From 5b1ef923b9ffbb7825e2d9afbe51fa9d9b5199d6 Mon Sep 17 00:00:00 2001 From: Alexandr Fonov Date: Wed, 12 Nov 2025 22:07:31 +0300 Subject: [PATCH] =?UTF-8?q?=D0=94=D0=BE=D0=B1=D0=B0=D0=B2=D0=B8=D1=82?= =?UTF-8?q?=D1=8C=20jupiter=20notebook?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- labworks/LW2/Untitled0.ipynb | 6923 ++++++++++++++++++++++++++++++++++ 1 file changed, 6923 insertions(+) create mode 100644 labworks/LW2/Untitled0.ipynb diff --git a/labworks/LW2/Untitled0.ipynb b/labworks/LW2/Untitled0.ipynb new file mode 100644 index 0000000..e83a05d --- /dev/null +++ b/labworks/LW2/Untitled0.ipynb @@ -0,0 +1,6923 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "eylL1SOLBAyC" + }, + "outputs": [], + "source": [ + "import os\n", + "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab2')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "YCmD5S8fH2hN" + }, + "outputs": [], + "source": [ + "import lab02_lib\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nVETwdEdIEE1" + }, + "source": [ + "#### Сгенерировать индивидуальный набор двумерных данныхв пространстве признаковс координатами центра (k, k), где k–номер бригады.Вывести полученныеданные на рисуноки в консоль." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 897 + }, + "id": "T9KjluQgH7wP", + "outputId": "97bdf11f-2536-4fc9-8cc8-43baf9ebfed6" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAotJJREFUeJzt3X+cHVV9+P/37g27CSYbfpQYCIHALtnsBhao0DZQflQDiBFJglGsFPCjVYTUWpqPGg3y26BEwWqJtlK14ZNiYzfwEAiIYPDDR1CE0ITsj7CBCAZo1G/ZIIG77N37/WM6u7Oz83vOzJyZeT0fj30k9+69M2fOnJmd95z3OdNQr9frAgAAAAAAMteYdQEAAAAAAICBIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AgAK69NJLZc6cOZG+e80110hDQ4PaAgEAgEAI0gEASFFDQ0Ogn82bN2dd1Nxbv3693HrrrVkXAwCAUBrq9Xo960IAAFAWd9xxx7jX//qv/yoPPvigrFu3btz7Z511lrz97W+PvJ633npLRkZGpLm5OfR3h4eHZXh4WCZPnhx5/Tp473vfK88884zs2rUr66IAABDYpKwLAABAmVx00UXjXj/++OPy4IMPTnjfbt++fbL//vsHXs9+++0XqXwiIpMmTZJJk7hEAAAgC6S7AwCgmTPPPFOOPfZYefLJJ+X000+X/fffXz7/+c+LiMjdd98tixYtksMOO0yam5ultbVVrr/+eqnVauOWYR+TvmvXLmloaJA1a9bIP/3TP0lra6s0NzfLySefLE888cS47zqNSW9oaJDly5fLXXfdJccee6w0NzfL/Pnz5f77759Q/s2bN8tJJ50kkydPltbWVvn2t78deJz7s88+KxdccIHMnDlTJk+eLIcffrhceOGFMjg4OO5zd9xxh7zjHe+QKVOmyEEHHSQXXnihvPjii+Pq8N5775Vf//rXo0MIoo7RBwAgTdwmBwBAQ7///e/l3HPPlQsvvFAuuuii0dT3733vezJ16lS58sorZerUqfLwww/LF7/4Rdm7d6/cfPPNvstdv369vPbaa/KJT3xCGhoa5Ctf+YosXbpUnnvuOd/e90cffVS6u7vl8ssvl2nTpsk//MM/yAUXXCAvvPCCHHzwwSIismXLFnn3u98thx56qFx77bVSq9Xkuuuuk0MOOcS3bENDQ3LOOedItVqVv/mbv5GZM2fK7t275Z577pFXX31Vpk+fLiIiN954o1x11VXygQ98QD72sY/Jb3/7W/nGN74hp59+umzZskUOOOAA+cIXviCDg4Pym9/8Rm655RYREZk6dapvGQAAyFwdAABk5oorrqjb/xyfccYZdRGpf+tb35rw+X379k147xOf+ER9//33r7/55puj711yySX1I488cvT1888/XxeR+sEHH1z///6//2/0/bvvvrsuIvUf/ehHo+9dffXVE8okIvWmpqb6wMDA6Hv/+Z//WReR+je+8Y3R984777z6/vvvX9+9e/foe88++2x90qRJE5Zpt2XLlrqI1Dds2OD6mV27dtUrlUr9xhtvHPf+tm3b6pMmTRr3/qJFi8bVAQAAeUC6OwAAGmpubpaPfOQjE96fMmXK6P9fe+01+d3vfiennXaa7Nu3T/r6+nyX+8EPflAOPPDA0dennXaaiIg899xzvt9duHChtLa2jr7u6uqSlpaW0e/WajX5yU9+IosXL5bDDjts9HNtbW1y7rnn+i7f7Cl/4IEHZN++fY6f6e7ulpGREfnABz4gv/vd70Z/Zs6cKcccc4z89Kc/9V0PAAA6I90dAAANzZo1S5qamia8v337dlm1apU8/PDDsnfv3nG/s4/bdnLEEUeMe20G7P/93/8d+rvm983v7tmzR9544w1pa2ub8Dmn9+yOOuooufLKK+VrX/ua/J//83/ktNNOk/e9731y0UUXjQbwzz77rNTrdTnmmGMclxFnwjwAAHRAkA4AgIasPeamV199Vc444wxpaWmR6667TlpbW2Xy5Mny1FNPyWc/+1kZGRnxXW6lUnF8vx7giaxxvhvUV7/6Vbn00kvl7rvvlh//+MfyqU99SlavXi2PP/64HH744TIyMiINDQ2yadMmx/Iw7hwAkHcE6QAA5MTmzZvl97//vXR3d8vpp58++v7zzz+fYanGzJgxQyZPniwDAwMTfuf0npvjjjtOjjvuOFm1apX8/Oc/l1NPPVW+9a1vyQ033CCtra1Sr9flqKOOkrlz53ouJ8hs8gAA6IYx6QAA5ITZc2ztuR4aGpLbbrstqyKNU6lUZOHChXLXXXfJSy+9NPr+wMCAbNq0yff7e/fuleHh4XHvHXfccdLY2CjValVERJYuXSqVSkWuvfbaCT349Xpdfv/734++ftvb3hZoCAAAADqhJx0AgJw45ZRT5MADD5RLLrlEPvWpT0lDQ4OsW7dOabp5XNdcc438+Mc/llNPPVU++clPSq1Wk29+85ty7LHHytNPP+353YcffliWL18uy5Ytk7lz58rw8LCsW7dOKpWKXHDBBSIi0traKjfccIOsXLlSdu3aJYsXL5Zp06bJ888/Lxs3bpSPf/zjsmLFChERecc73iE/+MEP5Morr5STTz5Zpk6dKuedd17SVQAAQCwE6QAA5MTBBx8s99xzj/z93/+9rFq1Sg488EC56KKL5F3vepecc845WRdPRIzAeNOmTbJixQq56qqrZPbs2XLddddJb2+v7+zzxx9/vJxzzjnyox/9SHbv3i3777+/HH/88bJp0yb5sz/7s9HPfe5zn5O5c+fKLbfcItdee62IiMyePVvOPvtsed/73jf6ucsvv1yefvpp+e53vyu33HKLHHnkkQTpAADtNdR1uv0OAAAKafHixbJ9+3Z59tlnsy4KAABaY0w6AABQ6o033hj3+tlnn5X77rtPzjzzzGwKBABAjtCTDgAAlDr00EPl0ksvlaOPPlp+/etfy9q1a6VarcqWLVtcn28OAAAMjEkHAABKvfvd75Z/+7d/k1deeUWam5tlwYIF8qUvfYkAHQCAAOhJBwAAAABAE4xJBwAAAABAEwTpAAAAAABoonRj0kdGRuSll16SadOmSUNDQ9bFAQAAAAAUXL1el9dee00OO+wwaWz07isvXZD+0ksvyezZs7MuBgAAAACgZF588UU5/PDDPT9TuiB92rRpImJUTktLS8alAQAAAAAU3d69e2X27Nmj8aiX0gXpZop7S0sLQToAAAAAIDVBhlwzcRwAAAAAAJogSAcAAAAAQBME6QAAAAAAaIIgHQAAAAAATZRu4riwarWavPXWW1kXAwW13377SaVSyboYAAAAADRBkO6iXq/LK6+8Iq+++mrWRUHBHXDAATJz5sxAMz0CAAAAKDaCdBdmgD5jxgzZf//9CaCgXL1el3379smePXtEROTQQw/NuEQAAAAAskaQ7qBWq40G6AcffHDWxUGBTZkyRURE9uzZIzNmzCD1HQAAACg5Jo5zYI5B33///TMuCcrAbGfMfQAAAACAIN0DKe5IA+0MAAAAgIkgHQAAAAAATRCkAwAAAACgCYJ0KHfppZfKnDlzIn33mmuuIf0bAAAAQGkRpJdIQ0NDoJ/NmzdnXdTcW79+vdx6661ZFwMAAABAzjTU6/V61oVI0969e2X69OkyODgoLS0tjp9588035fnnn5ejjjpKJk+enHIJk3PHHXeMe/2v//qv8uCDD8q6devGvX/WWWfJ29/+9sjreeutt2RkZESam5tDf3d4eFiGh4dzX+/vfe975ZlnnpFdu3b5frao7Q0AAACAIUgcauI56SVy0UUXjXv9+OOPy4MPPjjhfbt9+/aFehzdfvvtF6l8IiKTJk2SSZNolgAAAADKiXR3jHPmmWfKscceK08++aScfvrpsv/++8vnP/95ERG5++67ZdGiRXLYYYdJc3OztLa2yvXXXy+1Wm3cMuxj0nft2iUNDQ2yZs0a+ad/+idpbW2V5uZmOfnkk+WJJ54Y912nMekNDQ2yfPlyueuuu+TYY4+V5uZmmT9/vtx///0Tyr9582Y56aSTZPLkydLa2irf/va3A49zf/bZZ+WCCy6QmTNnyuTJk+Xwww+XCy+8UAYHB8d97o477pB3vOMdMmXKFDnooIPkwgsvlBdffHFcHd57773y61//enQIQdQx+gAAAADKhS5LTPD73/9ezj33XLnwwgvloosuGk19/973vidTp06VK6+8UqZOnSoPP/ywfPGLX5S9e/fKzTff7Lvc9evXy2uvvSaf+MQnpKGhQb7yla/I0qVL5bnnnvPtfX/00Uelu7tbLr/8cpk2bZr8wz/8g1xwwQXywgsvyMEHHywiIlu2bJF3v/vdcuihh8q1114rtVpNrrvuOjnkkEN8yzY0NCTnnHOOVKtV+Zu/+RuZOXOm7N69W+655x559dVXZfr06SIicuONN8pVV10lH/jAB+RjH/uY/Pa3v5VvfOMbcvrpp8uWLVvkgAMOkC984QsyODgov/nNb+SWW24REZGpU6f6lgEAAAAACNIzUKuJVCpZl8LdK6+8It/61rfkE5/4xLj3169fL1OmTBl9fdlll8lll10mt912m9xwww2+Y9BfeOEFefbZZ+XAAw8UEZH29nY5//zz5YEHHpD3vve9nt/t7e2Vnp4eaW1tFRGRv/iLv5Djjz9e/u3f/k2WL18uIiJXX321VCoV+X//7//JYYcdJiIiH/jAB6Sjo8N3m3t6euT555+XDRs2yPvf//7R97/4xS+O/v/Xv/61XH311XLDDTeMZheIiCxdulROPPFEue222+Tzn/+8nHXWWTJr1iz57//+b9+hBAAAAABgRbp7ivr7RebPF5k0yfi3vz/rEjlrbm6Wj3zkIxPetwbor732mvzud7+T0047Tfbt2yd9fX2+y/3gBz84GqCLiJx22mkiIvLcc8/5fnfhwoWjAbqISFdXl7S0tIx+t1aryU9+8hNZvHjxaIAuItLW1ibnnnuu7/LNnvIHHnhA9u3b5/iZ7u5uGRkZkQ984APyu9/9bvRn5syZcswxx8hPf/pT3/UAAAAAgBeC9BQtXToWmPf3G691NGvWLGlqaprw/vbt22XJkiUyffp0aWlpkUMOOWS0p9g+btvJEUccMe61GbD/93//d+jvmt83v7tnzx554403pK2tbcLnnN6zO+qoo+TKK6+U73znO/JHf/RHcs4558g//uM/jtuuZ599Vur1uhxzzDFyyCGHjPvp7e2VPXv2+K4HAAAAALyQ7p6SWk2kp2fiax1T36095qZXX31VzjjjDGlpaZHrrrtOWltbZfLkyfLUU0/JZz/7WRkZGfFdbsVlQ4M8BTDOd4P66le/Kpdeeqncfffd8uMf/1g+9alPyerVq+Xxxx+Xww8/XEZGRqShoUE2bdrkWB7GnQMAAACIiyA9JZWKSGen0YNuBubt7foF6G42b94sv//976W7u1tOP/300feff/75DEs1ZsaMGTJ58mQZGBiY8Dun99wcd9xxctxxx8mqVavk5z//uZx66qnyrW99S2644QZpbW2Ver0uRx11lMydO9dzOUFmkwcAZEvHG+UAAJDunqLubiMwFzH+7e7OtjxhmD3H1p7roaEhue2227Iq0jiVSkUWLlwod911l7z00kuj7w8MDMimTZt8v793714ZHh4e995xxx0njY2NUq1WRcSYIK5Sqci11147oQe/Xq/L73//+9HXb3vb2wINAQAApC8vc8QAAMqJnvQUtbeLbN+ezzv3p5xyihx44IFyySWXyKc+9SlpaGiQdevWKU03j+uaa66RH//4x3LqqafKJz/5SanVavLNb35Tjj32WHn66ac9v/vwww/L8uXLZdmyZTJ37lwZHh6WdevWSaVSkQsuuEBERFpbW+WGG26QlStXyq5du2Tx4sUybdo0ef7552Xjxo3y8Y9/XFasWCEiIu94xzvkBz/4gVx55ZVy8skny9SpU+W8885LugoAAAE4zRGzfXu2ZQIAwESQnoG8BegiIgcffLDcc8898vd///eyatUqOfDAA+Wiiy6Sd73rXXLOOedkXTwRMQLjTZs2yYoVK+Sqq66S2bNny3XXXSe9vb2+s88ff/zxcs4558iPfvQj2b17t+y///5y/PHHy6ZNm+TP/uzPRj/3uc99TubOnSu33HKLXHvttSIiMnv2bDn77LPlfe973+jnLr/8cnn66aflu9/9rtxyyy1y5JFHEqQDgAbyNEcMAKCcGuo6dYWmYO/evTJ9+nQZHByUlpYWx8+8+eab8vzzz8tRRx0lkydPTrmEUG3x4sWyfft2efbZZ7MuiiPaGwCky0xxt84RQ086ACBJQeJQE2PSUShvvPHGuNfPPvus3HfffXLmmWdmUyAAgHbyPEcMAKD4SHdHoRx99NFy6aWXytFHHy2//vWvZe3atdLU1CSf+cxnsi4aAEATeZ4jBgBQfATpKJR3v/vd8m//9m/yyiuvSHNzsyxYsEC+9KUvyTHHHJN10QAAmiFABwDoiCAdhfLd73436yIAAAAAQGSMSQcAAAAAQBME6QAAAAAAaIIg3UPJnk6HjNDOAAAAAJgI0h3st99+IiKyb9++jEuCMjDbmdnuAAAAAJQXE8c5qFQqcsABB8iePXtERGT//feXhoaGjEuFoqnX67Jv3z7Zs2ePHHDAAVJhmmEAAACg9AjSXcycOVNEZDRQB5JywAEHjLY3AAAAAOVGkO6ioaFBDj30UJkxY4a89dZbWRcHBbXffvvRgw4AAABgFEG6j0qlQhAFAAAAAEgFE8cBAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ESmQfratWulq6tLWlpapKWlRRYsWCCbNm1y/Xx3d7ecdNJJcsABB8jb3vY2OeGEE2TdunUplhgAAAAAgORkOrv74YcfLjfddJMcc8wxUq/X5fvf/76cf/75smXLFpk/f/6Ezx900EHyhS98QebNmydNTU1yzz33yEc+8hGZMWOGnHPOORlsAQAAAAAA6jTU6/V61oWwOuigg+Tmm2+Wj370o4E+/8d//MeyaNEiuf766wN9fu/evTJ9+nQZHByUlpaWOEUFAAAAAMBXmDhUmzHptVpN7rzzTnn99ddlwYIFvp+v1+vy0EMPSX9/v5x++umun6tWq7J3795xPwAAAAAA6CjTdHcRkW3btsmCBQvkzTfflKlTp8rGjRuls7PT9fODg4Mya9YsqVarUqlU5LbbbpOzzjrL9fOrV6+Wa6+9NomiAwAAAACgVObp7kNDQ/LCCy/I4OCg/PCHP5TvfOc78sgjj7gG6iMjI/Lcc8/JH/7wB3nooYfk+uuvl7vuukvOPPNMx89Xq1WpVqujr/fu3SuzZ88m3R0AAAAAkIow6e6ZB+l2CxculNbWVvn2t78d6PMf+9jH5MUXX5QHHngg0OcZkw4AAAAASFMux6SbRkZGxvV8q/48AAAAAAC6ynRM+sqVK+Xcc8+VI444Ql577TVZv369bN68ebRX/OKLL5ZZs2bJ6tWrRcQYX37SSSdJa2urVKtVue+++2TdunWydu3aLDcDAAAAAAAlMg3S9+zZIxdffLG8/PLLMn36dOnq6pIHHnhgdCK4F154QRobxzr7X3/9dbn88svlN7/5jUyZMkXmzZsnd9xxh3zwgx/MahMAAAAAAFBGuzHpSWNMOgAAAAAgTbkekw4AAAAAQFkRpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAx1GpZlwAAABQJQToAABH094vMny8yaZLxb39/1iUCAABFQJAOAEAES5eOBeb9/cZrAACAuAjSAQAIqVYT6ekZS3W3vwYAAIiKIB0AgJAqFZHOTuNfp9cAAABREaQDABBBd7dIe7vx//Z24zXSQcYCAKDICNIBAIigvV1k+3aR4WHjXzNgR3KYrA8AUAYE6QAAxECKe3qYrA8AUAYE6QAAQDv2lHYm6wMAlAVBOgAA0IZbSjuT9QEAyoIgHQAAaMMrpZ3J+gAAZTAp6wIAAACIjKWw21/XakaPuTlZn/kaAIAioicdAABoIWhKOwE6AKDICNIBAIA2SGkHAJQd6e4AAEAbpLQDAMqOnnQAAKAdAnQAQFkRpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAUEK1WtYlAAAATgjSAQAokf5+kfnzRSZNMv7t78+6RAAAwIogHQCAElm6dCww7+83XgMAAH0QpAMAUBK1mkhPz1iqu/01AADIHkE6gEIgyAD8VSoinZ3Gv06vAQBA9gjSAeQa42uBcLq7Rdrbjf+3txuvAQCAPhrq9Xo960Kkae/evTJ9+nQZHByUlpaWrIsDICYzMK/VjN7A9naR7duzLhWgP/OYAQAAyQsTh9KTDiC3GF8LREeADgCAngjSAeQW42sBAABQNATpAHKN8bUoCjJAAACACEE6gJwzx6APDxv/mgE7kBdMfggAAKwI0gEUAinuyKulS8cC8/5+4zUAACgvgnQAADLC5IcAAMCOIB0AgIww+SEAALAjSAcAIENFnPyQTAAAAKIjSAcAIENFmvyQSfAAAIiPIB0AkEtF660tQoo7k+ABABAfQToAIFfordUTk+ABAKAGQToAIFfordUTk+ABAKAGQToAIDfordVbESfBAwAgbZOyLgAAAEGZvbP9/UZgXqkYwSC9tXowJ8Ez9w0AAAiPnnQAQK7QW6s/AnQAAKKjJx0AkCtF7K0t0rYAAIB46EkHAORSEYJaZqoHAAB2BOkAAGSEmeoBAIAdQTqA3GEmbxQBM9UDAAAnBOkAcoPUYBQJzxUHAABOCNIB5AapwSgaZqoHAAB2zO4OIBfMVGD7a2bFRp7bQBFnqgcAAPHQkw4gF0gNhl2Rhj/QjgEAgIkgHUBukBoMK4Y/AACAIiLdHUBukBoME8MfAABAUdGTDiB3CMLA8AcAAFBUBOkAgFxi+AMAACgi0t0BALnE8AcAAFBE9KQDAHKNAB0AABQJQToAAAAAAJogSAcAAAAAQBME6QCQsFot6xIAAAAgLwjSASSurEFqf7/I/PkikyYZ//b3Z12i7JW1LQAAAARFkA4gMWUPUpcuHdvm/n7jdVmVvS0AAAAE1VCv1+tZFyJNe/fulenTp8vg4KC0tLRkXRyg0MxgzHxElvnIrDKo1YyA1G54uJyzkZe5LQAAAISJQ+lJB5CIWk2kp2csvdn+uugqFZHOzrGA3P66TMreFgAAAMIgSAeQCIJUke5uo8dYxPi3uzvb8mSFtgAAABAcQTqAxJQ9SDVTuoeHjX/NuiijsrcFAACAoBxGTAKAGmaQao5DLqsktz0vdZtUW8jL9gMAAARFTzqAxBFEqZfX2dJVtYW8bj8AAICfTIP0tWvXSldXl7S0tEhLS4ssWLBANm3a5Pr5f/7nf5bTTjtNDjzwQDnwwANl4cKF8stf/jLFEgOAHsr+eLeybz8AACiuTIP0ww8/XG666SZ58skn5Ve/+pW8853vlPPPP1+2uzyXZ/PmzfKhD31IfvrTn8pjjz0ms2fPlrPPPlt2796dcskBIDtlny297NsPAACKTbvnpB900EFy8803y0c/+lHfz9ZqNTnwwAPlm9/8plx88cWBls9z0gEUQdmfO1727QcAAPmSy+ek12o1ufPOO+X111+XBQsWBPrOvn375K233pKDDjrI9TPValX27t077gcA8q7ss6WXffsBAEBxZT67+7Zt22TBggXy5ptvytSpU2Xjxo3S2dkZ6Luf/exn5bDDDpOFCxe6fmb16tVy7bXXqiouAGih7DPnl337AQBAcWWe7j40NCQvvPCCDA4Oyg9/+EP5zne+I4888ohvoH7TTTfJV77yFdm8ebN0dXW5fq5arUq1Wh19vXfvXpk9ezbp7gAAAACAVIRJd888SLdbuHChtLa2yre//W3Xz6xZs0ZuuOEG+clPfiInnXRSqOUzJh0AAPXIagAAwF0ux6SbRkZGxvV8233lK1+R66+/Xu6///7QATryj9mbAUAvPLMeAAC1Mg3SV65cKT/72c9k165dsm3bNlm5cqVs3rxZPvzhD4uIyMUXXywrV64c/fyXv/xlueqqq+Rf/uVfZM6cOfLKK6/IK6+8In/4wx+y2gSkhItAANBTWZ5Zn+VNYm5QA0C5ZBqk79mzRy6++GJpb2+Xd73rXfLEE0/IAw88IGeddZaIiLzwwgvy8ssvj35+7dq1MjQ0JO9///vl0EMPHf1Zs2ZNVpuAlJTlIhAA8qQMz6zP8iYxN6gBoJy0G5OeNMak50+tZlyg2A0PM/4RgF7KOC676M+sV7l9YdtH0esWAMok12PSAbtKRaSzc+zCxv4ayEKRegoRX5l7PIv8zHpVmQJR2kcZshQAAM4I0pELRb4IRL5kHYxxga6nMg/JMXt3h4eNf81zdRGoukkcpX1wgxoAyosgHblQ5ItA5EtWwVjWNwfgjh5PQ1GDx7g3ieO0D25QA0A5MSYdAALKcn4Exqbqjf1TfHHmG4jbPso41wEAFA1j0gEgAVmln9JTqz96PIsvznEet31Y181xDwDFR5AOQDs6X4RmEYwxNlV/DMmBFxXtgyEvAFAeBOkAtJGHi9CsgjF6avOBGyfwEqd9lHlyQgAoG8akA9CGjuN6dRsLqlt5kA3aQblkOR8GAEANxqQDyB3dxl3r2qvvdkGu8xABqKNru0SyGPICAOVCkA5AC7pdhOYltTQvQRs3EdTIS7uEegx5AYDyIEgHoA1dLkJ169X3onvQlpebCHmQp3YJ9ZicEADKgyAdgDZ0uQjVrVffTR6CNt1vIuRJXtolksX+BoDiI0gHoB0dLkJ16dX3onvQloebCHGlvS15aJcAACAegnQAcKBLr74fXYM2c/ZxnW8ixJFVGn9e2iUAAIiOIB0APOgeUOoWtNmD1zVr9LyJEFfWafxZtssiZUIAAKAjgnQAKABdbibYg9cVK/S6iaBCGdL4nTAJIAAA6SBIBwAo4RW8JnETIauguMhp/F6yzh4AAKAsCNKRC0XvoQKKIK3gVYceXV3nAkhKWbMHAADIAkE6tKbDxTiA4NIIXnXo0dVtLoCklTV7AACALDTU6/V61oVI0969e2X69OkyODgoLS0tWRcHPszA3EyXNS+MgSJIKg1cB0mmuE+aNPH94eHi1qUuzBsiPT1GgG69IQMAALyFiUPpSYe2SK9EUrJuQ2lliGS5nUkFzEXp0c26DUZRtuwBAACyQpAObRXlYhz6yHL4hDUoSzpdu+jDRPI8HrwI+yaNc3Aeb2IAAKAKQTq0lueLcegni7HM9qCspyf5DBEdxmwnKc89ukXfN3EV4SYG1OOmDYCyYUw6cqHIY3eRjqzGMjvNqyCS3FwLjNmOJ8lzDfvGH/OQwIp5EAAUCWPSUThcwKariL0WWQyfcJtXYcOG5DJEGCbiza1tp9GDy77xxjwksCPzBEBZEaQDGJV0oJL1xXbawyfcgrLOzmTTtRkmMpFf204rGGDfuMvjTYysz2lFxk0bAGVGkA5gVFKBii7jTLMYy+wVlKkKPuwXrXkes50Ur7adZjDAvvGWl5sYupzTiiyPN20AQBXGpAMQkWTHy6YxzlT3eQuSKF/W4zV1r3NTkLatoo3mpT7yQPe6ZOx8OrI+xwGASoxJBxBaUr0WSfdS5qVHy6zHIszinpc6NwVp23F6cPNWH3mgc4BOGnZ6yDwBUFYE6QBGJZFqmnTKYl4mFlIdyGUZKCRd50lsg1/bjhMM5KUNBkGg6Y807PTpXrccNwBUI0gHMCqpXoukxpnmqUdLdSCXVaCQZJ0n2SMdtG2Hrb88tUEvZAOEk5ex80gWxw2ApDAmHUCirGNLkxhnmoexoUmN989qvGZSdZ6Hfekkr+W2KsI2ZEH3sfNIFscNgDAYkw4gc/39RuBo7WFI4mI2Dz1aYXq9w/TAZjVeM4k6z3OPdB7aoJc8133WCNDLi+MGQJII0gEo198v0tUl0ts79jqpcct5mVjIL5CLkzaZRqBgvfBMos7zPM43L23QTZ7rHsgKxw2AJBGkA1BuyRKRoaGx12mMW9b9wsgvkNN18jGvmweq6zxIj7TOvVS6t0Evec8GALLAcQMgKYxJB6CU2/jrjg4jUI+riGMAk3xGfVxZ1LfTOF+elxxfkPHTRRtjXbTtgZ5oZwCCYEw6gMyYKX+NlrNLU5PIxo3u3wnaO1rUMYC6pk1mVd9O261rpoFqSdRtmKEUWbc5VZh1G0myH6dFOW4A6IMgHYBy3d0i8+YZ/+/oENm61bnXM+yFtK7BrAo6pk3GqW+VwWZRb85YJRlUFvUGh9f+L+o2I1vc/AGQFoJ0AMpZx1/39LinJUe5kNYxmFVB18nHwtZ3Ehex9uyMIt2cMSUVVBbxBodfGyviNkMP3PwBkBbGpAPIRNxx2IwBTFfQ+lYxht2+rv5+kUWLRHbuNF63torce68+NzLiSnpOgqLN4xBke4q2zcieznOHAMgHxqQD0F7c1HUuitIV9MZJnB5Mtx7SpUtFdu0aK0dzc3ECdJHkh3EUKfskaBsr0jZDD0UebgVAPwTpADLDhXSxxL2IdUolLUvqcpLHgn0oRVubumWnLWgb03X4CPKNv1kA0kKQDiAzXEjnn6oeTLdgXKQcvVdpHAsDA8WY9CpMGytaO0G2+JsFIC0E6QAyx4V0MDr1Hrulpke9iPXqIS1T71VSx0KtVpxJr/zamE7HCYqJv1kAkkaQDkBEuLDVmY6P/fEL+KJcxLoF4/ReRWdtO0UbNmBvYzoeJwAARMHs7kDJmQFWT4/Rc2kNlKAH3WaqTnqWY2buV8fadqzMdrR1a3HqWrfjBAAAK2Z3BxBYUVJgi0rHidOSnuW4KEFj1rzaypw5ItWqul7nrHvkdTxOAACIiiAdKDEubPWn62N/yjROPK/c2s7wsPEYO/OxdnFuzvX3G8vMOsVc1+MEAIAoCNKBEuPCVm/mzRIdA2LGievD66aaW9tRcXOuv1+kq0ukt9d43deXbSaOjscJAABREKQDJceFrX7sE2CJ6BsQc0MnvqiZK0EmSnO6maLq5tySJSJDQ2OvR0ayzcThxhEAoCgI0oGS48JWP27zBBAQF0vc2cjDzCdhbztBb87ZA25r77vZg27V0ZF9O816/QAAxEWQDkBEuLDVhS7zBDAvQfLiTNoYt5343Zyz30DYtGn864GBib3vTU0iGzcG3wYAAOCMIB2AMgR28WU9TwDPmk5H3CBbVTtx+7z9BsLixRNvKFh74zs6jMe5kYkDAEB8BOkAYiOwUyvJeQL8gsC0HslX9hs6ZlDd2Dj+dZAgO+kJBZ1uIAwNTbyh0NY21hvf00OADgCAKgTpAGLjWetqJTFPQJAbKUNDyafac0PH0N9vPKd8ZMR4PWeOf5Cd1oSCTr30TU3uvfYMlQEAQC2CdACx6DKGWkduk24FpTL48bqRYgZ/zc3ewVjS5SiTpUvHnlNeqRh17xdkpzmhoL2X/q678vcUCM5BAIC8IkgHEEvWY6h15DfpVtq9x343UqzB3/Dw2L5LItU+qRs6eQrIotRD2jfD7Nkc556bn6dAkK0BAMg7gnQAsfGs9fGCTLqVJq8bKfZgb2TESHuvVtUHY0nc0MljQBalHrK6GWZffh5uvpGtAQDIO4J0ALHxrPUxQSfdSrvn1+1Gilvw19SUbjmiymNAZo5HN9tAkPHoIsW/GaYqo4LhNwCAvCNIB6BMHnrZkhZ20q20eN1IiRv8hQmAVN7QyWtAZh2P3tgYbDy6SHFvhqnMhsjr8Bvd2ywAIF0E6QCgmNOkW3Pnjr1OMgj24xSsRA3+4gRXKoKmPAZkTsMLwt5Y0Hn7olCdDZHmTae48jhcAwCQPIJ0AFDMGvR2d4usWCHS2yvS0TE+gPCT9gV82OBPh1TzvKWA5/HGQpKSyIbI4qZTVDocQwAA/TTU6/V61oVI0969e2X69OkyODgoLS0tWRcHQMGZF/u1mhGImQFE0t9NWq1mBDN21tnh0y5PXgJdMxjr6TECdL8bN3natih0aedpl0O3YwgAkKwwcSg96QCQkDi9hLqPt9atRzhPQY1fT6+5j8uSCr1hQ/bZEF7HW1LHnG7HEABAHwTpAJCQOBfhSV/Aqwg8skw11+VmRRz2fWkPyhctKnYqtLm98+cbr7dvz25CPKfjrbVVpKsr2ZskHEMAACcE6QCQoDgX4UlcwEftnXW6oM9itnGv8uc96LCPT965U99MCj9Bymnf3mXLki2TH/vxJpL8TRLdjiEAgB4Ykw4AKYgzrljlmOSw427Djp9WyWm7ncrf3Z1dGf3KG+a7TuOTGxuNGeB1m5PATdD2ovN4bPMGg67li0uXOQAAoGwYkw4AmolzYa8yxT3sOPcsZp926+lzK/+SJdmmhavomXRLt543z3idh5nrRYK3F7fhHDqoVNQMN9Ex60H3uS4AAAaCdACllccL0zhlDhN4mBNmJXlB77Yct0DPqfzz5hmPt8sy6FB1I8Oebn3vvemnQscRtr1Yt3fOHJFqNX4Ktsr9HnW4ic7p5ExWBwD5QJCO0kjzoj2PwV+Z6HwR7UZVmf0CD+t6urpEjjhi/O9bW+Nf0PuNK/cK9Kzlr1RE+vpEmpqMtHDzvTSDDpU3MtzGJ1cq+TinhA0Ardvb3Cyya5fxfpQbHUkc017jxXXLPgkjy8nqAADBEKSj8NIMyPIY/JWR7hfRTlSV2W+iKvt6Xn45epndeG2LX6Bnlr+jY3xgbI4fTjvoSKJn0vrdMOcUHQL5qAFg3BsdSR7TYfaH7unktVo2k9UBAMJh4jgUXpqT5DAhj/6SnrBK5SRv1mWmMYmV23pUrjfItnhNPuY1qVe1avSqpy3JyfWCnFOynNzPTdjjIM65M81J6IKUU8e/Azq2EQAoGyaOA/5Hmr0auvegwJDUmMwksyjSGkfqtJ6mJvW9xH7b4tTTZ0/Dt6bdm8vIIkB3K68KQc8pSfQiW9cZRdg2EicFO63jI+j+0DGdPI/ZQwBQZgTpKLQ0J8lhQp78SOIiOumL4LQu/O3ruesu9esNui3WY8dev+Z3VZYrrjRumtjPKapvDlpvhjQ3pzd0J+6NjjSOj6DneN3SybmBDAD5Q7o7Ci/NND9SCvNFVWp6mum2fmV2+735ftBttn8uqTT+oGVxq1+RYt8IC3JOUZlebV2WSZeU7SCSaKdWeT3H65iCDwBlQ7o7YJFmr4ZuPSjwpupiPu2MDSdu6fZRe0bt60lzW5w+51SfXV0iAwPqy5UUlTO+W3V3i8ydO/b5qL3Ibj2seep5TfqGjcpzfJr1qWMKPgDAHUE6SiPN3rYi9+yVld8FddYXwW7p9tb3h4Ym/t6JjsGYU49lXsbWqpivwOvmzNKlxrPiOzri9ey63Qxh6M5Eceoii6eAcAMZAPKFdHcgA0mnZEKdsOmtWexbt3TwatXoPXdjT8fXPZU37LACXY4zVanGTtujOo3Z2gaamowbOzq2hTwj9RwAyol0d+Sajr14qvAc9fwJOyGcqjHuYbil2zc1hesZzWoG6KDbG3RYgfU46+zM9jhTMWmX23kjiQnBrD2u1So9r6oxiRsAIAiCdGijDAFsnCCIi7j0pX1BHecYcEu3t75vPqLMKR0/i+AhyvYGGVawdKlIX5/x/95eY+x6VucTFfMVuJ03kpwLwbpMqJPm4+IAAPlFuju0UfQUwKgzgOueglx0abZLFeuKM7t72sdgnPV5bafTcdbRYRxDWYhzDPudN3Q+P1j3kS5DD3SQ5D7TuT0AQNmFiUMJ0qGFNB9hlaUoQUnRb17oLq2LXh2OgTQv8JPc3s5Oowc9iWXHETVQDXIO0CkItraj1lbjvZ07CRrtkthn/L0AAH0RpHsgSNdXGS4uokxClnXgBkMaQZAux0BaAV9bmxG8mVpb1TxSrb/fSHE3Z7PP+/kkb72jTs9aF8n/ftAdfy8AQG9MHIdcyvoRVmkI+xicNJ+/DW9p1Lkux0De21d7u8jWrUaKu/k6SF3qOo43T4/P8prLIOtJ0nTdv6rw9wIAioMgHdrI04VoXGEumnQJ3JC8Mh0Dtdr4XnQR47WqQKq93QgIg9SlTpNWem1/HoItr8Awq6BRp/2bNP5eAEAxZBqkr127Vrq6uqSlpUVaWlpkwYIFsmnTJtfPb9++XS644AKZM2eONDQ0yK233ppeYZGaPFyIpqlMgRsMZTgGVPX6+QX1QZaX1aPnrIoUSFoDxdbWsXHpWQWNOuxfJ0n07PP3AgCKIdMg/fDDD5ebbrpJnnzySfnVr34l73znO+X888+X7S4D1vbt2ydHH3203HTTTTJz5syUSwtkqwyBG6LJaxpvnF4/VUGtLs+t1jWQjMIaKA4MGD9ZBY267F8rp7arujz8vQCAfNNu4riDDjpIbr75ZvnoRz/q+bk5c+bIpz/9afn0pz/t+blqtSrVanX09d69e2X27NlMHAcUgE4zWgehurz2CcU2bDD+zZso9aJykr2sJ+xjwq9kZb1//cpTqRiTHOZhUkAAQHS5nDiuVqvJnXfeKa+//rosWLBA2XJXr14t06dPH/2ZPXu2smUDyEbeUoOTKq+197Wnx1h2HurDLkqKu8re0azH8TLhVzB53b9WTm3XfApB3jMoAADqZB6kb9u2TaZOnSrNzc1y2WWXycaNG6VTYVfQypUrZXBwcPTnxRdfVLZsANnIW2pwEuV1C0zzUB9xqQ5qdRjH290tMnfuWHmY8GtM3JtcYfdvkqnwXm1Vh1R8AIAeMg/S29vb5emnn5Zf/OIX8slPflIuueQS6enpUbb85ubm0YnpzB8A0ehw8ajjGFMvSZXXvNhvtJ3Fda8PVey9oxs2xF9mVj3X5o2V3l7jsXGkPI+n6iaX3/5NK0PHun+bmsaOYTIoAACmzIP0pqYmaWtrk3e84x2yevVqOf744+XrX/961sUCCilq4KZTenneUoOTKK+5H7u7RebN815fGrK4IWD2jppji4Om+ut488IahO7YkVwmhI7b7ifNm3JpZehYe/a3bh07hsmgAACYMg/S7UZGRsZN9AYgvrhBtm7p5TqNMQ1CVXnt+1FkLFA1RwmlWR863LxZtixY29ShrE7SCEJ13fYgkropZ6/fLDJ0rJPY8cg0AIBVprO7r1y5Us4991w54ogj5LXXXpP169fLl7/8ZXnggQfkrLPOkosvvlhmzZolq1evFhGRoaGh0VT497znPfLhD39YPvzhD8vUqVOlra0t0DrDzKoHFEWc2Y11nnk6idndk5wxPu6y/fZj2rPdZz1rdpi2qaKsYes36OeTrses91Nc9qcYxBkO4LWsvNcTAEBvuZndfc+ePXLxxRdLe3u7vOtd75InnnhiNEAXEXnhhRfk5ZdfHv38Sy+9JCeeeKKceOKJ8vLLL8uaNWvkxBNPlI997GNZbQKgvbg9RDqnl7uVIUrvl723UcXUGPZyxE1x99uPfstX2SvoV540UquDts24x0DYnuiwn08yMyQPczj4lUVlb7NXVlDeMnSSolPbAICyyjRIv/3222XXrl1SrVZlz5498pOf/GQ0QBcR2bx5s3zve98bfT1nzhyp1+sTfjZv3px+4YEciRNk9/eLVKtjF25z5uh78RonrVfl48ySSC/2Ckj9LqrTLM/AQLqp1UECq7g3msIO9wj7+ThBqN++1/kmW9h2qSLF3euGRdlTz/M8LAIAika7MekA1LBecFWrRnAtEr6HaOlSkV27jP83Noo0N+t78Rp17Lxb72JfX7Tx90mN4bcHpGvWBLuoXrRoLDOgp8d4nUR5urvTn78gaGAVtZc0bE90nJ7rMEFomIBK1x7itNtK0BsWSQ530Zluc48AQJllOiY9C4xJR1k4ja/cujX8mFpdx6PbxS2rtb6iLkNFOYKuo1IJNoY2rfKYdG8vUcbthx2rnMbY5ijrSHvOAi9ZnVtUjm/XeZ1h5elcDwB5lZsx6UBWdO/RiMutNy8snVNl7eKW1enCOcr2plFnZoq7DmON+/tFurqMC/yuLpHWVr3bS5SyhO2JTrrnOuq+120/ZHFuySKlPQ891Hk61wNAGRCko1TKMuZO5QWXrqmyTuKU1frc7biPM0ujzsKk7ra2jn/PGkjHZQ9AXnghH/MXhBE2sEs6EFRxfOtwozLLc0tawacuN9OCyNO5HgCKjnR3lEqZHrGjOsVSp1RZJ9byqSirLsvwEnQfJ5Vu65YiK2LMXzBvXnGPr6xF3ac6pl5nfW5RtX635ST5dydvj6EEgDIj3R1wkKceDRVU9+bpetHmlB2hoqy6bq+1vQbdx21tyfTsevXgjozofXzpWq6goh7fOqZeZ3Wsqcqs8ltOEj3USWaF6XruA4AyIUhHaZR1zF3Rty/poEPFM9dVXEB7LdNtH9u/MzAQvxx21gCkqcnoQTfLpOPxFWTf5CmAD5vinsSNyjzVl5Wqc4ffcpIY/qDjzRYAgDoE6SgVxtwVS5LZEaqeua7qAjrKMtO4kLcGIFu3Ginu5vsqji9VAaC5HK86UX1zRbfgNcqNSq9tyPMcH6rOHWGWo/JpCmXKCgOAMiJIR6lkMbNvGaV1sZhkdoSqZ66ruIAOskz78tO+kLeOta1W4x9fSaQid3Z614mqmxo6B69Bb1QG2YY89+aqOndkkaFV1qwwACgTgnSUEhczycgiOEkiOyJOgJvEBbTXMt3qPIsLebMszc3x938Sqcg7dhgp+U51ovKmhurgVeWNlaA3Kv22oQi9uarOHVlkaJEVBgDFxuzuKC1msFUvy9nzVe/PONuSxAzabsv0KmfaM3lHrTP7vnObNX54OPwYbKfldHSI9PZOrBNr+U1h601V2UWym4k96DYkdbynfW5Oenb3JPF3DADyg9ndAQ86p6LmWdY9a6ovVFU8c13lsAqnZbrV+dBQcuVwE2X/J50FMDBg9JybzOX09DjXiVMQHLYnXGUGQ1bp5EG3QXVvblbnZlXnjiyCZQJ0ACgmetJROmV6Vnraili3uvdU2eu8UjGC9CyegR12/yedBTB/vkhfn/E4OBEjYN+61Xs5KnrCVZRdZY+833qclhdmG8xlxD1Winj+cKP7eQUAoB496YCLrHt7iy7NcZJp9tDr3D6sdV6pGEGcSDZjocPsf79jMW4WwNCQsTwzQDffa2vz/p6KnnAVGQxJzyng12sdZhsGBuL3gJfl3EwmFwAgCIJ0lAqz4iYrjfTqNC9yndalW9BgnVF9aGgsKI0T5ESt4zD7P+ixGGUctzl5XdTntqu62RT3vJLkTa+gqfRBtkFFWn7W5+a0jus8z4gPAEgP6e4onawmY/JC6mNwaabEWtfV2GgErVmlkgehqm7SquMkjkWV6f9hj8ukjmOn5cZZl8pU+rxPlJfmOtMawgAA0BPp7oAHnZ6VTupjOGmmxNqXPTIyNiGbrj1gKnpe06xj1ceiU9mHhqI/tz3MGPQkj2NrOVSsS2WvtcplZXFuTrNnO+tsAQBAfhCko7R0uDAi9TGcNC9yvZaty3hZ+/rzMBbabZ2qluNUdusM70lI8zhWtS6nGzpR27PqtPw0U9zTHAdfq/F8cwBAMATpQEbKMlGSavaL3A0b0llXU5M+PWB+vak6j4VOWtplzzK7w29dXmWw3tDp7jaC/ai98zplJ4WR1g0p6/G6dKlR33mrKwBAugjSgYyQ+hiNGRCYY6Tnz09uqIA1+LA+uivrwDXpnlvdg66gwWcaZc8yu8NtXWFS4iuVaO3JaR/E2easbk6mcVPHqX45zwMAvBCko9Sy7rXOc49l1pYtS3csqS6Ba5I9t/ZlRJlELElhg8+0JHkc2+s0yLr8gm7rMsO2J9Xj77OelyPp45qMqexR1wDyiCAdpZT1haFJl8Avb7K88PUK/tJav+qe27jHg9/3VdWLrnM4JHEcu9Wp37q8jg2nZYZtT6r3gS77NKmbOmRMZUeXv/MAEAVBOkpJlwtDExds4eh24Zv2xaC1N3Xu3Pg9t3GPB7fvu9VLlKDdLfjs6Qm/rKSoan+1mv8+cVuX17HhtsygmQBxb47ZP1eWXmYyprKh2995AAiD56SjdHhWbTH4Pd846nOko3wvzWe3m/r7RZYsEentjfd857jHg9f3u7rG18ucOSLNzdGfST1//sSgvLMz+bq2S+p56NY27SToPnE6Ntra/PdzkO2K0ta9jtUsjp2sJNVuMBF/5wHoiOekAx5064VFNG5pv1F7taN+L6vewKVLRXbsMP4fp5fI73gIsh1O3xeZWC87d4r09UUvs9NM/mn2vCad1m/t+bMKe45yOjaCnPeCLD9Kr7BXj2aZepmT+BuTddZB1ut3w995NXTdv0AZEKSjlMp0YVh09ouuqCmOUb+XxcVglBsDXr9zOh78AtL+fmM7J00SqVaNXnLr953qRURkZCR4me06O42fxsaxZXo9y161sGn9YXjVR9TnmNvrRcV5z7wBUK0GG3/v11aZlyNaW816vHXW6w+Cv/PR5WH/AoVXL5nBwcG6iNQHBwezLgo0MDycdQmg0vBwvS4y8cdvP0f9nqmvr17v7DS+09lpvA5S1jg6O+v1SsVYZ6VivI5bNmuZvJbf11evNzWN1ZP5e/s22dfd2hqszF78tifKvgjCq4041VWQNmfnthzV2xSn7UUpS9C2WjZx9mvWdZr1+sPg73x4edq/QJ6EiUMZkw6gUKKOcVUxNjbImFO/sfRBBV1OlO3yG8/Z2WmMhXf7vdPyKpVo2+5Up2bPo9O6khzj7LTsrVud60rEeRu96sDtdzqN21Y9Jr3Mou7XrMdbZ71+JIv9CyQnTBxKkA6gUKIGBGkFEqoDLq8bA3EuttzK6bbMjo7gM61HvZkh4j9ZYJIXl0GCaCun/eu3/+03IHS6YFYxySAX+Ya4dZn0jRu/faXTjSOox/4FksHEcQBKK+oY1yTHxrqNxw06Ltvr914X0nHGy7uN5zSX0Wj569HUJLJxo/8yg5TZ5DT+O8hjyZqaxr/X1KQuMDR7zu1txO2Gjt/+dnuGuTkrvrlNukyAFbcsBOhj4tZlUuOtg45FZrx3sbF/gewRpAMopKgBgVtqdRT2C96BgXAX5iqeMx71YsvrpsWaNWO9gE1NInfdpf6mhtsz0b1ucNRqIkND45c1NKRmEjm3IFpkLHh30tEx9v8ozzAX0euCWYeyFGXG6Th1mdRNxaATaDLhX7Gxf4Hske4OAA5UPIfdKWWwuzt4Wr39+3GeMx4n1dj+3TRSIZ3WIeK/3qTKFmS58+cbj5gzZ7Dfbz+RI44wHj3nlbIf5BnmInqli2dRlqKObddlv+o0tAIAiogx6R4I0otPlwse5JtbUBY0UPC74HVrp+b7bt9vaDDmFXcbz6yy7Ttta9CAMol1i/jXfRKBXNDgxbrujg6jF3/XLuP7jY0i8+aN7a8sbnzkHXWUPOoYAJLDmHSUEs/1hCpeY4eDpoP6jTm1B7RuqfF25m1Vt/HMKtu+07amNUbaKd0ySApmEmmaQbfZuu5t24wedLMNjYyMpeyby7DSIY1cZ1Hnc0A4tEMA0AM96SiMIvQAkAWgjzCP23LrRQ7Tq+u0vg0bjPedWNu4/btz5wafad2NV+/xwEAx0469ROmhnz9/4n7o7PQ+L3EOcFeEc3xe0A4BQD160lE6ee9lIQtAP/YepQ0bwvciB+3VdWu/7e3jZ1K3zl5u9nI5fbe31/ieXzvymzXebVvLOKlQlG3esGHie37nJQIjdzr38ublb01QtEMAyBZBOgpBp8cURRE0hRrpMYMys6du/nzjZ82a8IGCXzv0ar/d3cZYZnN9To8Ac2rrO3a4tyO/m0JmCn21OhZ8zJkzcVt1Ob7SDJDCbHNnZzrnpaIFiG50vDnEDVYAQBII0uErLxeAOveyeMl7FkDRLVs2/gbKihXJBArd3UYgLGLs+2rVWJ9TYFKpjA8OqlWRI48cvzyvduR2U8j+mLHnnzfeb2w0ZpXXISiyykOAlOR5Kcvtz/L8pMvNIRFusAIAksGYdLjK6+Nu8jiWjrGWekr7kUTWR3j5jS13ajP1utGD7tWOvLbJfP63WwCm26OY8nTcJHFeymL78/p3IQk8sgwAEAZj0qFEXnsI8nhxlNcsgKJLcxiF2fNtPmPba2y5W/bFD3/o347ctknEveddx+EjectASSLFPant91qGzn8X0t73eR9m5UXX4wgAyoIgHY7ydgGcdzqOtYTB7waKqmPC7QLfaWy5W3Bgzhzu146ctslpmfZJ6nRS5AApiCS2P8hcBTr+XQia9p9EOYt2gzUPQ0gAoAwI0uGo7BfAWSly/WZ9IR+V2w2UOBezbnXR3W2kuNs/6xQIeQUHfu3IbZvsy3SapC4JXm3D63dBAqS8trsgVAeIfr3kbn8HzGESWfErd5KBZ9FusOqcKQEAZUKQDldF6yFANorSM2MPTKJczPrVRXu7EZB3dPjfIFMRHARZZpI3jrzqI0i78aqDorQ7LyoDxKC95E5j0LMM5oKUO43AM85xosuNJF0zJQCgjJg4Dr7yOBEb9JGnyb2CijphlF9dmO+XZXIur/qI226K2O6CiHO+DlJnZsCm04RpXuXWeXI3HY/ztI4brisAlBETx0Ep/pAiqqL2zEQZDuJVF/ZeX5FipdA68aqPuO2mqO3Oi4rMAa/sKfvj+Vpb9RkO5Tf0Q9ehW1mklvsdA0ln0JUhwwUAVCBIBzSX58BCpwvkqOOe3YS9mPWqC7eLdR0CCS9x2qZXffi1G7/16tTu0qIi4PNKn7cv3/y8+W+Ww6Ha2iaW29pGdBy6lfaNpKDBcdJj7BnzDgDBEKQDmipKj0PWF8hxxz27iXIx61QXeez1jds2zW3zahtOvwuz3qzbXZpUtyH7zQyn5e/cmd7Egm7s7WFgwLmN6Di5W9o3ksIGx0k+ZjJP5zoAyApj0gFNFW1MbVZjEJMc9xyVvS7ytq+Djl2272+3MbhebcP6uyj1pPvYV1XlS7oN6dhGncokol853aQ1Jl2ncfk6tiMASAtj0oGcK2KPQ1Yp7kmNe47DXhd56vX1qzev3u4oaf2VSrz95dQrHFacNuH23SDPJA/DrQ2FGccfZflJ8hui4tQe8nTeTKuHX6fhH3k61wFAlgjSMY6uFzNlo8NFVV7aglc544x7TpOO6bhu/OrNLRCPEmTbJyvbb7/xv29qCr6/oqTox0nr9/uuWz1FXad9XLaIsV/8lqPLWOWwZXJrh7oc02GkUT5dguM8nesAIFP1khkcHKyLSH1wcDDromilr69e7+ys10WMf/v6si5RMoaHsy5BcFntk7y0haDl9PpcXrY1TUGOEbd6Gx423rP/mMvs7KzXKxXjvUrFeO3F+vnGRu9l+wm77qjfCfJdr3oKu06nfdHXV683NY0t12s5cbYxKUHL5LbtHNPu8vQ3EACKJkwcyph0iEjxx4np+DzaoNIeU5tlWwizrWHLGXTcc1RZjX1Wtd4wx4i5Tuu6zf977Zew63AaR2tdb9C2GWVMbpxxvG7frVaN3n8RkeZmkaGhsd81NYns2xd+nU71Xa+L9Pb6L0enscqmqPvKaViD7j3oAIByYUw6Qini+Ge7PD/2Je0U9yzaQtgU3yjl9Bv3HFVSs/D71XmU9XotM8gxEmQ27TVr3NNqw6S6OqUzt7ZGS9mNMrQhznAIp+82NRmB+fz5Rlu1BugiY6/DrNPtOHAK0Ds6Ji5HpyEfUcpkbrfT7wjQAQB5RpAOLS/UVCrDTQhVkm4LbnUe5fFAurRZ1TeAggbfYdYbZJKyIMeI0zrt761Y4R+IB91P9nG09947tuytW8Nlw0QZk9vdLTJ3brjvOK2vUjHKLGLU0fvfP9ajbjLH14cpp9e47EbLX/emJpGNG/3LGXWssupzqV+ZivJ4SgAAXCWefK8ZxqQ7K/o4vqjjLss4fi+JtuC1TL9xzGmWM6ygZQ/TjoK01bB1Zl9mR0f49bqtM8448aCsy4u734OWzbqejo7o7atajVZvXuX0q48oZQ+zz8zPJn0MBm3POoyjBwDAD2PSPTAm3VtRx/GFHZOe5zHsqqhsC37jx+OMg8+6zaoagy0Sbjyudb0iRm+pU++y2zI7OozeVeuzpf3KqsNzqefPF+nrExkZSXZ9quZmqNWMmemt+8ou6PK99pFT6rfqY8O+/mpVZNeudOev0HEcPQAAQYSJQwnSNZd1AFI0Qeuz6BPppSnIRXWeb4p4lT1KOwr6nf5+I/gzxzI3NorMm+f8WXtAL+K+bK9jxGlbazWRZcvS2Xc9Pca22KkO0FQEgta6am01+sqfe875s0Hrza1tpHX82NfvdNMhjWCZ83Pxce0DoIgSnTjukksukZ/97GeRC4dgGHOXjCB/9BnDrp7b+HGzTu3PeM5LgC7iPhla1HYUdIxwW9v4ycdGRtyXbx1bbXIrj9cxYt3W7m4jMDSD5u3bk993y5ZNfE/FXAS12sQbGHHnPLCO1d+1S2Ty5PGTt5nLtLYbr7bh1Z7s8wIsWRK8nEE5rV9kbOx7mvNC6PLMb6jHtQ8AGEIH6YODg7Jw4UI55phj5Etf+pLs3r07iXKVXp5nI887nSYlyzPrxVa1KjJnjvF+e7sxA7j5u+bm8bOF55WqmbODzoAeZvltbUaA5RQkRmnXlcrEc5RTAC2i7uaWGSTabdgQfZn9/UbdTJpk/LS1jW1TnEDQLaD+4Q8nLrNSCRaYuO1vkYnr6u01fqcywHGbbX/evPHbk4YwTwlAvnDtAwD/I8qg9z179tS/+tWv1ru6uuqTJk2qv/vd765v2LChPjQ0FGVxqcrDxHFRJ9KCOjpMSpZ3TpM7mW3Y+jvzp4gTQCXdjvyWb//9ffepKU+Qc1QS2656wjCzfNYfazut16Ofd5uaxi+3qcl9mUG3y61O0zqe3Nav6m9TFn/j+LuqD92ufWgbAFRLdeK4p556Sr773e/Kd77zHZk6dapcdNFFcvnll8sxxxyj5i6CYnkZk86YOz0wLi4arzG9Is6/s36maHWedDtyW77beURFeVRNBhimLCrHXru1UVOc5YcZ0x5l/Lu9zswUd6fnoydxPCU9IV0ac1LkeR6MItPh2oe2ASApiY5Jt3r55ZflwQcflAcffFAqlYq85z3vkW3btklnZ6fccsstcRZdeoy500PRgsW0eKViVyoTnxHt9J0iSXqbnJbvNYZZRXns5yhr2nmQ8fhRxp6qTHO2pos7iZNqG2YoQpRhEfbftbdPHM5g6upyHiYQh+r2nEWKs9M6mXdkorTrRIdrH1LuAeggdJD+1ltvyX/8x3/Ie9/7XjnyyCNlw4YN8ulPf1peeukl+f73vy8/+clP5N///d/luuuuS6K8pcGYO+Sd28VWrTZ+wjPT3LnluhmV9MVv0nMrmOcos5dr/vyxYDvIuuNcCKvahu5uY1y1k7gTRoYJNlQFJtZH6pnMGfF1nYQri4k63daZ1GRlKudlSEtWE7hlfe3DxLEAdBE63f2P/uiPZGRkRD70oQ/JX//1X8sJJ5ww4TOvvvqqnHjiifL888+rKqcyeUl3B4rCqefWmtLY2DjWE6iLJNPT00yldFpXW5vabQv7WDDzYlenZ12bZdp///E3kJqajEkP4y476DapaHdu6fO6DJvyOx+kVU6nxxKKqF2/qmM9i/RrHdLOs1LmbQeQrETT3W+55RZ56aWX5B//8R8dA3QRkQMOOEDLAB1A+pyCju7usdneR0aMwChOT42qXo40eo9Up1J6bbvTI9Octi1q/Xn1Otl7xETG6rary+jB1uUJCuZ67RkeQ0Px21aYbVKx/WZdNtr+umfdI+h1bMWdST8Kt0BXZT2pOtbTTr8ue2+yDin3ABA6SP+rv/ormTx5chJlAVAS7e3Go9fMoGTXrmgXnqqD6qQvhlVe/IbZdqdHppmv49SfU1q7fVy0+X/7+kX0uhAu0qMXu7vHHo1mynp7vI6tKCnOcduudZ1J7HdVx3oWAXORjoUosk65BwCRmBPHAUAUqi48VQbVaVwMq7z4DbPtbtu2ZEn8+rP2OlUqzs/odlr/zp0iW7fqdSFcxB40c5JG+/ak2Ssa9NgKcxyoOvYrlWT2u6pjPauAuYjHQlhluSkBQE+xH8GWN4xJB/QQd9xflEdXJV2mIFSML42y7W5jcMMsw4sZmI+MGK+bmowg3Ny2sHWb5eMP8/7oRXtdz507NudDVo+XUnlsJXHsm8vV8dFyWT4SLO/HAgDoJLVHsAGAkyC9dHF7apLoYUqj90hFKqU9rTzItvtd2Mepv1rN6EE3A3QRYzz3kiXO6/eq26hpzKozHvLKqde6t3fsdVaPl1J5bCXVu6x6v6tKm84y/TrPxwIA5BlBOjJXlsloyiBMgKXiwlN1UJ3mxbDbZGV+zDru7R1bRpBtb283era9fh+1/sybBnbW4DBo3YYNItN6VJTXeSrrc5h1/V4BbFYTgjlNJBj32FJ57MfZ/iDfVRXoEjADQHkQpJdI1heSdlk9hxXJidJLF7XnViS5oDqNi+FNm4zJ88yfTZuCfc9ax7WaERxv3248Ws1PpTI2RtnU1KSm/jZuHL9st95Nr7qNEkQm3TPsdZ7K+hzmtn63ADZoD3SST0tQdWypOPb99p9XPaS573X72w0ASB5BeglkfSHpJqu0SyQjjV46t7acxx6mxYvHetGHhozXftxSmTs7gx3ftZrzY8bcPhuG2VNv9qjPnRv+UVpBgkhrudJoc07nqaxTx73KJuIdwHr1QNuPL3Mcu+ryqRTn2HcrX5C/mWlsm65/uwEAyWPiuBJIYzKssJKa+AfZUj05mP33SbXltCdHGhoyes/tqtWJPd129jow05iD1olfHcadpKq/3xiLbt488HoedaUycX1f+YrIZz4zcf1u5Ury/OZ2nhIxbkb09k58P61zWNxzqFObd5pcMM3JDdPkVb6uLu82lda26fi3GwAQHRPHYVRWYxD9lP05rEWlanIwp9/39Khvy9b12B8b5kbFsdPU5Jx27hegi4yv47lzjYA/TJ347aO4PYRLl4rs2OH+ffu+XbRobH09PSLvfa/x/+3bx/cCu5Urycn+vM5LO3YY+yvKOUxFG4pyDrWPXbf/zqntRO0l1v0c71Y+Ef/zTBrbpuvfbgBASuolMzg4WBeR+uDgYNZFSU1nZ71eqdTrIsa/nZ1Zl8jQ12eURcT4t68v6xJBleFh79/7tUmn35ttxfrT0RGvPJ2d9Xpj49jymprc26Hq9nrffcb6zPXed1+475vbFPX4dqqT4eGJdSzivz/DfN9aXmvdW38aG8dvR5DlBi1jWNb97vTT0RG8TURpQ17b5bY8+3eCrtd+PERpA1HWmxW38gU5ptLYNl3/dgMAogkThxKkl4DuF0pJXVznWZHrxC/gcvu9249TmzaX5dX23dbjFvgndcFcrcb7vurjO+52mjcerDc+TG51bq4vaHCfVMDiddwND7uXIejxGmYbwuxXv/YedL1ONyRU1LXu57OoNzWcvquS7n+7AQDhhIlDGZNeImmPuy27KPUddzxwXviNtXT6vcjE8bIi479vr79qVWTXLvf1dHYGG1es+/haEXXHd5w2GKSe7Pt2zhxjfL59krKmJmP/uY1dV3lsBF120nVjFWU8stN3tm71Xq9Tu+npEVm2rPjnIT/2usnqbyh/uwGgGBiTDkf8kU9HnBl53cbdFm0cot84Yqffb9jgPgGZOVbTXn87d3qP6Qzz2DCdx9eKjAVcccV5tFWQerLv23vvdX5++9DQ+FnrRZJ7hn3QcfhJ1I2TKOOR3b4j4rzegYGJ5ynzu52d8es6T+cst7KadZb1LOs6nWcAAOkgSAcUizrxlttFdtDHa+WJX7Bj/X13t1GH1kAt6IRPIiKNjeM/Z73gtT82zGvisSQnKItL9aOzRKIHBn715LTvnQLYpibnCehUByxRAuIwZbAux1o3c+YYmQJOx3aUm0Je33HaJ9bzVF+fMaO5ikcbphHQqrgBUKsFL2vWj9oDAJQP6e7QTp5T++KmRYd9vFae6yoopxReM8jwexyXNZXaL203aF3qWOcqH50Vllt9hK0nayp52o83S+JRV16p8bWa/2O+oqTW+33HXJfXo+Xibn+Sjw1TMeTBuoymJqNNjYy4lzUPQ10AAPkQJg4lSIc2ijIeO85FatBAZWCgGHXlx+8C2R4IurUhHQNrVdzqqLFRZN685J6rnNTxau4rr+NI9f5MYlv8yh808IuyrUG+43Rjx68sQdabZECr4gZAlO3O8iYYAKA4CNI9EKTrK8kemDSpuOD3C1SKUldBRNnWIgflTrwCjyx7n+PsB6fjSCTZm1Oq2k2UCfTSPobtPcpeGTthJLVdKm4ARM0gsNZVkM8DAOCEieOQO1HGheoqzuRSJvOi02ksaZHqKogoY8HLFKCLGHUyZ8749xobk5vczq8NqhiX7HQcJT02WFVdRZlAL+05Dqz1u3WrurIksV1mwB938ka3uQ/8ymrOXWEvU5HPuwCAbNGTDm1k3bOkM3sPXxnrKune8bz3vs+fb0wANjJivG5qEtmyxX0GcRXrc2uDSbTPvI0NDppRYx0nnvV2qCyDimXZ63DNGpEVK9SNSTeX0dYWbc6QMpx3AQDq5KYnfe3atdLV1SUtLS3S0tIiCxYskE2bNnl+Z8OGDTJv3jyZPHmyHHfccXLfffelVFokLeueJZ3ZLyDLWFdJBTBZP15JBbNXzwzQRYxHmM2fn9w2ubXBpDI98vAYPKugGTVOj0LLisq6VLEse+bEihXxs5Tcni4QRBnPuwCAbGTak/6jH/1IKpWKHHPMMVKv1+X73/++3HzzzbJlyxaZbz5vyeLnP/+5nH766bJ69Wp573vfK+vXr5cvf/nL8tRTT8mxxx4baJ30pOtPhx6lvEirroq8T4oy5t3ek26K2uMXZ7b7pHocVU/wpsN+VFVXOmyLSjpnThStrgEA6chNT/p5550n73nPe+SYY46RuXPnyo033ihTp06Vxx9/3PHzX//61+Xd7363/O///b+lo6NDrr/+evnjP/5j+eY3v+m6jmq1Knv37h33A71x8RNc0nVVhF5mL2F7fXWtj/5+45nb9gBdJHxPdthtdGqDSfU4qpjvQUSf/agi68BvW/I6ZtovcyLL7eJvFAAgadpMHFer1eTOO++U119/XRYsWOD4mccee0wWLlw47r1zzjlHHnvsMdflrl69WqZPnz76M3v2bKXlBoos6Ym64lBxkR42hVrX+li6VGTXLuP/5mRYUdPCVWyjqmDaTdwgSZf9qCKF321bdLkREYfTzZ4ibFee5PUmDwDkXeZB+rZt22Tq1KnS3Nwsl112mWzcuFE6XWY6euWVV+Ttb3/7uPfe/va3yyuvvOK6/JUrV8rg4ODoz4svvqi0/EBR6TqLvOqL9KC9virrQ2UdOpVraEhk7lzjdZiebNX7PEywmVa70q1dx8k68NoWXW5ExJHFDP8wcDMEALKVeZDe3t4uTz/9tPziF7+QT37yk3LJJZdIj/VhpDE1NzePTkxn/gDwp+tEXaov0oP2+qqojyQufJ3K0dQksnHj+G0KEoQG2UbVwayqOglarij7MckAPk7Wgdu2iES7ERFnO5OsI2uKu443yoqImyHj0V4ApC3zIL2pqUna2trkHe94h6xevVqOP/54+frXv+742ZkzZ8p//dd/jXvvv/7rv2TmzJlpFBUoHd1mM06yFzRIsB23PpK68O3uHl/+4WFj2ZVK+CDYbRuT6lmLWyf9/UZgGqZcQfdjmr2JUW9+OW1L2BsRQca16zBPg643yopGt2yTLNFeAGRFu+ekv/Od75QjjjhCvve970343Qc/+EHZt2+f/OhHPxp975RTTpGuri751re+FWj5zO4OhKfTbMZBZsPW6Znq1udgq5qt2r5+r2V3dUWbPdy+Dl2efW4tV3+/sX1DQ8brxkaRefOCl8tvP7ptc9SZ75Nsl/Zlh5kJ3207+/tFFi0S2bnT+Fxrq8i9945fTtrPDo87w7+uzzrX6Rwrom89pY16AKBSbmZ3X7lypfzsZz+TXbt2ybZt22TlypWyefNm+fCHPywiIhdffLGsXLly9PN/+7d/K/fff7989atflb6+PrnmmmvkV7/6lSxfvjyrTQBKQaeLR69e0LR6PYLUh70sAwNGGrqVdYI3k1dvldv2qU57tm+jDs8+d9r2JUvGAnQRY3b7MOXyS3F32uYgvfY9PePLumlT/Hbpt032bQmaRu83rt0M0EWM/1szHbLocY0zPEDHHmJde2p1y6LKgo7tBUCJ1DP0v/7X/6ofeeSR9aampvohhxxSf9e73lX/8Y9/PPr7M844o37JJZeM+86///u/1+fOnVtvamqqz58/v37vvfeGWufg4GBdROqDg4MqNgFARoaHJ77X2VmvVyr1uojxb2dn+uVyK0tHh/F/+4+5HX19xndEjH/7+vyXad0+t+9bvyNSrzc1OS/bT2vr+HK3toZfhpMg212vB6/Pjg7v9Tm1Gzf2dTY1ebcv67aYP0G+5yVo/YTZLr/t7Ow0ludUv9Y26/Zd3ehcXt3KYxenXRWB7vsHQL6EiUMzDdKzQJAOFJNbUJHFRaZbWTo63C/4/C4Gg26f/XVfnxEkmp9vbIx2oZlUkG7y2k9B6tPvBkTQYNe6Tut3/G6y1OvGZxob3YPbKO3Sr124bVeYdu91g8de7qDr14FT2XQqr07nLDjTqb2YaB9AfoWJQ7Ubk540xqQDxaXT+EGnsnR3O4+nDTo2O8r2qRgL77aManViCn9S/Oqzo8OY0T7suGs7pzHPbW3Gd7zGbi9ZItLbO3F5lcrYnARR5gXw23f2Ms2ZI9LcHG3MttO4dr8x6W7fDfq7JHnt86zKlMZcD07rQTw61Gfc+RgAZC83Y9IBQCWdxlE6lcVtPK3bY9QGBvyX6UfFjNhOy2hqMoLBtMbR+tVnT0+0cdd2TrPNm9vtVv9Ll4rs2OG87vZ2kbvuitYu/fad03bt3CnS1ze+/EE5jWsfGDBuxgwPG//3ekShXZbjrf32uYqAK8zYZLe68Dumw45/1nWMe95lHaCL8Fg8oGzoSQeQe2nOoh1W0LKEmak87Pa59cCEWY51GU1NRtA2MpJ+xkLUfdvZaQTSfk8FCJJ1YC2D23c6OkR++MOxCfyilt2v98zeE+sU1IXNmrDOnp/nmdSTWr+9XjZsGL+fo5Qlzuz81u9nXedIhsqngwDIDj3pAErBa7ZzXQQtS1tb8JnKw26fvQdfJHxvm7mMatUo58iI8X7aMx5HCXLnzzdS0c3vuvVmB806sL52+k5Hx1hwFaXs1rr0m83c3hN79NHRsiacjqUgPXdu+12HmbGTyqyx1os5k7/XcRSkLuz7KGivqXW/dXZmX+dIhoqMKAD5QpAOILeKlP6XxkWYuaw49dbUlK+LReu21mpGAO316K4ogZ39Oxs3RiurV6qyW/2aQbx58+W55/xvRjixt4klS7wDPr+0ah2CiriPa3N73ynw7etzP47C1kXU4Rk7dox/rKPuxybC0Wk4F4Dkke4OwJVOaeN2RUz/S2NiIBX1luYERnHaYJxtjbLeuMdL0FRlp/XYvzt3rrF/gpTLrZ5aW8c/J721dWyehCBlzeNEV0HKbN12O7e2FbYugtSv11CL3t781DnC0fnvMgBvpLsDKShyCmHUyYfSrBN7L1FjY/57jeL0/AWlooczjXKqmAArzraGqQ8Vk5EF6T11qxOn7/b2jqVi+9WhWz3FKatIOu1EtSBZJk6Br1/bClsXQXpN3fZbT48+dV7kv5NZyfPfOADBEaQDDrwuLMowe27YdOj+fuPiUHWdeKWcihgXrnPmGP8fGTHGSye97jSWlfRFmKq0ySTLqWoog9e2xt3H9vHAcdpekBsKbnXi9t1ly4LXob2eNmwY34suYrw2e/HC3PzIS1AR9ubD9u1jNzPCPG0hiKBBvVv7zrrOy/B3EgASlegT2zUU5iHyKJ++vnq9s7NeFzH+7eub+JnOznq9UjE+U6kYr4tkeNjYNvvP8LDz5/v66vWmprHPqagTt/3g9L7q/RGkDaSxLLf6VimNdUTh1wajlNv6HVX72Nr2RIzjIKn24lcn9u9u3x7uOLaux2n77MdW0DrUtY25iXI+0WEbdSiDVdH/TgJAFGHiUMakAxZBHpMTZzxvXsaShXmMT2enkVprF2dsuNv6ncbdprXutJal6zjetMdoO9Vdd3ewuvFbr4p97DUe2BwL7vd9r4nDnH4XdJyy+d242xmkLbqVVdd27Cev5dZJEecLAQAVGJMORBD0MTlRxrjmLfUvaDq0OfbVrqMj3mRfTvthaMh53K11XXFnM1b52Kioy9JtxnqvcdBhvxOGUxv0q5sg61W1j81Hrdn19savG7f2G3SccpjPewmScu1WVt3acVB5HEevGx1m9geAvKMnHbBIasZilb2zaQrSEzp/vvH4IfO52U1NIlu3xru4DdqTHqZ3Ne66TWF6h8Pudx17oOzbMGeOSHNz8Nmv47Z3cxlB6iboelWVr79fpKtr7Pn2jY0i8+aNLSvILOxRe/HDzE4fpdc+6HrcvpdVO45TZoJIdchIAICJ6EkHIgrS8xS2p0Vl72zagly0bthgBCYiRs9i3ABdxH0/OL2vuufLbd1ReofDZCSI6NcD5dR2d+40bsqIOPeQqm7vbnVhfx1mvSomzqvVjO9u3TrWoz5vnrGsMLOw28sYpJ682oPTut3S0d3ac9xMiKDtWOU5MGqZ85bllBdkJABATAmPj9cOE8chCNWT8BRxEh2niapUc9sPWUyqFmcfWpflN4GZqknNVNWdfbvdJiMLOuFYHH51E3a9UdqRWxmCbr/b75KYzM6rDqKUMQyv7VE5OWPcMhfx3AwA0BMTx3kg3R1ZKGLqX9C03TykkfqVUUX6rlMbMMftOtVh1Hpza2tR26D9e9WqyK5d3unvIsm29ywnK4s7uaRbGeOmwZu90kHaqVcZgy4jTLmSSPm3ryNKmXUcXgIAKK4wcShBOpCiPASsQQS5uM3DjYkwZYwbWKQxM71XOVUEgU5Bpj1oV3GjIYqgY7DjriNIUBd2FvY4wWKY/WFdr1cZvX4Xt26TCoyjtu+8zhcCAMgfxqQDmipCgC4yNrO115jTPMzuHKaMccYx9/QkPzO9udygM+OHHSdulss61nTrVmOMutty02jvQcdgqxB0rLVTW7HXtfU7ceYisLdhc53WdZu/s9bTmjXu7dmp/KrGbic170LU41PF/AQAAKhGTzqAUKw9d01NRgBo74XOKo00TC/f0JCRpm0XJEXWnjocZAZ8+7OzrSnvYbIN/NaXVE962PUlyVoHaa8/TPZFrSYyMBDs81EyT/zS1oP07ged3V1lPSeZZVPk2d3zUEYAgDt60gEkxtpzV6sZvcH22XvTnqU8TC+f+dnmZuMmQ9gyWtP5g6zT7EW327Ah3AzI1vV1drqvL8zM+Cqk2RNpr3OnDIUos6WHEWafVSrBszWizIbtdZzZbyS51ZNXe48yc34QSc78HfUco3Pwywz0AFA+9KQDCCxMD7nK3rKovcd+n21sNLbHKRvAT5hncjv1oofthbSuT8T/efRudRalNy7sc7mT4lTn1aqRcm9qbTV6r3WYEyFsRknYOgzTU696ToU4Pen0CIfDuHkAKAZ60oEY8vD88qyE6SFX0VsWpAcpTC+f/XcjI0aAXq2GK6PX2G+nz9lt2BBsPW7rEzHWtWSJ+3fcgqAwwVGYHrykhzG41bnbbeas50QwA6ogx0vYnlLr55cuNQJz8zhraxtfBlPcjAcVGRP0CIcXJYuBv2EAkH8E6cD/4AIymLAX63GCtyCBVpgbB26fbWoKVy6n5TQ1GSn01rZj/1xjo/G6szP8+jo6Jr7f2+t8E0CVrANd6zHZ1WX0klvrvKND5Lnnxn9n5041E+WpKLPfBG2msPXs9PmBgbH1trUZP9ZzWdybZipuui1Zov9kkia3tpJ2ABzm/MbfMAAokASf166lMA+RR7l0dtbrlUq9LmL829mZznqHh9NZj2pJl3t42NgX9h+n9fb1GftLxPi3r899uWE+68W6nKamer2x0bntqFxfU9PE+ojTTr32YZj6D7K8KOzH5NFHT6xLt+M2yvGsovxu63Vbdth6dvt8R8fYeq0/aZ7LzPLZ9fUZ5QvbnrLgdryqOo5Vlskuq79hAIBgwsSh9KQDon5ipCDy3uuR9JjSpFLrVU1aZS6nWjV6bkdGjPftbSfM+rzaW3u7yJYtE9+P0k6DtL0w9d/To74tOx2Tzz1nhHbbt4/VpYqJ8lQdi1EmaAs7yaLT5zs6jKyKIEM8kuJVh0uXiuzYMf7zSU8mGZVbVkOWWSVBziFZ/A0DACSHIB2Q9GcjF8k+lTgPkkitV/0M76amYG3Ha31Bg0QzVT5uOw3a9vzq3yy3dXI8VW3Zbdt27BBZtmzstVsAE+bmiKpjMep5JGw7t39+48bgQzyS4laHbsHi3LnpPZM8aKDqNdeEDgGw30z8af8NAwAkhyAd+B9pPkqKXo9gVD6qKcnMhbhtJ0yQ6LSuMO0mTNvzq39rud2WH0d3txHMBVl+1InyVB+LUdpC2Hbe1jbx89b1trYaP2HKEIdfBoFTz39PT/Kz7Yc95r3mrMhDAJzm3zAAQLJ4BBtgk9bjgcryWB1dHreURn1HfbxZmMd0Wb/n9/gtt/KErQun5biVu7FRZN48tXXb1ub8mDVVkmgbSbT7II+Vs643zWPPqw69yq3yUYFhyuTGraw6PNIvKF3OuQCA8XgEGxBDWhc3Re/1SHvMvVfPZ09POpkLUdpO1DTVSsW9B96v7oO2Pa/luJVz3rz8teUkjsUkziNBn3aQZBnceNWhU6aAW9tKY34ALyqGT2SNAB0A8o+edCjHXfxwwtZXXuo3rUyBID1c1jHTps7OdDIXguwv+zZs2OD/mDavHviurmB171c2v30YpdxhuW3n9u3JrCvtYyvoOqNmXKTNa3usv3NqW1u3Bm+7Qbi137T3c17O2QCAZNGTjkzkfbbyrAS9eMtT/aY55t7eu7hkiXNZ7DZsiLa+oNsQZn+ZwYMZjJiTsXl9x60HXiR43ful0/stx967qDpoNsvotFzr5HF2UdtZmoGUqvHSSZc5bF0GeX63W2bLpEnhzht+ZbP37q9Zk+45VMU5m3lKAKCcCNKhDLOVJytv9asioPC7QHUKJHt7jXWZdWVfd2Pj2CzpYYS94I6yv5YtC/cdpxRjVcFcmOUkHSg63VBxCt7ydCMrSvtIc4iMyrq0b+uyZcGHdDh9LmjZ7DeRVqxI9xwa55ydp7YMAFCPdHcokZdUzLzKS/1a05/N2aV37gw/0VKYSZqsKa2mMBNXBRUmfT/K/oqzj+3ptKomubIup6PDeNRXVmNxg9S/jpMxhpl0L+jxPDRkzDieJFV16TVcYdky5ywXk9skc1HKlvY5NO76dGzLAIB4SHdH6nhGq1pOj5fKQ/1ae4527RJpbo420VLYR5L5PaYr7qRPQVK/7TcJwu6vOPvY/hlVk1yZvbUdHUaGgnW/pJ2G69eLrNtjDcNMuhd0X5vLbG5OtnfVqy7D1Gd/vzHG3MrcVnNOiOFh57pwm2SuszPafk77HBpnfVHacth9AwDQG0E6lCn6bOVp8Lqw171+3S4sVS3H7QK0vX2sp9fvgjjqBbnXBXdPj/M+i7K/3L6T5RjrpUtFduww/t/fL7JoUTZpuH43HnS7keV3oylK+whz8ypOwOZUl62tRsAdZr9by2uyb2ulMv5Gm3XYhtNyduwwsgii7Oe0z6FR1xemLff3G48onDTJ+Glr0yM1nhsGABBTvWQGBwfrIlIfHBzMuiiFNTycdQnyq7OzXq9U6nUR49/Ozomf0bl+g5Q/qeX09RmfEzH+7euLtu6gy7/vvrHX5o9TWaPsL/M7SW+TXxmGh8dvn3U74+7jOOVyk2V9WbnVm1PZg7aPoMtUVQf25bS2htvvUcrb0TGxvG7L6eiIvo1pn0OjrK+vz6hzc3tbW523034OMuskK7ocgwCgozBxKGPSAQVUPGInL+POvSQxFjrscpJ+3JF1XGxfn8jIyMTPqNpnWYxLtdd9tWoMXajVjEn3ktzeMOXyahNx20CYx6K5fS6Jx39lMS7f7BGNcm5SVV5dHqWWNus5xqlu3P5miGT3d4Ox9ADgjjHpQEpUzsCrW7puFCrHQkddjsr6cntsmZmCbw9YVe6zrMZY21OqRcbqf948I+05izYaJtU7anmCHs9BPpfE47+sy5w7N51x+ZVK9HOTqnkE3JaTp3NjWPZzjFPdmPvBLqu/G7rNCwEAeUaQDsSg+rFouo87D0rVBWLc3tCon/MLwtyCFJX7zG0dXV3pThi2c6fI1q1jN0zuvTf9NprWxX/Q4znI55J4/JfXRH4iydzoM+s4yrlJ1TwCqm7+5UnQ47+7e+xJGiLG/7P6u1GEG80AoAuCdCCiJAKHMBej9E44U9EbGiQIswYt5kzVqgMIp5TuJJ/v7HWRbb7n1kaTbI8DA+MfORb34t+prEGP57DHvTXzQsW5wj6Rn4oJ6ZzYjw+RZLJbwpQ3q97hrAQ5/tvbjeNjeNj4GRjI9iZGUW40A0DWGJMOxKDDmOGo476LKug+8RrnGmb8bRpj4NOcqyBs+0qjPdrH/zc1Gb37YdfjV9a4bcdvG+KOqw7TFuK2y7TPbeZ6VMwHoIIu59m8zlVS9PkCACAKxqQDKcmi10B1in2RqOgNDZuyaX0/iV438/FXVtZx4aqFTS1Ouj06jf8fGjIeNRWWqseiRTnu16wZ36Y+/enwY9TDtM047TLJ4QVuyxgYUDcfgAq6nGfzmkKue/kAQHcE6UAMaY+VZGIeb0HTov0ufMMGYSoCB932YdDezKTbo9e+CrOeIGUNejxHOe5XrBi/7uXL/YNAp+0L0zajtsskAkO/sqicDyCurM6zbssnhRwAyocgHVAgrV6DvPaqxBHmwnjpUiNwMlUq0XpD0+xN9gtezMnbrHbujB4wpBVAq6RipvSovdB+ywzCKegbGnIPAvv7jbI5bV+YthmnXaoODL3KktR8AFGpbtd+5fM7B5Rx4jwAKDuCdMSSRM+Cbj2Kugl68Zz3egzbCxg2LTrIhW8avcl+gZSqgCGpNOE0evlUzZSeVY+k0z5sanLep/39xgzevb3G7/r6nLfPb//HbZcqA0O/sgRt42nepFTRVoIec0FvpsTdzrz/TQCAMiFIRyRJXPCnNdYw7/wunotSj2F7AaNewIe58HW6yI0TOAQNpFQEDEmlCYcN5uIECnFnSs+yR9K+D++6y3mfLlli3FwyjYxE6y1WFdCGHVYQtSxJzgcQhYq2EuSYSyM7oCh/EwCgTJjdHZEkMfNvFjOlF1ER6jHqjMZJzcjst9w46w2zv6LOmKzDDNH9/UYA2tsbf9+obuNO9ZrU7NT25Vpfu+2njg6jbYUV93hQeTwFXZYus7vHFeaYS/qcXYS/CQBQBGHiUIJ0hJbEBb8OQUQRDA2JNDdPfD+P9RjnwlL1BXzQx2dFWa/qGwtuZcjyQt1M4TZ7iOOuX1WdOS1HJNtHb1n3k0j0x81ZRT0ekmgzugfXKgWtvyQf98bfVgDQB49gQ6KSGBdYxgnRVDLTGZubjYv6xv85svNcj3HSWlVur1s6qtPEXlHW65ZWGzbd1S+lNcsZou0p3HFTelWlrTulI2f96C3rfuroiB+gi0TPvkgiDTvMZHuqZDUWO+gxl+QwDP62AkA+EaQjkiQu+HnMTHTWwMLac5LnetRlRmO3Sb927DBeqwrkzOVHHT/qF1xmVZ+12tgkaFYdHfEDhTjfdwtCs37EoXU/9fTo0+5NXV3JjmlWOX46zrJU7HNdzmH8bQWA/CHdHbEkkbpYpnRIFdzSGavV8c8MR3TWdNSODuegU1X6aJQUY91TWufPN2YpN2feV5HCHYd1f5rMujZ/z/hd73pKqk5UpthHWVaSqedZr5O/rQCQLcakeyBIRxExMVA6zPpNYtywufyowbbObcB+k2Pjxmyf9WzffyL6jElPSh4mHVS5rp4eYz+HXVYWx5HOxy4AQB3GpAMlQzpjOsyL++7u8Rf6w8Pqxi5HHT+qcxvQJYVbxD2F3bzJokuKsipBUr69UrvTHNOscl3Llk18z29ZYcfhq0iJT+MRbACA/CFIBwqgaIGF7tra1DzL2mQNpKpVkTlzjPfDBNt5aAM6pNoGDQTTKmvSwZjXXAVBx2yneQMo6Lq86s0MdO02bPBed9C2oXLcPBO7AQCcEKQDBaJ6VnM4i3ph7Van1kBq1y5jlv6owXZWF/d5ai86ZB2oDPSsrPvBr5c26Ez2YW8AhW0L1s/7rStIvdmPx8ZG43Vnp39ZgrQN1U8A0KE9AgD0QpAOYJykgoeiCXNh7VWnboFUXujcXtyCRR2yDlQHek77wetmUpQ0a78bQGHbgtfn3dYVtN6sx+e8eeoyUpJIT0+jPebpJhoAgInjsi4O4CvtGXmZxCicIPvHr079fq/DrMxuZdCxvWQxQ3cYSUzG5rYfvOpC9b4Lu7ywn49Sb0kcOzq2eTe6HwsAUCZMHAcUQBY9lExiFF6QFHe/OnXrldehlzpKFkDW7SVOL3UaZVc9DtlrP3j10rq1uyh1EGXStSg9+WHrLYmbW3lKT1edsQEASAdBOqCpLC6umMQoPnuQEaRO3QKpsG0giQDTqwwq24uqske9cZD2DRGVgV6Q/RBknzz3XPQ6CNsWoradNWvGf2fNmuBlVEWH4RJBxLmJlvWNNgAoO4J0QENZ9lDmqZdIJ/YgzzquPGidWgOUMG0gyUnIomYBBKW67FGDv7RviqkO9Oz7YcMG//OFfZsXL/auA7/lhW0LUdrOihXj2+OKFf7fSYruNy+jHAs6ZO8AABiTnnVxAFdZj3vUYRx0XtRqIl1dY/vLZB8DGrZOg7aBJNvK/PkifX3GY+ZERJqaxp4pbhW1vSRR9rDjcJMYI56Vnh6R971PZOdO43Vrq8i99zrvL6dtthseFhkYmFifbW3qxoEH/XyR9lNawh4LWf/dAYAiCxOHEqQDmmLCH/1Z95GTxkZjZumoF7lB2kDSgUt/v3EDwnwuvMoL96TLHiZYjBucpH1Ty2siP3t77OwMdnPHnPXdXgdOnxsayua8RBAZTZD2yU0QAEgWE8cBBcBjeeJLevus6cJORkbiDVMI0gaSnkegrW0sQBdRO/Qi6bKHWU7UtP2o6cFR6y/IRH52bvvLvs133TWxDpyGPJjtIYuJyBiOE02QY4E5SQBAHwTpgOaSuEAq+rjDJLcvzmzUUfl9P8nAJekL96hlV30DJupNsUWLxgLjnh7jtZe4bdN6Y6ivz3kiPzu3/WXf5nPPda4Dt++rumET5vt5mbQtr7gJAgB6IEgHSqjoj+VJYvvswdXAgHPwun37WKCU1kVuUoGLGTwleeEetuxeE/SpEHYstTn227Rzp3fQGffxcNag2MzUsE9S2No69rq11X9/2be5Uhlfz9WqyJw5xu+amoxhHObn4tywiXPDQtVwCIzHTRAA0ANj0oGSKfq4w6S2z2ksbHe3+5jxPE+85zYWXuU2qZhozhRkMrMkyhe2ralom0HHnJv1E7U+nNr71q3Ok8hFDeSyGl/OfB8AgCwwcZwHgnSg+JMvqd4+v+AqLwF50HIm1T5qtXhBntt+aGw03lcxmVnYAK6tbXxvemursY1u4tZtT4+xDDuVN9mC3EyI2+azvFlY9PMfAEBPTBwHwFPRxx2q3j63tF7zsWtBelyzFCatOMzz2aOs36wz8/0w6d5u+2FkRN1kZmHT0e+9d3x6ufk9N3HbZmdn8pN7BZmHQMU8C1lMUpZE+wYAQDWCdKCEij7u0G374lyIO/Wo+k0UpssEfWECzySCJ+v6h4biBUhBnnkeNeiKEsC1t4s0N4/Vz65dE+vX+n0Vx14aN9mKsg47ZjAHAOQB6e4AcilMuq2qMahhU3R1SKuNklZsr68NG5xnDY+zfpF4ddLTI7JsmfFvU5OxPSMj8es57D7zql+V47fd1p1Gz3MR1mHFmHQAQBZIdwdQWFF6p5csSX82+zC9skmm2kbpOTQDUzM4nT8/eiaAfX2NjUZQba4nau+pOVna8LAxodm8efGXKRK+d9erfpN+ikIaga0550LS6wgjbnnymElEOj4AlAtBOoBcCRP49PcbAVNvr5oxqJXKxPHHra3OQUaQ4DjsDYeoF+pBA0/78pctUxNkWtc/b54RVJvBddwAydrbrSLoirIsp/otwthnXYZrJFWePKS467YPAADpIEgHkBthA5+lS0V27Bj/XtQxqObF8s6dYz3BnZ3GxGFu/ILjoDcc4l6o+wWeTstXGWTa1y9iTCCnIvCwlkflBH5ey7Ivx6l+dRn7HOemgMpMABU3J5LOTNBRGbcZAECQDiBHwvRkuwWVc+dGS4e2XizXaiIdHf49rV7BcZggWNWFuluA6LT8uEGm03aY342yPfblud1YcKKqN9JtOW7PJM/yKQpxt1nVTRpVdV+EzISwyrjNAAADQTqAQnIKMjs6jIvcsOnQThfL1hT6IGVxeq+jwz8ITvpC3Wv5UYJMv6As7Pa4Lc8e6Hv1zKu6yWFfzqJF3tvqd5MmCeZy426zqkwAlTeYdMhMSFMZtxkAYCBIB5AbtZqRbm61c6d7wGMPMjdujLZe1RfLZuDZ2zu2DLcgWOW63Xq33ZYfZXy2X1AWdnuclucU6Ls9J13VTQ6n5ezcGSwAjTMPQVDW5XZ2qtnm7m4j80QkWiaA6htMWWYmZKWM2wwA4BFsWRcHQEhRHmum4hFPKh/bZN+GuXON5Sa1br/vp/2IuqDr81peV5d3irt1nc3NY0G8iDGnQLUafLtM1v3W2Gg88s1rvX7LUPlYPvtyzVnZo67Huo86OowbXFHaRBLbm/Yj23RQxm0GgKIJE4cSpAPIlayfcWy/WA578Rw0kHVabtQL9aCBkopAIExQFmR9bsuztgOv56RHeU68G3vbq1ZFdu1S80z1OPXuttyODiNbI8pxoiq4zvp4BQBAFzwnHUBhZf2MYzOYipq27Jfu7bXcqCnuQVOOVfTUhUnPDbI+t+VZ24HXc9JVDhewt71771X3TPU43Jbb0xPtOElyZn8CdAAA/NGTDqD03Hp0vXp64/Q0evUuJpEenFSKtRfV6blBluf2maR7c8Nsa1JlUb3cLNoMAABFRrq7B4J0IDu6jKs0y+EW2PgFPKrSlp1S55NIhybl2BDlZkzaZdFluWm3GV3ODQAAJIV0d0BDZX62bVIzWsctx6JFzrNzq56h3I3980mlQwdJOU76kWA6sNdjlu0yqYBU1XLTSlPX5dwAAIBOCNKBhHERqu5ZyarLYX18mznudmgo2HjcIGOvowSoST5yyS0VPOlHguna7nVpl1Y63dQQSb53W8d9IKLffgAAlAvp7kDCyj62M6kUblXlMB+lZd03cWcoV5EqnFb6b1qPBNOt3evSLk1Obaatrdgp4EH2Qdpp8AwNAQAkhXR3QBMqZ0nOq6RSuKOUo6NjfDlaW51nBY87Q7mK3sE06iep9pmHdq9LuzRZ20xfn/EceJ2zEFTw2gdZZWLo2rOvmk7HYpaoBwC6yjRIX716tZx88skybdo0mTFjhixevFj6ff4Sv/XWW3LddddJa2urTJ48WY4//ni5//77UyoxEI5ugUBWkkzhDsK84O/tHav79nbjEVpO427jjMfNQ4BqSvuRYLq1+6zbpcneRkZGjGEXItkHikm3W7d9kEWwHPfY1fEYt8vDMJQ0UA8AdJdpkP7II4/IFVdcIY8//rg8+OCD8tZbb8nZZ58tr7/+uut3Vq1aJd/+9rflG9/4hvT09Mhll10mS5YskS1btqRYciA4XQKBLGX9rGTrBX+tZvSoW8vhFjxGCSrzEqCakmqfeWj3WbdLk1cbyeomT1pBjNM+yOpGV9RjN08BX1kyBfxQDwB0p9WY9N/+9rcyY8YMeeSRR+T00093/Mxhhx0mX/jCF+SKK64Yfe+CCy6QKVOmyB133OG7DsakIytFecRQ3rYji7HHuoxrDbOvdH8kWNFZ20xTk1FvWY7nz3pOgazWH+XYzbqugop7LizKsazbfBQAyiO3Y9IHBwdFROSggw5y/Uy1WpXJkyePe2/KlCny6KOPun5+7969436ALOT9j3+eeouszN6wRsvZrqlJZGAguXVm3UMbZV/p/kiworO2ma1bs81C0GHIRlaZGGGPXR3qKqgyZAoEkbdsJwDlpE1P+sjIiLzvfe+TV1991TXgFhH5y7/8S/nP//xPueuuu6S1tVUeeughOf/886VWq0m1Wp3w+WuuuUauvfbaCe/Tkw6Ek5feIif9/cZEXOY437yVP6yo+6ooPWVZcKu7OHWa5f7Q5XjPQ5vUpa6CKHKmQBi6ZDsBKJcwPenaBOmf/OQnZdOmTfLoo4/K4Ycf7vq53/72t/LXf/3X8qMf/UgaGhqktbVVFi5cKP/yL/8ib7zxxoTPV6vVccH73r17Zfbs2QTpQAh5Tw/Me/nDiLKtXLBG51Z3WdSpyoCWNhFcHusqaFsp+rkzDzeBABRH7tLdly9fLvfcc4/89Kc/9QzQRUQOOeQQueuuu+T111+XX//619LX1ydTp06Vo48+2vHzzc3N0tLSMu4HQDBmymbc9MAwqZ9JpImWKb0xyrYyiVJ0bnWXZp0mkY6c5pANHVPDw8h6eEsUQc99RT93FmU7ABRPpkF6vV6X5cuXy8aNG+Xhhx+Wo446KvB3J0+eLLNmzZLh4WH5j//4Dzn//PMTLClQLk4X/VHGiIYJHoJ8Ns7FfB5mG/dj3X6vugizrXkaU6sbt7obGkq3TpcsSe6GQJJBTBHHOnvJ6zFVhHMnAORNpunul19+uaxfv17uvvtuabfcep4+fbpMmTJFREQuvvhimTVrlqxevVpERH7xi1/I7t275YQTTpDdu3fLNddcI88//7w89dRTcsABB/iuk9ndAX9eYxDDpAeGGcvo9VmV6aR5TG+0bn9rq/Hezp3+dRF0W/Mwhl3X/eZWd2mM4+3vNwL03t6Jv8tDOnIRxzo7yWM6vBNdj0EAyIvcpLuvXbtWBgcH5cwzz5RDDz109OcHP/jB6GdeeOEFefnll0dfv/nmm7Jq1Srp7OyUJUuWyKxZs+TRRx8NFKAD8OfXsxomxT1ob6LfZ1WmDufxItO6/Tt3Gj8i/nURdFvD9pSl2QOqe2+rW92l0fu4dKnIjh3j37OmI+vcc1umDI6iDCfJ47kTAPJKm4nj0kJPOoog6R4NVT1cKnrSiz5xkR+37bdSVRdJ97xHoXtvq18vaZLPn3dqFx0dIl/9qsiKFfr33Oq+b1Uo+/kLADAmNz3pAMJJq1dRVS9gmOW4fbYIExfF6R302l7VdRF0tue0ekDz0Nvq10ua5PPn7cdFR4dRPytW6N9z298vUq2O7cs5c4o51rkI5y8AQPoI0oEcSSttUtVsxWGW4/XZPE1cZA0gVd1UsW5/a+vYuPQs6iJK0BE1qE4jwIkT8Gd9E8F+XGzcmH2Zglq6VGTXLuP/jY0izc169varkKfzFwBADwTpQE5kcfGdZg+t12d1esSRW307BeSqbqpYt39gwPjJsi6CBh0qblIkFeDELVt/v0hX1/j30u4ldTou8tBzaz93jYzoeSNBFZ3OXwCAfGBMOpAjZRjDqSu/scf2fTN3bn5n3Q7Kb7y1yvaqemx32LLZ12/9vkmX8d95mE2ccxkAoGzCxKEE6UCO5OHiu6j8HkvnNonXjh3lDER0njArTNmcjrm2Nn23zSrtR2aFWR/nMgBA2TBxHFBQpE1mw2+owcCASFPT2OcbG43AY+PG8o5F1TntOkzZnIYs6LxtVmmVJ8rQAc5l8RR1aAAAwECQDuSQbsFA0fkFZUuXjr9onjRprGewzIGIzhNmBSmb180ZnbctbXHmXuBcFk5aT/gAAGSLdHeg4NJOeS0qa3puR8dYL3kWad1526c6lzfuuHr793VOMU9q/XlI/S8KxvIDQH6R7o7CIbUvPHpc1DJ7Szs6jAnhzN7DNFOf87pPdQ7W/Mrm12Nufj/tfaNLW1DR/jm/B5OXx+sBAOIjSIfWdLkQzaO0nqleJkuXGhPBiYyv07RSn9mn6Qs6ZCHtfaNTW4ja/jm/h5OXuRAAAPGR7g6tkdoXDSmo6rnVabU6NmlckqnHuuzTrNOrdZT2vtGlLdiFbRuc38PLYlZ8jnkAUIN0dxQCqX3R0eOinr0OGxuN4Ly5eSzYSLJ+k9qnQY+nPPV6JnWOcFuu6n3jV35dj++wKe6c38NLczLKPB3zAFA0BOnQlq4XonnB7NPh+QUI1jqdNGns82mlG6vcp2EvwHVKr3aTVFARZLkq9k2Y8uf9+Ob8Hk+S9WSe1/JwzANAUZHuDq1lkdpXNKQq+gvbzoaGjB50uzDpxnH2i4p9GibVWNf0aruk0qfD1lXUOolS/jwf35zf9WJ/gkVv78TP6HbMA0CehIlDCdKRC6ouRPN8QYvkRAmOogaEOgQmPT1G+e28LsB1Hz+c1I2EtG5Q5OVGSBI4L+vBfoxXKsb/dT3mASBvGJOOwol7AcfYOriJOjY2arqxDimky5ZNfM8v1Vj39Oqk0qfTSssuc/p3GbZRd07nwaEhkblzjdc6HvMAUGT0pKMUdO8FhBpRe+TitI8w69Sht9StDNu3G0FhkO/rGlQllaWQVvaDDlkWKC+386DOxzwA5Ak96YAFswgXX9xMiTi9xGEuXnXoLXWapb6zM1iAbn5fV0nNfJ3WjNppztwN2LmdB3U+5gGgqAjSUXg6BEZIVtwU8jSDIx3Sxq1lmDfPuwx5vJmV1LGdxjlDx17LPLYBhMdNIgDQB0E6SkGHwAjJUJkpESU4CrseHS6Eg5QhqXkcCPic6Thvho5lQvJ0u0lUdpwzgXIiSEcp6BAYIRlZZUrEDWB0uBD2KoPqCe4I+LzpMKGgnY5lAsqCcyZQbkwcByD3sphwK63JCLNIf05igjsmb3Snw4SCdjqWCSgTzplA8TBxHIBS8cqUSCJVMI3JCLPsRVGdnTA0lP/JG5Msq47zZuhYpjTkqU2iuJjwFgBBOoDCsAYQSQa5bgFLV5e69WSdaqxiHgdzHzQ3izQ1GTPJi+Qr4EvrZomO82YEKVNRggZSi6GTst4kAzCGdHcAhZR0qqA1xd6kaj06pRrHSbe374NKxehVz9MzwNNOOdV1dnd7mYr2THdSi6Gboh1jAMLFoQTpAAonrSA3yfXkPWhwq5tq1ehVz4Oi3CxJQt7bp5VO+xmw0+3YBxAdY9IBlFpaqYJJrkfH9Ocw3OomLwG6iB4pp1mnYTulsxdtvKwO+xlwQzsEyokgHUAhpRXkJrWeIjw2sLtbZO5c4/9p32hQFTBmfbMkq7kJvG4OFDGozXo/AwBgRbo7gEJLK1WQlMTxrOMpOzpENm5M50ZDUuM4i/IoPK91WZfpl85e1PGyHMcAgKSQ7g4A/yOtC24u7Mez9gDv2JFeD3BSPc9p7V9rBkAaPdZOPeZB0tmLkOnhhOMYAKADgnQAhZfXsbJ5ldWY5TyPlXZLL086DdvppkaYmwMEtQAAqEeQjlLLw8U7ost60q2yymrMct7GSlvPP24ZAEn2WHvd1GCMNgAA2SFIRykRvJVDVpNuIbsgLw/Bpf3809PjnwGQxI0Gr5saRU1nBwAgD5g4DqVUpGf8wlmWk26lIS8TXGVVTp3rx+n8I5LNOamoE8ABAKAbJo4DPOR53CqCy2rSraTlLQskq0A5iRsxqpbjdP7ZsCGbDIAi9Jhz7gYAFA1BOkonb+NWEV0Wk24ljRT+dKm+KeJ2/unszDZYzuP5L283rAAACIp0d5SS6hRPnVNrkcz+STOdPst1ll0SQ2NIMVeDYUsAgDwh3R3woSrFk56c+NJIVU170q2k5D0LJG9pyUkNjSlCinnWGLYEqMWxA+iFIB2lFje4KXLqcdJ/sItwgyOLmcTzMHu5XR73dX+/SFfX+PdU3xTJy80VHeX9hhWgizyenwEnRbvRRLo7EFFRU4/TSsUtUqoqs7t7y+O+tpbZlPfU9Dy1mSAYNgDEl8fzM2CVp78FYeJQgnQghiL+cUtjm4p6g6NoVAR1edzXbmXu6BDZuDHZP/5JBNJFn4NDt/IAeZHH8zNgl6drccakAynJY+qxl7TGeeqQqlq0tCiVVKY/6rCvw3Ir444dyQ1pSTLlVNWwHF3TYnVuS2XEuTU/8nh+BqyKPD8JQToQQ9EmgErzD3ZWNzh0DTRUi/MHSvVcC3m8mdXdLTJ37vj3kvzjn9T8FiovYIo8BwfiK8u5tWjyeH4GTEW+0US6O4Bx0h7bk3aqapZpUWlsa9z9l2T6Yx7Tkjs7jR70PA//UNHmSYuFnzylnGKiPJ6fAZHijkmnJx3AOGlnB6Sd4p5FWlSaPUxhezvt257kXek8XgBax6An1cukus7t+1RFT1mReysQX5FTTsuCYxl5VbSsVhNBOpAR3S9eivgH2yvQULk/7MtKK004zIWy140D0h/HpPXHX0Wdu+1TVdtAu4AbbuIAyFrRzjcE6UDKGLeXLXugsWaNuv3htG/T7GEKc6HsdeOgqHel40j6j7+KOve7GRR3G2gX8MJNHABQhzHpQMoYt6cHs/5V7g+3ZaW5z/v7RRYtEtm503jd2ipy773jA6qeHqNMdowvzi/GjEMXjG0GAGeMSQc0xbg9fZgp7qr2h9ey0uxham8XaW4Wafyfs/uuXRN7VJctm/g9UlPzjXRj6II2BwDxEaQDKeJCWi8q94fXstJMEzZvDoyMjH9tv3lgt2FDcmVCOkg3BgCgGAjSgZRxIa0XlfvDb1lp3Izxu/Fgf93YaLzu7Ey+bEhWlJtBZPEAAKAfgnQgZUy+pBeV+0OXfet3s8D6+3nz1N0oSiLgI4gML8jNoKQmsGR/AQAQH0E6Ck/Xi0ZS3LPl9HxwVbLet343C1TfTEgi4OMpCMlS/VhA9hcAAOoQpKOwuGiEkzK1C7+bBXFvJpg3OpJ4Dnxaz5YvoyQmsGR/AQCgDo9gQ2HxqDM4oV3EZwZhPT0iHR0ivb0TPxPn0V88Tix5Ko8D9hcAAP54BBtKj0edwQntQg1rr+mOHSJNTWqfWMBTEJKncsJE9hcAAGoRpKOQuGiEE9pFfE43OoaGRObONV6remIBT0FITq2mfl4C9hcAAOoQpKOwuGiEE9pFPG43Onp61M5q7xdEkv0QntN8DKpuUOnyZAMAAIqAIB2FxUUjnNAu4nO70ZFERoJ9mWWa+E+1NCZ3IysFAID4mDgOABCJOelYmpj4LxomdzNk0WYBABBh4jgAKDRdUr3TDnaY+C+6ss/HQAYGACBPCNIBICfKHmiUPdCMq8zzMfAcdwBAnpDuDgA5UbRU7yipx9ZntHd2jg88EUzZUr5J9QcA6IB0dwAomCKlesfJCGDiv/jKFpiSgQEAyBuCdAAIKYvAuEiBhorU4zxuN7JT5lR/AED+EKQDJZbHXtgsZT0mvAiBRpEyAqA3a5siAwMAkCcE6UAJZR1s6iRMcJj15FNFCDSKlBEAPXmd32hnAIA8IEgHSijrYFMHYW9U6NQDnPdAowgZAdAX5zcAQN4xuztQMsx0bIgyU3rRZlfPWtlmGUfyOL8BAHTF7O4AJjB7fEk3jt4rTg+wWmVqc2kr6xh/zm8AgCIgSAcKzimtu+zBZtQL+SKMCUexMd8E5zcAQP6R7g4UnFeKdpnTjc2xqj09RoBuvbAH8qqoQzKinKvKfH4DAOiHdHcAIuKf1l3mC1h6xWFVhPRwnSY3VCVOZkCZz28AgHwjSAcKjPGZ/qiLYgkbkBYpPbyIxzsztQMAyoggHSg4xmdmI8+9l3kUNdguWhBYpOO9iJkBAAAEwZh0oCQYn6mGXz0y1j0bUcZiF/lxXbod71HLU9Qx9gCA8mFMOoAJdLpgz6OgPbVF65nNg6g9rkVMDzfpsg1xhxMUKTMAAICg6EkHgACC9OgVuWdWhSR7d6P2uJL5kCxVPeG6ZQYAABAWPekAoFDQntoi98zGkcbkbFF7XJnlPzkqx5SX/RgCAJQLQToA+AgTfJOeO1EaQwDiBtt5CwLzMHkaN630koc2AwAwEKQDQABBg296ZsdLe4buogeAeXtkHDetspe3NgMAYEx61sUBkDOMjQ2PGbrVyWtdctxkJ69tBgCKhjHpAJAQAo3w6E1VI8/PDee4yUae2wwAlJnDPMQAAKhj9tzRmxqPOabb3itKncINbQYA8inTnvTVq1fLySefLNOmTZMZM2bI4sWLpT/AYKlbb71V2tvbZcqUKTJ79mz5u7/7O3nzzTdTKDEAjEePVHAEBvGlnZVA+84/MlkAIH8yDdIfeeQRueKKK+Txxx+XBx98UN566y05++yz5fXXX3f9zvr16+Vzn/ucXH311dLb2yu33367/OAHP5DPf/7zKZYcQNkxGROykNbEhDq0b24QqMFklgCQP1pNHPfb3/5WZsyYIY888oicfvrpjp9Zvny59Pb2ykMPPTT63t///d/LL37xC3n00Ud918HEcQBUYDImFFmW7dt8TF9Pj5Gqbe0JBgAgr3I7cdzg4KCIiBx00EGunznllFPkySeflF/+8pciIvLcc8/JfffdJ+95z3scP1+tVmXv3r3jfgAgDiZjQpFl3b6XLh3ruTcDdgAAykSbIH1kZEQ+/elPy6mnnirHHnus6+f+8i//Uq677jr58z//c9lvv/2ktbVVzjzzTNd099WrV8v06dNHf2bPnp3UJgAoCXMyJnOMtf01kGdZtu+sbxAAAKADbYL0K664Qp555hm58847PT+3efNm+dKXviS33XabPPXUU9Ld3S333nuvXH/99Y6fX7lypQwODo7+vPjii0kUH0DJMBkTiiyt9m0PvrkBBgCAJmPSly9fLnfffbf87Gc/k6OOOsrzs6eddpr82Z/9mdx8882j791xxx3y8Y9/XP7whz9IY6P3fQfGpANQiceKociSat9e484Zkw4AKKIwcWimz0mv1+vyN3/zN7Jx40bZvHmzb4AuIrJv374JgXjlf64gNLjfAKBkCNBRZEm1b6dx5+bEdOYkddwAAwCUVaZB+hVXXCHr16+Xu+++W6ZNmyavvPKKiIhMnz5dpkyZIiIiF198scyaNUtWr14tIiLnnXeefO1rX5MTTzxR/vRP/1QGBgbkqquukvPOO280WAcAAHoyx5nbX9uDcv6kAwDKKtMgfe3atSIicuaZZ457/7vf/a5ceumlIiLywgsvjOs5X7VqlTQ0NMiqVatk9+7dcsghh8h5550nN954Y1rFBlAC9OKljzovB3Ocuf0Rb+x7AAAMWoxJTxNj0gF4YTxs+qjz8mGfAwDKJkwcSpAOFBg9k+HNnz+xh88cK4tkUOflxTkKAFAWYeJQbR7BBkCd/n4j8Jk0aSwAgj+e0Zy+oHXOPigmAnQAACYiSAcKyGnmZPjjGc3p86vzKDecCOijo+4AAMgeQToQgc4XsvQGx2MdG9vebrxGMFHbmFedh7nhRAZJdNQdAAD6IEgHQsjDhWzY3mCC9/HM8dDDw8a/TGblL+5x4VbnYW84kUESHXUHAIA+CNKBEPJyIRukNzgPNxyyRIp7cKqOC3udh7nhRAZJdNQdAAB6IUgHAsrThWyQ3uC83HCA3pI+LoIOP2A+gWCc9svAgEhT09hr6g4AgGwRpAMB5TEI8Epxz8sNB+gt6eMizPAD5hNw55U5s3SpUb+mSoW6AwAgSwTpQAhFCQLyeMMB+krjuAjSNplPwJ1b5ox5g25kZOyzQ0MibW3plxEAABga6vV6PetCpCnMQ+QBN7Va/gNa80K9p8cI0K2BFhBFEY6LIqrVjB50u+FhY3+ZPevm/jNvdgAAAHXCxKH0pAMhFSUQodcxHoYGTFSE46KI/DJnipIhBABAURCkAwEVdTb0ogVWSQfPRW0HKDavQJwbdgAA6IUgHQiI2dD1llbwTDtAHgUJxIt2ww4AgLxiTDoQgN+YTmQvjXG1tAMgnqIMFwIAICzGpAOKMRu63tJ6pBztAIiGYSIAAARHkA4ExORK+kozeE6yHTAZHYqKYSIAAARHkA4ExORKekvrJkoS7YBeRhRZWpkuAAAUhcPoSgBeSG3Wkxk8pzXmVeU6nHoZeU41isLMbLHPGcG5FAAAZ/SkAyiUvF3408uIMmC4EAAAwdGTDgAZopcRZZB2pgsAAHlGTzoAZIxeRpQFAToAAP7oSQeAjNHLCAAAABM96QCgCQJ0AAAAEKQDQE4wmRwAAEDxEaQDgOZ4jjoAAEB5EKQDgOacnqMOAACAYiJIBwCN8Rx1AACAciFIBwCNmc9RNyeVs78GAABAsRCkA4DmeI46AABAefCcdADQHM9RBwAAKA960gEgJwjQAQAAio8gHQAAAAAATRCkAwAAAACgCYJ0AAAAAAA0QZAOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAQDO1WtYlAAAAWSFIBwBAE/39IvPni0yaZPzb3591iQAAQNoI0gEA0MTSpWOBeX+/8RoAAJQLQToAABqo1UR6esZS3e2vAQBAORCkAwCggUpFpLPT+NfpNQAAKAeCdCAmerkAqNLdLdLebvy/vd14DQAAyoUgHYiICZ4AqNbeLrJ9u8jwsPGvGbADAIDyIEgHImKCJwBJIcUdAIDyIkgHImCCJwDQG+djAEBeEaQDETDBEwDoiaFIAIC8I0gHImKCJwDQD0ORAAB5NynrAgB5ZU7wVKvRgw4AOjCHHtlfc54GAOQJPelATFz4AYAeGIoEACgCgnQAAFAYDEUCAOQd6e4AAKAwGIoEAMg7etIBAErwyCvohAAdAJBXBOkAgFh45BUAAIA6BOkAgFh45BUAAIA6BOkAgMisj7hyeg0AAIBwCNIBAJHxyCsAAAC1CNIBALHwyCsAAAB1eAQbACAWHnkFAACgDj3pAAAlCNABAADiI0gHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJiZlXYC01et1ERHZu3dvxiUBAAAAAJSBGX+a8aiX0gXpr732moiIzJ49O+OSAAAAAADK5LXXXpPp06d7fqahHiSUL5CRkRF56aWXZNq0adLQ0KBsuXv37pXZs2fLiy++KC0tLcqWi2ywP4uHfVos7M/iYZ8WC/uzeNinxcL+TF+9XpfXXntNDjvsMGls9B51Xrqe9MbGRjn88MMTW35LSwsNvUDYn8XDPi0W9mfxsE+Lhf1ZPOzTYmF/psuvB93ExHEAAAAAAGiCIB0AAAAAAE0QpCvS3NwsV199tTQ3N2ddFCjA/iwe9mmxsD+Lh31aLOzP4mGfFgv7U2+lmzgOAAAAAABd0ZMOAAAAAIAmCNIBAAAAANAEQToAAAAAAJogSAcAAAAAQBME6QGsXr1aTj75ZJk2bZrMmDFDFi9eLP39/Z7fOfPMM6WhoWHCz6JFi1IqNdxE2Z8iIrfeequ0t7fLlClTZPbs2fJ3f/d38uabb6ZQYviJsk/feustue6666S1tVUmT54sxx9/vNx///0plRhe1q5dK11dXdLS0iItLS2yYMEC2bRpk+d3NmzYIPPmzZPJkyfLcccdJ/fdd19KpUUQYffp9u3b5YILLpA5c+ZIQ0OD3HrrrekVFr7C7s9//ud/ltNOO00OPPBAOfDAA2XhwoXyy1/+MsUSw0/Yfdrd3S0nnXSSHHDAAfK2t71NTjjhBFm3bl2KJYaXKH9HTXfeeac0NDTI4sWLky0kPBGkB/DII4/IFVdcIY8//rg8+OCD8tZbb8nZZ58tr7/+uut3uru75eWXXx79eeaZZ6RSqciyZctSLDmcRNmf69evl8997nNy9dVXS29vr9x+++3ygx/8QD7/+c+nWHK4ibJPV61aJd/+9rflG9/4hvT09Mhll10mS5YskS1btqRYcjg5/PDD5aabbpInn3xSfvWrX8k73/lOOf/882X79u2On//5z38uH/rQh+SjH/2obNmyRRYvXiyLFy+WZ555JuWSw03Yfbpv3z45+uij5aabbpKZM2emXFr4Cbs/N2/eLB/60Ifkpz/9qTz22GMye/ZsOfvss2X37t0plxxuwu7Tgw46SL7whS/IY489Jlu3bpWPfOQj8pGPfEQeeOCBlEsOJ2H3p2nXrl2yYsUKOe2001IqKVzVEdqePXvqIlJ/5JFHAn/nlltuqU+bNq3+hz/8IcGSIYog+/OKK66ov/Od7xz33pVXXlk/9dRTky4eIgiyTw899ND6N7/5zXHvLV26tP7hD3846eIhggMPPLD+ne98x/F3H/jAB+qLFi0a996f/umf1j/xiU+kUTRE5LVPrY488sj6LbfcknyBEEvQ/Vmv1+vDw8P1adOm1b///e8nXCrEEWaf1uv1+oknnlhftWpVgiVCHH77c3h4uH7KKafUv/Od79QvueSS+vnnn59e4TABPekRDA4OiohxFzGo22+/XS688EJ529vellSxEFGQ/XnKKafIk08+OZqe99xzz8l9990n73nPe1IpI8IJsk+r1apMnjx53HtTpkyRRx99NNGyIZxarSZ33nmnvP7667JgwQLHzzz22GOycOHCce+dc8458thjj6VRRIQUZJ8iP6Lsz3379slbb70V6joK6Qm7T+v1ujz00EPS398vp59+egolRBhB9+d1110nM2bMkI9+9KMplg5uJmVdgLwZGRmRT3/603LqqafKscceG+g7v/zlL+WZZ56R22+/PeHSIayg+/Mv//Iv5Xe/+538+Z//udTrdRkeHpbLLruMdHcNBd2n55xzjnzta1+T008/XVpbW+Whhx6S7u5uqdVqKZYWbrZt2yYLFiyQN998U6ZOnSobN26Uzs5Ox8++8sor8va3v33ce29/+9vllVdeSaOoCCjMPoX+4uzPz372s3LYYYdNuLmGbIXdp4ODgzJr1iypVqtSqVTktttuk7POOivFEsNLmP356KOPyu233y5PP/10uoWEK3rSQ7riiivkmWeekTvvvDPwd26//XY57rjj5E/+5E8SLBmiCLo/N2/eLF/60pfktttuk6eeekq6u7vl3nvvleuvvz6lkiKooPv061//uhxzzDEyb948aWpqkuXLl8tHPvIRaWzktKiD9vZ2efrpp+UXv/iFfPKTn5RLLrlEenp6si4WYmCfFkvU/XnTTTfJnXfeKRs3bpyQzYRshd2n06ZNk6efflqeeOIJufHGG+XKK6+UzZs3p1dgeAq6P1977TX5q7/6K/nnf/5n+aM/+qMMSgpHWefb58kVV1xRP/zww+vPPfdc4O/84Q9/qLe0tNRvvfXWBEuGKMLszz//8z+vr1ixYtx769atq0+ZMqVeq9WSKiJCinKMvvHGG/Xf/OY39ZGRkfpnPvOZemdnZ4IlRFTvete76h//+Mcdfzd79uwJY5a/+MUv1ru6ulIoGaLy2qdWjEnPhyD78+abb65Pnz69/sQTT6RUKsQR9Bg1ffSjH62fffbZCZYIcbjtzy1bttRFpF6pVEZ/Ghoa6g0NDfVKpVIfGBjIoLSgyyiAer0uy5cvl40bN8rDDz8sRx11VODvbtiwQarVqlx00UUJlhBhRNmf+/btm9DDWqlURpeHbMU5RidPniyzZs2S4eFh+Y//+A85//zzEywpohoZGZFqter4uwULFshDDz007r0HH3yQ8c6a89qnyB+//fmVr3xFrr/+ern//vvlpJNOSrFkiCrsMcoxrTe3/TNv3jzZtm2bPP3006M/73vf++Qv/uIv5Omnn5bZs2dnUFowJj2AK664QtavXy933323TJs2bXSc4/Tp02XKlCkiInLxxRfLrFmzZPXq1eO+e/vtt8vixYvl4IMPTr3ccBZlf5533nnyta99TU488UT50z/9UxkYGJCrrrpKzjvvvNFgHdmJsk9/8YtfyO7du+WEE06Q3bt3yzXXXCMjIyPymc98JrPtgGHlypVy7rnnyhFHHCGvvfaarF+/XjZv3jz6aB/7vvzbv/1bOeOMM+SrX/2qLFq0SO6880751a9+Jf/0T/+U5WbAIuw+HRoaGk3LHBoakt27d8vTTz8tU6dOlba2tsy2A4aw+/PLX/6yfPGLX5T169fLnDlzRs/RU6dOlalTp2a2HRgTdp+uXr1aTjrpJGltbZVqtSr33XefrFu3TtauXZvlZuB/hNmfkydPnjCHzwEHHCAiEnj+LahHkB6AecI588wzx73/3e9+Vy699FIREXnhhRcm9LT29/fLo48+Kj/+8Y/TKCYCirI/V61aJQ0NDbJq1SrZvXu3HHLIIXLeeefJjTfemFax4SHKPn3zzTdl1apV8txzz8nUqVPlPe95j6xbt270DxOys2fPHrn44ovl5ZdflunTp0tXV5c88MADoxMS2fflKaecIuvXr5dVq1bJ5z//eTnmmGPkrrvu4uJCI2H36UsvvSQnnnji6Os1a9bImjVr5IwzzmDMqwbC7s+1a9fK0NCQvP/97x+3nKuvvlquueaaNIsOF2H36euvvy6XX365/OY3v5EpU6bIvHnz5I477pAPfvCDWW0CLMLuT+inoU6uLgAAAAAAWuAWCgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAAAAABNEKQDAAAAAKAJgnQAAAAAADRBkA4AAAAAgCYI0gEAAAAA0ARBOgAAAAAAmiBIBwAAAABAEwTpAAAAAABogiAdAAB4+u1vfyszZ86UL33pS6Pv/fznP5empiZ56KGHMiwZAADF01Cv1+tZFwIAAOjtvvvuk8WLF8vPf/5zaW9vlxNOOEHOP/98+drXvpZ10QAAKBSCdAAAEMgVV1whP/nJT+Skk06Sbdu2yRNPPCHNzc1ZFwsAgEIhSAcAAIG88cYbcuyxx8qLL74oTz75pBx33HFZFwkAgMJhTDoAAAhk586d8tJLL8nIyIjs2rUr6+IAAFBI9KQDAABfQ0ND8id/8idywgknSHt7u9x6662ybds2mTFjRtZFAwCgUAjSAQCAr//9v/+3/PCHP5T//M//lKlTp8oZZ5wh06dPl3vuuSfrogEAUCikuwMAAE+bN2+WW2+9VdatWyctLS3S2Ngo69atk//7f/+vrF27NuviAQBQKPSkAwAAAACgCXrSAQAAAADQBEE6AAAAAACaIEgHAAAAAEATBOkAAAAAAGiCIB0AAAAAAE0QpAMAAAAAoAmCdAAAAAAANEGQDgAAAACAJgjSAQAAAADQBEE6AAAAAACaIEgHAAAAAEAT/z/R/kIKFtwUkAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Исходныеданные:\n", + "[[2.89695766 2.92504035]\n", + " [2.93815516 3.13985728]\n", + " [2.78950865 3.11714113]\n", + " ...\n", + " [3.09289885 2.95904985]\n", + " [2.94895746 3.11176811]\n", + " [3.07519052 2.977907 ]]\n", + "Размерностьданных:\n", + "(1000, 2)\n" + ] + } + ], + "source": [ + "k = 3\n", + "data = lab02_lib.datagen(k, k, 1000, 2)\n", + "print('Исходныеданные:')\n", + "print(data)\n", + "print('Размерностьданных:')\n", + "print(data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_Ffqa9HUJLoq" + }, + "source": [ + "#### Создать и обучить автокодировщик AE1 простой архитектуры, выбрав небольшое количество эпох обучения. Зафиксировать в таблице вида табл.1 количество скрытых слоёв и нейронов в них." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "LyYV744yI51_", + "outputId": "190999b5-e577-4672-a2b1-47022b59781b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 3\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 2 1 2\n", + "Epoch 1/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - loss: 8.6497\n", + "Epoch 2/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 8.6285\n", + "Epoch 3/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.6073\n", + "Epoch 4/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 8.5860\n", + "Epoch 5/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.5646\n", + "Epoch 6/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 8.5432\n", + "Epoch 7/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.5218\n", + "Epoch 8/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 8.5002\n", + "Epoch 9/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.4787\n", + "Epoch 10/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 8.4570\n", + "Epoch 11/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 8.4353\n", + "Epoch 12/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 8.4136\n", + "Epoch 13/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 8.3918\n", + "Epoch 14/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.3699\n", + "Epoch 15/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 8.3480\n", + "Epoch 16/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 8.3260\n", + "Epoch 17/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 8.3040\n", + "Epoch 18/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.2819\n", + "Epoch 19/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 8.2597\n", + "Epoch 20/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 8.2375\n", + "Epoch 21/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 8.2153\n", + "Epoch 22/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 8.1929\n", + "Epoch 23/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.1706\n", + "Epoch 24/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.1482\n", + "Epoch 25/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 8.1257\n", + "Epoch 26/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 8.1032\n", + "Epoch 27/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 8.0806\n", + "Epoch 28/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 8.0580\n", + "Epoch 29/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 8.0353\n", + "Epoch 30/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 8.0126\n", + "Epoch 31/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 7.9898\n", + "Epoch 32/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 7.9670\n", + "Epoch 33/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 7.9442\n", + "Epoch 34/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.9213\n", + "Epoch 35/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.8983\n", + "Epoch 36/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.8753\n", + "Epoch 37/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.8523\n", + "Epoch 38/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.8292\n", + "Epoch 39/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.8061\n", + "Epoch 40/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.7830\n", + "Epoch 41/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.7598\n", + "Epoch 42/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.7366\n", + "Epoch 43/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.7134\n", + "Epoch 44/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.6901\n", + "Epoch 45/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.6668\n", + "Epoch 46/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6435\n", + "Epoch 47/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6202\n", + "Epoch 48/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.5968\n", + "Epoch 49/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 7.5734\n", + "Epoch 50/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.5500\n", + "Epoch 51/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.5265\n", + "Epoch 52/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.5031\n", + "Epoch 53/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 7.4796\n", + "Epoch 54/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.4561\n", + "Epoch 55/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 7.4326\n", + "Epoch 56/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 7.4091\n", + "Epoch 57/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.3856\n", + "Epoch 58/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.3621\n", + "Epoch 59/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3386\n", + "Epoch 60/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.3151\n", + "Epoch 61/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 7.2915\n", + "Epoch 62/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.2680\n", + "Epoch 63/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.2445\n", + "Epoch 64/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 7.2210\n", + "Epoch 65/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.1975\n", + "Epoch 66/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.1739\n", + "Epoch 67/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.1505\n", + "Epoch 68/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 7.1270\n", + "Epoch 69/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.1035\n", + "Epoch 70/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.0801\n", + "Epoch 71/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 7.0566\n", + "Epoch 72/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 7.0332\n", + "Epoch 73/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 7.0098\n", + "Epoch 74/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.9864\n", + "Epoch 75/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.9631\n", + "Epoch 76/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.9398\n", + "Epoch 77/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.9165\n", + "Epoch 78/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8932\n", + "Epoch 79/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 6.8700\n", + "Epoch 80/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.8468\n", + "Epoch 81/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8236\n", + "Epoch 82/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.8005\n", + "Epoch 83/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.7774\n", + "Epoch 84/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.7543\n", + "Epoch 85/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.7313\n", + "Epoch 86/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.7084\n", + "Epoch 87/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.6854\n", + "Epoch 88/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - loss: 6.6626\n", + "Epoch 89/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.6397\n", + "Epoch 90/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.6170\n", + "Epoch 91/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.5942\n", + "Epoch 92/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.5715\n", + "Epoch 93/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.5489\n", + "Epoch 94/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.5263\n", + "Epoch 95/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.5038\n", + "Epoch 96/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.4814\n", + "Epoch 97/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 6.4589\n", + "Epoch 98/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.4366\n", + "Epoch 99/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.4143\n", + "Epoch 100/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.3921\n", + "Epoch 101/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.3699\n", + "Epoch 102/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.3478\n", + "Epoch 103/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.3258\n", + "Epoch 104/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.3038\n", + "Epoch 105/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.2819\n", + "Epoch 106/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.2601\n", + "Epoch 107/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.2383\n", + "Epoch 108/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.2166\n", + "Epoch 109/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.1950\n", + "Epoch 110/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.1734\n", + "Epoch 111/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.1519\n", + "Epoch 112/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.1305\n", + "Epoch 113/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.1092\n", + "Epoch 114/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.0879\n", + "Epoch 115/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 6.0667\n", + "Epoch 116/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 6.0456\n", + "Epoch 117/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.0245\n", + "Epoch 118/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 6.0036\n", + "Epoch 119/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.9827\n", + "Epoch 120/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.9619\n", + "Epoch 121/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.9411\n", + "Epoch 122/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.9205\n", + "Epoch 123/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.8999\n", + "Epoch 124/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.8794\n", + "Epoch 125/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.8590\n", + "Epoch 126/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.8386\n", + "Epoch 127/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.8184\n", + "Epoch 128/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.7982\n", + "Epoch 129/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.7781\n", + "Epoch 130/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.7581\n", + "Epoch 131/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.7381\n", + "Epoch 132/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.7183\n", + "Epoch 133/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 5.6985\n", + "Epoch 134/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.6788\n", + "Epoch 135/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.6592\n", + "Epoch 136/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.6397\n", + "Epoch 137/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.6202\n", + "Epoch 138/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - loss: 5.6009\n", + "Epoch 139/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.5816\n", + "Epoch 140/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.5624\n", + "Epoch 141/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.5433\n", + "Epoch 142/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.5243\n", + "Epoch 143/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.5053\n", + "Epoch 144/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.4864\n", + "Epoch 145/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.4677\n", + "Epoch 146/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.4490\n", + "Epoch 147/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.4303\n", + "Epoch 148/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.4118\n", + "Epoch 149/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.3934\n", + "Epoch 150/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.3750\n", + "Epoch 151/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.3567\n", + "Epoch 152/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 5.3385\n", + "Epoch 153/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.3204\n", + "Epoch 154/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 5.3023\n", + "Epoch 155/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.2844\n", + "Epoch 156/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.2665\n", + "Epoch 157/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.2487\n", + "Epoch 158/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.2310\n", + "Epoch 159/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.2133\n", + "Epoch 160/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 5.1958\n", + "Epoch 161/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 5.1783\n", + "Epoch 162/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1609\n", + "Epoch 163/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.1436\n", + "Epoch 164/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.1264\n", + "Epoch 165/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 5.1092\n", + "Epoch 166/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.0921\n", + "Epoch 167/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.0751\n", + "Epoch 168/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.0582\n", + "Epoch 169/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0414\n", + "Epoch 170/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.0246\n", + "Epoch 171/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.0079\n", + "Epoch 172/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.9913\n", + "Epoch 173/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.9748\n", + "Epoch 174/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.9583\n", + "Epoch 175/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.9420\n", + "Epoch 176/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 4.9257\n", + "Epoch 177/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.9094\n", + "Epoch 178/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.8933\n", + "Epoch 179/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.8772\n", + "Epoch 180/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.8612\n", + "Epoch 181/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.8453\n", + "Epoch 182/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.8294\n", + "Epoch 183/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.8136\n", + "Epoch 184/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.7979\n", + "Epoch 185/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.7823\n", + "Epoch 186/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 4.7667\n", + "Epoch 187/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.7512\n", + "Epoch 188/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.7358\n", + "Epoch 189/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.7205\n", + "Epoch 190/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.7052\n", + "Epoch 191/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.6900\n", + "Epoch 192/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6748\n", + "Epoch 193/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6598\n", + "Epoch 194/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.6448\n", + "Epoch 195/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.6298\n", + "Epoch 196/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.6150\n", + "Epoch 197/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.6002\n", + "Epoch 198/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.5855\n", + "Epoch 199/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 4.5708\n", + "Epoch 200/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - loss: 4.5562\n", + "Epoch 201/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 4.5417\n", + "Epoch 202/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 4.5272\n", + "Epoch 203/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.5128\n", + "Epoch 204/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.4985\n", + "Epoch 205/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 4.4842\n", + "Epoch 206/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 4.4700\n", + "Epoch 207/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 4.4559\n", + "Epoch 208/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 4.4418\n", + "Epoch 209/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.4278\n", + "Epoch 210/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 4.4138\n", + "Epoch 211/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.3999\n", + "Epoch 212/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.3861\n", + "Epoch 213/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 4.3723\n", + "Epoch 214/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 4.3586\n", + "Epoch 215/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 4.3449\n", + "Epoch 216/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.3313\n", + "Epoch 217/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.3178\n", + "Epoch 218/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 4.3043\n", + "Epoch 219/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.2909\n", + "Epoch 220/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 4.2776\n", + "Epoch 221/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 4.2643\n", + "Epoch 222/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 4.2510\n", + "Epoch 223/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 4.2378\n", + "Epoch 224/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 4.2247\n", + "Epoch 225/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 4.2116\n", + "Epoch 226/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 4.1986\n", + "Epoch 227/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 4.1856\n", + "Epoch 228/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 4.1727\n", + "Epoch 229/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.1598\n", + "Epoch 230/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 4.1470\n", + "Epoch 231/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 4.1343\n", + "Epoch 232/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.1216\n", + "Epoch 233/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.1089\n", + "Epoch 234/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 4.0963\n", + "Epoch 235/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 4.0837\n", + "Epoch 236/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 4.0712\n", + "Epoch 237/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 4.0588\n", + "Epoch 238/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 4.0464\n", + "Epoch 239/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 4.0340\n", + "Epoch 240/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 4.0217\n", + "Epoch 241/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 4.0095\n", + "Epoch 242/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 3.9973\n", + "Epoch 243/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.9851\n", + "Epoch 244/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.9730\n", + "Epoch 245/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.9610\n", + "Epoch 246/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.9489\n", + "Epoch 247/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 3.9370\n", + "Epoch 248/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.9251\n", + "Epoch 249/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.9132\n", + "Epoch 250/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.9013\n", + "Epoch 251/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.8896\n", + "Epoch 252/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.8778\n", + "Epoch 253/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.8661\n", + "Epoch 254/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.8545\n", + "Epoch 255/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.8429\n", + "Epoch 256/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.8313\n", + "Epoch 257/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.8198\n", + "Epoch 258/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.8083\n", + "Epoch 259/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7968\n", + "Epoch 260/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.7855\n", + "Epoch 261/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.7741\n", + "Epoch 262/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.7628\n", + "Epoch 263/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7515\n", + "Epoch 264/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.7403\n", + "Epoch 265/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.7291\n", + "Epoch 266/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.7179\n", + "Epoch 267/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.7068\n", + "Epoch 268/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6957\n", + "Epoch 269/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6847\n", + "Epoch 270/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.6737\n", + "Epoch 271/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.6628\n", + "Epoch 272/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.6518\n", + "Epoch 273/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.6410\n", + "Epoch 274/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6301\n", + "Epoch 275/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.6193\n", + "Epoch 276/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.6085\n", + "Epoch 277/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.5978\n", + "Epoch 278/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.5871\n", + "Epoch 279/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.5764\n", + "Epoch 280/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.5658\n", + "Epoch 281/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.5552\n", + "Epoch 282/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.5447\n", + "Epoch 283/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.5342\n", + "Epoch 284/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.5237\n", + "Epoch 285/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.5132\n", + "Epoch 286/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.5028\n", + "Epoch 287/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.4924\n", + "Epoch 288/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.4821\n", + "Epoch 289/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.4718\n", + "Epoch 290/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.4615\n", + "Epoch 291/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.4512\n", + "Epoch 292/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4410\n", + "Epoch 293/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4308\n", + "Epoch 294/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.4207\n", + "Epoch 295/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 3.4106\n", + "Epoch 296/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.4005\n", + "Epoch 297/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 3.3904\n", + "Epoch 298/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.3804\n", + "Epoch 299/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.3704\n", + "Epoch 300/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.3604\n", + "Epoch 301/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.3505\n", + "Epoch 302/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.3406\n", + "Epoch 303/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.3307\n", + "Epoch 304/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.3209\n", + "Epoch 305/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 3.3111\n", + "Epoch 306/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.3013\n", + "Epoch 307/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.2915\n", + "Epoch 308/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.2818\n", + "Epoch 309/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2721\n", + "Epoch 310/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.2624\n", + "Epoch 311/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.2528\n", + "Epoch 312/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 3.2431\n", + "Epoch 313/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2336\n", + "Epoch 314/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.2240\n", + "Epoch 315/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.2145\n", + "Epoch 316/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.2050\n", + "Epoch 317/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1955\n", + "Epoch 318/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.1860\n", + "Epoch 319/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.1766\n", + "Epoch 320/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.1672\n", + "Epoch 321/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 3.1578\n", + "Epoch 322/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 3.1485\n", + "Epoch 323/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1391\n", + "Epoch 324/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.1298\n", + "Epoch 325/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.1205\n", + "Epoch 326/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.1113\n", + "Epoch 327/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1021\n", + "Epoch 328/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.0929\n", + "Epoch 329/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 3.0837\n", + "Epoch 330/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0745\n", + "Epoch 331/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 3.0654\n", + "Epoch 332/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.0563\n", + "Epoch 333/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.0472\n", + "Epoch 334/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.0381\n", + "Epoch 335/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.0291\n", + "Epoch 336/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.0201\n", + "Epoch 337/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.0111\n", + "Epoch 338/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.0021\n", + "Epoch 339/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9932\n", + "Epoch 340/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.9843\n", + "Epoch 341/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.9753\n", + "Epoch 342/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.9665\n", + "Epoch 343/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9576\n", + "Epoch 344/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.9488\n", + "Epoch 345/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.9399\n", + "Epoch 346/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.9311\n", + "Epoch 347/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.9224\n", + "Epoch 348/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.9136\n", + "Epoch 349/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9049\n", + "Epoch 350/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.8961\n", + "Epoch 351/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.8875\n", + "Epoch 352/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.8788\n", + "Epoch 353/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.8701\n", + "Epoch 354/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8615\n", + "Epoch 355/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.8529\n", + "Epoch 356/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.8443\n", + "Epoch 357/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.8357\n", + "Epoch 358/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.8271\n", + "Epoch 359/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.8186\n", + "Epoch 360/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.8100\n", + "Epoch 361/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.8015\n", + "Epoch 362/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.7931\n", + "Epoch 363/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.7846\n", + "Epoch 364/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.7761\n", + "Epoch 365/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.7677\n", + "Epoch 366/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.7593\n", + "Epoch 367/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.7509\n", + "Epoch 368/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.7425\n", + "Epoch 369/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.7341\n", + "Epoch 370/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.7258\n", + "Epoch 