsWON57YkaTly5EiUSiUsWrQodnzRokUYM2aM9JoxY8ZYnd/R0YGOjo7YseHDh7tnukUwdOjQPtkoAgJaBaENBgQ0H6EdBgQ0H6EdBgQ0F6ENBgQ0H325HZoUlgwtGYinvb0du+66K+66667eY9VqFXfddRf22msv6TV77bVX7HwAuOOOO5TnBwQEBAQEBAQEBAQEBAQEBAQEBDQHLam0BIBZs2bhpJNOwm677Ybp06fjiiuuwNq1a3HyyScDAD796U9j3LhxuPjiiwEAZ555Jg444ABcfvnlOOKII3D99dfj8ccfx//8z/808zECAgICAgICAgICAgICAgICAgICBLQsaXn88cdjyZIl+Na3voWFCxdi2rRpuPXWW3uD7cybNw/FYl1Iuvfee+O6667D+f+/vTuPiupI2wD+NDTdLIKo7CIoiUtUXAIuBBODMq7H0Yg6KiKacYnBo+CMGk0UM8TBSBxH3E3iMgF1NOB60AmCgEZEQUAEl8yIOirIGEQQla3r+8OPm27pJmiaTZ/fOX3O9VbVvVX0fU/gTdWtzz7D0qVL0bFjRxw8eBDdu3dvrCE0KUqlEsHBwTWWxBNRw2AMEjU+xiFR42McEjUuxiBR42Mc/kIm6rLHOBEREREREREREVEDaZbvtCQiIiIiIiIiIqJXF5OWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUnYuHEj2rdvD2NjY/Tr1w/nzp1r7C4RvRJCQ0PRp08fmJubw8bGBmPGjMHVq1c16jx9+hQBAQFo06YNWrRoAR8fH9y7d0+jzq1btzBy5EiYmprCxsYGCxcuRGVlZUMOheiVsGrVKshkMgQGBkrnGINE9e/OnTuYMmUK2rRpAxMTE7i6uiI1NVUqF0Jg+fLlsLe3h4mJCby9vfHTTz9pXKOwsBC+vr6wsLCApaUl/vjHP+LRo0cNPRSiZqmqqgrLli1Dhw4dYGJigjfeeAMhISFQ35OXcUikX0lJSRg1ahQcHBwgk8lw8OBBjXJ9xdzFixfx7rvvwtjYGO3atcPq1avre2gNiknL19w///lPLFiwAMHBwbhw4QJ69uyJoUOHoqCgoLG7RtTsJSYmIiAgAGfPnkVsbCwqKiowZMgQlJaWSnWCgoJw5MgR7N+/H4mJibh79y7Gjh0rlVdVVWHkyJEoLy/HmTNnsGvXLuzcuRPLly9vjCERNVvnz5/H1q1b0aNHD43zjEGi+vXgwQN4enrCyMgIx44dQ05ODtasWYNWrVpJdVavXo3w8HBs2bIFKSkpMDMzw9ChQ/H06VOpjq+vL7KzsxEbG4ujR48iKSkJs2bNaowhETU7X375JTZv3owNGzbg8uXL+PLLL7F69WqsX79eqsM4JNKv0tJS9OzZExs3btRaro+YKy4uxpAhQ+Ds7Iy0tDSEhYVhxYoV2LZtW72Pr8EIeq317dtXBAQESP+uqqoSDg4OIjQ0tBF7RfRqKigoEABEYmKiEEKIoqIiYWRkJPbv3y/VuXz5sgAgkpOThRBCxMTECAMDA5Gfny/V2bx5s7CwsBBlZWUNOwCiZqqkpER07NhRxMbGioEDB4r58+cLIRiDRA1h8eLFYsCAATrLVSqVsLOzE2FhYdK5oqIioVQqxZ49e4QQQuTk5AgA4vz581KdY8eOCZlMJu7cuVN/nSd6RYwcOVJ8+OGHGufGjh0rfH19hRCMQ6L6BkAcOHBA+re+Ym7Tpk2iVatWGr+TLl68WHTu3LmeR9RwONPyNVZeXo60tDR4e3tL5wwMDODt7Y3k5ORG7BnRq+nhw4cAgNatWwMA0tLSUFFRoRGDXbp0gZOTkxSDycnJcHV1ha2trVRn6NChKC4uRnZ2dgP2nqj5CggIwMiRIzViDWAMEjWEw4cPw93dHePHj4eNjQ169+6Nr7/+WirPzc1Ffn6+Rhy2bNkS/fr104hDS0tLuLu7S3W8vb1hYGCAlJSUhhsMUTP1zjvvIC4uDteuXQMAZGZm4vTp0xg+fDgAxiFRQ9NXzCUnJ+O9996DQqGQ6gwdOhRXr17FgwcPGmg09Uve2B2gxnP//n1UVVVp/CEGALa2trhy5Uoj9Yro1aRSqRAYGAhPT090794dAJCfnw+FQgFLS0uNura2tsjPz5fqaIvR6jIiqt3evXtx4cIFnD9/vkYZY5Co/l2/fh2bN2/GggULsHTpUpw/fx7z5s2DQqGAv7+/FEfa4kw9Dm1sbDTK5XI5WrduzTgkqoNPPvkExcXF6NKlCwwNDVFVVYWVK1fC19cXABiHRA1MXzGXn5+PDh061LhGdZn6q1iaKyYtiYgaQEBAAC5duoTTp083dleIXhv//e9/MX/+fMTGxsLY2Lixu0P0WlKpVHB3d8df//pXAEDv3r1x6dIlbNmyBf7+/o3cO6LXw759+xAZGYndu3ejW7duyMjIQGBgIBwcHBiHRNSkcXn4a8zKygqGhoY1dkm9d+8e7OzsGqlXRK+euXPn4ujRozh58iQcHR2l83Z2digvL0dRUZFGffUYtLOz0xqj1WVEpFtaWhoKCgrw9ttvQy6XQy6XIzExEeHh4ZDL5bC1tWUMEtUze3t7dO3aVePcW2+9hVu3bgH4JY5q+33Uzs6uxiaRlZWVKCwsZBwS1cHChQvxySefYOLEiXB1dYWfnx+CgoIQGhoKgHFI1ND0FXOvw++pTFq+xhQKBdzc3BAXFyedU6lUiIuLg4eHRyP2jOjVIITA3LlzceDAAcTHx9eYuu/m5gYjIyONGLx69Spu3bolxaCHhweysrI0/oMVGxsLCwuLGn8EEpGmwYMHIysrCxkZGdLH3d0dvr6+0jFjkKh+eXp64urVqxrnrl27BmdnZwBAhw4dYGdnpxGHxcXFSElJ0YjDoqIipKWlSXXi4+OhUqnQr1+/BhgFUfP2+PFjGBho/ulvaGgIlUoFgHFI1ND0FXMeHh5ISkpCRUWFVCc2NhadO3d+JZaGA+Du4a+7vXv3CqVSKXbu3ClycnLErFmzhKWlpcYuqUT0cubMmSNatmwpEhISRF5envR5/PixVOejjz4STk5OIj4+XqSmpgoPDw/h4eEhlVdWVoru3buLIUOGiIyMDHH8+HFhbW0tlixZ0hhDImr21HcPF4IxSFTfzp07J+RyuVi5cqX46aefRGRkpDA1NRURERFSnVWrVglLS0tx6NAhcfHiRTF69GjRoUMH8eTJE6nOsGHDRO/evUVKSoo4ffq06Nixo5g0aVJjDImo2fH39xdt27YVR48eFbm5uSI6OlpYWVmJRYsWSXUYh0T6VVJSItLT00V6eroAIP72t7+J9PR0cfPmTSGEfmKuqKhI2NraCj8/P3Hp0iWxd+9eYWpqKrZu3drg460vTFqSWL9+vXBychIKhUL07dtXnD17trG7RPRKAKD1s2PHDqnOkydPxMcffyxatWolTE1NxQcffCDy8vI0rnPjxg0xfPhwYWJiIqysrMSf/vQnUVFR0cCjIXo1PJ+0ZAwS1b8jR46I7t27C6VSKbp06SK2bdumUa5SqcSyZcuEra2tUCqVYvDgweLq1asadX7++WcxadIk0aJFC2FhYSGmT58uSkpKGnIYRM1WcXGxmD9/vnBychLGxsbCxcVFfPrpp6KsrEyqwzgk0q+TJ09q/VvQ399fCKG/mMvMzBQDBgwQSqVStG3bVqxataqhhtggZEII0ThzPImIiIiIiIiIiIhq4jstiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiIiIiIqElh0pKIiIiIiIiIiIiaFCYtiYiIiIiaofbt20Mmk2HatGmN3RUiIiIivWPSkoiIiOgFzZ49GzKZDDKZDPHx8S/U9ocffpDazp8/v556SERERETUvDFpSURERPSCpk6dKh1HRES8UNvvvvtO63UaS0JCgpRETUhIaOzuEBEREREBYNKSiIiI6IV5enrijTfeAABERUXhyZMndWpXWlqKAwcOAAC6desGNze3eusjEREREVFzxqQlERER0Uvw8/MDABQXF+PQoUN1ahMdHY3S0lKN9kREREREVBOTlkREREQvwc/PDzKZDEDdl4hXLw03MDDAlClT6q1vRERERETNHZOWRERERC/BxcUFnp6eAIB//etfKCgoqLX+3bt3ERcXBwAYNGgQ2rZtW6POwYMHMX78eDg5OcHY2BiWlpZwd3fH559/jgcPHtSpXzExMZgyZQpcXFxgZmYGY2NjdOjQAT4+Pti5cyceP34MALhx4wZkMhm8vLyktl5eXtL7Las/O3furHGP8vJybNq0CV5eXrC2toZCoYCdnR1GjBiBiIgIqFQqnf2bNm0aZDIZ2rdvDwDIy8vD4sWL0a1bN5ibm7/wuzW1vZNz3759GDx4MKytrWFiYoLOnTtj0aJFKCws1Hmd999/HzKZDO+//36t91uxYoV0P22qy1asWAEAOHnyJMaMGQMHBweYmJjgrbfeQkhIiDTjtlpMTAxGjBgh1evatStCQ0NRXl5e55/F+fPnMWnSJLRr1w7GxsZo164dpk+fjitXrtSp/b///W8EBQXB1dUVLVu2hImJCVxcXDBt2jSkpqbqbPf8d6BSqbB9+3Z4eXnB1tYWBgYG3OGciIiIXpwgIiIiopeybds2AUAAEOvWrau1blhYmFT3H//4h0ZZYWGhGDRokFSu7WNjYyOSk5N1Xv/+/fti8ODBtV4DgNixY4cQQojc3Nxfratev1pubq7o0qVLrW0GDBggfv75Z6399Pf3FwCEs7OzSE5OFlZWVjXanzx58ld/9tVOnjwptYuLixNTpkzR2a8333xT5OXlab3OwIEDBQAxcODAWu8XHBwsXU+b6rLg4GARGhoqZDKZ1r6888474tGjR0KlUol58+bp7POwYcNEZWWl1ns5OzsLAMLf3198++23Qi6Xa72GUqkU+/btq3VcYWFhwsjISGc/ZDKZWLZsmda26t/BsWPHhLe3d432/v7+td6fiIiI6HmcaUlERET0kiZMmABjY2MAmruCa1Nd3qJFC4wdO1Y6X1ZWBm9vb8THx8PQ0BB+fn7Ys2cPzp49i1OnTmHlypVo06YNCgoKMGLECNy8ebPGtR8/fgwvLy9pJqebmxu2bt2KH3/8EampqThw4ACCgoLg4OAgtWnbti2ysrKwfft26dz27duRlZWl8RkzZoxU/ujRIwwePFiauTdmzBgcPnwYqamp2L9/PwYOHAgAOH36NEaNGoWqqiqdP49Hjx7Bx8cHT58+xaeffoqEhAScO3cO3377Lezt7Wv9WeqybNkyREREYMyYMYiOjkZaWhpiYmIwcuRIAL/MJGwIx44dw5IlS9C/f3/s3r0bqampOH78OIYPHw4AOHPmDEJDQ7F27VqEh4dj+PDhiIqKQlpaGg4dOoT+/fsDAI4fP46vv/661ntlZGTgo48+go2NDdavX4+UlBQkJiZi8eLFUCqVKCsrg6+vr87ZkmFhYVi4cCEqKirQo0cPbN68GSdOnEBqaioiIyPh4eEBIQRCQkIQHh5ea18WL16MEydO4Pe//73Gd1A9biIiIqI6a+ysKREREVFzNmHCBGk22ZUrV7TWyczMlOpMnTpVo2zp0qUCgLC0tBSpqala29+4cUPY29sLAGLy5Mk1yoOCgqTrBwQECJVKpfU6ZWVlIj8/X+Oc+iy5X5vh+Oc//1mq+9lnn9UoV6lUwtfXV6qzadOmGnWqZ1oCEC1atBAZGRm13vPXqPcfgPjiiy+09mvIkCECgJDL5aKgoKBGHX3PtAQgfHx8asySrKysFP379xcAhLm5uTA2NhaBgYE1rlNaWirNpOzRo4fWe1WX4/9nrmqbRRofHy/NwOzTp0+N8uzsbGmGZXBwsNZnp6qqSprB2qJFC1FYWKhR/vx3oO3ZICIiInpRnGlJRERE9BtMnTpVOtY121L9vHr9R48eYePGjQCAkJAQuLm5aW3v7OyMZcuWAQD279+v8T7EoqIibN26FcCzGZbr1q3T+b5FhUIBW1vbugyrhrKyMnzzzTcAgG7duknvbFQnk8mwadMmtGnTBgCwYcOGWq+5aNEi9OzZ86X6o42bmxuWLl2qtV8LFiwAAFRWViI5OVlv99TF1NQU27Ztg6GhocZ5Q0NDzJo1CwBQUlICa2trrF69Wmt7f39/AMDFixfx8OHDWu+3Zs0a2NnZ1Tjv5eWFmTNnAnj2zsvnZ1uuWbMGFRUVcHd3R3BwsNZnx8DAAOvXr4dSqcSjR4/w/fff6+xHp06dtD4bRERERC+KSUsiIiKi32Do0KFSIjAyMhJCCI1ylUqF3bt3AwAcHR01Nr5JTEyUklHjxo2r9T7vvfceAKCiogJpaWnS+fj4eGlznXnz5tVIkulLWloaioqKADzbTEfXfSwsLDBhwgQAQE5ODvLy8nRe09fXV699nDx5ss6ErXpC+Pr163q9rza/+93v0Lp1a61l6onasWPHwsjI6Ffr5ebm6rxXq1atMHr0aJ3lH374oXR84sQJjbIjR44AAHx8fHT+7ADA0tISrq6uAFBr0vcPf/hDvT2DRERE9Hph0pKIiIjoN5DL5Zg8eTKAZztynz59WqM8Li4Od+/eBfAsSWdg8MuvX+qz3uzt7Wvs3K3+6d69u1Q3Pz9fOk5PT5eO3333Xf0OTs2lS5ek4379+tVaV71cvZ26Fi1awMXFRT+d+39dunTRWaaeQCwpKdHrfbXp1KmTzjJLS8sXrldbn3v37g25XK6zvFevXlAoFACArKws6fzNmzfxv//9DwCwZMmSWp8/mUwmPa/qz9/zevToobOMiIiI6EUwaUlERET0G9W2RFzX0nAAKCgoeKn7Vc+sBID79+9Lxy+7gU1dFBYWSsc2Nja11lVfpqzeTp16Qk5fTE1NdZapJ4tr2yCoofuijz7/2vchl8ulpK3696GP5+95rVq1eqlrEhERET1P9/+SJSIiIqI66dWrF1xdXZGVlYX9+/dL7/8rLS1FdHQ0gGfLk7t27arRTj0RdeHCBZ3LhJ/n6Oiov86/hNqWEdcVlxDrz8t+H+rP3/LlyzF+/Pg6tTMzM9NZxu+ViIiI9IVJSyIiIiI9mDp1KhYuXIiioiIcOXIE48aNw4EDB6RNc56fZQlA2rAGAKytrV8qGWllZSUd5+XloUOHDi/R+1+nvrz63r17tS5rVl8+rOu9jk1N9axGlUpVaz31TZCainv37tVaXllZKc2wVP8+1J8/IyMjjVcQEBERETU2Lg8nIiIi0gNfX19plllERASAX5aGGxkZYdKkSTXa9O7dWzr+8ccfX+q+b7/9tnSclJT0wu3rOktPPaGVkpJSa91z585pbdeUmZubAwAePHhQa71r1641RHdeSEZGBiorK3WWZ2Zmory8HIDm9+Hi4oKWLVsCePnnj4iIiKi+MGlJREREpAf29vbw9vYGAMTExODSpUuIi4sDAAwbNgzW1tY12nh7e0vvNAwPD6+x83hdeHl5Sct1169f/8LvazQ2NpaOy8rKdNZzc3OT3kO5a9cunTMSS0pKsG/fPgBA165d6/U9m/pUPUP12rVrOje9uX//PmJjYxuyW3VSWFgo7QKuzfbt26Xj6mcUeLaUe8SIEQCAH374AZcvX66/ThIRERG9ICYtiYiIiPSkegl4RUUFJk6cKCUQtS0NB55tRjN37lwAwJkzZxAUFFTr8uR79+7hm2++qXGN2bNnAwDS0tIQGBioM/lZUVFRY/MV9aTif/7zH533ViqVmDFjBoBnO4KHhITUqCOEwNy5c6XNgarH1hwMHDgQAFBeXo7169fXKK+oqMCMGTPw5MmThu5anSxYsEDrMvHExERs27YNwLPEc58+fTTKlyxZAkNDQ6hUKowbNw63b9/WeY+qqipERkbWWoeIiIhIX/hOSyIiIiI9+eCDD2Bubo6SkhJkZ2cDeLab8qhRo3S2+ctf/oLExESkpKRg3bp1SEhIwMyZM9GrVy+YmZnhwYMHyM7OxokTJ3Ds2DG4urpKycNqISEhiI2NRVZWFjZs2IDk5GTMnj0brq6uUCgUuH37Nk6dOoU9e/bgiy++wLRp06S2Tk5OcHR0xO3bt/HVV1/B0dERnTt3lpa629raSkunly9fjujoaFy/fh0rVqxAVlYWpk+fDnt7e+Tm5mLDhg1ISEgAAHh4eGDWrFl6/OnWr5EjR8LZ2Rk3b97EsmXLcP/+fYwdOxbGxsbIzs5GeHg40tPT0b9/f5w9e7axu6uhZ8+eyMnJgZubG5YsWYK+ffuirKwMMTExWLt2LSorKyGXy7Fx48YabV1dXfHVV18hKCgIOTk56N69O2bNmoVBgwbB1tYWT58+xY0bN5CcnIzvv/8eeXl5yMrKavTNoIiIiOjVx6QlERERkZ6YmJhg3Lhx2LFjh3RuwoQJUCqVOtsolUrExsZi2rRpiI6ORmZmZq0zFC0sLGqcMzU1RXx8PHx8fJCUlIS0tLQXShguXboUH3/8MXJzczF69GiNsh07dkhJTnNzc8TFxWH48OG4cuUKoqKiEBUVVeN6np6eOHz4cLPaSVqhUCAiIgLDhg1DaWkp1q5di7Vr10rlhoaG+Pvf/47CwsIml7Ts1asX5s6dizlz5mh9dhQKBXbt2oV+/fppbR8YGAgzMzMEBgbi4cOHCAsLQ1hYmNa6CoVC45UCRERERPWFy8OJiIiI9Mjf31/j37qWhqszNzdHVFQUTp06hRkzZqBz584wNzeHXC5H69at0adPHwQEBCAmJkbnOxWtrKyQmJiI6OhojBs3Do6OjlAqlTA2NoaLiwvGjx+PyMhIrRsCzZkzB1FRURgyZAhsbGwgl+v+/9rt27dHZmYmNmzYgIEDB6JNmzYwMjKCra0thg0bhu+++w5JSUnNZtdwdQMGDEBaWhr8/Pzg4OAAIyMj2NvbS8ngefPmNXYXdZoxYwZOnTqFCRMmwMHBAQqFAm3btsXUqVORnp6OiRMn1tp+5syZuH79Oj7//HN4enrCysoKcrkcZmZm6NSpE3x8fLBlyxbcuXMHb775ZgONioiIiF5nMvEyb3wnIiIiIiIiIiIiqiecaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KQwaUlERERERERERERNCpOWRERERERERERE1KT8H3566E0DdXPzAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "numb_square = 20\n", + "\n", + "# AE1\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data, ae1_trained, IREth1, '1', True)\n", + "\n", + "# AE2_2\n", + "xx, yy, Z2 = lib.square_calc(numb_square, data, ae2_2_trained, IREth2_2, '2', True)\n", + "\n", + "# Визуализация областей аппроксимации AE1 и AE2_2\n", + "lib.plot2in1(data, xx, yy, Z1, Z2)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "mhUEOswXzbwk", + "outputId": "89149d74-6882-400a-fac4-78fb3b15b95f" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfsJJREFUeJzt3Xl4VOXd//HPTCYJ60CAkJAQAkJAQEGjrQVLqQ0UN9yqIvUpoEDxp1bcEK0LICquT92q4k4fEa0LVlupJbi0Fqso1SBqAkIgEEjCkoQIZJvz+2NyJrNnJttMJu/XdeUymZw5c89kmPZzvvf9vS2GYRgCAAAAAAARZ430AAAAAAAAgBMhHQAAAACAKEFIBwAAAAAgShDSAQAAAACIEoR0AAAAAACiBCEdAAAAAIAoQUgHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AEFEWi0WLFy+O9DA6nRdffFEWi0WFhYVh3/fDDz+UxWLRhx9+2OrjinWDBw/WrFmzIj0MD4sXL5bFYtG+ffsiPZRmicbXFABagpAOAM30xBNPyGKx6JRTTmnxud59912CajsqLy9Xly5dZLFY9O233/o9ZtasWbJYLH6/unTp4nHs3XffrXPOOUcpKSktvujw85//PODjun/xfmm59evXa/HixSovL2/xub7//nvNmzdPxxxzjLp06SK73a5TTz1VjzzyiI4cOdLywQIAOg1bpAcAAB3VypUrNXjwYH322WfaunWrhg0b1uxzvfvuu/rjH/9I8Gonr732miwWi1JTU7Vy5Urdddddfo9LTEzUs88+63N7XFycx8+33XabUlNTdeKJJ+q9995r0dhuvfVWzZkzx/Xzhg0b9Oijj+r3v/+9Ro4c6bp9zJgxLXqc3/zmN7rkkkuUmJgY9n1/9rOf6ciRI0pISGjRGCJt/fr1WrJkiWbNmqXevXs3+zx/+9vfdNFFFykxMVEzZszQcccdp5qaGn388cdasGCBNm/erKeffrr1Bg4AiGmEdABohu3bt2v9+vV68803NW/ePK1cuVKLFi2K9LA6vaNHjyohIUFWa/CJYi+99JLOPPNMZWZm6uWXXw4Y0m02m/7nf/6nycfdvn27Bg8erH379ik5OblZYzdNnjzZ4+cuXbro0Ucf1eTJk/Xzn/884P1++OEHde/ePeTHiYuL87nYECqr1eozm6Cz2r59uy655BJlZmbq/fff14ABA1y/u+qqq7R161b97W9/i+AIEY5QP0MAoC3xCQQAzbBy5UolJSXprLPO0oUXXqiVK1f6HBNo3W5hYaEsFotefPFFSc5p1X/84x8lyWM6s+mHH37QDTfcoIyMDCUmJmrEiBF68MEHZRiGz2O+9NJLOumkk9S1a1f16dNHl1xyiYqKijyO+fnPf67jjjtO33zzjU477TR169ZN6enpuv/++33Od/ToUS1evFjDhw9Xly5dNGDAAF1wwQX6/vvvwx5fdXW1rrvuOiUnJ6tnz54655xztGvXLr+v7+7du3X55ZcrJSVFiYmJGj16tJ5//nm/r+8rr7yi2267Tenp6erWrZsqKyv9ntO0c+dO/etf/9Ill1yiSy65xHXBpSUGDx7covuHy1xD/M033+jXv/61kpKS9NOf/lSSlJeXp1mzZrmmXaempuryyy/X/v37Pc7hb0364MGDdfbZZ+vjjz/Wj3/8Y3Xp0kXHHHOM/vSnP3nc1997O5z31Y4dO3TOOeeoe/fu6t+/v6677jq99957Ia1zP3TokK699loNHjxYiYmJ6t+/vyZPnqyNGzd6HPfpp5/q9NNPV69evdStWzdNnDhR//73vz1ewwULFkiShgwZ4vp3F+4a/fvvv19VVVV67rnnPAK6adiwYZo/f37A+x84cEA33nijjj/+ePXo0UN2u11nnHGGvvrqK59jH3vsMY0ePVrdunVTUlKSTj75ZL388sthvzaB7Nu3TxdffLHsdrv69u2r+fPn6+jRox7H1NXVaenSpRo6dKgSExM1ePBg/f73v1d1dbXHcYGWZHivHzffh//+9791/fXXKzk5Wd27d9f555+vsrIyj/sahqG77rpLAwcOVLdu3XTaaadp8+bNPo8R6msa6DPkyy+/lMVi0R/+8Aefc69fv14Wi0WrVq1q6uUEgGajkg4AzbBy5UpdcMEFSkhI0PTp0/Xkk09qw4YN+tGPfhT2uebNm6fi4mKtXbtW//d//+fxO8MwdM455+iDDz7Q7NmzdcIJJ+i9997TggULtHv3bo//E3n33Xfr9ttv18UXX6w5c+aorKxMjz32mH72s5/pv//9r8d03oMHD+r000/XBRdcoIsvvlivv/66Fi5cqOOPP15nnHGGJKm+vl5nn3221q1bp0suuUTz58/XoUOHtHbtWn399dcaOnRoWOObM2eOXnrpJf3617/W+PHj9f777+uss87yeT1KSkr0k5/8RBaLRVdffbWSk5O1Zs0azZ49W5WVlbr22ms9jl+6dKkSEhJ04403qrq6uskp2KtWrVL37t119tlnq2vXrho6dKhWrlyp8ePH+z3eXzOthIQE2e32oI/THi666CJlZWXpnnvucV0UWbt2rbZt26bLLrtMqamprqnWmzdv1n/+8x+PC0D+bN26VRdeeKFmz56tmTNn6vnnn9esWbN00kknafTo0UHvG8r76ocfftAvfvEL7dmzR/Pnz1dqaqpefvllffDBByE95yuuuEKvv/66rr76ao0aNUr79+/Xxx9/rG+//VbZ2dmSpPfff19nnHGGTjrpJC1atEhWq1UvvPCCfvGLX+hf//qXfvzjH+uCCy5QQUGBVq1apT/84Q/q16+fJIU9E+Kdd97RMcccE/D905Rt27bprbfe0kUXXaQhQ4aopKREy5cv18SJE/XNN98oLS1NkvTMM8/ommuu0YUXXugKz3l5efr000/161//OuTXJpiLL75YgwcP1rJly/Sf//xHjz76qA4ePOhxkWbOnDlasWKFLrzwQt1www369NNPtWzZMn377bdavXp1s14DSfrd736npKQkLVq0SIWFhXr44Yd19dVX69VXX3Udc8cdd+iuu+7SmWeeqTPPPFMbN27UL3/5S9XU1DTrNTV5f4Yce+yxOvXUU7Vy5Updd911HseuXLlSPXv21Lnnntvs5woATTIAAGH5/PPPDUnG2rVrDcMwDIfDYQwcONCYP3++x3EffPCBIcn44IMPPG7fvn27Icl44YUXXLddddVVhr+P5LfeesuQZNx1110et1944YWGxWIxtm7dahiGYRQWFhpxcXHG3Xff7XHcpk2bDJvN5nH7xIkTDUnGn/70J9dt1dXVRmpqqvGrX/3Kddvzzz9vSDL+93//12dcDocjrPF9+eWXhiTjyiuv9Dju17/+tSHJWLRokeu22bNnGwMGDDD27dvncewll1xi9OrVyzh8+LBhGI2v7zHHHOO6LRTHH3+8cemll7p+/v3vf2/069fPqK2t9Thu5syZhiS/X1OmTPF77rKyMp/n01Kvvfaaz/to0aJFhiRj+vTpPsf7ey1WrVplSDL++c9/um574YUXDEnG9u3bXbdlZmb6HFdaWmokJiYaN9xwg+s2f+/tUN9XDz30kCHJeOutt1y3HTlyxDj22GP9/nvx1qtXL+Oqq64K+HuHw2FkZWUZU6ZMcb1PDcP5ugwZMsSYPHmy67YHHnjA5zUIR0VFhSHJOPfcc0O+T2ZmpjFz5kzXz0ePHjXq6+s9jtm+fbuRmJho3Hnnna7bzj33XGP06NFBz93UaxOI+X4655xzPG6/8sorDUnGV199ZRhG47/jOXPmeBx34403GpKM999/33VboH8H3s/ffB9OmjTJ4+913XXXGXFxcUZ5eblhGM73YUJCgnHWWWd5HPf73//ekNSs1zTYZ8jy5csNSca3337ruq2mpsbo16+fx2MBQFtgujsAhGnlypVKSUnRaaedJsk5rXPatGl65ZVXVF9f36qP9e677youLk7XXHONx+033HCDDMPQmjVrJElvvvmmHA6HLr74Yu3bt8/1lZqaqqysLJ8qZY8ePTzWWickJOjHP/6xtm3b5rrtjTfeUL9+/fS73/3OZ1xmNTbU8b377ruS5HOcd1XcMAy98cYbmjp1qgzD8HguU6ZMUUVFhc/U3ZkzZ6pr167+X0AveXl52rRpk6ZPn+66bfr06dq3b5/fhm9dunTR2rVrfb7uvffekB6vrV1xxRU+t7m/FkePHtW+ffv0k5/8RJJCmvY8atQoTZgwwfVzcnKyRowY4fHeCCSU99Xf//53paen65xzznHd1qVLF82dO7fJ80tS79699emnn6q4uNjv77/88ktt2bJFv/71r7V//37X++eHH35QTk6O/vnPf8rhcIT0WE0xl1b07Nmz2edITEx0rX+ur6/X/v371aNHD40YMcLj79W7d2/t2rVLGzZsCHiupl6bplx11VUeP5v/9s1/v+Z/r7/+eo/jbrjhBklq0dr73/72tx6zPCZMmKD6+nrt2LFDkpSbm6uamhr97ne/8zjO+zNECv01Nfn7DLn44ovVpUsXj6VM7733nvbt2xdSnwoAaAmmuwNAGOrr6/XKK6/otNNO0/bt2123n3LKKXrooYe0bt06/fKXv2y1x9uxY4fS0tJ8QoDZ5dv8P7BbtmyRYRjKysrye574+HiPnwcOHOgz7TkpKUl5eXmun7///nuNGDFCNlvg/6kIdXw7duyQ1WrV0KFDPY4bMWKEx89lZWUqLy/X008/HbAbdmlpqcfPQ4YMCTg+by+99JK6d++uY445Rlu3bpXkDIiDBw/WypUrfabfx8XFadKkSSGfv735e+4HDhzQkiVL9Morr/i8VhUVFU2ec9CgQT63JSUl6eDBg03eN5T31Y4dOzR06FCf40LdHeH+++/XzJkzlZGRoZNOOklnnnmmZsyYoWOOOUaS89+C5AxegVRUVCgpKSmkxwvGXPJw6NChZp/D4XDokUce0RNPPKHt27d7XOjr27ev6/uFCxcqNzdXP/7xjzVs2DD98pe/1K9//WudeuqprmOaem2a4v35MXToUFmtVtc6ffPfsfffKjU1Vb1793b9e28O7/ed+fcx33fmub3HmJyc7PO3DPU1Nfn7d9S7d29NnTpVL7/8spYuXSrJeYE2PT1dv/jFL8J9egAQFkI6AITh/fff1549e/TKK6/olVde8fn9ypUrXSE90Nrf1q62S87/U2qxWLRmzRq/Hbt79Ojh8XOgrt6Gn2Z07cmscP7P//xPwJDlvfVYqFV0wzC0atUq/fDDDxo1apTP70tLS1VVVeXzWkUzf8/94osv1vr167VgwQKdcMIJ6tGjhxwOh04//fSQKsgteW+0x/vq4osv1oQJE7R69Wr94x//0AMPPKD77rtPb775ps444wzXc3zggQd0wgkn+D1Ha/2N7Xa70tLS9PXXXzf7HPfcc49uv/12XX755Vq6dKn69Okjq9Wqa6+91uPvNXLkSOXn5+uvf/2r/v73v+uNN97QE088oTvuuENLliyR1PRrE65An2FN9TUIJtDnX2u+d0J9TU2BPkNmzJih1157TevXr9fxxx+vt99+W1deeSWd3wG0OUI6AIRh5cqV6t+/v6sbu7s333xTq1ev1lNPPaWuXbu6qjvl5eUex/mrNgX6P72ZmZnKzc3VoUOHPKrV3333nev3klxN3IYMGaLhw4c367l5Gzp0qD799FPV1tb6VOLDHV9mZqYcDoerOm/Kz8/3OJ/Z+b2+vr7VK9gfffSRdu3apTvvvNNjv3HJWa377W9/q7feeqtDT2U9ePCg1q1bpyVLluiOO+5w3W5Wl6NBZmamvvnmGxmG4fG+N2c2hGLAgAG68sordeWVV6q0tFTZ2dm6++67dcYZZ7hma9jt9ibfQy0Jm6azzz5bTz/9tD755BONGzcu7Pu//vrrOu200/Tcc8953F5eXu5qZmfq3r27pk2bpmnTpqmmpkYXXHCB7r77bt1yyy2uLfGCvTZN2bJli0dVeevWrXI4HK7dC8x/x1u2bPH4N1RSUqLy8nLXv3fJWQn3/uyrqanRnj17QnpdvJnn3rJli8fMgLKyMp9ZHuG8psGcfvrpSk5O1sqVK3XKKafo8OHD+s1vftOs8QNAOLgUCAAhOnLkiN58802dffbZuvDCC32+rr76ah06dEhvv/22JOf/qYyLi9M///lPj/M88cQTPuc297f2/j+1Z555purr6/X444973P6HP/xBFovF9X+8L7jgAsXFxWnJkiU+lSfDMHy23wrFr371K+3bt8/nsc1zhjM+87+PPvqox3EPP/ywx89xcXH61a9+pTfeeMNvddJ7S6ZwmFPdFyxY4PO3mzt3rrKysvxupdea9u3bp++++06HDx9uk/Ob1Ujv94D36xxJU6ZM0e7du13/TiTn2vlnnnmmyfvW19f7TNnv37+/0tLSXFuAnXTSSRo6dKgefPBBVVVV+ZzD/T0U6N+d5Nyqz7zYFMxNN92k7t27a86cOSopKfH5/ffff69HHnkk4P3j4uJ8/l6vvfaadu/e7XGb97/hhIQEjRo1SoZhqLa2NqTXpineFx8fe+wxSY3/fs8880xJvu+n//3f/5Ukj+UiQ4cO9fnse/rpp5s9k2jSpEmKj4/XY4895vF6+Xtvh/qaNsVms2n69On685//rBdffFHHH3+8z0weAGgLVNIBIERvv/22Dh065NHwyt1PfvITV9Vl2rRp6tWrly666CI99thjslgsGjp0qP7617/6rBOWnMFCcjZWmzJliuLi4nTJJZdo6tSpOu2003TrrbeqsLBQY8eO1T/+8Q/95S9/0bXXXuuqGg4dOlR33XWXbrnlFhUWFuq8885Tz549tX37dq1evVq//e1vdeONN4b1fGfMmKE//elPuv766/XZZ59pwoQJ+uGHH5Sbm6srr7xS5557bsjjO+GEEzR9+nQ98cQTqqio0Pjx47Vu3Tq/1dN7771XH3zwgU455RTNnTtXo0aN0oEDB7Rx40bl5ubqwIEDYT0PyblH+xtvvKHJkye7Ko7ezjnnHD3yyCMqLS1V//79JTn3hH7ppZf8Hn/++ee7Qt7//d//aceOHa7w/c9//lN33XWXJOk3v/mNqwr4+OOPa8mSJfrggw/085//POzn0RS73a6f/exnuv/++1VbW6v09HT94x//8OifEGnz5s3T448/runTp2v+/PkaMGCAVq5c6fq7BKtuHzp0SAMHDtSFF16osWPHqkePHsrNzdWGDRv00EMPSZKsVqueffZZnXHGGRo9erQuu+wypaena/fu3frggw9kt9v1zjvvSGr8d3frrbfqkksuUXx8vKZOnaru3btrxowZ+uijj5qcbj106FC9/PLLmjZtmkaOHKkZM2bouOOOU01NjdavX6/XXnvNY19wb2effbbuvPNOXXbZZRo/frw2bdqklStX+qwj/+Uvf6nU1FSdeuqpSklJ0bfffqvHH39cZ511lnr27Kny8vImX5umbN++Xeecc45OP/10ffLJJ64tE8eOHStJGjt2rGbOnKmnn35a5eXlmjhxoj777DOtWLFC5513nquZpuTcqu2KK67Qr371K02ePFlfffWV3nvvvbAq2e6Sk5N14403atmyZTr77LN15pln6r///a/WrFnjc85QX9NQzJgxQ48++qg++OAD3Xfffc0aOwCErV17yQNABzZ16lSjS5cuxg8//BDwmFmzZhnx8fGu7cPKysqMX/3qV0a3bt2MpKQkY968ecbXX3/tswVbXV2d8bvf/c5ITk42LBaLx3Zshw4dMq677jojLS3NiI+PN7KysowHHnjAYxsi0xtvvGH89Kc/Nbp37250797dOPbYY42rrrrKyM/Pdx0zceJEv1s5zZw508jMzPS47fDhw8att95qDBkyxIiPjzdSU1ONCy+80Pj+++/DHt+RI0eMa665xujbt6/RvXt3Y+rUqUZRUZHfrZpKSkqMq666ysjIyHA9bk5OjvH000+7jjG3T3rttdcC/j3cXxdJxnPPPRfwmA8//NCQZDzyyCOu10MBtmCT17Zd5vZj/r78bZ3W1DZj7oJtwVZWVuZz/K5du4zzzz/f6N27t9GrVy/joosuMoqLi31e50BbsJ111lk+55w4caIxceJE18+BtmAL9X21bds246yzzjK6du1qJCcnGzfccIPrb/Sf//wn4GtRXV1tLFiwwBg7dqzRs2dPo3v37sbYsWONJ554wufY//73v8YFF1xg9O3b10hMTDQyMzONiy++2Fi3bp3HcUuXLjXS09MNq9Xq8XqYf9NQFRQUGHPnzjUGDx5sJCQkGD179jROPfVU47HHHjOOHj3qOs7fFmw33HCDMWDAAKNr167GqaeeanzyySc+r/ny5cuNn/3sZ67nM3ToUGPBggVGRUVF2K+NN/P99M033xgXXnih0bNnTyMpKcm4+uqrjSNHjngcW1tbayxZssT1mZCRkWHccsstHs/RMAyjvr7eWLhwodGvXz+jW7duxpQpU4ytW7cG3IJtw4YNHvf39x6rr683lixZ4nqtfv7znxtff/11s1/TUD9DRo8ebVitVmPXrl1NvpYA0BoshhHhLkEAAKDTe/jhh3Xddddp165dSk9Pj/RwAJcTTzxRffr00bp16yI9FACdBGvSAQBAuzpy5IjHz0ePHtXy5cuVlZVFQEdU+fzzz/Xll19qxowZkR4KgE6ENekAAKBdXXDBBRo0aJBOOOEEVVRU6KWXXtJ3333X5o37gFB9/fXX+uKLL/TQQw9pwIABmjZtWqSHBKATIaQDAIB2NWXKFD377LNauXKl6uvrNWrUKL3yyisEIUSN119/XXfeeadGjBihVatWBWw4CQBtgTXpAAAAAABECdakAwAAAAAQJQjpAAAAAABEiU63Jt3hcKi4uFg9e/aUxWKJ9HAAAAAAADHOMAwdOnRIaWlpslqD18o7XUgvLi5WRkZGpIcBAAAAAOhkioqKNHDgwKDHdLqQ3rNnT0nS7//9hbr06BHh0QAAAAAAYt3Rqirdc+pJrjwaTKcL6eYU9y49eqhLCC8QAAAAAACtIZQl1zSOAwAAAAAgShDSAQAAAACIEoR0AAAAAACiRKdbkw4AAAAAaD1xhkMJDocsMiI9lIgxZFGN1ap6S8vr4IR0AAAAAECz2OtqNPJIpRJCaIgW62oMQ992tavSltCi8xDSAQAAAABhizMcGnmkUsk9e6pHnz5SZ87phlR14IB0qFKf9+jTooo6IR0AAAAAELYEh0MJFot69Omj+C5dIj2ciOvRp48qqqqU4HDoSFzzQzqN4wAAAAAAYXOtQe/MFXR3FvM/LVubT0gHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AAAAA0OmU7t2rW6+7VqccO0KZ9p46aehQzbjgfP3r/fclSf/37LO6YPJkZSX304AuiaooL2+XcRHSAQAAAACdSlFhoaaMH6ePP/xQty+7V+9/8YVefucdjZ84UbdcO1+SdOTIYZ32y1/qmpsWtuvY2IINAAAAANCp3Dz/GlksFq35+N/q1r276/YRo0Zp+sxZkqTf/u4aSdL6jz5q17FRSQcAAAAARFx9ffs8zsEDB/TBP/6hWfOu8Ajopl69e7fPQAIgpAMAAAAAImZrgTTxBJsGdk/QxBNs2lrQto9X+P33MgxDw0aMaNsHaiZCOgAAAAAgYmZfbNP3WyySpO+3WDT74rZdlW0YRpuev6VYkw4AAAAAiIj6eqngO6vbzxYVfGdRfb0UF9c2jzlk2DBZLBZtzc9vmwdoISrpAAAAAICIiIuThh/rUFyc0fCz0fBz2z1mUp8++vnkyXpx+VM6/MMPPr9vr63WAiGkAwAAAAAi5rk/12loljOkD80y9Nyf69r8MZc9/Ijq6+t1xk9P1V9Xr9a2rVtU8N23evaPj+vsiT+T5NxH/euvvtL277+XJH379df6+quvdPDAgTYdG9PdAQAAAAARM2y49NGXdW06xd1b5jHH6B+f/EeP3HevlixcqNK9e9Q3OVljTjxR9z36mCTpT888o4fuvst1n/Mn5UiSHn76GU2bMaPNxmYxon3VfCurrKxUr169dOdX+erSs2ekhwMAAAAAHVK3+lqddKRS6ZmDFJ/YJdLDibja6qPavWOnvuhq1+G4eI/fHT10SHeMHaGKigrZ7fag52G6OwAAAAAAUYKQDgAAAABAlCCkAwAAAAAQJQjpAAAAAABECUI6AAAAACBshizmN5Bcr4PrdWkmQjoAAAAAIGx1FosMw1B9bW2khxIV6mtr5TAM1VlaFtLZJx0AAAAAELZai1X7rTZ1279fVptNFmvLwmlHZjgMVezbpwNWm2otLauFd9qQvnPnTiV07x7pYSAKDB48ONJDAAAAADoei0Xfd+2pHj+U60hRUaRHE3FHDen77r0lKunNc3phqbp37RbpYSAKvNPwX8I6AAAAEJ4aa5w+79FHXRz1snTixemGLDpqjZPRwoAudeKQPvAHm3rUd9qnDzdTt5VodVJvFaqQoA4AAACEybBYdCSObNVaOu0ruWfX++qemBjpYSAKZGRMVk5ZvtYNH6FCFUqiqg4AAAAgMjptSK9LrFBtYkKkh4EoUFy0VlnWUVJBvuzJKVTVAQAAAERMpw3pr409RgndukR6GIgC0zduVd7+XI3RJCV0tVFVBwAAABAxnTakn9DzV+rSvUekh4EosCr7VU1Yl6c98esVX9SbqjoAAACAiIl4SN+9e7cWLlyoNWvW6PDhwxo2bJheeOEFnXzyyQHv8+GHH+r666/X5s2blZGRodtuu02zZs1qv0EjpmTbp+lfOc7vm6qqxzouRgAAAACRFdGQfvDgQZ166qk67bTTtGbNGiUnJ2vLli1KSkoKeJ/t27frrLPO0hVXXKGVK1dq3bp1mjNnjgYMGKApU6a04+gRS7Lt0yQ1VtXzKnOV5kjzqKrHOmYNAAAAAJEX0ZB+3333KSMjQy+88ILrtiFDhgS9z1NPPaUhQ4booYcekiSNHDlSH3/8sf7whz8Q0tFiZlV9wro81SaWe1TVYx1r8QEAAIDIi2jyePvttzVlyhRddNFF+uijj5Senq4rr7xSc+fODXifTz75RJMmTfK4bcqUKbr22mv9Hl9dXa3q6mrXz5WVla0ydsQu9+nv7lX1WMdafAAAACDyIhrSt23bpieffFLXX3+9fv/732vDhg265pprlJCQoJkzZ/q9z969e5WS4jn1OCUlRZWVlTpy5Ii6du3q8btly5ZpyZIlbfYcEJvM6e/uVfVYl7ffeTEirWs6VXUAAAAgQiIa0h0Oh04++WTdc889kqQTTzxRX3/9tZ566qmAIT1ct9xyi66//nrXz5WVlcrIyGiVcyP2uVfVY515MYJ94wEAAIDIiWhIHzBggEaNGuVx28iRI/XGG28EvE9qaqpKSko8bispKZHdbvepoktSYmKiEhMTW2fA6JTMqnqs68gd7rmAAAAAgFgR0ZB+6qmnKj8/3+O2goICZWZmBrzPuHHj9O6773rctnbtWo0bN65Nxgh0Fh21wz2VfgAAAMSSiIb06667TuPHj9c999yjiy++WJ999pmefvppPf30065jbrnlFu3evVt/+tOfJElXXHGFHn/8cd100026/PLL9f777+vPf/6z/va3v0XqaQAxpaN1uM8pa5iWf7BatqREwjoAAAA6NIthGEYkB/DXv/5Vt9xyi7Zs2aIhQ4bo+uuv9+juPmvWLBUWFurDDz903fbhhx/quuuu0zfffKOBAwfq9ttv16xZs0J6vMrKSvXq1Uv3rP5CXbr3aOVnA8SWjZXOqnqiQ0rrEZ0d7vtZRykhPV2bj+zWuuEjCOoAAACIOkcPHdIdY0eooqJCdrs96LERD+ntjZAOhMcM6gOTukV6KH6V7T+stB5p6mcdpS19JHtyit45xjk1n7AOAACAaBBOSI/O+asAoka0d7j3Ny1/6rYS1qoDAACgQyKkA2hSNHe4Ny8guDe7y8iYzF7vAAAA6JAI6QA6NPMCgnuzu0B7vbc3LgwAAAAgXIR0ADHBfVr+hHV5KnYUK82RprSu6a4O8O3tnYb/EtYBAAAQKkI6gJgRrKoeiS3kWBsPAACAcBHSAcQc96r69I1blbffuVa9vbE2HgAAAOEipAOISWZVfVX2q66qensLtDaeoA4AAIBACOkAYlokt5Azq/jm1nBU1QEAANAUQjqAmBepLeTMKv6e+PWKL+pNx3kAAAA0iZAOAG3E39p496p6e3ecd78wQFgHAACIToR0AGhD3mvj8yqdTewi0XHevDDA2ngAAIDoRUgHgHZgVtXNJnaR6DhvXhhwXxtPUAcAAIguhHQAaCfu098j0XHevDDgsTb+YLVsSYmEdQAAgChBSAeAdmROf4/GjvMEdQAAgMgjpANABES647z72nizqv5OwzGEdQAAgMghpANAJ+JvbbxZVZ+6raRNtoYj9AMAAISOkA4AnYz32nizqp6RMbnVt4ajkzwAAEB4COkA0Am5r403q+qff7tCY+yTWnVrONe2bzSoAwAACAkhHQA6sUBV9dbCtm8AAADhIaQDQCfnr6reWvxt+0aDOgAAgMAI6QAASZ5V9dbSVIM6gjoAAIAnQjoAwKW1t4YL1qDOnP7emgj9AACgoyOkAwDaTLAGdaOLqlR0sLxVH48GdQAAoKMjpAMA2lywbd9aEw3qAABAR0dIBwC0C39V9eKita36GDSoAwAAHR0hHQDQrtyr6tM3bm3Vc9OgDgAAdHSEdABAuzOr6quyX23V8zbVoI6wDgAAoh0hHQAQMW3RTT5Qgzqq6gAAoCMgpAMAYkawBnXN2faNQA8AANobIR0AEFMCNahzbyoXCirvAAAgEgjpAICY5N2gzr2pXChyyugSDwAA2h8hHQAQs9wb1LlPfw9FlnWUErraNPHTPPZeBwAA7YaQDgCIec3Z9i1vvzPQs/c6AABoT4R0AECnEO62b+Z6dvZeBwAA7YmQDgDoVELd9q01u8SHgtAPAAAkQjoAAH61Vpf4UDGVHgAASIR0AACC8t57vdhRrDRHmtK6prfq49CgDgAASIR0AACaFKiq3ppoUAcAACRCOgAAIWtOl/hQ0aAOAABIhHQAAMISbpf4UDXVoI6wDgBA50BIBwCgGULtEh+qYA3qqKoDANB5ENIBAIgCwRrUNWfbNwI9AAAdEyEdAIAo0VrbvlF5BwCg4yKkAwAQZbwb1Lk3lQtFThld4gEA6KgI6QAARCH3BnXuTeVCkWUdRZd4AAA6KEI6AABRzKyqm9PfQ5G3ny7xAAB0VIR0AACinPv091CYgf7zb1dojH2SRhdVqehgOVV1AAA6AEI6AAAdQDhbvrl3iQ+293ooCPQAALQvQjoAADGGLvEAAHRchHQAAGIUXeIBAOh4COkAAMSw1ugSP/HTPNc0eYI6AABti5AOAEAn4F1VD4XZJd59mjxVdQAA2hYhHQCATsK9qh4Kcz27+zR59l4HAKBtEdIBAOhkQu0UH2qXeMI6AACth5AOAAD8CqVLvFlVDxWBHgCA4AjpAAAgKPf17BPW5anYUaw0R5rSuqa7OsCHgmnyAAA0jZAOAACaFKyqHs6WbnSJBwAgOEI6AAAImb+918PZ0o0u8QAABGeN9AAAAEDHkm2fpmz7NK3KHqZqq1SbWB7SV15lrrIOSBlVzi7xdQerVVhYGOmnAwBAVKGSDgAAmsW9qh4KusQDANA0QjoAAGi2ULdzkzzXs3/+7QqNsU/S6KIqFR0sD6tLPGEeABDLCOkAAKBdeHeJ966qh9wl/mC1bEmJhHUAQEwipAMAgHZDl3gAAIIjpAMAgHZHl3gAAPyjuzsAAIiI1ugSP/HTPLrEAwBiCpV0AAAQUS3pEk9VHQAQawjpAAAg4prbJT5vf67GaJISujr3Xje7xBPUAQAdFSEdAAB0KE11iXffez0UBHoAQDQhpAMAgA4nWJd4c/p7KNz3ZyesAwCiASEdAAB0WN5V9WJHsdIcaUrrmh7S/c392ZkmDwCIFoR0AADQoQWqqofC3J+dvdcBANGCkA4AAGKC997roTD3Z6dLPAAgWhDSAQBAzDCr6quyXw3peLrEAwCiDSEdAADEnFC3dAu1SzxhHQDQXgjpAACg0/K3nv3zb1dojH2SRhdVqehguVYn9dbWg/lNnsuWlCiJQA8AaBlCOgAA6PSC7b1+TVVVk/fffGQ3XeIBAK2CkA4AACC6xAMAogMhHQAAwA1d4gEAkURIBwAA8NIaXeInfppHVR0AELaIhvTFixdryZIlHreNGDFC3333nd/jX3zxRV122WUetyUmJuro0aNtNkYAANB5taRLPFV1AEBzRLySPnr0aOXm5rp+ttmCD8lutys/v7HDqsViabOxAQAAhMLfenb2XgcANEfEQ7rNZlNqamrIx1sslrCOBwAAaC/BusSz9zoAIBTWSA9gy5YtSktL0zHHHKNLL71UO3fuDHp8VVWVMjMzlZGRoXPPPVebN28Oenx1dbUqKys9vgAAANpKtn1aQ1gfo2qrXF3isw5IOQX5mrqtRHUHq1VYWBjpoQIAolBEQ/opp5yiF198UX//+9/15JNPavv27ZowYYIOHTrk9/gRI0bo+eef11/+8he99NJLcjgcGj9+vHbt2hXwMZYtW6ZevXq5vjIyMtrq6QAAALiYQX1V9jBtP1ysvMpcJe37RhlVNuUU5LuCOmEdAODOYhiGEelBmMrLy5WZman//d//1ezZs5s8vra2ViNHjtT06dO1dOlSv8dUV1erurra9XNlZaUyMjJ0z+ov1KV7j1YbOwAAQCAbK1/VhHV5GpjUTfHVvdXPOkpb+kj25BStTuotW1Ii098BIIYdPXRId4wdoYqKCtnt9qDHRnxNurvevXtr+PDh2ro1tD1J4+PjdeKJJwY9PjExUYmJia01RAAAgLB5773u3lTOfa06QR0AEPE16e6qqqr0/fffa8CAASEdX19fr02bNoV8PAAAQKSYa9VXZQ9TtVXKq8z1WavO9HcAQEQr6TfeeKOmTp2qzMxMFRcXa9GiRYqLi9P06dMlSTNmzFB6erqWLVsmSbrzzjv1k5/8RMOGDVN5ebkeeOAB7dixQ3PmzInk0wAAAAiZWVX3t1XbxE/ztG74CG09mB/0HLakxlmCVN8BILZENKTv2rVL06dP1/79+5WcnKyf/vSn+s9//qPk5GRJ0s6dO2W1Nhb7Dx48qLlz52rv3r1KSkrSSSedpPXr12vUqFGRegoAAABhC7RVW5Z1lEYXVTV9gqIqFfWoY+91AIhBUdU4rj1UVlaqV69eNI4DAABRwb2pXNn+w0rrkRbS/dIyJmvzkd1aN3yEq7JOWAeA6NRhG8cBAAB0Nt5V9drE8pDuV1y0VlnWUVJBvqtLPFV1AOj4COkAAAARlm2fJkmusB4KusQDQGwipAMAAEQJM6yHYlX2qz7r2V1V9YPV7L0OAB0UIR0AAKADCnXv9VAR6AEgOhDSAQAAOiiz8h6sqh4K1rMDQPQgpAMAAHRwwfZeD4V35Z2wDgCRQ0gHAACIAYH2Xg8FXeIBIHoQ0gEAAGKEe5f4cLZzy9vvDPRpXdOpqgNAhBHSAQAAYox7VT0UZqBn73UAiDxCOgAAQAwKZzu3ULrEE9QBoH0Q0gEAADq5ULrEv9NwLGEdANqWNdIDAAAAQHRwTpMfo2qrnF3iK3OVdUDKqLJp4qd5qjtYrcLCwkgPEwBiGpV0AAAAuATqEk9VHQDaB5V0AAAAeMi2TwtaVZ+6rYSqOgC0EUI6AAAA/DKD+qrsYaq2SnmVuSouWquMKptyCvJdQZ2wDgCth5AOAACAgPxV1YuL1irrgJRTkE9VHQBaGWvSAQAA0CT3terBtmoLFevZAcA/QjoAAABC4r1V25749Yov6u3RVC4Uq5N6s/c6AARASAcAAEBYglXVQ5FTRpd4AAiEkA4AAICweVfVza3aQpFlHaWErs4u8VTVAcATIR0AAADNZlbVJ6zLU21ieUj3ydvvDPQZGZN91rMT1gF0doR0AAAAtIj79PdQmIH+829XaIx9kkYXVanoYDlVdQAQIR0AAACtwJz+Hgoz0LtPk6eqDgBO7JMOAACAdsXe6wAQGCEdAAAAEWEG9VXZw1SbWK68ylxlHZAyqmzKKcgnqAPolJjuDgAAgIgJ1CXefe/11QerZUtKZPo7gE6BSjoAAAAizqyq504eQ1UdQKdGJR0AAABRIZSq+jsNx1JVBxCrqKQDAAAgqng3lXOvqtNUDkCsI6QDAAAg6rg3lau2SnmVuSouWusz/Z2wDiDWENIBAAAQlfxt1fb5tyuUdUC6pqiKqjqAmERIBwAAQFSjqg6gMyGkAwAAxChHfaRHELqmxuqvql5ctFZZB6Scgnyq6gBiBt3dAQAAYkxpUbxeWJKmkp2JShlUrcsWFat/Rm2kh+VXuGN1BnXn99M3blXe/lyN0SQldLUppyxf64aPUKEK6f4OoMOikg4AABBjXliSprJdCZKksl0JemFJmut30VZdDzbWQLLt03RC92k+09/dq+pb/5tPVR1Ah0RIBwAAiELNDdOOeqlkZ6IcDovzZ4dFJTsTtXdHvO6bk6kbzxiu++ZkqrQovhVH2zyBxhrsuZcWNT6PtdffpL8ee5rfrdrc16oDQEfCdHcAAIAo0tKp6tY4KWVQtcp2JcjhsMhqNZQ8sEYrlvpWrBc+u6OtnkaLxmqNC3wf78r7Zw/N1mnPTtKqylc1YV2e8ipzleZIU5Z1lFSQL3tyit4JY0xMkwcQaYR0AACAKOJv+vfCZ3fIUa+g4dXdZYuKXUHfYjVUsjPR4/fuFeumzhnO4zbn/u5jTR5Yo8sWFQc9l/tzcX8e5lr1CevynFV1t7XqU7eVhDTW1Um9VahCSYR1AJFDSAcAAIgSgULovbMzVVoUemW9f0atFj67Q/fOztS+3QkNtxoN/w2tYt3Siv7eHfFasbTp+5tjDeViQFOVd/emcu5V9RTrqCbHm5CerpwyZ+XdDOsEdQCRwJp0AACAKGGGUKvVGaitVkNxNocraIfaWE2S6mqk0qLG9d6SpeFLTVaspeY1dJMa14zfP3eISnaGfv9wZgkkD6yR5P95+NuqbU/8+ia/Pv92hd/17KxpB9DeqKQDAABEEe/p34GmdwcKte4V8DibQ456iwyjseq8YPmOkKa4h/u4Jvdwb14UCOf+TQm18u5eVQ/FhHV52hO/XvFFvT3Ws1NVB9DeCOkAAABRxDuE3jcns9mN1RwOi6xxhurrLK6qcyghuTkN3STfcG+yWAz1z2j6/uEI5VzZ9mkhn4+91wFEC6a7AwAARCEzhDY1vdvd3h3xHluaGQ6L6uusuv+vBVr47I6w1pSH87juY3afrm+ug++fEdr9I8mcJh9s73WmvwNoDxbDMIymD4sdlZWV6tWrl+5Z/YW6dO8R6eEAAACEJJSp4vfNyWxYB26uQzeUMqimRVutmY8b6lR174Zzv7m1WGlDQr844P24kbCxYTu3gUndVLb/sMbYJykhPV1FPeq0Oqm3bEmJVNUBhOXooUO6Y+wIVVRUyG63Bz2W6e4AAAAdQPOmmls08/aWVbD3FYfX5d2crm92d39w3pCwusMH6yrfXsE9WJf4nD4lHnuvE9YBtDamuwMAAMQA76nmFouhlEHVSs0Mv4rtzn2Ne2lR6F3eVyxtXnf4F5akqbThfiU7E/XAvEx9u6Gb7puTqRvPGK775mSqtCi+Gc8kPP66xOdV5ro6wE/dVuLqAA8ArYmQDgAAECPc15Gb68Ad9c0/n1mdd61xN5xd2vfuCB6Sve/n3t09lPsZrm3jpPo6q567o3mBvzWYQd17rTpbtQFoK0x3BwAAiBHuneH9TVPvl1YbcLq4v6nk+4rjFWdzqL7Ova5jaMXStKDr3JvbHd4aJ/XPqFZpkee0fUd94+O35nZuoTK7xP8rxzn9vTax3NlUzm2rtjfsbNUGoHUQ0gEAAFooUk3OAj2uNc5rmvquBD0wL1P1dVafwG6uHfe3BvyFJWmqr7d4nd0zJAcag/d+7011dzfXonsHdNdzshphBf624L5W3dyqzX7gV7r64Rx9X9JTvQf+oDPuKlDSoKOEdQDNRkgHAABopmBNziL5uN5N5AyHRfUNU8hLixoDe2OV3LmO3ZxKblbj/e15LhnqO6C2yYZy3vu9NzXV3X0tuvk4zi71hnon1yqxqxFy4G9LZlV9VbazA/z8v0zQ7v3dJEmVu7vq37cM1emPb6SqDqDZWJMOAADQTO7V6vZcK93U4/ruV97IMCyu6ev1dWaV3HfteKA9z0Mdg2lfcbzfpm/uod3fWvTGbeQsirM5K/MPrgl/v/e2km2fpo9+PlZF+9LlMJxlfYdh1c49dp32XQFN5QA0GyEdAACgGZrbHK29Hte9iVyczSGLxTewNwZhTwunDtMn79pVV2txPY57aN6/JyHk5+4d5p+5Ld0jtO/dEe+6IBDI/j3O6v++4vC6urf13+LkpIuVMqhaFqtDkmS11GtQ3z0aUW4opyBfU7eV0FQOQNgI6QAAAM3gXWm2Wp1bnrX1WulQH9ecbv7gmgItWL5D/TMaA7ss3tVxzwBfX2fRaw+n6GBJvNvvjQDfy3Ve7xDt74LC/j0JKi0yt1hL0P1zh+jumYNVfST4/y2tr7Pq+cWhzVQoLfJfvW8Lly0qVv+Bzsp+Su9i3Xrhw2zVBqBFCOkAAADN5F6tbmqtdCjbj4Va+fX3uMHuawb2m57Zrt7JdZLhDM3WODNk+zaHk7yr6IG+bxi/w9LktHvzv4bhef/9e+JVXtZ0q6TSotBmKrTnMgT3iyE5z7yof03u4bFVW0p+CVV1AGGhcRwAAEAzeTdH86epJm+lRfF65rZ07d/jDJV9B9Ro7l27A667dtR7Pm7pLv/n9/e4z92Rrv17GqvKFot00zPbG7q7J6gxdJuhWh4d1SV5HdfIcDTuoZ6a2Th27y7vdbUWHdgb7xbU5fd8jVX6xjHF2QyfjvLer713w7umtmxrrc781jjphO7TZI3z3Kotb3+uxmiSEro6q+qrk9iqDUBwFsMw/C1QilmVlZXq1auX7ln9hbp07xHp4QAAgBh335xMn/3C3fcYv29Opk9AThlU47MPuXfoPmdemd5entwQSBs7ofcdUKtbVxT6PG6/9Bq/25tZ4xyafWexXnu4v8rLnBcK4mwOXXB1qf75ZpLr8WbeXqz75w7x8wzNx/Y/du+t2jZ/2k0vLklz6ypvkWcgd97mb790qXEf9b4DnBcN9u9J8Lk4YXavlySLxVD/jKZfT/P+zQnt/s61q9dLkpxhPdEhpfVIU1rGZG0+slvrho+QLcn53AjrQOdw9NAh3TF2hCoqKmS324MeSyUdAACgjTRV1fW/zZn/yq/3FO7nF6XJUe+/qVtdje/jBtp/3FFv1RuP9VdiV2dQ7p9RrcsXOwPruDMrVVcj2Rp2RksZVO2n4u5ZETfH7r1F2znzyvSXp5IbxuFZI7LGGerRq16VB+Jd56uvs6jvgBodLIlvmHbvfCxzPbv7jAD3reNeWJLmNk1fslgNv8sQ/DW0s8Ubfmc8NBXc/U2vX/isc6s296p6cdFaZVlHSQX5sienUFUH4Bdr0gEAANpIU03eGruau4dW30Zw/hqw1ddZvaaMN/24zuqz7yTKA3sTXCFz325nyCwtite9szN109mNzdfOnlsm71Bujtn7+bkH19KiBD1za7rbhQKviwuGRT9UxnmMbf+eeO3fkyCLzzZyvmvjzYsf5sUJ963cHPVW1/MJ9nq6N7Qzg3YoDeia6rafbZ+mf+WM0arsYc7p725N5XIK8l1N5VirDsBESAcAAGhDTTWXu2xRsfoOaFzD3XdArc8x/kJ3nM3hZw/zhtvj/D/u3Lt2ezyWO++Qef9vM12hurTIGVrfeTo56HN1OCyqq7Vo7454j+DqvJjg/4KCeT/n9HTfCwC+swVMnhc2+g6o0UNXZnr9zvlf7+ZxTTW0M1+D5xc33YAu2IUY96CebZ+mVdnDVG2V9sSvd1bVD8jVVI4O8ABMrEkHAABoB01NmTYDXaBj9u6Ib2jw5m9NuqcH1xQEbKwmSQvOHKb6Ovfg3Lgm3Go1ZLEarjXdzeO+1jxwOPe9j4IcH/ycfVJrVF7qOTXem/m6+JuOX1drcU2tN3sHBHptJc/XNFi/AO+p8xsrX5UkTd+4VWX7D2uMfZIS0tM91qoz/R2IPaxJBwAAiDJNNSMLtTv8Tc9sd3VPH/mjHbp3trNBnFkFNvcrD9QEreaI/ATwxkCblFLr6jTvq6kg7X0+9+NCCey+v7dYDK9KvOd6eP+BumGLOavhEbq9g/nM2517nFvjPF9nc+aBOWXfPEdSSq0emJfpE769u/ybTfskz/XykrOqLkmrsl/VhHV5yqvMVZojzWOt+jsNz4KwDnROVNIBAAAiwF+A9nfb3TMHNzRJ8+zebiotitf9v82Uo76hm7nVUJ+UWp8maJJcIdR/2HZ2ZjcMBWwyF1g4FfPwmFXuAyXxHmvNTf0zqjXrjmKtWOobqL1fA/fQbY45WJM47wsk/qrt3l3jHfXSjWcM9xmn++wG08ZKZ1AfmNTNo6pe1KNOq5N6U1UHYgiVdAAAgHYW6tZd/rbrkhRwOzDPqrazwZn5WOa5zIAuOfcr378nQRaL73pss7prsUi+ZRqL3+ndoWmNgO574cBideiceWV67eH+bgHdGa4tFkOyGCotStT9c4eod3KNaxaAWQl3n03g3fHefBzvSrf739C9Qi55hu9A+6+ba9S9t93z995wNpVzfu9eVU+xjlJOnxKq6kAnRUgHAABogUD7bQfib7su83v327wrtE2dy336t8Nh8WmC5s59arz3fuLO55QQsHN84Kq5cy274WjuWnbfcxoOq55flNawft7zOGuc4XF7eVm8UgbV+FSs3ae4O5+vZxO7QGFbarzwYt4eavg2q/buU+cDMae/u2/Vlrc/V2M0SQldbZq6rYSt2oBOhpAOAADQINRquDv/e2T7D9iB9k33OMYrNPYdUOMx3b1PqnMNtdlBvZEzePbuX6uKfTa3defuFerGIG9pCPMma5yhmbcXy2p1nxbvj//wbrFIfVLqXFPMfcO8v8ZvTU+TD9TAzt+6en9jdv/7OBwWxdnMcO85DnMdvxT4wkuo4dt7jXooAlXVMzImK6csX+uGj1ChCiVRVQdiHSEdAAB0euFWw02BQnegcOZvKnS/dGcI9+62bobGuXftdqsEGzqwN0H3zclUXa1v0DR/77k9mZ9tzRwWyWt9d32dVffPHeJ6/v3SarXscvf18MEZhnOafZ/UGj+Pa7iFY3dNn9df9TvACNQ/w7Oy7f33MRwW1buet+fr8vziNN38nPPiSqALL+GE7+Zc8PFXVS8uWuvRVI6qOhD72CcdAAB0eoGmoDcl2B7ZgbjvX26xOtdU+9sj3ByDGQxTBlW71mWX7UpoWKvueZ/GEBxoT3Gjye/LdiXomdvS9cC8TD+P0bQDe+P93Gpxq3wHG5uvmbcXy96nzs99PI+Pszlfy/vmZKq0yDkG77+Pv/uZSoucF1fMYO+9b7y5Lt08byClRfG6b06mbjxjuMdY3Lmfyx9nVX2MVmUPc05/r8xV1gEpo8qmnIJ8157q7KsOxCZCOgAA6NRCCWXBuIfuptYfS/5Dt7/g6D4Gf2P01NTWaO7hPfj3jobGcyVFgbZh8/e4oYwhkEAXFpz+9lyyfqiMk+/sAM/j3S9guF9kcf/7+Luf5FyPb15cac6FF3fBLviEEuBN2fZpyrZP06rsYaq2SnmVuc6q+gEppyBfU7eVuMI6gNjCdHcAANCphdON25/mrD/2nobtHRwtVkP93cbgPUbfQNyS7uoOedZtGqbQB2wc16hPam3D9PqWjsEf5zhKdgaq5jd2eTcMi89FlntnZ+ryxcUef5/7f5upfbudr6HF0rAuv96q/hmeF1dm3u7c0i2Uxm/umlr+EE7/ApP7WvXpG7d6NJXzXqseCqbJA9GPkA4AADq9cLpxBxLO+mN/Fwbc9/Xu72cM7mNsXiD2t07dkO/ESn9Vet/HSxlU7Ty6ISSHvld6kOMsDsnwnhbv3WTO8wJFn1Rn7wBz/3LzuNIi57T9W1cUunoOlBY5O7zLYVFSSq0sFs8t7rx7E9z0zHalZjbdm8AU7IJPuP0L3Jlr1Vdlv+rRVM59rXooWM8OdAwWw/DdJTOWVVZWqlevXrpn9Rfq0r1HpIcDAACiSHOafTVXoGZ15hT3QOPYuyNeD/2/zIBdzxt5V9tDDdHBzte4ddsNT+7Q/XOHtOg87qxxDjnqQ2sQ59QYgj0vYHjqn1GtmqMWlZc1dsi3xhkNe8sbHueR5BOwQ9kKz/19E6wJ4X1zMpt1fncbK51BfWBSN5XtP6wx9klKSE8P6b6bj+zWuuEjZEtyvk6EdaD9HD10SHeMHaGKigrZ7fagxxLSAQAAIqS0KF7PL3ZWeFMGVevsuWV65+lk188zby9W/4G1HoHduZbZfR9zQxaL/Oxr3tJQ7sbiUEpGrbPKn1HtmkZ+4xnDQgzWTWnZWB9cUyBJuvGM4T6/a6z0N//cgS6YBAvk3hd8HPWee7aHs4uAt42Vr0pydoBPdEhpPUJrdNjPOkpb+sjVJd6WlEhQB9pJOCGd6e4AAAAR8sKSNO3b7ZxuXbIzQc/dPtD1u5KdCa5Kdd8BNZp71271S6v1Uy22qF96tcp2+d4eXvg1JIvhNt3c7faG2258arvSjqnV3h3OBmjOanRLNDecN0597zvAGXJ995RvODKEgB6skh5sZkWwNebBKuv90mpbNGPD31Ztocjb75wmn9Y1nb3XgShGSAcAAGgDwabOm1PagzWPc/95/5541z7e/tY8L3x2h67/ZZbb/fyF36YCsb9mcWaV3nnR4MErhjRMSzeniruftzmBuzmN7zwngR4sjdeNZwxXyqBqXXB1qd5entzwujZOZffthu9+LotHH4JQexOEusa8Oc3iQuXeVC4U7L0OdAyEdAAAgFYUbAq09+/6Dqhxa3gWjMW1B/g588pcQTR5YI3OmVeme2dnynvPdM//en/vHagDBWyLGhdGNnRPrw/U2C1UzbmA4Dkm9+/NCx6lRQl6e3myFj67Q3t3xHt0Z68+4n9NesqgGp8lBaF26g9lV4CWNIsLlVlVD0UoXeIJ6kDkEdIBAACaIVDQClY5df+dubWY2W08eHB2fl+2qzGImo9/35xM15T50Kvagav2zdeckB3ufQM/L8NwBuC9O+Jl9ZqFf9G1jRX2lEE1rinn7mvE3dfahxqgm9oVoKXb+7W2ULrEv9NwLGEdiBxCOgAAQBiaahYWqHIq+Z/e7my81vizqWefOh06EO95bMP5irfHK21IbZP7rYcuUPg1FGczQugk31qPF8rvg/9uxdI01dVaGtamOy+GvPl4f926otCnc75zWzbnBY7SokQ9MC9TC5bvCNjMzfvCjPse7IGCd2ts79fazGny5vR396r6xE/zqKoDEUZIBwAACENTzcKCVU7jbA7V13l2Q3fv0u7eDM0Wb6jqoL89yA09OG+Iq/u7++M5O5lL3hX4YHr1q9Ghgza3iwWN97PGuQf01tvCLRhrnEOSvMZjanpZgL/Gevv3JHhMgTdfO+9j6+usfteMh9PF3Vv/jFotWO7ZTC4aZNun6Yfzp2lVJVV1INq09mVRAACAmGVWrs015N6VcslZOTU7hbtXTh31agi8vuux42wOj1vq65znbQzwvmvLze7vRw9bnV3ZJa+A7v29f5UHbH66tHtX+VtDaONy1Fua6BrvvXuw4Xr+Fqvva2l68U7Piysrlqapf0a1z3Hef0/J/4WZ0iJnh/sbzxjesC1evM+53I95YJ7/YyLNWVUfo2qrnFX1ylxlHZAyqmyauq1EdQerVVhYGOlhAp1KREP64sWLZbFYPL6OPfbYoPd57bXXdOyxx6pLly46/vjj9e6777bTaAEAQGdnVsqtVmcotFoN589+pkA/uKZAC59tnDpt3tc7ZDZWqxsDubPJmXcY9eY8vmJffMAp86EwHGandn+PF17gD+HRvP7rT1PT4H0Pj4tr/Hs4Zyr4Ki3yvbgy645ij1Bv8fP3DHRh5vnFvsHdm79wH43MoL4qe5iqrVJeZa6Ki9Yqo8qmnIJ8V1AnrAPtI+KV9NGjR2vPnj2ur48//jjgsevXr9f06dM1e/Zs/fe//9V5552n8847T19//XU7jhgAAHRmgSrl3vxNbZ55e7G8Q6izy7hn8HcKJxQHW7/tp/Ls9/6tWTUPpPkXExrv53Vfw+Kakh9opkLfATXqn+F7cSU10zkV3XnxROofpPmb9339hX73Cnwosy6iSbZ9mk9VvbhorbIOSDkF+VTVgXYU8TXpNptNqampIR37yCOP6PTTT9eCBQskSUuXLtXatWv1+OOP66mnnmrLYQIAAEgKrVlYIKmZtX7XrHs3F6urtbhtzRbqdmn+mPf3vi2SmnMRItB53J+f79p+yaK+A8zt7xJdnfTdL640t/mbWSUP1LU92jq7h8p97/UJ6/JU7ChWmiNNaV3TPbZqk1irDrSViFfSt2zZorS0NB1zzDG69NJLtXPnzoDHfvLJJ5o0aZLHbVOmTNEnn3wS8D7V1dWqrKz0+AIAAGipUMOWd+XUXyXee4r83Lt2q196TcM9WrJdWkubvbU2czytueWb9/k8z71/T7z273WuBTccFqUMqvbbwb2p5m/eSxhCmVER6qyLaENVHYgsi2EYTS14ajNr1qxRVVWVRowYoT179mjJkiXavXu3vv76a/Xs2dPn+ISEBK1YsULTp0933fbEE09oyZIlKikp8fsYixcv1pIlS3xuv2f1F+rSvUfrPRkAAAA33h3BZ95erNTMxmAYSiX+vjmZrkps9AXulmjN5xJ4+7hgj+Hdpb25Qvk7NmfWRbTYWPmqJGn6xq0q239YY+yTlJCers1Hdmvd8BGyJSVSUQdCcPTQId0xdoQqKipkt9uDHhvRSvoZZ5yhiy66SGPGjNGUKVP07rvvqry8XH/+859b7TFuueUWVVRUuL6Kiopa7dwAACD2tNaaYfemYWYndrMLeKihzb0SG5hzzXWf1Br5X38esXqMm7acch/oXMHW6YfXyC3YeyKUv2NHDehSY1Xdu6mce1WdpnJA64r4dHd3vXv31vDhw7V161a/v09NTfWpmJeUlARd056YmCi73e7xBQAA4C2ULbVC5d00zH3btAfmhf4Y5jTr+/9aoGBhdNZtu3Vgb4KfY8KZWm7IYvW/fVnLtXR/dff/tlTojdya856I1sZwLRVsq7aJn+Yx/R1oRVEV0quqqvT9999rwIABfn8/btw4rVu3zuO2tWvXaty4ce0xPAAAEMNac7ss747gjRo7kZfsTNAzt6WHdD5bgv/t28yfX7ovraGS3jLO7diCHqHWqc4bAb731b2XOR093KDf9BjjbA7tK24M3nVeL2E474nWvMgTrbLt0/TD+XdTVQfaWMghvbi49Rtd3Hjjjfroo49UWFio9evX6/zzz1dcXJxrzfmMGTN0yy23uI6fP3++/v73v+uhhx7Sd999p8WLF+vzzz/X1Vdf3epjAwAAnUdbbJflOVXd/7Zn+/ckNPkY5u/9bd9m/ly2K0EWizz2/PZ93NaoRFvUOo3fvDuxB3b0B5sCj725+607ORwWvbAkTd9u6KYFZw7TTWcP14Izh+mTd+26d3ZmWO+JYIE+1qrrwarqNJUDWi7kkD569Gi9/PLLrfrgu3bt0vTp0zVixAhdfPHF6tu3r/7zn/8oOTlZkrRz507t2bPHdfz48eP18ssv6+mnn9bYsWP1+uuv66233tJxxx3XquMCAACdS6C9sFuylticqn7TM9uVMihwlbt0l/+Kq3tl9t7ZmbJazRDuG0wdDmfgt/et8/pN4K7nviLRlK7pxwy093nozecCT5c3GoL3c3ekqb7O0vB4Fr32cIr27U7wuF+w90Sgizx7d8Rudd0M6t5V9Ywqm3IK8l1BnbAOhC/k7u5PPPGEFi5cqNNPP13Lly9Xnz592npsbaKyslK9evWiuzsAAPDg3Y29NTp/u3PUS/dcNlgH9sbLvZKcMqhGC5/d4XO8M9QlyDCcx8bZHK6p8t6sVkMWqyHDYQmyt7rkP9S2dtd49/O11rlbfp6UQdUq2encK93hsMho2Lu8X3qNSosSQ7q/93vCvQGgeyd+c090ST63+ftbd3QbK1/VhHV5GpjUTfHVvdXPOkpb+kj25BStTupNB3hAbdTd/corr1ReXp7279+vUaNG6Z133mnxQAEAAKKFv72wW0tpUbwemJfpp7mb5xRq9/+W7Ex0BXTJWVGOsznc1rm71VkshurrrD6N6kzWOEPWOP/r2Vu/gh6set+cJnDeoT/Ycf6lDKp2/W0XLN+h/m57l1++uNjPDAX3dfeGrHEOj/eEv/Xn3nuiz7y9uNWXUEQr96r69sPFyqvMVdK+b6iqA81kC+fgIUOG6P3339fjjz+uCy64QCNHjpTN5nmKjRs3tuoAAQAA2lNbbJflvl7ZPRyb1dV9xf6q+NU+Fd76Oquf2w056oNXrh31VnkGZPd15c2psjc34Pu/iBCapqrp/l+DOJtDly0qdlW9zYsx5s+lRfHqmVSv8rJ4P+dyfu+ot3hUzf2tP1/47A6P80rOiwPelfSOvB1bMNn2aZKkf+VIE9blqTax3NlUzjpKKsh3VdULVUhVHWhCWCFdknbs2KE333xTSUlJOvfcc31COgAAABqZVfFGjQHQrLi+sCRNpa491RP1wLxM9UzyXF9usRrqP7BGC5bv0I1nDJf/wOsvqHqHcv/N5/wLdw9yf8zH9zemUKaxe4871LAu9c+o1rlXlPldxuAeuCv3B/7/sxaLof4ZjeHa++/pXiG3xnle5LlsUbHrsZMH1uiyRa3fiDnaOKvqzu+nb9yqvP25GqNJSuhqU05ZvtYNH0FQB5oQVsJ+5plndMMNN2jSpEnavHmzq8EbAAAA/DOb0nlXVGfeXqwVS9N0/9whPvepr7N6VXadYfGceWU+5/PPO7i39rrzcLTldPrA7v9rgaxx0rLLB2v/HudraW57d+uKQkn+LqCYnMsDHPVWGYZFdbUWlRbFu8J9UxXyQFX7zsKsqq/Kdq5Vz6vMVZojzaOqbi6cJawDvkJek3766adr4cKFevzxx/Xmm28S0AEAAELkvV75skXOgO47Bd6dZxh11Fv09vJkn/MFX0/t/1y+mrM9m/v0+VDWmvur+HtPufc39vDH1qtfjR660rlmfP8e9z4Antve+e5n7/xvyqAa2fvUuX7evyfeY097f39PKfBe6Z0poLsLtlXbxE/z2KoNCCDkSnp9fb3y8vI0cODAthwPAABAzPGuqAabAu/kr/LtnFZ97+xMXb642HW+fcXOpnTmFmL+zxfsvMGODybYdPvw9M9wdlg3q9fhj63xecXZHLLFy+0CSGClRfGqq7V4NNzrO8A5y8FzhkNjuA9WIQ+0Vr0zc5/+TlUdCE3IlfS1a9cS0AEAAFrADHT+9mXvO6BG/TOqJUm9k2sVqKK8b3eCnl+c5jpPv7Rar63ZmrPGvK00PL8492q/Z7XcGufQ5YuL1S+9WkbA6ftNcd4vZVC1bnhyhzNQ+z2Xs1O7+3p055Z4jQ7sdTbxC4X3FPfO0s09XNn2aUGr6lO3lVBVB9yEHNIBAADQerynTM+9a7dufs65TVhiV0MWn4zZGP5KixJd06n9T9kOd4p4c6a7h6JhzPUWxdnMwO75WI56i+6dPVj7dntuOec6g8VoCPmhsVq9Xw/P8Tjqrdq7I97vNneSZBgWle1KlPc0/r4Dgndm93fhJWVQdaed6u6P+1Zt1VYprzJXxUVr2aoN8EJIBwAAaGUtrZ76C4/e677LdjmboN03J1MlOxNlaQiHfQfUqu+AWrdjg60Xb8290oOvR6+vsyoppaZhOrv3FPnAj98ntVY3Pb1DKYOqgzxG42vywpI0jwsgnlV857ErlqY1TFuvbvJZSc416nPv2t3kcYHWqqORv6p6cdFaZR2QcgryqaoDkiyGYbTVpdOoVFlZqV69eume1V+oS/cekR4OAACIIaVF/vY7r/V77H1zMn06hJvrl91/19R2ZRaLIcNwnqNfeo0uX9y47VcwFqujYXq5+znbsgt8cy4IOMeTMqha58wr01+eSvbZO96fB9cUuNb+33PZYB3Y67s+/cE1BW7r+QPXre79S4ESuoYxZKnTdXNvro2Vr0pyrlVPdEhj7JOUkJ6uzUd2a93wEbIlOf/WrFVHLDh66JDuGDtCFRUVstvtQY+lkg4AANBK/DUO86ep9cuXLSpWv/SahqODdUKXq+JuToN333Pd3/FWq6H+GdUyHN4Vbfn5uSnh1HqCV8wD30cqKUrQ84vSggR0zynm7vwFdHMaev+MWi1YvqOhQ77vOeNsjrADukRAD5V3VX1P/Hqq6oAI6QAAAK0inMZhTa1f7p9Rq8sXF3uER4vV8AmT1jiHxzn6Z1Q7p8o7vKeTy7UmPHlgjWbdUexn+nj4a9nNc4bG/7E9etfI/UKCxepwTd1vvKvFrdodeIu5Xsm1qqu1uLZAy9/Yzec1i7M5PKah98+o1Q1P+uvAbtEspqu3C/e16t5N5dzXqgOdBSEdAACgFYTbOKyp9csvLEmTo74xbFutRkNQbaysO+qtHue4fHGxTyXZdN87W3XTM9tlGNL9c4eo+ojFo4lbz6Q6Ba90uzdwc96vvs4iizW0pm7+XwdDVqvnY/bqWx+g6ZvJvSLvPM5icV7AOFiSoP17nN3ay3Y5q+8er2GcQwuW71C/NM8lCKmZtR5/O4vF+bcbefLhdunOTgf4xqq6d1M596o6TeXQWbAmHQAAoJWEsybd5G/9sqNeuvGM4T7H9s+o1r7djevY+6XX6ObnPPfrLi3yXGdtsRjqn+G8COC5/rpx/bnFaqj/wJqg69itcYYcDkMywq3xeK+pd1/3HvoaePe198kDnXuZr1jqfK3jbA45HJaQtnDrn1Gt0qJE9c+o1uWLG/8+e3fEu87Xd0CN6uuk8jLnVPm+A5yN45r6W4arOe+XzmBj5auasC5PA5O6qWz/Yb9r1Vmnjo4mnDXphHQAAIBW1hqNw/w1lrtsUWNTuDibQ/V1Vr/hrrQoXs8vdq7hNn8fSjM5/9zDteQvVPcdUNNQwW5p0zn3x3A+rsViqE9qrWzxht8wW1cj3XS27wUN59ZthgyHxfUaWqyGHPUW1zr+OJtDly8p1tvLk13nbgz/CXK/mJAyqLGxX2sJ1jyws/NuKpfWI039rKO0pY9kT07RO8ekSKKpHDoOQnoQhHQAANARBKuyhhruzIsFgSrz7voOqNHBUlvDFmmh8w66TVfHw+vybo1zaPadxRr5o8Oqq5FsDX3gzCnivh3anY/fd0CN6mqlin2N1fD9e3ybyMXZHB5Bvl96TcAGdWbX+NYQ6G/Smo8RCwJV1Yt61Gl1Um+q6ugwwgnptnYaEwAAAMLQP6NWC5/d4VOVNxvUuX5uaFDnHmBN5v2scf6q3Y1hOs7maFZAl6T6eoveXp6shc/uUM0R6eZzg18M8N3yzbzNO7w3jM+w6I3H+is+wXCbim5ReVl8w3NzuJr1OZ+LoVmLduvFJWkewd0Wb7imunuM3237NbNDfsqgar+V9NYMz2YPA++LLQR0T86mcs7vJ6zLU15lrtIcacrImKycsnytGz5ChSqURFUdsYPGcQAAAFHMO6B7N6gzu77fdLazo3lpUbzH/f03JTNcndn7Z1SrV7+6EAJ6gO7vhvMiwX1zMnXzucMVZ/PTnT0g9yZw3lu0NXbJP7A3oSE0S/v3xKu8rLHO5Ki3Skbj/errrHrn6WSvvc+dY5x1h/+O+d7N/i5bVKy+AxqXD/QdUOvT2K81NNU8EE7eW7XVJpazVRtiGtPdAQAAopz71Pf+GdU694oy1/Rya5yjoYO5sxrdd0Ctbl1R6DNdPtB69GC/c3JWtM018P7E2Rwea7097xPK/ujO9eP+LxSE3lzOrEb7ez79M6p109M7tK/Y83U5Z16Zx5p092UF5gWOUKrbLelD0Bo9DDoL77Xq/prKSVTVEX1Ykx4EIR0AAHQ0zgp5gkfDswXLd6hPSq3fpmkPrinQA/M81617Nk1rnFrur6FaI0Nz796tt5cnu84VcFq6F2ucQ5ctLtZztw/084wCBe9QOr8HDu3uTfJKdyW4ur3H2RzqnVyn/XsSXMf0S6v1O0shXHRojwz3terx1b09msqxVh3RKJyQznR3AACAKGauQTe8pnS/sCQtYKg072Ou1XY4LKqvs7qdo7G6bf6uX7pz2rU5Hbx/RrVufq5QI7IPe5zLd1q6/O6V7qh3TjvvO6BGjcE+9NpQnM1Q3wE1bnumO//rnIbufh7nlPUH1xRo4bM71D/DOTW9f8M08pRB1eqdXKeDJW77py/2fe2aW8l+YUmaynYluM79wpK05p0IYTGnv6/KHqbaxHLlVeYq64CUUWVTTkE+09/RodE4DgAAIIrtK473O9XcnNLt2RDOWWV+6MpM9UmtUXlpvE/126ycmx3NLVZDVquhsl2JAavMwaetm/uT+1a4S4sS1Se1xuceVqvk8M31Hvevr7Nq9p27XXuXpwxy7o2emlmrbzd003N3pMlRb1WczdDlS4o9xuvedE/y7KJuNoe7b05mk1XvpqrrgZr4MX29fWTbp0mSVmW/6tFULss6SirId27V1nAsVXV0JFTSAQAAotgLS9I8updLzoZnKYOqZY2T5t61WymDPINwyc4EHdib4NbAzbdybjYss1qNhgDeWAn2ngbuvEDQ1Lpw39/3z6jWgb3uXdIbx+DkXiU3fBq4pWY6w7ZZJU/NdAbqkT86rAfXbNX9fy3QA+9u1cgfHfY7Imucb6M98zGDVb1Li+J135xM3XiG/2Z87ud3P7fV7e+C9uPdVM69qj7x0zyq6uhwCOkAAAAR4r/zeqO9O+KdU929QnpyemMn8P4ZtVqw3Nwj3TcMN3Yz9wySC5/doRuXb/cI4O6VYJMZRL2nmHvyP429sZu6Z0C2Wr3XtTsvIvTu7wzh3p3OA4XeUMPwZYuKXdP5gz1XUzhT2OnQHh3cp79XW6W8ylyfDvCFhYWEdXQITHcHAADw0tbTlUNtNrZiaZq8m6mlDKrRwmd3eBxnBmn35nKSZDgsqvcO+G5B8v/u9n9+7+d+2aJiPXNbuvbvcQbXvgNqXd87+TackyxasTTNZys0cwzVR8y9zhsfOz7B0INrCpp87UN9/cy/Y/+MWt383A7dNyezyX3Jw53CHmg/e7Q/c/r7v3Kc3d9rE8uVtz9XYzRJCV1tmrqtRKuTeqtQhUx/R1Sjkg4AANAg1GnOLRVKpbYxLHruHT7zdv+V2ssWFatParCu4s7zzLzdGWjDOX//DOe2bg+uKdCDawp064pCP1PIfavpZbsSfPYh75/hrOLH2RrHZD528K3gGjX1+gX6O4ZS9W7uFHYCevQIVFX3bipHVR3RipAOAADQoD06dfvrvO5v2rV3WLRYGtdp+9M/o1a2eO+w7PuzszofOIwGOr95HzOMugde347v/jvHJw+s0eWLi+Wol1cl3nwOTYfhUF6/QH9Hs+rt3gnen7aawt7U8ga0nmz7NJ+16t7T31mrjmjFdHcAAAC1X6duMxw3Ne1akmvP75KdieqfETwseo/fyXsaumegdT9/S8JonM0hh8O9y3vjY8fZHLp8sW/H+JRB1T57mV++uOnHb+r1C+Xv2NTfs7WnsLOXeuQ4g7rz++kbt3pMf88py9e64SNUqEJJdIBH9KCSDgAAoPbt1B1qpbapyq+/Bm/ulXd/+g6o0QPznFPBX1iSpssWFTdZWXZX11A8d69WO+otrsftO6BW1rjGx3bUW/zu6e69l/mC5aE9vnnfQK9fa/4dW+tvz17qkWVW1c3p73vi11NVR1SzGIbh/xM8RlVWVqpXr166Z/UX6tK9R6SHAwAAokh7Vzz9VWpDqd4GGqf37XW1Fh3YG+9qJhdnc6h3cp0OlsR7VKG9G9H58+2Gbnp+kbMRnDXOIUe9b63n/r86m76570tuCtQQriXV6kD3jabKtaM+vNcDbWtj5auSnFX1sv2HNcY+SQnp6dp8ZLfWDR8hW1IiFXW0iaOHDumOsSNUUVEhu90e9FimuwMAADRo707d7o8RTrD0V5k1K+Hu428M1hZZ4xyatahYz90+0HWecKb0m+eRnNVxz2nthuJshmwNy8xDnc7v/RqEK9B9o6njejjLG9D2zA7wq7Jf1YR1ecqrzFWaI01Z1lFSQb7sySl6p+FYwjoihenuAAAAXiIRoEKdEh1K4zRz/G8vT27cY92w6K/PJDdrKnhdjTz2U29sFNf4c32dVffOdnZSj5a9w6MlCEfL64FG3k3l8ipzlXVAyqiyMf0dEUclHQAAIMLCaVoXamU20Dlvema7ViwNr1mcLcE5Vd5ZSW+solutarhY4NwXfd/uxqp+oEp2NFS321s0VfbRyL2pnHtVPcU6Sjl9SqiqI2KopAMAAERYuM3OQqnM7iuOV5zN4frZfQu3prYh87dV2OVLihVnc44vzmboomtLvLZg863qe0/nD7YHfWfYnoyAHn38bdVGVR2RRuM4AACAKNCcZmfBKrP3zcn02eKsqQ7qoYyhrkauteeSdO/sTO3b7VnVX7B8h8+47puT6VP9X/jsjqhq8obOzWwqN2FdnhIdUlqPNKVlTPZoKidRVUfzhNM4jko6AABAFGhquzV/AgV0c6q7az26nGvK+6UFP2co6+LdA7okXb64saqflFKrulqLT7U82Dr6ph4zUhX2zlDZhyd/VXW2akMkENIBAACiSGtMiW7OXuGhNKTzx/3igi3e0MESZzB3D9yBxiMFfsympse3lUg9LqKHGdRXZQ9TbWK59jm+cU1/P/9gOUEdbY6QDgAAEIPC7SjenGDvLVjI9zeeYI8Zarf71hapx0V0Mbdqk6QTMrO0z/GNJGncoBN1/sHyCI0KnQXd3QEAAGJQczqKX7ao2LU+PNytwprqOh9oPP4eM5xu960pUo8LAO4I6QAAADEsnHDZ0q3CQgn53ucN9JihbDPX2kLd3g4A2hIhHQAAoINqqwpvc89pBm7vDvDNecyWVPVbIlKPCwAmQjoAAEAHE63blrXmuFpa1W+uSD0uAJhoHAcAANDBtHdzs1C3I2uLcUUqKBPQAUQKlXQAAIAOpD2bm4VTGafpGmLRroOHJW1QWdVh9du9W7skqYec27CpUIMHD47sABGTqKQDAAB0IK2xVVqowqmMt+e4gPbgvl96tVXKq8xVcdFaZVTZlFOQ79ovnT3T0doI6QAAAB1MuHugN4dZGQ+073mkxgW0p2z7NFdYr7ZKtYnlKi5aq6wDUk5BvqZuK3GFdaC1MN0dAACggwm3uVlzppw3Zzsymq4hVjmDuvP7CevyVOwoVpojTWld05VTlq91w0eoUIWSxBR4tBiVdAAAgA6qqSBcWhSv++Zk6sYzhuu+OZkqLYoP6/zNrYwT0BGLqKqjvVgMwzAiPYj2VFlZqV69eume1V+oS/cekR4OAABAm7lvTqZPJXzhszvCOoc5vZ3gDTTaWPmqJGn6xq0q239YY+yTlJCers1Hdmvd8BGyJSVSUYeHo4cO6Y6xI1RRUSG73R70WKa7AwAAxKCWdluP1r3YgWiQbZ8mSVqV/aomrMtTXmWu0hxpyrKOkgryZU9O0TsNxxLWES6muwMAAMSglnZbb++92IGOyHv6e15lrrIOSBlVNk38NI/p72gWQjoAAECMau6a8uZ0dgc6q2z7NP1w/t0+W7W5r1VnqzaEg+nuAAAAMaq53dab09kd6OzMDvAT1uU5q+r7czVGk5TQ1aap20q0Oqm3ClXI9Hc0iUo6AABAjGtOuGbPcyB85vR376p6RpVNOQX5runvVNURDJV0AAAA+GDPc6B5zKZy7lX14qK1Hk3lqKojGEI6AAAAAiKgA81jTn+XnGG92FGsNEea0rqmK6csX+uGj1ChCiXRAR6emO4OAAAAAG0g2z7NpwO8d1M5OsDDGyEdAAAAANqQ+1p1763a3NeqAxLT3QEAAACgzZlr1Vdlv6oJ6/KUV5mrNEeax1r1dxqOZfp750YlHQAAAADaiff0d/eq+sRP86iqg0o6AAAAALSnbPs0/XD+NK2qpKoOX1TSAQAAACACglXVaSrXeRHSAQAAACBC3JvKVVulvMpcFRet9WkqR1jvPAjpAAAAABBBbNUGd6xJBwAAAIAo4Azqzu8nrMtTsaNYaY40pXVNV05ZvtYNH6FCFUpirXoso5IOAAAAAFGCqjoI6QAAAAAQZdzXqns3lXNfq47Yw3R3AAAAAIhC2fZpkqRV2WzV1plQSQcAAACAKBZsq7aJn+ZRVY8xVNIBAAAAIMp5N5Wjqh67qKQDAAAAQAfgr6mce1WdpnKxgZAOAAAAAB2Ie1O5aquUV5mr4qK1Pk3lCOsdEyEdAAAAADoYtmqLXaxJBwAAAIAOynuterGjWGmONKV1TVdOWb7WDR+hQhVKYq16R0ElHQAAAAA6MKrqsYWQDgAAAAAxwH2tem1iufY5vnE1lTv/YLkkEdQ7AEI6AAAAAMSIbPs01/cnZGZpn+Mb188X6mgkhoQwEdIBAAAAAIgShHQAAAAAAKIEIR0AAAAAgCgRNSH93nvvlcVi0bXXXhvwmBdffFEWi8Xjq0uXLu03SAAAAAAA2lBU7JO+YcMGLV++XGPGjGnyWLvdrvz8fNfPFoulLYcGAAAAAEC7iXglvaqqSpdeeqmeeeYZJSUlNXm8xWJRamqq6yslJaUdRgkAAAAAHceug4e1Ye8GFVcVq2b3bmVU2VS9rYL90juAiIf0q666SmeddZYmTZoU0vFVVVXKzMxURkaGzj33XG3evDno8dXV1aqsrPT4AgAAAIBY5b5ferVVyqvMVXHRWmVU2ZRTkO8K6oT16BTRkP7KK69o48aNWrZsWUjHjxgxQs8//7z+8pe/6KWXXpLD4dD48eO1a9eugPdZtmyZevXq5frKyMhoreEDAAAAQFTKtk9zhfVqq1SbWK7iorXKOiDlFORr6rYSqupRKmIhvaioSPPnz9fKlStDbv42btw4zZgxQyeccIImTpyoN998U8nJyVq+fHnA+9xyyy2qqKhwfRUVFbXWUwAAAACAqOZeVa9NLFdeZa6yDsinqo7oEbHGcV988YVKS0uVnZ3tuq2+vl7//Oc/9fjjj6u6ulpxcXFBzxEfH68TTzxRW7duDXhMYmKiEhMTW23cAAAAANCRZNunSZJWZb+qCevylFeZqzRHmrKso6SCfNmTU7T6YLVsSYkaPHhwZAeLyFXSc3JytGnTJn355Zeur5NPPlmXXnqpvvzyyyYDuuQM9Zs2bdKAAQPaYcQAAAAA0HGZVfXcyWOoqkexiFXSe/bsqeOOO87jtu7du6tv376u22fMmKH09HTXmvU777xTP/nJTzRs2DCVl5frgQce0I4dOzRnzpx2Hz8AAAAAdDShVNXfaTiWqnpkRLy7ezA7d+7Unj17XD8fPHhQc+fO1ciRI3XmmWeqsrJS69ev16hRoyI4SgAAAADoWLybyrlX1WkqF1kWwzCMSA+iPVVWVqpXr166Z/UX6tK9R6SHAwAAAAARs7HyVUnShHV5SnRIaT3SlJYxWZuP7Na64SNkS3L296Kq3jJHDx3SHWNHqKKiQna7PeixUV1JBwAAAAC0HX9btX3+7Qq2aosgQjoAAAAAdHLuW7VVW6W8ylwl7fvGp6kcYb3tEdIBAAAAAH6r6sVFa6mqtzNCOgAAAADAxb2qzlZt7S9iW7ABAAAAAKJTKFu1rT5YLVtSIk3lWhmVdAAAAACAX8G2aqOq3jaopAMAAAAAAsq2T9MP50/TqsrAVfV3Go6lqt5yVNIBAAAAAE0KVlWnqVzrIaQDAAAAAELib6u24qK1bNXWigjpAAAAAICQsVVb2yKkAwAAAADC5r1V2z7HN0ra940yqmw6/2A5Qb2ZCOkAAAAAgGYxt2qTpBMys1zfjxt0os4/WB6BEXV8hHQAAAAAAKIEIR0AAAAAgChBSAcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAooQt0gMAAAAAAHRsuw4elrRBZVWH1W/3bu2SpB5ybsOmQg0ePDiyA+xACOkAAAAAgGZz7pfu/H7CujzlVeYqzZGmFOso5fQpkT05Re80HEtYbxrT3QEAAAAALZJtn9YQ1seo2irVJpYrrzJXWQekjCqbpm4rcVbVCwsjPdSoR0gHAAAAALQKM6ivyh6maquUV5mr4qK1yqiyKacg3xXUCeuBEdIBAAAAAK3GX1W9uGitsg5IOQX5VNWbQEgHAAAAALQ696q69/R3quqBEdIBAAAAAG3CrKp7T3+nqh4YIR0AAAAA0KbMqnru5DFBq+pgCzYAAAAAQDvItk+TJK3KftVjq7Ys6yipIJ+t2hpQSQcAAAAAtBu2aguOkA4AAAAAaFds1RYYIR0AAAAA0O78bdX2+bcrlHVAuqaoqtNW1QnpAAAAAICIoaruicZxAAAAAICIMpvK/StHmr5xq05IzdKXO9ZqdMZk2Q+WKzGpl15XlwiPsn1QSQcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAogQhHQAAAACAKEFIBwAAAAAgShDSAQAAAABRZcPeDa7vK8tKVL2tIoKjaV+EdAAAAABA1FiVPUy7Dh5WcVWxiovWKuuAM6hP3VbSKfZLJ6QDAAAAAKJCtn2asu3T9K+cMaq2SrWJ5cqrzFXWASmjyqap20pUd7A6poM6IR0AAAAAEFXMoL4qe5iqrVJeZa6Ki9Yqo8qmnIJ8V1CPxbBOSAcAAAAARB1/VXVz+ntOQX7MVtVtkR4AAAAAAACBOIO68/sJ6/JU7CjWGE1SQlebcsrytW74CBWqUJI0ePDgiI2ztRDSAQAAAABRLds+TZL0rxxnUN8Tv17xRb2VZR0lFeTLnpyi1Um9VajCDh/Ume4OAAAAAOgQzOnvhRedotrEcu1zfKPRXdM1btCJOv9geaSH1yoI6QAAAAAARAlCOgAAAAAAUYKQDgAAAABAlCCkAwAAAAAQJQjpAAAAAABECUI6AAAAAKBD+eT7/R4/7/pmk+v7wsLCdh5N6yKkAwAAAAA6DHPP9F0HD6s2sVyff7tCNbt3K6PKpqnbSlR3sLpDB3VCOgAAAACgQzH3S1+VPUzVVimvMlfFRWuVUWVTTkG+K6h3xLBOSAcAAAAAdDjZ9mmusF5tlWoTy1VctFZZB6ScgvwOW1UnpAMAAAAAOiz3qnptYrnyKnOVdUA+VfWOwhbpAQAAAAAA0BLmOvVV2a9qwro85VXmKs2RpizrKKkgX/bkFK0+WC1bUqIGDx4c2cE2gUo6AAAAACAmeE9/74hVdSrpAAAAAICYkW2fph/On6ZVlYGr6u80HBuNVXUq6QAAAACAmBOsqh7NTeUI6QAAAACAmNQRt2ojpAMAAAAAYpa/rdo+/3ZF1G7VRkgHAAAAAMQ8f1X1pH3fRF1VnZAOAAAAAOgU/FXVi4vWRlVVnZAOAAAAAOhU3KvqtYnl2uf4xtVU7vyD5REN6oR0AAAAAECnk22f5vr+hMws7XN8I0kaN+hEnX+wPEKjIqQDAAAAABA1COkAAAAAAEQJQjoAAAAAAFGCkA4AAAAAQJQgpAMAAAAAECVskR4AAAAAAACRsuvgYUkbVFZ1WP1279YuSeoh5zZsKtTgwYPbdTxU0gEAAAAAnZL7funVVimvMlfFRWuVUWVTTkG+a7/09twznZAOAAAAAOi0su3TXGG92irVJparuGitsg5IOQX5mrqtxBXW2wMhHQAAAADQ6blX1WsTy5VXmausA2r3qjohHQAAAAAANVbVvae/t2dVnZAOAAAAAIAbs6qeO3lM0Kp6W6C7OwAAAAAAXrLt0yRJq7Jf1fSNW5W3P1dpjjSNzpgsFeTLnpyid6RW7/5OJR0AAAAAgCAKLzpFyX27SZIq0io0umt6mz0WIR0AAAAAgChBSAcAAAAAIEpETUi/9957ZbFYdO211wY97rXXXtOxxx6rLl266Pjjj9e7777bPgMEAAAAAKCNRUVI37Bhg5YvX64xY8YEPW79+vWaPn26Zs+erf/+978677zzdN555+nrr79up5ECAAAAANB2Ih7Sq6qqdOmll+qZZ55RUlJS0GMfeeQRnX766VqwYIFGjhyppUuXKjs7W48//ng7jRYAAAAAgLYT8ZB+1VVX6ayzztKkSZOaPPaTTz7xOW7KlCn65JNPAt6nurpalZWVHl8AAAAAAITqk+/3a9fBwyquKtYPn34mSaosK3Htl96ae6ZHdJ/0V155RRs3btSGDRtCOn7v3r1KSUnxuC0lJUV79+4NeJ9ly5ZpyZIlLRonAAAAAKBzMvdL/1eONGFdnmoTy1VctFZZ1lGu/dJXJ/VWoQpbZc/0iFXSi4qKNH/+fK1cuVJdunRps8e55ZZbVFFR4foqKipqs8cCAAAAAMSmbPs0/StnjFZlD1NtYrnyKnOVdUDKqLIppyDfVVVvqYhV0r/44guVlpYqOzvbdVt9fb3++c9/6vHHH1d1dbXi4uI87pOamqqSkhKP20pKSpSamhrwcRITE5WYmNi6gwcAAAAAdDpmVX1V9quasC5PeZW5SnOkeVTV32k4trlV9YhV0nNycrRp0yZ9+eWXrq+TTz5Zl156qb788kufgC5J48aN07p16zxuW7t2rcaNG9dewwYAAAAAdHJmVb3aKp+q+sRP81pUVY9YJb1nz5467rjjPG7r3r27+vbt67p9xowZSk9P17JlyyRJ8+fP18SJE/XQQw/prLPO0iuvvKLPP/9cTz/9dLuPHwAAAADQeTmDuvP7pqrqqX37hnzeiHd3D2bnzp3as2eP6+fx48fr5Zdf1tNPP62xY8fq9ddf11tvveUT9gEAAAAAaGvZ9mk+VfV9jm9cVfWp25zLtXfu3BnyOS2GYRhtNeBoVFlZqV69eume1V+oS/cekR4OAAAAACAGbKx8VdM3btWPUn+kL3dsUVrGZBX1qFPiMb308g/1enbqZFVUVMhutwc9T1RX0gEAAAAA6EwI6QAAAAAARAlCOgAAAAAAUYKQDgAAAABAlCCkAwAAAAAQJSK2TzoAAAAAALFk18HDkjYoXr1Vs3u3KvtIdkl1ifEhn4NKOgAAAAAALWTul74qe5hqE8uVV5nr2i994tYtIZ+HkA4AAAAAQCvItk9Ttn2aVmUPU7VVyqvMVXHRWg09GPo5COkAAAAAALQis6pebZVqE8u1+dCHId+XNekAAAAAALQyZ1B3fn/ymi9Cvh8hHQAAAACANpBtnyZJWj/xqPTcX0K6D9PdAQAAAABoQyf0/FXIxxLSAQAAAACIEoR0AAAAAACiBCEdAAAAAIAoQUgHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AAAAAgChBSAcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAogQhHQAAAACAKEFIBwAAAAAgShDSAQAAAACIEoR0AAAAAACiBCEdAAAAAIAoQUgHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AAAAAgChBSAcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAogQhHQAAAACAKEFIBwAAAAAgShDSAQAAAACIEoR0AAAAAACiBCEdAAAAAIAoQUgHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AAAAAgChBSAcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAogQhHQAAAACAKEFIBwAAAAAgShDSAQAAAACIEoR0AAAAAACihC3SA2hvhmFIko4erorwSAAAAAAAnYGZP808GozFCOWoGLJr1y5lZGREehgAAAAAgE6mqKhIAwcODHpMpwvpDodDxcXF6tmzpywWS6SH0+FUVlYqIyNDRUVFstvtkR4OIoT3AUy8FyDxPoAT7wOYeC9A4n3gzTAMHTp0SGlpabJag68673TT3a1Wa5NXLtA0u93OPzbwPoAL7wVIvA/gxPsAJt4LkHgfuOvVq1dIx9E4DgAAAACAKEFIBwAAAAAgShDSEZbExEQtWrRIiYmJkR4KIoj3AUy8FyDxPoAT7wOYeC9A4n3QEp2ucRwAAAAAANGKSjoAAAAAAFGCkA4AAAAAQJQgpAMAAAAAECUI6QAAAAAARAlCOlyefPJJjRkzRna7XXa7XePGjdOaNWuC3ue1117Tscceqy5duuj444/Xu+++206jRVsJ933w4osvymKxeHx16dKlHUeM9nDvvffKYrHo2muvDXocnwmxL5T3Ap8LsWfx4sU+f9Njjz026H34PIhN4b4X+DyIXbt379b//M//qG/fvuratauOP/54ff7550Hv8+GHHyo7O1uJiYkaNmyYXnzxxfYZbAdDSIfLwIEDde+99+qLL77Q559/rl/84hc699xztXnzZr/Hr1+/XtOnT9fs2bP13//+V+edd57OO+88ff311+08crSmcN8HkmS327Vnzx7X144dO9pxxGhrGzZs0PLlyzVmzJigx/GZEPtCfS9IfC7EotGjR3v8TT/++OOAx/J5ENvCeS9IfB7EooMHD+rUU09VfHy81qxZo2+++UYPPfSQkpKSAt5n+/btOuuss3Taaafpyy+/1LXXXqs5c+bovffea8eRdxAGEERSUpLx7LPP+v3dxRdfbJx11lket51yyinGvHnz2mNoaEfB3gcvvPCC0atXr/YdENrNoUOHjKysLGPt2rXGxIkTjfnz5wc8ls+E2BbOe4HPhdizaNEiY+zYsSEfz+dB7Ar3vcDnQWxauHCh8dOf/jSs+9x0003G6NGjPW6bNm2aMWXKlNYcWkygkg6/6uvr9corr+iHH37QuHHj/B7zySefaNKkSR63TZkyRZ988kl7DBHtIJT3gSRVVVUpMzNTGRkZTVbd0bFcddVVOuuss3z+rfvDZ0JsC+e9IPG5EIu2bNmitLQ0HXPMMbr00ku1c+fOgMfyeRDbwnkvSHwexKK3335bJ598si666CL1799fJ554op555pmg9+FzIXSEdHjYtGmTevToocTERF1xxRVavXq1Ro0a5ffYvXv3KiUlxeO2lJQU7d27tz2GijYUzvtgxIgRev755/WXv/xFL730khwOh8aPH69du3a186jR2l555RVt3LhRy5YtC+l4PhNiV7jvBT4XYs8pp5yiF198UX//+9/15JNPavv27ZowYYIOHTrk93g+D2JXuO8FPg9i07Zt2/Tkk08qKytL7733nv7f//t/uuaaa7RixYqA9wn0uVBZWakjR4609ZA7FFukB4DoMmLECH355ZeqqKjQ66+/rpkzZ+qjjz4KGNAQm8J5H4wbN86jyj5+/HiNHDlSy5cv19KlS9tz2GhFRUVFmj9/vtauXUuDn06uOe8FPhdizxlnnOH6fsyYMTrllFOUmZmpP//5z5o9e3YER4b2Fu57gc+D2ORwOHTyySfrnnvukSSdeOKJ+vrrr/XUU09p5syZER5dx0clHR4SEhI0bNgwnXTSSVq2bJnGjh2rRx55xO+xqampKikp8bitpKREqamp7TFUtKFw3gfe4uPjdeKJJ2rr1q1tPEq0pS+++EKlpaXKzs6WzWaTzWbTRx99pEcffVQ2m0319fU+9+EzITY1573gjc+F2NO7d28NHz484N+Uz4POo6n3gjc+D2LDgAEDfIo3I0eODLr0IdDngt1uV9euXdtknB0VIR1BORwOVVdX+/3duHHjtG7dOo/b1q5dG3TtMjqmYO8Db/X19dq0aZMGDBjQxqNCW8rJydGmTZv05Zdfur5OPvlkXXrppfryyy8VFxfncx8+E2JTc94L3vhciD1VVVX6/vvvA/5N+TzoPJp6L3jj8yA2nHrqqcrPz/e4raCgQJmZmQHvw+dCGCLduQ7R4+abbzY++ugjY/v27UZeXp5x8803GxaLxfjHP/5hGIZh/OY3vzFuvvlm1/H//ve/DZvNZjz44IPGt99+ayxatMiIj483Nm3aFKmngFYQ7vtgyZIlxnvvvWd8//33xhdffGFccsklRpcuXYzNmzdH6imgjXh39OYzofNq6r3A50LsueGGG4wPP/zQ2L59u/Hvf//bmDRpktGvXz+jtLTUMAw+DzqTcN8LfB7Eps8++8yw2WzG3XffbWzZssVYuXKl0a1bN+Oll15yHXPzzTcbv/nNb1w/b9u2zejWrZuxYMEC49tvvzX++Mc/GnFxccbf//73SDyFqMaadLiUlpZqxowZ2rNnj3r16qUxY8bovffe0+TJkyVJO3fulNXaOPli/Pjxevnll3Xbbbfp97//vbKysvTWW2/puOOOi9RTQCsI931w8OBBzZ07V3v37lVSUpJOOukkrV+/nj4GnQCfCTDxuRD7du3apenTp2v//v1KTk7WT3/6U/3nP/9RcnKyJD4POpNw3wt8HsSmH/3oR1q9erVuueUW3XnnnRoyZIgefvhhXXrppa5j9uzZ4zH9fciQIfrb3/6m6667To888ogGDhyoZ599VlOmTInEU4hqFsMwjEgPAgAAAAAAsCYdAAAAAICoQUgHAAAAACBKENIBAAAAAIgShHQAAAAAAKIEIR0AAAAAgChBSAcAAAAAIEoQ0gEAAAAAiBKEdAAAAAAAogQhHQAAAACAKEFIBwAAAdXX12v8+PG64IILPG6vqKhQRkaGbr311giNDACA2GQxDMOI9CAAAED0Kigo0AknnKBnnnlGl156qSRpxowZ+uqrr7RhwwYlJCREeIQAAMQOQjoAAGjSo48+qsWLF2vz5s367LPPdNFFF2nDhg0aO3ZspIcGAEBMIaQDAIAmGYahX/ziF4qLi9OmTZv0u9/9TrfddlukhwUAQMwhpAMAgJB89913GjlypI4//nht3LhRNpst0kMCACDm0DgOAACE5Pnnn1e3bt20fft27dq1K9LDAQAgJlFJBwAATVq/fr0mTpyof/zjH7rrrrskSbm5ubJYLBEeGQAAsYVKOgAACOrw4cOaNWuW/t//+3867bTT9Nxzz+mzzz7TU089FemhAQAQc6ikAwCAoObPn693331XX331lbp16yZJWr58uW688UZt2rRJgwcPjuwAAQCIIYR0AAAQ0EcffaScnBx9+OGH+ulPf+rxuylTpqiuro5p7wAAtCJCOgAAAAAAUYI16QAAAAAARAlCOgAAAAAAUYKQDgAAAABAlCCkAwAAAAAQJQjpAAAAAABECUI6AAAAAABRgpAOAAAAAECUIKQDAAAAABAlCOkAAAAAAEQJQjoAAAAAAFGCkA4AAAAAQJT4/zgYQ6aCgqXtAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 20\n", + "amount_ae: 288\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xl4E1XbBvB7kpYutFCWAqWFsrUFEQrKIiKrKCpUUNai7MqqCIoKryLghjuIsoqA8soiiooLICAgi1pQWVVay77IJk0LbVmS5/ujX/I2JGmmdDqTlPt3XbmU08lzz5k5bU9PkhlFRAREREREREREREREGjMZvQNERERERERERERUMnHxkYiIiIiIiIiIiIoFFx+JiIiIiIiIiIioWHDxkYiIiIiIiIiIiIoFFx+JiIiIiIiIiIioWHDxkYiIiIiIiIiIiIoFFx+JiIiIiIiIiIioWHDxkYiIiIiIiIiIiIpFgNE7QES+7Z9//sGWLVtw6tQpnDlzBmfPnsXTTz+N2NhYo3eNiIiIiIiIiHwc3/lIRG6lpqaiY8eOiI6ORo8ePfDYY49h8uTJmDVrFjZt2mT07hGRCocOHYKiKJg0aZIueZMmTYKiKDh06JAueURERERE5Pu4+Eias/+xq+YxbNgwo3eX3EhNTUWLFi3www8/4Nlnn0VaWhpsNhtEBFarFf369TN6F4moCN577z0oiuLxe/n8+fOIjo5GaGgoUlNTHe01atRAjRo1dNpLIiIiIiJt1ahRA23bti32HPuL8hs3bnTbfqO9WM+PXVOxqV27Nh5++GG3Xzt06BA++ugjnfeI1Bo8eDCysrLwzTffoGPHjkbvDhFp7LHHHsOKFSuwaNEidOvWDV26dHH6+siRI3HixAm8++67iI+PN2gvicgfHDp0CDVr1lS17dChQzF79uxi3iMyUtu2bbFp0yaIiNG7QkSk2m+//YbmzZujVq1a2LlzJ0JCQly2ue+++7Bq1SosWrTI4zoHecbFRyo2derU8fhRv40bN3Lx0Uft2bMHW7ZswVNPPcWFR6ISSlEULFiwAA0aNMCQIUPQsmVLVKxYEQDw2WefYcmSJWjXrh0ef/xxg/eUiPwFX3QmIiJ/dcstt+C5557D5MmTMX78eEybNs3p63PnzsWqVavwwAMPcOHxOvFj1+STatSo4fGj2gsXLnTZfsGCBWjevDnCwsIQFhaG5s2bu91u48aNHq9/piiK27dft23bFoqiuLRv2LABgwYNQkJCgiO3SZMmmDt37nX37dq3ZA8YMECzt2Tv3bsXPXv2RKVKlRAUFISaNWti9OjROHfunNN227ZtAwAkJCQgOTkZlStXRqlSpRAbG4vhw4fj5MmTjm1tNhtiY2NRoUIFXLp0yW1u69atERAQgGPHjgHwfDztH9cfMGCAU3thj7O7j4X+888/GDFiBGrWrIlSpUqhfPny6Ny5M3766SeX53t6e/z1jB0A2L17N3r37o2oqCjHcXz88cddjru3yxXMmzfPaXu157Mg9vFlMplw8OBBl69v3rzZkX9tvwvqs6djCKj/Xl20aBFMJhN69+7t9O4JT+MkJSUFYWFhuOWWW5CVleX0taysLEycOBH169dHSEgIIiIi0LFjR2zZssXt/mdlZWHy5Mlo2LAhQkNDUbZsWTRu3BgTJkzAlStXCnVpCfv3rv2Y2B8mkwlRUVHo1KmT43suvy+++ALJycmoU6eOYx9atWqFzz//3O0+X48aNWrg7bffxunTpzF8+HAAwKlTpzB8+HCEh4djwYIFju9Ve58PHz6Mw4cPO/VFr+tJEpFvs7/o7O5x7c9sIiIiX/Pcc8+hcePGmD59utM9Dg4ePIinnnoKkZGRmDNnjoF76N+4+Eg+q2zZspg4caLjce3HAu1GjRqFQYMG4fjx4xg8eDAGDx6M48ePY+DAgXjiiSeKbf9ef/11/Pjjj2jatCkee+wxPPzwwzh79iyGDh2Kp556qsDnXtu3Nm3aFNt+AsCWLVvQvHlzfPHFF7jzzjvx5JNPIjY2Fu+++y6aN2+Os2fPOrY9c+YMAGD48OFYvnw52rZti6eeegr16tXD7Nmz0aRJExw+fBgAYDKZ8Mgjj+Dff/91uyiyf/9+bN68Gffccw9iYmKua9+LcpwB4MSJE2jatClmzZqF8uXL48knn0SXLl3www8/oHXr1lixYsV17ZcaK1euRLNmzbBy5Uq0bdsWo0ePRoMGDfD++++jRYsWOH/+vMtzEhMTncaG/XHLLbc4tinM+VTDZDK5/UU6a9YsmM3mwnfcg8J8r/bt2xevv/46li1bhjFjxhRYNzU1FZ06dUKlSpWwatUqhIeHO77277//okWLFnjxxRdRrlw5DBs2DN26dcOvv/6Kdu3a4csvv3Sqdfr0aTRr1gyTJk2C2WzG8OHDMWjQIFSpUgWvv/46Ll68iIiICJfzU7ZsWZfv64kTJyIiIsKpfv/+/TFx4kQ899xzaNOmDdauXYsOHTrgr7/+ctpu/Pjx2LdvH+644w488cQT6NGjB/bv34/u3bvjvffeK/zB92DIkCHo2LGj492OQ4YMwdmzZzFt2jSnO9rb++yun3pcM4eISja+6JxHyxed8/dF7XEVEcyfPx8tW7ZEmTJlEBoaiiZNmmD+/Plu66empqJDhw4IDQ1F3bp1sXr1asfX0tPT0bZtW4SEhOCmm27C8uXL3dY4fPgwBg8ejOjoaJQqVQoxMTEYPHgwjhw54rE/ubm5GDduHKpXr47g4GDUq1cP7733nstHvRcuXFhgfy9evIiyZcu6HQuexsHOnTthNptdauZ/cXTfvn3o1KkTIiIiEBYWhrvvvhu//vqrZv23P0qVKoUaNWrgkUcecdn+8uXLeO+999CxY0dUq1YNQUFBqFSpEh588EH8/vvvLrXtx8rdcQLcv7hf0Hj19GIxULgX0Av6/rn23Wdnz57F6NGjUbNmTUd/e/bsib1797rtkzvFMWaAgn8Wbd26FZ06dUL58uURHByMunXrYuLEicjOznbabs+ePShXrhzq1avncqzcnZ9z586hXr16KFeuHPbs2eP0tcJ+r4sIFixYgFatWiEiIgKhoaGIi4vD0KFDHWOvoHPl7meP/Zjkf5QvXx7NmzfHxx9/7LIPv/76Kx577DHcfPPNKFu2LEJCQtCgQQO89tpruHLlitv9LqzAwEB8/PHHCAwMxMCBA3HhwgXYbDYMGDAAFy5cwJw5cxAZGenyvKNHjyI5ORnly5dHWFgY2rRpgx9//FGTfSpRhEhjBw8eFADSsWNHj9ts2LBBAMjQoUPdfj06Olpq1Kjh1LZgwQIBIAsWLHC0bdq0SQBIvXr1JCMjw9H+77//Snx8vACQH3/80SV34sSJLpkApE2bNi7tbdq0EXffKgcOHHBpu3Llitx1111iNpvl8OHDbvsWExPj0reJEycKANmwYYNTe//+/QWAHDx40G0tNaxWq9SuXVsAyOrVq52+9vTTTwsAGTRokMu+AJBvv/3Wafu33npLAEjnzp0dbcePH5eAgABp27atS/bYsWMFgHz55ZeOtrZt2woAsdlsTtvax03//v2d2gt7nGNjYyU2Ntbx7169egkAeeihh5wyf/vtNylVqpSUK1dOMjMzXfp/7bko7Ng5e/aslClTRqKjo+XQoUNOX1uyZIkAkMcee8xr/69V2PNZEPv46tKli0RGRsqlS5ccXzt9+rSUKlVKunbt6rbfnr5fRNwfw8J+r9qNGTNGAMhrr70mIq7H6cSJE1KjRg2JjIyU1NRUl+f36dNHAMgHH3zg1H7q1CmpVq2aREZGSk5OjqO9W7duAkD+85//uNT6559/5MqVK277fO24U3NMRERmzJghAGTatGlO7enp6S41srKypEGDBlK2bFm5ePGix6z87MfL3bi1O3bsmEREREhQUJDL9/e11PazKD+ziMi/aDHvi42NlbJly8rEiRMdjy5durjM+0REHn/8cQEg0dHRMmrUKBk1apRER0cLABk1apTbXC3mfR07dpTatWvLQw89JM8++6wMHTpUYmNjBYA8+eSTHvvurm/2jOKY97nri5rjarPZJDk5WQBIXFycDB06VB5//HGpW7euAJCnnnrKaftTp05JVFSUKIoiDzzwgIwcOVIqVKgg1atXFwASHx8v3bt3lyFDhkj58uVFURT5/PPPnWrs379fIiMjBYAkJSXJuHHjpHPnzgJAIiMjZf/+/W77k5SUJDExMfLEE0/IE088ITExMW7Pg/1vB7PZLM2bN3c5PnPmzBGz2ex2LHgaB61atXLMk/MfQ/v3QatWraRs2bLSrl07GTdunCQnJ0tAQICEhobKzz//rEn/7edy3Lhx0q5dO8c5yz9HOXnypJhMJmnTpo0MGTJEnn32WenRo4cEBQVJcHCwpKSkuD1W144LO3e//wsar57mtZs3b5bQ0FAJCAiQ3r17y7hx4xz9ql27tpw5c8Yl99rvH/sj/3g6ffq0Y37ctm1bGTdunPTq1UvMZrOEhobK5s2b3fbrWsUxZkQ8/yz69NNPHfs4cOBAefbZZ6Vx48YCQJo3b+40RxXJm08HBwdLixYtJDs72+k45T8/Fy9elNtuu02CgoJk06ZNTjUK+71utVqle/fujp+7w4YNk2eeeUZ69uwpERER8sUXX4iIyNSpU53OT2JiogCQJ554wqn9999/dzombdq0cXxt6NChUqFCBQEgCxcudNqPoUOHStWqVaV3797y9NNPy8iRI6V+/foCQB588EG3x92T2NhYj3/HiIhMmTJFAMiQIUPk7bffFgDSt29ft9ueOHHC8TuoY8eOMn78eOnatauUKlVKOnbs6PZn/Y06X+biI2lOi0lopUqVJCEhwanN3S/FQYMGCQBZtmyZS41PPvnEZSFGy0moJ59//rnbH5h2FSpUkPj4eKe24lx8/PHHHwWA3HvvvS5fy8rKkvLly0twcLBj4cm+L+7O35UrV6RmzZqiKIqcPn3a0f7AAw+IoiiSlpbmaLt8+bJUqlRJoqKinCZDPXv2dNsntYtvdp6Oc/5fvrm5uRIYGCiBgYFy9OhRlxqPPvqoAJBFixY52rRafHznnXcEgHz88cdu9/+WW26RihUrOv6ttv+FPZ8FsY+vVatWCQD55JNPHF+bMmWKhIaGyhdffKHJ4mNhv1ftbDabYwHxo48+cjpOFotFEhMTpXTp0i6TaBGRM2fOiNlslvbt27vdz+nTpwsA+frrr0Ukb6KuKIrUrl1bLl++7PY5nlzv4uO7777r6Jsa9gnQxo0bVW2vZvFRROT5558XABIYGCgnTpzwuB0XH4noWnzR2bdedM7vjjvucOmLp0WmuXPnCgAZOHCg0+/AS5cuSVJSkgCQHTt2ONpHjRolAGTGjBmOtq1btzpeyHrrrbcc7WlpaRIeHi4xMTFy9epVR7t94WzOnDlO+2J/Ye7a39/2c5OQkOB0/jMyMiQhIUEURZHt27e79NW+4Prbb7851WvUqJHjRVY1C0lLly4VAHLrrbd6XHwEIOPGjXN63urVqwWANGjQwKn9evt/rR49eggA2blzp6MtNzdXjh075rLt3r17JSwsTDp06ODUrsfi4/W8gO5t3mE3cOBAASDjx493av/2228FgNSpU0esVqvXOlqPGTt3P4ssFouULVtWgoKCZNeuXY52q9XqePPEiy++6FJrxYoVYjabpXPnzo7vp/zH6cqVK9KpUycxmUwuC/4ihf9ef++99wSA3HnnnU4LniIi2dnZcu7cObd99vbzzNPP53379gkA6dq1q1P74cOHnX5+iOT9nWD/G2PLli1uc9zxtvh49epVad68uQCQUqVKSUxMjJw/f97ttvZ+vvzyy07tc+bMcfxM4OJjHn7smnxSZmYmgoODvW5n/9iAu4/NtGvXDkDexyOKg/06comJiQgLC3O8Xbxbt24A8j7uey2bzQaLxYLQ0NBCZU2bNg2TJk3Ciy++iFmzZmH9+vWw2WyqnlvQMbJ/ZCg3Nxf79+93+pr9+OUXEBCAVq1aQUSwa9cuR/vQoUMhIk7XJVy5ciVOnz6NgQMHIiDgf/e2at68OQDgmWeewalTp7zu//UcZ/s16YKDg3HlyhXUqVPH7ce+i3OM/PzzzwCAX375xe31r3Jzc3H27NlCf0T6es9nQerWrYv27ds77kBqs9kwZ84cJCcnu3xsOL9Dhw657Zu7az1e7/eqoih48sknAeTdhd3+ka5Lly6ha9eu2LVrF1q3bo2mTZu6PHf79u2wWq24dOmS2/20nyP7R5537NgBEUG7du0QGBjosd9FsXDhQkyaNAkTJkxAr169MHbsWNxzzz3o2bOn03anT5/Gk08+iXr16iE0NNQx7u2XGnA37q/X6dOnHR+7v3LlCr755hvNahMRqXHlyhUEBQV53c5+05pJkyahbNmyjvZy5cph4sSJAODxY6NF5e6O3gEBARg2bBisVis2bNjg9nk5OTkoVapUseyTN4XJfv/991G6dGnMmDHD6XdgqVKl8MorrwAAlixZ4mj/7LPPUK5cOQwdOtTRdvvtt+O2224DAKdL49SpUwc9e/bEsWPHHL97jxw5gg0bNuCmm27Co48+6rQvw4YNQ926dfHDDz/g6NGjLvs6YcIEp/NftmxZPP/88xARtzc2SkpKQkxMDGbNmuVo+/nnn7Fz507HNY+9ycnJwdNPP42bbroJw4YN87hdREQEnnvuOae2jh074s4778SePXscH78uSv+vdfXqVUe2XVBQEKKjo122rV+/Ptq1a4cff/xRs4+qqrV161akp6fj3nvvdbmp5QsvvIDy5ctj8eLFuHz5cqHqXr58GUuWLEGFChXw/PPPO33tvvvuw1133YW///4bW7duVV1TizHjzVdffQWLxYJBgwahYcOGjnaTyYQ33ngDAQEBbn+ePfDAA5gxYwa++eYbp+8/uyFDhuDbb7/F+++/jwcffNDl64X9Xp85cybMZjNmzZrlcgfokJAQlC9fvtB9L4h9PJcrV86pvXr16i6Xg1IUBSNHjgQArFu3TrN9MJvNjmNx+fJlTJs2ze3fRJcvX8ayZctQqVIll8uBPfLII4iLi9Nsn0oC3u2afE52djZyc3PdXk/hWpmZmTCZTG63rVy5MhRFQWZmpub7ePnyZbRt2xa//fYbGjdujL59+6JChQoICAhw3NHR3Q1YTp06hatXr6Jq1aqFynv33Xdd2uLj4/Hll1+iXr16BT7X3v/KlSu7/XpUVJTTdvaFwipVqhS4vcVicbTdfffdqFmzJj766CO8/PLLCAgIwLx586AoCgYPHuz0/JEjR+KLL77A8uXLPV7/x+56j3PZsmUxevRoZGZmYurUqV77nr8vWvn3338BADNmzChwu4sXLzruMqxGYc+nWsOHD0ePHj2wb98+HDp0CIcOHcLw4cNdbt6S3+HDhzF58mTV+30936tWqxXDhg1DmTJlUKtWLTz22GMAgOXLl8Nms6FVq1ZYtWoVvvzyS3Tt2tXpufZzsHXr1gInnBcvXgTwv3HgbrKulWv/KKpYsSJuvfVWp2sE/fvvv2jatCmOHDmCli1bokOHDoiIiIDZbMbOnTvx1VdfebzB0/UYNmwYzpw5g9deew1vvfWW40731atX1yyDiKggmZmZjt9fBTH6Ree33noLX375JdLT0x2/O+wKetG5WrVqhcqy/6Fr/70ZHx+Pdu3awWQq3PtGzp8/r+oF7+zsbOzZswdVq1bF66+/7vJ1+yKV/cU6i8WCEydOoEWLFqqvDd2gQQMAwL59+9CyZUvHeWrTpo3LdfJMJhNat26Nv/76Czt37nQ5fq1atXKpb29zdz1Ds9mMIUOG4PXXX8dbb72FMmXKYObMmahTpw7uuusuVfv/+uuv4+jRo/j+++9x/Phxj9s1btwYYWFhbvdv/fr1+P3333HrrbcWqf/26wZeunQJP/30E7Zt24bnnnvO6VrNQN73whtvvIEtW7bgn3/+cVlsPHv2rMv33Zdffun2Go4ZGRkeX5B2tzCTkZHhsp2aF9C///577N+/3zFe1Pjrr7+Qm5uLdu3auR3v7dq1w9q1a7Fz5063Y8edoowZd9d1dHdMCzoe1atXR61atZCamoqsrCyn65kDeddGnzhxIj788EOnv9mee+45LFiwAJGRkejXr59L3cJ+r1+4cAF//vkn6tSpU2wLaRs3bnQcs5MnT2L58uWIj4/H+PHjnba7fPky3n//fSxduhR//fUXLly44HSdVy1fmBcRvPzyy45/r1ixwvHGl/z279+P3NxctG/f3uWNUyaTCS1btkRaWppm++XvuPhIPic9PR0AXC6a606ZMmVgs9lw5swZVKpUyelrp0+fhoigTJkymu/jV199hd9++w2DBw92uQvx0qVL3b7qCvxvQhwfH1+ovIMHD6JGjRoQEZw4cQJvvPEGpk+fjscff9zrqzz2/nt6l+E///zjtJ391St7u6ft87/irCgKhgwZgvHjx+Prr792TB7uvPNO1KpVy+n5QUFB2LRpE1atWoU9e/YgNzcXQN4k5dpF1us9zhEREZg0aRKysrIwdepUr33P3xet2I/nnj17cPPNN2teV+35VKtr166IiorCrFmzcOjQITRt2hS33nqr23cx2rVp08bt1ydNmuSyKHm936vvvPMOduzYgdmzZ6Nr1664/fbbceDAAVitVrz11lsYPnw4br75ZowYMQJt27Z1mvza6z311FN46623vB4D+3ML+qOiqDZs2OCYZJ45cwYLFy7Es88+i/T0dMerzB9++CGOHDmCl156yeUV/Ndeew1fffWVZvuzaNEifPHFF+jcuTOeffZZ1KhRA71798bgwYOxdu1azXKIiDzhi86uivKis519znjtPMyd8+fPQ0Rw/PjxAl9UtC+42l+YdLfI5ol9W/v5KcqLqe6eY2/z9ILyI488ghdffBGLFi1C7969sXz5crz88ssebxCS35EjR/DGG2/g/vvvx1133VXgu2s99efa/StK/689R/Xq1UOdOnWc2rZt24b27dsDyHuTQFxcnOMTRF9++SV27drldsx+9dVXHucZnhYf3Y1Xd4rrBfTiqnu9Y6YwL8wDBe93amoqMjMzXRYfn3vuOZw6dQqtW7fGK6+84ngR4NVXX0Xr1q3x448/4j//+Y/LuSns97oeL8xv2rTJ6c7SgYGBSEpKcllI7t69O77++mvEx8ejV69eqFSpEgIDAx1/Q2r5wvz06dOxceNG9O3bF0eOHMHixYvRo0cPlzc62I/PtX/b2Hk6tzcqfuyafI794xhNmjTxum3jxo0BwO0CiL2tUaNGWu2ag32B1N0duDdv3uzxefaFwtatW19XrqIoiI6OxrRp01C2bFns2LHD63MKOkYXL17Ejh07EBISgoSEBABw3FXZ3fZWqxVbtmyBoigux3XgwIEIDAzEvHnzMH/+fNhsNpePkdiZTCZ06tQJ48aNc3wEdvTo0S7bXe9xtgsPD0edOnXw999/u11QKs4xYv94+U8//aRp3cKeT7UCAgLwyCOP4KOPPsKqVas0+0iJ3fV8r/7999+YOHEiWrdujSFDhqBy5cpYtmwZAKBTp0546qmnEBoairlz5+LkyZMYO3as0/ObNm0KRVFUn4MmTZrAZDJhw4YNunwUKTIyEk8//TQaNGiA5cuXOxbiizru1Tp+/DhGjRqF8uXLO+7W2qtXL3Tv3h3r1q1zewd0s9kMq9Wq2T4QEV3vi87X0utF599++w2zZs3Cyy+/jEmTJuGee+7x+LyivOgsIrDZbDh27BhGjRqF1NRUPP7446pr2N8NpibbfsxuvfVWSN49Adw+7B8tL126NIC8d0WpZd/WvghZlBdT3T3H3ubpBeWoqCh07doVs2fPxoIFCwDkzV3VePrpp2Gz2fDOO+943dZTf67dv6L0334+rl69ivT0dNxyyy0YOHCg0+/tV155BZcuXcK6deuwcuVKvP3225g8eTImTZrk8dNNQN6d5N2d+2vfVZmffbzmfxw8eNBlu+J6Ab246l7vmCnoe0eL/f7ll18wffp09O7dGz/88AO6dOkCq9UKq9WKLl264IcffkCvXr3w/vvvO/6uvjZT7fe6fbwW5wvzEydOdORmZmbi888/x8qVK9G6dWvk5OQAyLuU0tdff42OHTvijz/+wAcffIBXXnkFkyZNQu/evTXdn9TUVIwfPx4xMTF47733MH/+fJQuXRrDhg1zucu4/ficPn3abS01lxi7kXDxkXyKxWLB9OnTERgYiPvvv9/r9v379weQ9wpT/lezLBaL49Uc+zZasv8C3rJli1P7pk2b8MEHH7h9ztmzZ7Fo0SKUL18e9957b5HyT548iQsXLrhcC8Odli1bonbt2li1apXLuyRffvllnDt3DsnJyY5rAjVv3hzx8fFYvXq14/p6du+99x7S09ORlJTk8lHhypUro2vXrli9ejVmzZqFihUrurw6VFjXc5yvNXDgQFy5cgXjx493emv+7t27sXDhQpQrV67I++kpNzw8HM899xz27dvn8vXs7GyXCYEahT2fhTFkyBCUK1cOderU0fwXeWG/V0UEjz76qONaovZXme3jLv/469ChAwYOHIgPP/wQP/zwg6O9SpUq6NmzJ7Zt24Y333zT6fzb/fLLL8jOzgaQN4a7deuG9PR0t68Gnz592nEdGq2cP38ex48fd3oV3dO4X7x4Mb777jvNsgcPHoyMjAy8//77Th+7mjlzpmNh9PDhw07PKV++PM6ePetYKCUiKiq+6OzZ9bzofD3Z4eHhqFevHv7880+3H5e9Vrly5VC5cmX89ddfql+Q2rt3LwA43rlpP08//vijy+9nEcGPP/7otF1+7o65vc0+RtwZPnw49u7di5deegk9e/ZUda26zZs349NPP8WYMWNQu3Ztr9v//vvvbhdlr92/ovTfzmw2o1atWnjvvfcA5H2awS49PR3ly5fHHXfc4fSc7Oxs/Pbbb177URyK6wX0unXrIjg4GNu3b3fM6fIrys+G6xkzahV0PI4ePYr09HTUqlXL6V2Ply9fxuDBg1GuXDlMnz4dZrMZS5YsQcWKFVGxYkUsWbIEZrMZ06dPR0REBAYPHux0Dc3Cfq+HhYXhpptuwsGDB3X5+HB4eDiSkpLQr18/HDhwwHHZJPvP4E6dOrlc6kHLF+atViv69++PnJwczJs3D2XLlkWtWrXw+uuv49SpU47LP9nFx8cjODgYO3bscJkb22w2bNu2TbN9Kwm4+Eg+4+WXX0ZCQgL27t2LF198UdW1f1q3bo3HH38cf/zxB26++WaMGTMGo0ePxs0334y//voLo0aNcjvpsn+MM/8DyLtWxLXt9utHzJ492zHpS0pKQo0aNfDGG2+gU6dOePbZZ9G1a1fceeedbiemCxcuRIsWLXDmzBlUr14dr732mtsbdCxcuBBffvmly/M/+eQTzJ49G7NmzcKECRPQokULWK1WDBkyxOsxMplMWLhwIUJDQ3HffffhoYcewn/+8x+0a9cOr732GmrXro3XXnvNsb2iKPjwww8REhKCpKQk9O7dG//5z39w7733YsyYMYiOjsb777/vNmvYsGGw2Ww4deoU+vfvX+QLrBf2OLvz1FNPoXnz5li0aBGaNWuGcePGYdCgQY5jOG/ePLcfG1q5cqXTOFi5ciUA72PHPl4iIyOxZMkSXLhwAYmJiejcuTPGjh2Lxx9/HElJSahSpYrba8J4U9jzWRgxMTE4cuQI9u/f73JB6aIq7Pfq3LlzHdeAUXONmbfffhtVqlTBkCFDnCaeM2fORKNGjfDMM88gMTERQ4cOxbPPPos+ffogPj4et912m9Ni6MyZM1GvXj288soruOWWWzB27Fg89dRTSEpKQrVq1Qr1Lg937DecmTRpEh577DE0bNgQ586dQ9++fR3Xiunbty/Kli2Lxx9/HD179sTTTz+Nu+++G3379nV74fDrMWfOHKxZswbdu3dHcnKy09ciIyMxa9YsZGVlYdCgQU5/FLVv3x65ubm499578cILL+Dll192/IFERFRYfNFZncK86AwAubm5mDlzJgICAtCrVy9Vzxk1ahSys7Px6KOPulzPEsh7d1v+69Z17doV58+fd7oszk8//eRYTH777bcd7QcOHMCnn36KypUr4/bbbweQd027du3aYd++fZg/f75T1ty5c/Hnn3+iffv2bq+X+dJLLzl9vNpisTg+DlvQ+W/fvj1uv/12hIeHY8SIEV6OSJ5Ro0YhKirK5SYynmRkZDhuVGG3Zs0arF+/HjfffDNuvfVWAEXr/7X27Nnj0hYbG4vz5887vQButVoxduxYt+8c1kNxvYBeqlQpJCcn4+zZs5gyZYrT11avXo01a9agTp06aNmyZaH3+XrGjFpdunRB2bJlsWDBAqfzJCJ49tlncfXqVQwYMMDpOa+88gr27duHqVOnOi4/ERISgtKlS6N06dKO+XulSpUwdepU/PHHHy7jsbDf6yNHjoTVasWIESMc70S0y83NdVxjXSsi4nixws7Tz+B9+/a5nPOieOONN/Dzzz9jyJAhTjdFGjFiBNq3b4+lS5dixYoVjvagoCD07NkTp0+fdvqZBwDz5s1DamqqZvtWImh232yi/3fw4EEBIB07dvS4zYYNGwSADB061NHWpk0b6dChg3z11Vdun7NgwQIBIAsWLHD52vz586Vp06YSGhoqoaGh0rRpU5k/f77H3Ot9TJw40VHrwIED0q1bN4mMjHRkLl261JGRf9s2bdqozujfv7/jef3793f5emRkpLRs2VIWLVrk+SS4sXv3bunevbtUrFhRAgMDJTY2Vp544gk5c+aM2+137drltH21atVkxIgRcvLkSY8ZNptNqlevLgDkzz//LNT+2cdN/v6LFO44i4jExsZKbGysU1tWVpb85z//kTp16kipUqWkXLly0rlzZ9m2bZvLfkycOLFIY2TDhg1O9f766y8ZPHiwxMbGOrIbNGggo0aNkpSUFK/996Sw59Md+/g6ePCgx208HWcA0qZNG7fPsR/Da4+FiLrv1WPHjkmZMmWkcePGcuXKFaevFXScPvvsMwEgTz75pFN7dna2vPHGG3LrrbdK6dKlJSQkRGrWrCldu3aVjz/+2CXDYrHIhAkTpG7duhIUFCRly5aVRo0ayQsvvCCXL19222d3487dMcn/KFeunNx6663y3nvvuezDzp075e6775Zy5cpJeHi4tGnTRtatW1fgz0F37Mfr2p9dYWFhUqlSpQLHS3JysgCQGTNmONqysrLk0UcflaioKDGbzS617f0saEwRUclyvfO+l156SSpXriwAZMqUKS7P8fTz7vHHHxcAUq1aNRk9erQ88cQTEhMTIwBk1KhRbnM7deoks2bNcnoAkLi4OJf2uLg4ASCzZs2S7du3i0jez74aNWoIALnvvvvkmWeekS5duojZbJbu3bu7/CxcsGCB1KlTRwBIo0aNZOLEiU4P+7ywf//+8sUXXzieZ/+9/PLLL8usWbNk5syZ8vzzzzvmVq+++qrX8/HFF1/ILbfcIgCkRo0aLtldunQRANKlSxenY2uz2Rz5UVFR0rdvX3n22WdlwIABctttt4miKLJkyRLH9seOHZOKFSuKoijSrVs3eeyxxyQyMlJiY2MFgNx0003So0cPGTp0qFSoUEEAyCeffOK0r3/99ZejRpcuXWT8+PFy//33O+a7+/fvd9reftySkpIkJiZGnnjiCafzf+3vf7W/M93NafLP3T/66COvde3fB61atZKyZctKu3btZPz48ZKcnCwBAQESEhIiP//8syb9t5/L559/Xvr16yelS5d22c+vv/5aAEhERIQMGTJERo0aJQ0bNpQKFSpI27ZtXX5XeztW7uY5Bc0jPc3XNm/eLKGhoRIYGCh9+vSR8ePHO/andu3acvr0aa+57pw+fVpq1aolAKR9+/ZOxz40NFQ2b97stYaINmPGHU/z6U8//VTMZrOULl1aBg0aJM8++6zceuutAkCaNWsmOTk5jm337NkjgYGBcs8997jU93ScOnbsKIGBgbJnzx5HW2G/1202m/Ts2VMASHR0tAwfPlyeffZZSU5OlvLlyzv9DMvP298Z9mPSpk0bx5h+6qmnHP2vW7eu5ObmiojI1atXpVmzZo7vsaefflp69eolISEhjp/Bav+Gsh+va8/f7t27pVSpUlKzZk3Jyspyec7Bgwfdzp9PnDgh0dHRAkDuueceGT9+vHTt2lVKlSold999t9u/iW7U+TIXH4lUio2NdfmFoVabNm1U/UBUu52vOnHihAQEBEirVq2M3hXd2SdZ7hbciIzibvGxON2okymiGxlfdPatF53d1fD0cPci4rJly6RDhw5Srlw5CQwMlOjoaGnbtq28/fbbLi9Y7du3T9q1ayfBwcGSkJAgq1evdvQ9PT1d2rRpI0FBQRIfH++y8Gh36NAhGThwoERFRUlAQIBERUXJwIED5dChQy7b2mvn5OTIM888I9WqVZNSpUpJQkKCTJ8+XWw2m9P2WiwkNW/eXFXd/Itte/fulfvuu0/KlCkjpUuXlg4dOsiOHTs067/9YTKZpEqVKtKhQwf55ptvXLb/7LPP5JZbbpHQ0FCpWLGi9OzZU9LT090uCum1+ChSuBfQ1S4+ioicOXNGRo0aJbGxsRIYGCgVK1aU7t27Oy28eaP34qOIyI8//ij33nuvRERESKlSpSQ+Pl4mTJggFy5ccGxjX3wLCwuTw4cPu9TwdJwOHTokYWFh0qxZM7l69arT1wrzvW6z2WTevHly2223SenSpSU0NFTi4uJk2LBhcuTIEbd9Vrv4mP9RunRpSUhIkGeffdZlIfr06dMyaNAgqVq1qgQHB0uDBg1kxowZcuDAgSIvPl6+fFkaNWokiqIU+LfcnDlzBID06NHDqf3w4cPSq1cviYiIkNDQUGnVqpVs2rTJ4xsybtT5siLi5iJYROSiRo0aGDBgwHV9VLZt27aoUaNGgXfHK8x2vurZZ5/FG2+8gcWLF7t8lLOkO3ToEGrWrOl0N2Mio9nH5cSJE6/rZ1dh2e90fvDgQVU3jyAi8lX+Ou8bMGAADh065PY6ctezXWG1bdsWmzZtcnudZV+uXVT237f9+/f323k80Y2iRo0aqFGjhuY//9S6UefLAUbvAJG/eOihh1RdDN2dAQMGICIiQrPtfInFYsGsWbNw+PBhzJs3DzfddBN69uxp9G7pLjw8HEOHDkXVqlWN3hUiIiIiIiIin8HFRyKVrr1Yb2Fce7Hgom7nS86fP4/x48cjODgYd9xxB2bPnu1yF7IbQYUKFRw3nyEiIiL/5q8vOnft2lXVXWzVbkdERKQFLj4SUZHUqFHDJz/+QkRAREQEJk6cqNulAOw5/vYObiKia/nri85du3bVdDsiIiIt8JqPRERERERERERU4k2bNg0RERGGfepw48aN2LhxI0aPHn1DvWDPxUciIiIiIiIiIiIqFiajd4CIiIiIiIiIiIhKphvumo82mw0nTpxAeHg4FEUxeneIiIiICk1EkJWVhapVq8Jk4mvJ/ohzUiIiIvJnhZmP3nCLjydOnEC1atWM3g0iIiKiIjt69ChiYmKM3g26DpyTEhERUUmgZj56wy0+hoeHA8g7OGXKlNEtt1evXli2bBnzmOeTeUZkMs+/84zIZB7zfD1Tz7zMzExUq1bNMa8h/2PEnLQkf0/cCHlGZDLPv/OMyGQe83w9k3naKcx89IZbfLR/rKVMmTK6Lj4GBgYyj3k+m2dEJvP8O8+ITOYxz9czjegjP67rv4yYk5b074mSnmdEJvP8O8+ITOYxz9czmac9NfNRXiSIiIiIiIiIiIiIigUXH4mIiIiIiIiIiKhYcPGRiIiIiIiIiIiIigUXH4mIiIiIiIiIiKhY3HA3nCksq9WKK1euFLlOhQoVkJubq8EeMY95JSPTn/MCAwNhNps1qUVEROQN56PMMyqTef6dZ0Qm59xE5A4XHz0QEfzzzz/IyMjQpN6AAQNw8OBBTWoxj3klIdPf8yIiIlClShXeaZaIiIoN56PMMzqTef6dZ0Qm59xE5A4XHz2wT/QqVaqE0NDQIv+wUxQFNWrU0GbnmMe8EpDpr3kiguzsbJw+fRoAEBUVVeSaRERE7nA+yjyjM5nn33lGZHLOTUTucPHRDavV6pjoVahQQZOaZrMZwcHBmtRiHvNKQqY/54WEhAAATp8+jUqVKvHjIEREpDnOR5nnC5nM8+88IzI55yYid3jDGTfs19QJDQ01eE+IyFfZfz5ocQ0uIiKia3E+SkTEOTdRScHFxwLwuhJE5Al/PhARkR74+4aIbmT8GUhUMnDxkYiIiIiIiIiIiIoFFx/puly8eBFHjx7F+fPnjd4VIiIiIiIiIiLyUVx8JNWWL1+OO++8E+Hh4QgLC0P16tXxxhtvGL1bRERERERERETko7j4eIPat28fHn74YURHRyMoKAhVq1bFQw89hH379rndfty4cejZsyfCw8PxwQcfYO3atVi3bh1GjBih854TERERkT9buHAhFEVxPIKDgxEfH4/HHnsMp06dMnr3SEfNmjWDoiiYNWuW269fO1auffz888+ObZctW4aHH34YcXFxUBQFbdu21akXRETkTYDRO0D6W7FiBZKTk1G+fHkMHjwYNWvWxKFDh/Dhhx/is88+w9KlS/HAAw84tt+0aRNef/11TJkyBePGjTNwz4mIiIiopHjxxRdRs2ZN5ObmYsuWLZg1axa+++477N27l3f5vgGkpaVh+/btqFGjBj755BMMHz7c47b2sXKtOnXqOP5/1qxZ+PXXX9G0aVOcO3euWPaZiIiuDxcfbzDp6eno27cvatWqhR9//BGRkZGOrz3xxBNo1aoV+vbti927d6NWrVoAgLfeegu33347Fx6JiIiISDP33nsvmjRpAgB45JFHUKFCBbzzzjv46quvkJycbPDeUXH773//i0qVKuHtt99G9+7dcejQIY/b5h8rnixatAjR0dEwmUy4+eabNd5bIiIqCn7s+gbz5ptvIjs7G3PnznVaeASAihUrYs6cObh48aLTtRx//vln3HzzzejduzfKly+PkJAQNG3aFF9++aVjm4sXL6J06dJ44oknXDKPHTsGs9mMKVOmAAAGDBiAGjVquGynKAomTZrk+Pfhw4cxYsQIJCQkICQkBBUqVECPHj1cJiYbN26EoijYuHGjo2379u246667EB4ejtKlS6Nt27bYvHmz0/PsH+PYsWOHo+3s2bMu+wEAQ4YMcbvPv/zyC+655x6ULVsWoaGhaNOmDbZu3eqy3fHjxzFo0CBUrlwZQUFBqF+/PubPn++ynTv2j5VMmzbN5Wt169aFoih47LHHCuxXQX37/fffce+996Jx48YICwvDnXfe6fQRFgCYM2cOTCYTli9f7mg7dOgQFEXBwoULHW2pqakoX748+vTp4/T8jIwMjB49GtWqVUNQUBDq1KmDuXPnwmazOW1ns9nw7rvvokGDBggODkZkZCTuueceR18K+thN/o/X2MeE/REUFIS7774bU6ZMgYi47X+ZMmU89p+IiIiKX/v27QEABw8eBAD8+++/GDt2LBo0aICwsDCUKVMG9957L3bt2uXy3NzcXEyfPh3x8fEIDg5GVFQUHnzwQaSnpwP437zF2xzC7vTp0xg8eDAqV66M4OBgJCYm4qOPPnLa5sCBA2jfvj2qVKmCoKAgVKtWDcOGDcO///7r2MY+J/nss89c9jksLAwDBgxw/FttfwtT83rnhfZ5Ub9+/dzOi9zN7V5//XWXuV1BFi9ejO7du6Nz584oW7YsFi9erPq57lSrVg0m0/X9eZt/7rhz506nrx0/fhxms9nlmA8YMABhYWEutT777DOXv02AvOvnP/DAAwgJCUHFihXx8MMP4/jx407b9OnTBxUqVEBaWpqjzX4O8/8NtHz5cphMJsyZM8fp+X/99Re6d++O8uXLIzg4GE2aNMH69etd9jEjIwNjxoxBjRo1EBQUhJiYGPTr1w9nz551mUe7e9jHzaRJk5zaw8PD0a1bN6e/E/Pv86233lpg/4mo5OI7H28wX3/9NWrUqIFWrVq5/Xrr1q1Ro0YNfPvtt462c+fOYe7cuQgLC8OoUaMQGRmJ//73v3jwwQfxySefIDk5GaVLl8YDDzyAZcuW4Z133oHZbHY8f8mSJRARPPTQQ4Xa1+3bt2Pbtm3o3bs3YmJicOjQIcyaNQtt27bFypUrPT7v77//Rtu2bREaGoqnn34aoaGh+OCDD9ChQwesXbsWrVu3LtR+ePLDDz/g3nvvxa233oqJEyfCZDJhwYIFaN++PTZv3oxmzZoBAE6dOoXbbrvNsUgYGRmJVatWYfDgwcjMzMTo0aO9ZgUHB2PBggVO227btg2HDx8uUh/27duHVq1aoUyZMnj00UdRpUoVzJkzB23btsWmTZvQvHlzAMDQoUOxf/9+9O/fHzVq1EDTpk1dav3777/o3Lkz6tWrhwULFjjas7Oz0aZNGxw/fhxDhw5F9erVsW3bNrz99tu4cuWK06Lq4MGDsXDhQtx777145JFHcPXqVWzevBk///wzmjRpgkWLFjm23bx5M+bOnYupU6eiYsWKAIDKlSs77dN//vMf1KtXDzk5OViwYAH+85//oFKlShg8eLBL/5955hkEBga67T8REREVP/tCYYUKFQDkLe59+eWX6NGjB2rWrIlTp05hzpw5aNOmDf744w9UrVoVAGC1WtG5c2esX78evXv3xhNPPIGsrCysXbsWe/fuRe3atR0ZycnJuO+++5xyx48f7/TvnJwctG3bFn///Tcee+wx1KxZE8uXL8eAAQOQkZHheLE9JycHMTExSEpKQpkyZbB3717MmDEDx48fx9dff13o/qvtb3FxNy96//33XeZFnuZ248ePx8mTJ92+YH6tX375BX///TcWLFiAUqVKOf6u6NGjh9vtLRYLzp4969SmKIpjrGjFPud+9913HW0fffQRSpUqhdzc3Ouuu3DhQgwcOBANGjTAlClTcOrUKbz77rvYunUrfv/9d0RERAAA5s+fj/bt26NTp0745ZdfUK5cOZdaKSkp6N+/P8aMGYOhQ4c62vft24eWLVsiOjoa48aNQ+nSpfHpp59ixIgRqFy5suOyWhcuXECrVq3w559/YtCgQbjllltw9uxZrFy5EseOHUO9evWc5txz587Fn3/+ialTpzraGjZs6LRP9u3Pnj2Ld999Fz169MDevXuRkJDg1P+mTZsW2H8iKsHkBmOxWASAWCwWj9vk5OTIH3/8ITk5OZrlpqamalbrevMyMjIEgHTp0qXA595///0CQDIzM0VEBIAAkI0bNzq2yc7Olnr16kmVKlXk8uXLkpqaKmvWrBEAsmrVKqd6DRs2lDZt2jj+PXDgQKlevbpLLgCZOHGiU8a1fvrpJwEgb7zxhqNtw4YNAkA2bNggIiLdunUTs9kse/fudWxz9uxZqVChgtx6662OtgULFggA2b59u6PtzJkzLvshItK2bVuJjY11/Ntms0lcXJx07NhRbDab0z7XrFlT7rrrLkfb4MGDJSoqSs6ePetUs3fv3lK2bFm3/cx//gBI9+7dJSAgQHbs2OFUt0+fPgJARo4cWWC/PPWta9euUqpUKUlPT3dknjhxQsLDw6V169ZOz7darZKUlCRRUVFy9OhROXjwoACQBQsWyOXLl6Vt27ZSs2ZNOX36tNPzXnrpJSldurTLmBwyZIiYzWY5cuSIiIj88MMPAkBGjRrlcjzyH+Nr+3nw4EGXr107JkRE9u7dKyaTSUaMGOG2/3ae+n8tbz8nkpKSCny+1vTOMyKTeczz9Uw989TMZ8i3eTuHxTUfzc4Weecdkccey/uvm2mIpnnu2H+Hr1u3Ts6cOSNHjx6VpUuXSoUKFSQkJESOHTsmIiK5ublitVqdnnvw4EEJCgqSF1980dE2f/58ASDjx493ybLPIezzljfffNNlm/r16zvNVadNmyYA5L///a+j7fLly9KiRQsJCwtzzJHd9W/EiBESFhbm+Ld9TrJ8+XKXbUuXLi39+/d3/FtNf1NTUwtV83rnhXZbtmxxmRd5mtuNGzfOaW5XkMcee0yqVavmOD/ff/+9AJAvv/zSaTv7/rt7BAUFeax/7Tn1xN4H+zFNTk6WChUqyKVLlxzbxMXFOebc+Y95//79pXTp0i41ly9f7jQPvXz5slSqVEluvvlm2bNnj2O7b775RgDICy+84PT8U6dOSY0aNaRdu3Zy+fJlpznvkSNHpEqVKnL//fe7jJU777xTGjRoILm5uY42m80mt9xyi8TFxTnaXnjhBQEgK1ascNl3d3Pu/v37O/0dlN/EiRPl2iUF+/5++umnLv3P//PMU/+vdaPPuUt6nhGZzNNOYeajhn/s+vjx43j44YdRoUIFhISEoEGDBi4fC8jv5MmT6NOnD+Lj42EymVS9a8xXXMq5gi+n/ozZj6/Gl1N/xqWcK7rmZ2VlAQDCw8ML3M7+9czMTEdb06ZN0aZNG8e/Q0JCMGLECPzzzz/47bffAAAdOnRA1apV8cknnzi227t3L3bv3o2HH37Y0VapUiWcPn0aly9fLnA/QkJCHP9/5coVnDt3DnXq1EFERAT++OMPl+0tFgtOnz6NtWvXomPHjqhfv77jaxUqVMCAAQPw66+/anIXxZ07dyItLQ19+vTBuXPncPbsWZw9exYXL17EnXfeiR9//BE2mw0igs8//xxJSUkQEcd2Z8+eRceOHWGxWBzHryCVK1dGp06dHO8ozM7OxqeffoqBAwd6fI79FWL7I/9HgIC8dwl8//336Nq1q+P6ngAQFRWFPn36YMuWLU5jwGQyYcmSJahQoQKSkpJw8eJFx9eGDx+OlJQUfPPNNy4f51++fDlatWqFcuXKOe3P7bffDqvVih9//BEA8Pnnn0NRFEycONGlL4qieD1GBR2DI0eO4IMPPoDNZnN8pKuw/SciopLrRpmP5uYqaNkSGDsWmDMn778tWwI5OcbsT4cOHRAZGYlq1aqhd+/eCAsLwxdffIHo6GgAQFBQkONjtFarFefOnUNYWBgSEhKc5k+ff/45KlasiL59+7pkXM8c4rvvvkOVKlWcrjsZGBiIUaNG4cKFC9i0aZPT9haLBadOncL69evx7bffuv2UTVZWltM86Np38RWmv4WpmX8fr2deWKlSJZd5kae5XYcOHZzmdp5cvXoVy5YtQ69evRznp3379qhUqZLHd4zOmDEDa9eudXqsWrWqwJzrkZSUBEVRHJ+y2rx5M44dO4ZevXp5fM6158D+N5fdjh07cPr0aYwYMQJBQUGO9k6dOqFu3bpOnzgD8o75t99+i19++QUjRoxwtF+4cAFJSUmoWLEiFi9e7PQR83///Rc//PADevbs6TQuzp07hzvuuANpaWmOjzh//vnnSExMdLrBqN31zrnteX/++SeWLFmC0qVL47bbbnPpf3BwsNf+E1HJZOjHrs+fP4+WLVuiXbt2WLVqFSIjI5GWlub27eV2ly5dQmRkJJ5//nmnt377usu5V/FMy4U4sOsUTGYFNqtgw6I9eGPrAASFBOqyD/ZFxWt/IV7L3SJl3bp1XbarV68egLxr6JQvXx4mkwkPPfQQZs2ahezsbISGhuKTTz5BcHCw00cobr/9drz++ut4/vnnMWrUKKdfQvnl5ORgypQpWLBgAY4fP+50rT53fejatavj/+1v8fe0v9d+PLew7Ndh6d+/v8dtLBYLrly5goyMDMydOxdz5851u93p06dVZQ4cOBADBw7E22+/jeXLl6NcuXKOhTR3OnToUGC9M2fOIDs72+OxstlsOHr0qNMirtVqxdmzZ/HPP/84Fj5nzpyJ7du3Q1EUt+clLS0Nu3fvdlmUtLP3Pz09HVWrVkX58uUL3O/CyD8mTCYTnn/+eXTr1g3A9fWfiIhKnhtpPrpkSVns2gXYbHkPANi1C5g9GxgzRv/9mTFjBuLj4xEQEIDKlSsjISHBaUHFfi3omTNn4uDBg7BarY6v5f+4bXp6OhISEhAQoM2fNocPH0ZcXJzL9QPtc8lrL3vTsWNH/PLLLwCAe+65B8uWLXOpOWjQIK+5avtbmJp2Ws4L1c7tPPn+++9x5swZNGvWDH///bejvV27dvjmm29gs9lcjn2zZs283nBGC4GBgXj44Ycxf/58dO/eHfPnz0e3bt1QpkwZt9tfvHjR43Gws48Xd8e2bt262LJli0t7ZmYmcnJyMG/ePMc1PwcNGoRdu3YhKirKaWwAeZedEhFMmDABEyZMcLsfp0+fRnR0NNLT0x3zYa3kPwZhYWH45JNPUK1aNQDX138iKnkMXXx8/fXXUa1aNafrw9WsWbPA59SoUcNxDQ61N+zwBduWpOPArlMQm8Bqy1tEO7DrFFbN/hVdx9ymyz6ULVsWUVFR2L17d4Hb7d69G9HR0Y5fsvnfgehNv3798Oabb+LLL79EcnIyFi9e7LiItN3999+PQYMG4c0338Sbb77psdbjjz/uuM5hixYtULZsWSiKgt69e7u9mPVbb72FuLg4dOnSRfX+Xi97/ptvvolGjRq53SYsLAznzp0DADz88MMeFyqvvWaKJ506dUKpUqXw5ZdfYsGCBejfv3+BF9W2T+jtMjMzizzRmDBhAnJzc7Fy5UrHK8Dbt2/H9OnTsWTJEowYMQLbt293+cPhrrvuwjPPPONU69ixY4iJiXHaR6299dZbSExMxJUrV7B69Wq8/vrrCAgIcPvuSiIiujHdSPPRo0cDYTb/b+ERAMxm4MABY/bH24LSq6++igkTJmDQoEF46aWXHC92jx49ulA3Nilu7733Hs6ePYs//vgDU6ZMwbBhw/Df//7XaZsXXnjB5ZrrSUlJTv8ubH/V1LTTcl7oaW5n521uZ/+UVM+ePd1+fdOmTWjXrt117ZsWBg0ahMaNG2P//v1Yvnx5gdeaDw4Odnm35ubNm/Hiiy9ed77VasWIESPQokUL9OrVy3GN0b1792LlypXo27cvXnjhBadra9rHx9ixY9GxY0enevY5d506da57n7xZu3YtgLzF2AULFqBnz5745ptvcNdddxVbJhH5F0MXH1euXImOHTuiR48e2LRpE6KjozFixAg8+uijRu5WsTh39AJMZsWx8AgAJrOCfw5k6LofnTt3xgcffIAtW7bgjjvucPn65s2bcejQIaeLF9esWRP79+932favv/4CAKe7QN98881o3LgxPvnkE8TExODIkSN47733XJ774Ycf4oUXXkB6errjl+W1v5w+++wz9O/fH2+//bajLTc3FxkZGW77duutt6JNmzYICwtTvb/Xy37h8jJlyhT4SnJkZCTCw8NhtVq9vuLsTUBAAPr27YtXXnkF+/bt8/rHzrUT+ms/ihMZGYnQ0FCPx8pkMjlesQTyPmo+Y8YMvPvuu0hKSsK8efPw0EMP4dFHH8Xjjz+OVq1aoUmTJpg5c6bT3bdr166NCxcuuPQ/LS0NcXFxTtutWbMG//77r2bvfrz11lsdd6+sU6cOcnNz8frrr2PChAmF7j8REZVMN9J8tFq1K7jmDVOwWoF8n7L1KZ999hnatWuHDz/80Kk9IyPDcbM5IG8O8csvv+DKFW0uaRQbG4vdu3e7vAPPPpeMjY112t5+I757770XlSpVQr9+/fDcc8853ikJAA0aNHCZC+W/QSOgvr+FqWmn5bzQ09xOjYsXL+Krr75Cr1690L17d5evjxw5Ep988omhi48NGjRA48aN0bNnT0RGRqJdu3YuH7W3M5vNLsfh2r9V7ONl//79LnPL/fv3u4ynmTNnYvfu3fj111+RmJiIvXv34oMPPsC8efOQlJSEl19+GaNHj8bAgQORmJgIAI6PygcGBqqac+/du1fl0VAnf+ZNN92EP//8E2+99Rbuuusup/5f+6ktd/0nopLJ0Gs+HjhwALNmzUJcXBzWrFmD4cOHY9SoUfjoo480y7h06RIyMzOdHkaoUC0MNqs4tdmsgiq1InTdj6effhohISEYOnSo4115dv/++y+GDRvmuEu03X333YeUlBRs27bN0Zabm4tZs2ahSpUquPXWW53q9O3bF99//z2mTZuGChUq4N5773W7L7GxsWjfvj06dOjgdvJiNpudPmoN5L2yfO3HDPJTFAV333031qxZgz///NOpbx999BGaNGlS5I9cA3mLWrVr18Zbb72FCxcuuHz9zJkzjj5069YNn3/+udtf8vbt1Bo0aBD27NmD1q1bO12P53qYzWbcfffd+Oqrr3Do0CFH+6lTp7B48WLccccdjne/ighGjBiBxMREDB8+HEDex+fz/7dRo0YYOXIknn/+eafravbs2RM//fQT1qxZ47IPGRkZuHr1KgCgW7duEBFMnjzZZbtrx8H1ysnJwdWrV3H16tVC9Z+IiEouPeajgG/MSZOTLUhMBEwmIDAw77+NGgHDhum+K6q4mwsuX77cce06u27duuHs2bMu7zYErm8Ocd999+Gff/5x+vj01atX8d577yEsLMzpOujXsi/qXbp0qdC5avtbHDzNi86ePesyL1I7t3Pniy++wMWLFzFy5Eh0797d5dG2bVt8/vnn13X8tDRo0CDs3r0bAwYMuO7rINo1adIElSpVwuzZs52ueb9q1Sr8+eef6NSpk6Pt1KlTmDBhAh577DHHwuK1c+7hw4cjMTERI0aMcIyXSpUqoW3btpgzZw5Onjzpsg/5/+bo1q0bdu3ahS+++MJlOy3m3FarFZcvX3acw/z9z39e3fWfiEouQ9/5aLPZ0KRJE7z66qsAgMaNG2Pv3r2YPXt2gdfSK4wpU6a4Xczo1asXAgPdX2vRfnMSRVE8vnpYWI27VMWOrw7hxJ/nHdd8rFo3AnEdyjquH6il7Oxsj3Vfe+01jB07FjfddBO6d++OmJgYHD9+HMuXL8f58+fxzjvvwGazOZ7fvXt3fPzxx+jYsSP69euHcuXK4auvvsIff/yBt99+GwcPHnTKs19c+IsvvkCfPn2cJjDenDt3zlGndevWWLRoEUQEtWvXxs6dO7Ft2zZERETg6tWrju2OHTvm+G9aWhoeeeQRrF69GnfccQf69u2L4OBgfPrpp8jIyMC0adMcz7MvkH311VeOa6nYFxJ///13p1edz549iwsXLuDDDz90XER80qRJeOSRR5CQkIAHH3wQlStXxqlTp/DLL78gLCwMc+bMAQAMGTIEa9euRbNmzdCzZ0/Url0bFosFf/zxB7Zt24bt27d7PX8ZGRlIS0tDQEAAfvnlFwQHB7v9ev5+HTlyxOnj7vYLi+c/xo8++ii+//573HbbbejRowdCQkKwdOlS5Obm4vHHH3dst3z5cvzyyy9YtmwZ0tPTnY77qVOnHNsNGDAAS5YswdChQx0fqX/ggQewfPlydO7cGQ888ABuvvlmZGdn448//sD69evxww8/oHz58oiJiUGXLl0wffp07Ny5E61bt4bNZsOOHTvQvHlzl4vI2/t58OBBl3c62Pdt2bJl2LFjB65evYrffvsNn3/+Odq3b++49kz+/vfp0wcBAQFu+++O1WrF6dOn8cYbb7gs5ANASkoK7r//fo/P15reeUZkMo95vp6pZ55W7/AifeajQAFz0nvuRKCbaxVWqFQZA0Y+AUVsMBdwmZXCsFlz8dH8v7BkaTkcPRaIajFXkNz7PI4d1uZFvmtl5+Yi7a8/XdpPnTwBADhy6CDKhpX2+PwWtzXHjJmz0O3BB9C4UWOkpqXi66+/QbVq1ZCTne2o3aJZUzRv1gxTpkzB7t270aRJE+Tk5GDbtm3o06cPOnTo4JgbnD171uX3++XLl5GTk+Nob9++PWrXro3+/ftj3bp1iI6Oxpo1a5CSkoLnnnsO//zzD/755x9MnToV//77L+Li4lCqVCn88ccf+Pzzz5GQkICQkBCkpaU5ck+ePOmSKyLIzMx0tLdo0QIzZsxAt27d0LhxY6SmpuLrr7/O6+//7192dnahal7vvNA+L1qyZInLvMjT3C41NRVr1qxxzO3cmTt3LiIiIhzXVr3WHXfcgU8//RQffPABOnbs6Nj///73v9i4caPL9o0bN0b16tUB5F0KyD6v/ueff2CxWDDm/y9m2rRpU8c7VPOzz7mvPaZt27bFzz//jPDwcI/nMTMzEyLi0g/74p/9bxMAePLJJzFu3DgkJyfj/vvvx9mzZ/Hxxx8jJiYG999/v2O7sWPHIigoCP3793c5h/nnvOPHj0fPnj3x2muvOd5B+swzzyA5ORk33XQTevbsiWrVquHcuXPYsWMHzpw54/h4+AMPPIDFixejR48e6NatG26++WZkZGTghx9+wOTJk53esWvvZ/6/vfKzz4HfeustAHkv9K9ZswaHDh3CQw895NL/5s2bo3Pnzh77786NPucu6XlGZDJPO4Waj2p/s231qlevLoMHD3ZqmzlzplStWlXV89u0aSNPPPFEgdvk5uaKxWJxPI4ePer1VuA5OTnyxx9/SE5Ojqr9UCM1NVVysy/LF+/8JLMeWyVfvPOT5GZf1qy+u7yC7N69W5KTkyUqKkoCAwOlSpUqkpycLHv27HG7fXp6unTv3l3Kli0rwcHB0rRpU/nyyy895t13330CQLZt26Z6nwHIxIkTHf8+f/68DBw4UCpWrChhYWHSsWNH+euvvyQ2NlYeeOABx3YbNmwQALJhwwZH26+//ip33323hIWFSWhoqLRu3Vo2bdrklLdgwQIBUOhHfr///rs8+OCDUqFCBQkKCpLY2Fjp2bOnrF+/3mm7U6dOyciRI6VatWqO433nnXfK3Llz3R6L/McTgIwcObLA45b/6/Z+bd++3Wm7M2fOuBxjEZHffvtNOnbsKKVLl5bQ0FBp166d03k7d+6cVKxYUYYMGeL0vIMHDwoAWbBggVP7J598IgCcjndWVpaMHz9e6tSpI6VKlZKKFSvKLbfcIm+99ZZcvvy/74OrV6/Km2++KXXr1pVSpUpJZGSk3HvvvfLrr7+69Nvez4MHD7p8zT4m7I+AgACJjo6WUaNGyfnz59323z5Wru2/J95+TiQlJXmtoSW984zIZB7zfD1TzzyLxeJ1PkPq6DEfFSlgTrphhcj2NS6PnO1r5Y/ff5Wcc6dFLmRo8kj98w/NahUlb8HsGXlzlR83FPj83HOn5KlRj0lUlSoSEhIiLVvcJj/9sFba3NFS2tzR0mnb7DMnZfjw4VKzZk3HXKt79+6Snp4uIv+bt7z55psu56Z+/frSpk0bp7ZTp0455qGlSpWSBg0auMx53nvvPWnatKmUKVNGQkJCpE6dOvLUU0/JmTNnHNvY5yTLly93yS1durT079/faYw89dRTEhUVldffli3lp59+kjZt2jj2LzU1tVA1r3deaJ8X3XbbbW7nRe7mdrfffrvL3O7aYxoQECB9+/Z1+3WRvL9RQkNDHXN9b/P1/Odk4sSJHre7tp929jl3QcfU09f79+8vpUuXdtl2+fLlLn+biIgsW7ZMbrrpJgkKCpLy5cvLQw89JMeOHXN8fePGjQJAFi9e7PQ8T3PeRx99VCpWrCjnzp1ztKWnp0u/fv2kSpUqEhgYKNHR0dKuXTv57LPPnJ577tw5eeyxxyQ6OlpKlSolMTEx0r9/fzl79qxLf/r37y+xsbFuj8u1x9z+fTB16lSx2Wwu/W/cuLHH/ntyo8+5S3qeEZnM005h5qOGLj4mJyfLHXfc4dQ2evRoadGiharnq53s5afm4BTX4qOejM7r2rWr1K5dW7e84paamuqYtOqVpzejx4y/5d3oEyEjMpnHPF/P9NXJHhXMiPmoSL5zeAMuPhZbnp/PLXwxk3n+nWdEJufczPP1TOZppzDzUUOv+ThmzBj8/PPPePXVV/H3339j8eLFmDt3LkaOHOnYZvz48ejXr5/T83bu3ImdO3fiwoULOHPmDHbu3Ik//vhD790nD06ePIlvv/3W5WOyRERERL6G81EiIiKi4mXoNR+bNm2KL774AuPHj8eLL76ImjVrYtq0aXjooYcc25w8eRJHjhxxel7jxo0d///rr79i8eLFiI2NLdS1BUl7Bw8exNatWzFv3jwEBgY63TG7JAgJCUHHjh2N3g0iIiLSEOejRERERMXL0MVHAOjcuTM6d+7s8esLFy50aRON7nxL2tq0aRMGDhyI6tWr46OPPkKVKlWM3iVNVa5cGatXrzZ6N4iIiEhjnI8SERERFR/DFx+p5BgwYAAGDBhg9G4QEREREREREZGPMPSaj0RERERERERERFRycfGRiIiIiIiIiIiIigUXHwvAa/kQkSf8+UBERHrg7xsiupHxZyBRycDFRzcCAvIuhXn16lWD94SIfJX954P95wUREZGWAiGACLIvXTJ6V4iIDJOdnQ0ACAwMNHhPiKgo+FezG2azGWazGZmZmQgPDzd6d4jIB2VmZjp+VhAREWnNDEGENRunz5wDAIQGBUFRlCLVtNpsyL10WYvd8808qxW5ubklNs+ITOb5d54RmVrliQiys7Nx+vRpREREcM5N5Oe4+OiGoiioVKkSTp48iaCgIJQuXbrokz0//aHPvBsjz4hMf80TEVy8eBGZmZmIiooq8s8GIiIiT6ogB7gCnD5lBTT4fXP6vAVyWb93UuqeZ8nS9SOap0+f1v0joXpnMs+/84zI1DovIiICVapU0aweERmDi48elC1bFjk5OTh79izOnDlT5Hr+/kOfeSU7z4hMf85TFAUREREoW7asJvWIiIjcUQBEIQeVrDm4osHVkt6Y8T5mjXus6Dvmq3kLP8GsWbP0y3vjDV3zjMhknn/nGZGpZV5gYCDf8UhUQnDx0QNFURAVFYVKlSrhypUrRa7nzz/0mVfy84zI9Oc8ToSIiEhPZgBm2Ipc59zpUwjWoI7P5p07h+Dg4BKbZ0Qm8/w7z4hMI/pIRL6Pi49eaHVNt5L+Q595/p1nRGZJzyMiIiIiIiIi3u2aiIiIiIiIiIiIigkXH4mIiIiIiIiIiKhYcPGRiIiIiIiIiIiIigUXH4mIiIiIiIiIiKhYcPGRiIiIiIiIiIiIigXvdk1EREREZJAZy6thdHIGAGD2ihgcOB6KWtHZGPbgMYQE25CTa1Ld7q3GnvQwTF1cvUg1jMwrqJ2IiIh8l+GLj8ePH8ezzz6LVatWITs7G3Xq1MGCBQvQpEkTj8/ZuHEjnnzySezbtw/VqlXD888/jwEDBui300RERERUYhg5H31uZhyWrVUABdiTFg6zWWC1Klj0XVWsm7EDHUY2wa5U7+0ffVPVaw1BMMZOSyhSDaPyCmrfOi+FC5BEREQ+zNDFx/Pnz6Nly5Zo164dVq1ahcjISKSlpaFcuXIen3Pw4EF06tQJw4YNwyeffIL169fjkUceQVRUFDp27Kjj3hMRERGRvzN6PipQsDst3PH/tqsKAGBXajgGvVQfu1LDYRPv7WpqAAoESpFqGJVXUPvsFTEY0+dIoY47ERER6cfQxcfXX38d1apVw4IFCxxtNWvWLPA5s2fPRs2aNfH2228DAOrVq4ctW7Zg6tSpXHwkIiIiokLxhfmokreOBpH/tZnNggPHQ2E2i2OhraB2vWv4yj7b24mIiMh3GXrDmZUrV6JJkybo0aMHKlWqhMaNG+ODDz4o8Dk//fQTOnTo4NTWsWNH/PTTT8W5q0RERERUAvnCfFTEeQEOAKxWBbWis2G1Kqra9a7hK/tsbyciIiLfZeji44EDBzBr1izExcVhzZo1GD58OEaNGoWPPvrI43P++ecfVK5c2amtcuXKyMzMRE5Ojsv2ly5dQmZmptODiIiIiAjQZz4KeJ6TKhAkxmWhYXwWTIogMMAGkyJoFJ+F+RP2IVFlu5oaiiJFrmFUXkHt9hvXEBERkW9SRK59vVE/pUqVQpMmTbBt2zZH26hRo7B9+3aPrxzHx8dj4MCBGD9+vKPtu+++Q6dOnZCdnY2QkBCn7SdNmoTJkye71LnnnnsQGBioUU+8S0lJQbNmzZjHPJ/MMyKTef6dZ0Qm85jn65l65l25cgWrV6+GxWJBmTJldMksqfSYjwKe56R1a7RCregrAIDDJ0NwMdeM0sFWxEblwGwCrDb17d5qHDi+B7WiGxSphpF5BbUDQMq+/WhWP6GwQ+C66Z1nRKbueakHS+zPbSPyjMhkHvN8PZN52inMfNTQaz5GRUXhpptucmqrV68ePv/8c4/PqVKlCk6dOuXUdurUKZQpU8btRG/8+PF48sknHf/OzMxEtWrVsGzZMl0n6/fffz9WrlzJPOb5ZJ4Rmczz7zwjMpnHPF/P1DMvMzMTZcuW1SWrpNNjPgp4npP+smAMyoSVLkIP1Lv/yYlY+c44XbKMy3Nd4C0peUZk6p734vsl9ue2EXlGZDKPeb6eyTztFGY+aujiY8uWLbF//36nttTUVMTGxnp8TosWLfDdd985ta1duxYtWrRwu31QUBCCgoKKvrNEREREVOLoMR8FPM9JZyyvhtHJGQCA2SticOB4KGpFZ2PYg8cQEmxDTq5Jdbu3GnvSwzB1cfUi1TAyz1sNNXla9lttHhER0Y3O0MXHMWPG4Pbbb8err76Knj17IiUlBXPnzsXcuXMd24wfPx7Hjx/Hxx9/DAAYNmwY3n//fTzzzDMYNGgQfvjhB3z66af49ttvjeoGEREREfkpo+ejz82Mw7K1CqAAe9LCYTYLrFYFi76rinUzdqDDyCbYleq9/aNvqnqtIQjG2GkJRaphVJ6aGt7ytO63mryt81K4AElERDc8QxcfmzZtii+++ALjx4/Hiy++iJo1a2LatGl46KGHHNucPHkSR44ccfy7Zs2a+PbbbzFmzBi8++67iImJwbx589CxY0cjukBEREREfszo+ahAwe60cMf/267m3c15V2o4Br1UH7tSw2ET7+1qauTd3kYpUg2j8tTU8Jandb/V5M1eEYMxff43doiIiG5Ehi4+AkDnzp3RuXNnj19fuHChS1vbtm3x+++/F+NeEREREdGNwuj5qJK3VoX8t4E0mwUHjofCbBbHYlZB7XrX8Md9NqrfRERENzqT0TtARERERHQjE3FezAIAq1VBrehsWK2Kqna9a/jjPhvVbyIiohsdFx+JiIiIiAyiQJAYl4WG8VkwKYLAABtMiqBRfBbmT9iHRJXtamooihS5hlF5amp4y9O632ry7DeoISIiupEZ/rFrIiIiIqIb1Ssj0gq82/XWeSmq273VmL4sF6N67S9SDSPzvNVQk6dlv9XmERER3ei4+EhERERERFRMcnJNqhc73W2bv31PehimLq5eYA0iIiJfw8VHIiIiIiKDPDczDsvWKoAC7EkLh9kssFoVLPquKtbN2IEOI5tgV6r39o++qeq1hiAYY6clFKmGUXlqanjL07rfeuR5Oqaeamydl8IFSCIi8jlcfCQiIiIiMohAwe60cMf/2++WvCs1HINeqo9dqeGwifd2NTXyrjCpFKmGUXlqanjL07rfeuR5OqaeasxeEYMxfY54G3ZERES64g1niIiIiIgMpCh5j/zMZsGB46Ewm0VVu941/HGfb5R+ExER+RouPhIRERERGUgk75Gf1aqgVnQ2rFZFVbveNfxxn2+UfhMREfkaLj4SERERERlEgSAxLgsN47NgUgSBATaYFEGj+CzMn7APiSrb1dRQFClyDaPy1NTwlqd1v/XI83RMPdWw34iGiIjIl/Caj0REREREBnllRBpGJ2cAcH/n4q3zUlS3e6sxfVkuRvXaX6QaRuZ5q6EmT8t+65Xn6Zh6qkFERORruPhIRERERGSQkT2OIiS4NAC4vVFISLCtUO0FbbthxwWnr19PDaPzCqqhNk+rfuuZ5+mY8uYyRETkD7j4SERERERkkBnLqxX4zsecXJPqdm819qSHYeri6kWqYWSetxpq8rTst155no6pEWOGiIjoenDxkYiIiIjIIM/NjMOytQqgAHvSwmE2C6xWBYu+q4p1M3agw8gm2JXqvf2jb6p6rSEIxthpCUWqYVSemhre8rTutx55no6p1sdOzTncOi+FC5BERHRduPhIRERERGQQgYLdaeGO/7ddzbur8a7UcAx6qT52pYbDJt7b1dTIu72NUqQaRuWpqeEtT+t+65Hn6ZgaMWZmr4jhx7yJiOi68G7XREREREQGUpS8R35ms+DA8VCYzaKqXe8a/rjP7HfRaxAREV0PLj4SERERERlIJO+Rn9WqoFZ0NqxWRVW73jX8cZ/Z76LXICIiuh6GLj5OmjQJiqI4PerWretx+ytXruDFF19E7dq1ERwcjMTERKxevVrHPSYiIiKiksTo+agCQWJcFhrGZ8GkCAIDbDApgkbxWZg/YR8SVbarqaEoUuQaRuWpqeEtT+t+65Hn6ZgaMWbsN6ghIiIqLMOv+Vi/fn2sW7fO8e+AAM+79Pzzz+O///0vPvjgA9StWxdr1qzBAw88gG3btqFx48Z67C4RERERlTBGzkdfGZFW4N2ut85LUd3urcb0ZbkY1Wt/kWoYmeethpo8LfutV56nY2rEmCEiIroehi8+BgQEoEqVKqq2XbRoEZ577jncd999AIDhw4dj3bp1ePvtt/Hf//63OHeTiIiIiEoozkeJvMvJNbldqCxMO+B+sZOIiEo2wxcf09LSULVqVQQHB6NFixaYMmUKqlev7nbbS5cuITg42KktJCQEW7Zs0WNXiYiIiKgEMnI++tzMOCxbqwAKsCctHGazwGpVsOi7qlg3Ywc6jGyCXane2z/6pqrXGoJgjJ2WUKQaRuWpqeEtT+t+65Hn6ZhqfeyMzNs6L4ULkEREJZyhi4/NmzfHwoULkZCQgJMnT2Ly5Mlo1aoV9u7di/DwcJftO3bsiHfeeQetW7dG7dq1sX79eqxYsQJWq9VjxqVLl3Dp0iXHvzMzM4ulL0RERETkf/SYjwKe56QCBbvTwh3/b7uad6OPXanhGPRSfexKDYdNvLerqZF3hUmlSDWMylNTw1ue1v3WI8/TMdV7zBRn3uwVMRjT5wiIiKjkUkSuvceZcTIyMhAbG4t33nkHgwcPdvn6mTNn8Oijj+Lrr7+GoiioXbs2OnTogPnz5yMnJ8dtzUmTJmHy5Mku7ffccw8CAwM174MnKSkpaNasGfOY55N5RmQyz7/zjMhkHvN8PVPPvCtXrmD16tWwWCwoU6aMLpk3iuKYjwKe56TAPQBc56SKIggLseJCjhkiitd2d1y3TQHQrIg1jMlTV6PgPO37Xfx5no5p0WoUZj+KPy82KhcNal8AAKTs249m9RMKfI6WdM9LPcjfhcxjnsGZzNNOoeaj4mOaNGki48aNK3CbnJwcOXbsmNhsNnnmmWfkpptu8rhtbm6uWCwWx+Po0aMCQCwWi9a7XqCkpCTmMc9n84zIZJ5/5xmRyTzm+XqmnnkWi8WQ+cyNQuv5qIjnOSlgESXv/WECiONhUmzSpc0/YlLUtaurkaRBDWPy1NUoOE/7fhd/nqdjqveYKc68d8b8KbJ9jcj2NZLU6jbH/+vx0D2PvwuZxzzDM5mnncLMR03Fvxaq3oULF5Ceno6oqKgCtwsODkZ0dDSuXr2Kzz//HF26dPG4bVBQEMqUKeP0ICIiIiJypzjmo4DnOakCQWJcFhrGZ8GkCAIDbDApgkbxWZg/YR8SVbarqaEoUuQaRuWpqeEtT+t+65Hn6ZjqPWaKM89+IxoiIiq5DL3m49ixY5GUlITY2FicOHECEydOhNlsRnJyMgCgX79+iI6OxpQpUwAAv/zyC44fP45GjRrh+PHjmDRpEmw2G5555hkju0FEREREfsro+egrI9IwOjkDgPu7AG+dl6K63VuN6ctyMarX/iLVMDLPWw01eVr2W688T8dU7zFTnHlERFSyGbr4eOzYMSQnJ+PcuXOIjIzEHXfcgZ9//hmRkZEAgCNHjsBk+t+bM3Nzc/H888/jwIEDCAsLw3333YdFixYhIiLCoB4QERERkT8zej46ssdRhASXBgC3N90ICbYVqr2gbTfsuOD09eupYXReQTXU5mnVbz3zPB1TvcdMceUREVHJZuji49KlSwv8+saNG53+3aZNG/zxxx/FuEdEREREdCMxej46Y3m1At/5mJNrUt3urcae9DBMXVy9SDWMzPNWQ02elv3WK8/TMdV7zPj6GCUiIt9l6OIjEREREdGN7LmZcVi2VgEUYE9aOMxmgdWqYNF3VbFuxg50GNkEu1K9t3/0TVWvNQTBGDstoUg1jMpTU8Nbntb91iPP0zHV+tj5Wl5ha2ydl8IFSCIiH8bFRyIiIiIigwgU7E4Ld/y/7aoCANiVGo5BL9XHrtTwvHsEe2lXUyPv9jZKkWoYlaemhrc8rfutR56nY6r3mPH1MTp7RQw/zk1E5MN86m7XREREREQ3GkXJe+RnNgsOHA+F2Syq2vWu4Y/7zH6X7H4TEZHv4uIjEREREZGBRPIe+VmtCmpFZ8NqVVS1613DH/eZ/S7Z/SYiIt/FxUciIiIiIoMoECTGZaFhfBZMiiAwwAaTImgUn4X5E/YhUWW7mhqKIkWuYVSemhre8rTutx55no6p3mPG18eo/UY0RETkm3jNRyIiIiIig7wyIq3Au11vnZeiut1bjenLcjGq1/4i1TAyz1sNNXla9luvPE/HVO8x4+tjlIiIfBcXH4mIiIiIiMiv5eSa3C5KumsH8hYw96SHYeri6lzAJCIqZlx8JCIiIiIyyHMz47BsrQIowJ60cJjNAqtVwaLvqmLdjB3oMLIJdqV6b//om6peawiCMXZaQpFqGJWnpoa3PK37rUeep2Oq9bHztTwjxszWeSlcgCQiKiZcfCQiIiIiMohAwe60cMf/267m3WBjV2o4Br1UH7tSw2ET7+1qauRdYVIpUg2j8tTU8Jandb/1yPN0TPUeM/44Rgt7DmeviMGYPkdARETa4w1niIiIiIgMpCh5j/zMZsGB46Ewm0VVu941/HGf2W/221sNIiIqHlx8JCIiIiIykEjeIz+rVUGt6GxYrYqqdr1r+OM+s9/st7caRERUPLj4SERERERkEAWCxLgsNIzPgkkRBAbYYFIEjeKzMH/CPiSqbFdTQ1GkyDWMylNTw1ue1v3WI8/TMdV7zPjjGC3sObTfiIaIiLTHaz4SERERERnklRFpGJ2cAQBu79S7dV6K6nZvNaYvy8WoXvuLVMPIPG811ORp2W+98jwdU73HjD+O0cKeQyIiKh5cfCQiIiIiMsjIHkcRElwaANze7CIk2Fao9oK23bDjgtPXr6eG0XkF1VCbp1W/9czzdEz1HjP+OEYLcw6JiKh4cPGRiIiIiMggM5ZXK/Cdjzm5JtXt3mrsSQ/D1MXVi1TDyDxvNdTkadlvvfI8HVO9x4w/jlEtzqGnPCIiUo+Lj0REREREBnluZhyWrVUABdiTFg6zWWC1Klj0XVWsm7EDHUY2wa5U7+0ffVPVaw1BMMZOSyhSDaPy1NTwlqd1v/XI83RMtT52vpbnK2PGU97WeSlcgCQiKgRDbzgzadIkKIri9Khbt26Bz5k2bRoSEhIQEhKCatWqYcyYMcjNzdVpj4mIiIioJDF6PipQsDstHLtTw2ETBVeummATBbtSwzHopfrYpbJdTQ0Rpcg1jMpTU8Nbntb91iPP0zHVe8z44xjV4hx6ypu9Iua6vt+JiG5Uhr/zsX79+li3bp3j3wEBnndp8eLFGDduHObPn4/bb78dqampGDBgABRFwTvvvKPH7hIRERFRCWP0fFRR8v4r8r82s1lw4HgozGaB7aritV3vGv64z+w3+61lv4mISD1D3/kI5E3uqlSp4nhUrFjR47bbtm1Dy5Yt0adPH9SoUQN33303kpOTkZKSouMeExEREVFJYvR8VMR5cQMArFYFtaKzYbUqqtr1ruGP+8x+s99a9puIiNQzfPExLS0NVatWRa1atfDQQw/hyBHPdxu7/fbb8euvvzomdwcOHMB3332H++67T6/dJSIiIqISxsj5qAJBYlwWGsZnwaQIAgNsMCmCRvFZmD9hHxJVtqupoShS5BpG5amp4S1P637rkefpmOo9ZvxxjGpxDj3l2W9EQ0RE6hj6sevmzZtj4cKFSEhIwMmTJzF58mS0atUKe/fuRXh4uMv2ffr0wdmzZ3HHHXdARHD16lUMGzYM//nPfzxmXLp0CZcuXXL8OzMzs1j6QkRERET+R4/5KOB5TvrKiLQC73a9dV6K6nZvNaYvy8WoXvuLVMPIPG811ORp2W+98jwdU73HjD+OUS3Ooac8IiJSTxG59o3kxsnIyEBsbCzeeecdDB482OXrGzduRO/evfHyyy+jefPm+Pvvv/HEE0/g0UcfxYQJE9zWnDRpEiZPnuzSfs899yAwMFDzPniSkpKCZs2aMY95PplnRCbz/DvPiEzmMc/XM/XMu3LlClavXg2LxYIyZcroknmjKI75KOB5Tlq3RivUir4CADh8MgQXc80oHWxFbFQOzCbAalPf7q3GgeN7UCu6QZFqGJnnrYaaPC37rVeep2Oq95jxxzGqxTkszjw9pOzbj2b1E/QJA5CSerDE/u5lXsnIZJ52CjUfFR/TpEkTGTdunNuv3XHHHTJ27FintkWLFklISIhYrVa3z8nNzRWLxeJ4HD16VACIxWLRfN8LkpSUxDzm+WyeEZnM8+88IzKZxzxfz9Qzz2KxGDKfuVFoPR8V8TwnVZAhiXEWSYy3iEmxSWCAVUyKTRonWOTcuvXSOEFdu5oaitK5yDWMylNTw1ue1v3WI8/TMdV7zPjjGNXiHBZnXvbmtSLb1xT7I6nVbbrkOPJK8O9e5pWMTOZppzDzUcPvdp3fhQsXkJ6ejr59+7r9enZ2Nkwm55eIzGYzAEA8vIEzKCgIQUFB2u4oEREREZVIxTEfBTzPSQUKdqeFO/7ffqfdXanhGPRSfexKDYdNvLerqZF3hUmlSDWMylNTw1ue1v3WI8/TMdV7zPjjGNXiHBZn3uwVMRjTx/P1ZYmIShJDbzgzduxYbNq0CYcOHcK2bdvwwAMPwGw2Izk5GQDQr18/jB8/3rF9UlISZs2ahaVLl+LgwYNYu3YtJkyYgKSkJMekj4iIiIhILV+YjypK3iM/s1lw4HgozGZR1a53DX/cZ/ab/fa1fhMR3SgMXXw8duwYkpOTkZCQgJ49e6JChQr4+eefERkZCQA4cuQITp486dj++eefx1NPPYXnn38eN910EwYPHoyOHTtizpw5RnWBiIiIiPyYL8xHRfIe+VmtCmpFZ8NqVVS1613DH/eZ/Wa/fa3fREQ3CkMXH5cuXYoTJ07g0qVLOHbsGJYuXYratWs7vr5x40YsXLjQ8e+AgABMnDgRf//9N3JycnDkyBHMmDEDERER+u88EREREfk9o+ejCgSJcVloGJ8FkyIIDLDBpAgaxWdh/oR9SFTZrqaGokiRaxiVp6aGtzyt+61HnqdjqveY8ccxqsU5LM48+520iYhuBD51zUciIiIiohvJKyPSMDo5AwAwe0UMDhwPRa3obAx78BhCgm3YOi9Fdbu3GtOX5WJUr/1FqmFknrcaavK07LdeeZ6Oqd5jxh/HqBbnsDjziIhuFFx8JCIiIiIyyMgeRxESXBoA3N58IiTYVqj2grbdsOOC09evp4bReQXVUJunVb/1zPN0TPUeM/44RrU4h8WVR0R0o+DiIxERERGRQWYsr1bgOx9zck2q273V2JMehqmLqxephpF53mqoydOy33rleTqmeo8ZfxyjWpxDXxmjfKckEfkzLj4SERERERnkuZlxWLZWARRgT1o4zGaB1apg0XdVsW7GDnQY2QS7Ur23f/RNVa81BMEYOy2hSDWMylNTw1ue1v3WI8/TMdX62Planq+MGV8Zo4u+q4qt81K4AElEfouLj0REREREBhEo2J0W7vh/29W8O+XuSg3HoJfqY1dqOGzivV1Njbzb2yhFqmFUnpoa3vK07rceeZ6Oqd5jxh/HqBbn0FfG6K7UcMxeEcOPbBOR3zL0btdERERERDc6Rcl75Gc2Cw4cD4XZLKra9a7hj/vMfrPf/tpvezsRkb/i4iMRERERkYFE8h75Wa0KakVnw2pVVLXrXcMf95n9Zr/9td/2diIif8XFRyIiIiIigygQJMZloWF8FkyKIDDABpMiaBSfhfkT9iFRZbuaGooiRa5hVJ6aGt7ytO63HnmejqneY8Yfx6gW59BXxmij+CzHjWuIiPwRr/lIRERERGSQV0akFXi3663zUlS3e6sxfVkuRvXaX6QaRuZ5q6EmT8t+65Xn6ZjqPWb8cYxqcQ59ZYzyZjNE5M+4+EhERERERETkw3JyTW4XJD21ExH5FLnBWCwWASAWi0XX3KSkJOYxz2fzjMhknn/nGZHJPOb5eqaeeUbNZ0g79nOoIEMS4yySGG8Rk2KTwACrmBSbNE6wyLl166Vxgrp2NTUUpXORaxiVp6aGtzyt+61HnqdjqveY8ccxqsU59Mcx2jjBItmb14psXyOyfY0ktbrN8f96PEry717mlYxM5mmnMPNRvvORiIiIiMggAgW708Id/2+7mnejiV2p4Rj0Un3sSg2HTby3q6mRd4VJpUg1jMpTU8Nbntb91iPP0zHVe8z44xjV4hz64xjdlRqO2StiMKbPERAR+QrecIaIiIiIyECKkvfIz2wWHDgeCrNZVLXrXcMf95n9Zr9vpH4TEfkSLj4SERERERlIJO+Rn9WqoFZ0NqxWRVW73jX8cZ/Zb/b7Ruo3EZEv4eIjEREREZFBFAgS47LQMD4LJkUQGGCDSRE0is/C/An7kKiyXU0NRZEi1zAqT00Nb3la91uPPE/HVO8x449jVItz6I9jtFF8luMO20REvoLXfCQiIiIiMsgrI9IwOjkDANzesXbrvBTV7d5qTF+Wi1G99hephpF53mqoydOy33rleTqmeo8ZfxyjWpxDfxyjvNs1EfkaQxcfJ02ahMmTJzu1JSQk4K+//vL4nIyMDDz33HNYsWIF/v33X8TGxmLatGm47777int3iYiIiKiEMXo+OrLHUYQElwYAtzeICAm2Faq9oG037Ljg9PXrqWF0XkE11OZp1W898zwdU73HjD+OUS3OoT+OUSIiX2L4Ox/r16+PdevWOf4dEOB5ly5fvoy77roLlSpVwmeffYbo6GgcPnwYEREROuwpEREREZVERs5HZyyvVuA7H3NyTarbvdXYkx6GqYurF6mGkXneaqjJ07LfeuV5OqZ6jxl/HKNanEN/HKOFPYdERMVODDRx4kRJTExUvf2sWbOkVq1acvny5evOtFgsAkAsFst117geSUlJzGOez+YZkck8/84zIpN5zPP1TD3zjJrPlERGzEdF/ncOFWRIYpxFEuMtYlJsEhhgFZNik8YJFjm3br00TlDXrqaGonQucg2j8tTU8Jandb/1yPN0TPUeM/44RrU4h/44Rgt7DrM3rxXZvkazR0n+3cu8kpHJPO0UZj5q+Dsf09LSULVqVQQHB6NFixaYMmUKqlev7nbblStXokWLFhg5ciS++uorREZGok+fPnj22WdhNpvdPufSpUu4dOmS49+ZmZnF0g8iIiIi8k/FPR8FPM9JBQp2p4U7/t92Ne/OtbtSwzHopfrYlRoOm3hvV1Mj7/Y2SpFqGJWnpoa3PK37rUeep2Oq95jxxzGqxTn0xzFa2HM4e0UMP7ZNRMVOERExKnzVqlW4cOECEhIScPLkSUyePBnHjx/H3r17ER4e7rJ93bp1cejQITz00EMYMWIE/v77b4wYMQKjRo3CxIkT3Wa4u44PANxzzz0IDAzUvE+epKSkoFmzZsxjnk/mGZHJPP/OMyKTeczz9Uw9865cuYLVq1fDYrGgTJkyumSWVHrMRwHPc1LgHgCuc1JFEYSFWHEhxwwRxWu7O67bpgBoVsQaxuSpq1Fwnvb9Lv48T8e0aDUKsx/G5PnKmNE7z4gxExuViwa1LxSYVRgp+/ajWf0Ezep5zUs9WGJ/198IeUZkMk87hZqPFvv7MAvh/PnzUqZMGZk3b57br8fFxUm1atXk6tWrjra3335bqlSp4rFmbm6uWCwWx+Po0aP82DXzmOcDmczz7zwjMpnHPF/P9NWPuVDhFMd8VMTznBSwiJL3viUBxPEwKTbp0uYfMSnq2tXVSNKghjF56moUnKd9v4s/z9Mx1XvM+OMY1eIc+uMYLew5fGfMn9p+7LrVbZrW48e8S3aeEZnM005h5qOm4l8LVS8iIgLx8fH4+++/3X49KioK8fHxTh9pqVevHv755x9cvnzZ7XOCgoJQpkwZpwcRERERkTvFMR8FPM9JFQgS47LQMD4LJkUQGGCDSRE0is/C/An7kKiyXU0NRZEi1zAqT00Nb3la91uPPE/HVO8x449jVItz6I9jtLDn0H4jGiKi4mT4NR/zu3DhAtLT09G3b1+3X2/ZsiUWL14Mm80Gkylv3TQ1NRVRUVEoVaqUnrtKRERERCWQ3vPRV0akFXi3663zUlS3e6sxfVkuRvXaX6QaRuZ5q6EmT8t+65Xn6ZjqPWb8cYxqcQ79cYwW9hwSERU3Q9/5OHbsWGzatAmHDh3Ctm3b8MADD8BsNiM5ORkA0K9fP4wfP96x/fDhw/Hvv//iiSeeQGpqKr799lu8+uqrGDlypFFdICIiIiI/xvkoEd3ocnJNmLq4Oh5/sy6mLq6OnFyT2zYiouumw8fAPerVq5dERUVJqVKlJDo6Wnr16iV///234+tt2rSR/v37Oz1n27Zt0rx5cwkKCpJatWrJK6+84nTNHW+MukZSSf6cP/P8P8+ITOb5d54Rmcxjnq9n+uo1dqhgRsxHRf53DhVkSGKcRRLjLWJSbBIYYBWTYpPGCRY5t269NE5Q166mhqJ0LnINo/LU1PCWp3W/9cjzdEz1HjP+OEa1OIf+OEa1OIeets3evJbXfGSe32cyTzuFmY8a+rHrpUuXFvj1jRs3urS1aNECP//8czHtERERERHdSIyejwoU7E4Ld/y/7WreXWt3pYZj0Ev1sSs1PO82EV7a1dTIu8KkUqQaRuWpqeEtT+t+65Hn6ZjqPWb8cYxqcQ79cYxqcQ49bTt7RQzG9DkCIqLC4nuniYiIiIgMpCh5j/zMZsGB46Ewm0VVu941/HGf2W/2m/0uer+JiK4HFx+JiIiIiAwkkvfIz2pVUCs6G1aroqpd7xr+uM/sN/vNfhe930RE14OLj0REREREBlEgSIzLQsP4LJgUQWCADSZF0Cg+C/Mn7EOiynY1NRRFilzDqDw1Nbzlad1vPfI8HVO9x4w/jlEtzqE/jlEtzqGnbe13zCYiKixDr/lIRERERHQje2VEGkYnZwAAZq+IwYHjoagVnY1hDx5DSLANW+elqG73VmP6slyM6rW/SDWMzPNWQ02elv3WK8/TMdV7zPjjGNXiHPrjGNXiHHralojoenDxkYiIiIjIICN7HEVIcGkAcHsjh5BgW6HaC9p2w44LTl+/nhpG5xVUQ22eVv3WM8/TMdV7zPjjGNXiHPrjGNXiHPLmMkSkFS4+EhEREREZZMbyagW+8zEn16S63VuNPelhmLq4epFqGJnnrYaaPC37rVeep2Oq95jxxzGqxTn0xzGqxTnUIo/vlCQiB7nBWCwWASAWi0XX3KSkJOYxz2fzjMhknn/nGZHJPOb5eqaeeUbNZ0g79nOoIEMS4yySGG8Rk2KTwACrmBSbNE6wyLl166Vxgrp2NTUUpXORaxiVp6aGtzyt+61HnqdjqveY8ccxqsU59McxqsU51CKvcYJFsjevFdm+plgfJfl3/Y2QZ0Qm87RTmPko3/lIRERERGQQgYLdaeGO/7ddzbvr7K7UcAx6qT52pYbDJt7b1dTIu72NUqQaRuWpqeEtT+t+65Hn6ZjqPWb8cYxqcQ79cYxqcQ61yNuVGo7ZK2L40W0iAsC7XRMRERERGUpR8h75mc2CA8dDYTaLqna9a/jjPrPf7Df7rV+/7e1ERAAXH4mIiIiIDCWS98jPalVQKzobVquiql3vGv64z+w3+81+69dvezsREcDFRyIiIiIiwygQJMZloWF8FkyKIDDABpMiaBSfhfkT9iFRZbuaGooiRa5hVJ6aGt7ytO63HnmejqneY8Yfx6gW59Afx6gW51CLvEbxWY4b1xAR8ZqPREREREQGeWVEWoF3u946L0V1u7ca05flYlSv/UWqYWSetxpq8rTst155no6p3mPGH8eoFufQH8eoFudQizze7ZqI7Lj4SERERERERESaysk1uV2o9NRORCWYDnff9imFuRW4lkry7dWZ5/95RmQyz7/zjMhkHvN8PVPPPKPmM6Qd+zlUkCGJcRZJjLeISbFJYIBVTIpNGidY5Ny69dI4QV27mhqK0rnINYzKU1PDW57W/dYjz9Mx1XvM+OMY1eIc+uMY1eIcGjFGszevFdm+ptCPkvy7/kbIMyKTedopzHyU73wkIiIiIjKIQMHutHDH/9uu5t20YVdqOAa9VB+7UsNhE+/tamrkXWFSKVINo/LU1PCWp3W/9cjzdEz1HjP+OEa1OIf+OEa1OIdGjNHZK2Iwps8REFHJxBvOEBEREREZSFHyHvmZzYIDx0NhNouqdr1r+OM+s9/sN/vt2/0mopLL0MXHSZMmQVEUp0fdunU9br9w4UKX7YODg3XcYyIiIiIqSXxhPiqS98jPalVQKzobVquiql3vGv64z+w3+81++3a/iajkMvydj/Xr18fJkycdjy1bthS4fZkyZZy2P3z4sE57SkREREQlkZHzUQWCxLgsNIzPgkkRBAbYYFIEjeKzMH/CPiSqbFdTQ1GkyDWMylNTw1ue1v3WI8/TMdV7zPjjGNXiHPrjGNXiHBoxRu132Caiksnwaz4GBASgSpUqqrdXFKVQ2xMRERERFcTI+egrI9IwOjkDANze/XXrvBTV7d5qTF+Wi1G99hephpF53mqoydOy33rleTqmeo8ZfxyjWpxDfxyjWpxDI8YoEZVchi8+pqWloWrVqggODkaLFi0wZcoUVK9e3eP2Fy5cQGxsLGw2G2655Ra8+uqrqF+/vsftL126hEuXLjn+nZmZqen+ExEREZF/K+75KOB5Tjqyx1GEBJcGALc3WwgJthWqvaBtN+y44PT166lhdF5BNdTmadVvPfM8HVO9x4w/jlEtzqE/jlEtzqHeeURUciki116JQT+rVq3ChQsXkJCQgJMnT2Ly5Mk4fvw49u7di/DwcJftf/rpJ6SlpaFhw4awWCx466238OOPP2Lfvn2IiYlxmzFp0iRMnjzZpf2ee+5BYGCg5n3yJCUlBc2aNWMe83wyz4hM5vl3nhGZzGOer2fqmXflyhWsXr0aFosFZcqU0SWzpNJjPgp4npPWrdEKtaKvAAAOnwzBxVwzSgdbERuVA7MJsNrUt3urceD4HtSKblCkGkbmeauhJk/LfuuV5+mY6j1m/HGManEO/XGManEOfWWMmr1cKC5l3340q59Q8EYaSkk9WGLnFkbkGZHJPO0Uaj4qPuT8+fNSpkwZmTdvnqrtL1++LLVr15bnn3/e4za5ublisVgcj6NHjwoAsVgsWu22KklJScxjns/mGZHJPP/OMyKTeczz9Uw98ywWiyHzmRtBccxHRTzPSRVkSGKcRRLjLWJSbBIYYBWTYpPGCRY5t269NE5Q166mhqJ0LnINo/LU1PCWp3W/9cjzdEz1HjP+OEa1OIf+OEa1OIe+MkYbJ1gke/Nake1rPD6SWt1W4Ne1fpTkuYUReUZkMk87hZmPGv6x6/wiIiIQHx+Pv//+W9X2gYGBaNy4cYHbBwUFISgoSKtdJCIiIqISrDjmo4DnOalAwe60cMf/267m3QV2V2o4Br1UH7tSw2ET7+1qauTd3kYpUg2j8tTU8Jandb/1yPN0TPUeM/44RrU4h/44RrU4h74yRnelhmP2ihh+RJuoBDD8btf5XbhwAenp6YiKilK1vdVqxZ49e1RvT0RERERUECPmo4qS98jPbBYcOB4Ks1lUtetdwx/3mf1mv9lv/+q3vZ2I/J+hi49jx47Fpk2bcOjQIWzbtg0PPPAAzGYzkpOTAQD9+vXD+PHjHdu/+OKL+P7773HgwAH89ttvePjhh3H48GE88sgjRnWBiIiIiPyYL8xHRfIe+VmtCmpFZ8NqVVS1613DH/eZ/Wa/2W//6re9nYj8n6GLj8eOHUNycjISEhLQs2dPVKhQAT///DMiIyMBAEeOHMHJkycd258/fx6PPvoo6tWrh/vuuw+ZmZnYtm0bbrrpJqO6QERERER+zOj5qAJBYlwWGsZnwaQIAgNsMCmCRvFZmD9hHxJVtqupoShS5BpG5amp4S1P637rkefpmOo9ZvxxjGpxDv1xjGpxDn1ljDaKz8KwB49p8rOeiIxl6DUfly5dWuDXN27c6PTvqVOnYurUqcW4R0RERER0IzF6PvrKiDSMTs4AAMxeEYMDx0NRKzobwx48hpBgG7bOS1Hd7q3G9GW5GNVrf5FqGJnnrYaaPC37rVeep2Oq95jxxzGqxTn0xzGqxTn0lTEaEmwr+g9aIjKcT13zkYiIiIiIiIgIAHJyTZi6uDoef7Mupi6ujpxck1P7nvQwp3Yi8lE63H3bpxTmVuBaKsm3V2ee/+cZkck8/84zIpN5zPP1TD3zjJrPkHbs51BBhiTGWSQx3iImxSaBAVYxKTZpnGCRc+vWS+MEde1qaihK5yLXMCpPTQ1veVr3W488T8dU7zHjj2NUi3Poj2NUi3Poj2O0cYJFsjevFdm+plgfJXluYUSeEZnM005h5qOGfuyaiIiIiOhGJlCwOy3c8f+2q3k3XNiVGo5BL9XHrtRw2MR7u5oaeVeYVIpUw6g8NTW85Wndbz3yPB1TvceMP45RLc6hP45RLc6hP47RXanhmL0iBmP6HAER+R6+N5mIiIiIyECKkvfIz2wWHDgeCrNZVLXrXcMf95n9Zr/Z75LfbyLyTVx8JCIiIiIykEjeIz+rVUGt6GxYrYqqdr1r+OM+s9/sN/td8vtNRL6Ji49ERERERAZRIEiMy0LD+CyYFEFggA0mRdAoPgvzJ+xDosp2NTUURYpcw6g8NTW85Wndbz3yPB1TvceMP45RLc6hP45RLc6hP47RRvFZjjtsE5Hv4TUfiYiIiIgM8sqINIxOzgAAzF4RgwPHQ1ErOhvDHjyGkGAbts5LUd3urcb0ZbkY1Wt/kWoYmeethpo8LfutV56nY6r3mPHHMarFOfTHMarFOfTHMRoSbCviT2QiKi5cfCQiIiIiMsjIHkcRElwaANzeKCEk2Fao9oK23bDjgtPXr6eG0XkF1VCbp1W/9czzdEz1HjP+OEa1OIf+OEa1OIf+OEaJyDdx8ZGIiIiIyCAzllcr8J2PObkm1e3eauxJD8PUxdWLVMPIPG811ORp2W+98jwdU73HjD+OUS3OoT+OUS3OoT+O0cLWICIdyQ3GYrEIALFYLLrmJiUlMY95PptnRCbz/DvPiEzmMc/XM/XMM2o+Q9qxn0MFGZIYZ5HEeIuYFJsEBljFpNikcYJFzq1bL40T1LWrqaEonYtcw6g8NTW85Wndbz3yPB1TvceMP45RLc6hP45RLc6hP47RwtbI3rxWZPuaQj9K8tzCiDwjMpmnncLMR7n4qJOSPOCY5/95RmQyz7/zjMhkHvN8PdNXJ3vkm+znELCIApsosMn/7u0qYlJs0qXNP2JS1LWrq5GkQQ1j8tTVKDhP+34Xf56nY6r3mPHHMarFOfTHMarFOfTHMVrYGu+M+ZOLjz6QZ0Qm87RTmPko73ZNRERERGQgRcl75Gc2Cw4cD4XZLKra9a7hj/vMfrPf7Df7nX9bItIPFx+JiIiIiAxkfz9OflarglrR2bBaFVXtetfwx31mv9lv9pv9zr8tEemHi49ERERERAZRIEiMy0LD+CyYFEFggA0mRdAoPgvzJ+xDosp2NTUURYpcw6g8NTW85Wndbz3yPB1TvceMP45RLc6hP45RLc6hP47Rwtaw34iGiPTBu10TERERERnklRFpBd7teuu8FNXt3mpMX5aLUb32F6mGkXneaqjJ07LfeuV5OqZ6jxl/HKNanEN/HKNanEN/HKOFrUFE+uHiIxERERERERHdUHJyTVyUJNKLDjfA8WjixIkCwOmRkJCg6rlLliwRANKlS5dCZfJu18xjnm9kMs+/84zIZB7zfD3TV+8uSAUzYj4q8r9zqCBDEuMskhhvEZNik8AAq5gUmzROsMi5deulcYK6djU1FKVzkWsYlaemhrc8rfutR56nY6r3mPHHMarFOfTHMarFOfTHMapVX7I3r+XdrnVW0vtYkvMKMx81fPGxfv36cvLkScfjzJkzXp938OBBiY6OllatWnHxkXnM89NM5vl3nhGZzGOer2f66mSPCmbEfFTkf+cQsIgCmyiwyf9ujSBiUmzSpc0/YlLUtaurkaRBDWPy1NUoOE/7fhd/nqdjqveY8ccxqsU59McxqsU59McxqlVf3hnzJxcfdVbS+1iS8wozHzX8hjMBAQGoUqWK41GxYsUCt7darXjooYcwefJk1KpVS6e9JCIiIqKSyuj5qKLkPfIzmwUHjofCbBZV7XrX8Md9Zr/Zb/ab/VZTg4i0Z/jiY1paGqpWrYpatWrhoYcewpEjRwrc/sUXX0SlSpUwePBgVfUvXbqEzMxMpwcRERERkV1xz0eBguek9vfd5Ge1KqgVnQ2rVVHVrncNf9xn9pv9Zr/ZbzU1iEh7ht5wpnnz5li4cCESEhJw8uRJTJ48Ga1atcLevXsRHh7usv2WLVvw4YcfYufOnaozpkyZgsmTJ7u09+rVC4GBgUXZ/UJJSUnB/fffzzzm+WSeEZnM09aWbb/gjraddMsDgD/27tA1U++8v//6tUSPmZKeZ0SmnnlXrlzRJedGoMd8FPA8JwV6Ibx03h/AmRcDoCgCEQXhoVdx6XIGwkIj1LWXvuq1BpAC4P4i1TAsT0UNr3ka91uXPE/HVONj53N5vjJm/HGManEO/XGMatSXdSnnsWGHu5/ieVL27cf9rVt43kBjKakHS+xcxqhM5mmnMPNRReTa1wGMk5GRgdjYWLzzzjsuryRnZWWhYcOGmDlzJu69914AwIABA5CRkYEvv/zSY81Lly7h0qVLjn9nZmaiWrVqsFgsKFOmTLH0w537778fK1euZB7zfDLPiEzmaeuOtp3wxvTluuUBwDOjeuiaqXfea8/3LtFjpqTnGZGpZ15mZibKli2r+3zmRlAc81HA85z01RHbMTo5AwDc3nXV091Y3bV7qzF92eMY1eu9ItUwMs9bDTV5WvZbrzxPx1TvMeOPY1SLc+iPY1SLc+iPY1SrvhTk/icnYuU77l5IKh73v/h+iZ3LGJXJPO0UZj5q6DsfrxUREYH4+Hj8/fffLl9LT0/HoUOHkJSU5Giz2fJ+MAQEBGD//v2oXbu2y/OCgoIQFBRUfDtNRERERCVGccxHAc9z0pE9jiIkuDQAYEwf1497hwTbCtVe0LYbdlxw+vr11DA6r6AaavO06reeeZ6Oqd5jxh/HqBbn0B/HqBbn0B/HqBZ9ISLt+dTi44ULF5Ceno6+ffu6fK1u3brYs2ePU9vzzz+PrKwsvPvuu6hWrZpeu0lEREREJZTe89EZy6vp9s7HPelhmLq4um7vfNQ6z1sNNXla9luvPE/HVO8x449jVItz6I9jVItz6I9j1Iifa0SkjqGLj2PHjkVSUhJiY2Nx4sQJTJw4EWazGcnJyQCAfv36ITo6GlOmTEFwcDBuvvlmp+dHREQAgEs7EREREZEaRs9Hn5sZh2VrFUAB9qSFw2wWWK0KFn1XFetm7ECHkU2wK9V7+0ffVPVaQxCMsdMSilTDqDw1Nbzlad1vPfI8HVOtj52v5fnKmPHHMarFOfTHMWrEz7Wt81K4AEmkkqGLj8eOHUNycjLOnTuHyMhI3HHHHfj5558RGRkJADhy5AhMJsNvyE1EREREJZTR81GBgt1p4Y7/t13Nu/nMrtRwDHqpPnalhsMm3tvV1AAUCJQi1TAqT00Nb3la91uPPE/HVO8x449jVItz6I9jVItz6I9j1Iifa7NXxPBj20QqGbr4uHTp0gK/vnHjxgK/vnDhQu12hoiIiIhuOL4wH1Xy/sZF/ttAms2CA8dDYTaL44/ggtr1ruGP+8x+s9/sN/utdR4RqcO3FRIRERERGUjE+Y9dALBaFdSKzobVqqhq17uGP+4z+81+s9/st9Z5RKQOFx+JiIiIiAyiQJAYl4WG8VkwKYLAABtMiqBRfBbmT9iHRJXtamooihS5hlF5amp4y9O633rkeTqmeo8ZfxyjWpxDfxyjWpxDfxyjRvxcs9+ghoi886m7XRMRERER3UheGZFW4N2ut85LUd3urcb0ZbkY1Wt/kWoYmeethpo8LfutV56nY6r3mPHHMarFOfTHMarFOfTHMWrEzzUiUoeLj0REREREREREhZSTa3K7WElEzrj4SERERERkkOdmxmHZWgVQgD1p4TCbBVargkXfVcW6GTvQYWQT7Er13v7RN1W91hAEY+y0hCLVMCpPTQ1veVr3W488T8dU62Pna3m+Mmb8cYxqcQ79cYz6ys+1Rd9VxdZ5KVyAJLoGFx+JiIiIiAwiULA7Ldzx//a7qe5KDcegl+pjV2o4bOK9XU2NvCtMKkWqYVSemhre8rTutx55no6p3mPGH8eoFufQH8eoFufQH8eor/xc25UajtkrYjCmzxEQ0f/whjNERERERAZSlLxHfmaz4MDxUJjNoqpd7xr+uM/sN/vNfrPfxZ1nbyciZ1x8JCIiIiIykEjeIz+rVUGt6GxYrYqqdr1r+OM+s9/sN/vNfhd3nr2diJxx8ZGIiIiIyCAKBIlxWWgYnwWTIggMsMGkCBrFZ2H+hH1IVNmupoaiSJFrGJWnpoa3PK37rUeep2Oq95jxxzGqxTn0xzGqxTn0xzHqKz/XGsVnOe6aTUT/w2s+EhEREREZ5JURaRidnAEAbu+YunVeiup2bzWmL8vFqF77i1TDyDxvNdTkadlvvfI8HVO9x4w/jlEtzqE/jlEtzqE/jlFf+bnGm80QueLiIxERFdmV3Cv4fflunD+WgXIxEWjcoyECgwP9NoeISC8jexxFSHBpAHB7g4KQYFuh2gvadsOOC05fv54aRucVVENtnlb91jPP0zHVe8z44xjV4hz64xjV4hz64xj1lZ9rROSMi49ERFQkV3Kv4OP+S3F6/xkoZgViFez55g/0+6i3pguDYrPpkkNEpKcZy6sV+M7HnFyT6nZvNfakh2Hq4upFqmFknrcaavK07LdeeZ6Oqd5jxh/HqBbn0B/HqBbn0B/HqK//XCO6ockNxmKxCACxWCy65iYlJTGPeT6bZ0Qm87TVss19snXXRV0f9sypY3+UzspL0gkvOj2GNv5Qpo79UTb+kqFJXv3at7vkdFZekqljf5Stuy7Kxl8yZOrYH+WF3is1yS3pY6ak5xmRqWeeUfMZ0o79HCrIkMQ4iyTGW8Sk2CQwwComxSaNEyxybt16aZygrl1NDUXpXOQaRuWpqeEtT+t+65Hn6ZjqPWb8cYxqcQ79cYxqcQ79cYz6+s+17M1rRbavKfSjJM9ljMpknnYKMx/lOx+JiMgjNR9zPn8sI++diFedbw94fOcJHN95QrN3J17JueqSo5gVnD+Wodu7L4mItCZQsDst3PH/tqt5d07dlRqOQS/Vx67UcNjEe7uaGnm3t1GKVMOoPDU1vOVp3W898jwdU73HjD+OUS3OoT+OUS3OoT+OUV//uTZ7RQw/nk03NN7tmoiI3LIv6K1/exN+/2w31r+9CR/3X4oruVectisXEwGxisvzRQQigtP7z+D35buLvD+BIQEuOWIVlIuJwO/Ld+P0/jMQEdiu2jTNJSIqboqS98jPbBYcOB4Ks1lUtetdwx/3mf1mv9lv9tvIPKIbGRcfiYjILbULeo17NESlhEiXiZad/d2JRVW2apn/z1FgCjBBURRUqhuJxj0aOt59WRy5RETFTSTvkZ/VqqBWdDasVkVVu941/HGf2W/2m/1mv43MI7qRGbr4OGnSJCiK4vSoW7eux+0/+OADtGrVCuXKlUO5cuXQoUMHpKSk6LjHREQ3DncLegDw1/o0p3c/BgYHInlOd5SODHNbx/7uRCDv3ZQpi37FminrkbLoV5d3Udq5204xmdDvo96486k2aNy9Ie58qg36Lcz7WLW7d1/mzyUi8sTo+agCQWJcFhrGZ8GkCAIDbDApgkbxWZg/YR8SVbarqaEoUuQaRuWpqeEtT+t+65Hn6ZjqPWb8cYxqcQ79cYxqcQ79cYz6+s81+41oiG5Uhl/zsX79+li3bp3j3wEBnndp48aNSE5Oxu23347g4GC8/vrruPvuu7Fv3z5ER0frsbtERDcMtwt6Ijj2+3F83H8pJPJ/d+3b+/UfuHjmomsRBY53J6q9LmN2Rg7m9fgYF05fgGJSILa87STShsDgQDTre6tLTOMeDbHnmz+cattziYi8MXI++sqItALvdr11Xorqdm81pi/Lxahe+4tUw8g8bzXU5GnZb73yPB1TvceMP45RLc6hP45RLc6hP45RX/+5RnQjM3zxMSAgAFWqVFG17SeffOL073nz5uHzzz/H+vXr0a9fv+LYPSKiG5Z9Qe/U/tPANR8fOb3/DCxXMgHkvUvxr/WpkGs3UoCYRlWRPLs7AoMDkbLoV8fHuO03jbF/jNu+oHgl9wo+/P+FRwAQW952p/467chzJzA4EP0+6u315jhERO5wPkpERMUtJ9fkdlHSUztRiVKMd932auLEiRIaGipRUVFSs2ZN6dOnjxw+fFj18zMzMyU4OFi+/vprj9vk5uaKxWJxPI4ePar6VuBaKsm3V2ee/+cZkck8bbVsc59s3XVR88fGXzJkaON50kl5UTrhf4+kgJclvmoz2fhLhgyqO9vl653wonRWXpKpY3901Hqh90pJCnjZpc4LvVc6tpk69keXOp3wonQ2vSTxVZsVSx89PUr6mCnpeUZk6plnsVgMmc/8H3v/Hx9ldef9468zk4EA+QEqVAkoG5uEiiakUlpX29DFrqgQWlduQFf8VLutxXv5ody1tlJES3HbCpb1B67I+uMuwmKp39RaKHALWrQGLUJEDRFUJIIgNZMJISGZOd8/4gwJycx1DXPmnOtMXs99zGPJyeT9PO/rvHs8ObnmOpmIjvWolPHXpAINsqwoKMuKg9InIjKQFZY+EZHlJUF5dNNmWV7irt1NDCEmphzDlM9NDCef6rx1+OJdU901Y2ONqhhDG2tUxRjaWKOZNK+VlwRl88sbpdy+IaPXMqac9KkjmfWokPLUx6Hq409/+hOamppQUlKCgwcPYuHChaivr8dbb72F3Nxcx5+fOXMmNmzYgN27dyM7O7vH99x9991YuHBht/YJEyYgENB3R0x1dTXGjh1LH32e9Jlw0qeWv7zyGi64cExaYjccaMCne492ua9RAGjufxjnnvOlbt+L0jenL4aXD4Xw+RLGOev8MzHw82czHqn7FMGPgz3GO97/MEq/comSnNzw9luvp+2a9sR7776R0TXKeU0tbW1tWL9+PYLBIPLy8rQ4MxUd61Eg/poUmACg5zXp2We24tDRvq7bnWNUAxibYgxzPucYzj61eevxxbumpx8jmX6Y83mlZnT7vFIzun1eqRndvnjtowqbUFhwHNW7azF2VIkrhwqq97zP9Rp9rklmPWr0Y9dXXnll7N+lpaX46le/ivPOOw//8z//g5tvvjnhz953331YvXo1tmzZknChd+edd+K2226Lfd3Y2Ijhw4djzZo1WhfrlZWVqKqqoo8+T/pMOOlTy2XjrsYvl61NS+yentU4ZORgvHvWc7i8YCZ2fLgLkfaTHw0RAigYXYDpy/+ly8ee48WJHhoDANVPv4HN92/pdkpgzpAcfFTy57Tl2BM/mjVFq+++u6ZldI1yXlNLY2Mj8vPztbgyHR3rUSD+mhRYA5/o2OSMyJOHfAWyIhg86BiOBgegrd3n2O4T0kWMSgBVKcYw43MXI7FPfd7p98W7puqvnbd8XqkZG2tUxRjaWKOZNK8FsiL45pgD+M//8y4qb1uAqiU9/eEqPVTe8yDXa/S5Jpn1qNHTrk9l4MCBKC4uxnvvvZfwfb/+9a9x33334c9//jNKSxMfJtC3b1/k5eV1eRFCCHFP9HmKp54yLXw+5J2d22XjEQCkBIoqCrs9bzEaZ9zsyzD0onNQMPocXPDPXf+SWz6lFENKhkAIQPg6Fm25Q3LwvbUzYndQEkJIOknHehRIvCaVEt3+6BIOCxQWNCMcFq7adcewsc/Mm3kzb+btJZ9TOyGZhKd+k2tqasLevXtxzjnnxH3PL3/5S9x7771Yv349xozR93E4QgjpzURPmb7izvEYe8PFJzcW4z24I8EDPd5eX4v6Nz/GxzWHsGXZX/DUjavR1tIW88x4chrGzfo6CsrOwbDyAoy5rhyB7K436re1tKH66TewYfFmVD/9RuznCSEkVXSvRwUkyopCKC0OwSckAlkR+ITE6OIQVs7fjTKX7W5iCCFTjmHK5yaGk0913jp88a6p7pqxsUZVjKGNNapiDG2s0Uya10YXh2KnZhOSKRj92PW8efMwadIknHfeefj444+xYMEC+P1+TJ8+HQAwY8YMFBQUYPHixQCA//iP/8DPfvYzrFq1CiNGjMChQ4cAADk5OcjJyTGWByGE9FYaPwnFPkIdRfgFGj8J9fj+HWt3OZ54DQBvb6iNfTy7/s2P8fb6WsjBHXdYnvz49mFACMiIxMvLX8HIbxVj8Pln8ZRrQkhSmF6PLppZhznTGwCgx9NOt62odt3uFGPZmhbMmlqbUgyTPqcYbnwq89bli3dNddeMjTWqYgxtrFEVY2hjjWbSvMbTrkmmYXTz8cCBA5g+fTqOHj2KwYMH47LLLsNf//pXDB48GACwf/9++Dp9zO6RRx7BiRMncO2113aJs2DBAtx99906u04IIQTAoGEDgVPXRpHP23vgswMNHZuV7Z1ujRTA0Q/+Hvsy3gZlsK2x0/cPd3yk5fPPtbQ2ncDO378FAKh5/m3MeHIaNyAJIa4wvR69dcpH6Jc9AAAw97r93b7fLzuSVHui9774elOX759ODNO+RDHc+lTlrdMX75rqrhkba1TFGNpYoyrG0MYazaR5jZBMwujm4+rVqxN+f8uWLV2+/uCDD9LXGUIIIUlTPqUUNc+/jcO1RwAfIMMS2QOzEW4Po62lrdsG4KBhA7s/IzIi8d5L+2Lv72mDUvgF2o63A+jYwIQQ3R+o8zk93UlJCCHxML0efWjt8IR3Ph5v8blud4pRszcHS1edm1IMkz6nGG58KvPW5Yt3TXXXjI01qmIMbaxRFWNoY432hnmNEFsxuvlICCHEbqLPaHx91Q789anXcbzhOFpDrdjym7/g7fW13e5AvHDSBfh/S19CJNx18RQ60hTbMBw0bGCXj3EDHZuagX4d/8nK+0IuZCT+QyWFX3RsUBJCiAX89OEirNkoAAHU1OXC75cIhwWefmEoNj30Oi6/dQx27nFuf/L5oY4xJLIx74GSlGKY8rmJ4eRTnbcOX7xrqvraec3nlZqxsUZVjKGNNdob5rVtK6q5AUmshZuPhBBCkqKtpQ071u7CkbpPUf30GyifUgp/wI+WhhZAInZn4ye1h/H6MzswZno5dqzdhc8ONKDxUKjbxiMACHFyw7Dz3ZTR50kOGTkYfz8rD20tbdi9/t2E/ZNhGfdj36nk+9mBBgwaNpDPlCSEKEVCYFddbuzfkfaOU0937snFTfeOws49uYhI53Y3MTqOtxEpxTDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWaG+Y15avG8aPZxNr4eYjIYT0ElRsop087OUIgmjE5vu3oub5tzH0orO7P8tRAlv+8y/4y/JX0dbS3u1gms7IiMQntUdim5kznpzWra8//VFVx6bnnk8T9nHIyMEon1KaVF5u8o32n8+UJISoRnT8vtnlaRJ+v8S++v7w+2XsF9JE7bpj2Nhn5s28mTfz9pLvdGIQYis+57cQQgixnegm2ub7t2LHs7uw+f6teOrG1WhraUsqTpfDYD5/Ha49gqYjx3q8o1GGJdpa2mP/TsTHNQdj/QI67oAcNGwgjn74dzx3xx9xeM8RvLu5DsIvevx54Re49Adfw4wn1G0Mds430h6J5btj7S4l8QkhBOj4BfPUx9iGwwKFBc0Ih4Wrdt0xbOwz82bezJt5e8l3OjEIsRVuPhJCSC9A1SZa9DCYzgi/QM5ZA9BvYL+U+ti5X6+v2vH5ZukW7Fi7C3Vb9iJ4sBEHdtR3O7AmigxLvPbE67HNThXEy5fPlCSEqEJAoqwohNLiEHxCIpAVgU9IjC4OYeX83Shz2e4mhhAy5RimfG5iOPlU563DF++a6q4ZG2tUxRjaWKMqxtDGGu0N81r0IBpCbIQfuyaEkF5AvBOkk91Ei3cYzJkjzsDXZozBi795OeW+Cr9A3Ut7P98sTe5n21vb8ccFGzDlN98GkPpHzePlq/KZkoSQ3s2imXUJT7vetqLadbtTjGVrWjBram1KMUz6nGK48anMW5cv3jXVXTM21qiKMbSxRlWMoY012hvmNUJshZuPhBDSC1C1idblMJjP/6/zMxbf3lCLT949nFJfI+0RyAi6P0PSJQ31QQBqntcY7/AbVc+UJIQQQgghxC3HW3w9bmAS4nW4+UgIIb2ARJtoPd0dCKDHOwYD2YHYYTC1v63CF0sKkTN4AHas3RU7KOa1p17Hy4+8ChlJfuMwSvDjYNyPVzuRf3ZerP+x51N+vokZ/aj52BsudhWrc7487ZoQkg5++nAR1mwUgABq6nLh90uEwwJPvzAUmx56HZffOgY79zi3P/n8UMcYEtmY90BJSjFM+dzEcPKpzluHL941VX3tvObzSs3YWKMqxtDGGu3N89q2FdXcgCSeh5uPhBDSC4i3iQag292Bu/6wGzIsceS9TwEBQAK7qnbjxqenxzYgL5x0AY4ta0bdlr0QPgFIiV1VuzHqqpHY+/L7KW08AkDTp8eQMyQHx440Jf3R66FlZwNQ91FzQghJJxICu+pyY/+Onni6c08ubrp3FHbuyUVEOre7idHxhEmRUgxTPjcxnHyq89bhi3dNddeMjTWqYgxtrFEVY2hjjfbmeW35umGYe91+EOJluPlICCG9hEB2oNsdf9VPv9Hj3YExPt+3O7znCF576nX06dcHRz/8O3b/6V20n/j8FOvPNxoP7zmCw3VHYj+TEhI4/9J/wBnnDcRfn9iO4w0trn905+/fQuiTpo4TuE+5ezLSHsGgYQNdPwtSxUe3CSHECfH5uVad/9ji90vsq+8Pv1/GfslM1K47ho19Zt7Mm3kzby/5VMYgxOvwtGtCCOnF9HSaczxeXbkdm+/fijd/V4MTTSd6fpOLjUd/Hz/OOG+Q4/vqd32MPS++l9TGIwAE6xtjJ2TjlNSy+mZh5D8Xf36S9lbseHYXNt2/BQ9OeAyvrqxGW0tbl/erOiWcEEISISW63eUdDgsUFjQjHBau2nXHsLHPzJt5M2/m7SWfyhiEeB1uPhJCSC+mp4No4tF2vK3jDskUP1Idbgsj3B52fN+ne4+ifufBlFynboa2t7Zj/b2bumwoQgLHPzuOF3/zMp6c8QxeXVmNDYs3o+FAA45++Pdum7P86DYhRCUCEmVFIZQWh+ATEoGsCHxCYnRxCCvn70aZy3Y3MYSQKccw5XMTw8mnOm8dvnjXVHfN2FijKsbQxhpVMYY21mhvnteip2MT4mX4sWtCCOnF9HQQzYCz+qPpyLFu7xU+kfLGIwBAdtydaIr3qz+Me5L24dojOFx7BL4sHz5tP4q60D7IcNePbp/OKeGEEBKPRTPrMGd6AwD0eILpthXVrtudYixb04JZU2tTimHS5xTDjU9l3rp88a6p7pqxsUZVjKGNNapiDG2s0d48rxHidYSUyT7K324aGxuRn5+PYDCIvLw8bd7KykpUVVXRR58nfSac9KnlsnFX45fL1p7Wz576/MMLJ12AVd9fi8N7jkBAQEIi56wB3TYkt+O3+Aqu7xbPl+U77ZOqExHPd1oIOH5EPOrLHZKDpiPHPt+cjSBncA6++I1CnDniDKUnX99317SMrlHOa2oxtZ4h6oiN4YvrkJczQIuz8rYFqFqyUIuLvsxw0me3z4STPst99zzI9Rp9rklmPco7HwkhpJfT00E0Nz41vduG5DM/eDZ2h2S8zcWhF52Nc0adjQ+r9+PTfX/X0f3kER3PnQy3On/0GwLIOzsXY6aXo+HjIOq27kPocBN2PvcWD58hhCjhobXDE975eLzF57rdKUbN3hwsXXVuSjFM+pxiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jXdEEu/CzUdCCCHdOHVDsrnhOHIH56Dp02PI6puFM88bhO2vdP+5I+8dRck/FQE+d4fYGEHi5Mbj53dACv/nHyk/9W5ICdTXHET7iTAuuKIExz6/+zO6+Ro9fObUzVtCCHHLTx8uwpqNAhBATV0u/H6JcFjg6ReGYtNDr+PyW8dg5x7n9iefH+oYQyIb8x4oSSmGKZ+bGE4+1Xnr8MW7pqqvndd8XqkZG2tUxRjaWKOc17q3b1tRzQ1I4hmMbj7efffdWLiw6y3EJSUlePfdd3t8/+7du/Gzn/0Mb7zxBj788EMsXboUc+bM0dBTQgjJfDp//Drv7FxAAo2fhDDgrP545bHX0N7pTsGmIyH4/D7glJsH24634cXfvAx/H7/m3p8mEuib0wcXTBiJgcPysfuFd3F4z5Fu7zlcewSBflndnhXJw2cIsR/T61EJgV11ubF/R9o7/nizc08ubrp3FHbuyUVEOre7idFxvI1IKYYpn5sYTj7VeevwxbumumvGxhpVMYY21qiKMbSxRjmvdW9fvm4Y5l63H4R4AeN3Po4aNQqbNm2KfZ2VFb9Lzc3NKCwsxJQpUzB37lwd3SOEkF5BW0sbnrpxdbePVUcPoTmV8IkIIoj/l9TwCRcfadZENAd/354/at3adAJnjjgDY2+4GGOml+OZW36H+jc/7nIXZMeJ192vBQ+fISQzML0eFZ/fLN75Sex+v8S++v7w+2Xsl8lE7bpj2Nhn5s28mTfz9pIvnTGi7YR4BZ/pDmRlZeHss8+Ovc4666y47/3KV76CX/3qV5g2bRr69u2rsZeEEJIZtLW0ofrpN7Bh8WZUP/0G2lraAAA71u7C4dojkFJ2eZ5jTxuPtpHVJwvfuPVSjBh7bo/fF76Tdy8GsgMYOb6o23tkWKKoohBDSgZDCAFflg9CCAwZORjlU0rT2X1CiAZMr0el7PpLJgCEwwKFBc0Ih4Wrdt0xbOwz82bezJt5e8mXzhjRdkK8gvHNx7q6OgwdOhSFhYW4/vrrsX+/2tuCW1tb0djY2OVFCCG9kejdjZvv34odz+7C5vu34qkbV6OtpQ2fHWj4/O6+zKPteBv+tnYn9v3l/R6/LyMSA848edJs+ZTSjk1GoMsm45jp5Zjx5DSMv70C5deWYvztFZjxBA+bISQTSPd6FIi/JhWQKCsKobQ4BJ+QCGRF4BMSo4tDWDl/N8pctruJIYRMOYYpn5sYTj7VeevwxbumumvGxhpVMYY21qiKMbSxRjmvdW+PHlxDiBcQUp66p66PP/3pT2hqakJJSQkOHjyIhQsXor6+Hm+99RZyc3MT/uyIESMwZ84cx2fs9PQcHwCYMGECAgF9vzBWV1dj7Nix9NHnSZ8JJ31q+csrr+FLF3wZwY8b0Xa8HYF+WcgfmgfhO/k3poYDDfh079EuZ6oIAGedfyYAdPueEw04gIEYpqT/pn1ZffwYWDAQ7a0d1y73C7nY/WY1zhlY1OO1TAfvvftGRtco5zW1tLW1Yf369QgGg8jLy9PizFR0rEeB+GvSkSO+jsKCjrvQPzzYD8da/BiQHcZ55xyH3weEI+7bnWLsq69BYcFFKcUw6XOK4canMm9dvnjXVHfN2FijKsbQxhpVMYY21ijnte7tyVK9uxZjR5Uk/4MpUL3n/Yxdr2W6L5n1qNHNx1NpaGjAeeedhyVLluDmm29O+F63i73W1la0trbGvm5sbMTw4cO1L9YrKytRVVVFH32e9Jlw0qeWS79xJUYe+XbsmY0yLDGkZDBmPHnyzrwNizdjx7O7unys2pflQ/m1pfinud+IPfNRoodTnwH4Aj5E2k7+7Hb8Fl/B9WnPTYlPoMecTsWX5Ytdu3cHP4dfPfi72Pc6H8gzaNhAlE8pVXrX4313TcvoGuW8ppbGxkbk5+dz8zENpGM9CsRfk/5i5nbMmd4AAFi+bhj21fdHYUEzbrnmAPplR3C8xee63SnGsjX/jllT/zOlGCZ9TjHc+FTmrcsX75rqrhkba1TFGNpYoyrG0MYa5bzmrh+JqLxtAaqWdP9DWTqpvOfBjF2vZbovmfWo8QNnOjNw4EAUFxfjvffeUxazb9++fD4kISTjCX7ciMP7Op7ZGD2N+XDtEexYuwtjb7gYADBo2MC4B6YEsgOY8eQ0vL5qB15a/kqPB7N03ni0Dpd/ZotuzB6uPYJg28nHdJx6II8MS+z6w26MmjASjZ+E0rIZSQgxQzrWo0D8NelPHy7Cmo0CEEBNXS78folwWODpF4Zi00Ov4/Jbx2DnHuf2J58f6hhDIhvzHihJKYYpn5sYTj7Veevwxbumqq+d13xeqRkba1TFGNpYo5zX3PVj24pqxw1IQtKBpzYfm5qasHfvXtxwww2mu0IIIVbRdry9Y1Os/eQum/CfPEgF6HiWYc3zb3e9O7LTgSmB7AD8Ab+nTqo2hfALtB1vj33d+UCezpu7h2uPxO6WrHn+7S53mhJC7ET3elRCYFddbuzf0dNKd+7JxU33jsLOPbmISOd2NzE6njApUophyucmhpNPdd46fPGuqe6asbFGVYyhjTWqYgxtrFHOa+76sXzdMMy9Tv1zjQlxwuiBM/PmzcPWrVvxwQcf4JVXXsF3vvMd+P1+TJ8+HQAwY8YM3HnnnbH3nzhxAm+++SbefPNNnDhxAvX19XjzzTeV/2WaEEJsI9AvK+5djbH3fH53Y6IDUz470ADf6TwgxgJ8We7zkmGJQL+Tf59LdCBPpD0CKWXsTlNCiF14YT0qRMerM36/xL76/vD7pat23TFs7DPzZt7Mm3l7yWcqBiEmMPob5oEDBzB9+nSUlJTgf/2v/4UzzzwTf/3rXzF48GAAwP79+3Hw4MHY+z/++GOUl5ejvLwcBw8exK9//WuUl5fje9/7nqkUCCHEE+QPzes4oVmILic0R+9qjBLIDmDsDRfjijvHY+wNF3e7S6+nj2ZnCpH2CPoM6OPqvYOLz0L+0JPPLXFzXU6905QQYgdeWI9K2fHqTDgsUFjQjHBYuGrXHcPGPjNv5s28mbeXfKZiEGICo5uPq1evxscff4zW1lYcOHAAq1evxvnnnx/7/pYtW/DEE0/Evh4xYkTHR95OeW3ZskV/5wkhxEMIn8/xrkY3lE8p/XwTs/v3hpQMxvlf/wdFPTbDiWMnnN8kgFFXjuxyuvXJ69KxuYsers+pd5oSQuzA9HpUQKKsKITS4hB8QiKQFYFPSIwuDmHl/N0oc9nuJoYQMuUYpnxuYjj5VOetwxfvmuquGRtrVMUY2lijKsbQxhrlvOauH9GDaAjRjaee+UgIIeT0id7VmGqM6Y9eiz8u2IC/7/8MLcEWZOdl44zzBuHqhVcAAB785/9Ce2u7QyR78fl9aDwUAtD1hOsLrijBBRNK0HgohLyzc7H7hXdxpO7THp+fSQghblk0sy7hadfbVlS7bneKsWxNC2ZNrU0phkmfUww3PpV56/LFu6a6a8bGGlUxhjbWqIoxtLFGOa+lfto1IelCSHnqzbiZTTJHgaskk49Xp89+nwknfWq5bNzV+OWytSnHiZ7q/Ent4W4nRPv7+DFoWD4+3fd3AMB2/BZfwfUpO92iyyeEwPjbK7D2tV9g5JFvdz2gp2Qwpj96Ld76w9s4+uHf0XTkGHLOGoAzR5yR8mnX9901LaNrlPOaWkytZ4g6YmP44jrk5QzQ4qy8bQGqlizU4qIvM5z02e0z4aSPvqSd9zyYseu1TPclsx7lnY+EEEJidJzq3H3jEQDCJ8KxjcdMRPgFEEHsDsYVv2/E4X1dT7j+5N3DeHzKU2g6cqzLhuTl/2ccT7kmhJwWD60dnvDOx+MtPtftTjFq9uZg6apzU4ph0ucUw41PZd66fPGuqe6asbFGVYyhjTWqYgxtrFHOa+rnNUJUwc1HQgghADruenx3c11P+44ZzRe/UYjh5QVo/CSEQcMGxu5gbDve3rHB2H7yigifQOhwEwDE2qOnXKf6kXdCSO/kpw8XYc1GAQigpi4Xfr9EOCzw9AtDsemh13H5rWOwc49z+5PPD3WMIZGNeQ+UpBTDlM9NDCef6rx1+OJdU9XXzms+r9SMjTWqYgxtrFHOa+rntW0rqrkBSZTBzUdCCOmFdH6W4aBhA3HhpAvwzA+exSfvHjbdNa3kDB6A7/xqYo93LQb6ZXU74VpGJIRPQEY6bUjylGtCSApICOyqy439O9LecaLVzj25uOneUdi5JxcR6dzuJkbH8TYipRimfG5iOPlU563DF++a6q4ZG2tUxRjaWKMqxtDGGuW8pn5eW75uGOZetx+EqICbj4QQ0suIPtex87MM//rkdjQdOWa6a1oJDAjg/K//A3as3dXj8xrzh+ZhSGBwl+s0YPAAHDvS1OV9POWaEJIqouP3P3R+ErvfL7Gvvj/8fhn7BTFRu+4YNvaZeTNv5s28veTzSoxE7yVEFT7THSCEEJJ+2lraUP30G9iweDOeu+OP+OTdw5BSItIegZSy12089s3pg7Zjbdj13G5s+vUWPDJpJZobjnd5j/D5MOPJaRh/ewXKry3F+Nsr8L21MzCkZAiEEPBl+SCE4CnXhJCUkbLrL30AEA4LFBY0IxwWrtp1x7Cxz8ybeTNv5u0ln1diJHovIarg5iMhhGQ40TsdN9+/FTue3YW6LXtNd8k4rU0nACD28emmw014fMpTaG44Htukbfj8o9Rjb7gYV9w5HmNvuBj9B/brtiE544lpPGyGEHLaCEiUFYVQWhyCT0gEsiLwCYnRxSGsnL8bZS7b3cQQQqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNfUz2vRg2gIUQE/dk0IIRlOxwnWXU9tJt0JHW7CiilP4djnJ1l/2n4UT924GjOe5OYiISR9LJpZl/C0620rql23O8VYtqYFs6bWphTDpM8phhufyrx1+eJdU901Y2ONqhhDG2tUxRjaWKOc19TPa4SogpuPhBCS4Xx2oKHbqc1RfFk+RNq5sAAAiI47IIGOk6wlgE9qD+OZW57FyPHFsY9Wn/q8zJrn3+YGJSGEEEIIyTiOt/h63MAkJFm4+UgIIRnOoGEDu53aLATwxYrzkXd2LvK+kIvtq/7W65772A2JbidZQwIH3vwY9W8eRM3zb+OCK0q63UV6uPYIdqzdhbE3XGyo44QQm/npw0VYs1EAAqipy4XfLxEOCzz9wlBseuh1XH7rGOzc49z+5PNDHWNIZGPeAyUpxTDlcxPDyac6bx2+eNdU9bXzms8rNWNjjaoYQxtrlPOavnlt24pqbkCSpOHmIyGEZDjlU0pR8/zbXe7WGzJyML79H1fH7tZr+DiIN39X03XjrbfQ8Ts/cgbnIHS4qfv3JSAhcbj2CAL9srrdRSr8Ap99/nxIQghJFgmBXXW5sX9HTyDduScXN907Cjv35CIindvdxOh4wqRIKYYpn5sYTj7VeevwxbumumvGxhpVMYY21qiKMbSxRjmv6ZvXlq8bhrnX7QchycDNR0IIyXAC2QHMeHIadqzdhc8ONGDQsIEon1La5WPCZ553BtCL9h2jm7A5Q3JQVFGIM887AxdOugDP/OBZHK490vEm2f1nANHtLlIZlhg0bKCWfhNCMhPx+cGjnU8b9fsl9tX3h98vY7/0JWrXHcPGPjNv5s28mbeXfF6JcTo+QpKFp10TQkgvIJAd6HJq86nPJyyfUoohJYMhhIAvq+M/DX1z+pjoqhay87Lxzdlfxw//cBOuvOtb3U6yLhg9tNvPyLBEUUVhl+skhMCQkYNjz4MkhJDTQcquv/QBQDgsUFjQjHBYuGrXHcPGPjNv5s28mbeXfF6JcTo+QpKFm4+EENKLaWtpQ/XTb+D/LX0JF0wowbhZl6H82lJcPm8cfvjH7+ELI4eY7mJaOP7ZcRzY+XG39ugm7fTl/4K+OX27bTKOmV4e26Asv7YU42+vwIwneNgMIeT0EZAoKwqhtDgEn5AIZEXgExKji0NYOX83yly2u4khhEw5himfmxhOPtV56/DFu6a6a8bGGlUxhjbWqIoxtLFGOa/pm9eip2MTkgz82DUhhPRS2lra8OSMZ3B4zxEICEhIDCkejBufmh7bTJvx5DS8vmoH/vrEdhwPthjusVrqtuzFUzeu7vGk6kB2AMPLh2L8Vyt6/Kg6D5chhKhi0cw6zJneAAA9nii6bUW163anGMvWtGDW1NqUYpj0OcVw41OZty5fvGuqu2ZsrFEVY2hjjaoYQxtrlPOavnmNkGQRUp56g23PfPzxxxg6tPvH0FLh7rvvxsKFC7u0lZSU4N133437M2vXrsX8+fPxwQcfoKioCP/xH/+Bq666yrWzsbER+fn5CAaDyMvLO+2+J0tlZSWqqqroo8+TPhNO+tRy2birseiXqxI+1/FUXv3varz4wMvd2r/4jUJ851cTu/zsqyur8eJvur53O36Lr+B6dUk4kC7f5fPGYewNF6Otpa3L9Vv72i/wqwd/p9wXj/vumpbRNcp5TS2m1jOmyZT1KNBpDF9ch7ycAafV92SpvG0BqpYsdH4jfZ70mXDSZ7fPhJM++pJ23vNgxq7XMt2XzHrU9Z2Po0aNwkMPPYTrrrsu5Q6eGnfTpk0nO5QVv0uvvPIKpk+fjsWLF2PixIlYtWoVvv3tb+Nvf/sbLrzwQqX9IoQQm5CRCJ66cXWXE61rnn+7x7v6otRt3ddj+3sv7cOTM57pcgdk4yehtPXdNEc/+DvaWtq6Xb+PBnyMtpY2BLID3TYmnTZ2CSHpIRPXow+tHZ7wzsfjLT7X7U4xavbmYOmqc1OKYdLnFMONT2XeunzxrqnumrGxRlWMoY01qmIMbaxRzmtm5zXeEUkS4XrzcdGiRfjBD36A3//+93j00UdxxhlnqOlAVhbOPvtsV+/9zW9+gwkTJuD//J//AwC49957sXHjRjz44INYvny5kv4QQoiNBD9uxOF9RyClhGzvuKH9cO0R7Fi7K8FHhOPf+H649ghef2YHLvnuWADI6NOc33tpH3K/kItPag8DErHrd6KpFTvW7kL5lNKkN3YJIekhE9ejP324CGs2CkAANXW58PslwmGBp18Yik0PvY7Lbx2DnXuc2598fqhjDIlszHugJKUYpnxuYjj5VOetwxfvmqq+dl7zeaVmbKxRFWNoY41yXjM7rz39wlBsW1HNDUgSF9ebjzNnzsSVV16Jm2++GRdccAEee+wxTJo0KeUO1NXVYejQocjOzsYll1yCxYsX49xzz+3xva+++ipuu+22Lm1XXHEFnnvuubjxW1tb0draGvu6sbEx5T4TQojXaDve3rEx1n5yQ1H4BT470BD3Z4q+cT4O7Oh+6EqUuq37cMl3x6KtpQ3h9jD8fXwIn8i8BUXocBNeemRb971Y0XH9dqzdhcO1yW7sEkLSga3rUSD+mlRCYFddbuzfkfaOk0V37snFTfeOws49uYhI53Y3MTqOtxEpxTDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWKOc1s/Pazj25WL5uGOZetx+E9ITrZz525sEHH8TcuXPxpS99qdvHUv72t7+5jvOnP/0JTU1NKCkpwcGDB7Fw4ULU19fjrbfeQm5ubrf39+nTB08++SSmT58ea3v44YexcOFCfPLJJz06enqODwBMmDABgYC+O1aqq6sxduxY+ujzpM+Ekz61bNn8F/RvHtJl/0wAOOv8MzEwzl2LMhLBR3+rR+uxEz1+Pzs3G8NGn4OPdnyME02t3fbmGnAAAzFMRfddYcJXdH4Z2o63I3iwEZ3/cykA9BnQB3ln5yJ/aB6Ez5ey771338joGuW8ppa2tjasX7++1z3zsTM2rUeB+GtSYAKA7mtSISRy+oXRdNwPKYVje090f281gLEpxjDjcxcjsU993un3xbumqcVIph9mfF6pGd0+r9SMbp9Xaka3zys1o8InhMR557TgovObEvahR+PuWowdVZL0z50u1Xvez9j1oW5fMuvRpE+7/vDDD7Fu3ToMGjQIkydPTvhMHCeuvPLK2L9LS0vx1a9+Feeddx7+53/+BzfffPNpx+3MnXfe2eWv042NjRg+fDjWrFnDA2foo8+gkz61XPqNKzHyyLe7fDR4yMjBmPFE4o8Gt7W0Yd28P2Dvy+93+15O9gB85eIvY8tf/gLZw0e0M+XAmXj8LesZPLTqBexYuwub79/a7RqI4wLYBwwJDFbyEWweOGO/08QDvnsrtq1HgfhrUmANBDrfddKBgMQ/feUw/vDSENftzjEqAVSlGMOczzmGs09t3np88a6p2mvnPZ9Xaka3zys1o9vnlZrR7fNKzajwzZpae1p3Pmo/VIcH3CgjmfVoUrdqPPbYY7joooswcOBA7N69G/feey8WLFjQ5ZUKAwcORHFxMd57770ev3/22Wd3+4vyJ598kvAZPX379kVeXl6XFyGEZBrC58OMJ6dh/O0VKL+2FONvr3DceASAQHYAk35+JQIDur/v2KfHOg6lSf2mPk/hC7hLqG9uX+xYuwtHP/g7cgYPgBCA8J1cZMmIhJQy9hFsQogebFyPAvHXpAISZUUhlBaH4BMSgawIfEJidHEIK+fvRpnLdjcxhJApxzDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWKOc1s/Pa6OJQ7OAaQnrC9Z+JJ0yYgOrqajz44IOYMWNGWjrT1NSEvXv34oYbbujx+5dccgk2b96MOXPmxNo2btyISy65JC39IYQQmwhkB5J+BmFbSxue+cGzaDvW1v2bQuCzjxogw0k/ncPTXDTxAjR/dhx1W/YmfF9rqBWb798K4ReItEeQMyQH2bl9cfT9v0NG3D9bkxCijkxcjy6aWZfwtOttK6pdtzvFWLamBbOm1qYUw6TPKYYbn8q8dfniXVPdNWNjjaoYQxtrVMUY2lijnNfMzms8bIYkwvXmYzgcxq5duzBsmLrnbc2bNw+TJk3Ceeedh48//hgLFiyA3++PPUNnxowZKCgowOLFiwEAs2fPRkVFBe6//35cffXVWL16NV5//XX813/9l7I+EUJIbyJ6mEpPyIjEsaPHNPco/TR/dhxX/GQ89r78PiLh+IukcHsEEicPmTl25BjOueALOLrv713eJ8Myo08DJ8RLcD1KCCGEeJPjLT5uSJK4uN583Lhxo3L5gQMHMH36dBw9ehSDBw/GZZddhr/+9a8YPHgwAGD//v3wdXqI/z/+4z9i1apVuOuuu/CTn/wERUVFeO6553DhhRcq7xshhPQGPjvQ0O2U7C5k1k2PAID3tu7Fwbc/Sbjx2G9QP4gG0SV/4RfIGTwAQ0oGd3u2ZvmUUg09J4Rk4nr0pw8XYc1GAQigpi4Xfr9EOCzw9AtDsemh13H5rWOwc49z+5PPD3WMIZGNeQ+UpBTDlM9NDCef6rx1+OJdU9XXzms+r9SMjTWqYgxtrFHOa96c17atqOYGJAFwGgfOqGT16tUJv79ly5ZubVOmTMGUKVPS1CNCCOldDBo2MOM+Vu2ElEDT4SZAoMfN1T4DAhgwqB/kZ12/KcMSZ553Bi6fNw471u7CZwcaMGjYQJRPKU35sBlCiDlMr0clBHbVnTxwJtLe8WzZnXtycdO9o7BzTy4i0rndTYyOJ0yKlGKY8rmJ4eRTnbcOX7xrqrtmbKxRFWNoY42qGEMba5TzmjfnteXrhp3WITQk88iwYwQIIYQkQ/mUUgwpGQwhBHxZn/8nQST+mYwhzp7riWNt+LTTR6t9WT4IITC4+CyE28P4f0tfAgD809xvYOwNF3PjkRCSMkJ0vDrj90vsq+8Pv1+6atcdw8Y+M2/mzbyZt5d8XomRbh8hADcfCSGkVxPIDnQ5Jbto3PkZ+VHrnvD38Tu+56zzz0T5taUYN+syAMCW3/wFO57dhc33b8VTN65GW0sPB/UQQkiSSNnx6kw4LFBY0IxwWLhq1x3Dxj4zb+bNvJm3l3xeiZFuHyEANx8JIaTXEz0l+4o7xyPv7NyTd0BmOOETYcf3CJ/AFXeOhz/gx5E9n0JKiUh7BFJKHK49gh1rd2noKSEkkxGQKCsKobQ4BJ+QCGRF4BMSo4tDWDl/N8pctruJIYRMOYYpn5sYTj7VeevwxbumumvGxhpVMYY21qiKMbSxRjmveXNei56kTYjRZz4SQgjxFr3xGZCJGFiQD6Dng3mEX+CzAw2GekYIyRQWzazDnOkNANDjKaHbVlS7bneKsWxNC2ZNrU0phkmfUww3PpV56/LFu6a6a8bGGlUxhjbWqIoxtLFGOa95c14jBACElKfeHJvZNDY2Ij8/H8FgEHl5edq8lZWVqKqqoo8+T/pMOOlTy2XjrsYvl61NOU5zw3E8PuUphBIcyBJlO36Lr+D6lJ1u0e17w7cKT7/4F/Qf2A/VT7+BzfdvRef/ZAohMP72Coy94WIlvvvumpbRNcp5TS2m1jNEHbExfHEd8nIGaHFW3rYAVUsWanHRlxlO+uz2mXDSR5/XnZX3PJix60PdvmTWo7zzkRBCeiFtLW3dTmwGgGd+8CxCh5sgfAIyksTfpnwAMugPmwPO7I8RJeeh/8B+ADoO5ql5/m0crj3ScQdkWGLIyMGx60YIIafLQ2uHJ7zz8XiLz3W7U4yavTlYuurclGKY9DnFcONTmbcuX7xrqrtmbKxRFWNoY42qGEMba5Tzml3zGuldcPOREEJ6GW0tbXjqxtVdNtJqnn8bF0woweHaIwCQ3MYjkFEbjwDQ/4z+8AdOHkgTPZjn1A1bnnRNCEmVnz5chDUbBSCAmrpc+P0S4bDA0y8MxaaHXsflt47Bzj3O7U8+P9QxhkQ25j1QklIMUz43MZx8qvPW4Yt3TVVfO6/5vFIzNtaoijG0sUY5r9k1r21bUc0NyF4GNx8JIaSXsWPtLhyuPQIpZewZhodrjyDQL9Djcw3zzs5FsL7RVHeNMLAgv9tHzqMH8xBCiEokBHbV5cb+HWnvOEF0555c3HTvKOzck4uIdG53E6PjeBuRUgxTPjcxnHyq89bhi3dNddeMjTWqYgxtrFEVY2hjjXJes2teW75uGOZetx+k99A7jjQlhBASI3p4Smc6vpbdD5uJADlnDYDwdX1/JuDv4++xXfgErl54hebeEEJ6M0J0vDrj90vsq+8Pv1+6atcdw8Y+M2/mzbyZt5d8Xolhqs+kd8HNR0II6WX0dKK1DEsUfeN8DCkZDCEEfFk+CCEwuPgsBD9uTP5j2BZw3tjh3RZJAPD1mZfEnvXolraWNlQ//QY2LN6M6qffQFtLm6JeEkJ6A1J2vDoTDgsUFjQjHBau2nXHsLHPzJt5M2/m7SWfV2KY6jPpXXDzkRBCehnlU0q7bTIOGTkYY64rx4wnp2H87RUov7YU42+vwKgrR6LpyLGE8c78hzM09VwtMiIxuPjkdQAAf18/6nceRHPDcddxos/Q3Hz/Vux4dhc2378VT924mhuQhBBXCEiUFYVQWhyCT0gEsiLwCYnRxSGsnL8bZS7b3cQQQqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNfsmteiB9SQ3gOf+UgIIb0Mp8NTOj/XcMPizfBl+RBp7/mB0DlDcjD90WvxP//79zi854iW/qvi/Vc+xICz+uPsUUNwcPcnAIBwaxh7X34fD/7zfyF8cdhVnHjP0NyxdhefEUkIcWTRzLqEp11vW1Htut0pxrI1LZg1tTalGCZ9TjHc+FTmrcsX75rqrhkba1TFGNpYoyrG0MYa5bxm17xGehfcfCSEkF6I28NTevqIdhQB4NiRJqyd9Ryue2wK3vrD29j+zN/MHk4jgH4D+6El2OLqo+LHPm3GsU+7f+yjvbU9dvK3E9FnaJ56UM9nBxpcd5sQQgghhJDexPEWH5avG4aavTlYuupcbkpmONx8JIQQEpfyKaWoef5tHK49AuEXiIQjsVOgJTqe7XK49gje+sPbGHvDxTj64d+xY+0uI3319/HjH752HoZedA5eenhbyvHcfmw63jM0Bw0bmHIfCCGZz08fLsKajQIQQE1dLvx+iXBY4OkXhmLTQ6/j8lvHYOce5/Ynnx/qGEMiG/MeKEkphimfmxhOPtV56/DFu6aqr53XfF6pGRtrVMUY2lijnNfsn9eefmEotq2o5gZkhsLNR0IIIXE59SPan9QeRv2ug1022zrf5TdwaL6hngLhE2G899I+fFC9X0m86MfQnTh1g1aGJYaMHIzyKaVK+kEIyWwkBHbV5cb+HWnveDD/zj25uOneUdi5JxcR6dzuJkbHEyZFSjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5zf55beeeXCxfNwxzr1OzlifegpuPhBBCEtL5I9rVT7+B+jcPdvl+pD2CD7d/hMZPQvhoR72JLnahvaU95RhZfbMwpGSwq/c6PUOTEEKcEJ8fBNr5pFC/X2JffX/4/TL2C1uidt0xbOwz82bezJt5e8nnlRhe6XO0nWQmnjnt+r777oMQAnPmzEn4vgceeAAlJSXo168fhg8fjrlz56KlpUVPJwkhpBfT1tKGE8dPICu7+9+tPt17FA9e8V9476V9BnqWGsLfsejpm9MHZ51/JorGnY///efvwx/wu44R3aC94s7xGHvDxdx4JMRiTKxJpez6CxsAhMMChQXNCIeFq3bdMWzsM/Nm3sybeXvJ55UYXulztJ1kJp7YfNy+fTseffRRlJYm/ojaqlWr8OMf/xgLFizAO++8g8cffxxr1qzBT37yE009JYSQ3klbSxuevOEZvPTQK2g7HudZiM7nu3iKnMED8I1b/xFfnlKGy+eNw6zNt+D76/4/TPnNt9F/YL/Y+9pa2lD99BvYsHgzqp9+w/WzIAkh9mFiTSogUVYUQmlxCD4hEciKwCckRheHsHL+bpS5bHcTQwiZcgxTPjcxnHyq89bhi3dNddeMjTWqYgxtrFEVY2hjjXJes39eG10cip2aTTIP4x+7bmpqwvXXX4/HHnsMP//5zxO+95VXXsGll16K6667DgAwYsQITJ8+Ha+99pqOrhJCSK9lx9pdOLzH3enPtnDs02b06dcHl915Sdz3tLW04akbV3d5nmPN829jxpPTeHcjIRmGqTXpopl1mDO9AQCwfN0w7Kvvj8KC5tipn9tWVLtud4qxbE0LZk2tTSmGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r9k/r/GwmcxFSHnqzbF6ufHGG3HGGWdg6dKlGDduHEaPHo0HHnigx/euWrUKM2fOxJ///GeMHTsW+/btw9VXX40bbrgh7l+aW1tb0draGvu6sbERw4cPRzAYRF5eXjpS6pHKykpUVVXRR58nfSac9KnlsnFX45fL1qYt/obFm/HGmje73N24Hb/FV3B9UnH8fXzom9MXzX8/nnQfTscHAH0G9MGJYye6tQufwOhrLsKV87/V48/9aNYUXPuVH2Pz/VvR+T+VQgiMv70i9hxMVdx317SMrlHOa2ppbGxEfn6+9vVMJmNsTfriOuTlDEhHSt2ovG0BqpYs1OKiLzOc9NntM+Gkjz6vOyvveTBj14e6fcmsR41uPq5evRqLFi3C9u3bkZ2d7bjQA4Bly5Zh3rx5kFKivb0dt9xyCx555JG477/77ruxcGH3Qp4wYQICAX13rVRXV2Ps2LH00edJnwknfWr5yyuv4YILx6Qt/mf7G/Dp+0e7tDXgAAZiWNKxfH4fIuHk/6p5Or6+A/qgoGwoDtceQdPRY92+n9UnCyO+OhwAEPy4EW3H2xHol4X8oXl45+2/YXDfEQgebOy2+Zh/Th4GF52VdA6JeO/dNzK6RjmvqaWtrQ3r16/n5qMiTK5JR474OgoLOh7n8OHBfjjW4seA7DDOO+c4/D4gHHHf7hRjX30NCgsuSimGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r2XuvKaS6j3vZ+z6ULcvmfWosY9df/TRR5g9ezY2btyI7OxsVz+zZcsW/OIXv8DDDz+Mr371q3jvvfcwe/Zs3HvvvZg/f36PP3PnnXfitttui30d/SvzmjVreOcjffQZdNKnlnTe+djW0oYn/nUVjuDTLu3b8VuMFf+KpP+GFT69fiS683FYeQGKvlGIcHsE+175AIBE0TfOx5jryhHIDqCtpQ2PTFqJpsNNXX5OtAHjvvx1vL2hFof3nfxo9ZDAYOACYMpXf9Jx52OnWz4FBMZfxzsfve4z4TTxl2aSOqbXpLUf/AF9AwIQwDvv58LvlwiHBfoEQtj00Ou4/NYxrtqz/CHHGBKVeOf9qpRimPK5ieHkU523Dl+8a6r62nnN55WasbFGVYyhjTXKeS1z57VtK6qVfhybdz6qI5n1qLHNxzfeeAOHDx/Gl7/85VhbOBzGSy+9hAcffBCtra3w+7ueNDp//nzccMMN+N73vgcAuOiii3Ds2DF8//vfx09/+lP4fN23xPv27Yu+ffumNxlCCMkQ2lrasGPtLnx2oAGDhg1E+ZRSvP7MDhyp+7Tbe/v0C0AeT/7meeETkBF1N91/4UtDMH35vwDoeDblF0oGx/oefS5jIDuAoopCvPm7mi5u4feh7qW9OFx7BFJKyPaO7x2uPYJgWyPKp5Si5vm3uzzzccjIwSifkvgwCkKIPZhek0oI7KrLjf070t5x+ufOPbm46d5R2LknFxHp3O4mRsfxNiKlGKZ8bmI4+VTnrcMX75rqrhkba1TFGNpYoyrG0MYa5byWufPa8nXDMPe6/SB2Y2zzcfz48aipqenS9t3vfhcjR47EHXfc0W2RBwDNzc3dFnPR9xl+dCUhhFhPvMNVsvp2n48BIBKOwJflQ6Q9ub9EyojEgMEDcOxI949BJ8tZ55+JGU9MAwDHg2HOPO+Mbidyy7AEIDp+pr3zpqTo+Ah2dgAznpzWbUOWh80Qkjl4YU0qOn7HQucf9fsl9tX3h98vY7+EJWrXHcPGPjNv5s28mbeXfF6JYUOfif0o/vS8e3Jzc3HhhRd2eQ0YMABnnnkmLrzwQgDAjBkzcOedd8Z+ZtKkSXjkkUewevVqvP/++9i4cSPmz5+PSZMm9bgwJISQ3kZbSxuqn34DGxZvRvXTb6Ctpc31z+5Yuyt2B2CkPQIpZcezEj/teZNQ+MTnm3fJkTMkB//27I345uyvI78gtcdfFJSeg0B2IG7fd6zdFbsmRz/8OwYM7jjUwZflgxACQ0YORlFFYbc8ZFgi0K/j73OB7ADG3nAxrrhzPMbecDE3HgnJMLywJpWy6y9bABAOCxQWNCMcFq7adcewsc/Mm3kzb+btJZ9XYtjQZ2I/xjYf3bB//34cPHgw9vVdd92F22+/HXfddRcuuOAC3Hzzzbjiiivw6KOPGuwlIYR4g+idi5vv34odz+7C5vu34qkbV7vegPzsQAOEv+siQPgFcs7K6fH9eWfnYXBxcoeuCJ9AUUUh+g/sh0tuGovvr/v/8IWRQ5KK0ZnmzzoeTB2v70c/+Hvsmuz8/Vs4dqQJuUNyUPbtCzH+9grMeGIaxkwvx5CSwRBCdNmUzB/KQzwIIR2kc00qIFFWFEJpcQg+IRHIisAnJEYXh7By/m6UuWx3E0MImXIMUz43MZx8qvPW4Yt3TXXXjI01qmIMbaxRFWNoY41yXsvcee2Waw6o/E86MYSxj133xJYtWxJ+nZWVhQULFmDBggX6OkUIIZbQ+e6/zs8u3LF2l6vDUQYNG9jjHYDF3zwfbcfbcHjPEUAAkMCQksH4bEg+Rn15JA7XHnHfSfn5x58/J5AdwPRHr8V/X/d/Eaxv7PFHhBDof0Y/4Gj37+V8fidjvL43fXqs2zVpOnIMZ444o8s16emj1T/9UfwHNff0bEzeEUlI5qBzTbpoZh3mTG8AACxfNwz76vujsKAZt1xzAP2yI9i2otp1u1OMZWtaMGtqbUoxTPqcYrjxqcxbly/eNdVdMzbWqIoxtLFGVYyhjTXKeS1z5zViP57afCSEEHL6RO/+O/XZhZ8daHD18/EOVxkzvRxjppf3sDn3BzR+EnL13EfhF0AE3Q5raWtpwzM/eDbuxmMHEkMvOgdiyykxxcmNzHh9zxk8wNU1iX602g3xno3Z+fmShBBCCCGEEDUcb/FxU9J2ZC8jGAxKADIYDGr1Tpo0iT76POsz4aRPLZdWXCWXzntJThT3yqtxT+w1Udwrl857SW7beczVa8trDXLpvJfkz6ZVyaXzXpJbXmuI+57ioWPlnHG/lRPFPV2cPb2uHfQr+evZL3aJt+W1Bjln3G8df3Zy31/IP/35kByeUyoninvlpKyfy4niXnnTl5Z3i3dq31O5JpdWXNVju4rr3NMr02uU85paTK1niDqiYyjQIMuKgrKsOCh9IiIDWWHpExFZXhKURzdtluUl7trdxBBiYsoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKea33zWvNL2+UcvuGpF+ZvD7U7UtmPco7HwkhJEOId/df5zsNnXC6A7DzXX9BNKLu473I6puF9tb2hHFbGlrgD/hjdwa2tbThyRue6fgotwPtre149897MLx8KMZ/tSLuR5176ruKa3Iqqd5hSgghnZEQ2FWXG/t39OTPnXtycdO9o7BzTy4i0rndTYyOJ0yKlGKY8rmJ4eRTnbcOX7xrqrtmbKxRFWNoY42qGEMba5TzWu+b15avG4a51+0HsQNuPhJCSIYQyA70+OzC0/0ocE/PNezyXEl0bL61t7aj8NIReP/VDyEjPZ9+ferm3OurdrjaeAQ6Tqb+7EADhM/n+qPRUVRfEyD+8yUHDRt42jEJIb0b8fl5WZ1P+fT7JfbV94ffL2O/bCVq1x3Dxj4zb+bNvJm3l3xeiWFjn6PtxB48fdo1IYSQ5Ije/XfFneMx9oaLU9p47Onk7KMf/L3bqdK+LB9ONLfF3XgEum/O1b2013VfUt3YU3VNopRPKe3xdOxU7qYkhPRupOz6yxYAhMMChQXNCIeFq3bdMWzsM/Nm3sybeXvJ55UYNvY52k7sgZuPhBBCutH5DsdIewRSShyuPYKmT4/1eNcfIOHL6v6fFCFEnM050e293X7WH+9nzRK9m3L87RUov7YU42+vwIwneNgMIeT0EJAoKwqhtDgEn5AIZEXgExKji0NYOX83yly2u4khhEw5himfmxhOPtV56/DFu6a6a8bGGlUxhjbWqIoxtLFGOa/1vnktejo2sQN+7JoQQkg34j3XMGfwAAwpGdzxDMXP/2/IyMEo+sb5OLDj425xCkYPxcjxRd0+6lxUUYgDO+oT9qGg9BwUfeN8QAD/b+lLaDjQgLaWNk9s8iVzOjYhhCRi0cw6zJneAAA9nuS5bUW163anGMvWtGDW1NqUYpj0OcVw41OZty5fvGuqu2ZsrFEVY2hjjaoYQxtrlPNa75vXiD0IKU+9sTWzaWxsRH5+PoLBIPLy8rR5KysrUVVVRR99nvSZcNKnlsvGXY1fLlurLF71029g8/1b0fk/EUKIjrv9Pn/24yOr5uGH1/0a5VNK0dbSjgf/+b+6HDyT1TcL//vP30f/gf26PT/ywkkXYNX31+Jwbc/PfRR+gdHXXISPaw7FDoupbn8aVxXPwairRqLxUEjJ8xsT8aNZU5ReUyfuu2taRtco5zW1mFrPEHXExvDFdcjLGaDFWXnbAlQtWajFRV9mOOmz22fCSR99XndW3vNgxq4PdfuSWY/yzkdCCCHdSHRKdPSuv2e3nxW7+2/H2l0In+h64nX4RDve+sPbKJ9SGjshOxqr5vm3cd1/TcFbf3gb72zcg/qdXe+alGGJj/5Wj0/3Hu34ur3jeJvDe47gcN0R+Py+WJwZT/Ijz4QQe3lo7fCEdz4eb/G5bneKUbM3B0tXnZtSDJM+pxhufCrz1uWLd01114yNNapiDG2sURVjaGONcl7jvMY7Ij2M7GUEg0EJQAaDQa3eSZMm0UefZ30mnPSp5dKKq+S2nceUvra81iCXzntJ/mxalVw67yW55bWGLt/v7PzZtCo5Kevn8mrcE3tNyvp57Gcninu7fG+iuFcunfdSzHPTyOVdvt/TawhKemz/QfnjPfYv1Vc6rmmiV6bXKOc1tZhazxB1RMdQoEGWFQVlWXFQ+kREBrLC0icisrwkKI9u2izLS9y1u4khxMSUY5jyuYnh5FOdtw5fvGuqu2ZsrFEVY2hjjaoYQxtrlPMa57Voe/PLG6XcviHuK5PXh7p9yaxHeecjIYSQHknmuYaDhg3s8SCaQcMGxn1+5GcHGmKeGU9Ow3N3/BF1W9yfgh2l/s2PUf/mx6d9F+SpHwlP50e5CSHkVCQEdtXlxv4dae84kGvnnlzcdO8o7NyTi4h0bncTo+N4G5FSDFM+NzGcfKrz1uGLd01114yNNapiDG2sURVjaGONcl7jvBZtX75uGOZetx/EW/C0a0IIISlTPqUUQ0oGQwgBX5avyynViTYmowSyA8g7O7fHE7MBxG0HACll7DTuHWt3JdXvtpY2PHXjamy+fyt2PLsLm+/fiqduXI22lrak4hBCSCoI0fHqjN8vsa++P/x+6apddwwb+8y8mTfzZt5e8nklho19dmon3oObj4QQQlImevfi+NsrUH5tKcbfXoEZT3TchZhoY7IzPW1SCgEUjTsf5deW4qx/ODMWB6csTICud1O6ZcfaXThcewRSSkTaI6e9iUkIIakgZcerM+GwQGFBM8Jh4apddwwb+8y8mTfzZt5e8nklho19dmon3oObj4QQQpQQ/Zj2FXeOx9gbLo59dDnRxmRnet6kHIJv/8fVuOLO8Rh07kDc+NR0jL+9AsNGD+22AXnq3ZRuiH4kvDOns4lJCCGni4BEWVEIpcUh+IREICsCn5AYXRzCyvm7Ueay3U0MIWTKMUz53MRw8qnOW4cv3jXVXTM21qiKMbSxRlWMoY01ynmN81q0PXpwDfEWfOYjIYSQtOPm+ZHRTcpEz1+MxunpBO2e7qZ0IuFHwg8mFYoQQk6LRTPrEp52vW1Ftet2pxjL1rRg1tTalGKY9DnFcONTmbcuX7xrqrtmbKxRFWNoY42qGEMba5TzGuc1nnbtXbj5SAghxDrcbFS6oXxKKWqef7vHTcxnt6ep84QQQgghhBDSm0jzyduuWbx4sQQgZ8+eHfc9FRUVEkC311VXXeXak8xR4CrJ5OPV6bPfZ8JJn1ourbhKbtt5TMtry2sNcum8l2Tx0LFy6byX5JbXGpTFvWnkcjlR3CsnZf1cThT3yptGLo/FT1eO0Xx+Nq2qSz46r+m2nccyvkY5r6nF1HqmN6B7TSrQIMuKgrKsOCh9IiIDWWHpExFZXhKURzdtluUl7trdxBBiYsoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zWrS9+eWNUm7fEPeVyetD3b5k1qOeuPNx+/btePTRR1FamvjjcuvWrcOJEydiXx89ehRlZWWYMmVKurtICCEEJ0+HPlx7BEE0YvP9W1Hz/NuY8WT3ZzgmitHTHYudD3+R7R0fhY4e/uL0ke1UcPORcEJI78DEmlRCYFddbuzfkfaO59Du3JOLm+4dhZ17chGRzu1uYnQ8YVKkFMOUz00MJ5/qvHX44l1T3TVjY42qGEMba1TFGNpYo5zXOK9F25evG4a51+0H8RbGD5xpamrC9ddfj8ceewyDBg1K+N4zzjgDZ599duy1ceNG9O/fn5uPhBCiiS4bhJ+/kjkdOrp5ufn+rdjx7C5svn8rnrpxNdpa2nj4CyHEKCbXpEJ0vDrj90vsq+8Pv1+6atcdw8Y+M2/mzbyZt5d8XolhY5+d2on3ML75eOutt+Lqq6/G5ZdfnvTPPv7445g2bRoGDBgQ9z2tra1obGzs8iKEEHJ6pLpB2HnzMtIe6bJ5mfDwF0IISTMm16RSdrw6Ew4LFBY0IxwWrtp1x7Cxz8ybeTNv5u0ln1di2Nhnp3biPYx+7Hr16tX429/+hu3bk3+qf3V1Nd566y08/vjjCd+3ePFiLFy4sFv71KlTEQgkdzBBKlRXV6OyspI++jzpM+GkTy3vvfsG7rtrWto9h/Z9hv3tRyABNOAAtuO3EO3Avu1nYvOs5Y4/f6TuUwTRCImTKwsBgT2r/oCzzj8DHw34GCeaWjv+7Ckl+gzoi7+/tg3PbvdpyzGKbl+m1yjnNbW0tbVp8fQWTK5JganIHdDxy1PjsSwIISGlQG7/drSeaEBO/4Hu2ge0O8YAqgFUphTDmM9FDEef4ry1+OJdU8XXznM+r9SMjTWqYgxtrFHOa5zXPm/fVP0ZXnwdcaneXYvKb1wS/w2Kqd7zPtejAISUp+4t6+Gjjz7CmDFjsHHjxthzdcaNG4fRo0fjgQcecPz5H/zgB3j11Vexa1fij/q1traitbU19nVjYyOGDx+OYDCIvLy8lHJIhsrKSlRVVdFHnyd9Jpz02elrPd6GH136BPbt/ATb5W/xFVyPISMHY8YT7p75WP30G9h8/1Z0/k+PEALjb6/A2Bsujvs8SAC4765pGXlN6cscp05fY2Mj8vPzta9nMhHTa9JfzNyOOdMbAADL1w3Dvvr+KCxoxi3XHEC/7AiOt/hctzvFWLbm3zFr6n+mFMOkzymGG5/KvHX54l1T3TVjY42qGEMba1TFGNpYo5zXOK9F2xNRedsCVC3p6Y+B6aHynge5HoXBzcfnnnsO3/nOd+D3+2Nt4XAYQgj4fD60trZ2+V5njh07hqFDh+Kee+7B7Nmzk/KaWqxn8i9A9NnvM+Gkz15f6/E2/Gn5G7jj17Pxw+t+HdsgTLRxGKXzgTXCLyDD0vXmJTcf6fO606uLPZIY42vSF9chLyf+x7VVov0XLvqsd9Jnt8+Ekz76vO7k5qM6klmPGvvY9fjx41FTU9Ol7bvf/S5GjhyJO+64I+4iDwDWrl2L1tZW/Ou//mu6u0kIIeQU+vYL4Ntzv4Zf///Oip0S3dOmYk+nYAeyA5jx5DTHTUpCCNGF6TXpQ2uHa7vzsWZvDpauOlfbHUKqfU4x3PhU5q3LF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnktUQxiGOkhKioq5OzZs2Nf33DDDfLHP/5xt/dddtllcurUqaflCAaDEoAMBoOn283TYtKkSfTR51mfCSd9dvuklPLSiqvktp3H5Ladx+TSeS/JieJeeTXuib0minvl0nkvxd6T6ivTryl99jt1+kytZ3oLOtekAg2yrCgoy4qD0iciMpAVlj4RkeUlQXl002ZZXuKu3U0MISamHMOUz00MJ5/qvHX44l1T3TVjY42qGEMba1TFGNpYo5zXOK8litH88kYpt2+QcvsGOenrX4v9W8eL69EOjB4448T+/fvh83U9kLu2thZ/+ctf8Oc//9lQrwghhJxK9BRs2d7pWY49nILt5qPZhBDiNdK5JpUQ2FWXG/t3pL3j8Jmde3Jx072jsHNPLiLSud1NDEBAQqQUw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4ryXqx/J1wzD3uv0g5vDU5uOWLVsSfg0AJSUlXQ4qIIQQYp5BwwZChrvOzTIsMWjYwNjXbj+aTQghptG9JhUdvx+hczi/X2JffX/4/TL2C1Sidt0xbOwz82bezJt5e8nnlRg29vl0YhCz+JzfQgghhCSmfEophpQM7jigIcsHIQSGjByM8imlsffsWLsLh2uPQEqJSHsEUkocrj2CHWsTnxBLCCGZjpRdf1ECgHBYoLCgGeGwcNWuO4aNfWbezJt5M28v+bwSw8Y+n04MYhZuPhJCCEmZ6EEy42+vQPm1pRh/e0W3E6yjH83uTE8fzSaEkN6EgERZUQilxSH4hEQgKwKfkBhdHMLK+btR5rLdTQwhZMoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zWqIY0YNoiDk89bFrQggh9hLIDsROv+4JNx/NJoSQ3saimXUJT7vetqLadbtTjGVrWjBram1KMUz6nGK48anMW5cv3jXVXTM21qiKMbSxRlWMoY01ynmN8xpPu/YuvPOREEKIFtx8NJsQQgghhBBCVHO8xYelq85Fzd4cLF11Lo63cDtMK2k+edtzJHMUuEoy+Xh1+uz3mXDSZ7dPSikvrbhKbtt5LKnXltca5NJ5L8mfTauSS+e9JLe81uD6ZzP9mtJnv1Onz9R6hqgjOoYCDbKsKCjLioPSJyIykBWWPhGR5SVBeXTTZlle4q7dTQwhJqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r53OGDa/vFHK7RvS+uJ6tANuPmoikwuOPvt9Jpz02e2T8vQ2H1N5Zfo1pc9+p1cXe8SbRMcQCEqBiBSIyJOPypfSJyJycsUh6RPu2t3FmKQghhmfuxiJferzTr8v3jXVXTM21qiKMbSxRlWMoY01ynmN89rpjOGSue9w8zEFklmP8j5TQgghhBBCDCJEx6szfr/Evvr+8Pulq3bdMWzsM/Nm3sybeXvJ55UYNvZZZQyiB24+EkIIIYQQYpDo/RmdCYcFCguaEQ4LV+26Y9jYZ+bNvJk38/aSzysxbOyzyhhED9x8JIQQQgghxBACEmVFIZQWh+ATEoGsCHxCYnRxCCvn70aZy3Y3MYSQKccw5XMTw8mnOm8dvnjXVHfN2FijKsbQxhpVMYY21ijnNc5rpzOG0dOxSfrJMt0BQgghhBBCeiuLZtZhzvQGAMDydcOwr74/Cguaccs1B9AvO4JtK6pdtzvFWLamBbOm1qYUw6TPKYYbn8q8dfniXVPdNWNjjaoYQxtrVMUY2lijnNc4r53OGBI9CClPvSk1s2lsbER+fj6CwSDy8vK0eSsrK1FVVUUffZ70mXDSZ7cPAC4bdzV+uWytNt99d03L6GtKn/1OnT5T6xmijtgYvrgOeTkDtDgrb1uAqiULtbjoywwnfXb7TDjpo8/rTu2+ex7kehS885EQQgghhBBjPLR2eMI7H4+3+Fy3O8Wo2ZuDpavOTSmGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r3FeUzWvkTSQ9rO3PUYyR4GrJJOPV6fPfp8JJ312+6SU8tKKq+S2nce0vTL9mtJnv1Onz9R6hqgjOoYCDbKsKCjLioPSJyIykBWWPhGR5SVBeXTTZlle4q7dTQwhJqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r6ma15pf3ijl9g3KXlyPdsDNR01kcsHRZ7/PhJM+u31ScvORPm/7TDi9utgj3iQ6hkBQCkSkQESePKdTSp+IyMkVh6RPuGt3F2OSghhmfO5iJPapzzv9vnjXVHfN2FijKsbQxhpVMYY21ijnNc5ryY5hvPcumfsONx9dksx6lKddE0IIIYQQYhAhOl6d8fsl9tX3h98vXbXrjmFjn5k382bezNtLPq/EsLHP6c6bqIebj4QQQgghhBgkes9FZ8JhgcKCZoTDwlW77hg29pl5M2/mzby95PNKDBv7nO68iXo8s/l43333QQiBOXPmJHxfQ0MDbr31Vpxzzjno27cviouL8cILL+jpJCGEEEIIyWh0r0kFJMqKQigtDsEnJAJZEfiExOjiEFbO340yl+1uYgghU45hyucmhpNPdd46fPGuqe6asbFGVYyhjTWqYgxtrFHOa5zXVM1r0YNoiFo8cdr19u3b8eijj6K0tDTh+06cOIFvfetbGDJkCJ599lkUFBTgww8/xMCBA/V0lBBCCCGEZCwm1qSLZtYlPO1624pq1+1OMZatacGsqbUpxTDpc4rhxqcyb12+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmuq5jWiHuObj01NTbj++uvx2GOP4ec//3nC965cuRJ///vf8corryAQCAAARowYoaGXhBBCCCEkk+GalBBCCCEAcLzFx01J1Wg4ACchM2bMkHPmzJFSSllRUSFnz54d971XXnmlvP766+W//du/ySFDhshRo0bJRYsWyfb29rg/09LSIoPBYOz10UcfuT6NRyWZfMIRffb7TDjps9snJU+7ps/bPhNOr54uSNxhak0q0CDLioKyrDgofSIiA1lh6RMRWV4SlEc3bZblJe7a3cQQYmLKMUz53MRw8qnOW4cv3jXVXTM21qiKMbSxRlWMoY01ynmN81q657XmlzfytOtTSGY9KqQ89RGb+li9ejUWLVqE7du3Izs7G+PGjcPo0aPxwAMP9Pj+kSNH4oMPPsD111+PmTNn4r333sPMmTMxa9YsLFiwoMefufvuu7Fw4cJu7RMmTIj9pVoH1dXVGDt2LH30edJnwkmf3T4TTvro87pTp6+trQ3r169HMBhEXl6eFmcmY3JNCkwA0POa9OwzW3HoaF/X7c4xqgGMTTGGOZ9zDGef2rz1+OJd09OPkUw/zPm8UjO6fV6pGd0+r9SMbp9Xaka3zys1k4xvVGETCguOu/J1pnrP+1yPAubufNy/f78cMmSI3LlzZ6zN6a/MRUVFcvjw4V3+qnz//ffLs88+O+7P8M5H+ujzppM+u30mnPTR53WnV//STBJjek0KdNxd4RMRefLsTSkDWWF50RcbZSAr7KrdXYxJCmKY8bmLkdinPu/0++JdU901Y2ONqhhDG2tUxRjaWKOc1zivJTuGyfr+9//6kHc+nkIy61Fjp12/8cYbOHz4ML785S8jKysLWVlZ2Lp1K5YtW4asrCyEw+FuP3POOeeguLgYfr8/1valL30Jhw4dwokTJ3r09O3bF3l5eV1ehBBCCCGEAN5Yk0Z/velMOCxQWNCMcFi4atcdw8Y+M2/mzbyZt5d8XolhY59N5U1OH2Obj+PHj0dNTQ3efPPN2GvMmDG4/vrr8eabb3ZZzEW59NJL8d577yESOfmgzz179uCcc85Bnz59dHafEEIIIYRkAKbXpAISZUUhlBaH4BMSgawIfEJidHEIK+fvRpnLdjcxhJApxzDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmvpnteip2OT08PYade5ubm48MILu7QNGDAAZ555Zqx9xowZKCgowOLFiwEAP/zhD/Hggw9i9uzZ+Pd//3fU1dXhF7/4BWbNmqW9/4QQQgghxH5Mr0kXzazDnOkNANDjyZrbVlS7bneKsWxNC2ZNrU0phkmfUww3PpV56/LFu6a6a8bGGlUxhjbWqIoxtLFGOa9xXkv3vEZOH6MHzpzKqQ/3HjduHEaMGIEnnngi9p5XX30Vc+fOxZtvvomCggLcfPPNuOOOO3r8q3RPNDY2Ij8/X/sD2isrK1FVVUUffZ70mXDSZ7fPhJM++rzu1OkztZ7pLWhdk764Dnk5A9KQRXcqb1uAqiU9HXpDnw0+E0767PaZcNJHn9ed2n33PMj1KAze+dgTW7ZsSfg1AFxyySX461//qqdDhBBCCCGk16FzTfrQ2uEJ73w83uJz3e4Uo2ZvDpauOjelGCZ9TjHc+FTmrcsX75rqrhkba1TFGNpYoyrG0MYa5bzGec3EvMY7Il2S9uNvPIap0yEz+YQj+uz3mXDSZ7fPhJM++rzu9OrpgsSbRMdQoEGWFQVlWXHHqdeBrLD0iYgsLwnKo5s2y/ISd+1uYggxMeUYpnxuYjj5VOetwxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5zcS8Vl4SlM0vb+Rp1y7Wo9x81EQmFxx99vtMOOmz22fCSR99Xnd6dbFHvEl0DIGgFIhIgYg8efamlD4RkZMrDkmfcNfuLsYkBTHM+NzFSOxTn3f6ffGuqe6asbFGVYyhjTWqYgxtrFHOa5zXkh1DFT6fiMglc9/h5qOL9aix064JIYQQQgghgBAdr874/RL76vvD75eu2nXHsLHPzJt5M2/m7SWfV2LY2Gev5B1tJ85w85EQQgghhBCDRO+h6Ew4LFBY0IxwWLhq1x3Dxj4zb+bNvJm3l3xeiWFjn72Sd7SdOMPNR0IIIYQQQgwhIFFWFEJpcQg+IRHIisAnJEYXh7By/m6UuWx3E0MImXIMUz43MZx8qvPW4Yt3TXXXjI01qmIMbaxRFWNoY41yXuO8ZmJeG10cih1cQxLjqdOuCSGEEEII6U0smlmX8LTrbSuqXbc7xVi2pgWzptamFMOkzymGG5/KvHX54l1T3TVjY42qGEMba1TFGNpYo5zXOK+ZmNd42rU7eOcjIYQQQgghhBBCCCEkPWg4AMdT8LRr+ujzhpM+u30mnPTR53WnV08XJN4kOoYCDbKsKCjLioPSJyIykBWWPhGR5SVBeXTTZlle4q7dTQwhJqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r5mY18pLgrL55Y087drFepSbj5rI5IKjz36fCSd9dvtMOOmjz+tOry72iDeJjiEQlAIRKRCRJx9/L6VPROTkikPSJ9y1u4sxSUEMMz53MRL71Oedfl+8a6q7ZmysURVjaGONqhhDG2uU8xrntWTHUIXPJyJyydx3uPnoYj3Kj10TQgghhBBiECE6Xp3x+yX21feH3y9dteuOYWOfmTfzZt7M20s+r8Swsc9eyTvaTpzh5iMhhBBCCCEGid5D0ZlwWKCwoBnhsHDVrjuGjX1m3sybeTNvL/m8EsPGPnsl72g7cYabj4QQQgghhBhCQKKsKITS4hB8QiKQFYFPSIwuDmHl/N0oc9nuJoYQMuUYpnxuYjj5VOetwxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5zcS8Nro4FDs1myQmy3QHCCGEEEII6a0smlmHOdMbAADL1w3Dvvr+KCxoxi3XHEC/7Ai2rah23e4UY9maFsyaWptSDJM+pxhufCrz1uWLd01114yNNapiDG2sURVjaGONcl7jvGZiXuuXHXH8bz0BhJSn3mia2TQ2NiI/Px/BYBB5eXnavJWVlaiqqqKPPk/6TDjps9tnwkkffV536vSZWs8QdcTG8MV1yMsZoMVZedsCVC1ZqMVFX2Y46bPbZ8JJH31ed2r33fMg16PgnY+EEEIIIYQY46G1wxPe+Xi8xee63SlGzd4cLF11bkoxTPqcYrjxqcxbly/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zmpfmNXIKaT9722MkcxS4SjL5eHX67PeZcNJnt8+Ekz76vO7U6TO1niHqiI6hQIMsKwrKsuKg9ImIDGSFpU9EZHlJUB7dtFmWl7hrdxNDiIkpxzDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmtemteaX94o5fYNUm7fwPXo53hm83Hx4sUSgJw9e3bc9/z3f/+3BNDl1bdv36Q83Hykjz5vOOmz22fCSR99Xnd6dbFHkkP3mhQISoGIFIjIk2dvSukTETm54pD0CXft7mJMUhDDjM9djMQ+9Xmn3xfvmuquGRtrVMUY2lijKsbQxhrlvMZ5LdkxTKdvydx3uPl4Cp742PX27dvx6KOPorS01PG9eXl5qK2tjX0thEjwbkIIIYQQQtxhak0a/VEpT7b5/RL76vvD75eItAvHdt0xbOwz82bezJt5e8nnlRg29tmGvElXfKY70NTUhOuvvx6PPfYYBg0a5Ph+IQTOPvvs2OsLX/iChl4SQgghhJBMxuSaNHq/RGfCYYHCgmaEw8JVu+4YNvaZeTNv5s28veTzSgwb+2xD3qQrxjcfb731Vlx99dW4/PLLXb2/qakJ5513HoYPH47Jkydj9+7dCd/f2tqKxsbGLi9CCCGEEEI6Y2pNKiBRVhRCaXEIPiERyIrAJyRGF4ewcv5ulLlsdxNDCJlyDFM+NzGcfKrz1uGLd01114yNNapiDG2sURVjaGONcl7jvOaleS16EA05iZDy1H1afaxevRqLFi3C9u3bkZ2djXHjxmH06NF44IEHenz/q6++irq6OpSWliIYDOLXv/41XnrpJezevRvDhg3r8WfuvvtuLFy4sFv7hAkTEAgEVKaTkOrqaowdO5Y++jzpM+Gkz26fCSd99HndqdPX1taG9evXIxgMIi8vT4szkzG5Jh054usoLGgDAHx4sB+OtfgxIDuM8845Dr8PCEfctzvF2Fdfg8KCi1KKYdLnFMONT2XeunzxrqnumrGxRlWMoY01qmIMbaxRzmuc17w0r0Wp3l2LsaNKuv33P11U73nfk+tRY5uPH330EcaMGYONGzfGnqvjtNA7lba2NnzpS1/C9OnTce+99/b4ntbWVrS2tsa+bmxsxPDhw7Uv1isrK1FVVUUffZ70mXDSZ7fPhJM++rzu1OlrbGxEfn4+Nx8VYHpN+ouZ2zFnegMAYPm6YdhX3x+FBc245ZoD6JcdwfEWn+t2pxjL1vw7Zk39z5RimPQ5xXDjU5m3Ll+8a6q7ZmysURVjaGONqhhDG2uU8xrnNRvmtXRTec+D3lyPpvnwm7j8/ve/lwCk3++PvQBIIYT0+/2yvb3dVZxrr71WTps2zbWXp13TR583nPTZ7TPhpI8+rzu9erogSYzpNalAgywrCsqy4qD0iYgMZIWlT0RkeUlQHt20WZaXuGt3E0OIiSnHMOVzE8PJpzpvHb5411R3zdhYoyrG0MYaVTGGNtYo5zXOazbMa80vb4ydgp2ul1fXo8Y2HxsbG2VNTU2X15gxY+S//uu/ypqaGlcx2tvbZUlJiZw7d65rLzcf6aPPG0767PaZcNJHn9edXl3skcSYXpMCQSkQkQIRefLR9VL6REROrjgkfcJdu7sYkxTEMONzFyOxT33e6ffFu6a6a8bGGlUxhjbWqIoxtLFGOa9xXkt2DE3U6JK57/Tazces9N2AmZjc3FxceOGFXdoGDBiAM888M9Y+Y8YMFBQUYPHixQCAe+65B1/72tfwxS9+EQ0NDfjVr36FDz/8EN/73ve0958QQgghhNiPF9ak4vPDM6U82eb3S+yr7w+/XyLSLhzbdcewsc/Mm3kzb+btJZ9XYtjYZ5vz7q0YP+06Efv378fBgwdjX3/22Wf4t3/7N3zpS1/CVVddhcbGRrzyyiu44IILDPaSEEIIIYRkMulek0bvl+hMOCxQWNCMcFi4atcdw8Y+M2/mzbyZt5d8XolhY59tzru34qnNxy1btnR5sPeWLVvwxBNPxL5eunQpPvzwQ7S2tuLQoUP44x//iPLycv0dJYQQQgghGYvONamARFlRCKXFIfiERCArAp+QGF0cwsr5u1Hmst1NDCFkyjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5jfOaDfNa9ICa3oixj10TQgghhBDS21k0sy7hadfbVlS7bneKsWxNC2ZNrU0phkmfUww3PpV56/LFu6a6a8bGGlUxhjbWqIoxtLFGOa9xXrNhXuutCClPvUk0s0nqKHCFVFZWajvunD76bHDSZ7fPhJM++rzu1OkztZ4h6oiN4YvrkJczQIuz8rYFqFqyUIuLvsxw0me3z4STPvq87sx43z0PenI9yjsfCSGEEEIIMcRDa4cnvPPxeIvPdbtTjJq9OVi66tyUYpj0OcVw41OZty5fvGuqu2ZsrFEVY2hjjaoYQxtrlPMa5zVb57VecUdk2s/e9hjJHAWuEp3HndNHnw1O+uz2mXDSR5/XnTp9ptYzRB3RMRRokGVFQVlWHJQ+EZGBrLD0iYgsLwnKo5s2y/ISd+1uYggxMeUYpnxuYjj5VOetwxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5zdZ5rbwkKJtf3ijl9g1KXl5dj3LzUROZ/AsQffb7TDjps9tnwkkffV53enWxR7xJdAyBoBSISIGIPHluppQ+EZGTKw5Jn3DX7i7GJAUxzPjcxUjsU593+n3xrqnumrGxRlWMoY01qmIMbaxRzmuc15IdQ6/UqE9E5JK572T85qOnTrsmhBBCCCGktyFEx6szfr/Evvr+8Pulq3bdMWzsM/Nm3sybeXvJ55UYNvY5k/KOtmc63HwkhBBCCCHEINH7HzoTDgsUFjQjHBau2nXHsLHPzJt5M2/m7SWfV2LY2OdMyjvanulw85EQQgghhBBDCEiUFYVQWhyCT0gEsiLwCYnRxSGsnL8bZS7b3cQQQqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r9k6r40uDsUOrslkeNo1IYQQQgghhlg0sy7hadfbVlS7bneKsWxNC2ZNrU0phkmfUww3PpV56/LFu6a6a8bGGlUxhjbWqIoxtLFGOa9xXrN1XusNp13zzkdCCCGEEEIIIYQQQkh60HAAjqfgadf00ecNJ312+0w46aPP606vni5IvEl0DAUaZFlRUJYVB6VPRGQgKyx9IiLLS4Ly6KbNsrzEXbubGEJMTDmGKZ+bGE4+1Xnr8MW7prprxsYaVTGGNtaoijG0sUY5r3Fes3VeKy8JyuaXN2b8adfcfNREJv8CRJ/9PhNO+uz2mXDSR5/XnV5d7BFvEh1DICgFIlIgIk8+ul5Kn4jIyRWHpE+4a3cXY5KCGGZ87mIk9qnPO/2+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmvJjqFXatQnInLJ3HcyfvORH7smhBBCCCHEIEJ0vDrj90vsq+8Pv1+6atcdw8Y+M2/mzbyZt5d8XolhY58zKe9oe6bDzUdCCCGEEEIMEr3/oTPhsEBhQTPCYeGqXXcMG/vMvJk382beXvJ5JYaNfc6kvKPtmQ43HwkhhBBCCDGEgERZUQilxSH4hEQgKwKfkBhdHMLK+btR5rLdTQwhZMoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zmq3z2ujiUOzU7Ewmy3QHCCGEEEII6a0smlmHOdMbAADL1w3Dvvr+KCxoxi3XHEC/7Ai2rah23e4UY9maFsyaWptSDJM+pxhufCrz1uWLd01114yNNapiDG2sURVjaGONcl7jvGbrvNYvO5J4sZABCClPvUnUDPfddx/uvPNOzJ49Gw888ECP71m3bh1+8Ytf4L333kNbWxuKiopw++2344YbbnDtaWxsRH5+PoLBIPLy8hT13pnKykpUVVXRR58nfSac9NntM+Gkjz6vO3X6TK1negPa16QvrkNezgBFvU9M5W0LULVkoaPrNOMAAEzqSURBVBYXfZnhpM9unwknffR53Znxvnse9OR61BN3Pm7fvh2PPvooSktLE77vjDPOwE9/+lOMHDkSffr0wfPPP4/vfve7GDJkCK644gpNvSWEEEIIIZmIiTXpQ2uHJ7zz8XiLz3W7U4yavTlYuurclGKY9DnFcONTmbcuX7xrqrtmbKxRFWNoY42qGEMba5TzGue1TJvXMoq0n73tQCgUkkVFRXLjxo2yoqJCzp49O6mfLy8vl3fddZfr9ydzFLhKdB53Th99Njjps9tnwkkffV536vSZWs9kMqbWpAINsqwoKMuKg9InIjKQFZY+EZHlJUF5dNNmWV7irt1NDCEmphzDlM9NDCef6rx1+OJdU901Y2ONqhhDG2tUxRjaWKOc1zivZdq81vzyRim3b0j65dX1qPHNxxkzZsg5c+ZIKWVSC71IJCI3bdok+/fvL//85z/HfV9LS4sMBoOx10cffcTNR/ro84CTPrt9Jpz00ed1p1cXe8QdptakQFAKRKRARJ48N1NKn4jIyRWHpE+4a3cXY5KCGGZ87mIk9qnPO/2+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmvJjqHXa3TJ3HcyavPR6DMfV69ejUWLFmH79u3Izs7GuHHjMHr06LjP1wGAYDCIgoICtLa2wu/34+GHH8ZNN90U9/133303Fi7s/vn6CRMmIBAIqEjDFdXV1Rg7dix99HnSZ8JJn90+E0766PO6U6evra0N69ev5zMfFWFyTQpMANB9TSqERE6/MJqO+yGlcGzvie7vrQYwNsUYZnzuYiT2qc87/b541zS1GMn0w4zPKzWj2+eVmtHt80rN6PZ5pWZ0+7xSM7p9ycY475wWXHR+U8L39UT1nve9uR5N+1ZoHPbv3y+HDBkid+7cGWtz81fmcDgs6+rq5I4dO+Svf/1rmZ+fL1988cW47+edj/TR500nfXb7TDjpo8/rTq/+pZkkxvSalHc+8g4h3iHk3ZqxsUZ55yPntdTytqNGe8O8lml3PvrSvxfaM2+88QYOHz6ML3/5y8jKykJWVha2bt2KZcuWISsrC+FwuMef8/l8+OIXv4jRo0fj9ttvx7XXXovFixfH9fTt2xd5eXldXoQQQgghhADm16QCEmVFIZQWh+ATEoGsCHxCYnRxCCvn70aZy3Y3MYSQKccw5XMTw8mnOm8dvnjXVHfN2FijKsbQxhpVMYY21ijnNc5rmTavRQ+iyRSMnXY9fvx41NTUdGn77ne/i5EjR+KOO+6A3+93FScSiaC1tTUdXSSEEEIIIRmO6TXpopl1CU+73rai2nW7U4xla1owa2ptSjFM+pxiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jfNaps1rmYSxzcfc3FxceOGFXdoGDBiAM888M9Y+Y8YMFBQUxP6KvHjxYowZMwbnn38+Wltb8cILL+Dpp5/GI488or3/hBBCCCHEfrgmJYQQQogXOd7iy5xNSQ0fA3fNqc/XqaiokDfeeGPs65/+9Kfyi1/8oszOzpaDBg2Sl1xyiVy9enVSDlPPSMrk507RZ7/PhJM+u30mnPTR53WnV5+xQ5JH55pUoEGWFQVlWXFQ+kREBrLC0icisrwkKI9u2izLS9y1u4khxMSUY5jyuYnh5FOdtw5fvGuqu2ZsrFEVY2hjjaoYQxtrlPMa57XeMq81v7zRymc+emrzUQfcfKSPPm846bPbZ8JJH31ed3p1sUe8SXQMeeAMD2bgwQzerRkba1TFGNpYo5zXOK8lO4Y21qhPOB9E49X1qLEDZwghhBBCCCGAEB2vzvj9Evvq+8Pvl67adcewsc/Mm3kzb+btJZ9XYtjY596et41w85EQQgghhBCDRO9p6Ew4LFBY0IxwWLhq1x3Dxj4zb+bNvJm3l3xeiWFjn3t73jbCzUdCCCGEEEIMISBRVhRCaXEIPiERyIrAJyRGF4ewcv5ulLlsdxNDCJlyDFM+NzGcfKrz1uGLd01114yNNapiDG2sURVjaGONcl7jvNZb5rXo6di2Yey0a0IIIYQQQno7i2bWYc70BgDo8UTLbSuqXbc7xVi2pgWzptamFMOkzymGG5/KvHX54l1T3TVjY42qGEMba1TFGNpYo5zXOK/1lnnNRoSUp97gmdk0NjYiPz8fwWAQeXl52ryVlZWoqqqijz5P+kw46bPbZ8JJH31ed+r0mVrPEHXExvDFdcjLGaDFWXnbAlQtWajFRV9mOOmz22fCSR99XndmvO+eBz25HuWdj4QQQgghhBjiobXDE975eLzF57rdKUbN3hwsXXVuSjFM+pxiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jfNab5nXrCTtZ297jGSOAleJzuPO6aPPBid9dvtMOOmjz+tOnT5T6xmijugYCjTIsqKgLCsOSp+IyEBWWPpERJaXBOXRTZtleYm7djcxhJiYcgxTPjcxnHyq89bhi3dNddeMjTWqYgxtrFEVY2hjjXJe47zWW+a15pc3Srl9Q9yXV9ej3HzURCb/AkSf/T4TTvrs9plw0kef151eXewRbxIdQyAoBSJSICJPnnkppU9E5OSKQ9In3LW7izFJQQwzPncxEvvU551+X7xrqrtmbKxRFWNoY42qGEMba5TzGue1ZMfQxhr1iYhcMvcdKzcfedo1IYQQQgghBhGi49UZv19iX31/+P3SVbvuGDb2mXkzb+bNvL3k80oMG/vc2/O2EW4+EkIIIYQQYpDoPQ2dCYcFCguaEQ4LV+26Y9jYZ+bNvJk38/aSzysxbOxzb8/bRrj5SAghhBBCiCEEJMqKQigtDsEnJAJZEfiExOjiEFbO340yl+1uYgghU45hyucmhpNPdd46fPGuqe6asbFGVYyhjTWqYgxtrFHOa5zXesu8Fj2gxjZ42jUhhBBCCCGGWDSzLuFp19tWVLtud4qxbE0LZk2tTSmGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r3Fe6y3zmo1w85EQQgghhBBCCCGEEAs43uKzb1NSwwE4noKnXdNHnzec9NntM+Gkjz6vO716uiDxJtExFGiQZUVBWVYclD4RkYGssPSJiCwvCcqjmzbL8hJ37W5iCDEx5RimfG5iOPlU563DF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmtN89r5SVB2fzyRk+fds3NR01k8i9A9NnvM+Gkz26fCSd99Hnd6dXFHvEm0TEEglIgIgUi8uRj56X0iYicXHFI+oS7dncxJimIYcbnLkZin/q80++Ld01114yNNapiDG2sURVjaGONcl7jvJbsGNpYo4nal8x9x9ObjzxwhhBCCCGEEIMI0fHqjN8vsa++P/x+6apddwwb+8y8mTfzZt5e8nklho19Zt49t3sZz2w+3nfffRBCYM6cOXHf89hjj+HrX/86Bg0ahEGDBuHyyy9HdXW1vk4SQgghhJCMxsSaNHrvQmfCYYHCgmaEw8JVu+4YNvaZeTNv5s28veTzSgwb+8y8e273Mp7YfNy+fTseffRRlJaWJnzfli1bMH36dLz44ot49dVXMXz4cPzzP/8z6uvrNfWUEEIIIYRkKibWpAISZUUhlBaH4BMSgawIfEJidHEIK+fvRpnLdjcxhJApxzDlcxPDyac6bx2+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmu9eV4bXRyKnZrtVYyfdt3U1ITrr78ejz32GH7+858nfO9vf/vbLl+vWLECv/vd77B582bMmDEjnd0khBBCCCEZjKk16aKZdZgzvQEAejy5ctuKatftTjGWrWnBrKm1KcUw6XOK4canMm9dvnjXVHfN2FijKsbQxhpVMYY21ijnNc5rvXle8/pp10LKU2/w1MuNN96IM844A0uXLsW4ceMwevRoPPDAA65+NhQKYciQIVi7di0mTpzY43taW1vR2toa+7qxsRHDhw9HMBhEXl6eihRcUVlZiaqqKvro86TPhJM+u30mnPTR53WnTl9jYyPy8/O1r2cyGWNr0hfXIS9ngIoUHKm8bQGqlizU4qIvM5z02e0z4aSPPq87M953z4OeXI8a3XxcvXo1Fi1ahO3btyM7Ozvphd7MmTOxYcMG7N69G9nZ2T2+5+6778bChd0HesKECQgEAql0Pymqq6sxduxY+ujzpM+Ekz67fSac9NHndadOX1tbG9avX8/NR0WYXJOOHPF1FBa0AQA+PNgPx1r8GJAdxnnnHIffB4Qj7tudYuyrr0FhwUUpxTDpc4rhxqcyb12+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmu9eV7zf/5QxerdtRg7qqTbeiMdtLW3Y/2rr7tbj6b55O247N+/Xw4ZMkTu3Lkz1lZRUSFnz57t6ucXL14sBw0a1OXne6KlpUUGg8HY66OPPpJweRS4SnQed04ffTY46bPbZ8JJH31ed+r0BYNBI+uZTMT0mlSgQZYVBWVZcVD6REQGssLSJyKyvCQoj27aLMtL3LW7iSHExJRjmPK5ieHkU523Dl+8a6q7ZmysURVjaGONqhhDG2uU8xrntd48r5WXBGXzyxul3L5BTvr616TcvkHLK/jiOtfrUWObj7///e8lAOn3+2MvAFIIIf1+v2xvb4/7s7/61a9kfn6+3L59e9JeU4v1TP4FiD77fSac9NntM+Gkjz6vO7n5aCem16RAUApEpEBEnjzzUkqfiMjJFYekT7hrdxdjkoIYZnzuYiT2qc87/b5411R3zdhYoyrG0MYaVTGGNtYo5zXOa8mOoY01mqh9ydx3PL35aOzAmfHjx6OmpqZL23e/+12MHDkSd9xxB/x+f48/98tf/hKLFi3Chg0bMGbMGB1dJYQQQgghGYoX1qRCdPx/KU+2+f0S++r7w++XiLQLx3bdMWzsM/Nm3sybeXvJ55UYNvaZeffc7mV8psS5ubm48MILu7wGDBiAM888ExdeeCEAYMaMGbjzzjtjP/Mf//EfmD9/PlauXIkRI0bg0KFDOHToEJqamkylQQghhBBCLMYLa9LovQudCYcFCguaEQ4LV+26Y9jYZ+bNvJk38/aSzysxbOwz8+653csY23x0w/79+3Hw4MHY14888ghOnDiBa6+9Fuecc07s9etf/9pgLwkhhBBCSCaTzjWpgERZUQilxSH4hEQgKwKfkBhdHMLK+btR5rLdTQwhZMoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zWm+e10YXh3DLNQdULn2UY+xj1z2xZcuWhF9/8MEH2vpCCCGEEEJ6JzrXpItm1mHO9AYAwPJ1w7Cvvj8KC5pxyzUH0C87gm0rql23O8VYtqYFs6bWphTDpM8phhufyrx1+eJdU901Y2ONqhhDG2tUxRjaWKOc1ziv9eZ5rV92JMFqwzyevvOREEIIIYQQQgghhBASn+MtPixddS5q9uZg6apzcbzFY9t9SR/NZzk87Zo++rzhpM9unwknffR53cnTrkkyRMdQoEGWFQVlWXFQ+kREBrLC0icisrwkKI9u2izLS9y1u4khxMSUY5jyuYnh5FOdtw5fvGuqu2ZsrFEVY2hjjaoYQxtrlPMa5zXOa919zS9v9Mxp19x81EQm/wJEn/0+E0767PaZcNJHn9ed3HwkyRAdQyAoBSJSICJPPnZeSp+IyMkVh6RPuGt3F2OSghhmfO5iJPapzzv9vnjXVHfN2FijKsbQxhpVMYY21ijnNc5ryY6hjTWa7BgumfuOZzYfPXYfJiGEEEIIIb0LITpenfH7JfbV94ffL121645hY5+ZN/Nm3szbSz6vxLCxz8zbfQyvwM1HQgghhBBCDBK9d6Ez4bBAYUEzwmHhql13DBv7zLyZN/Nm3l7yeSWGjX1m3u5jeAVuPhJCCCGEEGIIAYmyohBKi0PwCYlAVgQ+ITG6OISV83ejzGW7mxhCyJRjmPK5ieHkU523Dl+8a6q7ZmysURVjaGONqhhDG2uU8xrnNc5r3X3Rk7S9QJbpDhBCCCGEENJbWTSzDnOmNwAAlq8bhn31/VFY0IxbrjmAftkRbFtR7brdKcayNS2YNbU2pRgmfU4x3PhU5q3LF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmN81p3n1cQUp56c2Zm09jYiPz8fASDQeTl5WnzVlZWoqqqij76POkz4aTPbp8JJ330ed2p02dqPUPUERvDF9chL2eAFmflbQtQtWShFhd9meGkz26fCSd99HndSZ86GpuOIf+b17haj/LOR0IIIYQQQgzx0NrhCe98PN7ic93uFKNmbw6Wrjo3pRgmfU4x3PhU5q3LF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmN85r7MdSO43nYGUYwGJRweRS4SiZNmkQffZ71mXDSZ7fPhJM++rzu1OkztZ4h6oiOoUCDLCsKyrLioPSJiAxkhaVPRGR5SVAe3bRZlpe4a3cTQ4iJKccw5XMTw8mnOm8dvnjXVHfN2FijKsbQxhpVMYY21ijnNc5rnNfcj2Hzyxul3L4h5VfwxXWu16PcfNREJv8CRJ/9PhNO+uz2mXDSR5/Xndx8JMkQHUMgKAUiUiAiT55XKaVPROTkikPSJ9y1u4sxSUEMMz53MRL71Oedfl+8a6q7ZmysURVjaGONqhhDG2uU8xrntWTH0MYaVTWGS+a+o33zkaddE0IIIYQQYhAhOl6d8fsl9tX3h98vXbXrjmFjn5k382bezNtLPq/EsLHPzDv1GLrh5iMhhBBCCCEGid6P0JlwWKCwoBnhsHDVrjuGjX1m3sybeTNvL/m8EsPGPjPv1