371/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.7175\n", + "Epoch 372/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.7091\n", + "Epoch 373/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.7008\n", + "Epoch 374/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.6926\n", + "Epoch 375/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6843\n", + "Epoch 376/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.6760\n", + "Epoch 377/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.6678\n", + "Epoch 378/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.6596\n", + "Epoch 379/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.6514\n", + "Epoch 380/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 2.6432\n", + "Epoch 381/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6350\n", + "Epoch 382/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.6269\n", + "Epoch 383/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6188\n", + "Epoch 384/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.6106\n", + "Epoch 385/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.6025\n", + "Epoch 386/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5944\n", + "Epoch 387/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5864\n", + "Epoch 388/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5783\n", + "Epoch 389/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5702\n", + "Epoch 390/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5622\n", + "Epoch 391/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5542\n", + "Epoch 392/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.5462\n", + "Epoch 393/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5382\n", + "Epoch 394/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.5302\n", + "Epoch 395/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5222\n", + "Epoch 396/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.5143\n", + "Epoch 397/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.5064\n", + "Epoch 398/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.4984\n", + "Epoch 399/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 2.4905\n", + "Epoch 400/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.4826\n", + "Epoch 401/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 2.4748\n", + "Epoch 402/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.4669\n", + "Epoch 403/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 2.4590\n", + "Epoch 404/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 2.4512\n", + "Epoch 405/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 2.4434\n", + "Epoch 406/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 2.4355\n", + "Epoch 407/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.4277\n", + "Epoch 408/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 2.4199\n", + "Epoch 409/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 2.4122\n", + "Epoch 410/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.4044\n", + "Epoch 411/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 2.3967\n", + "Epoch 412/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.3889\n", + "Epoch 413/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 2.3812\n", + "Epoch 414/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 2.3735\n", + "Epoch 415/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 2.3658\n", + "Epoch 416/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.3581\n", + "Epoch 417/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 2.3504\n", + "Epoch 418/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 2.3427\n", + "Epoch 419/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 2.3351\n", + "Epoch 420/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 2.3274\n", + "Epoch 421/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.3198\n", + "Epoch 422/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 2.3122\n", + "Epoch 423/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.3046\n", + "Epoch 424/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 2.2970\n", + "Epoch 425/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 2.2894\n", + "Epoch 426/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 2.2818\n", + "Epoch 427/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 2.2743\n", + "Epoch 428/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 2.2667\n", + "Epoch 429/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 2.2592\n", + "Epoch 430/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 2.2516\n", + "Epoch 431/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 2.2441\n", + "Epoch 432/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 2.2366\n", + "Epoch 433/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 2.2291\n", + "Epoch 434/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 2.2217\n", + "Epoch 435/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 2.2142\n", + "Epoch 436/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.2067\n", + "Epoch 437/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.1993\n", + "Epoch 438/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 2.1918\n", + "Epoch 439/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 2.1844\n", + "Epoch 440/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.1770\n", + "Epoch 441/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.1696\n", + "Epoch 442/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.1622\n", + "Epoch 443/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.1548\n", + "Epoch 444/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.1475\n", + "Epoch 445/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 2.1401\n", + "Epoch 446/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.1327\n", + "Epoch 447/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.1254\n", + "Epoch 448/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.1181\n", + "Epoch 449/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.1108\n", + "Epoch 450/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.1035\n", + "Epoch 451/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0962\n", + "Epoch 452/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0889\n", + "Epoch 453/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0816\n", + "Epoch 454/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0743\n", + "Epoch 455/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 2.0671\n", + "Epoch 456/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.0598\n", + "Epoch 457/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.0526\n", + "Epoch 458/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.0454\n", + "Epoch 459/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.0382\n", + "Epoch 460/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0310\n", + "Epoch 461/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.0238\n", + "Epoch 462/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.0166\n", + "Epoch 463/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.0095\n", + "Epoch 464/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0023\n", + "Epoch 465/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.9952\n", + "Epoch 466/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9880\n", + "Epoch 467/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.9809\n", + "Epoch 468/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.9738\n", + "Epoch 469/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9667\n", + "Epoch 470/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9596\n", + "Epoch 471/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 1.9525\n", + "Epoch 472/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.9455\n", + "Epoch 473/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.9384\n", + "Epoch 474/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9314\n", + "Epoch 475/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.9243\n", + "Epoch 476/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.9173\n", + "Epoch 477/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.9103\n", + "Epoch 478/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9033\n", + "Epoch 479/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8963\n", + "Epoch 480/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8893\n", + "Epoch 481/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8823\n", + "Epoch 482/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8754\n", + "Epoch 483/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.8684\n", + "Epoch 484/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.8615\n", + "Epoch 485/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.8546\n", + "Epoch 486/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 1.8476\n", + "Epoch 487/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8407\n", + "Epoch 488/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.8338\n", + "Epoch 489/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.8270\n", + "Epoch 490/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8201\n", + "Epoch 491/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8132\n", + "Epoch 492/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.8064\n", + "Epoch 493/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.7996\n", + "Epoch 494/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.7927\n", + "Epoch 495/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7859\n", + "Epoch 496/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.7791\n", + "Epoch 497/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.7723\n", + "Epoch 498/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.7655\n", + "Epoch 499/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.7588\n", + "Epoch 500/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.7520\n", + "Epoch 501/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 1.7453\n", + "Epoch 502/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.7385\n", + "Epoch 503/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.7318\n", + "Epoch 504/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.7251\n", + "Epoch 505/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.7184\n", + "Epoch 506/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7117\n", + "Epoch 507/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.7051\n", + "Epoch 508/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.6984\n", + "Epoch 509/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 1.6918\n", + "Epoch 510/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.6851\n", + "Epoch 511/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.6785\n", + "Epoch 512/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.6719\n", + "Epoch 513/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.6653\n", + "Epoch 514/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.6587\n", + "Epoch 515/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.6521\n", + "Epoch 516/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.6456\n", + "Epoch 517/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.6390\n", + "Epoch 518/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.6325\n", + "Epoch 519/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.6259\n", + "Epoch 520/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6194\n", + "Epoch 521/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.6129\n", + "Epoch 522/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.6064\n", + "Epoch 523/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.6000\n", + "Epoch 524/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5935\n", + "Epoch 525/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.5870\n", + "Epoch 526/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.5806\n", + "Epoch 527/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5742\n", + "Epoch 528/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5678\n", + "Epoch 529/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.5614\n", + "Epoch 530/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.5550\n", + "Epoch 531/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.5486\n", + "Epoch 532/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5423\n", + "Epoch 533/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5359\n", + "Epoch 534/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5296\n", + "Epoch 535/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5233\n", + "Epoch 536/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5170\n", + "Epoch 537/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5107\n", + "Epoch 538/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5044\n", + "Epoch 539/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.4981\n", + "Epoch 540/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.4919\n", + "Epoch 541/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4856\n", + "Epoch 542/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4794\n", + "Epoch 543/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.4732\n", + "Epoch 544/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4670\n", + "Epoch 545/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4608\n", + "Epoch 546/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4547\n", + "Epoch 547/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.4485\n", + "Epoch 548/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.4424\n", + "Epoch 549/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.4362\n", + "Epoch 550/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4301\n", + "Epoch 551/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4240\n", + "Epoch 552/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.4179\n", + "Epoch 553/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4119\n", + "Epoch 554/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 1.4058\n", + "Epoch 555/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3998\n", + "Epoch 556/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3937\n", + "Epoch 557/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3877\n", + "Epoch 558/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3817\n", + "Epoch 559/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3758\n", + "Epoch 560/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3698\n", + "Epoch 561/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3638\n", + "Epoch 562/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.3579\n", + "Epoch 563/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3520\n", + "Epoch 564/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.3461\n", + "Epoch 565/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 1.3402\n", + "Epoch 566/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3343\n", + "Epoch 567/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.3284\n", + "Epoch 568/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3226\n", + "Epoch 569/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3167\n", + "Epoch 570/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3109\n", + "Epoch 571/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.3051\n", + "Epoch 572/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2993\n", + "Epoch 573/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2935\n", + "Epoch 574/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2878\n", + "Epoch 575/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2820\n", + "Epoch 576/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2763\n", + "Epoch 577/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.2706\n", + "Epoch 578/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2649\n", + "Epoch 579/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2592\n", + "Epoch 580/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2535\n", + "Epoch 581/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2479\n", + "Epoch 582/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2422\n", + "Epoch 583/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2366\n", + "Epoch 584/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.2310\n", + "Epoch 585/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.2254\n", + "Epoch 586/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 1.2199\n", + "Epoch 587/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 1.2143\n", + "Epoch 588/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.2088\n", + "Epoch 589/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 1.2032\n", + "Epoch 590/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 1.1977\n", + "Epoch 591/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.1922\n", + "Epoch 592/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 1.1867\n", + "Epoch 593/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 1.1813\n", + "Epoch 594/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 1.1758\n", + "Epoch 595/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 1.1704\n", + "Epoch 596/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.1650\n", + "Epoch 597/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 1.1596\n", + "Epoch 598/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 1.1542\n", + "Epoch 599/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 1.1488\n", + "Epoch 600/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.1435\n", + "Epoch 601/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 1.1381\n", + "Epoch 602/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.1328\n", + "Epoch 603/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.1275\n", + "Epoch 604/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 1.1222\n", + "Epoch 605/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 1.1170\n", + "Epoch 606/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 1.1117\n", + "Epoch 607/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 1.1065\n", + "Epoch 608/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 1.1012\n", + "Epoch 609/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.0960\n", + "Epoch 610/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 1.0909\n", + "Epoch 611/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.0857\n", + "Epoch 612/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 1.0805\n", + "Epoch 613/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.0754\n", + "Epoch 614/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 1.0703\n", + "Epoch 615/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 1.0651\n", + "Epoch 616/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.0601\n", + "Epoch 617/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.0550\n", + "Epoch 618/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 1.0499\n", + "Epoch 619/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0449\n", + "Epoch 620/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.0399\n", + "Epoch 621/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0348\n", + "Epoch 622/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0299\n", + "Epoch 623/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0249\n", + "Epoch 624/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.0199\n", + "Epoch 625/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.0150\n", + "Epoch 626/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0101\n", + "Epoch 627/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.0051\n", + "Epoch 628/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.0003\n", + "Epoch 629/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.9954\n", + "Epoch 630/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.9905\n", + "Epoch 631/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9857\n", + "Epoch 632/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9808\n", + "Epoch 633/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9760\n", + "Epoch 634/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.9712\n", + "Epoch 635/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9665\n", + "Epoch 636/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9617\n", + "Epoch 637/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.9570\n", + "Epoch 638/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.9522\n", + "Epoch 639/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9475\n", + "Epoch 640/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9428\n", + "Epoch 641/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.9382\n", + "Epoch 642/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.9335\n", + "Epoch 643/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.9289\n", + "Epoch 644/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.9242\n", + "Epoch 645/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9196\n", + "Epoch 646/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.9150\n", + "Epoch 647/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9104\n", + "Epoch 648/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9059\n", + "Epoch 649/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9013\n", + "Epoch 650/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.8968\n", + "Epoch 651/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8923\n", + "Epoch 652/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8878\n", + "Epoch 653/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8833\n", + "Epoch 654/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8789\n", + "Epoch 655/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8744\n", + "Epoch 656/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.8700\n", + "Epoch 657/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.8656\n", + "Epoch 658/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8612\n", + "Epoch 659/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8568\n", + "Epoch 660/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.8525\n", + "Epoch 661/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8481\n", + "Epoch 662/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8438\n", + "Epoch 663/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8395\n", + "Epoch 664/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8352\n", + "Epoch 665/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.8309\n", + "Epoch 666/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8266\n", + "Epoch 667/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8224\n", + "Epoch 668/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8182\n", + "Epoch 669/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.8139\n", + "Epoch 670/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.8097\n", + "Epoch 671/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8056\n", + "Epoch 672/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.8014\n", + "Epoch 673/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.7972\n", + "Epoch 674/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7931\n", + "Epoch 675/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.7890\n", + "Epoch 676/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.7849\n", + "Epoch 677/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7808\n", + "Epoch 678/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7768\n", + "Epoch 679/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.7727\n", + "Epoch 680/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.7687\n", + "Epoch 681/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7647\n", + "Epoch 682/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7607\n", + "Epoch 683/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7567\n", + "Epoch 684/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7527\n", + "Epoch 685/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7487\n", + "Epoch 686/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7448\n", + "Epoch 687/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7409\n", + "Epoch 688/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7370\n", + "Epoch 689/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7331\n", + "Epoch 690/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.7292\n", + "Epoch 691/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7254\n", + "Epoch 692/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7215\n", + "Epoch 693/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7177\n", + "Epoch 694/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7139\n", + "Epoch 695/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7101\n", + "Epoch 696/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.7063\n", + "Epoch 697/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7026\n", + "Epoch 698/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6988\n", + "Epoch 699/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6951\n", + "Epoch 700/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6914\n", + "Epoch 701/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6877\n", + "Epoch 702/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6840\n", + "Epoch 703/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6803\n", + "Epoch 704/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.6767\n", + "Epoch 705/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6730\n", + "Epoch 706/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6694\n", + "Epoch 707/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6658\n", + "Epoch 708/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6622\n", + "Epoch 709/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6586\n", + "Epoch 710/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.6551\n", + "Epoch 711/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6515\n", + "Epoch 712/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6480\n", + "Epoch 713/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6445\n", + "Epoch 714/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6410\n", + "Epoch 715/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.6375\n", + "Epoch 716/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.6340\n", + "Epoch 717/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6306\n", + "Epoch 718/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.6272\n", + "Epoch 719/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6237\n", + "Epoch 720/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6203\n", + "Epoch 721/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6169\n", + "Epoch 722/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6136\n", + "Epoch 723/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6102\n", + "Epoch 724/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6069\n", + "Epoch 725/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6035\n", + "Epoch 726/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.6002\n", + "Epoch 727/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.5969\n", + "Epoch 728/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5936\n", + "Epoch 729/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5903\n", + "Epoch 730/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5871\n", + "Epoch 731/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5838\n", + "Epoch 732/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.5806\n", + "Epoch 733/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.5774\n", + "Epoch 734/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5742\n", + "Epoch 735/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5710\n", + "Epoch 736/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5679\n", + "Epoch 737/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5647\n", + "Epoch 738/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5616\n", + "Epoch 739/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.5584\n", + "Epoch 740/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5553\n", + "Epoch 741/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5522\n", + "Epoch 742/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5491\n", + "Epoch 743/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5461\n", + "Epoch 744/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5430\n", + "Epoch 745/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 181ms/step - loss: 0.5400\n", + "Epoch 746/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5369\n", + "Epoch 747/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5339\n", + "Epoch 748/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5309\n", + "Epoch 749/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5279\n", + "Epoch 750/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5250\n", + "Epoch 751/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5220\n", + "Epoch 752/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.5191\n", + "Epoch 753/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.5161\n", + "Epoch 754/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5132\n", + "Epoch 755/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5103\n", + "Epoch 756/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5074\n", + "Epoch 757/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.5046\n", + "Epoch 758/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.5017\n", + "Epoch 759/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.4989\n", + "Epoch 760/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.4960\n", + "Epoch 761/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.4932\n", + "Epoch 762/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.4904\n", + "Epoch 763/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4876\n", + "Epoch 764/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.4848\n", + "Epoch 765/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.4821\n", + "Epoch 766/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.4793\n", + "Epoch 767/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.4766\n", + "Epoch 768/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4738\n", + "Epoch 769/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.4711\n", + "Epoch 770/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.4684\n", + "Epoch 771/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4657\n", + "Epoch 772/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4631\n", + "Epoch 773/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.4604\n", + "Epoch 774/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.4578\n", + "Epoch 775/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.4551\n", + "Epoch 776/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4525\n", + "Epoch 777/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.4499\n", + "Epoch 778/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.4473\n", + "Epoch 779/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.4447\n", + "Epoch 780/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.4421\n", + "Epoch 781/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.4396\n", + "Epoch 782/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4370\n", + "Epoch 783/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.4345\n", + "Epoch 784/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.4320\n", + "Epoch 785/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.4295\n", + "Epoch 786/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.4270\n", + "Epoch 787/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.4245\n", + "Epoch 788/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.4220\n", + "Epoch 789/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.4196\n", + "Epoch 790/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.4171\n", + "Epoch 791/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.4147\n", + "Epoch 792/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.4123\n", + "Epoch 793/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4099\n", + "Epoch 794/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4075\n", + "Epoch 795/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.4051\n", + "Epoch 796/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.4027\n", + "Epoch 797/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.4003\n", + "Epoch 798/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3980\n", + "Epoch 799/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.3957\n", + "Epoch 800/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3933\n", + "Epoch 801/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3910\n", + "Epoch 802/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3887\n", + "Epoch 803/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3864\n", + "Epoch 804/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3841\n", + "Epoch 805/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3819\n", + "Epoch 806/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3796\n", + "Epoch 807/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3774\n", + "Epoch 808/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3751\n", + "Epoch 809/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3729\n", + "Epoch 810/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3707\n", + "Epoch 811/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3685\n", + "Epoch 812/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3663\n", + "Epoch 813/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3642\n", + "Epoch 814/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3620\n", + "Epoch 815/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3598\n", + "Epoch 816/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3577\n", + "Epoch 817/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3556\n", + "Epoch 818/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3534\n", + "Epoch 819/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3513\n", + "Epoch 820/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3492\n", + "Epoch 821/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3472\n", + "Epoch 822/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3451\n", + "Epoch 823/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.3430\n", + "Epoch 824/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3410\n", + "Epoch 825/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.3389\n", + "Epoch 826/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3369\n", + "Epoch 827/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3349\n", + "Epoch 828/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3329\n", + "Epoch 829/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3308\n", + "Epoch 830/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3289\n", + "Epoch 831/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3269\n", + "Epoch 832/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3249\n", + "Epoch 833/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3230\n", + "Epoch 834/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3210\n", + "Epoch 835/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3191\n", + "Epoch 836/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3171\n", + "Epoch 837/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.3152\n", + "Epoch 838/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.3133\n", + "Epoch 839/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3114\n", + "Epoch 840/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.3095\n", + "Epoch 841/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3077\n", + "Epoch 842/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3058\n", + "Epoch 843/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3039\n", + "Epoch 844/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3021\n", + "Epoch 845/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3002\n", + "Epoch 846/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2984\n", + "Epoch 847/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2966\n", + "Epoch 848/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.2948\n", + "Epoch 849/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2930\n", + "Epoch 850/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2912\n", + "Epoch 851/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.2894\n", + "Epoch 852/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2877\n", + "Epoch 853/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2859\n", + "Epoch 854/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.2842\n", + "Epoch 855/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2824\n", + "Epoch 856/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2807\n", + "Epoch 857/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2790\n", + "Epoch 858/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.2773\n", + "Epoch 859/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.2756\n", + "Epoch 860/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2739\n", + "Epoch 861/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2722\n", + "Epoch 862/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2705\n", + "Epoch 863/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.2688\n", + "Epoch 864/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.2672\n", + "Epoch 865/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2655\n", + "Epoch 866/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2639\n", + "Epoch 867/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2623\n", + "Epoch 868/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2607\n", + "Epoch 869/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2590\n", + "Epoch 870/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2574\n", + "Epoch 871/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2559\n", + "Epoch 872/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2543\n", + "Epoch 873/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.2527\n", + "Epoch 874/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2511\n", + "Epoch 875/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.2496\n", + "Epoch 876/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2480\n", + "Epoch 877/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2465\n", + "Epoch 878/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.2450\n", + "Epoch 879/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2434\n", + "Epoch 880/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2419\n", + "Epoch 881/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.2404\n", + "Epoch 882/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2389\n", + "Epoch 883/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2374\n", + "Epoch 884/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.2359\n", + "Epoch 885/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2345\n", + "Epoch 886/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.2330\n", + "Epoch 887/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2316\n", + "Epoch 888/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.2301\n", + "Epoch 889/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2287\n", + "Epoch 890/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2272\n", + "Epoch 891/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2258\n", + "Epoch 892/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2244\n", + "Epoch 893/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.2230\n", + "Epoch 894/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2216\n", + "Epoch 895/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.2202\n", + "Epoch 896/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.2188\n", + "Epoch 897/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2174\n", + "Epoch 898/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.2161\n", + "Epoch 899/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2147\n", + "Epoch 900/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2134\n", + "Epoch 901/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2120\n", + "Epoch 902/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2107\n", + "Epoch 903/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2094\n", + "Epoch 904/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.2080\n", + "Epoch 905/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2067\n", + "Epoch 906/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.2054\n", + "Epoch 907/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.2041\n", + "Epoch 908/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2028\n", + "Epoch 909/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.2016\n", + "Epoch 910/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.2003\n", + "Epoch 911/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1990\n", + "Epoch 912/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1978\n", + "Epoch 913/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.1965\n", + "Epoch 914/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1953\n", + "Epoch 915/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1940\n", + "Epoch 916/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1928\n", + "Epoch 917/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.1916\n", + "Epoch 918/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.1903\n", + "Epoch 919/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1891\n", + "Epoch 920/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1879\n", + "Epoch 921/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.1867\n", + "Epoch 922/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.1855\n", + "Epoch 923/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1844\n", + "Epoch 924/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1832\n", + "Epoch 925/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1820\n", + "Epoch 926/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.1809\n", + "Epoch 927/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.1797\n", + "Epoch 928/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1786\n", + "Epoch 929/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.1774\n", + "Epoch 930/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1763\n", + "Epoch 931/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.1752\n", + "Epoch 932/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1740\n", + "Epoch 933/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1729\n", + "Epoch 934/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.1718\n", + "Epoch 935/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1707\n", + "Epoch 936/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1696\n", + "Epoch 937/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.1685\n", + "Epoch 938/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.1675\n", + "Epoch 939/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.1664\n", + "Epoch 940/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1653\n", + "Epoch 941/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.1643\n", + "Epoch 942/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.1632\n", + "Epoch 943/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.1622\n", + "Epoch 944/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.1611\n", + "Epoch 945/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1601\n", + "Epoch 946/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1590\n", + "Epoch 947/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1580\n", + "Epoch 948/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1570\n", + "Epoch 949/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1560\n", + "Epoch 950/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1550\n", + "Epoch 951/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1540\n", + "Epoch 952/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1530\n", + "Epoch 953/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.1520\n", + "Epoch 954/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1510\n", + "Epoch 955/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1500\n", + "Epoch 956/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1491\n", + "Epoch 957/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1481\n", + "Epoch 958/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1472\n", + "Epoch 959/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1462\n", + "Epoch 960/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1453\n", + "Epoch 961/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1443\n", + "Epoch 962/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1434\n", + "Epoch 963/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1425\n", + "Epoch 964/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1415\n", + "Epoch 965/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.1406\n", + "Epoch 966/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1397\n", + "Epoch 967/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1388\n", + "Epoch 968/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.1379\n", + "Epoch 969/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1370\n", + "Epoch 970/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1361\n", + "Epoch 971/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1352\n", + "Epoch 972/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1344\n", + "Epoch 973/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1335\n", + "Epoch 974/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1326\n", + "Epoch 975/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1318\n", + "Epoch 976/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1309\n", + "Epoch 977/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1300\n", + "Epoch 978/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1292\n", + "Epoch 979/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.1284\n", + "Epoch 980/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1275\n", + "Epoch 981/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1267\n", + "Epoch 982/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1259\n", + "Epoch 983/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1250\n", + "Epoch 984/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1242\n", + "Epoch 985/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1234\n", + "Epoch 986/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1226\n", + "Epoch 987/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1218\n", + "Epoch 988/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1210\n", + "Epoch 989/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1202\n", + "Epoch 990/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1194\n", + "Epoch 991/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1187\n", + "Epoch 992/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1179\n", + "Epoch 993/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1171\n", + "Epoch 994/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1164\n", + "Epoch 995/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1156\n", + "Epoch 996/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1148\n", + "Epoch 997/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1141\n", + "Epoch 998/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1133\n", + "Epoch 999/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1126\n", + "Epoch 1000/1000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 0.1119\n", + "Epoch 1000/1000\n", + " - loss: 0.1119\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1119\n", + "Restoring model weights from the end of the best epoch: 993.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + } + ], + "source": [ + "epoch = 1000\n", + "patience = 100\n", + "ae_trainned, IRE_array, IREth = lab02_lib.create_fit_save_ae(data, 'out/AE_1.h5','out/AE_1_ire_th.txt',\n", + "epoch, True, patience)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "D_dRPJnvNd5q", + "outputId": "885dacca-e602-4933-a2bf-df0f0693859d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IREth: 1.71\n" + ] + } + ], + "source": [ + "print(f\"IREth: {IREth}\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6f-5nAMbO8Zx" + }, + "source": [ + "#### Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки.Зафиксировать порог ошибки реконструкции –порог обнаружения аномалий." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "8aJl0tDQMgVj", + "outputId": "6f0a09f6-bfc7-42c1-994e-6016e044bf6a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4HFX9x/HPbakkgRAgBAKRIlXpvZcQQFAQEAI/ICgKAgpGFFC6CChVmggIASUU6U1DKKFDCCGhJUBCKimk99y2+/tjmHtnZ6fvzM7s3vfrefJk7+7szNmpZ77zPefU5PP5vAAAAAAAAAAgI2rTLgAAAAAAAAAAWBG0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAABVY8KECTrrrLO09dZbq0ePHqqpqWn7N3Xq1LSL1yENGzasbRsMGTKkrMu2bn8AAABUFoKWAABUuP33378tMHP55Ze7TmcN4Nj/1dXVac0119Tmm2+u4447Tvfcc4+WL18eqQxh/8UVyHrmmWe0ww476O9//7smTJgQqvwA8NJLLxWcm7baaqvQ87j88ssjnwsHDBjgOe9Zs2bp6aef1sUXX6xDDz1Ua6+9Ng9mAABVrT7tAgAAgPTlcjktWbJES5Ys0aRJk/TYY4/poosu0l133aWjjz467eL5Wr58uYYMGaLGxkZJ0vrrr6+9995b66yzTluWXc+ePdMsYkkuv/xyXXHFFZKkyy67zDM4DWTVgAEDNG3aNEnSlClTfIN05Xb//fcX/D1x4kSNHj1au+66a0olatevXz/Nnj077WIAAFBWBC0BAOiAjjrqKG2wwQZtf+dyOc2fP1/vvPOOZs6cKUmaP3++jj32WD322GOhApe77LJLqJv83XffPXjBXTz33HNatGiRJGmbbbbR+++/r65du5Y8XwAdw7Jly/TEE08UvX///fdHDlr269cv1Llz7bXXdv2MgCUAoCMiaAkAQAd07rnnav/99y96P5fL6f7779cvf/lLNTY2KpfL6Ze//KUGDRqkbt26BZr34YcfXvZMwLFjx7a9Hjx4MAHLDBkyZEjZ+7I05fP5VJaLyvPYY49p5cqVkqSuXbtq1apVkqSHH35YN910kzp16hR6nptvvrluu+222MrYpUsXbb/99tpll120yy67aL311tOgQYNimz8AAFlDn5YAAKBNbW2tTjvtNP31r39te2/u3Ll66qmn0itUAGaWpWQ0DQeAMKxNwy+44AKtt956kqSFCxfq2WefTatYbcaOHatly5bpnXfe0S233KKTTz5Z3/3ud9MuFgAAiSJoCQAAipxxxhnq0qVL29+vv/56iqXx19zc3Pa6tpbqDYDgpk6d2naOq6mp0amnnqrBgwe3fW7v6zINO+ywg+rraSQHAOhYqNUDAIAinTt3Lhg5d9asWSmWxpl1lF5rUOG0004rGpV32LBhjvNYvny5brnlFg0aNEgbbrihunTporXWWkvbbrutzjnnHL333nuBymJdlmn8+PE699xzte2226p3796qqanRUUcdFeo3mqOym4PwSNIVV1wRaBT2IUOGFP3+xYsX629/+5v23XdfbbDBBqqvr1dNTY0WL15c8N1vvvlG9913n0499VTtsMMO6t27txoaGrTmmmtqyy231GmnnaYRI0YE+g3Dhg3zHSl+1KhRbdNYuy145ZVXdMIJJ2iTTTZRly5dtPbaa2vffffVbbfdVhCoduO0XewGDBhQNPryzJkzdckll2i77bbTmmuuqe7du2vLLbfUr371q7aBZIIaOXKkTjjhBG200Ubq0qWL1l9/fe2zzz66/fbbtWLFCkmF+3JcXSvMnz9f119/vQ4++GD169dPXbp0aduG22yzjY499ljdeOONmjJlSqD5vfzyyzrzzDO1zTbbqHfv3urcubP69eunQYMG6bbbbmtrTm03derUtt9mXXff+c53HPfjUaNGxfHzQ3nggQfauhLYe++9NWDAAJ188sltn//3v//VN998U/ZyAQDQ0fG4DgAAOLL2C7l69eoUS5KM5557Tj//+c81Z86cgvcbGxu1ePFiffrpp7r99tt14okn6u677w7cp6dkBKGuuuoqtba2xl3syN566y0NHjxYM2bM8Jzulltu0dChQx3Lbo4w//nnn2vYsGE68MAD9eijj3oOIBJFU1OTzjnnHN19990F7zc2NuqNN97QG2+8ofvuu08jRoxQnz59Yl32U089pSFDhmjJkiUF73/++ef6/PPP9c9//lP/+c9/9IMf/MD3N/zsZz/Tv//974L358yZozlz5ujNN9/U7bffrieffDLW8kvS008/rdNOO62g2wSTuQ0/++wzPf7447rxxhvbBt9yMmPGDJ1yyimOwcTZs2dr9uzZevHFF3XNNdfo4Ycf1j777BPnTymLBx54oO21Gazccccdtc022+jTTz9VS0uLhg8frvPOOy+lEgIA0DERtAQAAI6s2ZVm/25Zsuuuu+rss8+WZGSBTZw4UZJ00EEHacsttyyY1po1KkmPPPKITjrppLbAXF1dnfbee29tttlmWr58ud5444223z98+HBNmTJFr7zySkGTeTfXXXddW2bkpptuql133VXdunXT1KlT1dDQEOo3Hn300dp22201evRovf/++5LcR2f3GoV90qRJOu+887RkyRL16NFD++67r/r166dFixYVNf2fNWtW23rZZJNNtNVWW2mdddZRly5dtHjxYn388cf69NNPJRmZkAcffLDeffddde7cOdRv8/KLX/xC999/v2pra7Xbbrtpyy23VC6X07vvvqvPP/9cktHH3ymnnKIXXnghtuW+9NJLOvPMM9Xa2qqNNtpIe+yxh3r27KkpU6Zo1KhRamlp0apVq/STn/xEn3zyib7zne+4zmvw4MEFo1H37t1b+++/v3r37q0ZM2botdde04QJE/SDH/xAP/zhD2P7DWPGjNGxxx6rlpYWScbDh913310DBgxQ586dtXTpUk2ePFkff/xx28AzbiZMmKCDDjqobeTqmpoa7bjjjtp6663VtWtXff3113r99de1bNkyzZo1SwMHDtR///tfHXDAAW3z6NmzZ9tx+sADD2jZsmWSpFNOOUU9evQoWuYGG2wQy3oI6s0339TkyZMlGRnmxx13XNtnJ598si688EJJRhNxgpYAAJRZHgAAVLT99tsvLykvKX/ZZZe5TmdOIyn/6quves7z888/L5j+tttui6UMSTn11FPbln/fffd5Tjtp0qT8Gmus0Tb9rrvumv/yyy8Lpmltbc3fcMMN+dra2rbpfvWrX7nO07qu6uvr87169co/+eSTRdOtXr06ys/LX3bZZaHXr3Wd1NfX5yXlzz777PyyZcsKpmtqasq3tra2/f3Pf/4zf+utt+ZnzpzpOu/x48fnd95557b5/+lPf3Kd9r777mub7tRTT3Wc5tVXX22bpnPnznlJ+V122SU/YcKEgulyuVz+5ptvLljfr732muuyrdO52XjjjQuW3b179/y//vWvfC6XK5juk08+yW+wwQZt05522mmu87znnnsKlv3b3/62aNvPnTs3f9hhhxX85jiOn6OOOqptXsccc0x+4cKFjtOtWrUq//zzz+fPOOMMx8+XL1+e32qrrdrmddhhh+UnTZpUNN2SJUvyv/zlL9umW3/99fOLFy92nKd1XU+ZMiXyb4zT6aef3lamY489tuCzGTNmFJwDxo8f7zs/67G63377JVRqw5QpUwr2s6ysUwAA4kKmJQAAKNDS0qJzzz237e+ePXvqhBNOCPz9F154QfPnzw88/ZVXXqnevXuHKmMprrzySi1fvlyStNlmm+nFF19Ur169Cqapra3V0KFDVVNTo6FDh0qSbr/9dv3mN7/xzK6TpFwup2eeeUb77rtv0WdxZiOG0dLSotNPP1233XZb0Wf27M+f/vSnvvP7/ve/r5deeklbbrml5syZozvuuEMXXXSR6urqSi5rY2OjNt98c73yyitaY401Cj6rqanRueeeqzfffFOPPfaYJOmhhx5yXNdRNDU16amnntKhhx5a9Nk222yjf/zjHzriiCMkSf/5z3901113FQ2O0traqssuu6zt7zPOOEPXX3990fzWXXddPfXUU9p7773bsmjj8MYbb0gy9rVhw4YVrUNTly5ddPjhh+vwww93/PzGG2/UhAkTJBkZv4899pjjIFc9e/bUHXfcoZUrV+r+++/X7Nmzdeedd+qCCy6I6RclZ9WqVXr00Ufb/rb2YylJG264ofbff3+98sorkoxsyxtuuCHw/L/88kudc845gac/+eSTtdtuuwWeHgCAakfQEgAAKJfLaf78+Xrrrbd07bXXavTo0ZKk+vp63XvvvaH6LHz//fdDBWHOP//8sgUtFy9erEceeaTt77/+9a9FAUurc889V//85z/16aefKpfL6a677tI111zjuYxjjz02tiBaXLp06aK//vWvsc6zV69eOvroo/X3v/9ds2fP1meffabvfe97scz72muvdQ22SUZg1QxamvtqHI444gjHgKXp8MMPV9++fTVnzhwtX75cEyZMKPrN//vf//T1119Lkrp3765rr73WdX6dOnXS9ddfr/322y+eHyBp6dKlkqRu3bp5rkMvzc3NbQHuzp07684773QMWFpdffXVbQPaPPjggxURtHzqqafa1tfaa6+tww47rGiak08+uS1o+eCDD+ovf/lL4FG8Z82apdtvvz1weXbeeWeClgAAWBC0BACgA7L2Oedmiy220A033OA74Eglefvtt9XY2ChJ6tOnj4488kjP6Wtra/XTn/5Uv/3tbyVJr776qu8ywmSllsshhxyitdZaK/T3vvnmG7377ruaMGGCFi1apBUrVrSNsiwZ/Seaxo0bF0vQskuXLr7bZYcddmh7bY74HQdrf4ZOampqtN1227UN3jR16tSi32wdsOYHP/iB1lxzTc957rvvvtpoo400ffr0SGW269+/v7766istWrRIjzzyiI4//vjQ8xgzZkzbaNkHHXSQ1l13Xd/v9OvXT1tuuaUmTJigTz75REuWLPF8IJAF999/f9vrE044wbHP2WOPPVZnn322Vq5cqblz52rEiBFVdU4EACDLCFoCAIAi6623nh544AHHAV/8XHbZZbr88svjL1QMPvzww7bXu+66a6CMqb322qvg+/l8XjU1Na7T77TTTqUVMgFhy/TZZ5/pggsu0H//+9/AI6CH6RLAyxZbbOE7YJE189fMlItDkKCr37LHjRvX9jpo1tyuu+4aW9DyJz/5SVt25+DBg9sClwcccECg4KMkvfPOO22vZ86cGbiJ8+LFiyVJ+XxeM2fOzHTQctasWXrppZfa/rY3DTetscYaOuqoozR8+HBJRqAzaNByv/32cxx1HQAABEPQEgCADuioo44qGKV3wYIFmjx5cluz7rlz52qfffbR448/3taHXzWYN29e2+uNN9440HcGDBjQ9rqpqUnLli1Tz549XadfZ511IpcvKWHKNGLECP3oRz9qy0gNyhwVulRBAl3WoKY5SnYay25ubi763LqP9e/fP9ByN9xww0DTBXHxxRdr1KhRevfdd5XP5/Xkk0/qySeflCRtvvnm2meffXTQQQfpyCOPdBy9WzICeqaPPvpIH330UehyLFq0KNoPKJN///vfbQH5zTff3DPAfPLJJ7cFLZ955hktWrQoUuYyAAAIx7tzGgAAUJXOPfdc3XbbbW3/HnroIY0ePVrjx4/XdtttJ8kI0A0ePFiTJ09OubTxMQfgkYz+BoOwT+cXnOvatWv4giUsaJnmzZun448/vi1gufHGG+uaa67Rm2++qVmzZmnlypXK5XLK5/PK5/MFA87kcrlYyuqVxZq0OJZt3ce6desW6DtR+5500r17d7322mu67rrrCgLukjEwzL333quTTjpJffv21e9//3utWrWqaB5LliwpuRxxBpOTYG0a/n//93+e0w4cOFB9+/aVZAwUZe0XFwAAJIegJQAAaPP9739fL774YlsW5vLly3X66aenXKr4WINDK1asCPQd+3Ru2WnV4O67724LWG233Xb66KOPdOGFF2qvvfbS+uuvr65duxYE9uLKrqwm1n1s5cqVgb4TdF8MqlOnTjr//PP11Vdfady4cbrlllt0wgknFGRXr1y5Utddd50OOOCAosClNVD/61//ui1IHebf/vvvH+tvitOYMWP02Weftf192WWXqaamxvVffX19Wz+mUmHAEwAAJIegJQAAKLDuuuvq1ltvbft71KhRev7551MsUXyszaSD9iFoHeilU6dOVR20fPnll9teX3zxxZ7N4CVp2rRpSRep4vTp06ft9cyZMwN9J+h0YZkDB/3qV7/SQw89pJkzZ2rs2LE67bTT2qZ57733ika4Xm+99dpeW4N11aLUoOO7776rL774IqbSAAAAN/RpCQAAihx99NHaa6+99NZbb0kyAljVMGKuddTp0aNHq7W1VXV1dZ7fefvttwu+n0bz5XIt09qXod+gNK2trW37B9ptv/32bcHf9957L9B3Ro8enWSRCuywww669957VVdXp3vuuUeS0U/j+eef3zaNtX/Ht99+23fwqaDSbPpvampq0kMPPdT29xZbbOE7wrvpyy+/1MKFCyUZgc8///nPSRQRAAB8i0xLAADgyDoC+Lhx4/TMM8+kV5iY7LnnnurcubMko/9GvwzSXC6n++67r+3vAw88MNHyuenSpUvba6fBX+JSW9teNfRr2vzUU09VZRZeqazNop9//nnf/iHffPPNVDJWf/jDH7a9njt3bsFne+21V1sgb+bMmXr22WdjWWa59mMvzz//vBYsWCBJqq+v1+uvv65333030L8//OEPbfP517/+FVs/rgAAwBlBSwAA4Ojggw/Wnnvu2fb3VVddlWJp4rHmmmvq+OOPb/v7d7/7nWe/jLfddps+/vhjSUZA7xe/+EXiZXSy9tprt73++uuvE1vOJpts0vbaK0g9b948/eY3v0msHJXs0EMPVb9+/SQZfcJaA112TU1NBRmOpWpsbCwYCMjLjBkz2l6vu+66BZ917txZ5513XtvfZ511Vqj9zh4ENZVrP/ZibRo+cODAot/uZfDgwW2B/RkzZujVV1+NvXwAAKAdQUsAAODq0ksvbXv9/vvv63//+1+KpYnHpZde2jZYyhdffKFBgwbpq6++Kpgml8vpb3/7m4YOHdr23tlnn100GnO5bLvttm2vX3zxxVhGd3Zy5JFHtr2+5ppr9O9//7tomrFjx2q//fbTjBkzAo/A3pHU19cXZCnfcccduuCCC9TU1FQw3bx583TMMcfovffea8v+LdXs2bPVv39/nX/++RozZozrdCNHjiwY+f2www4rmua3v/2tttlmG0lGgHHnnXfWf/7zH9fswvnz5+uuu+7SjjvuqOuuu85xGut+/J///CfQbxo2bFjBoDjWPmbDmj9/vl544YW2v0866aRQ3+/Xr58OOOCAtr8ZkAcAgGTRpyUAAHA1aNAg7bbbbm198/3pT3/SoYce6vmdF154QfPnzw+8jG7duumvf/1rSeUMY9NNN9U999yjk046Sa2trXrnnXe0xRZbaJ999tGmm26q5cuX64033ijIBNt9993LWka7XXfdVf3799eMGTM0e/ZsbbnlljrkkEPUp0+ftn4Cd9lll4Is0ihOPfVU3XDDDfriiy/U2Niok08+WVdffbW22247denSRZ988klbMGy77bbToEGDUl0vWXX66afr+eef19NPPy1J+utf/6p//vOf2n///dW7d2/NnDlTr776qlavXq1NNtlEP/rRj3TTTTdJKmyiH8XixYt1ww036IYbblDv3r21ww47aIMNNlCXLl30zTff6KOPPioI0n/3u9/VueeeWzSfNdZYQ88884wOPvhgTZkyRXPmzNFPfvIT9enTR7vvvrv69u2rfD6vhQsX6rPPPtOXX37ZFtB060bhmGOO0T/+8Q9JRjD3gw8+0I477qhu3bq1TfPLX/5Sm266aUnrwM3w4cPbmqV3795dRx11VOh5nHTSSW19lj7xxBO64447CkaMt/ryyy91zjnnhJr/RRddVDDKu+nOO+/UnXfeWfCePRB++OGHq1OnTgXvnXnmmTrzzDNDlQEAgKwgaAkAADxdeumlbYPwvP3223r55Zd10EEHuU7//vvv6/333w88/169epU98HX88cere/fuOv300zV37ly1tLTo1VdfdWzuOXjwYN1zzz0F/fGVW21tre644w4dc8wxampq0pw5c/TAAw8UTHPqqaeWHLTs3Lmznn32WR122GFtga0JEyZowoQJBdPttddeeuSRR3T33XeXtLxqVVNTo0ceeURDhgzRww8/LElasGCBHn/88YLpttpqKz355JMF29JvxHYvDQ0N6ty5sxobGyVJCxcuLBgR3m7//ffXQw895Joxu8kmm2jMmDE688wz9dhjjymfz2v+/Pl67rnnXOe55pprug7iNHDgQA0ePLhtIJz33nuvaLCiI444IrGgpTUz8qijjoqUKXzMMcforLPO0urVq7VixQo99thjGjJkiOO0s2bNKhqZ3c/pp5/uGLScM2eOxo8f7/ld+3Fqfg8AgEpF83