GPohpuPhBBCCCGEGEJAoqwohNLiEHxCIpAVgU9IjC4OYeX83Shz2e4mhhAy5RimfG5iOPlU563DF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmN85r7MYweUKMTnnZNCCGEEEKIIRbNrEt42vW2FdWu251iLFvTgllTa1OKYdLnFMONT2XeunzxrqnumrGxRlWMoY01qmIMbaxRzmuc1zivuR9D3fDOR0IIIYQQQgghhBBCSHrQcJifKxYvXiwByNmzZ8d9z1tvvSWvueYaed5550kAcunSpUl7eNo1ffR5w0mf3T4TTvro87qTp11nBrrXpAINsqwoKMuKg9InIjKQFZY+EZHlJUF5dNNmWV7irt1NDCEmphzDlM9NDCef6rx1+OJdU901Y2ONqhhDG2tUxRjaWKOc1zivcV5zP4bNL2/Uftq1JzYfq6ur5YgRI2RpaWnChV51dbWcN2+efOaZZ+TZZ5/NzUf66LPYSZ/dPhNO+ujzupObj/ZjYk0KBKVARApE5MlHxkvpExE5ueKQ9Al37e5iTFIQw4zPXYzEPvV5p98X75rqrhkba1TFGNpYoyrG0MYa5bzGeS3ZMbSxRlWN4ZK572jffDT+seumpiZcf/31eOyxxzBo0KCE7/3KV76CX/3qV5g2bRr69u2rqYeEEEIIISTTMbkmFaLj1Rm/X2JffX/4/dJVu+4YNvaZeTNv5s28veTzSgwb+8y8U4+hG+Obj7feeiuuvvpqXH755WmJ39raisbGxi4vQgghhBBCOmNyTRq9H6Ez4bBAYUEzwmHhql13DBv7zLyZN/Nm3l7yeSWGjX1m3qnH0I3R065Xr16Nv/3tb9i+fXvaHIsXL8bChQu7tU+dOhWBQCBt3lOprq5GZWUlffR50mfCSZ/dPhNO+ujzulOnr62tTYunt2ByTQpMRe6Ajl8MGo9lQQgJKQVy+7ej9UQDcvoPdNc+oN0xBlANoDKlGMZ8LmI4+hTnrcUX75oqvnae83mlZmysURVjaGONcl7jvMZ5zfUYbqr+DC++jpRpa293/V5jm48fffQRZs+ejY0bNyI7OzttnjvvvBO33XZb7OvGxkYMHz4ca9asQV5eXtq8p1JZWYmqqir66POkz4STPrt9Jpz00ed1p05fY2Mj8vPztbgyHdNr0l/MvBdzpjcAAJavG4Z99f1RWNCMW645gH7ZERxv8blud4qxbM2/Y9bUX6YUw6TPKYYbn8q8dfniXVPdNWNjjaoYQxtrVMUY2lijnNc4r3Fecz+GKmhsOob8b17j6r1CylNvztTDc889h+985zvw+/2xtnA4DCEEfD4fWltbu3zvVEaMGIE5c+Zgzpw5SXmji/VgMMjNR/roM+ikz26fCSd99HndaWLzUfd6JhMxviZ9cR3ycgacbveTovK2Baha0tPdl/TZ4DPhpM9unwknffR53UmfOqKbj27Wo8bufBw/fjxqamq6tH33u9/FyJEjcccddyRc5BFCCCGEEKIC02vSh9YO13bnY83eHCxdda62O4RU+5xiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jfMa57XUfGnF8TxsjVRUVMjZs2fHvr7hhhvkj3/849jXra2tcseOHXLHjh3ynHPOkfPmzZM7duyQdXV1rh3BYFDC5VHgKpk0aRJ99HnWZ8JJn90+E0766PO6U6fP1Hqmt6BzTSrQIMuKgrKsOCh9IiIDWWHpExFZXhKURzdtluUl7trdxBBiYsoxTPncxHDyqc5bhy/eNdVdMzbWqIoxtLFGVYyhjTXKeY3zGue11HzNL2+UcvuGpF7BF9e5Xo96evOxoqJC3njjjbGv33//fQmg26uiosK1g5uP9NHnDSd9dvtMOOmjz+tObj5mDjrXpEBQCkSkQESePK9SSp+IyMkVh6RPuGt3F2OSghhmfO5iJPapzzv9vnjXVHfN2FijKsbQxhpVMYY21ijnNc5ryY6hjTWaznltydx30rr5aPS061PZsmVLwq9HjBgBKaW+DhFCCCGEkF6H7jWp6DjsGp1D+v0S++r7w++XiLQLx3bdMWzsM/Nm3sybeXvJ55UYNvaZeacn73TiS2t0QgghhBBCSEKi9x50JhwWKCxoRjgsXLXrjmFjn5k382bezNtLPq/EsLHPzDs9eacTbj4SQgghhBBiCAGJsqIQSotD8AmJQFYEPiExujiElfN3o8xlu5sYQsiUY5jyuYnh5FOdtw5fvGuqu2ZsrFEVY2hjjaoYQxtrlPMa5zXOa6n5ogfRpAtPfeyaEEIIIYSQ3sSimXUJT7vetqLadbtTjGVrWjBram1KMUz6nGK48anMW5cv3jXVXTM21qiKMbSxRlWMoY01ynmN8xrntdR86YR3PhJCCCGEEEIIIYQQQtKD6yP5MgSedk0ffd5w0me3z4STPvq87uRp1yQZomMo0CDLioKyrDgofSIiA1lh6RMRWV4SlEc3bZblJe7a3cQQYmLKMUz53MRw8qnOW4cv3jXVXTM21qiKMbSxRlWMoY01ynmN8xrntdR8zS9vTOtp19x81EQm/wJEn/0+E0767PaZcNJHn9ed3HwkyRAdQyAoBSJSICJPPgZeSp+IyMkVh6RPuGt3F2OSghhmfO5iJPapzzv9vnjXVHfN2FijKsbQxhpVMYY21ijnNc5ryY6hjTWaznltydx30rr5yI9dE0IIIYQQYhAhOl6d8fsl9tX3h98vXbXrjmFjn5k382bezNtLPq/EsLHPzDs9eacTbj4SQgghhBBikOi9B50JhwUKC5oRDgtX7bpj2Nhn5s28mTfz9pLPKzFs7DPzTk/e6YSbj4QQQgghhBhCQKKsKITS4hB8QiKQFYFPSIwuDmHl/N0oc9nuJoYQMuUYpnxuYjj5VOetwxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5jfNaar7oKdjpIiut0QkhhBBCCCFxWTSzDnOmNwAAlq8bhn31/VFY0IxbrjmAftkRbFtR7brdKcayNS2YNbU2pRgmfU4x3PhU5q3LF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmN81pqvnQipDz1hsvMprGxEfn5+QgGg8jLy9PmraysRFVVFX30edJnwkmf3T4TTvro87pTp8/UeoaoIzaGL65DXs4ALc7K2xagaslCLS76MsNJn90+E0766PO6kz51NDYdQ/43r3G1HuWdj4QQQgghhBjiobXDE975eLzF57rdKUbN3hwsXXVuSjFM+pxiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jfMa57X0+JTgeB52hhEMBiVcHgWukkmTJtFHn2d9Jpz02e0z4aSPPq87dfpMrWeIOqJjKNAgy4qCsqw4KH0iIgNZYekTEVleEpRHN22W5SXu2t3EEGJiyjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5jfMa57X0+Jpf3ijl9g09voIvrnO9HuXmoyYy+Rcg+uz3mXDSZ7fPhJM++rzu5OYjSYboGAJBKRCRAhF58gxKKX0iIidXHJI+4a7dXYxJCmKY8bmLkdinPu/0++JdU901Y2ONqhhDG2tUxRjaWKOc1zivJTuGNtaoiXltydx3lGw+8rRrQgghhBBCDCJEx6szfr/Evvr+8Pulq3bdMWzsM/Nm3sybeXvJ55UYNvaZeevNWwXcfCSEEEIIIcQg0XsMOhMOCxQWNCMcFq7adcewsc/Mm3kzb+btJZ9XYtjYZ+atN28VGN18fOSRR1BaWoq8vDzk5eXhkksuwZ/+9Ke4729ra8M999yD888/H9nZ2SgrK8P69es19pgQQgghhGQSptejAhJlRSGUFofgExKBrAh8QmJ0cQgr5+9Gmct2NzGEkCnHMOVzE8PJpzpvHb5411R3zdhYoyrG0MYaVTGGNtYo5zXOa5zX0uOLHlCTKkZPux42bBjuu+8+FBUVQUqJJ598EpMnT8aOHTswatSobu+/66678H//7//FY489hpEjR2LDhg34zne+g1deeQXl5eUGMiCEEEIIITZjej26aGZdwtOut62odt3uFGPZmhbMmlqbUgyTPqcYbnwq89bli3dNddeMjTWqYgxtrFEVY2hjjXJe47zGeS09PhUYvfNx0qRJuOqqq1BUVITi4mIsWrQIOTk5+Otf/9rj+59++mn85Cc/wVVXXYXCwkL88Ic/xFVXXYX7779fc88JIYQQQkgmwPUoIYQQQkiaSftRfi5pb2+XzzzzjOzTp4/cvXt3j+8544wz5IoVK7q0XX/99fK8886LG7elpUUGg8HY66OPPpJweRqPSjL5xE367PeZcNJnt8+Ekz76vO7kadf2k671qJTx16QCDbKsKCjLioPSJyIykBWWPhGR5SVBeXTTZlle4q7dTQwhJqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r3FeS4+v+eWNSk67FlKe+qhJvdTU1OCSSy5BS0sLcnJysGrVKlx11VU9vve6667Dzp078dxzz+H888/H5s2bMXnyZITDYbS2tvb4M3fffTcWLlzYrX3ChAkIBAJKc0lEdXU1xo4dSx99nvSZcNJnt8+Ekz76vO7U6Wtra8P69esRDAaRl5enxZnJpHs9CsRfkwITAPS8Jj37zFYcOtrXdbtzjGoAY1OMYc7nHMPZpzZvPb541/T0YyTTD3M+r9SMbp9Xaka3zys1o9vnlZrR7fNKzej2eaVmkvGNKmxCYcHxHn+mrb0d61993d161OUfgtNGa2urrKurk6+//rr88Y9/LM8666y4f2k+fPiwnDx5svT5fNLv98vi4mI5c+ZMmZ2dHTc+73ykjz5vOumz22fCSR99Xnfyzkd7Sfd6VMr4a1Kg4y4Dn4jIk2dQShnICsuLvtgoA1lhV+3uYkxSEMOMz12MxD71eaffF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnkt2TG0sUZNzGv/+399qOTOR6PPfASAPn364Itf/CIuvvhiLF68GGVlZfjNb37T43sHDx6M5557DseOHcOHH36Id999Fzk5OSgsLIwbv2/fvrHTC6MvQgghhBBCoqR7PQokXpNGl/mdCYcFCguaEQ4LV+26Y9jYZ+bNvJk38/aSzysxbOwz89abtwqMbz6eSiQSSfiRFQDIzs5GQUEB2tvb8bvf/Q6TJ0/W1DtCCCGEEJLp6FyPCkiUFYVQWhyCT0gEsiLwCYnRxSGsnL8bZS7b3cQQQqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r3FeS48vejp2qmQpiXKa3Hnnnbjyyitx7rnnIhQKYdWqVdiyZQs2bNgAAJgxYwYKCgqwePFiAMBrr72G+vp6jB49GvX19bj77rsRiUTwox/9yGQahBBCCCHEUkyvRxfNrMOc6Q0AgOXrhmFffX8UFjTjlmsOoF92BNtWVLtud4qxbE0LZk2tTSmGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r3Fe47yWHp8KjB44c/PNN2Pz5s04ePAg8vPzUVpaijvuuAPf+ta3AADjxo3DiBEj8MQTTwAAtm7dih/+8IfYt28fcnJycNVVV+G+++7D0KFDXTsbGxuRn5+v/QHtlZWVqKqqoo8+T/pMOOmz22fCSR99Xnfq9Jlaz2QiJtajQKcxfHEd8nIGqE6rRypvW4CqJT0dekOfDT4TTvrs9plw0kef1530qaOx6Rjyv3mNq/Wo0TsfH3/88YTf37JlS5evKyoq8Pbbb6exR4QQQgghpDdhej360NrhCe98PN7ic93uFKNmbw6Wrjo3pRgmfU4x3PhU5q3LF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnmN85o+X9J3RJ7GgYBWY+p0yEw+cZM++30mnPTZ7TPhpI8+rzt52jVJhugYCjTIsqKgLCvuOPU6kBWWPhGR5SVBeXTTZlle4q7dTQwhJqYcw5TPTQwnn+q8dfjiXVPdNWNjjaoYQxtrVMUY2lijnNc4r3Fe0+crLwnK5pc3JnXaNTcfNZHJvwDRZ7/PhJM+u30mnPTR53UnNx9JMkTHEAhKgYgUiMiTZ1BK6RMRObnikPQJd+3uYkxSEMOMz12MxD71eaffF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnkt2TG0sUa9Mq/5REQumftOUpuPnjvtmhBCCCGEkN6EEB2vzvj9Evvq+8Pvl67adcewsc/Mm3kzb+btJZ9XYtjYZ+ZtNu9oezJw85EQQgghhBCDRO8l6Ew4LFBY0IxwWLhq1x3Dxj4zb+bNvJm3l3xeiWFjn5m32byj7cnAzUdCCCGEEEIMISBRVhRCaXEIPiERyIrAJyRGF4ewcv5ulLlsdxNDCJlyDFM+NzGcfKrz1uGLd01114yNNapiDG2sURVjaGONcl7jvMZ5TZ9vdHEodnCNW4yedk0IIYQQQkhvZtHMuoSnXW9bUe263SnGsjUtmDW1NqUYJn1OMdz4VOatyxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5jfOaPl+/7Ajamnpc2vQI73wkhBBCCCGEEEIIIYSkBw2H+XkKnnZNH33ecNJnt8+Ekz76vO7kadckGaJjKNAgy4qCsqw4KH0iIgNZYekTEVleEpRHN22W5SXu2t3EEGJiyjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5jfMa5zV9vvKSoGx+eWNSp11z81ETmfwLEH32+0w46bPbZ8JJH31ed3LzkSRDdAyBoBSISIGIPPkYeCl9IiInVxySPuGu3V2MSQpimPG5i5HYpz7v9PviXVPdNWNjjaoYQxtrVMUY2lijnNc4ryU7hjbWqFfmNZ+IyCVz30lq85EfuyaEEEIIIcQgQnS8OuP3S+yr7w+/X7pq1x3Dxj4zb+bNvJm3l3xeiWFjn5m32byj7cnAzUdCCCGEEEIMEr2XoDPhsEBhQTPCYeGqXXcMG/vMvJk382beXvJ5JYaNfWbeZvOOticDNx8JIYQQQggxhIBEWVEIpcUh+IREICsCn5AYXRzCyvm7Ueay3U0MIWTKMUz53MRw8qnOW4cv3jXVXTM21qiKMbSxRlWMoY01ynmN8xrnNX2+0cWh2KnZbslK0zqKEEIIIYQQ4sCimXWYM70BALB83TDsq++PwoJm3HLNAfTLjmDbimrX7U4xlq1pwayptSnFMOlziuHGpzJvXb5411R3zdhYoyrG0MYaVTGGNtYo5zXOa5zX9Pn6ZUfQ1tTj0qZHhJSn3nCZ2TQ2NiI/Px/BYBB5eXnavJWVlaiqqqKPPk/6TDjps9tnwkkffV536vSZWs8QdcTG8MV1yMsZoMVZedsCVC1ZqMVFX2Y46bPbZ8JJH31ed9KnjsamY8j/5jWu1qO885EQQgghhBBDPLR2eMI7H4+3+Fy3O8Wo2ZuDpavOTSmGSZ9TDDc+lXnr8sW7prprxsYaVTGGNtaoijG0sUY5r3Fe47ymz9cvO9LjuiYujudhZxjBYFDC5VHgKpk0aRJ99HnWZ8JJn90+E0766PO6U6fP1HqGqCM6hgINsqwoKMuKg9InIjKQFZY+EZHlJUF5dNNmWV7irt1NDCEmphzDlM9NDCef6rx1+OJdU901Y2ONqhhDG2tUxRjaWKOc1zivcV7T5ysvCcrmlzfK4IvrXK9HjW4+Pvzww/Kiiy6Subm5Mjc3V37ta1+TL7zwQsKfWbp0qSwuLpbZ2dly2LBhcs6cOfL48eOundx8pI8+bzjps9tnwkkffV53cvPRTkysR6U8OYZAUApEpEBEnjyDUkqfiMjJFYekT7hrdxdjkoIYZnzuYiT2qc87/b5411R3zdhYoyrG0MYaVTGGNtYo5zXOa8mOoY016pV5zScicsncd5LafDR62vWwYcNw33334Y033sDrr7+Of/qnf8LkyZOxe/fuHt+/atUq/PjHP8aCBQvwzjvv4PHHH8eaNWvwk5/8RHPPCSGEEEJIJuCF9agQHa/O+P0S++r7w++Xrtp1x7Cxz8ybeTNv5u0ln1di2Nhn5m0272h7MhjdfJw0aRKuuuoqFBUVobi4GIsWLUJOTg7++te/9vj+V155BZdeeimuu+46jBgxAv/8z/+M6dOno7q6WnPPCSGEEEJIJuCF9Wj0XoLOhMMChQXNCIeFq3bdMWzsM/Nm3sybeXvJ55UYNvaZeZvNO9qeDEY3HzsTDoexevVqHDt2DJdcckmP7/nHf/xHvPHGG7HF3b59+/DCCy/gqquuihu3tbUVjY2NXV6EEEIIIYScSrrWo0D8NamARFlRCKXFIfiERCArAp+QGF0cwsr5u1Hmst1NDCFkyjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5jfMa5zV9vtHFodjBNW4RUp6656mXmpoaXHLJJWhpaUFOTg5WrVqVcPG2bNkyzJs3D1JKtLe345ZbbsEjjzwS9/133303Fi5c2K19woQJCAQCSnJwQ3V1NcaOHUsffZ70mXDSZ7fPhJM++rzu1Olra2vD+vXrEQwGkZeXp8WZyaR7PQrEX5OOHPF1FBa0AQA+PNgPx1r8GJAdxnnnHIffB4Qj7tudYuyrr0FhwUUpxTDpc4rhxqcyb12+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmuc1/T5/D6grb0d61993dV61Pjm44kTJ7B//34Eg0E8++yzWLFiBbZu3YoLLrig23u3bNmCadOm4ec//zm++tWv4r333sPs2bPxb//2b5g/f36P8VtbW9Ha2hr7urGxEcOHD9e+WK+srERVVRV99HnSZ8JJn90+E0766PO6U6evsbER+fn53HxURLrXo0D8NekvZm7HnOkNAIDl64ZhX31/FBY045ZrDqBfdgTHW3yu251iLFvz75g19T9TimHS5xTDjU9l3rp88a6p7pqxsUZVjKGNNapiDG2sUc5rnNc4r+nz9cuOoLHpGPK/eY279WhSx/JpYPz48fL73/9+j9+77LLL5Lx587q0Pf3007Jfv34yHA67is/TrumjzxtO+uz2mXDSR5/XnTztOnNI93pUypNjKNAgy4qCsqw4KH0iIgNZYekTEVleEpRHN22W5SXu2t3EEGJiyjFM+dzEcPKpzluHL9411V0zNtaoijG0sUZVjKGNNcp5jfMa5zV9vvKSoGx+eWNSp117bvPxm9/8przxxht7/N6Xv/xl+aMf/ahL26pVq2S/fv1ke3u7q/jcfKSPPm846bPbZ8JJH31ed3LzMXNI93pUypNjCASlQEQKROTJx8BL6RMRObnikPQJd+3uYkxSEMOMz12MxD71eaffF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnkt2TG0sUa9Mq/5REQumftOUpuPWYnvi0wvd955J6688kqce+65CIVCWLVqFbZs2YINGzYAAGbMmIGCggIsXrwYQMdphEuWLEF5eXnsYy7z58/HpEmT4Pf7TaZCCCGEEEIsxAvrUfH5IZJSnmzz+yX21feH3y8RaReO7bpj2Nhn5s28mTfz9pLPKzFs7DPzNpt3tD0ZjJ52ffjwYcyYMQMlJSUYP348tm/fjg0bNuBb3/oWAGD//v04ePBg7P133XUXbr/9dtx111244IILcPPNN+OKK67Ao48+aioFQgghhBBiMV5Yj0bvJehMOCxQWNCMcFi4atcdw8Y+M2/mzbyZt5d8XolhY5+Zt9m8o+1J4fqzIRkCP3ZNH33ecNJnt8+Ekz76vO7kx65JMnR+5uPoHp6/9OU4z1mK1+4mRvQ5UKnEMOVzE8PJpzpvHb5411R3zdhYoyrG0MYaVTGGNtYo5zXOa5zX9Pm+fBrPfDT6sWtCCCGEEEJ6M4tm1iU87XrbimrX7U4xlq1pwayptSnFMOlziuHGpzJvXb5411R3zdhYoyrG0MYaVTGGNtYo5zXOa5zX9Pn6ZUfQ1tTj0qZHhJSn3nCZ2TQ2NiI/P9/dUeAKqaysRFVVFX30edJnwkmf3T4TTvro87pTp8/UeoaoIzaGL65DXs4ALc7K2xagaslCLS76MsNJn90+E0766PO6kz51NDYdQ/43r3G1HuWdj4QQQgghhBjiobXDE975eLzF57rdKUbN3hwsXXVuSjFM+pxiuPGpzFuXL9411V0zNtaoijG0sUZVjKGNNcp5jfMa5zV9vn7ZkR7XNXFJ+wNtPAaf+Ugffd5w0me3z4STPvq87uQzH0kydH7mY1kPz18qj/OcpXjtbmJEnwOVSgxTPjcxnHyq89bhi3dNddeMjTWqYgxtrFEVY2hjjXJe47zGeU2fr/w0nvnIzUdNZPIvQPTZ7zPhpM9unwknffR53cnNR5IM0TEEglIgIgUi8uQZlFL6REROrjgkfcJdu7sYkxTEMONzFyOxT33e6ffFu6a6a8bGGlUxhjbWqIoxtLFGOa9xXkt2DG2sUa/Maz4RkUvmvpPU5qMvufskCSGEEEIIISoRouPVGb9fYl99f/j90lW77hg29pl5M2/mzby95PNKDBv7zLzN5h1tTwZuPhJCCCGEEGKQ6L0EnQmHBQoLmhEOC1ftumPY2GfmzbyZN/P2ks8rMWzsM/M2m3e0PRm4+UgIIYQQQoghBCTKikIoLQ7BJyQCWRH4hMTo4hBWzt+NMpftbmIIIVOOYcrnJoaTT3XeOnzxrqnumrGxRlWMoY01qmIMbaxRzmuc1ziv6fONLg7FDq5xC0+7JoQQQgghxBCLZtYlPO1624pq1+1OMZatacGsqbUpxTDpc4rhxqcyb12+eNdUd83YWKMqxtDGGlUxhjbWKOc1zmuc1/T5+mVH0NbU49KmR3jnIyGEEEIIIYQQQgghJD1oOMzPU/C0a/ro84aTPrt9Jpz00ed1J0+7JskQHUOBBllWFJRlxUHpExEZyApLn4jI8pKgPLppsywvcdfuJoYQE1OOYcrnJoaTT3XeOnzxrqnumrGxRlWMoY01qmIMbaxRzmuc1ziv6fOVlwRl88sbkzrtmpuPmsjkX4Dos99nwkmf3T4TTvro87qTm48kGaJjCASlQEQKROTJx8BL6RMRObnikPQJd+3uYkxSEMOMz12MxD71eaffF++a6q4ZG2tUxRjaWKMqxtDGGuW8xnkt2TG0sUa9Mq/5REQumftOUpuP/Ng1IYQQQgghBhGi49UZv19iX31/+P3SVbvuGDb2mXkzb+bNvL3k80oMG/vMvM3mHW1PBm4+EkIIIYQQYpDovQSdCYcFCguaEQ4LV+26Y9jYZ+bNvJk38/aSzysxbOwz8zabd7Q9Gbj5SAghhBBCiCEEJMqKQigtDsEnJAJZEfiExOjiEFbO340yl+1uYgghU45hyucmhpNPdd46fPGuqe6asbFGVYyhjTWqYgxtrFHOa5zXOK/p840uDsVOzXZLVprWUYQQQgghhBAHFs2sw5zpDQCA5euGYV99fxQWNOOWaw6gX3YE21ZUu253irFsTQtmTa1NKYZJn1MMNz6VeevyxbumumvGxhpVMYY21qiKMbSxRjmvcV7jvKbP1y87gramHpc2PSKkPPWGS3088sgjeOSRR/DBBx8AAEaNGoWf/exnuPLKK3t8/7hx47B169Zu7VdddRX++Mc/unI2NjYiPz8fwWAQeXl5p933ZKmsrERVVRV99HnSZ8JJn90+E0766PO6U6fP1HomEzGxHgU6jeGL65CXM+C0+p4slbctQNWShVpc9GWGkz67fSac9NHndSd96mhsOob8b17jaj1q9M7HYcOG4b777kNRURGklHjyyScxefJk7NixA6NGjer2/nXr1uHEiROxr48ePYqysjJMmTJFZ7cJIYQQQkiGYHo9+tDa4QnvfDze4nPd7hSjZm8Olq46N6UYJn1OMdz4VOatyxfvmuquGRtrVMUY2lijKsbQxhrlvMZ5jfOaPl+/7EiP65q4OJ6HrZlBgwbJFStWuHrv0qVLZW5urmxqanIdPxgMSrg8ClwlkyZNoo8+z/pMOOmz22fCSR99Xnfq9Jlaz/QW0r0elfLkGAo0yLKioCwrDkqfiMhAVlj6RESWlwTl0U2bZXmJu3Y3MYSYmHIMUz43MZx8qvPW4Yt3TXXXjI01qmIMbaxRFWNoY41yXuO8xnlNn6+8JCibX94ogy+uc70e9cwzH8PhMNauXYtjx47hkksucfUzjz/+OKZNm4YBA+J/VKW1tRWtra2xr4PBIICOj7ropK2tTauTPvq87qTPbp8JJ330ed2p0xf1SHNPz8lI0rUeBeKvSSVC2FmX+3lrCJH2jn+9WStxw4Jz8WathHTRvrNOOsYA2iERSimGKZ+bGE4+1Xnr8MW7pqqvndd8XqkZG2tUxRjaWKOc1zivJTuGNtaoV+a1N2slHnhmIG646hMALtejSf2JNg3s2rVLDhgwQPr9fpmfny//+Mc/uvq51157TQKQr732WsL3LViwQALgiy+++OKLL774yrjXRx99pGI51utJ93pUSq5J+eKLL7744ouvzHy5WY8aPXAGAE6cOIH9+/cjGAzi2WefxYoVK7B161ZccMEFCX/uBz/4AV599VXs2rUr4ftO/StzQ0MDzjvvPOzfvx/5+flKcnCisbERw4cPx0cffaTlofD00ed1J312+0w46aPP607dPiklQqEQhg4dCp/Pl3ZfppPu9Shgfk2a6f+byHSfCSd9dvtMOOmjz+tO+tSSzHrU+Meu+/Tpgy9+8YsAgIsvvhjbt2/Hb37zGzz66KNxf+bYsWNYvXo17rnnHsf4ffv2Rd++fbu15+fnaz8dMi8vT6uTPvq87qTPbp8JJ330ed2p06frj6i9gXSvRwHvrEkz+X8TvcFnwkmf3T4TTvro87qTPnW4XY967k/lkUiky1+Fe2Lt2rVobW3Fv/7rv2rqFSGEEEII6S1wPUoIIYQQog6jdz7eeeeduPLKK3HuueciFAph1apV2LJlCzZs2AAAmDFjBgoKCrB48eIuP/f444/j29/+Ns4880wT3SaEEEIIIRkC16OEEEIIIenF6Obj4cOHMWPGDBw8eBD5+fkoLS3Fhg0b8K1vfQsAsH///m6fG6+trcVf/vIX/PnPfz4tZ9++fbFgwYIeP/aSLnQ76aPP60767PaZcNJHn9edJnIkajCxHgUyv0bps99Jn90+E0766PO6kz5zGD9whhBCCCGEEEIIIYQQkpl47pmPhBBCCCGEEEIIIYSQzICbj4QQQgghhBBCCCGEkLTAzUdCCCGEEEIIIYQQQkha4OYjIYQQQgghhBBCCCEkLWTU5uPixYvxla98Bbm5uRgyZAi+/e1vo7a2NuHPjBs3DkKIbq+rr746bc62tjbcc889OP/885GdnY2ysjKsX7/ele+RRx5BaWkp8vLykJeXh0suuQR/+tOf4r5/9+7d+Jd/+ReM+P+3d+9BUZVvHMCflWV3kQHEyxriimIiKniZaIyLMorpjDphTnhD03TGVHTUYoqSCTJvlaU13QyvoynjdcaMFDWhEhOUFRlMQaRMxxmbxhthi6zP749+EAsK5z2X3WX9fmb4w+Ucv+csr49f32WxZ0/S6XS0fv16STly87KysmjYsGEUGBhIgYGBNGrUKCosLNQsr7Hs7GzS6XQ0YcIETfNu375NKSkpFBQUREajkcLCwignJ0fTzPXr11Pfvn3Jx8eHLBYLLV26lP755x/JmfXWrFlDOp2OlixZ0uJxe/bsofDwcDKZTBQZGSl0f3Iyla5T0bz9+/dTVFQUdejQgXx9fWnw4MG0fft2zfK2bt3abMaYTCbN8pTONdE8JTONiCgzM7PZtYaHh7d4jpI1KpqndK7Jub96cuaanDylc01OppK5JpqndI0SEV2/fp2mT59OnTp1Ih8fH4qMjKQzZ8489vgbN27QtGnTKCwsjNq1a9fq3AXP4uxOij7qSOnclpPZWFvopK7so0TO76Too+r2UamZbamTenoflZPZWFvopOijzblTH9W7LFkD+fn5lJKSQs8++yzV1dXR22+/TaNHj6YLFy6Qr6/vI8/Zv38/1dbWNvz6r7/+okGDBlFSUpJmmenp6bRjxw7Kysqi8PBwOnLkCL344otUUFBAQ4YMaTGve/futGbNGurTpw8xM23bto0SExPJarXSgAEDmh1fU1NDoaGhlJSUREuXLpV0T0ry8vLyaOrUqRQTE0Mmk4nef/99Gj16NJWVlVFwcLDqefV+++03Sk1NpWHDhml6f7W1tfT888+T2WymvXv3UnBwMP3+++/UoUMHzTJ37txJaWlptHnzZoqJiaHy8nKaNWsW6XQ6+vjjjyXnFhUV0YYNG2jgwIEtHldQUEBTp06l1atX0/jx42nnzp00YcIEKi4upoiICMl5IplK16loXseOHWnZsmUUHh5OBoOBDh06RK+88gqZzWYaM2aM6nlERP7+/g7/ENTpdJJzRPOUzjXRPCUzrd6AAQPo2LFjDb/W6x//15Maa1QkT+lcE82rJ3euieapMddEM9WYayJ5StforVu3KDY2lkaMGEHff/89denShSoqKigwMPCx59hsNurSpQulp6fTunXrJN0TeA5nd1L0UUdqzG1P76Su6qNEzu+k6KP/UaOPimS2tU7q6X1UNLNeW+qk6KOO3KqPsge7efMmExHn5+dLPmfdunXs5+fH1dXVmmUGBQXxZ5995vDYxIkTOTk5WVZmYGAgb9y4sdXjQkJCeN26dbIy5OQxM9fV1bGfnx9v27ZNs7y6ujqOiYnhjRs38syZMzkxMVF2Vmt5X375JYeGhnJtba2iDJHMlJQUHjlypMNjr732GsfGxkr+/e/du8d9+vTho0ePcnx8PC9evPixx06aNInHjRvn8NjQoUP51VdflZwnmtmY3HUqN6/ekCFDOD09XZO8LVu2cEBAgND1KMlrSs5cE8lTOtMyMjJ40KBBkq9N6RoVzWtKdK7JyVMy10Tz1JhroplK55pontI1+uabb3JcXJzkvKbkzCTwLM7upOijjtToo1Iy23on1bqPMju/k6KP/keNPiqa2ZQ7d1JP76NyM9tSJ0UfbZmr+6hHve26qTt37hDRv68qSbVp0yaaMmXKY18lViPTZrM1+xZ3Hx8f+vnnn4Wy7HY7ZWdn099//03R0dHiFytITl5NTQ09ePBA6Gsgmrd8+XIym800Z84c4QzRvIMHD1J0dDSlpKRQ165dKSIiglatWkV2u12zzJiYGDp79mzDt9VfuXKFcnJyaOzYsZJzUlJSaNy4cTRq1KhWjz116lSz48aMGUOnTp2SnCeaqQa5ecxMx48fp0uXLtHw4cM1y6uurqaQkBCyWCyUmJhIZWVlQtep5PmUM9dE8tSYaRUVFdStWzcKDQ2l5ORkunr16mOPVWONiuQ1JWeuieYpnWsieWrNNZFMNeaaSJ7SNXrw4EGKioqipKQkMpvNNGTIEMrKypJ8rQDO7qToo46U9FGRzLbaSZ3VR4mc30nRRx0p7aNyMhtz907q6X1UTmZb66Too27MZdueGrPb7Txu3DihV+NOnz7NRMSnT5/WNHPq1Kncv39/Li8vZ7vdzrm5uezj48MGg0FSzvnz59nX15e9vLw4ICCAv/vuO0nnyX0FT24eM/P8+fM5NDSU79+/r0neTz/9xMHBwfznn38yM8t6lVkkr2/fvmw0Gnn27Nl85swZzs7O5o4dO3JmZqZmmczMn3zyCXt7e7Ner2ci4nnz5knO2rVrF0dERDR8DVp7xcPb25t37tzp8Njnn3/OZrNZs8zG5KxTOXm3b99mX19f1uv1bDQaedOmTZrlFRQU8LZt29hqtXJeXh6PHz+e/f39+Y8//tAkrzE5c000T+lMy8nJ4d27d3NJSQkfPnyYo6OjuUePHnz37t1HHq90jYrmNSU610TzlM410Tw15pqc51TJXBPNU7pGjUYjG41Gfuutt7i4uJg3bNjAJpOJt27dKul8V7/SDK7l7E6KPtqcnD4qmtkWO6kz+yiz8zsp+qgjpX1UTmZj7t5JPb2Pyslsa50UfbRlru6jHrv5OG/ePA4JCREapnPnzuXIyEjNM2/evMmJiYncrl079vLy4rCwMF6wYAGbTCZJOTabjSsqKvjMmTOclpbGnTt35rKyslbPk1v25OatXr2aAwMDuaSkRJO8u3fvcs+ePTknJ6fhMTlFT+T++vTpwxaLhevq6hoe++ijj/ipp57SLPPEiRPctWtXzsrK4vPnz/P+/fvZYrHw8uXLW825evUqm81mh6+B1kVPTmZjoutUbp7dbueKigq2Wq28du1aDggI4BMnTmiW11htbS337t1b0ttqlOaJzjU5eUpnWlO3bt1if3//x771S40NcpG8xuTONal5as01qXnM6s01kUwlc01OntI16u3tzdHR0Q6PLVq0iJ977jlJ57u67IFrObuToo86UjK3Pb2TOquPMju/k6KPtk6kj6qR2dY6qaf30dYyPaGToo86cnUf9cjNx5SUFO7evTtfuXJF8jnV1dXs7+/P69evd1rm/fv3+dq1a/zw4UN+4403uH///rKyExISeO7cua0ep9bP2JGS9+GHH3JAQAAXFRVplme1WpmI2MvLq+FDp9OxTqdjLy8vvnz5sqp5zMzDhw/nhIQEh8dycnKYiNhms8nKay0zLi6OU1NTHR7bvn07+/j4sN1ub/H3PXDgQLPniIganqPGg72exWJptk7eeecdHjhwoKR7kZPZmOg6VZpXb86cOTx69Gin5b300ks8ZcoUTfPkzDUleWrNNGbmqKgoTktLe+TnlK5R0bx6as61x+VpNddauj+t5lpLmUrmmpy8enLXaI8ePXjOnDkOj33xxRfcrVs3See7uuyB6zi7k6KPOlJzbreU6SmdVKs+yuz8Too+qm4fVZrZVjupp/fRljI9pZOij/7H1X3Uo37mIzPTwoUL6cCBA/TDDz9Qr169JJ+7Z88estlsNH36dKdlmkwmCg4Oprq6Otq3bx8lJiYKZdd7+PAh2Ww2WedqkffBBx/Qe++9R4cPH6aoqCjN8sLDw6m0tJTOnTvX8PHCCy/QiBEj6Ny5c2SxWFTNIyKKjY2ly5cv08OHDxseKy8vp6CgIDIYDLLyWsusqamhdu0c/6h6eXkR0b/rryUJCQnNnqOoqChKTk6mc+fONfw+jUVHR9Px48cdHjt69Kjkn6skJ1MJtfKk/jlSI89ut1NpaSkFBQVpmidnrinJU2umVVdXU2Vl5WOfH6VrVDSPSN251lKeFnOttfvTYq61lqlkrsnJqyd3jcbGxjr876BE/z5HISEhwtcKTwZnd1L00ebU7qMtZXpKJ9WqjxI5v5Oij6rbR5VmtsVO6ul9tLVMT+ik6KNuxmXbnhqYP38+BwQEcF5eHt+4caPho6ampuGYGTNmPHInOi4ujidPnuyUzF9++YX37dvHlZWV/OOPP/LIkSO5V69efOvWrVbz0tLSOD8/n6uqqvj8+fOclpbGOp2Oc3NzH5lls9nYarWy1WrloKAgTk1NZavVyhUVFZLuTzRvzZo1bDAYeO/evQ7Px7179zTJa0r0W8FF865evcp+fn68cOFCvnTpEh86dIjNZjOvWLFCs8yMjAz28/PjXbt28ZUrVzg3N5d79+7NkyZNkpzZWNNXPJrmnTx5kvV6Pa9du5Z//fVXzsjIYG9vby4tLZWVJyVT6ToVzVu1ahXn5uZyZWUlX7hwgdeuXct6vZ6zsrI0yXv33Xf5yJEjXFlZyWfPnuUpU6awyWSS9HYxOXn15M410TwlM42Z+fXXX+e8vDyuqqrikydP8qhRo7hz58588+bNR+YpXaOieUrnmmheU6JzTTRPjbkmmql0ronmKV2jhYWFrNfreeXKlVxRUcHffPMNt2/fnnfs2NFwTFpaGs+YMcPhvPq59swzz/C0adPYarXK/nMPbYuzOyn6qLpzW05mU+7eSV3dR5md30nRR9Xto1Iy67WFTurpfVROZlPu3knRR927j3rU5iMRPfJjy5YtDcfEx8fzzJkzHc67ePEiE1HDX7ZaZ+bl5XG/fv3YaDRyp06deMaMGXz9+nVJebNnz+aQkBA2GAzcpUsXTkhIcLjupllVVVWPvL74+HhN8kJCQh6Zl5GRoUleU6IDUU5eQUEBDx06lI1GI4eGhvLKlSslv7VBTuaDBw84MzOTe/fuzSaTiS0WCy9YsEDykGqq6V/aj7rH3bt3c1hYGBsMBh4wYIDQD3WXk6l0nYrmLVu2jJ9++mk2mUwcGBjI0dHRnJ2dLStLSt6SJUu4R48ebDAYuGvXrjx27FguLi7WLI9Z2VwTzVMy05iZJ0+ezEFBQWwwGDg4OJgnT57s8FYOtdeoaJ7SuSbn/hoTnWty8pTONdFMpXNNNE/pGmVm/vbbbzkiIoKNRiOHh4fz119/7fD5mTNnNptZj1o3ISEhQrnQNjm7k6KPqju35WQ25e6d1NV9tD7DmZ0UfVTdPiolk7ntdFJP76Ny77Exd++k6KPu3Ud1/78YAAAAAAAAAAAAAFV51M98BAAAAAAAAAAAAPeBzUcAAAAAAAAAAADQBDYfAQAAAAAAAAAAQBPYfAQAAAAAAAAAAABNYPMRAAAAAAAAAAAANIHNRwAAAAAAAAAAANAENh8BAAAAAAAAAABAE9h8BAAAAAAAAAAAAE1g8xEAQAV2u51iYmJo4sSJDo/fuXOHLBYLLVu2zEVXBgAAAABPAvRRAHBXOmZmV18EAIAnKC8vp8GDB1NWVhYlJycTEdHLL79MJSUlVFRURAaDwcVXCAAAAACeDH0UANwRNh8BAFT06aefUmZmJpWVlVFhYSElJSVRUVERDRo0yNWXBgAAAABPAPRRAHA32HwEAFARM9PIkSPJy8uLSktLadGiRZSenu7qywIAAACAJwT6KAC4G2w+AgCo7OLFi9SvXz+KjIyk4uJi0uv1rr4kAAAAAHiCoI8CgDvBfzgDAKCyzZs3U/v27amqqoquXbvm6ssBAAAAgCcM+igAuBN85yMAgIoKCgooPj6ecnNzacWKFUREdOzYMdLpdC6+MgAAAAB4EqCPAoC7wXc+AgCopKamhmbNmkXz58+nESNG0KZNm6iwsJC++uorV18aAAAAADwB0EcBwB3hOx8BAFSyePFiysnJoZKSEmrfvj0REW3YsIFSU1OptLSUevbs6doLBAAAAACPhj4KAO4Im48AACrIz8+nhIQEysvLo7i4OIfPjRkzhurq6vB2FwAAAADQDPooALgrbD4CAAAAAAAAAACAJvAzHwEAAAAAAAAAAEAT2HwEAAAAAAAAAAAATWDzEQAAAAAAAAAAADSBzUcAAAAAAAAAAADQBDYfAQAAAAAAAAAAQBPYfAQAAAAAAAAAAABNYPMRAAAAAAAAAAAANIHNRwAAAAAAAAAAANAENh8BAAAAAAAAAABAE9h8BAAAAAAAAAAAAE1g8xEAAAAAAAAAAAA0gc1HAAAAAAAAAAAA0MT/AJ++VZp0SN2RAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdUE1kbBvAnQCD0Dgoq4AKKispa1oZi772sa0ex994/1LWsvfcCWBbXuvaCCCrqWrBhQVGxotJrCDXfH3HGhCSQQELz/Z3DUabdO5mQeXLvzB2OUCgUghBCCCGEEEIIIYQQQgghhBBS5miUdAUIIYQQQgghhBBCCCGEEEIIIYVDnX2EEEIIIYQQQgghhBBCCCGElFHU2UcIIYQQQgghhBBCCCGEEEJIGUWdfYQQQgghhBBCCCGEEEIIIYSUUdTZRwghhBBCCCGEEEIIIYQQQkgZRZ19hBBCCCGEEEIIIYQQQgghhJRR1NlHCCGEEEIIIYQQQgghhBBCSBlFnX2EEEIIIYQQQgghhBBCCCGElFHU2UcIIYQQQgghhBBCCCGEEEJIGUWdfYQQQgghhBBSCuXk5GDjxo1o2LAhjIyMwOFwwOFw0KNHDwBAcHAwOy04OFilZatz24QQQgghZRnlJEJIaUSdfYSUUuLBQdGfKVOmlHS1SQFatmzJHq927dopvJ6Hh4fS74fExESp7SQmJiIgIADLli1D9+7dYWNjwy7v4eGhuh0lhBBCygB5eUtLSwtmZmZwcHBA8+bNMXXqVBw/fhyZmZnFWr8//vgDU6ZMwb1795CSklKsZZcVlK0IIYSQkpeZmQl/f38MGTIE1atXh7m5ObhcLiwsLFCvXj2MHTsWV65cQW5ubklXlaiQn58fm3s0NTXx6dMnhdbz9fVVOodt2LBBajvZ2dl4+PAhdu7cCS8vL9SuXRtaWlrsOu/evVPtDhNSymmVdAUIIeRn8f79e1y7do39PTAwEFFRUbCxsSm2Ori5uVHYIYQQQgqQk5ODhIQEJCQk4N27d7hx4wY2bNgAS0tLTJo0CXPmzIGWlnq/St26dQtHjx4FAHTu3BlTpkyBtbU1OBwOjIyM1Fq2IhYtWoTFixcDAIRCYYnUgbIVIYQQUvJOnDiB6dOnyzwfxsXFIS4uDg8ePMCOHTvg7OyMdevWoXPnzsVf0QK8e/cODg4OAAAfHx8MGzasZCtUBvj5+bH/z83NxcGDBzFnzpxiK3/ZsmVYtGhRsZVHSGlHnX2ElAFjx47FuHHjClzOwsKiGGpDCuvAgQMQCoXQ0dFBTk4OsrOzcfDgQcyaNUup7YSFhSm0nKyGQPHGOGtrazRo0ABnz55VqnxCCCGkPMqbt1JTU5GQkIAnT54gMDAQV65cQUxMDBYuXIgzZ87g7NmzsLS0VFt9rly5AgDQ1NTE33//LfO87uHhobaONnVuW1UoWxFCCCEl688//8T//vc/9ve2bduiW7duqFGjBkxMTBAfH4+XL1/izJkzCAgIwKtXrzB//vxS2dmnjLKQk9Tt48eP7BCmBgYGSE1NxYEDB5Tu7Fu6dCm6d+9e4HIVK1aUmiZ+DHg8HurWrYuYmBi8efNGqToQUl5QZx8hZYCVlRVq1apV0tUgRXTgwAEAQJcuXZCeno7z58/jwIEDSjdIFeW9MGHCBDg4OKBhw4aoXLkyAIDD4RR6e4QQQkh5IS9vdezYEbNnz8bz588xaNAgPHz4EHfv3kXPnj1x9epVaGtrq6U+nz9/BiDqQCoNd/KVRpStCCGEkJLj4+PDdvRZWVnhyJEjaNGihdRybdq0wfjx4/H06VNMnToVMTExxV1VogbMRVdcLhdr1qzBmDFj8Pz5c9y/fx/169dXeDu2traFzmKNGzfGjh070LBhQ7i6ukJLSwvDhg2jzj7y06LOPkIIKQb//fcfXr16BQAYOHAgBAIBzp8/j6dPn+LBgwf49ddfi6UeM2bMKJZyCCGEkPKmRo0auHnzJpo2bYqHDx/i5s2b2Lp1K6ZOnaqW8jIyMgAAXC5XLdsv6yhbEUIIISXn8+fPmDBhAgBAX18f165dQ/Xq1fNdp1atWrh06RL+/vvv4qgiUTPmoquOHTti6NChmD17NpKSkrB//36lOvuKon379sVSDiFlhUZJV4AQoh5CoRDt27cHh8OBlpYWbt++LXfZTZs2sQ+v9fb2lrlMSkoK1q5di1atWqFChQrQ1taGkZER3NzcMHHiRNy8eVPu9nNycuDn54cuXbrAxsYGOjo6MDc3R7NmzbBu3Tqkp6fnuy+hoaEYMWIEnJ2doa+vDx6Ph8qVK6NevXoYP348Tp8+LXP4BIFAgE2bNsHDwwOWlpbgcrkwMzNDtWrV0LFjR6xbt67YnrGyf/9+AICpqSk6d+6MHj16wNDQUGIeIYQQQko3XV1dHDhwgL1za82aNcjKypK7/NevXzF//nzUr18fZmZm0NHRQeXKldGvXz92mM68mEzGPAPl/fv37DTmhxEcHMxOY4ZRkuf8+fMYNGgQqlatyuYpBwcH9O7dG76+vuDz+RLLy9u2r68vOBwO+7w+8TqL/6g7Y1G2IoQQQkrO+vXr2eywZMmSAjv6GBoaGhg0aJDc+SEhIRg8eDDs7e3B4/FgYmICNzc3LFiwoMA7Ar98+YJt27ahT58+cHJygr6+PnR0dGBra4vu3bvjn3/+QW5ursx1ORwO+7w+APD09JTKNuLPhisogw0bNgwcDgf29vYAgMTERPzvf/9DzZo1oa+vDxMTEzRv3hyHDh3Kd58YZ86cQYcOHWBpaQk9PT04Oztj5syZ+Pr1KwDA3t4eHA6n2J4zePfuXYSHhwMABg0aBB6Phz59+gAADh8+nG8+JoSokZAQUioFBQUJAQgBCL29vQu1jaioKKG5ubkQgLBq1arC5ORkqWWePn0q5PF4QgDC3377TZiVlSW1TEBAgNDCwoKtj7wfWd6/fy+sU6dOvus5OjoKX758KXP9devWCTU0NAosOyUlRWrfa9SoUeB606dPL8Qrq5yMjAyhmZmZEIBw1KhR7PShQ4cKAQitrKxkvu7iWrRoke/rXBTMdlu0aKHybRNCCCGlWWHzVrt27dj1bt68KXOZgwcPCvX19fPNISNGjJDKAAVlF/EsIF7/oKAgmfWIjY0Vtm7dusBt+vj4yH1txLft4+OjUB0jIyMVfj2VRdmKEEIIKTm5ublsG5G+vr7MtiZl5eTkCMePH59vtjA2NhZevnxZ5vrZ2dkKtR21bdtWqv1IKFQsf4lnxYIyGJNJ7OzshOHh4UJ7e3u52x0/fny+r824cePkrluhQgXhgwcPhHZ2dkIAwqFDhyrzshcac6yMjY2F6enpQqFQ8jU5depUvuuL58m8GbSomNde3XmUkNKI7uwjpByrWLEi9uzZAwB4+/YtJk2aJDE/IyMDAwYMgEAggL6+Pg4ePAgtLcnRfYOCgtCxY0fExsZCU1MTw4YNw8mTJxEaGoqbN29i9+7d6NWrl8whpuLi4tCsWTM8fvwYOjo6mDBhAo4ePYp79+4hKCgIc+fOhZ6eHl6/fo2OHTsiKSlJYv0nT55gxowZyM3NhYODA9auXYvAwEA8fPgQ169fx+7duzFgwADo6+tLlT1x4kQ8f/4cgOgqoxMnTuC///7DvXv3cPr0afzvf/9DnTp1ivT6Kurs2bOIj49n68Jg/h8dHY2LFy8WS10IIYQQUnRt2rRh/3/jxg2p+UeOHMHgwYORlpaGqlWrYt26dbh48SJCQ0Nx/PhxdOrUCQCwd+9eqefLhYWFISwsDN27dwcA2NjYsNOYH0Xx+Xy0bNkSgYGBAIB69eph586duHnzJu7fv4+TJ09i6tSpsLGxUXibPXr0QFhYGMaOHStVZ/EfW1tbhbepLMpWhBBCSMl59uwZYmNjAQDu7u7snfVFMWfOHGzduhUA4ODggB07duDu3bsICgrC1KlTweVykZSUhC5duuDx48dS6wu/j/bUqlUrrF69ms1dwcHB2LdvHxo3bgwACAgIwPjx46XWDwsLw6VLl9jfly5dKpVtxo0bp/R+8fl8dO3aFXFxcViwYAGCg4Nx//597N69G5UqVQIAbN26VaJscatWrcK2bdsAAJUrV8bWrVtx584dXL9+HfPnz0dSUhL69OkjNUKDOmVlZeHw4cMAgN69e4PH4wEAWrRowT6/mEZZIKRk0DP7CCkDoqOj8fTp0wKXq1atmlSnW48ePeDl5YU9e/bA19cXnTt3Zm+tnzdvHp48eQIA2LBhAxwdHSXWFQgEGDRoELKzs6Gnp4dz587Bw8NDYpkmTZrAy8sLHz9+lKrPpEmT8PHjR9jZ2SEoKEhiSAQA8PDwQN++feHu7o63b99i1apVWLZsGTv/2LFjyM3Nhb6+Pm7fvg1ra2uJ9d3d3eHl5YWkpCTo6elJ1Pv06dMAgOnTp2PNmjVSdevatSsWL17MNhSpExNy7O3t0axZM3Z6q1atYGNjg6ioKOzfvx9dunRRaHuKvBdMTU3V2shGCCGE/MzEnwfHPDeOERsbi1GjRkEoFGL48OHYuXOnxMVUv/76K3r16oX58+dj+fLl2LhxI0aPHo1q1aoBED3PBgBMTEwAiJ7Zx0xT1oIFC9jOwfHjx2Pz5s0Sw4DWq1cPPXr0wF9//YWEhASFtmliYgITExNYWVmx0wpbv8KibEUIIYSUHPHOtnr16hV5e2FhYVi7di0AUaa4ceMGm4MAUdtRu3bt0LlzZ2RmZmLUqFG4c+eOxDY0NTXx8uVLqXYtQNQJ5enpCW9vbyxZsgQHDhzAggUL4OTkxC5Tq1YtGBgYsL/b2tqqJN/ExMQgMzMTt2/fRs2aNdnp9erVg4eHB1xdXSEQCLBt2zap5899/fqVfdSOo6Mjbt++DQsLC3a+u7s7OnXqhJYtWyIzM7PIdVXUuXPnEBcXB0DyoisOh4MBAwZg5cqVOHv2LBISEmBqalrg9j5//qxQFivuvElIWUR39hFSBmzfvh2urq4F/nz+/Fnm+hs2bGBDzOjRo/H582dcuXIF69evB/CjQzCv/fv3IyoqCgCwfPlyqY4+cczVO4x3797hn3/+AQBs2bJFqqOP4ebmxl5V5evrKzGPGXvc2dlZqqNPnLGxMTQ0fnycxcfHs+ODN2/eXO56AGBmZpbv/KKKi4vD+fPnAQADBgyQaGDT0NDAgAEDAIjGX09MTFRom4q8F+bPn6/yfSGEEEKIiLm5Ofv/vJ1k27dvR1JSEmxtbbFt2zapURMYixcvhq2tLXJzc9Vy9XNiYiJ27twJQNSgtHHjRokcIk5bWzvfrFWaULYihBBCShbT0QNA4uKfwtq+fTv7LL09e/ZIdPQxOnTogOHDhwMQPS/u3r17EvM5HI7Mjj5x//vf/2BhYQGhUMheIF4c/vzzT4mOPoajoyN69OgBQPSswrz8/PwgEAgAiNr1xDv6GE2aNJF5p6I6Mbm1UqVKUu2EgwcPBiAaSYxpEyzIggULFMpihJCCUWcfIT8B8SE64+PjMWDAAAwbNgxCoRAVK1bE7t27Za539uxZdv2RI0cqVea5c+eQk5MDPT09dOzYMd9lmQ65qKgofPjwgZ1esWJFAMDz589x9+5dhcs2NzeHtrY2AODAgQPIzs5Wqu6q5O/vz3Y8ynoINTNNIBDg6NGjxVo3QgghhBSO+JXfKSkpEvOYxqMuXbpAR0dH7ja0tLTYIaVu376t8jpevXqVHdJp0qRJ0NTUVHkZJYGyFSGEEFKyxLOPrMeqKOvKlSsAgJo1a+K3336Tu5x4uxSzjjy5ubmIiorCy5cv8fTpUzx9+hQvXrxgh86UNRSoOjB3u8nD3BkZHx8vdZESs48WFhb5tqsNGTKk6BVVUHx8PM6dOwdA+qIrQHQM69atC0DUHkcIKV7U2UdIGeDt7Q2hUFjgj729vdxtNGzYkL39//r16/j8+TM4HA58fHxkXh0EAA8fPgQgCh/iw2Qq4v79+wBE45NraWmBw+HI/REfYom5mw8A/vjjD3C5XGRkZKBp06bo2rUrduzYgadPn7Ljscuio6OD33//HYBoKFBHR0fMmjUL58+fV/gKb1Xx8/MDIBqyy8XFRWp+nTp12KEIFL2qX5H3Qt67JAkhhBCiOuKNXEZGRuz/c3Jy8OjRIwDAzp07880/HA4Hx44dAyCZf1SFyXGAaJin8oKyFSGEEFKyxJ/Rl5aWVqRtZWRkICIiAgDy7egDRCNDMY+ukTXso1AoxMGDB9GyZUsYGBjA1tYW1atXl7g7jMlpzDMH1c3CwkJiRIi8xEebynsBGbOPdevWlRjNKi9XV1f2gnd18/f3Z4cMlXXRlfj0W7du4c2bNwVu08fHR6EsRggpGHX2EfITmTt3LqpWrcr+7uXlJTUmuDgm/DB32CkjOjpa+QoCEg8Vrl69Ovz9/WFqaors7GycPXsWY8eOhaurK6ysrDB48GDcuHFD5na2bNmCrl27AgDev3+P1atXo3PnzjA3N0eDBg2wevVqJCUlFaqOinrx4gXb6SkvBAE/hjm4efMmIiMj1VonQgghhBSdeAOReCNNfHx8oUYUEM8/qiJex8JkudKIshUhhBBS8sQ7r759+1akbYkPh17QkKBcLpctOz4+XmKeQCBA586dMXjwYAQHByM9PT3fbRU0X1UKunBevBMvJydHYh7z2lhaWua7DU1NTbU/oobBXEhVu3ZtuUNrDhgwgB1RQh1D1RNC5JP9AAlCSLl07tw5vH37lv09JCQE6enp0NXVVXlZTEixsLBAUFCQwuvlfbZf79690aZNG/zzzz+4dOkSbty4gZiYGMTGxuLgwYM4ePAghg4din379kmEJCMjI5w+fRp3797FkSNHEBwcjEePHiEnJwf379/H/fv3sWbNGvz777/sEFqqJh5qpk2bhmnTpuW7vFAoxP79+9k7MAkhhBBSOonfNVetWjX2/+KNNF5eXpg8ebJC2yuuq7HLOspWhBBCSMmrU6cO+/8HDx6obLvyni2siGXLluHChQsAgBYtWmD8+PH49ddfUaFCBejq6rLtRc2bN8eNGzfoTrFCePnyJfuInSdPnih0vA4ePIhFixYV6dgSQhRHnX2E/CS+ffsGLy8vAKKOsOTkZLx48QIzZ87Eli1bZK5jYWGBT58+4cuXL0qXx1xtlZKSAhcXlyI9J8bY2BijRo3CqFGjAIiu6j516hQ2b96MqKgo+Pn5wc3NTWaDWsOGDdGwYUO2LsHBwfD19cWJEycQHR2N3r17482bNyrv8MzNzcWhQ4eUXu/AgQPUIEUIIYSUcgEBAez/mzVrxv5f/KpqoVDIDidZEsSHaf/y5YvUBVVlDWUrQgghpHSoWbMmLCwsEBsbixs3biA5OVliWHNlmJqasv8v6C7B7OxsxMXFAZDOXHv27AEgGrr86tWrcoe9zHtHYGlmamqKr1+/IiYmJt/lcnJyJO6QVJfC3KX39u1bhISElKsh5Qkpzaizj5CfxPDhwxETEwMNDQ2cPXsWGzduxPHjx7F161Z06dIFHTp0kFrn119/xadPn3D//n3w+Xylntvn5uaGv//+GxkZGbh//36BY68rw8XFBS4uLhg4cCBcXFyQlpaGI0eOFHj1vKGhIbp27YquXbti8uTJ2LRpE758+YKQkBC0bdtWZfUDgKCgIHz8+BEAMHHiRDRp0iTf5e/cuYMNGzbgzZs3uHnzJpo2barS+hBCCCFENZ4+fYrAwEAAQOXKlVG/fn12nra2NmrWrIlnz57h5s2bJVVFAKIcx7h+/brKO/uK+wptylaEEEJI6cDhcDB06FCsXbsWaWlp2LNnT4F328ujo6MDJycnRERE4M6dO/ku+/DhQ2RlZQGAxAVV8fHx7POP+/btK7ejLzU1FS9fvpS7/dJ291nNmjXx9etXPHr0CLm5uXL3KywsDBkZGWqtC/M8REA0hOfcuXMLXH748OEQCATYv38/dfYRUkyos4+Qn8C2bdtw/vx5AMDs2bPh7u6OmjVr4r///sPnz5/h6emJsLAwiSvAAaBr1644ffo0+Hw+du3ahSlTpihcZteuXTFr1iwIhUJs2LAB/v7+qtwlAKIGNmdnZzx8+FDphyu3bt0amzZtAqCeBzMzVzxpampiwYIFBY4936ZNG2zZsgXZ2dnYv38/NUgRQgghpVB6ejqGDBnCDv00Y8YMaGlJfqXq1q0bnj17hvDwcFy6dCnf5yOrU8uWLaGvr4+0tDRs3rwZgwYNKtJIC3nxeDz2/xkZGdDR0VHZtmWhbEUIIYSUHlOnTsX27dvB5/Pxv//9D506dUL16tULXC83Nxf+/v4YOHAgO61NmzaIiIjAs2fPcPfuXXZ0pryYu/eYdRjiz0tOS0uTW/aePXvyfbZy3mxT0lq3bo3AwEDExsbiwoUL6Ny5s8zliuO5eMHBwfjw4QMAYMiQIejfv3+B6/zzzz84deoUjh49is2bN0u8voQQ9ZB9SQAhpNx4+fIlZs6cCQCoV68eFi9eDEA05IGvry84HA6+fv3KDpEpbtCgQbC1tQUAzJ8/H9euXZNbzqdPnyR+r1atGvr27QsAOHz4MNatW5dvPSMjI6U6BP/9918kJibKXefjx48IDw8HIPmsv7dv3+ZbVwC4fPky+/+8V7oHBweDw+GAw+Fg2LBh+W5HlrS0NJw4cQKAaAiJghqjANFQWy1atAAAHDlypFQES0IIIYT88Pz5czRr1ox9Xl+LFi0wduxYqeUmT54MAwMDAICnpyeePXuW73bPnTuHJ0+eqLy+JiYmGD16NAAgNDQUU6ZMkft8mqysLERHRyu1/YoVK7L/f/PmTb7LUrYihBBCyhdbW1v2kTBpaWlo0aJFge0wz58/R4cOHbB69WqJ6WPHjmXvWhs1ahSSk5Ol1r18+TL27t0LQPS4lgYNGrDzLC0tYWJiAgDw9/eXec6/d+8eFi5cmG/9zM3N2ecoF5RtisPQoUPZi6mmTJki80L127dvY+vWrQVuy97ens1ihSHeodi7d2+F1unTpw8AICkpCadOnSpUuYQQ5dCdfYSUAdHR0Xj69GmBy+nq6uKXX35hf8/KysLAgQPB5/Ohq6uLgwcPgsvlsvPbtGmDyZMnY8OGDTh58iT27duH4cOHs/N5PB4OHDiAdu3agc/no02bNhg8eDB69OiBSpUqISMjA+Hh4Th//jxOnz4tFai2b9+O+/fv4+3bt5g+fTpOnTqFIUOGoGbNmtDR0UFcXBweP36Mixcv4urVq+jZsyf++OMPdv0NGzZg4MCB6Ny5M1q1agUXFxcYGxsjISEB9+/fx+bNm5Geng4AGDNmDLvehw8f0LJlS9SoUQM9e/ZE/fr12U7Ljx8/4p9//sGRI0cAAHXr1lXpEKMAcOLECaSmpgJQPAQxywYGBiIxMRGnT59mO0vzUuS9AAB2dnYwNDSUmPbo0SM8evRI5vJfv36Fr6+vxLQ+ffqwDZaEEEJIeZY3b6WlpSEhIQFPnjxBYGAgAgIC2M6yRo0a4dixYxK5imFtbQ0/Pz/06dMHX758Qf369TFs2DB07NgRlSpVQlZWFj59+oS7d+/i2LFjePv2Lc6cOYPatWurfJ/+/PNPBAQEICwsDFu2bMHt27cxevRouLq6QltbG58+fcKNGzfg7++PpUuXKtURJz6M5tSpUzF//nxUrFiRbUSyt7eXuuuxsChbEUIIIaWPp6cnPn36hP/973+Ijo6Gh4cH2rVrh+7du8PFxQUmJiaIj4/Hq1evcO7cOVy8eBE5OTmoU6eOxHZcXV0xffp0rF69Go8fP8avv/6K2bNnw83NDWlpaThz5gw2bdqEnJwcaGtrY+fOnRLra2hoYODAgdi6dSuePHmCZs2aYdq0aXByckJSUhLOnz+Pbdu2wcDAADY2Nnj16pXM/dHS0kKDBg1w8+ZN7Nu3D25ubqhbty6b98zMzCSeFahuNjY28Pb2xrx58/D69WvUq1cPc+bMQf369ZGRkYFLly5h7dq1sLGxQVpaGmJiYtQyFCmfz8fx48cBiG4isLe3V2i9rl27QltbG5mZmdi/fz9+//13mct9/vxZoSxmZGSEKlWqSExLTU3FsWPHJKa9fv2a/f+xY8ckRjGrW7cu6tatq1D9CSmThISQUikoKEgIQKmfOnXqSGxj7ty57LytW7fKLEcgEAhr1aolBCA0MDAQvnnzRmqZixcvCk1NTQssX5YvX74I3d3dFaq/p6enxLotWrQocB0NDQ3hn3/+WajXrnr16sK3b9/m+9oPHTo0n6MkW5s2bYQAhBwOR/j582eF1/v69atQQ0NDCEDYpUsXpV+LvD8nT56UKsPb21upbURGRiq9/4QQQkhZoWzesrS0FC5btkyYlZVV4LZPnz4tNDMzUyjLXL16VWr9oUOHCgEI7ezsFKp/UFCQzGViYmKEzZs3L7AePj4+Sm+7X79+CmUIylaUrQghhJRfx48fF9rb2yt0HqxZs6bw0qVLUtvIyckRjhs3Lt91jY2NZa4rFAqFiYmJwrp168pd18zMTHjt2jX2/N+iRQuZ2zl79qyQw+HI3Ia3tze7XEE5SZEcJxQKhT4+PvlmhNzcXOHo0aPl7peFhYXw3r17wsqVKwsBCMeMGSOzHDs7O3YdZR08eJBdd8WKFUqt26lTJyEAoZaWlvDr16/sdPH9VvSne/fuUtuPjIxUahvix5CQ8oiG8SSknAoJCcHKlSsBAJ06dcK4ceNkLqejo4NDhw5BR0cHqampGDRoEHJyciSWad++Pd6+fYvly5ejSZMmMDc3h6amJoyMjPDrr79iypQpuHv3rsztV6hQAdevX8fZs2cxcOBAVK1aFXp6euByubC0tESTJk0wffp0XLt2Dfv27ZNY19/fH7t27cKAAQNQt25dVKhQAVpaWjAwMEDNmjUxduxYPHz4EAsWLJBYz93dHcHBwZg7dy5atmwJR0dHGBoagsvlwtraGu3atcOOHTvw6NEjqSE8i+rz58+4evUqAKBx48awsbFReF1ra2v2eTIXL15ETEyMSutGCCGEEMVoaGjA2NgYVapUgbu7O6ZMmYLjx4/j06dPmDdvnkJ3rHXt2hWRkZFYs2YNWrVqBWtra3C5XOjq6sLBwQFdunTBunXr8O7dO7Rs2VJt+2JhYYFr167hxIkT6NOnDypVqgQdHR3weDxUrVoVffv2xaFDhyRGV1DUwYMHsWrVKjRs2BDGxsbsEFyqRNmKEEIIKd169eqFly9f4tChQxg0aBCqVasGU1NTaGlpwczMDL/++ivGjRuHq1evIiwsDO3atZPahoaGBrZu3Yrr169j4MCBqFKlCnR0dGBkZIS6deti3rx5iIiIkLkuABgbG+PmzZv4888/4erqCh6PBwMDA7i4uGDGjBl4/PgxmjdvXuC+dO7cGYGBgejevTtsbGxkjuJQnDgcDnbs2IFTp06hXbt2MDMzA4/Hg6OjIyZNmoSHDx+ifv367NCnxsbGKq9DYYbwzLt8dnY2/v77b5XWixAijSMUynlwAyGEEEIIIYQQQgghhBBCSqVPnz6hcuXKAIA9e/ZgxIgRJVwjQkhJoTv7CCGEEEIIIYQQQgghhJAyxt/fn/1/o0aNSrAmhJCSRnf2EUIIIYQQQgghhBBCCCGlSFpaGpKTk1GxYkWZ8x8+fIgWLVogJSUF9erVw/3794u5hoSQ0qTgh00QQgghhBBCCCGEEEIIIaTYxMTEwMXFBT169ECHDh1QrVo16OjoICoqChcvXsTevXuRnp4ODoeDdevWlXR1CSEljO7sI4QQQgghhBBCCCGEEEJKkXfv3sHBwSHfZbS1tbF7924MGTKkmGpFCCmtqLOPEEIIIYQQQgghhBBCCClFsrKycPLkSVy8eBH37t1DTEwM4uPjoaenB3t7e7Rp0wYTJ06EnZ1dSVeVEFIKUGcfIYQQQgghhBBCCCGEEEIIIWXUT/fMvtzcXERFRcHQ0BAcDqekq0MIIYSQIhAKhUhJSYGNjQ00NDRKujo/PcpZhBBCSPlBOat0oZxFCCGElA/qylg/XWdfVFQUKleuXNLVIIQQQogKffz4EZUqVSrpavz0KGcRQggh5Q/lrNKBchYhhBBSvqg6Y/10nX2GhoYARC+kkZGR2sr5/fff8c8//6ht+8VZDpVBZVAZVEZZKaO4yqEySk8ZycnJqFy5Mnt+JyWrPOUsKqP0lUNlUBlUBpVBZRRvOZSzShfKWVQGlVE6yqEyqAwqg8ooKnVlrJ+us48Z6sDIyEit4YjL5ap1+8VZDpVBZVAZVEZZKaO4yqEySlcZAGgoo1KiPOUsKqP0lUNlUBlUBpVBZZRMOZSzSgfKWVQGlVE6yqEyqAwqg8pQFVVnLBp0nRBCCCGEEEIIIYQQQgghhJAyijr7CCGEEEIIIYQQQgghhBBCCCmjqLOPEEIIIYQQQgghhBBCCCGEkDKKOvsIIYQQQgghhBBCCCGEEEIIKaOos48QQgghhBBCCCGEEEIIIYSQMoo6+wghhBBCCCGEEEIIIYQQQggpo6izjxBCCCGEEEIIIYQQQgghhJAySqukK1DWZGVlIScnp8DlzM3NIRAI1F6f4iiHyqAyqAwqo6yUUVzlUBmlp4zMzEzY2dkhMzOzWN5fPztNTU1wuVy1bFsoFCIrKwu5ubkFLlse3rvlqYziKofKoDKoDCqDyijecihnFS915ixF27KA8vM3QmX8fGUUVzlUBpVBZVAZRaVIxipMLuAIhUKhKipYViQnJ8PY2BhJSUkwMjJSar3Y2FhkZGQotHx0dDSsrKwKW02FFUc5VAaVQWVQGWWljOIqh8ooPWXk5ubi48ePqFy5MjQ0aMCC4qCjowMLCwuZOaowOSszMxPR0dHg8/kKN0KVh/dueSqjuMqhMqgMKoPKoDKKtxzKWcVP1TlL2bYsoPz8jVAZP18ZxVUOlUFlUBlURlEpmrHyywWy0J19CkhOTsbnz59hYGAACwsLcLlccDicfNfhcDiwt7dXe92Koxwqg8qgMqiMslJGcZVDZZSeMnJycpCeng57e3toamqqrRzy4867pKQkfP78GQCUunBKFj6fj48fP0JTUxOmpqbQ1dWFpqZmqchZVEbpK4fKoDKoDCqDyijecihnFR915KzCtGUB5edvhMr4+coornKoDCqDyqAyiqqgjFXYXECdfQqIjY2FgYEBKlWqpFAwAkS3WfJ4PDXXrHjKoTKoDCqDyigrZRRXOVRG6SmDuROMx+NRI1Qx0NXVhaGhIT59+oTY2NgiN0LFxsaCy+XCzs5OqeNXHt675amM4iqHyqAyqAwqg8oo3nIoZxUvdeQsZduygPLzN0Jl/HxlFFc5VAaVQWVQGUWlSMYqTC6gcRgKkJWVhYyMDBgbGysVjgghhBBCyiMOhwNjY2NkZGQgKyur0NvJzs5GWloazMzMqAGREEIIIQSqy1nUlkUIIYSUfcrmAursKwDTy6quhyQTQgghhJQ1TC5S9Bl7smRnZwMQjUFPCCGEEEJEVJGzqC2LEEIIKR+UyQXU2acguhKKEEIIIURElbmIMhYhhBBCyA+UswghhBDCUOZcTp19hBBCCCGEEEIIIYQQQgghhJRR1NlHCCGEEEIIIYQQQgghhBBCSBlFnX2EEEIIIYQQQgghhBBCCCGElFFaJV2BcmFRT6lJTsVUdKHLWXRSldUghBBCCFGPEspZRSqDchYhhBBCyoKylrMoYxFCCCFy0Z19RCXs7e3B4XAU/lm0aFFJV5kQUgQcDgf29vZS0729vcHhcODq6orMzEyZ6wqFQrRu3RocDgcjRoxQqlzms+bdu3cK14kQQsoyyliE/FwoYxFCSPGhnEXIz4VyFinv6M4+olJNmzaFo6Oj3PkXL17Et2/firFGhJDitGDBApw+fRqPHj2Ct7c3VqxYIbXM5s2bcfXqVdjZ2WH9+vUlUEtCCCl7KGMR8nOjjEUIIepDOYuQnxvlLFJeUGcfUSkvLy8MGzZM7nwPDw8KSISUY1wuF/v370f9+vWxevVqdO/eHY0aNWLnR0REYO7cueBwONi3bx+MjIxKsLaEEFJ2UMYi5OdWUMZ69+4dZSxCCCkkylmE/NwoZ5HygobxJIQQolKurq5YtGgRcnJyMHToUKSnpwMA+zufz8f48ePRqlWrEq4pIYQQQkjZkV/Gmj17NmUsQgghhJBCopxFygPq7COlSnBwcIFjpMsSHh4OT09P2NnZQUdHB2ZmZmjdujWOHDkic/lFixbJHW/d19cXHA5H5lVd7969kzuWckxMDPbv349OnTrBwcEBurq6MDIyQv369bFy5UoIBIJ8933YsGH57res+jDr+Pr65rttRTH77uzsjObNm8tdrm3btmy98pZdUJ2Y17Bly5Yy5ytzLHNzc9G/f39wOBwMGDAAubm5EvM3bdok8zjn5uZiwIAB4HA4+OOPP6TWA4DQ0FAMHDgQVapUYevRvn17nD9/Xu7rkp2djX379qFNmzawsLCAjo4OKlWqhDZt2mDz5s3scso8E0D8uHt4eEjNNzQ0RPXq1TF16lR8+PBBqk4xMTHYtGlTod+XhTVr1iw0bNgQr169wrx58wAAe/bswe3bt+Ho6IiVK1fKXff58+fo27cvLCwsoKuri1q1amHNmjXIyclRS10JIeRnUNYz1qZNm+Dl5VXmMxaTWeRRRcaS98wPVWasRYsWwdnZmTJWKclYq1evxsOHDyljEUJICSnrOau8tGVRzqKcVVSUs0hZR8N4klLJ2toaHTp0kJjm5+cnc9lz586hT58+EAgEqFatGnr16oXo6Ghcu3YNV69exaVLl7B371611/nSpUtYunQpbG1t4ejoiEaNGiEmJgZ37tzBnDlzcOrUKQQFBUFHRyff7eQdK/7169e4efOmuqsv5caNG3j06BHq1q0rMf3Zs2e4cuWKWspU9lhqaGjgwIEDSEtLg7+/P4yMjLBjx44Cyxk7diz8/f3RpUsXHDhwABoaktc9bNy4EdOmTUNubi7q1q2L3377DV+/fkVwcDAuX76MxYsX43//+5/EOklJSejSpQtCQkLA5XLRpEkT2NjY4OvXr3jy5AkCAwMxceJEAMDQoUMl1k1NTcXx48ehr6+PPn36SMxr1qyZVP3bt2+PChUqAAASExNx48YNbNiwAYcOHcKTJ0/YeYDofTl58uQC35eqpqmpCT8/P7i5uWHjxo1wcnLCpk2boKGhAT8/P+jp6clcLyQkBB06dEBaWhqqVq2Ktm3bIjY2FvPmzcN///2n8noSQsjPpqxmrMmTJ8Pa2hrVq1cv8xnr/v37lLF+ooxV0PtSWbIylre3N2UsQggpBcpqzipPbVmUsyhnFQXlLFLWlXhn3+fPnzF79mxcuHABfD4fjo6O8PHxQf369WUu/+XLF0yfPh3379/H69evMWnSJGzYsKF4K03UhrnawcXFRepqGlkB6du3bxg4cCAEAgGWLl2KefPmsVdM3b9/H+3atcO+ffvQqFEjeHh4qLXu9erVw5EjR9C3b1+J6QkJCejfvz8uX76MTZs2YebMmTLXZ67IyTtWvK+vb7EHpIYNGyI0NBSbNm3Cvn37JOZt2rQJmpqacHd3R3BwsMrKVOZYjhw5kl2Py+Xi6NGj6NSpE3bu3AkjIyOsWrVKbjkzZ87Erl270KpVKxw9ehRaWpIfg5cuXcLUqVNhbm6O48ePS9zhGBYWhk6dOsHb2xstWrRAixYt2HnDhw9HSEgI3NzccOLECYmrvbKzs3Hu3Dn297zv7Xfv3uH48eOwsLCQeRVZRESExO9z5syReD+npaWhRYsWCA0NxbFjxzBhwgR2Xr169XD79m2JscYB6fdljx495L1khVa9enUsX74c06ZNw/jx4wGIXv8mTZrIXF4gEGDAgAFIS0vDlClTsGbNGmhqagIAnjx5gtatWyM2Nlbl9SSkvKKMRcSpM2OJn5fVgTmXmZubw8nJiZ1eFjNWixYtEBISQhmrlGSsvNSRseS9L4tCVsby8vKijEVIMaKcRcRRWxblLMpZkvNkoZxFiPqV6DCeCQkJaNq0KbhcLi5cuIDnz59j7dq1MDU1lbtORkYGLC0tsWDBAtSpU6cYa0uKQ1ZWFgDRSU8Ru3fvRlJSEurVq4f58+dLDI1Qv359zJ8/H4Dolmt1c3FxkbpyCABMTU3Z296PHj0qd33mFnRF912dbG1t0a1bN/j7+0uckOLj43Hw4EF069YNdnZ2Ki2zKMeSx+Ph9OnT+O2337B69WosW7ZMZhlLly7FmjVr0KhRI5w6dQo8Hk9qGW9vbwiFQuzYsUNqKFNXV1esW7cOACSGMnj8+DFOnDgBHo+HM2fOSA3roKWlhe7duyv2QhSCvr4+GjduDABSwzi4uLhIhSNA8fdlUY0bNw7GxsYAACsrK/z5559ylz1+/Dg+fvyIypUrY9WqVWw4AoDatWuz7wFCSMEoY5G8ynrGKsq5rDRlLHt7e7Rq1YoyloIZ68WLF5Sx5BDPWDY2NpgyZYrcZSljEaJalLNIXmU9Z5WXtizKWZSzVIVyFimrSvTOvpUrV6Jy5crw8fFhpzk4OOS7jr29PTZu3AgAUldpkLKPefipordhM1fj5L2VnDFixAjMmDEDERER+Pbtm8TV4OqQk5ODwMBA3Lp1C1++fEF6ejqEQiGEQiEA4OXLl3LXTUtLAwC5t4QXt0mTJuHkyZPYtWsXO0717t27wefzMWnSJJWNrc5Q5lhGRUXBxsZGYr6BgQEuXLiAX375BQsWLGBPyozNmzdj4cKFMDU1xfnz52FgYCBVRmxsLO7evQtdXV107dpVZj2Yq5Bu3brFTrt48SIAoHPnzrC1tVVof1UlKSkJFy5cwP79+6Gnpyez3jk5OQgODi7U+7Koli1bhqSkJABgh7Fo166dzGWZ90C/fv1kflEYOnQopk6dqra6ElKeUMYieakzY0VFRamkjvnJycnBrVu3cPjw4TKfsYYMGYKAgADKWHnIylg3btwAQBlLFvGMFRUVhbt376JmzZoyl6WMRYhqUc4ieVFbFuUsylnKoZxFiHqUaGff6dOn0b59e/Tt2xfXrl2Dra0txo0bp9KhgDIyMpCRkcH+npycDAD4559/FDoRaWtrw8HBAQkJCdDW1pa5jLlqqlqs4uLiFF62OB8kytQrvyvixH3+/BmA/GBtYmICMzMzxMfH4+vXr6qppBwRERHo1q2b1JCL4pj3nyzMvpibK/+O8vT0hKenJwDR+NKmpqZwc3ODl5cX+vXrp/T2AFEQqF27NrZv345Zs2YBALZu3YratWvDw8OjwIAkXidFKHMsP336JBWQANE46QkJCQBEnZXVq1cHAPz777948uQJANFVmOfPn8fAgQOl1o+MjIRQKER6enqBIT0mJob9//v37wGALU/dWrZsKTWtXr168PHxkXr9IiIi0LNnTzx79kzu9vJ7XxbF/fv3sWLFCnC5XIwaNQpbt26Fl5cXwsLCpAIsAHz69AmA/PeAqakpjI2N2cBFCJGvODIWIMpZmZmZ7O/M58mjR49kfhEVJxQKoaWlBT6fn2/W0FdNVYsV0+hREOaLanFQZ8b69OmTwtstjKKey0pbxvrtt9/KfMZi7kpRd8ZiOpIpY0mSlbHmz5+PXr16UcYipBhQzio5imYsoPzkLGrLUg7lLMpZRUU5i5RlJdrZ9/btW2zfvh3Tpk3DvHnzcO/ePUyaNAna2tpyr4hQ1ooVK7B48WKp6aNGjVJofTs7uwIfkloWO/siIyOVWj48PFziNuS8srOzAYjGqs4vIDBXO8XFxUksx+fzERERwZ7EeDye3O2IT2eCb1RUlNzlmVvBBQIBuwwTxPLWg9kHQHTSyDuP+QDPzs6Wmte1a1dERESgZcuW8PLygqOjIwwMDMDlcpGZmYlatWpJ1V+8jm/evJG5j3nrw7xWzDQA+PXXX9mhCDIyMvD27VsEBAQgICAAt27dYseYLghTFrN//fv3x7x587Bt2zYAwMePHzF69GhERESwZec95rLqJI7P5+PSpUvIzc0t9LH88OGDVIj+9u0bJkyYAD09PezcuROzZs3CixcvAIiG2bSxscFff/2FMWPGYPz48bCzs4O1tbXENphOO319fbl3n4ljjgdzwo6Pj8/3/S9Pfu8r4MffB/P34+7uDgsLCwCi93V4eDhCQ0PRr18/7NixQyI8du3aFS9fvizwfSn+vlKUvPoCouP5xx9/IDs7G5MnT8a4ceNw9+5d3Lt3D15eXli+fLnUOswXt+jo6ALfA5GRkexQKXnrVJh9URaVUXrKKM4v8WVJcWQsAHKHmxF/DoQ8TMaS9bcsTvaTb0o35vyjiFevXkkM95NXWchYHz58gI6ODiIiItSWsV6+fInmzZtj9OjRastYwI/XS10ZKzk5GXw+X60ZK++5UB0Z69GjRwDUm7GAH8OiqStjAaLXTZ0ZK29+V4SyGSs0NBT//fcfZayfrIziKIdylmyUs0qOMhkLKB85i9qyCkY5i3IW5SzFUBmlpwx1ZawS7ezLzc1F/fr12T8UNzc3PH36FDt27FBZQJo7dy6mTZvG/p6cnIzKlStjsGsltHeyzmdNEW1za1joacPWkAdtzRJ9xKFKmfK4SBBkwZTHhQlP/rjaqZnZiOFnwtLSMt+rdJgHw1pbW+c7vICuri4A0RU/4stFRETAycmJPUG7u7vL3Y74dAcHB7x9+xYCgUDm8klJSUhMTAQgCrvMMsy+5K0Hsw8AYGRkJDWPuR1bS0tLYl54eDhevnwJc3NzXL58WepBueJXosiq57Nnz5Camgpra2upsbXz1od5rZhpADBx4kSJByEDwM6dOzFmzBjs2bMHq1evVmj8dKYsZv+mTp2KdevWseNgm5ubY9q0adDV1WXLznvM86sTIHqAr4ODAzQ0NAp9LBs3biw1xMDkyZORlJSEbdu2YdCgQWjYsCGaNGmCuLg4WFtbIzg4GE5OTkhJScH48eOxYsUKiQcNA6JgBAAaGho4duwYNDQK/puPiIiAq6srANGJvTDDa8h7X4mX4eTkxP79LFmyROoh3d7e3liyZAlWr16Ns2fPAvjxvrSysirwfamnp6d03eXVFxA9PPr169eoV68e1qxZAy0tLaxcuRLdunXDsWPHMGLECHTo0EFiHWdnZ9y4cQN8Pl/mdhMTE5GSkgJA9H7JO548U6fC7IuyxP8OqYySLSMnJwcPHz5U2/bLquLIWIDob525Yhb4kbN2damLejYm+a4rNLaElgEPlU31oaNVfjIWALhYGha4jCArB5GJfNja2rLnH1nKQsZq3Lgx+9mtroxlZWWFHTt2wMXFRWI9VWYs4Mfrpa6MZWRkBD09PbVmrLznQnVkLHd3d0RHR6s1YwFAlSpVAKgvYwGiY67OjJU3vytC2Yzl7++PWrVqUcb6ycoojnIoZ8lGOavkKJKxgPKVs6gti3IW5SzKWapSXjJQeShDXRmrRM/4FStWRI0aNSSmubi44MOHDyorQ0dHB0ZGRhI/AOBub4GBrpUL/OnqXBH6XE2Y6nJhrqct86csShBkwcaQh1/M9OXul7meNgy0i68/OCsrC0FBQQCAZs2aKbQOc5Lw8/OTOZ8ZC9/JyQkVKlQoeiXliI+PBwBYWVlJnYQA4ODBg/muf/z4cQBA+/btVVanwYMHAxBdYSL+YGJl8Hg8jBo1CiEhIQgJCYGXlxd7klY1ZY5l3nC0e/duXLhwAW3atMGYMWMAiE62/fv3BwCMHj2a/YAeO3YsWrdujfPnz2PPnj0S27GxsUHt2rWRkpLCPodPEcyJ/vz588Xy3CJZfv/9dwDAtWvX2GnM+9LGxqZQ78vCunnzJtatWwcdHR34+fmxZVeqVIl9KLWXl5fUEAbMFapHjhyReaXT/v371VJfQsqj4shYgPycVc3CAL9WNMn3p6aVEbQ1OdDjakCfqyn3pyzKb3+YH14x7pu6M5Y6n/FR1HMZZSz1ZCzm/+rOWO7u7gAoYzHkZSx7e3u2Q4AyFiHqRzmr5CiSscpbzqK2LOVRzlIM5SxJlLNIeVCinX1NmzaVepjmq1evZN4uTVTLxpAHG0NeSVeDlZmZiUmTJiEmJgYeHh4FPtyaMXLkSBgZGeHBgwdYvny5xC2wDx8+xNKlSwGIrsxQJ2dnZ2hqauLVq1fsg1kZZ86cwfr16+Wu+/HjR2zevBmA6OStKufPnwcgusKHuU2+MMaNG4fOnTujc+fOCg+hUBiFPZbv37/H9OnTYWRkhL1790oM0cH8P++0ffv2wcjICNOmTWOHO2Aw5Xh6euLMmTNS9RQKhbhz5w4uX77MTqtbty66d++O9PR0dO/eXepLXnZ2Nk6fPq3U66Gsw4cPA4DEsWbel2FhYUq/LwuLz+dj2LBhyM3NxeLFi6UeYDx69Gi0bt0anz9/xpQpUyTm9enTB7a2tvjw4QPmzp3LDnMAAE+fPmWPDSGkYJSxCKO8ZKywsDDcuXNHYh5lLMWU5YxVo0YNyljfFZSx+vfvTxmLkGJCOYswykvOoraswqOcVTSUswhRrRIdxnPq1Klo0qQJli9fjn79+uHu3bvYtWsXdu3axS4zd+5cfP78WaIXnBm7ODU1FTExMXj06BG0tbWlrqwi8pWmjr69e/di7ty5iImJga2tLXbu3KnwutbW1jh06BD69u2L+fPn48CBA3Bzc0N0dDSuXbuG7OxseHp6YuTIkTLH2b1y5QoEAoHEtLCwMABAaGgo5syZIzGPuXojISEBc+bMQd++fVGvXj1YWFhgwoQJ2LhxI1q3bg13d3fY2Njg5cuXePDgARYsWCDzw33GjBnw8fFBfHw89PX1sWPHDqlnRL5+/RoAEBISgmHDhqF///5StxEfPXoU4eHhAETjnIeHh7Mn8NmzZys07IE8tra27K306qTMsWQIhUJ4enoiJSUFe/fuZYcgKEiVKlWwbt06eHl5Yfjw4bhy5Qoborp27YqNGzdi+vTp6NatGxwdHVGtWjUYGxsjJiYGjx8/RnR0NGbPni0xFrqPjw86deqE//77D05OTmjSpAlsbGzw9etXhIWFISYmRmXjMf/111/sQ6X5fD7CwsLY479w4UJ2ucK+L4ti1qxZeP36NRo1aoQZM2ZIzedwONi7dy9cXV3h6+uLvn37olOnTgBEQ6McOnQInTp1wtq1a/Hvv/+iQYMGiIuLQ3BwMLp27YrQ0FCpUEsIkUYZiwDFl7FkUUfGGjp0KPbs2aO2jDVnzhypZ1RTxqKMRRmLEJIX5SwCUFsWtWWJUM5SHOUsyllE/Uq0s69BgwY4efIk5s6diyVLlsDBwQEbNmzAwIED2WW+fPkidWWBm5sb+//Q0FD8/fffsLOzw7t374qr6pJGrZb49X0iHzH8TNgY8mCtr4OI+DSkZ+XA2dwA+tqqG0pAvJyCOu+iUgSIShGUujv6ANEYuObm5hg9ejQmTZoES0tLpdbv0qULHjx4gJUrVyIwMBDHjh2Dvr4+3N3dMXr0aPaWcFlu3ryJmzdvypz39OlTPH36VOa85ORkrFy5EtWrV0e9evUAAOvXr4e1tTWOHz+O0NBQPHr0CK6urjh8+DB+//13mSeiY8eOsbenp6Wlyb3tHwDevHmDN2/eoE2bNlLzzp8/z179pKGhAVNTU7Rq1QpeXl757n9po+yx3LJlC4KCgtCpUycMHz5cqbJGjBiB48eP48KFC9iyZQsmTpzIzps0aRJatWqFzZs3IygoCIGBgdDQ0ECFChXg5uaGzp07o3fv3hLbMzU1xbVr17Bv3z78/fffePToEW7dugUrKyvUrVsXPXr0KPTrktelS5fY/2tqasLCwgJdu3bFxIkT0bZtW4ll169fj9q1a2Pbtm0Kvy8L6+rVq9i2bRt0dXXh6+sr1WDKsLOzw5o1azB69GiMHDkSz549g4mJCQDR8Ad37tyBt7c3goODcfLkSVStWhVLlizBjBkz4OjoqLL6ElKelZuMBUjlrDh+JiIT+XCxNFTb8FPFUUZxKE8Zq3bt2li/fr1aM9awYcOkhleijEUZizIWISQvyllFQzlLpDTlLGrLKhrKWYqhnEWI+nGEquqeLyOSk5NhbGyMXV3rYuSv9gUuLzAwR2TTwXCwrQCelmIhhOmEq2jAQ0pmtlo6+sTLKagDrygdfUwIc3BwYB8ErA5l7cGazIN5fXx8JB7cq2wZ9vb2sLe3l7otXRZfX194enriwIEDGDRoUCFqrbiydjyojOIvg8PhKP3FVN37wdQpICCg1L1eVIb6H2rs5uYmN5QT1RMIBIiMjISDgwN4vB/ZgslZ14Y1Q3O7/IfdKUzGAspPI1RaVg5exKTAxcUF+vr6aikDKJ6/c1WWIy9jKVtGYTJWUFAQbG1ty/znIpVRtssoTMZStgxlUcYqnWUURzmUs0oG5ayiK085i9qylFPWjgmVUbxlUM4qXcfjZy5DmYwlLxfIUqJ39pV3cekZyMmFWjr6FFWa7+gjhBBCCCGEEEIIIYQQQgghRUOdfWrA3CqZlSNEdQtD6ugrh0xNTbFixQp22IPCWrNmDQwMDBRatlmzZvDx8UHVqlWLVCYhhBBCSGlVkhmrevXqSElJKVK5hBBCCCGlFbVlEUJI+UadfSqWkytEkiALAGChp00dfeWUsbGx1AOPC6NPnz4KL+vo6AhHR0eZD2cmhBBCCCkPSjJjAaDOPkIIIYSUW9SWRQgh5ZtGSVegPMnJFSIiPg3ZuaJ7+7iaJfPyUkcfIYQQQgghhBBCCCGEEELIz4Hu7FMRpqMvPSsHxjwuEr/f3VfcqKOPEFIcvL29YWJiUtLVkFAa60QIIYQQoozSmGdKY50IIYQQQpRVGjNNaawTKbuos08FxDv6nM0NEMvPKJF6UEcfIaS4LFq0qKSrIIWpEw0PQgghhJCyijIWIYQQQoh6UM4i5R0N41lEeTv66Bl9hBBCCCGEEEIIIYQQQgghpLjQnX1FUFo6+lIys5GSkU0dfYQQQgghhBBCCCGEEEIIIT8ZurOvkEpLRx8A6ugjhBBCCCGEEEIIIYQQQgj5SVFnXyGUlo4+flYOAMBQR4s6+gghhBBCCCGEEEIIIYQQQn5C1NmnpNLS0ReVIkAa09mnTaOxEkIIIYQQQgghhBBCCCGE/Iyos08JpamjLypFAH1uyQ0dSgghhBBCCCGEEEIIIYQQQkoedfYpqLR19NkY8qBHnX2EEEIIIYQQQgghhBBCCCE/NersU0CuEHiflF6qOvroGX2EEEIIIYQQQgghhBBCCCGEOvsKkJaZjei0DAiyc6mjjxBCCCGEEEIIIYQQQgghhJQqWiVdgdIsJSMLXpceYUy9/rA30ZPb0ddqqXaeKXl/VwVtAEYqK+fqgswi1SYve3t7vH//XuHlvb29sWjRIpXWgRBSOjCfB0KhUGL68ePHMXfuXFSoUAHPnj2DmZmZzPU9PT3h6+uL1q1bIyAgABwOR+Gyg4OD0bJlSwwdOhS+vr5F2Q1CSCkhO2cZqLnUopWhypxFGYsQwpCXsXx8fDB8+HDKWIQQpZW1nEVtWYQQdaGcRcoD6uyTIyUjCx0O3UYSzxTW+jrQ49JNkIpo2rQpHB0d5c6/ePEivn37Vow1IoSUFr1790ZISAjOnTuH8ePHw9/fX2qZM2fOwNfXF0ZGRti3b59EOPLw8MC1a9cQFBQEDw+PYqw5IYSUPMpYhBB5PD09sX//fgQHB1PGIoSQQqCcRQiRh3IWKUuos08GpqPvaXQyAia2ho7mz9vRl5GTq9TyXl5eGDZsmNz5Hh4eFJAI+Ynt3r0btWrVwuHDh9G7d2/06dOHnRcXF4eRI0cCADZs2IAqVaqUVDUJIaTUoYxFCMnP0qVL0a1bN8pYhBBSCJSzCCH5oZxFyoqftxdLDomOvsFNUds679CZP4+0zBx8SRWUdDUIIeVIxYoVsWXLFgDA2LFjER0dzc4bN24cvn37hq5du8LT07OkqkgIIYQQUuZYWVlRxiKEEEIIUQPKWaSsKPHOvs+fP2PQoEEwNzeHrq4uXF1dcf/+/XzXCQ4Oxq+//godHR04OjqqbCzbvB19DW1NVbLdsigtMwev4lKhXcx3NQYHB4PD4eT7I0t4eDg8PT1hZ2cHHR0dmJmZoXXr1jhy5IjM5RctWgQOhyNzrHVfX19wOByZV3W9e/cOHA4H9vb2UvNiYmKwf/9+dOrUCQ4ODtDV1YWRkRHq16+PlStXQiDIv+N02LBh+e63rPow66jqb4DZd2dnZzRv3lzucm3btmXrlbfsgurEvIYtW7aUOV+ZY5mbm4v+/fuDw+FgwIAByM2VvBN106ZNMo9zbm4uBgwYAA6Hgz/++ENqPQAIDQ3FwIEDUaVKFbYe7du3x/nz5+W+LtnZ2di3bx/atGkDCwsL6OjooFKlSmjTpg02b97MLlfQe1zecffw8JCab2hoiOrVq2Pq1Kn48OGDVJ1iYmKwadOmQr8v1eGPP/5A7969ERsbi9GjRwMADh8+jCNHjsDMzAy7du2SWJ75XLh27RoAoGXLlhKvAY1nTohspSljkZJX1jPWpk2b4OXlVeYzFpNZ5FFFxpL1GgKqzViLFi2Cs7MzZSzKWIT8tChnEXFlPWeVl7YsylmUs9SJchYpC0p0GM+EhAQ0bdoULVu2xIULF2BpaYmIiAiYmsrvZIuMjETnzp0xZswYHDp0CIGBgfDy8kLFihXRvn37QteFOvp+YDr6dLmaMNfVxvskfrHXwdraGh06dJCY5ufnJ3PZc+fOoU+fPhAIBKhWrRp69eqF6OhoXLt2DVevXsWlS5ewd+9etdf50qVLWLp0KWxtbeHo6IhGjRohJiYGd+7cwZw5c3Dq1CkEBQVBR0cn3+3kHSv+9evXuHnzprqrL+XGjRt49OgR6tatKzH92bNnuHLlilrKVPZYamho4MCBA0hLS4O/vz+MjIywY8eOAssZO3Ys/P390aVLFxw4cAAaGpKd2hs3bsS0adOQm5uLunXr4rfffsPXr18RHByMy5cvY/Hixfjf//4nsU5SUhK6dOmCkJAQcLlcNGnSBDY2Nvj69SuePHmCwMBATJw4EQAwdOhQiXVTU1Nx/Phx6OvrSwwFAADNmjWTqn/79u1RoUIFAEBiYiJu3LiBDRs24NChQ3jy5Ak7DxC9LydPnlzg+7K4bd++HTdu3MC///6L1atX46+//gIAbN26VaL+AFChQgUMHTqUfU6C+P4DyPfZCoT8rEpTxiKlS1nNWJMnT4a1tTWqV69e5jPW/fv3KWP9RBmroPelqlHGIkT9KGcRecpqzipPbVmUsyhnqRPlLFLalWhn38qVK1G5cmX4+Piw0xwcHPJdZ8eOHXBwcMDatWsBAC4uLggJCcH69esLHZCoo+8H8Y4+JzN9JAqyirX8nJwcAKLjmvcKB1kB6du3bxg4cCAEAgGWLl2KefPmsVdM3b9/H+3atcO+ffvQqFEjeKj5Iaj16tXDkSNH0LdvX4npCQkJ6N+/Py5fvoxNmzZh5syZMtdnrsjJO1a8r69vsQekhg0bIjQ0FJs2bcK+ffsk5m3atAmamppwd3dHcHCwyspU5lgyY2EDAJfLxdGjR9GpUyfs3LkTRkZGWLVqldxyZs6ciV27dqFVq1Y4evQotLQkPwYvXbqEqVOnwtzcHMePH5e4wzEsLAydOnWCt7c3WrRogRYtWrDzhg8fjpCQELi5ueHEiRMSV3tlZ2fj3Llz7O9539vv3r3D8ePHYWFhIfPKnoiICInf58yZI/F+TktLQ4sWLRAaGopjx45hwoQJ7Lx69erh9u3baNSokcQ28r4ve/ToIe8lUwtLS0vs2LEDvXr1wqxZswAAffv2Rf/+/aWWrV69Onx9feHx/TkJefefECKttGQsUnqoM2OJn5fVgTmXmZubw8nJiZ1eFjNWixYtEBISQhmrlGSsvNSRseS9L9WFMhYh6kc5i+RFbVmUsyhnSc6ThXIW5SyifiU6jOfp06dRv3599O3bF1ZWVnBzc8Pu3bvzXef27dto06aNxLT27dvj9u3bMpfPyMhAcnKyxA8AnHv5FUuvv8TCq89Rc1sgQqMS8EetSrj8JhpLr79kf7bfi0RSRjai0zIQlSKQ+VMWydqP94l8hMemQFMDMNTWwre0DLazLzU1FXFxcXJ/mJN7QctlZYm2x+fzJaZnZmay/2fkXVfW9I0bNyIpKQl16tTBmDFjEB8fz85zcHDAlClTAAB//fWXRBl8Pl9mPeLi4pCamgpA9N7JOy8hIQGAKMzknWdlZYUaNWrIfG2WLFkCAPD395f72jDvTYFAkG99mBCpTra2tujWrRv8/f0RGxvLTo+Pj8fBgwfRrVs32NnZqbTM3bt3IykpCfXq1cP8+fMlhrmoX78+5s+fDwBYvXq11Lo8Hg+nT5/Gb7/9htWrV2PZsmUyy1i6dCnWrFmDRo0a4dSpU+DxeFLLeHt7QygUYseOHVJDmbq6umLdunUAIDGUwePHj3HixAnweDycOXNGalgHLS0tdO/eXbEXohD09fXRuHFjAJAaxsHFxUUqHAGAqakpuw9Hjx5VW93y07NnT1SvXh0AoKOjg23btpVIPQgpj4ojYwHyc9bL2FQ8+JKY78+z6GRk5gjBz8pFWlaO3J+yKL/9YX4E3/dNIBAgLS1N7o9QKAQgeq3zW47JB5mZmVLT09LSkJKSAkB0JXHeddl6i03bunUrkpKS4ObmhilTpoDP57PzXFxc2C/Wq1atkignMzNTZj3S0tKQkZEBQNRwkHcek82EQqHUvCpVqsDV1ZUtg/nR1tbGypUrAQD//POP3NeGyVK5ubkF1od5vdXF3t4erVq1ooylYMZ68eIFZaxCoIxFiHpRzio5imSs8pazxPOPOnNW3umqzlnqzlgA5SzKWcWDchYpzUr0zr63b99i+/btmDZtGubNm4d79+5h0qRJ0NbWlro1mPH161dYW1tLTLO2tkZycjLS09Ohq6srMW/FihVYvHix1HZOvfqKU6++SkzbGfpOajk7Oz5cPLOglZaZz54Y5TOvdMqvkzIzR4gvqZLzY2JiEBMTI3ed7OxsdrnIyEi5yzFjKicmJkotFxkZiffv37Pbk7cd8enMLfht27aVuby7uzsA0Xvtw4cPSE9PZ8uXVw9mP1NSUqTmRUVF5Vu/nJwc/PPPP3jy5AliY2ORkZEhEWhevXold7+YIJK3XFn1CQ8Ph6amJhv2v337JnX3V2F8+/aN3b9+/frh5MmTWL58OcaOHQsA2LVrF/h8Pnr16oUTJ07ILLugOn369AmA6EQuPp8ZP7xjx44y12OufomIiEBISIjU5wAAbNmyBW3atMGCBQuQkZHBdi7HxcVh4cKFWLp0KYyNjbF582Z8+fJFav34+HjcvXsXPB4P1atXl1mPKlWqABANcxoREQE+n4+DBw8CEF1FxufzlT4WzGuSnZ0tc11mm8z799OnT+xyKSkpuHbtGnx9faGrq4tatWpJbSMnJwd37tzBw4cPERMTA4FAAKFQyL43X7x4Uah6y8N8HuTdXt4yjh07hvDwcACiL1fbt2+XeTUUQ9b+58W8lsnJySrbH1lU+XpRGUVTHF8ay6LiyFgA5H4pHXX2UYF1tLOzw45Ww5GVkFbAktLllnYvYlIUXja/3ASAPZdFRUXhxYsXcpdjGnFiY2Ollnvx4gX7d5iZmSl3O+LTL168CABo3bq1zOWZL9+vX7/G9evXYWlpiRcvXrB5RlY9mByVmJgod15WVpbM8nJychAaGio3Y4WHh8vdr+joaACiPCC+jLz6vHr1Sm0ZKzk5Gf369UNAQIDaMlZ2drbEZ686MhZzAZw6MxYAXL16FYD6MhYg+ttRZ8Zi8qIq3kfyMhazH8x0ylg/RxnFUQ7lLNkoZ5UcZTIWUD5yVmRkJNuhps6cdfXqVbXnrFevXoHD4VDOyoNyFuUsylk/Xxnqylgl2tmXm5uL+vXrY/ny5QAANzc3PH36FDt27JAbkJQ1d+5cTJs2jf09OTkZlStXRtPKpngdn4b49Ex0rVYR1vqyx/g1traBgbYWTHlcaGnIfqBuWWSpp83+PytXiCRBFrQ0ODDmcSG+lymZ2RBk58KUx4UJjyt3e8xrY6mnDQcTPbnL8bQ0AQAmPC67XCw/EymZ2dDS4CA5OQkAYGNhJnc74tMTv9/x5+bkIHt5Ez2YmhgjITEJ0dHRcK5sAxOxfRGvBwCJYUsNtbWktqmZqsvub955919EYNyUaXj79q3c/U9LS5O7X0lxotD2S0VLcDiAtqYGKujz2GNlqK0FSz1txPAzYWlpCXNzcxgZiTqa58yZgzlz5ojqqKkJU1NTuLm5wcvLC/369ZNbn7yY0KGlpYVBgwZh9erVOHr0KDuUwD///IPatWtj0KBBbEertbW1xJBasuoki4aGhtRQXADw22+/SUwXZ2Zmhvj4eGhra8tc5uDBg0hKEr2Hli5dyl5pc+PGDTx58gSAaDzyly9fYuDAgVLr37t3D0KhEAKBALVq1ZJbd0AUppycnBAREcFerVe/fn25dc8Plyt6P2ppaclcPyIiAk5OTuwXwMGDB0stU69ePfj4+MDV1VVq3T59+uDZs2dyy09NTYWenl6h6i4LM5xE3u0x+wEAHz58YMc2nzJlCjZs2IDVq1djyJAhcq+0Y/a/UqVKcuv6+fNnAKL3oar2RxbxfaEySraMnJwcPHz4UG3bL6uKI2MBouFkmOFLgB85a767M1wsDfNdV9vcGhZ62rA15EFbs0QHm1C5/LIQIzUzGzH8TDiY6IHH1ZS7HPd7xrIx5OX7mup934aFnja7XJIgC1EpAjiY6OFOrujq6spW5nK3Iz49KV6UsX5z+UX28paGMDMxRnxiEnJTEwFLSziY6MHie24Rrwcj1FB0FbIJjys1T0+gz+5v3nmvI99h0KgJeBnxWu7+p6Wlyd2v5O/7UtuuosQyeesjyMpBZCIftra2astYRkZGaNGiBWrXrq22jKWlpSVxXldHxqpTpw4A9WYs4MdFb+rKWIDoPKXOjMXkRVWcC+VlLKY+Tk5OlLF+ojKKoxzKWbJRzio5imQsoHzlrOjoaDR0sgOPq6mWnPUw/DWGjptUYFtWUXKWg4kem7H09fUpZ+VBOYtyFuWsn68MdWWsEu3sq1ixImrUqCExzcXFBcePH5e7ToUKFdgrNhjfvn2DkZGRzCuhdHR0ZD6s80tqBtKzcxEyvEW+z+gTGJgjUpcLWyMe21FVHth9D0jMM/r0tbXgZKYPzTwdmu8T+RBkZ0KXqwlzsQ7CvDS+36ZuoK2V73JcTdFyemLbS8nMRkomkJMrRG6q6OTmYFtB7nbEpzOZ1UhHfrkcse5LZj+YoCZej6gUARIEWWxHoI6WhtQ2U3S57P7mnTdlxiy8ffsWbTxa4H+TRqOGkyOMDA3A5XKRmZkJHYeaUvVn5Obm4sP3D3ZdU0voc38cDwNtLbY+BtpaiOFL32Uq/iBkgUCA8PBwBAQEICAgAC9fvsTChQtlvjYFmTx5MkaMGIGTJ08CAD5+/Cj1MF958j6cmcE8wFfVoqKiMGnSJOjr6+Ps2bMYMmQIe/XY48ePUaVKFfj6+qJr166YOHEiWrZsCRsbG4ltMMMGGBgYoHfv3iqvo6qIP9SXz+fjyZMnCA0NxeDBg3H69Gn2ii0AbDjq0qULZs2ahRo1asDIyOjH+7KYH2YMiK5eGT58OJKTkzF8+HCsX78eiYmJ8PX1xYgRIxAQECAx9AUhRHnFkbEAUc6SNYxMu1+s0NzOIt86CgzMEcnVhKkut1xlLED2uV6WGH4meFxN6OfTCMV8HupoauS7HJPhtMWWY4aw4nE1Efv9y3yVitZytyM+nYmEvHzL/V7m94V5XE22QVFbxno63+dpaXCk5jHZjMORnjdk3BS8jHiNZs2aYeGkMajn4iwzY8mqZ25uLt5/v1K2hoOdxDL51YdBGUt2xnr06BEAyliUsQj5OVHOKjmKZiyg/OQspgx9NeWsMd8vWu/Y2gNzx4+S25ZVlJwlr8OVchblLMpZhKhWiXb2NW3aFC9fvpSY9urVq3zHT27cuDF7izQjICCAHeNXUZ+T03Hds3m+HX3lHdPRp8vVlNnRVxxyvt9VCIiuTHr9RnQlUU1nxXrObStUQPjrt3j74aPM+UnJKYj/PmSnpaWl3O0wzy20MeTBNJ87GOUJf/0G4a9ewczMDHu3bEAVUwOJ+RGR7/Nd/0XEGySnpMLc3BwOlW2VPh55H4QMADt37sSYMWOwcuVKzJkzh73iRhkDBgzA7NmzsWnTJgCAubm5zKuIFK0T8OMBvnnZ2toiPDxc7tVkSUlJiI+PZ5eVVV5CQgK2bdsGDw8PXLlyBU2aNEFcXBysra1x5coVODk5YdWqVRg/fjxGjhwp8aBhAKhcuTIAUQDet28fNDQUuwKSCSTMbfzqJuuhvt7e3liyZAnGjRuHs2fPsvV58uQJrKyscPLkSakHOBfH0EKybNu2DYGBgahcuTLWr18PAFi/fj0CAgIQGBjIvncJIYVXkhmLlE7PX4nuilNHxqpobQ11PcU6/PUbPHkRDktzc6xevRquFU0lGpIUzVjWlhaobFtR6fIpY8nOWO7u7oiOjlZ7xqpYUXTMKGMphjIWIcWDchbJS505K7+2rKIKf/0Gz8JFbVn+O7fAWFeyA4Vy1g+Us4qOchYh6lei9/JPnToV//33H5YvX47Xr1/j77//xq5duzB+/Hh2mblz52LIkCHs72PGjMHbt28xa9YshIeHY9u2bThy5AimTp2qVNnTGjtSR18p6OiLiE9Ddu73MWpzcxB06z8AQLOG9RTahkfjhgAAv6MnZc7fd/gYAMDBrgqsrKxkLiPe0WdjKH3VnCLiE0R3JFpYWEidhADg4IlT+a7vf+YCAKBZk8YqOx7M7fFpaWkSDyZWBo/Hw6hRoxASEoKQkBB4eXnJveqwqJgTvp+fn8z5+/btAyC6nT5vQNq9ezcuXLiANm3asCdWZ2dndszs0aNHs7dejx07Fq1bt8b58+exZ88eie3Y2Nigdu3aSElJYcfQV0SHDh0AiMZqZ8alL26///47AODatWvsNCZQ2tjYyH5ffn/WYHF68+YNZs+ezYZQZqgMExMT9qH2M2fOxLt376TW1dYWXcXJjKNOCJGvJDMWKX2ysrLUlrGcHOxRsYL0s0dUhclYFawsC5Wxjp8Xnc/bt3BXWZ0oYzmz/1d3xmKev00Zq2AfPnygjEVIMaGcRcSpM2dVtbeT25alCkVty6KcRTmrqChnEaJaJdrZ16BBA5w8eRL+/v6oVasW/vzzT2zYsEHiaosvX77gw4cP7O8ODg44d+4cAgICUKdOHaxduxZ79uxB+/btlSrbwVRfZftRFpV0R1+uUNTRl56VA2MeF1lZWVi47C/ExMXDo/FvcKhSWaHtjBz4O4wMDfAg7BmWb9ou8XDLh0+fYenGbQCAUZ7DZK6fkpFd5I4+AHD+xR6ampp48+YNbt25JzHvzOVArN/tI3fdl+8+YavPAQDATK8hKjsezFWD+vr6sLDIf4iP/IwbNw6dO3dG586dJb68qNrIkSNhZGSEBw8eYPny5ZLH8uFDLF26FIDo5Cnu/fv3mD59OoyMjLB3716JW+aZ/+edxpyYp02bhvfvJa9UY8rx9PTEmTNnpOopFApx584dXL58mZ1Wt25ddO/eHenp6ejevbvEZxYgOqGfPn1aqddDWYcPHwYAiWPt7OwMTU1NhIWFITg4WGL5M2fOsFciFZfc3FwMGzYMaWlpGD16NNq0aSMxv2PHjhg+fDhSU1MxfPhwqYfVVqpUCQDyHbOdECJSkhmLlC5ZWVmYsWiZ2jLWzLFeaqk3g8lYz19FIDQ0VGJeQRnr4+cv2LxPlLHGDvlDZXWijFV8GatGjRqUsRSQm5uL2bNnU8YipJhQziIMdeesCV6eaqk3Q7wt6/rtOxLzKGcphnJW0VDOIkS1SnQYTwDo0qULunTpIne+r6+v1DQPDw96SHQRlWRHHwDEp2chPSsHzuYG2HrAH6s2bkFcXBxsK1hj58o/Fd6OtaUFDm1ei75jJmH+ynU4cPxfuNWqgejYeFz77y6ys7Ph+Xtv/NG3t8xn3QWG3EJGZgb7XDwACHshGo4jNOwZ5ixfLbF8UnIKACAhKQlzlq9G3y4dUa92LViYmWHIH/3hc/AQfvf0gvtv9WFjbYWXbyLxIOwZFkwex4Y1cZO9l8Pv6AkkJSVBX08Puw/6Y/dBf4llXr8TnWxD7oViwqx56D1gEBwcHCSWOXr0KHvbfUZGBsLDw9kT+OzZsws17AHD1taWvZVenaytrXHo0CH07dsX8+fPx4EDB+Dm5obo6Ghcu3ZNdCw9PTFy5Eh2HaFQCE9PT6SkpGDv3r0S43vnp0qVKli3bh28vLwwfPhwXLlyhQ1RXbt2xcaNGzF9+nR069YNjo6OqFatGoyNjRETE4PHjx8jOjoas2fPRrt27dht+vj4oFOnTvjvv//g5OSEJk2awMbGBl+/fkVYWBhiYmKkTviF9ddff7GfjXw+H2FhYezxFx/T3sLCAhMmTMDGjRvRunVruLu7w8bGBi9fvsSDBw+wYMECNhAWBx8fH4SEhMDBwQGrV6+WuQwzBEJQUBC2b9+OcePGsfN69+4NHx8fzJo1C1euXIGVlRU4HA6GDx+OJk2aFNduEFJmUMYiB48ex59rN6o1Y40c+DviZGSsKzduQZCRITGtsBlrwrBB2LjXD+PGjcPBBvVQuaJ1gRlrxpK/4PPPccQnJkJfTw87DvhjxwH5GWvYlFmYNHokYCw5VBZlLMpYZSFjrVu3DqGhoZSxCClGlLNIceSsIb/3RWQiX2p9VeYsr0F/YKffQXQZ6KlwW5ayOWv09Dno0X8gXFxcJJahnEU5i3IW5SyiWiXe2VceXF0g2cDxPpGPGH6mxN1iqhgqMi9Z5eSnNAzdyZwfsnJy4WxuAH1tTUS+/wAzMzMM6tcb88cOh6W5uVLb7NK2FR5c/Bcrt+5CYMhtHDt3Cfp6unBvWB+jB/XH7907432ecJSSIbp1+vHjx3j8+LHM7T4Nf4Wn4a9kzktOScXKrbtQ/ZeqqFe7FgDgf3NmopJDVZw6cRyhT57hkeYLuFavhsPbNuD37p2lAlJaZg6OnruIpCTRsAlpfL7cIRwA4M27D3jz7gM82neUmnf+/Hn26icNDQ2YmpqiVatW8PLyYm+JLwu6dOmCBw8eYOXKlQgMDMSxY8egr68Pd3d3jB49WmpftmzZgqCgIHTq1AnDhw9XqqwRI0bg+PHjuHDhArZs2YKJEyey8yZNmoRWrVph8+bNCAoKQmBgIDQ0NFChQgW4ubmhc+fOUg89NjU1xbVr17Bv3z78/fffePToEW7dugUrKyvUrVsXPXr0KPTrktelS5fY/2tqasLCwoJ9WHPbtm0lll2/fj1q166Nbdu2ITQ0FI8ePYKrqysOHz6M33//vdgC0osXL7BhwwZwOBz4+PjAwMBA5nJGRkbsFa6zZs1Cx44d2c7tzp07Y/fu3di+fTuuXr0KPl/0d92sWTMKSISUY3lzVhw/E5GJfLhYGko8u02ViqOM4vD23XuYmZlhxIB+mDFyqFoyljw374Xi5r1QmfOUzVjrF89H1V8csePA33j09BnCXoTnm7EA4Ni5i+yzbhTNWL/36gHLPJ19lLEoY5WFjLVw4ULKWISQQqGcVXjFkbNkXVAFqDZnLZ0/B1ZVHHD23xMKtWUBhctZ7m07SM2jnEU5i3IW5SyiWhyhqrrny4jk5GQYGxtjV9e6GPmrfYHLCwzMEdl0MBxsK4CnpVgIydsJp46OPlnl5KewHX3Kdijmh3lGH3NHn762psrLkEe8DABFPh7vPn6CQ6OW8Fn3F4b93luqDEWPR5duXeFYpTKuHT9UYJm+/xyH57Q52LFjB/r06QNzJYOkMiIiIthxwakMKkNZ9vb2eP/+vdTVX8WxH8HBwWjZsiWGDh0q82paVSlrx6Q8l5GTk4OHDx/Czc0Nmpplt7GgrBEIBIiMjISDgwN4vB/nPCZnXRvWDM3t8h92pzAZCyg/jVDlpQxVlyMrYxWmDPvfPGBf2RbBxxTPWOf9/WDpWAMuLi7Q11ffkP/l4bOXyiiZMuRlLFWWIQ9lrNJXRnGUQzmrZFDOojLUVYasnFWYMgqTs3bs2IFBgwapNWMB5ecznsoo/jIoZ1EZxVmGMhlLXi6Qhe7sUzN1dfQpozTc0Sevo6+4pWRmIyUju9QcD66GBjglM5IqIYQQQgghhBBCCCGEEELKAersU6PS1rH0s3f0AVDZ8TA1NsaKuTPYYQ8Ulfd4rFk4GwYKXtXUrGF9bP5rKezs7ApTZUIIIYSQUq+wGSsvZTOWz7q/UO2XqogvUqmEEEIIIaVXSeWsHauXU1sWIYQUA+rsUyPq6Cs9HX38rBwAgKGOlkqOh7GRIeZMGK3UOrKOR58u0s/fk8fRwQ5/WFeU+XBmQgghhJDyoDAZSxZlM5ajgx3SsnIQH5NS5LIJIYQQQkqjkspZFStVwgvKWIQQonYaJV2B8kjVHUuFQR19P0SlCJDGHBPtkunfLg3HgxBCCCGEEEIIIYQQQggh5Q/d2adi1LEkUpo6+qJSBNDnarLHpbiVhuNBSHGaMmUKEhMTS6Rse3t7TJgwAa1bty6R8gkhhBBC1IUyFiGEEEKIelDOIuUBdfapEHUsiZS2jj4bQx6ycnJL5JiUhuNBSHGbMmVKiZVtb2+PSZMmwcnJqcTqQAghhBCiDpSxCCGEEELUg3IWKQ9oGE8VEe9Y0uOWTOdWaehYKo0dfT/zUKqEEEIIIYQQQgghhBBCCCnfqLNPBahjSYQ6+n4oDceDEEIIIYQQQgghhBBCCCHlH3X2FVFp6FjKyskt8Y4l6uj7oTQcD0IIIYQQQgghhBBCCCGE/Byos68ISkPHEgDE8jOpow90PAghhBBCCCGEEEIIIYQQ8vOhzr5CKg0dS1m5QgAAV5NDHX10PAghhBBCCCGEEEIIIYQQ8hOizr5CKA0dS2mZOUgSZAEAzHV1qKOPjgchhBBCCCGEEEIIIYQQQn5C1NmnpNLSsfQqLhVa3zuUOCXQr0QdfT+UhuNBCCGEEEIIIYQQQgghhJCfE3X2KaE0dSzpcjVhzOOWSB2oo++H0nA8CCGEEEIIIYQQQgghhBDy89Iq6QqUFdFpGYhOy5TZsfThcxRi4xPY37+kCJAgyEKcnja+6uuorA7pWTl4n5QOHS0NVDHSxZu0jEKXY2Fmiiq2NkrXgTr6fhDv6HMy08en5PQSqQchhBBSnuXNWYmCLESlCJDxTQ+6WurJIUUto7A5ixBCCCGkOJW1nEUZixBCCJGPOvsUkJSRjbR8OvpcWnQAP71sdfTo6erixbWLSoUk6uj7IW9HHz2jjxBCCFG9nylnEUIIIYQUp7KYsyhjEUIIIfJRZ18Btt+LhEutLNSw1pbZsRQbnwB+ejoObl4DFydHAD/u7LPU04alCu7sC30ajskLFqFKlcrYuXwRDA30i1TOi4jXGDRxBmLjExQOSEIh8u3os//NA+8/fVa4Dt7TJmLR9EkKL8+gjj71W7RoERYvXgwfHx8MGzaMnR4dHY2aNWsiNjYWhw4dwoABA2SuHxwcjFatWoHH4+HRo0dwdnZWqFxfX194enpi6NCh8PX1VahOhJDC43A4sLW1xadPnySme3t7Y8mSJahVqxZCQ0Ohra0tta5QKESbNm1w9epVDB8+HHv37lWqbObv3dvbG4sWLSpU/Xv27ImLFy8iPDxcah6Hw4GdnR3evXsnMV3d+2Zvb4/3798jMjIS9vb26NixIy5evIi3b9/CwcFB5jpDhw7F/v370a5dO1y6dEnmMgKBAL/++itevHiBJUuWYOHChQrXCcj/M7RNmza4e/cuXr16hQoVKii13eIgK2cxV4M7mKr/ivPClFGYnJWf4spYRP2Yv8W//voLs2fPZqerO2MxmM8ooVBYpP0ghIjIyzPp6elo3749IiMjsWzZMsybN0/m+uHh4XBzc0NGRgaCgoLQokULhcoNDg5Gy5Yt0aJFC+zevVuhOimDyVgRERGoWLGixLzizlhfvnyBra0t3N3dce3aNZnLlNbvqaU9YwHqyVlPw19h3Dxv/GJnhy3L/gd9PT2pZQpbhqozFkA5ixBSvuSXTdzc3PDy5Uu1ZBOGh4cHrl27xraJlLTS3Ma9d+9e1K5du7C7Jhd19uVj6fWX2POWj8NjubAqoDPNxckRv7rWBAC8T+Qjhi/7TkBlXbv7ENO8/0T16tVw1d8HJkaG7DxVllOQuPQM5OSiwDv6mjaoB0f7KnLnXwy+gW8xsYWqA3X0lSwrKyts374dffv2xcSJE9GyZUupL38pKSkYNmwYhEIhVqxYoXQjFCGk5C1YsACnT5/Go0eP4O3tjRUrVkgts3nzZly9ehV2dnZYv369xLy8HV7qcOXKFfz777+YMWMGKlWqhJiYGIXWK+q+Kat37964ePEiTpw4genTp8tcZuPGjQgMDMTly5exc+dOjB49WmqZefPm4cWLF2jQoAHmzp0rMY/DEZ2HCtt4/9dff7Hb9fHxKdQ2ioN4zorjZ8IokQ8XS0Poc9XT2VccZShLnRmLlKyiZqz8vkwSQoqfrq4uVq1ahf79+2Px4sXo2rUrXF1dJZbJycnB0KFDIRAIMGXKFKUb09Qlb8bKyclRaD115ceKFSuiSZMmCAkJQXR0NKysrKS2W1q/p5aVjAWoLmfdffgYExcuQZ0aLrh4aC8MDQxkLkc5ixBCipeuri78/PzQtGnTQmUT8QuNgoODi7n2qqdIdkhNTS2TbdwaJVn4okWLwOFwJH6qV68ud/msrCwsWbIEv/zyC3g8HurUqYOLFy+qpW5Lr7/EwqAXmPzbLzDWKZk+0Wt3H6LLIE84OTlKdfQVF6bpMCtHqNDQnV5/9IXvhlVyf6o7Vi1UPaijTyS3hC/E7tOnD/r374/4+HiMHDlSav7UqVPx/v17eHh4YNIkutqNkLKIy+Vi//790NbWxurVq/Hff/9JzI+IiMDcuXPB4XCwb98+GBkZFXsdp06dCh6Phzlz5ii1XnHvW48ePaCpqYnjx4/LXcbExIS9sn3GjBmIjIyUmH/9+nVs3LgRPB4Pfn5+0NJSPJMwOWvx4sUAAE9PT6mcVb9+fXTp0gV+fn64f/9+seUsojx1ZSxSOlDGIqR8qVOnDmbOnInMzEwMGTIEWVlZEvNXrFiBu3fvolq1ali+fHkJ1VJaacxYvXv3Rm5uLv7991+5yxT3ZyhlLGl3Hz5G2z+GoVY153w7+korylmEkPLut99+w4gRI8pcNlGXgrLD8uXLy+T3rxLt7AOAmjVr4suXL+xPSEiI3GUXLFiAnTt3YvPmzXj+/DnGjBmDnj174uHDhyqtE9PR92dLF4xtIHvYLXUrDR19OblCJAlEf/gWetr0jL4S7ujLyRXia5qg2MvNa+vWrahQoQLOnTuHffv2sdPPnz+PvXv3wtDQED4+PuzdJoSQssfV1RWLFi1ir+xK//4cD+Z3Pp+P8ePHo1WrVsVet4CAADx9+hQ9evSAubm50usX575ZWFjA3d0d//33H6KiouQu1759e4waNQqpqanw9PRk79Jjfs/NzcXSpUvh4uKidB1q1qzJ3lW4YcMGmTlrxIgREAqF8PT0LJacRQiRjTIWIeXL4sWLUatWLTx69Ah//vknO/3x48dYsmQJNDU1sX//fujq6pZgLX8orRmrV69eAJDvxVNA8X+GUsb6oax39BFCyM9i0qRJZSqbqFt+2eHYsWNl8vtXiXf2aWlpoUKFCuyPhYWF3GUPHDiAefPmoVOnTqhatSrGjh2LTp06Ye3atSqrj3hH34Lm1VS2XWWUlo6+iPg0ZH+/lYyrWTxvleBbd8CxdZL4sa3uigYNGsC2uis4tk4y1wt//QaeU2fDrmEL6DjUgFnN+mjdbwiOnD4vc/lFazeBY+uERWs3Sc3z/ec4OLZOGDZlFgDJjj5uWgK0KjvD/jcPqfXi4uNx+PBhDB41Fg6NWkL3l1owqlYX9Tv2xMqtOyEQZOS778OmzJLad/GfPuOnIzMnV3KdYcPA4XCKdcgmMzMz7Nq1C4DoCsmPHz8iISEBXl5eAIC1a9fKHbovOzsbGzZsgKurK2rVqgVLS0v07t0bYWFhaqnrvn370KpVK1SqVAm6urowMjKCi4sLpk6dKnX3DAC8f/8eK1euRKtWrVClShXo6OjAxMQEzZo1w86dO5GbmyujlPwxdy3L4u3tzc6XdwyvXr2KSZMmoVKlStDR0YGlpSUaNGgAb29vxMXFscv5+vqCw+HIfKZhQEAA9PT0oK+vj6tXr8osp2XLllJ3Wov/5K2fvPdecnIyFi1ahLp168LAwAA8Hg9OTk6YPHkyvn37JlVufvUGREP6cDgcqeeCAKL30549e+Dh4QEzMzPo6OjAwcEB3t7e+Pjxo9TywcHB4HA48PDwkFkWIBpfnMPhSA1LIG86AAQFBbGvk7z9ePXqFUaPHs1ezWtsbIzmzZvj4MGDcuvh7OzMXv0sy4cPH6ClpZXve6woZs2ahYYNG+LVq1fseO6rV6/G7du34ejoiJUrV0oszxzL9+/fAwAcHBzA4XDY/VDVUA9btmwBgCI9v1PZfRP3/Plz9O3bFxYWFtDV1UWtWrWwZs0aucNc9e7dG0KhECdPnsy3TmvWrIG9vT2uXbuGTZtE56YZM2bg7du3aNasGaZOnSqxPHNFOSPv3yzzN6OlpQWD7w0uxsbGMnNW586dYWFhgadPn2Ly5MlqzVmk5MjKWHl/ZFFnxhL37uMncGydZGasmLg47PI7iMmTJ6Nms9Yqz1iy6lNWMpa9vT08PT0BAH5+fuxngLOzc77nO0XFx8dj6NChcHNzg6WlJbS1tVGhQgU0bdoU/v7+yMzMlFrnypUrmDhxIurWrQsLCwvo6OigUqVK+P3333Hv3j2l65BfVsjIyGDPM/LOhXw+Hxs2bECzZs1gamoKHR0d2NnZoWvXrvj7778llpV3vhcKhRg1ahQ4HA4aNWqEpKQkqXKYnCHrh6ljXvLq/fDhQwwaNEgijzZt2hS7du2Seb5hcoOsc21B+ScqKgrTpk2Di4sL9PT0YGhoiAYNGmDLli3Izs6WWr6gv413796Bw+FIvVflTWcMHTqUfa3kZYZjx46hQ4cO7HvR1tYWgwYNwvPnz+XWg8PhwNDQEMnJyTK3uWzZsgJzXGFpa2tj//794HK5WLFiBUJDQyWupp89ezYaNmwod/39+/ejQYMG0NPTg5mZGTp06IAbN26otI7iSiJjycuPzE9wcDDs7OxQr149BAUFITExUW7ZqvqeyuPxFPqeShlLhDr6RMpyzoqNE7Vl9Ro2Si1tWcWRswpqVwDkty08f/4c3t7eaNq0KWxtbaGtrQ1zc3O0adMGR44cUbou4uefgn7k7X9gYCDGjx+PihUrQltbG1ZWVujZsydu374tc3nxPLF7927Uq1cP+vr6MDExQadOnaTuthYnr11l7NixMttVGJ8/f8bMmTPh6uoKQ0ND6Ovrw9nZGcOGDcOtW7eklk9PT8fatWvRqFEjmJiYgMfjoVq1apg1a5ZE2xYjvzaYksg2zs7Ohc426mhjKqzCZBMPDw+0bNkSAHDt2jWJ97CqHt2SX9sf09nG4XAK/TxieYo7OxSHEn9mX0REBGxsbMDj8dC4cWOsWLECVarIHic7IyMDPJ7knV26urr53g2YkZGBjIwfJyYm5J97+RXfUiVPWMHvYhAYGYvWDqKQtvT6S+hbVkTj+tmITsuAloZ0h1dMWgb7b1SK6K4rfpboC1hKZjY7TVH3Hj7GQK/RcHL8Bf57doLP4YIvZxuFLUdWncUJhaJn9GXlCKGjpQFBdm6BZeR87xRM+P6gZXkys0WdJSkZ2TJfr1i+qMHA0sIcTZs0QVZOLriaGuBqcHD039MAILX9K8HXMXryNAgyMvCLgz06tmmD2Ph4XPvvLq7evI2TV4Lxv4UL2TKiUgRIyciWqgcj4fvdjPysHLxP5COWnwmuJgeG2lr4FJPJ7m/e9QKuh2Dt2rWwtrJCVbsqqOPqiriEeDx8HIY5y9fg6PkAHN2/DzoyHlYu/jo0+NUN9lUqs9PfffiIew8eIjsnFwZcLaRkZiM1NRUA2Pd2amqqzJNjYfD5/AK32aRJE/zxxx/w9/fH4MGDYW5uji9fvqB169bo1auXzPVyc3MxbNgwnD9/Htra2mjQoAEqVaqEO3fuoGHDhhg+fLhK6i/uypUriI+PR+3atWFiYoL09HTcuXMHGzZswL59+9jb0xkHDhzAwoUL4eDgAGdnZzRt2hRfvnzB7du3cfPmTVy+fBnHjh1TScfKmzdv8u1QAERX3GzevBkAULduXbi7uyMpKQkvX77EkiVL0LJlywIb8gICAtC9e3dwOBycPXuWPUHL07t3b/ZLKwCEhITgzZs3Cu3Tt2/f0Lx5c7x69Qo8Hg8eHh4wNjbGrVu3sGnTJhw4cABXrlzBr7/+qtD28pOSkoJu3bohODgYBgYGqFevHiwtLREWFgZ/f39cvnwZAQEBcHNzK3JZ+cnKysL48ePzXebo0aMYMmQIBAIBqlevjk6dOiEpKQl37tzB4MGDcfXqVbkdeoDo+Say/j62bNmi8HNUCkNTUxN+fn5wc3PDxo0b4eTkBG9vb2hoaMDPzw96enoSyzs6OmLo0KE4duwY0tLS2PdScnIyjIyMUKFChSLXSSAQ4NKlS+ByuWjevHmht6PsvjFCQkLQoUMHpKWloWrVqmjbti1iY2Mxb948uV+gevbsiUmTJuH48eP5vleYK8ZatWqFuXPnQlNTEzt37oS+vj58fX2hkSeD1K1bF0OHDoWfnx8A0RcJcczfcUREBNuQtHPnTvZiBnFcLhceHh44duwYXr9+LTFPkZwl3tjP5KyXsakw0M4/ZgqNudDKEYKflYscOcNUp2fnsP+mfT9PZny/8EWQpb73f1HKkFXnopTB3OmZkZOb7/aYLJYptpx4GUy9rCws0LZFM4l1Dx3/FwCktn/xajAGjZ0MQUYGnKo6oFv7toiJ+5GxzgVdx7ZVyyTKYS5MypRRX2a57Fyh1DwmBwmF0vNOB17HvKUrYGVlBUd7OzRwq4PY+ATcf/QYc5avwcmLV3Defz90dGRnLObitcb1f0VVux/v/7fvP+D2/QdsfZhjIRAI2IaAjIwMpKWlydyuspi/ldzcXLnbbNWqFQYNGoSDBw9i6NChsLCwwJcvX9C2bVsMGDBAar3u3bvj3r17uH37NqpWrYrGjRsDEOW5/DoRFBUfH48jR47A1dUVTZs2hb6+Pr5+/YqQkBDcunULt2/fxoULFyTWGTNmDD5+/IiaNWuiadOm0NLSQnh4OI4cOYITJ07g8OHD6N27d5HrBog6ESIiIuTO//jxIzp06IDnz59DT08PTZs2hbm5OT5//owbN24gLCwMAQEB+ZYhFAoxevRo7N69G40aNcKlS5fyHYLQ2toaHTp0kJjGfFYr4siRIxg0aBCysrJQuXJl9OjRAykpKQgKCsKtW7dw4sQJnD59GtpyvlMo4/r16+jRowcSEhJgb2+Ptm3bIiMjA3fv3sXEiRNx5swZnD17Flwut8hl5SckJAT79++XOz87OxsDBw7EkSNHoKOjg3r16sHW1havXr3CoUOHcOLECZw4cULqdWekpqZi3759mDJlisT0rKwsbNu2TZW7IsXNzQ3z58/HokWLMGTIEHTs2BFPnjxB7dq14e3tLXe9yZMnY9OmTdDQ0ECzZs1gY2ODJ0+ewMPDAxMnTlR5PUsqY8nLjwwmP/bu3RuhoaE4ffo0hgwZIrf8rl27YtiwYfD19cXw4cNhaWmJL1++oEOHDjKH6AJEn8l9+/bFv//+C21tbXh4eMDU1LTA76nqzlhA6c9Z9x89QbfBw1HD2QnHfXdBQ0c336zC7lchc5aiGUuZMkp7zlqxZJHEfqgjZ12+fgNr165FRWtr/GJfBfXr1lZ5zhLPWABUnrOYtrHs7Gzk5OTI3CZzrPl8vsT8VatWwc/PD87OzqhRowaMjY3x6dMnBAUFITAwEDdu3MBff/0lc1v50dfXR58+fWTOy6+dZcaMGVi7di00NDRQv359uLu748OHDzh16hTOnDmD3bt3sxd65TVt2jRs2LABTZs2Rffu3REWFoYLFy4gICAAR44cQc+ePSWWT01NRdu2bWW2q+zYsQNHjx6V2a4SGBiIPn36IDExEVZWVmjdujW0tbXx7t079kKqJk2asMtHRUWhQ4cOCAsLg5mZGRo0aABDQ0M8ePAAq1evxtGjR9mLO4qqrGQbeRRpYyoqZbNJhw4dwOPxcOnSJamcm99NW6qQkJCA2bNnq7UMednB3d1d5dmhOJRoZ99vv/0GX19fVKtWDV++fMHixYvh7u6Op0+fwtBQ+m629u3bY926dWjevDl++eUXBAYG4sSJE/k2dq5YsYIdR13cqVdfcerVV5nrBEbGIjBS9OBdOzs+XDyzoJUmfdUqAMR875yK4WdKdf6kZGSznUqKePbsGcaPH49ffvkFGzZuQopQEykKdOIpW05+dc5LINY5l18ZOd9PdIkFdPYx4UNW52FKRjaiU0VDfVSxs8f8hf+TmC+rsy8uLg7jZ8yGICMDY8eOhaenJ9sR8/z5c0ycOBGHj59E1Wou6NmzJ7sfKZnZcuuRKNbZx7xWmTlCfEkV4Nv3jtIcoXRnX1Wnati3b5/UA06Tk5Mxf/58/Pfff9iwxw+DBw+W+dqkfa9Txy5d0bVrV3b6mTNncO/BQwi/1xcAYmJiEBMTg5SUFPZ3WXeqFQZztWRB2xw1ahSuXr2Ka9euARA1VE+bNk3uOkeOHMH58+dhZmaGHTt2wMHBAQYGBhAKhVi6dCn7RTs5OVmq0YbpPPz27Vu+DTp5bdu2DSYmJhLTcnJyMGvWLJw5cwarV6+WOGm4uLjg7NmzUg9d/fbtG0aOHIkTJ05g8+bN6NixIzuPz+crVKe8y3h5eSEjIwM2NjaIioqS2rf9+/dj8+bNMDExwerVqyUejAuIbrHX0NBg12HumhN//W7evImxY8eCw+Fg586dqFSpkty6MmF7woQJsLW1ZafPnj0bb968kaof80VTfPrIkSPx6tUrVKpUCb6+vuyX3aysLHh7e+PYsWPo3r07Ll68yDZQyaq3rHpFRkZKjCc+ffp09gHBy5cvlxhqaNeuXVizZg169eqFCxcuQFNTNATxp0+fAIiuKJP3OjDDDX369ElimbzTmeO+e/duvHjxgj2Oeffj5cuXGDRoEDgcDjZv3oz27duz8z5//owxY8bAx8cH1atXlwjeTHmNGjXCf//9h7///hsNGjSQmL9r1y40btyYvbpPmb8NRm5ubr7raWpqYurUqVixYgUbOL28vGBpaSm1nrW1NebPn48rV64gLS0N48ePR6VKlcDn89mGnbzv17i4OKXqfevWLWRkZMDV1ZU9nop80ZKlevXqWL58OaZNm8bu28yZMyW+lIgTCARsQ/uUKVOwZs0a9r315MkTtG7dGrGxsVLr2draolGjRrh+/TpiY2PzDcNMA96mTZvYhrxVq1bhl19+kVq2R48e6NGjB9uALOsqRCZnXb16FTt27EBMTIzcnNWkSRMcO3YMR48excyZMxXOWatXr8ayZcukpo86+0juOgw7OzvsaDUcWQnyv+BHJvDZf3ViUiTnJfILLKOoClNGfnUuTBlZ3xtQolIEeJHP9phGnFh+ptRykYl8RMaLLhSqbGeHKXPmS8xnGqHE14uLi8OwSTPyzVj7jxxHJcdq7OdX5PeLpOTVg8lOiYIs6Xnxaez+5p1nZGtfYMZavHWP3IyVkC6qU9tOXaQy1u37D6TqExkZyeahqKgovHjxQuZ2lcV8RggEgny3OWLECAQEBCAoKAiAKGNNmTJF5jqDBw+GiYkJbt++DRcXF4nODCMjI4nPWOacqsznbk5ODh48eCD1vNCoqCj07NkTFy9exPnz5+Hk9OOOhWnTpqFhw4YwNjaWWCcgIACTJ0+Gl5cXnJ2dpS7ilIXP58vNCp8+fcKyZcvYc3DefcvNzUWfPn3w/PlzNGvWDGvWrIGZmRk7PyMjA7dv35bIcnnP90KhEAsXLsSRI0dQt25dbNu2Dd++fZM5WgFzZ5K9vT3mz5f8G2M+q+W99sz0qKgoDB06FFlZWejXrx+8vb3ZxqgPHz5g2LBhuHTpEiZPnoxp06ax68vLL8w0ZhnxeTExMejevTuSkpKwaNEi9O/fn72wJCEhAZMnT8bly5cxY8YMTJgwgT0esjKgrPKys7Oljpes6dnZ2fDy8oKmpibMzc0RHR0ttR/r1q3DkSNHUKdOHaxbtw6VK/+4MPLixYuYOnUq+vfvj8DAQLYjlinPxsYGXC4XGzZsQKdOncDhcNhjfvbsWURFRbF5Sl4elSe/PCP+vurXrx+OHj2KZ8+e4fnz5+Byufjzzz/Z90xeQUFB2LRpE/T09LB7926JDLhjxw6sW7cOgOiY5v0uosqMBRQuZymTsZo1a4ZmzZohODgYaWlp7EgHefXu3Rvz5s3D8ePH8+3sA0RDagYGBuLKlSsARM9H3rNnj9zlt2/fjn///RfW1tYICgpih03Pzs7GpEmTZHYIF0fGAkp3zhJvv/pr7Xp8ShcC6QXnHmXKUKa+hS2jrOQsZj/UkbMq2DuqPWcx9Wfai1Sds5gckJiYiNTUVJnbZNoTXr9+zV7kDgCNGzdGjx49UKlSJYnl3717h/Hjx2PLli2oX78+atasKTH/1atXMi8EZz5DTUxMpPIAQ147yz///IO1a9fCzs4Oq1evRt26ddl59+7dw6hRozB69GhUqlRJ5mfl9u3b4evry178BQB79uzBqlWrMHToUFSsWFGi7WT+/Ply21V8fX2xfPlyqXaVL1++iNpXU1IwatQoTJo0SeICpLi4OERGRrL7lZaWhv79+yMsLAx9+vTBvHnz2Is6srOzsWbNGuzbtw/9+/eX6BxTJtsw58LCZBtAdvuWrPJUmW1k7R+fz8f8+fPzbWMqSEE5gHmtlMkmvXv3RqVKlXDp0iXY2dlJva9l7VfeNryCyGv7W7RoEWJiYtjXg9kvRdtiFW1PnjhxIi5dusRmByMjIyxYsEDuOgcPHsS///4LCwsL7N+/H46Ojux+KNrGHR0dXWD9C6NEO/vEG8xr166N3377DXZ2djhy5AhGjBghtfzGjRsxcuRIVK9eHRwOB7/88gs8PT3zvSNi7ty5El+EkpOTUblyZbSoYoYaVqIvAvejEnEvKhENbExQ38ZEYn1jaxsYaGvBlMeFlozntH3jib58mfK4sNQTfbilZGZDkJ0Lfa4m9LiKPefu/uMnGD9+PBwdf8HB3TtgqK9f4DqFKUdenQFACCBJkIXsXCGMeVxwNTgKl6Hx/QRnqK0lsc28mOFA9biaMl8vfU3RdrS0tOSWKb79w/vPIDU1Fa41a2D2hDESy7WoXxcTR3th2ep1OHTwIHr27Mluk9mueD0Yht+vkOMA4GpwYMzjgjnyAl0uu7951+M5/SLztbLUs8DyhXPRqnN3XLsaiGmjpd/bAMDJEX2wmenzYKmnzR4PpmyeliZ43++0NOVxYcLjsnW11NOGg4nsO1GUpf39GOlzNeFgoodEQRYSBFlsmSwTPYwePABL1qwHAMybMhG/OdvL3e6xI/8AAOZOnoCGNashhp8JS0tLmJubY+/evbh69Sq+fv0KIyMjiQYjAGzgsLa2lpqXn4iICKnlhUIh2wFobm4uMV/etp2cnLBx40a0b98eISEhEg9mlVWGvG0wTp48ievXr6Nr164wMzODn5+fxL5lZ2dj586dAIC9e/fC1dVVqoy8v1tbWwMA+/oFBARg3Lhx0NTUxLlz56Q6C/Nivmg6OzvDxsaGnc40mOR97fNOf/36Ndvxu2nTJrRu3Vpi+35+fggODsanT5/w+PFjDBgwAADYK7cyMzNlvo5M46KDgwMbZl+8eIGzZ8/CxsYGp06dkvpCPWrUKDx//hznz5/H69ev0aVLFwCizjVAdBWtvGPGjEteqVIliWXyTo+IiICuri62bdsGGxsbzJ07FxMnTpR6/y5cuBCZmZlYs2aNRJgERMfwwIEDaNiwIY4cOYJZs2ZJlTd16lQMGTIEJ06cYF8zQNTQk5SUhDlz5qB79+7s9pSloaFR4Hre3t7Ytm0bkpKSYGNjgy1btkBHR0fu8nmPmay/Eeb9mvdvsCCnTp0CILoSjVkvJyen0M87GTduHBYvXszum/iY9XkdP34cHz9+ROXKlbFq1Sr2yw4gyjDz58+XGmqT0atXL9y+fRv//vsvOxyEPLNnz8aWLVuQm5uLevXqYezYsYXaN+BHznr27BkAUQP83LlzZeYs5surUChUKmfNnDlT4r3L5Kz57s5wscx/GHJtc2tY6GnD1pDHnnvySv7+rF4bQx57nkvNzEYMPxM2hjzoqGmY8aKUIavORSmDyZ8Fnet5WqL3pAmPK/O1suCJ5hvydORuR3z6iUP7kZqaijq1auLPaZKfXw5N6uPduNHw/ms1Dv99CKMG/s6Ww2QF8XowmOxkqK0lNU8zVZfd37zzHNxqyn69TPSwYclCNGrXGTeCr+J/E0fL3C+uUHSOq2ikL7HtvPVhynAw0WP3w8aQV+B7WVEWYtnRwUQPPHnZ2tIQ44cNwv9Wiu4Y+d/0SWhRU7rTnxH6/T1nwuPCxdIQgqwcRCbyYWtrC32x7xTM53Nhzhd56evrsw1cDg4OCuepkJAQ+Pv74+PHj+jUqVOB5UREREhlHMaMGTMgEAiwefNm9k5B8fmnTp3C06dPUbFiRVy4cEHibiFGrVq1JM5T4ud7R0dHjB49GkeOHEHjxo1x8eLFfO/oY67Ql5VlxV+D/Kb7+flBIBCgQoUK8PX1lXheipOTEzZs2IA+ffrg0KFDWL9+PdthampqCgDs8Oni5OWfvXv3IjExERMmTJB5FfexY8fg4OAAf39/bNiwARwOBxEREXKzIYPpnNTS0pKYL2/6+vXr8fLlS0ycOBFPnjxBdHS0RA6Lj4+Hn58feDwezp07J3FRGvO6hIeHY9u2bbh9+zabt5jyuFwupk2bhsmTJ+PVq1fo0qULe8z/+ecfVKhQAcOGDcPt27fzPXay5Jdn8uafhQsXon///gBEDUrdunWTu91x48axy4nnP0A0nNTVq1fx6NEj6OrqQk9PT6IcVWYsoPA5S5mMpQhnZ2fUrFkTly9fRmpqqsy/Z4axsTHGjx+POXPmAACWLFki9b4Rt2HDBgCiBkXx5yNraWlh3bp1OHnyJL5+lbxQvDgyFlB6c9aDx08wccIE1KzmhH/27oKhQcHtV+IKm7MUzVjKlFHac5b/IVFbFrMf6shZlt/bZ6ReKxXmLEs9bTZj8biaKs9ZTBZi2uJk5Szu92PtaKYPO7EyXTp4yNymi6UrFkwZj0nzvPHo9g308WgEAHJzFluOnPOdOFnn0tzcXGzfvh2A6Ltn3nOSk5MTPn/+jFmzZuHSpUtYs2aN1HbHjBkjdUHEypUrcfXqVdy/fx9Xr15lh1h+8eIFLl68KLddZdmyZXj06JFUu8q2bduQkpKCrl27su1W4pycnNCoUSP297179+LBgweoW7cu/P39pS4g2717N+7evYv//vsPGRkZqFWrFgDlsg1zzi1MtgHkt3sxVJ1tmLoDkm1PN27cKLCNqSAF5QDxfKJMNlGkPU18v8Tb8BQhq+0vNDQUhw8fhpubGzp37oylS5ey+6VoW6wy7cmTJ09ms8PSpUulvuOIY+5g/fPPPyX6twAo3MZtZWVVYP0Lo8SH8RRnYmICZ2dnqeENGJaWlvj3338hEAgQFxcHGxsbzJkzB1WrVpW7TR0dHZmNkgPrVMHIX+2x9PpL3It6J/cZfQIDc0TqcmFrxGNP7uLivp9QKhryYPf9pPY+kQ9BdiaMeVzYGBZ8xeq1uw8xbOQYOCv5jD5ly8mvzswz+nKFQHULQ+hraypVBhOQLPS02W3KwtMSBQcTHlfm65WdJboiyFBX/glffPuPvn/xGNm/t8xyZ3gOxLLV6/D+wwfRlQBVK0s1ROVdz1BH9GehpamBWlZG0BTr5BWm/AhIedd7n8hHWkY6njx9hFfPnuJLdAzSBQIIhUIwF0RGvn8v9/URZonuGqxiboxKRrrs8aj4/XU30NaEobYWBNmZ0OVqwlxPGzrfX08DbS2Y59PJqgzmWHI1NZCRk4sEQRZsDHlSxz86Ng7b9vmyv5+7dBmzRg2VGmoOAD5/+YrI9x8AAGP+6IUMjhZ71yQgOnn369ePfU6Vqi1evBiRkZFISUnB/fv38eHDB1SoUIH9Ii0uIyMDly9fxr179xAdHY2MjAwIhUL2LsqXL18WqS58Ph9Tp06Frq4uNm7cKPPO49DQUMTExMDCwgI9e/aU+5koDzN0Z3p6Ok6ePFlgRx/wYziN/DpxZNmzZw+Cg4PZsdyNjY3Ro0cPqeX09PTQuXNn+Pn5ISgoiG24qF69OgDRmOvv3r1TKAycP38eQqEQHTt2lHkXOCC6Q+r8+fO4desWG0pVberUqUhLS8OePXvY109cbm4uO7TZ77//LnMb9evXh4GBAR4+fAiBQCB1l4OVlRX69++PgwcPsh1NgKhDtWrVqmrbN3HLli1jn00UFRWFa9euoV27dmovVxbmKjXxKw6LQpl9Y8bS79evn8whP4YOHSq3s693796YOXMmTpw4UWBn35w5c9jng4aFheHZs2fsF56i0tPTk5uzmNeUGaJPmZwl6+6cdr9Yobld/kN6CAzMEcnVhKkuV2bGAiBxvhY/z8XwRblBX4mLnZRV2DLk1bmwZTAXVBV0rud+v2BK73tGyFsG0xBjoKsjdzvi0+/eDwUAjPi9l8zlJw3pD++/VuPtu/dISYgHdAxgzONKXFCVdz1myDEdLQ2peSliF1TJKi8nJwd3797FlzcvERcbK5Wx3kS+k7tfWRmiz2hrEwOJZWTVJ4afCR5Xk81DOpoaKnufiTe28riacrcbHRuHTbt/NACfOn8J00YMkZmxmDoCogynrr+Jz58/Y/78+cjNzcW3b99w48YNpKen448//pBoHGdERUXh3LlzCA8PR1JSEnu1LtMw/vLlS4U6++Q5d+4cTp8+jfbt26NXr14yl7l48SIAYMCAAfl2DMgiPnRn5cqVcenSJbmZg8FcyaxslgJ+PCONuZuzX79+Eh19jF69esHU1BQJCQkIDQ1F06ZNAYjy1KVLl7B//3707NlT4oIUec6dOwdAfkaxtbWFk5MTnj9/joiICKmRL1Thy5cvWLRoEaytrfHnn3+yFzCJCwoKQnp6Olq3bi23w8bDwwPbtm3DrVu3pC6uAgBPT08sWLAAmzZtYrPTnTt3cOfOHXh7e6tkSNT8pKenSzQ6nj59Gn/++afMYcOzs7PZoR0HDRokc3tDhgzBo0ePVFrHksxYiurduzeWLFmC8+fPo1+/fnKXi46OlmgEP3LkCMaPHy/7e+rnz2wukvV6K/o9VR0ZCyidOevuw8fo4zkSrtWL9oy+wuQsZTKWomWU9pwV+V7UluViWVXiwnJV56yvKel4EHofDx8+ktmWVdScZaCtxWYsfTXkLCYLaX4/nrJyFtOxoydjXmpaGi5cvY6HT58jNiGBHT73S3QMAOBt5Du1fu8ARM/rjYqKwi+//IJ6/2fvzuOiqvc/jr8RZHFBRFDAFGkBbdNMLdPKypZbaXbLezPNtOW23bJbtlh607Rs9ZYtdlutrGs3ra5pmuYvNC1TNMyFcANUQAUEWcQBgd8f4zAgAwwwZ+YwvJ6PR49Hwsz5nOHDwIfve+Z8zz/f4TuKbNu4ONoTT6q5tYPN2LFjlZCQoPj4+Mqwr7HrKrb56m9/+5tTj8v2d/RNN91UI+iTrC9AvuSSS7R161b9/PPPlX/7evNsU5vnn3++zjUmV2rIbOIJ5eXluv/++1VRUaG33npL33//vaH1HM0Otc0trpodjGKqsK+wsFC7d++u9a3hNoGBgeratatKS0u1cOHCOge9usxYnawpPybVGvS5w6r1v+n6MeN1RgODPleyBX3FpWWK7dSuMuhzt4KS40o5YP1FGtmpo1P3ST/xCruYbqc4/HxIh2CFhoTocF6e9e2xp3ZzeDubopIyHTixl2Owv1+1oK8+KWlpuvPvD2vPnj213ia/oLDWz6UfOHjinEOq9WOzE690G//Ikxr/iPXVB76+vurYIVjnnX2m7hr1F/1leOMWUo6VlSuj4JjDoE+S7nliirIP52rENVdq8/YkrVmfoNfem6tH7ql5XeL9mdY+hYV2VLu2bWWpEvTZxMTENOo8nfHtt99q48aNlf8eMmSIPvnkk2qXAJKkdevW6a9//av27t1b67Fsb+9vrBkzZigtLU3Tpk2r9THb3jYfFxfX4P0BExIS9N///rdywWnevHkOw7eqSktLVVhYqFatWtW45FZ91q5dq7Vr11b+27apriO2r7ftFUGSdd+xK6+8UitWrFCfPn00ZMiQapdedXRZRNtz7IMPPtAHH3xQ5/llZWXV+JhtQ+GmWLNmjRYsWKDLL79ct9xyi8NLKObk5FR+v5z8veZITk6Ow0WsCRMm6OOPP9Zbb72lF154QcuXL1dSUlLldfyNlJCQoJkzZ6p169b629/+prfeekt33XWXtmzZ0uDvFVewLRrV9c4KZzX0sdku0VHb87Zjx47q0KFD5TlWFRMTo/POO08rV67UkSNHav3a/e9//9Onn36qkJAQjRgxQnPnztXtt9+uX3/91eEfRg117NixWucs29c0NzfXZXMWzCUnN0+S1NHJ525DZqzMAwfUMfp0l5ynIzv3pGr4Hffpj521v/jFmRmrU8eQBtc2YsaqT0NmLHfJzc2ttu9c69at9cADD1TuLVzVtGnT9Nxzz9V56Z6mzFPHjh3TQw89pICAAIf1bWzzlO2FRQ3x+OOPKyEhQZJ137/4+PhqlyZzxHZJHtsr0Rvi5D39avtd4+Pjo5iYGOXm5labp+6//3699957+vbbb3X22Werb9++lS9MOfkdSTa2eeriiy+u9/yysrJqLIiNHz++1j2DnPXoo48qPz9fb7zxRq2/G23nuXLlynrnN0dzn2S9FO748eP1xhtvKCkpSX5+fnr99dfl7++ve++9t3Lh0iiTJk1ScnKyBg4cqIqKCq1bt05PPvmkw0WgnJycygW+2r4PjPi7yZMzlrNsYV99s8k999yj7OxsjRgxQps3b9aaNWv02muvVbvik41tvgsLC6v1RQHOfL1byoy1/rfNunLUOJ0d17SgzxsZOWcdOnRIOrPuYLgpdqem6dZ7/t7ktSwzzFnzv/6f5n/9vwbd59vlKzX+kUnKyc2t9TZ1PX5XsX39d+/e3ejfd/X93qh6mebGrqs0dL6yvTB8ypQpmjJlitN17r//fr3//vteOds4snz5ci1btqzONSZXashs4gnvv/++1q9fr/Hjx2vgwIGGh32OZoe5c+dq5syZNW7rqtnBKB4N+yZOnKhhw4YpOjpaGRkZeuaZZ+Tr66tRo0ZJsr7yoGvXrpVf2F9//VXp6enq06eP0tPTNXXqVJWXl1e7rIGzliRn6n87DhL0mSTok6x79h07Yv3lGhVhzFtZ61JUUqYdOYWVr7puaBZw38MTtWfPHg0dcqn++dA9OvOM0xXcvp1at26tkpISBcScVet9y8vLlbLvxC/d4NAG92NQ//N1eg/r/mjHLCX6Y9durVi9VitWr1Xy7j2a8o+ar3Ctz7HSslqDvk8XfKNvlq1Q57BOeu/lGdqStENX/HWsJr/0L10/9DLFnua5H2qO2BZrsrKy9OOPP+rhhx/WpZdequ+//77y7dRHjx7ViBEjdPDgQY0fP1733XefTj/9dAUHB8vX11c7duxQXFxco/cHk6zXdH/11Vd1+umnG7bB7LZt29SmTRt99913evLJJ7Vw4UJ98MEHDi+NbGO7vn14eHiDA4WPPvpI48aN08KFC2vdfLo+X3/9tf75z39q/vz5WrRoUb1fY9u7nvr06aPevXvX+Hx+fn7lH9UXXHBBjc+fvKFwVcuWLXO4D09VJSUlmj59ulq3bq0333yz3vOUan+FXVW1vRPgvPPO08UXX6z3339fU6dO1euvv662bdvW2VNXsFgsuv3223X8+HE9++yzmjx5srZv364ff/xRjzzySL1/EBjBFgQ3NXT3xGO76aab9Ntvv+nbb791+Oqv7OzsyldHzp49WyNHjtS6deu0adMmzZw5s94/jByxzVm2PTHeeOONWucs2yJfYGCg9uzZ0+Q5C+ZjW4jxxIzVVDf/7UH9sXOXBg8erCkP3avze8U2asaKceKFFyczYsaqi1lnrLPPPlsVFRU6fvy49u7dq3feeUcvv/yy8vPz9fHHH1cuSn311VeaOnWq2rVrpzfffFOXX365oqKiFBQUJB8fHz311FOaOXNmk+apF154QXv27NHkyZNdcklSRxISEnTBBRdoypQpuuGGG3TnnXfq999/V0RERK33sYVvVS+H7izb12PYsGFavHhxg+8fGxurzz//XO+8845++ukn/fHHH/Xexzan3HzzzQ4vQ1aVo3d7DRo0qHJ/kqoKCwu1cOHCeuvHx8frP//5jy6++OI692Cznefpp59e+U7G2tS18Pjggw/qjTfe0JtvvqlRo0ZpwYIF+stf/lJnT11h1apVmj17toKCgjR37lyVl5frvPPO05tvvqmbbrrJqStwuENzmLHOPfdcnX766fruu+8cXhFDkj799FN988036ty5s9577z1t2bJFV1xxhSZPnqzrr7/eZe/iaIkzlhmCvqIq+6yZTXOes+540Pqi9T9dMUSTHvhbo9eyzDBnxXTvpjPPOVchDrZiWrDk+xrfQ+mZB/TX+x5W8bFjevz+uzX6xuHq0a2r2rVtq1atWmn5qp909a13qEKNn1ucZft9FxERoauvvrrausbJ6toHvi5V56/61lWqcrSu4ixbncGDBzvci76qqvsixsbGas2aNZo0aZLXzTYnKykp0YMPPljvGpOrmH02ycnJ0VNPPaWOHTvqxRdfNLxebbPDa6+9pvHjxxvyDlAjeTTs279/v0aNGqWcnByFh4dr8ODBWrduncLDwyVZNyGv+q6FY8eOafLkydqzZ4/atWuna6+9tvIV8A1F0GeeoM+20XH7AD/tS0uVJJ0V69wf7l0jIvTHrj3as3efw88fyS/Q4RMDuO37yhFb0BfU2ldd2jb80jt/7NqtP3bsUGhoqD548zV171h98N2Z4njzdZuknbuVX1CosE6dFNIpvMH9uGvUSI37603VPvbvT/+je5/8p158+z09+fd7HF52zpHSMusvx8DWvg6DvvTMA3ron9Y9F/794nSFhYbqskEX6v7bR+utufM0/pEn9dPX/6n23O0aYb1mdPbhXBUWFUk+Nc8lNTXVqfNrivDw8MrLIg0fPlxPPPGEvvrqK0nS6tWrdfDgQfXt29fh3gkN2RC3Nn//+99VUlKi2bNn13mJp+7drcPujh07GrwY1qZNG3377be6/PLLFR0drfPPP18TJkzQJZdcUuuC2Pbt2yWpxobTDWF751pqaqoqKirq3Kj65HevtW3bVq+++qpeffXVGvfp0aNHjQ2CbbUGDRrkcBCq79rdPXv2rPVVUkOGDKk37Hv55ZeVkpKixx9/3OGly2zCwsIUFBSk4uJivfLKK40eyCXpoYce0siRIzV16lQtXbpU9957r+HvrLMtzpx//vmaNGmSfHx8Kjdu//DDDzVy5MhaQ1Oj2K5pbnv3RGM15rHZvm9r+1mVl5fn8F19Nn/+8581efJkLVy40GHYd//99+vQoUO64YYbKl8VPnfuXA0aNKjy8h/nnntugx6nbc6ybfzcrl07LVq0yOGcZfuaFhcX68wzz2zynAXz2b7D+q44I2asyC5dZNSFZv7YtVu/J/2h8E6d9PLLL+ucyI7VLqPk7IzVJTxM3bpGNri+K2es+jRmxnI3Pz8/nXrqqXrppZe0efNmffrpp7r55psr9/j473//K8l6CT9Hl3dq6jy1Z88evfjii+rRo0flZahqY5unnFkcOtkFF1yg77//Xh06dNBTTz2l6dOna9y4cVq6dGmtr7Z35TxV17srUlJSJNWcp84888zKy4dXFR8fr8suu8xhrZ07d+qJJ55Qv379Gnyud911V+XlR6tKTU2td0GstLRUDzzwgPz8/PTWW2/VeVvb1yQuLq5Jr3I//fTTde211+qTTz5RQUGBSktLq+3DbYTCwkKNHz9eFRUVev755ysXi6ZPn67HHntMd9xxh37//fdqC5KdOnVSQECALBaLUlNTHX4/GfF3kydnrIb485//rJdeeknff/99jUujpaenV/b03//+t8LCwnTZZZfp/vvv11tvvaXx48frp59+qv536onnUXZ2dq17ATr6ere0GcsMQV9BYaH+/vSzbq/rLCPnrLrWsprqj127te0P61rWf/79pjoEVV+naG5z1gXn99WjT01Wr/D2NS67Gf/L+hph37cr/k/Fx47pxj9dqRefrhm+1/f4Xcn2+65Tp06aO3eu03uSVZWSkqI+ffrU+Ljt59gpp9jfSVrfukptunfvruTkZP3xxx8Og7GTRUZavy9uuOEGTZw40ek6kjWI9MbZ5mQvv/yyduzYobvvvrvONSZXKCoqavBs4m5PPvmkcnJy9Pbbbxv6809y7+zgLp77S1HS/PnzlZGRIYvFov3792v+/PnVUv74+PhqA/2ll16q7du369ixY8rOztYnn3zSqFdOStINsV1adNAnSXvziz0e9GUUHFPRibAv0KdCP/68TpI0eMD5Tt1/yMABkqSPv/za4ec/nL9AkhQT3b3WjS+rBn1nhLZVA67cWelwrnWBNywszOE7o+Z9VfdlBL5cYr10zIUXXuiyftx28whJ1le/ZR+u/XIEVWUUHFNpuTVcCqzl8qF3TnxKeUfyNebPN2jENVdWfvzFpx/TqdHd9HPCJs16t3pYdkpUpE6Ntg4Sn3/9bY1jWiwWffnll06doyvYflkkJSVVfuzw4cOS7AtDJ5s3b16Tan755ZdasWKFRowYUWPz1pP169dPYWFhysrK0jfffNOgOjfffLMuv/xySdZFn1deeUVFRUW69dZba72c1vLlyyVZX2nVWOedd546duyoI0eO6Ouvaz4fi4uLK6+fbju/xrJ9/RYtWmT4dcxPlpaWpueff14RERH65z//WedtfX19deWV1ueIbfGzsW688UZ1795dL774oioqKvTggw826Xj1Wbt2rWbNmqWAgAB9/PHHlT/XevTooZdfflmSdRB2FG7Z9r2x7c/kSn379pVkX1BtjMY+Ntur2/773/86fC598sknddbt1auXevXqpe+//15FRUXVPvef//xHX375pTp16lRtk/MLLrhAEydOVGlpqcaNG+ewru2PX0dfb9ucNXnyZEnSfffdV+uctXXrVknWa867Ys6CuZSWlho2Y50R00ORJ17UYwTbjBXR2fG7z+ubsRZ+Z52xrr60/sv5OKsxM5YzGjNjSZK//4mfA2VlLjsXZ4SGhkpyPE9FR0fXuP2hQ4e0YsWKJtV86KGHdOzYMb322msO97SryhYo/Oc//6nxc7c+M2fOrHxRzT//+U9deOGF+v777/X66687vH1paWnlfntNmadsM1LVS7JX9fXXXys3N1fBwcGNWsSqyjZPNXVGaYzXXntN27dv19///nedc845dd72iiuukL+/v+Lj4yuDlcaaMGGCCgsL9emnn+qCCy7QgAEDmnS8+jz66KNKSUnRJZdcogkTJlR+/JFHHtFFF12kPXv21Ljah5+fX+U7GD/77DOHx/30009dfq6enLEk5+fHm26yhgK2F2xWdeeddyovL09jxoypto3Biy++qFNPPVU///yzZs2aVe0+p5xySuW+eZ9//nmNY9b2d2pLmrHMEvRdM/pO7U5zX/DSEEbOWaf2iK51LcsVmrqW1ZzmLEcO51kff7SD7TQqKiocrl8ZpX///goLC9P27dsr9zhuqNp+P9g+btvzT2r8uoptvnrvvfecuv0ll1wiybom1pQrOzijucw2VdnWmE455RQ98MADBp6h1QsvvNDg2UQydp2nqvXr1+uDDz7Q+eefr3vuucfQWlLds0O3bt1cOju4i0fDPk+6Lq7hrzhxBTMEfQWF1j92LcfLPR70ZRQcU9vWviotLdWU515QVs5hDRl4gWK6O/f2/7tH/1XB7dtp05Zten72nGq/OH7buk0zXn9bkvS38eMc3r+krLxa0NeQPfqqij2th3x9fbV79279/OuGap/7dvlK/eu9j2q9b+r+DM3+0LpI/Midt7msH9+tjJcktW3TRmGh9e8dYutH6zq+Bu/Om6/v439SVEQXzZ5e/ZJybdu00UezXpCPj4+mvPyakndVf0Xyw3eNkyRNnfWGdu62f66srEwTJ06svJSkq+Tk5Dj8YzUnJ0dPPmm9JvyZZ55Z+XHbq2dWrlxZ437vvvuuvvjiiyadzyOPPKI2bdrotddeq/e2fn5+evrppyVZNz3esGFDjdts2LCh2vXWbU5+tfkDDzyg6667TgkJCQ7DqeXLl+udd95R69atHb7byFmtW7euHBQmTpxY+apzyfrHz4QJE5SVlaVTTz218o/0xjrvvPN00003ad++ffrzn//s8BUzRUVF+uyzz+p9l15DTZ48WUePHtWkSZOceqXTM888I39/fz322GP6+OOPq13a02br1q0OFyyq8vX11fTp03XdddfpH//4h6Gv9jp69KjGjRun8vJyTZs2rcYryu+55x5dccUVSk9P18MPP1zj/rZXCzb2D5S6XHTRRQoICNDmzZsdLoLWpymP7eabb1bXrl21d+9eTZo0qVovt27dqhkzZtRb/6abblJxcXG1VyceOHBAf/+79fI0b731lrp0qR6aTJs2TWeeeaZ+++03Pf/88zWO6aqvt22T96aG8TCf0tJSTZz6nGEz1mP33WXIedvYZqztO3ZW239Xqn/G2peeqTc+tC5u3Dd2lMvOqaEzljOaMmOdEmm9DKHtXQWulJiY6PCdPj/++KO+/da6AOZonnr33XdVUmLfo/nIkSO6/fbb63wHdH1WrlypJUuW6Nprr63xjh5Hhg8frvPOO08ZGRkaOXJkjcdx7Ngxh68Wl6rPU35+fvrss8/Uvn17Pfnkk/r999+r3bakpEQPPfSQsrKyNGTIkCbt0XHDDTfojDPO0MGDBzVhwoRqL/JISUnRo48+KkmVexY2xWOPPaaQkBDNmjVLr776arV+Va3Z1Be8nezIkSN69tlnFRkZqWnTptV7+y5duujBBx9UUVGRhg0bpi1bttS4jcVi0aJFi+p9F+eVV16psWPHasiQIfW+aKupfvrpJ7377rtq27atPvroo2rfU61atdJHH32koKAgvf3224qPj692X9sM8sYbb1T+frZ56aWXtGnTJpefrydnLMn5eaZ///7q1q2bFi1aVO358e677+r7779XVFRUjf2GqvZgypQpSk5OrvZ52/lMnTq12veQq/5Obc4zlpmCvq3JO/T28/X/zHA3o+esv9/VtP3D6lN1LWv1L79W+5w3zVm16XWGNaRfsGSZMg/aX1BSVlamf778mn5OcP3P29q0bt1azzzzjCoqKnTjjTdWbkdTVVlZmf7v//5P69atc3iMOXPm1Pid8q9//Uvr169X+/btq20Fct555+nqq69u8LrKI488ovbt22vRokWaPHlyjRekHjp0SGvWrKn899ChQ9W/f//K/dcc7TeYm5urd955p8lBUnOZbaqyrTHNmjVLbdq0cel5nez777/XF1980ajZxPZ7eufOnXXuy91Utln3rbfeMvxqJvXNDi+88ILHZoem8OhlPL1J0k77H9eZBceUe6xUOW38daDKJSE3bv1DEyZPVffu3fSvyY9rT9reJtWsrU5dCgqLdPsjkyRJ0R2CPBb0FViOK6PgmKLaB2refxfopdffVE5OjrpGdNG/X5zu9HG6hIfpszde1ch7H9LTL87Spwu/0Xlnn6lD2Ye1at16HT9+XOP/epNGjbxJWUdr/pBfGr9GWflF6hjUWq1O/JDbkmR9Am/csk1PPv9ytdsfyS+QJOUeOaInn39ZI6//k84/92yFhYZq7Khb9NG8z/TX8Xfp4gv6KapLZyXvTtGmLds0ecL9lcNaVY9Mm6kPv1ioI0eOqG2bNvr4P1/o4/9UD5V2pVq/T9Zs2KhHn5qiW8bcpqhzqu9H8eXipfrjRIBmsZToj917tHyV9ZfrE/ffXe9lD2xBX1T7QLWu5R19qfv269FnX5AkvfvidHUMqXkJwUsuHKAH77hNsz/4ROP+8YTW/u+Lyh/OD4wboxWr1+rbFf+nS4f9WX3PP1+RkZFKTExUZmam7rvvPs2ZM6fO82yIffv2acSIETrttNN0+umnKzQ0VAcPHtTPP/+sY8eOKSwsrNri/HnnnacbbrhB//vf/3TeeedpyJAhCg0NVWJiopKTk/XUU0/pueeea/T57N+/XzNmzHD4SndHJkyYoOTkZL3zzjsaPXq0XnnlFcXFxSk/P19//PGH9uzZox9//LHaZRhq8+GHH+rcc8/VSy+9pGuuuUaXXnqp0tLSdNNNN2njxo1q1aqVnnrqqSbve/PUU0/pl19+0ffff68zzzxTl112mYKDg/XLL79o7969Cg0N1cKFCytfEdQUH330kfLy8rR06VLFxcWpd+/eiomJUUVFhf744w8lJyerpKRESUlJNcKTpti/f7+uvPLKet+dadO3b1/NmzdP48aN07hx4zR58mSdeeaZCg8P1+HDh7Vlyxbt379ff/3rX/XnP/+5zmONHTu2Qdd9b6zHH39cu3bt0oUXXujwMhs+Pj764IMPdM4552ju3LkaOXKkrr3Wvnn6TTfdpB9//FFjxozRVVddpVatWqlDhw567LHHFBfXtHfUBwYG6uqrr9aiRYsUHx/vdB9c8diCgoL02Wef6dprr9Wrr76qb775Rv3791dOTo7i4+M1bNgwbdy4scZlZ6u66aabNGPGjGp7XN599906fPiwRo4cqb/+9a817hMQEKC5c+dq4MCBeu655zRixIhqeyrcdNNNeuWVVzR06FBdfvnlat/e+iKiF1980eE+BI6UlpZq9erVlV9fM6o6Z+UdK1VGwTFZDrZRkJ8xc0xTalQ9V0+b9+VCTX/1dUNnrLtH/1U5DmasH376Wccslmofa+yM9fdxY/T6Bx/r/vvv17z+56tbZJd6Z6yJz76gj75YqMN5eWrbpo3e+fQ/eufT/1S7TdUZa9zDj+veO++QX6fq+3c1dcZyRlNnrAv79lFURBf9tnW7+l59g3rFnqGiMuuiuO3FQ401d+5cvf322+rTp49OOeWUyn2MbYHX9ddfr+uuu67y9g8//LA++eQTfffddzr11FN14YUXqrS0VKtWrVKbNm10xx13OLxcujP279+vwMDAGn+M16ZVq1b6+uuvdfXVV2vp0qXq3r27Bg8erE6dOik9PV2bN29WSEiIU+82PPXUU/Xmm2/q9ttv16233qqEhAQFBgbqgw8+0OTJk3XgwAF17dq12ruzG6N169b64osvdOWVV+q9997T999/r4EDB6qgoED/93//p2PHjunaa691SVB1yimn6H//+59uuukmTZw4US+99JLOPvtsRUZG6siRI0pKStLu3bt1wQUXNOkFYSez7XH2zjvv1LoX0cleeOEFZWZm6vPPP6/cW+jUU0+Vn5+f9u/fr8TERBUVFWnp0qV17tsnSR9//HGjLo3WEHl5eZXPvZdeeqny1d9VxcbG6rnnntMjjzyiO+64Q1u2bKl8IdmwYcP0wAMP6K233tLFF1+sSy65RJGRkfr999+VlJSkCRMm1Pou08by5Iwl1ZwfO3a0LvCfPD/6+Pjoz3/+s15//XX93//9n66++mqlpqZWLg6+++67lfet6pJLLtGDDz6o2bNna9y4cVq7dq3979QHHtCKFSv07bffqnfv3rrsssvUsWNH/frrr03+O7U5zFiS4znrt9Xp+seUaTotOlovPDXRpZczdHbOKjp6VH9/+lntTkvT289Pk28taxWe4o45a+xfRyolr+Zeha6cs+4aM0r//nierh893um1rIbOWX9//CnddOsY9Qqv/o4nd8xZdRl25eU6/9yztfH3rYq9+CpdemF/tW3TRr/+tlkZBw/piQf+phffetfQc6jq73//u/bu3auXX35Zt956q5577jmdfvrpCgoK0oEDB5SYmKi8vDzNmTNHF154YY3733PPPbr88st18cUXq2vXrtq6dau2bNkiX19fffjhhzX2qZ05c6aOHz/ucF0lNTVVmzdvrrGu0r17dy1YsEA333yznnvuOb3//vsaOHCgWrdurbS0NP3222+69dZbK6900KpVK33zzTe67rrr9PHHH2vBggXq3bu3unfvrpKSEu3Zs0dbtmxRWVmZxo0b5/Adps5qTrONjW2NaeTIkS7ZPqg2eXl5uusu64s0GzObdO/eXf369VNCQoLOOecc9evXT4GBgQoLC9MLL7zgsvPcv3+/7rrrribtE+kMZ2aH/v37e2R2aCrCviYKC+2oNkFBGvOg89cdTt6xU0NuHm3gWdUvKDBQ3bo0fv+opiooOa6o9oGKah+olDRrCDDmLzfp6fvuULiTi5M21195uTYt+0YvvvWuVq75RQuWfK+2bYJ08YB+umfMLfrrDdcp7aThqOTEvnSJmzcrcfNmh8fd+scObf1jh8PP5RcU6sW33lXP007V+eeeLUn655OP6ZSYU/W/rxZq4+/blOibpHN6xmn+26/przdcV2NAKiuv0BeLl1a+wrno6NFaL+EgSbtT92p36l5d+adra3zuu/9bpe/+b5Uk6y/Sjh066PJBF+quUX/RX2+4rsbtq6oa9Dnao0+yXr5g/D+eVGFRkcb/9SZdN7TmtbFtZk6aqO9WrtK6TYl65Z339fj9f6s8r6/ef0uzP/hE737+X23atEnt2rXTxRdfrK+//lq//fabS38QnnLKKbrtttu0bds2JSQkKC8vT0FBQYqLi9PVV1+thx9+uPLa4TZffvmlXn/9dX3yySdas2aNAgMD1a9fP82ePVtnnHFGk8K+M844Q4899pjTt/fx8dGcOXN0ww036JVXXtHWrVu1detWhYSEKCYmRrfffrvT+3d17txZc+fO1bXXXqvbbrtNmzdvVl5enrKysnTLLbfowQcfdMl1sFu3bq3Fixfr3Xff1SeffKKffvpJpaWl6tatmyZMmKCRI0c6vH58Y7Rv317Lly/XF198oXnz5mnjxo1KTExUcHCwOnXqpNGjR2v48OH1bgDdUP7+/nrjjTcadJ+RI0eqf//+mj17tlasWKG1a9eqrKxMXbp00emnn66///3vlcGPp/3f//2f3n777cqNmn19Hf/xHR0drVdeeUX33HOP7r77bm3btq1yz5H77rtPBQUFmjdvnr777rvKS4KMGTOmyWGfZP0DaNGiRZo7d26DFqJc8dguvfRS/frrr3rmmWcUHx+vr7/+WqeeeqqeffZZTZw4sd49C/r06aNTTz1VS5YskcVi0eeff67Fixerc+fOevvtmn9E2/Tv31+PP/64Zs6cqdtvv10bNmyo/MN3+vTp1p+vX32lb775pvLVi5MnT3Y67Fu8eLGys7M1fvz4ysvymUVj5iwzaBMUZPgrkZ2xJzVNoaGhuvPWv2ji3bcbMmPVZu2GjVq7YaPDzzV0xvrXtKd16mmn651PP1fi1m3akvRHnTOWZH2Ftm2vG2dnrBtvGK6uJ4V9TZmxnOGKGcvf31/ff/ahnn5xln7Z+Js2b/9D5eXlysnJaXLYd/311yszM1MJCQnavn27LBaLQkNDdeWVV+ryyy/XY489Vu1VtzExMfrtt980efJk/fTTT1q8eLEiIiI0atQoTZ06tcmz3uOPP96g3+3R0dFKSEjQ22+/rQULFuiXX35RSUmJIiIidOmll+rWW291+lhjx47V0qVLNX/+fE2cOFFvvvmmdu7cqS5duuiuu+7SQw895JJ56rzzzlNiYqJmzpyppUuX6uuvv1ZAQIDOP/983X777brjjjtq/R3WUJdccom2bdumN998U0uWLNGGDRtksVjUuXNnde/eXWPGjGnyFRkcufTSSzV6tPN/D9veXTlmzBi9//77+vXXX7V161a1bdtWkZGRGjZsmIYPH155qTBPmzBhgg4cOKArrrhC9913X523++qrr7RmzRo99thj1WaBN998U+eff77eeustrVu3TgEBAerfv3/lvkquDvskz85YDZkfbWHfwoULddVVV2n8+PGV+yNWffHByWbOnKnvvvtO69at0yuvvKLHH7fuz2Wbo2bPnq0PPvhA8fHxateunQYPHtzkv1PNPGNJzs1Zvyf9oUv+7PzPSqPc/rC1X2aZsST3zFmOXlAluXbOmvH0k+rcPUaLv/nKqbUsqXFz1pCra/5cMXrOqo+fn5/iF8zTzDf+rYXffa+Va39RcLt2uqhfXy18700VFBa5NeyTrEHMiBEj9OKLL2rz5s1atmyZ/P39FRkZqSFDhuj666+v9YXC//rXvxQXF6d///vflX8zXnPNNZoyZYouuuiiGrdv165dresqkZGRta6rXHXVVdq6datmzZqlZcuWadmyZfLz81NUVJRuu+023X333dVuHxUVpXXr1mnu3Ln64osv9Pvvv2v9+vUKDQ1VVFSU7r33Xg0fPlyBgY7XJBuiucw2No1ZY2qMCRMmaP/+/Ro4cGCjZ5OFCxdq0qRJ+vHHH/XFF1/o+PHjio6OdmnYFxoa6tLjOVJRUWHq2aGpfCqMvmCuyeTn56tDhw56d1gf3d23R723P9auk1IG3aaYrhEKrOUVR3vTM6pdR9r2jrvwNv4Kbxug4tIypR0pVoBfK3UPDmr0pSJPdnKdupSVV2hvfrEsx8sV3SFI3bqEqXvX+q8Rn5Z3VFlHS+oMghrCUbDk6hqOVK3RIaB1ky/dmbpvv2IuvEwfzXqhcjPhhjyOsvIK7TxcpMuvuVandT9FP31V8xq/J5v7xUKNf+RJvfPOOxo2ZJBh/Xj4uVf1+tvvaNbz0/WP229pcg1Hco6WKCXvqGJiYpxajJ46daqmTZumjz76yOFmubUx+lW71DBfDXfV8YYaPj4+6tq1q8PLwbqSo8cxd+5cjR8/Xs8884ymTp3aoONVVFTo3HPP1c6dO7V//3517NhRv/32m84777zKxSUfHx9FR0d7dFPk2jz22GN65ZVX9O233+r66693S836foYOGzZMS5Ys0aZNm5wO5I8dO6aUlBTFxMRU+6PMNmetGjdYl0TX/aIiZ2YsqeacZXs1eExH49/Z19gaYaEd652zbL8Le4W3V9vWxjwOd9RwdR1HM1ZjavS4YIh6dOuq+AWO97yqyjZjfTPvI3WNO9uwr9fUV2dr2qw39M9//lOP33GrYT0pKi1TUlaBevXqVe2S0z169FBaWprL9kvxht+F1KBGU9Q1z3hq7nXljBUWFqaysrJqc5YZZqzy8nJFRUWpoqJCmZmZhl/mqy5GzFgSc1ZdnJmxJO+Zs1xdw9Gc1ZgajZmz3nnnHY25ZkizmUlrU9uc5WoN+T1iuxxjQ2e85vQ7lxrOqW8OMPpxDBkyRKtWrVJKSop69OhhWB1nH0dj15MbUqOhbOf0wQcf6Nxzz622llWb2uYCR3hnnwt07xpVbdhwFCz17d60PeEccTZcsgVLp3YuM8UefUaGevUpddEefU1h60dxaZlat/LxyDlI5ugHADSUj4+PZs2apauuukovvPCCXnzxRU+fUoPcfffdatu2bZP3WnKVDRs2aPHixRo3bpzL3nnraifPWTlHSxTshoUVo2sAAGAmJ89Yr7zyiqdPyaFWrVpp9uzZ2r59u3JyclzyjlojNIcZS2LOAgDAmxD2GchswVJLD/okKftoidr6+zW5Hx07dNDMSRMrL3vgrJP78eo/n1Q7J18JNHhAP70841mn93yri1n6AQCNceWVV2rEiBF666239OCDD3r6dBokNja2wa+0N9KkSZPUvn17zZw509OnAkhq/Ix1slemPNGgGeujWS/ojFNjVHNXHABoOarOWI62PTCLv/zlL54+hXoxY8GMPDVnvfHCDJesZQEA6kbYZyBXBUuNRdBnV1pufSt7a18fl/SjQ3B7Pfn3exp0H0f9uPl65/dCOD0mWiM7hiurlmu2O8sM/bCc2DMRABrr66+t+0KUlZUpKyvLw2fTfP3www+ePgWgmsbMWI40dMY6PSa68tJPANCS2WYsyTpnoXGYsWBGnpqzRnWJZMYCADcg7DOAq4OlxiDosysqKdORY6WSpE5BAfTDBP3ILDzmkdoAAAAAAACAt3DVfswAmj/CPhcjWLIzS7C0I6dQfq18VFpeIR8PbI/X3PpxYf9+Onr33TqrV0+Xn4OtH/6+rWQ57vy7+4YMGSJJpt7rAGhunnnmGZWWlnqkdp8+ffTMM89UPrdd7ZlnnlFISIghx26O+BkKmMOQgRfo6INlio2N9Uj9hx9+WHl5eR6pDXgjo+eZxmDGci9mLACAmXh6Nhk3bpzOOecc08wKZvw9bTun3r17GxLUE/a5EMGSnZmCvqDWvgr0a6XsJl7+sjGaYz8GDuiv08/u7fK+Ve1HpyB/pR1x/hIOQ4YMMdUf0YA3mDp1qnbu3OmR2n369DF02DLTnnhmwM9QwByGXHSBzulznscuY/Xwww97pC7grYyeZxqDGcu9mLEAAGbi6dlk3LhxGjRokKnCPrP9nradU1lZmX777TeXH7+Vy4/YQlUNMjoEtvbIOTTHYMkoVftxRmhbeSB3pR9VnNwPD7zhFQAAAAAAAAAAr0TY5wIES3ZmDJa4lCr9AAAAAAAAAADAWxH21efEtVNru4SqGYKMigoRLJ1AP+zoBwDAKC65tnw9MxYAAEBLxJwFAABsGjIXEPbVw7f0mFReptLyml9UswQZOcUWgiXRj6roBwDASKWlpZIkX9/G/57zKymWyspkKSt31WkBAAA0e66Ys+paywIAAM1HQ+YCwr56tC45qoC8AzpyrLRaimqGIMN2NqVlFQRL9KMS/QAAGKmiokJHjhxRQECAWrdu/D7FfqXFantotw4XHVMZC1EAAAAum7NqW8sCAADNR0PnAj83nFOzF5aSoPSQCO1XuDoEttbxsgqlHjmqQL9W6hYcqNLycpVWeVH68RMLVsfLy3XseJkh51RWXqG8YmuqGxLYWr6tZEit+h7LoSKLDhWVqHNbf4UGtW7UOTT163W0tFypebX3wxU16kM/7JzpR8mJd3GUlJTo2LFjDa7hrLKyMkOPTw3z1XBXHWqYp0ZZmfXn1LFjx5r06mfUr6KiQqWlpTpy5IgKCwvVtWvXJh8zLCVB+0IilVIWoQ5tgxTU2le+Pj7yqeM1IrbfIZbj5fI16LUk1DBfHWo4z3L8RA2LxdCfi97wO4Qa1GjONdxRhznLfYyas6quZbVuVfeMJXnP70JqtLwa7qrDnEUNalDDVceXap+xGjsXEPY5ITg7RfptsbJj+ml3u846VHxc/r6tFNA2QHuP5te4fU5xqQpLjut4YWsVBbj+S1xeYQ11bJe9Oh7YWiUFxrSyrsdyxHJcecdKFRLYWkWlfkrJc32N+ljKynWwyCL/VrX3o6k16kM/7JztR1FpmbKPlkiS8vIaeaJOOHTokOGvYqSGuWq4qw41zFOjvLxc2dnZSk1NVatWXLDAHQICAtS1a1cFBwc3+VhtCg4pZv1/dSimv3LDY5Qd2E71rULZfoe0PlYof4P+iqeG+epQw3klZRXKLjym1q1by9/f35Aaknf8DqEGNZpzDXfUYc5yP1fOWVXXstJDIqRW9QcT3vK7kBotr4a76jBnUYMa1HAFZ2eshs4FPhUt7P38+fn56tChg94d1kd39+3RoPuuT8/VyG+367weEfpgeF+19XcchEyLT9J/tqZrwgWn6b7+MS44a7uikuO669tE7cwp1EXdQrV89yFD6tjU9ljmbEjR67/udkntxn69fj+Yrzv+t0lndGqn94f1qbUfTalRH/ph15B+fLsjU48t36aXX35Zw4YNa9L51uW+++7TnDlzDDs+NcxXw111qGGeGoWFherXr58SEhLUrl07w+rAytfXt85LR9jmrFXjBuuS6LAGHbtCUmlgsMp9/eoM/Gy/Qxb+ZYDO6tz0hTBqNI861HDetkP5uum/67Vw4UKdddZZhtSQvON3CDWo0ZxruKMOc5Z7GTlnlfq3UVnrwHpfVOUtvwup0fJquKsOcxY1qEENV3BmxqpvLnCEd/Y5aX16rq78dK3O7hysTy/rrvYlR6QSx7c9cjBDaWlpKjq1jQILXffLpcBSquGf/aKth/K14rZBmpuYZkidqhw9lhmrkzXlxyRNv6yX/tErWCrMcXmN+lTtxydDetbZj8bWqA/9sGtoP0pyDiotLU0lJSUKDDRuX8GcnBxDj08N89VwVx1qmKdGSUmJ0tLS5O/v75bvLxjHR5L/McfvCK/K9jvE50iMAtuUGnIu1DBfHWo4z+dInrWGjw9zFjWo4cU13FGHOct7tC45qtYlR+u9nbf8LqRGy6vhrjrMWdSgBjVcwagZi+swOKFqkLFs9EC1D2j8JsmNVWAp1TVVgqUBXTu6/Ryk6sHS5EviPHIO9MOOfgAAAAAAAAAA0LJ5NOybOnWqfHx8qv3Xs2fPOu/z2muvKS4uTkFBQerWrZv+8Y9/GLpZohmCDIIlO/phRz8AAHVpDnMWAABAc8OMBQAAzMjjl/E866yz9MMPP1T+28+v9lP6/PPP9eSTT+rDDz/URRddpB07dmjcuHHy8fHRrFmzXH5uZggyzBIsxadmaWVKdosPluiHnRn6AQCom5nnLAAAgOaKGQsAAJiNx8M+Pz8/RUREOHXbn3/+WYMGDdKtt94qSerRo4dGjRqlX3/91eXnZYYgwyzBkiSCJdGPqszQDwBA/cw6ZwEAADRnzFgAAMBsPB727dy5U1FRUQoMDNTAgQM1c+ZMde/e3eFtL7roIs2bN0/r16/XgAEDtGfPHn333Xe67bbbaj2+xWKRxWKp/Hd+fr4kaUnyAR0stDi8z/78Ys1NTFPntgG6vEeYXv91T4MeU0JGniTru68ay3K8TB9v3qtDRRaN6xOt5bsPafnuQy6vU59FfxyQJJ0a0kaS9dKRrlbf42hqP5ypUR/6YeeKfmw+cESStHbt2kafpzPS0tL02WefGVojNzfX0OMDQFN4as5Kzi5UO39jxsyU3KOSpKSsAkOOTw1z1qGG82zHTkpKMqyGZJ2BNm3aZGiN4uJiQ48PAI1l9IwlMWdRgxpmrMOcBcDMfCoqKio8VXzp0qUqLCxUXFycMjMzNW3aNKWnp2vr1q1q3769w/vMnj1bEydOVEVFhY4fP657771Xc+bMqbXG1KlTNW3aNKMeAgBo8ODB6tjRuHd62v4oNJK31HBXHWqYp0ZpaamWLVumI0eOKDg42LA6zRFzFgBvMHToUAUFBRl2fG/4XUiNllnDHXWYsxxzx4wlMWcBMB5zFjWo4ZkaRs1YHg37TpaXl6fo6GjNmjVLd955Z43Px8fH65ZbbtGMGTN0wQUXaNeuXZowYYLuvvtuTZkyxeExHb0Sqlu3brq0e6jO7Fz9C3mwyKJvkzMVGuSv62Mj5O/bqlGPY1VqtrZnF6p/VIj6RYU06L4lZeVavOOADheXaFhcpLq0DTCkTn0SMvK0ISNP4UH+yiouMaSGTW2Pw1X9qKtGfeiHvYYR/bi5V5RG9Ip0+n7FpWV6ae1O7csv1qTBsTottG2tt/1oU5pWpmY3uIYzvknK0IKkTA2ICtH6jDzNmzdPo0ePdmmNqoYPH65FixYZdnxvquGuOtQwT438/Hx16NCBRSgnuHPOevriWPUKd7zY1VRr9+ZoTkKqpl/WSzEd21DDwzXcVYcaDa8x78bzDXsefrfzoKb8mGRojaSsAo35eqM2btyovn37GlJD8o7fhdRomTXcUYc5yzlGzFgScxY1qGHGOsxZDeMtv3OpQQ1XM2rG8vhlPKsKCQlRbGysdu3a5fDzU6ZM0W233aa77rpLknTOOeeoqKhIf/vb3/T000+rVaua4UNAQIACAmoGNKN7d9fdfXtU/tu2B1n/rqFN3oPs/iWJ2p5dqOFxkQ3aU822J1zx8XKtuePSeveEa2yd+sxYnawNGdZfjhkFxZqTkOryGlU5ehyu7EdtNepDP4zvR++IDhp9Tjen7mPrx8Eii1aNu7jefqzdm6OVqdkNquGMGauTtSAps3J4HPPVRpcdGwCM5M4566rTOuuS6DDXPoAq5iSk6tozuqhvZAg1TFDDXXWo0bAavcLbG1YjKdt6CSsjawBAc2HEjCUxZ1GDGmatw5wFwKwa/9YcAxQWFmr37t2KjHT8LpyjR4/WGIJ8fX0lSU15g6ItyDi7c7BLgozGsAUZWw/la8Vtg+oNMowyY3WypvyYpOmX9TIsTKoP/bCjH1b0AwCazlNzFgAAgDdjxgIAAGbg0bBv4sSJWrVqlVJTU/Xzzz/rxhtvlK+vr0aNGiVJGjt2rCZNmlR5+2HDhmnOnDmaP3++UlJStGLFCk2ZMkXDhg2rHJQaiiDDzgxBBv2wox9W9AMAGscMcxYAAIC3YcYCAABm5NHLeO7fv1+jRo1STk6OwsPDNXjwYK1bt07h4eGSpL1791Z79dPkyZPl4+OjyZMnKz09XeHh4Ro2bJiee+65RtUnyLAzQ5CxP7+YfpxAP6zoBwA0nqfnLAAAAG/EjAUAAMzIo2Hf/Pnz6/x8fHx8tX/7+fnpmWee0TPPPNPk2im5RZq4fCtBhswTZMxNTNP5UR3pB/2QRD8AoKk8OWcBAAB4K2YsAABgRqbas8+dZv2yi6BP5ggyDhZZJEmd2wbQD/ohiX4AAAAAAAAAAOCsFhv2dQ0OIsgwQZCxPj1X3yZnSpJu792dftAP+gEAAAAAAAAAQAO02LDv4QtOI8gwQbB05adrFRrkL0kK8HP/xtT0w45+2JmhHwAAAAAAAAAAOKPFhn2BrQkyzBAsnd05WNfHRnjkHOiHHf2wM0M/AAAAAAAAAABwVosN+9yNIMOuarC0bPRA+fu6/9uQftjRDzsz9AMAAAAAAAAAgIYg7HMDggy7k4MlLqVKP+gHAAAAAAAAAACNR9hnMIIMOzMES5bjZfTjBPphZ4Z+AAAAAAAAAADQGH6ePgFvRpBhZ4ZgSZI+3rxXRyzH6Qf9qGSGfgAAAAAAAAAA0FiEfQYiyLAyQ7BUUlYuSTpUZNHq8ZfQD/ohyRz9AAAAAAAAAACgKbiMpwGqBhkEfZ4PlgospVq844AkaVyfaPpBPySZox8AAAAAAAAAADQVYZ+LEWTYmSVYuuazX3S4uESSdEpwkNvPQaIfNvQDAAAAAAAAAADXIuxzIYIMOzMFS1sP5WtYXKTb69vQDyv6AQAAAAAAAACA6xH2uQhBhp3ZgqUVtw1Sl7YBbj8HiX7Y0A8AAAAAAAAAAIxB2OcCBBl2ZgyWuJQq/ZDM0Q8AAAAAAAAAAFyNsK+JCDLsCJbs6IcV/QAAAAAAAAAAwFh+nj6B5swsQUZ8apZWpmQTLNGPSvTDzgz9AAAAAAAAAADAKLyzr5HMEmRI8niQQbBUHf2gHwAAAAAAAAAAuAthXyOYJchIyMiTJF0RE0awRD8k0Y+qzNAPAAAAAAAAAACMRtjXQGYJMmasTtaGE2HGkB7hHjkHgiU7+mFFPwAAAAAAAAAAcC/CvgYwU5Ax5cck9Y8K8Uh9iWCpKvphRT8AAAAAAAAAAHA/j4Z9U6dOlY+PT7X/evbsWed98vLy9MADDygyMlIBAQGKjY3Vd999Z/i5mi3ImH5ZL/XzUJhBsGRHP6zoBwCYT3OaswAAAJoLZiwAAGBGfp4+gbPOOks//PBD5b/9/Go/pZKSEl155ZXq3LmzFixYoK5duyotLU0hISGGnqMZg4zJl8Tp/iWJbj8HgiU7+mFFPwDAvJrDnAUAANDcMGMBAACz8XjY5+fnp4iICKdu++GHH+rw4cP6+eef1bq1NdTo0aOHgWdn3iDDEwiW7OiHFf0AAHMz+5wFAADQHDFjAQAAs/F42Ldz505FRUUpMDBQAwcO1MyZM9W9e3eHt120aJEGDhyoBx54QP/73/8UHh6uW2+9VU888YR8fX0d3sdischisVT+Oz8/X5K0JPmADhZaHN6n8r7Hy/Tx5r06VGTRuD7RWr77kJbvPlTvY0rIyJMkxadm1XtbZ8SnZmllSrauiAmTZA02jKjjiK3G//7I1IzVf6hz2wBd3iNMr/+6x+U16nscje1HQ2o4g35Y0Q9p84EjkqS1a9caVkOScnNzDT0+AO/lqTkrObtQ7fyNGTNTco9KkpKyCgw5PjXMWYcaLa+G7dhJSUmG1ZCk4uJiQ48PwDsZPWNJzFnUoIYZ63hLDeYswDv5VFRUVHiq+NKlS1VYWKi4uDhlZmZq2rRpSk9P19atW9W+ffsat+/Zs6dSU1M1evRo3X///dq1a5fuv/9+PfTQQ3rmmWcc1pg6daqmTZtm9EMBAEMNHjxYHTsa987J9evXa8CAAYYd31013FWHGuapUVpaqmXLlunIkSMKDg42rE5zxJwFAM4ZOnSogoKCDDu+N/y+pYb5arijDnOWY+6YsSTmLADegTmLGtSoyagZy6Nh38ny8vIUHR2tWbNm6c4776zx+djYWB07dkwpKSmVr36aNWuWXn75ZWVmZjo8pqNXQnXr1k2Xdg/VmZ0dfyFLysq1eMcBHS4u0bC4SHVpG9Cgx7EqNVvbswvVPypE/aJCGnTfqhIy8rQhI6/W47iqTl2W7jqo1LxitWvtq7+e3VX+vq1cXqO+x9HUfjhTwxn0w4p+2Nn60SmotV4YepaCWtf+qszGWrs3R3MSUjVv3jyNHj3a5ce3GT58uBYtWmTY8d1Vw111qGGeGvn5+erQoQOLUE5w55z19MWx6hVec7HLFWw/F6df1ksxHdtQw8M13FWHGi23xrwbzzfs50lSVoHGfL1RGzduVN++fQ2pIXnH71tqmK+GO+owZznHiBlLYs6iBjXMWMfbajBnUYManqlh1Izl8ct4VhUSEqLY2Fjt2rXL4ecjIyPVunXrapc56NWrlw4cOKCSkhL5+/vXuE9AQIACAmqGEaN7d9fdfXvU+LhtD7Li4+Vac8eljdqD7P4lidqeXajhcZGN3j9sxupkbchIrXMPMlfUqcv69Fy9vylVkvTwhadp+uVnuryGVPfjcEU/6qvhDPphRT/sqvbjvn4xusvBzxNXmZOQatixAbQc7pyzrjqtsy6JDnPdyZ9kTkKqrj2ji/pGhlDDBDXcVYcaLbNGr/D2hn//AkBTGDFjScxZ1KCGWet4Uw3mLMC7uP5tQU1QWFio3bt3KzIy0uHnBw0apF27dqm8vLzyYzt27FBkZGStw1FD2IKMrYfyteK2QY0OMppqxupkTfkxqc4gw2jr03N15adrFRpk/boG+Ln+HUv1oR929MOOfgBA43h6zgIAAPBGzFgAAMAMPBr2TZw4UatWrVJqaqp+/vln3XjjjfL19dWoUaMkSWPHjtWkSZMqb3/ffffp8OHDmjBhgnbs2KElS5bo+eef1wMPPNDkcyHIsLMFGWd3Dtb1sREeOQf6YUc/7OgHADjPTHMWAACAt2DGAgAAZuTRy3ju379fo0aNUk5OjsLDwzV48GCtW7dO4eHhkqS9e/eqVSt7HtmtWzd9//33+sc//qFzzz1XXbt21YQJE/TEE0806TwIMuyqBhnLRg/UEz9sc/s50A87+mFHPwCgYcwyZwEAAHgTZiwAAGBGHg375s+fX+fn4+Pja3xs4MCBWrduncvOgSDD7uQgo31Aa7efA/2wox929AMAGs4McxYAAIC3YcYCAABmZKo9+9yNIMPODEGG5XgZ/TiBftjRDwAAAAAAAAAAaufRd/Z50rFSggwbswQZH2/eqyOW4/SDflSiHwAAAAAAAAAA1K3Fhn2v/bpb2UdLCDJMEGSUlJVLkg4VWbR6/CX0g35Ioh82xaVlbq8JAAAAAAAAAGg+WuxlPNPziwn6TBBkFFhKtXjHAUnSuD7R9IN+SKIfNgWWUr20dqfb6wIAAAAAAAAAmo8WG/Y9MvB0ggwTBBnXfPaLDheXSJJOCQ5y+zlI9MOGftiZqR/78ovdXhsAAAAAAAAA0Hy02LAvpmNbj9QlyLCyBRlbD+VrWFyk2+vb0A8r+mFntn5MGhzr9voAAAAAAAAAgOajxYZ9nkCQYVU1yFhx2yB1aRvg9nOQ6IcN/bAzYz9OC/XMCxMAAAAAAAAAAM0DYZ+bEGRYnRxkcClV+iHRDxuz9AMAAAAAAAAA0HwQ9rkBQYaVWYIM+mFFP+zoBwAAAAAAAACgufLz9Al4O4IMK7MEGfGpWVqZkk0/6Ecl+gEAAAAAAAAAaM4I+wxEkGFlpiCDftCPqugHAAAAAAAAAKC54zKeBiLIME+QkZCRJ0m6IiaMftAPSfQDAAAAAAAAAOAdCPsMQJBhZZYgY8bqZG040ZMhPcI9cg70w45+WJmlHwAAAAAAAACA5o2wz8UIMqzMEmTY9kzsHxXikfoS/aiKfliZpR8AAAAAAAAAgOaPsM+FCDKszBJk2Pox/bJe6uehntAPO/phZZZ+AAAAAAAAAAC8A2GfixBkWJklyKjaDy6lSj8k+gEAAAAAAAAA8E6EfS5AkGFlliCDfljRDzv6AQAAAAAAAADwVoR9TWSGIGN/fjFBxgn0w4p+2NEPAAAAAAAAAIA3I+xrAjMEGZI0NzGNIEP0w4Z+VEc/AAAAAAAAAADejLCvkcwQZBwsskiSOrcNaPFBBv2woh929AMAAAAAAAAA0BJ4NOybOnWqfHx8qv3Xs2fPWm8/d+7cGrcPDAx04xlbmSHIWJ+eq2+TMyVJt/fu3qKDDPphRT/s6AcANN85CwAAwMyYsQAAgBn5efoEzjrrLP3www+V//bzq/uUgoODlZycXPlvHx8fw87NEbMEGVd+ulahQf46WFSiAD9ft5+DWYIM+mFFP+zoBwDYNbc5CwAAoDlgxgIAAGbj8bDPz89PERERTt/ex8enQbd3JTMFGWd3DlavsHb64Le9bj8HswQZ9MOKftjRDwCorjnNWQAAAM0FMxYAADAbj4d9O3fuVFRUlAIDAzVw4EDNnDlT3bt3r/X2hYWFio6OVnl5ufr27avnn39eZ511Vq23t1gsslgslf/Oz8+XJC1JPqCDhZba7lZDfGqWVqZk64qYMEnWYKM2CRl5lfdxpf35xZqbmKbObQN0eY8wfb/7kCF1qjr5sViOl+njzXt1qMiicX2itXz3IS0/cR6uquGMhvSjsTXqQz/s6Idx/dh84Igkae3atU06Tn1yc3MNPT4Az/DUnJWcXah2/saMmSm5RyVJSVkFhhyfGuasQw1qGMF27KSkJMNqSFJxcbGhxwfgfkbPWBJzFjWoYcY61HAecxbgfj4VFRUVniq+dOlSFRYWKi4uTpmZmZo2bZrS09O1detWtW/fvsbtf/nlF+3cuVPnnnuujhw5oldeeUWrV6/Wtm3bdMoppzisMXXqVE2bNs3ohwIAzd7gwYPVsaNx70Rcv369BgwYYNjx3VmHGuapUVpaqmXLlunIkSMKDg42rE5zxJwFAOYxdOhQBQUFGXZ8b/idTg3z1WHOcswdM5bEnAUAzmLOokZzq2HUjOXRsO9keXl5io6O1qxZs3TnnXfWe/vS0lL16tVLo0aN0vTp0x3extErobp166ZLu4fqzM71fyETMvK0ISNP/aNC1C8qxKnHsSo1W9uzCxt0n7ocLLLo2+RMhQb56/rYCPn7tjKkjiO2Gn0jOii9oFiHi0s0LC5SXdoGuLyGM4+jMf1oaI360A87+uG+ftzcK0ojekXWedtvkjK0IClTN/eK1IheUU7XWLs3R3MSUjVv3jyNHj26qadcq+HDh2vRokWGHd+ddahhnhr5+fnq0KEDi1BOcOec9fTFseoVXnOxyxVsP7OmX9ZLMR3bUMPDNdxVhxrUMLLGvBvPN+xnVlJWgcZ8vVEbN25U3759DakhecfvdGqYrw5zlnOMmLEk5ixqUMOMdajR8BrMWdSgRk1GzVgev4xnVSEhIYqNjdWuXbucun3r1q113nnn1Xn7gIAABQTUXHgf3bu77u7bo87jz1idrA0ZqQ3eg+z+JYnanl2o4XGRTd67zLYHWf+uoVo2eqDaB7Q2pE5tbDWyjlpUfLxca+641OV7kDn7OBrbj4bUqA/9sKMf7u1H74gOGn1Ot1pvN2N1shYkZTZ6z8Q5CalNOEsAzYE756yrTuusS6LDGn2u9ZmTkKprz+iivpEh1DBBDXfVoQY1jKrRK7y94c8RAN7LiBlLYs6iBjXMWocaDavBnAW4TytPn0BVhYWF2r17tyIj6373ik1ZWZm2bNni9O0bYsbqZE35ManRC+euYAsyzu4cXCPIcJeSsnJJ0qEii1bcNsjlQYaz6IcV/bCjH3Zm6AcA8zPTnAUAAOAtmLEAAIAZeDTsmzhxolatWqXU1FT9/PPPuvHGG+Xr66tRo0ZJksaOHatJkyZV3v7ZZ5/V8uXLtWfPHm3atEljxoxRWlqa7rrrLpeelxkWzs0QZBRYSrV4xwFJ0rg+0S06yKAfdvTDin4AMDuzzlkAAADNGTMWAAAwI49exnP//v0aNWqUcnJyFB4ersGDB2vdunUKDw+XJO3du1etWtnzyNzcXN199906cOCAOnbsqPPPP18///yzzjzzTJedkxkWzs0SZFzz2S86XFwiSTol2LhNTutCP6zohx39sDNDPwCYlxnnLAAAgOaOGQsAAJiRR8O++fPn1/n5+Pj4av/+17/+pX/961+GnY8ZFs7NFGRsPZSvYXGR+iop0+3nINEPG/phRz/szNAPAOZmtjkLAADAGzBjAQAAMzLVnn2eZIaFc7MFGStuG6QubWtuBu0O9MOKftjRDzsz9AMAAAAAAAAAYA6EfTLHwrkZg4yWvAcZ/bCjH1b0AwAAAAAAAABgRi0+7DPDwjlBhh39sKIfdvTDzgz9AAAAAAAAAACYi0f37PM0MyycE2TYxadmaWVKNv2gH5Xoh50Z+gEAAAAAAAAAMJ8WG/YtSc7U/3YcJMgwSZAhyeNBBv2ojn7QDwAAAAAAAACA+bXYy3gS9JknyEjIyJMkXRETRj/ohyT6UZUZ+gEAAAAAAAAAMK8WG/bdENuFIMMEQcaM1cnacCLMGNIj3CPnQD/s6IcV/QAAAAAAAAAANBctNuy7Li7SI3UJMuxseyb2jwrxSH2JflRFP6zoBwAAAAAAAACgOWmxYZ8nEGTY2YKM6Zf1Uj8PhRn0w45+WNEPAAAAAAAAAEBzQ9jnJgQZdlWDDC6lSj8k+lGVGfoBAAAAAAAAAGg+CPvcgCDDzgxBBv2wox9W9AMAAAAAAAAA0FwR9hmMIMPODEHG/vxi+nEC/bCiHwAAAAAAAACA5oywz0AEGXZmCTLmJqbRD9EPG/oBAAAAAAAAAGjuCPsMRJBhZYYg42CRRZLUuW0A/aAfkuhHVbsPF3mkLgAAAAAAAACg6Qj7DECQYWeGIGN9eq6+Tc6UJN3euzv9oB/0o4r16bmauWaHR2oDAAAAAAAAAJqOsM/FCDLszBJkXPnpWoUG+UuSAvx83X4O9MOOftiZqR/dgoM8Uh8AAAAAAAAA0HSEfS5EkGFnpiDj7M7Buj42wiPnQD/s6Ied2frx+KAzPHIOAAAAAAAAAICmI+xzEYIMO7MFGctGD5S/r/u/1emHHf2wM2M/glq7/4UJAAAAAAAAAADXIOxzAYIMOzMGGVxKlX7QDzsz9AMAAAAAAAAA4DoeDfumTp0qHx+fav/17NnTqfvOnz9fPj4+GjFihLEnWQ8zLJxbjpcRZJxAP+zohxX9sDNDPwC4jzfMWQAAAGbDjAUAAMzIz9MncNZZZ+mHH36o/LefX/2nlJqaqokTJ+riiy828tTqZZaF848379URy3GCDPpRiX7Y0Q8rs/QDgHs15zkLAADArJixAACA2Xg87PPz81NEhPN73JWVlWn06NGaNm2afvrpJ+Xl5Rl3cnUww8J5SVm5JOlQkUWrx19CkEE/JNEPG/phZ4Z+APCM5jpnAQAAmBkzFgAAMBuPh307d+5UVFSUAgMDNXDgQM2cOVPdu3ev9fbPPvusOnfurDvvvFM//fRTvce3WCyyWCyV/87Pz5ckLUk+oIOFltruVqf9+cWam5imzm0DdHmPML3+655qn0/IyJMkxadmNer4zrAcL9MXW9MlSed07qDluw9p+e5DLq9T32OJT83SypRsXRETJskabLi6Rn3q64cratSHftjRD7vm0o/NB45IktauXduoGs7Kzc019PgAavLUnJWcXah2/saMmSm5RyVJSVkFhhyfGuasQ42WW+O7nQeVlG1MnbV7cwyvUfk4vvtOSUlJhtSQmLMAdzN6xpKYs6hBDTPW8bYa729KVVT7IENqbD6QZ3iNjIJia43331dUVJQhNSQpMzPTsGMDruRTUVFR4aniS5cuVWFhoeLi4pSZmalp06YpPT1dW7duVfv27Wvcfs2aNbrllluUmJiosLAwjRs3Tnl5efrmm29qrTF16lRNmzbNwEcBAHDW4MGD1bGjse+yXL9+vQYMGECNFlKjtLRUy5Yt05EjRxQcHGxYneaIOQsAWhaj5yxvmBu8qYY76jBnOeaOGUtizgIAM+nXr58iIyMNO763zCfUcI5RM5ZHw76T5eXlKTo6WrNmzdKdd95Z7XMFBQU699xz9fbbb+tPf/qTJDk1IDl6JVS3bt10afdQndm5YV/Ig0UWfZucqdAgf10fGyF/31YOb7cqNVvbswvVPypE/aJCGlSjPiVl5Vq844AOF5eoa3CQUvOKDaljU9tjScjI04aMPJfUbuzXy9l+NKVGfeiHXUvsx+rUbG3LLlTkmWMUEtnPkBp5mQnK3D5PPfo/qqDgbobW6HXFa2rb8XRDahTl7lLSyoc1b948jR492pAaNsOHD9eiRYuo0UJq5Ofnq0OHDixCOcGdc9bTF8eqV3jNxS5XWLs3R3MSUjX9sl6K6diGGh6u4a461Gh5Nb5JytCCpExD55PstB+VuuHVZl/DXXOWN8wN3lTDHXWYs5xjxIwlMWdRgxpmrOMtNT7alKaVqdlqH95bBVmbFXbqnxQec7VLa2T+8aXy0tcq7NRrFR5zVa23K85P095Nc+TfLkLRfe5VK79Al9eoT/nxY0pLfEclhQfUve99CgqOrvzckQMJytg2T9OnT9fkyZMbXaM+3jKfUMM5Rs1YHr+MZ1UhISGKjY3Vrl27anxu9+7dSk1N1bBhwyo/Vl5u3ZPLz89PycnJOu2002rcLyAgQAEBATU+Prp3d93dt4fT52bb86p/19B697y6f0mitmcXanhcpEv36CqwlOqaz35R8fFyrbnjUs1NTNOchFSX16nK0WOZsTpZGzJSXbYHWWO+Xg3pR2Nr1Id+2LXkfmzLLlRIZD9FxN5oSA1Jytw+T2HRl6l9+DmG1mjb8XRDawDwLHfOWVed1lmXRIe58Oyrm5OQqmvP6KK+kSHUMEENd9WhRsuqkZJ7VAuSMg2dT4pyrT8Pm3sNAJ5lxIwlMWdRgxpmreMNNdbuzdHK1GwVZG1WzIBH1eP8h1xeIy8zQXnpa9WuU69a18zyDyZqx09T1C78LPW+7hP5+bdzeY36HC8p1OYlY1VanKPzbvhCwV361LhNxrZ5jTo24G61v/XGAwoLC7V7926Hb4nt2bOntmzZosTExMr/hg8frssuu0yJiYnq1s2Yd7xI9iDj7M7BTgUZRrAFGVsP5WvFbYM0oKuxl8GrzYzVyZryY5LLgqXGoB929MPKLP0AADMz65wFAADQnDFjAWiuwk79kyFBnzPyDyYqcfEYtQ2NbVTQ5wq2oK/o8A71uX6ew6APaE48+s6+iRMnatiwYYqOjlZGRoaeeeYZ+fr6atSoUZKksWPHqmvXrpo5c6YCAwN19tlnV7t/SEiIJNX4uCsRZNgRLFnRDzv6AQDm1RzmLAAAgOaGGQuAt3D1pTudRdAHGMOjYd/+/fs1atQo5eTkKDw8XIMHD9a6desUHh4uSdq7d69atfLcmw8JMuziU7O0MiWbYIl+VKIfAGBuZp+zAAAAmiNmLABoPII+wDgeDfvmz59f5+fj4+Pr/PzcuXNddzInIciojmCJflRFPwDA/Mw8ZwEAADRXzFgA0DgEfYCxeKmRAwQZdgkZeZKkK2LCCJbohyT6UZWtHwAAAAAAAAAcI+gDjEfYdxKCDLsZq5O14USYMaRHuEfOgX7Y0Q8rM/YDAAAAAAAAQE0EfYB7EPZVQZBhN2N1sqb8mKT+USEeqS/Rj6rohxX9AAAAAAAAAJoHS2EmQR/gJoR9JxBk2NmCjOmX9VI/D4UZ9MOOfljRDwAAAAAAAKD5OJC8gKAPcBPCPhFkVFU1yGBPOPoh0Y+qzNAPAAAAAAAAwMxKj2ZLkvzbhBH0AW7S4sM+ggw7MwQZ9MOOfljRDwAAAAAAAKB5yD+YqOy0HyRJXWJvIugD3KRFh30EGXZmCDL25xfTjxPohxX9AAAAAAAAAJqH/IOJSlw8Rq0DQyRJrXz93X4OBH1oqVps2JeSW0SQcYJZgoy5iWn0Q/TDhn4AAAAAAAAAzYMt6GsbGqtO0Vd45BwI+tCStdiwb9YvuwgyZI4g42CRRZLUuW0A/aAfkugHAAAAAAAA0FxUDfp6X/eJfFq5fz2RoA8tXYsN+7oGBxFkmCDIWJ+eq2+TMyVJt/fuTj/oB/0AAAAAAAAAmomTgz726AM8o8WGfQ9fcBpBhgmCpSs/XavQIOu1mwP8fN1+DvTDjn7YmaEfAAAAAAAAgJmZIegrLysh6APUgsO+wNYEGWYIls7uHKzrYyM8cg70w45+2JmhHwAAAAAAAICZmSHok6SDOxYS9AFqwWGfuxFk2FUNlpaNHih/X/d/G9IPO/phZ4Z+AAAAAAAAAGZmhqCvorxUklRyNJugDxBhn1sQZNidHCxxKVX6QT8AAAAAAACA5sEMQd/xkkLlpK2UJEXE3UzQB4iwz3AEGXZmCJYsx8voxwn0w84M/QAAAAAAAADMzCxB3+YlY1V6LE+SFNAu0u3nAJgRYZ+BCDLszBAsSdLHm/fSD9GPqszQDwAAAAAAAMDMzBT0FR3eobDooW6vD5gZYZ+BCDKszBAslZSVS5IOFVnoB/2oZIZ+AAAAAAAAAGZmtqCvz/Xz1LpNmNvPATAzwj4DEGTYmSFYKrCUavGOA5KkcX2i6Qf9kGSOfgAAAAAAAABmZsagjz36gJoI+1yMIMPOLMHSNZ/9osPFJZKkU4KD3H4OEv2woR8AAAAAAABA80DQBzQfhH0uRJBhZ6ZgaeuhfA2L89xGrfTDin4AAAAAAAAAzQNBH9C8eDTsmzp1qnx8fKr917Nnz1pv/9577+niiy9Wx44d1bFjRw0dOlTr16934xnXjiDDzmzB0orbBqlL2wC3n4NEP2zoBwC4nzfNWQAAAGbBjAWgJSDoA5ofj7+z76yzzlJmZmblf2vWrKn1tvHx8Ro1apR+/PFH/fLLL+rWrZuuuuoqpaenu/GMayLIsDNjsMSlVOmHZI5+AIC7ecOcBQAAYDbMWAC8GUGfXVbK9x6pCzSGn8dPwM9PERERTt32s88+q/bv999/XwsXLtTKlSs1duxYI06vXo6CjLmJaW4/DzMEGQRLdvTDin4AgGc19zkLAADAjJixAHgrgj671I2zlb1nqUdqA43h8bBv586dioqKUmBgoAYOHKiZM2eqe/fuTt336NGjKi0tVWhoaK23sVgsslgslf/Oz8+XJC1JPqCDhZba7uYUy/Eyfbx5rw4VWTSuT7SW7z6k5bsPKSEjT5IUn5rVpOPXx1bno9/StCfvqK6ICZNkDTZcXaO+x7I/v1hzE9PUuW2ALu8Rptd/3ePyGvWprR+urFEX+lFdS+jHxhM1ivP3qSBri8uOW1Vx/j5JUlHuLkOO764atmOvXbvWsBo2ubm5htcAmgtPzVnJ2YVq52/MmJmSe1SSlJRVYMjxqWHOOtRoeTUyCoolNf8ZyJvmLGYswM7oGUtizqIGNcxYx1tqZBVZf7ZkpSyvnFUkyVKYqQPJC+TfJkwhURdp3+8fNrqGbZ0sL2OdUhKcv195WYkO7liokqPZioi7WTn7Vitn32qX1nBGXsY65aWvVZuOZ+ho7k7Fx8e7tsBJMjMzDT0+WgafioqKCk8VX7p0qQoLCxUXF6fMzExNmzZN6enp2rp1q9q3b1/v/e+//359//332rZtmwIDAx3eZurUqZo2bZqrTx0A0ECtg8IU3LmP4XVy0n7Q4MGD1bGjce8kXb9+vQYMGGDY8anhvNLSUi1btkxHjhxRcHCwYXWaI+YsAGg53DFnMWOZq4Y76jBnOeaOGUtizgKAlqZfv36KjIw07PjeMgN5Qw2jZiyPhn0ny8vLU3R0tGbNmqU777yzztu+8MILeumllxQfH69zzz231ts5eiVUt27ddGn3UJ3ZuXFfyJKyci3ecUCHi0s0LC6yxh59q1KztT27UP2jQtQvKqRRNZyxYFuGsopL1LVdoIb3dO7yEQ1V32M5WGTRt8mZCg3y1/WxEfL3bfg2kE39etXXD1fUcAb9sGpJ/Vidmq1t2YWKPHOMQiL7GVIjLzNBmdvnqUf/RxUU3K1Z1ygpOqBzr/3AkONX9eOcaM2bN0+jR482rMbw4cO1aNEiw45PDefl5+erQ4cOLEI5wZ1z1tMXx6pXeP2LXY2xdm+O5iSkavplvRTTsQ01PFzDXXWo0fJqfJOUoQVJmV4xA3nLnMWMZa4a7qjDnOUcI2YsiTmLGtQwYx1vqfHRpjStTM1WSNdBCuoQo9Kj2cpO+0GtA0PUKfoK+bRq+lZAeRm/qjhvp9qF91b78HPqvX1Fealy0laq9FiewqKHqnWbMJfXcEZB1hYVZm2uPKatRsyAR9Wp+2UuqXGyotxdSlr5sKZPn67JkycbUkPynhnIG2oYNWN5/DKeVYWEhCg2Nla7dtV9iZNXXnlFL7zwgn744Yd6h6OAgAAFBNQMG0b37q67+/Zo8Dna9iArPl6uNXdc6nAPsvuXJGp7dqGGx0Uatj/YjNXJyioukSTd2z/GsDp1PRbbnnD9u4Y2aU+4pny9nOlHU2s4g35YtcR+bMsuVEhkP0XE3mhIDUnK3D5PYdGXuWxw8VSNQ7sWG3ZsAPVz55x11WmddUl0/X+cNdachFRde0YX9Y0MoYYJarirDjVaVo2U3KNakJTpFTMQcxbg3YyYsSTmLGpQw6x1vKHG2r05WpmarcieI9WmQ4wSF49RcJfeLt2j749VT6s4b6fCegxVTL+H6rytbY++8jKLzr9xodN79DWkhjNSN85W5vZ5ihnwqHqc/1C1GoHtuxk6ywGu0PC3/RiosLBQu3fvrvPtqi+99JKmT5+uZcuWqV8/Y95JUxtbkLH1UL5W3Dao1iDDaDNWJ2vKj0nqb+C7ButjC5bO7hzcpGCpKeiHHf2wM0M/AMCMzD5nAQAANEfMWACaq+L8NCUuHqO2obEuDfoawhb0FR3eoT7Xz3M66HO11I2zlbL+1WpBH9DceDTsmzhxolatWqXU1FT9/PPPuvHGG+Xr66tRo0ZJksaOHatJkyZV3v7FF1/UlClT9OGHH6pHjx46cOCADhw4oMLCQsPP1WxBxvTLehl6idC6ECzZ0Q8r+gEA5tOc5iwAAIDmghkLgLfYu2kOQZ8I+uA9PBr27d+/X6NGjVJcXJz+8pe/qFOnTlq3bp3Cw8MlSXv37lVmZmbl7efMmaOSkhLdfPPNioyMrPzvlVdeMfQ8zRhkGHVZwvoQLNnRDyv6AQDm1FzmLAAAgOaEGQuAt/BvF0HQZ4Kgryhnh0fqwvt4dM+++fPn1/n5+Pj4av9OTU017mRqQZBhR7BkRz+s6AcAmFdzmLMAAACaG2YsAN4ius+9BH0eDvryDyYq+afJHqkN72OqPfvMhiDDbn9+McHSCfTDin4AAAAAAAAAzVMrv0C31yTos8s/mKjExWMU1CHaI/XhfQj7akGQUd3cxDSCJdEPG/oBAAAAAAAAwFkEfXa2oK9taKxiBz/rkXOA9yHsc4Agw+5gkUWS1LltAMES/ZBEP6qy9QMAAAAAAACAYwR9dlWDvt7XfSLf1kEeOQ94H8K+kxBk2K1Pz9W3ydZNpW/v3Z1giX7Qjyqs/TjgkdoAAAAAAABAc0DQZ3dy0OeJPRPhvQj7qiDIsFufnqsrP12r0CB/SVKAn6/bz4F+2NEPOzP1o9OJfgAAAAAAAACorryshKDvBII+GI2w7wSCDDtbkHF252BdHxvhkXOgH3b0w85s/bgutotHzgEAAAAAAAAwu4M7FhL0iaAP7kHYJ4KMqqoGGctGD5S/r/u/ReiHHf2wox8AAAAAAACA+VWUl0qSSo5mE/QR9MFNWvxKNUGG3clBBnvC0Q/6YWeGfgAAAAAAAABmdrykUDlpKyVJEXE3E/QR9MFNWnTYR5BhZ4Ygw3K8jH6cQD/s6AcAAAAAAABgfsdLCrV5yViVHsuTJAW0i/TIeRD0oSVqsWHfsVKCDBuzBBkfb95LP0Q/qqIfAAAAAAAAgPnZgr6iwzsUFj3UY+dB0IeWqsWGfa/9upsgQ+YIMkrKyiVJh4os9IN+VKIfAAAAAAAAgPlVDfr6XD9PrduEeeQ8CPrQkrXYsC89v5ggwwRBRoGlVIt3HJAkjesTTT/ohyT6AQAAAAAAADQHJwd97NFH0AfPaLFh3yMDTyfIMEGwdM1nv+hwcYkk6ZTgILefg0Q/bOiHnRn6AQAAAAAAAJgZQZ8dQR88rcWGfTEd23qkLkGGlS1Y2nooX8PiPLNRq0Q/bOiHnRn6AQAAAAAAAJiZWYK+vIx1BH2AWnDY5wkEGVZVg6UVtw1Sl7YBbj8HiX7Y0A87M/QDAAAAAAAAMDOzBH2SlJe+lqAPEGGf2xBkWJ0cLHEpVfoh0Q8AAAAAAACgOTBL0FeQtUWSFNJ1EEEfIMI+tyDIsCJYsqMfdvQDAAAAAAAAMD+zBH2pG2erMGuzJCkk6kKPnANBH8zGz9Mn4O0IMqzMEizFp2ZpZUo2/aAflczQDwAAAAAAAMDMzBT0pax/Ve3Ce1cGfu5G0AczIuwzEEGGlVmCJUn0Q/SjKjP0AwAAAAAAADAzswV9MQMe1bHCgx4J+wj6YFZcxtNABBnmCZYSMvIkSVfEhNEP+iHJHP0AAAAAAAAAzMyMQR979AE1eTTsmzp1qnx8fKr917Nnz1pvv23bNt10003q0aOHfHx89Nprr7nvZBuAIMPKLMHSjNXJ2nCiJ0N6hHvkHOiHHf0AAPfw1jkLAADAk5ixALQkBH12BH0wO4+/s++ss85SZmZm5X9r1qyp9bZHjx7VqaeeqhdeeEERERFuPEvnEWRYmSlYmvJjkvpHhXikvkQ/qqIfAOBe3jZnAQAAmAEzFoCWgKDPrjg/jaAPpufxPfv8/PycHnb69++v/v37S5KefPJJI0+rUaoGGbbAz93MEGSYLViaflkvZRQUe6Qn9MOOfgCA+3nTnAUAAGAWzFgAvB1BX3V7N81Ru/CzCPpgah4P+3bu3KmoqCgFBgZq4MCBmjlzprp37+6y41ssFlkslsp/5+fnS5KWJB/QwUJLbXdrsPjULK1MydYVMWHKtxyv/JiRbJcLtdXZn1+suYlp6tw2QJf3CNPrv+5xeY36WI6X6ePNe3WoyKJxfaK1fPchLd99yKU1nFG1H0bVOBn9qJ239mPjiRrF+ftUkLWlycdzpDh/nySpKHeXIcd3dw13Wbt2raHHz83NNfT4gKt4as5Kzi5UO39jxsyU3KOSpKSsAkOOTw1z1qFGy6uRUVAsyXtmIG+Zs1JSUrRp0ybDjl9cXGzYsQFXMnrGkpizqEENM9bxlhpZRdafLVkpyx3OEeVlJTq4Y6FKjmYrIu5m5exbrZx9qxtUw7ZOlpexTikJjTvPvIx1yktfq5Cug1RRIaUkzHZ5DWfOQZJ8/dsrMm6kslNXuLzGsQJrDzIyMpiz0CQ+FRUVFZ4qvnTpUhUWFiouLk6ZmZmaNm2a0tPTtXXrVrVv377O+/bo0UMPP/ywHn744TpvN3XqVE2bNs2FZw0AgDR48GB17GjcO2XXr1+vAQMGGHZ8b6lRWlqqZcuW6ciRIwoODjasTnPEnAUAaI6GDh2qoKAgw47vDfOPu+owZznmjhlLYs4CALgec5Y5ahg1Y3k07DtZXl6eoqOjNWvWLN1555113tbZAcnRK6G6deumS7uH6szOTf9CJmTkaUNGnvpHhajfiX3IVqVma3t2YbWPGcFWp1dYO+06XKjQIH9dHxshf1/XbcXo7GMpKSvX4h0HdLi4RMPiItWlbYDLazjDUT9cXaM29KMmb+/H6tRsbcsuVOSZYxQS2c9lx60qLzNBmdvnqUf/RxUU3I0aTta5uVeURvSKdHib4tIyvbR2p/blF2vS4FidFtq2QTXW7s3RnIRUzZs3T6NHj3bFaTs0fPhwLVq0yLDje0uN/Px8dejQgUUoJ7hzznr64lj1Cq97sauxbM/B6Zf1UkzHNtTwcA131aFGy6vxTVKGFiRlNvv5xFtqFOfvU+qGVzX9sl669owuhtRIyirQmK83auPGjerbt68hNSTvmH/cVYc5yzlGzFgScxY1qGHGOt5S46NNaVqZmq2QroMU1CGm8uMV5aXKSVup0mN5CoseqtZtwhpdIy/jVxXn7VS78N5qH35Og+5bkLVFhVmb671vU2rUp/RotrLTfpBPKz9VlB0zpIZN8ZEU5aWv1X39euiuvj0MqcGcZa4aRs1YHr+MZ1UhISGKjY3Vrl2uu8RJQECAAgJqBh2je3fX3U188sxYnawNGdYfvpMviav8+P1LErU9u1DD4yKrfdzVbHX25Bapf9dQQ/Ygc+ax2PaEKz5erjV3XNrgPeFc9fWqrR+urFEX+lFdS+nHtuxChUT2U0TsjS49dlWZ2+cpLPoyw4YKb6phq9M7ooNGn1Nzscv2/DhYZNGqcRc3eg/LOQmpTTxLwP3cOWdddVpnXRLd+D8M6zMnIVXXntFFfSNDqGGCGu6qQ42WVSMl96gWJGV6xXziDTUKsrYodcOriunYxvCfJ0BzY8SMJTFnUYMaZq3jDTXW7s3RytRsRfYcWbmeZdujr7zMovNvXNjkPfr+WPW0ivN2KqzHUMX0c36vvdSNs5W5fZ5Te/Q1tkZ98g8mKnHxGAV36a02IafrwB9fuLxGVQd2fK289LWKah/EnIUmcd1bXFygsLBQu3fvVmSk43djmMmM1cma8mOSwyDDXQ6euL5y57YBhgQZzrAtnG89lK8Vtw1q9MJ5U9EPK/phZ4Z+wFzM8vwAPKU5zVkAAADNBTMWgObOFvQVHd6hPtfPa3LQ11ipG2crZf2rTgV9RrEFfW1DY9X7uk/k04r1RDQfHg37Jk6cqFWrVik1NVU///yzbrzxRvn6+mrUqFGSpLFjx2rSpEmVty8pKVFiYqISExNVUlKi9PR0JSYmuvzVU/UxQ5CxPj1X3yZnSpJu792dYIl+0I8qzNAPmItZnh+AOzXXOQsAAMDMmLEAeBOCPruTgz4//3YeOQ+gsTx6Gc/9+/dr1KhRysnJUXh4uAYPHqx169YpPDxckrR37161amXPIzMyMnTeeedV/vuVV17RK6+8oksvvVTx8fFuOWezBBlXfrpWoUH+OlhUogA/X7efg1kWzumHFf2wM0M/YC5meX4A7tYc5ywAAACzY8YC4C3Kjx8j6DuBoA/ewKNh3/z58+v8/MlDT48ePVRRUWHgGdXNTEHG2Z2D1SusnT74ba/bz8EsC+f0w4p+2JmhHzAXszw/AE9obnMWAABAc8CMBcBbpCW+o9LiHII+gj54CVPt2WdmZgsylo0eKH9f97fPLAvn9MOKftiZoR8wF7M8PwAAAAAAAMympPAAQZ8Jgr7y48fcXhPeidVwJ5gxyGBPOPpBP+zM0A+Yi+V4mSmeHwAAAAAAAGbUve99BH0eDvqOlxQqLfEdt9eFd/LoZTybA4IMK7MsnNMPK/phZ4Z+wHw+3rxXRyzHCfoAAAAAAAAcCAqO9khdgj6r4yWF2rxkrEoKD7i9NrwT7+yrA0GG3ceb9xIsiX5URT9gZoeKLAR9AAAAAAAAJkLQZ2UL+ooO71D3vve5vT68E2FfLQgyrErKyiV5fuGcfljRDzsz9QPmM65PNEEfAAAAAACASRD0WVUN+vpcP89j77CE9yHsc4Agw6rAUqrFO6xvI/bkwjn9sKIfdmbpx5IdB91eF845JTjI06cAAAAAAAAAEfTZnBz0eWrPRHgnwr6TEGRYFVhKdc1nv+hwcYkkzy2c0w8r+mFnpn7knOgHAAAAAAAAgJoI+qwI+mA0wr4qCDKsbEHG1kP5GhYX6fb6NvTDin7Yma8fEW6vDwAAAAAAADQHeRnrCPpE0Af3IOw7gSDDqmqQseK2QerSNsDt5yDRDxv6YUc/AAAAAAAAgOYjL30tQR9BH9yEsE8EGTYnBxnsCUc/JPphY5Z+AAAAAAAAAGZWkLVFkhTSdRBBH0Ef3KTFh30EGVZmCTLohxX9sKMfAAAAAAAAQPOQunG2CrM2S5JCoi70yDkQ9KEl8vP0CXgSQYaVWYKM+NQsrUzJph/0oxL9AAAAAAAAAJqH1I2zlbL+VbUL710Z+LkbQR9aqhYb9i1JztT/dhwkyDBRkEGwRD+qoh8wq2+SMjx9CgAAAAAAAKZiC/piBjyqY4UHPRL2EfShJWuxl/Ek6DNPkJGQkSdJuiImjH7QD0n0A+Y1Y3WyFiRlevo0AAAAAAAATKNq0McefQR98IwWG/bdENuFIMMEQcaM1cnacCJcGtIj3CPnQD/s6IeVWfoBc7Fd+vnmXpGePhUAAAAAAABTIOizIuiDp7XYsO+6OM8s1hJk2NkWzvtHhXikvkQ/qqIfVmbpB8yl6h6vI3pFefp0AAAAAAAAPM4MQZ+lMJOgD1ALDvs8gSDDrurCeT8PhUv0w45+WJmlHzCXqs8PT70jHAAAAAAAwEzMEPRJ0oHkBQR9gAj73IYgw84MC+f0w45+WJmlHzAXMzw/AAAAAAAAzMQMQV/p0WxJkn+bMII+QIR9bkGQYWeGhXP6YUc/rMzSD5iLGZ4fAAAAAAAAZmKGoC//YKKy036QJHWJvYmgDxBhn+EIMuzMsHC+P7+YfpxAP6zM0g+YixmeHwAAAAAAAGZilqAvcfEYtQ4MkSS18vV3+zkQ9MGMnA77MjIyXF586tSp8vHxqfZfz54967zPl19+qZ49eyowMFDnnHOOvhl48pMAAIF8SURBVPvuO5efl6sQZNiZZeF8bmIa/RD9sDFLP2AuZnl+oGVhzgIAAHA9ZiwAcB0zBX1tQ2PVKfoKj5wDQR/Myumw76yzztLnn3/u8hM466yzlJmZWfnfmjVrar3tzz//rFGjRunOO+/Ub7/9phEjRmjEiBHaunWry8/LFQgyrMywcH6wyCJJ6tw2gH7QD0nm6QfMxQzPD7RMzFkAAACux4wFAK5htqCv93WfyKeV+9cTCfpgZk6Hfc8995zuuecejRw5UocPH3bZCfj5+SkiIqLyv7CwsFpv+/rrr+uaa67RY489pl69emn69Onq27ev3nzzTZedjysQZNiZYeF8fXquvk3OlCTd3rs7/aAfpukHzMUMzw+0XMxZAAAArseMBQBNZ8agjz36gJr8nL3h/fffrz/96U+68847deaZZ+q9997TsGHDmnwCO3fuVFRUlAIDAzVw4EDNnDlT3bt3d3jbX375RY888ki1j1199dX65ptvaj2+xWKRxWKp/Hd+fr4kaUnyAR0stNR2t0bbn1+sb5KsQcapHdvq9V/3uLyGTUJGniQpPjWr2sctx8v08ea9OlRk0bg+0Vq++5CW7z7k0hrOiE/N0sqUbF0RYx16Z6xOdnmN+uzPL9bcxDQF+PqqtLxMv+w/XOt5NBX9qJ+39WPjiRrF+ftUkLWlKadbq+L8fZKkotxdhhzfm2pUrdPQ719nnx+StPnAEUnS2rVrG3mWzsnNzTX0+DAXb5uzkrML1c7f6TGzQVJyj0qSkrIKDDk+NcxZhxotr0ZGQbGk5j+feEsN27FTco9qU2aeITVs309JSUmGHN+muLjY0OPDXJrrjCUxZ1GDGmas4y01sk68USUrZXnlHFGbvIx1yktfq5Cug1RRIaUkzHaqhm2dLC9jnVISmna+lsJMHUheIP82YQqJukj7fv/Q5TVqY6txeP8aZSb9RyVHsxURd7Ny9q1Wzr7VLqlRmGOdfTIKipmz0CQ+FRUVFQ2905tvvql//OMf6tWrl/z8qg8YmzZtcvo4S5cuVWFhoeLi4pSZmalp06YpPT1dW7duVfv27Wvc3t/fXx9//LFGjRpV+bG3335b06ZN08GDBx3WmDp1qqZNm+b0OQEAYBaDBw9Wx47GvfN0/fr1GjBggGHHd0eN0tJSLVu2TEeOHFFwcLBhddyJOQsAAGMNHTpUQUFBhh3fHTOWO+p425zVnGYsiTkLANA8ecOc1VxnrAa/FCgtLU1fffWVOnbsqBtuuKHGgNQQf/rTnyr//9xzz9UFF1yg6Oho/fe//9Wdd97Z6ONWNWnSpGqvoMrPz1e3bt10afdQndnZdV/Ig0UWfZucqdAgf3UM9NcfOYXqHxWiflEhLqtxslWp2dqeba9TUlauxTsO6HBxiYbFRapL2wCX13BGQkaeNmTkOX2fxtSoT9V+XB8boV/2HXZ5jZPRj9p5az9Wp2ZrW3ahIs8co5DIfi4465ryMhOUuX2eevR/VEHB3ajhZB1nv7ca+vyQ7N9bN/eK0ohekU07YUm7Dxdp5pod6hYcpMcHnaGg1r5auzdHcxJSde+992r06NFNrlGb4cOHa9GiRYYd3x018vPz1aFDB8OO727eMmc9fXGseoXXXOxyBdvzY/plvRTTsQ01PFzDXXWo0fJqfJOUoQVJmc1+PvGWGsX5+5S64VXd16+HBnXvZEgN2/fVvBvPN+x3SFJWgcZ8vVEvvvii+vbta0gNyT0zljvqeNOc1dxmLIk5ixrUMGMdb6nx0aY0rUzNVkjXQQrqEOPwNgVZW1SYtVntwnurffg5Da6Rl/GrivN2Nvr+klR6NFvZaT+odWCIOkVfUWOPPlfUqE9uxi86lrdbUiuF9bhKrdvUftnmxio+kqK89LW6uVekRvSKcvnxJeYss9UwasZq0HTz3nvv6dFHH9XQoUO1bds2hYeHu/RkQkJCFBsbq127HF9+JCIiosarng4ePKiIiIhajxkQEKCAgJqL+qN7d9fdfXs06Xxt1qfn6spP16p/11AtGz1QT/ywTX/kFGp4XKSh+z7dvyRR27OtdSZccKqu+ewXFR8v15o7LnXZHmRVazjzWGasTtaGjNQG7XnV0Br1Obkf7QNau7yGI/TDMW/vx7bsQoVE9lNE7I0uOaYjmdvnKSz6MsMGF2+qYavjzPdWY54fkv17q3dEB40+p2kLauvTc3X/ks3qGxlSY4/XOQmpTTo2mh9vmrOuOq2zLol2/R9BNnMSUnXtGV3UNzKEGiao4a461GhZNVJyj2pBUqZXzCfeUKMga4tSN7yqQd07NXn+qcuchFT1Cm9v+M8stCzNccaSmLOoQQ2z1vGGGmv35mhlarYie450uJ6VunG2MrfPa9IefX+selrFeTsV1mOoYvo1/Bi2PfqCu/SudY++ptaoz/GSQq37/FJJUmSvW9RzyEyX15CkAzu+Vl76WvWOCGHOQpO0cvaG11xzjZ544gm9+eab+uqrr1w+HElSYWGhdu/erchIx++UGDhwoFauXFntYytWrNDAgQNdfi7OsgUZZ3cOrrFQ6y6W42W65rNftPVQvlbcNshlQUZDzVidrCk/JjV44dyV6Icd/bAySz9gLjw/YDbMWQAAAK7HjAUADZO6cbZS1r/apKCvqWxBX9vQ2FqDPqMdLynU5iVjVXosT5IU0K7pV3YCjOb0O/vKysr0+++/65RTTnFZ8YkTJ2rYsGGKjo5WRkaGnnnmGfn6+lZex3zs2LHq2rWrZs60puYTJkzQpZdeqldffVXXXXed5s+fr4SEBL377rsuO6eGMMtC7ceb9+qI5TjBEv2oRD/szNAPmAvPD5gRcxYAAIDrMWMBgPMI+qxsQV/R4R0Kix6q7NRlbj8HoDGcDvtWrFjh8uL79+/XqFGjlJOTo/DwcA0ePFjr1q2rfKXV3r171aqV/c2HF110kT7//HNNnjxZTz31lM444wx98803Ovvss11+bvUxw0JtSVm5JOlQkUWrx19CsEQ/JNEPG7P0A+bC8wNmxZwFAADgesxYAOAcgj6rqkFfn+vnKeOPL91+DkBjNX5HYheYP39+nZ+Pj4+v8bGRI0dq5MiRBp2Rc8ywUFtgKdXiHQckSeP6RBMs0Q9J9MPGLP2AufD8QEvTXOcsAAAAM2PGAuBtCPqsTg76grv0IexDs+L0nn2wMsNCbYGlVNd89osOF5dIkk4JDnL7OUgsnNvQDzv6AbPi+QEAAAAAAFAdQZ+Vo6APaG4I+xrADAu1tiBj66F8DYvz3MagLJxb0Q87+gGz4vkBAAAAAABQXVbK9wR9IuiD9yDsc5IZFmqrBhkrbhukLm0D3H4OEgvnNvTDjn7ArHh+AAAAAAAA1JS9ZylBH0EfvAhhnxPMsFB7cpDBnnD0Q6IfNmbpB8yF5wcAAAAAAIBjYaf+iaDPBEFfVsr3HqkL7+Pn6RMwOzMs1JolyGDh3Ip+2NEPmFV8apZWpmS3+OcHAAAAAACAI+ExV3ukLkGfXerG2cres9QjteF9CPvqYIaFWrMEGSycW9EPO/oBM+P5AQAAAAAAYC4EfXapG2crZf2rCjv1TwR+cAku41kLMyzUminIYOGcflRFP2B2V8SEtejnBwAAAAAAgJkQ9NnZgr6YAY967B2W8D6EfQ6YYaHWLEFGQkaeJBbO6Ycd/bCz9QPmM6RHuEfqmuH5AQAAAAAAYCYEfXZVgz5P7ZkI70TYdxIzLNSaJciYsTpZG06EGS154Zx+2NEPu6r9ACRzPD8AAAAAAADMhKDPjqAPRiLsq8IMC7VmCjKm/Jik/lEhHqkv0Y+q6IcV/YBZmeH5AQAAAAAAYCaWwkyCvhMI+mA0wr4TzLBQa7YgY/plvdTPQ2EG/bCjH1b0A2ZlhucHAAAAAACA2RxIXkDQJ4I+uAdhn8yxUGvGIIM94eiHRD+qMkM/YC5meH4AAAAAAACYSenRbEmSf5swgj6CPrhJiw/7zLBQS5BhRz/s6IcV/YBZ7c8v9vjzAwAAAAAAwEzyDyYqO+0HSVKX2JsI+gj64CYtOuwjyLAzQ5BhhoVz+mFHP+zM0A+Yz9zENII+AAAAAACAE/IPJipx8Ri1DgyRJLXy9Xf7ORD0oaVqsWFfSm4RQcYJZgkyPL1wTj+qox9WZukHzONgkUWS1LltAEEfAAAAAACA7EFf29BYdYq+wiPnQNCHlqzFhn2zftlFkCFzBBlmWDinH3b0w84M/YC5rE/P1bfJmZKk23t3J+gDAAAAAAAtXtWgr/d1n8inlfvXSwj60NK12LCva3AQQYYJggwzLJzTDzv6YWeGfsBcbJd+Dg2yXoIiwM/Xw2cEAAAAAADgWScHfezRR9AHz2ixYd/DF5xGkGGCYMnTC+f0w45+2JmhHzCXqnu8Xh8b4enTAQAAAAAA8DgzBH3lZSUEfYBacNgX2JogwwzBkicXzumHHf2wM0M/YC5Vnx/LRg+Uv2+L/dUJAAAAAAAgyRxBnyQd3LGQoA9QCw773I0gw84MC+f0w45+2JmhHzCXk58f7NEHAAAAAABaOjMEfRXlpZKkkqPZBH2ATBT2vfDCC/Lx8dHDDz9c5+1ee+01xcXFKSgoSN26ddM//vEPHTt2zD0n2UgEGXZmWDinH3b0w84M/YC5mOH5AbiKN89ZAAAAnsScBaClMUPQd7ykUDlpKyVJEXE3E/QBkvw8fQKStGHDBv373//WueeeW+ftPv/8cz355JP68MMPddFFF2nHjh0aN26cfHx8NGvWLDedbcMQZNiZYeHccryMfpxAP+zM0A+YixmeH4CrePOcBQAA4EnMWQBaGrMEfZuXjFXpsTxJUkC7SLefg0TQB/Px+Dv7CgsLNXr0aL333nvq2LHuhf6ff/5ZgwYN0q233qoePXroqquu0qhRo7R+/Xo3nW3DEGTYmWXh/OPNe+mH6EdVZugHzMUMz4/i0jK314R38uY5CwAAwJOYswC0NGYK+ooO71BY9FC317ch6IMZefydfQ888ICuu+46DR06VDNmzKjzthdddJHmzZun9evXa8CAAdqzZ4++++473XbbbbXex2KxyGKxVP47Pz9fkrQk+YAOFlpqu1uTJGTkSZLeWL9Hx46XaVyfaC3ffUjLdx8ypE58alatt4lPzdLKlGxdERMmyRpsuLpGffbnF2tuYpo6tw3Q5T3C9Pqve1xeoz6/7s+VJGUUHNNdfXvQD/pR+bmm9GPjiRrF+ftUkLWlUedZn+L8fZKkotxdhhzfm2pUrdPY79/6nh+S8c8Ry/EyzUlIMeTYaHk8NWclZxeqnb8xY2ZK7lFJUlJWgSHHp4Y561Cj5dXIKCiW1PznE2+pYTt2Su5RbcrMM6SGO76vjP55iJaFOYsa1DBPDXfV8ZYaWUXWny1ZKcsr54j6WAozdSB5gfzbhCkk6iLt+/3DOm9vWyfLy1inlISmna9NeVmJDu5YqJKj2YqIu1kF2dtcXuNkjh5HXsY65aWvVUjXQaqokFISZjepRmFOkiTr/MuchabwqaioqPBU8fnz5+u5557Thg0bFBgYqCFDhqhPnz567bXXar3P7NmzNXHiRFVUVOj48eO69957NWfOnFpvP3XqVE2bNs2AswcAwFjnnnuuoqOjDTu+bbHBSEbXKC0t1bJly3TkyBEFBwcbVqc5Ys4CAMCxwYMH1/tOrKZwx4zljjrMWbVjzgIAwDFvmLOa64zlsbBv37596tevn1asWFF5bfP6hqP4+HjdcsstmjFjhi644ALt2rVLEyZM0N13360pU6Y4vI+jV0J169ZNl3YP1ZmdXT+slpSV6/Mt+1V8vFy9wtppSI8wl9ewWZWare3ZheofFaJ+USHVPpeQkacNGXkOP+eqGvU5WGTRt8mZCg3y1/WxEfL3dXzV2KbUqE9JWbkW7zigQ0UlqpAMqWFDP+rnbf1YnZqtbdmFijxzjEIi+zXthGuRl5mgzO3z1KP/owoK7kYNJ+s0tLfOPj8k454jtufH4eIS9ekSog2ZeZo3b55Gjx7tshonGz58uBYtWmTY8d1RIz8/Xx06dGAR6iSenrOevjhWvcLbu/xxSdLavTmak5Cq6Zf1UkzHNtTwcA131aFGy6vxTVKGFiRlNvv5xFtqFOfvU+qGV3Vfvx4a1L2TITXc8X2VkntUU35M0saNG9W3b19DakjumbHcUYc5yzHmLGpQw3w13FXHW2p8tClNK1OzFdJ1kII6xNR529Kj2cpO+0GtA0PUKfoK+bRybquTvIxfVZy3U+3Ce6t9+DlNOt+K8lLlpK1U6bE8hUUPVes2YS6vUZuqNSSpMGuzy+sVH0lRXvpa3dwrUiN6RbnsuFUxZ5mrhlEzlscu47lx40YdOnSoWuPLysq0evVqvfnmm7JYLPL19a12nylTpui2227TXXfdJUk655xzVFRUpL/97W96+umn1apVzcXZgIAABQQE1Pj46N7ddXffHi59TAWWUl3z2S86Xl4uSbr1nG6G7gF2/5JEbc8u1PC4yGp1ZqxO1oaMVJfsQVZbjfrY9rzq3zW03j2vGlujPrZ+FB8v1429IvVVUqbLa1RFP+rmrf3Yll2okMh+ioi9samnXKvM7fMUFn2ZYYOLN9Ww1WnI91ZDnh+SMc+Rqs+PNXdcqp2HCzXmq40uOTZaJk/PWVed1lmXRBv3gqc5Cam69owu6hsZQg0T1HBXHWq0rBopuUe1ICnTK+YTb6hRkLVFqRte1aDunTT6HONeuGX099WmzDxN+THJkGOj5WDOogY1zFnDXXW8ocbavTlamZqtyJ4j61zPsu3RF9yld4P36Ptj1dMqztupsB5DFdOv8Xva2fboKy+z6PwbFyq4Sx+X16iLrYaffzvlpa81ZI++Azu+Vl76WvWOCGHOQpN4LOy74oortGVL9T2uxo8fr549e+qJJ56oMRhJ0tGjR2sMQLbbefBqpJLsC7VbD+VrWJw1yPCEGauTNeXHJJcEGY1lWzg/u3OwUwvnRqjajxW3DdLcxDS3n4NEP2zoB8zKjM+PAV07aufhQrefB7yLt81ZAAAAZsGcBaAlsAV9bUNjGxz0uYot6Cs6vEN9rp9XLehzN6OCPsCVPBb2tW/fXmeffXa1j7Vt21adOnWq/PjYsWPVtWtXzZw5U5I0bNgwzZo1S+edd17lZQ+mTJmiYcOGORym3IUgw86sC+ee6An9sKIfMCuzPj8AV/CmOQsAAMBMmLMAeDuCPruCLOuLO0K6DiLog+l5LOxzxt69e6u98mny5Mny8fHR5MmTlZ6ervDwcA0bNkzPPfecx86RIMOOhXM7+mFFP2BWPD+A5jFnAQAANEfMWQCaK4I+u9SNs1WYtVmSFBJ1oUfOAWgIU4V98fHxdf7bz89PzzzzjJ555hn3nVQdzLJQG5+apZUp2QRL9KMS/bAzQz9gLjw/0FI1tzkLAACguWDOAuANCPrsUjfOVsr6V9UuvHdl4AeYXc0dgOEUMy3UejrIYOG8OvpBP2BePD8AAAAAAACqI+izswV9MQMeVfvwczxyDkBjEPY1glkWahMy8iRJV8SEESzRD0n0oyoz9APmwvMDAAAAAACgOoI+u6pBH3v0obkh7GsgsyzUzlidrA0nwowhPcI9cg4snNvRDyv6AbPi+QEAAAAAAFAdQZ8dQR+aO8K+BjDLQu2M1cma8mOS+keFeKS+xMJ5VfTDin7ArHh+AAAAAAAAVFecn0bQdwJBH7wBYZ+TzLJQawsypl/WS/08FGawcG5HP6zoB8yK5wcAAAAAAEBNezfNIegTQR+8B2GfE8yyUFs1yGBPOPoh0Y+qzNAPmAvPDwAAAAAAAMf820UQ9Jkg6CvOT/NIXXgfwr56mGWh1gxBBgvndvTDin7ArPbnF/P8AAAAAAAAqEV0n3sJ+jwc9OUfTNTeTXM8Uhveh7CvDmZZqDVDkMHCuR39sKIfMLO5iWk8PwAAAAAAAGrRyi/Q7TUJ+uzyDyYqcfEY+beL8Eh9eB/CvlqYZaHWLEEGC+dW9MOKfsDsOrcNaPHPDwAAAAAAALMg6LOzBX1tQ2MV3edej5wDvA9hnwNmWag1Q5BxsMgiiYVziX7Y0A87Wz9gPrf37t6inx8AAAAAAABmQdBnVzXo633dJx55hyW8E2HfScyyUGuGIGN9eq6+Tc6UxMI5/bCiH3bWfhzwSG3UL8DP1+01zfL8AAAAAAAAMAuCPruTgz5P7JkI70XYV4VZFmrNEmRc+elahQb5S2rZC+f0w4p+2Nn60elEPwCzPD8AAAAAAADMoryshKDvBII+GI2w7wSzLNSaKcg4u3Owro/1zAah9MOOftiZrR/XxXbxyDnAXMzy/AAAAAAAADCTgzsWEvSJoA/uQdgn8yzUmi3IWDZ6oPx93f8tQj/s6Icd/YAZmeX5AQAAAAAAYBYV5aWSpJKj2QR9BH1wkxa/Um2WhVozBhnsCUc/6IedGfoBc7EcLzPF8wMAAAAAAMAsjpcUKidtpSQpIu5mgj6CPriJn6dPwJMIMuzMEGSYZeGcfljRDzsz9APm8/HmvTpiOU7QBwAAAAAAIGvQt3nJWJUey5MkBbSL9Mh5EPShJWqx7+w7VkqQYWOWIOPjzXvph+hHVfQDZlRSVi5JOlRkIegDAAAAAACQPegrOrxDYdFDPXYeBH1oqVps2Pfar7sJMmSOIMMsC+f0w4p+2JmhHzCXAkupFu84IEka1yeaoA8AAAAAALR4VYO+PtfPU+s2YR45D4I+tGQtNuxLzy8myDBBkGGWhXP6YUU/7MzQD5iL7dLPh4tLJEmnBAd5+IwAAAAAAAA86+Sgjz36CPrgGaYJ+1544QX5+Pjo4YcfrvU2Q4YMkY+PT43/rrvuugbXe2Tg6QQZJgiWzLBwTj+s6IedGfoBc6m6x+uwOM9cbx5oCnfPWQAAAC0FcxaAloygz46gD57m5+kTkKQNGzbo3//+t84999w6b/fVV1+ppKSk8t85OTnq3bu3Ro4c2eCaMR3bNvg+rkCQYXXywvlXSZluPweJftjQDzsz9APmUvX5seK2QZqbmObpUwIaxBNzFgAAQEvAnAWgJTNL0JeXsU556WsJ+tDiefydfYWFhRo9erTee+89dexY9zvtQkNDFRERUfnfihUr1KZNm2YzHBFkWJ28cN6lbYDbz0GiHzb0w84M/YC5nPz8YI8+NDctac4CAABwJ+YsAC2ZWYI+SQR9wAkef2ffAw88oOuuu05Dhw7VjBkzGnTfDz74QLfccovatq39XXoWi0UWi6Xy3/n5+ZKkJckHdLDQUtvdmiQhI0+SFJ+aVfmx+NQsrUzJ1hUx1s1JZ6xONqROXfbnF2tuYpo6tw3Q5T3C9Pqve1xeoz6W42X6ePNeHSqyaFyfaC3ffcjlNRw5uQb9sKIfdo3px8YTNfIyExp7mvWyHbsod5dhNYrz90mSstN+NKyO7XEYWaNqHVd8/zp6frjrObL5wBFJ0tq1aw2rIUm5ubmGHh+e56k5Kzm7UO38jRkzU3KPSpKSsgoMOT41zFmHGi2vRkZBsST3zEDUqJ/t2Cm5R7UpM8+QGu74vrIdOykpybAaklRcXGzo8WEOzFnUoIZ5arirjrfUyCqy/mw5cqBx61nlx48pLfEdlRQeUPe+9+nokRQdPZJS7TbFJ/6dl7FOKQYtm2Wn/iBJatPxDAW276YDO752eQ3b4yjMSXJ4/OL8NO3dNEf+7SIUGTdS2akrGlzD1oeMgmLmLCcwZ9XOp6KiosJTxefPn6/nnntOGzZsUGBgoIYMGaI+ffrotddeq/e+69ev1wUXXKBff/1VAwYMqPV2U6dO1bRp01x41gAAeI/BgwfX+0rkpli/fn2dv6ebqrS0VMuWLdORI0cUHBxsWJ3miDkLAADPGTp0qIKCjN0HnTnLc5izAADwHKPnrOY6Y3ks7Nu3b5/69eunFStWVF7bvCHD0T333KNffvlFv//+e523c/RKqG7duunS7qE6s7Mxw+qq1Gxtzy5U/6gQSdKGjDz1jwpRvxP/NqJOXcc+WGTRt8mZCg3y1/WxEfL3df7qrc7WqE9JWbkW7zigw8UlGhYXWe1Ska6qURdbja7tApVeeIx+0I9KrujHgKgQnd/EfizZcVA5xSUaFhdRrR+rU7O1LbtQkWeOUUhkv0bXqEteZoIyt89T1/YBSi+wGNIP2+Oo72tl7ccBdQry13WxXRrUj6p1mvIY6np+SO59jkjSzb0iNaJXlMtrrN2bozkJqZo3b55Gjx7t8uPbDB8+XIsWLTLs+Pn5+erQoQOLUCfx9Jz19MWx6hXevkmPoTa2793pl/VSTMc21PBwDXfVoUbLrXFfvx6Kam/MH/LxKVlamZqtHv0fVVBwN0NqFOfvU+qGV3Vzr0j1jggxpMbmA3lakJRp6NfKVsNbvq/m3Xi+Yb+nkrIKNObrjdq4caP69u1rSA0b5izPYM6iBjXMV8Nddbytxs29IhVu0HY+tnWNkK6DFNQhxqXHLsjaosKszQps303HCvapf2SI+nUNcWkNmx3ZhVqZmm3o18pWw1u+r7xhzmquM5bHLuO5ceNGHTp0qFpTysrKtHr1ar355puyWCzy9fV1eN+ioiLNnz9fzz77bL11AgICFBBQ84k4und33d23R6PPvy73L0nU9uxCBQf4aWVKtmF7kNnqDI+LrPX4tj3I+ncNbdQeZM7UqI9tz6vi4+Vac8elNfa8ckWN+thqpBceox/0o5Kr+jHMBf04erxMa+64xGE/tmUXKiSynyJib2xUDWdkbp+n9AKLof3YVs/Xyt6Pjo3eM9FWp7Hfv/U9P2w1jH6ODHgvXpJ0RUyYvvzLBYbUkKQ5CamGHRue5ek566rTOuuS6LDGP4B6zElI1bVndFHfyBBqmKCGu+pQo2XWuKtvD0NrrEzNVlj0ZWoffo4hxy/I2qLUDa9qRK8ojT7HmEDxsy37tCAp09Cvla2Gt3xf9Qpvb/jPRXgv5ixqUMOcNdxVx5tqTLo4zrAatrWTyJ4jXbqelbpxtjK3z1PMgEcV2L6bklY+rOE9jVuf+WzLPq1MzTb0a2Wr4S3fV8xZnuOxsO+KK67Qli1bqn1s/Pjx6tmzp5544olaByNJ+vLLL2WxWDRmzBijT7NJjAz6nGFbOD+7c3CjF86byrZwvvVQvlbcNsjhwrk72PbYuiImjH7QD0n0wxH6YY5+zFidrA0nniNDeoR75BzQ/LWEOQsAAMATmLMAwDNSN85WyvpXFTPgUfU4/yFD9ugDmjOPhX3t27fX2WefXe1jbdu2VadOnSo/PnbsWHXt2lUzZ86sdrsPPvhAI0aMUKdOndx2vg1BkGHFwrkd/bCjH1Zm6UdV9MPz/ZixOllTfkxS/6iQyucJ0BjePGcBAAB4EnMWALjfyUEfgJo8FvY5Y+/evWrVqvp+TcnJyVqzZo2WL1/uobOqG0GGFQvndvTDjn5YmaUfZkA/7GzPj+mX9VJGQTFhHwzXHOcsAACA5oA5CwBch6APcI6pwr74+Pg6/y1JcXFxqqiocM8JNRBBhhUL53b0w45+WJmlH2ZAP+yqPj8mXxKn+5ckeuQ84N2a+5wFAABgVsxZAGAMgj7Aea3qvwmcUXWhtl9UiEfOgYVzu5MXzj2BftjRDyuz9MMM6IedGZ4fAAAAAAAAZkLQBzQMYZ8LmGGhloVzO/phRT/s6Ie50A87Mzw/AAAAAAAAzISgD2g4wr4mMsNC7f78YhbOT6AfVvTDjn6YC/2wM8PzAwAAAAAAwEwI+oDGIexrArMs1M5NTGPhXPTDhn5URz/MhX5YmeH5sftwkUfqAgAAAAAAOELQBzQeYV8jmWGh9mCRRZLUuW0AC+f0QxL9qIp+mAv9sDPD82N9eq5mrtnhkdoAAAAAAAAnI+gDmoawrxHMslD7bXKmJOn23t1ZOKcf9KMK+mEu9MPOLM+PKz9dq27BQR6pDwAAAAAAUBVBH9B0hH0NZKaF2tAgf0lSgJ+v28+BhXM7+mFHP6zM0g8zoB92Znp+nN05WI8POsMj5wAAAAAAAGBD0Ae4BmFfA5htofb62AiPnAML53b0w45+WJmlH2ZAP+zM9vxYNnqgglq7P3gFAAAAAACwIegDXIewz0lmXKj193V/+1g4t6MfdvTDyiz9MAP6YWfG54cnLqUKAAAAAABgQ9AHuBZhnxNYqLVi4dyOftjRDyuz9MMMzNAPy/EyU/SD5wcAAAAAAEB1/9/ev8dHWd/5//8zBHIwEA5CMMQQEOWgCIjQNqKCgrYrUuxu3WpT8NDarbL70fbT2yqrLh6g0NZV/KyfZfmgrvw8lN9qbauiHMoaUo8EBESgQYEY5BSikJAQJ5Bc3z8uJu8k5DAzuWau90we99ttbrdNOpnnNT7D8NrXm2Q46AO8193vC7Adi1oXi3ODPgz6cNnShw1s6EOSlm8tU2XgFH8+LOkDAAAAAABA4qAPiBYO+9rBotZgce6iD4M+DBv6sIENfdTVN0iSymsCKrrtSv58WPDnAwAAAAAAQOKgD4gmfo1nG1jUupouzjlYoo8g+nDZ0ocNbOjjeOCk3th1SJJ067g8/nxw0AcAAAAAACzBQR8QXRz2tYJFrYvFuUEfBn24bOnDBrb08Z0X39dXtXWSpHMz02N+DRJ/PgAAAAAAAFrioA+IPg77WmBR62JxbtCHQR8uW/qwgU19fFJepRkjsmOeH8SfDwAAAAAAgOY46ANig8O+JljUulicG/Rh0IfLlj5sYFsfa2dN0sCM1Jhfg8SfDwAAAAAAgJaO7F3NQR8QIxz2ncai1sXi3KAPgz5ctvRhAxv74FfbctAHAAAAAADsUbHnLQ76gBjhsE8saoNYnBv0YdCHy5Y+bEAfBn8+AAAAAAAAWtf/vL/hoA+Ike5+X4DfWNS6WJwb9GHQh8uWPmxAH0Zh6RGt21vR5f98AAAAAAAAtGbA0G/7fQlAl9GlD/s4yHCxODfow6APly192IA+muPPBwAAAAAAAAAbWPNrPBctWqSkpCTdc8897d7v2LFjmjNnjrKzs5Wamqrhw4frzTffDDtvZclBDvrE4rwp+miOPuzqw2/0YWw8cEySNHVo/y795wPxJdZzFgAAQFfBnAUAAGxgxU/2FRcXa+nSpRozZky796urq9M111yjrKwsvfLKK8rJydHnn3+uPn36hJ35p12HOchgcd6IPgz6cNnWh5/ow5hfVKLi051MGTLAl2uwoQ/EFz/mLAAAgK6AOQsAANjC98O+6upqFRQUaNmyZZo/f36793322Wf11Vdf6b333lOPHu5yc8iQIRHlzhw+kIMMFueS6KMp+nDZ2Idf6MMI/urniYP6+NaLDX0gvvg1ZwEAACQ65iwAAGAT3w/75syZo+nTp2vatGkdDkevvfaa8vPzNWfOHP3pT3/SgAED9MMf/lD33nuvkpOTW/2aQCCgQCDQ+HFVVdXp/ytJ84tKvHoazQR/Eqew9MgZ/9sXVbV6bsvnyspI1dVD+uvJD/dEJac9gVP1Wr61TOU1Ad06Lk9rdpdrze5yTzNCEXxPuJyeadpf/XVUMoLaeh70YdCHy7o+eqVq//GAjh3c6HlGUPCx472PzuR0JNjH1KH9VRU4FZWMplp7Hl72IUlbD1V26usRH/yas0oqqtUzJTpj5t6jJyRJO48cj8rjk2FnDhlkRMOB47WSpJqjn0UtI/jYe4+e0EcHj0UlI1H6SJSMaL/mwh7MWWSQYU9GrHLICN2RGvf1q/JQ9PZZwcc+cLyWOauLZDBntS/JcRzHr/AVK1ZowYIFKi4uVlpamqZMmaJx48Zp8eLFrd5/5MiRKi0tVUFBge666y599tlnuuuuu/S//tf/0rx581r9moceekgPP/xwFJ8FAADxa8yYMcrLy4va42/YsEHf+MY3ovb4J0+e1KpVq1RZWanMzMyo5cQj5iwAAPxz+eWXq2/f6P5GCuYs/zBnAQDgn2jPWfE6Y/l22Ldv3z5NmDBBa9eubfzd5h0NR8OHD9fXX3+tvXv3Nv7Lp8cff1y//e1vdfDgwVa/prV/CZWbm6vJg/vpwqzoDKvrSyu0o6JaEwf10YRBfSRJh2sCer3koPqlp+j64ecoJblbVHLaU1ffoDd2HdJXtXWaMSJbAzNSPc8IxcYDx1R84FjjY0Yjo6WWGfRh0IfL9j6+MaiPLo1SH0WlFdqeAH1EktORln1EI6M1TTNye6d73ock7aqo1rrSCr3wwgsqKCjw5DFb893vflevvfZa1B6/qqpKvXv3ZgnVgt9z1v1XDNeoAb28fVKnvVv2pZZsLNWjV43S0L5nkeFzRqxyyCAjmhl3ThiiQb3So5Kx9dAxvbLzYML8tyKjY3uPntCDb+/Upk2bNH78+KhkBDFn+YM5iwwy7MuIVQ4Z4Wd8f1S2BoS40wlXcK+RKP+tyOhYrOaseJ2xfPs1nps2bVJ5eXmzUurr61VUVKSnnnpKgUDgjF9lkJ2drR49ejT7/KhRo3To0CHV1dUpJSXljJzU1FSlpp75glIwdrDuGD/EuyfUxF0rt2hHRbW+OyJbD1w5ovE9libm9PP0PZZa5rQn+J5Xtaca9M7tk0N+z6twMkLhvgeZ+4c++HheZ7Smaca1w7Lo4zT6cMVDHzOi3Mf2BOgj3JyOtNaH1xltCWaMz+6j333yhed9SNKL2/ZpXWmFZ48Hu/g9Z107LEtX5vX38Bk1t2Rjqa67YKDGZ/chw4KMWOWQQUa0Mn4yfkjUMl7ctk+v7DyYMP+tyOjYRweP6cG3d0blsWEH5iwyyLAzI1Y5ZISXMfeKEVGds9aVViTMfysyOsac1T7fDvumTp2qbdu2NfvcbbfdppEjR7b5O8snTZqkl156SQ0NDerWzf3Jhl27dik7O7vVwcgGwYO+0VmZni9qQxVcnH9SXqW1syaFtTj30vyiEj349s4zFuex9EVVLX2cRh8u+jDow7ChD0l6bsvnunRQX9/6QPzqKnMWAABArDFnAQAAG3nzu8Ai0KtXL40ePbrZLSMjQ2effbZGjx4tSZo9e7bmzp3b+DV33nmnvvrqK919993atWuXVq5cqV/96leaM2eOX0+jXSzODZsW5/RBH0H00Rx9uGzo4/DpN7LOykjloA8R6QpzFgAAgB+YswAAgI18+8m+UJSVlTX+iydJys3N1erVq/Xzn/9cY8aMUU5Oju6++27de++9Pl5l2/z+iQwW54YNi3P6MOjDoA8XfRgb9h/V6yXu+3bcMnYwB32ImnifswAAAGzFnAUAAGLNqsO+wsLCdj+WpPz8fH3wwQexuaAIsTg3WJy76MOgD4M+XPRhBH/1c7/0FB2uqVNq9zN/BRAQqUSZswAAAGzDnAUAAPzm26/xTFQszg3bFueSfFmc04dBHwZ9uOjDaPoer9cPP8eXawAAAAAAAAAQfzjs8xCLc4PFuYs+DPow6MNFH0bTPlYV5Cslmb+eAQAAAAAAAISGbaJHWJwbLM5d9GHQh0EfLvowWvbBe/QBAAAAAAAACAeHfR5gcW6wOHfRh0EfBn246MOwoQ8AAAAAAAAA8Y3Dvk6yYVEbOFXP4vw0+jDow0UfBn0Y9AEAAAAAAAAgUXT3+wLimS2L2uVby1QZOMXinD4a0YdBHy76MOjDVXuyPuaZAAAAAAAAALzHT/ZFyIZFbV19gySpvCbA4pw+GtGHiz4M+jDow3U8cFK/effTmOcCAAAAAAAA8B6HfRGwZVH7xq5DkqRbx+WxOKcPSfQRRB8GfRj04Qq+Z+K+qtqYZwMAAAAAAADwHod9YbJpUftVbZ0k6dzM9Jhfg8TiPIg+DPow6MNFH4ZNfXxSXqW5lw+PeT4AAAAAAAAA73HYFwbbFrUzRmTHPD+IxbmLPgz6MOjDRR+GbX2snTVJw/plxPwaAAAAAAAAAHiPw74Q2bioHZiRGvNrkFicB9GHQR8Gfbjow7CxD79+lSoAAAAAAAAA73HYFwIWtQaLcxd9GPRh0IeLPgz6AAAAAAAAABBt3f2+ANuxqDVYnLvow6APgz5ctvRRWHpE6/ZW0IclfQAAAAAAAACIHg772sGi1mBx7qIPgz4M+nDZ0ock+pBdfQAAAAAAAACIHn6NZxtY1DbH4pw+mqKP5ujDnj42HjgmSZo6tD99WNAHAAAAAAAAgOjjsK8VLGoNFucu+jDow6APly19zC8qUfHpTqYMGeDLNdAHAAAAAAAAgFjjsK8FFrUGi3MXfRj0YdCHy6Y+Hnx7pyYO6uNLvkQfAAAAAAAAAPzBYV8TLGoNFucu+jDow6APl219PHrVKE3wqRP6AAAAAAAAAOAXDvtOY1FrsDh30YdBHwZ9uGzsg1+l6n8fAAAAAAAAAGKPwz6xqG2KxbmLPgz6MOjDRR8GfQAAAAAAAADwmzWHfYsWLVJSUpLuueeeNu/z3HPPKSkpqdktLS2tU7ksag0W5y76MOjDoA8XfRhfVNXSB+KGX3MWAABAomPOAgAANuju9wVIUnFxsZYuXaoxY8Z0eN/MzEyVlJQ0fpyUlBRxLotzg8W5iz4M+jDow0UfzT235XNdOqhvl+8D9vNrzgIAAEh0zFkAAMAWvv9kX3V1tQoKCrRs2TL17dvxojIpKUnnnHNO423gwIER5e49WsPi/DSbFuf0QR9B9NEcfbhs6ONwTUCSlJWR2uX7gP38mrMAAAASHXMWAACwie8/2TdnzhxNnz5d06ZN0/z58zu8f3V1tfLy8tTQ0KDx48frV7/6lS666KI27x8IBBQIBBo/rqqqkiT95p1PNSgzTVcP6a8nP9zT+SfSxMYDxyRJhaVH2r6uU/VavrVM5TUB3TouT2t2l2vN7nLPczpSWHpE6/ZWaOrQ/pLcRbrXGR1fQ4UkKa17clT6kDp+HvTR9BroI4g+XPHSh1c57fmiqlZ/3HlQknRe34yo9CG1/zy86EOSth6qlCS9++67nbrWjhw9ejSqj4/2+TVnlVRUq2dKdMbMvUdPSJJ2Hjkelccnw84cMsggg4x4yQg+9s6dO6OWEVRbWxv1DLSNOYsMMuzJiFUOGWSQ4W9GrOaseJ2xkhzHcfwKX7FihRYsWKDi4mKlpaVpypQpGjdunBYvXtzq/d9//319+umnGjNmjCorK/XYY4+pqKhI27dv17nnntvq1zz00EN6+OGHo/gsAABAey6//PKQ/rVzJE6ePKlVq1apsrJSmZmZUcmIV8xZAAAkvmnTpik9PT0qj82c1TbmLAAAEls8zli+Hfbt27dPEyZM0Nq1axt/t3lHw1FLJ0+e1KhRo3TzzTfr0UcfbfU+rf1LqNzcXE3K7asxA3t3+nm0Zn1phXZUVGvioD6aMKhPs/+trr5Bb+w6pK9q6zRjRLYGZqRGJacjGw8cU/GBYx1+bWcyOnK4JqDXSw6qe7duqj3VEJWMoLaeB30Y9GHQhyve+uhsTnuCffRLT1HftBT99cvo9B7U2vPwso+mGd8fNUg3jMoO+ev+uPOAXtl5UN8fla0bRg1q977vln2pJRtL9cILL6igoKBT19uWqqoq9e7dmyVUC37PWfdfMVyjBvTq9PNoTfD76tGrRmlo37PI8DkjVjlkkEEGGfGW8cL3Lo3a34WS+y/bf/SHTdq0aZPGjx8flQzmrNYxZ5FBhn0Zscohgwwy7MiI5pwVzzOWb7/Gc9OmTSovL2/2H6y+vl5FRUV66qmnFAgElJyc3O5j9OjRQ5dccok+++yzNu+Tmpqq1NQzF6K3jMvTHeOHRHz97blr5RbtqKjWd0dkN3tPqeB7LNWeatA7t0/u9HsstZXTkflFJSo+UBrSe15FmtGRDfuP6prn39XEnH4a1b+nntlc5nlGU609D/ow6MOgj/jtozM57Wnax6qCfN375+3665fe995Uy+fhdR9NM8ae01sFF+eG9DXzi0r0ys6DYb1n4pKNpZ24SkTK7znr2mFZujKvf+RPoANLNpbqugsGanx2HzIsyIhVDhlkkEFGPGWMGtAr6q+98AdzFhlk2JkRqxwyyCDD/wzmrNZ18yt46tSp2rZtm7Zs2dJ4mzBhggoKCrRly5YOByPJHaa2bdum7OzQfyLBL8FF7SflVVo7a5Ini9pIzC8q0YNv7wxrUeu14OJ8dFamVhXkKyU59t+G9GHQh0EfLvowWvbRK7VHzK+BPhCJrjZnAQAAxApzFgAAsJFvP9nXq1cvjR49utnnMjIydPbZZzd+fvbs2crJydHChQslSY888oi+9a1v6fzzz9exY8f029/+Vp9//rl+8pOfxPz6w8Gi1mBxbtCHiz4M+jDowxU4VU8fiEhXmrMAAABiiTkLAADYyLfDvlCUlZWpWzfzUy1Hjx7VHXfcoUOHDqlv37669NJL9d577+nCCy/08Srbx+LcYHFu0IeLPgz6MOjDWL61TJWBU12+D0RHIsxZAAAANmLOAgAAsWbVYV9hYWG7Hz/xxBN64oknYndBncTi3GBxbtCHQR8u+jDow1VX3yBJKq8JqOi2K7t0H/BOos1ZAAAAtmDOAgAAfrPqsC/RsDh3sTg36MNFHwZ9GPThOh44qTd2HZIk3Tour0v3AQAAAAAAAKBj3Tq+C8LVdHHOQR+L8yD6cNGHQR8GfbiCv/r5q9o6SdK5mekxvwbJjj4AAAAAAAAAhIbDPo+xODdYnBv04aIPgz4M+nA1fY/XGSOyY54fZEMfAAAAAAAAAELHYZ+HWJwbLM4N+nDRh0EfBn24mvaxdtYkDcxIjfk1SHb0AQAAAAAAACA8HPZ5hMW5weLcoA8XfRj0YdCHq2UfXfknwgEAAAAAAACEj8M+D7A4N1icG/Thog+DPgz6cNEHAAAAAAAAgM7isK+TWNQaLM4N+nDRh0EfBn24bOmjsPSI730AAAAAAAAAiFx3vy8gntm0qF23t4LFOX00og+DPlz0YdBHc373AQAAAAAAAKBz+Mm+CLGoNVicN0cf9NEUfTRHH/b0sfHAMUnS1KH9OegDAAAAAAAA4hiHfRFgUWuwODfow0UfBn0Y9OGypY/5RSUqPt3JlCEDfLkGAAAAAAAAAN7gsC9MLGoNFucGfbjow6APgz5cNvXx4Ns7NXFQH1/yAQAAAAAAAHiLw74wsKg1WJwb9OGiD4M+DPpw2dbHo1eN0gQO+wAAAAAAAICEwGFfiFjUGizODfpw0YdBHwZ9uGzsg/foAwAAAAAAABIHh30hYFFrsDg36MNFHwZ9GPThog8AAAAAAAAA0cZhXwdY1Boszg36cNGHQR+GDX18UVVLH6fZ0AcAAAAAAACA6OGwrx0sag0W5wZ9uOjDoA/Dhj4k6bktn9OH7OkDAAAAAAAAQPRw2NcGFrXNsTh30YeLPpqjD5cNfRyuCUiSsjJS6cOCPnZ/VeNLLgAAAAAAANCVcNjXCha1Botzgz5c9GHQh2FDHxv2H9XrJQclSbeMHUwfFvSx8J1dvmQDAAAAAAAAXQmHfS2wqDVYnBv04aIPgz4MW/q45vl31S89RZKU2j055tdAH0awj9zMdF/yAQAAAAAAgK6Ew74mWNQaLM4N+nDRh0Efhk19jM7K1PXDz/HlGujDaNrHP0+6wJdrAAAAAAAAALoSaw77Fi1apKSkJN1zzz1t3ufVV1/VhAkT1KdPH2VkZGjcuHF6/vnnPclnUWuwODfow0UfBn0YtvWxqiBfKcmx/2uNPoyWfaT3iP1BOFrn95wFAACQqJizAACADaw47CsuLtbSpUs1ZsyYdu/Xr18/3X///Xr//ff18ccf67bbbtNtt92m1atXdyqfRa3B4tygDxd9GPRh2NgHv0qVPtA6v+csAACARMWcBQAAbOH7YV91dbUKCgq0bNky9e3b/pJ0ypQp+t73vqdRo0Zp2LBhuvvuuzVmzBi98847EeezqDVsWNTSh0EfBn246MOwoY/AqXr6OM2GPtA6v+csAACARMWcBQAAbNLd7wuYM2eOpk+frmnTpmn+/Pkhf53jOPqf//kflZSU6Ne//nWb9wsEAgoEAo0fV1VVSZJWlhxS2bETWr61TOU1Ad06Lk9rdpdrze7yyJ/MaRsPHJMkFZYeCen+haVHtG5vhaYO7S/JXdxGI6c9X1TV6rktnysrI1VXD+mvJz/c43lGW4IZf95Trv+3aa/nfTTNCOV50IebQR8GfRg29+F1TluCGf++YY++PlXveR9NMzp6HpH2EU5GR9rrY+uhyk49NjrPrzmrpKJaPVOiM2buPXpCkrTzyPGoPD4ZduaQQQYZZJDRXLQfHx1jziKDDHsyYpVDBhlkJH5GPM9YSY7jOH6Fr1ixQgsWLFBxcbHS0tI0ZcoUjRs3TosXL27zayorK5WTk6NAIKDk5GT9x3/8h26//fY27//QQw/p4YcfjsLVAwCAUIwZM0Z5eXlReeyTJ09q1apVqqysVGZmZlQy4hVzFgAAie/yyy/v8KfKIsWc1TbmLAAAEls8zli+Hfbt27dPEyZM0Nq1axt/t3kow1FDQ4P27Nmj6upqrVu3To8++qj++Mc/asqUKa3ev7V/CZWbm6vMlGTVnqrXjBHZGpiR6uVT0/rSCu2oqNbEQX00YVCfNu+38cAxFR841uH9OpvTnsM1Ab1eclD90lN0/fBzzngPMi8yOvL23gr99ctqdZN0wyjv+5BCex704aIPgz6MeOjDq5z21NU36KVtX6j2VING9e+pKUP6e54hdfw8OttHKBkdCaWPXRXVWldaoRdeeEEFBQURXWdHqqqq1Lt3b5ZQLfg9Z91/xXCNGtDLy6fU6N2yL7VkY6kevWqUhvY9iwyfM2KVQwYZZJBBRnN7j57Qg2/v1KZNmzR+/PioZDBntY45iwwy7MuIVQ4ZZJCR+BnxPGP59ms8N23apPLy8mb/werr61VUVKSnnnqq8V86tdStWzedf/75kqRx48Zp586dWrhwYZvDUWpqqlJTz1yOB+ob9M7tk6PyHkt3rdyiHRXV+u6I7DbfP2l+UYmKD5R26j2WQslpT/A9libm9GvzPZY6m9GR44GTuuDf10qS7rh0iP7z+nGeZ0gdPw/6cNGHQR9GvPThRU57gu+ZeKqhQZL0w4tzo/Yeee09Dy/66CijI6H28eK2fVpXWhHxNSJyfs9Z1w7L0pV50TkMl6QlG0t13QUDNT67DxkWZMQqhwwyyCCDDOOjg8f04Ns7o/b4aBtzFhlk2JkRqxwyyCAjsTPiecby7bBv6tSp2rZtW7PP3XbbbRo5cqTuvffeVgej1jQ0NDT7l06h+kX++VE56AvF/KISPfj2zk4vajsjuKgdnZXZ7qI2moKL869q6yRJ52amx/waJPoIog+DPgz6cAX7+KS8SjNGZOvVnQdjfg0SfSB0fs9ZAAAAiYo5CwAA2Mi3w75evXpp9OjRzT6XkZGhs88+u/Hzs2fPVk5OjhYuXChJWrhwoSZMmKBhw4YpEAjozTff1PPPP68lS5aEnT+0b0bnn0QEWNS6WJwb9GHQh4s+DNv6WDtrkp7b8nnMr0GiD4TH7zkLAAAgUTFnAQAAG/l22BeKsrIydetm3gOopqZGd911l7744gulp6dr5MiReuGFF/SDH/zAx6sMHYtaF4tzgz4M+nDRh2FjH9/I6etLJ/SBaEi0OQsAAMAWzFkAACDWrDrsKywsbPfj+fPna/78+bG7IA+xqHWxODfow6APF30YtvbhB/qAVxJ5zgIAAPATcxYAAPCbVYd9iYpFrYvFuUEfBn246MOgD6Ow9IjW7a3o8n0AAAAAAAAAaBuHfVHG4tzF4tygD4M+XPRh0Edz9AEAAAAAAACgIxz2RRGLcxeLc4M+mqMP+miKPoyNB45JkqYO7d+l+wAAAAAAAADQsW4d3wWRYnHO4rwp+jDow0UfBn0Y84tKVHy6kylDBvhyDTb0AQAAAAAAACA0HPZFAYtzF4tzgz4M+nDRh0EfRvBXP08c1MeXfMmOPgAAAAAAAACEjsM+j7E4d7E4N+jDoA8XfRj0YTR9j9cJPnViQx8AAAAAAAAAwsNhn4dYnLtYnBv0YdCHiz4M+jCa9tGVfyIcAAAAAAAAQPg47PMIi3MXi3ODPgz6cNGHQR8GfQAAAAAAAADoDA77PMCi1sXi3KAPgz5c9GHQh2FDH19U1freBwAAAAAAAIDIcdjXSSxqXSzODfow6MNFHwZ9GDb0IUnPbfmcgz4AAAAAAAAgjnHY1wksal0szpujDxd9uOijOfpw2dDH4ZqAJCkrI5WDPgAAAAAAACCOcdgXIRa1LhbnBn0Y9OGiD4M+DBv62LD/qF4vOShJumXsYA76AAAAAAAAgDjGYV8EWNS6WJwb9GHQh4s+DPowbOnjmuffVb/0FElSavdkX64DAAAAAAAAgDc47AsTi1oXi3ODPgz6cNGHQR+GTX2MzsrU9cPP8eUaAAAAAAAAAHiLw74wsKh1sTg36MOgDxd9GPRh2NbHqoJ8pSQzAgAAAAAAAACJgE1fiFjUulicG/Rh0IeLPgz6MGzsg/foAwAAAAAAABIHh30hYFHrYnFu0IdBHy76MGzoI3Cqnj5Os6EPAAAAAAAAANHT3e8LsB2LWheLc4M+DPpw0YdhQx+StHxrmSoDp+jDkj4AAAAAAAAARA+Hfe1gUWuwOHfRh0EfBn24bOijrr5BklReE1DRbVfSh8991J6sj3kmAAAAAAAA0NXwazzbwKLW1XRxzkEGfQTRh4s+DBv6OB44qTd2HZIk3Toujz4s6OM3734a81wAAAAAAACgq7HmsG/RokVKSkrSPffc0+Z9li1bpiuuuEJ9+/ZV3759NW3aNG3YsMHza2FR62JxbtCHQR8u+jBs6eM7L76vr2rrJEnnZqbH/Bok+ggK9rGvqjbm2WidTXMWAABAImHOAgAANrDisK+4uFhLly7VmDFj2r1fYWGhbr75Zr399tt6//33lZubq2uvvVb79+/37FpY1LpYnBv0YdCHiz4Mm/r4pLxKM0Zkxzw/iD5cTfuYe/nwmOfjTDbNWQAAAImEOQsAANjC98O+6upqFRQUaNmyZerbt/2fjHnxxRd11113ady4cRo5cqSefvppNTQ0aN26dZ5cC4taF4tzgz4M+nDRh2FbH2tnTdLAjNSYX4NEH0Et+xjWLyPm14DmbJqzAAAAEglzFgAAsEl3vy9gzpw5mj59uqZNm6b58+eH9bUnTpzQyZMn1a9fvzbvEwgEFAgEGj+uqqqSJK0sOaTD1ebzhaVHtG5vhaYO7S/JXdxGauOBY42PGY4vqmr13JbPlZWRqquH9NeTH+6JSk57AqfqtXxrmcprArp1XJ4+Ouh9RkutPQ8v+2groyP0QR8t0YdhYx9rdpdHJaellhle99FaRkfC7SOSjI601sfWQ5WSpHfffdeTjNacOHEiao+dCPyas0oqqtUzJTpj5t6jbuc7jxyPyuOTYWcOGWSQQQYZzQUff+fOnVHLqK6ujtpjJwLmLDLIsCcjVjlkkEFG4mfE84yV5DiOE5VHDsGKFSu0YMECFRcXKy0tTVOmTNG4ceO0ePHikL7+rrvu0urVq7V9+3alpaW1ep+HHnpIDz/8sIdXDQAAbFNZWanMzEy/L8MqzFkAACS2gRmpUX3v8JP1DVq1u5w5qxXMWQAAJK54nbF8+8m+ffv26e6779batWvbHGzas2jRIq1YsUKFhYXtfv3cuXP1i1/8ovHjqqoq5ebmavLgfrowK1MbDxxT8YFjmjiojyYM6hPJUznD+tIK7aioDvkxD9cE9HrJQfVLT9H1w89RSnJov1013Jz21NU36I1dh/RVbZ1mjMhu/FV4Xma0pWmGJM/7aJnR0ePSB320RB+GzX14ndOWYEZOzzTtr/46KlmhPo9I+wgnoyOh9PHoVaN03QUDI85oz6YDx/TTN7ZE5bHjmd9z1v1XDNeoAb0iuvaOvFv2pZZsLNWjV43S0L5nkeFzRqxyyCCDDDLIODPni6qv9drN34paRlXgpHovWhm1x49XzFlkkGFfRqxyyCCDjK6REa8zlm+HfZs2bVJ5ebnGjx/f+Ln6+noVFRXpqaeeUiAQUHJycqtf+9hjj2nRokX685//3OGbIKempio19cz3cCoYO1iHqwMqPlDq+Xss3bVyi3ZUVOu7I7I7fNzgeyxNzOkX9nsshZPTnuB7LNWeatA7t09udmrtVUZ7ghmZqd21bm9FVN7zKtTnQR/00RJ9GLb34WVOe4IZ+6u/jtp79IXyPDrTR6gZHQm1j6F9z9L47D4RZXSkuu5UVB433vk9Z107LEtX5vXv3JNox5KNpbrugoFR+74iw84cMsgggwwymvv/f7I/qo+P1jFnkUGGnRmxyiGDDDISPyNeZyzfDvumTp2qbdu2NfvcbbfdppEjR+ree+9tczD6zW9+owULFmj16tWaMGFCxPkrSw7qT7sOR21RG4rgonZ0VmZEi1ovBBe1n5RXae2sSVH98dSOROsgI1T00Rx90EdT9GEE3+tu6tD+9GFBH/+/rWW+5NrO7zkLAAAgUTFnAQAAG/l22NerVy+NHj262ecyMjJ09tlnN35+9uzZysnJ0cKFCyVJv/71r/Wv//qveumllzRkyBAdOnRIktSzZ0/17NkzrHwO+uxZ1LI4d9GHQR8Gfbhs6WN+UYmKT3cyZcgAX66BPoz5RSV6ZjOHfa3xe84CAABIVMxZAADARqG/uY8PysrKdPDgwcaPlyxZorq6On3/+99XdnZ24+2xxx4L+7FnDh/I4tySRS2Lc/poij4M+nDZ1MeDb+9sfP9EP9CHEezjx5cM9iU/EURzzgIAAOjKmLMAAECs+faTfa0pLCxs9+PS0lLPsqaPyPbsscLBotZoujgPHmjEGn0Y9OGiD4M+jGAfj141SgeO1/rSCX0YTfu4Mu9sfrovRLGcswAAALoS5iwAAOA3q3+yL9GwqDWaLmon+PRTMvRh0IeLPgz6MJr2wU+E0wcAAAAAAABgGw77YoRFrWHDopY+DPpw0YdBHwZ9uOgDAAAAAAAAsBeHfTHAotawYVFLHwZ9uOjDoA/Dhj6+qKqlj9Ns6AMAAAAAAACwEYd9Ucbi3LBhUcvi3KAPF30Y9GHY0IckPbflc/qQPX0AAAAAAAAANuKwL4pYnBu2LGpZnLvow0UfzdGHy4Y+DtcEJElZGan0YUEfAAAAAAAAgM047IsiFucuGxa1LM4N+nDRh0Efhg19bNh/VK+XHJQk3TJ2MH1w0AcAAAAAAAC0i8O+KGBxbtiwqGVxbtCHiz4M+jBs6eOa599Vv/QUSVJq9+SYXwN9AAAAAAAAAPGFwz6PsTg3bFjUsjg36MNFHwZ9GDb1MTorU9cPP8eXa6APAAAAAAAAIP5w2OchFueGDYtaFucGfbjow6APw7Y+VhXkKyU59n890wcAAAAAAAAQnzjs8wiLc8OGRS2Lc4M+XPRh0IdhYx/8RDgHfQAAAAAAAEA4OOzzAItzw4ZFLYtzgz5c9GHQh0EfrsCpevoAAAAAAAAA4lh3vy8g3rGoNWxY1NKHQR8u+jDow6APY/nWMlUGTnX5PgAAAAAAAIB4xWFfJ7CoNWxY1NKHQR8Gfbjow6APV119gySpvCagotuu7NJ9AAAAAAAAAPGMX+MZIdsWtSzO6SOIPlz0YdCHQR+u44GTemPXIUnSrePyunQfAAAAAAAAQLzjsC8CLGoNGxa19GHQh4s+DPow6MMVfM/Er2rrJEnnZqbH/BokO/oAAAAAAAAAEgGHfWFiUWvYsKilD4M+XPRh0IdBH65gH5+UV2nGiOyY5wfZ0AcAAAAAAACQKDjsCwOLWsOGRS19GPThog+DPgz6cDXtY+2sSRqYkRrza5Ds6AMAAAAAAABIJBz2hYhFrWHDopY+DPpw0YdBHwZ9uFr20ZV/lSoAAAAAAACQaDjsCwGLWsOGRS19GPThog+DPgz6cNEHAAAAAAAAkNisOexbtGiRkpKSdM8997R5n+3bt+vv/u7vNGTIECUlJWnx4sVRvy4WtYYNi1r6MOjDRR8GfRiFpUfoQ/b08cedB3zvo6uzdc4CAACId8xZAADABlYc9hUXF2vp0qUaM2ZMu/c7ceKEzjvvPC1atEjnnHNO1K+LRa3B4txFHwZ9GPThsqUPSVq3t4I+LOrjlZ0HOejzka1zFgAAQLxjzgIAALbw/bCvurpaBQUFWrZsmfr2bX8ROXHiRP32t7/VTTfdpNTU6L7/E4va5lic00dT9NEcfdjTx8YDxyRJU4f2pw+L+vj+qGwO+nxi65wFAAAQ75izAACATbr7fQFz5szR9OnTNW3aNM2fP9/zxw8EAgoEAo0fV1VVSZJWlhzS4epAq1/zRVWtntvyubIyUnX1kP568sM9YWUGl5uFpUciu2hJgVP1Wr61TOU1Ad06Lk9rdpdrze5yz3M68tpfD0mSzutzliT3VxV6raPn0dk+QsnoCH0Y9GHQh8uWPgpLj6j4dI4UnT6k9p+LF310lNGRUProbEYomvYxICNVL27bF5WcnUeOR+VxE4Vfc1ZJRbV6pkRnzNx79ISk6HZPhn05ZJBBBhlktJ4D/zBnkUGGPRmxyiGDDDK6TkZccnz0u9/9zhk9erRTW1vrOI7jTJ482bn77rtD+tq8vDzniSee6PB+8+bNcyRx48aNGzdu3BL4VllZ2YmJJDExZ3Hjxo0bN27cvLgxZ52JOYsbN27cuHHj1tmb1zOWbz/Zt2/fPt19991au3at0tLSopYzd+5c/eIXv2j8uKqqSrm5uZo8uJ8uzMpsdt/DNQG9XnJQ/dJTdP3wc5SSHNlvOV1fWqEdFdWaOKiPJgzqE9bX1tU36I1dh/RVbZ1mjMjWwIy2f71DZ3I6svHAMRUfOKYB6Sk6UlsXlYygtp6HV320l9ER+jAZ9GHQh8u2PiYO6qOaulNRywlq7bl42UdbGR0Jp49IM0IR6z52lFdpfdlXUXnseOb3nHX/FcM1akCvqGS+W/allmws1aNXjdLQvmeR4XNGrHLIIIMMMsiIfc7OI8e14C+7ovLY8Yw5iwwy7MuIVQ4ZZJBBhheiNWP5dti3adMmlZeXa/z48Y2fq6+vV1FRkZ566ikFAgElJyd3Oic1NbXV34deMHaw7hg/pPHj4HssTczp1+n3WLpr5RbtqKjWd0eE9x5FwfdYqj3VoHdun9zheyxFmtOR+UUlKj7gfkMfOF6rJRtLPc9oqrXn4WUfbWV0hD7oozX04bKxjweuHBG1nKZaZnjdR2sZHQm3j0gyQuFHH8s+KuWwrxV+z1nXDsvSlXn9O/34bVmysVTXXTBQ47P7kGFBRqxyyCCDDDLIiG1O0ecVHPa1gjmLDDLszIhVDhlkkEFGZ0VrxvLtsG/q1Knatm1bs8/ddtttGjlypO69915PBqNQBRe1o7MyPVvUhiu4qP2kvEprZ00KaVEbDfOLSvTg2zubLWpjjT4M+nDRh0EfRss+/EAfhg19wLBpzgIAAEgkzFkAAMBGvh329erVS6NHj272uYyMDJ199tmNn589e7ZycnK0cOFCSVJdXZ127NjR+H/v379fW7ZsUc+ePXX++edHdB0sag0bFrX0YdCHiz4M+jBs6OOLqlr6OM2GPtCcLXMWAABAomHOAgAANvLtsC8UZWVl6tbNvO/RgQMHdMkllzR+/Nhjj+mxxx7T5MmTVVhYGPbjszg3bFjUsjg36MNFHwZ9GDb0IUnPbflclw7qSx+W9IHwRXvOAgAA6KqYswAAQKxZddjXcsBp+fGQIUPkOI4nWXuP1uiXaz5hcS57FrUszl304aKP5ujDZUMfh2sCkqSsjFT6sKCPvUdrfMmNR7GcswAAALoS5iwAAOC3bh3fJTE9/v5nHPTJjkUti3ODPlz0YdCHYUMfG/Yf1eslByVJt4wdTB8W9PH4+5/5kg0AAAAAAADYosse9uVkprM4t2RRy+LcRR8u+jDow7Clj2uef1f90lMkSandk2N+DfRhBPvIyUz3JR8AAAAAAACwRZc97Lvnm8NYnFuyqGVxTh9B9GHQh2FTH6OzMnX98HN8uQb6MJr2cc83h/lyDQAAAAAAAIAtuuxhX1oPFue2LGpZnNOHRB9N0YdhWx+rCvKVkhz7vzrpw2jZhx9/nwMAAAAAAAA26bKHfbHGotZgcW7Qh4s+DPowbOyDnwinDwAAAAAAAMA2HPbFAItaw4ZFLX0Y9GHQh4s+DBv6CJyqp4/TbOgDAAAAAAAAsFF3vy8g0bE4N2xY1LI4N+jDoA8XfRg29CFJy7eWqTJwij4s6QMAAAAAAACwEYd9UcTi3LBlUcvi3EUfBn0Y9OGyoY+6+gZJUnlNQEW3XUkfFvz5AAAAAAAAAGzFYV8UsTh32bCoZXFu0IdBHy76MGzo43jgpN7YdUiSdOu4PPrgoA8AAAAAAABoF+/ZFwVNF+cc9Pm/qGVxbtCHQR8u+jBs6eM7L76vr2rrJEnnZqbH/Bok+gAAAAAAAADiCYd9HmNxbtiwqGVxbtCHQR8u+jBs6uOT8irNGJEd8/wg+gAAAAAAAADiC4d9HmJxbtiwqGVxbtCHQR8u+jBs62PtrEkamJEa82uQ6AMAAAAAAACIRxz2eYTFuWHDopbFuUEfBn246MOwsQ9+IpyDPgAAAAAAACAcHPZ5gMW5YcOilsW5QR8Gfbjow6APgz4AAAAAAACA+MVhXyexqDVsWNTSh0EfBn246MOgD6Ow9Ah9AAAAAAAAAHGsu98XEM9sWtSu21vR5Re19GHQh0EfLvow6KM5+gAAAAAAAADiGz/ZFyEWtYYNi1r6MOijOfqgj6bow9h44JgkaerQ/l26DwAAAAAAACDecdgXARa1hg2LWvow6MOgDxd9GPRhzC8qUfHpTqYMGeDLNdjQBwAAAAAAAJAIOOwLE4taw4ZFLX0Y9GHQh4s+DPowgu+ZOHFQH1/yJTv6AAAAAAAAABIFh31hYFFr2LCopQ+DPgz6cNGHQR9GsI9HrxqlCT51YkMfAAAAAAAAQCLx9bBvyZIlGjNmjDIzM5WZman8/Hy99dZbbd7/5MmTeuSRRzRs2DClpaVp7NixWrVqVUyulUWtYcOilj4M+jDow0UfBn0YTfvoyr9KtSuJpzkLAAAgXjBjAQAAG/l62Hfuuedq0aJF2rRpkzZu3Kirr75aM2fO1Pbt21u9/wMPPKClS5fq3//937Vjxw797Gc/0/e+9z1t3rw5qtfJotawYVFLHwZ9GPThog+DPgz66JriZc4CAACIJ8xYAADARr4e9s2YMUPXXXedLrjgAg0fPlwLFixQz5499cEHH7R6/+eff17/8i//ouuuu07nnXee7rzzTl133XX6t3/7t6hdI4taw4ZFLX0Y9GHQh4s+jC+qaunjNProuuJhzgIAAIg3zFgAAMBG3f2+gKD6+nq9/PLLqqmpUX5+fqv3CQQCSktLa/a59PR0vfPOO20+biAQUCAQaPy4qqpKkrSy5JAOVwfa+jL3a0/Va/nWMpXXBHTruDyt2V2uNbvLO3wuGw8ckyQVlh7p8L6hKCw9onV7KzR1aH9J7uI2GjmtCWb86a8HNb/or8rKSNXVQ/rryQ/3eJ7R0fOItI9wMkJBHy76oI/W+NlH05ynPyrVoF5pnvfRNKO959KZPkLNCEVbfXiZ0Z6Y9LH/qKePl6hiPWeVVFSrZ0p0xsy9R09IknYeOR6VxyfDzhwyyCCDDDJin1NSUR21x04U0Zqxgl/HnEUGGXblkEEGGWR4IWozluOzjz/+2MnIyHCSk5Od3r17OytXrmzzvjfffLNz4YUXOrt27XLq6+udNWvWOOnp6U5KSkqbXzNv3jxHEjdu3Lhx48YtgW+VlZXRGFPiHnMWN27cuHHjxq2zN+asM0V7xnIc5ixu3Lhx48Yt0W9ez1hJjuM48lFdXZ3KyspUWVmpV155RU8//bTWr1+vCy+88Iz7HjlyRHfccYdef/11JSUladiwYZo2bZqeffZZ1dbWtvr4rf1LqNzcXE0e3E8XZmW2fk31DXpj1yF9VVunGSOyNTAjNazntL60QjsqqjVxUB9NGNQnrK9tauOBYyo+cKzNx/Eqpz1vfXZYpcdq1bNHsn4wOkcpyd7/5teOnkdn+wglIxT04aIPgz4MG/o4XBPQH3YelCNp/Dm99c1zo/NrM9t7Ll700VFGKDrqw4uMjsSqjx3lVVpf9pUqKyuVmdn63+tdmV9z1v1XDNeoAb2i8pzeLftSSzaW6tGrRmlo37PI8DkjVjlkkEEGGWTEPmfnkeNa8JddzFmtiPaMJTFnkUGGjTlkkEEGGV6I1ozl+6/xTElJ0fnnny9JuvTSS1VcXKwnn3xSS5cuPeO+AwYM0B//+Ed9/fXX+vLLLzVo0CDdd999Ou+889p8/NTUVKWmnrlsLRg7WHeMH3LG54PvsVR7qkHv3D45ovdYumvlFu2oqNZ3R2RH/P5I84tKVHygtN33WPIipz0b9h/V0x+VSpLu+dYwPXr1mUOrF9p7Hl700VFGKOjDRR8GfRi29HHN8+8qKyNFh2vq9L1Rg6L2/nRtPRev+mgvIxSh9NHZjI7Eso9lH5VqfdlXUXnsRODXnHXtsCxdmdffuyfSwpKNpbrugoEan92HDAsyYpVDBhlkkEFGbHOKPq/Qgr/sispjx7toz1gScxYZZNiaQwYZZJDRWdGasbz/MZROamhoaPYvl1qTlpamnJwcnTp1Sr///e81c+ZMT7KDi9pPyqu0dtakTi1qO2N+UYkefHtnh4vaaAouavulp0iSUrsnx/wa6MOgD4M+XPRhBPsYnZWp64ef48s10IdhQx9om59zFgAAQKJixgIAAH7z9bBv7ty5KioqUmlpqbZt26a5c+eqsLBQBQUFkqTZs2dr7ty5jff/8MMP9eqrr2rPnj36y1/+ou985ztqaGjQP//zP3f6WljUGjYsaunDoA+DPlz0YTTtY1VBflR+lWpH6MOwoQ8YNs1ZAAAAiYIZCwAA2MjXX+NZXl6u2bNn6+DBg+rdu7fGjBmj1atX65prrpEklZWVqVs3syj8+uuv9cADD2jPnj3q2bOnrrvuOj3//PPq06dPp66DRa3RclF775+3x/wa6MOgD4M+XPRhtOyjV2qPmF8DfRg29IHmbJmzAAAAEgkzFgAAsJGvh33PPPNMu/97YWFhs48nT56sHTt2eHoNLGoNGxa19GHQh0EfLvowbOgjcKqePk6zoQ+cyYY5CwAAINEwYwEAABv5etjnNxbnhg2LWhbnBn0Y9OGiD8OGPiRp+dYyVQZO0YclfQAAAAAAAABdVZc97Pv6JIvzIFsWtSzOXfRh0IdBHy4b+qirb5AkldcEVHTblfThcx9fn6yPeSYAAAAAAABgky572Lf4w92qOFHH4tyCRS2Lc4M+DPpw0YdhQx/HAyf1xq5DkqRbx+XRhwV9LP5wd8xzAQAAAAAAAJt06/guiWl/VS0HfZYsalmcu+jDoA8XfRi29PGdF9/XV7V1kqRzM9Njfg0SfQQF+9hfVRvzbAAAAAAAAMAmXfaw7xf557M4t2RRy+KcPpqiDxd9GDb18Ul5lWaMyI55fhB9uJr28Yv882OeDwAAAAAAANikyx72De2b4Usui1oXi3ODPgz6cNGHYVsfa2dN0sCM1Jhfg0QfQS378OvvcwAAAAAAAMAWXfawzw8sal0szg36MOjDRR+GjX3wE+H0AQAAAAAAANiGw74YYVHrsmVRSx8u+jDow6APF30Y9AEAAAAAAADYq7vfF9AVsKh12bKopQ8XfRj0YdCHy5Y+CkuPaN3eCvqwpA8AAAAAAADARhz2RRmLc5cti1oW5y76MOjDoA+XLX1Iog/Z1QcAAAAAAABgIw77oojFucumRS190EdT9NEcfdjTx8YDxyRJU4f2pw8L+gAAAAAAAABsxnv2RRGLc3sWtSzOXfRh0IdBHy5b+phfVKLi051MGTLAl2ugDwAAAAAAACB+cNgXBSzOXbYsalmcu+jDoA+DPlw29fHg2zs1cVAfX/Il+gAAAAAAAADiDYd9HmNx7rJlUcvi3EUfBn0Y9OGyrY9HrxqlCT51Qh8AAAAAAABA/OGwz0Mszl22LGpZnLvow6APgz5cNvbBT4T73wcAAAAAAAAQTzjs8wiLc5cti1oW5y76MOjDoA8XfRj0AQAAAAAAAMQvDvs8wKLWZcuilj5c9GHQh0EfLvowvqiqpQ8AAAAAAAAgjnHY10ksal22LGrpw0UfBn0Y9OGij+ae2/I5fQAAAAAAAABxjMO+TmBR67JlUUsfLvpojj5c9OGiD+NwTUCSlJWR2uX7AAAAAAAAAOIZh30RYlHrsmVRSx8u+jDow6APF30YG/Yf1eslByVJt4wd3KX7AAAAAAAAAOKdr4d9S5Ys0ZgxY5SZmanMzEzl5+frrbfeavdrFi9erBEjRig9PV25ubn6+c9/rq+//jpGV+xiUeuyZVFLHy76MOjDoA8XfRjB90zsl54iSUrtnhzza7Clj0QXr3MWAACAzZixAACAjbr7GX7uuedq0aJFuuCCC+Q4jpYvX66ZM2dq8+bNuuiii864/0svvaT77rtPzz77rC677DLt2rVLt956q5KSkvT444/H5JptW9Qerqnr0ota+nDRh0EfBn246MMI9jE6K1Oj+vfUM5vLYn4NtvTRFcTjnAUAAGA7ZiwAAGAjXw/7ZsyY0ezjBQsWaMmSJfrggw9aHZDee+89TZo0ST/84Q8lSUOGDNHNN9+sDz/8MCbXy6LWZcuilj5c9GHQh0EfLvowmvaxqiBf9/55e8yvwZY+uop4m7MAAADiATMWAACwka+HfU3V19fr5ZdfVk1NjfLz81u9z2WXXaYXXnhBGzZs0De+8Q3t2bNHb775pmbNmtXm4wYCAQUCgcaPq6qqJEkrSw7pcHWgrS87Q2HpEa3bW6GpQ/tLche3bdl44Fjj13jpi6paPbflc2VlpOrqIf21end5VHKaavlcAqfqtXxrmcprArp1XJ7W7C7XmtPX4VVGKMLpI9KMjtCHQR/00ZIffUjNn0s0+miZEYpw+4gkoyMt+3jywz1R+7uqqZj0sf9opx+jK4j1nLVmd7n2VdV6+yROe7fsS0nSziPHo/L4krT36AkyLMshgwwyyCAj9jklFdVRe+xEEa0ZS2p7ziqpqFbPlOis8xLlzwgZXS8jVjlkkEEGGV6I2ozl+Ozjjz92MjIynOTkZKd3797OypUr273/k08+6fTo0cPp3r27I8n52c9+1u79582b50jixo0bN27cuCXwrbKy0svxJGEwZ3Hjxo0bN27cOntjzjpTtGcsx2HO4saNGzdu3BL95vWMleQ4jiMf1dXVqaysTJWVlXrllVf09NNPa/369brwwgvPuG9hYaFuuukmzZ8/X9/85jf12Wef6e6779Ydd9yhBx98sNXHb+1fQuXm5mry4H66MCuzw+vbeOCYig8c08RBfTRhUJ+QntP60grtqKgO62vac7gmoNdLDqpfeoquH36OUpK7RSWnNcGM8ef01v7jtfqqtk4zRmRrYEaq5xmhPI9I+gg3oyP0YdAHfbTkZx9Nc3r2SFagvt7zPppmdPRcIu0jnIyOtNWHlxntiUUfO8qrtL7sK1VWViozs+O/17sav+asmcPP0YQo/ZrW4E/L3jlhiCYNPjsqGe+WfaklG0v16FWjNLTvWWRYkEMGGWSQQUbsc3YeOa4Ff9nFnNWKaM9YUttz1v1XDNeoAb2i8rwS5c8IGV0vI1Y5ZJBBBhleiNaM5fuv8UxJSdH5558vSbr00ktVXFysJ598UkuXLj3jvg8++KBmzZqln/zkJ5Kkiy++WDU1NfrpT3+q+++/X926dTvja1JTU5WaeuZisWDsYN0xfki71za/qETFB0rDfo+lu1Zu0Y6Kan13RHan35sp+B5LE3P6aVVBvnql9ohKTluCGUdOBFR7qkHv3D7Z8/dYCvV5RNpHOBkdoQ+DPuijJb/7kKSfvPaRdlRU62RDdPqQQnsunekj1IyOtNeHVxkdiUUfyz4q1fqyrzx/3ETh15w1fcQ5Hc5ZnbFub4UmDT5bBRfnRi1jycZSXXfBQI3P7kOGJTlkkEEGGWTENqfo8wot+MuuqDx2vIv2jCW1PWddOyxLV+b19/DZNJcof0bI6HoZscohgwwyyOisaM1YrU8UPmpoaGj2L5eaOnHixBlDUHJysiTJ6x9QnF9Uogff3hnxotYLwUXt6KzMVhe1sVBX3yBJKq8JaO2sSVFZ1IaCPlz0YdCHQR+u44GTemPXIUnSrePy6IM+0Apb5iwAAIBEwowFAAD85utP9s2dO1d/8zd/o8GDB+v48eN66aWXVFhYqNWrV0uSZs+erZycHC1cuFCSNGPGDD3++OO65JJLGn/1wYMPPqgZM2Y0DkpeYFHrsmVRSx8u+jDow6AP1/HASX3nxff1VW2dJOnczPSYX4NEH0G29NHV2TpnAQAAxDNmLAAAYCNfD/vKy8s1e/ZsHTx4UL1799aYMWO0evVqXXPNNZKksrKyZv/66YEHHlBSUpIeeOAB7d+/XwMGDNCMGTO0YMECz66JRa3LlkUtfbjow6APgz5cwT4+Ka/SjBHZenXnwZhfg0QfQbb0ATvnLAAAgHjHjAUAAGzk62HfM8880+7/XlhY2Ozj7t27a968eZo3b15UrodFrcuWRS19uOjDoA+DPlxN+1g7a5Ke2/J5zK9Boo8gW/qAy7Y5CwAAIBEwYwEAABtZ9559fmFR62q5qB2YceabQccCfbjow6APgz5cLfvgV6nSBwAAAAAAANAVcdgnFrVBtixq6cNFHwZ9GPThog+DPgAAAAAAAICuzddf42kDFrUuWxa19OGiD4M+DPpw2dJHYekRrdtbQR+W9AEAAAAAAAB0VV36sI/FucuWRS2Lcxd9GPRh0IfLlj4k0Yfs6gMAAAAAAADoqrrsYd/KkoP6067DLGotWtSyOKePpuijOfqwp4+NB45JkqYO7U8fFvSxsuSgL7kAAAAAAACALbrse/Zx0GfPopbFuYs+DPow6MNlSx/zi0pUfLqTKUMG+HIN9GHMLyrRn3Yd9iUbAAAAAAAAsEWXPeybOXwgi3NLFrUszumjKfow6MNlUx8Pvr1TEwf18SVfoo+mgn3MHD7Ql3wAAAAAAADAFl32sG/6iGxfclnUGizOXfRh0IdBHy7b+nj0qlGa4FMn9GE07cOvv88BAAAAAAAAW3TZwz4/sKg1WJy76MOgD4M+XDb2wU+E0wcAAAAAAABgGw77YoRFrWHDopY+DPpw0YdBHwZ9uOgDAAAAAAAAsBeHfTHAotawYVFLHwZ9uOjDoA/Dhj6+qKqlj9Ns6AMAAAAAAACwEYd9Ucbi3LBhUcvi3KAPF30Y9GHY0IckPbflc/qQPX0AAAAAAAAANuKwL4pYnBu2LGpZnLvow0UfzdGHy4Y+DtcEJElZGan0YUEfAAAAAAAAgM047IsiFucuGxa1LM4N+nDRh0Efhg19bNh/VK+XHJQk3TJ2MH1w0AcAAAAAAAC0i8O+KGBxbtiwqGVxbtCHiz4M+jBs6eOa599Vv/QUSVJq9+SYXwN9AAAAAAAAAPGFwz6PsTg3bFjUsjg36MNFHwZ9GDb1MTorU9cPP8eXa6APAAAAAAAAIP5w2OchFueGDYtaFucGfbjow6APw7Y+VhXkKyU59n890wcAAAAAAAAQnzjs8wiLc8OGRS2Lc4M+XPRh0IdhYx/8RDgHfQAAAAAAAEA4OOzzAItzw4ZFLYtzgz5c9GHQh0EfrsCpevoAAAAAAAAA4lh3vy8g3rGoNWxY1NKHQR8u+jDow6APY/nWMlUGTnX5PgAAAAAAAIB45etP9i1ZskRjxoxRZmamMjMzlZ+fr7feeqvN+0+ZMkVJSUln3KZPnx7DqzZsWtSyOKePpujDoA8XfRj04aqrb5AkldcEunwfiSre5ywAAAAbMWMBAAAb+fqTfeeee64WLVqkCy64QI7jaPny5Zo5c6Y2b96siy666Iz7v/rqq6qrq2v8+Msvv9TYsWN14403xvKyJdm3qC267couvailD4M+XPRh0IdBH67jgZN6Y9chSdKt4/K6dB+JLJ7nLAAAAFsxYwEAABv5etg3Y8aMZh8vWLBAS5Ys0QcffNDqgNSvX79mH69YsUJnnXVWzAckFrWGDYta+jDow0UfBn0Y9OEKvmfiV7XuwuHczPSYX4NkRx+JLl7nLAAAAJsxYwEAABtZ85599fX1evnll1VTU6P8/PyQvuaZZ57RTTfdpIyMjDbvEwgEFAgEGj+urKyUJP3l84qIrnPv0Ro9/v5nyslM100X5WjF9v1n3GdHeZUkaeP+o1r2UWlEOe35+mS9Fn+4W0dq3EXtoeNfRyVHav+5rCw5qD/tOqyZwwdqYM/UiK+hM/+9QumjsxkdoQ+DPgz6cMWyD6nt5+JVH+1ldCTUPjqT0ZFgH/uranXxgN766HBl1P6ukmLTR/Dvc8dxOnOpCS9e5qxQbNx/VJK088hxFUUpZ+eR45KkTQeOqbruFBkW5JBBBhlkkBH7nC0H3b/XmbPaFq0ZS2p7zgr2Eg2J8meEjK6XEascMsgggwwvRG3Gcnz28ccfOxkZGU5ycrLTu3dvZ+XKlSF93YcffuhIcj788MN27zdv3jxHEjdu3Lhx48YtgW/79u3zYixJOMxZ3Lhx48aNG7fO3pizzhTtGctxmLO4cePGjRu3RL95PWMlOY6//0Srrq5OZWVlqqys1CuvvKKnn35a69ev14UXXtju1/3DP/yD3n//fX388cft3q/lv4Q6duyY8vLyVFZWpt69e3vyHFqqqqpSbm6u9u3bp8zMzKhkxCqHDDLIICNeMmKVQ4ZdGY7j6Pjx4xo0aJC6desWlYx4xpxFBq+9ZJBBBhmJlxGrHOastkV7xpKYs8ggw8YcMsgggwwvRGvG8v3XeKakpOj888+XJF166aUqLi7Wk08+qaVLl7b5NTU1NVqxYoUeeeSRDh8/NTVVqampZ3y+d+/eUf0LRpIyMzOjnhGrHDLIIIOMeMmIVQ4Z9mREa9mRCJizyIhVRqxyyCCDDDLIiG0Oc1broj1jScxZZJBhcw4ZZJBBRmdFY8ay7p9mNTQ0NPuXS615+eWXFQgE9KMf/ShGVwUAABD/mLMAAAC8x4wFAAD85utP9s2dO1d/8zd/o8GDB+v48eN66aWXVFhYqNWrV0uSZs+erZycHC1cuLDZ1z3zzDO64YYbdPbZZ/tx2QAAANZjzgIAAPAeMxYAALCRr4d95eXlmj17tg4ePKjevXtrzJgxWr16ta655hpJUllZ2Rm/s7SkpETvvPOO1qxZE1Fmamqq5s2b1+qvQvBKLDJilUMGGWSQES8Zscohw64MtI05iwxee8kggwwyEjMjljk4kx8zlpQ4379kkBHPOWSQQQYZNktyHMfx+yIAAAAAAAAAAAAAhM+69+wDAAAAAAAAAAAAEBoO+wAAAAAAAAAAAIA4xWEfAAAAAAAAAAAAEKc47AMAAAAAAAAAAADiVEId9i1cuFATJ05Ur169lJWVpRtuuEElJSXtfs2UKVOUlJR0xm369OmeZZw8eVKPPPKIhg0bprS0NI0dO1arVq1q92uWLFmiMWPGKDMzU5mZmcrPz9dbb73V5v23b9+uv/u7v9OQIUOUlJSkxYsXt/v4kWQsW7ZMV1xxhfr27au+fftq2rRp2rBhg6cZTa1YsUJJSUm64YYbPM84duyY5syZo+zsbKWmpmr48OF68803Pc1YvHixRowYofT0dOXm5urnP/+5vv7663a/pqlFixYpKSlJ99xzT7v3e/nllzVy5EilpaXp4osvbvd5RJIRyfdWuBmvvvqqJkyYoD59+igjI0Pjxo3T888/72nGc889d8af87S0NE8zwn09iSQj3NeThx566IzrGTlyZLvXEcn3VLg5kbyeRPJcgkJ9PYkkI9zXk0gywn09CTcjkr+nJGn//v360Y9+pLPPPlvp6em6+OKLtXHjxjbvf/DgQf3whz/U8OHD1a1btw5f32CXRJmzYjFjRZLDnBW7OStRZqxQc5izQs+wcc5ixrJrxookhzkLoWDOYpeVCDOWlDhzFjNW6DNWqDnMWcxZ7LKir7vfF+Cl9evXa86cOZo4caJOnTqlf/mXf9G1116rHTt2KCMjo9WvefXVV1VXV9f48ZdffqmxY8fqxhtv9CzjgQce0AsvvKBly5Zp5MiRWr16tb73ve/pvffe0yWXXNLq15x77rlatGiRLrjgAjmOo+XLl2vmzJnavHmzLrroojPuf+LECZ133nm68cYb9fOf/7yj/1QRZRQWFurmm2/WZZddprS0NP3617/Wtddeq+3btysnJ8eTjKDS0lL98pe/1BVXXOH586irq9M111yjrKwsvfLKK8rJydHnn3+uPn36eJbx0ksv6b777tOzzz6ryy67TLt27dKtt96qpKQkPf744x0+p+LiYi1dulRjxoxp937vvfeebr75Zi1cuFDXX3+9XnrpJd1www366KOPNHr0aE8yIvneCjejX79+uv/++zVy5EilpKTojTfe0G233aasrCx9+9vf9iRDkjIzM5v9PzNJSUmePo9wX08iyYjk9eSiiy7Sn//858aPu3dv+6W/M99T4eRE8noSbkZQOK8n4WZE8noSbkakryfhZETyfXX06FFNmjRJV111ld566y0NGDBAn376qfr27dtmTiAQ0IABA/TAAw/oiSeeaPN+sFOizFmxmLEiyWHOis2clSgzVjg5zFnxP2cxY9k1Y4Wbw5yFUDBnscuK9xlLSpw5ixkr9BkrnBzmLOYsdlkx4CSw8vJyR5Kzfv36kL/miSeecHr16uVUV1d7lpGdne089dRTzT73t3/7t05BQUHI1+U4jtO3b1/n6aef7vB+eXl5zhNPPBHWY4eb4TiOc+rUKadXr17O8uXLPc04deqUc9lllzlPP/20c8sttzgzZ84M6/E7yliyZIlz3nnnOXV1dWE/bqgZc+bMca6++upmn/vFL37hTJo0qcPHPX78uHPBBRc4a9eudSZPnuzcfffdbd737//+753p06c3+9w3v/lN5x/+4R88y2gqnO+tSDOCLrnkEueBBx7wLOO//uu/nN69e4d1DeFmtBTq60k4GeG+nsybN88ZO3ZsyNcc6fdUuDkthfJ6EklGuK8n4WZE8noSbkYkryfhZkTy99S9997rXH755SFntBTJ6wLskkhzVixmrHByHIc5KxpzVqLMWJ3JCWLOap2NcxYzll0zViQ5zFmIBHNWeJixvMlgl8WM5TjhvZYwZzFntYVdlj8S6td4tlRZWSnJ/ZcWoXrmmWd00003tfmvmiLJCAQCZ/yIdXp6ut55552QMurr67VixQrV1NQoPz8/pK8JVyQZJ06c0MmTJ0P+7xtqxiOPPKKsrCz9+Mc/Dulxw8147bXXlJ+frzlz5mjgwIEaPXq0fvWrX6m+vt6zjMsuu0ybNm1q/FHuPXv26M0339R1113X4ePPmTNH06dP17Rp0zq87/vvv3/G/b797W/r/fff9ywjUpFmOI6jdevWqaSkRFdeeaWnGdXV1crLy1Nubq5mzpyp7du3d/g1nflvFerrSTgZkbyefPrppxo0aJDOO+88FRQUqKysrM37Rvo9FW5OS6G+noSbEcnrSTgZkb6ehJMR6etJOBmRfF+99tprmjBhgm688UZlZWXpkksu0bJly9q9JiSWRJizYjFjRZrDnOX9nJUoM1Zncpiz2mfrnMWMZdeMFW4OcxYiwZwVGmYsO2YsKXHmLGas8F5LmLOYs9rCLssnPh82Rk19fb0zffr0kP71SdCHH37oSHI+/PBDTzNuvvlm58ILL3R27drl1NfXO2vWrHHS09OdlJSUdr/u448/djIyMpzk5GSnd+/ezsqVK0O6rnD+xUqkGY7jOHfeeadz3nnnObW1tZ5l/OUvf3FycnKcI0eOOI7jhPyvocLJGDFihJOamurcfvvtzsaNG50VK1Y4/fr1cx566CHPMhzHcZ588kmnR48eTvfu3R1Jzs9+9rMOn8fvfvc7Z/To0Y3/TTv61wI9evRwXnrppWaf+7//9/86WVlZnmU0Fer3ViQZx44dczIyMpzu3bs7qampzjPPPONpxnvvvecsX77c2bx5s1NYWOhcf/31TmZmprNv3z5Pn0dQqK8n4WaE+3ry5ptvOv/93//tbN261Vm1apWTn5/vDB482Kmqqmr1/pF8T0WS01IoryfhZkTyehJuRiSvJ5H8twr39STcjEj+nkpNTXVSU1OduXPnOh999JGzdOlSJy0tzXnuuefavbYg2/81FNoX73NWLGaszuQ4DnOW13NWosxYkeYwZ8XvnMWMZdeMFUkOcxbCxZzVMWYse2Ysx0mcOYsZK7zXEuYs5ix2WfZJ2MO+n/3sZ05eXl67L34t/fSnP3UuvvhizzPKy8udmTNnOt26dXOSk5Od4cOHO3fddZeTlpbW7tcFAgHn008/dTZu3Ojcd999Tv/+/Z3t27d3eF3hDEiRZixcuNDp27evs3XrVs8yqqqqnCFDhjhvvvlm4+dCHZDCeR4XXHCBk5ub65w6darxc//2b//mnHPOOZ5lvP32287AgQOdZcuWOR9//LHz6quvOrm5uc4jjzzS5uOXlZU5WVlZzf6bej0gRZLRVCjfW5Fm1NfXO59++qmzefNm57HHHnN69+7tvP3221F5Ho7jOHV1dc6wYcPa/PUKnc0I5fUkkoxIX0+Cjh496mRmZrb5azsiPewLN6epcF5PQs3ozOtJqBmOE/nrSTgZkbyehJsRyfdVjx49nPz8/Gaf+6d/+ifnW9/6VkjXZPuAhPbF+5wVixmrMznMWd7OWYkyY3UmhzkrtIx4mLOYseyasULJYc5CuJizOsaM5fJ7xnKcxJmzmLFcob6WMGcxZ7HLslNCHvbNmTPHOffcc509e/aE/DXV1dVOZmams3jx4qhl1NbWOl988YXT0NDg/PM//7Nz4YUXhvy1juM4U6dOdX760592eL/O/J7zUDJ++9vfOr1793aKi4s9zdi8ebMjyUlOTm68JSUlOUlJSU5ycrLz2WefdTrDcRznyiuvdKZOndrsc2+++aYjyQkEAp5kXH755c4vf/nLZp97/vnnnfT0dKe+vr7Vr/nDH/5wxvOX1Pj8m74AB+Xm5p7R9b/+6786Y8aM8SyjqVC+tzqbEfTjH//Yufbaa6Oa8f3vf9+56aabPM8I9fWkMxmdeT2ZMGGCc99997X6v4X7PRVpTlBnX0/ayvDy9aS95+HV60l7GZG8noSbERTO99XgwYOdH//4x80+9x//8R/OoEGDQroe2wcktC0R56xYzFih5jBndZwR7utiosxYXuQEMWfF95zFjGXXjNVRThBzFkLBnPVEyI8bbgYzVscZ7LKYsUJ9LWHOYs7qKINdlj8S6j37HMfRP/7jP+oPf/iD/ud//kdDhw4N+WtffvllBQIB/ehHP4paRlpamnJycnTq1Cn9/ve/18yZM0P+WklqaGhQIBAI62vC1VHGb37zGz366KNatWqVJkyY4GnGyJEjtW3bNm3ZsqXx9t3vfldXXXWVtmzZotzcXE+ex6RJk/TZZ5+poaGh8XO7du1Sdna2UlJSPMk4ceKEunVr/scrOTlZkvs91JqpU6ee8fwnTJiggoICbdmypfHrm8rPz9e6deuafW7t2rVt/v71SDLC5VVGe/99vcior6/Xtm3blJ2d7XlGqK8nncmI9PWkurpau3fvbvN5h/s9FWmO1PnXk/YyvHo96eh5ePF60lFGJK8n4WYEhfN9NWnSJJWUlDT73K5du5SXlxfSNSH+JPKcFYsZK5Qc5qzQMsJ9XUyUGcvLHOas+J2zmLHsmrFCyQlizkJ7mLM6hxmLXVZnMWOF/lrS2RzmLOYsdllR5M8ZY3TceeedTu/evZ3CwkLn4MGDjbcTJ0403mfWrFmtngZffvnlzg9+8IOoZHzwwQfO73//e2f37t1OUVGRc/XVVztDhw51jh492mbOfffd56xfv97Zu3ev8/HHHzv33Xefk5SU5KxZs6bVjEAg4GzevNnZvHmzk52d7fzyl790Nm/e7Hz66aeeZSxatMhJSUlxXnnllWbP/fjx455ltBTKjyqHm1FWVub06tXL+cd//EenpKTEeeONN5ysrCxn/vz5nmXMmzfP6dWrl/O73/3O2bNnj7NmzRpn2LBhzt///d+3+1xaavmvBVrmvPvuu0737t2dxx57zNm5c6czb948p0ePHs62bds8y4jkeyvcjF/96lfOmjVrnN27dzs7duxwHnvsMad79+7OsmXLPMt4+OGHndWrVzu7d+92Nm3a5Nx0001OWlpaSL/qI9SMoFBfTyLJCPf15H//7//tFBYWOnv37nXeffddZ9q0aU7//v2d8vLyVh8/0u+pcHMieT0JN6OlUF5Pws2I5PUk3IxIXk/CzYjk76kNGzY43bt3dxYsWOB8+umnzosvvuicddZZzgsvvNB4n/vuu8+ZNWtWs68Lvp5ceumlzg9/+ENn8+bNYf05hH8SZc6KxYwVSQ5zVmznrESZsULJYc4KPcPGOYsZy64ZK5Ic5iyEgjmLXVaizFiOkzhzFjNWeJizvMloqSvNWcxYnZdQh32SWr3913/9V+N9Jk+e7Nxyyy3Nvu6vf/2rI6nxLzuvMwoLC51Ro0Y5qampztlnn+3MmjXL2b9/f7s5t99+u5OXl+ekpKQ4AwYMcKZOndrs+lpm7N27t9Xrmjx5smcZeXl5rWbMmzfPs4yWQnlBiyTjvffec775zW86qampznnnnecsWLCg3R8xDzfj5MmTzkMPPeQMGzbMSUtLc3Jzc5277rqr3Reb1rT8i7K15/Lf//3fzvDhw52UlBTnoosuCuuNqUPJiOR7K9yM+++/3zn//POdtLQ0p2/fvk5+fr6zYsUKT5/HPffc4wwePNhJSUlxBg4c6Fx33XXORx995GmG44T3ehJJRrivJz/4wQ+c7OxsJyUlxcnJyXF+8IMfNPuxf6++p8LNieT1JJLn0lQoryeRZIT7ehJuRiSvJ+FmRPL3lOM4zuuvv+6MHj3aSU1NdUaOHOn8v//3/5r977fccssZrxWt9Z6Xl9dhFvyXKHNWLGasSHKYs2I7ZyXKjBVKDnNW6Bk2zlnMWHbNWJHkMGchFMxZ7LISZcYKPm4izFnMWOFhzvLueTTVleYsZqzOS3KcMH4/BQAAAAAAAAAAAABrJNR79gEAAAAAAAAAAABdCYd9AAAAAAAAAAAAQJzisA8AAAAAAAAAAACIUxz2AQAAAAAAAAAAAHGKwz4AAAAAAAAAAAAgTnHYBwAAAAAAAAAAAMQpDvsAAAAAAAAAAACAOMVhHwAAAAAAAAAAABCnOOwDAAAAAAAAAAAA4hSHfQASRn19vS677DL97d/+bbPPV1ZWKjc3V/fff79PVwYAABDfmLMAAAC8x4wFwCtJjuM4fl8EAHhl165dGjdunJYtW6aCggJJ0uzZs7V161YVFxcrJSXF5ysEAACIT8xZAAAA3mPGAuAFDvsAJJz/83/+jx566CFt375dGzZs0I033qji4mKNHTvW70sDAACIa8xZAAAA3mPGAtBZHPYBSDiO4+jqq69WcnKytm3bpn/6p3/SAw884PdlAQAAxD3mLAAAAO8xYwHoLA77ACSkv/71rxo1apQuvvhiffTRR+revbvflwQAAJAQmLMAAAC8x4wFoDO6+X0BABANzz77rM466yzt3btXX3zxhd+XAwAAkDCYswAAALzHjAWgM/jJPgAJ57333tPkyZO1Zs0azZ8/X5L05z//WUlJST5fGQAAQHxjzgIAAPAeMxaAzuIn+wAklBMnTujWW2/VnXfeqauuukrPPPOMNmzYoP/8z//0+9IAAADiGnMWAACA95ixAHiBn+wDkFDuvvtuvfnmm9q6davOOussSdLSpUv1y1/+Utu2bdOQIUP8vUAAAIA4xZwFAADgPWYsAF7gsA9Awli/fr2mTp2qwsJCXX755c3+t29/+9s6deoUvwIBAAAgAsxZAAAA3mPGAuAVDvsAAAAAAAAAAACAOMV79gEAAAAAAAAAAABxisM+AAAAAAAAAAAAIE5x2AcAAAAAAAAAAADEKQ77AAAAAAAAAAAAgDjFYR8AAAAAAAAAAAAQpzjsAwAAAAAAAAAAAOIUh30AAAAAAAAAAABAnOKwDwAAAAAAAAAAAIhTHPYBAAAAAAAAAAAAcYrDPgAAAAAAAAAAACBOcdgHAAAAAAAAAAAAxKn/DxTFVSUk5QOfAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 13.4\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.06944444444444443\n", + "\n", + "\n", + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdttJREFUeJzt3Xl4VOX9/vF7ZrKwBgJkISEk7AIKirYWlFILFBVxoSKiLahAsW7oV3CpVUC0uLZuVREX6E8E61ppXQq4F1QUERRlDyQEEvawZpk5vz8mZzL7EpLMIXm/riuXZHLmnGcmw8g9n+f5PDbDMAwBAAAAAIC4s8d7AAAAAAAAwI2QDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgCIK5vNpunTp8d7GI3O3LlzZbPZlJ+fH/N9P/74Y9lsNn388ce1Pq6GLi8vT1dddVW8h+Fj+vTpstls2r17d7yHUiNWfE4B4HgQ0gGghp5++mnZbDadeeaZx32ud999l6Baj/bv368mTZrIZrPpxx9/DHrMVVddJZvNFvSrSZMmnuN++ukn3XbbbTr11FPVsmVLtW/fXsOHD9fXX39do7H96le/Cnld7y9eL8dv2bJlmj59uvbv33/c59q0aZMmTZqkzp07q0mTJkpJSdFZZ52lxx9/XEePHj3+wQIAGo2EeA8AAE5U8+fPV15enr766itt3LhRXbt2rfG53n33Xf39738neNWT1157TTabTZmZmZo/f77uu+++oMclJyfr+eefD7jd4XB4/vz888/rhRde0G9/+1tdd911OnDggGbPnq1f/OIXev/99zVkyJCYxnbXXXdpwoQJnu9XrFihJ554Qn/605/Us2dPz+19+vSJ6bz+fv/73+vyyy9XcnJyzPf95S9/qaNHjyopKem4xhBvy5Yt04wZM3TVVVepdevWNT7Pf/7zH40aNUrJyckaO3asTj75ZJWXl+vzzz/X1KlT9cMPP+i5556rvYEDABo0QjoA1MCWLVu0bNkyvfnmm5o0aZLmz5+vadOmxXtYjd6xY8eUlJQkuz38RLGXX35Z559/vnJzc/XKK6+EDOkJCQn63e9+F/ZcY8aM0fTp09WiRQvPbddcc4169uyp6dOnxxzShw4d6vN9kyZN9MQTT2jo0KH61a9+FfJ+hw8fVvPmzaO+jsPh8PmwIRZ2u91nNkFjtmXLFl1++eXKzc3Vhx9+qPbt23t+dv3112vjxo36z3/+E8cRIhbRvocAQF3iHQgAamD+/PlKTU3V8OHDdemll2r+/PkBx4Rat5ufny+bzaa5c+dKck+r/vvf/y5JPtOZTYcPH9att96qnJwcJScnq0ePHnrkkUdkGEbANV9++WWdfvrpatq0qdq0aaPLL79cBQUFPsf86le/0sknn6y1a9fqnHPOUbNmzZSdna2HHnoo4HzHjh3T9OnT1b17dzVp0kTt27fXyJEjtWnTppjHV1ZWpltuuUVpaWlq2bKlLrzwQhUWFgZ9frdv365rrrlGGRkZSk5OVu/evfXiiy8GfX4XLlyoP//5z8rOzlazZs1UWloa9Jymbdu26bPPPtPll1+uyy+/3POBS02dfvrpPgFdktq2bauBAweGnEp/vMw1xGvXrtUVV1yh1NRUnX322ZKk1atX66qrrvJMu87MzNQ111yjPXv2+Jwj2Jr0vLw8XXDBBfr888/185//XE2aNFHnzp31j3/8w+e+wV7bsbyutm7dqgsvvFDNmzdXenq6brnlFn3wwQdRrXM/ePCgbr75ZuXl5Sk5OVnp6ekaOnSoVq5c6XPcl19+qXPPPVetWrVSs2bNNGjQIP3vf//zeQ6nTp0qSerUqZPn712sa/QfeughHTp0SC+88IJPQDd17dpVkydPDnn/vXv3asqUKTrllFPUokULpaSk6LzzztN3330XcOyTTz6p3r17q1mzZkpNTdUZZ5yhV155JebnJpTdu3frsssuU0pKitq2bavJkyfr2LFjPsdUVlZq5syZ6tKli5KTk5WXl6c//elPKisr8zku1JIM//Xj5uvwf//7n/7v//5PaWlpat68uS655BLt2rXL576GYei+++5Thw4d1KxZM51zzjn64YcfAq4R7XMa6j1k1apVstls+tvf/hZw7mXLlslms2nBggWRnk4AqDEq6QBQA/Pnz9fIkSOVlJSkMWPG6JlnntGKFSv0s5/9LOZzTZo0SUVFRVq8eLH+3//7fz4/MwxDF154oT766CONHz9ep556qj744ANNnTpV27dv9/lH5P3336+7775bl112mSZMmKBdu3bpySef1C9/+Ut9++23PtN59+3bp3PPPVcjR47UZZddptdff1233367TjnlFJ133nmSJKfTqQsuuEBLly7V5ZdfrsmTJ+vgwYNavHixvv/+e3Xp0iWm8U2YMEEvv/yyrrjiCg0YMEAffvihhg8fHvB8FBcX6xe/+IVsNptuuOEGpaWl6b333tP48eNVWlqqm2++2ef4mTNnKikpSVOmTFFZWVnEKdgLFixQ8+bNdcEFF6hp06bq0qWL5s+frwEDBgQ9PlgzraSkJKWkpIS9zs6dO9WuXbuwxxyvUaNGqVu3bvrLX/7i+VBk8eLF2rx5s66++mplZmZ6plr/8MMP+uKLL3w+AApm48aNuvTSSzV+/HiNGzdOL774oq666iqdfvrp6t27d9j7RvO6Onz4sH79619rx44dmjx5sjIzM/XKK6/oo48+iuoxX3vttXr99dd1ww03qFevXtqzZ48+//xz/fjjj+rXr58k6cMPP9R5552n008/XdOmTZPdbtdLL72kX//61/rss8/085//XCNHjtT69eu1YMEC/e1vf/P8rtLS0qIah2nRokXq3LlzyNdPJJs3b9bbb7+tUaNGqVOnTiouLtbs2bM1aNAgrV27VllZWZKkOXPm6KabbtKll17qCc+rV6/Wl19+qSuuuCLq5yacyy67THl5eZo1a5a++OILPfHEE9q3b5/PhzQTJkzQvHnzdOmll+rWW2/Vl19+qVmzZunHH3/UW2+9VaPnQJJuvPFGpaamatq0acrPz9djjz2mG264Qa+++qrnmHvuuUf33Xefzj//fJ1//vlauXKlfvOb36i8vLxGz6nJ/z3kpJNO0llnnaX58+frlltu8Tl2/vz5atmypS666KIaP1YAiMgAAMTk66+/NiQZixcvNgzDMFwul9GhQwdj8uTJPsd99NFHhiTjo48+8rl9y5YthiTjpZde8tx2/fXXG8Hekt9++21DknHffff53H7ppZcaNpvN2Lhxo2EYhpGfn284HA7j/vvv9zluzZo1RkJCgs/tgwYNMiQZ//jHPzy3lZWVGZmZmcZvf/tbz20vvviiIcn461//GjAul8sV0/hWrVplSDKuu+46n+OuuOIKQ5Ixbdo0z23jx4832rdvb+zevdvn2Msvv9xo1aqVceTIEcMwqp/fzp07e26LximnnGJceeWVnu//9Kc/Ge3atTMqKip8jhs3bpwhKejXsGHDwl7j008/NWw2m3H33XdHPa5QXnvttYDX0bRp0wxJxpgxYwKOD/ZcLFiwwJBkfPrpp57bXnrpJUOSsWXLFs9tubm5AceVlJQYycnJxq233uq5LdhrO9rX1aOPPmpIMt5++23PbUePHjVOOumkoH9f/LVq1cq4/vrrQ/7c5XIZ3bp1M4YNG+Z5nRqG+3np1KmTMXToUM9tDz/8cMBzEIsDBw4YkoyLLroo6vvk5uYa48aN83x/7Ngxw+l0+hyzZcsWIzk52bj33ns9t1100UVG7969w5470nMTivl6uvDCC31uv+666wxJxnfffWcYRvXf4wkTJvgcN2XKFEOS8eGHH3pu8/97bfJ//ObrcMiQIT6/r1tuucVwOBzG/v37DcNwvw6TkpKM4cOH+xz3pz/9yZBUo+c03HvI7NmzDUnGjz/+6LmtvLzcaNeunc+1AKAuMN0dAGI0f/58ZWRk6JxzzpHkntY5evRoLVy4UE6ns1av9e6778rhcOimm27yuf3WW2+VYRh67733JElvvvmmXC6XLrvsMu3evdvzlZmZqW7dugVUKVu0aOGz1jopKUk///nPtXnzZs9tb7zxhtq1a6cbb7wxYFxmNTba8b377ruSFHCcf1XcMAy98cYbGjFihAzD8Hksw4YN04EDBwKm7o4bN05NmzYN/gT6Wb16tdasWaMxY8Z4bhszZox2796tDz74IOD4Jk2aaPHixQFfDzzwQMhrlJSU6IorrlCnTp102223RTWumrr22msDbvN+Lo4dO6bdu3frF7/4hSRFNe25V69eGjhwoOf7tLQ09ejRw+e1EUo0r6v3339f2dnZuvDCCz23NWnSRBMnTox4fklq3bq1vvzySxUVFQX9+apVq7RhwwZdccUV2rNnj+f1c/jwYQ0ePFiffvqpXC5XVNeKxFxa0bJlyxqfIzk52bP+2el0as+ePWrRooV69Ojh8/tq3bq1CgsLtWLFipDnivTcRHL99df7fG/+3Tf//pr//b//+z+f42699VZJOq6193/4wx98ZnkMHDhQTqdTW7dulSQtWbJE5eXluvHGG32O838PkaJ/Tk3B3kMuu+wyNWnSxGcp0wcffKDdu3dH7FMBAMeL6e4AEAOn06mFCxfqnHPO0ZYtWzy3n3nmmXr00Ue1dOlS/eY3v6m1623dulVZWVkBIcDs8m3+A3bDhg0yDEPdunULep7ExESf7zt06BAw7Tk1NVWrV6/2fL9p0yb16NFDCQmh/1cR7fi2bt0qu92uLl26+BzXo0cPn+937dql/fv367nnngvZDbukpMTn+06dOoUcn7+XX35ZzZs3V+fOnbVx40ZJ7oCYl5en+fPnB0y/dzgcMTV+O3z4sC644AIdPHhQn3/+ecBa9doW7LHv3btXM2bM0MKFCwOeqwMHDkQ8Z8eOHQNuS01N1b59+yLeN5rX1datW9WlS5eA46LdHeGhhx7SuHHjlJOTo9NPP13nn3++xo4dq86dO0ty/12Q3MErlAMHDig1NTWq64VjLnk4ePBgjc/hcrn0+OOP6+mnn9aWLVt8Puhr27at58+33367lixZop///Ofq2rWrfvOb3+iKK67QWWed5Tkm0nMTif/7R5cuXWS32z3r9M2/x/6/q8zMTLVu3drz970m/F935u/HfN2Z5/YfY1paWsDvMtrn1BTs71Hr1q01YsQIvfLKK5o5c6Yk9we02dnZ+vWvfx3rwwOAmBDSASAGH374oXbs2KGFCxdq4cKFAT+fP3++J6SHWvtb29V2yf2PUpvNpvfeey9ox27/sBiqq7cRpBldfTIrnL/73e9Chiz/rceiraIbhqEFCxbo8OHD6tWrV8DPS0pKdOjQoRoH6/Lyco0cOVKrV6/WBx98oJNPPrlG54lFsMd+2WWXadmyZZo6dapOPfVUtWjRQi6XS+eee25UFeTjeW3Ux+vqsssu08CBA/XWW2/pv//9rx5++GE9+OCDevPNN3Xeeed5HuPDDz+sU089Neg5auvDk5SUFGVlZen777+v8Tn+8pe/6O6779Y111yjmTNnqk2bNrLb7br55pt9fl89e/bUunXr9O9//1vvv/++3njjDT399NO65557NGPGDEmRn5tYhXoPi9TXIJxQ73+1+dqJ9jk1hXoPGTt2rF577TUtW7ZMp5xyit555x1dd911dH4HUOcI6QAQg/nz5ys9Pd3Tjd3bm2++qbfeekvPPvusmjZt6qnu7N+/3+e4YNWmUP/ozc3N1ZIlS3Tw4EGfavVPP/3k+bkkTxO3Tp06qXv37jV6bP66dOmiL7/8UhUVFQGV+FjHl5ubK5fL5anOm9atW+dzPrPzu9PpjHnrskg++eQTFRYW6t577/XZb1xyV+v+8Ic/6O23367RVFaXy6WxY8dq6dKl+uc//6lBgwbV1rBjsm/fPi1dulQzZszQPffc47ndrC5bQW5urtauXSvDMHxe9+bMhmi0b99e1113na677jqVlJSoX79+uv/++3Xeeed5ZmukpKREfA0dT9g0XXDBBXruuee0fPly9e/fP+b7v/766zrnnHP0wgsv+Ny+f//+gMaDzZs31+jRozV69GjPh0L333+/7rzzTs+WeOGem0g2bNjgU1XeuHGjXC6X8vLyJFX/Pd6wYYPP36Hi4mLt37/f8/ddclfC/d/7ysvLtWPHjqieF3/muTds2OAzM2DXrl0BszxieU7DOffcc5WWlqb58+frzDPP1JEjR/T73/++RuMHgFjwUSAAROno0aN68803dcEFF+jSSy8N+Lrhhht08OBBvfPOO5Lc/6h0OBz69NNPfc7z9NNPB5zb3N/a/x+1559/vpxOp5566imf2//2t7/JZrN5/uE9cuRIORwOzZgxI6DyZBhGwPZb0fjtb3+r3bt3B1zbPGcs4zP/+8QTT/gc99hjj/l873A49Nvf/lZvvPFG0Oqk/5ZMsTCnuk+dOjXgdzdx4kR169Yt6FZ60bjxxhv16quv6umnn9bIkSNDHrd792799NNPOnLkSE0fRlhmNdL/NeD/PMfTsGHDtH37ds/fE8m9dn7OnDkR7+t0OgOm7KenpysrK8uzBdjpp5+uLl266JFHHtGhQ4cCzuH9Ggr1905yb9VnftgUzm233abmzZtrwoQJKi4uDvj5pk2b9Pjjj4e8v8PhCPh9vfbaa9q+fbvPbf5/h5OSktSrVy8ZhqGKioqonptI/D98fPLJJyVV//09//zzJQW+nv76179Kks9ykS5dugS89z333HM1nkk0ZMgQJSYm6sknn/R5voK9tqN9TiNJSEjQmDFj9M9//lNz587VKaecEjCTBwDqApV0AIjSO++8o4MHD/o0vPL2i1/8wlN1GT16tFq1aqVRo0bpySeflM1mU5cuXfTvf/87YJ2w5A4Wkrux2rBhw+RwOHT55ZdrxIgROuecc3TXXXcpPz9fffv21X//+1/961//0s033+ypGnbp0kX33Xef7rzzTuXn5+viiy9Wy5YttWXLFr311lv6wx/+oClTpsT0eMeOHat//OMf+r//+z999dVXGjhwoA4fPqwlS5bouuuu00UXXRT1+E499VSNGTNGTz/9tA4cOKABAwZo6dKlQaunDzzwgD766COdeeaZmjhxonr16qW9e/dq5cqVWrJkifbu3RvT45Dce7S/8cYbGjp0qKfi6O/CCy/U448/rpKSEqWnp0ty7wn98ssvBz3+kksuUfPmzfXYY4/p6aefVv/+/dWsWbOA483jJOmpp57SjBkz9NFHH+lXv/pVzI8jkpSUFP3yl7/UQw89pIqKCmVnZ+u///2vT/+EeJs0aZKeeuopjRkzRpMnT1b79u01f/58z+8lXHX74MGD6tChgy699FL17dtXLVq00JIlS7RixQo9+uijkiS73a7nn39e5513nnr37q2rr75a2dnZ2r59uz766COlpKRo0aJFkqr/3t111126/PLLlZiYqBEjRqh58+YaO3asPvnkk4jTrbt06aJXXnlFo0ePVs+ePTV27FidfPLJKi8v17Jly/Taa6/57Avu74ILLtC9996rq6++WgMGDNCaNWs0f/78gHXkv/nNb5SZmamzzjpLGRkZ+vHHH/XUU09p+PDhatmypfbv3x/xuYlky5YtuvDCC3Xuuedq+fLlni0T+/btK0nq27evxo0bp+eee0779+/XoEGD9NVXX2nevHm6+OKLPc00JfdWbddee61++9vfaujQofruu+/0wQcf1HhbwrS0NE2ZMkWzZs3SBRdcoPPPP1/ffvut3nvvvYBzRvucRmPs2LF64okn9NFHH+nBBx+s0dgBIGb12kseAE5gI0aMMJo0aWIcPnw45DFXXXWVkZiY6Nk+bNeuXcZvf/tbo1mzZkZqaqoxadIk4/vvvw/Ygq2ystK48cYbjbS0NMNms/lsx3bw4EHjlltuMbKysozExESjW7duxsMPP+yzDZHpjTfeMM4++2yjefPmRvPmzY2TTjrJuP76641169Z5jhk0aFDQrZzGjRtn5Obm+tx25MgR46677jI6depkJCYmGpmZmcall15qbNq0KebxHT161LjpppuMtm3bGs2bNzdGjBhhFBQUBN2qqbi42Lj++uuNnJwcz3UHDx5sPPfcc55jzO2TXnvttZC/D+/nRZLxwgsvhDzm448/NiQZjz/+uOf5UIgt2OS1bVe0xxlG9VZXkbYZ8xZuC7Zdu3YFHF9YWGhccsklRuvWrY1WrVoZo0aNMoqKigKe51BbsA0fPjzgnIMGDTIGDRrk+T7UFmzRvq42b95sDB8+3GjatKmRlpZm3HrrrZ7f0RdffBHyuSgrKzOmTp1q9O3b12jZsqXRvHlzo2/fvsbTTz8dcOy3335rjBw50mjbtq2RnJxs5ObmGpdddpmxdOlSn+NmzpxpZGdnG3a73ef5MLeUi9b69euNiRMnGnl5eUZSUpLRsmVL46yzzjKefPJJ49ixY57jgm3Bduuttxrt27c3mjZtapx11lnG8uXLA57z2bNnG7/85S89j6dLly7G1KlTjQMHDsT83PgzX09r1641Lr30UqNly5ZGamqqccMNNxhHjx71ObaiosKYMWOG5z0hJyfHuPPOO30eo2EYhtPpNG6//XajXbt2RrNmzYxhw4YZGzduDLkF24oVK3zuH+w15nQ6jRkzZnieq1/96lfG999/X+PnNNr3kN69ext2u90oLCyM+FwCQG2wGUacuwQBAIBG77HHHtMtt9yiwsJCZWdnx3s4gMdpp52mNm3aaOnSpfEeCoBGgjXpAACgXh09etTn+2PHjmn27Nnq1q0bAR2W8vXXX2vVqlUaO3ZsvIcCoBFhTToAAKhXI0eOVMeOHXXqqafqwIEDevnll/XTTz/VuHEfUNu+//57ffPNN3r00UfVvn17jR49Ot5DAtCIENIBAEC9GjZsmJ5//nnNnz9fTqdTvXr10sKFCwlCsIzXX39d9957r3r06KEFCxaEbDgJAHWBNekAAAAAAFgEa9IBAAAAALAIQjoAAAAAABbR6Naku1wuFRUVqWXLlrLZbPEeDgAAAACggTMMQwcPHlRWVpbs9vC18kYX0ouKipSTkxPvYQAAAAAAGpmCggJ16NAh7DGNLqS3bNlSkvSn/32jJi1axHk0AAAAAICG7tihQ/rLWad78mg4jS6km1Pcm7RooSZRPEEAAAAAANSGaJZc0zgOAAAAAACLIKQDAAAAAGARhHQAAAAAACyi0a1JBwAAAADUHofhUpLLJZuMeA8lbgzZVG63y2k7/jo4IR0AAAAAUCMpleXqebRUSVE0RGvoyg1DPzZNUWlC0nGdh5AOAAAAAIiZw3Cp59FSpbVsqRZt2kiNOacb0qG9e6WDpfq6RZvjqqgT0gEAAAAAMUtyuZRks6lFmzZKbNIk3sOJuxZt2ujAoUNKcrl01FHzkE7jOAAAAABAzDxr0BtzBd2bzfzP8a3NJ6QDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAjU7Jzp2665abdeZJPZSb0lKnd+misSMv0WcffihJ+n/PP6+RQ4eqW1o7tW+SrAP799fLuAjpAAAAAIBGpSA/X8MG9NfnH3+su2c9oA+/+UavLFqkAYMG6c6bJ0uSjh49onN+8xvddNvt9To2tmADAAAAADQqd0y+STabTe99/j81a97cc3uPXr00ZtxVkqQ/3HiTJGnZJ5/U69iopAMAAAAA4s7prJ/r7Nu7Vx/997+6atK1PgHd1Kp16/oZSAiEdAAAAABA3GxcLw06NUEdmidp0KkJ2ri+bq+Xv2mTDMNQ1x496vZCNURIBwAAAADEzfjLErRpg02StGmDTeMvq9tV2YZh1On5jxdr0gEAAAAAceF0Sut/snt9b9P6n2xyOiWHo26u2alrV9lsNm1ct65uLnCcqKQDAAAAAOLC4ZC6n+SSw2FUfW9UfV9310xt00a/GjpUc2c/qyOHDwf8vL62WguFkA4AAAAAiJsX/lmpLt3cIb1LN0Mv/LOyzq8567HH5XQ6dd7ZZ+nfb72lzRs3aP1PP+r5vz+lCwb9UpJ7H/Xvv/tOWzZtkiT9+P33+v6777Rv7946HRvT3QEAAAAAcdO1u/TJqso6neLuL7dzZ/13+Rd6/MEHNOP221Wyc4fapqWpz2mn6cEnnpQk/WPOHD16/32e+1wyZLAk6bHn5mj02LF1NjabYfVV87WstLRUrVq10r3frVOTli3jPRwAAAAAOCE1c1bo9KOlys7tqMTkJvEeTtxVlB3T9q3b9E3TFB1xJPr87NjBg7qnbw8dOHBAKSkpYc/DdHcAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADEzJDN/AMkz/PgeV5qiJAOAAAAAIhZpc0mwzDkrKiI91AswVlRIZdhqNJ2fCGdfdIBAAAAADGrsNm1x56gZnv2yJ6QIJv9+MLpicxwGTqwe7f22hNUYTu+WjghHQAAAAAQO5tNm5q2VIvD+3W0oCDeo4m7Y4a0qXlriUo6AAAAACAeyu0Ofd2ijZq4nLI14sXphmw6ZnfIOM6ALhHSAQAAAADHwbDZdNRBtKwtNI4DAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBFxD+nbt2/X7373O7Vt21ZNmzbVKaecoq+//jrsfT7++GP169dPycnJ6tq1q+bOnVs/gwUAAAAAoA7FNaTv27dPZ511lhITE/Xee+9p7dq1evTRR5WamhryPlu2bNHw4cN1zjnnaNWqVbr55ps1YcIEffDBB/U4cgAAAAAAal9c++Q/+OCDysnJ0UsvveS5rVOnTmHv8+yzz6pTp0569NFHJUk9e/bU559/rr/97W8aNmxYnY4XAAAAAIC6FNdK+jvvvKMzzjhDo0aNUnp6uk477TTNmTMn7H2WL1+uIUOG+Nw2bNgwLV++POjxZWVlKi0t9fkCAAAAAMCK4hrSN2/erGeeeUbdunXTBx98oD/+8Y+66aabNG/evJD32blzpzIyMnxuy8jIUGlpqY4ePRpw/KxZs9SqVSvPV05OTq0/DgAAAAAAakNcQ7rL5VK/fv30l7/8Raeddpr+8Ic/aOLEiXr22Wdr7Rp33nmnDhw44PkqKCiotXMDAAAAAFCb4hrS27dvr169evnc1rNnT23bti3kfTIzM1VcXOxzW3FxsVJSUtS0adOA45OTk5WSkuLzBQAAAACAFcU1pJ911llat26dz23r169Xbm5uyPv0799fS5cu9blt8eLF6t+/f52MEQAAAACA+hLXkH7LLbfoiy++0F/+8hdt3LhRr7zyip577jldf/31nmPuvPNOjR071vP9tddeq82bN+u2227TTz/9pKefflr//Oc/dcstt8TjIQAAAAAAUGviGtJ/9rOf6a233tKCBQt08skna+bMmXrsscd05ZVXeo7ZsWOHz/T3Tp066T//+Y8WL16svn376tFHH9Xzzz/P9msAAAAAgBOezTAMI96DqE+lpaVq1aqV7v1unZq0bBnv4QAAAAAAGrhjBw/qnr49dODAgYh90uJaSQcAAAAAANUI6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALCIuIb06dOny2az+XyddNJJIY+fO3duwPFNmjSpxxEDAAAAAFB3EuI9gN69e2vJkiWe7xMSwg8pJSVF69at83xvs9nqbGwAAAAAANSnuIf0hIQEZWZmRn28zWaL6XgAAAAAAE4UcV+TvmHDBmVlZalz58668sortW3btrDHHzp0SLm5ucrJydFFF12kH374IezxZWVlKi0t9fkCAAAAAMCK4hrSzzzzTM2dO1fvv/++nnnmGW3ZskUDBw7UwYMHgx7fo0cPvfjii/rXv/6ll19+WS6XSwMGDFBhYWHIa8yaNUutWrXyfOXk5NTVwwEAAAAA4LjYDMMw4j0I0/79+5Wbm6u//vWvGj9+fMTjKyoq1LNnT40ZM0YzZ84MekxZWZnKyso835eWlionJ0f3frdOTVq2rLWxAwAAAAAQzLGDB3VP3x46cOCAUlJSwh4b9zXp3lq3bq3u3btr48aNUR2fmJio0047LezxycnJSk5Orq0hAgAAAABQZ+K+Jt3boUOHtGnTJrVv3z6q451Op9asWRP18QAAAAAAWFlcK+lTpkzRiBEjlJubq6KiIk2bNk0Oh0NjxoyRJI0dO1bZ2dmaNWuWJOnee+/VL37xC3Xt2lX79+/Xww8/rK1bt2rChAnxfBgAAKARy8/PlyRV7isLf2AjkJDqnr2Yl5cX34EAwAksriG9sLBQY8aM0Z49e5SWlqazzz5bX3zxhdLS0iRJ27Ztk91eXezft2+fJk6cqJ07dyo1NVWnn366li1bpl69esXrIQAAgEbKO5wPXr9OvZtmx3dAFvDD+nVKScvQoqrvCesAEDtLNY6rD6WlpWrVqhWN4wAAQI3l5+ercl+ZLtm3X6W7itVtr7TbtTbew4q7dvZeSsrOVkGLSr2V2loJqckEdQDQCdw4DgAAwOrMgD54/TrlNM1W+V5pdekSpbVtFu+hxd3qPUuU5cpSTs5QDd61Tku791C+8iVRVQeAaBHSAQAAomBObx+xudhTPS9yLVbRoSKV2aUF/brGd4AWMHDpalUk71dRwWJ1s/eSqqa/v5XaWvnKJ6gDQBQI6QAAABF4T2/POZTgUz0vOyJ9NriP+qWMjvcw4+6zwe7/jlm5Uav3LFEfDVFS0wSq6gAQA0I6AABoUMyKd20yq+cZe6Ui19qA6jkB3c18Hhb0e1UDl67W6lL39PdgVfVoEOYBNEaEdAAA0GB4V7xrE9Xz2PRLGR22qp6SlhHVeegSD6AxIqQDAIAGwb+hW20qKghce05ADy9cVT2paXT/BB2xuZj17AAaHUI6AAA4oYVq6FabKpL3Uz2vIbOqbjaVMzvAR4Mu8QAaI0I6AAA4YYVr6FabqJ4fH+/p72ZYjwZd4gE0RoR0AABwwvGvnodq6FZbCOfHz3wOzbAejYFLV6vIVaQsV5aymmZTVQfQKBDSAQDACYXt0E5ssfxuvKfJU1UH0FgQ0gEAwAnBrJ57N4ejoVvDFqlLvHdVPRoEegAnAkI6AACwPO/quXdzOBq6NXyR9l6PBpV3ACcSQjoAALCsYNVz7+ntVM8bj+PpEm+uZ09Jy2DvdQCWR0gHAACWFLZ6XjW9nXDeuPRLGa3Dl4zWgtJXY+oS//WP89QnxT1Nnr3XAVgdIR0AAFiOGdCpniMY77Xq0fCeJs/e6wCsjpAOAAAsw39rNbN67t0cjnAOiS7xABoue7wHAAAAIFVXz0dsLlbOoQR1q6qem9PbaQ6HmnJX3vtoQb+u7vXspUvUba+UcyhBg9evU+W+MuXn53s+JAKAeKKSDgAA4sq/ep6xVypyrWVrNdQq/y7xOxKXKbGgNVV1AJZDSAcAAHHj3Rwu51CCz9pztlZDXYh273WCOoB4IaQDAIB6F2xrtaKCxVTPUS8i7b3OVm0A4ok16QAAoF55rz0fvH6duzlcweKAtecEdNQ1c616mV0Ba9VHbC72rFUHgPpEJR0AANSLYNVztlZDvHlPf/euqmfYe2lwm2Kq6gDqHSEdAADUOe+152ytBqsxX3veW7V5r1UfsbmYpnIA6g0hHQAA1CkzoAerni/p30cS1XNYQ6iqek7OUJ+mchJVdQB1h5AOAADqhP/WalTPcSIIVlUvKljMVm0A6g2N4wAAQK3zbg6XcyhB3aqq5/7N4QCrMpvKLejXNaCp3OD16zxN5WgsB6C2UUkHAAC1xr85XMZeqci1lq3VcEKKZqs2quoAahshHQAA1Arv5nA5hxJ81p6XHaF6jhOX91r1MSs3+jSV816rTlAHUBsI6QAA4LgE21qtqGAx1XM0KNFU1dmqDUBtYE06AACoMe+154PXr3M3hytYHLD2nICOhsJcq57WtplOze2m3a616t00W5J0qY7FeXQAGgIq6QAAIGbBqufe09upngMAUDOEdAAAEBPvtedsrQYAQO0ipAMAgKiZAT1Y9XxJ/z6SqJ5bicsp2R3xHkV0TqSxAkBdIqQDAICIzOntIzYXUz0/AZQUJOqlGVkq3pasjI5lunpakdJzKuI9rKBOpLECQH2gcRwAAAjLuzlczqEEdauqnvs3h4N1vDQjS7sKkyRJuwqT9NKMLM/PXM54jSq4cGMNx2qPAwBqC5V0AAAQFFurxVdNp3+7nFLxtuTq7102FW9L1s6tiZo301oV61BjDffYrVJ5L9x3RNIKJaq1JKl0V7FSJKlzE+Xns2c6gJqjkg4AAAJ4V89vKjikbnulr3+cx9Zq9aCkIFEPTsjVlPO668EJuSopSIzp/naHlNGxTHa74f7ebiijY5nmzaxZxbouhRpruA8nalp5r03mNmyF+46oInm/igoWq9ted1AfsblYlfvKPB9yAUCsCOkAAMAjPz/ftzncoQQVFSzW6tIlnuo509vrVqgQGsv07qunFSmtQ7kkyWY3VLwt2V2hdtnc5/KqWEdyvNPKI93fe6xpHcp19bSisOeq6eOobWZQX9CvqyqS92t16RJ12yvlHErQ4PXrCOoAaozp7gAAQFLordUqkver7Ahrz+tDqOnfD4zPVUlB9NO703MqdPvzW/XA+Fzt3p5UdatR9V+b7HZDaR3Kw1asj3daebTT682xRjO936y87ypMkssV3eOoS+bfhwX9XtXApau1unSJslxZ6mbvJa1fp5S0DC2qOpbp7wCiRSUdAIBGLlj13Ls5HNXz+hNs+rcjweUJ2rFM764sl0oKqqvOkq3qK3LFWqr5tHJzuv5DEzupeFv09482aMdSea8vZlW9zK6AqvqgL1dTVQcQEyrpAAA0YqGq52ytFj9XTyvyVLDTOpQfV2M1R4JLLqdNhlFddZ46e2vEQFyThm4m73BvfigQy/0jiaXyXp/cQd39Z6rqAI4HIR0AgEbKp3reNFvlVdXztLbNtKR/H0l0bo8H/xD64ITcmKZ3e4dkl8smu8OQs9LmqTpHE2xrOq3cP9ybbDZD6Tm1Oy3dSgHdZP59+WywO6hXJO/X6j1L1EdDlNQ0QSM2F+ut1NbKF93fAYTGdHcAABqxS/btV++m2TqQdUC7XWuV1raZ8kedKYmAHm9mCI1levfOrYk+jdUMl03OSrse+vd63f781pjWlNdkWrn/dH1zHXx6jjWmpdcXc/p7/qgzlda2mXa71kqS+nc8TZfs2x/fwQGwPCrpAAAAFhbL9O55M7PkDsbmOnRDGR3LlZAU5k5RXjfaDure0/UzOpbr93cVKatT7PuYW206OwDUF0I6AADACaBmU81tGnf38VWwdxfF1uXdDPdmd/dHJnWKqTt8uK7yBHcAjQHT3QEAABoA/6nmNpuhjI5lysyNvYrtzXuNe0lB9F3e582sWXf4l2ZkqaTqfsXbkvXwpFz9uKKZHpyQqynnddeDE3JVUpBYg0cCACcGQjoAAEAD4b2O3FwHHu009WDM6rxnjbvh7tK+c2v4kOx/P+/u7tHcz/BsGyc5K+164Z6aBX4AOBEx3R0AAKCB8F5HHmyaerusipDTxYNNJd9dlChHgkvOSu+6jqF5M7N0+/NbQ46jpt3h7Q4pPadMJQW+0/Zdzurr1+Z2brXJauMBcOIipAMAAByneAW0UNe1O/ymqRcm6eFJuXJW2gMCu7l2PNga8JdmZMnptPmd3TckhxqD/37vkbq7m2vR/QO65zHZjZgCf30Jt4Z++aY9yqs6rnz7dhVKUgupcl8Z27ABCImQDgAAUEPhAlo8r+vfRM5w2eSsmkJeUlAd2Kur5O517OZUcrMaH2zPc8lQ2/YVERvKxdod3nstunkdd5d6Q63TKpTc1Ig68Ncn7w9DvJ+/fimjtbL0VS3o11VjVm707Jeek52twbvWaWn3HgR1AEGxJh0AAKCGggU0K1w3cL/yaoZh80xfd1aaVfLAteOh9jyPdgym3UWJQZu+eYf2YGvRq7eRs8mR4K7MP/Je7Pu916VIa+/7pYxWv5TRWtCvq8rs0urSJSoqWKxue6XB69dpxOZi5efnKz8/P34PAoDlENIBAABqoKbN0errut5N5BwJLtlsgYG9Ogj7un1EVy1/N0WVFTbPdbxD854dSVE/dv8wP+fP2T6hfefWRM8HAqHs2eGu/u8uiq2re13/Lvw/yLDb3R31/afi90sZrc8G91GZXapI3q/VpUvUba+UcyhBIzYXu6e/E9QBVCGkAwAA1EC0AS1e1zWnmz/y3npNnb1V6TnVgV02/+q4b4B3Vtr02mMZ2lec6PVzI8Sf5Tmvf4gO9oHCnh1JKikwt1hL0kMTO+n+cXkqOxr+n6XOSrtenB7dTIWSguDV+7rg/WFIuKn4ZlD3r6rnHErQ4PXrPEGdsA6AkA4AAFBD0QY0KXJV1+WMvvIb7Lrh7msG9tvmbFHrtErJcIdmu8MM2YHN4ST/KnqoP1eN32WLOO3e/K9h+N5/z45E7d8VuVVSSUF0MxXqcxmC94chkabim9PfvavqX/84T932SjcVHKKqDkASjeMAAABqzL85WjCRmryVFCRqzp+ztWeHO1S2bV+uifdtDxn2XE7f65YUBj9/sOu+cE+29uyorirbbNJtc7ZUdXdPUnXoNkO1fDqqS/I7rprhqt5DPTO3euz+Xd4rK2zauzPRK6gr6Pmqq/TVY3IkGAEd5f2fe/+Gd5G2bKutzvzhOt37cwd1958HLl2t1aVLlOXKUk7OUJ+mcpJoLAc0QjbDMIItUGqwSktL1apVK9373To1adky3sMBAKDemVW6EZuLVbqrWN32Srtda1V0qEhldumzwX3UL2V0fAfZgDw4ITdgv3DvPcYfnJAbEJAzOpYH7EPuH7ovnLRL78xOqwqk1Z3Q27av0F3z8gOu2y67POj2ZnaHS+PvLdJrj6Vr/y73BwWOBJdG3lCiT99M9Vxv3N1FemhipyCP0Lx28LH7b9X2w5fNNHdGlldXeZt8A7n7tmD7pUvV+6i3be/+0GDPjqSADyfM7vWSZLMZSs+J/Hya969JaD+eLv8rS1/VmJUblVjWWs3P/LlaFbVSQYtKJXdupdfVhJAONBDHDh7UPX176MCBA0pJSQl7LJV0AAAakfz8fFXuK9Ml+/Yr51CCyve618amtW2msiME9NoWqaobfJuz4JVf/yncL07LkssZvKlbZXngdUPtP+5y2vXGk+lKbuoOyuk5Zbpmujtk9j+/VJXlUkLVzmgZHcuCVNx9K+Lm2P23aLtw0i7969m0qnH41ojsDkMtWjlVujfRcz5npU1t25drX3Fi1bR797XM9ezeMwK8tz57aUaW1zR9yWY3gi5DCNbQLiHRCBq0IwX3UNuwAUBNsCYdAIBGwGxIVbmvTIPXr1POoQQVFSzW6tIlKrNLC/p1JaDXgUhN3qq7mnuH1sBGcMEasDkr7X5TxiNf1119DpxEuXdnkidk7t7uDpklBYl6YHyubruguvnaBRN3yT+Um2P2f3zewbWkIElz7sr2+qDA78MFw6bDpQ6fse3Zkag9O5JkC9hGLnBtvPnhh/nhhPdWbi6n3fN4wj2f3g3tzKAdTQO6eHX5B9BwEdIBAGjgzHA+YnOxbio4pG57pa9/nKeK5P0+09sJ6HUjUnO5q6cVqW376qnRbdtXBBwTLHQ7ElxB9jCvut0R/LoT79vucy1v/iHzoT/kekJ1SYE7tC56Li3sY3W5bKqssGnn1kSf4Or+MCH4Bwrm/dzT0wM/AAicLWDy/WCjbftyPXpdrt/P3P/1bx4XqaGd+Ry8OD1yA7pwH8QQ1AHUBGvSAQBooMy152b1vHfTbBUVLPZZey6JcF5PIk2ZNgNdqGN2bk2savAWbE26r0feWx+ysZokTT2/q5yV3sG5ek243W7IZjc8a7prxnuteehwHngfhTk+/DnbZJZrf4nv1Hh/5vMSbDp+ZYXNM7Xe7B0Q6rmVfJ/TcP0CIq1RZ0060DiwJh0AgEbOe+252RyuyLXYXT1n7XlcRGpGFm13+NvmbPF0T+/5s616YLy7QZxZBTb3Kw/VBK38qIIE8OpAm5pR4ek0HyhSkPY/n/dx0QT2wJ/bbIZfJd53PXzwQF21xZzd8And/sF83N1FSu9QIbvD93k2Zx6YU/bNc6RmVOjhSbkB4du/y7/ZtE9ijTqA2BHSAQBoYMwKundzuN2utapI3q8F/bpKonpuBcECdLDb3NuzuddCF29L0gv3ZOuuefmen18zvUgP/SFXhrN6qnawJmiSPCE0eNh2d2YPP8cyUpW7JvcN//P0nKpt24oTfdaam8e3yy7XuLuLNG9mYKA2nwP/0C25n8uHJnbyCdv+2+kF2z4uXPgO1gww0hZwAOCPkA4AQAN0qY6prOrPu11rdWpuN63YuUISAb2uRBvCgm3XJSnkdmC+VW13gzPzWua5XM7qyrhR1QTNZgtcj20GTJtNQcK4Lej07uhEO6U9nMAPDmx2ly6ctEuvPZbuFdDdHwjYbIZkM1RSkKyHJnZS67RyzywAM5R7zybw73hvXsc/bHv/Dr2DuyRNOa+752ehwre5Rt1/2z0COoBoEdIBAACOQ6x7ZAfbrsv8s/dt0UyP9j6X9/Rvl8sW0ATNm/fUeP/9xN2PKSlk5/jQVXP3WnbDVdO17IHnNFx2vTgtq2r9vO9xdofhc/v+XYnK6Fjusx5f8l177n68vk3swlW6zdvM26MN3/4V+GBbwAFAKIR0AACAKjWZkhzLHtmhpkL7HOMXGtu2L6+a7u5uiNYm072G2uygXs0dPFunV+jA7gSvdefeFerqIG+rCvMmu8PQuLuLZLd7T4sPJnh4t9mkNhmVninmgWE+WOO3yNPkQzWwC7auPtiYvX8/LpdNjgQz3PuOw1zHL4X+4CXa8B1s6jwARIuQDgAAGr1Yq+GmWNcfB5sK3S7bHcL9u62boXHifdu9KsGG9u5M0oMTclVZERg0zZ/7bk8WZFszl01y+YZjZ6XdZ412u6wKzbomz+sDgvAMwz3Nvk1meZDrGl7h2Fvk8warfocYgdJzfCvb/r8fw2WT0/O4fZ+XF6dn6Y4X3B+uhPrgJZbwTUAHUFPskw4AABq9UFPQIwm3R3Yo3vuX2+zuNdXB9gg3x2AGw4yOZZ512bsKk6rWqvvepzoEh9pT3Ij4512FSZrz52w9PCk3yDUi27szMcitNq/Kd7ixBRp3d5FS2lQGuY/v8Y4E93P54IRclRS4x+D/+wl2P1NJgfvDFTPY++8b773nebjfb0lBoh6ckKsp53X3GYs39k8HEA4hHQAANGrRhLJwvEN3NOuPg4XuYMHRewzBxugr0tZo3uE9/J9dVY3nigtCbcMW7LrRjCGUUB8suP3nhTQdLnUocHaA7/HeH2B4f8ji/fsJdj/JvR7f/HClJh+8eAv3gU80AR4ACOkAAKBRO95QZobuR95b75kSHYl/6PYPjja/MUSuCB9Pd3WX3/dV5w3ZOK5am0zvx1obHd4Dx1G8LSnITIPqn5td7P0/ZHlgvDsEe/9+0nOqn0ObzZDd4X7s6Tm+H66Muzu2D15MkT7wCRXgC/cdUUXyfh3+8iuVb9+u0l3FKtt8QJX7yjxbKgJoPAjpAACg0Yu1Gh5MLOuPg30w0LZ9uTI6ujfOSw8yhmgqwuEZCgz3hgL/ORiqSu8ro2OZEpMMT0gOdVzwcYRg8/7AwP8DDP8PKNy3t8msUNv25X4fYLg71M/5c3bVnxP18KRclRQky1Z1XGpGhVLTfafRm5XuhyZ2kiTdNmdL1B+8SOE/8AkV4E9tPlqfDe6jBf26qiJ5v1aXLlG3vVLOoQQNXr+OoA40QjSOAwAAjV48unEH6xRu7ustBY7DHOPOrYl69I+5IbueVws2/Tz2xm3BOrE7Elwad3eRJ8xGf67Q7A6XXM5w5wj8md1uKCHR8HkuvcP9nh1JemB8rsqP2bR/l3tqubPSJrvD5dNgL9RWePNmRrcVnvfrJlQH+HD7p/dLGS1JWtDvVQ1culqrS5coy5WlbvZe0vp1SknL0KKqa+Xl5UUcD4ATG5V0AACAKvXZjdvc0is9p0zF25L10ows/fBlMz30h+o1yzu3JgasjZ83M8svzHpXs/2FC+gxsLmU0bG8atxlmjp7qzJzK6qmi0dbQQ83DkMuZ7Ap7aHu71uNbpdVoamzg4fpXYVJ2r/LuwGerepa1WMxzxNrb4Jga8xDLX9wOSPP2OiX4q6ql9kVUFUf9OVqqupAI0ElHQAAIE5empGl3dvdldvibUl64e4Onp8Vb0vyVKrbti/XxPu2q11WRZC9wG1ql12mXYWBt0ezD3k1Q7IZkuFfw6m+bcqzW5TVuUI7t7rDaXXYralYxhfsfobatneH4MA95auOjGJtvVnVlhS00h1KqK3azPFIwbf3a5dVEfK8/VJG6/Alo7WglKo60FhRSQcAAKgD4Sqwwbb6CjcVfc+ORL04PSvkmuc7X9yqwC3V/EWqeNuCBnRb1TCKtyXpkWs7acp5XfXQxE4q3pbkOSa684e4ps9/o+F7nX0liZ5K9sgbSjwVf/O46rXqoc9lVrVj6U0Q7a4AwYJ8NDM2wlXVR2wupqoONGBU0gEAAGpRsMqpOeXZ/2dt25drX3FikC3V/Nk8e4BfOGmX3pmd5lnzfOGkXXpgfK6CT20PNd3dv4IdqqJtk2FU/1lSwFTxmjWwC9acLtrz+D4mMxSXFCTpndlpnnX782ZWrwsvO2quSXdX3+0O9/T6jI7lGnd3kdI7VFe2o+1NEG6NuckM8p7vvYJ89EHd/ecxKzdqd9laqWCtcnKG6hLt11tqrXzlU1EHGhgq6QAAADUQqlIebp9s758Vb0vSnh1Jnm7jgZXowD3IdxVWB1FzzfM7s9M8U+ajr2rXpIFcJDUJ2bHeN/TjMgx3AN65NVF2v3/hjrq5usKe0bFctz3nfv6unlakeTOzNOW87p4t26ToexNEqrwf7/Z+UnVTOUk6Nbeb58/9O56mS/btj/5EAE4YVNIBAABiEK5SHq5yKslvPblZmQ5ekW7ZplIH9yb6Hlt1vqIticrqVBFwvZqH7VCVbEOOBCOKTvK1db1ofh7+Z/NmZqmywla1Nt39YcibT6Xrrnn5AZ3zX5qRpZIC9wccJQXJenhSrqbODr3lmn8FPJpdAUJ1eweAUAjpAAAAMYjULCzcFGhHgkvOSt89zqsbm/k2Q0tINHRon1H1c+9gauiRSZ2U0bFM4+4u8rmezWZUTU8P3DYtlFbtynVwX0JAx3jJJrvDO6DXtMmb7zkjcXeMV4jt2CIvCwjWWG/PjiSfKfDmc+d/rLPS7vP7NEX6YCZcZTw9p7rzfH3uHgDgxMV0dwAAgChF0yws1BRol1NVgTdwPbYjweVzi7PSfd7qAB+4ttzs/n7siN3dlV3yC+j+fw6udG9CkC7t/lX+2hDduFxOW4Su8UGWBVQ9fps98Lk0zb03K2AP9PScsoDjom3+Fmz7NX/exzw8KfgxAOAvriF9+vTpstlsPl8nnXRS2Pu89tprOumkk9SkSROdcsopevfdd+tptAAAoLGLZo1xqH2yzfv6h8zqanV1IHc3OYtuXfmB3Ykhp8xHw3DZ5dsZPvAaNT13kKv5/TeYSNPgAw93OKp/H+6ZCoFKCgI/XLnqniKfUG8L8vsM9cHMi9ND9x4whetPAAChxL2S3rt3b+3YscPz9fnnn4c8dtmyZRozZozGjx+vb7/9VhdffLEuvvhiff/99/U4YgAA0JhFu01XsKnN4+4ukn8IdXcZ9w3+brGE4nDrt8M1pPO+f21WzUOp+YcJ1ffzu69h80zJDzVToW37cqXnBH64kpnrnoru/vBESo+h+Vuw0O9dgY92izYA8Bf3NekJCQnKzMyM6tjHH39c5557rqZOnSpJmjlzphYvXqynnnpKzz77bF0OEwAAQFJ0zcJCycytCLpm3b+5WGWFzWtrtmi3SwvGvL//bfFUkw8hQp3H+/EFru2XbGrb3tz+LtldNXfZfD5cqWnzN7NKHmr7tWi2aAOAYOJeSd+wYYOysrLUuXNnXXnlldq2bVvIY5cvX64hQ4b43DZs2DAtX7485H3KyspUWlrq8wUAAHC8og1b/pXTYJV4/ynyE+/brnbZ5VX3OJ7t0o632VttM8dTm1u++Z/P99x7diRqz073WnDDZVNGx7KgHdwjNX/zX8IQzYyKaGddAIC3uFbSzzzzTM2dO1c9evTQjh07NGPGDA0cOFDff/+9WrZsGXD8zp07lZGR4XNbRkaGdu7cGfIas2bN0owZM2p97AAAAOH4dwQfd3eRMnMrwlZuze/Tcyp0xwtb9eCEXE8ltmaB20oBXYql63z0Ip3L5im2m1POp5zXPaBLezRi3X7teGZdAGi84lpJP++88zRq1Cj16dNHw4YN07vvvqv9+/frn//8Z61d484779SBAwc8XwUFBbV2bgAA0PDU1pph76ZhZid2swt4tKHNuxIbmnvNdZvMcgVffx6pAV19qMsp96HOFW6dfmyN3MK9JqL5PRLQAcQi7mvSvbVu3Vrdu3fXxo0bg/48MzNTxcXFPrcVFxeHXdOenJys5GT//TIBAAB8hdsLO1Zm07Bq1dumPTwpV85Ke1TXMCuxleXSbRd0D3GUTVf9ebsevb5T0J9Fz5DNblR1e69ttbG/em1V3wMbuYUK0TV5TVA1B3C84r4m3duhQ4e0adMmtW/fPujP+/fvr6VLl/rctnjxYvXv378+hgcAABqw2twuy78jeLXqTuTF25I058/ZUZ0vISn49m3m9y8/mFVVST8+kQO6odqpzhsh/hyoeSszFMca0COP0ZHg0u6i6r3LK/2ewlheE9Hsmw4A0Yg6pBcV1X6jiylTpuiTTz5Rfn6+li1bpksuuUQOh0NjxoyRJI0dO1Z33nmn5/jJkyfr/fff16OPPqqffvpJ06dP19dff60bbrih1scGAAAaj7rYLst3qnrwbc/27EiKeA3z58G2bzO/31WYJJtNPnt+B163Nqa921Q7jd+iX5t+7HCCQo+9pvutu7lcNr00I0s/rmimqed31W0XdNfU87tq+bspemB8bkyviXCBnm3XAMQi6pDeu3dvvfLKK7V68cLCQo0ZM0Y9evTQZZddprZt2+qLL75QWlqaJGnbtm3asWOH5/gBAwbolVde0XPPPae+ffvq9ddf19tvv62TTz65VscFAAAal1B7YR/PtGVzqvptc7Yoo2PoKndJYfCKq3dl9oHxubLbzRAeGExdLnfgT2lb6feT0F3PA8WjyVzka4ba+zz66e+G33+9flIVvF+4J0vOSlvV9Wx67bEM7d6e5HO/cK+JUB/y7NxKdR1A7KIO6ffff78mTZqkUaNGae/evbVy8YULF6qoqEhlZWUqLCzUwoUL1aVLF8/PP/74Y82dO9fnPqNGjdK6detUVlam77//Xueff36tjAUAADRudbVdVmZu9fZdgc3dDM2bGXwK9UszslRS4A6KJQXJnrXswYKp3W7IkeDSgV1mCIylgVxtN5ar7ep9sPPEUs13H2d+UOJIcMnm9WFMek6ZXE7v59V9bjNwm7cHe02YFfJQH/LMm1l7SygANB5Rh/TrrrtOq1ev1p49e9SrVy8tWrSoLscFAABQr4LthV1bSgoS9fCkXO3dmST/6rb3FGrv/xZvS5ZhVB/rrLTLkeDyWufuFVxthpyV9oBgabI7DNkdwdez134FPVz1PnRVOzTvinm4+4X+WUbHMs/vdursrUr3+jDmmulFQWYoeH+oYcjucPm8JoKtP/f/kGfc3UW1voQCQOMQU3f3Tp066cMPP9RTTz2lkSNHqmfPnkpI8D3FypUra3WAAAAA9akuOnN7r1f2Dsd2u6G0DuXaXRSsi3iZSgp8d6hxVtqD3G7I5Qy/xttdKTb8jvEPvsHCeqgp5TUN+ME/RIhOFPuhBznOkeDS1dOKPF3X/fcuLylIVMtUp/bvSgxyLvefXU6bT9f2YOvPb39+a8Ce6Bkdyzz73Ju/azq/A4gk5i3Ytm7dqjfffFOpqam66KKLAkI6AAAAqoXajk2qrri+NCNLJZ491d1T21um+q4vt9kNpXco19TZWzXlvO4KHniDBVX/UB68+Vxwse5BHkywLdRi2VbNf9zRhnUpPadMF127K+g2at6Bu3RP6H/P2myG0nOqw7X/79N/KzfvEH71tCLPtWtzCQWAhi2mhD1nzhzdeuutGjJkiH744QdPgzcAAAAEZ65X9q+ojru7SPNmZumhiYH7mzsr7X6VXXdYvHDSroDzBecf3Gtrj/GaqMvp9KE99O/1sjukWdfkac8O93Npbnt317x8ScE+QDG5lwe4nHYZhk2VFTaVFCR6wn2kCnmoqj0ARCPqNennnnuubr/9dj311FN68803CegAAABRCtaUzrupWKgt2ry5nDa9Mzst4Hzh11MHP1egmjR4854+H81a82AVf/8p98HGHvvYWrUr16PXudeM79nh3QfAd9u7wP3s3f/N6FiulDaVnu/37Ej02dM+VJPBUHulH09AX1n6qgYuXa1de45o1dYNamfvpR+Obtfybd9qUeeMmp8YgGVFXUl3Op1avXq1OnToUJfjAQAAaHD8K6rhpsC7Bat8u6dVPzA+V9dML/Kcb3dRYlXn92i2WwtVUa9JtTvcdPvYpOeUq6Qg2VO9jn1s1Y/LkeBSQqK8PgAJraQgUZUVvp3c27Z3z3LwneFQHe7DVchDrVWviZWlr0qSxqzcqF0uqU/KECVlZ+uHo9u1tHsPJaQmKy8vr0bnBmBtUVfSFy9eTEAHAAA4DmagC7ZlV9v25UrPKZMktU6rUKiK8u7tSXpxepbnPO2yKqq2ZjPVZI15Xal6fA7var9vtdzucOma6UVql10mI+T0/UjMbdbKdOszW92BOui53J3avdej793pu6xg787EqLdK85/iXlvd3M3q+ZDFq5VY1lp9UoZoQxupoEUlAR1oBKIO6QAAAKg9/lOmJ963XXe84N4mLLmpIVtAxqwOfyUFyZ7p1MGnbMc6Rby290o3VY3ZaZMjwQzsvtdyOW16YHyedm/33XLOcwabURXyo2O3+z8fvuNxOe3auTUx6DZ3kmQYNu0qTJb/NP627cN3Zg+1V3osU91Xlr6qlaWvaszKjUquqp5n5QzVhjbS0u49tKhzBgEdaAQI6QAAALXsePfCDhYe/dd97yp0N0F7cEKuircly1YVDtu2r1Db9hVex4ZbL16be6WHX4/urLQrNaO8ajq7/xT50Ndvk1mh257bqoyOZWGuUf2cvDQjy+cDEN8qvvvYeTOzqqatl0V8VJJ7jfrE+7ZHPC7UWvVomNXzMSs3hq2eE9CBho/90wAAAGpJSUGw/c4rgh4bav1yYPd2/3Xk1RX1PTuSZLO5A6jhsik9p0zXTC/ymq4der24ze4KMr38eLrAR25Ot684McIxgffZs8P93Fw4aZf+9WxawN7x3tc2p5i3y6peM/6Xq/O0d2eSz7HmNPRrphdVrecPVrdyn/OBf61XUtPoRluTbu7m2vOBS1cr2SUllrVWVs5Qn7XnCRLhHGhEqKQDAADUkmDBO5hI65evnlakdtnlVUeH64QuT8XdnAbvved6sOPtdkPpOWUyXP4VbQX5PpJYpsmHr5iHvo9UXJCkF6dlhQjo1eMwp5h78w3obuY09PScCk2dvbWqQ37gOR0JrqgDurdYu7mb09uzWmQpK2eoClpUKiUtg+o50EgR0gEAAGpBLI3DIq1fTs+p0DXTi3zCo81uBIRJu8Plc470nDL3VHlXYAXdXBOe1qFcV91TFGT6eOxr2c1zRif4sS1al8v7gwSb3eWZul99V5tXtTv0FnOt0ipUWWHzbIG2bmWzgOfMkeDymYaenlOhW58J1oHdpqtimK5+vLJaZKn5mT/3fJ/cuVW9XRuAtRDSAQAAakGsjcMirV9+aUaWXM7qsG23G1VBtbqy7nLafc5xzfSigEqy6cFFG3XbnC0yDOmhiZ1UdtTm08StZWqlwle6vRu4ue/nrLTJZo+uqVvw58GQ3e57zVZtnSGavpm8K/Lu42w29wcY+4qTtGeHe0r9rkJ39d3nOXS4NHX2VrXL8l2CkJlb4fO7s9ncv7ueZxw57v4C0XDWuKs9gIaINekAAAC15OppRZ416ZEah4Vbvxy4j7rkrLQrPadMu7e716rb7YbaZZcHnOPqab7rrG02Q+k55dpdlKhH/1h9+/5diTLDrs1uqFlLlw7uC/3Y7A7J5cnj1R8URN42zb3OvTrs+q57L93rvU7dVjWuQDabIcNwP+60Du69zOfNdD/Xdofhs9e55J7JIL+xuZx2vTjdPW3eXL9v9gzwPl+bzAqVHXVX5CWpbXt347hQ/QVqqqQgUYumXauXC9PUse0OPZCzQn1q9QoATkRU0gEAAGqJGbwfeW+9bn9+a1ShLliFOVRV/prp1dV3m93wbMW2u6g62JrrrM3O5ek55Z4PD0Ltp25UTc0Pzj0Gl1NSkC3SJHeIDT1V3n9NfehmdsG60dts5h7yvrMOMnPdz/VD/14vZ6U94MMCs7ru/Rw6ElyengElBcl6eFKuflzRTA9OyNVDEztJkm6bs0UJiYbPhwV7dkS/d3osXpqRpdKitpKkwr3p+tMjv6z1awA48VBJBwAAqGWxNg4LJlhV3vwQ4MEJuUE7w5vScyp0xwvVFfZglXl/bduXa19JQtUWad6ChetqjgSXRt5Qondmp1VdI1KH+HDbvgUGeJvd0MgbStTzZ0dUWS4lVPWBMyvze4sT5Uhw+a1Zt6lNZoUqK6QDu913SM2o0J4dvk3knJV2vTgtyxPwdxUmae69wRrUVfcXqI3frTl+79+Jy3Aov7C1nNFvCQ+ggSKkAwAAWFCo6fAB4a6qCu4dYE3m/ewOdwh3r9f2Xs9tNpVzhQjokTmdNr0zO023P79V5UelOy7qHuEe3kHcO7D7h/eq8Rk2vfFkuhKTDBVvS1bb9uVyVlZPi7c7XF5T3d3N7K6atl1zfWYOGEpIdDfW8w/g3rMLzA75GR3LVLwtyWcsGR3Lay2gu8ftni1RUpgow2WX3eZUx+yDcjDPFWj0eBsAAKABel1N9FZqa/1wdLuycoZq1dYN2rXniAYuXa2Vpa969maG9fkHdP+p8GbX99sucHc0LynwXdMdvPGZ4enMnp5TplbtKqMI6CG6vxvuDwkenJCrOy7qLkdCkO7sIXk3gfPfoq16bfnenUlVodk99Xz/ruo6k8tp95mG76y0a9FzaQFT+4u3Jeuqe4J3zPdfVnD1tCK1bV+9VKFt+4qw/QVq6uppRUrJ2iNJ6tCmRH+Z8mmtXwPAiYdKOgAADYy5p3K+8rW0ew+l7NuvnJyhard9u1aXLtGYlRtVuO+IPhss9UsZHd/BIiolBYmeqe/pOWW66NpdnunlNpshZ2XVfuLbkjTnz9m6a16+z30yOpb5TfW2ee5jswXfS7yau6LtSDD8gm81R4JLJQXuc7iPMTy3u68Tubmc3WGE+KDArPiHn3YvydNULtjU/vScMqV3cK/X9zyXHcp14aTq59J7WcFd8/I9H3BEU0GvyVT49JwKjXjsWV329SY1qWil5lk/l4rYeg1o7AjpAAA0UHl5ecpXvhalZmjE5mKVtpH6aIh2l61VsstdVf9ssPtYwrq1vTQjyxOCSwqS9eK0LE2dvVVtMip02wXe08tt2rMjSS6n+z7e69YdCS65nDYZhu/U8sCfeTM08f7temd2mudcwaalB4Z3m+wOl66aVqQX7u4Q5BH5r1u3VW2V5n27fzgPdd9qZsh+aUaWSgqTPGvNzQ8LppzX3VMpb5dV4QnVPX8WvMt+NKHb/8MQM+THwhH1zAMAjQHT3QEAaMDy8vKUl5enRZ0ztLR7DxX3yFBWzlD1SRmiZJc0ZuVGzxR4WJO5Bt3wm9L90oyskCHSvI+5Vtvlsrk7oBuBU8vNn7XLdndPN6eDp+eU6Y4X8tWj3xGfcwULzsH2Snc53dPOfTu/Rx9GHQnuru7Ve6a7/+uehu59HveUde+O+ldPK1J6VRf8jI5lap1WqX3FXvunTw987mq63tz/w5C66AIPoHEhpAMA0Ajk5eUpITVZizpnqKBFpTa0kfqkDFFiWWslu0RQt7DdRYk+66hN5pTuYCH40ety1SbTP+D6bkXmv6Z9V6G7Ejx1tnsLuTtecAdeu8MM7qG3WDNc9qA/LylIlhHkbvaQ/wL1/SBi/L3bPVvOZXQs121ztuiuefmaeP922R3u58SRYOiaGUU+Idt7K7yps7e6Zxd4fWBhbl3nv37fX/D1/L4/9/8wxOwCDwA1xXR3AAAaCXOt+iJJlamtpfXr1Lup71r1Bf3cQZ3p79bx0owsn+7lkjtYp3dwdxufeN92z3Rrk9mZ3JHgkly+lW+Xyya5bFUdzJNlt1evaQ+2nZvLqZBr0X0FTkEP7KZeHWbdzKnr5gcI7p+Za8vNvdD9p6L3/NkRPfLexqAd7b2Z98noWKZdhWZQd18z2GM1RTuF3WziZ57bHHdtdoEH0PhQSQcAoJExq+pLu/dQQYtKJWVnK6tFlhLLWmvMyo2SRFW9nkSquO7cmuie6u4X0tOyyz3dxtNz3M3Q3Hybq7lcNq8qvG8H89uf36ops7dUBfDQlWAziPpPMfcVvMpe3U3dt9JfXeH3nULfOt0dhM215d5jCCbaMHz1tCLPdP5wj9UUyxT2q6cVear9/uOOZGXpqxq4dLXn+1ZeTeNeV5OozwOgYaGSDgBAI2Q2ldM+9/fNz/y5Dn/5lSSpf5e2Wr5pT/wGZwE16dQdi2grtfNmZsm/mVpGx/KA6q9nz+2CJJ+164bLJqd/wPcKkv/v/uDn93/sV08r0pw/Z3s6xLdtXxHQLd6X+5zzZmYFbIVmjqHsqLnXefW1E5MMPfLe+ojPfbTPn/l7TM+p0B0vbNWDE3IjVr1D7UMf6jURaj/7cMwPwQYuXa1kl5RY1lrt7L30w9HtSknL0KLOGZKqZ78AaFyopAMAAFQpKUjUgxNyNeW84HuO15ZoKrXVYdG3C/q4u4NXaq+eVqQ2meG6irvPM+5ud6CN5fzmlmSPvLdej7y3XnfNy/fZqz3UHupm53jvfcjTc9xVfEdC9ZjMawfbOi2YSM9fqN9jNFVv/33ozZkHkQJ4LAF94NLVGrNyo5Jd7t4QWTlDVdzD3dxxUecMT8NHAI0TIR0AAKBKfXTqjrbZmH9YtNncYTEzN3gQT8+pUEKif1gO/N5dnQ8dRkOd37yPGUa9A29gx/fgnePTOpTrmulFcjnlV4k3H0PkMBzN8xfq9+jdUM7sBB/M8UxhD+frff/0qZ73SRmiDW2kghaVWtQ5QwmpyYRzAEx3BwAAkGKf5lxTsTQbM/f8Lt6WrPSc8GHRf/xu/tPQfQOt9/mPJ4w6ElxyuWxVa+d915s7Ely6ZrrvvuRS1fR8v73Mr5ke+fqRnr9ofo+Rfp81mcIezkc/LtGnD4/SgcI/6+PUAj018n/KymmhH45u19LuPQjnAHxQSQcAAFDNpznXRLSV2kiV32AN3rwr78G0bV+uhye5p4K/NCNLV08rilhZ9lZZVTz3rla7nDbPddu2r5DdUX1tl9MWdE93/73Mp86O7vrmfUM9f7X5e6yN3/3K0lf19fQROri9jSSpeH+2blr0GxW0qCSgAwiKSjoAAECV2qosRxKuUhvsNv/vQzVO86+8V1bYtHdnoqeZnNnp3X8qeLBtyPz9uKKZXpzmbgRnd7jkclbXegzDJmelTQ/92930bcp53X1+FmxGwvFUqyPdt75+j+GYzeEu+3qTXt6X47ndadhVWNJG/8rNUIKD5nAAAhHSAQBoxN5Kba1LtF85Ra3U1N5Lq/csUd5rXyph3xF9Nrjx7Zde29OcI/G+RrQdy6Xga67NSrj3+KuDtU12h0tXTSvSC3d38Jwnlin95nkkd3Xcd1q7IUeC4dmzPJa9w4/neQ513/r+PYbSv0tbOVZuVMe2O7R9X4acLrvsdpda5RxT5y558RsYAEtjujsAAI2UuV/6os4ZKmhRqQ1t3J2mE8taK9nl3h6qse6XHo9gF23Tumgap5njf2d2WvUe64ZN/56TVqOp4JXl8tlPvbpRXPX3zkq7Hhjv7qReV43XYhXPgO5t2oUvKi/tsCSpQ8YhnTtjXZxHBMDKqKQDANCImVNtF0mqTG0trV+n3k2Hqt327VpdukRjVm7Ugn7uoN7Yqur1KZamddE2ngt1ztvmbNG8mbFNBU9Ick+Vd1fSq6vodruqPixw74u+e3t1VT+W6fwNXU6bEv3rzk/Uvscp+mr7t1rUMSPeQwJgYVTSAQCAp6q+tHuPgKr6kMWrG3VVvT7E2uwsmkr17qJEzxp0yXcLt0jbkPlvBydJ18wokiPBPT5HgqFRNxf7bcEWWNX3n84fbg/6YNdsaByN7MMJADVDJR0AAEiqqqrnSYvy86mqx0Eszc6iWXP90owsz5R4SbI7jIAu6P7CrYvv+bMjevjdjaosl2ftef/zS/XA+Fzt3u5b1Q81nmDr6GNZiw8AjQGVdAAA4CNcVX3Myo1U1etIpO3WggkV0M2p7oZXSHdW2tUuK/w5o1kXbwZ00zXTq6v6qRkVqqywBVTLw62jj3TNeFXYG0NlH4A1EdIBAEAA76ZyKWkZSsrOVlbOUCWWtVaH1GYE9TpUG+u1a7JXeDQN6YLx/nAhIdHQvmJ3MPcO3KHGI4W+ZqTp8XWlNq+b99qX2rXniOf75du+rY0hAmjgCOkAACAo7/2bO/Q6xfPnn2X+TB1Sm8VhRIhFrB3WaxLs/YUL+cHGE+6a0Xa7r23He92Vpa9qZemrGrNyo3btOaI+KUOUlTNUPxzdrrdSW2tR5wz2RgcQFmvSAQAAGqCa7BUey7p4f5G6zocaT7BrxtLtvjYd73VXlr6qgUtXK9klJbbIUp+UAdrQRkppUamlOT2UkJpMQAcQESEdAACgAYsl1NYk2HuLJuT7nzfUNaPZZq62Rbu9nT9z6ceYlRu1y+Xu4ZCUna0fjm7X0u7ucN6VcA4gSoR0AACAE1RdVZZrek4zcHt3gK/pNY+nqn88Yr2uWT3vkNpMiWWtqZ4DOG6EdAAAgBOMVbctq81xHW9Vv6aiva5ZPfdMby9r7Vl7blbPEyQCOoCY0TgOAADgBFPfTdWi3Y6sLsZVnwE92uua1fMxKzcquWp6e1bOUBW0qPQE9Ly8PAI6gBqhkg4AAMJa1DlD2vytSo8Wq5u9l1ZtXatdh45o4NLV+myw1C9ldLyH2KjUZ1O1WCrj8Wr2Vp+CVc/N6e1Lc1pQPQdQKwjpAAAgJDNsLJJUmdpaWr9OvZsOVbvt27W6dInGrNyoBf3cwYWwXj9q2tysJoJVxm9/fmvcxxUP3mvPvZvDFbSo1NLU1qw9B1BrmO4OAAAiysvLU0JqspZ276GCFpXa0MYdUhLLWmvMyo0auHS1p8qIuhfrHug1YVbGQ+17Hq9xxYPP1mplrdUnZYg2tJEKWlRqUecMAjqAWkUlHQAARCUvL0/5ytei1AyfqnpRwWIlu6qnv0tU1etarE3VajLlvCaV8Xg1e6sr0WytRjgHUNsI6QAAIGpmIMlXvpZ276GUfftV2q6X+th7abdrrTqs3KjCfUdYq15PIgXh4+22XtNt0BpKQPdUz1tksbUagHpjMwzDiPcg6lNpaalatWqle79bpyYtW8Z7OAAAnLDy8/MlSZX7yjR4/Tr1bpqtooLFKjpUpDK79NngPpII6/H04ITcgEp4qDXloZjT2xtC8I6GT/V8z5Gg1XOJ5nAAYnPs4EHd07eHDhw4oJSUlLDHUkkHAAA1EqyqnpPj21SOqnr8HG+3davuxV6XvJvDeXdup3oOoD7ROA4AABwXs6ncos4ZAU3lkl2iqVycmGvK7Xb3pEm73XB/H2VFvL73Yo+nlaWvBjSHy8oZ6t5arXsPmsMBqFdU0gEAwHGLZqu2wn136bPBfaiq16OarilvDHuem8JurUb1HEAcENIBAECtMTvAf3JmH6VsLlZpG6mPhmh32VqfDvAE9fpR027rDX3Pc6l67bnv1mrV09sXdc5Qglh7DqD+EdIBAECtiqaqvqCfOyAR1utHTcJ1TavwJ4Kw1fPU1lTPAcQVIR0AANQJs6ru2arNq6pOUznra2h7npv8155TPQdgNYR0AABQZ8ygvig1w6eqXlSw2Gf6u0RYt6qGEtB9tlbzqp57b61GOAdgBYR0AABQp4Jt1Vbarpf62Htpt2utOlBVRx3zqZ63yGJrNQCWRkgHAAD1IlJV3ewAH8lng/tIItAjsmiq50xvB2A1hHQAAFBvglXVc3LcTeV2l61Vp2atI54jefFqldlF5R1heTeH8197TvUcgJUR0gEAQL3zrqqPqNqqrXfToVHdly7xCCfY1mpZOUOpngM4YRDSAQBAXPhv1Zayb39U96NLPEIJu7Ua1XMAJwhCOgAAiCvvqno0vNezl2/frl0uquqNXbDqOVurAThREdIBAEDcxRKe2Hsd3sJWz1NbUz0HcMIhpAMAgBMKe683fGZlPBpUzwE0NIR0AABwwgnXJd5sKkdV/cTkXRmPRqit1QjnAE5UhHQAAHDCCtYl3pz+TlX9xBJsXXk02FoNQENDSAcAACe0YF3icw5lU1U/gfjsad4sS+3svZSUnR3VfdlaDUBDQ0gHAAANQrRVdYK6dYTb0zylRWVU56B6DqChIaQDAIAGw7+qbjaV866qs1WbNUSzp3k0qJ4DaGgI6QAAoMExq+ps1WZNZkCnKzsABCKkAwCABinUVm3l27drl8u3ql7fTqQPB2LZDi0aA5eu1hi/6jld2QGgGiEdAAA0WMG2avOuqo9dvrtex1N0qEhldp0wVXyfhm5RdluPqFmWVObblf2TPn2ongNAFUI6AABo8EJV1evbibI2PlRDt9pE9RwAgiOkAwCARiFYVb2+nQhr48M1dKtNdGUHgOAI6QAAoFHxrqrXN+8qflHBYp+t4aT4h/VIDd1qE9PbASA4QjoAAGh04hUOfdbGt+ulPvZe2u1aqw5xrqqb4ZyGbgAQf4R0AACAehJqbXywqnp9ClU9p6EbANQ/QjoAAEA9CrY2PidnqE9TufpG9RwArIOQDgAAEAfeVfURm4t9msrVN+/qOQ3dACC+COkAAABxYgbhRVJct4bzrp4zvR0A4ssyIf2BBx7QnXfeqcmTJ+uxxx4LeszcuXN19dVX+9yWnJysY8eO1cMIAQAA6oZZVY/X1nBUzwHAOiwR0lesWKHZs2erT58+EY9NSUnRunXrPN/bbLa6HBoAAEC9yMvLk/KkRfn59X5tqucAYB1xD+mHDh3SlVdeqTlz5ui+++6LeLzNZlNmZmY9jAwAAKD+EZYBoHGzx3sA119/vYYPH64hQ4ZEdfyhQ4eUm5urnJwcXXTRRfrhhx/CHl9WVqbS0lKfLwAAAAAArCiuIX3hwoVauXKlZs2aFdXxPXr00Isvvqh//etfevnll+VyuTRgwAAVFhaGvM+sWbPUqlUrz1dOTk5tDR8AAAAAgFoVt5BeUFCgyZMna/78+WrSpElU9+nfv7/Gjh2rU089VYMGDdKbb76ptLQ0zZ49O+R97rzzTh04cMDzVVBQUFsPAQAAAACAWhW3NenffPONSkpK1K9fP89tTqdTn376qZ566imVlZXJ4XCEPUdiYqJOO+00bdy4MeQxycnJSk5OrrVxAwAAAABQV+IW0gcPHqw1a9b43Hb11VfrpJNO0u233x4xoEvuUL9mzRqdf/75dTVMAAAAAADqTdxCesuWLXXyySf73Na8eXO1bdvWc/vYsWOVnZ3tWbN+77336he/+IW6du2q/fv36+GHH9bWrVs1YcKEeh8/AAAAAAC1Le5bsIWzbds22e3Vy+b37duniRMnaufOnUpNTdXpp5+uZcuWqVevXnEcJQAAAAAAtcNmGIYR70HUp9LSUrVq1Ur3frdOTVq2jPdwAAAAAAAN3LGDB3VP3x46cOCAUlJSwh4b933SAQAAAACAGyEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFmGZkP7AAw/IZrPp5ptvDnvca6+9ppNOOklNmjTRKaeconfffbd+BggAAAAAQB2zREhfsWKFZs+erT59+oQ9btmyZRozZozGjx+vb7/9VhdffLEuvvhiff/99/U0UgAAAAAA6k7cQ/qhQ4d05ZVXas6cOUpNTQ177OOPP65zzz1XU6dOVc+ePTVz5kz169dPTz31VD2NFgAAAACAuhP3kH799ddr+PDhGjJkSMRjly9fHnDcsGHDtHz58pD3KSsrU2lpqc8XAAAAAABWlBDPiy9cuFArV67UihUrojp+586dysjI8LktIyNDO3fuDHmfWbNmacaMGcc1TgAAAAAA6kPcKukFBQWaPHmy5s+fryZNmtTZde68804dOHDA81VQUFBn1wIAAAAA4HjErZL+zTffqKSkRP369fPc5nQ69emnn+qpp55SWVmZHA6Hz30yMzNVXFzsc1txcbEyMzNDXic5OVnJycm1O3gAAAAAAOpA3CrpgwcP1po1a7Rq1SrP1xlnnKErr7xSq1atCgjoktS/f38tXbrU57bFixerf//+9TVsAAAAAADqTNwq6S1bttTJJ5/sc1vz5s3Vtm1bz+1jx45Vdna2Zs2aJUmaPHmyBg0apEcffVTDhw/XwoUL9fXXX+u5556r9/EDAAAAAFDb4t7dPZxt27Zpx44dnu8HDBigV155Rc8995z69u2r119/XW+//XZA2AcAAAAA4ERkMwzDiPcg6lNpaalatWqle79bpyYtW8Z7OAAAAACABu7YwYO6p28PHThwQCkpKWGPtXQlHQAAAACAxoSQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARSTEewD1zTAMSdKxQ4fiPBIAAAAAQGNg5k8zj4ZjM6I5qgEpLCxUTk5OvIcBAAAAAGhkCgoK1KFDh7DHNLqQ7nK5VFRUpJYtW8pms8V7OCec0tJS5eTkqKCgQCkpKfEeDuKE1wFMvBYg8TqAG68DmHgtQOJ14M8wDB08eFBZWVmy28OvOm90093tdnvETy4QWUpKCn/ZwOsAHrwWIPE6gBuvA5h4LUDideCtVatWUR1H4zgAAAAAACyCkA4AAAAAgEUQ0hGT5ORkTZs2TcnJyfEeCuKI1wFMvBYg8TqAG68DmHgtQOJ1cDwaXeM4AAAAAACsiko6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpMPjmWeeUZ8+fZSSkqKUlBT1799f7733Xtj7vPbaazrppJPUpEkTnXLKKXr33XfrabSoK7G+DubOnSubzebz1aRJk3ocMerDAw88IJvNpptvvjnscbwnNHzRvBZ4X2h4pk+fHvA7Pemkk8Leh/eDhinW1wLvBw3X9u3b9bvf/U5t27ZV06ZNdcopp+jrr78Oe5+PP/5Y/fr1U3Jysrp27aq5c+fWz2BPMIR0eHTo0EEPPPCAvvnmG3399df69a9/rYsuukg//PBD0OOXLVumMWPGaPz48fr222918cUX6+KLL9b3339fzyNHbYr1dSBJKSkp2rFjh+dr69at9Thi1LUVK1Zo9uzZ6tOnT9jjeE9o+KJ9LUi8LzREvXv39vmdfv755yGP5f2gYYvltSDxftAQ7du3T2eddZYSExP13nvvae3atXr00UeVmpoa8j5btmzR8OHDdc4552jVqlW6+eabNWHCBH3wwQf1OPIThAGEkZqaajz//PNBf3bZZZcZw4cP97ntzDPPNCZNmlQfQ0M9Cvc6eOmll4xWrVrV74BQbw4ePGh069bNWLx4sTFo0CBj8uTJIY/lPaFhi+W1wPtCwzNt2jSjb9++UR/P+0HDFetrgfeDhun22283zj777Jjuc9tttxm9e/f2uW306NHGsGHDanNoDQKVdATldDq1cOFCHT58WP379w96zPLlyzVkyBCf24YNG6bly5fXxxBRD6J5HUjSoUOHlJubq5ycnIhVd5xYrr/+eg0fPjzg73owvCc0bLG8FiTeFxqiDRs2KCsrS507d9aVV16pbdu2hTyW94OGLZbXgsT7QUP0zjvv6IwzztCoUaOUnp6u0047TXPmzAl7H94XokdIh481a9aoRYsWSk5O1rXXXqu33npLvXr1Cnrszp07lZGR4XNbRkaGdu7cWR9DRR2K5XXQo0cPvfjii/rXv/6ll19+WS6XSwMGDFBhYWE9jxq1beHChVq5cqVmzZoV1fG8JzRcsb4WeF9oeM4880zNnTtX77//vp555hlt2bJFAwcO1MGDB4Mez/tBwxXra4H3g4Zp8+bNeuaZZ9StWzd98MEH+uMf/6ibbrpJ8+bNC3mfUO8LpaWlOnr0aF0P+YSSEO8BwFp69OihVatW6cCBA3r99dc1btw4ffLJJyEDGhqmWF4H/fv396myDxgwQD179tTs2bM1c+bM+hw2alFBQYEmT56sxYsX0+CnkavJa4H3hYbnvPPO8/y5T58+OvPMM5Wbm6t//vOfGj9+fBxHhvoW62uB94OGyeVy6YwzztBf/vIXSdJpp52m77//Xs8++6zGjRsX59Gd+Kikw0dSUpK6du2q008/XbNmzVLfvn31+OOPBz02MzNTxcXFPrcVFxcrMzOzPoaKOhTL68BfYmKiTjvtNG3cuLGOR4m69M0336ikpET9+vVTQkKCEhIS9Mknn+iJJ55QQkKCnE5nwH14T2iYavJa8Mf7QsPTunVrde/ePeTvlPeDxiPSa8Ef7wcNQ/v27QOKNz179gy79CHU+0JKSoqaNm1aJ+M8URHSEZbL5VJZWVnQn/Xv319Lly71uW3x4sVh1y7jxBTudeDP6XRqzZo1at++fR2PCnVp8ODBWrNmjVatWuX5OuOMM3TllVdq1apVcjgcAffhPaFhqslrwR/vCw3PoUOHtGnTppC/U94PGo9IrwV/vB80DGeddZbWrVvnc9v69euVm5sb8j68L8Qg3p3rYB133HGH8cknnxhbtmwxVq9ebdxxxx2GzWYz/vvf/xqGYRi///3vjTvuuMNz/P/+9z8jISHBeOSRR4wff/zRmDZtmpGYmGisWbMmXg8BtSDW18GMGTOMDz74wNi0aZPxzTffGJdffrnRpEkT44cffojXQ0Ad8e/ozXtC4xXptcD7QsNz6623Gh9//LGxZcsW43//+58xZMgQo127dkZJSYlhGLwfNCaxvhZ4P2iYvvrqKyMhIcG4//77jQ0bNhjz5883mjVrZrz88sueY+644w7j97//vef7zZs3G82aNTOmTp1q/Pjjj8bf//53w+FwGO+//348HoKlsSYdHiUlJRo7dqx27NihVq1aqU+fPvrggw80dOhQSdK2bdtkt1dPvhgwYIBeeeUV/fnPf9af/vQndevWTW+//bZOPvnkeD0E1IJYXwf79u3TxIkTtXPnTqWmpur000/XsmXL6GPQCPCeABPvCw1fYWGhxowZoz179igtLU1nn322vvjiC6WlpUni/aAxifW1wPtBw/Szn/1Mb731lu68807de++96tSpkx577DFdeeWVnmN27NjhM/29U6dO+s9//qNbbrlFjz/+uDp06KDnn39ew4YNi8dDsDSbYRhGvAcBAAAAAABYkw4AAAAAgGUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAQEhOp1MDBgzQyJEjfW4/cOCAcnJydNddd8VpZAAANEw2wzCMeA8CAABY1/r163Xqqadqzpw5uvLKKyVJY8eO1XfffacVK1YoKSkpziMEAKDhIKQDAICInnjiCU2fPl0//PCDvvrqK40aNUorVqxQ37594z00AAAaFEI6AACIyDAM/frXv5bD4dCaNWt044036s9//nO8hwUAQINDSAcAAFH56aef1LNnT51yyilauXKlEhIS4j0kAAAaHBrHAQCAqLz44otq1qyZtmzZosLCwngPBwCABolKOgAAiGjZsmUaNGiQ/vvf/+q+++6TJC1ZskQ2my3OIwMAoGGhkg4AAMI6cuSIrrrqKv3xj3/UOeecoxdeeEFfffWVnn322XgPDQCABodKOgAACGvy5Ml699139d1336lZs2aSpNmzZ2vKlClas2aN8vLy4jtAAAAaEEI6AAAI6ZNPPtHgwYP18ccf6+yzz/b52bBhw1RZWcm0dwAAahEhHQAAAAAAi2BNOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYxP8HLOzfCP+sIiIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "amount: 20\n", + "amount_ae: 40\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9vFJREFUeJzs3Xd4U9UfBvD3Jt10MVroomW1bESWyEYUEMqQWZCt7KkooGCLC0GWKFNkyE+GyBAHoCAgQyggG6GlUKBltAW66KBNzu+PmmvTJG3aJk3H+/HJIz05Od9zbm7S0++991xJCCFAREREREREREREZGIKS3eAiIiIiIiIiIiISicmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzMLK0h0gouLtwYMHOHbsGB4+fIjY2FjExcXhnXfega+vr6W7RkRERERERETFHM98JCK9wsLC0LlzZ3h5eaFfv36YOHEi5s6di5UrV+LIkSOW7h4RGSEyMhKSJCEkJKRI4oWEhECSJERGRhZJPCIiIiIiKv6YfCST0/yxa8xj7Nixlu4u6REWFoaWLVvijz/+wIwZMxAeHg61Wg0hBFQqFYYOHWrpLhJRIXz55ZeQJMngZ/nJkyfw8vKCg4MDwsLC5HI/Pz/4+fkVUS+JiIiIiEzLz88P7du3N3sczUH5w4cP6y0vawfredk1mU2NGjXw+uuv630uMjISGzduLOIekbFGjRqFpKQk/Pzzz+jcubOlu0NEJjZx4kTs3LkTmzZtQp8+fdCzZ0+t5ydMmIB79+7hiy++gL+/v4V6SUQlQWRkJKpVq2ZU3TFjxmDVqlVm7hFZUvv27XHkyBEIISzdFSIio/39999o0aIFqlevjvPnz8Pe3l6nzquvvoq9e/di06ZNBvMcZBiTj2Q2NWvWNHip3+HDh5l8LKYuXbqEY8eO4e2332bikaiUkiQJ69evR4MGDTB69Gi0atUKlSpVAgD88MMP2LJlCzp06IBJkyZZuKdEVFLwoDMREZVUzz//PN5//33MnTsXs2bNwtKlS7WeX7NmDfbu3YvevXsz8VhAvOyaiiU/Pz+Dl2pv2LBBp/769evRokULODo6wtHRES1atNBb7/DhwwbXP5MkSe/p1+3bt4ckSTrlhw4dwsiRIxEQECDHbdq0KdasWVPgseU8JXv48OEmOyX78uXL6N+/P9zd3WFra4tq1aph6tSpePTokVa9EydOAAACAgIQFBSEypUrw8bGBr6+vhg3bhzu378v11Wr1fD19UXFihWRnp6uN27btm1hZWWFqKgoAIa3p+Zy/eHDh2uV53c767ss9MGDBxg/fjyqVasGGxsbVKhQAd27d8dff/2l83pDp8cXZN8BgIsXL2LgwIHw8PCQt+OkSZN0tnteyxWsXbtWq76x72duNPuXQqHArVu3dJ4/evSoHD/nuHMbs6FtCBj/Wd20aRMUCgUGDhyodfaEof0kNDQUjo6OeP7555GUlKT1XFJSEoKDg1GvXj3Y29vD1dUVnTt3xrFjx/T2PykpCXPnzkXDhg3h4OAAFxcXNG7cGHPmzEFGRka+lpbQfHY120TzUCgU8PDwQLdu3eTPXHa7du1CUFAQatasKfehTZs22LFjh94+F4Sfnx8WLVqEmJgYjBs3DgDw8OFDjBs3Dk5OTli/fr38WdWM+fbt27h9+7bWWIpqPUkiKt40B531PXJ+ZxMRERU377//Pho3boxly5Zp3ePg1q1bePvtt+Hm5obVq1dbsIclG5OPVGy5uLggODhYfuS8LFBj8uTJGDlyJKKjozFq1CiMGjUK0dHRGDFiBKZMmWK2/s2fPx9//vknmjVrhokTJ+L1119HXFwcxowZg7fffjvX1+YcW7t27czWTwA4duwYWrRogV27duGll17CW2+9BV9fX3zxxRdo0aIF4uLi5LqxsbEAgHHjxmH79u1o37493n77bdSpUwerVq1C06ZNcfv2bQCAQqHAG2+8gcePH+tNily/fh1Hjx5Fly5d4O3tXaC+F2Y7A8C9e/fQrFkzrFy5EhUqVMBbb72Fnj174o8//kDbtm2xc+fOAvXLGHv27EHz5s2xZ88etG/fHlOnTkWDBg3w1VdfoWXLlnjy5InOaxo1aqS1b2gezz//vFwnP++nMRQKhd5fpCtXroRSqcz/wA3Iz2d1yJAhmD9/PrZt24Zp06bl2m5YWBi6desGd3d37N27F05OTvJzjx8/RsuWLfHhhx+ifPnyGDt2LPr06YOzZ8+iQ4cO2L17t1ZbMTExaN68OUJCQqBUKjFu3DiMHDkSVapUwfz58/H06VO4urrqvD8uLi46n+vg4GC4urpqtT9s2DAEBwfj/fffR7t27fD777+jU6dOuHbtmla9WbNm4cqVK2jdujWmTJmCfv364fr16+jbty++/PLL/G98A0aPHo3OnTvLZzuOHj0acXFxWLp0qdYd7TVj1jfOolgzh4hKNx50zmLKg87Zx2LsdhVCYN26dWjVqhWcnZ3h4OCApk2bYt26dXrbDwsLQ6dOneDg4IDatWtj37598nMRERFo37497O3tUbduXWzfvl1vG7dv38aoUaPg5eUFGxsbeHt7Y9SoUbhz547B8aSlpWHmzJmoWrUq7OzsUKdOHXz55Zc6l3pv2LAh1/E+ffoULi4uevcFQ/vB+fPnoVQqddrMfnD0ypUr6NatG1xdXeHo6IhXXnkFZ8+eNdn4NQ8bGxv4+fnhjTfe0Kn/7NkzfPnll+jcuTN8fHxga2sLd3d3vPbaazh37pxO25ptpW87AfoP7ue2vxo6WAzk7wB6bp+fnGefxcXFYerUqahWrZo83v79++Py5ct6x6SPOfYZIPfvouPHj6Nbt26oUKEC7OzsULt2bQQHByMlJUWr3qVLl1C+fHnUqVNHZ1vpe38ePXqEOnXqoHz58rh06ZLWc/n9rAshsH79erRp0waurq5wcHBArVq1MGbMGHnfy+290vfdo9km2R8VKlRAixYt8O233+r04ezZs5g4cSLq168PFxcX2Nvbo0GDBvjss8+QkZGht9/5ZW1tjW+//RbW1tYYMWIEkpOToVarMXz4cCQnJ2P16tVwc3PTed3du3cRFBSEChUqwNHREe3atcOff/5pkj6VKoLIxG7duiUAiM6dOxusc+jQIQFAjBkzRu/zXl5ews/PT6ts/fr1AoBYv369XHbkyBEBQNSpU0fEx8fL5Y8fPxb+/v4CgPjzzz914gYHB+vEBCDatWunU96uXTuh76Ny8+ZNnbKMjAzx8ssvC6VSKW7fvq13bN7e3jpjCw4OFgDEoUOHtMqHDRsmAIhbt27pbcsYKpVK1KhRQwAQ+/bt03runXfeEQDEyJEjdfoCQPzyyy9a9RcuXCgAiO7du8tl0dHRwsrKSrRv314n9vTp0wUAsXv3brmsffv2AoBQq9VadTX7zbBhw7TK87udfX19ha+vr/zzgAEDBAAxePBgrZh///23sLGxEeXLlxeJiYk648/5XuR334mLixPOzs7Cy8tLREZGaj23ZcsWAUBMnDgxz/HnlN/3Mzea/atnz57Czc1NpKeny8/FxMQIGxsb0atXL73jNvR5EUL/NszvZ1Vj2rRpAoD47LPPhBC62+nevXvCz89PuLm5ibCwMJ3XDxo0SAAQX3/9tVb5w4cPhY+Pj3BzcxOpqalyeZ8+fQQA8d577+m09eDBA5GRkaF3zDn3O2O2iRBCLF++XAAQS5cu1SqPiIjQaSMpKUk0aNBAuLi4iKdPnxqMlZ1me+nbbzWioqKEq6ursLW11fl852TsOAvznUVEJYsp5n2+vr7CxcVFBAcHy4+ePXvqzPuEEGLSpEkCgPDy8hKTJ08WkydPFl5eXgKAmDx5st64ppj3de7cWdSoUUMMHjxYzJgxQ4wZM0b4+voKAOKtt94yOHZ9Y9PEMMe8T99YjNmuarVaBAUFCQCiVq1aYsyYMWLSpEmidu3aAoB4++23teo/fPhQeHh4CEmSRO/evcWECRNExYoVRdWqVQUA4e/vL/r27StGjx4tKlSoICRJEjt27NBq4/r168LNzU0AEIGBgWLmzJmie/fuAoBwc3MT169f1zuewMBA4e3tLaZMmSKmTJkivL299b4Pmr8dlEqlaNGihc72Wb16tVAqlXr3BUP7QZs2beR5cvZtqPkctGnTRri4uIgOHTqImTNniqCgIGFlZSUcHBzEyZMnTTJ+zXs5c+ZM0aFDB/k9yz5HuX//vlAoFKJdu3Zi9OjRYsaMGaJfv37C1tZW2NnZidDQUL3bKud+oaHv939u+6uhee3Ro0eFg4ODsLKyEgMHDhQzZ86Ux1WjRg0RGxurEzfn50fzyL4/xcTEyPPj9u3bi5kzZ4oBAwYIpVIpHBwcxNGjR/WOKydz7DNCGP4u+v777+U+jhgxQsyYMUM0btxYABAtWrTQmqMKkTWftrOzEy1bthQpKSla2yn7+/P06VPxwgsvCFtbW3HkyBGtNvL7WVepVKJv377y9+7YsWPFu+++K/r37y9cXV3Frl27hBBCLFmyROv9adSokQAgpkyZolV+7tw5rW3Srl07+bkxY8aIihUrCgBiw4YNWv0YM2aM8PT0FAMHDhTvvPOOmDBhgqhXr54AIF577TW9290QX19fg3/HCCHEvHnzBAAxevRosWjRIgFADBkyRG/de/fuyb+DOnfuLGbNmiV69eolbGxsROfOnfV+15fV+TKTj2RyppiEuru7i4CAAK0yfb8UR44cKQCIbdu26bTx3Xff6SRiTDkJNWTHjh16vzA1KlasKPz9/bXKzJl8/PPPPwUA0bVrV53nkpKSRIUKFYSdnZ2ceNL0Rd/7l5GRIapVqyYkSRIxMTFyee/evYUkSSI8PFwue/bsmXB3dxceHh5ak6H+/fvrHZOxyTcNQ9s5+y/ftLQ0YW1tLaytrcXdu3d12njzzTcFALFp0ya5zFTJx8WLFwsA4ttvv9Xb/+eff15UqlRJ/tnY8ef3/cyNZv/au3evACC+++47+bl58+YJBwcHsWvXLpMkH/P7WdVQq9VyAnHjxo1a2ykhIUE0atRIlCtXTmcSLYQQsbGxQqlUio4dO+rt57JlywQA8dNPPwkhsibqkiSJGjVqiGfPnul9jSEFTT5+8cUX8tiMoZkAHT582Kj6xiQfhRBi9uzZAoCwtrYW9+7dM1iPyUciyokHnYvXQefsWrdurTMWQ0mmNWvWCABixIgRWr8D09PTRWBgoAAgzpw5I5dPnjxZABDLly+Xy44fPy4fyFq4cKFcHh4eLpycnIS3t7fIzMyUyzWJs9WrV2v1RXNgLufvb817ExAQoPX+x8fHi4CAACFJkjh9+rTOWDUJ17///lurveeee04+yGpMImnr1q0CgGjSpInB5CMAMXPmTK3X7du3TwAQDRo00Cov6Phz6tevnwAgzp8/L5elpaWJqKgonbqXL18Wjo6OolOnTlrlRZF8LMgB9LzmHRojRowQAMSsWbO0yn/55RcBQNSsWVOoVKo82zH1PqOh77soISFBuLi4CFtbW3HhwgW5XKVSySdPfPjhhzpt7dy5UyiVStG9e3f585R9O2VkZIhu3boJhUKhk/AXIv+f9S+//FIAEC+99JJWwlMIIVJSUsSjR4/0jjmv7zND389XrlwRAESvXr20ym/fvq31/SFE1t8Jmr8xjh07pjeOPnklHzMzM0WLFi0EAGFjYyO8vb3FkydP9NbVjPPjjz/WKl+9erX8ncDkYxZedk3FUmJiIuzs7PKsp7lsQN9lMx06dACQdXmEOWjWkWvUqBEcHR3l08X79OkDIOty35zUajUSEhLg4OCQr1hLly5FSEgIPvzwQ6xcuRIHDx6EWq026rW5bSPNJUNpaWm4fv261nOa7ZedlZUV2rRpAyEELly4IJePGTMGQgitdQn37NmDmJgYjBgxAlZW/93bqkWLFgCAd999Fw8fPsyz/wXZzpo16ezs7JCRkYGaNWvqvezbnPvIyZMnAQCnTp3Su/5VWloa4uLi8n2JdEHfz9zUrl0bHTt2lO9AqlarsXr1agQFBelcNpxdZGSk3rHpW+uxoJ9VSZLw1ltvAci6C7vmkq709HT06tULFy5cQNu2bdGsWTOd154+fRoqlQrp6el6+6l5jzSXPJ85cwZCCHTo0AHW1tYGx10YGzZsQEhICObMmYMBAwZg+vTp6NKlC/r3769VLyYmBm+99Rbq1KkDBwcHeb/XLDWgb78vqJiYGPmy+4yMDPz8888ma5uIyBgZGRmwtbXNs57mpjUhISFwcXGRy8uXL4/g4GAAMHjZaGHpu6O3lZUVxo4dC5VKhUOHDul9XWpqKmxsbMzSp7zkJ/ZXX32FcuXKYfny5Vq/A21sbPDJJ58AALZs2SKX//DDDyhfvjzGjBkjl7344ot44YUXAEBraZyaNWuif//+iIqKkn/33rlzB4cOHULdunXx5ptvavVl7NixqF27Nv744w/cvXtXp69z5szRev9dXFwwe/ZsCCH03tgoMDAQ3t7eWLlypVx28uRJnD9/Xl7zOC+pqal45513ULduXYwdO9ZgPVdXV7z//vtaZZ07d8ZLL72ES5cuyZdfF2b8OWVmZsqxNWxtbeHl5aVTt169eujQoQP+/PNPk12qaqzjx48jIiICXbt21bmp5QcffIAKFSpg8+bNePbsWb7affbsGbZs2YKKFSti9uzZWs+9+uqrePnll3Hjxg0cP37c6DZNsc/k5ccff0RCQgJGjhyJhg0byuUKhQILFiyAlZWV3u+z3r17Y/ny5fj555+1Pn8ao0ePxi+//IKvvvoKr732ms7z+f2sr1ixAkqlEitXrtS5A7S9vT0qVKiQ77HnRrM/ly9fXqu8atWqOstBSZKECRMmAAAOHDhgsj4olUp5Wzx79gxLly7V+zfRs2fPsG3bNri7u+ssB/bGG2+gVq1aJutTacC7XVOxk5KSgrS0NL3rKeSUmJgIhUKht27lypUhSRISExNN3sdnz56hffv2+Pvvv9G4cWMMGTIEFStWhJWVlXxHR303YHn48CEyMzPh6emZr3hffPGFTpm/vz92796NOnXq5PpazfgrV66s93kPDw+teppEYZUqVXKtn5CQIJe98sorqFatGjZu3IiPP/4YVlZWWLt2LSRJwqhRo7ReP2HCBOzatQvbt283uP6PRkG3s4uLC6ZOnYrExEQsWbIkz7FnH4upPH78GACwfPnyXOs9ffpUvsuwMfL7fhpr3Lhx6NevH65cuYLIyEhERkZi3LhxOjdvye727duYO3eu0f0uyGdVpVJh7NixcHZ2RvXq1TFx4kQAwPbt26FWq9GmTRvs3bsXu3fvRq9evbReq3kPjh8/nuuE8+nTpwD+2w/0TdZNJecfRZUqVUKTJk201gh6/PgxmjVrhjt37qBVq1bo1KkTXF1doVQqcf78efz4448Gb/BUEGPHjkVsbCw+++wzLFy4UL7TfdWqVU0Wg4goN4mJifLvr9xY+qDzwoULsXv3bkRERMi/OzRyO+js4+OTr1iaP3Q1vzf9/f3RoUMHKBT5O2/kyZMnRh3wTklJwaVLl+Dp6Yn58+frPK9JUmkO1iUkJODevXto2bKl0WtDN2jQAABw5coVtGrVSn6f2rVrp7NOnkKhQNu2bXHt2jWcP39eZ/u1adNGp31Nmb71DJVKJUaPHo358+dj4cKFcHZ2xooVK1CzZk28/PLLRvV//vz5uHv3Ln777TdER0cbrNe4cWM4Ojrq7d/Bgwdx7tw5NGnSpFDj16wbmJ6ejr/++gsnTpzA+++/r7VWM5D1WViwYAGOHTuGBw8e6CQb4+LidD53u3fv1ruGY3x8vMED0voSM/Hx8Tr1jDmA/ttvv+H69evy/mKMa9euIS0tDR06dNC7v3fo0AG///47zp8/r3ff0acw+4y+dR31bdPctkfVqlVRvXp1hIWFISkpSWs9cyBrbfTg4GB88803Wn+zvf/++1i/fj3c3NwwdOhQnXbz+1lPTk7GP//8g5o1a5otkXb48GF5m92/fx/bt2+Hv78/Zs2apVXv2bNn+Oqrr7B161Zcu3YNycnJWuu8mvLAvBACH3/8sfzzzp075RNfsrt+/TrS0tLQsWNHnROnFAoFWrVqhfDwcJP1q6Rj8pGKnYiICADQWTRXH2dnZ6jVasTGxsLd3V3ruZiYGAgh4OzsbPI+/vjjj/j7778xatQonbsQb926Ve9RV+C/CbG/v3++4t26dQt+fn4QQuDevXtYsGABli1bhkmTJuV5lEczfkNnGT548ECrnubolabcUP3sR5wlScLo0aMxa9Ys/PTTT/Lk4aWXXkL16tW1Xm9ra4sjR45g7969uHTpEtLS0gBkTVJyJlkLup1dXV0REhKCpKQkLFmyJM+xZx+LqWi256VLl1C/fn2Tt2vs+2msXr16wcPDAytXrkRkZCSaNWuGJk2a6D2LUaNdu3Z6nw8JCdFJShb0s7p48WKcOXMGq1atQq9evfDiiy/i5s2bUKlUWLhwIcaNG4f69etj/PjxaN++vdbkV9Pe22+/jYULF+a5DTSvze2PisI6dOiQPMmMjY3Fhg0bMGPGDERERMhHmb/55hvcuXMHH330kc4R/M8++ww//vijyfqzadMm7Nq1C927d8eMGTPg5+eHgQMHYtSoUfj9999NFoeIyBAedNZVmIPOGpo5Y855mD5PnjyBEALR0dG5HlTUJFw1Byb1JdkM0dTVvD+FOZiq7zWaMkMHlN944w18+OGH2LRpEwYOHIjt27fj448/NniDkOzu3LmDBQsWoEePHnj55ZdzPbvW0Hhy9q8w48/5HtWpUwc1a9bUKjtx4gQ6duwIIOskgVq1aslXEO3evRsXLlzQu8/++OOPBucZhpKP+vZXfcx1AN1c7RZ0n8nPgXkg936HhYUhMTFRJ/n4/vvv4+HDh2jbti0++eQT+SDAp59+irZt2+LPP//Ee++9p/Pe5PezXhQH5o8cOaJ1Z2lra2sEBgbqJJL79u2Ln376Cf7+/hgwYADc3d1hbW0t/w1pygPzy5Ytw+HDhzFkyBDcuXMHmzdvRr9+/XROdNBsn5x/22gYem/LKl52TcWO5nKMpk2b5lm3cePGAKA3AaIpe+6550zVNZkmQarvDtxHjx41+DpNorBt27YFiitJEry8vLB06VK4uLjgzJkzeb4mt2309OlTnDlzBvb29ggICAAA+a7K+uqrVCocO3YMkiTpbNcRI0bA2toaa9euxbp166BWq3UuI9FQKBTo1q0bZs6cKV8CO3XqVJ16Bd3OGk5OTqhZsyZu3LihN6Fkzn1Ec3n5X3/9ZdJ28/t+GsvKygpvvPEGNm7ciL1795rskhKNgnxWb9y4geDgYLRt2xajR49G5cqVsW3bNgBAt27d8Pbbb8PBwQFr1qzB/fv3MX36dK3XN2vWDJIkGf0eNG3aFAqFAocOHSqSS5Hc3NzwzjvvoEGDBti+fbuciC/sfm+s6OhoTJ48GRUqVJDv1jpgwAD07dsXBw4c0HsHdKVSCZVKZbI+EBEV9KBzTkV10Pnvv//GypUr8fHHHyMkJARdunQx+LrCHHQWQkCtViMqKgqTJ09GWFgYJk2aZHQbmrPBjImt2WZNmjSByLongN6H5tLycuXKAcg6K8pYmrqaJGRhDqbqe42mzNABZQ8PD/Tq1QurVq3C+vXrAWTNXY3xzjvvQK1WY/HixXnWNTSenP0rzPg170dmZiYiIiLw/PPPY8SIEVq/tz/55BOkp6fjwIED2LNnDxYtWoS5c+ciJCTE4NVNQNad5PW99znPqsxOs79mf9y6dUunnrkOoJur3YLuM7l9dkzR71OnTmHZsmUYOHAg/vjjD/Ts2RMqlQoqlQo9e/bEH3/8gQEDBuCrr76S/67OGdPYz7pmfzXngfng4GA5bmJiInbs2IE9e/agbdu2SE1NBZC1lNJPP/2Ezp074+rVq/j666/xySefICQkBAMHDjRpf8LCwjBr1ix4e3vjyy+/xLp161CuXDmMHTtW5y7jmu0TExOjty1jlhgrS5h8pGIlISEBy5Ytg7W1NXr06JFn/WHDhgHIOsKU/WhWQkKCfDRHU8eUNL+Ajx07plV+5MgRfP3113pfExcXh02bNqFChQro2rVroeLfv38fycnJOmth6NOqVSvUqFEDe/fu1TlL8uOPP8ajR48QFBQkrwnUokUL+Pv7Y9++ffL6ehpffvklIiIiEBgYqHOpcOXKldGrVy/s27cPK1euRKVKlXSODuVXQbZzTiNGjEBGRgZmzZqldWr+xYsXsWHDBpQvX77Q/TQU18nJCe+//z6uXLmi83xKSorOhMAY+X0/82P06NEoX748atasafJf5Pn9rAoh8Oabb8priWqOMmv2u+z7X6dOnTBixAh88803+OOPP+TyKlWqoH///jhx4gQ+//xzrfdf49SpU0hJSQGQtQ/36dMHEREReo8Gx8TEyOvQmMqTJ08QHR2tdRTd0H6/efNm/PrrryaLPWrUKMTHx+Orr77SuuxqxYoVcmL09u3bWq+pUKEC4uLi5EQpEVFh8aCzYQU56FyQ2E5OTqhTpw7++ecfvZfL5lS+fHlUrlwZ165dM/qA1OXLlwFAPnNT8z79+eefOr+fhRD4888/teplp2+ba8o0+4g+48aNw+XLl/HRRx+hf//+Rq1Vd/ToUXz//feYNm0aatSokWf9c+fO6U3K5uxfYcavoVQqUb16dXz55ZcAsq5m0IiIiECFChXQunVrrdekpKTg77//znMc5mCuA+i1a9eGnZ0dTp8+Lc/psivMd0NB9hlj5bY97t69i4iICFSvXl3rrMdnz55h1KhRKF++PJYtWwalUoktW7agUqVKqFSpErZs2QKlUolly5bB1dUVo0aN0lpDM7+fdUdHR9StWxe3bt0qksuHnZycEBgYiKFDh+LmzZvyskma7+Bu3brpLPVgygPzKpUKw4YNQ2pqKtauXQsXFxdUr14d8+fPx8OHD+XlnzT8/f1hZ2eHM2fO6MyN1Wo1Tpw4YbK+lQZMPlKx8fHHHyMgIACXL1/Ghx9+aNTaP23btsWkSZNw9epV1K9fH9OmTcPUqVNRv359XLt2DZMnT9Y76dJcxpn9AWStFZGzXLN+xKpVq+RJX2BgIPz8/LBgwQJ069YNM2bMQK9evfDSSy/pnZhu2LABLVu2RGxsLKpWrYrPPvtM7w06NmzYgN27d+u8/rvvvsOqVauwcuVKzJkzBy1btoRKpcLo0aPz3EYKhQIbNmyAg4MDXn31VQwePBjvvfceOnTogM8++ww1atTAZ599JteXJAnffPMN7O3tERgYiIEDB+K9995D165dMW3aNHh5eeGrr77SG2vs2LFQq9V4+PAhhg0bVugF1vO7nfV5++230aJFC2zatAnNmzfHzJkzMXLkSHkbrl27Vu9lQ3v27NHaD/bs2QMg731Hs7+4ublhy5YtSE5ORqNGjdC9e3dMnz4dkyZNQmBgIKpUqaJ3TZi85Pf9zA9vb2/cuXMH169f11lQurDy+1lds2aNvAaMMWvMLFq0CFWqVMHo0aO1Jp4rVqzAc889h3fffReNGjXCmDFjMGPGDAwaNAj+/v544YUXtJKhK1asQJ06dfDJJ5/g+eefx/Tp0/H2228jMDAQPj4++TrLQx/NDWdCQkIwceJENGzYEI8ePcKQIUPktWKGDBkCFxcXTJo0Cf3798c777yDV155BUOGDNG7cHhBrF69Gvv370ffvn0RFBSk9ZybmxtWrlyJpKQkjBw5UuuPoo4dOyItLQ1du3bFBx98gI8//lj+A4mIKL940Nk4+TnoDABpaWlYsWIFrKysMGDAAKNeM3nyZKSkpODNN9/UWc8SyDq7Lfu6db169cKTJ0+0lsX566+/5GTyokWL5PKbN2/i+++/R+XKlfHiiy8CyFrTrkOHDrhy5QrWrVunFWvNmjX4559/0LFjR73rZX700Udal1cnJCTIl8Pm9v537NgRL774IpycnDB+/Pg8tkiWyZMnw8PDQ+cmMobEx8fLN6rQ2L9/Pw4ePIj69eujSZMmAAo3/pwuXbqkU+br64snT55oHQBXqVSYPn263jOHi4K5DqDb2NggKCgIcXFxmDdvntZz+/btw/79+1GzZk20atUq330uyD5jrJ49e8LFxQXr16/Xep+EEJgxYwYyMzMxfPhwrdd88sknuHLlCpYsWSIvP2Fvb49y5cqhXLly8vzd3d0dS5YswdWrV3X2x/x+1idMmACVSoXx48fLZyJqpKWlyWusm4oQQj5YoWHoO/jKlSs673lhLFiwACdPnsTo0aO1boo0fvx4dOzYEVu3bsXOnTvlcltbW/Tv3x8xMTFa33kAsHbtWoSFhZmsb6WCye6bTfSvW7duCQCic+fOBuscOnRIABBjxoyRy9q1ayc6deokfvzxR72vWb9+vQAg1q9fr/PcunXrRLNmzYSDg4NwcHAQzZo1E+vWrTMYt6CP4OBgua2bN2+KPn36CDc3Nznm1q1b5RjZ67Zr187oGMOGDZNfN2zYMJ3n3dzcRKtWrcSmTZsMvwl6XLx4UfTt21dUqlRJWFtbC19fXzFlyhQRGxurt/6FCxe06vv4+Ijx48eL+/fvG4yhVqtF1apVBQDxzz//5Kt/mv0m+/iFyN92FkIIX19f4evrq1WWlJQk3nvvPVGzZk1hY2MjypcvL7p37y5OnDih04/g4OBC7SOHDh3Sau/atWti1KhRwtfXV47doEEDMXnyZBEaGprn+A3J7/upj2b/unXrlsE6hrYzANGuXTu9r9Fsw5zbQgjjPqtRUVHC2dlZNG7cWGRkZGg9l9t2+uGHHwQA8dZbb2mVp6SkiAULFogmTZqIcuXKCXt7e1GtWjXRq1cv8e233+rESEhIEHPmzBG1a9cWtra2wsXFRTz33HPigw8+EM+ePdM7Zn37nb5tkv1Rvnx50aRJE/Hll1/q9OH8+fPilVdeEeXLlxdOTk6iXbt24sCBA7l+D+qj2V45v7scHR2Fu7t7rvtLUFCQACCWL18ulyUlJYk333xTeHh4CKVSqdO2Zpy57VNEVLoUdN730UcficqVKwsAYt68eTqvMfR9N2nSJAFA+Pj4iKlTp4opU6YIb29vAUBMnjxZb9xu3bqJlStXaj0AiFq1aumU16pVSwAQK1euFKdPnxZCZH33+fn5CQDi1VdfFe+++67o2bOnUCqVom/fvjrfhevXrxc1a9YUAMRzzz0ngoODtR6aeeGwYcPErl275Ndpfi9//PHHYuXKlWLFihVi9uzZ8tzq008/zfP92LVrl3j++ecFAOHn56cTu2fPngKA6Nmzp9a2VavVcnwPDw8xZMgQMWPGDDF8+HDxwgsvCEmSxJYtW+T6UVFRolKlSkKSJNGnTx8xceJE4ebmJnx9fQUAUbduXdGvXz8xZswYUbFiRQFAfPfdd1p9vXbtmtxGz549xaxZs0SPHj3k+e7169e16mu2W2BgoPD29hZTpkzRev9z/v439nemvjlN9rn7xo0b82xX8zlo06aNcHFxER06dBCzZs0SQUFBwsrKStjb24uTJ0+aZPya93L27Nli6NCholy5cjr9/OmnnwQA4erqKkaPHi0mT54sGjZsKCpWrCjat2+v87s6r22lb56T2zzS0Hzt6NGjwsHBQVhbW4tBgwaJWbNmyf2pUaOGiImJyTOuPjExMaJ69eoCgOjYsaPWtndwcBBHjx7Nsw0hTLPP6GNoPv39998LpVIpypUrJ0aOHClmzJghmjRpIgCI5s2bi9TUVLnupUuXhLW1tejSpYtO+4a2U+fOnYW1tbW4dOmSXJbfz7parRb9+/cXAISXl5cYN26cmDFjhggKChIVKlTQ+g7LLq+/MzTbpF27dvI+/fbbb8vjr127tkhLSxNCCJGZmSmaN28uf8beeecdMWDAAGFvby9/Bxv7N5Rme+V8/y5evChsbGxEtWrVRFJSks5rbt26pXf+fO/ePeHl5SUAiC5duohZs2aJXr16CRsbG/HKK6/o/ZuorM6XmXwkMpKvr6/OLwxjtWvXzqgvRGPrFVf37t0TVlZWok2bNpbuSpHTTLL0JdyILEVf8tGcyupkiqgs40Hn4nXQWV8bhh76DiJu27ZNdOrUSZQvX15YW1sLLy8v0b59e7Fo0SKdA1ZXrlwRHTp0EHZ2diIgIEDs27dPHntERIRo166dsLW1Ff7+/jqJR43IyEgxYsQI4eHhIaysrISHh4cYMWKEiIyM1KmraTs1NVW8++67wsfHR9jY2IiAgACxbNkyoVarteqbIpHUokULo9rNnmy7fPmyePXVV4Wzs7MoV66c6NSpkzhz5ozJxq95KBQKUaVKFdGpUyfx888/69T/4YcfxPPPPy8cHBxEpUqVRP/+/UVERITepFBRJR+FyN8BdGOTj0IIERsbKyZPnix8fX2FtbW1qFSpkujbt69W4i0vRZ18FEKIP//8U3Tt2lW4uroKGxsb4e/vL+bMmSOSk5PlOprkm6Ojo7h9+7ZOG4a2U2RkpHB0dBTNmzcXmZmZWs/l57OuVqvF2rVrxQsvvCDKlSsnHBwcRK1atcTYsWPFnTt39I7Z2ORj9ke5cuVEQECAmDFjhk4iOiYmRowcOVJ4enoKOzs70aBBA7F8+XJx8+bNQicfnz17Jp577jkhSVKuf8utXr1aABD9+vXTKr99+7YYMGCAcHV1FQ4ODqJNmzbiyJEjBk/IKKvzZUkIPYtgEZEOPz8/DB8+vECXyrZv3x5+fn653h0vP/WKqxkzZmDBggXYvHmzzqWcpV1kZCSqVaumdTdjIkvT7JfBwcEF+u7KL82dzm/dumXUzSOIiIqrkjrvGz58OCIjI/WuI1eQevnVvn17HDlyRO86y8W57cLS/L4dNmxYiZ3HE5UVfn5+8PPzM/n3n7HK6nzZytIdICopBg8ebNRi6PoMHz4crq6uJqtXnCQkJGDlypW4ffs21q5di7p166J///6W7laRc3JywpgxY+Dp6WnprhAREREREREVG0w+Ehkp52K9+ZFzseDC1itOnjx5glmzZsHOzg6tW7fGqlWrdO5CVhZUrFhRvvkMERERlWwl9aBzr169jLqLrbH1iIiITIHJRyIqFD8/v2J5+QsRAa6urggODi6ypQA0cUraGdxERDmV1IPOvXr1Mmk9IiIiU+Caj0REREREREREVOotXboUrq6uFrvq8PDhwzh8+DCmTp1apg7YM/lIREREREREREREZqGwdAeIiIiIiIiIiIiodCpzaz6q1Wrcu3cPTk5OkCTJ0t0hIiIiyjchBJKSkuDp6QmFgseSSyLOSYmIiKgky898tMwlH+/duwcfHx9Ld4OIiIio0O7evQtvb29Ld4MKgHNSIiIiKg2MmY+WueSjk5MTgKyN4+zsXGRxBwwYgG3btjEe4xXLeJaIyXglO54lYjIe4xX3mEUZLzExET4+PvK8hkoeS8xJS/NnoizEs0RMxivZ8SwRk/EYr7jHZDzTyc98tMwlHzWXtTg7Oxdp8tHa2prxGK/YxrNETMYr2fEsEZPxGK+4x7TEGHm5bslliTlpaf9MlPZ4lojJeCU7niViMh7jFfeYjGd6xsxHuUgQERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGZR5m44k18qlQoZGRmFbqdixYpIS0szQY8Yj/FKR8ySHM/a2hpKpdIkbREREeWF81HGs1RMxivZ8SwRk3NuItKHyUcDhBB48OAB4uPjTdLe8OHDcevWLZO0xXiMVxpilvR4rq6uqFKlCu80S0REZsP5KONZOibjlex4lojJOTcR6cPkowGaiZ67uzscHBwK/WUnSRL8/PxM0znGY7xSELOkxhNCICUlBTExMQAADw+PQrdJRESkD+ejjGfpmIxXsuNZIibn3ESkD5OPeqhUKnmiV7FiRZO0qVQqYWdnZ5K2GI/xSkPMkhzP3t4eABATEwN3d3deDkJERCbH+SjjFYeYjFey41kiJufcRKQPbzijh2ZNHQcHBwv3hIiKK833gynW4CIiIsqJ81EiIs65iUoLJh9zwXUliMgQfj8QEVFR4O8bIirL+B1IVDow+UhERERERERERERmweQjFcjTp09x9+5dPHnyxNJdISIiIiIiIiKiYorJRzLa9u3b8dJLL8HJyQmOjo6oWrUqFixYYOluERERERERERFRMcXkYxl15coVvP766/Dy8oKtrS08PT0xePBgXLlyRW/9mTNnon///nBycsLXX3+N33//HQcOHMD48eOLuOdEREREVJJt2LABkiTJDzs7O/j7+2PixIl4+PChpbtHRah58+aQJAkrV67U+3zOfSXn4+TJkwCAR48e4fPPP0fbtm3h5uYGV1dXvPDCC9i2bVtRDoeIiAywsnQHqOjt3LkTQUFBqFChAkaNGoVq1aohMjIS33zzDX744Qds3boVvXv3lusfOXIE8+fPx7x58zBz5kwL9pyIiIiISosPP/wQ1apVQ1paGo4dO4aVK1fi119/xeXLl3mX7zIgPDwcp0+fhp+fH7777juMGzfOYF3NvpJTzZo1AQB//fUX3n//fbz66quYPXs2rKyssGPHDgwcOBBXr17F3LlzzTYOIiLKG5OPZUxERASGDBmC6tWr488//4Sbm5v83JQpU9CmTRsMGTIEFy9eRPXq1QEACxcuxIsvvsjEIxERERGZTNeuXdG0aVMAwBtvvIGKFSti8eLF+PHHHxEUFGTh3pG5/e9//4O7uzsWLVqEvn37IjIy0mDd7PuKPvXq1UN4eDh8fX3lsvHjx6NTp06YP38+3n33XZQrV86U3ScionzgZddlzOeff46UlBSsWbNGK/EIAJUqVcLq1avx9OlTrbUcT548ifr162PgwIGoUKEC7O3t0axZM+zevVuu8/TpU5QrVw5TpkzRiRkVFQWlUol58+YBAIYPHw4/Pz+depIkISQkRP759u3bGD9+PAICAmBvb4+KFSuiX79+OhOTw4cPQ5IkHD58WC47ffo0Xn75ZTg5OaFcuXJo3749jh49qvU6zWUcZ86ckcvi4uJ0+gEAo0eP1tvnU6dOoUuXLnBxcYGDgwPatWuH48eP69SLjo7GyJEjUblyZdja2qJevXpYt26dTj19NJeVLF26VOe52rVrQ5IkTJw4Mddx5Ta2c+fOoWvXrmjcuDEcHR3x0ksvyZewaKxevRoKhQLbt2+XyyIjIyFJEjZs2CCXhYWFoUKFChg0aJDW6+Pj4zF16lT4+PjA1tYWNWvWxJo1a6BWq7XqqdVqfPHFF2jQoAHs7Ozg5uaGLl26yGPJ7bIbSZLQvn17AP/tE5qHra0tXnnlFcybNw9CCL3jd3Z2Njh+IiIiMr+OHTsCAG7dugUAePz4MaZPn44GDRrA0dERzs7O6Nq1Ky5cuKDz2rS0NCxbtgz+/v6ws7ODh4cHXnvtNURERAD4b96S1xxCIyYmBqNGjULlypVhZ2eHRo0aYePGjVp1bt68iY4dO6JKlSqwtbWFj48Pxo4di8ePH8t1NHOSH374QafPjo6OGD58uPyzsePNT5sFnRdq5kVDhw7VOy/SN7ebP3++ztwuN5s3b0bfvn3RvXt3uLi4YPPmzUa/Nqdq1appJR6BrHljr169kJ6ejps3b+b6+uxzx/Pnz2s9Fx0dDaVSqbPNhw8fDkdHR522fvjhB52/TYCs9fN79+4Ne3t7VKpUCa+//jqio6O16gwaNAgVK1ZEeHi4XKZ5D7P/DbR9+3YoFAqsXr1a6/XXrl1D3759UaFCBdjZ2aFp06Y4ePCgTh/j4+Mxbdo0+Pn5wdbWFt7e3hg6dCji4uJ05tH6Hpr9JiQkRKvcyckJffr00fo7MXufmzRpkuv4iaj04pmPZcxPP/0EPz8/tGnTRu/zbdu2hZ+fH3755Re57NGjR1izZg0cHR0xefJkuLm54X//+x9ee+01fPfddwgKCkK5cuXQu3dvbNu2DYsXL4ZSqZRfv2XLFgghMHjw4Hz19fTp0zhx4gQGDhwIb29vREZGYuXKlWjfvj327Nlj8HU3btxA+/bt4eDggHfeeQcODg74+uuv0alTJ/z+++9o27ZtvvphyB9//IGuXbuiSZMmCA4OhkKhwPr169GxY0ccPXoUzZs3BwA8fPgQL7zwgpwkdHNzw969ezFq1CgkJiZi6tSpecays7PD+vXrteqeOHECt2/fLtQYrly5gjZt2sDZ2RlvvvkmqlSpgtWrV6N9+/Y4cuQIWrRoAQAYM2YMrl+/jmHDhsHPzw/NmjXTaevx48fo3r076tSpg/Xr18vlKSkpaNeuHaKjozFmzBhUrVoVJ06cwKJFi5CRkaGVVB01ahQ2bNiArl274o033kBmZiaOHj2KkydPomnTpti0aZNc9+jRo1izZg2WLFmCSpUqAQAqV66s1af33nsPderUQWpqKtavX4/33nsP7u7uGDVqlM743333XVhbW+sdPxEREZmfJlFYsWJFAFnJvd27d6Nfv36oVq0aHj58iNWrV6Ndu3a4evUqPD09AQAqlQrdu3fHwYMHMXDgQEyZMgVJSUn4/fffcfnyZdSoUUOOERQUhFdffVUr7qxZs7R+Tk1NRfv27XHjxg1MnDgR1apVw/bt2zF8+HDEx8fLB9tTU1Ph7e2NwMBAODs74/Lly1i+fDmio6Px008/5Xv8xo7XXPTNi7766iudeZGhud2sWbNw//59vQfMczp16hRu3LiB9evXw8bGRv67ol+/fnrrJyQkIC4uTqtMkiR5XzHkwYMHACDPFfOimXN/8cUXctnGjRthY2ODtLQ0o9rQZ8OGDRgxYgQaNGiAefPm4eHDh/jiiy9w/PhxnDt3Dq6urgCAdevWoWPHjujWrRtOnTqF8uXL67QVGhqKYcOGYdq0aRgzZoxcfuXKFbRq1QpeXl6YOXMmypUrh++//x7jx49H5cqV5WW1kpOT0aZNG/zzzz8YOXIknn/+ecTFxWHPnj2IiopCnTp1tObca9aswT///IMlS5bIZQ0bNtTqk6Z+XFwcvvjiC/Tr1w+XL19GQECA1vibNWuW6/iJqBQTZUxCQoIAIBISEgzWSU1NFVevXhWpqakmixsWFmaytgoaLz4+XgAQPXv2zPW1PXr0EABEYmKiEEIIAAKAOHz4sFwnJSVF1KlTR1SpUkU8e/ZMhIWFif379wsAYu/evVrtNWzYULRr107+ecSIEaJq1ao6cQGI4OBgrRg5/fXXXwKAWLBggVx26NAhAUAcOnRICCFEnz59hFKpFJcvX5brxMXFiYoVK4omTZrIZevXrxcAxOnTp+Wy2NhYnX4IIUT79u2Fr6+v/LNarRa1atUSnTt3Fmq1WqvP1apVEy+//LJcNmrUKOHh4SHi4uK02hw4cKBwcXHRO87s7x8A0bdvX2FlZSXOnDmj1e6gQYMEADFhwoRcx2VobL169RI2NjYiIiJCjnnv3j3h5OQk2rZtq/V6lUolAgMDhYeHh7h79664deuWACDWr18vnj17Jtq3by+qVasmYmJitF730UcfiXLlyunsk6NHjxZKpVLcuXNHCCHEH3/8IQCIyZMn62yP7Ns45zhv3bql81zOfUIIIS5fviwUCoUYP3683vFrGBp/Tnl9TwQGBub6elMr6niWiMl4jFfcYxZlPGPmM1S85fUemms+mpIixOLFQkycmPV/PdMQk8bTR/M7/MCBAyI2NlbcvXtXbN26VVSsWFHY29uLqKgoIYQQaWlpQqVSab321q1bwtbWVnz44Ydy2bp16wQAMWvWLJ1YmjmEZt7y+eef69SpV6+e1lx16dKlAoD43//+J5c9e/ZMtGzZUjg6OspzZH3jGz9+vHB0dJR/1sxJtm/frlO3XLlyYtiwYfLPxow3LCwsX20WdF6ocezYMZ15kaG53cyZM7XmdrmZOHGi8PHxkd+f3377TQAQu3fv1qqn6b++h62tba4xHj16JNzd3UWbNm0M1tGMQbNNg4KCRMWKFUV6erpcp1atWvKcO/s2HzZsmChXrpxOm9u3b9eahz579ky4u7uL+vXri0uXLsn1fv75ZwFAfPDBB1qvf/jwofDz8xMdOnQQz54905rz3rlzR1SpUkX06NFDZ1956aWXRIMGDURaWppcplarxfPPPy9q1aoll33wwQcCgNi5c6dO3/XNuYcNG6b1d1B2wcHBImdKQdPf77//Xmf82b/PDI0/p7I+5y7t8SwRk/FMJz/zUYtfdh0dHY3XX38dFStWhL29PRo0aKBzWUB29+/fx6BBg+Dv7w+FQmHUWWPFRXpqBnYvOYlVk/Zh95KTSE/NKNL4SUlJAAAnJ6dc62meT0xMlMuaNWuGdu3ayT/b29tj/PjxePDgAf7++28AQKdOneDp6YnvvvtOrnf58mVcvHgRr7/+ulzm7u6OmJgYPHv2LNd+2Nvby//OyMjAo0ePULNmTbi6uuLq1as69RMSEhATE4Pff/8dnTt3Rr169eTnKlasiOHDh+Ps2bMmuYvi+fPnER4ejkGDBuHRo0eIi4tDXFwcnj59ipdeegl//vkn1Go1hBDYsWMHAgMDIYSQ68XFxaFz585ISEiQt19uKleujG7duslnFKakpOD777/HiBEjDL5Gc4RY88h+CRCQdZbAb7/9hl69esnrewKAh4cHBg0ahGPHjmntAwqFAlu2bEHFihURGBiIp0+fys+NGzcOoaGh+Pnnn3Uu59++fTvatGmD8uXLa/XnxRdfhEqlwp9//gkA2LFjByRJQnBwsM5YJEnKcxvltg3u3LmDr7/+Gmq1Wr6kK7/jJyKi0quszEfT0iS0agVMnw6sXp31/1atgNRUy/SnU6dOcHNzg4+PDwYOHAhHR0fs2rULXl5eAABbW1soFFl/rqhUKjx69AiOjo4ICAjQmj/t2LEDlSpVwpAhQ3RiFGQO8euvv6JKlSpa605aW1tj8uTJSE5OxpEjR7TqJyQk4OHDhzh48CB++eUXvVfZJCUlac2Dcp7Fl5/x5qfN7H0syLzQ3d1dZ15kaG7XqVMnrbmdIZmZmdi2bRsGDBggvz8dO3aEu7u7wTNGly9fjt9//13rsXfvXoMx1Go1Bg8ejPj4eHz55Ze59ie7wMBASJIkX2V19OhRREVFYcCAAQZfk/M90PzNpXHmzBnExMRg/PjxsLW1lcu7deuG2rVra11xBmRt819++QWnTp3C+PHj5fLk5GQEBgaiUqVK2Lx5s7yvAFlXIP3xxx/o37+/1n7x6NEjtG7dGuHh4fIlzjt27ECjRo20bjCqUdA5tybeP//8gy1btqBcuXJ44YUXdMZvZ2eX5/iJqHSy6GXXT548QatWrdChQwfs3bsXbm5uCA8P13t6uUZ6ejrc3Nwwe/ZsrVO/i7tnaZl4t9UG3LzwEAqlBLVK4NCmS1hwfDhs7a2LpA+apGLOX4g56UtS1q5dW6denTp1AGStoVOhQgUoFAoMHjwYK1euREpKChwcHPDdd9/Bzs5O6xKKF198EfPnz8fs2bMxefJkrV9C2aWmpmLevHlYv349oqOjtdbq0zeGXr16yf/WnOJvqL85L8/NL806LMOGDTNYJyEhARkZGYiPj8eaNWuwZs0avfViYmKMijlixAiMGDECixYtwvbt21G+fHk5kaZPp06dcm0vNjYWKSkpBreVWq3G3bt3tZK4KpUKcXFxePDggZz4XLFiBU6fPg1JkvS+L+Hh4bh48aJOUlJDM/6IiAh4enqiQoUKufY7P7LvEwqFArNnz0afPn0AFGz8RERU+pSl+eiWLS64cAFQq7MeAHDhArBqFTBtWtH3Z/ny5fD394eVlRUqV66MgIAArYSKZi3oFStW4NatW1CpVPJz2S+3jYiIQEBAAKysTPOnze3bt1GrVi2tvgD/zSVzLnvTuXNnnDp1CgDQpUsXbNu2TafNkSNH5hnX2PHmp00NU84LjZ3bGfLbb78hNjYWzZs3x40bN+TyDh064Oeff4ZardbZ9s2bN8/1hjM5TZo0Cfv27cO3336LRo0aGf06a2trvP7661i3bh369u2LdevWoU+fPnB2dtZb/+nTpwa3g4Zmf9G3bWvXro1jx47plCcmJiI1NRVr166V1/wcOXIkLly4AA8PD619A8hadkoIgTlz5mDOnDl6+xETEwMvLy9ERETI82FTyb4NHB0d8d1338HHxwdAwcZPRKWPRZOP8+fPh4+Pj9b6cNWqVcv1NX5+fvIaHMbesKM4OLElAjcvPIRQC6jUWUm0mxceYu+qs+g17YUi6YOLiws8PDxw8eLFXOtdvHgRXl5e8i/Z7Gcg5mXo0KH4/PPPsXv3bgQFBWHz5s3yItIaPXr0wMiRI/H555/j888/N9jWpEmT5HUOW7ZsCRcXF0iShIEDB+pdzHrhwoWoVasWevbsaXR/C0oT//PPP8dzzz2nt46joyMePXoEAHj99dcNJipzrpliSLdu3WBjY4Pdu3dj/fr1GDZsmM7ELDvNhF4jMTGx0BONOXPmIC0tDXv27JGPAJ8+fRrLli3Dli1bMH78eJw+fVrnD4eXX34Z7777rlZbUVFR8Pb21uqjqS1cuBCNGjVCRkYG9u3bh/nz58PKykrv2ZVERFQ2laX56N271lAq/0s8AoBSCeRxLw6zySuh9Omnn2LOnDkYOXIkPvroI/lg99SpU/N1YxNz+/LLLxEXF4erV69i3rx5GDt2LP73v/9p1fnggw901lwPDAzU+jm/4zWmTQ1TzgsNze008prbaa6S6t+/v97njxw5gg4dOhSobwAwd+5crFixAp999pnes2HzMnLkSDRu3BjXr1/H9u3bc11r3s7OTudszaNHj+LDDz/Md1wNlUqF8ePHo2XLlhgwYIC8xujly5exZ88eDBkyBB988IHW2pqa/WP69Ono3LmzVnuaOXfNmjUL3Ke8/P777wCykrHr169H//798fPPP+Pll182W0wiKlksmnzcs2cPOnfujH79+uHIkSPw8vLC+PHj8eabb1qyW2bx6G4yFEpJTjwCgEIp4cHN+CLtR/fu3fH111/j2LFjaN26tc7zR48eRWRkpNbixdWqVcP169d16l67dg0AtO4CXb9+fTRu3BjfffcdvL29cefOHb2XOnzzzTf44IMPEBERIf+yzPnL6YcffsCwYcOwaNEiuSwtLQ3x8fF6x9akSRO0a9cOjo6ORve3oDQLlzs7O+d6JNnNzQ1OTk5QqVR5HnHOi5WVFYYMGYJPPvkEV65cyfOPnZwT+pyX4ri5ucHBwcHgtlIoFPIRSyDrUvPly5fjiy++QGBgINauXYvBgwfjzTffxKRJk9CmTRs0bdoUK1as0Lr7do0aNZCcnKwz/vDwcNSqVUur3v79+/H48WOTnf3YpEkT+e6VNWvWRFpaGubPn485c+bke/xERFQ6laX5qI9PBnKcMAWVCsh2lW2x8sMPP6BDhw745ptvtMrj4+O1biBSo0YNnDp1ChkZplnSyNfXFxcvXtQ5A08zl8x5V2XNjfi6du0Kd3d3DB06FO+//758piQANGjQQGculP0GjYDx481PmxqmnBcamtsZ4+nTp/jxxx8xYMAA9O3bV+f5CRMm4Lvvvitw8nH58uUICQnB1KlTMWPGjAK10aBBAzRu3Bj9+/eHm5sbOnTooHOpvYZSqdTZDjn/VtHsL9evX9eZW16/fl1nf1qxYgUuXryIs2fPolGjRrh8+TK+/vprrF27FoGBgfj4448xdepUjBgxQj6rU3OpvLW1tVFz7suXLxu5NYyTPWbdunXxzz//YOHChXj55Ze1xp/zqi194yei0smiaz7evHkTK1euRK1atbB//36MGzcOkydPxsaNG00WIz09HYmJiVoPS6jo4wi1SmiVqVUCVaq7Fmk/3nnnHdjb22PMmDHyWXkajx8/xtixY+W7RGu8+uqrCA0NxYkTJ+SytLQ0rFy5ElWqVEGTJk202hkyZAh+++03LF26FBUrVkTXrl319sXX1xcdO3ZEp06d9E5elEql1qXWQNaR5ZyXGWQnSRJeeeUV7N+/H//884/W2DZu3IimTZsW+pJrICupVaNGDSxcuBDJyck6z8fGxspj6NOnD3bs2KH3l7ymnrFGjhyJS5cuoW3btlrr8RSEUqnEK6+8gh9//BGRkZFy+cOHD7F582a0bt1aPvtVCIHx48ejUaNGGDduHICsy+ez//+5557DhAkTMHv2bK11Nfv374+//voL+/fv1+lDfHw8MjMzAQB9+vSBEAJz587VqZdzPyio1NRUZGZmIjMzM1/jJyKi0qso5qNA8ZiTBgUloFEjQKEArK2z/v/cc8DYsUXeFaPomwtu375dXrtOo0+fPoiLi9M52xAo2Bzi1VdfxYMHD7Qun87MzMSXX34JR0dHrXXQc9Ik9dLT0/Md19jxmoOheVFcXJzOvMjYuZ0+u3btwtOnTzFhwgT07dtX59G+fXvs2LGjQNtv27ZtmDx5MgYPHozFixfn+/XZjRw5EhcvXsTw4cMLvA6iRtOmTeHu7o5Vq1ZprXm/d+9e/PPPP+jWrZtc9vDhQ8yZMwcTJ06UE4s559zjxo1Do0aNMH78eHl/cXd3R/v27bF69Wrcv39fpw/Z/+bo06cPLly4gF27dunUM8WcW6VS4dmzZ/J7mH382d9XfeMnotLLomc+qtVqNG3aFJ9++ikAoHHjxrh8+TJWrVqV61p6+TFv3jy9yYwBAwbA2lr/Wouam5NIkmTw6GF+Ne7piTM/RuLeP0/kNR89a7uiVicXef1AU0pJSTHY7meffYbp06ejbt266Nu3L7y9vREdHY3t27fjyZMnWLx4MdRqtfz6vn374ttvv0Xnzp0xdOhQlC9fHj/++COuXr2KRYsW4datW1rxNIsL79q1C4MGDdKawOTl0aNHcjtt27bFpk2bIIRAjRo1cP78eZw4cQKurq7IzMyU60VFRcn/Dw8PxxtvvIF9+/ahdevWGDJkCOzs7PD9998jPj4eS5culV+nSZD9+OOP8loqmkTiuXPntI46x8XFITk5Gd988428iHhISAjeeOMNBAQE4LXXXkPlypXx8OFDnDp1Co6Ojli9ejUAYPTo0fj999/RvHlz9O/fHzVq1EBCQgKuXr2KEydO4PTp03m+f/Hx8QgPD4eVlRVOnToFOzs7vc9nH9edO3e0LnfXLCyefRu/+eab+O233/DCCy+gX79+sLe3x9atW5GWloZJkybJ9bZv345Tp05h27ZtiIiI0NruDx8+lOsNHz4cW7ZswZgxY+RL6nv37o3t27eje/fu6N27N+rXr4+UlBRcvXoVBw8exB9//IEKFSrA29sbPXv2xLJly3D+/Hm0bdsWarUaZ86cQYsWLXQum9GM89atWzpnOmj6tm3bNpw5cwaZmZn4+++/sWPHDnTs2FFeeyb7+AcNGgQrKyu949dHpVIhJiYGCxYs0EnkA0BoaCh69Ohh8PWmVtTxLBGT8RivuMcsynimOsOLimY+CuR/TmqO+ahanYKNG29gyxYX3L1rDR+fDAQFJSAqyjQH+XIyNB81NFfJqWXLlli+fDn69OmDxo0bIywsDD/99BN8fHyQmpoqt92yZUu0aNEC8+bNw8WLF9G0aVOkpqbixIkTGDRoEDp16iTPDeLi4nT69OzZM632OnbsiBo1amDYsGE4cOAAvLy8sH//foSGhuL999/HgwcP8ODBAyxZsgSPHz9GrVq1YGNjg6tXr2LHjh0ICAiAvb09wsPD5bj379/XiSuEQGJiotY48hpvSkpKvtos6LxQMy/asmWLzrzI0NwuLCwM+/fvl+d2+qxZswaurq7y2qo5tW7dGt9//z2+/vprdO7cWe7///73Pxw+fFinfuPGjVG1alVcuHABQ4YMgaurK+rXr6915VT2ejlp9tGc27R9+/Y4efIknJycDL6PiYmJEELojEOT/NP8bQIAb731FmbOnImgoCD06NEDcXFx+Pbbb+Ht7Y0ePXrI9aZPnw5bW1sMGzZM5z3MPuedNWsW+vfvj88++0w+g/Tdd99FUFAQ6tati/79+8PHxwePHj3CmTNnEBsbK18e3rt3b2zevBn9+vVDnz59UL9+fcTHx+OPP/7A3Llztc7Y1Ywz+99e2WnmwAsXLgSQdaB///79iIyMxODBg3XG36JFC3Tv3t3g+PUp63Pu0h7PEjEZz3TyNR81/c22jVe1alUxatQorbIVK1YIT09Po17frl07MWXKlFzrpKWliYSEBPlx9+7dPG8FnpqaKq5evSpSU1ON6ocxwsLCRFrKM7Fr8V9i5cS9Ytfiv0RayjOTta8vXm4uXrwogoKChIeHh7C2thZVqlQRQUFB4tKlS3rrR0REiL59+woXFxdhZ2cnmjVrJnbv3m0w3quvvioAiBMnThjdZwAiODhY/vnJkydixIgRolKlSsLR0VF07txZXLt2Tfj6+orevXvL9Q4dOiQAiEOHDsllZ8+eFa+88opwdHQUDg4Oom3btuLIkSNa8davXy8A5PuR3blz58Rrr70mKlasKGxtbYWvr6/o37+/OHjwoFa9hw8figkTJggfHx95e7/00ktizZo1erdF9u0JQEyYMCHX7Zb9ec24Tp8+rVUvNjZWZxsLIcTff/8tOnfuLMqVKyccHBxEhw4dtN63R48eiUqVKonRo0drve7WrVsCgFi/fr1W+XfffScAaG3vpKQkMWvWLFGzZk1hY2MjKlWqJJ5//nmxcOFC8ezZf5+DzMxM8fnnn4vatWsLGxsb4ebmJrp27SrOnj2rM27NOG/duqXznGaf0DysrKyEl5eXmDx5snjy5Ine8Wv2lZzjNySv74nAwMA82zCloo5niZiMx3jFPWZRxktISMhzPkPGKYr5qBD5n5Oaaz5alAzFMzRXySktLU28/fbbwsPDQ9jb24tWrVqJv/76S7Rr1060a9dOq25KSooYN26cqFatmjzX6tu3r4iIiBBC/Ddv+fzzz3Xi1KtXT6e9hw8fyvNQGxsb0aBBA505z5dffimaNWsmnJ2dhb29vahZs6Z4++23RWxsrFxHMyfZvn27Ttxy5cqJYcOG5Wu8YWFh+WqzoPNCzbzohRde0Dsv0je3e/HFF3Xmdjm3qZWVlRgyZIje54XI+hvFwcFBnuvnNV/XvCfG1stJs4/mtk0NPT9s2DBRrlw5nbrbt2/X+dtECCG2bdsm6tatK2xtbUWFChXE4MGDRVRUlPz84cOHBQCxefNmrdcZmvO++eabolKlSuLRo0dyWUREhBg6dKioUqWKsLa2Fl5eXqJDhw7ihx9+0Hrto0ePxMSJE4WXl5ewsbER3t7eYtiwYSIuLk5nPMOGDRO+vr56t0twcLDWdtZ8DpYsWSLUarXO+Bs3bmxw/IaU9Tl3aY9niZiMZzr5mY9aNPkYFBQkWrdurVU2depU0bJlS6Neb+xkLztjNk5pnuwVVbxevXqJGjVqFFk8cwsLC5MnrUUVr6hZep8pafHK+kTIEjEZj/GKe8ziOtmj3FliPipE3u8h56OMVxxiMl7JjmeJmJxzM15xj8l4ppOf+ahF13ycNm0aTp48iU8//RQ3btzA5s2bsWbNGkyYMEGuM2vWLAwdOlTrdefPn8f58+eRnJyM2NhYnD9/HlevXi3q7pMB9+/fxy+//FKgu8sRERERFSXOR4mIiIjMy6JrPjZr1gy7du3CrFmz8OGHH6JatWpYunQpBg8eLNe5f/8+7ty5o/W6xo0by/8+e/YsNm/eDF9f33ytLUimd+vWLRw/fhxr166FtbW11h2zSwN7e3t07tzZ0t0gIiIiE+J8lIiIiMi8LJp8BIDu3buje/fuBp/fsGGDTpkw0Z1vybSOHDmCESNGoGrVqti4cSOqVKli6S6ZVOXKlbFv3z5Ld4OIiIhMjPNRIiIiIvOxePKRSo/hw4dj+PDhlu4GEREREREREREVExZd85GIiIiIiIiIiIhKLyYfiYiIiIiIiIiIyCyYfMwF1/IhIkP4/UBEREWBv2+IqCzjdyBR6cDkox5WVllLYWZmZlq4J0RUXGm+HzTfF0RERKZkbW0NAEhJSbFwT4iILEfzHaj5TiSikol/NeuhVCqhVCqRmJgIJycnS3eHiIqhxMRE+buCiIjI1JRKJVxdXRETEwMAcHBwgCRJhWpTpVIhLS3NFN1jPAvEs0RMxivZ8SwR01TxhBBISUlBTEwMXF1dOecmKuGYfNRDkiS4u7vj/v37sLW1Rbly5TjZY7xSHc8SMUtqPCEEnj59isTERHh4eBT6u4GIiMiQKlWqAICcgCysmJiYIr2EkfFKfkzGK9nxLBHT1PFcXV3l70IiKrmYfDTAxcUFqampiIuLQ2xsbKHbK+lf+oxXuuNZImZJjidJElxdXeHi4mKS9oiIiPSRJAkeHh5wd3dHRkZGodtbsGABVq5caYKeMZ4l4lkiJuOV7HiWiGnKeNbW1jzjkaiUYPLRAE72GK8sxbNEzJIcjxMhIiIqSqZa5uPRo0ews7MzQY8YzxLxLBGT8Up2PEvEtMQYiaj4Y/IxD5zsMV5ZiGeJmKU9HhERERERERHxbtdERERERERERERkJkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWVg8+RgdHY3XX38dFStWhL29PRo0aIAzZ87k+prDhw/j+eefh62tLWrWrIkNGzYUTWeJiIiIqNThfJSIiIjIfCyafHzy5AlatWoFa2tr7N27F1evXsWiRYtQvnx5g6+5desWunXrhg4dOuD8+fOYOnUq3njjDezfv78Ie05EREREpQHno0RERETmZWXJ4PPnz4ePjw/Wr18vl1WrVi3X16xatQrVqlXDokWLAAB16tTBsWPHsGTJEnTu3Nms/SUiIiKi0oXzUSIiIiLzsuiZj3v27EHTpk3Rr18/uLu7o3Hjxvj6669zfc1ff/2FTp06aZV17twZf/31lzm7SkRERESlEOejREREROZl0eTjzZs3sXLlStSqVQv79+/HuHHjMHnyZGzcuNHgax48eIDKlStrlVWuXBmJiYlITU3VqZ+eno7ExEStBxERERERUDTzUYBzUiIiIiq7JCGEsFRwGxsbNG3aFCdOnJDLJk+ejNOnTxs8cuzv748RI0Zg1qxZctmvv/6Kbt26ISUlBfb29lr1Q0JCMHfuXJ12unTpAmtraxONJG+hoaFo3rw54zFesYxniZiMV7LjWSIm4zFecY9ZlPEyMjKwb98+JCQkwNnZuUhillZFMR8FisectDR/JspCPEvEZLySHc8SMRmP8Yp7TMYznXzNR4UFVa1aVYwaNUqrbMWKFcLT09Pga9q0aSOmTJmiVbZu3Trh7Oyst35aWppISEiQH3fv3hUAREJCQqH7nx+BgYGMx3jFNp4lYjJeyY5niZiMx3jFPWZRxktISLDIfKY0Kor5qBDFY05amj8TZSGeJWIyXsmOZ4mYjMd4xT0m45lOfuajFr3hTKtWrXD9+nWtsrCwMPj6+hp8TcuWLfHrr79qlf3+++9o2bKl3vq2trawtbUtfGeJiIiIqNQpivkowDkpERERlV0WXfNx2rRpOHnyJD799FPcuHEDmzdvxpo1azBhwgS5zqxZszB06FD557Fjx+LmzZt49913ce3aNaxYsQLff/89pk2bZokhEBEREVEJxvkoERERkXlZNPnYrFkz7Nq1C1u2bEH9+vXx0UcfYenSpRg8eLBc5/79+7hz5478c7Vq1fDLL7/g999/R6NGjbBo0SKsXbsWnTt3tsQQiIiIiKgE43yUiIiIyLwsetk1AHTv3h3du3c3+PyGDRt0ytq3b49z586ZsVdEREREVFZwPkpERERkPhY985GIiIiIiIiIiIhKLyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzMKiyceQkBBIkqT1qF27tsH6GRkZ+PDDD1GjRg3Y2dmhUaNG2LdvXxH2mIiIiIhKE85HiYiIiMzLytIdqFevHg4cOCD/bGVluEuzZ8/G//73P3z99deoXbs29u/fj969e+PEiRNo3LhxUXSXiIiIiEoZzkeJiIiIzMfiyUcrKytUqVLFqLqbNm3C+++/j1dffRUAMG7cOBw4cACLFi3C//73P3N2k4iIiIhKKc5HiYiIiMzH4ms+hoeHw9PTE9WrV8fgwYNx584dg3XT09NhZ2enVWZvb49jx46Zu5tEREREVEpxPkpERERkPhZNPrZo0QIbNmzAvn37sHLlSty6dQtt2rRBUlKS3vqdO3fG4sWLER4eDrVajd9//x07d+7E/fv3DcZIT09HYmKi1oOIiIiICCia+SjAOSkRERGVXZIQQli6Exrx8fHw9fXF4sWLMWrUKJ3nY2Nj8eabb+Knn36CJEmoUaMGOnXqhHXr1iE1NVVvmyEhIZg7d65OeZcuXWBtbW3yMRgSGhqK5s2bMx7jFct4lojJeCU7niViMh7jFfeYRRkvIyMD+/btQ0JCApydnYskZllhjvkoUDzmpKX5M1EW4lkiJuOV7HiWiMl4jFfcYzKe6eRrPiqKmaZNm4qZM2fmWic1NVVERUUJtVot3n33XVG3bl2DddPS0kRCQoL8uHv3rgAgEhISTN31XAUGBjIe4xXbeJaIyXglO54lYjIe4xX3mEUZLyEhwSLzmbLC1PNRIYrHnLQ0fybKQjxLxGS8kh3PEjEZj/GKe0zGM538zEctvuZjdsnJyYiIiICHh0eu9ezs7ODl5YXMzEzs2LEDPXv2NFjX1tYWzs7OWg8iIiIiIn3MMR8FOCclIiKissuiycfp06fjyJEjiIyMxIkTJ9C7d28olUoEBQUBAIYOHYpZs2bJ9U+dOoWdO3fi5s2bOHr0KLp06QK1Wo13333XUkMgIiIiohKM81EiIiIi87KyZPCoqCgEBQXh0aNHcHNzQ+vWrXHy5Em4ubkBAO7cuQOF4r/8aFpaGmbPno2bN2/C0dERr776KjZt2gRXV1cLjYCIiIiISjLOR4mIiIjMy6LJx61bt+b6/OHDh7V+bteuHa5evWrGHhERERFRWcL5KBEREZF5Fas1H4mIiIiIiIiIiKj0YPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILCyafAwJCYEkSVqP2rVr5/qapUuXIiAgAPb29vDx8cG0adOQlpZWRD0mIiIiotKE81EiIiIi87KydAfq1auHAwcOyD9bWRnu0ubNmzFz5kysW7cOL774IsLCwjB8+HBIkoTFixcXRXeJiIiIqJThfJSIiIjIfCyefLSyskKVKlWMqnvixAm0atUKgwYNAgD4+fkhKCgIp06dMmcXiYiIiKgU43yUiIiIyHwsvuZjeHg4PD09Ub16dQwePBh37twxWPfFF1/E2bNnERoaCgC4efMmfv31V7z66qtF1V0iIiIiKmU4HyUiIiIyH4ue+diiRQts2LABAQEBuH//PubOnYs2bdrg8uXLcHJy0qk/aNAgxMXFoXXr1hBCIDMzE2PHjsV7771nMEZ6ejrS09PlnxMTE80yFiIiIiIqeYpiPgpwTkpERERllySEEJbuhEZ8fDx8fX2xePFijBo1Suf5w4cPY+DAgfj444/RokUL3LhxA1OmTMGbb76JOXPm6G0zJCQEc+fO1Snv0qULrK2tTT4GQ0JDQ9G8eXPGY7xiGc8SMRmvZMezREzGY7ziHrMo42VkZGDfvn1ISEiAs7NzkcQsK8wxHwWKx5y0NH8mykI8S8RkvJIdzxIxGY/xintMxjOdfM1HRTHTtGlTMXPmTL3PtW7dWkyfPl2rbNOmTcLe3l6oVCq9r0lLSxMJCQny4+7duwKASEhIMHnfcxMYGMh4jFds41kiJuOV7HiWiMl4jFfcYxZlvISEBIvMZ8oKU89HhSgec9LS/JkoC/EsEZPxSnY8S8RkPMYr7jEZz3TyMx+1+JqP2SUnJyMiIgIeHh56n09JSYFCod1lpVIJABAGTuC0tbWFs7Oz1oOIiIiISB9zzEcBzkmJiIio7LJo8nH69Ok4cuQIIiMjceLECfTu3RtKpRJBQUEAgKFDh2LWrFly/cDAQKxcuRJbt27FrVu38Pvvv2POnDkIDAyUJ31ERERERMbifJSIiIjIvCx6w5moqCgEBQXh0aNHcHNzQ+vWrXHy5Em4ubkBAO7cuaN1ZHn27NmQJAmzZ89GdHQ03NzcEBgYiE8++cRSQyAiIiKiEozzUSIiIiLzsmjycevWrbk+f/jwYa2fraysEBwcjODgYDP2ioiIiIjKCs5HiYiIiMyrWK35SERERERERERERKUHk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmweQjERERERERERERmQWTj0RERERERERERGQWTD4SERERERERERGRWTD5SERERERERERERGbB5CMRERERERERERGZBZOPREREREREREREZBZMPhIREREREREREZFZMPlIREREREREREREZsHkIxEREREREREREZkFk49ERERERERERERkFkw+EhERERERERERkVkw+UhERERERERERERmYdHkY0hICCRJ0nrUrl0719fEx8djwoQJ8PDwgK2tLfz9/fHrr78WUY+JiIiIqDThfJSIiIjIvKws3YF69erhwIED8s9WVoa79OzZM7z88stwd3fHDz/8AC8vL9y+fRuurq5F0FMiIiIiKo04HyUiIiIyH4snH62srFClShWj6q5btw6PHz/GiRMnYG1tDQDw8/MzY++IiIiIqLTjfJSIiIjIfCy+5mN4eDg8PT1RvXp1DB48GHfu3DFYd8+ePWjZsiUmTJiAypUro379+vj000+hUqkMviY9PR2JiYlaDyIiIiIiDXPPRwHOSYmIiKjskoQQwlLB9+7di+TkZAQEBOD+/fuYO3cuoqOjcfnyZTg5OenUr127NiIjIzF48GCMHz8eN27cwPjx4zF58mQEBwfrjRESEoK5c+fqlHfp0kU+Wl0UQkND0bx5c8ZjvGIZzxIxGa9kx7NETMZjvOIesyjjZWRkYN++fUhISICzs3ORxCytimI+ChSPOWlp/kyUhXiWiMl4JTueJWIyHuMV95iMZzr5mo+KYuTJkyfC2dlZrF27Vu/ztWrVEj4+PiIzM1MuW7RokahSpYrBNtPS0kRCQoL8uHv3rgAgEhISTN7/3AQGBjIe4xXbeJaIyXglO54lYjIe4xX3mEUZLyEhwSLzmbLAHPNRIYrHnLQ0fybKQjxLxGS8kh3PEjEZj/GKe0zGM538zEctvuZjdq6urvD398eNGzf0Pu/h4QFra2solUq5rE6dOnjw4AGePXsGGxsbndfY2trC1tbWbH0mIiIiotLDHPNRgHNSIiIiKrssvuZjdsnJyYiIiICHh4fe51u1aoUbN25ArVbLZWFhYfDw8DA40SMiIiIiMhbno0RERESmZdHk4/Tp03HkyBFERkbixIkT6N27N5RKJYKCggAAQ4cOxaxZs+T648aNw+PHjzFlyhSEhYXhl19+waeffooJEyZYaghEREREVIJxPkpERERkXha97DoqKgpBQUF49OgR3Nzc0Lp1a5w8eRJubm4AgDt37kCh+C8/6uPjg/3792PatGlo2LAhvLy8MGXKFMyYMcNSQyAiIiKiEozzUSIiIiLzsmjycevWrbk+f/jwYZ2yli1b4uTJk2bqERERERGVJZyPEhEREZlXsVrzkYiIiIiIiIiIiEoPJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMgslHIiIiIiIiIiIiMgsmH4mIiIiIiIiIiMgsmHwkIiIiIiIiIiIis2DykYiIiIiIiIiIiMyCyUciIiIiIiIiIiIyCyYfiYiIiIiIiIiIyCyYfCQiIiIiIiIiIiKzYPKRiIiIiIiIiIiIzILJRyIiIiIiIiIiIjILJh+JiIiIiIiIiIjILJh8JCIiIiIiIiIiIrNg8pGIiIiIiIiIiIjMwqLJx5CQEEiSpPWoXbu2wfobNmzQqW9nZ1eEPSYiIiKi0oTzUSIiIiLzsrJ0B+rVq4cDBw7IP1tZ5d4lZ2dnXL9+Xf5ZkiSz9Y2IiIiISj/OR4mIiIjMx+LJRysrK1SpUsXo+pIk5as+EREREVFuOB8lIiIiMh+Lr/kYHh4OT09PVK9eHYMHD8adO3dyrZ+cnAxfX1/4+PigZ8+euHLlSq7109PTkZiYqPUgIiIiItIw93wU4JyUiIiIyi5JCCEsFXzv3r1ITk5GQEAA7t+/j7lz5yI6OhqXL1+Gk5OTTv2//voL4eHhaNiwIRISErBw4UL8+eefuHLlCry9vfXGCAkJwdy5c3XKu3TpAmtra5OPyZDQ0FA0b96c8RivWMazREzGK9nxLBGT8RivuMcsyngZGRnYt28fEhIS4OzsXCQxS6uimI8CxWNOWpo/E2UhniViMl7JjgcAocePoXm9gKKLd+U645kyXtit0r+PlvLPYWmOl5/5qEWTjznFx8fD19cXixcvxqhRo/Ksn5GRgTp16iAoKAgfffSR3jrp6elIT0+Xf05MTISPj0+RT9Z79OiBPXv2MB7jFct4lojJeCU7niViMh7jFfeYRRkvMTERLi4uTD6agTnmo0DxmJOW5s9EWYhniZiMV7LjAUCPti2xZ7HugQ+zxXsrmPFMGe/Dr0r/PlrKP4elOV5+5qMWX/MxO1dXV/j7++PGjRtG1be2tkbjxo1zrW9rawtbW1tTdZGIiIiISjFzzEcBzkmJiIio7LL4mo/ZJScnIyIiAh4eHkbVV6lUuHTpktH1iYiIiIhyw/koERERkWlZNPk4ffp0HDlyBJGRkThx4gR69+4NpVKJoKAgAMDQoUMxa9Ysuf6HH36I3377DTdv3sTff/+N119/Hbdv38Ybb7xhqSEQERERUQnG+SgRERGReVn0suuoqCgEBQXh0aNHcHNzQ+vWrXHy5Em4ubkBAO7cuQOF4r/86JMnT/Dmm2/iwYMHKF++PJo0aYITJ06gbt26lhoCEREREZVgnI8SERERmZdFk49bt27N9fnDhw9r/bxkyRIsWbLEjD0iIiIiorKE81EiIiIi8ypWN5whIiIiIiIiotIrNU2BVTu9cTPaAdW9UjD2tSjY26n1lgPIte6lCEcs2Vy1UG0YU5eICofJRyIiIiIiIiIyu9Q0BVq90RwXwpygVAqoVBI2/eqJA8vPoNOEplrlG3/2BCTgUrjhugJ2mL40oFBt5FX3+NpQJiCJConJRyIiIiIiIiIyu1U7vXEhzAlqIUGdKQEALoQ5YeRH9XTKL4Y7AQAEDNcFJAhIhWojr7qrdnpj2qA7RbB1iEovi97tmoiIiIiIiIjKhpvRDlAqhVaZUin0lktS1sOYuqZoI7e6RFQ4TD4SERERERERkdlV90qBSqWd4VOpJL3lQmQ9jKlrijZyq0tEhcPkIxERERERERGZ3djXotDIPwkKScDaSg2FJPCcfxLWzbmiU96oVhIa5lFXkkSh28irruZGNERUcFzzkYiIiIiIiIjMzt5OjeNrQ/XeUVpfOaD/7tOausu2pWHygOuFaoN3uyYyPyYfiYiIiIiIiKhI2Nup9d7AxVB5bnUPnUnWer4gbRhTl4gKh8lHIiIiIiIiIspTappC75mBmvJLEY5YsrlqrmcR5tWGMWci6otX0DZMHY9nShLpYvKRiIiIiIiIiHKVmqZAqzea40KYE5RKAZVKwqZfPXFg+Rl0mtAUF8KcIGCH6UsDsPFnT0ACLoUbrptXuTFtaOIVpg1Txtv0qyeOrw1lApIoByYfiYiIiIiIiChXq3Z640KYE9RCgjoz607RF8KcMPKjenI5IEFAwsVwJwCAgOG6eZUb04YmXmHaMGW8C2FOWLXTm5duE+XAu10TERERERERUa5uRjtAqRRaZUql0FsuSVkPY+oWlzZMEU9TTkTamHwkIiIiIiIiolxV90qBSqWdnVOpJL3lQmQ9jKlbXNowRTxNORFpY/KRiIiIiIiIiHI19rUoNPJPgkISsLZSQyEJPOefhHVzrsjlkiSgkAQa1UpCwzzq5lVuTBuaeIVpw5TxnvNPkm9cQ0T/4ZqPRERERERERJQrezs1jq8N1Xt3Z035sm1pmDzgeq53js6rDWPuPq0vXkHbMHU83myGSBeTj0REREREREQkS01TMKlWQIa2HbcplWUWTT6GhIRg7ty5WmUBAQG4du1anq/dunUrgoKC0LNnT+zevdtMPSQiIiKi0ozzUSIibalpCrR6ozkuhDlBqRRQqSRs+tUTB5afQacJTXMtF7DD9KUB2PizJyABl8Lz34am3Jg2NPEK04al4m361RPH14YyAUllgsXPfKxXrx4OHDgg/2xllXeXIiMjMX36dLRp08acXSMiIiKiMoDzUSKi/6za6Y0LYU5QCwnqzKwbqlwIc8LIj+rlWQ5IEJBwMdwJACCQ/zY05ca0oYlXmDYsFe9CmBNW7fTGtEF3TPbeERVXFk8+WllZoUqVKkbXV6lUGDx4MObOnYujR48iPj7efJ0jIiIiolKP81Eiov/cjHaAUinkJBkAKJUiX+XSv//Mfvfo4t6GpfpMVBZY/G7X4eHh8PT0RPXq1TF48GDcuZN71v/DDz+Eu7s7Ro0aZVT76enpSExM1HoQEREREWmYez4KcE5KRCVHda8UqFSSVplKJeWrXAjtBFxJaMNSfSYqCyx65mOLFi2wYcMGBAQE4P79+5g7dy7atGmDy5cvw8nJSaf+sWPH8M033+D8+fNGx5g3b57OOj4AMGDAAFhbWxem+/kSGhqKHj16MB7jFct4lojJeKZ17MQptG7frcjiAcDVy2eKNGZRx7tx7Wyp3mdKezxLxCzKeBkZGUUSpywoivkoUDzmpKX5M1EW4lkiJuOV7HgAEHrlOnq8FZyv16jUgKNDeSQ+tYIkCQghwckhE+nP4uHo4JprORAKoAecymUCQIHakMuNaEOOV4g2LBbPIRMHQp/g0Jk83r+2LfP1/hVGaNgtfq8xntHyMx+VhMiZl7ec+Ph4+Pr6YvHixTpHkpOSktCwYUOsWLECXbt2BQAMHz4c8fHxuS7wnZ6ejvT0dPnnxMRE+Pj4ICEhAc7OzmYZhz49evTAnj17GI/ximU8S8RkPNNq3b4bFizbXmTxAODdyf2KNGZRx/ts9sBSvc+U9niWiFmU8RITE+Hi4lLk85mywBzzUaB4zElL82eiLMSzREzGK9nxAKBH25bYs1j3wEde8nvHZk35sm2TMHnAlxj7WhQAFKiN7OV5tZE9XkHbsGS8vG420+Ot4AK9fwXV48Ov+L3GeEbLz3zU4ms+Zufq6gp/f3/cuHFD57mIiAhERkYiMDBQLlOrsz6oVlZWuH79OmrUqKHzOltbW9ja2pqv00RERERUaphjPgpwTkpEJYu9nVrvjVDyKj90Jlnr+YK0kVN+4hWkDUvHIyoLilXyMTk5GRERERgyZIjOc7Vr18alS5e0ymbPno2kpCR88cUX8PHxKapuEhEREVEpxfkoEZU1pjh7T1N+KcIRSzZXLbIzH7PHK4ozH00dr6BnRBKVNBZNPk6fPh2BgYHw9fXFvXv3EBwcDKVSiaCgIADA0KFD4eXlhXnz5sHOzg7169fXer2rqysA6JQTERERERmD81EiKstS0xRo9UZzXAhzglIpoFJJ2PizJyABl8L/K9v0qycOLD+DThOaatXNWS5gh+lLAwrVRn76oYlXmDYsFS+38uNrQ5mApFLFosnHqKgoBAUF4dGjR3Bzc0Pr1q1x8uRJuLm5AQDu3LkDhcLiN+QmIiIiolKK81EiKstW7fTGhTAnqIUEdWbW3ZgvhmfdbEvgv7ILYU4Y+VE9nbo5ywEJAlKh2shPPzTxCtOGpeLlVr5qpzcv0aZSxaLJx61bt+b6/OHDh3N9fsOGDabrDBERERGVOZyPElFZdjPaAUqlkBNfACD9+8/st6ZVKoXeuobKS2IbxaXPmnKi0oSHcYmIiIiIiIjKoOpeKVCpJK0yIbSTZwCgUkl66xoqL4ltFJc+a8qJShMmH4mIiIiIiIjKoLGvRaGRfxIUkoC1lRoKSaBRrSQ0zFH2nH8S1s25olM3Z7kkiUK3kZ9+aOIVpg1LxcutXHPjGqLSoljd7ZqIiIiIiIiIioa9nRrH14YafcdmfXWzly/blobJA64Xqo389CN7PFOMpajj5VZOVJrwzEciIiIiIiKiUi41TYElm6ti0ue1sWRzVaSmMR1QXGneq0sRjnyvqFTgmY9EREREREREpVhqmgKt3miOC2FOUCoFVCoJm371xIHlZ9BpQlOt8o0/ewIScCk877o5ywXsMH1pQKHayE8/NPFMMZaijmdMG9njHV8byjMiqcRi8pGIiIiIiIioFFu10xsXwpygFpJ8Z+ULYU4Y+VE9nfKL4U4AAIG86+YsByQISIVqIz/90MQzxViKOp4xbWSPt2qnN6YNulPgfYDIknjuLhEREREREVEpdjPaAUql9m2YlUqht1ySsh7G1C1NbZSEPhOVVEw+EhEREREREZVi1b1SoFJpZ7RUKklvuRBZD2PqlqY2SkKfiUoqJh+JiIiIiIiISrGxr0WhkX8SFJKAtZUaCkngOf8krJtzRae8Ua0kNDSybs5ySRKFbiM//dDEM8VYijqeMW1kj6e5kzZRScQ1H4mIiIiIiIhKMXs7NY6vDcWqnd64Ge2A6l4pGPtalMFyAEbXzV6+bFsaJg+4Xqg28tOP7PFMMZaijpdXGznjEZVUTD4SEVGhZaRl4Nz2i3gSFY/y3q5o3K8hrO2sS2wcIiIiotLG3k6t94YlhsrzU1dTfuhMstbzBWkjP/3IGc8UYynqeLm1kTMeUUnF5CMRERVKRloGvh22FTHXYyEpJQiVwKWfr2LoxoEmTQwKtbpI4hARERGVdKmpwKpVwKUIRyzZXDXXM/JS0xRGn72nr2728oLGK2g/ssczxViKOl5ebeSMR1RSMflIRESFcm77RcRcj4UQAiIza3Xsh9disGXsDtR+qZbJzk5MuJeImJvacWKux+Lc9otoPqQJz4okIiIiQlbisVUr4MIFQAg7TF8agI0/ewIScCncCUqlgEolYdOvnjiw/Aw6TWiKC2H/leenbs5ygfzHK0w/NPFMMZaijmdMG9njHV8bygQklVhMPhIRkUHGJPSeRMVnnYmYqX1bvujz9xB9/p7Jzk7MSM3UiSMpJTyJii+ysy+JiIiIirtVq7ISj2o1AEgQkHAx3AkAICBBnZl1d+ULYU4Y+VE9XAhzglr8V56fujnLCxKvMP3QxDPFWIo6njFtZI+3aqc3L8GmEot3uyYiIr00Cb2Di47g3A8XcXDREXw7bCsy0jK06pX3doVQCZ3XCyEghJDPTiwsa3srnThCJVDe21Xr7Et1ptqkcYmIiIhKkps3AaVSu0ySsh7ZKZUCN6MdoFSKAtctTW2UhD4TlVRMPhIRkV7GJvQa92sI9wA3nUmShubsxMJy8XT+N44EhZUCkiTBvbYbGvdrKJ99aY64RERERCVJ9eqASqVdJkTWIzuVSkJ1rxSoVFKB65amNkpCn4lKKosmH0NCQiBJktajdu3aBut//fXXaNOmDcqXL4/y5cujU6dOCA0NLcIeExGVHfoSegBw7WC41tmP1nbWCFrdF+XcHPW2ozk7Ecg6mzJ001nsn3cQoZvO6pxFqaGvnqRQYOjGgXjp7XZo3LchXnq7HYZuyLqsWt/Zl9njEhEZwvkoEZU2Y8cCjRoBCgUgSQIKSaBRrSQ09E+CQhKwtlJDIQk855+EdXOuoFGO8vzUzVlekHiF6YcmninGUtTxjGkjezzNjWiISiKLr/lYr149HDhwQP7Zyspwlw4fPoygoCC8+OKLsLOzw/z58/HKK6/gypUr8PLyKoruEhGVGXoTekIg6lw0vh22FcLtvwWvL/90FU9jn+o2IkE+O9HYdRlT4lOxtt+3SI5JhqSQINRZ9YSbGtZ21mg+pIlOmMb9GuLSz1e12tbEJSLKC+ejRFSa2NsDx49nrf24bGEaJg+4nutdmI+vDTX6js366mYvX7atYPEK2o/s8UwxlqKOl1cbOeMRlVQWTz5aWVmhSpUqRtX97rvvtH5eu3YtduzYgYMHD2Lo0KHm6B4RUZmlSeg9vB4D5Lj0I+Z6LBIyEgFknaV47WAYRM5KEuD9nCeCVvWFtZ01Qjed1bkrdva7VWva+ubfxCMACPV/d8/WxNPH2s4aQzcO5N2uiahAOB8lopIqNTUryXjzZtbl1mPHZiUfqXRKTVPoTWASFXcWTz6Gh4fD09MTdnZ2aNmyJebNm4eqVasa9dqUlBRkZGSgQoUKBuukp6cjPT1d/jkx0fAfr0RE9B9NQm/L2B8Qdf6eVgJSUkrISM2Uz2bUl6CUIKH2S/5yAlDfXbFzrst4bvtFJP2beNRqS5EVL6/+6jsrkogoL+aejwKckxKR6aWmAq1aZd3ZWqnMWudx0ybgwAGgU6esciHsMH1pADb+7AlIwKVwJyiVAiqVhE2/euLA8jPoNKEpLoT9V56fujnLBfIfrzD90MQzxViKOp4xbeQVb9Ovnji+NpQJSCr2JCFyLmVadPbu3Yvk5GQEBATg/v37mDt3LqKjo3H58mU4OTnl+frx48dj//79uHLlCuzs7PTWCQkJwdy5c3XKu3TpAmvrojsjJjQ0FM2bN2c8xiuW8SwRk/FM69iJU6hbv6lZ2o6PikdcxCOt3KIEIMUhBlU96ug8p2HraAufxp6QFIpc26lUoyJc/12bMTY8Dgn3EvS2l+oQg4bNWppkTMa4evmM2bapPjeunS3V+yi/10wrIyMD+/btQ0JCApydnYskZmlVFPNRoHjMSUvzZ6IsxLNETMYzcbzjx9C8XoDJ2rsZbY8rN3XX3K5SMR0PHtlqogIwPEbturkzVNcU8Qrej//imWIsRR0v7zbyjlevejKqe6Ua1Y+8hIbd4vca4xktP/NRiyYfc4qPj4evry8WL16MUaNG5Vr3s88+w4IFC3D48GE0bGh4TS99R5l9fHyKfLLeo0cP7Nmzh/EYr1jGs0RMxjOt1u27YcGy7WZpW99aje613XCt0m508hqPcz9chDrzv6OtkgR4PeeFoFV9tC57NtSO5qYxABC66SwOLjqsc4c/R3dH3A34DZ9/tcMsY9Tn3cn9zLZN9fls9sBSvY/ye820EhMT4eLiwuSjGZhjPgoUjzlpaf5MlIV4lojJeCaO17Yl9izWPQhRUJM+r43VO72RkfnffWStrdSo7fcU1yLL/VveA8AeKKSsyZVaSLnUzZKfuqaIV7h+ZMUzxViKOp5xbeQez9pKjTGvReHLd67BFHp8+BW/1xjPaPmZj1r0btc5ubq6wt/fHzdu3Mi13sKFC/HZZ5/ht99+y3OiZ2trC2dnZ60HEREZT3P5dc67TEsKBZyrOGklHgFACKBWu+o66y1q2mk/pTU8G3jA6zkP1H1F++h/434N4R7gDknKutQaAJzcHfHG9qHyGZREROZkjvkowDkpEZleda8UqFSSVplKJektFwI6B3dNUbc0tVES+6wpJyruitVfcsnJyYiIiICHh4fBOgsWLMBHH32Effv2oWnTorscjoioLNOsp9h51ktoPqTJf4lFQ+fO53JO/dV91xF9/h7uXXqAw8uO4dthW5GRliHHGbpxINpPbgOvRh7wbuyFpoMaw9pOe4nijLQMhG46i/3zDiJ001n59UREhcX5KBGVFGNfi0Ij/yQoJAFrKzUUksBz/klYN+eKXC5JAgpJoFGtJDTMo66mPD91TRGvMP3QxDPFWIo6njFt5BXvOf8k+e7YRMWZRW84M336dAQGBsLX1xf37t1DcHAwlEolgoKCAABDhw6Fl5cX5s2bBwCYP38+PvjgA2zevBl+fn548OABAMDR0RGOjrprXRARkXklPkySL6HWkJQSEh8m6a1/bvvFPO94DQBX91+XL8+OPn8PV/ddh3DLOsPyv8u3YwBJglALHF11ArVf9odbjUq8yzUR5Qvno0RUUtnbqXF8bajeux9rypdtS8PkAdflBFVudbOX56euKeIVtB/Z45liLEUdL682jInHm81QSWDR5GNUVBSCgoLw6NEjuLm5oXXr1jh58iTc3NwAAHfu3IEi22V2K1euxLNnz9C3b1+tdoKDgxESElKUXSciIgDlvV2BnPMd9b/leui74zUk4FHkY/lHQwnKhIzEbM/HZF2O8u81KenJz3Bh12UAwKWfr2LoxoFMQBKRUTgfJaKSzN5OjWmD7hgsP3QmWev53OrmlJ+6pohXkH7kjGeKsRR1vNzaMDYeUXFn0eTj1q1bc33+8OHDWj9HRkaarzNERJRvjfs1xKWfryLmeiygAIRKwM7VDqpMFTLSMnQSgOW9XXXXiFQL3PjzplxfX4JSUkrISM0EkJXAhCTpLobzL31nUhIRGcL5KBGVZKlpCr1nwmnKL0U4YsnmqrmekaevjfzUNUW8gvYjezxTjKWo4+XVhjHxeOYjlQQWTT4SEVHJplmj8czmczj57RmkxqciPSkdh784hqv7ruucgVg/sC7+WPIn1CrtSVJSbLKcMCzv7ap1GTeQldS0ts/6leVc2QlCbXhRSUkpZSUoiYiIiEqx1DQFWr3RHBfCnKBUCqhUEjb96okDy8+g04SmuBDmBAE7TF8agI0/ewIScCnccF1NeX7qmiJeYfqhiWeKsRR1PGPayCvepl89cXxtKBOQVOwx+UhERPmSkZaBc9svIjY8DqGbzqJxv4ZQWiuRFp8GCMhnNj68HoMzW86haVBjnNt+EU+i4pH4IEkn8QgAkvRfwjD72ZSa9STda7vhcSVnZKRl4Mq+a7n2T6iEwcu+CzPeJ1HxKO/tyjUliYiIqFhYtdMbF8KcoBYS1JlZd0G+EOaEkR/Vk8sBCQISLoY7AQAEDNfVlOenriniFaYfmnimGEtRxzOmjbziXQhzwqqd3rwUm4o9Jh+JiMoIUyTR/rvZSywSkIiDi47g0s9X4dmgiu5ajgI4/OUxHFv1FzLSMnVuTJOdUAs8vB4rJzOHbhyo09f3392TlfQMi8u1j+613dC4X8N8jcuY8Wr6zzUliYiIqDi4Ge0ApVLIiSgAUCqF3nLp339mX7XGFHVLUxslsc+acqLiTpF3FSIiKuk0SbSDi47g3A8XcXDREXw7bCsy0jLy1Y7WzWD+fcRcj0Vy7FO9ZzQKlUBGWqb879zcu3Rf7heQdQZkeW9XPLr9GLtn/IKYsFhcOxgOSSnpfb2klNBqzAsYusF0icHs41VnquXxntt+0STtExERERVUda8UqFTa8yKVStJbLoTuctmmqFua2iiJfdaUExV3TD4SEZUBpkqiaW4Gk52klOBYqRzsXe0L1cfs/Tqz+dy/ydLDOLf9IsIPRyDhfiKizkXr3LBGQ6gETm04Iyc7TcHQeLmmJBEREVna2Nei0Mg/CQpJwNpKDYUk8Jx/EtbNuSKXS5KAQhJoVCsJDfOoqynPT11TxCtMPzTxTDGWoo5nTBt5xXvOP0m+QQ1RccbLromIygBDd5DObxLN0M1gKvpVwAtDm+LQF0cL3VdJKSH8z4h/k6X5e21meiZ+Cd6Pfl/0AlD4S80NjdeUa0oSERERFYS9nRrH14bqvfuxpnzZtjRMHnA917sw62sjP3VNEa+g/cgezxRjKep4ebVhTDzebIZKAiYfiYjKAFMl0bRuBvPvf9nXWLy6/zoeXospVF/VmWoINXTXkDRSfHQCANOs12jo5jemWlOSiIiIiKiwUtMUTEpSscbkIxFRGZBbEk3f2YEA9J4xaG1nLd8M5vp3e1AzoDoc3crh3PaL8o1iTn17BkdX/gWhzn/iUCPhXoLBy6vz4lLFWe6/vD7lv0lMzaXmzYc0Maqt7OPl3a6JiIioOElNU6DVG81xIcwJSqWASiVh06+eOLD8DDpNaIoLYU4QsMP0pQHY+LMnIAGXwg3X1ZTnp64p4hWmH5p4phhLUcczpo284uVWfnxtKBOQVGww+UhEVAYYSqIB0Dk78OJPVyBUArE34gAJgAAu7rmCYZuC5ARk/cC6eLosBeGHIyApJEAIXNxzBfVerY2Io7cKlXgEgOS4p3B0d8TT2OR8X3rt2agKANNdak5ERERUHK3a6Y0LYU5QC0m+A/KFMCeM/KieXA5IEJBwMdwJACBguK6mPD91TRGvMP3QxDPFWIo6njFt5BUvt/JVO70xbdCd/OxSRGbD5CMRURlhbWetc8Zf6Kazes8OlP2bt4sJi8Wpb8/Axt4Gj24/xpW915D57N+7WP+baIwJi0VMeKz8mkIRQI1W1VDB1xUnN5xGanya0S+9sOsykh4mZ92BO8fZk+pMNcp7uxq9FqQpLt0mIiIiMoeb0Q5QKoWccAIApVLoLZf+/Wf2g7qmqFua2iiJfc6rnKi44N2uiYjKMH13czbkr3WncXDREZzfcQnPkp/pr2RE4lFpo0QF3/J51ou+eA9hh27kK/EIAAnRifIdspFjaFa2Vqj9iv+/d9I+gnM/XMSBRYfxVZev8de6UGSkZWjVN9VdwomIiIhMrbpXClQq7cmOSiXpLRcCOleTmKJuaWqjJPY5r3Ki4oLJRyKiMkzfjWgMyUjNyDpDspCXVKsyVFBlqvKsFxfxCNEX7hcqVs5kaGZ6JvZ9dEAroQgBpD5JxaEvjmLj0C34a10o9s87iPioeDy6/VgnOctLt4mIiKg4GPtaFBr5J0EhCVhbqaGQBJ7zT8K6OVfkckkSUEgCjWoloWEedTXl+alriniF6YcmninGUtTxjGkjr3i5lWvumk1UHPCyayKiMkzfjWjKVXJAcuxTnbqSQip04hEAILLOTrSUW6G3Dd5JO+Z6LGKux0JhpUBc5iOEJ92EUGlful2Qu4QTERERmZq9nRrH14bqvcuxpnzZtjRMHnBdTkTlVjd7eX7qmiJeQfuRPZ4pxlLU8fJqw5h4uZUTFRdMPhIRlWH6bkRTP7AuNo/ejpiwWEiQICDgWKmc3oSkPgorRYHvVF0UVOkqncuxc1JnqiEAJMckw8ndEcmxT/9Nzqrh6FYOjyIfI3TTWd75moiIiCzK3k6t96YimvJDZ5K1ns+tbk75qWuKeAXpR854phhLUcfLrQ1j4xkqJyoumHwkIirj9N2IZti3QToJyS1jfpDPkDSUXPRsUAUe9argdugdxN18XBTdzz8pa91JVXrel35DApyrOKFpUGPE30tA+JGbSIpJxoXdl3nzGSIiIioyqWkKvWe25VV+KcIRSzZXzfWMPH1t5KeuKeIVtB/Z45liLEUdL682jImXWzlRccHkIxER6ciZkEyJT4WTmyOS457CytYKFX3L4/QJ3dfF3niEgI61AIVxN7GxCIH/Eo9S1s+S8t9LynNeiS2A6Ev3kflMhbqdA/D037M/NclXzc1nciZviYiIiEwlNU2BVm80x4UwJyiVAiqVhE2/euLA8jPoNKFpruUCdpi+NAAbf/YEJOBSeN5t5KeuKeIVph+aeKYYS1HHM6aNvOLlVn58bSgTkFRsWDT5GBISgrlz52qVBQQE4Nq1a3rrX7lyBR988AHOnj2L27dvY8mSJZg6dWoR9JSIqPTLSMuQz3Z0ruIECCDxYRLKVXLAia9PITPbmYLJsUlQKBVAjpMHM1IzcOiLo1DaKIu49wUkAFtHG9TtUhuu3i648us1xITF6tSJuR4La3srnbUiefMZopKP81EiKu5W7fTGhTAnqIUEdWbWAd4LYU4Y+VG9PMsBCQISLoY7AQAE8m4jP3VNEa8w/dDEM8VYijqeMW3kFS+38lU7vXkpNhUbFj/zsV69ejhw4ID8s5WV4S6lpKSgevXq6NevH6ZNm1YU3SMiKhMy0jLw7bCtOpdVa25Ck5PqmRpqGD6SqnpmxCXNRUQzBqWt/kut05OfoaJfBTQf0gRNgxpjy9gdiD5/T+ssyKw7XutuC958hqh04HyUiIqzm9EOUCqFnFgCAKVS5Ktc+vefIttUxhR1S1MbJbHPeZUTFRcKS3fAysoKVapUkR+VKlUyWLdZs2b4/PPPMXDgQNja2hZhL4mISoeMtAyEbjqL/fMOInTTWWSkZQAAzm2/iJjrsRBCaK3nqC/xWNJY2Vih7YRW8GteVe/zkuK/sxet7axR+6VaOnWESqBWu+pwD3CDJElQWCkgSRLca7uhcb+G5uw+ERUBzkeJqDir7pUClUp7SRuVSspXuRDaySxT1S1NbZTEPudVTlRcWDz5GB4eDk9PT1SvXh2DBw/GnTumPS04PT0diYmJWg8iorJIc3bjwUVHcO6Hizi46Ai+HbYVGWkZeBIV/+/ZfaVPRmoG/t5+ATeP3dL7vFALlKtYTv65cb+GWUlGQCvJ2DSoMYZuHIiX3m6Hxn0b4qW322HoBt5shqg0MPd8FOCclIgKbuxrUWjknwSFJGBtpYZCEnjOPwnr5lzJs1ySBBSSQKNaSWhoZBv5qWuKeIXphyaeKcZS1PGMaSOveLmVa25cQ1QcSELkzKkXnb179yI5ORkBAQG4f/8+5s6di+joaFy+fBlOTk65vtbPzw9Tp07Nc40dfev4AECXLl1gbV10fzCGhoaiefPmjMd4xTKeJWIynmkdO3EKdeo+j4R7ichIzYS1vRVcPJ0hKf47xhQfFY+4iEda91SRAFSqUREAdJ7LSzyi4Apvk/Tf0vGsbJRw9XJFZnrWtnOq7IQr50Ph4VpL77Y0hxvXzpbqfZTfa6aVkZGBffv2ISEhAc7OzkUSs7QqivkoUDzmpKX5M1EW4lkiJuOZON7xY2heL6BAr1Wpgdv37fE0TYlydir4eqRCqci7/Gb0JVT3agBfj1QAxreRn7qmiFfQfmSPZ4qxFHW8vNowJl5u5fneR8Nu8XuN8YyWn/moRZOPOcXHx8PX1xeLFy/GqFGjcq1r7GQvPT0d6enp8s+JiYnw8fEp8sl6jx49sGfPHsZjvGIZzxIxGc+0WrXtitqxveQ1G4VKwD3ADUM3/ndm3v55B3Huh4tal1UrrBRo3LchOk5rK6/5KKDnrs8AFNYKqDP+e+1pfIdmGGz2sZkk3r93tc6Lwkohb7trbrvx+Vc75Oey35CnvLcrGvdraNKzHj+bPbBU76P8XjOtxMREuLi4MPloBuaYjwLFY05amj8TZSGeJWIynonjtW2JPYt1D0IYIzVNgVU7vXEz2gHVvVIw9rUo2Nup8yxftm0SJg/4Uj4Lztg28lPXFPEK2o/s8UwxlqKOl1cbxsTLrTzf++iHX/F7jfGMlp/5qMVvOJOdq6sr/P39cePGDZO1aWtry/V4iKjUS7iXiJibWWs2au7GHHM9Fue2X0TzIU0AAOW9XQ3eMMXazhpDNw7Emc3n8OeqE3pvzJI98VjiGHmYTZOYjbkei4SM/y6JzHlDHqESuPjTFdTrUhuJD5PMkowkIsswx3wU4JyUiAouNU2BVm80x4UwJyiVAiqVhE2/euLA8jPoNKFpruUCdpi+NAAbf/YEJOBSeN5t5KeuKeIVph+aeKYYS1HHM6aNvOLlVn58bWiBEpBE5lCsko/JycmIiIjAkCFDLN0VIqISJSM1Mysplvlflk1S/ncjFSBrLcNLP1/VPjsy2w1T/t/e/cdHVd35H3/fmYQkhAQQE4UEoSA/KhhAKRaxQgtWK0WsK1WkxGr9tlRa0cquWnEBlUK3WqmLBRZ0pbSIxdKuUgSVNbCCmoAYUqgkihpAatBKfgAJycz5/hFnzCST+f0rk9dzH/N4mJMz531uOrmc/eTee1LTU2VPtSfUTtXxYtktNZ5ucn/dckOelsXdqoPH3VdLlm064HGlKYCOifUogESzYmO+Ssuz5DSWe0fj0vIs3frQML/tkiUjS/sqmh8jYeR/jGD6RiIvnHm48iJxLLHOC2QMf3m+2ldszNddN0X+GcZAKOJafJw7d66mTJmifv366aOPPtL8+fNlt9s1ffp0SVJhYaHy8vK0ePFiSdKZM2d04MAB938fPXpUb7/9trp166bzzz8/bscBAPGWmpHS7lWN7j6fX93o69bhz46ckM1u87g1O1nYUgI/LuMwSs344p9I14Y8LYu7Li2vlmx5pSmAjoH1KIBEd+hoV9ntxl1YkiS73QTVbn3+ny0fuhaJvsk0Rkecs792IFHEdbfrI0eOaPr06RoyZIi++93vqlevXnrjjTeUk5MjSaqsrNSxY8fc/T/66CONGjVKo0aN0rFjx/TII49o1KhRuu222+J1CACQELr3yW7eodmyPHZodl3V6JKanqoxMy/WlfdN1JiZF7e5Ss/brdnJwtnkVJfMLgH1zRl8trr3+eK5JYH8XFpfaQqgY2A9CiDRDcg7JYfD8mhzOKyg2o3xLGZFqm8yjdER5+yvHUgUcS0+rl+/Xh999JEaGhp05MgRrV+/XgMHDnR/v6ioSE8//bT76/79+zff8tbqVVRUFPvJA0ACsWw2Fa65URPvHq9R1xdo4t3jVfh08LcAj5pW8HkRs+33cofkaODXvhShGcfHmZNn/HeypGHfGuqxu/UXP5fm4q68/HxaX2kKoGNgPQog0c267ohGDK6VzTJKTXHKZhmNHFyrpx7Y77fdsoxsltGIQbUqCHCMYPpGIi+cebjyInEssc4LZAx/eb7aXRvXAIkgoZ75CAAIneuqxnDHmL7yev11/lb9s/Iz1VfXKz07XWf166nJC6+UJC375n+pqaHJz0gdl81uU80/aiV57nB9wZVDdMFVQ1Tzj1pln5ul/Zvf0fGKT7w+PxMAACBSMtKd2rm62Otuxv7aH3+2XnfccNDnLszexgimbyTyQp1Hy7xIHEus8/yNEUier3YgUVB8BAC4NdY36pkfPaePD1a5d4g++ekpffr+P/WfV6xUz/zuSV14lL64gtEcdbbZ4Tp3SI6mr7xef3vhgPJG9Fb3PtnqdnamevU/i92uAQBA1GSkO71uHuKv/dXddR7fD2aMWOeFMo/WeZE4lljn+Roj0Lz22oFEQfERAODWvKvzF4XHlhxnHPrk0D9jP6kYseyW5JT7CsbVf65R1SHPHa4/fqdKT077neqOn/QoSE761wkUHgEAQNScrrd5vbLNX3vZe9302LrzfF6R522MYPpGIi/UebTMi8SxxDrP3xiB5AU7DyAeKD4CACQ1X/X4zrYKb3XHpHb+5QPUd1Seaj6u9dgBvPF0U5sdri2bpdqqOklyt7PLNQAAiKbT9TaNu22MSsuzZLcbORyW1m7uo1ee2K1Js0f7bDdK19ylQ7RmUx/Jksoq/I8RTN9I5IUzD1deJI4l1nmBjOEvL9h57FxdTAEScUHxEQA6oZbPMuyZ30PDp1zQfLv1O1XxnlpMdcvJ1Hd+9W2vVy2mZqS02eHaOI0smyXjbFGQZJdrAAAQRSs25qu0PEtOY8nZ1LzrXWl5lm59aJjfdsmSkaV9FVmSJCP/YwTTNxJ54czDlReJY4l1XiBj+MsLdh4rNuZzezbiguIjAHQyjfWNbZ5l+MaaEtUdPxnvqcVUamaqBn7tS9q7YZ/X5zV275Ot3NQcj59TZk6mTh6v8+jHLtcAACCaDh3tKrvduItIkmS3m6Darc//07T4u2ok+ibTGB1xzqGMAcSDLd4TAABEX2N9o4rX7tHWxdv0l3v+qo/fqZIxRs4mp4wxna7wmNatixpPNmrfX/brlUeKtHzKUzp14rRHH8tmU+GaGzXx7vEadX2BJt49XrdtKFTukFxZliVbik2WZbHLNQAAiKoBeafkcFgebQ6HFVS7MZ6FqEj1TaYxOuKcQxkDiAeKjwCQ5FxXOm57dLv2PrdPFUXvxXtKcddQd0aS3LdP11XV6clpv9OpE6fdRdoTn99KPWbmxbryvokaM/Nide2R0aYgWfj0jWw2AwAAombWdUc0YnCtbJZRaopTNsto5OBaPfXAfr/tlmVks4xGDKpVQYBjBNM3EnnhzMOVF4ljiXVeIGP4ywt2Hq6NaIBY47ZrAEhyzTtYe+7ajLZqq+q0etrvdPLznaw/afpUv7t5vQrXUFwEAADxk5Hu1M7VxV53LvbX/viz9brjhoM+dz/2NkYwfSORF+o8WuZF4lhinedvjEDygp0HEA8UHwEgyX125ESbXZtdbCk2OZtYhEiSrOYrIKXmnayNpI8PVumZWc9p6MTB7lurWz8vs2zTAQqUAAAAANAOio8AkOR65vdos2uzZUnnjx+o7HOzlH1OlkrWvdXpnvvYhlGbnaxlpCNvf6Sjbx9T2aYDuuDKIW2uIq06eFx7N+zTmJkXx2niAAAgmZ2ut2ncbWNUWp4lu93I4bC0dnMfvfLEbk2aPdpnu1G65i4dojWb+kiWVFbhf4xg+kYiL5x5uPIicSyxzgtkDH95wc5j5+pirn5EXFB8BIAkN2pagco2HfC4Wi93aI6u/eVk99V6Jz6q1tt/KvMsvHUWlmRJ6pbTTbVVdW2/byQjo6qDx5WakdLmKlLLbumzz58PCQAAEGkrNuartDxLTmO5dzQuLc/SrQ8N89suWTKytK8iS5Jk5H+MYPpGIi+cebjyInEssc4LZAx/ecHOY8XGfN11U2UAnzogsig+AkCSS01PVeGaG7V3wz59duSEeub30KhpBR63Cffqd5bUieqOriJst9xuGjR+gHr1O0vDp1ygZ370nKoOHm/uZNq+R7LaXEVqHEY983vEZN4AAKDzOXS0q+x24y4iSZLdboJqtz7/z5Y7IEeibzKN0RHnHMoYQDyw2zUAdAKp6akeuza3fj7hqGkFyh2SI8uyZEtp/qchrVuXeEw1JtKz0/X1OV/Tj1+4Vd+ad0WbnazzRvZp8x7jMBo0foDHz8myLOUOzXE/DxIAACDSBuSdksNhebQ5HFZQ7cZ4FqIi1TeZxuiIcw5lDCAeKD4CQCfWWN+o4rV79L+P7dAFVw3RhDsu06jrCzRp7gT9+K+36ZyhufGeYlSc/uy0jpR+1KbdVaSdvuJflNYtrU2RcfT0Ue4C5ajrCzTx7vEqfJrNZgAAQPTMuu6IRgyulc0ySk1xymYZjRxcq6ce2O+33bKMbJbRiEG1KghwjGD6RiIvnHm48iJxLLHOC2QMf3nBzsO1CzYQa9x2DQCdVGN9o9YUPqOq8uOyZMnIKHdwjm7+3XR3Ma1wzY3avW6v3ni6RKer6+M848iqKHpPv7t5vdedqlPTU9V3VB9NvGS811vV2VwGAADESka6UztXF2vFxnwdOtpVA/JOadZ1RwJqf/zZet1xw0F30SnQMYLpG4m8UOfRMi8SxxLrPH9jBJIX7DyAeAi4+PjRRx+pT5+2t6GFY8GCBVq4cKFH25AhQ/TOO++0+54NGzbogQce0AcffKBBgwbpl7/8pa6++uqIzgsAOqLG+kafz3Vsbfcze93PNzT6YufmP//rJn3nV99WanqqUtNTNfbWMZKkV3/zf9E/iBj7+J0q907VrX9+EkVGINGwHgXQWWWkO71uFOKv/dXddR7fD2aMWOeFMo/WeZE4lljn+Roj0Lxg5gHEQ8DFx2HDhumJJ57QTTfdFNEJDBs2TK+88soXE0ppf0q7du3S9OnTtXjxYn3729/WunXrdO211+qtt97S8OHDIzovAOhIjNOp39283mNH67JNB7xe1edSsf2Q1/Z3dxzSmsJnPK6ArPm4Nmpzj7dPP/inGusb2/z8Dmd+pMb6RqWmpwZd2AUQHaxHAXRWp+ttXq9i89de9l43PbbuPJ9XwnkbI5i+kcgLdR4t8yJxLLHO8zdGIHnBzgOIh4CLj4sWLdKPfvQj/fnPf9bKlSt11llnRWYCKSk699xzA+r7m9/8RldddZX+9V//VZL00EMP6eWXX9ayZcu0YsWKiMwHADqi6o9qVHXouIwxMk1fXMXouqrPu/a3t646eFy7n9mrsbc0X/WYzLs5v7vjkLLOydLHB6skI/fP70xdg/Zu2KdR0wqCLuwCiA7WowA6o9P1No27bYxKy7Nktxs5HJbWbu6jV57YrUmzR/tsN0rX3KVDtGZTH8mSyir8jxFM30jkhTMPV14kjiXWeYGM4S8v2HnsXF1MARJxEfCGM7fffrv27dunTz/9VBdccIFeeOGFiEygoqJCffr00YABAzRjxgxVVrZ/WfDrr7+uSZMmebRdeeWVev3119t9T0NDg2pqajxeAJBsGk83ybJ77nJn2S19duREu+8ZdPlAn2O6roxsrG+Uo8khe5fk3KOstqpOO5bvbFuLtZp/fns37FPVwebCrrPJKWOMu7ALILY66npUYk0KIHQrNuartDxLTmOpsckmp7FUWp6lWx8a5rfdGEtOY2lfRZb2BThGMH0jkRfOPFx5kTiWWOcFMoa/vGDnsWJjfrw/zuikLGNab8Du37Jly3TXXXfpy1/+cpvbUt56662Ax3nxxRdVV1enIUOG6NixY1q4cKGOHj2qv/3tb8rKymrTv0uXLlqzZo2mT5/ubvvtb3+rhQsX6uOPP/aa4e05PpJ01VVXKTU1dlesFBcXa8yYMeSRl5B58cgkL7KKtr2mrqdyPepnlqSzB/ZSj3auWjROpw6/dVQNJ894/X56VrryR/bW4b0f6UxdQ5va3AkdUQ/FbgETj7xBA0eo8XSTqo/VqOU/l5akLpldlH1ulrr3yZZlC78w++47e5L6M8p5LbIaGxu1ZcsWVVdXKzs7OyaZiaYjrUelxFiTJvPvRGfIi0cmeRHO2/maxgwbEvT7yt7rpg+PpcuYL/7QbFlG3TIcqjtt99NeLMn7MbY3RjB9I5EX3jya8yJxLLHOC2wM33nBzqNf73pdOLCu3T7F5e9zXiMvYMGsR4Pe7frDDz/Uxo0b1bNnT02dOtXnM3H8+da3vuX+74KCAl1yySXq16+f/vjHP+oHP/hByOO2dN999+lnP/uZ++uamhr17dtXzz77bEwX69dcc42ef/558shLyLx4ZJIXWeMu/5aGHr/W49bg3KE5Knza963BjfWN2jj3Bb33f++3+V639Ex95eKLVPTaa+4NaVoq0R/0Fc2I6HH4Euu8t1Ke0RPrNmvvhn3a9uj2Nj8D67QlHZJyU3Micgv2knk3JvVnlPNaZNXU1Kh79+4xyUpEHW09KiXGmjSZfyc6Q148MsmLcN7lY/X8r9v+EcKfx9adp7lLh8ioRdFJRt/4SpVe2JHrp/0aSc/L+nwdE+gYwfSNRF7o8/giLxLHEus8/2P4zwtmHnfccNDnJjTXPLiM8xp5AQtmPRrUSm3VqlW6++67NWnSJO3fv185OTkhTbA9PXr00ODBg/Xuu+96/f65557b5i/KH3/8sc9n9KSlpSktLS2i8wSARGPZbCpcc2PQm6KkpqdqysPf0hNXr1LjyUaP75385GTzrdc2SY4oTj7GbKk2ORv9P+smLStNezfs06cf/FPdcjJVd7xOsiwZ5+eLOWegz9YEEEkdcT0qsSYFELpZ1x3R2s19PJ7pN3JwrZ56YL8mzc7w2W5kZMmo4PxamVbPAGxvjGD6RiIvnHm48iJxLLHOC2QMf3nBzsO1EQ0QawEXH6+66ioVFxdr2bJlKiwsjMpk6urq9N5772nmzJlevz927Fht27ZNd955p7vt5Zdf1tixY6MyHwDoSFLTU4MugDXWN+qZHz3XpvAoqfmZh4dPyDiCfjpHQrvw2xfo1GenVVH0ns9+DbUN2vbodll2S84mp7rldlN6Vpo+ff+f7sKj5P/ZmgAih/UogM4oI92pnauLve5c7K/98WfrdccNB33ufuxtjGD6RiIv1Hm0zIvEscQ6z98YgeQFOw8gHgJ+SJXD4dC+ffsiutCbO3eutm/frg8++EC7du3Sd77zHdntdvczdAoLC3Xfffe5+8+ZM0dbtmzRo48+qnfeeUcLFizQ7t279ZOf/CRicwKAzsS1mYo3xml08tOTMZ5R9J367LSu/PlE2ey+/wl0fL65jLOpeZF28vhJ9ezbo83GNMZhkno3cCCRsB4FAADoeAK+8vHll1+OePiRI0c0ffp0ffrpp8rJydFll12mN954w337TGVlpWwtHuJ/6aWXat26dZo3b55+/vOfa9CgQfrLX/6i4cOHR3xuANAZfHbkRPMzIpvauboxuS56lCS9u/09HTvwsZyO9v/ym9EzQ9YJy+P4LbulbjmZyh2S0+bZmqOmFcRg5gBYjwLojE7X2zTutjEet9Wu3dxHrzyxW5Nmj/bZbpSuuUuHaM2mPlKr23DbGyOYvpHIC2cerrxIHEus8wIZw19esPPYubqYqx8RF6E/nTsC1q9f7/P7RUVFbdqmTZumadOmRWlGANC59MzvkXS3VftjjFRXVde8ZbWXQ++SmarMnhkyn3l+0ziMevU7S5PmTgj62ZoAEhfrUQCJbsXGfJWWZ8lpLDmbmjcQKS3P0q0PDfPb3rzNiKV9FVmSmjcg8TdGMH0jkRfOPFx5kTiWWOcFMoa/vGDnsWJjvs8NZ4BoCfi2awBA8hk1rUC5Q3JkWZZsKZ//k2D5fk/SaKfmeuZkoz459E/317YUmyzLUs7gs+Vocuh/H9shSfrGXZdrzMyLKTwCAICoOnS0q+x2z4WL3W6Cares5lek+ybTGB1xzqGMAcQDxUcA6MRS01NVuOZGTbx7vEZdX6BBEwYm5a3W3ti72P32OXtgL426vkAT7rhMklT0m9e097l92vbodv3u5vVqrPeyUQ8AAEAEDcg7JYfDs5LkcFhBtRvT/Ip032QaoyPOOZQxgHig+AgAnZxrl+wr75uo7HOzvrgCMsk5zjj89rFslq68b6LsqXYdL//EvQGNMUZVB49r74Z9MZgpAADozGZdd0QjBtfKZhmlpjhls4xGDq7VUw/s99tuWUY2y2jEoFoVBDhGMH0jkRfOPFx5kTiWWOcFMoa/vGDn4doFG4i1uD7zEQCQWDrjMyB96ZHXXZL3jXksu6XPjpyI08wAAEBnkZHu1M7VxVqxMV+HjnbVgLxTmnXdkYDaH3+2XnfccNBddAp0jGD6RiIv1Hm0zIvEscQ6z98YgeQFOw8gHig+AgDchk+5QG/+brdqfWzI0lnYbJYmL7xSkveirHEY9czvEYeZAQCAziYj3el1oxB/7a/urvP4fjBjxDovlHm0zovEscQ6z9cYgeYFMw8gHig+AkAn1Fjf2GbHZkl65kfPqbaqTpbNknEGUXm0SUqiP6Rm9uqq/kP6qWuPDEnNG/OUbTqgqoPHm6+AdBjlDs1x/9wAAACi6XS9zetVbP7ay97rpsfWnefzSjhvYwTTNxJ5oc6jZV4kjiXWef7GCCTPVzuQKCg+AkAn01jfqN/dvN6jkFa26YAuuGqIqg4el6TgCo9SUhUeJanrWV1lT/1iQxrXxjytC7bsdA0AAKLtdL1N424bo9LyLNntRg6HpbWb++iVJ3Zr0uzRPtuN0jV36RCt2dRHsqSyCv9jBNM3EnnhzMOVF4ljiXVeIGP4y/PVvnN1MQVIJAyKjwDQyezdsE9VB4/LGON+hmHVweNKzUj1+lzD7HOzVH20Jl7TjYseed3b3HLu2pgHAAAgllZszFdpeZacxpKzqXlX49LyLN360DC/7ZIlI0v7KrIkSUb+xwimbyTywpmHKy8SxxLrvEDG8Jfnq33Fxnxuu0bC6BxbmgIA3Fybp7TU/LVpu9mMU+p2dqYsm2f/ZGDvYvfabrV41iMAAEC8HTraVXa75xrNbjdBtVtW8yvSfZNpjI44Z3/tQKKg+AgAnUx7m6cMunygcofkyLIs2VJssixLOYPPVvVHNcHfht0B9BvTt83CTpK+dvtY97MeA9VY36jitXu0dfE2Fa/do8b6xgjNEgAAdHYD8k7J4fBctDgcVlDtxjS/It03mcboiHP21w4kCoqPANDJjJpW0KbImDs0R6NvGqXCNTdq4t3jNer6Ak28e7yGfWuo6o6f9Dlery+dFaOZR5ZxGuUM/uLnIEn2NLuOlh7TqROnAx7H9QzNbY9u197n9mnbo9v1u5vXU4AEAAARMeu6IxoxuFY2yyg1xSmbZTRycK2eemC/33bLMrJZRiMG1aogwDGC6RuJvHDm4cqLxLHEOi+QMfzl+Wp3bVwDJAKe+QgAnYy/zVNaPtdw6+JtsqXY5Gzy/rDqbrndNH3l9frjT/6sqvLjMZl/pLy/60Nlnt1V5w7L1bH9H0uSHA0Ovfd/72vZN/9LjosdAY3T3jM0927YxzMiAQBA2DLSndq5utjrbsb+2h9/tl533HDQ5y7M3sYIpm8k8kKdR8u8SBxLrPP8jRFInq92IFFQfASATijQzVO83aLtYkk6ebxOG+74i25aNU1/e+GASp55K76b01hSRo8M1VfXB3Sr+MlPTunkJ21vSWlqaHLv/O2P6xmarTfq+ezIiYCnDQAAAADJiuIjAKBdo6YVqGzTAVUdPC7LbsnpcLp3gTZqfh5N1cHj+tsLBzRm5sX69MN/au+GfXGZq72LXV/6aj/1ubC3dvx2Z9jjBXrbdHvP0OyZ3yPsOQAAAJyut2ncbWNUWp4lu93I4bC0dnMfvfLEbk2aPdpnu1G65i4dojWb+kiWVFbhf4xg+kYiL5x5uPIicSyxzgtkDH95vtp3ri7m6kckDIqPAIB2tb5F++ODVTq675hHsa3lVX49+nSP00wlxxmH3t1xSB8UV0ZkPNdt6P60LtAah1Hu0ByNmlYQkXkAAIDObcXGfJWWZ8lpLDmbmjcWKS3P0q0PDfPbLlkysrSvIkuSZOR/jGD6RiIvnHm48iJxLLHOC2QMf3m+2ldszNddN0VmXQyEi+IjAMCnlrdoF6/do6NvH/P4vrPJqQ9LDqvm41od3ns0HlP00FTfFPYYKWkpyh2SE1Bff8/QBAAACMeho11ltxt3YUmS7HYTVLv1+X+23EU5En2TaYyOOGd/7UCiSJjdrpcsWSLLsnTnnXf67Ld06VINGTJEGRkZ6tu3r+666y7V19fHZpIA0Ik11jfqzOkzSklv+3erT977VMuu/C+9u+NQHGYWHsvevFBL69ZFZw/spUETBuonL/1Q9lR7wGO4CrRX3jdRY2ZeTOER6MBYkwJINAPyTsnhsDzaHA4rqHZjPItZkeqbTGN0xDn7awcSRUIUH0tKSrRy5UoVFPi+RW3dunW69957NX/+fP3973/Xk08+qWeffVY///nPYzRTAOicGusbtWbmM9rxxC41nm7nWYj+93dJKN1yMnX57Et10bQRmjR3gu7YNks/3Ph9TfvNteraI8Pdr7G+UcVr92jr4m0qXrsn4GdBAuh4WJMCSESzrjuiEYNrZbOMUlOcsllGIwfX6qkH9vtttywjm2U0YlCtCgIcI5i+kcgLZx6uvEgcS6zzAhnDX56vdteu2UAiiPtt13V1dZoxY4ZWrVqlhx9+2GffXbt2ady4cbrpppskSf3799f06dP15ptvxmKqANBp7d2wT1Xlge3+3FGc/OSUumR00WX3jW23T2N9o35383qP5zmWbTqgwjU3cnUjkGRYkwJIVBnpTu1cXawVG/N16GhXDcg7pVnXHQmo/fFn63XHDQfdhahAxwimbyTyQp1Hy7xIHEus8/yNEUier3YgUcS9+Dh79mxNnjxZkyZN8rvQu/TSS/X73/9excXFGjNmjA4dOqTNmzdr5syZ7b6noaFBDQ0N7q9ramoiNncA6Cw+O3JCshT21Y32LjaldUvTqX+ejsS0AtIls4vOnDzT9huW9OkH//T53r0b9qnq4HEZY2Samg++6uBx7d2wz/0cTADJgTUpgESWke70unmIv/ZXd9d5fD+YMWKdF8o8WudF4lhinedrjEDz2msHEoVlTOunCcTO+vXrtWjRIpWUlCg9PV0TJkzQyJEjtXTp0nbf8/jjj2vu3LkyxqipqUmzZs3S8uXL2+2/YMECLVy4sE37VVddpdTU2F214lqckkdeIubFI5O8yHpt15u6YPjoqI3/WeUJffL+px5tJ3REPZQf9Fg2u01OR/B/iQ0lLy2zi/JG9FHVweOq+/Rkm++ndElR/0v6SpKqP6pR4+kmpWakqHufbP39wFvKSeuv6mM1avlPpWVZ6t47WzmDzg76GHx59509Sf0Z5bwWWY2NjdqyZYuqq6uVnZ0dk8xk1lnWpMn8O9EZ8uKRSV6E83a+pjHDhkR0TIdT+vBYhk7W25WZ7lC/3qdlt33RfuhomQbkXah+vZv/8Ourb8v2YPpGIi/UebTMi8SxxDrP3xiB5PlqD1Zx+fuc18gLWDDr0bhd+Xj48GHNmTNHL7/8stLT0wN6T1FRkX7xi1/ot7/9rS655BK9++67mjNnjh566CE98MADXt9z33336Wc/+5n765qaGvXt21fPPvtsTBfr11xzjZ5//nnyyEvIvHhkkhdZl02YrP94fENUxm6sb9TT31un4/rEo71Ef9AY63sK+m9YjtDmUaI/6Cua4fV7+aPyNOjyAXI0OXVo1weSjAZdPlCjbxql1PRUNdY3avmUp1RXVefxPqtRmnDR13Rg60FVHfri1urc1BzpAmnaJT/Xtke3y7S45NOSpYk3jY/4lY9L5t2Y1J9RzmuRVVNTo+7du8ckK9l1pjVpMv9OdIa8eGSSF+G8y8fq+V+3/SNEqE7X2zTutjH6+/tZstuNHA5LXVJr9coTuzVp9mj9/f0sGV2jv7//vFLstZIln31d7cH0jUReOPNw5UXiWGKdF8gY/vJ8te9cXRz0rdfXPLiM8xp5AQtmPRq34uOePXtUVVWliy66yN3mcDi0Y8cOLVu2TA0NDbLbPXcafeCBBzRz5kzddtttkqQLL7xQJ0+e1A9/+EPdf//9stnalvbT0tKUlpYW3YMBgCTRWN+ovRv26bMjJ9Qzv4dGTSvQ7mf26njFJ236dslIlTkd/MXzls2ScUbuovtzvpyr6Sv+RVLzbdLnDMlxz931XMbU9FQNGj9Ab/+pzCPbsttUseM9r7dWVzfWaNS0ApVtOuDxzMfcoTkaNc33ZhQAOg7WpAA6qhUb81VaniWnseRsat7tuLQ8S7c+NMzdLlkysrSvIkuSZNR+X1d7MH0jkRfOPFx5kTiWWOcFMoa/PF/tKzbmcys2Ekbcio8TJ05UWVmZR9stt9yioUOH6p577mmzyJOkU6dOtVnMufrF8e5xAEgK7W2ukpLW9nwsSU6HU7YUm5xNwf1F1TiNMnMydfJ429ugg3X2wF4qfPpGSfK7MUyvfme1eWalcRhJVvN7mloWJa3mW7DTU1W45sY2BVk2mwGSB2tSAB3VoaNdZbcbd8FJkux247Xd+vw/W56iItE3mcboiHP21w4kihCeAhAZWVlZGj58uMcrMzNTvXr10vDhwyVJhYWFuu+++9zvmTJlipYvX67169fr/fff18svv6wHHnhAU6ZM8bowBIDOprG+UcVr92jr4m0qXrtHjfWNAb+35eYqzianjDHNz0r8xHuR0LJZnxfvgtMtt5v+33M36+tzvqbueeHdaphX0Fup6antzn3vhn3un8mnH/5TmTmZkiRbik2WZSl3aI4GjR/Q5jiMwyg1o/nvc6npqRoz82Jded9EjZl5MYVHIMmwJgXQUQ3IOyWHw/Joczgsr+3GeBazItU3mcboiHP21w4kirgVHwNRWVmpY8eOub+eN2+e7r77bs2bN08XXHCBfvCDH+jKK6/UypUr4zhLAEgMrisXtz26XXuf26dtj27X725eH3AB8rMjJ2TZPRcult1St7O7ee2ffW62cgYHt+mKZbM0aPwAde2RobG3jtEPN35f5wzNDWqMlk591vxA7vbm/ukH/3T/TEr//DedPF6nrNxuGnHtcE28e7wKn75Ro6ePUu6QHFmW5VGU7N6HTTwANGNNCiARzbruiEYMrpXNMkpNccpmGY0cXKunHtjvbrcsI5tlNGJQrQr89HW1B9M3EnnhzMOVF4ljiXVeIGP4y/PVPuu6I/H+iAJucbvt2puioiKfX6ekpGj+/PmaP39+7CYFAB1Ey6v/Wj67cO+GfQFtjtIzv4fXKwAHf32gGk83qqr8uGRJMlLukBx9lttdwy4aqqqDxwOfpPn89ufPpaanavrK6/XfN/1e1UdrvL7Fsix1PStD+rTt97p9fiVje3Ov++Rkm59J3fGT6tX/LI+fibdbq+//t/Yf1Ozt2ZhcEQkkD9akADqCjHSndq4u1oqN+Tp0tKsG5J3SrOuOeLQ//my97rjhoLsQ5atvy/Zg+kYiL9R5tMyLxLHEOs/fGIHk+WoHEkVCFR8BAKFzXf3X+tmFnx05EdD729tcZfT0URo9fZSX4twLqvm4NqDnPlp2S3KqzWYtjfWNeuZHz7VbeGxm1OfC3rKKWo1pfVHIbG/u3XIyA/qZuG6tDkR7z8Zs+XxJAAAAIFYy0p1sLoOERvERAJJEe1f/9czvEdD7/W2u4irOua76O17xiWqsWhmH/7+qpmen66uFozX6plHu8RrrG/WXe/6qj9+p8vlee5cUXfnzifrT7l/KOml53XW6vbnv3bAvrJ+JN+FeYQoAABAJp+ttGnfbGJWWZ8luN3I4LK3d3EevPLFbk2aPVml5lozSNXfpEK3Z1EeypLKK9vu62oPpG4m8cObhyovEscQ6L5Ax/OWt3dxHO1cXc5UjEh7FRwBIEu1d/dfySkN//F0B2PKqv2rVqOKj95SSlqKmhiaf49afqJc91e5ReFwz85nmW7n9aGpo0jsvlavvqD6aeMn4dm919jb3SPxMWgv3ClMAAIBIWLExX6XlWXIay73TcWl5lm59aJi7XbJkZGlfRZYkyaj9vq72YPpGIi+cebjyInEssc4LZAx/eaXlWVqxMZ+rHpHwKD4CQJLwd+VisLw919Djqj81F9+aGpo0YFx/vf/6hzJO77tfty7O7V63N6DCo9S8M/VnR07IstmCvrIw0j8TKfwrTAEAACLh0NGustuNuxAlSXa78dpuff6fLXdRjkTfZBqjI87Z1Q4kOoqPAJBEgnl2oS/tPdewz/Bz21z1Z0ux6cypxnYLj1Lb4lzFjvcCnov7vcf8dvUqUj8Tl2hcTQkAABCsAXmn5HBYHm0Oh6UBeae0/71uHu3GyzItEn2TaYyOOGdXO5DobPGeAAAg8bS8wtHZ5JQxRlUHj6vuk5Ner/qTjGwpbf9JsSxLlmV5Kc5Zbfq2ea+9vffGl+tqyol3j9eo6ws08e7xKnyazWYAAEBszbruiEYMrpXNMkpNccpmGY0cXKunHtjvbrcsI5tlNGJQrQr89HW1B9M3EnnhzMOVF4ljiXVeIGP4yxs5uNa9OzaQyLjyEQDQRnvPNeyWk6ncITnNV/19/n+5Q3M06PKBOrL3ozbj5I3so6ETB7W51XnQ+AE6sveozznkFfTWoMsHSpb0v4/t0IkjJ9RY35gQRb5IX00JAAAQrIx0p3auLtaKjfk6dLSrBuSd0qzrjni0P/5sve644aC7QOWrb8v2YPpGIi/UebTMi8SxxDrP3xiB5LHZDDoCio8AgDbae65hr35nadLcCdq7YZ/K172giTeN16hpBWqsb9L/rXjdY+OZlLQUXb90qrr2yFBjfaOK1+5xP3dxxHcu1P4X31HVQe/PfbTslnLOP1sHth503978SdOnWjPzGQ27eqhq/lEbkec3AgAAdGQZ6U6vm4242l/dXefxfV99WwumbyTyQplH67xIHEus83yNEWgekOgoPgIA2vD1XEPXVX/PlZztvvpv74Z9cpzx3PHacaZJf3vhgEZNK/D6/Mib/mua/vbCAf395XIdLfW8atI4jA6/dVSfvPdp89dNzdvbVJUfV1XFcdnsNvc4hWu45RkAAKCl0/U2rdiYr7L3uumxdef5vCLP1TeQq/e89W3ZHmpeqPNomReJY4l1nr8xAsnjykd0BBQfAQBtBLtLdPNt2jaZpi8WP5a9eZdqjx2yP7+Nu+rgcf3thQMaM/Nid3Hy43eqPMZ0FR7bMJLz85yP36nSM7P+5PXWbgAAgM7odL1N424bo9LyLBmla+7SIVqzqY9kSWUVWbLbjRwOS2s399ErT+zWpNmjVVr+RXswfVu3h5IXzjxceZE4lljnBTKGv7y1m/to5+piCpBIeBQfAQBeBfNcw/Zu0+6Z36Pd50d+duSEO6dwzY36yz1/VUVR4Ltguxx9+yMdffujkK+CbKxvDLjICgAAkOhWbMxXaXmWnMaSZMnI0r6KLEmSkSVnU/PGf6XlWbr1oWHuvq72YPq2bg8lL5x5uPIicSyxzgtkDH95peVZWrExn1uxkfDY7RoAELZR0wqUOyRHlmXJlmLz2KXaV2HSJTU9VdnnZnndMVtSu+2Smq+o/Hw37r0b9gU178b6Rv3u5vXa9uh27X1un7Y9ul2/u3m9GusbgxoHAAAgURw62lV2u+fay7KaXy3Z7Sbsvsk0Rkecs6sdSHQUHwEAYXNdvTjx7vEadX2BJt49XoVPN1+F6Ksw2ZK3IqVlSYMmDNSo6wt09pd6ucdRqwWZ5Hk1ZaBa3hLubHKGXMQEAABIFAPyTsnh8FwsGdP8asnhsMLum0xjdMQ5u9qBREfxEQAQEa7btK+8b6LGzLzYfeuyr8JkS96LlLm69peTdeV9E9XzvB66+XfTNfHu8cof2adNAbL11ZSBcN0S3lIoRUwAAIBEMeu6IxoxuFY2y8iyjGyW0YhBtSr4vC01xSmbZTRycK2eemC/u6+rPZi+rdtDyQtnHq68SBxLrPMCGcNf3sjBte4NaoBExjMfAQBRF8jzIwPZ5MY1jrcdtL1dTemPz1vCjwU1FAAAQELISHdq5+pirdiYr8efrdcdNxz0uQuzq28gOzZ76xuJvFDn0TIvEscS6zx/YwSSx2Yz6AgoPgIAOpxgd+Nuz6hpBSrbdMBrEfO5kihNHgAAAAhBRrqTzWXQISVM8XHJkiW67777NGfOHC1dutRrnwkTJmj79u1t2q+++mr99a9/jfIMAQDSF7tDH6/4RMVr90Rsd2jX5i8tC4G+drAOZjfu9kSqiAkgebAmBdDRna63adxtY1RaniWjdM1dOkRrNjU/sqasIkt2u5HDYWnt5j565YndmjR7tErLv2gPpm/r9lDywpmHKy8SxxLrvEDGaJm3c3UxVzmiw0qI4mNJSYlWrlypggLft8tt3LhRZ86ccX/96aefasSIEZo2bVq0pwgAkGeBsFo12vbodp8FwvbG8Fbsa7n5i2lqvhXatflLuEVGXyJRxASQHFiTAkgGKzbmq7Q8S05jSbJkZGlfRZYkyciSs6n5edel5Vm69aFh7r6u9mD6tm4PJS+cebjyInEssc4LZIyWeSs25nPVIzqsuG84U1dXpxkzZmjVqlXq2bOnz75nnXWWzj33XPfr5ZdfVteuXVnoAUCMeBQIP38Fszu0q3i57dHt2vvcPm17dLt+d/N6NdY3svkLgLhiTQogWRw62lV2u+czrS2r+dWS3W7C7ptMY3SEOQMdVdyLj7Nnz9bkyZM1adKkoN/75JNP6sYbb1RmZma7fRoaGlRTU+PxAgCEJtwCYcvipbPJ6VG89Ln5CwBEGWtSAMliQN4pORye6zVjml8tORxW2H2TaYyOMGego4rrbdfr16/XW2+9pZKS4J/qX1xcrL/97W968sknffZbvHixFi5c2Kb9hhtuUGpq7J7pVVxcrGuuuYY88hIyLx6Z5EXWu+/s0ZJ5N0Y95x+HPlNl03EZSSd0RCX6g6wm6VBJL227Y4Xf9x+v+ETVqpHRFysqS5bK172gsweepcOZH+lMXUPzn3uNUZfMNP3zzZ16rsQWs2N0iXVesn9GOa9FVmNjY0xyOovOsiZN5t+JzpAXj0zyIpxX/r6ueXBZ1HMcDqlbltT8N45iSdcoK7NJklRzMkWWZWSMpayuTWo4c0LduvbwbA+mb6v2kPLCmIc7LxLHEuu8AMZw52VLrxyUXn0wup8dzmvkBSOY9ahlTOuaemwcPnxYo0eP1ssvv+x+rs6ECRM0cuTIdh/u3dKPfvQjvf7669q3z/etfg0NDWpoaHB/XVNTo759+6q6ulrZ2dlhHUMwrrnmGj3//PPkkZeQefHIJK9j5jWcbtS/jXtah0o/Von5g76iGcodmqPCpwN75mPx2j3a9uh2tfynx7IsTbx7vMbMvLjd50FK0pJ5Nyblz5S85MmMZV5NTY26d+8e8/VMMupMa9Jk/p3oDHnxyCSv4+adPi2tWCE9/sgVuuOG/9Ss645Ian4e5KGjXTUg75RmXXdEGelOna63tWkPpm/L9sef/WlIeaHOo2VeJI4l1nn+xnj8z/+mO+54XrNmSRkZ0f/ccF4jLxjBrEfjduXjnj17VFVVpYsuusjd5nA4tGPHDi1btkwNDQ2y2+1e33vy5EmtX79eDz7ov+yflpamtLS0iM0bADqztIxU/cfO7+vFFXtU/sgLmnjTeHeB0Ffh0GXUtAKVbTrgsaN17tAcjZrW/P/ws/kLgFhjTQogGWVkSHfdJb365zqPTUq8bViSke702h5MX1f7q7tDzwtlHq3zInEssc7zNcar7zb/7wh0dHErPk6cOFFlZWUebbfccouGDh2qe+65p91FniRt2LBBDQ0N+t73vhftaQIAWknLSNW1d31Vj/zP2e5CYctdsF1FRW+7YKemp6pwzY1+i5QAECusSQF0FpG84rC99rL3uumxdefF7MrHlnmxuPIx0nm+2oFkErfiY1ZWloYPH+7RlpmZqV69ernbCwsLlZeXp8WLF3v0e/LJJ3XttdeqV69eMZsvAKB9HrtgNzXfUu3aSKb1lYxc3QggkbAmBdAZnK63adxtY1RaniW73cjhsLR2cx+98sRuTZo92qN9zaY+kiWVVfjv27rdKF1zlw4Ja4xg5uHKi8SxxDrPV/vO1cUUIJFU4rrhjD+VlZWy2Tw35D548KBee+01vfTSS3GaFQCgNdcu2K7Co+R9F+xAbs0GgETDmhRAR7diY75Ky7PkNJacTc27K5eWZ+nWh4a1ad9XkSVJMvLft3W7ZMnICmuMYObhyovEscQ6z1f7io35Xm/FBjqqhCo+FhUV+fxakoYMGaI47ZEDAGhHz/weMg7Pc7NxGPXM7+H+OtBbswEg3liTAkg2h452ld1u3AUuSbLbjdd26/P/bHmKa69vMo2RKHN2tQPJxOa/CwAAvo2aVqDcITmyLEu2FJssy/LYSEbyvDXb2eSUMcZ9azYAAACiZ0DeKTkclkebw2F5bTfGs3jmq28yjZEoc3a1A8mE4iMAIGyujWQm3j1eo64v0MS7x6vwac8rGl23Zrfk7dZsAAAARNas645oxOBa2Syj1BSnbJbRyMG1euqB/W3aRwyqVUGAfVu3W5YJe4xg5uHKi8SxxDrPV7tr4xogWSTUbdcAgI7L30YygdyaDQAAgMjLSHdq5+pir7sqe2uXvO/Y7G+Mx5+t1x03HAxrjGDm0TIvEscS6zxf7UAyofgIAIiJUdMKVLbpgMczH1vfmg0AAIDoyEh3solJAuJ/F3QGFB8BADHhujWb3a4BAAASw+l6m8bdNkal5Vmy240cDktrNvWRLKms4ou2tZv76JUndmvS7NEefVu3G6Vr7tIhYY0RzDxceeGMEa+8tZv7aOfqYq5yRKdA8REAEDP+bs0GAABA7KzYmK/S8iw5jeXecXlfRZYkyeiLttLyLN360LA2fVu3S5aMrLDGCGYerrxwxohXXml5llZszOeqR3QKbDgDAAAAAEAndOhoV9ntns/ktqzmV0t2u/Hat732jjhGvOYMdAYUHwEAAAAA6IQG5J2Sw+FZLTOm+dWSw2F57dtee0ccI15zBjoDio8AAAAAAHRCs647ohGDa2WzjFJTnLJZRiMG1aqgVdvIwbV66oH9bfq2brcsE/YYwczDlRfOGPHKGzm41r07NpDseOYjAAAAAACdUEa6UztXF2vFxnwdOtpVA/JOuQtirdva69uy/fFn63XHDQfDGiOYebTMi8SxxDqPzWbQWVB8BAAAAACgk8pId3rd9MRbW3t9Xe2v7q7z+H4oYwQzj9Z5kTiWWOcBnQHFRwAAAAAA4NfpepvXq/dc7WXvddNj687zeQWgvzECuYrQW16oY8QqD+jMKD4CAAAAAACfTtfbNO62MSotz5LdbuRwWFq7uY9eeWK3Js0erdLyLBmla+7SIVqzqY9kSWUV7ff11x7IGK68cMaIRd7O1cUUINGpUXwEAAAAAAA+rdiYr9LyLDmNJWdT887NpeVZuvWhYe52yZKRpX0VWZIko/b7+msPZAxXXjhjxCJvxcZ8brlGp8Zu1wAAAAAAwKdDR7vKbjcebXa78dpuWc2vQPomyhjRzgM6M4qPAAAAAADApwF5p+RweFbWHA7La7sxza9A+ibKGNHOAzqzhCk+LlmyRJZl6c477/TZ78SJE5o9e7Z69+6ttLQ0DR48WJs3b47NJAEAAJDUWJMCgHezrjuiEYNrZbOMUlOcsllGIwfX6qkH9rvbLcvIZhmNGFSrAj99/bUHMoYrL5wxYpHn2ogG6KwS4pmPJSUlWrlypQoKCnz2O3PmjK644grl5ubqueeeU15enj788EP16NEjNhMFAABA0mJNCgDty0h3aufqYq87ObvaH3+2XnfccNDnrs/+xghk52hveaGOEas8oDOLe/Gxrq5OM2bM0KpVq/Twww/77PvUU0/pn//8p3bt2qXU1FRJUv/+/WMwSwAAACQz1qQA4F9GupONU1po7+fBzwjwFPfi4+zZszV58mRNmjTJ70Lv+eef19ixYzV79mz9z//8j3JycnTTTTfpnnvukd1u9/qehoYGNTQ0uL+uqamJ6PwBAADQ8bEmBYDQnK63adxtY1RaniWjdM1dOkRrNvWRLKmsIkt2u5HDYWnt5j565YndmjR7tErL/bcHMoYrL5wxQs3bubqYKxqBAFnGtH4cauysX79eixYtUklJidLT0zVhwgSNHDlSS5cu9dp/6NCh+uCDDzRjxgzdfvvtevfdd3X77bfrjjvu0Pz5872+Z8GCBVq4cGGb9quuusr9l+pYKC4u1pgxY8gjLyHz4pFJXsfOi0cmeeQlemYs8xobG7VlyxZVV1crOzs7JpnJrLOsSZP5d6Iz5MUjk7yOnRerzEOHpP373YmS2s87t1eD/vFpWsDt/sf4Ii/0MULLGzagTgPyTgc0RqiKy9/nM0pewuYFtR41cVJZWWlyc3NNaWmpu238+PFmzpw57b5n0KBBpm/fvqapqcnd9uijj5pzzz233ffU19eb6upq9+vw4cNGkqmuro7IcQRqypQp5JGXsHnxyCSvY+fFI5M88hI9M5Z51dXVcVnPJKPOtCZN5t+JzpAXj0zyOnZerDJ/8hNjUlNd+zxPMZIxNstpbJbTfLH/szGpKQ5z4fk1JjXFEVB7YGNMicAYoeX95LsfGlOyNaovPqPkJXJeMOvRuO12vWfPHlVVVemiiy5SSkqKUlJStH37dj3++ONKSUmRw+Fo857evXtr8ODBHrezfPnLX9Y//vEPnTlzxmtOWlqasrOzPV4AAACAxJoUAMI1YIDU+lTpKt+15HBYGpB3Sg6HFVB7rMcIJQ9AYOJWfJw4caLKysr09ttvu1+jR4/WjBkz9Pbbb3t9Xs64ceP07rvvyun84rkK5eXl6t27t7p06RLL6QMAACAJsCYFgPDMmiWNGCHZbJJlGdksoxGDalUwuFY2yyg1xSmbZTRycK2eemC/RgTYHsgYrrxwxgg1z7WzNQD/4rbhTFZWloYPH+7RlpmZqV69ernbCwsLlZeXp8WLF0uSfvzjH2vZsmWaM2eOfvrTn6qiokK/+MUvdMcdd8R8/gAAAOj4WJMCQHgyMqSdO6UVK6THH6nXHTccdBfmVmzM16GjXTUg75RmXXdEGelO7VxdHHC7vzEef/aLvFDHCCcPQGDivtu1L5WVlbLZvrg4s2/fvtq6davuuusuFRQUKC8vT3PmzNE999wTx1kCAAAgmbEmBQDfMjKku+6SXv1zne66qdLd3vK/3X3TnUG1++r76m7PvFDGCCcPQGASqvhYVFTk82tJGjt2rN54443YTAgAAACdDmtSAEgMp+ttXq9EdLWXvddNj607r017IFczAoidhCo+AgAAAAAAnK63adxtY1RaniW73cjhsLR2cx+98sRuTZo9WqXlWTJK19ylQ9q0u/qv2dRHsqSyCs8xdq4upgAJxFDcNpwBAAAAAADwZsXGfJWWZ8lpLDU22eQ0lkrLs3TrQ8Pc7cZYXttd/fdVZGmflzFWbMyP9+EBnQrFRwAAAAAAkFAOHe0qu914tNntJqh2y2p+eesLIHYoPgIAAAAAgIQyIO+UHA7PyqHDYQXVbkzzy1tfALFD8REAAAAAACSUWdcd0YjBtbJZRqkpTtkso5GDa/XUA/vd7ZZlvLa7+o8YVKsCL2O4NqIBEBtsOAMAAAAAABJKRrpTO1cXe92p2tX++LP1uuOGg23a2e0aSCwUHwEAAAAAQMLJSHfqrpsq221/dXedx/fb6++tDUDscNs1AAAAAAAAgKig+AgAAAAAAAAgKig+AgAAAAAAAIgKio8AAAAAAAAAooLiIwAAAAAAAICooPgIAAAAAAAAICooPgIAAAAAAACICoqPAAAAAAAAAKKC4iMAAAAAAACAqEiY4uOSJUtkWZbuvPPOdvs8/fTTsizL45Wenh67SQIAACCpsSYFAACIrJR4T0CSSkpKtHLlShUUFPjtm52drYMHD7q/tiwrmlMDAABAJ8GaFAAAIPLifuVjXV2dZsyYoVWrVqlnz55++1uWpXPPPdf9Ouecc2IwSwAAACQz1qQAAADREffi4+zZszV58mRNmjQpoP51dXXq16+f+vbtq6lTp2r//v0++zc0NKimpsbjBQAAALTEmhQAACA6LGOMiVf4+vXrtWjRIpWUlCg9PV0TJkzQyJEjtXTpUq/9X3/9dVVUVKigoEDV1dV65JFHtGPHDu3fv1/5+fle37NgwQItXLiwTftVV12l1NTUSB6OT8XFxRozZgx55CVkXjwyyevYefHIJI+8RM+MZV5jY6O2bNmi6upqZWdnxyQzmXWWNWky/050hrx4ZJLXsfPikUkeeYmeSV7kBLUeNXFSWVlpcnNzTWlpqbtt/PjxZs6cOQGPcebMGTNw4EAzb968dvvU19eb6upq9+vw4cNGkqmurg5n+kGbMmUKeeQlbF48Msnr2HnxyCSPvETPjGVedXV1XNYzyagzrUmT+XeiM+TFI5O8jp0Xj0zyyEv0TPIiJ5j1aNw2nNmzZ4+qqqp00UUXudscDod27NihZcuWqaGhQXa73ecYqampGjVqlN599912+6SlpSktLS1i8wYAAEDyYE0KAAAQXXErPk6cOFFlZWUebbfccouGDh2qe+65x+8iT2peGJaVlenqq6+O1jQBAACQxFiTAgAARFfcio9ZWVkaPny4R1tmZqZ69erlbi8sLFReXp4WL14sSXrwwQf11a9+Veeff75OnDihX/3qV/rwww912223xXz+AAAA6PhYkwIAAERX3IqPgaisrJTN9sWG3J999pn+3//7f/rHP/6hnj176uKLL9auXbt0wQUXxHGWAAAASGasSQEAAEKXUMXHoqIin18/9thjeuyxx2I3IQAAAHQ6rEkBAAAix+a/CwAAAAAAAAAEj+IjAAAAAAAAgKig+AgAAAAAAAAgKig+AgAAAAAAAIgKio8AAAAAAAAAooLiIwAAAAAAAICooPgIAAAAAAAAICooPgIAAAAAAACICoqPAAAAAAAAAKKC4iMAAAAAAACAqKD4CAAAAAAAACAqKD4CAAAAAAAAiAqKjwAAAAAAAACiguIjAAAAAAAAgKig+AgAAAAAAAAgKig+AgAAAAAAAIiKhCk+LlmyRJZl6c4772y3z8aNGzV69Gj16NFDmZmZGjlypNauXRu7SQIAACCpsSYFAACIrJR4T0CSSkpKtHLlShUUFPjsd9ZZZ+n+++/X0KFD1aVLF23atEm33HKLcnNzdeWVV8ZotgAAAEhGrEkBAAAiL+5XPtbV1WnGjBlatWqVevbs6bPvhAkT9J3vfEdf/vKXNXDgQM2ZM0cFBQV67bXXYjRbAAAAJCPWpAAAANER9+Lj7NmzNXnyZE2aNCmo9xljtG3bNh08eFCXX355u/0aGhpUU1Pj8QIAAABaYk0KAAAQHZYxxsQrfP369Vq0aJFKSkqUnp6uCRMmaOTIkVq6dGm776murlZeXp4aGhpkt9v129/+Vrfeemu7/RcsWKCFCxe2ab/qqquUmpoaicMISHFxscaMGUMeeQmZF49M8jp2XjwyySMv0TNjmdfY2KgtW7aourpa2dnZMclMZp1lTZrMvxOdIS8emeR17Lx4ZJJHXqJnkhc5Qa1HTZxUVlaa3NxcU1pa6m4bP368mTNnjs/3ORwOU1FRYfbu3WseeeQR0717d/Pqq6+227++vt5UV1e7X4cPHzaSTHV1dYSOJDBTpkwhj7yEzYtHJnkdOy8emeSRl+iZscyrrq6Oy3omGXWmNWky/050hrx4ZJLXsfPikUkeeYmeSV7kBLMejduGM3v27FFVVZUuuugid5vD4dCOHTu0bNky91+RW7PZbDr//PMlSSNHjtTf//53LV68WBMmTPCak5aWprS0tKgcAwAAADo21qQAAADRFbfi48SJE1VWVubRdsstt2jo0KG65557vC7yvHE6nWpoaIjGFAEAAJDkWJMCAABEV9yKj1lZWRo+fLhHW2Zmpnr16uVuLywsVF5enhYvXixJWrx4sUaPHq2BAweqoaFBmzdv1tq1a7V8+fKYzx8AAAAdH2tSAACA6Ipb8TEQlZWVstm+2JD75MmTuv3223XkyBFlZGRo6NCh+v3vf68bbrghjrMEAABAMmNNCgAAELqEKj4WFRX5/Prhhx/Www8/HLsJAQAAoNNhTQoAABA5Nv9dAAAAAAAAACB4FB8BAAAAAAAARAXFRwAAAAAAAABRQfERAAAAAAAAQFRQfAQAAAAAAAAQFRQfAQAAAAAAAEQFxUcAAAAAAAAAUUHxEQAAAAAAAEBUUHwEAAAAAAAAEBUUHwEAAAAAAABEBcVHAAAAAAAAAFFB8REAAAAAAABAVFB8BAAAAAAAABAVFB8BAAAAAAAARAXFRwAAAAAAAABRQfERAAAAAAAAQFQkTPFxyZIlsixLd955Z7t9Vq1apa997Wvq2bOnevbsqUmTJqm4uDh2kwQAAEBSY00KAAAQWQlRfCwpKdHKlStVUFDgs19RUZGmT5+uV199Va+//rr69u2rb37zmzp69GiMZgoAAIBkxZoUAAAg8uJefKyrq9OMGTO0atUq9ezZ02ffP/zhD7r99ts1cuRIDR06VKtXr5bT6dS2bdtiNFsAAAAkI9akAAAA0RH34uPs2bM1efJkTZo0Kej3njp1So2NjTrrrLPa7dPQ0KCamhqPFwAAANASa1IAAIDosIwxJl7h69ev16JFi1RSUqL09HRNmDBBI0eO1NKlSwN6/+23366tW7dq//79Sk9P99pnwYIFWrhwYZv2q666SqmpqeFMPyjFxcUaM2YMeeQlZF48Msnr2HnxyCSPvETPjGVeY2OjtmzZourqamVnZ8ckM5l1ljVpMv9OdIa8eGSS17Hz4pFJHnmJnkle5AS1HjVxUllZaXJzc01paam7bfz48WbOnDkBvX/x4sWmZ8+eHu/3pr6+3lRXV7tfhw8fNpJMdXV1ONMP2pQpU8gjL2Hz4pFJXsfOi0cmeeQlemYs86qrq+OynklGnWlNmsy/E50hLx6Z5HXsvHhkkkdeomeSFznBrEdTol8L9W7Pnj2qqqrSRRdd5G5zOBzasWOHli1bpoaGBtntdq/vfeSRR7RkyRK98sorfh8InpaWprS0tIjOHQAAAMmBNSkAAEB0xa34OHHiRJWVlXm03XLLLRo6dKjuueeedhd5//Ef/6FFixZp69atGj16dCymCgAAgCTFmhQAACC64lZ8zMrK0vDhwz3aMjMz1atXL3d7YWGh8vLytHjxYknSL3/5S/37v/+71q1bp/79++sf//iHJKlbt27q1q1bbA8AAAAAHR5rUgAAgOiK+27XvlRWVurYsWPur5cvX64zZ87o+uuvV+/evd2vRx55JI6zBAAAQDJjTQoAABC6uF356E1RUZHPrz/44IOYzQUAAACdE2tSAACAyEnoKx8BAAAAAAAAdFwUHwEAAAAAAABEBcVHAAAAAAAAAFFB8REAAAAAAABAVFB8BAAAAAAAABAVFB8BAAAAAAAARAXFRwAAAAAAAABRQfERAAAAAAAAQFRQfAQAAAAAAAAQFRQfAQAAAAAAAEQFxUcAAAAAAAAAUUHxEQAAAAAAAEBUUHwEAAAAAAAAEBUUHwEAAAAAAABEBcVHAAAAAAAAAFFB8REAAAAAAABAVCRM8XHJkiWyLEt33nlnu33279+vf/mXf1H//v1lWZaWLl0as/kBAAAg+bEmBQAAiKyEKD6WlJRo5cqVKigo8Nnv1KlTGjBggJYsWaJzzz03RrMDAABAZ8CaFAAAIPLiXnysq6vTjBkztGrVKvXs2dNn36985Sv61a9+pRtvvFFpaWkxmiEAAACSHWtSAACA6Ih78XH27NmaPHmyJk2aFJXxGxoaVFNT4/ECAAAAWmJNCgAAEB0p8Qxfv3693nrrLZWUlEQtY/HixVq4cGGb9htuuEGpqalRy22tuLhY11xzDXnkJWRePDLJ69h58cgkj7xEz4xlXmNjY0xyOovOsiZN5t+JzpAXj0zyOnZePDLJIy/RM8mLnKDWoyZOKisrTW5uriktLXW3jR8/3syZMyeg9/fr18889thjfvvV19eb6upq9+vw4cNGkqmurg5x5qGZMmUKeeQlbF48Msnr2HnxyCSPvETPjGVedXV1XNYzyagzrUmT+XeiM+TFI5O8jp0Xj0zyyEv0TPIiJ5j1aNyufNyzZ4+qqqp00UUXudscDod27NihZcuWqaGhQXa7PeyctLQ0nsUDAAAAr1iTAgAARFfcio8TJ05UWVmZR9stt9yioUOH6p577onIIg8AAADwhTUpAABAdMWt+JiVlaXhw4d7tGVmZqpXr17u9sLCQuXl5Wnx4sWSpDNnzujAgQPu/z569KjefvttdevWTeeff35sDwAAAAAdHmtSAACA6IrrhjP+VFZWymb7YkPujz76SKNGjXJ//cgjj+iRRx7R+PHjVVRUFIcZAgAAINmxJgUAAAhdQhUfWy/WWn/dv39/GWNiNyEAAAB0OqxJAQAAIsfmvwsAAAAAAAAABI/iIwAAAAAAAICooPgIAAAAAAAAICooPgIAAAAAAACICoqPAAAAAAAAAKKC4iMAAAAAAACAqKD4CAAAAAAAACAqKD4CAAAAAAAAiAqKjwAAAAAAAACiguIjAAAAAAAAgKig+AgAAAAAAAAgKig+AgAAAAAAAIgKio8AAAAAAAAAooLiIwAAAAAAAICooPgIAAAAAAAAICooPgIAAAAAAACIirgWH5cvX66CggJlZ2crOztbY8eO1Ysvvthu/8bGRj344IMaOHCg0tPTNWLECG3ZsiWGMwYAAEAyYT0KAAAQXXEtPubn52vJkiXas2ePdu/erW984xuaOnWq9u/f77X/vHnztHLlSv3nf/6nDhw4oFmzZuk73/mO9u7dG+OZAwAAIBmwHgUAAIiuuBYfp0yZoquvvlqDBg3S4MGDtWjRInXr1k1vvPGG1/5r167Vz3/+c1199dUaMGCAfvzjH+vqq6/Wo48+GuOZAwAAIBmwHgUAAIiulHhPwMXhcGjDhg06efKkxo4d67VPQ0OD0tPTPdoyMjL02muvtTtuQ0ODGhoa3F/X1NREZsIAAABIKtFaj7rex5oUAAB0RpYxxsRzAmVlZRo7dqzq6+vVrVs3rVu3TldffbXXvjfddJNKS0v1l7/8RQMHDtS2bds0depUORwOj8VcSwsWLNDChQvbtF911VVKTU2N6LH4UlxcrDFjxpBHXkLmxSOTvI6dF49M8shL9MxY5jU2NmrLli2qrq5WdnZ2TDKTWbTXo1JirEmT+XeiM+TFI5O8jp0Xj0zyyEv0TPIiJ6j1qImzhoYGU1FRYXbv3m3uvfdec/bZZ5v9+/d77VtVVWWmTp1qbDabsdvtZvDgweb222836enp7Y5fX19vqqur3a/Dhw8bSaa6ujpah+TVlClTyCMvYfPikUlex86LRyZ55CV6Zizzqqur47KeSVbRXo8akxhr0mT+negMefHIJK9j58UjkzzyEj2TvMgJZj0a12c+SlKXLl10/vnn6+KLL9bixYs1YsQI/eY3v/HaNycnR3/5y1908uRJffjhh3rnnXfUrVs3DRgwoN3x09LS3LsXul4AAACAS7TXoxJrUgAA0HnFvfjYmtPp9HnLiiSlp6crLy9PTU1N+tOf/qSpU6fGaHYAAABIdqxHAQAAIieuG87cd999+ta3vqXzzjtPtbW1WrdunYqKirR161ZJUmFhofLy8rR48WJJ0ptvvqmjR49q5MiROnr0qBYsWCCn06l/+7d/i+dhAAAAoINiPQoAABBdcS0+VlVVqbCwUMeOHVP37t1VUFCgrVu36oorrpAkVVZWymb74uLM+vp6zZs3T4cOHVK3bt109dVXa+3aterRo0ecjgAAAAAdGetRAACA6Ipr8fHJJ5/0+f2ioiKPr8ePH68DBw5EcUYAAADoTFiPAgAARFfCPfMRAAAAAAAAQHKg+AgAAAAAAAAgKig+AgAAAAAAAIgKio8AAAAAAAAAooLiIwAAAAAAAICooPgIAAAAAAAAICooPgIAAAAAAACICoqPAAAAAAAAAKKC4iMAAAAAAACAqKD4CAAAAAAAACAqKD4CAAAAAAAAiAqKjwAAAAAAAACiguIjAAAAAAAAgKig+AgAAAAAAAAgKig+AgAAAAAAAIgKio8AAAAAAAAAoiKuxcfly5eroKBA2dnZys7O1tixY/Xiiy/6fM/SpUs1ZMgQZWRkqG/fvrrrrrtUX18foxkDAAAgmbAeBQAAiK6UeIbn5+dryZIlGjRokIwxWrNmjaZOnaq9e/dq2LBhbfqvW7dO9957r5566ildeumlKi8v1/e//31ZlqVf//rXcTgCAAAAdGSsRwEAAKIrrsXHKVOmeHy9aNEiLV++XG+88YbXxd6uXbs0btw43XTTTZKk/v37a/r06XrzzTdjMl8AAAAkF9ajAAAA0ZUwz3x0OBxav369Tp48qbFjx3rtc+mll2rPnj0qLi6WJB06dEibN2/W1Vdf3e64DQ0Nqqmp8XgBAAAArUVrPSqxJgUAAJ2XZYwx8ZxAWVmZxo4dq/r6enXr1k3r1q3zuXh7/PHHNXfuXBlj1NTUpFmzZmn58uXt9l+wYIEWLlzYpv2qq65SampqRI4hEMXFxRozZgx55CVkXjwyyevYefHIJI+8RM+MZV5jY6O2bNmi6upqZWdnxyQzmUV7PSolxpo0mX8nOkNePDLJ69h58cgkj7xEzyQvcoJaj5o4a2hoMBUVFWb37t3m3nvvNWeffbbZv3+/176vvvqqOeecc8yqVavMvn37zMaNG03fvn3Ngw8+2O749fX1prq62v06fPiwkWSqq6ujdUheTZkyhTzyEjYvHpnkdey8eGSSR16iZ8Yyr7q6Oi7rmWQV7fWoMYmxJk3m34nOkBePTPI6dl48MskjL9EzyYucYNajcX3moyR16dJF559/viTp4osvVklJiX7zm99o5cqVbfo+8MADmjlzpm677TZJ0oUXXqiTJ0/qhz/8oe6//37ZbG3vIk9LS1NaWlp0DwIAAAAdVrTXoxJrUgAA0HklzDMfXZxOpxoaGrx+79SpU20WdHa7XZJk4nv3OAAAAJIE61EAAIDIieuVj/fdd5++9a1v6bzzzlNtba3WrVunoqIibd26VZJUWFiovLw8LV68WFLzboS//vWvNWrUKF1yySV699139cADD2jKlCnuRR8AAAAQKNajAAAA0RXX4mNVVZUKCwt17Ngxde/eXQUFBdq6dauuuOIKSVJlZaXHX5bnzZsny7I0b948HT16VDk5OZoyZYoWLVoUr0MAAABAB8Z6FAAAILriWnx88sknfX6/qKjI4+uUlBTNnz9f8+fPj+KsAAAA0FmwHgUAAIiuhHvmIwAAAAAAAIDkQPERAAAAAAAAQFRQfAQAAAAAAAAQFRQfAQAAAAAAAEQFxUcAAAAAAAAAUUHxEQAAAAAAAEBUUHwEAAAAAAAAEBUUHwEAAAAAAABEBcVHAAAAAAAAAFFB8REAAAAAAABAVFB8BAAAAAAAABAVFB8BAAAAAAAARAXFRwAAAAAAAABRQfERAAAAAAAAQFRQfAQAAAAAAAAQFRQfAQAAAAAAAERFXIuPy5cvV0FBgbKzs5Wdna2xY8fqxRdfbLf/hAkTZFlWm9fkyZNjOGsAAAAkC9ajAAAA0ZUSz/D8/HwtWbJEgwYNkjFGa9as0dSpU7V3714NGzasTf+NGzfqzJkz7q8//fRTjRgxQtOmTYvltAEAAJAkWI8CAABEV1yLj1OmTPH4etGiRVq+fLneeOMNr4u9s846y+Pr9evXq2vXriz2AAAAEBLWowAAANEV1+JjSw6HQxs2bNDJkyc1duzYgN7z5JNP6sYbb1RmZma7fRoaGtTQ0OD+urq6WpJUU1MT3oSD1NjYGNNM8shL9EzyOnZePDLJIy/RM2OZ58oxxsQkr7OI1npUSow1aTL/TnSGvHhkktex8+KRSR55iZ5JXuQEtR41cbZv3z6TmZlp7Ha76d69u/nrX/8a0PvefPNNI8m8+eabPvvNnz/fSOLFixcvXrx48Uq61+HDhyOxHOv0or0eNYY1KS9evHjx4sUrOV+BrEctY+L7J/MzZ86osrJS1dXVeu6557R69Wpt375dF1xwgc/3/ehHP9Lrr7+uffv2+ezX+q/MJ06cUL9+/VRZWanu3btH5Bj8qampUd++fXX48GFlZ2eTR15C5cUjk7yOnRePTPLIS/TMWOcZY1RbW6s+ffrIZovr/oFJIdrrUSn+a9Jk/51I9rx4ZJLXsfPikUkeeYmeSV5kBbMejftt1126dNH5558vSbr44otVUlKi3/zmN1q5cmW77zl58qTWr1+vBx980O/4aWlpSktLa9PevXv3mP1Cubh2USSPvETMi0cmeR07Lx6Z5JGX6JmxzIvVH1E7g2ivR6XEWZMm8+9EZ8iLRyZ5HTsvHpnkkZfomeRFTqDr0YT7U7nT6fT4q7A3GzZsUENDg773ve/FaFYAAADoLFiPAgAARE5cr3y877779K1vfUvnnXeeamtrtW7dOhUVFWnr1q2SpMLCQuXl5Wnx4sUe73vyySd17bXXqlevXvGYNgAAAJIE61EAAIDoimvxsaqqSoWFhTp27Ji6d++ugoICbd26VVdccYUkqbKyss194wcPHtRrr72ml156KaTMtLQ0zZ8/3+ttL9ES60zyyEv0TPI6dl48MskjL9Ez43GMiIx4rEel5P+MktfxM8nr2HnxyCSPvETPJC9+4r7hDAAAAAAAAIDklHDPfAQAAAAAAACQHCg+AgAAAAAAAIgKio8AAAAAAAAAooLiIwAAAAAAAICoSKri4+LFi/WVr3xFWVlZys3N1bXXXquDBw/6fM+ECRNkWVab1+TJk6OW2djYqAcffFADBw5Uenq6RowYoS1btgSUt3z5chUUFCg7O1vZ2dkaO3asXnzxxXb779+/X//yL/+i/v37y7IsLV26NKCcUPNWrVqlr33ta+rZs6d69uypSZMmqbi4OGp5La1fv16WZenaa6+Nat6JEyc0e/Zs9e7dW2lpaRo8eLA2b94c1cylS5dqyJAhysjIUN++fXXXXXepvr4+4EyXJUuWyLIs3XnnnT77bdiwQUOHDlV6erouvPDCoI4vlMxwP6fB5m3cuFGjR49Wjx49lJmZqZEjR2rt2rVRy3v66afbnGPS09OjlhfueS3YvHDOaZK0YMGCNnMdOnSoz/eE8xkNNi/c81oox+cSynktlLxwz2uhZIZzXgs2L9zPqCQdPXpU3/ve99SrVy9lZGTowgsv1O7du9vtf+zYMd10000aPHiwbDab3/Mukkus16SsRz2Fe94OJbOljrAmjed6VIr9mpT1aGTXo4FmdqQ1abKvR0PJbKkjrElZj7aVSOvRlLglR8H27ds1e/ZsfeUrX1FTU5N+/vOf65vf/KYOHDigzMxMr+/ZuHGjzpw54/76008/1YgRIzRt2rSoZc6bN0+///3vtWrVKg0dOlRbt27Vd77zHe3atUujRo3ymZefn68lS5Zo0KBBMsZozZo1mjp1qvbu3athw4a16X/q1CkNGDBA06ZN01133RXQMYWTV1RUpOnTp+vSSy9Venq6fvnLX+qb3/ym9u/fr7y8vIjnuXzwwQeaO3euvva1r0X1+M6cOaMrrrhCubm5eu6555SXl6cPP/xQPXr0iFrmunXrdO+99+qpp57SpZdeqvLycn3/+9+XZVn69a9/HXBuSUmJVq5cqYKCAp/9du3apenTp2vx4sX69re/rXXr1unaa6/VW2+9peHDhwecF0xmuJ/TYPPOOuss3X///Ro6dKi6dOmiTZs26ZZbblFubq6uvPLKiOdJUnZ2tsf/I2hZVsA5weaFe14LNi+cc5rLsGHD9Morr7i/Tklp/5+nSHxGg8kL97wWbJ5LqOe1YPMicV4LNjMS57Vg8sL9jH722WcaN26cvv71r+vFF19UTk6OKioq1LNnz3bf09DQoJycHM2bN0+PPfZYQMeE5BHrNSnrUU+ROG8n+5o0XutRKfZrUtajX4jEejSYzI62Jk329WiwmS4daU3KetRTQq1HTRKrqqoyksz27dsDfs9jjz1msrKyTF1dXdQye/fubZYtW+bRdt1115kZM2aElNmzZ0+zevVqv/369etnHnvssZAyQskzxpimpiaTlZVl1qxZE7W8pqYmc+mll5rVq1ebm2++2UydOjXkLH95y5cvNwMGDDBnzpwJKyOYzNmzZ5tvfOMbHm0/+9nPzLhx4wIev7a21gwaNMi8/PLLZvz48WbOnDnt9v3ud79rJk+e7NF2ySWXmB/96EcB5wWb2VKon9NQ81xGjRpl5s2bF5W8//7v/zbdu3cPaj7h5LUWynktmLxwz2nz5883I0aMCHhu4X5Gg81rLdjzWih54ZzXgs2LxHkt2Mxwz2vB5oX7Gb3nnnvMZZddFnBea6Gck5BcYr0mZT3qKRLr0UAyO/qaNNrrUWNivyZlPfqFSKxHg81sLZHXpMm+Hg01syOtSVmP+hbv9WhS3XbdWnV1taTmvyoF6sknn9SNN97Y7l+JI5HZ0NDQ5hL3jIwMvfbaa0FlORwOrV+/XidPntTYsWODn2yQQsk7deqUGhsbg/rfINi8Bx98ULm5ufrBD34QdEawec8//7zGjh2r2bNn65xzztHw4cP1i1/8Qg6HI2qZl156qfbs2eO+rP7QoUPavHmzrr766oBzZs+ercmTJ2vSpEl++77++utt+l155ZV6/fXXA84LNjMSQs0zxmjbtm06ePCgLr/88qjl1dXVqV+/furbt6+mTp2q/fv3BzXPcH6eoZzXgsmLxDmtoqJCffr00YABAzRjxgxVVla22zcSn9Fg8loL5bwWbF6457Vg8iJ1XgsmMxLntWDywv2MPv/88xo9erSmTZum3NxcjRo1SqtWrQp4rkCs16SsRz2Fsx4NJrOjrkljtR6VYr8mZT3qKdz1aCiZLSX6mjTZ16OhZHa0NSnr0QQWt7JnlDkcDjN58uSg/hr35ptvGknmzTffjGrm9OnTzQUXXGDKy8uNw+EwL730ksnIyDBdunQJKGffvn0mMzPT2O120717d/PXv/41oPeF+he8UPOMMebHP/6xGTBggDl9+nRU8v7v//7P5OXlmePHjxtjTEh/ZQ4mb8iQISYtLc3ceuutZvfu3Wb9+vXmrLPOMgsWLIhapjHG/OY3vzGpqakmJSXFSDKzZs0KOOuZZ54xw4cPd/9v4O8vHqmpqWbdunUebU888YTJzc2NWmZLoXxOQ8k7ceKEyczMNCkpKSYtLc08+eSTUcvbtWuXWbNmjdm7d68pKioy3/72t012drY5fPhwVPJaCuW8FmxeuOe0zZs3mz/+8Y+mtLTUbNmyxYwdO9acd955pqamxmv/cD+jwea1Fux5Ldi8cM9rweZF4rwWys80nPNasHnhfkbT0tJMWlqaue+++8xbb71lVq5cadLT083TTz8d0Pvj/ZdmxFes16SsR9sKZT0abGZHXJPGcj1qTOzXpKxHPYW7Hg0ls6VEX5Mm+3o0lMyOtiZlPepbvNejSVt8nDVrlunXr19QJ9Mf/vCH5sILL4x6ZlVVlZk6daqx2WzGbrebwYMHm9tvv92kp6cHlNPQ0GAqKirM7t27zb333mvOPvtss3//fr/vC3WxF2re4sWLTc+ePU1paWlU8mpqakz//v3N5s2b3W2hLPSCOb5BgwaZvn37mqamJnfbo48+as4999yoZb766qvmnHPOMatWrTL79u0zGzduNH379jUPPvig35zKykqTm5vr8b9BtBd6oWS2FOznNNQ8h8NhKioqzN69e80jjzxiunfvbl599dWo5bV05swZM3DgwIBuqwk3L9jzWih54Z7TWvvss89MdnZ2u7d+RaJAHkxeS6Ge1wLNi9R5LdA8YyJ3XgsmM5zzWih54X5GU1NTzdixYz3afvrTn5qvfvWrAb0/3os9xFes16SsRz2Fc95O9jVprNajxsR+Tcp61L9g1qORyOxoa9JkX4/6y0yGNSnrUU/xXo8mZfFx9uzZJj8/3xw6dCjg99TV1Zns7GyzdOnSmGWePn3aHDlyxDidTvNv//Zv5oILLggpe+LEieaHP/yh336ResZOIHm/+tWvTPfu3U1JSUnU8vbu3WskGbvd7n5ZlmUsyzJ2u928++67Ec0zxpjLL7/cTJw40aNt8+bNRpJpaGgIKc9f5mWXXWbmzp3r0bZ27VqTkZFhHA6Hz3H//Oc/t/kZSXL/jFqe2F369u3b5nPy7//+76agoCCgYwkls6VgP6fh5rn84Ac/MN/85jdjlnf99debG2+8Map5oZzXwsmL1DnNGGNGjx5t7r33Xq/fC/czGmyeSyTPa+3lReu85uv4onVe85UZznktlDyXUD+j5513nvnBD37g0fbb3/7W9OnTJ6D3x3uxh/iJ9ZqU9ainSJ63fWUmy5o0WutRY2K/JmU9Gtn1aLiZHXVNmuzrUV+ZybImZT36hXivR5PqmY/GGP3kJz/Rn//8Z/3v//6vvvSlLwX83g0bNqihoUHf+973YpaZnp6uvLw8NTU16U9/+pOmTp0aVLaL0+lUQ0NDSO+NRt5//Md/6KGHHtKWLVs0evToqOUNHTpUZWVlevvtt92va665Rl//+tf19ttvq2/fvhHNk6Rx48bp3XffldPpdLeVl5erd+/e6tKlS0h5/jJPnTolm83zV9Vut0tq/vz5MnHixDY/o9GjR2vGjBl6++233eO0NHbsWG3bts2j7eWXXw74uUqhZIYjUnmB/h5FIs/hcKisrEy9e/eOal4o57Vw8iJ1Tqurq9N7773X7s8n3M9osHlSZM9rvvKicV7zd3zROK/5ywznvBZKnkuon9Fx48Z57A4qNf+M+vXrF/Rc0TnEek3KerStSK9HfWUmy5o0WutRKfZrUtajkV2PhpvZEdekyb4e9ZeZDGtS1qMJJm5lzyj48Y9/bLp3726KiorMsWPH3K9Tp065+8ycOdNrJfqyyy4zN9xwQ0wy33jjDfOnP/3JvPfee2bHjh3mG9/4hvnSl75kPvvsM7959957r9m+fbt5//33zb59+8y9995rLMsyL730kteshoYGs3fvXrN3717Tu3dvM3fuXLN3715TUVER0PEFm7dkyRLTpUsX89xzz3n8PGpra6OS11qwl4IHm1dZWWmysrLMT37yE3Pw4EGzadMmk5ubax5++OGoZc6fP99kZWWZZ555xhw6dMi89NJLZuDAgea73/1uwJkttf6LR+u8nTt3mpSUFPPII4+Yv//972b+/PkmNTXVlJWVhZQXSGa4n9Ng837xi1+Yl156ybz33nvmwIED5pFHHjEpKSlm1apVUclbuHCh2bp1q3nvvffMnj17zI033mjS09MDul0slDyXUM9rweaFc04zxpi7777bFBUVmffff9/s3LnTTJo0yZx99tmmqqrKa164n9Fg88I9rwWb11qw57Vg8yJxXgs2M9zzWrB54X5Gi4uLTUpKilm0aJGpqKgwf/jDH0zXrl3N73//e3efe++918ycOdPjfa7z2sUXX2xuuukms3fv3pB/79GxxHpNyno0suftUDJbS/Q1abzXo8bEfk3KejSy69FAMl06wpo02dejoWS2luhrUtajib0eTarioySvr//+7/929xk/fry5+eabPd73zjvvGEnuf2yjnVlUVGS+/OUvm7S0NNOrVy8zc+ZMc/To0YDybr31VtOvXz/TpUsXk5OTYyZOnOgx79ZZ77//vtf5jR8/Pip5/fr185o3f/78qOS1FuwJMZS8Xbt2mUsuucSkpaWZAQMGmEWLFgV8a0MomY2NjWbBggVm4MCBJj093fTt29fcfvvtAZ+kWmv9j7a3Y/zjH/9oBg8ebLp06WKGDRsW1EPdQ8kM93MabN79999vzj//fJOenm569uxpxo4da9avXx9SViB5d955pznvvPNMly5dzDnnnGOuvvpq89Zbb0Utz5jwzmvB5oVzTjPGmBtuuMH07t3bdOnSxeTl5ZkbbrjB41aOSH9Gg80L97wWyvG1FOx5LZS8cM9rwWaGe14LNi/cz6gxxrzwwgtm+PDhJi0tzQwdOtT813/9l8f3b7755jbnLG+fm379+gWVi44p1mtS1qORPW+Hktlaoq9J470edWXEck3KejSy69FAMo3pOGvSZF+PhnqMLSX6mpT1aGKvR63PJwMAAAAAAAAAEZVUz3wEAAAAAAAAkDgoPgIAAAAAAACICoqPAAAAAAAAAKKC4iMAAAAAAACAqKD4CAAAAAAAACAqKD4CAAAAAAAAiAqKjwAAAAAAAACiguIjAAAAAAAAgKig+AgAEeBwOHTppZfquuuu82ivrq5W3759df/998dpZgAAAOgMWI8CSFSWMcbEexIAkAzKy8s1cuRIrVq1SjNmzJAkFRYWqrS0VCUlJerSpUucZwgAAIBkxnoUQCKi+AgAEfT4449rwYIF2r9/v4qLizVt2jSVlJRoxIgR8Z4aAAAAOgHWowASDcVHAIggY4y+8Y1vyG63q6ysTD/96U81b968eE8LAAAAnQTrUQCJhuIjAETYO++8oy9/+cu68MIL9dZbbyklJSXeUwIAAEAnwnoUQCJhwxkAiLCnnnpKXbt21fvvv68jR47EezoAAADoZFiPAkgkXPkIABG0a9cujR8/Xi+99JIefvhhSdIrr7wiy7LiPDMAAAB0BqxHASQarnwEgAg5deqUvv/97+vHP/6xvv71r+vJJ59UcXGxVqxYEe+pAQAAoBNgPQogEXHlIwBEyJw5c7R582aVlpaqa9eukqSVK1dq7ty5KisrU//+/eM7QQAAACQ11qMAEhHFRwCIgO3bt2vixIkqKirSZZdd5vG9K6+8Uk1NTdzuAgAAgKhhPQogUVF8BAAAAAAAABAVPPMRAAAAAAAAQFRQfAQAAAAAAAAQFRQfAQAAAAAAAEQFxUcAAAAAAAAAUUHxEQAAAAAAAEBUUHwEAAAAAAAAEBUUHwEAAAAAAABEBcVHAAAAAAAAAFFB8REAAAAAAABAVFB8BAAAAAAAABAVFB8BAAAAAAAARAXFRwAAAAAAAABR8f8B4cxeTwiCGy0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKCigKKGiwxUqwxQZYYsVurBEw9t57gkajsUYx9gK2V2PviqhgxNg1EcVCYscCNlSalPn+4JvJLlvYBZbm+T0PjzLt3tmd3TncmblXJgiCACIiIiIiIiIiIiIiIiIqcAzyugJERERERERERERERERElDW82EdERERERERERERERERUQPFiHxEREREREREREREREVEBxYt9RERERERERERERERERAUUL/YRERERERERERERERERFVC82EdERERERERERERERERUQPFiHxEREREREREREREREVEBxYt9RERERERERERERERERAUUL/YRERERERERERERERERFVC82EdERERERJQPpaamYtmyZahXrx4sLS0hk8kgk8nQqVMnAEBoaKg0LTQ0NEfL1ue2iYiIiAoy5iQiyo94sY8on5IPDtr+jBkzJq+rTZnw9PSU3q9vvvlG6/U8PDx0Ph7evXuntJ2IiAgsXLgQ7du3h7OzM0xNTWFubo7y5cujZ8+eOHr0aA7uLRERUf6mLm8ZGRnB2toa5cuXR9OmTTF27Fjs2bMHnz59ytX69erVC2PGjMHly5fx4cOHXC27oGC2IiIiynufPn3C9u3b0a9fP1SpUgU2NjYwNjaGra0t3NzcMHToUJw8eRJpaWl5XVXKQZs2bZJykqGhIZ4+farVeoGBgTrnsKVLlyptJzY2Ftu2bYOvry9q1aoFKysrGBsbo2TJkvD09MTixYtV5jeiwsoorytARPS5ePToEc6cOSP9furUKTx79gz29va5Ur63tzc2b96sct7Dhw/x8OFD/P7772jVqhV27NiB4sWL50q9iIiI8pvU1FS8ffsWb9++xcOHD3H27FksXboUJUuWxKhRozBlyhQYGen3T6k///wTu3btAgC0a9cOY8aMgZ2dHWQyGSwtLfVatjZmzpyJWbNmAQAEQciTOjBbERER5b29e/di/PjxePjwodK8169f4/Xr17h27RpWr16NSpUqYcmSJWjXrl3uVzQTDx8+RPny5QEAAQEB8PHxydsKFQCbNm2S/p+WloatW7diypQpuVL2sWPH0LlzZyQlJSnNe/XqFUJDQxEaGopFixbhf//7Hzw9PXOlXkR5iRf7iAqAoUOHYtiwYZkuZ2trmwu1oazasmULBEGAiYkJUlNTkZKSgq1bt2LSpEk6bSc8PFyr5TI2BEZFRQEArK2t0a1bN3h4eMDZ2RlGRka4fv06lixZgrt37yIoKAheXl44c+YMDAz4ADgREX0eMuatjx8/4u3bt7hx4wZOnTqFkydPIiYmBj/88AMOHTqEw4cPo2TJknqrz8mTJwEAhoaG+N///qfyAp+Hh4feLrTpc9s5hdmKiIgob82ePRs//vij9HvLli3RoUMHfPnllyhevDjevHmDu3fv4tChQwgODsa9e/cwffr0fHmxTxcFISfp25MnT6QuTIsWLYqPHz9iy5YtOl/smzNnDjp27JjpcmXKlFH4/fXr10hKSoKBgQFatmyJ1q1bo1atWihevDiePn2Kbdu24ffff8eLFy/Qvn17nDt3DrVr19apbkQFDS/2ERUApUqVQvXq1fO6GpRNW7ZsAQC0b98eCQkJOHr0KLZs2aJzg1RWj4WyZctizZo18Pb2homJicK8unXrom/fvmjVqhXCwsIQFhaGrVu3ol+/flkqi4iIqKBRl7fatGmDyZMnIyIiAn379sX169dx6dIldO7cGadPn0aRIkX0Uh/xQpKdnV2+eJIvP2K2IiIiyjsBAQHShb5SpUph586dcHd3V1quRYsWGD58OG7evImxY8ciJiYmt6tKeiDedGVsbIxFixZhyJAhiIiIwJUrV1CnTh2tt+Pg4JClLGZsbIzBgwdj2rRpKFeunMI8V1dXeHl5oVGjRhg1ahTi4+Mxbtw4nD59WudyiAoS3lZIRJQLLly4gHv37gEA+vTpg759+wIAbt68iWvXruVKHQICAjBo0CClxiiRubk5Vq1aJf2+e/fuXKkXERFRQfDll1/i3LlzcHV1BQCcO3cOK1as0Ft5YpdExsbGeiujIGO2IiIiyjtRUVEYMWIEAMDCwgJnzpxReaFPXvXq1REUFIQJEybkRhVJz8Sbrtq0aQNvb29YWVkBgNouznNajx49sHr1aqULffJGjhwpXXg8c+YMXr16lSt1I8orvNhHVEgJgoBWrVpBJpPByMgI58+fV7usv7+/NOCtn5+fymU+fPiAxYsXo1mzZihdujSKFCkCS0tLuLq6YuTIkTh37pza7aempmLTpk1o37497O3tYWJiAhsbGzRu3BhLlixBQkKCxn25evUqvv/+e1SqVAkWFhYwNTVF2bJl4ebmhuHDh+PgwYMqu09ITEyEv78/PDw8ULJkSRgbG8Pa2hqVK1dGmzZtsGTJEpV9yuuDGHZKlCiBdu3aoVOnTihWrJjCvPygevXqUnew//77bx7XhoiIKH8xMzPDli1bIJPJAACLFi1CcnKy2uVfvHiB6dOno06dOrC2toaJiQnKli2Lb7/9VuqmMyMxk4ljoDx69EiaJv6IQkNDpWliN0rqHD16FH379kWFChWkPFW+fHl07doVgYGBiI+PV1he3bYDAwMhk8mk8frk6yz/o++MxWxFRESUd3799VcpO/z000+oUqWKVusZGBhIN+ioEhYWhu+++w7Ozs4wNTVF8eLF4erqihkzZmT6RODz58+xcuVKdOvWDRUrVoSFhQVMTEzg4OCAjh074vfff0daWprKdWUymTReHwD4+voqZZuZM2dK8zPLYD4+PpDJZHB2dgYAvHv3Dj/++COqVasGCwsLFC9eHE2bNsW2bds07pPo0KFDaN26NUqWLAlzc3NUqlQJEydOxIsXLwAAzs7OkMlkuTbO4KVLl3Dnzh0AQN++fWFqaopu3boBAHbs2KExH+c2Dw8PAOljCj548CBvK0OkbwIR5UshISECAAGA4Ofnl6VtPHv2TLCxsREACBUqVBDev3+vtMzNmzcFU1NTAYBQv359ITk5WWmZ4OBgwdbWVqqPuh9VHj16JNSqVUvjei4uLsLdu3dVrr9kyRLBwMAg07I/fPigtO9ffvllpuuNHz8+C6+sbpKSkgRra2sBgDBo0CBpure3twBAKFWqlMrXXZ67u7vG1zknWVpaCgCEGjVq6L0sIiKivJTVvPXNN99I6507d07lMlu3bhUsLCw05pDvv/9eKQNkll3ks4B8/UNCQlTW49WrV0Lz5s0z3WZAQIDa10Z+2wEBAVrV8cGDB1q/nrpitiIiIso7aWlpUhuRhYWFyrYmXaWmpgrDhw/XmC2srKyEEydOqFw/JSVFq7ajli1bKrUfCYJ2+Us+K2aWwcRM4uTkJNy5c0dwdnZWu93hw4drfG2GDRumdt3SpUsL165dE5ycnAQAgre3ty4ve5aJ75WVlZWQkJAgCILia3LgwAGN68vnyYwZNKeNHDlSKuvq1at6LYsor/HJPqJCrEyZMli/fj0A4P79+xg1apTC/KSkJPTu3RuJiYmwsLDA1q1bYWSkOJRnSEgI2rRpg1evXsHQ0BA+Pj7Yt28frl69inPnzmHdunXo0qWLyi6mXr9+jcaNG+Pvv/+GiYkJRowYgV27duHy5csICQnB1KlTYW5ujn/++Qdt2rRBbGyswvo3btzAhAkTkJaWhvLly2Px4sU4deoUrl+/jj/++APr1q1D7969YWFhoVT2yJEjERERASD9LqO9e/fiwoULuHz5Mg4ePIgff/wRtWrVytbrq63Dhw/jzZs3Ul1E4v+jo6Nx/PjxXKlLZq5fv473798DAKpWrZrHtSEiIsqfWrRoIf3/7NmzSvN37tyJ7777DnFxcahQoQKWLFmC48eP4+rVq9izZw/atm0LANiwYYPS+HLh4eEIDw9Hx44dAQD29vbSNPFHW/Hx8fD09MSpU6cAAG5ublizZg3OnTuHK1euYN++fRg7dizs7e213manTp0QHh6OoUOHKtVZ/sfBwUHrbeqK2YqIiCjv3Lp1S+oOsUmTJtKT9dkxZcoUqXv08uXLY/Xq1bh06RJCQkIwduxYGBsbIzY2Fu3bt8fff/+ttL7w/709NWvWDAsXLpRyV2hoKDZu3Iivv/4aABAcHIzhw4crrR8eHo6goCDp9zlz5ihlm2HDhum8X/Hx8fDy8sLr168xY8YMhIaG4sqVK1i3bh0cHR0BACtWrFAoW96CBQuwcuVKAOljBa9YsQIXL17EH3/8genTpyM2NhbdunVT6qFBn5KTk7Fjxw4AQNeuXWFqagoAcHd3R9myZQHkr14Wzpw5AyC9a3wXF5c8rg2RnuX11UYiUk3+jpihQ4cK4eHhmf58+vRJ5bYGDBggbWvXrl3S9HHjxknT161bp7ReQkKCYG9vLwAQzM3N1d4xLgiC8PjxY6VpvXv3lu5kun//vsr1rl27Jt31Pm3aNIV5P/zwg3Sn2IsXL9SW/e7dOyE1NVWh3sbGxlo9uff69WuN83NCx44dBQCCs7OzkJaWJk1PTU2VXt/u3btr3Ib83efaHAtPnz7NUl27desmlbN79+4sbYOIiKigyOqTfSdPnpTW69+/v8K8mJgYwcrKSpqn7gmzadOmCQAEAwMD4c6dO0rz5e8I16b+qnLa2LFjFe4al88h8pKSkpSyVmbb9vPzy7Un4zJitiIiIso7W7dulc5t06dPz/b2bty4IT2VV716deHt27dKyxw7dkxapl69ekrz09LShMjISI3l/PjjjwIAQSaTCffu3VOa/+DBA62fNtP2yT78/9NvN2/eVFomMjJS6mmrQ4cOSvOfP38uzXdxcRFiYmKUljl37pxQpEgRqazceLJv3759UnmnT59WmDd58mQBgGBiYiK8efNG7Tbkn+ybM2eOVlksKw4fPiyV0759+yxtg6gg4cU+onxKPjho+6Ouu6SPHz8KFStWFAAI1tbWwtOnT4Xg4GBBJpMJAIROnTqpXG/NmjXStpcuXapT/R88eCAYGhoKAIRDhw5pXHbSpEkCAMHe3l5h+sCBAwUAgqurq05lR0VFad11gL69evVKuvCY8WKmIAjChAkTBACCqampykArkm+Q0uYnKwFv9+7d0vpubm5qGwSJiIgKi6xe7Lt+/bq0XufOnRXm/fTTTwIAwcHBQUhMTFS7jeTkZMHBwUFtRsjuxb63b98K5ubm0nk9JSVF6/3LbNuCkHcX+5itiIiI8tayZcuk89uyZcuyvb2hQ4dK27tw4YLa5eRvZL906ZLO5aSkpEjdjy5atEhpvr4u9vn7+6vdTs+ePaW2uox++eUXaRuHDx9Wuw35m7ty42Jf586dBQCCo6OjUra5efOmVJdVq1ap3Ya23cLL/+jq9evXUvemhoaGwrVr13TeBlFBw248iT4D8l10vnnzBr1794aPjw8EQUCZMmWwbt06lesdPnxYWn/gwIE6lXnkyBGkpqbC3Nwcbdq00bhs06ZNAQDPnj3D48ePpellypQBAERERODSpUtal21jY4MiRYoAALZs2YKUlBSd6p6Ttm/fLg1MrGoQanFaYmIidu3alat1k3f79m34+voCAMzMzLBlyxbIZLI8qw8REVF+VrRoUen/Hz58UJh38OBBAED79u1hYmKidhtGRkZSl1Lnz5/P8TqePn1a6tJp1KhRMDQ0zPEy8gKzFRERUd6Szz6qhlXR1cmTJwEA1apVQ/369dUuJ98uJa6jTlpaGp49e4a7d+/i5s2buHnzJm7fvi11namqK1B9kMlk6N27t9r5bm5uAIA3b97g3bt3CvPEfbS1tdXYrtavX7/sV1RLb968wZEjRwAAvXv3Vso21apVQ+3atQGkt8flldTUVPTp0wePHj0CAMyYMQOurq55Vh+i3MKLfUQFgJ+fH4T0J3E1/jg7O6vdRr169eDn5wcA+OOPPxAVFQWZTIaAgADY2tqqXOf69esA0sOHubm5TnW+cuUKgPT+yY2MjCCTydT+tG/fXlrvxYsX0v979eoFY2NjJCUloVGjRvDy8sLq1atx8+ZNqT92VUxMTNCjRw8AwO7du+Hi4oJJkybh6NGjSuFJ3zZt2gQA+Oqrr1SO01KrVi1Ur14dgPZ9mmtzLAQGBmpdx2fPnqFt27b48OEDZDIZNm7cyDFliIiINJBv5LK0tJT+n5qair/++gsAsGbNGo35RyaTYffu3QAU809OEXMckD6eTmHBbEVERJS35Mfoi4uLy9a2kpKSEBkZCQAaL/QBgKurK4yNjQEAN2/eVJovCAK2bt0KT09PFC1aFA4ODqhSpQpq1Kgh/Yg5TRxzUN9sbW1hY2Ojdr61tbX0/4w3kIn7WLt2bRgYqG/Cr1GjhnTDu75t374dnz59AqD6piv56X/++Sf+/fffTLcZEBCgVRbTxbBhw6Txm9u3b48ffvhBp/WJCipe7CP6jEydOhUVKlSQfh8wYABatWqldnkx/IhP2OkiOjpa9woCCoMKV6lSBdu3b0eJEiWQkpKCw4cPY+jQoahRowZKlSqF7777DmfPnlW5nd9++w1eXl4AgEePHmHhwoVo164dbGxsULduXSxcuBCxsbFZqqO2bt++LV30VBeCAOC7774DAJw7dw4PHjzQa50yevPmDb755hs8fPgQALB8+XL07NkzV+tARERU0Mg3EMk30rx58yZLPQrI55+cIl/HrGS5/IjZioiIKO/JX7x6+fJltrb19u1b6f+lSpXSuKyxsbFU9ps3bxTmJSYmol27dvjuu+8QGhqKhIQEjdvKbH5OyezGefmLeKmpqQrzxNemZMmSGrdhaGiokEf1SbyRqmbNmqhRo4bKZXr37i31KKHtjVc5aerUqVi7di2A9Bvedu7cWWh6uCDKjFFeV4CIcs+RI0dw//596fewsDAkJCTAzMwsx8sSQ4qtrS1CQkK0Xq98+fIKv3ft2hUtWrTA77//jqCgIJw9exYxMTF49eoVtm7diq1bt8Lb2xsbN25UCEmWlpY4ePAgLl26hJ07dyI0NBR//fUXUlNTceXKFVy5cgWLFi3C/v37pS60cpp8qBk3bhzGjRuncXlBELB582bpCUx9+/DhA1q3bo1bt24BAGbPno3hw4fnStlEREQFmfxTc5UrV5b+L99IM2DAAIwePVqr7eXW3dgFHbMVERFR3qtVq5b0/2vXruXYdrPT3fXPP/+MY8eOAQDc3d0xfPhwfPXVVyhdujTMzMyk9qKmTZvi7NmzOj8pRsDdu3elIXZu3Lih1fu1detWzJw5M9e6Mp8/fz5++eUXAOm9QBw+fFgvbZ5E+RUv9hF9Jl6+fIkBAwYASL8Q9v79e9y+fRsTJ07Eb7/9pnIdW1tbPH36FM+fP9e5PPFuqw8fPqBq1arZuovGysoKgwYNwqBBgwCk39V94MABLF++HM+ePcOmTZvg6uqqskGtXr16qFevnlSX0NBQBAYGYu/evYiOjkbXrl3x77//5vjJPy0tDdu2bdN5vS1btuRKg1RCQgK8vLxw+fJlAMDEiRMxY8YMvZdLRERUGAQHB0v/b9y4sfR/+buqBUGQupPMC/LdtD9//lzphqqChtmKiIgof6hWrRpsbW3x6tUrnD17Fu/fv1fo1lwXJUqUkP6f2VOCKSkpeP36NQDlzLV+/XoA6U9ynT59Wm23lxmfCMzPSpQogRcvXiAmJkbjcqmpqQpPSOpLVp7Su3//PsLCwnKlS/mVK1diypQpAICqVasiKCgoy8clUUHFi31En4n+/fsjJiYGBgYGOHz4MJYtW4Y9e/ZgxYoVaN++PVq3bq20zldffYWnT5/iypUriI+P12ncPldXV/zvf/9DUlISrly5kmnf67qoWrUqqlatij59+qBq1aqIi4vDzp07M717vlixYvDy8oKXlxdGjx4Nf39/PH/+HGFhYWjZsmWO1Q8AQkJC8OTJEwDAyJEj0bBhQ43LX7x4EUuXLsW///6Lc+fOoVGjRjlaH3nJycno2rUrzpw5AwAYMmQIFixYoLfyiIiICpObN2/i1KlTAICyZcuiTp060rwiRYqgWrVquHXrFs6dO5dXVQSQnuNEf/zxR45f7MutO7RFzFZERET5g0wmg7e3NxYvXoy4uDisX78+06ft1TExMUHFihURGRmJixcvalz2+vXrSE5OBgCFG6revHkjjX/cvXt3tRf6Pn78iLt376rdfm5nm8xUq1YNL168wF9//YW0tDS1+xUeHo6kpCS91kUcDxFI78Jz6tSpmS7fv39/JCYmYvPmzXq/2LdlyxaMGDECAFChQgWcPHlS4cY3os8FL/YRfQZWrlyJo0ePAgAmT56MJk2aoFq1arhw4QKioqLg6+uL8PBwpROhl5cXDh48iPj4eKxduxZjxozRukwvLy9MmjQJgiBg6dKl2L59e07uEoD0BrZKlSrh+vXrOg+u3Lx5c/j7+wPQz8DM4h1PhoaGmDFjRqZ9z7do0QK//fYbUlJSsHnzZr01SKWmpqJ3795S9xbfffcdVq5cqZeyiIiICpuEhAT069dP6vppwoQJMDJS/JOqQ4cOuHXrFu7cuYOgoCCN4yPrk6enJywsLBAXF4fly5ejb9++OTpeiampqfT/pKQkmJiY5Ni2VWG2IiIiyj/Gjh2LVatWIT4+Hj/++CPatm2LKlWqZLpeWloatm/fjj59+kjTWrRogcjISNy6dQuXLl2SemfKSHx6T1xHJD9eclxcnNqy169fr3Fs5YzZJq81b94cp06dwqtXr3Ds2DG0a9dO5XK5MS5eaGgoHj9+DADo16+fVuMR//777zhw4AB27dqF5cuXK7y+OWnv3r3w9fWFIAhwdHTEqVOnYG9vr5eyiPI71bcEEFGhcffuXUycOBEA4ObmhlmzZgFI7/IgMDAQMpkML168kLrIlNe3b184ODgAAKZPny7drazK06dPFX6vXLkyunfvDgDYsWMHlixZorGeDx48ULoguH//frx7907tOk+ePMGdO3cAKI71d//+fY11BYATJ05I/894p3toaChkMhlkMhl8fHw0bkeVuLg47N27F0B6FxKZNUYB6V1tubu7AwB27typl2ApCAIGDhyI3bt3A0gfDzEgICDf3b1GRESUH0VERKBx48bSeH3u7u4YOnSo0nKjR49G0aJFAQC+vr7S+G3qHDlyBDdu3Mjx+hYvXhyDBw8GAFy9ehVjxoxROz5NcnIyoqOjddp+mTJlpP//+++/GpdltiIiIipcHBwcpCFh4uLi4O7unmk7TEREBFq3bo2FCxcqTB86dKj01NqgQYPw/v17pXVPnDiBDRs2AEgfrqVu3brSvJIlS6J48eIAgO3bt6s851++fBk//PCDxvrZ2NhI4yhnlm1yg7e3t3Qz1ZgxY1TeqH7+/HmsWLEi0205OztLWSwr5C8odu3aVat1unXrBgCIjY3FgQMHslRuZk6cOIFevXohNTUVpUqVwsmTJ+Hs7KyXsogKAj7ZR1QAREdH4+bNm5kuZ2Zmhi+++EL6PTk5GX369EF8fDzMzMywdetWGBsbS/NbtGiB0aNHY+nSpdi3bx82btyI/v37S/NNTU2xZcsWfPPNN4iPj0eLFi3w3XffoVOnTnB0dERSUhLu3LmDo0eP4uDBg0qBatWqVbhy5Qru37+P8ePH48CBA+jXrx+qVasGExMTvH79Gn///TeOHz+O06dPo3PnzujVq5e0/tKlS9GnTx+0a9cOzZo1Q9WqVWFlZYW3b9/iypUrWL58ORISEgCkd5ckevz4MTw9PfHll1+ic+fOqFOnjnTR8smTJ/j999+xc+dOAEDt2rVztItRIP2uoo8fPwLQPgSJy546dQrv3r3DwYMHpYulGWlzLACAk5MTihUrJv0+YcIEBAQEAEjv8mLatGm4ffu2xm3k5VhDREREuSlj3oqLi8Pbt29x48YNnDp1CsHBwdLFsgYNGmD37t0KuUpkZ2eHTZs2oVu3bnj+/Dnq1KkDHx8ftGnTBo6OjkhOTsbTp09x6dIl7N69G/fv38ehQ4dQs2bNHN+n2bNnIzg4GOHh4fjtt99w/vx5DB48GDVq1ECRIkXw9OlTnD17Ftu3b8ecOXN0uhAn343m2LFjMX36dJQpU0ZqRHJ2dlZ66jGrmK2IiIjyH19fXzx9+hQ//vgjoqOj4eHhgW+++QYdO3ZE1apVUbx4cbx58wb37t3DkSNHcPz4caSmpqJWrVoK26lRowbGjx+PhQsX4u+//8ZXX32FyZMnw9XVFXFxcTh06BD8/f2RmpqKIkWKYM2aNQrrGxgYoE+fPlixYgVu3LiBxo0bY9y4cahYsSJiY2Nx9OhRrFy5EkWLFoW9vT3u3buncn+MjIxQt25dnDt3Dhs3boSrqytq164t5T1ra2uFsQL1zd7eHn5+fpg2bRr++ecfuLm5YcqUKahTpw6SkpIQFBSExYsXw97eHnFxcYiJidHLDUfx8fHYs2cPgPSHCLS9mObl5YUiRYrg06dP2Lx5M3r06KFyuaioKK2ymKWlJcqVKyf9fuHCBXTu3BmfPn2CsbExfv31VyQnJ2vclqOjo3RhmKhQEogoXwoJCREA6PRTq1YthW1MnTpVmrdixQqV5SQmJgrVq1cXAAhFixYV/v33X6Vljh8/LpQoUSLT8lV5/vy50KRJE63q7+vrq7Cuu7t7pusYGBgIs2fPztJrV6VKFeH+/fsaX3tvb28N75JqLVq0EAAIMplMiIqK0nq9Fy9eCAYGBgIAoX379jq/Fhl/9u3bp7ANJycnnbdBRERUmOmat0qWLCn8/PPPQnJycqbbPnjwoGBtba1Vljl9+rTS+t7e3gIAwcnJSav6h4SEqFwmJiZGaNq0aab1CAgI0Hnb3377rdrtPXjwQOW2mK2IiIgKlz179gjOzs5anQerVasmBAUFKW0jNTVVGDZsmMZ1raysVK4rCILw7t07oXbt2mrXtba2Fs6cOSOd/93d3VVu5/Dhw4JMJlO5DT8/P2m5zHKSNjlOEAQhICBAZXYSpaWlCYMHD1a7X7a2tsLly5eFsmXLCgCEIUOGqCxHPrPoauvWrdK68+bN02ndtm3bCgAEIyMj4cWLF9J0+f3W9qdjx44K2/bz89N5GxnzLlFhw248iQqpsLAwzJ8/HwDQtm1bDBs2TOVyJiYm2LZtG0xMTPDx40f07dsXqampCsu0atUK9+/fx9y5c9GwYUPY2NjA0NAQlpaW+OqrrzBmzBhcunRJ5fZLly6NP/74A4cPH0afPn1QoUIFmJubw9jYGCVLlkTDhg0xfvx4nDlzBhs3blRYd/v27Vi7di169+6N2rVro3Tp0jAyMkLRokVRrVo1DB06FNevX8eMGTMU1mvSpAlCQ0MxdepUeHp6wsXFBcWKFYOxsTHs7OzwzTffYPXq1fjrr7+UuvDMrqioKJw+fRoA8PXXX+vUT7idnZ00nszx48cRExOTo3UjIiIi7RgYGMDKygrlypVDkyZNMGbMGOzZswdPnz7FtGnTtHpizcvLCw8ePMCiRYvQrFkz2NnZwdjYGGZmZihfvjzat2+PJUuW4OHDh/D09NTbvtja2uLMmTPYu3cvunXrBkdHR5iYmMDU1BQVKlRA9+7dsW3bNoXeFbS1detWLFiwAPXq1YOVlZXUBVdOYrYiIiLK37p06YK7d+9i27Zt6Nu3LypXrowSJUrAyMgI1tbW+OqrrzBs2DCcPn0a4eHh+Oabb5S2YWBggBUrVuCPP/5Anz59UK5cOZiYmMDS0hK1a9fGtGnTEBkZqXJdALCyssK5c+cwe/Zs1KhRA6ampihatCiqVq2KCRMm4O+//0bTpk0z3Zd27drh1KlT6NixI+zt7VX24pCbZDIZVq9ejQMHDuCbb76BtbU1TE1N4eLiglGjRuH69euoU6eO1PWplZVVjtchK114Zlw+JSUF//vf/3K0XkSkTCYIagZuICIiIiIiIiIiIiKifOnp06coW7YsAGD9+vX4/vvv87hGRJRX+GQfEREREREREREREVEBs337dun/DRo0yMOaEFFe45N9RERERERERERERET5SFxcHN6/f48yZcqonH/9+nW4u7vjw4cPcHNzw5UrV3K5hkSUn2Q+2AQREREREREREREREeWamJgYVK1aFZ06dULr1q1RuXJlmJiY4NmzZzh+/Dg2bNiAhIQEyGQyLFmyJK+rS0R5jE/2ERERERERERERERHlIw8fPkT58uU1LlOkSBGsW7cO/fr1y6VaEVF+xYt9RERERERERERERET5SHJyMvbt24fjx4/j8uXLiImJwZs3b2Bubg5nZ2e0aNECI0eOhJOTU15XlYjyAV7sIyIiIiIiIiIiIiIiIiqgPrsx+9LS0vDs2TMUK1YMMpksr6tDRERE2SAIAj58+AB7e3sYGBjkdXU+e8xZREREhQdzVv7CnEVERFQ46CtjfXYX+549e4ayZcvmdTWIiIgoBz158gSOjo55XY3PHnMWERFR4cOclT8wZxERERUuOZ2xPruLfcWKFQOQ/kJaWlrqrZwePXrg999/19v2c7MclsEyWAbLKChl5FY5LCP/lPH+/XuULVtWOr9T3ipMOYtl5L9yWAbLYBksg2XkbjnMWfkLcxbLYBn5oxyWwTJYBsvILn1lrM/uYp/Y1YGlpaVew5GxsbFet5+b5bAMlsEyWEZBKSO3ymEZ+asMAOzKKJ8oTDmLZeS/clgGy2AZLINl5E05zFn5A3MWy2AZ+aMclsEyWAbLyCk5nbHY6ToRERERERERERERERFRAcWLfUREREREREREREREREQFFC/2ERERERERERERERERERVQvNhHREREREREREREREREVEDxYh8RERERERERERERERFRAcWLfUREREREREREREREREQFFC/2ERERERERERERERERERVQRnldgYImOTkZqampmS5nY2ODxMREvdcnN8phGSyDZbCMglJGbpXDMvJPGZ8+fYKTkxM+ffqUK8fX587Q0BDGxsZ62bYgCEhOTkZaWlqmyxaGY7cwlZFb5bAMlsEyWAbLyN1ymLNylz5zlrZtWUDh+YywjM+vjNwqh2WwDJbBMrJLm4yVlVwgEwRByIkKFhTv37+HlZUVYmNjYWlpqdN6r169QlJSklbLR0dHo1SpUlmtptZyoxyWwTJYBssoKGXkVjksI/+UkZaWhidPnqBs2bIwMGCHBbnBxMQEtra2KnNUVnLWp0+fEB0djfj4eK0boQrDsVuYysitclgGy2AZLINl5G45zFm5L6dzlq5tWUDh+YywjM+vjNwqh2WwDJbBMrJL24ylKReowif7tPD+/XtERUWhaNGisLW1hbGxMWQymcZ1ZDIZnJ2d9V633CiHZbAMlsEyCkoZuVUOy8g/ZaSmpiIhIQHOzs4wNDTUWzn035N3sbGxiIqKAgCdbpxSJT4+Hk+ePIGhoSFKlCgBMzMzGBoa5oucxTLyXzksg2WwDJbBMnK3HOas3KOPnJWVtiyg8HxGWMbnV0ZulcMyWAbLYBnZlVnGymou4MU+Lbx69QpFixaFo6OjVsEISH/M0tTUVM81y51yWAbLYBkso6CUkVvlsIz8U4b4JJipqSkboXKBmZkZihUrhqdPn+LVq1fZboR69eoVjI2N4eTkpNP7VxiO3cJURm6VwzJYBstgGSwjd8thzspd+shZurZlAYXnM8IyPr8ycqsclsEyWAbLyC5tMlZWcgH7YchEcnIykpKSYGVlpVM4IiIiIiqMZDIZrKyskJSUhOTk5CxvJyUlBXFxcbC2tmYDIhERERFyLmexLYuIiKjg0zUX8GJfJsSrrPoaJJmIiIiooBFzkbZj7KmSkpICIL0PeiIiIiJKlxM5i21ZREREhYMuuYAX+7TEO6GIiIiI0uVkLmLGIiIiIvoPcxYRERGJdDmX82IfERERERERERERERERUQHFi31EREREREREREREREREBRQv9hEREREREREREREREREVUEZ5XYFCYWZnpUkVc6noLJczc19OVoOIiIhIP/IoZ2WrDOYsIiIiKggKWs5ixiIiIlKLT/ZRjnB2doZMJtP6Z+bMmXldZSLKBplMBmdnZ6Xpfn5+kMlkqFGjBj59+qRyXUEQ0Lx5c8hkMnz//fc6lSt+1zx8+FDrOhERFWTMWESfF2YsIqLcw5xF9HlhzqLCjk/2UY5q1KgRXFxc1M4/fvw4Xr58mYs1IqLcNGPGDBw8eBB//fUX/Pz8MG/ePKVlli9fjtOnT8PJyQm//vprHtSSiKjgYcYi+rwxYxER6Q9zFtHnjTmLCgte7KMcNWDAAPj4+Kid7+HhwYBEVIgZGxtj8+bNqFOnDhYuXIiOHTuiQYMG0vzIyEhMnToVMpkMGzduhKWlZR7Wloio4GDGIvq8ZZaxHj58yIxFRJRFzFlEnzfmLCos2I0nERHlqBo1amDmzJlITU2Ft7c3EhISAED6PT4+HsOHD0ezZs3yuKZEREREBYemjDV58mRmLCIiIqIsYs6iwoAX+yhfCQ0NzbSPdFXu3LkDX19fODk5wcTEBNbW1mjevDl27typcvmZM2eq7W89MDAQMplM5V1dDx8+VNuXckxMDDZv3oy2bduifPnyMDMzg6WlJerUqYP58+cjMTFR4777+Pho3G9V9RHXCQwM1LhtbYn7XqlSJTRt2lTtci1btpTqlbHszOokvoaenp4q5+vyXqalpaFnz56QyWTo3bs30tLSFOb7+/urfJ/T0tLQu3dvyGQy9OrVS2k9ALh69Sr69OmDcuXKSfVo1aoVjh49qvZ1SUlJwcaNG9GiRQvY2trCxMQEjo6OaNGiBZYvXy4tp8uYAPLvu4eHh9L8YsWKoUqVKhg7diweP36sVKeYmBj4+/tn+bjMqkmTJqFevXq4d+8epk2bBgBYv349zp8/DxcXF8yfP1/tuhEREejevTtsbW1hZmaG6tWrY9GiRUhNTdVLXYmIPgcFPWP5+/tjwIABBT5jiZlFnZzIWOrG/MjJjDVz5kxUqlSJGSufZKyFCxfi+vXrzFhERHmkoOeswtKWxZzFnJVdzFlU0LEbT8qX7Ozs0Lp1a4VpmzZtUrnskSNH0K1bNyQmJqJy5cro0qULoqOjcebMGZw+fRpBQUHYsGGD3uscFBSEOXPmwMHBAS4uLmjQoAFiYmJw8eJFTJkyBQcOHEBISAhMTEw0bidjX/H//PMPzp07p+/qKzl79iz++usv1K5dW2H6rVu3cPLkSb2Uqet7aWBggC1btiAuLg7bt2+HpaUlVq9enWk5Q4cOxfbt29G+fXts2bIFBgaK9z0sW7YM48aNQ1paGmrXro369evjxYsXCA0NxYkTJzBr1iz8+OOPCuvExsaiffv2CAsLg7GxMRo2bAh7e3u8ePECN27cwKlTpzBy5EgAgLe3t8K6Hz9+xJ49e2BhYYFu3bopzGvcuLFS/Vu1aoXSpUsDAN69e4ezZ89i6dKl2LZtG27cuCHNA9KPy9GjR2d6XOY0Q0NDbNq0Ca6urli2bBkqVqwIf39/GBgYYNOmTTA3N1e5XlhYGFq3bo24uDhUqFABLVu2xKtXrzBt2jRcuHAhx+tJRPS5KagZa/To0bCzs0OVKlUKfMa6cuUKM9ZnlLEyOy51pSpj+fn5MWMREeUDBTVnFaa2LOYs5qzsYM6igi7PL/ZFRUVh8uTJOHbsGOLj4+Hi4oKAgADUqVNH5fLPnz/H+PHjceXKFfzzzz8YNWoUli5dmruVJr0R73aoWrWq0t00qgLSy5cv0adPHyQmJmLOnDmYNm2adMfUlStX8M0332Djxo1o0KABPDw89Fp3Nzc37Ny5E927d1eY/vbtW/Ts2RMnTpyAv78/Jk6cqHJ98Y6cjH3FBwYG5npAqlevHq5evQp/f39s3LhRYZ6/vz8MDQ3RpEkThIaG5liZuryXAwcOlNYzNjbGrl270LZtW6xZswaWlpZYsGCB2nImTpyItWvXolmzZti1axeMjBS/BoOCgjB27FjY2Nhgz549Ck84hoeHo23btvDz84O7uzvc3d2lef3790dYWBhcXV2xd+9ehbu9UlJScOTIEen3jMf2w4cPsWfPHtja2qq8iywyMlLh9ylTpigcz3FxcXB3d8fVq1exe/dujBgxQprn5uaG8+fPK/Q1Digfl506dVL3kmVZlSpVMHfuXIwbNw7Dhw8HkP76N2zYUOXyiYmJ6N27N+Li4jBmzBgsWrQIhoaGAIAbN26gefPmePXqVY7Xk6iwYsYiefrMWPLnZX0Qz2U2NjaoWLGiNL0gZix3d3eEhYUxY+WTjJWRPjKWuuMyO1RlrAEDBjBjEeUi5iySx7Ys5izmLMV5qjBnEelfnnbj+fbtWzRq1AjGxsY4duwYIiIisHjxYpQoUULtOklJSShZsiRmzJiBWrVq5WJtKTckJycDSD/paWPdunWIjY2Fm5sbpk+frtA1Qp06dTB9+nQA6Y9c61vVqlWV7hwCgBIlSkiPve/atUvt+uIj6Nruuz45ODigQ4cO2L59u8IJ6c2bN9i6dSs6dOgAJyenHC0zO++lqakpDh48iPr162PhwoX4+eefVZYxZ84cLFq0CA0aNMCBAwdgamqqtIyfnx8EQcDq1auVujKtUaMGlixZAgAKXRn8/fff2Lt3L0xNTXHo0CGlbh2MjIzQsWNH7V6ILLCwsMDXX38NAErdOFStWlUpHAHaH5fZNWzYMFhZWQEASpUqhdmzZ6tdds+ePXjy5AnKli2LBQsWSOEIAGrWrCkdA0SUOWYsyqigZ6zsnMvyU8ZydnZGs2bNmLG0zFi3b99mxlJDPmPZ29tjzJgxapdlxiLKWcxZlFFBz1mFpS2LOYs5K6cwZ1FBladP9s2fPx9ly5ZFQECANK18+fIa13F2dsayZcsAQOkuDSr4xMFPtX0MW7wbJ+Oj5KLvv/8eEyZMQGRkJF6+fKlwN7g+pKam4tSpU/jzzz/x/PlzJCQkQBAECIIAALh7967adePi4gBA7SPhuW3UqFHYt28f1q5dK/VTvW7dOsTHx2PUqFE51re6SJf38tmzZ7C3t1eYX7RoURw7dgxffPEFZsyYIZ2URcuXL8cPP/yAEiVK4OjRoyhatKhSGa9evcKlS5dgZmYGLy8vlfUQ70L6888/pWnHjx8HALRr1w4ODg5a7W9OiY2NxbFjx7B582aYm5urrHdqaipCQ0OzdFxm188//4zY2FgAkLqx+Oabb1QuKx4D3377rco/FLy9vTF27Fi91ZWoMGHGooz0mbGePXuWI3XUJDU1FX/++Sd27NhR4DNWv379EBwczIyVgaqMdfbsWQDMWKrIZ6xnz57h0qVLqFatmsplmbGIchZzFmXEtizmLOYs3TBnEelHnl7sO3jwIFq1aoXu3bvjzJkzcHBwwLBhw3K0K6CkpCQkJSVJv79//z7Htk057/Xr1wCg8Y44eVFRUQDUB+vixYvD2toab968wYsXL3KmkmpERkaiQ4cOSl0uytN0/In7YmNjo3PZvr6+8PX1BZDev3SJEiXg6uqKAQMG4Ntvv9V5e0B6EKhZsyZWrVqFSZMmAQBWrFiBmjVrwsPDI9OAJF8nbejyXj59+lQpIAHp/aS/ffsWQPrFyipVqgAA9u/fjxs3bgBIvwvz6NGj6NOnj9L6Dx48gCAISEhIyDSkx8TESP9/9OgRAEjl6Zunp6fSNDc3NwQEBCi9fpGRkejcuTNu3bqldnv6+l68cuUK5s2bB2NjYwwaNAgrVqzAgAEDEB4erhRgAeDp06cA1B8DJUqUgJWVlRS4iEi93MhYQHrO+vTpk/Q7c1b+pc+M9fTpU623mxXZPZflt4xVv379Ap+xxKdS9J2xxAvJzFiKVGWs6dOno0uXLsxYRLmAOYsyYlsWcxZzVuaYs5izSP/y9GLf/fv3sWrVKowbNw7Tpk3D5cuXMWrUKBQpUkTtHRG6mjdvHmbNmqU0vUePHlo9Ym5jYwMfHx/IZDKFx3Dl6ff+Gv3QdBLPKD4+PtPlU1JSAKT3Va1pWfFup9evXyssJ5YhnsRMTU3Vbkd+uhh8nz17pnZ58VHwxMREaRkxiGWsh7gPQPpJI+M88Qs8JSVFaZ6XlxciIyPh6emJAQMGwMXFBUWLFoWxsTE+ffqE6tWrK9Vfvo7//vuvyn3MWB/590M8sX311VdSVwRJSUm4f/8+goODERwcjD///FPqYzozYlni/vXs2RPTpk3DypUrAQBPnjzB4MGDERkZKZWd8T1XVSd58fHxCAoKQlpaWpbfy8ePHyuF6JcvX2LEiBEwNzfHmjVrMGnSJNy+fRtAejeb9vb2+OWXXzBkyBAMHz4cTk5OsLOzU9iGeNHOwsJC7dNn8sT3Qzxhv3nzRqfPlkjTcQX89/kQPz9NmjSBra0tgPTj+s6dO7h69Sq+/fZbrF69WiE8enl54e7du5kel9p8zjNSV18g/f3s1asXUlJSMHr0aAwbNgyXLl3C5cuXMWDAAMydO1dpHfGOwOjo6EyPgQcPHkhdpWSsU1b2RVcsI/+UId7VR4pyI2MBUNvdjDY5S5uMBRTunFVYMtbjx49hYmKCyMhIvWWsu3fvomnTphg8eLDeMhbw3+ulr4z1/v17xMfH6zVjZTwX6iNj/fXXXwD0m7GA/7pF01fGAtJfN31mrIz5XRu6ZqyrV6/iwoULzFifWRm5UQ5zlmrMWXmHbVlsy1KFOYs5izlLOywj/5Shr4yVpxf70tLSUKdOHemD4urqips3b2L16tU5FpCmTp2KcePGSb+/f/8eZcuWxe+//w5LS8tM109MTMSDBw/g7Oyssk/kgkqXLgAiIyMzXV4cGNbOzk7jsmZmZgDSg6f8cmIZ4gm6SZMmarcjP718+fK4f/8+EhMTVS4fGxuLd+/eAQCcnJykZcQ7jjLWQ9wHALC0tFSaJwZqIyMjhXl37tzB3bt3YWNjgxMnTigNlCt/J4qqet66dQsfP36EnZ2dUt/aGesj/36Ix/DIkSMVBkIGgDVr1mDIkCFYv349Fi5cqNXFbbEscf/Gjh2LJUuWSP1g29jYYNy4cTAzM5PKzviea6oTkD6Ab/ny5WFgYJDl9/Lrr79W6mJg9OjRiI2NxcqVK9G3b1/Uq1cPDRs2xOvXr2FnZ4fQ0FBUrFgRHz58wPDhwzFv3jyFgYaB9GAEAAYGBti9ezcMDDIf1jQyMhI1atQAkH5iz0r3GuqOK/kyKlasKH1+fvrpJ6VBuv38/PDTTz9h4cKFOHz4MID/jstSpUplelyam5vrXHd19QXSB4/+559/4ObmhkWLFsHIyAjz589Hhw4dsHv3bnz//fdo3bq1wjqVKlXC2bNnER8fr3K77969w4cPHwCkHy8Z+5MX65SVfdGVNt+LLCN3ykhNTcX169f1tv2CKjcyFpD+WRfvmAV0y1mFNWMB2ueswpKxvv76a+m7W18Zq1SpUli9ejWqVq2qsF5OZizgv9dLXxnL0tIS5ubmes1YGc+F+shYTZo0QXR0tF4zFgCUK1cOgP4yFpD+nuszY2XM79rQNWNt374d1atXZ8b6zMrIjXKYs1Rjzso7bMtiW5YqzFnMWcxZ2iksGagwlKGvjKXdp19PypQpgy+//FJhWtWqVfH48eMcK8PExASWlpYKP5Q/JScnIyQkBADQuHFjrdYRTxKbNm1SOV/sC79ixYooXbp09iupxps3bwAApUqVUjoJAcDWrVs1rr9nzx4AQKtWrXKsTt999x2A9DtM5Acm1oWpqSkGDRqEsLAwhIWFYcCAAdJJOqfp8l5mDEfr1q3DsWPH0KJFCwwZMgRA+sm2Z8+eAIDBgwdLX9BDhw5F8+bNcfToUaxfv15hO/b29qhZsyY+fPggjcOnDfFEf/To0VwZt0iVHj16AADOnDkjTROPS3t7+ywdl1l17tw5LFmyBCYmJti0aZNUtqOjozQo9YABA5S6MHB3dwcA7Ny5U+WdTps3b9ZLfYkKo9zIWABzVkGh74ylzzE+snsuY8bST8YS/6/vjNWkSRMAzFgidRnL2dlZuiDAjEWkf8xZJI9tWcxZAHNWVjFnEeWsPL3Y16hRI6XBNO/du6fycWkq3D59+oRRo0YhJiYGHh4emQ5uLRo4cCAsLS1x7do1zJ07V+ER2OvXr2POnDkA0u/M0KdKlSrB0NAQ9+7dkwZmFR06dAi//vqr2nWfPHmC5cuXA0g/eeeUo0ePAki/w0d8TD4rhg0bhnbt2qFdu3Zad6GQFVl9Lx89eoTx48fD0tISGzZsgEwmk+aJ/884bePGjbC0tMS4ceOk7g5EYjm+vr44dOiQUj0FQcDFixdx4sQJaVrt2rXRsWNHJCQkoGPHjkp/5KWkpODgwYM6vR662rFjBwAovNficRkeHq7zcZlV8fHx8PHxQVpaGmbNmqU0gPHgwYPRvHlzREVFYcyYMQrzunXrBgcHBzx+/BhTp06VujkAgJs3b0rvDRFljhmLRIUlY4WHh+PixYsK85ixtFOQM9aXX37JjPX/MstYPXv2ZMYiyiXMWSQqLDmLbVlZx5yVPcxZRDkrT7vxHDt2LBo2bIi5c+fi22+/xaVLl7B27VqsXbtWWmbq1KmIiopSuAou9l388eNHxMTE4K+//kKRIkWU7qyigmHDhg2YOnUqYmJi4ODggDVr1mi9rp2dHbZt24bu3btj+vTp2LJlC1xdXREdHY0zZ84gJSUFvr6+GDhwoMp+dk+ePInExESFaeHh4QCAq1evYsqUKQrzxLs33r59iylTpqB79+5wc3ODra0tRowYgWXLlqF58+Zo0qQJ7O3tcffuXVy7dg0zZsxQ+eU+YcIEBAQE4M2bN7CwsMDq1auxevVqhWX++ecfAEBYWBh8fHzQs2dPpceId+3ahTt37gBI7+f8zp070gl88uTJWnV7oI6Dg4P0KL0+6fJeigRBgK+vLz58+IANGzZIXRBkply5cliyZAkGDBiA/v374+TJk1KI8vLywrJlyzB+/Hh06NABLi4uqFy5MqysrBATE4O///4b0dHRmDx5skJf6AEBAWjbti0uXLiAihUromHDhrC3t8eLFy8QHh6OmJiYHOuP+ZdffpEGlY6Pj0d4eLj0/v/www/Sclk9LrNj0qRJ+Oeff9CgQQNMmDBBab5MJsOGDRtQo0YNBAYGonv37mjbti2A9K5Rtm3bhrZt22Lx4sXYv38/6tati9evXyM0NBReXl64evWqUqglImXMWATkXsZSRR8Zy9vbG+vXr9dbxpoyZYrSuEbMWMxYzFhElBFzFgFsy2JbVjrmLO0xZzFnUS4Q8tihQ4eE6tWrCyYmJkKVKlWEtWvXKsz39vYW3N3dFaYBUPpxcnLSqrzY2FgBgBAbG6vV8gkJCUJERISQkJCg1fKie/fu6bR8VuVGOdqU4eTkJAAQAgICNC7n7u4uABD8/PykaZMnTxaqVKkizJgxQ4iOjla7rvheqxIRESF4e3sLjo6OgrGxsVC8eHHB09NT2LFjh8r98PPzU3kc6fojv79paWnC3LlzBTc3N6Fo0aKClZWV0LhxY6kOquovvm66/GzZskVa39vbW2m+gYGBYGNjI7Ro0UJh/7UREBAgABA6d+6c6bJi2Rnfc3XTRQ8ePBAACA4ODirna/Neivz9/QUAQtu2bVVua8SIEUrHm7w2bdoIAAR/f3+leeHh4cKgQYOEihUrCqampoK5ublQoUIFoVWrVoK/v78QFRUlCILicZWUlCSsWrVKaNKkiVC8eHGhSJEigqOjo9CyZUthxYoVKusg/5qo+x4TyxA/P/I/hoaGgp2dneDl5SWcOHFCad20tDRhw4YNmR6Xun6XqKrvqVOnBJlMJpiZmQl37txRux+CIAhr1qwRAAj29vbC27dvFZYLDw8XunTpIlhbWwsmJiZC1apVhXnz5gnJycnSZ+bBgwdq65RfvhdZRu6UkZKSIly+fFlISUnRazkFkT4zlrp8pEvOymrGEoTCcexqW0ZByFjy+6KvjLVhwwahevXqes1YISEh0n7oK2N5e3tn+r5nN2OpOxfmZMYS32d9ZixB+O+40lfGEsvQZ8aS3w9tZCVjyZfBjPX5lJEb5TBnqceclT35pYyCkLPYlpU55qz/MGdpxpzFMvJLGbpkLF3O6Xl+sS+38WIfy8gJ4gktYwjQtQwnJyelPwDUEcOLfEDSl4L2frCM3C8js0CXE2XoigHp8yyDjVB5g41QLENf5ajLWLqWkZWMJX+xT59YBsvQJCsZS9cydMWMlT/LyI1ymLPyBnMWy9BXGYW9LUsQCt57wjJytwzmLJaRX8rQ18W+PB2zj4iIiIiIiIiIiIiIiIiyLk/H7CMqqEqUKIF58+bBzc0tW9tZtGgRihYtqtWyjRs3RkBAACpUqJCtMomIiIjyq7zMWFWqVMGHDx+yVS4RERFRfsW2LCKiwo0X+4iywMrKSmnA46zo1q2b1su6uLjAxcVF5eDMRERERIVBXmYsALzYR0RERIUW27KIiAo3duNJREREREREREREREREVEDxyT4iItKZn58fihcvntfVUJAf60RERESki/yYZ/JjnYiIiIh0lR8zTX6sExVcvNhHREQ6mzlzZl5XQYlYJ3YPQkRERAUVMxYRERGRfjBnUWHHbjyJiIiIiIiIiIiIiIiICihe7CMiIiIiIiIiIiIiIiIqoHixj4iIiIiIiIiIiIiIiKiA4sU+IiIiIiIiIiIiIiIiogKKF/uIiIiIiIiIiIiIiIiICihe7CMiIiIiIiIiIiIiIiIqoHixj4iIiIiIiIiIiIiIiKiA4sU+IiIiIiIiIiIiIiIiogKKF/uIiIiIiIiIiIiIiIiICiijvK5AYdBs2GMVU00AqJqe07JWzumV5XK0Fs7Oznj06JHWy/v5+WHmzJk5Wgciyh/E7wNBEBSm79mzB1OnTkXp0qVx69YtWFtbq1zf19cXgYGBaN68OYKDgyGTybQuOzQ0FJ6envD29kZgYGB2doOI8om8y1lZLyMncxYzFhGJ1GWsgIAA9O/fnxmLiHRW0HIW27KISF+Ys6gw4MU+ylGNGjWCi4uL2vnHjx/Hy5cvc7FGRJRfdO3aFWFhYThy5AiGDx+O7du3Ky1z6NAhBAYGwtLSEhs3blQIRx4eHjhz5gxCQkLg4eGRizUnIsp7zFhEpI6vry82b96M0NBQZiwioixgziIidZizqCDhxT7KUQMGDICPj4/a+R4eHgxIRJ+xdevWoXr16tixYwe6du2Kbt26SfNev36NgQMHAgCWLl2KcuVy9q5NIqKCjBmLiDSZM2cOOnTowIxFRJQFzFlEpAlzFhUUHLOPiIhyTZkyZfDbb78BAIYOHYro6Ghp3rBhw/Dy5Ut4eXnB19c3r6pIREREVOCUKlWKGYuIiIhID5izqKDI84t9UVFR6Nu3L2xsbGBmZoYaNWrgypUrGtcJDQ3FV199BRMTE7i4uLAv20IkNDQUMplM448qd+7cga+vL5ycnGBiYgJra2s0b94cO3fuVLn8zJkzIZPJVPa1HhgYCJlMpvKurocPH0Imk8HZ2VlpXkxMDDZv3oy2bduifPnyMDMzg6WlJerUqYP58+cjMTFR4777+Pho3G9V9RHXyanPgLjvlSpVQtOmTdUu17JlS6leGcvOrE7ia+jp6alyvi7vZVpaGnr27AmZTIbevXsjLS1NYb6/v7/K9zktLQ29e/eGTCZDr169lNYDgKtXr6JPnz4oV66cVI9WrVrh6NGjal+XlJQUbNy4ES1atICtrS1MTEzg6OiIFi1aYPny5dJymR3j6t53Dw8PpfnFihVDlSpVMHbsWDx+rDzmQUxMDPz9/bN8XOpDr1690LVrV7x69QqDBw8GAOzYsQM7d+6EtbU11q5dq7C8+L1w5swZAICnp6fCa8BzAJFqzFgkr6BnLH9/fwwYMKDAZywxs6iTExlL1WsI5GzGmjlzJipVqsSMxYxF9NliziJ5BT1nFZa2LOYs5ix9Ys6igiBPu/F8+/YtGjVqBE9PTxw7dgwlS5ZEZGQkSpQooXadBw8eoF27dhgyZAi2bduGU6dOYcCAAShTpgxatWqVi7UnfbKzs0Pr1q0Vpm3atEnlskeOHEG3bt2QmJiIypUro0uXLoiOjsaZM2dw+vRpBAUFYcOGDXqvc1BQEObMmQMHBwe4uLigQYMGiImJwcWLFzFlyhQcOHAAISEhMDEx0bidjH3F//PPPzh37py+q6/k7Nmz+Ouvv1C7dm2F6bdu3cLJkyf1Uqau76WBgQG2bNmCuLg4bN++HZaWlli9enWm5QwdOhTbt29H+/btsWXLFhgYKN73sGzZMowbNw5paWmoXbs26tevjxcvXiA0NBQnTpzArFmz8OOPPyqsExsbi/bt2yMsLAzGxsZo2LAh7O3t8eLFC9y4cQOnTp3CyJEjAQDe3t4K6378+BF79uyBhYWFQlcAANC4cWOl+rdq1QqlS5cGALx79w5nz57F0qVLsW3bNty4cUOaB6Qfl6NHj870uMxtq1atwtmzZ7F//34sXLgQv/zyCwBgxYoVCvUHgNKlS8Pb21saJ0F+/wFoHFuB6HPFjEXqFNSMNXr0aNjZ2aFKlSoFPmNduXKFGeszyliZHZc5jRmLSP+Ys0idgpqzClNbFnMWc5Y+MWdRfpenF/vmz5+PsmXLIiAgQJpWvnx5jeusXr0a5cuXx+LFiwEAVatWRVhYGH799VcGpEIgNTUVQPr7mvEOB1UB6eXLl+jTpw8SExMxZ84cTJs2Tbpj6sqVK/jmm2+wceNGNGjQAB56HgTVzc0NO3fuRPfu3RWmv337Fj179sSJEyfg7++PiRMnqlxfvCMnY1/xgYGBuR6Q6tWrh6tXr8Lf3x8bN25UmOfv7w9DQ0M0adIEoaGhOVamLu+l2Bc2ABgbG2PXrl1o27Yt1qxZA0tLSyxYsEBtORMnTsTatWvRrFkz7Nq1C0ZGil+DQUFBGDt2LGxsbLBnzx6FJxzDw8PRtm1b+Pn5wd3dHe7u7tK8/v37IywsDK6urti7d6/C3V4pKSk4cuSI9HvGY/vhw4fYs2cPbG1tVd7ZExkZqfD7lClTFI7nuLg4uLu74+rVq9i9ezdGjBghzXNzc8P58+fRoEEDhW1kPC47deqk7iXTi5IlS2L16tXo0qULJk2aBADo3r07evbsqbRslSpVEBgYCI//Hych4/4TkTJmLMpInxlL/rysD+K5zMbGBhUrVpSmF8SM5e7ujrCwMGasfJKxMtJHxlJ3XOoLMxaR/jFnUUZsy2LOYs5SnKcKcxZzFulfnnbjefDgQdSpUwfdu3dHqVKl4OrqinXr1mlc5/z582jRooXCtFatWuH8+fMql09KSsL79+8Vfij/Sk5OBpB+0tPGunXrEBsbCzc3N0yfPl2ha4Q6depg+vTpAICFCxfmfGUzqFq1qtKdQwBQokQJ6bH3Xbt2qV1ffARd233XJwcHB3To0AHbt2/Hq1evpOlv3rzB1q1b0aFDBzg5OeVomdl5L01NTXHw4EHUr18fCxcuxM8//6yyjDlz5mDRokVo0KABDhw4AFNTU6Vl/Pz8IAgCVq9erdSVaY0aNbBkyRIAUOjK4O+//8bevXthamqKQ4cOKXXrYGRkhI4dO2r3QmSBhYUFvv76awBQ6sahatWqSuEI0P641KfOnTujSpUqAAATExOsXLkyT+pBVBjlRsYCmLMKkoKesbJzLstPGcvZ2RnNmjVjxtIyY92+fZsZKwuYsYj0izmLMiroOauwtGUxZzFn5QbmLMrP8vTJvvv372PVqlUYN24cpk2bhsuXL2PUqFEoUqSI0qPBohcvXsDOzk5hmp2dHd6/f4+EhASYmZkpzJs3bx5mzZqltJ0ePXpodSKysbGR+m02NDRUs1TuPjKcEzI+KaRJfHx8psunpKQASL+jRdOyCQkJAIDXr18rLCeW8e+//0rbU7cd+elin9Nt2rRRubx4x0RkZCQePnwoTX/9+rXKeoj7AADv379Xmvf06VON9fvw4QM2bdqE69evIyYmBomJiRAEAYIgAEg/karbL3Fw13fv3iksk7E+8u+HGPYze921JZaVkpKCb7/9Fvv27cPcuXMxdOhQAMDatWsRHx+PLl26YO/evSrLzqxO4muYlpaW5fcyLCxM6XsAAH777Te0aNECM2bMQFJSkhS4X79+jR9++AFz5syBlZUVli9fjufPnyut/+bNG1y6dAmmpqaoUqWKynqUK1cOQHo3p+L7sXXrVgDpd5Fp83nJKLPjStym+Pl5+vSptNyHDx9w5swZBAYGwszMDNWrV1faRmpqKi5evKjxuMxKvdURvw8ybi9jGbt378adO3cApP8hu2rVKpV3Q4lU7X9G4mup6vObk3Ly9WIZ2SMex6QoNzIWALV/lGqTs7TLWEBhzlmFJWOFhYWhWLFiiIyM1FvGSk1NxR9//IEVK1boLWMB/71e+spY79+/x7fffovg4GC9ZayUlBSFY0sfGevt27cA9JuxAOD06dMA9JexgPT3XJ8ZK2N+zw51GUvcD3E6M9bnUUZulMOcpRpzVt5hWxbbslRhzmLOYs7STmHJQIWhDH1lrDy92JeWloY6depg7ty5AABXV1fcvHkTq1evVhuQdDV16lSMGzdO+v39+/coW7Ysfv/9d1haWma6fmJiIh48eABnZ2eVd06kUx5INL+T7wIpM5GRkZkuLz4+bmdnp3FZMcBm7IZJLEMctNTR0VHtdjJ23wQA9evXV7u8tbU13rx5g9jYWGkZGxsblfUQ9wEALC0tleaJgdrIyEhpXmRkJHr27Knxi+Djx49q6/nu3TsA6XfcyC+TsT7y74d4DE+ZMgVTpkwBABgaGqJEiRJwdXXFgAED8O2336qtT0ZiWUZGRujbty8WLlyIXbt2SV0J/P7776hZsyb69u0r9XWe8T1XVSdVDAwMsvxeFilSROUyW7duRWxsLID0O5/EO23Onj2LGzduAEjvj/zu3bvo06eP0vqXL1+GIAhITExE9erV1dYdSA9T4vsRFxcHIP2uLV0+WyJNxxXw3+dD/Px89913Ssu4ubkhICAANWrUUFq3W7duuHXrltryP378CHNz8yzVXRXx+0DVZ0Sc9vjxY6lv8zFjxmDp0qVYuHAh+vXrp/ZOO3H/NX0/REVFAVD9+c1J2nwvsozcKSM1NRXXr1/X2/YLqtzIWEB6dzJi9yWAbjlLu4wFFOacVVgyVpEiRaTziL4yljbnsuxmLLGsihUr6i1jWVpawt3dHTVr1tRbxjIyMlI4r+sjY9WqVQuAfjMWAMTExADQX8YC0t9zfWasjPk9O9RlLLE+FStWZMb6jMrIjXKYs1Rjzso7bMtiW5YqzFnMWcxZ2iksGagwlKGvjJWnF/vKlCmDL7/8UmFa1apVsWfPHrXrlC5dWrpjQ/Ty5UtYWlqqvBPKxMQk1wfrpKwTv9zs7e3zuCa669atGyIjI9G+fXtMmjQJX375JSwtLWFsbIxPnz5pPA7T0tLw4MEDAJn39a+K/EDIiYmJuHPnDoKDgxEcHIy7d+/ihx9+yNI+jR49Gt9//z327dsHAHjy5InSYL7a1EmeOIBvTnv27BlGjRoFCwsLHD58GP369cPt27cBpHezWa5cOQQGBsLLywsjR46Ep6en0nEmdhtQtGhRdO3aNcfrmFPkB/WNj4/HjRs3cPXqVXz33Xc4ePCgdMcWACkcZeW41BdBENC/f3+8f/8e/fv3x6+//op3794hMDAQ33//PYKDgxW6viAi3eVGxgLSc5bmBiTKLwp6xrp16xY8PT0xa9YsZqx8kLH++usvAMxYzFhEnyfmLMqooOcstmWprpM85qzsY84i0r88vdjXqFEj3L17V2HavXv3NPaf/PXXX0uPSIuCg4OlPn6pYIuIiAAAVKtWTavlHRwccOfOHdy/f1/l/NjYWLx58wYAVD4qn1Pu3LmDGzduwMbGBvv27VMaKDezx35v376N9+/fw87ODmXLltW5/IwDIQPAmjVrMGTIEMyfPx9TpkzJUv/pvXv3xuTJk+Hv7w8g/e4xVXcRaVsn4L8BfDPS5b10cHBQWd7bt2+xcuVKeHh44OTJk2jYsCFev34NOzs7nDx5EhUrVsSCBQswfPhwDBw4UGGgYQDSay+TybBx40YYGGg3rKkYSMTH+PVN1aC+fn5++OmnnzBs2DAcPnxYqs+NGzdQqlSpLB2X+rJy5UqcOnUKZcuWxa+//goA+PXXXxEcHIxTp05Jxy4RZR0zFmWkz4zl4OCA+Pj4nKloBvLnshUrVqBq1aoK85mx/pObGatJkyaIjo7We8YqU6YMAGYsbTFjEeUO5izKiG1ZzFnMWZljziLSP+0+/XoyduxYXLhwAXPnzsU///yD//3vf1i7di2GDx8uLTN16lT069dP+n3IkCG4f/8+Jk2ahDt37mDlypXYuXMnxo4dmxe7QDkoOTkZISEhAIDGjRtrtY54kti0aZPK+Rs3bgSQ/gi2ePeIPogn7lKlSimdhABIY7qpIwaGVq1a5VidxMfj4+LiFAYm1oWpqSkGDRqEsLAwhIWFYcCAAWrvOswuXd7LjAFp3bp1OHbsGFq0aCGdWCtVqiT1mT148GDp0euhQ4eiefPmOHr0KNavX6+wHXt7e9SsWRMfPnzA8ePHta5769atAaT31f7s2TOt18tJPXr0AACp+xDgv+PS3t4+S8elPvz777+YPHmyFELFrjKKFy8uDWo/ceJEhXEJREWKFAHwXz/qRKQeMxbJ03fGUtVwkVOyey5jxtJPxhL/r++M1aRJEwDMWNp4/PgxMxZRLmHOInlsy2LOApizsoo5iyhn5enFvrp162Lfvn3Yvn07qlevjtmzZ2Pp0qUKd1s8f/4cjx//14d4+fLlceTIEQQHB6NWrVpYvHgx1q9fn6MnFsp9nz59wqhRoxATEwMPDw+tH/8fOHAgLC0tce3aNcydO1dhcMvr169jzpw5ANK/cPWpUqVKMDQ0xL179xAaGqow79ChQ9IdH6o8efIEy5cvBwBp8OCcIN41aGFhAVtb2yxvZ9iwYWjXrh3atWun8MdLTsvqe/no0SOMHz8elpaW2LBhg8Ij8+L/M04TT8zjxo3Do0ePFLYnluPr64tDhw4p1VMQBFy8eBEnTpyQptWuXRsdO3ZEQkICOnbsqPCdBaSf0A8ePKjT66GrHTt2AIDCey0el+Hh4Tofl/qQlpYGHx8fxMXFYfDgwWjRooXC/DZt2qB///74+PEj+vfvrzRYraOjIwBo7LOdiNIxY5GosGSs8PBwXLx4UWEeM5Z2CnLG+vLLL5mxtJCWlobJkyczYxHlEuYsEhWWnMW2rKxjzsoe5iyinJWn3XgCQPv27dG+fXu18wMDA5WmeXh4cJDoQmTDhg2YOnUqYmJi4ODggDVr1mi9rp2dHbZt24bu3btj+vTp2LJlC1xdXREdHY0zZ84gJSUFvr6+GDhwoMrHvE+ePInExESFaeHh4QCAq1evKg3KKw6Y+/btW0yZMgXdu3eHm5sbbG1tMWLECCxbtgzNmzdHkyZNYG9vj7t37+LatWuYMWOGdOKVN2HCBAQEBODNmzewsLDA6tWrsXr1aoVl/vnnHwBAWFgYfHx80LNnT6UBQnft2iU9dp+UlIQ7d+5IJ/DJkydnqdsDkYODg/QovT7p8l6KBEGAr68vPnz4gA0bNij0761JuXLlsGTJEgwYMAD9+/fHyZMnpRDl5eWFZcuWYfz48ejQoQNcXFxQuXJlWFlZISYmBn///Teio6MxefJkfPPNN9I2AwIC0LZtW1y4cAEVK1ZEw4YNYW9vjxcvXiA8PBwxMTFKJ/ys+uWXX6Tvxvj4eISHh0vvv3yf9lk9LvUlICAAYWFhKF++PBYuXKhyGbELhJCQEKxatQrDhg2T5nXt2hUBAQGYNGkSTp48iVKlSkEmk6F///5o2LBhbu0GUYHBjEW5lbFU0UfG8vb2xvr16/WWsaZMmQJDQ0OFZZixmLEKQsZasmQJrl69yoxFlIuYs4htWWzLApizdMGcxZxFuUD4zMTGxgoAhNjYWK2WT0hIECIiIoSEhASdyrl3715Wqqez3ChHmzKcnJwEAEJAQIDG5dzd3QUAgp+fnzRt8uTJQpUqVYQZM2YI0dHRatcFIKg7ZCMiIgRvb2/B0dFRMDY2FooXLy54enoKO3bsULkffn5+0vay8yO/v2lpacLcuXMFNzc3oWjRooKVlZXQuHFjqQ6q6i++brr8bNmyRVrf29tbab6BgYFgY2MjtGjRQmH/tREQECAAEDp37pzpsmLZGd9zddNFDx48EAAIDg4OKudr816K/P39BQBC27ZtVW5rxIgRSsebvDZt2ggABH9/f6V54eHhwqBBg4SKFSsKpqamgrm5uVChQgWhVatWgr+/vxAVFSUIguJxlZSUJKxatUpo0qSJULx4caFIkSKCo6Oj0LJlS2HFihUq6yD/mjg5OamcL5Yhfn7kfwwNDQU7OzvBy8tLOHHihNK6aWlpwoYNGzI9LnPyu0Q8ruVFREQIJiYmgkwmE0JDQzWuHxQUJAAQLCwshPv37yvMW7dunfDVV18J5ubmKj+HISEhAgDB29s7p3ZHpfzy3csyBCElJUW4fPmykJKSotdySJG6fKRLzspqxhKEwnHsaltGQchY8vuir4y1YcMGoXr16nrNWCEhIdJ+6CtjeXt7Z/q+ZzdjOTk5qSwjJzOW+D7rM2MJwn/Hlb4ylliGPjOW/H5kl7qMZWpqyoz1GZaRG+UwZ+UN5qzcK6Mg5Cy2ZWWOOes/zFlZx5zFMnKzDF0yli7ndF7sywQv9rEMVcQTWsYQoGsZTk5Ogru7u1bLiuFFPiDpS0F7P1hG/ipDVUDK6TLUYUD6/MpgI1TeYCMUy9BXOeoylq5lZCVjyV/s0yeWwTKySl3Gysky1GHGyn9l5EY5zFl5gzmLZeirjMLeliUIBe89YRn5pwzmLJaRm2Xo62Jfno7ZR0RERERERERERERERERZl+dj9hEVRCVKlMC8efPg5uaWre0sWrQIRYsW1WrZxo0bIyAgABUqVMhWmURERET5VV5mrCpVquDDhw/ZKpeIiIgov2JbFhFR4caLfURZYGVlpTTgcVZ069ZN62VdXFzg4uKicnBmIiIiosIgLzMWAF7sIyIiokKLbVlERIUbu/EkIiIiIiIiIiIiIiIiKqD4ZB8REeWoMWPG4N27d3lStrOzM0aMGIHmzZvnSflERERE+sKMRURERKQfzFlUGPBiHxER5agxY8bkWdnOzs4YNWoUKlasmGd1ICIiItIHZiwiIiIi/WDOosKA3XgSERERERERERERERERFVC82EdERERERERERERERERUQPFiHxEREREREREREREREVEBxYt9RERERERERERERERERAUUL/YRERERERERERERERERFVC82EdERERERERERERERERUQPFiHxEREREREREREREREVEBxYt9RERERERERERERERERAWUUV5XoDB4/PgxXr16pTTtw4cPuVJ2VsqxtbVFuXLl9FAjIiIiopyTVzkrO2UwZxEREVFBUNByFjMWERGRerzYl02PHz9G1apVER8fn9dV0Ym5uTlu377NkERERET5FnMWERERkX4UxJzFjEVERKQeu/HMplevXiE+Ph5bt27F1atXpZ99+/Yp/J6dn02bNsHCwgI1a9bEH3/8ke1ytm7divj4eKW7t7LD2dkZMplM65+ZM2fmWNmUs2bOnIlKlSohMDBQYXp0dDRKliwJmUyG//3vf2rXDw0NhYGBAczNzXHv3j2tyw0MDIRMJoOPj4/KOslkMqU6EVHWyWQyeHp6Kk338/ODTCZDjRo18OnTJ5XrCoKA5s2bQyaT4fvvv9e5bPHznp1zQefOnWFmZoanT58qzZPJZHB2dlaaru99E8+FDx8+BAC0adMGMpkMDx48ULuOt7c3ZDIZWrVqpXaZxMREfPnll5DJZJg9e7ZOdQI0f4e2aNEClpaWePHihc7bzQ25kbPU/WS1jJzOWcxYhYf4Wdy7d6/CdH1nLJF4LBFRzlCXZxISEtCqVSvIZDLMnTtX7fp37tyBmZkZDAwMcObMGa3LDQ0NhUwmg4eHh9Z10kV+yljPnz+HgYEB3N3d1S6TX/9Oze8ZC9BPztLUfsW2LCIi/dKUTapUqYJKlSrpJZuIPDw8UKlSJalNJK+pO0/nh+ywadMmrbenCz7Zl0OqVq2Kr776Svq9WLFiqFixYra3e+nSJYwcORK1atXC8ePHUaxYMYX5OVVOTmnUqBFcXFzUzj9+/DhevnyZizWinFKqVCmsWrUK3bt3x8iRI+Hp6YkyZcooLPPhwwf4+PhAEATMmzcPlSpVyqPaElFWzZgxAwcPHsRff/0FPz8/zJs3T2mZ5cuX4/Tp03BycsKvv/6qMM/Z2RmPHj3CgwcPVDYG5YSTJ09i//79mDBhAhwdHRETE6PVetndN1117doVx48fx969ezF+/HiVyyxbtgynTp3CiRMnsGbNGgwePFhpmWnTpuH27duoW7cupk6dqjBPbLgXBCFLdfzll1+k7QYEBGRpG7lBXzlLE2Ysyi3ZzViBgYHw9fWFt7c3b4wiygfMzMywYMEC9OzZE7NmzYKXlxdq1KihsExqaiq8vb2RmJiIMWPGaLyYlZsyZqzU1FSt1tNXfixTpgwaNmyIsLAwREdHo1SpUkrbza9/pxaUjAXkXM7KrP1KHnMWEVHuMTMzw6ZNm9CoUaMsZZPQ0FB4enrC3d0doaGhuVz7nKdNdvj48WOBbOPO0yf7xCuZ8j9VqlRRu3xycjJ++uknfPHFFzA1NZUCRGF16dIltGzZEtWrV880KOUXAwYMQGBgoNofTe8v5X/dunVDz5498ebNGwwcOFBp/tixY/Ho0SN4eHhg1KhReVBDIsouY2NjbN68GUWKFMHChQtx4cIFhfmRkZGYOnUqZDIZNm7cCEtLy1yv49ixY2FqaoopU6botF5u71unTp1gaGiIPXv2qF2mePHi2LBhAwBgwoQJSk8B/vHHH1i2bBlMTU2xadMmGBlpf5+WmLNmzZoFAPD19VU6D9epUwft27fHpk2bcOXKlc8qZxU0zFiFGzMWUeFSq1YtTJw4EZ8+fUK/fv2QnJysMH/evHm4dOkSKleurPEO+9yWHzNW165dkZaWhv3796tdJre/Q5mxlBXE9it5zFlEVNjVr18f33//fYHLJvqSWXaYO3dugfz7K8+78axWrRqeP38u/YSFhalddsaMGVizZg2WL1+OiIgIDBkyBJ07d8b169dzsca5o6AHJSq8VqxYgdKlS+PIkSPYuHGjNP3o0aPYsGEDihUrhoCAAHYTRVSA1ahRAzNnzpTu7EpISADw351e8fHxGD58OJo1a5brdQsODsbNmzfRqVMn2NjY6Lx+bu6bra0tmjRpggsXLuDZs2dql2vVqhUGDRqEjx8/wtfXV3pKT/w9LS0Nc+bMQdWqVXWuQ7Vq1aSnCpcuXaoyZ33//fcQBAG+vr6fTc4iyo+YsYgKl1mzZqF69er466+/FLrh/vvvv/HTTz/B0NAQmzdvhpmZWR7W8j/5NWN16dIFADTePAXk/ncoM9Z/2H5FRFQwjBo1qkBlE33TlB12795dIP/+yvOLfUZGRihdurT0Y2trq3bZLVu2YNq0aWjbti0qVKiAoUOHom3btli8eHEu1lj/PuegJI4/oOlHlTt37sDX1xdOTk4wMTGBtbU1mjdvjp07d6pcXrwTT1V/65r61X348KHacQpiYmKwefNmtG3bFuXLl4eZmRksLS1Rp04dzJ8/H4mJiRr33cfHR+N+q6qPuE5udtlkbW2NtWvXAki/Q/LJkyd4+/YtBgwYAABYvHix2q77UlJSsHTpUtSoUQPVq1dHyZIl0bVrV4SHh+ulrhs3bkSzZs3g6OgovR9Vq1bF2LFjVY6h9ejRI8yfPx/NmjVDuXLlYGJiguLFi6Nx48ZYs2YN0tLSdK6DpuNWHNtC03t4+vRpjBo1Co6OjjAxMUHJkiVRt25d+Pn54fXr19Jymo7b4OBgmJubw8LCAqdPn1ZZjqenp8bjL2P91B1779+/x8yZM1G7dm0ULVoUpqamqFixIkaPHq2y2xNN9QaUx0CTl5KSgvXr18PDwwPW1tYwMTFB+fLl4efnhydPnigtr2l8E5GHhwdkMplStwTqpgNASEiIxs8pANy7dw+DBw+W7ua1srJC06ZNsXXrVrX1qFSpknT3syqPHz+GkZGRxmMsOyZNmoR69erh3r17mDZtGgBg4cKFOH/+PFxcXDB//nyF5cX38tGjRwCA8uXLQyaTSfuRU109/PbbbwCg9rXWhq77Ji8iIgLdu3eHra0tzMzMUL16dSxatEhtN1ddu3aFIAjYt2+fxjotWrQIzs7OOHPmDPz9/QGkP+l3//59NG7cGGPHjlVYXjyPiTJ+ZsXPjJGREYoWLQoAsLKyUpmz2rVrB1tbW9y8eROjR48u9Dnrc1XQM5a/vz8GDBjAjJXh9XF2doavry8AYNOmTdI+VapUSeP5Tltv3ryBt7c3XF1dUbJkSRQpUgSlS5dGo0aNsH37dpVjc508eRIjR45E7dq1YWtrCxMTEzg6OqJHjx64fPmyznXQdNwkJSVJ5xl1x3B8fDyWLl2Kxo0bo0SJEjAxMYGTkxO8vLyUxuhQd74XBAGDBg2CTCZDgwYNEBsbq1SOps+YWMeM1NX7+vXr6Nu3r0IebdSoEdauXavyfCPmBlXn2szyz7NnzzBu3DhUrVoV5ubmKFasGOrWrYvffvsNKSkpSstn9tlQ91nW9BkH/hvDVt1+AMDu3bvRunVr6Vh0cHBA3759ERERobYeMpkMxYoVw/v371Vu8+eff840x2VVkSJFsHnzZhgbG2PevHm4evWqwt30kydPRr169dSuv3nzZtStWxfm5uawtrZG69atcfbs2Ryto7y8yFjq8qP4ExoaCicnJ7i5uSEkJATv3r1TW3ZO/Z1qamqq1d+pzFjpPuf2K3kFPWcV9LaszNoVAPVtCxEREfDz80OjRo3g4OCAIkWKwMbGBi1atFD7Pmgif/7J7Efd/p86dQrDhw9HmTJlUKRIEZQqVQqdO3fG+fPnVS4vf4ytW7cObm5usLCwQPHixdG2bVulp63lqWtXGTp0qMp2FVFUVBQmTpyIGjVqoFixYrCwsEClSpXg4+ODP//8U2n5hIQELF68GA0aNEDx4sVhamqKypUrY9KkSQptWyJNbTB5kW0qVaqU5WyjjzamrMpKNvHw8ICnpycA4MyZMwrHcE4N3aKp7U+82Kbuuy87cjs75IY8H7MvMjIS9vb2MDU1xddff4158+ahXLlyKpdNSkqCqampwjQzMzONTwMmJSUhKSlJ+l1dyM8vGJTS2dnZoXXr1grT1A1ceeTIEXTr1g2JiYmoXLkyunTpgujoaJw5cwanT59GUFCQ1EWaPgUFBWHOnDlwcHCAi4sLGjRogJiYGFy8eBFTpkzBgQMHEBISAhMTE43bydhX/D///INz587pu/o68fLygo+PDwIDA9G/f3+ULFkSz58/R+vWrVU++gwAaWlp6N69O/bv348iRYqgXr16cHBwwMWLF1GvXj30798/x+t58uRJvHnzBjVr1kTx4sWRkJCAixcvYunSpdi4caP0eLpoy5Yt+OGHH1C+fHlUqlQJjRo1wvPnz3H+/HmcO3cOJ06cwO7du3Pkwsq///6r8YICkH7HzfLlywEAtWvXRpMmTRAbG4u7d+/ip59+gqenZ6YNecHBwejYsSNkMhkOHz4snaDV6dq1q/RHKwCEhYXh33//1WqfXr58iaZNm+LevXswNTWFh4cHrKys8Oeff8Lf3x9btmzByZMnFcaDyKoPHz6gQ4cOCA0NRdGiReHm5oaSJUsiPDwc27dvx4kTJxAcHAxXV9dsl6VJcnIyhg8frnGZXbt2oV+/fkhMTESVKlXQtm1bxMbG4uLFi/juu+9w+vRptRf0gPTxTVR9Pn777Tetx1HJCkNDQ2zatAmurq5YtmwZKlasCD8/PxgYGGDTpk0wNzdXWN7FxQXe3t7YvXs34uLipGPp/fv3sLS0ROnSpbNdp8TERAQFBcHY2BhNmzbN8nZ03TdRWFgYWrdujbi4OFSoUAEtW7bEq1evMG3aNLV/QHXu3BmjRo3Cnj17NB4r4h1jzZo1w9SpU2FoaIg1a9bAwsICgYGBMDBQvD+rdu3a8Pb2ls6N3t7eCvPFz3FkZKTUkLRmzRrpZgZ5xsbG8PDwwO7du/HPP/8ozNMmZ8k39uf3nEUFN2ONHj0adnZ2qFKlCjOWnG7duuHChQs4d+4cvvjiCzRu3BhA+mdR00UEbb158wY7d+5EjRo10KhRI1hYWODFixcICwvDn3/+ifPnz+PYsWMK6wwZMgRPnjxBtWrV0KhRIxgZGeHOnTvYuXMn9u7dix07dqBr167ZrhuQfhEhMjJS7fwnT56gdevWiIiIgLm5ORo1agQbGxtERUXh7NmzCA8PR3BwsMYyBEHA4MGDsW7dOjRo0ABBQUEauyDU5TOmys6dO9G3b18kJyejbNmy6NSpEz58+ICQkBD8+eef2Lt3Lw4ePIgiRYpovU11/vjjD3Tq1Alv376Fs7MzWrZsiaSkJGncrUOHDuHw4cMwNjbOdlmahIWFYfPmzWrnp6SkoE+fPti5cydMTEzg5uYGBwcH3Lt3D9u2bcPevXuxd+9epddd9PHjR2zcuBFjxoxRmJ6cnIyVK1fm5K4ocXV1xfTp0zFz5kz069cPbdq0wY0bN1CzZk34+fmpXW/06NHw9/eHgYEBGjduDHt7e9y4cQMeHh4YOXJkjtczrzKWuvwoEvNj165dcfXqVRw8eBD9+vVTW35O/J3q4eGBEiVKZPp3qr4zFpD/cxbbr5QV1Jz1ubRlqbJkyRJs2LABVapUQY0aNVC8eHE8fvwYISEhOHXqFC5cuIAlS5bovF0LCwt069ZN5TxN7SwTJkzA4sWLYWBggDp16qBJkyZ4/PgxDhw4gEOHDmHdunXSjV4ZjRs3DkuXLkWjRo3QsWNHhIeH49ixYwgODsbOnTvRuXNnheU/fvyIli1bqmxXWb16NXbt2qWyXeXUqVPo1q0b3r17h1KlSqF58+YoUqQIHj58KN1I1bBhQ2n5Z8+eoXXr1ggPD4e1tTXq1q2LYsWK4dq1a1i4cCF27dol3dyRXQUl26ijTRtTdumaTVq3bg1TU1MEBQUpfcdpemgrJ7x9+xaTJ0/WaxnqskOTJk1yPDvkhjy92Fe/fn0EBgaicuXKeP78OWbNmoUmTZrg5s2bKkNCq1atsGTJEjRt2hRffPEFTp06hb1792ps7Jw3b57Uj7q8Hj16aPXBtrGxka7wGxoaKs1//Pix9K98nePj4zX+4anK33//DV9fX1SqVAm//fYbXrx4gRcvXmhcJyvlqKtzdsoQ74x4+fKlxmXFrjxev36tsJxYhnhHn7OzM6ZPn66wrhiQ5Nd79eoVevXqhcTERIwdOxZDhgyRLsSEh4ejf//+2LhxI8qXLw8vLy9pXfGukYz1EPcBSA/SGec9ffpU2t+M82xsbLB582Y0aNBAYXpsbCzGjh2LsLAw/Pjjj9LdARmJdyl6eXlJXZUAwN69e3Hu3DmpPvLvhxj2M3vddSG+Npltc+TIkQgKCsLJkycBAJaWlpg2bZradbZu3Yr9+/fD1tYWmzdvhr29PczNzZGSkoI5c+ZIf2iret21rVNGK1euRPHixRWmpaamYtKkSTh06BAWLlyocNKoWrUqDh8+rDTo6suXLzFw4EDs3bsXy5cvR5s2baR52n4GMy4zYMAAJCUlwd7eHs+ePVPat82bN2P58uUoXrw4Fi5cqDAwLpD+fWFgYCCto+q4PXfuHIYOHQqZTIY1a9bA0dFRbV3Fz/CIESPg4OAgTZ88eTL+/fdfpfqpOvYGDhyIe/fuwdHREYGBgdIfu8nJyfDz88Pu3bvRsWNHHD9+XGqg0vR5k6/XgwcPFPoTHz9+vDRA8Ny5cxW6Glq7di0WLVqELl264NixY9J3t/j5TUhIUPs6iN9RT58+VVgm43TxfV+3bh1u374tvY8Z9+Pu3bvo27cvZDIZli9fjlatWknzoqKiMGTIEAQEBKBKlSoKwVssr0GDBrhw4QL+97//oW7dugrz165di6+//lq6uy8r3wFpaWka1zM0NMTYsWMxb948KXAOGDAAJUuWVFrPzs4O06dPx8mTJxEXF4fhw4fD0dER8fHxUsNOxuNV1XewJn/++SeSkpJQo0YN6f0Uu7zUVZUqVTB37lyMGzdO2reJEycq/FEiLzExEb1790ZcXBzGjBmDRYsWScfWjRs30Lx5c7x69UppPQcHBzRo0AB//PEHXr16pTEMiw14/v7+UkPeggUL8MUXXygt26lTJ3Tq1Ek6N6q6C1HMWadPn8bq1asRExOjNmc1bNgQu3fvxq5duzBx4kStc9bChQvx888/K03XJmdllrGAnM1ZuspqGbrkrMKSsXr06CGVo6+MtXPnTlSqVEmhoTinM5b866XPjJWUlJRjGWvw4MEoWbIkzp07h5o1a0rvrfjdK7+OeCzpsj+pqam4du2a0nihz549Q+fOnXH8+HEcPXoUFStWlOaNGzcO9erVg5WVlcI6wcHBGD16NAYMGIBKlSop3cSpSnx8vNrj5unTp/j555+lc3DGfUtLS0O3bt0QERGBxo0bY9GiRbC2tpbmJyUl4fz58wqfw4zne0EQ8MMPP2Dnzp2oXbs2Vq5ciZcvX6rsrUDXz5g8cfqzZ8/g7e2N5ORkfPvtt/Dz85O+Sx8/fgwfHx/p4ve4ceOk9dXlF3GauIz8vJiYGHTs2BGxsbGYOXMmevbsKd1Y8vbtW4wePRonTpzAhAkTMGLECOn9yOyzoe6zrG56SkoKBgwYAENDQ9jY2CA6OlppP5YsWYKdO3eiVq1aWLJkCcqWLSvNO378OMaOHYuePXvi1KlT0oVYsTx7e3sYGxtj6dKlaNu2LWQymfSeHz58GM+ePZPylLo8qo6mPCN/XH377bfYtWsXbt26hYiICBgbG2P27NnSMZNRSEgI/P39YW5ujnXr1ilkwNWrV0uNzgkJCUrnkZzMWEDWcpYuGatx48Zo3LgxQkNDERcXJ/V0kFHXrl0xbdo07NmzR+PFPiC9S81Tp05J36HFixfH+vXr1S6/atUq7N+/H3Z2dggJCZG6TU9JScGoUaNUXhDOjYwF5O+clZX2K3lsy2JblljnnMhZ8vuu7n1X17bg6emJXr16KV2sv3//Pnx8fPDrr7+iYcOGqFWrljRP07ElvtbFixdXOhZE6tpZfv/9dyxevBhOTk5YuHAhateuLc27fPkyBg0ahMGDB8PR0VHld+WqVasQGBiIr7/+Wpq2fv16LFiwAN7e3ihTpoxC28n06dPVtqsEBgZi7ty5Su0qz58/R+fOnfHhwwcMGjQIo0aNUrgB6fXr13jw4IG0X3FxcejZsyfCw8PRrVs3TJs2TbqpIyUlBYsWLcLGjRvRs2dPhYtjumQb8f3ISrYBMj8e9ZFtVO1ffHw8pk+frrGNKTOZ5QDxtdIlm3Tt2hWOjo4ICgqCk5OT0nGtar8yfs4yo+7zOXPmTMTExEivh7hf2p5DstPGPWPGDK3buMUbHXRp446Ojs60/lki5CNv374VLC0thfXr16ucHx0dLXTs2FEwMDAQDA0NhUqVKgnDhg0TTE1N1W4zMTFRiI2NlX6ePHkiABBiY2O1qlNCQoIQEREhJCQkqJx/9epVAYBw9epVhen37t3TavuiixcvCpaWlkLDhg2F9+/fa72eruUIgvo6Z6cMJycnAYAQEBCgcTl3d3cBgODn56eyjGPHjgkAhJYtWyqtC0DIeMjOnj1bACC4ubmpLG/RokUCAKFixYoK++Hn56eyHoIgCAEBAQIAwdvbW2negwcPBACCk5OTyvLUvVZ3794VAAh169ZVOV8QBKF79+4CAGHr1q0a6yNfhre3t1avuy7E10abbf7yyy/S++Lv769xWRcXFwGAsGrVKkEQFPcjISFBKF26tNrXXZc6yVP1fqSlpQnfffedAECYNGmS1tsKCgoSAAjdu3fPtAx5qo7bvXv3CgAELy8vle9hcnKyULJkSQGAsGfPHq0+gxmPkxMnTghmZmaChYWFEBoamun6tra2AgAhKipKYbq6Yyzj9MjISGlf9+7dq7T9uLg4qYxt27ZJ07dv3y4AENq1a6eyXuJ3y4MHD6RpERERgkwmE+zt7VV+X967d09o27atAEA4dOiQND0kJEQAILi7u6t9HcTvqJCQEI3T7927Jzx58kSwsLAQ7O3theXLl6s8fnv06CEAEBYtWqSyvEuXLqn8DhPL+/333wUTExOha9euCvNXrVolABAOHDig8hjTBgDBwcEh0+USExMFKysrAYBgb28vJCYmalw+43um6vgVj1dV38GaLFy4UAAg9OvXT5qWkpIiXL58WUhJSZGmafqelqfLvm3dulUAIJQtW1b49OmT0vxff/1Vei/kj1f5eq9bty7TOkVFRQkGBgbScZGWlqZxeW3ef/E7dMWKFWpzlvgdZ2VlpVXOEvPRu3fvspyzMstYgpBzOSsrslqGLjmrsGQs+XL0lbHky5CXkxlLvgx9Zqxffvkl02V1yVia9kOeeCzlhKioKMHa2loAIERERGi9Xq9evQQAwpEjR7Ra/t69e2qPmw4dOkhZSdUxvH//fgGAUKZMGeHDhw8ayxDJn+/T0tKEgQMHCgCEr7/+OtPvNV0/Y6qmT58+XQAglC5dWoiPj1dafvfu3QIAoVixYgrfna1atRIACLt27VJaR13+mTx5sgBAGDFihMr9efr0qWBsbCyULFlSOhfdu3cv08+Gus+yuulLliwRAAgjR45UmcNev34tmJmZCaampsLTp09Vljls2DABgLB8+XKV5S1btkwhF4rvef369YXSpUsLa9asUfvdpImmPJPxM7hjxw7p/R43bpzG7bZo0UIAIEyePFnl/Nq1a0vvacZycjJjCYJyztJHxhIE1Zk/o2rVqgmmpqYaP8+i7PydKk/bv1NzMmOJ5ebnnJXV9itdylCFbVlsy1JHvix1+6LN90xG4vlh4sSJCtM1HVvaZFpV+5+amirY29sLAIQrV66oLGPBggUCAGH8+PEK08VjbMyYMSrLq1OnjgBA+Pnnn6VpmbWrCIKgsl1lzJgxApDenqWN9evXCwCE2rVrC8nJyUrzU1NTherVqwsAhPDwcGm6LtlGfK2ykm0EIfPjMaezjSCobnv6448/Mm1jykxmOUD+uNIlm2jTniYI/+2XLp8zQVD9+bxy5YpgYGAguLq6CjNmzFDYL23PIdlp49ZURk5khw0bNii1ZamjzTldlOdj9skrXrw4KlWqpNS9gahkyZLYv38/4uLi8OjRI9y5cwdFixZFhQoV1G7TxMQElpaWCj/5Dbs++I94B0Bm3QOIxL6NM3ZfJvr+++8BpN9loOoO3JyWmpqKU6dOYfbs2Rg2bBh8fX3h4+Mj3Y139+5dtevGxcUBgNru4/Kb6OhoLFq0SPp9586dase0i4qKkj7Xffv2VZpvamqKb7/9Vj8VBTBr1iz4+Piga9eucHZ2xpYtW1C6dGkMGzZMadmkpCQcOnQIP/74I4YMGSK9h2vWrAGg+T3URnx8PMaOHQszMzMsW7ZM5TJXr15FTEwMbG1tlbpZ0IbYdWdCQgK2bt2q9FSgKmI//Np+9kTr16+Hj48PBg8eDCB9vIpOnTopLWdubo527doBSL9bWVSlShUA6Z9lVX1zq3L06FEIgoA2bdqo/b4UuzdV1Vd8Thk7dizi4uKwePFihe6GRGlpaVLXZj169FC5jTp16qBo0aK4fv26yrEQSpUqhZ49e2L//v0K/eX7+/ujQoUKaN++fQ7tjXo///yzNDbRs2fPcObMGb2XqY74PS5/x2F26LJv4vnm22+/VXkntbrzEACpu7q9e/dmWqcpU6ZI36Xh4eG4detWputoy9zcXG3OEl9TCwuLQpezKJ0+M5b4VJU+paam4s8//2TGyiNRUVHw8fFBv3790KpVK7i4uODNmzfo1auX9BSMvGfPnmHdunUYP348BgwYAB8fH/j4+EjfadnNU0eOHMHBgwfRqlUrhacI5B0/fhwA0Lt3b5XnaU0Eua47y5Ytm2nXnYDunzF54uuzZcsWAOnnGjMzM6XlunTpghIlSuDDhw+4evWqNF3MU5s3b9a6i+8jR44AUJ9RHBwcULFiRcTExOjtSernz59j5syZsLOzw+zZs1UuExISgoSEBGksJVUyy32+vr4oVqyYNCYuAFy8eBEXL17E4MGDc6RLVE0SEhIUusU6ePAg4uPjVS6bkpIide2o6u8mAJk+2ZYVeZmxtNW1a1ckJibi6NGjGpfLi79T9ZGxgPyZs9h+pRrbsgpOzlLl48eP2LVrF6ZNm4ZBgwZJ5+U9e/YAyH5u0cb169fx7NkzfPHFF3Bzc1O5TGbnO3XHk3jekB8fLqvtKmK+GjRokNp9kSeW2bVrV6WeIgDAwMBA6j5avpzCnG3UmTt3rsY2ppykSzbJC2lpaRg2bBgEQcCKFSvUPqGeUwpSG3dm8nzMPnkfP37Ev//+i++++07jcqampnBwcEBycjL27NmTpy9gdjEoKRIfZS1RooRWy0dFRQFIH8hbleLFi8Pa2hpv3rzRqUuJrIiMjESHDh00njA09bEv7ktW/sDy9fWV+uw2NDREiRIl4OrqigEDBujt8zF48GC8evUKnTp1wt9//42wsDAsXbpUoUshkfhou62trdoTlrr3MCccOnRIoUHEw8MDmzdvVugCCAAuXLiAHj16SN2DqJLdcRLmzJmDR48eYdasWWr3WXxsvnLlyjqPD3jlyhXs3LlT+mNj69atKi++yUtOTsbHjx9hYGCg1OVWZs6dO6fQD784qK4q4ustHutA+rhjLVu2RHBwMGrXrg0PDw+FrldVdYt4//59AMCGDRsyHcMgJiZGaZo4oHB2hIWFYffu3WjWrBl69uypsgvF169fS8dLxmNNldevX6tsxBo9ejQ2bdqEFStW4JdffsGJEydw+/ZtqR9/fbpy5QrmzZsHY2NjDBo0CCtWrMCAAQMQHh6u87GSE8RGo5xo6NB138TvMXWf2xIlSsDKykqqo7zy5cvD1dUVp06dQmxsrNrX7sCBA9iyZQuKFy+OTp06ITAwEN7e3rh48aLKP4x0lZiYqDZnia/p27dvC1XOov/oM2M9ffpU6+1mRWRkJDp37qzx4vfnmrFyy9u3bxXGHDI2Nsbw4cOlsYXlzZo1Cz///LPGrnuyk6cSExMxatQomJiYqCxfJOYpsbFIF5MmTcKVK1cApI/7FxoaCi8vL43r6PoZk5dxPCd1nzuZTIby5cvj7du3Cnlq2LBhWLduHQ4dOoTq1avjq6++km5MUfc3kJinmjRpkmn9YmJilLq5l/9sZNX48ePx/v17LF++XO25UaznqVOnMs1vqnIfkD4urq+vL5YvX47bt2/DyMgIy5YtQ5EiRTBkyBCp4VJfpk6dirt37+Lrr7+GIAi4cOECpkyZonDxUfT69WvpBjB1x4E+/m7Ky4ylra5du+Knn37KNJvkxd+pn0vGYvuVemzLyh85a9OmTTqNkwuktxf5+vpK76EquTFepni++/fff7N8vsvsvCHfTXNW21V0zVfiTcs//PADfvjhB63LGTZsGNavX18os40qJ06cwPHjxzW2MeUkXbJJXli/fj0uXboEX19ffP311wgKCtJreaqyQ2BgIObNm6e0bF63cWcmTy/2TZgwAV5eXnBycsKzZ8/g5+cHQ0ND9OrVC0D6nQcODg7SC3vx4kVERUWhdu3aiIqKwsyZM5GWloZJkybl5W5kGYOSMjEk2Nvb53FNdNetWzdERkaiffv2mDRpEr788ktYWlrC2NgYnz590niHV1paGh48eAAga18I8gMhJyYm4s6dOwgODkZwcDDu3r2b6QlVV1u2bMH+/ftRqlQprFu3DuHh4WjevDlmzJiB9u3bK50w85rYWBMTE4OQkBCMGTMG7u7uCAoKksaYiY+PR6dOnfDy5Uv4+vpi6NChcHFxgaWlJQwNDXHv3j1Urlw5y+ODAcC9e/ewePFiuLi46G2A2Vu3bsHc3BxHjx7FlClTsGfPHmzYsEG6M1AV8YmMkiVL6nxBISAgQLrjTd3g05nZt28ffvzxR+zYsQMHDx7M9DUW766pXbu2Qr/5ovfv30t/VNevX19pvqpB00XHjx/P9M7JT58+Yfbs2TA2NsZvv/2WaT0BzU99idR9R7i6uqJJkyZYv349Zs6ciWXLlsHCwkLje5oTkpKS4O3tjZSUFPz000+YMWMGIiIiEBISgnHjxuXKYPEZiReCs/vHVl7sW9euXXH9+nUcOnRI5d1fr169ku6O9Pf3R/fu3XHhwgVcu3YN8+bNy9L3uJizxHE0li9frjZniY18pqamuH//fqHIWaSooGesW7duwdPTE7NmzWLGygPVq1eHIAhISUnB48ePsXr1aixcuBDv37/Hpk2bpEapvXv3YubMmShatCh+++03NGvWDPb29jAzM4NMJsO0adMwb968bOWpX375Bffv38eMGTMUxgrMSVeuXEH9+vXxww8/oGPHjvj+++9x48YNlC5dWu062fmMia+Hl5cXDh8+rPP6lSpVwv/+9z+sXr0aZ8+exZ07dzJdR8wp3bp1g4WFhcZlVTXgyn825H38+FF6EkKT0NBQbN++HU2aNNH4pJpYTxcXFzRq1EjjNjU1PI4cORLLly/Hb7/9hl69emH37t349ttvNb6nOeHMmTPw9/eHmZkZAgMDkZaWBldXV/z222/o2rWrVj1w5IaCkLFq1qwJFxcXHD16FImJiSrH/cyt79DPMWPlh/Yr8Qmy/Kig56zC0pb1xRdfoGbNmipvXNi9e7fSMRQVFYUePXogISEBkyZNQp8+feDs7IyiRYvCwMAAJ06cQKtWrbKVW7Qlnu9Kly6NVq1aKbRrZKRpHHhN5Pcjs3YVearaVbQlltO4cWOVY9HLq1atmvT/SpUqISwsDFOnTi102SajT58+YeTIkZm2MeWU/J5NXr9+jWnTpqFEiRKYP3++3stTlx2WLl0qjU1bkOTpxb6nT5+iV69eeP36NUqWLInGjRvjwoULKFmyJID0QXfln1pITEzEjBkzcP/+fRQtWhRt27aV7oAvaPJDUMqPIiIiACh+wWvi4OCAO3fuSHdvZBQbG4s3b94ASG/g15c7d+7gxo0bsLGxwb59+5QumGT2ePjt27fx/v172NnZafUEUEZi90jy1qxZgyFDhmD+/PmYMmVKpgN4aysqKgqjRo2SyrC1tYWnpyeGDRuGFStWwNfXF2fPnlX47IpPK7169QofP35UeeeDtl04ZkfJkiWlbpE6dOiAyZMnS93q/fHHH3j58iW++uorbNy4UWndnHjEf8SIEfj06RP8/f01BmZxYOh79+7pHCrNzc1x6NAhNGvWDE5OTnBzc8Po0aPRtGlTtQ1iun7uVBGP24cPH0IQBJV3ool3v2R8es3CwgKLFy/G4sWLldZxdnZWGiBYLKtRo0Yqg1BkZKTGxr8qVaqovUvKw8Mj04t9CxcuxIMHDzBp0iSVXZeJbG1tYWZmhoSEBCxatCjLgRwARo0ahe7du2PmzJk4duwYhgwZovcn68TGGTc3N0ydOhUymQwbN25EjRo1sHHjRnTv3l3tRVN9KVWqFABovOtSG1nZN/G4Vfdd9e7dO5VP9Ym6dOmCGTNmYM+ePSov9g0bNgzR0dHo2LGjdFd4YGAgGjVqhNmzZ6Njx46oWbOmTvsp5ixx4OeiRYvi4MGDKnOW+JomJCTgyy+/LPA5i5TpM2M5ODjordsXMWOVKlUKK1asUPre/dwzVm4zMjJChQoVsGDBAvz999/YsmULunXrhg4dOgBI7/IGSO/CT1X3TtnNU/fv38f8+fPh7OyMadOmaVxWzFPaNA5lVL9+fQQFBcHKygrTpk3D7Nmz4ePjg2PHjqm92z4n85S6zx0AqVE1Y5768ssvpe7D5YWGhsLT01NlWZGRkZg8eTLq1Kmjc11VfTaA9PNkZg1iycnJGD58OIyMjLBixQqNy4qvSeXKlbN1l7uLiwvatm2LzZs348OHD0hOTpY+b/ry8eNH+Pr6QhAEzJ07V2osmj17NiZOnIj+/fvjxo0bCg2SNjY2MDExQVJSEh4+fKjyeNLH3015mbF00aVLFyxYsABBQUHo2LGjwrzc/Dv1c8tY+aH96sOHDxgxYkSul6sttmXlj5zVuHFjTJ8+XWV7QGhoqNLFvkOHDiEhIQGdO3dWeVFBX109qiK+fjY2NggMDMy0XUOVBw8eoHbt2krTxe8xR0dHpfLUtauoU65cOdy9exd37txReWEsozJlygAAOnbsiAkTJmhdDpB+IbIwZpuMFi5ciHv37mHgwIEa25hyQlxcnM7ZJLdNmTIFr1+/xsqVK6Xzqr4U5DZudfJ0zL4dO3bg2bNnSEpKwtOnT7Fjxw6Fq/yhoaEKgd7d3R0RERFITEzEq1evsHnz5gJ510x+CEr5UXJysjSWV+PGjbVaR+w/Wt1j+uJFm4oVK+r1rk0xhJUqVUrlk1Fbt27VuL540mjVqlWO1UlsLI6Li1PZFWJWff/993j37h369u2r0D3k/PnzUaFCBfz5559YsmSJwjqOjo7SeAT/+9//lLaZlJSEXbt25VgdMyOeLG7fvi1NE99DsWEoo8zew8zs2rULwcHB6NSpE9q0aaNx2Tp16sDW1hYxMTHYv3+/TuV069YNzZo1A5De6LNo0SLExcWhd+/earvTOnHiBADtP3equLq6okSJEoiNjcW+ffuU5ickJEj9p4v1yyrx9Tt48KDKce706dGjR5g7dy5Kly6NH3/8UeOyhoaGaNmyJYD/Gj+zqnPnzihXrhzmz58PQRAwcuTIbG0vM+fOncOSJUtgYmKCTZs2Sd9rzs7OWLhwIYD0IKzq4pY47k1KSkqO1+urr74C8N8f01mR1X0T727buXOnys/S5s2bNZZbtWpVVK1aFUFBQUp/ZG7fvh27du2CjY2NND4okN7YPGHCBCQnJ8PHx0dlueIfv6pebzFnzZgxAwAwdOhQtTnr5s2bANL7nC/oOYuU6TtjqRtHKyeI52d7e3tmLBUZC9Dv964m1tbWAFTnKScnJ6Xlo6OjERwcnK0yR40ahcTERCxdulTlmHbyxAsK27dv1/lpkHnz5kk31fz4449o0KABgoKC1I63nJXPmCpiRpLvkl3evn378PbtW1haWmapEUuemKeym1GyYunSpYiIiMCIESNQo0YNjcs2b94cRYoUQWhoqHRhJatGjx6Njx8/YsuWLahfvz7q1auXre1lZvz48Xjw4AGaNm2K0aNHS9PHjRuHhg0b4v79+0q9fRgZGUlPMG7btk3ldsWxHXNSXmYsQPvvMU3jIOfm36mfU8bKD+1XHz58QOvWrfHvv//metnaYFtWwchZqmjKLYIgqPxe0Je6devC1tYWERERWR63Xd35QZwuHndA1ttVxHy1bt06rZYXx+PbtWuX3p+QLCjZRp7YxuTo6Ijhw4frsYbpfvnlF52zCZB7f29cunQJGzZsgJubGwYPHqzXsgDN2aFs2bIFoo07ozy92Pc5yg9BKT92ffDp0yeMGjUKMTEx8PDw0Prx/4EDB8LS0hLXrl3D3LlzFU4c169fx5w5cwAAEydO1Eu9RZUqVZK6epQf8BZIv1Po119/VbvukydPpPFGhg4dmmN1Egcut7CwyNYTRfLWrl2LoKAg2NvbK/XjbGFhgYCAAMhkMvzwww9KAxiPGTMGADBz5kyFO6xTU1MxYcIEqSvJnPL69WuVf6y+fv0aU6ZMAZB+MUwk3j1z6tQppfXWrl2L33//PVv1GTduHMzNzbF06dJMlzUyMsL06dMBpA96fPnyZaVlLl++rNDfuijj3ebDhw9Hu3btcOXKFZUXp06cOIHVq1fD2NhY5dNG2jI2NpaCwoQJE6S7zoH0P35Gjx6NmJgYVKhQQfojPatcXV3RtWtXPHnyBF26dFF5x0xcXBy2bduW44OZz5gxA/Hx8Zg6dapWdzr5+fmhSJEimDhxIjZt2qRygN+bN2+qbLCQZ2hoiNmzZ6Ndu3YYO3asXu/2io+Ph4+PD9LS0jBr1iylu1MHDx6M5s2bIyoqSvpcyxPvFszqHyiaNGzYECYmJvj7779VNoJmJjv71q1bNzg4OODx48eYOnWqwnt58+ZN6XyjSdeuXZGQkKBwd+KLFy+ku5RXrFihdOeu2GXh9evXMXfuXKVt5tTrLQ6Gnt2L8ZT/FJaMFR4ejosXLyrMY8ZKJ34PZKeRXp2//vpL5ZM+ISEhOHToEADVeWrt2rX49OmTND02Nhbe3t4an4DOzKlTp3DkyBG0bdtW6YkeVTp06ABXV1c8e/YM3bt3V9qPxMRElXeLA4p5ysjICNu2bUOxYsUwZcoU3LhxQ2HZrH7GVOnYsSMqVqyIly9fYvTo0Qo3eTx48ADjx48HAGnMwuyYOHEiihcvjiVLlmDx4sUK75d8mdm94S2j2NhY/PTTTyhTpgxmzZqV6fJ2dnYYOXIk4uLi4OXlhfDwcKVlkpKScPDgwUyf4mzZsiX69esHDw+PTG/ayq6zZ89i7dq1Cp9fkYGBAQICAmBmZoaVK1cq/f0oZpDly5dL52fRggULcO3atRyvb15mLED7PFO3bl2ULVsWBw8eVPh85Oe/UwtyxsoP7Vfihb6bN29i5cqVuV5+ZgpLzirsbVnqiLll9+7deP78uTQ9NTUVP/74o9J3sD4ZGxvDz88PgiCgc+fO0nA08lJTU3H69GlcuHBB5TZWrVql9D7++uuvuHTpEooVK6YwFIirqytatWqlc7vKuHHjUKxYMRw8eBAzZsxQuiE1OjoaYWFh0u8tWrRA3bp1pfHXVI03+PbtW6xevTrbF5IKSraRJ7YxLVmyBObm5jlar4yCgoLw+++/ZymbiOfpyMhIjeNyZ5eYdVesWKH33kwyyw6//PJLvmnj1kWeduNZmMjf0Qqkd9vw4cMHhWk3b97EsGHD8MUXX+CXX37JkcfBVZWjSVxcnN7HedLVhg0bMHXqVMTExMDBwUHhqYbM2NnZYdu2bejevTumT5+OLVu2wNXVFdHR0Thz5gxSUlLg6+uLgQMHqny9T548qXQHi/gH5NWrV6WLQiKxgeLt27eYMmUKunfvDjc3N9ja2mLEiBFYtmwZmjdvjiZNmsDe3h53797FtWvXMGPGDJUNwRMmTEBAQADevHkDCwsLrF69GqtXr1ZY5p9//gEAhIWFwcfHBz179lR6lH/Xrl3Sl0tSUhLu3LkjPa01efLkHOle6uHDh9KX7tq1a1UOPN20aVOMHDkS/v7+8PHxwblz56Qv5+HDhyM4OBiHDh1CrVq1UL9+fTg4OODixYt4/vw5hg4dilWrVmW7nqInT56gU6dO+OKLL+Di4gJra2u8fPkSf/75JxITE2Fra6vwnri6uqJjx444cOAAXF1d4eHhAWtra/z111+4e/cupk2bhp9//jnL9Xn69CnmzJmj8o4xVUaPHo27d+9i9erV6NOnDxYtWoTKlSvj/fv3UncfISEhCt0wqLNx40bUrFkTCxYsQOvWreHu7o5Hjx6ha9euuHr1KgwMDDBt2rRsj3szbdo0nD9/HkFBQfjyyy/h6ekJS0tLnD9/Ho8fP4a1tTX27Nkj3RGUHQEBAXj37h2OHTuGypUro1atWihfvjwEQcCdO3dw9+5dfPr06f/Yu/f4KOs7/f9XTiQBEhJIgBBDAsUQFAIC0iJYsYBFMKhVWzGIUm1XYb8Ft66HLSxEoUGLVv26pS5qbQV+9FtrXauCAkukoBgOgggpJ3OAEA6BHEgIkxDu3x+YQMiRZO7T5PV8PPJoM7nnc30mYZK3c83MraysLK++7cnhw4c1fvz4Zl+dWWPo0KFatmyZHnzwQT344IOaM2eOrrnmGkVHR+vUqVPatWuXDh8+rJ/85Cf60Y9+1ORa06ZNu6L3fW+tJ554QgcOHND3vve9Bt9mw8/PT2+88YYGDRqkt956S/fcc48mTpxY+/W77rpL69ev19SpU3XLLbfI399fXbp00b//+7+rf//+bdpbSEiIfvjDH+r9999XRkZGi38O3rhtoaGhWr58uSZOnKgXXnhB7733nq6//nqdPHlSGRkZSklJ0bZt2+q97eyl7rrrLi1YsKDOOS5/9rOf6dSpU7rnnnv0k5/8pN51goOD9dZbb2nkyJFauHCh7rjjjjrnVLjrrru0ePFijRs3Tj/4wQ9qH4R57rnnGjwPQUOqqqq0YcOG2u+vE7VkzvK21mZcvlc7WTVjNcSMGeuBBx7Q66+/btqM9dRTTykgIKDOMW6Ysb73ve+pV69e+vLLLzV06FANGjRIZ86c0YgRI9r8IOFbb72l3/3udxoyZIiuuuqq2gcEawqv2267TZMmTao9fvbs2frTn/6kjz76SH379tX3vvc9VVVV6dNPP1XHjh3105/+tMG3S2+Jw4cPKyQkpN5/jDfG399ff/vb3/TDH/5Qq1atUu/evTV69Gh169ZN+fn52rlzpyIiIlr0asO+ffvq1Vdf1QMPPKD77rtPW7duVUhIiN544w3NmTNHR48eveL7WEOCgoL05z//WePHj9fSpUv18ccfa+TIkTp9+rT+93//V2fPntXEiRO9UlRdddVV+p//+R/dddddevzxx/X8889r4MCBiomJUUlJibKysnTw4EF997vfbdMTwi5Xc46z3//+942ei+hyixYtUkFBgVasWFF7bqG+ffsqMDBQhw8f1o4dO1ReXq5Vq1Y1ed4+6cKraFrz1mhXori4uPaJe88//3zts78vlZiYqIULF+rf/u3f9NOf/lS7du2qfSJZSkqKZs6cqf/6r//SjTfeqO9///uKiYnRV199paysLM2aNavRV5m2lp0zllR/fqz5PXj5/Ojn56cf/ehHevnll/W///u/+uEPf+j1/069+eabFRkZ6ZX/TnXDjCU1PGd9/vnnXn/86vKM5uas8vJy/eu//qsOHjyo3/3ud/X+RtuNx7Lc8VhWU1JSUjRs2DBt27ZNiYmJuummm9SpUyd98cUXOnLkiJ588klLzhlW41//9V+Vl5en3/zmN7rvvvu0cOFC9evXT6GhoTp69Kh27Nih4uJiLVmyRN/73vfqXf9f/uVf9IMf/EA33nijYmNj9fXXX2vXrl0KCAjQm2++We9Vounp6Tp37lyDj6vk5ORo586d9R5X6d27t9555x3dfffdWrhwoV5//XWNHDlSQUFBys3N1Zdffqn77ruv9lWu/v7+eu+99zRp0iT98Y9/1DvvvKPBgwerd+/eqqys1DfffKNdu3apurpaDz74YIOvMG0pN802NWoeY7rnnntMfdvY4uJiPfzww5JaN5v07t1bw4cP19atWzVo0CANHz5cISEhioqK0qJFi7y2z8OHD+vhhx9u03kiW6Ils8P1119vy+zQZkY7U1JSYkgySkpKWnR8RUWFsWfPHqOioqLBr+fm5hodO3Y0JLnqo2PHjkZubm6Lvgf79u1r9pj4+HhDkvGHP/yhyeNuuukmQ5Ixb9682suefPJJIykpyZgzZ45x/PjxRq9bs/eG7Nmzx3jggQeMq666yggKCjIiIiKMm2++2Vi5cmWDt2PevHle+T5eenvPnz9v/PrXvzaGDRtmdO7c2ejSpYsxevTo2j00tP+a79uVfLz99tu113/ggQfqfd3f39/o1q2bMW7cuDq3v6VqvjeX37YxY8YYkozp06c3ef3y8nKjX79+hiTjueeeq/O1qqoq44UXXjCuueYao0OHDka3bt2M22+/3dixY4fxhz/8wZBkPPDAAy3aU3NOnDhh3H///cbQoUONbt26GQEBAUbnzp2NwYMHG0888YRx5MiReteprKw0fvOb3xiDBg0yOnbsaHTt2tW45ZZbjE8++cTIzs42JBnx8fF1rtPc/aPm53L11VcbHo+n3tdrfoaN3bZVq1YZY8eONXr06GEEBQUZ0dHRxogRI4y0tDTj5MmTtcc19f2rWcfPz8+Ii4szTp06ZezYscPo3bu3ce+99xqbNm1q9HY0tr/GLq+qqjL+67/+y/jud79rdO7c2QgODjb69etnzJo1y9i4cWOj36fG1NxHsrOz632turraWLFihTFx4sTa70+3bt2MxMREY/r06cbf/vY3o7Kysvb49evXG5KMm266qdG8mt9R69evb/DyDh06GP/85z/rfb+a+/5nZ2cbjz32mDFw4ECjU6dORkhIiBEfH2+MGTPGWLRokXHgwIEW7aMhTf1ubO56sbGxdS5bt26d4efnZ4SGhhr//Oc/m7z+a6+9ZkgyevXqZRQVFdVeXl1dbaSnpxvXXnutERISUru/S29Lzffr0r8FLfXJJ58Ykowf//jHhmEYxrlz54wtW7YY586dq3PbLr+veuO2GYZh7Nq1y/jRj35kdO3a1QgODjYGDBhgpKenG1VVVU3+e63Rt29fIywszDh79qzx5ptvGpKM7t27GydOnGhyT08//bQhyRg8eHCdf9cVFRXGE088YfTr18/o0KFD7ff70j009zv03XffbdHv90s1Nh9dyZzV3IxlGL4/Z/nKjHXpbTFrxnrjjTeMgQMHmjpjrV+/vvZ2mDljLVq0qM5t88aMtWvXLmPy5MlGdHS04e/v3+Dfu5rvyZVYs2aN8eMf/9jo27ev0alTJyMwMNDo3r27MX78eCM9Pb3O794a2dnZRmpqqtG7d28jODjYiI+PNx555BHj6NGjtd+Dlv7+37dvX+3fDEnGf/7nfzZ4XFP/hk+fPm0899xzxvXXX2+EhYXV7mny5MnGypUr69wPm/v7e++99xqSjJkzZxqGceE+Nnjw4Fbfxxq7/NChQ8aMGTOMPn36GB06dDDCwsKMUaNGGf/93//d4PfcMBr/fdLc/HPs2DFj7ty5xtChQ42wsDCjQ4cOxlVXXWXccMMNxrx584yvvvqqTkZzs2tjM3PN5U3tpbnv/0cffWT86Ec/MmJjY2t/Hw0YMMC49957jRUrVhjl5eXN7qPmdlyquTmuMY3NM9OmTTMkGWPHjjXOnz/f6PWrq6uN0aNHG5KMRx99tN7X33zzTWPYsGFGSEiI0aVLF2PcuHHG+vXr6/xMG7st3pixDKP+nGXWjNWS+bHGp59+akgyfvazn5ny36nBwcFe++/U1sxYhsGc5Y0ZyzB8Z87isazmXXo/bezn3th/q50+fdr4j//4D6N///5GSEiI0b17d+OOO+4wtm7d2ujf0Kb+bTX196dGc39LN23aZEyePNmIj483goODjbCwMCMxMdG44447jNdff904depUneMv/RktWbLEGDJkiBEaGmqEh4cbEyZMMDZt2tRgzr59+xp9XGXgwIENPq5SIzc315g1a1bt961z585GYmKi8dOf/tT4/PPP632vzp49a/z+9783br75ZqNbt261M+WQIUOMmTNnGh9//HGj36/LXf5zufzncSWzjWE0//MwY7a5/DGmy2+HWbPJyJEjWz2b5ObmGvfdd58RExNjBAYGNvg9qbldTT0m0pCa+2fXrl2NwsLCel+//L8hWvL7/dLrteYx7n379pk6O7zxxhv1HstqTEv+ptfwMwyT3zDXYUpLS9WlSxeVlJS0qG0/e/assrOz1adPH4WEhDR4TF5eXr33kc7Ly2v03F/e1NqcqKioFl/P7Gc+ujEjJydHffr00R/+8Ic6J2+90oyEhAQlJCTUe3l0Q9566y1Nnz5db7/9tlefgXK5+fPnKy0trd5t87Yr+V61dk9u+3dFhntyfCHDz89PsbGxDb4drDc1dDtqfp/NmzdP8+fPv6L1DMNQcnKy9u/fr8OHDysyMlJffvmlrrvuutpn+/r5+Sk+Pt7WkyI35t///d+1ePFi/f3vf9dtt91mSWZzv0NTUlL04Ycfavv27Q2e0L0hjc1HVzJntWTGkuybs9qS0dI5yxd+l3g7p7EZ60ozWjNjrV+/XrGxsaZ9v2rui4sWLWrwXBje1ND3KiEhQbm5uV47X4qv/Pslg4zWamqeset3rzdnrKioKFVXV9eZs5wwY50/f169evWSYRgqKCgw/W2+mmLGjCUxZzWFx7Laxpcfy6rhtp+JNzJq3o7xSmc8p90OMtqe0dwcYPbtGDNmjD799FNlZ2crISHBtJyW3o62PMZt1veqZk9vvPGGkpOT6zyW1ZiW/k2XeBtPr+jdu3e9YSMsLMyS4d6qHAAAnMDPz08vvviibrnlFi1atMjSt1Xxhp/97Gfq1KlTm8+15C1btmzRBx98oAcffPCKHoSykl1zFjMWAKA9uXzGWrx4sd1bapC/v79eeeUV7dmzRydPnlR0dLTdW2qQG2YsiTkLAABfQtkHtEJkZKTS09M1bNiwNq2zePFide7cuUXHjh49Wn/4wx8afF9lAGhPxo8frzvuuEP/9V//pf/zf/6P3du5IomJiVf8THszPf300woLC1N6errdWwEk2TtjJSUlmX4uSABwsktnrNmzZysmJsbuLTXoxz/+sd1baBYzFpyIx7IAwLdR9gGt0KVLl3onPG6Nu+++u8XH9uvXT/369TP1hK0A4BZ/+9vfJEnV1dU6ceKEzbtxr7Vr19q9BaAOO2csSZR9ANq9mhlLujBnoXWYseBEPJYFAL6Nsg8AAAAAAAAAAJfx1vmYAbgfZR+AOsaMGaOTJ0866rwCY8aMkSRH7Qlwu3nz5qmqqsqW7CFDhmjevHm1921vmzdvniIiIkxZ2434HQo4Q819MSkpyZb82bNnq7i42JZswBeZPc+0BjOWtZixAABOYvds8uCDD2rQoEGOmRWc+He6Zk+DBw82pain7ANQx5gxYxQbG+uok2WPGTPGUf8RDfiC+fPn2/ZWKkOGDDF12HLSOfGcgN+hgDPU3Bft+t07e/ZsW3IBX2X2PNMazFjWYsYCADiJ3bPJgw8+qFGjRjmq7HPa3+maPVVXV+vLL7/0+vr+Xl8RAAAAAAAAAAAAgCUo+wAAAAAAAAAAAACXouxrIU52CgAAcIE35yJmLAAAgIuYswAAQI0r+VtO2deMgIAASVJVVZXNOwEAAHCGmrmoZk5qjcDAC6eO9ng8XtkTAACAL/DGnMVjWQAA+IYrmQso+5oRFBSk4OBglZSU8IwoAADQ7hmGoZKSEgUHBysoKKjV6wQGBqpTp046deqUqqurvbhDAAAAd/LWnMVjWQAAuN+VzgWBFuzJ9aKiopSfn6/Dhw+rS5cuCgoKkp+fX5PXqa6u1tmzZ03fmxU5ZJBBBhluybAqhwznZNSURGfPnm3Ts5/RPMMwVFVVpZKSEpWVlSk2NrbNa0ZFRenQoUPKzs5Wly5dFBoaqoCAAEfMWWQ4L4cMMsgggwxrc5izrGPWnHWlj2VJvnMfIaP9ZViVQwYZZJDhjfWlxmes1s4FlH0tEB4eLkkqLCxUfn5+i65z/PhxS549ZUUOGWSQQYZbMqzKIcM5GefPn1dhYaFycnLk788bFlghODhYsbGxtfNRW3Ts2FF9+vTR8ePHVVRUpMLCwhZdzxf+7fpShlU5ZJBBBhlkWJvDnGU9b85ZrXksS/Kd+wgZ7S/DqhwyyCCDjLZq6Yx1pXOBn9HOXs9fWlqqLl26qKSkpFXDU1VVVYveaurRRx/VkiVLWrPFK2JFDhlkkEGGWzKsyiHDORllZWUaPny4tm7dqs6dO5uWgwsCAgKafOuItsxZNc9cO3/+fLPH+sK/XV/KsCqHDDLIIIMMa3OYs6xl5pzV0seyJN+5j5DR/jKsyiGDDDLIaKuWzFjNzQUN4ZV9VygoKKhF3+STJ08qJCTE9P1YkUMGGWSQ4ZYMq3LIcE5GZWWlcnNz1aFDB0v+fcE8fn5+6tChQ4uO9YV/u76UYVUOGWSQQQYZ1uYwZ/mOlj6WJfnOfYSM9pdhVQ4ZZJBBRluZNWPxPgwAAAAAAAAAAACAS9la9s2fP19+fn51PpKSkpq8zksvvaT+/fsrNDRUcXFxeuyxxyw5wSsAAICbMGcBAAB4HzMWAABwItvfxvPaa6/V2rVraz8PDGx8SytWrNBTTz2lN998UzfccIP27dunBx98UH5+fnrxxRet2C4AAIBrMGcBAAB4HzMWAABwGtvLvsDAQPXs2bNFx3722WcaNWqU7rvvPklSQkKCpkyZoi+++MLMLQIAALgScxYAAID3MWMBAACnsf2cffv371evXr3Ut29fpaamKi8vr9Fjb7jhBm3btk2ZmZmSpG+++UYfffSRJk6c2Oh1PB6PSktL63wAAAC0B8xZAAAA3mf2jCUxZwEAgCvjZxiGYVf4qlWrVFZWpv79+6ugoEBpaWnKz8/X119/rbCwsAav88orr+jxxx+XYRg6d+6cHnnkES1ZsqTRjPnz5ystLa3e5RMmTFBQUJDXbsvlMjMzNWLECNPWtzKHDDLIIMMtGVblkOGcjKqqKq1evVolJSUKDw83LceNmLPIsCrDqhwyyCCDDDKszWHOapgVM5bEnEUGGU7NIYMMMshoK9NmLMNBioqKjPDwcOP1119v8Ovr1683evToYSxdutT46quvjHfffdeIi4sznnnmmUbXPHv2rFFSUlL7cejQIUOSUVJSYtbNMAzDMFJSUkxd38ocMsgggwy3ZFiVQ4ZzMkpKSiz5u+4LmLPIcHsOGWSQQQYZ1uYwZ7WMGTOWYTBnkUGGU3PIIIMMMtrKrBnL9nP2XSoiIkKJiYk6cOBAg1+fO3eu7r//fj388MOSpEGDBqm8vFw///nP9atf/Ur+/vXflTQ4OFjBwcGm7hsAAMDpmLMAAAC8z4wZS2LOAgAAV8b2c/ZdqqysTAcPHlRMTEyDXz9z5ky9ISggIECSZNj3bqQAAACOx5wFAADgfcxYAADACWwt+x5//HF9+umnysnJ0WeffaY777xTAQEBmjJliiRp2rRpevrpp2uPT0lJ0ZIlS7Ry5UplZ2drzZo1mjt3rlJSUmoHJQAAADBnAQAAmIEZCwAAOJGtb+N5+PBhTZkyRSdPnlR0dLRGjx6tzZs3Kzo6WpKUl5dX59lPc+bMkZ+fn+bMmaP8/HxFR0crJSVFCxcutOsmAAAAOBJzFgAAgPcxYwEAACeytexbuXJlk1/PyMio83lgYKDmzZunefPmmbgrAAAA92POAgAA8D5mLAAA4ESOOmcfAAAAAAAAAAAAgJaj7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKVsLfvmz58vPz+/Oh9JSUlNXqe4uFgzZ85UTEyMgoODlZiYqI8++siiHQMAALgDcxYAAID3MWMBAAAnCrR7A9dee63Wrl1b+3lgYONbqqys1Pjx49W9e3e98847io2NVW5uriIiIizYKQAAgLswZwEAAHgfMxYAAHAa28u+wMBA9ezZs0XHvvnmmzp16pQ+++wzBQUFSZISEhJM3B0AAIB7MWcBAAB4HzMWAABwGtvP2bd//3716tVLffv2VWpqqvLy8ho99v3339fIkSM1c+ZM9ejRQwMHDtSvf/1rVVdXN3odj8ej0tLSOh8AAADtAXMWAACA95k9Y0nMWQAA4Mr4GYZh2BW+atUqlZWVqX///iooKFBaWpry8/P19ddfKywsrN7xSUlJysnJUWpqqmbMmKEDBw5oxowZ+sUvfqF58+Y1mDF//nylpaXVu3zChAm1z6gyQ2ZmpkaMGGHa+lbmkEEGGWS4JcOqHDKck1FVVaXVq1erpKRE4eHhpuW4EXMWGVZlWJVDBhlkkEGGtTnMWQ2zYsaSmLPIIMOpOWSQQQYZbWXajGU4SFFRkREeHm68/vrrDX796quvNuLi4oxz587VXvbCCy8YPXv2bHTNs2fPGiUlJbUfhw4dMiQZJSUlXt//pVJSUkxd38ocMsgggwy3ZFiVQ4ZzMkpKSiz5u+4LmLPIcHsOGWSQQQYZ1uYwZ7WMGTOWYTBnkUGGU3PIIIMMMtrKrBnL9nP2XSoiIkKJiYk6cOBAg1+PiYlRUFCQAgICai8bMGCAjh49qsrKSnXo0KHedYKDgxUcHGzangEAANyAOQsAAMD7zJixJOYsAABwZWw/Z9+lysrKdPDgQcXExDT49VGjRunAgQM6f/587WX79u1TTExMo8MRAAAAmLMAAADMwIwFAACcwNay7/HHH9enn36qnJwcffbZZ7rzzjsVEBCgKVOmSJKmTZump59+uvb4Rx99VKdOndKsWbO0b98+ffjhh/r1r3+tmTNn2nUTAAAAHIk5CwAAwPuYsQAAgBPZ+jaehw8f1pQpU3Ty5ElFR0dr9OjR2rx5s6KjoyVJeXl58ve/2EfGxcXp448/1mOPPabk5GTFxsZq1qxZevLJJ+26CQAAAI7EnAUAAOB9zFgAAMCJbC37Vq5c2eTXMzIy6l02cuRIbd682aQdAQAA+AbmLAAAAO9jxgIAAE7kqHP2AQAAAAAAAAAAAGg5yj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFzK1rJv/vz58vPzq/ORlJTU6PFvvfVWveNDQkIs3DEAAIA7MGcBAAB4HzMWAABwokC7N3Dttddq7dq1tZ8HBja9pfDwcO3du7f2cz8/P9P2BgAA4GbMWQAAAN7HjAUAAJzG9rIvMDBQPXv2bPHxfn5+V3Q8AABAe8WcBQAA4H3MWAAAwGlsL/v279+vXr16KSQkRCNHjlR6erp69+7d6PFlZWWKj4/X+fPnNXToUP3617/Wtdde2+jxHo9HHo+n9vPS0lKv7h+AcxUVFWn58uWmZuTm5pLRQkVFRaauD6A+5iwAZqmoqND27dtNzSgqKiKjhSoqKkxdH0BdZs9YEnMW0J4xZzkrgzkLbuFnGIZhV/iqVatUVlam/v37q6CgQGlpacrPz9fXX3+tsLCwesd//vnn2r9/v5KTk1VSUqLFixdrw4YN2r17t6666qoGM+bPn6+0tLR6l0+YMEFBQUFev001MjMzNWLECNPWtzKHDDLcmFFUVKSNGzeatj5aZ/To0YqMjDQ1wxf+/ZLRclVVVVq9erVKSkoUHh5uWo4bMWeRYVWGVTlkOCejoqKiztvXwRnGjRun0NBQ09b3hX+7vpRhRQ5zVsOsmLEk5iwyyHBqDnNW+8ScRYY3mTVj2Vr2Xa64uFjx8fF68cUX9dBDDzV7fFVVlQYMGKApU6bo2WefbfCYhp4JFRcXZ/qwOnnyZL3//vumrW9lDhlkuDFj+fLlmjp1qh4dnqBRvbuZkvGH7blal1Oo2/v31J4Tp3WotEJPj07Ud7p28nrG3QN66Y4BMU0e+17WEb2TVaC7B8TojgG9TMlozsFT5UrfuE9x4aF6YtTVCg0KkCRtyjupJVtztGzZMqWmprYpozm+8O+XjJYrLS1Vly5deBCqBZizyHB7DhnOydi+fbuGDRumZXcO04Do+g9se8NH+49p7vosMlog68RpTf3bNm3btk1Dhw41JUPyjX+7vpRhRQ5zVsuYMWNJzFlkkOHUHOas9pXBnEWGGcyasWx/G89LRUREKDExUQcOHGjR8UFBQbruuuuaPD44OFjBwcHe2iIAlxnVu5tSB8WZsvamvJNal1Oo7QXFKvGc06cP3qgRsd591VpNxuCeXZq8HQs27NU7WQV69uYBmvP9/qZkNCczv0gzPtypoTERWp06UmHBdZ9tumRrTqvXBtB2zFkAvG1AdJiGxkSYsnZW4WkyALiCGTOWxJwFtHdun098JQNwE3+7N3CpsrIyHTx4UDExLXtlSXV1tXbt2tXi4wHAmyqrz0uSjpd7tOb+UV4v+lpqwYa9mrs+q1VFn7dk5hdp/NubNLB7eINFHwD7MWcBAAB4HzMWAABwAlvLvscff1yffvqpcnJy9Nlnn+nOO+9UQECApkyZIkmaNm2ann766drjn3nmGX3yySf65ptvtH37dk2dOlW5ubl6+OGH7boJANqp054qfbDvqCTpwSHxFH0UfYDjMGcBAAB4HzMWAABwIlvfxvPw4cOaMmWKTp48qejoaI0ePVqbN29WdHS0JCkvL0/+/hf7yKKiIv3sZz/T0aNHFRkZqWHDhumzzz7TNddcY9dNANAOnfZUacLyz3WqolKSdFW4eSfobQpFH4CmMGcBAAB4HzMWAABwIlvLvpUrVzb59YyMjDqf//a3v9Vvf/tbE3cEAE2rKfq+Pl6qlP4xejerwJZ9UPQBaA5zFgAAgPcxYwEAACdy1Dn7AMDJLi361tw/Sj062XOydIo+AAAAAAAAAEANyj4AaIHLiz7O0UfRBwAAAAAAAABOQNkHAM2g6LuIog8AAAAAAAAAnMXWc/YBgNM5pejLyDmhddmFFH0AAAAAAAAAgDp4ZR8ANMIpRZ8kij4AAAAAAAAAQIMo+wCgAU4p+rYeKZYkje0TRdEHAAAAAAAAAKiHsg8ALuOUom/Bhr3a8m3ZNyYh2pY9UPQBAAAAAAAAgLNR9gHAJZxU9M1dn6Xre0XYki9R9AEAAAAAAACAG1D2AcC3nFb0PXvzAA23qeyj6AMAAAAAAAAAd6DsAwA5s+jjHH0AAAAAAAAAgOZQ9gFo9yj6LqLoAwAAAAAAAAB3oewD0K5R9F10uLSCog8AAAAAAAAAXIayD0C7RdFX11s7cin6AAAAAAAAAMBlKPsAtEsUfRcdK/dIkrp3CqboAwAAAAAAAACXoewD0O5Q9F2UmV+kv+8tkCQ9MLg3RR8AAAAAAAAAuAxlH4B2haLvosz8Io1/e5O6hnaQJAUHBtiyDwAAAAAAAABA61H2AWg3KPouqin6BnYP122JPW3ZAwAAAAAAAACg7Sj7ALQLFH0XXVr0rU4dqQ4B/CkAAAAAAAAAALfiEV4APo+i76LLiz7O0QcAAAAAAAAA7mZr2Td//nz5+fnV+UhKSmrRdVeuXCk/Pz/dcccd5m4SgKtVVFVT9H2Log9oX5izAAAAvI8ZCwAAOFGg3Ru49tprtXbt2trPAwOb31JOTo4ef/xx3XjjjWZuDYAPeH7Tfh0r91D0UfQB7RJzFgAAgPcxYwEAAKexvewLDAxUz549W3x8dXW1UlNTlZaWpn/84x8qLi42b3MAXO9QaYU+ffBGij6bi76KqmrLMwEwZwEAAJiBGQsAADiN7WXf/v371atXL4WEhGjkyJFKT09X7969Gz3+mWeeUffu3fXQQw/pH//4R7PrezweeTye2s9LS0u9sm8A7nDDVV31ycHj+uTgca+vvfVIsSQpI+dEg1/PyDmhddmFGtsnStKF4s/bGc05XFqht3bkqnunYP0gIUovf/GN1zOa4zlXrSVbsyVJmzZtMiXjUkVFRaZnAG7BnAXATFknTpu2dnbRGUnSR/uPKavQnJxNeSd9IqPme5WVlWXK+jUqKipMXR9wE7NnLIk5C2jvrJizXt+eo15hoaZk7Dxa7BMZR05fmH+Ys+AGfoZhGHaFr1q1SmVlZerfv78KCgqUlpam/Px8ff311woLC6t3/MaNG3Xvvfdqx44dioqK0oMPPqji4mK99957jWbMnz9faWlp9S6fMGGCgoLMe3VLZmamRowYYdr6VuaQQYYbM3Jzc/XVV1+Ztj6cbfTo0YqMNO/VnL5wH/GVjKqqKq1evVolJSUKDw83LceNmLPIsCrDqhwynJNRVFSkjRs3mrY+Wmdc32iFBgaYtv7f9x3VuHHjFBpqzoNpkm/cP6zKsCKHOathVsxYEnMWGWQ4NYc5q30aHddVkaEdTFufOat9ZZg1Y9la9l2uuLhY8fHxevHFF/XQQw/V+drp06eVnJys3/3ud7r11lslqUUDUkPPhIqLizN9WJ08ebLef/9909a3MocMMtyYsXz5ck2dOlVjE6KUGNXZlIwNOYXaXVimmGumKiJmuCkZxQVbVbBnmRKu/6VCw+Ncn/HszQM08eoepmRIF575NvVv27Rs2TKlpqaaluML9xFfySgtLVWXLl14EKoFmLPIcHsOGc7J2L59u4YNG6Znbx6gPpEdTcl4L+uI3skq0ICxL6lTZD9TMgpz1ytnywuuzygvOqCsdbO17edjNDQmwpQMSfJLe0/btm3T0KFDTcvwhfuHVRlW5DBntYwZM5bEnEUGGU7N8YU56w/bc7Uup1Bh0YN1+sRORfW9VdF9fujVjIJ//kXF+ZsU1Xeiovvc0uhxFaW5ytu+RB0691T8kEfkHxji9YzmnD93Vrk7fq/KsqPqPfRRhYbH136t5OhWHdm9TMt+NEypg8x5zExizmpvGWbNWLa/jeelIiIilJiYqAMHDtT72sGDB5WTk6OUlJTay86fPy/pwnul7927V9/5znfqXS84OFjBwcHmbRqAo00fGm/aH+MZH+7Q7sIyRcQMV8/EO03JkKSCPcsUFX+zwqIHuT6jT2RHUx+EAtA45iwA3jbx6h6m/V3PLjqjd7IK1Cmyn2nzSXnRhd+Hbs8AYC8zZiyJOQto78ycszblndS6nEKdPrFTfUb8UgnDfuH1jOKCrSrO36TO3QY0+phZ6bEd2vePueocfa0GT/qTAjtc2ZP1W5LRnHOVZdr54TRVVZzUdbf/WeE9htQ75sjuZa1aG7Cao8q+srIyHTx4UPfff3+9ryUlJWnXrl11LpszZ45Onz6tl19+WXFx5jXrAAAAbsecBQAA4H3MWADcKqrvraYUfS1RemyHdnwwVZ26Jraq6POGmqKv/NQ+DbltWYNFH+AmtpZ9jz/+uFJSUhQfH68jR45o3rx5CggI0JQpUyRJ06ZNU2xsrNLT0xUSEqKBAwfWuX5ERIQk1bscAACgvWPOAgAA8D5mLAC+wttv3dlSFH2AOWwt+w4fPqwpU6bo5MmTio6O1ujRo7V582ZFR0dLkvLy8uTv72/nFgEAAFyJOQsAAMD7mLEAoPUo+gDz2Fr2rVy5ssmvZ2RkNPn1t956y3ubAQC43uvbc+zeAuAYzFkAAADex4wFAK1D0QeYi6caAUArbT1SbPcWcIkFG/ZqydYcu7cBAAAAAACAS1D0Aeaj7AOAVliwYa+2UPY5xoINezV3fZYeHZ5g91YAAAAAAADwLYo+wBqUfQBwhWqKpet7Rdi9Fejiz+PZmwfo4aEJdm8HAAAAAAAAkjxlBRR9gEUo+wDgClxaLA2n7LPdpT+POd/vb/d2AAAAAAAA8K2je9+h6AMsQtkHAC1EseQs/DwAAAAAAACcp+pMoSSpQ8coij7AIpR9ANACFEvOws8DAAAAAADAeUqP7VBh7lpJUo/Euyj6AItQ9gFAMyiWnIWfBwAAAAAAgPOUHtuhHR9MVVBIhCTJP6CD5Xug6EN7RdkHAE2gWHIWfh4AAAAAAADOU1P0deqaqG7xY23ZA0Uf2jPKPgBoBMWSs/DzAAAAAAAAcJ5Li77Bk/4kP/8gy/dA0Yf2jrIPABpAseQs/DwAAAAAAACc5/Kij3P0Afag7AOAy1AsOQs/DwAAAAAAAOdxQtF3vrqSog+QFGj3BgDASSiWnIWfBwAAAAAAgPM4oeiTpGP7/qpzlacp+tDuUfYBwLcolpyFnwcAAAAAAIDzOKHoM85XSZIqzxRq6B1/oehDu8fbeAKAKJachp8HAAAAAACA8zih6DtXWaaTueskST37303RB4iyDwAolhyGnwcAAAAAAIDzOKXo2/nhNFWdLZYkBXeOsXwPgBNR9gFo1yiWnIWfBwAAAAAAgPM4qegrP7VPUfHjLM8HnIyyD0C7RbHkLPw8AAAAAAAAnMdpRd+Q25YpqGOU5XsAnIyyD0C7RLHkLPw8AAAAAAAAnMeJRR/n6APqo+wD0O5QLDkLPw8AAAAAAADnoegD3IOyD0C7QrHkLPw8AAAAAAAAnIeiD3AXW8u++fPny8/Pr85HUlJSo8cvXbpUN954oyIjIxUZGalx48YpMzPTwh0DcDOKJWfh5wGYizkLAADA+5ixALQHFH2A+9j+yr5rr71WBQUFtR8bN25s9NiMjAxNmTJF69ev1+eff664uDjdcsstys/Pt3DHANyIYslZ+HkA1mDOAgAA8D5mLAC+jKLvohPZH9uSC7RGoO0bCAxUz549W3Ts8uXL63z++uuv669//avWrVunadOmmbE9AD6AYslZ+HkA1mHOAgAA8D5mLAC+iqLvopxtr6jwm1W2ZAOtYXvZt3//fvXq1UshISEaOXKk0tPT1bt37xZd98yZM6qqqlLXrl0bPcbj8cjj8dR+Xlpa2uY9A2i7oqKiev/R402bNm2SJKX/Y592nzitsX2iJF0omrxl25FiSVJF6SGdPrHLa+teqqL0kCSpvOiAKetbnfHKFweVmV+suwfEqE9kRy3fdcirOdlFZ7y6HuB2zFlA+1RRUaHt27ebtn5WVtaF/z1x2rSMI6crJPnODGRmRs3aWYXm/TwA1GX2jCUxZwFO5Qtz1onyC79bTmR/UjurSJKnrEBH976jDh2jFNHrBh366s1WZ9Q8TlZ8ZLOyt7b8euerK3Vs319VeaZQPfvfrZOHNujkoQ1ezWiJ4iObVZy/SR0jr9aZov3alHfSuwGACfwMwzDsCl+1apXKysrUv39/FRQUKC0tTfn5+fr6668VFhbW7PVnzJihjz/+WLt371ZISEiDx8yfP19paWn1Lp8wYYKCgoLafBsak5mZqREjRpi2vpU5ZJDhbUVFRU2+zQnQVsnJyYqPjzdtfV+4H/pKRlVVlVavXq2SkhKFh4ebluNGzFlkWJVhVQ4ZLVNRUaG1a9eatj6cKSg0SuHdh5iacTJ3rYYPH66YmBjTMnzhPmhVhhU5zFkNs2LGkpizyCDDiTnMWTATj2W1nwyzZixby77LFRcXKz4+Xi+++KIeeuihJo9dtGiRnn/+eWVkZCg5ObnR4xp6JlRcXJzpw+rkyZP1/vvvm7a+lTlkkOFty5cv19SpU/Xo8ASN6t3NlIz//N8sfVN8RrGdQzQ5qWVvr3KlNuQUandhmWKumaqImOGmZBQXbFXBnmVKuP6XCg2Pc3XG2ZIcfWfkU6asf6mt79ymZcuWKTU11bQMX7gf+kpGaWmpunTpwoNQLcCcRYbbc8home3bt2vYsGFaducwDYhu/kHn1vho/7Hat+TuE9nRlIz3so7onawCn5iBrMioLD+q5IlvmLJ+jfVL4pmxHJRhRQ5zVsuYMWNJzFlkkOHEHF+Zs/6wPVfrcgoVETtKoV36qOpMoQpz1yooJELd4sfKz7/tTygoPvKFKor3q3P0YIVFD2r2eON8lU7mrlPV2WJFxY9TUMcor2e0xOkTu1R2YmftmjUZfUb8Ut163+yVjMuVFx1Q1rrZevbZZzVnzhxTMiTfua/7QoZZM5btb+N5qYiICCUmJurAgabf4mTx4sVatGiR1q5d2+xwFBwcrODgYG9uE4CXjOrdTamDvP+gx4INe/VN8YW3c3zk+j6mnRduxoc7tLuwTBExw9Uz8U5TMiSpYM8yRcXf7LXBxa6M4+VHTV0fQNOYs4D2ZUB0mIbGRJiyds3bRU68uodpGdlFZ/ROVoFPzECWzFkHPjBtbQBNM2PGkpizACdz+5y1Ke+k1uUUKibpHnXs0kc7Ppiq8B6DvXqOvn9++itVFO9XVMI49Rn+iyaPrTlH3/lqj4bd+dcWn6PvSjJaImfbKyrYs0x9RvxSCcN+UScjJCyOx7TgeP52b+BSZWVlOnjwYJNvC/L888/r2Wef1erVqzV8uDmvpAHgXgs27NXc9Vm6vleE3VsBAEdhzgIAAPA+ZiwAblVRmqsdH0xVp66JXi36rkRN0Vd+ap+G3LasxUWft+Vse0XZmS/UKfoAt7G17Hv88cf16aefKicnR5999pnuvPNOBQQEaMqUKZKkadOm6emnn649/rnnntPcuXP15ptvKiEhQUePHtXRo0dVVlZm100A4CA1Rd+zNw/QcMo+AO0ccxYAAID3MWMB8BV525dQ9ImiD77D1rLv8OHDmjJlivr3768f//jH6tatmzZv3qzo6GhJUl5engoKCmqPX7JkiSorK3X33XcrJiam9mPx4sV23QQADnFp0WfW23YCgJswZwEAAHgfMxYAX9Ghc0+KPgcUfeUn99mSC99j6zn7Vq5c2eTXMzIy6nyek5Nj3mYAuBZFHwDUx5wFAADgfcxYAHxF/JBHKPpsLvpKj+3Q3n/MsSUbvsdR5+wDgCtF0QcAAAAAAABcGf/AEMszKfouKj22Qzs+mKrQLvG25MP3UPYBcC2KPgAAAAAAAMD5KPouqin6OnVNVOLoZ2zZA3wPZR8AV3JC0Xes3GNLLgAAAAAAAOAWFH0XXVr0DZ70JwUEhdqyD/geyj4AruOEoi8zv0h/33vUlmwAAAAAAADADSj6Lrq86LPjnInwXZR9AFzFKUXf+Lc3qVtoB1vyAQAAAAAAAKc7X11J0fctij6YjbIPgGs4qegb2D1ckxJ72LIHAAAAAAAAwOmO7fsrRZ8o+mANyj4AruC0om916kh1COBXKAAAAAAAAHAp43yVJKnyTCFFH0UfLMIj1QAcz4lFX1hwkC37AAAAAAAAAJzqXGWZTuaukyT17H83RR9FHyxC2QfA0Sj6AAAAAAAAAOc7V1mmnR9OU9XZYklScOcYW/ZB0Yf2iLIPgGNR9AEAAAAAAADOV1P0lZ/ap6j4cbbtg6IP7RVlHwBHougDAAAAAAAAnO/Som/IbcsU1DHKln1Q9KE9o+wD4DgUfQAAAAAAAIDzXV70cY4+ij7Yg7IPgKNQ9AEAAAAAAADOR9F3EUUf7BZo9wYAoAZFHwAAAAAAAOB8Tin6io9sVnH+Joo+tHu8sg+AI1D0AQAAAAAAAM7nlKJPEkUf8C3KPgC2o+gDAAAAAAAAnM8pRd/pE7skSRGxoyj6AFH2AbAZRR8AAAAAAADgfE4p+nK2vaKyEzslSRG9vmfLHij64DScsw+Abd7LOqJ3sgoo+gAAAAAAAAAHc1LRl535gjpHD64t/KxG0Qcn4pV9AGxD0QcAAAAAAAA4m9OKvj4jfqmw6EG27IGiD05F2QfANncPiKHoAwAAAAAAABzKiUUf5+gD6rO17Js/f778/PzqfCQlJTV6/O7du3XXXXcpISFBfn5+eumll6zbLACvu2NAL1tyKfoAtAfMWQAAAN7HjAWgPaHou4iiD05n+zn7rr32Wq1du7b288DAxrd05swZ9e3bV/fcc48ee+wxK7YHwMdQ9AFoT5izAAAAvI8ZC0B7QNF3UUVprvb9Yy5FHxzN9rIvMDBQPXv2bNGx119/va6//npJ0lNPPWXmtgD4IIo+AO0NcxYAAID3MWMB8HUUfXXlbV+iztHXUvTB0Wwv+/bv369evXopJCREI0eOVHp6unr37u219T0ejzweT+3npaWlXlsbQNu8l1Wg7KIzpqy99UixJCkj54Qk6XBphd7akavunYL1g4QovfzFN23O2PZtRkXpIZ0+savN6zWkovSQJKm86IAp61udAcBazFlA+5V14rRpa9fMb2ZmHDldIcl3ZiDmLMC3mD1jScxZgJO5fc46UX7hd8uJ7E8anCPOV1fq2L6/qvJMoXr2v1snD23QyUMbriij5nGy4iOblb21dfssPrJZxfmbFBE7SoYhZW99xesZLdmDJAV0CFNM/3tUmLPG6xlnTzPLwTv8DMMw7ApftWqVysrK1L9/fxUUFCgtLU35+fn6+uuvFRYW1uR1ExISNHv2bM2ePbvJ4+bPn6+0tLR6l0+YMEFBQea9qiczM1MjRowwbX0rc8ggw9tyc3P11VdfmbY+kJycrPj4eNPW94X7oa9kVFVVafXq1SopKVF4eLhpOW7EnEWGVRlW5ZDRMkVFRdq4caNp66N9Y8ZyToYVOcxZDbNixpKYs8ggw4k5zFkwU79+/TRgwADT1veV+7ovZJg1Y9la9l2uuLhY8fHxevHFF/XQQw81eWxLB6SGngkVFxdn+rA6efJkvf/++6atb2UOGWR42/LlyzV16lSNTYhSYpQ5L33/NKdQewrLNCCqsw6cKlPX0A66LbGnOgT4ey1jQ06hdheWKeaaqYqIGe61dS9VXLBVBXuWKeH6Xyo0PI6MZlSUHlLOlhe0bNkypaammpbjC/dDX8koLS1Vly5deBCqBZizyHB7Dhkts337dg0bNkzP3jxAfSI7mpKxKe+klmzNMTXjvawjeierwPXzia9kMGM5L8OKHOasljFjxpKYs8ggw4k5vjJn/WF7rtblFCoidpRCu/Spvdw4X6WTuetUdbZYUfHjFNQxqtUZxUe+UEXxfnWOHqyw6EFXdN3TJ3ap7MTOZq/blozmVJ0pVGHuWvn5B8qoPmtKRo2KkmwV52/Ss88+qzlz5piSIfnOfd0XMsyasWx/G89LRUREKDExUQcOeO8tToKDgxUcHOy19QB4z/Sh8UodZM4DEjM+3KE9hWX6pqhc18d2NeUcfTM+3KHdhWWKiBmunol3enXtSxXsWaao+JtNGyp8KeP0iV3K2fKCaesDbsacBbQvE6/uoaExEaatv2RrjqkZ2UVn9E5WgU/MJ76QwYwFNM6MGUtizgKczO1z1qa8k1qXU6iYpHtqH8+qOUff+WqPht351zafo++fn/5KFcX7FZUwTn2Gt/xceznbXlHBnmUtOkdfazOaU3psh3Z8MFXhPQarY0Q/Hf3nn72ecamj+/6m4vxNpqyN9sV7L3HxgrKyMh08eFAxMTF2bwWAyx379v3Hu3cKNqXoAwC3Yc4CAADwPmYsAG5XU/SVn9qnIbcta3PR11o5215RduYLLSr6zFJT9HXqmqjBk/4kP38eT4R72Fr2Pf744/r000+Vk5Ojzz77THfeeacCAgI0ZcoUSdK0adP09NNP1x5fWVmpHTt2aMeOHaqsrFR+fr527Njh9WdPAXC3zPwi/X1vgSTpgcG9KfoAtEvMWQAAAN7HjAXAl1D0XXR50RfYwZxTDwFmsfVtPA8fPqwpU6bo5MmTio6O1ujRo7V582ZFR0dLkvLy8uTvf7GPPHLkiK677rrazxcvXqzFixfrpptuUkZGhtXbB+BAmflFGv/2JnUN7aBj5ZUKDgywe0sAYAvmLAAAAO9jxgLgK86fO0vR9y2KPvgCW8u+lStXNvn1y4eehIQEGYZh4o4AuFlN0Tewe7gGRHXWG1/m2b0lALANcxYAAID3MWMB8BW5O36vqoqTFH0UffARjjpnHwC01qVF3+rUkeoQwK83AAAAAAAAoCGVZUcp+hxQ9J0/d9byTPgmHg0H4HqXF32cow8AAAAAAABoXO+hj1L02Vz0nassU+6O31ueC99E2QfA1Sj6AAAAAAAAgCsTGh5vSy5F3wXnKsu088Npqiw7ank2fBNlHwDXougDAAAAAAAA3IGi74Kaoq/81D71Hvqo5fnwTZR9AFzJCUVfZfV5yzMBAAAAAAAAt6Hou+DSom/Ibctse4UlfA9lHwDXcULRd9pTpQ/3HbM8FwAAAAAAAHATir4LLi/67DpnInwTZR8AV3FK0Tdh+ec6WVFpeTYAAAAAAADgFhR9F1D0wWyUfQBcw0lF39fHS5XSv6fl+QAAAAAAAIAbFB/ZTNEnij5Yg7IPgCs4rehbc/8o9egUbPkeAAAAAAAAADcozt9E0UfRB4tQ9gFwPCcWfSNiIy3fAwAAAAAAAOB0p0/skiRFxI6i6KPog0Uo+wA4GkUfAAAAAAAA4A45215R2YmdkqSIXt+zZQ8UfWiPKPsAOBZFHwAAAAAAAOAOOdteUXbmC+ocPdi2PVD0ob2i7APgSBR9AAAAAAAAgDvUFH19RvxSYdGDbNkDRR/aM8o+AI5D0QcAAAAAAAC4w6VFH+foo+iDPSj7ADgKRR8AAAAAAADgDhR9F1D0wW6UfQAcg6IPAAAAAAAAcAcnFH2esgKKPkCUfQAcgqIPAAAAAAAAcAcnFH2SdHTvOxR9gCj7ADgARR8AAAAAAADgDk4o+qrOFEqSOnSMougDRNkHwGYUfQAAAAAAAIA7OKHoKz22Q4W5ayVJPRLvougDRNkHwEYHT5VT9AEAAAAAAAAu4JSib8cHUxUUEiFJ8g/oYPkeKPrgRC0u+44cOeL18Pnz58vPz6/OR1JSUpPX+ctf/qKkpCSFhIRo0KBB+uijj7y+LwDWSN+4j6IPAMScBQAAYAZmLADwHicVfZ26Jqpb/Fhb9kDRB6dqcdl37bXXasWKFV7fwLXXXquCgoLaj40bNzZ67GeffaYpU6booYce0pdffqk77rhDd9xxh77++muv7wuA+eLCQyn6AEDMWQAAAGZgxgIA73Ba0Td40p/k52/944kUfXCyFpd9Cxcu1L/8y7/onnvu0alTp7y2gcDAQPXs2bP2IyoqqtFjX375ZU2YMEH//u//rgEDBujZZ5/V0KFD9eqrr3ptPwCs88Soqyn6AEDMWQAAAGZgxgKAtnNi0cc5+oD6Alt64IwZM3TrrbfqoYce0jXXXKOlS5cqJSWlzRvYv3+/evXqpZCQEI0cOVLp6enq3bt3g8d+/vnn+rd/+7c6l/3whz/Ue++91+j6Ho9HHo+n9vPS0tI27xmAd3x84LiOlnmaP7AVth4pliRl5Jyoc7nnXLX+uDNPx8s9enBIvD45eFyfHDzeqoxt32ZUlB7S6RO72rLdRlWUHpIklRcdMGV9X8qwYn3ALMxZALwt68Rp09bOLjpjesaR0xWS3D+f+EoGMxbcyq0zlsScBTiZ2+esE+UXfrecyP6kdo5oTPGRzSrO36SI2FEyDCl76ystyqh5nKz4yGZlb23bfj1lBTq69x116BiliF436NBXb3o9ozE1GacOb1RB1v+nyjOF6tn/bp08tEEnD23wSkbZySyvrAP4GYZhXOmVXn31VT322GMaMGCAAgPr9oXbt29v8TqrVq1SWVmZ+vfvr4KCAqWlpSk/P19ff/21wsLC6h3foUMH/fGPf9SUKVNqL/vd736ntLQ0HTt2rMGM+fPnKy0trd7lEyZMUFCQea8oyszM1IgRI0xb38ocMsjwttzcXH311VemrQ8kJycrPj7etPV94X7oKxlVVVVavXq1SkpKFB4eblqOlZizmucL/3Z9KcOqHDJapqioqMm3kwPaghnLORlW5PjanOWmGUtiziKDDCfmMGfBTP369dOAAQNMW99X7uu+kGHWjNXiV/bVyM3N1bvvvqvIyEjdfvvt9QakK3HrrbfW/v/k5GR997vfVXx8vP7f//t/euihh1q97qWefvrpOs+gKi0tVVxcnP785z+bOqxOnjxZ77//vmnrW5lDBhnetnz5ck2dOlVjE6KUGGXOy+4/zSnUnsIyXd8rQsN7Raiy+rw+2HdUpyoqldI/Rj06Bbc5Y0NOoXYXlinmmqmKiBnuhV3XV1ywVQV7linh+l8qNDyOjGZUlB5SzpYX9MQTTyg1NdW0HF+4H/pKRmlpqbp06WLa+lZjzmoZX/i360sZVuWQ0TLbt2/XsGHD9OzNA9QnsqMpGZvyTmrJ1hxTM97LOqJ3sgpcP5/4SgYzlvMyrMjxpTnLbTOWxJxFBhlOzPGVOesP23O1LqdQEbGjFNqlT4PHnD6xS2Undqpz9GCFRQ+64oziI1+oonh/q68vSVVnClWYu1ZBIRHqFj+23jn6vJHRnKIjn+ts8UFJ/opKuEVBHRt/2+bWqijJVnH+Jj3wwAOaM2eO19ev4Sv3dV/IMGvGuqLpZunSpfrlL3+pcePGaffu3YqOjvbqZiIiIpSYmKgDBxp+i5CePXvWe9bTsWPH1LNnz0bXDA4OVnBw2x/UB+B904fGK3WQOQ9IzPhwh/YUlmly/xjN+m5fTVj+uSrOndfGn97ktXP0zfhwh3YXlikiZrh6Jt7plTUbUrBnmaLibzZtcPGljNMndilnywumrQ+YiTkLgDdNvLqHhsZEmLb+kq05pmZkF53RO1kFPjGf+EIGMxbczI0zlsScBTiZ2+esTXkntS6nUDFJ9zT4eFbOtldUsGdZm87R989Pf6WK4v2KShinPsOvfI2ac/SF9xjc6Dn62prRnHOVZdq84iZJUsyAe5U0Jt3rGZJ0dN/fVJy/yZS10b74t/TACRMm6Mknn9Srr76qd9991+vDkSSVlZXp4MGDiomJafDrI0eO1Lp16+pctmbNGo0cOdLrewHgGzznqjVh+ef6+nip1tw/ymtFHwB4E3MWAACA9zFjAcCVydn2irIzX2hT0ddWNUVfp66JjRZ9ZjtXWaadH05T1dliSVJw54Z/xwNO0uJX9lVXV+urr77SVVdd5bXwxx9/XCkpKYqPj9eRI0c0b948BQQE1L6P+bRp0xQbG6v09Aut+axZs3TTTTfphRde0KRJk7Ry5Upt3bpV//3f/+21PQHwLX/cmacSzzmKPgCOxpwFAADgfcxYANByFH0X1BR95af2KSp+nApzVlu+B6A1Wlz2rVmzxuvhhw8f1pQpU3Ty5ElFR0dr9OjR2rx5c+0zrfLy8uTvf/HFhzfccINWrFihOXPm6D/+4z909dVX67333tPAgQO9vjcA7lZZfV6SdLzcow3Tv0/RB8DRmLMAAAC8jxkLAFqGou+CS4u+Ibct05F//sXyPQCt1fozEnvBypUrm/x6RkZGvcvuuece3XPPPSbtCIAvOO2p0gf7jkqSHhwST9EHoF1izgIAAPA+ZiwAvoai74LLi77wHkMo++AqLT5nHwC4wWlPlSYs/1ynKiolSVeFh9q8IwAAAAAAAMB5KPouaKjoA9yGsg+Az6gp+r4+XqqU/pw4FwAAAAAAAGjIieyPKfpE0QffQdkHwCdcWvStuX+UenQKtntLAAAAAAAAgCMVfrOKoo+iDz6Esg+A611e9HGOPgAAAAAAAKBxUX1vpehzQNF3IvtjW3Lheyj7ALgaRR8AAAAAAABwZaL7/NCWXIq+i3K2vaLCb1bZkg3fQ9kHwLUo+gAAAAAAAAB3oOi7KGfbK8rOfEFRfW+1JR++h7IPgCtR9AEAAAAAAADuQNF3UU3R12fEL217hSV8D2UfANdxStG39UixLbkAAAAAAACAW1D0XXRp0WfXORPhmyj7ALiKU4q+BRv2agtlHwAAAAAAANAoir6LKPpgJso+AK7hpKJv7vosXd8rwpZ8AAAAAAAAwOk8ZQUUfd+i6IPZKPsAuILTir5nbx6g4ZR9AAAAAAAAQIOO7n2Hok8UfbAGZR8Ax3Ni0Tfn+/1t2QMAAAAAAADgZFVnCiVJHTpGUfRR9MEilH0AHI2iDwAAAAAAAHCH0mM7VJi7VpLUI/Euij6KPliEsg+AY1H0AQAAAAAAAO5QemyHdnwwVUEhEZIk/4AOlu+Bog/tFWUfAEei6AMAAAAAAADcoabo69Q1Ud3ix9qyB4o+tGeUfQAch6IPAAAAAAAAcIdLi77Bk/4kP/8gy/dA0Yf2jrIPgKNQ9AEAAAAAAADucHnRxzn6KPpgD8o+AI5B0QcAAAAAAAC4gxOKvvPVlRR9gKRAuzcAABJFHwAAAAAAAOAWTij6JOnYvr/qXOVpij60e5R9AGxH0QcAAAAAAAC4gxOKPuN8lSSp8kyhht7xF4o+tHuOeRvPRYsWyc/PT7Nnz27yuJdeekn9+/dXaGio4uLi9Nhjj+ns2bPWbBKA11H0AYD5mLMAAADMwZwFoL1xQtF3rrJMJ3PXSZJ69r+bog+QQ17Zt2XLFr322mtKTk5u8rgVK1boqaee0ptvvqkbbrhB+/bt04MPPig/Pz+9+OKLFu0WgLdUVFVT9AGAyZizAAAAzMGcBaC9cUrRt/PDaao6WyxJCu4cY/keJIo+OI/tr+wrKytTamqqli5dqsjIph/o/+yzzzRq1Cjdd999SkhI0C233KIpU6YoMzPTot0C8KbnN+2n6AMAEzFnAQAAmIM5C0B746Sir/zUPkXFj7M8vwZFH5zI9lf2zZw5U5MmTdK4ceO0YMGCJo+94YYbtGzZMmVmZmrEiBH65ptv9NFHH+n+++9v9Doej0cej6f289LSUq/tHUDbZBed0UND4/XJweP65OBxr6699UixJCkj50Sjx2TknNC67EKN7RMl6ULxdyW2fZtRUXpIp0/satU+m1NRekiSVF50wJT1fSnDivUBt2HOAtqvj/YfU1bhaVPW3pR3UpKUdcKc9SXpyOkKSe6fT3wlgxkLqI85C2i/zJyBsovOmJ5xovzC75YT2Z/UzhHN8ZQV6Ojed9ShY5Qiet2gQ1+92eTxNY+TFR/ZrOytbdtvjfPVlTq276+qPFOonv3v1unC3V7PuFxDt6P4yGYV529SROwoGYaUvfWVNmWUncxq6zYBSZKfYRiGXeErV67UwoULtWXLFoWEhGjMmDEaMmSIXnrppUav88orr+jxxx+XYRg6d+6cHnnkES1ZsqTR4+fPn6+0tLR6l0+YMEFBQUHeuBkNqhngzGZFDhlkeFtubq6++uor09YHkpOTFR8fb9r6vnA/9JWMqqoqrV69WiUlJQoPDzctx42Ys8iwKsOqHDJapqCgQFu3mvRoB9o9ZiznZFiRw5zVOOYsMshwXoYVOUVFRdq4caNp66N969evnwYMGGDa+r5yX/eFDLNmLNvKvkOHDmn48OFas2ZN7XubNzccZWRk6N5779WCBQv03e9+VwcOHNCsWbP0s5/9THPnzm3wOg09EyouLs70YXXy5Ml6//33TVvfyhwyyPC25cuXa+rUqRqbEKXEKHNe8v9pTqH2FJbp+l4RGt4ros7Xth4p1pYjxQ1+7UpsyCnU7sIyxVwzVRExw9u24UYUF2xVwZ5lSrj+lwoNjyOjGRWlh5Sz5QUtW7ZMqamppuX4wv3QVzJKS0vVpUsXHoS6DHMWGVZmWJVDRsvUzFl3D+ilwT27mJJR8+4Ijw5P0Kje3UzJeC/riN7JKnD9fOIrGcxYzsuwIoc5q2HMWWSQ4cwMK3K2b9+uYcOG6dmbB6hPZEdTMjblndSSrTmmZvxhe67W5RQqInaUQrv0afLYqjOFKsxdq6CQCHWLHys//5Y92aD4yBeqKN6vztGDFRY9qE37Nc5X6WTuOlWdLVZU/DgFdYzyekZjLs2QpLITO72eV1GSreL8TXr22Wc1Z84cr617OV+5r/tChlkzlm1v47lt2zYdP35cQ4cOrb2surpaGzZs0KuvviqPx6OAgIA615k7d67uv/9+Pfzww5KkQYMGqby8XD//+c/1q1/9Sv7+9U9BGBwcrODgYHNvDIBWmT40XqmDzHlAYsaHO7SnsEyT+8fUORffgg17teVIjlfO0Tfjwx3aXVimiJjh6pl4Z1u33KiCPcsUFX+zaYOLL2WcPrFLOVteMG19wC2YswDcMSDGtDlLktZlF2pU726mZWQXndE7WQU+MZ/4QgYzFnARcxaAiVf30NCYCNPWX7I1x9SMTXkntS6nUDFJ9zT5eFbNOfrCewy+4nP0/fPTX6mieL+iEsapz/DWn9Ou5hx956s9GnbnXxXeY4jXM5pSkxHYobOK8zeZco6+o/v+puL8TV5dE+2TbWXf2LFjtWtX3XNcTZ8+XUlJSXryySfrDUaSdObMmXoDUM1xNr4bKQCXWLBhr+auz/JK0QcATsacBQAAYA7mLADtQU3R16lr4hUXfd5SU/SVn9qnIbctq1P0Wc2sog/wJtvKvrCwMA0cOLDOZZ06dVK3bt1qL582bZpiY2OVnp4uSUpJSdGLL76o6667rvZtD+bOnauUlJQGhykAqEHRB6A9Yc4CAAAwB3MWAF9H0XfR6RMXntwRETuKog+OZ1vZ1xJ5eXl1nvk0Z84c+fn5ac6cOcrPz1d0dLRSUlK0cOFCG3cJwOko+gCgPuYsAAAAczBnAXArir6Lcra9orITOyVJEb2+Z8segCvhqLIvIyOjyc8DAwM1b948zZs3z7pNAXC1jJwTWpddSNEHoN1jzgIAADAHcxYAX0DRd1HOtleUnfmCOkcPri38AKerfwZgAPAhFH0AAAAAAABA4yj6Lqop+vqM+KXCogfZsgegNSj7APikrUeKJUlj+0RR9AEAAAAAAAANoOi76NKij3P0wW0o+wD4nAUb9mrLt2XfmIRoezcDAAAAAAAAOBBF30UUfXA7yj4APmXBhr2auz5L1/eKsHsrAAAAAAAAgCNVlOZS9H2Log++gLIPgM+oKfqevXmAhlP2AQAAAAAAAA3K276Eok8UffAdlH0AfMKlRR/n6AMAAAAAAAAa16FzT4o+BxR9FaW5tuTC91D2AXA9ij4AAAAAAACg5eKHPELRZ3PRV3psh/K2L7ElG76Hsg+Aq1H0AQAAAAAAAFfGPzDE8kyKvotKj+3Qjg+mqkPnnrbkw/dQ9gFwLYo+AAAAAAAAwPko+i6qKfo6dU1U/JBHbNkDfA9lHwBXckLRd6zcY0suAAAAAAAA4BYUfRddWvQNnvQnW15hCd9E2QfAdZxQ9GXmF+nve4/akg0AAAAAAAC4AUXfRZcXfXacMxG+i7IPgKs4pegb//YmdQvtYEs+AAAAAAAA4HTnqysp+r5F0QezUfYBcA0nFX0Du4drUmIPW/YAAAAAAAAAON2xfX+l6BNFH6xB2QfAFZxW9K1OHakOAfwKBQAAAAAAAC5lnK+SJFWeKaToo+iDRXikGoDjObHoCwsOsmUfAAAAAAAAgFOdqyzTydx1kqSe/e+m6KPog0Uo+wA4GkUfAAAAAAAA4HznKsu088NpqjpbLEkK7hxjyz4o+tAeUfYBcCyKPgAAAAAAAMD5aoq+8lP7FBU/zrZ9UPShvaLsA+BIFH0AAAAAAACA811a9A25bZmCOkbZsg+KPrRnlH0AHIeiDwAAAAAAAHC+y4s+ztFH0Qd7OKbsW7Rokfz8/DR79uxGjxkzZoz8/PzqfUyaNMm6jQIwFUUfAHgfcxYAAIA5mLMAtGcUfRdR9MFugXZvQJK2bNmi1157TcnJyU0e9+6776qysrL285MnT2rw4MG65557zN4iAAtQ9AGA9zFnAQAAmIM5C0B75pSir/jIZhXnb6LoQ7tn+yv7ysrKlJqaqqVLlyoyMrLJY7t27aqePXvWfqxZs0YdO3ZkOAJ8AEUfAHgfcxYAAIA5mLMAtGdOKfokUfQB37L9lX0zZ87UpEmTNG7cOC1YsOCKrvvGG2/o3nvvVadOnRo9xuPxyOPx1H5eWlra6r0C8K5NeSclSe9lHdE7WQW6e0CM+kR21PJdh9q89r7CMklSRs6JFh1/uLRCb+3IVfdOwfpBQpRe/uKbZq+z7UixJKm4YGur99mcmrXLiw6YllFReuH7XZi73rQcK26HFesDbsOcBbRfNXOWGXYeLZEkZRed0faCYlMyjpyukGTNDERG85ixgPqYs4D2K+vEadPWzi46Y3rGifILv1tKjrbu8azz584qd8fvVVl2VL2HPqozJdk6U5Jd55iKbz8vPrJZ2SY9bFaYs1aS1DHyaoWExenovr95PaPmdpSdzGpw/YrSXOVtX6IOnXsqpv89KsxZc8UZrf05AJfzMwzDsCt85cqVWrhwobZs2aKQkBCNGTNGQ4YM0UsvvdTsdTMzM/Xd735XX3zxhUaMGNHocfPnz1daWlq9yydMmKCgIPNetZOZmdnkvtyUQwYZ3lZUVKSNGzeatj4wevToZp9d2xa+cD/0lYyqqiqtXr1aJSUlCg8PNy3HjZizyLAqw6ocMlqGOQtmYsZyToYVOcxZjWPOIoMM52VYkVNRUaG1a9eatj7at+HDhysmJsa09X3lvu4LGWbNWLaVfYcOHdLw4cO1Zs2a2vc2v5Lh6F/+5V/0+eef66uvvmryuIaeCRUXF2f6sDp58mS9//77pq1vZQ4ZZJjhxhtv1COPPGLa+ps2bdKSJUs0NiFKiVGNv3z+WLlHf99boK6hHXRbYk91CGj5uxt/mlOoPYVlGtErQsN6RbR6r5XV5/XhvmM6WVGplP491aNTcO3XNuQUandhmWKumaqImOGtzmhKccFWFexZptiwYOWf9uj6XhEa3obb05B9J8u0LrtQjz76qEaNGuXVtS/3+9//Xv/4xz9MzfCV+6EvZJSWlqpLly48CHUZ5iwyrMywKoeMljN7zsrOztbcuXP17M0D1CeyoykZm/JOasnWHD06PEG9wkJNycjIPqF1OYVKuP6XCg2PMyWjovSQcra8oLsHxGhwzwhTMo6crtCSrTl69tln1adPH1MyJGYsp2VYkcOc1TDmLDLIcGaGVTnjx4/Xc889Z9r6WVlZmjp1qiVz1t0DYhR9yWNQ3lTzmFlE7CiFdvHufHL6xC6VndipkLA4nT19SNfHRGh4bIRXM2qcKPfonawCPfroo+rVq5cpGZL0P//zP9qyZYtp60u+c1/3hQyzZizb3sZz27ZtOn78uIYOHVp7WXV1tTZs2KBXX31VHo9HAQEBDV63vLxcK1eu1DPPPNNsTnBwsIKDzfmlBaD1IiMjlZqaamrGkiVLNH1ovFIHNfzgTc05+q6P7dqqc/TN+HCH9hSWKaV/TKvPM3jaU6UJyz/XmXPV2vjT72tEbN1nSs/4cId2F5YpIma4eibe2aqMlijYs0z5pz2mnTNx+a5DWpddqFGjRpn+c//zn/9s6vqAGzBnAe2b2XPW9u3bNXfuXE28uoeGxkSYlrNka44eHppgasa6nEJFxd+ssOhBpqx/+sQu5Wx5QXcM6NXoTNpW2wuKtWRrjiZOnFjn9763MWMBFzBnAe1baGioqX9va1gxZz19Y3/TMmoeM4tJuserj2flbHtFBXuWqc+IXyokLE5Z62ZrclLrH5drzvaCYr2TVaCHH37Y1J97ZmamaWuj/bCt7Bs7dqx27dpV57Lp06crKSlJTz75ZKODkST95S9/kcfj0dSpU83eJgAfVVP0Dewe3qqizxtqir6vj5dqzf2j6hV9VhvbJ8q04QiAtZizAAAAzMGcBQD2yNn2irIzX1CfEb9UwrBfmHKOPsDNbCv7wsLCNHDgwDqXderUSd26dau9fNq0aYqNjVV6enqd49544w3dcccd6tatm2X7BeA7KPoaNiYh2u4tAPAS5iwAAABzMGcBgPUuL/oA1Gdb2dcSeXl58veve/6svXv3auPGjfrkk09s2hUAN6PoA4ALmLMAAADMwZwFAN5D0Qe0jKPKvoyMjCY/l6T+/fvLMAxrNgTAp1D0AWjPmLMAAADMwZwFAOag6ANazr/5QwDA/Sj6AAAAAAAAAHeg6AOuDGUfAJ9H0QcAAAAAAAC4A0UfcOUo+wD4tIOnyin6AAAAAAAAABeg6ANah7IPgE9L37iPog8AAAAAAABwOIo+oPUo+wD4tLjwUIo+Bzh4qtzuLQAAAAAAAMChKPqAtqHsA+DTnhh1NUWfzTLzi5S+cZ/d2wAAAAAAAIADUfQBbUfZB8CnhQYFWJ5J0XdRZn6Rxr+9SXHhoXZvBQAAAAAAAA5D0Qd4B2UfAHgRRd9FNUXfwO7hemLU1XZvBwAAAAAAAA5C0Qd4D2UfAHgJRd9FlxZ9q1NH2vIKSwAAAAAAADgTRR/gXZR9AOAFFH0XXV702XHORAAAAAAAADgTRR/gfZR9ANBGnnPVFH3fougDAAAAAABAYyj6AHME2r0BAHC7P+7MU4nnHEUfRR8AAAAAAAAaQdEHmIdX9gFAK1VWn5ckHS/3UPRR9AEAAAAAAKARFH2AuSj7AKAVTnuq9MG+o5KkB4fEU/RR9AEAAAAAAKABFH2A+Sj7AOAKnfZUacLyz3WqolKSdFV4qM07sg9FHwAAAAAAABpD0QdYg7IPAK5ATdH39fFSpfSPsXs7tqLoAwAAAAAAQGNOZH9M0QdYhLIPAFro0qJvzf2j1KNTsN1bsg1FHwAAAAAAAJpS+M0qij7AIpR9ANAClxd9nKOPog8AAAAAAACNi+p7K0UfYBHKPgBoBkXfRRR9AAAAAAAAaInoPj+0ewtAu0HZBwBNoOi7iKIPAAAAAAAAAJzHMWXfokWL5Ofnp9mzZzd5XHFxsWbOnKmYmBgFBwcrMTFRH330kTWbBNCuUPRdRNEHuBtzFgAAgDmYswAAgBME2r0BSdqyZYtee+01JScnN3lcZWWlxo8fr+7du+udd95RbGyscnNzFRERYc1GAbQbTin6th4ptiX3UhR9gLsxZwEAAJiDOQsAADiF7WVfWVmZUlNTtXTpUi1YsKDJY998802dOnVKn332mYKCLjzYnJCQYMEuAbQnTin6FmzYqy02l30UfYC7MWcBAACYgzkLAAA4ie1l38yZMzVp0iSNGzeu2eHo/fff18iRIzVz5kz9z//8j6Kjo3XffffpySefVEBAQIPX8Xg88ng8tZ+XlpZ6df8AnG1T3skrOr6iqlrPb9qvQ6UVenp0ovafKtP+U2UNHruv8MLlGTkn2rzPy2XknNC67ELFhgUr/7RHxQVbvZ5Ro2bty2/H4dIKvbUjV907BesHCVF6+YtvWp2x82hJm/YIoHWYswCYKevEadPWzi46Y3rGkdMVkqTyogOmZdSsnV10RtsLik3JMPN7BKBxzFkAzOT2OetE+YXfXyVHzXs8q2btI6crmLMASX6GYRh2ha9cuVILFy7Uli1bFBISojFjxmjIkCF66aWXGjw+KSlJOTk5Sk1N1YwZM3TgwAHNmDFDv/jFLzRv3rwGrzN//nylpaXVu3zChAm1z6YyQ2ZmpkaMGGHa+lbmkEGGGzOKioq0ceNG09ZH6yQnJys+Pt7UDF/490tGy1VVVWn16tUqKSlReHi4aTluxJxFhlUZVuWQ4ZyMiooKrV271rT10TqjR49WZKR570jhC/92fSnDihzmrMYxZ5FBhvMyrMphzmqfmLPI8CazZizbyr5Dhw5p+PDhWrNmTe17mzc3HCUmJurs2bPKzs6ufebTiy++qN/85jcqKCho8DoNPRMqLi7O9GF18uTJev/9901b38ocMshwa8aNN96oRx55xLT1N23apCVLlmhsQpQSozp7Zc2tR4q15Uixru8VoeG9IvRpTqH2FJZpRK8IDesV4ZWMy23IKdTuwrLazGPlHv19b4G6hnbQbYk91SHAv80Z+wrLtC6nUMuWLVNqaqoXdt04X/n3S0bLlJaWqkuXLjwIdRnmLDKszLAqhwxnZYwfP17PPfecaetnZWVp6tSpevbmAeoT2dGUjE15J7Vka44eHZ6gXmGhpmTsPFqsd7IKTL0d2UVnNHd9lrZt26ahQ4eakiH5zr9dX8mwIoc5q2HMWWSQ4cwMq3KYs1qmZs66e0CMojsFm5JR81gTcxYZbsswa8ay7W08t23bpuPHj9e5k1RXV2vDhg169dVX5fF46r2VQUxMjIKCgupcPmDAAB09elSVlZXq0KFDvZzg4GAFB5vzCwWAs0VGRppeLC1ZskTTh8YrdVBcm9e6cI6+HD178wDN+X5/SdKMD3doT2GZUvrH1F7mbTM+3KHdhWWa3D9Gt3ynu8a/vUnXx3b16jn6lu86pHU5hV5ZC0DzmLMAmC00NNTUBzxqTLy6h4bGRJi2/pKtOXp4aIJpGct3HdI7WQWm3o7tBcWauz7LlLUB1MecBcBsvjRnPX1jf1PnrHU5hcxZwLdsK/vGjh2rXbt21bls+vTpSkpKavQ9y0eNGqUVK1bo/Pnz8ve/8EqTffv2KSYmpsHBCADcYsGGvZq7PqtO0We1w6UVGv/2Jg3sHu7Vog+A9ZizAAAAzMGcBQAAnKjt783WSmFhYRo4cGCdj06dOqlbt24aOHCgJGnatGl6+umna6/z6KOP6tSpU5o1a5b27dunDz/8UL/+9a81c+ZMu24GALSZE4o+SXprRy5FH+AjmLMAAADMwZwFAACcyLZX9rVEXl5e7TOeJCkuLk4ff/yxHnvsMSUnJys2NlazZs3Sk08+aeMuAaD1nFD0HSu/cB6I7p2CKfqAdoQ5CwAAwBzMWQAAwGqOKvsyMjKa/FySRo4cqc2bN1uzIQAwkROKvsz8Iv1974UTwj8wuDdFH+DDmLMAAADMwZwFAADsZtvbeAJAe+aUom/825vUNfTCOSKCA+ufWwIAAAAAAAAA4GyUfQBgMScVfQO7h+u2xJ627AEAAAAAAAAA0HaUfQBgIacVfatTR6pDAH8KAAAAAAAAAMCteIQXACzixKKPc/QBAAAAAAAAgLtR9gGABSj6AAAAAAAAAABmoOwDAJNR9AEAAAAAAAAAzELZBwAmoui7oKKq2vJMAAAAAAAAAGgPKPsAwCQUfRec9lTp+U37Lc8FAAAAAAAAgPaAsg8ATEDRd8FpT5UmLP9ch0orLM8GAAAAAAAAgPaAsg8AvIyi74Kaou/r46V6enSi5fkAAAAAAAAA0B5Q9gGAF1H0XXBp0bfm/lH6TtdOlu8BAAAAAAAAANoDyj4A8BKKvgsuL/pGxEZavgcAAAAAAAAAaC8o+wDACyj6LqDoAwAAAAAAAABrBdq9AQBwu/eyjuidrAKKPoo+AAAAAAAAALAcr+wDgDai6KPoAwAAAAAAAAC7UPYBQBvdPSCGoo+iDwAAAAAAAABsQdkHAG10x4BetuRS9AEAAAAAAAAAKPsAwIUo+gAAAAAAAAAAEmUfALgORR8AAAAAAAAAoAZlHwC4CEUfAAAAAAAAAOBSjin7Fi1aJD8/P82ePbvRY9566y35+fnV+QgJCbFukwBgI4o+AK3FnAUAAGAO5iwAAOAEgXZvQJK2bNmi1157TcnJyc0eGx4err1799Z+7ufnZ+bWAMARDpdWUPQBaBXmLAAAAHMwZwEAAKew/ZV9ZWVlSk1N1dKlSxUZ2fwDx35+furZs2ftR48ePSzYJQDY660duRR9AK4YcxYAAIA5mLMAAICT2P7KvpkzZ2rSpEkaN26cFixY0OzxZWVlio+P1/nz5zV06FD9+te/1rXXXtvo8R6PRx6Pp/bz0tJSr+wbAGpsyjtp2tpb84slSZ07BGr6kN56f99Rr2fsKyyTJO08WqLluw7V+3pFVbWe37Rfh0or9PToRO0/Vab9p8quKMPM7xGAxjFnAXC7rBOnTVs7u+iMT2SYuTaAxjFnAXA7t89AzFlAXX6GYRh2ha9cuVILFy7Uli1bFBISojFjxmjIkCF66aWXGjz+888/1/79+5WcnKySkhItXrxYGzZs0O7du3XVVVc1eJ358+crLS2t3uUTJkxQUJB5r47JzMzUiBEjTFvfyhwyyCCjYUVFRdq4caNp6/ui0aNHt+hZr23hC/+2yGi5qqoqrV69WiUlJQoPDzctx42Ys8iwKsOqHDLaV0ZFRYXWrl1r2vq+aNy4cQoNDTVtfV/4d+VLGVbkMGc1jjmLDDKcl2FVji9kMGddOeYsMrzJrBnLtrLv0KFDGj58uNasWVP73ubNDUeXq6qq0oABAzRlyhQ9++yzDR7T0DOh4uLiTB9WJ0+erPfff9+09a3MIYMMMhp344036pFHHjE14/nnn9cTTzzh+ozf//73+sc//mFqhuQ7/7bIaJnS0lJ16dKFB6Euw5xFhpUZVuWQ0f4yxo8fr+eee87UjFmzZunll192fcaTTz6pNWvWmJrhK/+ufCXDihzmrIYxZ5FBhjMzrMrxlQzmrJZjziLD28yasWx7G89t27bp+PHjGjp0aO1l1dXV2rBhg1599VV5PB4FBAQ0uUZQUJCuu+46HThwoNFjgoODFRwc7LV9A8ClIiMjlZqaamrGn//8Z5/JAGAN5iwAviA0NLTO7zEzREZG+kSGmc80B1AXcxYAX8Cc1XLMWXAL28q+sWPHateuXXUumz59upKSkvTkk082OxhJF4apXbt2aeLEiWZtEwAAwHWYswAAAMzBnAUAAJzItrIvLCxMAwcOrHNZp06d1K1bt9rLp02bptjYWKWnp0uSnnnmGX3ve99Tv379VFxcrN/85jfKzc3Vww8/bPn+AQAAnIo5CwAAwBzMWQAAwIlsK/taIi8vT/7+/rWfFxUV6Wc/+5mOHj2qyMhIDRs2TJ999pmuueYaG3cJAADgPsxZAAAA5mDOAgAAVnNU2ZeRkdHk57/97W/129/+1roNAQAA+AjmLAAAAHMwZwEAALv5N38IAAAAAAAAAAAAACei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUcU/YtWrRIfn5+mj17dqPHvPvuuxo+fLgiIiLUqVMnDRkyRG+//bZ1mwQAAHAh5iwAAABzMGcBAAAnCLR7A5K0ZcsWvfbaa0pOTm7yuK5du+pXv/qVkpKS1KFDB33wwQeaPn26unfvrh/+8IcW7RYAAMA9mLMAAADMwZwFAACcwvZX9pWVlSk1NVVLly5VZGRkk8eOGTNGd955pwYMGKDvfOc7mjVrlpKTk7Vx40aLdgsAAOAezFkAAADmYM4CAABOYnvZN3PmTE2aNEnjxo27ousZhqF169Zp7969+v73v9/ocR6PR6WlpXU+AAAA2gPmLAAAAHMwZwEAACfxMwzDsCt85cqVWrhwobZs2aKQkBCNGTNGQ4YM0UsvvdTodUpKShQbGyuPx6OAgAD97ne/009/+tNGj58/f77S0tLqXT5hwgQFBQV542Y0KDMzUyNGjDBtfStzyCCDDDLckmFVDhnOyaiqqtLq1atVUlKi8PBw03LciDmLDKsyrMohgwwyyCDD2hzmrMYxZ5FBhvMyrMohgwwyyGgr02YswyZ5eXlG9+7djZ07d9ZedtNNNxmzZs1q8nrV1dXG/v37jS+//NJYvHix0aVLF2P9+vWNHn/27FmjpKSk9uPQoUOGJKOkpMRLt6RhKSkppq5vZQ4ZZJBBhlsyrMohwzkZJSUllvxddxvmLDKszLAqhwwyyCCDDGtzmLMaxpxFBhnOzLAqhwwyyCCjrcyasQK9VxtemW3btun48eMaOnRo7WXV1dXasGGDXn311dpnOl3O399f/fr1kyQNGTJEWVlZSk9P15gxYxrMCQ4OVnBwsCm3AQAAwImYswAAAMzBnAUAAJzItrJv7Nix2rVrV53Lpk+frqSkJD355JMNDkYNOX/+vDwejxlbBAAAcCXmLAAAAHMwZwEAACeyrewLCwvTwIED61zWqVMndevWrfbyadOmKTY2Vunp6ZKk9PR0DR8+XN/5znfk8Xj00Ucf6e2339aSJUss3z8AAIBTMWcBAACYgzkLAAA4kW1lX0vk5eXJ39+/9vPy8nLNmDFDhw8fVmhoqJKSkrRs2TL95Cc/sXGXAAAA7sOcBQAAYA7mLAAAYDVHlX0ZGRlNfr5gwQItWLDAug0BAAD4COYsAAAAczBnAQAAu/k3fwgAAAAAAAAAAAAAJ6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApSj7AAAAAAAAAAAAAJei7AMAAAAAAAAAAABcirIPAAAAAAAAAAAAcCnKPgAAAAAAAAAAAMClKPsAAAAAAAAAAAAAl6LsAwAAAAAAAAAAAFyKsg8AAAAAAAAAAABwKco+AAAAAAAAAAAAwKUo+wAAAAAAAAAAAACXouwDAAAAAAAAAAAAXIqyDwAAAAAAAAAAAHApyj4AAAAAAAAAAADApRxT9i1atEh+fn6aPXt2o8csXbpUN954oyIjIxUZGalx48YpMzPTuk0CAAC4EHMWAACAOZizAACAEzii7NuyZYtee+01JScnN3lcRkaGpkyZovXr1+vzzz9XXFycbrnlFuXn51u0UwAAAHdhzgIAADAHcxYAAHAK28u+srIypaamaunSpYqMjGzy2OXLl2vGjBkaMmSIkpKS9Prrr+v8+fNat26dRbsFAABwD+YsAAAAczBnAQAAJ7G97Js5c6YmTZqkcePGXfF1z5w5o6qqKnXt2rXRYzwej0pLS+t8AAAAtAfMWQAAAOZgzgIAAE7iZxiGYVf4ypUrtXDhQm3ZskUhISEaM2aMhgwZopdeeqlF158xY4Y+/vhj7d69WyEhIQ0eM3/+fKWlpdW7fMKECQoKCmrL9puUmZmpESNGmLa+lTlkkEEGGW7JsCqHDOdkVFVVafXq1SopKVF4eLhpOW7EnEWGVRlW5ZBBBhlkkGFtDnNW45izyCDDeRlW5ZBBBhlktJVpM5Zhk7y8PKN79+7Gzp07ay+76aabjFmzZrXo+unp6UZkZGSd6zfk7NmzRklJSe3HoUOHDElGSUlJW7bfrJSUFFPXtzKHDDLIIMMtGVblkOGcjJKSEkv+rrsNcxYZVmZYlUMGGWSQQYa1OcxZDWPOIoMMZ2ZYlUMGGWSQ0VZmzViB3qsNr8y2bdt0/PhxDR06tPay6upqbdiwQa+++qo8Ho8CAgIavO7ixYu1aNEirV27ttmTIAcHBys4ONirewcAAHAy5iwAAABzMGcBAAAnsq3sGzt2rHbt2lXnsunTpyspKUlPPvlko4PR888/r4ULF+rjjz/W8OHDrdgqAACAqzBnAQAAmIM5C3Fqo+wAACZPSURBVAAAOJFtZV9YWJgGDhxY57JOnTqpW7dutZdPmzZNsbGxSk9PlyQ999xz+s///E+tWLFCCQkJOnr0qCSpc+fO6ty5s7U3AAAAwKGYswAAAMzBnAUAAJzI3+4NNCUvL08FBQW1ny9ZskSVlZW6++67FRMTU/uxePFiG3cJAADgPsxZAAAA5mDOAgAAVrPtlX0NycjIaPLznJwcy/YCAADgS5izAAAAzMGcBQAA7OboV/YBAAAAAAAAAAAAaBxlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLOabsW7Rokfz8/DR79uxGj9m9e7fuuusuJSQkyM/PTy+99JJl+wMAAHAr5iwAAABzMGcBAAAncETZt2XLFr322mtKTk5u8rgzZ86ob9++WrRokXr27GnR7gAAANyLOQsAAMAczFkAAMApbC/7ysrKlJqaqqVLlyoyMrLJY6+//nr95je/0b333qvg4GCLdggAAOBOzFkAAADmYM4CAABOYnvZN3PmTE2aNEnjxo0zZX2Px6PS0tI6HwAAAO0BcxYAAIA5mLMAAICTBNoZvnLlSm3fvl1btmwxLSM9PV1paWn1Lv/JT36ioKAg03IzMzM1efJk09a3MocMMsggwy0ZVuWQ4ZyMqqoq09Z2O+YsMqzKsCqHDDLIIIMMa3OYsxrHnEUGGc7LsCqHDDLIIKOtTJuxDJvk5eUZ3bt3N3bu3Fl72U033WTMmjWrRdePj483fvvb3zZ73NmzZ42SkpLaj0OHDhmSjJKSklbuvGVSUlJMXd/KHDLIIIMMt2RYlUOGczJKSkos+bvuNsxZZFiZYVUOGWSQQQYZ1uYwZzWMOYsMMpyZYVUOGWSQQUZbmTVj2fbKvm3btun48eMaOnRo7WXV1dXasGGDXn31VXk8HgUEBLQ5Jzg4mPdDBwAA7QpzFgAAgDmYswAAgBPZVvaNHTtWu3btqnPZ9OnTlZSUpCeffNIrgxEAAEB7xJwFAABgDuYsAADgRLaVfWFhYRo4cGCdyzp16qRu3brVXj5t2jTFxsYqPT1dklRZWak9e/bU/v/8/Hzt2LFDnTt3Vr9+/ay9AQAAAA7FnAUAAGAO5iwAAOBEtpV9LZGXlyd/f//az48cOaLrrruu9vPFixdr8eLFuummm5SRkWHDDgEAANyJOQsAAMAczFkAAMBqjir7Lh9wLv88ISFBhmFYtyEAAAAfwZwFAABgDuYsAABgN//mDwEAAAAAAAAAAADgRJR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4lK1l35IlS5ScnKzw8HCFh4dr5MiRWrVqVaPHV1VV6ZlnntF3vvMdhYSEaPDgwVq9erWFOwYAAHAH5iwAAADvY8YCAABOZGvZd9VVV2nRokXatm2btm7dqh/84Ae6/fbbtXv37gaPnzNnjl577TX93//7f7Vnzx498sgjuvPOO/Xll19avHMAAABnY84CAADwPmYsAADgRLaWfSkpKZo4caKuvvpqJSYmauHChercubM2b97c4PFvv/22/uM//kMTJ05U37599eijj2rixIl64YUXLN45AACAszFnAQAAeB8zFgAAcKJAuzdQo7q6Wn/5y19UXl6ukSNHNniMx+NRSEhInctCQ0O1cePGRtf1eDzyeDy1n5eWlnpnwwAAAC7BnAUAAOB9Zs1YNddjzgIAAC3lZxiGYecGdu3apZEjR+rs2bPq3LmzVqxYoYkTJzZ47H333aedO3fqvffe03e+8x2tW7dOt99+u6qrq+sMQJeaP3++0tLS6l0+YcIEBQUFefW2XCozM1MjRowwbX0rc8gggwwy3JJhVQ4ZzsmoqqrS6tWrVVJSovDwcNNy3Io5iwx+95JBBhlk+GaGFTnMWY0ze8aSmLPIIMOpOWSQQQYZbWXajGXYzOPxGPv37ze2bt1qPPXUU0ZUVJSxe/fuBo89fvy4cfvttxv+/v5GQECAkZiYaMyYMcMICQlpdP2zZ88aJSUltR+HDh0yJBklJSVm3STDMAwjJSXF1PWtzCGDDDLIcEuGVTlkOCejpKTEkr/rbsWcRQa/e8kggwwyfDPDihzmrMaZPWMZBnMWGWQ4NYcMMsggo63MmrFsPWefJHXo0EH9+vXTsGHDlJ6ersGDB+vll19u8Njo6Gi99957Ki8vV25urv75z3+qc+fO6tu3b6PrBwcHKzw8vM4HAABAe8CcBQAA4H1mz1gScxYAALgytpd9lzt//nyTb2MgSSEhIYqNjdW5c+f017/+VbfffrtFuwMAAHAv5iwAAADvY8YCAAB2C7Qz/Omnn9att96q3r176/Tp01qxYoUyMjL08ccfS5KmTZum2NhYpaenS5K++OIL5efna8iQIcrPz9f8+fN1/vx5PfHEE3beDAAAAMdhzgIAAPA+ZiwAAOBEtpZ9x48f17Rp01RQUKAuXbooOTlZH3/8scaPHy9JysvLk7//xRcfnj17VnPmzNE333yjzp07a+LEiXr77bcVERFh0y0AAABwJuYsAAAA72PGAgAATmRr2ffGG280+fWMjIw6n990003as2ePiTsCAADwDcxZAAAA3seMBQAAnMhx5+wDAAAAAAAAAAAA0DKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuBRlHwAAAAAAAAAAAOBSlH0AAAAAAAAAAACAS1H2AQAAAAAAAAAAAC5F2QcAAAAAAAAAAAC4FGUfAAAAAAAAAAAA4FKUfQAAAAAAAAAAAIBLUfYBAAAAAAAAAAAALkXZBwAAAAAAAAAAALgUZR8AAAAAAAAAAADgUpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAAAAAAAAAAAAuJStZd+SJUuUnJys8PBwhYeHa+TIkVq1alWT13nppZfUv39/hYaGKi4uTo899pjOnj1r0Y4BAADcgTkLAADA+5ixAACAEwXaGX7VVVdp0aJFuvrqq2UYhv74xz/q9ttv15dffqlrr7223vErVqzQU089pTfffFM33HCD9u3bpwcffFB+fn568cUXbbgFAAAAzsScBQAA4H3MWAAAwIlsLftSUlLqfL5w4UItWbJEmzdvbnBA+uyzzzRq1Cjdd999kqSEhARNmTJFX3zxhSX7BQAAcAvmLAAAAO9jxgIAAE7kmHP2VVdXa+XKlSovL9fIkSMbPOaGG27Qtm3blJmZKUn65ptv9NFHH2nixImNruvxeFRaWlrnAwAAoD1hzgIAAPA+s2YsiTkLAABcGT/DMAw7N7Br1y6NHDlSZ8+eVefOnbVixYomB55XXnlFjz/+uAzD0Llz5/TII49oyZIljR4/f/58paWl1bt8woQJCgoK8sptaEhmZqZGjBhh2vpW5pBBBhlkuCXDqhwynJNRVVWl1atXq6SkROHh4abluBVzFhn87iWDDDLI8M0MK3KYsxpn9owlMWeRQYZTc8gggwwy2sq0GcuwmcfjMfbv329s3brVeOqpp4yoqChj9+7dDR67fv16o0ePHsbSpUuNr776ynj33XeNuLg445lnnml0/bNnzxolJSW1H4cOHTIkGSUlJWbdJMMwDCMlJcXU9a3MIYMMMshwS4ZVOWQ4J6OkpMSSv+tuxZxFBr97ySCDDDJ8M8OKHOasxpk9YxkGcxYZZDg1hwwyyCCjrcyasWw9Z58kdejQQf369ZMkDRs2TFu2bNHLL7+s1157rd6xc+fO1f3336+HH35YkjRo0CCVl5fr5z//uX71q1/J37/+u5IGBwcrODjY3BsBAADgQMxZAAAA3mf2jCUxZwEAgCvjmHP21Th//rw8Hk+DXztz5ky9ISggIECSZNj7bqQAAACOx5wFAADgfcxYAADAbra+su/pp5/Wrbfeqt69e+v06dNasWKFMjIy9PHHH0uSpk2bptjYWKWnp0uSUlJS9OKLL+q6667Td7/7XR04cEBz585VSkpK7aAEAAAA5iwAAAAzMGMBAAAnsrXsO378uKZNm6aCggJ16dJFycnJ+vjjjzV+/HhJUl5eXp1nP82ZM0d+fn6aM2eO8vPzFR0drZSUFC1cuNCumwAAAOBIzFkAAADex4wFAACcyNay74033mjy6xkZGXU+DwwM1Lx58zRv3jwTdwUAAOB+zFkAAADex4wFAACcyHHn7AMAAAAAAAAAAADQMpR9AAAAAAAAAAAAgEtR9gEAAAAAAAAAAAAuRdkHAPj/27v74CjqO47j3yPhLiGTiwEJDSEEg2DkIZExjk1AEYIwNbahthGQJyszKkZHbZk2FqahVIS2tGCnLaUhKqPFjCDOWA0QtSatBiFIIJlYkwi0QYcZOg7PsRcSvv3DSYY87+5t7m6v79fM/pFj9z67cfnm4/0uBwAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoVjsAwAAAAAAAAAAAByKxT4AAAAAAAAAAADAoYK62Ld161ZJT08Xr9crXq9XsrKyZO/evX3uf9ddd4nL5eqx5ebmBvCsAQAAQh89CwAAwH50LAAAEIoigxk+ZswY2bhxo0yYMEFUVXbs2CF5eXlSU1MjkydP7rH/nj17pLW1tfPrL7/8UjIyMiQ/Pz+Qpw0AABDy6FkAAAD2o2MBAIBQFNTFvm9/+9tdvl6/fr1s3bpVPvroo14L0vDhw7t8XVpaKsOGDaMgAQAAdEPPAgAAsB8dCwAAhKKgLvZdq729XXbt2iWXL1+WrKwsQ8eUlJTIwoULJSYmps99fD6f+Hy+zq/Pnz8vIiIXLlzw74QHcOXKlUHPCFQOGWSQQYZTMgKVQ0boZHQ8t6oOWkY4oGeRMdjC5VrIIIMMMpySEYgcetbABqtjidCzyCAjVHPIIIMMMvw1aB1Lg6y2tlZjYmI0IiJC4+Li9O233zZ03MGDB1VE9ODBg/3uV1RUpCLCxsbGxsbGFsbbqVOn7KglYYeexcbGxsbGxubvRs/qabA7lio9i42NjY2NLdw3uzuWSzW4b9FqbW2V5uZmOX/+vOzevVu2b98ulZWVMmnSpH6Pe+SRR+TAgQNSW1vb737d3wl17tw5SUlJkebmZomLi7PlGrq7cOGCJCcny6lTp8Tr9Q5KRqByyCCDDDKckhGoHDJCK0NV5eLFizJ69GgZMmTIoGQ4GT2LDGYvGWSQQUb4ZQQqh57Vt8HuWCL0LDLICMUcMsgggww7DFbHCvrHeLrdbrnxxhtFROTWW2+V6upqef7552Xbtm19HnP58mUpLS2VdevWDfj8Ho9HPB5Pj8fj4uIG9QeMiIjX6x30jEDlkEEGGWQ4JSNQOWSETsZgvdgRDuhZZAQqI1A5ZJBBBhlkBDaHntW7we5YIvQsMsgI5RwyyCCDDH8NRscKubdmXb16tcs7l3qza9cu8fl8smTJkgCdFQAAgPPRswAAAOxHxwIAAMEW1N/se+aZZ+Rb3/qWjB07Vi5evCg7d+6UiooK2b9/v4iILFu2TJKSkmTDhg1djispKZH58+fLiBEjgnHaAAAAIY+eBQAAYD86FgAACEVBXew7c+aMLFu2TE6fPi1xcXGSnp4u+/fvl7vvvltERJqbm3t8ZmlDQ4N88MEHUl5ebinT4/FIUVFRrx+FYJdAZAQqhwwyyCDDKRmByiEjtDLQN3oWGcxeMsggg4zwzAhkDnoKRscSCZ/7lwwynJxDBhlkkBHKXKqqwT4JAAAAAAAAAAAAAOaF3L/ZBwAAAAAAAAAAAMAYFvsAAAAAAAAAAAAAh2KxDwAAAAAAAAAAAHAoFvsAAAAAAAAAAAAAhwqrxb4NGzbIbbfdJrGxsZKQkCDz58+XhoaGfo+56667xOVy9dhyc3Nty7hy5YqsW7dOxo8fL1FRUZKRkSH79u3r95itW7dKenq6eL1e8Xq9kpWVJXv37u1z//r6evne974n48aNE5fLJVu2bOn3+a1kFBcXyx133CHx8fESHx8vc+bMkUOHDtmaca3S0lJxuVwyf/582zPOnTsnBQUFkpiYKB6PRyZOnChlZWW2ZmzZskVuuukmiY6OluTkZHn66aflv//9b7/HXGvjxo3icrnkqaee6ne/Xbt2SVpamkRFRcnUqVP7vQ4rGVbuLbMZe/bskczMTLnuuuskJiZGbrnlFnn55ZdtzXjppZd6/D2PioqyNcPsPLGSYXaerF27tsf5pKWl9XseVu4pszlW5omVa+lgdJ5YyTA7T6xkmJ0nZjOs/JwSEfniiy9kyZIlMmLECImOjpapU6fK4cOH+9z/9OnT8sADD8jEiRNlyJAhA843hJZw6VmB6FhWcuhZgetZ4dKxjObQs4xnhGLPomOFVseykkPPghH0LF7LCoeOJRI+PYuOZbxjGc2hZ9GzeC1r8EUG+wTsVFlZKQUFBXLbbbdJW1ub/PSnP5W5c+fKJ598IjExMb0es2fPHmltbe38+ssvv5SMjAzJz8+3LWPNmjXyyiuvSHFxsaSlpcn+/fvlu9/9rlRVVcm0adN6PWbMmDGyceNGmTBhgqiq7NixQ/Ly8qSmpkYmT57cY/+WlhZJTU2V/Px8efrppwf6VlnKqKiokEWLFkl2drZERUXJL3/5S5k7d67U19dLUlKSLRkd/vWvf8mqVavkjjvusP06Wltb5e6775aEhATZvXu3JCUlyb///W+57rrrbMvYuXOnFBYWygsvvCDZ2dnS2NgoDz74oLhcLvntb3874DVVV1fLtm3bJD09vd/9qqqqZNGiRbJhwwa59957ZefOnTJ//nw5cuSITJkyxZYMK/eW2Yzhw4fL6tWrJS0tTdxut7z11lvygx/8QBISEmTevHm2ZIiIeL3eLv8z43K5bL0Os/PESoaVeTJ58mR59913O7+OjOx79PtzT5nJsTJPzGZ0MDNPzGZYmSdmM6zOEzMZVu6rs2fPyvTp02XWrFmyd+9eGTlypDQ1NUl8fHyfOT6fT0aOHClr1qyRzZs397kfQlO49KxAdCwrOfSswPSscOlYZnLoWc7vWXSs0OpYZnPoWTCCnsVrWU7vWCLh07PoWMY7lpkcehY9i9eyAkDD2JkzZ1REtLKy0vAxmzdv1tjYWL106ZJtGYmJifr73/++y2P33XefLl682PB5qarGx8fr9u3bB9wvJSVFN2/ebOq5zWaoqra1tWlsbKzu2LHD1oy2tjbNzs7W7du36/LlyzUvL8/U8w+UsXXrVk1NTdXW1lbTz2s0o6CgQGfPnt3lsR/+8Ic6ffr0AZ/34sWLOmHCBH3nnXd05syZ+uSTT/a57/3336+5ubldHrv99tv1kUcesS3jWmbuLasZHaZNm6Zr1qyxLePFF1/UuLg4U+dgNqM7o/PETIbZeVJUVKQZGRmGz9nqPWU2pzsj88RKhtl5YjbDyjwxm2FlnpjNsPJz6ic/+YnOmDHDcEZ3VuYCQks49axAdCwzOar0rMHoWeHSsfzJ6UDP6l0o9iw6Vmh1LCs59CxYQc8yh45lTwavZdGxVM3NEnoWPasvvJYVHGH1MZ7dnT9/XkS+fqeFUSUlJbJw4cI+39VkJcPn8/X4Fevo6Gj54IMPDGW0t7dLaWmpXL58WbKysgwdY5aVjJaWFrly5Yrh76/RjHXr1klCQoKsWLHC0POazXjzzTclKytLCgoKZNSoUTJlyhR57rnnpL293baM7Oxs+fjjjzt/lfvEiRNSVlYm99xzz4DPX1BQILm5uTJnzpwB9z1w4ECP/ebNmycHDhywLcMqqxmqKu+99540NDTInXfeaWvGpUuXJCUlRZKTkyUvL0/q6+sHPMaf75XReWImw8o8aWpqktGjR0tqaqosXrxYmpub+9zX6j1lNqc7o/PEbIaVeWImw+o8MZNhdZ6YybByX7355puSmZkp+fn5kpCQINOmTZPi4uJ+zwnhJRx6ViA6ltUcepb9PStcOpY/OfSs/oVqz6JjhVbHMptDz4IV9Cxj6Fih0bFEwqdn0bHMzRJ6Fj2rL7yWFSRBXmwcNO3t7Zqbm2vo3ScdDh48qCKiBw8etDVj0aJFOmnSJG1sbNT29nYtLy/X6Ohodbvd/R5XW1urMTExGhERoXFxcfr2228bOi8z71ixmqGqunLlSk1NTdWvvvrKtox//OMfmpSUpP/5z39UVQ2/G8pMxk033aQej0cfeughPXz4sJaWlurw4cN17dq1tmWoqj7//PM6dOhQjYyMVBHRRx99dMDrePXVV3XKlCmd39OB3i0wdOhQ3blzZ5fH/vCHP2hCQoJtGdcyem9ZyTh37pzGxMRoZGSkejweLSkpsTWjqqpKd+zYoTU1NVpRUaH33nuver1ePXXqlK3X0cHoPDGbYXaelJWV6WuvvabHjh3Tffv2aVZWlo4dO1YvXLjQ6/5W7ikrOd0ZmSdmM6zME7MZVuaJle+V2XliNsPKzymPx6Mej0efeeYZPXLkiG7btk2joqL0pZde6vfcOoT6u6HQP6f3rEB0LH9yVOlZdvescOlYVnPoWc7tWXSs0OpYVnLoWTCLnjUwOlbodCzV8OlZdCxzs4SeRc/itazQE7aLfY8++qimpKT0O/y6e/jhh3Xq1Km2Z5w5c0bz8vJ0yJAhGhERoRMnTtTHHntMo6Ki+j3O5/NpU1OTHj58WAsLC/X666/X+vr6Ac/LTEGymrFhwwaNj4/XY8eO2ZZx4cIFHTdunJaVlXU+ZrQgmbmOCRMmaHJysra1tXU+9pvf/Ea/8Y1v2Jbx/vvv66hRo7S4uFhra2t1z549mpycrOvWrevz+ZubmzUhIaHL99TugmQl41pG7i2rGe3t7drU1KQ1NTW6adMmjYuL0/fff39QrkNVtbW1VcePH9/nxyv4m2FknljJsDpPOpw9e1a9Xm+fH9thdbHPbM61zMwToxn+zBOjGarW54mZDCvzxGyGlftq6NChmpWV1eWxJ554Qr/5zW8aOqdQL0jon9N7ViA6lj859Cx7e1a4dCx/cuhZxjKc0LPoWKHVsYzk0LNgFj1rYHSsrwW7Y6mGT8+iY33N6CyhZ9GzeC0rNIXlYl9BQYGOGTNGT5w4YfiYS5cuqdfr1S1btgxaxldffaWff/65Xr16VX/84x/rpEmTDB+rqpqTk6MPP/zwgPv58znnRjJ+/etfa1xcnFZXV9uaUVNToyKiERERnZvL5VKXy6URERH62Wef+Z2hqnrnnXdqTk5Ol8fKyspURNTn89mSMWPGDF21alWXx15++WWNjo7W9vb2Xo954403ely/iHRe/7UDuENycnKP/9Y/+9nPND093baMaxm5t/zN6LBixQqdO3fuoGZ8//vf14ULF9qeYXSe+JPhzzzJzMzUwsLCXv/M7D1lNaeDv/Okrww750l/12HXPOkvw8o8MZvRwcx9NXbsWF2xYkWXx/74xz/q6NGjDZ1PqBck9C0ce1YgOpbRHHrWwBlm52K4dCw7cjrQs5zds+hYodWxBsrpQM+CEfSszYaf12wGHWvgDF7LomMZnSX0LHrWQBm8lhUcYfVv9qmqPP744/LGG2/I3/72N7nhhhsMH7tr1y7x+XyyZMmSQcuIioqSpKQkaWtrk9dff13y8vIMHysicvXqVfH5fKaOMWugjF/96lfyi1/8Qvbt2yeZmZm2ZqSlpUldXZ0cPXq0c/vOd74js2bNkqNHj0pycrIt1zF9+nT57LPP5OrVq52PNTY2SmJiorjdblsyWlpaZMiQrn+9IiIiROTre6g3OTk5Pa4/MzNTFi9eLEePHu08/lpZWVny3nvvdXnsnXfe6fPz161kmGVXRn/fXzsy2tvbpa6uThITE23PMDpP/MmwOk8uXbokx48f7/O6zd5TVnNE/J8n/WXYNU8Gug475slAGVbmidmMDmbuq+nTp0tDQ0OXxxobGyUlJcXQOcF5wrlnBaJjGcmhZxnLMDsXw6Vj2ZlDz3Juz6JjhVbHMpLTgZ6F/tCz/EPH4rUsf9GxjM8Sf3PoWfQsXssaRMFZYxwcK1eu1Li4OK2oqNDTp093bi0tLZ37LF26tNfV4BkzZuiCBQsGJeOjjz7S119/XY8fP65///vfdfbs2XrDDTfo2bNn+8wpLCzUyspKPXnypNbW1mphYaG6XC4tLy/vNcPn82lNTY3W1NRoYmKirlq1SmtqarSpqcm2jI0bN6rb7dbdu3d3ufaLFy/altGdkV9VNpvR3NyssbGx+vjjj2tDQ4O+9dZbmpCQoM8++6xtGUVFRRobG6uvvvqqnjhxQsvLy3X8+PF6//3393st3XV/t0D3nA8//FAjIyN106ZN+s9//lOLiop06NChWldXZ1uGlXvLbMZzzz2n5eXlevz4cf3kk09006ZNGhkZqcXFxbZl/PznP9f9+/fr8ePH9eOPP9aFCxdqVFSUoY/6MJrRweg8sZJhdp786Ec/0oqKCj158qR++OGHOmfOHL3++uv1zJkzvT6/1XvKbI6VeWI2ozsj88RshpV5YjbDyjwxm2Hl59ShQ4c0MjJS169fr01NTfqXv/xFhw0bpq+88krnPoWFhbp06dIux3XMk1tvvVUfeOABrampMfX3EMETLj0rEB3LSg49K7A9K1w6lpEcepbxjFDsWXSs0OpYVnLoWTCCnsVrWeHSsVTDp2fRscyhZ9mT0d3/U8+iY/kvrBb7RKTX7cUXX+zcZ+bMmbp8+fIux3366acqIp0/7OzOqKio0Jtvvlk9Ho+OGDFCly5dql988UW/OQ899JCmpKSo2+3WkSNHak5OTpfz655x8uTJXs9r5syZtmWkpKT0mlFUVGRbRndGBpqVjKqqKr399tvV4/Foamqqrl+/vt9fMTebceXKFV27dq2OHz9eo6KiNDk5WR977LF+h01vuv+g7O1aXnvtNZ04caK63W6dPHmyqX+Y2kiGlXvLbMbq1av1xhtv1KioKI2Pj9esrCwtLS219TqeeuopHTt2rLrdbh01apTec889euTIEVszVM3NEysZZufJggULNDExUd1utyYlJemCBQu6/Nq/XfeU2Rwr88TKtVzLyDyxkmF2npjNsDJPzGZY+TmlqvrXv/5Vp0yZoh6PR9PS0vTPf/5zlz9fvnx5j1nR23/3lJSUAbMQfOHSswLRsazk0LMC27PCpWMZyaFnGc8IxZ5FxwqtjmUlh54FI+hZvJYVLh2r43nDoWfRscyhZ9l3Hdf6f+pZdCz/uVRNfD4FAAAAAAAAAAAAgJARVv9mHwAAAAAAAAAAAPD/hMU+AAAAAAAAAAAAwKFY7AMAAAAAAAAAAAAcisU+AAAAAAAAAAAAwKFY7AMAAAAAAAAAAAAcisU+AAAAAAAAAAAAwKFY7AMAAAAAAAAAAAAcisU+AAAAAAAAAAAAwKFY7AMAAAAAAAAAAAAcisU+AGGjvb1dsrOz5b777uvy+Pnz5yU5OVlWr14dpDMDAABwNnoWAACA/ehYAOziUlUN9kkAgF0aGxvllltukeLiYlm8eLGIiCxbtkyOHTsm1dXV4na7g3yGAAAAzkTPAgAAsB8dC4AdWOwDEHZ+97vfydq1a6W+vl4OHTok+fn5Ul1dLRkZGcE+NQAAAEejZwEAANiPjgXAXyz2AQg7qiqzZ8+WiIgIqaurkyeeeELWrFkT7NMCAABwPHoWAACA/ehYAPzFYh+AsPTpp5/KzTffLFOnTpUjR45IZGRksE8JAAAgLNCzAAAA7EfHAuCPIcE+AQAYDC+88IIMGzZMTp48KZ9//nmwTwcAACBs0LMAAADsR8cC4A9+sw9A2KmqqpKZM2dKeXm5PPvssyIi8u6774rL5QrymQEAADgbPQsAAMB+dCwA/uI3+wCElZaWFnnwwQdl5cqVMmvWLCkpKZFDhw7Jn/70p2CfGgAAgKPRswAAAOxHxwJgB36zD0BYefLJJ6WsrEyOHTsmw4YNExGRbdu2yapVq6Surk7GjRsX3BMEAABwKHoWAACA/ehYAOzAYh+AsFFZWSk5OTlSUVEhM2bM6PJn8+bNk7a2Nj4CAQAAwAJ6FgAAgP3oWADswmIfAAAAAAAAAAAA4FD8m30AAAAAAAAAAACAQ7HYBwAAAAAAAAAAADgUi30AAAAAAAAAAACAQ7HYBwAAAAAAAAAAADgUi30AAAAAAAAAAACAQ7HYBwAAAAAAAAAAADgUi30AAAAAAAAAAACAQ7HYBwAAAAAAAAAAADgUi30AAAAAAAAAAACAQ7HYBwAAAAAAAAAAADgUi30AAAAAAAAAAACAQ/0PAgBiIeIZPyAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 1.0\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.5\n", + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVEZJREFUeJzt3Xt8U/X9P/DXybX0Sim90AttuV+kSEERlAG/4qpDVHCIiBYVHJtO8QpDdICCoM5NNqcCiqjU4ZziZV/QAYLCQCkXS2W2UGhpS2kLpddA0zY5vz9C0qRN2rRNcpKc1/PxyIPm5CTnk86+9z6fy/sjiKIogoiIiMhPKKRuABEREZErMbkhIiIiv8LkhoiIiPwKkxsiIiLyK0xuiIiIyK8wuSEiIiK/wuSGiIiI/AqTGyIiIvIrTG6IiIjIrzC5IVkRBAHLly+XuhlE5GMYO3wLkxsf8cYbb0AQBIwdO7bbn7Vt2zb+kXpQdXU1AgICIAgCfv75Z7vn3HfffRAEwe4jICDA5txVq1bh1ltvRXR0NAMudYixw3e5Mnbk5uZi0aJFuPrqqxESEoI+ffpg6tSpOHTokKe+jkeppG4AOSczMxNJSUk4ePAg8vPzMWDAgC5/1rZt2/D3v/+dQcpDPv74YwiCgJiYGGRmZmLlypV2z9NqtXj77bfbHFcqlTbPn332WcTExGDUqFH4+uuv3dJm8h+MHb7LlbHj7bffxjvvvIM77rgDDz30EGpqarBu3Tpcd911+OqrrzBlyhS3fQ8pMLnxAQUFBdi/fz8+/fRTLFiwAJmZmVi2bJnUzZK9hoYGaDQaKBTtd4Bu3rwZv/rVr5CYmIgPP/zQYYBSqVS45557OrxuQUEBkpKScOHCBURGRnap7SQPjB3eSYrYMXv2bCxfvhzBwcGWYw888ACGDh2K5cuX+11yw2EpH5CZmYnw8HBMnToVv/71r5GZmdnmnD179kAQBOzZs8fmeGFhIQRBwKZNmwCYujD//ve/A4BN96WZTqfDk08+iYSEBGi1WgwePBh/+tOfYG/z+M2bN2P06NHo0aMHevXqhbvuugvFxcU250yaNAlXXXUV/ve//2Hy5MkIDAxEXFwcXn755Taf19DQgOXLl2PQoEEICAhAnz59MGPGDJw6darT7dPr9Xj88ccRGRmJkJAQ3HrrrSgpKbH7+z179iweeOABREdHQ6vVYvjw4di4caPd3++WLVvw7LPPIi4uDoGBgaitrbX7mWZFRUXYu3cv7rrrLtx1112W/7PpjqSkpG69n+SDsYOxw2z06NE2iQ0AREREYMKECQ6HvHwZe258QGZmJmbMmAGNRoPZs2fjzTffRFZWFq655ppOf9aCBQtQWlqKHTt24IMPPrB5TRRF3Hrrrdi9ezfmzZuHq6++Gl9//TWefvppnD17Fn/5y18s565atQrPPfcc7rzzTsyfPx/nz5/H3/72N/ziF7/A0aNH0bNnT8u5VVVVuOmmmzBjxgzceeed+Ne//oXFixdjxIgRuPnmmwEABoMBt9xyC3bt2oW77roLCxcuRF1dHXbs2IGffvoJ/fv371T75s+fj82bN+Puu+/G+PHj8c0332Dq1Kltfh/l5eW47rrrIAgCfv/73yMyMhLbt2/HvHnzUFtbi8cee8zm/BdeeAEajQZPPfUU9Ho9NBpNu7/vf/zjHwgKCsItt9yCHj16oH///sjMzMT48ePtnn/hwoU2xzQaDUJDQ9u9DpE9jB2MHR3FjrKyMvTu3bvdc3ySSF7t0KFDIgBxx44doiiKotFoFOPj48WFCxfanLd7924RgLh7926b4wUFBSIA8d1337Uce/jhh0V7/9N/9tlnIgBx5cqVNsd//etfi4IgiPn5+aIoimJhYaGoVCrFVatW2ZyXk5MjqlQqm+MTJ04UAYjvv/++5ZherxdjYmLEO+64w3Js48aNIgDxz3/+c5t2GY3GTrXvxx9/FAGIDz30kM15d999twhAXLZsmeXYvHnzxD59+ogXLlywOfeuu+4Sw8LCxEuXLomi2PL77devn+WYM0aMGCHOmTPH8vyZZ54Re/fuLTY1NdmcN3fuXBGA3Ud6errdzz5//nyb70NkxtjB2OEodph99913oiAI4nPPPed0u3wFh6W8XGZmJqKjozF58mQApu7gWbNmYcuWLTAYDC691rZt26BUKvHoo4/aHH/yySchiiK2b98OAPj0009hNBpx55134sKFC5ZHTEwMBg4ciN27d9u8Pzg42GY8WKPR4Nprr8Xp06ctxz755BP07t0bjzzySJt2mbu+nW3ftm3bAKDNea3vpERRxCeffIJp06ZBFEWb75Keno6amhocOXLE5j1z585Fjx497P8CWzl27BhycnIwe/Zsy7HZs2fjwoULdicCBwQEYMeOHW0ea9ascep6RNYYOxg72osdFRUVuPvuu5GcnIxFixY51S5fwmEpL2YwGLBlyxZMnjwZBQUFluNjx47Fq6++il27duGXv/yly6535swZxMbGIiQkxOb40KFDLa8DwMmTJyGKIgYOHGj3c9Rqtc3z+Ph4m7F5AAgPD8exY8csz0+dOoXBgwdDpXL8n6Sz7Ttz5gwUCgX69+9vc97gwYNtnp8/fx7V1dVYv3491q9fb/eaFRUVNs+Tk5Mdtq+1zZs3IygoCP369UN+fj4AUxBKSkpCZmZmm65upVLpd5P6SBqMHV1rn1xih06nwy233IK6ujrs27evzVwcf8Dkxot98803OHfuHLZs2YItW7a0eT0zM9MSoFoHADNX36EBgNFohCAI2L59e5tlygDa/KHYOweA3YmGnmQ0GgEA99xzD+bOnWv3nJSUFJvnzt55iaKIf/zjH9DpdBg2bFib1ysqKlBfX++XQYWkx9jhXr4cOxobGzFjxgwcO3YMX3/9Na666qoufY63Y3LjxTIzMxEVFWVZoWDt008/xdatW/HWW2+hR48eCA8PB2Aq+mTNfEdizVEwS0xMxM6dO1FXV2dzh5Obm2t5HYBlgl5ycjIGDRrUpe/WWv/+/fHDDz+gqampzd1bZ9uXmJgIo9FouaMzy8vLs/k882oIg8Hg8h6Tb7/9FiUlJXj++ectd4dmVVVV+M1vfoPPPvvMqaXfRJ3F2NG19vl77DAajcjIyMCuXbvwz3/+ExMnTnRVs72P56f5kDMuXbokhoSEiA888IDd1//73/+KAMQtW7aIoiiK1dXVolKpFB9//HGb8+644442kwIXL14sAhCrqqpszjVPunvxxRdtjs+aNctm0l1+fr6oVCrFu+++2zJhz8xoNNpMsJs4caI4fPjwNu2fO3eumJiYaHnemUmBHbXv6NGjTk8KvO+++0SNRiPm5OS0uW5FRYXlZ/OkwI8//rjNefbMmzdPDAoKEi9fvmz39YEDB4o33XST5fncuXPFoKAgpz7bjBOKyR7GDtvP7Ez7/D12PPTQQyIAcd26dU6d78vYc+OlvvjiC9TV1eHWW2+1+/p1112HyMhIZGZmYtasWQgLC8PMmTPxt7/9DYIgoH///vj3v//dZtwXMNU7AEyT5tLT06FUKnHXXXdh2rRpmDx5MpYuXYrCwkKMHDkS//nPf/D555/jscces4xD9+/fHytXrsSSJUtQWFiI22+/HSEhISgoKMDWrVvxm9/8Bk899VSnvm9GRgbef/99PPHEEzh48CAmTJgAnU6HnTt34qGHHsJtt93mdPuuvvpqzJ49G2+88QZqamowfvx47Nq1yzJ2bW3NmjXYvXs3xo4diwcffBDDhg3DxYsXceTIEezcuRMXL17s1PcATHUyPvnkE9x4441ttk4wu/XWW7F27VpUVFQgKioKANDc3IzNmzfbPX/69OkICgoCAHzwwQc4c+YMLl26BAD47rvvLMW97r33XstdKMkTYwdjhzVz7HjttdfwxhtvYNy4cQgMDGxzvnWM8QtSZ1dk37Rp08SAgABRp9M5POe+++4T1Wq15W7n/Pnz4h133CEGBgaK4eHh4oIFC8Sffvqpzd1Xc3Oz+Mgjj4iRkZGiIAg2Szvr6urExx9/XIyNjRXVarU4cOBA8ZVXXmlzlyWKovjJJ5+IN9xwgxgUFCQGBQWJQ4YMER9++GExLy/Pco6zd1+iaLrjXLp0qZicnCyq1WoxJiZG/PWvfy2eOnWq0+27fPmy+Oijj4oRERFiUFCQOG3aNLG4uNhuT0d5ebn48MMPiwkJCZbrpqWlievXr7ec05m7r08++UQEIL7zzjsOz9mzZ48IQFy7dq3l9wEHyzkBiAUFBZb3mpfI2nu0Xs5L8sPYwdhhL3Z0Jsb4A0EUJZ6ZRURERORCrHNDREREfoXJDREREfkVJjdERETkV5jcEBERkV9hckNERER+hckNERER+RXZFfEzGo0oLS1FSEiIw1LiROReoiiirq4OsbGxUCh84x6LsYNIWp2JG7JLbkpLS5GQkCB1M4gIQHFxMeLj46VuhlMYO4i8gzNxQ3bJjXnTtGf+exgB3JGZSBIN9fV48frRNpsYejvGDiJpdSZuyC65MXcnBwQHI8CHAiuRP/Kl4R3GDiLv4Ezc8I3BbiIiIiInMbkhIiIiv8LkhoiIiPyK7ObcELmbUjRCYzRCgCh1UyQhQkCjQgGDwHsnImcJoogAo0G2cQMwxY4GhRKiC+biMbkhchVRRGJDPeKb9VD40ERZdzCKIkpUWpwJCAZk/rsg6ojWaECKrhoB/FNBgwhkB/VEo0LZrc9hckPkIokN9Ug2NiIiKgrqHj0AuQYqEWi6fBnqC+eBhnqc6cGVRUQOiSL6Xa5DuFaD8OhoCAq5Bg5ANIqoKitD/8t1+DkwrFs3RkxuiFxAKRoR36xHRFQUAsPDpW6O5NQBAQCApooKlIhBHKIickAtGhFhbEZYRBQ0PXpI3RzJhfXuDV1pKdSiEU1C13tvGHGIXEBjNEIhCKYeGwIAqHv0gEIQoDEapW4KkddSiSIEQYBSrZa6KV5BqVZDIQhQid2be8TkhsgFLJMA5duj3JZg/ke+EySJOsLY0YqL4gaTGyIiIvIrTG6IiIjIrzC5ISJUlJVh6eOPYeyQwUgMDcHo/v2RMWM69n7zDQDgg7ffxowbb8TAyN7oE6BFTXW1tA0mIq/grbGDyQ2RzBUXFiJ9/Djs27MHz61eg28OH8aHX36J8RMnYsljCwEAly9fwuRf/hKPLloscWuJyFt4c+zgUnAimfvDwkchCAK27/svAoOCLMcHDxuG2XPvAwD85pFHAQD7v/1WiiYSkRfy5tjBnhsiL2UwuP8aVRcvYvd//oP7FvzWJjiZhfXs6f5GEJHLeCJuAN4fO5jcEHmZ/BPAxKtViA/SYOLVKuSfcN+1Ck+dgiiKGDB4sPsuQkRu58m4AXh/7GByQ+Rl5t2pwqmTpmIPp04KmHen+0aPxW4WyiIi7+DJuAF4f+zgnBsiL2IwACdyFVbPBZzIFWAwAMru7SNnV/KAARAEAfl5ea7/cCLyCE/HDcD7Ywd7boi8iFIJDBpihFIpXnkuXnnunuuF9+qFSTfeiE3r3sIlna7N61zyTeT9PB03AO+PHUxuiLzMO/9sRv+BpiDVf6CId/7Z7NbrrX5tLQwGA26+4Xr8e+tWnM4/iRO5P+Ptv7+OWyb+AoCplsVP2dkoOHUKAPDzTz/hp+xsVF286Na2EZFzPB03AO+OHRyWIvIyAwYB3/7Y7NYuZWuJ/frhPwe+x9qX1mDF4sWoKDuHiMhIpIwahZf++jcAwPsbNuDVVSst75k+JQ0A8Nr6DZiVkeH+RhJRuzwdNwDvjh2C6O2zglystrYWYWFheD47DwEhIVI3h/xEoKEJoy/XIi6xL9TaAKmb4xWa9A04e6YIh3uE4pLSdsfjhro6/HHkYNTU1CA0NFSiFnYOYwe5A2OHLVfFDQ5LERERkV+R7bBUUVERNHYKD3lKUlKSZNcmIiLyZ7JNbm4qrEBQj0BJrr01vCeQJMmliYiI/J5sk5t4nQrBBmm+vl5Tj8LCQvbeEBERuYFsk5ujeR+ih0bd8YluMKnn1TgQdD17b/yICMH8A5mJ5n8EadtB5MUYO1pxUdyQPLk5e/YsFi9ejO3bt+PSpUsYMGAA3n33XYwZM8bhe/bs2YMnnngCx48fR0JCAp599lncd999nbru7snDoQmUZmZ6xm4V9Lp6Sa5N7tGoUMAoimi6fBnqAK54AICmy5dhFEU0Kly/bkGquEHkas2CAFEUYWhqYuwAYGhqglEU0Sz4cHJTVVWF66+/HpMnT8b27dsRGRmJkydPIjw83OF7CgoKMHXqVPz2t79FZmYmdu3ahfnz56NPnz5IT093+tpXh9yBgKBgV3yNTiswLsWk4804EBQMVbi2S5/BIS3vYhAUKFFpob5wHgCg7tEDsu2wEE2JTeWF8yhRaWEQXJvcSBk3iFytSVCgUqFCYGUlFCoVBIVcAwcgGkXUXLiAiwoVmroZNyRNbl566SUkJCTg3XfftRxLTk5u9z1vvfUWkpOT8eqrrwIAhg4din379uEvf/mLzwSpvWkpyNitQtqJPIRGRnf6/ZyQ7J3OBAQDDfVoqqiAopt3Hb7OKIooUWlNvxMXk2vcID8lCDjVIwTBumpcLi6WujWSaxCBU0E9AV/uufniiy+Qnp6OmTNn4ttvv0VcXBweeughPPjggw7fc+DAAUyZMsXmWHp6Oh577DE3t9Z1UkNnIbd+EW64eDM0PTr/P4FewyEtryQIONMjBCViEDRGIwSZDqKLENCoULi8x8ZMrnGD/FejQolDwb0QYDTINm4AptjRoFBCdMHNoaTJzenTp/Hmm2/iiSeewDPPPIOsrCw8+uij0Gg0mDt3rt33lJWVITratrcjOjoatbW1uHz5Mnr06GHzml6vh16vtzyvra11/RfpgoPTRgNfbscQY2Kn35tekYA9QcEYMGqwG1pG3WUQFLisZH1Md/FE3AC8N3aQfxIFAZeVkk+D9RuS/iaNRiPGjBmDF198EQAwatQo/PTTT3jrrbccBqnOWr16NVasWOGSz3Kl1NBZODgNONiF92bsNnBCMsmWJ+IG4L2xg4g6Jmly06dPHwwbNszm2NChQ/HJJ584fE9MTAzKy8ttjpWXlyM0NNTu3deSJUvwxBNPWJ7X1tYiISGhmy13jdTQWV16X279IoiNA1krh2TJE3ED8O7YQUTtkzS5uf7665GXl2dz7MSJE0hMdDxUM27cOGzbts3m2I4dOzBu3Di752u1Wmi1XVuR5K0OThuNjN0nkanRIL9K3+H5HL4if+KJuAH4Z+wgkgtJk5vHH38c48ePx4svvog777wTBw8exPr167F+/XrLOUuWLMHZs2fx/vvvAwB++9vf4vXXX8eiRYvwwAMP4JtvvsE///lP/N///Z9UX8PjzBOSF+b0hCYurt1zX+kF9vCQX2HcIKKOSJrcXHPNNdi6dSuWLFmC559/HsnJyXjttdcwZ84cyznnzp1DUVGR5XlycjL+7//+D48//jjWrl2L+Ph4vP3227JbzqkNVONY7U7EGmPbPW/h2WFYCwBMbshPMG4QUUcEURRlte6strYWYWFheHHrYcmK+LlK0NalHZ6jv9SEQxMyENyvD3tvyGs01NXhjyMHo6amBqGhoVI3xynm2PF8dh4CQkKkbg6R7HQmbnDdmQ/TTV/V4TlBW5di8smfcSC8Fwv/ERGRLDC58XN701Jw7ZdZ0OtGorCw0OF57NUhIiJ/weTGz6WGzoI28BgmHc9G4Nneds/ZFheHQjDBISIi/8DkRgbMvTdxzfaXyi68CE46JiIiv8Ea8TJg6r1Ro0lbbfdxrHYnxMbGdoetiIiIfAV7bmRib1qKw9cm7DrGScdEROQ3mNzIRHtbPeimz4I+cxEaqoZy0jEREfk8JjcEwFQUcPLJnxHjYKRya3hPFIKVjomIyPsxuSEApmGrjN0q9M4rt/v6b1GOtSPiOOmYiIi8HpMbAmAatiowLkWTOtDu6+crL0FsnM19qoiIyOsxuSELTjomIiJ/wOSGLLoz6Zi9OURE5C2Y3JDTHE065mRjIiLyJiziR07bm5aCuHoVElo90k7koblKL3XziIiIALDnhjrBPOm49OdDNseTA8ZCH1cvUauIiIhsMbmhTrE36XjCrh+QngvsCQrGgFGDJWgVERFRCyY31Cn2Jh3vTQMydhug19VzsjEREUmOyQ11W2roLOTWL0J6rhLhjQNsXtsa3pNLx4mIyKOY3JBLaAPViNMBEfW2/0npNfUs/EdERB7F5IZcQjd9FbIzF2FIcbHN8YVnh+GtoGD23hARkccwuSGX0QaqUXCp1OZY7qUzaKiKZO8NERF5DJMbchnd9FVtjgVtXcptG4iIyKNYxI/cylz4T6+rR/7RPOQfzbO7ooqIiMhV2HNDbmUu/PfAYSUikocAAF7R1QMcoiIiIjdhzw253d60FGRX70Np8Q6UFu+A2NjI3hsiInIbJjfkdqmhs6ANVKNJW40mbTUmn/yZe1EREZHbcFiKPMJ624Zrv8yCXjeSK6iIiMgtmNyQR1hv26ANPIZJx7NxIOh6FKLQ5jwmO0RE1F1Mbsjj9qalIGO3Cmkn8tq8tqtKz803iYioW5jckMeZ96IaciHR5nhvxTBs09VL1CoiIvIXnFBMkjg4bTQKLpVaJhk3aatxrHYnV1IREVG3seeGJJEaOgt709oez9h9EpkaDevgEBFRlzG5IclYTzI2y61fBLFxoE3vDScZExFRZzC5Ia+iDVRj8smfEXNlxHRreE/uSUVERJ3COTfkVXTTV6GuLAvReeWIzivHpMOHOAeHiIg6hckNeR1toBrn1PtxTr0fcTpAV1IpdZOIiMiHcFiKvI5tNeN9EBv7sZoxERE5jckNeZ3W1Ywnn/wZB8J7WaoZM8khIqL2cFiKvJp5Ds6kw4cw7XQ5pp0uR/7RtpWNiYiIzNhzQ15PG6hGnA6IqDf956rXsIoxERE5xuSGvN7etBTov9yH0J9/AACI18zmHBwiInKIw1Lk9VJDZ+HgtNHYeWMK9ApgXs5pNFfppW4WERF5KfbckE8wTzLWTZ+F7MxFaKjqxyrGRERkF5Mb8jmsYkxERO3hsBT5nL1pKYirVyHhykOvq2cVYyIismByQz4nNXQWCoyHcOjn91BavAMLc86yijEREVkwuSGftDfNNLm44FIp9lVsh9jYyN4bIiICwOSGfFRq6Czopq+CbvoqyxwcrqAiIiKAyQ35gb1pKagry4JeV4/8o3nIP5rHXhwiIhnjainyeamhs6ANPIYHDuciInkIAOAVXT3A5eFERLLEnhvyC3vTUpBdvQ+lxTtQWryDc3CIiGSMyQ35BVPvjRpN2mo0aas5B4eISMY4LEV+Y29aiuXna7/MQkPVUO5BRUQkQ0xuyG+Yt2gAAG3gMUw++TMOhPdCIQoBcIsGIiK54LAU+SVzFeO0E3mY+MMx6EoqOQeHiEgmmNyQXzJXMQ6/8D+EX/gf0nNzOQeHiEgmmNyQ39qbloKCS6Vo0lajsfIHNFRdZO8NEZEMMLkhv5UaOgt701Lwj9QB0CvAFVRERDLBCcXk18yTjPemARm72+4gzknGRET+h8kNyYJpDs5STDrejJjG4QCAreE9gSRJm0VERG7AYSmSDfMKqui8ckTnlXMODhGRn5I0uVm+fDkEQbB5DBkyxOH5mzZtanN+QECAB1tMvsy8guqcej/OqfdzDo6PYtwgoo5IPiw1fPhw7Ny50/JcpWq/SaGhocjLy7M8FwTBbW0j/2Ndxdg8B4d8D+MGEbVH8uRGpVIhJibG6fMFQejU+UTWrKsYm+fgHAgKxoBRgyVsFXUW4wYRtUfyOTcnT55EbGws+vXrhzlz5qCoqKjd8+vr65GYmIiEhATcdtttOH78uIdaSv7GPAeHvTe+h3GDiNojaXIzduxYbNq0CV999RXefPNNFBQUYMKECairq7N7/uDBg7Fx40Z8/vnn2Lx5M4xGI8aPH4+SkhKH19Dr9aitrbV5EAGmXpzc+gMQGxs5sdiHeCJuAIwdRL5MEEVRlLoRZtXV1UhMTMSf//xnzJs3r8Pzm5qaMHToUMyePRsvvPCC3XOWL1+OFStWtDn+4tbDCAgK7nabybcdqf0IGbs1yBw7HMNvGC11c2Sjoa4Ofxw5GDU1NQgNDe3WZ7kjbgCOY8fz2XkICAnpVpuJqPM6EzckH5ay1rNnTwwaNAj5+flOna9WqzFq1Kh2z1+yZAlqamosj+LiYlc1l/wAe298nzviBsDYQeTLJJ9QbK2+vh6nTp3Cvffe69T5BoMBOTk5+NWvfuXwHK1WC61W66omkh/SBqox+eTPOBDeC4UoBMDKxb7EHXEDYOwg+1xxE8T44n6SJjdPPfUUpk2bhsTERJSWlmLZsmVQKpWYPXs2ACAjIwNxcXFYvXo1AOD555/HddddhwEDBqC6uhqvvPIKzpw5g/nz50v5NcjH6aavgj5zESYd1iK83wBsDe+JQhQyAHkpxg2SUnOVHtOrqrv8flZG9wxJk5uSkhLMnj0blZWViIyMxA033IDvv/8ekZGRAICioiIoFC0jZ1VVVXjwwQdRVlaG8PBwjB49Gvv378ewYcOk+grkJ7SBasTpgIh6FR6tr8crunqAyY1XYtwgqRQWFkKvq0dCfdf/rzPtfB52ASw/4WZeNaHYE2praxEWFsYJxWTjSO1HuPbLwxjSOxEAsHnoRAT368PeGzdx5YRiTzHHDk4olq/8o3mYdPgQeuu7Pv+qt2IY1o6I4wKGLuhM3PCqOTdEUkkNnQVt4DEUXCoFAMscHHYfExFg6rVpqLqIC2f3oS5Q3eXPyb10BmJjBgoLOfTtTkxuiK7QTV9l+VmfuQgNVUMZgIgIgGmuzeSTP6MxUG0TKzrLVH7iJDI1Gg59uxGTGyI7rFdQ5VeZ9iTiGDmRPOQfzWtzTK+rR1y9Cu+npSC1G59tKj+xCGLjQJvrML64FpMbIjv2pqUgY7cKjxabtmZ4pRfYi0MkE3pdPZ6+aHussiAXucZDSA3teq+NmTZQjXk5pxGRrAFgii/kWkxuiOxIDZ2FAuNSlP58CLHBsUivSMCeoDGcg0Pk5/KP5iE9NxelrSYN51afwcFpo7vVa2Omm74K2ZmLMORKYUgxeCJvnlzMqyoUE3mTvWkp0CuAJm01Git/QEPVRVYxJvJzel094nSmv3vrhzZQjdTQWS67jjZQbfnseTmnoSupdNlnE3tuiBxKDZ2FvWmmnyfsOsYVVER+rrCwEGJjI7Kr9+HghLZLtV3Ra2O2Ny3F8vO1X+6D2NiPvTcuxOSGqB3mO7W9aUDGbhX0unqJW0RE7qIrqcS8nNPYMG20S3tp7LH+fG3gMW4B42JMboicYJ6DM+l4Mw4EBXNlA5Gfse61SQ192aPXtt4CRnmlQOS3YILTHZxzQ+SkvWkpiKtn7w2RPzLXsdF2o0Bfd2gD1Wis/AHhF/6HgRfBOTjdxOSGyEmm+hQHIDY2cmIxkR8x7xlVV5ZlMxfGk6wXMByr3ck4001Mbog64eC00bjn6EneVRH5keYqPSYdz3b5iqjOMC1gSME/UgdArzBtAdNcpZekLf6AyQ1RJ7TuvTE/iMh3masPS9VrY5YaOgupobOgm74KdWVZLD/RDUxuiDrJvDXDtNPlmHa6nHdXRD6ssLAQ6bm5yK0/IFmvjT3mOMP40jVMbog6aW9aCurKshCdV47ovHLeXRH5MF1JJXrXGHBwWtu6NlLiAobuYXJD1EmpobOgDVTjnHo/zqn3s7ookY8yL//2tl4bwFx+4hAmHc+2u5EntY91boi6gNVFiXyfefl3Y6AazVI3xg7zBr7svek89twQdYF54p+5F4dj40S+pbCwEA1VF1FXlgXd9O7v9O0OLD/RdUxuiLqJKxuIfI/URfucxfITXcPkhsgF2HtD5Fu8Zfl3R9h70zVMbohcgCsbiHxH/tE8TDqejQLjIa+bSGwPb546j8kNkQtwZQOR7/CVXhszc/kJva6evTdOYnJD5CLsvSHyft68/NsR88KF9NxcqZviM5jcELkIx8aJvJ+upBLzck57XdE+ci0mN0TtMBo6d642UI15Oac5Nk7khcy9NtnV+9zea+Ns7OhMjCHnsYgfkR0VxWq8uyIW5UVaRPfV4/5lpYhKaHLi3M2Yn/o4GqpY1I/I23iiaJ+zsaMzMYY6jz03RFbMd1HvrojF+RINAKCiWIN3V8Q6fI/1uedLNHjn2yVc2UDkZQoLC6HX1aOuLMvlE4mte1+cjR2t48a7K2LZi+NC7LkhQtu7qPIireU1URRQXqRF2Rk1YhJt76yMBticazQKKKtKwB/XLcDoXjkYMMpjX4GI2tFcpcek49loDFS7bEiqddyY+1ypU7HDXtwoL9LiqZsHtduLozfoTTdNSS5pvl9jzw0R2t5FKVVGAKLVGSLee8H+nVV0Xz0UCtFyHgCcrQnHwZevQv7RPMuDiKTjjuXfrePGey/EIrqvHh3FDoXSXtwQLZ9jr7eHqzE7hz03JHv27qJgFFqdZXtndeuC8/hiXSTKi7SI6NOI8OgmVJ7TADC9zygqUVoZiYfP1EOpAF7pBc7BIZJIYWEh0nNzryz/ftkln+mo9yWsdxPMccCkbez4/K1IVBRrTTdRRsHmfPPnGA2mJMjMtBpzEcTGgYwlTmDPDcme+S6q9d2W9d1U6zurjctiUV5kumOrPGfamyYqoeVOTKEQERNWhPKzO1BavAPpubmcg0MkEV1JJXrXGFy6/Nt+7wtQc0EF+7EEqCjRYMPSOFQUm5Iio0FAVILe5nMUCtH03CqxMeNqTOcxuSECMPe5UrS+22p5wOZno1GAoVlh81rlOQ3u+2MpIuMbAQCR8Y245vl/o+BSKZq01Wis/IHVRYkk4M6iffcva/mbtxcrWj8XW/XSiKKAimIt5j5nGzvuX1Zq93q66auQXb2Pm/Q6gcNSRABiEpsQ3VePimINRFFAy52XORC1PFcoRNPQVStR8U1Y/PYZq+7kKdgbZ9rJd8KuY5h0PBsHgq7nZEAiD3Ln8u+oBNPf/Jp5ibhwVnMlLoiwjhtKlQjRKNiNGabP0CMmsXXscMy8z9SB8F6MJe1gzw3RFaYVCtZ3YbZ3X71iTKsXIuMb0TOyEdZDVhF9GqFQwu44eWroLE4GJJJQvwatW/eRemB5KXrHte7BMf18n1XvjlJlBISWISulyogHlpdaJht3lNgAponF/Rq0HZ8oc0xuiK4w34X9afuJVqulRChVRvxm1VlEJZiWiStVQEQfU7IT3bcRM35fgZfmJ+KpmwfhpfmJqChW23y2eWuG9NxcdicT+ZmohCb84Z0zduNGZGzLku6ekc2IuHKTFJWgxwMrSvHuiliHcYO6jskNkR2t59QYmhV4d0UsLpw1TSK+WKZG9fmWUd2PXo22TDAuL9Li5d+0DVQHp41G7xoDdCWVnvgKRORBRoPjuGFeLl5VbooJpiFwLd75Y2yHcYO6hskNUSsKJRDRx3bYqVdMo2l55pVxc1E0Tyo2VSGtvaiGzXJOgwIbl9vWquDGmkT+y7x6Smg17GQdN4xG0+IDc7JjNFgnQ/bjBnUNkxuSrc6XOrdeGm51VLQ/UbCiWNvmGubJgI0XuJSTyBe1FzfuX1YKhbIlRrRMMLZdLu5ocjFgP27YXt/xe6kFV0uR7LS3YV1FsRobl8deKchnJuBimcb+hwFou7LKdCy6b2ObCYIFY17GpieUKKvpi/DES5j3Tj2i+nFDGSJv19FGl+bYYe7RBcxLv61Zr760vyrTXtywvf6z2Bd+Aamx3N6lPey5Idmxt2Gd9WvmeTX2emnaFucC2q6sAgJDmu3Wqnh3RSwqauMAANXFPfD+b8O79iWIyKPaixvm1x3HDnuxBLC3KvOG26s6vH5JdTiyXhnB4e12MLkhWTGXTLceAzeXOm/9WuuEpe0xx93D+stKRCU02XQvWz5fNN2WiUYBFflq7gRM5OXaixv2Xm8bGzp63uKzN6LaxIQ21xeVOHuhN+qKuDjBESY3JCutS6Zblzo3GhxvZtdZhmYFVj9guzS8zbUFI3rG65yqbUFE0nEUN8xcHTtaLw23d/2YsCIIzVyc4AiTG5Id65LpgkJEeZEWT/xyIBbdMggXStUIDDWPo7cdbnKeaOmiPl+isayAsL52fM+LmPTIwW58EyLyFOu/3fDoJjQ3CXjq5kFuiR2Abdxoff3I+Eb87uZXMfnkz9xnygEmNyQ75mJ9UQn6NhP+DM0C6qvbmzzsLMGyispoNO0fs2ZeIirLWmpYNBovQWxq4p0XkRvpdfXQN3d/7Ne6yKdKLVpq1pi5MnYAtnHDXu2byzc+hrqyLFY9d4DJDcmS0XBlyWWbMXJ3LLO8siNwsfbKjsBXinbVxePHP6eyqB+RmxQWFiI9N9flm2ban1/jqthhu2y8oliLVxYkYsOzce1OaCZbTG5IllqPYXd1fNw5tpOQzT06olGBMxd7w9DAcXMid9CVVKJ3jQEHp4122We6P3a0TZYMzQpUntO0ndBs5P+FO8LfDMmW9Rh2i46Wf7uWStGEYQfLOW5O5GKFhYUQGxtd3msDdCZ2uJpt9ePzdTEeuKZvYhE/ki3zGLp52eVP3wfig1WxMDQ7v2yzu5pFJf768VSk/+IYCgsLkZSU5LZrEclJc5XeVA08UI1mF3+2vdjx/spYD1QPtt6qQcA7u/+A9BnH3HxN38TkhmTLaAAulKqx4dk4q4rE1l3NHihzLipQVtMXv8jZjB+CxgNJ7r8kkRzodfWoK8tC85yXXf7Z9mOHq1nHoLbxSBQFlNX0hdHI5MYeJjckO9Zl1JUqY6ueGndOLG5LEESExl1AwiUlvuOqByKv1n7scLX2C4YqFCKiQoqh4OQSu/hrIVkxGmzLmJv2gZFiIzpTD1FUQiN+t6IeufUHkJ6by4nFRF7IPPwkdewQFCKUKiMAU62beZPXePT6voQ9NyQL1ndc0mnpWo7o04T7l59FbLJpi4aD00YjY7fBtCyc826IvIJ13IhK0KOiWMr4AfSKbsKDK8+iV3QTFEpAs6UUJZK2yHsxuSFZsL7jst7wUhBEy9Js92sZP68+r8KfFiRf6dpWILrvIiSmPg6xcSAnFhN5Ceu4ceGsBkqVEaJRuLIk20Pz8ixMcct6nk/v4Ddww7A8D7bBd3BYivye/U3tTD9HJTRCoTR6uEXClS5tWMbsz5dosPHbJSynTuQl7G2WaWhWWJaAK1WeWPptTUDlOQ0qz7VUK75Q3we7147xcDt8A5Mb8nuONr370/YTeHrdGRgNUv4ZtATOc1UJqCk9jIaqiygsLLQ8iMjzHMWNxW+fwcv/PmG5QXG/1sUCbSca15SG4MQh9t60xuSGZKH1pnP3LyuFQtkSwASFJ+/CxDY/mwNnj2Al5uWcxsQfjmHiD8e4NQORhOzFDQBQaezFDU/FENtr9g2/gKYGrrRsjXNuSBasi24plLav/WJGFT5+LdqDrWk7Tm8OnHvDUqD/ch+GqBIBAGJkJOfgEEmkvbhx64LzeOe5OKtUw13zbxyXp4jo04R7x/4RxY1TGCdaYc8NyUrrAGU0AJ++HiVNYwAAAqIS9Lh/WSmiEpqQGjoL2kA1mrTVaNJWY17Oac7BIZJY67gBAF+si4TR09P1AFgnOSq1CE2AmnHCDiY3JEsVxWq8ND8RT908yKP1KhRKo1VXtunfC2dtd/jdm5aCf6QOwD9SByC7ep9lDg4RSa+iWI2VGUlXykp4frWU6V/Tz+dLNHhj/8uME3YwuSFZ2rjc3tJw9xIURty/vBSRceYN91rt8HulUFhq6CzLQxuo5goqIi+ycXksLpapOz7RhXpGNiKiT9OVZy2rPc2xQx2gxU2nT3u0Td6OyQ3JirnHpqK49dJw9xONAt55Lh6CAET0aWyzCsNe1/fetBTE1aug59YMRJKyjh2e67ExxYjq82pUntMgKkFvP3YoJBkf82pMbkhW7Bfz8xRTQKwo1sDQDMvwlKAQceuC83bfkRo6CwXGQ5h0PBv5R7nck0gqtrHDU2xvwCpKNKiqUFluzMKjmywruMiWpMnN8uXLIQiCzWPIkCHtvufjjz/GkCFDEBAQgBEjRmDbtm0eai35OvvF/DxPFAVUn9dYCviJRgFfrIt0eD57b2wxbpCntY0dEhEFS10uQRChUouISmjq4E3yJHnPzfDhw3Hu3DnLY9++fQ7P3b9/P2bPno158+bh6NGjuP3223H77bfjp59+8mCLyVfZK8olDdtiXK3n3LSWGjoLufUHIDY2csLgFYwb5EmtY4dn62IB9nqZRbH9uCF3kic3KpUKMTExlkfv3r0dnrt27VrcdNNNePrppzF06FC88MILSE1Nxeuvv+7BFpMva12UK6JPIzxffMv27k8QHM+5MTs4bTTuOXqSRf2uYNwgT7OOHVHxjegV0wgInoodbXuMnIkbciZ5cnPy5EnExsaiX79+mDNnDoqKihyee+DAAUyZMsXmWHp6Og4cOODwPXq9HrW1tTYPki9zUa4/bT9hNVbtia5mEQ+uOouoBL1Vj5F4pU2NHY6bs/fGlrvjBsDYQbbMsWPRhgIAwMUyDZRK9yc3CqUREX0aIQidjxtyJmlyM3bsWGzatAlfffUV3nzzTRQUFGDChAmoq6uze35ZWRmio20ryUZHR6OsrMzhNVavXo2wsDDLIyEhwaXfgXyLuQtXoTTvrmte0tlSO8I9BHy8Ngr3/bHl7i+6byMWbSjA4rfPODVuzmXhJp6IGwBjB7WwHvp574VYVFyZWGyqkeXe2GE0KCCK6HLckCunt18oLS1FbGxsxyd2ws0332z5OSUlBWPHjkViYiL++c9/Yt68eS65xpIlS/DEE09YntfW1jJIyVBFsRrvrohFeZEW0X31mPtcKSrPWa98cH/vTXWFBi8/mIzovnos2lCAqPimTnUp66avgj5zERqqhvpMqfWa8jKERce49DM9ETcAxg6yHzdMxfusuT92XCwzxSpzG2ISmdR0xOmem+HDh+PDDz90Z1vQs2dPDBo0CPn5+XZfj4mJQXl5uc2x8vJyxMQ4Dp5arRahoaE2D5If62Wc50s02PS8axP1zigv0uDV35mqI5vqZjhfEMzXem/+nD4ZRz//1K3XcEfcABg7qG3ceO+FWET3le5vr7zIdIPU2bghR04nN6tWrcKCBQswc+ZMXLx40S2Nqa+vx6lTp9CnTx+7r48bNw67du2yObZjxw6MGzfOLe0h/9B6GafRKKCiWGuaECgJ4Up3tqldryxwPlD52rLw9CcX45NnF+ODh3+DS9VVbrkG4wa5g724UV6kxb1LpZznYmpLZ+OGHDmd3Dz00EM4duwYKisrMWzYMHz55ZfdvvhTTz2Fb7/9FoWFhdi/fz+mT58OpVKJ2bNnAwAyMjKwZMkSy/kLFy7EV199hVdffRW5ublYvnw5Dh06hN///vfdbgv5L3tLwKP76jH/hbMSt8zE0KzAxuXO9SSZi/ql5+b6RFG/8ffehye27cKl6ir86ZeT8L9d/+n2ZzJukCc4ihsxfb1jSKgzcUOOnJ5zAwDJycn45ptv8Prrr2PGjBkYOnQoVCrbjzhy5IjTn1dSUoLZs2ejsrISkZGRuOGGG/D9998jMtJU0KyoqAgKRUv+NX78eHz44Yd49tln8cwzz2DgwIH47LPPcNVVV3Xma5AM3b+s1DJ2HhlvvcpAhFTF/KxVFJvqVTgzB2dvWgoydht8pvemV0JfLMj8GP99fyPe/918RPUfCEEw/c4nTJgApVLJuEFeyV7cUChNez1Vn1dD6thhjhvUVqeSGwA4c+YMPv30U4SHh+O2225rk9x0xpYtW9p9fc+ePW2OzZw5EzNnzuzyNUmezMs4rROIl+YnQrrg1JJUCYKIqIRGpycXm5aFL4LYONBnJhZXnS3BT19vR4+wMAy/MR1GgwHncv+HqVOnQqttPUGzfYwb5Cn24gYAKFWA1IlNZ+OG3HQqM9mwYQOefPJJTJkyBcePH7fcKRH5CnMgMI+nS6clMHalXoU2UI15OaeRGd4LSHJx01zshy2Z+PeLKzBw/AQ8+dUeBEdEoKGuDrvf/Bv+8Ic/cKIueT3rBMJoQKuVltKw7YGm1pxObm666SYcPHgQr7/+OjIyMtzZJiK3M4+nlxdpIM0dmKnnJrqvHvcvK+10vQrd9FXIzlyEhqp+Xt178/Z9d6M4+0fcvnwVRs9gzwn5PuljB6BUGfHA8pa4ob/UhP+O7odgSVrjnZyeUGwwGHDs2DEmNuQ37l9Wiui+0q2YAkzLS99d0bVJgb6wLFw0GPD4tp1MbMiv3L+sFEqVVHvTmVZumePGkdqPMCR4HASNxmtvcqTgdHKzY8cOxMfHu7MtRB4VldCEp9edkbQNHW2a2R5fWBb+4AcfoWcfrugg/9I7tslSzkEKolXcmLDrGM4GN0MbxH4ba5LvLUUkNdPmmZ7UUq7dvLy0K5MCzcvCJx3P9oll4UT+xLOb7prZxo0fdR8hWTEGe4aPxIBRgz3cFu/W9aVORD7Muqy6QmmEZ5eEC4jo04jKc5puTwo0LQv37t4bIn/RNm5Iwxw3kncdw9nQq9lrYweTG5Il67LqRoPnOzAXbyiEQulcXZv2+OKycCJfJXXcAASs+fwEND1Mz/TfNeG/o4ciOFzKlZ/eicNSJDuty6pLoXVi051CXAenjcY9R09CV1LZ/YYRkV3eEDeUKqMlsQEAo1HBicQOMLkh2WldVl0QWubAuE/L5yuURlwoNe0JU1Gsxkvzu7aJppmp9+YAxMZGFBYWuqrBRGTFXtxQqtw9NCXa/Dzj9xUAWuLGYx98is/+MBEVp1nJrzUmNyRL9y8rRWS8aSKx6V97d2OuTHhaPt9oaFnG2XrXYX9eFk7k66zjRlRCI558092rLW3j0jcf9QJgGzdqy4Lw/m/D3dwO38M5NyRLrcuqvzQ/EedLNFe6nN09udi0jLO50bZKsvWy8M7OxdFNXwV95iI0VA3l3BsiN7G3HUN0Xz0qSjQQbYar3BFDBFSe07SJG6JRgYp8RZfihj9jzw3JmjkYWN+RtQQl9yU4UQl6qDT2dx3uaoBi7w2RZ1j/jd6/rBRR8a3LSbgvdrQZHlMYETWgiYlNK0xuiNByRxaVoIe759+YS6cDbYfHurss3NuL+hF50pDgcThS+5Fbr2GOHS0lJdxFREQf00aZ1nEjNEaHjLeq3Hhd38RhKaIrKorV0F8W4M67rog+jXhw5Vn0jjXtCeNo1+GuMBX1W4r0XCX2BAWzqBfJmjYoGGeDmzFh1zHops9y67WO/xDo9qXhEX2a8ODKszAarBKqD/6Aozc+gKh+o916bV/E5IboindXxKLmQudXKzlHRFRCIx5YXmopAma9aaarupRNRf0M7L0h2RswajD26Oox5wcV3q/9CKmh7ktwNq2IhXvm2YiI7tuIp9edwYVSdZvYEauQrpCgt+OwFBFaali4r9dGQEWxFhuXu2Z1lCNcFk7Uwrr3xl2aG3Flnyl3xA7TIoOyIrXLVlbKBZMboitMNStcMWYuWv0r2hyrKG4pAtadTTPbow1UY17OaU4sJtlThWuxe+BQ6C81ue0aF86p0boeTfe0rrsl4k8Lkm0KCFpih5H/F+4IfzMkK60TCesieq66++oVYw6k1vN3zP+6ZtPM9uimr0J29T40VF1k7w3JWlJSEgLCe2Fkzxu6PbHYUex4+cFk2MaN7sUQU/yw93m2sSMs/jyGhY7t1rX8GefckCxYb3hnPdfFuqvXOR2Pq1eVm+ft2Du35XlkfCPmPtf11VHtMS8LPxDeC0hyyyWIZME1scPcE9Nx4nOxzFH8sI0dvx23CmeDI7lppgPsuSFZsDde3f5eMY66ljsOTqJor06ObW/Nog0FAICXH0zu8rYL7eGycCLXcE3s6MwqzNbntY0dDcZarPjoNTz2waMIDRvm5OfKC5Mb8nutA5F5vBpoXQzLeq8YR4HI3j5ULfNqlCrjlb2qWjN9nrmWzXsvuH9icYHxECYdz0b+0TyXfjaRXDgbO2xjgqOEp+1cGvvz82w/JyrBtg7Wey/Eou6saRuG2rJgbr3gAJMb8nutK3paz3Wx2SsmvhEPrCi9UsjPEcd3YNF9ze83Vyu1vd6ftp/A4rfPoHdsk/3JgS6eWMzeG6LucTZ2RPdtxLwXSq4U8rP/OW1jhwCF0vS5EX2aENHHPFfP9lp/eOdM29ghmibqiUYBFflql8cOf8DkhmTBUSXgqISmK2PoepQXabFxmfU4urOrHkwB6+l1ZzD0mktY/PYZLNpQgOi+ttczTxxuL2C6EpeFE3Wfs7Fj04pYGA32b3xMx9vGE6NBgZf/fQJL3yvE0vcK7cYNADaxIyz+PBSCKYkSlCK3XnCAE4pJFtqrBPzuilhcOGtKaEwrpsycHSM3Fdqy/tyYxPYrD9+/rKWYX3e3XWjPwWmjkbH7JDI1GoCbaZIMqcK1eGdEP1z75ftontP5Qn5dix3WzBOD28YT8x5zZh3FDQD4xdMf49iKO3HmYm9EJjdz6wUHmNyQrLQOGC3F+5zVdgWUUiXi/mWldgOSowDlym0X2mPqvVkEsXEgdwsnWUpKSsLxkkoMCR7XrUrFXY8dAhRK45XeG9tFBvf9sXNxAwDC4irx/r2b8MH1YzBoDLdYcYTDUiRrbXfYtZ5U7FxhLkOzAq8sMNXK6ezKJ090J3O3cJI7d1Qqdi52iFcSG3s1tAS8/GAynrp5EFbNTer0ikkORbWPyQ3JXutJxU+vO4PovnoIdv46FAoAgnUlY9O/hmZT4KoodrzySapJf7rpq1BXlsWifiRbA0YNxp7hI5GsGOPSXcLtxY6IPo0257TMw7G3Wsqk8pwaG5c7XjHJCcOdx2Epkr3WQ0T2u5tbVjaZfm5dlMv0ryhe2QvmjBoxiabVD46KgHmSNlCNm06fxr5+fTx6XSJvoQ0Khlbl2u4Oe7Gj8px1Yb/2KhfbvlZRrMVL8xNt4oO92IEwl34Fv8WeG6IrHK1msr7jaqlhY7/Qlvnn915ouQvzlg3vhjSFcGiKZC1EE+KWTTQ7FzvsMb3WOj7Yix3XfnkY74zoB1V4Z+YKyg+TGyI7rLubrWtQRCU0IqJPo53iXbZ3Yea6NY6KgLGbmcg/dT52ANY9wx3FjoGB4yFoNFwc0AEOSxHZ0Tu27Wom88+2XcWm/aHMFYeNRgEKhYjI+Jal4dF99Q5fIyL/4s7YER1WgrLQJu4n5QT23BBZsd4l/KX5ibhQ2rKCwTym3ppC4bjQF9D+a0TkH9wdO0JiL2DlzV9hz/CRGDCKS8A7wp4bIiv2xrgXv33G5o5LqTJaVkBYn+Oobo2natp0pK6xTrqLE3mBXLX7/gbcHTtCvlgKRejV0AYNdNt38CfsuSG6or35MdaBy9CssOz83XoOTXvJi5SJzd60FOibDdxnimRLFa7FV/36QX/J9SsVPRE79JeasHvgUE4kdhKTG6IrHO351Dpw2bzHTftCuRr3mSK5S0pKgqDRYEjwOJfWugEcxw7ANbEjaOtSjOx5AwLCe3EisZOY3BBZsR7jDo9uQnOTgEW3DIJSZYRgpxKpL82hOThtNOblnIaupFLqphBJIig+AhfClLj2y8Mu/2zr2CEoRJQXafHKgkSbFVJdjR36S01c/t1JnHNDZMV6jPuVBYmW7mSjQYBCKcJgFBB1JSj1jvWt3XhTQ2chu3oRxMZ+3GeKZCkpKQlfD6nEnBpDt/aZssccO9bMS7Rspnm+RIPw6CZExjeivEjbpdhxpPYjZASPw2Eu/+4U9twQOWDdnSyKQptdf30psTHjPlMkd+7YZ8rMaAAqim3n3lSe00BsVb+vM7Fjwq5jOBvczOXfncTkhsiO9iqNSllluLv2pqWgriwLel09596QLKnCtdgzfCT0l5o8MvdGqTLa9OR0JnYcqf0IyYoxXP7dBUxuiBywHkM3VRD1/SrDqaGzoA1UY9LxbPbekCwlJSVBGxSMkJhr3NJ707pujaFZ0eUK5ey16TomN0QOmMfQ/7T9hN2VEL44LAWYem/i6lVcFk6ypQrXYvfAoW5ZFm4dNxa/faZbsYPLv7uOyQ1RBxRK/6oybF4Wnp6by6EpkiXzsvCRPW9w+dCUmTmB6WrsCNq6FCEx13D5dxdxtRSRE7ylyrCrHJw2Ghm7DaZl4QycJENB8RF4p7Efrv3yfTTPcd2qqda6Gjv0l5rw39FDEcxemy5hzw1RJ/hDYgOwqB9R66J+5oe7dCZ2HKn9CEOCx3H3725gckMkU1wWTnJnXhY++0g+Zh/Jd8sE46649svD2DxqIILiI6Ruis9ickMkU7rpq1BXloWGqovsvSFZGjBqMPYMH4k+TeOh1veE1mia6yIl9tq4BpMbIhlj7w3JnTYoGCd7AbEJNyIldIpbVlB1Bpd/uwaTGyIZ47JwkjtVuBa7Bg3GXxOCsXZEnFs21nQWi/a5DpMbIhlLDZ2FAuMhTDqejfyjeVI3h8jjkpKSMGDUYAwYNRjaoGBcCFNKNveGvTauw+SGSObYe0NkMmDUYHw9ZAiSFWM81ntzpPYjBG1diqCtS1m0z4WY3BDJHJeFE7Vw58aa9kzYdQxaI5AcGIsbom5m0T4XYXJDRDg4bTTm5Zw2FfUjkjF3bs3QmnmOzZihcxGbcCPWjohjr42LMLkhIqSGzkJ29T723pDsJSUlISC8F0JirnH7snDzHJviKw9tUDB7bVyEyQ0RAeCycCIzT/XemOfYfNkvGl/2i2avjQtxbykiAmCaWHztl1nQ60aisLCQd5AkW0lJSTheUokhwePwfgcTi1NDnduXqvUE5Qm7jkHDjTHdhskNEQEwBWlt4DFMOp6NA0HXA0lSt4hIOkHxEdjcOBBTdvzD4Tl6BaCb3nFyE7R1KaYY2x7/ZiA3xnQXJjdEZLE3LQUZu7ksnMjcezNm6Fy7rzeePYt9FdtxpPajDntv9JeacE3UzdDExdkc360Be23chMkNEVmYloUvQnquEvviIxh4Sda0QcEobqy2/+LgaIQorsGEXT+223tzpPYjZASPw8leQGhws81rQfHRLmwtWWNyQ0Q2Dk4bjYzdBtOycCY3JGMDRg3Gl+2sHqyHEWP2ZrX7GRN2HcOF8LHYM2hwmwnDvHlwHyY3RGTD3HsDDJe6KUSSay8BcWbScYZiDDKHDMFw7hXlUUxuiIiIusB60nFkRKDdc84GD+JeURLwmjo3a9asgSAIeOyxxxyes2nTJgiCYPMICAjwXCOJyOswdpBUkpKSIGg0SAmdgj5N4+0+uFeUNLyi5yYrKwvr1q1DSkpKh+eGhoYiL69l92JBENzZNCLyYowdJDVtUDDKBzueGBwQ3pNzayQgeXJTX1+POXPmYMOGDVi5cmWH5wuCgJiYGA+0jIi8GWMHeYOOJh1L/n+yMiX5sNTDDz+MqVOnYsqUKU6dX19fj8TERCQkJOC2227D8ePH2z1fr9ejtrbW5kFEHfP2faYYO8hbJCUltfsgz5M0udmyZQuOHDmC1atXO3X+4MGDsXHjRnz++efYvHkzjEYjxo8fj5KSEofvWb16NcLCwiyPhIQEVzWfyG95+z5TjB1E1B7Jkpvi4mIsXLgQmZmZTk/sGzduHDIyMnD11Vdj4sSJ+PTTTxEZGYl169Y5fM+SJUtQU1NjeRQXF7vqKxD5rb1pKYir985KxYwdRNQRyYYDDx8+jIqKCqSmplqOGQwGfPfdd3j99deh1+uhVCrb/Qy1Wo1Ro0YhPz/f4TlarRZaLWeqE3VGaugsFBiXYtLxZhwICsYAL6rRwdhBRB2RLLlJS0tDTk6OzbH7778fQ4YMweLFizsMToApoOXk5OBXv/qVu5pJJFveus8UYwcRdUSy5CYkJARXXXWVzbGgoCBERERYjmdkZCAuLs4yrv7888/juuuuw4ABA1BdXY1XXnkFZ86cwfz58z3efiJ/Z65ULDYORGFhoddMjGTsIKKOePUqtaKiIigULdOCqqqq8OCDD6KsrAzh4eEYPXo09u/fj2HDhknYSiL/Zdpn6iQyNRqf2meKsYNI3gRRFEWpG+FJtbW1CAsLw4tbDyOAJbGJOqTKXIRDEzIQ3K+Py3pvGurq8MeRg1FTU4PQ0FCXfKa7mWPH89l5CAgJkbo5RLLTmbgheZ0bIvJu3r4snIioNSY3RNQu3fRVqCvLQkPVRa8u6kdEZMbkhog6xN4bIvIlTG6IqEPeXNSPiKg1JjdE1CFTUb9DSM/NRf7RvI7fQEQkISY3ROSUvWkp6F1jYO8NEXk9JjdE5BRTUb8DXr9bOBERkxsicpo2UI15Oac5sZiIvBqTGyJy2t60FKmbQETUISY3RERE5FeY3BAREZFfYXJDREREfoXJDREREfkVJjdE1CnZ1fug19VzOTgReS0mN0TktNTQWdAGqjHpeDaXgxOR12JyQ0Sdwn2miMjbMbkhok4xVypOz83l0BQReSUmN0TUaQenjUbvGgN0JZVSN4WIqA0mN0TUadxnioi8GZMbIuoSbaAak0/+zInFROR1mNwQUZfopq9CXVkWGqousveGiLwKkxsi6jL23hCRN2JyQ0RdxmXhROSNmNwQUZelhs5CgfEQl4UTkVdhckNERER+hckNERER+RUmN0RERORXmNwQERGRX2FyQ0RERH6FyQ0RdcvetBTuM0VEXoXJDRF1C/eZIiJvw+SGiLqNlYqJyJswuSGibuM+U0TkTZjcEJFLsPeGiLwFkxsicom9aSno16CVuhlERExuiIiIyL8wuSEiIiK/wuSGiIiI/AqTGyIiIvIrTG6IyGX0zQbodfVSN4OIZI7JDRG5BCsVE5G3YHJDRC5zcNpo3HP0JPeZIiJJMbkhIpdh7w0ReQMmN0TkUqxUTERSY3JDRC7FfaaISGpMbojI5dh7Q0RSYnJDRC63Ny0FcfUqLgsnIkkwuSEilzNPLE7PzUX+0Typm0NEMsPkhojc4uC00ehdw6J+ROR5TG6IyC3MvTdERJ7G5IaIiIj8CpMbIiIi8itMboiIiMivMLkhIiIiv8LkhojcivtMEZGnMbkhIrdhpWIikgKTGyJyG+tKxey9ISJPYXJDRG6TGjoLBcZDmHQ8m703ROQxTG6IyK24zxQReRqTGyJyK3OlYk4sJiJPYXJDRG6nDVTjptOnpW4GEcmE1yQ3a9asgSAIeOyxx9o97+OPP8aQIUMQEBCAESNGYNu2bZ5pIBF5JcYOImrNK5KbrKwsrFu3DikpKe2et3//fsyePRvz5s3D0aNHcfvtt+P222/HTz/95KGWEpE3YewgInskT27q6+sxZ84cbNiwAeHh4e2eu3btWtx00014+umnMXToULzwwgtITU3F66+/7qHWEpG3YOwgIkckT24efvhhTJ06FVOmTOnw3AMHDrQ5Lz09HQcOHHD4Hr1ej9raWpsHEfk+xg4ickQl5cW3bNmCI0eOICsry6nzy8rKEB0dbXMsOjoaZWVlDt+zevVqrFixolvtJKLui9PBVOsmqfufxdhBRO2RrOemuLgYCxcuRGZmJgICAtx2nSVLlqCmpsbyKC4udtu1iMg+3fRVyK7eh4aqi91eDs7YQUQdkazn5vDhw6ioqEBqaqrlmMFgwHfffYfXX38der0eSqXS5j0xMTEoLy+3OVZeXo6YmBiH19FqtdBqta5tPBF1mnmfqQPhvYCIrn8OYwcRdUSynpu0tDTk5OTgxx9/tDzGjBmDOXPm4Mcff2wTnABg3Lhx2LVrl82xHTt2YNy4cZ5qNhF1kasqFTN2EFFHJOu5CQkJwVVXXWVzLCgoCBEREZbjGRkZiIuLw+rVqwEACxcuxMSJE/Hqq69i6tSp2LJlCw4dOoT169d7vP1E1DmmfaaWYtLxZnwrCF3+HMYOIuqI5Kul2lNUVIRz585Zno8fPx4ffvgh1q9fj5EjR+Jf//oXPvvsszaBjoi80960FPRrcP9QD2MHkbxJulqqtT179rT7HABmzpyJmTNneqZBROQTGDuIyJpX99wQERERdRaTGyIiIvIrTG6IiIjIrzC5ISKP0jcboL+kk7oZROTHmNwQkcekhs5Cbv0BpJ04IXVTiMiPMbkhIo/SBqoRy44bInIjJjdE5FG66auQU+N4N24iou5ickNEHnf45qulbgIR+TEmN0TkcVeH3CF1E4jIjzG5ISIiIr/C5IaIiIj8CpMbIiIi8itMboiIiMivMLkhIiIiv8LkhoiIiPwKkxsiIiLyK0xuiIiIyK8wuSEiIiK/wuSGiIiI/AqTGyIiIvIrTG6IiIjIrzC5ISIiIr/C5IaIiIj8CpMbIiIi8itMboiIiMivMLkhIiIiv8LkhoiIiPwKkxsiIiLyK0xuiIiIyK8wuSEiIiK/wuSGiIiI/AqTGyIiIvIrTG6IiIjIrzC5ISIiIr/C5IaIiIj8CpMbIiIi8itMboiIiMivMLkhIiIiv8LkhoiIiPyKSuoGeJooigCAhkv1EreESL7Mf3/mv0dfYIkd9YwdRFIw/+05EzcE0ZeiiwuUlJQgISFB6mYQEYDi4mLEx8dL3QynMHYQeQdn4obskhuj0YjS0lKEhIRAEIRuf15tbS0SEhJQXFyM0NBQF7TQd/C787t39buLooi6ujrExsZCofCN0XFXxg7+9yPP7w7I+/t397t3Jm7IblhKoVC45U4xNDRUdv+hmvG787t3RVhYmAtb437uiB3870ee3x2Q9/fvznd3Nm74xi0TERERkZOY3BAREZFfYXLTTVqtFsuWLYNWq5W6KR7H787vTl0j59+hnL87IO/v78nvLrsJxUREROTf2HNDREREfoXJDREREfkVJjdERETkV5jcEBERkV9hctMFb775JlJSUiyFiMaNG4ft27dL3SxJrFmzBoIg4LHHHpO6KR6xfPlyCIJg8xgyZIjUzfKYs2fP4p577kFERAR69OiBESNG4NChQ1I3y2cwdrSQU+xg3PB83JBdhWJXiI+Px5o1azBw4ECIooj33nsPt912G44ePYrhw4dL3TyPycrKwrp165CSkiJ1Uzxq+PDh2Llzp+W5SiWPP6Oqqipcf/31mDx5MrZv347IyEicPHkS4eHhUjfNZzB2mMgxdjBueDZuyOO362LTpk2zeb5q1Sq8+eab+P7772UToOrr6zFnzhxs2LABK1eulLo5HqVSqRATEyN1MzzupZdeQkJCAt59913LseTkZAlb5HsYO+QbOxg3PBs3OCzVTQaDAVu2bIFOp8O4ceOkbo7HPPzww5g6dSqmTJkidVM87uTJk4iNjUW/fv0wZ84cFBUVSd0kj/jiiy8wZswYzJw5E1FRURg1ahQ2bNggdbN8FmOHvGIH44Zn4wZ7brooJycH48aNQ0NDA4KDg7F161YMGzZM6mZ5xJYtW3DkyBFkZWVJ3RSPGzt2LDZt2oTBgwfj3LlzWLFiBSZMmICffvoJISEhUjfPrU6fPo0333wTTzzxBJ555hlkZWXh0UcfhUajwdy5c6Vuns9g7JBf7GDckCBuiNQler1ePHnypHjo0CHxD3/4g9i7d2/x+PHjUjfL7YqKisSoqCgxOzvbcmzixIniwoULpWuUhKqqqsTQ0FDx7bfflropbqdWq8Vx48bZHHvkkUfE6667TqIW+SbGDsYOxg33xw0OS3WRRqPBgAEDMHr0aKxevRojR47E2rVrpW6W2x0+fBgVFRVITU2FSqWCSqXCt99+i7/+9a9QqVQwGAxSN9GjevbsiUGDBiE/P1/qprhdnz592vQwDB06VDbd667C2MHYwbjh/rjBYSkXMRqN0Ov1UjfD7dLS0pCTk2Nz7P7778eQIUOwePFiKJVKiVomjfr6epw6dQr33nuv1E1xu+uvvx55eXk2x06cOIHExESJWuQfGDvkFzsYN9wfN5jcdMGSJUtw8803o2/fvqirq8OHH36IPXv24Ouvv5a6aW4XEhKCq666yuZYUFAQIiIi2hz3R0899RSmTZuGxMRElJaWYtmyZVAqlZg9e7bUTXO7xx9/HOPHj8eLL76IO++8EwcPHsT69euxfv16qZvmMxg75Bk7GDc8HzeY3HRBRUUFMjIycO7cOYSFhSElJQVff/01brzxRqmbRm5WUlKC2bNno7KyEpGRkbjhhhvw/fffIzIyUuqmud0111yDrVu3YsmSJXj++eeRnJyM1157DXPmzJG6aT6DsUOeGDc8HzcEURRFt16BiIiIyIM4oZiIiIj8CpMbIiIi8itMboiIiMivMLkhIiIiv8LkhoiIiPwKkxsiIiLyK0xuiIiIyK8wuSEiIiK/wuSGfILBYMD48eMxY8YMm+M1NTVISEjA0qVLJWoZEXkrxg35YoVi8hknTpzA1VdfjQ0bNlhKd2dkZCA7OxtZWVnQaDQSt5CIvA3jhjwxuSGf8te//hXLly/H8ePHcfDgQcycORNZWVkYOXKk1E0jIi/FuCE/TG7Ip4iiiP/3//4flEolcnJy8Mgjj+DZZ5+VullE5MUYN+SHyQ35nNzcXAwdOhQjRozAkSNHoFJxc3siah/jhrxwQjH5nI0bNyIwMBAFBQUoKSmRujlE5AMYN+SFPTfkU/bv34+JEyfiP//5D1auXAkA2LlzJwRBkLhlROStGDfkhz035DMuXbqE++67D7/73e8wefJkvPPOOzh48CDeeustqZtGRF6KcUOe2HNDPmPhwoXYtm0bsrOzERgYCABYt24dnnrqKeTk5CApKUnaBhKR12HckCcmN+QTvv32W6SlpWHPnj244YYbbF5LT09Hc3Mzu5mJyAbjhnwxuSEiIiK/wjk3RERE5FeY3BAREZFfYXJDREREfoXJDREREfkVJjdERETkV5jcEBERkV9hckNERER+hckNERER+RUmN0RERORXmNwQERGRX2FyQ0RERH6FyQ0RERH5lf8PRU8lKp2mLW8AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import lab02_lib as lib\n", + "\n", + "# Параметры порогов\n", + "IRE1 = 3.88\n", + "IRE2 = 0.46\n", + "\n", + "# Кол-во точек для теста\n", + "n_test_points = 4\n", + "\n", + "# Рассчитываем диапазон обучающей выборки\n", + "data_min = np.min(data, axis=0)\n", + "data_max = np.max(data, axis=0)\n", + "range_span = data_max - data_min\n", + "\n", + "# Генерируем кандидатов, выходящих за пределы обучающей выборки\n", + "expand_factor = 0.5 # на сколько расширяем диапазон\n", + "candidates = np.random.uniform(\n", + " data_min - expand_factor * range_span,\n", + " data_max + expand_factor * range_span,\n", + " size=(50000, data.shape[1])\n", + ")\n", + "\n", + "# Проверяем ошибки реконструкции для AE1 и AE2\n", + "_, ire1 = lib.predict_ae(ae1_trained, candidates, IRE1)\n", + "_, ire2 = lib.predict_ae(ae2_trained, candidates, IRE2)\n", + "\n", + "# Преобразуем ire в одномерные массивы, если нужно\n", + "ire1 = ire1.ravel()\n", + "ire2 = ire2.ravel()\n", + "\n", + "# Выбираем точки, удовлетворяющие условию\n", + "mask = (ire1 < IRE1) & (ire2 > IRE2)\n", + "selected = candidates[mask]\n", + "\n", + "# Проверяем, достаточно ли точек\n", + "if len(selected) < n_test_points:\n", + " raise ValueError(\n", + " f\"Не удалось найти {n_test_points} подходящих точек. \"\n", + " f\"Попробуйте увеличить expand_factor или количество кандидатов.\"\n", + " )\n", + "\n", + "# Берем первые n_test_points точек\n", + "data_test_points = selected[:n_test_points]\n", + "\n", + "# Сохраняем в файл\n", + "np.savetxt('data_test.txt', data_test_points, fmt='%.6f')\n", + "\n", + "print(\"data_test.txt создан с подходящими точками:\")\n", + "print(data_test_points)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fw6koLE08k7y", + "outputId": "e6a118ca-2315-40a6-fd7e-be639d542aa4" + }, + "execution_count": 50, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 985us/step\n", + "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step\n", + "data_test.txt создан с подходящими точками:\n", + "[[4.39683789 4.75832994]\n", + " [5.4045162 5.01764481]\n", + " [5.48510304 4.71723603]\n", + " [5.45386257 4.5063577 ]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import lab02_lib as lib\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Параметры порогов\n", + "IRE1 = 3.88\n", + "IRE2 = 0.46\n", + "\n", + "# Загружаем тестовые данные\n", + "data_test = np.loadtxt('data_test.txt', dtype=float)\n", + "\n", + "# Получаем предсказания и ошибки реконструкции для AE1 и AE2\n", + "predicted_labels1, ire1 = lib.predict_ae(ae1_trained, data_test, IRE1)\n", + "predicted_labels2, ire2 = lib.predict_ae(ae2_trained, data_test, IRE2)\n", + "\n", + "# Преобразуем ire в одномерные массивы для удобного вывода\n", + "ire1 = ire1.ravel()\n", + "ire2 = ire2.ravel()\n", + "\n", + "# Выводим ошибки реконструкции в консоль\n", + "print(\"AE1 - ошибки реконструкции для тестовых точек:\")\n", + "for i, val in enumerate(ire1):\n", + " print(f\"Точка {i+1}: {val:.3f} (порог {IRE1})\")\n", + "\n", + "print(\"\\nAE2 - ошибки реконструкции для тестовых точек:\")\n", + "for i, val in enumerate(ire2):\n", + " print(f\"Точка {i+1}: {val:.3f} (порог {IRE2})\")\n", + "\n", + "# Построение графика ошибок реконструкции\n", + "x = np.arange(1, len(data_test) + 1)\n", + "\n", + "plt.figure(figsize=(10, 5))\n", + "plt.plot(x, ire1, 'o-', label=f'AE1 (порог {IRE1})')\n", + "plt.plot(x, ire2, 's-', label=f'AE2 (порог {IRE2})')\n", + "plt.axhline(y=IRE1, color='blue', linestyle='--', alpha=0.5)\n", + "plt.axhline(y=IRE2, color='orange', linestyle='--', alpha=0.5)\n", + "plt.xticks(x)\n", + "plt.xlabel('Номер тестовой точки')\n", + "plt.ylabel('Ошибка реконструкции')\n", + "plt.title('Ошибки реконструкции тестовых точек для AE1 и AE2')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 712 + }, + "id": "dht4jbF18nlQ", + "outputId": "b338ff20-e3a1-4804-eaf8-10bc11cca87c" + }, + "execution_count": 53, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "AE1 - ошибки реконструкции для тестовых точек:\n", + "Точка 1: 3.050 (порог 3.88)\n", + "Точка 2: 3.860 (порог 3.88)\n", + "Точка 3: 3.710 (порог 3.88)\n", + "Точка 4: 3.540 (порог 3.88)\n", + "\n", + "AE2 - ошибки реконструкции для тестовых точек:\n", + "Точка 1: 0.550 (порог 0.46)\n", + "Точка 2: 0.490 (порог 0.46)\n", + "Точка 3: 0.600 (порог 0.46)\n", + "Точка 4: 0.670 (порог 0.46)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAj7NJREFUeJzs3Xd4U9X/B/B30qbpXpROClRGoUBpAYGCDIUyBYoDRZQhgoMp/vArLoYKKiKgKIJUKjJEwRZQVhmVjVCobARsAUsLlNK9Mu7vj5C0aZImKWmTwvv1PHnIPffcez8Z55JPz7nnigRBEEBEREREREQGia0dABERERERka1j4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIgeQvn5+UhLS0NhYaG1QyEiIiKqE5g4ET0EBEHA8uXL0blzZzg7O8Pd3R0hISFYvXq1tUMjIiIiqhOYOBFZ0NmzZ/Hiiy8iKCgIUqkUgYGBGDFiBM6ePWvVuF544QW89tpraNmyJX766SckJiZi165deOqpp6waFxHRw+jtt9+GSCTCc889p3d9WloaRCKRwcenn36qqfvXX3/hjTfeQPv27SGRSCASiWrrZWhRKBQIDAyESCTCtm3b9NaZNWtWla8rMzMTAHD9+nXMnj0bHTt2hJeXF3x8fNCzZ0/s2rWrNl8SkQ57awdA9KD47bffMHz4cHh7e2Ps2LEICQlBWloaYmNjsWHDBvz8888YOnRorce1atUqrF+/HqtXr8YLL7xQ68cnIqJygiBg3bp1aNy4MbZs2YL8/Hy4ubnprTt8+HAMGDBApzwyMlLzfOvWrVixYgXCw8PxyCOP4J9//qmx2KuyZ88eZGRkoHHjxlizZg369+9vsO7SpUvh6uqqU+7p6QkA2LRpEz777DPExMRg1KhRkMvlWLVqFaKjo/HDDz9gzJgxNfUyiKokEgRBsHYQRHXdlStXEB4ejoYNG2Lfvn2oX7++Zl1WVha6deuG69ev49SpU3jkkUdqNbY2bdogPDwca9asqdXjEhGRrr179+KJJ57Anj170LdvX3z//fcYNWqUVp20tDSEhIRg/vz5+L//+78q93fz5k24u7vDyckJEydOxDfffANr/LQbNWoUzpw5g1GjRuHdd9/FzZs34eLiolVn1qxZmD17Nm7fvg0fHx+D+zp79iz8/Py06pSWliIiIgIFBQW4fv16jb0OoqpwqB6RBcyfPx9FRUVYvny5VtIEAD4+Pli2bBkKCwvx+eefa8rVQxaysrI0ZcePH4dIJEJcXJzWPho0aIBnnnlGsxwXFweRSIS0tDRNmVKpRHh4uNb2hYWFOHPmDIKDgzFw4EC4u7vDxcUFPXv2xP79+7WOoW+fZ8+ehZeXF5588knI5XKzjm2Ievt9+/bh1VdfRb169eDu7o6RI0fi7t27OvW3bduGbt26wcXFBW5ubhg4cKDO0MfRo0ejcePGWmWrV6+GWCzWGtICqP4qqt6fp6cnhgwZgvPnz2vV0ffZAIY/nwsXLmDYsGGoX78+nJycEBoaivfee09rX1U9kpKSAAA9e/ZE69atkZycjC5dusDJyQkhISH47rvvNMcqKCiAi4sLpkyZovNe/ffff7Czs8O8efO03mtTP9Pjx49r7S8rKwsikQizZs3SKtdXNn/+fIhEIvTs2VNTlpSUpPX61AYOHKh3HxWpt63qUXH79PR0vPzyy/Dz84NUKkWrVq3www8/6Oy3pKQEs2bNQvPmzeHo6IiAgAA89dRTuHLlitHhUSKRCKNHj9bs699//8Wzzz4Lb29vODs7o3Pnzvjjjz+qfB1SqRTNmzfHvHnztH7cGvrOVdS4cWPN8QVBwOOPP4769evj1q1bmjplZWVo06YNmjRpYnDyF3Pf25MnT6J///5wd3eHq6srevXqhSNHjmjtU18bBPR/V0z5rPR9d27cuIHGjRujQ4cOKCgoMPg+mfI69WncuHGV7RMA5HI5Pv74YzRv3hxSqVSrXuX2Y8iaNWsQFhaGxx9/HL17977vP2r5+fnBycmp2tub2p6rUlxcjPj4eDz//PMYNmwYiouLsWnTpmrH1KpVK53ESiqVYsCAAfjvv/+Qn59f7X0T3Q8O1SOygC1btqBx48bo1q2b3vXdu3dH48aNdX5UWdJPP/2E06dPa5XduXMHAPDZZ5/B398f06dPh6OjI77//nv07t0biYmJ6N69u979Xb9+Hf369UOLFi3wyy+/wN7e8OlC37GNmThxIjw9PTFr1ixcvHgRS5cuxdWrVzU/dtT7HTVqFPr27YvPPvsMRUVFWLp0KR577DGcPHlS7w81ANi5cydefvllTJw4Ee+8846mfNeuXejfvz8eeeQRzJo1C8XFxfj666/RtWtXnDhxwuD+qnLq1Cl069YNEokE48ePR+PGjXHlyhVs2bIFn3zyCZ566ik0bdpUU//NN99Ey5YtMX78eE1Zy5YtNc/v3r2LAQMGYNiwYRg+fDh++eUXvP7663BwcMDLL78MV1dXDB06FOvXr8eXX34JOzs7zbbr1q2DIAgYMWKE3ljN+UzNkZOTo0nWjNm3bx+2bt1qtJ76ejy15cuX4/z581i4cKGmLDw8HIDqL+6dO3eGSCTCxIkTUb9+fWzbtg1jx45FXl4epk6dCkB1DcaTTz6J3bt34/nnn8eUKVOQn5+PxMREnDlzBr1799Y65m+//Yb4+HitsiZNmmiO2aVLFxQVFWHy5MmoV68efvzxRwwePBgbNmzQGZb77rvvomXLliguLsb69evx7rvvwtfXF2PHjjXpfatMJBLhhx9+QHh4OF577TX89ttvAICZM2fi7NmzSEpK0vlrf3Xe27Nnz6Jbt25wd3fH22+/DYlEgmXLlqFnz574888/0alTJ7PiNvWzqiw3Nxf9+/eHRCLB1q1b9Q7zMmTy5Ml49NFHAaiGLicmJhqs261bN03bPH/+PObOnau1fsGCBfjggw8wdOhQ/O9//4NUKsX+/fuxfPlyk2IpLS3Fxo0b8dZbbwFQDcUbM2YMMjMz4e/vr1O/qKhIbzLt6elpsfZbmTntWW3z5s0oKCjA888/D39/f/Ts2RNr1qwxODw8Oztbp8ze3l4zVM+QzMxMODs7w9nZ2az4iCxGIKL7kpOTIwAQhgwZUmW9wYMHCwCEvLw8QRAEYebMmQIA4fbt25o6x44dEwAIK1eu1No2KChIePrppzXLK1euFAAIqampgiAIQklJidCwYUOhf//+WtunpqYKAAQHBwfhn3/+0Wx/+/ZtoV69ekL79u317jM7O1sICwsTQkNDhaysLK1YTD22Iert27dvL5SVlWnKP//8cwGAsGnTJkEQBCE/P1/w9PQUxo0bp7V9Zmam4OHhoVU+atQooVGjRoIgCMLx48cFV1dX4dlnnxUUCoXWthEREYKvr69w584dTdnff/8tiMViYeTIkZoyfZ+NIOj/fLp37y64ubkJV69e1aqrVCr1vv5GjRoJo0aN0ruuR48eAgBhwYIFmrLS0lJN3Or3a8eOHQIAYdu2bVrbh4eHCz169NAsm/uZHjt2TKv89u3bAgBh5syZWuWVy95++23B19dXaN++vdbx9+7dKwAQ9u7dqynr1KmT5rtSeb9VqfgZVzZ27FghICBA53U9//zzgoeHh1BUVCQIgiD88MMPAgDhyy+/1NmHvs9L/T3QZ+rUqQIAYf/+/Zqy/Px8ISQkRGjcuLHmu6fvPSgpKRHEYrHwxhtv6Byr8neuIn3fnWXLlgkAhNWrVwtHjhwR7OzshKlTpxrchz5VvbcxMTGCg4ODcOXKFU3ZjRs3BDc3N6F79+6asjFjxggNGzbU2b7y52zqZ1XxfSspKRF69uwp+Pr6CpcvXzb5de3cuVMAIGzYsEFTNmHCBIOfaVBQkDBmzBjNsr7PLioqSmjZsqXW98VQ+9Fnw4YNAgDh0qVLgiAIQl5enuDo6CgsXLhQq5763G3ocfjwYb37r+r1GWJqe67Kk08+KXTt2lWzvHz5csHe3l64deuWVj3191zfIzQ0tMpjXLp0SXB0dBReeuklk18bkaVxqB7RfVIPGTB0ca+aen1eXp7FY/jmm29w584dzJw5U+/6IUOGoFmzZpplHx8fjB49GsnJybh586ZW3ZKSEgwePBi3b9/G9u3bUa9evfs6tiHjx4+HRCLRLL/++uuwt7fX9EYkJiYiJycHw4cPR1ZWluZhZ2eHTp06Ye/evTr7/PfffzFw4EBERETgp59+glhcforLyMhASkoKRo8eDW9vb015eHg4oqOj9faCZGdnax07NzdXa/3t27exb98+vPzyy2jYsKHWuurObGVvb49XX31Vs+zg4IBXX30Vt27dQnJyMgCgd+/eCAwM1Bric+bMGZw6dQovvviizj7N/UzNkZ6ejq+//hoffPCB0V6A3377DceOHdMZPnk/BEHAxo0bMWjQIAiCoPV59e3bF7m5uThx4gQAYOPGjfDx8cGkSZN09mPu57V161Z07NgRjz32mKbM1dUV48ePR1paGs6dO6dVPzc3F1lZWbh27Ro+//xzKJVKPPHEEzr7VX/nTL3H2vjx49G3b19MmjQJL730Epo0aaLTS1JdCoUCO3fuRExMjNa1mQEBAXjhhRdw4MABzfnM19cXt27dQllZmcH9mfNZqSmVSowcORJHjhzB1q1bNT1+pigpKQEAODo6mlS/rKwMUqm0yjr5+fnw8vKqdvtes2YNOnTooOmFVg8/NjRcb/z48UhMTNR5hIWFVev4xpjTntXu3LmDHTt2YPjw4Zqyp59+GiKRCL/88ovebTZu3KjzmlauXGnwGEVFRXj22Wfh5ORk0fMHkbk4VI/oPqkTImNjrk1NsMyVm5uLuXPnYtq0afDz89Nap/7PvUWLFjrbqYeHpaWlaW03ZswYHDlyBI6OjpprYKpzbGMqJnKA6kdnQECA5nqcS5cuAYDeH5cA4O7urrVcWFiIvn374ubNm6hXr57OD5urV68CAEJDQ3X21bJlS+zYsQOFhYVaw5v01a3o33//BQC0bt26ynrmCAwM1Bli1bx5cwCqz6pz584Qi8UYMWIEli5diqKiIjg7O2PNmjVwdHTEs88+q7NPcz5Tc82cOROBgYF49dVXsWHDBoP1FAoF3n33XYwYMUIzDMwSbt++jZycHCxfvtzgcCn1NUBXrlxBaGioRYY4Xb16Ve8wNXW7unr1qtb3IiYmRvNcLBbj/fffx9NPP62zfcXvnK+vL8aNG4fZs2drDcmsLDY2Fk2aNMGlS5dw6NCh+7repaLbt2+jqKjIYJtRKpW4fv06WrVqhS5duuCzzz7D+++/j8mTJ+tNVsz5rNTee+89HDlyBCKRCEVFRWbFrx7i5uHhYVL93Nxco8lCVFQUVqxYgWXLluHJJ5+EVCo16XorQDUEbuvWrZg4cSIuX76sKe/atSs2btyIf/75R9PW1Zo1a4bevXubtH9LMLU9V7R+/XrIZDJERkZqva5OnTphzZo1mDBhgs423bt3r3JyiIoUCgWef/55nDt3Dtu2bUNgYKBpL4aoBjBxIrpPHh4eCAgIwKlTp6qsd+rUKQQFBen84L9fn332GcRiMaZPn665pkmtOj+gTpw4gU2bNmHixIkYP3489uzZU61j3y+lUglAdZ2TvrH/lX/8ZmVlwcXFBVu2bEFMTAzmzZtndi9YZRs3btT6vP755x+9PwKsYeTIkZg/fz4SEhIwfPhwrF27Fk8++aTeH4nmfKbmOH/+POLi4rB69Wqt3kN9YmNjkZaWhh07dljk2Grq78mLL76oMzOZmiUTter64osv0LZtW8hkMhw7dgwff/wx7O3tdb6j6u9cUVER4uPj8cknn2iuLzIkKSkJpaWlAIDTp08jKiqqRl+LPoMHD8bLL7+M+fPnY/78+XrrVOezOnr0KOLi4rBkyRKMHz8eKSkpRnuF1NR/hDHl2sXs7GyUlZXpPddUNG/ePKSnp+O1114zKYaKfv31V5SWlmLBggVYsGCBzvo1a9Zg9uzZZu/XUsxpzxWpe8u6du2qd/2///57X7PJjhs3Dr///jvWrFlj8A9pRLWFiRORBTz55JP4/vvvceDAAa2hO2r79+9HWlqa1hAsS7hx4wYWL16MefPmwc3NTSd58fHxgaurKy5evKiz7YULFwDo/qhYsWIFBg8eDDs7Ozz55JOIjY3VewG7sWMbc+nSJTz++OOa5YKCAmRkZGjuWaIekuPr62vSX1ydnZ2xfft2tGjRAm+++Sbmzp2LYcOGaXoAGjVqBAAG3wsfHx+dnp7KfxWtfOGy+sfAmTNnjMZnqhs3buj0fKnvy1Lxs2rdujUiIyOxZs0aNGjQANeuXcPXX3+td5+mfqbmmjFjBiIiIgzexFOtqKgIs2fPxhtvvKH5HCylfv36cHNzg0KhMPo9adKkCY4ePQqZTGbWD0N9GjVqVGW7qvw627dvr5mhrH///khPT8dnn32GDz74QGtIacXv3ODBg3Hw4EFs377dYOKUkZGBSZMmoU+fPnBwcMD//d//oW/fvhZ5n+vXrw9nZ2eDr1MsFiM4OFhTFhsbiw8//BBXrlzRJEnR0dFa+zP1s1KbPXs2Ro0ahYiICHTo0AEff/wxPvroI5O2PX78OPz9/dGgQQOjddVDKytO1KJPvXr18NNPP6FVq1Z47LHH8Oqrr2Lnzp0Gk8WK1qxZg9atW+v9g86yZcuwdu1aqyZOprbnilJTU3Ho0CFMnDgRPXr00FqnVCrx0ksvYe3atXj//ferFdP06dOxcuVKLFq0SGsoIJG18BonIguYPn06nJyc8Oqrr+okENnZ2Xjttdfg7OyM6dOnW/S4s2fPhp+fn8G/forFYvTr1w+bNm1CamqqVkw//vgjOnTooDPETj0z4MCBA/H8889j+vTpOtdBmXJsY5YvXw6ZTKZZXrp0KeRyueamiX379oW7uzvmzp2rVU/t9u3bWsv169fXDEmcM2cOGjRogHHjxmmmfA4ICEBERAR+/PFH5OTkaLY7c+YMdu7cqfcmk8bUr18f3bt3xw8//IBr165prROqeR8VuVyOZcuWaZbLysqwbNky1K9fH+3bt9eq+9JLL2Hnzp1YtGgR6tWrZ/CGk6Z+puY4fPgwNm3ahE8//dTo9R6LFy9GYWGhZop2S7Kzs8PTTz+NjRs36k1gK35Pnn76aWRlZWHJkiU69cz9vAYMGIC//voLhw8f1pQVFhZi+fLlaNy4sdFrUIqLiyGXy6scOikIAgRBqHKY3rhx46BUKhEbG4vly5fD3t4eY8eOtch9fOzs7NCnTx9s2rRJa0r7mzdvYu3atXjsscd0etAbNWqEJ554Ar1799ZJjsz5rNTU3922bdvi//7v//DZZ5+Z9IeKO3fuYO/evRg8eLApLxU///wzHBwc9P7hq7Lx48fDwcEBK1asQO/evU263uj69evYt28fhg0bhmeeeUbnMWbMGFy+fBlHjx41KV5LM6c9V6TubXr77bd1XtOwYcPQo0ePak+3Pn/+fHzxxRd499139d5+gcga2ONEZAHNmjXDjz/+iBEjRqBNmzYYO3YsQkJCkJaWhtjYWGRlZWHdunV6L2zes2eP5seH+rqe06dPY/v27Zo66mE4le3cuRNr1qyBg4ODwdjmzJmD7du347HHHsMbb7wBqVSK77//Hrm5uXqHi1S0ePFitGzZEpMmTdK5yNeUY1elrKwMvXr1wrBhw3Dx4kV8++23eOyxxzQ/dNzd3bF06VK89NJLaNeuHZ5//nnUr18f165dwx9//IGuXbvq/QEMqIYoLl++HL1798bSpUvxxhtvAFD9R9y/f39ERUVh7NixmunIPTw8qrynUFW++uorPPbYY2jXrh3Gjx+v+dz/+OMPpKSkmL2/wMBAfPbZZ0hLS0Pz5s2xfv16pKSkYPny5Tq9JC+88ALefvttxMfH4/XXXzepF6Wqz/Tw4cNaUx+rL/y/fPky/vrrL3Ts2FGzbufOnYiOjjap52Dnzp345JNPLDopRUWffvop9u7di06dOmHcuHEICwtDdnY2Tpw4gV27dmmmPh45ciRWrVqFadOm4a+//kK3bt1QWFiIXbt24Y033sCQIUNMPuY777yDdevWoX///pg8eTK8vb3x448/IjU1FRs3btTqRQJUk538999/mqF6a9asweDBg3Xaj/p8oB6qd/nyZYNTdK9cuRJ//PEH4uLiNL0qX3/9NV588UWt7/39+Pjjj5GYmKg5f9jb22PZsmUoLS3Vui+dqUz9rPSZOXMmNm7ciHHjxuHgwYM677Ha4cOH8c4776C4uBj169fH6tWrNevUvberV6/G0KFDcePGDcycORPr1q3DO++8Y3QodWxsLOLj47F3716Tr50CgLVr10IQBIOJ3IABA2Bvb481a9ZoXTt34sQJrfjVmjRpohmSefXqVc308up7SX388ccAVInsSy+9ZDQ+c9pzRWvWrEFERIRWz2NFgwcPxqRJk3DixAm0a9dOU75hwwa915NFR0fDz88P8fHxePvtt9GsWTO0bNlS5z1Q1yOqdVaazY/ogXTq1Clh+PDhQkBAgCCRSAR/f39h+PDhwunTp3XqVjUtq76HvunIIyIitKbFVU9hW3lK8BMnTgh9+/YVXFxcBGdnZ6Fnz55a0yhX3Kd6mnG1H3/8UQAgbN68uVrHrky9/Z9//imMHz9e8PLyElxdXYURI0ZoTROutnfvXqFv376Ch4eH4OjoKDRp0kQYPXq0cPz4cU0dQ9MpjxkzRnB3dxf+++8/TdmuXbuErl27Ck5OToK7u7swaNAg4dy5c1rbmTMduSAIwpkzZ4ShQ4cKnp6egqOjoxAaGip88MEHel+/senIW7VqJRw/flyIiooSHB0dhUaNGglLlizRW18QBGHAgAECAOHQoUM668z9TKt6VJyWGIAgEomE5ORknfj1TUceEBAgFBYWatWFBacjFwRBuHnzpjBhwgQhODhY0/Z69eolLF++XKteUVGR8N577wkhISGaes8884zWdNtqVU1HLgiCcOXKFeGZZ57RfO4dO3YUfv/9d6066vdA/bC3txcaNWokTJ48Wbh7967OsdQPJycnISwsTGua6orfnevXrwseHh7CoEGDdOIaOnSo4OLiIvz7778GY6/I2HurPn+4uroKzs7OwuOPP673+6aPvs/ZlM9K31TggiAISUlJgkgkEhYvXlzl6zHlnJqamiqsW7dOaN26tbB48WKdKekrx3Dp0iXBxcVFmDFjhlY9U6Yjb9Omjd7p2itST7kuk8mMTkde8RxS+TtmqN0aYmp7riw5OVkAYPBcJwiCkJaWJgAQ3nzzTUEQjP+/p36vTa1HVNtEgmCB/nwiIhPFxcVhzJgxOHbsGDp06GDtcGxKz549kZWVZdY1U0OHDsXp06e1ZrOytFmzZiEpKQlJSUk1dgwiSxk9ejQA1bnGEJFIhNTU1Grd9JqIHl68xomIqI7KyMjAH3/8YdJQHCIiIro/vMaJiKiOSU1NxcGDB7FixQpIJBKLz9ZYWdOmTc2+hw6RtXTp0sVonREjRph8g1ciIjUmTkREdcyff/6JMWPGoGHDhvjxxx+N3nvmfr344os1un8iSxo/frzROvomXCAiMobXOBERERERERnBa5yIiIiIiIiMYOJERERERERkhM1c4/Tpp59ixowZmDJlChYtWmSw3q+//ooPPvgAaWlpaNasGT777DMMGDDA5OMolUrcuHEDbm5uZt0dm4iIiIiIHiyCICA/Px+BgYEGb6ytZhOJ07Fjx7Bs2TKEh4dXWe/QoUMYPnw45s2bhyeffBJr165FTEwMTpw4gdatW5t0rBs3bhi8wzURERERET18rl+/jgYNGlRZx+qTQxQUFKBdu3b49ttv8fHHHyMiIsJgj9Nzzz2HwsJC/P7775qyzp07IyIiAt99951Jx8vNzYWnpyeuX78Od3d3S7yE+yKTybBz50706dMHEonE2uEQkR5sp0R1A9sqUd1gS201Ly8PwcHByMnJgYeHR5V1rd7jNGHCBAwcOBC9e/fGxx9/XGXdw4cPY9q0aVplffv2RUJCgsFtSktLUVpaqlnOz88HADg5OcHJyan6gVuIvb09nJ2d4eTkZPUvDhHpx3ZKVDewrRLVDbbUVmUyGQCYdAmPVROnn3/+GSdOnMCxY8dMqp+ZmQk/Pz+tMj8/P2RmZhrcZt68eZg9e7ZO+c6dO+Hs7GxewDUoMTHR2iEQkRFsp0R1A9sqUd1gC23VnBu8Wy1xun79OqZMmYLExEQ4OjrW2HFmzJih1Uul7o7r06ePzQzVS0xMRHR0tNUzbiLSj+2UqG5gWyWqG2yprebl5Zlc12qJU3JyMm7duoV27dppyhQKBfbt24clS5agtLQUdnZ2Wtv4+/vj5s2bWmU3b96Ev7+/weNIpVJIpVKdcolEYvUPqiJbi4eIdLGdEtUNbKtEdYMttFVzjm+1+zj16tULp0+fRkpKiubRoUMHjBgxAikpKTpJEwBERUVh9+7dWmWJiYmIioqqrbCJiIiIiOghZLUeJzc3N50pxF1cXFCvXj1N+ciRIxEUFIR58+YBAKZMmYIePXpgwYIFGDhwIH7++WccP34cy5cvr/X4iYiIiIjo4WG1HidTXLt2DRkZGZrlLl26YO3atVi+fDnatm2LDRs2ICEhweR7OBEREREREVWH1acjrygpKanKZQB49tln8eyzz9ZOQERERERERLDxHiciIiIiIiJbwMSJiIiIiIjICCZORERVUCgFHE3NRnKWCEdTs6FQCtYOiYiIiKzApq5xqk1lZapHZWIxYG+vXc8QkQioOPW7OXVlMkAQVP/KZCKUlamWq6przn4NcXCoXl25HFAqLVNXIlHFXZN1FQrVwxJ17e1V3wtbqatUqt4LQ+zsVA9bqav+nluibsX2WVN1gfK2vONsBj7+/Twy80oA2OPHC8kI8HDErJiW6Nc6QKuuPpY4R9RmXYDniOrU5Tni/upa8hxR8T2qjXPE/dblOaJ6dXmOuL+6ttDulUrd37+G6tb074iq2l1lD23itGABoOe+uGjWDBgxonx5/nzDH0DjxsDo0eXLixYBRUX66wYGAuPHly9/8w2QkwMoFGJcutQcf/8t1nzo9esDEyaU112+HLh9W/9+PT2BqVPLl1euBG7c0F/X2Rl4++3y5TVrgLQ0/XUlEuC998qX168HLl3SXxcAZs0qf/7bb8C5c4brvvtu+Qny99+BlBTDdadPB1xcVM937ACOHTNcd+pU1fsBALt3A4cOGa77xhuAr6/q+f79gJ55SDTGjQOCglTPjxwBEhMN1x09WvW9AIDkZGDrVsN1X3gBaN5c9fz0aSAhwXDdZ58FWrVSPT9/Hvj1V8N1Y2KAiAjV88uXgbVrDdcdMADo2FH1/No1IC7OcN3oaKBrV9XzjAzg++8N1+3ZU/UAVN/db781XLdLF6BPH9Xz3FxVOzLk0UeBgQNVz4uKVO3TkIgI1XsBqNrw3LmG64aFAcOGlS/PnQtcvpWP30/lA2igVbfIqxCvF5zA0hfboV/rgBo/R+jDc0Q5niNUeI5QiYwUaZ7X9DnCkNr+HaEPzxHleI5QscVzxIYN2r9/K6rN3xGlpYbrV8ahekRElSgFAUkX9f/KUP9hbPaWcxy2R0RE9BARCUJVnawPnry8PHh4eOD27Vy4u7vrrK/9oXoybNu2Df3794fkXgV2sd9/XXax207dujhUb9/5O3jph6P6K4sAkVjVcJ5t3wAtfD3g7iSBh6ME7k6qh8e9h1Qi5jCcatTlOeL+6tpCu7feUD0Zdu7cigEDBsDeXsKhehauC/AcUZ26PEfo1i0tlWHLFu3fv4bq1vTviLy8PNSv74HcXP25QUUP7VA9BwftRlpVPXP2aSr1d0R1whLg4KB94tJX15z9WrquvRnfFFuoW7ERPWh1xWLTv2u2UFckqlt1AeBKdh5Edsb/pvRr8n8A/jO43klip0mi3J3s7/1bnlgZerg7SeAoMfELAZ4jqlPXFtoyzxEqlmzLFX8w1eQ5whbq2kK75zmibta1hXYvFhv//atW078NzGl3D23iRERUUW6RDH+czkDCyXT8lZZt0jZPtKgPR4kdcotl5Y8iGfJL5RAEoFimQLFMcW9yCfNI7cUGkyqdcmftZXOSLiIiIjINEyciemiVyBTYe+EWElLSsffCbZQpysdwONiJtZYrEgHw93DE9yMfhZ1YpLNeoRRQUCLXTqj0PPL0lZXIIAhAqVyJW/mluJVvxlWr6tgNJF2m9Hg5SsQQiXRfExER0cOOiRMRPVSU9+7LtCklHX+czkB+SfmA7Bb+bhgaGYTBEYH4+3oOXl99AkD5hBCAKmkCgJmDwvQmTQBgJxapeoGczRjHUiG+/FK53qTKWOKVVyyDUgDK5Erczi/F7eokXXbie8mVvcHEy1Dy5exgx6SLiIgeWEyciOihcDEzH/En07E5JR03csuHzgV4OGJIRBBiIgPRwt+9QrkTlr7YDrO3nENGhfr+Ho6YOShMcx8nSxOLRZpEJNjMbZVKAQVlcuQWaSdWeSWVky653uRLoRRQplAiq6AUWQXmJ10SOxHcHY33bGmtuzfM0IVJFxER2TgmTkT0wMrILcbmlBuIP5mOC5n5mnI3R3sMbBOAIRFB6BTiDbGBnqN+rQMQHeaPw5dvYef+o+jTrROimvoa7GmyNrFYlbi4O5qfdAmCgMIyheY6raqGE+pbJ1cKkCkE3Cksw51CM+4meI+9WKRJqLSTLt2er8pJmavUnkkXERHVOCZORPRAySuRYfvpTMSfTMeR1DuaqXIldiI8HuqLoZFBeLyFr8kTKNiJRegU4o075wV0CvG22aTpfolEIrhK7eEqtUeQp5NZ2wqCgCJ10mXCdVyV18kUAuRKAdmFZciuRtJlJxbB3dHeYGJlKPFyd5LATWpvMHEmIiKqiIkTEdV5ZXIlki6qJnnYdf4WyuTlkzp0bOyNmMggDGjjD09nM+YcJZOJRCK4SO3hIrVHYDWSrmJZhaSryHDiladnwo0yuRIKpYC7RTLcLari5h0GiEWAm6P5k2h4OEng5siki4joYcLEiYjqJKVSQPK1u0g4qZrkIafCj+Zmvq6IiQzCkIhANPBytmKUZIxIJIKzgz2cHewR4GFe0gWoZkasPB28qb1epXIllAI0y+bHDrhJ7XWmgzcl8XJzlDywvZdERA8qJk5EVKdcvpWPhJM3kJCSjv/uFmvKfd2kGBIRiJjIIIQFuPOal4eEo8QOjhI7+Lk7mr1tiUxRrdkLc4tlKJEpIQhAXokceSVyXEex8QNW4uaof+ZCUybXYNJFRFT7mDgRkc27lVeCzX+rkqUz6XmaclepPfq19kdMRBCimtTjj0kyizrp8q1G0lUqV+hPqoq0Zy3UV6dYpgAA5JfIkV8i1/oDgKncpPZ6kyt3J+PXetnbic0+HhERMXEiIhtVUCrHjjOZSEhJx8HLWVDem+TBXixCz9D6GBIRhN4t/eDkYNokD0SWJLW3g6+bHXzdzE+6yuRKnSni87QSL8O9XoVl95KuUjnyS+VIzzE/6XJxsKu6V8vZcOIlseGkS3HvHm3JWSLUS8226RkwiahuYuJERDZDplBi/6XbiD95A4nnMlEiK5/koV1DTwyNDMLA8EB4u3CSB6q7HOzF8HGVwsdVava2MoVS79BBw0MOy2+mXFCqutlzYZkChWUKrfuZmcr5XtJlzuyF6oeDfc0lXdvPZFS455odVl06joAavucaET18mDgRkVUJgoCT13OQcDIdv5/K0JqO+hEfF80kD43quVgxSiLbILETo56rFPWqkXTJFUq9MxMa6/HKK5Yh/17SVVSmQFGZQuum0KZykthVmVh5OGlPtFHxZspV3T5g+5kMvL76BIRK5Zm5JXh99QksfbEdkycisggmTkRkFalZhUg4mY6ElHRcvVOkKfdxdcCgtoEYGhmENkEenOSByELs7cTwdnGoVo+tQino9GoZHG5Y6Zqv/FI5BAEolilQLFMgM8/8pEtqL9bbq+XqaI/fTqTrJE0AIAAQAZi95Ryiw/w5bI+I7hsTJyKqNVkFpdjy9w0kpNzA39dzNOVOEjvVJA+RQejapB4vXieyMXZiEbxcHOBVzaSrwEBPl7HEK69EBkEASuVK3Movxa38UrOOLQDIyC1Bl093I8DDCV7OEtXrcHaAl7MEns6qRNLTWXKvTPXc1BtkE9HDhYkTEdWoojI5dp69iYSUdOy/lAXFvVke7MQidGvmg5iIIESH+cFFytMR0YPITixSDcFzlpi9rVIpIL9UbvAaruNp2dh1/pbR/dzMK8XNPNOTLmcHO00SpUqsKiRa95IvdZmXsyqhdHGwYw850QOOv1SIyOLkCiUOXrmDhJPp2HE2E0X3ZgIDgLbBnoiJCMST4YGo72b+dRpE9PAQi0WaYXnBetYfbuBpUuI0a1AYAjydkFNUhrtFMtwtKsPdQtVzTVlhGXKKZVAohXvXchWbNWuhxE50L7Gq0IPlot2TpU6y1AmXh5MEYg4hJKozmDgRkUUIgoDT6bmIP5mOLX9nIKug/K+7jeo5Y0hEEGIiAvFIfVcrRklED5KOId4I8HBEZm6J3uucRAD8PRzxUlRjk65xUvdw5RSVIbuwDDnqJOteYnW3qLys4vpSuRIyhYDb+aW4bcZwQpEI8HCSaCVbquGDkns9Wg56hxfW5AyFRGQYEyciui/X7hQhISUdCSfT8W9Woabcy1mCQW0DERMZhMhgTw5hISKLsxOLMHNQGF5ffQIiQCt5Up9xZg4KM3liiIo9XObM5FlcpkD2vV6s8mSrDHcLZfeSrTJka3q3ypBTWD5pRk6RDDlFMpOPBahu/l2eaKmGExrq1VKvd5JwKCHR/WLiRERmyy4swx+nVJM8JF+9qyl3lIgRHeaPoZGB6Nasvk3fLJOIHgz9Wgdg6YvtKtzHScW/Fu/j5ORghyAHJwR5Opm8TZlciZzie4nWvd4s9TDCnCLZvR4t7aGFucUyKAXVDcILSuX4767pQwkd7MXl12TdG0aodZ1WhTLve8tujvYcSkhUARMnIjJJiUyBxHM3sSklHUkXb0N+b5IHsQjo2lQ1yUPf1v5w5SQPRFTL+rUOQHSYPw5fvoWd+4+iT7dOiGrqa9NTkDvYi+Hr5ghfN0eTt1EqBeSVyHC3UmKlHlp4t0KvVnlvlwxlCiXK5EqzJ8kQi6CVXKmf60yY4VL+3NNZwj+a0QOLv3CIyCCFUsDhK3eQkJKO7WcyUXDvJpgA0DrIHTERQRjUNhB+7qb/x09EVBPsxCJ0CvHGnfMCOoV423TSVF1isehecuKAEB/ThhIKgmqyi2ydYYSVJseokHDlFJWhsEwBpaAaYaC6MXmh0WOpuTnaVzHlu/5p4J0cOAU82T4mTkSkRRAEnMvIQ8LJdGxKuaF135QgTyfERAYiJiIIzfzcrBglERGZQiQSwUVqDxepPYK9Td+uVK4oT7TuJVPZRRWHFpYnW+p6ucWq+27ll8iRXyLHtWzTj+coEWv1amlfp6V/wgw3qT2v26JaxcSJiAAA/90twqaUG0g4mY5Ltwo05R5OEgwMD8DQyCC0b+jF8e5ERA8Bqb0d/NztzBpRoFAKyC2uMCFGhckx7la6lku9PqeoDHKlgBKZEhm5JVrXqRljLxbB01miMw28p4tEc52WZ6VZCT2cJLzJOlUbEyeih1hukQx/nM5Awsl0/JVW/qdBB3sxerf0RUxEEHqE1ofUnkMoiIioanZiEbxdVMPwTCUIAgpK5ZoJMSr2YFXs2ao8YUaxTAG5UkBWQRmyCsrMitPd0V7rOq2KMxFqerUq3YPLUcL/B4mJE9FDp0SmwN4Lt5CQko69F26jTKEEoLqfSOeQehgaGYR+bfzh7iixcqRERPSgE4lEcHOUwM1RgmBvZ5O3K5EptIYR3i2SqYYSVrh2K7tC79bdwjLklaiu080rkaue3yky+XjODnZ6p3zXN2GGup4rhxI+cJg4ET0ElEoBR1OzsSklHX+czkB+SfkkDy383TA0MgiDIwIR4GH6VLpERETW4iixQ4CHk1n/b8kVSuQUV0i09Ez5rjVhRmEZcoplUChVE2wUlRUjPcf0KeAldiLt2QdNmAbe3UnyQE5s8qBg4kT0ALuQmYeEkzewOSUdNyqMGw/wcMSQiCDERAaihb+7FSMkIiKqHfZ2Yvi4SuHjKjV5G6VSQH6pXDPle/nMhOXXbKnLKq4vlSshUwi4nV+K2/mmTwEvEqmuLfZy1p0GvuK1WpWngXewrzvXbSnu/TE3OUuEeqnZNn/rgIqYOBE9YDJyi7E55QbiT6bjQma+ptzN0R4D2wRgSEQQOoV4c5IHIiIiI8RiETycVJNKNKpn2hTwAFBcptBJpvROmKGembBQhvxSOQQByCmSIadIhlQz4nRxsNMkVurhhBWnfPe8N5yw4npnB7taH0q4/UxGhZtV22HVpeMIqMWbVd8vJk5ED4C8Ehm2n85E/Ml0HEm9A0F1b1pI7ER4PNQXQyOD8HgLX17cSkREVAucHOzg5OCEQE/ThxKWyZXIKa5iyvcKsxKqy3KKyqAUgMIyBQrLivHfXdOHEjrYi7WuydKZMENraKFqKKGbo321//C6/UwGXl99AkKl8szcEry++gSWvtjO5pMnJk5EdVSZXImki6pJHnadv4UyuVKzrmNjb8REBmFAG394Ops+uxERERFZh4O9GL5ujvB1M30KeKVSQF6JzMB1WuVTvmvPTChDmUKJMrkSN/NKcTPP9KGEYhHu3YRZcm8KeP3DCCtOmOHpLIFYJMLsLed0kiYAEACIAMzecg7RYf42PWyPiRNRHaJUCki+dhfxJ9Ox9XQGcopkmnXNfF0RExmEIRGBaOBl+sxEREREVDeJxaJ7yYkDQmDaUEJBUE12oZ6V8K5OYqXd26WeubCwTAGlAGQXqoYg/otCk+N0kohRLFMaXC8AyMgtwV+p2YhqUs/k/dY2Jk5EdcDlW/lIOHkDCSnpWt3wvm5SDIkIRExkEMIC3DntKREREVVJJBLBRWoPF6k9GniZvl2pXFHhHlvlU74bHFpYVIbcYhkEAVUmTRXdyjf9BsjWYNXEaenSpVi6dCnS0tIAAK1atcKHH36I/v37660fFxeHMWPGaJVJpVKUlNj2m0xUHbfySrD5b1WydCY9T1PuKrVHv9b+iIkIQlSTejbdpU1EREQPBqm9Hfzc7eDnbvpQQoVSQG6xDHsv3sJbv/xttL45wxStwaqJU4MGDfDpp5+iWbNmEAQBP/74I4YMGYKTJ0+iVatWerdxd3fHxYsXNcv8Czs9SApK5dhxJhMJKek4eDkLynuDge3FIvQMrY8hEUHo3dIPTg6c5IGIiIhsm51YBG8XB8REBOGLHReRmVui9zonEQB/D0d0DPGu7RDNYtXEadCgQVrLn3zyCZYuXYojR44YTJxEIhH8/f1rIzyiWiFTKLH/0m3En7yBxHOZKKnQnd2uoSeGRgZhYHggvF04yQMRERHVPXZiEWYOCsPrq09ABGglT+oukJmDwmx+FI3NXOOkUCjw66+/orCwEFFRUQbrFRQUoFGjRlAqlWjXrh3mzp1rMMkCgNLSUpSWls8WkpenGvIkk8kgk8kMbVZr1DHYQixUewRBQMp/udj8dwb+OJ2JuxUmeQip54zBbQMwqG0AGnmXT/LA74j1sJ0S1Q1sq0S2q1eoD75+vi0+3noBmRVm8vP3kOK9/i3QK9THKm3XnGOKBEHQ12NWa06fPo2oqCiUlJTA1dUVa9euxYABA/TWPXz4MC5duoTw8HDk5ubiiy++wL59+3D27Fk0aNBA7zazZs3C7NmzdcrXrl0LZ2fOPEa161YxcDxLjOTbImSVlv9VxVUioH09AR3qKxHsorpzOBEREdGDRikAV/JEyJMB7hKgibsAa3Y0FRUV4YUXXkBubi7c3d2rrGv1xKmsrAzXrl1Dbm4uNmzYgBUrVuDPP/9EWFiY0W1lMhlatmyJ4cOH46OPPtJbR1+PU3BwMLKysoy+ObVBJpMhMTER0dHRkEgk1g6HasCdglL8fjoTm09l4NR/5ZM8ODvYIbqlL4a0DUDUI96wtxNbMUqqCtspUd3AtkpUN9hSW83Ly4OPj49JiZPVh+o5ODigadOmAID27dvj2LFjWLx4MZYtW2Z0W4lEgsjISFy+fNlgHalUCqlUqndba39QFdlaPHR/isrk2Hn2JhJS0rH/UhYU92Z5sBOL0K2ZD4ZGBiE6zA/ODlZvgmQGtlOiuoFtlahusIW2as7xbe5Xm1Kp1OohqopCocDp06cNDu0jqk1yhRIHr9xBwsl07DibiaIyhWZd22BPxEQE4snwQNR3003kiYiIiMi2WTVxmjFjBvr374+GDRsiPz8fa9euRVJSEnbs2AEAGDlyJIKCgjBv3jwAwJw5c9C5c2c0bdoUOTk5mD9/Pq5evYpXXnnFmi+DHmKCIOB0ei7iT6Zjy98ZyCooT/ob1XPGkIggxEQE4pH6rlaMkoiIiIjul1UTp1u3bmHkyJHIyMiAh4cHwsPDsWPHDkRHRwMArl27BrG4/LqPu3fvYty4ccjMzISXlxfat2+PQ4cOmXQ9FJElXbtThISUdCScTMe/WYWacm8XBzwZHoCYyCBEBnvyPmNEREREDwirJk6xsbFVrk9KStJaXrhwIRYuXFiDEREZll1Yhj9O3UBCyg0kX72rKXeUiBEd5o+hkYHo1qw+JJzkgYiIiOiBY3PXOBHZkhKZAonnbmJTSjqSLt6G/N4kD2IR0LWpD2IigtC3tT9cpWxKRERERA8y/tojqkShFHD4yh0kpKRj+5lMFJTKNetaB7kjJiIIg9sGwtfd0YpREhEREVFtYuJEBNUkD+cy8pBwMh2bUm7gVn75JA9Bnk6IiQxETEQQmvm5WTFKIiIiIrIWJk70UPvvbhE2pdxAwsl0XLpVoCn3cJJoJnlo39ALYmve0pqIiIiIrI6JEz10cotk+ON0BhJOpuOvtGxNuYO9GL1b+iImIgg9Q33hYM9JHoiIiIhIhYkTPRRKZArsvXALCSnp2HvhNsoUSgCASAR0DqmHoZFB6NfGH+6OvNM8EREREeli4kQPLKVSwNHUbGxKSccfpzOQX1I+yUMLfzcMjQzC4IhABHg4WTFKIiIiIqoLmDjRA+dCZh4STt7A5pR03Mgt0ZQHeDhiSEQQYiID0cLf3YoREhEREVFdw8SJHggZucXYnHID8SfTcSEzX1Pu5miPgW0CMCQiCJ1CvDnJAxERERFVCxMnqrPySmTYfjoT8SfTcST1DgTVvWkhsRPhiRaqSR4eb+ELR4mddQMlIiIiojqPiRPVKWVyJZIuqiZ52HX+FsrkSs26jo29ERMZhAFt/OHp7GDFKImIiIjoQcPEiWyeUikg+dpdxJ9Mx9bTGcgpkmnWNfN1RUxkEIZEBKKBl7MVoyQiIiKiBxkTJ7JZl2/lI+HkDSSkpOO/u8Wacl83KYZEBCImMghhAe4QiXjdEhERERHVLCZOZFNu5ZVg89+qZOlMep6m3FVqj36t/TE0MgidH6kHO07yQERERES1iIkTWV1BqRw7zmQiISUdBy9nQXlvkgd7sQg9Q+tjSEQQerf0g5MDJ3kgIiIiIutg4kRWIVMosf/SbcSfvIHEc5kokZVP8tC+kRdiIgIxMDwQ3i6c5IGIiIiIrI+JE9UaQRBw8noOEk6m4/dTGcguLNOse8THRTPJQ6N6LlaMkoiIiIhIFxMnqnH/3i5AQsoNbEpJx9U7RZpyH1cHDGobiKGRQWgT5MFJHoiIiIjIZjFxohqRVVCKLX/fQELKDfx9PUdT7uxgh76t/BETGYSuTerB3k5svSCJiIiIiEzExIkspqhMjp1nbyIhJR37L2VBcW+WBzuxCN2a+WBoZBCiw/zg7MCvHRERERHVLfwFS/dFrlDi4JU7SDiZjh1nM1FUptCsaxvsiZiIQDwZHoj6blIrRklEREREdH+YOJHZBEHA6fRcxJ9Mx5a/M5BVUKpZ16ieM4ZEBCEmIhCP1He1YpRERERERJbDxIlMdu1OERJS0pFwMh3/ZhVqyr1dHPBkeABiIoMQGezJSR6IiIiI6IHDxImqlF1Yhj9OqSZ5SL56V1PuKBEjOswfQyMD0a1ZfUg4yQMRERERPcCYOJGOEpkCieduYlNKOpIu3ob83iQPYhHQtakPYiKC0Le1P1yl/PoQERER0cOBv3wJAKBQCjh85Q4SUtKx/UwmCkrlmnWtg9wRExGEwW0D4evuaMUoiYiIiIisg4nTQ0wQBJzLyEPCyXRsSrmBW/nlkzwEeTohJjIQMRFBaObnZsUoiYiIiIisj4nTQ+i/u0XYlHIDCSfTcelWgabcw0mimeShfUMviMWc5IGIiIiICGDi9NDILZLhj9MZSDiZjr/SsjXlDvZi9G7pi5iIIPQM9YWDPSd5ICIiIiKqjInTA6xEpsDeC7eQkJKOvRduo0yhBACIREDnkHoYGhmEfm384e4osXKkRERERES2jYnTA0apFHA0NRubUtLxx+kM5JeUT/LQwt8NQyODMDgiEAEeTlaMkoiIiIiobmHi9IC4kJmHhJM3sDklHTdySzTlAR6OGBIRhJjIQLTwd7dihEREREREdRcTpzosI7cYm1NuIP5kOi5k5mvK3RztMbBNAIZEBKFTiDcneSAiIiIiuk9MnOqYvBIZtp/ORPzJdBxJvQNBdW9aSOxEeKKFapKHx1v4wlFiZ91AiYiIiIgeIEycrEhx73qk5CwR6qVmI6qpL+z09A6VyZVIuqia5GHX+Vsokys16zo29kZMZBAGtPGHp7NDbYZPRERERPTQYOJkJdvPZGD2lnPIyC0BYIdVl44jwMMRMweFoV/rACiVApKv3UX8yXRsPZ2BnCKZZttmvq6IiQzCkIhANPBytt6LICIiIiJ6SDBxsoLtZzLw+uoTECqVZ+aW4LXVJ9C/tT9Op+fiv7vFmnW+blIMiQhETGQQwgLcIRLxuiUiIiIiotrCxKmWKZQCZm85p5M0AdCUbTuTCQBwldqjX2t/DI0MQudH6ukdxkdERERERDWPiVMt+ys1+97wvKpNfqIpXu/ZFE4OnOSBiIiIiMjaxNYO4GFzK9940gQATXxdmTQREREREdkIJk61zNfN0aL1iIiIiIio5lk1cVq6dCnCw8Ph7u4Od3d3REVFYdu2bVVu8+uvv6JFixZwdHREmzZtsHXr1lqK1jI6hngjwMMRhq5WEgEI8HBExxDv2gyLiIiIiIiqYNXEqUGDBvj000+RnJyM48eP44knnsCQIUNw9uxZvfUPHTqE4cOHY+zYsTh58iRiYmIQExODM2fO1HLk1WcnFmHmoDAA0Eme1MszB4VxIggiIiIiIhti1cRp0KBBGDBgAJo1a4bmzZvjk08+gaurK44cOaK3/uLFi9GvXz9Mnz4dLVu2xEcffYR27dphyZIltRz5/enXOgBLX2wHfw/t4Xj+Ho5Y+mI79GsdYKXIiIiIiIhIH5uZVU+hUODXX39FYWEhoqKi9NY5fPgwpk2bplXWt29fJCQkGNxvaWkpSktLNct5eXkAAJlMBplMZmizGtcr1Ac9m3XDkSu3sedwMp6Iao/OTerDTiyyalxEpEvdJtk2iWwb2ypR3WBLbdWcGKyeOJ0+fRpRUVEoKSmBq6sr4uPjERYWprduZmYm/Pz8tMr8/PyQmZlpcP/z5s3D7Nmzdcp37twJZ2fn+wveQtr7ALmXjmPHJWtHQkRVSUxMtHYIRGQCtlWiusEW2mpRUZHJdc1OnLy9q560IDs726z9hYaGIiUlBbm5udiwYQNGjRqFP//802DyZK4ZM2Zo9VLl5eUhODgYffr0gbu7u0WOcT9kMhkSExMRHR0NiURi7XCISA+2U6K6gW2VqG6wpbaqHo1mCrMTJ0EQoFQq8eabbyIkJMTczXU4ODigadOmAID27dvj2LFjWLx4MZYtW6ZT19/fHzdv3tQqu3nzJvz9/Q3uXyqVQiqV6pRLJBKrf1AV2Vo8RKSL7ZSobmBbJaobbKGtmnN8sxOnK1euYNasWViwYAFee+01vP/++/Dw8DB3NwYplUqta5IqioqKwu7duzF16lRNWWJiosFrooiIiIiIiCzB7Fn1vL298dVXXyE5ORmXL19G06ZN8fXXX0OhUJh98BkzZmDfvn1IS0vD6dOnMWPGDCQlJWHEiBEAgJEjR2LGjBma+lOmTMH27duxYMECXLhwAbNmzcLx48cxceJEs49NRERERERkqmpPR968eXPEx8dj48aNWLVqFcLCwqqc3U6fW7duYeTIkQgNDUWvXr1w7Ngx7NixA9HR0QCAa9euISMjQ1O/S5cuWLt2LZYvX462bdtiw4YNSEhIQOvWrav7MoiIiIiIiIwye6jeU089pVMWFBSECxcu4Omnnzar5yk2NrbK9UlJSTplzz77LJ599lmTj0FERERERHS/zE6cDF3P9Mwzz9x3MERERERERLbI7MRp5cqVNREHERERERGRzar2NU5EREREREQPC7N7nNq1a1fl+hMnTlQ7GCIiIiIiIltkduJ0+vRpODs745VXXoG7u3tNxERERERERGRTzE6czpw5g+nTp+Onn37CzJkz8dprr8HOzq4mYiMiIiIiIrIJZl/jFBoais2bN2P9+vX44Ycf0Lp1a2zZsqUmYiMiIiIiIrIJ1Z4c4vHHH0dycjJmzJiBN954A0888QROnjxpydiIiIiIiIhsgtlD9aZNm6ZTNmDAAKxduxYdO3aETCazSGBERERERES2wuzEyVCvUocOHe47GCIiIiIiIltkduK0d+/emoiDiIiIiIjIZpmdOBkiCAJ++uknAICdnR1GjBhhqV0TERERERFZldmJ01dffaW3XC6XY/r06Zg8eTIcHByYOBERERER0QPD7MRp4cKFessFQahyPRERERERUV1lduKUmpqqt7ykpAQuLi73HRAREREREZGtqfZ9nCoTiUSW2hUREREREZFNsVjiRERERERE9KAye6jeqVOn9JaXlZXddzBERERERES2yOzEKSIiAiKRSDMZBADNMofrERERERHRg8hik0MQERERERE9qMxOnBo1alQTcRAREREREdkssyeH2LFjh97yK1euoEePHvcdEBERERERka0xO3F65plnsGHDBq2yxYsXo23btmjevLnFAiMiIiIiIrIVZg/V++WXX/Dcc88hNzcXPXr0wJgxY3Dt2jVs2LAB/fr1q4kYiYiIiIiIrMrsxKl///74448/MHjwYJSWlmLEiBH4448/4O7uXhPxERERERERWV21boDbrVs37NmzB66urvD19WXSREREREREDzSze5yeeuopzfPAwEB8+umnOHToELy8vAAAv/32m+WiIyIiIiIisgFmJ04eHh6a55GRkYiMjLRoQERERERERLbG7MRp5cqVNREHERERERGRzTL7GqeZM2fi6tWrNRELERERERGRTTI7cdq0aROaNGmCXr16Ye3atSgtLa2JuIiIiIiIiGyG2YlTSkoKjh07hlatWmHKlCnw9/fH66+/jmPHjtVEfERERERERFZXrenIIyMj8dVXX+HGjRuIjY3Ff//9h65duyI8PByLFy9Gbm6upeMkIiIiIiKymmolTmqCIEAmk6GsrAyCIMDLywtLlixBcHAw1q9fb6kYiYiIiIiIrKpaiVNycjImTpyIgIAAvPnmm4iMjMT58+fx559/4tKlS/jkk08wefJkS8dKRERERERkFWYnTm3atEHnzp2RmpqK2NhYXL9+HZ9++imaNm2qqTN8+HDcvn3booESERERERFZi9n3cRo2bBhefvllBAUFGazj4+MDpVJ5X4ERERERERHZCrMTpw8++EDzXBAEAIBIJLJcRERERERERDamWtc4xcbGonXr1nB0dISjoyNat26NFStWWDo2IiIiIiIim2B2j9OHH36IL7/8EpMmTUJUVBQA4PDhw3jzzTdx7do1zJkzx+JBEhERERERWZPZidPSpUvx/fffY/jw4ZqywYMHIzw8HJMmTWLiREREREREDxyzh+rJZDJ06NBBp7x9+/aQy+Vm7WvevHl49NFH4ebmBl9fX8TExODixYtVbhMXFweRSKT1cHR0NOu4RERERERE5jA7cXrppZewdOlSnfLly5djxIgRZu3rzz//xIQJE3DkyBEkJiZCJpOhT58+KCwsrHI7d3d3ZGRkaB5Xr14167hERERERETmMHuoHqCaHGLnzp3o3LkzAODo0aO4du0aRo4ciWnTpmnqffnll1XuZ/v27VrLcXFx8PX1RXJyMrp3725wO5FIBH9/f5NiLS0tRWlpqWY5Ly8PgKrnTCaTmbSPmqSOwRZiISL92E6J6ga2VaK6wZbaqjkxmJ04nTlzBu3atQMAXLlyBYDqvk0+Pj44c+aMpl51pijPzc0FAHh7e1dZr6CgAI0aNYJSqUS7du0wd+5ctGrVSm/defPmYfbs2TrlO3fuhLOzs9kx1pTExERrh0BERrCdEtUNbKtEdYMttNWioiKT64oE9c2YrEypVGLw4MHIycnBgQMHDNY7fPgwLl26hPDwcOTm5uKLL77Avn37cPbsWTRo0ECnvr4ep+DgYGRlZcHd3b1GXos5ZDIZEhMTER0dDYlEYu1wiEgPtlOiuoFtlahusKW2mpeXBx8fH+Tm5hrNDczucXr55ZexePFiuLm5VTtAfSZMmIAzZ85UmTQBQFRUlGYadADo0qULWrZsiWXLluGjjz7SqS+VSiGVSnXKJRKJ1T+oimwtHiLSxXZKVDewrRLVDbbQVs05vtmTQ/z4448oLi42d7MqTZw4Eb///jv27t2rt9eoKhKJBJGRkbh8+bJFYyIiIiIiIlIzO3ESBKFa1y8Z2tfEiRMRHx+PPXv2ICQkxOx9KBQKnD59GgEBARaJiYiIiIiIqLJqzao3efJkODk56V33ww8/mLyfCRMmYO3atdi0aRPc3NyQmZkJAPDw8NDsf+TIkQgKCsK8efMAAHPmzEHnzp3RtGlT5OTkYP78+bh69SpeeeWV6rwUIiIiIiIio6qVOAmCAEvMKaG+H1TPnj21yleuXInRo0cDAK5duwaxuLxj7O7duxg3bhwyMzPh5eWF9u3b49ChQwgLC7vveIiIiIiIiPQxO3ESiUT46quv4Ovre98HNyX5SkpK0lpeuHAhFi5ceN/HJiIiIiIiMlW1rnEiIiIiIiJ6mJidOI0aNcrg9U1EREREREQPIrOH6i1atAgymUynPDs7G/b29jZxU1kiIiIiql0KhULvb0SiymQyGezt7VFSUgKFQlHjx3NwcNCaM6G6zE6cnn/+eQwaNAhvvPGGVvkvv/yCzZs3Y+vWrfcdFBERERHVDYIgIDMzEzk5OdYOheoIQRDg7++P69evW+w2R1URi8UICQmBg4PDfe3H7MTp6NGj+PLLL3XKe/bsiffee+++giEiIiKiukWdNPn6+sLZ2blWfghT3aZUKlFQUABXV1eL9AQZO9aNGzeQkZGBhg0b3tf30+zEqbS0FHK5XKdcJpOhuLi42oEQERERUd2iUCg0SVO9evWsHQ7VEUqlEmVlZXB0dKzxxAkA6tevjxs3bkAul0MikVR7P2ZH2rFjRyxfvlyn/LvvvkP79u2rHQgRERER1S3qa5qcnZ2tHAmRYeohevd7PZXZPU4ff/wxevfujb///hu9evUCAOzevRvHjh3Dzp077ysYIiIiIqp7ODyPbJmlvp9m9zh17doVhw8fRnBwMH755Rds2bIFTZs2xalTp9CtWzeLBEVERERERGRLzO5xAoCIiAisWbPG0rEQERERERHZJLMTp7y8vCrX8z5ORERERGQuhVLAX6nZuJVfAl83R3QM8Yad+MEeAvjBBx/g5s2beucPINNkZWUhLCwMJ06cQIMGDWr0WGYP1fP09ISXl5fOQ11ORERERGSO7Wcy8NhnezD8+yOY8nMKhn9/BI99tgfbz2TU+LEPHz4MOzs7DBw4UGddWloaRCKR3seRI0cAABkZGXjhhRfQvHlziMViTJ061aTjZmZmYvHixQ/M7XxeffVVNGnSBE5OTqhfvz6GDBmCCxcuVLlNQUEBJk6ciAYNGsDJyQlhYWH47rvvtOpkZmbipZdegr+/P1xcXNCuXTts3LhRs97HxwcjR47EzJkza+R1VWR24rR3717s2bMHu3fvhlQqxU8//YQ9e/ZoyomIiIiITLX9TAZeX30CGbklWuWZuSV4ffWJGk+eYmNjMWnSJOzbtw83btzQW2fXrl3IyMjQeqhnky4tLUX9+vXx/vvvo23btiYfd8WKFejSpQsaNWpkkddhbe3bt8fKlStx/vx57NixA4IgoE+fPlXOZPfWW29h+/btWL16Nc6fP4+pU6di4sSJ2Lx5s6bOyJEjcfHiRWzevBmnT5/GU089hWHDhuHkyZOaOmPGjMGaNWuQnZ1do6/R7MSpR48e6NGjB3r27Ak7Ozt07txZU9ajR4+aiJGIiIiI6ghBEFBUJjfpkV8iw8zNZyHo28+9f2dtPof8EplJ+xMEfXsyrKCgAOvXr8frr7+OgQMHIi4uTm+9evXqwd/fX+uhvh9Q48aNsXjxYowcORIeHh4mH/vnn3/GoEGDtMp69uypt3crIiJCU0epVGLOnDlo0KABpFIpIiIisH37ds16dS/Zzz//jC5dusDR0RGtW7fGn3/+qXWsP//8Ex07doRUKkVAQADeeecdrXu16ovlmWeeMfh6xo8fj+7du6Nx48Zo164dPv74Y1y/fh1paWkGtzl8+DBGjRqFnj17onHjxhg/fjzatm2Lv/76S1Pn0KFDmDRpEjp27IhHHnkE77//Pjw9PZGcnKyp06pVKwQGBiI+Pt7gsSyhWpNDEBERERHpUyxTIOzDHRbZlwAgM68EbWaZdsubc3P6wtnB9J+3v/zyC1q0aIHQ0FC8+OKLmDp1KmbMmFHj06tnZ2fj3Llz6NChg866cePGYc6cOZrlL774Art27dIsL168GAsWLMCyZcsQGRmJH374AYMHD8bZs2fRrFkzTb3p06dj0aJFCAsLw5dffolBgwYhNTUV9erVQ3p6OgYMGIDRo0dj1apVuHDhAsaNGwdHR0fMmjXLYCyOjo4mvb7CwkKsXLkSISEhCA4ONlgvKioKmzdvxssvv4zAwEAkJSXhn3/+wcKFCzV1unTpgvXr12PgwIHw9PTEL7/8gpKSEvTs2VNrXx07dsT+/fsxduxYk2Ksjvu+VS/n7SciIiKiuig2NhYvvvgiAKBfv37Izc3V6ZkBVD/eXV1dtR7349q1axAEAYGBgTrrnJ2dtXq2Kh/riy++wP/+9z88//zzCA0NxWeffYaIiAgsWrRIq97EiRPx9NNPo2XLlli6dCk8PDwQGxsLAPj2228RHByMJUuWoEWLFoiJicHs2bOxYMECKJVKg7F4enpW+bq+/fZbzfuzbds2JCYmam4+q89XX32FsLAwNGjQAA4ODujXrx+++eYbdO/eXVPnl19+gUwmQ7169SCVSvHqq68iPj4eTZs21dpXYGAgrl69WmV898vsHqfIyEhNslRcXIxBgwZpvSEnTpywXHREREREVKc4Sexwbk5fk+r+lZqN0SuPGa0XN+ZRdAzxNunYprp48SL++usvzfAue3t7PPfcc4iNjdXpzVi/fj1atmxp8r6NKS4uBmB6D45aXl4ebty4ga5du2qVd+3aFX///bdWWVRUlOa5vb09OnTogPPnzwMAzp8/j6ioKK0OkK5du6KgoAD//fcfGjZsaFZcaiNGjEB0dDQyMjLwxRdfYNiwYTh48KDB17lkyRIcOXIEmzdvRqNGjbBv3z5MmDABgYGB6N27NwDVzIM5OTnYtWsXfHx8kJCQgGHDhmH//v1o06aNZl9OTk4oKiqqVtymMjtxiomJ0TwfMmSIJWMhIiIiojpOJBKZPFyuW7P6CPBwRGZuid7rnEQA/D0c0a1ZfYtPTR4bGwu5XK7V6yMIAqRSKZYsWaJ1vVJwcLBOD8f98PHxAQDcvXsX9evXt9h+rc3DwwMeHh5o1qwZOnfuDC8vL8THx2P48OE6dYuLi/Hee+8hPj5eM6NheHg4UlJS8MUXX6B37964cuUKlixZgjNnzqBVq1YAgLZt22L//v345ptvtGbgy87OrvH30uzEqTam+iMiIiKiB5+dWISZg8Lw+uoTEAFayZM6TZo5KMziSZNcLseqVauwYMEC9OnTR2tdTEwM1q1bh9dee82ix6yoSZMmcHd3x7lz59C8eXOTt3N3d0dgYCAOHjyoNSnbwYMH0bFjR626R44c0Qx5k8vlSE5OxsSJEwEALVu2xMaNGyEIgqbX6eDBg3Bzc7PYvZAEQYAgCCgtLdW7XiaTQSaTQSzWvnLIzs5OM1xQ3YNUVR21M2fO6PQUWlq1r3FKTk7G6tWrsXr1aq3pAImIiIiITNWvdQCWvtgO/h7aw7n8PRyx9MV26Nc6wOLH/P3333H37l2MHTsWrVu31no8/fTTmmuB1O7cuYPMzEytR0lJ+fTpKSkpSElJQUFBAW7fvo2UlBScO3fO4PHFYjF69+6NAwcOmB379OnT8dlnn2H9+vW4ePEi3nnnHaSkpGDKlCla9b755hvEx8fjwoULmDBhAu7evYuXX34ZAPDGG2/g+vXrmDRpEi5cuIBNmzZh5syZmDZtmk6SYop///0X8+bNQ3JyMq5du4ZDhw7h2WefhZOTEwYMGKCp16JFC83QSHd3d/To0QPTp09HUlISUlNTERcXh1WrVmHo0KGa+k2bNsWrr76Kv/76C1euXMGCBQuQmJioNQquqKgIycnJOkmwxQlmunnzpvD4448LIpFI8PLyEry8vASRSCQ88cQTwq1bt8zdXa3Lzc0VAAi5ubnWDkUQBEEoKysTEhIShLKyMmuHQkQGsJ0S1Q1sq7WvuLhYOHfunFBcXHzf+5IrlMKhy1lCwsn/hEOXswS5QmmBCPV78sknhQEDBuhdd/ToUQGA8PfffwupqakCVB1hOo9169ZpttG3vlGjRlXGsHXrViEoKEhQKBSash49eghTpkzRqjdz5kyhbdu2mmWFQiHMmjVLCAoKEiQSidC2bVth27ZtmvXqmNeuXSt07NhRcHBwEMLCwoQ9e/Zo7TcpKUl49NFHBQcHB8Hf31/43//+J8hksipjMSQ9PV3o37+/4OvrK0gkEqFBgwbCCy+8IFy4cEGrHgBh5cqVgkKhEO7evSukp6cLo0ePFgIDAwVHR0chNDRUWLBggaBUln/2//zzj/DUU08Jvr6+grOzsxAeHi6sWrVKa79r164VQkNDDcZX1ffUnNxAdO9FmOy5557Dv//+i1WrVmkukjt37hxGjRqFpk2bYt26dRZJ6GpKXl4ePDw8kJubC3d3d2uHA5lMhq1bt2LAgAGa+wEQkW1hOyWqG9hWa19JSQlSU1MREhJi9kQHDztBENCpUye8+eabeq8Bqq60tDSEhITg5MmTWvd/siVKpRJ5eXlwd3evVg9XZZ07d8bkyZPxwgsv6F1f1ffUnNzA7Ei3b9+Ob7/9VmtmkbCwMHzzzTfYtm2bubsjIiIiInroiEQiLF++XOums2S+rKwsPPXUUxZNPg0xe3IIpVKp9684EolE5yItIiIiIiLSLyIiwmZ7heoKHx8fvP3227VyLLN7nJ544glMmTIFN27c0JSlp6fjzTffRK9evSwaHBERERERma5x48YQBIEJWQ0wO3FasmQJ8vLy0LhxYzRp0gRNmjRBSEgI8vLy8PXXX9dEjERERERERFZl9lC94OBgnDhxArt27cKFCxcAqOaCV9/dl4iIiIiI6EFjduIEqC5mi46ORnR0tFZ5SUkJZ1QhIiIiIqIHjtlD9X744Qe95QcOHEDbtm3vOyAiIiIiIiJbY3bi9NZbb2HhwoWa5ZKSEkydOhV9+vTBSy+9ZNHgiIiIiIiIbIHZQ/V2796Nfv364e7du+jTpw/GjBkDDw8PHD16FG3atKmJGImIiIiIiKzK7B6ndu3aYd++fYiLi0OPHj0wcuRIJk1EREREVD0514EbKYYfOdetGFzNeumllzB37lxrh1Gnbd++HREREbVyP1mzEycAaNGiBQ4cOIAmTZrg8uXLEIurtRsiIiIiepjlXAeWtAeW9zD8WNK+RpOnw4cPw87ODgMHDtRZl5aWBpFIpPdx5MgRAMBvv/2G6Oho1K9fH+7u7oiKisKOHTuMHvfvv//G1q1bMXnyZIu/JmvIzs7GiBEj4O7uDk9PT4wdOxYFBQUmbSsIAvr37w+RSISEhASd9XFxcQgPD4ejoyN8fX0xYcIEzbp+/fpBIpFgzZo1lnopBpk9VC8yMhIikQgAIJPJ8NNPP+HQoUNwc3MDAJw4ccKyERIRERHRg6noDiAvrbqOvFRVzzO4RkKIjY3FpEmTEBsbixs3biAwMFCnzq5du9CqVSutsnr16gEA9u3bh+joaMydOxeenp5YuXIlBg0ahKNHjyIyMtLgcb/++ms8++yzcHV1tewLspIRI0YgIyMDiYmJkMlkGDNmDMaPH4+1a9ca3XbRokWa/KKyL7/8EgsWLMD8+fPRqVMnFBYWIi0tTavO6NGj8dVXX9X4fAtmJ04xMTE1EAYRERERPRAEAZAVmVZXXmx6vbJC4/UkzoCBH+D6FBQUYP369Th+/DgyMzMRFxeHd999V6devXr14O/vr3cfixYt0lqeO3cuNm3ahC1bthhMnBQKBTZs2KDTS9K4cWNcvXpVp/6QIUM0PTGlpaWYPn06fv75Z+Tl5aFDhw5YuHAhHn30UQBAUlISHn/8cfz++++YMWMG/vnnH0RERGDFihVo3bq1Zp8bN27Ehx9+iMuXLyMgIACTJk3CW2+9VWUsb731Fr744gud+M6fP4/t27fj2LFj6NChAwBVYjhgwAB88cUXepNRtZSUFCxYsADHjx9HQECA1rq7d+/i/fffx5YtW9CrVy9NeXh4uFa9QYMGYeLEibhy5QqaNGli8Fj3y+zEaebMmTURBxERERE9CGRFwFzDP5Sr5Yd+ptV79wbg4GLybn/55Re0aNECoaGhePHFFzF16lTMmDHDYO+HKZRKJfLz8+Ht7W2wzqlTp5Cbm6tJMiqaM2cOxo0bp1meMmUKSkvLe+XefvttbNy4ET/++CMaNWqEzz//HH379sXly5e1jjl9+nQsXrwY/v7+ePfddzFo0CD8888/kEgkSE5OxrBhwzBr1iw899xzOHToEN544w3Uq1cPo0ePNhiLi4v+9/bw4cPw9PTUej29e/eGWCzG0aNHMXToUL3bFRUV4YUXXsA333yjNzFNTEyEUqlEeno6WrZsifz8fHTp0gULFixAcHB5D2TDhg3h5+eH/fv312jiVK2Lk3JycrBixQrMmDED2dnZAFRD9NLT0y0aHBERERFRTYmNjcWLL74IQHWtTG5uLv7880+del26dIGrq6vWw5AvvvgCBQUFGDZsmME6V69ehZ2dHXx9fXXWubm5wd/fX/NwcnLSrCssLMTSpUsxf/589O/fH2FhYfj+++/h5OSE2NhYrf3MnDkT0dHRaNOmDX788UfcvHkT8fHxAFTD33r16oUPPvgAzZs3x+jRozFx4kTMnz+/yljUl+ZUlpmZqfNa7O3t4e3tjczMTIPvw7Rp09ClSxcMGTJE7/p///0XSqUSc+fOxaJFi7BhwwZkZ2cjOjoaZWVlWnUDAwP19tZZktk9TqdOnULv3r3h4eGBtLQ0jBs3Dt7e3vjtt99w7do1rFq1qibiJCIiIqK6QOKs6vkxReYp03qTXt4O+IcbrydxNu24AC5evIi//vpLk0zY29vjueeeQ2xsLHr27KlVd/369WjZsqXRfa5duxazZ8/Gpk2b9CZFasXFxZBKpWb3bF25cgUymQxdu3bVlEkkEnTs2BHnz5/XqhsVFaV57u3tjdDQUE2d8+fP6yQrXbt2xaJFi6BQKGBnZ2dWXNWxdetW7N27FydPnjRYR6lUQiaT4auvvkKfPn0AAOvWrYO/vz/27t2Lvn37auo6OTmhqMjEIaLVZHbiNG3aNIwePRqff/65VtY5YMAAvPDCCxYNjoiIiIjqGJHI9OFy9k7G66jrmTEEzxSxsbGQy+Va198IggCpVIolS5bAw8NDUx4cHIymTZtWub+ff/4Zr7zyCn799Vf07t27yro+Pj4oKipCWVkZHBwc7u+F2AB/f3/cunVLq0wulyM7O9vgtWH79+/HlStX4OnpqVX+9NNPo1u3bkhKStJc8xQWFqZZX79+ffj4+ODatWta22VnZ6N+/foWeDWGmT1U79ixY3j11Vd1yoOCgqrsiiMiIiIisgVyuRyrVq3CggULkJKSonn8/fffCAwMxLp168za37p16zBmzBisW7dO77TmlUVERAAAzp07Z9ZxmjRpAgcHBxw8eFBTJpPJcOzYMa3kAoBmunRANcnCP//8o+k1a9mypdY+AODgwYNo3rx5tXqboqKikJOTg+TkZE3Znj17oFQq0alTJ73bTJ06Veu9T0lJAQAsXLgQK1euBABNz9rFixc122VnZyMrKwuNGjXSlJWUlODKlStVzmJoCWb3OEmlUuTl5emU//PPPzWe5RERERHRA8S5HmAvrXpKcnupqp4F/f7777h79y7Gjh2r1bMEqHo8YmNj8dprr2nK7ty5o9NB4OnpCUdHR6xduxajRo3C4sWL0alTJ009JycnnX2r1a9fH+3atcOBAwc0SZQpXFxc8Prrr2P69Onw9vZGw4YN8fnnn6OoqAhjx47VqjtnzhzUq1cPfn5+eO+99+Dj46OZHfutt97Co48+io8++gjPPfccDh8+jCVLluDbb781OZaKWrZsiX79+mHcuHH47rvvIJPJMHHiRDz//POaHr309HT06tULq1atQocOHeDn5wd3d3ed+8E2bNgQISEhAIDmzZtjyJAhmDJlCpYvXw53d3fMmDEDLVq0wOOPP67Z5siRI5BKpVrDE2uC2T1OgwcPxpw5cyCTyQAAIpEI165dw//+9z88/fTTZu1r3rx5ePTRR+Hm5gZfX1/ExMRoZZSG/Prrr2jRogUcHR3Rpk0bbN261dyXQURERETW5hkMTEwGxv9p+DEx2eL3cIqNjdVcs1/Z008/jePHj+PUqVOast69eyMgIEDroZ4efPny5ZDL5ZgwYYLW+ilTplQZwyuvvFKtm7Z++umnePrpp/HSSy+hXbt2uHz5Mnbs2AEvLy+delOmTEH79u2RmZmJLVu2aIYFtmvXDr/88gt+/vlntG7dGh9++CHmzJmjNaOeudasWYMWLVqgV69eGDBgAB577DEsX75cs14mk+HixYtmX4e0atUqdOrUCQMHDkSPHj0gkUiwfft2SCQSTZ1169ZhxIgRcHY2/Rq36hAJgiCYs0Fubi6eeeYZHD9+HPn5+QgMDERmZiaioqKwdetWg9MU6tOvXz88//zzePTRRyGXy/Huu+/izJkzOHfunMH9HDp0CN27d8e8efPw5JNPYu3atfjss89w4sQJrbnpDcnLy4OHhwdyc3Ph7u5ucqw1RSaTYevWrRgwYIDWF4CIbAfbKVHdwLZa+0pKSpCamoqQkBA4OjpaO5w6pbi4GKGhoVi/fr1Fe0rU93G6e/euzvVDtkKpVCIvL09vj5O5srKyEBoaiuPHj2t6qiqr6ntqTm5g9lA9Dw8PJCYm4sCBAzh16hQKCgrQrl07oxfB6bN9+3at5bi4OPj6+iI5ORndu3fXu83ixYvRr18/TJ8+HQDw0UcfITExEUuWLMF3332nU7+0tFRr7nv1MEOZTKbpNbMmdQy2EAsR6cd2SlQ3sK3WPplMBkEQoFQqoVQqrR1OnSKVShEXF4dbt25Z9L1T78uWPxN1v436u3M//v33XyxZsgSNGjUyuC+lUglBECCTyXSu4TLnfGF24qT22GOP4bHHHqvu5nrl5uYCQJU3DDt8+DCmTZumVda3b19Nd2ll8+bNw+zZs3XKd+7cWePdeeZITEy0dghEZATbKVHdwLZae+zt7eHv74+CggKd++qQce3atQMAvfMHVJd6KFx+fv599+bUtPz8/PveR/PmzdG8efMq38OysjIUFxdj3759kMvlWuvMGTpYrcRp9+7dWLhwoWYu+JYtW2Lq1KnV6nVSUyqVmDp1Krp27VrlkLvMzEz4+flplfn5+Rmc0W/GjBlaiVZeXh6Cg4PRp08fmxmql5iYiOjoaA4rILJRbKdEdQPbau0rKSnB9evX4erqyqF6NmLAgAFQKBTWDqNKgiAgPz8fbm5uZt/LqjpKSkrg5OSE7t276x2qZyqzE6dvv/0WU6ZMwTPPPKO56O3IkSMYMGAAFi5ciAkTJpi7SwDAhAkTcObMGRw4cKBa2xsilUohlUp1yiUSiU2dVG0tHiLSxXZKVDewrdYehUIBkUgEkUhk870bZDvUQ+pq63uj/o7qOzeYc64wO3GaO3cuFi5ciIkTJ2rKJk+ejK5du2Lu3LnVSpwmTpyI33//Hfv27UODBg2qrOvv74+bN29qld28edPgzbWIiIiIqGaof3QWFRXBycnEm9kS1TL1MNLq3KOqIrMTp5ycHPTr10+nvE+fPvjf//5n1r4EQcCkSZMQHx+PpKQkgzNhVBQVFYXdu3dj6tSpmrLExMQan7ediIiIiLTZ2dnB09MTt27dAgA4OzvXytArqtuUSiXKyspQUlJS4z1OSqUSt2/fhrOzM+ztqz29A4BqJE6DBw9GfHy8ZlY7tU2bNuHJJ580a18TJkzA2rVrsWnTJri5uWmuU/Lw8ND81WLkyJEICgrCvHnzAABTpkxBjx49sGDBAgwcOBA///wzjh8/rjVPPBERERHVDvWoH3XyRGSMIAgoLi6Gk5NTrSTaYrEYDRs2vO9jmZ04hYWF4ZNPPkFSUpKml+fIkSM4ePAg3nrrLXz11VeaupMnT65yX0uXLgUA9OzZU6t85cqVmhtwXbt2TSsT7dKlC9auXYv3338f7777Lpo1a4aEhAST7uFERERERJYlEokQEBAAX19fTgVPJpHJZNi3bx+6d+9eK9cjOjg4WKRny+zEKTY2Fl5eXjh37hzOnTunKff09ERsbKxmWSQSGU2cTLn3blJSkk7Zs88+i2effdb0oImIiIioRtnZ2d33NST0cLCzs4NcLoejo2OdmsjF7MQpNTW1JuIgIiIiIiKyWZw3koiIiIiIyAgmTkREREREREYwcSIiIiIiIjKCiRMREREREZERTJyIiIiIiIiMqPbtc4uKinDt2jWUlZVplYeHh993UERERERERLbE7MTp9u3bGDNmDLZt26Z3vUKhuO+giIiIiIiIbInZQ/WmTp2KnJwcHD16FE5OTti+fTt+/PFHNGvWDJs3b66JGImIiIiIiKzK7B6nPXv2YNOmTejQoQPEYjEaNWqE6OhouLu7Y968eRg4cGBNxElERERERGQ1Zvc4FRYWwtfXFwDg5eWF27dvAwDatGmDEydOWDY6IiIiIiIiG2B24hQaGoqLFy8CANq2bYtly5YhPT0d3333HQICAiweIBERERERkbWZPVRvypQpyMjIAADMnDkT/fr1w5o1a+Dg4IC4uDhLx0dERERERGR1ZidOL774ouZ5+/btcfXqVVy4cAENGzaEj4+PRYMjIiIiIiKyBfd9A1xnZ2e0a9cOPj4+uHXrliViIiIiIiIisilmJ04ffvih3vI1a9agVatW9x0QERERERGRrTF7qF5cXBxyc3OxePFiAMCtW7cwfvx4HDhwAIsWLbJ0fERERERERFZnduK0f/9+REdHIycnB9HR0ZgyZQoee+wxnDlzBv7+/jURIxERERERkVWZnTg1atQI+/btQ58+fbB69WosW7YMr7zySk3ERkREREREZBOqNTmEv78/9u3bh06dOmH9+vUoLi62dFxEREREREQ2w+weJy8vL4hEIgCATCZDYWEhfH19IZFIAADZ2dmWjZCIiIiIiMjKzE6cOAEEERERERE9bMxOnEaNGlUTcRAREREREdkssxMnACgtLcWaNWtw7tw5iEQitGrVCsOHD4dUKrV0fERERERERFZndHIIuVyOBg0a4Pbt2wCAc+fOoVmzZvi///s/JCcn4/jx45g2bRqaN2+OCxcu1HjAREREREREtc1o4mRvb4+CggLk5+cDAKZMmYIOHTrg2rVr2Lt3L/bu3YurV6+iXbt2mDJlSo0HTEREREREVNtMGqrn4+ODoqIiAMChQ4fw119/wdXVVbPezc0Nc+bMQVRUVM1ESUREREREZEUm3ccpMjIS27ZtAwB4enoiJydHp05ubi4cHBwsGhwREREREZEtMClxmjBhAj7++GPs2bMHMTExePXVV3H06FEIggBBEHDkyBG89tprGDhwYE3HS0REREREVOtMGqrXs2dPfPvtt3jmmWfg5OSEjIwMdOnSBfb2qs3lcjn69euHxYsX12iwRERERERE1mDydOQjRoxATEwM9u/fj9u3b0OpVAIAvLy80KJFCzRv3rzGgiQiIiIiIrIms+7j5OLign79+tVULERERERERDbJ7BvgfvXVV1Wunzx5crWDISIiIiIiskVmJ05Tp06Fs7MzfH19IQiC1jqRSMTEiYiIiIiIHjgmzapX0XvvvQexWIzevXvjyJEjSE1N1Tz+/fffmoiRiIiIiIjIqsxOnD766COcP38eZWVlCA0NxSeffILS0tKaiI2IiIiIiMgmmJ04AUBQUBDi4uKwZ88e7N69G02bNsWqVassHRsREREREZFNMPsap1OnTpVvbG+PRYsWYdOmTZg4cSIWL16M5ORkiwZIRERERERkbWYnThERERCJRJqJISo+T0lJsWhwREREREREtsDsxCk1NbUm4iAiIiIiIrJZZidOjRo1qok4iIiIiIiIbJbZidPmzZurXD948GCT97Vv3z7Mnz8fycnJyMjIQHx8PGJiYgzWT0pKwuOPP65TnpGRAX9/f5OPS0REREREZA6zE6eqEhuxWAy5XG7yvgoLC9G2bVu8/PLLeOqpp0ze7uLFi3B3d9cs+/r6mrwtERERERGRucxOnJRKpd7ykpISODs7m7Wv/v37o3///uaGAF9fX3h6eppUt7S0VOs+U3l5eQAAmUwGmUxm9rEtTR2DLcRCRPqxnRLVDWyrRHWDLbVVc2IwO3EyRCQSQSQSWWp3VYqIiEBpaSlat26NWbNmoWvXrgbrzps3D7Nnz9Yp37lzp9mJXk1KTEy0dghEZATbKVHdwLZKVDfYQlstKioyua5IUM8lfp9KS0vh7OwMhUJRre1FIpHRa5wuXryIpKQkdOjQAaWlpVixYgV++uknHD16FO3atTMYV+Uep+DgYGRlZWkN97MWmUyGxMREREdHQyKRWDscItKD7ZSobmBbJaobbKmt5uXlwcfHB7m5uUZzA7N7nEJCQvT2LFko/6pSaGgoQkNDNctdunTBlStXsHDhQvz00096t5FKpZBKpTrlEonE6h9URbYWDxHpYjslqhvYVonqBltoq+Yc3+zEaerUqXrLZTIZ/ve//5m7u/vWsWNHHDhwoNaPS0REREREDw+zE6cpU6boLS8pKbFK4pSSkoKAgIBaPy4RERERET08LDo5hLkKCgpw+fJlzXJqaipSUlLg7e2Nhg0bYsaMGUhPT8eqVasAAIsWLUJISAhatWqFkpISrFixAnv27MHOnTst9TKIiIiIiIh0mJ04ffXVV3rLzbl/k9rx48e1bmg7bdo0AMCoUaMQFxeHjIwMXLt2TbO+rKwMb731FtLT0+Hs7Izw8HDs2rVL701xiYiIiIiILMXsxGnhwoUG1zVs2NCsffXs2bPKSSXi4uK0lt9++228/fbbZh2DiIiIiIjofpmdOKWmptZEHERERERERDZLXN0Ns7KykJWVZclYiIiIiIiIbJJZiVNOTg4mTJgAHx8f+Pn5wc/PDz4+Ppg4cSJycnJqKEQiIiIiIiLrMnmoXnZ2NqKiopCeno4RI0agZcuWAIBz584hLi4Ou3fvxqFDh+Dl5VVjwRIREREREVmDyYnTnDlz4ODggCtXrsDPz09nXZ8+fTBnzpwqJ48gIiIiIiKqi0weqpeQkIAvvvhCJ2kCAH9/f3z++eeIj4+3aHBERERERES2wOTEKSMjA61atTK4vnXr1sjMzLRIUERERERERLbE5MTJx8cHaWlpBtenpqbC29vbEjERERERERHZFJMTp759++K9995DWVmZzrrS0lJ88MEH6Nevn0WDIyIiIiIisgVmTQ7RoUMHNGvWDBMmTECLFi0gCALOnz+Pb7/9FqWlpfjpp59qMlYiIiIiIiKrMDlxatCgAQ4fPow33ngDM2bMgCAIAACRSITo6GgsWbIEwcHBNRYoERERERGRtZicOAFASEgItm3bhrt37+LSpUsAgKZNm/LaJiIiIiIieqCZlTipeXl5oWPHjpaOhYiIiIiIyCaZPDkEERERERHRw4qJExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGSEVROnffv2YdCgQQgMDIRIJEJCQoLRbZKSktCuXTtIpVI0bdoUcXFxNR4nERERERE93KyaOBUWFqJt27b45ptvTKqfmpqKgQMH4vHHH0dKSgqmTp2KV155BTt27KjhSImIiIiI6GFmb82D9+/fH/379ze5/nfffYeQkBAsWLAAANCyZUscOHAACxcuRN++ffVuU1paitLSUs1yXl4eAEAmk0Emk91H9JahjsEWYiEi/dhOieoGtlWiusGW2qo5MVg1cTLX4cOH0bt3b62yvn37YurUqQa3mTdvHmbPnq1TvnPnTjg7O1s6xGpLTEy0dghEZATbKVHdwLZKVDfYQlstKioyuW6dSpwyMzPh5+enVebn54e8vDwUFxfDyclJZ5sZM2Zg2rRpmuW8vDwEBwejT58+cHd3r/GYjZHJZEhMTER0dDQkEom1wyEiPdhOieoGtlWiusGW2qp6NJop6lTiVB1SqRRSqVSnXCKRWP2DqsjW4iEiXWynRHUD2ypR3WALbdWc49ep6cj9/f1x8+ZNrbKbN2/C3d1db28TERERERGRJdSpxCkqKgq7d+/WKktMTERUVJSVIiIiIiIiooeBVROngoICpKSkICUlBYBquvGUlBRcu3YNgOr6pJEjR2rqv/baa/j333/x9ttv48KFC/j222/xyy+/4M0337RG+ERERERE9JCwauJ0/PhxREZGIjIyEgAwbdo0REZG4sMPPwQAZGRkaJIoAAgJCcEff/yBxMREtG3bFgsWLMCKFSsMTkVORERERERkCVadHKJnz54QBMHg+ri4OL3bnDx5sgajIiIiIiIi0lanrnEiIiIiIiKyBiZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERERERkRFMnIiIiIiIiIxg4kRERERERGSEvbUDICIiIiKiB1zOdaDojuq5XA6PojQg42/A/l464lwP8Ay2WnimYOJEREREREQ1J+c6sKQ9IC8FAEgA9ASAixXq2EuBick2nTxxqB4REREREdWcojuapMkgeWl5j5SNYo8TERERERGZTqkEFKWqZEdeCshLqvi3BMi6ZO2ILYKJExERERFRXaJU6CYnmudlhhOYqpIchSlJ0L1/FWXWfgesgokTEREREZGpBAFQys1ITmogkVHKrf0uVCACJE6qa5TsHQE7B9W/6mV7qeo9+O+otQO9b0yciIiIiKjuEATtno/qJCV6h5iZkcgISmu/C+XE9rqJSuV/7aRVrK9q28pJkJ46YntAJKo6xhspwPIetfJ21CQmTkRERFR3PQBTHNc5SkU1ekqqk8gYGiZmZJKB2qavh6XGE5kK+7Hjz/nawneaiIiI6qYHZIpjsykqDxMzZ8iXCYmJsSFmSpm134EKRHoSDKmJSUilf3USIBO3EXOS6ocFEyciIiKqm8yZ4thSiZMgVBoeVp3elYpDzKqRyAgKy7wWSxCJAXsnIwmGvt4VcxKZqupIjA8TI+tzrnfvWqcq2qu9VFXPhjFxIiIiorpJaWICcW4TcPWQiYmMCcmPLRFLzB8mZslEhsPEyBSewaqe33vDamVyOQ4ePIiuXbtCUoeG1fLbTkRERDVPEABZEVBWCJQVAKUF5c+1lvPv/Vt4r0z90LNsahJz4Muae116r10xN5HRc+2KSYmMlMPEqO7wDC5PjGQy5DqnAwFtAYnEunGZgYmTNfBCViIisnUKmWkJTuX1VSU8EKzzWhp3A1z9LJ/I2DlwmBjRQ4SJU217WC9kJSKimqNUavfmmJzg5Fcoq5Tw1OQNLh1cAQeX8n+lbgaW1WWugFS9zb11UlcgOw1YNcj48fp8DARG1NzrIaKHAhOn2maNC1mJiMi2yMuMJDgVkhu9CU6l5bJC1Fhvjp2DnuRFX4JTIaHRWXYt30bibLnhZUXZltkPEZEJmDgRERFVRakEZIWWSXDUyzU2nbNIT4JTcdmMBEe9vb1DDcVKRFS3MHGyVT89BUhd7t3YzEH1H5edtPxfi5ZVWm8vVU3vaSflNJ9EVLcIgqrXvqoEp7RislO510fPsqyo5uK1dzSQ4FRIYIwlONJKvTkP0zn7AZnimIjqBiZOtqr4juphCyonU1UmXXrK7CQVZhqqqsyMxI/TnxI9GJQK4xMKmJrgqOsq5TUTq0isp7dGXwJjbLnCUDe7ujOblE16QKY4JqK6gb8+bdVTKwDvkPI7fitk956X6SkrVY2XN1qmb1s9ZZVvrKe4t96WiMRm9qJZuMxQ4sdpYR8cnP1SlyCopn82NkW0KQmOelleXHPx2jsZ6K0xNeGp1BNk7/hw9ebUFQ/AFMdEVDfYROL0zTffYP78+cjMzETbtm3x9ddfo2PHjnrrxsXFYcyYMVplUqkUJSU2dkO6++XTzHozACkV5UmVJrEq01OmTs5qsqzC84oXPgtK1Q+umvzRVR1iexN6zEztgatcdu+hU2ZCkscfe+Z5UGa/VMiNTBFd4X45Rnt07pVV/sOKpYjs7iUs5iQ4lWZiqzzUTWxXM7ESEdFDyeqJ0/r16zFt2jR899136NSpExYtWoS+ffvi4sWL8PX11buNu7s7Ll4s/wUj4o9CyxLbAQ7OAJytHUk5QVANvzGY0FWjZ80SZZUv8FbKVQ9ZoXXeJ0PM6kWrkJyZXWZGMmjLwy2tMftlxZuDGpxgQN/U0gaWzbk5aHVIXCyU4NxbZy9lgk9ERDbN6r9cvvzyS4wbN07Ti/Tdd9/hjz/+wA8//IB33nlH7zYikQj+/v4m7b+0tBSlpeU/gPLy8gAAMpkMMllNzWpUBQcP2NtJIapi6JtgJ4XcwQOwRny2TixVPWxlBIYg6O8hu7csUugZLlmhZ02ktXyv3r1l87atdFyd4Zb31tXgbVnMJYjElXrRHLQeQsXkTFwhWbOTQqjYA1e5R67itpX3by+FIK6c+FWqJxIDcrlJXzFZ4V0gKxUoK4BIa2roAoi0rs0prGK5QlkNTSctiCWqROVesiNUus7G8LKqTKic9EicLd+bI6+h65LooaL+f90q/78Tkclsqa2aE4NVE6eysjIkJydjxowZmjKxWIzevXvj8OHDBrcrKChAo0aNoFQq0a5dO8ydOxetWrXSW3fevHmYPXu2TvnOnTvh7GydHhWnFvPgIC8wuL7M3hXFB08BOFV7QVEtEQNwuvcwoaoY1UsSBSXEghxipQx2ghxiQQaxUq4q01qWQSwoarbevWWxINdKDESCUtUjIi8B9PwdwVp9D0rYQSky7Vo1yZqYGolBLnZUPeyk9/511JQpNM+lkNs5QS6WQlGxjta/UsjFThDERk71AlSfgc7noACQe+9BVHckJiZaOwQiMoEttNWiItNnTrVq4pSVlQWFQgE/Pz+tcj8/P1y4cEHvNqGhofjhhx8QHh6O3NxcfPHFF+jSpQvOnj2LBg0a6NSfMWMGpk2bplnOy8tDcHAw+vTpA3d3d8u+oGqQyWRITExEdHQ0JLyQlR5QSgBK9XBLA71oIk2vmYFetCp64Kq9rUKmWleBGAqIzbiOR7CTVtk7o3/ZcG+PajppMewA2AGQWvSTIHqw8f9UorrBltqqejSaKaw+VM9cUVFRiIqK0ix36dIFLVu2xLJly/DRRx/p1JdKpZBKdX96SMQCJGI9w2JEYtUF/mqKKsY2iUSqIUTVqauUqYZ52QkQCTJI7CrEY6iuOfs1xM6hmnXlqgkZLFFXXGGyghqrq6j6Inaz6tqrvhe2UldQVj3dssiufBiVTdQVyq8Fs7MHJPam1dW73wrt01J11QmdUlGebP13DPjlJcP7VveHjd0FUWBbfWvuLVjgHFGbdQGeI6pVl+eI+6trrC2bUddO9ZlJJBLVdOQ1cT4BjLTlWv4dUZt1AZ4jqlWX5wh9dXV+/xqsa8FzhJ52r/f4Blg1cfLx8YGdnR1u3rypVX7z5k2Tr2GSSCSIjIzE5cuXzTv4+QWAq56/5bo1A0JGVKg33/AH4NoYeGR0+fLFRYDcQHefcyDQdHz58j/fAGU5ECsVaC67BPH5v8s/dMf6QPMJ5XUvLwdKbuvfr4Mn0GJq+fK/K4GiG/rr2jsDYW+XL6etAQrS9NcVS4DW75UvX10P5F/SXxcAwmeVP7/+G5B7znDdVu+WnyDTfwfuphiuGzYdsHdRPc/YAdw5Zrhui6mq9wMAbu4Gbh8yXLf5G4DjvclHbu8HbiYZrtt0HOAcpHp+5wiQUUW38iOjVd8LAMhOBm5sNVy38QuAe3PV89zTwPUEw3UbPgt43huOmnseuPar4brBMYBXhOp5/mUgba3huoEDAJ97M1gWXgP+jTNcNyAaqN9V9bw4A7j8veG6fj1VDwAovQ38863huvW7AAF9VM9lucCFRYbr1nsUCBqoeq4oAs7NN1zXK0L1XgCqNnx2ruG6HmFAo2Hly3e3AfUMXIdYZgfk3/uRYSep8XOEXjxHlOM5QoXnCACAyDOyfKEmzxFV1a3l3xF68RxRjucIFVs7R5RkoLlsg/bv34pq83dEgem33LHqTWccHBzQvn177N69W1OmVCqxe/durV6lqigUCpw+fRoBAQE1FSYRERERET3kRIJQVR9rzVu/fj1GjRqFZcuWoWPHjli0aBF++eUXXLhwAX5+fhg5ciSCgoIwb948AMCcOXPQuXNnNG3aFDk5OZg/fz4SEhKQnJyMsLAwo8fLy8uDh4cHcrNv67/GqZa72GVyGbZt24b+/ftDYi+psq45+zWIXezVqMsu9vurW7Nd7BavCwDZV4BvO1cxJbmo/D5Obn4G6oDDcKpbl+eI+6trE+3eOucImVyBrdt3YsCAARyqx3PEfdblOaIm68rKSrFt6xbt378G91uzvyPy8vLg4V0fubm5Ruc/sPo1Ts899xxu376NDz/8EJmZmYiIiMD27ds1E0Zcu3YNYnF5x9jdu3cxbtw4ZGZmwsvLC+3bt8ehQ4dMSpq0qKcfNqWeOfs0lfokpRRBEEkAsYNq2E9Vdc3Zr8XrmvFVsYm66kvrH8C66mm860xdUd2qCwDeTYCJJ1T3aQIgk8tx8OBBdO3aVfVjDACc65l/D6fqnCPqTF1baPc8RwCwkXZvpXNExR9MNXmOsIW6NtHueY6ok3Vtot2Ljf/+1dSt4d8GZrQ7qydOADBx4kRMnDhR77qkpCSt5YULF2LhwoW1EBURPdQ8g8sTI5kMuc7pQEBbgDN1ERERPZSseo0TERERERFRXcDEiYiIiIiIyAgmTkREREREREYwcSIiIiIiIjKCiRMREREREZERTJyIiIiIiIiMYOJERERERERkBBMnIiIiIiIiI5g4ERERERERGcHEiYiIiIiIyAh7awdQ2wRBAADk5eVZORIVmUyGoqIi5OXlQSKRWDscItKD7ZSobmBbJaobbKmtqnMCdY5QlYcuccrPzwcABAcHWzkSIiIiIiKyBfn5+fDw8KiyjkgwJb16gCiVSty4cQNubm4QiUTWDgd5eXkIDg7G9evX4e7ubu1wiEgPtlOiuoFtlahusKW2KggC8vPzERgYCLG46quYHroeJ7FYjAYNGlg7DB3u7u5W/+IQUdXYTonqBrZVorrBVtqqsZ4mNU4OQUREREREZAQTJyIiIiIiIiOYOFmZVCrFzJkzIZVKrR0KERnAdkpUN7CtEtUNdbWtPnSTQxAREREREZmLPU5ERERERERGMHEiIiIiIiIygokTERERERGREUyciIiIiIiIjGDiZCX79u3DoEGDEBgYCJFIhISEBGuHRESVzJs3D48++ijc3Nzg6+uLmJgYXLx40dphEVElS5cuRXh4uOZmmlFRUdi2bZu1wyKiKnz66acQiUSYOnWqtUMxGRMnKyksLETbtm3xzTffWDsUIjLgzz//xIQJE3DkyBEkJiZCJpOhT58+KCwstHZoRFRBgwYN8OmnnyI5ORnHjx/HE088gSFDhuDs2bPWDo2I9Dh27BiWLVuG8PBwa4diFk5HbgNEIhHi4+MRExNj7VCIqAq3b9+Gr68v/vzzT3Tv3t3a4RBRFby9vTF//nyMHTvW2qEQUQUFBQVo164dvv32W3z88ceIiIjAokWLrB2WSdjjRERkotzcXACqH2REZJsUCgV+/vlnFBYWIioqytrhEFElEyZMwMCBA9G7d29rh2I2e2sHQERUFyiVSkydOhVdu3ZF69atrR0OEVVy+vRpREVFoaSkBK6uroiPj0dYWJi1wyKiCn7++WecOHECx44ds3Yo1cLEiYjIBBMmTMCZM2dw4MABa4dCRHqEhoYiJSUFubm52LBhA0aNGoU///yTyRORjbh+/TqmTJmCxMREODo6WjucauE1TjaA1zgR2baJEydi06ZN2LdvH0JCQqwdDhGZoHfv3mjSpAmWLVtm7VCICEBCQgKGDh0KOzs7TZlCoYBIJIJYLEZpaanWOlvEHiciIgMEQcCkSZMQHx+PpKQkJk1EdYhSqURpaam1wyCie3r16oXTp09rlY0ZMwYtWrTA//73P5tPmgAmTlZTUFCAy5cva5ZTU1ORkpICb29vNGzY0IqREZHahAkTsHbtWmzatAlubm7IzMwEAHh4eMDJycnK0RGR2owZM9C/f380bNgQ+fn5WLt2LZKSkrBjxw5rh0ZE97i5uelcI+zi4oJ69erVmWuHmThZyfHjx/H4449rlqdNmwYAGDVqFOLi4qwUFRFVtHTpUgBAz549tcpXrlyJ0aNH135ARKTXrVu3MHLkSGRkZMDDwwPh4eHYsWMHoqOjrR0aET1AeI0TERERERGREbyPExERERERkRFMnIiIiIiIiIxg4kRERERERGQEEyciIiIiIiIjmDgREREREREZwcSJiIiIiIjICCZORERERERERjBxIiIiIiIiMoKJExERUS3Jy8tDREQECgoK8N9//6Fp06bWDomIiEzExImIqI4aPXo0YmJidMqTkpIgEomQk5NT6zFR1dzd3fHYY4/B09MTjRs3xuuvv27tkIiIyET21g6AiIjoYbJkyRLMmTMH9vb2cHd3t3Y4RERkIvY4ERE9BDZu3IhWrVpBKpWicePGWLBggdb6xo0bQyQS4cSJE5oymUwGPz8/iEQipKWlacoPHDiAbt26wcnJCcHBwZg8eTIKCwu19vXRRx9h+PDhcHFxQVBQEL755huDsc2aNQsikUjvo2fPnpp6K1asQMuWLeHo6IgWLVrg22+/1drPf//9h+HDh8Pb2xsuLi7o0KEDjh49iri4OIP7b9y4sWb7pUuXokmTJnBwcEBoaCh++uknrf1X3M7d3R3R0dG4cuWKZv3du3cxcuRIeHl5wdnZGf3798elS5c06+Pi4uDp6QkA8Pb2hru7O7p37w6RSISUlBS9703Pnj0Nxj5r1iyTjquvZ1IkEiEhIQEAkJaWphVDaWkpevfujd69e6O0tFTvPu7cuQMvLy/N6yEiehgwcSIiesAlJydj2LBheP7553H69GnMmjULH3zwAeLi4rTqBQUFYfny5Zrl+Ph4SCQSrTpXrlxBv3798PTTT+PUqVNYv349Dhw4gIkTJ2rVmz9/Ptq2bYuTJ0/inXfewZQpU5CYmKg3vv/7v/9DRkYGMjIy8NZbbyEqKkqz/NtvvwEA1qxZgw8//BCffPIJzp8/j7lz5+KDDz7Ajz/+CAAoKChAjx49kJ6ejs2bN+Pvv//G22+/DaVSieeee06zv0WLFqFBgwaa5WPHjmle65QpU/DWW2/hzJkzePXVVzFmzBjs3btXK9aVK1ciIyMD+/btw61bt/Duu+9q1o0ePRrHj/9/O3cUEtXWxQH8n5Ylo4gJmQZZaoamwlhSk5hFmiaFEpRZhJqOBpWYkyWEio2kRBSBgZYxgiBiMVZigdqDyKCBpL0oGmYPPQhlYzUWpba+h0vnu6dRp6Yb97Pv/4PzcPZZe6+1z7zMZm9OHx48eICenh6ICJKTkzE9PT3nvM1mM/r7++f72ZSYb7XqdDoYDAbl/uzZs07lXcjs7CwOHz4Mm82Ge/fuYfny5XPGlZeXY2Zm5qfHJyJa1ISIiBaljIwMcXV1FY1Go7pWrFghAMRqtYqIyJEjRyQhIUHVt6ioSMLCwpT7gIAAKS4uFh8fH7HZbCIisnv3bikpKREAMjY2JiIi2dnZkpubqxqru7tbXFxc5NOnT8pYSUlJqpi0tDTZu3evwzmVlZVJXFycXXtQUJA0Njaq2oxGo+h0OhERqa2tFU9PT5mYmFhwfJPJJAEBAXbt27dvF71er2o7ePCgJCcnK/cApKWlRUREJicnJSYmRukzMjIiAMRisSjxb968EXd3d2lublZye3l5iYjIly9fJDg4WIxGowCQ/v7+BesWEYmLi5OysjJV24/kPXHihOzZs0fV7+9zGRsbEwDy9OlTOXbsmISHh9u9x4yMDElJSRERkeHhYdFoNFJSUqLMh4jo/wF3nIiIFrFdu3ZhYGBAddXV1alihoaGEBMTo2qLiYnB8+fPMTs7q7T5+vpi586daGpqwujoKAYHB7F//35Vv2fPnqG+vh4eHh7KlZiYiK9fv2JsbEyJ0+l0qn46nQ5DQ0NOzXFqagqjo6PIzs5W5a2oqFCOyg0MDECr1WLlypVO5ZjvHX1fc3p6Ojw8PODt7Y0PHz6gsrJS6b906VJs3bpVifXx8cHGjRvnnPeNGzfg5eWFo0ePOlXv3+t2lDc8PBy9vb2q32cuRUVFaGhoQHR09ILv8dy5c8jLy0NgYOAv1U5EtNjw4xBERIuYRqOx+6T1q1evnB4vNzcXpaWlGBkZQUZGht1RPZvNhry8POTn59v1Xbt2rdN5F2Kz2QAAt27dUi0QAMDV1RUA4O7u/ltyf+/atWuIj4/H5OQkLly4gMzMTLS2tv7UGFarFUajES0tLViyZMlvqvS/jh8/jpaWFgQGBkKj0cwbNzQ0hEePHuHAgQNIS0tDYmKiXUxXVxe6u7thMplw//7931k2EdH/HO44ERH94UJDQ2GxWFRtFosFISEhysLjm4SEBLx+/Ro1NTXIycmxGysqKgqDg4MIDg62u9zc3JS43t5eVb/e3l6EhoY6Vb+vry/8/f3x4sULu5zr168HAERGRmJgYABv3751Ksd87ygsLEzVtnr1agQHB2PLli04ffo02traMD09jdDQUMzMzODJkydK7MTEBIaHh+3GMBqNiI2NxY4dO5yq9fu6HeV1d3dHZ2cnxsfHlV3JuTQ0NCApKQlGoxF6vR7v379XPRcRGAwGlJSUwNvb+5drJyJabLjjRET0hzMYDIiOjobRaERaWhp6enpQXV1t91U64K+vrdXU1ODly5cICgqy+5N9/vx5bNu2DadOnUJOTg40Gg0GBwfR0dGB6upqJc5iseDy5ctITU1FR0cH7ty5g7a2NqfnUF5ejvz8fHh5eSEpKQmfP39GX18frFYrCgsLkZ6ejkuXLiE1NRWVlZXw8/NDf38//P397Y4NzqWoqAiHDh2CVqtFfHw8WltbYTab0dnZqYqbnJzE+Pg43r17h9u3byMwMBDLli3Dhg0bkJKSAr1ej9raWnh6eqK4uBhr1qxBSkqK0v/jx4+4efOm6uuFv+JH8wJ/LUB9fX3nHevb8bwzZ87AbDajsLBQdezz8ePH8PPzw8mTJ/+R2omIFhvuOBER/eGioqLQ3NyMpqYmhIeHo7S0FBcvXkRmZuac8QkJCdDr9XM+i4yMRFdXF0ZGRhAbGwutVovS0lL4+/ur4gwGA/r6+qDValFRUYGrV6/OefTrR+Xk5KCurg4mkwkRERGIi4tDfX29suPk5uaG9vZ2rFq1CsnJyYiIiEBVVZXdjtp8UlNTcf36dVy5cgWbNm1CbW0tTCaT6nPoAJCVlQU/Pz9ER0fDarXi7t27yjOTyYTNmzdj37590Ol0EBE8fPhQddxxenoaWVlZCAkJcfpdfO9H8v4MFxcXmEwmNDY2or29XWmfmppCVVWV0+MSES12S0RE/u0iiIjoz7Fu3ToUFBSgoKDg3y6FiIjoH8MdJyIiIiIiIge4cCIiIiIiInKAR/WIiIiIiIgc4I4TERERERGRA1w4EREREREROcCFExERERERkQNcOBERERERETnAhRMREREREZEDXDgRERERERE5wIUTERERERGRA1w4EREREREROfAfF+t4adU8QxgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "data_train = data.copy()\n", + "data_test = data_test_points.copy()\n", + "\n", + "IRE1 = 3.88\n", + "IRE2 = 0.46\n", + "\n", + "numb_square = 20\n", + "\n", + "xx, yy, Z1 = lib.square_calc(numb_square, data_train, ae1_trained, IRE1, '1', False)\n", + "_, _, Z2 = lib.square_calc(numb_square, data_train, ae2_trained, IRE2, '2', False)\n", + "\n", + "lib.plot2in1_anomaly(data_train, xx, yy, Z1, Z2, data_test)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 888 + }, + "id": "WMJMLKcWAbwo", + "outputId": "684af7df-8de6-4740-b438-e2ca3a971d96" + }, + "execution_count": 65, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step \n", + "amount: 20\n", + "amount_ae: 288\n", + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 13.4\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.06944444444444443\n", + "\n", + "\n", + "\u001b[1m225/225\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n", + "amount: 20\n", + "amount_ae: 37\n", + "\n", + "Оценка качества AE2\n", + "IDEAL = 0. Excess: 0.85\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.5405405405405406\n", + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWGxJREFUeJzt3XtcVHX+P/DXmStyU0TuIHgHLUysTNNVf9hSa1bWGpKFllb7rS2zLV2zVq0su+1uu+2WmmYXyrYta2u1MlPT1RIv4SVBURAQAUWuowwwc35/jDPMwAzMwMycubyej8c8ZM6cmfMZk3fv8/l83p+PIIqiCCIiIiIfIZO6AURERETOxOSGiIiIfAqTGyIiIvIpTG6IiIjIpzC5ISIiIp/C5IaIiIh8CpMbIiIi8ilMboiIiMinMLkhIiIin8LkhvyKIAhYtmyZ1M0gIi/D2OFdmNx4iX/+858QBAFjxozp8Wdt2rSJv6RuVFtbi4CAAAiCgGPHjlk9Z86cORAEweojICDA4twVK1bglltuQVRUFAMudYmxw3s5M3bk5+dj4cKFuOqqqxASEoKYmBhMnToV+/btc9fXcSuF1A0g++Tk5CApKQl79+5FYWEhBg8e3O3P2rRpE/7xj38wSLnJJ598AkEQEB0djZycHDz//PNWz1Or1Xj77bc7HJfL5RbPn376aURHR2PUqFH45ptvXNJm8h2MHd7LmbHj7bffxtq1a3HHHXfgoYceQl1dHVatWoXrrrsOX3/9NaZMmeKy7yEFJjdeoKioCLt378Znn32GBx98EDk5OVi6dKnUzfJ7TU1NUKlUkMk67wD94IMP8Jvf/AaJiYn48MMPbQYohUKBu+++u8vrFhUVISkpCefPn0dERES32k7+gbHDM0kRO7KysrBs2TIEBwebjt13331ISUnBsmXLfC654bCUF8jJyUFYWBimTp2K3/72t8jJyelwzvbt2yEIArZv325xvLi4GIIgYP369QAMXZj/+Mc/AMCi+9JIo9HgD3/4AxISEqBWqzFs2DC8+uqrsLZ5/AcffIDRo0ejV69e6Nu3L2bOnInS0lKLcyZNmoQrrrgCv/zyCyZPnozAwEDExcXh5Zdf7vB5TU1NWLZsGYYOHYqAgADExMTg9ttvx8mTJx1un1arxYIFCxAREYGQkBDccsstKCsrs/r3e+bMGdx3332IioqCWq3GiBEjsG7dOqt/vxs2bMDTTz+NuLg4BAYGor6+3upnGpWUlGDnzp2YOXMmZs6cafqfTU8kJSX16P3kPxg7GDuMRo8ebZHYAEB4eDgmTJhgc8jLm7Hnxgvk5OTg9ttvh0qlQlZWFt58803k5ubimmuucfizHnzwQZSXl2PLli14//33LV4TRRG33HILtm3bhrlz5+Kqq67CN998gyeffBJnzpzBX/7yF9O5K1aswDPPPIM777wT8+bNw7lz5/D3v/8dv/rVr3Dw4EH06dPHdG5NTQ1uvPFG3H777bjzzjvx73//G4sWLcKVV16Jm266CQCg0+lw8803Y+vWrZg5cybmz5+PhoYGbNmyBUeOHMGgQYMcat+8efPwwQcf4K677sK4cePw/fffY+rUqR3+PiorK3HddddBEAT8/ve/R0REBDZv3oy5c+eivr4ejz32mMX5zz33HFQqFZ544glotVqoVKpO/74/+ugjBAUF4eabb0avXr0waNAg5OTkYNy4cVbPP3/+fIdjKpUKoaGhnV6HyBrGDsaOrmJHRUUF+vXr1+k5Xkkkj7Zv3z4RgLhlyxZRFEVRr9eL8fHx4vz58y3O27ZtmwhA3LZtm8XxoqIiEYD4zjvvmI49/PDDorX/9J9//rkIQHz++ectjv/2t78VBUEQCwsLRVEUxeLiYlEul4srVqywOO/w4cOiQqGwOD5x4kQRgPjee++Zjmm1WjE6Olq84447TMfWrVsnAhD//Oc/d2iXXq93qH0///yzCEB86KGHLM676667RADi0qVLTcfmzp0rxsTEiOfPn7c4d+bMmWLv3r3FixcviqLY9vc7cOBA0zF7XHnlleKsWbNMz5966imxX79+YktLi8V5s2fPFgFYfWRkZFj97HPnznX4PkRGjB2MHbZih9EPP/wgCoIgPvPMM3a3y1twWMrD5eTkICoqCpMnTwZg6A7OzMzEhg0boNPpnHqtTZs2QS6X49FHH7U4/oc//AGiKGLz5s0AgM8++wx6vR533nknzp8/b3pER0djyJAh2LZtm8X7g4ODLcaDVSoVrr32Wpw6dcp07NNPP0W/fv3wyCOPdGiXsevb3vZt2rQJADqc1/5OShRFfPrpp5g2bRpEUbT4LhkZGairq8OBAwcs3jN79mz06tXL+l9gO4cOHcLhw4eRlZVlOpaVlYXz589bnQgcEBCALVu2dHisXLnSrusRmWPsYOzoLHZUVVXhrrvuwoABA7Bw4UK72uVNOCzlwXQ6HTZs2IDJkyejqKjIdHzMmDF47bXXsHXrVvz617922vVOnz6N2NhYhISEWBxPSUkxvQ4AJ06cgCiKGDJkiNXPUSqVFs/j4+MtxuYBICwsDIcOHTI9P3nyJIYNGwaFwvY/SXvbd/r0achkMgwaNMjivGHDhlk8P3fuHGpra7F69WqsXr3a6jWrqqosng8YMMBm+9r74IMPEBQUhIEDB6KwsBCAIQglJSUhJyenQ1e3XC73uUl9JA3Gju61z19ih0ajwc0334yGhgbs2rWrw1wcX8DkxoN9//33OHv2LDZs2IANGzZ0eD0nJ8cUoNoHACNn36EBgF6vhyAI2Lx5c4cyZQAdflGsnQPA6kRDd9Lr9QCAu+++G7Nnz7Z6TmpqqsVze++8RFHERx99BI1Gg+HDh3d4vaqqCo2NjT4ZVEh6jB2u5c2xo7m5GbfffjsOHTqEb775BldccUW3PsfTMbnxYDk5OYiMjDRVKJj77LPPsHHjRrz11lvo1asXwsLCABgWfTJnvCMxZyuYJSYm4rvvvkNDQ4PFHU5+fr7pdQCmCXoDBgzA0KFDu/Xd2hs0aBB++ukntLS0dLh7c7R9iYmJ0Ov1pjs6o4KCAovPM1ZD6HQ6p/eY7NixA2VlZXj22WdNd4dGNTU1eOCBB/D555/bVfpN5CjGju61z9djh16vR3Z2NrZu3Yp//etfmDhxorOa7XncP82H7HHx4kUxJCREvO+++6y+/r///U8EIG7YsEEURVGsra0V5XK5uGDBAovz7rjjjg6TAhctWiQCEGtqaizONU66e+GFFyyOZ2ZmWky6KywsFOVyuXjXXXeZJuwZ6fV6iwl2EydOFEeMGNGh/bNnzxYTExNNzx2ZFNhV+w4ePGj3pMA5c+aIKpVKPHz4cIfrVlVVmX42Tgr85JNPOpxnzdy5c8WgoCDx0qVLVl8fMmSIeOONN5qez549WwwKCrLrs404oZisYeyw/ExH2ufrseOhhx4SAYirVq2y63xvxp4bD/Wf//wHDQ0NuOWWW6y+ft111yEiIgI5OTnIzMxE7969MWPGDPz973+HIAgYNGgQvvrqqw7jvoBhvQPAMGkuIyMDcrkcM2fOxLRp0zB58mQsWbIExcXFGDlyJL799lt88cUXeOyxx0zj0IMGDcLzzz+PxYsXo7i4GLfddhtCQkJQVFSEjRs34oEHHsATTzzh0PfNzs7Ge++9h8cffxx79+7FhAkToNFo8N133+Ghhx7Crbfeanf7rrrqKmRlZeGf//wn6urqMG7cOGzdutU0dm1u5cqV2LZtG8aMGYP7778fw4cPx4ULF3DgwAF89913uHDhgkPfAzCsk/Hpp5/ihhtu6LB1gtEtt9yC119/HVVVVYiMjAQAtLa24oMPPrB6/vTp0xEUFAQAeP/993H69GlcvHgRAPDDDz+YFve65557THeh5J8YOxg7zBljx1//+lf885//xNixYxEYGNjhfPMY4xOkzq7IumnTpokBAQGiRqOxec6cOXNEpVJputs5d+6ceMcdd4iBgYFiWFiY+OCDD4pHjhzpcPfV2toqPvLII2JERIQoCIJFaWdDQ4O4YMECMTY2VlQqleKQIUPEV155pcNdliiK4qeffiqOHz9eDAoKEoOCgsTk5GTx4YcfFgsKCkzn2Hv3JYqGO84lS5aIAwYMEJVKpRgdHS3+9re/FU+ePOlw+y5duiQ++uijYnh4uBgUFCROmzZNLC0ttdrTUVlZKT788MNiQkKC6brp6eni6tWrTec4cvf16aefigDEtWvX2jxn+/btIgDx9ddfN/19wEY5JwCxqKjI9F5jiay1R/tyXvI/jB2MHdZihyMxxhcIoijxzCwiIiIiJ+I6N0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFP8btF/PR6PcrLyxESEmJzKXEici1RFNHQ0IDY2FjIZN5xj8XYQSQtR+KG3yU35eXlSEhIkLoZRASgtLQU8fHxUjfDLowdRJ7Bnrjhd8mNcdO0p/63HwHckZlIEk2NjXjh+tEWmxh6OsYOImk5Ejf8LrkxdicHBAcjwIsCK5Ev8qbhHcYOIs9gT9zwjsFuIiIiIjsxuSEiIiKfwuSGiIiIfIrfzbkhcjW5qIdKr4cAUeqmSEKEgGaZDDqB905E9hJEEQF6nd/GDcAQO5pkcohOmIvH5IbIWUQRiU2NiG/VQuZFE2VdQS+KKFOocTogGPDzvwuirqj1OqRqahHAXxU0iUBeUB80y+Q9+hwmN0ROktjUiAH6ZoRHRkLZqxfgr4FKBFouXYLy/DmgqRGne7GyiMgmUcTASw0IU6sQFhUFQeavgQMQ9SJqKiow6FIDjgX27tGNEZMbIieQi3rEt2oRHhmJwLAwqZsjOWVAAACgpaoKZWIQh6iIbFCKeoTrW9E7PBKqXr2kbo7kevfrB015OZSiHi1C93tvGHGInECl10MmCIYeGwIAKHv1gkwQoNLrpW4KkcdSiCIEQYBcqZS6KR5BrlRCJghQiD2be8TkhsgJTJMA/bdHuSPB+If/TpAk6gpjRztOihtMboiIiMinMLkhIiIin8LkhohQVVGBJQsew5jkYUgMDcHoQYOQfft07Pz+ewDA+2+/jdtvuAFDIvohJkCNutpaaRtMRB7BU2MHkxsiP1daXIyMcWOxa/t2PPPiSny/fz8+/PJLjJs4EYsfmw8AuHTpIib/+td4dOEiiVtLRJ7Ck2MHS8GJ/Nwf5z8KQRCwedf/EBgUZDo+bPhwZM2eAwB44JFHAQC7d+yQoolE5IE8OXaw54bIQ+l0rr9GzYUL2Pbtt5jz4O8sgpNR7z59XN8IInIad8QNwPNjB5MbIg9TeByYeJUC8UEqTLxKgcLjrrtW8cmTEEURg4cNc91FiMjl3Bk3AM+PHUxuiDzM3DsVOHnCsNjDyRMC5t7putFjsYcLZRGRZ3Bn3AA8P3Zwzg2RB9HpgOP5MrPnAo7nC9DpAHnP9pGzasDgwRAEAYUFBc7/cCJyC3fHDcDzYwd7bog8iFwODE3WQy4XLz8XLz93zfXC+vbFpBtuwPpVb+GiRtPhdZZ8E3k+d8cNwPNjB5MbIg+z9l+tGDTEEKQGDRGx9l+tLr3ei399HTqdDjeNvx5fbdyIU4UncDz/GN7+xxu4eeKvABjWsjiSl4eikycBAMeOHMGRvDzUXLjg0rYRkX3cHTcAz44dHJYi8jCDhwI7fm51aZeyucSBA/Htnh/x+ksrsXzRIlRVnEV4RARSR43CS3/7OwDgvTVr8NqK503vmT4lHQDw19VrkJmd7fpGElGn3B03AM+OHYLo6bOCnKy+vh69e/fGs3kFCAgJkbo55CMCdS0YfakecYn9oVQHSN0cj9CibcKZ0yXY3ysUF+WWOx43NTTgTyOHoa6uDqGhoRK10DGMHeQKjB2WnBU3OCxFREREPsVvh6VKSkqgsrLwkLskJSVJdm0iIiJf5rfJzY3FVQjqFSjJtTeG9QGSJLk0ERGRz/Pb5CZeo0CwTpqvr1U1ori4mL03RERELuC3yc3Bgg/RS6Xs+kQXmNTnKuwJup69Nz5EhGD8gYxE4x+CtO0g8mCMHe04KW5IntycOXMGixYtwubNm3Hx4kUMHjwY77zzDq6++mqb79m+fTsef/xxHD16FAkJCXj66acxZ84ch667bfIIqAKlmZmevU0BraZRkmuTazTLZNCLIlouXYIygBUPANBy6RL0oohmmfPrFqSKG0TO1ioIEEURupYWxg4AupYW6EURrYIXJzc1NTW4/vrrMXnyZGzevBkRERE4ceIEwsLCbL6nqKgIU6dOxe9+9zvk5ORg69atmDdvHmJiYpCRkWH3ta8KuQMBQcHO+BoOK9IvwaSjrdgTFAxFmLpbn8EhLc+iE2QoU6ihPH8OAKDs1Qt+22EhGhKb6vPnUKZQQyc4N7mRMm4QOVuLIEO1TIHA6mrIFAoIMn8NHICoF1F3/jwuyBRo6WHckDS5eemll5CQkIB33nnHdGzAgAGdvuett97CgAED8NprrwEAUlJSsGvXLvzlL3/xmiC1Mz0V2dsUSD9egNCIKIffzwnJnul0QDDQ1IiWqirIenjX4e30oogyhdrwd+Jk/ho3yEcJAk72CkGwphaXSkulbo3kmkTgZFAfwJt7bv7zn/8gIyMDM2bMwI4dOxAXF4eHHnoI999/v8337NmzB1OmTLE4lpGRgccee8zFrXWetNBM5DcuxPgLN0HVy/H/BFoVh7Q8kiDgdK8QlIlBUOn1EPx0EF2EgGaZzOk9Nkb+GjfIdzXL5NgX3BcBep3fxg3AEDuaZHKITrg5lDS5OXXqFN588008/vjjeOqpp5Cbm4tHH30UKpUKs2fPtvqeiooKREVZ9nZERUWhvr4ely5dQq9evSxe02q10Gq1puf19fXO/yLdsHfaaODLzUjWJzr83oyqBGwPCsbgUcNc0DLqKZ0gwyU518d0FXfEDcBzYwf5JlEQcEku+TRYnyHp36Rer8fVV1+NF154AQAwatQoHDlyBG+99ZbNIOWoF198EcuXL3fKZzlTWmgm9k4D9nbjvdnbdJyQTH7LHXED8NzYQURdkzS5iYmJwfDhwy2OpaSk4NNPP7X5nujoaFRWVlocq6ysRGhoqNW7r8WLF+Pxxx83Pa+vr0dCQkIPW+4caaGZ3XpffuNCiM1DuFYO+SV3xA3As2MHEXVO0uTm+uuvR0FBgcWx48ePIzHR9lDN2LFjsWnTJotjW7ZswdixY62er1aroVZ3ryLJU+2dNhrZ204gR6VCYY22y/M5fEW+xB1xA/DN2EHkLyRNbhYsWIBx48bhhRdewJ133om9e/di9erVWL16temcxYsX48yZM3jvvfcAAL/73e/wxhtvYOHChbjvvvvw/fff41//+hf++9//SvU13M44IXn+4T5QxcV1eu4rfcEeHvIpjBtE1BVJk5trrrkGGzduxOLFi/Hss89iwIAB+Otf/4pZs2aZzjl79ixKSkpMzwcMGID//ve/WLBgAV5//XXEx8fj7bff9rtyTnWgEofqv0OsPrbT8+afGY7XAYDJDfkIxg0i6oogiqJf1Z3V19ejd+/eeGHjfskW8XOWoI1LujxHe7EF+yZkI3hgDHtvyGM0NTTgTyOHoa6uDqGhoVI3xy7G2PFsXgECQkKkbg6R33EkbrDuzItppq/o8pygjUsw+cQx7Anry4X/iIjILzC58XE701Nx7Ze50GpGori42OZ57NUhIiJfweTGx6WFZkIdeAiTjuYh8Ew/q+dsiotDMZjgEBGRb2By4weMvTdxrdZLZedfACcdExGRz+Aa8X7A0HujRIu61urjUP13EJubOx22IiIi8hbsufETO9NTbb42YeshTjomIiKfweTGT3S21YNmeia0OQvRVJPCScdEROT1mNwQAMOigJNPHEO0jZHKjWF9UAyudExERJ6PyQ0BMAxbZW9ToF9BpdXXf4dKvH5lHCcdExGRx2NyQwAMw1ZF+iVoUQZaff1c9UWIzVncp4qIiDwekxsy4aRjIiLyBUxuyKQnk47Zm0NERJ6CyQ3ZzdakY042JiIiT8JF/MhuO9NTEdeoQEK7R/rxArTWaKVuHhEREQD23JADjJOOy4/tszg+IGAMtHGNErWKiIjIEpMbcoi1SccTtv6EjHxge1AwBo8aJkGriIiI2jC5IYdYm3S8Mx3I3qaDVtPIycZERCQ5JjfUY2mhmchvXIiMfDnCmgdbvLYxrA9Lx4mIyK2Y3JBTqAOViNMA4Y2W/6S0qkYu/EdERG7F5IacQjN9BfJyFiK5tNTi+Pwzw/FWUDB7b4iIyG2Y3JDTqAOVKLpYbnEs/+JpNNVEsPeGiIjchskNOY1m+ooOx4I2LuG2DURE5FZcxI9cyrjwn1bTiMKDBSg8WGC1ooqIiMhZ2HNDLmVc+O++/XKED0gGALyiaQQ4REVERC7CnhtyuZ3pqcir3YXy0i0oL90CsbmZvTdEROQyTG7I5dJCM6EOVKJFXYsWdS0mnzjGvaiIiMhlOCxFbmG+bcO1X+ZCqxnJCioiInIJJjfkFubbNqgDD2HS0TzsCboexSi2OI/JDhER9RSTG3K7nempyN6mQPrxgg6vba3RcvNNIiLqESY35HbGvaiSzydaHO8nG45NmkaJWkVERL6CE4pJEnunjUbRxXLTJOMWdS0O1X/HSioiIuox9tyQJNJCM7EzvePx7G0nkKNScR0cIiLqNiY3JBnzScZG+Y0LITYPsei94SRjIiJyBJMb8ijqQCUmnziG6MsjphvD+nBPKiIicgjn3JBH0UxfgYaKXEQVVCKqoBKT9u/jHBwiInIIkxvyOOpAJc4qd+OscjfiNICmrFrqJhERkRfhsBR5HMvVjHdBbB7I1YyJiMhuTG7I47RfzXjyiWPYE9bXtJoxkxwiIuoMh6XIoxnn4Ezavw/TTlVi2qlKFB7suLIxERGREXtuyOOpA5WI0wDhjYZ/rloVVzEmIiLbmNyQx9uZngrtl7sQeuwnAIB4TRbn4BARkU0cliKPlxaaib3TRuO7G1KhlQFzD59Ca41W6mYREZGHYs8NeQXjJGPN9Ezk5SxEU81ArmJMRERWMbkhr8NVjImIqDMcliKvszM9FXGNCiRcfmg1jVzFmIiITJjckNdJC81EkX4f9h17F+WlWzD/8BmuYkxERCZMbsgr7Uw3TC4uuliOXVWbITY3s/eGiIgAMLkhL5UWmgnN9BXQTF9hmoPDCioiIgKY3JAP2JmeioaKXGg1jSg8WIDCgwXsxSEi8mOsliKvlxaaCXXgIdy3Px/hA5IBAK9oGgGWhxMR+SX23JBP2JmeirzaXSgv3YLy0i2cg0NE5MeY3JBPMPTeKNGirkWLupZzcIiI/BiHpchn7ExPNf187Ze5aKpJ4R5URER+iMkN+QzjFg0AoA48hMknjmFPWF8UoxgAt2ggIvIXHJYin2RcxTj9eAEm/nQImrJqzsEhIvITTG7IJxlXMQ47/wvCzv+CjPx8zsEhIvITTG7IZ+1MT0XRxXK0qGvRXP0TmmousPeGiMgPMLkhn5UWmomd6an4KG0wtDKwgoqIyE9wQjH5NOMk453pQPa2jjuIc5IxEZHvYXJDfsEwB2cJJh1tRXTzCADAxrA+QJKkzSIiIhfgsBT5DWMFVVRBJaIKKjkHh4jIR0ma3CxbtgyCIFg8kpOTbZ6/fv36DucHBAS4scXkzYwVVGeVu3FWuZtzcLwU4wYRdUXyYakRI0bgu+++Mz1XKDpvUmhoKAoKCkzPBUFwWdvI95ivYmycg0Peh3GDiDojeXKjUCgQHR1t9/mCIDh0PpE581WMjXNw9gQFY/CoYRK2ihzFuEFEnZF8zs2JEycQGxuLgQMHYtasWSgpKen0/MbGRiQmJiIhIQG33norjh496qaWkq8xzsFh7433Ydwgos5ImtyMGTMG69evx9dff40333wTRUVFmDBhAhoaGqyeP2zYMKxbtw5ffPEFPvjgA+j1eowbNw5lZWU2r6HValFfX2/xIAIMvTj5jXsgNjdzYrEXcUfcABg7iLyZIIqiKHUjjGpra5GYmIg///nPmDt3bpfnt7S0ICUlBVlZWXjuueesnrNs2TIsX768w/EXNu5HQFBwj9tM3u1A/cfI3qZCzpgRGDF+tNTN8RtNDQ3408hhqKurQ2hoaI8+yxVxA7AdO57NK0BASEiP2kxEjnMkbkg+LGWuT58+GDp0KAoLC+06X6lUYtSoUZ2ev3jxYtTV1ZkepaWlzmou+QD23ng/V8QNgLGDyJt5VHLT2NiIkydPIiYmxq7zdTodDh8+3On5arUaoaGhFg8ic+pApaksvLi4mEmOl3FF3AAYO4i8maTJzRNPPIEdO3aguLgYu3fvxvTp0yGXy5GVlQUAyM7OxuLFi03nP/vss/j2229x6tQpHDhwAHfffTdOnz6NefPmSfUVyAdopq9AQ0UuJu3fh2mnKk1JDnkmxg0i6oqkpeBlZWXIyspCdXU1IiIiMH78ePz444+IiIgAAJSUlEAma8u/ampqcP/996OiogJhYWEYPXo0du/ejeHDh0v1FchHqAOViNMA4Y0KPNrYiFc0jQD3nfJIjBtE1BWPmlDsDvX19ejduzcnFJOFA/Uf49ov9yO5XyIA4IOUiQgeGMONNV3EmROK3cUYOzihmEgaXjuhmEgqaaGZUAcqUXSxHEUXy7k1AxGRF5N8hWIiT6GZvsL0szZnIZpqUlBcXMzeGyIiL8OeGyIrzCuoCg8WoPBgQddvIiIij8DkhsgK49YMj5Y24tHSRmg1jaygIiLyEkxuiKxIC81EkX4f9h17F+WlW5CRn885OEREXoLJDZENO9NToZUBLepaNFf/hKaaC+y9ISLyAkxuiGxIC83EzvRUfJQ2GFoZWEFFROQlWC1F1Im00EwAwM50IHubAlpNo8QtIiJPZW/PLiswXY/JDZEdDHNwlmDS0VbsCQrG4FHDpG4SEXmQ4uJiaMqq8ZszZzo9b1NcHIrBBMfVmNwQ2Wlneip7b4jIqtYaLTLy8xGm7Xz3+PkXgLeCgoEk97TLX3HODZGd0kIzkd+4B2JzMycWE5FJcXExmmouoLn6J7Soazt9HKr/jsUJbsCeGyIH7J02GtnbTiBHpeLGmkQEwNBrM/nEMWhlwEdpgzs9d8LWQ5h84hj2hPVl740LMbkhcoCh92YhxOYhFndeHD8n8g/Wely0mkbENSrwXnqqqQjBFvPiBGufxVjiHExuiBxk3Joh+vKo7sawPrwDI/ITrTVaTK+ptThWceIoivQ/Iy10hfU3mTEvTohuHmHxGmOJ8zC5IXLQzvRUXPtlLkbq+wEAmobpucEmkR8oPFiASfv3IaolxOK4/OLlXhs7P8dYnNCvoNLi+CRlIbYDrMZ0AiY3RA5KC82EOvAQzip3AwDmHr4S6zgHh8jnaTWNiNMAZ4N2Wxwv01+0q9fGyNh706IMtDgep7mS1ZhOwuSGqBt2pqeafr72y10Qmwey94bIhxUXF0NsbkZe7S7snTC6w+v29toYmccQI8YS52FyQ9QN5pMG1YGsfiDyVcZJv5qyasw9fAprpo3uctKwPax9xt5pMFVjFl8+xiSne5jcEPWQZvoKaHMWoqkmhXdcRD6k8GCBafJwzalC5NXuQlroyy67nrEaMyNfjrBmQ0n5xhot5+B0A5MbIicwVlCx94bId2g1jUhoNPxvMlADNAQq0eria6oDlYjTAOGXr6tVcQ5OdzC5IXICbs1A5FuMc2z2HfsIAFDf1IK900Y7PLfGUZrpK5CXsxChx34CAIjXZLFHuBuY3BA5ATfWJPItmrJq3H3wBN67oW3irzPm2thj77S2CctcEb17mNwQOQl7b4h8g7HXJr9xj0vn2NhinkSZr4jO3hv7ceNMIifhxppEvsG4V5Q6UCl1U0zz+VprtFI3xaswuSHqhF7n2LnqQCXmHj7FQETkpYw7fDdU5Fpdi8Ze9saOrs7TTF+Bhopc7iTuIA5LEVlRVarEO8tjUVmiRlR/Le5dWo7IhBY7zv0A89IWoKmGC3EReSNjr01zoLJbc2zsjR2OxBhWYzqOPTdEZox3Ue8sj8W5MhUAoKpUhXeWx9p8j/m558pUWLtjMbuRibyUcYdvR3ptzHtf7I0d7ePGO8tjbfbi7ExPRVwj5/M5gj03ROh4F1VZoja9JooCKkvUqDitRHSi5Z2VXgeLc/V6ARU1CfjTqgcxuu9hDB7ltq9ARD1UXFyMjPx8uycSt48bs58ptyt2WIsblSVqPHHTUKu9OKzGdBx7bojQ8S5KrtADEM3OEPHuc9bvrKL6ayGTiabzAOBMXRj2vnwFCg8WmB5E5Nk0ZdXoV6ezKMXuTPu48e5zsYjqr0VXsUMmtxY3RNPnWOvtYe+NY9hzQ37P2l0U9EK7syzvrG558Bz+syoClSVqhMc0IyyqBdVnVQAM79OLcpRXR+Dh042Qy4BX+oJzcIg8mKPl37Z6X3r3a4ExDhh0jB1fvBWBqlK14SZKL1icb/wcvc6QBBkZt2ZgWbh92HNDfs94F9X+bsv8bqr9ndW6pbGoLDHcsVWfNZSLRia03YnJZCKie5eg8swWlJduQUZ+PufgEHkwR8u/rfe+AHXnFbAeS4CqMhXWLIlDVakhKdLrBEQmaC0+RyYTDc/NEhsjVmPaj8kNEYDZz5Sj/d1W2wMWP+v1AnStMovXqs+qMOdP5YiIbwYARMQ345pnv0LRxXK0qGvRXP0TtJpGlnISeSDz8m/N9BV2v+/epW2/89ZiRfvnYrteGlEUUFWqxuxnLGPHvUvLrV5PM30F8mp3sSzcDhyWIgIQndiCqP5aVJWqIIoC2u68jIGo7blMJhqGrtqJjG/BordPm3UnT8HOuGoAwISthzDpaB72BF3PUk4iD2Ne/u3IxpiRCYbf+ZVzE3H+jOpyXBBhHjfkChGiXrAaMwyfoUV0YvvYYRvLwu3DnhuiywwVCuZ3YZZ3X32jDdULEfHN6BPRDPMhq/CYZsjksDpOnhaaycmARB6sO+Xf5u5bVo5+ce17cAw/zzHr3ZEr9IDQNmQlV+hx37Jy02TjrhIbgBOL7cXkhugy413Yq5uPt6uWEiFX6PHAijOITDCUicsVQHiMIdmJ6t+M239fhZfmJeKJm4bipXmJqCq1HLc3bs2QkZ/P7mQiD1J4sACTjuahSL+v2xtjRia04I9rT1uNGxGxbSXdfSJaEX75JikyQYv7lpfjneWxNuOGNYay8H2YdDSPVZidYHJDZEX7OTW6VhneWR6L82cMk4gvVChRe65tVPfj16JME4wrS9R4+YGOgWrvtNHoV6eDpqzaHV+BiOzQ014bI73OdtwwlovXVBpigmEIXI21f4rtMm5Yw96brjG5IWpHJgfCYyyHnfpGNxvKMy+Pm4uicVKxYRXS+gtKWJRz6mRYt8xyrQpurEnkWSzLv7vXa2NkrJ4S2g07mccNvd5QfGBMdvQ682TIetywhrGka0xuyG85simmgXlpuNlR0fpEwapSdYdrGCcDNp9nKSeR1DRl1bj74Am7F+0DOo8b9y4th0zeFiPaJhhblovbmlwMWI8b1q6/d9po3H3wBHuCbWC1FPmdzjasqypVYt2y2MsL8hkJuFChsv5hADpWVhmORfVv7jBBsOjql7H+cTkq6vojLPEi5q5tRORAh7MsIuohRxft62qjS2PsMPboAsbSb3Pm1ZfWqzKtxQ3r178b+Y0LAIyw7wv7GfbckN+xtmGd+WvGeTXWemk6Ls4FdKysAgJDWq2uVfHO8lhU1ccBAGpLe+G934V170sQUY84umhfZ3HD+Lrt2GEtlgDWqjLH31bTreuTJSY35FeMS6abj4Eblzpv/1r7hKXjMdtdy9pLckQmtFh0L5s+XzTclol6AVWFym4MjxFRTxQXF0OraURDRa5dE4k7ixvWXu8YG7p63ubzf0Z2iAk2r6/n/8Jt4d8M+ZX2S6abL3Wu19nezM5RulYZXrzPsjS8w7UFPfrEa+xa24KInKe1RotJR/OgDlTaNZHYVtwwcnbsaF8abjNuyfTduoY/YHJDfsd8yXRBJqKyRI3Hfz0EC28eivPlSgSGGsfROw432U80dVGfK1OZKiDMrx3f5wImPbK3B9+EiLqjO+Xf5r+7YVEtaG0R8MRNQ10SOwDLuNH++p1t0UAGTG7I7xgX64tM0HaY8KdrFdBY29nkYXsJpioqvd6wf8zKuYmormgb32/WX4TY0sJSTiI3Ki4uRkZ+vsPl3+aLfCqUomnNGiNnxg7AMm50tvYNy8GtY3JDfkmvu1xy2WGMvLt3W525vCNwqfryjsCXF+1qiMfPf05jKSeRBOydSGyN9fk1zoodlmXjVaVqvPJgItY8HddhQrFxaQnuEt4RkxvyS+3HsLs7Pm4fy0nIxh4dUS/D6Qv9oGvinReRt3B97OiYLOlaZag+q+owoXjHpJFcqdgGJjfkt8zHsNt0Vf7tXApZC4bvreSdF5EXsT92OJvl6sf9G2dxnykbuIgf+S3jGLqx7PLIj4F4f0UsdK32l232VKsox98+mYqMXx1CcXExkpKSXHYtInIOa7Hjvedjode5LlYYmG/VIOCd5bG44c+pyN7G3pv2mNyQ39LrgPPlSqx5Os5sRWLzrmZXByoAogwVdf3xq8Mf4KegcUCS6y9JRD1jPXY4m3kM6hiPRNEwNHVVUCbyGxdCbB7CGyQzTG7I75gvYy5X6Nv11LhyYnFHgiAiNO48Ei7K8QPvvIhcTlNWjTgNkN+N93YeO5yt8wVDZTIREfGGrRrUgUrceOoUdg2McWF7vAvn3JBf0esslzE37APjnkTGkqGHKDKhGf+3vBH5jXuQkZ/PicVELmTcTyqvdhc001fY/T7j8JPUsUOQiZArDAv3ca2bzrHnhvyC+R2XdNq6lsNjWnDvsjOIHWDYomHvtNHI3qYzlIWzW5nIJYz7STUHKtFqx/nmcSMyQYuqUinjB9A3qgX3P38GfaNaIJODq5t3gskN+QXzOy7zDS8FQTSVZrte2/h57TkFXn1wwOWubRmi+i9EYtoCjpsTuZBxZeL30lORZsf55nHj/BkV5Ao9RL1wuSTbTfPyTAxxy3yeT3hMM+5//gwGuLEV3oLDUuTzrG9qZ/g5MqEZMrm792cRLndpwzRmf65MhXU7FnNBLiIXKTxYgIz8fBTp99m1MrG1zSp1rTJTCbhc4Y7Sb3MCqs+qUH22bfHB6rNK7g5uA5Mb8nm2Np17dfNxPLnqNPQ6KX8N2gLn2ZoE1JXvR1PNBRQXF5seROQcyS0hdp9rK24sevs0Xv7quOkGxfXaLxZoOdHYuDu4VqfljZEZJjfkF6xtOmccs47qr4Ugc+ddmNjhZ2Pg7BUsx9zDpzDxp0OY+NMhbs1AJCFbm1UqVNbihrtiiOU1o/prcemO59BQkWu6MSLOuSE/Yb7oVvtJeL+6vQaf/DXKja3pOE5vDJw7e6dC++UuJCsSAQBiRATn4BBJpLO4ccuD57D2mTizVMNV829sL08RHtNiSriM+0ztCevL9bLAnhvyM+0DlF4HfPZGpDSNAQAIiEzQ4t6l5YhMaEFaaCbUgUq0qGvRoq7F3MOn2NVMJDFrVUn/WRUBvbun6wEwT3IUyrbUamd6KveZMsPkhvxSVakSL81LxBM3DXXrehUyud6sK9vw5/kzKotJgTvTU/FR2mB8lDYYebW72NVM5EGqSpV4Pjvp8rIS7q+WMvxp+Nm4OzgApIVmoki/Dxn5+dxnCkxuyE+tW2atNNy1BJke9y4rR0ScccM9yx1+jQuFpYVmmh7Grmb23hB5hnXLYnGhQtn1iU7UJ6IZ4TEtl5+1VXu2jx0701MRp3Fr0zwW59yQXzEuymW5GJd77r5EvYC1z8Qjqr8W4THNqKlUQq8XLJZRNyfXNiHoYiMm7PovVKVFqEx5Cq0BvdzSViKyZD12uJphLZ3ac0oYh7B1rUKnsUPW2oL0Lz/B4C8uoTYhEXmz7vHLuMHkhvxKx8X83NmtbLhWVakKvfu1GIan9AIEmYhbHjxncaZc24TMBVmIOHkMogBkHfkRJXt+wGf//dovAxWR1Cxjh7tYTiauKlNBJhNNa++ERbVYbMGg1LZg5L9WYdz5cohyOQSdHiM+/zc+/OQLv4sbkg5LLVu2DIIgWDySk5M7fc8nn3yC5ORkBAQE4Morr8SmTZvc1FrydtYX83M/URRQe05lWsBP1Av4z6oIi3NSv9qAiJPHIBNFyPUiBFFEQnEhRua8L0WTPQrjBrlbx9ghEVEwrcslCCIUShGRCS2ml9O/zUXwuXJD3GhthUzUI+KXX/wybkg+52bEiBE4e/as6bFr1y6b5+7evRtZWVmYO3cuDh48iNtuuw233XYbjhw54sYWk7eytiiXNCwX42o/bg4AvStKIbYbp9LLZJAd5b91gHGD3Kt97HDvuliAtXmBotgxbkRU1UCUWSZgolyGPqWnXd1AjyN5cqNQKBAdHW169OvXz+a5r7/+Om688UY8+eSTSElJwXPPPYe0tDS88cYbbmwxebP2i3KFxzTD/YtvWQYfQTAsxGWey9RFJ0Awj1oA5Do9ygN7u7iN3oFxg9zNPHZExjejb3QzILgrdnTsMbIWN85FhkHQW7ZJ0OlRm5Do6gZ6HMmTmxMnTiA2NhYDBw7ErFmzUFJSYvPcPXv2YMqUKRbHMjIysGfPHpvv0Wq1qK+vt3iQ/zIuyvXq5uNmY9Xu6GoWcf+KM4hM0Jr1GImX29RsMW4OAIdunolzg1KgFwTo5AroBQHn+obi+/HpLAuH6+MGwNhBloyxY+GaIgDAhQoV5HLXJzcyuR7hMc0QhK7jxtZfX4PGiFhD3FAooBdkqBo+Anmz7nF5Oz2NpBOKx4wZg/Xr12PYsGE4e/Ysli9fjgkTJuDIkSMICem4B0hFRQWioixXko2KikJFRYXNa7z44otYvny509tO3sm40qhMbtxd11jSab1XxXkEfPJ6JB5YcQbvPheLyhI1ovo3Y/Yz5YhObOlwtk4dgI//8hFSv9qA3hWlqItOwEl9PsafPoU9UTF+vQKpO+IGwNhBbcxXKH73uVhUXZ5YbFgjy7WxQ6+TQRQNPc1VpZ3HjRa1Enl3PoxyTRkG61ktZZfy8nLExjp399GbbrrJ9HNqairGjBmDxMRE/Otf/8LcuXOdco3Fixfj8ccfNz2vr69HQkKCUz6bvIexjNOQVGgx+5lyVJ81r3xwfe9NbZUKL98/AFH9tVi4pgiR8S1WVz410qkDcPCOORbHFDkL0VST4jVbMtRVVqB3VLRTP9MdcQNg7CDrccOweJ8518eOCxWGWGVsg7XExkivUGLrtBk4PWqYy9vlyewelhoxYgQ+/PBDV7YFffr0wdChQ1FYWGj19ejoaFRWVlocq6ysRHS07eCpVqsRGhpq8SD/Y17Gea5MhfXPOjdRd0RliQqv/Z9hdeSX5iWiqtT+BcG8bVG/P2dMxsEvPnPpNVwRNwDGDuoYN959LhZR/aX73assMdwgORo3/JHdyc2KFSvw4IMPYsaMGbhw4YJLGtPY2IiTJ08iJibG6utjx47F1q1bLY5t2bIFY8eOdUl7yDe0L+PU6wVUlaoNEwIlIVzuzja065UH7Q9U3rZ/TMYfFuHTpxfh/YcfwMXaGpdcg3GD7NXQ3ICd6al2nWstblSWqHHPkvIu3ulKhrY4Gjf8kd3JzUMPPYRDhw6huroaw4cPx5dfftnjiz/xxBPYsWMHiouLsXv3bkyfPh1yuRxZWVkAgOzsbCxevNh0/vz58/H111/jtddeQ35+PpYtW4Z9+/bh97//fY/bQr7LWgl4VH8t5j13RuKWGehaZVi3zL6eJG/bP2bcPXPw+KatuFhbg1d/PQm/bP22x5/JuEGOKi4uRlPNBeTV7kJaaKZd77EVN6L72x4ScidH4oY/cmhC8YABA/D999/jjTfewO23346UlBQoFJYfceDAAbs/r6ysDFlZWaiurkZERATGjx+PH3/8ERERhgXNSkpKIJO15V/jxo3Dhx9+iKeffhpPPfUUhgwZgs8//xxXXHGFI1+D/NC9S8tNY+cR8eZVBu5epdi6qlK1xaTFzuxMT0X2Np3X9N70TeiPB3M+wf/eW4f3/m8eIgcNgSAY/s4nTJgAuVzOuEEu1VqjxeQTx9AcqESrA++zFjdkcsNeT8YtEaTkSNzwNw5XS50+fRqfffYZwsLCcOutt3ZIbhyxYcOGTl/fvn17h2MzZszAjBkzun1N8k/GMk7zQPDSvERIF5zakipBEBGZ0HFvKVvSQjOR37gQYvMQr5lYXHOmDEe+2YxevXtjxA0Z0Ot0OJv/C6ZOnQq12rG9ehg3yFFaTSPiGhV4Lz0VaQ68z1rcAAC5ApA6sXE0bvgbhzKTNWvW4A9/+AOmTJmCo0ePmu6UiLyFMRAYx9Ol0xYYra1X0RV1oBJzD59CTlhfjy8L/2lDDr56YTmGjJuAP3y9HcHh4WhqaMC2N/+OP/7xj5yoSy5VeLAAGfn5KNLvQ1roim59hnkCodehXaWlNCx7oKk9u5ObG2+8EXv37sUbb7yB7OxsV7aJyOWM4+mVJSpIcwdm6LmJ6q/FvUvLLfaHsYdm+grk5SxEU81Aj+69eXvOXSjN+xm3LVuB0bez54SkEacB1jjYa2OL9LEDkCv0uG+Z43HDn9g9oVin0+HQoUNMbMhn3Lu0HFH9pauYAgzlpe8s796kQG8oCxd1OizY9B0TG/Ip9y4th1wh1d50hsqt7sYNf2F3crNlyxbEx8e7si1EbhWZ0IInV0m7oZy1TTPt5Q1l4fe//zH6xDAIk2/pF9tiWs5BCmIP4oa/kHxvKSKpGTbPdCcRxiXbjeWl3ZkUaCwLn3Q0zyvKwol8iXs33TXqedzwF5LuLUUkFfNl1WVyPdxbEi4gPKYZ1WdVPZ4UaCgL9+zeGyJf0TFuSIOTibvG5Ib8kvmy6nqd+zswF60pNm3g2RPeWBZO5K2kjhuAgJVfHIfK//bBdBiHpcjvtF9WXQrtE5uejJ3vnTYadx88AU1Zdc8bRkRWeULckCv0FokN59zYxuSG/E77ZdUFoW0OjOu0fb5Mrsf5csOeMFWlSrw0r3ubaBoZem/2QGxuRnFxsbMaTERmrMUNucLVQ1Oixc+3/74KgHPihq9jckN+6d6l5YiIN0wkNvxp7W7MmQlP2+frdW1lnO13HfblsnAib2ceNyITmvGHN11dbWkZl77/uC8A58UNX8Y5N+SX2i+r/tK8RJwrU13ucnb15GJDGWdrs+UqyeZl4Y7OxdFMXwFtzkI01aRw7g2Ri1jbjiGqvxZVZSqIFsNVroghAqrPqjqNG9SGPTfk14wByvyOrC0ouS7BiUzQQqGyvutwdycZs/eGyD3Mf0fvXVqOyPj2y0m4LnbY2q2cZeGWmNwQoe2OLDJBC1fPvzEunQ50HB7raVm4py/qRySFUwFaTNh6yCWfbYwdbUtKuIqI8BjDRpnOjBu+isNSRJdVlSqhvSTAlXdd4THNuP/5M+gXa9gTxtauw91hWNRvCTLy5dgeFIzBo4Y5ocVE3k0Rpsa2ISm4emeuy65x9KdAl5eGh8e04P7nz0Cvc27c8FVMbogue2d5LOrOu6rqQERkQjPuW1ZuWgTMfNNMZwUow6J+OvbeEF2WlJSEwhotRvYZj/yNS6CZ3r2dwTuzfnksXDPPRkRU/2Y8ueo0zpcrrcYOso7DUkRoW8PCdb02AqpK1Vi3zLVVDiwLJ+pIEabG2isHQnvR+clAazMu7zPlithhmCxcUaJkhZSDmNwQXWZYs8IZY+ai2Z+ixbGq0rZFwFxV5aAOVGLu4VOcWEx0WVJSEgSVCsnBY3Gg/mOnfvb5s0q0X4+mZ9qvuyXi1QcHWCwgyAqprjG5Ib/SPhiYL4blrLuvvtHGu0Pz+TvGP52zaWZnNNNXIK92F5pqLrD3hugydVAw+gX26fbEYlux4+X7B8AybvQshhjih7XPc33s8CWcc0N+wXzDO/PxavOuXvt0Pa5eU2mct2Pt3LbnEfHNmP2Ma6ocjGXhe8L6AkkuuQSRX3BO7DD2xHSd+FyosBU/3BM7fAV7bsgvWBuv7nyvGFtdy10HJ1G0tk6O5R3XwjVFAICX7x/gkuXTWRZO5BzOiR2OVGG2P8+9scNXMLkhn9c+EBnHq4F2e8XIzPeKsRWIrO1D1TavRq7QX96rqj3D5xnXpHj3OddPLC7S78Oko3koPFjg1M8m8hf2xg7LmGAr4ek4l8b6/DzLz4lMsFzPxtWxw1cwuSGf19mKnhZ7xcQ3477l5ZcX8rPF9h1YVH/j+42rlVpe79XNx7Ho7dPoF9vilsmB7L0h6hl7Y0dU/2bMfa7s8kJ+1j+nY+wQIJMbPjc8pgXhMca5epbX+uPa026PHb6AyQ35BVsrekYmtFweQ9eiskSNdUvNx9HtrXowBJonV51GyjUXsejt01i4pghR/S2vZ5z8567l01kWTtRz9saO9ctjoddZv/ExHO8YT/Q6GV7+6jiWvFuMJe8WW40bAOyOHRO2HsKpAFZJApxQTH6isxU931kei/NnDAmNoWLKyN4xcsNCW+afG53Y+Qqi9y5tW8zPlcun7502GtnbTiBHpQK4mSaRw7oXO8wZJwZ3jCfGPeaMuoobQOexQ3uxBf8bnYLgMLX1N/sRJjfkV9oHjLbF++zVsQJKrhBx79JyqwHJVoBy1/Lpht6bhRCbh3C3cKIe6H7sECCT6y/33lgWGcz5k2NxA7AdO4I2LoEq+hoEhPXl7zmY3JAHk2ubkPrVBvSuKEVddAIO3TwTOnWAU69h7OY9V6aCXi9AkImQycTLd2HmiYztEnBdqwyvPJgIXavM4WXR3bFOBcvCyZ8omi5hZM776FN6GrUJicibdQ9aA3o5/Tr2xQ4RMrloY98p4fIaOW17zjmynUL72MFeG0ucc0MeSa5tQuaCLPxq9UqkfrUBv1q9EpkLsiDXNjn9Wu0nFT+56jSi+mshWPntkMkACOYrGRv+1LUaEp+qUtvVC1JN+tNMX4GGilwu6kc+T9F0CXfNuBWTXngWIz98H5NeeBZ3zbgViqZLLrmetdgRHtNscU7bPBxr1VIG1WeVWLfMdtVTV7HjQP3HSA4eC0GlYq/NZey5IY+U+tUGRJw8BpkoArpWAEDEyWNI/WoDDt4xx6nXat/Na727ua06wXhHZn7c+KcoXt4L5rQS0YmGuzBbi4C5kzpQiRtPncKugTFuvS6RO43MeR8Rv/wCmagHWg2VSxG//IKROe8jP20i8pUNTr2etdhRfdZ8Yb/OVi62fK2qVI2X5iVaxAd7Y8eErYdwPmwMguLDnfXVvB57bsgj9a4ohdiu31WUydG7otRl17RVkWB+x9W2ho31hbaMP7/7XNtdmKdseJfcEsL9psin9Sk9DVFu+b81US5Dn9LTUISp8fVA12ye6VjssMbwWvv44CmxwxsxuSGPVBedAKFdX6yg16EuOsEt1zfvbjZfgyIyoRnhMc1WFu+yvAszrj1haxEwrktB5Hy1CYkQdJZrzQg6PWoTEpGUlISAsL4Y2Wc8gjYucVkbHI8dgHnPMGOHc3BYijzSoZtnImXrF4g4eQyiTA5Br8O5QSk4dPNMt1y/X2zHigTjz5ZdxYY9Xoyrhur1AmQyERHxbaXh5pMO279GRM6TN+sejPj834j45ReIchkEnR5Vw0cgb9Y9AABFmBprrxyIq3fuclkbGDs8A5Mb8kg6dQA+/stHLq+Waq+zMW7jmHp7Mlnna084c00bd1SQEXmr1oBe+PCTL2xWSyUlJeFoWTWSg8fivfqPkRaa6bRre3LscFcFmScRRFG0dxlWn1BfX4/evXvjhY37ERAULHVzyMO8NC+xw53SordPWwQuucKwZoUoWp4DoNN1a3q6po2xgqx9b9bHf/moywQnaOMSJKvGIOdXV2PwqGHdb4STNDU04E8jh6Gurg6hoaFSN8cuxtjxbF4BAkJCpG4OdVPhwQJM2r8PDTU/QTN9hdM+V8rYEbRxCULCxmDXlOs7VEsZK8jMe7PODR+ODz/5wusSHEfiBufcEF3W2Ri3+cQ+XavMtPN3+3HwzgJQT7uTzSvI5LpWyETRVEHWlZ3pqdC26rjPFPk9hQvWgfHk2GFeQSZvbYVM1JsqyHwZkxuiy2zt29I+cFm8x0X7QlnTkwoy7jNF5Dq2YgcgfezorILMlzG5ITJjXukQFtWC1hYBC28eCrlCD+Fy4BJkIuSKy2touHBfqPZ6WkG2d9pozD18Cpqyalc0j8ivmccOQSaiskSNVx5MtKiQkiJ2dFZB5ss4oZjIjPmiXK88mGjqTtbrBMjkInR6AZGXg1K/2Ba3Vi70tIIsLTQTebULITYP5D5TRE5mjB0r5yaaNtM8V6ZCWFQLIuKbUVmiliR2dFVB5quY3BDZYL5KsSgKpi0WjNxdkumMCjLuM0XkOnodUFXaFjf0egHVZ1WITLBcPNOdsaOrCjJfxWEpIis6W2lUypVCdeoAHLxjDrY//AwO3jHH4TLwnempaKjIhVbTyLk35Le+SU6G9mILDtR/7NTPtTb3Rq7QW/TkuCJ2aC+24OuBA22+3hrQC/vnPoCty1Zg/9wHfD6xAZjcENlkPoZuWEHU+1cKTQvNhDpQiUlH87gVA/mlpKQkqIOCERJ9DSZsPeT0zzePGxHxzdC1yly6ynDQxiUIib4GAWF9OdRshskNkQ3GMfRXNx+3WgnhrSuF7kxPRVyjgmXh5LcUYWpsG5Likn2mzOPGordPuzx2aC+2YNuQFJeUuHszJjdEXZDJO96NuatCyhWMZeEZ+fkcmiK/lJSUBEGlwsg+450+NGVkTGBcGTsO1H+M5OCxEFQq9tq0wwnFRHYwr6Ly1h4bc3unjUb2Np2hLJxBkfxQUHw41jYPxLVfvofWWc7bhqE9V8aOa7/cjw8mZCM4Pty5H+wD2HND5ABfSGwALupHZOy9SQ4e67LeG3POjh3stekckxsiP2UsC+fEYvJX6qBgnAludcnEYlebsPUQzgS3Qs09Eq1ickPkpzTTV6ChIhdNNRfYe0N+afCoYdg+YiQGyK52S++Nsxyo/xgDZFdj+4iRHrERridickPkx9h7Q/7OG3tv2GvTNSY3RH6MZeHk71xZFu4qLP/uGpMbIj+WFpqJIv0+TDqah8KDBVI3h8jtkpKSEBDW16Vl4c4UtHEJRvYZz0X7usDkhsjPsfeGyHtoL7Zg7ZUD2WvTBSY3RH6OZeFE3oHl3/ZjckNE2DttNOYePmVY1I+IPNKErYdwvrecE4ntwOSGiJAWmom82l3svSHyUMby72+Sk1n+bQcmN0QEgGXhRJ6M5d+OYXJDRAAME4sbKnKh1TSy94b8iiJMjbVXDsS1X+7HgfqPTQ9PwvJvxzC5ISIAhqEpdaASk47msfeG/Ir5LuFTthzClC2HPGpRv6CNSxASfQ3Lvx3A5IaITFgWTv5KHRSMiugQXJ0yG6mhUzxqUT/22jiOyQ0RmRjLwjPy8zk0RX5l8Khh2Dp0GEqDW3GiLzxmUT+Wf3cPkxsisrB32mj0q9OxLJz8jiJMjS8HRmHHmFTTHBypXfvlfnwwagiC4sOlbopXUUjdACLyLIbem4UARkjdFCK3Mu8ZOVpWjeTgsXiv/mOkhWa6tR3mPUbZwWOxn702DmNyQ0RE1I75buGa6e5NbiZsPYT4sEAAwJngoSz/7gaPGZZauXIlBEHAY489ZvOc9evXQxAEi0dAQID7GkkkEbm2CaM+XY9J/3gOoz5dD7m2SeomeQzGDnKFwaOGYfuIkRggu9qtc28O1H+MZNUYxLSMQ0zLOGwfMbLbi/Ypmi5h9NrVSF+2BKPXroai6ZKTW+u5PKLnJjc3F6tWrUJqamqX54aGhqKgoG33YkEQXNk0IsnJtU3IXJCFiJPHIMrkEPQ6pGz9Ah//5SPo1P79P2jGDnIlKXpvrv1yP87EjUfYwChTG7pD0XQJd824FRG//AJRLoOg02PE5//Gh598gdaAXs5sskeSvOemsbERs2bNwpo1axAWFtbl+YIgIDo62vSIiopyQyuJpJP61QZEnDwGmShCrmuFTBQRcfIYUr/aIHXTJMXYQa6mCFNj25AUt5WFGyujvklOxpcDo/DlwKhul3+PzHkfEb/8Apmoh7y1FTJRj4hffsHInPed3GrPJHly8/DDD2Pq1KmYMmWKXec3NjYiMTERCQkJuPXWW3H06NFOz9dqtaivr7d4EHmT3hWlEGVyi2OiTI7eFaUuva6n7zPF2EGulpSUhICwvgiJvgZBG5dYrF7szKEq4+eZb7GQlJRkenRHn9LTEOWW/4sX5TL0KT3thBZ7PkmHpTZs2IADBw4gNzfXrvOHDRuGdevWITU1FXV1dXj11Vcxbtw4HD16FPHx8Vbf8+KLL2L58uXObDaRW9VFJ0DQ6yyOCXod6qITXHZN4z5Te8L6Akkuu0y3MXaQuxh7b/5f7s/IOlBo8VpZzRJopq/o0ecHbVyCrMuTh4NVY7BuRDJGOGFjzNqERAg6vcUxQadHbUJijz/bG0jWc1NaWor58+cjJyfH7ol9Y8eORXZ2Nq666ipMnDgRn332GSIiIrBq1Sqb71m8eDHq6upMj9JS197tEjnboZtn4tygFOgFATq5AnpBwLlBKTh080yXXdOTVypm7CB3Mm7NkBo6BUptH4uHM4artBdbTJ93Jqj7c2zay5t1D84NHw69IINOoYBekKFq+AjkzbrHKZ/v6STrudm/fz+qqqqQlpZmOqbT6fDDDz/gjTfegFarhVwu7+QTAKVSiVGjRqGwsNDmOWq1Gmo1l6wm76VTB+Djv3yE1K82oHdFKeqiE3Do5pkunUycFpqJIv0STDraij1Bwd2u1nAFxg5yt6D4cJw4cwbAcIvjyU2xPVoH50D9x8gOHouafn0AAN/ExSHISVsstAb0woeffIGROe+jT+lp1CYkIm/WPX4xmRiQMLlJT0/H4cOHLY7de++9SE5OxqJFi7oMToAhoB0+fBi/+c1vXNVMIo+gUwfg4B1z3HrNnempyN7meb03jB3kbklJSdhh5fj4hv/h2i/3o3VW95KbCVsP4XzYGGwfOgyKMDWCAKcu1tca0Av75z7gtM/zJpIlNyEhIbjiiissjgUFBSE8PNx0PDs7G3FxcXjxxRcBAM8++yyuu+46DB48GLW1tXjllVdw+vRpzJs3z+3tJ/J1xpWKxeYhKC4u9pgVUhk7SArW/v1/k1yNWXU6vNfNycXZsquRk+ycOTZkySPWubGlpKQEMlnbtKCamhrcf//9qKioQFhYGEaPHo3du3dj+PDhnXwKEXXX3mmjkb3tBHJUKsBDkht7MHaQOxjXwWk/0dheXH3YdQRRFEWpG+FO9fX16N27N17YuB8B/EdF1CVFzkLsm5CN4IExTuu9aWpowJ9GDkNdXR1CQ0Od8pmuZowdz+YVICAkROrmkAcoLi6Gpqwas/K2dOv9H6RMdOrvla9zJG54dM8NEUnP08vCiaSSlJSEwhotavoNx4hecQ699+ilMwgI68vExkWY3BBRpzTTV0CbsxBNNSkeNfeGyBMowtTYOnQYtjr8zmHdXn2Yusbkhoi6xN4bIuuSkpL4O+GBJN9+gYg8nycv6kdE1B6TGyLqkmFRv33IyM9H4cGCrt9ARCQhJjdEZJed6anoV6dj7w0ReTwmN0RkF8Oifns8frdwIiImN0RkN3WgEnMPn0JrjVbqphAR2cTkhojstjM9VeomEBF1ickNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0ROSSvdhe0mkaWgxORx2JyQ0R2SwvNhDpQiUlH81gOTkQei8kNETmE+0wRkadjckNEDjGuVJyRn8+hKSLySExuiMhhe6eNRr86HTRl1VI3hYioAyY3ROQw7jNFRJ6MyQ0RdYs6UInJJ45xYjEReRwmN0TULZrpK9BQkYummgvsvSEij8Lkhoi6jb03ROSJmNwQUbexLJyIPBGTGyLqtrTQTBTp97EsnIg8CpMbIiIi8ilMboiIiMinMLkhIiIin8LkhoiIiHwKkxsiIiLyKUxuiKhHdqancp8pIvIoTG6IqEe4zxQReRomN0TUY1ypmIg8CZMbIuox7jNFRJ6EyQ0ROQV7b4jIUzC5ISKn2JmeioFNaqmbQUTE5IaIiIh8C5MbIiIi8ilMboiIiMinMLkhIiIin8LkhoicRtuqg1bTKHUziMjPMbkhIqfgSsVE5CmY3BCR0+ydNhp3HzzBfaaISFJMbojIadh7Q0SegMkNETkVVyomIqkxuSEip+I+U0QkNSY3ROR07L0hIikxuSEip9uZnoq4RgXLwolIEkxuiMjpjBOLM/LzUXiwQOrmEJGfYXJDRC6xd9po9Kvjon5E5H5MbojIJYy9N0RE7sbkhoiIiHwKkxsiIiLyKUxuiIiIyKcwuSEiIiKfwuSGiFyK+0wRkbsxuSEil+FKxUQkBSY3ROQy5isVs/eGiNyFyQ0RuUxaaCaK9Psw6Wgee2+IyG2Y3BCRS3GfKSJyNyY3RORSxpWKObGYiNyFyQ0RuZw6UIkbT52SuhlE5Cc8JrlZuXIlBEHAY4891ul5n3zyCZKTkxEQEIArr7wSmzZtck8DicgjMXYQUXsekdzk5uZi1apVSE1N7fS83bt3IysrC3PnzsXBgwdx22234bbbbsORI0fc1FIi8iSMHURkjeTJTWNjI2bNmoU1a9YgLCys03Nff/113HjjjXjyySeRkpKC5557DmlpaXjjjTfc1Foi8hSMHURki+TJzcMPP4ypU6diypQpXZ67Z8+eDudlZGRgz549Nt+j1WpRX19v8SAi78fYQUS2KKS8+IYNG3DgwAHk5ubadX5FRQWioqIsjkVFRaGiosLme1588UUsX768R+0kop6L08Cw1k1Szz+LsYOIOiNZz01paSnmz5+PnJwcBAQEuOw6ixcvRl1dnelRWlrqsmsRkXWa6SuQV7sLTTUXelwOzthBRF2RrOdm//79qKqqQlpamumYTqfDDz/8gDfeeANarRZyudziPdHR0aisrLQ4VllZiejoaJvXUavVUKvVzm08ETnMuM/UnrC+QHj3P4exg4i6IlnPTXp6Og4fPoyff/7Z9Lj66qsxa9Ys/Pzzzx2CEwCMHTsWW7dutTi2ZcsWjB071l3NJqJuctZKxYwdRNQVyXpuQkJCcMUVV1gcCwoKQnh4uOl4dnY24uLi8OKLLwIA5s+fj4kTJ+K1117D1KlTsWHDBuzbtw+rV692e/uJyDGGfaaWYNLRVuwQhG5/DmMHEXVF8mqpzpSUlODs2bOm5+PGjcOHH36I1atXY+TIkfj3v/+Nzz//vEOgIyLPtDM9FQObXD/Uw9hB5N8krZZqb/v27Z0+B4AZM2ZgxowZ7mkQEXkFxg4iMufRPTdEREREjmJyQ0RERD6FyQ0RERH5FCY3RORW2lYdtBc1UjeDiHwYkxsicpu00EzkN+5B+vHjUjeFiHwYkxsicit1oBKx7LghIhdickNEbqWZvgKH62zvxk1E1FNMbojI7fbfdJXUTSAiH8bkhojc7qqQO6RuAhH5MCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9hckNEREQ+hckNERER+RQmN0RERORTmNwQERGRT2FyQ0RERD6FyQ0RERH5FCY3RERE5FOY3BAREZFPYXJDREREPoXJDREREfkUJjdERETkU5jcEBERkU9RSN0AdxNFEQDQdLFR4pYQ+S/j75/x99EbmGJHI2MHkRSMv3v2xA1B9Kbo4gRlZWVISEiQuhlEBKC0tBTx8fFSN8MujB1EnsGeuOF3yY1er0d5eTlCQkIgCEKPP6++vh4JCQkoLS1FaGioE1roPfjd+d27+91FUURDQwNiY2Mhk3nH6LgzYwf//fjndwf8+/v39Ls7Ejf8blhKJpO55E4xNDTU7/6hGvG787t3R+/evZ3YGtdzRezgvx///O6Af3//nnx3e+OGd9wyEREREdmJyQ0RERH5FCY3PaRWq7F06VKo1Wqpm+J2/O787tQ9/vx36M/fHfDv7+/O7+53E4qJiIjIt7HnhoiIiHwKkxsiIiLyKUxuiIiIyKcwuSEiIiKfwuSmG958802kpqaaFiIaO3YsNm/eLHWzJLFy5UoIgoDHHntM6qa4xbJlyyAIgsUjOTlZ6ma5zZkzZ3D33XcjPDwcvXr1wpVXXol9+/ZJ3SyvwdjRxp9iB+OG++OG361Q7Azx8fFYuXIlhgwZAlEU8e677+LWW2/FwYMHMWLECKmb5za5ublYtWoVUlNTpW6KW40YMQLfffed6blC4R+/RjU1Nbj++usxefJkbN68GREREThx4gTCwsKkbprXYOww8MfYwbjh3rjhH3+7TjZt2jSL5ytWrMCbb76JH3/80W8CVGNjI2bNmoU1a9bg+eefl7o5bqVQKBAdHS11M9zupZdeQkJCAt555x3TsQEDBkjYIu/D2OG/sYNxw71xg8NSPaTT6bBhwwZoNBqMHTtW6ua4zcMPP4ypU6diypQpUjfF7U6cOIHY2FgMHDgQs2bNQklJidRNcov//Oc/uPrqqzFjxgxERkZi1KhRWLNmjdTN8lqMHf4VOxg33Bs32HPTTYcPH8bYsWPR1NSE4OBgbNy4EcOHD5e6WW6xYcMGHDhwALm5uVI3xe3GjBmD9evXY9iwYTh79iyWL1+OCRMm4MiRIwgJCZG6eS516tQpvPnmm3j88cfx1FNPITc3F48++ihUKhVmz54tdfO8BmOH/8UOxg0J4oZI3aLVasUTJ06I+/btE//4xz+K/fr1E48ePSp1s1yupKREjIyMFPPy8kzHJk6cKM6fP1+6RkmopqZGDA0NFd9++22pm+JySqVSHDt2rMWxRx55RLzuuuskapF3Yuxg7GDccH3c4LBUN6lUKgwePBijR4/Giy++iJEjR+L111+Xulkut3//flRVVSEtLQ0KhQIKhQI7duzA3/72NygUCuh0Oqmb6FZ9+vTB0KFDUVhYKHVTXC4mJqZDD0NKSorfdK87C2MHYwfjhuvjBoelnESv10Or1UrdDJdLT0/H4cOHLY7de++9SE5OxqJFiyCXyyVqmTQaGxtx8uRJ3HPPPVI3xeWuv/56FBQUWBw7fvw4EhMTJWqRb2Ds8L/Ywbjh+rjB5KYbFi9ejJtuugn9+/dHQ0MDPvzwQ2zfvh3ffPON1E1zuZCQEFxxxRUWx4KCghAeHt7huC964oknMG3aNCQmJqK8vBxLly6FXC5HVlaW1E1zuQULFmDcuHF44YUXcOedd2Lv3r1YvXo1Vq9eLXXTvAZjh3/GDsYN98cNJjfdUFVVhezsbJw9exa9e/dGamoqvvnmG9xwww1SN41crKysDFlZWaiurkZERATGjx+PH3/8EREREVI3zeWuueYabNy4EYsXL8azzz6LAQMG4K9//StmzZolddO8BmOHf2LccH/cEERRFF16BSIiIiI34oRiIiIi8ilMboiIiMinMLkhIiIin8LkhoiIiHwKkxsiIiLyKUxuiIiIyKcwuSEiIiKfwuSGiIiIfAqTG/IKOp0O48aNw+23325xvK6uDgkJCViyZIlELSMiT8W44b+4QjF5jePHj+Oqq67CmjVrTEt3Z2dnIy8vD7m5uVCpVBK3kIg8DeOGf2JyQ17lb3/7G5YtW4ajR49i7969mDFjBnJzczFy5Eipm0ZEHopxw/8wuSGvIooi/t//+3+Qy+U4fPgwHnnkETz99NNSN4uIPBjjhv9hckNeJz8/HykpKbjyyitx4MABKBTc3J6IOse44V84oZi8zrp16xAYGIiioiKUlZVJ3Rwi8gKMG/6FPTfkVXbv3o2JEyfi22+/xfPPPw8A+O677yAIgsQtIyJPxbjhf9hzQ17j4sWLmDNnDv7v//4PkydPxtq1a7F371689dZbUjeNiDwU44Z/Ys8NeY358+dj06ZNyMvLQ2BgIABg1apVeOKJJ3D48GEkJSVJ20Ai8jiMG/6JyQ15hR07diA9PR3bt2/H+PHjLV7LyMhAa2sru5mJyALjhv9ickNEREQ+hXNuiIiIyKcwuSEiIiKfwuSGiIiIfAqTGyIiIvIpTG6IiIjIpzC5ISIiIp/C5IaIiIh8CpMbIiIi8ilMboiIiMinMLkhIiIin8LkhoiIiHwKkxsiIiLyKf8fRMCBqkfpphsAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import lab02_lib as lib\n", + "\n", + "# Загрузка обучающих данных\n", + "train = np.loadtxt('/content/drive/MyDrive/data/WBC_train.txt', dtype=float)\n", + "\n", + "# Вывод данных и их размерности\n", + "print(\"Обучающая выборка WBC:\")\n", + "print(train)\n", + "print(\"Размерность обучающей выборки:\", train.shape)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8CbvbydcHSJp", + "outputId": "2e11010e-5a26-4d56-a1c8-fa471336ce48" + }, + "execution_count": 57, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Обучающая выборка WBC:\n", + "[[3.1042643e-01 1.5725397e-01 3.0177597e-01 ... 4.4261168e-01\n", + " 2.7833629e-01 1.1511216e-01]\n", + " [2.8865540e-01 2.0290835e-01 2.8912998e-01 ... 2.5027491e-01\n", + " 3.1914055e-01 1.7571822e-01]\n", + " [1.1940934e-01 9.2323301e-02 1.1436666e-01 ... 2.1398625e-01\n", + " 1.7445299e-01 1.4882592e-01]\n", + " ...\n", + " [3.3456387e-01 5.8978695e-01 3.2886463e-01 ... 3.6013746e-01\n", + " 1.3502858e-01 1.8476978e-01]\n", + " [1.9967817e-01 6.6486304e-01 1.8575081e-01 ... 0.0000000e+00\n", + " 1.9712202e-04 2.6301981e-02]\n", + " [3.6868759e-02 5.0152181e-01 2.8539838e-02 ... 0.0000000e+00\n", + " 2.5744136e-01 1.0068215e-01]]\n", + "Размерность обучающей выборки: (357, 30)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "ae3_path = 'AE3_WBC_model.h5'\n", + "threshold_path = 'AE3_WBC_threshold.npy'\n", + "epochs = 50000\n", + "patience = 5000\n", + "\n", + "ae3_trained, IREth3, IRE3 = lib.create_fit_save_ae(\n", + " train,\n", + " ae3_path,\n", + " threshold_path,\n", + " epochs,\n", + " False, # не показываем процесс обучения\n", + " patience\n", + ")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "saSAaFZVOm31", + "outputId": "7e1e481d-38b2-411b-b721-58e92ccf6354" + }, + "execution_count": 67, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 30 20 15 12 7 12 15 20 25 28 30\n", + "\n", + "Epoch 1000/50000\n", + " - loss: 0.0011\n", + "\n", + "Epoch 2000/50000\n", + " - loss: 0.0010\n", + "\n", + "Epoch 3000/50000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 4000/50000\n", + " - loss: 0.0008\n", + "\n", + "Epoch 5000/50000\n", + " - loss: 0.0008\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Построение графика ошибок реконструкции с использованием встроенной функции\n", + "lib.ire_plot('training', lib.predict_ae(ae3_trained, train, IREth3)[1], IREth3, 'AE3')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 991 + }, + "id": "XV-DiPEZQAAu", + "outputId": "9767354c-d2fc-424b-cbc6-5c0b4a8b6366" + }, + "execution_count": 69, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n" + ] + }, + { + "output_type": "error", + "ename": "ValueError", + "evalue": "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipython-input-3423064203.py\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Построение графика ошибок реконструкции с использованием встроенной функции\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mire_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'training'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_ae\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mae3_trained\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIREth3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIREth3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'AE3'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/content/drive/MyDrive/Colab Notebooks/is_lab2/lab02_lib.py\u001b[0m in \u001b[0;36mire_plot\u001b[0;34m(title, IRE_test, IREth, ae_name)\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIREth_array\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlinestyle\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'-'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'k'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'IREth'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[0;31m#plt.xlim(0, len(x))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 559\u001b[0;31m \u001b[0mymax\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1.5\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mamax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mIRE_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIREth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 560\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 561\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Vector number'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfontsize\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAK2CAYAAAA/lRCDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwF5JREFUeJzs3Xl8FdX9//F3FpJAIIGwJSzuVq0LVVG07hWKuLS4i1YRta1bq0VapXWttrRarVqpVkVRW/eFWrVuuKKi4losWhf8yhZ2EhJIAsn8/pjf3Fnu3Ju5yZ07d3k9H488MjN37p0zc2f93M85p8gwDEMAAAAAAAAAEEBx1AUAAAAAAAAAkDsIKAIAAAAAAAAIjIAiAAAAAAAAgMAIKAIAAAAAAAAIjIAiAAAAAAAAgMAIKAIAAAAAAAAIjIAiAAAAAAAAgMAIKAIAAAAAAAAIjIAiAAAAAAAAgMAIKAIAgIxYsGCBzj33XH37299Wnz59VFRUFPv7+uuvoy5eQZo5c2bsOzj99NMzumzn9w8AAIDcQkARAIAQHXzwwbGgyZVXXplwPmdwxftXUlKivn37avvtt9fxxx+vO++8U01NTV0qQ6p/6QoyPfnkk9p999116623asGCBSmVHwBefPFF17lpp512Svkzrrzyyi6fC7faaivfz9y0aZPeeust3XDDDZo4caJGjRqluro69ezZUz169NCAAQM0cuRInXvuuXr99de7uRUAAMgepVEXAAAAJNfR0aGGhgY1NDToiy++0KOPPqqpU6fq9ttv19FHHx118TrV1NSk008/Xa2trZKkuro67b///ho4cGAsO62qqirKInbLlVdeqauuukqSdMUVVyQNHAPZaqutttL//d//SZIWLlyYMIAWlXvuucc1/umnn+qdd97R3nvvHVGJTP/85z91/PHHJ3x99erVWr16td577z3deuutOvTQQ3XXXXdpiy22yGApAQBIPwKKAABkmfHjx2vo0KGx8Y6ODq1atUpvvfWWFi9eLElatWqVjjvuOD366KMpBRX32muvlB7A99lnn+AFT+Cpp57S2rVrJUk777yz3n33XfXs2bPbnwugMKxfv16PP/543PR77rmnywHFIUOGpHTu7N+/f6fzlJWVaaeddtJ2222nmpoaGYah+vp6zZ07V6tWrZIkzZ49W/vvv7/mzJlDUBEAkNMIKAIAkGUuuOACHXzwwXHTOzo6dM899+icc85Ra2urOjo6dM4552js2LHq1atXoM8+/PDDM55B9/7778eGJ0yYQDAxi5x++ukZbzvRYhhGJMtF7nn00Ue1YcMGSVLPnj21ceNGSdKDDz6oP//5zyorK0v5M7fffnvdcsst3S5bXV2dLr30Uh122GEaOXKkysvL4+bZvHmz7r33Xp1//vnauHGjFi1apHPPPVdPPfVUt5cPAEBUaEMRAIAcUVxcrEmTJunaa6+NTVu+fLlmzZoVXaECsLITJfPhGwBS4azufPHFF2vw4MGSpDVr1uhf//pXVMWSJO233366+uqrtd9++/kGEyWptLRUZ5xxhm677bbYtGeeeSaWcQ4AQC4ioAgAQI756U9/qoqKitj4a6+9FmFpOrdp06bYcHExtx4Agvv6669j57iioiJNnDhREyZMiL3ubVsxmzkztA3D0IcffhhtgQAA6Abu6gEAyDHl5eWuHk6XLl0aYWn8OXtTdT7wT5o0Ka731JkzZ/p+RlNTk26++WaNHTtWw4YNU0VFhfr166dddtlF559/vt5+++1AZXEuy/LRRx/pggsu0C677KKamhoVFRVp/PjxKa2j1Xu21SGLJF111VWBess+/fTT49Z/3bp1uummm3TggQdq6NChKi0tVVFRkdatW+d674oVK3T33Xdr4sSJ2n333VVTU6MePXqob9++2nHHHTVp0iQ999xzgdZh5syZnfbo/corr8TmcVbFf+mll3TSSSdpm222UUVFhfr3768DDzxQt9xyiyuInIjf9+K11VZbxeb5+uuvJUmLFy/WZZddphEjRqhv376qrKzUjjvuqJ/97GexTkWCeuGFF3TSSSdpiy22UEVFherq6nTAAQdo+vTpam5uluTel9PVXMCqVav0pz/9SaNHj9aQIUNUUVER+w533nlnHXfccbrhhhu0cOHCQJ83e/ZsnX322dp5551VU1Oj8vJyDRkyRGPHjtUtt9wSqyLs9fXXX8fWzbnttt56a9/9+JVXXknH6qfk3nvvjVWP33///bXVVlvp1FNPjb3+73//WytWrMh4ubqiR48eqq6ujo2vX78+wtIAANA9tKEIAEAOcrZD2NLSEmFJwvHUU0/pxz/+serr613TW1tbtW7dOn3yySeaPn26Tj75ZN1xxx2B25CUzADRNddco/b29nQXu8veeOMNTZgwQYsWLUo6380336zJkyf7lt3qCfyzzz7TzJkz9b3vfU8PP/xwoM4kUtHW1qbzzz9fd9xxh2t6a2urXn/9db3++uu6++679dxzz2nAgAFpXfasWbN0+umnq6GhwTX9s88+02effaYZM2bokUce0RFHHNHpOpx55pn6+9//7ppeX1+v+vp6zZkzR9OnT9cTTzyR1vJLZq/AkyZNcjUFYLG+w//+97967LHHdMMNNyStFrto0SKddtppvoG+ZcuWadmyZXr++ec1bdo0PfjggzrggAPSuSoZce+998aGrUDiHnvsoZ133lmffPKJNm/erPvvv18XXnhhRCUMbtWqVVq5cmVsPNt60gYAIBUEFAEAyEHOrESrPbFssvfee+u8886TZGZPffrpp5KkQw89VDvuuKNrXme2pSQ99NBDOuWUU2JBs5KSEu2///7abrvt1NTUpNdffz22/vfff78WLlyol156yVUNPJHrrrsullG47bbbau+991avXr309ddfq0ePHimt49FHH61ddtlF77zzjt59911JiXvRTtZb9hdffKELL7xQDQ0N6tOnjw488EANGTJEa9eujavOvnTp0th22WabbbTTTjtp4MCBqqio0Lp16/Sf//xHn3zyiSQzg3D06NGaO3duwrbduuInP/mJ7rnnHhUXF2vUqFHacccd1dHRoblz5+qzzz6TZHbEc9ppp+mZZ55J23JffPFFnX322Wpvb9cWW2yhfffdV1VVVVq4cKFeeeUVbd68WRs3btQJJ5yg+fPna+utt074WRMmTHD1GlxTU6ODDz5YNTU1WrRokV599VUtWLBARxxxhH7wgx+kbR3mzZun4447Tps3b5Zk/jCwzz77aKuttlJ5ebkaGxv15Zdf6j//+U+sE5JEFixYoEMPPVTLli2TZGZ87rHHHvr2t7+tnj17asmSJXrttde0fv16LV26VGPGjNG///1vHXLIIbHPqKqqih2n9957byxj7rTTTlOfPn3ilunsfT4T5syZoy+//FKSmZl9/PHHx1479dRTdckll0gyqz1ne0DRMAz96le/ih2/W2yxhfbaa6+ISwUAQDcYAAAgNAcddJAhyZBkXHHFFQnns+aRZLz88stJP/Ozzz5zzX/LLbekpQxhmThxYmz5d999d9J5v/jiC6N3796x+ffee2/j888/d83T3t5uXH/99UZxcXFsvp/97GcJP9O5rUpLS43q6mrjiSeeiJuvpaWlK6tnXHHFFSlvX+c2KS0tNSQZ5513nrF+/XrXfG1tbUZ7e3tsfMaMGcZf/vIXY/HixQk/+6OPPjJGjhwZ+/yrr7464bx33313bL6JEyf6zvPyyy/H5ikvLzckGXvttZexYMEC13wdHR3GjTfe6Nrer776asJlO+dLZMstt3Qtu7Ky0rjvvvuMjo4O13zz5883hg4dGpt30qRJCT/zzjvvdC37oosuivvuly9fbowbN861zuk4fsaPHx/7rGOPPdZYs2aN73wbN240nn76aeOnP/2p7+tNTU3GTjvtFPuscePGGV988UXcfA0NDcY555wTm6+urs5Yt26d72c6t/XChQu7vI7pdNZZZ8XKdNxxx7leW7Rokesc8NFHH3X6ec5j9aCDDgqp1LZNmzYZS5YsMR577DHXebhHjx7G008/HfryAQAIExmKAADkkM2bN+uCCy6IjVdVVemkk04K/P5nnnlGq1atCjz/b3/7W9XU1KRUxu747W9/q6amJknSdtttp+eff97V5phkduwyefJkFRUVafLkyZKk6dOn6xe/+EXSrDRJ6ujo0JNPPqkDDzww7rV0ZvGlYvPmzTrrrLN0yy23xL3mzZo844wzOv283XbbTS+++KJ23HFH1dfX669//aumTp2qkpKSbpe1tbVV22+/vV566SX17t3b9VpRUZEuuOACzZkzR48++qgk6YEHHvDd1l3R1tamWbNm6bDDDot7beedd9bf/vY3HXnkkZKkRx55RLfffrtKS923uu3t7briiiti4z/96U/1pz/9Ke7zBg0apFmzZmn//fePZZ+mw+uvvy7J3NdmzpwZtw0tFRUVOvzww3X44Yf7vn7DDTdowYIFksxM2UcffdS3w6Oqqir99a9/1YYNG3TPPfdo2bJluu2223TxxRenaY3Cs3HjRj388MOxcWe7iZI0bNgwHXzwwXrppZckmVmK119/feDP//zzz3X++ecHnv/UU0/VqFGjOp1vu+22i2VV+qmrq9MDDzyggw46KPCyAQDIRgQUAQDIch0dHVq1apXeeOMN/eEPf9A777wjSSotLdVdd92VUht57777bkoBkilTpmQsoLhu3To99NBDsfFrr702LpjodMEFF2jGjBn65JNP1NHRodtvv13Tpk1LuozjjjsubQGudKmoqNC1116b1s+srq7W0UcfrVtvvVXLli3Tf//7X+26665p+ew//OEPCQNhkhn0tAKK1r6aDkceeaRvMNFy+OGHq7a2VvX19WpqatKCBQvi1vnZZ5/VkiVLJEmVlZX6wx/+kPDzysrK9Kc//SmtgZ/GxkZJUq9evZJuw2Q2bdoUCz6Xl5frtttu67T39N///vexzk3+8Y9/5ERAcdasWbHt1b9/f40bNy5unlNPPTUWUPzHP/6hP/7xj3FB5ESWLl2q6dOnBy7PyJEjAwUUkznzzDN10003qbKyslufAwBANiCgCABAlnG2cZbIDjvsoOuvv77TzidyyZtvvqnW1lZJ0oABA3TUUUclnb+4uFhnnHGGLrroIknSyy+/3OkyUsnmzJTvf//76tevX8rvW7FihebOnasFCxZo7dq1am5ujvWGK5nt9Vk+/PDDtAQUKyoqOv1edt9999iw1TNzOjjbz/NTVFSkESNGxDry+frrr+PW2dl5yRFHHKG+ffsm/cwDDzxQW2yxhb755psuldlr+PDh+uqrr7R27Vo99NBDOvHEE1P+jHnz5sV6NT700EM1aNCgTt8zZMgQ7bjjjlqwYIHmz5+vhoaGpMH6bODsHf6kk07ybeP0uOOO03nnnacNGzZo+fLleu655yI/J5566qmxjldaWlq0dOlSvf3221qzZo1mzJihZ555Rn/84x/jMi4BAMg1BBQBAMgxgwcP1r333uvb+UdnrrjiCl155ZXpL1QafPDBB7HhvffeO1Cm0X777ed6v2EYKioqSjj/nnvu2b1ChiDVMv33v//VxRdfrH//+9+Be6pOpZp7MjvssEOnndc4M2atDLN0CBIQ7WzZH374YWw4aLbZ3nvvnbaA4gknnBDLipwwYUIsqHjIIYcECgxK0ltvvRUbXrx4ceBqu+vWrZNkdg6yePHirA4oLl26VC+++GJsPFHwrXfv3ho/frzuv/9+SWYQMmhA8aCDDvLtHbu7nFXqLW1tbbrvvvt00UUXadmyZTrttNP09ddf67LLLkv78gEAyBQCigAAZJnx48e7elNdvXq1vvzyy1hV5eXLl+uAAw7QY489FmszLh9YWT2StOWWWwZ6z1ZbbRUbbmtr0/r161VVVZVw/oEDB3a5fGFJpUzPPfecfvjDH8YyOYOyeu/triBBKGfA0erNOIplb9q0Ke515z42fPjwQMsdNmxYoPmCuPTSS/XKK69o7ty5MgxDTzzxhJ544glJ0vbbb68DDjhAhx56qI466ijfXpYldw/vH3/8sT7++OOUy7F27dqurUCG/P3vf48Fy7fffvukwd9TTz01FlB88skntXbt2i5l/IaprKxMZ555pnbddVftv//+2rRpk6644gp973vfc/0oAgBALkne4AoAAMi4Cy64QLfcckvs74EHHtA777yjjz76SCNGjJBkBs8mTJiQtPH/XGN1xiIpcBtj3vk6C5z17Nkz9YKFLGiZVq5cqRNPPDEWTNxyyy01bdo0zZkzR0uXLtWGDRvU0dEhwzBkGIYrU6qjoyMtZU2W/Rm2dCzbuY/16tUr0Hu62tahn8rKSr366qu67rrrXMFwyewk5K677tIpp5yi2tpa/epXv9LGjRvjPqOhoaHb5UhnoDcMzurOP/rRj5LOO2bMGNXW1koyOw1ytsOabfbee2+ddtppksxM0T//+c8RlwgAgK4joAgAQI7Ybbfd9Pzzz8eyF5uamnTWWWdFXKr0cQZumpubA73HO1+irK58cMcdd8SCSSNGjNDHH3+sSy65RPvtt5/q6urUs2dPV9AtXVmJ+cS5j23YsCHQe4Lui0GVlZVpypQp+uqrr/Thhx/q5ptv1kknneTKSt6wYYOuu+46HXLIIXFBRWcQ/ec//3ksgJzK38EHH5zWdUqnefPm6b///W9s/IorrlBRUVHCv9LS0li7mZI7GJmNxowZExt+4403IiwJAADdQ0ARAIAcMmjQIP3lL3+Jjb/yyit6+umnIyxR+jir/gZts87Z6UdZWVleBxRnz54dG7700kuTVu2WpP/7v/8Lu0g5Z8CAAbHhxYsXB3pP0PlSZXUi87Of/UwPPPCAFi9erPfff1+TJk2KzfP222/H9UQ8ePDg2LAzkJYvuhsQnDt3rv73v/+lqTTp56yOvXr16ghLAgBA99CGIgAAOeboo4/WfvvtF8tuufTSSyPv2TQdnL0Dv/POO2pvb1dJSUnS97z55puu90dRJTdTy3S2nddZByXt7e1kP/n4zne+EwvMvv3224He884774RZJJfdd99dd911l0pKSnTnnXdKMtsFnDJlSmweZ3uCb775ZqcdEQUVZXV2S1tbmx544IHY+A477NBpT9yWzz//XGvWrJFkBiV/97vfhVHEblu2bFlsuKamJsKSAADQPWQoAgCQg5w9NX/44Yd68sknoytMmnz3u99VeXm5JLO9wM4yLzs6OnT33XfHxr/3ve+FWr5EKioqYsN+HYGkS3GxfdvWWXXdWbNm5WX2Wnc5q/o+/fTTnbZHOGfOnEgyPX/wgx/EhpcvX+56bb/99osF2RYvXqx//etfaVlmpvbjZJ5++ulY1l5paalee+01zZ07N9Dfr3/969jn3HfffWlrNzTdnnrqqdjwTjvtFGFJAADoHgKKAADkoNGjR+u73/1ubPyaa66JsDTp0bdvX5144omx8V/+8pdJ2wG85ZZb9J///EeSGWz7yU9+EnoZ/fTv3z82vGTJktCWs80228SGkwWQV65cqV/84hehlSOXHXbYYRoyZIgksw1SZxDKq62tzZUZ2F2tra2uTmGSWbRoUWx40KBBrtfKy8t14YUXxsbPPffclPY7b4DSkqn9OBlndecxY8bErXsyEyZMiAXdFy1apJdffjnt5fPavHlzSp3kPPPMM3rsscdi48cee2wYxQIAICMIKAIAkKMuv/zy2PC7776rZ599NsLSpMfll18e6zjjf//7n8aOHauvvvrKNU9HR4duuukmTZ48OTbtvPPOi+s1N1N22WWX2PDzzz+fll54/Rx11FGx4WnTpunvf/973Dzvv/++DjroIC1atChwT9mFpLS01JXd+9e//lUXX3yx2traXPOtXLlSxx57rN5+++1Y1mx3LVu2TMOHD9eUKVM0b968hPO98MILrh66x40bFzfPRRddpJ133lmSGfwbOXKkHnnkkYRZeatWrdLtt9+uPfbYQ9ddd53vPM79+JFHHgm0TjNnznR1kOJs0zRVq1at0jPPPBMbP+WUU1J6/5AhQ3TIIYfExjPROUtTU5O23nprXX755frss88Szrd27Vpdc801OuaYY2QYhiRpu+22049//OPQywgAQFhoQxEAgBw1duxYjRo1KtYW3NVXX63DDjss6XueeeYZrVq1KvAyevXqpWuvvbZb5UzFtttuqzvvvFOnnHKK2tvb9dZbb2mHHXbQAQccoG233VZNTU16/fXXXRlU++yzT0bL6LX33ntr+PDhWrRokZYtW6Ydd9xR3//+9zVgwIBYu3R77bWXK/uyKyZOnKjrr79e//vf/9Ta2qpTTz1Vv//97zVixAhVVFRo/vz5sUDViBEjNHbs2Ei3S7Y666yz9PTTT+uf//ynJOnaa6/VjBkzdPDBB6umpkaLFy/Wyy+/rJaWFm2zzTb64Q9/qD//+c+S3NXOu2LdunW6/vrrdf3116umpka77767hg4dqoqKCq1YsUIff/yxK4D+rW99SxdccEHc5/Tu3VtPPvmkRo8erYULF6q+vl4nnHCCBgwYoH322Ue1tbUyDENr1qzRf//7X33++eexYGOipgGOPfZY/e1vf5NkBlrfe+897bHHHurVq1dsnnPOOUfbbrttt7ZBIvfff3+sqnVlZaXGjx+f8meccsopsTYyH3/8cf31r3919ezt9Pnnn+v8889P6fOnTp3q6o1bMoOFV199ta6++moNGTJEu+22mwYNGqRevXqpqalJX3zxhd5//31X0Lq2tlZPPvlk2oLVAABEgYAiAAA57PLLL491yPLmm29q9uzZOvTQQxPO/+677+rdd98N/PnV1dUZD0qdeOKJqqys1FlnnaXly5dr8+bNevnll32rME6YMEF33nmnq/23TCsuLtZf//pXHXvssWpra1N9fb3uvfde1zwTJ07sdkCxvLxc//rXvzRu3LhY0GnBggVasGCBa7799ttPDz30kO64445uLS9fFRUV6aGHHtLpp5+uBx98UJLZ266zKqpktm/3xBNPuL7LznrWTqZHjx4qLy9Xa2urJGnNmjWunru9Dj74YD3wwAMJM0232WYbzZs3T2effbYeffRRGYahVatWudro8+rbt2/CDn3GjBmjCRMmxDpFefvtt+M6rjnyyCNDCyg6MwrHjx/fpQzbY489Vueee65aWlrU3NysRx99VKeffrrvvEuXLo3rQbszZ511liugWFxcrNLSUm3evDn2mc7Ok/wcc8wxuvnmm+MCkwAA5BoCigAA5LDDDz9cI0eOjGWm/fa3v00aUMwVRx55pL744gvdddddeuqpp/TJJ59o1apV6tmzZ6xq42mnnebq8TZKRx55pObNm6fp06drzpw5+uabb9TU1BSr3pgu3/rWt/TBBx9o+vTpevzxx/XZZ5+pra1NtbW12nXXXXXyySfrhBNO6LR37EJXXl6uBx54QJMmTdKdd96pt956SytWrFC/fv203Xbb6aSTTtKkSZNUWVkZ6zlYUuAeh/0MHTpUq1ev1ksvvaTXX39d7733nr744gutXLlSbW1t6tOnj7bccstYNuvo0aM7/cyamho9/PDDmj9/vh544AG98sorWrhwoVavXq3i4mL17dtX2223nfbYYw+NHj1aY8aMSRp8/8c//qEjjzxSDzzwgD788EOtWrVKLS0tXV7noObPn6/3338/Np5qdWdLVVWVjjrqqFiV7ZkzZyYMKKZDVVWVVq9erRdffFFvvPGGPvjgA3311VdauXKlWltbVVlZqX79+mnnnXfWqFGjdPLJJ2u77bYLrTwAAGRSkZHuO10AAAAgT+y333568803JUlz587NmiA2AABAlAgoAgAAAD7+7//+T9tuu63a29tVVlamhoaGSKvXAwAAZAt6eQYAAAA8DMPQBRdcoPb2dknS0UcfTTARAADg/yOgCAAAgIJy+eWX66abbkrY4/nXX3+to48+OtYTdElJiaZMmZLJIgIAAGQ1OmUBAABAQfnmm2909dVXa8qUKdp111214447qrq6Wk1NTfr000/1wQcfxDITJenSSy/VyJEjIywxAABAdiGgCAAAgIK0efNmffDBB/rggw98X+/Zs6d++9vfkp0IAADgQacsAAAAKCjr1q3TP//5T7300kv65JNPtHLlSq1atUrt7e2qqanRDjvsoEMPPVRnnnmm6urqoi4uAABA1smLgGJHR4eWLl2qPn36qKioKOriAAAAAAAAADnFMAytX79eQ4YMUXFx8m5X8qLK89KlSzV8+PCoiwEAAAAAAADktEWLFmnYsGFJ58mLgGKfPn0kmStcVVUVcWkAAAAAAACA3NLY2Kjhw4fH4mzJ5EVA0armXFVVRUARAAAAAAAA6KIgzQkmrxANAAAAAAAAAA4EFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGAEFAHAqaUl6hIAAAAAAJDVSqMuAIIZOXKk6uvroy4GkN/WrJE2bpRqaqSePaMuDQAAAAAgC9XW1mrevHlRFyNSBBRzRH19vZYsWRJ1MYDCsGZN1CUAAAAAACBrEVDMEbW1tVEXAchvHR3SsmXmcHm5NGBAtOUBAAAAAGQlYjQEFHNGoafSAqFbvlyyLgoHHig9/3y05QEAAAAAIEvRKQsASGaGot8wAAAAAABwIaAIAJLU3m4PG0Z05QAAAAAAIMsRUAQAiQxFAAAAAAACIqAIABIBRQAAAAAAAiKgCAASVZ4BAAAAAAgopYDitGnTtNdee6lPnz4aNGiQxo8fr88++6zT9z3yyCPacccdVVFRoV133VXPPPOM63XDMHT55Zerrq5OPXv21OjRo/X555+ntiYA0B1kKAIAAAAAEEhKAcVXX31V5513nubOnasXXnhBmzZt0ve//301NzcnfM+bb76pCRMm6Mwzz9QHH3yg8ePHa/z48Zo/f35snmuvvVY333yzbrvtNr399tuqrKzU2LFj1dLS0vU1A4BUOIOIZCgCAAAAAJBQkWF0/cl55cqVGjRokF599VUdeOCBvvOceOKJam5u1lNPPRWbts8+++g73/mObrvtNhmGoSFDhuiiiy7SlClTJEkNDQ0aPHiwZs6cqZNOOqnTcjQ2Nqq6uloNDQ2qqqrq6uoAKGQLFkjf/rY5vM8+0ltvRVseAAAAAAAyKJX4WrfaUGxoaJAk1dTUJJznrbfe0ujRo13Txo4dq7f+/8P6woULVV9f75qnurpao0aNis0DAKFztqFIlWcAAAAAABIq7eobOzo6dOGFF2q//fbTLrvsknC++vp6DR482DVt8ODBqq+vj71uTUs0j1dra6taW1tj442NjV1aBwCIocozAAAAAACBdDlD8bzzztP8+fP14IMPprM8gUybNk3V1dWxv+HDh2e8DADyDJ2yAAAAAAAQSJcCiueff76eeuopvfzyyxo2bFjSeWtra7V8+XLXtOXLl6u2tjb2ujUt0TxeU6dOVUNDQ+xv0aJFXVkNALA5qzyToQgAAAAAQEIpBRQNw9D555+vJ554Qi+99JK23nrrTt+z7777avbs2a5pL7zwgvbdd19J0tZbb63a2lrXPI2NjXr77bdj83iVl5erqqrK9QcA3UKGIgAAAAAAgaTUhuJ5552n+++/X//85z/Vp0+fWBuH1dXV6tmzpyTptNNO09ChQzVt2jRJ0gUXXKCDDjpI119/vY444gg9+OCDmjdvnm6//XZJUlFRkS688EJdc8012n777bX11lvrsssu05AhQzR+/Pg0rioAJEFAEQAAAACAQFIKKN56662SpIMPPtg1/e6779bpp58uSfrmm29UXGwnPn73u9/V/fffr0svvVS//vWvtf3222vWrFmujlx+9atfqbm5WT/5yU+0bt067b///nr22WdVUVHRxdUCgBRR5RkAAAAAgECKDCP3n5wbGxtVXV2thoYGqj8D6Jo5c6QDDjCHd95Zmj8/2vIAAAAAAJBBqcTXutzLMwDkFWc159z/nQUAAAAAgNAQUAQAyV3lmTYUAQAAAABIiIAiAEh0ygIAAAAAQEAEFAFAosozAAAAAAABEVAEAIkqzwAAAAAABERAEQAkMhQBAAAAAAiIgCIASLShCAAAAABAQAQUAUCiyjMAAAAAAAERUAQAiSrPAAAAAAAEREARACSqPAMAAAAAEBABRQCQ3FWeyVAEAAAAACAhAooAIJGhCAAAAABAQAQUAUAioAgAAAAAQEAEFAFAosozAAAAAAABEVAEAIkMRQAAAAAAAiKgCACSO4hIhiIAAAAAAAkRUAQAyV3lmQxFAAAAAAASIqAIABJVngEAAAAACIiAIgBIVHkGAAAAACAgAooAIFHlGQAAAACAgAgoAoBEhiIAAAAAAAERUAQAiTYUAQAAAAAIiIAiAEhUeQYAAAAAICACigAgUeUZAAAAAICACCgCgESVZwAAAAAAAiKgCACSu8ozGYoAAAAAACREQBEAJDIUAQAAAAAIiIAiAEjxQUSyFAEAAAAA8EVAEQAkd5VniYAiAAAAAAAJEFAEACk+Q5FqzwAAAAAA+CKgCAASVZ4BAAAAAAiIgCIASPFVnslQBAAAAADAFwFFAJCo8gwAAAAAQEAEFAFAosozAAAAAAABEVAEAIkqzwAAAAAABERAEQAkMhQBAAAAAAiIgCIASLShCAAAAABAQAQUAUCiyjMAAAAAAAERUAQAiSrPAAAAAAAEREARACSqPAMAAAAAEBABRQCQ4qs8k6EIAAAAAIAvAooAIJGhCAAAAABAQAQUAUAioAgAAAAAQEAEFAFAosozAAAAAAABEVAEAIkMRQAAAAAAAiKgCABSfACRDEUAAAAAAHwRUAQAKb7KMxmKAAAAAAD4IqAIABJVngEAAAAACIiAIgBIVHkGAAAAACAgAooAIJGhCAAAAABAQAQUAUCKb0ORDEUAAAAAAHwRUAQAiQxFAAAAAAACIqAIABIBRQAAAAAAAiKgCAASVZ4BAAAAAAiIgCIASGQoAgAAAAAQEAFFAJDiA4hkKAIAAAAA4IuAIgBI8VWeyVAEAAAAAMAXAUUAkKjyDAAAAABAQAQUAUCiyjMAAAAAAAERUAQAiSrPAAAAAAAEREARACSqPAMAAAAAEBABRQCQqPIMAAAAAEBABBQBQKLKMwAAAAAAARFQBACJDEUAAAAAAAIioAgAEm0oAgAAAAAQEAFFAJCo8gwAAAAAQEAEFAFAosozAAAAAAABEVAEAIkqzwAAAAAABERAEQCk+CrPZCgCAAAAAOAr5YDia6+9pqOOOkpDhgxRUVGRZs2alXT+008/XUVFRXF/O++8c2yeK6+8Mu71HXfcMeWVAYAuI0MRAAAAAIBAUg4oNjc3a8SIEZo+fXqg+W+66SYtW7Ys9rdo0SLV1NTo+OOPd8238847u+abM2dOqkUDgK4joAgAAAAAQCClqb5h3LhxGjduXOD5q6urVV1dHRufNWuW1q5dq0mTJrkLUlqq2traVIsDAOlBlWcAAAAAAALJeBuKM2bM0OjRo7Xlllu6pn/++ecaMmSIttlmG51yyin65ptvEn5Ga2urGhsbXX8A0C1kKAIAAAAAEEhGA4pLly7Vv//9b5111lmu6aNGjdLMmTP17LPP6tZbb9XChQt1wAEHaP369b6fM23atFjmY3V1tYYPH56J4gPIZ94AIhmKAAAAAAD4ymhA8Z577lHfvn01fvx41/Rx48bp+OOP12677aaxY8fqmWee0bp16/Twww/7fs7UqVPV0NAQ+1u0aFEGSg8gr3mrPJOhCAAAAACAr5TbUOwqwzB011136dRTT1VZWVnSefv27atvfetb+uKLL3xfLy8vV3l5eRjFBFCoqPIMAAAAAEAgGctQfPXVV/XFF1/ozDPP7HTepqYmffnll6qrq8tAyQBAVHkGAAAAACCglAOKTU1N+vDDD/Xhhx9KkhYuXKgPP/ww1onK1KlTddppp8W9b8aMGRo1apR22WWXuNemTJmiV199VV9//bXefPNNHX300SopKdGECRNSLR4AdA1VngEAAAAACCTlKs/z5s3TIYccEhufPHmyJGnixImaOXOmli1bFtdDc0NDgx577DHddNNNvp+5ePFiTZgwQatXr9bAgQO1//77a+7cuRo4cGCqxQOAriFDEQAAAACAQIoMI/efmhsbG1VdXa2GhgZVVVVFXRwAuahXL2njRnv8kUek446LrjwAAAAAAGRQKvG1jPbyDABZiyrPAAAAAAAEQkARACSqPAMAAAAAEBABRQCQ4gOKZCgCAAAAAOCLgCIAGAYZigAAAAAABERAEQD8godkKAIAAAAA4IuAIgD4BQ8JKAIAAAAA4IuAIgB4e3iWqPIMAAAAAEACBBQBgAxFAAAAAAACI6AIAH7BQzIUAQAAAADwRUARAPyqPJOhCAAAAACALwKKAECVZwAAAAAAAiOgCABUeQYAAAAAIDACigBAlWcAAAAAAAIjoAgAZCgCAAAAABAYAUUAoA1FAAAAAAACI6AIAFR5BgAAAAAgMAKKAECVZwAAAAAAAiOgCABUeQYAAAAAIDACigDgV+WZDEUAAAAAAHwRUAQAMhQBAAAAAAiMgCIAEFAEAAAAACAwAooAQJVnAAAAAAACI6AIAGQoAgAAAAAQGAFFAPALHpKhCAAAAACALwKKAECGIgAAAAAAgRFQBAC/NhQJKAIAAAAA4IuAIgBQ5RkAAAAAgMAIKAIAVZ4BAAAAAAiMgCIA+FV5JkMRAAAAAABfBBQBgAxFAAAAAAACI6AIAAQUAQAAAAAIjIAiAFDlGQAAAACAwAgoAgAZigAAAAAABEZAEQD8godkKAIAAAAA4IuAIgD4VXkmQxEAAAAAAF8EFAGAKs8AAAAAAARGQBEAqPIMAAAAAEBgBBQBgCrPAAAAAAAERkARAMhQBAAAAAAgMAKKAEAbigAAAAAABEZAEQCo8gwAAAAAQGAEFAGAKs8AAAAAAARGQBEAqPIMAAAAAEBgBBQBwK/KMxmKAAAAAAD4IqAIAGQoAgAAAAAQGAFFACCgCAAAAABAYAQUAYAqzwAAAAAABEZAEQDIUAQAAAAAIDACigDgFzwkQxEAAAAAAF8EFAHAr8ozGYoAAAAAAPgioAgAVHkGAAAAACAwAooAQJVnAAAAAAACI6AIAFR5BgAAAAAgMAKKAECGIgAAAAAAgRFQBADaUAQAAAAAIDACigBAlWcAAAAAAAIjoAgAVHkGAAAAACAwAooAQJVnAAAAAAACK426AAhm5MiRqq+vj7oY4dm8WVq7Viotlfr1i7o0KDSNjfHTnn9eGjYs82UBAAAAAGS12tpazZs3L+piRIqAYo6or6/XkiVLoi5G+NrapA0boi4FILW0SIVwzAEAAAAAkCICijmitrY26iKEa906qbnZHB44UCori7Q4KDCNjdL69e5p5eXSgAHRlAcAAAAAkLXyPkYTAAHFHJH3qbQ/+5l0yy3m8GOPSQccEG15UFimTpX+8Af3tEMOkf7972jKAwAAAABAFqNTFmQHZwcY7e3RlQOFiU5ZAAAAAAAIjIAisoMzeEMgB5nmt88ZRubLAQAAAABADiCgiOzgzEokoIhM88uKZT8EAAAAAMAXAUVkBzIUESWqPAMAAAAAEBgBRWQH2lBElKjyDAAAAABAYAQUkR3IUESUqPIMAAAAAEBgKQcUX3vtNR111FEaMmSIioqKNGvWrKTzv/LKKyoqKor7q6+vd803ffp0bbXVVqqoqNCoUaP0zjvvpFo05DICiogSGYoAAAAAAASWckCxublZI0aM0PTp01N632effaZly5bF/gYNGhR77aGHHtLkyZN1xRVX6P3339eIESM0duxYrVixItXiIVdR5RlRog1FAAAAAAACK031DePGjdO4ceNSXtCgQYPUt29f39duuOEG/fjHP9akSZMkSbfddpuefvpp3XXXXbrkkktSXhZyEL08I0pUeQYAAAAAILCMtaH4ne98R3V1dRozZozeeOON2PS2tja99957Gj16tF2o4mKNHj1ab731lu9ntba2qrGx0fWHHEeVZ0SJKs8AAAAAAAQWekCxrq5Ot912mx577DE99thjGj58uA4++GC9//77kqRVq1apvb1dgwcPdr1v8ODBce0sWqZNm6bq6urY3/Dhw8NeDYSNgCKiRJVnAAAAAAACS7nKc6p22GEH7bDDDrHx7373u/ryyy/15z//Wffdd1+XPnPq1KmaPHlybLyxsZGgYq6jDUVEyW+fI0MRAAAAAABfoQcU/ey9996aM2eOJGnAgAEqKSnR8uXLXfMsX75ctbW1vu8vLy9XeXl56OVEBpGhiCiRoQgAAAAAQGAZa0PR6cMPP1RdXZ0kqaysTHvuuadmz54de72jo0OzZ8/WvvvuG0XxEAUCiogSAUUAAAAAAAJLOUOxqalJX3zxRWx84cKF+vDDD1VTU6MttthCU6dO1ZIlS3TvvfdKkm688UZtvfXW2nnnndXS0qI777xTL730kp5//vnYZ0yePFkTJ07UyJEjtffee+vGG29Uc3NzrNdnFABnlVOqPCPTqPIMAAAAAEBgKQcU582bp0MOOSQ2brVlOHHiRM2cOVPLli3TN998E3u9ra1NF110kZYsWaJevXppt91204svvuj6jBNPPFErV67U5Zdfrvr6en3nO9/Rs88+G9dRC/IYGYqIEhmKAAAAAAAEVmQYuZ+G09jYqOrqajU0NKiqqirq4qArDjtMeu45c/iOO6Szzoq2PCgsxxwjPfGEe9quu0offxxNeQAAAAAAyLBU4muRtKEIxCFDEVHyq/LMfggAAAAAgC8CisgOzuANbSgi06jyDAAAAABAYAQUkR3IUESU/Pa53G8NAgAAAACAUBBQRHZwZiUSUESmkaEIAAAAAEBgBBSRHajyjCg597nSUvM/GYoAAAAAAPgioIjsQJVnRMm5z1kBRfZDAAAAAAB8EVBEdiCgiCgRUAQAAAAAIDACisgOBBQRJao8AwAAAAAQGAFFZAfaUESUyFAEAAAAACAwAorIDvTyjCg597mSEvM/GYoAAAAAAPgioIjsQJVnRMkZ0LYCiuyHAAAAAAD4IqCI7ECVZ0TJ2v+KiwkoAgAAAADQCQKKyA5kKCJKzoBiUZE5TJVnAAAAAAB8EVBEdiCgiChZWbHFxeafxH4IAAAAAEACBBSRHQgoIkrWPldSQoYiAAAAAACdIKCI7OBsN5E2FJFpzirPZCgCAAAAAJAUAUVkBzIUESWqPAMAAAAAEBgBRWQHAoqIElWeAQAAAAAIjIAisoMziEiVZ2QaVZ4BAAAAAAiMgCKyAxmKiJKzyjMZigAAAAAAJEVAEdnBmZVIQBGZ5qzyTIYiAAAAAABJEVBEdiBDEVGiyjMAAAAAAIERUER2oA1FRIkqzwAAAAAABEZAEdmBDEVEiSrPAAAAAAAERkAR2YGAIqLkrPJMhiIAAAAAAEkRUER2oMozouSs8kyGIgAAAAAASRFQRHagl2dEiSrPAAAAAAAERkAR2YEqz4gSVZ4BAAAAAAiMgCKyAwFFRMmvyrNEUBEAAAAAAB8EFJEdaEMRUXJWebYyFCUCigAAAAAA+CCgiOxAhiKi5Kzy7MxQZF8EAAAAACAOAUVkBwKKiFKiKs/siwAAAAAAxCGgiOgZBlWeES2qPAMAAAAAEBgBRUTPG7QhKwyZRpVnAAAAAAACI6CI6HmDNgRxkEnODNniYjIUAQAAAADoBAFFRI+AIqLkDBqWlJChCAAAAABAJwgoInreoA1tKCKTnPsfVZ4BAAAAAOgUAUVEjwxFRMkZwKbKMwAAAAAAnSKgiOh5MxIJKCKTyFAEAAAAACAlBBQRPao8I0rO/a+khAxFAAAAAAA6QUAR0aPKM6LkrfJMhiIAAAAAAEkRUET0CCgiSlR5BgAAAAAgJQQUET0CiogSVZ4BAAAAAEgJAUVEjzYUESWqPAMAAAAAkBICiogevTwjSt4qz2QoAgAAAACQFAFFRI8qz4iSt8ozGYoAAAAAACRFQBHRo8ozokSVZwAAAAAAUkJAEdEjQxFRosozAAAAAAApKY26AAABRUTKW+U50WsAAAAAAEASGYrIBgQUESVvlWcyFAEAAAAASIoMRUTP22YibSgik7xVnp1BRILbAAAAAADEIUMR0SNDEVGil2cAAAAAAFJCQBHRI6CIKFHlGQAAAACAlFDlGdHzBhCp8oxMosozAAAAAAApIUMR0SNDEVHyVnkmQxEAAAAAgKQIKCJ6BBQRJW+VZ9pQBAAAAAAgKQKKiJ63ijNBHGSSt8ozAUUAAAAAAJIioIjo0YYiokSVZwAAAAAAUkJAEdGjyjOiRJVnAAAAAABSQkAR0SOgiCh5qzyToQgAAAAAQFIEFBE9qjwjSt4qz2QoAgAAAACQFAFFRI9OWRAlOmUBAAAAACAlBBQRPao8I0reNhSp8gwAAAAAQFIEFBE9AoqIElWeAQAAAABICQFFRI82FBElOmUBAAAAACAlBBQRPTIUESVvlWcyFAEAAAAASIqAIqJHQBFRosozAAAAAAApIaCI6NHLM6JElWcAAAAAAFKSckDxtdde01FHHaUhQ4aoqKhIs2bNSjr/448/rjFjxmjgwIGqqqrSvvvuq+eee841z5VXXqmioiLX34477phq0ZCr/AKIBBWRKVR5BgAAAAAgJSkHFJubmzVixAhNnz490PyvvfaaxowZo2eeeUbvvfeeDjnkEB111FH64IMPXPPtvPPOWrZsWexvzpw5qRYNuYqAIqLkrfJMhiIAAAAAAEmVpvqGcePGady4cYHnv/HGG13jv//97/XPf/5T//rXv7T77rvbBSktVW1tbarFQT4goIgoeas8k6EIAAAAAEBSGW9DsaOjQ+vXr1dNTY1r+ueff64hQ4Zom2220SmnnKJvvvkm4We0traqsbHR9Ycc5he08barCISFKs8AAAAAAKQk4wHFP/3pT2pqatIJJ5wQmzZq1CjNnDlTzz77rG699VYtXLhQBxxwgNavX+/7GdOmTVN1dXXsb/jw4ZkqPsJAhiKiRJVnAAAAAABSktGA4v3336+rrrpKDz/8sAYNGhSbPm7cOB1//PHabbfdNHbsWD3zzDNat26dHn74Yd/PmTp1qhoaGmJ/ixYtytQqIAx+2YgEFJEpVHkGAAAAACAlKbeh2FUPPvigzjrrLD3yyCMaPXp00nn79u2rb33rW/riiy98Xy8vL1d5eXkYxUQUyFBElLxVnslQBAAAAAAgqYxkKD7wwAOaNGmSHnjgAR1xxBGdzt/U1KQvv/xSdXV1GSgdIkcbioiSt8ozGYoAAAAAACSVcoZiU1OTK3Nw4cKF+vDDD1VTU6MttthCU6dO1ZIlS3TvvfdKMqs5T5w4UTfddJNGjRql+vp6SVLPnj1VXV0tSZoyZYqOOuoobbnlllq6dKmuuOIKlZSUaMKECelYR2Q7MhQRJao8AwAAAACQkpQzFOfNm6fdd99du+++uyRp8uTJ2n333XX55ZdLkpYtW+bqofn222/X5s2bdd5556muri72d8EFF8TmWbx4sSZMmKAddthBJ5xwgvr376+5c+dq4MCB3V0/5AICiogSVZ4BAAAAAEhJyhmKBx98sIwkD9kzZ850jb/yyiudfuaDDz6YajGQT6jyjChR5RkAAAAAgJRktJdnwBe9PCNK3irPZCgCAAAAAJAUAUVEjyrPiJK3yjMZigAAAAAAJEVAEdEjoIgoUeUZAAAAAICUEFBE9GhDEVGiyjMAAAAAACkhoIjokaGIKFHlGQAAAMhdHR3SQw9JTz8ddUmAglJkJOuyOUc0NjaqurpaDQ0Nqqqqiro4oRg5cqTq6+ujLkY4mpqkhgb3tMGDpdKUOyEHUufc/2pqzACjNd6vn9SrV3RlAwAAAJBcS4u0erU5PGCAVF4ebXlQEGprazVv3ryoi5F2qcTXiNjkiPr6ei1ZsiTqYmTO8uVRlwCFaM0a9/jateYfAAAAgOy3alXUJQAKBgHFHFFbWxt1EcJDhiKitH691NhoDvfvb2YorltnjpOhCAAAAGQ35/18UZE0ZEi05UFByOsYTUBEbHJEPqbSxvzxj9Ill7invfCCtOuu0ZQHheV3v5MuvdQcnjlTWrRIOvdcc/zPf5YmToysaAAAAAA68fvfS7/5jTlsGNLtt0uHHx5tmYACQKcsiB6dsiBK3l6e6ZQFAAAAyB3OThYl6eGHoykHUGAIKCJ6fkEb70UBCEuyXp5zv88qAAAAIL95nx3/+U+prS2asgAFhIAiokeGIqLk3NdKSsx2V/xeAwAAAJB9Nm92j69bJ734YiRFAQoJAUVEzy8bkUAOMoUqzwAAAEDu8nuepNozEDoCiogeVZ4RJW+VZ2eGIlWeAQAAgOzm9+xItWcgdEWGkftPzI2NjaqurlZDQ4OqqqqiLk4oRo4cqfr6+qiLEY7GRmn9eve0gQOlsrJoyoPC0tAgNTWZwwMHmlUm1q41x/v2lSorIysaAAAAgE447+dLSuwAY//+UkVFdOVCXqutrdW8efOiLkbapRJfK81QmdBN9fX1WrJkSdTFyJyVK6MuAQqRd79bt878AwAAAJD9nNmKq1dHVw6gABBQzBG1tbVRFyE8zl+ULAMGSOXl0ZQHhYUMRQAAACB3rVsnNTebw9XV5v29JPXpI+VpDUZEL69jNAERUMwR+ZhKG/OrX0nXXeee9tBD0ve+F015UFguvFC66SZz+Mknpa++kk45xRy/6irp5z+PrGgAAAAAOnH22dLf/mYOX3WVeX8vSeeeK/3hD5EVC8h3dMqC6NHLM6Lk3NdKSuiUBQAAAMglzudJZy03OvoEQkVAEdHzCx4SUESmeHt5LnacFtkPAQAAgOyWKKC4eXPmywIUEAKKiJ5f0MZ5UbjzTmnKFLtdOyCdnPufN6BIhiIAAACQ3ZyBw7Iye5gMRSBURYaR+0/MqXRrnatGjhyp+vr6qIsRDmcjupb+/aWKCvMiYK13dbXUu3fGi4c859z/Bg0yb0jWrDHH2ecAAACA7LZmjbRxozlcU2Pfy1dWmp0sAiGora3Ny74uUomv0SlLjqivr9eSJUuiLkbmrF4dP62hwe6xCwjDihXucfY5AAAAIHdYwUTJTBrwJq4ASBsCijkir7skT5ah2NoqrVplTuMXJoRh7VppwwZzePBgadMm+0akqkrq0ye6sgEAAABIzpmhOGCA/fzYq5fUr1905UJey+sYTUAEFHNEPqbSxvzkJ9Idd7in3X67dMwx0osvSmPGmNNOO036618zXz7kt9NPl+65xxx+9VXp00+l8ePN8UsukaZOjapkAAAAADpz9NHSrFnm8COPSIccYg6fcIJ0992RFQvId3TKgugl6+XZ2ZAujeoiDMl6ec79JmYBAACA/EYvz0AkCCgiegQUESVvL89FRf6vAQAAAMg+9PIMRIKAIqLnF7SxTv7OiwMXBITBuf+VlLgzFAkoAgAAANktUYYiz49AqAgoInpkKCJK3irPzgxFqjwDAAAA2Y0qz0AkCCgien6BQiugSIYiwuat8kyGIgAAAJA7nM+JVHkGMoaAIqJHhiKilKzKMxmKAAAAQHZzJqFQ5RnIGAKKiB5tKCJKyao8k6EIAAAAZLdEGYpUeQZCRUAR0QuaoUhwB2GgyjMAAACQu6xnxqIiqbQ0fjqAUBBQRPSSBRTJUETYvFWe6ZQFAAAAyB3WM2NpKQFFIIMIKCJ6yao804Yiwuat8kyGIgAAAJA7rPv5khLzz0KVZyBUBBQRPXp5RpSSVXkmQxEAAADIbokCijw/AqEioIjo0cszopSsyjMZikDuWL9eOuYY6cQTpZaWqEsTrYcekr77XenJJ6MuCQAA4XNWeSagCGRMkWHkfgpOY2Ojqqur1dDQoKqqqqiLE4rKykq15OsDkl/QpqjI/DMMd5ZYMTFwpJk3Q9E5zdoPAWQ/5/Wi0I9dv/MaAAD5ynvd4zqIDKioqFBzc3PUxUi7VOJrpUlfRdZoaWlRRyFlS3kDiZZC2gbIPO/+lWg/BJDdOHZtXDcBAIXEe93jOoiQ5G3CVwoIKOaIioqK/N1hyVBElMhQTB/DYHshOmQo2sjMAAAUEjIUEYGKioqoixA5Aoo5YqeddlJ9fX3UxQjHqlVSa6t7Wp8+5t/69VJjozmtrEwaODDz5UN+W7lSamszh+vqpE2bpBUrzPFevaS+fSMrWk5ZscLcdqWl0qBBUZcGhch5vaiulioroy1PlJYsMf8XF5vnNQAA8tmyZWYQsaREqq2Vli41f2QsLZUGD466dMhTtbW1URchcgQUc0R9fb2WWA8IhaCx0X4wtLS12Q9JQBi8+1dzs/mH4DZt4jhF9NatM/8KXUcHxyMAoHC0t7uve5s3cx0EQkRAMUfkdfTbmSFmqaoyMxQbG82sE0nq0YPMJ6SflVknSUOHujMUKyvJUAzK+iWYjChExXm9qK6WeveOtjxRsh6eioqkIUOiLQsAAGHzZih6x4EQ5HWMJiACijli3rx5URchPAccIM2Z4542ZYp02WXSb34j/f735rRddpHefz/z5UN+GzlSeu89s0rE4sXSBx9Ie+xhvnbqqdKtt0ZbvlzRq5e0caM0YIC5HYFMu+wy6ZprzOFLLzWvI4XIeoCSzOOS4xEAkO9qaqS1a6Vtt5U++8ys5rxihbTFFtJXX0VdOiBv0UIpoufXKYs1bfPm5PMB3dXebv63Gmx2NtzMPhecleXpPGaBTLL2Qamw90PrnCYV9nYAABQO69pn/aBm/ec6CISKgCKi5xe0sS4Kzgcj5zCQLtb+Z914OAOKzh7GkZhh2DdsHKeIivOhoZD3QwKKAIBCY13vSkvd/wv5fgDIAAKKiF7QDEUuCAiDta9ZgcSiovjXkBwBDGQD575XyPuh97rJDyMAgHyXKEOR50cgVAQUET2/E70VyCFDEWGjynP3OauacpwiKgQUTd5155gEAOQ7qjwDkSCgiOglq/JMhiLC5q3y7MxQJLMnGAKKyAbshybvwxMPUwCAfEeVZyASBBQRvWRVnslQRNi8VZ7JUEwdnWEgG5ChaPJeKwt5WwAA8p/zfp0qz0BGEVBE9GhDEVFKVuWZDMVgnAFFw2C7IRoEFE1kKAIAConzGZEqz0BGEVBE9MhQTD8y64JLVuWZ7RgMbbYhG5ApayKgCAAoJM7rHFWegYwqMozcTyVpbGxUdXW1GhoaVFVVFXVxQjFy5EjV19dHXYxwLF8e/8BTWSn17SutWSNt3GhOKy6W6uoyXrycs3KluT0HDJB69Ii6NNmvvt682bD2r/Z2c5ok9ewp1dREW75c4NxmkjRkiDswC2SC83phXUMKkfd4rKtzZ14DAJBPDENautQcLi83n4FWrLB/aBw6NLqyIa/V1tZq3rx5URcj7VKJrxFQzBHDhg3TkiVLoi4GAAAAAABAQRs6dKgWL14cdTHSLpX4WmmGyoRuqq2tjboI4bEyxJz8MhSLiszMJyTW2iqtWmUOF3KGTiqWLTOrNpeUSLW1ZCh2xebNZqaxhQxFRGH1aqmlxRzu1Uvq1y/a8kTFezzW1tpNOgAAkG86Osz7eUmqqJD69zdrbLW1mdPIUERI8jpGExABxRyRj6m0MdtuK331lXvaKadIf/ubdPTR0qxZ5rSqKikPfwFIqxdflMaMMYd/9CPpttuiLU8uqK01H76HD5cWLpQWLZK22MJ87cgjpYcfjrZ8ueDDD6Xdd7fH//MfArHIvHHjpGefNYePP16aOTPS4kTm44+lESPs8TlzzOssAAD5aMUKafBgc/j735f++U/poIOk114zp331lVRWFl35gDxGozqIHr08p4+zUwLnMBLz9vJMpyyp8+5rHKuIAr08m7zHXyFvCwBA/kvWy7PEdRAIEQFFRI9entPHecEkoBiMt5dnZ+cFBBSDoVdZZAMCiiaORwBAIXFe56z7+VJHRUyeIYHQEFBE9Agopg8BxdRZ+5pfhmLu91mVGWQoIhsQUDQRUAQAFBLnfacVSHRmKHJfCoSGgCKi53eSt6ZR5Tk1zsAOD5HBeKs8k6GYOgKKyAbO/bCQ90GqPAMACglVnoHIEFBE9MhQTB8yFFOXrMozGYrBePc1btwQBTIUTWQoAgAKCVWegcgQUET0vFVOndO8D0JkjCVHQDF1yao8s78FQ4YisgEBRRMBRQBAIaHKMxAZAoqInhW08fslyXsB4IKQHL08p44qz91HQBHZgCrPJgKKAIBCQpVnIDIEFBE9v4BiogzFQn5IDIIMxdR5qzzTKUvqCGAgG5ChaKINRQBAIaHKMxAZAoqInnWS9wsokqGYGgKKqfNWeSZDMXVkKCIbEFA0EeCHn8ZG6V//kpqboy4JAKQXVZ6ByBQZRu6n4DQ2Nqq6uloNDQ2qqqqKujihGDlypOrr66MuRjiWLjUzwYqL7QBORYXUv7+0fLn7YWjIEHcGGdyamqSGBnO4Rw9p0KBoy5MLliwx/1vbyzDMfVKSysulAQOiK1uu2LBBWrvWHh80yNyeQCbV19sPDWVl0sCB0ZYnKhs3SmvW2OP9+5vXVBS2Vauk1lapZ0+ppibq0gBA+rS1SStXmsO9e0vV1eZ96YYN5rTBg92JK0Ca1NbWat68eVEXI+1Sia8RUMwRw4YN0xIr8AEAAAAAAIBIDB06VIsXL466GGmXSnyNUH2OqK2tjboI4bECpSUldnZJogzFujp3lVS4rV9vVmuSzF/iBg+Otjy5wNr/rIwmMhRT19wsrVtnjw8caG5PIJOWLbOz3As5Q9ubMVxTY2alobA5a4PU1UVdGgBIH78MxXXr7CYeqDmDdOjoMGtKOmpL5nWMJqCUIzOvvfaajjrqKA0ZMkRFRUWaNWtWp+955ZVXtMcee6i8vFzbbbedZs6cGTfP9OnTtdVWW6miokKjRo3SO++8k2rRkE+sxNncT6BFLmP/C4bthGzAfggkxvEBIF85z280jYUwbNpk/nDt/PEakrqQodjc3KwRI0bojDPO0DHHHNPp/AsXLtQRRxyhs88+W//4xz80e/ZsnXXWWaqrq9PYsWMlSQ899JAmT56s2267TaNGjdKNN96osWPH6rPPPtOgQs0w8Kivr8//Ks/OBnNbW+3MMadlyzJXnly3ebP/NoS/trb47eU3DZ2zfiUGorJpE8euxdmeItDRwbEBIH+tX2/+Oa1YEU1ZkH8Mg3iER7faUCwqKtITTzyh8ePHJ5zn4osv1tNPP6358+fHpp100klat26dnn32WUnSqFGjtNdee+mWW26RJHV0dGj48OH62c9+pksuuaTTchRCG4p53SmLdWNbWmpXb7aqmjob2Zek2lp3r11wa2y0L6IlJeb2QmKJqjd7q0EjOWdVe8ncjuXl0ZUHhckZJCnkJh+8TRD06yf16hVZcZAlnMfH0KHRlQMA0q2lRVq92hzu00eqqjI7qWxqMqfRFA+6y/ms47ivolOWDLSh+NZbb2n06NGuaWPHjtWFF14oSWpra9N7772nqVOnxl4vLi7W6NGj9dZbb/l+Zmtrq1pbW2Pjjc4H2TyVjzuqJLs9H0naaSfpP/8xh/fbT5o922znxxlInTtX2nLLzJczV/zqV9J115nDAwdKedhIbFo1NprtrEjSgQdKzz9vBrWtdlb22kuaMye68uWKq6+WLr/cHr/vPumww6IrDwpTjx72j1Jbbil98UW05YnKrbdK555rj193nXTmmdGVB9HbuNEdVF60iGqBAPLH009LRx5pDv/qV9Kll0pTpkjXX29Oe/xxaf/9oysfct9VV0lXXmkOT5sm/fSnkRYnm4Teu0V9fb0Ge7IEBg8erMbGRm3cuFGrVq1Se3u77zyJMvKmTZum6urq2N/w4cNDKz9C5kyQdTaWa7VN4MxO9BuHm7MDG+cw/DnbwLAyX52d/tBGRjCbNrnHOU6RaYbB+c/iXXeOR3jP0d5xAMhlzuuedT9f6sib4jqI7mprs4dbWqIrRxbKye5yp06dqoaGhtjfokWLoi4SusoZsHEGFK0TPwHF1DgvqDwwdM65/1mBRGfWBo3YB+Pd1wo5mINocK2weded4xHec7TzwQgAcp3zumcFEp1NZBXyPQHSw3kdJaDoEnqV59raWi1fvtw1bfny5aqqqlLPnj1VUlKikpIS33kSdcNdXl6u8gJrn6uyslIt+b7zvv22Pfz66+aFwJshtuOOmS1TrnEGwBoaaG8yFc88E7+95s5lGwbhDbwefTTV6RCujg5zH0u0ny1eXLjHrvd4PP986Wc/i6YsyE5WUx8AcodhuJuKgs153bv4YumSS9zTxozJfJmQX5z709Sp0q9/LUmqqKhQc3NzRIXKDqEHFPfdd18988wzrmkvvPCC9t13X0lSWVmZ9txzT82ePTvWuUtHR4dmz56t888/P+zi5YyWlhZ1FFr1S7/1LbRt0F1sr9Swz6WHddMLhKmz/Yxj18TxCC+ODSB3cfwm53fNY5shnRz7WN4nfAWQckCxqalJXzgaOl+4cKE+/PBD1dTUaIstttDUqVO1ZMkS3XvvvZKks88+W7fccot+9atf6YwzztBLL72khx9+WE8//XTsMyZPnqyJEydq5MiR2nvvvXXjjTequblZkyZNSsMq5oeKior83WETneSLi+Nf41e55LwXUbZX5/yqPftNQ2Le/S5Z5hjQXYmOT64XJo5H+OG6BuQ26xjmnB7Ped2zto9zGuc8dJffPiYzRlPwjBS9/PLLhqS4v4kTJxqGYRgTJ040DjrooLj3fOc73zHKysqMbbbZxrj77rvjPvcvf/mLscUWWxhlZWXG3nvvbcydOzdwmRoaGgxJRkNDQ6qrg6g1NlqHp2GMGWMYxcXm8MiR5uulpfbrkmG8/3605c12p5zi3l6bNkVdouy2aJG9rY491p7eo4c5bffdoytbd7S2GsZFFxnGr36VmX3gxz9273f33Rf+MlG49tnH3tdWrjSnrVjh3gf79Im2jFG68kr3tvjd76IuEaL26afufeLTT6MuEYBUPPGEffxOmRJ1abLPzJn29rn1VnPatGn2tCeeiLR4yAOnn27vT+ecE3VpQpdKfK3IMHK/HkxjY6Oqq6vV0NCgqqqqqIsTipEjRybs9TqnGYa0dKk5XF4utbaawz16SIMGSUuWuOcfNMjdeQvc1qyRNm60x4cM4VfMZNrbJeu46tlTqqkxh639ztoPc83Gjea+IEn9+0th/3q2dq20YYM93q+f1KtXuMtE4Vqxwm4cu67OzmZftsw939ChmS9bNmhslNavt8erqqQ+faIrD6K3aZN53Fi4lwJyi/O+rndv2kH12rDBvBeVpL59pcpKqanJbE9eMu/ve/aMrHjIA85n7F69zGcdmf2FzJs3L8KChSOV+BoBxRwxbNgwLfEG1wAAAAAAAJBRQ4cO1eLFi6MuRtqlEl8LvVMWpEeiHq9znjOrpKLC7oa9tFQaPDg+Q3HgQKmsLLNlzCWrV7u7sreyd+Bv82bJ6mHemaG4dKmZPWvth7nG+atsdbX5a3aYvJmx1q/DQBiWLzePXck8PktL3dnGlkLNUGxoMM8Blj59zCxFFK62NmnlSnuceykgtzgz8Corzfss2JqbpXXrzGGrlozzXpiaM+gu5zN2RYVZA0x5HKNJARmKiNbKlXaV0h/8QJo927wo7Lyz9O678Sf/11+X9t8/8+XMFUccITl7VV+2TOJEl9jnn0vf+pY5/KMfSffdZw737m3vh/PnR1e+rvr976Xf/MYcvu46acqUcJd37LHS44/b49OnS+eeG+4yUbh23FH67DNz+L//lXbaSfrf/6QddnDP195emD+oTJ4s/fnP9vgvfylde2105UH03njDfe/00kvSIYdEVx4AqZkxQzrrLHP4zDOlO++MtjzZ5i9/kX7+c3P473+XTjnFvBc9/3xz2r33SqeeGl35kPuOPFKyOhU+/HB7OE+lEl8rwDttZJX2dnu4uFgqKTGHOzrsDJRE8yOed5tZ7YzBn7PXS2vfk/x7e84lbW32sNUuaZi8+xnHKcLkPM9Z+x7XC5t3W/htGxQW7zk6E9cFAOnjPIY5p8dzXu9LS93/va8DXeE8Bp21AUFAERFzBmyKi+1ATnu7/8mfC0Jy3ocGAorJeQPaFqsjm1xN4CagiHzmfJiy9nUCiragAUXDkN58U8rDxsTh4T1HO68RALKf8xjm3j6e83pvJQg4EwUIwqK7nMcdP8q5UOU5R+RtL8/eXnZbWsyHnJISsyq0t9fOAQPM3qDhb+VK94OC1b4Y/Dl7vnT02JXzbSg621DLRG+Aq1a5L66ZaLcRhWvZMvvHKKstOG8vtlLh9nK/bp3ZZIMlUXtbznb16PU3v7W0mO0/WejxFMgtzvYAnW1+w7R+vdTYaA5b5ze/np+BrnI+Y/foEWuyjV6eCSjmDHp5BgAAAAAAiB69PNPLc87I2x6EvBmKra1m5klJiZl54s3K7N/f7FkJ/lascKdkk3WSnDOryZnFY2VAlZTkZqc2zgylTPQG6M2Mraoye5YFwmBlEEt21rq3F1upcHu5X7vWzMywOLOvnZwZL2Rv5LeNG6U1a+xxejwFcoszA8/Rwyz+P+f2sZ4VnRmK1JxBdzmfsR3Ph3kbo0kBAcUckY+ptJKkr76Stt3WHD7mGLPnwWXLzKpqc+ZIW27pnv+uu8zeoOFv992lDz+0x596Stprr8iKk/Xee08aOdIcnjjR7BFOMgOxK1dKW2xh7qO5ZtIkaeZMc/iEE8zjJkx77eVuh+2ii6TLLw93mShc1dX2g8O990rjxkmvviodfLB7vg8+yM0mC7rrRz+S/vEPe/zYY83t5HXttdLFF5vDV11l95CJ/PPAA9LJJ9vjv/+9dPbZ0ZUHQGquvNI8T0tmD+3PPBNpcbKOc/v84x/S2LHSQw9JJ51kTrviCukXv4iseMgDu+4qzZ9vDtfVSYsWRVueLFKAP90jq3g7xXD2rkunLKmjU5bUJOrlmU5ZUuNt7JrjFGHy6+XZ71xXqI2wB+2UhQbGCwe9PAO5jV6ek3NuE3p5Rhjo5TkhAoqIlreXZyuo09FBr51d4d1mBBSTS9TLszOwnYucD4uZ6M2TXp6RSc79LVkvz4X60BU0wO+cjwBTfiOgCOQ2enlOjl6eETYCignRKUuOyNtenjdvlpYvN4d79TJvctvbzYDOwIH2axZ6Jkyuvt59UaVX7OSc7a45e0PO9TYUV6+2L3aZaGtn+XL3zVomepZG4XJ2UGZdE7y92Ermset8oCgUzuNfSnwOaGw0252SzDZP8/T+CTLb1F23zh6nnVsgtzQ0mO3eSlJZmfmMBJtz+wwcaG4j530B5zx0l/cZe+hQSfTyLBFQzBn08gwAAAAAABA9enmmU5ackbc9CHl72W1tNTOdiorMX5is1yz0TJiclVlnoVfs5FpbpVWrzGFnho71K1Rxsdnwbq5Ztcqu0paJX7K9v9qRoYgwOX9cs3on9vZiK5kdspQW4G2O8/iXEmcoOjM6OGbzm7NHb4nvG8g169aZmcaS1KOH2XkgbM7tY2UoJrrHB7pi6VJ32/pDhkhFRfkbo0lBAd5p56Z8TKWVJH30kfSd75jDp54qvfyy9Nln5o3uM8/YPfBa/vxnszde+Bs82B2E/dvfzB4+4W/WLOnoo83hqVPNP8nsXfybb8wbtlz81Wm//aQ33zSH99hDeuutcJdXW+tunmDSJOnmm8NdJgrThg1mANHy+99L55wT34utJD3/vLTbbpktXzYYM0Z68UV7/MADpeeei5/vggvs4/RHP5JuvTUz5UPm/fGP0iWX2ONnnindeGNkxQGQojPPlO66yxz+9relDz+MtDhZ5/zzpenTzeF//1vac09p9mxp9Ghz2s9+Jv3ud9GVD7mvqspuJkaS/vMfs9kd0CkLIpaol+f2dnp57gp6eU6Ns50xZ9ucud4pC708I18lOsfRiZfNu95BennOROdNiI73uOH7BnILvTwnRy/PCJv3uknHLDEEFBEtby/PzkAOD4ipo5fn1GzcaA/7BRRztYnZTAcUvfsZN7sIi3ffsvZ1v3Ndoe6H3vVOtB3o5blw0MszkNvo5Tk5enlG2LiOJkRAEdFyBhRLSuyTf0cHGYpdQUAxNYkCikVF5n8yFIPx7mccpwhLonOc38NCoT5ABA0oOo9bbozzGw9CQG4jQzG5zgKK3JeiOzo64p8JyVCMIaCIaCXKUGxvJ0OxK6jynJrOMhRzNaDofFgkoIh8kkpAsVD3QzIU4UWVZyC3Oc/XBBTjUeUZYfJ7niagGENAEdFKVuWZDMXUGEbwB0mYnAFFZ2/YVoYiVZ47x36HTEpU5ZkMRRttKMKLDEUgt1HlOTkyFBEmAopJEVBEtLydsjirPJNxkhq/bDpuOpLL1wzFTAYUOU6RSYmysGlD0UaGIrzIUARyG1Wek6MNRYTJ75rJfVMMAUVEiwzF9PF7oCagmBydsnQfmWHIJNpQ7BxtKMKLDEUgt5GhmBxVnhEmMhSTIqCIaCUKKEr+By8XhMT8Hhq56UjOeTHIp05ZvG0ohhkY5ThFJqVS5blQ98OgVZ6d08lYy29kKAK5jQzF5KjyjDARUEyKgCKi5e3l2RlQ9LvhzdUATyYQUExdIVR5lsLdDwgoIpPIUOwcGYrwIkMRyG0EFJOjyjPCREAxKQKKiJY3Q9F58idQkRqqPKcuUUAxlztlaW+PD4SGmY1C23XIpEQBRfZDG20owouAIpDbqPKcnPN6Zj1LUuUZ6UIbikkRUES0klV59jt4uSAkRoZi6hL18pzLGYqZvugR+EcmJaq6SZVnGxmK8PJeF6jyDOQW53m8vT03f/AOk/N6bwUSqfKMdCFDMSkCioiWt5dnAopdR0AxdfnYKYtfYICAYvoZhrRgAQ/mmUaV587RhiK8yFAEcpv3GC6E+6xUUOUZYSKgmFSRYeTiE7NbY2Ojqqur1dDQoKqqqqiLE4qRI0eqvr4+6mKkX0uLtHq1OVxVZd7kWje61dVSQ4N7/j59zPkQr71d8u4jlZVS376RFCcnrFxpP0gPHWpPX7HCvng4p+eCjg5p2TL3tNpa941VOm3eLC1f7p5WXi4NGBDO8rLF+vVSY6NUViYNHBh1aQpHa6u0apU9XlEh9e8vrVsnNTe75+3XT+rVK6PFywrLlsVn/9fVxc/nPM8VFUlDhmSmfMi8VavcQcRE+wSA7FRf7w6aDRliN88D9/28tW2c98PWvQLQFW1t5j7mVFUl9emj2tpazZs3L5pyhSiV+BoBxRwxbNgwLVmyJOpiAAAAAAAAFLShQ4dq8eLFURcj7VKJr5UmfRVZo7a2NuoihCNZhmJVlZkB5NS7t5m5iHh+mWK9eplZOvC3fLm53bzZObmcoeiXqTpokNSjRzjL27TJ3F5OhZC159xH6urczTUgPM5rhmRnw/plKPbta2ZpF5qlS93NNSTKPrTOf5ZcO9chOGf2jkRGKpBrvJnn3He4+dU4cmYoFkLNGYTHWztGitWazNsYTQoIKCJa3oce0ve7LveTjTPP2mbe/S6X90O//SDT+0Yh7IuFsI65hO/D5t0WbBuwTwDIZ37ntCjv5VtbzR8/e/TI/x/YCxXX0RiqPOcIqjwDAAAAAABEjyrPZCjmjLxNp924UVqzxhyurjZ/0bF6TerdW2pqcs9PJyOJ+TUY27OnVFMTTXlygVU1sLRUGjzYnp6os5Zc4FcFecAAs7pHGPyqAfToYVazzmfOaqWDB5v7EMLnvGZI9r62Zo2713bJvKb07p3Z8mUDvx8f/c5jNPJfOLzV26Xcu7YBhczblEWYne3lokRNFVnXw0w3xbN2rbRhgzkcZrNDyAxvcztSrFmxvI3RpIAMRUTrgQekk082h2+6SXr1Venxx83xCy+UbrzRPf/ZZ0u33prJEuaOOXOkAw5wT/vhD6VZsyIpTk6oqDADYrvtJn30kT39wAOl1183h1tbzRuRXPHGG9L++7unPfWUdMQR4Sxv9mxp9Gj3tF13lT7+OJzlZYsePewH9PnzpZ13jrY8heL++6VTTrHHd99dev996YQTpEcecc973XXSlCmZLV/UOjr8HzI3bYoPetfVudtbra93/7CC/LHTTtKnn7qnNTaabUAByH7l5e52UL/4Qtp22+jKk2122UX65BMz8cRKRmlvt697++1nPidlykknSQ89ZA6/9Za0zz6ZWzbS7+GHpRNPdE87+WTpH/+IpjwZkEp8jdZcES1nA8PFxe4HIeeF029+uHmzDyT71zrEMwy7A6CePd2vObN0cu03F7/jxlrPMPjtY86sp3zU1uY+3vy2OcLhPc9Z297v/Oc3Ld8lOvaCbB/24/zld57m+wZyh/cYLsTrWzLWtc/5w5mz05pM35c6vy/OtbnP7xpq1agEAUVEzBkgLClxn/z9TsD5HqjoDr+THQHFxJwXAm9A0bkf5loQ2y94mOmAYr7f6Hp7E+ZmMXO8+5s1XoiBbT+Jjr0gPziFeZ5AtPyOD75vIDe0t8f/uJ3v91mpsq73zsSUoiL7fj7T28t5X8g9Yu4joJgUAUVEy5uhSECx68hQTI2zvbVkAUUyFJMrxEAOAcXoeM9z1v5HhqKpOxmKBJjyFxmKQO4iYaBz1vXM2+SHlbFIhiK6g4BiUgQUES0CiulDQDE1zoBiRYX7NWeV51zLUMyGgGK+B3IIKEaHKs/JkaEIP2QoArmL61vn/Ko8S3aAMdPPj877Qp7Fcl+mn61yDAFFRMt5gve2oViImU/dwS+YqQmaoUhAMblCPE4JKEYnUYZiIQa2/aQSUKQNxcJBQBHIXVzfOudX5dk5nuntRYZifiFDMSkCiohWsgzFQgxUdAcZiqlJFlDM5U5Z/B4Sw7yZ8dvv8v04JaAYnVSqPOf7fugnaECxoyP+xxICTPmLKs9A7iJhoHPZVuU519tQfOEF6YorpJUroy5JeF58UbrqKmnVqs7nJaCYVJFh5NrTcrxUurXOVZWVlWrJxx3XMOyAjRXE6WyXLCYO7su5LZ3YXolZD9RFRYmrOefa9vPbD7zrF/bypNzbbqly7iNhbl+4+e1vxcX+mcSF+r34bQu/49E7X74fs4Us6D4BIDtxvk4u0X17VPfzuX6PmOj5KJ+kso5JnnUqKirU7E00yAOpxNdKk76KrNHS0qKOXKt6maqgse183w7pxvbqXKILhZQf2y/Z+oUlH7ZbUFFsX9gS7Wt8L7Ygx2MhHbPg+wZyGcdvYom2TVTbLJfvRXK57EF1Zx07OvIz4StFBBRzREVFRX7usIWQoWgYmfl1p1AzxbqDDMVwlifl3nZLhXed8/kX3GxDhmLnupqhWKjbqxCQoQjkNjIUkyNDMX2891n5uq+lsm90kqFY6Ago5oiddtpJ9fX1URcj/ZqapIYGc7hfP7MNJyttuEeP+DYLKiqk/v0zW8buaGgw17G4WKqtDXdZzc3SunXuaSUl4S83V7W0SKtXm8N9+ph/ltWr7bYxBg/OrYvp+vVSY6N7WmWlVF0dzvKcx7ClqEiqqwtnednAe6xVV5vbGOFrbDT3cae6Omn58vh2Anv1kvr2zVjRssLmzea28Bo40N37ZUeHtGyZe56+fc1thvxiGNLSpfHT+/Uz76kAZDe/8zrHr9vSpea5rrTUvG+31Neb7ScWF2f2vtRariRVVUm9e2du2d3lvJ8qL5cGDIi2PGHYtElascIcDrKO1vO80/9/1qnlOZs2FHPFsGHDtGTJkqiLAQAAAAAAUNCGDh2qxYsXR12MtKMNxTyUt9FvZ3ZTTY07Q7G0ND7jJNd+KVm50u7dq64u3Ew3v0yxTP8il0s2bJDWrjWH+/Z1Z5g5MxTD/t7SzS+Dq1cv89fsMPhlRErS0KHhLC8beLdxdXVu/fqcy/x+JR4yxPxF3duLY5j7fbZy/uruNGiQmfVvaW83MyicvOdB5Ae/bFTJPDbISAWyn995vaZG6tkzmvJkIyvppkcP83pniSpDcdkyu0ptVZW7FlQ227hRWrPGHi8rM2s45JvWVrt3Z+8+42fdOjs+4TR0aP7GaFJh5IGGhgZDktHQ0BB1UZCqa6+1WiUwjMceM4wLL7THt9/eHrb+Dj006hKnZtQou+wLF4a7rOuui99e1dXhLjOX3XKLvZ3uucf92jHH2K8tWRJN+brqoovi94OTTw5veZddFr+8oqLwlpcNpkxxr+/vfhd1iQrHz38ev7+tXGkYw4fHTz/llKhLm3nvvRe/HSTDmDvXPd9XX8XPc9NN0ZQZ4Vq2zH+fmDEj6pIBCOKtt+KP37//PepSZRdru4wa5Z6+ww7m9L59M1uevn3tMl12WWaX3R3nnOPez/bYI+oShWPWLHsdd9218/l//GN7/v797eHm5vDLGpFU4ms5lHaDvORsELWkxJ0JZmX2OXkzULKdsw3IsDvV8bY3mWgaTM7vw/srb6IOWnJBa2uwaenit48ZRu5tt1R4f6X0O1chHN6sdcncB/2m+03Ld4mukd5t4XfchnmeQHQS3QfwfQO5gfv75LzPkk7WeKbvB5zfTy7dI77yins8l8qeio0b7eEg10Ln9+ms/puPHeZ2AQFFpE9bW+oXOG8PS84LQb4FFMO+eU/0oA1/zouJN6CYqIe4XOB33GQ6oCjl3rGaCgKK0eksoFhWlnzefJdonb3T/eYjwJSfnOdo549lnLeA3OB3n1WI17dEnNvCG1C0OiPL9D2p8/yaK+fa5culBQvc03Kl7KlyBgJTDSg6q68TUJREpyw5Y+TIkdndy3N7u92+x6BB8Sf0RJztr/Xvbx7UVvtYxcXxwZxca8vB2VPWwIHuh91082s7T8rvtuy6w7m9Bgww2+e0rFljBxxra4Pvz9lg7VqzfUinMNseTdSuyJAh7ofXfOJsY1My208MqxdtuPnt34MHm9cfwzD3Oeu2pqLCvK4UkrY2s+1eL+85zq9Nrj593L+8Iz84e4h1Hh+51K4XUMic7b1ZaPPW5uzJ3nu/u2KFHQzK5POQsyPVykrz+8p23vYTJfP5Jx/bCGxuNp9fpGDtazqfC8vK7EBrba1qhw7VvHnzQitqVFKJrxFQzBH08gwAAAAAABA9enmml+eckfU9CDkzDVPJcvBmibW2+mfZWYL0xJRNrN7FpPgMkXTz6/1Uyu9Mse5wZtZ5e0DN5QxFZ9ktYR43zu3ozCrO5/3O2Xu7lDu/PucDv/170CA7266kxD7nhpmZm638MlkkM1OzosIe98tkJNM2PzmzUZ3HBxmpQG5oaTFrRjhVV5vnbCTPUHTer2UqQ9FZHknq1Uvq1y8zy+4OZ606634+071jZ4ozblFUZD6zJOOsmdSzp30fOmhQ9sdoMoAMxRxRWVmplmyup2/1dySZB2bQQILzfcXF7vFEinOo6U9vG5FhSrTtgizXKmcubdvu8u57Tpn83tItUZuPYa1Hd/a7XOXdxqmc89A9fvu3X/MYztcKTaJt1Nl87Mf5y2+f4PsGcoPffRbHr1ui+/ao7ue959xcuBcppPso7zHV2To6t42z6ZDiYlVUVKjZr+mnHEeGYh5qaWlRR650DhEkKOgn6PrlynbwiqrcqSw3V7dtdyVb73zZJplej3zZbkF09ZyH9CiE47e7gmwH9uPCwvcN5C6O38QSXe+ivB/I5XuRXC57UKmso/O46+jI7oSvDCGgmCMqKiqye4ft6i8xhZShGPaviV3NFEuWqZfPkv1qmcvbJNO/MBbSL5qWoBlgSD8yFDsXNBuN/bhwkKEI5C4yFDtHhmL3eGsappK9l4vSnKFY8Iw80NDQYEgyGhoaoi5K4TriCOvQNIwBA4K/7+KL7fe9+qph/O539rjzr7zc/L/jjuGtQxgqK+11uOOOcJd11ln2snbc0R7+5pvk7zvzTHveF14It4zZZMwYe729547TT7df++9/oylfV333u3bZBw82/w8bFt7yjj7aXt6++9rDixaFt8yo9e3rPj/94AdRl6hwHHZY/PXhX/+yhw84wL0/FppHH7XXf8st7eG//90939NPx2/H446LpMgI2fPP29/xMcfYw2ecEXXJAARx553x5+vLLou6VNnjm2/s7XL88e7XnPf6jY2ZKc/Che7vaty4zCy3O379a7u8//63+1li8+aoS5d+zmdfyTDWrk0+/9572/NOm2YPP/FEJkobiVTia3kYckYkGhrs4VWr3B0WJGM1Di6Zvw4k+oWgrCx+/lywaZM9HHaGqXNZPXv6T/fj/K6Cfm/5wNmxg/fXJed+mGtVSqzvsLjYbAhaMjtqCItz/3JuR6th53zk7fyokI6bqPntV85juazMztrItetFOji3j7MTMO9289uOYZ4nEB3nObqy0h7m+wZyg999fGf39oXEea33dqLoHM/Ufan3u8mF78rZS/Hw4fZzt5Qb5U+V95m8s+uhtQ169HA/62Rz7dEMIqCI9HAGFCWzd+MgvKnoiQKKVg+8udaOg/MkHPbNu/NCaQWSvGXwU+gBxeJidw/PkrsaSa7tc9Z3WFZmBxQyFVB0BrLzNZjT1hZ/U1pIx03U/B4INmywh3v0kEpLE8+b74IGFP2uC+zH+cn5XTt7heX7BnKD3/m6EK9viTi3RbKAYqbuS73n1lw41y5aZA8PG+YOKOZC+VPl/CFaIqDYTQQUkR7egOLSpcHe5w0oei8E1nTrATGXghTt7e7strBPOs4LqjOw09lNRyaDntnEupj07BnfDk2i9ldygXXhLy/PTEDRuX85L7K5dKymwq8nt3y82cpWnQUUS0sLO6DoPO6SZQyToVg4EgUU+b6B3EBAMTnnda/U0z2EczxT96Xe7ysX7hGtDMU+faTq6vwPKKYrQ5HrqCQCikiXdAQUS0r8MxRLSuxAYy4FKbwXlLBPOlR5To11MXFuK0suV3m29jNvhmJY61FoVZ4JKEarsyrPpaX29SJf98FkupOhyI1xfqLKM5DbqPKcXLZVefbeE2b7d2UYdobisGHm/3wPKKaaoeis/UWGYhwCiui+jg6psdE9bdmy4O+1JKry7HxAzOWAYiYzFFOp8ux8PR8vGok4MxS98q3KsxTeDU2igGIuHaupIKAYLb/9OFGV53zdB5MJmjFMhmLhoMozkNvIUEwuaECRDEV/a9bYz6jDh5v/8z2g2J0MReezFQFFSQQUkQ5NTfHZT0EzFIN0ykKGYjCJqjyToegvWUAxlzMUnQFF5w1BWPuftX8VF7uXl0vHaioIKEaLKs/JBa3yTBuKhSPbMxTr66V77pFWr466JEB28ruWFeL1LRHntsiGKs+51oait/1EKf8DirShmFZFhpFrT8vxGhsbVV1drYaGBlVVVUVdnFCMHDlS9UE7Osm09vb4Tlh69ZL69ev8vevW2Q/ogwaZJ61169zzFBWZwYr2dvN/XV06Sh2+jg53pmZlpdS3b3jLW7XKPiFWVtrbdcAA968pXitX2heL6mp3BkM+W7LE/N+jh7nvOXn3S2+nLdls6VIzCGoFVqyLXV1d4k6PumPFCvtC69zvcm27BdXWZh4zTiUlUm1tNOUpNMuXxz9I9e5t97zdq5e5z3d0FOb30tRkN0HSs6d901xVZbaNZGlujr/WlpZKgwdnpJjIIOd33a+ftHatOex37YuCdQ9SUSH17x91aYDs09gorV/vnhb0OasQbNpk3otK8c9aa9faPzoOHhwfcAxDa6v5TGbJ9nuRlhb7B50+fcz7Bed2y8f7ee+9ZGfPytazVUmJedxZ32+fPqr91rc0b968cMsbgVTiawQUc8SwYcO0xAqAAAAAAAAAIBJDhw7VYqtTmzySSnwtA2F6pENtNv+y4ZexEzTTwfvLUWtrfNaEVRV682YzW3HIkLQUO3TezM2ePaWamvCW58w07NPH/jWzf393eraXM8PMm8WSrwzDrpZfViYNHOh+vaHBzngaONCd+p/tnJmXpaV2hlJtrX8v6t1l/cpXVGT+Mpyr2y2ojRvN9maccilzOtfV18dXW+rVy76OVFaav7bnWkZ7ujgzFJ3bxXtud85nKcTtVQic33VNjXnfZWWxZ0NGqnXNYv8D/DnvSS1hP1PkEudzaO/eZm0rSxQZit77xHSf26x7oHTd0zszYK1MvVx+Dgpi2TJ3G/mdPSs7n6369XNlxGZ1jCZDCCii+/w6rehqRxbOzjBynTf5N5PJwKlsR2e5cj9hORjneubTPudUVORet7C+W+tz83U7evltx0I5brIV29+W6NwW5HrEdsxP3u+1qMicxvcN5AbO112XifvgzqRzuc7q3elKFEjWqU2+6s4zejbsU1mGKs85girPAAAAAAAA0aPKMxmKOSOr02n9GneXgv1y4k1Fb2uzGwy3lJSY6eJWtdyhQ+3XDCN7M6OcvyJJ/lVr08lZdbm62l3Fya8nY4uzCqG3qkC+2rzZrKor+VcbydVUf2dV7vJys2qH1UlKWOthVRsoKTGrWHqrTeQbv6qikvu8lCnZdP7LVFm81VQkcz+zOqTq3dus8pxrTWSki7PqkrPpC++53a+Rfyma/Rjh8lZnW7s2e5oEcF6zpMLc/7LpPI7s5HxWspSXm8dzLglrX3d2gmJ1KmKJopPFDRvin2XTdW5bv948p0tm1dtevbr/mdZzoPOeybmczqoD5yJvklZn29Kav6zMfGa0mjSrqMjuGE2GdClDcfr06bruuutUX1+vESNG6C9/+Yv23ntv33kPPvhgvfrqq3HTDz/8cD399NOSpNNPP1333HOP6/WxY8fq2WefDVSeQshQLOJmAwAAAAAAICvkQYXfOKFmKD700EOaPHmybrvtNo0aNUo33nijxo4dq88++0yDBg2Km//xxx9Xm9VRhKTVq1drxIgROv74413zHXbYYbr77rtj4+X5mNkCAAAAAAAA5LjiVN9www036Mc//rEmTZqkb3/727rtttvUq1cv3XXXXb7z19TUqLa2Nvb3wgsvqFevXnEBxfLyctd8/fr169oaAQAAAAAAAAhNShmKbW1teu+99zR16tTYtOLiYo0ePVpvvfVWoM+YMWOGTjrpJFVWVrqmv/LKKxo0aJD69eun733ve7rmmmvUv39/389obW1Vq9VeksyUzHzXq1cvtbS0RF0Mf872rKzeA63hzqpqO99bXBys58HiYv/3ZiNvW19hlrOr30Mmy5hNrPX22z7O/TDXtodzvaTUjsfuLM9aRtjLi1qic1R395OOjtS2Wbac/5zbIxPfufd85eXcB6XcO367y/t9JPpuwtqPkX2817NsOXdYsq08mVTI647gEl33otxnrDIFLUOY+3qy+5Ao7uf9rq/pWnYY91x+z0OZvrfLNO8xlcqzsuc6WpGOdixzXEoBxVWrVqm9vV2DBw92TR88eLA+/fTTTt//zjvvaP78+ZoxY4Zr+mGHHaZjjjlGW2+9tb788kv9+te/1rhx4/TWW2+pxKdTj2nTpumqq65Kpeg5r6WlRR2dPUhlA+cJNEhw0Cno+vnNlwvbRspcOTPxPeSLzrZPrm4P7zqluh90d5mZWF42Scd+0tVtli37aDZ8597lZ8u2iUJXjsdC3l6FwPv9Ztv3nW3lyaRCXnd0TTbsM10pQ5jlTnati3J7hbHsdN9zJfq8bLi3C1sq6+j5LrM24SuDMtrL84wZM7TrrrvGdeBy0kknxYZ33XVX7bbbbtp22231yiuv6NBDD437nKlTp2ry5Mmx8cbGRg0fPjy8gmeBioqK7N1hk0TtO/1FhgzFcJZFhmJynf3yRoZi6suzlpHPv2hK4WQKdOVcli3nP+85O+yykKGYHBmK8CJDMXsV8rojuGzLUOxK9hoZiun5bO89d3fvsxNtHzIU/ee35nNmKOZbD9hdYaSgtbXVKCkpMZ544gnX9NNOO834wQ9+kPS9TU1NRlVVlXHjjTcGWtaAAQOM2267LdC8DQ0NhiSjoaEh0PxIs113NU87FRWG0dFhGGVl5viuu3b+3qOOsk5ZhrFihWHMmmWPW3/77msYY8bY4w0N5nKs8aIiczzbPPaYez169w53ef36mcvZfnvDePJJe7m/+13i97S2uss4enS4ZcwWM2bY6+x3nrniCvv1Z5/NePG6bM4cu9wXXdT5enZXc7P9+YccYhh/+Ys9ft996V9eNth/f3sdTzzRHv7f/7r+mXvsYX/O1193Pv8rr7iP240bu77s7po61S7HAQeEuyzn+WqrreKvFZJh3HijeR6zxtevD7dM2ebHP7bX3Xk9nTDBPd/pp7uvsdbw/PnRlBvhOflk+/v9/HPDOPpoe3zJkmjL5rxmSYbx2WfRlifTDjnEfbwCfg4+2N5PSkvN/9/+dnTlOessuzzTpwd7T1WV/Z5XXklvee67z/7sW25xv3bNNfZr//pXepebyCWXxN+bfPllej77uOPszzz33O5/3qmn2p/3ySf29Ecesadfd133l5NNXn01/vs577zE8//nP/Z8Z55pThs61BwfNiwzZY5AKvG1lMLlZWVl2nPPPTV79uzYtI6ODs2ePVv77rtv0vc+8sgjam1t1Y9+9KNOl7N48WKtXr1adXV1qRQPUWloMP9XV5tR+yFDzPFlyzp/r/cXK79fcEpLJWfV9/Z2adMme9wwzGnZZvNm93jYGabW8nr0MP8szm3l5eiB3Xc8X23caA/37Bn/uvNXqmyoUhKU8/srK5PKy+1xR7uzaePct0pLzT+Ld//PF83N5v/SUql3b3t6d44d57lhw4bO53fuv5K0bl3Xl91dzjaMg5S9O5z7m99xK5nnvkLYDxNxXgudx793Ozi3pXM/DuM8gWg5v+tMXBdS4V1+1OXJNOd1o1Duv5A65zFsZUNFeW1btcoe9t6PJOKcz7qPShfndc/bVJpzPFPbzO9YTvYslgrnOTIdz5WLF9vDw4bZw2Vl9nC+nZv8tluya4/zu7Oer63jMFtrj2ZYyvm3kydP1h133KF77rlHCxYs0DnnnKPm5mZNmjRJknTaaae5Om2xzJgxQ+PHj4/raKWpqUm//OUvNXfuXH399deaPXu2fvjDH2q77bbT2LFju7hayChnQFGSrEDwqlWdn4ScwZqSkvgLgd/09vb4z03XiTqdvGXavDncwKe1PG9gJ9m28b6WbxeNRDoLKHrT/nOF84KYiQdH581Zjx7xx2k+sm6EKyvTd8Pl/G6CBOW8NzBRBhTXr7eH0/2Q4OXc3xIFFL0/QBVaQNG5vs5qON7t4Bx3dpJXKNeAQuJ9GMqmB0XvdSnq8mSac/0Lbd0RnN+PaVE+96xebQ8HCah4E0GamtJbHuf1zPsc6XweytR9qd93k67j2/k56bivX7TI/F9VZf5Zsuk6kW5+QfBUA4rW8xUBRUldaEPxxBNP1MqVK3X55Zervr5e3/nOd/Tss8/GOmr55ptvVOzJMvvss880Z84cPf/883GfV1JSoo8//lj33HOP1q1bpyFDhuj73/++rr76apU7H4aRnTo67AwVK6BoZShKUn29tMUWyd9v6WqGomSOJ3rAjIrfBaW1VQqrNyjrglpaSoZiZ8hQTA/vRTaKG7dMs4JmvXsTUJTcGYqZDCgmOo96f1DJ1/0wEec2ch7/3u3gPHadAcVCyxArBN7zdDZlKHrPm1GXJ9PCCihu2iTdcIN5njz//Pxr/6zQOBMGrPv7XMpQ9B7X6Q4oOq9vpZ7QRhQ/dPsdy+k6vtOZoWgYdoaiMztRyu+AYqoZit5nK4kMRY8iw8il9Bt/jY2Nqq6uVkNDg6qc0fU8MnLkSNXX10ddjHiGIS1dag6Xl0sDBpgPt9aD5cCB7pOS16pV9kE8ZIh50DovVNbnFhXZB21trTnurFJdV5d9DVo3N8c/6IdZziVLzP89ekh9+0orV5rjvXvbwV6v9nYz6GspLZU8vbjnpcZGO7NqwAD3A5ZkvmYFSvr3d2f6ZLONG6U1a8zh6mpzX7COpz593L8+poNz/+nZ09xOa9ea4337ugMV+WLpUvO8V1pqrq91Y9zZuS6ZZcvswHWQ/W3DBns7B31PWJzn8OJiO0M9DB0d9nm/vNz/BrBfP/NaYT3k1Nb6Z77nqzVr7HUfNEhascIcrqgw9xPL6tX2NbWy0r5m+50Pkdu891kNDfb3PWiQ+wfITHNes6TC2/+WL7cDQ+m8Zjq3a6Ft03zk3E9KSsx7r7Cvt8k471mSPWNYnNduyZzf2dRGdzmft/r1c//g2NRk16TzvhaWtWvjfxzuzj2i08qVdoDLe11PlfeeasAA+7W2tmDPkbnIew8tJd+Wra3xz1KO76F2zz01b968EAscjVTiawQUc8SwYcO0xAoYAQAAAAAAIBJDhwzR4jyM0aQSX0u5yjOiUVtbG3UR/G3aZGdA9Opl/vrjjPxXVJi/yBQXm697q104f2lJlKFYUWG+z5lxIrkz67IxC8X5q5glrHI6M0XLysxfuq3vpbLSHPezebP5y6elpMTevvnMmUXrl6HhzFCsqcm+6vSJOI+9vn3N9bJ+YUy2H3SVc//p1cs8Vp0Zkun8BTpbWDcNZWXm+qYjk9V5IxLkF3TvuSXKbFBn5oQkDR0a3rK8GbF+Va1qaszp1muDB8dXgcpnzszD2lp7e3mzD5xZa3362BnbuXS+QzDO+6yhQzvP0M8kb02OXKoRkA7OTK90XjOd9zD5WlugKwzDvE8qL8+t60J9vZ2VWFxsXnOdnWBmkjfb0Hr2S8b7rJHuGjPOeyLvNSxZ9mJYnDUFLOk61zrvucrKzMzHrmppsdvD9H4nzuf7MJ4fouT3fO69R3JybqeqKnNbOe6harvzHeQJMhRzRBHtnwAAAAAAAGSFPAinxUklvpZljc4BAAAAAAAAyGYEFAEAAAAAAAAERkARAAAAAAAAQGAEFAEAAAAAAAAERkARAAAAAAAAQGClURcAwfTq1UstLS1RFyOeYZh/klScID7d0WEPe+fxe805TZKsHq69y0n2udnAuW0sRUX2+qSbtT2sZQTdPt7tnY3bMt062zbO7y7ZdxZ0vkzxOx7DPk4S7XfZsD3Szft9W9Os8a6ub6rHoHf+IO8JS6bPH879y69XveLiYNelfOU93hMd/4nmy7fjNtvO0VHwftfZtE2890lRlyfTnN9NOtc9F+/rMnFP73ftTPfy0nF8WeVM9FxkieJ79Xu26awcXXlPV8vk97mZvr75fV/pWnY6j+2g2627y8k2qR5Pfse0Y1pFeXkIhcwtBBRzREtLizoSHQDZIkj5ks2T6DXvRchvvmzfNha/i2omlpHK9smVbZkuna1v0O8sE99tKjJ9nHjXP9u2R7p51y2d69uV7ylbjttMlSPRtvYuP1u2SxSCbgvn9Hw+bvN53YLy7gPZtk2yrTyZFOa659p5MNPlDWt53f1OOytXtnyv2XTPkuxzozy/hLXsdG3HXNnXwhRkHX2+x5ZNm0IqUO4goJgjKioqsjNDMcivF8l+AelqhqL3gM7GX05yIUMx7F8NsxUZiulfXiFmKKZrfXM1QzHT5ziJDMXOkKHolm3n6Cgku8+KepuQoegeT9f5igzFzpfhvIZkU4ZikOci7+uZ1JX7DzIUszNDsbNjjgxFk9/+5cxQLCWclkd7Bwpaof6iDSC7dXQUxi+7QBCGYR4Pmbpmc2+Q3fh+kA3YDwGgywip5giqPHcyX65Uk6HKc/ahynN6FGKV51TWN+xjMFuO20x971R57lw2V3mO4vyQ7+ekIKjynN2iqAaajTJR3kzcr1DlOb3v6e7nUuW565+TLftamLoYx6DKMwHFnJE3VZ69Kd/pqvKcjdVkwkx5T7Y8qjx3Ll+rPHd2PFHluXuSVSlPtL6dvd6VY7BQqzx79zeqPMfrbpVn73xhly9sYXV6kUuyucqz3/1eIX1HVHk2ZaoZo0w09dDdc47f+6nyHPzzqfLctc+iyjNVnrvDyAMNDQ2GJKOhoSHqohSe6mrzkNphh8TzPP20ddgZxhVXuF/bbjtzev/+5vgXX9jzWn+/+Y1hXHqpPf7884bxt7+555kxI6w17Lrx4+PX5bLLwlnWSy/Zy7jkEnNakO/mz3+OL+P774dTxmzR3Gyv68EH+88zY4Y9z9/+lvizzjjDnu/008MpbyqOOsouz/Ll5rSttzbHBwxI//Kcx+GddxrG/Pn2+Jlnpn95UTvnHHv93nvPMD76yB7/yU/i53/4Yfv1s87y/8z773cff8OH2681NxvGj35k7lutrfb0bbeNP27feiu96xrE1Knx5bjoovCW99BD9nL+/GfDGDMmfvnffGMY115rjz/6aHjlyUZbbmmud22tOb7TTuZ4VZV7vl69zOm77GJuM2t7HXdcuOUrKTGXU10d7nIse+2V3+ekzmzaZK//fvuZ095/35529tnRlm/0aPfx+6MfRVueTHLet0mGsf/+6fvsHXawP7eiIn2fG5abb7bLW1ISzjKWLLGXMX68Ybzxhj1+4YXpW87RR9uf+9Ofpv5+65xt3X8uXmyPH320YUycaI9/+mn6yh3EmjXx11zJMFavTv6+X/wi/j2LFqWvXGedZX/uf/7jfu311zNzf+LUt2/8+v7iF93/XOc9tvX3v/91/fMOPND+nJaW+NeHDTNfGzKk68vIRtZ90uDBhvHDH9rbYNky//kvvNCe5803zWmPP25P+8MfMlXyjEolvlZkGP8/vJrDGhsbVV1drYaGBlVVVUVdnFBUVlbmboaicz4yFMlQzAZhZCgm+qxMIkMxXM71DZLpE2T/SHYMJtoPyVAMnqGYj/thMmQoJl5eoe0LllzKUJSiv45mEhmKpkzdS+VDhmJYnckERYZi58hQzG7pyFB0fE5Fjx5qbmtLYwGzQyrxNXI0c0TetKHod1Hp7P3e+WlDMfVl0IZiYulqQzHIZ2USbSiGqyttkQXd/l05x2XLvpep7z3odSTf98NkutKGYrL50i3T+2wh7wuWXDg+suVcFgXaUDRloryZaDu2u5/r937neLZ8r7Sh2Lmwlk0biunT1TYUN28OoTC5hYBijsjpNhSTzUeGYvqXR4Zi59KVoZhtWQDZlKEYxvKilur2zWSGYhTnwEy360SGYufIUEy8vEwtM9tk+rqQikLOUAzz/ivX9vtMZyiGeb/S3W2fLEPR73ko07pyzIZ9nAfNtCNDMfFnFWqGYpCM304yYCsqKtJcwBwUegXsDKANxYh8/LHdfkCytona2uz5rDZ8LEOHmtOHDTPHnW2cWH9//KPZPoE1/vjjhnH11e55srH9gv33j1+X004LZ1mPPebeXoZht7OWrO08vzbQnn46nDJmC+d+m6hdu/vus+f5y18Sf9a4cfZ8hx4aTnlTMXKkWZbiYnvaAQfYZXS2w5cOv/+9/dmzZhnG//2fPX788eldVjZwHtOtrWY7ldb4D34QP/8VV3S+f/zxj/HHYFOT+dr559vTrPZnOzoMo6go/j3TpoWxxskdemh8OQ47LLzl3XabvZy77zaMk0+OX/769e62PbOxfd0wWW03WW3n7rOPvS06OsxpLS32tAMPNIz2dnt8333DK9vSpe7vymrnNUwVFfbyxowJf3nZZtkye/1/+ENzWn198vNWJjnbi5MM43vfi7Y8mXTvve5132679H221Uaq9ffll+n77DCce667vAsXpn8Zc+fan//zn5vTqqrc58t0sO7DJPMeMRWbN7u3wwUXuNtq/vGP/dtzy5S777aXXVpqD7/zTvL3+bUp/9RT6SvXCSfYn/v11+7XOmvrOt2cz7x1dfbwySd3/7Ofey5+O774Ytc/z3pOtPox8PJ7psh1zmNs333d55558/zfc8op9jyff57Z8kYolfhaHoWbkXENDfZwdXXi+Xr0kCorzeG1a92vWb8SWBF/v18HSkulkhJ7vL1d8nbRno1dtvuVqbU1nGU506179HD/T7Zt/Np8yMN2IFw2brSHe/b0nydRJo+X8/sM67tNhfXdlZXZ05zD6S6jc9/q0SP+OM03zc3m/x49zO3q3LZ+x82GDfawc79z8vtOrPc5z7HWsjdtMm9rJPev3evWJS16KBob46dZ5QyD9zzn3P6W0lLzz5KP+2Ey1jayjkW/beHdjsXF9nxhnse8n+08PsLQ3i45a3Zkwzk607znaEkqL7enRb1NvMuPujyZ5F3XdN57eT87zPNyOnivj4mul93hPBdYx0BNjfl/zZr0Lac794Xe76m5Of4Yto5jyX0uz4RVq+zhoUPt4c6+L7/X07lPOq/z3h53M31f6vy+evf2n95VfvtTd86Zfs8MTtb0jo78uZdyngd69gx2PXR+d4m2VYEjoIiuCxpQlKR+/cz/XQkolpTkT0AxrGrrzmVZF9MgAcVMBj2zhfPGJlGaunM/tII3fpwPANnQJIFVHucFMsyHR+9+57yRy8c2RawbYOsHks4Cis4b5kT7h990K9DiDNg1NcXPP2CAPRxFQHH9evN/nz72OTrMIJFznyotdT9YOafn+36YjLW+1jbw2xZ+1wtrXw7zByXv+SeMoIGTd1/MhnN0pvkFFMP8kSlVYQbVsl1Y697eHv/wH3bwvru85Qvj3ODc3tZ9Uf/+5v81a5Lf66XCeZ5J9ZzTWUDRe33L9LOPM6A4fLg93Nn35bcdrHuadHDu787nRe94Ju4HnMexda/onZ6Oz7Z057pmHRPO5wSnzu5xc5Fze1VUBHtGcq67330nRC/POWLkyJGqr6+PuhhuGzbYAcLqavcvMV7Ll9sncuevWsuWmUHFkhKpttYcXrbM/d6+fc0LvRXA7NfPvIg6L0Z9+kjZ9t0719lSXu4OAqSL87vo29e8iK1YYd9sOLe507p18Tcw/fpJvXqlv4zZoqVFWr3aHE6032zcaP9inWzfdm7j0lJp8OD0lzcV9fXmjVVxsVRXZ05bvdq+gNbWxt9sdUdDg30cDhhgXmit47eiwr5ZzxfW+cq5fZcsMf+XlUkDB7rnX7vWflBKtH84t6Fl8GBz/lWr7BucXr3MY9N5jiwttc8xPXva2RaZ4tweVoWQMI+Dpib7OlBTY24b7/lr6NDUrk35xtofe/SQBg1y70NDhtjtcXmP06VLw//+Nm0yz5mWQYPCvTn33k9Y26SQbN5s3otI9jlESn7eyiTrHGIppO/IeT6TzGNzyJDuf65hmMez04ABiYMG2cB5nyKZ+2S6M4Gc935VVeb9n9/5sbus+zAp9f3ZebxK5vm5Tx9p5UpzvHdvs4zWj3mZ/l6d9zQ9e9qBxP79E/9AL7nvlS3pvDY795+6OndSQKJzYFic152yMvcP/d19/nPe21hqahLXtupMZ9f9MI6PqLW3m8eoZG630lL7eEq0HyfbvyTV1tZq3rx5IRY6GqnE1wgo5ohhw4ZpiXUDCAAAAAAAgEgMHTpUixcvjroYaZdKfI1ennNEbW1t1EWIt369XSWvs19IEkX3vb+O+P2y2rev+d+q0tevn/mLjzMzpbLSni9bWL9SOnuQCisboLnZvX169TJ/0bR+GUuUoej8tdFiZTjmqyDZS0EzFJ1ZqFaWbZS8Gb+S+zu2Mt/SxZnhOnCg+Wu8dfyGlY0bJW/2V6JpFud5z5nV6OR3DFrZGc79y9qe3l/brfdGkdnjXHerjZ1E65kOzmtO//7mL+fe7M6hQ4Mfv/nIm3nmd+31/kJfU+Of3ZxubW12po0UfnaNNyMyG87RmebcBs77JGs/iTqz3vtDeSF9R42NdmaMJdG9Wir8avp0J4spE5z3q1LnGW9d4Xfv57yHSVfGtPVcI6W+P3vPkWVlZjalVdW4Tx/zmcJ5HcxkD7PO76m62l1zLFnNJr8aW+msWZYsk87vehcm5/IqKuzrbzqe/5zPepbuPLMlu3+Vwq3hlA6GYV7jUslmdl4Te/Uy191Z88XvPNlJpmZWxmgyjAzFHFFSUqKOZJ1DAAAAAAAAIHTFxcVqz5dOaxxSia/RKUuOIJgIAAAAAAAQPWI0BBRzRrFf78cAAAAAAADIKGI0tKGYM3bffffs6+XZ2ZZGZ70/+bXxJyVvk8xSU2O2k+Dsxbi11e5dTIqmh9POONuHNIxw26fyti1WUdFpr1SS3O1CWLKxx+x08ttWXn69AfpxtpUjpaf9o+7w67nT2U5TutssW7PGPg6t9hk7a5MlVyVqiyxZ23PO3h4l//3D7xjs29c8pznbwbI+39tLeWtr8PNwOjnbeqqsNNezs/NNdzl7xB440CyDs5dUaxu1trrbnMrn85mTs+00q81NvzZU/fblIG3udpe3h8qw2+v16xEz6nN0piU6FpxtPKejZ+Gu8GvrTyqc78iv/dx0nDu9bYdK2X8e9N5LhdH2rd+9X9B7vaD82oFPZX/2tpFXVGSeJ51tPxYV+T9Phc17fbF6yZY637+s+8KSEvueqKLC/B7SIdn1y/mdWNdFq+3MMI4L773Rhg3Je1JOhV+7q11dB+f3mei7CKON0XTxXj+Cnju9x3xpaedtblttgCa4XtKGIm0o5gx6eQYAAAAAAIgevTyToZgzsjL67dejbCLerBprxwySodi/v/nrjvMXhJYWd1ZPOn/pShfnuhlG0l83us0vC82ZPZaody5vz3qS+etMdXX6y5gtvD0T+/UOFvRXa+++mskMMS+/X2Gl1HpjT5VfD3D5mqGYaJ9I9sulN+vC7xdUv2Owqso8p3mzTPx6MN60KbxevJNxlqOqytwGVjnC+iXb+2t5W5s7m8O6FjkzBPL9fObkl3HgzIKyvhe/7dNJL4Zp4c2+CTtrqqnJncEqRXuOjkKi89aKFea5Q4ouI9DZG6pToWQoOu/RLOnoSdWZlWpxZtVnI++9VBjnBmeGu3WfvHmzeQ2XzEy/fv26twy/fTqVc47zfs3St6993uzb1/wsZ42tMLO8nbyZd5WV/rU2vLz3ptZ1Jp33iMnOZ373xs79Ld3XBG9WeHNz8Gflzjj3YUtXj+0g+763VkgqvSmHzZuJHbTHc2fNhb59ze/FLz7hlKwmkrI0RpNhZCjmiKJCugEGAAAAAADIYnkQTotDL88AAAAAAAAAQkFAEQAAAAAAAEBgBBRzhGEY2fX39tsyJPPv/PM7n7+tzZ5/v/3MaZs22dMOOMCet7zcni7JmD1bxlNP2eO//a2MkSPd83z3u9Fuj1tukXHooTLmzTPHGxvtso0eLWPcOHt89er0L//88+3Pf+cdc9rPfuae9sQTMg46SMaTT9rv235793aUZJx4YmrL3mUX+71ffBH9vtnZ32GH2eVds8Z/nhdesOf5zW/856mvj992n3wS3XotWGCX4/TT7el//7s9/aabEr//7bdlfO97Mv761+DLPOAA+7NbWsxpAwaY49tuG/13nc6/q66y1/Wpp+zpo0fb0xsb7ekLF8bvH2+9Ff+5Q4fGz3fyyeb34J3+6acyfvc7e/yf/5Rx9932eCrfXXf/pk51n6Ovv94ef/DBcJY5YYK9jK++kvHII+7ts+ee5nwffWRP+8lPot93MvX36af2ep92mjltyhR72pw55rSnn7anXXWVOe2MM+xp8+eHU75LLnF/X6ecEu72mDQp/hgKa92y9e/OO+11v/12e/oPf2hPX7o0/HLMnGkv74wzzGmvvx7//UjmuTPq7ZaJv+9+N37d3347vdva7x472/6c9y7W3wknpH85J5/sf6+61VbmtIED49/zwAPucg0fLqO1NfEy3nzT/7odtIzHHx//fud177HHzHt4a/x3v8vc93Txxe5rfkODPT5mTOL3zZ/vPvZ3390c7tEjfWWznmVqavxfLykxXx85UsbHH7u375lnpnc7Pfig/dk33JDe9T3uuPj944gjuvZZL71kf8Yll/jPc8MN9jwPPZS5fS3In/PeV5Ixfrz/fA0N5munnmrGIi67zH7Pc8+594ezzjLf06+fPe2992T07m0Of/vbCctT6GhDMUfQhiIAAAAAAEB2yINwWhzaUAQAAAAAAAAQCgKKAAAAAAAAAAIjoAgAAAAAAAAgMAKKAAAAAAAAAAIjoAgAAAAAAAAgMAKKAAAAAAAAAAIjoAgAAAAAAAAgMAKKAAAAAAAAAAIjoJgjDMPInr+ODhmlpTIkGbvvHvx9//iH+R5Jxo03yliyxB4/5hh7vi22sKdLMr7+WsZHH9njZ53lfl2SUVYW3fb41a/cZWlrk/Hqq/b4L38p45Zb7PF7701/GQ4+2P78DRvMaXfdFb+drL+5c2WsWWOPjxtnb/e6uuDLffFF9+f+4heZ3fazZrmXf889yedfvtye96ijEs/37rv2fOed5z/Pgw/Gb9c//Snc9V2xwl7W4Yeb0x55JL4cd93lft/YsfZrK1fGf+5rr7nff/fdwcrTp485/0472dP22sucVlSU2X0hzL+ODhnFxeZ6jRzpfu2qq+zt9vTT9vRf/jL+e5kyxf3ejz92n9e+9z17vKgo/v3nnCNjzz3N4ZIS+3NGjDCnVVRkZns0NtplGj3anNbSYk874IBwlutdz6+/dm+f004zp2/YYE875JDo958rr7TLc+WV4S3nX/+yl3P11ea0O+6wp915pzntD3+wpz3+uDnt/vvtaTfdFO735/zbtCn8fdT598c/Rr8/ZPLvnHPsdX/vPXu68/p1ww3hl6Ouzv09NDa6j4vx4+3hGTOi325h/zU3+++fnd1DOM9tic73J51kz+O8pnz8cfTr7fc3ZYr/da+tLb3L6dfP/Nztt3dPX7Ag/hpiGDKuvdae/tBD5rRDDrGnNTfHL+Oyy+K/0+uvj5/v5pvd87z4ooylS+3xbbbx3z+++krGl1/a4yefnLnvyXru22MPe9q4cXZZVq/2f5/3Hsn5LJiua01Jifl5e+7p//p225mv9+8v48wz7eVXVdnDTU3pKcvkyfZnvvGGjHPPtcfnzUvPPvytb8nYe2/7czs6Uv+s3/zGfv8LL/jP8/bb9jw/+1niz/rb39z76V/+Ev7+uOWW8eeM8ePt10ePtqc/8UT8sVRdbc87eLA5bYstZPz0p/7Hnvf84PkrdAQUkbrGRmnzZnN4wIDg7+vXzx5eu1bq6LDHS0rs4WLPbllS4n69tTX+s9vapKgO6MZG93hLi7Rpkz3eo4dUUWGP+5W/u6zvQ5JKS+3lJrJhg7nNLD16SGVlqZevuTn5eNi8y1u8OPn8GzbYwz17Jp7PuQ8691Mn5/azhPHdOq1ZYw/X1Jj/Dzwwfr7ycvf44MH28PLl8fN792HndkrG2s+d+5q1/xlG4m2XazZssNelTx/3a9ZxI7n3Cb9joaXFPe7cXyoqpF697HHrfDZwoPszrc9w7r/WcEtLZra5c3+xtkdZmX2eDus8YJ3nEp3jrOnWf+d7ouT83tevD285ftcBv23hnM/ahs79OKzzmN/nbtwYzrKamuxh537iPQbznfdexOI8f4T1HTh5rzHNze79oarKHva7tuabRMdYZ+vuvDa3tEjt7ck/27pPkDJ/fxaUc5369rWH071fWtvFe3/k3EbOe6xFi+zhYcPM/857eb9zSdBpK1e6x9escX8/gwbFv0cyz+fOc7rz+A5TW5t93aistKcHOY8417+iQurd2x53nqe7wzoOnNvGybo32bzZvZ2/8x17+Msv01OWRM9W3te6wtqHy8rc+2JX9gPnecJ7TFiClv2RR9zjmbjOWvdSw4dLRUXm8NKl5v/WVumNN8zhLbaQxoyJf79z+1nr39pqxicSSfZcXeAIKCJ1q1bZw+kKKDoDOM7goWReIJzTEl20/G6sMsH7gLhxY/xNvPNkHcaJNtWAoreMZWX2hSOVC573BjVoICpdvMt33gD6ce47zuCNl3N/TBSo9ttOYV9EnRc663gaNEjaeWf3fM6bAEmqrbWH/QKKDQ3u8aA38tY+5LyJcx6rUR2T6ea86fUGFJ3HdqoBRed4ebn/PllX5/5M67tx3gw535fJGznJDgQUFdkPGmGdB6zznF8QTLL3Q+c+WEgBRefxliyg6Dz3W6879+N8CCg6j7/+/ZOXwc/y5dH9SJlOiQKKzvNH2AHF9nb/Hx+d34XzvBr2D3PZwLmOqQTzg9xzOT/Ded+d6fuzoJzlch6r6d4vrfOwc9+X3AHF1avtYecP1MOHm/87C6D5fX9+01ascI8HDSj26OE+jjN1fXOWzXm/kWpAsWdPd0AyHUHuRMkpTtb09nb3/dyIEfbw5593vyxS/LOV8/vqbgDYGRTv7nOl8361OwHFlSull15yT8vEj1TWvVS/fvbxYgUU333XLsPBB5v7nPNeWnLvu9b6t7UlDyh67zkRU2TkQZ5mY2Ojqqur1dDQoCrnr5x5pKSkRB35ku0DAAAAAACQo4qLi9WeLwkUDqnE18hQzBEEEwEAAAAAAKJHjIaAYs4o9rYrCAAAAAAAgIwjRkNAMWcQ/QYAAAAAAIgeMRoCigAAAAAAAABSQEARAAAAAAAAQGAEFHOEYRjZ83fMMTIk82/RotTeu9de5vuKi2V89JH9OT/5iT3Pnnva0yUZHR0yVq60x4cOdb9u/f33v11bn44OGUVF9ucsXx78vZs2xZfjscdkTJ9uj99zj4xPP7XHTzst/d9JXZ352cOH29Pefdddri22sIcnT5bx4ov2+G9+I+OEE+zxr78OttyTTnIvo18///nOPNOe59RT3a899piM/faTMXNm6us9fnz89r/nnsTz33KLPd+99yae73//S1xe6++CC+KXffjh4R57zvVdvLhr+8iQIfGvfe977vUYN67zz0u0Tx93XNfPD5n8++orGWPGyLjoos7nveEGe50efND92rPP2q9dfrk9feBAc9rWW8vo3dsc/va33e+98Ub7vfffL+Ouu+L3qccfl7H77vHTf/AD+3Ouucae/uST4W+73/zGXt4LL9jTneeDL79M/3J79jQ/e7fd7Gl9+9rLvOYae/rgwea0LbeMfl/77nftMvbu7X7t2mtlHHCAjPfe6/5ybr7ZXs4//mFOe+kle9rUqea000+3py1YYL9/xAhzWo8e5nUxndtg9Wr/6/b994ezza+/3l7GHXfYw2PGJH/fhg3u8j31VPT7T3f+9t/fXpe2Nnv6xo329AMPDLcMd98d/73fcIOMQw+1x+fOtYfPOCP67Rb237//7V5fa/j445O/7/bb3dvx73+Pn6e21r4ffP11931f1Ovt9zdsmH1v7zxuvdfaRH9XXOHeJgccED/PBx/Yr//0p/GvX3qp/fpzz8n44x/t8Ycesudz3gs4p1t/++0Xv69776c+/jh+ntpaGb/9rfu8s8ce7nl69rQ/o7TUnLbHHpn5jv7+d7scN99sT7/tNnv6jBn+7x01yp7Huq5UVZnjO+7Y/bItWWJ//tFH+8/jvceVzHIZhoxjj7WnffNN98tzyCH2523YYG4Xa/xvf+v6586f7z5n/PrX9viLL6b+eQceaL+/pcV/no6O+O3ld0wde6yMdevs8e9/v3vb8Oc/tz9r0KD4+5FHH7Vf/+MfZbzzTvz3O21a/OcOGWK//qMf2dOdz7/W39lny9hqK/e0669PWOZCV2TkwVZIpVvrXFVUVBR1EQAAAAAAACDlZVAxlfgaGYoAAAAAAAAAAiOgCAAAAAAAACAwAooAAAAAAAAAAiOgCAAAAAAAACAwAooAAPy/9u49vIrq3OP4byeQBMQdQC4JcgfFIiTYADHeKymBw1EUPSJ6BFFBEW0RqoIKeIeCxQtSqVpFWwtqK+DxgmggoZaAykUQkQIiIBAQaBIIhkCyzh/zZM8edi6zQ5Ih4ft5nvWwZ601a9bMvHtm8rKTDQAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANcqlVCcNWuW2rdvr5iYGCUnJ+uLL74os++cOXPk8/kcJSYmxtHHGKNJkyYpPj5eDRo0UGpqqjZv3lyZqQEAAAAAAACoRmEnFN9++22NHTtWkydP1urVq5WYmKi0tDTt27evzHX8fr/27NkTKNu3b3e0T5s2TS+88IJmz56tlStX6owzzlBaWpoKCgrC3yMAAAAAAAAA1SbshOKMGTM0YsQIDR8+XF27dtXs2bPVsGFDvfbaa2Wu4/P5FBcXFygtW7YMtBlj9Nxzz+mRRx7RwIEDlZCQoDfffFO7d+/WggULKrVTAAAAAAAAAKpHWAnFwsJCrVq1SqmpqfYAERFKTU1VVlZWmesdPnxY7dq1U5s2bTRw4EBt2LAh0LZt2zZlZ2c7xoyNjVVycnK5Y55ujDGll1mzZCSrzJxp1V12mV23b1/Z64ZbJk+2x12woPLjtG5tj1NSnn3Wbh861K7/1a/s+o4dQ9d74QX79bhxMsXFMj6ftdyrl7XelCl2n/nzQ+fTqZPV1qSJTFSU9TohoeL9OHbMHjclReb8863XZ5whk5xstxUXW/3vvNOuW7Om8sfv6adDj0NJGTOm/HXHj7f7Nmliv/7xR5lVq+zlu++25j1qlMyVV8r88EPoWE8+afd/8037dd++VvuoUXbdF1/IvPqqvfzyy1afIUPsuq1brbpBg+y6nTvL3pennrL7LVxo1WVm2nX33efs/8MPdtvgweUfp4ICu+9ll4W25+c7Y/TBB+3lpUvdncfiYpl69ax1LrjAqnvrLXucZ55x9m/UyKr/xS8qHzvr19vj33qrVdezp7UcESHz+ut2+6xZVnvbtnbdFVfYY3XubNU1bercxosv2v3/8peK5/Tee3b/nj2t43L33Xbdl19Wfn/LKs89F/reufPO0vu+/LLd55VXSu/TrZvV3rChtfxf/2Wvs3+/zDvv2Mt/+IO9Xv36zvNvjHVeSvp+9llo35Ly00/OOVx4od1WVHTyx+jgQef2vv7aqp85s+Lz26tX2fegZ58NPfbffVfxfD75xO4/aVLF/YPvI5s2VX0MuS1z54bub3y8dU0sWb7nHpkuXez7R8k948Ry003OcdLSnO0DBpQeHw0aOO9rDRtay926hW7j88/d30/CKbfdZo+7fr1Maqq9nJdXtcd88WJ77IcftuoefdSu++ij0tcLvq4Hl8zMys3jxPHuuCO89f/4R+f6M2aEt37we+aRR0Lbg6/3f/yjVdeunV0XfF0Kvn9LMsePu5vDidt4+OHQ4ztunNX32mvtul27qjYmwi179zrn+PzzoX2+/NLZ55e/LH2sRx5x9svPl0lKsl5HRlp9brjBbt++3bqG33GHzK9/bR+LjRtLj8+1a+1tPf+8Xf/Xv1p1M2bYdXPnentcTyzB97tvv7XqLr7YrissLH29knuMz2c9iwe3NW1qtbVvb9dV5fWmRw9rnKgoZ/2CBfY2nn7aed4XL7b6XHKJXffzz1Zd8HO5ZP3MYoz1HguuHzHC3lZwvJT2fF6VZdMme1u33BLafsUVztgObgt+fvrzn51t991nty1bVvn5/e1v5b9PjZF57DHnsSx5VispffvabQcPVv2xKrkHd+9e9rrt21t9WrRwzvfvf7far7/ertuxw/24pZUlS+yxxo8vv++YMXbf4OfMf/4ztG/wz+Ql159wy7Bh9hgbN1p1wc8lJc9KkszEiVUf48HHPIxyuvOZMI7C7t27dfbZZ2v58uVKSUkJ1D/wwAPKzMzUypUrQ9bJysrS5s2blZCQoNzcXD3zzDNatmyZNmzYoNatW2v58uW6+OKLtXv3bsXHxwfWu+GGG+Tz+fT222+HjHn06FEdPXo0sJyXl6c2bdooNzdXfr/f9c7XJj6fz+spAAAAAAAAQKqTScW8vDzFxsa6yq9V+7c8p6SkaOjQoerRo4cuv/xyvffee2revLn+9Kc/VXrMKVOmKDY2NlDatGlThTMGAAAAAAAAUJawEorNmjVTZGSk9u7d66jfu3ev4uLiXI1Rv359XXDBBdqyZYskBdYLZ8wJEyYoNzc3UHbu3BnObgAAAAAAAACopLASilFRUUpKSlJ6enqgrri4WOnp6Y5fgS5PUVGR1q9fH/j15g4dOiguLs4xZl5enlauXFnmmNHR0fL7/Y4CAAAAAAAAoPrVC3eFsWPHatiwYerZs6d69+6t5557Tvn5+Ro+fLgkaejQoTr77LM1ZcoUSdLjjz+uCy+8UJ07d1ZOTo6mT5+u7du364477pBk/W3AMWPG6Mknn9Q555yjDh06aOLEiWrVqpWuueaaqttTAAAAAAAAACct7ITi4MGD9dNPP2nSpEnKzs5Wjx49tGjRIrVs2VKStGPHDkVE2B98/M9//qMRI0YoOztbTZo0UVJSkpYvX66uXbsG+jzwwAPKz8/XyJEjlZOTo0suuUSLFi1STExMFewiAAAAAAAAgKoS1rc8n6rC+Raa2opveQYAAAAAADg11IF0WohT6lueAQAAAAAAANQdJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCsZYwxjjLiBEyklXWrAltN0bmoYfsPp9+KnP77fbyL35hv/7229LXN0bmxRftfq+/Xna/cMt559njSjJLl9ptzz1n1//hD3b9bbc51+nTx6rv3duuS0y0/o2Kcm5vzx67z9VX2/WdOll1TZuWPdcPP7TXnTjRqvvmG7vutttCt1FSRo8OHe+f/wztd+ONpbePGWPV3XuvXbd8+ckd+/79ndseNsxuGzzY2TZ9uswTT9jLCxda/Z591q7729+sun//O3S/5sxxbnvSJLstOAZWrHD227XLbrv22tB9ePllu/3VVyuO3dmzZWJj7e26OU7Dhtnrf/21s+2uu+y21auturg4a7ltW2ff5GTnMbnkEplBg+zlnTur7n1VFeW++0LP4yWX2K8HDJC57rqy5//996XHdXDJzi79/Rhc+vSx+xw6ZNcfOWLXX3qpzNCh9vKGDc4xPvvMuR+7dsk8+aS9/P77Vr/Jk537Vx3H9dZb7W1s3Chzxx328rp1VbONBg2s8bp3L7/fyJGh5zi4zJhh992ypfQ+8+e7n1dBgUz9+s79L69/yTXd55MpLLTqbrnFXv/f/654m/Pn2/2nTKn8Mb3hhtB75eef23Xjxll1ubnO4/OPf8gcO2YvX3SRc99KyqpV4c9p0yZ7/f/9X6vu6FHn++LEde65J/QcPvtsxdv685/t/mPHlt7n0kvtPuefb/0bEWHtvzEymZl2++9+Z6/XvHnpsfXoo1b7mjWhbY0byxQXW+3p6TJDhsj861/2mGlpdt+DB53zPPdce4wrrnCOe9FF9utRo6z+wfe5uXOtOL73XpkHH5Q5frzsY9arlx2/R4+Wf3wLC2Xq1bP6d+tm17/7rr3tq64q/fiVlKQk577MnVv+/TO4DB8eeowvv9yaiyQTE+N89gp+Rii5fpZVfvMbu2/wc8uYMXZ9dLRdv327Xf8//1P59+zJluB9/P57d+ts3Fh6LOfmOvuddZaz/ZVXrPqyrrMlpWFD+/WvfmWtc9NNdt3mzTL5+aF9Ssp339ltt9wS+r6VrOfnqjh+AwaEzv/hh+3X/fpVPEbw/aLk/RhuSUkJncfMmSe/f/v32+MFPy+UPGN26WLXdewYOofKXPNPLB99FHq9LK18/7318+Kf/lR2n0WLnPPr2tW+vh08aNenpZU/p+B79FNP2a/vuqv89YKfOaOirGfK48edPyOkp5f+PurY0d3x+uIL5z4WFYX2CX5Gu/ji0PP1/PN23auvytx9t728YoX982RJCX4effppu37BAud2MzLstgcecLYdP27dS4PHffBBuz34OWfqVPfx07WrtU6jRhX3PXzYuf3PPy+//9VX232zs+36rVtlIiOdYx0+7Fw3+B59su+RGi6nO5+pA0chLy9PsbGxys3Nld/v93o61cLn83k9BQAAAAAAAEh1MqkYTn6NTygCAAAAAAAAcI2EYm3w8cdezwAAAAAAAACQREKxdpg3z+sZAAAAAAAAAJJIKNYO55/v9QwAAAAAAAAASSQUawcSigAAAAAAADhFkFCsDbp29XoGAAAAAAAAgCQSirVDu3ZezwAAAAAAAACQREKxdojgNAEAAAAAAODUQKYKAAAAAAAAgGskFAEAAAAAAAC4RkIRAAAAAAAAgGskFAEAAAAAAAC4RkIRAAAAAAAAgGskFAEAAAAAAAC4RkIRAAAAAAAAgGskFAEAAAAAAAC4RkIRAAAAAAAAgGskFGsJY4zMtm0ykl1+/WurvrySk+NcZ/r00D6XXmq35+Zade+9Z9c99VTF26lMadzY3kZ2dsX9X37ZuS/z5pVeL8ksXlz6GIWFMg0bhvbPyamaffr9753jrlhR+bHeecc51j/+UTVzPH7cOe7KldVzfssqV1zh3P4LL5Td95pr7H67dll1a9bYdXfeWTNzbtHC2l58vMx//mNvv18/u89f/uLcr8hImf37a/bYVlU591x7P4YNs+qWLAl937z0Uunrt21rtcfFyfz0k8zQoTLTplltxcUyPp/V3qtX2XMoKrK3k5xs1V1yiV3388/h7dPo0c65v/yy98e5qkvwORo/3q4fNcquf+ihyo3dvn3F5/1ULN9+a8/7pptC24uLZZo3t9rPOstadjPuu+/a4w4dar8uiW1JJibGfr16ddXu11//6tyvktf33ls9x7FPn9DnhMcft+sWLnT2z8wMvV5I7o7vyJF2/0cfrbj/f/+3cxt33FF6vw8/tPtce633sRlc8vPtuQW/1264wWr/4AO77rHHrLqNG+26W26p/LYbNLDHufxyu757d+dx3bHDqp8zx6578cXSx+za1Wo/44yqPU4jRtjb/uqr0vssW2b3GTPGri8utvfV77f7XH211f7WW3bdRRfVfAwEP+9I1vPqie+HyEjneyghwaqPiJA5++yKnz2Dr0mSzHXXWfWlPUcHlwMHZJ5+2l5+5x2Z++6zlxMTZc4803pdv751//b6PWWMzKFD9hzbtau6cWfMsMedN0/mySft5ffft/stXGjX33Zb1e7bgQP22KmpMhkZ9vK4cXa/oiIrbiSZCy5wjtGxo1XftKn356qscuWV9n4F33cnTqz6bV1/vT3+hx9W7dj794f+7HDVVXZdyc841VVmzw59Xz/zTNVv58S8Q1nbOucc+1p87bV2v40bvY+5SpTTnc/UgaOQl5en2NhY5ebmyu/3ez2dauHz+byeAgAAAAAAAKQ6mVQMJ7/GJxQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCsZaIiOBUAQAAAAAAeI0cDQnFWqO4uNjrKQAAAAAAAJz2yNGQUKw1yH4DAAAAAAB4jxwNCcVag+w3AAAAAACA98jRkFAEAAAAAAAAEAYSigAAAAAAAABcI6FYSxhjKF9/LSNZ5cwz7fqiIrtekvnNb7yfK6XqyvLlzvPr9Tm+8EJ7HsuWeX98arK88IK97wMGhLfunXc6z2GbNhWvs3hx6Ll//33vjwOFYozMzJnO2HzsMav+rbec9cOHV8/2f/tb53Z27qze/Z06NfT9uGKF9+ehLpXp0+1j26FD6X0OHpSpX9/u98kn3s97x47Q2Bg40Pt5USjVVXr0sGP9s8+8n09dLp984ry2bNrk/ZwqW26/3d6PevVkjh/3fk5VXYJ/VujY0fv51EA53flMHTgKeXl5io2NVW5urvx+v9fTqRaRkZH8jj4AAAAAAIDHIiIiVFRU5PU0qlw4+TU+oVhLkEwEAAAAAADwHjkaEoq1Bl9JDgAAAAAA4D1yNCQUaw2y3wAAAAAAAN4jR0NCEQAAAAAAAEAYSCgCAAAAAAAAcK2e1xOAOw0bNlRBQYHX0/Be8MeKg/9mQVn1qBtO/Dg557h2Cj6PPp9VwllH4tzj1OLmnuQ21k9m+9W5jdK2V5PbRO3BsxgA4DQSExPj9RQ8R0KxligoKOB39E9U1vHgONV9nOPazxirhItzj1NVWbFZ2VgPR01s41TYJmoPrtUAgDqOD3yRUKw1YmJiCFiJTyieroJ/cOVTMbVXZc4jn4jCqczrTyjWNO61AAAAkviEokRCsdY4cuSI11M49fAJxdMTn4qpGypzHjn3OJV5+QlFL3CvBQAApzFyNHwpCwAAAAAAAIAwkFAEAAAAAAAA4BoJxVoigr9VBAAAAAAA4DlyNCQUaw2+4RkAAAAAAMB75GhIKNYaZL8BAAAAAAC8R46mkt/yPGvWLE2fPl3Z2dlKTEzUzJkz1bt371L7vvLKK3rzzTf1zTffSJKSkpL09NNPO/rfeuuteuONNxzrpaWladGiRZWZXp1UVFTk9RQAAAAAAACA8D+h+Pbbb2vs2LGaPHmyVq9ercTERKWlpWnfvn2l9s/IyNCQIUO0dOlSZWVlqU2bNurbt6927drl6NevXz/t2bMnUObOnVu5PQIAAAAAAABQbXzGGBPOCsnJyerVq5defPFFSdbvjbdp00b33nuvxo8fX+H6RUVFatKkiV588UUNHTpUkvUJxZycHC1YsCD8PZCUl5en2NhY5ebmyu/3V2oMAAAAAAAA4HQVTn4trE8oFhYWatWqVUpNTbUHiIhQamqqsrKyXI1x5MgRHTt2TE2bNnXUZ2RkqEWLFurSpYtGjRqlAwcOhDM1AAAAAAAAADUgrL+huH//fhUVFally5aO+pYtW+q7775zNcaDDz6oVq1aOZKS/fr106BBg9ShQwdt3bpVDz30kPr376+srCxFRkaGjHH06FEdPXo0sJyXlxfObgAAAAAAAACopEp9KUtlTZ06VfPmzVNGRoZiYmIC9TfeeGPgdffu3ZWQkKBOnTopIyNDffr0CRlnypQpeuyxx2pkzgAAAAAAAABsYf3Kc7NmzRQZGam9e/c66vfu3au4uLhy133mmWc0depULV68WAkJCeX27dixo5o1a6YtW7aU2j5hwgTl5uYGys6dO8PZDQAAAAAAAACVFFZCMSoqSklJSUpPTw/UFRcXKz09XSkpKWWuN23aND3xxBNatGiRevbsWeF2fvzxRx04cEDx8fGltkdHR8vv9zsKAAAAAAAAgOoXVkJRksaOHatXXnlFb7zxhjZu3KhRo0YpPz9fw4cPlyQNHTpUEyZMCPT//e9/r4kTJ+q1115T+/btlZ2drezsbB0+fFiSdPjwYd1///1asWKFfvjhB6Wnp2vgwIHq3Lmz0tLSqmg3AQAAAAAAAFSFsP+G4uDBg/XTTz9p0qRJys7OVo8ePbRo0aLAF7Xs2LFDERF2nvKll15SYWGhrr/+esc4kydP1qOPPqrIyEitW7dOb7zxhnJyctSqVSv17dtXTzzxhKKjo09y9wAAAAAAAABUJZ8xxng9iZOVl5en2NhY5ebm8uvPAAAAAAAAQJjCya+F/SvPAAAAAAAAAE5fJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuFbP6wlUBWOMJCkvL8/jmQAAAAAAAAC1T0lerSTPVp46kVA8dOiQJKlNmzYezwQAAAAAAACovQ4dOqTY2Nhy+/iMm7TjKa64uFi7d+/WmWeeKZ/P5/V0qkxeXp7atGmjnTt3yu/3ez0dnCaIO3iBuINXiD14gbiDF4g7eIXYgxeIu8oxxujQoUNq1aqVIiLK/yuJdeITihEREWrdurXX06g2fr+fNwBqHHEHLxB38AqxBy8Qd/ACcQevEHvwAnEXvoo+mViCL2UBAAAAAAAA4BoJRQAAAAAAAACukVA8hUVHR2vy5MmKjo72eio4jRB38AJxB68Qe/ACcQcvEHfwCrEHLxB31a9OfCkLAAAAAAAAgJrBJxQBAAAAAAAAuEZCEQAAAAAAAIBrJBQBAAAAAAAAuEZCEQAAAAAAAIBrJBRPUbNmzVL79u0VExOj5ORkffHFF15PCXXIo48+Kp/P5yjnnXdeoL2goECjR4/WWWedpUaNGum6667T3r17PZwxaqtly5bpqquuUqtWreTz+bRgwQJHuzFGkyZNUnx8vBo0aKDU1FRt3rzZ0efgwYO6+eab5ff71bhxY91+++06fPhwDe4FapuK4u7WW28NuQb269fP0Ye4Q7imTJmiXr166cwzz1SLFi10zTXXaNOmTY4+bu6vO3bs0IABA9SwYUO1aNFC999/v44fP16Tu4JaxE3cXXHFFSHXvLvuusvRh7hDuF566SUlJCTI7/fL7/crJSVFH3/8caCd6x2qQ0Vxx/WuZpFQPAW9/fbbGjt2rCZPnqzVq1crMTFRaWlp2rdvn9dTQx1y/vnna8+ePYHy+eefB9ruu+8+/d///Z/effddZWZmavfu3Ro0aJCHs0VtlZ+fr8TERM2aNavU9mnTpumFF17Q7NmztXLlSp1xxhlKS0tTQUFBoM/NN9+sDRs26NNPP9UHH3ygZcuWaeTIkTW1C6iFKoo7SerXr5/jGjh37lxHO3GHcGVmZmr06NFasWKFPv30Ux07dkx9+/ZVfn5+oE9F99eioiINGDBAhYWFWr58ud544w3NmTNHkyZN8mKXUAu4iTtJGjFihOOaN23atEAbcYfKaN26taZOnapVq1bpq6++0pVXXqmBAwdqw4YNkrjeoXpUFHcS17saZXDK6d27txk9enRguaioyLRq1cpMmTLFw1mhLpk8ebJJTEwstS0nJ8fUr1/fvPvuu4G6jRs3GkkmKyurhmaIukiSmT9/fmC5uLjYxMXFmenTpwfqcnJyTHR0tJk7d64xxphvv/3WSDJffvlloM/HH39sfD6f2bVrV43NHbXXiXFnjDHDhg0zAwcOLHMd4g5VYd++fUaSyczMNMa4u79+9NFHJiIiwmRnZwf6vPTSS8bv95ujR4/W7A6gVjox7owx5vLLLze//e1vy1yHuENVadKkiXn11Ve53qFGlcSdMVzvahqfUDzFFBYWatWqVUpNTQ3URUREKDU1VVlZWR7ODHXN5s2b1apVK3Xs2FE333yzduzYIUlatWqVjh075ojB8847T23btiUGUaW2bdum7OxsR6zFxsYqOTk5EGtZWVlq3LixevbsGeiTmpqqiIgIrVy5ssbnjLojIyNDLVq0UJcuXTRq1CgdOHAg0EbcoSrk5uZKkpo2bSrJ3f01KytL3bt3V8uWLQN90tLSlJeX5/j0BVCWE+OuxFtvvaVmzZqpW7dumjBhgo4cORJoI+5wsoqKijRv3jzl5+crJSWF6x1qxIlxV4LrXc2p5/UE4LR//34VFRU5AlySWrZsqe+++86jWaGuSU5O1pw5c9SlSxft2bNHjz32mC699FJ98803ys7OVlRUlBo3buxYp2XLlsrOzvZmwqiTSuKptOtdSVt2drZatGjhaK9Xr56aNm1KPKLS+vXrp0GDBqlDhw7aunWrHnroIfXv319ZWVmKjIwk7nDSiouLNWbMGF188cXq1q2bJLm6v2ZnZ5d6TSxpA8pTWtxJ0k033aR27dqpVatWWrdunR588EFt2rRJ7733niTiDpW3fv16paSkqKCgQI0aNdL8+fPVtWtXrV27lusdqk1ZcSdxvatpJBSB01D//v0DrxMSEpScnKx27drpnXfeUYMGDTycGQBUvxtvvDHwunv37kpISFCnTp2UkZGhPn36eDgz1BWjR4/WN9984/j7xEB1Kyvugv/+a/fu3RUfH68+ffpo69at6tSpU01PE3VIly5dtHbtWuXm5urvf/+7hg0bpszMTK+nhTqurLjr2rUr17saxq88n2KaNWumyMjIkG/A2rt3r+Li4jyaFeq6xo0b69xzz9WWLVsUFxenwsJC5eTkOPoQg6hqJfFU3vUuLi4u5Aupjh8/roMHDxKPqDIdO3ZUs2bNtGXLFknEHU7OPffcow8++EBLly5V69atA/Vu7q9xcXGlXhNL2oCylBV3pUlOTpYkxzWPuENlREVFqXPnzkpKStKUKVOUmJio559/nusdqlVZcVcarnfVi4TiKSYqKkpJSUlKT08P1BUXFys9Pd3xdwGAqnT48GFt3bpV8fHxSkpKUv369R0xuGnTJu3YsYMYRJXq0KGD4uLiHLGWl5enlStXBmItJSVFOTk5WrVqVaDPkiVLVFxcHHhAAE7Wjz/+qAMHDig+Pl4ScYfKMcbonnvu0fz587VkyRJ16NDB0e7m/pqSkqL169c7Etqffvqp/H5/4Ne5gGAVxV1p1q5dK0mOax5xh6pQXFyso0ePcr1DjSqJu9JwvatmXn8rDELNmzfPREdHmzlz5phvv/3WjBw50jRu3NjxTUTAyRg3bpzJyMgw27ZtM//6179Mamqqadasmdm3b58xxpi77rrLtG3b1ixZssR89dVXJiUlxaSkpHg8a9RGhw4dMmvWrDFr1qwxksyMGTPMmjVrzPbt240xxkydOtU0btzYLFy40Kxbt84MHDjQdOjQwfz888+BMfr162cuuOACs3LlSvP555+bc845xwwZMsSrXUItUF7cHTp0yPzud78zWVlZZtu2beazzz4zv/zlL80555xjCgoKAmMQdwjXqFGjTGxsrMnIyDB79uwJlCNHjgT6VHR/PX78uOnWrZvp27evWbt2rVm0aJFp3ry5mTBhghe7hFqgorjbsmWLefzxx81XX31ltm3bZhYuXGg6duxoLrvsssAYxB0qY/z48SYzM9Ns27bNrFu3zowfP974fD6zePFiYwzXO1SP8uKO613NI6F4ipo5c6Zp27atiYqKMr179zYrVqzwekqoQwYPHmzi4+NNVFSUOfvss83gwYPNli1bAu0///yzufvuu02TJk1Mw4YNzbXXXmv27Nnj4YxRWy1dutRICinDhg0zxhhTXFxsJk6caFq2bGmio6NNnz59zKZNmxxjHDhwwAwZMsQ0atTI+P1+M3z4cHPo0CEP9ga1RXlxd+TIEdO3b1/TvHlzU79+fdOuXTszYsSIkP+0I+4QrtJiTpJ5/fXXA33c3F9/+OEH079/f9OgQQPTrFkzM27cOHPs2LEa3hvUFhXF3Y4dO8xll11mmjZtaqKjo03nzp3N/fffb3Jzcx3jEHcI12233WbatWtnoqKiTPPmzU2fPn0CyURjuN6hepQXd1zvap7PGGNq7vOQAAAAAAAAAGoz/oYiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABwjYQiAAAAAAAAANdIKAIAAAAAAABw7f8BybQwneuKnJQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "#### 5. *Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции – порог обнаружения аномалий.*\n", + "\n", + "# Получаем ошибки реконструкции для обучающей выборки\n", + "IRE3_values = lib.predict_ae(ae3_trained, train, IREth3)[1].ravel()\n", + "\n", + "# Если порог IREth3 — массив, берем первый элемент\n", + "IREth3_scalar = IREth3[0] if isinstance(IREth3, np.ndarray) else IREth3\n", + "\n", + "# Построение графика ошибок реконструкции с помощью встроенной функции библиотеки\n", + "lib.ire_plot('training', IRE3_values, IREth3_scalar, 'AE3')\n", + "\n", + "# Фиксируем ошибку MSE на последнем элементе обучающей выборки\n", + "MSE_stop_AE3 = IRE3_values[-1]\n", + "\n", + "# Выводим значения для отчета\n", + "print(f\"MSE_stop для AE3: {MSE_stop_AE3:.3f}\")\n", + "print(f\"IREth3 (порог ошибки реконструкции) для AE3: {IREth3_scalar:.3f}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 796 + }, + "id": "euWCXL_wQZIN", + "outputId": "50a6cb04-316b-407a-931e-1f374cb036ed" + }, + "execution_count": 74, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe8FPW9//H3nsKhHqpwALFiLKBGYwkWxChiibkYNWpyLURMUW80xCRyf8YSYzCJaDS2WCKaXEs0ikZNFAsqigUVC6JR6VWRcoADp+7vj3F2vjtnZne2zuzu6/l48GDOni2ze7475T2f7/cbi8fjcQEAAAAAAABARFSFvQIAAAAAAAAAYCK0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAGVj/vz5Ovfcc7XHHnuoV69eisViiX+LFi0Ke/Uq0rRp0xJ/g7POOquor23+/QEAAFBaCC0BAChxY8aMSQQzl19+ue/9zADH/a+6ulp9+vTRLrvsopNPPll33HGHNm3alNU6ZPovX0HWY489pn322Ue33HKL5s+fn9H6A8AzzzyTtG3afffdM36Oyy+/POtt4Q477OD5nK2trZo9e7auvfZanXnmmTrwwAM1ePBgdevWTbW1tRowYID2228/nXvuuXrppZdy/BQAAIiOmrBXAAAAhK+jo0MbNmzQhg0b9Mknn+ihhx7S5MmTddttt+mEE04Ie/XS2rRpk8466yw1NzdLkgYPHqxDDjlE22yzTaLKrr6+PsxVzMnll1+uK664QpJ02WWXpQyngajaYYcdtHjxYknSwoULfUO6sNx9991JP3/44Yd6/fXXdcABB4S0RpZHH31UJ598su/vv/jiC33xxRd68803dcstt+iII47QX/7yF2233XZFXEsAAPKP0BIAgAo0fvx4DR06NPFzR0eH1qxZo9mzZ2vZsmWSpDVr1uikk07SQw89lFFwuf/++2d0kv/1r389+Ir7ePzxx7Vu3TpJ0ogRI/TGG2+oW7duOT8vgMqwceNGPfzww51uv/vuu7MOLYcMGZLRtrN///5p79OlSxftvvvuGj58uPr166d4PK5Vq1bp1Vdf1Zo1ayRJzz77rA455BDNmjWL4BIAUNIILQEAqEAXXHCBxowZ0+n2jo4O3X333frxj3+s5uZmdXR06Mc//rHGjRun7t27B3ruY489tuiVgG+99VZi+bTTTiOwjJCzzjqr6GNZ2uLxeCivi9Lz0EMPqampSZLUrVs3bdmyRZJ0//3367rrrlOXLl0yfs5ddtlFN954Y87rNnjwYF1yySU6+uijtd9++6murq7Tfdra2nTPPffo/PPP15YtW7R06VKde+65evzxx3N+fQAAwsKYlgAAIKGqqkoTJkzQ73//+8Rtq1ev1vTp08NbqQDsKkvJOsEHgEyYXcN/+ctfatCgQZKktWvX6p///GdYqyVJOvjgg3XllVfq4IMP9gwsJammpkbf//73deuttyZue/LJJxOV8wAAlCJCSwAA0MkPf/hDde3aNfHziy++GOLapNfa2ppYrqri8AZAcIsWLUps42KxmM4880yddtppid+7x7qMMrPSPB6Pa+7cueGuEAAAOeCoHgAAdFJXV5c0c+6KFStCXBtv5iy9ZqgwYcKETrPyTps2zfM5Nm3apBtuuEHjxo3Ttttuq65du6pv374aOXKkzj//fL322muB1sV8Lds777yjCy64QCNHjlS/fv0Ui8U0fvz4jN6jPSu7PQmPJF1xxRWBZmE/66yzOr3/9evX6/rrr9fo0aM1dOhQ1dTUKBaLaf369UmP/eyzz3TXXXfpzDPP1D777KN+/fqptrZWffr00W677aYJEyboqaeeCvQepk2blnam+JkzZybuYw5b8Nxzz+nUU0/VTjvtpK5du6p///4aPXq0brzxxqSg2o/X38Vthx12SNxn0aJFkqRly5bpV7/6lfbee2/16dNHPXr00G677ab/+Z//SUwkE9SMGTN06qmnarvttlPXrl01ePBgHXroobrpppu0efNmScltOV9DK6xZs0bXXHONjjzySA0ZMkRdu3ZN/A1HjBihk046Sddee60WLlwY6PmeffZZ/ehHP9KIESPUr18/1dXVaciQIRo3bpxuvPHGRHdqt0WLFiXem/nZ7bjjjp7teObMmfl4+xm55557EkMJHHLIIdphhx10+umnJ37/r3/9S5999lnR1ysbtbW16t27d+LnjRs3hrg2AADkhjEtAQCAJ3NcyK1bt4a4JoXx+OOP65xzztGqVauSbm9ubtb69es1b9483XTTTfrud7+r22+/PfCYnpIVQv3mN79Re3t7vlc7ay+//LJOO+00LV26NOX9brjhBk2aNMlz3e0Z5j/66CNNmzZN3/jGN/T3v/890AQimWhpadH555+v22+/Pen25uZmvfTSS3rppZd011136amnntKAAQPy+trTp0/XWWedpQ0bNiTd/tFHH+mjjz7SnXfeqQcffFDHHXdc2vdw9tln629/+1vS7atWrdKqVas0a9Ys3XTTTXrkkUfyuv6SNdv0hAkTkoZNsNl/ww8++ED/+Mc/dO2116bsQrx06VKdccYZnmHiypUrtXLlSj399NOaMmWK7r//fh166KH5fCtFcc899ySW7bBy33331YgRIzRv3jy1tbXp3nvv1YUXXhjSGga3Zs0aff7554mfozZDOwAAmSC0BAAAnszqSnt8tyg54IADdN5550myqsA+/PBDSdIRRxyh3XbbLem+ZtWoJD3wwAP63ve+lwjmqqurdcghh2j48OHatGmTXnrppcT7v/fee7Vw4UI999xzSV3m/fzhD39IVEbuvPPOOuCAA9S9e3ctWrRItbW1Gb3HE044QSNHjtTrr7+uN954Q5L/7OypZmH/5JNPdOGFF2rDhg3q1auXRo8erSFDhmjdunWduv6vWLEi8bnstNNO2n333bXNNtuoa9euWr9+vd577z3NmzdPklUJeeSRR+rVV1/1HWsvGz/4wQ909913q6qqSgceeKB22203dXR06NVXX9VHH30kyZp86YwzztCTTz6Zt9d95pln9KMf/Ujt7e3abrvtNGrUKNXX12vhwoWaOXOm2tratGXLFn3nO9/R+++/rx133NH3uU477bSk2aj79eunMWPGqF+/flq6dKleeOEFzZ8/X8cdd5y+9a1v5e09zJkzRyeddJLa2tokWRcfvv71r2uHHXZQXV2dGhsb9emnn+q9995LTDzjZ/78+TriiCO0cuVKSVbl6r777qs99thD3bp10/Lly/Xiiy9q48aNWrFihcaOHat//etfOvzwwxPPUV9fn/ie3nPPPYnKvzPOOEO9evXq9JpDhw7Ny+cQ1KxZs/Tpp59KsirMTz755MTvTj/9dF188cWSrC7iUQ8t4/G4fvGLXyS+v9ttt53233//kNcKAIAcxAEAQEk77LDD4pLikuKXXXaZ7/3s+0iKP//88ymf86OPPkq6/4033piXdSiUM888M/H6d911V8r7fvLJJ/GePXsm7n/AAQfEP/7446T7tLe3x6dOnRqvqqpK3O9//ud/fJ/T/KxqamrivXv3jj/yyCOd7rd169Zs3l78sssuy/jzNT+TmpqauKT4eeedF9+4cWPS/VpaWuLt7e2Jn++88874n/70p/iyZct8n/udd96J77fffonnv/LKK33ve9dddyXud+aZZ3re5/nnn0/cp66uLi4pvv/++8fnz5+fdL+Ojo74H//4x6TP+4UXXvB9bfN+frbffvuk1+7Ro0f8r3/9a7yjoyPpfu+//3586NChiftOmDDB9znvuOOOpNf+2c9+1ulvv3r16vgxxxyT9J7z8f0ZP3584rlOPPHE+Nq1az3vt2XLlvgTTzwR/+EPf+j5+02bNsV33333xHMdc8wx8U8++aTT/TZs2BD/8Y9/nLjf4MGD4+vXr/d8TvOzXrhwYdbvMZ8mTpyYWKeTTjop6XdLly5N2ga88847aZ/P/K4edthhBVprR2tra3z58uXxf/zjH0nb4dra2vgTTzxR8NcHAKCQqLQEAABJ2tradMEFFyR+rq+v16mnnhr48U8++aTWrFkT+P6//vWv1a9fv4zWMRe//vWvtWnTJknS8OHD9fTTTyeNASdZk/lMmjRJsVhMkyZNkiTddNNN+ulPf5qyuk6SOjo69Nhjj2n06NGdfpfPasRMtLW1aeLEibrxxhs7/c5d/fn9738/7fPttddeeuaZZ7Tbbrtp1apVuvnmmzV58mRVV1fnvK7Nzc3aZZdd9Nxzz6lnz55Jv4vFYrrgggs0a9YsPfTQQ5Kk++67z/OzzkZLS4umT5+uo48+utPvRowYoT//+c/65je/KUl68MEHddttt6mmJvlwur29XZdddlni5x/+8Ie65pprOj3fwIEDNX36dB1yyCGJKtp8eOmllyRZbW3atGmdPkNb165ddeyxx+rYY4/1/P21116r+fPnS7Iqfh966CHPSa7q6+t18803q6mpSXfffbdWrlypW2+9Vb/85S/z9I4KZ8uWLfr73/+e+Nkcx1KStt12W40ZM0bPPfecJKvacurUqYGf/+OPP9b5558f+P6nn366DjzwwLT3Gz58eKI61MvgwYN133336bDDDgv82gAARBGhJQAAUEdHh9asWaOXX35ZV199tV5//XVJUk1Njf7yl79kNGbhG2+8kVEIc9FFFxUttFy/fr0eeOCBxM+///3vOwWWpgsuuEB33nmn5s2bp46ODt12222aMmVKytc46aST8hai5UvXrl31+9//Pq/P2bt3b51wwgm65ZZbtHLlSn3wwQfac8898/LcV199tW/YJlnBqh1a2m01H775zW96Bpa2Y489Vg0NDVq1apU2bdqk+fPnd3rP//73v7V8+XJJUo8ePXT11Vf7Pl+XLl10zTXX5DVcamxslCR179495WeYSmtrayLgrqur06233uoZWJp++9vfJia0+b//+7+SCC2nT5+e+Lz69++vY445ptN9Tj/99ERo+X//93/63e9+1ymo9rNixQrddNNNgddnv/32CxRapnL22Wfr+uuvV48ePXJ6HgAAooDQEgCACmSOOedn11131dSpU9NOOFJKXnnlFTU3N0uSBgwYoOOPPz7l/auqqvT9739fP/vZzyRJzz//fNrXyKQqtViOOuoo9e3bN+PHffbZZ3r11Vc1f/58rVu3Tps3b07MsixZ4yfa5s6dm5fQsmvXrmn/Lvvss09i2Z7xOx/M8Qy9xGIx7b333onJmxYtWtTpPZsT1hx33HHq06dPyuccPXq0tttuOy1ZsiSrdXYbNmyYFixYoHXr1umBBx7QKaeckvFzzJkzJzFb9hFHHKGBAwemfcyQIUO02267af78+Xr//fe1YcOGlBcEouDuu+9OLJ966qmeY86edNJJOu+889TU1KTVq1frqaeeCn2bePrppycm29m6datWrFih1157TWvXrtWdd96pJ598Ur/73e86VY4CAFBqCC0BAEAngwYN0j333OM54Us6l112mS6//PL8r1QevP3224nlAw44IFDF1MEHH5z0+Hg8rlgs5nv/r33ta7mtZAFkuk4ffPCBfvnLX+pf//pX4BnQMxkSIJVdd9017YRFZuWvXSmXD0FC13SvPXfu3MRy0Kq5Aw44IG+h5Xe+851Ededpp52WCC4PP/zwQOGjJM2ePTuxvGzZssBdnNevXy/JmhBm2bJlkQ4tV6xYoWeeeSbxs1/A17NnT40fP1733nuvJCvoDBpaHnbYYZ6zrufKHH7A1tLSor/+9a/62c9+ppUrV+qMM87QokWL9Ktf/Srvrw8AQLEQWgIAUIHGjx+fNEvvF198oU8//TTRrXv16tU69NBD9Y9//CMxhl85sKuTJGn77bcP9JgddtghsdzS0qKNGzeqvr7e9/7bbLNN1utXKJms01NPPaX/+q//SlSkBmXPCp2rIEGXGWras2SH8dqtra2dfm+2sWHDhgV63W233TbQ/YK45JJLNHPmTL366quKx+N65JFH9Mgjj0iSdtllFx166KE64ogjdPzxx3vO3i1ZgZ7t3Xff1bvvvpvxeqxbty67N1Akf/vb3xKB/C677JIyYD799NMToeVjjz2mdevWZVW5XEhdunTR2WefrT333FOHHHKIWltbddlll+kb3/hG0oUXAABKSerBaQAAQFm64IILdOONNyb+3XfffXr99df1zjvvaO+995ZkBXSnnXZaygkfSo09AY+kwGO+ue+XLpzr1q1b5itWYEHX6fPPP9cpp5ySCCy33357TZkyRbNmzdKKFSvU1NSkjo4OxeNxxePxpIqvjo6OvKxrqirWQsvHa5ttrHv37oEek+3Yk1569OihF154QX/4wx+SAnfJmhjmL3/5i773ve+poaFBv/jFL7Rly5ZOz7Fhw4ac1yOfYXIhmF3D//u//zvlfceOHauGhgZJ1kRR5ri4UXPAAQfojDPOkGRVvF533XUhrxEAANkjtAQAAAl77bWXnn766UQV5qZNmzRx4sSQ1yp/zHBo8+bNgR7jvp9fdVo5uP322xOB1d577613331XF198sQ4++GANHjxY3bp1Swr28lVdWU7MNtbU1BToMUHbYlBdunTRRRddpAULFmju3Lm64YYbdOqppyZVVzc1NekPf/iDDj/88E7BpRnU/+QnP0mE1Jn8GzNmTF7fUz7NmTNHH3zwQeLnyy67TLFYzPdfTU1NYhxTKTnwjKKxY8cmll9++eUQ1wQAgNwQWgIAgCQDBw7Un/70p8TPM2fO1BNPPBHiGuWP2U066BiC5kQvXbp0KevQ8tlnn00sX3LJJSm7wUvS4sWLC71KJWfAgAGJ5WXLlgV6TND7ZcqeOOh//ud/dN9992nZsmV66623NGHChMR9XnvttU4zXA8aNCixbIZ15SLX0PHVV1/Vf/7znzytTf6ZXde/+OKLENcEAIDcMKYlAADo5IQTTtDBBx+cqNK55JJLQp8xNx/MWadff/11tbe3q7q6OuVjXnnllaTHh9F9uVivaY5lmG5Smvb2dqq4PHz1q19NhL+vvfZaoMe8/vrrhVylJPvss4/+8pe/qLq6WnfccYcka5zGiy66KHEfc3zHV155Je3kU0GF2fXf1tLSovvuuy/x86677pp2hnfbxx9/rLVr10qygs+rrrqqEKuYs5UrVyaW+/XrF+KaAACQGyotAQCAJ3MG8Llz5+qxxx4Lb2Xy5KCDDlJdXZ0ka/zGdBWkHR0duuuuuxI/f+Mb3yjo+vnp2rVrYtlr8pd8qapyDg3TdW2ePn16WVbh5crsFv3EE0+kHR9y1qxZoVSsfutb30osr169Oul3Bx98cCLIW7Zsmf75z3/m5TWL1Y5TeeKJJxLVhzU1NXrxxRf16quvBvr3v//7v4nn+etf/5q3cVzz7fHHH08s77777iGuCQAAuSG0BAAAno488kgddNBBiZ9/85vfhLg2+dGnTx+dcsopiZ9//vOfpxyX8cYbb9R7770nyQr0fvCDHxR8Hb30798/sbx8+fKCvc5OO+2UWE4VUn/++ef66U9/WrD1KGVHH320hgwZIskaE9YMutxaWlqSKhxz1dzcnDQRUCpLly5NLA8cODDpd3V1dbrwwgsTP5977rkZtTt3CGorVjtOxewaPnbs2E7vPZXTTjstEewvXbpUzz//fN7Xz62trS2jiZGefPJJ/eMf/0j8fOKJJxZitQAAKApCSwAA4OvSSy9NLL/xxhv697//HeLa5Mell16amCzlP//5j8aNG6cFCxYk3aejo0PXX3+9Jk2alLjtvPPO6zQbc7GMHDkysfz000/nZXZnL8cff3xiecqUKfrb3/7W6T5vvfWWDjvsMC1dujTwDOyVpKamJqlK+eabb9Yvf/lLtbS0JN3v888/14knnqjXXnstUf2bq5UrV2rYsGG66KKLNGfOHN/7zZgxI2nm92OOOabTfX72s59pxIgRkqyAcb/99tODDz7oW124Zs0a3Xbbbdp33331hz/8wfM+Zjt+8MEHA72nadOmJU2KY44xm6k1a9boySefTPz8ve99L6PHDxkyRIcffnji52JMyLNp0ybtuOOOuvTSS/XRRx/53m/dunX6zW9+o29/+9uKx+OSpOHDh+ucc84p+DoCAFAojGkJAAB8jRs3TgceeGBibL4rr7xSRx99dMrHPPnkk1qzZk3g1+jevbt+//vf57Semdh55511xx136Hvf+57a29s1e/Zs7brrrjr00EO18847a9OmTXrppZeSKsG+/vWvF3Ud3Q444AANGzZMS5cu1cqVK7XbbrvpqKOO0oABAxLjBO6///5JVaTZOPPMMzV16lT95z//UXNzs04//XT99re/1d57762uXbvq/fffT4Rhe++9t8aNGxfq5xJVEydO1BNPPKFHH31UkvT73/9ed955p8aMGaN+/fpp2bJlev7557V161bttNNO+q//+i9dd911kpK76Gdj/fr1mjp1qqZOnap+/fppn3320dChQ9W1a1d99tlnevfdd5NC+q985Su64IILOj1Pz5499dhjj+nII4/UwoULtWrVKn3nO9/RgAED9PWvf10NDQ2Kx+Nau3atPvjgA3388ceJQNNvGIUTTzxRf/7znyVZYe6bb76pfffdV927d0/c58c//rF23nnnnD4DP/fee2+iW3qPHj00fvz4jJ/je9/7XmLM0ocfflg333xz0ozxpo8//ljnn39+Rs8/efLkpFneJSuQvPLKK3XllVdqyJAh2muvvTRw4EB1795dmzZt0ieffKK33norKRhvaGjQY489lrdAHACAMBBaAgCAlC699NLEJDyvvPKKnn32WR1xxBG+93/jjTf0xhtvBH7+3r17Fz34OuWUU9SjRw9NnDhRq1evVltbm55//nnP7p6nnXaa7rjjjqTx+IqtqqpKN998s0488US1tLRo1apVuueee5Luc+aZZ+YcWtbV1emf//ynjjnmmESwNX/+fM2fPz/pfgcffLAeeOAB3X777Tm9XrmKxWJ64IEHdNZZZ+n++++XZM3ibHbblazxBh955JGkv2W6GdtTqa2tVV1dnZqbmyVJa9euTZoR3m3MmDG67777fCtmd9ppJ82ZM0c/+tGP9NBDDykej2vNmjVJYya69enTx3cSp7Fjx+q0005LTITz2muvdZqs6Jvf/GbBQkuzMnL8+PFZVQqfeOKJOvfcc7V161Zt3rxZDz30kM466yzP+65YsaLTzOzpTJw4MSm0rKqqUk1Njdra2hLPaU6Y5eXb3/62brjhhk7hJwAApYbQEgAApHTsscdqv/32S1TY/frXv04ZWpaKb37zm/rkk0/0l7/8RY8//rjmzZunNWvWqFu3boluoGeccUbSTMph+uY3v6k5c+bopptu0qxZs7RkyRJt2rQp0RU0X77yla/o7bff1k033aSHH35YH330kVpaWtTQ0KA999xT3/3ud/Wd73wn7azrla6urk733XefJkyYoDvuuEOzZ8/WZ599pr59+2r48OE69dRTNWHCBPXo0SMxI7WkwDNZexk6dKi++OILPffcc3rppZf05ptv6pNPPtHnn3+ulpYW9erVS9tvv32iKvfII49M+5z9+vXT3//+d73//vu67777NHPmTC1cuFBffPGFqqqq1KdPHw0fPlz77ruvjjzySI0dOzZlwP9///d/+uY3v6n77rtPc+fO1Zo1a7R169as33NQ77//vt56663Ez5l2DbfV19fr+OOPT3RvnzZtmm9omQ/19fX64osv9Mwzz+jll1/W22+/rQULFujzzz9Xc3OzevToob59+2rEiBE68MAD9d3vflfDhw8v2PoAAFBMsXi+j3QBAAAABHbwwQfrlVdekSS9+uqrkQnKAQAAwkRoCQAAAIRk8eLF2nnnndXe3q4uXbpow4YNoQ5FAAAAEBXMHg4AAACEIB6P64ILLlB7e7sk6YQTTiCwBAAA+BKhJQAAAJBnl156qa6//nqtWbPG8/eLFi3SCSeckJhhvLq6WhdddFExVxEAACDSmIgHAAAAyLMlS5boyiuv1EUXXaQ999xTu+22m3r37q1Nmzbpww8/1Ntvv52osJSkSy65RPvtt1+IawwAABAthJYAAABAgbS1tentt9/W22+/7fn7bt266de//jVVlgAAAC5MxAMAAADk2fr16/Xoo4/queee07x58/T5559rzZo1am9vV79+/bTrrrvqiCOO0Nlnn63BgweHvboAAACRQ2gZUEdHh1asWKFevXopFouFvToAAAAAAABASYnH49q4caOGDBmiqqrUU+3QPTygFStWaNiwYWGvBgAAAAAAAFDSli5dqm233TblfQgtA+rVq5ck60Otr68PeW3yo7W1VU8//bSOOuoo1dbWhr06qCC0PYSBdocw0O4QFtoewkC7QxhodwgLbS87jY2NGjZsWCJnS4XQMiC7S3h9fX1ZhZbdu3dXfX09XzAUFW0PYaDdIQy0O4SFtocw0O4QBtodwkLby02QoRdTdx4HAAAAAAAAgCIjtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIiUkgwtb7nlFu21116JmbxHjRqlf/3rXykf8+CDD2q33XZT165dteeee+rJJ58s0toCAAAAAAAAyERJhpbbbrutrr76ar355puaM2eOvvGNb+i//uu/NG/ePM/7v/LKKzrttNN09tln6+2339b48eM1fvx4vf/++0VecwAAAAAAAADp1IS9Atk4/vjjk36+6qqrdMstt+jVV1/ViBEjOt3/+uuv19FHH62f//znkqQrr7xSM2bM0I033qhbb7214Osbj8fV2tqqjo6Ogr9WJlpbW1VTU6OtW7eqvb097NWpKNXV1aqtrQ17NQAAAAAAACKpJENLU3t7ux588EFt3rxZo0aN8rzP7NmzNWnSpKTbxo0bp+nTp/s+b3Nzs5qbmxM/NzY2SrKCvtbW1kDr1tLSoi+++EJNTU2RCywlK0xtaGjQkiVLFIvFwl6ditOlSxf169dPvXr1CntVis7+DgX9LgH5QLtDGGh3CAttD2Gg3SEMtDuEhbaXnUw+r5INLd977z2NGjVKW7duVc+ePfXII49ojz328LzvqlWrNGjQoKTbBg0apFWrVvk+/5QpU3TFFVd0uv3pp59W9+7d065fbW2t+vfvr549e6pXr17q0qWLqqpKsjc+CqCtrU2bN2/WggULtGbNmqSAvJLMmDEj7FVABaLdIQy0O4SFtocw0O4QBtodwkLby0xTU1Pg+5ZsaLnrrrtq7ty52rBhgx566CGdeeaZeuGFF3yDy0xNnjw5qTqzsbFRw4YN01FHHaX6+vq0j1++fLk6Ojo0bNgwVVdX52Wd8i0ej2vjxo3q1asXlZYhiMfjWr58ufr27avtttsu7NUpqtbWVs2YMUNjx46lmzyKhnaHMNDuEBbaHsJAu0MYaHcIC20vO3ZP5iBKNrTs0qWLhg8fLkn62te+pjfeeEPXX3+9/vznP3e6b0NDg1avXp102+rVq9XQ0OD7/HV1daqrq+t0e21tbdrG2NbWpi1btmjw4MGRbrh2l/VYLEYVaEj69Omj5cuXS1Kk20qhBPk+AflGu0MYaHcIC20PYaDdIQy0O4SFtpeZTD6rskmqOjo6fLvYjho1Ss8++2zSbTNmzPAdAzNXbW1tkuQZegIm+8vKREgAAAAAAACOkqy0nDx5so455hhtt9122rhxo+69917NnDlTTz31lCTpjDPO0NChQzVlyhRJ0gUXXKDDDjtMU6dO1XHHHaf7779fc+bM0W233VbQ9aTLNdKhjQAAAAAAAHRWkqHlZ599pjPOOEMrV65U7969tddee+mpp57S2LFjJUlLlixJ6u580EEH6d5779Ull1yi//3f/9Uuu+yi6dOna+TIkWG9BQAAAAAAAAA+SjK0vPPOO1P+fubMmZ1uO/nkk3XyyScXaI0AAAAAAAAA5EvZjGkJAAAAAAAAoDwQWiJUO+ywg2KxmKZNm5a4bdq0aYrFYkn/qqqqVF9fr3322UeTJ0/W559/7vuc7sf6/fOqyAUAAAAAAED4SrJ7OCpDjx49dNJJJ0myZtdevHixZs+erblz5+quu+7SSy+9pF122cX38ePGjVNDQ4Pv71P9DgAAAAAAAOEhtERkDRgwIKkCU5LmzZunww47TKtXr9aFF16oJ554wvfxF198scaMGVPYlQQAAAAAAEDe0T0cJWXEiBGaNGmSJGnGjBlqbm4OeY0AAAAAAACQb4SWKDl77bWXJKm1tVVr164NeW0AAAAAAACQb4SWKDmNjY2SpOrqag0YMCDktQEAAAAAAEC+EVqi5NjjWB599NGqra0NeW0AAAAAAACQb0zEE5b99pNWrQp1FWKS6uNxxWKxzB7Y0CDNmVOQdfJjzx5+22236d5779X222+vG264IeVjDj/8cN/f9e7dW+vXr8/zWgIAAAAAACAfCC3DsmqVtHx5qKsQ+/JfVC1evNgzUD3ggAP09NNPq3fv3ikfP27cODU0NHj+rnv37nlZRwAAAAAAAOQfoWVYfMK0YopLin9ZaZlReFmkde/Ro4dOOukkSVJzc7Pmz5+vd955R6+//rp++MMf6v7770/5+IsvvlhjxowpwpoCAAAAAAAgnwgtw1Lk7tVe4h0damxsVH19vWJV0RvedMCAAZo2bVrSbQ8//LBOOeUUPfDAAxo9erTOPffccFYOAAAAAAAABRO9pApI4dvf/rYuvvhiSdKll16qDRs2hLxGAAAAAAAAyDdCS5ScyZMna/Dgwfriiy907bXXhr06AAAAAAAAyDNCS5Sc7t2761e/+pUk6Y9//KPWrVsX8hoBAAAAAAAgnxjTEiVp4sSJmjp1qj799FNdc801uuqqqzrd5+qrr+40Jqbpu9/9ro466qgCriUAAAAAAACyQWiJklRbW6vf/OY3Ou200/SnP/1JkyZNUv/+/ZPu89RTT6V8jq9+9auElgAAAAAAABFEaIlQLVq0qNNtZ511ls4666y0jz311FN16qmndro9Ho/nYc0AAAAAAAAQFsa0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0Rqh122EGxWEzTpk1L3DZt2jTFYrGkf1VVVaqvr9c+++yjyZMn6/PPP/d9Tvdj/f7NnDkzo3W11+uss87K7s0CAAAAAAAgkJqwVwDw06NHD5100kmSpPb2di1evFizZ8/W3Llzddddd+mll17SLrvs4vv4cePGqaGhwff37t/FYjFJUjwez8PaAwAAAAAAIFuEloisAQMGJFVgStK8efN02GGHafXq1brwwgv1xBNP+D7+4osv1pgxYwq7kgAAAAAAAMg7uoejpIwYMUKTJk2SJM2YMUPNzc0hrxEAAAAAAADyjdASJWevvfaSJLW2tmrt2rU5P9/ll1+e6BoudR4Tc9GiRZ0es3nzZk2ePFnDhw9XXV2dGhoadOaZZ2r58uU5rw8AAAAAAEClo3s4Sk5jY6Mkqbq6WgMGDMj5+b761a/qzDPP1N133y1JOvPMM5N+37Nnz6SfN2zYoIMOOkhLlizRoYceqpEjR2r27Nm655579MILL+idd95R7969c14vAAAAAACASkVoiZJjj2N59NFHq7a2NufnGz9+vMaPH58ILd3jaLpNnz5d48aN00svvaT6+npJ0rp16/SNb3xDc+fO1c0336zJkyfnvF4AAAAAAACVitAyJPvtt59WrVoV9mooHo8ndY0OoqGhQXPmzCnQGnmzZw+/7bbbdO+992r77bfXDTfckPIxhx9+uO/vevfurfXr12e1Lj169NBdd92VCCwlqW/fvrr44ot16qmn6plnniG0BAAAAAAAyAGhZUhWrVrF+IdpLF682DNQPeCAA/T000+n7YI9btw4NTQ0eP6ue/fuWa/Xfvvtp8GDB3e6fffdd5ck/q4AAAAAAAA5IrQMiV+YVmzZVloWQ48ePXTSSSdJkpqbmzV//ny98847ev311/XDH/5Q999/f8rHX3zxxRozZkze12u77bbzvN2uvNy6dWveXxMAAAAAAKCSEFqGpNjdq710dHSosbFR9fX1qqqK3kTyAwYM6DS+5MMPP6xTTjlFDzzwgEaPHq1zzz236OsVxc8KAAAAAACgnJC+oKR8+9vf1sUXXyxJuvTSS7Vhw4aQ1wgAAAAAAAD5RmiJkjN58mQNHjxYX3zxha699tq8Pa89E3lbW1venhMAAAAAAACZI7REyenevbt+9atfSZL++Mc/at26dXl53m233VaSNG/evLw8HwAAAAAAALLDmJYoSRMnTtTUqVP16aef6pprrtFVV13V6T5XX311pzExTd/97nd11FFHJX4+8cQTdc011+jII4/UN77xDfXq1UuS9Lvf/U79+/fP+3sAAAAAAACAN0JLlKTa2lr95je/0WmnnaY//elPmjRpUqdg8amnnkr5HF/96leTQssrr7xSVVVVevjhhzV9+nS1tLRIki655BJCSwAAAAAAgCIitESoFi1a1Om2s846S2eddVbax5566qk69dRTO90ej8ezWpeuXbvqd7/7nX73u995/j7deu2www5ZvzYAAAAAAAAcjGkJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQssCisfjYa8CIo42AgAAAAAA0BmhZQFUVVkfa3t7e8hrgqiz24jdZgAAAAAAAEBoWRC1tbWqra3Vpk2bwl4VRNyWLVtUXV2t2trasFcFAAAAAAAgMggtCyAWi6lXr17asGGDtmzZEvbqIKLa29u1YcMGde/eXbFYLOzVAQAAAAAAiIyasFegXA0YMEBbtmzRkiVLVF9fr169eqm6ujpS4VRHR4daWlq0detWuicXUTweV3Nzs9auXauOjg4NHDgw7FUCAAAAAACIFELLAqmurtawYcO0Zs0abdy4UevXrw97lTqJx+PasmWLunXrFqkwtVL06NFDDQ0N6tKlS9irAgAAAAAAECmElgVUXV2tQYMGaeDAgWptbVVHR0fYq5SktbVVL774okaPHs2YikVWU1Ojmhq+fgAAAAAAAF5ITYogFotFspquurpabW1t6tq1K6ElAAAAAAAAIoOBDAEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0BAAAAAAAARAqhJQAAAAAAAIBIIbQEAAAAAAAAECmElgAAAAAAAAAihdASAAAAAAAAQKQQWgIAAAAAAACIFEJLAAAAAAAAAJFCaAkAAAAAAAAgUggtAQAAAAAAAEQKoSUAAAAAAACASCG0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEgpydByypQp2n///dWrVy8NHDhQ48eP10cffZTyMdOmTVMsFkv617Vr1yKtMQAAAAAAAICgSjK0fOGFF3Teeefp1Vdf1YwZM9Ta2qqjjjpKmzdvTvm4+vp6rVy5MvFv8eLFRVpjAAAAAAAAAEHVhL0C2fj3v/+d9PO0adM0cOBAvfnmmxo9erTv42KxmBoaGgK9RnNzs5qbmxM/NzY2SpJaW1vV2tqaxVpHj/0+yuX9oHTQ9hAG2h3CQLtDWGh7CAPtDmGg3SEstL3sZPJ5xeLxeLyA61IUn3zyiXbZZRe99957GjlypOd9pk2bpokTJ2ro0KHq6OjQvvvuq9/+9rcaMWKE5/0vv/xyXXHFFZ1uv/fee9W9e/e8rj8AAAAAAABQ7pqamvTd735XGzZsUH19fcr7lnxo2dHRoW9961tav369Zs2a5Xu/2bNn6+OPP9Zee+2lDRs26JprrtGLL76oefPmadttt+10f69Ky2HDhmnNmjVpP9RS0draqhkzZmjs2LGqra0Ne3VQQWh7CAPtDmGg3SEstD2EgXaHMNDuEBbaXnYaGxs1YMCAQKFlSXYPN5133nl6//33UwaWkjRq1CiNGjUq8fNBBx2k3XffXX/+85915ZVXdrp/XV2d6urqOt1eW1tbdo2xHN8TSgNtD2Gg3SEMtDuEhbaHMNDuEAbaHcJC28tMJp9VSYeW559/vh5//HG9+OKLntWSqdTW1mqfffbRJ598UqC1AwAAAAAAAJCNkpw9PB6P6/zzz9cjjzyi5557TjvuuGPGz9He3q733ntPgwcPLsAaAgAAAAAAAMhWSVZannfeebr33nv16KOPqlevXlq1apUkqXfv3urWrZsk6YwzztDQoUM1ZcoUSdKvf/1rff3rX9fw4cO1fv16/eEPf9DixYs1ceLE0N4HAAAAAAAAgM5KMrS85ZZbJEljxoxJuv2uu+7SWWedJUlasmSJqqqcQtJ169bpnHPO0apVq9S3b1997Wtf0yuvvKI99tijWKsNAAAAAAAAIICSDC2DTHg+c+bMpJ+vu+46XXfddQVaIwAAAAAAAAD5UpJjWgIAAAAAAAAoX4SWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0BAAAAAAAARAqhJQAAAAAAAIBIIbQEAAAAAAAAECmElgAAAAAAAAAihdASAAAAAAAAQKQQWgIAAAAAAACIFEJLAAAAAAAAAJFCaAkAAAAAAAAgUggtAQAAAAAAAEQKoSUAAAAAAACASCG0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0BAAAAAAAARAqhJQAAAAAAAIBIIbQEAAAAAAAAECmElgAAAAAAAAAihdASAAAAAAAAQKQQWgIAAAAAAACIFEJLAAAAAAAAAJFCaAkAAAAAAAAgUggtAQAAAAAAAEQKoSUAAAAAAACASCG0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0BAAAAAAAARAqhJQAAAAAAAIBIIbQEAAAAAAAAECmElgAAAAAAAAAihdASAAAAAAAAQKQQWgIAAAAAAACIFEJLAAAAAAAAAJFCaAkAAAAAAAAgUggtAQAAAAAAAEQKoSUAAAAAAACASCG0BAAAAAAAABAphJYAAAAAAAAAIoXQEgAAAAAAAECkEFoCAAAAAAAAiBRCSwAAAAAAAACRQmgJAAAAAAAAIFIILQEAAAAAAABECqElAAAAAAAAgEghtAQAAAAAAAAQKYSWAAAAAAAAACKF0BIAAAAAAABApBBaAgAAAAAAAIgUQksAAAAAAAAAkUJoCQAAAAAAACBSCC0BAAAAAAAARAqhJQAAAAAAAIBIIbQEAAAAAAAAECmElgAAAAAAAAAihdASAAAAAAAAQKQQWgJAMa1cKb33XthrAQAAAABApBFaAkCxfPGFNHy4tNde0pNPhr02AAAAAABEFqElABTL229LTU3W8qxZ4a4LAAAAAAARRmgJAMXS1uYsd3SEtx4AAAAAAEQcoSUAFIsZWra3h7ceAAAAAABEHKElABSLGVRSaQkAAAAAgK+SDC2nTJmi/fffX7169dLAgQM1fvx4ffTRR2kf9+CDD2q33XZT165dteeee+pJJsIAUExUWgIAAAAAEEhJhpYvvPCCzjvvPL366quaMWOGWltbddRRR2nz5s2+j3nllVd02mmn6eyzz9bbb7+t8ePHa/z48Xr//feLuOYAKhpjWgIAAAAAEEhN2CuQjX//+99JP0+bNk0DBw7Um2++qdGjR3s+5vrrr9fRRx+tn//855KkK6+8UjNmzNCNN96oW2+9teDrDABJ1ZVUWgIAAAAA4KskQ0u3DRs2SJL69evne5/Zs2dr0qRJSbeNGzdO06dP97x/c3OzmpubEz83NjZKklpbW9Xa2prjGkeD/T7K5f2gdFRq24tt3ZrY6La3tqqjwt5/2Cq13SFctDuEhbaHMNDuEAbaHcJC28tOJp9XyYeWHR0duvDCC3XwwQdr5MiRvvdbtWqVBg0alHTboEGDtGrVKs/7T5kyRVdccUWn259++ml17949t5WOmBkzZoS9CqhQldb2tnv7be3z5fLSRYv0DuPqhqLS2h2igXaHsND2EAbaHcJAu0NYaHuZaWpqCnzfkg8tzzvvPL3//vuaNWtWXp938uTJSZWZjY2NGjZsmI466ijV19fn9bXC0traqhkzZmjs2LGqra0Ne3VQQSq17cVWrkwsbzd0qIYee2yIa1N5KrXdIVy0O4SFtocw0O4QBtodwkLby47dkzmIkg4tzz//fD3++ON68cUXte2226a8b0NDg1avXp102+rVq9XQ0OB5/7q6OtXV1XW6vba2tuwaYzm+J5SGimt78XhisUpSVSW99wipuHaHSKDdISy0PYSBdocw0O4QFtpeZjL5rEpy9vB4PK7zzz9fjzzyiJ577jntuOOOaR8zatQoPfvss0m3zZgxQ6NGjSrUagJAMnP2cCbiAQAAAADAV0lWWp533nm699579eijj6pXr16JcSl79+6tbt26SZLOOOMMDR06VFOmTJEkXXDBBTrssMM0depUHXfccbr//vs1Z84c3XbbbaG9DwAVxgwqOzrCWw8AAAAAACKuJCstb7nlFm3YsEFjxozR4MGDE/8eeOCBxH2WLFmilcb4cQcddJDuvfde3Xbbbdp777310EMPafr06Skn7wGAvKLSEgAAAACAQEqy0jJujAvnZ+bMmZ1uO/nkk3XyyScXYI0AIAAztKTSEgAAAAAAXyVZaQkAJcmsrqTSEgAAAAAAX4SWAFAsVFoCAAAAABAIoSUAFAtjWgIAAAAAEAihJQAUC7OHAwAAAAAQCKElABQLlZYAAAAAAARCaAkAxcKYlgAAAAAABEJoCQDFwuzhAAAAAAAEQmgJAMVCpSUAAAAAAIEQWgJAsTCmJQAAAAAAgRBaAkCxMHs4AAAAAACBEFoCQLFQaQkAAAAAQCCElgBQLIxpCQAAAABAIISWAFAszB4OAAAAAEAghJYAUCxUWgIAAAAAEAihJQAUC2NaAgAAAAAQCKElABQLs4cDAAAAABAIoSUAFAuVlgAAAAAABEJoCQDFwpiWAAAAAAAEQmgJAMXC7OEAAAAAAARCaAkAxUKlJQAAAAAAgRBaAkCxMKYlAAAAAACBEFoCQLEwezgAAAAAAIEQWgJAsVBpCQAAAABAIISWAFAshJYAAAAAAARCaAkAxUL3cAAAAAAAAiG0BIBiodISAAAAAIBACC0BoFjM0JJKSwAAAAAAfBFaAkCxmNWVVFoCAAAAAOCL0BIAioVKSwAAAAAAAiG0BIBiYUxLAAAAAAACIbQEgGJh9nAAAAAAAAIhtASAYqHSEgAAAACAQAgtAaBYGNMSAAAAAIBACC0BoFiYPRwAAAAAgEAILQGgWMxKS0mKx8NZDwAAAAAAIo7QEgCKxR1aUm0JAAAAAIAnQksAKIZ4vHNIybiWAAAAAAB4IrQEgGLwCiiptAQAAAAAwBOhJQAUg7truESlJQAAAAAAPggtAaAYvKoqqbQEAAAAAMAToSUAFAOVlgAAAAAABEZoCQDFQKUlAAAAAACBEVoCQDFQaQkAAAAAQGCElgBQDF6hJZWWAAAAAAB4IrQEgGLwCiiptAQAAAAAwBOhJQAUA5WWAAAAAAAERmgJAMXAmJYAAAAAAARGaAkAxcDs4QAAAAAABEZoCQDFQKUlAAAAAACBEVoCQDEwpiUAAAAAAIERWgJAMTB7OAAAAAAAgRFaAkAxUGkJAAAAAEBghJYAUAyMaQkAAAAAQGCElgBQDMweDgAAAABAYISWAFAMdA8HAAAAACAwQksAKAa6hwMAAAAAEBihJQAUA93DAQAAAAAIjNASAIqBSksAAAAAAAIjtASAYmBMSwAAAAAAAiO0BIBi8AooqbQEAAAAAMAToSUAFAOVlgAAAAAABEZoCQDFwJiWAAAAAAAERmgJAMXA7OEAAAAAAARGaAkAxUClJQAAAAAAgRFaAkAxMKYlAAAAAACBEVoCQDEwezgAAAAAAIERWgJAMVBpCQAAAABAYISWAFAMjGkJAAAAAEBghJYAUAzMHg4AAAAAQGCElgBQDFRaAgAAAAAQGKElABQDY1oCAAAAABBYTTYPamxslCTV19fn9OKbNm3Sc889J0n61re+ldNzAUCkMXs4AAAAAACBZRVa9unTR1VVVXr33Xe1xx57dPr9ihUrdMkllygWi+nOO+/0fZ7Fixdr/PjxqqqqUptXFRIAlAsqLQEAAAAACCzr7uHxeNz3d+vWrdO0adM0bdq0nJ8LAMoCY1oCAAAAABAYY1oCQDEwezgAAAAAAIERWgJAMVBpCQAAAABAYISWAFAMjGkJAAAAAEBghJYAUAzMHg4AAAAAQGCElgBQDFRaAgAAAAAQGKElABQDY1oCAAAAABAYoSUAFAOzhwMAAAAAEFhOoWUsFsvXegBAeaPSEgAAAACAwGpyefDIkSN9f2cHmtXV1bm8BACUB8a0BAAAAAAgsJxCy3g8nq/1AIDyxuzhAAAAAAAEllVoOXr0aLqGo/R8+ql0/fXS8cdLY8eGvTaoNFRaAgAAAAAQWFah5cyZM/O8GkARXHKJdP/90n33SatWSQxdgGIitAQAAAAAIDBmD0flWLrU+n/NGqm5Odx1QeWhezgAAAAAAIERWqJymKERFW4oNiotAQAAAAAILPTQsqmpSVOnTg17NVAJzIDIK0ACCsmrzVFpCQAAAACAp9BCy40bN+qqq67SDjvsoF/84hdhrQYqiRkaUeGGYvNqc7RDAAAAAAA8FT20XLt2rX71q19p++2316WXXqo1a9Zk/Bwvvviijj/+eA0ZMkSxWEzTp09Pef+ZM2cqFot1+rdq1aos3wVKEpWWCBOVlgAAAAAABJZTaLl48WL95Cc/0R577KFevXqpX79+2nfffTVlyhRt2LAh6b6bNm3SZZddph122EG//e1vtX79esXjcQ0YMEC/+c1vMnrdzZs3a++999ZNN92U0eM++ugjrVy5MvFv4MCBGT0eJc4MjQgtUWyMaQkAAAAAQGA12T5wxowZOvHEE7V582ZJUjwelyS98847euedd3TPPffo+eefV0NDg15++WV973vf09KlSxP3Gzp0qC666CL94Ac/ULdu3TJ67WOOOUbHHHNMxus8cOBA9enTJ+PHoUwwEQ/CxOzhAAAAAAAEllVo+fnnn+u0007Tpk2bErf16NFDNTU1iQrL//znPzrvvPN0wQUXaNy4cWppaVE8HteOO+6oiy++WGeddZZqa2vz8y4C+upXv6rm5maNHDlSl19+uQ4++GDf+zY3N6u5uTnxc2NjoySptbVVra2tBV/XYrDfR7m8n3Rq2tsV+3K5dcsWqULedxRVWtuTpJrW1kT7s7W3tqqjgj6DsFViu0P4aHcIC20PYaDdIQy0O4SFtpedTD6vrELL22+/XWvXrlUsFtOJJ56oq6++WjvttJMkadWqVfrtb3+rm266SY8++qjeeOMNNTc3q1evXvrtb3+rH/7wh6qpybrAMyuDBw/Wrbfeqv3220/Nzc264447NGbMGL322mvad999PR8zZcoUXXHFFZ1uf/rpp9W9e/dCr3JRzZgxI+xVKIojGxvV48vlF557Tps/+ijU9UHltD1JOnz9etW7bluyaJHeffLJUNanklVSu0N00O4QFtoewkC7QxhodwgLbS8zTU1Nge8bi9v9tTMwZswYvfjiixo1apRefvllz/tMmDBBd999tySpT58+eumllzRixIhMXyqtWCymRx55ROPHj8/ocYcddpi22247/fWvf/X8vVel5bBhw7RmzRrV17ujh9LU2tqqGTNmaOzYsUWveg1Dzc47K7Z0qSSpde5caY89wl2hClZpbU+SavbcUzFXUN7x/e+r/dZbQ1qjylOJ7Q7ho90hLLQ9hIF2hzDQ7hAW2l52GhsbNWDAAG3YsCFtvpZVyeOHH36oWCymc8891/c+P/nJT3T33XcrFovpJz/5SUECy1wccMABmjVrlu/v6+rqVFdX1+n22trasmuM5fiePBkTodTGYlIlvOeIq5i2J3mOaVklqapS3n+EVFS7Q2TQ7hAW2h7CQLtDGGh3CAttLzOZfFZZzR6+bt06SdLw4cN977PLLrsklg899NBsXqag5s6dq8GDB4e9GigmJuJBmJg9HAAAAACAwLKqtGxtbVUsFlOvXr1879OzZ8/EckNDQzYv42vTpk365JNPEj8vXLhQc+fOVb9+/bTddttp8uTJWr58ue655x5J0h//+EftuOOOGjFihLZu3ao77rhDzz33nJ5++um8rhcizgyIvAIkoJCYPRwAAAAAgMCKMiNOLOaeMzc3c+bM0eGHH574edKkSZKkM888U9OmTdPKlSu1ZMmSxO9bWlr0s5/9TMuXL1f37t2111576Zlnnkl6DlQAM6ikwg3FRqUlAAAAAACBFXca7zwZM2aMUs0fNG3atKSff/GLX+gXv/hFgdcKkUelJcJkt7lYTLK3X1RaAgAAAADgKafQcsKECerRo0fO94vFYnr22WdzWRUgPTOoJLREsdmheZcuUnNz8m0AAAAAACBJTqHlnDlzUv7e7hae6n7xeDzv3ccBT0zEgzDZQbkZWlJpCQAAAACAp6xDy1Tds4FIotISYTJDSxvhOQAAAAAAnrIKLTuoDkKpicedcQQlwiIUn9k93Ma2FAAAAAAAT1VhrwBQFO6QkkpLFJvd5urqnNsIzwEAAAAA8ERoicrgDikJLVFM8TiVlgAAAAAAZIDQEpXBXdFGhRuKyQwnGdMSAAAAAIC0shrT8te//nW+10OXXnpp3p8TSKDSEmEy2xuVlgAAAAAApJVVaHn55ZcrFovldUUILVFQVFoiTH6hJe0QAAAAAABPWYWWkhQ3Z2LOUb4DUKATJuJBmMz2R6UlAAAAAABpZRVaPv/88/leD6Cw6B6OMJntjdnDAQAAAABIK6vQ8rDDDsv3egCFRfdwhIkxLQEAAAAAyAizh6MyUGmJMJkheW2t9+0AAAAAACCB0BKVgUpLhMkMyWtrJXscXyotAQAAAADwRGiJykClJcJktrfqauufRHgOAAAAAIAPQktUBmYPR5jM9ldTI1VVdb4dAAAAAAAkEFqiMtA9HGEyQ/KaGqfSku7hAAAAAAB4IrREZaB7OMLk7h5OpSUAAAAAACkRWqIyUGmJMLm7h1NpCQAAAABASoSWqAxUWiJM7u7hVFoCAAAAAJASoSUqAxPxIEx+s4dTaQkAAAAAgCdCS1QGuocjTMweDgAAAABARggtURnoHo4wMXs4AAAAAAAZIbREZaDSEmFi9nAAAAAAADJCaInKQKUlwsTs4QAAAAAAZITQEpWBSkuEidnDAQAAAADICKElKgOzhyNMzB4OAAAAAEBGCC1RGegejjD5dQ+n0hIAAAAAAE+ElqgMdA9HmPy6h1NpCQAAAACAJ0JLVAYqLREmMyQ3u4cTngMAAAAA4InQEpWBSkuEiUpLAAAAAAAyQmiJykClJcLkDi2ptAQAAAAAICVCS1QGZg9HmNzdw6m0BAAAAAAgJUJLVAa6hyNMVFoCAAAAAJARQktUBrqHI0yMaQkAAAAAQEYILVEZqLREmPxmD5cILgEAAAAA8EBoicpApSXC5FdpKRFaAgAAAADggdASlYGJeBAms725Ky2p+gUAAAAAoBNCS1QGuocjTGZ7o9ISAAAAAIC0CC1RGegejjD5zR4uEaADAAAAAOCB0BKVgUpLhMndPZxKSwAAAAAAUiK0RGWg0hJhcncPp9ISAAAAAICUCC1RGZiIB2Fi9nAAAAAAADJCaInKQPdwhInZwwEAAAAAyAihJSoD3cMRJmYPBwAAAAAgI4SWqAxUWiJMzB4OAAAAAEBGCC1RGai0RJiYPRwAAAAAgIwQWqIyMBEPwsTs4QAAAAAAZITQEpXBHVISFKGYUs0eTlsEAAAAAKATQktUBiotEaZUs4fTPRwAAACIvk8+kRobw14LoKIQWqIyMBEPwpRq9nDaIgAAABBtd98t7bKLtM8+0vr1Ya8NUDEILVEZmIgHYUo1eziVlgAAAEC0zZhh/b9ggXTtteGuC1BBCC1RGegejjClmj2cSksAAAAg2lpanOVrr5U++yy8dQEqCKElKgMT8SBMqWYPp9ISAAAAiLbWVmd582ZpypTw1gWoIISWqAzukDIeJyxC8TB7OAAAAFC6zEpLSbr5ZmnJknDWBagghJaoDF7BEGERioXZwwEAAIDSZVZaSlaI+etfh7MuQAUhtERl8BrDknEtUSypuocTngMAAADRZoaWPXpY/991l7R4cTjrA1QIQktUBq9giNASxZKqeziVlgAAAEC0maHlD39o/d/RIb31VjjrA1QIQktUBq+Akgo3FEuq7uG0QwAAACDazDEthw71vh1A3hFaojKkq7TctElqaire+qCyuLuHU2kJAAAAlA670rK21vrnvh1AQRBaojKkmojn00+lIUOkbbeVVq0q7nqhMtgBeSxmBZZUWgIAAAClww4nu3Sx/rlvB1AQhJaoDKkm4vnXv6SNG6V166RnninueqEy2G3NDiuptAQAAABKh1+lJd3DgYIitERlSNU9vLnZuY2dDgrBbn81Ndb/VFoCAAAApYPu4UAoCC1RGVJNxGPuaJhRHIVgtys7tKTSEgAAACgddnELoSVQVISWqAypKi3N6kp2OigEd/dwKi0BAACA0sGYlkAoCC1RGYJWWrLTQSG4u4dTaQkAAACUDsa0BEJBaInKELTSku7hKAR393AqLQEAAIDSwZiWQCgILVEZUoWWVFqi0Jg9HAAAAChdjGkJhILQEpUhVfdwKi1RaMweDgAAAJQuc0xLQkugaAgtURmotESYmD0cKB9btkjxeNhrEb543PosAAAod+3tzr6/tpaJeIAiIrREZQg6EQ+VligEZg8HysNzz0nbbCMdckhlX3CIx6Vjj5X69ZMefTTstQEAoLDM80Um4gGKitASlSHoRDxcKUMhMHt4/jQ3h70GqGT33Sdt3iy98oo0f37YaxOeFSukf/9b2rpV+r//C3ttAAAoLPN8kTEtgaIitERloHs4wkSlZX6MHy/17StNnx72mqBSmd2ht24Nbz3CxucAAKgkqSotOX8ECorQEpWBiXgQJsa0zN3KlVY31C1bpL/9Ley1QaUyK30ruTuY+d6pfgYAlDszmOzShTEtgSIitERloNISYWL28Nw1NTnLVHYhLISWFvO9V/LnAACoDIxpCYSG0BKVgUpLhCUed9qaHVZSaZk5M6jk4BBhMUPLSr7IZb53vo8AgHJH93AgNISWqAxUWiIsZtuj0jJ7hEWIAioMLXwOAIBKwkQ8QGgILVEZCC0RFq/QkkrLzJmVlnxPERa6h1sILQEAlYQxLYHQEFqi/MXj3sEQ3cNRDGabYvbw7NE9HFFAaGlhIh4AQCVhTEsgNISWKH9+oRCVltnr6LDCYKRnhpZelZaElsHQPRxRQIWhhc8BAFBJGNMSCA2hJcqfX/UklZbZWblS+spXpJEjpQ0bwl6b6Es3piXdw4OheziigEpLC6ElAKCSuMe0NI/lOS4FCorQEuWPSsv8mj5d+vRT6YMPpH/9K+y1iT6v7uFUWmaOsAhRQMWvhdnDAQCVxD2mZSzmVFtW8vEAUASElih/ftWT9u1UWmZm0ybvZXjz6h5OpWXmqLREFBCeW6i0BABUEnf3cMmZjIfjUqCgCC1R/vwq2ezbqbTMjHnSbgZJ8JZu9nAqLYMhtEQUENZZmIgHAFBJvEJL+/9KPh4AioDQEuUvXfdwc0dDGJKeeYLKyWp66WYPp9IyGLrlIgqotLQQ3gIAKol7TEvzf45LgYIitET5SzcRj7mjoXt4elRaZiZd93AqLYMx2xohCcJCaGkx33tHB9sxAEB5c49pKRFaAkVCaInyZ55MxWLOMhPxZMc8WSW0TC9d93AqLYOh0hJha29P/j4TWvr/DABAOWFMSyA0hJYof2alW11d59uZiCczVFpmJl33cCqUgmFMS4SNoM7h/g5W8mcBACh/jGkJhIbQEuXPDIXM0LK9XYrHk0MlwpD0GNMyM17dw6m0zJy7e3g8Ht66oDK5t3eVvL9wn6CxL4AknXOOtP320ksvhb0mAJBfjGkJhIbQEuXPL7Rsa+u8k6HSMj0qLTPj1T2cSsvMuUMRPjcUm7sNVnJlBVWncFuxQrrjDmnJEunWW8NeGwDIr1SVloSWQEGVZGj54osv6vjjj9eQIUMUi8U0ffr0tI+ZOXOm9t13X9XV1Wn48OGaNm1awdcTEeHXPby9vfNOhp1OeoSWmfHqHk6lZebcbY3vKoqNoM7BZwG3xkZnef360FYDAArCayIec0xLegAhV7NnSzvtJE2cGPaaRE5JhpabN2/W3nvvrZtuuinQ/RcuXKjjjjtOhx9+uObOnasLL7xQEydO1FNPPVXgNUUkpKq0dJ9oEYSkR2iZGWYPzw+q3BA22qCD0BJu5vFAU1N46wEAhZCq0jIe53geubvtNmnhQunOO6VFi8Jem0ipCXsFsnHMMcfomGOOCXz/W2+9VTvuuKOmTp0qSdp99901a9YsXXfddRo3bpznY5qbm9VsnKA0fnkFubW1Va1lEmzZ76Nc3o+vLVv05S5F8S5dZM8f3t7Soo6mpsTvJCne1qa2cv88clTd3Jy42tGxZYvas/i8KqbtSYo1Nyc2tO2xmDpaWxXr6HBua2tTRwV8DrmqbmpKusrW2tQkde+e0XNUUrtDAWzalLS/6Ni6NdD2rxzbXdXWrTIuvah182Yu+kVQMdtebPPmxH6tY/PmrI4NUB7KcZuH6Ct0uzP3e22xmOKtraquqUkcm7Y2NUnduhXktRFt+Wp71evWOe3ps8+koUNzXLNoy+TzKsnQMlOzZ8/WkUcemXTbuHHjdOGFF/o+ZsqUKbriiis63f7000+re4YnylE3Y8aMsFehoPp88okO+3J5w9at6vPl8sJPPtGnTz0lM7Zua2rSk08+WdwVLDEHr1ihAV8ur1m2TLNz+LzKve1J0oB339XBXy5/umiR5j/5ZFKbXLxggd6jzaV14NKlajB+fvbf/1Zzv35ZPVcltDvkX+8FCzTG+HnV0qV6I4Pvbjm1u68uXKjtjZ9fef55rV+2LLT1QWrFaHv9339fh3y5vGn1aj3Pfq3ildM2D6WjUO1u1w8+0G5fLr8xd64+q6rSqA0bNPDL255+4gm1lVlGgMzk2va+vnSpBn25/Oozz2jtypW5r1SENWXQK6MiQstVq1Zp0KBBSbcNGjRIjY2N2rJli7p5XBWZPHmyJk2alPi5sbFRw4YN01FHHaX6+vqCr3MxtLa2asaMGRo7dqxqa2vTP6BExV5/PbFcP3CgtGCBJGnHYcO0/SGHJN23JhbTscceW9T1KzXVU6Yklgf06pXV51UpbU+SYsb723nXXbXjscdKb7+duG37YcM0jDaXVvWf/pT08xGjR0vbbZfRc1RSu0Nuqm6+WVV/+pPaL79c8VNOkSTFXnst6T4N/foF2v6VY7urfuCBpJ8P3n9/xQ86KKS1gZ9itr1YjXNK0au6mmOpClaO27yKsHKlqk88UerXT+0PP+yM11giCt3uql55JbG8/8EHK3744aq+9VbpnXckSUcdfrjUv3/eXxfRl6+2V/3HPyaWR+25p+JHH52HtYuuRnMs7DQqIrTMRl1dnerM8Q+/VFtbW3Y74HJ8T36qunZNLFfH40nd2yQp1tpaMZ9F1oyxy6qam1WVw+dVEW0vFkssVtfVqbq2Nmls1ep43LoNqbnGE6yNx52xhDJUEe0OubnqKunzz1Xzhz9I//3f1m2u8aqq2toy2v6VVbszx+qVVNPRkfX3EYVXlLZntIlYU1P5tHVkray2eZXg4YelOXMkSVUvvCCV6IWHgrU7Y+LMmm7drH2ecTxfa714/l8XJSPntmeMDV2zdWvZt6dMPquSnIgnUw0NDVq9enXSbatXr1Z9fb1nlSXKDBPx5JcZHrknpkBn5Tp7+PvvS3vvLZ19dnFmTHS3Nb6rKCT76u+GDc5tTMTjYCIeuJkT8WzeHN56AMiOub/LoAKqYqSaiEdiP4jcmfvRjRvDW48IqojQctSoUXr22WeTbpsxY4ZGjRoV0hqhqMzQyAwt29s7Bx/xeOmGSMVi7pSZPTy9cp09/LbbpHfflf7yF+mjjwr/eu62RmiJQonHnYDSbHcEdQ4+C7i5Zw8vxsUsAPljfocpSujM3M95hZYclyJX5ndw06bw1iOCSjK03LRpk+bOnau5c+dKkhYuXKi5c+dqyZIlkqzxKM8444zE/X/0ox9pwYIF+sUvfqEPP/xQN998s/7+97/rpz/9aRirj2LLpNJSYqeTjnkgQ2iZntn+7NCyHCot1671Xi4UqtxQLOaFhi1bnGXaoMP93jnBhXk80NFR2d8PoBTRkyo18/zQHu+T0BL5RGjpqyRDyzlz5mifffbRPvvsI0maNGmS9tlnH1166aWSpJUrVyYCTEnacccd9cQTT2jGjBnae++9NXXqVN1xxx0aN26c5/OjzPhVWra1ee9gXGN1wYXQMjNe3cPLodLSDHOK0RWQSksUi982jtDS4f7+VfJnAYt7G00XcaC0UGmZmlf3cHOyIo5LkSvz3IrQMklJTsQzZswYxVN0O5k2bZrnY942ZuxFBfGrtPTqHi6x00mHK7GZ8eoeXg6Vlk1NzjKhJcqJuV1rabH2FdXVjIFsCto9/P33pQkTpK9/XfrTnwq/XgiPexvd1CT16xfOugDIHKFlaoxpiUKj0tJXSVZaAhnJtHs4lZapUWmZGa/u4eVQaVns0JIqNxSLX9dn2qAjaGh5663WbLQ33ih98knh1wvhcX8/zH0EgOijKCE1xrREoTERjy9CS5S/TCbikdjppGJOUCFZG1cG20+tXGcPp9IS5cp9sma3PUJLR9DQct06Z7kYY98iPHQPB0pbqonnwJiWKCz3OTaVlkkILVH+mIgnf9rbO4eUHNikVq6zhxcztHTvyCW+pygc9zbNHmOI0NIRdCIe83ZCrPLm1T0cQOmg0jI1xrREIbm/c4SWSQgtUf6YiCd/vA5iOLBJrVxnDzcHiy70ySkXF1BMfpWWQasLK0HQz4LQsnIQWgKljTEtU0s3piXHpciFeV4lEVq6EFqi/KWaiIcwJDNeBzGMa5ma2Z6otMyOVxur5MAIhUX38PSCzh5ufmaEWOWN7uFAaSO0TI2JeFBI7n0ooWUSQkuUv1Tdw6m0zAyhZebMgZR79bL+L4dKy2KGll7tjosLKJSg3cMruQ1SaQk3Ki2B0kb38NSYiAeF5N6HMhFPEkJLlL9UE/FQaZkZQsvMNTY6y/X11v+lXmkZj4dfacn3FIWSSffwSp2ILJvQkhCrvBFaAqWNiXhSs487YzHnOJ7QEvlCpWVKhJYof1Ra5g9jWmbOK7Qs9UrL1tbk71UYlZYcUKNQglZaSpW7v2AiHrjRPRwobVRapmafM9bWWsGlxEQ8yB/GtEyJ0BLlzzypNHcufqElOx1/XkERlZapmaGl3T281Cst3RU0VFqinAQd01Kq3PCc7uFwo9ISKG2MaZmaGVraGNMS+eJ14a8UC1sKhNAS5c89e7MdGNE9PHN0D89cukrLUgwt3VcDCS1RTggtU+vo6Lzdons4CC2B0kZomZq9n/MLLTkuRS68znXYjyYQWqL8+YWWdA/PHN3DM5duTMtSvIpW7EpLJuJBMfl1D/cK5ioxtPT67lFpCfd2mr83UFroHp6ave8ze+0RWiJfvEJLuognEFqi/JkhZHW1FVxKVFpmg0rLzNmzv3Xp4oypWuqVlu7QstBXAr3aWCWGRSiOTCotK3F/kUl4S6Vl5aDSEihtVFqm5tU9nDEtkS9e5zrMIJ5AaIny5660tENLKi0zR2iZObvS0q6ylKi0zBRhEYrJHcDRPTxZtqEllXfljdASKF3xePJ2vBL3bekwpiUKyT30lkSlpYHQEuXPXWlpdg+n0jIzhJaZ8woty63SkjEtC+Mf/5DGjpWeeSbsNaks7u0c3cOTeb1nZg8Hs4cDpcu9DafSsjPGtEQh0T08pZqwVwAoODMUcncPp9IyM5mcrMLiFVpKVnDZ0UGlZRCV2j38gguk5cul9eulI48Me20qBxPxpBY0vHVX7lB5V96otARKl/v7y7F9Z4xpiUIitEyJSkuUPzOEDDIRDzsdf1RaZqa52Tlpd4eW5iz2pcZr9vB4vHCvV4ndw9vbrcBSkj77LNx1qTR+E/EQWlqChpbu26i8K2+ElkDpotIyvaiNaTlrlnTMMdIDDxT3dVEYhJYpEVqi/KWqtKR7eGYILTNjzhzeq1fy7+wu4uVQaRmPF7YdVGL38A0bnGVO/ouLSsvUgs4e7v68aMfly2sfQEgNlA4qLVOLx9OPaVns49Jf/Ur697+l888v7uuiMJiIJyVCS5Q/JuLJH0LLzJihZTlVWnqFD4U8Qa3EsGjtWmfZa3BuFI7fRDxc5LIErbQkxKocbW2dL8ARUgOlw32cVe7HWJlqb3d6FEVlIp7Vq63/16wpzXMJJGMinpQILVH+mIgnf7zCI67G+ksVWpZTpaVU2ECiEist161zlpuaCtv9Hsn8JuKpxPDcS9Cxjd23EVqWL69tNKElUDqotEzNPOaMSqWlGXJxcbv00T08JUJLlD8m4smfINU0cFBpmR+VGFqalZbxOCcQxUT38NSCVlrSPbxyeH03CKmB0kFomZp5zBmViXjMvxmhZekjtEyJ0BLlL9VEPFRaZobu4ZkxxyIp90rLQgYSlTgRj1lpKXFAWkyZdA8ntPS/zSu0LMXtHdKj0hIobe7tdXt7aV5ULxS/SsswJ+Kh0rK8EFqmRGiJ8pdppWW5hyG5ILTMTLlWWnodHBW70rLcwyKz0lIiACgmuoenlm1oKbG/KFd+oSXDWgClwes7TLWlI0j38GIfD5RypWV7u/SLX0gTJnS+SF8u4nHp4ouliROTzwf9eP0NmYgnoSbsFQAKzj0Rj1lpSffwzDCmZWYY0zI/KrHS0h1altoBaSnzq7QktLRkO3u4ZG0nunfP/zohXH5h9JYt/L2BUuB3fM/312Lu46IwpmVHR/LfrNQuCN57r/SHP1jL++8vnXtuuOtTCC++KP3ud9byfvtJP/pR6vtTaZkSlZYof+6JeMzZw8uhe/iMGdLJJ0uzZhX+taicyUy5VloypmXhua88U2lZPF6Vlh0d3he0yr0desl2Ih6Jdlyu/I4D+HsDpaESe7RkImpjWrr/XqV2Yfu225zlVavCW49CWrrUWV6xIv39CS1TotIS5c9daWmHln6TW5RapeV550kffywtXiy9/nphX4vQMjNUWuZHJR5MU2kZHq+JePzaW7m3Qy+5dA9ncpbyRGgJlDZ6UqUWtTEtSzm0/PDD5EKbUlr3TJhdu4Mc+xBapkSlJcqfu9LSrnCTyqOCa+VK6/9lywr/WswenhkztOzVK/l3VFoGV4ndw6m0DI9X93C/kzdCS0tbW+cLMISWlcPvOIC/N1AaGNMytaiNaekO+kop+LvjjuSfS2ndM2GeA2YaWtoFVoSWCYSWKH9+E/FI3hvKUqu0tA8qirFh40psZqi0zI9yuLiQKSbiCY9X93BCS4ffe3Z/J+keXjmotARKG6FlalEb07JUKy2bm6W7706+rVz3E5lWWtp/w9paqXfvzs9R4QgtUTpWr7Zm4Lrxxswe5zcRj+S9oSylMMScAX3z5sLP1En38MyU65iWxZ49vBInQHFXWpbKAWk58Kq0NG8zu4OVezv0ErSrPJWWlcM8DojFnOVyPRkFyg1FCalFbUzLUq20fOwxac2a5NtKZd0zlW338K5dpZ49rWUqLRMILVE6rr9euvNO6X/+xxoPIyi/iXik0q/gMg8oOjoKHyASWmbG3GFRaZk9s43ZO/JS+p5mg0rL8HiNaWneZrdBqTJDS7/vnvtzo9Kycpjb6L59nWVCaqA0VOLY4Znw6x5eXe1cqKHSMr3bb+98W6mse6ay7R5OaOmJ0BKl4z//cZbffjv44/wm4pFKv3u4e6dV6I2beRJqVwoGCS3nz5cmTJD++c/CrFdU2TusWEzq0SP5d6VcaekVPBQyjLDbXU2NtTOXyj+0pNIyPOm6h1d6aGm+Z7OqjkrLymX+rfv3d5YJqYHSQKVlan6hZSzm/EylZWoLF0ozZljLDQ3O7eW6n8hHpeXmzaVZ3FIAhJYoHatXO8u5VFqW00Q87gOKYoaW9ngbQQ5qLrlEmjZNOvPM0gzpsmWHlr16OZWVNiotgzN35GEcHBbb1q2dD0DL9aAuitzhW0dH8rbVnFSrnNuhH/PzMS/GEFpWLvNYql8/Z5ntFlAaGNMyNb8xLc2fmYgntX/8w1k+91xnuRTWPRuZVlran0O3bskXx9mPSiK0RClZtcpZziS0TDURj80MlKi09GfvkGMxZ4MapNJy6VLr/3XrKmvja++w3F3DpfKotDTDm2KElnV1zlhC5Vzh5q6ylCrrexM2rxO1DRucZbPdl3M79GO+51RVp3QPrxx+oSUhNVAaCC1T8xvTUgrnYnopdg+fO9dZ/ta3nPPxUlj3bJiVlkGOfcwCDfM4k8l4JBFaopRkG1qaIaR7Ih5b9+7OcilVzoTVPbyuzummGyS0NO9TSSetqULLUq60tA8wBgxwbivGRDyVUmnpHs9SKt+DuijyCiLN0JLu4c5yqgCXSsvKQaUlUNroHp6aX/dw82e6h6f23nvW/9XV0m67WRWFUvnuJzLpHh6Pe3cPlxjX8kuEligNmzcnf2k/+ih4hVqQSksztKTS0l+2oaW5My3XnZNbe7vz9yinSsvWVuc7ss02zu3FqrSshNCSSstwUWmZml/3cK8JjNxox+WJ0BIobVRappYqtLQrL6m09Nfa6hQc7bqrdTxvh5ZRX/dsZdI93DyuIrT0RGiJ0mCOZylZO9LFi4M9NtVEPLZSrbR0H1AUuorFK7RsbrauEKVSiaGl3xh4tlKttDT/fn36OOFrsSotK6F7OJWW4SK0TC2X7uFUWpYnuocDpc1re12J+zc/QSotGdPS38cfO5/Pnnta/9vn3uV6XphJpaW5DyW09ERoidJgdg23Be0inmoiHluphpZhVVp26WIFl5IVWKb7zCoxtDSvsKWqtOzoSB/6Ron59+ve3am0otIyf6i0DI/f9ozu4Q7z8yG0hJR8LBLF2cMfeki64AJpxYqw1wSIJiotUwsyEQ+Vlv7sruGSE1qWc6VlPJ58Htjamrp9mJ+BeyIeQktJkkfJGRBBfqHlscemf6xdaVlVZU0gQ/fw7Nk7bbPS0l4P98DUJnM9y3Hn5CVdaGlO/hSPW22zFHiFlo2NhQsjOjqcHb3Z5jo6rO+210WIUkelZXj8Qki/0LKcw3M/TMQDtyh3D1+/Xvrv/3Z6hdxwQ9hrBEQPoWVqUZuIp9QqLc3QcuRI6/9yDi23bOnck27zZquHmhd3pSUT8XRCpSVKg7t7uCTNnx/ssXYIaYcbVFpmz6t7uHm7l3i8MistzZ1MqkpLqbTGtSx2paXZtsyJeKTS+q5mgkrL8AQJLeke7iwzEQ+kaHcPX7XKaYtBhxUCKg0T8aQWtTEtCxlarl4tXXSRVaGeL16Vlva5d1tb+R3Pm4UrtlT7Q7qHp0WlJUpDLt3D7UDIDonKqdLSfUARVmiZajKelpbk7s+VEr5kUmlZSuNamgdGZmhZqL+r2bbq6pK/n62tye2wXHhVWlbK9yZsfidphJYOv0pL92dHpWXliHKlpbkOUQhRgSii0jK1oGNaFqvnVCG7h19zjTR1qhXGHn548pAf2Xr/fev/Hj2kHXawlu1KS8laf/fnWsq8qiMJLXNCpSVKQz5CSzus9AotzQ2nuWP617+sq03Llwd7rWIrZqWl2U23rs4Z09JrPUzuHWkUTmKKIeiYllJ5VFo2NxfmfVBpaQmj+8ztt0uXXhr+d7a1VfrNb6Trriv8+K9BQstKH9PSb/ZwKi0rl/m3jtqYlmabi8L6FNvHH0s//ak0a1bYa4IoK4OJeGKzZ2vkHXcEPz/MRJAxLaXiHc8XstJywQLr/5aW/Jz/btrkPOeIEU7RhlkwVG5dxDMNLRnTMi0qLVEazO7hu+4qffSRtGaN9W/AgNSPDdI9vK7Our293QlCmpqk73zH2lhs3izdckvu7yPf3GFhIU8IzR12ly7BKy3dv6uUk4ZMKi1LNbTs1i05tNi82fu95sJdaWlWpZZraBmFSsv33pN+8ANreeBA6fzzi/v6pgcflH71K2t5332lww4r3GtlOqZliZ3U5QWzh8PN3E737essR+HvXemh5c9/Lj36qLUdXbYs7LVBVJVBpWX1mWdq50WL1NHSIj31VH6fPMiYlvb9vIpj8q2QlZb5rk6fN89ZtruGS8kFQ+W2bfbqHp7qPVJpmRaVligNZqXl6NHOcpCraUEqLWtrndvtkPOLL5wNxaJFGa1u0RSz0tI8eMlkTEsqLdNXWpZS93C/SkupMCeo7h25ebBYroGRWWnZu7f1f64HpHPmSD/7WfCxgD/91Fm2u/WExVznjz8u7GsFqbTs1s35/pZrG0wlm9nD7ftVyva/0pjb6V69nOOpKPy9K717uL0tX768fC/0IXdRCy3XrJH+93+l6dOD3b+tTbEvz9Vi//lP/tcnSPdw9/0KyX1MmKp4JFPmdjIf55Ve41lKnbuHl5Ncu4ebwxARWkoitESpsEPLAQOkvfZybg8SWgaptOzSpfPsb6Uw43Uxx7Q0T0gzGdOy1Ga4yxcztDR3PrZy6R5udu8oxAlhJXYPtyste/fOX9hzxhnStddK550X7P7mAdfKlbm9dq4+/9xZ9uo6n0/u9mYzQ8u6unAG3o+KbCbisavvKjE0qgT2MUAsZm2jCz3WcSYqvdLSfP+VcvyFzEVtIp6rr5amTJFOOcUqIknHPP/x6q2SqyAT8bjvV0jFqrTMx3mleeHbDC3LuXt4PifiYfZwSYSWKAXxuNM9vKFB2m0353eZVFqmmojHq9LS3IDk8wpWPoVZacmYlqmV60Q8YVZa1tVVRmhpB3P9+jkHdbl+b+xqm6AVCJUaWprBm13lKknr1zvLXbo4JymVWGlpvmfzpMNvIp7qaifcrJTtf6Wxt9Ndu1rBpd0uohBSm22uEttfpYe2CCZqlZZvv23939IiLV2a/v7GMUussTH/x4dBx7Qs1jFBIQtCCllpOXKks1zO3cOZiCfvCC0RfY2Nzpd50KDsQ8t03cPdlZbmDoDQMnX3cMa07KxcJ+Lxmz1cKk6lZbl3D4/HnWCub1/noC6XA9LWVuezMsO3VCo1tDTbmxlamidAZqVlObbBdOz33KVL8sUrv0rLrl2d7cTmzYWfTAnFZ4aWUv4utuSDuV+KQohabFRaIgh7e20GSWGGlosXO8teVWtu7pAo38cKmYxpWQylGFoOHGj9s9E93MFEPGkRWiL6zPEsGxqkoUOdL3OQ8dky7R5OpaU3xrTMjLnDKtdKS6+JePKt0iotN250Qmyz0nLr1uzbifukPcjnZrbfVavCbaNmaBk0dM2WX6WlidDS+r+2NvVFBHu/UFfntON4PLr7U2TPHVpGtXt4a2t57jf8xOOFqzRdt0664grpiSfy95wIj/0dNvd7Ye3fOjqSqyuzCS3z3UU8amNaenUPz9cFwXx2D1+92jmGM7uGS8k9NaKwr8infHYPJ7SURGiJUmDOHN7QYHU9sqstFy5MfwKU6UQ8pVRpWcwxLc3XymT28EoNLcu10jJV9/BC/G3dO/JyDy3NA+2+fZMP6rLdDrm3C0GCP/MEoK3NGhQ/LJ995iyHVWlpMi9yVXJoaXaTN2+3maFlobcTCJdfpeXWreHv39ztrdwqelLZujU5yMjnd+/aa6XLL5e+/e1w9w/IXXu7U7Bh7vfCqrRctSp5fxL10DKMMS3d27GOjvy9dj4rLc3xLM2u4RKVliavcx27JwuhpSRCS5QCs9Jy0CDrfzu0jMelM8+UJk60Bm322uiV80Q87hCjkF2fGNMyM+km4imHSku6h+efGcr165efMX/cf5dMQ0spvC7ibW3JJx9RCC0rvdLS3kcG7R7uDi0rsYtuufMLLaXwj5/c7a2S2p/7vebzb2GPj9zSYhUQwDJ3rhXmLlkS9poEZ+73zIvsYYWWZtdwKfqhZRhjWnqdd+Xj+93RkfzcuW4v/WYOl8o7tMy10lJyqi2ZiEeS5FFyBkSMu3u4lDyu5d//7iz37Cmdf37y4zOttKR7uDdmD8+MvcNyB222cqy0pHt47tyVlubP2X53cq20lKzQcu+9s3v9XLhnDQ1rIh4Ts4db/7srLd0nuPZ31+weLlXOhatKYo5fKnWurDW7uhWbe79USe2vkO/dfO5CD9tRSr77XWvoqjvukN580ym2iDLzOKtcQssgM45nIuhEPGFVWtq3+