AAAODp8MMP184779z295VXXpliaeJzxBFHaNKkSfrb3/6mgQMHql+/furUqZN69eqlrbbaSmeddZbeffddDR8+vCATLM3yjhkzRmeccYa22WYb9ejRI5HRmL/73e/qww8/1NVXX62dd95ZPXr0UOfOnbXxxhvriCOO0PDhw/Xaa685BlbQrnPnznrooYc0YsQIHXfccdpwww3VqVMnrbfeetprr71066236v3339cWW2zRNiK1pMAjWTvZYIMNtGDBAj3zzDP63e9+pwMPPFAbbbSRunbtqrq6Oq255prabrvtdPrpp2vkyJF69dVX1bdvX8959u7dW48++qg++ugj/eEPf9Cee+6p9ddfX506dVKXLl3Ut29f7b333vr1r3+tZ555RrNnz9app57qOr8HH3xQDz74oI444ghtuOGGZXsY8Mknn2js2LFtf4dtGm7q2bNnQTcKw4YNK7VoAADARU0+n8+nXQgAAACgo9prr7309ttvS5Leffdd7bbbbimXCAAAIH0ELQEAAICUTJs2TZtuuqlaW1vVqVMnLVmyJNWuCAAAALKC5uEAAABACvL5vM4991y1trZKko4++mgClgAAAN8iaAkAAADE7NJLL9Xf/vY3zZ8/3/HzqVOn6uijj24bYbyurk7nn39+OYsIAACQaYweDgAAAMRs+vTp+tOf/qTzzz9f3/ve97TllluqV69eWr58uSZOnKgPP/ywLcNSki6++OKCAa8AAAA6OoKWAAAAQEJaWlr04Ycf6sMPP3T8vGvXrrryyivJsgQAALBhIB4AAAAgZosXL9bTTz+tV155RZ9++qnmzZun+fPnq7W1Vb1799YWW2yhgw46SD/72c+0/vrrp11cAACAzCFoGVAul9OsWbPUo0cP1dTUpF0cAAAAAAAAoKLk83ktW7ZM/fr1U22t91A7NA8PaNasWerfv3/axQAAAAAAAAAq2owZM7Thhht6TkPQMqAePXpIMlZqz549Uy5N/Jqbm/Xiiy/qkEMOUUNDQ9rFATocjkEgfRyHQPo4DoF0cQwC6av243Dp0qXq379/W5zNC0HLgMwm4T179qzaoGW3bt3Us2fPqjwogKzjGATSx3EIpI/jEEgXxyCQvo5yHAbpetG78XhGvf766zryyCPVr18/1dTU6KmnnvKc/oknntDAgQO1zjrrqGfPntpjjz00YsSI8hQWAAAAAAAAQCgVGbRcsWKFtttuO91+++2Bpn/99dc1cOBAvfDCC/rggw90wAEH6Mgjj9SHH36YcEkBAAAAAAAAhFWRzcMPO+wwHXbYYYGnv/nmmwv+vvrqq/X000/r2Wef1Q477BBz6QAAAAAAAACUoiKDlqXK5XJatmyZevfu7TpNY2OjGhsb2/5eunSpJKNvgebm5sTLWG7mb6rG3wZUAo5BIH0ch0D6OA6BdHEMAumr9uMwzO+qyefz+QTLkriamho9+eSTOuqoowJ/569//auuvfZaTZw4Ueuuu67jNJdffrmuuOKKoveHDx+ubt26RS0uAAAAAAAA0CGtXLlSJ554opYsWeI70HWHC1oOHz5cP//5z/X000/r4IMPdp3OKdOyf//+mj9/ftWOHj5y5EgNHDiwqkenArKKYxBIH8chkD6OQyBdHINA+qr9OFy6dKn69OkTKGjZoZqHP/zwwzr99NP1n//8xzNgKUmdO3dW586di95vaGioyp3GVO2/D8g6jkEgfRyHQPo4DoF0cQwC6avW4zDMb+owQcuHHnpIP/3pT/Xwww/rBz/4QVmXnc/n1dzcrFwuV9blhtHc3Kz6+nqtXr1ara2taRen6tXV1VXlyQcAAAAAACAOFRm0XL58uSZNmtT295QpUzRu3Dj17t1bG220kS666CJ9/fXXeuCBByQZTcJPPfVU/e1vf9Nuu+2mOXPmSJK6du2qXr16JVbOpqYmffPNN1q5cmXmA4H5fF59+/bVjBkzVFNTk3ZxOoTOnTurT58+VdndAAAAAAAAQCkqMmg5ZswYHXDAAW1/Dx06VJJ06qmnatiwYZo9e7amT5/e9vldd92llpYWnX322Tr77LPb3jenT8LKlSs1Y8YM1dXVaa211lLXrl1VV1eX2YBgLpfT8uXLtcYaa6i2tjbt4lQ1M/N2yZIl+vrrryWJwCUAAAAAAIBFRQYt999/f3mNH2QPRI4aNSrZAjmYP3++GhoatPHGG6uurq7syw8rl8upqalJXbp0IWhZBl27dlWPHj00c+bMqh3cCQAAAAAAICqiUwloaWnRihUr1Lt374oIWCIdNTU16tWrlxobG9Xc3Jx2cQAAAAAAADKDoGUCWlpaJMlx9HHAyhyMJ+t9ngIAAAAAAJQTQcsEZbX/SmQH+wgAAAAAAEAxgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWiJVAwYMUE1NjYYNG9b23rBhw1RTU1Pwr7a2Vj179tQOO+ygiy66SPPmzXOdp/27bv9GjRqV/A8EAAAAAABAaPVpFwBw0717dx177LGSjNG1p02bpnfeeUfjxo3TfffdpzfeeEObb7656/cHDRqkvn37un7u9RkAAAAAAADSQ9ASmdWnT5+CDExJ+vTTT7Xffvtp7ty5Ou+88/T888+7fv/CCy/U/vvvn2whAQAAAAAAEDuah6OibLPNNho6dKgkaeTIkWpsbEy5RAAAAAAAAIgbQUtUnO9///uSpObmZi1cuDDl0gAAAAAAACBuBC1RcZYuXSpJqqurU58+fVIuDQAAAAAAAOJG0BIVx+zH8tBDD1VDQ0PKpQEAAAAAAEDcGIgnLTvvLM2Zk3Yp2tRI6pnPq6amxn/ivn2lMWMSL5OVOXr4XXfdpeHDh2vjjTfWLbfc4vmdAw44wPWzXr16afHixTGXEgAAAAAAAHEgaJmWOXOkr79OuxRtar79lyXTpk1zDKLuuuuuevHFF9WrVy/P7w8aNEh9+/Z1/Kxbt26xlBEAAAAAAADxI2iZFpdgWlrykvLfZlr6Bi/LVPbu3bvr2GOPlSQ1NjZqwoQJGj9+vEaPHq0zzjhDDz/8sOf3L7zwQu2///5lKCkAAAAAAADiRNAyLWVuXu0nn8tp6dKl6tmzp2pqs9HVaZ8+fTRs2LCC95544gkdf/zxeuSRR7TvvvvqrLPOSqdwAAAAAAAASEw2olNAQD/+8Y914YUXSpIuvfRSLVmyJOUSAQAAAAAAIG4ELVFxLrroIq2//vpasGCBbrzxxrSLAwAAAAAAgJgRtETF6datmy655BJJ0s0336xFixalXCIAAAAAAADEiT4tUZFOP/103XDDDZo8ebKuv/56/fnPfy6a5tprry3qE9PqxBNP1CGHHJJgKQEAAAAAABAFQUtUpIaGBl111VUaPHiwbr31Vg0dOlRrr712wTQjRozwnMf2229P0BIAAAAAACCDCFoiVVOnTi16b8iQIRoyZIjvd0844QSdcMIJRe/n8/kYSgYAAAAAAIC00KclAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaIlUDBgxQTU2Nhg0b1vbesGHDVFNTU/CvtrZWPXv21A477KCLLrpI8+bNc52n/btu/0aNGhWqrGa5hgwZEu3HAgAAAAAAIJD6tAsAuOnevbuOPfZYSVJra6umTZumd955R+PGjdN9992nN954Q5tvvrnr9wcNGqS+ffu6fm7/rKamRpKUz+djKD0AAAAAAACiImiJzOrTp09BBqYkffrpp9pvv/00d+5cnXfeeXr++eddv3/hhRdq//33T7aQAAAAAAAAiB3Nw1FRttlmGw0dOlSSNHLkSDU2NqZcIgAAAAAAAMSNoCUqzve//31JUnNzsxYuXFjy/C6//PK2puFScZ+YU6dOLfrOihUrdNFFF2mzzTZT586d1bdvX5166qn6+uuvSy4PAAAAAABAR0fzcFScpUuXSpLq6urUp0+fkue3/fbb69RTT9X9998vSTr11FMLPl9jjTUK/l6yZIn23HNPTZ8+Xfvss4+23XZbvfPOO3rggQf02muvafz48erVq1fJ5QIAAAAAAOioCFqi4pj9WB566KFqaGgoeX5HHXWUjjrqqLagpb0fTbunnnpKgwYN0htvvKGePXtKkhYtWqQDDzxQ48aN0x133KGLLrqo5HIBAAAAAAB0VAQtU7Lzzjtrzpw5aRejQD6fL2gm7aZv374aM2ZMGUrUzhw9/K677tLw4cO18cYb65ZbbvH8zgEHHOD6Wa9evbR48eJIZenevbvuu+++toClJK211lq68MILdcIJJ+ill14iaAkAAAAAAFACgpYpmTNnDv0f+pg2bZpjEHXXXXfViy++6NsEe9CgQerbt6/jZ926dYtcrp133lnrr79+0ftbbbWVJLFdAQAAAAAASkTQMiVuwbQ0hcm0LIfu3bvr2GOPlSQ1NjZqwoQJGj9+vEaPHq0zzjhDDz/8sOf3L7zwQu2///6xl2ujjTZyfN/MvFy9enXsywQAAAAAAOhICFqmpNzNq/3kcjktXbpUPXv2VG1tNgaV79OnT1H/kk888YSOP/54PfLII9p333111llnlb1cWVk/AAAAAAAA1YroCyrKj3/8Y1144YWSpEsvvVRLlixJuUQAAAAAAACIG0FLVJyLLrpI66+/vhYsWKAbb7wxtvmaI5G3tLTENk8AAAAAAACER9ASFadbt2665JJLJEk333yzFi1aFMt8N9xwQ0nSp59+Gsv8AAAAAAAAEA19WqIinX766brhhhs0efJkXX/99frzn/9cNM21115b1Cem1YknnqhDDjmk7e9jjjlG119/vQ4++GAdeOCB6tGjhyTpL3/5i9Zee+3YfwMAAAAAAACcEbRERWpoaNBVV12lwYMH69Zbb9XQoUOLAosjRozwnMf2229fELT805/+pNraWj3xxBN66qmn1NTUJEm6+OKLCVoCAAAAAACUEUFLpGrq1KlF7w0ZMkRDhgzx/e4JJ5ygE044oej9fD4fqSxdunTRX/7yF/3lL39x/NyvXAMGDIi8bAAAAAAAALSjT0sAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0TlM/n0y4CMo59BAAAAAAAoBhBywTU1hqrtbW1NeWSIOvMfcTcZwAAAAAAAEDQMhENDQ1qaGjQ8uXL0y4KMm7VqlWqq6tTQ0ND2kUBAAAAAADIDIKWCaipqVGPHj20ZMkSrVq1Ku3iIKNaW1u1ZMkSdevWTTU1NWkXBwAAAAAAIDPq0y5AterTp49WrVql6dOnq2fPnurRo4fq6uoyG5zK5XJqamrS6tWraaqcsHw+r8bGRi1cuFC5XE7rrrtu2kUCAAAAAADIFIKWCamrq1P//v01f/58LVu2TIsXL067SJ7y+bxWrVqlrl27ZjawWm26d++uvn37qlOnTmkXBQAAAAAAIFMIWiaorq5O6623ntZdd101Nzcrl8ulXSRXzc3Nev3117XvvvvSv2IZ1NfXq76eww8AAAAAAMAJUZMyqKmpyXw2XV1dnVpaWtSlSxeClgAAAAAAAEgVnRcCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKlIoOWr7/+uo488kj169dPNTU1euqpp3y/M2rUKO24447q3LmzNttsMw0bNizxcgIAAAAAAAAIryKDlitWrNB2222n22+/PdD0U6ZM0Q9+8AMdcMABGjdunM477zydfvrpGjFiRMIlBQAAAAAAABBWfdoFiOKwww7TYYcdFnj6O++8U9/5znd0ww03SJK22morvfnmm7rppps0aNCgpIoJAAAAAAAAIIKKDFqG9c477+jggw8ueG/QoEE677zzXL/T2NioxsbGtr+XLl0qSWpublZzc3Mi5UyT+Zuq8bcBlYBjEEgfxyGQPo5DIF0cg0D6qv04DPO7OkTQcs6cOVpvvfUK3ltvvfW0dOlSrVq1Sl27di36zjXXXKMrrrii6P0XX3xR3bp1S6ysaRs5cmTaRQA6NI5BIH0ch0D6OA6BdHEMAumr1uNw5cqVgaftEEHLKC666CINHTq07e+lS5eqf//+OuSQQ9SzZ88US5aM5uZmjRw5UgMHDlRDQ0PaxQE6HI5BIH0ch0D6OA6BdHEMAumr9uPQbMkcRIcIWvbt21dz584teG/u3Lnq2bOnY5alJHXu3FmdO3cuer+hoaEqdxpTtf8+IOs4BoH0cRwC6eM4BNLFMQikr1qPwzC/qSJHDw9rjz320Msvv1zw3siRI7XHHnukVCIAAAAAAAAAbioyaLl8+XKNGzdO48aNkyRNmTJF48aN0/Tp0yUZTbtPOeWUtunPPPNMffXVV/r973+viRMn6o477tCjjz6q3/zmN2kUHwAAAAAAAICHigxajhkzRjvssIN22GEHSdLQoUO1ww476NJLL5UkzZ49uy2AKUnf+c539Pzzz2vkyJHabrvtdMMNN+iee+7RoEGDUik/AAAAAAAAAHcV2afl/vvvr3w+7/r5sGHDHL/z4YcfJlgqAAAAAAAAAHGoyExLAAAAAAAAANWLoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWgJAAAAAAAAIFMIWgIAAAAAAADIFIKWAAAAAAAAADKFoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAANI1fbo0cWLapQAAZEhNPp/Pp12ISrB06VL16tVLS5YsUc+ePdMuTuyam5u11VZbafXq1WkXBeiwVq9erS5duqRdDKBD4zgE0sdx2AG1tkpz5hiv11lH6tQp3fJ0cByDQPpWr16tjTfeWB988EHaRYldmPhafZnKhAqwePFiLViwIO1iAAAAAOio5s1LuwQAkAk8PKjgoOXtt9+u6667TnPmzNF2222nW2+9Vbvuuqvr9DfffLP+/ve/a/r06erTp4+OPfZYXXPNNewEFmuuuSbrA0gRT7WB9HEcAunjOOyAFi6UVq0yXtfWSuuvn255OjiOQSB9q1ev1nrrrZd2MVJXkUHLRx55REOHDtWdd96p3XbbTTfffLMGDRqkzz//XOuuu27R9MOHD9eFF16oe++9V3vuuae++OILDRkyRDU1NbrxxhtT+AXZdMMNN+jwww9XQ0ND2kUBOpzm5ma98MILHINAijgOgfRxHHZQgwdLDz9svF5nHWnmzHTL04FxDALpsx6HHV1FDsRz44036uc//7lOO+00bb311rrzzjvVrVs33XvvvY7Tv/3229prr7104oknasCAATrkkEM0ePBgjR49uswlBwAAAAC4YsgFAMC3Ki7TsqmpSR988IEuuuiitvdqa2t18MEH65133nH8zp577ql///vfGj16tHbddVd99dVXeuGFF3TyySe7LqexsVGNjY1tfy9dulSSEfFubm6O6ddkh/mbqvG3AZWAYxBIH8chkD6Ow46pLp9vy6bJS2ph+6eGYxBIX7Ufh2F+V8UFLefPn6/W1taitv3rrbeeJk6c6PidE088UfPnz9fee++tfD6vlpYWnXnmmfrDH/7gupxrrrlGV1xxRdH7L774orp161baj8iwkSNHpl0EoEPjGATSx3EIpI/jsGPZcfZs9f/2dWNjo0a88EKq5QHHIJAF1Xocrly5MvC0FRe0jGLUqFG6+uqrdccdd2i33XbTpEmTdO655+pPf/qTLrnkEsfvXHTRRRo6dGjb30uXLlX//v11yCGH+A7JXomam5s1cuRIDRw4kL5LgBRwDALp4zgE0sdx2DHVmf1ZSurcqRP9uKWIYxBIX7Ufh2ZL5iAqLmjZp08f1dXVae7cuQXvz507V3379nX8ziWXXKKTTz5Zp59+uiTpe9/7nlasWKFf/OIX+uMf/6ja2uKuPTt37qzOnTsXvd/Q0FCVO42p2n8fkHUcg0D6OA6B9HEcdjCW+7EaiW2fARyDQPqq9TgM85sqbiCeTp06aaeddtLLL7/c9l4ul9PLL7+sPfbYw/E7K1euLApM1tXVSZLydPQMAAAAAOmpqUm7BACADKq4TEtJGjp0qE499VTtvPPO2nXXXXXzzTdrxYoVOu200yRJp5xyijbYYANdc801kqQjjzxSN954o3bYYYe25uGXXHKJjjzyyLbgJQAAAAAAAIBsqMig5fHHH6958+bp0ksv1Zw5c7T99tvrf//7X9vgPNOnTy/IrLz44otVU1Ojiy++WF9//bXWWWcdHXnkkfrzn/+c1k8AAAAAANjREg4A8K2KDFpK0jnnnKNzzjnH8bNRo0YV/F1fX6/LLrtMl112WRlKBgAAAAAIjObhAAAHFdenJQAAAAAAAIDqRtASAAAAAICkrVyZdgkAoKIQtAQAAAAAZEO19mn5xz9KPXtKV12VdkkAoGIQtAQAAAAApKcj9Gl59dVSa6t0ySVplwQAKgZBSwAAAAAAAACZQtASAAAAAJAN1do8HAAQGkFLAAAAAAAAAJlC0BIAAAAAkJ6O0KclACA0gpYAAAAAAAAAMoWgJQAAAAAgG+jTEgDwLYKWAAAAAID00DwcAOCAoCUAAAAAAACATCFoCQCIx8SJ0tZbS0cfLeVyaZcGAAAAAFDBCFoCAOJx9NHShAnSU09Jjz+edmkAAEAlok9LAMC3CFoCAOIxcWL762nT0isHAACoLPRpCQBwQNASAAAAAAAAQKYQtAQAAAAAZAPNwwEA3yJoCQAAAADIhiVLpJ12kt5+O+2SAABSRtASABA/+qYCAABB2esNY8dKe+2VTlkAAJlB0BIAED+ClgAAAACAEhC0BAAAAAAAAJApBC0BAPEj0xIAAARV7fUGBhcCgEgIWgIA4lftNx8AAABB2YOWBDErz8UXSz/4gTR1atolAToUgpYAAAAAACSFoGVl+/JL6c9/ll54QfrHP9IuDdChELQEAMSPTEsAAAADQcvKNm9e++tFi9IrB9ABEbQEAAAAAKSn2h925nLefyPbGhvbX7e2plcOoAMiaAkAAAAAQFLsmZUELSsLQUsgNQQtAQDxq/aMiSy4/XbpxBPpEL6cFi+WTj/d6Iyfpn0AgKAIWla2jh60fPxx6bjjpA8/TLsk6IDq0y4AAAAIafJk6ZxzjNdffim9/3665ekoLrxQ+uc/jdc77ij9+MfplgcAqkW1P+y0Byl58FVZOnLQMp+Xjj3WeP3EEx3v9yN1ZFoCAOJX7Tcfafv88/bXY8akV46O5p572l+/+mp65QAAVBYyLSvb6tXtrzta0M66r7LfIgUELQEAAAAA6an2YAhBy8rWkTMt2VeRMoKWAID4kWmZLNZvOqw3nWwDAIhPtQdG7EFLmodXFoKWQGoIWgIA4kdAJ1ms33QQtASAZFR7EM8e+CEQVFkIWgKpIWgJAEClIWAGAKgm1R4YoXl4ZSNoCaSGoCUAIH4E1ZLF+k1HtWcCAUBaqj0wQtCyshG0BFJD0BIAgEpD0DJ9bAMAiE+1B0bsv4+HYJWFoCWQGoKWAABUmlou3wCAKlLtQTwyLSsbQUsgNdz1AACiGTVK+uMfpVmzij8jCy1ZrN/0sQ2AZDU1SddfL911V/UHtFD9gRGClpVt9er21x0taMn5FymrT7sAAIAKtGqVdMABxuvXXpPefDPd8gDlRtASSFTt3/8u/e53xh8bbigdfni6BUKyqj2Ix+jhlY1MSyA1ZFoCAMKbO7f99VtvFX9OQCdZrF8AVa72hhva//jXv9IrCMqj2gMj9mw1stcqC0FLIDUELQEA4VGBSRc3OwCAalLt1zWah1c2gpZAaghaAgDC86vAkAmYLCqQAIBqUu3XNYKWlY2gJZAagpYAgPAIWqar2ivM06ZJf/mL9OWXaZfEXUtL2iUAgOpR7YER+++r9szSakPQEkgNQUsAQHhUttNV7RXIgQOlCy+Udtst7ZK4a25OuwQAUD3c6hXVUt8g07KyEbQEUkPQEgAQHhWYdFX7+jczLBctSrccXghaAkB83K5r1XK9I2hZ2QhaAqkhaAkACM8v86FaMiOyqqNVmLOIoCUAxMctMFIt1zv77yMQVFkIWgKpIWgJAAjPrwJDBSdZrN/0NTWlXQIAqB7VHrS0P8zl4W5lWb26/XW17JNBUedEyghaorK1tkqPPy699lraJaluL70kPf109ItWPi8995w0YkS85fIyZow0fDiBhaT47QtUxpPV0SrMWUSmZbLee49zeEdnvY5wTal+btu4Wq53Hal5+IsvSs88U13HbUfOtKym7YiKVJ92AYCSPPigdOqpxutPP5W23jrd8lSj0aONQTEk6YknpKOPDj+P//5XOvJI4/Ubb0h77x1f+ZzMmSPtsovxesYM6YILkl1eR0SmZbpYv+kjaJmcmTOl3Xc3Xi9cKJ1zTrrlAZC8jpZpWa3X8bfflgYNMl4/+6x0xBHplicuHTloWa37KioGmZaobKef3v769tvTK0c1u+aa9te/+U20efzud+2v//Sn0soTxJNPtr++8MLkl9cRkWmZLiqQ6SNomZwHH2x//atfpVcOpKumxvk1qlO1By07Sp+W1nr++eenV464EbR0/xtIGEFLAN5qLaeJqIEoAljVx6/CxjZPVkeqMGe1ckzQMjnLl6ddAgDlVu1BS/q0rGwELd3/BhJG0BKAN2t2Q6VcpGo5tSXOr8JWKftKpepI67elJe0SGOw3mPS1mByClkDHQ5+WyDKClu062u9H6rizR2WjuVDy4si0LDf2i+SRaZmujnSz47WvNTUZg4TNnJl8OeyZlWRaJscatOzWLb1yACifas+0JFutcuVyhdf81lZpxQpjMNj589MrV7kQtETKCFoC8GYNAFZKIIqgZfL8st+ojCerI1UYvX7rZZdJRx1lDLyVdEamPbOSoGVyVqxof73GGumVA0D5VHvQsqM0D6/GOrj9+t/aKp15pnTsse2DDlUzgpZIGUFLVLZqveBnSdxBy2qszHREZFqmq5qDwvZ9xysYee21xv9z5kiTJydXJolMy3KyZlp2755eOQCUD83Dq0+11AVXry78u7VV+ve/jddjx5a/POVG0BIpI2iJ6kEwLBmV2Kcl+0LyCFqmq5orjFErx0nvc2Ralo81aEmmJdAxVHumJc3DK5e1P0upevbJoAhaImUELQF4q8TRwwlaJo+BeNJlX7/VFCS271tZqRwTtCwfgpZAx1PtQcuOmGlZLQhaFv7d0X4/UkfQEoC3uDMtwwQUGxulV18tbpaB9HXETMsZM6QPPki7FIZqztiwNwfPyujh9iAlo4cnhz4tgY6nowUtq7GeJFVn4oBf0LJat6WJgHt5NDUZ972rVqVdkswhaInKVu0XiSyIu0/LMPMYMkQ68EBp8OBwy6jGClPWdLRMywULpO9+V9p5Z+nZZ9MuTXazEeOQ1d9GpmX50Kcl0PHQp2X1qZb7NL+gZbXso27ItCyPn/7UuO/9yU/SLknmELQE4C3N0cMfftj4/6mnwn2PoGXy/LLfqqWiarrttvaM3x/+MN2ySNVdgczqzQBBy/KxBi0bGtIrB4DyqfZMy2puIVHt7EHLjhaAruY6Z5Y8+KDx/3PPpVuODCJoCcBbJY4eTtAyeR2teXjWfo+9ApmVJtRxyGrzcIKW5WMNWnJzBHQM1R607GiBrmpiD1raVcs+6oagJVJG0BKAN+tAPFErWAzEU306WvPwrO1TWc1GjENWf5s9SEnQMjnWAHG1nUsAOOtoQcusPQyFO7+gZbVfpwhaImUELVHZogYSWlqk8eO9LzKtrf7TdARkWsJJR8u0rM3Y5TKtTMt83jgvJrk8+74VdFlJ73NhMy2/+UaaPj258lSrSstGmjZNmjcv7VKU1+TJ0qJFaZcC1aba+7TsKM3Dq7EOTqZl4d/V/nuRORm7CwNCinqT+pOfSNtvL517rvs0//d/xjS//GW0ZVQLa7Cm3APxRFWNFaasIdMyXWllI/7ud8Z5Mcl+Pe1ByqC/Lel9zh60bGpyP599/bW00UbSd74jjR2bbLmqjdl3rCnLN0fvvWds4403lubMSbs05TFihLTZZtImm0jLlqVdGlSTjpZpWW31JCfV8gDbfl2yq5Z91A1BS6SMoCWqR5igwpNPGv/fdpv7NOYgMHfdFb1M1SDNgXisOkLlrpKQaZmutCqQN9xg/P/f/ya3jKgB2aTXgVNmpdsy//AHIzMjlzMegCG4pUsL/87yuX/wYONct2qVdPnlaZemPA491Ph/8WLpH/9ItSioMh0taFlt9aRqRvNw77+BhGXsLgxA5mSleXiY/uOylhVXjTra6OFZD1pmZbCaOERtHl7uTEvJ/by0YkX7a7LRwrEHLbMcsLBuW+vgQR0F/boiTtXePLwjZlpWC5qHF/5d7b83Czg/FMjYXRiAzLEGANMciCdMUIagZfI6WvPwrAUtszBYTVLbOGrz8KTXQZigpXXdZG3fybpKyrSsq2t/3RFv4urr0y4Bqkm1Z1qSrVa5yLQs/LtajsksYx0XoCaNjqfaLyxxi7tPy6jItMyWJJuHz54dPoOntdXoRzApWdunslCBTGqZUQOypZ7bZ8/2fjjitE+67afW/T9r+07WVVKmJUHLtEuAStTaKs2aVfx+tQctO0qmZdwttJqb0+8zOCuZlnPmOD9ATZp9O1bLMZll1dSCKgYELVHZolwMac4UThyZlnEIs92qrWlyFiUVtHz8cWnDDaXttgteKcrnpf32M753zz3Rlusna9lyWWgentS5NGrz8FIq0Y88Im2wgep33939POd0oxDk5oGgZThLlhT+neUbe4KWaZcAlSafl/bcU9pgA2nYsMLPOlrQkrqqv5YWaZttjP3lmWfSK0cWMi2ffdZYD9tuW/572Sw8KO9oWMcFMnYXBpQBQctwsjIQD0HLbEmqefixxxrfnTBBeumlYN+ZNEl66y3j9c9/Hm25frIWeMpC8/CkAqVpjB5+wglSPq+ajz5S7wkTnKcJ0zycc1B0K1cW/p3lintHD1pafz8QxCefSKNHG69PO63ws2rv05Lm4eE9/bT05ZfGuvrRj9IrRxYyLX/4Q2M9fPmlsV7KiaBl+ZFpWYCgJToeTgLhZGUgnjDbjYpg8soxeviqVcGm86tMxiHrmZbVFLRMefTwOrffFTVombWAd9bZ13+Wz+cELdMuASqNV3Z6R8u0zPK5LSvs3YWkJQtBS6tyD/CXhTpnR0O8okDG7sKAMiDTMpxK7NOSimDy/C6m5dwG5dgvsxa0jNqEOk7lClqWe/Rwt/2JPi3LIwtZxEF19KAlzcMRltf5kKBldYjzmpeVwM3q1d6fl3tblnu9kCVcftVy3otJxu7CgDKw32QuW2ZUJFavTqdzY6eyZEmpfVouWxbPxa1czcOzuA3cJPkEOp/3fpJbaqZlY2N8GZLlqDxlLWiZhafeWWsenqXRwwlaRhc10zKNjBxr0K4j3mAQtExOnNfIqMpdHwobtMzns5OJ56W52ej2wv77yrVu06zXlrrcrAQts5ZpmXbQsiNe78otK/t+RmTsLgwoQdAbQ/tN5tprS1tuaXRuvPHG0oIF8ZctiAcflHr3NvosyZJSMi0fe8z4TZMmlV6OcmRaPvGE1KePdNBB2Q9c3nabtNZa0pAhycz/8MONY+Phh50/LyVoOWuW1L+/8c9pBNEg87AqR9Aya4GnLFQgs9Y8POn9gKBleUTZ/uedJ625pvTnPydRInfWTMuOeINB8/BkmNfIDTeUvv46nTKY9aGDD463PuR1Pgzbp+Wxxxp1zHvvLb1cSVm+XNp8c6lvX+njjws/K0fd5aGHjHV0xBHJL8sU5/6SlfNqFgbisSJoWf1YxwUiBS2XLl2qpTE82Vq+fLmeeeYZPZPmaGDoeOwn+uZm6YsvpIULpTlzpD/8IZ2A1f/9n1G2556Tpk8v//LdlHLDfdxx8V1Yy9Gn5THHGIGJV1+Vxo+PNo9yefBB43f+61/x76+TJkn/+59xbAwe7DyN/WIaptnTOedI8+YZ/37729LK6resuGQt0zKN5uH2bZy15uFJV/CcApRu2fkELaOLkmn5t78Z6/zii5MpkxvreaEjNpcj0zIZ551nXB/nz5eGDk2nDGZ96JVXpA8/jG++cTUPnzvXCKy2tko/+1k8ZUvCbbdJ06YZ2Y6/+U3hZ+U4Z5x4onFOfeEFacqU5JcnxVs3qJSgZbkDTIweXv2ysu9nRKTaxpprrqna2lp99NFH2nrrrYs+nzVrli6++GLV1NTon//8p+t8pk2bpqOOOkq1tbVqYcOgXPxO9LNmpX/zkXYzdaus3HCXu0/LtJtl+TH3kVzOuLA1NMQ3b7++e6TiCkuYZk9Tp7a/jiPTshwPGbJyHJjSqEDaj8GsNQ9Puk/LMJmWVlnbd7Kukvq0pHl42iWoTtOmtb+eMSO9cpjK1QQ7TNBy4cJkyxKXRYvcPyt3gkS56rUELZNHpmX1Yx0XiJw6kvc40S5atEjDhg3TsGHDSp4XEDu/m8xcLv2gZZZucuMuS9T5lTtombXMOjvrxSzuJ65BfnspmZbWylYcN70dMdOymoOWKY8e7ipq83CEU6mjh2fl5rqcaB7eMcRZx4irefiSJfGUJ2ndu7t/Vu5zW7nqMXFei7NyXqV5eOHfBNSSl5V9PyMydheGqtLamvyNW5T5+1W+8vls3ySVW9RKzooV8ZaDoGWhtIOWfoEFr2PTWnaCltGk0TzcvoxSlun13bRHD3fTkUcPb2kpXyA2aqZtGjr66OFZOy9Wi6ydP5qbjTKFOedHuT6EybT0638+bHmT0tGCli0theudgXiSUe714peYkJXjrZqwPgtQ20Aypk+XNtlE2nrr7I3s53cSINOyUNSyzJwZbznK0aelVdYzSJIMWgbZ5qU0D7duS6/1nKWBeLJ2c17JmZZ//avUs6d0zTXOn1fD6OHW7ZO1fSesDz6Q+vWT9t67PPuZ37klSzp60LKcD6Y7UvaydZ/PQn1w2TJpxx2ljTaSJkzwn/7cc41z/H33hVtOXEHLxkZp552NwYw++yxcGeLWrZv7Z1k+t0Xx+uvSuutKb7wR3zzL3XejGzItC/+2HpMtLdKeexoD2o4bV9ZiVbWOWKfwUOE1aWTWGWcYgcuJE6Urrki7NIVoHh5O1BvuUvthst+gkGlZKO1MS7/AQhzNw4Nux444engamZZxBS0vuEBatcoY9MxJypmWNW7BkTCZlgUzzNi+E9bhhxuDgrz9tvTII8kvj0zLytGRAokd2U03GcGI2bONgV285HLSLbcY5/if/rT487gG4vEKWt55pzR2rDG45nHHeZc3aV27un9W7uMn6brSfvsV9+FZ6jKzkm3m19d7tWdaegUt//Uv6d13pW++kY48srzlqiblGuyyQmX8rhwVy/ok9quv0iuHk0poHp6lm5+0Mi0JWnqrlkxLrwGEstIsWMrezXklZ1r6SbtPS7f9yen3Bhk9vNJ9843z66SQaVk5kt7PrdeiSg/+h5G15uGTJrW//ugj72lLqY+E6dPSayCer79uf512pqXXMVLuc1sa56hSl5mVwE3WmodnafTw2bPbX8fdyq4jsZ8rOmKdwkPG78pRsayVrKzdvFVCpmWWTlRRK8xumZZB55d20DLrkgxahl2+lEymZdDfVY7jJWvnsTSClnH2aRlmOWUePbw2TNCyo/RpWU5kWlaOrJ0Xq0XWzh/WhzN+D3RLaUYbZ5+WWeF1newIQctS6wmVErTsyM3DuQ7Eg0xLTwQtEb98Pp1KVtBl+p0EspBpmfbyrdLKtLSvgzAn7zguoGltg6BlTzJoGeS3l6NPy6DbPGhFvJT9IkvHpJSN5uFJBcvTbh4eR9CyYIYZCDpI6d5YhFl2GpmWUdZNPk/QkpvV5GXh/GEN2PgFLe3Z5/a/sxq0TGpf9jovJHVuC5OxmvQxHGfQMs2+5tPItLRvmzSvNx09aFmO38gI7Z4IWiJeL71kdHw9ZUr7e1k7mQXJtEz7RJH28q3izrQMyn7yLnemZQpBqm3vuUf1m2wijRjhP3HaQctSRg+PO9MyyIOI444zBgf74INg83SaR5ZUS/Nwp/WacvPwGrf5RM20TNvy5dJuu0nbby/NnVvavKJcD556yuig/49/DDZ92EzLUtZ1S4s0cKC05ZbSl18G/95//2vUdf73v/b3snTdLpe49/Mrr5TWW081//53vPOtNJWcaWkPUtqDi+UIWoZdZ1dcYQw29uij4b4XhNd1Mu7jJ5+XjjpK2mwz52b89vV4003G77733njLYRVn0NKrvpi0cmZatrYafUl/97vG2BAm6+/PUvPwanfddcZxcv/9yS6nlGSdDqCkoGVNFi6kyJaBAwv7kpGydfMm0adlWFGP81L7Pku7eXi594E5c7Tpc8+p5uuvpUMP9Z8+yaBlkGO2lObh1u96VULjyrQcMUJ67DFp6lSjQh9F2ucEu2oJWjrtuyk3D3fNtHQqx7x5/mVJu3/cK66QRo82bmKHDi3/8o8+2ujz6uqr3fsAtQqbaVnKdh82zHjY+sUX0gknBP/e4YcX13WydN0ulzjPiytWSJddJn3zjeqdBnDJWl0ySVkLWlr5lcce3AkTtAyTIWidr/0cG3adXX65MWjP8ceH+14Q5cy0fPpp499XXzkPiGIvy9Chxu/+2c/iLYdVqfUEax0hy0HLOM////638WBs0iTp5JPb37f+/rSbh1v/rvZz8+9/bxwnQ4Yku5yOHBgOoKSjf9ttt3X9zAxo1qWZyo1syNrJrBL6tEx7+VZRt1+pJ9uOlmm5ZEm46dPOtMxS83C/6SZPbn8dtduCrJ3H0mgenkSflk1NUqdOhe9F/W1pZFq++67ztFkKOlgzbsaNK21epf6WKFncftu1lHO1tVXI2LHR5yN1zBuMOM+L77/v/XmW6kVJy9r1xiqLmZZmC6ko95xpNo+Oe5+2tnCaPj1cWZJS6nnRGizsKEFL6+BRY8a0v7YOXJl20LIjXu+SRp+Wnko6+vNZvqgiO5LcT6LM2+8k4BS0LHc/nVm6GEStVLl9L+pAPGFO3pUYtAy7POs+EveFLUrQ0r69yjkQj9/vX7482Hy8ZO2GuVoyLZ0y79LOtAwStGxoMNbHu+/6Xx/SDlpmpU8wKdg126/rCbtStnuc6yNL1+1yibN+98473vPuSPccWXroYVdq0DLKaNpBmoc3NUlduxqvw6yzpI9br/nHvU/7/e5KHIinUoKWcWedm6zHm/V6laWgZUc6NyeJ5uGeIh39++67L03DEVy5TmZB98komZYdOWgZdfuVegHvaJmWYbd5JWdalrt5eBxBy6xVyqL2+1iKJIKWTjcCQX+bfZvElWkZZCCevfeWXn1Vmj/faMK1+ebeZUuTdb2UGqQrR6ZlOZuHE7QsTYJBy7rVqws/z9qDoyRlOWjpd8yUo3n46tXSypXFy40StEx6vypnpiVBy+SUM9PSum93797+Os3m4V71rSzVdyoZ2ayeIh39o0aNirkYQAyCnjSjBC2nTJFOOknadFPpX/9Kvo+yclXOV6yQfvxj4+L3xBNSr17F08QdtAw6v7T7tCz3RbjSg5Z+mZdWQTO/4sq0tD61jiprN8xpPJEN2jz8hRek3/3O6CfLrw9Fp0zLoM3Dw2T3hhAoaLnPPkbQUjKCLV5ByySCDh9+KJ12mrTfftLf/uY9bdCHBPm89ItfGPP+17+krbYqnqbamofHeS0Pcg4/80yjGfQDD0jbbBN83tOnG/3tbbSR9NBD6feTaorrOpnPFwUtOy1bVjhNXOfg3/xGGjVK+uc/pR13NLpMOO0040HErbfGs4w4JX3taW42BqqbP9/o+7lvX+/p/c4BUZuHB33Q6TRPp+UGlXRgoFqClmPHGtf0Aw6Qbrwx+PfMcQKinrPSCFredpv0978b/TD/6EdG+f3qo0cdJZ1yitFPcqnXSbegJc3D4/WHP0jPPy/94x/S7runXRoyLX1kpNaDquBW4ShX8CfoxT/KQDw/+Yn03nvS8OFGpS5p5boYXH219OKL0iuvSBde6DxN3EHLqE09SwlaRvkNldQ8PAujh4fNjjKVO9PSzMQIK2tPkrPcPPwHPzD6ZPrtb/33g1KahyeUberaPNz6/h57tL/+9NPiaZMOWu61lzR+vHTLLcYgMl6CPiR45RXpnnukDz4wbtSSkESmZSnHZpzBP7/z1euvGzdHY8dKP/xhuHmfeqrRFcGjjxqDNKQljmurk7lzjaCZRSJBy48/lm6+2QhUHnCA8d4xxxh/33abUc/LAut6TXqU4H/8wxi85a23pF/+0n/6pPq0DDp4nyQtXuy93EppHp5mi56wyz7gAOM4uekm4ziKutywrBnX1qBdkn71K6MOYw7c6JdlaXrgAemZZ0pfvjVo2a1b++usjh6etfpxENOmSddcY/T5ba3PpSmh1kPVgqAl4rNqlfP75erTMugFOEqfltYO+r/8MthySlGuE9Xo0e2v33jDeZq4g5ZBt1MpT5ziCOiUuTLpGihxk7XRw8NkWlp5VULjGojHGrS0PrUOI2uZlpXSPNztumAqpXl4mBHrQ6j1y7SsqZF69ix+3yrpoKV1vfqt46DNw7/6qv11Ute5rGVaxtk83K8c1gHBrOs6CGsLpwkTwn03TmH7Gw3KIQiVSNBy1qz210uXGv9bt8XEiaUvIw7W9Rw0YBLV+PHtr0eO9J/eL2gZtXl4mKCl0zqJup7SbB6eZp+WYesM5vEiFR5HQZSSMWbdrmn1yRxm34rj2mltHeTWPJygZWmcsrWdlPO3kWnpKfWg5cqVK3XDDTeE/t7tt9+uAQMGqEuXLtptt9002hp8cbB48WKdffbZWn/99dW5c2d997vf1QsvvBC12HBivaBZVUOmpVU5mmWVK2hprQCUGmS0CxpocBNn8/AKCFpWfPNw+8U16HEfR/Nwv3VnrQCusUawedplrVKWRuUmStDS3p+ofT2W0jw8qWxTv6BlfX3hdcBp+nL2SWcffd0uaPPwIOWshD4twxyr5ezTMq7zdJp9HNp/Q1znRYf6YyJBS791t2RJ6cuIgzVIErXZc1DWY8C6D7utq6QyLcM0D3c6lsi0LP7dXvWEUuoMTtsq6OCLYVmPhbTqYWGClnGcn611VrdMy6TPC3YJPSTOvDSDlmRaFkgtaLls2TL9+c9/1oABA/T73/8+1HcfeeQRDR06VJdddpnGjh2r7bbbToMGDdI333zjOH1TU5MGDhyoqVOn6rHHHtPnn3+uu+++WxtssEEcPwWmNIKW1otDnH1aep0oynHDUK6LgbXyGXSwi6DizrQMc8MXR1935b4gh6nU2QPrWQhaRm0ebt1WUUeMD5NpGTVombUKWhqVm6B9WlrZ+xO1lzvO5uFxZVr6jR5eV5du0DLs7w7aPLwc17Yoo4eHzbQMsx/EGbT0Ox4IWroLErQsx81jRwxaup3L3FpBJDV6eJhMy0oKWqbZp6XXubSUQKJTub0Ce3EFLctRz3HaP5POdrYL0jy83GXqqAG1ctb9o94DdRBlD1ouXLhQl1xyiTbeeGNdeumlmm/rwyaIG2+8UT//+c912mmnaeutt9add96pbt266d5773Wc/t5779XChQv11FNPaa+99tKAAQO03377abvttiv158Aq7cpepWRaNjVJJ55o9JXiFuhNI9Mya0HLsJmWkydLhxxi9M0Z5eKa0KAegZWSSbpokdEv1/HHF/b/E5V9/vvsIz34YOF79nW6556Ffwfdb6zLipo9WKmZlsOHG+t2xIjw3w3TPPzee43llDqIXhyZlkGa+UVtHl6u0cPr6wtvDv3OFXEHmewPaMMELUsdyCCNgXjCZlqGOXeXcyCeuG5AOkjQsiGJTEu/7e3UV2IarOfFOIITv/udNGiQMaiknVuLm6hBy3I0D3eqL1mXW0rQMu5AQZp9WtrXUynNw62cjnuvumdHClrGcX52G4jHeqymnWlZ6c3D7d5/3xjY8OabC98v570gzcM9lVR7nTZtmm644Qa99NJLmjFjhhoaGjRgwAAdd9xxOuuss9TLMhLx8uXLdd111+mmm27SihUrlP92B+/Tp49+85vfBF5mU1OTPvjgA1100UVt79XW1urggw/WO7aRB03PPPOM9thjD5199tl6+umntc466+jEE0/UBRdcoDqXp+yNjY1qtJykln5boWpublZzufuRKAPzN5Xy22oWLnTcoXK5nFoTWmf1kszLQ66lJdByahsb5ZVbkW9tVUtjo9x62muVlCvh99TefLPqHnrImNdVVyn35z9LUsHyWhoblS/Dflan9icX+VxOLQ7LrG1tLVhfQfeR+lxOTpfuoNtJtm3Q2tTkud7rjzlGNePHSyNHKrfnngVPZJpXr5Y6d/ZeXmtr4TZoairLNmhb/KpVBceP53puaiooa/7uu1Uzbpwxn3XXVS7MyI4OapqaCo/lN9+U3nxTzT/5SdtbdS0thU+9bDd7Xtu5YLs2N7dvV/s2b2wMdKzZj2n7uqtftqz9PNGtW6TzUW1zc6TjwEvDSScZLw49VM0hK6B1ra0F699rXdX/5jeqWbpUuSuvVOtee0UsrVSzenXBfuG2zILjaMmSwuPIto1bVq4sOs5qm5oK1rXrsW/fX6z7UkjW+dS0tjpu3/qWFtVIytfXqyWXa/tOa0tL0XLrcrm27ZPL52O9BtZMmVJ4rli92vOhh1luScrV1rqWpSaXczwHFazjXC70OrZ+v7mx0fcBTV1zc+G5JZ83jg+3m0HbftAc4sFNbT4f6bh2qh/kW1sdr6Fty1q9OvI5pNRtEJtVqwqP35aWWK6TTvXHTsuWFdwM51pbSz6Oalpbi/bx+u7dVfPtg63cokWJ1VfDqF+9uu2YzTc1ee5Xfmpef131118vScoNHqxWW//ltVLbfmndh+sbGhzrcPnaWs/y1NjqMvmFCwumt9cv2o4Dr3q37dxuX4ZUeC2pzeWCH2v288eKFYXZbSWyX8+snK4dpSg6h9uPV+u9he0z+zqy3xf61o+XLnXdfn7XKC/1jY3tx4LPOTYWzc3F62X58rb38p06qcajvtba2lryNq1fscLxmm29r8o3Nia/LizsdWBrvay2pSX2+nHiWloK76P22ks1zc3S66+refBgqXdv44PVqz2Pk1g53PfGEZ/JsjC/K3LQcuTIkTrmmGO04tsLvRmEHD9+vMaPH68HHnhAr776qvr27au33npLJ510kmbMmNE23QYbbKDzzz9fv/jFL9Q1xGiu8+fPV2trq9Zbb72C99dbbz1NdOlA+6uvvtIrr7yik046SS+88IImTZqks846S83Nzbrsssscv3PNNdfoiiuuKHr/xRdfVLcYL2ZZMzJIJ9wu1n/3Xe3q8P78efP0TkL9h/7IUqGdMX26xgVYzlaff67veny+bOlSjXntNR3o8vmEiRM1uYTfs+e//qV1vn298qGH9Mpee0n5vKxjtY4ZPVpzy/Dkapf589Xv29erli/XSIffte1XX2lTy99B+4I9ZOVKOR3Zi+bP15sB5tFl4UINsvw9fdIkfeTxvR9ZOpNv+fhjWXt5GzlihJp9Muxqm5p0pOXv0e+9p3llfJK53vvva3fL317rubaxsaCsZsBSkupuu03PHXxwSWVZ+9NPtbfD+9Yy7T1vntb2mMec2bP1vstvsO7rX02erM++na5u9WodYflsxpQpGh9gX9n044+1rUs5JWngvHkyz9rzFi/WuxGO380nTtTWHsuIwroews5v7/nzC9b/pM8/10SnebS26kffPnRbOm2aXiuh3BuPHavtLX9P/PRTTXKYn/V3jX71Vc1buLDtb/s2HvP225prO862/uILbW75220/aFi2TIdb/v5iwgR9EfH3Wctc09rqeC08aOlSrSGpKZfTO2+/rf2/fX/61KlF56Z9Fi3St1VeLV6yRG/EeA1c/513Cq61b73xhpZ4DIxw0LJlMs9+3yxYoPdcyrLRxx9rB8vf5j5pXTeffPKJpob8Ldbvv/LSS1pt3gy42H3OHK1ne++F555zbcrdedEiHWr5e8R//6tWv4dU3/rOxIn6vnU5AX+b09jqNbmc5/c3//TTyOcQ6/ImTZrkfKyXQdd583SI5e+Px4/X9BjKssm77+p7tvc6LVumxqYmdfn27wXffKO3S1xWn/HjZX1s88ILL+iQzp3V9dt7mTkTJ7pet8rpSEvQsmn5cv2vhDJ95/nn2/bx2vfe07O2eW0zfbo2+/Z1TT7ftl8ems/L6ShatXq1Y13RtPEHHxRcJ1qXLi3Y19cdM0bWsXrNz+pXrdIPXOY5c+rUgvq9vb4kSe+98Ybmf9via4tJk7SlwzKcdJk/v6Cu+eJzz6klaosMB9//6it9x+WzLz7/PPI1y8nGH39csO5f+u9/dZjl73EffKCvv72HtZ833daReS20noM+GDNGc2wZt93mzNFAl3K98uKLWt2nT5CfUGTQ0qVt54DGlSs1IuHjs7a5uaB+/cILL6jXpElt1/vmhgZ18rg3mDBhQkn3iJJ0uCUA/M2sWW3X7AOWLJE5BOCyBQv0ahnPVVt88UXBMTX5iy804dvlbzlpkrawfFYJY4b0/OorHWD5u8YSPBv15JNauf76korrrEn+Nvu56NPx4zXl2+OvlPhMlq20ZhX7iBS0nDdvngYPHqzllmZf3bt3V319vZZ8e8H44osvdPbZZ+vcc8/VoEGD1NTUpHw+r+985zu68MILNWTIEDV4jRobo1wup3XXXVd33XWX6urqtNNOO+nrr7/Wdddd5xq0vOiiizR06NC2v5cuXar+/fvrkEMOUU/rqKFVorm5WSNHjtTAgQMjb5cal6b+fdZeW4cffrjjZ3Hqv8EG6hdgObWvveb5eY/u3bWPRzbSVttsoy1K+D1132ZWSlL3ddc11o0tBXznHXZQvgzrrO6BB9ped+3UyXE71b78csHfQbdlvcvgEGutuWaweXz9dcGfG/frpw0DLrvBVpkaeOCBkl+FydaMddeddlL+0ENdJo5fzjYCsOc6spU1v/HGqpk2Ldh3A6hxGWHbOt+6a67xnEff9dYLVI5NBgzQAHM6WxcTG/Xtqw2CHNOffeZaTkmqtzwAWKdPn0jrp/ajjzyXUaqw87Ov/80GDNAmTvOwZJ31WmONkspdO2NGwd9bbrKJvuszv1233rrwXGZr8rnz975XdK6zn6M36tfPeT+YN6/gz+9utpk2i2G71ORyjtfC+m8DYZ26ddNe++zTXr7+/YvOTdbz/JprrRXr/lJrHYVa0t577qn8Tju5Tl9vCeCtu/76rmWxX8Odptt2m220dQm/5cD995c23NBzmrrbbit67/BBg9wHHLIFbAcdfLDUo0eg8tTOnFm4nBK3k9f3az/8MJZlbbb55s7HejnY9r3vbbutto2hLPZ1IxlBy86Wbb52796lX9tsSQeHH3646tdbT/r2wUrfbt3KUl/11NqqWkszwU75fGnnbdtI9fZ51b7+uuPn9d27O3b71LV7d+/93NYEva65WYcfdlhbpnSN7YH84S7Xf6v+/foV1O+dMt122377tjpb7fvvOy/DiaXuJEmH7LeftJ79sUl0dc8+6/rZdzfdNJZrlqlm9uyCvw/ef/+Cv7f/3ve0nbk8n3Of133hTk73KLZ6mNWB++4rDRjg/wMcWAMVnevrkz8+bUGUww8/XDVvv932d0OvXsV9dVtstdVWJd0jSkZ2qWldyz10/YUXtr3fo3Pnsp6rat97r+DvTQcM0He+XX7tu+8WfJb6OTQIS7KH3f777Sdt9u2jHFudNdHfZqtjb7Plltps4MCS4zNZttStmzwHkYKWd999txYuXKiamhodc8wxuvbaa7XJJptIkubMmaOrr75at99+u55++mm9//77amxsVI8ePXT11VfrjDPOUH0JfSr16dNHdXV1mjt3bsH7c+fOVd++fR2/s/7666uhoaGgKfhWW22lOXPmqKmpSZ0cKsKdO3dWZ4cn9Q0NDVW505hK+n0uJ/FaSbVlWGeBl+PTJ0pNPq8Gj8756xoaVFfK77EEEWq7dTPKbCtTfU2Ne39CcbIcizW5XKBtH3j/cOkHpDafD7adbNugtrU18H5k75OuobbWf33amh7WB/lOjFrsZfZati0oa78JaFi8WFpnHUXmsv8XlMmnn5egx2Od1H482bZBbS4XbJvbf7/9O5Ygb+B52tnWeYO9X8MShT7v2n5zwXq0spxvavL50q5ftm1el8/7ngvrGxsLjyPbeqzP5YqPM9tvcz1n2PZT13Xgx7Y881xYtK6+fbhUU1enBku9wXG5ln2jtrY23mug7cbU93phub7UNjS4l8W2Pp32lcjr2JxnXZ3/edXhGu35PXu5gyyjbeIG25+lbSfP7/udpwKqq68vrQ4So9iukw71x07LlhUeR0HrDl6ctveaa7YvY8mSstRXPdmay9U0NZW2X9quU0Xzst2TtX3ussya2lrv8tiO3xqz6x3zO/Zrqfm+R727aNs7tEQquJa4/SYn9vNHPh9v3c+jrlRXWxvvsWz/3faPpfbf5rdfWN4veoDndI71uLdqKOWexhLAq2ltTf4e3Gn/tPw2+4MPu1jOz9ZrtvXex7Lfl3xeCMu2XgrqAm7HdJZ5lLGhvt7/fJUEe53WUmev1vhTmN8UqQfyF198UZK0++6769FHH20LWEpS3759dcstt+iUU05RLpfTzJkzteaaa+rtt9/W2WefXVLAUpI6deqknXbaSS9bsr9yuZxefvll7bHHHo7f2WuvvTRp0iTlLBeOL774Quuvv75jwBIuPv5YOvpoadgw58/TGD3cKmhnuX4d2yY9EI/1KZ55sIYZVCNOfiPgStkZiCdMh8RR1qe9X40g5cznpUsukf7v/4qyvkIL01+J/ffY+3CzPfUMLcro4XZRBuKJMjp1kLJY10/UTrVLGewjCUH3cet+Vep5JY6BeOIcPTyubWL73ncff1y1Z59d3Pm+dSAep3Pnxx9LP/6xcY30Gj181ixp8GDpqquildf2NN73d1vXn70ONnOmdMIJ0jXXBAvCl7oPRT23hBnMIq2BePxUQ6f69t9Qav2upUU6+2zp2z4XrTrZ65RJ1SWtN01pDygpFZ93Su2mxu94cDsG3IKIYUcPlyRrS5Iodc1yjh7utr6ffFI68kjprbeCz9tp/lZhzlX5vHTZZca1Y84c52nsvzupgXicyp3EQDz5fPkH4vEbGT3pLuLs69H6m61lS3v08LTrwKXyOkd4DRCapI46QntAkWprEydOVE1Njc466yzXaX79619LkmpqavTrX/9a22yzTbQSOhg6dKjuvvtu3X///ZowYYJ++ctfasWKFTrttNMkSaecckrBQD2//OUvtXDhQp177rn64osv9Pzzz+vqq6/W2WefHVuZOoQDDpCeeko67TTnAGWIFN9ExDV6eC6XbNDSWik2By8JO1pqXNIYPTzoSdj+/VJG105ixFrJGPX5qquMkbXPOSd4+YIs34tf0NLSv2ckcQQtg+7DXkHLoNvca93ZK3ZRKwH24yDtykTQUQbTDlraM6iijB7utpy4HvY4fK/u7rsl+4BW5nRuQct99zVubO3XSHvl+Ne/lh5+2HjgYWuaGYi9/8owo1bbAxGnny498oj0hz8Yo2f6CXttsh83Uc7Fft8r5dgs56incXWkX02jhw8bJt1xR+F73wbWG/weeEThVH+z7m9ZGD3cfk7M5UoLePsdD27BSbdt65ERKcn5nG59WO823zhHDw8jyDVJMh5IPfectLdTj98evLZdmH36ySelK680rh033BBt2dbfWso+FTZoGfXa3NJSuL+Uo97ltIxyBi3t99LW7WRd74wenhy3dS4l+1sZPdxTpOjLokWLJEmbme39HWy+eXs3+vtY+n6Kw/HHH6/rr79el156qbbffnuNGzdO//vf/9oG55k+fbpmW5pP9e/fXyNGjND777+v73//+/r1r3+tc889Vxda+oZAAAsWtL92ehpdKZmWfjcOSWZarl4tWfsNM9dpFjIt4w5aBs2OclNK0LJcmZbWJ+6PPuo/vZcwFRC/SnapT2DLmWlpnS6JTEv7eSnqsRX3E9BSz4tByxNn0DLK9rEHLYNkWgY9fuN68u82/yefLPzbLdPS3JbWgIf1Gmnf1o8/3v76zTdDFVVS8c2h3++2bid7puWIEe2vx471X3bYfcg+fdYyLcuZRRHXDUg1BS0fe6z4vXXXlWQ0iywQx7ZyKq91OYsXp38D7nT9LiVAETXT0u17fvtf1EzLUoOWUddR0EzLqOLKtLS2crv3XudpwmRalnI+cjpGksi09Mo6TIpfpqVLn++xIWhZHl7nMetxU87sx6wlR2RMpLbazc3NqqmpUQ+Pjs7XsIy85tbXZCnOOeccneOS2TRq1Kii9/bYYw+9W2qTSXhza1ZTrpNZ0OUEybT0OlGUErS0Z8iYQcugzSHjZn1invXm4aVkWgZZn1EyLWO84a0pJSjrlJlRCq99wbzQB+lmIcj7SWda2iuAUddN3JWJuL9fKc3Dg9wgRm0eHmOmpeP8/ZqHW1n3F699zr5+grCvszDNw72ypIJsz7DrOMp5NWymZZaClrmcex3B+rtKqUdUU9DSyVprSbNmqaa1NfhxFJTTPKzbpbnZeNAS4+jRobkFLaNmePmtN7dzgtv3ojQPt2ZaxhG0dFqG9b0w5yn7coNk/69cGXx7eJ1Xwxw/H3zQ/nrnnaMtO8lMS9tgkp7lCCquljJhVEqmZdrNwys9aOnFq97c2lr88DcuZFp6KktnPjVpVrCQDKcLVqVkWqbZp6W9L7IVK4wLTxIZBUEEaR4eVx+AYedXysk7jiaJZQ5alpRJahd3Fp/T+1Gbh3tltEbNtPSazv4wJSuZlnEHliuleXiUG0S35cSVaRm0+bk5XV1dYeDIablefSJZv2sbmTIQr+wZJ9UQtAyTrVRKwKJUXuvQut1iHFilrOLuysZ+reraVerSRZKSCVoGyeK1tipKg1PGWikBiqj1hahBS6eylqNPy6h9H4YNiEpFI2+Hmr9VmIf41qSHjTcONr9Kz7SsxKBlqednr6Clfftlpb/FSuzf0qvMaWVaErT0VMYeyFExWlulSy+VLrzQPf3c/v7LL0svvOA8bdaCln7BoSlTpDPOcP/8xhul886L1oenU0VnwYLyZ1rOmiWdeab0wAPt73X0TMsozcOzGrSM+0bSab5BboTuvdfYz6yjHXtliZWjeXhcmZZOx+xll0kXXBDsBtOpzKtXS7/7nTGfMNlzbvOT0m8e7pdpedFF0n33eU/jVu4E+7R0fD9MpqVX0NLaSiVK0DJspqVXn5ZWQc5BTutq+nSjb8x//ct72ZJ3WefMMc4XTn3yjhlj9BX6yivFn5USvI77Wmuuww8/NMprGTSyYF00Nhqfe/Uj+tZb0pAh0jvvxFvGUsSdaWkPEPbq1ZbFUpvLeR9HQcyYIf385+37pl+mpVOZ3PznP8Z+P2VK+HJ5ido8/MUXjX3qo48K33f6zVOmGOvl0UeDPxQyZSHT0q95eNxBS/s28QtaTp1qrN+HHoqnT8tJkwr/DrrNvK7ZpZz7nMrtFbQ87TRjnYRlX+/5fPL3lH7Nw+POtHznHeM8//bbxt9eD9pL6TbLzzPPSD/9qTRxovPnXvdVSQbXpk2TfvELafjweOfrdexZzwFxPRwPgubhnkrKbz3ttNPUPUDfDn7T1dTUFIwGjpTde6/0pz8Zr9de27iJtrNf1H/+8+TL5SeuoKUkffaZ+2cTJhj/mpul228PtkzT118Xv7dgQXFTpKRPVKecUngzJZUvaBn0t8V5ca6A5uEVkWnZ2uo+4r3dl19KP/uZ8XryZGnkSON1mEzLJJqHJ5Vpef/9Rif5ktG80a/PZKdy3H13+yi6/fsbN8RRy2PyemIcVhKZlpJRUT7gAGnAAOf5ptWnpds6duvT0m2e9vmvsUb7flnu5uFe00bNtLz8ciPw/M9/SrvvLln6NA/1MOj006Xnn3f+7PDDjf/tI7M7zTPNTEvz9+64o/G/tbz29TtsmPPvMZkDftx/f+H71dQ83B78WWONwqZ31nUWZVnHHSe99550zz3SoEHO2ztKpuWiRdJPfmK8fvdd6ZNPwpfNTdSg5aBBxv8PPVQYQHL6zUcdZQQ377nHvf7udmzE3ael2aVCnEHLUrqICLL+7a2m7H78Y+PBxT33eDflDlrOMWMK/3arG5WSaWnt/sdP2EzLCROkk04KP/K6W0uMpJrnmvO3s+6/cQct99zT+P/++431an+Q6TUoTGOj1Llz6WVoapJ+9CPj9YgRzveqXtfZJO9Zjz3W2P/vvls66CDp2/FLShY00zKuh+NBkGnpqaSjfoz9JGpjNgv3mi6fz9N8PGsefrj99QMPOAct7RdCr6eOldanZVB33BE+aGm/gZeMCnLXroXvJZ1q7/SQwO1EXImZlnYdLWgZd9Njp/f9yvDVV+2vX3qp/bVXwCVKUMyvLOUaPfw//2l/PWyYf9DSaR1bM9Xuvjtc0LJSm4ebPvusPWhZ7ubhQYKWuVz7PhAk09IrWFxqpmXY5uFeNz1u07lxWpY1U/bZZ6WhQ93n6bV8t4Cln