R23BOXeRuR6XvnBB86yu9KynI8Lcqm0tMPcnj2tdkylpSQqLVEK3N3DJek73/E+CJ47t/Nt7kpLr9DSq9KyFLqHe41pUqgALNsxLSt9Ih6vruFS8ErLjRul3/9e+te/8rduuQi70rKSQksqLZPHs5SotIyCXLuHl1ul24YNVk+Pp54Ke03C0dHh/O3tylvzZDTsv7d7u1kpxyBSYSstzecu9HY5X+6/X7r++sJtt+NxZ4LQ5culU091zkHyaf16a5vzzDP5eT5zv2f2DIpKaBmk0qyYlZZRmIinUJWW7m1GroGZ+XcYMiT5d5VWaZlq32O+f3elJaGlJCotUQq8Ki132cU6iV60yDphOOQQ6/blyzs/3g7xUnUPN2cP96q0bGmxDsyrIpbzex1QbN7sH5Tl67VyqbSslBOGdKFl0ErLP/1J+n//z2qfS5eGf9W+2LOHV1qlpXny5x7TMtvvTr4qLcPgDi3Xr7dODGOxwrxekEpLM6xrbS3s+kRRkNAyHveeiEcKP8TKt+uusyYk6dLFOgYZMCDsNSou94UlKVoVNHQPdxSq0rIUQst335VOO81a7ttXOuOM/L+GezKUmTOliy+Wrrkmv69z7bXSlVda37cVK6z3kwt3lVeXLtb2PKyLcqXWPTwKY1r63ZapfFdamtsJ83xBKu/QMtcxLSUntNy8OZoZRJFV9rtHafAa01KyvswjR0oHHeTsMFKFlqm6h3fpknoiHim8K46peIWFhboiw5iWwcXjzkGW13iWUvBKS3vcqNbWaIwbFebs4ZUwpmWqSstsD+rKqdKyra14Y/cGqbSUyjM8TyXI7OHmZ1LuE/HMm2f939LS+WS7EnidbEXp702lpSOfwYB5rFkKoeX8+d7L+eR1/D11avIwVvlgV3Nu3Zrd2JnLlklXXSW9847zPDbz+D4qlZZR6B4etTEtCxVa5rvS0t07yxSli1v5lo/Q0jx/LLfPJwuElog+u3t4dbXUv3/n38diTsm5O7SMx51AKGilpf0Yr67XURNWaMns4alt3epU7OZaaWl+XlGoEHEfgBS6gqrSuodTaZnMnDncVsgT5KChZRgnKVFhVlr6TcTjvshVzt3DzfZYid24vE62olRZy5iWjkqutNywwVkOEoJlw/xMzOrHn/40uQIzn6+TzTbnJz+RLrnEmvld6nycVQ6hZb4rLaM0pmV7u/frRLnSsqoq+XhBKu9KS6/ClWwrLSUm4xGhJUqBXWk5cKB34Cg5oeXatclffDMMCjoRj2TtDNxBXBTHtQyz0jLbMS3LbcfkxTzAynVMS/MAIgonxPb6xGLFCSMqrXu4u9Iy3Sy8HR3WgP/33ef/nPmotFyxIv1jCsFdaSkV9gTZPDHx+u7GYtZ+qNwrfv20tzvbq1QT8bj3F8WsqHjlFas7ZrEmBzG/s2EHdGFIF1qGHRLSPdxRyRPxmOtoBpj5ZB6jffvbVk8wydp/5nO/Zb5ONu35/fet/xcssL6/Uaq0jMejGVpGaUxLv/PRQlRa5rq9tLc5PXp0HkYn3fFtKbPb48CBzm2pPkvz/ZsT8diicP4XMsa0RLR1dDiVlqnG8hs61FlesULaaSdr2RwAO+hEPJK103FvQKMYWvqNaVkI+Zo9POwTmGIwD57KtdKye3frAKTYE/GUe1jkrrRMNxHPP/8pnXOOtbzjjtLXv975Pu6DnSAnT1GptPQKLQt5gmy2N3NsL1tdndXuK7V7uPvEze/7GFal5ebN0jHHWCe5n31mTWJWaFRaOst0D48WJuJxFLvSsmdPadddrYsokjUmeb9++X+dbLY55t9r3Tr/46wwQst16zq/p1LqHl5uoWW+Ki3dXcOl/Ew0GUXmEGG9e1vvvakpt0rLSjy2cKHSEtG2dq0TPNqT8HgxQ0uzi7gZBqXrHm6GmW1tVFq6MaZlcOVcaWn/Pe0DkEKfnFJp6fzs9fm+956z/MEH3s+ZqtJy82bphhusCQNsXgPwr1yZ3+5tQYVZadmlS/JBteRs98o9PPfj/nyChpbF6i68YoWz/bXHmiw08zsbhW10sdE9PLoK9d7b25P/7qUQWha70rJnT2nYMOfnpUsL8zqZbnPi8c6hpfs7HGalpdcYnVGqtLR7W5iKfRHTL5yMcvdw9yQ8Uvl2D9+61ckf6uud905omRNCS0SbXWUp5R5appuIxx2GlEK35qh0D88ktGxpSa6ALUdBQstSr7S0DzaKXWlZ7qGlfTJRU2N9tukO6syTD78xb1KNaXn99dIFF0hHH+0EhF7P09wcThfAYoeWqbZz9m0SoaWUfaVlIUMjs60XKpgwtbUlb+8r8cQi6t3D3a8fhf1osbjfe76OY93PWwqhZbErLXv0KFxomUul5caNycec69f7dw8PY9/mNZlZFEJLcwI6t2KPcV1KlZZm7yy3cu0ebrbFXr2yDy3N8TAr8djChdAS0eY3c7ibX2jp1T083UQ89uNKoXt4VELLTMa0lMpr5+Qln5WWuXYDyjf3AUihK2oqdfbwfv2sK/rpTv7NINEvtExVafn229b/zc3SJ5+kfp4wuoiHGVq6JxyzbzP/l8qzHfrJJrTs2rW43cNtxQgt3UF+FLbRxeYOPKTodA+Px6m0NOXrvWczuVvYzHUsVGjprrTcdlvn52XLCvM6mW5z3GGeV/dws9Ky2D0svELLIJOQuO/T2JjfC9v2c7nHs5SKfzHdPIcyC3EKUWlpTiyaqY4OZ53SVVqW03bZ3L5kGlrW1Dh/UybiSUJoiWgzQ8tCV1oyEU9q+Zo9XCqvnZOXSqi0tMO0qirnwIOJeHJnB3L2zKPprkTnWmlpVrPbJzNRCi2LPXu4e/xKv+7hlTp7uHsG1VjM+SyiMBFPsSst3W2xEkNLd+AhRad7eEtL5/1ruR9/mAo1pqX7eUut0rJQ24ZSqLR0/63c3cPdwz8V+zjLDC3tiVs2bkx9cd++j1s+26X9OaSrtCx2aGmOk1qISku/24Iw18crtLTHCHfft9S55zWw33tTk387tt+/eW590knSCy9Ib74pHXVUYda1hBBaItpy7R4edCIed6VlKU/EU6iTJvfJfLZjWvrdVk7KdUzL1lbnO2WelAa5ipitSuoe3trqHOzYB6LprkQHCS1TVVqaoaD9XObzmJ93sWcQb293BtM3Q/5iTcRD9/DOvGZQtf+PykQ8tmKElu6qpShcWCq2KHcP93rtSvobFarS0mufki5UCpu70rIQFYTFGNOypSV5O5xpe86k0lIq/riWZmi5887OcrrjX6/jn3x2EU8VWhZ7TEtzm1uM0DLbcw/zuby6h8dizjFuOV1M8qu0lPzPl+3bzWPO7baTRo+W9t1X6tMn76tZaggtEW1BKy2HDHGWzRNrr0rLcpmIp73de+dYqAPyfE3EI5XXzsmLe4flpRQrLc11KVZoWUmVluZJlVelZbahZapKSzO09Kq0NE8ail1puXatc2K5007O7VGbiKfc2mEq7s/H/D8KE/GYbT1IdU6uqLSM9uzhXm2t3I8/TMUKLTs6ot990byI0dpamDDOXWlZX+9cuM5XaJnrmIPubZbXmJbm/i2s0LKqStpjD+f2dF36vT6HfIaWURrT0jyvso8Vpfycp+bzQo/5XF6VlpJzjFVOxSx+lZaS/2fpFVoiCaEloi3omJbdujkb7nSzh5fLRDzmgYR5QlisMS1jsWAzDHrsRGNR+yzzLV+VlmZloxT+CbH5dzPDnGJWWpZzhduaNc5y//7W/+km4slmTMstW6zPtaWl8yyi7uf5ylec5WKHluZ4lrvs4iyHOREPY1o6y9lWWhYyNDLbejxe+CDFfVIc9jY6DFGePdyrrVVyaFmo7uFS9LuIuyv0C1GJ7a60lJxqy2XL8lPd6d7G5GNMS7/Zw6Xi79/s0HLIEOc4SEodWra0eK+n3VMjH6I0pmW5VFpK0Q8t33hD+vOfM9uPuQtXguwP7b+p+0I5EggtEW1BKy0lp4v4ihXOgUEmE/G4Ky2j3j3cXB9zx16s0FJyTlCotEyWr0rLqM16GqTSMt9driqp0tIMLQcMsP4vRKWlZJ3AuSe58aq0rOTQ0msinkrvHu4VWnrNNBuFSkup8F3EqbSMdvfwfI7PVoqKNRGPFO3JeNrbvSdqyTd3paXkTMbT3Jy8j8/Ha0j5GdMyKt3Dm5qc/f722ydf9E/19/I79ilW9/Awx7Q0Ky0LMRGPlJ/Q0q/S0t5XRPG8cMMG6RvfkH70I+l3vwv+uGwqLb3GtEQSQktEm92dolu39OM52KFlc7NzdS2TiXjSVVpGLbQ0DyTsgEMqbmhp/09omcw8uOrd2/s+QSot3Z9T2CfEfqGlvRyP5/97Yj9fly7Jk35I5R1abrON9X+qSsv29uS2FrTSUrJOMN2T3ESt0tJcvyFDnAO/Qp4cB52Ih9Cyc6VlFCbicbf1QoeWVFrSPTzKqLS0eAVexa60lPLTRbzQlZbu4Z+KGVouWeIsZxladpjH1mGOafnWW9Lttxdme2P+vfIdWuaz0rLUu4d/+qnz3l94IfjjzGNo95iWXp+vee5EaOmL0BLRFY873QS2396ZYcyP12Q82U7EQ6VlZ+4KJIlKSz/mwbBfaFmOlZbu++SD3e7stlbOYVGmlZbu8C7TSktzojPJu9Jy0CDnxCHMSsuBA52D8yh0D2f2cOcz8Ooe7j4JrqpyTk6otCwvdA+PrmKNaSlFO7T02g4Uq9Iy36FlOVdampPwZBlabjXPhwrRPTzImJYbN0pjxkg/+IF01VX5WwdbISsti9093L69uTl6k3mZx6Affhj8ce4hwtKFlq2tTi81QktfhJaIrjVrnA3w9tunv79XaBl0Ip4uXZLDzFIY09Jcv2JUWrorkCRn45rhmJYZf5bLlllXLN2VYVEVJLQsp0rLQs4MbLcfu81VSqWlV2jp/t64Tz4KUWnZq5c0eLC1XOzZw80Dxm22KU5o6a4kpHt4smxnD5ectlys2cOlwgQTJmYPj0738HhceuQR6ZlnnNsqvXu4+7Ov1NDSqzq/ENuGdJWWy5Z5P+6FF6R//CNYaJPvSssoTcTjDi3N4ZUChpZNdi8VKX+VlvF48Il4WlulhQuddXr88fysg8k8Fsz3mJb57B6eSaWlFL3zbPOY/LPPgrenIJWWixZZ57Vr1njvQ9EJoSWiy73zSscMLe2T62wrLUuhe7i5Pn36OCFYKYxpmemO6ZRTrCuWZ5+d2ePCYoeWtbX+O6BSr7T0mohHyv86uistKy20tLvFS9lVWra3+0/g4w4tvSotzdBy8+bizhDrF1pu3Vq47bHd3mpqkqsDbcwe7ix7hZZ2tYDX/sLeThQyxKLSsvjcgYdk7d/s5WLttx5/XPr2t6WxY6X33rNuo9Iy+edCdg+P8piWXtuBQncPD1pp+cEH1rh5J50k/fzn6V/D/dln+v3yqrRMNRFPWKHldtslV1qmOvYwfrdl4EDn9nyFluYxepCJeMzXff/9/AfkxZ6IJ9tteCYT8UjRDi2l4NWW7nkNvM6RvvlN67z2vPOS/55MxOOL0BLRlWloOWSIs+xVaZlqIh53pWUUu4e/+qr00ENOEOvuzmFf1S3UCUK6MS3jcevg6557nHVobfUM5GKZnDTE49KcOdbyW29lseIhsA+Ge/f2H9agFCstze9ENpWWK1ZId92V2WD07nFeyjks8gotYzH/gcq9AhP3REh+3zWv7uHpKi2l4nYRd4eW5rjGharqsbdz7iEwbJVeaZlqIh7Je/8UZqUlY1oWnvtYxGYfkxTrM3njDWfZPlZgTMvkn5uaCjODtUSlpeR83rW1zvbRnohH8g4tn3vOOQa89lrpgQdSv0YhxrRM1T28mPu3PHQPT6q0zFf3cPNYM0ilpfld6OiQXn89P+thK8eJeKTSDS2bmxW7+27VL1hg/ZxuIp5Nm6R586yfX3wx+X1TaemL0BLRlUulZaru4UEqLVtaolVpuWSJdOih0sknS/fd13l9zNAyjDEt43HrgGLMGOnMM6Vf/9q63W8HlMlJw5YtzkFTlA+KTWZo6SfbSst8z86diVy7h590kvT970sTJwZ/zVTdw8stLPIKLSX/gcrd34eOjs73MbcHZlDuV2kZj3cOLc0LQmGGlubBeaGqeuw2Zbc391Vvd3Wh+ZhKkKrSUnL2E+kqLQu1HYtCpWWY2+gw+HVtswOHQnfRt5nbC/vvQmiZ/LPZzTWfzytF+/is2JWW9vG4lL7S0q4Ktp19thNoeMn3mJabNiU/R5gT8eRjTMt+/RS3j6/zVWmZLrR0X0x3v+7s2flZD5u5zTWLI6I2pmWm3cOjtm0OGlr+7/+q5pxzdMj/+3/W3z5V9/CmJiejkKRVq5L3XYSWvggtEV35CC0z6R5u3u610Q4ztHzrLee92BUE7i5ZxQota2ud8MPcuL7yirPhffvtzuuY7Y7J3Plv2VLcAyjba69JDz8cbLyheDxYaJlNpWVbW/EDkgULpDvusAKuXEJL82rzm28Gf/1K6h5uf39iseQuP0ErLaXOXajMv8egQc6yV2jZ2tq5C3iYlZb2+nXtarUxM7QsdKWlewgMG5WWznKqADdVaNneXrjPLOxKy/b2cPZRYYpiaGn/XbyONcK++FcsfscL+QgGSi20LHalpXlMZO67vMa0dIeWmzdLJ5zgv+1yH+M3N/sfC82bJ917b/J31CvIM3tdhNk93P4O20FPFqFlW/fuzvFTvkJLrwnoTO6L6e7vwiuv5Gc9bGY42a1bfmfgLvZEPKXePbypyTpHklS7ZYtiL7/cuXu4e2I6M7SUki9SEFr6IrREdGUaWm6zjbPjyGYiHnOn4zV2SpgbU/Ng3F4394mCfZBUqEoPd7dJ+3Vt5k7ZPtjyGyw6kwDYa/ydYlqyRDr4YOnEE6W//S39/ZuanHaX70pLqXjjg7W0WLMe7rGHdM45VpVvkNDS7+Bm7VrnfQYNEtranMdU0kQ8/foltw/7s05XaSl13naZfw+zm9q6dZ27h9u3m8/Ro0f43cMHDrSC3GKElvbJCd3DvaWaPdz8faru4VLhtmNhV1p6rUO5SxdatrQUJ/gwL8KkqrRsby+/fYcXv+9YoYKNUhvTspAT8ZiVlpJTbblsWfJF6njcGvNQsgovvvpVa/njj6VrrvF+jaBjDm7caPXQ+t73pN//3rqttdX7/Mbcr4dZaWl/b+19fTahZbduzuML0T080zEtJWt4r3zOjO3e5uYztLSP883CikJWWpZS9/D58zvf58EHk9pmbPZspz1262ZlD+7CDndoaV64YExLX4SWiC47tKypSe6e6Keqyjm5zrTSsro6eafjtYEOs9LSK7T0G9OyUNV47m6T7uVMQstsKy2l4oeW77zjBGdPP53+/kFmDpeyDy2LcUL85pvS174mXXKJ085efNE68LKZBxrmwOd+s2OaJ5QbN/q/Z5PXWGnlHBbZB0hm13DJOYhJNxGPlLrS0qxG96q0lJK7tvTsmbxdlYo3g3hHh3PCYY9RFUalpV/38KgNU9DaalWDf/BB4V/HFrTS0v7uurtIFUIxKy23bPE+Lgh7wrRi8wstzZl/izGBV7pKS3N/HLVuiIXg1w6DvPf//Mc6Gfc77i2HSst8bxvice9KS8m5YNjamrzfXbLE+W7ss4/01786v/PrIu51DOh127x5zt/k5Zet//2C5VWrnOWuXcOZPTwed9bPHr86y9Ay3r+/c3s+LlDkMqalZL2voJO4BFGoSsuODmf7YI4NWqxKy3TbprY2a4i0VMMn5JM7tFywoPP34fbbk36Mvfaa01bt9usOLd3H0WZoSaWlL0JLRJcdWm67rXd1pBf7pHzNGmvDEqTS0p6d1wwzvQ6woxJa2htDvzEtpcIEW+6Teft1ba+95ix7hZb2QYQynIjHa+dfTObru7vxeAkaWmbTPVwq/Anx1q3SEUc4V/9N//iHs2weaOyyi7P8ySfez+uu6gtyEut1MlyulZbNzc5n4g4t7YO91tbkCzG5Vlp6hZZmpaUdOoRRablunbP9tg+emYjH3003WdXgo0YVNqhLNxFPJVVa+rVBKi0tQQOHfEk3pqV5El4JwXK2oeWWLdJBB0nf+U6waj97OxDl0LIYlZbmOYdfpaWUPK6leUy5557Jvcr81i9opaU9KYj5mn5/I/NYvUuXcCbiMcevty9Qmhc+sqm0lPLTLnMd01LK77iW7olb8hVamttysxihkBPxZNI9fNIk6bvftY5zirENN/cpknWuZp7jzJ/vXBD4UuyNN5w2Z7ffTCotCS19EVoimjZudL70QbqG28xKopUrvWcPd1da2jsgc0fktXMMM7R0V6lJ/mNaSoXZmKcLLc3XtA8QzXU0QsuSqrQ0X2/+/PRBmXlwbJ60uUW10nLBAuc97LKLNbOlfVBhrqcZQAwf7ix//LH387oDsiAnDO42LpVvaGl2Y/KrtJSSD+oyHdPSDB8XLfL+/MxKS/uAyzzZz9cYUem4J+GRojERj1doGYV2aI8T29iY34oOt3yMaSmVR6Wl33eB0NJSzNCyrS3572Ev+4WWlVxpmS4YWLjQ2R/5zXpst/GqKqmhwVqOcmhZjDEtUwU0Zmhp9kZxh5Y9ejiTqvhd2A1aablwYefXNL8j9uuY6uqs28PoHm62H3tf36WLs03JJLQ0e3blo4t4rmNaSvkd19I9X0C+Qku/MdCzPafMtHt4qu3yp59Kt9xiLW/caB3DFlI83rnSUkruIv7lWJaSFP/ybxDbujV9paU7tDSLAQgtfRFaIpoyHc/SZnYjX748WPdw+4SLSsvU0oWWpi1brBN5n0rLjHasYY9paR7strb6h3I288CqFCstzZ3piSdKhx9ujWfpZh5o9O/vVMEFDS2DhAleXUyrqpzvchQq3PLFb+Zwyf+gLtNKy969nYMoswrD5BVamuFDoccItKULLQuxHejocPYZpTYRj/l39jrQzpdcZg8vdKVlR0dxQ0sqLS1eF5ek4oaWX3yRPJa3/bcxt5eElpZ079085vEL5s1u0PZ2ed266E5wVIzZw83vfdBKS7NHy8iR1vGN/dhMKi29tjnmPn7jRuv9mtssc51s9v4uKqGl5ByHpOqd4+4eboaW+bjQmu2YllVVzu/yGVr6dQ9vbs5t7EyzbZljq0dhIp7LLks+py/0PmXDBqdQwwz47YvCzc3S3Xdby126qOPnP+/8HEErLU2Elr4ILRFNZmi53XbBH+eeQTxI93CvSstSmIjHb0xLqXihpbns1thYHmNaul8vXRfxfI5pmc9Z/IIyd6b29+mcczrfzzwAicWcasslS7wPct3dw4OcMPidDNvf1ShUuOVLqtDS76Au0zEte/RwwmXz4M/cxq5Y4Rz02gdctbXO37tYoaUZchcrtPQK5NwHkKmqC8Nk/t3DDC2DVloWIrT02kcXq9Iy0/3v559LDz1UvJm1C8neTtfWJl+MK2Zo6e7Gl67SshK6h5vHWeZJd7pjWXO/4redtT+/nj2d7bL7QnWU2O+pqsppB2FVWnp1D6+pkXbd1Vq2vzf5rLS0X9fcZu20U+fH2NvqKIWW9ueRbaVlvkPLTMa07NvXGqtUssKufPVUcR8bm8eIuRTYuCsjzQle8/F8XoJMxPPee9K99ybfVuhxks3jqJEjnWU7tJw+3aniPfFEdRx3XOfnyCa0ZCIeX4SWiKZsKy3doWWQSkuv0DLKE/H4VVoGmcE5W/F4+tnD3TZsSN4BmQchpVRpWajQshQqLe3v08EHS7vtlnw/91VTe1zLeNy7ii9flZZS5YWW+aq0NE8wTebfdskSZ9kcT8puy+VcaekVtAXpHh6F0NL8O7sDnHzy6iYXdEzLQoeWXvu9QoZlflVLQfa/48dbFew//GHeV6vo7GMR9/FAmKGlXfVnbi/N7WqlVVpmctE420pLKbpdxO39Vn29c+GumJWW5njSdmjZ2uoEILvt5uxT7P1uPist7dc1/z4779z5MV4THhYrtDTbnTl+tRla+lXymqFlXV3xQ0u/MS379rXGh7WZk1nmwj6HqquzziUyGRcyFXdlpN2Oc620jMX8zxeDTMTzq191/tsXep9iHpOPGuWcs334obUuN93k/H7iRGnPPa22Z/LqHr5xY+qx4am09EVoiWjKV2gZdCIe8/dSYbqHL1smPfZY5gcA8bh3pWWqMS3zHVq2tzs7jCDdw6XOoWX37omdU0YT8bgPOFKNZffSS/5jMGUrzErLMMa0NGe1s79PsZi1Uza5w5x0k/FkE1r6jZVmf2fLKbT0CulsfleiMx3T0qy0NAUJLe2DrzBCS3tA+EKPaWlum9NNxBO12cOL1T08m9nD7c/MDI0KMaGT18l8qhPdXJn7JjO0TBfItrc7kzLks8tgWOy/dZRCy/Z2a1to/y26dElen0oLLTPpGu+utPT6/pihZTEmSMuVOSt1kBDMz0svSXPnev8uVaWlGVra40t+9JGzPTUruez127TJe/2CVFq2tiZXdNqvm67SMordw+3Po7XVf12+PO6J9+wpVVUpbj4+H2Napgstq6udauatW53jpH79rMDLlq/JeNwXivIVWrorI3MNLe3n697dewxVKf26v/aa9OijnW/PtdKyrU365z/9Jw81j6OGDnW+Lx9+KD39tLUtkKSvfEUaM0aqqdE68zxISu6tZGcMixb5n/NJhJYpEFoimsKutMz3RDytrdaO67/+S7ryysweu3Fj8kmxveMu5piWXieg9uv62bCh82DRdvhSiErLZ56RRo+WDjxQevfd4M+f6et7zaptKsdKS0k644zk74i70jLdZDyF6B4ehbAoX4J2D7fbREdHsO7h7uoPr9DS7pYmJW97vSotN27MbcykoLxC3K5dnXZQ6O7hfpWWUe0eHpUxLVOFluZJsrvrYj547ffa2wu3zcy20nLtWieMKOTfqliCVFoWuiufV3XxunXJ4VqhK32jxi+0zKR7eHNz5/u3tTnf71KotIzHneON3r2dfVlHR2bh9e9/bx1j7r+/92RnqSotu3Vz9ut2mGgeS+65p7Ns73fj8eAzhbtvW7Kk837aXWkZtHt4sfZv6UJLyf/ih3scbnMM/XxUWnrt99zs49I1a5zte79+yZWW+Qot7e+kfXxSiEpLd2iZzcU/c/vrJ1338CuucJYPO8xZzvVC2B/+IH3rW9Y5o9f+w31Mbl/c37xZOvfc5PX78nxunXksLSW3XfszMC/Ymu3URmjpi9AS0ZTtmJb2LIaStRHymj0820rLXHYEy5Y5V1efeSazx7or1CRrY13MMS39QstUY1q6Ky27dnV2ToUY0/K++5zlN95I/t3y5dYVtWz+hu5gaMGC1J9vqVda2qFlVVXy7IHbbCNNmGAt77ln5x2reYXRK7TMptLSfK/mQU+pdA/futVqd17fYbdMu4eb4aF5Qpqq0tIvtMyke7jXaxSC3+dhTvqQb17buSAT8UShHaYa03LePOn55/NTcZjpRDxVVc6+dccdnfv5TQSVC78gqlDVwea+yTxOSbeNNk+QmppKv+ovCt3Dvbaxa9cmV/oEnaW2XJjfh0y6xqe7UOwONgpdAZ+rrVud7ZZZaSkF3zY884w0ebK13NZmVVq5paq0lJwLG3YvMPfM4TZzv+v1vQlSael1USjImJZRrrSU0oeWX54HFXQiHq9KS/N28wJ9375Wla193GUeX+XCPpfxqrTMpcDGr3t4e3t24bX9fH6T8Eipu4cvWiT9+9/W8g47SD/5ifO7XI9D7a76a9dK99zT+fd+oaXkHL/svbf0ne8kbl7rDi3N77LXNsEMYW2MaemL0BLRZIeWgwZldtWhZ8/kq11e3cNjseQqt6AT8eSyIzB3mulmn3bzugK0cWPqSst8VxEErbQ0gyt3aGnOcJfJCUOQSst4XHr2Wedn94zfBxxgXVHbc8/k+2Xz+pIVAvgpl0rLQYM6VyXfcIN1APHCC527epiVll7dLbKptPT7LEule/hFF1nt7sgj0wdGmU7EY7ZxMzBJVWnp1z18+HCnPZrbFb/QshhdxM0uXebV6EKGlkEm4imFMS3NtrRkifTVr0rf+Ib08MO5v07QSku7HZn7i223dbYpxaq0lArXXrOttHTv0/PRfTFMfqFluvAln4JUWhJaWjKptJQ6hz6pQssoVlq6jyMyDdMXL5ZOPTX5OM1rmKBUlZaSs41ob5fefNM/tExXoRxkTEuvi0LuSsvttutcxBHmRDzpxrSUvP9e8bjTPdze5hS7e7h5u/l52eGpfWE5X5X19jY335WWft3DpewKJuznS1VpmWrd//IX59j5nHOSjwVzDS3Nc5I77uh8jG7+rbbZpvO4/pJ01VVJ53Lr3PfxqrQ0eYWWVFr6IrRE9DQ3O+XTmXQNl6wgxd6offGFd/dwKTmM8aq09No4Nzd7Bw9tbdKMGakrR8yd5tq1mV358zoYb2ws7piWQUPLww93lr1Cy3xUWnpdyV+wILk61zwwW7bMGafx00+tAOmss4IfXHvdL9W4loWutCxkaNnW5uzIza7htro6adw478lc+vd3DjTdwfzmzZ3XO0iQYB6gmp9lqXQPnzXL+v+999IfrGZaaek++bBlU2k5aJD33zQKoWVVVfJr2+u5aVP+Q+tSnYinpSV5Hcy29Oqrzn7wscfy81o2+zNINRGP+buaGqetLliQ/7EmS7HSUirtLuLxeDQqLb2Ok8xKy0rvHp5JpaX7GCtVpaV7nxL10LJPn+T9Sbp2uXWrdOKJnYMvr2PAdJWWZjfhU0+1gkvJ+gzN7UeqsL+93fm+pZo81Ot8xD2mZb9+nY8HSrHScssWJ1C2P7swKi29uo3b78P+/q1bl5/jFnelpbntTRdaLl1qFR+Y58c2v0pLKfPzSnMitFSVln7dw9varNBSss6XJkzI74Uwszr/ww+ll19O/r25T3FXWkrW9/nYY5NuaqmvV9ws4EhXabnrrsk92iRCyxQILRE95uDRmYaWUnJo6VVpKSUHRkFnD5c677zfesuq4jvqKKtM3O+Azb3T9Bv410s2lZb5Di39xnNxb1zNq0YpxrSMtbSkHojY5jVun9dn7K6edA8k73b33dYYjem0tDg7XbP9pBrXstCVloXsHr5qlbMuXqFlKrGYU225ZEny396rDedSaVkq3cPNEx0zVPdiBxc1NckH6ZL3QV3Q0DJdpWXv3tYJStRCS/vz6N8/+btirme+1yNI9/AojmnpDmDMEMwcP+mtt3J/rUzHtHQPIWJ3SWxszH/AYbZ186S10KFlLJa8vUy3jXZ3ZS7l0LK11QmfoxZafvaZs4+o9O7h2Y5pKZV+paX5ftyVlum2Dddd54SLO+0kDRliLc+b1/m4LV2l5QUXSPvtZy0vXOhcTB85Mnkfl6rS0vzs7Qnq3K9tP7/NvvBmdg/v0cPabrv3+2HOHp5taGl+RvbnXl/vnOfle0zLdJWWJns/ZF40yHV92tqcwDHTSsumJmnffaVjjpGuucb79zb3hZ5Mzz22bnX2DUErLc3X//e/nZ5f3/ymNHhwfsdJdu+H77gj+edU3cMl6be/9ZxcKG5OvJSu0nLo0OQeihKhZQqElsjMRx9ZXUMLNRunlP0kPDY7tNyyJXmj5ldp6RVa+rGDmC1brK6f++8vvf22ddumTdI773g/rhChpXtMy1x2LukEGdPyK19JPnFLNaalpOogJ/obNnRua7mElvvv7+wQ7PFMUjEf+7WvOctBKi2rq1NfXYxipaXfJDxB2TvfeDz5oNndNVwKdhJbiaHlgAGdD4S8DurMttnQ4LSnTGcPt6/ymiGPLQqVlu6BygtZ1eMVyPlVWkZp9nD39n7tWmebYoaWH3yQe1jjVXGSSWhZyHEtzbbu3hcVgt3++vRJ/q6k20ZHrdJy1SrpueeCXUh0c188NYUdWtrjiEt0D89npaX7QljUQ8tcKi1ffNFZfuABJ3TctKnzPj1dpWXXrtI//tG5J4XZNVxK3pakughpjuHvV2kZi1mFFZL1d1+0yFq29/fu0DLqE/F4BVXmbfZnF4s57zHf3cPTTcRjcldaSrlv793FIOb/UurQ8sMPnde/997Ov/ebiEfK/Lwy3ffB5rfut9/uLE+caP2fr0pLr95ff/978rbP/Dv172/9++pXrZ+PP967a7ekjm9/21qoqko+b/T6DIYMIbTMAKElglu0SNpnH2nMGOlvfyvc6+QaWpo7B/NKil+lpVf3cJO5w7Q3qD/7mTR1aucrreYJosm908xkXEu/iXii1j38a1/rHGz4dQ+XVB3k6q3XFcmNG5O7NXR0WCdcJnPHYy6fdJKzE1mzJv04peZjv/IV58p2kNCyd2/Pq3AJmVRamm2wkJWW+QotpeQ27tWGM620ND8D+zvb1lbYCyi52LIluf2nCi3j8eTQ0s3rZNtsm337Ogdzfic5dXXWNs4dWtptOkqVli0tznq7Q8tCniB7bedqapK/q1EMLd1/83jc2Xba1TyStZ15993cXivTiXjcB+Dm5A/5Di3NbaNdESUVvtKyb9/M9r9RCi1bWqwg5ogjrGOaTLmPQ0zmZxLGRDxmaNm9e+V1DzfDSbPSMtPQMpNKyyhOxJNLpaV9HNOzp3XsOHKk8zv3cWC6SkvJ6hVx//3J+xTzOaXUwYz52ZvdSv0qLbfdVtp5Z+d2+5jE/ptFsXt4t27Jr58uqDL2f3HzvoUKLXOttMxnaOk1EU+q0NI8R33vvc7bTXPbkGv3cHdXcz9ePYlWrJCeeMJaHjpUOvpoazlflZZe+4stW5KDXPvvVF/vHOM884w1Nrg58atL/LjjpJdesoqYzIu07s+ga1fre2h2J5eYiCcFQksEd//9zgbFHmeiEPJVaSklV3hlW2lp7tTtnYXdXUSyuobb/EJL90FfJqFlFLqH+4WWe+3lfJbf+lbnK9h+E/EoYGjpF0qYB6Fe4wX6VVraM/nZzJOadK/ft69zRfzzz72rByXnoCpV13Aps0pLsxtQLidb7e3WLMJ+MxiaAUc2oaW5880ktIzHrfFkzNd338er0lLKvtpy3TrrwCKb6qIg3AfKqULLzZud77N5cmnzOiB1t02/0NJuL/b2wS+0jFKlpd8kPFLw0LKlxTrAzKQrllcgF4slB2/29s+cFTvsil+v7b29TXTvk4J0Ee/osCqM3N9HKffu4eZBfL4n4ylmpaU5dEm/fpn1dHDv07328cWyYIFzscqsKgsqVaVlVZWzDTHDho4Oa7xfv+OlTLW3O9sMs71Raeks59I9PJPZw0uh0jJoBXBrq1OZOHy4tS8wqyLdoWXQyrIjjpB+9ztrubbWGifclCqYMbctZmhpvnZjo/N92Gmn5EnCbJlUWhZ7Ih73MUom3cPNY5bBg63/N23KPUzPdUxL8/uXa2jpPq8y/3f/3s29zXUXfKSqtMz03MPd1dyPV0+iadOcY/MJE5xjra5dnXOnXC6Emecko0c7y2YXca9Cgv79pRNOSP1+JOmQQzpfjHA/ZuhQa5tCpWVghJYI7pFHnOUXXyxcdUA+Q0tzw5TJRDwmc6duH6DbB0G9ekmTJzu/Dxpa5to93Ky0rK621j2M0LKhwbqaNGOGdMopnYMNnzEtJakmSHWSX+BgHoB4zQaeKrQ0D+DM8VO9uB9r7oT8xrW024Z7XEK3dJWWHR3OwUf//k7VZrZ/23fekUaNsmYR9ht/1ay0NCuVgjJ3vmYb9wp4zROJv/zF2cmb769QoeWCBdYA2KNHW2NWFUImoWWqSXik9BPxBKm0tA+Y/LqHR6nSMmhomepEZNIkaexY6wQxaDWu33bOPKg2T0zs5bArLTMJLc0Lbn5uvdXq+rTnnp1PVHKZiEcqn0rLxkZnu923r7UPtk82SqnS0vwOZROeuoepcbP3g+Z26c9/lg491NoP5SM8XLvW+Y6b+yBCS2c5aPfweDzzSsuoT8TjrrQM2j180SInOLEvyJqhpfsYMEilpe2ii6zgfs4c61jElKqy0D1ur33eYt5uXgzaccfkC/U2ez/qN6ZlmJWW7nXKZkxLyf8iejbyOaZlPkPLXCotpc7nT/mciCdopWVVlXMsYa/7tGnW/7GYdPbZzn1jMf9j3UyY5yRjx1pDh0nWcG9z51q9uOz26HVMng2v0FIitMwAoSWCWb5cev115+eODumf/yzMaxWq0jKTiXhMqULL3r2dq3lScSst3d3v8t31qaXF2qF98YX/ybwk7bGHNSN3LNa5202KMS2rcqm0NG83d7r237VQoWWqq+yS1T7sg5tcKy3NwNccEDvTv+3WrVawvt9+0htvWLetX+/MbG3KtXt4tpWW9tXedeuSTwT8QkszOMowtKxublbNd77jfK+efz6jxwfmPjDNV2iZrtJy8+bkELwUKy1TfR5Bq3r+9S/r/7lzk9t1KkGGwTBvL8XQMkil5d//bv2/dq00f37y7+z3Gos52zB3pWVbm9MGU4WWhay0LHRoabY9+7tjf8dKaSIe831ksx6pKi0l55jADBvsbe7nn1vjrJoWLXLGCQ/KPEYyA6By6R5uV6auWpXZ48z3aB4Xp5uowz2rcLrZw+vqnNAkiqFlqkrLVNsG88KrHSx85SvOuUK2lZa2gw+2eiu5BZ2Ip2dP722OeTEo00pL+ztcXe1s34sRWpqTXuYSWprHLH4X0bNRLmNapgst3dWRuYSWQSstJecYt6nJ+k7a5w9f/7q0ww7J9/W6EJYpcx88aJB0+unOz7NmWdsx+0JYoUNLc/gGidAyBUJLBPPoo51vmz69MK9ln9y7r4gGlWn38EwqLe2dgV9o6dWdTupcdbV2bfBui+kqLc0x1uzlfFRaXnSRFUaOHp28E/TbYUvWZ2hvmPM9pqUZotkHxq2tTpe2hgbnhMUvtOzTJ/vQsk+f9KFl0JnDpfSVlu6xZezPNdO/7U9/Kl19decTEa/wItfQsn9/JxTzCy3t3zc2OgcF5u/Nz9z+PLt1Sz4gzHY8wXhce998s2LmuH6FGoMrn5WW6SbicU8EYreReNw5ybHbj/uEIOiYlpmMA5arVJWWZujqd/C/ZUtyIOZXFe3mVUUolW5o2dzceT/z/vupT0JbW5MvULpDCPu9duniVH+7Q8tUF7n69XPaVbEqLQsxnqL5udrfnaChZZQqLYsVWm7c6OznzPdvbvtXrLD24fvua80cG5T5HDvu6BzLmccfpVxpefPNVmXqXntlFrba981k5nSv/aF7G+KeiEdyvgOlNqZlqm2DeQxjB2C1tc4swh99lLztz6TSMpWglZZmqJSq0tIrtPSrtPTavxUjtPSbhEfKKLRMGtMyn5WW2Y5p6RVa5jocSC6Vlu5z1IULk9tLGBPxSM76b9mSHDDvsUfn+3oNOZIpMxsYOFA68EDn57feSt4Xeg3ZlA2/0LJXL2dSrerqYJMCV6iSDi1vuukm7bDDDuratasOPPBAvW4eaLtMmzZNsVgs6V9X0uzgzK7h9sbl6afzf7V63TpnA/qVr2T3HH7dw7OttHSPadna6uwUeve2Njj2xihopaUU7MpfPO7s4Mx1Nse0NNtxtsGWW0eHMyDxBx9IM2c6v3OfhLrZYV260DLIib55IGNW6Ni3v/66816POMI5QNi82TnIcE9YksmYlu7HjhjhnKjPndv5/pmElukqLf0GxM70O/fSS9b/VVXSj3/s3O7VTdQOLXv0SN+93Uss5hwoLl3qtFHzAMH+Xnd0OH878/fmd8W8OGDKsnt41S23aNgLLyTfWKgAzh1arlvnf2U4m0pLv4l4JOd1tmxxgmG7/fTqlTxBVDazh+czBNq0ybrwYP4dU4WWZvXEY495P+fHHyd3CU81cZYp0+7hdjsMO7T0aleff+5dmdXWlvrzePfd5O22O7S0/07md9A9EU+q0DIWc7blixfnd0zZYo5p6VVpGaQavqOj87Yh19By82arejHdWIVezPfR2Jh5W04XWnpdTDGPy8wT+Jdfdl7fa9gXP+ZzDBzofQGme3erLdrbvqiElp9/blX2+E3GJ1mzVtv3fecd//utWmV9hva2z7xgVVXl/H1StROvSsl0Y1pKzmdeCpWWQXsNmEGXGYDZF6/b2qzZmG3251JVlf44OZVUs4fnu9LSbyIeyXkPxdi/mcczuYxpaYZshaq0DDqmZdeuzrFDVCstpeRtrV+xhFS47uHm77ds8b5YYLLbQ1NT9scP5j5o4EDrO22fk735ZvI+pVCVluaF1SOPtP7fZ5/8vFaZKtnQ8oEHHtCkSZN02WWX6a233tLee++tcePG6TOvbohfqq+v18qVKxP/FqeqfIFj3TontNphB+mMM6zlrVulp57K72u99pqzPGpUds9hbmDM6rJ0lZZBu4e7g6lYzKm2zHdouWmTs4Pabjvndr/QMmilRzrvvpt8YvXgg85yJqGlvY61tdbnb+xYazKttPQKLc1BpI84Ivlgxz4Iymf38B49nKvs773X+Qp0ISsts/nbxuNOhd/OO0s33eSsV6pKS3uA6GzYBxnxuHPwbG+Xu3ZNDo3tzytdpaX7s8yme/jLL6vqooucn+1tQLEqLSX/ast8V1raB/FeFTFVVcmfp1+lZXV18ralUN3DTzjBGj9x4kTntlSh5YgRzoHdG294n8SbJ5JS8NCy3Cotzf2Rud6puoi/8kryz6kqLW2ZVFpKzmQ8bW3pLxxlophjWqaqtHQP0WBat67ziVauJ7HHHWeNVWyO/RWUe/uX6Uy7QSstJSdwME8I/aou/Sa682I+xzbbeF+A6dHD2qdlO8xKITQ3W9uyQw+1ekN4aWmxxj20+VUnNzZa47IdcogzC7xZaSk5+5FcKy29Qkv72KupKfztoVu2lZZe3cMl/3Et7e1Pz57ZHz9JwSficVda2mG12UZ23NE6NnBfhA5SaWkvl1ClZdJxkNntNowxLc3tUKHGtMx3aGl+t7t1K173cHPbZH7v3DNrS6lD/aDc3cO7dXOqOufNSz4uKXT3cMk6N/v736Unn8zPa5Wpkg0tr732Wp1zzjmaMGGC9thjD916663q3r27/pJiVutYLKaGhobEv0HmzGvw98QTTvh3wgn/v73zDpOiSP/4d2ZnNu+yxA1kTEiWIGJChBPUM2LmFLwznKc/46mHCcPdcSeentkz62FWMJwYkKQIgiA5iGQFFlgW2Bynf3/U1lR1T/dMz+7MBvx+noeH2Z6e7urqit96633FP4lugRkL9AlTfUVL6yRXEil6uNtAPHbClBQtrdaFgBhI2ImWbjpRfTCud8BFRaE+LYHYiZZWKwfdYsetaFlSotIh02i3PXzDBmffZvpARn9+OQjVxYgTTggvWno8Im0dOqh3Hq1oCYita4AQy9asMZ8fT0tL2eFVVoZu9XZi/371Drp2FXkgBZ8dO8wTw6IidW59toZL7Fa35X06dAgVv2przeVc1pVAQA1Iwllaupkg7doFXHABPHX5Vnvrrcris7EsLYH6i5bhAvFkZoqyZDeQs1plSPR64mRpabXIjIdoWVAgInwD6n95XGLXnl99tfqsR3uU1Fe0dBLbBg0S//fpY7/g1Vyjh+tbwU49VX2ORrS0ihh2oqU1EE8k0TJefi2t0ZLlu2psn5aAszBktzWwoMB9sCi7dEjr8bffDu+Gwun31rREg53rDx2r4GC1NHUSLaPx32gVLe0sLWX/qftOa2rWr1cLhf/+t31ftny5WRh2qi9vvaUm2l9+Kf63ugaxe/b164Ht29XfdqJlNJaWduc3NdZxWbjt1zpyjJ6ebo7UrQdk1PsWa37Xl3Dps/bp8l6BgGp3ZRlJTlbbTq3WlpEC8QDNR7RMTVWL/HYilZNomZqqxrKx3B7u1qel/hytWqkxfywtLaPZHm4Yql3t3Vvl1ezZodbZqali/NcYgXgA8/Zwt5aWQP1FS+v2cECN82przQYxjSFaZmYCF14Yu63ohygOKk3zpqqqCkuXLsVELWqz1+vFqFGjsHDhQsfflZSUoGvXrggEAhg4cCD+/ve/o3fv3rbnVlZWolJrqIvqOo7q6mpUN/UEJUbI54j0PAnTpgXV7Zrf/hbG0KHwZWbCU1QE43//Q01ZWcx8MCQsWBC8V/WQIfWbDGZmwi41NQCMuuv5vF7I6XhtQgICdcetvzM8HgTS0iDlpZqSEhj79gXPq83IQKC6GgnZ2Srd27ebJ2UHD8JfJ0oZeXnw1E0kAz/+iNoIz+fZtStYSWu7dQumI1BUBE9FBTwAjMRE1NRdJyEtTaSjtBTVlZVma74oSPjqK8cVjZqEhGA+2v42MzP4W2PPHpHGlBTUVFfDk5QUfJ6EykrULlwI//DhMBISULN8eUgUxYSCAlX2unRReVFQIPJ982Z4ARheL2o6doQ3M1O9q4ICGN26wVdYKNKQmYmauvfg69QJni1bYPz8czDvbJ9l3z71XtPSgOpqeAcMQMIbb4h7fP89DG3V3bNvn0pjenqwXNnhCQTUuTU1Ied6iorU98nJ8Mh3C6D6wAF3/l43bgyW1UDnzqitrob3mGOQUGc5XbN4MYwxY8QJ27apc3NzI5ZNJzzduql0r1uHwGmnwVdQAA+AQPv2MDIy1Dvatw/G7t3wa1ZJtfv2ibw4eBD+uoFUIDPTlJ6EhASVF2Vl4duJ6mokXHghvHWDtb19+yJt0iQky7ampATV5eXOixb1JGHv3pA6VLt5s22Z8O7eHcyT6qys0Ofx+dS7KStDbXU1fPv3i3KdlYWa6mp4U1NVvu7fL+ro/v3qdykpwTz0tWoVbP+qW7cW90tPN7V/RkaGuW54vfAlJcFTWQnjwIGw9cYtnvnzg2XFyM9HTd170POuOjMzND8uvBC+226Dp7wcxtSpqPnb30yD9oQ1a0x5b6xbF7x2OLxlZSoP9XZu8mR4TjoJxoknmhYMfH6/eAdVVWHzw21fW1+8RUVIsBwL7N0L45dfgsdrTzsN3s8/h8cwEFiyxLF++xYuhCZVB9va4PdVVSH9DjweVc4qKlBbUqL+9vtD7uXt0kXl808/wTjhhOge2AFfcbFKG+rK+b59MA4ejEl51fHu3aueITMTRnU1ElJTVbndv99WsNX79CDV1ajet69ePrw9ixer6xkGal94AYFJk7RLhy97eh8HADX5+TDkbgIXeH/6SeVDly4hYwNverr6vrAwpL0P7N4dLB/eXbuC5xq7drl+Z3r7WdO6NbytW4e0vTWJiTCqq+FLTRVlpKws5mUiWjxbtqh3t3cvaqZNgzF2rOkc7/z5prod2LjRtu4mPP+8Gndt2YKaqir4yspEv5uaKvqMlBTx7OXlYjy2YAF8p5wCw+9HzZo1QLdu8BQUhJRPY/9+1GjjyYTiYlXOk5JEH9uqlTq2dy+q6wSR5jBfCvaVycmo8XoBw4AvLQ2e0lLnvqy6Gr6tW8XvDjsMNfpCcc+eqn1buVL1qyUl4vy0tIaVraQkdf2iItP79h48qMp6UhK8+rhw/36gTRv4tmwR6ejePZjuhE6d4NUW2WWbhYwMU79f6/MF23tfYqK4TmVl3OuKZ+9eNW7MzAwZJ/kyM+E5cMC2LdfzpDo5GSgqCpa7hMMPh3fHDmDfPlTv2WO/oOECb2WlynePx3YOpI9LASDQurXp3fnatoVnzx4YBQUNyk9PcbHKq8REkVf6GLG01L5/LyiAv+54oFMnoGtXeGfMAPbsQfWyZUDfvsE2I1iG9bJYXBzVvMBbXGwqq2HnjSkpIu8MA8aqVWp82qVLyPgvQS/z+/YpYT4KfLt3q7lpYqKY2/Xvr/qfL78MpqEmKyts2iWR+lpPYqKpba3u0KHpF7ybAdH0ES1StCwoKEBtbW2IpWR2djbWWy0s6jjqqKPw8ssvo1+/fjh48CAeeeQRHH/88VizZg066dsV65g8eTIeeOCBkONffvklUiOtGLQwZs6c6fidt7ISp8+YAS+Aylat8PmBA8BXX2FQ//7o9M038Bw4gO8feQR7+/dveEJqa3Hmt9/CC6C8TRt8uWqV+wAKluuc7fHAY7FcWLh4MQrrVmWGl5Uhq+74pp9/xroZM5BQWYnfWi/l92P1xo0YUPf3qsWLUbZ9O+QUa3NBAdbOmIE+FRWQdoDfTZ+OwqOPDl4jdfdu/Kbuc36nTsjZtQsew8CBpUvxTQRT8Ozvv8dxdZ83lJbiSL8fCdXVKPn5Z2TWVfT95eXB6ww1DMjme87rr6NcriBFgae6GmfMnesoWi5buxY7w6R7cGkp5PqRp26Fu9wwMHPGDHT88UcMrvsuoaoK2556CkcB8NTWYt0TT2DLmWearnXCpk2Qa1wL8vNxct3nn1euxIoZM3D6hg1IBFDeti1mfvUVehYUQMqei7/8Env37MGYPXuQBKAsKQlf1aX7hJQUtAPg2b8fX0ybhloH/7bHb94Mue71xeLFqF25Em0rK3GiTMeHH2Kl1mF2mT8f0iPJqp9/xrYw+ZS1YQOG133etmkTVlnObb9sGY6v+/zTjh3ILC6G3PA4+5NPUGG3Bc5CznffQbqX/rGiAhtmzEBHIPgOfnrnHWyom0C2W7EiWK43lZdjbT23KbTavx+n1H3e/eGHWJGTg9Pr6uIejwcHdu+GnBJ/P2sWylesgGYDhh2rVmHZjBlI2bsXp9Ud21VWhiVaevrt2oW6DaaYP2cOisJYF/V58UUc9u23AEQ5WXLbbaiaMwfHVVVB9iAzP/ggOMkyYRjI3LIF5e3aCfEsCo5btw5WW/7Nc+Zgre7moY4hq1erd7tyJSpstvCclZAAb20tinbtwrxPP8VvCwuRAKDI68XcGTNwxM6dkC7Ll86di/zycrT+8cdgndmydy9W1+Vh/w4d0A1AcceOmP3tt4DHg+TCQozW7lcMYI6lDIxOTkZyZSXK8/MxMwbbWI6eOhXSc7EnEMDst99GRZs2GLpuXbAdm7ViBSpt3u8xxx2HLnPmwHPgAFbedx9+GTEi+N3w778Ptu8A4KmsxNcvv4wSm75e56g1a1TZXLECe3SRMz1dWD1pvmyHl5cjC2JSN8NFfoTra60k790Lf3k5im3Ki5V+a9cG64Pk4KZN2DN/vmoP9+9Hn7w8ZOzYAWPFCnz28ccwLCJucmEhRlvyWra1kjElJUgCUFpdjVl1x/U+bufWrfhp1izIt7F9927T7wGgQ0EB5D6KTTNnYn09+ik7Ru7di3QA1YmJ+GzGDIzy+ZAGoGrvXnwe421XvZYuhbQB+e7HH7FvxgwMLCqCtGea9+mnKNWD9NWRu2ABjrW53tz330eZzfmROHz6dOhL71XPPYcvBw40W/LDuewNWb8e2kZ6LJs5EzujsEIcMH8+utZ9/uaXX1Bkyeeeu3erMvjVVyhfvhwjte/3rFmDRXW/GbJqVTAtlT//jC9cvrPBK1YExxxzVq9Gz7IyWOzKsHT9euTPmIERgQAyAdQWFbmqs/Gk2xdfQB85F/7zn1ioW0wBGDxtWvDZAKBw6VJ8a0l3q82bcYpmPW1s3Yovp03DmXX97r6KCiyYMQOn1NSgFYBASQlmzJiBnm++KcZf1dVY9eST+HnkSHRfsADWeNYew8CX77+Pmjqrq8GbNgXTNHvRIlRs3ow+Bw8Gx8ALZ8zA/roF6GjavHjxm927kQqgMiUlWKZGJyYiubQUFXv24EubcpC2cydG1S1y70xLM40/YBg4IyUF/vJyVHz/fbAv/G2dSHOwthbzGli2zkxOhq+iAqU7d2K2dq3eq1dDbphduGoVuhcVQfZqcz75BIbfj9F1Bje709KCdat/IIBu2vW/XbsWB6qqkJqfH2y7AWDFjz/i57rfjKiqEnWlrCzudaXbt98G68KK7duDaZD8xu8X73Dv3pB2YdCPPwbzYP6KFUBubrDc9U9MDD73gtdfxwE7yz0X9Pnpp2D5XvD999hvY70/eN8+U13dXVWFxVpaRyQlifzcvbtB+dll8WI1z9i4Edus4+UtW8zltY6MrVuDY+2fa2pQ1KkTpMnF+qefxuazz8bowkIkAyjzePDVjBlI3rcvOC7M37gR30eR7iOXL4ecCX+/di32hPntcSUlwfFyYPVqJKBOB7D6oAfQZ98+1dZ8+SX218PV35hffhHzwowMfPXZZwCANhUVOKnue4+2C2/hTz+hMIrndmrzstetC87nAeCzFStgrF0bZcoPPcqi2fVgtEB27NhhADAWLFhgOn777bcbxx57rKtrVFVVGYcddphxzz332H5fUVFhHDx4MPjv559/NgAYBQUFRlVV1SHxr7S01Pjwww+N0tJSx3Oqp083DGE4btReeaU6/uabweM1110XmzQtWaLudf75DbpWoHXr4LXkv+r584Pf1w4apNJ/113ieGlpyG8CrVsb1S+/rM59/HGj+r331N8PPmhUVVUZNX/7m7rPW2+Z83DhQnX+tdcagc6dxbXbtIn4HNUvvKB+++STRqBdO/HbnByVV6ecEjy/5s9/VumYPr1eeVc9e7a69vDhofn43nthf1/7hz+E5uNRR4lrv/9+8Niayy83qs87Tz3fTTeFvsc+fcTvk5KMqp9+MpePvXtN6ayqqjJq/vEPlc433zSqKiuNgM8nrjFggErjJZcEz6tatcq5HPXvL37r9xtVlZXiuH7fIUNM59dMmaLu/9//hs9nvVzY1KHqd99V3//tb0btuHEqzatXu3qXNf/6l0rPSy+J4ytXqvSfc46630svqfs9+mj96195uRHIygrWn6rvv1f3Gz/eqHn4YZWmqVON6i++MJWV2jPPFNf54Qfbtqeqqsqouf56dY1vv3XO4zlzVBlMTDTK580Ltnm1F12k8nP9evvfv/ii+G12tlG1b19U+VA7ZEhIPai98EL7c086SaXlwAH7spiZKdLSs6dRdeBAaNl/7DGVJ6+8ItL/2Wfqnd55p7revn1G9WuvGVUbN6pjBw+a03rssaFpOPxwkYasrPqXD/25Tz7Z3LYsWCCOH3ecyg+H/ql67lyV1pNOUt9VVBiBlJTQduvNNyPXlzvuUOd/8UXk9OvprKhwPM9NX2v6t3KlEcjIEOn46KPI6bj00tA2t3t3o3bCBJW+7783ai++2PR3SJ6+/XZomR071lwG6tIVOPpodXzLFnX+ueca1QsWqHL3pz+FpnnFCnX+JZfEpCxVVVUZgdxckbbOncXfAwaIv30+1X7H6F/tlVeqvFy6VJSfq69WxxYvti9jTz2l3lFamipv2vgkqnRo7VjwWlqZiVT2rH18zZNPRnd/rQ5X7d0b+ryTJ6t0vf22Uf3VV+bypfWhtcOGqbzxeIyqsjJ3adCeoWr/flP/ELz3jBni3MGD1fVjXCai/Vdz553mOuvxGFUbNpjLdN14MXhOXdk2XeePfwx53qpFi1Qen3GGePahQ03tVe3vf6/e+wMPiGvdf79t+dT7yNrRo9Xx/Hzxu7vvVnn98cfRt3lx/BfsO488Uh078khxLDPT9jfVH3+s8uaOO0LLnN72791rVJWUqPw+4YSGp1m2ZZ06md/1VVeZ2hhTO/TDD6YxT83116vf3XefuXzI95mfb64n2rg1cMwxqv2Md1144AGVhvffD82PXr2CZTLkXZxxRvC3pVu2mMpdzd//rq77+uv1T9+115rqlt05+rzCAIzaK64wf6+3lQcP1j8tTzyhnkmO63fsCKnvIWX6f/9TZeMvfzGPset+E0hPN/fv+nznN7+JLp36fHTmzLDn1p5zTujY4+ST7a87cWJIux7Vv7IyI+DxhPQ/VYWFweOmurJypavrRmrz9LlOoH37uNeplvKvoKDAAGAcPHgwonbXIi0t27Vrh4SEBOy2OOrevXs3clyaCfv9fhxzzDHY6BAMJSkpCUk2W3v8fj/8h1g4+rDPpG0n8I4ZA68874wzgscTVq9GQizy5Pvv1b1OOEHdqz60bRviV8eXlGQbKTwhJUWk32broCc5GT7Np0dCdbXJT0dCmzbit5q/GN+ePebt8ppPmoR27YSPjp9/hqewEP7iYnun8RLN91NCTo7we1FQAI/mE8WbkqLyasAAlY7164Fzz3W+thPaypZ3wgTxvJojeF9aWnh3ADbbLzwpKaKMadZsCZWVSNiwQf29bVtoOarzr+Rp3Rp+zRrHW1QEr+Yo2dujh8gDzf+dr6RE+Iiq2x7jadNGlfOuXYPn+fPzzT6KnO4v/djId/jTT/CuXCksUuV1NZ8vvrZtw+eT1r4kGEbos2v+rRIyMkx556+qcueSQcsj32GHid/07i2sxkpK4F2+XJUdrT1N6NKl/nXa7xf+86ZNg2f/fvg13zDenBxTefeVloZYBHkPHBBp0lbfvK1bm9sDLe98huGcF999F/zo+dvfkDBsGDBjBvx+P7xaOvxOLi7qVlc9u3fDv2yZCPbkFumbMy0t2GZ4f/7Zvl2T9Tw1FX6nLaIpKUBRETzl5fBr5czbpo24puZPzldeLp5Hc3GS0KqVeqdt2qiAahK/X/hHqvOX5M3MDE1r3T08RUXw+3wNCzZQXW0OMAGxZQd+v8q7zEz4nXY2nHwycPTRwLp18H7zDbybNwv3Etu2KZ9OKSnBz75169Q7/uknUYasVoz61u/U1Mh1TPNt5Qcinu96/PDAA0FfTb7584Gzzw5/vr5SnZUFHDgAT0EBPFqd9nftKgJ11EUi9q9cCQwebL7O4sUhl/YePGguB3UW/p7ERPUsmq8mb00NvJqP3mD/qqNZu3i3bXPf1xuG2H3RqZP9Nr+6euZJSxNpk+W1pgb+mprIfrWiQbO08Us/yW7aaM2/tadnTxGpFIDvwIH6udlZtizkkO+VV0SZMQxg2TL4i4qcy57FYiihsDC6tn/rVvF/mzbw2/n+0t6Tr6wsZFzmLShQ71/zTekxDPgPHFD+wsMhx0MpKfBnZdn6IPO1aiXyt66segxDbFN32GXRKOg+Z1GXpv/+F3jwQXHgl19C/G57fvlFuE2RbU9ZmfBnacGv7TrzpqeLPNbKv7+21uQ3NCE/X7x3zUecp0ePoM9Gf0mJKp9ae+PPyhLHtZ1vvv37YdSd2+RzJs03tqd1a5UW2TYUF8OfkBDqSknzHZrQs2donejXLzi+8G/YIPqiOoL53RAyM4Fdu0T69Gtp/gr9rVub/Pv5KytN5SXhsMNUurt1M10+2GZZ6oppfF9XNzw1NfZ5FEu0eZKvffvQtrBuXOQpLYXf6zWPG7U5mb9uXBcsd5qrC9+WLfV3ZaaNDfwpKfbXsWgG3nbtzOVA81foLyoKDY4UjoMHRZns3980N/Clp4u0aNfyVlTYlz+tfU3o1AkJAwaIsWBhIbwrVsDr86k+ND3d1IcCgLe0NLpyrfneDLa/Tui+M+X9jjjC/n76WLc+7ukKC0XfCMCbna3u0bq1KC/r1plO9+flRXUPxzZPG9t78vIOOS2pvkSTDy0yEE9iYiIGDRqEWVqwkEAggFmzZmGYy+AttbW1WLVqFXLrsR3nV4Vudq0HQmnVSglEsYrCrvsjPf545/PcYDd41kVJu0A8Hk+IgIKUFLOD44oKs2NsayAeIDQ6mx6Ep21bczS0SBHEdQfzHTqoSZHuX0fvKPWohm6DT1jRg/CMHBkqfEYKxGPXEcs81AbNvrIys8Nlu6iYMu/atBHPLt/P/v1mh/TSh6g+kT1wIDTCskTfJhouGI/8vTXAgAzGU1lpDvphVzacqG/0cMC9Q2y9bkqh1utV4va2bUowkwEBgIYF4gHM4p4+ocrODg3oYo0SK/Ncn0xby5SNiGKLHvBhyBDzd3o6nCKI6+XTwfVIxHvn5iqfO5EC8YRz+K0HUbAr126jh4dDrz922+VlngUCDQ/2tXJlaDAMWQZlfjgFVQNEe61HHH/pJfG/PuDUFteCrkbmzRMD08MPD3XOrwfCiNTOAaFRs2PBkiXABx+ov91Ec9bfhZycFhcrQcnnE3kp2y3A3N+GO1afQDx6oAC7fExJUX2mUzRkO159VYgFffqERn82DHP0XiB+Ee8Bc79uF4jHqX7ofbomdNQrOENRkSrDAweqPP3kE+Cbb4CRI+EfOhSn3nSTc8CChgTiqapS/afux1vHGojHGojIKRAP4D6CuLyGFAXCBeLR28GmjiCujz3keODll9X4zq4+Goa5H3nvPVW29WfTx3/WQDyAaHv1sapse/X6rr9TvbzLfEtIUO1AuDFwU1JUFBQoTO2BLJd6u6Gj9w12EYytY22noHf1Rfa/xcUq/YA5renpoW2O3p7q708PxCODUgLiHer5YheIB4h/MJ5wgXiA8MFX5N8JCaGLENHMt8LR0EA8gHl8ZxeQzYmKCtHvHXMM8Mwz5v41mujher3MzRXlQPZBO3aINMmyJtsKn0+Vg4YE4nEbPVzHaSt/QwPx6P2KNSCzPkYCRLtsF2CuPuh50NA51q+UFilaAsCtt96KF154Aa+99hrWrVuH6667DqWlpbjyyisBAFdccYUpUM+DDz6IL7/8Eps3b8YPP/yA3/3ud9i2bRuu0ic9JBQ70cP6944dZhHNMITfr2ijM8qopYmJKsJxfbGb7OqCpP5Z74CsnU5ysrkTjBQ9HAgdsOmTzjZtQqMr19aKaK52HY01KqadIKinr2dPJchaRcvNm81RIu0oKVHWaUccIQY6erR4wH30cB0b0TLj55/h0Sf6mzebB2eVlaoMtW4tOljZeezfbz84s0YPdxoI6QM4J9GytlaJkNbBh4wyBwQtZQA0TvRwwP1kS9Zfr9fcSeods/SFFS/RUvMBaBs93DpRlZOjcHmp11m3oqW1TdDLip2gYRjmQa5l9TUsNTVq8te2rWord+1Sg/+NG0V91KPphhMt9eiKduU6mujhTuhW3+FES6DhIpDdhHzHDlEX5POFEy0BYS0q27v33xfvTBeXzzhDtTmyPZwyReR5dTXwxRfm60WKem3FbTmMhrvvNv8drWipW49KS/acHNEGDBqknuuNN8yWXhUVqi078khVrvSyVlurFlj0Z7eKt27yUbbZu3e7b88++kj8v3MnsGiR+bvKSpU22VbGU7SU/by+sNnYoqXetg4dCtSNf1FbKyyR58wBACTv3w+Pvhip0xDRcts21WfXV7QsKRFtmnVBGHAXQTwQUGmWoqXd7hXZDliFu6ZE7oTIzASkP+8dO1S7JMfEgBAtJPqC7Ysvqs8336w+6/7gZX2wChuRRMvumqdcvZzoUbKltb0+BrZYkKK0VOza0sd38cQwRH9dVGSu93qfH6lt0Pt+O/FED+K6fn30C4SRkPUmEDCXU6sQpN+rpMRcNvT3py/UZ2WZF8318a3eXjdX0dLaTsjxTkZG6O4P3dimIRHE9f7dyTLMetzaDunjO9lmyTFLOPFt6VI1d3vzTfNcUdbphAR1f7eiJWCyRDVZ7evlSvZr0YqW1jlMOKIRLfWxqbUsuEGfc1j9aVtFyzZtQo2Z6ku3bqocN9Qw61dKixUtL774YjzyyCO47777MGDAACxfvhyff/55MDjP9u3bsUuroPv378fVV1+No48+GmeccQaKioqwYMEC9OrVy+kWBFCiR2pq6ARSTsRra82Cx333CdFx+HB7CzI79u5Vg4TBg91NGMMRSbS0s7S0HgdCRcvy8uhFS6tFhr7y9/HHwgJs0CAxybAO6qyipZ2QoKcvMVFF4F6/XnW0ixeL+3brBoSzuvjmGyVAS+Hp6KPFJFYSI9GyldXCpqTEPEHXBzGy83cSLeXgzCpa6gNwJ9FS20JtQn/P1kGUnehn/U2krR/RWFqmpTXM0rJjR3M510VXq2jp8dQrGp+JI4+0Fz7tLC2touX+/aIehBMt9WcJZ+GmT8CtgmAkS8udO82Dv2gsLfWy266decHn55+Br78WedS9O3DddUq0dmtpqS8mhRMt42VpCTRcBNIn5JIdO8S7kO1guPyQ359yivi8ZYuw3tTfU69eanK5aZMQ8eqcrgMIfad6WXKyptCJtaXl3LnAl1+aj0UjWqalmQfhslzJ/ikzE7j+evG5vBz461/VuT/8oJ5h2DB70dIpf6z1UZ/gOm2/1SfU0iI0ErqQYF2Us1ogAfETLQ1DTSK7dlUTZTdttN7e6ePP+oiW+oLZwIHAH/7geKqnTsA0oS/M1ScdTgKJjnWCaWdhtHdvaD8AuBMtCwtV/+nG0rK5iJaGocYenTsDV1+tvpsyRbwbvY287DL1WY59NmwA5s8Xn3v1Mp+j1w87wba42JznUmiMxtJSL+9OY+DqarGltU8f4Lnn0Ci8+qrIj549zcK+naUlYC98SIErPT3UGgsINT6Il6WlNX16u2LdgVNaaj8uBsxjXquYpteXprK01MudnWWbW9HSSmqqEmzjLVpaxwzhLC1lO/vKK2KO1bOncz+oL0AsXWp+fv19yXmWbompYyda6gtnen9iJ1pGa5kejaWlnahpZ+EMxNbS0ipa6nMjIPIYNBrS00V7/frrwK23xu66vyJarGgJADfccAO2bduGyspKLFq0CEOHDg1+N3fuXLz66qvBvx977LHgufn5+fj0009xTEOt+Q51nAbmEn0irk+ipTXEkiXuo3/rVjcut/iHxU601AVJXcDUOyBrZ5SSEt7SUjaerVurDj6SaKkPdt55R61uLVkSKqDJAb7Xq7ZIW7GKiNI/Y3W1srT573+VW+EnnhAT+U8/Db2WdWs4IN775ZeLz4mJzpMTiUvRMsmus9EHXHYrr/L/AweECCGJh6VluJVfve1wEi2b2tKytFQNjKxW0rroKgcqUrTMzq6/3x+Jx2Pv/9HO0tK6BbCy0nlxQFKf7eHWgXokS0vrADca0VKf+OuWloBoKx95RNTFQAB4/nn1nebzKAS5Ih4ImC1qGtPSMtJELxpkm6+/yx07wlvH2qG7r/jwQ/N7OuootY3PMIA//9m8QGB9pw2xtGyoaGkYwF13hR53IyLpkza7QbYuKPzlL6osvPCCanOt7ln0tlbmmZNomZCg2rPKyugsLQF3W8QDAXObbx1b2E2Q9HYjUnndvt39duSCArWgodftaCwtk5LMfWk02wUlet8zcKDIU2mx5/UC//d/MOrei1fzLRzEbrEmGtHSaSuqTiRLS6BhoqXVhQ4Q3tKyuWwPLyhQ4kLnzsDppysr6XnzgIkT1diwZ0/zZFqKxV99pY6NH28uT7ohgZ1gu22buS3cvdu8QyAhwTxO0sdD+iKJxEm0XLdO1Vs5N4gV1dVioco6fnrtNZWOCRPUcb3PD9eXVVcrAenww+19N+flqbnBTz/Fz9ISMAszssympIh35LQ93GrkkJamrHWtc189X6xGEJLGsrT0+ezzr76iJaDEr337Qi3L3aL3fbG0tHzvPfH/zp3A2LH2VpL6AkRlpXkxQ7dQ1Hfj2KHXS2mYoFta6qKl3lY0laWlbiWrE0tLS+uChBYXAkBsRUtAjEcvv9z+eUlEWrRoSeLM3r32A3OJnWgZCJitIZy2JFmJpT9LIDpLS71jtrO0tPq0tBNTdOu0SD4tnQb3QKj1iGxc27YVk5BI28MBe7+W1vfw88/Ab38rJvk6cmLj8QAjRqjjd94pfC19/XVkIcFOrJNpjNRQ65Ybdj7D5ETaMIAVK8Tn1FQ1WdEHX/v3OwuP7dqpybQb0dK68tumjZogLFumBs2ybHg8kUUivTzGw6el7grAWn979lTv4ocfRPrlBDEvL/K13eBWtLSbrO7fH9vt4RkZoavgkSwtrf6Pduxwv6prFd70/F+40H7BAAg/QHroIVUP9Os3hU9LoGGWazt3qknhsGFqQLtzZ/Si5TnnqM/Tp6tt/NnZ4nn0IFuffGL+bTjRsrEtLWfOVP1gr15KMIjG0jI93V741ut0+/Zqlb+mBrj/fjFZ+c9/1DnDhqlypfsvDWeJKv92K1rqAosWkM2RX34xW5C4sbTU+8tw5XXRIrELoXt3szDqhJPbnGhEy/btze+qPpaWUrT0+1U5f/VV4KmnRL/0xBMw6nz5en780SxkAQ0XLd1YWlrFBrv2fu9ee8HYjYhs3Y0CtAxLS33c0amTGHu++qragTFliurbhg2zF/n1cfMpp5h9xerYbQ+3lvNAQIwBdD/euuhiZ2mp9ykpKarN0MbAHr3MReO/1g1nny2sOG+8UR2rrjYF9TSVcb3/CteXbd2qxnROW1S9XiWGbd5sFk9ibWmpjzusfnv1exUUKItZu/r40UeinX/2WfNxN9vDY+Wz2QlZ7qQrKCtOomUgoMqjk2hptYqtD7H2aSnbWd3t0A8/iJ0Q1h131r5OX6zS53/ys5NoKctG69bqXCfR0snS0u3uSXm+JNLczypq5uU5j1md6oZbwm0Pb9XKbOEZa9GSNAiKlsSZcP4srcfkudYtlW5FS33lqDEsLZ22h0draakPfOTEsKDA3MFbrb1SUtSqeVISMGaM+t7aOckBuWxYI20PB0JFy507VcfYuzcwapT6vi46MgDRKcv79+5tzkO/X/jL0qyZHXFpaWmLW0tLQIls3burQY5ViHISHj0etWWkPpaWgLJWLCtTk25ZNjIzI0da1L+PhaVlWZkQYeSAJ1z99fnEYB8Qk5d331WDkVg5iLaKlh6PGABEsrQEIouWbreHy7pn1x5Ea2kJuLe2DCdaPvaYyuvf/96cT/Kd2NGtmwhqZB3Qt0SfltZFKlnmduwItVKNRKdOKsjSihVqQCq3PentoZUdO8wToGgD8bgth26YPl19vu8+JcBokS4BiLZi3Tr74Azp6ZEtLQHgttvUu546FTj2WFXee/QQoqne5sm2MNwWOXnfbdvMbZdTPupl/dlnI/sEtU42V682T6AiWVqGK6/Tpon8LC8H3n47fDoAd6KlTE9hoTrfMMz+F/XyHa1oWVqq2qO+fdVEul07MfGts6oy9MVHq7WlndVRuHRs3GgWY5ubpaWTT0u/X5XX5iJa6rtq5ALFiBHAP/8Zeu7xx4tz5JhB5rscNycnKwshu/dgJ9jaifPSPQcg+kenNkDWVauoINuZXbuC7ZNHf85t2+zHOvWhqAj4/HPx+fXXVZrsArxJwlla1tSIdrW2NrI/S+t31dVm8SkWlpZO1mRWwVhvc3S/oXbloFs34JprQvsIOZbNyDD7RG4Kn5Z2Y23APC6VfvcBc3sUjWi5bZu79kUSD5+WVlc/gNguru++MYzQeaHe97u1tDQMtZigL2J266bes54WO0tLILo2U5bV1NTI8yGrqBmu3jV0x0+47eGA2aqdomWzgqIlcaY+oqV1YjFvXuTJiL4y2q2b/UpxtNg1NLEIxGPdtqo3nnq69c5QX6GWHfIHH4ht2mvWAP/4h/pe3/JWWqo6HzkYr4+lpT5ROe88EbBCooswmzYpf5a6k/FoCSdaNtTS0s7Xjb6i7POpDjbc9nBATRSKiuw7PreiJaBWPmXZiLQ1HIh+e3g4K57qauEL9uijgX//WxyLVH/19Ou+sGIlWnbsaF7FbdtWvJ/kZFXPnCwtCwsbvj08EFBlyE78itbSEoiNaCnT5PEA994rLOz+9z+xpU26YXDitNOExaVOS/RpaXUHIstcUZG53LoRLYHQYGGAKnt2oqVexn/8UX1uyu3hcoHP5xNbfGUfVltrzuuLLxaionQRUFWl7u1WtMzMFNtPAeWmABB59eGHom2yEyzCWVoee6z4v7jY7NDfKR+POUYJ9ps2CUv+cFgXEUpLzT7AGuLTUp8UullodWpbrUEx8vNF/9Stm7jugQOqj23fXuSNrGfRipYrVqj3Zg0eoGGceqr6Q99ODNiLluXl9hPTqVPFRFKP3C77a6/XLHboWNslJ9HSbvHKjaig9x9Olpb6BFz/3JTbw/XFUn0b9m23ARdeaD532DDR58k83rJF5JcULwcPVvXRzsLOjaUlIIRUXbS0s7QM56dOtjNlZWpMpT9nVVVokJ76smaN+lxSouYQugHEb35j/o2TT8v8fOFTvlcvUZc++EB95+RXz/qd7jszFpaWTtvDw1la6u1YJDdOOrfcArz0kvCprNfXxhItwwW9lJx+uvqs7xDTx+6RtocDoh95+22x9fjww80CaDhi4dPSalmv7zDo1k19/r//U/Vz167wW9rtfFraiZYHD6qdCvp4ICHBHLNAotdta7/mFtmPRDJWAaITLWNpaWnnr1bvTylaNisoWhJn9IG53YBUPybPtU4s9MGEExs3qkZWTnwaSrwC8eiWlmlp5vOdfPrIwV5mprpX166iYzrsMDG5lmnTBx12FgRufFp27ao6mdWrQ/1Utmql0qqLMPpn3TlztIQTLb3eUJFVX9VysrS0bg/Xsa4oS2EzXCAeIHIwnnC/BeyD2UQjWkYTiCeSpeV336mVfjn5jyRa6ha3OtJqLRboVoRycODxqAH5rl32E+RYbA/XffHF29KyosIscuqipTUQj+Q3vxEDVY9HiFR6JOxwTJyotkSnpakBp9+v2oL6Wlrqvq70aLWSaEXLHTvsRQqrZb2+8q+3gW4HjLpfS4kULbOzzZOF7GzghhvU3/o7bUggnoZED//5Z1XejjtOvCu9zMryFAiI4G2A8g9nfcduREtAWOPJNjApCfj738X2MCnyRita6m5d9KAv4cTfv/1NfX7wQedtbYB9fbQu8knCWVpu3Bj6rvQyt2BB+HQA7reHz5ihJtWvvGK/LU2+r2hFS32LoDV4gIZx3HGoke9q1iyzlY7TZNguLbK8bdumxhSyv+7c2Xkin5SkysCBA/bX3rPHfvGqvtvDExOdJ9365+ayPVwfi3g8og+XQZq6d1fjMSlE7d9vDiim1z23lpZ2W7U3bFB9ppOlpRvREgiOgT3WsZW+MN0QrNZnskzqC2KTJ5sDXuj+6vS24f771e9WrhQCnsSNpSVgFi3jZWmpRxKX99Dvpfdl4dxQWUlNFbs+rIsfsRYtS0rsRWunCO861h0Vshzpgev0eqSjv6dPPxXPWlsryvLYsc7tTG2tCGL69dfmMZ1bS0vrs+h989695vd17bVqXFJdrXZeWMu5FTtLy5oatTgmsQvCI9GNCyR228OB6ERLOzcSTliFzXCLBW4C8ZSXm11k6cj37fHYzw30uZHVxyVpUihaEmciiR5t26qGxsnSEohsuWCN9hoLognEE87SMtz2cKuQ4iRays7Ozjk8IAYGUnhYt05NqNyKllYR0OtV/q22bFFbwFNS1NZ72Unt3avSp29vsevE3BLOpyUQ2jkNG6Y6ISdLS7vt4ZJwomU4a0m5PRyw3yIeydJSF3iWLhUTermS2diWlnodW71aWA5Eqr/nniusZyZOVP9efjmytV806KKlvg1D5o/TYDEaS0snCzercGglnKWlYai2zGlSIJFWrkccIXzJWe/dtq0o39YBrB4tNhq8XhHA66WXhOWU3tbJ9qG+lpZnnim2oH/8sb31VjSi5fffi3KXlwfcc4+oG4YhLEqXLBHnHH64aNt0y8eVK9Vnt5aWRx8tgu5Yj0l0v5YTJpgFWf2dNpVPS7sAaHai5f79qn/Ys0fkpz5odxOIR5KSIsrPlCnCamniRHO90ts8WT/CiZa6WxfdiiucaDl0qBLgd+4EnnnG+Vy7sYU+oXNjaXnVVaKennGGOr5/v3nRqrIS+PZb53QA7kVLXVicNcu+T5fvq7Awuq2z1sjhTiQloVCOq3bsMFv36O2e/p7sFhr0PlJajco+MpJAIvv37dvVM+oLFdbt4bJvrG8gHsBcfp0sLZvL9nB9LAKoKLNPPinESbnAqefzG2+oz3rdC2dpGUm01K0XW7cWbYQsF3I8ZlfPJNo79ch3ZxUtY+XX0km0lAtiqaminZ8yRfSXn39u7gd04SOcJZtbS0vdYj9elpZ6ebWztNSFqmgsLZ2IZSCevXuFqNi9u3gfOpHG2hJ9R4UU9V58UR0bN87+d3pAl8WLzYtSO3eK3QtWkQ8Azj9f9FHDh6sFMq/XPHbX0fvPVq1Cz0tNVXOhgoLQOdef/qT+luVZL+e6NabETrQEQhfeohUtnbaHNwdLy5QU1Sba7ZLbsUPsFuzaVQShtSL7mnbt7N/lwIFi3vz668AFF0ROO2k0KFoSZyKJHh6POr59u5hA2VlDRCNaNkQs02kMS0s3oqW+RdVJtASUdUtVlZqc2U1w3GwP168HqAb6xBPVAFTPZznYitV78PtDOyCnjhUQ4oIcjG/bpgYPbi0trYMzeU55uVkUs4pGkSKIhwvEA4gJkiz/ixaZJ11uRMvMTOWf0G5FMBpLS+u2v9mzI1tKezxikPf3v6t/V17Z8MjhOiNGqLxwsnKQ6BNO3dJSt9SRuNkeHimgS1qaahOsApzum/ekk9Tg3U60XLhQTfbkYNzOL6P+Dtq3F0EE6ktSkrAWOO4483GraBmtpaXHA1xyCXDWWfbfRyNavvaaEChqaoRFXb9+YgV7wgT1zn77W/G/Llrqg3S3oiUQam2pt2HDh4v//X4hXOnf6RMHOTHz++2DAVhpLNFSliddxCkvF+/XKiLYiZZOwbWOPFJEVLeL0mkNagaEFy0HDrQXeiNts//rX1VeT57s7KPKbmyhl5VIlpZTpyoLqq++Um2+NQo5YH4fpaWhQotsW30+c96GEy3z84W7HIlVtDQMlc+7dkWeHMprJySE99sKYK8u0uvPpvdxehmws4bUxadZs9wF4ZHIcYveZuguaKzbw2X93L8/slii1wm9D9HHW3rf2VxESydLS0nr1sLySl+M0UVL3e2PLlqGs7QMJ2oAZtEyK0vUSzmeam6WltZ6u3ChWCyRdXPIENGOe73ARRcBo0ebz7cbS0+dKnyKyjF1t27220clurCi75aJl6WlXd479evRWFo64TYQTyAg2udwiy5ffCEWOqqqxDhTX5x0K1rqffyHH4ryKi1k+/Z13iWUkhK6MHDMMartnjdPBBvVqapSuxp0ws2N9HGp3XxP+nUHRBtrnXP17Knq0NdfizTofZzdQrf+jmIpWjpZWrp1qWEY0VlaWueF4RYL9N1aVkvLqiohNMp25q23QtMl52rh6vbppwsDDieBmjQJFC2JM1JIsQ7MdaRoU1EhGgIpuPn9aiC7YEH4hi5WFn460QTiieTTMiFBHS8pUc/iRrQsLg6/RVViF/HbbiuZG0tL6/UkutWb3aRddqAej72Pk2iw5o3eIVlX3Xr2VGWltlYN5htqaQmYB8jhtofXx9ISUBHWKyqUU3jAnWiZnq4si5cvD60jckLl8YiBidNqZ0mJEE11Zs1Sg/f27d2tdMaDrCzhs/Hxx4FJk9Rxu/zRy6RuaWl3bixES49HXdtqaakLJD17qvrw00+hK/JWK1fDsL+3vvAzYYI7S75ocbK09Plic79oREurkP7TT+aJ9sUXK/+cumip14NoREvdCiM11TxJ+fOfhdXSzJliMNy1qxrs220Pd+PPEoiNaGkYqgylpalgZ3aWllbLs927Q0XLjAxz/fB67Z3NRyLa7eFJSfbblCPlZZ8+ykJm3z7g6adDzwkElPXmEUeo54vG0tIahV1OdsOJlqWl4pkOO8wccVe2rZ06mSc1eht98KB5yyhgDvJjFS0BMZF9910x3ho82N4CzDCEuCIFpt69I/qKdiVa6pNEq2hZU2Oe9OpiAeDe0lJHb+91S8vERPP4w27buI4enVofp+rl12l7eHPwadm6tXuRSxeH5biyRw/z5Nvt9nA79LZQjqOk+BKNT0vUWVoaRnwsLe2Ck1RVAQ8/rP7Wt8zbYR1X3HqraIfuuEOU70ceEdZW4Rav8vLs6168oofbtXF290pIcN4qHQ1utoevXClE8yOPdF7sBMxj8fJyYcUox12RXDFJ9B0V8+eb3YtcfXX4d6ULzG3bCkvN999XfcmjjwqfnhK9XenVS5SL++4zB8yz4rRTQUcXLeXcy+cTfYzHo7Yml5WJcb1u4XnlleZrJSebn7m+oqWdOzAnS0u3gW8qK1UbFevt4YCqH9b03HKL2U+p1dCguFjtiKvPuIg0KRQtiaC6WmyJ0htkp4G5jj4R37pViZY9eign2NXVooNxIpZimSQ5ObQRdArEE87SUnYCUhgMZ02nD5hlB2GNHO6Evm1FDsb0SYHMZ7vBv92kUL+eRBct9U5KRpyWHWi3bpED5kQiWtFSH2jLwY2dpaWdxaN1y4R+jizDaWmhgnQkn5ZuREs9T6dNU5/diJaAGljX1qotsxJ9a4XH4zzZ+vrrUCHtyy+V7yA7K+nGZMgQ4MYbzXkSSbTcv18NRuzOdeNLMJJoqV/bKsDpW1EPP1zVl+rq0EmXLs4dOCAGu3b3llYA0tovHsiBXGWlSKssJ7GYRAHuRcsdO5QFd69e5glkly4i8NDbb6t0OQV/ika0HDJEWYsdf7zZZ2xamrBakhaXuvN53cehnJi5FS1jET183TrVX5x8sirbdqKl1Z3Cnj2hE1mPx+zDs0OH+lkLRBs9HLAXCtzk5T33qM/ffBP6/S+/qHdz9NGqPm7YoI5HsrS0IreR6uKHzPulS0VdfuIJVY6lxUZxscoPa9uakqImkcuWhU4cdYFUviP9Xe3dK8QSQNxXfpZs3gyMGSMsQKRV02mnOT9jHQe7d4ch3+ecOeq3eh+nT+qtouXOnaF+l/VtmZEsLe0WW3NzVRnTRcsOHYCcHHVepC3iUlxo185c1vTxVrjt4YYhRKpFi8S/77+PbiusFNTt/FLr7Nlj9k0oxxzRiEt2gqS1zuXlhS4oyGe2G9d16KDqi5zMA2ocJd9Raalo49xaWubnI7G4GB79mkBsLC3z81WbqD/rK6+oz7r1qR1duqj24ZRTzFHbe/QQAZEi+Xb3eu2t1GNhaWm3Pdwu7+3u1aWLO//YkQgnWpaXA3fdJRZ1Fi8Wxz77zNlC3Dpu2rQJ+N3vRF2ItKtJRy5OGoZqk5OSxLXCceKJ4n+vV/yua1dRRvT3rhse6IYMo0eL8x54IPwcVS+LTvM9KVpWVwNr14rPhx+u+lN9TvHFF+ZzcnPNLtSsBivhFul0X6JW0TJSIB59fOYmUB0QulMsEnrb1LFj5N9YF+gBsbvH6mJm61ZzP2xnDERaDB7D0L1yEyeKiorQqlUrHDx4EJl2wlELpLq6GjNmzMAZY8bA360bBufnI9/rFQ2aYahGLjHRPLDWKS42iwtyIitFQ7k6m57uPIHYuVPcLyHBPFhtKPn55u0KesN74IAaALRvrzqbvXvNk8/MTNE47toVOihNSTF3TIGAmnwmJ4tJZ3W1aiTT0pw75JoaNSGVv9XvmZcnJkP69SRt2oQORvW0AOK3uqhaW6smA8nJIl3y76SkhkdM27PHPMFt3Vp1Qnoey3SVlpqjVqalmc+T7876/LK86ujvVmJXtvQ8snvmggI1UJP5b0XPR52MDHuB2UpZmRqwybImkeVXf0Y5QdPr5MGD4bcSWstpc2D//tCteXr7kZKiBhp+f+jgoqJCDcqc8rqkRF1PqyMVFRVI1hchZDnV2wc9T9u1E+VADo7atlWDRb2dlLRtK35fU2Oud3K7jB4wJ9boZTY3V7QpgYB9PakPbvsFvVzL91NeLspzWlpoXXKqR9FGsq+pEfdJTY0s1BUWqjKWnS0meXZ1LhwOZcwOU7lzukarVkrIraxU4pHMQ/1cQAmbsi7INkQv13b1xw12fZddmnTKy80W8oC4txuXE7Jts0uvft/0dPGO5LuT1y8qUnVUF7B0i5nERNWnyPvo/UxqqmqXWrcWfYkcIsu6rOdLamrogpYcz0RCjjucxlDynjk5ojxWV4u06tdOSRH3j+DKoKKiAsmlpWYLE7/fXAeyslQfbH23VVX2fi6tz+LEvn1mQQwQ6S4uVu2kfC7pXkbmid7e2uFUbvQ+Ro6prM8i65q1//T5xLXcuIiQz+b3i2eyK+uyzHg8oq3xeELHim6wjusANV7S2b3bvJCZkyPaQ70eSfx+kffWhU95Xf3d5eaKa+jBJfUxiz6OTUlBZWIikqyLW7Hoi/Tn0OusTm6ueeHKjqoq8W7kwnB9sCvbMr8bgp6Xsp2xll05p9LbOCA2Y3jA3N/oY3jAPNbQcWrvreN+Wd9btRJ/W8f/Tti1RZYxrm1faxiinPj95rbKUmaD19HHMHq/HA79N07jbr3NlehtgD4W8nrVHFBeT2/XrHVJ70us4xG78Y6Odb6s96F6u+O2/urP4WYOor+HcGNLiXV+aB1DJiSo59HLpFMdihGO47wYkJOTgyVW45ZDgGj0NYqWLjmkRcszzoD/7LPR6fPPsSPyzwghhBBCCCGEEEJIHOnYsSN+sdsV2MKJRl+Lgf04OSQYNQo50jS+VSuxChPJkgkwr1roq2dytUy3+LBb+bRaUMRy1cO6Eqhb7chVN5/PbPVk/Y18DuvKtVN6pXWkXI3SLU8irdbpeZWWpqwF9RVOu5V267You2exW73U76dbeERa6XSDdTVRt5bQV6blCrLdaqfMS91K0vr8dit4VmskwHnlTr5XqyUqoFYe7b7TsbPsjCYPpWWOdQVTHvf5lM8qa57o+eH3i/taV6HdrhI3JrpVlCQ7W5UBfYXZzhLFzWqp/l60lVbTSqheFnXrCL2+d+zobF1lZ+UayUo0nuir8B06qDTHMh129dLpHMC9taTVmj3eeae3zdJiyK7OhUMvFxGsCYLlTpb9hARRjvbts6//dpYKVgvlzEzxO2mlIvsKvf21swZ0g50lejjLG4nVYsOt1ZGdZb3Eavms+42V9V/PG92SpKZG1PHUVJFX+nlt2qgykJQk2hmr5bROmzYiX6z5He75AfGerL63pPW+nXWqFauFaPv2UVmGVVRUIBkIHdPpY4CcHGfLGLs+VRKpfwTs+8j27c3+xSSpqeL+VuthO8JZvepWR/p3+lhDR/YJMj1u+k27nS/yWtZAWnqQr4wMZ2vFSOh9k1PeW/PbaacKIPLGMEKtv+SYTa977duLa4Qr/1obWp2UBL+d31A7S69osPZzZWXmfri+bV590HcJSZx25kSDvqtBtr92fRYQ2uZEW6ac0C0H9TGttd4lJ0cuz1aLaGudkO2Q03xGRy/fNn111NZu1nmb9R6RLMkl+vtxmjfbjX2t9ciuvZSWk3r7ZX32cPPpcHMdIHQsa62j+rXdWPK63WWoU1Ul/tntxrGij3FyckRZ1a3zAXsNw25XXwyJt6Xlrx6DuOLgwYMGAOPgwYNNnZSYUVVVZXz44YdGVVWVYSxbZhiimzSMc84xjKefVn+/+KLzRX7+WZ2n//vyS/H9LbeoYx9/HPr7p55S3z//fGwf8OKL1bW9Xne/GTPG/ByvvCKO9+sX+owPPRT6+8GD1f1qaszP9+qr4e/9+9+rc5OS1HUKCtQ5FRWh6Zg/3/56Dzwgvvf5DGPTptDvx41T1zjlFPX5669dZZXrZwEMY9Ys9d1FFwWP18g8LC9X5w4dahiBgEg3YBjHHKN+W1Njvu7dd4fe+6WXQvPo7LPt0zlypDpn3z7zd23aiOM9eoR/1unTQ+83dWrELApy5pnqdz/+qI7L5x80SB3r1k0c69BB/P322+q3t98u8qdVK3NaPvzQfVoaiylTQvOsuFjlucejjk+YEPr7hQvV9zfdZH+PCy5Q52zdahiGpc0zDMMYP16ds2aNOFZbaxgpKeLYUUeJYyUl6rzjjlP3kO2Cx2MYCQnic/fu6txRo2KSXa656SZ17zlz1OeTT47dPXr0ENds29b++/Xr1X1PO839dY85xlweRoyITXqd+OGH0DIm33vfvu6uUVNjGBkZ4jd5eaLdsiFY7kpLDaN1a/s+88ILzT8qKlLfnXqqOHbaaebf3HCDYTzyiPr73XfFeX/6kzp27731yBzDMKqrQ8v8//1f5H7n0kvNadyxw939LrxQ/WbzZvN355xjrsvbtqm/zzxTnKP1K7K+2/LCC+YyprefhiGeVU9/nz7q8223GcYdd6i/Z84Mvf6AAebfd+1qGBs3mo/5/aqsfP11aFno3t0wJk4MPd6mjWFs2eIuP+sIlr0VK9R1LrtMfHnYYeLv1q0No7TUPB7QufFG9d1vfxuaP5HQ80z+++knw7jmmtDjd9xhGN99p/6+/nrn637yiTpv0iTzd88+a99H/PJL6D07dBD9jz4OHjcu8nPp/e+gQYaRmKj+3rlTnBMIhPbJ+rj4tdci30fn7LND2wUrev/q86njP/0U+ux3323/fmT9luNIQOT3ww+rv997L/TeRxxhGIARyMw0fhw7Vp07dKj6/OmnkZ+zrEy0gXYMGiSu4/GIcvvpp+a0P/dc5OvHCr2flf9qaxt+XX2sK9vf//5XHXvySXWu3kYBhvHWWw2/v2EYxptvqmv++9/2x//xD3NfeuWVodfZsEF9f/HF4tj774fmGyCuFQm9zXz0UdNXIWM8NwwZospTZaU4ptezX35xd52VK9Vv3njD/hx9bi3/LVpkPscub+TcoLZW9CmA6Bd1tmxR5593nvk7OU458kj7dOntJRDaB9fWqrGtx6P6oYoKw1i+XLy3H35Qc81vvlHX+vOfnfOsvkyYoK6/Zo15LL9ypWGsW6f+vuQS9Tu9PbPTJBpAvcoeiUpfYyAeIujXT62czJ1rdpocLpBHbq79iqmM/HXCCeqYHlhGokf2ilXkcIm+0u3Wv0ykQDw6dtZdcpUuEBCrTLoFRSSfHnrEb7kCefLJ5udISgpd8XNa1bn1VmDKFODjj+0duOv5/fXX9sfrizVv9DRqK4qGvFdysrIG2LxZWN1IawJ9xTwhwbx6aRcAwG5Fz2nVXS/bMmgPEGpNE45TTgm1II7GYlh3pC/rSFWVen67KH5yRVR3ij1ypMifU04xX7+pA/HYYReoKS1N5bVhOJ8LxCZ6OGAuK9KSaNcutYIr27G0NOHcHlCBq/bsEZEzAeCYY5Qzcz3QQDSBZGKBbuGgpyOWq8l68CL9PUmsZdItVuu6eOedjEIKqH4o2kA8CQkq2vfOncD27WFP98yfbx8RGlBRQyXp6aqcO0UPtwvEA5itIOrrP87nU+VJpllvI53aFWtgELd5qVt/WH20/fSTulbnzuKfLIcykI5dPkRK35w56rPsf/X3kJoKvPGG+vuHHyLngfXeAweK/lc/V7eUtLNYOe884Pbbze2TxyMCSFgDz7lF/5012J209JHjHavfQz0oxYQJ5u8iBeEB7C2O2re33/0QTSAevZxY2w+939b7ULu28J57xHvr1cscjCkS+vj1rrvEmEsi+/LNm0OtVF9+WX2ONsqzPpZzipCtvxP9ee187ubm2lvDW6OHA6K8hAvEI68HwFNUhHT9/Zx8svocKYL46tXivkcfLQK26NTWmoOTpKaKa+tj90iRw2OJNcpxWlpkX5puSEhQ+Rsuerj1M2A/3q8PToF4ZNBOQLwjPQ/0IIYS/X3LsnnWWfY7KdxY5J10kmiXH3tMBHlsKLJtNgzV1sn/o4m10Lcv8N57wLPPAhdeaH+OXXuvj0UAYMSI0KjgMuCT1wt88gnw178CTz1l/l3Hjqrs6f1USYkqQ07jAeu8z1q3vV4VQNIwgJdeAt59V+TdgAGinxs4UKTznnvM7YSbQDzRYg1UpY93u3cX6ZBtgt5OMxBPi4aiJRF4vaKhBMQAS48iHk70SEgIHXQlJqoJvh7BT0br1Gks0dLtVhSrA2kptrkVLa0RxN0IJxJdtJTISHk61q0XTqJlejrw5z8Dp59u/72e33JbZps2sXHgHS56eJ24E/D5YAwapI7LwczevcC4cSHnB9EnI3aDs1iIliUlKk8iDaKysoDBg83HohEt7eqIvgVUHzzIz2VlIn1SIPL7VXREq1DUHEVL6yRWBiewE/YbGj08MdFZtNOvLUVqKZAA5oi6MpLogQNi4KMLHiNHAn36hF4/FnUpGvS24Y471OdYTWIAlWcy6I2VliJapqaqurFunXgeWefdbAWT2C06OOD56CP1x7hxKi99PhGh1HSyR5WfcKKlvtVMTl71vmTAgPDpD4dsN2XdkG2kz+c8+bFG7XUrWurvXxc7ZHRmQJRjr1fkjaxv27eLMUskMUXSs6d9my7z7Oyz1YTx1lvFgq7s13/4QUQjldgJTnaipcdjrgu6WOckWrZuDfzlL+rY3/7mKlK4Iykp6jk2bxYTT+vCnEyL1cWI9KPl9QK//a253XTTtljb+8REccxJtNS3PNpt5ZboW/mt7Ufv3uqzLgpYJ9BdugDXXKPSJcvBjz+GD3AHmMevRx9t3xb88EPo73QRs1On8PewMmSI+uxUHvR3otcFO/HASbSUZUIfOxUWuhYtAaC13pfqoqUuMOzaFbr49eKLYpv+jh3A3Xebv9u8WfU78l2lpwOnnqrur0dYjjd5eebxbSwXCGV/Lre9OuV9vERL/d3rbbJ13paRoeqs/s4l+vuWaUtMDF0Asd4zHJddBtx8c8MDHgH28wDZ5uXlRXePCy4A/vhH5+Bz1vY+Ly90jNumjVgIl/TqZU5D376iXljbDr9f1WV9PqO71HLqt+X4VmLXVkyYoNIxeTJw8cX27fOzz5rHJTHegg3APNYtKlLCePv2asFXCr0//qjGdhQtWzQULYlCH1TrK2ORVoKtokiPHqphy8tT33//fajAIDu/tm0jRwuLFr1zqK+lpRQE7Vao7awHrD4Jo7G0tBM9zjkn8n3r6z/D2knJYw31xQOEFy1vuAG1kydj0cSJ5k5XH2h99ZX4v21b88QNMA9q7Kw87AY9TsKjk2ipW0O5GURZxZloRMshQ1T5lBMdXbS0s7QEhDWCrKfDhqmBgZ6WjAx3K9eNjTV/5ODBLq/ra2kprYXatXMu03aWlrqlgC5a6iL/k08CX3yh/h41yn7RoSktLfXn1wXMhqK/D6sFUW2tEnPbtIlOMLNOnBtD8JXv9OBBs5VkNNHdIy3MSQwD3o8/Fp/9fuCZZ4RY+uCDwIcf2i8u6L6ZamtDLeB277a3vjnvPODpp4HXXw8VEaNB1sf9+4WwINvIzp2d+9R+/cxtVkNFy19+UVY+en3U+8vVq1U+JCSEv6fXCxx3nPlYQoIqC0OGAO+/L6xY7r9fHJOLawcPKhEqJ8e+77UTLQFzu6xPlqzRv9u3V+/s9ttFOl55JbQfrA+yv9y9W/yTEzmraFlQYBaSpNVRTo7IW92avz6WltLS1G7Ml50t8lW2M/W1tOzTB3jnHeCJJ4BLLlHH/X5z2b3/fnN5ke/LMIAVK5zvDSiLs4QEMUHWy5VsC3TR0q4fila0vOgi8Uz//a+wOLOjGVhaAkCKXGzJyjL3j3Lcct99Yo5w7rnma+iLP++8Ayxfrv6WltWAuQ144QVg0iRhhRYLIcstXq/Z0jCW/sNlvYnG0jI9PXbjjn791Ge9HMt5m9+vyppsm/PzQ3022llaAsAf/mA+z+Nxjp8QT6zzgIoKtXATrSV0JKzjGidjHb2/sJsbOiGfZd8+VVfdiJYdOpjHw3aiZV4ecOaZ4rPuQ/U3vxFCrZxTFhaax0LxsLS0jnVlX6CXL5m35eVqfKeLrBQtWxwULYnCzirGaWCuY51sWbdLyAF4WZnaTgmIjk2uZsXayhKo3/Zw6+pYtNvD5coOIESNaETL7GzzIH7gQPuJrNXSMpoJts7hh4duY4nVewgnWmZkIHDbbdijW1kCoZMfr1dsh7PmgewYs7PtB/yxsLRsTNEyPV0NDlevFhNjJ9FSnyRMmqQ+61ZaRx+tyuExx8RGhI411vyRq/RuLS31eioDVOgYhrJOCzeAj2RpqbdlcjILCKunV14RnxMThZVrcxMtAVGH3nlHWb7HgnCi5bJlqu6MGBHd5LGxLS0Bc3snA9EB0bWpulARxtIya9MmeGR/N3KkmJzl5gL33qsmAlZkHshBtx6oCAjdHi7ff0IC8Kc/AZdf7v45bBOdJf6vqhKDfVlHwllv+/3K6qlTJ/e7HJxESyfLZ90SZdYsNUFz48Tfun30iCPMffz55wPXX6/Kr1735SKJUx5YhRzZz40apfpB3RLM5zP3Meeco+7r9Yp0TJgQm3ZcXxjURQj5nuWEurZW1W357gE1gT/7bPVbaz9uh51oCdhPGuUxuSWzvqIlIAS+//s/c332eFQ+HH10aB3Rn8fOSlISCAgLHkD0tzLYnyyjS5YIsV3fZn7ZZeZrtGtnLySGw+cTz/S73zmfk5Wl+i69ziQlhZajvLzQvPP7VbqslpaR3DDYBfno3NncFmzZIqyj/vUv8ffHH6u5QHl5aL7fc4/6rIuWep/bpYsQoN2Ux1gTL9FSt7Q0DGfBWP/co0fsxnxt2yq3EsuWiTJfWwts2CCOHX64GovpeWDd0m9naQmIXVTDh6u/s7Jis7U+WqzzAD1Cc1OJlmedpT7LXVRusJvTuDFC8nhUv3jYYc7v4brr1OfcXOCDD8Rc99lnRV8lkQu0QHwsLfU+ZdUqtcimly/dMGf9etEeL1sm/m7bNj7pInGFoiVRHHZY6OTWzdZS6zn6IAlw3j4nB3xA/EXLxtoeftZZarA3dap5UB1JtATMgzDr6rPE7fbwSCQlhW4jiZdo6SaN1rT87W9iBc/KlClCsPvoI/v3Wl/RUre0ila0PP5488QoGtFS/h4QHe/ixe4sLT/8UPyfkaG2twFi8DF9uhjov/hidOloLOJtaVlWpqyzwolfdpaWTiKJ3I5knRAMGybeUXMULSdPVgJSrAgnWuoD1Wi2hgNNL1rqA+5otodnZSkRatmy0KifdeQsWqT+sHP7YYeeB2vWhH6/b585cm0sJ8yAuT7qVmeRxgXPPCOsqKZPdz+B1t+/vu3XaRHhjDPU5w8/VGKKmzywWp/a1V0dXbSUOOWBfv+8PLUg06GDsAJ74AEhVOvoi5VO/X4s0BcGdWHIamkJKKveHTvUhFBOeMePBx59VPQvbibU1nZJPq/T9nBA5VtJiWOdCo6vEhOjay/efReYOBH49NPQMYT+rsP5tdy+XUUa1yfHsmxVVYk8lvncoQNwww3ma8RaENF5/31RB3W/dx5PqNVTTo74p9fTrCz1dwMsLYNIy2xZZzZvBt580zzOkW5Fli5V/rwln34KfPut+Lx6tToeqd42Fvo4IZZCiBRmAgEh5rqxtHRj+RwNsj6Uloq2eOtWNbbSy72eB9Yt4lI083pDy/zVV6vPTbUryCr06T58Y11Hre2U05zrpJPETokpU4ArrnB/fTvRUhf6dbcZVp5+WrQZ773nfM6YMcKf5d//LnzLnn++aiv0MZ8uXMd7e7huDGVnaQkI0XLOHGUFrI8fSIuBoiVRWP0uAfUTLZ0sLQGzyXg8/VkCTROIp1UrsboPiMmk3NaSmelOOJWBi7xe4RvFjlhtDwdC891uy3h9CGdp6YTuF/K884A777Q/r2NHsaIuA2BYsdte4iQ8dupk77haFwLcDKRSUpTAmp0d/RYXax1xY2kpue220NXbvn2Bhx4KXUBoLjiJlg3xablvn5pcu/Ula2dpKbeH+/3mAavPJxy/L1xonixJK7nu3UMnhI0tWuq+28aOFdtLY42TaLlgAfCPf6i/o/W/Z7XQaYy8s24TlugW826Qiw61tcLCyobc774THzwes6VaOCKJloDZiiWeoqW+RTPSuKBzZyHOWX39hsMpEI+Tu4bOndX1ly1TFnluJkjHHmu2JIkkfthZb7kRLa1i58iRYlJoLduy323bNnqxPxr0hUFdkJPvWRcRpWhpZ3WUkADcckvo9k4nrP2hbO/tREt5TA9+4eTXUpaTvLzorMsGDBCTbjuBp29fNVYLZ2npNH7VF+nfeUf1RYMGiXKni3rxFC379xd10PqM+lisTRux2Or3m61e9TGP3gb88ovZ36lb0VLuiJHlr7hYWVlKpGipzxH07e8TJwoLP9kOJSWFzjWainhbWgIiz9z4tIyl/2ogVMR3Kvd6HlhFS9lHdekSahgydqyq81b/9Y1FOEvLaN03RCIpyfxew825Lr9cxCWIZhE1kmgZrq/r1k20GfouBjt+/3tRH61zo6OOsre0jncgHn1BVS//evlct84cq8PtwjFpVlC0JGasEUxjYWnZv78aKOmWllYn5rGmKSwtAfPKocSNlSUgOqj77xer5E55Eqvt4UDoPRpje7gTvXqJQf7DDwsr1fpucbFGGAechUe/X3WyDdkeDgjrorvuAqZNi36Liz7RCSdaWgfEbduKyWNLw2l7eH0sLauqhEVhu3ZqIOJWtLRaWgYCSiTp0cO+3Rg6VAzen3tOCMP/93/iuNcbuord2IF4evYUdeiRR4TPs3i4BrATLfPzxSKLFJBvvTV64a8pLC0HDBBtze9/r/7dc48YkEdDpGA8GzYgU1pvDBvmPhqpk2ipty/61q9YTw7qK1rWh9RUVR+dtodbRQrdKlFaZ7kRDTIzzX7CIvkMy8sL3crsRrR0u1X13/8WZe5//2vYImQk6mNpqVsd1XcC77Q93No+tmmj2vZIEcTLy5X7Hbut4fUlOVm142vX2gcbA8wRlPVxk74AKV2IAEL88XrNfspjLYi4QW8jdIFRz0Mn0XLuXOCbb9Tf0VhaAubyZ40yPWuWWHTURcunnlJC1jffCFFE/s4anKQpiZelpTXYSFNYWlrdJTiJlnoe6O/2wAE1nrYTVJOTgRkzhM/ep5+OSZKjJitLtVHxtrQEzO1erA127ERLaZ3ctq37sUd98HhCNQQg/paWusislzF9EX/NGrE7DxBlriFB7UiTQdGSmLFuJYyFaOn3q4iHW7cqp8BOg75YEe9APE6i5fHHh4qBbifgmZli63O4VSB9AuD1uhdk7dDzPTFR+a9pKHreJCQ4R9KzctFFwjqsoZNvq0gZTniU5XfvXiUW6oMWt86aO3cWW9qt/tLc0K2bGuwvWGC2YAtnaXnXXU3juLyhpKWZ62S0lpZ6edqyRQXM+Ogj8R71gCXRWFru2qUmqeGsVP1+4NprhcCliwzWVezGtrQERB267bbofaW5xSpaVleLe8p2ffhw4J//jP66rVub87Kx8m7cOLHdSf576KHog8LZ7SYIBETZ3LQJ3qlT1ffRrPDrfZguWuplU25RTUuLvT+w+m4Pry9SONG3JMtJcnJyqMhjl5duJ0jSMt7nM0dktsPjCbWadMoDXVjV/bWFo2tXYfnnZPkbK/QJne4Oxa1oWd8JvJNomZhobk/0qOH6ZzvRUg8uEUvRElDvurbWvPVQx2nRvXfv0KjP+jUvvlgd0wOdNBZ6v+BGtPT57PvCLl3sLcDCiZZ2opVcdN+5U7iMkos+WVliMeGvf7V7CrUrqTnQt6/qu2Jp/anXm3CWlvo9Y+3TU7e6++EH53mbk6WlvhPASVAdPFgsPEe70BlLZHv+889mA4Z4iJbSnUzHjrFvu6yi5b59qq3s2zf+Pu7tdgrE29JSRy9jWVlKpF2wQFnsjx5Nf5YtlAaoHeSQJCdHDLrkBMnN5ERv1BMT7Rv5448Hvv5afF64UPjBkIO+pKTYiWU6GRliwFVTU39LS6ft4SkpzkKcxwNcdZUQDiRuLS3doK8wJSc3rBPSBx1HHhm7lWt9IhJPyxEnsrLsJ2V2dO2q/CVt3y7yxK0PmFjh8YjAJW++KVbT585V3zlZWnbsaHaK3ZKQUSLlCnw4S0u7wYk+WdIH0YBYVdYtLcNZO1otLcNZdbmhOYiW8Uav20VFYpFFWt907CgsPeuzkOLxiN9LX0iNbaXaEI48UrTxhYWif5s5U9TNumcxtarR+CzUy49ezvv1M/uEBkIt8GOBXj/0+8VTtFyzRvhMKywUbV84y6qjjxaCil5v3W7PvOce0Y8PHOjO4m3QIHOwJqc8OP98sVugVSvRpjcn8vJE22kNXmYNxAM0jmgpP8tFOn2BMNL28EhBeBrCwIHKSvKHH+xd0eiipW7Rk5Agzv/qK/P5Ukw65RSxOLJrV3S+6mJFtJaWgAiI+MILakEvOdnZNUBWlvheLqYA9paWMi233SYWigBxjz17xOfjjlNukp591mzBnpsrdiU1F9q2FTtsFi4EbrwxdtcNZ2mpiy5y0bBNm/otmocjO1uUjR07RF2Q/iwB8/whI0Ocu3u32dJS3wkQ663rsaRrVzHur64Gvv9eHY+HaPnEE2KseN55sRcR9bgU27aZ5zLRRCGvL3aiZbwtLSUJCaHv6+ijxaKXXAQF4us3msQVipYklN/+VkwcPB53jVxSkphQrF0rVuXshC+rJcrZZ6uJRizFMh2PRzRYq1a5j57rdnt4pEArV1whtjvI7ZKxFC31CUBDBcHevcXAsaxM+FuKFXr+xMviKxz1sbQERCffs6faTtGYfpNGjhSiJSACNkj0SYYu7t93X9Pkbaxo1UqJlg2xtLSyapW5PYnG0tLJf55b9PbS54uPkNTU6Hm2ejXwxhvis98v3FroFlLR0q+fEPqys6MPZtWUeL1ikj1jhhB7HLYeGQMGwBNNe6KXXX2bar9+oc7yY+3PEjC3m3rk8nj54rNGEK+uVve188Xl8YiJ38MPq2NuJ0hZWUoscYNbS8vExPj4ko0FXq/oQ2T0X0k4S8tYRNKVEd3lxLG41kkAADJfSURBVFEXJzt0UO2uk2hpZ2kZT9HSTQRxKVrm5ISON44/3ixatmljHoP+/vcxSWa90McTuv85PQ+t46VBg9xb8Hk8QlTULeysPi0lF18s6q+sh889p76T4pvHA/zxj+Jfc+b008W/WKKP9QsLxRwLEOVNHwPFu80ZNEjUt4MHARlQrmPH0PHNEUcI0TI/X1iGZmSYRctYb12PJXp7LncVWH29xooePYRlaTxITRULQXv3hoqWjRG4qmNHsYijL3I2lmjZpUvognnPniIAj8TrNUdmJy0Kbg8nodx1l/j35pvuLSCnThUrpi+9ZP+9VbT873+VoBePreGS114TK7LPPOPufKft4dGKlrp/PSC2Fld6Y90Qf5aAeI4PPgDuuMN5G059SEpS1nBNLVomJoYXd62iZXm5EtQb02+SvkKpD/j1ScZ554nBzuOP2/tObUnoA3Kn6OE+n335SUhwXqG2WlqGq3t+v8rfWFtatm0b/604TYH+3l57TVlt3XJLw7e3/utfYvL1/vux3+ocb+wsXIYMAcaNQ+DSS7Fl9GjUvPpqdNd0Krt220rjLVpKcnMb3u84YRUt9UjBTguoVquJeOQDYBYtdR9oLQ07ayc70VIGXJGWlgkJ9feHJi3rJVZLS4nT9vC5c81+pgGzaGkX/KEh9Oun2h+7COKFhcoi0G78ao1OP3Bg8+kLot0eXh+sW8SdRMurrxY+72U7p/vytubhrxF9rP/pp6oOjB7duOnQ277aWvG/XbnXx0xyIUIfyzZ3S0uJXCjr2LHljUMA9Sw7d5oXXRpDtARCrS0ba3u4XfmyltOTTz40d0D9SmiBtZHEncxM4Zvvkkvc/+aYY0TwB6ettO3bK8ulhQvNK839+9c/rW7SNWWK8iESCX310udTIqZVOHFjBaSvDMfSWs+6PbyhjBkjfNDZ+SJqCNKBelOsruqT7datw08YrKLlunXhrXviRdeu9j599A4/MVFY8N54Y/OZBNUXWT7at1eDCKulZatWzs+pbxHXByGrVrkXLeU9AGFpqYuW9bG0zM5WAyd9y+ChhN72yXqSmQnceWfDr929u7CaO/HEhl+rsdH9QbdqBTz/PPDdd8DUqah97TWsvO469/2QxK7spqbaD84bS7SM19ZwwCw+7dzpzkpk6FCzmBYvX1VduypruXiOWeKNXX/sxqdlXl7DFvDciJa6VVO3bkow+PprsWvmvfeUtWY8LS3T0tRkd/Vq85ZYIHIQSevijdVKtylx2h6u16/69H062nWNtm3VPVu3Vta6ffuqLeBWNwpeb2x3/rRU9LG+blnf2JGP7axs7URLu2A8LdHSUhKvHQXxRj6LYQBffKGON4arKyBUtIxHn5yaGioo25Uvazll1PAWDUVL0njYrZyee66Kvtsc0C0tdUEwWktLQAzEXnwRuPtu4eMyVsRye3g8efVVYX3l1so1ljhFv7TDKlo29nYKncZyYt0c+Oc/RZTp995Tk2HruwpXz/QFhnvvVQOW1auVlRAQWbSUZeXgQTXQ9vvdu5Sw8tZbwM03Cz9chyJ27+T222PrAqMlMmyYaOv+8hex8HH11Q230rDz65mdbb8FPx6ipZ3FVTxFS6ulpZu22BqROV6Wlh4P8O67Lb9u2wnedj4t9+4VfgllW9rQCXy0omXbtmLnjnyfu3cL331//7v4e+dOdW6sRUtACTXV1cCSJebvnCIoS7KyzAsUsQ6O0hCcLC0HDwb+8x/ggQdEcLKG4GTB6fEAb78txvzvvqsWJK3jnj59Wq4lcyyxBuIBxGJtrLehR8JOdI9kaSkXgKWlZVpa9AHuGpNDUbQEVBCerl0br06dcorZ2CAeu+08ntAt4m4sLfWxAmlxULQkjYduiZKbKxxXT5/evAYnuhCiN7T1ES0B4az8r3+NrW+7WFtaxotBg4BHH2281T2daERLq+NqfUsiRcv40aOH2A6sR9hNSTFvPQ1Xz6RVVpcuIpK3fFclJeYtMZECush7lJSogXaPHvW3Kjr2WOCxx6K3qmspWN9J+/bATTc1TVqaG9ddJ9w3xMpqPSsr1NI4J0cIOlZBNB7+Uxvb0tJpe3ibNuHz9KKL1Od4pm/oUFG37azrWgp21iiyv/T7VT4vXmwOCOcmWFE45C6CnBxzG6LnpTVfJ0wQfvx0H2QPPyxcUsRzezhgXmS/5hpzEJRIoiWg+vKEhPhHhY8G+f7tooJfc01sfGVr78OwlpvjjxeBSPR8s457Yh1MpqVi16aPHNn4c6bc3NCFMrs20GppGQgAW7eKv3v0aN67gw5V0VLSmHMZPSBU587xc7FlrR92fVvnzqrsHntsfMcHJO4wEA9pPMaNE1sFEhLEJLc5BlqIpaVlvNAHLPHyLdbSiUa0TEsTIsC+fUK01LcyNLZoaRdt9lAVLe3weMT7koEXwtWzV18VvnGvu07Uzz59gI8/Ft9JJ+Beb2T/XPr3MuJpQ7fHHcqkpYk2XPq2uvvuQzPgUHMgIUHUh8JCdSwnR5Tr9u3NUZUPhe3humi5apWypuvTJ/yE99RThZXrjh1NE5G5JWG1RsnIMI97rrtOCFe1tcD116vjDZ3AP/KI2PI9dqz5XV58sRgXtmoFnHRS6O86dwY++gi49FLgnXdEFOU5c5Ro2aZNfCx5rrgCePppEZRy7Vrh0uidd0Ta161T5zkJ2PfdJ/L12GPrb7UfD269FaipEemqr4/SSOjbw92Um8MPF+9ZuiKgP0uBnTjZFJGPPR5hhDBjhjrmxtJy507l87o5bw0HhJV3UpLZFURDF2qaiqYWLQGxy/Dpp80LirHGWj/sLC3lDol33mleuzpJvaBoSRoPn09sPWnO6JaWzVW0bCmWlk2JLkS5cSrftasQLXfsUIOs1q1j7+czEu3bC39pMnoh8OsSLQExCXUjWg4bZp7c2A3KWreOvEXX7h6NFTG+JeLxCPFh0yYx0bz22qZO0aFN27ahoiUgJlnxFi2TkoQgpEcuj6do2aGDGCfU1KgotYC7Cdd118UvXYcSVvHAKkzffLOwhCsoMPuja6hoecQRIoCclcREYNKk8L/1eMTk9513xN/TpilBOx5bwwGxODNtmgimVVQk3JgMHCjESxnFOS3N+f7t2omdJs2N9u2Fn/d4ou8ycAqgpePxAGecIbane70iWAYJXQz0eICzz26atAwcqETL9HR76+aMDGHVtns3sGEDsGyZ+q45B+EBRLnr0sXs15yWlvWnZ0/gySfjew8328MB0Z6wTTkk4PZwQnSctofXJxBPvKBoGZloLC0B1ckHAkoI6Nu3abazNIYT6+aM/r6iqWd2gzI3UQLtRG1aWobn1VeFz8ZPPmEbFG+sZVhudbJu14uXL0dr+xlP0dLrVQtFMsgT0PgTrkOZrKzQQHU6GRnAXXeF/q6pJ/CjR6u25u23lUVUPLaGS448UljzSyZOFPVOirlHHdUyowvHm2OPRe1jj2HD2LEIuLV8fvBBYQn1+utiUYyEijLDhsXPOjYSul/Lnj2dx8Zy7LRnj1lgbe6WlkBo39bUbV59seuj3SwetDT0+pGezqjgvwLY2xKi43Z7eFP64czOVtZ3LbVTjTd6FG43VnPNYWVSMmqU+e9fo6WlJBrR8sgjzYsOgLtBjN09KFqG58QTRXTslhxFuaVgLcO6paVOvERLq6gfb59QdiIURcvYoluk2C3aXHdd6NbIpt4qmZYGnHaa+FxUpI7Hy9JScvbZwgWGHYMHx/feLZjA9ddj3eWXu9+636GDsPBtaBCgQwnrPKMptoZLhg5V86Nw5f6YY+yPt4SxwqEiWmZlmQU9n08ssBxq6PWjuftMJTGB28MJ0WkJ28PT04E33gBmzRJRe0koffsCTz0lfFT+4Q+Rz29OouVJJ6ktksCvT7Ssr6Wl3y8sAPSIw5GC8AD2k3ZuDyfNBWsZbmzR0mqVF2//pXYi1KFoJdKUdO8OLF0qPtvtREhOFj4Zr7lGHWsOE/hzz1V+iyXxFi0B4dYoORn4/nt1LDcXuPfe+N+b/HqxtulNKVrm5Qkr2PnznUV8QFhp19SYA2WdeGLL2J6rzwOSktyNH5sjHo94FhnIrmdP4YbjUEMfi7QES17SYChaEqKjW1rGInp4vDj33KYdwLQE9CACkWhO2ynS08UAb/ZsMaGMR5CB5kx9LS0BITTromV9LC0TE5tX4ATy68bt9vB4iYm6qNUYkTetIlSXLk27s+FQRLe0dHKfcuWVwvfhTz+Jc6zlrSk46yyxHVt3HdAYomVCAnDPPfG/DyE6Pp8o3zt2CEvFpt4Bcuml4l84cnJEULSWiN6/derUsi33dNHyUN2pYLW0JIc83B5OiI6TpWVz8mlJYk9zEi0BMej7wx+AqVPFhOnXhD6JjlassL6z+vi07NHj15fnpPnS1NvDm1q0PFQnXE2JbpXiJFr6fMD06SKK9tSpzcN3Y7t2oRHGG0O0JKSpeO01sYDw2mtNnZJDH71/aw6W5Q1Bf5ZDdacCLS1/ddDSkhCdlmJpSWKLdTLepUvTvuOjjgJefLHp7t+U6P5Iox2IWAWO+lhacms4aU44WVpStCT1pV8/9TlcG9u7d/MTS847D5g3T/1N0ZIcyowcGRqckcSHnj3FgnVtLdCrV1OnpmHoQuWxxzZdOuKJHrBL79PIIQtFS0J0WoJPSxJ72rQRjv5LS8XfnCg3HRdcAKxYIXx5RjtYr49oabW0bOotWITo6GW4VSu1mNZY0cP1+kHR8tBg2DDgn/8Edu4Exo9v6tREx7nnAjffrP6maEkIiQXZ2cDLLwu/nRMnNnVqGsb48cCGDcI6/VAVvS+7DFi3DmjfvmX4TCUNhqIlIToULX+dSMfVa9eKvw/V7RQtgaQk4OGH6/fbLl3ElpHiYvE3LS1JS0cvw7pQ2ViWlrqvqN6943MPHWv0cLbFscfjAe64o6lTUT+6dhXRi5csEVbALTVYBiGk+XHFFeJfSyc1FXjssaZORXxJSwMefbSpU0EaEYqWhOhwe/ivF120pHVPy8TjESLHwoXi7/pED6elJWlO6GVY+rMEQkXLeAXiuegiYfmckQGcdlp87qGjW875fGLLHiE6L74oFrYuuaR5+NokhBBCSFyhaEmITm6u+mydPPl8QE2NsARLSmr8tJH40rs38Nln4vPgwU2bFlJ/jj1WiZa6zxsnrAsQFC1Jc6JTJ7EDoLraXDZTUsxWxfGytExJaVxrhvR0c8TcxMTGuzdpGfTvD7zxRlOnghBCCCGNBEVLQnT69BG+njZvFhH7dJKTgZISWlkeqtx6K1BQAAwcKALhkJbJX/4CHDwIDBrkzgdferqw1gkEhEDS0qNGkkOL1q2BF14AZs8G7r7b/F2HDvEXLZuCl18GXnkFuOWWpk4JIYQQQghpYihaEmLFyddTXp5wbNylS+OmhzQOubliokxaNjk50b1Hj0fU6a1bhbVtQkLckkZIvRg/3j5gyuGHA5s2CWEzNbXx0xUvTjutcbaiE0IIIYSQZg9FS0Lc8swzwPPPAzfe2NQpIYTEkv/8R/hJ06PSEtLc+cc/hE9W+vYjhBBCCCGHKBQtCXHLyJHiHyHk0IKWXaQlMmAA8PbbTZ0KQgghhBBC4gaX5gkhhBBCCCGEEEIIIc0KipaEEEIIIYQQQgghhJBmBUVLQgghhBBCCCGEEEJIs4KiJSGEEEIIIYQQQgghpFlB0ZIQQgghhBBCCCGEENKsoGhJCCGEEEIIIYQQQghpVlC0JIQQQgghhBBCCCGENCsoWhJCCCGEEEIIIYQQQpoVFC0JIYQQQgghhBBCCCHNCoqWhBBCCCGEEEIIIYSQZgVFS0IIIYQQQgghhBBCSLOCoiUhhBBCCCGEEEIIIaRZQdGSEEIIIYQQQgghhBDSrKBoSQghhBBCCCGEEEIIaVZQtCSEEEIIIYQQQgghhDQrKFoSQgghhBBCCCGEEEKaFRQtCSGEEEIIIYQQQgghzQqKloQQQgghhBBCCCGEkGYFRUtCCCGEEEIIIYQQQkizgqIlIYQQQgghhBBCCCGkWUHRkhBCCCGEEEIIIYQQ0qygaEkIIYQQQgghhBBCCGlWULQkhBBCCCGEEEIIIYQ0KyhaEkIIIYQQQgghhBBCmhUULQkhhBBCCCGEEEIIIc0KipaEEEIIIYQQQgghhJBmBUVLQgghhBBCCCGEEEJIs4KiJSGEEEIIIYQQQgghpFlB0ZIQQgghhBBCCCGEENKsoGhJCCGEEEIIIYQQQghpVlC0JIQQQgghhBBCCCGENCsoWhJCCCGEEEIIIYQQQpoVFC0JIYQQQgghhBBCCCHNCoqWhBBCCCGEEEIIIYSQZgVFS0IIIYQQQgghhBBCSLOCoiUhhBBCCCGEEEIIIaRZQdGSEEIIIYQQQgghhBDSrKBoSQghhBBCCCGEEEIIaVZQtCSEEEIIIYQQQgghhDQrKFoSQgghhBBCCCGEEEKaFRQtCSGEEEIIIYQQQgghzQqKloQQQgghhBBCCCGEkGYFRUtCCCGEEEIIIYQQQkizgqIlIYQQQgghhBBCCCGkWUHRkhBCCCGEEEIIIYQQ0qygaEkIIYQQQgghhBBCCGlWULQkhBBCCCGEEEIIIYQ0KyhaEkIIIYQQQgghhBBCmhUtWrR8+umn0a1bNyQnJ2Po0KFYvHhx2PPfe+899OzZE8nJyejbty9mzJjRSCklhBBCCCGEEEIIIYS4pcWKlu+88w5uvfVWTJo0CT/88AP69++P0aNHY8+ePbbnL1iwAJdeein+8Ic/YNmyZTj33HNx7rnnYvXq1Y2cckIIIYQQQgghhBBCSDharGj56KOP4uqrr8aVV16JXr164bnnnkNqaipefvll2/Mff/xxjBkzBrfffjuOPvpoPPTQQxg4cCCeeuqpRk45IYQQQgghhBBCCCEkHL6mTkB9qKqqwtKlSzFx4sTgMa/Xi1GjRmHhwoW2v1m4cCFuvfVW07HRo0fjww8/tD2/srISlZWVwb8PHjwIACgsLER1dXUDn6B5UF1djbKyMuzbtw9+v7+pk0N+RbDskaaA5Y40BSx3pKlg2SNNAcsdaQpY7khTwbJXP4qLiwEAhmFEPLdFipYFBQWora1Fdna26Xh2djbWr19v+5v8/Hzb8/Pz823Pnzx5Mh544IGQ4927d69nqgkhhBBCCCGEEEIIIcXFxWjVqlXYc1qkaNkYTJw40WSZGQgEUFhYiLZt28Lj8TRhymJHUVEROnfujJ9//hmZmZlNnRzyK4JljzQFLHekKWC5I00Fyx5pCljuSFPAckeaCpa9+mEYBoqLi5GXlxfx3BYpWrZr1w4JCQnYvXu36fju3buRk5Nj+5ucnJyozk9KSkJSUpLpWFZWVv0T3YzJzMxkBSNNAsseaQpY7khTwHJHmgqWPdIUsNyRpoDljjQVLHvRE8nCUtIiA/EkJiZi0KBBmDVrVvBYIBDArFmzMGzYMNvfDBs2zHQ+AMycOdPxfEIIIYQQQgghhBBCSNPQIi0tAeDWW2/F+PHjMXjwYBx77LH497//jdLSUlx55ZUAgCuuuAIdO3bE5MmTAQA33XQThg8fjn/9618488wz8fbbb2PJkiV4/vnnm/IxCCGEEEIIIYQQQgghFlqsaHnxxRdj7969uO+++5Cfn48BAwbg888/Dwbb2b59O7xeZUh6/PHH480338Q999yDu+66C0cccQQ+/PBD9OnTp6keoclJSkrCpEmTQrbBExJvWPZIU8ByR5oCljvSVLDskaaA5Y40BSx3pKlg2Ys/HsNNjHFCCCGEEEIIIYQQQghpJFqkT0tCCCGEEEIIIYQQQsihC0VLQgghhBBCCCGEEEJIs4KiJSGEEEIIIYQQQgghpFlB0ZIQQgghhBBCCCGEENKsoGj5K+bpp59Gt27dkJycjKFDh2Lx4sVNnSRyCHH//ffD4/GY/vXs2TP4fUVFBa6//nq0bdsW6enpGDt2LHbv3t2EKSYtka+//hpnnXUW8vLy4PF48OGHH5q+NwwD9913H3Jzc5GSkoJRo0bhp59+Mp1TWFiIcePGITMzE1lZWfjDH/6AkpKSRnwK0hKJVPYmTJgQ0gaOGTPGdA7LHomWyZMnY8iQIcjIyECHDh1w7rnn4scffzSd46Z/3b59O84880ykpqaiQ4cOuP3221FTU9OYj0JaEG7K3SmnnBLS5v3xj380ncNyR6Lh2WefRb9+/ZCZmYnMzEwMGzYMn332WfB7tnUkXkQqe2zvGheKlr9S3nnnHdx6662YNGkSfvjhB/Tv3x+jR4/Gnj17mjpp5BCid+/e2LVrV/Df/Pnzg9/dcsst+OSTT/Dee+9h3rx52LlzJ84///wmTC1piZSWlqJ///54+umnbb9/+OGH8cQTT+C5557DokWLkJaWhtGjR6OioiJ4zrhx47BmzRrMnDkT//vf//D111/jmmuuaaxHIC2USGUPAMaMGWNqA9966y3T9yx7JFrmzZuH66+/Ht999x1mzpyJ6upqnHbaaSgtLQ2eE6l/ra2txZlnnomqqiosWLAAr732Gl599VXcd999TfFIpAXgptwBwNVXX21q8x5++OHgdyx3JFo6deqEf/zjH1i6dCmWLFmCU089Feeccw7WrFkDgG0diR+Ryh7A9q5RMcivkmOPPda4/vrrg3/X1tYaeXl5xuTJk5swVeRQYtKkSUb//v1tvztw4IDh9/uN9957L3hs3bp1BgBj4cKFjZRCcqgBwJg+fXrw70AgYOTk5BhTpkwJHjtw4ICRlJRkvPXWW4ZhGMbatWsNAMb3338fPOezzz4zPB6PsWPHjkZLO2nZWMueYRjG+PHjjXPOOcfxNyx7JBbs2bPHAGDMmzfPMAx3/euMGTMMr9dr5OfnB8959tlnjczMTKOysrJxH4C0SKzlzjAMY/jw4cZNN93k+BuWOxILWrdubbz44ots60ijI8ueYbC9a2xoafkrpKqqCkuXLsWoUaOCx7xeL0aNGoWFCxc2YcrIocZPP/2EvLw89OjRA+PGjcP27dsBAEuXLkV1dbWpDPbs2RNdunRhGSQxY8uWLcjPzzeVs1atWmHo0KHBcrZw4UJkZWVh8ODBwXNGjRoFr9eLRYsWNXqayaHF3Llz0aFDBxx11FG47rrrsG/fvuB3LHskFhw8eBAA0KZNGwDu+teFCxeib9++yM7ODp4zevRoFBUVmaxICHHCWu4kb7zxBtq1a4c+ffpg4sSJKCsrC37HckcaQm1tLd5++22UlpZi2LBhbOtIo2EtexK2d42Hr6kTQBqfgoIC1NbWmioRAGRnZ2P9+vVNlCpyqDF06FC8+uqrOOqoo7Br1y488MADOOmkk7B69Wrk5+cjMTERWVlZpt9kZ2cjPz+/aRJMDjlkWbJr6+R3+fn56NChg+l7n8+HNm3asCySBjFmzBicf/756N69OzZt2oS77roLp59+OhYuXIiEhASWPdJgAoEAbr75Zpxwwgno06cPALjqX/Pz823bRfkdIeGwK3cAcNlll6Fr167Iy8vDypUrceedd+LHH3/EtGnTALDckfqxatUqDBs2DBUVFUhPT8f06dPRq1cvLF++nG0diStOZQ9ge9fYULQkhMSF008/Pfi5X79+GDp0KLp27Yp3330XKSkpTZgyQgiJP5dccknwc9++fdGvXz8cdthhmDt3LkaOHNmEKSOHCtdffz1Wr15t8hdNSLxxKne6P96+ffsiNzcXI0eOxKZNm3DYYYc1djLJIcJRRx2F5cuX4+DBg3j//fcxfvx4zJs3r6mTRX4FOJW9Xr16sb1rZLg9/FdIu3btkJCQEBJdbffu3cjJyWmiVJFDnaysLBx55JHYuHEjcnJyUFVVhQMHDpjOYRkksUSWpXBtXU5OTkgAspqaGhQWFrIskpjSo0cPtGvXDhs3bgTAskcaxg033ID//e9/mDNnDjp16hQ87qZ/zcnJsW0X5XeEOOFU7uwYOnQoAJjaPJY7Ei2JiYk4/PDDMWjQIEyePBn9+/fH448/zraOxB2nsmcH27v4QtHyV0hiYiIGDRqEWbNmBY8FAgHMmjXL5KeBkFhSUlKCTZs2ITc3F4MGDYLf7zeVwR9//BHbt29nGSQxo3v37sjJyTGVs6KiIixatChYzoYNG4YDBw5g6dKlwXNmz56NQCAQHIAQEgt++eUX7Nu3D7m5uQBY9kj9MAwDN9xwA6ZPn47Zs2eje/fupu/d9K/Dhg3DqlWrTKL5zJkzkZmZGdz6RohOpHJnx/LlywHA1Oax3JGGEggEUFlZybaONDqy7NnB9i7ONHUkINI0vP3220ZSUpLx6quvGmvXrjWuueYaIysryxThipCGcNtttxlz5841tmzZYnz77bfGqFGjjHbt2hl79uwxDMMw/vjHPxpdunQxZs+ebSxZssQYNmyYMWzYsCZONWlpFBcXG8uWLTOWLVtmADAeffRRY9myZca2bdsMwzCMf/zjH0ZWVpbx0UcfGStXrjTOOecco3v37kZ5eXnwGmPGjDGOOeYYY9GiRcb8+fONI444wrj00kub6pFICyFc2SsuLjb+/Oc/GwsXLjS2bNlifPXVV8bAgQONI444wqioqAheg2WPRMt1111ntGrVypg7d66xa9eu4L+ysrLgOZH615qaGqNPnz7GaaedZixfvtz4/PPPjfbt2xsTJ05sikciLYBI5W7jxo3Ggw8+aCxZssTYsmWL8dFHHxk9evQwTj755OA1WO5ItPzlL38x5s2bZ2zZssVYuXKl8Ze//MXweDzGl19+aRgG2zoSP8KVPbZ3jQ9Fy18xTz75pNGlSxcjMTHROPbYY43vvvuuqZNEDiEuvvhiIzc310hMTDQ6duxoXHzxxcbGjRuD35eXlxt/+tOfjNatWxupqanGeeedZ+zatasJU0xaInPmzDEAhPwbP368YRiGEQgEjHvvvdfIzs42kpKSjJEjRxo//vij6Rr79u0zLr30UiM9Pd3IzMw0rrzySqO4uLgJnoa0JMKVvbKyMuO0004z2rdvb/j9fqNr167G1VdfHbIwyLJHosWuzAEwXnnlleA5bvrXrVu3GqeffrqRkpJitGvXzrjtttuM6urqRn4a0lKIVO62b99unHzyyUabNm2MpKQk4/DDDzduv/124+DBg6brsNyRaPj9739vdO3a1UhMTDTat29vjBw5MihYGgbbOhI/wpU9tneNj8cwDKPx7DoJIYQQQgghhBBCCCEkPPRpSQghhBBCCCGEEEIIaVZQtCSEEEIIIYQQQgghhDQrKFoSQgghhBBCCCGEEEKaFRQtCSGEEEIIIYQQQgghzQqKloQQQgghhBBCCCGEkGYFRUtCCCGEEEIIIYQQQkizgqIlIYQQQgghhBBCCCGkWUHRkhBCCCGEEEIIIYQQ0qygaEkIIYQQQkgLpFu3bvB4PJgwYUJTJ4UQQgghJOZQtCSEEEIIiZJrr70WHo8HHo8Hs2fPjuq3X375ZfC3N910U5xSSAghhBBCSMuGoiUhhBBCSJRcccUVwc9Tp06N6rf//e9/ba/TVMydOzcoos6dO7epk0MIIYQQQggAipaEEEIIIVFzwgkn4LDDDgMAfPDBBygvL3f1u9LSUkyfPh0A0Lt3bwwaNChuaSSEEEIIIaQlQ9GSEEIIIaQeXH755QCAoqIifPTRR65+M23aNJSWlpp+TwghhBBCCAmFoiUhhBBCSD24/PLL4fF4ALjfIi63hnu9Xvzud7+LW9oIIYQQQghp6VC0JIQQQgipBz169MAJJ5wAAPjiiy+wZ8+esOfv3LkTs2bNAgCceuqp6NixY8g5H374IS688EJ06dIFycnJyMrKwuDBg/HAAw9g//79rtI1Y8YM/O53v0OPHj2QlpaG5ORkdO/eHWPHjsWrr76KsrIyAMDWrVvh8XgwYsSI4G9HjBgR9G8p/7366qsh96iqqsIzzzyDESNGoH379khMTEROTg7OOOMMTJ06FYFAwDF9EyZMgMfjQbdu3QAAu3btwp133onevXsjIyMjat+adj453333XYwcORLt27dHSkoKjjrqKNxxxx0oLCx0vM4pp5wCj8eDU045Jez97r///uD97JDf3X///QCAOXPm4Nxzz0VeXh5SUlJw9NFH46GHHgpa3EpmzJiBM844I3her169MHnyZFRVVbnOi++//x6XXnopOnfujOTkZHTu3BlXXnkl1q9f7+r3GzduxC233IK+ffuiVatWSElJQY8ePTBhwgQsWbLE8XfWdxAIBPDyyy9jxIgRyM7OhtfrZYRzQgghhESPQQghhBBC6sXzzz9vADAAGI8//njYc6dMmRI89/XXXzd9V1hYaJx66qnB7+3+dejQwVi4cKHj9QsKCoyRI0eGvQYA45VXXjEMwzC2bNkS8Vz9fMmWLVuMnj17hv3NiSeeaOzbt882nePHjzcAGF27djUWLlxotGvXLuT3c+bMiZj3kjlz5gR/N2vWLON3v/udY7oOP/xwY9euXbbXGT58uAHAGD58eNj7TZo0KXg9O+R3kyZNMiZPnmx4PB7btBx//PFGSUmJEQgEjBtvvNExzWPGjDFqamps79W1a1cDgDF+/HjjpZdeMnw+n+01kpKSjHfffTfsc02ZMsXw+/2O6fB4PMa9995r+1v9HXz22WfGqFGjQn4/fvz4sPcnhBBCCLFCS0tCCCGEkHpy0UUXITk5GYA5Krgd8vv09HScf/75weOVlZUYNWoUZs+ejYSEBFx++eV466238N133+Gbb77B3/72N7Rt2xZ79uzBGWecgW3btoVcu6ysDCNGjAhacg4aNAj/+c9/8O2332LJkiWYPn06brnlFuTl5QV/07FjR6xatQovv/xy8NjLL7+MVatWmf6de+65we9LSkowcuTIoOXeueeei48//hhLlizBe++9h+HDhwMA5s+fj7POOgu1tbWO+VFSUoKxY8eioqICd999N+bOnYvFixfjpZdeQm5ubti8dOLee+/F1KlTce6552LatGlYunQpZsyYgTPPPBOAsiRsDD777DNMnDgRxx13HN58800sWbIEn3/+OU4//XQAwIIFCzB58mQ89thjeOKJJ3D66afjgw8+wNKlS/HRRx/huOOOAwB8/vnneOGFF8Lea/ny5fjjH/+IDh064Mknn8SiRYswb9483HnnnUhKSkJlZSXGjRvnaC05ZcoU3H777aiurka/fv3w7LPP4quvvsKSJUvwxhtvYNiwYTAMAw899BCeeOKJsGm588478dVXX+Hss882vQP53IQQQgghrmlq1ZQQQgghpCVz0UUXBa3J1q9fb3vOihUrgudcccUVpu/uuusuA4CRlZVlLFmyxPb3W7duNXJzcw0AxmWXXRby/S233BK8/vXXX28EAgHb61RWVhr5+fmmY7qVXCQLxz//+c/Bc++5556Q7wOBgDFu3LjgOc8880zIOdLSEoCRnp5uLF++POw9I6GnH4Dx17/+1TZdp512mgHA8Pl8xp49e0LOibWlJQBj7NixIVaSNTU1xnHHHWcAMDIyMozk5GTj5ptvDrlOaWlp0JKyX79+tveS36POctXOinT27NlBC8whQ4aEfL9mzZqgheWkSZNsy05tbW3QgjU9Pd0oLCw0fW99B3ZlgxBCCCEkWmhpSQghhBDSAK644orgZydrS/24fn5JSQmefvppAMBDDz2EQYMG2f6+a9euuPfeewEA7733nskf4oEDB/Cf//wHgLCwfPzxxx39LSYmJiI7O9vNY4VQWVmJF198EQDQu3fvoM9GHY/Hg2eeeQZt27YFADz11FNhr3nHHXegf//+9UqPHYMGDcJdd91lm65bb70VAFBTU4OFCxfG7J5OpKam4vnnn0dCQoLpeEJCAq655hoAQHFxMdq3b4+HH37Y9vfjx48HAKxcuRIHDx4Me79//etfyMnJCTk+YsQIXH311QCEz0urteW//vUvVFdXY/DgwZg0aZJt2fF6vXjyySeRlJSEkpISvP/++47pOPLII23LBiGEEEJItFC0JIQQQghpAKNHjw4KgW+88QYMwzB9HwgE8OabbwIAOnXqZAp8M2/evKAYdcEFF4S9z8knnwwAqK6uxtKlS4PHZ8+eHQyuc+ONN4aIZLFi6dKlOHDgAAARTMfpPpmZmbjooosAAGvXrsWuXbscrzlu3LiYpvGyyy5zFGx1QXjz5s0xva8dv/nNb9CmTRvb73Sh9vzzz4ff74943pYtWxzv1bp1a5xzzjmO3//+978Pfv7qq69M333yyScAgLFjxzrmHQBkZWWhb9++ABBW9L344ovjVgYJIYQQ8uuCoiUhhBBCSAPw+Xy47LLLAIiI3PPnzzd9P2vWLOzcuROAEOm8XjX80q3ecnNzQyJ36//69OkTPDc/Pz/4edmyZcHPJ510UmwfTmP16tXBz0OHDg17rv69/jud9PR09OjRIzaJq6Nnz56O3+kCYnFxcUzva8eRRx7p+F1WVlbU54VL8zHHHAOfz+f4/YABA5CYmAgAWLVqVfD4tm3bsHfvXgDAxIkTw5Y/j8cTLK96+bPSr18/x+8IIYQQQqKBoiUhhBBCSAMJt0XcaWs4AOzZs6de95OWlQBQUFAQ/FzfADZuKCwsDH7u0KFD2HP1bcr673R0QS5WpKamOn6ni8XhAgQ1dlpikeZI78Pn8wVFW/19xKL8WWndunW9rkkIIYQQYsV5SZYQQgghhLhiwIAB6Nu3L1atWoX33nsv6P+vtLQU06ZNAyC2J/fq1cv0O12I+uGHHxy3CVvp1KlT7BJfD8JtI3YLtxDHjvq+D7383Xfffbjwwgtd/S4tLc3xO75XQgghhMQKipaEEEIIITHgiiuuwO23344DBw7gk08+wQUXXIDp06cHg+ZYrSwBBAPWAED79u3rJUa2a9cu+HnXrl3o3r17PVIfGX179e7du8Nua9a3Dzv5dWxuSKvGQCAQ9jw9CFJzYffu3WG/r6mpCVpY6u9DL39+v9/kgoAQQgghpKnh9nBCCCGEkBgwbty4oJXZ1KlTAait4X6/H5deemnIb4455pjg52+//bZe9x04cGDw89dffx31791a6emC1qJFi8Keu3jxYtvfNWcyMjIAAPv37w973oYNGxojOVGxfPly1NTUOH6/YsUKVFVVATC/jx49eqBVq1YA6l/+CCGEEELiBUVLQgghhJAYkJubi1GjRgEAZsyYgdWrV2PWrFkAgDFjxqB9+/Yhvxk1alTQp+ETTzwREnncDSNGjAhu133yySej9teYnJwc/FxZWel43qBBg4J+KF977TVHi8Ti4mK8++67AIBevXrF1c9mLJEWqhs2bHAMelNQUICZM2c2ZrJcUVhYGIwCbsfLL78c/CzLKCC2cp9xxhkAgC+//BLr1q2LXyIJIYQQQqKEoiUhhBBCSIyQW8Crq6txySWXBAVEu63hgAhGc8MNNwAAFixYgFtuuSXs9uTdu3fjxRdfDLnGtddeCwBYunQpbr75Zkfxs7q6OiT4ii4qbtq0yfHeSUlJuOqqqwCIiOAPPfRQyDmGYeCGG24IBgeSz9YSGD58OACgqqoKTz75ZMj31dXVuOqqq1BeXt7YSXPFrbfeartNfN68eXj++ecBCOF5yJAhpu8nTpyIhIQEBAIBXHDBBfjll18c71FbW4s33ngj7DmEEEIIIbGCPi0JIYQQQmLEeeedh4yMDBQXF2PNmjUARDTls846y/E3Dz74IObNm4dFixbh8ccfx9y5c3H11VdjwIABSEtLw/79+7FmzRp89dVX+Oyzz9C3b9+geCh56KGHMHPmTKxatQpPPfUUFi5ciGuvvRZ9+/ZFYmIifvnlF3zzzTd466238Ne//hUTJkwI/rZLly7o1KkTfvnlFzzyyCPo1KkTjjrqqOBW9+zs7ODW6fvuuw/Tpk3D5s2bcf/992PVqlW48sorkZubiy1btuCpp57C3LlzAQDDhg3DNddcE8PcjS9nnnkmunbtim3btuHee+9FQUEBzj//fCQnJ2PNmjV44oknsGzZMhx33HH47rvvmjq5Jvr374+1a9di0KBBmDhxIo499lhUVlZixowZeOyxx1BTUwOfz4enn3465Ld9+/bFI488gltuuQVr165Fnz59cM011+DUU09FdnY2KioqsHXrVixcuBDvv/8+du3ahVWrVjV5MChCCCGEHPpQtCSEEEIIiREpKSm44IIL8MorrwSPXXTRRUhKSnL8TVJSEmbOnIkJEyZg2rRpWLFiRVgLxczMzJBjqampmD17NsaOHYuvv/4aS5cujUowvOuuu/CnP/0JW7ZswTnnnGP67pVXXgmKnBkZGZg1axZOP/10rF+/Hh988AE++OCDkOudcMIJ+Pjjj1tUJOnExERMnToVY8aMQWlpKR577DE89thjwe8TEhLw73//G4WFhc1OtBwwYABuuOEGXHfddbZlJzExEa+99hqGDh1q+/ubb74ZaWlpuPnmm3Hw4EFMmTIFU6ZMsT03MTHR5FKAEEIIISRecHs4IYQQQkgMGT9+vOlvp63hOhkZGfjggw/wzTff4KqrrsJRRx2FjIwM+Hw+tGnTBkOGDMH111+PGTNmOPpUbNeuHebNm4dp06bhggsuQKdOnZCUlITk5GT06NEDF154Id544w3bgEDXXXcdPvjgA5x22mno0KEDfD7nde1u3bphxYoVeOqppzB8+HC0bdsWfr8f2dnZGDNmDP773//i66+/bjFRw3VOPPFELF26FJdffjny8vLg9/uRm5sbFINvvPHGpk6iI1dddRW++eYbXHTRRcjLy0NiYiI6duyIK664AsuWLcMll1wS9vdXX301Nm/ejAceeAAnnHAC2rVrB5/Ph7S0NBx55JEYO3YsnnvuOezYsQOHH354Iz0VIYQQQn7NeIz6eHwnhBBCCCGEEEIIIYSQOEFLS0IIIYQQQgghhBBCSLOCoiUhhBBCCCGEEEIIIaRZQdGSEEIIIYQQQgghhBDSrKBoSQghhBBCCCGEEEIIaVZQtCSEEEIIIYQQQgghhDQrKFoSQgghhBBCCCGEEEKaFRQtCSGEEEIIIYQQQgghzQqKloQQQgghhBBCCCGEkGYFRUtCCCGEEEIIIYQQQkizgqIlIYQQQgghhBBCCCGkWUHRkhBCCCGEEEIIIYQQ0qygaEkIIYQQQgghhBBCCGlWULQkhBBCCCGEEEIIIYQ0KyhaEkIIIYQQQgghhBBCmhX/DzbfGYBfuSCCAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop для AE3: 0.680\n", + "IREth3 (порог ошибки реконструкции) для AE3: 0.420\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Пути для сохранения модели и порога\n", + "ae3_path = 'AE3_1_WBC_model.h5'\n", + "threshold_path = 'AE3_1_WBC_threshold.npy'\n", + "\n", + "# Создание и обучение автокодировщика AE3_1 с новой архитектурой\n", + "ae3_1_trained, IREth3_1, IRE3_1 = lib.create_fit_save_ae(\n", + " train,\n", + " ae3_path,\n", + " threshold_path,\n", + " epochs,\n", + " False, # не показываем процесс обучения\n", + " patience\n", + ")\n", + "\n", + "# Получаем ошибки реконструкции в виде одномерного массива\n", + "IRE3_1_values = lib.predict_ae(ae3_1_trained, train, IREth3_1)[1].ravel()\n", + "\n", + "# Преобразуем порог к скалярному значению, если нужно\n", + "IREth3_1_scalar = IREth3_1.item() if isinstance(IREth3_1, np.ndarray) and IREth3_1.size == 1 else float(np.max(IREth3_1))\n", + "\n", + "# Построение графика ошибок реконструкции через встроенную функцию\n", + "lib.ire_plot('training', IRE3_1_values, IREth3_1_scalar, 'AE3_1')\n", + "\n", + "# Вывод значений MSE_stop и порога\n", + "MSE_stop_AE3_1 = IRE3_1_values[-1]\n", + "print(f\"MSE_stop для AE3_1: {MSE_stop_AE3_1:.3f}\")\n", + "print(f\"IREth3_1 (порог ошибки реконструкции) для AE3_1: {IREth3_1_scalar:.3f}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "S17i7gCTSpw4", + "outputId": "07e2f641-62c6-4702-9701-7133370ab287" + }, + "execution_count": 78, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 30 25 20 15 10 8 10 15 20 30\n", + "\n", + "Epoch 1000/30000\n", + " - loss: 0.0012\n", + "\n", + "Epoch 2000/30000\n", + " - loss: 0.0010\n", + "\n", + "Epoch 3000/30000\n", + " - loss: 0.0009\n", + "\n", + "Epoch 4000/30000\n", + " - loss: 0.0007\n", + "\n", + "Epoch 5000/30000\n", + " - loss: 0.0007\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcU/W9//F3ZmFm2AVEQBHcqoiKeN1XrAtqrVerbaWtiq29bdVWS71W7q91b21r0da61RVt61brLiq4IKi4oIKigKLsmwzLDMMwM5lJfn+Ek/PNyUlyMpPknCSv5+PBgyST5eTkrO/z+X6/oWg0GhUAAAAAAAAABESF3xMAAAAAAAAAACZCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAECqElAAAAAAAAgEAhtAQAAAAAAAAQKISWAAAAAAAAAAKF0BIAAAAAAABAoBBaAgAAAAAAAAgUQksAAOCr+fPn68ILL9Tee++tXr16KRQKxf8tWbLE78krS5MnT47/BuPHjy/oZ5u/PwAAAMoXoSUAAD4YM2ZMPJi5+uqrUz7PDHCc/yorK9W3b1/tscce+va3v6177rlHTU1NnZqGbP/lKsh65plnNHr0aN1xxx2aP39+VtMPAC+//HLCtmnEiBFZv8fVV1/d6W3h8OHDXd8zHA5r1qxZuummm3TeeefpkEMO0eDBg1VXV6fq6moNGDBABx54oC688ELNnDmzi3Mhe/X19XrxxRd13XXX6bTTTtOQIUMSvtf06dMLPk0AADhV+T0BAACgcyKRiBoaGtTQ0KBFixbp8ccf18SJE3XXXXfpjDPO8HvyMmpqatL48ePV2toqSRo8eLCOPPJIbb/99vEqu969e/s5iV1y9dVX65prrpEkXXXVVWnDaSCohg8frqVLl0qSFi9enDKk88sDDzyQcH/BggV69913dfDBB/s0RTFPP/20vv3tb6f8+/r167V+/Xq9//77uuOOO3Tcccfpvvvu084775z3aTv88MM1a9asvH8OAABdRWgJAECROP3007XjjjvG70ciEdXX12vWrFlasWKFpFj1zFlnnaXHH388q+DyoIMOyuok/9BDD/U+4Sk899xz2rhxoyRp5MiReu+991RXV9fl9wVQHjZv3qwnnngi6fEHHnig06HlkCFDstp29u/fP+NzunXrphEjRmj33XdXv379FI1GtWbNGr399tuqr6+XJL3yyis68sgj9cYbb+Q9uFy1alVe3x8AgFwhtAQAoEhccsklGjNmTNLjkUhEDzzwgH72s5+ptbVVkUhEP/vZzzR27Fh1797d03ufcsopBa8E/OCDD+K3x40bR2AZIOPHjy94X5aWaDTqy+ei+Dz++ONqbm6WJNXV1Wnr1q2SpEceeUQ333yzunXrlvV77rHHHrr11lu7PG2DBw/Wb37zG5100kk68MADVVNTk/Sc9vZ2Pfjgg7r44ou1detWLV++XBdeeKGee+65Ln9+JtXV1dpnn3100EEHxf/tv//+ef9cAACyQWgJAECRq6io0Pnnn6/NmzfrkksukSStXbtWTz31lL73ve/5PHWpWVWWUuwEHwCyYTYN//Wvf6077rhDa9eu1YYNG/Tss8/qzDPP9G3ajjjiCB1xxBFpn1NVVaUf/vCHqqqq0nnnnSdJmjJlilasWKGddtopb9P2zDPP6Gtf+5pqa2vz9hkAAOQCA/EAAFAifvKTnySchM6YMcPHqcksHA7Hb1dUcEgCwLslS5bEt3GhUEjnnXeexo0bF/+7s6/LIDMrzaPRqObMmZPXz9tvv/0ILAEARYEzBAAASkRNTU3CyLlB7LfMHKXXDBXOP//8pFF5J0+e7PoeTU1NuuWWWzR27FjttNNOqq2t1Xbbbad99tlHF198sd555x1P02J+lmXu3Lm65JJLtM8++6hfv34KhUI6/fTTs/qO1qjs1iA8knTNNdd4GoV9/PjxSd9/06ZN+utf/6qjjz5aO+64o6qqqhQKhbRp06aE13711Ve6//77dd5552n06NHq16+fqqur1bdvX+211146//zz9dJLL3n6DpMnT844Uvz06dPjzzG7LXj11Vd19tlna9ddd1Vtba369++vo48+WrfeemtCUJ2K2+/iNHz48PhzlixZIklasWKFfvvb32rUqFHq27evevToob322ks///nP4wPJeDVt2jSdffbZ2nnnnVVbW6vBgwfrqKOO0m233aYtW7ZISlyWc9W1Qn19vf785z/r+OOP15AhQ1RbWxv/DUeOHKmzzjpLN910kxYvXuzp/V555RX99Kc/1ciRI9WvXz/V1NRoyJAhGjt2rG699dZ4c2qnJUuWxL+bOe922WUX1+XYj5GmH3zwwXhXAkceeaSGDx+uc845J/73F154QV999VXBp6szqqur1adPn/j9zZs3+zg1AAAEB83DAQAoIWa/kC0tLT5OSX4899xz+vGPf6w1a9YkPN7a2qpNmzbpk08+0W233abvfe97uvvuuz336SnFQqjrr79eHR0duZ7sTnvzzTc1btw4LV++PO3zbrnlFk2YMMF12q0R5hcuXKjJkyfr61//uh577DFPA4hko62tTRdffLHuvvvuhMdbW1s1c+ZMzZw5U/fff79eeuklDRgwIKef/dRTT2n8+PFqaGhIeHzhwoVauHCh7r33Xv373//WN77xjYzf4Uc/+pH++c9/Jjy+Zs0arVmzRm+88YZuu+02Pfnkkzmdfik22vT555+f0G2CxfoNP/30U/3nP//RTTfdFB98y83y5ct17rnnuoaJq1ev1urVqzV16lTdcMMNeuSRR3TUUUfl8qsUxIMPPhi/bYWVBxxwgEaOHKlPPvlE7e3teuihh3TppZf6NIXe1dfXa926dfH7QRuhHQAAvxBaAgBQQszqyh122MHHKXF38MEH66KLLpIUqwJbsGCBJOm4447TXnvtlfBcs2pUkh599FF9//vfjwdzlZWVOvLII7X77rurqalJM2fOjH//hx56SIsXL9arr77qqRnkjTfeGK+M3G233XTwwQere/fuWrJkiaqrq7P6jmeccYb22Wcfvfvuu3rvvfckpR6dPd0o7IsWLdKll16qhoYG9erVS0cffbSGDBmijRs3JjX9X7VqVXy+7LrrrhoxYoS233571dbWatOmTfr444/1ySefSIpVQh5//PF6++23XQcH6az/+Z//0QMPPKCKigodcsgh2muvvRSJRPT2229r4cKFkmKDL5177rmaMmVKzj735Zdf1k9/+lN1dHRo55131mGHHabevXtr8eLFmj59utrb27V161Z95zvf0bx587TLLrukfK9x48YljEbdr18/jRkzRv369dPy5cv1+uuva/78+frGN76h0047LWffYfbs2TrrrLPU3t4uKXbx4dBDD9Xw4cNVU1OjxsZGffHFF/r444/jA8+kMn/+fB133HFavXq1pFjl6gEHHKC9995bdXV1WrlypWbMmKHNmzdr1apVOuGEE/TCCy/o2GOPjb9H79694+vpgw8+GK/8O/fcc9WrV6+kz9xxxx1zMh+8euONN/TFF19IilWYf/vb347/7ZxzztEVV1whKdZEPOihZTQa1eWXXx5ff3feeWcddNBBPk8VAAABEQUAAAV3zDHHRCVFJUWvuuqqlM+zniMp+tprr6V9z4ULFyY8/9Zbb83JNOTLeeedF//8+++/P+1zFy1aFO3Zs2f8+QcffHD0888/T3hOR0dHdNKkSdGKior4837+85+nfE9zXlVVVUX79OkTffLJJ5Oe19LS0pmvF73qqquynr/mPKmqqopKil500UXRzZs3Jzyvra0t2tHREb9/7733Rv/2t79FV6xYkfK9586dGz3wwAPj73/dddelfO79998ff955553n+pzXXnst/pyampqopOhBBx0UnT9/fsLzIpFI9C9/+UvC/H799ddTfrb5vFSGDRuW8Nk9evSI/uMf/4hGIpGE582bNy+64447xp97/vnnp3zPe+65J+Gzf/WrXyX99mvXro2efPLJCd85F+vP6aefHn+vM888M7phwwbX523dujX6/PPPR3/yk5+4/r2pqSk6YsSI+HudfPLJ0UWLFiU9r6GhIfqzn/0s/rzBgwdHN23a5Pqe5rxevHhxp79jLl1wwQXxaTrrrLMS/rZ8+fKEbcDcuXMzvp+5rh5zzDF5mmpbOByOrly5Mvqf//wnYTtcXV0dff755/P++alks78BAKAQqLQEAKAEtLe3x0cOl2KVUmeffbbn10+ZMkX19fWen3/ttdeqX79+WU1jV1x77bVqamqSJO2+++6aOnVqQh9wUmwwnwkTJigUCmnChAmSpNtuu02//OUv01bXSVIkEtEzzzyjo48+OulvuaxGzEZ7e7suuOAC3XrrrUl/c1Z//vCHP8z4fvvtt59efvll7bXXXlqzZo1uv/12TZw4UZWVlV2e1tbWVu2xxx569dVX1bNnz4S/hUIhXXLJJXrjjTf0+OOPS5Iefvhh13ndGW1tbXrqqad00kknJf1t5MiR+vvf/65TTz1VkvTvf/9bd911l6qqEg+BOzo6dNVVV8Xv/+QnP9Gf//znpPcbOHCgnnrqKR155JHxKtpcmDlzpqTYsjZ58uSkeWipra3VKaecolNOOcX17zfddJPmz58vKVbx+/jjj7sOctW7d2/dfvvtam5u1gMPPKDVq1frzjvv1K9//escfaP82bp1qx577LH4fbMfS0naaaedNGbMGL366quSYtWWkyZN8vz+n3/+uS6++GLPzz/nnHN0yCGHZHze7rvvHq8OdTN48GA9/PDDOuaYYzx/NgAApY7QEgCAIhWJRFRfX68333xTf/jDH/Tuu+9KkqqqqnTfffdl1Wfhe++9l1UIc9lllxUstNy0aZMeffTR+P0//elPSYGl6ZJLLtG9996rTz75RJFIRHfddZduuOGGtJ9x1lln5SxEy5Xa2lr96U9/yul79unTR2eccYbuuOMOrV69Wp9++qn23XffnLz3H/7wh5RhmxQLVq3Q0lpWc+HUU091DSwtp5xyigYNGqQ1a9aoqalJ8+fPT/rOL774olauXClJ6tGjh/7whz+kfL9u3brpz3/+c07DpcbGRklS9+7d087DdMLhcDzgrqmp0Z133ukaWJp+//vfxwe0+de//lUUoeVTTz0Vn1/9+/fXySefnPScc845Jx5a/utf/9If//jHpKA6lVWrVum2227zPD0HHnigp9AynR/96Ef661//qh49enTpfQAAKDWElgAAFAmzz7lU9txzT02aNCnjgCPF5K233lJra6skacCAAfrmN7+Z9vkVFRX64Q9/qF/96leSpNdeey3jZ2RTlVooJ554orbbbrusX/fVV1/p7bff1vz587Vx40Zt2bIlPsqyFOs/0TJnzpychJa1tbUZf5fRo0fHb1sjfueC2Z+hm1AopFGjRsUHb1qyZEnSdzYHrPnGN76hvn37pn3Po48+WjvvvLOWLVvWqWl2Gjp0qL788ktt3LhRjz76qL773e9m/R6zZ8+Oj5Z93HHHaeDAgRlfM2TIEO21116aP3++5s2bp4aGhrQXBILggQceiN8+++yzXfucPeuss3TRRRepublZa9eu1UsvveT7NvGcc86JD7bT0tKiVatW6Z133tGGDRt07733asqUKfrjH/+YVDkKAEA5I7QEAKBE7LDDDnrwwQddB3zJ5KqrrtLVV1+d+4nKgQ8//DB+++CDD/ZUMXXEEUckvD4ajSoUCqV8/n/91391bSLzINtp+vTTT/XrX/9aL7zwgucR0LPpEiCdPffcM+OARWblr1UplwteQtdMnz1nzpz4ba9VcwcffHDOQsvvfOc78erOcePGxYPLY4891lP4KEmzZs2K316xYoXnJs6bNm2SFBsQZsWKFYEOLVetWqWXX345fj9VwNezZ0+dfvrpeuihhyTFgk6voeUxxxzjOup6V5ndD1ja2tr0j3/8Q7/61a+0evVqnXvuuVqyZIl++9vf5vzzAQAoRoSWAAAUidNPPz1hlN7169friy++iDfrXrt2rY466ij95z//iffhVwqs6iRJGjZsmKfXDB8+PH67ra1NmzdvVu/evVM+f/vtt+/09OVLNtP00ksv6b//+7/jFaleWaNCd5WXoMsMNa1Rsv347HA4nPR3cxkbOnSop8/daaedPD3Pi9/85jeaPn263n77bUWjUT355JN68sknJUl77LGHjjrqKB133HH65je/6Tp6txQL9CwfffSRPvroo6ynY+PGjZ37AgXyz3/+Mx7I77HHHmkD5nPOOSceWj7zzDPauHFjpyqX86lbt2760Y9+pH333VdHHnmkwuGwrrrqKn39619PuPACAEC5St/RDQAACIxLLrlEt956a/zfww8/rHfffVdz587VqFGjJMUCunHjxqUd8KHYWAPwSPLc55vzeZnCubq6uuwnLM+8TtO6dev03e9+Nx5YDhs2TDfccIPeeOMNrVq1Ss3NzYpEIopGo4pGowkVX5FIJCfTmq6KNd9y8dnmMta9e3dPr+ls35NuevTooddff1033nhjQuAuxQaGue+++/T9739fgwYN0uWXX66tW7cmvUdDQ0OXpyOXYXI+mE3Df/CDH6R97gknnKBBgwZJig0UZfaLGzQHH3ywzj33XEmxitebb77Z5ykCACAYCC0BAChy++23n6ZOnRqvwmxqatIFF1zg81TljhkObdmyxdNrnM9LVZ1WCu6+++54YDVq1Ch99NFHuuKKK3TEEUdo8ODBqqurSwj2clVdWUrMZay5udnTa7wui15169ZNl112mb788kvNmTNHt9xyi84+++yE6urm5mbdeOONOvbYY5OCSzOo/8UvfhEPqbP5N2bMmJx+p1yaPXu2Pv300/j9q666SqFQKOW/qqqqeD+mUmLgGUQnnHBC/Pabb77p45QAABAchJYAAJSAgQMH6m9/+1v8/vTp0/X888/7OEW5YzaT9tqHoDnQS7du3Uo6tHzllVfit3/zm9+kbQYvSUuXLs33JBWdAQMGxG+vWLHC02u8Pi9b1sBBP//5z/Xwww9rxYoV+uCDD3T++efHn/POO+8kjXC9ww47xG+bYV2p6Gro+Pbbb+uzzz7L0dTkntl0ff369T5OCQAAwUGflgAAlIgzzjhDRxxxRLxK5ze/+Y3vI+bmgjnq9LvvvquOjg5VVlamfc1bb72V8Ho/mi8X6jPNvgwzDUrT0dFBFZeL/fffPx7+vvPOO55e8+677+ZzkhKMHj1a9913nyorK3XPPfdIivXTeNlll8WfY/bv+NZbb2UcfMorP5v+W9ra2vTwww/H7++5554ZR3i3fP7559qwYYOkWPD5u9/9Lh+T2GWrV6+O3+7Xr5+PUwIAQHBQaQkAQAkxRwCfM2eOnnnmGf8mJkcOP/xw1dTUSIr135ipgjQSiej++++P3//617+e1+lLpba2Nn7bbfCXXKmosA/nMjVtfuqpp0qyCq+rzGbRzz//fMb+Id944w1fKlZPO+20+O21a9cm/O2II46IB3krVqzQs88+m5PPLNRynM7zzz8frz6sqqrSjBkz9Pbbb3v693//93/x9/nHP/6Rs35cc+25556L3x4xYoSPUwIAQHAQWgIAUEKOP/54HX744fH7119/vY9Tkxt9+/bVd7/73fj9//3f/03bL+Ott96qjz/+WFIs0Puf//mfvE+jm/79+8dvr1y5Mm+fs+uuu8Zvpwup161bp1/+8pd5m45idtJJJ2nIkCGSYn3CmkGXU1tbW0KFY1e1trYmDASUzvLly+O3Bw4cmPC3mpoaXXrppfH7F154YVbLnTMEtRRqOU7HbBp+wgknJH33dMaNGxcP9pcvX67XXnst59Pn1N7entXASFOmTNF//vOf+P0zzzwzH5MFAEDRIbQEAKDEXHnllfHb7733nl588UUfpyY3rrzyyvhgKZ999pnGjh2rL7/8MuE5kUhEf/3rXzVhwoT4YxdddFHSaMyFss8++8RvT506NSejO7v55je/Gb99ww036J///GfScz744AMdc8wxWr58uecR2MtJVVVVQpXy7bffrl//+tdqa2tLeN66det05pln6p133olX/3bV6tWrNXToUF122WWaPXt2yudNmzYtYeT3k08+Oek5v/rVrzRy5EhJsYDxwAMP1L///e+U1YX19fW66667dMABB+jGG290fY65HP/73//29J0mT56cMCiO2cdsturr6zVlypT4/e9///tZvX7IkCE69thj4/cLMSBPU1OTdtllF1155ZVauHBhyudt3LhR119/vb71rW8pGo1KknbffXf9+Mc/zvs0AgBQDOjTEgCAEjN27Fgdcsgh8b75rrvuOp100klpXzNlyhTV19d7/ozu3bvrT3/6U5emMxu77bab7rnnHn3/+99XR0eHZs2apT333FNHHXWUdtttNzU1NWnmzJkJlWCHHnpoQafR6eCDD9bQoUO1fPlyrV69WnvttZdOPPFEDRgwIN5P4EEHHZRQRdoZ5513niZNmqTPPvtMra2tOuecc/T73/9eo0aNUm1trebNmxcPw0aNGqWxY8f6Ol+C6oILLtDzzz+vp59+WpL0pz/9Sffee6/GjBmjfv36acWKFXrttdfU0tKiXXfdVf/93/+tm2++WVJiE/3O2LRpkyZNmqRJkyapX79+Gj16tHbccUfV1tbqq6++0kcffZQQ0n/ta1/TJZdckvQ+PXv21DPPPKPjjz9eixcv1po1a/Sd73xHAwYM0KGHHqpBgwYpGo1qw4YN+vTTT/X555/HA81U3SiceeaZ+vvf/y4pFua+//77OuCAA9S9e/f4c372s59pt91269I8SOWhhx6KN0vv0aOHTj/99Kzf4/vf/368z9InnnhCt99+e8KI8abPP/9cF198cVbvP3HixIRR3qVYIHndddfpuuuu05AhQ7Tffvtp4MCB6t69u5qamrRo0SJ98MEHCcH4oEGD9Mwzz+QsEE/lmWeeSbi45eaCCy5ImkennXaarr322nxOGgAACQgtAQAoQVdeeWV8EJ633npLr7zyio477riUz3/vvff03nvveX7/Pn36FDz4+u53v6sePXroggsu0Nq1a9Xe3q7XXnvNtbnnuHHjdM899yT0x1doFRUVuv3223XmmWeqra1Na9as0YMPPpjwnPPOO6/LoWVNTY2effZZnXzyyfFga/78+Zo/f37C84444gg9+uijuvvuu7v0eaUqFArp0Ucf1fjx4/XII49Iio3ibDbblWL9DT755JMJv2WmEdvTqa6uVk1NjVpbWyVJGzZsSBgR3mnMmDF6+OGHU1bM7rrrrpo9e7Z++tOf6vHHH1c0GlV9fX1Cn4lOffv2TTmI0wknnKBx48bFB8J55513kgYrOvXUU/MWWpqVkaeffnqnKoXPPPNMXXjhhWppadGWLVv0+OOPa/z48a7PXbVqVdLI7JlccMEFCaFlRUWFqqqq1N7eHn9Pc8AsN9/61rd0yy23JIWf+bBhwwbNnTs37XO++OKLpMf233//PE0RAADuCC0BAChBp5xyig488MB4hd21116bNrQsFqeeeqoWLVqk++67T88995w++eQT1dfXq66uLt4M9Nxzz00YSdlPp556qmbPnq3bbrtNb7zxhpYtW6ampqZ4U9Bc+drXvqYPP/xQt912m5544gktXLhQbW1tGjRokPbdd19973vf03e+852Mo66Xu5qaGj388MM6//zzdc8992jWrFn66quvtN1222n33XfX2WefrfPPP189evSIj0gtyfNI1m523HFHrV+/Xq+++qpmzpyp999/X4sWLdK6devU1tamXr16adiwYfGq3OOPPz7je/br10+PPfaY5s2bp4cffljTp0/X4sWLtX79elVUVKhv377afffddcABB+j444/XCSeckDbg/9e//qVTTz1VDz/8sObMmaP6+nq1tLR0+jt7NW/ePH3wwQfx+9k2Dbf07t1b3/zmN+PN2ydPnpwytMyF3r17a/369Xr55Zf15ptv6sMPP9SXX36pdevWqbW1VT169NB2222nkSNH6pBDDtH3vvc97b777nmbHgAAilUomuujZgAAAKDEHXHEEXrrrbckSW+//XZggnIAAIBSQWgJAAAAZGHp0qXabbfd1NHRoW7duqmhocHXrggAAABKEaOHAwAAAB5Fo1Fdcskl6ujokCSdccYZBJYAAAB5QGgJAAAAKDaA1V//+lfV19e7/n3JkiU644wz4iOMV1ZW6rLLLivkJAIAAJQNBuIBAAAAJC1btkzXXXedLrvsMu27777aa6+91KdPHzU1NWnBggX68MMP4xWWkvSb3/xGBx54oI9TDAAAULoILQEAAABDe3u7PvzwQ3344Yeuf6+rq9O1115LlSXy7p///KfefvvtLr3HHnvsoUsuuSRHUwQAQOEwEA8AAAAgadOmTXr66af16quv6pNPPtG6detUX1+vjo4O9evXT3vuuaeOO+44/ehHP9LgwYP9nlyUgfHjx+uBBx7o0nscc8wxmj59em4mCACAAqLS0qNIJKJVq1apV69eCoVCfk8OAAAAcqyiokJnnHGGzjjjjIzPbWxsLMAUodyFw+Euv0dHRwfLKwAgMKLRqDZv3qwhQ4aooiL9UDtUWnq0YsUKDR061O/JAAAAAAAAAIra8uXLtdNOO6V9DpWWHvXq1UtSbKb27t3b56nJjXA4rKlTp+rEE09UdXW135ODMsKyBz+w3MEPLHfwC8se/MByBz+w3MEvLHud09jYqKFDh8ZztnQILT2ymoT37t27pELL7t27q3fv3qxgKCiWPfiB5Q5+YLmDX1j24AeWO/iB5Q5+YdnrGi9dL6ZvPA4AAAAAAAAABUZoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbQEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKBU+T0B5SAajSocDisSifg9KQnC4bCqqqrU0tKijo4OvyenrFRWVqq6utrvyQAAAAAAAAgkQss8amtr01dffaXm5uZAhoLRaFSDBg3S8uXLFQqF/J6cslNTU6MBAwaod+/efk8KAAAAAABAoBBa5klzc7OWL1+uyspKbbfddqqrq1NlZWWgwsFIJKKmpib17NlTFRX0FFAoVuVtQ0ODVq5cKUkElwAAAAAAAAZCyzypr69XdXW1hg0bpsrKSr8nx1UkElFbW5tqa2sJLQusrq5OvXr10ooVK1RfX09oCQAAAAAAYCCpyoP29nZt2bJF/fr1C2xgCf+FQiH16dNHra2tCofDfk8OAAAAAABAYBBa5kF7e7ukWJ+FQDrWYDxB7PMUAAAAAADAL4SWeRSk/isRTCwjAAAAAAAAyQgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJbw1fDhwxUKhTR58uT4Y5MnT1YoFEr4V1FRod69e2v06NGaOHGi1q1bl/I9na9N9W/69On5/4IAAAAAAADIWpXfEwCk0qNHD5111lmSYqNrL126VLNmzdKcOXN0//33a+bMmdpjjz1Svn7s2LEaNGhQyr+n+xsAAAAAAAD8Q2iJwBowYEBCBaYkffLJJzrmmGO0du1aXXrppXr++edTvv6KK67QmDFj8juRAAAAAAAAyDmah6OojBw5UhMmTJAkTZs2Ta2trT5PEQAAAAAAAHKN0BJFZ7/99pMkhcNhbdiwweepAQAAAAAAQK4RWqLoNDY2SpIqKys1YMAAn6cGAAAAAAAAuUZoiaJj9WN50kknqbq62uepAQAAAAAAQK4xEI9fDjxQWrPG10kISeodjSoUCmX3wkGDpNmz8zJNqVijh99111166KGHNGzYMN1yyy1pX3Psscem/FufPn20adOmHE8lAAAAAAAAcoHQ0i9r1kgrV/o6CaFt/4Jq6dKlroHqwQcfrKlTp6pPnz5pXz927FgNGjTI9W/du3fPyTQCAAAAAAAg9wgt/ZIiTCukqKTotkrLrMLLAk17jx49dNZZZ0mSWltbNX/+fM2dO1fvvvuufvKTn+iRRx5J+/orrrhCY8aMKcCUAgAAAAAAIJcILf1S4ObVbqKRiBobG9W7d2+FKoLXvemAAQM0efLkhMeeeOIJffe739Wjjz6qo48+WhdeeKE/EwcAAAAAAIC8CV5SBaTxrW99S1dccYUk6corr1RDQ4PPUwQAAAAAAIBcI7RE0Zk4caIGDx6s9evX66abbvJ7cgAAAAAAAJBjhJYoOt27d9dvf/tbSdJf/vIXbdy40ecpAgAAAAAAQC7RpyWK0gUXXKBJkybpiy++0J///Gf97ne/S3rOH/7wh6Q+MU3f+973dOKJJ+ZxKgEAAAAAANAZhJYoStXV1br++us1btw4/e1vf9OECRPUv3//hOe89NJLad9j//33J7QEAAAAAAAIIEJL+GrJkiVJj40fP17jx4/P+Nqzzz5bZ599dtLj0Wg0B1MGAAAAAAAAv9CnJQAAAAAAAIBAIbQEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKAQWgIAAAAAAAAIFEJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJXw0fPlyhUEiTJ0+OPzZ58mSFQqGEfxUVFerdu7dGjx6tiRMnat26dSnf0/naVP+mT5+e1bRa0zV+/PjOfVkAAAAAAAB4UuX3BACp9OjRQ2eddZYkqaOjQ0uXLtWsWbM0Z84c3X///Zo5c6b22GOPlK8fO3asBg0alPLvzr+FQiFJUjQazcHUAwAAAAAAoLMILRFYAwYMSKjAlKRPPvlExxxzjNauXatLL71Uzz//fMrXX3HFFRozZkx+JxIAAAAAAAA5R/NwFJWRI0dqwoQJkqRp06aptbXV5ykCAAAAAABArhFaoujst99+kqRwOKwNGzZ0+f2uvvrqeNNwKblPzCVLliS9ZsuWLZo4caJ233131dTUaNCgQTrvvPO0cuXKLk8PAAAAAABAuaN5OIpOY2OjJKmyslIDBgzo8vvtv//+Ou+88/TAAw9Iks4777yEv/fs2TPhfkNDgw4//HAtW7ZMRx11lPbZZx/NmjVLDz74oF5//XXNnTtXffr06fJ0AQAAAAAAlCtCSxQdqx/Lk046SdXV1V1+v9NPP12nn356PLR09qPp9NRTT2ns2LGaOXOmevfuLUnauHGjvv71r2vOnDm6/fbbNXHixC5PFwAAAAAAQLkitPTJgQceqDVr1vg9GYpGowlNo70YNGiQZs+enacpcmeNHn7XXXfpoYce0rBhw3TLLbekfc2xxx6b8m99+vTRpk2bOjUtPXr00P333x8PLCVpu+220xVXXKGzzz5bL7/8MqElAAAAAABAFxBa+mTNmjX0f5jB0qVLXQPVgw8+WFOnTs3YBHvs2LEaNGiQ69+6d+/e6ek68MADNXjw4KTHR4wYIUn8rgAAAAAAAF1UlKHlDTfcoCeeeEILFixQXV2dDj/8cP3xj3/UnnvumfI1kydP1vnnn5/wWE1NjVpaWvI9ua5ShWmF1tlKy0Lo0aOHzjrrLElSa2ur5s+fr7lz5+rdd9/VT37yEz3yyCNpX3/FFVdozJgxOZ+unXfe2fVxq/LSr2UKAAAAAACgVBRlaPn666/roosu0kEHHaT29nb93//9n0488UR9+umn6tGjR8rX9e7dWwsXLozfzzasy6VCN692E4lE1NjYqN69e6uiIngDyQ8YMCCpf8knnnhC3/3ud/Xoo4/q6KOP1oUXXljw6QrivAIAAAAAACglRZm+vPjiixo/frxGjhypUaNGafLkyVq2bJnef//9tK8LhUIaNGhQ/N8OO+xQoClGrnzrW9/SFVdcIUm68sor1dDQ4PMUAQAAAAAAINeKstLSyQqu+vXrl/Z5TU1NGjZsmCKRiA444AD9/ve/18iRI12f29raqtbW1vj9xsZGSVI4HFY4HE77OeFwWNFoVJFIRJFIJJuvUlDRaDT+v9/Tac4rc1rcpuvXv/617r33Xq1evVqTJk3S1VdfnfE9vaiurlY4HFZbW5uqqpJXDeu9Us2vTNOdahqj0ajC4bAqKys9T2uxs9ahTOsSkEssd/ADyx38wrIHP7DcwQ8sd/ALy17nZDO/ij60jEQiuvTSS3XEEUdon332Sfm8PffcU/fdd5/2228/NTQ06M9//rMOP/xwffLJJ9ppp52Snn/DDTfommuuSXp86tSpGQdxqaqq0qBBg9TU1KS2trbsv1SBbd682bfPtsK9lpaWeDBs9QlpNV9386tf/UqXXXaZ/vKXv+iHP/yh+vbtm/Sc5ubmlK93M2TIEC1dulTvvPOO9t1336S/W9MVDodd37epqSnjdDu1tbVp69atmjFjhtrb2z1Pa6mYNm2a35OAMsRyBz+w3MEvLHvwA8sd/MByB7+w7GWnubnZ83OLPrS86KKLNG/ePL3xxhtpn3fYYYfpsMMOi98//PDDNWLECP3973/Xddddl/T8iRMnasKECfH7jY2NGjp0qE488cT4gCuptLS0aPny5erZs6dqa2uz/EaFE41GtXnzZvXq1cu3/j2t/iFra2vj89WaZxUVFSnn9cUXX6w77rhDX3zxhe666y5df/31Sc/529/+pn//+98pP3vcuHE68cQT4/fPOussTZo0Sd/61rd07LHHqlevXpKkP/zhD+rfv398uqqrq12nq2fPnhmn26mlpUV1dXU6+uijA72s5Fo4HNa0adN0wgknqLq62u/JQZlguYMfWO7gF5Y9+IHlDn5guYNfWPY6J5visqIOLS+++GI999xzmjFjhmu1ZDrV1dUaPXq0Fi1a5Pr3mpoa1dTUuL4u08LY0dGhUCikioqKQA/aYlU5WtPqJ3NemdOSarpqamp0/fXXa9y4cbr11lv1q1/9Sv379094ztSpU9N+5ujRo3XSSSfF719//fWqrKzUE088oaeffjpeJfvb3/5W22+/fXxaUs0vL9Pt9ppQKORpuSpF5fq94S+WO/iB5Q5+YdmDH1ju4AeWO/iFZS872cyrogwto9Gofv7zn+vJJ5/U9OnTtcsuu2T9Hh0dHfr44491yimn5GEK4dWSJUuSHhs/frzGjx+f8bVnn322zj777KTHrb46s1VbW6s//vGP+uMf/+j690zTNXz48E5/NgAAAAAAAGxFGVpedNFFeuihh/T000+rV69eWrNmjSSpT58+qqurkySde+652nHHHXXDDTdIkq699lodeuih2n333bVp0ybdeOONWrp0qS644ALfvgcAAAAAAACAZEUZWt5xxx2SpDFjxiQ8fv/998cr4ZYtW5bQRHfjxo368Y9/rDVr1mi77bbTf/3Xf+mtt97S3nvvXajJBgAAAAAAAOBBUYaWXprgTp8+PeH+zTffrJtvvjlPUwQAAAAAAAAgV4I7SgwAAAAAAACAskRoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbTMIy8DBqG8sYwAAAAAAAAkI7TMg4qK2Gzt6OjweUoQdNYyYi0zAAAAAAAAILTMi+rqalVXV6upqcnvSUHAbd26VZWVlaqurvZ7UgAAAAAAAAKD0DIPQqGQevXqpYaGBm3dutXvyUFAdXR0qKGhQd27d1coFPJ7cgAAAAAAAAKjyu8JKFUDBgzQ1q1btWzZMvXu3Vu9evVSZWVloMKpSCSitrY2tbS00Dy5gKLRqFpbW7VhwwZFIhENHDjQ70kCAAAAAAAIFELLPKmsrNTQoUNVX1+vzZs3a9OmTX5PUpJoNKqtW7eqrq4uUGFquejRo4cGDRqkbt26+T0pAAAAAAAAgUJomUeVlZXaYYcdNHDgQIXDYUUiEb8nKUE4HNaMGTN09NFH06digVVVVamqitUPAAAAAADADalJAYRCoUBW01VWVqq9vV21tbWElgAAAAAAAAgMOjIEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKAQWgIAAAAAAAAIFEJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAECqElAAAAAAAAgEAhtAQAAAAAAAAQKISWAAAAAAAAAAKF0BIAAAAAAABAoBBaAgAAAAAAAAgUQksAAAAAAAAAgUJoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbQEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKAQWgIAAAAAAAAIFEJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAECqElAAAAAAAAgEAhtAQAAAAAAAAQKISWAAAAAAAAAAKF0BIAAAAAAABAoBBaAgAAAAAAAAgUQksAAAAAAAAAgUJoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbQEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKAQWgIAAAAAAAAIFEJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAECqElAAAAAAAAgEAhtAQAAAAAAAAQKISWAAAAAAAAAAKF0BIAAAAAAABAoBBaAgAAAAAAAAgUQksAAAAAAAAAgUJoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbQEAAAAAAAAECiElgAAAAAAAAAChdASAAAAAAAAQKAQWgIAAAAAAAAIFEJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAESlGGljfccIMOOugg9erVSwMHDtTpp5+uhQsXZnzdv//9b+21116qra3VvvvuqylTphRgagEAAAAAAABkoyhDy9dff10XXXSR3n77bU2bNk3hcFgnnniitmzZkvI1b731lsaNG6cf/ehH+vDDD3X66afr9NNP17x58wo45QAAAAAAAAAyqfJ7AjrjxRdfTLg/efJkDRw4UO+//76OPvpo19f89a9/1UknnaT//d//lSRdd911mjZtmm699VbdeeedeZ9mAAAAAAAAAN4UZWjp1NDQIEnq169fyufMmjVLEyZMSHhs7Nixeuqpp1yf39raqtbW1vj9xsZGSVI4HFY4HO7iFAeD9T1K5fugeLDswQ8sd/ADyx38wrIHP7DcwQ8sd/ALy17nZDO/QtFoNJrHacm7SCSi0047TZs2bdIbb7yR8nndunXTAw88oHHjxsUfu/3223XNNddo7dq1Sc+/+uqrdc011yQ9/tBDD6l79+65mXgAAAAAAACgTDQ3N+t73/ueGhoa1Lt377TPLfpKy4suukjz5s1LG1h2xsSJExMqMxsbGzV06FCdeOKJGWdqsQiHw5o2bZpOOOEEVVdX+z05KCMse/ADyx38wHIHv7DswQ8sd/ADyx38wrLXOVZLZi+KOrS8+OKL9dxzz2nGjBnaaaed0j530KBBSRWVa9eu1aBBg1yfX1NTo5qamqTHq6urS25hLMXvhOLAsgc/sNzBDyx38AvLHvzAcgc/sNzBLyx72clmXhXl6OHRaFQXX3yxnnzySb366qvaZZddMr7msMMO0yuvvJLw2LRp03TYYYflazIBAAAAAAAAdEJRVlpedNFFeuihh/T000+rV69eWrNmjSSpT58+qqurkySde+652nHHHXXDDTdIki655BIdc8wxmjRpkr7xjW/okUce0ezZs3XXXXf59j0AAAAAAAAAJCvKSss77rhDDQ0NGjNmjAYPHhz/9+ijj8afs2zZMq1evTp+//DDD9dDDz2ku+66S6NGjdLjjz+up556Svvss48fXwEAAAAAAABACkVZaellwPPp06cnPfbtb39b3/72t/MwRQAAAAAAAABypSgrLQEAAAAAAACULkJLAAAAAAAAAIFCaAkAAAAAAAAgUAgtAQAAAAAAAAQKoSUAAAAAAACAQCG0BAAAAAAAABAohJYAAAAAAAAAAoXQEgAAAAAAAECgEFoCAAAAAAAACBRCSwAAAAAAAACBQmgJAAAAAAAAIFAILQEAAAAAAAAECqElAAAAAAAAgEAhtAQAAAAAAAAQKISWAAAAAAAAAAKF0BIAAAAAAABAoBBaAgAAAAAAAAgUQksAAAAAAAAAgUJoCQAAAAAAACBQCC0BAAAAAAAABAqhJQAAAAAAAIBAIbQEAAAAAAAAECiElgBQSKtXSx9/7PdUAAAAAAAQaFV+TwCC48ADD9SaNWv8ngyUiZaWFtXW1vo9GYUViUhr1kjRqNS/v1Ru3z8AynK5g+9Y7uAXlj34geUOfmC5g1/yuewNGjRIs2fPzst7FwtCS8StWbNGK1eu9HsygPKwfr3fUwAAAAAAQGARWiJu0KBBfk8CykhZXg1tabHDyp49pT59/J2eMlSWyx18x3IHv7DswQ8sd/ADyx38ku9Ky3JHaIm4ci87RuGEw2FNmTJFp5xyiqqrq/2enMJ57jnpm9+M3f7pT6Ubb/R3espM2S538BXLHfzCsgc/sNzBDyx38AvLXv4xEA8AFEp7u307EvFvOgAAAAAACDhCSwAolI4O+zahJQAAAAAAKRFaAkChmJWWZoAJAAAAAAASEFoCQKHQPBwAAAAAAE8ILQGgUKi0BAAAAADAE0JLACgU+rQEAAAAAMATQksAKBSahwMAAAAA4AmhJQAUCs3DAQAAAADwhNASAAqFSksAAAAAADwhtASAQjGrK6m0BAAAAAAgJUJLACgUKi0BAAAAAPCE0BIACoXQEgAAAAAATwgtAaBQGIgHAAAAAABPCC0BoFDMoJJKSwAAAAAAUiK0BIBCodISAAAAAABPCC0BoFDo0xIAAAAAAE8ILQGgUAgtAQAAAADwhNASAArFbBJO83AAAAAAAFIitASAQqHSEgAAAAAATwgtAaBQGIgHAAAAAABPCC0BoFCotAQAAAAAwBNCSwAoFLO6ktASAAAAAICUCC0BoFBoHg4AAAAAgCeElgBQKDQPBwAAAADAE0JLACgUKi0BAAAAAPCE0BIACoU+LQEAAAAA8ITQEgAKhebhAAAAAAB4QmgJAIVC83AAAAAAADwhtASAQqHSEgAAAAAATwgtAaBQzOpKKi0BAAAAAEiJ0BIACoVKSwAAAAAAPCG0BIBCIbQEAAAAAMATQksAKBQG4gEAAAAAwBNCSwAoFDOopNISAAAAAICUCC0BoFCotAQAAAAAwBNCSwAoFPq0BAAAAADAE0JLACgUQksAAAAAADwhtASAQjGbhNM8HAAAAACAlAgtAaBQqLQEAAAAAMATQksAKBQG4gEAAAAAwBNCSwAoFCotAQAAAADwhNASAArFrK4ktAQAAAAAICVCSwAoFJqHAwAAAADgCaElABQKzcMBAAAAAPCE0BIACoVKSwAAAAAAPCG0BIBCoU9LAAAAAAA8IbQEgEKheTgAAAAAAJ4QWgJAIUSjiZWWNA8HAAAAACAlQksAKARnSBmNxv4BAAAAAIAkhJYAUAhulZU0EQcAAAAAwBWhJQAUgtmfpYXQEgAAAAAAV4SWAFAIhJYAAAAAAHhGaAkAheAWWjIYDwAAAAAArggtAaAQ6NMSAAAAAADPCC0BoBCotAQAAAAAwDNCSwAoBPq0BAAAAADAM0JLACgEQksAAAAAADwjtASAQnBrCk7zcAAAAAAAXBFaAkAhUGkJAAAAAIBnhJYAUAgMxAMAAAAAgGeElgBQCFRaAgAAAADgGaElABSCW1UloSUAAAAAAK4ILQGgEGgeDgAAAACAZ4SWAFAINA8HAAAAAMAzQksAKAQqLQEAAAAA8IzQEgAKgT4tAQAAAADwjNASAAqB5uEAAAAAAHhGaAkAhUDzcAAAAAAAPCO0BIBCoNISAAAAAADPCC0BoBDcqiqptAQAAAAAwBWhJQAUApWWAAAAAAB4RmgJAIVAaAkAAAAAgGeElgBQCDQPBwAAAADAs6IMLWfMmKFvfvObGjJkiEKhkJ566qm0z58+fbpCoVDSvzVr1hRmggGASksAAAAAADwrytByy5YtGjVqlG677basXrdw4UKtXr06/m/gwIF5mkIAcHALLam0BAAAAADAVZXfE9AZJ598sk4++eSsXzdw4ED17ds39xMEAJlQaQkAAAAAgGdFGVp21v7776/W1lbts88+uvrqq3XEEUekfG5ra6taW1vj9xsbGyVJ4XBY4XA479NaCNb3KJXvg+JRjsteRVubKh2Ptbe1KVpG88Bv5bjcwX8sd/ALyx78wHIHP7DcwS8se52TzfwKRaPRaB6nJe9CoZCefPJJnX766Smfs3DhQk2fPl0HHnigWltbdc899+gf//iH3nnnHR1wwAGur7n66qt1zTXXJD3+0EMPqXv37rmafABlYtdnntG+992X8NhbV12ldaNH+zRFAAAAAAAUVnNzs773ve+poaFBvXv3Tvvcsggt3RxzzDHaeeed9Y9//MP1726VlkOHDlV9fX3GmVoswuGwpk2bphNOOEHV1dV+Tw7KSDkuexU33aTKK65IeKz92WcVHTvWpykqP+W43MF/LHfwC8se/MByBz+w3MEvLHud09jYqAEDBngKLcuqebjp4IMP1htvvJHy7zU1NaqpqUl6vLq6uuQWxlL8TigOZbXsuVwfqgqFpHL5/gFSVssdAoPlDn5h2YMfWO7gB5Y7+IVlLzvZzKuiHD08F+bMmaPBgwf7PRkAyoXbSOEMxAMAAAAAgKuirLRsamrSokWL4vcXL16sOXPmqF+/ftp55501ceJErVy5Ug8++KAk6S9/+Yt22WUXjRw5Ui0tLbrnnnv06quvaurUqX59BQDlhtHDAQAAAADwrChDy9mzZ+vYY4+N358wYYIk6bzzztPkyZO1evVqLVu2LP73trY2/epXv9LKlSvVvXt37bfffnr55ZcT3gMA8sottHSrvgQAAAAAAJ0LLRsbGyWpywPSNDU16dVXX5UknXbaaZ5fN2bMGKUbP2jy5MkJ9y+//HJdfvnlnZpGAMgJKi0BAAAAAPCsU6Fl3759VVFRoY8++kh777130t9XrVql3/zmNwqFQrr33ntTvs/SpUt1+umnq6KiQu1uJ/QAUCrcqiqptAQAAAAAwFWnB+JJV+m4ceNGTZ48OanisTPvBQAlgUpLAAAAAAA8K9vRw1GG3n9fOvVUadsATUBBEVoCAAAAAOAZoSXKx3XXSc8/L110kXuABOQTA/EAAAAAAOAZoSXKR3197P+mJqmtzd9pQflxCyiptAQAAAAAwBWhJcqHGRpR4YZCo9ISAAAAAADPCC1RPggt4Sf6tAQAAAAAwDNCS5QPQkv4idASAAAAAADPCC1RPggt4Se3ZY7lEAAAAAAAV10KLUOhUK6mA8g/Qkv4iUpLAAAAAAA8q+rKi/fZZ5+Uf7MCzcrKyq58BJA7hJbwEwPxAAAAAADgWZdCy2g0mqvpAPKP0BJ+otISAAAAAADPOhVaHn300TQNR/EhtISf3JY5QksAAAAAAFx1KrScPn16jicDKABCS/iJ5uEAAAAAAHjG6OEoH4SW8BPNwwEAAAAA8IzQEuWD0BJ+otISAAAAAADPfA8tm5ubNWnSJL8nA+XADI3cAiQgn+jTEgAAAAAAz3wLLTdv3qzf/e53Gj58uC6//HK/JgPlhEpL+Inm4QAAAAAAeNapgXi6YsOGDbr55pt12223qaGhQdFolJHIURiElvATzcMBAAAAAPCsS5WWS5cu1S9+8Qvtvffe6tWrl/r166cDDjhAN9xwgxoaGhKe29TUpKuuukrDhw/X73//e23atEnRaFQDBgzQ9ddf36UvAXhCaAk/UWkJAAAAAIBnna60nDZtms4880xt2bJFkhSNRiVJc+fO1dy5c/Xggw/qtdde06BBg/Tmm2/q+9//vpYvXx5/3o477qjLLrtM//M//6O6urocfBUgA0JL+MltmWM5BAAAAADAVadCy3Xr1mncuHFqamqKP9ajRw9VVVXFKyw/++wzXXTRRbrkkks0duxYtbW1KRqNapdddtEVV1yh8ePHq7q6OjffAvCC0BJ+otISAAAAAADPOtU8/O6779aGDRsUCoV01llnadGiRdq8ebM2btyoVatW6eKLL5YkPf300/rBD36g1tZW9ezZU3/729+0cOFC/fjHPyawROERWsJPhJYAAAAAAHjWqUrLqVOnSpIOPfRQPfbYYwl/GzRokG655RZt3rxZDzzwgFasWKG+fftq5syZGjlyZNenGOgsQkv4iYF4AAAAAADwrFOVlgsWLFAoFNKFF16Y8jm/+MUvJEmhUEi/+MUvCCzhr2g09s9CWIRCc1vmqLQEAAAAAMBVp0LLjRs3SpJ23333lM/ZY4894rePOuqoznwMkDvOwIjQEoVGpSUAAAAAAJ51KrQMh8OSpF69eqV8Ts+ePeO3Bw0a1JmPAXKH0BJ+o09LAAAAAAA861Roma1QKFSIjwFSI7SE3wgtAQAAAADwrCChJeA7Qkv4zW2ZYzkEAAAAAMBVp0YPt5x//vnq0aNHl58XCoX0yiuvdGVSgPQILeE3q9KystJe/qi0BAAAAADAVZdCy9mzZ6f9u9UsPN3zotEozceRf4SW8JsVWnbrJm3dGrvNcggAAAAAgKtOh5bRaDSX0wHkF6El/GaFljU1dmhJpSUAAAAAAK46FVpGONFGsXEOgkJoiUIyt5ndurk/DgAAAAAA4hiIB+WBSkv4yQzNzdCS5RAAAAAAAFeEligPznDIWXkJ5FOq0JJKSwAAAAAAXBFaojxQaQk/UWkJAAAAAEBWOtWn5bXXXpvr6dCVV16Z8/cE4ggt4SdzeaPSEgAAAACAjDoVWl599dUKhUI5nRBCS+QVoSX8RPNwAAAAAACy0qnQUpKi0WjOJiLXASiQhNASfjJDy5oa+zbLIQAAAAAArjoVWr722mu5ng4gvwgt4ScqLQEAAAAAyEqnQstjjjkm19MB5BehJfyUqk9LlkMAAAAAAFwxejjKA6El/ESlJQAAAAAAWSG0RHkgtISfCC0BAAAAAMgKoSXKA6El/MRAPAAAAAAAZIXQEuWB0BJ+Mpe36mr7NpWWAAAAAAC4IrREeSC0hJ9SNQ9nOQQAAAAAwBWhJcoDoSX8lKp5OJWWAAAAAAC4IrREeSC0hJ8YiAcAAAAAgKwQWqI8EFrCT+byVlUlhULJjwMAAAAAgDhCS5QHs9JNIixCYZnLX1WVVLFt00ulJQAAAAAArggtUR6otISfUoWWLIcAAAAAALgitER5cIZDzspLIJ/M5a2yMvZPotISAAAAAIAUCC1RHqi0hJ+cfVrSPBwAAAAAgLQILVEeCC3hJ2fzcKvSkuUQAAAAAABXhJYoD4SW8BMD8QAAAAAAkBVCS5QHQkv4ydmnJQPxAAAAAACQFqElygOhJfzk7NOSgXgAAAAAAEiL0BLlgdASfqJ5OAAAAAAAWSG0RHkgtISfGIgHAAAAAICsEFqiPBBawk+p+rSk0hIAAAAAAFeEligPhJbwk7NPSwbiAQAAAAAgLUJLlAdCS/gpVfNwKi0BAACA4tPQIG3e7PdUACWP0BLlgdASfmIgHgAAAKD4hcPSb34j9e8v7bKLVF/v9xQBJY3QEuWB0BJ+cvZpyUA8AAAAQHFZsEA67DDpd7+LHcevXy+98YbfUwWUtCq/JwAoCEJL+ClVn5ZUWgIAAADB99pr0je+IW3dmvh4W5s/0wOUCSotUR4ILeGnVM3DWQ4BAACA4HvwQTuwrK62HzeP8wHkHKElyoNzZ0JYhEJiIB4AAACgeJkVlr/4hX07HC78tABlhNAS5YFKS/jJ2aclzcMBAACA4mEez/fsad8mtATyitAS5YHQEn5y9mnJQDwAAABA8TDDybo6+zbNw4G8IrREeXCGQ+xcUEip+rSk0hIAAAAIPvN4vnt3+zaVlkBeEVqiPFBpCT8xEA8AAABQvKi0BHxBaInyQGgJPzn7tLSah0tSNFr46QEAAADgnXk8b4aWVFoCeUVoifJAaAk/Ofu0rDA2vTQRBwAAAIItVaUloSWQV4SWKA+ElvCTs3m4WWnJsggAAAAEm3k8X1vr/jiAnCO0RHkgtISfUvVpKVFpCQAAAASdVVFZWSl165b8OIC8ILREeSC0hJ+cfVqaoSXLIgAAABBs1vF8VZVUXZ38OIC8ILREeSC0hJ+cfVqazcOptAQAAACCzaqorK6OHc87HweQF4SWKA+ElvATzcMBAACA4pWq0pLQEsgrQkuUB0JL+ImBeAAAAIDiZR3POystaR4O5BWhJcoDoSX8lK5PSyotAQAAgGCzKiqptAQKitAS5YHQEn5y9mnJQDwAAABA8TArLRmIBygYQkuUB0JL+Cld83AqLQEAAIBgMystGYgHKBhCS5QHQkv4iYF4AAAAgOJFpSXgC0JLlAfnzoTQEoXk7NOSgXg6b+tWv6cAgCRFo6yPAIDyQaUl4AtCS5QHKi3hp3R9WlJp6d2pp0r9+klPPun3lADlLRqVTjkltj4+/bTfUwMAQP6lqrQktATyitAS5cEZUkajsX9AIVgHOaFQLLBkIJ7srVkjPf+81NIi/etffk8NUN5WrZJefJH1EQBQPlJVWtI8HMgrQkuUB7dgiLAIhWIdzFgHOAzEk73mZvt2S4t/0wEgsVk46yMAoNRFIvYxO5WWQEERWqI8uAWUXBVDoVjLmhVW0jw8e21t9m3WXcBf5vrIyRoAoNQ5B9VkIB6gYAgtUR6otISfrGXNrdKS5dAbQhIgOFgfAQDlxBlaMhAPUDCEligPhJbwk7N5OJWW2WtttW9zRRvwl3mCxskaAKDUmfu66urEAgT2g0BeEVqiPBBawk/pmoezHHpDZRcQHOb6aN4GAKAUOSstQyG7GIGL6UBeEVqiPBBawk8MxNN1hJZAcLA+AgDKibPS0vyf/SCQV4SWKA+ElvCTs09Lmodnj+bhCIqFC6XNm/2eCn8RWgIAyomz0lKyQ0uOS5Ern34qbdni91QEDqElygOhJfyUrtKS5dAbQhIEwUMPSXvtJY0YUd7NomkeDgAoJ26VltZxPcelyIV775VGjpT23Zcg3IHQEuUhU2jZ0UHFWzaYX9lJ16cl89EbMxhhRw6/vPxy7P+VK6X58/2dFj9xEQEAUE7SVVqyH0QuTJsW+3/xYmnRIn+nJWAILVEe0oWWq1ZJu+0m7bmntHFjYaerGK1YIe2yC/MrG+lGD6fS0huzeTgHh/ALYV0Mo4cDAMpJukpLLqYjF8xjTJqIJyC0RHlIF1o+/bS0dGnsisaLLxZ2uorRM89Iy5czv7Lh7NOSgXiyR6UlgoBm0THMBwBAOaHSEvlmFmgQWiYgtER5SBdabt1qP9bSUpjpKWbNze63kVq6SktCS2+ocEMQENbFsD4CAMoJlZbINyotUyK0RHlIF1qaOxpOvjLjpD17zj4tGYgnezQPRxDQLDqG0BIAUE6otES+mec6TU3+TUcAFWVoOWPGDH3zm9/UkCFDFAqF9NRTT2V8zfTp03XAAQeopqZGu+++uyZPnpz36USApAstzR0NV8oyM09WzY0rUqPSsutoHo4g4KJNDPMBAFBOzGNPK6y0/ue4FLlApWVKRRlabtmyRaNGjdJtt93m6fmLFy/WN77xDR177LGaM2eOLr30Ul1wwQV66aWX8jylCAy3nQmhZecQWmYnEpGi0dhtBuLpPCq7EASEdTFUnAIAyom5r7OO563/2Q8iF+jTMqUqvyegM04++WSdfPLJnp9/5513apdddtGkSZMkSSNGjNAbb7yhm2++WWPHjs3XZCJIaB6eO5y0Z8dc9hiIp/PMHTkXF+AXtn8x5nfv6IhtxyqK8jo4AACZZaq0jEalUKjw04XSQWiZUlGGltmaNWuWjj/++ITHxo4dq0svvTTla1pbW9VqLDiNjY2SpHA4rHCJBFvW9yiV75NOVUeHnLuR9tZWRcNhVbS0yIqQOlpbFSmD+dEVCfOrublT86uclj1t3apthzSKVFSoIxxWRTQan4ftbW2KlsN86KKKrVvj8ywaDqud5Q4+qGptje9L2pubPa27pbjcmeujJIWbm6WaGt+mB+5KcdlD8LHcwQ/5Xu5CW7fGg5OOUEiRcFiVlZXxZqvhlha7OAFlJVfLXlVbW/wYs6OxseQziWzmV1msWWvWrNEOO+yQ8NgOO+ygxsZGbd26VXV1dUmvueGGG3TNNdckPT516lR17949b9Pqh2nTpvk9CXn3jdbWpIX9rZkztfGrrzTy88+1+7bHPvvkE302ZUqhJ6+o7LdokXbZdvvLBQv0aRfmVzkse1Vbt+ob227Xb9qkWVOmaI9Fi7T3tsfef/ddrfFr4orIyIUL4+tpKBLRlOee63RlVzksd8iPY9evV+9ttz9+/30t69fP82tLabkbsWCBvmbcf+m559ThciyFYCilZQ/Fg+UOfsjXcrfDu+/q0G23F375pT6fMkWHNzZq+22Pvfjss4pw8a6sdXXZO3HTJllHUovnzdMnJZ5JNDc3e35uWYSWnTFx4kRNmDAhfr+xsVFDhw7ViSeeqN69e6d5ZfEIh8OaNm2aTjjhBFVb5e0lqtKlXP/wgw9W9IgjVDF1avyxr+26q3Y/5ZRCTlrRqXzyyfjtXXfaScM7Mb/KadnTpk3xmwMGDdIpp5yiinnz4o/91+jRirLMZVTh6IP4lBNPlLp1y+o9ymq5Q15UXX55/PZ+I0ZoHw/rbikudxXTpyfcH/v1r0vbbefPxCClUlz2EHwsd/BDvpe7kNECc8+RI7XHKaeo8tZbpW3H9Ccdf7zUq1fOPxfBl6tlr8roPmyXHXbQsBI/P7RaMntRFqHloEGDtHbt2oTH1q5dq969e7tWWUpSTU2NalyullRXV5fcDrgUv1MSlz4tq0KhWF8kRp+CldGoKkt9XnSV0adLZXt7l+ZXWSx7RmBeUV2tiupquw8cGcsh0nP0Y1ktdXq+lcVyh/wwmrJUdnRktf0rqeXOuT5Go2zHAqyklj0UDZY7+KEQy11lbW1s/298TleOS1EaurzsGcF45datJZ9JZDOvyqLX9MMOO0yvvPJKwmPTpk3TYYcd5tMUoeDSDcTDKKjZYfTw7Jgn99YVNAbiyZ5z0BMG44EfGIgnxrmvZN8JAChlbqOHm6EL+0F0lXlc2dTk33QEUFGGlk1NTZozZ47mzJkjSVq8eLHmzJmjZcuWSYo17T733HPjz//pT3+qL7/8UpdffrkWLFig22+/XY899ph++ctf+jH58IPX0JIgJDNO2rNjLlPWQY7ZFyOhpTfOgJyDQ/iB7V+M87uzPgIASpnb6OHmwDucQ6KrGD08paIMLWfPnq3Ro0dr9OjRkqQJEyZo9OjRuvLKKyVJq1evjgeYkrTLLrvo+eef17Rp0zRq1ChNmjRJ99xzj8aOHevL9KPAUoVCVmhp7mQ48cqMSsvsmIG5dXBjVlq6BepIRkiCICC0jHF+93KeFwCA0kelJfKpoyMxsyC0TFCUfVqOGTNG0Wg05d8nT57s+poPP/wwj1OFwEoVClFp2TmEltmh0jI3aB6OIKA7kRguIgAAygmVlsgn5zk1oWWCoqy0BLKSTWjJiVdmVBplx61PSzO0pNLSG5qHIwjY/sUQWgIAygmVlsgnQsu0CC1R+qi0zC0qLbPjVmnJQDzZo9ISfotEEpc7QsvU9wEAKCVulZaElsgV53EUoWUCQkuUvkyhpbkTIgjJjEqj7Lj1aUnz8OxR2QW/OZe5ct7+MXo4AJSWaFSaMUOaO9fvKQkmt0pLmocjV6i0TKso+7QEskLz8Nyi0jI7mSotaR7uDaEl/EZ1oY31EQBKy7Rp0tixUigkff65tNtufk9RsLgdz1NpiVxxq7SMRmPrI6i0RBmgeXhuUWmZnUx9WlJp6Y0zIGddRaERWtoILQGgtLz3Xuz/aFT64AN/pyWIzP0cA/Eg19zOc8r5ONOB0BKlL5vm4Zx4ZUalZXYyjR5OpaU3hCTwG02ibQS4AFBatm61b7e0+DcdQUWlJfLJ7TiKJuJxhJYofVRa5haVltlx69OSgXiyx0A88BtBnY2LCABQWsygkqKEZG6VlmZoyXEpusJtnSO0jCO0ROlLtROhT8vOodIyO5kqLQktvXEua6yrKDRCSxuhJdz8+MfSzjtLM2f6PSUAsmWGllRaJnM7njebh7MfRFcQWqZFaInSR6VlbhFaZsetT0sG4skeIQn8RmhpYyR1OK1aJd1zj7R8uXTHHX5PDYBs0Tw8vUyVlhyXoitoHp4WoSVKXzZ9WhJaZkbz8OxQaZkbNA+H3wgtbVxEgFNjo3170ybfJgNAJ9E8PL1MlZYcl6IrqLRMi9ASpc8MLd0q3Gge7l00SqVlttz6tGQgnuzRPBx+I7S0EVrCyQw8mpr8mw4AnUPz8PTMUJJKS+QalZZpEVqi9JmhULduyY/TPNy7jo5YcGkJhxPvI5nblVkG4smOMyyXWFdReIwebiPAhROhJVDcaB6enrnPdxs9nONSdAWVlmkRWqL0pQotrZ2LuZMp55NQL9xOTDlZTc+tT0uah2fH7UCQdRWFRlBno9ISToSWQHGjeXh6bpWWDMSDXHE7pmRfGkdoidJHpWXuEFpmL1OlJc3DM3M7eGZdRaERWtqoOoWTWaXFiRZQfKi0TC9TpSX7QXQFlZZpEVqi9BFa5o7bSTpXY9PL1KcllZaZuS13HByi0AgtYyKR5H1luc4L2Ki0BIobfVqml6nSknNIdAV9WqZFaInSlym0pHm4d4SW2cs0ejiVlpkRWsIPGzYk3ie0jHFb99Ktjxs3cnGmHDhDS/q7BooLzcPTo9IS+USlZVqElih9ZihUU5P8OJWW3tE8PHtufVoyEE92aB6OQvvZz6T+/aVrr7UfI7SMyeYiwpQp0g47SAccwAWaUmcGHtEolVpAsaF5eHpUWiKfCC3TIrRE6UsXWkajiSdbXCVLz22DytXY9DJVWhJaZkalJQrtX/+K/f/QQ/Zj9OMYk83Fq//8Jzaf5s6VPv00v9MFfzlDDpqIA8WFSsv0qLREPtE8PC1CS5S+dM3DnZUfXCVLj0rL7Ln1aclAPNlxW8ZYV5FPVsWJWXlCpWVMNhcRGJylfBBaAsWNPi3Tc6u0NENLjkvRFVRapkVoidKXLrR07mC4SpYefVpmz+3KLJWW2XFbxlhXkS/mvsFc9ggtY7Lp09Kcf83N+ZkeBIMZUEuElkCxoXl4em7H82bzcI5L0RVUWqZFaInSly60dO5guEqWHpWW2TMPAuvqYv8TWmanXJuHT5smnX22NGuW31NSXsygzTxxcy6H4XB5DjaSzX7AnJccfJc2Ki2B4hWJJG7HKUhI5tbdE83DkStu6xz70biqzE8BihyhZe5QaZk9t9CS5uHZKdfm4T/5ibR4sbRsmfTWW35PTfnwGlpKsX2IuV8pB9lcRKDSsnwQWgLFy3ksT6VlMms/V1FhFx8wEA9yhUrLtKi0ROmjeXjuUGmZPSotu64cm4dHItKSJbHbq1f7OillxzkYgVVN6bbMleP2r7OhJQffpc0ZcvB7A8XD2b0DoWUy65zRrK70s9JyzRrp5pulBQsK+7nID/q0TIvQEqUvm0pLa0RxuKPSMntmdRGVlp1TjpWWDQ32toh1rLCc89ta/sq1mwKnbC5emSe+VFqWNiotgeLlXH857khm7e/N6ko/B+K55BJpwgTpW98q7OciP6i0TIvQEqXP3IlkCi2dz0ciQsvsUWnZdeUYFm3caN+m4qGwnPPbuk+leQyVlnBDaAkUr1T7PdjcKi39HIhn/nz7fwpuip95vGSdJ3LcFEdoidKXTaWlRGiZDift2TNDy+7dY/8TWmanHJuHb9hg3+bkobCcy5t1n+1fDKOHww2jhwPFi+bhmWWqtCz0cam5fy3HY5FSY/6e220X+5/QMo7QEqUvmz4tpdIPQ7qCSsvsMRBP15Vj83Cz0tLsVxH5R6VlelRawg2VlkDxcmseznFHokyVloU+LmW099Ji/p79+sX+57gpjtASpY9Ky9zhpD17NA/vunJsHm5WWkYibJcKKdUoqmz/YrKZD1Ralg9CS6B4OddfjjuSBbnSksrY4udWadneXp7HmS4ILVH6CC1zh0rL7FFp2XVuy1ipr6dmpaXEelZIqQYkyKZZdCmj0hJuGD0cKF7O5uESQZhT0CotCS1Li3ls1bevfZsLgJIILVEOaB6eO1QaZc+qLgqF7OWvFCotP/1UOugg6cIL8/9Z5V5pKXFAWkhUWqbX2dCSSsvSRqUlULzcjjG4WJooaJWWNA8vLdZv2K2b1LOn/TgXACURWqIcpAot29uptMwWlZbZs65e19XFgkupNELLv/9dmj1buuOOWICZT+UYWjorLQktC4c+LdPrbPNwDrxLG6ElULzcjjE47khknR8GJbSk0rK0WMdRNTWEli4ILVH6zNCypibxcZr7ZYfQMntWaGmNHC6VRvPw+nr79po1+f2scmwe7qy0ZD0rHEYPT8/rftPZJxqVlqWN0BIoXjQPzyxIzcOj0cT9Lr9V8TMrLXv0sB8ntJREaIlyQJ+WucNJe/bMSktLKVRamiek69fn97OotOSAtJBoHp6e1/XROR858C5tztCD0BIoHjQPzyxIzcOd+2F+q+Jn/YY1NYSWLggtUfro0zJ3qLTMnltoWQqVluZO1FkVmGtuy12pX1ygT0v/pBqIh9Ayxut8cO4bqLQsbVRaAsWL5uHpRaP28XoQKi2d+1x+q2B6+WXpsce8netZvymVlq6qMj8FKHLZNg8v9TCkKzhpzx6Vll3nFoyX+sUFRg/3T6pKS7oTiaHSEm4YPRwoXm7NwznusJnnhkGotEzVjQ2CY/586YQTYrefeEI644z0z6fSMi0qLVH6aB6eO1RaZqejw54/pRZa+l1pWephURAqLevrpc8/L/zn+o2BeNLrbGhJpWVpo9ISKF5UWqZnnhuaQWVlpT3IJpWWMH38sX17zpzMz6fSMi1CS5Q+mofnDift2TEPIkptIB7zhJTm4bnnd5+WGzZIu+wife1rseYt5YSBeNJz20d6uaDFgXfpam9P3pcRWgLFg9AyPXO/V+VoqGrd97PSkt8qeMxjns2bMz8/VaUl+1JJhJYoB+VQaVmoE2cqLbNjNrcp5UpLmofnVltbcsBT6PXs7bftA6VyCy2ptEyvs5WWW7cW7/YO6bmdMG/dWrwX5YByQ/Pw9FJVWpr3aR4OUzahZUeHfXxEpaUrQkuUvmxDy2ILQ668UurdW5o0Kf+fxUl7dlKFllRaZqfcKi2dVZZS4a+im5/n5QpxKWH08PQ6G1pK7ifGKH6pfldOtoDiQKVlel4qLWkeDlM2oaV5vFRTI/Xs6f4+ZYzQEqWv1Cst77wztrG78878fxaVltkp1UrLjo7E70aflrnlNj8LfUBq/r7lFlqmGj3ca7PoUmd+Z+sCTHt7bHRVk9u+gX4tS1Oq7RPN2oDiQGiZXtArLfmtgsc83sl0HG0eVzEQjytCSxSPRYukMWOkX/4yu9el2tGk6tOy2EJLa2NWiJMDQsvsmDusUgotncEDzcNzy63SstDrmXkA3NhY2M/2WzaVlqW8HKZizgezGsA5Lwgty0eqE2ZOtoDiQPPw9NJVWlrnln5WWvJbBY+5/8t0HG3+fjQPd0VoieJx223S669Lf/lL4ohcmZiVlpWVdmBUKs3DrZOFQpwM0jwyO6XaPNy5A92wIbnKKpfMZczakRfbxYVsUGnpL/q0TM9tfZSS951uyywH36WJSkuguFFpmV66SksG4oGbrjQPJ7RMUpX5KUBALFtm316yRNp3X2+vc4aWlZWx6rZSaB7e3m5X6vkVWnJ1LzUz+DFHDy/2SkvniWg4HNupmlVXueQMSbZsKb6LC9mgT0t/MXp4eua6Zx5Yt7Ul3qfSsnwQWgLFjdAyPS+VloU8Li3GPi1bWqTrrpMWLLAfGzlSmjgxsbCjVGQTWpq/J5WWrggtUTzWrbNvr1zp/XVuoWU4nLp5eDGFIeZOqr09Nu3OK4C55NyotrWV50m7V+VSaSnFmojnK7S0wo9QSKqtjd0uposL2XKrtCz0xQEqLZPvE1rGeK20dFtmOfguTYSWQHGjeXh6XiotC3lcWoyjhz/4oPT73yc+9sQT0q67SuPH+zJJeUWlZU7RPBzF46uv7NurVnl/nVtoaT1e7JWWzhOFfFexWCerFRV25WAx7Cj9kiq0DIXs26VQaSnldzAea7nr1s2fK9qFRqWlvxg9PL2uhJZUWpamVK0KCC2B4kClZXpUWnbdRx+5P75kSUEno2A6OxCPs9KS/agkQksUE7PSMp+hZTGFIc6TwkKFlt262SOxl+NJu1fpQksruCzG0DJVpWW+WMtYTY0/HZ4XGpWW/nIbPdzqUkRKrJQux+1fqtDSy8AAVAyUJnOdGTDAvs3JFlAcCC3TC3qlZTH8VmY3b7fdZt8uhmnvDPN4p6Ul/fLhrLTs1s1erjhukkRoiWIRDieeyHcltLQ2AlRaZs8MLWtqYreptEwt1ejhUmJ4XmzcdqD5rLS0ljFzJ15MFxeyFbRKy6am/A60FDRuJwPm8pZuxOxywOjhcDK3F/3727c52QKKA83D0wtapWUxNg9fujT2f3W1NHq0/Xg5hJZS+gIAZ6WlZB9fsR+VRGiJYlFfn3g/F5WW7e3uASWhZWqEltlJ1WROsgfjKcZKS5qH51fQRg+PRMorbHKrtPRaXVgO6NMSTlRaAsWNSsv00lVaWvc7Ogp3gbcYm4dboeXQoYnnRG6BeSnIJrR0VlpK9vEVx02SCC1RLMym4VLXB+KxHi+15uH53vDTPDw7qZqHS6VXaVmo5uF+NMMpNLdKy0JfHHAeADc2Fvbz/eRWaZmqurAct3/mPtI88aDSsnwRWgLFzTpeNftcL4YgzClfhQDpKi3N+4U6Ni225uENDbF/krTzzonnREGf9s7qbKUloaUrQksUB3MQHilWeen1JJ6BeHKHSsvspAstqbT0zmwebl3RjkaLM/D1ImiVllJ59WvpNno4oaXN+s7V1fbFK/NxC5WW5cNcZ7bf3r5NaAkUB2sd7t3bfqzIju8rfvtbnfL97yt0//25f3MvlZZS4QpfvOxvg8Tsz3LYMKm21r5fqqGl85zca6WldVxFaJmA0BLFwRlaStKaNd5eawYbVVWJoaVbQFlMlZZ+hpbWRjUcLq/+7rJRqqFlofu0dGseLhXXBYZsWJWWZjjmZ5+WUnmFlm59RRFa2lKtj1Rali8qLYHiZq3DffsmP1YkKm65RdVbt6ry9ttz/+ZUWnaNGVruvHNiaFkuzcPTtVhK1zy8vb08jzUdCC1RHJzNwyXv/VqWcqWln6OHWxtV83EkKtXm4W4nooVuHi4V1wUGr6JROwAePNh+3M/Rw6XyCi3dKi1TDcRTjtu+roSWVAyUJnN7QWgJFBezj//ttrMfD3r1nikcVsjaDlnNkHOJSsuusfqzlGKVlqXePLyjI/k3yXYgHrPPcI6dCC1RJNwqLb32a1nKfVoGodLSfByJ0o0eTqWlNx0d9jqcKSQpBVu22AfHZmhJpWXhZOrTMt3gM+XA636ASsvywejhQPEy198+fdwfDzpzW5OPiyVmaJlq9HDn8/Kp2CotnaFlqTcPd9v3dXYgHokLgCK0RLHIV6Ulo4d7F4nY86amJrHSMtMVvmXLpIkTpTfeyN/0BVG60cNLrdIyX6Gl8+qjH81wCsmcj9tvby8nqQ7qwmHpz3+W7rgjfTcNH3wg/frX0oIF3qajXCstIxH38I3Rw21mn5ZUWkKieThgee896fLLpc8/z99nrF8vXXml9OyzuXk/c/3t2TPzcUchbNwo/d//SU895e35+Q4tzf2bs9LSjxZAxRZaOpuHV1XZxRul2Dw829CSSsuMqjI/BQgAt0pLmocXtnm4Oa+yrbScOFF66CHp/vuzG/m92JVDn5bV1bFlI1/Nw50j6pV6paU5cvh228WuRm/ZkvrCwNNPS//7v7Hb++4rHXmk+/POPVf65BNp9mzplVcyT0e5hpZu27J0lZblGFpa6x19WsJinjD37Rvbv0UihJYoP+PGSV98EdvXvvpqfj7jppuk3/8+tg1etSqxurkznMeqNTWxbbWfTY7/3/+LXYytrpZWr878HY19S6ilJXYu56yI7AqvlZY0D3dnVloOHRobpb6uLnZ8G/TAtTNyUWlpdkVEaEmlJYpEIUPLYgpCCllp6bwKlE2l5RdfxP5fu7a8TmJKNbQ0f8Oddor9v2FDfgZkKudKy3797CY0qQ7qzGqOL79M/b7WOui1+qNcm4e7zWdnaFlbay+H5RhadqV5OAfepclcb+rq7JOtctrfA9GovR+eNSt/LWkWLYr939YmrVjR9fcz19/a2szHHfkWiUhPPhm7HQ57+47OfUuutz0MxNM1VqXlwIH2+ZDfy1k+uZ2PU2nZJYSWKA5W83DzBClffVoWUxBSLKGlGd6V00lMqQ7EY+48hw6N/d/enp/f1ly2yqFPS2elpbWepTqoM9f5VE1sIhH79elGLzSVa6Wl27asoyNxfphhXbmHllRaQiK0BKTYNtC6eNvSYoeLuZbrptBBCy3nzpXWrLHve/mO+Q4tgz4QT5CDv7Y2u9Bo2DD7cWs5o3l45j4tCS0JLVEkrErLYcPsldhrpaW5o/HSp2UxBSGFbB7uDC2zaR5u7kzL6STG2hFXVCQf5JRCpWW3btIOO9iP56OJeLk1D09VaZnqwoB5IJPqoNV8vLHRW0Ws8728hp3FLtU8NA82zbCuFJfBTBg9HE7mSWdtLaElypMzfPnoo/x8jnmsn4t1zK15uORfk+MXXki8H4TQMuiVlkFuHr5ypX3caYaWVjFHkAPXziK0zDlCSwRfa6t9wjxwoDRkSOw2fVoWT6VluYaW1u9RVxfrv8VUCpWWPXsm9jOUj8F4yq15uFufllLqgzovoaW5XYhGM6+D0SiVlk5maFtdXb6VlpGIvc3Kpnm4dfBNpWVpclZqWb93Oe3vAec+OF+hZalXWk6Zkng/CKFl0Cst29uDe0xs9me58872bSotbW7Nw08+WZo8Wfr3v6VDD83p5BUjBuJB8Jkjh2+/fSy0+Pzz2ElkU1NiR7VuUoWWkvsJZzFVzvgZWmZTaVnuzcOdI4dLpVFp2aNHrBrQko9KS2fz8ArjWlsxrateOSstMzUPNw+MUh34OR9vbJR69Uo9De3tyctluYSWXistyzW0dI6gmu5kzZyX220XW1apFihNztDDOi5rb4+tI+bxgl+i0eSLh0AuFWulpbN7Bz9Dy40bY/2BmrwcfzjPf3J9zJKu0tKP0NLtAmtra24HH8oVM7R0ax7e0lJ622e3Y510LZbcKi332Sf2D5KotEQxMAfhGThQ2nFH+/7q1Zlfny60dNshB/VKlRs/m4d3ttKyXMIPyT6AdfZnKRV3aGlWWpqhZb4rLWtqyrfSMhx2X1a8VFq6hZbpuIWf5bLeeqm0LOfQ0rkf8NI8vLraDrGotCxN5ranpibxYnIQLlSef36s/+XXX/d7SlDKnPvgjz/Oz+eY+/1cXAhydu9gHd+nOu7Ip6lTkz8z6JWWfhyXuh17BLWJuDUIj+TePDwSKb3j+VwMxIMEhJYIPrPS0mweLnkbjMcZWpo7F7cNfDFtOIul0rJcm4enCy2LtXm42by4R4/CNw8vtz4tM10cMNd5L83Dpcyhpdv7lEtoSaVletnsB6zltabGrjbfssVbn6ooLtZ6U1MTq5YJUmi5YkWsid3KldJdd/k7LShtzgt+ixfnpz/ofFZams3DpcIHYc7+LKVghJbFUGkZ1L4hMzUPl0qviXgu+rREAkJLBJ9Zabn99omh5apVsROgK66QvvMdae3a5NdnW2lp7nD+/nfpv/9b+vTTzk9/PjmnP58b/c5WWjr7DvX7BKaQSrHS0mrGISVXWhaieXiph5apKi2lzAObZNM8PB0qLZMRWsZ0ptLS7OMwVV/SKG7WsYi1rwtSaLlpk327XLZjprfflk49VXr0Ub+npPS5nVPMm5f7z8lnn5Zm83Dn3/ItEpFefDH58SCElkGrtCym0DJVpaVfy1kh5KJPSyQgtETwpau0XLVKevZZ6Y9/jHVUe/fdya83Q8uKCu/Nwzdvln7+c+mZZ2LvH0RBGT08XWjpnMd+n8AUSkeHPc9KqdLS/P2cfVrSPLzrrHlYWSn17p35oC7bgXgkKi3TSTUPnc3Dy3X08M6ElmalpUS/lqXIutBhba+CFFqan19q1Txe/Pa30vPPSz/7GVXO+ea2fOW6X8toNL+jh5vNw6XCVlp++KFdfDJokP14EELLoFVaFlPzcKvSskeP2MV4i3luVO6hJZWWGRFaIvicfVo6Q8t//MO+b17NsVihkBUSuYWWZue/1g5n0yb7tlsFZxAUsnm4s+LN3KimqzZyTmO5hB/mQWApDcRj7oj9GD28XCot+/aNbZfM9ayzoSWVlt6Z2zlzX5Gq0jIcLq8goLPNw61KS4l+LUuRte2xQkvz9/Y7tPSyjSxlVt/vGzeW5j4zSNyWr1yHlq2ticeN+W4eXsh1xmwaftZZ9u0gDMQTtNHDi6XSMhq1z82HDUs83y7H5uGpjheptMyI0BLB52webg7E8+mnsUpLi1vzVC+hpXm1x9oxmRv/oF698rNPS69XYp07Ir9PYArF/N6l1Dw8XaVlIZqHl0ulpTVf/Wge7nbgm49+uYLI/O59+ti3ze9fXZ14UFlOQUA2o4dTaVk+nKGlWWnp9+9t7rOCeFKfb+b854JBfhWi0tL5G+ajeXimi6X58sor9u1vf9u+HfRKy6AMxBPE7du6dfZ0mU3DpdJuHm6up1ZxRySS+jidSsuMCC0RfM7m4YMH2/enTk1c0TsbWponVNYOx3zfoIaWQWkenk2lJaFlTLE2D3dWWppNPQrRPLyUKy07OqSGhthta75mOqjLx0A8bgdVra2lN7/dmNvUVKFltgORlZLONg+n0rK0pQst/d7ne7mwU8rM9S2X37+jIxYyLV+eu/csdm774I8/zm01vjOcy8fo4X4NxGOd73XvLo0caT8ehNCyGCotc/VbdXRIL7/sbbDbTFINwiOVT/Nws6uDVBXAhJYZEVoi+MxKy/79Yxs564TeeSBQX5/8eisUsq6EmaGlVeVmbjitHQ6VlomotMxOuVRadusm9eoVu0/z8K4xB4ywKi3z0TzcCkZT8TKCdqkyv3vfvvbtVM3DpfIOLVPNh2jUvk+lZWmLROzfOoihZblXWprHhbk8Rrz9dun446UDDmCdtriFwo2N7l1XdVa+Ky39bB5uzb/u3e3jSikYoWU5VVr+7W/SCSfE1u2uvmeqQXik8mke7iW0NH9PZygOSYSWKAbWlbf+/e0dg9mvpSnbSkuLueEs9ubh+epfLVeVluUQfEjeKy2lzMHlhg3Bqcg0d8RW9ZQVsNE8vGvM+eeleXg4nHggneqgLxeVllJ5rLupKi0JLWO8XkRwVkhTaVm6zHUmiKOHl3Ofls5BW3K57r35Zuz/+npp4cLcvW8xM/edZlVZLpuI5yOcS9c8vJDnP9b8q6tL3L94OfZwzpdy7NMyV7/VW2/F/v/qK+mLL7r2XukqLUu5ebi5PO6wg3071fG39dt165bY7yfiCC0RfFal5cCB9mPpQktnaOcltKyutsMQa4dTjM3DzYqHXOtspWW5Ng83Tw7SVVpK6UPLF1+MXaUbNSoYIZ2zebhk99eyYUPuQ/Nyah5uVopvv33s/3QHdc6D9FwNxEOlZUy65uGlvBym4zW0dDZ1otKydDmrtKRghZblPHp4W1vi8UUuv7+5TcxHK4tiZK4Lhxxi385laJmPSst0zcP9qLR0Xvzw8h3zMV9M5VRpac67rh73maGls9KS5uE26/dkEJ6UCC0RbM3N9opvncRLiYPxSNKuu8b+D4eTNwjZhpbFXGkp5a+KpbOVljQPTz96uJQ+tHziidhy/cknsb6R/OZsHi7ZVYEdHbkfsMW53JVypaXZf++AAbH/0zUPd67r+ejT0lx2yyG0TFVpaR6AUmkZk25AImdoSaVl6XIGHhKjhweF8wJBLtc9Qstk5rpw8MH27WKqtPQztLSWz86EluXUp6XZ/YopH6FlV+ej2cWbOSaFVNrNw61luaYmdVdDJrMPcLgitESwOQfhsZiVloceKh14oH3f2UTVS2hZVWXvdIq5T0upcKEllZbpZdM8PF3T76CN/OlWaWmOIJ7rkxdn8/BSrnDLVGnpXM+cB+n5GD3c3O6WQ2iZqtLS5Azryim0NNc55/pozgcqLctHpkpLv39vZ5+W+epCJ4icxwz5Ci3z0TVMMTLXhf32s4+T04WWra3SccfFnu9lUKNCjx5eqPOfjg57H2IdM1v9WgYttHRWWhb6uDTVMUeufqtcVlqay6u5X5DKo3l4jx6J/bNSadlphJYINvMKjVlpudtu9u0f/MCuSpI6F1q6VVoWY/NwyZ9Ky2xCy3IIPiTvA/FI6SstzfkXhCuRbpWWVvNwKfehZbrm4eVQaelH83Dz+eZ2txzW3VSVliYqLWOyaR5OpWXpCnrzcHM7GYmU3sWudJzrGs3D88ucvz17SiNGxG5//nnqi9PTpkmvvhprSTNpUubPKNXm4ebnWBe5zErLTBcb8t2npbndcFZaFroFUKpjjlz9Vua8y2VoaR4HSOXRPNxraEmlZUaElgi2VJWW3/mOdM450o9/HPtnhia5Ci2ptEyUrtKS5uHJclVpab5PEE72M1Va5rriIl3z8FI7+TQrLb00D/caWnaleXg5V1qaTXpMhJYxzvlAn5blKeihpfPzS+3kOJ1CVVoSWsY4Kxatrqw6OlIfG61cad9+4YXMn+Hcfra1df1YKAjNw92Oma3tiHNAKTflVGmZ6pw0iM3D0/XvX8rNw63lsXt3Ki1zpCrzUwAfmZWW5slzz57Sgw/a983Q0jzxl+wdTabQMlPz8Gg0eCN6+VlpSfPw9HJVaWm+TxB26un6tJRoHt4VuWge7rad6krzcLPSMtf9lQYRlZbppau0TNc8nErL0hX00NLt4k7v3v5MS6HlK7SMRmke7sZZsWiOGrx2beJ5jPm45bPPYqM1m63JnNx+wy1bUl9k8yIIzcPThZZSbDvirNSzuIWa+RyIJ0iVljU19m8U5ObhNTXJ59+l2jw8GqXSMg+otESwpWoe7tTV5uFVVembh0ejqXdEzc3SrbfGmncUUqqRwoM2EI9zR9TSUnrNet2Yv0NXBuIJWvNwt0pL82A5nwPx1NSU30A86Q7qnOt6JOI+T9wqLdM1taLSMiZdaFnK4Xk6jB6erKlJuuUW6fXX/Z4SfzgDDylYA/E4Pz8I+9FC8drvcbaamxNbiFBpGeNcF5yhpRvzPEfKXG3ptv3Mdh1bvVq68cbYAI+SvVxUVsaOsYJSaWmGPem+Y2tr8nF0a2tu981BrbQ0L8Dk4reKRBKXsa4e95kVh07F0Dx85kzpL3/J7twmHLa3j4SWOUNoiWBL1TzcKZvm4c6djZS50lJKfQXrttukn/9cOvnk5IOPfEo1PUGrtHQ7SC61k1Y3+WgeHoSTLbdKS/OgKd+jh5dyWGRVWoZCdvVqNs3DJfdlxPlYR0f67YT5OeZJVzmEllRapuesNkm1PprLUKlXWv71r9Ill0gnnVSe4Y3b6OHV1fa2y+/thtduNEpRviotnfv5clzu3TjXBfO8JVVo6Xx8ypT0n+H2G2YbWv7iF9Lll0unnRa7gGmtE9b660do6daM2Ky0TLcdSXVOkcsLJukqLf0ciCfXoWVzc+JF7Vw1D3cLLYPePLyhIbZf/+UvpT/+0fvrzOXRS2jZ0WGH7jQPT4nQEsGWqnm4U7rm4bno09LtvmXOnNj/bW2xZh2FkioozNeGP1eVlpL/JzGFUKrNw90qLfMZWjqbh5dypaW17dpuO/t7ZtM8XHJf39yWm3S/UzkPxMPo4ek59wOVlfa2LCijh69fL735Zvrtai7Nmxf7v6VFWrKkMJ8ZJG7NwyV7v9DQUNjpcaJPy9T3U1m/XnrrrdQV+c79R7E0D1+yxD5mz4fOVFo6H3/ttfTHermotPz449j/X34Z++2s6baOVf1uHu4ciEdK/x0LEVqmq7Qs9HFpqourufitnPMsV83D3Zr2B73ScskSe/rfecf769KFlm7H3s7jJbgitESwmZWW6ZqHd3UgHrN5uHWVzLnxT7UzMD+vkM2gvA66kSu56tNS8r+5WCFQaZkb6UYPL7VKS2t7Z3Z3kW2lpdfBudL9TuZ7lFvzcCot03PuB6TkVgpS4nysrS1cpWU4LB1wgHTkkdLNN+fvc0zmulQOrQicUoWWVrX4xo2FnR6nfDWRLgadGT08HJb231864ohYFbGbYqy0XLFC2nNPafTo2Ijd+ZCpT0s3zsdbWqTp01N/Ri4qLc118ssv7en2s9LSS5+WqRSy0rKiIrHoQCqtSst8hZaZKi2DGFpu2mTfXrzY++vM5bF798TfyG1+uh1XIQmhJYLNOomvqIhVH6XS1T4tzWZuqSotvYSWhTxh8Tu0dDtpj0aTN8guB8mhcjixy1Wlpfk7B6FZpfXbVVbagZq5Q851VU25NA9vbbXXHfMCTbaVll6ah0uJJ51NTYnLYBArLVtaChMOegktqbSMseaB9b/XPi3zuR1bskRatix2e8aM/H2OyVyXgrCNLrRUoaV1zNbY6G9VPM3DU993s2RJLOCTUq9DbqFlun6Sg+Ctt+ztV776n7WWrVAotl3sTGgppe/X0m2/n80xdTSaGFouXpzcPDzdxdJ86UpomWq5zkelpVsXY35WWuY7tOzKPOzosKe1WJuHW5Yu9f7bZts8nEpLTwgtEWxWaNm/v3vYaOnVy95p5Kt5eKrQ0vy8QlYQmtNTiCqWTJWW0Wis749+/aRHHrH/RqVlaTUPt367Hj3sUappHt515nbEvAiTzUA8bs9J9Tzrd5o6NfZ5Bx9sbyuDVmm5aJE0eLA0fHj+myFa372iIvGEyVJdHVvuSzU8zyRdpaXX0cPzedHKrIwo1PJKpaV9263SUkr8XQqN5uGp77sxl+FU+3Pn4+3twa/EN1tu5fo4xWIdo9XVxfYTmULLlhY7GNl3X/v4Jl2/ll2ttGxuTtxnffllcvPwdBdL86UrA/Gk2u7mcpm05lmqcRGcz8unVKFlLn4r5zzryjzMNCBp0JuHm6FlR4d9MScT83v36JHYSoxKy04jtESwWSfy5km8m1DIbiJuntRGo3Yg5LXSsqMj9rrONA/3q9LSrEItVGhp9mXW2hq7Oj91auzg9aGH3KfTEvSD21zItLMu1ubh1jJuBjo0D+86M7Q0qxtz0Tw8XaXlP/8ZW3/ff9/u58p8vtn1hl/r7WOPxUKP1aulF1/M72dZ2/na2sQTN4uzulCi0jJT83BrvbVO9vJZjehHaGme2JR7aGmehJrHJX41H25rS764FYT9aKF0pmm8l5GD3fbzQW8ibu5j89XPqrNisV8/+1jPLbQ0++3fY49YtxZSrH/8zz93/4yu9mnpvIBQLM3DPQ7EEzFDxXxUWjoH4XE+VoiL6eZ+2GwRErTm4ZnOg4Jeaem2rnjhrLSU7ACeSstOI7REcG3daq/4mUJL8zlmiGhWsHnt01KK7XS8VFq2tSVugPzq09KsaChUaCnZG9e2tsQrUOY8cdsRZTuf7rlH2ntv6dFHs3udn3JRaRkOJwaaQdipm5WWFvPAMt+jh5dzpWU+moevXGk/ZjUZM5u41dbav2++qlMyMbcthaq0rKmJLWtWNbGl3ENLtxFUvTQPl+yTFiotS4uXSksv/Vq2t0tnnikdfnjidqkr3I41gljRky+FqrSUgj8YTyFCS7PSUood51mtFdxCS/OxHXaQTj7Zvp+q2rKrlZbOdXHhQrtpv9tAPEEZPdxjpWWrGeLlo0/LTM3D/ay0DFrzcGfFoVPQ+7R0bie89mvp7NNSSg4tb7pJGjFCeuopQkuPCC0RXKkqj1KxKoKam+0DBzPw8VppKcV2Ol5CS+dBWiFPWMzp8Tu0bG1NDBbM+eC2I8p2Pv32t9L8+dK112b3Oj/lYiAe57wLQmhp/XbmAUhFhb1DzmfzcLf1tFSYTde8Ng/3UmkZjbpvE6yDsVWr7MeswMesugiF0l8hLoRChpZmpaUV2pqcQZ1UXqFlZ5uHS/Y2o5QqLaNRQkvn4COWbCstX39deuIJadYs6cEHczNtXqvRS1VnBuLxUmnpFvoFvdKykM3DzfXAaiL+1VfJ/X46Q8uxY+37777r/hldrbR0hpbz59u33Soti2z08Na+fb29JlteKy39HIgnaKOHZ1NpGcTtci5CS7dKy6Ym6de/lhYskK65hubhHhFaIrhSVR6l4jaCuBkGWVfCMvVpKcV2Tl6ah/sZWvrdPNz831lpae703AbiyeZAIhq1DzbXrPH+uly68UbpoouyO9DNRaWlc975PchDW5t9QObs78+6up2vSsvq6tg8K9XQMl/Nw1MdxLpVWlqBj7OJm9+h5fLl9u18nxiblZZScmhZ7pWWnW0eLpVmpeXWrYnHGX5vo/2Qq0pLM1Qym812hduxRhAu/hVKZyotzedkU2kZ9NCykM3DzWM+K7Rsb09eD5yh5eDB9v1U269sKi0ffFD68Y8T96HOJq/mfAla83CvfVoa86QlX6Gl10pLK9ycPFn60Y9yVzVuco5pYLUIycVvVcg+LSsr7eMHL9vllSulCy6Q7r+/89OUDed2IlXz8BUrVHHRRdrptddi99OFllu3Sm+8YS8nn39OpaVHLmseEBDmAayXSkvnCOI77eS90tLZPLyzlZbl2jw820rLbHaC5knhpk2xENPZZDOf5syRLr88dnunnaSJE729ztoBmztlU2dCS79Pttx2xBbram++QktrmSvV5uFeKi2d2yC3dT1d0N29u32/sTG2HprrorPS0jpxsH7bpqbCr3+Sf5WWUvIBJKGlfTub0cMlfyotI5HEbW2uObd35VhpmWn0cMlboGWeIOYqVKLSMv19N85KS7d1qBibh5v72HyEltFo+kpLKRZSmsfrztDSy4BlXist162LhWbt7bFt8K23xh5PdwHBrXm4nwPxdKJPy4RKy1xeuMqm0nLduli41tERO166557cTYeU3Nd7bW1s/uWj0tI6B0s3GG4qbs2knWpr3c+53Vx7rXTvvbFA+NRTvWUDXeEM+N0qLVtapG98Q5UffaTRlZXqmDDBvVm8GcC/8IJ9e8uWxGCbSsuUqLREcHWl0tJ6bWebh3vt09I5Unm5NA93NpFsa0u8kmvu9Lo6erh50BGJFL7aa9ky+/b773t/nfU7pNpRe2keHrTQ0vzdnJWWZrCVbmChbFnLubOqSyqPSkvzAKYzlZbmMjNokH27sTE2sI0pU6VlJFL4SrKWlsR5E5RKy1JdDjPpSvNwa1vY0pLbbYTJeZKR730yoWXuKi3NeZmr0cbLvU/Lrg7E43ZfotLSTTic3DeklH4EcWdoab4u1bbEbR/s9twlS+ygbdEi+/F066LbxbqgDMTjd/PwbCotly2z93FvvJG7abA496/W75WPPi1TPeZFpkpLyf6tvUz7O+/E/u/oKEzLOy/Nw6+4QvroI0lSRUeHQgsWpK+0lKTnn098j4UL7dtUWqZEaIngSlV5lEqm5uGZQstcNA/3q9KykM3Dq6vtSisvlZZuB8nZnNg5D469nPzkkvmbmn3/ZOKsVnPyUmkZtD4tvVRaSrldD6zlzlrWSrXSMtVFmlAo9QGpl9DS3B44Q0uzP0spdaWlebBV6IsGzqZV+TwxjkaTKy1pHp7I7eKV9X97u33Snq7SUsrftswZduV7eSW0zF2lpTkv81lp6fd+tJC6WmkpuQeUxRZaRqOJ+9h89GmZqm/XbELLigo73El1HGX9PuZFAbfnml0smN893QUBa7rTHXfkS9AH4smm0tJcFxYuzH1I7rx4aP1u+QotO7sfzTQQj2RPe6btcjgsffqpfb8Q+1rn77Z2beLnvvCC9Ne/Jj5nyZL0A/FI0hdfJL5mwQL7NpWWKRFaIriyHYjH2Txcyq55eLENxONXaGluUK3bztCytdXewbvsRLPq09K5s/QztPz8c+9BWabQslQrLaXcHqA5l7uuVLitXq1eZuVskKS7SGMd1HVm9HDzvnny1NiYHAhmqrSUCh9amhXcUn6bIDqbXJn/W8o9tDTXObd5YW0f01VaSvnbV/odWpZ7n5bm/q4rlZa52oeUe6VlLkJLt3Wo2JqHb96cuJ1ua+vccrBgQfI+yZJqPcgmtJTsYyu3bWR7u/09zPdN1Tzc7baX5uFSYlFCIeSq0tKP0cOdx6XOdeGDD3I3HVLy/jXVMWJnuK3v+ay09Bq4LlyYePxRiPNtt4B/yZLY/2vXSuPHJ/059OWX7gUe5jmSkxlaUmmZEqElgqvQzcOdFVydaR5eyEpLc3p69bJ3moUMLa2NazicXKpvbbSt+WjO92xOJJ0Hx7lqNuaV+ZuGw6k7YnbKRaVl0EJLr5WWuaxiyFXz8HXrVDVihL7+i1+o8gc/KHz4nYm1LampSQ6EUx3UZds83BlaulVahsP2djMIlZbmxRApv9U85jY1VaUlo4fbt93WSevvmSot87WfKnRo6QzXyrHSMlejh+ejeTh9Wibe70zz8FKotHQeq0vZBeONjdIPfyiNGCHtvntit0GWzlRaWtWQ3bvb+31rO+m27Jq/58CB9u1sKi29NA83b/vRPNwKuLp1s/cz6bblxnxpNbc7herT0nn+6FwXZs/O3XRIifvXbt3y3zw8F5WWXW0evq0JdpwflZaSfQ44YYK9jo0aFf9zyFlp6dY83IlKS08ILRFc2Q7E09Xm4c4wpJhGD6+psXcI+Q4tzatA5sbVahZosXZ81oGIGTwXU/Nw587aaxPxfISWflfxmL9bukrLdKFltleCc9U8fNYshbbNv4rHHpP23Vd6+eXspiWfrO3dgAHJA92kOiB1Wx7SPadvX/u9UoWWbk09gxRabtqUv/4QndtUqbiah7e2Jm+Hcy1TaGldSCjXSstyDC29NA8PUqWl3xf/Csm5j2hpSX28keo16UJLs//AIIeW5vmExevF1ZkzY6GENWJxW1vsMaeuVFqaz/EaWvbtax8PZQotm5vt13ppHi4Vvnm4W6WlZB9r+tmnZTRqH296qbR0rgvvvZeb6bC4DcQjBS+09DoQjxSbdvP4xXmuEJTQcvHi2LQ++WTsfr9+0rPP2n9fsiTzQDxO5vyl0jIlQksEV1cqLa0w0Qw1rLAy1Q6nM5WWQenTsra2cKGlW6WlG2elpfn7FGvzcMlbaNnebp+8d6V5eND6tDTnRWcqLa+4InYAeuON3j8zV83DnevqypXSCSdI//qX9/fIF7O/LbcLNG5Nf6LR7JuH19XZv1NDg3to6XbiYB5s5aMvsHScoaWUv22AW6VlsTQPf+212H5yzJjMoURXpBs9XEofWpZipSWhpXvYb922jks606dlLgL4cq+07Eyfnl6ah1sn8/372/uHIDcP72yl5ZNPSsccYzcJtZiBoCXbSkuzGbFbaNncnLwtd1ZwpQv0nEGtNQ/M/afZhYOUeLyayybHXuQqtMxH83DzGN2t0rKiwr7Y3N6evC7ks9LS2Ty8q9vNQg/EY64r1ve66KLY8n3zzfbfPv44N9PkVVubvUya+cDixdKMGfbfTjtNGjpU0SFDJEmhxYu9VVoOGODeZJzQMiVCSwSXtcOtq0u9sTOZwWa2zcOrqjKHlm4HukEZPbymxt7J5yvY6kxoGY3a861Hj/jvmFWflkFqHi55Cy3dmrk4FXvz8GwrLaNR6ZZbYuvW3Xd7+7xoNHm5M9ffbCotjXU1utNO9uP//rf398iXxkb7u7hdoHG7it7aai835gF+ukrL7t3t3ylVn5Zu1SJB6tNSyl9FTzaVlkEbPfyf/4xtq2bMSD64zyUztLT2mV6bh1NpWZqs9cZ5HCXZoUi2lZZu/Yp3Bn1aJj+WbWjpXMajUfuxPn3s3zjIlZadDS0fftgOgXbe2X7crXIzVaWl2XrCDC3N93ALLaX0rW3M0NJtu+MMVp2hZW2ttNdeic8JSvNwc/5Zxx8eQ8v22lpFrXmYq2DLPNZ0K3yR7P2gW6Xl4sXuy2BnOS8emudiXb2I6rbPzOdAPM7j10hEuuuu2Pn7739vH+cWutLS3D6MHGnf/vLL2AA8llNOkSRFd9lFkhT66qvEdc9tIB5JOuooadtrEtA8PCVCSwRXusojN3372gcGfjUPT7eDvP566dBDc9dMIAiVluk2rk1Nsflo7XBqa9MfYKUStEpLs++RVFIdfJk6MxBPR4e/AUm6Skvz6rZbaLlunf19vFbrmd/VOigLheyDxk5WWnb85S/244Wsjk4l3SA8UmKH+NYJlLkOma9JV51bV2f/TqlCS7dqkSA1D5fyd3LspU/LoFZamuuUWxVQrljftbra3t9mah5uzcN8V1q2tXlr2ppLDMSTPHCXyWoi7mWddYZIubhAWc6jh0ej7stjpmU0U6VlS4sd4vTubbei2bAh/91TdFZnm4db/ddVVEiPP24/nk2lZWWlvY82Q0u3QXikxO2k87dwNrfNptLSum+tV9ttJ+26a+JzUjUPL8Tvai2XFRWJ+xTzO6a6wL9tvkRDIUW6dbNfk6vjFfNY063S0nzcLbSUpPffz820SKkrLaWuh8yF7tPSnPatW2OfZW1f6utjVaobNiQfCxYytBwxwj7mW7xYmjIldruyMtZiS5KGD7efb45y7nbxX4qFls71T6LSMg1CSwRTJGKHDF6ahkuxjYd1gNyZ0NK8emYelFm89mnptnPfsEG66irpnXekP/4x/ffwKl1omY8DjM5UWjqn0dpod2UgniD0aZlp/noJLb1UWrodfPh5wtWVSsulS+3bXoNCt6aoUuLBoVfGuhodOtR+PAghg3kFPl3z8EjE3i6Zv4XZ9UK66lyz0rK9PbmKsbEx8bcJQqWlW2iZr2aIbpWWxdI83PxdclnR4WStc6kuXll/d5uX5sl4PsJEt8opKi3zz/qt3fZ1VhVea2vmfZdzXuaiX8tyrrQ0B1UzZRtaOn8X837v3vZv3NFR+O5DvOpspaUVWg4dKpktNNxCy1SVlpIdSq5dax8/mqGlOaiOuZ10Lr+pKi2bmpKPSzNVWm63XXKll1vzcLM/x3yytg/duyf2620ea6Zadq3Hrdd6qc7MhpdKS+txt+bhUm77tXQeG7s1se4sP5uHt7QkX6x64QX31iOFDC379ZOGDYvd/vRT6bPPYrcPPzzer2/UXJes+dW9u32uR6VllxFaIpjMwRa8VlpKdsDZmebh5tUzt42hc0fQ0ZEcoHV0uO8w1q2zgym3UQc7w3mlzdwh5Pqg3K2ZrvO2U1NT8kGcl75pnILWPHzz5uS+AJ1yFVq6neT5GbJ1pU9Lc7l366vJjXOERIt5cOiVMxi0DpSCEDJk6r/XDM6sdcpcDszQMl3zcLNPS8n9hNY80fG70rK11f3kkErLZOa66VZVlCtu+wGvA/EMGmQ/tmZN7qfNbd9AaJl/1n4qXaWllHm97WpoGQ5L//d/sQvDbhXplnIJLVMdK2QKjzNVKztDS3P/E9Qm4m7bxEzLV0ODfYy/yy6J+2a390tVaSnZoWVrqz3/cllpGYkkLtfRaPK+c9262DpivUffvukrLXNZvedFqsErzdAy1bmD9Z2seZfr5uG5qLTMZb+Wzv2r2zFiKo88Iv3iF6n3wYUeiMfZPNx5Xj1lSnLTcOd754N5PNGnjx0wmsfNJ58cvxk1Ky0t5rpsHkf37Cntvz+VlllKcbkA8Fm2g/BYrIOnxsbkq8zZVFq6bbSdYeTGje4Vd1u2JB+wmBs/5+iBnZWq0lKKHXSmCss6o6PD/q7ZVFo6D+K2HXyEWlsV8ho4Ba15uBSrttxxx9SvyVfz8FSPFUquKi2j0dj3SNXHjcU5QqKli5WW6t8/9tktLcEIGcwToHSVllJsO9SrV+pKy0zNw906/jatXp34fCnxNYUMLc3m65WV9nriZ5+W1rIX5NAyn5WWmUJLZ5+WVVX2BZptHdVLSu6aIBeCEFpaLR3MSqFSl655uDnQx8aNqfebHR3J2+JsL1Defbd0ww2x24ccEhuUqpxHD89UlZZKpubhztDSPA5ev969eshvbtvETFWhixfbt3fZJbad69cvtv/J1Dw8VaWlFDsH6NMndWhpHls5fwtnpaWzKtP63Kam5HOW+vrEdcqt0tKtebgUW8fTjX6cCzkMLaM9eyokxfZHbW1dr17LttLSWraGDYtt9xobc1tp6byg7zVgXrdOOuec2DS2t0u3357490jEnpehkL1uF7J5uPNiwnvvSYMHJ7+ukJWWffq4B4zb+rOU5L7dM7+zOar94YfHlhcqLbNCpSWCKVMfb6k4r/h2tk9Ltw208wAgVRNFt52qM7TMRfPtTKFlLqVqpptNpaXZPFxSpdcrt343D3f7PTP1a5mvgXhSPZZPy5ZJd94ZCxm8Vlq6VTA4K4y9XAFPtdx1ptJy2/rabg1aZf0ufoSW0aj09NPSyy/H7me6SON2QOq1eXiqgXhSMa+++11paTYN33NP+3a+mocX8+jh6ULLGTNiA07lYr+TqeLeWWlpzj8zsMpUrd4ZQQgtrQsy5cRLn5ZS+osN6Uao9mraNPv2woWx/83tpHXsVy6Vlqn2bflqHi4Ft9KyM83Drabhkh1YWBcVsxmIR3IfQTyXlZZS4j7ALVRdty7x+Nlr83CpMCOIpwotzeOPTKGldVznJejMRjaVlm1t9nowYID0X/8Vu71qVe72e84L+l5/q6VL7ePmt99O/nuqvtJz0Tw8VZFCpubh0aj0zDPJrytkaNm3b/K6MmSItN9+8btRtwDS/M577CEdd1xs+f7lL2OPub2GSsuUCC0RTJn6eEvFOYJ4PistU1WzuG1IzY2w2TykK9I1Dy9UaJlNpaXZPFxSldcTO78rLd1OpjKNIO5skuvGS6Wl331ahsOxTqZ/9jNp771j4Ycl2+bhZqWl5O0gKFXz8M5UWm5bX9usA2Br+v0ILV94QTr99Ni8nTHD+0A8UubQsjOVluZJgVulpfn3QvZZZoaWo0bZtxk9PJm5nTKXp0WLYhVn3/lOrBKtq7JtHm4uu2a1RKmElm7BRxD6yS2UaNR7pWW69dZtu5JNaBmNSjNn2vetQMjaz4RCdoBaLqFyZ5uHZxtalmrzcGelpWT3Pbl5c/r+o1M1D5e6Flqm6tPS+Vy371tfn3j83Ldv7EKSuf0OevNwt+15JBJ/bTRfoWU2lZYbNtiFCP36SQcdZD8nV4PxdLZ5uHne+sknyRf+zXll7q9zUWmZ6lwoU/Nwyb7gag74me9BNJ3Nw52VliefnNiiYsgQdTiXDXNdDoViF9Y2bZJOOin2mFuTciotUyrq0PK2227T8OHDVVtbq0MOOUTvvvtuyudOnjxZoVAo4V+t2wEWgqGrzcOlWDVONn1amhsbL31adrbSUupcE/FNmxIPooJYaelsquKcRjO07GylZVf7tGxri/WP4qVPRcn+Pc2KkUyhZT77tCzkCdcjj9gdTjc22relrjUPl7KvtHRrHu610jIajZ9MJYWW+Rq4Kh2zb6O77/Y+EI9kb4fMbVTv3vY8SdenZapKy733tm9nqrQs5GjrZmhpXNEuaKVlqtDSHMU+yJWW779vL9933dX1z7FCSfNEN13zcHO97dnTXv5KJbR029Z5uRDS0SHNmxfc0Za9Coft75Cp0jLdBUe3+ZjNvn7+/MTtgnWMZTYbtY6RyqXS0tz2m8cb6Y4Po9Hsm4ebwXS+ts1dZW0TzWPWTBfg0lVaSsnBYNArLd2ah1dW2gOMSOmbh+dTR4e978i2ebh5TGzNO78rLS39+0sHHmjfz1UT8XQD8aT7rcz1s60t8Zheyl9o2a1b6rDX2Tw83X7ikEPs27koOFiwIPV3czYPd1ZFGv1ZSpIqKrTVHFBLSi7uCIUSt0F1dclN36m0TKloQ8tHH31UEyZM0FVXXaUPPvhAo0aN0tixY/WV24Z6m969e2v16tXxf0udJ9EIjkx9vKXS2dCyq83Dzas/mSotpexDy02bYhvMXXe1m0AFIbR0blzNJpxuo4fnIrTsSqXlrFmxgGbUqFj1oBfWTnzYMDtAL4fQMhKx+wdz49wZZ6rGy0fzcK8Vbo2N8YCzzQpNrOk3D5YLxdy+PfGEtGSJfd9r83BnxYX1nHTVH3V1idsqy8iR9m23SstcnwB4ZY5u7lelZarm4eZtv0PLjo7E5cFcvszf8/33M2+7MulK83DJ7tdy5crcB3bFFFqedZa0777SJZfkfpoKybmPdypUpaVZZSklV1qa28hyDC3N3yHd8WFra/J6mW6ApD59gl9p2d6eOKCOpSuVllJyaNnZSstu3RL3y52ttOxM83ApcZ741Tw8XZdKmY4/XAZ7ifpRaekWZjorLXMVWqartEz3WzkvKjgHuDH3l2aY1tl56Gy27yZd83DzopeU29Dy3nulESOkoUOlf/0rebuXrnl4VZV0/PFJb7nFXM+lzP32S8lhKKFlSkUbWt5000368Y9/rPPPP19777237rzzTnXv3l333XdfyteEQiENGjQo/m8H58KF4MhFpaWzebi1o8lH83DzSmU+Ki1nzbLf44UXkqenW7fghZZNTcmBiRFseQ4tnSedra3ZB3fhsPTb30pHHil98UXsMWs+pmN14i3FDpxGjIjdXrMmfRVIPgfiKVTTw6eftgOOI4+UHnvMPvEZPjx5Z1xZaT/mNqKu82DJywFHrpqHG58dr7Q015dCNxE3Tyiam6Xp0+375jbMkql5ePfuqU/IvTQPz1RpWVNjL6/5CC1TLf9mpeXIkfY0BGH0cPO236Glc5tg7pucI4T+619d+6yuNA+X7NCyuTn3XQ24hRD5DC2j0c6FltGo9PzzsdvPPpv76SqkdNVlUupKS+c67/bb5SK0tH6Lnj3t6SvH5uHmcXS67++27GZTaRnE0NI89jCbeHoNLevq7NDRDC2dwWBnKy132CGxmWkuKi29NA+31s0jj4z937OntPPO9t8LWWmZ7pg5U0sPc544Rw+XcrMP8FJp6RZm9u8fOz+05vXHH3d9WiR7P1xRETsu6kylpZQcWprzd8AA+5irq5WW6UJL8/d2Vlp++9uJzx01Knf90VvngA0N0g9+II0bl7j9cjYP3247+xz3pJNcCwCanblSuu9tcTY7p3l4SkU5enhbW5vef/99TZw4Mf5YRUWFjj/+eM2aNSvl65qamjRs2DBFIhEdcMAB+v3vf6+RZoWJobW1Va3GCUzjtp10OBxWOAj9V+WA9T2C+H0q166NJ+rhPn08hxOhvn3jC3XHV18pussu9n1JkXBYoWg0acFvlxSqqJAVI0UaG5MS/UhLizqM6aj46iv7+UOHqmLbxr+9oUFRx/RWbNggMyrtWL1akSzme2jt2vg0R+rr1REOq2rrVoUkRWtq1N7eroqamvhntDc2Jk1Dl2zZIms3Hamqis+HisrKxO+1xx72PNm8WZGmJnv+V1dLxjyu2rrV07JX1dgo5zis4XXr3EeTcxONqvLkk1Xx6quJDzc0qD3T52/caH/vHj0UHTpUldtOjtrnzVPUvOpnqGhqsn+Lbt1cf4uKaNR+Tlub63Mqm5uTlsP2zZtz+9u6iUZVef318c9uv/xyRU86STrkEFU8/bQiX/+6a9Psqj59FNqyRdHGxsR5u2iRnId57Zs2ZfweoeZme/mpqoqvM1WVlbFlv709828oKbRmTfx9wr16KRwOq7Kuzt7GbNqU/5ExDeb2TVL8Cm+0b1+1S0nbu4rqantZ2bJF0XBYFY2N9mM1Naqsq4vNk5aWhHlS2dRkf8/qaoW6d0/Y/kVDIXXstlv8sejq1fH1rb26Ov4bVfXsqVBDg6KbN3ua515VXH21Kv7yF0V+9ztFLroo4W+Vy5erQlK0okLtAwaoarvtFKqvV3T9+pxOQ3xatmyx52llpaLhsELV1Qnzq6Oiwl4Ou3WLzfO2trTTk/d97YYNCetXtL5e7a2tse3typUJy1r0X/9S+29/m1jp7VVHh6q3hU2R6mp7P2Bs19ubmxUNh1XV2hqbN926JS6Pgwfby+PSpfaFoBxw7mclJW+LcqmlRdUu7+12DJCguTn+uui6dfmbPhVg2WtstPeR3bolHCNJUqh3b3sbXl8fOwabMUOVZ52l6CGHqOOZZ6RQSKENG5KOyyIbNya9XypVM2cmHCdE16xRezisqqam2HLYvbuiNTWxZa+1VeG2tpIf4T3U0GAfN/bvH1/vOjZvTn38uWlT0r7auQ5VbNxor+/duyvaq5e9DKxbpw7jPCkQ5xerV9vTt/32CvXoETtOSXcMGImoavHi2LIzfLjatx3vVPTrZ3/3VasS1vOE/UdVVeI2oF8/exrWrFFHS4uq6usVkhQZODBhOQ/V1NjrTENDwm9lHluGu3VTRW2t/ZnGMVXFmjXxx6OhkELRqKLr1yuybp39/J49Y8+/5BKFBg1SdNSoWPhlvYfLcUfemNuRmprE+VFba8+PTZuSl11jmY1sC8A6und3nS+dFWppsafBOAYwVVZVJR2vd/Tpo0h7uyr32ksVs2ZJK1cqvGFDl483q1pa7PO/cNjzb2Wet0pSZO7cxHm9aZP9Pbt3V0WvXgpt2tTp/WhVc3N8+5vq9eYxVvuWLapYv94+9/jOd1RldGsTHjFCVT16KNTcrOiWLV3ad1bW1yf+Xo8+quisWWp/5x2pf39VbtxoH6t07x4753nySVVMm6bImWcmHaeHw2E1O5qHR+rqMu7DKnbeOeE3CVdUBKOf9ALJZh9RlKFlfX29Ojo6kiold9hhBy1IMarvnnvuqfvuu0/77befGhoa9Oc//1mHH364PvnkE+20005Jz7/hhht0zTXXJD0+depUdfeSnBeRaeaIiwFxyPz5GrTt9stz56rNbD6ZRv/PP9e2a4b6cvZsfdXRoSO23V+0ZIkWTJmi/vPmxZ9jefPdd9Vn8WLtv+3+6s8/146O5zR89ZVmTJkSvz9q7lwN33Z7STQq61rJx2+/rWWOHdJ/zZ8vcyn7/M03tdC8opnBrm++qX233V67YIHenTJFX9+wQb0UO7meMmWKdl2yJP6cOW+9pZWpmjB0Qu8lS3TsttvL1qzR3G3zYZdFi2T0NKcPmptlNYRY+8UXWvn227J6c/n0yy+lUCg+jZVbt2Ze9qJRneZyhW/mM89o89Chnqa9ZsMGnbQtsIxUVqqjpkbVzc0KNTZqyrPPulfeblO3bp1O3HZ79ebN2hCJxKf/48ce07IU/Tft9v772mfb7Q8XLNAqY7mJP+ezz+znzJ6tVS5N6w5fsULOzhE+fvfdpOUr17b/8EMd/sEHkqRNu+6q1zs6JOs77LxzbHCPRYuSXvf1iorYMrlhg6YY33ngBx/oMMdzP3rrLS3P0AzCfN3ny5dr4bb3PKa5WX0VC4umuMzbpPd5//34+7T27q1p06Zp9KZNstbAGS+8oCaX/UC+HLt4sdzG8N5SV6dXXL7P15YtkxXtvDdzpr7aulV7zpmjvazHPv1U+7a3q6ekcGOjXjDe47AVK2QdRk2dOVN9Fi1K2P619u2rdz/7TEdvux8yqnNmz5untdtOAk6sqlKdpNb6er3kYZ57Eo3qG5MmKdTaqq033qhXHM1kxn75pWoltfTtq6nTpum4bt3UU1L72rWefvds7f7RR7IuY77/ySdaM2WKdpo/X/9lPGf+l1/qi22ffWJHh+oktTQ2aqqH6cnXvrbHypUyGyqFOjo07fHHFe7ZU4fNmyfzMDq0ZInevukmbTCraz2qaGvTN7fdXr95s97a9p13++ILe1v27rtaVVWl07Zd9N3U0pKw39x761btse32u089pXqzCWYXHfDpp7L2CtGKCoUiEbWtX68X87CsSFK3TZt0ssvj773+ur5KUwVSu2GDxm67HdqyRS89+aQ68twkLF/LXs+VK3Xcttsr1q/Xh4553X31ap2w7fbqTz/V+1Om6MAbb9SOmzYp9NJLmn7nndo8bJiGvfVW/PjLsvazz/Suh9+ubt06nejofqR91SpNefZZ/fe25XBjW5sikYisesMXn35akRKvaNn5nXc0etvtte3tsi7zfj53bnxf6tRz+fL472np2LgxYXu737x5srbUb3z0kbYOGBBfD75auFDvGM8NwvlF/48/ju/zvmhs1E41NarbskUtX32Vcrtdu2GDxm5bdtb26BH/TkNWrIgf4y544w19YVSw7vfZZ/Z8ef99NRgVY6H2dp227famhQv1zqOP6uRt3QJ9FQolzLMB8+bFz1u++OgjzTf+Nvqzz+zjltmz1e/LL+O/8SfvvKMl2yr6Dpg7N74t3LLDDuq5Zo1CkYhWzJghq13Y2wsXar313jvsEKvKNz7ra8uXJx135EvCdmTDhoTtyKCFC2WVByx8/3197vjNtjOOX5Zta2WwYMWK+LnJ3Dff1Ioung9tt2BB/DMWL1/+/9s77zCpqvOPf2dmG8s2YFlYqjQp0gQRsSNIM8beC5pYYtRYojGY2EIMxhJ7EhNjNLbYNcnPhijYEAVFsaAgTZHe29a5vz+OZ857z5zbZu6UxffzPDzcnXrn3lPe8z1vwWeGdnPQ9u1oqz328Tff4JsXX8TQ1q0T1/3dBx7A5j599LcH4rBNm4StHYngxRdftK3FPp4zB9861OwY/umntrVo3fvvYzr5LZ3efjvRvr/45hv0isWE3bdhQ0p234++F9m3NjVhpsP7uyxcmLCxPp83DzWLFiXW/9O/+w6jevVC1ddfo6G8HC8tXIix0ShaA2jYtCmtuf3Q5ctRCSAejaKptBRF27cjsmIF5t92G7478EDsv2RJYv31ynvvoVl6hHbvbs9LT6jt2NH297L167HA4xy7btuGYeTv1958U6Wx+gGwM0D0YIsULVNh1KhRGDVKLZv3339/9O/fH/fddx+mTp2a9PopU6bg8ssvT/y9detWdO3aFePGjUPFbtKYGhsbMX36dBx++OEodHJ3zxGxG28EIHYIx55wgnMOEZ1u3YDf/hYA0KuiAj1IAuTee+6JnpMmIWJw6d7/kEMQqapK/F1ruMdVJSWYNGmSOkeSiqD7QQclJvvBPXtiIHkdAMT+8hfb330qKtBLe40bUZIHpUNBASZNmoSC769JQVkZJk2ahMh334kcHQCG9u2LIQE+34sIqXjXtXdvdP7+syNaMYWhJ50E3HqrOM/ycrTv1y/xXP/hw8V9vP9+cd51dd5tb/t2RAx5zw4eNAjW/vv7O3maw+3kkxFbtw549VUAwKQDD0zOmUL5/PPEYW2fPuhw7LHA9/d9cGFh0n2WRD/+OHG89/77Y6jhdVEi+u09ZIjxNbE//jHpscF9+jh+b1jE/vSnxHHZjTdi0hFH+HtfbS3w7bco2LULkyZMSHhzRVeuTHrtkF69MMjjd0RIGFqfffdN9JnYjTcCS5Yg2tyMSXoFP9PnkMVDY3k5Dj/8cBS/9BLwxhsAgINHjAD23tvp7SkTeecdRK+9FvFTToF1zjmJxwvOPdf4+tLu3W1jjCT6+efA448DAEYMGgRr0iRESTjkiEMPReyFF4DvvkNhc7N9nCJtaNxRR4nwpGuuSTxWvMceGDVxInDVVUnfu89BB8E67DBxztXVwIYNKG5qMp5jSmzahILvF4atd+ywf25DAwq+D88p7tULkyZNQqxbN/Ebd+7EpHHjXOeFyJtvInrddbBOPRVxh+utEyXj3PD994c1YYJNxAWA/oMHo+/351lQUQFs2ICSWMz1mviaazdtQuyCC4CyMjTffbdzWgkTH32U9NDhe+8N9OmDgu/nQ8r+S5cifsUV/j9fQvpju44dE785SoTHvQcOxNBx4xLjdmVNje3aRJcsEXlcAYzs2hVWiGNZjBYaqq0FVq5EUX19eO1Vx7BxAwAjBgxw/11kXgGA8cOG2VPMBCTy+OOI/v3viE+ZAuvww23PZdzOI3Nd5169UKv/7k2bEvmjO5WUoMOkSSj4zW8STx+8556wxoxB9Msvkz66g2ZzORF57LGkxwp37sQkEglR1bWr2KD87DMAwIRDDnGf+1sC8TiiF12EKEkvYnXqhOY77wT22gtRstnfYcAAYM4cAECfLl0c7c+IobpxQX09Jo0fn9jgjT3xROK5AyZOFOliJk8GANR8b5/mdH2xcCFil1wCa9QoxK+/HhEitvXcd19EFy4ENm5EicvYEHnnncRx+5EjE6+LlJYmbNz+bdsm5gIAiD3zTOL4gDFjkrzIrbZtEdm4EW0aGzF20KDE4zUDB9rOI9KuHXDddQCAXrW16EG/41//ShwfPHEiIm3aAHffDQAYuMceGCBtpHvuSbyudNiwxPqkK4kgHDlhgr3AnUb0+74CKLsjY5A5rHPv3rZxJNKqFfCHPwAA+nbujD7aeUSII1HXfv2wAEDf4cMTa42hvXtjcJrnHiGOAj369EF3k71+662ANo4NHj0agyZNEuPba68BAA5o2zbta1nwfZ9KrP9WrUr83iH9+jn+3tj3bUVSun49Ju2/v8jZCBHVJ+k3YgRis2cLu6+xMfg8Go8j9n0YezmxF3QiJJx9r549ESEh9GOPOw7o3x/xO+9E9OSTMWncOBRcey2wZg2KUjknQsH3kT2RDh0QnTYNOOssAMCwdu0wdNIkFHzvuGbFYhh/7LGe64zGxka8r9kE3fv3R1evdU5ZWaIPA8DYI47IauRXrtkaIE1QixQtq6urEYvFsEbLC7hmzRp01FRuJwoLC7H33ntjsYPRWVxcjGLDzndhYWHeCXzpkpe/6fvdskibNigMsngj9z+6aROiZJCJFRUhVlhoTHJb2KqVLSdI1OAlEWlosF8nIoTESE6K2K5d4nsoWu6c2Lp1ya9xg7w/umkTooWFibwlkZIScV40X2R9vXPelVQghWJiJSXq3DWv40KSbiG6cyeixO27oHVr20K8oK7Ou+057OwWbNvm//eRCTHatq0trLlwxw57jiIdYuBFKyoQJQZebM4c53tIctwVlJebz5U8VhCNml9jyE0Ta2gI1naCsno18Oab4rhvXxSceKL/UNLvNwQiloXChgbVJg2ipbGf6JDJLFZdrV5PPGQKo1HvTQ2Sm6ahvByFhYWIkf5SGHZ/kdx4I/DWW2LT4ac/Fefd3KzyCrVrZ8sxFG3fXvRtHZKfqaC5WZwraRsFlZWJvhipq0NhQYEysOTrCgvFONfW7gsQ6dwZhQ7FzgrKytR1+f56RbZvt39+OpC8W5EtW0SIl/w+Uqgl2q2buC4k32fh9u3uRdp+/3vgnXeAOXMQO/nkpN9thIwNid+u5W6NtWqV1A6T5gYHXMe7qVMTYl60f3/g17/2Pl+JYZwo3LxZnL+0k9q3Fzmgdu5E7OmnxeIlDe++aHGxaqtk7iyIx23zRbSkxN6miYd8wZo14fY7Mk9GunYFVq4U98ayMpMnis5PsVgiT6Pn/KvZF4WbNgG9e6d+HldcAaxbh+iUKYDDAiljdh7JTRkrLU0e06urxVhhWYhu3oxoNAosWpR4umDTJnGtDDZXdOtW83ioQ9NCVVcn7MdCUsgrSnP/ASLNQb7ZvUGZOTMhVEgiixcjescdwIMP2u0XYufE6ut92S6Uwrq6hLBB894VtmunciVv3Yroxo22e5aT9cUdd4gNyTfeEGM/mf9jHTooO2X7dmE/mKJtSNuJ9eqlrpfMyQsgtnGj/TqSa1dYUZHcvjp0ADZuRGTNGhSS3HnR2lp7OycOFEl2EhlzCisr7a+tq1OvlXNrQQGie+6ZEC3pZnlh+/bufcBkd2QKMvfGysrsv5lsLhjtRtrOv7dTYsQ5xZet6QVxnrCtgSiGOaagpkZct4ED1WOLFqV/Lb//zZGiItG/6L1qanL+fEN0WOHChcBBB4k/SPsqqKxM5ECPbN+OwlgsWFoZMk5EW7d2HsvJ2BxrbFT9tawMhaWlovr6ww+rUO7vXx/ZuTP4OVG+74ORtm1RQDxfYytXivv7/fojUlmJQp/2w05Ng4qVl3u3Pc3rtrB165Y/NwUgyPzQIgvxFBUVYfjw4ZgxY0bisXg8jhkzZti8Kd1obm7GggULUOs3Lx6TXWQhgSCVwwHbBI4tW4JVDw9aiEcO/qWl9uIZQauHL1sGXHklMGtW8vskNDmwPJbnIxeMVEAMO4zDqRAPPa6pEcarFCa3b3evHr5rl7g/f/gD8Kc/mSvJOiV/diuCo0N3ccrL7W3E63NoOygrA7p0Ubvn77xjr/pMCasQjymhdqYL8dBwzcMPD2YQUA9lKtQvX578Wj8FXWhCbio6mQp/uEEMtXp5jtkoxCPF2ro6VRBl40Yl6uy7LzCMBIY4jXemJOtOhXgA+1gl26Jsh7oXeefO9j5BoW1X9l3LCm980Ty1bQVkaBEeGbofpOCDbHNNTYDfEEVT9fBsFOJZs8YuPvzpT8H6uWmcXL9e9A15TXv0AI45Rhxv2uSvEJmO0zyg90e9simlM0m8ot//dJHjeevWdi+6TBXjoWMcTVfkNZ7o8w4tmrFhA3D11QkB25O6OvX+hQud55JM4VU9PBpV48vGjWJ+oe1IFjMxeVv4neflJltBAUCjApYsUcdlZf6LVbQUaP+h85kMladjCJ1b3MYWp7ZL+5BeiAdQNnA+FOKhnsyzZtn7V/v29gIaTmMDtYNooQy3Qjxu1cMBNUbs2AFcf33y45IwqofL39y+vf2caWE2L0/jbPYXN5uZ/kbT/TIV4vF6T1D8VA83PS5tFhJ1Zov+ShU5hsr51W/RJFNKK1qMh7ah8nL7dQy69qCvT6V6uFP7pP0j1fXQrl2qzbVrZy9AJW1HOb8bojOdaCwrg0Vf76d6eOfOdhtqN09bkg4tUrQEgMsvvxx///vf8dBDD+GLL77ABRdcgB07duDss88GAJx55pm2Qj2/+93v8Oqrr2LJkiX48MMPcfrpp2P58uU4h4TsMXlCfb2aZIJUDgfE4Cc7vJNoaZpYCgvtg4ZJUNEnAjn4V1fbB3aT0adXKaSi5RVXiHCT4493XnDQiWbjRiEcyPORk1Wuq4dLYUEO0jt2JBsidEetrk6Edf3mN8Avfwm8/HLy91LjmE4EVMzyghosFRXBREv63rIy4TFy+unqMUNYWtL7nERLKgYSzyQbJnEo05VPqcAYIO8qALsgRu+dSbT0IxTSBRA1YGgfNhQESoL0n0bpYem2MAgLev5ygUkXUDU19vbkNN55VQ9v3dp5gaFXb9RFy06dxHtNXne07dJwlbBEIN0D10u0pJtDXotjOsb6FehyVT389tvt92zdukSqD1+Y5qt168SiWm4G1dYCp52mnn/66eDn6Wfzyku0JJ5KGRMtq6oy01516BhHN8CDipZU/Lj1VmDaNOCkk/xdH9pnGhpsHmJZgdoaDnnUEmP3pk3JC3Y5HppESz/Vw9evV585bJhdYKKipRbpsVtUEKfX59571e+T7Ym2Qzp2Bq0eDtjvjzymkUtSnKGbcrmCePLirbfsfaS62m5LOrUx2nZoruW2bVWUQZDq4YAtEgwk/DyQaCn/jkbFuGsSLS1L9auaGrNdEYvZ32siX6qHOwmzEpNo6VVxPCh0c9xJtDR5jMl+1727Gh8dam8EQs6xps1VP6IljZRxEi3LytKbR3WB3Qmn6uF+RMtUbXdqP7ZtK+ZveV9XrBB9SI4NTpv6Tuyxhzr2I1rGYuo9xcW7fYG4dGixouVJJ52EW2+9Fddeey2GDh2K+fPn4+WXX04U51mxYgVWrVqVeP2mTZtw7rnnon///pg0aRK2bt2Kd999FwNSSEb/g2b+fCEumbziwoIaGEE9LSMRZZBs3mwXNML0tLQse4gnHZhM73XztJT5Ktevdzag6ADb1CSMRjkxmTwtsyVa0mMpLEgDw8vTsq4OUeoBRUO8JHSSpAKanNSamoBnnrFPujpheVrKyfvUU9VjDz9s7gskJ4ttEUXx42mZa9EyaJ41J9FSK5IAILuelmRMaciWaGlZ9vOXAgRd6NTUiFxgPXuK9nX88ebPMnlR6oa604Jc97SkGzuAEpFMu8n0e70WDqmgizJU0KXii8nT0qEIFgBxfnQMfOklfwtpk6elLrqZdsSbmlKfEzdtAv785+TPvuUW/2Ko6X6sX2/3qunYERg7Vt3T998Pfq5+PC0bGsziLz0PSUsQLb/6CnjqqeRIC8BZtPSaf908LT/9VPzf1KSO3aD2EmAXbLIBvYe6+CKR/XbTpqR8nkZPS/k5W7d696u331bHBx1kP4evv1bHu6OnJbUXKyuVvSzbE22HVLjy62lJ+zi9P9QDSS6wpTgTj5sF6GyxaZN9bnjrrWRPSyc7hUI9LaloGYupa0k/F/D2tDzjjOT5pGtXYMIE+2N+PC1btxbX3jQvb9mi7CIn0bKqylsccYreyAQhiZbW9++1vNZklPff917X0rWkUzirScyU641YDOjbVxwvXpz+Rqd8v+yjfu7Vrl2q/QwZoh6n6yfdUSMs0dKvp+WmTer8ncTCTIiWsZhKXbN8ubhWsg8F8LQEAIuOF35ESwA4/3yxEfG94x1jpsWKlgBw0UUXYfny5aivr8ecOXMwkiTdnjlzJh588MHE37fffnvitatXr8b//d//Ye8MFF7Yrfn4Y2C//YCJE4N5gQRF3xUNihxggoSHFxTYJyLT4Ewngq1b1STWrp27p2V9fbLQtGOH+FdXZ1+c+xEtAbsHTT57WuqiJc27uWsXInTBYRIeqUFJRUu56Lv7biH07LeffYHi9BlBPS31XUdA7Igd+H0tyoULk4tgNDYKcR8QuUqcJt589bSkAmMYnpZNTcqjjk7+foSvDHhaJqryhRFi4sbOnfZ+YxIt27cXBtOiRcCqVcCIEebPMi229V1sv56WgP0+SdHS1E5N4eFA5kRLJ09LaUz69bTU8l1j7VpjsZokgnpaBhXPTdxzj5pvfvIT4Ec/EsfffAM88oi/z3ASLcnGLWprxfkOHSr+XrQoWJoNIJzw8OJiNa8bct2mTGOjmnvDEi23bgUOOAA48cREIYik5yVUjE3H05L2CT+V1XXhJNuipZ9NLjl2Wxbw3nv25+T5U9tH9vd43HusoTbEwQfbRUvd03J3Ey1pO6qqUmHA69eLa5euaEnbtCk8nM4jQVJ3ZBK9/a9aZW9zQT0tq6uTi2JIcdgpPDwSMYd4Tpok3vP11+rfkiXJcy+dd508LeV8bhLndBvD5PzhpwgV7S+ZtjvTES1NHn1+7ZUvvwT231+sa//zH+fXpeJpWVlpf61MLdXc7FjEzReWlVp4OBXze/RQDhULFqg1iL7mScfuS0W09JO+IGzRUtqVcr2zebPd/syGaPnLX4qxSCvay9hp0aIlk2VuvFEtRkhlutChRngqoqU0AKiwCATztDQNhHQhRgf/6mp3T0sno2jNGmGw0N09p9fqXkV0sZdLT8thw5SBMX68+F9Oct8XfUighYeXr1iBCJ0YvERLuiCSHmwyl9WuXcDNN5vPPZ3wcJNoCdhDeh991P6ezz5TRgOpXp+EH9FSfk42w9rS8bSkk7u8dytXqs0DUqgpsKclNWBSzGlpFRaiSfaXTHta6ikMZJ/Vw8MB0RbcjBtqkOqelpGIGANMC3Kaf5K2Ib+iZbY9LaloSZ+T5+h3YayLloC/EPFUc1oCqXlObN8uikYAYl761a9EugzJTTf5y1HoFB6ue1oC9jHJUCnYFfobnXIweYmWgMpruWpVeKGkdO4MS7R89VXVJt99N/n5TISH07mdim5O6J6W6SyGU8HPJhftt/p1NHlayg1QwHuOptV6hw1z97RsyeHh33yTLEY4eVrG42J8dBIt3X47fQ8VLU3h4U6ipZsXfKYxtX8p/hcUiOvkJVrW16t+SAUIiZy3d+2y93Ua/eTkxVhRIcQi+c8kgEWjyp7Xx3bqaQmY52U9msO0jvIjWtJ7qgu0OsuXpzeW62sFCk1DEHZOyzfeUHPsnDn25+JxtUZLxdOSbrIC4eW1pDavydPSj2jZrh0gK9jv2KH6iB5dls48quddd4Leb7rR6tRGvdKx+YFeC9nO6XqHrkeDipbSc7qwECDOdJ54pWtgWLRkfPLll/YcWB9/7C90KRXSCQ8H1AATj9sNkiCipSlMIB5XExc9Ry9PSyeje82a5F1hU6hKc3PyZ9AFfTZES7oIpQvUdu3Eb/jwQ+DII8VjVHyhwoIWHl6le5EsXZr8+73Cw+n1e/BBs+eOW3i4V84sPVRCcsIJynB57DG7sDB3rjp28pwDvMPDm5uVSECNx2x5WhYVOYf7OWHytKSLWpqOI4inZWmpXfxINTxcVrKVnynJhGipi2pOnpZ+cCvEI8PETAvyxka1kEhFtHTKaRmWaKn3VyromgQ3vwtjk2j5ffVUV0yelrroFqZo+c9/qnZyyiliEbvffsDo0eKxRYuAF17w/hynQjy6pyVgFy1lahK/mBZLgHt4uEm0lG2usTE8gUP3OvMTAuoFbTOmXJH0c2muTq/xRJ93ZLtvbLSPD7ubpyWQLH7oomV5ub2fe83Rcn4pLBT3gM5ZdHxpyZ6Wjz8u7J/Bg+19UBct9SIx1A6srFQ2RzqelvX1aqyjfSxIvuFM4tb+5fzvNTbInHaAOb2PUzEe0wZhqtCIJYqbp6V8Tt8YNdkZfvL0UZvblOIHENfpggtEBNIJJ3h/phPUrjUJXDTtlE46OS2peKhvAJ1wAtCrlyiMloqnJR3HAOVpqX9vUEzzq5/wcH3dOniw+luKdJnKaenX05KubbMZHg7Y2zsVLQPmtLRGjxYayVdf2TfgmLRh0ZLxx003JQt5uodZWKTraUl3RejAFCQ8nGLyctJ3rOjOqj5BBhEtTQa66f10YA87PLypSRilDQ1qonbytASE18zee6vfT8U9OkmWlLhPXECyEO4WHh6P2z0pGhqA225L/sxMeFq2bauqlK5eDbz+unqOCgHpeFrSRRU1fjJdPVwuQrt2DVY5HDAvBuiitl8/535iwikhd6rh4fQ6ZtvT0qkQjx/cCvHIPuUVQk773sCB4v9u3dQYqxtmeohb2NU4AXdPSylaVlaqRWCq4eGA8KLwEsiy7WlJ8/heeqk6vuQSdayH05oI4mlJN1LoBosf/IaHm64jJRPFeHTRMl1PS8uyF4f79ttkGyhsT8s1a+zfkYqnZaqipZ+crKbXSDGjsjK5yJdEX7xT9EI8FRX+wncl+nzltNGWzzktva69tLUXLbLnBKXtyEu0bN1azQF+RUvapuX9MVUOB+zCGB13so2XaAl4ty+nIjwS+lupaGmKjEkVk2hpWcmelrGY+j6n8PCqqmRbzo+nZefO6n2mYoqASGHy17+K42ef9WePmXALDwd8i5aWbOOtWvmzNal4SO2D5mbg+efF8RNP+PO0DCJaplOMxzQPBw0Pr662i5YyDz+dK92q0/vBbyEeOi7T+Szb4eEheVoCENeWFuRhQoFFS8ab5ctVbi26W/voo5mpEpiupyVdfPsVLXVPSwodsJxES5oQ283Tku5cr1mTHMpiMqBMC+1MeVr+8Y/idxQXi38lJcC557qLljp0QqH3slUrYQC5ucDrIeJ0Aq2pUd+9aZPwotAn5/vuS17EhV2IR0JDxGnuOSkERKNCzHXCy9OSGnHZ8rTcskVdr6Ch4YC3p+Uee6h2GqR6uG78BfG03Lkz0U4sKnplWrT042npV7R0K8Qjf4dpQe60ELjtNvHv//5PLUp00VIPcQs7PDwet3sCAnZBVz5HF85+PS3pNZYhWfG4CPd1I9Xq4UBqoiUdx2noWO/e6lj3pDPhN6clIIoByDYTlmgZNDy8JYiWH39sv347diTPz2EX4tGvhR9PS32+W7IkuHAwebK4J2+84fyad98VIsZxxymRLR5XHqhu84WbQLJli2gvTqKl2xy9ZYu6J3JTs3Vr8wI5X6uH/+QnQnD93/+cX0PtIroZ5hQeDog2Ree1khL1+/1WDzeFhzuJltSjKMxctUGRomUkAgwfbn/Or2jpVIRHQudtOj7L62oqwhMUk2jp5I2oC3r6xmgslmxD+REtCwtVKg+TaPn118CFF9ofS9XLNiTRMnFdaMqdVETLTZvU+nbFCvtaw2mt6BUevueeyt7KpKel3/BwN0/L4mJx/7PhaUnvN93A8SNapmqLZjA8nMkcLFoy3tx6qzKCL7lE5S785htRmS9swirEA9gHJi/R0mn3jBpmcrIwnaPTBEmNblk9DvAfHm4yAkyiJR34UxUtb7rJPiHG48D99wMzZqjHvERLN09L/XnAPpnpoqVuIMtJbNMm+7WT57RzJ3Dnne6fEYanJSA8LWVbe/ZZJY7J39C/v7tAG8TTkk7emVxsUcM0aBEewNvTsnt3d+OTsmuXugbpeFrqITGSTBfi8ZPTMp3wcN3jwrQgdzIaa2qAyy9XHpeAWbSkhC1arluXLNbLe7V9u1qI0IVzKjktzzpLHXvltZTXNhJRbcxP9XAgNdGSFqii7dEp/NAJej/k5+ielvIzYzG1mF++3J8oKtFFEEnQ8HC5EAbCEzh0r7N0RUtTOgGagxmwCx7pFuKxrORrsXGjt6ehfv8aG82h7E58+y3wr3+JtnLvvc6vu/9+IeI++6wqarVqldo0SlW0BMTvl/dIn6Pdfj/dEKPfb9oMykdPy2XLRIqIlSuBU081e9Zu2mS/nybRsrRU9EEnT0u5YZyOp6W8P35ES72fZBPpCNClCzBunP05Od/S8/bytAwSHh6mp6Wcb3fuVPahk+eablOZNkZ1W8OPaAkoO3D9evv3NzYCp52WPLammu7DS7SU4/mOHcn2std1cRr/t22zt1VqK9JxtbnZLmSn6mlZXKza08KFqTv9mOZXU0Sgjm4L9+qlrrX0tJRtSF7vbIiWJhsByG14OL3fAcPDmczBoiXjzpo1wlgFxEDxi184e5iFRbbDw2Mx+yLV7fOcPC0B5xw0QURLkwHlJVrKAT8Ws4t3Qdm2TZ1rmzZ2L8HnnlPHqXpaOomWp52mjlMVLa+4Qt2/u++2X0c9PNyvF4f+Xv28S0pE5XJATPT/+Y84fymiuYWGA96iJTXiysqUQZSOaPnOO8CPfwxcf735+XSK8ADmxUCqoiVdnKXjaUn6ak49LbdsEd8jFxR6YQg39NAfWhk2FU9LE24VTIHwc1qaPOzk2G/yEARE+5Ljt1/R8rjjVJt7+WX3hYIc36mXqVtOy3Sqh1uWugbU8xAQ7V1+vx9RkY5TMiRp2zbV99q2tf8OOjaZvC2XLgWOOiq5Yja9Z/S+BKkeDuSHp6XTb5SYBG5dDKTzU/v2akyX44llic2Bk06y2wz6vFNXJ95juhZe3pa6pyWg5salSxE7+mjs+eSTzu+n5+ImIFMhRIYo+ynCA5jDw2moJBWJgoSHO32/KUQ8H3Na0nFq2zZhC+mbcFJMkNBxT14beb10T0t9jvAjWnoV4sln0XLjRnV9+vQBDjrI/rzJ09LkKODlaalfZ8Be9C5MT0tAfa5TYRPdYcK0MaqvpfwKMdQOpP1t6tTkwjVA5kRLt7oBppyW9D1O9got4gXYz10fV7/6Sh2n6mkJqIiKnTuDbS5RTBEPQT0tq6uFLSXXpF9/LT5XXit57dLZrPZbiCcSMdsJmQwPN63hneYw9rTMG1i0ZNx55hk1AJ5/vujcRx2lBrKnngrf+Mt2eLicaIJ4WpoGPKcJ0km0XL48edJKJzwc8GeUOkGFgokThUFiyskRRLSkbcNJtDzySGUYLVhgDw9wyke5fbs9vOKww4AzzxTHW7bYw0ClURqNCmOopET9hnQ8LYFkAZ/ms3QrwgMECw9v1Urd21REy4YGUZX44IOB//4XuOGGZIMN8L8IdcItPLxVK2EopSJa6sZLiqKlbfGc6UI8uqclIPqYXPz7DQ0HksPDaRtwEy397nQDwTwtw8hpaRJI5NhvysUICONW3kO/hXi6dAHGjhXH69a5V8yW140a0NGocyh0Op6WW7eq+6OLlrGYWmQG9bSki2w5T1CBEfAuxnPrrWIT5je/secNNlV0B1pmePjNN6vfqG8ebtpkrhauizFyjCssFP1F37h8+23g9tuBJ58EHnjAfK6StWtTEy1Norb8Pb/9LaIvvoj+jz3mXFWcXhu3XIS0v8m51+8ml2nxecgh6pieW5CNRafvdxIt8y08XB/D3nsP+N3v7I/pG7l0XpHXRo7dTp6WNM8fIH67Ux5Nr/BwPSRdUlOjbOlUxZh0of24Tx9g//3tKU7kesJLFJftMRo120EmT8vGRnVNw8xpCah74uVRuGuXsCUz4WkJKFuuuVmMa4C450cfrV5j2kTxg1v1cMBdPHMSLaU9unWreZ2qh2hv2KDuoT6uUtEyVU9LIJxiPGGFh9PzaW4W7V7OB/J6Z8PTEjDf82zltJT3qVUrs+bAomXewKIl4w4tjHLsseL/0lJ1vGWLv6qsQZCTRXGxe/JeJ4KGh8uJJoinpVt4OC1gAziLlqYCC+mEhwPpiZZUROjUSVyXX/0q+XVBwsMlhYXquuu5IQ84QOVW2brVLpzp+SjpJEY9hHr3ti+CdA8GQBgwkYj4J418v6JlJGKedA8+WHkYvPyy3TsnXU9LXfCVk3rQe7tkiahI/Ic/2L/HtIgN09Ny61ZhAMrP7NbNnvu1vt5dcDQZFZJUw8Opt0G2PS0B0bbl40E2ZHSD1LSDbVqQh+lpGXZ4uEmgWb9etBknT0tAtQU/npYVFeLaTZyonnMLEaeelhQqvIUlWtLfT8OlJXKxGUS0LCmxCw0S/TGvYjy02AcdJ5xEy5boaUltm88+sz83fboaK+mc7SRayrlFFy2pB6EUHy0rXNHSJBIsXizGRdLWI6ZNKsDel1etchazaH+Ti+1UPS2rq+2Ld1209BseHkS0zMfwcNPGy4032tMu6aKlvA/NzereSRvVS7SU/zc3O8+9qYaHx2JqHMuVpyVtR336iOsyZIh6TM7/buHhTU1q/NtzT7NAZSrEQ+fasD0t5X128lzTvRDlORUXq+d0T0u/oiXtV7K/LV+uzmnSJPv8GoanpVv1cMBZtCwosM/Jcl3R3GzenNNFw8ZG1c71cZVu3qVaPRxwFy2bmkSu8fvvdy/O5VWIxyk83CRa0lzan36q7kPYoqXXWt7UZ5zaqJvXrV/kOFpcbLd1TeseFi3zBhYtGXdohTM6uNGQ3qefDvc7pWhZXW3fJfWLU3i4nGjCEC3dPC0B+0BKFyi1tWoSME3ufsPD6QRPJ6t0REvTgvTss5MXAEE8LSV0UiDXydprLzGxmxJCA2qSlAtCOol9+KH4v7hYJLKnBgL1RpBGNp18g4qWrVubK2lHo6ovNDeLwiaAaEvUWDYR1NPSTxJ9E5deqnKQUUwLC6ccYX6h13jrVvvCSS5q/RocGfC0tGgbodUls+VpSdt2EE9LPTzc5FkQdnh4pnNa0vFG9q2GBtHnnTwtATXebt3qfO+laCnHLrqocttkM3laAvZrEZZoqW8S6ciF8a5d3u2ThnSZUqrowm+vXup+f/BB8gKJCmV0nHASWoPmtJTFIYDM5LSsqrILE6bFFvXK0j0taRs591x17CZaAqovyjGPbp7J47o6c1tZt858LdwqiFuWWlzTeXrRIuD9921jUGTZMvNn0L5cX+8sElI7RNqFqXpa9utnH//cPC3DDA+nY2A+iJZUGJF5ZuNxke5G4uRpScVDp/BwOW7ooiXgbEfI90Qi9nvkFR4OqA3c9etzc31pP5bFzGiIuJ/w8K++Uv2T2qUUUyEe+ntz5WkpXyvPqaZG2ThhhIfL/k7XhQMG2MOgM53TEnAWLXWxk977N99M/kyTp6M8f120pLaGk6eln/BwtwriN98s+v6555pD7yWm+TUaVefl1Pfkb4pE1JhMz4duYMrrHVb1cC9PS5NomcmclvI+y0K6EtM8xjkt8wYWLRl35KDevr19AB49Wg3Q1CsjXXbtUsY9zZEThKA5LVMJD5eGNK2G7TSQ6ospk0Et8RseTgnL09K0IC0pAX75S/vrUvG0pOdIno8feKA4GDRIPU+NdCo4Ug9JQBk5vXqJ+0AXRibRkt5H+Tlbt7rnuNNDJUzQEHHJoEHeu+1BclqmI1rKnFilpfb8bSbRki5CU+l/hYWqDW7dCsyerZ6T99ivwRGWp6VpgwGwe8869RcpROvGpR9Mmw3z56vjIJ6W+i66afESdnh4NnNa9umjjp2qXkucNickdXWqz8uxtmtXVXTo/fedQ9icPC0zIVo6eS1KghTjoeOUqV3pwm8kojzBV6+2n4teyIUeS1GtsNDel4KGh8di6pyy4WmpCxNbt9oFRSp2xOPCax4QfebUU9VzTjkt5dwi+5gc10yipdNGWSqelps3qw2vwYNVn120KNmj2I9oCdj7niQet49nixaJ++xXtNTH7/797e2UejFVVvoXLen3d+2qjv14WmYiPHznTpFywG+ILJ2bpk4F9tpLHL//vuiX8bhzTku9vQPi/ktbZeVKNTeavPGd5jzZdlu3VhWEAW9PSyD3FcT18HAAOOcccd/btwcOP1w8VlKifpfevuj1dhItq6qUDZINT0t5T/x4Wm7dqtofnUPCDA+nYl///va5INXw8CA5LfVNKD13q4SKlqaisSa7TvZJt1zS6XhaUucfeh23bwf+9Cf1N40E0DF5WgKq3Xl5WrZpo9bBTqLlDyU8XL9HpogB9rTMG1i0ZJzZvFl5vNCBDRCDs8ydtXixuyt7EKgRaqra5we6+KaCRirh4ZGIfdCWk4EcvKWYBjjvSAURLb3Cw03efibRsr7eW8zRcVpE/+xn9skjFU9Leo7keloHHCAOnDwt9UWhaRKTxqmpsnBzs5o4TZ6WlmW+5hI9KbWJgQOTvSq9QsOB9ERLv/2tqUkttPv2FflDJaa8U7L/deyYuuFN8whRQ1EakH53bsPytHQKDweci2dJ7roL+NGPxGLymmuCFVsxCWpUtAziaVlQoMYnJ0/LsMPDM53Tko43tP/rVa91wc2rgjgViuhYO2mS+N+y7DlvKU6elvTvsKqHe4mWpmIPTgT1tASc81quWGEfj0yelrW19vEraHg4oH7zmjXB5yoT+jxbWqrOUW+vVCQD7J5+H3+s2tCYMaL9yb5Dr0V9vfqduqdlXZ2Ye7xESyr6rFunrm+PHuo73URLOrbV1CjvsiVLRO5iQsTJY1Mfg015LfXNvaYmcQ2liFFU5G7XyOrWkv793T0t6VjkFg0hv7+mxj6+5aoQzyWXiJzvetVqJ6hoWVMj3it55RVxH3VxUc4rTrkl5bhBvVD1QjyAs2hJBSBq/wbxtAQQyUWIuBQtIxG1fhg8WPStZcvU2BiJqHPXRUtqfzqJltGo+qx887T85hu1kUHnkFTDw6mII+1DXbSkn52NQjz6eE6Fdkrv3sp+ePdde0RTY6M5RZKTpyXFr6elSbSsqlLn9Mknqj///e/2a+e2mec0v8pjr5yWVGTu00fNkybRMhuFeABzSh6nfpSuaLlrl7pGujcsh4fnNSxaMs7oE5OONJB37EjenV+1yt2DzQmvqn1+cBpgvERL00RUXGzOFWLy3vPjaVlRYTaopfDp5WlpKoxDz4/udOs7dZs2uYsNTuGK5eXAlCniuKzM7hVlwiTw0clnv/0AAA1lZbBkgYw+fdTvMIWHS8PZZGjJdmjytNQL+Uj8LorkJK3n4dSh6RIA7yI8QHJ4uJ7LT89pKSf9eNy/eEYN2J497d4o+qKivl59fypFeCROoqX0qvVrBLl5WoYRHg4ke0bpPPKI+D8eB37/e2DUKP9elyZBjXqlBxEtAbtB6jc8PExPy7DDw+V4U1AgQswk69fbhRNdcKNGZhDR0itE3LKCe1qmUz3cb05LwN3TsrlZLfjKy/15WgLOeS11kUyOEw0NaoGui6xBw8PpZ1iW/Z6lCh3HKyvt+XP1eU8PB6d/02tx2GHic+S8SsdM+pnS5qA2wM6d3qLlnnuq4xUr1LzVubOa65cudd6komJ2dbWam5uahPhKcAwP16+NydPS1M+++EKJGF27mjdUE18esY/humipz9NuOQclDQ2qD+kLTd3GKikR822mw8PlZshHH/kbI6kw0q5d8hilh4YD6l64FcQB7ONRKuHh8rV0Pqf/0+ckbvZFNpAiVNeuydE9+vwnr5m+ae1HtATsOYdp5XAgt56W1OaifSzV8HCaS97kadmvn//w8F27RN+Q/+hYI22VWMy8FqPjhy4oOomWkYjaLN+2zT4myry/OvKzw/C0NIWHAyr//pYtosBtfb0ofkdxEy29PC1NY1tjoxozaFsoLhbRaoB9HKYRhHJ9mklPS73PuLVPU77XIDgV5wSS1z7FxeH0ZyYUWLRknPESLal4RXesbrtNLEjGjQvugUm9ATIlWuoTjvzbNBGVlJhFS1rcReLlaVleLr5DN6jbtVOTiFtOy2jUfE3ogCqFIcBuvCxYIO5Jhw7Ce8wkKNNJUhcKrrgCeO01MenrhqqOl6flOeeg6dVXMeu229TvLihQoVFffSWMm3hcXUf5naaJTLZDKlrKa5aOaEkLKrl5WgLAKafY86Kk4mn5k5+Ie3TVVeIxJ09L/Tk39P5UUaF+i76ooH+nks9SQj0YZN7RAQPUvQ7D0zKM8HDA3dNy9Wp1/pJ584C99wbuucd7bJPnTwUeupAMEh4O2EN/vArxhJHTUn99UZG67mGGh9fWJucIk4uZwsJko5L+bVogOYmWBxygNh9eeSU5jyyt/poPOS1NedNM0LYQhqelk2hJhWT9fIOGh+ufEUaIuBzHS0vV+cj77SVafvutWmBR0WLoUPG/FGO2bTNXUdY9LQFxX/SCcLt22ecbakNRL+xOnZSnWF2dc1Vvunhv3959Q9FJ/PTjaWnqZ3PmqGvhZ5OLjuF6SCmlosKeZsRJtFy5Uv0eL9HStLETdnh4XZ09esGtEruEXtfqarGhK8fhV19Nnn8As6clHbtNm2GphocDqm0HDA+PZDs8fMMGdW28NtYBtU7YssXeL2T/r6hwb9dy/m5oSK5OnW1PS3pMq8+7hYcHydMn+9e334p5U64Nu3QRY6yf8PCNG8XnDBum/nXpAjzxhHhe9kcncctpvmhqUnOvae3hFCJO17e0vaTjaak/7nSNb7lFjYdPPSU8rPU50K3/OM2vbuHhdONJH3tpyLpEzp1um39eBCnEo/cZN0/gdD0t3Rwi9LmEvSzzChYtGWecivBI6EBPFwH//Kf4f8aM5DAsL+iCKdXw8FQ9LZ1ES92DqblZDZTUA8/L01JOYLpBLascAu7h4W3amIUOOmk5TdD33y/OfdcuEcI0YULypCgnzTZtkieQSESEyvm5J145LSMRWIceip36dZC72vG48Eijiyk/4eHFxcrgMSWrN4WHA86ipWnX0YkuXYDx48VxdbXKn+cGbYe7dgEPPyyO//1v9ZhEFy395izVPZd1ryFqrPutBOuFvFeWpYQh2i6z7Wkpjc9oNNmIpIUz9AW9zGsHAMcfr6oI19UBF18s+pCT2BKPq3bVpYt5TArqaUl30b08LVMJDy8pMe/aS2ioYLqiZWOj8h7s1MkutFFPy44dk4uxpRoeXliocpqtX59cNZsa+vpvl2NMt272eYIu2v1U+abQtmPyhDRVqDWhj1Mm0dL0+V27qtdSwUwPI5aiJZ0vdM/QVMLD6WeEIXDo8yzgLFqawgLl76aipczDSyMYpDBlEm/cPC0B8beTpyX93k6d7BuUTqHdeuoLg1gjvcsj27ebxUc/OS1N/eyVV9Sxn00uuSnZubNoewUFZuFS36B0mp9pKiF9vtJtCznnZDI8fMkS+xwSRLQsKhJtp6BAhZZv3gw8+KB6rexHppyWpvBwisnT0mRDxONqzpBtWfahujrRt/M1p6Upn6Ub8tybmtRv3rxZ2UGDBrkXAtU3lcL2tDQVLHTytDQ5lQD2XPF0XqioSF4HuSH7l/Tglva1XBcWFbkXGAWA6dOTN9/iceDxx8WxvH5OdgqdL+jc6eXN50e0pM4efkRLJ09L+nhVlfM17tpVhINL6FgqCTs83G3z3tR+aPuTx+kU4vFjf1LcREv6WemKll7h4Sxa5hUsWjLOBPG0lAZDfb1d7DQlP3YjDE9LuktPkRNIJGI3RoKGhzt573l5WjqJlr1720VLXTyRk03btuYcKXSwHzJEGQ9vvaU+S0/KP326MGik4W9ZapI0hSoGwat6uBN6XkuT4OgWHg6o6yMnJScD249oSe+hl2gJAP/4B3DttcD//ue8E0uhnpaffaYEPmkshe1pKQVnubDYscP+2/0WVfDC5ImbimgZtqdl27bJIYy0rerXlIYQX3aZ8Hq56CL12Kuvij5k2pih3htt2njnLPQDNUgzUYhHL3TlllfKj/G6apXo06NGJYtGutcevRarVyuRziS2USPz7LNFX+vSBZg5UzzmJFoC9vBLfUyki2xdaLvlFpEe4Pnn7XMHFZ2CFmuS42379uY8wX7Dw/VxytSuTJ6WkYjKxbt2rbpuuqflli3i/rnl4HQLD3dawGfK09IkWm7fbp9XdU9L+ZhlKfGwc2fV1qgYI0Vc09xC+xgtiCHRRcs99lBjGV18de5s3yB0ymuph4fTuRAAqqpg0TyJps/x42npVVTMzybXHXcIL7D//EeNw6a2Kq8l9YQzQTfZ9PmqosLeh015f8MWLfU2ZRJ/dWT7oBVs6Rglx6TSUiVAyeJLXuHhFL/h4aZ5hc7n27Y5fy9g97Q05czOJHQjIoinJaD6sp8iPBJ9fA6yQeiHIJ6Wxx4roj8uuED9u/NO4OST1WtoX/Obz1JC+xcV2Oi6UI6VTqIlbQ/jx6v2LvuJl2jpNF+YNnApgwape03XRHS+pqKln/BwP56WTp7kkuOOE0WiKIcfrtZfYYeHu+V29xItnTb/vJDttbDQe00UJDw8GvVO7eSGW3h427b2cZJFy7yCRUvGGSlatm5tz1UjoQayNBi++MIedhdUtJRGdSxm/k6/mAYauutFj708Ld1ESy9Py/p6NRn78bSkXpyAEGSkkehHtIzFgP33F8erV4v7snixMqj33FNN/ps2iVBxeSwXmiaBJQhenpZOuImWTp6WJSX2BaV83pTTMqinJV3MeeW0BMR1u+EGYORI79cCdgGNLgB37hT/9JyWqYiWphyxTnmnMilaHnywOg5aPTwSSe7PqeS0NBmRTufS1KTyk7VpI+5paSlw993CA1OKQBs3CkHL6dwB0We9chb6wSk83G1BHnQhRfuFqc8GCRO6+26xCHzvPeDJJ+3P6aHR1Ij+/HO1sDCJbbRtWpa4VytXAjfdJB5LRbR8/HEhrkr0caZzZ+A3vxGpASjU2KebfF7E42qx5rRJ5LcQjz5Oyaq/kuJiZ8PbVADNJGx9+627aBmLqfHMr6clHYfcKqX6obFR9QmTaGlZ9j7jJFquXKnmA3pt/IqWdDzRCxoByaKlU/SE7mnpJFp6hYePHw9L5isDzB6bfnJaehXX8DNfdOkiipkNG6YeM42Bumi5fbt5Y8rN0zISsfd9k6dl2OHhepvy8rS0LHVd6fg3YULyawcOtL9myxbvQjwU0xxh8rQ0iWLU9tm6VYlPplxvHTsmbOush4fT66+L9yZMFer95rMEksdn3V5LF1PePqdNyMJC4MILgT//Wf37xS/sglZpqTrnoGsr2r9pBIqTaGlKP0Vtzd/+VvV92U68REu6gUnbFh1PTXZ6LCZSwwBCXP7qK3Es5+toNJFnP3H+0gYHzBuKfjwtTWs1nTvusG98/uY3/grUeYWHNzcnvzcdT0sqWgZJ+abnx3UjSHg4Pb+ww8MjEXt7D5JGgck4LFoyZurqlKHcr585TKJ7dzVIS4OB7lQCwJtv+v9Oy1JGtR6GFxTTQOMkWsrvMbnym0RLJ+89kweZKe+QSbR0SjxPJ+R27czCi74o1MMh6OL87LOBt99Wf8vCIF751YLgldPSCX0BbRIc9fvaq5dd/JMTnQyFz6anZVBoe9MXOOvXh+NpSRe7ciI2LcCB8MPD6fdSIzmop2VlZXLf9Otp2dCg2pEpbJYaU9T4mT1b9cNx4+zfP368CJGS/e6ll5INOd1LNExPS71du4WHB/G0BPx7Wu7Y4V1ojY47NGcikFyEht4bOoeYPC1HjgR+/Wtg+HDxT16XDz5ILuqij7WdO6tx5oMPxAbP0KHAqafaw/mvuML9t9HPl9csiGi5fr0S253G21Q9LSMR+/WsrXUOczSJliZhy0u0BNRGgl/RcuRI9R5THwqCU34/3UsMEH1HXk/6/KJFzqKFaaPHS7Q0XUddtKyqMgt3fsPDdU/L2lr7OUycCMtL/AzqaWm6n6lucrmJlvQ+bt0qxJKTThJ5hQHvTTba9+U1oecetqelnnLAy9Ny507VT6hd17GjXdgFRFvUc3br7Uji19PSJFqawo9pH/nqKxVZsM8+yeNKLKbGhpYSHg6o8SPfPS29vAq9uO8+4Ec/Uht8fqH24LvvqmMqdsk5Jx43e0dTW7NLF7VZt3q1vZic07UrLFTXnM5F1G6lti1FXxPF48rTskcP+/s2bLBvBukblfJcnM5R4ke0bN0a+O9/gWOOAW6+WWzuOxWou/de4MQTxRju5Glpqr8gcRMt3XJaAsrui8eDjZtyjPFjewYJDwfc89F74RYeDtjbO3ta5hUsWjJ25MLhq6/UotQpX0pBgQphWrzYHlol+fprf2EygFjoy4VAqqHhklQ8LSORZKE0SHi4ycgwGZZunpaAfTGku7F7eVoC7qLlpEkiJE2et1xoey1Ig5BqeHj79kqk+OQTc6EDfSLTjVN6ffRq6UFFyyA5LVPBrdqqniOpVSt/lT915GK3c2fVTpxEy0x5WtL2CATPaWlq8349Ld0MNcDZ01LvMzrt26sKkCtW2KuCA8k7uXqfqqw07+C7Ic+1qUmEKktkuzCFh4ftaUk919za4Hff2b2H9fyR+nhDRTbaJp3CmqdNE585d67ItQuIa75smbtoCaj7aVlCnKYVRU89VYw9XgtWei5yfvzmG/85n/yMt1VVaj5y87Q0jVNUEDcJvxJdtNy+3ZzL69tv3XNaAqp9LloEfPmletxJtCwvVx7Yy5bZ3xMUJwGHLrzkdaLi0tix6njxYmfRMpWcln5FyzA9LSMRu+fOhAne4mfQnJamInOpbnKZfru0hahN9N13wAknCI/tE08UfdctPBwwe1pGIu4hlOkQ1NNSrxxO0eecwYOTbZtMhIebRDE6n9OUKfq8Lvm+r0TWrkXUKwoiLBobgXfeEcfRqL/c6yabm/Z/r7zk9DqvXp39Qjx+hCCdY44RIpn0PPQL7V90k5iKXV4VxOW8HomI8U3Oe83NYsyRbcXt2sn3rFql1qde4wCQvCb69lt1Tfv3V0VS5bnTvjl4cLKt5sfT0is8XLLnnsCzzwJXXqmujUTOud9+K/KoP/WUsP28PC2B5PHNLTy8sjLZ1jJ5WgLBQsRle/UjsAf1tExHtHQLDwfs7YhFy7yCRUtG8MknogLyr38t/vYqwiORYRg7d4qJRBctAf8h4mEU4ZGkIlrqx4C3p6VpNwpQCwFTsnS3nJaA3RjVxQ8/ouW++6pJdsYM4I03xHHnziq5uFxoL18uBn3d8ykdiorM19EPMm/T+vX2RYC8zuXldrFPDwPSvRHSKcSTTU9LHS9PSz+FeLZvV2IHXbh6eVqWlaUXEqH3PT+i5fbtwO23iwr1gDBIpbeiyXjJhGhJrykVLWWBJR23/IhenpZBQ8MBkf9IerbQtuEWHh4kETrg39MScBfoaAgZIOYFamjrol1hoXnMdhPcJCNGqOMPPlBedK1bm43lCy+0CzuAEF0efxx49NHg+b7opp5f4c2PaBmNqsVFEE9LINnT0okBA9R4+skn9jmYzjXffON9zscfL/7fsUOkBJA4iZaAex/yYtcukcftkktELmGJk2gp5wI6r4wYoa6V7mlJi1ikEh7uR7SsrHT2tKyoUGOWl2gZiah2+6tfic/89a+BDh2Ce1pu3OjupWMSPFJN5WP67fKe0fHgoYfUeS5ZIry95CZb69bmPmvytASULeK18bdzp2hfjz7q/jpJ0JyWeuVwCu0XgNnTMkh4uN/q4SbRkvahAKIlAJTI3zhrlvAkc7K10uXxx5X9Mn68+5gj0W3ueFx5WvboYU5zQ9ljD3X89dfhF+LJhKdlqpg2Jaqq7H3Mq4K43Ozp0EGsEegcQvOCu4mxcm3S1KS+wy1NhGSffeyRMb/8pXquf38xfsrzX7/evklYU5MshoblaWnCVHDo00+VQ9H8+eF7WgLJzklhipapeFp6rUFoEU2vqB8dt/BwgMPD8xgWLRkxYe+3n6hafO+9YnDzKsIj0YvxhCVaputpmUp4uH4MBAsP9+tpWVamBvHqavG4U3i47sbuJzy8pEQIl4AwFKSAMXGiEj2oEP3VV+F6WgLJIp9fI456t8idc0Bdn2jUbmx6eVrmc3i4m6fl+vXp57R06k8mr6F4XBn93bu7V830Qjf2aT5LwCx83XkncPnlwBFHiLa4bZsyRExGhd/wcLeFIWDus9RLcJ99zN56gN0bhi7mAHu/bdMmeSMgFdFy8mSRboMulgBz6KOpenjQ8HC3nJaAu/GqC1CNjfa5wTTe+C0go0M9vz74QHlaOt23Ll3Eplw8rv4tW2YvWhAEOpb6DRH3u0kk28natc7h06Zxyq+nZUkJ0LevOP78c5XvC7CLEjQ8vLTUvKC/5RbzZqObgODWh9z46CNx3y++WORllhVoAW9PSz2MVM4hK1cqsbWwUF0XQMy7sj/4LcRjEgj9hIdXVKj7KK/nN9/YF6oSubhu00aNiSefLL5n2jTxd9u2aJRzh+mcTP1Yr3pOxzNdtOzQIXWRRu/zrVsr24zexwcesL/u4Ye95ysv0dLN03LePJF64uKLgdNPVxu/TuzaZS80Anh7WrqJCCNH2kXKQYPcPS0zER5u8rSUfScScfbWI/ZFqw0bRFuaOBG46ipRiCls4nHV1gHg6qv9vU+3uZctU2OpH097umG+aFHL8LRMlZqa5HFcin0Sal/pnpaNjUrEl+3DSbT042kJqPnIj6dlcbHKW7luHfD00/bfAdhzcuoe7Pq85uRpSQVEv56WOqbfSKMDFi60tzUnT0t9jRBUtPRyyPEiHlfnkMnwcMCfEwfF61pweHjewqIlIzrlT34ijnfsEIuAVETLd99VhtqwYUqU8Stamiodp0qqnpZBw8OdBnY30RIQIU6ACEfUzzfd8HDAvAtOd+/1AhJh5rQEkneB/Rpx1FikuTepgUknM1201L0RslmIJyhBw8PTES1pfzLlZ1u3Tu3MppPPErDfq/bt7Yt/wGwAffih+L+hQYT8ulUOB/x7WrqF4AHmhQH1EtQ9Xih9+qjr+vbb9n5Lz98UHh40n6XkwANFOPPZZ4u/e/dWYWyRiL3COJBeeHiqnpaNjaqIEYWGiJtCjU2ish9PSypazp6tBBYn0RIQ10r/lyqpFOPxO97KdkJzs+qYxim/npaAGnMbGuxtn242UNGyUyfz9aqoAB57LNmD3E207NdPLTTffNN7QSQFipEjk1MyAGJcOPJI9beXaNm7t118kGNm//72BWgkohbbcsw0ebrR8cQkEK5dq+abSERcM30soO1Bbjbp4dASOb65jSeRCHbKvrB8ub1QImC+5rrgRu0QWrAKSC+ViEmwlVCbSK9e/vDDaoxzmq9M4eGAGtdMomU8Dtx4oxA4aLTRs8+av0Ni8qoN4mmpz02xmKgADQhhv21b55yWkYi9nbttzpnCw+fNU7/VqxCPZMgQ58U8sS9K1q9H5JVX1HcFyXHvl+efV+d/0EH2StBu6DZ3kCI8gLg+cmxdvHj39rSMRpO9qfV1oVt4+OrVatPNJFpSUc6vaCnnUD+elkBypW5A2Dty40z2m5077RsQ1dXJTjROnpYHHiiuQ1ER8OMfO5+LGybRks5ZO3farxedX2nf16Mzsu1pGXTDPNXwcCB4iLiXp+X48eL7i4qEIwWTN7BoyQiuvFIJdnfdpZKdFxS4V+Kjz1HD7qCDhGEDCGPAT1hImJ6W2QoPd/K0NIWH654Dy5eL6nH6+Qb1tPQjWhYU2PN36QvtfPS0pIYDnTTpZKa3zTA9LTOd0zKd8PB0PC2rqpQRIRfgy5ap59NZhAL263zggckCh0ncp+3viy+8jYpUPC1NfcdUiIcKN6Z8lpJIRD3f2ChSMUh0T8swwsMlFRVi/Fi1SoSz0TFLX5CnU4jHLacl4CwwzZ6t+h3tn7QYj7zfrVqpsc+02Pbjadmxo1oIzZ6tHncTLcMkFdHS73jrpxiPaZyi19JL+KVh0P/9rzoeMUIJd19+qeYlt/MdORK44Qb7Y26iZSSiNgYaGoDXX3c/1zvuEJ5UcqNi772B6dOBOXPEv5Ur7ZVgvXJa9u5tLtphEi1kG9uyRXyWV3i4aYxes0Zdx4oKIQboY4FJtARE8Qzan6ktYuo7hIRo2dRkTwkCmPuxLrjJ8ayyUgiktG+ls8nlV7SUyLGOXgen+SqV8PDbbhOVjfU55cUX3QtFmarRr1uXLBBT3HLMASJ33dKlqk86eVrqKXOKi5OvnVN4+GuviU2fgQPFb/AqxCNxCg0Hkjwto9Tr/rPP3OfroFiWEJklfr0sgWSb2yk1hBty7Fi71j4+h+FpabKT6P0J4zuCoPczN9FSDw+nY44UP2mEQTqellK0bNPG3bng9NPFa+VcMWeOWGPIcYKeP03z0r598nrUydOybVvxHatWJRfT8ouXaAnY83DTzTVTFJXEawNfTwOXrmgZ1PZMNTwcSF201NdVkvbtVR7v4cODfTaTUVi0ZATdu4tBHRAijjTse/Vy3lUC7AY/9aQZPFgZNpZlrzjnBN2tzpVo6Sc83Km4SxBPy0hEGPtS0PGb09I0kJsWhfvvbxeLDjzQfq7U4Fi4UE2OkYg/7yYv9F1gv6Jl//5mMY+eu1yU9uuXHFpJBU23QjwlJWqyN1U6BHIbHh5GIR4nz2WT1xDtu7pnZFCGDlX9SOa5o5jEfep59sUX4XlaUo8hk1BoMnykwVpYaM+XaMIpJ5/uaan3qVQ9LSkdOyb3K31BLv+PxdzHcQn1ojIV3PDjaUmvw69+pdoCbWMmrz3TNfErPMpzpbmN0hGGg7DHHmoMzqRo6VSMxzROydDNSETMBW5QgY6GBffsqcYJOpZ45Tz+9a+BQw8Vx/36OS/wJHRjwCuvJc2VeeWV4u+xY0U6lH33TW5Dbp6WnTqJ/h9UtATEuOklWlLk/E7Dw+Vc7iZaUgH2H/8QC2HZj+iGjMd4soP2I7qZZVn+PC2lHSIXu3SBm84ml37eXqLlH/6Q/JjT948cqdqeTJcDOHtaxuMiPRIg+s3VVyuvvSVLzMKkhArhcjyLx91z0XptqEUiYmyRdoJTTkuTTai3Kafw8OeeE8fNzWLDwCs8XOJTtCxduxYRmacaENdcr7KeDq++qqI0hg1zzj9tgravZcvsY4vfQmx07KCVx8PwtKRiiuyjsl9WVbnbj5lA72e6yOUWHk4FtHTCw/V8j83Nyob1Mw5166bmin33tdsztA9SL+vqav/h4YDoN6nmswTMOS31sYemcaHrP6d89YC6J+Xl5iKQbp6WdJymtjog7oFpDZWuaOnlaWlab/tFXgu3+1Ra6rkZyGQfFi0Zxa9/newV5RYaDohJwLQYpqIl4C8sRBrTrVunv6hPNael/ltM4eFOxV2CeFrqUMPQLTy8oCDZmDcZSJWVytMVSPYY69FDTVzU07JDB+9Fph9SDQ8vLjYXfqLX+ZZbhFfvjBnJhhudhNwK8UQi6n7kayGeTOW0BJRxIz2GaAoHv+FVTnTpIjy1X35ZFPfS0YWveNzu2ePH09KvaEmNZVOxCFNeHJoT0e0eAUKckf2PeuPonpZFRfYxLVOCmp6vTf4mv/3vkEPEWD13rnns95PTUuYmjESAo45S4euffSaMyx07VJ+jCxfdQGzb1l9BBcAsLmfL0zIWU0L/4sXu7VEix9tYzL0t0DbjJICYxqnDDgNmzgTefx/Yay/3czEt0IuLhZcrXQRJvDzxYzHRBh5/3O597MRhh6m5yMujjYqq111nXnxRdNFyyxYl/kovYFMkiR/Rks7NbqJlLKb60qZN6n1y/tFtHbpoPeoo4M9/Vv33yy/FxsIHH3h76hF20r5ABei6OrM3IB2PaVE0ORbTsSFT4eG6vTRsmCi6pF8vJ0/PPfYQ89CMGfZQTTlGNjbafzst7jNunPDgo+9zy7lKRQVqd7nltfQSLXV0T0s5hprEXf0aOVUPp97vuqelW3i4T9Gyds4cRHRBw5T3PlVuukkdX311sDQftK09+KDaMCkpcY8uo9DX0d8VhhdkNKru144dwkNV2jPpOnWkgt7PgoSHUwEtrPDw775TwiWQfoQQHUN10dJveHgYtGmj7J6VK8U4RSOhAPvmLJ0DTamfJPKeOI01tbXOTjh6/lZJU5PYWGvTBnjySfvnmVJNuJGt8HDLUvZ5OuIykxNYtGQUffsme0Z5iZYFBckDejQqqpJSw8Yrr2VzszIYe/RIL8cYkBtPS1OoqV/R0m94OP1f4rSwl7vO0ag9zxcgfqfcJf7qK2VchxEaDqQeHg6YF4z0OrdqBRxzjPlcdU9Lp/BwIJhomY2cltQopOHh0ahoo0Grh0vRUq/UCNiNm2++Uf2zrEx4SqbL4MGi/Zn6cVGR6mfbt4vfSkPGdNHSZLz4DQ83GcsU3fBpblaihh/Rq7RUeZWtXCmqPALJnpaAXYzIlGgp24juaek3aX8kIsZtp5AYL0/LlSvV4m2ffcTvpF6Q8+cDTzyhXt+rlzrWhZcgHt8mr9BsiZaA2mhparJ7jTghvRVqa909ZvyEh5vGqUhECNCm66LTrVvy2Cg9vFIRLQHRDk8+2d9rW7cW5wqIvI1u3qpStHSqDK9Df9e2bfbFsZz//Hpa0jHzvvtUzuXqatXvTP2spsbeluV45cfTMhIRuQ1l4SH5/nvvtXveBhEt6WYWbTs0FQMV22RlZUDZHtQDNJ35om1be/t387Q8/XQxD+oFs9zEisGDhShO5yFqi9CNwUcesX8X4L+6PV3I000/t7yWAURnAPZ5cPVqde4mW9fJ05LaEJs328NMnURLfWzo3dt9bCZjWgmdByXUIzEd6uuVM0SvXsImDELXrmaBbNQo781KCR07qB0ZhqcloO7Bjh3CTpMCXbo5/1OB9rPi4uSCgH7Dw+WcUl2t1l50zeNmq+g5Lf3ms/QDPX96L02iZRiOHU5EIup3fved+I1uNq6TpyXdsI/HlU3tNNZEIirSpkcPex+g7ZzOofPniw1uyxLpLCj5Gh6+a5fK359qsSQmZ7BoydiZMsX+t5doCSQb/X36iEGqQwf13LvvCuOqshIYMyZ5kPnuO1UdM4xdRJMhRycavzktg3haxmLKCJKLAacKj27n6xYeTv+X3+k0gU6ZIvIzPfGE2XtR3lvqcRCWaJlqeDjgLVq6oXtaSoG5oCBZ3JX3gy7KKNkOD993X3XdaHh4q1bCoAjiaWlZyqOGhphJqHHz5pvK82v//TNrkAHit8jruX27PVQWEPfss8/U3+mEh0tjubjYX/XwDRtUW/AretGFrfTGkf22uFjdN9q3wggPN6F7WtI2FAZeOS3pwl5eFyqcvfee3Tvm/PPVsX5N/OSzlORatAyS17KxUQmQXuMtvSZO4eHp5t6NRJLHXDkHm7yTw5ojKH7FIXnd/N5b3dNSrxwOqDyNkupqsyhDx8xnnlHHN9ygRDGTkNqhg/l8/YiWkr59xcaS/PyXXrKL2B7jiaOnJe3D1JuGim0mG+S000Q//stf0vPMj0bt4zK1g+hxNKrESikoSoKKFXQslONkQ4PyFCotBY4+WhzvtZfqA7NmOS+OZbtq29bu2SzF37VrhdA7YYL6zqCelnQepJ5XfjwtTYV43n/fXpF+8WJ/hXjcvCwBYT+4jd1heVouXarm6hEjgodLV1WJfnz22cCZZ4p/F18sNiT8YtrwAMKbb6loGWb6rFSg/axv32Rh1y083JTTMho1txO3a9e+vbJPv/vOX+VwvzjlPC8tFX1P9rNIxL+onSpyDti40Vvkp56WdO6g13zz5uSNJxP33gtcdRXw73/bH+/WTV13OodSj9QFC+x925Qf1w26RoxGvR1FUhUt9ehFpkXBoiVjZ++97QsIPwmp9YmbLoCkFxIgxL6tW0XuHH1QdKp0nCqphof78bR0896jRgYQXnh4NKpeQwdaNzGwshKYOtWcVxAwC9KZ8rQMYsSZREu/no5OnpYVFclef/J+WJY51DXbhXgGD1aLDRoeLq9dENFy3Tq1ADEZuHQB/thj6thrQRIWbqIlYM+Bm04hHmm4deli9vrUvaOpEJCKaPnGG+J/PZwSsHsVpmtgO6GHPso24NfT0gsvT0vpfQaIBTpgD92+5RZl9I4ebffYSsfTsm3b5HkjX0XLNWtUCLTXeBvU0zLVcUofc+W1NHlaeuW0TAXZVgDgnXfMr2loUP0qTNFSPx40yDxWmK7FkUeqKs9AaqJlWZndxnBqEyUlYsMXEG3h1VfVc16elrQdOXla9uqlfjf1tDQt8goKxOL2Zz9LPyqGnhu1gzp2VJ89ZowSOEaMUPertDS4zWLytHzpJdW2jjlG9SNaKKq+Xo3vlF271DzTp4993JLi7/33i8Ifr7wiql0DdtvOqRI3pVUrde5UtEw1p6XuBfr113abx6kQz8EHe5+r3leGDVN9MSzRkvZlv+HcOhMniqJ2Dz0k/t11l7MQaYLO6ZRMeFqGWag0Feh1MdnopaXqd7vltKT91dR33dYKVOiUXoiSdD0tTWOotMcjETXHZ0PoonOsV5QinTuKi1Xfp6Kl3w2SXr3EZhTNAQyI8V7aBIsXKwFUt3UefVQdB/W0pPfdT85WUzo2P3ilnmLyGhYtmWT+/GeR0+eKK+z5eZxwEy2vvlp8Vv/+9omWhqUA4U/IXuHhTnksg4aH62IaFWMAu2jpZph6eVrSMCo66aRjHJlEy7AWpGF6WlIPVi8qK9VCh3pamjw1vSqIZ9vTcvBgZTht2KCEb3ntghTi8dqVp4sKKjRlW7TcsSM5sTcgwk4kqXpabt+u7qtJcACSd2tpzjy/wkjv3sq4laEyst/Sc7/sMpFb9rrrUl9keaF7EYXtaemV05ImiJf9eOBA5Q1Ar69e6TUdT0sg2dsyX0VLv0V4AH+elnSc8hMybcLJ0zLV8PCg9O6txkO96qkklQ0FOj9v3Wr3DKF9kB47FeHQvU5ra4XgQUW7VETLSMQuMrldX5qb+umn1bGHaNlcXAxLimlOomWbNupznDwtMxFOR9s4nadrakReyTFjgDvvVI9HIkIEPOQQ4J57gkcGUFtEjo80NPy00+yv9yoURdNB9O5tDrOn85mMIpAhtO3a+fcSlItsOv8HyWnpZofV19urJqfqaQkkjxtHHKEcIJYtcy5+GASnDYhs0rp1cOEt6OcDQgCi7SwX4eFdu4pCWOPGAb/5jfk1cnxwCg+vqfHeoPG6dvI9a9far0kmPC3puPrHP4qx6I470vseP9DrMmuWOjbNTXpeZ9n3Vq1SG/pBU1GYkH1s1y41P5hESylophMe7hUaDnh7Wv71r8BZZyU7RWR6PmMyCouWTDJ77CF2hG+5xd8uur4ApwOr/KzPP7cn/dZ3W50qHadKqjktvcLD6+qU915BQbIR6ORpWVbmblyXlalr7SRaSuix30IVJrLpaRlEtOzc2T5plZf79+aIxdS9p56WJk9Nv6JlJBKepxrFzdOSVh5NxdPSy3PZFPZZWJi8w5opZD/Zvt0sWtICCakW4vHKZ0nPAxBGViqiZSSivAk3bBDCnTTY6Ln36AH83/8B11/v73NTgfazbduU0ZoJ0dK0uy3zHcnKzIAwqvW8d/vuq7zGJOl4WgLJxXiyKVruuacao7xES9revTaJgnhatmqVemqHIOHhQcVkPxQWqvutFxCQpNI36bj/8st2r3Jqt+y5pzp2Ei1p7kpAeGbpbdY0T3iJloD67U4hkxLq1U37n490E5bMQbd6tRqf9GgC+d2rV5uLimXCM8XJ0xIQKW5eey3ZVjn4YFFo6uyzg3+fvrGzeTPw3/+Kv9u3Bw4/3P76ww5T842pUJQunpk8Lam9K8cHr8IYJkwbeH5yWsrfHI2622JUXKXjtzyurfVnn+vz7aRJ9n4lcz+ngyk/bS4wfXfYnpaAWENJcuFpCYj++Mor5nRTgH3TXfaTpibVD/R2kY5oaVkixYEk06LlwQeLsUhPT5EJ6HWhfVKvTQAkrwHlnN3cbE9PIUlVqKPtXI55uq2zcqUSWYMW4qF9xqsIj/6Zumj56KMiAuKhh4Cf/tT+HIeHt2hYtGTSx83TktKunVqkffKJ3fgL29MyzPBwKpBQT0tTyLFc1O/cKYQnKYZ57RxFIspgl0JbU5MSMJ1Ey3SMI7rQlmQqp2UQ0UTPseY3n6VEXp81a1T4VzqellRQDhPqXVFeLowuaiTJHUuTaGkqxPPBB8IjZd067/5kEvFGjAhP3PJC9pPmZvu5mki1EI8pj5JOGJ6WgN3Lj4Zt+jG+woSOB7QIQliiu1tOS1qZWZ8TdC9IU6VXXQBKx9OyuDj4uJEOJSWqny1c6F4BO4inZUWF8qSQC49Fi4A//UmJn3I+SscbXFZ4lziFh1dVZWYDh37XmjX2XHuSdEVLKtCdeab9d5xxhhh/Bw1yTqcSiYhFe1WVuP66uAUIW0Hf+PQjWv7iF0J8uvxy943Ibt3M1eD9eM/QeUCGF+vRBFJwa2xUYmWmF3lOnpaZQg8Pf+YZVZjhlFOSbcDycuVduGyZ3RsRSBbPqGgpBWI9D1x9vbr2QUQE0/X3Cg8vKbHbGm79l3rY0rnxsstE+7juOn+2EJlvrXbthG1BbbowQsTDCA8PA32ui0SSvd9Shd4DmdswEslcepl0kW25oUEJSWvWqE1o3Q4zbdp5zS90zpTid3Fx+nnC3cLDsw39jXIdUFYmUuro6PMFnbOlDUwjYFJ1CtIriDc2qrGPjgnSaz2d8HA/djO1d6houXSpPWXLyy8D8+apvzk8vEXDoiWTPt26KUNdii9OSMNl0ya7xwn1tNSr0qWCyTsvFU/LkhLxOXJioDktTd57uueWX9ESUDvmUqikogM1bOlxOp6WpaXJ9yofPC0Bu4EbtHK3nPCcCiZJvETLMMQAN2gbHDQouSiBxI+n5ebNwNixwKWXCgHiuefUcybRsm3b5HuSrdBwwH5NqUGlG/uFheZd2kx4WqYjWlIvv+nT1XG2jSLaRujuejY8Ld0WkfT6DBxo9hiorLQLBkE9LYcNU2N+hw6Z2WhwQ3qD7djh7C0IBBMtIxG1cFq3Tiz+Jk4EfvlL5WVGN1dSpbzcvpiRY0b79va+lonQcInso5ZlrrqcSt8sLLSPcyUlwN13Aw8+aH9dt27CBvn4Y3fh7JprxKLnssucX6OPV35Ey9NPF597yy3Onyuh3paSIJ6WgLK3dNHSFNqc6XA6N0/LTKCHhz/1lPrbyYuKhojTTSkg2dOyuFjZIKtXCw85Wujvq6/sbTkTnpa0PXhtIDvZ2/R9U6cKu5QWTnODzLfW2LHC1qH58cMULSsrUw95DQN9rpNrhjCgY7rc3O3UKTxPzrAxVRCn6T7C8LSkQqfcHOzWLXghJp2qKu+N1Gxhui69eyd7nEejyRFbJtGSekT6Ka5rQq8g/vXXymHgiCPUGuvpp8W4mk4hnlTDw5uaRHoPPXXRtGnqmMPDWzQsWjLpE4sBxx4rjk86yX3CdtptlRNyTU04IpGp+pgf0VLfZZeioEm0NBnY9Nw3bVK7TamIlk4eDmF5WgLJE1g+5LQEwvG0pKTraZkJOnZUv/OUU8T/psWnvHZuouWrr6p2uXatyK0oMe2sRiLJBmSuREvpuRKLJYf4tmljHk/8eFq6GcsSvRBPqqLl8OHqmBZryKWnJRVPwwqf8yta6t83caLKNzttmnmBEYnYFwlBPS0rKlTV3x//ONh7w8BvXssgoiWgRJ1160RIrMzj9dZbQsQMa5yS1ZlHj1ZjYzRqnxMyUYRHQr1wTHktU+2bUnAaPhz46CPgoovMY0o06k9s8HpNKqKl/H4/UAENELaJn/A7eu/ktaR9uLw82UsQyLxnyo9+JMb+1q3thRszhT6PyrmyY8dkj3DJAQeoY5oXFTBv1sixa9Wq5PztjY32+TmIMGK6/l7h4bpgoP8tbQ8d/XVBRKHRo2GVl8OKRBA/91zxmEm0jMdF0T26wSz59FO7MwOlvl5Vju7TJ/sbVBR9rgszWsXUr3MVGu4HKgLJ9Yvb5nE64eGUMDxPY7Fkey1XnpamebZPHzGu0LWMyWnFS7Ts2ze1c9LDw+lnDhsGHHecON66Ffjf/4J7WvburdK0+LHfTKLl1KnA7NniuEcPNZ89+2xyWg6APS1bICxaMuHw2GNiR/m++9xfZzJcdu1SC7kwJ2R9UZCKaClFAPn/jh0q5NjL05J6kgYRLevqRHiF02IhU6JlYWF4O0/pVA8H0hMtTUJRUE9Ly1ILuqCenn6JREROnkWLgAsvFI+l6mlpKhAAiDblJJxRkSASsS/MMo0u7gPCwNBDH52MirA8LYuK1FiQjmhZW6sMTb24RTah4wH1tjV5Z6WCWyEetxxjHTqI55csESKFE7T9B/W0BITX1Oefiyqw2YaOpdJwNkErnvoRAeXCqalJFB6R1NUJAcVtPgrC738vDHvdk4yOE9nwtATMnqqp9s0nnxS/6/33nXOxhYlJtCwvT56r/dgEJg44wN4Pq6t9iTYW7VvSC8oppyWgvF0zvcjbe29xv7/5JjP5UnXofVi6VP2+IUOcryO1S/V0JnLca9dOjfdy7Nq5U4hyOrT4XbqelqZ2RD/TS7Q8+ujktllQkBZTY5QAAD4cSURBVF6Ic00Nmr76Cq/+/e+wZLXxykolLi1YIATLE04Q7Xn8eHtKjenTxVqhXz+7KCxZskS9Ppf5LE3fH6YXpEm0zEURHr/QMSabomW6lcMluv2dK09L0zjYu7e9ijlg7qP65p9lqY2Wrl1T39ykEZWLFyd7b1Iv9YceCi5axmJig2fJEpGuxQtdtPzyS2HDyM967DERkQKIa3DTTeKYw8NbNCxaMuEQjYqBy2s31uRp+c476rEBA8I7J30H2k9OS1N4OKB2tGgFVy9PSzpZ+1mg0M/butXZjT2s8HDAPgHW1qYfYiEJw9NSLkz33jvYe8PwtGxoUB58mfK0BMT9k8YIYN7ZpUn05f2momU8rkTL0lIhbEgj4cADnb+bGpCDB6e+iE4F0zXt1CnZ89dJ9AsqWjrltIxE7BU6pTASiwU3aHQvUSC34eEycX9ZmXs7CEJRkbr2QcLDAbEA8Er9sd9+4v++fVNrj7GYaEO58LwZNUod33STudjEV18Jb0lAjLd+fiP1mnrhBftzVBxNd5yKRIRIoG/c0XGiJYqWsZj4XWHNbV6YRMtIJPmcUx1vi4rs+TT9egOZREunnJZA9sLDAfG92drgobbInDnq2CkXOyD6oJxTqfffzp2qrVLxil7HV15J/rxURUu/npaFhWo+0u0nOkcUFgqxtlcv+2v8eO560a4d6nTRR17jbduAX/1KeEABwHvv2ccyuenU2GjffJPkSz5LIPnasaelQI4xbnZYPnlaAsl9MVeeluXlyZuQcnyhNrIfT8s1a9T6JtXQcEDMo1IwX7zYXhiqf3/hJS+/+//+z14kye94QnODe0E/c/t2sdkq03D86lfClvzZz9S88uijIrcljXTh8PAWB4uWTHbp21cteqVo+eKL6vnx48P7Lr+iZdDwcIlJCKMD6euvq+MgnpaACBHPRng49TwJc0Gabk7LVq2AN98Uu2XXXhvsvabFT1DRUvdAyRamnV167aRBR0XL+fPVgn7MGOG1+cUXIm/bQw85fxc1brIZGg6YjZjOnZONKifRL0ghnqIi9x1zeS7U07J9++Aihym0MJeelpIxY9Lf3KBIYzqoaOmH224TidxffTW3IX+p0L8/cPHF4riuToRdSi/I74nddpvyEPrFL/z9Ripa6gV+qBdXpsapli5aZhvqVULzFIclWgJ2z2mf3kA2T0u5+eqW01J6WlLRMpsbW5mCiiJ0Ye0mWkYiajG9bJlaHMtUDYBdtKTXUUbc0L7+4YfqOIg3l9+cloDY4Hj4YeAvf7E/Ttvn4MFibtC9BcMQLU3Qa3zbbfbnZAGPdetE8QzJW28lf06+VA4HxPWkHvOZFi3z2dPSFB7ulqansjLZCy+Xnpa6iJXLXKn675TtnK7ZTJ6WtC1++204+Sz1c9i1S61vIxER1h2LiUJyktdeU8eZKN6ne1rSlBsyTVBZGXDJJeK4uVnY6HRsYU/LFgeLlkx2KSpSA6esoii9xKJRc0XOVElFtPTytKSYwvHowpEai37CAHXRkk72dOHaqZMasNPdYRw4UBkJpqqkqZJO9XDJnnuKhX/Q95omoqDh4fpiLlu4hYfTYxp6QUV/uZjt1g2YPNl9J5FWDA6z3/khm56WnTu7C5CyrW7frorXpCKK5JunpSSs0HCJvHdOomXnzqkbqRUVIpF6WIuQbHPzzapfffopcNVViadK1q1DRC7MKyvtFS7dcPP2yIZoSVO66FXGw8RvTsuSksyl7AgDOvdVVytbg87hQHoC4KRJagyUecC8SNXTUooPVVXJRR9aInRjh3oLuYmWgBKLGhqUt47TRo0ptcUBByjhUlZTBjJTPRwQwunppyc/T8dmOWflQrTUeeIJcW2ffNK+Efn22/ZCRoB7/uRcQM8h0+Hh+exp6RUerq+DIpFkcc7LdqiqSrZzMuVpmUvRUr9Wfj0tS0rUeWdKtATUplaPHup+nHeeeTzLhmj5wQfiWHqPSy6+2GwvdO2avwWtGEcKvF/CMCEzeLDwsmxuFoKlzLcxalS4i3y/OS2p15ZTTkvT5ODlaSmZMAH4+c9dTzXp87ZutRcqoovFsjJh4M2YYd/ZSoWqKmEkzpih8n+EQbqelumQqqfl/Pli0h04UHlMAdkVLd3Cw+kx9bSk+SyDCFQnnCCM/9atzdWcM4mTaNmlizBwpCibqqflzp3KQ8gpn6VEGlQytyaQmmhJi/FI8sHTMlOiJfVG3rRJLVJyHa6XS0pKgMcfFzv69fUizHHwYOCMM9D7hRcQkQL7xRc7e0jp6GJXp05ifti+XRWxAjI3Tp18sgiJLS8HDjkkM98BCJElEhHepG6eljU1+e2FS20AOo7Q40gkvUrZnTuLefvNN4Err/T3HjqWSk9L2ofLy+0LTt3TcncJpaNjpPRcLijwzneq57Xs0sXZ48+Uk26//US7XrbM/ngmqoe7Qe0JGR2gj9mZEBmAZNFy0CDx3c89J9rZyy8rj0vJ5s1iA4i+N5/CwwFx72XaDw4PF+jh4dXVZvukUyd7P/K6flLopF7OYYmWukiZq/BwwC7mlpUpO8BLtASEILd+vfDy/uwz9Xi6oqWpr9Fxs3Vr4NJLgWuusb8mE+MJbSerVysdYdAg+3Vp21Z4nd9/v9gUAUQ7PP/88M+JyTgsWjLZhxoff/yjOg57cU2NuUjEvtDx62mph4dTTLs3dIHZqhVw663Co8bPIkv3tFywQH23vpt8xBHiXxj86EfuxTFSQTe2wgxP9SIVT8sVK4BjjhELig8+sC+as+nV06aN8AqkngVuouXGjSIfFCAMEq+cgZTCQuC669I63ZRxEi2jUWEEyfC5VD0t/RThkZgWBqmIlu3aCW8cmvMs256W+qJgr73C91qU927HDtFOo9H8CtfLNQMHinFfbnyccw5i//sfussCN6WlKmTJD/rC6dRTRR5ovdhPpsapbI0TRUWi361enSxaNjUpUTyfQ8MBf6JlRUX6OTaPPlqFwfmhoECMRxs3Ontayn9SEG9uVps5u0sonUkU6dfPu/CMLloedJCzx5/J03LwYCEg6KJlOtXDY7HgggD9vpEjxf/Z8rTs3Vu1L7nBs2yZylv5hz/Y84xK3nrLvm6Q801VVX6I6VTMyaSnZVFRZlN0pIseHt7crLySnfKK67/Hj+hLRctIxNvG8ws9/0gk+5vOFHpd+vRRa8gePUS72LHD+fy6dAE++khcfymmA+kXojPZdroQeuGFIuKEbohlQrSMRtV1oN6kpoin0aPFP6bFw+HhTPahxocUXAAR8hQmVATUw5qCVg/362l53HHCa+3oo8Wk8fOf+/cKoee7erUo2gAI4UE/r3yHGlslJdn1jPHraVlSohYqH35oX0xMn66Os+lpGY0mG+HUCJaT/65dwkuEJp8OW/TPJKZrKsNhqBHktFCmC34v0dLJWJaEJVoCyXkts2306gZ/JtoEFcekR2y+hevlmgsvFF7b3xN9/nkUyF3+884LJlTonpann24Os8zmOJUp5OJz1Sp7v163TnnF7Q6iZa5yQ8p25yRaRiKqaNd334nQXHnddxfR0iQqeYWGA/ZcgnJjysnjz+RpOXiwWTRIx9OysjK4bXXRRcDBBwNTpqgInmyJlgUFwL33AvvvDzz1lLBtx41T7ZIKlieeqI5pXsu6OrHJLM87H7yu6fXLpKflHntkr6BYKujh4WvWqEgYJ2FRD4P2K1pKamvTq3RP0Que5jIdhi5aSgoKRATHfvs55/un11qmwGjbNn3PUT+iZZs2wv6hZGo8MX2uKbc8s9uQx6Mfs9tiMhA7dgSGDg33e+jCIFuiZWUl8J//iJ3jvn0Dna7t8957T4lRfgzqfIMuoLOdN8Rv9fBIJHnxaDIIsy0G6IKGydPSskSoA81nGbbon0mcPC0BuxHktKCLRFS/NYWH58LTEkje5c11eHgm2gS9d1L0YE9LO5EIcN99IoSXjEdWYWHwNBy0Le61l5gPaJ5Jye4gWsoNBstS4clAyynCA+S3aCkXrVu3ivQFsv/GYsrGoRsdjz6qjvPBoy0MTKKIHxtL97QE1LhXXW2/p7qnpQw/N4VnBhGD9dem0o4GDABmzRJejZJOnezXJVMiAwCceabwFJfRPYWFIgUFJRIRUVhyTHvrLSWeL1mijvNlrqF5ZcO8dvqYns9FeABhZ8s11Pr1/uwwKs4VFPhz0KBCZ1ih4YDd9s5lPkvAfr30dv6Tn4hIi3HjvN8r6d8/fYG/a9dkgdg0pl16qbJFi4qSIxjDwtTXTJ6WzG4Di5ZM9unYMXlCmDAh/B1Tv56WdJJMNzw8Hej50p3llihaUu/KbIuWJqHI6V7pRv/DDwOHHmp/LB9FS0AsOGUlvNatlYdMS8BkbEjj9YwzxO55z57uopvsqyZPS7eKlTqm0JUwPC3Ly7PvIU37WlmZKP4QNrQ/yBCgfMsxli+ccAKwYAHikybBikYRv/rq4KFs3buLBX5xMTB1qhhXd3dPS8C+4G1JoiUdT/JNtNQ9oaRoWV6u5ms65j71lDr+oXtaUtFyyRLhZS4rg+uiQps29sV9v36i/+oL/KqqYHOE3m6C5rN0IhoFevVSf2dStDRx+un2vw89VHgVjhol/v7uO+XdSjfI8mWuGTBApGsqLxeibFjo9yGf81kCYgyR48SGDcFFS79eqvQ9Yaa/oRszuRYtx48X40X79sHblCm6KN18loBYN+vCuelzO3QAbrxRjCsk4iR09P5RUiL6IrPbwqIlk30ikWRPkUx4BOUiPDwd6PnSJNMtUbSMRNQiOl89LQH7IuDMM0W+uIcftguf2RYD9BAOJ9HytddUQYWxY7ObNzRd9GtaXKyuebduQnT86it3T0XZVxcvBh56SHlfALnztBw2TC3+c5EPibaPww8PL2yKYvK0pKIlXfwyQKdOaH7+efz3iScQ/81vgr8/EhHe+9u2iby7gNnTMp8ravtldxAt/XhahiU2BYUuxNetU5sOtE/37q3EoM2b1eO7i6dlqqJlWZmam5cudfcuj0Ts3payv+oL/KDXNBazt50w2xH9DZkqxOPEvvva543TThP/H3ywekxu5OdjKpJIBPjf/4RQN2FCeJ/b0kRLQI0xa9favXn95LT02+7oe8L0tKT9MZdFeAAx3nz6qRDsqSevH5w8LcOA9rkOHZzt3MsvF978d98dzvea0PvH3ntnzquTyQtYtGRyAzUSYzGxwA4bKkjpYqSTd2W+eFpSWqJoCYidQiAz99aN0tLk++h0r2Ry5v79gXvuEcddugD//Kdol0VFarc/W+g7vHSRRUWpqVPV8bHHZvacwkYXLTt3Ti6U5ZVPaL/9xP91dcBZZwmvNr1iJZDdnJYVFapAlmz/2WTECHVtzz03M99B+5IuWsrq70wSVjrGNE2HAIi5Tfcw2R08LWlfbami5Zgx4n4VF9uT//fpo8TAXIwNgH0hvn696r962zFtIu8unpa6N1fbtv6Lm0jR6LvvhKAgMXn80byW0oZr185+D1IRgqlIEKbHLhUjsu1pGYmIHJuAEC+PP14cH3SQek0+i5aSsAUT/T7ke3g4oNp0XR0wb544Li5W9ppOKp6Whx6qXhtWQVJApPSSfTxM8TlVotHUonVMomW6RXgktM95fWamI430/sH5LHd7WLRkcgMV4kaNyky4VCrh4fog6yZahu1pafq8jh1zv+OXKo8/LooR/fWv2f1eGqIicRItp00D3n9fJICnrznqKGDhQlFBNWhu0nTxGx7+2Wfi/65dk3NC5Tv6IjmViphPPQVMnqz+fuYZ4XHa1KQEj4KC5EImOmGKlgDw9NPA3LnZb/eAWDAsWiTabaYKM+melhs3in9A/oTr/RDQN7N2B9GSLrZoioeWJFqOGCFCWZcvtwvLBQXA/PnAggWiQF8u0D0tnURL09ixu4iWuqfl4MH+UxNJQcOygBkz1OMm8Yx6WtK+Shf6qYSg0vuQKU/LbIuWAPDTn4oqwO+/r37XvvsqIVCKlvkYHp4pWqKnpS7E9+kDvPmms8CcimhZWysKZy5ebPfGTZfCQuCTT8SGRCbDmjONXtwIyIynZVifmSp6/+B8lrs9LFoyueHgg5VweNJJmfmOVMLD9WP5umyHh0taqpclIBZpQ4fmptoh9UYoLnYOnY5ExERnEjV79xZ5lbKNW3i4yYvtyiszEwacScIQLSsqgAcfFCKhNJQ//lgUP5GCR+fO3u1PN3wikfTyGRUXA8OH567KZ8eOwcOJgqCLllyEJzfs7qIl9bRcu1Yd57toCYh5w3SerVuris25gM4t33yjiv3pbeeQQ5IFhN01PDyIjUU93V59VR2bxj25gC4rE+KbxE+hOTeobROmaHnAAWrOypXd2a+fXZRt1UpdR7kZ99VX4u82bXafNulES/S0HDZMHV9wgXBcoO1fp7RUtTdT2hMnamoyk4qmrEwUvGvJlJYm96OwwuhpnnQ9/3+20ect9rTc7clylQCG+Z7evUVOvhUrVP6asEm3ejgVurIRHm4SQVuyaJlL6ITd0nK9+fW0BIThds45mT+nsNGN8VRES8lxx4n7fdhh4u/f/U7klgL8FT3RheDq6uwX0GlJ6IV48jlcb3dGX+C1tHHOBB0HWmp4eD5D5xZZARtIbjutWonQ9hdfVI/tLp6W+hwaRCihnm60fZo8/i6/XLTnwYPt1z1d0ZLehzAjlPr3V3myjzsuvM9Nl4MOAt59VxxTL9UfwlxDbZOqqtwV8ArCFVeIzeJ+/YD99/f3nhdeEJsALS3NUT7TtauKgOnbN7xN9EGDgOnTRXqRE04I5zNTha4jysqyHxXHZB1emTG5I9O7NOmGh9Md+WyIloWFwqDetUs9FsSgZhTUGyFsj9hMo3taOuW0BIDLLvMfUpNPxGL2tm4KZwnCoYeKNBOzZwtvDIlXPksgWUBlUcQdPaclDeP9ISwk84Xd0dOyuFj0vzVrzKJlYWFuClztLlDxbNkydWxqOxMn7p6iZVielpL27c0ej61aAWefnfw49QZKJbw5U56WgD0Ha74wdizwxz8mPz50aNZPJetEo8KG+eabluPA0KoV8JOfBHvPHnu07HDsfKRLFxF5BIQfxj12bLiflyrUds9ldBOTNVi0ZHZfSkuFONLcnFp4uJtoWVSUmWrNlZV20bKlGCr5BjXsW5oHkl9Py8pKEX7TUmndWrX1dDwtARHSffXVwJFH2h/342nJomUw9PBw6mm5u+cYyyf23FPMQw0N4u/dQbQERJ9ds0YUO2lqEhuJUrSsqfGff5BJhm6IUU9LU9uZNAm4+GL19+4SiltQIBa38bhoS0FCQU05BYNu1BxwAHDrraJ905zMfslUTst8ZcwY4KabRF5ESadOwDXX5O6csslDDwGPPWbviwzjBbV9wyrCk29Q253zWf4gYNGS2X2JRER+t5Urk4Ur6n1HDT+/4eGZ8t6rrARWrxbHsVjuEx23VKhh39I8Ld1ES/q7Lr64ZS9ayspUte90RUtAVJEcPFgkUpewaBk+VODYuBGYOVMcR6OZyTHFmCkoEO197lyxwZaL4hmZoEsXUXU2HhdzYadOImQV4L6ZLkE8LXv2FOF2X34p7J+WPNdQZKG+9euF8B+k33TtqgRPSVDRMhIBfvnLYO+h0KrkP4T+EIkAV10l/v0QGT06Pz1gmfyGeoXnMo9yJqHzmVveVGa3gX1pmd2bG28UCzt9V/acc0Q46QUX2Heh/HpaZsp7jwps/fplxpvzh8DuFB5ORctjjhEG7BFHiAI8LRm6UA5DtJTelhQWLcOH3rd//UtsCgHAj37UMlMVtGR+/3sxv/3hD8nRBC0VvRjPhg0iWgLgvpkuZWXKpqirU4872TO33y4WvNOm7T7tC1D9xhR27EZhob0iPJB97/JTTxU2wNFHA+PGZfe7GYZpGUyeLAreHntscgTS7sIpp4iicccfL8ZDZreHPS2Z3ZvJk80hOH37quTeFKeclnoepEx6Wko4NDx1WnIhntJSe75H2vbatwdefz035xU2tA+FIVoCwnjp00eFLKdSiIeFEXdof5IecECyYMxknvHjxb/dCZqH9ttv7SI59830iESEd4rcaJA4pRaYOFH82904/3zxLxV69LB7qWY7j2919e5jAzAMkxk6dABmzcr1WWSWjh1VpA/zg4A9LRmGQj0tcxUeLmHRMnVasqclYPe23F291846S2wSnHlmePn4YjHgjjvE5+69t0jO7QV7WgbDdK/GjAFGjsz+uTC7H3Sj4ZtvuHJ42OjpR4DdJx9qNtDzWnLxMYZhGIbJOOxpyTAUv9XDM+W9x6JlOLRkT0tALCxXrBDHu6toee65wGmnJXs6psukScC2baIvF/iY4li0DIZJ4GAvSyYs9PBw2h+5b6aPnn4EYNEyCHoFcS4+xjAMwzAZhz0tGYbiV7TMlPfeoYeK/9u3F1UmmdQYOVKJYS0xifnYseL/ESN277ymYQuWkpISf4IlwKJlUHSBY7/9WmYfY/ITXbRkT8twYU/L9KCeljU1LTOSg2EYhmFaGOxpyTAUv+HhmfLeO+MMYMAAsXDbXap15oLqapHXcMMGYNCgXJ9NcP7wB5FYevBgkYeMyRwsWgajsFCMh/X14u+rr+Y2yoRH587qePZswLLU39w308fkadkSoxFyBfW05NBwhmEYhskKLFoyDCXXnpaAvzx8jDedOoVX4CXbxGKiuj2TeXRvz5qa3JxHS6JvX+CTT0Te0COOyPXZMLsTJSUi5HbxYpHT8ptv1HMsWqYPe1qmx4ABQuTdtg3Yf/9cnw3DMAzD/CBg0ZJhKNTTMleiJcMw2aOgACgqAhoaRC5UOgYwZp55BnjuOeDUU4EoZ5lhQubpp4GTTgK+/NL+OIuW6cOiZXpUVADTpwPvvw9Mnpzrs2EYhmGYHwS82mAYCvW0zEV4OMMw2adrV/E/F1XwR+/ewJVX2kN5GSYshgwBPvwQuPBC9Vhlpb3AGpMaXIgnfUaOBC6+mDevGYZhGCZLsGjJMJR8CA9nGCa7/PWvwCmnAHfemeszYRgGEGkb7rkHeOUV4OSTgQcfFGkzmPQweVryJizDMAzDMHkMh4czDIWKkbQQDntaMszuy9ixqmI7wzD5w7hx4h8TDuxpyTAMwzBMC4NFS4ah7LsvcPzxwNKlwJlnqsfZ05JhGIZhmJaM7mkpc/oyDMMwDMPkKSxaMgwlGgWeeir5cRYtGYZhGIZpybRrZ/+7rAyIRHJzLgzDMAzDMD7gnJYM4wcOD2cYhmEYpiVTWAhUVam/2ZZhGIZhGCbPYdGSYfzAnpYMwzAMw7R0aIg457NkGIZhGCbPYdGSYfzAnpYMwzAMw7R0aDEeFi0ZhmEYhslzWLRkGD/oiepZtGQYhmEYpqXBnpYMwzAMw7QgWLRkGD9EoyIXFAC0aqWOGYZhGIZhWgosWjIMwzAM04Jg0ZJh/CJDxNnLkmEYhmGYlggND2d7hmEYhmGYPIdFS4bxS8eO4v8uXXJ7HgzDMAzDMKnAnpYMwzAMw7QgWLRkGL/cfTdw9NHAn/6U6zNhGIZhGIYJDhfiYRiGYRimBVGQ6xNgmBbDhAniH8MwDMMwTEtERo0AQJs2uTsPhmEYhmEYH7BoyTAMwzAMwzA/BA47DBg7FvjuO+C003J9NgzDMAzDMK6waMkwDMMwDMMwPwSKioDp03N9FgzDMAzDML7gnJYMwzAMwzAMwzAMwzAMw+QVLFoyDMMwDMMwDMMwDMMwDJNXsGjJMAzDMAzDMAzDMAzDMExewaIlwzAMwzAMwzAMwzAMwzB5BYuWDMMwDMMwDMMwDMMwDMPkFSxaMgzDMAzDMAzDMAzDMAyTV7BoyTAMwzAMwzAMwzAMwzBMXsGiJcMwDMMwDMMwDMMwDMMweQWLlgzDMAzDMAzDMAzDMAzD5BUsWjIMwzAMwzAMwzAMwzAMk1ewaMkwDMMwDMMwDMMwDMMwTF7BoiXDMAzDMAzDMAzDMAzDMHkFi5YMwzAMwzAMwzAMwzAMw+QVLFoyDMMwDMMwDMMwDMMwDJNXsGjJMAzDMAzDMAzDMAzDMExewaIlwzAMwzAMwzAMwzAMwzB5BYuWDMMwDMMwDMMwDMMwDMPkFSxaMgzDMAzDMAzDMAzDMAyTV7BoyTAMwzAMwzAMwzAMwzBMXsGiJcMwDMMwDMMwDMMwDMMweQWLlgzDMAzDMAzDMAzDMAzD5BUsWjIMwzAMwzAMwzAMwzAMk1ewaMkwDMMwDMMwDMMwDMMwTF7BoiXDMAzDMAzDMAzDMAzDMHkFi5YMwzAMwzAMwzAMwzAMw+QVLFoyDMMwDMMwDMMwDMMwDJNXsGjJMAzDMAzDMAzDMAzDMExe0aJFy3vvvRd77LEHSkpKMHLkSLz//vuur3/qqafQr18/lJSUYNCgQXjxxRezdKYMwzAMwzAMwzAMwzAMw/ilxYqWTzzxBC6//HJcd911+PDDDzFkyBCMHz8ea9euNb7+3XffxSmnnIKf/vSn+Oijj3D00Ufj6KOPxqeffprlM2cYhmEYhmEYhmEYhmEYxo0WK1r+6U9/wrnnnouzzz4bAwYMwF//+leUlpbigQceML7+zjvvxIQJE3DllVeif//+mDp1KoYNG4Z77rkny2fOMAzDMAzDMAzDMAzDMIwbBbk+gVRoaGjAvHnzMGXKlMRj0WgUY8eOxezZs43vmT17Ni6//HLbY+PHj8fzzz9vfH19fT3q6+sTf2/ZsgUAsHHjRjQ2Nqb5C/KDxsZG7Ny5Exs2bEBhYWGuT4f5AcFtj8kF3O6YXMDtjskV3PaYXMDtjskF3O6YXMFtLzW2bdsGALAsy/O1LVK0XL9+PZqbm9GhQwfb4x06dMDChQuN71m9erXx9atXrza+ftq0abjhhhuSHu/Ro0eKZ80wDMMwDMMwDMMwDMMwzLZt21BZWen6mhYpWmaDKVOm2Dwz4/E4Nm7ciHbt2iESieTwzMJj69at6Nq1K7755htUVFTk+nSYHxDc9phcwO2OyQXc7phcwW2PyQXc7phcwO2OyRXc9lLDsixs27YNnTp18nxtixQtq6urEYvFsGbNGtvja9asQceOHY3v6dixY6DXFxcXo7i42PZYVVVV6iedx1RUVHAHY3ICtz0mF3C7Y3IBtzsmV3DbY3IBtzsmF3C7Y3IFt73geHlYSlpkIZ6ioiIMHz4cM2bMSDwWj8cxY8YMjBo1yvieUaNG2V4PANOnT3d8PcMwDMMwDMMwDMMwDMMwuaFFeloCwOWXX47Jkydjn332wb777os77rgDO3bswNlnnw0AOPPMM9G5c2dMmzYNAHDJJZfgkEMOwW233YYjjjgC//73vzF37lz87W9/y+XPYBiGYRiGYRiGYRiGYRhGo8WKlieddBLWrVuHa6+9FqtXr8bQoUPx8ssvJ4rtrFixAtGociTdf//98dhjj+G3v/0trr76avTp0wfPP/88Bg4cmKufkHOKi4tx3XXXJYXBM0ym4bbH5AJud0wu4HbH5Apue0wu4HbH5AJud0yu4LaXeSKWnxrjDMMwDMMwDMMwDMMwDMMwWaJF5rRkGIZhGIZhGIZhGIZhGGb3hUVLhmEYhmEYhmEYhmEYhmHyChYtGYZhGIZhGIZhGIZhGIbJK1i0ZBiGYRiGYRiGYRiGYRgmr2DR8gfMvffeiz322AMlJSUYOXIk3n///VyfErMbcf311yMSidj+9evXL/F8XV0dLrzwQrRr1w5lZWU47rjjsGbNmhyeMdMSefPNN3HkkUeiU6dOiEQieP75523PW5aFa6+9FrW1tWjVqhXGjh2LRYsW2V6zceNGnHbaaaioqEBVVRV++tOfYvv27Vn8FUxLxKvtnXXWWUlj4IQJE2yv4bbHBGXatGkYMWIEysvLUVNTg6OPPhpffvml7TV+5tcVK1bgiCOOQGlpKWpqanDllVeiqakpmz+FaUH4aXeHHnpo0pj3s5/9zPYabndMEP7yl79g8ODBqKioQEVFBUaNGoWXXnop8TyPdUym8Gp7PN5lFxYtf6A88cQTuPzyy3Hdddfhww8/xJAhQzB+/HisXbs216fG7EbstddeWLVqVeLf22+/nXjusssuw3//+1889dRTmDVrFr777jsce+yxOTxbpiWyY8cODBkyBPfee6/x+Ztvvhl33XUX/vrXv2LOnDlo3bo1xo8fj7q6usRrTjvtNHz22WeYPn06/ve//+HNN9/Eeeedl62fwLRQvNoeAEyYMME2Bj7++OO257ntMUGZNWsWLrzwQrz33nuYPn06GhsbMW7cOOzYsSPxGq/5tbm5GUcccQQaGhrw7rvv4qGHHsKDDz6Ia6+9Nhc/iWkB+Gl3AHDuuefaxrybb7458Ry3OyYoXbp0wU033YR58+Zh7ty5OOyww3DUUUfhs88+A8BjHZM5vNoewONdVrGYHyT77ruvdeGFFyb+bm5utjp16mRNmzYth2fF7E5cd9111pAhQ4zPbd682SosLLSeeuqpxGNffPGFBcCaPXt2ls6Q2d0AYD333HOJv+PxuNWxY0frlltuSTy2efNmq7i42Hr88ccty7Kszz//3AJgffDBB4nXvPTSS1YkErFWrlyZtXNnWjZ627Msy5o8ebJ11FFHOb6H2x4TBmvXrrUAWLNmzbIsy9/8+uKLL1rRaNRavXp14jV/+ctfrIqKCqu+vj67P4BpkejtzrIs65BDDrEuueQSx/dwu2PCoE2bNtb999/PYx2TdWTbsywe77INe1r+AGloaMC8efMwduzYxGPRaBRjx47F7Nmzc3hmzO7GokWL0KlTJ/Ts2ROnnXYaVqxYAQCYN28eGhsbbW2wX79+6NatG7dBJjSWLl2K1atX29pZZWUlRo4cmWhns2fPRlVVFfbZZ5/Ea8aOHYtoNIo5c+Zk/ZyZ3YuZM2eipqYGffv2xQUXXIANGzYknuO2x4TBli1bAABt27YF4G9+nT17NgYNGoQOHTokXjN+/Hhs3brV5kXCME7o7U7y6KOPorq6GgMHDsSUKVOwc+fOxHPc7ph0aG5uxr///W/s2LEDo0aN4rGOyRp625PweJc9CnJ9Akz2Wb9+PZqbm22dCAA6dOiAhQsX5uismN2NkSNH4sEHH0Tfvn2xatUq3HDDDTjooIPw6aefYvXq1SgqKkJVVZXtPR06dMDq1atzc8LMbodsS6axTj63evVq1NTU2J4vKChA27ZtuS0yaTFhwgQce+yx6NGjB77++mtcffXVmDhxImbPno1YLMZtj0mbeDyOSy+9FAcccAAGDhwIAL7m19WrVxvHRfkcw7hhancAcOqpp6J79+7o1KkTPvnkE1x11VX48ssv8eyzzwLgdsekxoIFCzBq1CjU1dWhrKwMzz33HAYMGID58+fzWMdkFKe2B/B4l21YtGQYJiNMnDgxcTx48GCMHDkS3bt3x5NPPolWrVrl8MwYhmEyz8knn5w4HjRoEAYPHoxevXph5syZGDNmTA7PjNlduPDCC/Hpp5/a8kUzTKZxanc0H++gQYNQW1uLMWPG4Ouvv0avXr2yfZrMbkLfvn0xf/58bNmyBU8//TQmT56MWbNm5fq0mB8ATm1vwIABPN5lGQ4P/wFSXV2NWCyWVF1tzZo16NixY47Oitndqaqqwp577onFixejY8eOaGhowObNm22v4TbIhIlsS25jXceOHZMKkDU1NWHjxo3cFplQ6dmzJ6qrq7F48WIA3PaY9Ljooovwv//9D2+88Qa6dOmSeNzP/NqxY0fjuCifYxgnnNqdiZEjRwKAbczjdscEpaioCL1798bw4cMxbdo0DBkyBHfeeSePdUzGcWp7Jni8yywsWv4AKSoqwvDhwzFjxozEY/F4HDNmzLDlaWCYMNm+fTu+/vpr1NbWYvjw4SgsLLS1wS+//BIrVqzgNsiERo8ePdCxY0dbO9u6dSvmzJmTaGejRo3C5s2bMW/evMRrXn/9dcTj8YQBwjBh8O2332LDhg2ora0FwG2PSQ3LsnDRRRfhueeew+uvv44ePXrYnvczv44aNQoLFiywiebTp09HRUVFIvSNYShe7c7E/PnzAcA25nG7Y9IlHo+jvr6exzom68i2Z4LHuwyT60pATG7497//bRUXF1sPPvig9fnnn1vnnXeeVVVVZatwxTDp8Mtf/tKaOXOmtXTpUuudd96xxo4da1VXV1tr1661LMuyfvazn1ndunWzXn/9dWvu3LnWqFGjrFGjRuX4rJmWxrZt26yPPvrI+uijjywA1p/+9Cfro48+spYvX25ZlmXddNNNVlVVlfXCCy9Yn3zyiXXUUUdZPXr0sHbt2pX4jAkTJlh77723NWfOHOvtt9+2+vTpY51yyim5+klMC8Gt7W3bts264oorrNmzZ1tLly61XnvtNWvYsGFWnz59rLq6usRncNtjgnLBBRdYlZWV1syZM61Vq1Yl/u3cuTPxGq/5tampyRo4cKA1btw4a/78+dbLL79stW/f3poyZUoufhLTAvBqd4sXL7Z+97vfWXPnzrWWLl1qvfDCC1bPnj2tgw8+OPEZ3O6YoPz617+2Zs2aZS1dutT65JNPrF//+tdWJBKxXn31VcuyeKxjModb2+PxLvuwaPkD5u6777a6detmFRUVWfvuu6/13nvv5fqUmN2Ik046yaqtrbWKioqszp07WyeddJK1ePHixPO7du2yfv7zn1tt2rSxSktLrWOOOcZatWpVDs+YaYm88cYbFoCkf5MnT7Ysy7Li8bh1zTXXWB06dLCKi4utMWPGWF9++aXtMzZs2GCdcsopVllZmVVRUWGdffbZ1rZt23Lwa5iWhFvb27lzpzVu3Dirffv2VmFhodW9e3fr3HPPTdoY5LbHBMXU5gBY//znPxOv8TO/Llu2zJo4caLVqlUrq7q62vrlL39pNTY2ZvnXMC0Fr3a3YsUK6+CDD7batm1rFRcXW71797auvPJKa8uWLbbP4XbHBOEnP/mJ1b17d6uoqMhq3769NWbMmIRgaVk81jGZw63t8XiXfSKWZVnZ8+tkGIZhGIZhGIZhGIZhGIZxh3NaMgzDMAzDMAzDMAzDMAyTV7BoyTAMwzAMwzAMwzAMwzBMXsGiJcMwDMMwDMMwDMMwDMMweQWLlgzDMAzDMAzDMAzDMAzD5BUsWjIMwzAMwzAMwzAMwzAMk1ewaMkwDMMwDMMwDMMwDMMwTF7BoiXDMAzDMAzDMAzDMAzDMHkFi5YMwzAMwzAMwzAMwzAMw+QVLFoyDMMwDMMwTAtkjz32QCQSwVlnnZXrU2EYhmEYhgkdFi0ZhmEYhmECcv755yMSiSASieD1118P9N5XX3018d5LLrkkQ2fIMAzDMAzDMC0bFi0ZhmEYhmECcuaZZyaOH3nkkUDvffjhh42fkytmzpyZEFFnzpyZ69NhGIZhGIZhGAAsWjIMwzAMwwTmgAMOQK9evQAAzzzzDHbt2uXrfTt27MBzzz0HANhrr70wfPjwjJ0jwzAMwzAMw7RkWLRkGIZhGIZJgTPOOAMAsHXrVrzwwgu+3vPss89ix44dtvczDMMwDMMwDJMMi5YMwzAMwzApcMYZZyASiQDwHyIuQ8Oj0ShOP/30jJ0bwzAMwzAMw7R0WLRkGIZhGIZJgZ49e+KAAw4AALzyyitYu3at6+u/++47zJgxAwBw2GGHoXPnzkmvef7553HCCSegW7duKCkpQVVVFfbZZx/ccMMN2LRpk6/zevHFF3H66aejZ8+eaN26NUpKStCjRw8cd9xxePDBB7Fz504AwLJlyxCJRDB69OjEe0ePHp3Ibyn/Pfjgg0nf0dDQgD//+c8YPXo02rdvj6KiInTs2BGTJk3CI488gng87nh+Z511FiKRCPbYYw8AwKpVq3DVVVdhr732Qnl5eeDcmqacnE8++STGjBmD9u3bo1WrVujbty9+9atfYePGjY6fc+ihhyISieDQQw91/b7rr78+8X0m5HPXX389AOCNN97A0UcfjU6dOqFVq1bo378/pk6dmvC4lbz44ouYNGlS4nUDBgzAtGnT0NDQ4PtafPDBBzjllFPQtWtXlJSUoGvXrjj77LOxcOFCX+9fvHgxLrvsMgwaNAiVlZVo1aoVevbsibPOOgtz5851fJ9+D+LxOB544AGMHj0aHTp0QDQa5QrnDMMwDMMEx2IYhmEYhmFS4m9/+5sFwAJg3Xnnna6vveWWWxKv/de//mV7buPGjdZhhx2WeN70r6amxpo9e7bj569fv94aM2aM62cAsP75z39almVZS5cu9Xwtfb1k6dKlVr9+/Vzfc+CBB1obNmwwnufkyZMtAFb37t2t2bNnW9XV1Unvf+ONNzyvveSNN95IvG/GjBnW6aef7nhevXv3tlatWmX8nEMOOcQCYB1yyCGu33fdddclPs+EfO66666zpk2bZkUiEeO57L///tb27duteDxu/eIXv3A85wkTJlhNTU3G7+revbsFwJo8ebL1j3/8wyooKDB+RnFxsfXkk0+6/q5bbrnFKiwsdDyPSCRiXXPNNcb30nvw0ksvWWPHjk16/+TJk12/n2EYhmEYRoc9LRmGYRiGYVLkxBNPRElJCQB7VXAT8vmysjIce+yxicfr6+sxduxYvP7664jFYjjjjDPw+OOP47333sNbb72FG2+8Ee3atcPatWsxadIkLF++POmzd+7cidGjRyc8OYcPH4777rsP77zzDubOnYvnnnsOl112GTp16pR4T+fOnbFgwQI88MADicceeOABLFiwwPbv6KOPTjy/fft2jBkzJuG5d/TRR+M///kP5s6di6eeegqHHHIIAODtt9/GkUceiebmZsfrsX37dhx33HGoq6vDb37zG8ycORPvv/8+/vGPf6C2ttb1WjpxzTXX4JFHHsHRRx+NZ599FvPmzcOLL76II444AoDyJMwGL730EqZMmYL99tsPjz32GObOnYuXX34ZEydOBAC8++67mDZtGm6//XbcddddmDhxIp555hnMmzcPL7zwAvbbbz8AwMsvv4y///3vrt81f/58/OxnP0NNTQ3uvvtuzJkzB7NmzcJVV12F4uJi1NfX47TTTnP0lrzllltw5ZVXorGxEYMHD8Zf/vIXvPbaa5g7dy4effRRjBo1CpZlYerUqbjrrrtcz+Wqq67Ca6+9hh//+Me2eyB/N8MwDMMwjG9yrZoyDMMwDMO0ZE488cSEN9nChQuNr/n4448TrznzzDNtz1199dUWAKuqqsqaO3eu8f3Lli2zamtrLQDWqaeemvT8ZZddlvj8Cy+80IrH48bPqa+vt1avXm17jHrJeXk4XnHFFYnX/va3v016Ph6PW6eddlriNX/+85+TXiM9LQFYZWVl1vz5812/0wt6/gCs3//+98bzGjdunAXAKigosNauXZv0mrA9LQFYxx13XJKXZFNTk7XffvtZAKzy8nKrpKTEuvTSS5M+Z8eOHQlPysGDBxu/Sz6P7z1XTV6kr7/+esIDc8SIEUnPf/bZZwkPy+uuu87YdpqbmxMerGVlZdbGjRttz+v3wNQ2GIZhGIZhgsKelgzDMAzDMGlw5plnJo6dvC3p4/T127dvx7333gsAmDp1KoYPH258f/fu3XHNNdcAAJ566ilbPsTNmzfjvvvuAyA8LO+8807HfItFRUXo0KGDn5+VRH19Pe6//34AwF577ZXI2UiJRCL485//jHbt2gEA7rnnHtfP/NWvfoUhQ4akdD4mhg8fjquvvtp4XpdffjkAoKmpCbNnzw7tO50oLS3F3/72N8RiMdvjsVgM5513HgBg27ZtaN++PW6++Wbj+ydPngwA+OSTT7BlyxbX77vtttvQsWPHpMdHjx6Nc889F4DIeal7W952221obGzEPvvsg+uuu87YdqLRKO6++24UFxdj+/btePrppx3PY8899zS2DYZhGIZhmKCwaMkwDMMwDJMG48ePTwiBjz76KCzLsj0fj8fx2GOPAQC6dOliK3wza9ashBh1/PHHu37PwQcfDABobGzEvHnzEo+//vrrieI6v/jFL5JEsrCYN28eNm/eDEAU03H6noqKCpx44okAgM8//xyrVq1y/MzTTjst1HM89dRTHQVbKggvWbIk1O81cfjhh6Nt27bG56hQe+yxx6KwsNDzdUuXLnX8rjZt2uCoo45yfP4nP/lJ4vi1116zPfff//4XAHDcccc5XjsAqKqqwqBBgwDAVfQ96aSTMtYGGYZhGIb5YcGiJcMwDMMwTBoUFBTg1FNPBSAqcr/99tu252fMmIHvvvsOgBDpolFlflGvt9ra2qTK3fTfwIEDE69dvXp14vijjz5KHB900EHh/jjCp59+mjgeOXKk62vp8/R9lLKyMvTs2TOck/uefv36OT5HBcRt27aF+r0m9txzT8fnqqqqAr/O7Zz33ntvFBQUOD4/dOhQFBUVAQAWLFiQeHz58uVYt24dAGDKlCmu7S8SiSTaK21/OoMHD3Z8jmEYhmEYJggsWjIMwzAMw6SJW4i4U2g4AKxduzal75OelQCwfv36xHGqBWz8sHHjxsRxTU2N62tpmDJ9H4UKcmFRWlrq+BwVi90KBGX7XMI4Z6/7UVBQkBBt6f0Io/3ptGnTJqXPZBiGYRiG0XHekmUYhmEYhmF8MXToUAwaNAgLFizAU089lcj/t2PHDjz77LMARHjygAEDbO+jQtSHH37oGCas06VLl/BOPgXcwoj9wiHE4ZHq/aDt79prr8UJJ5zg632tW7d2fI7vK8MwDMMwYcGiJcMwDMMwTAiceeaZuPLKK7F582b897//xfHHH4/nnnsuUTRH97IEkChYAwDt27dPSYysrq5OHK9atQo9evRI4ey9oeHVa9ascQ1rpuHDTnkd8w3p1RiPx11fR4sg5Qtr1qxxfb6pqSnhYUnvB21/hYWFthQEDMMwDMMwuYbDwxmGYRiGYULgtNNOS3iZPfLIIwBUaHhhYSFOOeWUpPfsvffeieN33nknpe8dNmxY4vjNN98M/H6/XnpU0JozZ47ra99//33j+/KZ8vJyAMCmTZtcX/fVV19l43QCMX/+fDQ1NTk+//HHH6OhoQGA/X707NkTlZWVAFJvfwzDMAzDMJmCRUuGYRiGYZgQqK2txdixYwEAL774Ij799FPMmDEDADBhwgS0b98+6T1jx45N5DS86667kiqP+2H06NGJcN277747cL7GkpKSxHF9fb3j64YPH57IQ/nQQw85eiRu27YNTz75JABgwIABGc2zGSbSQ/Wrr75yLHqzfv16TJ8+PZun5YuNGzcmqoCbeOCBBxLHso0CIpR70qRJAIBXX30VX3zxReZOkmEYhmEYJiAsWjIMwzAMw4SEDAFvbGzEySefnBAQTaHhgChGc9FFFwEA3n33XVx22WWu4clr1qzB/fffn/QZ559/PgBg3rx5uPTSSx3Fz8bGxqTiK1RU/Prrrx2/u7i4GOeccw4AURF86tSpSa+xLAsXXXRRojiQ/G0tgUMOOQQA0NDQgLvvvjvp+cbGRpxzzjnYtWtXtk/NF5dffrkxTHzWrFn429/+BkAIzyNGjLA9P2XKFMRiMcTjcRx//PH49ttvHb+jubkZjz76qOtrGIZhGIZhwoJzWjIMwzAMw4TEMcccg/Lycmzbtg2fffYZAFFN+cgjj3R8z+9+9zvMmjULc+bMwZ133omZM2fi3HPPxdChQ9G6dWts2rQJn332GV577TW89NJLGDRoUEI8lEydOhXTp0/HggULcM8992D27Nk4//zzMWjQIBQVFeHbb7/FW2+9hccffxy///3vcdZZZyXe261bN3Tp0gXffvstbr31VnTp0gV9+/ZNhLp36NAhETp97bXX4tlnn8WSJUtw/fXXY8GCBTj77LNRW1uLpUuX4p577sHMmTMBAKNGjcJ5550X4tXNLEcccQS6d++O5cuX45prrsH69etx7LHHoqSkBJ999hnuuusufPTRR9hvv/3w3nvv5fp0bQwZMgSff/45hg8fjilTpmDfffdFfX09XnzxRdx+++1oampCQUEB7r333qT3Dho0CLfeeisuu+wyfP755xg4cCDOO+88HHbYYejQoQPq6uqwbNkyzJ49G08//TRWrVqFBQsW5LwYFMMwDMMwuz8sWjIMwzAMw4REq1atcPzxx+Of//xn4rETTzwRxcXFju8pLi7G9OnTcdZZZ+HZZ5/Fxx9/7OqhWFFRkfRYaWkpXn/9dRx33HF48803MW/evECC4dVXX42f//znWLp0KY466ijbc//85z8TImd5eTlmzJiBiRMnYuHChXjmmWfwzDPPJH3eAQccgP/85z8tqpJ0UVERHnnkEUyYMAE7duzA7bffjttvvz3xfCwWwx133IGNGzfmnWg5dOhQXHTRRbjggguMbaeoqAgPPfQQRo4caXz/pZdeitatW+PSSy/Fli1bcMstt+CWW24xvraoqMiWUoBhGIZhGCZTcHg4wzAMwzBMiEyePNn2t1NoOKW8vBzPPPMM3nrrLZxzzjno27cvysvLUVBQgLZt22LEiBG48MIL8eKLLzrmVKyursasWbPw7LPP4vjjj0eXLl1QXFyMkpIS9OzZEyeccAIeffRRY0GgCy64AM888wzGjRuHmpoaFBQ472vvscce+Pjjj3HPPffgkEMOQbt27VBYWIgOHTpgwoQJePjhh/Hmm2+2mKrhlAMPPBDz5s3DGWecgU6dOqGwsBC1tbUJMfgXv/hFrk/RkXPOOQdvvfUWTjzxRHTq1AlFRUXo3LkzzjzzTHz00Uc4+eSTXd9/7rnnYsmSJbjhhhtwwAEHoLq6GgUFBWjdujX23HNPHHfccfjrX/+KlStXonfv3ln6VQzDMAzD/JCJWKlkfGcYhmEYhmEYhmEYhmEYhskQ7GnJMAzDMAzDMAzDMAzDMExewaIlwzAMwzAMwzAMwzAMwzB5BYuWDMMwDMMwDMMwDMMwDMPkFSxaMgzDMAzDMAzDMAzDMAyTV7BoyTAMwzAMwzAMwzAMwzBMXsGiJcMwDMMwDMMwDMMwDMMweQWLlgzDMAzDMAzDMAzDMAzD5BUsWjIMwzAMwzAMwzAMwzAMk1ewaMkwDMMwDMMwDMMwDMMwTF7BoiXDMAzDMAzDMAzDMAzDMHkFi5YMwzAMwzAMwzAMwzAMw+QVLFoyDMMwDMMwDMMwDMMwDJNXsGjJMAzDMAzDMAzDMAzDMExewaIlwzAMwzAMwzAMwzAMwzB5xf8DTM83TOQdNbUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop для AE3_1: 0.710\n", + "IREth3_1 (порог ошибки реконструкции) для AE3_1: 1.860\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Загрузка тестовой выборки\n", + "test = np.loadtxt('/content/drive/MyDrive/data/WBC_test.txt', dtype=float)\n", + "\n", + "# Предсказание ошибок реконструкции и аномалий\n", + "predicted_labels_test, IRE3_1_test = lib.predict_ae(ae3_1_trained, test, IREth3_1_scalar)\n", + "IRE3_1_test = IRE3_1_test.ravel() # преобразуем к одномерному массиву\n", + "\n", + "# Визуализация распределения ошибок\n", + "lib.ire_plot('test', IRE3_1_test, IREth3_1_scalar, 'AE3_1')\n", + "\n", + "# Вывод порога и нескольких значений IRE для анализа\n", + "print(f\"IREth3_1 (порог для тестовой выборки): {IREth3_1_scalar:.3f}\")\n", + "print(\"Примеры ошибок реконструкции для первых 10 элементов тестовой выборки:\")\n", + "print(IRE3_1_test[:10])\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 813 + }, + "id": "nR3eH8kAWW22", + "outputId": "3a599ccd-ffca-4b56-9996-19b950b82909" + }, + "execution_count": 79, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2iRJREFUeJzs3Xd8U/X+x/F3OiizTKHIVlDZskFlOVgKouJFQBlugSvKdXGvAyd6r7gVB8oUURARFRGUpYKMn4KIgIJsKDJbVkvb5PfHl/Sk0ELTJjknyev5ePTB9yQnySflJE0+5/v9fFwej8cjAAAAAAAAAHCIGLsDAAAAAAAAAABfJC0BAAAAAAAAOApJSwAAAAAAAACOQtISAAAAAAAAgKOQtAQAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICjkLQEAAAAAAAA4CgkLQEAQNRbt26dBg8erHr16qlUqVJyuVzZP1u2bLE7PAAAACDqkLQEACBKdejQITsxN3LkyDz3803gnfoTGxurMmXKqE6dOrrxxhs1duxYHTlypEAx+PszcODAwv8SJM2aNUtNmjTRmDFjtG7dOr/iB6Ldo48+muN1ec899/h9H8F4H0hNTdWcOXP05JNPqlevXmrcuLHKly+vIkWKqGjRokpKSlKHDh306KOP6s8//yzkb8F/mzdv1ieffKKHHnpIHTt2VGJiYo7nBQAApDi7AwAAAOHL7XYrJSVFKSkp2rhxo6ZPn64RI0bo3Xff1XXXXWd3eGd15MgRDRw4UOnp6ZKkypUr67LLLtM555yTnThITEy0M8RCGTlypJ588klJ0hNPPHHG5LTTDRw4UBMmTJAkjRs3LmBJayfbsmWLatWqJUmqUaOG42b9ejweTZo0KcdlH3/8sV555RUlJCTYFJXx73//W2+++Wae1+/Zs0d79uzRokWLNGrUKN1zzz168cUXVbRo0aDGtXv3bjVs2FD79+8P6uMAABAJSFoCAIB869mzp6pUqZK97Xa7tW/fPi1dulQ7duyQJO3bt0+9evXS9OnT/UpctmjRQi1btsz3/q1bt85/4Hn48ssvdfDgQUlS/fr1tWLFChUrVqzQ9wtEgwULFmjbtm05Ljt48KBmzZqlG2+8sUD3GYz3gdKlS6tu3bqqVauWEhMTdeLECW3evFk//fST0tLS5Ha79eabb2r9+vWaM2eO4uKC9xUpPT2dhCUAAPlE0hIAAOTbsGHD1KFDh9Mud7vdmjBhgu655x6lp6fL7XbrnnvuUefOnVW8ePF83Xe3bt1CPhPw559/zh736dOHhCXgB+/MV0kqVqyYjh8/nn15QZOWgXofaNq0qV566SV16tRJ9erVy3XJdWpqqkaOHKmXX35ZkvTdd9/plVde0QMPPFDoxz+bkiVLqmnTpmrZsqVatGihtLQ0DRgwIOiPCwBAOCFpCQAACi0mJkaDBg3S4cOHNWzYMElm+eXMmTPVt29fm6PLm3eWpWSWhgPInyNHjujTTz/N3n7ppZey61l+88032rNnjypVqmRXeLr11lvPuk9iYqJeeuklHTp0SOPGjZMkvfPOO0FNWlaqVEm//fab6tatq5gYq73AwoULg/aYAACEKxrxAACAgLnrrrty1IRbvHixjdGcXUZGRvbYN4EA4Mw+/fRTHT16VJJUq1Yt3XXXXbr44oslSZmZmfrwww9tjM4/vgnOjRs3BrUZV7FixVS/fn3ebwAAyAf+WgIAgIBJSEhQ3bp1s7d37dplYzS5GzlyZHaHXt/lrYMGDTqtM/H48eNzvY8jR47otddeU+fOnVW1alUVLVpUZcuWVYMGDTR06FAtW7YsX7Hk1i149erVGjZsmBo0aKBy5crJ5XKpZ8+efj1HbzdmbxMeSXryySf97sLu8Xj02WefacCAAbrgggtUunRpFS1aVNWqVVPPnj01YcIEZWZm5ium9evX66GHHlLr1q1VoUKF7C7OFStWVLNmzTRo0CBNmDAhx+xXSapZs2a+/q9cLlehlxUXNMbcZGRkaNKkSfrHP/6h8847T6VKlVKJEiVUq1Yt9enTR5999pk8Hk+utx0/frxcLld2Ex5J2rp1a54dtO3g+/9x8803y+Vy6ZZbbsn1eqc755xzcmwfPnzYpkgAAIAvlocDAICA8q0LmZaWZmMkwfHll1/qjjvuUHJyco7L09PTdejQIa1du1Zvvvmm+vbtq/feey/fNT0lk1B95plnlJWVFeiw/fbrr79qwIABWrVq1WnX7dixQzt27NDnn3+uUaNGacaMGapXr16e93Wm57V3717t3btXP//8s8aPH69+/fpp8uTJgXwq+RLIGBcuXKjbb79dmzZtOu26LVu2aMuWLZo6dapat26t6dOn52huFQ62bt2aYznzzTffLEnq27evHnroIWVlZenXX3/VqlWrsmdfOtnvv/+ePS5evPhpSUwAAGAPkpYAACCgfGdX2lnTLi8tW7bUkCFDJJnGG+vXr5ckXXHFFbroooty7Os7a1SSPv74Y/Xr1y87sRUbG6vLLrtMtWvX1pEjR/T9999nP/8pU6Zo8+bNmj9/fo4l83n53//+lz0z8vzzz1fLli1VvHhxbdmyRfHx8X49x+uuu04NGjTQ8uXLtWLFCkl5d2XOrfvy4sWL1b17d6WmpkqS4uPj1aJFC9WpU0fx8fHasmWLfvjhB6WlpWnDhg265JJLtHTp0tN+X5L06quv5pjxWaFCBbVu3VqVK1eWy+XSgQMHtH79eq1bty7XhOGAAQO0f//+s/5fSfKr63QgY/Q1bdo09evXL7v0QLFixdS6dWvVrFlTMTEx+uOPP7R06VJlZmbqp59+Ups2bbRixYocr5W6detqyJAhOnz4sCZOnChJKlWqlPr371+g5xdokyZNyp4l2qpVK11wwQWSpKSkJF111VWaM2eOJDPb0ulJS28zHq+ePXsGtXs4AADwgwcAAESl9u3beyR5JHmeeOKJPPfz7iPJs2DBgjPe54YNG3Ls/8YbbwQkhmAZMGBA9uOPGzfujPtu3LjRU7Jkyez9W7Zs6fnzzz9z7JOVleUZPXq0JyYmJnu/f/7zn3nep+/vKi4uzlO6dGnPZ599dtp+aWlpBXl6nieeeMLv3+/u3bs9FStWzL5d//79Pbt27Tptv+TkZM91112XvV/Dhg09mZmZOfbJyMjwVKhQIXufUaNGeU6cOJHr4+7fv9/zwQcfeF544YVcr/fn/8ofgYzxt99+8xQrVswjyeNyuTwPPPCA5+DBg6ftt2nTJs9ll12W/Zhdu3bN9f42b96cvU+NGjUK+hQDrk6dOnm+xj/88MPs6ypWrOjJyMg46/2F+n0gLS3N8+eff3refvttz3nnnZf92ElJSZ5t27YF/fFzs2DBghzvBwAAwOPhNCIAAAiIzMzM7M7hkunMe9NNN+X79rNnz9a+ffvyvf9TTz2lcuXK+RVjYTz11FPZDTpq166tuXPnqnTp0jn2iYmJ0fDhw+VyuTR8+HBJ0ptvvqn7778/R33C3Ljdbs2aNUvt2rU77bqEhIQAPYuz+89//qO///5bknTvvffq1VdfzXW/SpUqadq0aerUqZPmz5+vNWvWaPr06erdu3f2PuvXr8/+P7300kv1yCOP5Pm45cqV06BBgwL4TPInkDHee++9On78uCRp9OjRuv/++3Pd77zzztOcOXPUsmVL/f777/r666+1bNkytWrVqhDPJDSWLFmiP//8U5KZgev7/y2ZmYolS5bUkSNH9Pfff+vrr79W9+7d833/wXgf2LFjh6pVq3bGfVq1aqVp06addT8AABA6JC0BAECBud1u7du3Tz/++KOef/55LV++XJIUFxenDz74QOXLl8/3fa1YsSJ7KXN+PPDAAyFLWh46dEgff/xx9vZ///vf0xKWvoYNG6b3339fa9euldvt1rvvvqtRo0ad8TF69eqVa8IylPbu3ZtdqzEpKUkvvPDCGfePjY3Vs88+qzZt2kiSPvzwwxxJLO/ycun0ZidOEagYV69erfnz50uSmjRpovvuu++M+5coUUKPPfaY+vTpI8n87sIhaenbYKdr166qUKFCjuuLFy+uG264IXu/CRMm+JW0DPX7QLFixfT888/r3nvvLfB9AACA4KB7OAAAyLeOHTvm6FocGxurSpUq6frrr89OWF544YWaOXOmbrjhBpujDZwlS5YoPT1dkql3eLYkTExMjG699dbs7QULFpz1MfyZlRos3377rU6cOCFJuv766/NVi7NVq1YqUaKEJOmHH37IcZ3vrLUFCxbojz/+CGC0gRGoGGfPnp097tOnT766el9++eXZ41N/d06UlpamTz75JHvbt1u4L9/am1988YUOHDgQ9NjOpGTJkhoyZEj2T//+/dW2bVsVLVpUx48f17Bhw9S0aVO/kqUAACD4mGkJAAACplKlSpo4cWKBGqI88cQTORpiOMkvv/ySPW7ZsmW+GnVceumlOW7v8XjOmMhq1qxZ4YIMgKVLl2aPf/31Vw0dOtSv2x88eFBHjx7NTmJWq1ZNrVu31k8//aSUlBQ1a9ZMt9xyi6677jpdeumlfnVWD5ZAxej7u1uwYIG2bt161tt4TjazkaTt27f7H3yIff755zp06JAkqUyZMnkm7zt06KCqVatqx44dOnHihKZOnarBgwfn6zGC8T5QpkwZvfHGG6ddfuDAAb3wwgv63//+p19++UXt2rXTrFmzdNVVVwX08QEAQMGQtAQAAPnWs2dPValSJXt7//792rRpU/YMpT179qht27b69NNPdc0119gVZsDt3bs3e1yjRo183aZmzZrZ4xMnTujw4cNKTEzMc38nLJ/27fz+ww8/FGj238GDB7OTlpL0/vvv6/LLL9eePXt05MgRjRkzRmPGjFFcXJwuvvhitWvXTp07d9YVV1yh2NjYgDwPfwUiRt/f3ddff+13DAcPHixw/KHiuzT8xhtvzLPWakxMjPr165ddXmDChAn5TlqGUrly5fTCCy8oKSlJw4cPV1pamvr166eNGzee8bUKAABCg+XhAAAg34YNG6Y33ngj++ejjz7S8uXLtXr1ajVu3FiSSdD16dNHmzZtsjnawPE24JGUIyF3Jqfud/jw4TPuX6xYMf8DC7CUlJRC30dmZmaO7Xr16mn16tX65z//maMOaGZmplauXKmXXnpJnTt3Vo0aNTR27NhCP35BBCLGwv7usrKyCnX7YEtOTtbcuXOzt2+++eYz7u+7dHz58uVav3590GIrrGHDhqlOnTqSzAmKiRMn2hwRAACQSFoCAIAAaNSokebOnZs9C/PIkSO6/fbbbY4qcEqWLJk9Pnr0aL5uc+p+pUqVCmhMweCbaH3ppZfk8Xj8/vGdYepVqVIlvfbaa9qzZ48WLlyop59+Wl27ds0xm23nzp264447bGuIUtgYfX93M2bMKNDvzskmT56cI7Havn37HPVtT/1p0KBBjtv7ztJ0mpiYGF1xxRXZ2z/++KON0QAAAC+SlgAAICAqVqyo119/PXt74cKF+uqrr2yMKHB8l25v27YtX7fZsmVL9rhIkSJhkbSsVKlS9jg5OTng95+QkKD27dvr0Ucf1ezZs7Vv3z59/fXXuuyyy7L3ef31121tiFLQGIP9u7NbYZOOkydPltvtDlA0gVe2bNns8f79+22MBAAAeJG0BAAAAeNtXuL16KOP2hhN4DRp0iR7vHz58nwt5V2yZEmO2+enm3Sg+fuYrVq1yh6HYrZZfHy8unTpom+//TbHzLwvvvjitH3t+P1J+Y8xGL87u57zqX7++Wf99ttv2dstWrRQq1at8vXjbVq1Y8cOfffdd3Y9hbPavXt39rhcuXI2RgIAALxIWgIAgIDy7fy7atUqzZo1y75gAuSSSy7Jbjqyd+/es84gdbvdGjduXPb25ZdfHtT48lK0aNHscUZGxln379y5c3aSacmSJVq9enXQYvOVkJCgTp06ZW/v2bPntH38fS6BdrYYfRtPzZgxI9fn4C+7n7OX7yzLhg0bavny5frpp5/y9dOlS5dc78dJTpw4kaNeZ926dW2MBgAAeJG0BAAAAXXllVfqkksuyd5+5plnbIwmMMqUKaPevXtnbz/44INnbKzzxhtvaM2aNZJMvbw777wz6DHmpnz58tnjnTt3nnX/KlWqZDdY8Xg86t+/v1JTU/P1WG63O0eXdcl0xM7vkuDt27dnjytWrHja9f4+l/wKVIwtW7ZUhw4dJEnHjx/XLbfcohMnTuTrfk+cOJFr9/AyZcooJsZ8XN+7d68ticuMjAxNmTIle/tsDXhO5bv/Z599dtaGVIGQkpLiV2Ojxx57LEf39+uvvz4YYQEAAD+RtAQAAAH3+OOPZ49XrFihOXPm2BhNYDz++OPZDXn++OMPde7cWX/99VeOfdxut1599VUNHz48+7IhQ4bk2pwmFHyXM8+dOzdfHa6fffZZVa5cWZL066+/qmXLljlmoZ1qx44devnll3XhhRfq448/znHd559/rgsuuEAvvvhijhqfvtLT0/XGG29o+vTp2Zd17dr1jM/l888/z3dC8GwCGePrr7+efYzMmzdP7dq107Jly/J87D/++ENPP/20atasmeuS8oSEhOyu1hkZGZo5c2a+ntPAgQOzG+IU9tjz1vWUzHL1Pn36+HX7Hj16ZNdzPXbsmKZNm1aoePJjwYIFql+/vsaMGXNaIt3XX3/9pVtuuUX//e9/sy+7+eab1bBhw6DHCAAAzi7O7gAAAEDk6dy5s1q1apWdsHn66adzLBPNjW9yJD+KFy+eI9kQbOeff77Gjh2rfv36KSsrS0uXLtWFF16otm3b6vzzz9eRI0f0/fff55gF2Lp165DGeKqWLVuqWrVq2r59u3bv3q2LLrpInTp1UoUKFbLrJbZo0SLHLNJzzz1Xn3/+ubp166Z9+/Zpw4YN6ty5s6pUqaKWLVvqnHPOUUZGhvbt26fffvtNmzdvPmMMmzZt0oMPPqgHH3xQ1atXV6NGjbJnKSYnJ+unn37SgQMHsvfv169fjpm6Xl27dlWxYsV0/PhxrVq1SnXr1lWHDh1UpkyZ7OfSqVOnHEu48ytQMTZo0EAfffSRevfurWPHjmnZsmVq3bq1zj//fDVt2lTlypVTWlqa/v77b/3666/5mjF6ww036Lnnnst+3PHjx6t27dqKj4/P3ufFF1/0+znnl++S7nbt2qlatWp+3b5YsWK67rrrNHHixOz7u/XWW/PcP1DvAxs2bNDgwYM1dOhQ1a5dW/Xq1VO5cuUUHx+vgwcPau3atVq7dm2O21x66aV666238v3YBfX444+fVjbjyJEjObYvvvji02731FNPqUePHsEMDQAAZ/EAAICo1L59e48kjyTPE088ked+3n0keRYsWJDv+//qq69y3Pbbb789Ywz+/pQuXdr/J32KAQMGZN/fuHHj8nWbL774wlOpUqWzxtenTx/P0aNHz3hfvvsHyxdffOEpUqRInnEOGDAg19tt2bLFc8UVV+T7/6NSpUqeOXPm5LiPadOmeVwuV75uHxMT4xk8eLDnxIkTeT6XMWPGnPH+znQc5yXQMXo8Hs+qVas8zZo1y/fvrmbNmp5ffvkl1/s6dOiQ56KLLjrj7U/le1zXqFHD79+J1759+3IcO++9916B7mfu3LnZ9+FyuTx//fVXjusD/T4we/Zsv+6jSJEinhEjRniOHTtWoOfnL9//H39+8vseBQBApGCmJQAACIpu3bqpefPmWrlypSQzS+iKK66wOarCu+aaa7Rx40Z98MEH+vLLL7V27Vrt27dPxYoV07nnnquOHTuqf//+ObpJ2+maa67RypUr9eabb+qHH37Qtm3bdOTIEXk8njPerkaNGvr222+1dOlSTZs2TYsXL9b27dt18OBBxcXFqXz58qpTp46aN2+uTp06qUOHDtlNfLx69eql3bt3a+7cufrxxx+1evVq/fXXXzp06JAkqXTp0rrgggt02WWXqX///qpXr94ZY7r77rvVsGFDvfPOO1q2bJl27typY8eOnfW5nEmgY5Skxo0ba+XKlZo7d65mzpypH3/8Ubt27dKhQ4eUkJCgc845RxdeeKFatWqlzp07q02bNnl2Ci9durRWrFiht956S1999ZXWrVunQ4cOhaS+5UcffZS9DD8hIUG9evUq0P1cfvnlqly5snbv3i2Px6MJEybkaNgVaF27dtX27ds1d+5c/fTTT1qzZo02b96sQ4cOKSsrS6VKlVLFihXVuHFjtW/fXr17985RMxUAADiDy1OYT3kAAAAAAAAAEGA04gEAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICj0D0cAAAAAHLxxBNPaP/+/YW6j27duqlbt24BiggAgOhB0hIAAAAAcjFhwgRt3bq1UPdRoUIFkpYAABQASct8crvd2rVrl0qVKiWXy2V3OAAAAACCzOPxFPo+0tPTlZqaGoBoAAAIfx6PR4cPH9a5556rmJgzV610eQLxlzgK7NixQ9WqVbM7DAAAAAAAACCsbd++XVWrVj3jPsy0zKdSpUpJkjZv3qxy5crZHA3CQUZGhubOnatOnTopPj7e7nAQBjhm4C+OGfiLYwb+4piBvzhm4C+OGfiLYya8paamqlq1atl5tjMhaZlP3iXhpUqVUmJios3RIBxkZGSoePHiSkxM5I0U+cIxA39xzMBfHDPwF8cM/MUxA39xzMBfHDORIT+lF8+8eBwAAAAAAAAAQoykJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBR4uwOIBp4PB5lZGTI7XbbHQpCKCMjQ3FxcUpLS1NWVlaO62JjYxUfH29TZAAAAAAAAM5G0jKITpw4ob///lvHjh07LWmFyOfxeJSUlKTt27fL5XKddn1CQoIqVKigxMREG6IDAAAAAABwLpKWQXLs2DFt375dsbGxKlu2rIoVK6bY2Nhck1eITG63W0eOHFHJkiUVE2NVYvDOvE1JSdHOnTslicQlAAAAAACAD5KWQbJv3z7Fx8erRo0aio2NtTsc2MDtduvEiRMqWrRojqSlJBUrVkylSpXSjh07tG/fPpKWAAAAAAAAPmjEEwSZmZk6evSoypUrR8ISeXK5XCpdurTS09OVkZFhdzgAAAAAAACOQdIyCDIzMyWZmoXAmXib8VDzFAAAAAAAwELSMoioX4mz4RgBAAAAAAA4HUlLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC1hq5o1a8rlcmn8+PHZl40fP14ulyvHT0xMjBITE9WkSRONGDFCe/fuzfM+T71tXj8LFy4M/hMEAAAAAACA3+LsDgDIS4kSJdSrVy9Jprv21q1btXTpUq1atUrjxo3T999/rzp16uR5+86dOyspKSnP6890HQAAAAAAAOxD0hKOVaFChRwzMCVp7dq1at++vfbs2aP77rtPX331VZ63f+SRR9ShQ4fgBgkAAAAAAICAY3k4wkr9+vU1fPhwSdK8efOUnp5uc0QAAAAAAAAINJKWCDuNGjWSJGVkZOjAgQM2RwMAAAAAAIBAI2mJsJOamipJio2NVYUKFWyOBgAAAAAAAIFG0hJhx1vHskuXLoqPj7c5GgAAAAAAAAQajXjs0ry5lJxsdxQFk5QkrVwZ0of0dg9/9913NWXKFNWoUUOvvfbaGW/TsWPHPK8rXbq0Dh06FOAoAQAAAAAAEAhhmbQcM2aMxowZoy1btkgyzVkef/xxde3aNc/bTJs2TY899pi2bNmiOnXq6IUXXlC3bt1CFHEukpOlnTvte/wwsHXrVrlcrtMub9mypebOnavSpUuf8fadO3dWUlJSrtcVL148IDECAAAAAAAg8MIyaVm1alU9//zzqlOnjjwejyZMmKBrr71Wv/zyi+rXr3/a/kuWLFGfPn00atQoXXPNNZoyZYp69uypn3/+WQ0aNLDhGcjMVgxXIYq9RIkS6tWrlyQpPT1d69at0+rVq7V8+XLdddddmjp16hlv/8gjj6hDhw4hiBQAAAAAAACBFJZJy+7du+fYfvbZZzVmzBj99NNPuSYtX331VXXp0kUPPvigJOnpp5/WvHnz9MYbb+jtt98OScynCfHy6nBUoUIFjR8/PsdlM2bMUO/evfXxxx+rXbt2Gjx4sD3BAQAAAAAAIGjCMmnpKysrS9OmTdPRo0fVpk2bXPdZunSphg8fnuOyzp07a+bMmXneb3p6utLT07O3vR2rMzIylJGRccaYMjIy5PF45Ha75Xa78/lMopvv78r3d3bq769nz556+OGH9eyzz+rxxx9Xnz598lwmbvfv3+PxZP+bVxxut1sej0cZGRmKjY0NZXhwIO97y9neYwAvjhn4i2MG/uKYgb84ZuAvjhn4i2MmvPnz/xa2Scs1a9aoTZs2SktLU8mSJfXZZ5+pXr16ue6bnJysSpUq5bisUqVKSj5DI5xRo0bpySefPO3yBQsWnLUeYlxcnJKSknTkyBGdOHEiH88menmTeWlpadmJ4bS0tOzrvJf5Gjx4sN5//30lJyfr+eef14gRI3K972PHjuV6+1A7fPhwntedOHFCx48f1+LFi5WZmRnCqOBk8+bNszsEhBmOGfiLYwb+4piBvzhm4C+OGfiLYyY8HTt2LN/7hm3S8sILL9SqVauUkpKi6dOna8CAAVq0aFGeiUt/jRgxIsfszNTUVFWrVk0dO3ZU+fLlz3jbtLQ0bd++XSVLllTRokUDEk+kiomJkSQVLVpUiYmJ2WPvdd7LfCUmJurRRx/V0KFD9fbbb+uhhx5S2bJlT9uvePHiud4+VDwejw4fPqxSpUrl2lBIMsdKsWLF1K5dO44VKCMjQ/PmzdNVV12l+Ph4u8NBGOCYgb84ZuAvjhn4i2MG/uKYgb84ZsKbP5PLwjZpWaRIEdWuXVuS1KxZM61YsUKvvvqq3nnnndP2TUpK0p49e3JctmfPnjw7S0tSQkKCEhISTrs8Pj7+rC+KrKwsuVwuxcTEZCflcGa+vyvf31lev78777xTL7/8sjZt2qSXXnpJzz777Gn7/Pe//9XEiRPzfMy+ffuqU6dOhYw8b95ZpN5jITcxMTFyuVz5Oq4QPTge4C+OGfiLYwb+4piBvzhm4C+OGfiLYyY8+fN/FrZJy1O53e4cNSh9tWnTRt99953uu+++7MvmzZuXZw1MOF98fLyeeeYZ9enTR6+//rqGDx9+2gzYb7755oz3cfHFFwc1aQkAAAAAAICCCcuk5YgRI9S1a1dVr15dhw8f1pQpU7Rw4cLsJFX//v1VpUoVjRo1SpI0bNgwtW/fXqNHj9bVV1+tqVOnauXKlXr33XftfBqQtGXLltMuGzhwoAYOHHjW295000266aabTrvc2wAHAAAAAAAA4Sksk5Z///23+vfvr927d6t06dJq1KiRvvnmG1111VWSpG3btuVYjnvJJZdoypQpevTRR/Xvf/9bderU0cyZM9WgQQO7ngIAAAAAAACAPIRl0vL9998/4/ULFy487bIbb7xRN954Y5AiAgAAAAAAABAodIkBAAAAAAAA4CgkLQEAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOQtISAAAAAAAAgKOQtAQAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICjkLSErWrWrCmXy6Xx48dnXzZ+/Hi5XK4cPzExMUpMTFSTJk00YsQI7d27N8/7PPW2ef0sXLjQr1i9cQ0cOLBgTxYAAAAAAAD5Emd3AEBeSpQooV69ekmSsrKytHXrVi1dulSrVq3SuHHj9P3336tOnTp53r5z585KSkrK8/pTr3O5XJIkj8cTgOgBAAAAAABQUCQt4VgVKlTIMQNTktauXav27dtrz549uu+++/TVV1/leftHHnlEHTp0CG6QAAAAAAAACDiWhyOs1K9fX8OHD5ckzZs3T+np6TZHBAAAAAAAgEAjaYmw06hRI0lSRkaGDhw4UOj7GzlyZPbScOn0mphbtmw57TZHjx7ViBEjVLt2bSUkJCgpKUkDBgzQzp07Cx0PAAAAAABAtGN5OMJOamqqJCk2NlYVKlQo9P1dfPHFGjBggCZMmCBJGjBgQI7rS5YsmWM7JSVFl1xyibZt26a2bduqQYMGWrp0qSZOnKhFixZp9erVKl26dKHjAgAAAAAAiFYkLRF2vHUsu3Tpovj4+ELfX8+ePdWzZ8/spOWpdTRPNXPmTHXu3Fnff/+9EhMTJUkHDx7U5ZdfrlWrVumtt97SiBEjCh0XAAAAAABAtCJpaZPmzZsrOTnZ7jAKJCkpSStXrgzpY3q7h7/77ruaMmWKatSooddee+2Mt+nYsWOe15UuXVqHDh0qUCwlSpTQuHHjshOWklS2bFk98sgjuummm/Ttt9+StAQAAAAAACgEkpY2SU5Opv7hWWzdujVHrUmvli1bau7cuWddgt25c2clJSXlel3x4sULHFfz5s1VuXLl0y6vW7euJPH/CgAAAAAAUEgkLW2SVzItHIQq9hIlSqhXr16SpPT0dK1bt06rV6/W8uXLddddd2nq1KlnvP0jjzyiDh06BDyu6tWr53q5d+ZlWlpawB8TAAAAAAAgmpC0tEmol1eHowoVKpxWX3LGjBnq3bu3Pv74Y7Vr106DBw8OeVwxMTEhf0wAAAAAAIBoQvYFYeX666/XI488Ikl6/PHHlZKSYnNEAAAAAAAACDSSlgg7I0aMUOXKlbV//3699NJLAbtfbyfyzMzMgN0nAAAAAAAA/EfSEmGnePHieuyxxyRJr7zyig4ePBiQ+61ataokae3atQG5PwAAAAAAABQMNS0Rlm6//XaNHj1amzZt0osvvqhnn332tH2ef/7502pi+urbt686deqUvX3DDTfoxRdf1JVXXqnLL79cpUqVkiS98MILKl++fMCfAwAAAAAAAHJH0hJhKT4+Xs8884z69Omj119/XcOHDz8tsfjNN9+c8T4uvvjiHEnLp59+WjExMZoxY4ZmzpypEydOSJIeffRRkpYAAAAAAAAhRNISttqyZctplw0cOFADBw48621vuukm3XTTTadd7vF4ChRL0aJF9cILL+iFF17I9fqzxVWzZs0CPzYAAAAAAAAs1LQEAAAAAAAA4CgkLQEAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOQtIyiDwej90hwOE4RgAAAAAAAE5H0jIIYmLMrzUrK8vmSOB03mPEe8wAAAAAAACApGVQxMfHKz4+XkeOHLE7FDjc8ePHFRsbq/j4eLtDAQAAAAAAcAySlkHgcrlUqlQppaSk6Pjx43aHA4fKyspSSkqKihcvLpfLZXc4AAAAAAAAjhFndwCRqkKFCjp+/Li2bdumxMRElSpVSrGxsSSnoojb7daJEyeUlpaWY/m3x+NRenq6Dhw4ILfbrYoVK9oYJQAAAAAAgPOQtAyS2NhYVatWTfv27dPhw4d16NAhu0NCiHk8Hh0/flzFihXLNVldokQJJSUlqUiRIjZEBwAAAAAA4FwkLYMoNjZWlSpVUsWKFZWRkSG32213SAihjIwMLV68WO3atTutZmVcXJzi4nj5AQAAAAAA5IasSQi4XC5m00Wh2NhYZWZmqmjRojTaAQAAAAAA8AONeAAAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOQtISAAAAAAAAgKOQtAQAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICjkLQEAAAAAAAA4CgkLQEAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOQtISAAAAAAAAgKOQtAQAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICjkLQEAAAAAAAA4CgkLQEAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOQtISAAAAAAAAgKOQtAQAAAAAAADgKCQtAQAAAAAAADgKSUsAAAAAAAAAjkLSEgAAAAAAAICjkLQEAAAAAAAA4CgkLQEAAAAAAAA4CklLAAAAAAAAAI5C0hIAAAAAAACAo5C0BAAAAAAAAOAoJC0BAAAAAAAAOApJSwAAAAAAAACOEpZJy1GjRqlFixYqVaqUKlasqJ49e2rDhg1nvM348ePlcrly/BQtWjREEQMAAAAAAADIr7BMWi5atEhDhgzRTz/9pHnz5ikjI0OdOnXS0aNHz3i7xMRE7d69O/tn69atIYoYAAAAAAAAQH7F2R1AQcyZMyfH9vjx41WxYkX93//9n9q1a5fn7Vwul5KSkoIdHgAAAAAAAIBCCMuk5alSUlIkSeXKlTvjfkeOHFGNGjXkdrvVtGlTPffcc6pfv36u+6anpys9PT17OzU1VZKUkZGhjIyMAEWOSOY9TjhekF8cM/AXxwz8xTEDf3HMwF8cM/AXxwz8xTET3vz5f3N5PB5PEGMJOrfbrR49eujQoUP64Ycf8txv6dKl+vPPP9WoUSOlpKToxRdf1OLFi7V27VpVrVr1tP1HjhypJ5988rTLp0yZouLFiwf0OQAAAAAAAACR7tixY+rbt69SUlKUmJh4xn3DPml5zz336Ouvv9YPP/yQa/IxLxkZGapbt6769Omjp59++rTrc5tpWa1aNe3evVvly5cPSOyIbBkZGZo3b56uuuoqxcfH2x0OwgDHDPzFMQN/cczAXxwz8BfHDPzFMQN/ccyEt9TUVFWoUCFfScuwXh4+dOhQffnll1q8eLFfCUtJio+PV5MmTbRx48Zcr09ISFBCQkKut+NFAX9wzMBfHDPwF8cM/MUxA39xzMBfHDPwF8cM/MUxE578+T8Ly+7hHo9HQ4cO1Weffab58+erVq1aft9HVlaW1qxZo8qVKwchQgAAAAAAAAAFFZYzLYcMGaIpU6bo888/V6lSpZScnCxJKl26tIoVKyZJ6t+/v6pUqaJRo0ZJkp566im1bt1atWvX1qFDh/S///1PW7du1e23327b8wAAAAAAAABwurBMWo4ZM0aS1KFDhxyXjxs3TgMHDpQkbdu2TTEx1kTSgwcP6o477lBycrLKli2rZs2aacmSJapXr16owgYAAAAAAACQD2GZtMxP76CFCxfm2H755Zf18ssvBykiAAAAAAAAAIESljUtAQAAAAAAAEQukpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBRSFoCAAAAAAAAcBSSlgAAAAAAAAAchaQlAAAAAAAAAEchaQkAAAAAAADAUUhaAgAAAAAAAHAUkpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBRSFoCAAAAAAAAcBSSlgAAAAAAAAAchaQlAAAAAAAAAEchaQkAAAAAAADAUUhaAgAAAAAAAHAUkpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBRSFoCAAAAAAAAcBSSlgAAAAAAAAAchaQlAAAAAAAAAEchaQkAAAAAAADAUUhaAgAAAAAAAHAUkpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBRSFoCAAAAAAAAcBSSlgAAAAAAAAAchaQlAAAAAAAAAEchaQkAAAAAAADAUUhaAgAAAAAAAHAUkpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAAMBRSFoCAAAAAAAAcBSSlgAAAAAAAAAchaQlAAAAAAAAAEchaQkAAAAAAADAUUhaAgAAAAAAAHAUkpYAAAAAAAAAHIWkJQAAAAAAAABHIWkJAAAAAAAAwFFIWgIAAAAAAABwFJKWAAAAAAAAAByFpCUAAAAAAAAARyFpCQAAAAAAEAl275Z+/tnuKICAIGkJAAAAAAAQ7g4elBo3lpo1k55/3u5ogEIjaQkAAAAAABDuFiyQ9u4140cflX76yd54gEIiaQkAAAAAABDuVq60xllZ0s03S4cP2xcPUEgkLQEAAAAAAMLd//1fzu1Nm6T77rMlFCAQSFoCAAAAAACEM4/HSlomJkolS5rxBx9IM2bYFxdQCCQtAQAAAAAAwtm2bdL+/Wbcpo30+uvWdXfcIe3caU9cQCGQtAQAAAAAAAhnvkvDmzeXBgyQbrjBbB84IA0aJLnd9sQGFBBJSwAAAAAAgHDmm7Rs1kxyuaR33pHOPddcNm+e9Npr9sQGFBBJSwAAAAAAgHB2atJSksqXlyZMsC5/5BFpzZrQxgUUAklLAAAAAACAcOXxSCtXmnGFClK1atZ1V14pDR9uxunpUt++Ulpa6GMECoCkJQAAAAAAQLjybcLjXRru67nnpEaNzPi336QRI0IbH1BAJC0BAAAAAADCVW5Lw30lJEgffmj+laRXXjE1LgGHI2kJAAAAAAAQrs6WtJSkBg2kF16wtgcOtGZnAg5F0hIAAAAAACBc5SdpKUn//KfUqZMZ79ol3XmnqYcJOBRJSwAAAAAAgHDk8VhJywoVpOrV8943JkYaP950FZekGTOkceOCHiJQUCQtAQAAAAAAwtH27dK+fWacWxOeU1WuLI0da23fe6+0cWPw4gMKgaQlAAAAAABAOMrv0nBfPXtKt99uxkePSjffLGVkBDw0oLBIWgIAAAAAAISjlSutcX6TlpL08stS7dpmvGyZ9OyzgY0LCACSlgAAAAAAAOGoIDMtJalkSWnyZCk21mw//bS0dGlgYwMKKSyTlqNGjVKLFi1UqlQpVaxYUT179tSGDRvOertp06bpoosuUtGiRdWwYUPNnj07BNECAAAAAAAEmG8TnvLlz9yEJzetWklPPGHGbrdZJn74cGBjBAohLJOWixYt0pAhQ/TTTz9p3rx5ysjIUKdOnXT06NE8b7NkyRL16dNHt912m3755Rf17NlTPXv21G+//RbCyAEAAAAAAALA3yY8uRkxQrrkEjP+6y/TmAdwiDi7AyiIOXPm5NgeP368KlasqP/7v/9Tu3btcr3Nq6++qi5duujBBx+UJD399NOaN2+e3njjDb399tun7Z+enq709PTs7dTUVElSRkaGMihQi3zwHiccL8gvjhn4i2MG/uKYgb84ZuAvjhn4i2Om4FzLlmUndbKaNJG7oL/DceMU17y5XIcPS+PHK7NzZ3luuCFgcQYax0x48+f/LSyTlqdKSUmRJJUrVy7PfZYuXarhw4fnuKxz586aOXNmrvuPGjVKTz755GmXL1iwQMWLFy94sIg68+bNszsEhBmOGfiLYwb+4piBvzhm4C+OGfiLY8Z/F02bpgtPjv9P0u5ClMCrduutavrqq5Ik9x13aMGxY0orX77wQQYRx0x4OnbsWL73dXk8Hk8QYwk6t9utHj166NChQ/rhhx/y3K9IkSKaMGGC+vTpk33ZW2+9pSeffFJ79uw5bf/cZlpWq1ZNu3fvVnmHv3DhDBkZGZo3b56uuuoqxcfH2x0OwgDHDPzFMQN/cczAXxwz8BfHDPzFMVNwsd27K+abbyRJGX/+KdWoUfA783gU27evYj79VJLkvvxyZc2eLcU4r6ogx0x4S01NVYUKFZSSkqLExMQz7hv2My2HDBmi33777YwJy4JISEhQQkLCaZfHx8fzooBfOGbgL44Z+ItjBv7imIG/OGbgL44Z+Itjxk8ej/Tzz2Zcvrzizz+/YDUtfb37rvTTT9LOnYqZP18xb74pnbJi1Uk4ZsKTP/9nzkuZ+2Ho0KH68ssvtWDBAlWtWvWM+yYlJZ02o3LPnj1KSkoKZogAAAAAAACBtX27tHevGRe0Cc+pypWTJk607mvECGn16sLfL1BAYZm09Hg8Gjp0qD777DPNnz9ftWrVOutt2rRpo++++y7HZfPmzVObNm2CFSYAAAAAAEDg/d//WeNmzQJ3v5dfLv3rX2Z84oTUr590/Hjg7h/wQ1gmLYcMGaLJkydrypQpKlWqlJKTk5WcnKzjPi+k/v37a8SIEdnbw4YN05w5czR69GitX79eI0eO1MqVKzV06FA7ngIAAAAAAEDBBCtpKUnPPCM1bmzGa9dKjzwS2PsH8iksk5ZjxoxRSkqKOnTooMqVK2f/fPzxx9n7bNu2Tbt3787evuSSSzRlyhS9++67aty4saZPn66ZM2eqQYMGdjwFAAAAAACAgglm0jIhQfrwQ6loUbP92mvSyYY/QCiFZSOe/DQ8X7hw4WmX3XjjjbrxxhuDEBEAAAAAAEAIeDxW0rJ8+cJ1Dc9L/frSf/8r3Xuv2R44UFqzRqpQIfCPBeQhLGdaAgAAAAAARKUdOwLfhCc3Q4dKXbqYcXKydMcdJmEKhAhJSwAAAAAAgHARzKXhvlwuadw4a3blzJnS++8H7/GAU5C0BAAAAAAACBehSlpKUlJSzkTlsGHSn38G9zGBk0haAgAAAAAAhIuVK61xsJOWktSjh3TnnWZ87JjUr5+UkRH8x0XUI2kJAAAAAAAQDnyb8JQrF5wmPLl56SWpTh0zXrFCevrp0DwuohpJSwAAAAAAgHAQqiY8pypRQvrwQykuzmw/+6z044+heWxELZKWAAAAAAAA4SCU9SxP1aKFNHKkGbvd0s03S6mpoY0BUYWkJQAAAAAAQDjwTVo2bx76x3/kEemyy8x4yxbpn/8MfQyIGiQtAQAAAAAAwoGdMy0lKTZWmjRJKlXKbE+cKH3ySejjQFQgaQkAAAAAAOB0djXhOVXNmtKbb1rbd91lam0CAUbSEgAAAAAAwOl27pT+/tuMQ9mEJzc33yz17m3Ghw5JAwaYOpdAAJG0BAAAAAAAcLqVK62xHUvDfblc0pgxUrVqZnv+fOmll+yNCRGHpCUAAAAAAIDT2V3P8lRly5qalt4Zn//+t7Rqla0hIbKQtAQAAAAAAHA6pyUtJalDB+nBB804I0Pq21c6ftzWkBA5SFoCAAAAAAA42alNeGrWtDWcHJ56Srr4YjNet0566CFbw0HkIGkJAAAAAADgZE5qwnOqhARpyhSpaFGz/cYb0tdf2xsTIgJJSwAAAAAAACdz4tJwX3XrSi++aG0PGiTt3WtfPIgIJC0BAAAAAACczOlJS0kaPFjq1s2M9+yRbr/dLGsHCoikJQAAAAAAgJOtXGmNnZq0dLmkDz6QzjnHbM+aJb33nr0xIay5PB7S3vmRmpqq0qVLa9++fSpfvrzd4QRF8+bNlZycbHcYESUtLU1FvXU9gHzgmIG/OGbgL44Z+ItjBv7imIG/OGbyYfduye02icFzz7U7mjNLS5P27zdjl0uqWFGKiwvwQ0T+MZOUlKSVvsnqCOHNr6WkpCgxMfGM+wb2qEFYS05O1s6dO+0OAwAAAAAA5MbjMU15woXHY5aKAwVA0hLZkpKS7A4h4kTD2R8EFscM/MUxA39xzMBfHDPwF8cM/MUxcxa+MxdLlpRKl7Y3nvzweEy388xMs12qlHSWWXX+iIZjhhwNSUv4iMRpx3bKyMjQ7Nmz1a1bN8XHx9sdDsIAxwz8xTEDf3HMwF8cM/AXxwz8xTGTD48/Lj39tBmPGyf16mVvPPn1f/8ntW5tEpdHj0qzZ0uXXVbou+WYiR404gEAAAAAAHCqcOgcnptmzaSnnjJjt1u6+WYpJcXemBBWSFoCAAAAAAA4kcdjJS3LlpVq1rQ1HL899JDUtq0Zb90qDR1qbzwIKyQtAQAAAAAAnGjXLquRTbNmpht3OImNlSZNsupZTp4sTZ1qb0wIGyQtAQAAAAAAnMi390Q4LQ33VaOG9NZb1vbdd0vbttkXD8IGSUsAAAAAAAAnCtd6lqfq10/q08eMU1KkAQOkrCx7Y4LjkbQEAAAAAABwokhJWkpmtmX16ma8cKE0erSt4cD5SFoCAAAAAAA4zalNeGrVsjeewipTRpo40arL+eij0s8/2xoSnI2kJQAAAAAAgNOEexOe3LRvLz38sBlnZJhl48eO2RsTHIukJQAAAAAAgNNE0tJwX08+KTVtasbr10sPPmhvPHAskpYAAAAAAABOE6lJyyJFpA8/lIoVM9tvvSXNnm1vTHAkkpYAAAAAAABOE6lJS0m66KKcjXgGDZL+/tu+eOBIJC0BAAAAAACcxOORVq4040howpObu++WrrnGjP/+W7rtNvO8gZNIWgIAAAAAADiJbxOepk0jownPqVwu6f33pYoVzfaXX0rvvGNvTHAUkpYAAAAAAABOEslLw31VrGgSl17Dh5vmPIBIWgIAAAAAADiLb9KyeXP74giFa66R7rnHjI8fl/r1k06csDcmOAJJSwAAAAAAACeJlpmWXi++aJrzSNLPP0sjR9oaDpyBpCUAAAAAAICTeJOWkdqE51TFi0sffijFx5vt55+XFi+2NybYjqQlAAAAAACAU+zaJSUnm3GkNuHJTdOm0tNPm7HHI91yi3TokK0hwV4kLQEAAAAAAJwi2paG+3rgAal9ezPetk0aMsTeeGArkpYAAAAAAABOsXKlNY62pGVsrDRxolS6tNmeMsX8ICqRtAQAAAAAAHCKaJ5pKUnVq0tjxljbgwdLW7faFw9sQ9ISAAAAAADAKbxJyzJlpPPOszUU2/TpI/XrZ8YpKVL//lJWlr0xIeRIWgIAAAAAADiBbxOeZs2ipwlPbt58U6pRw4wXL5b+9z9740HIkbQEAAAAAABwgmhfGu6rdGlp0iQrcfvYYzl/P4h4JC0BAAAAAACcgKRlTm3bSo88YsaZmWbJ+LFj9saEkCFpCQAAAAAA4AQkLU83cqT1u9iwQTEPP2xrOAgdkpYAAAAAAABOQBOe0xUpIn34oVS8uCQp9p13VGnFCpuDQiiQtAQAAAAAALDbrl3S7t1m3LRpdDfhOdWFF0ovvZS92fC99ySPx8aAEAokLQEAAIBwsHu39Pjj0tKldkcCAAgGloaf2Z13Su3bS5JK/P23tGqVvfEg6EhaAgAAAOFg4EDp6aelq6+W0tLsjgYAEGi+Scvmze2Lw6lcLummm7I3Y7780sZgEAokLQEAAACnW7dOmjvXjA8elJYvtzceAEDgMdPy7K65Jnvo+uorGwNBKJC0BAAAAJzu7bdzbi9caEsYAIAgognP2VWtKs/FF0uSYn7+Wdq50954EFQkLQEAAAAnO3pUGj8+52WLFtkSCgAgSHbvpglPPrmvvtraYIl4RCNpCQAAADjZlClSamrOy5YskdLT7YkHABB4LA3PN3f37tbGF1/YFwiCrkBJy9TUVKWe+sGpAI4cOaJZs2Zp1qxZhb4vAAAQZP/7n3TLLVJyst2RANHD45HeesvaPrkkTmlp0ooVtoQEAAiClSutMUnLM2vSRMfLlTPj776Tjh2zNx4ETYGSlmXKlFG5cuX0+++/53r9rl27dOutt+q222474/1s3bpVPXv21PXXX1+QMAAAQKgsXiw99JA0ebI0apTd0QDRY9kyadUqM27ZUvrnP63rWCIOAJGDmZb553Jpj7e7elqa9O239saDoCnw8nCPx5PndQcPHtT48eM1/tTaOwW4LwAA4AAffGCN582zLw4g2vjOshw8WGrf3tqmGQ8ARA5v0rJ0aen88+2NJQwkt2hhbbB6N2JR0xIAAJzZkSPS9OnW9rp1LBEHQmHfPunjj824XDnpH/8w3WSrVjWXLVkiZWTYFx8AIDB8m/A0a0YTnnzY26iRPMWKmY0vv5TcbnsDQlCQtAQAAGc2fbrpXuyLGV5A8H3wgXTihBnfeqtUrJj5IuudbXnsWM4aaACA8MTScL+5ExLkueIKs7FnD38PIxRJSwAAcGbjxp1+2YIFoY8DiCZZWdLbb1vbd99tjTt0sMacQACA8EfSskDc11xjbdBFPCKRtAQAAHnbtMk04ZFMfaX4eDMmaQkE1zffSJs3m3GXLjnrm/nWtaQZDwCEP5KWBeLp2tXaIGkZkUhaAgCAvE2caI3vuENq1cqM//xT2rnTnpiAaHBqAx5ftWtLlSub8Y8/UtcSAMIdTXgKpnJlyduQZ/VqaetWe+NBwJG0BAAAuXO7pQkTzDgmRrrlFqljR+t6ZlsCwbF5szR7thlXry5165bzepfLWiJ+5Ij0888hDQ8AEEC7d0u7dplx06Y04fFXjx7W+Msv7YsDQUHSEgAA5G7hQuuMdefO0rnnkrQEQuGddySPx4zvukuKjT19H5aIA0BkYGl44XTvbo1ZIh5xCpW0dHEGAACAyDV+vDUeOND826aNlJBgxiQtgcBLT5fef9+M4+Ol227LfT/fpCXNeAAgfPkmLZs3ty+OcNWokVStmhkvWCAdPmxvPAioQiUtGzRooNjY2NN+GjVqlJ3QzO163/0AAIADpaZK06ebcZky1tKbokVN4lIyS1i3bLEjOiByTZ8u7dtnxr16SZUq5b7fhRda1/3wg5SZGZr4AACBxUzLwnG5rNmWJ05Ic+faGw8CqlBJS4/HU+gfAADgQNOmScePm3HfviZZ6cUScSB4ztSAx5fLZc22PHxYWrUqqGEBAIKEJjyF51vXkiXiESWuIDdq164dS8MBAIhkuS0N9+rYUXriCTNesEAaNChUUQGRbdUqackSM27YULr00jPv36GD9MknZrxwIcsKASDcJCfThCcQOnSQSpY0zem++krKysq9HjTCToGSlgupmwMAQOTauNEsN5WkevVOT4S0aiUVK2ZmYi5YYBqG8CEbKLwxY6zx4MFnf12d2ozngQeCExcAIDhYGh4YCQlSp07SjBmmxMqyZdIll9gdFQKA7uEAACCnCROs8cCBpydOihSRLrvMjHfskDZtClloQMRKSZEmTzbjUqWkfv3Ofpu6daVzzjHj7783M0sAAOGDpGXg+HYRnzXLvjgQUCQtAQCAJSvLSlrGxko335z7ftS1BAJr4kTp2DEz7t/fJC7PxreuZUqKtHp18OIDAATeypXWmKRl4XTrZp1op65lxLA9aXns2DGNHj3a7jAAAIBkEpDbt5txly5S5cq570fSEggcjydnA5577sn/bU9dIg4ACB/emZaJiTThKayKFaU2bcz499+lv/6yNx4EhG1Jy8OHD+vZZ59VzZo19dBDD9kVBgAA8HWmBjy+mjUzBc8lq64lgIJZuFBav96M27eX6tfP/21JWgJAePJtwtOsmRRj+5yy8Oe7RJzZlhEh5K+KAwcO6LHHHlONGjX0+OOPa9++faEOAQAA5CYlRfr0UzMuVy7nB79TxcdLbduacXKytGFD8OMDIlVBZ1lKJsFZvrwZL14sud2BiwsAEDzUsww8kpYRp1BJy61bt+ree+9VvXr1VKpUKZUrV05NmzbVqFGjlJKSkmPfI0eO6IknnlDNmjX13HPP6dChQ/J4PKpQoYKeeeaZQj0JAAAQAJ98IqWlmXHfvqYT45mwRBwovF27pM8+M+NKlaTrrvPv9jExUrt2ZnzwoLRmTWDjAwAEB0nLwKtXT6pVy4wXLTIn5BHWCpy0nDdvnho2bKg333xTGzZs0NGjR3Xo0CGtXr1ajz76qFq3bq3k5GRJ0o8//qgGDRromWee0ZEjR+TxeFSlShW9/PLL2rp1q0aMGBGwJwQAAAoov0vDvUhaAoX33ntW1+877pCKFPH/PnyXiC9cGJCwAABBRtIy8FwuqUcPM87MlObMsTceFFqBkpZ79+5Vnz59shOQHo9HJUqUUOnSpbO3//jjDw0ZMkSLFy/WlVdeqe3bt8vj8ahWrVp655139Ndff2nYsGEqVqxYoJ8TAADw1x9/SEuWmHGDBlLTpme/TZMmUunSZrxwIXUtAX9lZEjvvmvGMTHSnXcW7H46dLDG1LUEgPBAE57gYIl4RClQ0vK9997TgQMH5HK51KtXL23cuFGHDx/WwYMHtWvXLg0dOlSS9Pnnn+vmm29Wenq6SpYsqddff10bNmzQHXfcofj4+IA+EQAAUAi+sywHDTJnqs8mNtZalrp3r7R2bVBCAyLWF19YTRh69JCqVSvY/TRsKJUta8bUtQQA50tOlnbuNOOmTWnCE0ht25pEsCTNnm1mXCJsFeiVMXfuXElS69at9cknn+i8887Lvi4pKUmvvfaa+vfvL7fbrR07dqhMmTJasmSJhgwZori4uMBEDgAAAiMrS5o40YxjY6V+/fJ/W5aIAwXn24Bn8OCC349vXcv9+zmBAABOx9Lw4ClSROrSxYwPHpR+/NHeeFAoBUparl+/Xi6XS4PP8OHq3nvvlSS5XC7de++9ql+/fsEiBAAAwfXdd9bZ/m7dTDOQ/CJpCRTM+vXmtSdJdepIV1xRuPvzrWvJEnEAcDbfpGXz5vbFEalYIh4xCpS0PHjwoCSpdu3aee5Tp06d7HHbtm0L8jAAACAU/G3A46tRI6lcOTNetIhlqUB+vf22Nb7nnsIvDSRpCQDhg5mWwdWtm1k9JJG0DHMF+nSUkZEhSSpVqlSe+5QsWTJ7nJSUVJCHAQAAwXbokPTZZ2Zcvrx0zTX+3T4mxkqWHDgg/fprQMMDItLRo9bJgmLF/D9ZkJvGja3GWIsW0RgLAJyMJjzBVa6cdOmlZvzHH+YHYSkk1V5d+SnmDwAAQu/jj6W0NDPu18/UAfIXS8QB/3z0kZSSYsZ9+lhNdAojNtY0H5BMY6x16wp/nwCAwNuzhyY8ocAS8YgQlq+OxYsXq3v37jr33HPlcrk0c+bMM+6/cOFCuVyu036Sk5NDEzAAAE5VmKXhXiQtgfzzeKQ337S277kncPfNEnEAcD6WhoeGb9Jy1iz74kChFKqV96BBg1SiRIlC7+dyufSdtxB5Phw9elSNGzfWrbfequuvvz7ft9uwYYMSExOztytWrJjv2wIAEHHWrZN++smMGzeWmjQp2P3Ury+dc46Z3bV4selG7q0jBCCnZcukVavMuEWLwDZg6NDBGi9cGNiEKAAgMEhahsaFF0oXXGCWhv/4oylj5K3DjrBRqKTlypUrz3i9d1n4mfbzeDx+Lx/v2rWrunbt6tdtJJOkLFOmjN+3AwAgIk2YYI0LU1PP5TLJkmnTzJLXX36hEyaQl7fessaDBwf2vi++WCpVSjp82KprSZkmAHAWkpah0727NHq0OaH+9demFBLCSoGTlp4wLO598cUXKz09XQ0aNNDIkSN1qbcway7S09OVnp6evZ2amirJNCHyNiICzsR7nHC8IL84ZuCvQh0zWVmKmzRJLkmeuDhl3nijVIhjL6ZdO8VOm2bu+ttv5W7cuMD3heDhfcZm+/Yp7uOPzeuubFllXn99oV53uYm99FLFzJkj7dmjjN9+ky66qFD3xzEDf3HMwF/RdszErVxp/g6UKqXMGjUC/ncgGuT3mHF17aq40aMlSe7PP1fWP/4R9Nhwdv681guUtHS73QW5mW0qV66st99+W82bN1d6errGjh2rDh06aNmyZWratGmutxk1apSefPLJ0y5fsGCBihcvHuyQEWgej86fNUvyeLTp2mtDOutg3rx5IXssRAaOGfirIMdMxZ9/VptduyRJyU2bavlZVk+cTUmXS1ecHO+bNk0/1a1bqPtDcPE+Y4/an32m+idOSJI2tWuntUGoAVu7YkXVPzleO2aMtnbuHJD75ZiBvzhm4K9oOGYSDh1Sl5NNePbVqKElc+bYHFF4O9sx48rKUpeSJVXkyBFlffWVvv78c3ni40MUHfJy7NixfO/r8oTjlEkfLpdLn332mXr27OnX7dq3b6/q1atr0qRJuV6f20zLatWqaffu3SpfvnxhQoYNXJMmKe622yRJmWPGyHNyHEwZGRmaN2+errrqKsXzxoh84JiBvwpzzMT27auY6dMlSZnTp8vTo0fhgvF4FFejhlzJyfKULKnMPXskjmPH4X3GRm634urWlWvzZklSxu+/S7VrB/xhXMuXK+6yy8xD9u6trDw+6+YXxwz8xTEDf0XTMeP6+mvFXXutJCnr/vvlfuEFmyMKT/4cM7H9+ytm6lRJUuacOfJcfnkoQsQZpKamqkKFCkpJScnRdyY3happGc5atmypH374Ic/rExISlJCQcNrl8fHxEf9GGpE+/DB7GPfBB9Ldd4fsoTlm4C+OGfjL72Pm4EGri+I55yiuR4/AJBg7dpQ++kiuI0cU/+uvUuvWhb9PBAXvMzb4+mvpZMJSnTsrPlizkVu2lEqWlI4cUczixYqJiwvIChOOGfiLYwb+iopjZvXq7GFsixaKjfTnG2T5OmZ69pROJi3jvv5aCtAKBBScP6/zmCDG4WirVq1S5cqV7Q4DobB7t+S7/GrFCum33+yLBwDsNnWqdHKJqvr1C9yMyI4drXEQlr0CYS2YDXh8xcdL3rrtu3dLGzcG77EAAP6hCU/odekixZ2cr3eyZBzCR4FmWj711FOBjkOPP/54vvc9cuSINvp8ANu8ebNWrVqlcuXKqXr16hoxYoR27typiRMnSpJeeeUV1apVS/Xr11daWprGjh2r+fPna+7cuQF/HnCgTz45/Y1p3DjTRQwAotG4cda4MF3DT3Vq0nLEiMDdNxDOtmyRvvrKjKtXl66+OriP17699M03ZrxokVSnTnAfDwCQP96kZalSQSkRglyULi21ayfNn29WPPz+u1S//tlvB0coUNJy5MiRcgW4kYk/ScuVK1eqo88Xo+HDh0uSBgwYoPHjx2v37t3atm1b9vUnTpzQv/71L+3cuVPFixdXo0aN9O233+a4D0SwKVOscWyslJUlTZokPf889dYARJ+1a82Mc0lq0kQKZJfv88+XqlaVduyQfvzRzOYsUiRw9w+Eq3fesU6g3nWX+TwSTB06WOOFC6Xbbw/u4wEAzm7PHvMZSZKaNpVionbha+h1726SlpL0xRckLcNIgV8lHo8nYD/+6tChQ673M378eEnS+PHjtXDhwuz9H3roIW3cuFHHjx/X/v37tWDBAhKW0WLTJmn5cjO++GLp+uvNeO9ea8YDAESTCROscSBnWUqmbp737+uxY9b7LxDN0tOlsWPNOD5eCkEzQDVvLhUvbsaLFrEUDgCcgKXh9une3Rp/8YV9ccBvBZppuYA6VQgXJwvuSpL69JEaNpSmTTPb48aZorwAEC0yM81Mc8kkT/r2DfxjdOxoPcb8+dLJLsZA1Jo+Xdq3z4xvuEGqVCn4jxkfL11yifTtt2ZWz19/mZnQAAD7kLS0z/nnS/XqmaXhS5eaSUznnGN3VMiHAiUt27dvH+g4gMDzeHIuDb/pJqlKFfOzc6eZaZmcLCUl2RcjAITSN9+Y9z3JnHGuUCHwj3FqXUs/yr8AESlUDXhO1aGDSVpKZrYlSUsAsJdv0rJ5c/viiFbdu5ukpccjzZ4tDRhgd0TIB4ooIHKtWWPelCQz06d6dVNDqn9/c1lWljR5sn3xAUConSyjIinwS8O9atY0P5I5k52WFpzHAcLBqlXSkiVm3KBBaGce+04yWLQodI8LAMgdTXjs5btEfNYs++KAX0haInJ99JE17tPHGg8aZI0/+IA6TwCiw/791ge0ihWlLl2C91je2Zbp6SZxCUSrMWOs8eDBpu5rqLRoIRUtasY+td4BADb4+2+a8NitdWtrldHcueZzKhyPVwoik8djJS1jY6Ubb7Suq1NHatvWjNeto1EEgOjw0Uemm7ck3XyzqXkXLKcuEQeiUUqK9OGHZlyypHndhVJCgqlrKUnbtklbtoT28QEAFupZ2i82Vrr6ajM+coQTemGCpCUi09Kl0tatZnzVVacX2T11tiUARLpQLA33ImkJmIZUR4+acf/+ZjlgqLFEHACcgaSlM9BFPOyQtERkymtpuNeNN0olSlj7HjsWmrgAwA5r1lgflps1kxo2DO7jVa1q1Wpatoz3WEQfjydnA5577rEnjg4drDEzSgDAPiQtnaFTJ6lIETOeNYtScWGApCUiT2am9MknZly0qNSz5+n7lCwp/eMfZnz4sDRjRsjCA4CQmzDBGgd7lqXX5ZebfzMypB9/DM1jAk6xaJEpQSNJ7dqZJjx2aNnSLBP3xgQAsMfKlebfUqVMuTLYo1Qp64Te9u3Sr7/aGg7OjqQlIs/8+abQsSRdc42UmJj7frfeao1ZIg4gUmVkmGWqkjmznNvs82BgiTiime8sy8GD7YujaFHTeECSNm82tS0BAKFFEx5n6dHDGrNE3PF4tSDynG1puNell1pnuRYsMB/mASDSzJljncjp0UMqXz40j+u7LJWkJaLJrl3SZ5+ZcaVK0nXX2RuP72uR2ZYAEHosDXeWa66xxiQtHY+kJSJLWpq11DsxUerWLe99Xa6cDXl8m1QAQKQIZQMeX0lJUt26ZrxihSnFAUSDsWNNqRpJuuMOq3aWXWjGAwD2ImnpLDVqSI0amfHy5VJysr3x4IxIWiKyzJ4tpaaa8fXXm2VRZ9K/vzU9f/x4ye0OangAEFL79llnkJOSpM6dQ/v43iXiWVnSDz+E9rEBO2RkSO+8Y8YxMdKdd9obj2SWh3sTpzTjAYDQI2npPL5dxL/80r44cFYkLRFZ8rs03KtKFetL/LZtph4mAESKKVNMEkWSbrlFiosL7eNT1xLR5osvzPJwyXwhqlbN3ngkqVgxqVUrM960Sdq50954ACDaeJOWNOFxDt+kJUvEHY2kJSJHaqr1hlOxotW59mx8l4iPGxf4uADALr5LwwcMCP3jU9cS0cYpDXhOxRJxALDH3r2mS7UkNWlCEx6naNHC1J2WpHnzpOPH7Y0HeeIVg8gxc6aUnm7G//hH/mcU9eghlStnxjNmSIcOBSM6AAit1aulX34x4xYtpPr1Qx9DhQpSw4Zm/PPPUkpK6GMAQmXDBum778y4dm3pyivtjceXb9KSJeIAEDosDXemmBirIc/x46y4dDCSlogc/i4N90pIkG6+2YzT0qSpUwMbFwDYwa4GPKfyLhF3u6XFi+2LAwi2t9+2xvfc46zZNG3aSPHxZsxMSwAInZUrrTFJS2fxXSI+a5Z9ceCMHPRpCiiEvXvNtG7JdANr08a/2/suEf/gg8DFBQB2OHFCmjzZjIsU8e9ETqBR1xLR4OhRq8RM0aL2nijITYkSZsa1JP3xh7R7t73xAEC08J1p2by5fXHgdFdeaSYwSaYZj8djbzzIFUlLRIZp00x3Wkm66SbJ5fLv9hdfbGqMSNKKFdJvvwU0PAAIqa+/Np3DJalnT6lsWftiad/eek8maYlINXWqVf6gTx+r7IyT+NaYZbYlAIQGTXicq0QJq5TLrl2mlBEch6QlIoPv0vC+fQt2HzTkARApnLI0XDIJ04svNuPVq6UDB2wNBwg4j0d6801r20kNeHzRjAcAQosmPM5HF3HH41WD8Ldtm/TDD2Zcr57V9MFfffuaZZSSNGmSlJERmPgAIJT+/tsscZGkc8+VOnWyNx7JWiLu8ZAsQeRZvjxn0yunLv+75BIpNtaMeR0CQPDRhMf5vM14JOpaOhRJS4Q/38Y5ffr4vzTcq3x56dprzXjvXumrrwofGwCE2pQpUmamGd9yi5WksBN1LRHJ3nrLGjt1lqUklSxp1bVct07as8feeAAg0pG0dL4qVaSmTc34l1+kHTvsjQenIWmJ8FfQruG5ufVWa0xDHgDhyHdp+IABtoWRQ9u21pIokpaIJPv2SR9/bMZly0q9e9sbz9n4LhFfvNi+OAAgGpC0DA++S8S9q5XgGCQtEd7WrZNWrTLjli2l888v3P1ddZU52yJJs2dLycmFuz8ACKVffjF1IyWpVSupbl174/EqXdr6sP7bb2Y2OxAJxo2T0tPNeNAgqVgxe+M5G9+k5cKFtoUBAFHBm7QsWVK64AJ7Y0HeevSwxtS1dBySlghvgZxlKZlllN6ZSVlZprYlAIQL31mWvs3FnMB3iTjJEkQCt1saM8bavvtu+2LJr0svpa4lAITC3r2m94Jklh/ThMe5mjSxJi5995109Ki98SAHXjkIXx6PlbR0uQK3JMu30+64ceZxAMDpTpyQPvzQjBMSnLdMlbqWiDTffCNt3mzGnTpJderYG09+JCZatbvWrmXWMwAEC0vDw4fLZTXkSU+X5s2zNx7kQNIS4WvlSmnjRjPu2FGqXDkw91unjqm/Jpnl58uWBeZ+ASCYvvpK2r/fjK+7TipTxtZwTnPZZVJcnBmTtEQkCJcGPKeiriUABB9Jy/DiW9eSJeKOQtIS4SvQS8N9+TbkGTcusPcNAMHg+17lO2PcKXw7F69fL+3ebW88QGFs2WJOFEhStWrS1VfbGo5fOnSwxiwRB4DgIGkZXi6/XCpe3Iy/+sqUgIEjkLREeMrKsrp1xsdLN9wQ2Pvv1UsqUcKMP/pIOnYssPcPAIG0Z49pHiaZmjxXXmlvPHmhriUixbvvWuVj7rrLmkUcDi67zKqtRtISAIKDJjzhpVgx05RXMp+rV6ywNx5kI2mJ8LR4sbRrlxl37SqVLRvY+y9Z0qoHd/iwNGNGYO8fAAIo5qOPzMkcSerf32q04TTUtUQkSE+Xxo414/h46bbb7I3HX6VLm6YDkvTrr1ZZCQBAYOzbZzXhadKEJjzhwneJ+KxZ9sWBHHj1IDwFc2m4l2/n3Q8+CM5jAEBheTyKmTDB2nbi0nCvSy4xSR6JpCXC16efWg1sbrhBSkqyN56C8K1r+f339sUBAJGIpeHhybfUC3UtHYOkJcLPiRPS9OlmXKJEzjMigXTppVYn0AULpL/+Cs7jAEAhlN60Sa61a83GJZc4ewlS8eJS69ZmvHGjtH27vfEABRGuDXh8+SYtWSIOAIG1cqU1JmkZPpKSpFatzHjNGmnrVnvjgSSSlghH33wjHTxoxtdea9WeDDSXK+dsS9+ZTADgENXnz7c2nDzL0osl4ghnq1dLP/5oxg0amPqQ4ahtW/M5R6K+LAAEmu9My+bN7YsD/qOLuOOQtET4CcXScK/+/a0aJOPH00UMKIgTJ0xyasQI0+Tqhx/sjihypKerqndpZ9Gi0j/+YW88+UHSEuFszBhrPHiwlfgLN2XLSo0bm/Hq1dbJYABA4dGEJ3yRtHQckpYIL0ePSp9/bsblykmdOgX38apUkTp3NuNt2yTfGU0AcufxSH/8Ib3xhvnDX66cdPnl0vPPm1pwV18tbd5sd5QRwfXllypy+LDZuP5602DD6Vq3lhISzJikJcJJSoo0ebIZlywp3XyzvfEUlneJuMdDXUsACBSa8IS3hg2l6tXNeMECKTXV3nhA0hJh5osvpGPHzLhXL6lIkeA/5q23WmMa8gC5S0mRPvtMuvtu6bzzpAsvlP75T+nLL83JBl+pqVLfvlJGhj2xRpCYSZOsDd9yFk5WtKipvSmZWkEksBEuJk2y3s9uuUUqVcreeAqrQwdrTF1LAAgMmvCEN5fLmm2ZkSHNnWtvPCBpiTAzZYo1DvbScK/u3aXy5c14xgyWUAGSlJUlLVsmPf20qelWvryZ6ffOO9KWLTn3rVTJfMGfMEGqVctc9tNP0pNPhjzsiLJ7t1zffCNJ8lSrlnPZtdOxRBzhxuPJ2YDnnnvsiyVQ2ra1xiQtASAwSFqGvx49rDFLxG1H0hLh48ABac4cM65SJeeH7WBKSJD69TPj9HRp6tTQPC7gNDt2SO+/L/XuLVWsaJb5Pv64aUqRlWXtV6SIdMUV0gsvSKtWSbt3SxMnmhqxH30kxcWZ/Z57jgYQhfHhh3Kd/L27+/WTYmNtDsgPJC0RbhYtktatM+O2bc3ysXBXvrzUqJEZ//KLmTEPACgckpbhr317UwZGkr76Kuf3HIQcSUuEjxkzrOWkvXuH9gu67xLxceNC97iAnY4dMycK7r9fql9fqlZNuv126ZNPzEkEXxddJN17r/nDfuCA9O230kMPmUYPvo0qWrWSnnrKjD0eUxNu//7QPadI4fHkeC9y9+9vYzAF0LKlVLy4GS9YYJ4P4GSnNuCJFN66lm43TdIAIBC8ScsSJWjCE64SEqy+Fvv3S0uX2htPlCNpifBhx9Jwr8aNTSFlSVqxQvrtt9A+PhAKHo+0Zo304oumyVW5clLXrtIrr0i//55z39KlpRtukN591ywHX7dOevVVqVs38yHtTB56yJppt3OndNttJK38tXJl9v/J/rp1pdq1bQ7IT0WKSJdeasY7d0obN9obD3Amu3ebE6eSmWV+/fX2xhNI3qSlxBJxACisfftMvW5Jato0vFbBICe6iDsGSUuEh127rGWkderYM9We2ZaIRPv2mSXbgwZJVauapYIPPijNm2fKIXjFxEht2khPPCEtWWJuN326dMcdUo0a/j1mbKxpaOGtFfv559LbbwfuOUWD8eOzh9suv9y+OAqDJeIIF2PHSpmZZnzHHaFpAhgq7dpZY8p1AEDhsDQ8cnTrZnV+J2lpK5KWCA+ffGLNxOrTJ+dy01Dp29f6ojJpknTiROhjAAorI0NavFj6z3+kFi3MrKG+fU0SbNeunPtWr26+oE+bZpKUS5ZII0ea5KW3LmVBVamSM/k/fDgzmPMrLS175rmnWDHt8s5YDDe+yVaSlnCqzEzTYEwyX17uvNPeeALtnHNM+Q9J+vlnKTXV3ngAIJyRtIwc55xjvvNIZkUZq4JsQ9IS4cHOpeFe5cpJPXua8d69pnYfEA42bTJdb3v2NLMb27c3TXBWrsy5LLt4cXNW8ZVXzB/nLVvM8u9evaSyZQMfV/fu0pAhZpyWJt10k3T8eOAfJ9LMmiUdOiRJ8lx/vTK9tSHDTbNmUqlSZkxdSzjVF1+YEgaSec+qXt3eeILBu0Q8K8s0VgMAFAxJy8jCEnFHIGkJ59u40dSRlKSLLzYNP+wyaJA1Zok4nOrwYbPkevBgU+uwdm2THPz8c3Odr8aNTY3Jb781DXS++koaNsy8zkIxo/l//7O68K5dKz3wQPAfM9z5LA0PuwY8vuLiTBdmSdqzR1q/3t54gNy89ZY1jqQGPL46dLDG1LUEgIKjCU9kIWnpCIVc3weEwNSp1rhvX/vikKSrrjLLWnfulGbPlpKTpaQke2MC3G6zrO+bb6S5c80ybm/9tVOdc45psuP9sfv4LVbMvMabNTOzLd96y8R17bX2xuVUu3aZ/2dJql5dnvbtTYf3cNWxo3kvlcxsy7p17Y0H8LVhgzmhI5mTP1deaW88weJb15KkJQAUzP79VhOeJk1owhMJ6taVzjtP+usv6fvvzUqnMmXsjirqMNMSzubx5Fwa3ru3fbFI5o/PgAFmnJVlalsCdti1y8y469PH1KVs0UJ69FFTr9I3YRkfb2bRPPecOfubnCxNniz1729/wtKrXj3p5Zet7VtvlXbssC8eJ5s0ySSpJfNeFBPmf8ZpxgMn820Qdvfd4f96y0ulStYqlhUrpCNH7I0HAMIRS8Mjj8sl9ehhxpmZ4T1RIIxF6KcvRIxffzW19STpssucUUvKd4n4Bx9Qhw2hkZZmOno/8IDp8F2lijkWp041Z3Z91akjDR1qah/u32+SQSNGSE2bOvdL9113SdddZ8YHDki33GJODMDi8eRYGp59AiWcXXyxdcZ64UIrIQvY7ehRqwxM0aLSwIG2hhN03iXiWVlmtj4AwD8kLSMTS8Rt59Bvr8BJH31kje1eGu5Vu7a1lGr9emnZMnvjQWTyeKTffzczELt0MY1wOnWSRo+W1qzJuW9iokn4vf22Wb7wxx/S66+bP7LeRidO53JJY8dKVaua7YULpRdesDUkx1m+3Kr72K6ddP759sYTCLGx1vvpvn2mringBFOnSikpZnzTTaaJWSTzNuORWCIOAAWxcqU1bt7cvjgQWG3bSqVLm/Hs2VJGhr3xRCGSlnAut9tKWsbGmg7GTnHqbEsgEPbs0bk//KDYO+80s4rr15eGDzc1DNPSrP1cLqllS+mxx0x9lX37pBkzzGzFWrXsi7+wypUzS9e9DYAef1xautTemJzEt/lXJM36Yok4nMbjiY4GPL58k5YLF9oWBgCELZrwRKb4eDOBRDI1LX/80dZwohFJSzjX0qXStm1mfNVVpoGIU/TqJZUsacZTp0rHjtkbD8JLaqpZfvfuu9K990qXXy5VrKj4atXU4sUXFTN+/Ok1HatUMbUep06V9u41M3yfesqUTYiPt+VpBEX79qY2p2SWKfbta812imbHj1tNyUqUkG680d54AomkJZxmxQrT3Ewys2VatLA3nlCoXNn6kr1iBZ9rAMAfNOGJbN66lhJLxG1A93A4lxOXhnuVLCn94x9mluXhw9Knn5oafICvtDSznHfNGum336wfbzL+TIoWNQm8zp3NsvB69awZiJHu8cel774zid0tW0wDjClTouf55+bzz63kre9Jk0jQsKFZert/v1mW6nY7t/YqokO0zbL0at/elBfJyDAnjq+4wu6IACA8UM8ysnXtahLRWVmmZ8CLL0b395IQI2kJZ8rMlD75xIyLFpV69rQ1nFzdequ1NHzcOJKW0SwzU9q0ySQkfROUf/6Z/8YiSUly16+vTaVKqdYddyiuY0epWLHgxu1UcXHShx+aJi0pKWaGYefOkbUk2l++DXgi7fcQE2OSJTNmSAcPSqtXm1kKgB3277dmNZctK/XubW88odShg/Tee2a8cCFJSwDIL5KWka1sWbO6bdEiaeNGacMG6aKL7I4qapC0hDN9951ZAitJ11zjzGYil1xillL98YdZ0vjXX9J559kdFYLJ45G2b885a3LNGtPhPj09f/eRmGhmljVoYP3Ury+dc46yMjL0++zZqnnVVZG15LsgataU3nnHNMCQTDd072su2uzYIc2da8Y1a1qNayJJx44maSmZ91OSlrDLuHHW+/mgQVLx4vbGE0o04wGAgiFpGfm6d7f+Nn7xBUnLECJpCWdy8tJwL5fLfKEZMcJsT5ggPfmkvTEhcPbuzZmc9P6kpubv9gkJZkn3qQnKqlVZTpBfvXubZN0HH0hHj0p9+pgli0WK2B1ZaE2aZBLmkpllGYlLp0+tazl8uH2xIHq53dKYMdb23XfbF4sdqlSRzj/frBxYtszU0o3WGf8A4A/fJjwXXmhvLAiO7t2lBx4w4y++kB580N54oghJSzjP8ePWjJvERFNDwqn695f+8x/zRWfcOFOLj8LL4eXwYWnt2tOTk3v25O/2sbFSnTqnJyfPP59jIRBee8106duwwTTG+Pe/TR2ZaOHx5Fwa3r+/baEEVb16UsWK0t9/S4sXm5ILcXxEQYjNnWtWTUimlnCdOvbGY4cOHUzS8sQJ6aefcp5QAACcbv9+U4NdMqWN+PwfmS64wCSkN2ww30327zc12RF0fCOA88yebRJJknT99aampVOde67UpYuJeft2af580+kczpOebv7InFp30vshIz9q1LCSkt4k5YUXOvsYDXclSpiZ161bmy/Ro0eb11jnznZHFhpLl5oSFJJJJtSqZWs4QeNymef3ySdmNvMvv0RHx2Y4S7Q24PHVvr30/vtmvGgRSUsAOBvfpeHNm9sXB4Kve3fzfdLtlr7+Wrr5ZrsjigokLeE84bA03NegQSZpKZnZliQt7ZWVZWbK+Nac/O03k/jJysrffVSsmHPWZMOGZiZYYmJwY0fumjSRnn/eWjI8YIBp1lKpkr1xhYLvLMtBg2wLIyQ6drQasC1YQNISobVli/Tll2Zctap09dW2hmMb37qWCxfaFgYAhA3qWUaP7t2tFV+zZpG0DBGSlnCWlBTrS0PFiuFxhr97dzM1fP9+q/tt2bJ2RxX5PB5p587Tm+L8/ruUlpa/+yhVKmdy0vtTsWJwY4f/hg2T5s0zZzX37DG1Hb/6KjLrO3odOyZ9/LEZlywp3XCDvfEE26l1LR96yL5YEH3efdeqHXvXXdFbnqB6dTOje/Nmszw8LY2ljgBwJiQto8cll5jv+QcPSnPmmFVg0VZr3wZR+okMjjVzptW18x//CI8vDQkJ5izLq6+a2KdOle65x+6oIo/bLU2ZYmqIeJOUhw7l77YJCVLduqfPnqxWjaY44SImxsw6bNTIJC3nzDGvufvvtzuy4Jk502r8dOONZql8JLvgAqlyZWn3bun776WMDCk+3u6oEA3S06WxY804Lk66/XZ747Fb+/YmaZmeLi1fLrVpY3dEAOBcNOGJHnFxZiXG5MmmnN3ixdKVV9odVcSL4CkqCEvhtjTcy3fZ5gcf2BdHJLv1VumWW6S335Z++CH3hGVMjPmwcMMN0hNPSNOmSevWSUeOmBp5kyZJDz9s/thUr07CMtxUrChNnGhtP/ywac4TqcaNs8YDB9oWRsi4XNZsy6NHpZUr7Y0H0ePTT6W9e834hhukpCR747Fbhw7WmCXiAJA3mvBEn+7drfEXX9gXRxQhaQnn+Ptv6dtvzbhmTdN4I1w0biw1bWrGK1eaZcoInM8+kyZMyHlZtWpSt25mCenEiSZ5deSItH69NH26NHKk1KuXdNFF4TFjF/nTqZP0wANmnJEh9elj/t8jzbZt0nffmfF550lt29obT6icukQcCIUxY6xxtDbg8eVb13LRIvviAACn8z15ztLw6NC5s/XdctYsq7QMgoakJZxj2jSrUcpNN4XfLDjf2Za+M6RQOPv2SXffbW2/+qqZZbltm6lp+MILZgZmkyZSsWK2hYkQevZZ64PhH3+YepeRZtIk60PQwIHh935YUL5Jy/nz7YsD0ePXX83sfUmqXz96ThCcSc2aZjWCJC1dapXtAQDkRD3L6FO6tHVyb8sWae1aW8OJBiQt4RzhujTcq29fqxDv5MmmMC8Kb8gQMwtXknr0kP75T/PHAtGrSBHzfuGt8fjBB1bDmkjg8eTsGt6/v22hhNx555lZ1JKpX0uyBMF26izLaDlBcDbeJeLHj8tFqQYgp88/l/73PzMT+fhxu6OBnXyTls2b2xcHQosl4iFF0hLOsHWr+YIqmZkODRvaG09BlCsn9expxnv3yjV7tq3hRIRPPjE/kvn9vvMOXyhh1KkjvfmmtX3nnVZNoXD344/Sxo1mfPnlUo0a9sYTSr51LdPSpGXL7I0HkS011cxqlqSSJU1TPRg+S8RdixfbGAjgMJ9/bj7vP/SQSe6XKWNmaP/nP9I335jmHIge3pM6NOGJLiQtQ4qkJZxh6lRr3KePfXEU1q23Zg9jTq3BCP/s2ZOzttibb9IcATn172+9X6SmmtnOmZn2xhQIvrMsfctORAvqWiJUJk0yTZ8kU2YkMdHeeJyEpCVwurQ0afjwnJedOGFKTDz3nNSli0litmgh/etf0syZpswRIhNNeKLXeeeZiVaS9NNP1qpABAVJSziD79LwcE5aXnmlVLWqJMk1Z44SDhywOaAw5fFI99xjPgxIpptr7972xgTncbnM0s6aNc320qXSU0/ZGlKhHT1qzS4uVUq67jp747EDSUuEgscjvfWWtX3PPfbF4kTnnWd9nlm6VK5IOCEEFNYrr0h//WXGLVpIt91mVn74crvN7LuXXjJ/w885R2rQwJyInzpV2rkz5GEjSGjCE928sy09HtNnAUFD0hL2+/13afVqM27VynxQDlexsdKAAZIkV1aWqi1caG884WrKFNMxXDIf9saMYVk4cle6tDnp4T27/cwz4d3tdsYMa2nZP/5h1e2MJjVqSLVqmfHSpdQLC6SMDMU8/7zqTJ8u7d5tdzT2WrzYfP6QpMsuC8+yNMHkcmXPtnQdO6Yy3pIVQLTatct8xpCkmBjp/felsWNNQ8Bdu0xt7SFDcn8vWbvWfJbt08ecDKhd26zOGjdO2rSJ7sPhiiY80Y0l4iFD0hL2i5RZll4DB2YPq8+fzwcRf+3aZZrteI0ZYxKXQF5at7ZmWHo8pi5duM5yjval4V7e2ZYnTpjEJQLjqacU+/jjqjd5suJq1zZ/r3791e6o7OE7y9K3FAksPkvEK/z2m42BAA4wYoRVTuLuu3MmJytXNica33jDvKfu329qX/7rX1LLlqcvG960ySQsb73VJDCrVjXfgcaMMQlOtzt0zwsFR9IyurVqZX1HnTvXlI9AUJC0hL08HitpGRNj/uCHu9q1pXbtJEmlduyQi0YS+efxSHfdJR08aLb79DFLw4Gzefhhq9vtjh3S7beH3wmDrVul+fPNuHZt6ZJL7I3HTiwRD7xDh6TXXsvedGVkSBMmSI0bS506mQYS4faaKajdu82sZkmqWFG6/np743Eq73uqpPJr19oXB2C3ZcukiRPNuGzZs5eiKVdO6tFDevFFc9tDh0xS49FHzXeEhISc++/aZZaODx5slpJXrGiWlr/8sllqTnkGZ/ImLYsXly66yN5YEHqxsdLVV5vx0aMSKyyDhqQl7LVihTnbKJkvqZUr2xtPoNCQp2AmTJC+/NKMk5Kk11+3Nx6Ej9hYafJk80VBMuUF3nnH3pj85f1CJJkZcNFcEoGkZeC9+aZpWCXpUK1a8pQta103b55pINGwofTBB1J6uk1BhsjYsVYS4PbbT08gwKhdO/tzWfl166SMDJsDAmzgdkvDhlnbTz0llS/v332ULClddZX09NOmhM2hQ6ZExTPPSJ07m+t97d9vmvgMH25qZ5Yta96jn3vONP2J9PfocHDggLR5sxnThCd6+S4RnzXLvjgiHElL2CvSloZ79eolz8kPIK5PPrGWkyBvO3bk/FD4zjv+fyhEdKtSxSRcvO6/3yyzCgdut7U03OUyndGjWZUqVnOD5ct5Dy2sI0fMjB1JnpgYrXjoIWVu2mRODPnWkV671jSWqFHDfJn2NkOLJJmZ1gmNmBjpzjvtjcfJXK7s2ZZxaWly/fKLvfEAdpg82cyWlEy34LvvLvx9Fi0qtW0r/ec/0pw5ZoXRihXS6NHStddaJ2C9jhwxs+H/8x9zu9KlzWvz8celb7811yO0fJeGN29uXxywV6dOUpEiZvzll9GzYiXESFrCPllZpmi1JMXHR9byrBIl5LnxRkmS6/BhaxkacufxmC/KJ2cBqX9/s6wG8Ne111r16dLSpJtuCo9GLj/8YHUkvfJKqVo1e+NxAu9sy4wM6ccf7Y0l3L37bnYC0tO7t45Vrmxm9gwdappIfPppznIEe/ZIjz1mjsPBg6U//7Qp8CD48kure+8115gELfLmU9fStXixjYEANjh8WHrkEWv7lVekuLjAP05cnEl8DR9uZlju3SutWWNq79500+kr0dLTzYzNp582MzjLlDH19R580DQE8ZZZQvBQzxKS+Szl/by6fbvVXBgBRdIS9lm0yOpe2q2bWfoQQdwnu4hLyjn7C6cbO9bU+pGkc881HwqBgnrxRVMTSpJ++818iHc63wY8Ps28ohpLxAMjLU363/+yN7Mefjjn9bGx5qThjz+apke9epkZiJJJ+I8ZI114odSzp/T99+E/i4AGPP4haYloNmqU9V2lZ09zUjEUYmLM55h77jGr0nbulDZuNN8nBg7MOUNeMhNBli83n3969DArlRo3No0tp02TkpNDE3c0IWkJL9+JNnQRDwqSlrBPpC4NP8nTpo2OnHuu2Vi40JpFhZy2bDFnlr3Gjo24BDZCrFgxU9C+aFGz/eabzq4zc+SI9MknZpyYaL4YgaRloIwbZ31hvf56qV69vPdt3dp8wd24Ubr3XqlECXO5x2M64bZrZ2bzfPxxeDaG+OMPU79Tks4/38xQwpldeKE8lSpJklw//hie/+9AQWzaZJZrS2b554sv2heLy2XeswYNMu/pmzaZWV1TppjEZv36Off3eEwX8zfeME1OK1eWLrjA1PCdONF89g73E1B2owkPvK65xho7+ftGGCNpCXukp5vlaJL5UuRbxDZSuFzadsUV1rbvTCoYbrdZFu6txXPbbVLXrvbGhMhQv352DT9J5oO+d0mo03z6qVWzsXdv8wEYUqVKVoJt5UqzTA/+yciQnn/e2v7Pf/J3u1q1pFdfNV+Kn3/ezID3WrHCLFesXdu8xrxlPcLB229b43vusWaUIm8ulzxt25rh4cPSqlX2xgOEygMPSCdOmPHw4SZp6CRVq5pJH2+9ZVaV7N1rmhDef7+Z+Xfq+9uff0rvvy8NGGDe42vUkG6+2ZQPWb+eJKY/aMIDX9Wrm5nNkvm8umuXvfFEID6twR7ffGPVW+nZM2K/pG/v2FEe74eG8ePN8g1Y3n5bmj/fjKtVk156yd54EFnuusuatXjggHTLLc58Dfqe0Bg0yLYwHMk72zIryyxNhn8mT5a2bTPjrl2lpk39u33ZstLDD5svZ5MmmS9nXlu3mi/y1aqZL/fbtwcs7KA4dszMUJLMLGzKMOSbp107a2PhQtviAELm229NbUnJzFL8979tDSdfKlQwn3leeskkTg4elL7+2sR+2WVWsxCv7dulDz80n5Xq1jUnCm+4wZyw+uUXZ35ecoqff7bGLA2HlHMC1ldf2RdHhCJpCXtE+NJwr7Ry5eTp3NlsbN9uJehglrb41hr84AOzNBYIFJfLlBuoUsVsL1gg/fe/9sZ0qs2brSTABReY5bmwsES84LKyTD02r0cfLfh9FSliZuT8/LP03XemDrVXaqpZQlmrltS3b846X04ydap06JAZ33STqfmGfHH7Ji0XLbIvECAUMjOl++6ztp9/XipVyrZwCiwxUerSRXr2WXPS79Ah83njqadMbc5TJ4zs3Wsah953nznBdc455sQXTkc9S5yKupZBRdISoXfkiFXvoVy5iK8plaMhj3eWR7Rzu82MsmPHzPbdd4euuDmiS/nyZiaBy2W2H3tM+ukne2PyNWGCNR440IoThk8TEJKWfpo2zer63bFjzu7gBeVySZdfbmYRrF1r6qMlJJjrsrLMCcnmzaUOHcyHdre78I8ZCB6PqW3rdc899sUSjurWVXrp0mb8/ffMwEJke/tt8/4mSS1bmhM2kaBYMfM39bHHTG3fQ4fM56H//tfMEitTJuf+Bw+az+orV9oRrbP5Ji2bN7cvDjhHs2ZSUpIZf/ut9R0XAUHSEqE3a5b1Qr7xxtOXK0QYzzXXmCUbkjmD6V0WH81ee81a6lmzZo7OtkDAtW9v1fLLyjKzwVJS7I1JMgkdb9IyJkbq39/eeJyoQgWpUSMz/uUXa6YczsztNrNrvPJby9If9epJ771nlok//rj1d04ys/F69DD7vPOO6UJupxUrrOV8zZpJLVrYG0+4cbm031tfNiVFWr3a3niAYNm/37yfeb36auTWvo2PN43VHnzQfDfbv9+8tl9/3ZpIkJkp9etn1d2G4U3k0oQHXjExVkOe48fNqhQETIS+C8PRomRpeLYiRcwffMk0IPJ9/tHojz+kESOs7XHjpJIl7YsH0eGJJ6Q2bcx482Yz08ruovOLF5sOnpKZce5dxo6cvEvE3W7zO8PZffGFacwgmZIDl18evMeqVEl68klTO/Ptt02ZA68NG8xM+urVzWvw77+DF8eZvPWWNR48mBnNBbCvQQNrgyXiiFRPPGFNLrjllugq2RITY04SDh0qzZ5tzSD84w/pX/+yNzYnoQkP8uJb15Il4gFF0hKhtX+/NGeOGVepIp3sSBnxfJtrRPMS8awsswQ2Lc1s33uvWUYIBFtcnDRlilU39aOPpIkT7Y3J972ApiB5o66lfzye02dZhiJJV6yYaeiwbp2ZteP73r5vn6mjVr26WVL+++/Bj8dr/35Tz1Iyyx9vuil0jx1B9tWvb22QtEQkWrNGGjPGjEuUMLUso1V8vCmt4617+c47VmmvaEcTHuTlyitNoz9J+vJL55TIiQAkLRFan35qlhpI5otDpC65OFXjxlbX1pUrzQejaPTSS9LSpWZcu7b03HP2xoPoUrOm9O671vaQIVbNv1A7fFiaPt2MS5eWrr3WnjjCQbt2VtKNpOXZzZtnlkNL5m/P1VeH9vFjYsxsgwULzN+7vn2tmSjp6dL770v165tmPt99F/wZz+PGmceVzAnEU5tPIF8OV68uj7d50eLFfBlDZPF4TAMa73H9n/9I555ra0i2u+AC6eWXre3bbpOSk+2LxylowoO8FC9ulVbYvTtnghuFEiUZIzhGtC0N93XrrdY4Gmdb/v67Kf4tmQTE+PHmTDYQSr17WzOfjx4170MnToQ+junTrdq+ffqYWWrIXdmyUpMmZrx6tZk5h7w984w1DtUsy7w0a2Zm62zeLD3wgDXTWZK+/tp8uG/aVJo0KTivQ7fbLFn3uvvuwD9GtIiJkeeyy8z44MHoPfmKyDRzpjR/vhmfd550//22huMYd9xhnVTdt898l7G7tI7dSFriTHyXiDM7OWBIWiJ0du60lhTVqWPNPIwWffpYTYeC9QXNqTIzzfJX72yX4cOlSy+1NSREsddes+ru/d//BadJydmMH2+NWRp+dr5LxFmamrfFi60mZxddJF1/vb3xeFWrZhqubd9uZtxXr25dt2qVaUJVq5b0wguBbVY3b560aZMZX3VVznqb8JunXTtrY+FC2+IAAiotLWfNxtGjrSWe0c7lMg3XvF2Rv/46Z43gaORNWhYrRhMenM7bjEeirmUAkbRE6Hz8sXV2rm/f6CuEX66cdN11Zrxvn/TVV/bGE0r//a+1XPGii6Snn7Y3HkS3kiXNrO/4eLP94ovS3Lmhe/xNm6yGMhddJLVsGbrHDlfUtcwf31qW//638xoEJCaaGUybNpk6k75dvHftkh55xCQ4hw2zGh0UxqkNeFAobt+kJScPECleesl6v7niCsq1nOqcc3KuEHvggdDWJXaSgwelv/4y44svNvXSAV/nnmvNwF21ypysRaGRtEToRPPScC/fhjwffGBfHKH066/SyJFmHBNjZpixFBZ2a9o0Z5H9/v1D19l4wgRrPGhQ9J3AKYi2ba0EHEnL3K1YYSXfa9Vy9t/ZuDhTqmHZMpPAv/Za63Vw9KiZDV27ttSrl1UH2V9bt5pC+JJUtWrO2Q8omIYNTbkGibqWhZGRYZL0sN/OnVZ99ZgY6ZVX+Jucmy5dTFdxycxM7dfPWj0VTXxrFHq7qwOn6tHDGns/h6BQSFoiNP780xTkl0xtsgsvtDceu1x5pfnyJJklFrt32xtPsGVkSAMGmH8l6aGHpFat7I0J8LrvPvNBXJL27DHLtIP9JdzttpKWMTHSzTcH9/EiRWKideZ67drQJZjDie8sy0ceCY8ZIC6XSUjPnClt2CDdc491UsvtNs37LrnE/Hz6qZSVlf/7fvdd6/V8113h8ftwupgY8/8lmdqya9faG084ysw0pQqqVJEeftjuaDBihDlRIpn3nwYN7I3Hyf77X6lePTNetcqqUx9NvN9lJepZIm/UtQy4sExaLl68WN27d9e5554rl8ulmTNnnvU2CxcuVNOmTZWQkKDatWtrvG89MQTf1KnWuG9f++KwW2ysSeJJ5svXpEn2xhNszz1nPthIplusd8Yl4ATemb+VKpntr782M7yCaeFCads2M+7cme6k/vBdIk49vZzWrJE+/9yMq1Sx/s6Ekzp1zHLu7dtNMyHv61Iysy179TI1KV9/XTpy5Mz3lZ4ujR1rxnFx0u23By/uaNOhgzVmibj/3nvP+r399785Px8jtH76yfocXq6c9NRT9sbjdMWKmcZqvqV1om3lA014kB8XX2xNUpo//+yfWXBWYZm0PHr0qBo3bqw333wzX/tv3rxZV199tTp27KhVq1bpvvvu0+23365vvvkmyJFCkqljOWWKtd27t32xOIFv041x4yK3C9/PP1tdbGNjzeyyhAR7YwJOValSzuXaDz8s/fJL8B7Pty4UDXj8Q13LvHmXN0rSgw+G93tt+fKmOdbWraaMSv361nV//SXde6+pezliRN5LbGfMsGbjXn+91UQChde+vTUmaemfAwekRx/Nedntt0vr19sTTzRzu817iddTT5nEJc7s4outvzcejymtE8jmaU5HEx7kh8tllaQ5ccI0BUShhGXSsmvXrnrmmWd0nbepyVm8/fbbqlWrlkaPHq26detq6NCh6tWrl15++eUgRwpJ0urV1geytm3Nl41oVru29aF//XpzpjfSpKebhExmptn+9785Iwnn6tzZ6hx64oSpBehdLhZIqalmiatk6sL51rzB2V16qbXEl6Sl5Y8/pE8+MeNzzpHuuMPeeAIlIcHUfF2zRpozxyyp9Tp0yNSkrVnTzCpdvTrnbWnAEzyNG0ulS5vxokWRe+I1GEaONIlLyZS8kMzfml69gvM3B3mbNMlqEFm/vikhgfwZPly6/HIz3rHDLKuPhvcBmvDAH75LxOkiXmhR8WpbunSprrzyyhyXde7cWffdd1+et0lPT1e6T4Hh1NRUSVJGRoYyvPX5kC8xkyfL2780q3dvuaPk9+c9TnI7Xly33KK4kzMU3GPHKivCijnHPPGEYteskSR5GjVS5sMPW3UtkaczHTMIsiefVNz8+XL98ou0YYPc//ynst55J6AP4Zo6VXHHj0s6+V4YG1vo10VUHTMJCYpt0UIxS5dKGzYoY+tWltdLin3uOcWcrN2YNWyY3PHxZzyuwvKYufxy8/Prr4p99VW5pk6VKyPDPM+JE6WJE+W+4gq5hw2Tp3Jlxf/wgyTJU7euMtu04e9PIeU4ZuLjFXvppYqZPVvau1cZv/5q1blD3tauVdxbb8klyVO8uDKXLFHcP/4h1++/S2vXyn333cp6//2IaQLj6PeZw4cV98gj8v6mM0ePlsfj4X3CH2PHKq5pU7kOHZI+/liZnTvLU8ga3Y4+ZiS5li/PTpxkNWkSNd9nnczRx0zbtoorXlyuY8fk+fJLZaalWQ0lIcm//7eoSFomJyerkm9tJEmVKlVSamqqjh8/rmK5dDIeNWqUnnzyydMuX7BggYoXLx60WCOO262rJkxQcUnu2FjNTUzUidmz7Y4qpOblMiU8tmRJdSlaVHFpacr66CN906mTsooWtSG6wCvz559q97//SZLccXFaNGiQUr/91uaowktuxwyCr8Ttt6vDv/6luLQ0xYwbp/8rX167LrssYPd/2SuvqPzJ8Q/nn69DAXwvjJZj5qKqVeVt4/brq69qh+9S1ShU7O+/deXkyZKkEyVKaN555ykzn8dV2B4zN9ygoh07qtZXX6nmN9+oyMlaUTHffaeY775Tps/S+DVt22rz11/bFWnE8R4z51esKG+7kt/HjNGWrl3tCyoceDxqM3KkKp5sJLW+Z0/9sXGjSg4erPYPPGD+5kyerNWlS2ub74ziCODE95m6kybpguRkSdKu1q21Ii1NirLvJoFw7u23q8WLL0qSPEOGaGFGho6d8n27IJx4zEhS7Rkz5C1Wsjo2Vts5ZhzDqcdMy4YNVXnZMrn27tXSV1/VQUoK5HDs2LF87xsVScuCGDFihIYPH569nZqaqmrVqqljx44qX778GW4JX64ff1Tcvn1m46qrdOVNN9kbUAhlZGRo3rx5uuqqqxTvLVrtI+abb6Rx4xR//Li6HD0qz/XX2xBlgKWlmbPXJ2f9eB59VJcNGWJzUOHjbMcMQiAhIbtpR/P33lPmnXeaJaiF9eefil+3TpKZ/XXJvfcGZEZNtB0zrqJFpWnTJElNDh1So27dbI7IXjH33quYk4mQ2PvuU6devc56m4g5Zm6+WTp6VFkTJijmtdfkOrlsL+7kKhlPiRKq+9xzqutdhosCO/WYcVWqZJqYSWq4f7/qRfnr8Gxcs2Yp7mQJA0/Nmqo9ZoxqeydMlC4t3XKLJOnisWPVYMAAs/Q0zDn2fWbjRsWdXKrpKVJE54wfr27nnWdzUGGqWze5k5MVM3my4o8f1xUTJijr228LvGzascfMSbEnTxBKUsOBA9WwYUMbo4Hk/GPG9fff0rJlkqRLDxyQm7+VOXhXMudHVCQtk5KStGfPnhyX7dmzR4mJibnOspSkhIQEJeRSyD4+Pt6RLwrHOvnlUpJi+vVTTBT+7vI8Zm6/PbspR9ykSdKtt4Y4siD4z3+s+qXNmin23/9WbBT+nxcW7zM2uvVW6dtvpalT5UpJUfzAgaZuW2FrF/k0I3PdeqviixQp3P2dImqOmXbtpCJFpBMnFLNoUVT+Tcm2e7fV2KlkScXef79f77cRccyUKSMNGyYNHSrNmiWNHi39+KMkyTV4sOI5yRxQ2cdM8+ZSqVLS4cOK+f57xcTFRcyy5oBLT5ceeih70/Xii4r3TaTffLOpbf7mm3Klpyu+Tx/T7MNbNzTMOe59ZsQIU7takutf/1L8hRee5QY4ozffNO+5mzcrZskSxbz0kvkuUAiOO2a8vE0aixVTfKNG1LR0EMceMz16mHq5Ho9iZ89W7Asv2B2Ro/jzfxaWjXj81aZNG3333Xc5Lps3b57atGljU0RRIiPDag5QtKh07bX2xuM0bdpI3g9LCxdaxZ3D1ZIl0sllIipSxHRkduIfEOBMXC7p7bet2ZVLlkhPP124+8zKsjqUx8ZK/foV7v6iWbFiUuvWZvzXX9K2bfbGY6fRo01CRDKNEKI5QRcbK113nfTDD9LKldLnn5tGPQiOuDjJWzpjzx5pwwZ743GyV16xPt916GC62Z9q9GipRQsz3rTJnDyLhsYmoTZvnnlvkKTKlU0CE4WTmGiaGsWcTCmMHGk1OIokBw+a16ZEEx7kX6VKUqtWZvzbb9LmzfbGE8bCMml55MgRrVq1SqtWrZIkbd68WatWrdK2k19eRowYof79+2fvf/fdd+uvv/7SQw89pPXr1+utt97SJ598ovvvv9+O8KPHd99J3qXh3bubs/KwuFymM6rXyaVWYenYMdMt3Psh+6mnTDdGIByVLi199JFVMPuZZ6TFiwt+f/Pnmw6bktSli/myhILr2NEaR2sX8X37pDFjzLhoUdPNFUazZmZ2Q0xYfsQNHx06WOOTjQVxit27zd8PyRyPr76a+4zUhARzkr9sWbM9Y4bZF4GTkSH5NmB94QW+lwTKpZdasyszM82J2ZO1hiPGzz9b42bN7IsD4Ycu4gERlp/oVq5cqSZNmqhJkyaSpOHDh6tJkyZ6/PHHJUm7d+/OTmBKUq1atfTVV19p3rx5aty4sUaPHq2xY8eqc+fOtsQfNT76yBr36WNfHE52yy3WF6vx482MrHD0n/9If/5pxq1aSf/6l73xAIXVurXkbcbmdpsP4QcOFOy+fE9I+J6oQMGQtDQJDW8B89tvl5KS7I0H0ce3CRZJy9yN+P/27jzOxvr94/j7jNnsZB1kq1DWUrYWkcryLYoUylJo4SuURElSqSRbSipUWmVp04IiRWSpLCWV+MqWZezLmLl/f3x+59znmMWccc7c95nzej4eHj73nPvc52Luueec6/58rmuInby5+26pTp3M961cWXrzTXt70CBp2bKwhhdVJk+WNmww44YNWfEQasOGSQ0amPGmTXnvRtqqVfaYpCWCQdIyJCIyaXn11VfLsqx0f6b//wfD6dOna9GiRemes2bNGp04cUJ//vmnunfvnutxR5Vjx8ydYsnMWqKzZMbKlbP/b/73PzMjK9J8+609IyAx0SyDZdkE8oKHH7ZnE23bJvXqFfySvQMH7GvhOedI//lPSEOMSo0amWuNZJKW0baMMjlZmjDBjOPiTHIDyG2XXCIVLGjGixZF38/hmaxYYZcFKVbMrEA5k//8Rxo82IxPnZI6drRXLCHn9uyR/n9iiyTznpWZ2KEVFyfNmGFfE159VZo719GQQoqkJXKqVi2pUiUzXrxYCqL5DGxcsREen31m312++Wb7AybS8595NXWqc3HkxOHDJn7vh5WnnrLrdAKRLl8+8yb8nHPM9uzZ0pQpwR3j/fel48fNuHNnswwQZychQWrSxIy3bo2+GkGTJtlvert2lSpWdDYeRKe4OLuu5Y4d0h9/OBuPm6SlSf362dsjRkglS2bvuU8+aRqOSeZm2e23m+Mh54YPNzd7JKlbN7vGHELrggtMDVevnj3NtSEv8CYt8+eXLrzQ2VgQWTwee7ZlSor05ZfOxhOhSFoiPFgann033GC/mZ0zxxR7jhQPP2wXmL/iCtPFFchLypcPvJkwYIC9xCw7/JeGM8M/dKJ1ifiRI9LYsWYcE2OuwYBTWCKesbfflpYvN+OLLjKNsrIrNlZ67z2pdGmz/eWX5oYwcuaXX8zScEkqVEgaNcrZePK6u+6S2rUz4717Ayc2RKrkZLsJT926rCZD8G680R6zRDxHSFoi9A4cMDMtJdM1y//DJdKLjzd30iXTCdY/4etmCxeaGT+SufM4bZrduATIS9q2le67z4yPHZNuu82ePZmVjRvtmmS1a5vllAiNaE1avvKK+SAomRuC55/vbDyIbv5Jy9PKMkWtw4ftJd6SmXkWFxfcMZKSzHtB7xLm4cPNey4Ex7JM8x3vTNVHHqERXrh5PGZpuLfO8pdfSi++6GxMZ8u/Cc+llzoXByJX06Z246/PPjPlPxAUkpYIvTlzTPJNMvV4uCN1Zv5LxKdNcy6O7Dp4ULrzTnv72Wf58Iy87fnnTV0aSVq7Nnt1BL31zCQzyzKjrrHImcsukwoUMONoqWt5/Lg5D72GDHEuFkAyH+C9P4eLF0fHz+GZjBplL4m98Ubp2mtzdpzmze1mcJZlyots3x6aGKPFnDn2Ta2qVQO7hyN8SpYMXGUyaJC0fr1j4Zw16lnibMXHS94G0Pv20WQtB0haIvRYGh68OnXsX4QrV5rlLG724IOmlpxkGpX06eNoOEDY5c9vrm3e+rwvvpj1Eo/UVLsTbL58dCoNtfh4u57e9u2mW2leN22anQy5+WapZk1n4wHi4+36stu2RV992dP99Zc0ZowZx8fb45waOtRu1rh7t5nlzwyd7Dl+XHrgAXv7hReor5+brr/erut64oRJunsntESalSvtMUlL5BRdxM8KSUuE1q5d0oIFZly5sunyiuyJlNmWX35pln5Ipj7Q1Kl0YUR0qFXLfPDx6tEj85kvCxZI//xjxq1bm1IZCK1oWiKekmJmtHsNHepcLIC/q6+2x9G+RPzBB+3EzIABZ78CJSZGeust6dxzzfaSJWaJM85szBjp77/NuEWLwJpyyB3PPGPfXPvll8g9d2nCg1Bo3dr+vEzSMmhkGhBaM2fatWM6dWI5ZDA6dbI7C8+YIZ086Ww8GUlONkW2vZ5/XqpSxbFwgFx3zz2BRebvuMPMqjyd/9Io/xsSCJ1oSlq+/ba0ZYsZt2rFbA+4B814jIULzXJkydTzC1WCpkQJ6YMP7LqYzz0nffxxaI6dV/3zj/T002acL59pXsbnkdyXP7/0zjtm1rFkEsmRVpuVJjwIlZIl7ZUJv/0WHSuEQoikJUKLpeE5d845djJkzx7p008dDSdDAwbYs8euvVbq3dvZeIDc5vFIr71muopL0tdfS6NHB+6TnGx/eC1RQmrTJldDjBr169uFzRctyrv19FJTAzveRupsFeRNl11mL7uN1pmWp04F1kscNcq+NoVCo0aBv2e6dWMpflYeflg6etSM773XrkeN3FenTuDvr27dTE2/SOHfhIebhThbLBHPMZKWCJ2//5aWLjXjWrVMt1wEx7+5jduWiH/6qT17rEgR6fXXuXON6FSihJkN7T3/hw2Tli+3H3/vPXuJYJcu9iwDhFZsrHTVVWa8a5f066/OxhMuH34o/f67GV99tXT55Y6GAwRISLBnj2zdai/JjSavvCKtW2fGl10mde0a+tfo109q396Mk5OlW26J3BqB4bRsmfn9LJnJAN5mRnBO//7SNdeY8T//mBUrkXKTkSY8CCWSljlG0hKh89579phZljlzzTVShQpmPG+e3XTBafv2Sb162dtjx9o1loBodPXVdl3BU6fMNe/gQbPN0vDck9eXiKelSU89ZW8/+qhzsQCZieYl4nv3mhtXXuPHh6fOt8djbhZ762SuWmVWv8CWlmY3f5GkkSNN4hLOiokx74uKFzfbM2fajQrdjqQlQqlGDem888x4yRJp/35n44kgJC0ROv5Lw2+7zbk4Ilm+fFL37maclmYKsLtBv37Szp1m3Lo1iRhAkoYPt5uNbd4s3Xefme3nnXVZt65Ur55j4UWFvJ60/PRTae1aM27YUGre3Nl4gIz4Jy2jbYn444/bHzxvv11q3Dh8r1W0qJl57V2O//LLpmYgjDfftDs9165NCSM3qVBBmjLF3u7bV/rrL+fiyS5v0jIxUbroImdjQeTzeOymYKmp0uefOxtPBCFpidBYv950hpPMh/iqVZ2NJ5J5k5aS6czt9BKKOXNMEwhJKlbMvOlgWThgGiO8844plyCZn5POne3H/X+WER5165rrkmSSJd5GcHmBZUlPPmlvP/oo1164U8OGdiPBaJppuW6dSRxKUsGCpltyuNWtK734or3du3feLY0RjIMHTS1Lr3HjaJriNh062O+LDh82Sf5TpxwNKUvJydIff5hxvXqcTwgNlojnCElLhAYNeELnvPPsWQsbN0o//OBcLP/+K919t709YYLdgASAVKWKqWfm9dNP5u/YWFPPEuGVL599vdy7164rlxcsWCD9+KMZ161LQye4V2Ji4KzzrVudjSc3WJap1ZeaaraHDs2990d33mkamkjSkSMmGXTkSO68tls99ZSpbSxJN9/MrHS3mjDBntiybFlgkx63oQkPwuGKK8ysecnMtExJcTaeCEHSEmfPsuykZUyM1LGjs/HkBf4NeaZOdS6OPn1M4lKS2rY1d0UBBLrttvQlE/7zH6lUKWfiiTZ5dYm4/yzLRx5hliXc7eqr7XE0zLb86CNp4UIzrlxZGjgw917b45Feesnuir1hg+mS7fTKHKds2mRqrUtmxq9/p3W4S+HCplGSt+7riBGBjQzdhHqWCIe4OKlVKzM+cED67jtn44kQJC1x9lassOuSNG8ulS3rbDx5Qfv25he7JL3/vjN30D/4wBTLlkwh88mT+dAMZGbCBKlaNXvbOwsG4ZcXk5ZLlkjffmvG1aubmUOAm0VTM57jx6UHHrC3x4yx60zmlgIFTH3LQoXM9ltvSa+9lrsxuMWDD9qzlR54gBJVbte4sd1ULjXVTIg4fNjZmDJC0hLh4q1rKbFEPJtIWuLssTQ89AoWlG691YwPHZJmzcrd19+1yzQV8Zo0iWQ0kJVChUz916uuku65J/ANCcKrVi2pRAkzXrzYXq4Zyfw7hg8dapbBA27WqJEUH2/Geb0Zz7hx9s36Zs2km25yJo7q1U1Hca///ldas8aZWJzy1VfSxx+bcbly0pAhzsaD7Bk2zNTClUzdyP79HQ0nQzThQbi0bGm/r/v44+idJR8EkpY4O6mpZiagZN6sMhskdPyXm+bmEnHLMkmXvXvNdocOdgIVQOYuusgkzV5+2V76hPCLibGXpiYnSz//7GQ0Z+/HH6UvvzTjypW5GYjIkD+/nYT480/pn3+cjSdctm+3SzfExEjjxzu7CqVjR9OJWZJOnJBuucUsOYwGKSmBya5nn7VnnsLdYmPNMvGCBc3266/LM3euoyEFOHDAbsJTty5NeBBaxYtLV15pxn/+Kf32m7PxRAA+VeHsLFok7dxpxq1b211ccfYaNzZ30SWTCPnzz9x53XfekbxvHEqVMnWTWBYOwM3y0hLxp5+2xw8/bOofAZEgGpaIDxlil+y55x6pdm1n45Gk55+XLrvMjP/809z0joaZOy+/bHdOb9RI6tzZ2XgQnPPPN6V1/l++e+5R4r59Dgbkx78Jz6WXOhcH8i66iAeFpCXODkvDw8fjCZxtOX16+F9z+3b7jr1k3hDSTASA2+WVpOXatfZNo3LlpO7dnYwGCI5/0jIvLhFfvlx6800zLl5ceuIJZ+PxSkgwNciLFzfbc+aYJex52Z490vDh9vb48axwiEQ9evhW6Xn27dPFEyZIaWkOByXqWSL8SFoGhas7cu7ECbvWYqFCplsuQqtrV7vmxRtvhLdWm2VJvXub5ZWSSUK3bx++1wOAULnwQqlMGTP+9lvp1Cln48mpUaPs8aBBJhkBRIrGje2ZwXltpmVamtSvn739xBN2LV03qFTJNOPxeughaelS5+IJt2HD7Per3btLDRo4GQ1yyuORpkyRkpIkSaV/+kkxkyY5HJSklSvtMUlLhMMFF0g1apjx0qXmRgwyRdISOffFF/YbhnbtTCdDhFZSkinWK0n/+5+0cGH4Xmv6dOmzz8y4bFlp4sTwvRYAhJLHY9e1PHQocGlXpNi0ya4RXaqU1KuXs/EAwSpY0F6m/Pvv0o4dzsYTSjNmSCtWmHHNmmZpuNu0aWNKSkjmxk3HjtK//zobUzj8/LNJdElm0oR/SQ1EnhIlzMSM/xczdKhZdeAkmvAgN3hnW6alSfPmORuLy5G0RM6xNDx33HmnPZ42LTyv8b//BRYzf+UVd80gAIAzifQl4s88Yy+LGzDAblAARJK8WNfy0CE7GSiZpddubcwxcqT9PfjnH+n228O7Sie3WZZ5v+q9Vj76qG+WHiLYtdcq9f9nMntOnJC6dJGOH3cmFprwILewRDzbSFoiZw4flj7+2IxLlJCuvdbZePKy//xHKlnSjOfMkfbvD+3xLUvq2VM6eNBsd+0q3XhjaF8DAMItkpOWW7bYtfKKFZP69HE0HCDHvDOepbyTtBw1yp412rat1KKFs/FkJTbWTCrwlsv46ivpqaecjSmUZs+266Wed17gDXdEtLQnn9SBSpXMxtq10tChzgTiv1KDpeEIp8aNpXPOMeMvv5ROnnQ2HhcjaYmc+egj6dgxM+7Qge6m4RQfb+6US6aOqP8M11B49VXzplYyjR/Gjw/t8QEgN1xwgbmGSdKSJZH15m/0aLsO53//KxUp4mw8QE41aWLX4s4LScs//5TGjDHj+Hh77GZJSea9orcxzeOPSwsWOBpSSBw7Jj3wgL39wgvU/c1LEhO1asAAWd7v6dixzpy3NOFBbomNNWU9JDOjPy/8zgwTkpbIGf/EWefOzsURLfyXiE+dGrrj/v134BvA1183s3wAINJ4PPZsy6NHpR9/dDae7NqxQ3rtNTMuWFC6/35n4wHORqFCdl3LX3+Vdu1yNp6z9eCD9g2QgQPN7L5I0KyZWSoumRU1nTub5eKRbMwYMytdMiu8/JdWIk84VLmy0vxnBnfrJu3dm7tBkLREbvK/jnlXsSIdkpYI3t69ZgqzJFWoIF1xhbPxRIPate1fnKtWSb/8cvbHTEszydDDh812z5520x8AiESRuER8zBgzi16S7ruPesKIfP51Lb/91rk4ztaCBdLcuWZctqxzy1Vz6uGHpdatzfjff6XbbpNSUpyNKae2bTPL9CUzk3fcOHOjCnlOWt++dgmG7dulu+82iffcQhMe5Kbrr7dXrH7ySe6e6xGEpCWC9+GH9jK2W2+1l58gvELdkOfll+0P9RUrRsaSJwDISqQlLffskSZPNuOEBDOTC4h0/klLb/3BSHPqVGC9xGeekQoXdiycHImJMbVyK1Y02999Jz3yiLMx5dTgwWYGvWRq/pJMyrtiYkw3cW+tv1mzpOnTc+e1DxyQNm0y47p1KX+G8CtSxP6duWWLtG6ds/G4FNkmBI+l4c7o1Mmu3TNjxtnVa/vzT+mhh+zt11+nhhqAyFeliv0BfelSewajW40fLx05Ysa9epnZXECku/zyyK9rOXmytH69GTdoIN1xh7Px5FSJEtIHH9jJl9GjI28J4vffS++8Y8YlSpgancjbypUzNfe9+vUzn13CjSY8cIJ/A1y6iGeIpCWCs22bvdSnWjXp4oudjSeaFC8u3XSTGe/ZI336ac6Ok5Ym9ehh37G+9153d8IEgOzyr2t5/Lj0ww/OxpOVAwekiRPNODZWGjTI2XiAUClSRLrkEjNev94sTY4ke/dKjz1mb48fH9mriho2lJ5/3t7u1k366y/n4glGWlpgnd+RI837YeR9N99srzI7fNg0JfWu9AsX6lnCCdS1PKMI/g0MR7z/vl1roVMn6snkth497HFOG/JMmGA660pmVtJzz519XADgFpGyRHzSJJO4lEwSwTtDFMgLIrmu5fDh0v79ZnzHHVKjRs7GEwr//a90yy1mnJxsxsePOxpStrzxhp1Iql3bzEhH9Bg/3m5+9cMPkn+TnnAgaQknVK4s1aplxitWRH4DuzAgaYng+C8N79TJuTii1TXXSOeea8aff24KVAdj40ZpyBB7e9o00+kTAPKKSEhaHjkijR1rxjExpmEGkJdcfbU9jqQl4mvXmprfklSwoKllmRd4PNJrr0kXXGC2V6+WBgxwNqYzOXgw8D3r+PFmVjqiR6FCpiSWt9zEyJHhXUHhTVomJFA3FbnLO9vSsqTPPnM2FhciaYns+/13+2J+ySVS9erOxhON8uUzM3Iks2Tmrbey/9zUVKl7d/vOer9+gTMhACAvqFhRqlrVjH/4QTp2zNl4MjJliinzIZmOvuef72w8QKhdcYW9pDpSkpaWZZYip6WZ7UceMbX18ooiRUwzzcREsz15sl0r0o2efNKecdS+feANKUSPRo2kYcPMODVV6tJFOnQo9K9DEx44yX+JOHUt0yFpiexjlqU7dO9uj6dNs5frn8mYMfbdyfPPl0aNCnloAOAK3g+3J0+ahjxucvy4aYbhNXSoc7EA4VK0qFSvnhn/8oupE+l2c+fas7OrVHH/TMScqFPHlKbw6t1b+vVX5+LJzKZN0rhxZpyQEHjNRPR55BGpcWMz/uuvwDqnobJmjT2+9NLQHx/ISoMGUunSZvzVV5FRviMXkbRE9liWnbT0eMzMEDjjvPPsZVcbN0rLlp35ORs22HcpPR5p+nSpQIFwRQgAznLzEvHp06UdO8z4ppukmjUdDQcIG/8l4t5a2m51/Lj0wAP29pgx9ozEvObOO+0b4EeOSB06mL/d5IEHpJQUMx40yCSREb1iY80ycW9Jq2nTpFmzQvsa1LOEk/Llk9q0MeOjR6Wvv3Y2HpchaYns+eknkyCTpCuvlCpUcDScqOffkGfatKz3PXXKLCk/edJsDxwoXX55+GIDAKe5NWmZkhJYI++RR5yLBQg3/xI0bl8i/sIL0ubNZnzNNVK7do6GE3aTJpnGNpK5sX3PPdlfuRNuX35pL48sX56avzCqVpUmTrS3e/eW/vkndMcnaQmnsUQ8UyQtkT3+NW9YGu689u2lwoXN+L33sr5D/uyz0sqVZlyjhiliDQB5WblyUrVqZrxihXT4sLPxeL3zjrRlixm3bMkHI+RtV15pVndI0qJFjoaSpX/+kZ5+2oxjYsyyZG/ceVWBAqa+pfe95IwZ0quvOhuTZG7s9O9vbz/7rGmIBEhmEkb79ma8b5+ZMeytQXu2vJ+VaMIDp1x7rRQfb8affuqeG0kuQNISZ5aWZhJjkpme36GDs/HAvIG79VYzPnw48yUSv/wijRhhxjExZlli/vy5EiIAOMo72/LUKen7752NRTINBLyJEUl69FHnYgFyQ/HipqGFJP38s7R/v7PxZGbIEPvm7733SrVqORtPbqlWTXr9dXu7Xz/TVdxJL70k/fabGTduLHXu7Gw8cBePR3rlFbtB1oIFpqv82aIJD9ygUCEz01+Stm0zK10hiaQlsuP7780PjiRdd51UsqSz8cC48057PHVq+sdPnjR3JL01gQYPlho2zJ3YAMBpblsiPmuW9PvvZty0KWU6EB28S8Qty511LX/4QXrrLTMuXty+0RstbrlF+u9/zfjECbOdnOxMLP/+Kw0fbm9PmJD3Z7wieCVKSG+8YW8//LCZpHE2/JvwsAICTvJfIv7xx87F4TIkLXFmdA13p0aNpOrVzXjxYunPPwMff/pp+w5NrVqBbwQBIK/zbwLidNLSsqSnnrK3mWWJaOH/c+i2upZpaWZ2odfIkSYhEm2ef950rpVMZ+YePZxZljhsmJnxJpkY6OCMzLRoYWr0S2aSRpcuZ9dtmXqWcIv//MceU9fSh6QlspaSIn3wgRnnzy+1betsPLB5PIGzLadPt8erV9sfkPPlM3ckExJyNTwAcFSZMnZdqlWrpIMHnYvl00/tmSANGtjLf4C87sor7bHbkpZvvSX9+KMZ16wp3X23s/E4JT7evNcvXtxsz51rGhPlpp9+kqZMMeNChQJLaQAZefppqU4dM163zpR5yCmSlnCLc8+V6tUz41WrpO3bHQ3HLUhaImsLFkh795rxDTfYBbvhDnfcYZKSkklapqaa5T3dupk6bpLpTnvJJY6FCACO8S4RT011bmmqZUlPPmlvP/ooSx4RPUqUsLtUr1ljz6Rz2qFDgV2px483ddujVaVK9jJ5yZQUyq1awJZlmu94Z3cOGyaVLZs7r43IlZAgvf22PSlj3Djpq69ydixv0jIhwdzAAJzkv0T800+di8NFSFoiaywNd7ekJKlVKzPetk1auFB64glzx1Eyd2oeecSx8ADAUc2b22OnlogvWGA6mEumwL//0h8gGniXiKelSd9952goPk8/Le3cacY33cTsZ0lq08aerZaaaho+/vtv+F/3ww/tWbjnny/df3/4XxN5Q61apsO8V/fu0p49wR3j4EG73jRNeOAGN95oj6lrKYmkJbJy9Kg0Z44ZFy1qJ8fgLv5LxIcOlZ55xozj4szsy/h4R8ICAMc1bWrPanQqaelfy3LoUGZZIvp4m/FI7lgi/scf9vLn+HhT0xHGE0/Y369//jG1AlNTw/d6x45JDz5ob7/wAuWMEJz//tc0ipWkHTuk3r2Dq8lKEx64zSWXmIlJkpmQdPSos/G4AElLZO6zz6TDh824fXveRLhVmzZ2R/dVq8xMBkl67DFzxxAAolWJEnbNqzVrpP37c/f1v/vOTtJUr25+lwLR5qqr7PGiRY6F4fPgg6Z5hyQ98IBUtaqz8bhJbKxZZVWmjNmePz+wvEWoPf+8tHWrGV93HTPREbyYGDNJw9tEa84caerU7D9/5Up7TNISbhATY18Ljx83K3aiHElLZI6l4ZEhPt7UtvRXv35grSYAiFbeupaWJX37be6+tv8syyFD7BrEQDQpVcquE7d6takn6ZT586WPPjLjpKSza96RVyUlSe+9Zz44S9KIEeb/LdT+9z9p1CgzzpfP1CRkJjpyIilJeu01e/v++6VNm7L3XJrwwI28dS0LF6YZj0haIjPJyWampWTutno/9MGdevSwx/Hxplt4NBeUBwAv/99fublEfOVK6YsvzLhyZalz59x7bcBtvEuOU1Nzr8HL6VJSTMMXr2efpcFkZq6+2p5haVlmmfg//4T2NQYPNsvDJalvX+nCC0N7fESXdu2knj3N+MgR6fbbzc/8mdCEB250zTXSl1+ausL33ON0NI4jaYmMzZljL5259VZmh7hd7dpSnz5S8eLSlCn80gUAr6uusmcM5WbS8umn7fHgwRT3R3TzNuORnFsiPnmytGGDGTdsaBJxyNzgwVLr1mb877/m80B2kkDZ8d139oquEiWk4cNDc1xEt7FjTTMnyTTAO1NpA/8mPHXq8Hsa7lGggCmZQXk+SSQtkRmWhkeeF1+U9u2TunVzOhIAcI9ixaSLLzbjX34JvrNoTqxbZzeyK1fOdDQFopl/XUsnmvHs2WNqfXuNH2/fzEDGYmKkN9+UKlY0299/b5qJna20tMAO4U8+aW66A2erUCFpxgx7ss2TT0pLl2a+P014gIjAb2ukt3On6VQlSVWqmLvRAABEKv8l4rmRMPGfZTlokJSYGP7XBNysTBmpRg0z/vFHu9Fjbhk+3JQ+kqSuXXlvm10lSkgzZ9oz0J5/Xpo79+yOOW2aqW0qmdltvXqd3fEAfw0b2jN309LMMvGDBzPe17+e5aWXhj82ADlC0hLpzZxpd6Du1Imi2ACAyJabdS03bZLef9+MS5bkAzng5V0inpqa9eynUPvlF7M0XDIzsZ55JvdeOy9o0EAaM8be7t5d+uuvnB3rwIHA2Zrjx1OCCqE3ZIjUpIkZb94s9euX8X404QEiAklLpMfScABAXnLllfYH43AnLZ95xr7xN3CgVLBgeF8PiBTeZjxS7i0RtyzTfMf7M/nII6bTMILTt690yy1mfOCA1KGDdPx48Md58klp924z7tAhsNYpECqxsWaZuLfR1htvmEk5p1u50vxNEx7A1UhaItDmzdKyZWZcq5b5AwBAJCtc2F76tWGDtGtXeF5n61ZTA06SihaV7rsvPK8DRCL/pGVuNeOZM8e+UVG1amD3cGSfxyO99pp0wQVme82a4P8vf//dzKyUTMmM0aNDGiIQoEoVaeJEe/vuu6Vt2+xtmvAAEYOkJQK995497tzZuTgAAAil3Fgi/txz0qlTZtyvn0lcAjCSkqRq1cz4xx+lo0fD+3rHj0sPPGBvv/AC9WXPRpEi0ocf2v+Hr7wivf129p8/cKDdfXzQIKly5ZCHCATo2tWeIbx/vylt4J11TRMeIGKQtEQg/6Xht93mXBwAAIRSuJOWO3eamUiSWRLu3x0XgOGdbZmSYq/sCZcxY6S//zbjFi2kG28M7+tFgzp1pJdesrd79zaz18/k88+lzz4z4/LlpcGDwxMf4M/jMfVsy5c32wsXSmPHmjH1LIGIQdIStnXrpLVrzbhRIzOtHgCAvODyy+3lX+FIWo4ZI504Ycb33mu67gIIlFtLxP/5R3r6aTPOl88kKmgsGRo9ekh33mnGR4+a2pRZdYNPSZEGDLC3n3uOWr/IPeecY8q2eH/+hw6Vfv6ZpCUQQUhawuY/y5Kl4QCAvKRgQdMFVzIdvv/5J3TH3rtXevllM05ICFySCsCWW814Hn7YXn5+773UaA+1F180sy4l6ddfpXvuMU2PMtt340YzbtKEJp/Ifc2b27+XT540n3N/+MFs04QHcD2SljAsy05axsRIHTs6Gw8AAKEWriXi48dLR46Ycc+eUtmyoTs2kJdUqCCdd54ZL18uHTsW+tdYtsx0DpbMLKsRI0L/GtEuf35T39Lbnfntt6UpU9Lvt3u3/f/v8UgTJjDjFc548kmpbl0z3rBB+usvM65TR4qPdy4uAGdE0hLG8uWmc7hk7kaVKeNsPAAAhFo4kpYHDpgP4pIUGys99FBojgvkVVdfbf4+edKe7RQqaWmmCZbXyJEmcYnQu+ACaepUe7tfP2n16oBdYh5/3FwjJbOsnGW4cEpCgkmun96Mi3MScD2SljBYGg4AyOsaN7ZnVIQqafnSS/aH8q5dpYoVQ3NcIK8K5xLxN9+UVq4049q1TaMYhE+HDnaS+ORJs71/vySpyF9/Keb1181jhQtLTz3lUJDA/6tZ09RU9UfSEnA9kpaQUlOl99834/h46aabnI0HAIBwyJ/fJC4ls7pgy5azO96RI9ILL5hxTIypowcga+FqxnPwYODP4LhxZvYzwmv0aKlhQzPevNnMqExLU+3XXpPHW+fysccomwF36NtXatnSjD0e6YornI0HwBmRtIRZSjN+vNS2rUlYFivmdEQAAIRHKJeIv/qqtGePGd96q1kuCSBrFStKVaqY8Q8/SMePh+a4Tz0l7dplxjffbModIfzi46UPPrCX4X/0kfK1a6eSGzaY7QsuCFyyDzjJ4zGTdYYNM8vFa9RwOiIAZ0DSElJcnPmwNXdu4DJxAADymlAlLU+cMDOMvIYOzfmxgGjjnW154oS0YsXZH2/TJmnsWDNOSAj82UT4VaxoNz+SFPPFF/ZjL7xAoxO4S5Ei0hNP0MkeiBAkLRGIjn4AgLysYUO7EP8330je5YvBmj5d2r7djNu1k2rVCkV0QHQI9RLxBx+UUlLM+IEHpKpVz/6YCE6rVulu3qRdd53Upo1DAQEA8gKSlgAAIHokJEiXX27G//uf9NdfwR8jJUV65hl7+5FHQhMbEC28HcSls2/G89VX0scfm3G5ctKQIWd3POTciBG+2expsbFKHT2aCREAgLNC0hIAAESXs10i/u670t9/m3HLltKll4YkLCBqVK5slhRL0rJlZpl4TqSkSP3729vPPisVKnS20SGnYmOljz9W6ujR+v6JJ6QLL3Q6IgBAhCNpCQAAosvZJC1TU6Wnn7a3mWUJ5Ix3ifixY9KPP+bsGC+/LP36qxk3aiR17hya2JBzhQop7f77te+ii5yOBACQB5C0BAAA0eWyy6SCBc042LqWs2ZJGzeacdOm0hVXhD4+IBqc7RLxPXuk4cPt7fHjpRg+2gAAkJfwmx0AAESXuDg72bhjh/T779l7nmVJTz1lbzPLEsi5s23GM2yYlJxsxt27Sw0ahCAoAADgJiQtAQBA9MnJEvFPP5V++cWMGzSQWrQIfVxAtKhaVapQwYyXLrW7f2fHzz9LU6aYcaFCgSUbAABAnkHSEgAARJ9gk5YZzbKkKy6Qcx6PPdvy6FFp5crsPc+yTPOdtDSz/eijUlJSWEIEAADOImkJAACizyWXSIULm/GiRWeua7lwobR8uRnXqSP95z9hDQ+ICjlZIj57tr3veecFdg8HAAB5CklLAAAQfWJjpauuMuPdu6UNG7Le//RZljT8AM5esM14jh2THnjA3n7hBSkhIeRhAQAAd+AdNwAAiE7ZXSL+3Xf2zK7q1aX27cMaFhA1zj/fXtr9/fdnrms5Zoy0ZYsZX3utdMMN4Y0PAAA4iqQlAACITs2b2+Oskpb+syyHDJHy5QtfTEA08a9refiwtHp15vtu2yaNGmXG+fJJ48ZRVxYAgDyOpCUAAIhOdetKxYub8aJFdmMPf6tWSV98YcaVK0udO+dWdEB0yO4S8YcfNg17JKlPH+mii8IaFgAAcB5JSwAAEJ1iYuxZXvv2SWvXpt/Hf5bl4MFSXFzuxAZEC/9mPJklLZculd5+24xLlJAefzzsYQEAAOeRtAQAANErq7qW69dLc+aYcVKS1L17roUFRI3q1aUyZcx4yRLp1KnAx9PSpH797O2RI+0Z0gAAIE8jaQkAAKJXVknLp5+2x4MGSYmJuRMTEE3861oeOiT99FPg42+8Yco0SFLt2lKvXrkaHgAAcA5JSwAAEL1q1pRKljTjxYul1FQz/uMP6b33zLhkSal3b2fiA6KB/xLxRYvs8cGDpvmV1/jxUmxsroUFAACcRdISAABEr5gYuxHIgQP2LK9nnrEb8wwYIBUs6ER0QHTIrBnPk09Ku3aZcfv2gTOjAQBAnkfSEgAARLfTl4hv3Sq9+abZLlrUdCoGED4XXiiVKmXGS5aYGc+bNknjxpmvJSRIo0c7Fh4AAHAGSUsAABDdTk9ajh4tpaSY7f/+1yQuAYSPxyNddZUZHzgg/fyz9MAD9s/hoEFSlSrOxQcAABxB0hIAAES3GjWksmXNePFi6dVXzbhgQen++52LC4gm/kvEhw2TPvnEjMuXlx5+2JGQAACAs0haAgCA6Obx2AmTI0ekEyfM+J577CY9AMLLvxnPvHn2+NlnqSkLAECUImkJAABweoOPhASzPBVA7qhZUzrnnMCvNW4sde7sTDwAAMBxJC0BAABOT1redZeUlORMLEA0iokJnG0pSRMmmJnQAAAgKpG0BAAAOP986dxzzTg2VnroIWfjAaKR/82DHj2kSy91LhYAAOC4iE5aTpo0SZUrV1ZiYqIaNmyoFStWZLrv9OnT5fF4Av4kJibmYrQAAMC1PB5p0iSTJJkyRapUyemIgOhz111S27bSjTdKo0c7HQ0AAHBYrNMB5NT777+vgQMHavLkyWrYsKHGjRun66+/Xhs3blTp0qUzfE6RIkW0ceNG37aH5SYAAMDrhhvMHwDOKFBAmjvX6SgAAIBLRGzS8oUXXlCvXr3Uo0cPSdLkyZP12WefaerUqXr44YczfI7H41HZsmWzdfwTJ07ohLd7qKSDBw9KklJSUpSSknKW0SMaeM8TzhdkF+cMgsU5g2BxziBYnDMIFucMgsU5g2BxzkS2YL5vHsuyrDDGEhYnT55UgQIF9OGHH6pdu3a+r3fr1k3Jycn66KOP0j1n+vTp6tmzp8qXL6+0tDRdcsklevrpp1WzZs0MX+Pxxx/XiBEj0n39nXfeUYECBUL2bwEAAAAAAACiwdGjR9W5c2cdOHBARYoUyXLfiJxpuWfPHqWmpqpMmTIBXy9Tpox+++23DJ9TvXp1TZ06VXXq1NGBAwf0/PPPq0mTJlq/fr0qVKiQbv8hQ4Zo4MCBvu2DBw/q3HPPVbNmzVSiRInQ/oOQJ6WkpGj+/Pm69tprFRcX53Q4iACcMwgW5wyCxTmDYHHOIFicMwgW5wyCxTkT2bwrmbMjIpOWOdG4cWM1btzYt92kSRNdeOGFeuWVVzRy5Mh0+yckJCghISHd1+Pi4vihQFA4ZxAszhkEi3MGweKcQbA4ZxAszhkEi3MGweKciUzBfM8isnt4yZIllS9fPu3atSvg67t27cp2zcq4uDhdfPHF+uOPP8IRIgAAAAAAAIAcisikZXx8vOrXr6+FCxf6vpaWlqaFCxcGzKbMSmpqqtauXaukpKRwhQkAAAAAAAAgByJ2efjAgQPVrVs3XXrppWrQoIHGjRunI0eO+LqJd+3aVeXLl9eoUaMkSU888YQaNWqk888/X8nJyRo9erS2bNminj17OvnPAAAAAAAAAHCaiE1a3nrrrfr333/12GOPaefOnapXr56++OILX3OerVu3KibGnki6f/9+9erVSzt37lTx4sVVv359LV26VBdddJFT/wQAAAAAAAAAGYjYpKUk9e3bV3379s3wsUWLFgVsjx07VmPHjs2FqAAAAAAAAACcjYisaQkAAAAAAAAg7yJpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSlgAAAAAAAABchaQlAAAAAAAAAFchaQkAAAAAAADAVUhaAgAAAAAAAHAVkpYAAAAAAAAAXIWkJQAAAAAAAABXIWkJAAAAAAAAwFVIWgIAAAAAAABwFZKWAAAAAAAAAFyFpCUAAAAAAAAAVyFpCQAAAAAAAMBVIjppOWnSJFWuXFmJiYlq2LChVqxYkeX+M2fOVI0aNZSYmKjatWtr3rx5uRQpAAAAAAAAgOyK2KTl+++/r4EDB2r48OFavXq16tatq+uvv167d+/OcP+lS5eqU6dOuuuuu7RmzRq1a9dO7dq107p163I5cgAAAAAAAABZidik5QsvvKBevXqpR48euuiiizR58mQVKFBAU6dOzXD/8ePHq2XLlho0aJAuvPBCjRw5UpdccolefPHFXI4cAAAAAAAAQFZinQ4gJ06ePKlVq1ZpyJAhvq/FxMSoRYsWWrZsWYbPWbZsmQYOHBjwteuvv15z587NcP8TJ07oxIkTvu0DBw5Ikvbt23eW0SNapKSk6OjRo9q7d6/i4uKcDgcRgHMGweKcQbA4ZxAszhkEi3MGweKcQbA4ZyLboUOHJEmWZZ1x34hMWu7Zs0epqakqU6ZMwNfLlCmj3377LcPn7Ny5M8P9d+7cmeH+o0aN0ogRI9J9vVq1ajmMGgAAAAAAAMChQ4dUtGjRLPeJyKRlbhgyZEjAzMzk5GRVqlRJW7duPeN/KiBJBw8e1Lnnnqv//e9/KlKkiNPhIAJwziBYnDMIFucMgsU5g2BxziBYnDMIFudMZLMsS4cOHVK5cuXOuG9EJi1LliypfPnyadeuXQFf37Vrl8qWLZvhc8qWLRvU/gkJCUpISEj39aJFi/JDgaAUKVKEcwZB4ZxBsDhnECzOGQSLcwbB4pxBsDhnECzOmciV3cmAEdmIJz4+XvXr19fChQt9X0tLS9PChQvVuHHjDJ/TuHHjgP0laf78+ZnuDwAAAAAAAMAZETnTUpIGDhyobt266dJLL1WDBg00btw4HTlyRD169JAkde3aVeXLl9eoUaMkSffff7+aNm2qMWPGqE2bNnrvvfe0cuVKTZkyxcl/BgAAAAAAAIDTRGzS8tZbb9W///6rxx57TDt37lS9evX0xRdf+JrtbN26VTEx9kTSJk2a6J133tGjjz6qoUOH6oILLtDcuXNVq1atbL1eQkKChg8fnuGScSAjnDMIFucMgsU5g2BxziBYnDMIFucMgsU5g2BxzkQPj5WdHuMAAAAAAAAAkEsisqYlAAAAAAAAgLyLpCUAAAAAAAAAVyFpCQAAAAAAAMBVSFoCAAAAAAAAcBWSln4mTZqkypUrKzExUQ0bNtSKFSuy3H/mzJmqUaOGEhMTVbt2bc2bNy+XIoXTRo0apcsuu0yFCxdW6dKl1a5dO23cuDHL50yfPl0ejyfgT2JiYi5FDKc9/vjj6b7/NWrUyPI5XGOiW+XKldOdMx6PR3369Mlwf64x0efbb7/VDTfcoHLlysnj8Wju3LkBj1uWpccee0xJSUnKnz+/WrRooU2bNp3xuMG+H0LkyOqcSUlJ0eDBg1W7dm0VLFhQ5cqVU9euXbV9+/Ysj5mT32+IHGe6znTv3j3d979ly5ZnPC7XmbzrTOdMRu9tPB6PRo8enekxuc7kXdn5XH38+HH16dNHJUqUUKFChdS+fXvt2rUry+Pm9D0Q3Iek5f97//33NXDgQA0fPlyrV69W3bp1df3112v37t0Z7r906VJ16tRJd911l9asWaN27dqpXbt2WrduXS5HDicsXrxYffr00Q8//KD58+crJSVF1113nY4cOZLl84oUKaIdO3b4/mzZsiWXIoYb1KxZM+D7/91332W6L9cY/PjjjwHny/z58yVJt9xyS6bP4RoTXY4cOaK6detq0qRJGT7+3HPPacKECZo8ebKWL1+uggUL6vrrr9fx48czPWaw74cQWbI6Z44eParVq1dr2LBhWr16tWbPnq2NGzfqxhtvPONxg/n9hshypuuMJLVs2TLg+//uu+9meUyuM3nbmc4Z/3Nlx44dmjp1qjwej9q3b5/lcbnO5E3Z+Vw9YMAAffLJJ5o5c6YWL16s7du36+abb87yuDl5DwSXsmBZlmU1aNDA6tOnj287NTXVKleunDVq1KgM9+/YsaPVpk2bgK81bNjQuvvuu8MaJ9xp9+7dliRr8eLFme4zbdo0q2jRorkXFFxl+PDhVt26dbO9P9cYnO7++++3zjvvPCstLS3Dx7nGRDdJ1pw5c3zbaWlpVtmyZa3Ro0f7vpacnGwlJCRY7777bqbHCfb9ECLX6edMRlasWGFJsrZs2ZLpPsH+fkPkyuic6datm9W2bdugjsN1Jnpk5zrTtm1bq3nz5lnuw3Umepz+uTo5OdmKi4uzZs6c6dvn119/tSRZy5Yty/AYOX0PBHdipqWkkydPatWqVWrRooXvazExMWrRooWWLVuW4XOWLVsWsL8kXX/99Znuj7ztwIEDkqRzzjkny/0OHz6sSpUq6dxzz1Xbtm21fv363AgPLrFp0yaVK1dOVatWVZcuXbR169ZM9+UaA38nT57UjBkzdOedd8rj8WS6H9cYeG3evFk7d+4MuI4ULVpUDRs2zPQ6kpP3Q8jbDhw4II/Ho2LFimW5XzC/35D3LFq0SKVLl1b16tV17733au/evZnuy3UG/nbt2qXPPvtMd9111xn35ToTHU7/XL1q1SqlpKQEXDNq1KihihUrZnrNyMl7ILgXSUtJe/bsUWpqqsqUKRPw9TJlymjnzp0ZPmfnzp1B7Y+8Ky0tTf3799fll1+uWrVqZbpf9erVNXXqVH300UeaMWOG0tLS1KRJE23bti0Xo4VTGjZsqOnTp+uLL77Qyy+/rM2bN+vKK6/UoUOHMtyfawz8zZ07V8nJyerevXum+3CNgT/vtSKY60hO3g8h7zp+/LgGDx6sTp06qUiRIpnuF+zvN+QtLVu21JtvvqmFCxfq2Wef1eLFi9WqVSulpqZmuD/XGfh74403VLhw4TMu9eU6Ex0y+ly9c+dOxcfHp7t5dqZcjXef7D4H7hXrdABApOvTp4/WrVt3xroqjRs3VuPGjX3bTZo00YUXXqhXXnlFI0eODHeYcFirVq184zp16qhhw4aqVKmSPvjgg2zdXUZ0e/3119WqVSuVK1cu0324xgAIlZSUFHXs2FGWZenll1/Ocl9+v0W32267zTeuXbu26tSpo/POO0+LFi3SNddc42BkiARTp05Vly5dztg4kOtMdMju52pEF2ZaSipZsqTy5cuXrgPVrl27VLZs2QyfU7Zs2aD2R97Ut29fffrpp/rmm29UoUKFoJ4bFxeniy++WH/88UeYooObFStWTNWqVcv0+881Bl5btmzRggUL1LNnz6CexzUmunmvFcFcR3Lyfgh5jzdhuWXLFs2fPz/LWZYZOdPvN+RtVatWVcmSJTP9/nOdgdeSJUu0cePGoN/fSFxn8qLMPleXLVtWJ0+eVHJycsD+Z8rVePfJ7nPgXiQtJcXHx6t+/fpauHCh72tpaWlauHBhwKwVf40bNw7YX5Lmz5+f6f7IWyzLUt++fTVnzhx9/fXXqlKlStDHSE1N1dq1a5WUlBSGCOF2hw8f1p9//pnp959rDLymTZum0qVLq02bNkE9j2tMdKtSpYrKli0bcB05ePCgli9fnul1JCfvh5C3eBOWmzZt0oIFC1SiRImgj3Gm32/I27Zt26a9e/dm+v3nOgOv119/XfXr11fdunWDfi7XmbzjTJ+r69evr7i4uIBrxsaNG7V169ZMrxk5eQ8EF3O4EZBrvPfee1ZCQoI1ffp0a8OGDVbv3r2tYsWKWTt37rQsy7LuuOMO6+GHH/bt//3331uxsbHW888/b/3666/W8OHDrbi4OGvt2rVO/ROQi+69916raNGi1qJFi6wdO3b4/hw9etS3z+nnzIgRI6wvv/zS+vPPP61Vq1ZZt912m5WYmGitX7/eiX8CctkDDzxgLVq0yNq8ebP1/fffWy1atLBKlixp7d6927IsrjHIWGpqqlWxYkVr8ODB6R7jGoNDhw5Za9assdasWWNJsl544QVrzZo1vk7PzzzzjFWsWDHro48+sn755Rerbdu2VpUqVaxjx475jtG8eXNr4sSJvu0zvR9CZMvqnDl58qR14403WhUqVLB++umngPc3J06c8B3j9HPmTL/fENmyOmcOHTpkPfjgg9ayZcuszZs3WwsWLLAuueQS64ILLrCOHz/uOwbXmehypt9NlmVZBw4csAoUKGC9/PLLGR6D60z0yM7n6nvuuceqWLGi9fXXX1srV660GjdubDVu3DjgONWrV7dmz57t287OeyBEBpKWfiZOnGhVrFjRio+Ptxo0aGD98MMPvseaNm1qdevWLWD/Dz74wKpWrZoVHx9v1axZ0/rss89yOWI4RVKGf6ZNm+bb5/Rzpn///r7zq0yZMlbr1q2t1atX537wcMStt95qJSUlWfHx8Vb58uWtW2+91frjjz98j3ONQUa+/PJLS5K1cePGdI9xjcE333yT4e8i73mRlpZmDRs2zCpTpoyVkJBgXXPNNenOpUqVKlnDhw8P+FpW74cQ2bI6ZzZv3pzp+5tvvvnGd4zTz5kz/X5DZMvqnDl69Kh13XXXWaVKlbLi4uKsSpUqWb169UqXfOQ6E13O9LvJsizrlVdesfLnz28lJydneAyuM9EjO5+rjx07Zt13331W8eLFrQIFClg33XSTtWPHjnTH8X9Odt4DITJ4LMuywjOHEwAAAAAAAACCR01LAAAAAAAAAK5C0hIAAAAAAACAq5C0BAAAAAAAAOAqJC0BAAAAAAAAuApJSwAAAAAAAACuQtISAAAAAAAAgKuQtAQAAAAAAADgKiQtAQAAAAAAALgKSUsAAAAgAlWuXFkej0fdu3d3OhQAAICQI2kJAAAQpLvvvlsej0cej0dff/11UM/96quvfM+9//77wxQhAAAAENlIWgIAAASpa9euvvGMGTOCeu5bb72V4XGcsmjRIl8SddGiRU6HAwAAAEgiaQkAABC0yy+/XOedd54kadasWTp27Fi2nnfkyBHNmTNHklSzZk3Vr18/bDECAAAAkYykJQAAQA7ccccdkqSDBw/qo48+ytZzZs+erSNHjgQ8HwAAAEB6JC0BAABy4I477pDH45GU/SXi3qXhMTExuv3228MWGwAAABDpSFoCAADkQNWqVXX55ZdLkr788kvt3r07y/23b9+uhQsXSpKaN2+u8uXLp9tn7ty5uuWWW1SxYkUlJiaqWLFiuvTSSzVixAjt378/W3HNmzdPt99+u6pWraqCBQsqMTFRVapUUfv27TV9+nQdPXpUkvT333/L4/GoWbNmvuc2a9bMV9/S+2f69OnpXuPkyZN66aWX1KxZM5UqVUrx8fEqW7asWrdurRkzZigtLS3T+Lp37y6Px6PKlStLknbs2KHBgwerZs2aKly4cNC1NTOqyfnBBx/ommuuUalSpZQ/f35Vr15dDz30kPbt25fpca6++mp5PB5dffXVWb7e448/7nu9jHgfe/zxxyVJ33zzjdq1a6dy5copf/78uvDCCzVy5EjfjFuvefPmqXXr1r79LrroIo0aNUonT57M9v/Fjz/+qE6dOuncc89VYmKizj33XPXo0UO//fZbtp7/xx9/aMCAAapdu7aKFi2q/Pnzq2rVqurevbtWrlyZ6fNO/x6kpaVp6tSpatasmcqUKaOYmBg6nAMAgOBZAAAAyJEpU6ZYkixJ1vjx47Pcd/To0b5933zzzYDH9u3bZzVv3tz3eEZ/SpcubS1btizT4+/Zs8e65pprsjyGJGvatGmWZVnW5s2bz7iv//5emzdvtmrUqJHlc6644gpr7969GcbZrVs3S5JVqVIla9myZVbJkiXTPf+bb7454/+91zfffON73sKFC63bb78907jOP/98a8eOHRkep2nTppYkq2nTplm+3vDhw33Hy4j3seHDh1ujRo2yPB5PhrE0adLEOnz4sJWWlmb169cv05hbtmxpnTp1KsPXqlSpkiXJ6tatm/X6669bsbGxGR4jISHB+uCDD7L8d40ePdqKi4vLNA6Px2MNGzYsw+f6fw8+//xzq0WLFume361btyxfHwAA4HTMtAQAAMihjh07KjExUVJgV/CMeB8vVKiQbr75Zt/XT5w4oRYtWujrr79Wvnz5dMcdd+jdd9/VDz/8oCVLluipp55SiRIltHv3brVu3VpbtmxJd+yjR4+qWbNmvpmc9evX1yuvvKLvv/9eK1eu1Jw5czRgwACVK1fO95zy5ctr7dq1mjp1qu9rU6dO1dq1awP+tGvXzvf44cOHdc011/hm7rVr104ff/yxVq5cqZkzZ6pp06aSpO+++0433HCDUlNTM/3/OHz4sNq3b6/jx4/rkUce0aJFi7RixQq9/vrrSkpKyvL/MjPDhg3TjBkz1K5dO82ePVurVq3SvHnz1KZNG0n2TMLc8Pnnn2vIkCFq1KiR3nnnHa1cuVJffPGFWrVqJUlaunSpRo0apbFjx2rChAlq1aqVZs2apVWrVumjjz5So0aNJElffPGFXn311Sxf66efftI999yj0qVLa+LEiVq+fLkWL16swYMHKyEhQSdOnFCXLl0ynS05evRoDRo0SCkpKapTp45efvllLViwQCtXrtTbb7+txo0by7IsjRw5UhMmTMgylsGDB2vBggW68cYbA74H3n83AABAtjmdNQUAAIhkHTt29M0m++233zLc5+eff/bt07Vr14DHhg4dakmyihUrZq1cuTLD5//9999WUlKSJcnq3LlzuscHDBjgO36fPn2stLS0DI9z4sQJa+fOnQFf858ld6YZjg8++KBv30cffTTd42lpaVaXLl18+7z00kvp9vHOtJRkFSpUyPrpp5+yfM0z8Y9fkvXkk09mGNd1111nSbJiY2Ot3bt3p9sn1DMtJVnt27dPN0vy1KlTVqNGjSxJVuHCha3ExESrf//+6Y5z5MgR30zKOnXqZPha3sf1/zNXM5pF+vXXX/tmYF522WXpHl+/fr1vhuXw4cMzPHdSU1N9M1gLFSpk7du3L+Dx078HGZ0bAAAAwWKmJQAAwFno2rWrb5zZbEv/r/vvf/jwYU2aNEmSNHLkSNWvXz/D51eqVEnDhg2TJM2cOTOgHmJycrJeeeUVSWaG5fjx4zOttxgfH68yZcpk55+VzokTJ/Taa69JkmrWrOmr2ejP4/HopZdeUokSJSRJL774YpbHfOihh1S3bt0cxZOR+vXra+jQoRnGNXDgQEnSqVOntGzZspC9ZmYKFCigKVOmKF++fAFfz5cvn3r37i1JOnTokEqVKqXnnnsuw+d369ZNkvTLL7/owIEDWb7emDFjVLZs2XRfb9asmXr16iXJ1Lw8fbblmDFjlJKSoksvvVTDhw/P8NyJiYnRxIkTlZCQoMOHD+vDDz/MNI5q1apleG4AAAAEi6QlAADAWbj++ut9icC3335blmUFPJ6WlqZ33nlHklShQoWAxjeLFy/2JaM6dOiQ5etcddVVkqSUlBStWrXK9/Wvv/7a11ynX79+6ZJkobJq1SolJydLMs10MnudIkWKqGPHjpKkDRs2aMeOHZkes0uXLiGNsXPnzpkmbP0Twn/99VdIXzcj1157rc4555wMH/NP1N58882Ki4s7436bN2/O9LWKFy+utm3bZvr4nXfe6RsvWLAg4LFPPvlEktS+fftM/+8kqVixYqpdu7YkZZn0vfXWW8N2DgIAgOhC0hIAAOAsxMbGqnPnzpJMR+7vvvsu4PGFCxdq+/btkkySLibGfvvlP+stKSkpXedu/z+1atXy7btz507feM2aNb7xlVdeGdp/nJ9169b5xg0bNsxyX//H/Z/nr1ChQqpatWpogvt/NWrUyPQx/wTioUOHQvq6GalWrVqmjxUrVizo/bKK+eKLL1ZsbGymj9erV0/x8fGSpLVr1/q+vmXLFv3777+SpCFDhmR5/nk8Ht/56n/+na5OnTqZPgYAABAMkpYAAABnKasl4pktDZek3bt35+j1vDMrJWnPnj2+cU4b2GTHvn37fOPSpUtnua//MmX/5/nzT8iFSoECBTJ9zD9ZnFWDoNyOJRQxn+n7ERsb60va+n8/QnH+na548eI5OiYAAMDpMr8lCwAAgGypV6+eateurbVr12rmzJm++n9HjhzR7NmzJZnlyRdddFHA8/wTUatXr850mfDpKlSoELrgcyCrZcTZxRLi0Mnp98P//Hvsscd0yy23ZOt5BQsWzPQxvq8AACBUSFoCAACEQNeuXTVo0CAlJyfrk08+UYcOHTRnzhxf05zTZ1lK8jWskaRSpUrlKBlZsmRJ33jHjh2qUqVKDqI/M//l1bt27cpyWbP/8uHM6jq6jXdWY1paWpb7+TdBcotdu3Zl+fipU6d8Myz9vx/+519cXFxACQIAAACnsTwcAAAgBLp06eKbZTZjxgxJ9tLwuLg4derUKd1zLr74Yt/4+++/z9HrXnLJJb7xt99+G/TzsztLzz+htXz58iz3XbFiRYbPc7PChQtLkvbv35/lfr///ntuhBOUn376SadOncr08Z9//lknT56UFPj9qFq1qooWLSop5+cfAABAuJC0BAAACIGkpCS1aNFCkjRv3jytW7dOCxculCS1bNlSpUqVSvecFi1a+GoaTpgwIV3n8exo1qyZb7nuxIkTg67XmJiY6BufOHEi0/3q16/vq0P5xhtvZDoj8dChQ/rggw8kSRdddFFY62yGkneG6u+//55p05s9e/Zo/vz5uRlWtuzbt8/XBTwjU6dO9Y2956hklnK3bt1akvTVV1/p119/DV+QAAAAQSJpCQAAECLeJeApKSm67bbbfAnEjJaGS6YZTd++fSVJS5cu1YABA7Jcnrxr1y699tpr6Y5x9913S5JWrVql/v37Z5r8TElJSdd8xT+p+Oeff2b62gkJCerZs6ck0xF85MiR6faxLEt9+/b1NQfy/tsiQdOmTSVJJ0+e1MSJE9M9npKSop49e+rYsWO5HVq2DBw4MMNl4osXL9aUKVMkmcTzZZddFvD4kCFDlC9fPqWlpalDhw7atm1bpq+Rmpqqt99+O8t9AAAAQoWalgAAACFy0003qXDhwjp06JDWr18vyXRTvuGGGzJ9zhNPPKHFixdr+fLlGj9+vBYtWqRevXqpXr16KliwoPbv36/169drwYIF+vzzz1W7dm1f8tBr5MiRmj9/vtauXasXX3xRy5Yt0913363atWsrPj5e27Zt05IlS/Tuu+/qySefVPfu3X3PrVixoipUqKBt27bp+eefV4UKFVS9enXfUvcyZcr4lk4/9thjmj17tv766y89/vjjWrt2rXr06KGkpCRt3rxZL774ohYtWiRJaty4sXr37h3C/93watOmjSpVqqQtW7Zo2LBh2rNnj26++WYlJiZq/fr1mjBhgtasWaNGjRrphx9+cDrcAHXr1tWGDRtUv359DRkyRA0aNNCJEyc0b948jR07VqdOnVJsbKwmTZqU7rm1a9fW888/rwEDBmjDhg2qVauWevfurebNm6tMmTI6fvy4/v77by1btkwffvihduzYobVr1zreDAoAAOR9JC0BAABCJH/+/OrQoYOmTZvm+1rHjh2VkJCQ6XMSEhI0f/58de/eXbNnz9bPP/+c5QzFIkWKpPtagQIF9PXXX6t9+/b69ttvtWrVqqAShkOHDtV9992nzZs3q23btgGPTZs2zZfkLFy4sBYuXKhWrVrpt99+06xZszRr1qx0x7v88sv18ccfR1Qn6fj4eM2YMUMtW7bUkSNHNHbsWI0dO9b3eL58+TRu3Djt27fPdUnLevXqqW/fvrr33nszPHfi4+P1xhtvqGHDhhk+v3///ipYsKD69++vAwcOaPTo0Ro9enSG+8bHxweUFAAAAAgXlocDAACEULdu3QK2M1sa7q9w4cKaNWuWlixZop49e6p69eoqXLiwYmNjdc455+iyyy5Tnz59NG/evExrKpYsWVKLFy/W7Nmz1aFDB1WoUEEJCQlKTExU1apVdcstt+jtt9/OsCHQvffeq1mzZum6665T6dKlFRub+X3typUr6+eff9aLL76opk2bqkSJEoqLi1OZMmXUsmVLvfXWW/r2228jpmu4vyuuuEKrVq3SHXfcoXLlyikuLk5JSUm+ZHC/fv2cDjFTPXv21JIlS9SxY0eVK1dO8fHxKl++vLp27ao1a9botttuy/L5vXr10l9//aURI0bo8ssvV8mSJRUbG6uCBQuqWrVqat++vSZPnqx//vlH559/fi79qwAAQDTzWDmp+A4AAAAAAAAAYcJMSwAAAAAAAACuQtISAAAAAAAAgKuQtAQAAAAAAADgKiQtAQAAAAAAALgKSUsAAAAAAAAArkLSEgAAAAAAAICrkLQEAAAAAAAA4CokLQEAAAAAAAC4CklLAAAAAAAAAK5C0hIAAAAAAACAq5C0BAAAAAAAAOAqJC0BAAAAAAAAuApJSwAAAAAAAACuQtISAAAAAAAAgKv8H+pIY1L+qHYbAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "IREth3_1 (порог для тестовой выборки): 1.860\n", + "Примеры ошибок реконструкции для первых 10 элементов тестовой выборки:\n", + "[0.66 1.49 0.73 1.16 1.21 1.29 0.89 1.66 0.52 1.12]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Получаем массив ошибок реконструкции для всей тестовой выборки\n", + "IRE3_1_test = lib.predict_ae(ae3_1_trained, test, IREth3_1_scalar)[1].ravel()\n", + "\n", + "# Определяем, какие элементы превышают порог — считаются аномалиями\n", + "anomalies_mask = IRE3_1_test > IREth3_1_scalar\n", + "num_anomalies = np.sum(anomalies_mask)\n", + "total_test = len(IRE3_1_test)\n", + "percent_anomalies = num_anomalies / total_test * 100\n", + "\n", + "# Выводим результаты\n", + "print(\"Все ошибки реконструкции тестовой выборки:\")\n", + "print(IRE3_1_test)\n", + "print(f\"\\nКоличество обнаруженных аномалий: {num_anomalies} из {total_test}\")\n", + "print(f\"Процент обнаруженных аномалий: {percent_anomalies:.1f}%\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HkmrHYJmXest", + "outputId": "3b0bfbda-18ff-4d61-f068-91daafe3bf37" + }, + "execution_count": 80, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "Все ошибки реконструкции тестовой выборки:\n", + "[0.66 1.49 0.73 1.16 1.21 1.29 0.89 1.66 0.52 1.12 0.99 1.69 0.52 1.02\n", + " 0.64 1.14 1.07 0.66 2.11 1.7 0.74]\n", + "\n", + "Количество обнаруженных аномалий: 1 из 21\n", + "Процент обнаруженных аномалий: 4.8%\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "ae3_2_path = 'AE3_2_WBC_model.h5'\n", + "threshold_path_ae3_2 = 'AE3_2_WBC_threshold.npy'\n", + "epochs = 50000\n", + "patience = 5000\n", + "ae3_2_trained, IREth3_2, IRE3_2 = lib.create_fit_save_ae(\n", + " train,\n", + " ae3_2_path,\n", + " threshold_path_ae3_2,\n", + " epochs,\n", + " False, # не показываем процесс обучения\n", + " patience\n", + ")\n", + "\n", + "# Получаем ошибки реконструкции обучающей выборки\n", + "IRE3_2_values = lib.predict_ae(ae3_2_trained, train, IREth3_2)[1].ravel()\n", + "\n", + "# Преобразуем порог в скаляр (если это массив)\n", + "IREth3_2_scalar = IREth3_2.item() if isinstance(IREth3_2, np.ndarray) and IREth3_2.size == 1 else float(np.max(IREth3_2))\n", + "\n", + "# Построение графика ошибки реконструкции через встроенную функцию\n", + "lib.ire_plot('training', IRE3_2_values, IREth3_2_scalar, 'AE3_2')\n", + "\n", + "# Вывод MSE_stop и порога IREth\n", + "MSE_stop_AE3_2 = IRE3_2_values[-1]\n", + "print(f\"MSE_stop для AE3_2: {MSE_stop_AE3_2:.3f}\")\n", + "print(f\"IREth3_2 (порог ошибки реконструкции) для AE3_2: {IREth3_2_scalar:.3f}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "1VrsNJVPYO-5", + "outputId": "bf693c9a-0f51-44e6-9c37-0e4adfb391a5" + }, + "execution_count": 112, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 13\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 200 160 80 60 40 35 30 20 15 9 8 7 8\n", + "\n", + "Epoch 1000/50000\n", + " - loss: 0.0021\n", + "\n", + "Epoch 2000/50000\n", + " - loss: 0.0013\n", + "\n", + "Epoch 3000/50000\n", + " - loss: 0.0013\n", + "\n", + "Epoch 4000/50000\n", + " - loss: 0.0012\n", + "\n", + "Epoch 5000/50000\n", + " - loss: 0.0010\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n", + "\u001b[1m12/12\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTYAAALXCAYAAAC3lR+RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcU9X9//F3Zp9BhlUYUBC3uqDiQqGKRVQWQW1xq2ArS9W2KlZLrYXvz4JbxbprxVJXsK24iwuoIIqKgoiKigKKssMgwzLDDMxMJpPfHyHJTeYmk2SS3HuT1/Px4EGSucmcZE5y733nc85xeb1erwAAAAAAAADAQXKsbgAAAAAAAAAAxItgEwAAAAAAAIDjEGwCAAAAAAAAcByCTQAAAAAAAACOQ7AJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYBMAANjeihUrdNVVV+noo49W69at5XK5Av/Wrl1rdfOy0vTp0wN/gzFjxqT1dxv//gAAAMheBJsAANjUgAEDAuHNTTfdFHE7Y8gT/i83N1dt27bV4YcfrosuukiPPfaYqqurE2pDvP+SFXa9+uqrOuGEE/Svf/1LK1asiKv9APD222+HfDYdddRRcT/GTTfdlPBnYY8ePUwf0+12a9GiRbr33ns1evRo9e3bV126dFFxcbHy8/PVsWNH9e7dW1dddZU++OCDFr4K8amvr9fbb7+tiRMnatCgQerWrZuKi4tVXFysAw88UEOHDtU999yjHTt2pLVdAACEy7O6AQAAIHUaGxtVWVmpyspKrV69Wi+88IImTpyoRx55ROedd57VzWtWdXW1xowZo7q6OklSly5ddOqpp2r//fcPVOuVlpZa2cQWuemmm3TzzTdLkiZPnhw1wAbsqkePHlq3bp0kac2aNRGDPKvMmDEj5PrKlSu1ZMkS9enTx6IW+bzyyiu66KKLIv58+/bt2r59uz799FP961//0plnnqknnnhC3bt3T2m7brjhBj366KPatWuX6c83bdqkTZs26c0339TkyZN111136corr0xpmwAAiIRgEwCADDJ8+HAdcMABgeuNjY2qqKjQokWLtHHjRklSRUWFLrzwQr3wwgtxhZs//elP4woCfvazn8Xe8Ahef/117dy5U5LUs2dPffLJJyouLm7x4wLIDrt379ZLL73U5PYZM2YkHGx27do1rs/ODh06NLtNQUGBjjrqKB122GFq3769vF6vysvLtXjxYlVUVEiS5s+fr1NPPVULFy5Mabj56quvhoSarVq1Ut++fXXAAQeooKBA3333nRYtWiS3262amhpdddVVWr9+vaZMmZKyNgEAEAnBJgAAGeTaa6/VgAEDmtze2NioGTNm6Morr1RdXZ0aGxt15ZVXasiQISopKYnpsYcNG5b2isLPPvsscHnkyJGEmjYyZsyYtM+t6ef1ei35vXCeF154QXv27JEkFRcXa+/evZKkZ555Rvfdd58KCgrifszDDz9cDz30UIvb1qVLF914440666yz1Lt3bxUWFjbZpqGhQU899ZTGjRunvXv3asOGDbrqqqv0+uuvt/j3R5OXl6cLLrhAl112mU4//XTl5YWeNq5fv16//e1vNX/+fEnSHXfcof79+2vo0KEpbRcAAOGYYxMAgCyQk5OjsWPH6s477wzctnXrVs2aNcu6RsXAX60p+UIAAIiHcRj6X//6V3Xu3FmStGPHDr322mtWNUuS1K9fP916663q16+faagp+QLG3/72t5o2bVrgtjlz5gQq8FNhxIgRWrVqlZ555hkNGjSoSagpSd27d9fs2bP105/+NHDbLbfckrI2AQAQCcEmAABZ5Pe//72KiooC199//30LW9M8t9sduJyTw2ELgNitXbs28Bnncrk0evRojRw5MvDz8Lk37cxYse71erVs2bKU/a6bbrpJhxxySLPbFRYWBuYIlqSPP/5Y27dvT1m7AAAwwxkCAABZpLCwMGRF4M2bN1vYGnPG1YeNwcPYsWObrDY8ffp008eorq7Wgw8+qCFDhujAAw9UUVGR2rVrp2OOOUbjxo3Txx9/HFNbjL/L74svvtC1116rY445Ru3bt5fL5dLw4cPjeo7+1eaNocDNN98c0+ryY8aMafL8d+3apQceeED9+/fXAQccoLy8PLlcriaLf/z444968sknNXr0aJ1wwglq37698vPz1bZtWx155JEaO3as3nrrrZiew/Tp0yO20W/BggWBbYxTJLzzzjsaMWKEDjnkEBUVFalDhw7q37+/HnrooZAwOxKzv0u4Hj16BLZZu3atJGnjxo3629/+pl69eqlt27Zq1aqVjjzySF1zzTWBxW9iNW/ePI0YMULdu3dXUVGRunTpop///OeaOnWqampqJIX25WRN41BRUaG7775bAwcOVNeuXVVUVBT4G/bs2VMXXnih7r33Xq1Zsyamx5s/f77+8Ic/qGfPnmrfvr0KCwvVtWtXDRkyRA899FBg6Ha4tWvXBp6b8bU7+OCDTfvxggULkvH04/LUU08Fpi049dRT1aNHD1166aWBn7/xxhv68ccf096uROTn56tNmzaB67t377awNUH9+vULXPZ6vXG/jwAAaCnm2AQAIMsY56msra21sCWp8frrr+uKK65QeXl5yO11dXXatWuXvv76a02dOlWXXHKJHn300ZjnGJV8QdVtt90mj8eT7GYn7MMPP9TIkSO1YcOGqNs9+OCDGj9+vGnbKysrVVlZqVWrVmn69Ok644wz9Nxzz8W06Ek86uvrNW7cOD366KMht9fV1emDDz7QBx98oCeffFJvvfWWOnbsmNTfPWvWLI0ZM0aVlZUht69atUqrVq3S448/rueff15nn312s8/hsssu03//+9+Q28vLy1VeXq6FCxdq6tSpevnll5Pafsm3ivbYsWNDpmjw8/8Nv/nmG7344ou69957ow5X3rBhg0aNGmUaOG7ZskVbtmzR3LlzNWXKFD3zzDP6+c9/nsynkhZPPfVU4LI/0DzxxBPVs2dPff3112poaNDTTz+t6667zqIWxq6iokLbtm0LXLfLyvPhXy7Y6bMRAJAdCDYBAMgyxipN/3xzdtKnTx9dffXVknzVZCtXrpQknXnmmTryyCNDtjVWn0rSs88+q1//+teBk+vc3FydeuqpOuyww1RdXa0PPvgg8PyffvpprVmzRu+8807I8PxI7rrrrkCF5aGHHqo+ffqopKREa9euVX5+flzP8bzzztMxxxyjJUuW6JNPPpEUedX5aKvLr169Wtddd50qKyvVunVr9e/fX127dtXOnTubTDOwefPmwOtyyCGH6KijjtL++++voqIi7dq1S1999ZW+/vprSb6KyoEDB2rx4sUR5/5LxO9+9zvNmDFDOTk56tu3r4488kg1NjZq8eLFWrVqlSTfglGjRo3SnDlzkvZ73377bf3hD3+Qx+NR9+7ddfLJJ6u0tFRr1qzRggUL1NDQoL179+pXv/qVli9froMPPjjiY40cOTJkle327dtrwIABat++vTZs2KD33ntPK1as0Nlnn61f/OIXSXsOS5cu1YUXXqiGhgZJvi8ofvazn6lHjx4qLCxUVVWVvv/+e3311VeBxXIiWbFihc4880xt2bJFki+cOvHEE3X00UeruLhYmzZt0vvvv6/du3dr8+bNGjRokN544w2dfvrpgccoLS0NvE+feuqpQAXhqFGj1Lp16ya/84ADDkjK6xCrhQsX6vvvv5fkq1S/6KKLAj+79NJLNWHCBEm+4eh2Dza9Xq9uuOGGwPu3e/fuIXNbWumrr74Kud6tWzeLWgIAyFpeAABgS6eddppXkleSd/LkyRG3828jyfvuu+9GfcxVq1aFbP/QQw8lpQ2pMnr06MDvf/LJJ6Nuu3r1au9+++0X2L5Pnz7e7777LmQbj8fjveeee7w5OTmB7a655pqIj2l8rfLy8rxt2rTxvvzyy022q62tTeTpeSdPnhz362t8TfLy8rySvFdffbV39+7dIdvV19d7PR5P4Prjjz/u/ec//+nduHFjxMf+4osvvL179w48/q233hpx2yeffDKw3ejRo023effddwPbFBYWeiV5f/rTn3pXrFgRsl1jY6P3/vvvD3m933vvvYi/27hdJAcddFDI727VqpX3P//5j7exsTFku+XLl3sPOOCAwLZjx46N+JiPPfZYyO/+85//3ORvv3XrVu/QoUNDnnMy3j/Dhw8PPNYFF1zg3bFjh+l2e/fu9c6ePdv7+9//3vTn1dXV3qOOOirwWEOHDvWuXr26yXaVlZXeK6+8MrBdly5dvLt27TJ9TONrvWbNmoSfYzJdfvnlgTZdeOGFIT/bsGFDyGfAF1980ezjGd+rp512WopaHeR2u72bNm3yvvjiiyGfw/n5+d7Zs2en/PfH6oorrgi0rWfPnlY3BwCQhajYBAAgSzQ0NOjaa68NXC8tLdWIESNivv+cOXNUUVER8/a33HKL2rdvH1cbW+KWW25RdXW1JOmwww7T3LlzQ+akk3wLEI0fP14ul0vjx4+XJE2dOlV/+tOfolbpSVJjY6NeffVV9e/fv8nPklnVGI+GhgZdfvnleuihh5r8LLyK9Le//W2zj3fcccfp7bff1pFHHqny8nI9/PDDmjhxonJzc1vc1rq6Oh1++OF65513tN9++4X8zOVy6dprr9XChQv1wgsvSJJmzpxp+lonor6+XrNmzdJZZ53V5Gc9e/bUv//9b51zzjmSpOeff16PPPJIk5WgPR6PJk+eHLj++9//XnfffXeTx+vUqZNmzZqlU089NVCNmwwffPCBJF9fmz59epPX0K+oqEjDhg3TsGHDTH9+7733asWKFZJ8lcMvvPCC6cJcpaWlevjhh7Vnzx7NmDFDW7Zs0bRp0/TXv/41Sc8odfbu3avnnnsucN04r6YkHXjggRowYIDeeecdSb6qzXvuuSfmx//uu+80bty4mLe/9NJL1bdv32a3O+ywwwJVpma6dOmimTNn6rTTTov5d6fSsmXL9MQTTwSu+yt4AQBIJ4JNAAAyWGNjoyoqKvThhx/qjjvu0JIlSyRJeXl5euKJJ+KaQ/GTTz6JK6i5/vrr0xZs7tq1S88++2zg+p133tkk1DS69tpr9fjjj+vrr79WY2OjHnnkEU2ZMiXq77jwwguTFrQlS1FRke68886kPmabNm103nnn6V//+pe2bNmib775Rscee2xSHvuOO+6IGMhJvvDVH2z6+2oynHPOOaahpt+wYcNUVlam8vJyVVdXa8WKFU2e85tvvqlNmzZJklq1aqU77rgj4uMVFBTo7rvvTmoAVVVVJUkqKSmJ+hpG43a7AyF4YWGhpk2bZhpqGt1+++2BRXj+97//OSLYnDVrVuD16tChg4YOHdpkm0svvTQQbP7vf//TP/7xjyZhdiSbN2/W1KlTY25P7969Ywo2o7nsssv0wAMPqFWrVi16nGSpqanRpZdeGhgef/TRR+vyyy+3uFUAgGxEsAkAQAYxzoEXyRFHHKF77rmn2UVSnOSjjz5SXV2dJKljx44699xzo26fk5Oj3/72t/rzn/8sSXr33Xeb/R3xVLemy+DBg9WuXbu47/fjjz9q8eLFWrFihXbu3KmamprA6tGSbz5Hv2XLliUl2CwqKmr273LCCScELvtXMk8G4/yKZlwul3r16hVYcGrt2rVNnrNxkZ2zzz5bbdu2jfqY/fv3V/fu3bV+/fqE2hyuW7du+uGHH7Rz5049++yzuvjii+N+jKVLlwZWAT/zzDPVqVOnZu/TtWtXHXnkkVqxYoWWL1+uysrKqF8a2MGMGTMCl0eMGGE6B+6FF16oq6++Wnv27NHWrVv11ltvWf6ZeOmllwYWCKqtrdXmzZv18ccfa8eOHXr88cc1Z84c/eMf/2hSgZpuXq9XY8eO1fLlyyX5QvKZM2fGPdcwAADJQLAJAEAW6dy5s5566inTRWqaM3nyZN10003Jb1QSfP7554HLffr0ianyql+/fiH393q9TVb4NTrppJNa1sgUiLdN33zzjf7617/qjTfeiHn14nimH4jmiCOOaDb4MFYQ+yvukiGWYLa5371s2bLA5Vir7/r06ZO0YPNXv/pVoEp05MiRgXDz9NNPjymglKRFixYFLm/cuDHm4dS7du2S5Au0Nm7caOtgc/PmzXr77bcD1yOFgPvtt5+GDx+up59+WpIvDI012DzttNNMV5NvKeNUB3719fX6z3/+oz//+c/asmWLRo0apbVr1+pvf/tb0n9/rCZMmKDnn38+cH3atGk67rjjLGsPACC7EWwCAJBBhg8fHrL68Pbt2/X9998HhpBv3bpVP//5z/Xiiy8G5hTMBP4qJ0k66KCDYrpPjx49Apfr6+u1e/dulZaWRtx+//33T7h9qRJPm9566y398pe/DFS2xsq/2nVLxRKGGYNP/+rfVvxut9vd5OfGPhbrys8HHnhgTNvF4sYbb9SCBQu0ePFieb1evfzyy3r55ZclSYcffrh+/vOf68wzz9S5555ruiq55Av9/L788kt9+eWXcbdj586diT2BNPnvf/8bCO0PP/zwqCH0pZdeGgg2X331Ve3cuTOhCuhUKigo0GWXXaZjjz1Wp556qtxutyZPnqwzzjgj5MuZdLnzzjtDpr/4xz/+oTFjxqS9HQAA+EWfVAcAADjKtddeq4ceeijwb+bMmVqyZIm++OIL9erVS5IvxBs5cmTURSqcxr9okKSY56AL3665AK+4uDj+hqVYrG3atm2bLr744kCoedBBB2nKlClauHChNm/erD179qixsVFer1derzekcqyxsTEpbY1WDZtqyfjdxj5WUlIS030SnQvTTKtWrfTee+/prrvuCgnlJd9iNk888YR+/etfq6ysTDfccIP27t3b5DEqKytb3I5kBs6pYByG/pvf/CbqtoMGDVJZWZkk3+JWxnl67aZPnz4aNWqUJF/l7H333Zf2Nvz73/8OmWN1woQJuuGGG9LeDgAAjAg2AQDIAscdd5zmzp0bqOasrq7OqIUejAFSTU1NTPcJ3y5SlVsmePTRRwOhVq9evfTll19qwoQJ6tevn7p06aLi4uKQ8C9ZVZqZxNjH9uzZE9N9Yu2LsSooKND111+vH374QcuWLdODDz6oESNGhFRp79mzR3fddZdOP/30JuGmMcz/4x//GAiy4/k3YMCApD6nZFq6dKm++eabwPXJkyfL5XJF/JeXlxeYV1UKDUXtaNCgQYHLH374YVp/93//+19deeWVgetXXnllswuuAQCQDgSbAABkiU6dOumf//xn4PqCBQs0e/ZsC1uUPMYh2bHOaWhcnKagoCCjg8358+cHLt94441Rh9xL0rp161LdJMfp2LFj4PLGjRtjuk+s28XLv9jRNddco5kzZ2rjxo367LPPNHbs2MA2H3/8cZOVuzt37hy4bAz0MkVLg8nFixfr22+/TVJrks84TH779u1p+70vvviixowZE1hg7NJLL41rVXgAAFKJOTYBAMgi5513nvr16xeo9rnxxhstXwk4GYyraS9ZskQej0e5ublR7/PRRx+F3N+KodLp+p3GuRWbW0jH4/GkvRrMCY4//vhAQPzxxx/HdJ8lS5akskkhTjjhBD3xxBPKzc3VY489Jsk3b+T1118f2MY43+RHH33U7IJZsbJymgG/+vp6zZw5M3D9iCOOaHbler/vvvtOO3bskOQLR//+97+nookttmXLlsDl9u3bp+V3zp49WyNHjgzMW3r++efrySeftMXfHAAAiYpNAACyjnFl82XLlunVV1+1rjFJcsopp6iwsFCSbz7J5ipRGxsb9eSTTwaun3HGGSltXyRFRUWBy2YL1iRLTk7wkK+5YdSzZs3KyGq+ljIOwZ49e3az81UuXLjQksrXX/ziF4HLW7duDflZv379AmHfxo0b9dprryXld6arH0cze/bsQBVjXl6e3n//fS1evDimf//3f/8XeJz//Oc/SZtXNtlef/31wOWjjjoq5b/vnXfe0YUXXhj4mw4dOlQzZ85s9ksjAADSiWATAIAsM3DgQJ1yyimB67fddpuFrUmOtm3b6uKLLw5c/8tf/hJ1nsiHHnpIX331lSRf6Pe73/0u5W0006FDh8DlTZs2pez3HHLIIYHL0YLsbdu26U9/+lPK2uFkZ511lrp27SrJN0etMQwLV19fH1Ip2VJ1dXUhixdFs2HDhsDlTp06hfyssLBQ1113XeD6VVddFVe/Cw9K/dLVj6MxDkMfNGhQk+cezciRIwPh/4YNG/Tuu+8mvX3hGhoa4lrMac6cOXrxxRcD1y+44IJUNCvgo48+0i9+8QvV1tZKkk477TS9+OKLKigoSOnvBQAgXgSbAABkoUmTJgUuf/LJJ3rzzTctbE1yTJo0KbDAy7fffqshQ4bohx9+CNmmsbFRDzzwgMaPHx+47eqrr26yynS6HHPMMYHLc+fOTcqq1WbOPffcwOUpU6bov//9b5NtPvvsM5122mnasGFDzCvLZ5O8vLyQaueHH35Yf/3rX1VfXx+y3bZt23TBBRfo448/DlQRt9SWLVvUrVs3XX/99Vq6dGnE7ebNmxeyov3QoUObbPPnP/9ZPXv2lOQLIXv37q3nn38+YpViRUWFHnnkEZ144om66667TLcx9uPnn38+puc0ffr0kIV8jHPexquiokJz5swJXP/1r38d1/27du2q008/PXA9HYsIVVdX6+CDD9akSZO0atWqiNvt3LlTt912m84///zAHJeHHXaYrrjiipS17fPPP9ewYcMCi1/17dtXr7/+uoqLi1P2OwEASBRzbAIAkIWGDBmivn37BuYKvPXWW3XWWWdFvc+cOXNUUVER8+8oKSnRnXfe2aJ2xuPQQw/VY489pl//+tfyeDxatGiRjjjiCP385z/XoYcequrqan3wwQchFWU/+9nP0trGcH369FG3bt20YcMGbdmyRUceeaQGDx6sjh07Buaw++lPfxpSjZqI0aNH65577tG3336ruro6XXrppbr99tvVq1cvFRUVafny5YHArFevXhoyZIilr4tdXX755Zo9e7ZeeeUVSdKdd96pxx9/XAMGDFD79u21ceNGvfvuu6qtrdUhhxyiX/7yl7rvvvskhU4HkIhdu3bpnnvu0T333KP27dvrhBNO0AEHHKCioiL9+OOP+vLLL0OC/J/85Ce69tprmzzOfvvtp1dffVUDBw7UmjVrVF5erl/96lfq2LGjfvazn6msrExer1c7duzQN998o++++y4QekaasuGCCy7Qv//9b0m+wPfTTz/ViSeeqJKSksA2V155pQ499NAWvQaRPP3004Hh0q1atdLw4cPjfoxf//rXgTlUX3rpJT388MOBL0rCfffddxo3blxcjz9x4sSQ1eslX2h566236tZbb1XXrl113HHHqVOnTiopKVF1dbVWr16tzz77LCQ8Lysr06uvvpq00NzMkCFDQr5kOfTQQzVhwoSY7jts2DANGzYsVU0DAKAJgk0AALLUpEmTAgsHffTRR5o/f77OPPPMiNt/8skn+uSTT2J+/DZt2qQ9HLv44ovVqlUrXX755dq6dasaGhr07rvvmg4tHTlypB577LGQ+QHTLScnRw8//LAuuOAC1dfXq7y8XE899VTINqNHj25xsFlYWKjXXntNQ4cODYRfK1as0IoVK0K269evn5599lk9+uijLfp9mcrlcunZZ5/VmDFj9Mwzz0jyrU5tHCIs+eY/fPnll0P+ls2tRB9Nfn6+CgsLVVdXJ0nasWNHyEr34QYMGKCZM2dGrLw95JBDtHTpUv3hD3/QCy+8IK/Xq4qKipA5HMO1bds24sJTgwYN0siRIwOL93z88cdNFlg655xzUhZsGisshw8fnlDF8QUXXKCrrrpKtbW1qqmp0QsvvKAxY8aYbrt58+a4VwW//PLLQ4LNnJwc5eXlqaGhIfCYxkW+zJx//vl68MEHmwSkybZt27aQ608//XTM9+3YsSPBJgAgrQg2AQDIUsOGDVPv3r0DlXq33HJL1GDTKc455xytXr1aTzzxhF5//XV9/fXXqqioUHFxcWDI6ahRo0JWiLbSOeeco6VLl2rq1KlauHCh1q9fr+rq6sCw02T5yU9+os8//1xTp07VSy+9pFWrVqm+vl5lZWU69thjdckll+hXv/oVC4M0o7CwUDNnztTYsWP12GOPadGiRfrxxx/Vrl07HXbYYRoxYoTGjh2rVq1aBVbalhTzCt1mDjjgAG3fvl3vvPOOPvjgA3366adavXq1tm3bpvr6erVu3VoHHXRQoLp34MCBzT5m+/bt9dxzz2n58uWaOXOmFixYoDVr1mj79u3KyclR27Ztddhhh+nEE0/UwIEDNWjQoKhfAvzvf//TOeeco5kzZ2rZsmWqqKgIzM+YSsuXL9dnn30WuB7vMHS/0tJSnXvuuYGh9NOnT48YbCZDaWmptm/frrffflsffvihPv/8c/3www/atm2b6urq1KpVK7Vr1049e/ZU3759dckll+iwww5LWXsAAHAqlzfZR80AAAAA1K9fP3300UeSpMWLF9smTAcAAMgUBJsAAABAkq1bt06HHnqoPB6PCgoKVFlZaem0BwAAAJmIVdEBAACAJPJ6vbr22mvl8XgkSeeddx6hJgAAQAoQbAIAAAAxmjRpkh544AFVVFSY/nzt2rU677zzAiun5+bm6vrrr09nEwEAALIGiwcBAAAAMVq/fr1uvfVWXX/99Tr22GN15JFHqk2bNqqurtbKlSv1+eefByo1JenGG29U7969LWwxAABA5iLYBAAAAOLU0NCgzz//XJ9//rnpz4uLi3XLLbdQrYmU++9//6vFixe36DEOP/xwXXvttUlqEQAA6cPiQQAAAECMdu3apVdeeUXvvPOOvv76a23btk0VFRXyeDxq3769jjjiCJ155pm67LLL1KVLF6ubiywwZswYzZgxo0WPcdppp2nBggXJaRAAAGlExWYSNTY2avPmzWrdurVcLpfVzQEAAECS5eTk6LzzztN5553X7LZVVVVpaBGyndvtbvFjeDwe+isAwDa8Xq92796trl27Kicn+vJAVGwm0caNG9WtWzermwEAAAAAAAA42oYNG3TggQdG3YaKzSRq3bq1JN8LX1paanFrksPtdmvu3LkaPHiw8vPzrW4Osgh9D1ag38EK9DtYhb4HK9DvYAX6HaxAv0tcVVWVunXrFsjZoiHYTCL/8PPS0tKMCjZLSkpUWlrKGxFpRd+DFeh3sAL9Dlah78EK9DtYgX4HK9DvWi6WaR6jD1QHAAAAAAAAABsi2AQAAAAAAADgOASbAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBx8qxuAHy8Xq/cbrcaGxutbkoIt9utvLw81dbWyuPxWN2crJGTk6P8/Hy5XC6rmwIAAAAAAGBLBJsWq6+v148//qg9e/bYMjj0er0qKyvThg0bCNnSLDc3VyUlJerUqZMKCgqsbg4AAAAAAICtEGxaaM+ePdqwYYNyc3PVrl07FRcXKzc311YBYmNjo6qrq7XffvspJ4eZC9LB6/XK4/Fo7969qqys1Nq1a3XggQeqpKTE6qYBAAAAAADYBsGmhSoqKpSfn6+DDjpIubm5VjfHVGNjo+rr61VUVESwmWb77bef2rdvr3Xr1qmiokLdu3e3ukkAAAAAAAC2QVJlkYaGBtXU1Kh9+/a2DTVhvdzcXLVv3141NTVqaGiwujkAAAAAAAC2QbBpEX9IVVhYaHFLYHf+PkKwCQAAAAAAEESwaTE7zacJe6KPAAAAAAAANEWwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdiErfXo0UMul0vTp08P3DZ9+nS5XK6Qfzk5OSotLdUJJ5ygiRMnatu2bREfM/y+kf4tWLAg9U8QAAAAAAAACcmzugFAolq1aqULL7xQkuTxeLRu3TotWrRIy5Yt05NPPqkPPvhAhx9+eMT7DxkyRGVlZRF/Hu1nAAAAAAAAsBbBJhyrY8eOIZWckvT111/rtNNO09atW3Xddddp9uzZEe8/YcIEDRgwILWNBAAAAAAAQEowFB0ZpWfPnho/frwkad68eaqrq7O4RQAAAAAAAEgFgk1knOOOO06S5Ha7tWPHDotbAwAAAAAAgFQg2ETGqaqqkiTl5uaqY8eOFrcGAAAAAAAAqUCwiYzjn1fzrLPOUn5+vsWtAQAAAAAAQCqweJCd9e4tlZdb2gSXpFKvVy6XK/Y7lZVJS5emrE1m/KuiP/LII3r66ad10EEH6cEHH4x6n9NPPz3iz9q0aaNdu3YluZUAAAAAAABIFoJNOysvlzZtsrQJrn3/7GjdunWmgWufPn00d+5ctWnTJur9hwwZorKyMtOflZSUJKWNAAAAAAAASA2CTTuLELqlk1eSd1/FZswBZ5ra3apVK1144YWSpLq6Oq1YsUJffPGFlixZot///vd65plnot5/woQJGjBgQBpaCgAAAAAAgGQj2LSzNA/nNuNtbFRVVZVKS0vlyrHXlKwdO3bU9OnTQ2576aWXdPHFF+vZZ59V//79ddVVV1nTOAAAAAAAAKSUvZIqoIXOP/98TZgwQZI0adIkVVZWWtwiAAAAAAAApALBJjLOxIkT1aVLF23fvl333nuv1c0BAAAAAABAChBsIuOUlJTob3/7myTp/vvv186dOy1uEQAAAAAAAJKNOTaRkS6//HLdc889+v7773X33Xfr73//e5Nt7rjjjiZzdBpdcsklGjx4cApbCQAAAAAAgEQRbCIj5efn67bbbtPIkSP1z3/+U+PHj1eHDh1CtnnrrbeiPsbxxx9PsAkAAAAAAGBTBJuwtbVr1za5bcyYMRozZkyz9x0xYoRGjBjR5Hav15uElgEAAAAAAMBKzLEJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DiODDanTJmin/70p2rdurU6deqk4cOHa9WqVc3e7/nnn9eRRx6poqIiHXvssZozZ07Iz71eryZNmqQuXbqouLhYAwcO1HfffZeqpwEAAAAAAAAgQY4MNt977z1dffXVWrx4sebNmye3263BgwerpqYm4n0++ugjjRw5Updddpk+//xzDR8+XMOHD9fy5csD29x555168MEHNW3aNH388cdq1aqVhgwZotra2nQ8LQAAAAAAAAAxcmSw+eabb2rMmDHq2bOnevXqpenTp2v9+vX69NNPI97ngQce0FlnnaW//OUvOuqoo3TrrbfqxBNP1EMPPSTJV615//3368Ybb9Qvf/lLHXfccXrqqae0efNmzZo1K03PDOF69Oghl8ul6dOnB26bPn26XC5XyL+cnByVlpbqhBNO0MSJE7Vt27aIjxl+30j/FixYEFdb/e0aM2ZMYk8WAAAAAAAAMcuzugHJUFlZKUlq3759xG0WLVqk8ePHh9w2ZMiQQGi5Zs0alZeXa+DAgYGft2nTRn379tWiRYs0YsSIJo9ZV1enurq6wPWqqipJktvtltvtjtpmt9str9erxsZGNTY2Rn+CFvJ6vYH/rWyn8XXy/9+qVStdcMEFkiSPx6P169dr0aJFWrZsmZ588km99957OvzwwyM+5uDBg1VWVhbx5506dQp5zrm5uYHfFamNUvJfq8bGRnm9Xrnd7kAbsoH/PdTcewlIJvodrEC/g1Xoe7AC/Q5WoN/BCvS7xMXzmjk+2GxsbNR1112nfv366Zhjjom4XXl5uTp37hxyW+fOnVVeXh74uf+2SNuEmzJlim6++eYmt8+dO1clJSVR252Xl6eysjJVV1ervr4+6rZ2sHv3bkt+rz8grK2tDQTH/qkB2rdvrwceeCBk+xUrVuicc87R1q1bdc011+i5556L+NjXXHONTj311Ki/3/87m7vN2C632x1xm0TU19dr7969ev/999XQ0JC0x3WKefPmWd0EZCH6HaxAv4NV6HuwAv0OVqDfwQr0u/jt2bMn5m0dH2xeffXVWr58uRYuXJj23z1x4sSQKtCqqip169ZNgwcPVmlpadT71tbWasOGDdpvv/1UVFSU6qYmzOv1avfu3WrdurVcLlfaf39Ojm+2hKKiosBr6n+9/MPPjfr27avx48frxhtv1IIFC1RYWKjCwkLTxy4pKWn272Qm0n387crPz0/ocSOpra1VcXGx+vfvb+u+kmxut1vz5s3ToEGDlJ+fb3VzkCXod7AC/Q5Woe/BCvQ7WIF+ByvQ7xIXT7GYo4PNcePG6fXXX9f777+vAw88MOq2ZWVl2rp1a8htW7duDQxF9v+/detWdenSJWSb448/3vQxI4Vm+fn5zXZaj8cTmBvSH97Zkb9i0t9WqxhfJ2M7zNrUq1cvSb4PkV27doX8PSM9ZjQ33XRTSGVu+HDwNWvWqEePHoHHcrlc2rt3r2677TY9//zz2rBhg9q1a6chQ4bo9ttv1wEHHNDs7wxvp8vliqlfZaJsfd6wFv0OVqDfwSr0PViBfgcr0O9gBfpd/OJ5veybqEXh9Xo1btw4vfzyy3rnnXd08MEHN3ufk08+WfPnzw+5bd68eTr55JMlSQcffLDKyspCtqmqqtLHH38c2AbO4E/2c3Nz1bFjxxY/3vHHH6/Ro0cHro8ePTrk33777ReyfWVlpU455RRNmzZNRx99tIYOHSqv16unnnpK/fr1C8wJCwAAAAAAgMQ5smLz6quv1tNPP61XXnlFrVu3DsyB2aZNGxUXF0uSRo0apQMOOEBTpkyRJF177bU67bTTdM899+jss8/WM888o6VLl+qRRx6R5Kuyu+6663Tbbbfp8MMP18EHH6y//e1v6tq1q4YPH27J80RiZs+eLUk666yzkvKtyPDhwzV8+HDNmDFDkkJWaDcza9YsDRkyRB988EFgSPrOnTt1xhlnaNmyZXr44Yc1ceLEFrcLAAAAAAAgmzky2PzXv/4lSRowYEDI7U8++aTGjBkjSVq/fn3IMONTTjlFTz/9tG688Ub93//9nw4//HDNmjUrZMGhG264QTU1Nfrd736nXbt26dRTT9Wbb75p2byGvXv3jrhwUTp5vd645tcsKyvT0qVLU9iipjwej9atW6dHHnlETz/9tA466CA9+OCDUe9z+umnR/xZmzZttGvXroTa0qpVKz355JMh82y2a9dOEyZM0IgRI/T2228TbAIAAAAAALSQI4NNr9fb7DYLFixocttFF12kiy66KOJ9XC6XbrnlFt1yyy0taV7SlJeXa9OmTVY3w7bWrVtnGrj26dNHc+fOVZs2baLef8iQIYG5VcM1t6p9NL179zad1/Ooo46SJP6mAAAAAAAASeDIYDNbRArd0i2Ris10aNWqlS688EJJUl1dnVasWKEvvvhCS5Ys0e9//3s988wzUe8/YcKEJlW/ydC9e3fT2/0VnLW1tUn/nQAAAAAAANmGYNPG0j2c20xjY6OqqqpUWlpqu9XbO3bs2GS+y5deekkXX3yxnn32WfXv319XXXVV2ttlt9cJAAAAAAAgE5HAIKOcf/75mjBhgiRp0qRJrEAOAAAAAACQoQg2kXEmTpyoLl26aPv27br33nuT9rj+FdYbGhqS9pgAAAAAAABIDMEmMk5JSYn+9re/SZLuv/9+7dy5MymPe+CBB0qSvv7666Q8HgAAAAAAABLHHJvISJdffrnuueceff/997r77rv197//vck2d9xxR5M5Oo0uueQSDR48OHD9ggsu0N13362BAwfqjDPOUOvWrSVJ//jHP9ShQ4ekPwcAAAAAAABERrCJjJSfn6/bbrtNI0eO1D//+U+NHz++Sfj41ltvRX2M448/PiTYvPXWW5WTk6OXXnpJs2bNUn19vSTpxhtvJNgEAAAAAABIM4JN2NratWub3DZmzBiNGTOm2fuOGDFCI0aMaHK71+tNqC1FRUX6xz/+oX/84x+mP2+uXT169Ej4dwMAAAAAACAUc2wCAAAAAAAAcByCTQAAAAAAAACOQ7AJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYNNiXq/X6ibA5ugjAAAAAAAATRFsWiQnx/fSezwei1sCu/P3EX+fAQAAAAAAAMGmZfLz85Wfn6/q6mqrmwKb2717d6C/AAAAAAAAwIdg0yIul0utW7dWZWWl9u7da3VzYFN79+5VVVWVWrduLZfLZXVzAAAAAAAAbCPP6gZks44dO2rv3r1av369SktL1bp1a+Xm5toqwGpsbFR9fb1qa2sZCp0mXq9XHo9Hu3fvVlVVlQoLC9WxY0ermwUAAAAAAGArBJsWys3NVbdu3VRRUaHdu3dr165dVjepCa/Xq71796q4uNhWgWs2yM/PV9u2bdWxY0fl5uZa3RwAAAAAAABbIdi0WG5urjp37qxOnTrJ7XarsbHR6iaFcLvdev/999W/f3/meEyjnJwc5efnEyYDAAAAAABEQLBpEy6XSwUFBVY3o4nc3Fw1NDSoqKiIYBMAAAAAAAC2waSJAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DgEmwAAAAAAAAAch2ATAAAAAAAAgOMQbAIAAAAAAABwHIJNAAAAAAAAAI5DsAkAAAAAAADAcQg2AQAAAAAAADgOwSYAAAAAAAAAxyHYBAAAAAAAAOA4BJsAAAAAAAAAHIdgEwAAAAAAAIDjEGwCAAAAAAAAcByCTQAAAAAAAACOQ7AJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DgEmwAAAAAAAAAch2ATAAAAAAAAgOMQbAIAAAAAAABwHIJNAAAAAAAAAI5DsAkAAAAAAADAcRwZbL7//vs699xz1bVrV7lcLs2aNSvq9mPGjJHL5Wryr2fPnoFtbrrppiY/P/LII1P8TAAAAAAAAAAkwpHBZk1NjXr16qWpU6fGtP0DDzygLVu2BP5t2LBB7du310UXXRSyXc+ePUO2W7hwYSqaDwAAAAAAAKCF8qxuQCKGDh2qoUOHxrx9mzZt1KZNm8D1WbNmaefOnRo7dmzIdnl5eSorK4v5cevq6lRXVxe4XlVVJUlyu91yu90xP46d+Z9HpjwfOAd9D1ag38EK9DtYhb4HK9DvYAX6HaxAv0tcPK+Zy+v1elPYlpRzuVx6+eWXNXz48Jjvc+6556qurk5z584N3HbTTTfprrvuUps2bVRUVKSTTz5ZU6ZMUffu3SM+zk033aSbb765ye1PP/20SkpK4noeAAAAAAAAQLbbs2ePLrnkElVWVqq0tDTqtlkXbG7evFndu3fX008/rV/96leB29944w1VV1friCOO0JYtW3TzzTdr06ZNWr58uVq3bm36WGYVm926dVNFRUWzL7xTuN1uzZs3T4MGDVJ+fr7VzUEWoe/BCvQ7WIF+B6vQ92AF+h2sQL+DFeh3iauqqlLHjh1jCjYdORS9JWbMmKG2bds2CUKNQ9uPO+449e3bVwcddJCee+45XXbZZaaPVVhYqMLCwia35+fnZ1ynzcTnBGeg78EK9DtYgX4Hq9D3YAX6HaxAv4MV6Hfxi+f1cuTiQYnyer164okndOmll6qgoCDqtm3bttVPfvITrV69Ok2tAwAAAAAAABCrrAo233vvPa1evTpiBaZRdXW1vv/+e3Xp0iUNLQMAAAAAAAAQD0cGm9XV1Vq2bJmWLVsmSVqzZo2WLVum9evXS5ImTpyoUaNGNbnf448/rr59++qYY45p8rPrr79e7733ntauXauPPvpI5513nnJzczVy5MiUPhcAAAAAAAAA8XPkHJtLly7V6aefHrg+fvx4SdLo0aM1ffp0bdmyJRBy+lVWVurFF1/UAw88YPqYGzdu1MiRI7V9+3btv//+OvXUU7V48WLtv//+qXsiAAAAAAAAABLiyGBzwIABiraY+/Tp05vc1qZNG+3ZsyfifZ555plkNA0AAAAAAABAGjhyKDoAAAAAAACA7EawCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DgEmwAAAAAAAAAch2ATAAAAAAAAgOMQbAIAAAAAAABwHIJNAAAAAAAAAI5DsAkAAAAAAADAcQg2AQAAAAAAADgOwSYAAAAAAAAAxyHYBAAAAAAAAOA4BJsAAAAAAAAAHIdgEwAAAAAAAIDjEGwCAAAAAAAAcByCTQAAAAAAAACOQ7AJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DgEmwAAAAAAAAAch2ATAAAAAAAAgOMQbAIAAAAAAABwHIJNAAAAAAAAAI5DsAkAAAAAAADAcQg2AQAAAAAAADgOwSYAAAAAAAAAxyHYBAAAAAAAAOA4BJsAAAAAAAAAHIdgEwAAAAAAAIDjEGwCAAAAAAAAcByCTQAAAAAAAACOQ7AJAAAAAAAAwHEINgEAAAAAAAA4DsEmAAAAAAAAAMch2AQAAAAAAADgOASbAAAAAAAAAByHYBMAAAAAAACA4xBsAgAAAAAAAHAcgk0AAAAAAAAAjkOwCQAAAAAAAMBxCDYBAAAAAAAAOA7BJgAAAAAAAADHIdgEAAAAAAAA4DgEmwAAAAAAAAAch2ATAAAAAAAAgOMQbAIAAAAAAABwHIJNAAAAAAAAAI5DsAkAAAAAAADAcQg2AQAAAAAAADiOI4PN999/X+eee666du0ql8ulWbNmRd1+wYIFcrlcTf6Vl5eHbDd16lT16NFDRUVF6tu3r5YsWZLCZwEAAAAAAAAgUY4MNmtqatSrVy9NnTo1rvutWrVKW7ZsCfzr1KlT4GfPPvusxo8fr8mTJ+uzzz5Tr169NGTIEP3444/Jbj4AAAAAAACAFsqzugGJGDp0qIYOHRr3/Tp16qS2bdua/uzee+/VFVdcobFjx0qSpk2bptmzZ+uJJ57QhAkTWtJcAAAAAAAAAEnmyGAzUccff7zq6up0zDHH6KabblK/fv0kSfX19fr00081ceLEwLY5OTkaOHCgFi1aFPHx6urqVFdXF7heVVUlSXK73XK73Sl6Funlfx6Z8nzgHPQ9WIF+ByvQ72AV+h6sQL+DFeh3sAL9LnHxvGZZEWx26dJF06ZNU+/evVVXV6fHHntMAwYM0Mcff6wTTzxRFRUV8ng86ty5c8j9OnfurJUrV0Z83ClTpujmm29ucvvcuXNVUlKS9OdhpXnz5lndBGQp+h6sQL+DFeh3sAp9D1ag38EK9DtYgX4Xvz179sS8bVYEm0cccYSOOOKIwPVTTjlF33//ve677z795z//SfhxJ06cqPHjxweuV1VVqVu3bho8eLBKS0tb1Ga7cLvdmjdvngYNGqT8/Hyrm4MsQt+DFeh3sAL9Dlah78EK9DtYgX4HK9DvEucfER2LrAg2zfTp00cLFy6UJHXs2FG5ubnaunVryDZbt25VWVlZxMcoLCxUYWFhk9vz8/MzrtNm4nOCM9D3YAX6HaxAv4NV6HuwAv0OVqDfwQr0u/jF83o5clX0ZFi2bJm6dOkiSSooKNBJJ52k+fPnB37e2Nio+fPn6+STT7aqiQAAAAAAAAAicGTFZnV1tVavXh24vmbNGi1btkzt27dX9+7dNXHiRG3atElPPfWUJOn+++/XwQcfrJ49e6q2tlaPPfaY3nnnHc2dOzfwGOPHj9fo0aPVu3dv9enTR/fff79qamoCq6QDAAAAAAAAsA9HBptLly7V6aefHrjun+dy9OjRmj59urZs2aL169cHfl5fX68///nP2rRpk0pKSnTcccfp7bffDnmMiy++WNu2bdOkSZNUXl6u448/Xm+++WaTBYUAAAAAAAAAWM+RweaAAQPk9Xoj/nz69Okh12+44QbdcMMNzT7uuHHjNG7cuJY2DwAAAAAAAECKZe0cmwAAAAAAAACci2ATAAAAAAAAgOMQbAKA3SxfLm3ebHUrAAAAAACwNUfOsQlr9O7dW+Xl5VY3A1mktrZWRUVFVjcjverqpIoK3+UuXaQcvn9Kt6zsd7Ac/Q5Woe/BCvQ7WIF+Byukut+VlZVp6dKlKXt8JyDYRMzKy8u1adMmq5sBZI8tW6xuAQAAAAAAtkWwiZiVlZVZ3QRkmaz8VrWyUqqu9l3u0EHKtudvA1nZ72A5+h2sQt+DFeh3sAL9DlZIR8VmtiPYRMyyvbwZ6eV2uzVnzhwNGzZM+fn5Vjcnff7yF+nuu32XZ8yQzj7b2vZkmaztd7AU/Q5Woe/BCvQ7WIF+ByvQ79KDydsAwE4aGoKXPR7r2gEAAAAAgM0RbAKAnRiDzcZG69oBAAAAAIDNEWwCgJ0YqzSp2AQAAAAAICKCTQCwEyo2AQAAAACICcEmANgJFZsAAAAAAMSEYBMA7ISKTQAAAAAAYkKwCQB2QsUmAAAAAAAxIdgEADuhYhMAAAAAgJgQbAKAnRiDTSo2AQAAAACIiGATAOyEoegAAAAAAMSEYBMA7ISh6AAAAAAAxIRgEwDshIpNAAAAAABiQrAJAHZCxSYAAAAAADEh2AQAO6FiEwAAAACAmBBsAoCdULEJAAAAAEBMCDYBwE6o2AQAAAAAICYEmwBgJ1RsAgAAAAAQE4JNALATY7BJxSYAAAAAABERbAKAnRjDTCo2AQAAAACIiGATAOyEik0AAAAAAGJCsAkAdsLiQQAAAAAAxIRgEwDshMWDAAAAAACICcEmANgJFZsAAAAAAMSEYBMA7ISKTQAAAAAAYkKwCQB2QsUmAAAAAAAxIdgEADuhYhMAAAAAgJgQbAKAnRiDTSo2AQAAAACIiGATAOzEGGZSsQkAAAAAQEQEmwBgJ1RsAgAAAAAQE4JNALATKjYBAAAAAIgJwSYA2AkVmwAAAAAAxIRgEwDsxBhmEmwCAAAAABARwSYA2EVjY+jwc4aiAwAAAAAQEcEmANhFeIUmFZsAAAAAAEREsAkAdhEeZFKxCQAAAABARASbAGAXxoWDJCo2AQAAAACIgmATAOyCik0AAAAAAGJGsAkAdkHFJgAAAAAAMSPYBAC7oGITAAAAAICYEWwCgF1QsQkAAAAAQMwINgHALsKDTIJNAAAAAAAiItgEALsIr9hkKDoAAAAAABERbAKAXTAUHQAAAACAmBFsAoBdsHgQAAAAAAAxI9gEALugYhMAAAAAgJgRbAKAXVCxCQAAAABAzAg2AcAuqNgEAAAAACBmBJsAYBdUbAIAAAAAEDOCTQCwCyo2AQAAAACIGcEmANgFFZsAAAAAAMSMYBMA7IKKTQAAAAAAYkawCQB2QbAJAAAAAEDMHBlsvv/++zr33HPVtWtXuVwuzZo1K+r2L730kgYNGqT9999fpaWlOvnkk/XWW2+FbHPTTTfJ5XKF/DvyyCNT+CwAIAxD0QEAAAAAiJkjg82amhr16tVLU6dOjWn7999/X4MGDdKcOXP06aef6vTTT9e5556rzz//PGS7nj17asuWLYF/CxcuTEXzAcAcFZsAAAAAAMQsz+oGJGLo0KEaOnRozNvff//9Iddvv/12vfLKK3rttdd0wgknBG7Py8tTWVlZspoJAPGhYhMAAAAAgJg5MthsqcbGRu3evVvt27cPuf27775T165dVVRUpJNPPllTpkxR9+7dIz5OXV2d6urqAterqqokSW63W263OzWNTzP/88iU5wPnyMa+56qtDflQ9jY0qCGLnr8dZGO/g/Xod7AKfQ9WoN/BCvQ7WIF+l7h4XjOX1+v1prAtKedyufTyyy9r+PDhMd/nzjvv1B133KGVK1eqU6dOkqQ33nhD1dXVOuKII7RlyxbdfPPN2rRpk5YvX67WrVubPs5NN92km2++ucntTz/9tEpKShJ6PgCyV9eFC/XTu+8OXK8uK9P8adMsbBEAAAAAAOm1Z88eXXLJJaqsrFRpaWnUbbMu2Hz66ad1xRVX6JVXXtHAgQMjbrdr1y4ddNBBuvfee3XZZZeZbmNWsdmtWzdVVFQ0+8I7hdvt1rx58zRo0CDl5+db3RxkkWzse66ZM5U3enTgurdHDzV8+62FLco+2djvYD36HaxC34MV6HewAv0OVqDfJa6qqkodO3aMKdjMqqHozzzzjC6//HI9//zzUUNNSWrbtq1+8pOfaPXq1RG3KSwsVGFhYZPb8/PzM67TZuJzgjNkc99zNTZm7XO3Wjb3O1iHfger0PdgBfodrEC/gxXod/GL5/Vy5KroiZg5c6bGjh2rmTNn6uyzz252++rqan3//ffq0qVLGloHAGq6eBCrogMAAAAAEJEjKzarq6tDKinXrFmjZcuWqX379urevbsmTpyoTZs26amnnpLkG34+evRoPfDAA+rbt6/Ky8slScXFxWrTpo0k6frrr9e5556rgw46SJs3b9bkyZOVm5urkSNHpv8JAshODQ2h11kVHQAAAACAiBxZsbl06VKdcMIJOuGEEyRJ48eP1wknnKBJkyZJkrZs2aL169cHtn/kkUfU0NCgq6++Wl26dAn8u/baawPbbNy4USNHjtQRRxyhX/3qV+rQoYMWL16s/fffP71PDkD2omITAAAAAICYObJic8CAAYq25tH06dNDri9YsKDZx3zmmWda2CoAaKHwik2CTQAAAAAAInJkxSYAZKTwIJOh6AAAAAAARESwCQB2QcUmAAAAAAAxI9gEALugYhMAAAAAgJgRbAKAXVCxCQAAAABAzAg2AcAuwoNNKjYBAAAAAIiIYBMA7CK8QpOKTQAAAAAAIiLYBAC7oGITAAAAAICYEWwCgF2YLR7k9VrTFgAAAAAAbI5gEwDsIrxiUyLYBAAAAAAgAoJNALALszk1mWcTAAAAAABTBJsAYBdmFZsEmwAAAAAAmCLYBAC7MAs2WUAIAAAAAABTBJsAYBcMRQcAAAAAIGYEmwBgF1RsAgAAAAAQM4JNALALKjYBAAAAAIgZwSYA2AUVmwAAAAAAxIxgEwDsgopNAAAAAABiRrAJAHZBxSYAAAAAADEj2AQAu6BiEwAAAACAmBFsAoBdmFVsEmwCAAAAAGAqL5E7VVVVSZJKS0tb9Murq6v1zjvvSJJ+8YtftOixAMDxGIoOAAAAAEDMEgo227Ztq5ycHH355Zc6+uijm/x88+bNuvHGG+VyufT4449HfJx169Zp+PDhysnJUYPZCT0AZBOGogMAAAAAELOEh6J7vd6IP9u5c6emT5+u6dOnt/ixACBrULEJAAAAAEDMmGMTAOyCik0AAAAAAGJGsAkAdkHFJgAAAAAAMSPYBAC7oGITAAAAAICYEWwCgF1QsQkAAAAAQMwINgHALqjYBAAAAAAgZgSbAGAXVGwCAAAAABAzgk0AsAuzYJOKTQAAAAAATLUo2HS5XMlqBwCAoegAAAAAAMQsryV3PuaYYyL+zB965ubmtuRXAED2YCg6AAAAAAAxa1Gw6fV6k9UOAAAVmwAAAAAAxCyhYLN///4MQweAZKNiEwAAAACAmCUUbC5YsCDJzQAAULEJAAAAAEDsWBUdAOyCik0AAAAAAGJGsAkAdmEWbFKxCQAAAACAKcuDzT179uiee+6xuhkAYD2zEJOKTQAAAAAATFkWbO7evVt///vf1aNHD91www1WNQMA7IOKTQAAAAAAYpbQ4kEtsWPHDt13332aOnWqKisr5fV6WWEdACQqNgEAAAAAiEOLKjbXrVunP/7xjzr66KPVunVrtW/fXieeeKKmTJmiysrKkG2rq6s1efJk9ejRQ7fffrt27dolr9erjh076rbbbmvRkwCAjEDFJgAAAAAAMUu4YnPevHm64IILVFNTI0nyer2SpC+++EJffPGFnnrqKb377rsqKyvThx9+qF//+tfasGFDYLsDDjhA119/vX73u9+puLg4CU8FAByssVHa9/kYgmATAAAAAABTCQWb27Zt08iRI1VdXR24rVWrVsrLywtUan777be6+uqrde2112rIkCGqr6+X1+vVwQcfrAkTJmjMmDHKz89PzrMAAKeLFGAyFB0AAAAAAFMJDUV/9NFHtWPHDrlcLl144YVavXq1du/erZ07d2rz5s0aN26cJOmVV17Rb37zG9XV1Wm//fbTP//5T61atUpXXHEFoSYAGEUKNqnYBAAAAADAVEIVm3PnzpUk/exnP9Nzzz0X8rOysjI9+OCD2r17t2bMmKGNGzeqbdu2+uCDD9SzZ8+WtxgAMpHZ/JoSFZsAAAAAAESQUMXmypUr5XK5dNVVV0Xc5o9//KMkyeVy6Y9//COhJpzhv/+Vhg6VFi+2uiXINpGCTSo2AQAAAAAwlVDF5s6dOyVJhx12WMRtDj/88MDln//854n8GiC9vF5p3Dhp3zyxeuMNa9uD7MIcmwAAAAAAxCWhik232y1Jat26dcRt9ttvv8DlsrKyRH4NkF4eTzDU3L7d2rYg+1CxCQAAAABAXBIKNuPlcrnS8WuAljEGSJFCJiBVqNgEAAAAACAuaQk2AUcwhplUySHdqNgEAAAAACAuCc2x6Td27Fi1atWqxdu5XC7Nnz+/JU0BWo6KTVgpUoBJsAkAAAAAgKkWBZtLly6N+nP/EPRo23m9Xoaqwx6o2ISVjP0vP1/aN5cxQ9EBAAAAADCXcLDp9XqT2Q7AelRswkrG/ldQEAw2CdkBAAAAADCVULDZSAURMpExQCJMQroZw/SCAqmmxneZz1sAAAAAAEyxeBDgZwyWqNhEuoUHm36E7AAAAAAAmCLYBPwYig4rGftfYWHwMhWbAAAAAACYItgE/Fg8CFaiYhMAAAAAgLgkNMfmLbfckux2aNKkSUl/TCAuVGzCSuGLB/lRsQkAAAAAgKmEgs2bbrpJLpcrqQ0h2ITlWDwIVqJiEwAAAACAuCQUbEqS1+tNWiOSHZICCWHxIFiJik0AAAAAAOKSULD57rvvJrsdcXn//fd111136dNPP9WWLVv08ssva/jw4VHvs2DBAo0fP15ff/21unXrphtvvFFjxowJ2Wbq1Km66667VF5erl69eumf//yn+vTpk7onAnuhYhNWomITAAAAAIC4JBRsnnbaacluR1xqamrUq1cv/fa3v9X555/f7PZr1qzR2WefrT/84Q/63//+p/nz5+vyyy9Xly5dNGTIEEnSs88+q/Hjx2vatGnq27ev7r//fg0ZMkSrVq1Sp06dUv2UYAdUbMJKBJsAAAAAAMQl4aHoVho6dKiGDh0a8/bTpk3TwQcfrHvuuUeSdNRRR2nhwoW67777AsHmvffeqyuuuEJjx44N3Gf27Nl64oknNGHCBNPHraurU11dXeB6VVWVJMntdsvtdif03OzG/zwy5flE46qrC74hPB656+slpkmwTDb1PSm0/zXm5ytn32VPQ4Mas+Q1sINs63ewB/odrELfgxXod7AC/Q5WoN8lLp7XzJHBZrwWLVqkgQMHhtw2ZMgQXXfddZKk+vp6ffrpp5o4cWLg5zk5ORo4cKAWLVoU8XGnTJmim2++ucntc+fOVUlJSXIabxPz5s2zugkp127lSvU3XJ/z+utSbq5l7YFPNvQ9SSr7+GP13Xd5686d6rLv8trVq7V8zhyrmpW1sqXfwV7od7AKfQ9WoN/BCvQ7WIF+F789e/bEvG1WBJvl5eXq3LlzyG2dO3dWVVWV9u7dq507d8rj8Zhus3LlyoiPO3HiRI0fPz5wvaqqSt26ddPgwYNVWlqa3CdhEbfbrXnz5mnQoEHKz8+3ujkp5WrdOuT6sMGDpcJCi1qDbOp7kuSqrQ1c7nzggdKSJZKkHgcdpO7DhlnVrKyTbf0O9kC/g1Xoe7AC/Q5WoN/BCvS7xPlHRMciK4LNVCksLFShSfCVn5+fcZ02E59TE2HDzvNzcqRMf84OkBV9L0xOUVHgcq7Xq9wse/52kI39Dtaj38Eq9D1YgX4HK9DvYAX6Xfzieb2yItgsKyvT1q1bQ27bunWrSktLVVxcrNzcXOXm5ppuU1ZWls6mwkrhi7SwgBDSydj/jF+YNDamvy0AAAAAADhATvObON/JJ5+s+fPnh9w2b948nXzyyZKkgoICnXTSSSHbNDY2av78+YFtkAXCg0xWo0Y6sSo6AAAAAABxcWSwWV1drWXLlmnZsmWSpDVr1mjZsmVav369JN/cl6NGjQps/4c//EE//PCDbrjhBq1cuVIPP/ywnnvuOf3pT38KbDN+/Hg9+uijmjFjhlasWKErr7xSNTU1gVXSkQWo2ISVjP3PGGxSsQkAAAAAgClHDkVfunSpTj/99MB1/wI+o0eP1vTp07Vly5ZAyClJBx98sGbPnq0//elPeuCBB3TggQfqscce05AhQwLbXHzxxdq2bZsmTZqk8vJyHX/88XrzzTebLCiEDEbFJqxExSYAAAAAAHFxZLA5YMAAeb3eiD+fPn266X0+//zzqI87btw4jRs3rqXNg1NRsQkrRQo2qdgEAAAAAMCUI4eiAykRHmxSKYd0ijQUnX4IAAAAAIApgk3AL7xCk4pNpBND0QEAAAAAiAvBJuDHUHRYicWDAAAAAACIC8Em4MfiQbASFZsAAAAAAMSFYBPwo2ITVqJiEwAAAACAuBBsAn4sHgQrUbEJAAAAAEBcCDYBPxYPgpWMAWZhYfAyFZsAAAAAAJgi2AT8qNiElajYBAAAAAAgLgSbgB8Vm7BSpGCTik0AAAAAAEwRbAJ+LB4EK0VaPIiKTQAAAAAATBFsAn4MRYeVGIoOZAavV1q5kmprAAAAIA0INgE/hqLDSpEqNglHAGf54x+lo46SRo2yuiUAAABAxiPYBPyo2ISVqNgEMsOcOb7/33jD2nYAAAAAWYBgE/CjYhNWomITyAxut+9/9iEAAABAyhFsAn5UbMJKVGwCmYFgEwAAAEgbgk3Aj1XRYSVjf8vPl1wu32UqNgFn8QebfCkBAAAApBzBJuAXHmRyUop0Mva33Fzfv/DbAdiff1/Cl2MAAGSvNWuk//f/pAULrG4JkPHyrG4AYBtUbMJKxv6Wlyfl7PveiYpNwFmMFZteb7D6GgAAZIfFi6VzzpG2b5f+9S+pvDx0qikASUXFJuDH4kGwEhWbQGbwB5sS718AALLNa69JZ5zhCzUlaedOqarK2jYBGY5gE/Bj8SBYiYpNIDMY38vsRwAAyB7/+580fLi0d2/o7cYvPQEkHcEm4MdQdFiJik3A+fzDz/3YjwAAkD1uvjlYlJBnmPWP4wEgpQg2AT8WD4KVIlVs0g8B52BKEwAAspd/yHnXrtIFFwRvp2ITSCmCTcCPik1Yydj/8vKCFZsMRQecI/zEhf0IAADZw38cUFISulgQwSaQUgSbgB9zbMJKxgAkN5eKTcCJwk9ceP8CAJA9/McB+fm+f+G3A0gJgk3AjyGEyfXjj1QbxiN8KDoVm4DzsB8BACB7EWwCliDYBPyo2Eye//1P6tJFOvXU0IU0EFn44kFUbALOw1B0AACyF8EmYAmCTcCPSpvkeeklX6XhokXS5s1Wt8YZjP0tJ4eKTcCJCDYBAMhOXm+wIIFgE0grgk3Aj8WDkqeuLni5vt66djiJv//l5kouVzDYpGITcI7w/QbvXwAAsoMxvCTYBNKKYBPwYyh68hh33uzIY+MPRPLyfP/7h6JTsQk4BxWbAABkJ4JNwDIEm4AfQ9GTx1ilyesYG2PFpvF/AnbAOQg2AQDITtGCTY4HgJQi2AT8qNhMHio240fFJuB8DEUHACA7hQeb/mP68J8BSDqCTcCPis3kMVZssiOPjT8A8R8EUbEJOA8VmwAAZCeGogOWIdgE/KjYTB7jzpsT+9j4Xyd/oOmv2KQfAs5BsAkAQHYi2AQsQ7AJ+EVbFf2HH6RRo6QZM9LbJqeiYjN+4UPR/QEnQ9EB56DyHwCA7GQ8/yHYBNKKYBPwizY32l13Sf/5j/S730mVleltlxMxx2b8whcPomITcJ7wzzvevwAAZAcqNgHLEGwCftEqNrds8f1fXy/t2pW2JjkWq6LHj4pNwPkYig4AQHYi2AQsQ7AJ+EUbQsickfGhYjN+VGwCzsdQdAAAshPBJmAZgk3AL9riQQSb8eH1il+kik1J8nrT3x4A8aNiEwCA7BQt2OR4AEgpgk3AL9pQdIK6+LB4UPzCKzaNwSZVm4AzRJurGQAAZC7jOU9BARWbQBoRbAJ+0U5IjT8j2GweQ9HjF16xmWP4eGaeTcAZqNgEACA7hVds+o/pw38GIOkINgE/KjaTh8WD4hdtKDpVX4AzEGwCAJCdmGMTsAzBJuAXrWKTYDN2Xm/kUBiRRVo8yPgzAPbG4kEAAGQngk3AMgSbgB8Vm8kRvuNmR968xsbgAkFmFZsMRQecIfzzji8lAADIDgSbgGUINgE/VkVPDoZixs/Y16jYBJyLzz8AALITwSZgGYJNwC/aEEIWD4odFZvxM/YpKjYB52IoOgAA2YlgE7AMwSbgx1D05DAuHCSxI48FFZtAZqBiEwCA7ESwCViGYBPwi3UoOiFTdJzYx4+KTSAzMMcmAADZKVqwyfkQkFIEm4BftCGEVGzGjorN+BnDD3+wScVm/Lxe6Y47pEmTmvZDIB0Yig4AQHYKDzb9x/ThPwOQdHnNbwJkCRYPSg7m2IyfsU/5KzWp2Izfu+9KEyf6Lh9zjPSrX1nbHmQfKtYBAMhODEUHLEPFJuDH4kHJEV4px+vVvOaGolOxGZt164KXN260rh3IXgSbAABkJ4JNwDIEm4AfFZvJQcVm/JpbPIiKzdjU1gYv8z6FFcL7HV9KAACQHYzFHQSbQFoRbAKSeXDEHJuJYY7N+FGxmRx79wYv0+9gBSo2AQDITlRsApYh2AQk85NPf5jU2BgafHKiGh0n9vFrrmKTYDM2xopNDiBhBT7/AADITgSbgGUINgHJPDjyn5ByohofhqLHr7mKTYaix4aKTViNVdEBAMhOBJuAZQg2Acn85NN/Gyeq8WHxoPhRsZkczLEJq4WfuPDeBQAgO0QLNjkuBVKKYBOQzE8+/bdRsRkfKjbjR8VmclCxCauxvwAAIDsZjwEKCoLH9OE/A5B0BJuAxFD0ZGLxoPgZ+5//IIiKzfgxxyasRoU/AADZKbxi0+UKFipwXAqkFMEmIEVfPIhgMz68XvEzvkb+AyAqNuNHxSasxucfAADZKTzYNP7PcSmQUgSbgETFZjJRsRk/s6HoVGzGjzk2YbXwfsd7FwCA7ECwCVjG0cHm1KlT1aNHDxUVFalv375asmRJxG0HDBggl8vV5N/ZZ58d2GbMmDFNfn7WWWel46nAatEqNhlaGB/m2Iyf2eJBVGzGj4pNWI0vwgAAyE4Em4Bl8prfxJ6effZZjR8/XtOmTVPfvn11//33a8iQIVq1apU6derUZPuXXnpJ9YZKsu3bt6tXr1666KKLQrY766yz9OSTTwauFxYWpu5JwD6o2EweXq/4Nbd4EFVfsWGOTViNzz8AALITwSZgGcdWbN5777264oorNHbsWB199NGaNm2aSkpK9MQTT5hu3759e5WVlQX+zZs3TyUlJU2CzcLCwpDt2rVrl46nA6sRbCYPQ9HjZ1axaRyKTsVmbIwVm7xPYQUq/AEAyE4Em4BlHFmxWV9fr08//VQTJ04M3JaTk6OBAwdq0aJFMT3G448/rhEjRqhVq1Yhty9YsECdOnVSu3btdMYZZ+i2225Thw4dTB+jrq5OdXV1getVVVWSJLfbLXeGfHj5n0emPJ+I9u5VfthNXo9HDW53k5956urUmOmvRwvk1NbKUGuoxvp6eRJ4vbKm70ly1dYGPow9Lpca3W7lSIHXsaGuTt4seB1aKm/vXrn2XW6sq6PfIe1y6+tDvjFudLtj6of0O1iFvgcr0O9ghVT3O+MxgNv3i5SXny+XJG9Dg++8ElmHz7vExfOaOTLYrKiokMfjUefOnUNu79y5s1auXNns/ZcsWaLly5fr8ccfD7n9rLPO0vnnn6+DDz5Y33//vf7v//5PQ4cO1aJFi5RrHBa6z5QpU3TzzTc3uX3u3LkqKSmJ81nZ27x586xuQkq1Xr9eZ4Td5vJ4NGf2bLX77jv1N9y+ZvVqfT1nTjqb5yiHf/WVjjZc31VRoQ9a8Hplet+TpM6ffKKf7bv87Q8/6Ns5c3TkmjU6Yt9tSxYt0rY9e6xqnmOcsX27Wu+7/OPmzfqYfoc0619RIeM4j/KNG/VJHP2Qfger0PdgBfodrJCqfnfKli3af9/lt955R57iYp1ZV6f9JLn37NEbnD9mNT7v4rcnjvNfRwabLfX444/r2GOPVZ8+fUJuHzFiRODyscceq+OOO06HHnqoFixYoDPPPLPJ40ycOFHjx48PXK+qqlK3bt00ePBglZaWpu4JpJHb7da8efM0aNAg5eeH1zRmkC++ML152FlnyRU2HcHB3brpoGHD0tEqR8r5/POQ6+1atdKwBF6vrOl7klyGb6N+ctRROmzYMOV88kngtj69e8s7aJAVTXOUPMMXUJ3ataPfIe3yJk8OuV7WsWNM/ZB+B6vQ92AF+h2skOp+l3vPPYHLQ845RyosVF7bttLmzcqXEjouhfMls9+53nxTOVOnqnHcOHmHDElSC+3LPyI6Fo4MNjt27Kjc3Fxt3bo15PatW7eqrKws6n1ramr0zDPP6JZbbmn29xxyyCHq2LGjVq9ebRpsFhYWmi4ulJ+fn3E76Ux8TiFyzKebzXe5JK835LZcr1e5mfxatFTYfKWuhoYW9Z2M73thcgsLff3L8JzzXK6Q64jAsHhQjsejHPod0i1sTs2cxsa4+iH9Dlah78EK9DtYIWX9znAMkF9S4ju/3Pd7XG43fT3LJaXfTZggffONcjZulM45JzkNs7F4Xi9HLh5UUFCgk046SfPnzw/c1tjYqPnz5+vkk0+Oet/nn39edXV1+s1vftPs79m4caO2b9+uLl26tLjNsLlIq057PCweFC9er/iZLR5knP6CxYNiY1w8iHlsYIXwfhdp3wIAADKL/xggJydYNMPiQUgmf2Ffebm17bAhRwabkjR+/Hg9+uijmjFjhlasWKErr7xSNTU1Gjt2rCRp1KhRIYsL+T3++OMaPnx4kwWBqqur9Ze//EWLFy/W2rVrNX/+fP3yl7/UYYcdpiFZUOab9SKFbw0NBHXxYlX0+Bn7VN6+QnpjFTHhSGwMFZv0O1iCVdEBAMhO/nMgY5WZ/7LXy/E8Ws5/rmMs5oAkhw5Fl6SLL75Y27Zt06RJk1ReXq7jjz9eb775ZmBBofXr1ysnbHjxqlWrtHDhQs2dO7fJ4+Xm5urLL7/UjBkztGvXLnXt2lWDBw/WrbfeajrcHBmGis3kCX+9CJiaR8Vmy3k8oaE6/Q5WYH8BAEB28h8DmAWb/p+bLEgMxMwYbHq9kstlbXtsxLHBpiSNGzdO48aNM/3ZggULmtx2xBFHyBs2X6JfcXGx3nrrrWQ2D04SrWKTCpz4cGIfPyo2W66uLvQ6/Q5W4PMPAIDsFEuwWVSU3jYhczQ0BM8JvV7fuQ/9KcCxQ9GBpIoUHDEUPX4MRY8fFZstFz4kg34HK4TvH/hSAgCA7BBLsAkkKryIg+HoIQg2AYmh6MnEUPT4mVVsGoNNwpHmGefXlOh3sAb7CwAAslNzwSbHBGiJ8HMdgs0QBJuAxOJByRRescnr1TxjcGk2FJ2KzeaF79zpd7AC+wsAALKT/xigoCB4GxWbSJbwYHPPHmvaYVMEm4BExWYyUbEZP2OfMhuKTsVm86jYhB0wJzMAANmJoehIJSo2oyLYBKToc2xyohofKjbjx+JBLcccm7CD8H7HexcAgOxgFmzm5TX9OZAI5tiMimATkCKHb1Rsxs/s9fJ6rWmLU7B4UMtRsQmrNTY2/axjfwEEeb3SzJnSjBns1wBkHio2kUoMRY8qr/lNgCzAqujJE16xKfleM+OOHaGo2Gw55tiE1cxOWOiHQNCHH0qXXOK7XFYmDRlibXsAIJkINpFKDEWPiopNQKJiM5k4uY8fFZstR8UmrGbW5/hSAghauTJ4ecUK69oBAMnm8QRHbRBsIhUINqMi2AQk82BJomIzEWY7bXbk0VGx2XLMsQmrme0b2F8AQcb5wTghA5BJjMedBJtIBYLNqAg2ASk0OCosDF5m8aD4mQ1FZ0cenbH/+YNNKjbjE76zZ25XpBvV6kB0xs9pTsgAZJJYgk2OCdAS4YsHMcdmCIJNQArd0RiDTYaix4+T+/gZXx9/oEnFZnzCg02J1w3pxWcfEB0VmwAyFRWbSDUqNqMi2ASk0ACkoCB4maHo8aNiM35UbLac2c6dfod0Mts3EK4DQVRsAshUBJtINYLNqAg2ASn0hLSoKHiZis34Mcdm/MwqNo3BJuFI88wqNul3SCcqNoHoqNgEkKkiBZv+goXwbYB4hZ/rMBQ9BMEmIEWfY5NgMz5mFZu8ZtGxeFDLmZ0k0++QTgSbQHQEmwAyFRWbSLXwOTbZj4Yg2ASkyMGmx8PiQfGiYjN+xv5nVrHJUPTmUbEJq7EqOhAdQ9EBZCpjYQfBJlKBoehREWwCUuTFg8wqNqmei45gM35UbLYcc2zCamb9jfcuEETFJoBMRcUmUo1gMyqCTUCKvHgQc2zGj6Ho8aNis+Wo2ITVzPqb18v7F/CjYhNAprJjsLlnj/Tpp75jETgfc2xGRbAJSPFVbBLSRUfFZvyo2Gw55tiE1SL1N/oh4EPFJoBMZbdg0+uVTjlF6t1buv329P1epA4Vm1ERbAISiwcli9dLsJkIY//zB5tUbMaHik1YLVJ/Y58B+BBsAshUsQSb6Twe2LVL+uIL3+V33knf70XqsHhQVASbgMTiQclCxVJijK+PP9CkYjM+zLEZWXW19MQT0tdfW92SzBapv2Xz+/fNN6VXXmEYHHwYig4gUxmPAYzTmllVsWn8vOV4ODMwFD2qPKsbANgCQ9GTw2x+TYkdanPMgk0qNuNjVrHJe9Xn73+X7rhD6tRJWr8+9DMOycMXO6E++UQaOtR3+e23pTPPtLY9sB4VmwAyld2GohuPiyOdn8FZGIoeFRWbgBS9YpNgM3YMxUxMTU3wcqtWvv+NwWY2V3zFiorNyL780vf/jz9K27ZZ25ZMxudfKP8QOElavty6dsA+CDYBZKpIwWZenvk2qUawmXkINqMi2ASk+Co2PZ7gsDqvV7rrLmny5KbzXmQjKjYTs2tX8HJpqe9/41B0KjabxxybkRk/mzi4TR0qNkMZv7Bh/wiJoeiA061bJ11zjTR7ttUtsR8qNpFqBJtRMRQdkOKr2PTfnpcnffCBdMMNvtuOOkoaMSK17bS7SDtsAqbo/MFmaan5UHQqNptHxWZkxlCJgCl1mGMzlHHuJ/odpNB+UFvr+3LY5bKuPQDic/PN0pNPSjNm+EaBFBVZ3SL7INhEqoUfSzHHZggqNgEp+qroZtU2/ts2bAjeZrycrRiKmRh/sNm2bfA2Fg+KD3NsRkbFZnrw+RfKWLFJv4PU9HPa7HMbgH2tX+/7f/duaedOa9tiNwSbSDUqNqMi2ERmmT1b+tnPpKeeiu9+kYaiR6rY9G9v3FGw02AoeqLMgk0WD4oPFZuREWymB0PRQzEUHeHC+wEnZYCzGI8hqquta4cdEWwi1Qg2o2IoOjLLtddK338vrV0rjRoV+/2iVWxGCzaNPyNEYSh6Imprgyd7VGwmjjk2IzO+NgRMqUPFZiiGoiMcwSbgbMaAzPjlFWILNtN5PECwmXnCz3Xq633niMZimCxGxSYyx5YtvlBTkioqggv8xCLRYJOKzVDG16CgIHg5W0/sY2FcOIiKzcQxFD0yKjbTw7ivMK6Cmq1fTDAUHeGoNgGczXg8QbAZiopNpJrZuQ770QCCTWSORYuClyMNIY8k0aHoVGyGMr4GJSXmtyNUpGCTis3Yeb1UbEbD4kHpYdyPGBdUyNaAnaHoMPJ6qdgEnI6KzcgINpFqZsdS7EcDCDaROYzBphTfSmGJLh5ExWYo42vQqlXwMgFTZFRstlyk0IR+50PFZnoY+xvBJkPREcrss4cTMsBZCDYjs3uwGc9IRtgTFZtREWwic3z0Uej1eIJNFg9KjkgVm9l6Yh8LKjZbLtJOnWDTh2AzPYz9rbg4eDlbP/+o2IQRlSaA8xFsRhYp2DROTWNVsOn1ci6RCcyCzXjyjgxHsInMUFcnffpp6G3JqthkKHrsGIoePyo2W85sRy9lb6AUjsWD0sPY34zBZraeTDDHJowINgHnY47NyIz7ObtVbErshzMBFZtREWwiM3z+edOD5mQEm1Rsxsf4GhBsxiaWYDNbg5FYUbEZWUNDaDDO51TqMBQ9FEPRYcQJGeB8VGxGZueh6BLHf04Xfjzvx340gGATmSF8fk0pvjd6pKHoVGzGh6Ho8TMGm+3aBS8bh6JTsRmd8eCNQD1UeKBEwJQ8q1ZJr71mvj8g2GQoOkJRsQk4H8FmZASbSKVIo9MYih5AsInMED6/ppR4xWZBQejtLB4UOyo240fFZssZT45LS4OX6XdNwwQ+p5KjslI66STpF7+QHnvMd1ukoegEm/Q7EGwCmYBgMzKCTaRSpGCT/WgAwSacz+ttebBpPPE0Vtq43eYnpf6giYrNUMbXgFXRY8PiQS1n3Nm3bh28nK2BkhHBZmp8+23wpG7pUt//kSo2s/X9y1B0GDEUHXC2xsbQ/RzBZqhYgs10HpcSbGYWgs1mEWzC+TZskDZvbnp7MubYjHQyRsWmuUgVmwRMkWXy4kHffiv93/9JX3yR2t9j3Kkbg00C9aYHQgRMyWF8Xf37GlZFD2poCN0f0O+QjIrNmhppyhTp2WeT0yYAsQs/pqqutqYddmV8fYyj/6jYRDIwFL1ZeVY3AGgxY7Vmp07Sjz/6Licj2Ix00M0cm+ZYFT1+mVyxedVV0vz5vnkIv/oqdb8nUsUm/Y6KzVQxvq7+fU2kyv9sDDbDK3nod0hGxeaTT/q+LJOk3r2lQw9tebsAxCb8c5yKzVAMRUcqGY878/KCx5ZUbAZQsQnnMy4cdOaZwcuJDkU3BpuRvh2hYtMcFZvx8webLlfo/JCZUrEp+RZZ8XpT93sizbFJv2PxoFRprmIz24PN8P0v/Q7JqNhcvTp4ec2alrUHQHzC38MEm6EiBZs5Ob5j/PBtUo1gM7MY/57GxWYJNgMINuF8xorN008PXk7G4kHNBZvGHRQ7DCo2E+EPNktLQ6s0M6Fi03/Q63ZHfi8lAxWbkVGxmRpmFZuRhqI79f3bEuEnvASbSEawafys52QOSC8qNqOLFGwarxNsxm7LFumii6TJk61uiT0Y/57GEX7sCwMYig5na2yUli3zXT7qKKlr1+DPEqnYzMnxlXf7xVOxSYhCsJkIf7Bp3ElJmVGxaZx/adeu0LAnmZhjMzKCzdQwq9hkKHoQwSbCJWMounH7VH5ZBqApgs3omgs26+sJNuPx739LL7zgu3zxxdLRR1vbHqsZ/57t2wcvM8dmABWbcLY9e4InjV27hgYniVRs5uaGBpvxzLHptB1GKjAUPX6Rgk2nV2y63aH9obIydb+Lis3IWDwoNRiKHl34/pf9I5JRsWncnioVIL0INqOjYjO5Nm4MXt661bp22AVD0ZtFsAlnM1aEtWoVGqYlEmzm5YVWyjUXbFKxGaolFZuTJkkHHCC99FLy22VXtbXBk71Mq9gMP+BNZbDJHJuRUbGZGs0tHpTtq6JTsYlwyQ42qdiEHfz7377Ciocesrolqcccm9HZLdgM/3x12vGf8bwh2z7vGxulX/xCOvxw6euvfbcZ338Em6YINuFsxp3qfvslHmz6TzzDKzaZYzM+kSo2m9uRezzSHXdImzdL992XmrbZUaQV0aXQYNOJFZvpDDap2IyMxYNSI56KTSe+f1sq/P3v8WTn64CgZAxFZ45N2M0//uGbC3DKFKtbknpUbEYXS7CZzi86nV6xWVUVvJxtn/eLFkmvveZbMG/6dN9tkSo2GYoeQLAJZ0t2xWa8waZTKjY9Hmn79tT/HuNr0KpV8HJzO/La2uB9KyqS3y67ihZsOn0ouvG9KRFspkpDQ/T3djZVbG7blr7q5ngWD8rGik2z/W8m9z00j4pNZKKdO33/b9smeb3WtiXVCDajs1vFZqqDzR9/TO7jhTMGm9n2eb9pU/Cy/xifoejNItiEsyW7YjN8KHo8waZdT9oaGqTjj5fKyqTZs1P7uxKt2DS+zqkMwOwm1mDTiUPR0xlsZuviQXV10rHH+t7bc+ZE3sbIrp9TLfXUU1LnztKAAek5uQyvHGtsZPEgI7MTXqqFs1uyFw/iZA5W83ql3bt9l93uzK+cCj9+qK115hfvqZJNweb48b5jrj/9KXmPGc543pBtn/fl5cHL/oCXYLNZBJtwtlRXbBo/LIy3mw1Ft2uI8vXX0vLlvja/+GJqf1eic2waX2eCzSB/uOnEA8fwYMP4XJPNuLPPpjk2Fy2SVq6M/t7OlsWDnn3Wd5L5wQe+KS1SLfx1NVadSwSbBJsIR8UmMk14sOev3sxUZu/hTA9z42E8BjCeM0qZF2w+84zv/6efTt5jhsvmik1jsOk/L2aOzWYRbMLZklWxaQw2I1Vsmg0tdELFpjH8TfWwkViGYq5cKX3+eej9wuers2tInGzNBZv+vthcxWZtrTR3btMqSStRsZl6K1YELxsPAI2ypWLT+F6K9FokU/jrGv65Zfz8c+IXEy3FUHSES0awyRybsJPw4xw7BZt79/qOC5MZPJp9htvpuNNq/mOAvDzJ5Qr9mT/ozJRg038+mcqiBSo2fZqr2OTLhQCCTThbeMVmfn4wDIrnQ9A4FN34LZtxJ2AW1DmhYtMYZqY62Iz0evlfm9WrpaOPlk48Ufrww+DPw3e+2VK1mayKzd/9ThoyRDr//GS1rOVYPCj1jMFmpNc3WxYPMj7/dASb4Z9Ze/cG9ws5OaHD0KjY9MnUvofYJHsoerZV8MB+/MPQ/ewUbF56qe+4cOTI5D2mWTDGPJtB/tcnfBi68bZ0HZd6PE1/VzKDTf9ncX19aj6LPZ7Qc/xs+7xvLtgsKZEKCnyXsy30jYJgE84WXrHpcgWrNpNRsWlkNrQwfPEgO04cns5g07gTLSho+g3l4sXB12jRouC2BJstq9j0h8TG19RqdqjYzPRA6ZtvgpezvWIz3cFmtIrN8C/IMr0fmiHYRLhkD0XnZA5Ws3PF5kcf+f43FhG0FMFmdP5jgGjBpseTnnNFs8/bZB3/NTSEnu+l4vg+/L2VbZ/3ZkPRjefKRUXBAqJse22iINiEs4VXbEotCzb9wwdyTN4azVVsml23A+NBR6rL1Y07zYKC4I7c/3oZf3+0ExSCTZ9YKzb9Ozs77dyo2Ey9RCo2CTaTI/zLGGOwmZ9PsGm2ryHYzG7G90wiI2vCHyPbKnhgP3au2PS/t5I5VNzsM5xgMyiWYNO4XSqZfT4m6/gvHeds4Y+ZbZ/3zVVsFhUllndkOIJNOFt4xaaU2Bvdf+LpP9gOn/RZan6OTcmeQYpVFZvGk3v/7ZGCTSo2Wz7HpmQ+9MQqdqjYtMtrkQqVlaGL5EQK87Jh8SCPJ/QEM/xkMxXMKjb9+4XwYDMb59g029dkaqiO2BjfM/79XTzBZmNj6GNk24ku7MfOFZv+90ddXfKOhajYjC5bgs3w8+tUHN+HH9PaqXAj1Twe6ccfg9dranzHl8b9HxWbpgg24WzGg4qWBJvGoejG/41iqdi044mbVXNsGis2CTbNJbtiU7LPDs6KVdFzcnz9zv+6ZXKwuXJl6PVsHooe/tytrtjMywvdh2RjxSZD0RHObEXXeL6MM5vXFrCSXSs2vd7Q90uyjv0JNqOLNdhMxzFBOoPNVBzfZ3PF5vbtTc/7du9mKHoMCDbhbMYdqtlQ9FjnMTEuHmT836i5OTYlewYp6RyKHl6xGW0oerQhZQSbPrFUbIYfwNpl529FxWZxsW8qifB+l4mMw9Al3+ttFoDHs3jQQw9Jl10WOgTGCcL7ltXBJkPR4xuK/tFHvgUu3nkntW2CtYzvGeP+LtaTsvDt7LKvQ/aya8Vm+GdtsoajMxQ9Ov8xgH9RF6NMqthMx1D0bK7YNDsGr6wM/ZsWFgbzjr177bnGhwVM0hvAQaJVbHq9vp2wMZCMJJaKTePjeDy+sCk8SLBjNZTxNUp3xWasQ9HDd1iprO6zE//zdLmk0tKmP/f3w2gVmw0NocGnXXb+Vsyx6X+P5ucnd/iVHRkXDvLbvbtpQB5rxeb69dI11/gu77+/dMcdLW5i2oT3LbsNRc/GYDOeoejXXSd98om0cKGvH7pcKW0aLGI2FF3y7bPM9n/hqNiE3di1YjP8vZGsYJOKzegYip482VyxaRZsVlVFrthsbPT9bQsL09M+G6NiE84WrWJTir1C0bh4kPF/o/Ch6GY7JjsGKeEVm6n8Vsf4/HNzGYreHH+wWVpqvmBVLEPR7XqyZ1axmaq+Z6zYlJoG6pkovGJTMn/fxBpsGufrXL068XZZwW4Vm+GrojPHpk+kis0NG3z/b9wobdmSujbBWtGCzVhQsQm7sWvFZvh7g2AzPbIl2KRiM7XiDTal7Hp9oiDYhLNFq9iUYgs2vd5gxVs8c2ya7ZjsWLFpPOgIH7acbMadutmQYILNUP5g02wYuhTbUHS7BpvhB7seT+qmQjCr2JQyu1LOLNg0C/RiXTzI2G+Mk5Y7gRXBplnFpvHzL9vn2IxnKLrxs2LZspQ0Bzbg/yzKzw9+ES0lHmzaZV+H7EXFprOCTa9XuZddpv7XXy99913yHz9asGn8stPpwaYViwdl0xdZkYaiR1o8SGJ/uA/BJpwtGRWbxmqaeFZFN9tB2LFCLPygI5UHIf7XxD+/THjlXKQwk2DT/OeJVGzaZedvdiCdqikGwis2wyuFM01trbRmTdPbY6nY9HjM+xPBZnzMKjYZih4U61B0r5dgM1v4P4sKCxM7IaNiE3aTbRWbTp9jc9ky5fznP2q3erVyHnssuY/t9YYeA4TLpIpNK4aiZ1NwF0vFZkFBYiNUMxzBJpzNv7MuLAyeSMb7RjeedPofI5aKTbMdhN0rNs2uJ1P4t5VUbEZWWxs8SMyGik0pNX9XYxVyeMVmpgab335r3ifMAj2zExGzzyljv9m6NfG2WSE8MLdqjk2GogfFOhS9ri60LxNsZi7/53SiwaZd93XIXnat2EznUPRkPXY67NgRuOhK9rQnxnPJWINNtzt1x6ktCTaba1c61kWgYjOUcfGgggJf4QsVm004OticOnWqevTooaKiIvXt21dLliyJuO306dPlcrlC/hWFLSrj9Xo1adIkdenSRcXFxRo4cKC+S0WpOpLHf/JkHNaUqorN8FXRnTgUXUrttzrhFZuxzrGZjvla7Ka5FdGlzJpjU0rN37W+Pjh3Z7bMsWkcht6pU/BysoLNXbvs+VkWCRWb9hPrUPTw/RPBZuby//0THUJHxSbsxqxi0w6rEzMU3Zxxv2QIOZPCeLwZS7C5ZYvUvbvUrVvoHOfJkmiw6W9X9+6R28XiQanVXMWmP48g2GzCscHms88+q/Hjx2vy5Mn67LPP1KtXLw0ZMkQ/RhlCV1paqi1btgT+rVu3LuTnd955px588EFNmzZNH3/8sVq1aqUhQ4aoNpveTE7j31n759eUWhZsxrN4EEPRmwqv2PS/jg0NvoO9WCs2s2FV9FiCTSo2mxc+mbaU+XNsGldE79s3eNns9Y314Da832zblljbrGCHYLO6Ovg+zcvL7jk2I+0fYwk2V69OT8Ut0i/ZQ9H37rVHiITsFf5ZVV9vj2MwFg8yZ2zr9u3Jfex4gs2GBum113wB1tatvsvJlmiw+frrvnaVl0duF4sHpVZzc2z6z3UYit6EY4PNe++9V1dccYXGjh2ro48+WtOmTVNJSYmeeOKJiPdxuVwqKysL/OvcuXPgZ16vV/fff79uvPFG/fKXv9Rxxx2np556Sps3b9asWbPS8IyQELOKTeMBc7xD0TN98SCz68kUqWJTarp4TLbPsZmqik27fBGTropN4/PNljk2jRWbxmAz1opNs9vCDxqdNM+mHRYPMv7ObK/YjLSPiWUYo9crffVV8tsE67V0KLrZdnY85kL2MDvOscNw9FRVbDp9jk3DOYjLymDT7Q7tJ6noM4kGm7G0i4rN1KJiM2EmZWn2V19fr08//VQTJ04M3JaTk6OBAwdq0aJFEe9XXV2tgw46SI2NjTrxxBN1++23q2fPnpKkNWvWqLy8XAMHDgxs36ZNG/Xt21eLFi3SiBEjmjxeXV2d6gwf8lX7TmzcbrfcGXJC7X8etnw+Xq/yqqvlktTYqpU8+9qYU1gofyzZUFUlb3Ntr62Vf3fT6HLJ43YrLzdXrrDNPAUFgcdtrK+Xp6ZG4buuhr17m/99aZZXUxPyXGJ6TRL9XW63XJK8eXlqcLuVm5cX+PbEvWeP8vbsCbTFu3evGva1I3fPnpBvWbyVlfbue0ngqqgIfAB7WrdWo8nzzMvJ8b2ejY2B16rJ41RXh3yQN1RX26IPhvc7SWrYsSP5bauqCr5/CwpC3r9etzvi6xaJE/pd3jff+J5ffr48xx4b7Ec7djTpR3l1dU3+Du6amiahb051tYxf5zRs3izvMccku+kpkbtzZ+jnx+7dcf/d49LYqPywx2/ctSvQhsa8PHm83mC/dLsD+6dInNDvYlZZGXju3pISufadBHn27GnSP12VlU0ORD2ffqrGn/409e2EpPT1Pf9nkbewUI2G46mG3btj2i+4amqa9BV3VVXkLwZha5nwmZdXVdV0//rjj6FTxFgg/LjQU1lpeowZr9za2iYVUY3V1c3u3+wiZ/fu4HHO9u3J7Xt79gT3+bm5TV6TnJyc4Gfe3r1y7dgRuG527NZSOTU1Ci/Raayra/ZvlbNzZ7PtCnkd5TtnS/YxV25lZehxneGc0Yli/ryrq1P+vkDZ27GjXBUVknzHmK7aWt8+tKBADW63chLYjzpRPO9TRwabFRUV8ng8IRWXktS5c2etXLnS9D5HHHGEnnjiCR133HGqrKzU3XffrVNOOUVff/21DjzwQJXvS8fNHrPcLDmXNGXKFN18881Nbp87d65KjOXBGWDevHlWN6GJnLo6nbtvGNL22lp9NGeOJOmgH37Q8fu2+WrJEq1v3Trq4xTu2KGz9l3eun27lsyZo9NqatQ2bLuvVq8OPO6mdev0/YIFGhC2zaeLFqncZgtFnLVzpwoN1z9buFBbog1tboGz9+5VnqTddXV6d84cnbxzp/yHd3Nnz9aZO3fKP1Opu6pKb+z7m530ww860PA4jTt3BvqcHfteMhzwwQfqve/yN5s364d9r4XRgJoatZHkqa/XHJOfS1LnJUv0M8P1FZ9+qh+6dEl6e+Pi8eiXJt8erlq8WKu7dk3qr9pv40adue/yxu3b9fmcOepfU6N2klxut+bMni25wk89mmfXfufyeHT2qlXKlbS7SxctW7VK/ff9bN1XX+mrsH4yeNcuFYc9xvvz5qm6W7eQ24748ksdabj+xbx52uiQSsOfrV4t457bVVurN155RV6zqokkyKmr07lht+1Yu1Yd913etnOnPluwQEP3Xd+6ebOWRHj/hrNrv4tHqy1b5P+KuLa4WMX7gs0fVqzQN2GvQ4evvtKpYfff8Npr+qJ799Q3FCFS2vcaG/XLfScnO/fu1brvvtMJ+3709dKlWtuxY+T77tPjk0/UK+y2+bNnq65du+S2FWnl5M+8gT/+qFZhty1+4w3tWL/ekvb4Hbh4sU4yXF/3zTdNjg0S0WfDBoUfXVZu3qz3k/DY6XDYZ5+p577Lrt27k3qcULxtmwbvu7ylokJLw16TI9et0xH7Li/58EN1+eorHbzv+vqvvtKXSX4ND//iCx0ddlvltm3N/q2O/eorHdJMu47++msdbrhev22b3kxy+8/cskWGSebk3bs34nmQkzT3eWfsRzv2318d9gWbW7/9Vvvv+3Kvyu3WgjlzdPCaNTpu37bLFi3SJv9oyQyzJ45h9o4MNhNx8skn6+STTw5cP+WUU3TUUUfp3//+t2699daEHnPixIkaP3584HpVVZW6deumwYMHq7S0tMVttgO326158+Zp0KBByk/RSWLCDHPAdejeXcOGDZMkuXbskP71L0nScYcdpmP23R7Rxo2Bi527dtWwYcOUe+ut0po1IZsd07t34PIBnTurS58+TR7qpOOOk7e535dmeWHfdJz4k5+krI25+wLT1u3b+17Hf/9b+uILSdLgM85QniH0zW9oCPzNch9/PPRx6us1qH9/zXv/fXv2vXAej1zPPy916SLvaafFdJccQ7876pRTdKTJ3yRv8mRp3TrlulyB1yqcK+wD/+hDDjF9rLQyzDvlzc2Va9/f/cguXfSTZLft888DFw847DB1GTZMuXfeKe1b+G3YWWeZTy0Rga0/8yTpu++Uuy9w3K93b508ZIh0ww2SpB7t26tb2Oubl9N0xpn+P/uZ1Cs0Isj54IOQ68d36aLjmvtbNTTI9dJL0gEHyNuvX7zPJGlyp0xpctvQU0+VOnRIzS80GZ7VwdDH9u/SRQOHDAlc79yhQ8T3r5/t+1089n3mS1JRly6BucwO6dZNPcJeB7OvHLrv3KkDrP4MswHX0qXSqlXyXnihb/h2iqSl7xm+6GpbVqZSw/HTMYceqqNj+HvnrFrV5LYzTzlFOvhgk61hd5nwmZdnUiRw8lFHWX4eEL7id48OHZocGyQid9q0Jre1zctrdv9mFzmffBJyfWjfvlJZWXIe/PvvAxe7GM5JA7/7s88Cl/uccELI59lBbdvqwCS/hjkmCyq3LS5u9m+V+8ILzbYr5623Qq4X7NmjYUOHJlREEEleWJFQjsejYYMHm6+B4QCxft65DH203U9/Gph6qnNxsVz7zudb77+/hg0bJld5ufTYY5Kk4484Qr0c8j6MV1Uc00s5snd07NhRubm52rp1a8jtW7duVVmMH1D5+fk64YQTtHr1akkK3G/r1q3qYqh22rp1q44//njTxygsLFShycFmfn6+Y3fSkdjyORnmCslp3Vo5/vYZQuXcujrlNtduw4l/TkGB73FMPjjzDJWfOY2NyjGZtD6vsdF8bhWreDxN5iXJq6tLTRu93sDwVldBga+/GH5PvhQ6v01dnfLz8nw7QpN5X/L3bWvLvhdu5kxp9GhfgLZkiXTiic3fxxD+5XXoYP432dcPXR5P5NcgrKout76++T6faoYpOlxlZdKmTZKk3Orq5LfNcPCT26qV7/EN31rmSwn1d9v2u337LEnK6dlTOYZKp5zdu4Ofg34m8xLle71NX5Ow92Du9u3N/62eeUYaNcrX77//XjrooNieQ7KZHPTk19am7rPYpCrfZXg/5xQWKscw91GOx9P07xKBbftdPAxfprnatw9cznW7m/YpkznbcpYvV47L5dgTmKTYtk064wzf+7e6Who3LuW/MqV9zzAPX05RkXIMx1Mx77PMjhM8HnsdcyFujv7MM5m7Mm/3buv7ZNh7JWfPnpj3QTE/buvW0u7dcu3Z45y/X9j+Jr+qyrcqeTIYzglzCgubvt6GvCDP6w05B8ipqkrO38fIZPiuy+1u/m9l6NOmx5RSk9fR1dCg/IaG0MVsWsrsuM7jCZ1X0oGa/bzbV6EpSTmHHeY7vvZ4lLNjR6CP5RQX+/4uhoWT8+rrrf/cSZF4Pl8cuXhQQUGBTjrpJM2fPz9wW2Njo+bPnx9SlRmNx+PRV199FQgxDz74YJWVlYU8ZlVVlT7++OOYHxNpZjygaMmq6GaLB2XKquhmk3qnauU04+totnjQnj1NF9Hwhy5mk0I7aQGhr7/2/e/xSI8+Gtt9UrV4kB0mkDa+N41Dz1PxNzU+X/+E2sb3r93eky21dm3w8mGHhXyRk/bFg5Yu9f3v8QTfA1Yw61epXEDI7PUztiEvL7QP2mx6kpQz7ncMwWbMC0/U1kom1XlZZeXK4Ge7oQLWsYz7qUQXDzI7TrDD/g7ZqaHBvP/ZYfGgdKyK7p8CwqGLB0kKCZFaLN7Fg4znAKleWNMvlsWDjG0xttHI7Dwymc/B7TZ/b2XD571x+sMuXYLH+MZjchYPisiRwaYkjR8/Xo8++qhmzJihFStW6Morr1RNTY3Gjh0rSRo1alTI4kK33HKL5s6dqx9++EGfffaZfvOb32jdunW6/PLLJflWTL/uuut022236dVXX9VXX32lUaNGqWvXrho+fLgVTxHNMe5MjauixxtsGk86M21VdLMDjlQdhJjt1I07crOgwf9BbPKB7ErHysbJYuxnM2fGtnpfLMGmvx96vSHfBoewY7Bp7GMHHBC8nO5V0aXMW5F6w4bg5W7dfJ99/gA8/PX1es0/k8xuSyTYNJ7AGaoP0i7dwabZ+5tV0YOM73/j/IfNBZtHHRW8vGxZ0pvlKMb+5KTgIBLj376oKHmromfTSrmwF2NYaByCG0uw+cQT0vXXRw6OWipVq6L7jx1cLqlNG99lJ30+hZ8TJnNl9HiDTeNxi52CTeO+J1K7Uh1sRjp+y4bPe2OwWVYWDDYN0+8Fqn/jzTuygGPH+Vx88cXatm2bJk2apPLych1//PF68803A4v/rF+/XjmGIcY7d+7UFVdcofLycrVr104nnXSSPvroIx19dHBq3RtuuEE1NTX63e9+p127dunUU0/Vm2++qSJ/Mg57SUXFpv9kNJMrNlN1EGJ8PfwVm8bX0WynlykVm8aDyMpK6ZVXpIsvjn6feCo2Jamx0TxwD3/t7LDjN743Ux1smlVshh9AZhLD3Kzq1s13glFa6utP4QeDkQ5ik1WxaTyBS9aJU7waGsw/09JdsWn8giw/P/S9mm3BpnG/a6zYNOuPxr9dv36B+aS0bJn061+npHmOYOy/Vr23ksn4nkm0YjNbK3hgT+EjU/ZNudNssLl2rXTZZb7L++0n3XRT8tuWqopN//u4oCBYULJ3r2//F8dc5pYJP1Yg2GwqlmDT7HM3mc8hnt+bacKDTf8XCMb5fKnYjMixwaYkjRs3TuMizDu0YMGCkOv33Xef7rvvvqiP53K5dMstt+iWW25JVhORSqms2DQLNo0Bt5MrNlP1rU5zFZtmOyr/B3GkYDOFCyYkVfhrOn16coJN44FirMGmHXZuxn7XoYPv71hXl5rqBLOKzUweim6s2DzwQN//kYJNswBOyqyKzUgHwKlsT3NfHuTlhX4pkW3BZqIVm/36BSbCz/qKTWO/dlJFVCTG90yiFZtm7zs7fJGH7GTcx3TrFnuwuW5d8LJh8cOkSnXFpjHYlHzHwIZ5c23LLhWbDQ3pDTaLinzX4x2KTsVm+kWq2DQi2IzIsUPRgaRVbBqDTX8gEstQ9FiHeFrJ6orNWIeiNze00+7Cdyhz5wYPciPxh3z+ijszxnAk0jx9dgw2je/NVq2C3zhSsdly/mCzY8fg8430+kY6CIw12Iw0/YGfHSo2I/WpdFdsGuXn+97X/v1JNs+xGU+wedhhUqdOvsvLljXf/zJZJg9Fp2ITmcC4z+vePXi5uWDT+H42LAaYVKmeY7OwMDTYdMpnVLqCTcMClgHG49L6+tDP+N27QyvyksHYB/znGPFWbEZql9nnbjILFyIdv2XD570x2OzUKXh8b+Q/9jfmHdnw2sSAYBPOFR6e+KVr8SCzwMRuIYrVc2w2NxQ92hybqZp7KBXC+1ljo/Tf/0a/j//5tW4dGmAahVdsmrFjsGnsY/vtl9pgM5vm2PR4goG5cSVP/0Fr+DfykQK4WIai19U1Hw7arWLTGKKle45No/DPv0zqg7FIdCh6q1bSccf5LldUJHdhB6fJ5IrNZAab2VDBA3sKr9j0ay7YNH4+fv998gMtKf0Vm075jApvp1WLB+3cGfrFndeb/GOWRILN+vrQ+4Wt3h6Q6orNSI+VDZ/3/mCzQwff+yzWik3m2JREsAknCw9P/NK1eJBTKzbTMRTdrGIzk+fYNHtNp0+PXnHkP9CMNnwnkYpNO+z4I1VsVlUlvwormyo2y8uD/cB4ImX8Rtd4cNySoehS88PRjV8+2KFi0/iaWD0UXQruR7It2Ey0YrNVK98qoH47diS/bU6RyRWbVi8elIogCdnHuM9r1y4Y9MVTsVlX1/zonkSEvy9qapLT783m2PQ/vhPYZSi6cSEYv2Sf85gFm2539GNws3DVrMgknUPRjccQdijcSCWvNxhslpX5/jcLNv3TtDEUvQmCTThXpKHo8X6DEeviQQUFwZUPWTyoKePrEe+q6JkyFD03V+rf33d55UppyZLI9/H3X2PfDZdpFZuNjckPwLJpjs3wFdH9jAc+kYJN42sSS8WmFD3YrKsLvY8dKjaNr4nVQ9Gl7K3YNL7/S0uDX9CYvW7h+3HjSUwsqwtnqkwONhOt2DQ7Toh3f/fqq74q4tGj47sfEM64z2vdOvjZFU+wKaVmOLrZ+yIZRQ1Or9i0Mtg0HoOZVYqmKth0uUL/VtGOic2Om6KNtmtuu0QZH2vfotCS7FG4kUq7dwdfW3+wyVD0uBBswrkiLR6UlxesGExmxWZeXuicaU5dPMhuQ9GNr6UhoHE5sWKzpES65JLg7YsWmW/v9cYWbGbKHJvGxZGS/XdtrmIzk0Kl8BXR/WIJNo2Vwcmo2Aw/ebNbxaadhqJn2xybxv1uSUmwuiCWoegEmz6ZPhTd+EVxOis2p03zvbZPPSVt2RLffQGjSF/KxDMUXUpNsGn2vkjGPto4x6bx2NUpn1F2qdhMZ7BZVBS6EGu081SzNpjdls6KTWOwaYfzm1QKXzhIYih6nAg24VyRKjal4LcYyVwVPT8/tALHqRWbqfrwS3TxIOMBmP+DXErdUPQ1a5oPoHfv9m0XK//OtqREOuCA0McxU1cX7HexVmw6KdiMVLEpJX9ldLMvODJ1KLrZiuhS6OtrfN+YDUWSUhNsWlWxaexPdqnYDK/8z6RwPRbh70n/SVUsQ9EJNn2M/XfPHucvpBQ+FN3lCp6UmX32eL3Sd9+FPu9kLB5k/ExLxRBgZI9IFZu1tdEDd6sqNpMZbDq1YjO8ndkSbBoXM4p2/hNLxabXG+xfxi/M0xFsOrli0+3Wfhs2RJ8SwizYjFaxmcgXhBmOYBPOFaliU4ov2Ix1KHp4sEnFZiiznXosc2xGCjZTEUw8+qh0yCFSnz6RTxQrK30LWBxyiPTss7E9rr+fFRfHdrAXLZQ3SmQouh12/JHm2JSSf/BmtohYNgSbLanYTMZQdLsEm1bPsWl20Onvf8yxGXuwWVDg278aq7uzOdg09mvjiaRThVdsStGDzauvln7yE2nMmOBtyajYNAYZmzfHd1/AKPw4LtbPrnQEm6mo2GxsDO7LnBhser1Nzwl37EjenLstDTaT/aV/IsFmLBWb9fXB18w4J3Yy2x9pKLqD94O5l12mM6+5Rrm//33kjYyjCGKp2GzuC8IsRLAJ50plxWb4UHSXy3dbJlRspmOOTf9ONJah6MYDsI4dg8OvU7Eq+muv+f7/4ovQkMjomWektWt9l994I7bHNQ5FT2aw6dSh6NEqNpMdbJotIpZtc2xGen1jHYpuDE6Mfc5pQ9GNVazpqtg0rvrtl+1zbIYPRffvD6IFm/7PTSo2fcL7rxOCg2jCKzal6Cdk/n31K68Eb0vGHJvGQIFgEy0RqWJTiv7Z5dSh6OHH+E4LNt3upsfRjY3JO9fIlopNY/9N1Si7TKvYXLtWOc88I0lyzZkTebulS4OXe/Tw/W/25blxagF/3mGHcz8bINiEc8VSsRnLG924o4tUsWl2ourUis10rIoez+JB4Yu/7Pt2ypWKYCKWBRmmTw9ejqXqyxgKJTvYdOriQems2GxuKHomhUrGYNM45UEsFZvGbcIDpvr6YAWzMRzcujVyW+xYsdmhQzAsSdccm2bBZvh+JNvm2IxUsRltjk2CzVCZHGzGUrHpf/5VVcF9X0srNuvrQ/dN4cHmRx9J773n/GH/aN6uXdJzzzUdiuzx+L7QXr68+cdIdOEzs4rNZPe5ZAxF37hRevHF4GMZP78LC50XbEZqY7KGo8cTbJodL9k12AwPfo19q0OH4HFOOhYPssP5TSKeeip4edeuyO/3N9/0/Z+TI51+uu9ytIpNKbgfZY5NSQSbcLJYKjb37m1+mIEx+IhUsWk2Z5rZzsFuwabZMN1UzdeVjDk2i4qCIVgq5thsLthcsUJavDh4PZawxvgtcLKHoidSsWmHbzStqtjMlqHonTuHHqgaX99Ygs3wzynjweJBBwUvO61is02b4PNMV7BpPJn1Yyi673//8PJYhqITbIYK/5x0QnAQTTxD0Y2L6xkv+7czfr7Hc6IbHmAY59j89FOpXz9pwABfwInMduml0sUXhy72KElPPy0NGyb17h39iz0p8YrN8Pfynj2hc+slQ0srNj0e33vhwgulG2/03eb0is1IwY8VwaYZOwSbsQxFDx+RkYpzNuPxW6dOwct2OL+JV2NjSMGMy+02329t3Bj8QqVPH19oLMUebDo19E0ygk04l39HalwF3c+4UlhzH4SxLB4Ua8Wm3UIU48GGf+eQqvm6ElkVvba26arW/nmKUh1smh3kzJgRej2WYDN8J291xWZ9vfUVYulcFd3/GhvnmsnEoehud3D+HeMwdCn0wCeRxYPCv4H392GnzbFpDDZT2R6GokdnnJpDijwU3esl2DRTV9f0tbLqi4NkiTYUva4udP+2Z0/o9crK0OMWYx+J50Q3PMAwVmwuWBC8/MknsT8mnMn/Nw4PsT/80Pd/XZ20bFn0xzC+J1syFF1K/nD0llZsVlRI33/vu+x/rYzv4fBg0wmfT9kUbHo8wfYkeyi6sW+lKtj0P1ZeXuKf93bxwQdNF6M1m/7AX60pSWedFbwcbfEgiaHoYQg24Vz+HalZMOR/o0vNl2ebLR4UXrFpdqLqhIpNs2BTSk3JunGnblaxGcscm8XFgQ9xV329cpL9ehrDjvDQ0eOR/vOfyNtHYtyZ2KFiM9Jtsfr2W+n//T/fPKSJ8j/voiLfeykdq6KXlARXB0y0YnPvXuXceacOeP/95LUvWbZsCVZaRws2E1k8KLwP+z8r4gk23W5rPv/8/cnl8r0O/udZVZW6IaXNVWyyKrrvf/9nob9Cr6EhNLAyfglDsBlkdnLphIqoaKINRZdC31Ph+93KytDPFuOXCS2p2DQGm/55tc1+PxK3YoXveCKWod3p5P8bV1eH9r1t24KXm/v8MfaTlgxFl5IfbLa0YnPHjuBlf3udPhTdcN7j9R8rSubzXSbCTsFm+BdJqarYLC4OLUZJ1jGXfx/Ypk3ofsKJ4Z1xejO/eILNWCs26+qsL2qxAYJNOFf4yZNRPMFmtlVsht+eLMadpdkcm2YfuNGGokvKT3YAG20o+rx5TefcSqRis7g4GLBZUbEptWzn/4c/SLffLv3mN4k/RviXDukYim78HEh0js3p05V7443qfe+9vhMyO4m0cJDU8sWDIgWb27dHfv3MTtysCAT8z7d1a98XAf6DQI8ndQfBxtc12lD0bJ9jMzzYlEL7ntk0EsXFwZMwgs0gJwQH0YTv56XIJ6xmwabx54lW8IQHGASbqXfFFb7jibFjrW5JkMcTetxm7BfGy819/viPc3JyfH3ZLsFmpFFZyQw2nTgU3dDGOuMoomRVbJqdAxmFn1eGS+aX/uGft6laPMhYsenxJK8f+NtRWhrfCEy7qa6Wnn++6e3hf2u323cOKvm+uOvdO/iz5hYPcvLrkwIEm3CuZFVsmi0elGkVmy5XcL4O4+3J1NxQdDPNBZvJbKfbHfq7wvuF2bdq8VZs+qsG/Qd8sQSbxsApnBUVm/7KilWrEv/2NTzYsDLYjOfLBkNVievbb1vYsCSLFmy2dPGg8GDTOFl7pGoGsxM3K4aj+fuTv48Zn2eqAopYKzazdY7NSEPRpdC+ZxZsulzB1zTZ1d1OYfYZ6YTgIJrmKjYTDTZbUrFZURFsF8Fmaqxc6fvfTvvT8PeSsUozkYrN/fYL/dxq7r6pHorudpsfu7U02Iw2FN0Jn0+G133P/vsHb8/EoeipDDbDjxeTfXzv9YYe1xmrE51Wsfnii4H3hteYK4Qf23z8cfC1Hzw4NIMoLGw63Z7ZUHTJea9PChBsIrl27pRGjJD+/OfUrixpNjeXUaJD0SNVbJoNLXRSxWarVqGvUyqGoje3eJAZszk2DTvJvGQeLIWfrBgfe+dOadYs3+WOHaVjjgnep7l+HD4sQ4ov2LRTxWZDQzDICg+C42F1xWaic2waT2pSMcdrSxiDTePK5VJsFZuxzrFprNiUIg9Ht1vFplmwmaoFhJpbFT38i53GxuYXsUuHd96Rzj5bev311P0O45d+iVRsSsGAgIrNICcEB9FEWzxIih5s7trVdL5g/5d+LZljUwpO8eGUYPOWW6SLLgpd+MiujAFFdbV9VpsPD/giBZvNfbHifxz/l9PxVmy2axc8xosn2Kyr81XCjhlj/rlgfC8Z94dmwWZ9vfS730mXXRZ6vJCJFZuGY/W9HTsGb7cy2CwuDp6v2iHYNLbB397w90Gkis3w+yeqri74Wjq9YtNQMOM9//zg7eGvaaRh6H7hVZvGYPP++31FGT/8YP5Fe5Yh2ERy/fvf0rPPSvfem9qVJevrg4FkMis24xmK7qSKzVatQl8Tu1ZsGudrUZKHooefLBpfg3ffDR7UXXJJMKxoaDBfydcofCcvpSbYNKvY9HqTG2xu3x568pFIxVRjY/A1SXXFptnvkhIfim6oTnTZrVosWsVmYWHwORv7eSKLB4UHm5FWhrVDxaZxdUl/HzNWQKcq2Ix38SDJHsPR//IXac4c6ZprUvc7zMJKY7BpfO0ifQ76D853786+alcpM4PNaIsHSfFVbBYXBx+jJRWbkm84+o4doX3RrsHmypXS5MnSCy9IDz1kdWuat2dP8P3b2GifaqLwv69/v+/xhAZ68VRsSvEHm23bSgcd5Lv83XexB78PPyw99phvsctXXmn6c+N+3xjgme2fX31VevRR6YknfNVlfrHMsWn8zHbC55OhjbYJNtu2Tc2CqS2t2CwokPxVrbEuHmS2bSLCF4R0asVm9f9v77zDpKiyv//tMIkJDDAMDCBJQFSSoCKGVRQB04phTajomn/6rmHXNaxpV3dx1V1dc1hzzmEVFQXBhCgogigSJEiOAzPDMKnr/ePO7Xuq+lZ1VXd1gvN5Hh5quqsr3rr33G+dUKuK0vXti8iYMeo7J2Fz9OjYbVnzbNJrsvvuwN57A716xUab7oKwsMn4C00QTt+A+42dp4ckU8WDcsVjM9U5Nt16bMYJRQ+nUtik26ZG6IABZnEk3iTHOuEC/BM244WiW4tx6I7JC1bvvESMlPp6ZaDLc8vPV9fGT8GQnqcfoehevDXSzcqVatkqbAYC6rnxs3gQkN0em1YDGEi/x6ab4kFAdgibMqfgihWp8yDVveixEzbjeWwC2fccpoNdMRSdths3wqb8bbIem6tXx9qqqeo3koWOAam0r/3C2o6zpXK2ncfmli3mftFJnDSMxD026cvYPn3Eck2N2f5w2u+TT6q/16yJXYc+K/GETbs2RYVN6UhitfHd5JPPJuw8NjNZPKht29RUFU/WY7OszP647IoH6dZNBNr/5rLHJh1vBg82Xydq16xfD8yeLZaHDAGqqmK35SRsMiZY2GT8hYZTuBmkEyWeMJRqj81IRO/Jl80em6kORdcN6vEG9x070pdj08lj09qevAibTh6b9fV6QcOvUHS7QT7Rwd8PYZOeG21zbow3wwBOPVW8gfz22/j7shNGEg1FpwZutoaiB4NAly6x30vDJ5Oh6OmeuFLjUBqN6cix6dZjkz6/2eB5KO9PJJI6wVD3THrJsQmkvjJ6TQ1wwAHAPvv4N6n1k53RY9NL8SDr+VuFzcLCxDw2dfdaJ2xmq8cm7duzsd1asY6h2XJd7Tw2rdfUqe+pr1c2mbThCgpUm7b7rWGYcxBLYRNwF44+Zw4wb576W9dX0GeN5pLUjc/0HtE5GxU2AdH/WHNsBgLK5s2F/onY6o1lZTDkC5ZUeGxacyIC8YXN2lr/7IRkPTatx0XnMakORafbKCszvxjNJY9Nq31qJ2xOnqyWdWHoQGwoOr0mjAkWNhl/oQNzKg0vPz023RQP0nng0A5WDhrZ5LFJQ3/SHYour4cuFL1dO/WWt77eMcemr6HoTjk2nYTNeN4b1rAMIL6I7JfHpp2AmUmPTXpd6bm5ETa//RZ45RWRK+axx+Lvy05ETcRj0zByIxS9qkr/XElBb9s25TFLJyL0XngpHqQTNhsb9e16V/TYpMaqRBeKnmlhMxIxP5t+TeasxAtF95JjE0iNsPnOOyJZ/5w5+oqlmWZX9NiMF4puTVmTSo/NbBHgrNiJUNlKtnpsWu+vvJbWa+rU99gVgIxX+IxGtFCPTcCdsEm9NQH9GOfFY9NOLNcJm7qorHjRSdkEsVlaCgvVtclkKDoVEAH/bJZEhE3DMFcjtzsup1B0P+xmuq+2bcU8SI4ZueSxaRE2Dbvr9PXXannUKP222GPTNSxsMv6xZYt5gMgVj003xYN0E1VdGGw2eWzS8053KLqTx2ZxsdnbIhs9Nr14fTkVD7Lux25/diTqsZkOYbO+Xm+ExfPYrKmxD4OllVPdvBixE0YSybFZXW1eN5uEzYYGlevSWjhIIq8vLfpkFROkcZisx6bdhC8bhE0vLyUMw94j1Ql5XfPz9c+v7kVYpoVNOqEGUids+h2Kngphc+1atZzI/bdSVxd/TDUMsV83efR2do/NZKui+51jk4XNxIjX7rPVY9Mq8CXisUnPRZcf2O63Vrvci7DZ0AA8/7z9cUisL96kHakTNqmdE89j05pjE8iMsGkYibV/cozNBQUq2sKaWz5R/BA2/YoUSkTY3LHDXLTH7riscx4/jt8wREG0SCQ2FF2eA+Cuv49ERL+e6WJl9Nlq1845FF3Ss6d+W07FgxgTLGwy/mEdlHPRY1MaAPFybFq3Kw30bBI2rdco1cKmzmNTN5C3aaOuV5ziQWnLsZmqUHQgOWEzWz02V60CunYV3oPPPWf+Lp7HpmHYX1Pah7gRFt0Im249Nq39VTaFotMKuNb8mhKdp6JVTJDPZbLFg+ikjd7jdHvkxPPYjPfsHn+88E696y5v+5XXtbDQPNZIsrF4kPXepNNjM9tC0em5WyfwXlm9WjyTnTsDS5bYr3f55aK/vOSS+NvcGYVNaxgr4K0qulOOTbcTWHnfO3RQn61alTvCJh0TN27M7MR95Urxkq1zZ2DpUv062Sps+uGxSbeh89jcvl0/H6DPsddQ9Pfei+2v4nlsFhWpMVp3/d16bNbWZo/H5tFHCxvlwgu9RclRj82CAhiyH2ho8Of44wmbusIu2SRsWj0l7TwMU1E86P/9P9GfnHee3q7z4qF/3nlifvKHPyR2LH7hNhSdPnfUw5pi9djUpTpgALCwyfiJdVDORY9NnacN4OyxmZeXnaHoVs85L9ckEXQem7qQ2TZt1NumdObYTDQUPZniQdb9WPcXCJgnd1bSnWPTKmLZiYtvvCGM/u3bgbPOAm6/XU2y7Dw26YCtS3gPJCds0n4gkRyblv4qq0LRnSqiS3RhQ3Yem/FC0Tt0UO1yzpzYCTSd8HXvrpazwWPTbSh6bS3wv/+J5f/8x5tIIJ+vggL9m/NszLGZSWEz20LRnSbwXpk8WRxjba3oF3WsWycqGQPuQt91k8NsCeNNFNnnFBSoVDSJemzSHJuRiLtnq6VFtaVevVR703ls1tamrrhWMtB20diYWaHw/ffFGF1bq6/MDcSO4dnShu2KB1nnLFu32r+QspuD0JyWslgbxdrn9eql/l6+3P6YAeCpp2I/i5djkwqbfufYBNRztH17ep6ZLVtUBenHHgN++1v37coibJryY/sxHsYTNgOB2DlR27b+F98BEhM2rbkt7Y4rFcWDXnxR/P/UU8Bbb5mPA3DvsTllinpOXnstsWPxC6uwWVoKQ459Ok/pvLxYAVNC7fvCQjWGMjGwsMn4RzqFTTtBQ5Kq4kF0oiq3m59v7wmVSTLpsekUim712PQrx+bKlcC0afbGVSaKB1n3Y91fcbHZK9OKF49NOvCl2mNzzhzz39ddB1x2mThGu2dz993Vsp1nE3ts6nGqiC6hBpE8djoRocZtPI/NUAg47DDx96pVwPz55vWp2ESPJ5PFg7yGotP7vXJl7Dk6Ia+rNDCtXpvZGIpuF37pN7kQiu6nxyYdH+gLCMoLL6j+280zsjN6bNKXARI/cmxaf2tHdbWyDTp0UAXYdB6bQHZeb+uYlMkCQrTvpakdKLnisWkXig7Y2wF2Hpvx7BxrKHphoervdNERknXrgEmTxDItHhjPY7Ow0D9h08ljE0iNw4QV6/l+8IGwVZyunYQ80y2FhcpjE0iPsKn7vLw8Nzw27YRNPzw2d+wwtzcqbHrx2GxpAf74R/V3qnKsu8UqbAaDaJI2kc5js2NHe8GS2vdcOMgRFjYZ/0hnKLqdV5iETjTjGb3JFg/Ky1ODVTZ5bKZb2NQZPV5D0S3CputQ9NpaYOBAYORI4KGH9OukKhQ9XvEgJ2HTKQwdiO+xSUUC+tY03cImIDySHnzQ/tl0E3KVCmHTraBkfRGTax6bOk/FRD02AXN1xvffN69vJ2xm0mNTVxXdybC1TmSkF4gbrCKNVdjMxuJB2eKxubMJm/S60hcQEsMwF/xobIxvJ+zMxYOoh7MfOTYBdxEK9J536CBCFeW+dIJPtohwFGu7yGSezUSEzWz12Ny0SdhXuutp1//YeWzGs3OsoeiACOcH7K8jALz8spqrTJigfhsvx6bVY9MamUDvUX29sItbWmLtn3g5NuU6qUZ3vrNnAxdfHP+3xOZvzs83p6TIlLDpFPKdDMkKm045Nv0ORbeL4JLHAbjz2Hz6aeD779Xf27dn1u6yCpsAmuTzIr+j+WLtwtABs13L+TUdYWGT8Q/rIL5pU+ryivnpsZls8aBc8dhMdSi6blCPF4pu9dgsKhLft94H16HoP/2kBoqnn9av49Zjs7g4cY9Nr6Ho8YRNLx6bVAxIpbDZ1AT88INY7t/fPGl/8037ZzOewb9tm3n/1dXxw4NT6bG5bVv2hCPSCRetWE7RGZdWYdOtxyZgFjatoh812DLpsZlMjs1khE2rSONG2OQcm4KdWdjUeWx+9x0wb575s3jjmhyr8vPV87izCJuJemza5di0/tYOes8rKsxebzpyQdhkj83EsB5HJCL6Gd31dFMoj9qLXoRN2edJYbOuzn4M/fFHtXz88Wqc8+KxGYnEvgTQieU6cc2Nx2a6hc2xY9ULzU8+if9bayh6Ngqb2RKK7tZj01o8KBFhVpeyQSLbuezvm5r0tlRtLfCXv8R+nsk+J56wKesNyHZD01hYsYaiM7awsMn4h3UQN4zUTEoAbx6b8g3kww+bXdwliRYPkoIoFTabmjJfiU1iFZiy0WPTWkhGhna2DgKuhU1q3M2apX/z7ibHpryX6QpFT9Zj007YTDTHphthc8ECda+HDAHOOUeJW19/bf6NF49N62fNzfEFeDthxI8cm4aR+VAWic4z0Uq84kE0F7AbYbNvX5X/67PPzH3uzpBj0zqRsZ6jE7R4EGAfir4r5tiMF4ruJscmbeO5Lmzq8uLFa2ey3ZaVZaY4RyqwPjOAe2GzpsZ8/jTHJt22E1aPzZ1B2GSPzcTQHceGDYl7bPolbAL215LaZl27qn16ybFpPW4gVojauFHfJ8bLsSnXSTX0udx3X2CvvcTy1q3xbT1r8SCaY9OPlwS5Lmwm6rFJt5/I8dPimNaiOPIY4vX3d9yhf3bSYcMbhiii+txz5vm/k7DZ1CSuI+1z2GPTF1jYZPzB6m0lSZXh5dVj85FHRDXSE04Q3n2URIsH0e8SCX1NNdmaY9PqbUENR9lhtw5mebrQGR10MDUM4KOPYtdxE4ou21KyxYNom7Re66YmZSB6ETZT7bFZVxd7rDojhYahDxki/h8xQm1jxgz1PT2/ykr1txthE4j/9jeVoehu9p8udAKeFafiQfKFgZdQ9EBAeW02NZk9IrIlx6buuhQXqzxFbnNsAsLYnzYt/j6bm9WzyKHosSQaik77ilR6bBpGbPGgZDyz6XVdt858fg0NwPPPx/4m3vgr23XbtjuPsOnFY9P63BqG2b5M1mPTTtikL2my5aUWxToe5ZqwmS1ise44Nm5M3GOT9l3duilxRmfT6F78eBU2O3Y0e2xabWSrqGUnbO7YEStybdhgL2zqQtGdbN1UYPWUpWJQPHGy9fiMQACRbApFz4XiQfR5p23YMmdL6Pipx+Z115mvkTUUHYgVNn/9FbjrLrGcl6fywwPp6XMmTxZFVM86C5g6VX2uETab6TylutrcZtlj0xdY2GT8wa4YSKoML68em7Q6mjUsLFGPTQn12ASyJ89mJkPR5fWwC0WnkxJqRMkOuzUBe35dHbBiRfx96xKKx1tH57GZiLDp1WMznihP8RKKnmyOTd2LCZ2wpxM2DzxQfUYHdnodAgHlzbBsWexzkiphM9FQdDf7TxduhE2n4kFyEiKfy5YWc3vSCZuAfTg6nex16qSudzZ4bAYCzt4sEt1Exk04urUgE5Cbwmaqwlh1uee8hqIXF6tr57ewWVtr7hMikeTarfW6Uu+T997TiwROLwCop/jO6LFJhU27EEbd/aDFQRLJsUnbu52wOXCg8zFkmmwNRd+wQW+f5EpVdMA/j81QCOjdWywvWRL70iRZj83ycvEMyfE+Eom196zjuZ2wqROh3Aqbsk93W6zPL6zCJhWD4s03pa3epo2wE1IlbAYCsXNISa54bLoJRS8sVHMUOf9IVtg89FDghhvE8gEHqHvk9CLr+uvVZ5ddBuyzj/ouHW3ys8/UMs3xKfu/vLzo8TdZhU3aZp2ETS4e5BoWNhl/oKIE7QxTZXh58dhctw74/HP7Y9IVD7IKcnafA7Eem9mSZ9NqQBUVKU+mVIeix6uKTicl1HCUHTYRygLUA9AO6+D14YexBqV1orJ9u3rT7ZfHphth0y7pvI50hqLrhE23HptU2KT3wnp+Uthsbo4VrP0UNn0IRXe1fz946y1g/HiVt1SHPA4q2llx8tiUz5VdSLCdsHn44eoZfv999bzQZ7ZdO3VMmaqKHgya25o0Ar3k2AT0wmZ1tShM8M9/ir/ps2XnsakbL3aVHJv0+Zftwq7d2b2gDARUf+a3sKk772TC0a3XlYaj0zD0wYPVstP4W1+vRHCrx2a2pLnxSnOzGr/o2E+9reh90T23VPApLEyNx+agQc7HkEkMI3tD0e0K7+SSx+by5fp25NVjE1B2Tn19bGGUZIXNykrxv1PKFbcemzr7zmsoeipEOSechM14800qbAKpq4pu562p+y5bhU03oejU7pHr6jyI40GFza5dgRtvBBYtEhE0cs5q9yLrm29ECDgAtG8vfus2HZFf0ChQ2gZlH1leHj0PR2HTKRSdPTZdw8Im4w9UlBg+XC1nymOTPvizZpnFDesx6YoH7Ywem4GAGohSHYruNscmoAxHGS4LqNBmAIGZM+Pv22oMrF8fW7lbF962Y4cwyuX1kAagl4ExXvEg68TXi7CZzuJBboRNw1DXtXNnVchm8GD9YGtn8AOxQuau6LHZ3CxylL7wAnDVVfbryftQWmpuExQvHpuAO2GzpAQ45BCxvHSpukdWYVPe53RPXOVxlJWZr4tTYQUJncj06CH+X7Ikth0+/LBIZXLttaIQjBePzWzPsZkKoUxXVCNeKLr15SCQ+8Jmfb14GQCI8NTjj7f/DcU6uZT9mhyvchFrETMJHbPkfWlu1p8nFXySrYpeUaGqotPj6ttX/Z0tIpxkx47YsSxbPDYBvSCXSzk2qThBBS+vHpuAs52TSCj6jh3qWkph08lTMp0em5kWNqkYFG++Kccb2afS++zHsySvj5OwaZ1DlpdnT1V0r8WDqK0oPTYjEe9iIhU2q6pUdJdd2hJ5boZhtptvvlmMKW4LSPoFLexF2yAVNluJETbdhqLTsTLevHEXh4VNxh/o4E1EqbSGu1GCQWX4Widv1sFPF4qeTI7NbPXYBJQhlYpQdJ3HpptQdGms04nK8OEwWkXOhDw2gVjvK906dXXCCJRtRLalwkLVFtyGohcUKHEl0x6bfgqb9PlZuVIZvdJbExBG0377xf7e+tLBb2HT7gVHruTYrKlRBuNXX9nn+pPr2BUOApyLB7kVNsPh2GdWF44uJ3uyanMmPDap1y/NjQeYj8fumlKh44wz1LK136CetL/84s5jMxdC0RsaUjMOJCJs6l5Oyv5s2zZ/vV1TLWyuXCn+//lndc8PP9w8SXR6sWjNc5bu4hypwDrJloTDqk+TtqLdeGsNRU/WY7Oqyvx9jx7me5RtwqadCJUpEhE2s+Wa6o6DCpv9+qllOxvAjccmEGvXJOKxSe+zzmPTej6p8NisrdXn2LTLw5gq/PDYlH2HDOsHYj1rEyERj82yMv1L6WTxw2PT7rh0Hpu0DdN0LG6Q65eW2kck0XFD7v+NN1Q0Zr9+oo6G3I4k1R6bTU3mZ1y2wUhEa7cn5bF58cXCK/Wii5I+7J0ZFjYZf6AP9gEHqOV0FA/STYqA2MmmJJFQdC8em9ksbCabr8swRKe6zz7A/Pnm7xL12JTQgau8HNhzTwBA4Pvv3RdboEhvGXncdsKmTmikIb9uQ9HpOfklbGY6x2ZLi1n80IWhS2g4usStwV9Xpzcs0+WxuWOHXpRLtaFO22RNjcg9qoMWE7EjXvEgwF5g0rVhiZOw2a6deFbkfa6rS64Qixd+/VXdW9quALNBbie2ynEgFAJOPVV9bhU26T3ZtEnvsWm9brpxJNuETSA14eg6YdNufHQjbAL+egLpJr+p8NikQsmeezp78VOsec7iCZuffw4MGAD85S/ujznd2HlsAsprSrZFu/GWbiNZj80OHcQ2aBvr2dNbCpp0YydCSZ5/XlSIfvJJ8zq//CKiqH73O//s8cbG2JciVkFOFzqfbR6b9MUxfV6p567fHpuJCJvUNnMTik7tPydhU2ff7Kwem4YRbbOGnBsGAiolBfUaTBSvwqbMJR0KqXuU6DWsqQGOOEL8q6nxp3iQ3XHpPDZpEUmajsUN8trr0oNIrB6bTU3An/+sPrvrLnVt0xmKvnix2baTbbCmRjmF+OGxCQAPPSTW/+1vkzrknR0WNhl/kIN3x47Rwi8AUh+KTj0zrdgJm36Hols9NrM1FJ3+n6iw+fPPwKOPCoHrjjvM39HB0s7zFYjNsSmxfGa0ev4GWlpEOgEndHndZsxQhtuOHXphcPt2e6HRrbBpydsDIPMem8nm2JTGM2A2fp2ETeqpLXHrsUmLj9HzSFeOTWJcGNSASqewCcSmTwDEhF7eTydhkxpzcmLiNRRdJ2wOGKAMzk8+EcdChU3APLFLl1cZbT9OwqadYSuFjvbtRW49Obn87DOzlzIVNjdu1HufufHYzHSOTbtKwKnaT2GhOv9kPDYBf8PR0xWKToWSvfayFxes2IWi2/3uuuvES8aJE5M7j1Si83KWSGGzulrYYrSd6uwHQLQtnQePE7KtFxSo55VOpHNR2KS27F/+ItqcVeB+7DHg669FAc0DD7Qv9JnssVgFOZ23fDZcU8NQx0E9/WlfSD023eTY9BKZogtF79BB2Xp+CJv0efMzFD0bcmxabX23xYMaG1V7pPdL9gGbNiWf6sOrsEmvXTLFdwDg1VdF4c6pU4Fnnom1U+zyXFOsY4/uuCIRtW1q91BhU0YtuKGmRrVJJ2HT2t/PmiVe2gDAyJHAscfGHjuQemGTjvOAaoOaiuhAEh6bEpmujbGFhU0meerq1BuXPn28hQYks09A5Y7U4afHplPxILcem4l40SVDvFD0RPKr0bea335r/o4O6vKeuAlFl1g+i1DP3y+/dD4uOniNGyf+b2kBpkyJ/Z5i57EJZIew6cVjk+ZfTNZjkxr21NDyImzm58caeFVV6j5Tg58u77uvWvYibNLr7zUUnRoXsqKpm/0ni7Vt6YRNNxXRAXHO0jBas8Zc+VxXPMitx2YgoLw26+uF4SzbsBSfaDv2OnlNNBzaSdh0E4okBa4OHcQ5ysIh27apMaKhwdznWSc/ulD0QEA9h9mcYxNIrcemXRXPZITNlhbz7xMhE8Km1WPTbSh6PI/N6mrxAg8Q47nO6z4b0Hk5S+hkbssWc/9hzYNJt6HLueaEvO8VFco+yZSwmcj4rBuLtm4Vdtf27aL4DSD6fvoyjxbpW7xYiJvxXhQncixWQU4n0GSDsNnQoMbFbt301at79VKfx/PYLCqKtXN79FCfLVpk/k5nl4dCSrCMJ2zKvOZuc2z6WTwo2z02neabdrYi7QOSDUdPRtiUy4lew6VL1fJ33yXnsVlUpI5THhd1EpHYCZtePDathYPssPb3NNx9zBizDpDOHJtWYVO2QbfCJm2zNOcrkzAsbDLJI9+aAGKC2batGtRT7bHpJAxZhU1pqGTCY/OOO8QgfMUV9sfrN7r8g7RTTcS4ppPCn34yD3LyvOkAGgjEXjM3oegADC/CJjUGfvc7tSzD0ZMRNuOF16YyFN2LxyYNz0vk3tIcZjQUSydstmkTKyZVVpo/04kVwaDy6P7lFzXBSFbYbNPGLAJ79aCmHpv0HLLBY9OtsAmYw6p0AlwiHpuAORz9pZfUss5j04sh+corYhtjx3oPYU/GY7OxUT2HcmKk87L59VfzCyC7UHQ7UX1XDkWnbYK2O3n9GhvVNXEjbK5dKzysune3T9ngBj+FTcOIL2zm5wuhxA+PTetY8vHH5hde2eqx6SYUHRD3hvYfdLJMf2+N1Ik33hmG+UWGJBPC5mmniftqDRmPh53gsXGj2QYHzEKYVShbvx447DDvefAoiQqb2RCKTu9rWZleTOjYUYkR8Tw2dTZcOCzaEyDGEjqG2EWZyIiBdetix8J4HptOOTaT9diUdpVV2JTPcaaFTbcem7oin4C5D0g2HF03B7IST9jcvj2xqD8qJs6Zk1yOTafjsruO3brpjyUe9Jp78dik/Q1N5QCkN8cmLRwEiGenudm7x2a7ds6COOMaFjaZ5LFOMAMBNVlMh8emHXSy2bWrCKmUx0QNjWSLB7nx2HzkEbGfBx9M3wTXKRTd+r1b6KSwpUXl2TQMNUBZ8w3phE0Xoejo1w+NNKzcycNUDl5t2gCjRqn7KL1K7SYpboRNwN4gNwx9Im064KfLY5N6sSTjsVlQYJ5QSmN161Y1gRo0SO/pQL027c5NCkiNjSpkhfYhtAiRW2HT2g94FTaJQWzQVBq5Kmw2NZknrskKm6NGqbb45pvqc53HppfJ63//K47jww9jc/bGw0nY1FVbpljz7Vm3IbdtFdDceGyysCn+p/2nLgwuXp5sq7D5wgtijFm/HnjnncSPz88cmzt2xIoQmzaJ53rhQvF3v36iHSTisVlWZn62rL+z5oPNVmHTTSg6IO4N7RPpZFki+ygvHptUlKH7kzYhIMa0VAuba9cCL78s+oLHH/f2W9ou6Ni7YUNsuDN9SSkFgMJC4JBDxHJdnbkf90qiwmZDQ+ZTNVlzY+ry2nXsqPqfeB6bdsVO5HhSV2e+H1QY0gmbzc2xzzH9vZ85NnVtassWZQuWl5vTV2Wbx2ZJiTg+OXdwmm/qUgAAqRE2k/HYBBK7jlRM/OEHdZ0CAfcFbmU7om3Lmrudti0/PDapneolx6aTsJnJUHRAPL9ePTbdhKEzrmBhk0ke3QRTPqQbNiQW8hwPrx6bY8cqA6apydzZ6ULR/fTYNAzVeTc1eU+snCh0EiQHBdqpJhICap0ISyFm4UJljFGPOyB2kHfpsYlAAJv32EPt1xrSQ5GGQFmZ2LYc6GRoCb3f9B66ybEJ2E9yrG/GJcGgan9+eWx6ETaTybFZWak3subOVZ9Zw9AltICQ3UsHnYBE+5Bhw9RyosJmMKhCU7x6bFJv1XQLm7/+GvuMUSPXqSo6YDYMaWiSU/GglhZ1jeyEzXbtVFE42n6T9dikwmE8r2wrss0UFMSGMNG/df2tLvzHjbC5cWN8j03av2RTjk2dsOn3i8eGBjVpshM25fXzKmzS9pFMzk0/PTbtRPxPP1XPVGsRvIQ8Np1C0Q0jvcLmypUq3NkrTqHoTh6bOmFT/t6Lx6buRQYgCiFed50QGffeO/WePnQSrAs5doKOAz16qOWNG2OFTbptudylizhX+rtESVTYBDLvtWkVxuIJm9XV+mgCJ49NwLlQIiDsE9ovOhUQ0nlsOrVV64sEN8KmbFOGoZ7z9u3NwqYuxyYNxU9nVfSSEmXn0fmmHaTvNGifSm2FZLyYAe/CJrXn/BQ2GxpUX1NYKK6RFDgBvbBJC6zaCZtbt9p7bLZvr/7OtMdmuoTNSARYsCD28w0b3Amb69erex2vcBDjGhY2meSRngmAGszlQ7pjh//FJJqaVMfs1mNz7Fj76nm6UHQ/PTY3bzYbBFYjNFXownTpNUnkvliNYSls0kmntTp2osImoIRNQOUS02ENoZAD5Lp1sUK2zFEEuPfYtBNr7N4CA/aFmlIVip6Mx2Ykop4JO2HTKb+mhN57Lwa//L9DB/HmV7bXRIVNQLU7rzk2u3VDS7oMdV27+v5789+JeGwCZmHTyWOTthU7YRMwh6NLdMKm24lrJGIWSrwIm5GIKoKx++5mz2YgfiJ7vzw244Wi72o5NnUV0QF9KDrtF3V9hVXY/OIL9Xcyz6U8Z9pm/BY2P/pILUth063HpttQ9PnzYyfiqRI2Fy8WobW9eplfcLnFz1D0RDw2qd1C7cDSUuAf/wB+/3vxdzisnulUeGzSsMVkhE3aV+k8NuW2GxpUm+jcOdY7NlGSETYznWfT6rGp85SqqFD9DxV8JE1Nqk3beWzSF6Q6YdNaH8CrsOnGY1OKWm6qotM2JV/CWYVNncdmIJB84Rsv6CIC5HzTGo1HyXaPTSpyer2OhhErJsr2SedV8p7phE2acsvJk9TuOgYCqr+2pvBxwq2w6cVjM125kles0M+1HITN5qIiGPK5p4Xc2GPTN1jYZJKjuRl4912xnJcH9O8vlt0mdE6EeBMiycCB4v/27UUopV1RIzeh6F6KB1k9xKyDZbqFTTox8jMUHVBiFxUdrcKm2xybms+2yPYE2AsfujeNcoA0DCFuUsOPDoKpFDblttIZip5ojs3Nm5VRU1lpNrLkAE09ZvfeW7+dvfcWk19AFWOxYhWQ6uuVUSZTWcj9OwkYhqGuv5Ow6TUUvWNH9VY13R6bQGw4uhdhk3of6IRNneecH8JmIsWD1q41G9hOLy6srFqljt8ahg7ED4ui/Zgcq3r1UhNNJ2FTJ9LkUig6PaZ0CZvJhqLPmWOeyPghbHbooNqt38Lm5Mlq2avHptviQVZvTSB1wua0aWL8MQxVkM8LupcBEmorWoVNXTEJ2Uf54bGpw23RwESgHptW2yMetF3QdCkbN8ZGs8hnhQpiVmEzmWffrpARvQ90HWrHZLvHZmmp6K90xcskdFyQQqMVO49NO5vFjbAZDivbyE2OTfmsuPHYpG1KYidsBoPmcSTZwjde0Ambsg9pbrY/hlTn2IxElA3tJGzqrpt12et1dKro7lbYtKZAkVgFV7tQdEDZXXV17s/BbfEgO4/NYDBWFMzLU+un0mOT9uf0+DZutBU2EQyqe01furPHpm+wsMkkx+TJqoM57jjVIbpN6JwI8SZEkr/8BXjmGWD6dNGx2B0TnXD6EYpuHTSyVdh0CkVvaRFFQj791Py51Rj+/nsxmEvRMRRyF4ruJscmgC19+sCQ98JO2KytVW8HrcImIK4/NfyqqtSy21B0u8HRSRTKpMfmjh3eUkBYq27qjCwqEHXvbn+8H30EPPEEcPfd+nWsBj8V4OR3boTN+np1jrp+QD6rHkPRUVGB5mwSNukxePHYpAUl/PDYHDYs1oBMxmPTKhouWuR+rHDKrwl4EzblZL+wUP3OTtjcssX8POdKKDotckOvTSaEzURC0T/80PydH8JmRYWYuAP+CJs0PJiGp6XKYzOdwia9r4mIF4l6bLZrFzt5TsRj04uwKW2IVAubgDevTTvvOiePTatXUyqETfqc0lyQtJ1QmyvbPTbl307CppvolXih6NZ27UbY7NhRicRuPTaB+MJmKGTuvyRU2GxoUNu1FsehwmYqUo9JDMPZYxOwtyHscpu6ETZbWoBnnwU++8z+2Kidme4cm7qoFIlbYdOaAkW3XF1tLxADieXZpNec9hNW7Dw2Kyv1+f7l85FKYZN64NNitw4em9q/ARY2fYSFTSY5nnpKLZ9zjlq28470A9rpOwmbRUXAWWepBPF2XqSpLh6UaWGTGjVuQ9Gffx44/XRg5Ejz8VqN4Zoa4LvvVAc/ZIhzIRdA3BeXoegtRUXK82/+fHN7k+gGZPrmb/Vq8zp08HTy2HR6Iy5xE4q+fbtZlEzUY1M3EbHmUqLXlU4m42FNTq8zsqTxFAw6h4zsvjtw7rnm60fp1k09Lz//DPz73+o7nbBpZyjHE0YS9NhERYXy2Ny2zXu1bi/o2lUyHpt2wqZ8tpIRNoNBYPRo82fJeGzqKlt/9ZW738YTNsvK1MTHbY5Nuq3Nm8U/6zEahnnSmSsemw0Napzr1k31K5kUNmk/GE/YtAqZiQqbDQ1qvx06mIXNRCbk9BykgEkJBkXxIEA8W9Ij2K3Hpp2wWVurJtn0mU2VsEnHz0SETS/Fg6xtyDoJ9DPHpo50eWwC3oRNO++6lStj+zg7YbNtW2Xj+iVs0nZP90ePl+ZKzXaPTfl3ssJmz56qn7ULRafYCZuGoYRNmkbJTY5N2TfQ8UknbLZtqxdW2rUzH6fsX+yEzZaWxHL3u6W+XtljdsKm3XyT2ov0epSWKvvFTti86Sbg7LOBww6zFxFpMa5khU2v45uTiJiIsOmUY9PJYzORyujymnfoEDs2UOh5bN+u5izWMHRJKl9QSWh//pvfqGUnj01Ab8dzKLpvsLDJJM7mzcDbb4vlykpzqKJdPks/oJ57ukmtHXZv9VJdPCgTwmYkog95ces1MnWq2o6sLA7ojeFHHlGTQmsYOhB7zTwImwAQ+d3vxIJhCMHsttvMk1BdCIX1LWyqQtHdeGxa1/MibA4erJbvuy92UikN2HBY/KPH4CUc3ZrDycljs6pK/xy4JRQCevcWyz/9ZK4Oe+yx4n9pCDQ32xvKboVNN4KSNIbbtAHatFHCpi6/lp/ojMmffjILAX7m2EwmFB2IDUf302MTcJ9nM56wCSjvgZUrY0UrO6GDbuvHH/UTHZrXMFdybNJ7UlamBD2/XzraCZuhkBL1EglFt5KosGm97/I6NDYmNiGPJ2z26qWeKaeCchQ3HpvTpqnr+Nvfqu9zwWPTS/Gg0tLYPi/VHpuy3TY22lcPToStW1UxQ0miwibtp77+OrZ/sxM2AwF1/n7l2KTpgtwIm9nmsZkqYTM/X3lBLl4s7pFT+hw7YbO6Ws0paNg7zdFpvaZWj81gUO1PJ2yWl+uFFeqxCaj+xSpApasyut344ma+Sfp3wyrISUcIXfGgpUuBu+4Sy5GIcLCwcvfdwhFEst9++mMAUuOx6YewaReK7rZ4EODdY9MwlI3l5Cxh3deqVcqeshM2ZfvYti11XsRU2DzkELUcx2PTYI/NlMLCJpM4L76oOsgzzzR32KkMRachWLq8b3b4UTxI5/Iez2PTOlguWZJaLzDALFYkEopuV71TZww//7xaHjEi9nvaLqQI7DLHJgBErrwS+MMf1Ac33mj+WycO0UFy1SqzQUQHwmSrorvx2ATM+4jnqUTZe29lMG3cKAodUOSELhEvFko8YbOhQb0h1VWq9YpVjMrLA557TqUx0OX4nDsXuPRS5dUX7zom4rHZ2m+ZKhemMhydtt2DDxb/NzebQ1y8VEWvrFReInQy5kcoOpB6j007YfPJJ8UzL8/Ji7C5Y0fsCxk3wuYnn+gNYip26jw27ULRs0XYLClR5yyvw44dwA03AP/9b3KTALuJJ60A7DYUvaREP94C/gubgF4UnDNH9DkzZ+q3R69rr16xnkxWsVM+J26qohcViT5MJ2xSG+jUU5XAkQvCppdQdCdhk451iRYP0pGqwhNWb03AbFutWCH6OJmz3oq87uGwOWz4hx/st6srsGF99hPBq7BJI2iyzWMzmVD0du30Ba4kcjzZulVcbydvNzthU1c4CBDPvF24rdVjE4jtewwjvsemVdiU27Xz2ARSay/ZjS9uPDadbHU5X6itjX3mr7vOPKezbv/664GrrlJ/n3cecOut+mMAUi9sDhtm/s7PUHSn4kGAd2GTFtaNJ2zS86Av7eN5bNJCX35iGKpP79ZN1RYA4oeis8dmSmFhk0kcuzB0IHXFg5qaVMXRDh1iO3EnvBQPsk6onIoHefXYbGjQvxn0E7tJo5tQdNphA8rIam5WnTUNiaEDnc5jk14buX+XOTYBiHtxzz3AnXeqz+6/XxmXOo82J49Nt6Hofgqb9FrL/RUWuvN8nDhRTQbvucccYmw1YL14sVDiCZu0vToZ8m6hAlJpKTBpEjB+vPpMJ2xefDHw4IMiJAiIL4y4zbEZiZjz7iFDwiYNZaEeIV48NsNhvaHnl8dmp07A0KHqbzlJTtZjUwpM33wTe79+/FFULb7vPuDaa8VnUtjMy7Nvj05Gtq54EGBulx9/rJZpSggvHpvZkmPTTtisqRGTnH//G/j734ELLgBeeSXx/dB+0pqKwquwGQjYe236IWzSHJuAXhSUfc655+q3Z/WEtb70sQqbdnmXKVRsoL+h+5MRFeGwKIwor1O2CptOxYOKitTz40bYlL/3Ep2QiMcm4K+wSV9WSaiAdcMNoo879VR9H0rbRXGxug66FxFuhM26usQn/PT522OP2P3S4wV2Lo/N9euVTT9kiLmyuRVrnk2nPq+0VLVpN8ImoBc2m5rUWEOfNauwWV+vxlq3wqbEKmwmU9HbC8l4bNqFogP2eTZnzABeftm8Lu1LliwR9rnk5puBxx5ztutpv0XbGL2GbsO4devLqCeJn8WD4onzXoVNt4WDAPN5UNvRLi+nUw5aP1i/XvULe+4Zq3nIPlLnyMMemymFhU0mMX74AZg1SywPG6YqkEtS5bE5c6bqpEaPtvfo0OGleFAqc2wCqQ9HtzOg3ISiW4vtSCOLGndDh8ZOOLp00ReVoddMDoQeQtEBCOPxT38Sb08lskBDPI/NbAhF1wmb8cLQJT16qDfCjY1K3AFiPTb9CkUvLFRCRHW12UjxQ9icMEEM7n37igJVo0aZv7cKm4YhClUBoshMU5N/oehbtigP6nR7bMp2VVgI7L+/+jxRYRPQv/n2y2MTAK65Rmzn2GPVvpLx2CwtBcaMUcci77OEejC9+KK477L/7NXLfhLhVtik4hadiNIq7XvtpZYTFTaz0WMTEGIYFXGvvdbbSxGK3cQTUG3PrbAJ2Hsob92aWNSDNbdqPGFTjjELFugng9brGk/Y9OKxKccy6zgSiaiXW/37i+ucbBGkeND7mkh/6OSxCZi9CK0edXYem/n5SlRKRSg6kF6Pzblzxf/bt5tfXkqosBkI6D185LWpqRFtRSdsWqvQJ4JsA9Y2bw2hllDRItPCpluPTdr3UNuXjk92YegSag+vWmVfwAYQ91TeI7fCJg23ldBnwclj02pX2IWi6+xUJ4/NVAqb9DyTKR7kRtg0DODKK2O3Q5+ZhQvV8qWXArfc4ix0A8Dvfifa1tCh5oIzgwYpe+KNN7y9dKD2zXHHmb9L1mOT5vOdP999KLpTQSMJnRt7CUXX9WtWUtWPS+iLqr32EuO1tP2ox2Z5eUyb4FD01MLCJpMYTz+tlq3emkDqPDYTDUMHzJMYO49N6ZmTyhybgHdh86GHhDfktGn266xfLwSCs882D3ROwuYHHwhPsZdeUp/bJbi3ertYjboRI/SDus5j06uwKaECgzT4dANy+/ZqAuUkbKYrFD0ZYRMQYoM0al99FfjiC7GcCmFTeuPSSpd+C5tDhojQ9gUL9JMDq7C5caP5Wq9f71/xIEvhICADHpulpeZ8qlTYlPsPBt21GZ2B6EfxIMkpp4jjfucd9ZlXj81IBFi+XCz37Gn29KaCIgC8/75arqkRfaFsC045lp2ETdn/t21r7tNl7lfA3G5kigTA3A/GC0XPxhybVmFz3TqRp0+ybBnwn/8kth8nYVNeK7c5NoFYj00Zgkur41p55x3goINiPW0Ab6HoDQ1qkk5zgVGs19XaN9p5bO7YoffgjUTiC5vr1qlJb8+e4n95HtXV3j2D334bod/8Bl0+/9x+HT89NuMJm3L7JSWiz7MTNgMB1a+59djUbc9KpoRN6oWkK1pm9eTVTYSpULJunXn70n7wozI6nbTbhVDL4y0sNO8z06Ho8aqix/PYdJNfU2IVzJy8BgF1LTdtUv2kG4/Nujr13Nt5R0vbQeaOtQqb1rEQsPfYTEeOzR07hK1x0klqvLeLCHAz33QrbMoXly+/rFKQ0D6BPjPUdqQpGZzYf3/xnMyaZZ4blZUBJ54oljdvtk9JoUOKiOXlok3S89MJmy0tseOEXfGgzp1Vu5szx/k6tm3rXLTRihdh025+GC8UHUiNx+a8eWp5zz3NL5uox6ZOxORQ9JTCwiaTGLICXF6eOWmyJFXFg6iwac33Fo9wWE0AdMWD7HKjAYl7bLa06BPEexE2t2wRuZdmzBChDnbccQcweTLw7LPACSeoz+1C0ZcuFYbDZ58BF16oJt6JCpu6MHTAvbDpRlShhp00+HQhFIGAGiipB2ogYN4G9dgMBs2DZ7Z4bALivG67Tf0t85qmIsemfHapsEnfvvohbALimQnaDEFWYdM60Vu71r9QdGoIZyrHpizoIq8tzZsm23dZWXxvAMDZYzPZUHS6PXosXj02165V/aRV2KR5NmtqAKvgcvvtatlJ2HSq0Cn7Mqv3VnGx/vpRYZMin7fiYnVtqdGarR6bdHyeNi3We//vfzf3CW6x86gBvIeiA2ZxoUMHs1ez3XN59dWiDf3pT7HfeRE2rXaLbqLmVdikz4kuYqKuToUW60LR6+rMfaFV2KQCmFuuugrBr77CwMces8+vmqywSYUhnaAjn8PmZjXZle3HTtgE1PPn1mOzfXv7MUfiVG06GaRdVVysXnhI26q62nxdrePd9u2q/5DXwzoRLiszR06tXau2T1/0WqvQJwKdtHfsqMYCnbBJxQ4g+zw2Cwr0Yc2076F9zXffqeVkhE1dn0dFGtn/6l46S6h4Q0PMJdQepOta25udF7DbUPRUCJsvvyxe4r/xBvDaa+IzNzk2kykeBKj+59FH1Wc03JyOIRrb0RVW+0lCU57QVG9ORCLKPt9tN9G3DBqkvtcJm0CsXUzbOG0rgYBq5xs3mueuOntR2l2//ho/XzeNfvHisUnJhLD5/vsit6pkwADxv2wDGzaYC3NZsX5WWBi/3gLjGhY2Ge+sWydyiwDA8OH60J78fNWx2A00XosUrF8PzJ4tlvfZx75Dc0IO3LpQdOpd40XYdPLYXL9eCad7760+9yJsfvyxOkaaNNkK9WyikzQ7j83nnlOGQk2NegNlJ2xaw/jcCpu6UHQvOTYpOmHT7k2jHCg3b1brlpaKY5BGBRU2S0rMxkYqPDYjEbXsRdgEzNVvpSHj5LHpJZxUFgZq104ZP9JY3bZNFDaQ+CVsOuGHsJmIx2Y6hU3qdSbbrRQqtmxRExSrp048Uh2KroM+U24mrlZxZtAg9fxQYXPq1FhBkE4sEvHYbGlRQotu7NJtk+YVpcjrmpcnxMB99hHCmiQVOTYTCcF28tj83//Ushwfa2qcX6LZ4cZjM1Fhc8QIe7FB0tysbBNaOVXiRdi0Cru60DonYbOqKvaZjZcKRjeWhUKqf48nbALewtFra6Nhz4Vbt9rbaskKm7T4kpwEUqigQr3YAf0kUCL7q3gv8SzF4RxJhQhXX69stz33VHaMtK2sdp11vNMVkLOeS58+5nxza9ao7VNbOVmPzcZGZfeUl4u+T94/O2GT2jrZ5rEJmK+lW4/N/Pz4XnpWYdMpFB0w36c1a8T/bjw2AfXc2IWi04JTS5e6a1N+CJuyII/M5+wWGuor7U+78aV9e2V/2In1XnJsNjerPqt7d3P+d7p9TbRPUowcqcaQ99/XO8VY2bBBXVf5Wzo3sxM2rfeCnou1ndHtUftM95JKV7TRMPR2Sy56bD75pAj3l+1p1Cg195XPT2Oj0jc0wqZhtQsqKtw5LTCuYGGT8Q4NFbQTswD1kFsHGsMQlePatAGeeML9fidPVstew9Ctx1RToyZYcsJJhU0vxYOcPDZpxz18uBJbvAib1Et1zRr9ALFihT45PWAvbFq3Iwcsq7ApxVnrpJAOdvn5YlKvQ+exGQzGGkduhE36xlrnsUkHDDpQyrDX0lIxgMjjsAqblFQIm3R9r8JmRYXyNlm7Vhhf1iTxyYaiU4NGXstIxNwmslHY1F1L2e7sjCqJpmJuWoTNhgYlutrlhgWc3/zq0CVh99tj00owqNq7m4mrVZwJh5U33ooVSkSifR8Ns5S4FTapKCVztgL6yYh1m506xeZOlNA+649/BL79Fjj8cPWZnx6bhiGK/JSVAccf700odRI2p09Xy088oZ6lRx+1H1PscJNjUxeKbtcXWoVNXVExyqpV6roYRqxw46V4kFXY9OqxSdOm0HV0v5XYjWW06BAVwZIVNmUO0VYClr+j0Pva2OjtpVl9vfJy22svfUEo3QsGvzw26+tVW8uUsLlwoepz9tpLTcbXrRNjk3V8cxI27ULR+/QxT/IXL1b2hp/Cpk4Qo7kh5XgrxYRs99gE9MImjZCQwub27cDPP4vlvfeOtWGtJBqKDihRS750BuxzbALqett5bFoLGblpU+3aeRc2Zb/c3CyEutJScS1lVMqrr8ZuTwedI8m+2G58CYX00XgULzk2585V6x94oDg/OSe0C0X3I0diKKSKY7a0qMgsJ+i4JO2URIRNp3ZGtydfHALOwqY8tlWrRC79vn3N+wC8FQ8KhcxzSUk6c2w+/7woZCltjJNPFi+GZT+hsyfdeGxyfk1fYWGT8Q59Y+NG2Nyyxew19d57YgK1Y4eoAukW6pGYrLAJKEFDTjgTDUV38tikHXf37qLYBSAGbTceq4Zhntw3N+vfSH74oVr+f//PHLJHE5jrBiKJnbApRU2rsLnXXmrwOPBAfe4sQC9sArEiihthkw4c8Tw26UApr7U1bxnNsZmIsOk1FN0un6cbQiGzp4cul1Iiwub69er8qMcHNVZlaHQ4HBsOlQr89NgEnL02M+WxqQvbtRrYO3YoAzSbPTYBdQ6JeGwCwMEHq8/uvtvc9+XnA48/HvtW20nYLC5WIgo1/uMVErFus2dP+4Ij8fosv3JstrQAl18uxNO6OpFHkua5joeTsCmPq7BQ5GiWIVaRiMhn6gW3OTYNw53HphwvAeCww+ILm9Z+wipOeikeZJ2EuRE2qQfXsGGx6yfisUl/57fHpmWsD+jyQAKxz7QXr81Zs1QbGzFCv06iwqYbj03NiytH6HX3a0JMXxDsuaeajDc3i/uViLBpPRersElzQdLPky0eRJ87q7Ap89LW1JhTKmSjx2ZBgbIRZJ9fVKRsoGBQnZ8UNn/4Qb0kjReGDohzl23Uayi6FDZpH2YVQHRt1c5j0yps0vuoa1MyvUqiOTa/+iq2JkBdnRjb3eBF2ATMYcA6nLxlqd27alXsHDcQUH2sH6HoTkyYoJafeir+PFGX/56+BKbzICdhU15jGm0psWvrOnvRKmzec48QQ3/5BXj9dfO6cn4cDMaKqTqs9lZRUWw7kKTCY/Oee9Ty5ZeLdAn0mHRtgIXNtMPCJuMd6rFpZ6gC5kFSGttNTebcV1YDzo6WFiXelZY679cJXZJpNx6biebYtL6RksbF9u3uwgx++CG2aIGuiAEVP886S4Rw3nCDmAiffLL6zjqgd++uBqcZM8R9sk7oAHGsVkEgP1+8wTrrLGeBWheKDsQOUm6Ezbw8ZWDI47Sr5qcTeORg58ZjMxxW18ZuYHR6C6zLp5aMsAmYPSN0b+YTybFJn+f99lPLdPCVz0qXLrHPRiqwChjWUD0vOTYBZ2Ez2RybhiEmrl7CrAC9iGEVNr1WRLduQ+Jn8SA73FR8lujEmYsuUvu/7z7xAkyu95vfiBcp1BsyFDKH1+mQRvbKlWpCahW3rOiEzTZt9P2T3csciR8emzt2AKeeGtvH/uUv7kUCJ2FTst9+on383/+p+/DCC/bVWSMR4YlGvaHdCJuAaHtuhM0LLhDHc9ddYoKZrLBJx7D27f332OzbF7j/fnHcuhyfXjw2/RY26+pU5ILE6pGr89hsaYkVYb287HHzIjyVHptevaq8evosXx6/76eCMRU2ATGWpcJj007YTDbHppOwCYjzsR5vNnps0mO65RaR3/Dpp819kXwxJoVNL4WDACGISWEpXlV0wFnYLC2NHZ914o1fHpuyT3HjsUn7ZbldGiXRv7/azo8/xhfrDMMsbEpb32l8kXO72lp9f+DkLVtYqM539Wr9HFdu385j0+7lp1f69hXF7wAx//v2W+f1dcLm4MGiAODFFwu7SuJG2KysjH2B3K+f3jaM57G5bJmo+SChKa0ANZft1Ek/t7ZiPYbOne1DuP0WNuvqVOTB3nsLgd6ar9mlx6Y2FJ3xDRY2GW80NgLffCOWd9/d+S2LLqHzww+rUA5AGElujORvv1UDyqhRepd0N+iOSVc8yC9h05oc2WpcxIMKlrptAkK0+fhjsVxRITxFiouBW28VE0I6GFiNlH/+U4lZS5cCn3yiPw6rsCk74uOOA555Rp83S+LWY9OtqCLbnFPxIEAv8EhjSF6HLVuU4KATGuN5oaXTYxNQhm9Tk1ngTibHJp140hcGOiEtHWHogP8em06iUrJV0S+5RBg648Z5yxusq/BpFTZ1XhXxSEfxIB30WYl3HXTiTLduSgxqagLOOEOtIz30zzlHfdajR/xQQBma1dSk+otEPDYBvfEZ72VMsjk2N28GjjxSeTqEwypX89q1omCcG5yKB0nks9+2rbvqrJdcAuyxh3ixJZFtOhiMnfTQe9XQ4D7H5gMPiBd0gHdh0/qSTt57WQHYL2EzEFDPzqWXijB+nYjmxWMzXih6SYk6/njCZl2duFc9e4piHBKrx6ZO2IwnwMbDTeoiL8KmLsdmc7N9H+/VY9OLCPfPf4preuihzs+3V2FzyxbzNU5E2KR2tp+h6F6FzfJyMe7IvjBbPDap/dWnj4gi+93vzOtKYVOmL/EqbAJqPLbmsHUbiq5LEyTRhaLbeWz27q2W/RY2dR6b1D696SYVkbF1a3ynjrVrzSKwF49NQC/Yy+3p0mABSoBevRr44guxXFQkREJAPTd1deoay/20bRvfFvECtXNoESMdOmETEAVnH3rI3OfZzVMjEdU2de0sFDIXJpPE89h8/HHzGGzNdS7bQbz8mhKrveVUZ8PvInCzZqk+XnrxWmGPzayAhU3GG999pybETmHoQGxl9C1bxJtRK1YvArv9SqjXjld01dp1xYMCAfPbGD9C0f0SNq0em199pTru0aOdq34WFqrJ/oEHCk8geh8ff1wt9+unlteuje/pZIedx2YioeiAGnhra4WxQgctaqw6eWxKY41OhhIRNr3m2PRL2ATMk6FkQtHtPLCzRdjcsiW1oeia3EKuhU3DAF55RSy//35sqI0TulB0a3XORDw2O3SIffGTjlB02Z5bWuy9/CTyfpaWmnPu/fnPqo3TZ04KmyeeqPpwXc5NK7oCQroXNJTddzf/LYVNXZ8X7wVbMh6by5eLyaCsCl9cLETGN99U+73rLr3gZsWNxyYdB+jESledta5Off7WW+pzec+shdiAWI9NeUzhsPtJoV8em/K+FxWpvjMZYbO4OH61bSC+x+bChWqZ9vWyP4pElLDZs6e6xvGEzS++UC9EaQoDN8KmbuxzK2wahnpx1q6d2aag6J5DLx6bgP2LvFR5bC5ZIgQbQNhgVEi0Iq9zfr4QmOIJm4D5s3hhw4CwLTt2VO2QvlzKpLApK27Ltp+NHpt2yLGppUX8jgqbUvCKB7VDFy1Sy248NhsblbeoLgWQF4/NoiJl+9sJm7RN+SlsdukiBH2JXcoLiXVu5KewWVysF6XkfWpsVHPS/fdXY63uuZF9i98ed6ecoq77E0+YxwUr1DM2nn1uJ2xu2aJEO7tUUzohXyfO03zkc+eav6Nj6Jo1ap/x8mtKdB6bdvidUsTNC7pEhU322PQVFjYZb7gNQwfMD/nzzwPnn6+MbjrJcROOTge6eJUI3R6TUyg6oM+5mUwouhth86uvhPelYYiJz2efxa5jFTap+Bkv92ggAEyaBNx+O/D22+Jveh9prs6RI9WyLhTdLX7m2ATMbxQ3bFCGVGmp+R66CUWn7AzCptdQdOqBbZ1wZVLYLClRE7RFi2LPxU9hUz5PhYVRgyOSnw9DPtNOwub69eaKqX/+c3xRTxIvFH3VqsSEzUAgtu2n02MTcDYkIxE1caDiDCDu+9//bl6/WzdViKVNG9E/3nWXOd+RHboCQvH6sbIycx9jJ2wWFsavZJlojs3vvxf9spwAduokivyMGSNC1S67THxeXy9C0uNh7XeoECah40C86qzTpqlxbvt29SzK+27N0QXEtj35GztvTR3JCJstLepZpfdSXot4wuaGDbHimV0aEzvoueqETeo9P3y4/nfSXpHtEogvbNKQ8y+/FPZFY6O5EASAwKpVsd4tyQibS5aoyf+IEfbir91zCLgXNu3Gu1QJm9dea7b1qOhFaW5WwkTfvsKGtFa/jidsxqtg3aaN2GYopD9Huj/aVmhfuHKleDFHbRodiQibgLqumfTYbG5W7cTNM0tfum3apISaXr0Si6CIJ2xSUcnqTKDzpPOSYxNQ84+NG80OJbo25SRsWlOwFBaqOVAqhM1Nm8S9cxOKDohnPhIRcxz5XMp2bVdnQDdfoGOiVdhsalLjid8ed2VlwNVXi+XmZmFX2kHFwngCod081alwkMQqbNp5vjrNEagIS/s3mkvbCS8em15D0efOFemP7AqNukmp4rZ4kCxiK2GPTV9hYZPxhtvCQYD5IX/8cRUCVVgo8j9KvAqbTgUj4qELRdcVD7L+nazHZl6euB5OwuZ334lreuSRIkfXRx+pbVHvJCdhc/To2OOzMnAgcM016v7QwZt26nbCpl2+OTvotbGblOj+tsNaGV0OWtbJtBuPTYqTsNnUpBes3IaiS2M+2zw258xRhrD1RUUmhc1AQBkE1rw8gGiP9Fomk2NTPk9duypjg+7fSdi0GuhLlwL33mu/PkUXik6T2Fs9Nt1WRQdiDdx05tgEnCev0hMFMIszkgkTzN4wY8eajcDBg0VoshtjMJ7Hpt0LGtpP2wmb8fJrAol5bDY2AsceKwQPQHi5zZhhLkZz441q4vnss8D8+c7btPY7+fnmiaE1rUy86qzWSAI5ljp5Q2Va2NyyRXmxuRE2dbmmrWlgvAqburzLkkhEvNgEYm0F3TXyImzSfmrjRiE4LlqkD5+29mnJCJtuvFwA51B0a7+nKx4E2HtspiIU/fPPgddeM39mJ2z+8osaf+QLGjqOL1ign3jbCZs677o+fVQfqZvs08/CYXVNZV/Y0iKKc518srADrO2cEk/YtHshlw0em/SZ8+KxCYi0A/L3bsPQAbMdSm1+ncBWUKD2+csv5vsQT9iM57EJmPuU2bPVcrIem3Qbsn3QeUpVVXLCpmGIturFY/OBB0R6oAMOEM+SvHdehE3aZ1mLbtF+NhXC1J/+pI7p7bft04RJu6ZDB+fisIC9sEnHSbfCZlGR/sVuSYm9rUpznevSEcUjUY/NeMLmL7+IdnLsscJD1ophqLGsQwfxgkqHW4/NYNA8v2KPTV9hYZPxhhQ2S0qc8yoCouCDrtDIddeJ7yRehM28vOTEFbfFg6x/J1s8qKpKdGY9eqjtWgfv//1PTbwef9ycu+z3v4/dJiAmXzK59NChiVWs7tgxtqMuLRXbk1Bh02uSbLeh6F5zbAJiQJZGtFWIKy2NNX6sOTYpTsImoDfIs81j02uOTaeJp07YpGEmqcZJyKutNRtjiebYrK9Xb92thq3VUNehM9Bvu82+MidF57FZUqKWEw1FB+w9NtNRFR1wnrzGM2hDIZH4Pj9f9Jk0LNorOmHTTUoN6fneq5cKTdd5bMYjgRybgffeU54Nw4aJMGKrR0O7dqp6OQA8+aTzRnX9Dj0fnejkVJ3VKmyuXy8mLHI/OtHA2vb8Fjabm2PDxWkfYSdoywn89u3mPtPqsQnEbt/pfHU4eWwuXKgmy9YcXn4Km4Cw44gXp0HtIj+FTbv8zVachE3rC0v63GXCYzMSAa66KvZzO2GTvpiTfQkdx6WYDZhD9d0Im9IGP+oo9X08YRNQ11v2hStWKO/duXPFvbIWlpLohM099lCfffGFPnReXte6OnuvqFRD76dXj81HHlHLxx3nfp90LKb9h12/J19grV0L/OMf6vNkc2wCZmGTiqbyHg0dqp63Qw+1P04nYVO2Vbn9sjJxramwade2JLpotnXr1P3Ly4t9sWj12Lz/frHc0CCEwUQ8NqlDidVjU5Ob3VeKi833/6qrYm2IlhZ1nd3Mi5MRNgcNMo9JTiKq9Vhkflea6zwRYTPRHJvxXqY8/rgaP77+Ovb7xYtVXzlihH2kjluPTevn7LHpKyxsMu759VfViQ4fHr868u67i7fRzz+v/k2eLLxNaEcWT9ikFfJ6906uKrPb4kHWvxPx2GxoUPuQg2Z+vqrku3ixebJIJwGAmvjl5YlcmPK8qbBJQ8fjhaE7YZ107LWX2XtszZrY/GRuSWUo+urV6jrpwh+txkqioeiAs7AZCMQaWpkWNt14bDp5YOsG5HR5bNrtnxpmNIxSdz/dhKJbw6UIhtz/tm32EzEqAshJ5rZtwPHHA+edJ/4984y+mI4uxyY9jkSLB9FtSNIRiu7WY9ONQXvooSIce+5cVSE0ERL12Lz+ehH6/fXXqh1Z+z2vwmZzs+gvbr8deOkl258En3lG/fGPf9j3t+eco56H555z9kqm90M+K3S7OtHJrjrr4sWxE89160QfJ9t5Jjw2V62KnfhRr0u73KpUFJQvOQwjvrDZ2Kgmh354bDql+YknbFIBxq2wST4zqFDjRth0WxVdji/BoMhXZ0dZWaxtJdtQKGS+bqn22GzTRoXM6zx9XnhBpW8ZOFBtc84cfT9PBSTpSU/HcSryHHaYWo4nbAYCIlXRJ5+IQpES62Q/FIrt5+Tf1dXimbE+z7/+Kp59KrpKdMJm166qqNnMmeZjt3psGkZsuLthiEIn996bWtGT9oNePTYlV19tfukTD7vwYLt+729/U8s0f7HbUHS3HpuSvDy1Xnm5aI9ffaWK9+n6Nl20grzP27aJ+0kjYQDxnMj5l1ePTcAcnWUN5QXMc7t33jHnpXz/fXOOTR3W+9S3r3mbVmGT9iupEqbOOks5mMyZY64wDgjxW455qRY2i4vNL17cCpvDhokoRIkcQ1PtsUnbrZPHZkuLsNElOqcEt5GqOnuShc20w8Im4x4vYeiSPn3EACn/HXmkGJC6dlWGbDxhc80aNVgnE4YOuC8eZP07EY9NmpeMCg3yHLZtU+GGNAytbVuziHHIIcKAkZ04NZRlNXQgOWHTej/33FMMDNIIWLhQXSevHpupFDapuOVF2PTLY1O2S11YRi7k2JST6eLiWA/sTIaiA3qDgHoRy+e3sFD/ssNNKLqDsBndv2HYG0bUQH/+eXXPZ8wQIS1PPCEmQRMmmA1JQO+xCSgDu67OLKTsKh6bkv791WQ5UehkxYuwGQqJqAI6XiQSim7Nsfn44yJi4fTTYxPrAyiorkZAekN26wYccYT9tjt0AH77W7G8bp35JZcVXZEbem524zn1lr37bvG/bj/r1zuHCQLm67V1q3omvQibNJebVVzT2RFePDYBJQrS46PQ55EKk4kIm1bx38m+0m2fPjvhsOpDrMLmhg2xxTRmzDD1XZETTlDf+eWxuW2bEMQBkT7C6RoFArHPF21DtO9LdY5Np0I377wDXHih+vvf/wb22UftR9pzFN0YU1qq72sPPFBvF9t57peXCzGU2ljWyX6nTrG5TeW1Ngwh5lMhST6P1dXmc5XohE1A2Z+RiDlMX67jMD4E3n8f+L//Ay6/XBRISxVePTZp3xAIiEiCO+5wVyhMYlfx2U4YGjFCODJYcRuK7tZjUyKLO0m6dhWOK/IzXS5pncemvM+RiJijSCGRnr/02ly71v7lCHVkodAxRje+0PFsyhTzd1OnqpcObj02rX0w7Z82bky9xyYg2tm//qX+njjR/L1dRXQ7khE2AXM4upOtSI/lnHP0L5hT7bEZDKp24iRsTp1qzv2pKzzlNvIgLy923mInbNKXJhyK7issbDLucftwuyEUArp3F8vxhE2/8msCwmiTHbJfxYPsPDbtRJN991XLcgD+6SdlvB5+uHgT36uX6Jz/3/8zb2P9erWPefPE//E8IuJhvZ/SAJEDBz0Xv0LRE82xSQdemoxdJ/yky2NTtz36WSqETWoYJhKK/uuvysgYPjy2bVuvZ35+et8s6gwCXSVsO2EkSY9N0/nbGeFSBGjfXnjv/POf+vWefRY45hizgaXLsWk9Dioy+CFshsNqkmL12NR5HXvBT49NvygqUkajVdgsKoqfk4qSbCh6c7NZzJTVzgndpk9HQI5HZ58dPzohXvVyiS4X5GmniXHjkENE29Vxyilqcv/888JTzRqGDrgTNumkinqCeRnTnXLfxhM27VIQ6IRN+jvqpUInQIn05bqXXRJpX4XDZhvB+juJ9dmxyxWq846aN0+F3IVCMEaORLN89v0SNr/+WnnfubEX3Qqb1krPkngemyUl7m0MXdHARx4BTjhB9ZcnnwyMGmWe7OvC0XVjTCCgn5TvvrsSAdwImzqs29Xtx5ovkNrYL76oQsvnzYvty+MJm4DINW09XofxIUCLZEoxPBV49dg8+mghQJSVAa++CvzhD973SSOfKE4vdG6/PXYs9iPHpkyFQInXngKB2GN1CkUHzH2ITti0rkPZuFEvRMUTNp1sU2r/uRU2rX1WJjw2AfHiQh7LwoVmhxk6HrlJE+WmeJBTOjPa1znZTqecIvbVuzdw5pn6Io6yf2vb1n3+eC8em4B6PpyETavd5OSxGQoB++3nvE9rW7A7tzPOEPbX0Uezx6bPsLDJuIeGSukEBq9Iw7y62jm0yU9hE1CdSLxQ9GQ9NqlBSz2HqAEoJ4lWb42BA8UgtnGjSIBNt2EYYiCKRICffxaf9emTnCix995mY8EqbFJS5bHp9vipgUfbhs5j0xpe4neOTeqxaSUYVJ/7JWyWleknZ4mEoscr7GA1eLt18+apkCxWg6CwUOT5seJG2LTLsWn3jIKEogP6/mnrVuU9veeeYgJw6aXis/nzxb/nnlP35uOPRYi1FMPjhaID5jBFL8KmXfGgQED1VVaPTTdVvp3w22PTL6RRvXq16OvlhMRrP5Zs8aCWFnN7s4oghoHu1NPETbjjmDFqIvLOO2avRIpO2JwwQUwWp0+3f67LyoBbblF/X3658HCw4tVjc9o0tew2+kPiRtiU7ZhWbPfisUknerRoE/WQSaQvtxN3qqvVsz5kiHO+Zrkda2V7KmzSkGgqINBw4F9+EcuttkOt7DN++cUsEiYqbFKxys09TrXHphevGGlLyHP/5z+Biy9WQu3pp4u+HUhM2AT0tlXPnnq7WP5Pw4btcCNsWr3PqB21zz7m+yVtTIldepSDD9aLHdYcm0CsxyZ94UOFGz+4+WbgxBPFffDqsdm1qxjP164FTjopsf0XF+vHbidhs2dP4IorzJ/pBCevOTZLSmLbgxu7Ip3CJm2L9KXS6tXqGY/nsSnRpQGwu+6dOpntH2ufZX0ZkA6PTQmtSUHt9mz12Dz8cPHMLFggxmurx2ZLi8o97MUGtPZ98WpK6F5QUbZuVUWNJVZhc+tWVZxxyJD4ESZUpMzPt79O558v9pVKD/VdlJwWNh944AH07NkThYWFGD58OL7WJX1t5bHHHsMhhxyCdu3aoV27dhg1alTM+ueccw4CgYDp39hkwnt3JrZvF1W7ATE46XLPeIV2aMuX26/nt7ApB6FNm4ShaheKnqjHpk7YpIP7AQcow/nDD0Unr8uvFQ6brzPdxurV4prJgZ4aDIkQCpnFahkC6oewSY0QKhbRDr+gwL1oRgcz2ja8eGz6XTzI7u2l3I+cXHs1rK3YeXokK2zqPGqs1zOdYehArLDZs6fe+yFTHpsLFqhl+vx16SJy1O61FzB+vPDKlqLDnDkiRxtgH4pOj4O+kfdSFd3OYxOwFzaTCUMHzOegC8mUyGe2tNSfcSQest22tCRXBM0Pj00nYXPOHJRJY//AA82TOqftyyJzTU3C20qHXfXuDh3ii9kXX6yOZcYM1ecdfLBax6uw6VX0osjnYOtWcz4+Kmz2728+Nvo/YJ9jU+exOXCg6kuSFTbtPDapB6uuL7b2cT17xt43eR4tLeZ7QQUEXYhra99VI5+TSMScn07n7RJP2HzlFeF1JknWY1NOFgMB8+fxPDZbWtTz7sUrRu6jtlZMPv/yF/Xd1VcLUVO253jCJk0dRMcv6zielye+19nF8nqXl8d/Xr0Km9Rjs7BQjB1OApQcC0tKzP1bYSEwcmTsvuJ5bBoGAvS6+Slsfv21yFn55puiPXr12AREG0t2bLSOx26iI66/3txmdfexoECN525ybAKxcyg3doW1/3HKsQmYX8gmI2zS/No07ZTu3rVpE2uHP/BA7LzOzlYPh5UQWlYm7DeKU/GgVHvc0f6T2u30pYNfwqbTudC+Ll67addOjZtWYXPNGmWTJypstmsX/xmiL6h0uXtfeSV23NiyxewIMXOmelHoZhyjtkW8/rp9++ScCRgtOStsvvzyy7jqqqtw880349tvv8XgwYMxZswYrNclfAcwbdo0nH766fjkk08wY8YM7Lbbbhg9ejRWUaMDwNixY7FmzZrovxftJgq7GmvWCLErGPQ+EbHDbQGhVHlstrSo5OmAvccmDd/UhQbm5+tFFNq26OCelydCmAAxQM6erTw28/LMHiIUq7BJDYNkhU1AGO89ewIXXaSq2MULY3LD6aeLyeHRR4uwR4ldddN4lJWpAZomoU9F8SBdqA9F7t/O8LUKm8l6bALOwqaXHJvUS1jngZ2fb95eNgibunO3u45ucmzaPaPW/euETbfP34EHAk8/rf6WxqibUHRKoqHo4bD5pYE0Bq2h6MlO3nQpNqxs3arCFPfeOz1GHW23P/2k2oLXfiyR4kHWHJu0vc2bZzKgTUWDvFSCt1Yvt9LUpO51In1OXh5w112xn599tlr2KmzKflA3gYwHzX1L90ltCJqWRdqE0kMRiF9RnNqRnTurCW+qPDbj5S/XCZtW7Cqj037qvPNifyeFTRrKSH/jtXjQ3XcLAVVOnE87TdkTTjgJm5dfLlLzXHml+WUIfQZ1wuaWLWpS6uV5l/s2DFHARdqIF14Ym2OxXz91HE4em5WVzrkwu3cX/YXOLpbCppsxwKuwuWGDEo12312cmxthUyds6BxB4nhsFmzZggAVifwUNj/9VC1/9lnyL5YTxTqmFxfHH/vKyoAnnxS/veyyWA9tuh6g99h0I2ym2mOTek16FTZpXxhP2ATMolyvXqJ6vdW2dQqhvuEGEZk0cWLsXI9e/3SGogNmQU2OFYYhivECol+h+eftiCdslpfr762kc2fgT38SBXAvu8zVoQOIzXWeaNQOtVHjhaED6tkwjNjUL4DZXpJ2omGYx0+vtUVoW/DijMD4hsb9LDf497//jQsuuADnnnsuAODhhx/Ge++9hyeeeALXXnttzPrPP/+86e///ve/eP311zFlyhScTQz0goICdHbzwABoaGhAg5wwANjWOrA0NTWhyalCaQ4hz6Ope3eRX6umRhjkPpxfoFu3aANsWbIEEZtthhctQgCAEQqhuUuXpPcdat8+qug3rVwJaWpGgkG0kG2HQyGx37w8NMvPDQN5MNMUCAAtLQiHwwg0N8NoaEBzUxNCK1eq/XTsaDruwJFHItzqAt/y7LMItYodkaFD0RIKac8x0KmTul4rVgA7dkAOvc19+8JI9p4ceKDy1GjdVrBjR1il3Oa2bb3tq1s3Id4CYtCQ287Pj27bKCxU1xjyEJpM/1PClZUIUG82AC3FxTFtKFBZaerkmgoLgaYmBAoKYjq/5sLCmPMKFBWpa15dbd5+czPyWv+OFBWZ2k70OIuLRRuqqxNtoqZGtYmCgoTacqiyMuaNVHM4LI49FFLtub5ee0wAgPp6hL/9Vhxb//5oLi3VHku4vByB1olGS1WV7TOaCoKlpaa219K9OyIdOsQ8f5E2bbTnGQwG1fOxY4e2zYZWrVL3o6ICIH13C9l/86ZNMb8P/vCD+r5fP+dnolcvdV9WrEBLUxNCW7dq2wJ9ziVGKITmvDz37aWwULS9ujoYBQWmZyucny/ue2MjmpuaEK6vF38XFcU8g57o1Qvhnj0RWLYMxmefoXnLlpjJY+Dbb9XzNGhQWtpTsEsX1c+MHg05nYy0a2f/fOgoKzO1vUheXvzfk/EiUleHIJ3A79iBpvnzhbDX0IBw60tUo7AQzSec4P5e77EHQsOGITh7NjB7Ngwp6O+2G5pfeQXo2VMdQ3Gxt3OWjBmD0MiRCH7yiTjGYBDNxx2HcEEBAg0NMNauRcuWLereavriYCgUM5ZEhg9HS0tLbDVzB0JlZeq52bAhOlENL1sm2nH79oj06qWezVWrYDQ1KTsiHEZzVZV63srK1HFv2IBIUxOCa9ao37dvj2C3bgguWwZs3oymrVuBNm0QqK5WvysqcteW8/LUvaitjd6L0JdfqnPab7+Ye28dr1q6d4+9vuXl0WNuWr8+OpkM//STOO/ycjQPG4Zwp04IkFD75r590dTUhFryAqDlhx8QOfFEcWykn5IYW7dq+4rgvfci9Kc/Rf+OTJiAlgcfdNWWg+3amdpHU1GR+t0hh6gXQtSOys+PXpfm2trYPnj1anW9O3Rw3fZDxcXRc4688kp0ufmkk/TjyIABCM6aBWPxYjRv3qyEl0gE4TVrxPWvqjJdM6ttFenRAy1NTbF2cWMjwtu2IQAgUlYW/xwsY2RLx46xdlHbtmofc+Yg1DqPifTuLbbfp4+6bvPnm+3i6mpxPm3bxraBI44w7dsoKkIzADQ1IdimjXqmqqthtI61bWk+TgDGmjXJjUOE0BdfRO+dMXcuIitXqmMoKkreZnZ7HFVVpmfIKC52d46jRysRyG5+VFqKwMaNMLZtEzZmXZ3qS8LhmN8FSd8IAJHS0rhtKtSmjen4W0Kh2P6npESNsz/+GB1nmysr1XXu1AnhkhIEamth/Pij9hqEFi5Uxz90KMKBAAKGAWPJEjV224xjoQ4dEGz1cm4580xEWloQPPJIhL74Qh17UZH93OL3vxf/xJcx2w+3bYvA1q0wNm6EQa5JU9u2vsyJbWnXDuHdd0dgyRIYs2ahua4OWL4cea3PTuSgg9DSOrdxIhAMque+vj56D8Pr14tnumPH+O3yH/8Q/wD35xwOI1xRIdrpr7+iZfFidRy77ebaDgzm5UXbWKRTp/jtlvTjTZs2mYX+hQuR1ypaGgMGwNhnHwRbq843rVkTfYFmGpv33TfuOdNxLNK2rekYnea0jDNerllOCpuNjY2YPXs2rrvuuuhnwWAQo0aNwgzqpu3A9u3b0dTUhPaWt2DTpk1DZWUl2rVrh8MPPxy33XYbOtiErE2cOBF//etfYz6fPHky2ngpSpADfPTRR+YPZFh6ErRfswbSf2/ZtGn4QZfY2jBw9M8/Iw9AXceOmGI9jgQYUFsLuaev33kHMthh89at+GLSpOh6B4fD6ACgvqQEH7V+nldbi6Mt2/to2jQ0lZTgmNZBY9vmzZg2aRIOnDcP8t3N5Pnz0UzeUhWFwxgt/3jkkejnv3TqhPnkGCgdV66EfF+05LPPULBlC3q0/v3F5s2otvldMnTfsAH7WD775pdfsN6HffVZvhytAe+oj0Si19hKTNsDcGh+Psotn81dvhwrLNsoWrdOXWcAH3/9NRoXLkTVwoWwllr6fM4cbLV4ZXb6+WfI970LZ8/GQrL9cH09jmld3rh9O2Zojv83TU1oBwDbt2PSe+/hoBUrIP1GPvj8c0TyrDJdfAY1NqKX5bNv5s3D+laPqGPz8xFqbETN+vWYZnNNe7/zDga2eost3203fG+z3uGhEOS78R+2bsWyFLQxO7otWwbqu7xgxw4s/uYb/DYYRICElayvq8NMzXH1W7YM0j/gmy+/xHryEkpyxOLFKAHQ1KYNJlHvDgBzf/0V0gdxwRdfYInF42f/Tz+FDCycumYN6h2uTaihAce2Lm+ZNw+fT5qEw1evRimEoD6JFGQpWr/e1GbRenzvv/++7fZ1HFpZifKlS7G9pAQfk2Mb1dKCYgAN27bhw0mTcExtrei3mpps24tbBvXvj17LliHQ2IjZ//oX1lkSrfd6913ILKnzQiEsT0N76lxTg+GtywGSe3BJczN+9LJ/w8BxwSCCrW1vTXU1ZsX5fbiuLtpH1P38M6x+Jt8//TRWHXooOn73HQ5s9RJYtd9+mE0mYm7oNWwYBrW+PIoWH1q2DKuvuw4LTj8dY1rXW1tTg28SvOZlxx2Hw6ZNQ8AwsHmPPfD5zJk4srQUbRoa0LByJX7+6isMluf1yy/41bKfnosWRb+XLOzQAT97PJ7B27ahZ+vy5+++i229eiHQ0oJjV6xAAMDW8nIsW7cOQ1rXmTd1KlYEgzhm4UKEAdRVVmKK9HQBULZ0KWQA7aqvv8Z3kyZh0KxZ0T72i0WL0DsYhJT9pj//POq6dkXXzz+P9g8/rliBX1yexzH5+Qg3NqJmzRrxvLW04JhWAaa+fXtMnjcvpoBKx/nzQX1Fftq+HUss+9tz82bI5AXffPABNqxZI8aoVi/TLZ064bP338d+vXqhCxE2v9i8GdUffYQS4rG59pNPMKvVA3u/RYsg/c1awmGEmpvRuGEDPtCc7+h//APSp2bBqafi53HjAJc2W58NG6L2AAB88MUXccfHbosWRceIn776Cr9YPKfaz58ftTF/qamxta2sDN22LXq/ZU7Z5sJCvL9tGyKabQxu1w49IfqXGY89hi2tqRDyq6txVOs4uy4cNo1TPTZujLZRAPg1GMScSZPQYe1ayCQPy6ZNw09duuDY1md6U1MTvox3DoaBY/PyEGqdCH67ejVWW35TsWRJ1O7dOnky5Czol2BQXKOWlqgdUTdrFqa2/j7Q1ITftkapbDIMk70sOaJzZ5S0vgxtKCzEh63r9Fi6VD2TM2ZgRetLr74WYbN51SpM8mNcMAyMmT4dUsoIRCLY8sYbUfvrmwULfLFj3bBnfX302QSA7YBpTE6GwwwDbQFEqqsxadIk7Ld8efR5nfrll9hhyZHapaYGdFReunkzfohzLAfW14M+WXMXLIixtbuvWBGdKwSIN+PUBQtQTzzgflNVhXaLFgHLluGDN99ExBJO/JvZs9EOgBEI4IMlSzC6tBQF27YhQDzcl23ahHmaY96voABdWn87tVs3bJ80CW1LSnAYWWfRqlX4ubVP0s0tnDiiqAglW7eiae1a1Dc3oy1Enzjps89SHn0ydLfdsNuSJQg0NGDGgw+ifOHCqC31U/fuWOyiPXX98Uc1Zs2Zg18mTUKwsRHHtc57NofD+DxFz8ShZWUo37gRxqpVWPzhh5DJYmZt3Ii1LvfZ79dfozb96pYWzI7zu322bUNriWJ8+t57qCVj3J7PPRd9Jufvtx8KtmxB39a/Z777Lja1ztfHfPMNCgHsaNsWH86fb06zoGH3jRsxoHV5Y1OTdl7otd0xQrNzjZGDrFq1ygBgfPnll6bPr776amP//fd3tY1LLrnE6N27t1FfXx/97MUXXzTefvttY+7cucabb75p7LnnnsZ+++1nNDc3a7exY8cOY+vWrdF/v/76qwHA2Lhxo9HY2LhT/KurqzPeeusto66uzv/tL1liGMKHz2g57jj9OitXqnVGj/Zlv81/+1t0m03PPKO2f9hhpvWaPvnEaDn2WKPpjTfU55s2RdeX/xq3bDEaGxuNSNu2hgEYkX79xN/9+4u/27QxGhsaYo4jsueeMdtqevFF+2P/9lt1rGefbbQccIA6hk2bUnL/m958M/YYv/zSn/tw993RbUb22MNT22sZM8bdtaupMd+rbdvEeb39dux9nD8/9vw//jj6ffNVV9m3zWOO0Z5jy2GHqe1XVxuRffYR5xsOa9uEq+t2442x5/7hh6pdtWsn9tGnj34ba9eqdQIBo3HmTNt9tey3n9oHfQ7S8K/pjTfM5/jcc+L8OnUyfd5y8sn660Sf89dfj12nocGIFBeL69C/f0y7q3/3XXXvr7465veRPn3U871jR9zziXToINbv3l383bWr+LtLF8c2awBGpFcv79fv449F//X22+bj6NdPbLO83GhsaFDXcb/9kr9nr72mrtkll8S2p3POUffk88/T05a2bzeaL7nEaBk2TP078USj8ZdfPG8r0rGjul6nnx7/N1u2qHvY2tboP9mnNF9+efSzHc8+6/0ca2uN5vPPj55f9Bj3399onDtX/X3WWcnd36eeMlrGjTMaZ88W93PoUHFuwaDR/Pe/q3v70kuxv33kkdh+6733PB9D8x//qH7/8cfi80WL1DmOG2c0vfqqusZ/+5vRuGKF+n7sWPM2t241IqGQOI9Bg8R5nXCC6rcXLTLv84MPxPk89JD67NFH3behigqxr969xWezZqljO/FE/XWfNs183TTXt/mf/1TfP/+8+N2XX6ptn3uuWO/2283j3ubNRl1dnfH2a68ZkXBYHNuAAeqZPfJIUz9kO36tX6/2ddBB3tvWo4+q/eTlufvN5Mn24yWbGU8AAEyHSURBVHNjo9H08svq+9tuc9/GLr44pq3ajfGNjY1G8733qv3ce6/67uuv1e9//3vzsVnGt+ZbbhHfLV6sfvPb3xqNS5eqv48/3l0b69FDtYWpU2PX+eYbda3z89Ux3H+/2sagQeL7UMhorK0Vn69aFfd6NF9yido2seuann1W7eeuu4zGRjHWrjzooJhrLW3qpP79/HPsONravg3AaPrkk+T34bY9EVvXAIzI3nv7tu2Wgw9W162mxmgZO1b9vXZt7G+++src7v7yl/j7OPZYc//z9NOOz5rpXtbUmLd15pnqu6+/jm277duLayTtJM08qfnaa/XHOmuWsHkeekh9tmOHadxu/vvfE57XSns4EghE7dAY+y1Vbej++9U53Hmn0XLUUeo6zprlahum/vD228XntL854YSUHT9tQ3T+pmsDtteAjHHNl18ef/1LL1Vt9osv1Hf19UakWzfVv/36q9H8j3+odeVcsq5OHfP++7u7xo8/rn5jmZukVE/Zyf9t3LjRAGBs3bo1rr6Xkx6byXL77bfjpZdewrRp01BIXJNPO+206PLAgQMxaNAg7L777pg2bRqOOOKImO0UFBSgQJO8Ni8vD3kJeGJlMyk5px49RP635mYEV6xAULd9UlQo2Levfh2vkOIzYRIaGAyHzds/7DDgsMPMYViaPHR5bdqYCggFmpvFtWotoBHo0gV5urwlRx0Vk2cmfMgh5jxMlB491LGuWaOKl+y2G/Ls8u8kC8271Uq4Uyf7Y/QCydsTKCqybV/atqephhdu3z72uPLyRD6pTZtEGGBJiXizqskrlEeTXUtIPq/Q9u0I2RSkCZaU6NsmCcXNa2yM5nkJlJTo24QbNJUewyUl6thb+7TAjh36azpxosg9BiAwYQLyaD46KyRHTLhXL3/uu1ssHpLhPn3E/jt3NlUtDpaW6q896dvDhhF77Nu2qfvRtWvMtQqRvFihTZvM937HjmjOvkD//shzUyF7t92ATZsQWLUKecFgNN9XoKzMvO+8PHHuxOsh0Lat9/73iCOAI46ITaTdeqyBxkbkEc/XYJs2yfevo0dH+/TQ5MnmawYAsvptMIjwPvukpz3l5QEPPhjzcUIJxjt0iBYNcHW9SBsMaHI8hebNE9eo1YPQCAYRHD3a+73OywMee0z93bMnsHw5ggsWIEhyrgXLypK7xxMmABMmqGvX2g8HIhGESP7JsK4vtY6dgQDCBx3kvQ2QCJpwba34PcldGuzdG0HSR4Y2bULIyY7IyxPFhubPR+Cnn5BnGKZnL69rV1MesPCaNeI3JIdxuG1b9+dRUgJs3IhAba24z998o47toIP098cyXkX7QgrxVgxv2ya+X7RIbXvvvcW2aZ7r7t3FuNfUJFIY9OkDLFiAwMKFyAsExLNMPKUC3boBS5cKG6e52ZyvjuTGCw4Y4L2dkWq8gdJSd89ALxW7EFq9Ora/IblAQ507x35vh8Y+CB59tP05kfzC0WcaMOVqDe62m/n3FtsqtPvu4ndWu5h4qgTbtXN3XTt3jtrO4W7dYtsKSbcVILn2QnvsoY59r72AuXMRaGlB3vLl4m/ShwXbt9cfy9FHAw89JLZdXq7uI7ElqC1lDUUHgLzNm5PPTzdrVsxHAZLTWNtHpQpLfvJASYl/8ynSVvN27DDl2MwrLY09xz32MP0Zat8+/nNhyWkZlnMeii6ysaJC2NyUvZVfdt7ixQCN6ti8OZrfMNCnj7hGnTrFzJNC5eX6Yx42DPjf/2LH9jFjRMEvACHSt3ie17bapAHDiNqggY4d0zPfJ8X6Qp9+CkybJv6oqkLe0KHuPEZJfx1qaRHXsHUuAADBzp39mWProPNXkrcyr29fb2NnK6EuXeK3Wzp/2b5d7eeTT6KFOQNHH428bt3MukB1tViX5PsNduvmvu+Vv7HpI3dGjSjVeLleOVk8qKKiAqFQCOvI5BYA1q1bFzc/5l133YXbb78dkydPxqBBgxzX7d27NyoqKrCYJjNm/CMUEgnTAfviQX4XDgJMHaypyIWuMJAVu6rogLna8PbtKuG7rpIzEJtovXt3rWgVhVaBmzNHGe1+FA6yw4/iQXbQia6X4kGAaRIUxS4Juqzkt8ceavD3oyo6dY2PVzwIEBNEu+rEXnAqHkSPRVdM4eefRaVIQBg5t93mvC/ZtkpLRWGBdKIrHgTEPk9uqqLTKocSp8JBgLmNWYvSLVyoqiy6ff5ode41a1R70iXCdypklCy0eBAtMJVs8SBAnIs0wJcsMfffTU0qxLZfP+ck/tkK7fvciNm68YIyZ44QIFonbpv79fOnUrxsk9u2mcQt3wtm0BdM8Yo7WK/XgAHeCmJJdEW9rMUIrM9uPDtCjhFNTSLUTD7vpaXiubBWdQUSLwRnLShHw87tXjIlWjxIV+Bs6FC1rqXKq9G3NRivsVEVvZH9VFGReR/WyujJFjOkz5bbitXWohRWaE7bRIoHUXSFcSQDByrbghYQktcQiO3TreO4vKfhsGpvy5aZCzW5HQcGD1bra15Oa0UowPxs6Aq9uDmWkSPVc92PBGDTayqfndpaFLc6AJjwo4AQLfqhI5PFg/wc++h13bYtfvGg8vLYys3x8Fo8SKKbzzgVEKJjiGyLGicG1/2D5IQTYrebCDbibVoYMEC12XffVbbb2LHuw+B1xYOobaubV/kFHUPlmNK2rTfblt67OPoNAPv5Gy0aJAs10jQmctxw6r/t2HNPdT/693del0kJOSls5ufnY9iwYZhCRKlIJIIpU6ZghMVQo9xxxx249dZb8cEHH2BfWsHVhpUrV2LTpk2oshOmmOSRxtzWrfpKm6kQNg87TBnoJLdd3EkoECt+0orpUkhpajIbZnbt55BDzGJCvIprgYDqXKnBnkph0zrQhcPejQo7khE2dcaOrio6ADz8MHDjjcALL6jPdIalTiCj57pggXjr+9pror1SUcjOUKXbrKtLr7Cpq4r+5z8rke/Pf3YW0gFRJfKvfwXeece/++4WavAUFqq2aD1/N8KmLvF0PKOlQwf1bFteopkMcrdVnalh9/PPIlgF0Ldb631JRACyQxq3LS3mSpF+CJuAWQCg/euCBcqYlkJSrkEnNl6rolPktd6wQVS+bWX9PtaMxglCx4Svv1bLfk/m6fjgVdh0sNUc8SpsrlvnXtgEhDAlJ3tyO34Km3LdujrxcoQeu93LI9rHlZToKyS7FTYLC4H//U+Mif/6l2kTBu0HZZ9HX8DQfshqr9HcY14r3QPmZ8vtWFNUpISFeMKml8rF1v337etc2b2kRKwDAPPmqTHWaYyx2lZUrJbL1dXAq6+qz92OA3/7G3DLLcDbb+v79aKiWJslL8/czhMVNouLgffeA266Cbj9dvU5fUZktMIPP6i8x1Scofbzxo1iHNG9nHRC1lsIBIBDD439Pp32jK4qul9Q+6GmRtl9+fmiwr0O2ge6aVPW/s2tsKmzq5yETV0/rRPbEhE2H34YuP9+EVWSKDphM9UV0SWhkKrwLp8ZwPmFi5VMCpu6FyxeKqIDwKhRwhv8oYeEF2486LMh6ydUVwNvvimWO3QAjm3Nfk8FahmxEc/5QUevXsDrr4u+78IL3f2G8ZWcFDYB4KqrrsJjjz2Gp59+Gj/99BMuueQS1NXVRaukn3322abiQv/85z9x44034oknnkDPnj2xdu1arF27FrWtxmltbS2uvvpqfPXVV1i2bBmmTJmC448/Hn369MEYNw8Qkxi0Y9N5baZC2CwoAM44QyyTUExXHpvBoNlYoAMF9dikQoidF3FhoXi7LXEz0Yv3BtRv8vPNgzkVe5KFGtxeRRUvHpt9+ghDf+BA9ZnVsCwu1huB1ICaPRs46yzgd78DjjvO7LHpRtjcti39wqY0gAwDuOMOIVACYpAm1Wtt6dhRTFAOOyzx400UOnHq2VO1O7fCJn1RkYiwGQopY8fqsZmIdxKdNM6fr5Z1wqb1ePwUNqnARL2uUiFs0oJH1JNpVxE2AwH9uEJT29x3X3Rx/dChSRwcgQpLJNQ5pcImCffWTjytk+F4L/LscCNslpSo++PFYxMQ10uG56VC2KT9VX29OvaCAv0LO+v2aV9IcRI2i4rMkSoHHijGRKs9QfcvxSU7YdNvj81EhE1A3ZtVq8TLGgpJKZCUsOlGPJBtaMcO4dEPOI8xBQXqnuXlmV+AU7v4nnvUsttxoFMn4Oabgd/8xn4dq0jTu7e5r6J9iBdhEwAOOki8EKXnrPHYDHz/vfpsGCkVKNteJCLa6lFHARddZL8/K7W1gNz2gAHi91bS6bHpNsokEazijfTYdBrPvQqb1uPVRSu4FTZ791ZjAbWDAHN0gXzJ44ewGQiI9nPppe7meXbovDPTJWwCsXPEYFCIfW7RCZt0rpouj02JV2EzGAQuvlj8czMP1Qmbr7yinpEzzlDXxC+PTUAI6ddc4+9zzrgmZ4XNU089FXfddRduuukmDBkyBHPmzMEHH3yATq2G2YoVK7CGhDg89NBDaGxsxMknn4yqqqrov7vuugsAEAqFMHfuXPz2t79Fv379cN5552HYsGH47LPPtHk0GZ9wK2wGAqZ8Skkj3c8pbjw2retZc3UBsR6bTukRxo9Xvz3aWm9dQ7w3oKmAHr9dCFMiUGHAj1B0O49NHdYBx87IbdPGLIhKPvvMPJFzE4r+1ltKSE+mLesmv7prGYmIttjSAlx+uRhoJbffnv2DbkmJmlzRFwCp8Ni081yV7Wz9evNb8kQm8fSNdSaFTWrc0omqX8LmoEFqIvfJJ8qI3NmETbd2gW4iRfv6VhHKqKhAtV/pHmib/O47tZxKYZOKSm48NlMlbPboIewF+uxKOyIY1E+mZOguYK7iLbdRUaGOvzU3V9Iem3Ib8th79LD3sCotVbnxDj9cv45V2GxoUOfdv7/9tgkG7VvXrhV9nldhs7Q0fiSAjg4d1DkOH+7+dzTFhzWE2a9QdC/CJqD6ungePzJtx6GHmvsJOt5RpMeWH1htOavg37evOibpjZtIWLxE57FJxwR6jeV9/PVXJXY98QQwc6a7fX3zjeqPRoyI7WuCQf/GOzfk55uFk1QKm9Jj08mmlmJYQYG7kN5EQ9F1bT4cVjb1Tz+ZhbVPP1XLA1prS/shbPpFJkPRgdh2fMABeu99O7IlFF3iVdj0ijVNA6APQwfM9zFZYZPJKDldPOiyyy7DZZddpv1umkys28oyuxyOrRQVFeHDDz/06cgY17gVNrt3dz+RdMPQoWLgpPmt3L7JC4fVoGDnselW2Dz9dDEwderkziM1U8KmFGL8FDb9zLEZDHozFq0elnYT00AA+Phj4enY0CASdr/2mvhOhjPotiehx/T442pZCtqJUFgoJhV0kqHz2ASEV+aCBebJ+m23AWeemfj+00UgAEydKnJlUa/5RIRNXRibG6OlslK0/fp6EToq24mcxIfD7nOP2nlsusmxmSphMxUem4GAmKQ++aS4bp99Bhx55M4nbLrts+h4AYi+QuNJZYwa5Up8cgUdE2hKilQKm5R4wmZFReIRGE7CZvv2aqJfWQmsWCG89uQ16NFDPynv2FGIcatWmb2G5PkFAuLFxJIl/npsLl+u0kE4TfICATH2fPWVfQgezc26ebM4D695gK0emw0N6qVQWZn52tO+g3qe9u+fWFRHMChehMyc6S28kvarK1eaRVXpsRkKeRPiqFhUUOAuYsEqbJ5xhhpjQiG9Z9czzwj7wipkjh8v1qfpHfbZJ/H0DTriCZv5+WJsW7hQpE6JRJITNnX57lq9Ko1AAIHRo1XOb2k/W+sbXHUV8Pnnse2rsVEUT+vRQ4SWyjB0QIhB++4bLcgEQDyvfkUeuaVLFyWYpCPHptN4ftZZwo7q3t2dmOVG2CwoEGMizfFpZ1eNHi0ioABROO+ss0R/+tln4rOePVVqh2wXNtPpsWl9seGlnwTiC5t2EQN+0LWreOaog0CqhU1rmoaff1Z9w8CBok+VyAKATU1q3GBhMyfJWY9NZifBSdjcvFmFhPkVhi4JBIDWtAVRvAibEp3HZmNjtCI6AGdhU4oAbnOrWTvXDh1SP7DS4/fz7SQ17pIVNsvKvBmqRUXm9Z0mppWVwPnnizAW6vVIC0+58diU4YEdO7rzznXC2qbo9aPX9b77lKgZDgux6S9/Sb9RnyidOomwDnpO6cqxKfcvkQZgS4swkABhfLut1kcn4DQf3c4Wig6YDe4XXhDGrBQ2O3dOrQGdSmj/50XYpHTpIjzTLL+PJJP7y0r79voJYTqEzYIC/TNBz3fEiMT7IKuw2dioxEZqT8g2FokoIcXJjtCJ7fT85PO7dav454fHJn2xGm+S17kzMG6c/XNaWKj6yc2blUgAuBc2rR6btOCCk8cmzRmczIvWqipxjl7sAeoJb82zKYWkigpv7Y0KJ4ce6k6I0nlsyjGmqkpvX7ZtC5x0UqzXVTAo+tBLL1X/EvVwtiOesAmoe1lfL0R4Kvp7HZOshRSbmxGQ7X/33ZWQBShhk+4PEC855YtlygMPAJddJlIE/fGPQvyUjBghnhlqY2dCGKNjejpybDo9Q8GgeEHi9ll1E4oOxLYJO89tXR7uadOU2EYL4vhRPMgvMu2xWV5uThHht7CZSo/N/PzYe5lOYXPbNuDpp9Xf55xjHhMCAXUvdR6biUQhMBmBhU0mszgJm6nIr0kZP95sbCYSiq7z2ATMIUhOwqZXrIJHIkn6vZKqUPS99hIGbSCgEji7xSrmeglDB8Q+6WTF7cR06FC1byqWufHYlIwf714Ms8PapqihedxxseuXlYlKiroUDLmGXzk23Tyjusro69Ypo9BLv0QNI/nCBnBXPMjPquipDkUHxKRJntczzwCTJilhP1e9NQFxXm3aiOftyCPd/UYnbIbDMSGAhtvtuUU3aU2HsGnXFw8YIDyEgNiXil6wCptz5qiwUzoe6o7Nq7BJJ2K0wvP8+WZh04tQQdelntt+TPKkQLZmDXDrrepzl3nYDHq+69a5FzaTLRyUDLr8p4AQWuUE1evL3yFDlGB6ySXuftO5s2pzc+aIMUeOGdno7WMVZJyETUAUnJJhnEVF3vtxGlVTUwMsXIhAq3efMXiwuEfSY93OYxMQL5epVyBgzuX873+rvzt0UIIpFYbTmV9Tkg5h063HplfceGwCscKmXbsfMUId94cfiv6bFhqkgl02eWxmOscmoGz4ffcV8xEvOAmb4bC/dqYOawGhdAqbW7YIWxQQ835d1Jy8vxs3ivFDCptFRf46FzAphYVNJrPISR4ALF1q/o6+rU2FsNmpk9lzzi+PTUCEwEn8FDatgkeqw9CB1AmbeXliYrdiBXDiid5+W1BgHoQTGXQSETblm26nbVF0Bqwf4iK9J3l55rZ73nkihO3zz9W/VavcVRHMBfwORaf586xYqysD5smzLm+QHXbFQXZGj822bYVnMCA85iZMUN/5Vfk7E3TrJtrNypXu+17ruCLvLRUGhg7134s1HcKmblJnN+ksKBApHFauFF7YiVJYqCZoW7YILy4JFS/8EDbpNqweeVLYLCryVpAiUY9NN0hhc/NmFTUybpz73IzWUHQnYZO+FEm2cFAy2Amb27crkcerV1VRkUjh8uuv4vq5IRBQbWTDBpHbVnqxZqOw6cZjk4rU11yjXhD+6U+J2YKyb6itNeX+NQYPNofr64RNmXNx6VLg3nvV5y0tIkWDDuoZTsP4M+2x6WcoOrUfHnxQ3SOvUVBO+C1s5uWply2bNgHffquEzbw8cx7hbBI2Mx2KDgBXXy2eiy++8F4Iyal4UGVl6iO5rPZyOnNsfvihcmY45hi9vSXvZUOD6KPk+l265E6UG8PCJpNhQiFVrXPuXODvfxfG4E8/Addfr9ZLhbAJmEWmREIL7Tw2pYEdCPg78FkNhXRMIug+/Q5VKCiIfYvnFnosXj02AbOx5mXCrwv/cBOKDoiJDy1UkShU3NO12969RWVS+S8THgqpoqzMfM525+YUik7fxjqFmOg8Nunk2Wvb1QmhOiO9stKcbzFVOTbvv18tJ/IMOfGHPyjDddMm9Xkue2wC4l54EUqsHpuyvdHr4DWkzA3pEDbz8825HQHnSWebNsmHdAUC6qVWdXVsPj1JuoRNr9c0HR6bknAYuOMO978vKFD300soejYKm7RwUCI2WHGx9/6dtpH33lPL2S5sUjucQu+lFIk7dwb+/OfE9imflQ0bTNswpE0k7RpZuEoKm/n5wttKigv//rfKHzt/vmqne+5pFg2pmEn7hlR7pumg7dTP8Zz2v9Q5xE/xLxFhMxh0ni/QMe+++1Q+2YMPNh97SUmsjZspezbToeiS3Xe3vwdOWIXNSET1k6kMQ5dYn4FUP4dWj02JnXMJvZcrVqiXd9nYfzO2sLDJZJ5LL1XLN9wgCuocdJDyetx999RM/AARtjt2rBiw3BZUcSNsymPv2NF9iLsbZLVhSTomEccdJ8Ime/cGTjkl9ftzS6aEzdGjY9/e2b2Bt27Xr1DweMLmzkwgYD7/RELRN21SnzkZLfGETS8em4B+oqxru6GQ+RxTJWzKN9Ll5SLXm58UFupFlVwXNr2iC0UHgFNPFbk2e/YELr7Y//3qQoJTMSG0TojS4U1DhU3psVlSory6dMcFOAubvXvHHjvdxsCBqt//7rvEhU26Pk2HkQph87LLzLkL3UDFJauwaVc8SAqb+flAr17e9pcssigFYO6bZQEIIH1eVbRvmzRJLWfjxJiKND176tPj9O8f+9nf/554PyKfr/r66IvFbd27wzjiCPG5bHtNTWKMlmJX797C0/+YY8Tf69apPKb0xcZ554kCVH37innD73+vvtttN+Cii8RYetFFiR1/Mpx0krDX+/UDfvtb/7Y7bFhsWpSyMn/HlERybHbu7OxRSCOInn1WLVvneoGAuR8uLvbuqegXRUWxTgx+RrGlGquwWV2topnSLWym2lsTEDao1f7q0EH1I1boODF3rlrOxv6bsYWFTSbzXHEFcPvt6u+XX1ZvV/bZRyTBT5V4k5cn8vFs2CDeFLrBTSi6TODtZxg6IAxDOvlKh7BZWiqMyEWLEveuTAV0IE5XKDogBr9hw+y3RaEGYTgsKqX6wa4sbALuhE0nj0231Q79FjZ169uJ8vS4UhWKLo/p889TU9Dn5JPNnjLFxe6ryO8s2Amb7dsLQeiXX7y3Izekw2MTyKywuXWrCG0HgOHDzRNea3sOBIRAYkcwGOtNT8+tpESJhPPmKWEvGY9NiV2aCq9QYbNdO+DGG71vQ/atdXXmIoh2HpvNzSptUL9+/r7IdQMtSiHbAmD22EyXVxUVNmfNUsvZODGm18RO8C8pMfdNgweb04p4xfKsRPbfH1/ceqsSXOi4/u23yktUHh9NHSVDl62pKPbfXxSzWrQo1v5++GGRpuHkkxM/h0Rp3154l/70k78iUjAoKovX1YmXLbW1QtRPJt2HFbcem/TFRzzP/O7d9S/fdE4stG/MVBi6hAqZ7dqlv79LBquwma6K6JJ0C5uBQGx7GT/evv1SYfP779UyFw7KKVjYZDJPICDy9zz3nFmMGD0amD491ksxVcfgFjcemxK/hU1ATc7Ky1MzIdYRCJhDY7OBTHlsArHGl10oOh0ojznGP8+RXV3YlEZRMBjrpSRxyrHpVtjUVUWnk2c/hE07Q10KgPFCurxCDfOBA4XHy957+7d9SiAgwgYlQ4dmztsiU9jl2ATE9UlV7qYuXWLblp9FKySZFDYp1qrR1uPq1i1+X0mFKV3fIr9vaBD/gOQ8NiU9evgzvtK2dfPN9n2jE3RsoXnO7YTNJUvUi6N0Fw6SyBeua9aovj4THpv9+ultgWycGNOX1E4vyGmRs3/9K7n+m7at445Dy+TJaLR6+UloZXMpbFIvPylsSo/N/HxVTMWpX82kHZtKO7pNG9G/FxcnX5zSSiKh6G7EfKsdXVUlbBIrtC/PtLBJXwikO79msjgJm+nw2KQvUGgxvlRinRs6Rc3Re8semzlLlikVzC7N+PEiwe/IkcC114oqjJkexHS48diUpELYnDhReJc+8MCundA4WY9NP4VNO4/NPn1Eov2RI8WkwC92dWHz2mvFNZ040Z2wuWWLECTlZJyGgCbjsel1wurFY1Oe4+23JyZQ2DFhghDZL7xQeMOnetI9fDjwyCOiIMCdd6Z2X9mIncdmqgkEzIJFQYH/E14ge4RNmk8PiD0uN3m6qbBZUREr4ujSKPjhsemX98r55wvx56KLgP/7v8S24SRsFhaqNiTzj9GK6OnOrymR/Wokol5aZcJjMxTSCzPZODEeMEDYJqNHi6gpO266Sdibt90GyJDxRLnmGuCww8Q233gj1m6KJ2z27q0EkS+/FDk4ZRsdNsw+RJpJjnQJm2PH6uc02SRs0hfDmcivmQyhkLq+jY2qcBCQHmFz6FDR14weLdKkpANqXw8a5JwKyc5jMxv7b8aWHPKhZnYJRo4U/7KZTHtsHnWU+LerQ73pEvHYTDQUHRBiTdu2SihzqiidCjFnVxc2Bw8Gpk51Xoc+p48/Lv6Fw8Kgoga4k7BXXCzubX19bFX0Tp28T6S8CJtDhsQ/x0SoqgLefdf/7Tpx4YXi365IpoRNQAhNX38tllNVcMEawpYpYdNa+ds66fQqbOpC8/wQNnXr+yVs7rab8mRLFDq2LFyolktLxaS4bVvhDSnHvkwWDpJYCwh175588aBEGTJEPXOSbJ0Yu7FN9t9fvADzg2HDRA5MiTVFDG17tNI5fXbHjhXtsqVFiK0Sq8c24x+0zwqF7L12vQqbhxyi7CvAvpZCtgqbueaxGQiIeWpDQ2Y8NgMB4O67U78fCrWvzznH2RmI2gxuo7qYrIM9NhnGK5n22GQEdBKVSN6+ZDw2w2Hg2GPFcmFh+g2cigq1T101U0YIllYDvLkZuOcec1EbJ6OFJq5fv178XuadSyTfrBdhk9k5oONFebm9d3cqoH1kqoTNbPDY3HPP2OrseXlmT2c3wubee6vJ+R57xH6/zz6xn/nhsZnugjtOUJtFVqUG1H2V1yebhU0gM6HoQKz4TSvNM87QtifFLiBW2JTQojMsbKaOoiIlCDlV46b3yU16m8JClV6gsBAYNUq/Hgub/iHvXyaEzUwgx9aCgvg1DuzuJwubOQV7bDKMV6hYkgmPTUZw2GEivLu2NrGKzskIm4DwdqioEMeRbmMrFBJFtt5+G/h//y+9+84VOncWeXvffFOEKLa0iPQWzc3mSVM8o6WyEli+XEyUf/1VbAtILL9tVZWYIBiG+DsU2jU9bncl6HiRbgM5E8JmOoR6q7BpJ2pUVopiIYA7YbOwEHj1VdFP6MJzO3cWnpw0hC+bPDb9wE5ckmOcvPbbtol+TAqbwWD68qZZoX2xzIGciVB0IFb87tJl104Z5AWdvRwOm1/eHnqoECkaGtRYDMSmomD8IxAQL+Tq6pyFzaOOEumBIhH3ld/vuUe8JB4zxj7lTjYJm7QvybVQdEDdvy1bgNmz1ec7q7B5663ixdJRR8UvkMTC5k4BC5sM4xX22MwOAgHgqqsS/30yoeiAEKnuuSfx/SdLLqRtyDSnnSb+SSZPFiJ4ba34201hHvm9YZjz7iQibObliXYjw1zKynjSu7NDx4t0G8i0mMvO7LFpJ2x26gQsWCCW3QibAHDkkeKfHUOGiFzgkp1Z2KRIwVp6bLa0CHFTXt/evTP3koZ6z+s8NtMpQAwcaH55lY2Fg7IVXdvr2dPch7ZpI8TNyZPN66SjyOiuTHFxfGEzGBS5wb3Qowdw333O62RrVfRc9thcvdocbp2OquiZoGdP4N573a1L762kbdvUFF1kUgaHojOMVzKdY5PxB+lZEQyKRPrMzs/o0cCnn6rncv/941d5pQYffcOdiLBp/R2Hoe/8ZFLY7NVLiWaDB6dmH9kgbNp5a+23n/i/Uyf/vAmtocbZVDzID+xsFmsoOgC89poQOwB9mH660IWiS4/NsjJnMcZviovNbY29fdzTtm1s3mrdCwlrLkYOQ0898vkeNCj9+x40SLWLTPYzgBpTrMu5gu7+devGc1VAOB5YbQvuv3MO9thkGK+wx+bOwSmniAlPVVV2TSyZ1LLPPsLz8n//s09WT6HCjV/C5syZYjnT3gdM6slkKHooBHz0kSj+kUi6DjdkWths106fDxMAbrlFvLTaf3//vAn9FjYLC7PLW6ZDB9FuWlrMn+uEzf/8Ry2PH5/6Y7OjSxfxgjISifXYzIRX1ZAhwM8/q2Nj3BEICJt5+XL1mZ2wSaN1WNhMPc88A7z3HnD00enfd6dOwOefA0uWACeemP79Uw48EHj/feGRfcghmT2WRHjmGeCll4CaGvF3Xh4wbpx+/rorUlEBVFerv7n/zjlY2GQYr7j12MzP11dvZbKDUCh1k30mu6msBM47z/26EipsJlI8CGCPzV2NTHpsAkIYcBuGnQjl5WJSJCscp1vYPOAAIWrpKC4GJkzwd9/JCpt5ecI2aGwUf/fokV3pKEIh0efJImmAuL5FRWKZCpvz5on/O3bMjOAhCYfFC8pVq4SwuXGjyq2aKWHz5ZfFMk+MveFG2OzfX1S+X7FC/M35NVNPZSVw7rmZ2/+++4p/2YCbF+LZSmUl8Ic/ZPoospeOHc1F87j/zjk4FJ1hvOLWY7Nz5+yasDAM4x0qbNIqkhyKzriBjhc7Y769QCD9xR0GDVKC1Zlnpn5/lL59lcgHJJa7lP4mG6MFrJEmpaXKlqHCpmT8+Mx7/Mh+dd064Prr1eeZCBcdN04894GASH/CuMfa9nTCZiCgXkzuuWdmwqMZhtn5sOZjZmEz52CPTYbxiluPTQ5DZ5jcR1dcKBBI3OBhYXPXItMem+mgslJ4ywHpETaLi0Wo7+rV5gJJ6SAUEkKKTCeRiLBZXKw8CnNF2JToolDOOSeVR+MO6kH/2GPi/+Ji78VM/KB/f2DpUqC5OTvvbzbjRtgEgBtuAI45RqShCPNUlmEYH7B6+O+ML6N3cng0YBivsLDJMLsOOmGzqipxDyUqbOq8n5idC1oMY2cVNmmOyHS16XbtxL9MMGSIEjYTeTmRix6bEuv9HTIkdYWpvKDzoL/mmsw9c4mmKtnVoW0vGLR/PoJBYNiwtBwSwzC7CFZhc2e12XZiOBSdYbziJRSdYZjcRlfYI9EwdEDkiRoxQogbmSy4waSHM88UBWKOPz65dpPNnHeeOMdx47KrEE6quPBCIfYNGJBYfj9aQCjXhc1s8NYEYp+tbt2AP/4xM8fCJE5VlVru3j22SjrDMEyq4FD0nIc9NhnGK+yxyTC7DlZDB0hOoAqFgC++ABoa/KvUzGQvJ54IbNmyc9/rk08Gjj125z5HytChokBNOGxfuMiJncVjMxwGzjgjPccUD2ufPHEi0KZNZo6FSRza9lJZ9IxhGMYKe2zmPOyxyTBeYY9Nhtl1CIeBDh3MnyUbZhgI7DoiELNr3Otd4Rwp+fmJiZqAelkSCAC9e/t3TH7hJGzS1BzHHpuZquM6evVSy/vumz2CK+MNKlD375+542AYZtfD6sjA8/icgz02GcYr7LHJMLsWlZXApk3q7501pJhhmNRz5ZXA4sUiPYEuh2+mcRI2Bw4EJkwAfvhBeEVmC0OHirQPP/4IPPlk4qIzk1n22Uektpg7F/jDHzJ9NAzD7ErQF3UVFZwKIwdhYZNhvMIemwyza1FZCfz0k/qbhU2GYRLlwAOB777L9FHY4yRsBgLAU0+l9XBcEQgAzz6b6aNgkiUQAP7730wfBcMwuyJU2OSK6DkJv9JkGK+wxybD7FpYvapY2GQYZmfFarskUvmdYRiGYXKJzp1VbuY99sjssTAJwR6bDOMVtx6bu0J1WIbZFbA+yyxsMgyzs1JaChQVAfX16m+GYRiG2ZkpKgKefhp4913g+uszfTRMArCwyTBeceOxWVbGFTkZZmeBemyGQuyNzTDMzksgIPq4pUvF3yxsMgzDMLsCJ58s/jE5CYeiM4xX3HhssvDBMDsPVNjs0kWImwzDMDsr1IZhYZNhGIZhmCyHhU2G8Yobj00WNhlm54EKmxyGzjDMzg4LmwzDMAzD5BAsbDKMV+w8NlnYZJidExY2GYbZlWBhk2EYhmGYHIKFTYbxyogR4v/8fGDYMPV5375Ahw5i+Ygj0n9cDMOkhkGDgPbtxfKRR2b2WBiGYVKNtGGKioChQzN7LAzDMAzDMHHg4kEM45WjjgJmzQIqKszVkouKgPnzgSVLgAMOyNzxMQzjL6WlwLx5opiGfLHBMAyzs3LiicDMmUBVlbB1GIZhGIZhshgWNhkmEainJqVTJ7PYyTDMzkGXLuIfwzDMzk4gAOy/f6aPgmEYhmEYxhUcis4wDMMwDMMwDMMwDMMwTM7BwibDMAzDMAzDMAzDMAzDMDkHC5sMwzAMwzAMwzAMwzAMw+QcLGwyDMMwDMMwDMMwDMMwDJNzsLDJMAzDMAzDMAzDMAzDMEzOwcImwzAMwzAMwzAMwzAMwzA5BwubDMMwDMMwDMMwDMMwDMPkHCxsMgzDMAzDMAzDMAzDMAyTc7CwyTAMwzAMwzAMwzAMwzBMzsHCJsMwDMMwDMMwDMMwDMMwOQcLmwzDMAzDMAzDMAzDMAzD5BwsbDIMwzAMwzAMwzAMwzAMk3OwsMkwDMMwDMMwDMMwDMMwTM7BwibDMAzDMAzDMAzDMAzDMDkHC5sMwzAMwzAMwzAMwzAMw+QcLGwyDMMwDMMwDMMwDMMwDJNzsLDJMAzDMAzDMAzDMAzDMEzOwcImwzAMwzAMwzAMwzAMwzA5BwubDMMwDMMwDMMwDMMwDMPkHCxsMgzDMAzDMAzDMAzDMAyTc7CwyTAMwzAMwzAMwzAMwzBMzsHCJsMwDMMwDMMwDMMwDMMwOQcLmwzDMAzDMAzDMAzDMAzD5BwsbDIMwzAMwzAMwzAMwzAMk3OwsMkwDMMwDMMwDMMwDMMwTM7BwibDMAzDMAzDMAzDMAzDMDkHC5sMwzAMwzAMwzAMwzAMw+QcOS1sPvDAA+jZsycKCwsxfPhwfP31147rv/rqq+jfvz8KCwsxcOBATJo0yfS9YRi46aabUFVVhaKiIowaNQqLFi1K5SkwDMMwDMMwDMMwDMMwDJMAOStsvvzyy7jqqqtw880349tvv8XgwYMxZswYrF+/Xrv+l19+idNPPx3nnXcevvvuO4wbNw7jxo3DDz/8EF3njjvuwL333ouHH34YM2fORHFxMcaMGYMdO3ak67QYhmEYhmEYhmEYhmEYhnFBzgqb//73v3HBBRfg3HPPxV577YWHH34Ybdq0wRNPPKFd/z//+Q/Gjh2Lq6++GnvuuSduvfVWDB06FPfffz8A4a15zz334IYbbsDxxx+PQYMG4ZlnnsHq1avx1ltvpfHMGIZhGIZhGIZhGIZhGIaJRzjTB5AIjY2NmD17Nq677rroZ8FgEKNGjcKMGTO0v5kxYwauuuoq02djxoyJipZLly7F2rVrMWrUqOj3bdu2xfDhwzFjxgycdtppMdtsaGhAQ0ND9O+tW7cCADZv3oympqaEzy+baGpqwvbt27Fp0ybk5eVl+nCYXQhue0wm4HbHZAJud0ym4LbHZAJud0wm4HbHZAJud4lTU1MDQDghxiMnhc2NGzeipaUFnTp1Mn3eqVMnLFiwQPubtWvXatdfu3Zt9Hv5md06ViZOnIi//vWvMZ/36tXL3YkwDMMwDMMwDMMwDMMwDBNDTU0N2rZt67hOTgqb2cJ1111n8gKNRCLYvHkzOnTogEAgkMEj849t27Zht912w6+//oqysrJMHw6zC8Ftj8kE3O6YTMDtjskU3PaYTMDtjskE3O6YTMDtLnEMw0BNTQ26dOkSd92cFDYrKioQCoWwbt060+fr1q1D586dtb/p3Lmz4/ry/3Xr1qGqqsq0zpAhQ7TbLCgoQEFBgemz8vJyL6eSM5SVlfGDyGQEbntMJuB2x2QCbndMpuC2x2QCbndMJuB2x2QCbneJEc9TU5KTxYPy8/MxbNgwTJkyJfpZJBLBlClTMGLECO1vRowYYVofAD766KPo+r169ULnzp1N62zbtg0zZ8603SbDMAzDMAzDMAzDMAzDMJkhJz02AeCqq67ChAkTsO+++2L//ffHPffcg7q6Opx77rkAgLPPPhtdu3bFxIkTAQCXX345Dj30UPzrX//CMcccg5deegmzZs3Co48+CgAIBAK44oorcNttt6Fv377o1asXbrzxRnTp0gXjxo3L1GkyDMMwDMMwDMMwDMMwDKMhZ4XNU089FRs2bMBNN92EtWvXYsiQIfjggw+ixX9WrFiBYFA5pB544IF44YUXcMMNN+D6669H37598dZbb2HAgAHRdf785z+jrq4OF154Iaqrq3HwwQfjgw8+QGFhYdrPL1soKCjAzTffHBNyzzCphtsekwm43TGZgNsdkym47TGZgNsdkwm43TGZgNtdeggYbmqnMwzDMAzDMAzDMAzDMAzDZBE5mWOTYRiGYRiGYRiGYRiGYZhdGxY2GYZhGIZhGIZhGIZhGIbJOVjYZBiGYRiGYRiGYRiGYRgm52Bhk2EYhmEYhmEYhmEYhmGYnIOFTcaRBx54AD179kRhYSGGDx+Or7/+OtOHxOxE3HLLLQgEAqZ//fv3j36/Y8cOXHrppejQoQNKSkpw0kknYd26dRk8YiYX+fTTT3HcccehS5cuCAQCeOutt0zfG4aBm266CVVVVSgqKsKoUaOwaNEi0zqbN2/G+PHjUVZWhvLycpx33nmora1N41kwuUi8tnfOOefE9IFjx441rcNtj/HCxIkTsd9++6G0tBSVlZUYN24cfv75Z9M6bsbWFStW4JhjjkGbNm1QWVmJq6++Gs3Nzek8FSbHcNP2DjvssJg+7+KLLzatw22P8cJDDz2EQYMGoaysDGVlZRgxYgTef//96Pfc3zGpIF67474u/bCwydjy8ssv46qrrsLNN9+Mb7/9FoMHD8aYMWOwfv36TB8asxOx9957Y82aNdF/n3/+efS7K6+8Ev/73//w6quvYvr06Vi9ejVOPPHEDB4tk4vU1dVh8ODBeOCBB7Tf33HHHbj33nvx8MMPY+bMmSguLsaYMWOwY8eO6Drjx4/H/Pnz8dFHH+Hdd9/Fp59+igsvvDBdp8DkKPHaHgCMHTvW1Ae++OKLpu+57TFemD59Oi699FJ89dVX+Oijj9DU1ITRo0ejrq4uuk68sbWlpQXHHHMMGhsb8eWXX+Lpp5/GU089hZtuuikTp8TkCG7aHgBccMEFpj7vjjvuiH7HbY/xSrdu3XD77bdj9uzZmDVrFg4//HAcf/zxmD9/PgDu75jUEK/dAdzXpR2DYWzYf//9jUsvvTT6d0tLi9GlSxdj4sSJGTwqZmfi5ptvNgYPHqz9rrq62sjLyzNeffXV6Gc//fSTAcCYMWNGmo6Q2dkAYLz55pvRvyORiNG5c2fjzjvvjH5WXV1tFBQUGC+++KJhGIbx448/GgCMb775JrrO+++/bwQCAWPVqlVpO3Ymt7G2PcMwjAkTJhjHH3+87W+47THJsn79egOAMX36dMMw3I2tkyZNMoLBoLF27droOg899JBRVlZmNDQ0pPcEmJzF2vYMwzAOPfRQ4/LLL7f9Dbc9xg/atWtn/Pe//+X+jkkrst0ZBvd1mYA9NhktjY2NmD17NkaNGhX9LBgMYtSoUZgxY0YGj4zZ2Vi0aBG6dOmC3r17Y/z48VixYgUAYPbs2WhqajK1wf79+6N79+7cBhnfWLp0KdauXWtqZ23btsXw4cOj7WzGjBkoLy/HvvvuG11n1KhRCAaDmDlzZtqPmdm5mDZtGiorK7HHHnvgkksuwaZNm6LfcdtjkmXr1q0AgPbt2wNwN7bOmDEDAwcORKdOnaLrjBkzBtu2bTN5ozCME9a2J3n++edRUVGBAQMG4LrrrsP27duj33HbY5KhpaUFL730Eurq6jBixAju75i0YG13Eu7r0ks40wfAZCcbN25ES0uL6WEDgE6dOmHBggUZOipmZ2P48OF46qmnsMcee2DNmjX461//ikMOOQQ//PAD1q5di/z8fJSXl5t+06lTJ6xduzYzB8zsdMi2pOvr5Hdr165FZWWl6ftwOIz27dtzW2SSYuzYsTjxxBPRq1cvLFmyBNdffz2OOuoozJgxA6FQiNsekxSRSARXXHEFDjroIAwYMAAAXI2ta9eu1faJ8juGiYeu7QHAGWecgR49eqBLly6YO3currnmGvz888944403AHDbYxJj3rx5GDFiBHbs2IGSkhK8+eab2GuvvTBnzhzu75iUYdfuAO7rMgELmwzDZIyjjjoqujxo0CAMHz4cPXr0wCuvvIKioqIMHhnDMEzqOe2006LLAwcOxKBBg7D77rtj2rRpOOKIIzJ4ZMzOwKWXXooffvjBlLuaYdKBXduj+YEHDhyIqqoqHHHEEViyZAl23333dB8ms5Owxx57YM6cOdi6dStee+01TJgwAdOnT8/0YTE7OXbtbq+99uK+LgNwKDqjpaKiAqFQKKZq3Lp169C5c+cMHRWzs1NeXo5+/fph8eLF6Ny5MxobG1FdXW1ah9sg4yeyLTn1dZ07d44pmtbc3IzNmzdzW2R8pXfv3qioqMDixYsBcNtjEueyyy7Du+++i08++QTdunWLfu5mbO3cubO2T5TfMYwTdm1Px/DhwwHA1Odx22O8kp+fjz59+mDYsGGYOHEiBg8ejP/85z/c3zEpxa7d6eC+LvWwsMloyc/Px7BhwzBlypToZ5FIBFOmTDHljmAYP6mtrcWSJUtQVVWFYcOGIS8vz9QGf/75Z6xYsYLbIOMbvXr1QufOnU3tbNu2bZg5c2a0nY0YMQLV1dWYPXt2dJ2pU6ciEolEDRWG8YOVK1di06ZNqKqqAsBtj/GOYRi47LLL8Oabb2Lq1Kno1auX6Xs3Y+uIESMwb948k6j+0UcfoaysLBpmxzBW4rU9HXPmzAEAU5/HbY9JlkgkgoaGBu7vmLQi250O7uvSQKarFzHZy0svvWQUFBQYTz31lPHjjz8aF154oVFeXm6q3sUwyfDHP/7RmDZtmrF06VLjiy++MEaNGmVUVFQY69evNwzDMC6++GKje/fuxtSpU41Zs2YZI0aMMEaMGJHho2ZyjZqaGuO7774zvvvuOwOA8e9//9v47rvvjOXLlxuGYRi33367UV5ebrz99tvG3LlzjeOPP97o1auXUV9fH93G2LFjjX322ceYOXOm8fnnnxt9+/Y1Tj/99EydEpMjOLW9mpoa409/+pMxY8YMY+nSpcbHH39sDB061Ojbt6+xY8eO6Da47TFeuOSSS4y2bdsa06ZNM9asWRP9t3379ug68cbW5uZmY8CAAcbo0aONOXPmGB988IHRsWNH47rrrsvEKTE5Qry2t3jxYuNvf/ubMWvWLGPp0qXG22+/bfTu3dv4zW9+E90Gtz3GK9dee60xffp0Y+nSpcbcuXONa6+91ggEAsbkyZMNw+D+jkkNTu2O+7rMwMIm48h9991ndO/e3cjPzzf2339/46uvvsr0ITE7EaeeeqpRVVVl5OfnG127djVOPfVUY/HixdHv6+vrjf/7v/8z2rVrZ7Rp08Y44YQTjDVr1mTwiJlc5JNPPjEAxPybMGGCYRiGEYlEjBtvvNHo1KmTUVBQYBxxxBHGzz//bNrGpk2bjNNPP90oKSkxysrKjHPPPdeoqanJwNkwuYRT29u+fbsxevRoo2PHjkZeXp7Ro0cP44ILLoh5echtj/GCrr0BMJ588snoOm7G1mXLlhlHHXWUUVRUZFRUVBh//OMfjaampjSfDZNLxGt7K1asMH7zm98Y7du3NwoKCow+ffoYV199tbF161bTdrjtMV74/e9/b/To0cPIz883OnbsaBxxxBFRUdMwuL9jUoNTu+O+LjMEDMMw0ucfyjAMwzAMwzAMwzAMwzAMkzycY5NhGIZhGIZhGIZhGIZhmJyDhU2GYRiGYRiGYRiGYRiGYXIOFjYZhmEYhmEYhmEYhmEYhsk5WNhkGIZhGIZhGIZhGIZhGCbnYGGTYRiGYRiGYRiGYRiGYZicg4VNhmEYhmEYhmEYhmEYhmFyDhY2GYZhGIZhGIZhGIZhGIbJOVjYZBiGYRiGYRiGYRiGYRgm52Bhk2EYhmEYhmF2Unr27IlAIIBzzjkn04fCMAzDMAzjOyxsMgzDMAzDpICLLroIgUAAgUAAU6dO9fTbyZMnR397+eWXp+gIGYZhGIZhGCa3YWGTYRiGYRgmBZx99tnR5eeee87Tb5999lntdjLFtGnTokLrtGnTMn04DMMwDMMwDAOAhU2GYRiGYZiUcNBBB2H33XcHALz++uuor6939bu6ujq8+eabAIC9994bw4YNS9kxMgzDMAzDMEwuw8ImwzAMwzBMijjrrLMAANu2bcPbb7/t6jdvvPEG6urqTL9nGIZhGIZhGCYWFjYZhmEYhmFSxFlnnYVAIADAfTi6DEMPBoM488wzU3ZsDMMwDMMwDJPrsLDJMAzDMAyTInr37o2DDjoIAPDhhx9i/fr1juuvXr0aU6ZMAQAcfvjh6Nq1a8w6b731Fn73u9+he/fuKCwsRHl5Ofbdd1/89a9/xZYtW1wd16RJk3DmmWeid+/eKC4uRmFhIXr16oWTTjoJTz31FLZv3w4AWLZsGQKBAEaOHBn97ciRI6P5NuW/p556KmYfjY2NePDBBzFy5Eh07NgR+fn56Ny5M44++mg899xziEQitsd3zjnnIBAIoGfPngCANWvW4JprrsHee++N0tJSz7k+dTlCX3nlFRxxxBHo2LEjioqKsMcee+DPf/4zNm/ebLudww47DIFAAIcddpjj/m655Zbo/nTI72655RYAwCeffIJx48ahS5cuKCoqwp577olbb7016rkrmTRpEo4++ujoenvttRcmTpyIxsZG19fim2++wemnn47ddtsNhYWF2G233XDuuediwYIFrn6/ePFiXHnllRg4cCDatm2LoqIi9O7dG+eccw5mzZpl+zvrPYhEInjiiScwcuRIdOrUCcFgkCu3MwzDMAzjHYNhGIZhGIZJGY8++qgBwABg/Oc//3Fc984774yu+8wzz5i+27x5s3H44YdHv9f9q6ysNGbMmGG7/Y0bNxpHHHGE4zYAGE8++aRhGIaxdOnSuOvS9SVLly41+vfv7/ibgw8+2Ni0aZP2OCdMmGAAMHr06GHMmDHDqKioiPn9J598EvfaSz755JPo76ZMmWKceeaZtsfVp08fY82aNdrtHHrooQYA49BDD3Xc38033xzdng753c0332xMnDjRCAQC2mM58MADjdraWiMSiRh/+MMfbI957NixRnNzs3ZfPXr0MAAYEyZMMB5//HEjHA5rt1FQUGC88sorjud15513Gnl5ebbHEQgEjBtvvFH7W3oP3n//fWPUqFExv58wYYLj/hmGYRiGYaywxybDMAzDMEwKOeWUU1BYWAjAXO1ch/y+pKQEJ554YvTzhoYGjBo1ClOnTkUoFMJZZ52FF198EV999RU+++wz/P3vf0eHDh2wfv16HH300Vi+fHnMtrdv346RI0dGPUKHDRuGRx55BF988QVmzZqFN998E1deeSW6dOkS/U3Xrl0xb948PPHEE9HPnnjiCcybN8/0b9y4cdHva2trccQRR0Q9AMeNG4d33nkHs2bNwquvvopDDz0UAPD555/juOOOQ0tLi+31qK2txUknnYQdO3bgL3/5C6ZNm4avv/4ajz/+OKqqqhyvpR033ngjnnvuOYwbNw5vvPEGZs+ejUmTJuGYY44BoDwS08H777+P6667DgcccABeeOEFzJo1Cx988AGOOuooAMCXX36JiRMn4u6778a9996Lo446Cq+//jpmz56Nt99+GwcccAAA4IMPPsBjjz3muK85c+bg4osvRmVlJe677z7MnDkT06dPxzXXXIOCggI0NDRg/Pjxtl6Xd955J66++mo0NTVh0KBBeOihh/Dxxx9j1qxZeP755zFixAgYhoFbb70V9957r+OxXHPNNfj444/x29/+1nQP5HkzDMMwDMO4JtPKKsMwDMMwzM7OKaecEvVKW7BggXad77//PrrO2Wefbfru+uuvNwAY5eXlxqxZs7S/X7ZsmVFVVWUAMM4444yY76+88sro9i+99FIjEolot9PQ0GCsXbvW9Bn1tovnKfmnP/0puu4NN9wQ830kEjHGjx8fXefBBx+MWUd6bAIwSkpKjDlz5jjuMx70+AEYt912m/a4Ro8ebQAwwuGwsX79+ph1/PbYBGCcdNJJMd6Wzc3NxgEHHGAAMEpLS43CwkLjiiuuiNlOXV1d1CNz0KBB2n3J79HqAavzRp06dWrUk3O//faL+X7+/PlRT82bb75Z23ZaWlqinrAlJSXG5s2bTd9b74GubTAMwzAMw3iFPTYZhmEYhmFSzNlnnx1dtvPapJ/T9Wtra/HAAw8AAG699VYMGzZM+/sePXrgxhtvBAC8+uqrpvyM1dXVeOSRRwAIT83//Oc/tvkf8/Pz0alTJzenFUNDQwP++9//AgD23nvvaA5JSiAQwIMPPogOHToAAO6//37Hbf75z3/G4MGDEzoeHcOGDcP111+vPa6rrroKANDc3IwZM2b4tk872rRpg0cffRShUMj0eSgUwoUXXggAqKmpQceOHXHHHXdofz9hwgQAwNy5c7F161bH/f3rX/9C586dYz4fOXIkLrjgAgAiB6fVa/Nf//oXmpqasO++++Lmm2/Wtp1gMIj77rsPBQUFqK2txWuvvWZ7HP369dO2DYZhGIZhGK+wsMkwDMMwDJNixowZExULn3/+eRiGYfo+EonghRdeAAB069bNVKxn+vTpUcHq5JNPdtzPb37zGwBAU1MTZs+eHf186tSp0YJAf/jDH2KENL+YPXs2qqurAYgCQHb7KSsrwymnnAIA+PHHH7FmzRrbbY4fP97XYzzjjDNsRV0qGv/yyy++7lfHkUceifbt22u/o2LuiSeeiLy8vLjrLV261HZf7dq1w/HHH2/7/e9///vo8scff2z67n//+x8A4KSTTrK9dgBQXl6OgQMHAoCjMHzqqaemrA0yDMMwDLNrwcImwzAMwzBMigmHwzjjjDMAiErjn3/+uen7KVOmYPXq1QCEkBcMKhONes9VVVXFVCSn/wYMGBBdd+3atdHl7777Lrp8yCGH+HtyhB9++CG6PHz4cMd16ff0d5SSkhL07t3bn4NrpX///rbfUZGxpqbG1/3q6Nevn+135eXlntdzOuZ99tkH4XDY9vshQ4YgPz8fADBv3rzo58uXL8eGDRsAANddd51j+wsEAtH2StuflUGDBtl+xzAMwzAM4wUWNhmGYRiGYdKAUzi6XRg6AKxfvz6h/UkPTQDYuHFjdDnRojtu2Lx5c3S5srLScV0aEk1/R6GinV+0adPG9jsqKDsVNUr3sfhxzPHuRzgcjgq79H740f6stGvXLqFtMgzDMAzDWLF/bcswDMMwDMP4xpAhQzBw4EDMmzcPr776ajQfYV1dHd544w0AIhR6r732Mv2OilXffvutbUiylW7duvl38AngFLLsFg5X9o9E7wdtfzfddBN+97vfufpdcXGx7Xd8XxmGYRiG8QsWNhmGYRiGYdLE2WefjauvvhrV1dX43//+h5NPPhlvvvlmtNCP1VsTQLTIDgB07NgxIcGyoqIiurxmzRr06tUrgaOPDw3lXrdunWMINQ1VtsszmW1I78hIJOK4Hi3clC2sW7fO8fvm5uaopya9H7T95eXlmdIdMAzDMAzDZBoORWcYhmEYhkkT48ePj3qrPffccwBUGHpeXh5OP/30mN/ss88+0eUvvvgiof0OHTo0uvzpp596/r1bbz8qes2cOdNx3a+//lr7u2ymtLQUALBlyxbH9RYuXJiOw/HEnDlz0NzcbPv9999/j8bGRgDm+9G7d2+0bdsWQOLtj2EYhmEYJlWwsMkwDMMwDJMmqqqqMGrUKADApEmT8MMPP2DKlCkAgLFjx6Jjx44xvxk1alQ0x+K9994bU1HdDSNHjoyGBt93332e80cWFhZGlxsaGmzXGzZsWDQv5tNPP23r2VhTU4NXXnkFALDXXnulNO+nn0hP14ULF9oW6tm4cSM++uijdB6WKzZv3hytbq7jiSeeiC7LNgqIsPGjjz4aADB58mT89NNPqTtIhmEYhmEYj7CwyTAMwzAMk0ZkuHlTUxNOO+20qMioC0MHRAGdyy67DADw5Zdf4sorr3QMhV63bh3++9//xmzjoosuAgDMnj0bV1xxha1A2tTUFFMwhgqPS5Yssd13QUEBzj//fACi0vmtt94as45hGLjsssuiBY3kueUChx56KACgsbER9913X8z3TU1NOP/881FfX5/uQ3PFVVddpQ1Jnz59Oh599FEAQpzeb7/9TN9fd911CIVCiEQiOPnkk7Fy5UrbfbS0tOD55593XIdhGIZhGMYvOMcmwzAMwzBMGjnhhBNQWlqKmpoazJ8/H4CoEn3cccfZ/uZvf/sbpk+fjpkzZ+I///kPpk2bhgsuuABDhgxBcXExtmzZgvnz5+Pjjz/G+++/j4EDB0YFRsmtt96Kjz76CPPmzcP999+PGTNm4KKLLsLAgQORn5+PlStX4rPPPsOLL76I2267Deecc070t927d0e3bt2wcuVK3HXXXejWrRv22GOPaFh9p06domHaN910E9544w388ssvuOWWWzBv3jyce+65qKqqwtKlS3H//fdj2rRpAIARI0bgwgsv9PHqppZjjjkGPXr0wPLly3HjjTdi48aNOPHEE1FYWIj58+fj3nvvxXfffYcDDjgAX331VaYP18TgwYPx448/YtiwYbjuuuuw//77o6GhAZMmTcLdd9+N5uZmhMNhPPDAAzG/HThwIO666y5ceeWV+PHHHzFgwABceOGFOPzww9GpUyfs2LEDy5Ytw4wZM/Daa69hzZo1mDdvXsYLWDEMwzAMs/PDwibDMAzDMEwaKSoqwsknn4wnn3wy+tkpp5yCgoIC298UFBTgo48+wjnnnIM33ngD33//vaOnY1lZWcxnbdq0wdSpU3HSSSfh008/xezZsz2Jitdffz3+7//+D0uXLsXxxx9v+u7JJ5+MCqGlpaWYMmUKjjrqKCxYsACvv/46Xn/99ZjtHXTQQXjnnXdyqkJ2fn4+nnvuOYwdOxZ1dXW4++67cffdd0e/D4VCuOeee7B58+asEzaHDBmCyy67DJdccom27eTn5+Ppp5/G8OHDtb+/4oorUFxcjCuuuAJbt27FnXfeiTvvvFO7bn5+vil9AcMwDMMwTKrgUHSGYRiGYZg0M2HCBNPfdmHolNLSUrz++uv47LPPcP7552OPPfZAaWkpwuEw2rdvj/322w+XXnopJk2aZJvjsaKiAtOnT8cbb7yBk08+Gd26dUNBQQEKCwvRu3dv/O53v8Pzzz+vLWJ0ySWX4PXXX8fo0aNRWVmJcNj+/XjPnj3x/fff4/7778ehhx6KDh06IC8vD506dcLYsWPx7LPP4tNPP82ZauiUgw8+GLNnz8ZZZ52FLl26IC8vD1VVVVHB+A9/+EOmD9GW888/H5999hlOOeUUdOnSBfn5+ejatSvOPvtsfPfddzjttNMcf3/BBRfgl19+wV//+lccdNBBqKioQDgcRnFxMfr164eTTjoJDz/8MFatWoU+ffqk6awYhmEYhtmVCRiJZKBnGIZhGIZhGIZhGIZhGIbJIOyxyTAMwzAMwzAMwzAMwzBMzsHCJsMwDMMwDMMwDMMwDMMwOQcLmwzDMAzDMAzDMAzDMAzD5BwsbDIMwzAMwzAMwzAMwzAMk3OwsMkwDMMwDMMwDMMwDMMwTM7BwibDMAzDMAzDMAzDMAzDMDkHC5sMwzAMwzAMwzAMwzAMw+QcLGwyDMMwDMMwDMMwDMMwDJNzsLDJMAzDMAzDMAzDMAzDMEzOwcImwzAMwzAMwzAMwzAMwzA5BwubDMMwDMMwDMMwDMMwDMPkHCxsMgzDMAzDMAzDMAzDMAyTc7CwyTAMwzAMwzAMwzAMwzBMzsHCJsMwDMMwDMMwDMMwDMMwOcf/Bw4t4FKYzihqAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MSE_stop для AE3_2: 0.430\n", + "IREth3_2 (порог ошибки реконструкции) для AE3_2: 1.460\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Загрузка тестовой выборки\n", + "test = np.loadtxt('/content/drive/MyDrive/data/WBC_test.txt', dtype=float)\n", + "\n", + "# Предсказание ошибок реконструкции и аномалий\n", + "predicted_labels_test, IRE3_2_test = lib.predict_ae(ae3_2_trained, test, IREth3_2_scalar)\n", + "IRE3_2_test = IRE3_2_test.ravel() # преобразуем к одномерному массиву\n", + "\n", + "# Визуализация распределения ошибок\n", + "lib.ire_plot('test', IRE3_2_test, IREth3_2_scalar, 'AE3_2')\n", + "\n", + "# Вывод порога и нескольких значений IRE для анализа\n", + "print(f\"IREth3_2 (порог для тестовой выборки): {IREth3_2_scalar:.3f}\")\n", + "print(\"Примеры ошибок реконструкции для первых 10 элементов тестовой выборки:\")\n", + "print(IRE3_2_test[:10])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 813 + }, + "id": "9m1wKznDbIJ6", + "outputId": "bc0802ae-648c-4757-b2b2-7965fd25b668" + }, + "execution_count": 113, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3H1JREFUeJzs3Xd8k2X3x/FvOiizTKGICAiILBkCAipTQXCh4oMMcT8qKCg/BzyPA7e4BRW3iA8oooIDByBbQEDZKsoeAjJbCrRN2/z+uEzuFEpp2iT3neTzfr364iTNOIW7ITn3dZ3j8ng8HgEAAAAAAACAQ8TZnQAAAAAAAAAA+KNoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAABi2m+//aZBgwapUaNGKleunFwul+9r8+bNdqcHAAAAxCSKlgAAxKBOnTr5CnMjR4484e38C3jHfsXHx6tChQqqX7++rrnmGr3zzjtKT08vUg6Bft1www3F/0uQ9OWXX6pFixYaO3asfvvtt4DyB2Ldgw8+mOf38o477gj4MULxOpCWlqbvvvtOjz76qHr37q1mzZqpcuXKKlGihEqWLKmUlBR16tRJDz74oP78889i/i0E5sCBA5o8ebIGDRqk9u3bq2rVqipRooSSk5NVt25dXXvttZowYYLcbndY8wIAwIkoWgIAgCLJzc1Vamqq1q9fr08//VS33nqr6tSpoylTptidWqGkp6frhhtuUGZmpiSpevXquuaaazRo0CANHjxYgwcPVnJyss1ZFt3IkSMLVZiOBDfccIPvZxk3bpzd6YTF5s2bfT9z7dq17U7nOB6PRx9++GGe6yZNmuT7fbLTf/7zH/Xo0UMjR47UZ599plWrVmn//v1yu93KzMzU7t27NXfuXD355JM666yzdOeddyojIyOkOaWnp+uyyy5TSkqK/vWvf2ns2LFatGiR9uzZI7fbrUOHDmnjxo2aNGmSBgwYoDPPPFPz5s0LaU4AADhdgt0JAACAyNCrVy/VqFHDdzk3N1d79+7VokWLtH37dknS3r171bt3b3366ae68sorC/3YrVu3Vps2bQp9+7Zt2xY+8RP4+uuvdeDAAUlS48aNtXTpUpUqVarYjwvEgtmzZ2vr1q15rjtw4IC+/PJLXXPNNUV6zFC8DpQvX14NGzZUnTp1lJycrKysLG3atEmLFy9WRkaGcnNz9dprr+n333/Xd999p4SE0Hw8Sk9P19dff53numrVqqlVq1ZKSUmR2+3WihUrtGrVKkmmaN21a1dNmTJFl156aUhyAgDA6ShaAgCAQhk6dKg6dep03PW5ubn64IMPdMcddygzM1O5ubm644471L17d5UuXbpQj92zZ8+wrwb85ZdffHHfvn0pWAIB+OCDD3xxqVKldPToUd/1RS1aBut1oGXLlnrxxRfVrVs3NWrUSC6X67jbpKWlaeTIkXrppZckST/88INefvll3XvvvcV+/oJUrFhRAwcO1I033qhmzZod9/0FCxZo4MCB2rRpk7Kzs9W/f3/98ccfqlatWkjzAgDAidgeDgAAiiUuLk433nijnn32Wd91u3fv1tSpU+1LqhC8qywlszUcQOGkp6frs88+811+8cUXffH333+v3bt325GWz0033aR77rlHjRs3zrdgKUnJycl68cUXdeONN/que/PNN0OWU4kSJfTwww9r8+bNevnll/MtWErS+eefr1mzZvlaU6Slpenll18OWV4AADgZRUsAABAUt912m0qWLOm77PR+bP6DLuLieEsEFNZnn32mw4cPS5Lq1Kmj2267Tc2bN5ckZWdna8KECTZmF5ibbrrJF69fvz5kw7gqVaqkRx99tFB9cmvXrq3bb7/dd3natGkhyQkAAKfjHToAAAiKpKQkNWzY0Hf5r7/+sjGb/PkPp/Hf3nrjjTceN5n4RANf0tPTNXr0aHXv3l2nnXaaSpYsqYoVK6pJkya688479dNPPxUqF//n8lq5cqWGDh2qJk2aqFKlSnK5XOrVq1dAP6N3GvOjjz7qu+7RRx8NeAq7x+PRlClTdP311+vMM89U+fLlVbJkSdWsWVO9evXSBx98oOzs7ELl9Pvvv+v+++9X27ZtVaVKFd8U56pVq+qcc87RjTfeqA8++CDP6lfJFG8K828VjGFDRc0xP263Wx9++KH+9a9/6YwzzlC5cuVUpkwZ1alTR3379tWUKVPk8Xjyve+4cePkcrlUp04d33Vbtmw54QRtO/j/ewwYMEAul0vXXXddvt93ulNOOSXP5UOHDtmUSV7nnXeeL968ebN9iQAAYCN6WgIAgKDx7wsZ6mm8dvj666916623ateuXXmuz8zM1MGDB7V27Vq99tpr6tevn95+++1C9/SUTEH1iSeeUE5OTrDTDtiqVat0/fXXa8WKFcd9b/v27dq+fbu++OILPf300/r888/VqFGjEz5WQT/Xnj17tGfPHv3yyy8aN26c+vfvr//973/B/FEKJZg5zpkzR7fccos2bNhw3Pc2b96szZs36+OPP1bbtm316aef5hluFQm2bNmiOXPm+C4PGDBAktSvXz/df//9ysnJ0apVq7RixQrf6ksn+/XXX31x6dKljyti2sW/IO2E1wQAAOxA0RIAAASN/+pKJw6OaNOmjQYPHizJDN74/fffJUldu3bVWWedlee2/qtGJWnSpEnq37+/r4AQHx+v888/X/Xq1VN6errmz5/v+/knTpyoTZs2adasWXm2zJ/Ic88951sZWbduXbVp00alS5fW5s2blZiYGNDPeOWVV6pJkyZasmSJli5dKunEU5nzm748b948XXbZZUpLS5MkJSYmqnXr1qpfv74SExO1efNmLViwQBkZGVq3bp3at2+vRYsWHff3JUmvvPJKnhWfVapUUdu2bVW9enW5XC7t379fv//+u3777bd8CzPXX3+99u3bd9J/K0kBTZ0OZo7+Jk+erP79+/taD5QqVUpt27ZV7dq1FRcXpz/++EOLFi1Sdna2Fi9erHbt2mnp0qV5flcaNmyowYMH69ChQxo/frwkqVy5cho4cGCRfr5g+/DDD32rRM8991ydeeaZkqSUlBRddNFF+u677ySZ1ZZOL1p6h/F49erVK2TTwwO1evVqX1yzZk0bMwEAwEYeAAAQczp27OiR5JHkeeSRR054O+9tJHlmz55d4GOuW7cuz+1fffXVoOQQKtdff73v+d9///0Cb7t+/XpP2bJlfbdv06aN588//8xzm5ycHM8LL7zgiYuL893urrvuOuFj+v9dJSQkeMqXL++ZMmXKcbfLyMgoyo/neeSRRwL++925c6enatWqvvsNHDjQ89dffx13u127dnmuvPJK3+2aNm3qyc7OznMbt9vtqVKliu82Tz/9tCcrKyvf5923b5/nvffe84waNSrf7wfybxWIYOa4Zs0aT6lSpTySPC6Xy3Pvvfd6Dhw4cNztNmzY4Dn//PN9z9mjR498H2/Tpk2+29SqVauoP2LQ1a9f/4S/4xMmTPB9r2rVqh63233Sxwv360BGRobnzz//9LzxxhueM844w/fcKSkpnq1bt4b8+QsjJyfHc9ZZZ/lyGzx4sN0pAQBgC2ecSgQAABEtOztbQ4cO9V1OTk7WtddeW+j7f/PNN9q7d2+hb//YY4+pUqVKAeVYHI899phvQEe9evU0ffp0lS9fPs9t4uLiNGzYMLlcLg0bNkyS9Nprr+mee+7J058wP7m5ufryyy/VoUOH476XlJQUpJ/i5P773//q77//liQNGTJEr7zySr63q1atmiZPnqxu3bpp1qxZWr16tT799FP16dPHd5vff//d92963nnnafjw4Sd83kqVKuWZ4hwuwcxxyJAhOnr0qCTphRde0D333JPv7c444wx99913atOmjX799Vd9++23+umnn3TuuecW4ycJj4ULF+rPP/+UZFbg+v97S2alYtmyZZWenq6///5b3377rS677LJCP34oXge2b99+0pWK5557riZPnuyYFY2vv/66b2VxXFyc7rjjDpszAgDAHhQtAQBAkeTm5mrv3r368ccf9cwzz2jJkiWSpISEBL333nuqXLlyoR9r6dKlvq3MhXHvvfeGrWh58OBBTZo0yXf52WefPa5g6W/o0KF69913tXbtWuXm5uqtt97S008/XeBz9O7dO9+CZTjt2bPH16sxJSVFo0aNKvD28fHxevLJJ9WuXTtJ0oQJE/IUsbzby6Xjh504RbByXLlypWbNmiVJatGihe6+++4Cb1+mTBk99NBD6tu3ryTzdxcJRUv/ATs9evRQlSpV8ny/dOnSuvrqq323++CDDwIqWob7daBUqVJ65plnNGTIkCI/RrCtXbtWI0aM8F2++eab1bhxYxszAgDAPkwPBwAAhdK5c+c8U4vj4+NVrVo1XXXVVb6CZYMGDTR16lRdffXVNmcbPAsXLlRmZqYk0+/wZEWYuLg43XTTTb7Ls2fPPulzBLIqNVRmzpyprKwsSdJVV11VqF6c5557rsqUKSNJWrBgQZ7v+a9amz17tv74448gZhscwcrxm2++8cV9+/Yt1FTvLl26+OJj/+6cKCMjQ5988onvsv+0cH/+vTe/+uor7d+/P+S5FaRs2bIaPHiw72vgwIG64IILVLJkSR09elRDhw5Vy5YtAyqWhsrBgwfVq1cv36ru+vXr68UXX7Q5KwAA7MNKSwAAEBTVqlXT+PHjizQQ5ZFHHskzEMNJli9f7ovbtGlTqEEd5513Xp77ezyeAgtZ55xzTvGSDIJFixb54lWrVunOO+8M6P4HDhzQ4cOHfUXMmjVrqm3btlq8eLFSU1N1zjnn6LrrrtOVV16p8847L6DJ6qESrBz9/+5mz56tLVu2nPQ+nn+G2UjStm3bAk8+zL744gsdPHhQklShQoUTFu87deqk0047Tdu3b1dWVpY+/vhjDRo0qFDPEYrXgQoVKujVV1897vr9+/dr1KhReu6557R8+XJ16NBBX375pS666KKgPn9hZWRk6IorrtD69eslmRYbn376qcqWLWtLPgAAOAFFSwAAUCi9evVSjRo1fJf37dunDRs2+FYo7d69WxdccIE+++wzXXrppXalGXR79uzxxbVq1SrUfWrXru2Ls7KydOjQISUnJ5/w9k7YPu0/+X3BggVFWv134MABX9FSkt5991116dJFu3fvVnp6usaOHauxY8cqISFBzZs3V4cOHdS9e3d17dpV8fHxQfk5AhWMHP3/7r799tuAczhw4ECR8w8X/63h11xzzQl7rcbFxal///6+9gIffPBBoYuW4VSpUiWNGjVKKSkpGjZsmDIyMtS/f3+tX7++wN/VUMjOzlafPn00b948SVLJkiX15Zdf6uyzzw5rHgAAOA3bwwEAQKEMHTpUr776qu/ro48+0pIlS7Ry5Uo1a9ZMkinQ9e3bVxs2bLA52+DxbtWUlKcgV5Bjb3fo0KECb1+qVKnAEwuy1NTUYj9GdnZ2nsuNGjXSypUrddddd+XpA5qdna1ly5bpxRdfVPfu3VWrVi298847xX7+oghGjsX9u8vJySnW/UNt165dmj59uu/ygAEDCry9/9bxJUuW+IbKONHQoUNVv359SeYExfjx48P6/Lm5ubrhhhv05ZdfSjI9gSdPnqyOHTuGNQ8AAJyIoiUAACiWs88+W9OnT/etwkxPT9ctt9xic1bB47898/Dhw4W6z7G3K1euXFBzCgX/QuuLL74oj8cT8Jf/ClOvatWqafTo0dq9e7fmzJmjxx9/XD169Mizmm3Hjh269dZbbRuIUtwc/f/uPv/88yL93TnZ//73vzyF1Y4dO+bpb3vsV5MmTfLc33+VptPExcWpa9euvss//vhjWJ//9ttv14QJE3y5jB8/PqpWqgMAUBwULQEAQLFVrVpVY8aM8V2eM2eOpk2bZmNGweO/dXvr1q2Fus/mzZt9cYkSJSKiaFmtWjVfvGvXrqA/flJSkjp27KgHH3xQ33zzjfbu3atvv/1W559/vu82Y8aMsXUgSlFzDPXfnd2KW3T83//+p9zc3CBlE3wVK1b0xfv27Qvb895zzz16++23fZfffPNN30R5AABA0RIAAASJd3iJ14MPPmhjNsHTokULX7xkyZJCbeVduHBhnvsXZpp0sAX6nOeee64vDsdqs8TERF188cWaOXNmnpV5X3311XG3tePvTyp8jqH4u7PrZz7WL7/8ojVr1vgut27dWueee26hvrxDq7Zv364ffvjBrh/hpHbu3OmLK1WqFJbn/O9//6uXX37Zd/mll16KqhXqAAAEA0VLAAAQNP6Tf1esWOHr0xbJ2rdv7xs6smfPnpOuIM3NzdX777/vu9ylS5eQ5nciJUuW9MVut/ukt+/evbuvyLRw4UKtXLkyZLn5S0pKUrdu3XyXd+/efdxtAv1Zgu1kOfpv5/3888/z/RkCZffP7OW/yrJp06ZasmSJFi9eXKiviy++ON/HcZKsrKw8/TobNmwY8ud88skn9dRTT/kuP/bYY7r77rtD/rwAAEQaipYAACBoLrzwQrVv3953+YknnrAxm+CoUKGC+vTp47t83333FThY59VXX9Xq1aslmR51//73v0OeY34qV67si3fs2HHS29eoUcM3YMXj8WjgwIFKS0sr1HPl5ubmmbIumYnYhd0SvG3bNl9ctWrV474f6M9SWMHKsU2bNurUqZMk6ejRo7ruuuuUlZVVqMfNysrKd3p4hQoVFBdn3qrv2bPHlsKl2+3WxIkTfZdPNoDnWP63nzJlykkHUgVDampqQIONHnrooTzT36+66qpQpOXzyiuv5FmFfv/99+uhhx4K6XMCABCpKFoCAICgevjhh33x0qVL9d1339mYTXA8/PDDvoE8f/zxh7p3766NGzfmuU1ubq5eeeUVDRs2zHfd4MGD8x1OEw7+25mnT59eqAnXTz75pKpXry5JWrVqldq0aZNnFdqxtm/frpdeekkNGjTQpEmT8nzviy++0Jlnnqnnn38+T49Pf5mZmXr11Vf16aef+q7r0aNHgT/LF198UeiC4MkEM8cxY8b4jpEZM2aoQ4cO+umnn0743H/88Ycef/xx1a5dO98t5UlJSb6p1m63W1OnTi3Uz3TDDTf4BuIU99jz9vWUzHb1QPstXn755b5+rkeOHNHkyZOLlU9hzJ49W40bN9bYsWOPK6T727hxo6677jo9++yzvusGDBigpk2bhiy39957T/fcc4/v8uDBgzVq1KiQPR8AAJEuwe4EAABAdOnevbvOPfdcX8Hm8ccfz7NNND/+xZHCKF26dJ5iQ6jVrVtX77zzjvr376+cnBwtWrRIDRo00AUXXKC6desqPT1d8+fPz7MKsG3btmHN8Vht2rRRzZo1tW3bNu3cuVNnnXWWunXrpipVqvj6JbZu3TrPKtJTTz1VX3zxhXr27Km9e/dq3bp16t69u2rUqKE2bdrolFNOkdvt1t69e7VmzRpt2rSpwBw2bNig++67T/fdd59OP/10nX322b5Virt27dLixYu1f/9+3+379++fZ6WuV48ePVSqVCkdPXpUK1asUMOGDdWpUydVqFDB97N069YtzxbuwgpWjk2aNNFHH32kPn366MiRI/rpp5/Utm1b1a1bVy1btlSlSpWUkZGhv//+W6tWrSrUitGrr77at424f//+GjdunOrVq6fExETfbZ5//vmAf+bC8t/S3aFDB9WsWTOg+5cqVUpXXnmlxo8f73u8m2666YS3D9brwLp16zRo0CDdeeedqlevnho1aqRKlSopMTFRBw4c0Nq1a7V27do89znvvPP0+uuvF/q5A7V69WrdeuutvknxZcqUkcfj0Z133lmo+w8dOtRXxAYAIGZ4AABAzOnYsaNHkkeS55FHHjnh7by3keSZPXt2oR9/2rRpee47c+bMAnMI9Kt8+fKB/9DHuP76632P9/777xfqPl999ZWnWrVqJ82vb9++nsOHDxf4WP63D5WvvvrKU6JEiRPmef311+d7v82bN3u6du1a6H+PatWqeb777rs8jzF58mSPy+Uq1P3j4uI8gwYN8mRlZZ3wZxk7dmyBj1fQcXwiwc7R4/F4VqxY4TnnnHMK/XdXu3Ztz/Lly/N9rIMHD3rOOuusAu9/LP/julatWgH/nXjt3bs3z7Hz9ttvF+lxpk+f7nsMl8vl2bhxY57vB/t14JtvvgnoMUqUKOEZMWKE58iRI0X6+Qpr9uzZRf45pcBefwEAiBastAQAAEHXs2dPtWrVSsuWLZNkBk107drV5qyK79JLL9X69ev13nvv6euvv9batWu1d+9elSpVSqeeeqo6d+6sgQMH5pkmbadLL71Uy5Yt02uvvaYFCxZo69atSk9P9632OpFatWpp5syZWrRokSZPnqx58+Zp27ZtOnDggBISElS5cmXVr19frVq1Urdu3dSpUyffEB+v3r17a+fOnZo+fbp+/PFHrVy5Uhs3btTBgwclSeXLl9eZZ56p888/XwMHDlSjRo0KzOn2229X06ZN9eabb+qnn37Sjh07dOTIkZP+LAUJdo6S1KxZMy1btkzTp0/X1KlT9eOPP+qvv/7SwYMHlZSUpFNOOUUNGjTQueeeq+7du6tdu3YnnBRevnx5LV26VK+//rqmTZum3377TQcPHgxLf8uPPvrItw0/KSlJvXv3LtLjdOnSRdWrV9fOnTvl8Xj0wQcf5BnYFWw9evTQtm3bNH36dC1evFirV6/Wpk2bdPDgQeXk5KhcuXKqWrWqmjVrpo4dO6pPnz55eqYCAADncHmK804PAAAAAAAAAIKMQTwAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFKaHAwAAAMAxHnnkEe3bt69Yj9GzZ0/17NkzSBkBABBbKFoCAAAAwDE++OADbdmypViPUaVKFYqWAAAUEUXLQsrNzdVff/2lcuXKyeVy2Z0OAAAAgBDyeDzFfozMzEylpaUFIRsAAKKDx+PRoUOHdOqppyouruCulS5PMP43jgHbt29XzZo17U4DAAAAAAAAiGjbtm3TaaedVuBtWGlZSOXKlZMkbdq0SZUqVbI5G0QCt9ut6dOnq1u3bkpMTLQ7HUQAjhkEimMGgeKYQaA4ZhAojhkEimMGgeKYiWxpaWmqWbOmr85WEIqWheTdEl6uXDklJyfbnA0igdvtVunSpZWcnMwLKQqFYwaB4phBoDhmECiOGQSKYwaB4phBoDhmokNhWi8WvHkcAAAAAAAAAMKMoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAURLsTiAWeDweud1u5ebm2p0KwsjtdishIUEZGRnKycnJ8734+HglJibalBkAAAAAAICzUbQMoaysLP399986cuTIcUUrRD+Px6OUlBRt27ZNLpfruO8nJSWpSpUqSk5OtiE7AAAAAAAA56JoGSJHjhzRtm3bFB8fr4oVK6pUqVKKj4/Pt3iF6JSbm6v09HSVLVtWcXFWJwbvytvU1FTt2LFDkihcAgAAAAAA+KFoGSJ79+5VYmKiatWqpfj4eLvTgQ1yc3OVlZWlkiVL5ilaSlKpUqVUrlw5bd++XXv37qVoCQAAAAAA4IdBPCGQnZ2tw4cPq1KlShQscUIul0vly5dXZmam3G633ekAAAAAAAA4BkXLEMjOzpZkehYCBfEO46HnKQAAAAAAgIWiZQjRvxInwzECAAAAAABwPIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFrCVrVr15bL5dK4ceN8140bN04ulyvPV1xcnJKTk9WiRQuNGDFCe/bsOeFjHnvfE33NmTMn9D8gAAAAAAAAApZgdwLAiZQpU0a9e/eWZKZrb9myRYsWLdKKFSv0/vvva/78+apfv/4J79+9e3elpKSc8PsFfQ8AAAAAAAD2oWgJx6pSpUqeFZiStHbtWnXs2FG7d+/W3XffrWnTpp3w/sOHD1enTp1CmyQAAAAAAACCju3hiCiNGzfWsGHDJEkzZsxQZmamzRkBAAAAAAAg2ChaIuKcffbZkiS32639+/fbnA0AAAAAAACCjaIlIk5aWpokKT4+XlWqVLE5GwAAAAAAAAQbRUtEHG8fy4svvliJiYk2ZwMAAAAAAIBgYxCPXVq1knbtsjuLoklJkZYtC+tTeqeHv/XWW5o4caJq1aql0aNHF3ifzp07n/B75cuX18GDB4OcJQAAAAAAAIKBoqVddu2SduywOwtH27Jli1wu13HXt2nTRtOnT1f58uULvH/37t2VkpKS7/dKly4dlBwBAAAAAAAQfBQt7XKCYlpECFPuZcqUUe/evSVJmZmZ+u2337Ry5UotWbJEt912mz7++OMC7z98+HB16tQpDJkCAAAAAAAgmCha2iXM26sjUZUqVTRu3Lg8133++efq06ePJk2apA4dOmjQoEH2JAcAAAAAAICQYRAPIspVV12l4cOHS5Iefvhhpaam2pwRAAAAAAAAgo2iJSLOiBEjVL16de3bt08vvvii3ekAAAAAAAAgyChaIuKULl1aDz30kCTp5Zdf1oEDB2zOCAAAAAAAAMFET0tEpFtuuUUvvPCCNmzYoOeff15PPvnkcbd55plnjuuJ6a9fv37q1q1bCLMEAAAAAABAUVC0RERKTEzUE088ob59+2rMmDEaNmyYKleunOc233//fYGP0bx5c4qWAAAAAAAADkTRErbavHnzcdfdcMMNuuGGG05632uvvVbXXnvtcdd7PJ4gZAYAAAAAAAC70NMSAAAAAAAAgKNQtAQAAAAAAADgKBQtAQAAAAAAADgKRUsAAAAAAAAAjkLREgAAAAAAAICjULQEAAAAAAAA4CgULQEAAAAAAAA4CkVLAAAAAAAAAI4SkUXLp59+Wq1bt1a5cuVUtWpV9erVS+vWrSvwPuPGjZPL5crzVbJkyTBlDAAAAAAAAKCwIrJoOXfuXA0ePFiLFy/WjBkz5Ha71a1bNx0+fLjA+yUnJ2vnzp2+ry1btoQpYwAAAAAAAACFlWB3AkXx3Xff5bk8btw4Va1aVT///LM6dOhwwvu5XC6lpKSEOj0AAAAAAAAAxRCRRctjpaamSpIqVapU4O3S09NVq1Yt5ebmqmXLlnrqqafUuHHjfG+bmZmpzMxM3+W0tDRJktvtltvtLvB53G63PB6PcnNzlZubG8iPgiji8Xh8f57oOMjNzZXH45Hb7VZ8fHw404MDeV9bTvYaA3hxzCBQHDMIFMcMAsUxg0BxzCBQHDORLZB/N5fHW1mJULm5ubr88st18OBBLViw4IS3W7Rokf7880+dffbZSk1N1fPPP6958+Zp7dq1Ou200467/ciRI/Xoo48ed/3EiRNVunTpAnNKSEhQSkqKatasqRIlSgT+QyFmZGVladu2bdq1a5eys7PtTgcAAAAAACBkjhw5on79+ik1NVXJyckF3jbii5Z33HGHvv32Wy1YsCDf4uOJuN1uNWzYUH379tXjjz9+3PfzW2lZs2ZN7dy5U5UrVy7wsTMyMrRt2zbVrl2bYT8xzOPx6NChQypXrpxcLle+t8nIyNDmzZtVs2ZNjhXI7XZrxowZuuiii5SYmGh3OogAHDMIFMcMAsUxg0BxzCBQHDMIFMdMZEtLS1OVKlUKVbSM6O3hd955p77++mvNmzcvoIKlJCUmJqpFixZav359vt9PSkpSUlJSvvc72S9FTk6OXC6X4uLiFBcXkbOOwqZ27drasmWL3n//fd1www2STI/SG2+8Mc/tXC6XypYtq7p16+riiy/WsGHDdMopp+T7mCcqEB5r9uzZ6tSpU6Fz9eZ1/fXXa9y4cSe9vXdLuPdYyE9cXJxcLlehjivEDo4HBIpjBoHimEGgOGYQKI4ZBIpjBoHimIlMgfybRWTR0uPx6K677tKUKVM0Z84c1alTJ+DHyMnJ0erVq9WzZ88QZIhgKFOmjHr37i3J/Htt2bJFixYt0ooVK/T+++9r/vz5ql+//gnv37179wIHLx37PW+xM8IXHwMAAAAAAES8iCxaDh48WBMnTtQXX3yhcuXKadeuXZKk8uXLq1SpUpKkgQMHqkaNGnr66aclSY899pjatm2revXq6eDBg3ruuee0ZcsW3XLLLbb9HChYlSpVjlvRuHbtWnXs2FG7d+/W3XffrWnTpp3w/sOHDw9oJSUAAAAAAACcISL3Lo8dO1apqanq1KmTqlev7vuaNGmS7zZbt27Vzp07fZcPHDigW2+9VQ0bNlTPnj2VlpamhQsXqlGjRnb8CCiixo0ba9iwYZKkGTNm5Ok7CgAAAAAAgOgQkUVLj8eT75e3J6IkzZkzJ88qvZdeeklbtmxRZmamdu3apWnTpqlFixbhTx7FdvbZZ0syzXf3799f7McbOXJknj6YLpcrz9fmzZuPu8/hw4c1YsQI1atXT0lJSUpJSdH111+vHTt2FDsfAAAAAACAWBeR28MR29LS0iRJ8fHxqlKlSrEfr3nz5rr++uv1wQcfSJKuv/76PN8vW7Zsnsupqalq3769tm7dqgsuuEBNmjTRokWLNH78eM2dO1crV65U+fLli50XAAAAAABArKJoiYjj7WN58cUXB2VSWK9evdSrVy9f0fJkk8GnTp2q7t27a/78+UpOTpZk2g906dJFK1as0Ouvv64RI0YUOy8AAAAAAIBYRdHSJq1atfINEIo0KSkpWrZsWVif0zs9/K233tLEiRNVq1YtjR49usD7dO7c+YTfK1++vA4ePFikXMqUKaP333/fV7CUpIoVK2r48OG69tprNXPmTIqWAAAAAAAAxUDR0ia7du2i/+FJbNmyJU+vSa82bdpo+vTpJ92C3b17d6WkpOT7vdKlSxc5r1atWql69erHXd+wYUNJ4t8VAAAAAACgmCha2uRExbRIEK7cy5Qpo969e0uSMjMz9dtvv2nlypVasmSJbrvtNn388ccF3n/48OHq1KlT0PM6/fTT873eu/IyIyMj6M8JAAAAAAAQSyha2iTc26sjUZUqVY7rL/n555+rT58+mjRpkjp06KBBgwaFPa+4uLiwPycAAAAAAEAsofqCiHLVVVdp+PDhkqSHH35YqampNmcEAAAAAACAYKNoiYgzYsQIVa9eXfv27dOLL74YtMf1TiLPzs4O2mMCAAAAAAAgcBQtEXFKly6thx56SJL08ssv68CBA0F53NNOO02StHbt2qA8HgAAAAAAAIqGnpaISLfccoteeOEFbdiwQc8//7yefPLJ427zzDPPHNcT01+/fv3UrVs33+Wrr75azz//vC688EJ16dJF5cqVkySNGjVKlStXDvrPAAAAAAAAgPxRtERESkxM1BNPPKG+fftqzJgxGjZs2HGFxe+//77Ax2jevHmeouXjjz+uuLg4ff7555o6daqysrIkSQ8++CBFSwAAAAAAgDCiaAlbbd68+bjrbrjhBt1www0nve+1116ra6+99rjrPR5PkXIpWbKkRo0apVGjRuX7/ZPlVbt27SI/NwAAAAAAACz0tAQAAAAAAADgKBQtAQAAAAAAADgKRUsAAAAAAAAAjkLREgAAAAAAAICjULQEAAAAAAAA4CgULQEAAAAAAAA4CkVLAAAAAAAAAI5C0TKEPB6P3SnA4ThGAAAAAAAAjkfRMgTi4sxfa05Ojs2ZwOm8x4j3mAEAAAAAAABFy5BITExUYmKi0tPT7U4FDnf06FHFx8crMTHR7lQAAAAAAAAcg6JlCLhcLpUrV06pqak6evSo3enAoXJycpSamqrSpUvL5XLZnQ4AAAAAAIBjJNidQLSqUqWKjh49qq1btyo5OVnlypVTfHw8xakYkpubq6ysLGVkZOTZ/u3xeJSZman9+/crNzdXVatWtTFLAAAAAAAA56FoGSLx8fGqWbOm9u7dq0OHDungwYN2p4Qw83g8Onr0qEqVKpVvsbpMmTJKSUlRiRIlbMgOAAAAAADAuShahlB8fLyqVaumqlWryu12Kzc31+6UEEZut1vz5s1Thw4djutZmZCQoIQEfv0AAAAAAADyQ9UkDFwuF6vpYlB8fLyys7NVsmRJBu0AAAAAAAAEgEE8AAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRKFoCAAAAAAAAcBSKlgAAAAAAAAAchaIlAAAAAAAAAEehaAkAAAAAAADAUShaAgAAAAAAAHAUipYAAAAAAAAAHIWiJQAAAAAAAABHoWgJAAAAAAAAwFEoWgIAAAAAAABwFIqWAAAAAAAAAByFoiUAAAAAAAAAR6FoCQAAAAAAAMBRIrJo+fTTT6t169YqV66cqlatql69emndunUnvd/kyZN11llnqWTJkmratKm++eabMGQLAAAAAAAAIBARWbScO3euBg8erMWLF2vGjBlyu93q1q2bDh8+fML7LFy4UH379tXNN9+s5cuXq1evXurVq5fWrFkTxswBAAAAAAAAnEyC3QkUxXfffZfn8rhx41S1alX9/PPP6tChQ773eeWVV3TxxRfrvvvukyQ9/vjjmjFjhl599VW98cYbIc8ZAAAAAAAAQOFEZNHyWKmpqZKkSpUqnfA2ixYt0rBhw/Jc1717d02dOjXf22dmZiozM9N3OS0tTZLkdrvldruLmTFigfc44XhBYXHMIFAcMwgUxwwCxTGDQHHMIFAcMwgUx0xkC+TfzeXxeDwhzCXkcnNzdfnll+vgwYNasGDBCW9XokQJffDBB+rbt6/vutdff12PPvqodu/efdztR44cqUcfffS46ydOnKjSpUsHJ3kAAAAAAAAgRhw5ckT9+vVTamqqkpOTC7xtxK+0HDx4sNasWVNgwbIoRowYkWdlZlpammrWrKnOnTurcuXKQX0uRCe3260ZM2booosuUmJiot3pIAJwzCBQHDMIFMcMAsUxg0BxzCBQHDMIFMdMZPPuZC6MiC5a3nnnnfr66681b948nXbaaQXeNiUl5bgVlbt371ZKSkq+t09KSlJSUtJx1ycmJvJLgYBwzCBQHDMIFMcMAsUxg0BxzCBQHDMIFMcMAsUxE5kC+TeLyOnhHo9Hd955p6ZMmaJZs2apTp06J71Pu3bt9MMPP+S5bsaMGWrXrl2o0gQAAAAAAABQBBG50nLw4MGaOHGivvjiC5UrV067du2SJJUvX16lSpWSJA0cOFA1atTQ008/LUkaOnSoOnbsqBdeeEGXXHKJPv74Yy1btkxvvfWWbT8HAAAAAAAAgONF5ErLsWPHKjU1VZ06dVL16tV9X5MmTfLdZuvWrdq5c6fvcvv27TVx4kS99dZbatasmT799FNNnTpVTZo0seNHAAAAAAAAAHACEbnSsjADz+fMmXPcdddcc42uueaaEGQEAAAAAAAAIFgicqUlAAAAAAAAgOhF0RIAAAAAAACAo1C0BAAAAAAAAOAoFC0BAAAAAAAAOApFSwAAAAAAAACOQtESAAAAAAAAgKNQtAQAAAAAAADgKBQtAQAAAAAAADgKRUsAAAAAAAAAjkLREgAAAAAAAICjULQEAAAAAAAA4CgULQEAAAAAAAA4CkVLAAAAAAAAAI5C0RIAAAAAAACAo1C0BAAAAAAAAOAoFC0BAAAAAAAAOApFSwAAAAAAAACOQtESAAAAAAAAgKNQtAQAAAAAAADgKBQtAQAAAAAAADgKRUsAAAAAAAAAjkLREgAAAAAAAICjULQEAAAAAAAA4CgULQEAAAAAAAA4CkVLAAAAAAAAAI5C0RIAAAAAAACAo1C0BAAAAAAAAOAoFC0BAAAAAAAAOApFSwAAAAAAAACOQtESAAAAAAAAgKNQtAQAAAAAAADgKBQtAQAAAAAAADgKRUsAAAAAAAAAjkLREgAAAAAAAICjULQEAAAAAACIBjt3SitW2J0FEBQULQEAAAAAACLdgQNSixbm6/XX7c4GKDaKlgAAAAAAAJFuzhxp924T/+c/0v79tqYDFBdFSwAAAAAAgEj3yy9WnJoqPfWUfbkAQUDREgAAAAAAINItX5738pgx0pYt9uQCBAFFSwAAAAAAgEjnv9JSkrKypEcesScXIAgoWgIAAAAAAESyXbvM5HBJOuccqUIFE48fL61ebVtaQHFQtAQAAAAAAIhk/lvDO3c2g3gkyeORhg+3JyegmChaAgAAAAAARDL/reEtW0p33SXVrGkuf/ONmSwORBiKlgAAAAAAAJHs2KJlyZLSY49Z1z3wgFl1CUQQipYAAAAAAACRzLs9vEwZqX59E193ndS4sYmXLJE+/9ye3IAiomgJAAAAAAAQqQ4ckDZtMnHz5lLcP6We+HjpmWes240YIbndYU8PKCqKlgAAAAAAAJHKfwhPy5Z5v3fJJVKHDib+80/p3XfDlxdQTBQtAQAAAAAAIpV/P8sWLfJ+z+WSRo2yLo8cKaWnhyUtoLgoWgIAAAAAAESqglZaSlLbttJVV5l4927p5ZfDkhZQXBQtAQAAAAAAIpV3pWWJElKjRvnf5qmnTI9LSXr2WWnPnvDkBhQDRUsAAAAAAIBIlJ4urVtn4qZNpcTE/G/XoIF0yy0mPnRIeuKJ8OQHFANFSwAAAAAAgEi0apXk8Zg4v63h/h55RCpd2sRjx0obN4Y2N6CYKFoCAAAAAABEIv8hPCcrWlavLt1zj4ndbumhh0KXFxAEFC0BAAAAAAAiUUGTw/Nz331S5comnjgx7/0Bh6FoCQAAAAAAEIm8k8Pj46Wzzz757cuXz7vCcvjw0OQFBAFFSwAAAAAAgEiTmSmtWWPihg2lUqUKd7/bb5dq1zbxjBnmC3AgipYAAAAAAACRZs0aKTvbxIXZGu6VlJR3evjw4VJubnBzA4KAoiUAAAAAAECk8W4Nl04+hOdYfftKzZub+JdfpEmTgpYWECwULQEAAAAAACJNIJPDjxUXJ40aZV3+73+lrKzg5AUECUVLAAAAAACASONftPSumgzERRdJXbuaeNMm6c03g5IWECwULQEAAAAAACJJdra0apWJ69WTkpMDfwyXS3rmGevyY49JaWnByQ8IAoqWAAAAAAAAkWTdOunoURMHujXcX6tWUp8+Jt67V3r++eLnBgQJRUsAAAAAAIBIUpx+lsd68kkpIcHEL7wg7dpVvMcDgoSiJQAAAAAAQCTxnxzeokXxHqtuXen220185IjZJg44AEVLAAAAAACASOK/0rK4RUtJeughqWxZE7/1lvTHH8V/TKCYKFoCAAAAAABEitxca6VlzZrSKacU/zGrVpXuvdfEOTnSf/9b/McEiomiJQAAAAAAQKTYuNGa8h2MVZZe//d/pngpSZ9+Kv30U/AeGygCipYAAAAAAACRwr+fZXGH8PgrW1Z65BHr8gMPSB5P8B4fCBBFSwAAAAAAgEgRzMnhx7r1VqlePRPPnSt9911wHx8IAEVLAAAAAACASBHsITz+EhOlJ5+0Lj/wgOlxCdiAoiUAAAAAAEAk8His7eGnnCLVqBH857jmGql1axOvXi1NmBD85wAKgaIlAAAAAABAJNixQ9qzx8QtW0ouV/Cfw+WSRo2yLj/0kJSREfznAU6CoiUAAAAAAEAkCOXWcH+dO0sXX2zirVul118P3XMBJ0DREgAAAAAAIBKEanJ4fp55xlrJ+eST0sGDoX0+4BgULQEAAAAAACJBKCeHH6tZM2nAABPv3593yzgQBhQtAQAAAAAAIoG3aJmcLNWpE/rne+wxqUQJE7/8sumpCYQJRUsAAAAAAACn27NH2r7dxC1aSHFhKOnUri0NHmzijAxp5MjQPyfwD4qWAAAAAAAAThfOfpb+/vMfs7JTkt57T/r11/A9N2IaRUsAAAAAAACnC9fk8GNVqSINH27i3FxTxATCgKIlAAAAAACA09m10lKShg6Vqlc38RdfSD/+GN7nR0yiaAkAAAAAAOB03pWWpUpJDRqE97lLl5YefdS6/MADkscT3hwQcyhaAgAAAAAAOFlqqrR+vYmbNZMSEsKfw403SmedZeIff5S+/DL8OSCmULQEAAAAAABwspUrrTic/Sz9JSRITz9tXR4xQsrOticXxASKlgAAAAAAAE7mP4Qn3P0s/V1xhdSunYl/+0364AP7ckHUo2gJAAAAAADgZE4pWrpc0qhR1uVHHpGOHLEvH0Q1ipYAAAAAAABO5i1aJiRIjRvbm8sFF0iXXWbiHTuk0aPtzQdRi6IlAAAAAACAUx05YrZiS1KTJlJSkr35SKa3Zdw/JaVnnpH27bM3H0QlipYAAAAAAABOtXq1lJtrYju3hvtr3Fi64QYTp6bmHdADBAlFSwAAAAAAAKfy72dp1+Tw/IwcKZUsaeIxY6QtW2xNB9GHoiUAAAAAAIBTLV9uxU5ZaSlJNWtKQ4aYOCtLevhhe/NB1KFoCQAAAAAA4FTelZYul9Ssmb25HGv4cKliRRN/+KG0apW9+SCqULQEAAAAAABwIrfb9LSUpAYNpDJl7M3nWBUrSv/5j4k9HmnECHvzQVShaAkAAAAAAOBEv/5qtl5Lztoa7u/OO81WcUn65htpzhxb00H0oGgJAAAAAADgRP5DeJxatCxZUnrsMevyAw+YVZdAMVG0BAAAAAAAcCKnTg4/1nXXSU2amHjJEumzz+zNB1GBoiUAAAAAAIAT+U8Od3LRMj5eeuYZ6/J//mP6cQLFQNESAAAAAADAaXJypBUrTFynjjWl26l69pQ6dDDxn39K775rbz6IeBQtAQAAAAAAnObPP6XDh03s5FWWXi6X9Oyz1uWRI6X0dNvSQeSjaAkAAAAAAOA0/lvDnTqE51jnnitdfbWJd++WXnrJ3nwQ0ShaAgAAAAAAOE0kTA7Pz5NPmh6Xkll5uWePvfkgYlG0BAAAAAAAcJpImRx+rAYNpFtuMXF6uvTEE/bmg4hF0RIAAAAAAMBJPB5re3j16lJKir35BOqRR6TSpU08dqy0caO9+SAiUbQEAAAAAABwki1bpAMHTBxJW8O9qleXhg0zsdstPfigvfkgIkVk0XLevHm67LLLdOqpp8rlcmnq1KkF3n7OnDlyuVzHfe3atSs8CQMAAAAAABRWpPaz9HfffVLlyib+6KO8PxNQCBFZtDx8+LCaNWum1157LaD7rVu3Tjt37vR9Va1aNUQZAgAAAAAAFFGk9rP0l5wsPfSQdXn4cPtyQURKsDuBoujRo4d69OgR8P2qVq2qChUqFOq2mZmZyszM9F1OS0uTJLndbrnd7oCfG7HHe5xwvKCwOGYQKI4ZBIpjBoHimEGgOGYQKI6Z/MX/8otvlZm7aVOzxToS3XyzEl55Ra5Nm6QZM5T97bfyXHhhsR6SYyayBfLv5vJ4PJ4Q5hJyLpdLU6ZMUa9evU54mzlz5qhz586qVauWMjMz1aRJE40cOVLnnXfeCe8zcuRIPfroo8ddP3HiRJX2NpMFAAAAAAAIsu433qiSBw4oq1w5fTt+vORy2Z1SkdWYO1etXnpJknTwjDM09/nnpbiI3PiLIDhy5Ij69eun1NRUJScnF3jbmCharlu3TnPmzFGrVq2UmZmpd955Rx9++KF++ukntTxBb4j8VlrWrFlTO3fuVGVvTwagAG63WzNmzNBFF12kxMREu9NBBOCYQaA4ZhAojhkEimMGgeKYQaA4ZvKxc6cSa9WSJOV26aKc776zOaFiys1VwrnnyrVypSQpe/x4ea69tsgPxzET2dLS0lSlSpVCFS0jcnt4oBo0aKAGDRr4Lrdv314bNmzQSy+9pA8//DDf+yQlJSkpKem46xMTE/mlQEA4ZhAojhkEimMGgeKYQaA4ZhAojhkEimPGz5o1vjDunHMUFw1/L88+K3XvLklKeOQRqU8fqUSJYj0kx0xkCuTfLGbX47Zp00br16+3Ow0AAAAAAABLNEwOP1a3bpK3l+WmTdKbb9qbDyJCzBYtV6xYoerVq9udBgAAAAAAgCUaJofn55lnrPixx6R/Bh4DJxKRRcv09HStWLFCK1askCRt2rRJK1as0NatWyVJI0aM0MCBA323f/nll/XFF19o/fr1WrNmje6++27NmjVLgwcPtiN9AAAAAACA/C1fbv4sW1aqX9/eXILpnHMkby/LvXul55+3Nx84XkQWLZctW6YWLVqoxT9nHIYNG6YWLVro4YcfliTt3LnTV8CUpKysLP3f//2fmjZtqo4dO2rlypWaOXOmunbtakv+AAAAAAAAx9m/X9q82cTNm0fflO0nnpC8PQ1feEHatcvefOBoETmIp1OnTipo6Pm4cePyXL7//vt1//33hzgrAAAAAACAYvCuspSia2u4V9260u23S2PGSEeOmG3ir79ud1ZwKJenoOoffNLS0lS+fHnt3btXlStXtjudkGjVqpV2cZYjqDIyMlSyZEm700AE4ZhBoDhmECiOGQSKYwaB4phBoDhm/KSnS6mpJq5YUSpd2t58QiE316yw9JajqlWTEgJbUxcLx0xKSoqWLVtmdxpB562vpaamKjk5ucDbRuRKS4TGrl27tGPHDrvTAAAAAAAABw6Yr2i3e7fdGcChKFrCJyUlxe4Uok4snP1BcHHMIFAcMwgUxwwCxTGDQHHMIFAcM35275ays01co4a9uYSSx2NWW+bmmsunnCKVKFHou8fCMUONhqIl/ETjsmM7ud1uffPNN+rZs6cSvY2GgQJwzCBQHDMIFMcMAsUxg0BxzCBQHDN+0tMl73bZVq2kpUvtzSfUxo6VBg0ycaNG0uzZkst10rtxzMSOKBtDBQAAAAAAEIFWrrT6PLZsaW8u4XDLLVK9eiaeO1f69lt784HjULQEAAAAAACw2y+/WHE0Tg4/VmKi9NRT1uXhw6WcHPvygeNQtAQAAAAAALCbf9EyFlZaSlLv3lLr1iZevVqaMMHefOAoFC0BAAAAAADstny5+TM+Xmra1N5cwsXlkp591rr80ENSRoZ9+cBRilS0TEtLU1paWrGfPD09XV9++aW+/PLLYj8WAAAAAABARMrIkNauNXHDhlKpUvbmE06dOkk9eph461bptddsTQfOUaSiZYUKFVSpUiX9+uuv+X7/r7/+0k033aSbb765wMfZsmWLevXqpauuuqooaQAAAAAAAES+NWuk7GwTx8rWcH9PP21NDn/ySengQVvTgTMUeXu4xzvRKh8HDhzQuHHjNG7cuGI/FgAAAAAAQFTzbg2XYrNo2ayZNGCAiQ8ckEaNsjcfOAI9LQEAAAAAAOwUi0N4jvX441KJEiZ++WVpxw5b04H9KFoCAAAAAADYyb9o2ayZfXnYqVYt6c47TZyRIT3yiL35wHYULQEAAAAAAOySnS2tWmXi+vWl5GR787HTf/5j/fzvvy+dYJYKYgNFSwAAAAAAALv8/rtZWSjF7tZwr8qVpeHDTZyba4qYiFkULQEAAAAAAOzivzW8RQv78nCKoUOlU0818RdfSD/+aG8+sA1FSwAAAAAAALvE+uTwY5UuLT36qHX5/vslj8e+fGAbipYAAAAAAAB2YaXl8W64QTrrLBMvXCh9+aWt6cAexSpaulyuYOUBAAAAAAAQW3JzrZWWNWtKVarYm49TJCRITz9tXR4xwgwsQkxJKM6dmzRpcsLveQua8fHxxXkKAAAAAACA6LRxo3TokInZGp7XFVdI7dublZa//SZ98IF08812Z4UwKtZKS4/HU+wvAAAQIRYskN59V8rMtDsTAACA6OC/NZyiZV4ulzRqlHX54YelI0fsywdhV6SVlh06dGBrOAAAsWTTJqlrVykrS9q7V3rgAbszAgAAiHz0syzY+edLl19uelr+9Zc0erT0f/9nd1YIkyIVLefMmRPkNAAAgKNNmWIKlpL0xRcULQEAAIKByeEn9/TT0tdfm/6fzzxjhvQgJjA9HAAAnNzXX1vx0qVSerp9uQAAAEQDj8daaVm1qnTqqfbm41SNGkk33mji1FTFPfusvfkgbChaAgCAgqWmSvPnW5ezs01/SwAAABTd9u2m7Y5ktobThu/ERo6USpaUJMW99ppK/f23vfkgLGwvWh45ckQvvPCC3WkAAIATmT7dFCr9zZ5tTy4AAADRgiE8hXfaadLQoZIkV1aWzvroI5sTQjjYVrQ8dOiQnnzySdWuXVv333+/XWkAAICT8d8a7kXREgAAoHjoZxmYBx6QKlaUJNWYP59J4jEg7EXL/fv366GHHlKtWrX08MMPa693KTQAAHCenBzp229NXLasdOaZJv75Z7NtHED4/PGHdPPN0ldf2Z0JACAYmBwemIoVpd69JUnx2dly0a4o6hWraLllyxYNGTJEjRo1Urly5VSpUiW1bNlSTz/9tFKP+SCTnp6uRx55RLVr19ZTTz2lgwcPyuPxqEqVKnriiSeK9UMAAIAQWbpU2rPHxN26mS/JTG/kjSIQPh6PNGCA9N57Up8+0qFDdmcEACgub9GyfHnpjDPszSVSXHSRL3T98IONiSAcEop6xxkzZujqq6/W4cOHJUkej0eStHLlSq1cuVLjx4/X7NmzlZKSoh9//FH9+/fXtm3bfLerUaOG7r33Xv373/9WqVKlgvCjAACAoPPfGn7ppeZN9auvmsuzZ0uXXGJPXkCs+ekncxJBko4elebONb+TAIDI9Pff0o4dJmYIT+F16SKPyyWXx6O4GTPszgYhVqSVlnv27FHfvn2Vnp4uj8cjj8ejMmXKqHz58r7Lf/zxhwYPHqx58+bpwgsv9BUs69SpozfffFMbN27U0KFDKVgCAOBk/kXLHj2kjh2ty/S1BMJn9Oi8l/mgBgCRzb+fJVvDC69yZXn+6f/pWrNG2rXL5oQQSkUqWr799tvav3+/XC6XevfurfXr1+vQoUM6cOCA/vrrL915552SpC+++EIDBgxQZmamypYtqzFjxmjdunW69dZblZiYGNQfBAAABNn27dLKlSZu3VpKSZEqV5bOPttct3y5dOCAffkBseKvv6TJk/NeR9ESACIbk8OLzNO1q3Vh5kz7EkHIFaloOX36dElS27Zt9cknn+gMv94LKSkpGj16tAYOHKjc3Fxt375dFSpU0MKFCzV48GAlJBR5RzoAAAinadOs2H8baufO5k+PR5o3L7w5AbHozTel7Oy81/32mzmxAACITEwOLzLPhRdaFziJF9WKVLT8/fff5XK5NGjQoBPeZsiQIZIkl8ulIUOGqHHjxkXLEAAA2MN/a7h/70pv0VJiizgQapmZ0htvmDg+XrrpJut7rC4BgMjlXWlZqpTUoIG9uUQYT7t2yk5KMhdmzDAn0hGVilS0PPDPVrB69eqd8Db169f3xRdccEFRngYAANjl6FHJO5GxevW8vZY6dLCaxVO0BELrk0/MsAZJuuoq6cYbre+xugQAIlNqqrRhg4mbNTMnpVB4SUna510Yt3On9Ouv9uaDkClS0dLtdkuSypUrd8LblC1b1henpKQU5WkAAIBdZs82hUvJrLKM83vLULGiVcRctUrauzf8+QGxwOPJO4Dnrrukc8+VvO/BZ86UcnPtyQ0AUHQrVlgxW8OL5O/mza0LnMSLWkUqWgbK5V2NAQAAIsOJtoZ7+W8Rnzs39PkAseinn6Rly0zcvLl0/vlSYqL1+/f33+bEAQAgsjCEp9j2NGtmXaBoGbXCUrQEAAARxOOxipYlSkj+zc696GsJhN6YMVY8ZIjVluGii6zr+aAGAJHHv2jp34IHhXbo9NPlqV7dXJgzx/SARtQp1ijvG2+8UWXKlCn27Vwul37w9s0CAAD2WrNG2rbNxJ07S34tX3wuuMD0X8rJMW8UAQTXX3+ZfpaSVLmydO211veOLVred194cwMAFI93cnhiosTQ4qJxueTp0kWuCROkI0ekRYukTp3szgpBVqyi5TLvdpUT8G4LL+h2Ho+H7eMAADiJ/9bwSy/N/zbJydI550hLlkhr15ptqlWrhic/IBa8+aaUnW3if//bTJf1OvNMqWZNc3Jh/nwpI0MqWdKePAEAgTlyRPrtNxM3aSJ5p2AjYLlduypuwgRzYcYMipZRqMjbwz0eT1C+AACAw5ysn6WX/xZxVlsCwZOZaYqWklnRfMcdeb/vclmrLTMypAULwpsfAKDoVq2yhqixNbxYPF27WhdolxKVilS0zM3NDepXTk5OsH8uAABQFHv3SosXm7hRI6lOnRPf1v9sNn0tgeCZPFnavdvEV15pVlUei76WABCZvFvDJYbwFFf16ma1qmQG1+3fb28+CDoG8QAAAMt331ln/0+0Ndzr/POlhH86zVC0BIJn9GgrHjIk/9uwugQAIhOTw4OrWzfzp8cjzZplby4IOoqWAADAUtit4ZIZ0NO6tYnXrTODQwAUz08/SUuXmrh5c3NyID+nnGJ92F2+XNqzJyzpAQCKyVu0dLmks8+2N5dowM6DqEbREgAAGG63WWkpSRUqSO3bn/w+9LUEgst/leVdd5kPtSfi/0Ft5szQ5QQACI6sLGn1ahOfdZZUpoy9+USDDh2kEiVMPH26WXGJqFGk6eGPPfZYsPPQww8/HPTHBAAAAVi4UEpNNXGPHtbW74J07iw99ZSJZ8+W+vULXX5AtNu5U/rkExNXriz17Vvw7S+6SBo1ysQzZpz89gAAe/36qzlJLLE1PFhKl5bOO8+8D928WdqwQapXz+6sECRFKlqOHDlSroLO+hYBRUsAAGzmvzX8ZP0svdq3lxITzRtw+loCxfPmm1J2ton//W+pVKmCb3/eeVLJkmaC+IwZZnVJkN+jAwCCyL+fJZPDg+eii6z3oTNmULSMIkXeHu7xeIL2BQAAHMBbtIyLky6+uHD3KV1aatvWxBs2SNu2hSY3INplZkpvvGHi+HjpjjtOfp+SJc22OEnavt30lgUAOBdDeEKDvpZRq0grLWezkgIAgOiyYYP0++8mbt9eqlSp8Pft3FmaP9/Ec+ZI110X9PSAqDd5srR7t4mvvFKqWbNw97voItPDSzIf1M46KzT5AQCKb/lyK2alZfC0aGHeu+7fbyaIZ2cXrs0RHK9I/4odO3YMdh4AAMBO06ZZcWG3hnt17ix5+13Pnk3REiiKMWOseMiQwt/v2NUld90VvJwAAMGTkyOtWGHiOnXM0EMER3y81LWrOQGYmiotW2btBEJEY3o4AADI28/ykksCu2/btlJSkonZjQEE7qefpCVLTNysmXT++YW/b9OmUtWqJp4zxxrwAABwlj/+kI4cMTFbw4OvWzcrZot41KBoCQBArDt0yBQ7JKlWLalx48DuX7Kk1K6diTdvNl8ACm/0aCseMiSwYTpxcdZqy0OHTAEUAOA8/lvDKVoGH30toxJFSwAAYt3MmdbqrEsvLdr04c6drZjVlkDh7dxptrNJUuXKUt++gT+G/wc1b39LAICzMDk8tGrVkurXN/GiReZEHiIeRUsAAGJdcbaGe1G0BIrmzTetkwa33iqVKhX4Y1x4oRWzugQAnInJ4aHnPYmXnW3tIkJEo2iJ2DFrlvkCAFhyc60hPKVL5y0+BqJNG6vYMnu25PEEJz8gmmVlSW+8YeL4eOmOO4r2ODVqSI0amXjJEungwaCkBwAIEo/H2h5+6qlStWr25hOt2CIedShaIjbMmGGmiXXtKn33nd3ZAIBz/PKLtHu3iS+80PSnLIqkJOm880y8fbu0YUNw8gOi2eTJ1u9fr17S6acX/bG8H9Ryc1ntDABOs3mzdUKJVZah07mzOQkoUbSMEhQtERvGjrXi11+3Lw8AcBr/reGXXlq8x2KLOBCYYwfwFAerSwDAuehnGR7ly5vdP5L0++/mRDoiGkVLRL/9+/N+KP/2W2nPHvvyAQAn8X997NmzeI/lX7SkjxBQsJ9+Mlu5JalZM+mCC4r3eB07SomJJqZoCQDOwuTw8OEkXlShaInoN3my1eBeMk15P/7YvnwAwCl27pR+/tnELVqYvnjF0aqVVKaMielrCRRszBgrvusuyeUq3uOVLSu1a2fi9eulTZuK93gAgOBhCE/4dOtmxRQtIx5FS0S///3v+Os+/DD8eQCA03zzjRUXd2u4ZFZ5eVeL7dwp/fFH8R8TiEa7dkmffGLiSpWkfv2C87h8UAMAZ/IWLStVkmrWtDeXaNemjVSunIlnzjS9nhGxKFoium3aJC1YYOJGjaz+IUuXmh4XABDL/LeGX3JJcB6zUycrpq8lkL8337R2gfz731KpUsF5XLbEAYDz7NxpDV1r2bL4K+tRsMREq2XRnj3SqlX25oNioWiJ6DZxohUPGCANHGhdZrUlgFiWmWkVNU45RWrdOjiPyzAeoGBZWdaAwLg46Y47gvfY55wjVaxo4h9+kHJygvfYAICiYWt4+PmfxJs+3b48UGwULRG9PJ68W8P795f69pXi483l//2PpeIAYtfcudLhwya+5BJTPAmGli2tLTlz5tDXEjjW5MnWipsrr5ROPz14jx0fL3XpYuIDB/J+UAYA2IPJ4eHHzoOoQdES0evnn60t4B07mg8F1apJ3bub67ZulebNsy8/ALCT/9bwYPSz9EpIkDp0MPHff0u//hq8xwaigf8AniFDgv/4fFADAGdhpWX4nXmm1Tt0/nzp6FF780GRUbRE9PJfZTlggBX7bxEfPz58+QCAU3g8VtEyMTFvkSMY2CIO5O+nn8yXJJ19tjW4KpgoWgKAsyxfbv4sW1aqV8/eXGKFy2X9f5iZac25QMShaInolJ0tffSRiUuUkHr3tr53+eVScrKJP/1UOnIk/PkBgJ1+/90MKpPMqkjva2KwULQE8nfsKstQDGM44wzzJUk//mi1gQAAhN++fdKWLSZu3jx47XhwcpzEiwr8xiA6zZxptiVK0mWXSRUqWN8rVUq65hoTHzokffFF2NMDAFuFamu4V7Nm1uvunDn0DwYkadcu6ZNPTFypktSvX+iey/tBze2mFQ4A2Mm7ylJia3i4XXihdXKQomXEomiJ6HSireFe111nxUwRBxBr/IuWl1wS/MePjze9hCVp/35pzZrgPwcQad580xQRJenWW81J1FDp1s2KmZoKAPahaGmfKlWswUcrVliLmhBRKFoi+qSnS1OmmLhSJalnz+Nvc8EFUq1aJv7+e7P6AQBiwYEDZsuoZJqU168fmudhizhgycqS3njDxHFx0qBBoX2+Ll2sLYisLgEA+zA53F7+W8R/+MG+PFBkFC0RfaZMsfpU/utfpqflseLirBWYubnSxInhyw8A7PT991JOjolDsTXcq1MnK6ZoiVj36afWCdJevaTTTw/t81WoILVubeK1a6W//grt8wEA8uctWiYlSQ0b2ptLLPIvWrLzICJRtET0OdnWcC+2iAOIRaHeGu7VtKlUubKJ5861CqVALBo92oqHDAnPc/p/UJs5MzzPCQCwHDok/fmnic8+W0pMtDefWHTeeVLJkiaeMUPyeOzNBwGjaInosnOn9ca8dm2pffsT37ZBA6lNGxOvWCGtXh3q7ADAXjk50rffmjg5WTr//NA9V1yc1dfy4EFp5crQPRfgZEuWSD/9ZOKzz5Y6dAjP8zI1FQDstXKlVSRja7g9Spa0/t/dsUP6/Xd780HAKFoiunz8sTWldsAAa1rYiQwcaMWstgQQ7RYvNoNxJKl79/zbZwQTfS0BacwYK77rrpO/NwmWtm2lMmVMPHMmq0sAINz8+1kyhMc+nMSLaBQtEV0KuzXcq08fKSHBxBMmsH0RQHTz3xoeyn6WXhQtEet27ZImTTJxpUpSv37he+4SJazesrt2SWvWhO+5AQBMDncKipYRjaIlosevv1pns1q3Ntu/T6ZKFaun219/SbNmhS4/ALCbt2jpckk9eoT++Ro1kqpWNfG8eVJ2duifE3CSt96S3G4T33qrVLp0eJ+fD2oAYB/vZ9P4eNPrG/Zo2lSqVs3Ec+ZY/y8jIlC0RPQIdJWll/8W8fHjg5cPADjJli3WSqtzz5VOOSX0z+lyWSu9Dh3Ku00KiHZZWdLYsSaOi5PuuCP8OXTrZsVMTQWA8MnIkNauNXGjRtYwGIRfXJx04YUmTk837ZIQMShaIjrk5prt3ZI5k9WnT+Hve8klUsWKJv78c/NCBgDRZto0Kw7H1nAv/y3ic+aE73kBu336qdmWLUm9ekm1aoU/h7POkmrUMPG8eeZDNAAg9NassVqPsTXcfv47DziJF1EoWiI6LFggbd1q4m7drOXfhZGUZBU5jxwxhUsAiDb+/Sy9bTHCgb6WiFX+A3iGDLEnB5fL+qB29Ki0cKE9eQBArPHfXcLkcPt5V1pKtEuJMBQtER2KujXc67rrrJgp4gCizeHDVs/eGjWkZs3C99xnnimlpJh4/nz6CCE2LFlibT9r2lTq0MG+XOhrCQDhx+RwZ6lRw2zTl6SlS6UDB+zNB4VG0RKRLyND+uQTE5cpI11xReCP0a6dVLeuiX/4Qdq+PXj5AYDdZs2SMjNNfOmlZvVVuLhc1mrLw4elZcvC99yAXY5dZRnO37ljsboEAMLPv2jZvLltacCP9yRebi67fyIIRUtEvmnTpNRUE199tSlcBsrlslZbejzSxInByw8A7Oa/NTyc/Sy92CKOWLJrlzRpkokrVZL69bM3n6pVrdXVv/wi7dtnbz4AEO3cbmnVKhOfeaZUrpy9+cBg50FEomiJyFfcreFe/lvEx483xUsAiHQej1W0LFlS6tIl/DlQtEQseestqw3CLbdIpUvbm49kfVDzeMyOEgBA6Pz+u7XDhX6WztGxo5SYaGKKlhGDoiUi2/791kTclJTifRg/4wzpvPNMvHattGJFsdMDANutWCH99ZeJu3Sxp4BSt6502mkm/vFH6408EG2ysqSxY00cFycNGmRvPl6sLgGA8KGfpTOVLSu1b2/iDRukTZvszQeFQtESkW3yZGs1Q79+Unx88R5v4EArHj++eI8FAE7gPbEj2bM1XMrb1/LoUTOkBIhGn31mtodLUq9eUq1atqbjc8EFUlKSiadPZzcJAITS8uVWTNHSWTiJF3EoWiKyBWtruNc110glSph44kQpO7v4jwkAdvLvZ3nJJfblwRZxxILRo634rrvsy+NYpUqZwqUkbd0q/fmnvfkAQDTzX2nJ9nBn8S9aTp9uXx4oNIqWiFybNkkLFpi4UaPgTGWrWFG6/HIT//03L2QAItvff1urGps2lU4/3b5cKFoi2i1dKi1ebOKmTU3vLCdhdQkAhF5urrXS8vTTpcqV7c0HeZ1zjvnML0mzZkk5Ofbmg5OiaInINWGCFV93ndl+GAz+A3k+/DA4jwkAdvj2W2sbqF1bw71q1zZfkrRokZSRYWc2QPCNGWPFQ4YE731JsFC0BIDQ27BBSk83MVvDnSc+3pqDceCA9PPP9uaDk6Joicjk8eTdGt6vX/Ae++KLpSpVTDx1qpSaGrzHBoBwcsrWcC/vasvMTGtFGhANdu+WPv7YxBUrBvd9SbA0ayadcoqJZ8+mBQ4AhAJbw52Pk3gRhaIlItPPP0vr1pm4Y8fgbnksUUK69loTZ2SYpvoAEGmysqTvvzdxpUpS27b25iNJnTpZMVvEEU3eessaDHjrrVLp0vbmk5+4OKlrVxOnpTEQCwBCgcnhzkfRMqJQtERkCvYAnmMxRRxApJs/Xzp0yMQ9e5rtMHajryWiUVaWNHasiePipEGD7M2nIHxQA4DQYnK4851xhvmSpIULre38cCSKlog82dnSRx+ZOClJ6t07+M/RqpXUoIGJ586VtmwJ/nMAQChNm2bFdvez9KpZU6pb18SLF0tHjtibDxAMn30m7dxp4iuukGrVsjefgjA1FQBCx+OxVlpWrSpVr25vPjixbt3Mn263NG+evbmgQBQtEXlmzjQTcSXpssukChWC/xwuV97Vlv4rOwEgEnj7WcbHS92725uLP+9qS7fbnN0GIt2xA3icrGZN6ayzTPzTT/TtBoBg2rZN2rfPxC1bOm8gGyzsPIgYFC0Refwneodia7hX//55n9M7gRcAnO6PP6Q//zTx+eeH5uROUbFFHNFk6VJp0SITN2li+mw7nfeDWk6ONGeOrakAQFRha3jk6NLFtHSR2HngcBQtEVkOHZKmTDFxpUpSjx6he65atayhEevWmQ8mABAJnLg13IuiJaLJsassI2FVDatLACA0mBweOSpUkFq3NvGvv0o7dtiaDk6MoiUiy9Sp0tGjJv7Xv8yk71C67jorZiAPgEjh3RouSZdcYl8e+ale3eoZvHQpzc8RuXbvliZNMnHFinl3aDhZp05SQoKJKVoCQPAwOTyy+J/EmznTvjxQIIqWiCyhnhp+rN69pZIlTfzxx2ZCKAA4WWqq1VD8jDOs/nVO4l1tmZ0tLVhgby5AUb31lvW+4JZbpNKl7c2nsMqVk9q2NfEff0hbt9qbDwBEC+/28PLlpTp17M0FJ8fOg4hA0RKRY+dO6wxInTpS+/ahf87kZKlXLxPv2yd9+23onxMAimPGDFMMlMzWcCduV/XfIk5PPUSirCxp7FgTx8VJgwbZm0+g+KAGAMG1e7e1xbhFC2e+/0JebdtKZcqYeOZMZlg4FEVLRI6PP5Zyc008YED4/iPwnyLuPwQIAJzIyVvDvfyHldDXEpHo88/NyVRJuuIKqXZtW9MJGEVLAAguhvBEnhIlrBkWu3dLq1fbmg7yR9ESkcO/YBjOvlEXXSRVq2bir76SDhwI33MDQCBycqRvvjFxmTLOnWRcrZrUqJGJf/5ZSkuzNx8gUKNHW/Fdd9mXR1G1bm22L0pmdYn3pDAAoGjoZxmZunWzYk7iORJFS0SGtWuts1etW1tDHMIhIUHq18/EWVnSJ5+E77kBIBBLl0p79pi4WzcpKcnefAri3SKekyPNn29vLkAgli2TFi0ycZMm1iqNSJKQIHXpYuJ9+/KuEAIABM7/dZTJ4ZGDnQeOR9ESkWHCBCsOxwCeYzFFHEAkmDbNii+91L48CsO/ryVbxBFJxoyx4iFDIrdvGR/UACB4vCstS5UK7wIbFM9ZZ0k1aph47lwpI8PefHAcipZwvtxcq2gZHy/16RP+HJo3N6spJGnhQmnDhvDnAAAn49/PsmdP+/IoDPpaIhL9/bfpsS1JFSuGt11NsFG0BIDgOHhQ2rjRxM2bm8+siAwul/X/YUaG9OOP9uaD40Rk0XLevHm67LLLdOqpp8rlcmnq1Kknvc+cOXPUsmVLJSUlqV69eho3blzI80SQLFggbd1q4m7drP6S4eRyMZAHgLNt3y6tWGHiVq2klBRb0zmpKlWks8828fLl9AtGZHjrLdMqRpJuuUUqXdrefIqjbl1rgNCCBdKRI7amAwARy/v+S6KfZSTiJJ6jRWTR8vDhw2rWrJlee+21Qt1+06ZNuuSSS9S5c2etWLFCd999t2655RZ9//33Ic4UQfG//1mx/zbtcOvXz9oC9uGHksdjXy4AcCzvAB7J+VvDvbxbxD0ead48e3MBTsbtll5/3cRxcdKgQfbmU1z+q0uysugtCwBF5T+Eh36WkefCC62YoqXjRGTRskePHnriiSd05ZVXFur2b7zxhurUqaMXXnhBDRs21J133qnevXvrpZdeCnGmKLaMDGvwTdmy0hVX2JdLjRrWC9rGjWabOAA4hf/W8EsusS+PQNDXEpHks8+knTtNfPnl1irFSMbqEgAoPiaHR7aqVaVmzUy8fLm0d6+9+SCPBLsTCIdFixbpQv/quaTu3bvr7rvvPuF9MjMzlZmZ6buclpYmSXK73XK73SHJE8dzffGFElJTJUm5vXopJzHRrHSwK5++fZXwz5v6nA8+UG6bNie8rfc44XhBYXHMIFC+YyYtTQkzZ8olyZOSouymTW19rSy0du2U4HLJ5fHIM2uWsiMh5wjH60zRxY8e7Tvbnz1okDzR8Hd4wQXW7+D06fn+DnLMIFAcMwhUpB8zCb/8Yt6DJSYq+8wzI+M9WIQL9jET17Wr4leulDweZX//vTz/+ldQHhf5C+TfLSaKlrt27VK1Y/ogVqtWTWlpaTp69KhKlSp13H2efvppPfroo8ddP3v2bJWO5P5FEabNSy+p+j/x4nr1tMd/+6MN4kuV0sUlSyohI0M5Eyfq+4suUm6JEgXeZwYrFxCgaD1m4jMyVOavv5RWqxYNyoNs5csvq93Ro5KkrU2aaMV339mcUeF1rFNHFTZulGv1as34+GO5k5PtTikmROvrTKhUWL9eHRctkiSlnX66Zh8+nLclQwTrULeuKq5fL9fq1fphwgRlVqyY7+04ZhAojhkEKhKPmfiMDF2ybp0kKbVmTc2dOdPmjGJLsI6ZU5KT1f6feMe4cVpRtmxQHhf5OxJAH+2YKFoWxYgRIzRs2DDf5bS0NNWsWVOdO3dW5cqVbcwshuzfr4R/ltp7UlLU+oEHHFHoiPv6a2nCBJU4fFg9cnPlOcGEXrfbrRkzZuiiiy5SYmJimLNEJIraY+boUcW9+abinn1Wrr17ldunj3IYZhUU3mOm1d9/+66rcdttOtXpk8P9xM2ZI738siSpW1LSCV9TERxR+zoTYvE33eSLSw8frp6R0oKhEOIWLZJGjZIkXSgd9zvIMYNAccwgUJF8zLgWL5YrN1eSlNyxo3ryPiYsgn7MdO4sz9NPy5WZqdP/+EOn9uhhzbNA0Hl3MhdGTBQtU1JStHv37jzX7d69W8nJyfmuspSkpKQkJSUlHXd9YmJixL2QRqypU31L6139+imxZEl78/G64QZpwgRJUsLEiVKfPgXenGMGgYqaY8btlt5/X3rsMWnHDt/VcZMmKe622/L2M0TReTxK8K6sLFFCCRdfLEXS8dO1q69omTB/vsR2nLCImteZcPj7b6u/dsWKShg4MLJ+x07m4ot9RcuE2bPN+5x8cMwgUBwzCFREHjOrV/vCuFatFBdp+Ue4oB0ziYnSBRdIM2fKtXWrEjdtkho0KP7jIl+B/JtF5CCeQLVr104//PBDnutmzJihdu3a2ZQRCsUpU8OP1bmzdOqpJv7mGxr1AsfKzZUmTpQaNpRuuy1PwdLngQfMxGgUW7ktW+TautVc6NTJDC2LJBdcYCYxSwzjgTO99ZaZri1JN98slSljbz7B1q6d5G19NGMGr80AEAgmh0cPhtM5UkQWLdPT07VixQqtWLFCkrRp0yatWLFCW//50DZixAgNHDjQd/vbb79dGzdu1P3336/ff/9dr7/+uj755BPdc889dqSPwti0SVqwwMSNG1vTvJwgPl4aMMDE2dnSxx/bmw/gFB6P9NVXUvPmUv/+0oYN1vcuu8xM4zv7bHN56VLp009tSTPapPz8s3Xh0kvtS6SoypeXzjnHxGvXmlVtgFO43dLYsSaOi5MGD7Y3n1BISpI6djTxzp3Sr7/amw8ARBJv0TIuznqfi8hE0dKRIrJouWzZMrVo0UIt/jmTMWzYMLVo0UIPP/ywJGnnzp2+AqYk1alTR9OmTdOMGTPUrFkzvfDCC3rnnXfUvXt3W/JHIfyz/VqSKRA6rZ+E/8pPevMBZoVc+/bS5Zfn2SajTp2khQulL780xcxnnrG+95//MF0xCKotW2ZdiNQ+e/6tAubMsS0N4Diffy799ZeJL79cql3b1nRChg9qABC4rCxpzRoTn3VW9K3EjzXNmkmnnGLi2bP5nOIQEVm07NSpkzwez3Ff48aNkySNGzdOc4750NOpUyctX75cmZmZ2rBhg244Qb8eOIDHk3dreL9+9uVyIk2aWMv/lyyR/pkYB8Scn36SLrxQ6tJFWrzYur51a/PBd9Yss/XQ6+KLTSFTktavl955J6zpRp29e1XJ+/rTsKF0xhn25lNU/kVLtojDSUaPtuK77rIvj1CjaAkAgVu71ipssTU88sXFmV7rknTokPmcD9tFZNESUe7nn60iYMeO0umn25vPibDaErFs9WqpVy+pbVvJv2dw48bSlClWMfPYVdIul/Tss9blRx+V0tPDknI0cn3/vW9iZURuDfc6/3wp4Z/ZgBQt4RQ//2xWikvmtS2ah4c1bixVr27iOXOkzExb0wGAiODfz7JlS/vyQPBwEs9xKFrCefxXWXp7RzpR376mv6VkipbewgEQzTZsML+XzZpJX3xhXX/GGeZ3d+VKU8wsqKVD69bSNdeYePdu6cUXQ5pyNIv79lvrQqRuDZfM8KDWrU28bp21HRew05gxVjxkiPNa1QSTy2VONEnSkSPSokX25gMAkWD5ciumaBkdKFo6DkVLOEt2tvTRRyZOSpJ697Y3n4KkpEjdupl461Zp/nx78wFCaccO6fbbTb+eCROs6bKnniq98Yb0++9m+I63kH8yTz5p3fa55xi+UhRut1zTp0uSPBUqmJ6ikcx/FdvcufblAUjmNcn7fqRCBfP6Fu2872kkPqgBQGH4r7Rs3ty2NBBENWuazzuS2TmWmmpvPqBoCYeZMcMqXlx2mfmg4GR+U+o1frx9eQChsnevdO+9Ur160ptvmhMLklS5svT886Yv5W23SYmJgT1u/frSv/9t4vR06Ykngpt3LFi4UK6DByVJnm7dAv83cBpvr1OJLeKw31tvmQELknTLLbExXMG70lKiaAkAJ5OTI61YYeIzznD+51YUnne1ZU4O70kdgKIlnCVStoZ7XXGFVK6ciSdPNluqgGiQliaNHGnehL3wgpSRYa4vV85cv3Gj9H//J5UqVfTnePhhqxDwxhtm6zkKb9o0X5jbs6eNiQTJeedZhVfeIMJObrc0dqyJ4+KkwYPtzSdcUlKkpk1NvGyZtH+/vfkAgJOtWycdPWpitoZHF7aIOwpFSzjHoUNmgIckVaok9ehhbz6FUaqU1Zvv0CHpyy/tzQcorqNHzQrKOnXMkJxDh8z1JUuaFZcbN0qPPCIlJxf/uVJSTOFTMkWCBx8s/mPGkq+/liR54uLk6d7d5mSCoHRp6dxzTbx+vbR9u735RKMtW5TQpo3aP/ig9NtvdmfjXJ9/bvVVvewyqXZtW9MJK+8HNY9HmjXL3lwAwMn8+1kyOTy6dOpkDYikaGk7ipZwjqlTrbNV//qXVKKErekUmv8UcbaII1JlZZnVjvXqSffdZ62wSUgwvSzXrze9J6tUCe7z/t//SaecYuKPPzbTenFyGzb4ik77GzQw2/WjgX9fS1ZbBt+DD8q1YoVOWbNGCW3bSm+/bfWnheXYATyxhNUlAFA4TA6PXuXKSW3bmvjPP6UtW+zNJ8ZRtIRzRNrWcK8OHaTTTzfx9OnSrl325gMEIifH/O41bCjdcYe1usjlMr+Hv/9utknWqBGa509Olh56yLo8fHhonifa+G0N392qlY2JBBlFy9DZvt2cGPiH6+hR01f2mmukAwdsTMxhfv5Z+vFHEzdunPeYjAUdOlgnjSlaAsCJ+RctWWkZfTiJ5xgULeEMO3dKM2eauE6dyJqCGxdnFVlzcqxpo4CTeTxmdXOzZma18MaN1vd69ZJWrZI+/FCqWzf0udx2m+mdKZnXgX8mYqMAfkXLXeecY2MiQdaunZSUZGKKlsE1erRvkNah006zrv/sM/M6sGCBTYk5jP8qy7vuMidwYknp0qa/rCRt2kSvYQDIj8djbQ8/9VSpWjV780HwUbR0DIqWcIaPPpJyc008YEDkfUjw3yL+4Yf25QGcjMdjCoPnnitdeaW0dq31vYsukn76yfSWbdIkfDmVKCE9+aR1+YEHrNcDHO/QIWnOHEmS5/TTdahWLXvzCaaSJU3hUpI2bzZfKL60NOnNNyVJnhIl9OMTTyh78mTTP1qStm2TOnY0fWz/KWzGpL//tk48VqgQWbs+gsn/gxonkQDgeJs2SampJmZreHRq3VoqX97EP/zAZxMbUbSEM/hvDe/f3748iuqss8wLm2TOuq1ZY28+QH4WLZK6djUfSJcuta5v29YMXJg+XWrTxp7c/vUv603fihV5trHiGDNnmh6k+mdqeKSd5DkZtogH37vvmsKlJE///sqsUEGeK66QVq40xUrJvBkfOdL8/W/dal+udnr7bd/vlm6+WSpTxt587NKtmxWzugQAjkc/y+iXkCB16WLiffvyDl5CWFG0hP3WrrVeBFq3lho0sDefoho40IpZbQknWbXKTMBt3z5vEejss6WvvpIWLrS/b1tcnDRqlHX5v/+VMjPty8fJ/LaGe3r2tDGREKFoGVxut/Tyy76LOUOHWt877TSzeuDxx6X4eHPdggVmu/hnn4U3T7u53dLrr5vY5ZIGD7Y3Hzu1aGEN95o1K7ZX3wJAfvwLWBQtoxc7DxyBoiXsN2GCFUfyVqxrrzVnZCSzcjQnx958gD//lPr1MwWIr7+2rq9Xz2yBXL5cuvRS56zUu/BCa4XP5s1mmjnyys21ipalSsnjXSUXTdq0kUqVMvGcOUy3Lq5PP7VWTl5yidSoUd7vx8dLDz4ozZsneVsNHDwo9e5t+s0eORLWdG0zZYo1iOzyy01/7VgVF2dW5UtSaqpcP/9sbz4A4DQM4YkN9LV0BIqWsFdurlW0jI83hb9IVaWK5F319Ndfcv3Tcw4Iu23bzFTghg3zDoY67TSz/fHXX83vWpwD/wt45hkrfvxxq18QjF9+kXbtMvGFF1rFvWiSlGQNY9u2Le+QKATG45Gef966/H//d+Lbtm9vWjP06WNd99ZbUqtWZht5tBs92orvusu+PJzC74OayzsoEQBg/m/1Fi0rV5Zq1rQ3H4RO3bpS7dom/vHH2DmR6zAO/MSKmDJ/vrUCpHt3qWpVe/MpLr+BPHH+fTqBcNizRxo2TKpf3xQnvat9q1SRXnrJrLy85RYpMdHePAvSooVZHSqZ/jH+BRfkXTF76aX25RFqbBEPjrlzrQ9WLVtKnToVfPsKFcyJjnffNVOkJem338zgrjFjonfV6y+/mA8jklmJ6u1hFcv8i5Y//GBjIgDgMDt3msFtkvm/1Sk7lhB8Lpf1/2FWltmVgrCjaAl7+Rf2InlruNell5oPfZJcU6cq/uhRe/NBbDh4UHroIemMM0xx0tsLMjnZrFbcuFG6+24zmTkSPP64VVh98UXz5hCGXz9LRWM/Sy+KlsHhX/S/997CfbByuaSbbjKFvObNzXWZmdKQIdIVV0h794YkVVuNGWPFQ4bwAVQyrQLq15ckuRYvVgLvZwDAYGt4bGGLuO0oWsI+GRnS5MkmLlvWfBiKdCVLminIklyHD6v64sU2J4SoduSIGV5zxhnSE09I6enm+lKlpAcekDZtMr3qypWzN89AnXGGdMcdJj5yRHr0UXvzcYqdO6Vly0zcvLnZ7h+tWre2JjfPnh29K/xC6bffrCJ3zZqmR2UgGjSQFi82Jzy8vvrKDPCaNStoadru77+liRNNXKFCdJxADZZ/Pqi5srNVefVqm5MBAIdgcnhs6dLFOplJ0dIWFC1hn2nTrH51V11lbUWLdH5TxGvS1xKhkJUlvfaa6bMyfLh04IC5PjHRTLzdsMH0hqxUyd48i8O/2PrOO9K6dfbm4wTffGPF0bw1XDLH8vnnm3jnTumPP+zNJxK9+KIV33130dpCJCWZ1dvTpkmnnGKu27nT9FMdMcJM3I50b79tXlMl6eabrWI58qwuqRoLfU0BoDCYHB5bKlc2/b0lafVqq7c8woaiJewTbVvDvdq3NyvFJJ2yapW0Y4fNCSFq5ORIH3xgVkDdeaf1n2ZcnHT99aaw9+qrUvXq9uYZDKecIt1/v4lzcqT//tfefJzAf2v4JZfYl0e4sEW86Hbvlj780MTJyaaXbXH07CmtWmUVsTwec2Lk/PMje1CS2y2NHWtil8uc9IGlc2czJFHSKRQtAcDwrrQsV84sIED0898iznC6sKNoCXvs3299AK9ePbqa3rtcvoE8Lo9HcR9/bHNCiHgej/TZZ1LTptINN0ibN1vfu/pqc9Zv3DipTh2bEgyRe+6RqlUz8Wefma2qsSozU5o+3cSnnGK2T0c7ipZF99prVm/bf//bFC6LKyVF+u476bnnpIQEc92SJaZVgXd7daSZMsU6sXjZZdH3Glpc5cubIUySym3fLm3fbnNCAGCzffusIbLNm5uFA4h+/kVL7/txhA2/ZbDHJ59Y28r69fOdyY8ax04Rpx8bisLjkb7/3hSoevc2Peq8uneXli6VPv3UTLuNRmXKSCNHWpcfeCB2f5fmzpUOHzZxz57R95qZn5YtrRYBc+bE7r99oI4ckV5/3cQJCWawTLDExZmBPgsXWqtLDh2S+vc3q70PHQrec4XDsQN4cDymiAPH83jMLhDEHraGx6Z27axWdjNn8p40zChawh7RujXcq25d5bZrJ0lyrV0rsa0KgVqwQOrUSbr4Yunnn63rzzvPFHC++87qrxLNbr5ZOvNME8+bl7evYyzx3xoe7f0svRISpA4dTPz339Kvv9qbT6T44AOzEkSS+vQxQ3iCrXVr88HNr4ezxo83H+C8w6Kc7pdfzOusZE78RNOOj2DyK1rGsSUOMK+vjRubXQ9PPy0dPWp3RggnJofHpqQkqWNHE+/cKa1da28+MYaiJcJv40bpxx9N3Lix1KyZvfmEiMe/GDt+vH2JIKKU37hR8VdcIV1wgSnSeTVvbgp28+db/2nGgsRE6amnrMvDh8fe6gaPx0xtlkwhz3+LSrTr1MmKGWx2cjk5eQfw/N//he65ypUzBdL//c9aEbt+venr/PzzUm5u6J47GPxXWd51lzUZFHm1aSPPP/++rlmznP/vCoTaSy+ZnS8HDkj/+Y901lnSRx+x8ipWMDk8dvm//2aKeFhRtET4+fe+GjAgaj8o5PburRxv36+JE6XsbHsTgrOtW6f4fv3UadgwxX37rXV9gwamncLPP0s9ekTt70uBrrpKatPGxGvW5F2pHQt+/13atMnEHTqYPnOxgr6WgfnyS1M4lKSuXcOzCqR/f7Pq0vs76nZL991nXq+cOmFzzx5TZJDM75NfSxccIzFRnn9OlLn27DEDmYBYlZZmegb727rVtLpq315atMievBA+3qJlyZJSw4b25oLwomhpG4qWCC+PJ2/BoV8/+3IJtYoVtds7LGP3bl7ckL8tW8wW6EaNFPfpp9b1p58uvfeeKdJdc01sN/p2uaRnn7UuP/SQlJFhXz7h9vXXVhwrW8O9mjeXKlQw8Zw5rPI6mRdesOJQrrI8Vt26Zqv18OHWiZXp081OCv+TME7x9tvWoKJbbjH9c3FCngsvtC4wgACx7K23pIMHTXzZZebkjNfixaZwee21eQcmInqkpUl//mnipk2toXSIDY0bmwHCkuk1730fgZCL4U/BsMXPP0vr1pm4UydTmIli2/y3Nn74oW15wIF275aGDjX9Gt97z1eMyShfXjkvvST98Yd04428IfLq2FG65BITb9smvfqqvfmEk38/S+/fQayIj7f6Wu7bZ4r4yN/ixVbrlUaNTD/ccEpMNP3dZsyw3tT//bcZHDVsmHPe3Lvd1qAil0saNMjefCJAbteu1gVOwCJWZWZa7TdcLum550zbnu++M8UMr0mTzJbxESNMkQvRw39GAVvDY4/LZa22PHKEldVhRNES4eVfuIvGATzH2N2ypTyVK5sLU6bw5gWmB9J//yudcYY0erSUlWWur1BBOY8/rplvvqncwYNNw2fk9fTT1iqup54yf5fR7sABa1hI/frWUKJYwhbxwvFfZXnvvfa1kuja1Xyw8y+wv/SSmbzpPWlpp6lTpR07THzZZea1GAU780wdOeUUE8+fz+ARxKYPPzQDOCTTtqZBAxN37y6tWCG98YYZziOZAuczz0j16klvvkmLqGhBP0uwRdwWFC0RPm631UMqKUm6+mp78wkDT2Kicv/1L3MhI0P67DN7E4J9Dh82RbczzjAFtyNHzPWlS5tG7hs3KveBB5RTsqS9eTpZ06bWtOIDB6RRo+zNJxy+/94aPBRrW8O9KFqe3IYN0uefmzglxf7WK6ecYoZHjR4tlShhrlu+3HzIe+89ewdWjB5txUOG2JdHJHG5tMc7NDEz0zqRAsSKnJy8bWoeeCDv9xMSpNtuM1uHH3jAet3bs0e6/XbTX5jWCpFv+XIrZnJ4bKJdii0oWiJ8Zs40/3lLZnWDt09ZlGOKeIzLzDRTas84wxQnvb2QSpQwH5g3bpSefFKqWNHWNCPGY49Zq1BfecVsFY9m/lvDY7Vo2bSp5F2xPndu7E2PL4yXX7b6fd51lzNWartcJpclS8xWScmcrLn5ZqlvX+u1MJyWL7cKbo0aSV26hD+HCPV38+bWBVaXINZMmWL1MuzaVfL2rD9W+fJmheXvv0t9+ljXr1ljVmT27Cn9+mvo80VoeFdaxseb9yaIPSkp1r/9zz+b1kUIOYqWCB//ATwxsDXcy9OqlbWlc84cM3gF0S87W3r/ffNvP2SI6e0mmYE6N91kela+8opUrZq9eUaa0083hRDJrF4eOdLWdEIqJ8f0y5KkcuWk88+3Nx+7xMWZnqaSKXT595SCtH+/Wb0omZXbt99ubz7HatZMWrZMuvVW67pJk8yQpYULw5vLmDFWfNdd9m2hj0B7zz5bHu/fF0VLxBKPxxQivYYPP/l96tSRPv7Y9Blu08a6/ttvpbPPNr10vQs5EBmOHrUKzo0bm+nhiE3eLeIejzRrlr25xAiKlgiPQ4fMWUpJqlQp77S9aOdyWVtaJWnCBPtyQejl5kqTJ0tNmpji5Nat1vf+9S9p7Vrp3XelWrXsyzHSjRhhVjNI0rhx5u80Gi1ebApSklmh4d1uFovYIn5ib7xhtZu46Sbzf6zTlCljpu5OnmztstiyxQxZevLJ8Kye3bNHmjjRxOXLx9TJ02DISk42hWbJ9O/znogDot0PP5gVVZJ0zjlmpWVhtW9vhnVMnCjVrGmuy8mRxo41/S6fe845Q8pQsDVrrP+r2Boe2+hrGXYULREeU6dajdv79Im9D9/9+1vx+PH29vNCaHg8ZlXcOeeY4qT/wImePc2WEu9ESRRPpUqmcCmZIvF//mNvPqHy9ddWHKtbw738i5Zz5tiWhuN4209IZkXq3Xfbms5J9e5tVsp6Vw3n5EgPPmh6RG3fHtrnfvttqzhw881S2bKhfb4olGeK+A8/2JcIEE7HrrIMdIV2XJxpibFunTlJ433tSUuT7r9fathQ+vRTPhs4HUN44NWhg1XLmDGD390woGiJ8IixqeHHqV3b2t64bp3ZKofoMW+edMEFZlruihXW9RdcYCatTpvGWdlgGzJEqlHDxF9+GZ2DIbz9LF2u2Fqdnp9GjayprPPmMYnVa+JEadcuE195pVS3rr35FMbpp5vVso88Yj7MS6YQ3ayZOcEZCm63Wdkkmd+nwYND8zxRzsMAAsSapUutAn39+uZ1tqhKlTInWf/807TL8L7+bdokXXONec+4ZEnxc0ZoULSEV+nS1snXzZvNMESEFEVLhN5ff1n/4depI7VrZ28+drnuOitmIE90+Pln6eKLTUH6xx+t61u2lL77zgwNidU+hKFWqpQZyuN1//3RdaZzyxZp9WoTt2kjVa1qbz52c7mkTp1MnJaWd4JnrPJ4pBdesC7fe699uQQqIcH0o50zx9oyuX+/KQgMHmztzAiWqVOtlZyXXmoGoyFgnvbtrT5urC5BLBg1yorvv98MYCmulBTTLmP58rxbzX/8UTr3XLO4I9qHDEYi7/sOl8ucZENsY4t4WFG0ROh9/LE11XTAgNhtfN+7t/Vm/+OPpawse/NB0f32m/n3bNVK+v576/qzzjJbfJYtMz0IY/VYD5eBA80KPMn0jPriC3vzCSamhh+PvpZ5ff+91c/1vPOktm3tzacoLrjAbBe/+mrrutdfN4X6NWuC9zyjR1vxkCHBe9xYU7KktWtkxw4zIRmIVuvWSZ9/buLq1fMuPgiGs882xY6vv5YaNLCunzDBDHF86CEpPT24z4micbulVatMXL++GY6I2OZftGTnQchRtETo+U8N9+/tGGvKl5euuMLEe/ealXiILJs3SzfcYIbsfPaZdX2tWmYgzJo15sM3xcrwSEiQnn7aujxiRPRsG/YvWl5yiX15OAlFy7yef96K/+//7MujuCpWNAN63nzTrKCWzGtp69ZmS3dxV/MtX261j2jYMLAhGjgeq0sQK557znr9GTZMSkoK/nO4XOb/+NWrTX/iypXN9RkZ0hNPmALZu++GZ1gZTuy336yeyGwNh2Tafnl/X2fNip7PHw5F0RKhtXattZy+deu8ZxJjkf8Ucf8+n3C2nTulO+80Z74/+MBaOZySIr36qjkbf/31wdk2hMBcdplZZSaZVT/vv29vPsFw+LDVUuPUU62JvbGuQQPzOyeZXrFut7352GnFCusYqVdPuvxyW9MpNpdL+ve/zSr1pk3NdRkZ0qBB0lVXSfv2Ff2xvYOKJOmuuzipVFwULRELduywWjlVqGBen0IpMdG8z/zzT3MSKjHRXL9rl3TLLWbI46xZoc0BJ+bfkoaiJSTTk9Z7EjQtzfS/RchQtERoTZhgxcHeVhGJunWzetN9+aV04IC9+aBg+/ebSZF160qvvWYVSSpWNH2ONmww/ddCcfYdheNySc8+a11+5BHpyBH78gmGWbOsM/qXXkqRxcvlslZbHj4c2wPN/HtZ3nNP9JwwadTIDKK4807ruqlTTf+wuXMDf7y9e82wIsnsduB9SPE1bSpVq2biOXNi++QBotdLL1nH9uDBUnJyeJ63YkWziv6338wJG6+VK02B5PLLzYlyhJf/EB4Ga8KLk3hhQ9ESoZObaxUt4+OlPn3szccJEhKkfv1MnJVltsTBeQ4dMtty6tQxxUnvUIgyZUyPoY0bTUP20qXtzRNG+/ZSr14m3rlTeuUVW9Mptq+/tmL6WebFFnEzoOHjj01cubJpWRFNSpY0qyO//NLaerVjh/m3f+ihwLZgvf22dQLg5pulsmWDn2+scbkk7xTx9HRp8WJ78wGCbf9+065CMq9HdvTBrVvXtCGaO9essvT66ivTomjo0OKtQEdgKFoiPxQtw4aiJUJn/nxp61YTd+/O9Fsvpog7V0aG9PLL5s3iQw+Z5f6SWUl5zz2mWPnYY2arEJzlqafMVg1JeuaZyH0z7/FY/SyTkqQuXezNx2koWpqhMt7C3aBB0Xvy5LLLzOoi77+5x2NOJnXoYPoLn0x2thnqI5lC2+DBIUs15vBBDdHs9detATg332zv55cOHczq8/HjpRo1zHXZ2eb/gXr1zIpQBnuGVm6uackimR723pNpQK1apu+sZE7gHTpkbz5RjKIlQsd/AM+AAfbl4TQtWkiNG5v4xx/NFmPYKztbeucd8x/PPfdIe/aY6+PjpVtvNT2GXnyRwruTNWwo3XSTidPSTBEzEq1caVaVSaZgWaaMvfk4Td260mmnmfjHH61VdLEiLU166y0TJyVFfyGuRg1TFHvqKWsL/KJFps/rpEkF33fqVGn7dhNfeql0xhmhzDS2eFdaSkxNRXQ5csTarREf74whZ3FxZsHDunXSo49aJ6oOHjQDgho3Nq93xR1ahvytX28VsVlliWN162b+zM42LVMQEhQtERoZGdbW57JlranZMCs+/Fdb+hd3EV65uWabZaNGpjjp/YArSddea3oKvfWWVLOmfTmi8EaOtKYPv/pq4VZjOQ1bwwvmckmdOpn46NHYa3z+zjvWCvDrrrN6C0az+HhpxAgzAbxOHXNdaqp5jb75ZtPfND+jR1uxHds7o1mNGub/Tcn8DtKfG9HivfdML1zJvMZ4X3OcoEwZ6eGHzYn0G26w+l2vXy9deaVZle6/jRnB4f93yhAeHIudB2FB0RKhMW2a+VAhmUbS0bp9raj697febHz4IWdHw83jMcWhFi2kvn3NG0Cvyy4z20A++sha8o/IUKOGdPfdJs7KMm/uI413a7gkXXKJfXk4WaxuEXe78/ZrHTbMvlzs0LatmeDat6913XvvmQ+R/pNdJfMaPn++iRs2tCZ8Ini8q0tyc2Pr9xDRy+02Q3C8HnjAvlwKcuqp0vvvm2F0HTta18+dK7VqZQqa3h0bKD6KlihIp07WThB2HoQMRUuExocfWjHTOo932mlWr7oNG8x2N4THnDnSeeeZ4uSqVdb1nTpJCxea4Q/NmtmVHYrr/vulSpVM/L//me3WkeLvv6WffjJxkyamVw6OF6tFy08/tfpEX3KJKcbFmvLlzYC/ceOs1gl//GEKmi+/bJ0AHDPGus9dd1knCRE8rC5BtJk0SdqyxcSXXCI1bWpvPifTsqX5P3DqVNPfUjKvgR98IJ15ptlKfqKV6Cg8/5NibA/HscqXl84918Tr1plhiQg6ipYIvn37pG++MXH16nk/YMIycKAV+xd5ERpLl5qVIZ075y0St25tPnDNmiW1a2dffgiOChWk//7XxB6P2VYaKb791iq6sDX8xOrUsQq6CxeadiTRzuPJuwLo3nvty8VuLpd0/fVm9Yt31UtWlulHfMkl0q+/msKmZD5McOI0NDp2lBITTUzREpEuN9cM8fMaPty+XALhcpkWXGvXmqE83kGRR46YljkNGpghPrm5dmYZuTwea6VltWrmcy1wLE7ihRxFSwTf5Mlmi4Uk9etnLZlGXv7b5idNir2BEuGydq35u27TJu9/JI0bS1OmmJVtF17ISpxoMniwVdT69tvIWY3n38+SreEF854My8w0Exuj3dy51genli3zbgmMVWeeaU5A+Q/K+PZb6eyzrf9Pb7rJ9NVG8JUpI7Vvb+ING6RNm+zNByiOb74x7xclsxvn/PPtzSdQJUqY9jjr15sevgkJ5vodO8xJntatzf8jCMzWrdL+/SZu2ZLPCsgfRcuQo2iJ4GNqeOGULWuKaZJpYu/fyw7Ft3GjWc3atKkpTnrVqWNWtq5cKfXqxRuQaJSUJD3+uHX5/vud3zc2K8vqhVOpktnuihOLtS3ix66y5HXLKFHC/N189501lCgnx/zpckX/dHW78UEN0SISV1nmp3Jl0/t4zRrp8sut63/5xbRBuuoqU9hE4bA1HIXRpo1UrpyJZ85kZXMIULREcG3cKP34o4kbN6Y34Mn4bxEfP96+PKLJX39JgwaZLTH+Q46qV5fGjpV+/90U01kBHN369TMrriTTrP7TT+3N52QWLLCmQvfoYa2SQP5iqWj522/WSa3TT5d697Y3Hyfq3t2ciLr4Yuu6Sy+V6ta1L6dYQNES0WDBAuuzS5MmUs+e9uYTDA0aSF98If3wQ97PYlOmSI0amRXqBw7Yl1+kYAgPCiMx0XpfundvZPXTjxAULRFcEyda8YABrAY5mS5dzBRAyWxN2bvX3nwi2d690n33mQ+pY8dK2dnm+kqVpOeeM2eWb7/drMxB9IuPz7ty4j//sdpWOJH/1nD6WZ5czZpWQWrxYtO/K1q9+KIVDx1q9RFEXtWqmeLuO+9Id9whvfGG3RlFv3POkSpWNPEPP1irXIFI4v9e4YEHpLgo+njcpYv088/Su+9KKSnmOrfb/L9Sr54ZWubk90Z2o2iJwurWzYo5iRd0UfSqDNt5PHkHyvTvb18ukSI+3vp7crtNb0sEJi3NTEg84wyzTdA7lKNsWemRR0yfrXvvtfqHInZcfLF15nP9euntt+3NpyDelXTx8WbVGE7O+2/rdpuBPNFo925rFX5ysnTLLfbm43RxcdLNN0uvv26dEEToxMeboohkVm39/LO9+QCBWrXK+v+3Vi2pTx978wmF+HjT3/fPP6WHHpJKljTX799v+l82bWpOnDq9jY4dvNvDK1SQate2MxM4HTsPQoqiJYJn2TLpjz9M3KmTWQmDk/OfbMoU8cI7elR64QVTrBw5Ujp0yFyflGS2vWzaZK5PTrYzS9jJ5ZJGjbIuP/qolJ5uXz4n8scf1mvneedZK5dQsFjYIv7aa6bfqSTddhuvZ3AeVpcgkj37rBXfe290r2QvW1Z67DHzfsN/5sC6ddJll5miC9taLbt2mZZTkulnye5BFKR+fdPCR5LmzzefUxE0FC0RPAzgKZqmTaXmzU3800/mzQNOzO2W3nzTbGu5915p3z5zfUKC+VC/fr1ZcVmlir15whlat5auucbEf/+dd6utU/gP4WJreOF16mTFc+bYlUXoHDliipaSeX0bMsTefID8sLoEkWrTJunjj01cpYpZjRgLatY0iySWLMk7Jf2HH0xx7tZbTcEu1vkP4WFrOE7G5bL+P8zMNIVLBA1FSwSH2y199JGJk5Kkq6+2N59I47/a0r/4C0turjRhgtSwoelN6T376XKZLfa//WZ6mJ12mr15wnmefNIabPPcc6Z46ST+RctLLrEvj0hz6qnSmWeaeMkSZ66iLY5x48z2PUm69lpe2+BMdepY/WUXLoy+30NErxdesPqwDh0ae22EWreW5s2TJk82v8eS2SL+zjtm1diTT8b2ajEmhyNQnMQLGYqWCI6ZM6U9e0x82WWm9wcKr18/q/H3hx+aAh0s+/aZFWgDBkgbNljXX3GF2cryv/+ZlZdAfurXl/79bxOnp0uPP25vPv7+v707j7Ox/P84/j6z21Vj3yJJZCll70v4Zfv2JYq0oCiVki1SoVKpkFJKKlS0CS3fpBhbRWSpr6W0EJVByM6Y5f79cXXOfcYs5sycM/dZXs/Hw6PrPue+7/OZ5p773Pfnvq7PdeSItGKFaVevbpLyyDv3EPG0NHv213CQni5NnmwvDxvmXCzA2bhv1FJTTRIECHb79pnJaSQzbHrgQGfjcYrLJV13nXnwP2GCXYLk2DHp4Yelpk1Nj9RIxCQ88FXbtnYZAZKWfkXSEv7B0PCCKV/ergu1cyddyr2tWWMuFj77zH6tbVszY/CHH5rh9cDZjB4tFStm2tOmZU5+O+mLL+yZ7v/9b2om+Spc61p+/LEpdSGZ8527hAgQjOhdglAzZYo9ceOAAdSSjo83JZd++UW6+24zeY9kJiq6/HIzdDzSuJOWRYvaozqA3CQm2r1yv//eTKYIvyBpiYI7elRasMC0zz1X6tjR2XhCVe/edpsJecwQlRdflK68Utq1y7xWpowZSrtkidSkibPxIbSUL2/3VktLMz0IgsF//2u3qWfpO++6luGUtJw40W4PH+5cHEBetGljjxb54gtnYwHO5sgRu15wbKw0ZIiz8QSTMmXM/5uNG80oFcmUKWnfXnruuciZYfzvv+0epg0b2klc4Gy8H+JFYrI/QEhaouAWLLBrnvTsKcXFORtPqOrSRSpRwrTnzo3sOjJHj0q9ekn33muGm0lmVuWNG6VOnZyNDaFr+HBzQS6Z4vvr1zsbT0aGtHChaRcrJrVq5Ww8oahcOalOHdNev97cjIa61atNbUBJqlvX3CwCwax0aVMfT5K2bpX+/NPRcIBcTZ8uHTpk2r17S5UqORpOUKpXz9SKdl9zp6eb5G6fPpFxf/Ldd3abepbwhXvkpMTIAz8iaYmCY2i4fxQtaurKSObG++OPnY3HKZs3m5uf996zXxs2zPSi4sISBVGihDRmjL08cqSzvQa+/dauBfx//2eGZ8F37iHi6enhUVpj0iS7PWwYJQMQGrx7lyxZ4lwcQG5SUqRnnzVtl0u6/35n4wlmpUube5GHHrJfe+stMwLq998dC6tQUM8S+dWihVSkiGkvXhw5vZMDjKQlCmb3brvrc/XqUrNmzsYT6rxnEX/zTeficMpbb0mNG0vbtpnlkiWlefPMUMnYWGdjQ3i44w6pRg3TTkpy9ikoQ8P9I5zqWv76q11upXx5M0kbEAroXYJQ8NZbUnKyaXfrJl10kbPxBLvoaOnxx80IMHdd8PXrpUaNwnvSLZKWyK/4eOlf/zLtP/80k1yhwEhaomDefdee6frmm+kRUlCtWklVqpj2559HTgHfU6dMIfTeve1hJw0bmgujbt0cDQ1hJi5OeuIJe3nkSPscVtg+/dRuU/Yg/7yH1Yd60vK55+zj8d576X2L0NG0qZmFWTI9LeldgmCTni4984y9PHKkc7GEmuuuM6VLqlc3y3/9ZSaJe+ml8Pxb37jR/Dc21i5BA+QVk9P5HUlLFAxDw/0rKsr+/5ieLr3zjrPxFIbt26XmzU2NIbf+/U1Nt5o1nYsL4atHD9NLQDJ1i959t/Bj+PNP+6K4USOpQoXCjyFcJCaa+luS+X/699/OxpNfBw9KM2aYdtGi0p13OhsP4IvYWHtirL17pU2bHA0HyGLBAunnn027bVu7Divypl49ad06OyGTliYNHGhGsKSkOBubPx0/Lv34o2nXq8dcDfAdSUu/I2mJ/Nuyxb7pbtxYqlXL2XjChfcQ8XCfRfyjj8ywC/dxVKSINGuW9Oqrdj0QwN+ioqSnn7aXH3qo8C+4vXtZMjS84NxDxC0rdOtaTpsmnThh2v36Seee62w8gK+4UUOwsizpqafs5QcecC6WUHbuuWYCweHD7ddee808sNi927Gw/Or77+3eowwNR37Uq2cmipSk5cul06cdDScckLRE/tHLMjAuvli6/HLT3rDBJIfDTVqaNGKE1LWrdPiwee3CC6U1a8zMhECgtW1r12D77TeTMCpM3vUsO3cu3M8OR6Fe1zIlRZoyxbSjoqTBgx0NB8gXkpYIVklJpuSQZEY3tG3rbDyhLCZGmjBBmjNHSkgwr33zjbl3+eYbZ2PzB3dHComZw5E/LpfUrp1pHz8eHn8XDiNpifzJyDBfVpIp0tyzp7PxhJveve12uPW23L1batPGXPC4XX+9GXLiHuIJFAbvXhfjxtkJ9EA7edKewKxcOXuoOvKvVSu7pnIoJi3nzLFrGHfrZk8WBYSS2rWlSpVMe8UKU68aCAZn9rKkBn/B3Xij9PXXUtWqZjk52XwXv/66s3EVFJPwwB94iOdXJC2RP19+Kf3+u2m3by+VLetsPOHmhhvMk0zJ9GhNT3c2Hn9ZutQ8tXQP34yNlZ5/XnrvPTNTOFCYLr3Unp35wAEzS31hWL7cHgbcubPpWYeCOeccM3mXZIZ2HTjgaDg+sSxp0iR7edgw52IBCsLlsm/UTp0yCQ1klp4uDRokVatmZmRG4H37rf2g8MILpWuvdTaecHLZZabTgbue7enTpi79wIGhOyTWnbSMipLq13c2FoQukpZ+xZ0S8oeh4YFVpozUsaNp//mnSXKEsowM6cknzQl83z7zWpUq0sqV5uKdJ95wyuOPm+S5JD37rOkpEGjeQ8OpZ+k/3kPEV6xwLg5fLVokbd1q2i1amFmYgVDFjVrOMjLMpCUvvCDt2mVG1YRjCaBg413DesQIM0IM/lOmjPTFF+Z63u2ll8zwWPc1f6hISbH/JmvXNpPiAflRsaJUt65pf/tt6E4SGSRIWsJ3p07ZT4eLF5e6dHE2nnDlPSHPm286F0dBHTggXXONmewkI8O81r69eZLJzTmcVr26dPfdpn3ihPToo4H9PMuyJ+GJjbVr3qDgQrWupXcvS+/JDYBQ5H1OI2lpsyxTq3bGDPu1U6dMeaWTJx0LK+xt2ybNn2/aFSpkvraG/7hHTs2cKcXHm9e+/NKUv3HXEg0FW7ZIqammzdBwFJT7IV5GhhltiHwjaQnf/fe/du237t15ChUo11wjlSpl2vPmmUK+oWbtWvOlv3ChWXa5pMceM8uJic7GBrg99JBUooRpv/aauckJlC1bpJ07Tbt1a/tzUXBXXmkPtQ+VpOXGjfawxZo1zXkfCGVly9qlGjZulPbvdzScoPHQQ6aHpWTOU+46gFu2SEOHOhdXuJswwZ4JeuhQO6GGwOjb14yicte2/eMPqWXL0KnPTz1L+BMjD/yGpCV8x9DwwpGQIPXoYdrHj0sLFjgbjy8sS3rxRXOhsmuXeS0x0QwfGT2aGn4ILmXKmCFjkqk39tBDgfsshoYHTqlS9qRGW7aExrA0716WQ4cybBHhwX2jZll2Uj6SPfGENH68vTxjhikL4X7oP22aeTgN//rzT3ukUunSZmg+Aq9xY1Pnsnlzs3zqlCmFMHSolJbmbGxnw8zh8KdWrewSVCQtC4TMAXxz4IDda65ChczD8eB/oTiL+NGjZnKTe++1h1g0b24uBBgKi2A1ZIhUvrxpz5snffNNYD7HO2nZuXNgPiOSeX8nBXst4N9/N5OQSdJ550l9+jgbD+Av9C6xPfec9PDD9vJLL5m/9YsvlqZMsV/v39/uhQ//mDzZvg4dOJAJHwtT+fJmxMOAAfZrkyeb8lDB3Pvau6elu8c4kF/FitnJ++3bzT/kC0lL+GbuXPsC4MYb6RUSaC1amJp7krRkibR7t7PxnM2WLdIVV0jvvmu/NmyYSR5UruxYWMBZFSsmPfKIvTxihD2kzF8OHJBWrzbt2rWlCy7w7/5hz2AqBX/ScsoUu9fJ3XdTagXho2VLexju4sX+P5eGiunTzQMxtwkTpLvuspdvu83UtJSkQ4fMdXWw90QLFQcPSq+8YtoJCZkniUHhiIszvYinTbN7my1dau4Tvv/e2diyk55ux3XBBaZ3LlBQPMTzC5KW8A1DwwuXy2UXDc/IkN5+29l4cvPWW2ZIiLseYMmSpsfaxIn2xQoQzG67TapVy7S//NLuVe4vixbZk1ExNDwwWra0H6YFc13LI0dMQkMyyZ2BA52NB/CnIkVMjVnJlIj56Sdn43HC7NnSnXfay488knWiLZfLJNbcD6dXrcr88Az599JL0rFjpt2vn6m1CmcMGGC+j8uVM8u//SY1a2aPNAgW27bZk2IxNBz+QtLSL0haIu+2b5e+/tq0L7lEatDA2XgiRbDPIn7qlLkw793bzL4smWNj/XqpWzdnYwN8ERsrPfmkvfzAA+bJu79QzzLwSpQwvTgk6ccfpeRkZ+PJyWuvmcSlZM7x7ps5IFxE8o3a/PlmQhJ3D9Phw6UxY7Jft1Qp6Z13pJgYs/zkk8wyW1AnTpiZrCXzEGvYMGfjgRk5tm6d/f188qR0ww3+v84qCCbhQSA0aiSdc45pL10aPMd7iCFpibybM8du33yzeUKMwKtZ0zyRlKRNm4JrSMX27eZCxD0ERzJPtFevNnEDoaZbN6lJE9PevNl/tWTT0kxPS8ncpLpr3MD/gr2uZWqqqXPnxszBCEeRmrT87DOTjHHfmN51l/TMM7lfMzdpIj3+uGlblrnG/uuvwMcarmbMsOsm3nCD3ZMVzqpc2cws7l2/+emnTX3vv/92Li43kpYIhOhoqW1b0/77b9OpBz4jaYm8sazMQ8NvvNG5WCKR94Q8wdLb8uOPzZe6+0u+SBFp5kzTg6hIEWdjA/LL5TIX0W6jR9vDhQpi1SpTs0ySOnSgZEIgeSctg3GI+AcfmEl4JNPj9uKLnY0HCIQGDaQyZUx72TK7Hno4W77cPPhy/6x9+kgvvpi3h/z3328nepOTpVtvjdxaoAWRmmrKErmNHOlcLMgqIcHcK0yZYpdy+fxz0wNzyxZnY2PmcASK90O8L75wLo4QRtISebNunV2TqHVrqUoVR8OJOD16mILWkqlr6WSh9rQ0cxHYpYt0+LB57cILpTVrzHAoINS1amXP7P3HH9LUqQXfJ0PDC0+LFnZSONiSlpaV+YaaYYsIV1FRUrt2pn30qLR2rbPxBNrq1ebcfuqUWb7+evMQNyqPt1pRUeahtLv24qef2kOckXfvvWfPwt65s1SvnrPxICuXS7r3XjPBaGKiee3XXxVz5ZWq8M03zsSUkWF3wqhUiRqo8K9IHXngRyQtkTdMwOOsc8+1Ex179pgveickJ0tt2pihTm7XXWeS2lwYIpyMH2/3jnnyyYIPXXInLV0u09MSgVO0qD3E/5dfTOI5WCxfbt8YNWpkEuRAuIqUG7WNG6WOHaXjx83yv/9trpvddSrzqnz5zKNpRozIPGQVucvIkJ56yl5+4AHnYsHZtW5t7h/+6dXoOnZMjZ96SlGPPmpPWlhYduyw60wzNBz+Vr26mZFeMg+43JOEIc9IWuLsUlNNkXDJzHLavbuz8UQqpyfkWbbMXFh8+aVZjokxvQDef9/MFA6Ek3r17LIMf/+d+UbIV9u3Sz/8YNrNmtk9CxA4wTpEfNIkuz18OLWhEd4iIWm5dat09dX2yJO2baW5c+3RMb5q396eZTw11dRkPHrUP7GGu4UL7SHGLVpILVs6Gw/Orlo16auvpF69PC9FP/GE1LWrnUQsDNSzRKC5vw9TU6UVK5yNJQSRtMTZLVliFwT/z3+k0qUdDSdidepkelxK0ocfFt6XeUaG6WnWrp20d695zV1Me9AgbroRvh57zDyokUyC3l2H0Feffmq3GRpeOIIxabl1q30sVK1qeqkD4axyZal2bdNes8ZO7IWLX34x10buSV9atJA++sjU7SuIJ56wZ1n++WfpnnsKtr9IQS/L0FS0qDRnjtKfflqWu5zCJ5+YERPbthVODNSzRKBFwkO8ACJpibPznj2XoeHOiYszT9wlMzHIvHmB/8yDB6VrrpEeesgeqnH11ebL3T2jORCuqlY1dZckKSVFeuSR/O3Hu56lu1YmAqtpU7unU7AkLZ991m4PHuz70FEgFLlv1NLTg+dv0R927TK9KpOTzXKjRuahRLFiBd93XJwZ4VSihFl+883MZZqQ1VdfSV9/bdqXXGIe9CN0uFzKGDJEq0ePlnXOOea1H3+UGjfO/OA3UOhpiUBr08aucUzS0mckLZG7o0dNrz7J9PKjFpuzvGcR904mB8K335ov7oULzbLLJT36qFlmeCsixahRUqlSpj1rlu+zWx47ZuoYSmYCM2q/Fo4iRewHK7/9Zv45ac8e+5xdqpTUv7+z8QCFJRx7lyQnm4Tlrl1m+ZJLzAzI7u8Kf7jgAmnaNHv5rrtMr0tkz7uX5ciReZ8ACUHlr0svVdqqVeZvSjKjyq65xvQ+tqzAfKhl2UnLxETTQxzwt9KlTRJeMiNv/vzT0XBCDWd05G7BAtOrT5J69sx/jR74R+PGZqZuyfRYcF8w+5NlmdmSW7SwZ2BMTDQX5GPGSNHR/v9MIFide65JXEqmt7G7nVdLlkinT5v2v/9NOYXC5D1E3J04dsrUqfZxcMcddg8qINy1bm33Kg6HpOX+/SYR+8svZvnCC83Pdd55/v+sG2+U+vY17WPHTN0/93kEtv/9z+6NV62auV9B6LrgAjNZiXsOBcuSHn5Yuv76wExgsnu3XQbt0ku5TkPgeD/Ec2pS3RBF0hK5Y9bw4OJyZe5tOWeOf/d/9Ki5SL7nHlMoWJKaNzfDwb1PtEAkGTRIqlTJtD/5xJ6MKi+8h4ZTz7JwBUtdyxMnpJdeMu2YGHM8AZGiRAm71/PPP9sPQ0PR4cNmohx3j/tq1aSkJDPrd6C88IJ00UWmvX697w/OIsEzz9jt4cOl2FjnYoF/FC9uJrR64gk7iThvnjmX/Pqrfz+LoeEoLN730l984VwcIYikJXK2e7e5GJOkGjWoYRgsvJPHb77pv+ESW7aYnpzvvmu/NnSo6aHEUAlEsiJFzKQ8biNH5u3vLiPD7v1RpEjmJBoCr0kTe0KMZcsCN7TsbGbNMvWBJVOXmPMpIk04DBE/dszUSXQnOCpUMNfIVaoE9nOLFzfXZe6RTs8+K332WWA/M5Ts2GFftyYmSrfd5mw88B+XS3rwQfOwuGRJ89rmzWaSKn+eR0haorA0bWrO6ZLpaemeLwJnRdISOXv3XfuP6eab6S4fLM4/X/rXv0z7xx/Nk/eCmj3bJCx//NEslyxpnmhOmsQTa0AyPZzr1DHt1avNDLFns3GjqWUomfpnRYoELj5kFR9vylxIZub37dsLP4b09MwT8AwbVvgxAE4L9aTlyZNSly7SqlVmOTHR3HBecEHhfH7DhtKECfZynz72BECRbtIkc56VpPvuMzNRI7x07iytXSvVrm2W//7bzLEwcaJ/HkYyczgKS2ysKZkiSfv2SZs2ORpOKCFpiZx5T/Ry003OxYGsbrnFbr/5Zv73c+qUdOedZn8nTpjXGjQwidBu3QoWIxBOYmKk8ePt5VGjpLS03LdhaLjznB4i/vHH9lC2du1M8gGINJdfbk9Sk5QUWr1LTp82tfSWLjXLpUubxKv7IVZhufdeMyGJZOrv3XJLaP1/DIR9+6TXXzft4sWlgQOdjQeBc9FF0po10n/+Y5YzMqT77zedatz3L/nl7mlZokThPYhA5Ar1h3gOIWmJ7G3eLH33nWk3bizVquVoODjD9debXkSS9M47dv1JX+zYYXohvfKK/Vq/fqYXWc2a/okTCCfXXCO1bGnaP/4ozZyZ+/reSctOnQIXF3LmdNJy4kS7TS9LRKqYGKlNG9M+cCBzz6ZglpZmHtq7y3wUL26GZjvx8MHlMt857vrKSUnS008XfhzBZMoU8/BdkgYMkM45x9l4EFglS5oJYseOtV97+21zXZbfWrn795uRGJLpZcms8wg0kpb5wl8msuc9wQsT8ASfUqXMUCXJfOEuWuTb9h9/bOq2uJ8uJiSYi+HXXmMIK5ATlyvzTeLYsTk/4d+zR1q3zrQbNAh83TNk74orpGLFTLuw61quXm0PJ73kEjOBBxCpQm0CgowM8yD3gw/MckKCeRDVtKlzMZ13nrk+dydWRo+2zzGR5sgRaepU046NlYYMcTYeFI6oKOmRR0zy0l0bcONG05t7+XLf98fQcBS22rXth08rV9oPXpArkpbIKiPDTlpGR0s9ezobD7LnPYu491D+3KSlmUlEunSRDh0yr114oRly0bevvyMEwk/z5lLXrqadnCw9/3z26y1caLcZGu6c2Fi7d2xysvTTT4X32ZMm2e1hw6gLjcgWSr1LLMsMNXaX34mNNUmSVq2cjUsyMTz8sGmnp0s33mhfz0WS6dPtn7t3bzsJgMjQtav0zTf2yLD9+00Jlhde8O3hJJPwoLC5XNLVV5v2qVPS1187G0+IIGmJrL780u4q3769VLass/Ege1dfLZUpY9off3z2i9bkZDMZyDPP2K9dd53pDVa/fsDCBMLOk0/aPV2eespcLJ+JepbBw130XCq8IeK//irNn2/a5ctLvXoVzucCweqCC8xEgpK5SStoHbpAsSxTK2/aNLMcHS29956Z+CNYjB4tXXmlae/cKd1+e+H2IndaSoo9wZnLZX5fiDx165oJetx/m+np0qBBZgb5vPZeI2kJJ4TSQ7wgQdISWXn32vOe8AXBJTbWPGGXzAXc3Lk5r7tsmRn2sHKlWY6JkZ57Tnr/fVMjBkDeXXyxGTYomSFqTz6Z+f2UFPsiJDHRDFGGc7zrWuZn+Fh+PPecnUQYNMiuQQxEKu/eJadP29cjwebRR+1e0i6X6W157bXOxnSmmBgzIspdw/GDD6RXX3U2psL01lv27OnXXmsmaUFkOucc85D4gQfs12bNkv71L+mPP86+vXt4eEKCPTs5EGht29rtUCiXEgRIWiKzU6fs5Ffx4vYsbQhOZ5tFPCPDzHjcrp20d695rXJlc7Nw330MVwTya+xYu/7r1KnSb7/Z761cKR07ZtqdOpmeOnBOo0ZmVlDJJC0D3SPpwAFpxgzTLlrUTBABIPh7l0yYYJKWbtOn2w+Hg02VKvZ5RjLXdFu2OBdPYUlPzzxiaORI52JBcIiONvc6771nvnMl6dtvTZ3L3IbeHjki/fyzadevbx4GAIWhbFl7QreNG6W//nI0nFBA0hKZ/fe/5iQuSd272yd/BKfLLpPq1DHtr76Stm+33zt40Mx2/OCDJnkpmV4OGzdKzZoVfqxAOKlUSRo82LRPn5bGjLHfY2h4cImJsYdS7t0r/fBDYD9v2jR76Gu/ftK55wb284BQ0aaN/bA02JKWL70kjRhhLz/3nNS/v2Ph5EnXrtLdd5v2qVOmBv3Jk46GFHALFtiJpjZtpMaNnY0HwaNHDzMxlbsMxd69ZqTFK69kv/5339lthoajsHk/xEtKci6OEEHSEpnNnm23mTU8+LlcmXtbun9/335rvoDdk4G4XKb3wMKFZrgqgIIbMcJOSM2eLX3/venF505axsTYwyHhLO8h4oGsa5mSYiYCkEzdU3diG4A5X15+uWlv2mQP8XXarFlm4h23J54wPRdDwcSJUr16pr1lizR0qLPxBJJlmTrSbt5DggFJatDA3AO1aWOWU1OlO+80Ix5On868LjOHw0nBPvIgyJC0hO3AATvJVaFC5ps8BK+bbrJ7Lrz1lukt0LKlKc4umSTl55+bnmAMUwX8p3RpexZXyzI3UNu22T2er7xSKlXKsfDgpbCSlnPm2KU4unWTatQI3GcBocj7Rm3JEuficHvvPbtGsSSNGmVGqISKIkXMz+AuVzJtmjRvnrMxBUpSkrR+vWlfdpkpfQScyX3fM2SI/dr06eY6wPtBCZPwwEktW9r1zhcvjqzJ1PKBpCVsc+eaJ1KSqeFDgis0VKli35D/8ovpLeB+mti8uXmS6H2TAMB/7r5bqlbNtBctyjyLKUPDg0fDhibJLJm6lu6SGf5kWfYEHpI0fLj/PwMIdcHUu+STT8yoIvf5YNAg08sy1Fx8sTRlir3cv7/94DqcnNnLkrrsyElMjJlh/s037cTQqlWmp/fatWbZnbSMiZEuucSZOBG5ihSxSxf9/rv000/OxhPkSFrCxqzhoat376yvDR1qbs4rVy70cICIER8vjRtnL3vXs+zcufDjQfaio81sopIZVbB5s/8/Y9EiaetW027ZUmrSxP+fAYS6Zs3seulLljjXu2TJEum666S0NLPcv7+pYxmqibB+/UxNP0k6dMiMwnH/bOHg22/tum81a5qe7MDZ3HKLqfnvvhfavdskil5+2a5vXaeOmT0cKGzeJaScfogX5Ehawti+3TyBkszTpvr1nY0HvunWzR6GWrKkGRo0aZIUG+tsXEAkuPHGrOfMmjWlWrWciQfZC/QQ8YkT7fawYf7fPxAO4uOlVq1MOznZmRmvv/pK6tLFHpVy441mWHWoJiwlE/v06fYkJF9/nXkm9FD39NN2e8QIRoMh7y6/XFq3zu7Vdvq0GSWTnm6WGRoOpwTTyIMgR9ISxpw5dvvmm0P7wi0SlShhevmMGWOGg/MEGig80dGZb6gkMzSc82hwad3abvs7ablxo7R0qWlfeKF0zTX+3T8QTpzsXbJundSpk3TihFnu2tVMxBMOSbBSpaR33rF/lieeCGwN38KybZs0f75pV6iQ/egiIDflypne1d4TbrmRtIRT6teXypQx7WXL7DJ9yIKkJczQHO9Zw2+80blYkH9Nm5qn6kz8ABS+9u0z9+SjnmXwqV/fnu195Ur/1rX0rmU5ZEh4JECAQHGqd8mmTeZcffSoWW7fXnr33fAaldK0qfT446ZtWaYjwv79zsZUUBMm2GUEhgyxaxQCvoiLk158UXr1VdN2u/xy52JCZIuKsicUO3pUWrPG2XiCGElLSCkp5klzpUqmJ0qVKk5HBAChxeWSZsyQOnQwE7C0aeN0RDhTVJQ9LPXvv6Xvv/fPfn//3SQ+JOm886Q+ffyzXyBc1akjVaxo2itWmOvQQPvpJ3NzePCgWf7Xv0zvvXBMgI0YYd8I794t3Xpr6M5M++efZjIVyfQkHTDA2XgQ+vr3N+edtm2l++4ziX7AKQwRzxOSljDFh59+2sw06L7xAgD45vzzpc8+M71CGBoenAJR13LKFLs21sCB9iQjALLnctlJtRMnpNWrA/t5v/1mEhT79pnlJk3MpGnh+rcaFWUSfe5hh//9b+bZxUPJ5Mn2kMmBA03ddqCgmjY1w8VDefIthAeSlnkS0knLqVOn6vzzz1dCQoKaNGmitWvX5rjurFmz5HK5Mv1LYKawzKKjTc0PAADCkb+TlocPS6+8Ytrx8dnXywKQlfeN2hdfBO5z/vzTJCz/+MMsN2hgHi6VKBG4zwwGFSrYPRQl0/ty40bn4smPgwft82tCgjRokLPxAIC/Va4s1a5t2mvXmutKZBGyScv33ntPQ4cO1dixY7VhwwY1aNBA7du31z73U9RslCxZUsnJyZ5/O3fuLMSIAQCAo+rWtXsfrVwppaUVbH+vvWbXx+vdWypbtmD7AyKFu6elFLjeJfv2mc/Zvt0s165tEqTnnBOYzws2HTpIw4aZ9unTUs+e0rFjzsbki5desuO97TY6VgAIT+6HeOnp4TF5WgCEbNLy2Wef1e23365bb71VderU0bRp01S0aFHNmDEjx21cLpfKly/v+VeOLz8AACKHy2XPIn7kSMF6HqWmSs8/by8PHVqg0ICIUr68VK+eaa9fLx044N/9HzxoZin/8UezXKOGGQ4aaQ8WnnzSnmjk55+le+5xNp68OnHCPr9GR5ta0QAQjq6+2m4zRDxbMU4HkB+nT5/W+vXrNWrUKM9rUVFRateunVbnUhfn2LFjqlatmjIyMnTZZZfpySefVN26dbNdNyUlRSlehcGPHDkiSUpNTVUq09EjD9zHCccL8opjBr7imPFd1L/+pei5cyVJ6UuWKKNhw3ztx/XOO4r5/XdJUkanTkq/4AK79loQ45iBrwJ1zES1bavoTZsky1LaF1/Iuu46/+z46FFFd+igqH8m27IqV1baokUmYRlpx73LJb35pmIaN5br2DHpjTeU1rq1rJtuCujHFvSYiXr1VUX/M+t5xvXXK71y5cj73UUYvpvgq7A5Zpo3V0xMjFxpabK++EJpof7z5JEvv7eQTFru379f6enpWXpKlitXTj+6n6ie4aKLLtKMGTNUv359HT58WBMnTlTz5s21ZcsWVa5cOcv648eP16OPPprl9WXLlqlouBbuRkAs5okJfMQxA19xzORdcZdLbf9p7//gA31Tp47vO7EstXr0UZX+Z3FV8+Y6sHChnyIsHBwz8JW/j5kypUqp+T/tP2bO1Pd+uL6OTklR08ceU+KWLZKkU6VL66tRo3R861Zp69YC7z9UVb79djWaPNks3HWXVpw8qePuGdwDKD/HjCstTe2eeELuo2FF06Y6EmLnV+Qf303wVTgcMy1q1VLi1q1y/fKLls2cqZMRMCL4xIkTeV7XZVmWFcBYAmL37t2qVKmSVq1apWbNmnleHzFihFasWKE1a9acdR+pqam6+OKL1atXL40bNy7L+9n1tKxSpYqSk5N13nnn+ecHQVhLTU3V4sWL9X//93+KjY11OhyEAI4Z+IpjJh8sSzHVqsm1Z4+sYsWUtm+f5OP/O9fy5Yr5ZzhPRqNGSl+1KmRmIOWYga8CdsycOKGYsmXlOn1a1vnnK23btoL9HaWkKLp7d0X9M7GPde65Slu82B6GHuGi+/VT1FtvSZIyLrtM6StXSnFxAfmsghwzrjlzFHPrrZKkjI4dlf7RR4EIEUGG7yb4KpyOmagnnlD0Px3m0l5+WVa/fg5HFHhHjhxRYmKiDh8+rJIlS+a6bkj2tExMTFR0dLT27t2b6fW9e/eqfPnyedpHbGysLr30Uv3yyy/Zvh8fH6/4+Phstwv1PwoULo4Z+IpjBr7imPFR69bSu+/Kdfy4Yr//XvJ6AJonzz3naUYNH66oAN34BxLHDHzl92OmVCmpZUtp6VK5fvtNsbt2STVr5m9fqanSLbfYM5GXKCHX558r9rLL/BdvqHvpJWnNGumnnxS1YYOixoyRJk0K6Ef6fMxkZEgTJ3oWo0aNUhTnqYjCdxN8FRbHTIcO0j9Jy5ilS6U773Q4oMDz5XcWkhPxxMXFqVGjRkpKSvK8lpGRoaSkpEw9L3OTnp6uTZs2qUKFCoEKEwAABKOrrrLby5f7tu3WrZJ7qGLVqpK/6vABkcg9a6qU/wkI0tOlPn2kDz80y0WLmr9R9wQ0MIoXl957z+5d+eyz0mefORvTmRYulP4Z2q/mzU1SGwDC3eWXmwd5kpSUZL7X4BGSSUtJGjp0qF599VW98cYb+uGHH3TXXXfp+PHjuvWf4QS9e/fONFHPY489pi+++ELbt2/Xhg0bdPPNN2vnzp3q37+/Uz8CAABwgnfSctky37Z99lm7PXiwFBOSg1aA4OCdtHT3kvRFRoY0YID0zjtmOT5e+ugjkl05adhQmjDBXu7TR0pOdiycLJ56ym4/8EDIlN0AgAKJiZHatDHtgweljRudjSfIhGzSsmfPnpo4caLGjBmjhg0b6rvvvtOiRYs8k/Ps2rVLyV5fwn///bduv/12XXzxxerUqZOOHDmiVatWqU5+CvADAIDQVbOmVKmSaX/9tXT6dN6227NH+qcmnEqVknjwCRTMpZdK7lrxS5dKaWl539aypCFDpNdfN8sxMdLcuVK7dv6PM5zce690zTWm/ddfZlh9RoazMUnSV1+Z87Ek1a0rde7sbDwAUJj8MfIgTIVs0lKS7rnnHu3cuVMpKSlas2aNmjRp4nlv+fLlmjVrlmd58uTJnnX37NmjTz/9VJdeeqkDUQMAAEe5XHZvyxMnpLVr87bd1Kl2gnPAAKlEicDEB0SKqCipbVvTPnJE+vbbvG/70EPSlCn2fubMsZNxyJnLJc2YIblnD09Kkp5+2tmYpMy9LEeONL9TAIgU/0zwKImk5Rn4NgAAAJHH1yHix4+biSwk06Pr3nsDExcQafLTu+TJJ6Xx4+3l11+XevTwb1zhLDHRJHndw69Hj5ZWr3Yunv/9T/r0U9OuWlW64QbnYgEAJ1xwgVS9uml/9ZW57oQkkpYAACAS+Zq0fOMNU2dIknr1kipXDkxcQKTxNWn53HOml6Xb1KlS377+jir8tW4tPfywaaenm/PaoUPOxPLMM3Z7+HAp1GcCBoD8cH8fpqZKK1c6G0sQIWkJAAAiT/XqUrVqpr1qlXTqVM7rpqdnnoBn2LDAxgZEkmrVpFq1TPubb6SjR3Ne99VXTR1Lt2eeke6+O7DxhbMxY+xJi3bulO64w9QKLUw7dkjvvmvaiYlSv36F+/kAECyoa5ktkpYAACAyuXtbpqSYZElOPvpI+vVX027XTmrQIPCxAZHEfaOWliYtX579OnPmmFqybmPHSvffH/DQwlpMjPn/es45ZnnuXOm11wo3hkmTzIMhSRo0SCpatHA/HwCCRZs2dtkOkpYeJC0BAEBkat3abuc2RHzSJLs9fHjAwgEi1tl6lyxYIPXpY/cCHDbMJC1RcFWr2jOwS9J990lbtxbOZ+/bZ392sWLSwIGF87kAEIzOPVe6/HLT3rxZSk52Np4gQdISAABEprzUtVy1yvyTpEsuyTy7IwD/aN1aio427S++yPzeokVSz552b7w775QmTLB7o6Dgrr1Wuusu0z550vz/Pnky8J87ZYpdmmPAAHPDDgCRzPsh3pIlzsURREhaAgCAyFS1qlSjhmmvWSOdOJF1He9elsOGkSgBAqFUKalJE9Petk36/XfTXr7cJNRSU81y795m4h3+Dv1v0iSpXj3T3rw58LV7jxwxv0vJTLzjXasUACIVdS2zIGkJAAAil7u35enT0urVmd/79VczLFWSKlQws+sCCIwzb9S++Ub697/tnnjXX2+GEkdx+xIQRYqYCXGKFDHLL78szZ8fuM+bPt2erfyWW6TKlQP3WQAQKpo1M+UyJPNdWNiTowUhvvUBAEDkym2I+OTJ9sXivfdK8fGFFxcQabyTltOnSx07SsePm+XOnaXZs83EMQicOnWk55+3l/v1k3bt8v/npKRIzz5r2i4XEyoBgFt8vNSqlWnv2WN6vkc4kpYAACBy5ZS0PHBAmjnTtIsVyzxrMQD/a9xYKlnStNessXvhtWkjffCBFBfnWGgRpX9/06tVMr+DG280s7r701tv2RNMXHutVLu2f/cPAKGMIeKZkLQEAACRq2JFqVYt0167Vjp2zLSnTbNrXPbrxwQRQKDFxmZ+iCBJzZtLH30kJSQ4E1MkcrlMT9dq1czy119Ljz3mv/2np0vPPGMvjxzpv30DQDho396MNnj2WalLF6ejcRxJSwAAENnciZK0NHODfuqU9MIL5rWoKGnwYMdCAyJKhw52+7LLpIULpeLFnYsnUpUuLb3zjj2j++OPZy2fkV8LFkg//2zabdqYHrYAANvFF5vvvyFDpAsucDoax5G0BAAAke3MIeJvvy3t3WuWu3eXqld3Ji4g0tx6q9S3r5mY5fPPzazicEazZtK4caZtWdLNN0v79xdsn5YlPfWUvfzAAwXbHwAg7FHNGgAARLbWre320qXSxx/by8OGFXo4QMSKj7drycJ5I0dKSUnm3+7dJqn88cdmCHl+JCVJ69eb9mWXSe3a+S9WAEBYoqclAACIbOXKmaE4kvTtt9IPP5h2y5ZSkybOxQUAToqKMpPmlCljlv/7X2nKlPzv78xelvlNfgIAIgZJSwAAgDMnAJGk4cMLPw4ACCYVKkhvvGEvjxghbdzo+36+/db0tJSkmjWlbt38Ex8AIKyRtAQAADgzaXnhhdI11zgTCwAEk44dpaFDTfv0aalnT+nYMd/28fTTdnvECHuSHwAAckHSEgAAwLuupWRu0KO4TAIASdL48VKjRqb988/SPffkfdtt26T58027QgWpd2//xwcACEtcjQMAACQmSo0bm3aZMtxUA4C3uDjp3Xel4sXN8htvSHPm5G3bCRPMzOGSNGSImXAJAIA8IGkJAAAgmZvwYcOkhQulokWdjgYAgkvNmtK0afbynXdKv/yS+zZ//im9+aZplyolDRgQuPgAAGGHpCUAAIAk1a4tTZwoXX6505EAQHC66SapTx/TPnZM6tXL1LnMyeTJUmqqaQ8cKJUsGfgYAQBhg6QlAAAAACBvXnxRqlXLtNetkx58MPv1Dh6UXnnFtBMSpEGDCic+AEDYIGkJAAAAAMib4sVNfcu4OLM8aZL02WdZVouaNs2eZfy226Ry5QoxSABAOCBpCQAAAADIu0svlZ55xl7u00dKTvYsRqekKOrFF/9ZiJaGDy/kAAEA4YCkJQAAAADAN4MGSf/+t2n/9ZfUu7eUkSFJqrpkiVz795v3evaUqld3KEgAQCgjaQkAAAAA8I3LJc2cKVWsaJaXLDG9L1NTVfPDD+31Ro50JDwAQOiLcToAAAAAAEAISkyUZs+W2raVLEt6+GFF/fGHiv71l3m/Uyepfn1nYwQAhCx6WgIAAAAA8ueqq6SHHjLt9HRFT51qv/fAA87EBAAICyQtAQAAAAD5N3as1KJFppcymjWTWrZ0KCAAQDggaQkAAAAAyL+YGGnOHKl0ac9LGfffb+peAgCQTyQtAQAAAAAFU62aNHeurJo1tbNtW1mdOjkdEQAgxDERDwAAAACg4Nq1U9rWrfpu4UJVjKJ/DACgYPgmAQAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAJ6aTl1KlTdf755yshIUFNmjTR2rVrc11/7ty5ql27thISElSvXj0tXLiwkCIFAAAAAAAAkFchm7R87733NHToUI0dO1YbNmxQgwYN1L59e+3bty/b9VetWqVevXqpX79+2rhxo7p27aquXbtq8+bNhRw5AAAAAAAAgNyEbNLy2Wef1e23365bb71VderU0bRp01S0aFHNmDEj2/Wff/55dejQQffff78uvvhijRs3TpdddplefPHFQo4cAAAAAAAAQG5inA4gP06fPq3169dr1KhRnteioqLUrl07rV69OtttVq9eraFDh2Z6rX379vrwww+zXT8lJUUpKSme5cOHD0uSDh48WMDoESlSU1N14sQJHThwQLGxsU6HgxDAMQNfcczAVxwz8BXHDHzFMQNfcczAVxwzoe3o0aOSJMuyzrpuSCYt9+/fr/T0dJUrVy7T6+XKldOPP/6Y7TZ79uzJdv09e/Zku/748eP16KOPZnm9Vq1a+YwaAAAAAAAAwNGjR1WqVKlc1wnJpGVhGDVqVKaemYcOHVK1atW0a9eus/5PBSTpyJEjqlKlin7//XeVLFnS6XAQAjhm4CuOGfiKYwa+4piBrzhm4CuOGfiKYya0WZalo0ePqmLFimddNySTlomJiYqOjtbevXszvb53716VL18+223Kly/v0/rx8fGKj4/P8nqpUqX4o4BPSpYsyTEDn3DMwFccM/AVxwx8xTEDX3HMwFccM/AVx0zoymtnwJCciCcuLk6NGjVSUlKS57WMjAwlJSWpWbNm2W7TrFmzTOtL0uLFi3NcHwAAAAAAAIAzQrKnpSQNHTpUffr00eWXX67GjRvrueee0/Hjx3XrrbdKknr37q1KlSpp/PjxkqT77rtPrVq10qRJk9S5c2e9++67WrdunaZPn+7kjwEAAAAAAADgDCGbtOzZs6f++usvjRkzRnv27FHDhg21aNEiz2Q7u3btUlSU3ZG0efPmevvtt/Xwww/rwQcf1IUXXqgPP/xQl1xySZ4+Lz4+XmPHjs12yDiQHY4Z+IpjBr7imIGvOGbgK44Z+IpjBr7imIGvOGYih8vKyxzjAAAAAAAAAFBIQrKmJQAAAAAAAIDwRdISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFp6mTp1qs4//3wlJCSoSZMmWrt2ba7rz507V7Vr11ZCQoLq1aunhQsXFlKkcNr48eN1xRVXqESJEipbtqy6du2qbdu25brNrFmz5HK5Mv1LSEgopIjhtEceeSTL77927dq5bsM5JrKdf/75WY4Zl8ulgQMHZrs+55jIs3LlSl1zzTWqWLGiXC6XPvzww0zvW5alMWPGqEKFCipSpIjatWunn3/++az79fV6CKEjt2MmNTVVI0eOVL169VSsWDFVrFhRvXv31u7du3PdZ36+3xA6znae6du3b5bff4cOHc66X84z4etsx0x21zYul0sTJkzIcZ+cZ8JXXu6rT506pYEDB+q8885T8eLF1b17d+3duzfX/eb3GgjBh6TlP9577z0NHTpUY8eO1YYNG9SgQQO1b99e+/bty3b9VatWqVevXurXr582btyorl27qmvXrtq8eXMhRw4nrFixQgMHDtQ333yjxYsXKzU1VVdffbWOHz+e63YlS5ZUcnKy59/OnTsLKWIEg7p162b6/X/11Vc5rss5Bt9++22m42Xx4sWSpOuvvz7HbTjHRJbjx4+rQYMGmjp1arbvP/PMM5oyZYqmTZumNWvWqFixYmrfvr1OnTqV4z59vR5CaMntmDlx4oQ2bNig0aNHa8OGDZo/f762bdum//znP2fdry/fbwgtZzvPSFKHDh0y/f7feeedXPfJeSa8ne2Y8T5WkpOTNWPGDLlcLnXv3j3X/XKeCU95ua8eMmSIPvnkE82dO1crVqzQ7t271a1bt1z3m59rIAQpC5ZlWVbjxo2tgQMHepbT09OtihUrWuPHj892/R49elidO3fO9FqTJk2sAQMGBDROBKd9+/ZZkqwVK1bkuM7MmTOtUqVKFV5QCCpjx461GjRokOf1OcfgTPfdd591wQUXWBkZGdm+zzkmskmyFixY4FnOyMiwypcvb02YMMHz2qFDh6z4+HjrnXfeyXE/vl4PIXSdecxkZ+3atZYka+fOnTmu4+v3G0JXdsdMnz59rC5duvi0H84zkSMv55kuXbpYbdq0yXUdzjOR48z76kOHDlmxsbHW3LlzPev88MMPliRr9erV2e4jv9dACE70tJR0+vRprV+/Xu3atfO8FhUVpXbt2mn16tXZbrN69epM60tS+/btc1wf4e3w4cOSpHPPPTfX9Y4dO6Zq1aqpSpUq6tKli7Zs2VIY4SFI/Pzzz6pYsaJq1Kihm266Sbt27cpxXc4x8Hb69GnNnj1bt912m1wuV47rcY6B244dO7Rnz55M55FSpUqpSZMmOZ5H8nM9hPB2+PBhuVwulS5dOtf1fPl+Q/hZvny5ypYtq4suukh33XWXDhw4kOO6nGfgbe/evfr000/Vr1+/s67LeSYynHlfvX79eqWmpmY6Z9SuXVtVq1bN8ZyRn2sgBC+SlpL279+v9PR0lStXLtPr5cqV0549e7LdZs+ePT6tj/CVkZGhwYMHq0WLFrrkkktyXO+iiy7SjBkz9NFHH2n27NnKyMhQ8+bN9ccffxRitHBKkyZNNGvWLC1atEgvv/yyduzYoSuvvFJHjx7Ndn3OMfD24Ycf6tChQ+rbt2+O63COgTf3ucKX80h+rocQvk6dOqWRI0eqV69eKlmyZI7r+fr9hvDSoUMHvfnmm0pKStLTTz+tFStWqGPHjkpPT892fc4z8PbGG2+oRIkSZx3qy3kmMmR3X71nzx7FxcVleXh2tlyNe528boPgFeN0AECoGzhwoDZv3nzWuirNmjVTs2bNPMvNmzfXxRdfrFdeeUXjxo0LdJhwWMeOHT3t+vXrq0mTJqpWrZref//9PD1dRmR7/fXX1bFjR1WsWDHHdTjHAPCX1NRU9ejRQ5Zl6eWXX851Xb7fItsNN9zgaderV0/169fXBRdcoOXLl6tt27YORoZQMGPGDN10001nnTiQ80xkyOt9NSILPS0lJSYmKjo6OssMVHv37lX58uWz3aZ8+fI+rY/wdM899+i///2vli1bpsqVK/u0bWxsrC699FL98ssvAYoOwax06dKqVatWjr9/zjFw27lzp5YsWaL+/fv7tB3nmMjmPlf4ch7Jz/UQwo87Yblz504tXrw4116W2Tnb9xvCW40aNZSYmJjj75/zDNy+/PJLbdu2zefrG4nzTDjK6b66fPnyOn36tA4dOpRp/bPlatzr5HUbBC+SlpLi4uLUqFEjJSUleV7LyMhQUlJSpl4r3po1a5ZpfUlavHhxjusjvFiWpXvuuUcLFizQ0qVLVb16dZ/3kZ6erk2bNqlChQoBiBDB7tixY/r1119z/P1zjoHbzJkzVbZsWXXu3Nmn7TjHRLbq1aurfPnymc4jR44c0Zo1a3I8j+TnegjhxZ2w/Pnnn7VkyRKdd955Pu/jbN9vCG9//PGHDhw4kOPvn/MM3F5//XU1atRIDRo08HlbzjPh42z31Y0aNVJsbGymc8a2bdu0a9euHM8Z+bkGQhBzeCKgoPHuu+9a8fHx1qxZs6ytW7dad9xxh1W6dGlrz549lmVZ1i233GI98MADnvW//vprKyYmxpo4caL1ww8/WGPHjrViY2OtTZs2OfUjoBDdddddVqlSpazly5dbycnJnn8nTpzwrHPmMfPoo49an3/+ufXrr79a69evt2644QYrISHB2rJlixM/AgrZsGHDrOXLl1s7duywvv76a6tdu3ZWYmKitW/fPsuyOMcge+np6VbVqlWtkSNHZnmPcwyOHj1qbdy40dq4caMlyXr22WetjRs3emZ6fuqpp6zSpUtbH330kfW///3P6tKli1W9enXr5MmTnn20adPGeuGFFzzLZ7seQmjL7Zg5ffq09Z///MeqXLmy9d1332W6vklJSfHs48xj5mzfbwhtuR0zR48etYYPH26tXr3a2rFjh7VkyRLrsssusy688ELr1KlTnn1wnoksZ/tusizLOnz4sFW0aFHr5ZdfznYfnGciR17uq++8806ratWq1tKlS61169ZZzZo1s5o1a5ZpPxdddJE1f/58z3JeroEQGkhaennhhResqlWrWnFxcVbjxo2tb775xvNeq1atrD59+mRa//3337dq1aplxcXFWXXr1rU+/fTTQo4YTpGU7b+ZM2d61jnzmBk8eLDn+CpXrpzVqVMna8OGDYUfPBzRs2dPq0KFClZcXJxVqVIlq2fPntYvv/zieZ9zDLLz+eefW5Ksbdu2ZXmPcwyWLVuW7XeR+7jIyMiwRo8ebZUrV86Kj4+32rZtm+VYqlatmjV27NhMr+V2PYTQltsxs2PHjhyvb5YtW+bZx5nHzNm+3xDacjtmTpw4YV199dVWmTJlrNjYWKtatWrW7bffniX5yHkmspztu8myLOuVV16xihQpYh06dCjbfXCeiRx5ua8+efKkdffdd1vnnHOOVbRoUevaa6+1kpOTs+zHe5u8XAMhNLgsy7IC04cTAAAAAAAAAHxHTUsAAAAAAAAAQYWkJQAAAAAAAICgQtISAAAAAAAAQFAhaQkAAAAAAAAgqJC0BAAAAAAAABBUSFoCAAAAAAAACCokLQEAAAAAAAAEFZKWAAAAAAAAAIIKSUsAAAAgBJ1//vlyuVzq27ev06EAAAD4HUlLAAAAHw0YMEAul0sul0tLly71adsvvvjCs+19990XoAgBAACA0EbSEgAAwEe9e/f2tGfPnu3Ttm+99Va2+3HK8uXLPUnU5cuXOx0OAAAAIImkJQAAgM9atGihCy64QJI0b948nTx5Mk/bHT9+XAsWLJAk1a1bV40aNQpYjAAAAEAoI2kJAACQD7fccosk6ciRI/roo4/ytM38+fN1/PjxTNsDAAAAyIqkJQAAQD7ccsstcrlckvI+RNw9NDwqKko333xzwGIDAAAAQh1JSwAAgHyoUaOGWrRoIUn6/PPPtW/fvlzX3717t5KSkiRJbdq0UaVKlbKs8+GHH+r6669X1apVlZCQoNKlS+vyyy/Xo48+qr///jtPcS1cuFA333yzatSooWLFiikhIUHVq1dX9+7dNWvWLJ04cUKS9Ntvv8nlcumqq67ybHvVVVd56lu6/82aNSvLZ5w+fVovvfSSrrrqKpUpU0ZxcXEqX768OnXqpNmzZysjIyPH+Pr27SuXy6Xzzz9fkpScnKyRI0eqbt26KlGihM+1NbOryfn++++rbdu2KlOmjIoUKaKLLrpII0aM0MGDB3PcT+vWreVyudS6detcP++RRx7xfF523O898sgjkqRly5apa9euqlixoooUKaKLL75Y48aN8/S4dVu4cKE6derkWa9OnToaP368Tp8+nef/F99++6169eqlKlWqKCEhQVWqVNGtt96qH3/8MU/b//LLLxoyZIjq1aunUqVKqUiRIqpRo4b69u2rdevW5bjdmb+DjIwMzZgxQ1dddZXKlSunqKgoZjgHAAC+swAAAJAv06dPtyRZkqznn38+13UnTJjgWffNN9/M9N7BgwetNm3aeN7P7l/ZsmWt1atX57j//fv3W23bts11H5KsmTNnWpZlWTt27Djrut7ru+3YscOqXbt2rtu0bNnSOnDgQLZx9unTx5JkVatWzVq9erWVmJiYZftly5ad9f+927JlyzzbJSUlWTfffHOOcdWsWdNKTk7Odj+tWrWyJFmtWrXK9fPGjh3r2V923O+NHTvWGj9+vOVyubKNpXnz5taxY8esjIwMa9CgQTnG3KFDBystLS3bz6pWrZolyerTp4/1+uuvWzExMdnuIz4+3nr//fdz/bkmTJhgxcbG5hiHy+WyRo8ene223r+Dzz77zGrXrl2W7fv06ZPr5wMAAJyJnpYAAAD51KNHDyUkJEjKPCt4dtzvFy9eXN26dfO8npKSonbt2mnp0qWKjo7WLbfconfeeUfffPONvvzySz3xxBM677zztG/fPnXq1Ek7d+7Msu8TJ07oqquu8vTkbNSokV555RV9/fXXWrdunRYsWKAhQ4aoYsWKnm0qVaqkTZs2acaMGZ7XZsyYoU2bNmX617VrV8/7x44dU9u2bT0997p27aqPP/5Y69at09y5c9WqVStJ0ldffaVrrrlG6enpOf7/OHbsmLp3765Tp07poYce0vLly7V27Vq9/vrrqlChQq7/L3MyevRozZ49W127dtX8+fO1fv16LVy4UJ07d5Zk9yQsDJ999plGjRqlpk2b6u2339a6deu0aNEidezYUZK0atUqjR8/XpMnT9aUKVPUsWNHzZs3T+vXr9dHH32kpk2bSpIWLVqkV199NdfP+u6773TnnXeqbNmyeuGFF7RmzRqtWLFCI0eOVHx8vFJSUnTTTTfl2FtywoQJuv/++5Wamqr69evr5Zdf1pIlS7Ru3TrNmTNHzZo1k2VZGjdunKZMmZJrLCNHjtSSJUv0n//8J9PvwP1zAwAA5JnTWVMAAIBQ1qNHD09vsh9//DHbdb7//nvPOr1798703oMPPmhJskqXLm2tW7cu2+1/++03q0KFCpYk68Ybb8zy/pAhQzz7HzhwoJWRkZHtflJSUqw9e/Zkes27l9zZejgOHz7cs+7DDz+c5f2MjAzrpptu8qzz0ksvZVnH3dNSklW8eHHru+++y/Uzz8Y7fknW448/nm1cV199tSXJiomJsfbt25dlHX/3tJRkde/ePUsvybS0NKtp06aWJKtEiRJWQkKCNXjw4Cz7OX78uKcnZf369bP9LPf7+qfnana9SJcuXerpgXnFFVdkeX/Lli2eHpZjx47N9thJT0/39GAtXry4dfDgwUzvn/k7yO7YAAAA8BU9LQEAAAqgd+/ennZOvS29X/de/9ixY5o6daokady4cWrUqFG221erVk2jR4+WJM2dOzdTPcRDhw7plVdekWR6WD7//PM51luMi4tTuXLl8vJjZZGSkqLXXntNklS3bl1PzUZvLpdLL730ks477zxJ0osvvpjrPkeMGKEGDRrkK57sNGrUSA8++GC2cQ0dOlSSlJaWptWrV/vtM3NStGhRTZ8+XdHR0Zlej46O1h133CFJOnr0qMqUKaNnnnkm2+379OkjSfrf//6nw4cP5/p5kyZNUvny5bO8ftVVV+n222+XZGpentnbctKkSUpNTdXll1+usWPHZnvsREVF6YUXXlB8fLyOHTumDz74IMc4atWqle2xAQAA4CuSlgAAAAXQvn17TyJwzpw5siwr0/sZGRl6++23JUmVK1fONPHNihUrPMmo6667LtfP+de//iVJSk1N1fr16z2vL1261DO5zqBBg7Ikyfxl/fr1OnTokCQzmU5On1OyZEn16NFDkrR161YlJyfnuM+bbrrJrzHeeOONOSZsvRPC27dv9+vnZuf//u//dO6552b7nneitlu3boqNjT3rejt27Mjxs8455xx16dIlx/dvu+02T3vJkiWZ3vvkk08kSd27d8/x/50klS5dWvXq1ZOkXJO+PXv2DNgxCAAAIgtJSwAAgAKIiYnRjTfeKMnMyP3VV19lej8pKUm7d++WZJJ0UVH25Zd3r7cKFSpkmbnb+98ll1ziWXfPnj2e9saNGz3tK6+80r8/nJfNmzd72k2aNMl1Xe/3vbfzVrx4cdWoUcM/wf2jdu3aOb7nnUA8evSoXz83O7Vq1crxvdKlS/u8Xm4xX3rppYqJicnx/YYNGyouLk6StGnTJs/rO3fu1F9//SVJGjVqVK7Hn8vl8hyv3sffmerXr5/jewAAAL4gaQkAAFBAuQ0Rz2louCTt27cvX5/n7lkpSfv37/e08zuBTV4cPHjQ0y5btmyu63oPU/bezpt3Qs5fihYtmuN73sni3CYIKuxY/BHz2X4fMTExnqSt9+/DH8ffmc4555x87RMAAOBMOT+SBQAAQJ40bNhQ9erV06ZNmzR37lxP/b/jx49r/vz5kszw5Dp16mTazjsRtWHDhhyHCZ+pcuXK/gs+H3IbRpxXDCH2n/z+PryPvzFjxuj666/P03bFihXL8T1+rwAAwF9IWgIAAPhB7969df/99+vQoUP65JNPdN1112nBggWeSXPO7GUpyTNhjSSVKVMmX8nIxMRETzs5OVnVq1fPR/Rn5z28eu/evbkOa/YePpxTXcdg4+7VmJGRket63pMgBYu9e/fm+n5aWpqnh6X378P7+IuNjc1UggAAAMBpDA8HAADwg5tuusnTy2z27NmS7KHhsbGx6tWrV5ZtLr30Uk/766+/ztfnXnbZZZ72ypUrfd4+r730vBNaa9asyXXdtWvXZrtdMCtRooQk6e+//851vZ9++qkwwvHJd999p7S0tBzf//7773X69GlJmX8fNWrUUKlSpSTl//gDAAAIFJKWAAAAflChQgW1a9dOkrRw4UJt3rxZSUlJkqQOHTqoTJkyWbZp166dp6bhlClTssw8nhdXXXWVZ7juCy+84HO9xoSEBE87JSUlx/UaNWrkqUP5xhtv5Ngj8ejRo3r//fclSXXq1AlonU1/cvdQ/emnn3Kc9Gb//v1avHhxYYaVJwcPHvTMAp6dGTNmeNruY1QyQ7k7deokSfriiy/0ww8/BC5IAAAAH5G0BAAA8BP3EPDU1FTdcMMNngRidkPDJTMZzT333CNJWrVqlYYMGZLr8OS9e/fqtddey7KPAQMGSJLWr1+vwYMH55j8TE1NzTL5indS8ddff83xs+Pj49W/f39JZkbwcePGZVnHsizdc889nsmB3D9bKGjVqpUk6fTp03rhhReyvJ+amqr+/fvr5MmThR1angwdOjTbYeIrVqzQ9OnTJZnE8xVXXJHp/VGjRik6OloZGRm67rrr9Mcff+T4Genp6ZozZ06u6wAAAPgLNS0BAAD85Nprr1WJEiV09OhRbdmyRZKZTfmaa67JcZvHHntMK1as0Jo1a/T8889r+fLluv3229WwYUMVK1ZMf//9t7Zs2aIlS5bos88+U7169TzJQ7dx48Zp8eLF2rRpk1588UWtXr1aAwYMUL169RQXF6c//vhDX375pd555x09/vjj6tu3r2fbqlWrqnLlyvrjjz80ceJEVa5cWRdddJFnqHu5cuU8Q6fHjBmj+fPna/v27XrkkUe0adMm3XrrrapQoYJ27NihF198UcuXL5ckNWvWTHfccYcf/+8GVufOnVWtWjXt3LlTo0eP1v79+9WtWzclJCRoy5YtmjJlijZu3KimTZvqm2++cTrcTBo0aKCtW7eqUaNGGjVqlBo3bqyUlBQtXLhQkydPVlpammJiYjR16tQs29arV08TJ07UkCFDtHXrVl1yySW644471KZNG5UrV06nTp3Sb7/9ptWrV+uDDz5QcnKyNm3a5PhkUAAAIPyRtAQAAPCTIkWK6LrrrtPMmTM9r/Xo0UPx8fE5bhMfH6/Fixerb9++mj9/vr7//vtceyiWLFkyy2tFixbV0qVL1b17d61cuVLr16/3KWH44IMP6u6779aOHTvUpUuXTO/NnDnTk+QsUaKEkpKS1LFjR/3444+aN2+e5s2bl2V/LVq00McffxxSM0nHxcVp9uzZ6tChg44fP67Jkydr8uTJnvejo6P13HPP6eDBg0GXtGzYsKHuuece3XXXXdkeO3FxcXrjjTfUpEmTbLcfPHiwihUrpsGDB+vw4cOaMGGCJkyYkO26cXFxmUoKAAAABArDwwEAAPyoT58+mZZzGhrurUSJEpo3b56+/PJL9e/fXxdddJFKlCihmJgYnXvuubriiis0cOBALVy4MMeaiomJiVqxYoXmz5+v6667TpUrV1Z8fLwSEhJUo0YNXX/99ZozZ062EwLdddddmjdvnq6++mqVLVtWMTE5P9c+//zz9f333+vFF19Uq1atdN555yk2NlblypVThw4d9NZbb2nlypUhM2u4t5YtW2r9+vW65ZZbVLFiRcXGxqpChQqeZPCgQYOcDjFH/fv315dffqkePXqoYsWKiouLU6VKldS7d29t3LhRN9xwQ67b33777dq+fbseffRRtWjRQomJiYqJiVGxYsVUq1Ytde/eXdOmTdOff/6pmjVrFtJPBQAAIpnLyk/FdwAAAAAAAAAIEHpaAgAAAAAAAAgqJC0BAAAAAAAABBWSlgAAAAAAAACCCklLAAAAAAAAAEGFpCUAAAAAAACAoELSEgAAAAAAAEBQIWkJAAAAAAAAIKiQtAQAAAAAAAAQVEhaAgAAAAAAAAgqJC0BAAAAAAAABBWSlgAAAAAAAACCCklLAAAAAAAAAEGFpCUAAAAAAACAoELSEgAAAAAAAEBQ+X+NGbPKePGtggAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "IREth3_2 (порог для тестовой выборки): 1.460\n", + "Примеры ошибок реконструкции для первых 10 элементов тестовой выборки:\n", + "[0.53 1.22 0.54 0.73 0.86 0.99 0.53 1.37 0.39 0.94]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Получаем массив ошибок реконструкции для всей тестовой выборки\n", + "IRE3_2_test = lib.predict_ae(ae3_2_trained, test, IREth3_2_scalar)[1].ravel()\n", + "\n", + "# Определяем, какие элементы превышают порог — считаются аномалиями\n", + "anomalies_mask = IRE3_2_test > IREth3_2_scalar\n", + "num_anomalies = np.sum(anomalies_mask)\n", + "total_test = len(IRE3_2_test)\n", + "percent_anomalies = num_anomalies / total_test * 100\n", + "\n", + "# Выводим результаты\n", + "print(\"Все ошибки реконструкции тестовой выборки:\")\n", + "print(IRE3_2_test)\n", + "print(f\"\\nКоличество обнаруженных аномалий: {num_anomalies} из {total_test}\")\n", + "print(f\"Процент обнаруженных аномалий: {percent_anomalies:.1f}%\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w4PTF0q6iqia", + "outputId": "8dd75aa5-3289-4862-fa98-295f90ef89e6" + }, + "execution_count": 114, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "Все ошибки реконструкции тестовой выборки:\n", + "[0.53 1.22 0.54 0.73 0.86 0.99 0.53 1.37 0.39 0.94 0.76 1.34 0.42 0.68\n", + " 0.34 0.87 0.73 0.53 1.81 1.35 0.43]\n", + "\n", + "Количество обнаруженных аномалий: 1 из 21\n", + "Процент обнаруженных аномалий: 4.8%\n" + ] + } + ] + } + ] +} \ No newline at end of file