1L2g6SClmE/C6NagpaNjdLcuYXvrV5dGJCIGogyvfde++vZs533X/s+as0KdGMt96efhi+XF6dATZjm4UH6uLZmY7plwMXZPNxr9PC4gpZZah7+4Yftr611Ibugx8+0ad7lMfldO72Clrmc/8jw1mntvIKWUnsmYRhpBC2dfpu1tVC/ft7fL7WeZd+2XtfvuAbjsR6f9rEX3JYd5n6gFNYY0tSp8QUtvY69rDQPJ9OyQOTm4fl8PpZ/yCDrdnGrHNsrkl6V8aw1D0/zyYXTRT2N5uFOsha0jPOJU5Blpt08vJTRw+2yELR0k0TzcK/p4hqkyK8yYT1XBjlmnNaftTLsVnF0+77b9oirOZgULGhpX09+zcNNnTq5TxM2EzKsIPO3j8Dt16elV7Cl3M3Dg/YLGOQc5PR96w2k/SF13H0gBilTmkFLr3NRNYwe7pSdFZXTOW7JksLASalBS6uGhmDNw4MELePIbnIT9+jhfudFt3mXM9NSCtenZZwD8URpHu6XaWkVR/Nw+/KSyLQs9bzpF7SMIkif13Gzzz+fL1z/bv2Jmko9z3sFnpMKWgaRVvNwqzivfUEzLdMMWpJpWSDSo4pc0llgSFfYoKXfSTNrQcs4+wAJyy1oWc70czdBg4xBm5DEHbTMeqZlKQM0SZXRPNwrwBhUEs3DvdaH/fyUVKZl2KCl0zoOE7SM0jy8HH1a2pcRNNPSrUmo0zzd3o8709KtUl5XFy7T0j5/a8AjjubhcTWH9hr91WtZO+4ojR5tvC5H0LK1tTCwlcXm4VbmNbMabkDizLR0CvwsW1ZwLqgJmiXsxKkOEaR5eJDjIMnAcZSgpde68Vtvblmcbt+LEgT16tPSnF9azcPt8w6y/ss9EI99eW51I7/1FFfQ0q1P7rhlIWiZyxWu/402Cvf9Upfv9eA5rhHEg5TZqw5crnvWag9a0qelJwbiQbGwQUu/C1USQctp06Tzzy98L6tBy08+MZrLjR3rXBnOSqalG6/+wxYvli6+2OhDya6jNQ93Clrm89Lf/ib95S/F81+61GhC/OCDzsv3kkSm5erV0lVXSXfemU6m5UcfSb/6VeFnfuskn5duvdXohzfs8ty89pr0298WN5mzf2/8eOO4NpuBxZFp2bdv8HLaP//yS+Oc+Nprhe+Xu3m4/T170NKtDF5ZMkGbh0f9fUHmb8+09Ataus1HKlyP9k73gwiaFb5ggfSHPxS+57WOggRQnb5v7ZP5yy/br3Ovvy6de26wsobhFzg7/3z3gQHt7OX56CPjuB43Lp6ySe37jtc1rKVF+utfpZtu8l9HXjdu+bx0883GNSeJuo59nn//uzFwWJSbZ7fAj1vTz7D7zrx5hX83N5fWPNy8Rv7978nW0aI0Dy8laBk209Lvt4cdPdz8O63m4UGy18L2aWnlVZag90dRMy297i1KeejndM0MEuwPyy1oOXeuMejhc8/Fv0yneoW5/tdbr7g7L7u4My29+qSOK9MySJm96ltxnA/zeePcetVVxnb/4IPCrmak0pNDrIIGLenTMjMS7BQCFStI0NJ6QMf1pCeMI4+UPv648L2sBi133tlYRzfdJJ18cvHn8+fHlzGUBKcnP2aWy/nnG4MvSNL220tbbWW8DlP5dBNnpmU5moc7XUyfeMIYaV4yOu+2BuXOOKO9/9j9908/0/LGG6VLLjFe//SnztMkGbTcfffiSq/fOnnmGenXv/aeJkyfli0txraQjM7IrYMr2Nep2Wn5TTcVfxY1aBm0Pymn748bZ/y74Qbjd5jzKnfQ0r4MeyDM7biyPvyK2jw8yUxL6+sgA/F4lcu6TwYdqdgqaCD+N78pHtHbPm1DQ/t2jZppad8vPv7YuO7tt1/xtHEFLbt0cZ/nc88Z/xYskHr39p6X/ffstpuxLzod10HLZtfSYqxnrxuQe+4xbsIl48b4xBPDL1sy+tb9zW+M1z16SGedFW0+buy/78svjQHIliwxgqVhOA32MGBAfEFLp0BPKZmWN9zQfo0M2595GFEyLUvJ5ks70zJK8/C0Rw932nfdxNE8PK5MS2tZKjnT8rTTpP/+13jQM2+e1KdPfMt02h/MPi033NC/nlZqpn8azcNLDVrGEVx7+eX261VtrfTHPxZPE2fQ0ut845W1TdAyNWRaophT0NJ+cFsPaL+gZRKZlvaAZZjllPskYF0/Thf1WbMqN9PSDFhK0qhRztPYRc20LGW7lSPT0inAbx319aabCj+zDnhljkYfVBKZln/5S/vr4cP95xtX0NLczk43in7b3MxSDbM8r3Jby2AfXKGU7CcnTvMLE6gP2sw3yaClU/n8moe7lcF6bgzat2lcT8DDNg8vNdPSuk+uWBHuwV9ra/BKtD1g6VSWhobgy3Zbln0/WL48fPZWGEGDtpMn+8/L/t1Sb7y9so+9zmfWIJhX5rjkXde5557217fd5j2fKNx+w9/+Fn5e9v5c11jDOKfHFbR0CvSUkmn55z+3v3ZqXRKXuJuHhw0ymvtXnEFLr0zLJJqHlxK0DLL+w2QVlto8fPXq4qzhoOfXsAPxBOV0HkgiaOlWx/jvf9v//vzzeJdpXw8zZ7a/FyRoGeZexenY86r/eD0ALUUWMi0feaT99VVXOU+TRqZlXA/HgyhngLQCRcq0vPLKK+Muhy699NLY54mInIKWXk8i0whaOslqpqWV00V9xozKClq6lc1vYIogn3lNl3Tz8CQyLa2Di1jnb6/w9uihmrQH4nEbsdVtvlH30TDr2a8iFWQEyTDNw70+8zuPldo8PJ8vfm/2bPf+k/yCr2aTXa/KV1hBgon294JmWlqPiaxkWno1Dw96vnOav32fXLDAf0RSt+8GWb7XtEkELVtbgzfpN4WpJwQ9poOco6LsM0FHHbW/53UNC/PQI2gQJM4bPJPfoIthfoe1PjRqlLTrrkbTS7eMzbB1ybgzLa37XRLr1uRUT/SrZ8eZadnaapzjonbxE2X0cL/5hm0eXso5MUjz8DCBKa/9Nkg5nbI6O0qflk7Lcao7JblMa1dB/fvHm2nptF9VYqZlHPes1tYTbvtSR+vTkkzLApGClpdffrlqYu6EmqBlhjgFLe2VkDDNwwlatrOeiDt1Mi44M2dWVvPwsMG8MJ95TVfuPi3DDqbiVJGxBgSs5f/gg+Lypd083BoADHKzEnfzcCd+68QtaGm9eQ7bPNxNmEzLKAPx5PPOT/jdgpZe5bHeIKbdPLylxdjmZgA/SKZl1KBl3JmWbkHLIAPxuM1HKt4nwwQtnY6JUm424whaOmUzhw1aBhmx2RT0wUcc1yqn4FTYc1aQTEsrp3OBVdAAVZjuJoLyOid/8YW0xRbB52U95rt2be8rLqlMy6Ym53kEzbS0rvck1q0pyYF4nPZne4Cgqck7aJmFTMu0Rw+PK5gQpK7g1H9mHH1aVkKmZZA6Rtzs8582rf113JmWTvfWXkHLIPtqFFEe8LnVj6KyDlDodlzEGU8I+vAxzT4ts5TAlAGRHxXm8/nY/iFjnJq82k+M5ci0XL3aGGTjySeDTV9pQcvNNzf+//rr0kc4fv996eqrpTlzSivf+PFGWr61sh/0JGruK++9V9iMyi5q8/Ck+7RMYiAea6aldRu/807hdHEHLaMEvYPchDU1GQP1DB8evpJy1VVGc80wQcuomZb5vNHs9sYbpaeeimd5SWdatrYWv+fV2X+U5uG5XGmVvihBS6mwibhbuaM0D0860zJo8/CwfVo6ZVoG5XSTUkofWmHPJU7rOI5My6VLvcthFfQcUmrQ0u0mPGzQMkimpdUrr0jXXuv+eSkBqlJ5/Qb7dc2Pdf1as2yS7NMySOZWkKa/9uul13qZMEH605+kKVP85ysl26el03Xe/nvN5ZcraDl3rnTNNd77T9aah+dy8SQXBJmH04BVcWRalpIsYf3uhx8adf6vvgr+fTfTpxt1RbM/8SDHa8xJVEXrwRq0TDrT0i9oWc3Nw61BSzdxxoyymGnp99Chg4uUafnqq6/GXQ5kiVOmZdCgZX19tIw1J3/7mzG6smSMvL3DDt7TZ7FPS/uyzEp6ba3R4fynnxrTzJpVOF2Yk2JLi9GsSpJGjpRKOT633974/6mnpDFjjNdhMi0bG40BVbwE/W1xnrzTah7ulmn5/vvF5ctSpqWbu+7yDkh7ueQS6R//MP5Z5XLuv8dvnbhlieXzRsXX6cbfa91F7UNSKj1o6XQT5Da6rtP3rdwyLc3lRM0SijJ6uGQ0EV9rLeN1nJmWcT0BDxJgs847bJ+WQZqHBxV38/CwwZCgzcODZgKZkghaBtkf/I6jbt3CfcfrmPC6wbTfeDsNQhBk+UlnA3pdh0ePloYMCT6vpIOW9ma1bs3Dg2ZaWtmv9ytXSr16OU+7667GOfDf/w7W/17co4db9wmneor995rHV9Tjyq95uH2+p59uPOz2kmTz8LBZnNbvlfpgIO6gZbkzLfN5accdg3/Pz/HHS+++a9QXnfp3lMrfPHz69PbXG2yQbJ+WTkFL698dPWgZZytEr3mlNRBP0O7YOqhIQcv9nEaERPWwHjTmBTlo8/CuXYs7V4/KDFhKRqfnfkHLLGZa2jM1zL+7dDGe2JmsfaZI4U7M1vVtHQynFNbmy2FOonPn+s87jUzLKM3Dg5TT72bALdNyyZLiZdl/n1f/YGllWkYNWJpmznQOOLhVvKJmWuZy7plK5ci0DMKpImTfrvb9xOv7Vm6ZluZyogYzgmRAOu2bQW4mszh6uFvzp1IH4rHv72FuPIIMfuQlSFaR1/RBgpa5XHVkWrpl3EVtHh5XU76sZlouXhxuXvbm4aa4gpb2QcCCBi2jZFquWuUetDT79f3iC//5Sv5ZhE6CBrKd9gm3oF3Qh0V25vcbGtp/i1empV/AUireRnFmWgZ5kON0nmxpCd+9ht+ynTjdU6U9erj53TDdegTx7rvtr4NmRscd2LGvB+v679kz2ebhbn1amvcDSQXQnOp29vOw17Kt34+a+RokcaJcQcusNA8n07IAo4ejWNhMS2vF0ykrIY6nYFGeArlJM2hpXuD9gpZhTopJdggvBc+0rKmJ1pdf0OkqsXm4W6ZlkOaUXusyrUzLOJQraOkmbJZUkHnaxZVpab/pDloer0zLUipcUZuHB7mZjKN5eNx9Wno1Dw8zEI/fTXGYfSvOTEuv4KIpyCBxcTQP9wrQ+y0vqaBlkL4N7byah3sFnuIaiCfpTEuv63DYa7RbpqVbucPesDoFupzOu/bzddRMSydRrsVOx05co4cHqS82NpZW/zDLuuaa7e95ZVoGYd+30m4eLsUTUAiyfzh1UxF09PCkB+IJ87Ap7DIWLgxWx4j7ns4r87a+Pvnm4U6/2a1rn7iCWvb5BKlnxJ1pGeShXpwBw6B9Wsb1cDyIcmZ1ViCClihWSvNw69Nyp/mFYQ1IWE8gbvOrhKCl+cS9SxejQ2dTKUHLpPuFDTN6eKk3iV7LzeLo4U5ZyVbWTEvrtE6BgDCBjCQyLcsVtHRaz259x0UdiCfquvMbGddLqQPxOGVa2kfetk/vxivTspQKV9Tm4UFGMI+jeXjcmZbWcsc1EI/Tdi7lJsdr+U7XY+u0Qc6pQcrq1CdzOZuHux1vpT7sdMu4C3sOidI83EtWMy3DXqOt6zdI8/CwdR17eZwG4nHaR4JkWtr3QbfvRBmcxK/ps5Og+2TQvquD7mNOzLJaM0+t6ydKnTVI0NK6jsJcG6I2D48jYBTkmuW0DwXNtEy6eXjYoGWYVgULFgTLtIwrg93k1TIiSNAy7ubh5jzd3o9DkHXqdS8YR6ZlkH0jjUzLcgYSybT0RNASxYKMHl7uoKVXkwZT0JNZOU8C9sqGmTkVZ6Zlkk99nOafVqal34iqXubMkW67TZo0yX2aUjMtnS7Ubk2HnCqSQTPiJkyQ7rgjeLlWrpTuuae4H027JEdDtQqTadna6r1PRbm5jdo83Ot7Xk35JeM8cO+90ltvtb+XhUzL55+XHnvMeV6trdIjj0j//W/7e/b189FH0htvuM/fFCQDxnpTG7V5eNyZlqtXt+9LpQzEY51/qQPphGkebg0EmazrLMhNQpTm4VEyLZNoHh4kiBb0OHrjDemBB/wDOi0t7tlO5RjpNWxWXVhe50iv9T1unHT33YUPYkrt03LZMqOf5Y8+ClZWp+bhfv0vurEHKd2+EyQAKhldp9xxh9G/edyZltbtEmSf8NvHg2Zadu/evi3N9fPcc9Kjj/qXwc4pAG0y+8Lz6oduxgxj/dr7OXWa1vz9Dz0kjRhhvOfWPLxUcQctw2RalvLQL2qm5U03Fd/vuFmwIFimZdxBS6/M27q6eDMtg4weLjlfV8z3wzLPm+PGuc/nppukiRPb/x41SvrPfwqniTvTMmzQ8vPPpb//3cjIdTJmjNGHvtvD/1KClvm8cR575pnoMY6WFunBB42B90z2eRG0LFCm1BpUlCCZlm59Wjo1D48aaHILWro9uQ564shCpmXXrt6ZllEqD0mJu2PgqEFLydh2QTprtvvFL4z/N9zQ6FTbKcCUxEA8bpWbIEFLt0DS97/vfyGzbrObbpIuvth4PW+e1KeP83ey2DxcMn6zW9mykmmZy3lnWt5xh/Tb3xqvv/pK+s53nINB5ci0NL/31lvSEUcYr594Qjr66MLpnn9eOuEE4/W770q77ea8fvbd17jh3mAD93J53Uyasjh6eD5v/OZOnQqnKaVPy1Kbd4fNtFy0qPA9vwCqXdTm4WEzLZNoHl5qczPzOJo61djPJeNG+v/+z7tsbvtvOZqHZzHTcvny9j7JP/pIuvVW47V1YELruTzoef38842bb8kIitkfmjsFLe3r2enaEyTQaJ/G7Tv2YKbbA65Bg6TPPjN+z267FX8eNtMyl2vf/mEzLRsbo19D8/n2/bxz5/Z+7letMgL/Rx7pv3wnXn1adutmlNkr0/LAA41r7223GevZyilIdf/90k9/avz92WfpNg+37ludOxvliyNoGUemZZjztmQMMPavfxkP3/0EDVpmrXl4EpmWra3Oy41yP3bhhUaddK21jIckXboUl/nKK41z0cyZ0uTJ0gEHFM/H3oLEFDXTMkhWurnMXM64Jn/zjTEA7RNPFE63aJF00EFGUH36dOf++IMGLZ3q6g8/LJ14ovH36NHSLrv4l93u3nulM84wXn/2mbTVVjQP90GmJYqV0jw87EibXtyCllE6x7cqZ9DSraxduhQ2nSnlRJV0pmWYPi2DlCXob0ui/5aZM6UpU5w/KzXTMkyFwiEQUBPkRnzRovBNHs2ApVSYNWeXVtAyn/e+IfM6XqMELZPItGxt9Q5amgFLSbr9duf5hcm0zOe9b3aCZFpefXX7exdcUDyPoUPbX19xhfO8TNYKYzmbh8dVwfPa7ma54urTstRMyzibh0cJ6rk9TLJ/p5oyLYcPb39v6FD/mx23JppxjfQa9PyWlT4tP/yw/fVtt7W/tg5MaD2egp7XzYClVJgV5FaeLGRauh1zZiBt/HjvLgbceJ0Lrd9NOtPSHDREMh72mPcEK1cWXnPCcmseXl/f3g2PV6Dhq6+M/52CZU5BKjNgKUn//Gd2mof36GH8H7R5uH3/TrtPS8k4VoNce7LYPLyuzr+uXMr13KsZeFyZlmZLrUWLjICk23zmzDHOS/fe6zwfr30pijCZlqtXGwFLSXryyeLpnnuufd90O+941aH9Rg83A5aS0SIpCjNgKRmt4ZyWRaZlAYKWKBZ38/C4g5ZuT2OCBsyS7gPSyq2sXbp4Vx7DrLMsZVrGOWBSXBdou3fecX4/iYF43CqWUZuHB32C6baPz57t/p1yNQ93Cs56VVa8tnk5B+IJMzCBfdqNNmp/PWaM83daW8MFLb0EybT023fXWqv99YIFzvMymTdS1vlbhR2IJ2jQspTmbUHmby1XKaOHW+fvtK+HKXfWmofn887nM7djyW3fTSJoGeRm1mvdm8dRmGugU9CynM3D08y0dPt9btcta9DSKspAPE7LCDIQT9BMS/uyo2ZaBskmCjrAmZXXzW45m4db94FOndrvCVatKq2u6ha0bGho74YnyMMxJ35BsPXXd95P4kiAiBq0DDoQj31/8+pqK8y9UdQ+LU1edVFTVpqH2zMt/YKWpYweXo7m4VbmudZtPu+8475fuDUPj3qPHaY+4nfcBMnkLaV5uNXmm/svKygyLT0RtESxUpqHZz1oWe6nFl5BS68gUZgKV5YyLeMMWiY1Up5b0DKJ5uFu5XUKkAa5ES8l4CtlI2gZtnl4lBuDuJqHW6f1y27yyrTcccf212bfok6ZlkGbh/udU4NkWlrn4bTt1167/bUZtHTbn9dYw7ts5WoeHnefltZyeQ3E41dJz1KmZdzNw91GOk1yIJ44m4cHybQM++DOaf81uxpw4tcnrl3Q81sS5/QofVq6BcrcgpZRHkYF6fKllExLe1DSXrcLmmkZpOl5mAcTbp9b/y5n83B7X5PWTMskgpadOrVnWkYdPdxvn+jbN3uZlm4JGOXKtCw1aDljhv80Wcm0tM4/SKZlqc3D3QY4dAtmhuEW1HY7XqIELXO5aIHLMJmWfse3/T7PqTxRm4fb+9B0qmeFZV6/6NPSE0FLFIt79PCoFRXrICZxBS3L2TRcih60zELz8EcfNfoCCRMYCHKC9WvaOm6c0Z9elIp7ELffLn38cfH7bhW4L74wmr/6BRvMG7MVK4zmAjNmBA9aOmUmBamsubFuM2sflnPmtL+ePdsopxkYy2qfll77lFdfhG7CNA+37oN+mZZeQUvrTfnKlUYfX6VkWvod83FkWjoFLd3On9ZzmV/z8DgzLZ0Cv0F9/rnRrMgts8Fkrku/5uFB97kk+rQ0yz9pkvT44+3Hk1P/v6U2Dw9ywximebh5HnIaIMNNuZqHu2VaRmke7rWu7Q89/MSdaTlvnjHoyOLF/tNGaR7uF7S01xujDLBmrr+JE9uPa/s+OHKk9Nprhe8FzbS0n4ujZlquXGkM3mBtMm+X9UxLr8+s6zPOTEtrs3OzjJJ7pmUprZXsx2p9fbp9WjoFLSXp3/826hJWfpmWboEmp+96Mb8btk9L08yZ/tNktU/LJJuHJ51pOW9e4d9OD2WtggYtne6fVq0yBu+ZPj1Y2UoJWlq/29Ji9DNp5bSfeh17XpmW9oBoHPfg5vWLTEtPBC1RLGzzcOtFsRx9WpYyEE81Bi2TOqkdf7y0zz7Bn8YGzbSU3LfVzJlGh/1HHGF0dGxX6sjxpl12kebP9553LmfcYOy6q3TMMdKNN3ov17wZ+MMfjAFMDjjA/UY16kA8UdZv377tr62ZlgceaJTz7LONv8sVtIyzeXjQYJaVV9Dca4RSv8wTr6Cl/Td88EFpmZZ++7tXpqX5Xb/ghvWhkRnMcDt/+mW4lJppGbR5eNBz4YoVxmAXP/6x0cdekExL6zTmsWKuN6dtZ+XXJDvMOdxpG5jH0O67S8ceK117rfG+X3ZBHM3D3R4uBc203H9/4zz0/PP+ZTHF2Tzca91HybR0ax7uF7QMw2v5Tg/S/PzoR0YfXT/7mf+0UYKWbgFZM9AXR6ZlPm9kfe2wQ/txbT+PvP669Oyzhe85bRengKf9XOwUjHRiD2bedZexvvfc030UZbdMKy9ex2ncfVp6PaSxNw837wlaW4OPpO7GKXs0iaClfVu2tmZj9PCGhsJj5ZRTpF//unBa+2/xClqSaenMKyBm7xrGSSnNw90yKp0eapvvh2EPFjs9lLX6/PPiwfyclu10/rnwQuknPzHqWkHKWUrQ0nywLkmfflp8DDvtb1GbhycRtHSbF5mWBQhaolgWm4dbl1dqn5bl5FbWrl2zn2kpGU/I7Cd7t7LV1AQvt9t0ZgfRkvTAA8WfB81c9NPYWDyCpFNwZ9So9id0F11UPB/rsWJWZG65xfh/8uTiwKj5u5MOWlq/u+667a/NTMt8vn3gAnM9l6t5uL1ikst59/PldZMcJWjp9XkpmZZWfkFLp8p4mExLv+MsSKalX3DDadRbt/3Pa9RWKVizPWuZgzRBlqJnWk6d2n5cf/hh+Obh5rXJ+nQ8aCApqebh77/fXnG//HL3+YbJtHTrr9LKLWgZZJvl80Yme1hp92npd7Pj1Dw8zkzLoFlwQY8H8ybMPgKrE6/AU9igZZzNw5ubjYHmzHkOHRrsIbXbjbL9d9rPxfbtGTTT8i9/Mf5fvdoYodeJ0/UwrkzLIPuZX9DSaXlOy+rUqfDhV5D+PL1Y5x1nn5b2aadNK/48C83Du3YtXJ+SNGyY9/yyOBCP5J5paT0XuGVaerX8i4Nf8/CaGu+H/FnOtLTfz/llWkrF2Zkma3mcsnbNe6E5c4xRyv3EFbS0H7+S8/7mtb97PWi3d7MVxzgZbs3DybQsQNASxbLSPDyJPi2TDPA58Ro9PKk+LeMeaMhe6Q7TvNaN2zz8frfb/KPsY/abEKcKnFPzSrflOgV+3JqQRR2IJ0qmpbVc5sXWqZJXrkxLp/2pnJmWXt/zClr6BQqs87Qfg07b1qmS55Tx4bTcUjItgzYPt++7Cxe6rzfr/uR3k2Fd7nHHtd+EeTUPz+eDrYcoD00aG733Ma+gZdBMS2t2b1LNw/2aglun9ZqXfVq/JoSlBC2j1g2C9mkZ1+jhYW4kGhudA7te57ikMi2jtCzx2yfcHqR4Lc/tZtssaxwD8ThlKAW5XrptF/t1yi3r3W16k1eQ196E0eS0jv2OFa/fHjaY59enpVd5rMuyZ6WVGuQLErQ0j9VSMi2dHjZnIWjZpUtx0NIua5mWJ55oZBbbuWVaWn+fW9DSfkwl3Tzcnmlp/d9JqX1aJhm0tAfvggQtg4xUH7R1jJe4gpb2Piel0jIt7cuy739kWpYNQUsUsx40YUcPL0fzcLdKYCVlWibZPDzuC7i9Au1VtlKDln6/O65MS6n4JiSJoKVbk7JyZlpav7N0qXtTxXIFLe37k1/QMolMyyA3XPa//TItwxwXuZxzlqDTAwin810cmZZ+QUv7TfjMmcGClk7TuFUA9967ve9Mr+bhbvONmmlpD9yFzbQ0z93mesvn/beJuf+U2jzcLejpdK7yW2d+NwlO+3WczcOjXqvs6yBIU1U3UTItvbaX0/7kl2kZtl4SNNMyynXRLyPGK2gZtDsUqfB4jyvTMspDjKiZln7Tm+zn0c02a3/96afG//ZyOwVAw2ZaugWvg5wjg2RaBnnwZ+/7t9QbcKdArDVoaZ2mlDq00+dJNQ8PkmRg7UbBL2hp325hRg+Pkmnp16flOusY3ZbYuWVaWsvg1jzcfqwlnWlp3fbmtT+uTMtyjx7ulmnpd01z4tc83CpIhneY7mq8gpbW1yan/S1qn5ZhEnmCcuvTkqBlAYKWaJfLqeb11wsrrV6ZlhMnGk3rwgYtW1ulV16RvvnGuzxJ9GlZrkzLyZOlt97yzrT0OomX0jw87gu4vVLitg6//FJ6771g84watAyaIReE9SZkxQrpuecKP8/l/CuIfh3c24OWbpmWTs2PSum/xnos2L8ze7bzPlKu5uFhg5ZRMi3D3uC5LSvozZ49syxKpqVb4NPpZrmUTMuWFmMwCmvl1Wnb289dM2a4r9cwzcPtwVIzYOGVaSkZ5xZ7U2K/irIb67YKErRctUp64YX298JmWprTmMtz+8z8/MUX3TNY3Pq0dFJq83CnjEn7PN1+j1+m5ZQpRh+DUZSrebhbpqVfs7Kkm4e7bVf7cR0lKOzX15xXxmGQjBxTEkHLOLN77OfQJ5/0nk/QTEt7GRctKn4vjkzL5mbj+Jo5s3B/DLKO4gpaNjQU1otKfaDulGlpHT3c+n6UAJwbv+bhn39uNNN+7bXwLZ1aW43uGaZMKf6sudm4Fpjd+sSdaemXRe8laKal2wM1t/OMtUxumZb23xT1nqelRXrppeI+G732B/Pc5LUdJk40umsJwl72lhb3Pm2jtL767LPCsiSVaem3LwU5LuLKtHQKWkbNtJwxo7iekkSmJQPxBELQEm0GjBih+oMPLhxB0qxw2E+sEydKW28t7bij9Oqr7e8HaR5+443SQQdJO+3kXYlJonl43CcAp2XOnSt9//tGFtGDDzp/zwxaunXoXEqFK+5MS79Kt+nqq6ULLgg2z6w1Dz/22OJO8b1uvJ3KU1tbXP5SMi2jVFBMXtk2M2YEqxwkpRxBS78O/4MGv4NmWvo1D4+aaSk5Bwn8jhPr77cv+x//MAY/sVbigmRaegUtwzQPt86jri540HKffYxrjnUkyjgyLZ2a81qtXm0MeHD//e3vRQlamp/79Wl53nnSoEHGPydhRut2KpM9y9RLKZmWXkHLefOkbbaRDj3Ue/lugjYPL3UgniiZllGbh5catDSPa/ty/djXnd+ovlGah8eVaemXGRPl5jFIpuUf/1jY37bf9Fb286h9/Y0eHU/Q0v7b775b2m8/6XvfKwzKlLt5uHW/jjNo6TR6uHWaUh7827W2ugctp0wxrkunnWYcf9brRBAjRhiDMm21VXHfgRddVHgdiJJpmXaflm5By7lz/a+FLS3Og8DE1Tz80kulgQONuoXXg34r85rvlWn5zTfGAJ4vvuhfhqDNw1tbwycyfP65tP32Rlleftl4L0qflkHO634PN4Mcj0H6vI0atAzbp2Vzs7RsmbTtttKttxZ+FrSlRxR+9w4dHEFLtNnuH/8oftOtefjkye0HlzXYEyRo+fvfG//PnCmNGeNeoEro09LpZH7TTe0V1Y8/dv6eWUl3y27LUqal3/KicPt9UYOWpTYP/9//nMsSJmgpFd9sBM20bGlRTZCn3nEELZctK71fvVLY11E+H3/zcLesF1PQPvDCjB7ulWnpVKErJdPS7/zglWl5223F0wfp03LJkmDNcJ3K5paxWlvbfs0wz+u5nPeT/WuucZ6X099uwmRarlolPfZY4XthB+Kxls2vefjf/278/+67zvMJk9notD7CNg+POhCPV/Pw228vbSThoJmWSfVpmUSmZRhO0591VvF7QX6/fXv6ZVomEbS01xujZFq6NZ/0EyTT8rrr/OcTNNPSvv5mzfKvR0j+1377djQH/Fm8uD1Tz2k6J6UMxOOVaRlXn5bW7jjiCFoGOXe7NQ9/553CdRG0tZFdY6Px4MHqhhsK/+7SpTCr1EmYTMuk+7SsqzMSGZyClvm88wNZp0xku7iah5t1iU8/LQwYu60H63kpSHdKJ5zgP02SzcNPP739eDDPYfaWc0GClm7rd+7c9vn5BSlL6V/YqpyZlg8+GGygKTIty4agJbx5ZYc4CdunpddnTv3USNkPWtpHFnNiVtI7atAya5mWbmXxu+mzZ+LZL3BBMy2D9nMXZSAep6BDqSMYl6IcmZZ+Qcu4My3dAo5O85Gcg1xumZZRmod79WnpxOk8ZF+HXtso6ujh1kxL80Y5zAizUZuH27MN/TIt7ZJsHm7ltM+FyWyMo3l4EpmWfoOamNyuj2mPHu61rZ32J7d+hK1lKDXT0kmQ64V9Xn6ZllGah4fNtIwyEE/czcPDBtWjZlquXp1MpmUp05XSPNxrIJ4wGXE//anRdPfEE9vfM/cj63yiBC29jueTT5buvFPad9/Cz90yLe11vlLqx24tr0xZyrT0CloOHCi98YaRtNG/v3vf8EG6Olm2rHiaJPq0tJ5/3fadsEHLoMeaVZxBy7ffbn/dp4/xv31/cEuksJfJST7f3vQ8q0HL/v2N/2fOLD7uver0TU3Bz1dJBi3JtCxA0BLewgYtw44eHqTvECm7zcOdTmr2kQed+GVaZql5uN/yoog7aBn0xL7mmu2v/W6cw2Zatrb6By3dKghONzxJZVq2tpY+GEgpyjF6eNSgpddAPF77pn1fCZJp6fRE1alcUZqHe2VaOgmSaem1jaKOHm7t01Iyzu1+28560xZX83CvfczpeuM0EE/Qm/wwDwz8AsAmp3OV2+BA5QpaemVaBg0IuWUVZblPS6fm4S0t3sdP2HNv0P087kzLXM77+AwTtLTuA2Gah7vdaCbVp2XQum+U0cMl56BllOtzmAc2fs0ZS2ke7jUQT5i66aabGt1IWQNe5veDBC39rtduf590knTGGdKZZ7a/FyZoWUo9yi+LMkqfll7dO5XaPNzpQb1klHHvvY0m71LwoKXT8p2ClnH1aWllPSbc1oP1fi1I0DLINE59WsYRtLTXSbbYwnl5QQbi8Tpu33nHuRxRMgZLGYjHOmK4GbTs3Fn67neN1ytWFHZ951RGqzDXkziah5NpGQhBS3hbskQaNy54H3huQctVq6SxY8NV/t0qO1EH4pk9W5o0yXuasKwXgPHjjRNnHEHLpDMt/Z7ohllenPOIWlEOur7WWqv9tZnN4NVU3atp5BdfFGbV5nLFTS/s++TKlcZ09ved9umw/de4Ldcp6GDfR8aO9c88jYtTpqVXdp3XMRt38/BSMi3DDMRTaqal334QNtMySJ+WXtso6ujh1kxLcxl+N/leQUu39ZLPG9cxMwAcpnm4WSm3ipJp+cEH7l0huO2PQYOW06ZJX31V+N7q1f7nEL/r+nvvuQcIV640fpNbgMUr07LUoOW4ccH66Su1efiqVcZ53j6itl+mZdLNw4NeB6IELZ96yv1aEOS8as7vo4+MgMaMGcX7phStT0vJO2gZJkvbZN0u1uCKuY/6jaZun97Ob52tXh0tI9YuTKal37ySGognTNaQ+T2ngOTnnxcuw3qeaGoyPvca6LO11Tiuv/nGqK+bo7hbl2stt1fz8DgzLd2Ce6auXZ2DlmPHtu9/9uV7jR7uVAcJqqXF2Led9gN7Gb2ClrNmtdfxnOYVJNPSfp5rbDT6ig2zv+XzxrlqypT4Mi2DTBOmeXiY1lfPP+/8vlvQMkqmpdReP8pipuXaa7dnWkrFrQj8gpZRkkRKRZ+WngIcUejQxo6Vdtgh+PT2yqdknFz22ssYafyqqwo/8zrY3Z4IulUOveY1c6a0ySbxZyGa87v7bukXv5A22ijYiTftoGVdXfQTbSVnWq61VvsojeaNmVdGkP2zFSuknj2lkSOlQw4p/Mwp09Ju1Srn5TndbJXSPNwv09K+j+y0U7D5xsGeOeiXafnTnxrl+/73iz8rZ/Nwv3OVdZ5RBuJJM9PSfh7K58NlWsYxergULNPSeoMaNNPy9tulX/1K2nxzacKEcM3DH320+L0ofVoeeKDRr5RTIC7Mwxin7fnoo8XlXL689EzLH/5QGjCguEz5vDF4wdixxrXdqdxJBi1ff93YltOnG13SJJVp+d577RkqVpXSPDxK0FKSdtlF+uST4ocZQR5sNTdL990n/fzn3tNFDVrmcka5nG6KowQtreeuHj3a/zZ/q18fn6Y4My2dxJVpmXTQ0msgnjA34Ob37EHLsWML6yudOhVO8+yz0tCh3vN+6SXpBz9w/sy8FlqviV6ZlvYH1XFlWjrNxy3TcqedjAFXxo71z9qNmmnp1KTerb4bNGg5ebKxHZqbjT6ct9uueBqnZfg1Dz/5ZOk//5EGD5aGD3dett2kScZASi0t0pAhztOEzbT0y4qVnJuHu3X1EjSR4fHHjcFFrczv2veHIEFL+3m1tlbq3dsI+L/7rnOrjrBBy3w+3PXaLWiZz7sHLWfMMAYmsy7TTZhMyziDljQP90SmJeLTubNzEC6XMwKWknTxxYWfeZ2k3C6uUZqH//GPyTSbNuf5y18a/0+fbnRO7MespLtlPIap+NinrYRMy6gZk6X2aenUPNwtGOOUaWl+5+ijnaf3C1quXOnfv5d1fnZJNg8vl7B9WkrSq686vx93pqXXQDxhMi39KmxOAcosZVo67Y9xNQ+3lt0paBkm09Kvomz61a+M/7/80sgOtGcbhr3RjJJpKUm/+10yzcOdrFhRetBSKhxozyzTkiXGDbIkvfWW8zK8Hgb5HZ8mr+aSCxYYN2fmPJ2UOnq4m7ibh4cNWga9BkfN4JswwbkeEzRo6RewlErPtHTqyqPUoGW/fu2vv/zS+N+vj0+T27L99vVVq9z3Qa9znV2YrjH85rViRXzNw6P2aek0SnNLizGitpW9ebhfwFKSfvIT98+cgpa5nPO5pLnZOdMyah3Zer5zyjD0ah4+bpwx4JJfpmVcQcuWFvculuzHr1MyiyT95jfGes3nje0WNNPSq3n4ypVGwFKSHnrIeblOrrmmfX0MG+Y8TdhMS7ekFKsk+rR0qi+b342SaWk/h9XVSVtvbbxetMg5Wzxs8C1ovcYtaGk2/V65sv2cvvba0oYbtk+T5UxLmocHQtAS8XELWnrxqmTGGbSMUpkNIspIhVK8fVrap4068EZQlZ5paTJvwNwulvm8+6ieboOjBMm0dCpr0CajcQzE41YBLxf7segWtDz88PbXboGsrGRa2oNWXvNxmt4sk1O5ogzEY832ihK0dFrf1u12wAHSZZcVLs8UJtPSqXm437az3iwEzbS0slewXTIt806DytnLYO3TMuh5MUzzcL8AsJcgmZZRHl60tvoHlv0yLYNej/36eLOufyelNg93E7Z5eHNzvEHLODMt3baT03eDDKAUZJn5fLSBeCT3m+84gpZ77tn+2mz2aM20/NGPgs3HKkimpds2sK6XcmZaLl3qf1wEOWfZm4eH6fvNq3m4lT1oGYRX8N3eX7Hk/qDXrU/LOFoxOdUl/UYPr631vyZGDVo6zcftWh0009La9Y9bsM5pGV7Nw8eMcV6WnyDn3yT6tLTvV3H0aen0XilBS/v6rqkpfqBSaqZl0LqIW9DSPKatzcSdMi2d5uXE6TruJo4+Lc2y0DzcE0FLxKdz5/AZfEGDlnH0aZkEs1xOTVe9xNk8vBIzLaMGLaNmaJp69Wp/7Re0dMoW8rppMzOQvITJtCxn8/A0uQUtTz65/XXYoKXfjWLQTMuofVra5xNkIB63DI0ozcOl9nUQJcPc6UbBuo3WWMNotu/0mV+TZnvzcGs/yPZMS3PESzdRnkrbg5RuQUtrAMPOfmMbNNPSXJ5dqc3DnVizpTbeuL3ybv/tYQUNWsYxEI9fH29mYDmp5uFRvuO0P1XSQDwmp3UXNNMyyDKt1zx7X+h+zcOdlhNH0HKDDdq7QxgzxpinNTvn97+XNtvMfz5WQfq0dNsG1qCl37U/zkzLIEHLKM3Dw3BrHr7++oXTRQlaumX+Se3n9KDNw50yLaM+2LeuO7egZdiBeLw+LyVo2dLifh4PGrS0Hq99+gRfb17Nw536oA5ivfX8p0miT8skMi3dHlY69akdZCAe+/qurS0O6vsFLf22bdCgpTkfp6CltWm4VFmZlubvcZpXnM3PKxxBS8QnyaCl9YQWJNMynzee4pnvRa04+TErGRtsEO57ZiXdLWg5d257AKylxehb6+OPnQMn9hNa0kHL1lajHE6d6wfldhIO0jx88eLiwY6CXlw6d25f91Gah3/0kXdWj9kNghu3TMugo4cHrdT5DcSTZvNwu1Wr2pviWfXo0f7afuM3dar7E2nJOFa8xJ1paa+0mceI23xLzbQMsh+Y6yxKtpVfpmVdXfHgB27zkoxma+bojtay+2VarrNO8bys+26UTEt7UMlt9HCvm8OozcPN5duZ5Q4ShI3SPLyurv1aE7Z5uJ1Xho11mjj6tPRrEWCey72ClsuWeXfZEnempVvzcK+6Ttgy2OdfSqZpkOCTKUjQcuJE/2nsAcawfVpKzqPulhq0rK+X9tjDeL1qlTG4ojU7p39/90w3t2WX0qelNdgTZ6al3/62ZInzNdlpeV995R4Is2dahuGWaWltwm9+HmfQ0inTculS4xpm59anZVpBS7fAlr18Tq+l8EHLUjMtrfr0CX4eLCVo2dxsdONlZ01ocFOO0cPDDsQT9D2zjmK/VpjrMuwgWdZ1ESRwap2mpcUYPNCq1ExLswWHX6bljBnty0qyT8tp08LVr8z14zCvmtdfV+/PPiv8bR0UQUvEJ8nm4WGDlr/+tdFR///9X7jyhGWelMJmM/llWn72mXGynTvX6Bx6992NbM7f/7542nI3D8/lpD/8Qdp009Lm4cTvwjV1qhEg3nDDwpujoBfcTp2k7t2N11EyLYcMae+/1G72bOlf//JePpmWxb7+2uhn0G6NNdpfWyupt9wifec7RhNlt0rFv//tvcwoQUuvCo5TgNsr8zJrmZb2svtlWnoFLZ3W7YsvGsftlCnFmZZefVo6BS29lhU00zLI6OFBgpZhBuIxuY22bZbF6X2rKM3D6+oKA6xeZfETR/PwoEFLv9YT5udux8PcuUaW6YYbGqPJupUnrLSbh9vL7LY+SxmVOmrz8P3395+mubmwzHEELePItLQGLSUjAGJm59TWGll+bkHLUjIt42geHmY/9tsvxoxx7rfbqrVVuvpqox5oHdQmrkxLtz4tzfqbyT56eBBBgpbWOvJ11zlP65ZpGTUzqtSgZZCAqT14ZBW2ebjbecd+/AYJWnbrFvwa6tanZT5vDAxjZb2G5HLGoEUbbyw98EDhdEHqSWmPHl5K83C3en+Q5uF29qCl14NYe5nyeWnvvY2M9jvvLC6HH7egpWTc09mDlr16tZ8zXn7Z2PbbbOMf4A+TaWmvp9x/v/H7dtop+D7tEbSsP+QQ7fOHP6jm7beDzauKEbREfLKSadnaKt12m/E6TEfMUZgXurBBILOS5RU8XLZMOvfcwoEOnn22eLpyNw9vbZWuvTb69815OPG7iT7vvPaOls88039+dg0N7Rcw8wbMK2jpdNH6xz+CLcuJ2w1K0EzLOPq0zFrQ0kldnTE6ocl643fuucb/b75pBDyjiNI8PEympeR/cxA009Lp6WqQmyJz/44r09IetLTeiFg/c9tHV68u7mzfHvxsbPTPtHTrH9Ppbyf2IGVLS3YyLYMELaM0D7cGLUttHp7LBcu0jGMgHj/mMty2+2efGQMFtLRIxx3nPE2UrKi4m4eXmmnpFkxMI9MyiKam0jMtnc7VQYPhVvbz2o47tv/95ZfSN98Yr9dZxyhX2KBl1jItpfDHvVPT2dZWY4BLSRoxon17eA3EE4ZbpqX9WImSaWnvjsBpuUEe7Lv1aRlHpqVTV0NxZ1qW2jw8zkzLMAPiufVp2dRUnFVv/Y3vvNPeCufUUwunC3JMlKN5uFt9xOlBtzm907R2bt0wRQ1aWo9rrwex9nJOnmy0HJQKE0BKzbSUjOug9bhZc03joYm1HpnPG2V44QX/oGXUTEtz9PlPPikOoruxBnXhiqAl4pNk0NKaGu9WCTRPHJ9+WvxZ0s3DrZWN3/7W/3tBgpZSccDC7WJkVcl9WobJ/DGbm0rBL7gNDe0ZfOYNWJjm4aVyq5DEHbT0y7TMUvNwu+uuM0bCdMu0tIq6fYJmWkYdPdw+L6dMS6fmLU7b3Gn02iCVKfNmKq5My6DNw73KtmBBcaalfZRWv0xLr+bhQTMt7dM57V9e2TulDMTj1adlUpmW1vUcR/PwcmVa+vHITigyb557ecKK0jzcL2gZ5mbFqT8vJ0H2y7gzLYPwax6e1kA89fWF55wFC9rPo2bzUbegkTkKsl0pfVpaz0FxZlqGbRl0zDHS8OGFDxLdHpbbm4fH3aelU8A+zqClU/NwN3H3aWndp50yLbt29Q9ahjnek8q0jBK0XL269ObhTtcz6/Ht9dAlSJ04bPPwtEYPd7tPLGempVvQ0m05cQQtV6wo3DfMPq+djpnGRv/9LWyZnCxbFmweTnWZ739fOv98tQ4dqi+POkr5TTYJNq8qRtAS8YkStPS6ebGflMwTiN9APFE7Yo7CnmlZXy9df73RNN2LeRL1W1/2SnCQoGWU0YLDiFohs4ojaGmtNETJtFy5svhC/sMfFpYxyiAmXsIELTtK83Crmhoj6L/ttoU3Fm43flG3j9v+V0qfll7fdbo5cLoJMLd5fb3RtEUqHvHQryymUoKWQTItrcdf0KBlbW1xpqW9Q/cwmZZh+uSyfj9IkNbr5rCUgXi8shKcRhK1i9qnZZzNw/0CMV7nzlwueMaeXyDPL9PSyu2aFyVo6ZdpGbZ5uFsWTdDle61Pv+Pf7ZqSZKZlKX1amvtEXH1aWudTV9d+3pWMvrPN82jPnsb/Xg8znI5NvwC9Wz/XknEOMtdFmpmWdXXS4MHSCSe0v2ffB8392948PO5MS/vvnDs3mT4tgwScVq0q3r5xZVpGGT08yUxLpyBUnJmWXsF7p2mtvIKWfv1tO03nxnpeCrLPZal5uF/QMsw+aw9aOl0r3LrucTsflDoQj2Rcn6z7pBm0dNsOfvWLoA9XvY6boNck8/dY53XBBdJ11yl37bX6bMgQo1l7B0fQEvHp0iV6n5a5nNGMyyps0NI82NMMWpoVCq9KkdR+wfNbX/aTqvWEtmKFc1aH28U3n2/PTiylT8s4OgOOO2gZJdMynzcuStb1ZQ2UJZFp6dZPSjkH4nGrvGSFmWFhVjgk98pD1IytoNlFYfq0dHuyvGCBc+DYK9OytrZ91MOvvy4eeCoLmZY1Ne03I0Gah0vG7/LKtLRnb4RtHm5dL/l88TVFMuYfJNMyqT4tS20eHmeflmlkWra0xJuxJ0UPWi5dGn0duInaPDzMTWPQ5uGSe4ap27xMUUcPDyKOgXiSGD28vr69SaFkDNhhLi9I0NK+jc06hhevYE19ffv50TyenM5pUrKZlk5Npt2y3eJuHm6v59nX1Zw5yQ/E42by5OL30uzTMmymZZiHfk51kKB9WvrdD0nhgpZezcPtrO957fdBrgOVPhBPnM3DrevCab5OD5XM7zqJq3m4dd8w7+fctoPfcRpH39tO3Tw4ccq0TKqFaAUjaIn4RG0e3toq7bKL0W+Otc/GuIKWra3JHfz2gXjiDlq63ZRPnmwMbLHBBsYAME5lshs82Bih75ZbSgtannNO9O+a3C4WYW467MGOIKwD8UjtgV+TdbulnWkZR/PwfL6ymodbL/5BMi2j3KRKwZuHl5Jp2dJi9PnVp4/zwwenY9vaB6E56mFLixG8M/sP8yuLKelMS6n9fBdXpqW9v8NSRg8/8khj3d97b+E0K1cWl9Fh/8qHaR5eatAyTPPwKH1aWvugss4zjdHDly6Nr9+mMEFL+zVv9GhjYBW3AXq8hG0eHmQgnjBByzCZlhtt5N23dxabh6c1EE9dnfFvrbWMv6dMaf/Mr3m4fV5SsPIEDVq2thoDIPbu7dwFUZhAWdjj3iloaQ+Gx908PEymZdiBeLz2rzB9Wg4bVvxe0pmWfgPx+O0HEQbiqT3/fOm73y2eT9BMyyBBZaeHiV7TWgVtHu5Vfw5SJw7bp2WQ3+0U3KuE5uHWepvferfO3+18EFfz8KCZljU18QUtveYTNMnHqU/LUlpEVinWCOLT0BAtaPnii9LYscYF29o81y1o6dUHoWSMMG0Vd7aclf0Jn3mR8gtaBu3T0i1oee65xhOcBQuKK7BuqfqPPGKcEM89N/2ToVvlJEwwzbruwmRa2oOW1guuPWiZZp+WpTQP9xpVN8vNw62sTePizrR0q2REzbR0ulFpajJGVw06vTVwYc20NFnnFeQG1XzCm9To4VL4oKW9ophUpuWcOdLzzxuf/+xnhdM4Ncd0+r1eNyWl9GnptD3M32E//5WSaWlvHu7Up2WUhzJBMy3d5r14cfhlugnTeb39mvfDH0YfEMjrOuXUPDzNTEtJOvHE4PMylbN5uL2PwTRHD5fam4hbPwuSaWlfftCgpVfzcGvQ8pprjNc33lg8bZj9J+xx79Rk2hygyBR38/CgfVpedln4TEuvc6hf8/AttvCedyl9WsYxEE+YTMuAQcu6W25xnk/QPi2DBK7D9Gnp1jzcab/OeqZl0ObhbgHpUpuHm9uwlExLp/UapKsbr+ndRMm0dDuW/eoNQR/SxRm0tNePUYA1gvjYs2aCWL1amjXL+TO3oKVX82en78WdLec073I3D7dmV9pvJJzWj/2CkfbJMI7m4VEyLa3NwyXjolTOoKVb83Cnm+c4Mi3dnsJWQtBSaq90uAUX4m4e7jUQj18n9fbvmqNUuk0fNNPSibX8bv1FmRltQfaZIJmW9ubh1mWHaR5uz7S0D8Rj3dbWgR9MQfq09DqPOGVaOv1ee9msSsm09Or2Ic7m4cuWtV8/3JqHR7m5tm8jJ16ZlmGClkn2aWkfZVaSfv5z6Xe/KxzV1Ilf0NKpebhXAKvUoGUpwcQ0gpZNTYXHXJoD8Tid16z9WpqiNA8Psk3DZFp6KXfzcHvQMo1My2OOMUbqTSJo6VRHrquTrrzSe95Bsh3dxNE8POY+LevdzvVhMi0l6YMPpEsuMc6vTsrRPLzcmZZRm4e7BSJLzbSMq3l4Ph+9eXipCStxZVpa5+Um6CA6XvWUUoKWNA8vQtAS8fG6yXOzerV7nw9uQUuvDv6dvlfOTMtyNQ+39vdnF2Qkt7Sl2adl0s3Df/AD98/KPRCPW4Umq83D7cz93C04GbV5uNv+59U8PGym5RtvhJveL9PSPq3JK2gZdH8pV6ZlXV3xk2T7QDzWbW09Vp3K4XZ+9NpWTpmWTvtXba17ZbeUgXhKDVoGPSdZK9zWoKV1nlFuroNmWsYRtPQTx0A8pk6dpLvukv76V2nLLb2n9QtaOmVs+w3Ek1TzcD/W5VpvkrLePNxevpaWaA+xrMecPdPSygxahmkeHjRoGTTT0kuSmZZhgpZxD8Rjr+dZ9/3f/c64/sUZtPRqHv6nP0n9+nnPu5RMS7/Rwzt1KnumZVe3oIvX8eZ0/O64oxHwdRukNEzQ0l7OoM3DS820DBu0DBJ0SmL08KQH4mltDd883Jx/qUFLr/nE3adllExLe90zaNDSqe6adnJRBrFGEJ+omZZxBi3dTupJPbEwy2L+b1Yo7M2d7IKOHu7WZ5tX0NLeD5/TRTDJ7NMg4s60jDIQj5RMpmWXLu7b1evptJ1XcMNPPu+c8WPOoxIzLefNC/7k00/Q7CLr8e217p2CNK+/7j69041NmEzLoEHLoMd5ufq0rKnxzrRsbS28HjidR72yX72C9aagmZY1Nf6ZllEG4nHLgpC8m1SZx3TQY9d602ttzlVqpmVra2mjh7sNJBJFnEFL6+fWa4QTv+uU/WFKkObhYQLIYZuHe7HuY9brX5ID8axYET1oaa5H+29Oonm4VVqZlm6jh3sN0ugnjj4t3ZqHxzUQT5Dm4WZ5wgYtva6LfpmWfsGqsA8g3MrlFLRsaSk90zKXc2+V5vDdLvYBeExe1wGvMrp9FqZ5uJ35IDJrzcOD7AdO13y3oKVbfT7oe24JLW7JFG5aWwvXRZg+LSsp0zJK0NJ+DXIKWnq1hqR5uCfWCNrkSz1A7FkzQaxaFTxoaZ4MwgYts9Y83Bx513ztxS2TyCsoapZl1iwj8LHppsYIxFZuFZFySbN5uFeflnGMHt7Q4L79n31WOuSQYPMppXn4uHHGTdY99xR/VklBS7PSMW+etO66zjeTUQRtHt7cbDTz7tfPe8AOp33lvfe8l+8UcPPKtLQ+qLCW321fW7IketDS6WbE6WYxbPPwpibvTMtTT5Weeab9b6eHM14B0ny+PbjnxqnDf6ffa++3yaqU5uFO5zi/TMt8Xho40Nj/J00qLIMb63XV/kDRq89bP/l8dpqHO1X03YQJWjpl+Fr5Bcecmi+mNRCPH+tyrde/JDMtDz5Y+t//2v8OE7TcbDNp332NgQWt4hqIR3K+zpgD8YQJWga5XnsNQOI0erjJvn3iyLR0exhuHhvWYyQLA/FEDVpG7dPSGkR2E1eflk5By+Zm7/0vaMDU7eGeU6al272CV6al1/ZwW39hMi3t8nlpk02K73Okwm3ttd2TaB7u93uc6ipxZFqGaR4ueWd7OyklaOl2rQ567vYLWgbNtKypSaZPS/u12B60vPJKo35x8cWF7xO0DIQ1gja5Ug+QOJqH9+jR/jpspqXbYAhJNg+3N0sIErS0XtDD9mkZpnn4kCFG4HLGDOnWWwunidqsNi5pZVp26tR+8yFJCxfG3zy8rs6/e4AgSt2XGxvdRxnNavPwnXYq/NsenC/lAYS1yWeYgXiOPto/yB+leadTloM909K6H7k163Lb10rJtPQ7P0TNtLTfoPtdM5wezng1Dzffs1eirTfOK1cGCtLmDzvM/caklIF4nNatWz995jzff196+eXCSrRfYM06rdMo7db5h+VXmW9tdd/3wjwwO+YY789LGT3cLkzQ0u/8ad+fkh6Ip9KClnb2bHG/gIBT1xuVmmnZ2upebq/m4fZlxZFpaY6abpdm8/AgQcuwo4dHDVoGzbRMqk/LbbctPdPSnM76v8khiOPaPDyJTMtSurGaMUO64ori963Hidf5IY1MS6dllnsgHil80DKXiz/TMmgihd9APNZ90m8gnrgyLa3HjV/Q8rLLjHXx5z8Xvk+floEQtESbVDIt7UFLa0DJqZKWz3vfiLudwJNsHm4tU5DRw8MELd2aP3rdVJkn/5Ej299buNB7OeXmdMHxy5Cys1YawmRabrBB+99ffx1/8/D6+niClqVkWnrJcqbl8OGFf3sF54P4z3+MSsJ110nHHdf+fphMy8mT/ZcTNpjqVAG1Bj5ra4196PHH2z+3bjNr5dutKWuYoKVT/3Be7DeL1rJ7HYsrVxY/SfY6BzodR36DI7W2FleYrTe1TplNlqfzuRNP1Pgzz1R+772zk2nptB032sh7OdbvOPUdKkW/ufbrpsEr09KvefiOOxpZCDff7N0/sBRv83Drti61eXi5g5bWm6uBA52/47Z8t6xtp33OKZBSqk6dirdN2Iff0v+3d97hUhTp9z9z8yUnAQEVMIAICoIBM4qC+jWsWVExb9CfAdPqGtdVVNQ1rmFXXXfNrml1EUUQw4oiKIpxzRFEQDJyU//+aHqmpqaquzpOz9zzeR4e5vb0dFd3V1VXnz7vW/4fvB1MnZZx5bQE9KKz20Q8QfcF6M+TauIzIFx4eNCxt3OPk3Naxu20VLlKxf2pxKqrrgqWKkRGbHNOnejUCTjrLOChh+w+P2xOSyC3ThinpZto6Sbo6crv5jg2RTVW042b3NbTEbXTUtXu43RamoqWxxyjjtISt+83p2VS4eHOWK66OneNVNfKsrzHDX7LBBQKncxpGSk8IyRHFE7LuEVLr0GpaqAdd3i4WCYTp6X4AO01ONeFALmFhztCqojbpB7FQHWz8Ov+CzoRj3guvv3WPTxcPP/9+pntIyqnZWsTLf/0J2CzzfKXeeWGdejQwRYnRYYNAw45BLjsMuCcc/Lri+lEPKbnyW/dNXFaAsA++wA77GB/Ft184uBbdKeLhJmIx6vPlMPDAXV4oHw/UDktdfcMXW5YL9FSNTgX+1xVTkvh4av5qqvw1dix9h9xTMSjenByfqsTIlRhTBtt5L4f8RqqZmkXt+8XE6dl0L6qXTt7woszzjC/PzI8PPf5xhuB008v/I1OcCy2aKnq400EAZmgLtBiOy2BaERLPy8gdP27Lv2KSrQ0DQ8P+lzhvNxIU3i4SrSsqQEuuCA/92jQflUsl1Of+/cHbrgBOOIIfbkcTJ2WPkTLOjfRRdfmgjgt164NL1qq+m1T0dJkDBe101LV7nX5JXXX1jSnpZdoKf7mzjuBbbdVr+ts36/T0utFadROS9HwoLpWYRzRujIBhdf0l1/M5jFgeLgRPCMkS0uQt9siUYiWHTrok0SvXev9MK36Pu7Zw8XONurwcPnhx+nQ3N5eNzTk8p7ptlNsohAtg+a0FEXL775zDw83CcOVicppaToYCbLdNIaHq9qCqdNS1ffI21M5zWR0E/F44VcEVj3YyE5LB/mhDTATLcPktPTrtARy50AXbgr4c1rqrr1Yd00H5+I+VLOHi3+L68YxEY8uPLyxsbCfdrapGvT6FS1V4eFBB+1hwsO9EM+513jCT05LP+HhSTst/Qodbk7Ltm3VwkCUoqUj4EWB6l4ZRLQMOklblDkt5bZtek3dxJ84nJa6+5Ufp6Vum3J4eFCnpRMdJN//xLYep2hp6rR06q/4AitseHhDQ65vk4U4t+vsV7RUvTiV0DotAX2fEiSnJWA+SaUO1ZghyvDwqJyWTu5tVbuPc/Zw3T1IHhN55W41ES3lZVGFh7tF9IhOS3HsqRMtvXJamuLmtATM3JYULY3gGSFZjMLD3QarXqF+KmTRcuZMoFs34Oabg4mWKkdh3E5LcftRh4frHmK9JruYOTN/WdjBQNRELVr6cVqut17uwUN2WrqJlqauv8pK83XdGDeuMEdPFAL8pEn2hEBpQ9UW/Jxz+eFI3p6JyO3XcejgV7RUPdionJZAcNEyTE7LqERLmTVrCh86dfcdXd8YJDxcLJPKaanbr64M8oOtn5yWqn5u2jT7XJ50Uv5y5zqoXjqFES1NQvndiNNpKZazVJ2W8v3WK99ilE5LnWipm/DQdPbwtWtzdbdTJ+OielJs0VK13zSFhztlktuTqdNSVV7dfUF3XU1ES1V4eNxOS1XeSxPc7otux1pZWbgvOW9eGKelUy633MVuZTfdt5/wcDfB5ZNP1MuDOC2BcLl5AfVzTjHDw1X3wMWLgS23BIYOtU0TMm6ipW65jMnLXHHcKIeHe+VubWnJb9eqMU0xwsP9OC1NBX4T3HJaAjnR0k0kZU5LIyhakhwmDcRt9t6gTks5x9WSJXZomCrvmNdDuOrGE2dOy4YGtdPSTWwRb9pe50vltPTK69nYCHz8cf4yL9EyrMvWL1GIliKmg0Qnf5aT1/K778zDw5N2WgJ2aLNInK7hYqMaWIRxWsrbUznNZEycll4hyyYk4bRcscK8TTU15Q+ogoSHqx5aVWHY8kOnru9xZpmW8xoGCQ8Xy+SVO8skBMzp58XrZNo2/UwWEpXTUs5pGdZp6SUQBZ3EDPDntHT2YeKYiFK09GpX8n3bJKeln2sh11/xerRrp663Jk5Lt4l4xN+LaXzCkkbRskePwu+KER4uOi3lbZvuSx5DAPr71XrrqZe75XmUtxlmIh6xLuyxR24bDrqcln4n4nHrq92clioHmsppGVa0FOuD7Pp2y2UcdXj4L7+gOojhIUhOSyC8uUKVLzlt4eHnnQe8/z7w3nvA//t/hd+LbmJxfKULZw4qWooGJDH1mjNWcLtOlhXvRDxu437TnJbivUw1xkwqPBzI1Uu3fsf5jjktXeEZIVkyJg3YTbQMMhHPqlX6xPzyg4gf55BIOYWHA/Z58XJayh2n1xvMKMO9TFDdcPyKluI2/DgtAXtmZsCue+IkRVGEh0eV01JFOYuWYZ2WXuHhUTkt6+uBJ5/MX5Ymp6XYlr0mPZH37+DlMDZ1WsrH6CenpXOsd90FHHdcbrlXeLgqZ6vstHRrR+LDiKpO/utfatHS9N7kJ1WHU+4gTkvxHBQ7p+XGG5tv28Tp6hDX7OGlNhGP4+Ro08a+98QRHi7+Pm6nZZCHtShES6eO9OgB9OqV/53Tz/oRLU3v17r2JOa0lK+HLMDo2sA559g5F0V0fVWHDsDDDxcu9xMeHmYinquuAk49FbjwQuCgg+xlceS0dMNvTkun/jrru7Vlr3KqREv5BUrPnsC996oFZtOJeJyXlF7h4UFfPMXhtDS5xl6OP7d7r1+npUl5VNdi3rzcZ5VTVSyvKFpGHR4ujuvE+7VTj71EWbF9qOqJ7sWxSU5Lt5eGUTotkwoPd+qdWx1T5fykaFkAzwjJYiRa6nLeAMGclnK4oBvLlwebQMTPjXeffYAzz/S3bbFMUYeH6yZtcDumhobChyavN5heD2lRE4XTUrwx+xUtxTQC4oyDsmhZbKclkH9jbW2iZZQ5LVWijYzJRDwVFcCBBwL33ZdbFsVEPCZOS6c84uBbFi3FPtp05kJA356iFC1bWvL7NJOUIr162Q9pI0bk70e1fWeZm3jgx2kpl+2MM4CDD879LT6Qm95nnOM3eZh3c1r6mT086pyWjkCke4kpPgS1bw888oj5tsVyqsYTt92W++wnp6Wf2cO9nFtBwsPjnIjHaefO9QgqWqbFaQnA8uu2DDoRj4iYq3bkyPzvnHMaR3i4iWgZZF9VVXZdvuoq4JRTcst14+iqKuDww+0J7ESSCg/v0AG49VbgyivVod9Ri5aVlbn7irxNv6KlU143B5fXuFAVHq4amx93nFpc9uO01LnxVOXxS9Cclm6ipV83rYOp09JEwIrCael13/crWprmvpdf5sqipfMb57i82pR4LkzCw3UpaZzzLq4fVLRcsiS3Pa+clkmGhzvjAbcxAMPDjaBoSbJEIlrGGWYcxmlp2vgzGX/HIOe0jHr2cN3Awk28Uk3o4CVaeoXDRU0UoqV4bvxMxAPknJYA8MUXuc9yeHgxJ+JxCHKcpYAsSKoGFlHmtIxqIh5nP17hMW6oHhqiclpGIVp6ifWm4eGqdi4+kPnJg+z0m6LAoxvEy9dDXM9PTku5TrrVKb8vFEyO281pqQphFXELD5cfIPw+9DvXWufQF1+s+Q0R9XJaqtyAUee09PNgqcJveHiYiXgsy0y01OW0NHVair+P22kJBAsRD4tY32TR0qFY4eFe+1K1AfH+aeIKd865LrVK3BPxqK55nKJlVVXhb91C4cM6LcX7pQrnHLo5LR1Ux2zqtIxatJTbRBxOS69zp8NUtDQhiol4vNqDeO8I6rSUBUigMDxc96yj6wNkxPYRJjzcOSbT8HC3fNw//aTeRpKzhwd1WjI83AieEZIltGgZJDzcD0FFSz+/8TuZUNzh4SoGDFC/ZXUI4rQ0dbRFRZqclt9/n/sc1UQ8cYmW5eS0lOtckk7Lxx8HNtkEuPba/HVMwsNVD3BBnJZyG9A5LcUHApVoKTsxRPeb28yfMkk4LYH8QZ0fd75KIDXNaSni5XpzE83cREu/9yaTl3xuTkuv+604+NWFhzv/B33ol+uGOBmF+BAUVLRU/U7lBoxatPTCb3h4nE7LFSty59pp+6qHtKefBjbf3HbcjRxp9xvt2gHHHptbx20inoSdlkURLcV9JilaxuW0FO+fXuGczv7E/x3ChIf7aVeqa26S0zKM01L+reqlpLi+idMyqGhpEh7uoKqHpkKMbqK0oKKl/PIqaE7LOJyWprOHm5CE01Isoyxamk7E4ywTz/UzzwBXXJH7WxcebipaevUncv+0ciUwZgwwdmz+cue3puHhv/wC7L8/cNFFhd+JY54knZZeOS2d8YCJaMnwcFeKMCogaSV0Tssg4eF+WLYsfqelX9FSNxFPnKLl1197l8mv03LAAODtt/2XJSiquuZ3QOE24YcO59zr8sGJ102e8MiP0zKK2cMdmppyg5dyEi11gofbOjpMREvx+8cft/8//3zgd7/LCX8moqXTl3i9aXYjTqdlt265zz/+aF4mndMyjGipwtRpOWxY/t/yvtq00YdBeYlKbqGkSYmWjujodr50s4c7Lw8rKszzOarCw51919QEmwRBfqlQXZ2r2+KDk2pc0K2bWlT3clqKD3J+REuv8L84RctffnHff5iclqKb2s1pOXWq/b88SZ+IaU7LKEVLXR8fpWi5wQbAt996ryfWt623zn3u2zf3OWmnpe48mDgtxfZp0lfp8tklFR5u4rRUPdRHKVrK25bXN3Fa6vojL+HNNDxcty0/TksT0dJ0vNmhQ35fTqeljer8+REtxWu/ZIl/p2V1tT6Pp5doGTY8XB4T//Wv6u04+zUND//b39zL5aB7YePQ3BxPTktVHXaugd/wcIqWBfCMkCxGomXnzvrv/Ap+fol6Ip4TTwR23z1/md9jkGc0jzqnZRAaG/07Lfv1A/78Z2DUqOjLoyKKiXiCOC2dgd7w4erv3ZyWpoOmyspoJzYKcpylgHw+4549XNfW3nor99nP7OFhwsP9OC29REu5romC/FdfmZdJV8/ChIerMHVa3n9//t8qgTSI0xLQT9ohpxnwEx4eRLQM4rTs1Al47rnC/bshn2c5vD6oi6W+Hvjvf4G99rKvl+g28goP181675XTUqyPfnJael0fPw8IXg+/8oOiV77FJERLE1KU0zLSsdGddxbmaVQhtve6OrtO77kn8I9/5C/XIdeLsKJlWKelbgZdt5yW8rpAuNnD/YSHq+qtSXh40P5LFR4ub1teX74nOOc4DU7LYuW0lNeLIqelXNfk4911V+C66/JzTKuIUrRMwmkpCmm9ewPdu9ufZ83SC5Sy+Ca+jNQR5UQ8JuHhOpz9moaHm2IyEU8cOS1V93oTp6Uq5RFzWhZA0ZLYWJaZaOn2BkSVVy5Kop6IZ7fdgBdeyF/mV7RcvVrttHRziIk39DjepARxWmYy9gREzz8ffXlURB0e7tdp2atXfl5Lh5qa3DURRUu3N/IyVVXlJVo+9lj4bUyaVLhMfvjTPSSY4Dc8XGTmzNxnk4l40p7Tsl+/3OcvvzQvk6qeVVSoB75xOy3vuAMYNCh/mWl4uCqnpYxOtJSPVS6bXB+DTMTj4Ee0FPvzV14Btt1WXT63fbk5LYPeu+vrgR12sO8b48blu428nJa6e6SX0zJoeLhX3+nnvu/XaelVH4O4Ppz1oxQtyzWnZe/e9n3MKw+sXAfGjbPHiDvvnFvmJlrGOXu4176icFqqcuGJv/UbHh6H0zLq8HCdsKMLD5ePx09Oy6gm4gHC5bRsaoo2PFzOlxvUaSn2m/Jxy4LvjBnA2WcD//oX0L+/fptRhocnkdNS3p+TpmLpUuCjj9Tr6Ryybudazmkpt/2oc1rq8BserkLVhr3Cw+PKaenmtGROy9DwjBAb08br1pFVVMQvWkYZHq4agARxWqpES9OcLnE4LYPktHRIKo9U1BPx+M1pCahzVsmipegW8iOgxSVaFmMinqAPBCKqcycPQlVtQRfaIuN3Ih4RUbRM0mkpX8umptyAxWv2cLeclqJoKU4y5YUqPFznRIlKtNTldVQt8+O09OpLdKKlfKx+wsP9vlAwyQGtclrqJtdwwyunZdAoCV1eWhOnpYlo6eW0jFK0jDM83IsgL6OcuqESLYPex02dlqUmWjrt2quOm+zTj2gZNqeln4l4onBaLlxo/x8mPNypN5mM/2eCNOS0dNCFh8vHE2VOSz8T8aTJaSn2DUA0OS29REsRN5GrVCbi0b0cFp9T/vtf9W/l+4fJBHte4eFe45OonZam4eEqVM7MJJ2WXhPxMKdlZDCnJbExHVy5ddRxhoYD4XJaqlANqPw+vM2YYf9zcG4SbuX0M3t4EOQZzQFvUcURS5Kyo8s3i++/Bw4/3N82wjgtAXsw8Oij+d/rnJZuuaVkonZaFnsinijqqGpAZhIe7ke0DOq0fOMNu/5nMsFzWvoV3P/978Jl4r69nJbieXFzWnqFper2Lw5gVdclqvBw3cDYVLTU5bQM6rSUB/lxh4d79bcqp6VXriYVXjktHVHTb/8SZiIeXQiYuK7q+FSipYlLMUrR0uvh169rUpwMx5SLLrIfYjffPLcsSqdlOU3EY+oeKpZoqcs97Oa0lOugH6flHXeot7lgQW6/IkGclqL4YYqJ01IkrGjpNzzcrT+KIqflsmV2BNB33+WW+REt//AH9+07mOa0DPqSPIqclvK4xu3cJSVaxhke3qlT7qWBuD9RtBRTGYmIee+dvwH3cyb2DSrR0vmsG0tFJVrKTsuKCv/5S+vrbSeqvMxBJ1pGldNS3A5zWsYKzwixKQXRMurZw1XlDZuX07lJOHlIVMTttFy1yr/TI6rO2xR5cHTfff63EWb2cADYfvv875yH67BOy6qqaB/qih0eHsXDo2qgauK0HDjQbPsmoqVuALBoUe5hzSQ8PAqnpQqxn/Ize7g8uO/aVR9SZrp/53N1tbvTUiVaiveSvfcu/K3brNYOqmsV1ezhQDxOy6AT8bgRldNS3pecPynofc9EtIw6PDxoTku/oqVpyKFD3OMfmWuuAV57LX+CA0e0DFqWYkzEk6Ro6XVeTM5bHKKljrhyWurYcsvcfkWCiJZOXxrWaWkSHh60vgdxWspE6bQE8gVLwF94uCm6MHKpH82Y3tPGjMn/O4qclvJxu6XcchvviO3E9CW4jiiclrp7tjO5nkhlJTBihHcbCuu0FA0a4nG5/d7rpX3QnJY1Nf7rtqpumEzEk6bZw5nT0giKlsTGa3DVpQswZYp3eLhfevUC9tsP2GQT73XXrAl209GFh6vKG5Vo2b8/cMkl9luyp5/OXydu0XL+fPdZ+NKAXN/EEDdTwkzEAxTWOec7ldNS9/AgzjDqEGd4eKmKliZOS9X5HTsWOPlkO+n6ZZfptx/GaQnYgwnLSi6npQqdaOmW07KionDAVl0N9Onjf/9BnJbiwNDpc8TJhO66q3CyM5GwTktdTsug4bt+Rcu4c1qqZg/Xuafc0IWHi05LXTuvqwM23FD9nc6JGlV4uMqNqRLx4xAtn3kG2HFH9boqx45XvrokcETLoP2RW3h40jkto3SZRBke7iae+BEtt94a2Gkn933FNXu4yKRJ9n324IPtySkB/csZP+HhUTktM5ncfmXR0tl2JhNsMh430TKM0zKMaCnjx2nphrj+mjXRhYfvvjtw0035y6JwWspCZIcO9sQ7221nv6wRSYPTcqutCtf3M3u4asxWWWm3Ya9waflamkzEI/a7qol4AHOTkuxyBIKHh9fW+n/mUI0TTJyWcYiWqjrGnJaRwTNCbLxEy3fesd+mRem0nDLFDgv+97/NRZ4g4lZjo9pJGIdoKd6QL78ceP31wpmq4xYtm5v1TiIdJk7LPn2AwYODlUlGvlmIHf3RR5ttI0h4uHi+u3bNv3E7A0o/4eHPPgscd1z+sqQn4onb4eNnAHHXXfYDkIxKDJK3q3tguesuOwXDgAH6/apES51bRIXOeaAaeKlmUo1atPQKD3faS11d4bmtrlZPMiUzYwbw61/n/lbVM129d8onDqadBw5R8OzTB5g2Dbj7bnUZwua01D14eV0P3cOLPMj3Ex4eJKelV9uVnZbyw3nY8HATp+UnnwBffw2ceqp6uyLOPsQHgqhFSzGkM86JeAYNsh+OVcKSql9wE7OSwhEt/aarcCiG01J33ooRHh7EaSm2Rz+iZXU18PDD7vsKOxGPiSu7c2fguefsCU2cMZDu3mkye3jU4eHicrFfyWTyBaAgzkO38HB5+7ryqZyWuv5IJ1q6Oap0LkK/oqU4Jl2zJpqJeMaOte/vffvmL48jp2VlpT3xzhtvFL5MMhEtLSvenJZvvAEMG5a/zI/TWjVmc9q+171FvJaWZSZayuHhqkm43K6V2C/9/HPh96ZjYjk8PA6npW4inqgiDL1ES2f8xvDw0PCMEBuvztXpRKJ0WoodqukAddEif/sA9Lkr4gwPd9tP3KJlEEw6b/GNd1jcREtTwS9IrkdxcJjJ5L/dVDktvcLDxRyYDlE7LcXjVLXTKCbKccPPw6POOacS1ryckTK6HHjOb70m4nHbvugME1ENMlROS91gxE94h4nTUp6IRyVaOmKhF/Ib7SAT8YgPFk6uStG956AbdOv6W9WyKGcP15HW8HDnTX2bNvl1yo/T0k201InHQK5fNLlOzt9ie/AbHi6uW1GhnuwnDtFSdy5Vy1X3yyAuqqgJ67Q0ES2rq6MVaEt9Ih6xfrqJlqq+w6vOhJ2IxyT/rWp5msLDxW2JTku3cbUpbk5LwGyM4rSFME7Lnj31ZdAJcn6PVxyTrl5t5rT06jOdlxeq8Z0O0/BwOe2N2+9MwsN15hU/uLkQKyr0YdoiqvbQpg3QrZt+f25jXyB/v+I1DDMRj/xZVzYAWLKk8Psw4eF++37V/ShJp6VYr5yxufySAPB2WloWw8M9oGhJbLxES5M31X4FLbFDjVu0VHVOcYaHi8jHJh53Kb1JSUq0lAcrOkycll4PBeLbTTHk1imjl+NMJVomndMybaKl6karGtSauBhE3B6Uw4aHNzWpz63qramfnJbrraffp4yJ0/K774BDDwU++8z+u76+8NxWVJg5LeXBYZDwcPGB6tJLgQMPzJXNyzHnrBN1eLjJ7OE6vCbicXPvxhEeLjst5TYQNKflPvsAH36YH8ofRLTUOVHF8+93Ih55P/JDu1gn/eS0XLYM2GYb2zk5dWrh935ESxXFDg+vqMjdd4LWf1Xo/VVXAb/6FfDee/bfHTpEO25J00Q8QZyWYj2W7xdinyr/rrLSe3yShNMyKtHyueeAc86JPjwciFe0dHOjmYwhoshpGUS09DsWl0WUKMLDnf5GvsZ+hGCxjoppW1ROSx0mTsuwLkvAXdAzFS1V7aFdu9wLJ9X+VGNf3dhN3GdVlV74EutiENFSPI4w4eFOHYs6PNzEaRlHeLgjUHbunFtmktPS2Q7Dw12JcFRASppiiJZBnJZBw8OTEi3dXEkOcc8eHoQ0OS2DiJa6N8IdOxbOyCciOtKcnF1+nJYqJ0TSOS3jFi39XPNiOi2DTsQD6EVLFarZw3WDkd693eufiInT8uyz839TV1c4KM1k7P16IYfh6MLDTZ2WQH7+XrG9ROG09JPTspydlm7l0SE7Kb/91k73YuK0dHOpxeG0lLfZrh3w00/53wdxWgLA7Nn2/+edV/id7lpsu62dSsEL8SGlGHTunDsGOVzTFMdZ3dhot6F33y2ckbh9+2gdIBrR0qqqQmR7MZ2Ix+ReKpe3qsrumxoa3N2PtbX5TrKoRctiOy0B4Prrc59LwWnpFh4OmI1Roshp2aOHvgy6cY/fNii+SI8qPFxOfeXgR3Tq2DF3f3MLDw/qtIxLtFS9LB45Evjoo9wyU6dl27Zq0dLNaVlTk7uGumcEZ1ysKod4LOJ1DhIerqpLpmOwuCbi8ZqELO6clm3b5u4LJrOHA4VCKkXLAnhGiE2phIcHnbBFdXwMD1fzz3/aEwkNHZq/POi5uf32wiTV8vUQJ5qI0mnpNWGAypHmZyIe1QN5VZV34mw/6AYk/fvbs67HKVpmMv7atc5pqXIb+xUt43Ra6sLDVZg4LevrgX79bOeJKTqnpWkydRGT2cNNw8NNnZa6dQD3yQ50L49U5XVQzVTu0NSUnGgZ90Q8UTktVef5u+/COy1150esS35zWsrrynUsjGjpoBpH6M7lJZcAu+3mvc2ttrIdicVCvNfttx9w2GG52aBNEZ1njY3ABx8UrtO2rbqPP+ooe3K7U081m1jRQdeHRTk28goP798f+OMfze6lcpSAKD66CYlyP15R4b0/P+HhUTotdS9n/FyTuHJaJhkeHtRpaZrTcqONbCezm0s7KuEiSHi42z3tgANyEzfJ+BFUxfG+eN+IymnptJMoREuv8PBrr7WFS4eoREvVvVLsT3QppHTjK3HbQP54ye0Ydb9Xkfbw8LhzWtbV5cRmU6elLKRStCyAZ4TYlEp4eFDRMq3h4WkRLcXO++ijgc8/L5x4IajTcsAAYO5cWwx1SMpp6eV+UeX+Mw0Pd9xJKrEsypuN6jjbtLGv0bHHBhctTR6wTdxg8vryoEzVpnRirxthc1pG7bQUty8O0K680h6kfPEFsMceZtsEzJyWMrqHHZP8eibh4X4m4tGtA+ivra5PCeO0bGyMLzzcrU7FMRGPPHt4UKelrh2LTksvl5Mf0VIkzEQ8gDo8PKxo6WdCs7ZtgZdeAl580X2bFRXA44+bCVFxIDqpKiqARx6xnZK6md9VqARhGTmvqsMllwCffgrceqv9vylhwsNPP91OdeCF1/j188+Biy/23g5gH7tYZlPRUu6TnXuWW1+te2kEFIowQZ2WqrYZ1Gmp2kZS4eFBZg/3clr6ES1NnJZyGT/7DLjggvijZYBg4eG6e9pVVwFPPRXN84vuBasfp2UawsMBW3h8/fWccCnnKATUfacuPNzLaengFh7uV7Q0dVp6tWvT8VBc4eFiH51UTkvxOaKuLjfGMclpqSoTc1oWQNGS2Jg6LcN0YjJip2uaMDhITktdeHgcTkuT8PC0i5YO8vUMKlo6vxF/G4Vo6TVBDeDttPQSLd0cZzoHUpS5uAD1cZoOLNwwEbb8tgeVOKIKPdVNYOSGX6ell+AkIub08cLLaSku95PnziSnpUxcomWQiXhkvAb4qn5B/k4ur4OXaBnUaSk/VKYhPLypKbftME5L1Tk1cVo6+zDJPWrqRgf8hYfL3wfJaSmiaute59Krn3Ve2HilBvGaVCEouv36uR+ZiJb19eqHqaAPWGFESy/RCchvZ1GNt4KIlrq+xe0eUSynpe7e6ef8xRUeLr5oUa3jBy+npcmLVdlpCejHEvK1dn6TtGi5enW48PAoX8rrxvthw8OdfjZK0TKIC1F+NonDaekVHq5CXC7noFZ91pUtLI572ql7UYWHxy1ainXO2Y54HkXR0mT2cKdMzGnpCs8IsfESLZ3GU4yclqJbLuhEPKYJkVtreHicoqXqoVcnWlZXm8/CunAhMH687Whzy2nphioBuiqhukq0dK6jX8egy7rNqvqjmyBFLodfTEXLpJyWXnUrbE5Lt+2LwpAXXjktxWvjZ0bhpJ2WuvBwywo2EY9uHWc7Mn7EMKe8Dm7h4WFEy6RzWpqEh4upM+Q2ECY8HDDLaSluw2uZzrUVpdNSJaz5DfMKIlp69etOv+AlWkY587aIbr9+7tlhnJZBRUvd+TC5j7o5hFXbiWq8JedLC+q0VC0XSVtOyyCuybiclvJ20xIe7pRThXytnTaTNqelZQF/+hMqf/c79baSEC3l5X7CwzOZXBt12ol4Hw1KEEHPRLQM4rSU85E//zwwbhwwa1b+701eVlx0Ue5zMURLcbwWVXi4l2gZdiIecZJNZzuiMC6Ghwd1WlK0LIBnhNh4iZZOR1uM8HBRtFyyxN8+gGQn4vErWkbdKUUpghZDtKyr83fD+sc/gIMP1t8M/Mwe7uDUdXHgqQqT1Tkt/Zwjqb6UhWhpEi4fJDw8bE5Lt+MIm9NS96baT8ia/IbcIWmnpdg2vSbicRtgxum0dM63ql9vaiqd2cNNnJbijKpyGzDta9weXpyyBBEtTdzMOtFS9xJCXlfluAkbHq66VlE4LYHSclrKD9DiuW1oUI8L6+v1YyeRESP0+xUJ47T0Ep3k7UQVBSE/EDt/y8KI2KfLfbJzvqISLYs9e7huG37EbN21dLYVx0Q8bvdokxerzjkWv1P1L6oXQ865CRLa7hc/OS2ffRa4+GJkdPfRKJ9bdNEaqrQgptuoqcm1q1JwWrZpA3TpUrjc2YeJ03LsWODBB4F9983/vZ92L+4T8CfoB0VO5xPEaRk0PDxMTktRtHS2I4uWotPSsrxFS07E4wnPCLHxEi0dijERT9iZmHU28KTCw+WbVJyzh2+0UXTbkq9n0HOjEi3l+uZ09vX1/m9Yc+cC8+fr933FFbbw/de/Fn7fs6edu7NrV+DJJ/PLKQtRqhBncX1xXVOkB5YW1bEXU7SMYiKeqJyWcU7E40foUuW01IWH+zl3YZyWN95o1/Ebb8xfriOTsQd6KtFSnknSTXDMZPRuS/FBIgqnpTgwdYS8qMPDw0zEE0VOyz33zP/by2lpKgh4CaRROS11182PaBnEaelXtFS19ahESy93/xZbuH+vYsYMoFs393V0+3W7rnI/UVmZPxGPyp1k6rR84AH1LObyw7murzKZzM5EtJQnzRHp2tXO/ekXOTzcSUOzalV+3xPWaeknPDxKp6XuhV+Q8PAonJbO+V67Vi9aBhGko3BaqsaBqvuPm4Akl+Gcc+x28tBD+rIB9iSXpshOS7fw8Gefdd+W6jhuucUeg1x3nXmZAL3TUo66cqt7cu766urcdXGuRdAxgUhcTsvaWru8Onep6l4pnhvd2EN3X7/jDjMxM8rnfR2y0zJITksvp6XqHIR1Wor3Y2c74v2yvj7/uq1daxYezpyWrlC0JDZix3riicAf/qBerxjh4aY5DnUUeyIemTjDw4OKlmkJD6+rCybCffed/b8scFdU2KEPixcDJ52k/u2ttwI//QQceGB+OcUbqcppqRuU+zlH0gOLsdPS1InnY99K0hQe7vZ9ZWX4iXhM38Sr6rMuPNwPQWYPdwZrZ5xh1/EzzrD/9rq27dvb5VeJlvLMz26iJaAXF8S26ObWNHVaiiLoqlX2/8UWLaMOD7/wQuCNN3J/ezktTfESJYM6LU0e6tu1Uw++g4aHZzLhc1rqnFBumIpj8j1IFBPbtQOGDPEun8yuu+bSoegI4rRUOXdFQVglWupyWsr962ab2albfv3r3LJMpjDFj060NHlZrROddtop99npK5z1HXr3tu/7hx3mvR8Z+YFYDO0Uo4GSDA8vB6ell2hpWbk6GSbCRfyNn5yWbufKy2mpy+3rfCcyaZLdTo44Ql82APjNb4AffnBfx8GP09JLXFEdx2mn2WOQs882K4+D7vmuoiJf9HHrx+TQatFp6RyL3/uzirhES+f6y8fhbMfLaakbu6pe5p9zjt0n69qL6Qtz1e+DGIzk8VpS4eFhc1qahIeL5Vqzxiw8nDktXeEZITbyjGMm1nGZuJyWbpM9mCCGlIhQtMyRhGgp/jZq0XLpUvv/TTZR79tr4Cx+r3NaxjERjyxaqh5gij0RTxTh4SqXahiHqkxYp2Vzs7loqXJamu7HjbA5LcU67HVtncGleM6d/ctpEbwmF9P1z+IA1q/TUrVMFK9WrrT/1+W0DBoeLvffXuHPUYeHy+e7qcndaWka3uQVHl5Z6d3+goqWbduqXfu6e6VXeDiQO0ctLbl/YQmb09IkPHybbYL311733yA5LVWz0YuipSiYi78xzWmZyeQfr2UVrqcRLS1T0VJ1XXbZRb2+uK6qLKaI/Wsmky82LF6c++w2EY9peLiu3kXltFTV+yhEyziclkBOhI5CtPSayMlkH6rcnX5FS9Vxm9ZN03GTn5yWQURLIFh70o0fKisLc8fqUImWcTgtTV2IqpfBDqpz5JRVJ1p6zR7ujIdU5dCNs3Xn8/PPC9dVofq918SnKuQop6TCw5ub1eMn0337yWkJ2PdS5rQMDc8IsREbipsroxg5LeNyWqrKG0d4uNs6cYuWpm++St1p6bDppup9+8H5jSzk60TLYjgt0yxamjotvZyRflCJMib59hyCOC2D9JFuJDl7uEq0nDED+H//D3jvvdyyME5L0WHmJlpG7bSUw438UGynpfzC8Pbb7bA7B9lRYCpaerXjuJ2Wqrapq9deTksg/7e6nNV+8ernvM6PTrRctiz3edNNwz2IuP02bU5Lk/0D+r7KZOyiq0e77qpeX7yGYfKZiffpxsZ8seHEE4G//93+HNZpuXatvt598IGdw84hrU7LKERL8TgcgSMJp6XJC2k/TktdGcMIakFES93s4U6bCCpaBqG+Xn9vMXVadupU+KI3LeHhhx0GHHss8NxzdiSMKvQ+iNNSrLc60dLtZb6uLs6dm/vs16Qkh+mbEEd4uPwyy4/T0jSaxU9OS8C+l3q1q/POyx8vMDy8gIiyUpNSJyMOrpIQLWUBLE6nZWsOD+/UCVi+3Pt3669fuCxO0VIc1IkhP2FFy3798v8O0umr6oWf8HBnva22At59131frVm0DCP2ypg4Ld2OQ3ZatmunHwimyWmpu4Ze19YRFMV6dM899v+33Za/by/RMqjT0m3wrHPsOXg5LYuR0zIKp6UqyuG++3Kf43RaevWVUTotq6r0+5O34ea0BJITLU3d+nJuyaFDcw+C226rz79sglvfostpGVS0bGlR94F+Zw/3Om+6/i1MePh22+nXd4hKtGxoyBcb3nzT/rf99u5OSxPR0m0sDtizBe+2G9CrVzKzhwcRLaMMD1eVySGoaOn2O5N9OP1TmJyW4tjDbwqQOJyWXi9woxQtHVek/IKkosLcaVlRYQtmjstZDA9vbrb/Jem0FNebMcP+/5//1K/vJVp6OS3FFBjy73V1WHcNN9ussFy6bcsEES1V4eF+n2nkNiP/rRMtVcvr682emVU5LcM6LZ96Kv9vOi0L4BkhNlGIln4amEmn4hDWaakLD4/DaRlWtNxrL+9E/m7IoqXJTWTzzW2HlYwqpC+MaCl28gsX5j6LHblOtDQdmMmzgYdxWsr7l4/dKzz84Yftt3GbbQaceaZ6X1FMxBPU2ReHaKkbJKnCYIOEh0+apA9X9nJuejktxUGzWxt0C2sGknVa6t7cBnFaOogP8zonk4nTMkx4uJdo6QzSVYP1MOHhYWYPj2IiHrfULEDhfdNUrDN5OA8iWrqdDwed09JUtFTVLzn8LgnRcuON82dm1f1eFttuucUewwwfbotMYR5E3K5hkPBwWQyS27vo+nDQOS39iFP332/3Ucccox2jGIeHqwSttm2B3//e/v7KK3PLxXoTps7IKRxksQEAXn01mNPygQfs8u+1l/3i02vM9c479v9ROi11L/z8iAlBwsN1x6q6xiYuSC/chETVPpy/H3vMPreHHZYbc5s4LXX7kifw8IPpcYtja53TMmx4eBB0qUL8OC2B/DYoC19NTcXLaWlCEKel2G+sWKHerqp+e72AEF9ai7/dYANgzBj7fv7cc9GJlqrwcK9xl4ws6qommJPRTcQTxGkZVU5LGYqWBfCMEJuknZZyJ+O2XZNZJN1Im9NSXEcuwy67AD/+CPTvH2z/smjnlWNk1Cg7zEjVUUfltHR+I5bt229zn+W3zKqBselguU+f/L+jEi1VjjOv8PCBA4Hvvwc++sjYBeOZ0zLpiXj8XvO4nZbnnGMP0GQnTdROSzfR0stpGYVoaeq01L1hDyNaikQ1EU8UTktVeLhKVCnliXi8REv5vulHtPTzcK7Cqx7otqNzWuqQ101LeDgAPPMM8Kc/uf9eFtt22sl+SffWW/aDTFrCwzMZtZAmjk9UjhOd01JXNtXycePstvuPf6h/A5i9rJaFDSB3z5o40e4nLrzQu4x+kXMBq0TL2tp8YUg+105Z5OX/93+2Y2zKFLP7r+MuS8JpqUtHosKv09LtBamJaJmk0/KQQ4Cff86fed7rXuAmWoq5Y1WuOjdMxxvV1blxflw5LYNQUaEer1RW5j+X+BEtxcnagHBjArlMJuWJSrR09hE0p6XbuFhVxptvBkaPzv0tjonbtLH7pEWLgLFj43NaqsLDdcfnID+/ql7GyciT3ui2pcMkPFx2Wvp9mU7RsgCeEWKTZqdldbWZwKJD91CjKm9QYc4hbE5L51iDCh9t2uR3pl43kdpa/aAy6vDw7t1zx+XM9g0UdvRhRMs4nZa68HC3N/7OQFV3PaXfeoaHRzkRj4nAHiQ8XDVIikq0BOw6qwq189qel9PSVLT0elMdtP8IMnu4aqIMIDrRMsxEPKY5LU2dlqLDa+VKe6CoElUaGvy7Hh2SFi1NwsNF4sxp6SUuhBEt5W1HHR4eJtRXt18V8qQr8neAWjysq8t9nxanpcpFXVlp5rQECq+f3/Bw0xQWbsjCBmD3l84+5X2IZQlTZ+T6p6oTK1aYOS1VriBxXOZVL50XwEnktPQzDvfrtHS7FxVLtHTbh+56Ask6LU2Pu6oqt+04Zg8PiqnT0us4xTa4cmWhG79YOS1N8JqIJ46clqprKIujKjHdqfeq30eR01IVHu72nCqWzcFEtIzbaVlfH95pyZyWBVC0JDZpdlqq3qb7IcmJeMKGh3vN7OZFZWW+29DrJuLWKUYtWlZWAr172591TkudaGlyXoH4nJZhJ+IxnHTCNTzcsqIVLU1cE0FESxOnZdjZw6MWLYM4LU1cE7rfqojSaekmCgG54/OqO2lyWmYyuX2tWmWfZ1W/7nb+vUh69nBV/+/WDsLktPR6OPdq50FFy3bt7Gsn1kc/4wgvp+U116jPvd8Bv2k/p6vvzu+9xLa4nJZ+c1pWVan7UfHc6pyWgLqfVxH0wcs0PFxuE259mliWqMLDdaLl4sXBclr6DY10XgCrRCjxt0mLln4n4imGaBk0PFyF173A7YVUGNHS5IUTYNdZp62sWZOe8PBMRj2+r6jw57QUo8pWrIgnPNw0wsmv6SRsTks/s4e7vXSXy+3mAI7KaWkSHg641zm5fzB1WqruAaZag3itnO2I7ThITksZOi0L4BkhNkmLln6clqq36X5oalIP6OIIDw/rtHTOQ1CnZUVFvtuwSxf39ZMULYGcqLh4ca6Dj0q0rKnJz5sp79uUsOHhqmsXhdNSns1cLFsQSnkiHpVDyOs6uB2H7LR0S6vg5bR0S2Lvdq2C5LQU3/aKZDLuorQfp6WXWKUb5JnmtNS9PFLhCEYrV+YLKuL2vUKJ3AgzEU+QnJZhnZZRhYfH7bR09iFuS1dv5HKqnJZiWW6+GXjttcJ1xAkFTDDt53TOYl14eND9qIjSaSkLlKplKqelTrSM2BVimYSHi+4xB7exQlRlDCJamoaH+xXj3JyWJtvRvaRVrRNEtDQ958VyWnr1i6b7COO07NEj9zlIaiiT54U0Oy114eF+nJZif7FiRTzh4WnKaWk6EY+unZi8LBZFuLhES5PwcN3+ALVTNwmnZceOuXZgmtOS4eGh4RkhNkmHhyfptPQTHh5UtMxkgIMOMhvUeYWHq5abUlkJHH20/f922wEDBriv72fAFoVoKQqqjkMgqvDwjh3N3R9u6AbxptfK5A0mAPz61wXrNqlumI4YIooiaRYtg4aHh3Vahp2IJ4qcluuvbyfnF7nnHvtYx4wpdAKL+HVadu4MXHGFfntu19dPTkuv8HCd28/UaWkaHg7kOy1F0VIc7OsG8CZ4TcSThNPSrZ4GdVp6tWOdcHzvve7rmDotne05VFUBw4YBO+zgvU0vp6WOu+/2N4lfVE7LYomWumN1c1pGGR6eFqelm2gpljHK8HDVy2Ev0VLntPQrxumclr/9bf7ffpyWun5O1e4OPVS9Xb/h4f366b8LKlp27gxsu61+uyYOdAevFzte9wI30fLaa+0XpZ062RN3+cVk7OTHael1D00qPNyP01Ls/5qaCp2W5SZaiv2GH6elH9FSrAdyP6uqA7oXem6YhIfr9gfY/biXaKk61jA5LY87Lj96RJfTUr5PiMf51FPedZqiZQE8I8RGFi1N802ZficjdwxuDyFROC3jDg//6SfgX/8yWzdup+Whh9qJ/19/3TsE2I/TMui5UTktAX+ipcl+VccaJAQsbHi46trJx/T558Add5iJlk7bFAeZpk48N0rZaRkkPNztOOTwcBOnpUrU//zzQsHz+OPt/uG559zL4Mdpudtudvtx0i2oEK+vvN8oJ+LROQxF0cHNTWkyeHZwBsWrVuULKnGJll4PxmFES507OA1Oy6FD7Tp73HH5ZZPxEnUBvdMykwFefRW46y73bQQVLTfbDJg/HzjtNO915fK5oRMt3XJaBtmP39/q+nO/oqXYt7o5LVX9n4qgx2sqWvoZS8aV01I19ggaHu718g0A/vrX3KzVKqflokXAX/7ivR3dcp3TUjV506GH2rPB67ZhKlqPHKn/zmSiSLnMzkSIbmKoV3i4+J3X+ET8XiWQuYmWG25o389/+MH9xaYO0/Bw5zy2tOS76BycOqRKCyGSVHi4H6el3F/EPRGPn5eAEyYARx2lXz+u8HC3cbGJw9pveHiQ5/TGxnDh4ZZV2CfF6bRctCj3MtfLaSmeo+bmXB2srQUOOMB+Tr/oIv2+mNOyAIqWxEYWLXUDOj/OPDfKzWnZtat5ByPebKJ2WjrH1KWLPuxCtb4KVfhXlE5LZ7At5wFRPXSYCBHOsYq/DzJQUZ2TpqZwOS3l3/bsqVy3SVXPowoPl8tlEnKfyYR3WqqWFUO09HJaivUwiNOya1f9gKdLF+/248dp2aWLd58otn15G87xRTERj044E8+h6tjDOC1/+cWevdUhKdHSLeVAmp2WXo4i1csG2T1mErKlupY60dJZJqf0kLfpNRGPjspKe9+mbkvT/scrPNwrp2WYB5Eg91+3qBmVs1hcpsoPG9VEPF6YuHb8Oi1FohQtVSxe7D57uE60lFFdvx49cmOpJUvyw30rKtTh6n6clm79nCoHp9yGxW2Yjh/cRMsgTst27ey66mWIMDVieLU9r3uBl0Datm1wc4Yq1Fu1f7GtrFhRuE5Li70t1XciSYWHB3VayutHldPS1Ewi15XaWjsKR4duIh5nf14T8eiul2pc7Odlsd/w8CDP6bLTsrbWn9MSKOzzTdLP6cxMXm1QvEZ+RUtHnHXK27mzeWQAAUDRkjiYipZuhHFaFiOnZZROSz+IHbLubXFQp6XqZulG0jktvcLDdYNMrze/QO5YxZtAVKLle+8VXhOT2cPldeW/pX2FDg93qzfyzTEpp6XqwUCc4VX8rSkmOS3DOC2DzB5u0ke5lUEcQInrqQY1JpMouYmWUTotdQ9Mbs4HQO9YlbcvIgoZ8+fnPkclWvqdiCeMABVEtAw6e7iX01Lep2q7Uea0dLsHyn+rnI2mOdxM11XtV0cxw8OD/DbMRDwq/E7EExST7anGhqY5LaMSLXX9X9CcljI6UVGOWnHuH37ESbftq8oKFJZXl/fYOUdROC2DiJbO3271wU+/6HUc4rq68PC4ni1MREvRaQmoha6HHgJmzPDeVhJOS/mFhNe5k0XLOMLDTa+f6jnM7T7klFU+hrBOy7Dh4eJLK7mfjcppqQoP9zsRT5CclmHCw+Uy6WYP1zktxfJGlXKvlcAzQmyiEC2TdFr6eVjUvVGJ0mnph7jDw0XCOC3jEC3FgbbjtFS9nZKvryqURcY5VvGY/SY+BuIJD5eXOX9L57PRzWmpEy3FG6DbA6dXCIWKJMPD/bTpNOa0NDmfQQa9qmuaJtFSd668REtnGyo3r5fTErBD6RzSEB7uF1Xb0p1vB7l/MA0P92rH8vdRiZbV1ep+UtyW1zZUD7SmTkt5X26YXkudA9DpF8Lcc72I0mmpEihNRMuknJYm+HVaxiFa6gia01JGN56QXwA7+9Jd76iclipBwG0bpvV9k0303wURLZ39utUH1UROqm0A3vXYy2npFh4eFpP7gInTEgBGj/beVpTH0aaNmWjp1Y/LkxLGPRGPn/Vk152MTuB3fuM1EU9c4eHiOZXPr+r3cYaHu52/JMPDRbxyWornqKUlPzzcwe24GB5eAEVLYiOLlkFyASbptPSTxy+O8PCqqtzN/corzcsCxDsRj1/RMgmnpfgbUVxw8mXJHT0QLE+jymkZlWh52WX6h2kTcUyu3xrhK5DTcuxYu8zrreeedF6uCyZhdEFES9UgyUS09IPqjbSXeOxWd4M4LeX9mYrAJsgPS0EEUhPR0mu2R5Pw8LPPVp8vWUyQtyMeo5fbzkEULXVOyyRnD/e6nsOG2S9qVP2sTsyPy2npFQbpJeiYODNUIZoO4vb9iJYAcPDB9v+//739fzFFSy+nZSYDHHKI/fm884Lvx+Gaa3Kfddfwssv0vw+T01KFX6dlnA9eKtEp6ZyWDvIEKsuWFT6Mi5iKlrp2J+ZdXrkyWqelWz+nclqqtuFnIp6zz3avJ2FES6/w8G23BYYMsf8WJx6Tt+nHaek3p2VYTJ7X5OeoMPfJsMfx9NP2+dxwQ7uvVLWBigp78sLqarvP3W03922OGQNsuqn9+cEH4wkPl+uYk6fy7LPd1zN1Wur2pzIziG3Cj2jpJzz8kUfsZV27Amee6b4uEI3TMkh4uLy+6UQ8YUVL2WkppzqTnZZyeLj8G932SZaSPiO33XYb+vbti7q6Omy33XaYNWuW0e8efvhhZDIZHHjggfEWsJRIOjw8rNPSj6jlJzzcVJirqACmTAE++wy48ELzsgDxOi1NXCoiUU/EM2iQPWDQbUd8iHVutFGLluIAKIrw8BdfBHbeWR8ebuK09BqUrCPQRDyjRtmu1S+/dM/fJr/dM63nftp1GKelH1QJy8OEh8tOS7eJeJzjCyJaBg0vkuuPycDKbSIeR2T0Svpv4rTs2hX45hvgP//JX0euB24isqkrVuw/dE5Lr3xcboSZPVxFmzbA//5nnx9n4gzxt6q+w62OBHVaqtqHXBavh/IgTkudwCduy0SwfvRR4NNPgauusv9WTRCj20fQicp06PJ2ieV+5BG7vFdf7b6eF59/ni98yr8dNszez6WX6rehq08q0bKiwrsfo9NSXadOO82+XnvtlVu2aFHuc9Th4XJeTacv8Ou0NHFcuYmWunuE6UQ8//sfMGmS+zpxOi0rKoDZs+3xkzjxmLgNILzT0iunZRKYOC1NCHsc++8PfP018Mkn9vXROS232MKeTOnbb4Fevdy3WV0NzJsHfPUVcOSR8c8eDtgTUH36aWH9VYmWJk5LGaceqcbLYpvQpc8KGx6+6672dfr668LImbhEy5oavaFIh9w2k3JauoWHu03E4zXZnbx9kqVkz8gjjzyCCRMm4NJLL8Xbb7+NrbbaCmPGjMHChQtdf/fVV1/hnHPOwc4775xQSUuEKJyWfhpYkk5LP+HhpqKls97GG5uXQ7VfnWgZldPS6zxFHR7epg3Qt69+O+JDrBPGGafTMgrR0rnGUU7Eo1k30EQ8gD2ga9vW/XrKeVRM63lYp2VaREu34/UTHq4rd1xOS8D7TbIK8eFS7v+cAWj79u7HqstXJp/LDh3cw/sA9wfhKMPDoxQtwzotHSdYnz7q35osEwnqtPRyTMv7NA0P9xJ1xesl1kG/TsuKCrt+OQ8nCxYUriPj12npx7WqQnxwkssrYtoHZDJA//7u+27b1n+7E5fL9V01O7SMUwdN3dFxi5bFzmkp0r9/bpI9APjxx9xnXXi4V1+uExfkcY44EY/pdnTL/YqWbtvwqu+bbupdR0xES12ZvXJaOuvI41bVPtwQ1006PNwUr5yWpkRxHBtskLuuOtESsCOIvCJCHGprcy8HkwgPz2TU/XxUTktH0MpkCl/OiO1QHLvK5fAjWqrK2Lu3+uWjqg7U1Ph/dlWFh4e5bwLJ57TUhYfrREvx2i1d6r19kqVkz8gNN9yAk08+GccffzwGDRqEO+64A23atME999yj/U1zczPGjRuHyy+/HP3lwWBrR3ygKDenpZ/wcGd/XoTpTNxES+e4osppGaXT0kS0dAtHANThKX5FS90gPy7R0tmfTrT0Gjzrlil+2xgkPFzE7XqKN0pT0RLwL1qqBnAqES5NTks/4eG6cxylaOnltDTZl7iO3P+Jg1AxN5qMSthQlU/epm5bum0EcVrqwsPjFC11aR50uIlzOoHSzREl9+dRTcQjt9uoclqK1yuMaCkjikE6nOMxvZcGeVErEvSFhA6TB7cw7m5d2zZ1/qXVaVms8HAHsS8STRRRzh4uT6LU0BDcaRlWtPQKD4/i+qvGRaYvKb3Cw93wG2XioBItTaNbokLV76XFaSmjCw8Pg+y0NA0Pd6uvQSNlvJyWuuc0UdCS24Bp369rF6rzG1Skd9C95HZDFR6ehGgZZU7LoLOHA+5OS+a0LCCgMlJcGhoaMGfOHFxwwQXZZRUVFRg9ejRmzpyp/d0f//hHdO/eHSeeeCJeffVV132sXbsWawX1f/k6+3VjYyMao8iNkTJaGhqylaEJQKapCWKXJB6zbgjQ2NwMNDZqvxdprqlBi7DNDPSVscmykKmpySuPVV0N0+ZsNTUBVVUF6ze2tBSUt7m5GS0tLZ7HYGUyaPJRD8TtOfsFgIxl5R13EwCrsRGVmUzeGwWrpgYZDwHOymTQJApbAJDJuB5LC4BmzXFkWlryytYCwALgdltrqahAi3RMTr1wqGrbFplVq2CtXImmxkZUrFqV3WZTVRWsxkZUuVxfq0cPZL7+unDf1dVoln7bsnat9vh0yOe+sbLSLr9l5deVykq0NDYWnCfx+jpkMpn8ddZ9X4n8N0cqp2VzQ4PdVtasye6/JZNRHpe8PRFLaANWRQWaTOp5UxOampqM2jRgX+sKy8qrIy2ZDJqlfTWvezGi62O8yHTsmHc+mwFYzc35bcmyYInbdDne5rVrkVm9GhVY147q6rTriudeXKelpsazrlVWVBi9KWy2rLz+saqmJq89NFdX532v3Fd1dXZfVktL3u8bm5uzzpzK3r1R8f776nJkMrBQ2Der6jiqqvL7Oen7KqkPFs9jVWVlfvlU2wdQUVeXrTPWDz9kf9Mk1geXiXis6mpkXM5bU0VFttyNjY0F9yW5XHJdl2mprMwdY0VF/vE72xC3L64rDait+vqC/r1Kuq46miwLkPplkeZMBhmhLFZLS8H9TXWPlttYBfLvDy1t2uSOXyireF4K7oFyu1Ug99EqnHNZkcm4XqNsWZuajO8Vqr5BbrM65PuFDqtt24JrUHB+DfqciooK5fFbFRVoqaws6IMrqqpcz1e2jq6rM9nlGmGgoro6UD/faDCWbLIsWFK/44wDVIjt1bIsX2O4vO0I/ZBT1ux3nTrlvhMcwU2VlQX3rJbGRmSk5fL5kdsHsK49V1Tkxuy//ILK5mZksO7erjgu1XYATV8rjXXEMVxlTU1+n6VYH7D7FNX4qGD/JtegsrJg+/IYSG7nzvcVUh1XlVG7W6Gf8Rrzi/u31t078soLoEUeK0b0LKlqJ1ZNDTLC/aKxsREVwnOUtWyZ8TOUTFNLi2cf7QdVn6MbAxhvU7geTWvWoOKXX4zGXlZNDTKaXPimZZL76abKSmRc7kNNmUz2fFYJY5Ts2B9AVZs2ederqarK8z7SnMkgI90rs9dOMR42ufdmUfy+EevGeT7mEmhZuxbWL7/krlVFBSxp242NjQVjREjf5z1fyONjRf9krUsbJ2+zqaoKlZkMMpqXWmKbdcZ0znipcs2a7LlurKzM63Ob1/XRQP49ym0s0xDpRP8AAHicSURBVLiu/Ypj0nLEz3GVpGi5aNEiNDc3o0ePHnnLe/TogY8//lj5m9deew1333035s6da7SPiRMn4vLLLy9Y/sILL6CNLqdRCbPRvHkYuu7zvA8+QPXKlRgsfD958uTs5wM023ht5kwsnz9f+73IvM8/x9fCNnu9/z620aw7Z+5cdPjuO2wuLFvd1AQPX0+WtStXoqWqCvJVe37qVDTX1eWV98OPPsIPL72EMR7bbG5pyTsnXmx25JHY/KGHsLR/f7w8e3b2DUrXDz7ATsJ6M2fPxpI1azBi0SL0FpY31taixkC0lMvU9ocfMNrlN9/Pn4+3NcfR6dNPsavw95Kff8ZPn3+edx1klixbhvdnzsRuwrIXXnwxT4wbU1WFOgCrFy3Ci5MnY8C8eRi47rtZ8+bhp6oq7NnYmHe95p14IobcfTd+6dwZ32+5JTZWiJbfL16MtydPxs6rV6PLumVLFy7Eqz6uEwCMXLwY3YW/p8yYgZaaGlStWoV9heUfff45Pp88GX3mzcNwYfnk558veEPW7d13saO4zroyDZs/HxsKy1sUb1y//vxzzJs8GR2++gqj1i375ocf8K7iuLZZuBBi5p/V3bqhzaJFWLLZZrAaGuB4QJqamzH9lVc86/mqlSsx7bnnjNo0ALz63/9iw6+/hhiw+POyZXhtypS8bcz7+GPULluWV5f8tCfxXADABx9/jCWZTF69e3P2bCwSH2oaGrCfZntffPopuv/0EzrCHvBMmTFDu+5PixbhjXVlFY9p/tKlmO1xDDstW5a9Bm58/Omn+EzY1p5NTXnt4YPPP8eXHvsavmQJnIyVjWvXYsHuu2PD6dPxw/bb4y3ht1u1tKCvZhvvf/IJFldUYHdpuaqOw7Kw68Ybo9Pnn+Pjww/HJ1L59li7FuK8y0tWrMB/162zd3MzxJr/3AsvwFI4ZPp99RW2XPdZFB9f+eCDgjKqaKypQY3LAGnWO+/gp3Wfp06divXfew/i1FYvvvQSGgQX7maffebaHy5csgRvrjvGUatXQ8wKtWDhQjSuXg0x06XTBv6vogKVkmjZUFWFKdI53aehoWAwvqJPH7T/7ru8ZW+89RbqFy/O66dEvv7mG7RbtCjb761csQLTpX11/PzzvPYFAK/PmoWfhXxag7/9FhsL3y9cvTp7/P8nvAgVz0uXDz+EmKznrTlzsNDDYdD5wAOx88yZQCZTIO4CwMKttsLMddvf6KOPsmMbN7775hu8Y9gHDd1jD2w0bVreso8+/hifG/xevl/oeP2887BI2l7/Tz7BEOFvkz5n0DffYFPF8qUrV2L+F19gkLBs8uTJ6Pvpp9jKZXtOHd27qSm/zT7/PCyFo6WqXz/sVV+P6jVrMPOii7DQRz/f65xzsM1112m/nzVnDn5qbs7rhxcsWZLXv4ls+e236Lfuc0tzs697jkjleuthr/btUbNiBWadfz7mC9vpvWwZRih+88bbb+eN9T759FN8Onkyesybh+2F5XKZer77LraTtvXqzJno+PXX2Hrd3x+8/TY2WbkSbQGsbWrC84rj6vzxx9hFUa4Xpk1Dk+iIBlC7dCnGCn+//OqrWPXZZwCA7Zcvh/jk9eq6dij3vx/+73/4YvJk9Hj77bzjkzG5Bu2+/x57SMvm//RTXt0f9NVXefV80eLFmDl5Mjb54gtsodnuJ599hk9d9r/dokVwgv2bmppcy7rFV19lxz1rli8veN747ocf8IN0LoLWPxnV+Kwxk8lrn5MnT8aG33+PYev+bvruO+OX0TJvzZkD90Rs/hj8ww959w0AmDZjBtaahoUrGPDll9nnirdmzkT/H35AD9df2DRVVOSdl4/WPbst32ADvPTmm0but00//zyvX509bx7aLliQ13eLvP7WW/h5neOu20UXYcdLL0VTTQ2mbrwxGtbVkZ3atMkbO8754IOCfkFm3kcfYQNpzPnOe+/hhw4dULdoUcH4//VZs/CzW7iyQO2SJXl9BABMnTEDeyoEQjfmf/stGpYvz/bLr82ahWWLF2PX/v3R6Ysv8NFRR+F/kydjz7VrC9qUw+TJk/PawEdffpl3L65Yu7ZgPN+8di1WL1uWNyYDgHc//BDDKiqQUc2Dgfw2O7apCbUAVq9ciRcnT8bO8+dnnz0nT5+O7u+8g5Hr/v78ww+x2brP4ti37e67Y48nnyx8SV1RUdA/TJ06VVmmUmf16tXmK1slyPfff28BsF5//fW85eeee6617bbbFqy/fPlyq2/fvtbkyZOzy8aPH28dcMAB2n388ssv1rJly7L/vv32WwuAtWjRIquhoaHs/q298cZ1XgxYjX/7m9U0cWL2bwvIW1dcnrfOO++4fi/+a7znnrxtNj78sH7dJ56wmq65Jm9ZyyabGO3HAqyWbt2slj59Csu7fHlBeZsmTbIavvzSe5vt2/s7x2vXWo0zZ1oNS5fmH/eMGfnH+sorVkNDg9V82GH5++vb17tMNTWF+/30U9ffNB95pL7Mb7yRv+6uu1pNV1zhvr1ddrEaZs/OP89LluRtt6V//+x1aWhosJrOPjt3/NOm2etI17dhyRKr4a23rIaFC62mCy5Q7/uEE+xzt/POuXMybJjvttC81175+1671v7u55/z68oNN9jX8J//1LaV7HWeNk25TvPxx+ctf/pf/yo4rqZTTrHXf/PNwmVy2Q86KL8+3X231fj661bDsmX556VTJ6vh22+961T//sZt2gKshvfes5rOPDP/uuy8c8E2Gv/6V6vpj3/0PG/af1Ibbbr5Zqth1qz8fbz4YkEbbKmsVJa76YwzsnWupXNnq+GXX/R1fOxYZV/YfPTR3nVrp52MzmPTNdco20z22O64w3tfRx+du47t21sNa9ZYja+9ZjWsWpW3XtMll2jL0XjHHVbD//6XXycyGf1+ly61+zmnzYjHMGBA/vnaY4/cd9265deFNWvU7ehvf1PXO4O6bAFWS+/ert83vvCCtWrVKuupp56yVq1aZTU++mj+fhYsyD93l1/uur3m//u/3DEOHpz/3UEHWc0nnqhsAy21tYVl33DDwnPavn3+vt5912qaMKHwuKZPtxr/8Q99fTv99Lx+r2XAgMLzL/XrFmDXJ/F8nHFG/jEefHCurELba95vv9w1feWV/G0++6xZH/DBB1bDF19YLVVVuXJ37Gj3dytW5Lb/178a1Y3mcePM+5/Vq63G//43/xxed53Rbxv//nf3tn/55VbDvHnK3zYJ4zTTMjedc476eEeOtJquvrqg/nmdr+z17Nw5f/nq1fpy/PCD1fDuu+bnt6Eh2w5Xv/mm3e6++spq3mWXgvZa0A8fcoj+XJxySq6u1Nb6Kk/Bv/nzrYa33y5c/skn6r7l1Vfzr/OVV9rn+z//UZ7fbH154onCazBnTt64o+m666yWDTe0j6tnT3W9k+prdluLFyuPLW+djz/Oftf8f/+X/92771oN775bWI9vucXe71NPGdUn13+KcWzzoYfmX9vzz8//fswYe/n11+vb2lVXue5XPNaWDh3c25nQ77b07FlY3vHjrcZ//9v/sRv8Ux1by3rrFbbtZ5816gu9/hn30Yb/VPeshu+/D7dNYXzZ+MQTVvOoUUbH1tKlS3451qyx7ynSc4zrvq+8Mv98/ec/BX133j7efDN/G++9ZzV8843rOTK5lo133GE177hj/rKHH7a3+dVXhevPnGl+jhVjrobFi62Wrl191aXmAw6wmk84IbcNp09dutRqeOON7FjS7RlYbgNO35P9t2pV4XWuq7NaBg0qPAcPPKAcf6nabEv37va2+va1/x461P573bO4eI3E69e8664F/VvzMcfkl6+qKvu9OCaNst2l5d+iRYssANayZcs89b+SdFp269YNlZWV+FHKa/Tjjz+ip5gEex2ff/45vvrqK+y3X05rb1mnaldVVeGTTz7BxtKEKrW1tahV5Nmorq5GddSzUaYA8Z1CVW1tQf4Ik2Ourq01zjVZ1aFD/rou+TmqamsLZkXOeOVqFNfVTMSjKm9lZSUqDbadqajwXw+2V7xvlupYVV2dXSZp2xl55jZVmaC4Th555iqqqlChOw7pPFSocqqpticdU8F5XlemzKpVdnlFu327dsq8KNU1NcCIdf4FTQ6oivp6+1iE7zMNDf6vk5Srpdo5ZinXSWV9PSqrqwvOiXJ/Uv3OriOtayne4la2tNj7Eb6rrKmxl8lI562qrg4YObLguwyAaoOcOJmWFl/nr1qRcLyisrKgjmXrufhbP9dJ6ucra2pQKbclVX/Utq1ypsVKy8rmm8nU1eWOQ063ALsdqNpMRZs2+raU3ZFZzqCC6yufv7Ztvfta4fpmWlrs673jjoXrqSYgcPZTV1cwk3qmslJ/rTp2VPdzQEF5K2prc+dLvt/o8hqpco3W16PaoH8EgIxHf1hVX591eFZXV9vHL5ZLrrce16CipiZ3jHK7UOQUzJ5XxVv+TJs2hefdsnLb69kTFVtuqSxTVW2ta+68SmmWUeW9RJHrqaCNyde4Q4fc8Qv34LzzYtJuVQxa52Wpq8vmR85UVaHK6e8cvHIGOmUCvNuvQ3U1sMMOeYsqq6vVfbKMxz20coMNUDl4sPpL+Z5s0ufo7pfV1er7kkckUbZeSO2zWjFuzLL++va/AFQNG5bb54ABwCuv5L5T1JWKujr9ORH634xlhRvL9+xZcB8CYE8s06NHQd7VKum8Zvt4qU8qKJPqOaS+Pq89Vra0ZNuXtn/W1DvluF1q63nrSMdRrckBV1lbqxwfFezf5BpI43/Arr9511luG864w2Wcky2jvnDZj5lMxr2s4rqaNAkVJmPFiJCfkaqrq4F+/TRr+6OqpibYZJk6FHXIz/OkEqHdVFmWciynouC8iWNoU6RtVLVr53ofqq6vzz/WIQpP5o47AjfckL9ND6oUuTSz107RLozvvYDy99Vt2/rOaVnR3Jx3baqdsW3HjsB2gpfUJael3I4q27bNb9eKcXdGMxFPVX29fQyaEPe8fa0rU/Y5aV1Oy0xdnf23cM3FyJmC5+5NNim45qr+plz1Jz/HVJIT8dTU1GD48OGYJoTntLS0YNq0aRip6FwGDhyIefPmYe7cudl/+++/P0aNGoW5c+diA7eJCFoLUcwe7ieJb5Kzhzc2Kh8CQ812GVWCXNOJeEweylXXzOs8RT0Rj25GXBFnkL5mTeEEKLqJeMRt6OpKXBPx6PbrlNGk3htOxKPcd2Mj8NZbgJjawmQGW3l74m9MriWgvKm7opuIR0YSYX0jD5hMJuIB8icGERFnD3e2rRvkhpk9POjkRwYCkuu+NKEuANQP3g5VVYUvPoJOJiC3AXEQL9dNXd1QXb8OHcwHyrIg4zWJh9ckMXFMxAOo657qmovt0ymLbrZhr9nD/RyLbpnb7OFiWcXfmc5CrUNsd6rfJjURj2l/5nV8bu0rDRPx6MqSxKQBJpM2JTF7uBuZjFrkkM+rc/6imojHa/bwUp6IJ8js4eLM4DpMxrOmeE3EYzrmigpV2+7Tp3BZEKKeiMdt9vCgyBPxmD4LRCEKRTURj0iQl3FRzB7utm2ZoBPxyLOHqwgzEY/qt01NwEcfFS73MwO6s115Ih5n/+J2xPpn8mzCmcOVlKTTEgAmTJiA8ePHY8SIEdh2221x4403YtWqVTj++OMBAMceeyx69+6NiRMnoq6uDoOlN9ed1rlH5OWtFlm0DDLQ8NPIkpw9XOO0NBZ+VETVoegGXvJyE9FSNQj3uhl6zSgrYjro8jOj7OrVZqKleE28REu3WZNN0Al9upnZTeqCgfMDgLruvfYacN997r/TlTGsaOn3/KlES9X5qamJ9qas6rP8zHAtiudeQkCpzB4u7svtOrrljaqqssWyTCbXv0QlWop9k9tM4iKq69exo7591dfbL0d0v6+vt/sgVZlUZTF5ySDiJVqGuWcC+dfV2ZZqm177kr9T3UuCzB6ua29hZw8XEcVcVdsstdnD3Y5f/s6kH3B7YaYaH5hsEzCfPTxKSkG0BGyB4amn8pfp+pYgoqV87UxmD/ez3I9oWVWlfinmbCOK+7yqTnq9pHS+DyNaymMm03VVoqXf/j4squPu0MH+p4g28UXU4quqDYTdh1iHGxvNRUsfUXxaVKKl233I5HlWdqrHIVqGmT3cqd9+RUv52uiOy0/bCXMNg4iWzr3EVLRUHYs8VqJoqaRkz8rhhx+O6667DpdccgmGDh2KuXPnYsqUKdnJeb755hvMnz+/yKUsIWTR8uSTcw8DDz9sto0wTku3TlvltOzZE7j9drN96URL3SCkR49c6JmOUnFaenXeUTstVb/TOS0BO6xPfMvm3LDcnJa6Mji/vfba3HHdc493eWXEfYnnTz5XfkRLA0eVpbtWn39euEw3MHAbyJuKluJxujn0dPs3cU5VV0cvWpo4LXUiiui09HIxFsNpKQ9YoxQtt94a2Ggj9XeOI1Y8b3GIlibtG1Afd12dvj10757/t1+npbxdt4d5FUGdlipU90jxukbptFQJOiYPOfLfXbpASZSiZVqcllGJlm7fb7tt/t+6VAwiUTotzz8/91msL0kIloC3s1e1jkhSouXAgYXLVNEBQDqdlm5tUiVaurmwo6gbNTXeLyV1oqXbs4VX3+CnLxLPr0og8+qDo+ZvfwN23dX+fNxxueVRuC2TcFqG3Yd4bZuazGciF8dDf/pTsH37dVqamnDOOcf+f9NNgW7dvNeX0r7klS3MvVL1e92zqxeyC1b3HBRGUPWDH7eo0yc5YwfnOFRReGL9M3k2SeqeWmKUrNMSAE477TScdtppyu9mzJjh+tu///3v0ReolJFFyy5dgA8/BL7/viB3kxY/HUVYp+X22wOnnGIPDq+7DvjPfwp/5+RLbG72J75kMnbepOnTgcMOU68T1U1b3k7UTkuvm6Ef943JQ7ZKDJO3IzotV61Sv2UL47TceGPggw/sbTt5MP2gEy1l/ISH6x6QRBeYScivg6lL2M1pqTuP1dW5axKF01IXRhLlwHfNmnDh4WvX5gYVaXRabr89IM4kGKVoWVMDzJwJjB5t9/kiTh1p1y6bNzAy0VIXHu7HaeZs16nPclh19+7A11/n/pYHhmHDw/245lT9qZ82oKp3Yr/i5rSsrHQ/r3JZVPXFxGkp71uXesct31SpipZRhYe7jVW23BJ47z07XciAAWZjM93x+xEtL7/c7oNGjcotK4ZoqasrYtt3u45JiZaqe7l8Xk1FS127E69dY2Nwp6Wuv9CtowoPV6HJVxyITMZu5+J4ybRvjio83I/TUpeOKgnR8oQTgN/9Dhg+HPj3v4HXX89vtxtsUHif90s5h4fX1ACzZtn9rHje/KAa64R1WgK2iLrHHvZzjcn9SiWUO39H7bQMI1qahIf7uceEqZ9hwsOddq96jmd4eCSUtGhJIkQWLQF7ggaXSRoK8NPI/Oa0lL8fOdLe3267Af/8p/p3tbU5IUKTVFdL167AmDH67+MODw/itNRtv6JCf4OL2mmpWkfehygcrFqlvmGFyWkJAJtv7l5ON0xFSz9OS90Dkhga70e0NHVain/LA3CTh5u4wsOjFi2XLtW/ABDROS1Xrcp99hIEdeX2m2fSzz7kfEZRipaA7eTcZx+9aJkWp6XbQFsnWoqowsNFvJyWqj7RjSidlir85LR0qwOy01JFkPBwnWgZV07LMOHhYUWsqJyWXi9YhwxRT9SgIwrRsk8fYK+98peJ5zqpByy38ZLT9t0m3EhKtFT1z7oxTbGdlirc7uEqp6VbOomo6kaxRUsvTBzUSbSTwYNtwRKwnxvGjs3/Po1OyzSFh1dW2uOG0aOD7zsup2Vtbe56/vyz9/pVVfp2Epdo6TcnaGOju5PbwU9/HeYlWk2N+ZhBJ1qq3KxeoiXDw43gWSE2KtHSL0k6LcUwKd0gVRw4+hUtAfdOI+7wcHm5YvZEY0xzPMkEDQ/3WkcOD1eFBoQVLcMg3hyjEi11BBUto3BamjgvgkzEU4zw8KVLw+W0dFyEQDqdlnJYaJSh6A6qwaazLG7R0tRp6RaGqCr/unQxWcI6LWV0IVJy2VTbiku0VNWxigr38Dj5N1HltNQ9IMcVHu6WW8+LtISHG85ya0wU4eGqfKppc1o6pEG0lO/lFRX60Havh3yduCD2n999Byxbpl/fbbkJXk5LnbAKRFc3dOH1Xn+HCQ8X8eO0VJGUaOlVjigmni0Fp6XcJ/gRLcOiEi2jcFqKmORtVDkt4woPd8oTNjxcdy783J+Tdlo69xLn3qNyWorjL1X56LQ0gmeF2PgRLXU37ySdlmID1zkTxMFVkAcSP4JeUOJ2WgLuNzc/4eFBc1rKxBUebjqBgBfizcVNCI06PNyP6Goa6uUmWpq04zSHh4v1evnycOHhUTgt48xpKbd/k4Gh3/PrJgjqzpsf5DYt1nedI1jGzR2gGux6OS2jFi17987/O8qJeFSoJuLRnSM3MUd2WpqKll45Bnv1Uu8vLtFS9WBqeo5LITw8CG4T8ZiKlqoXaqZtNkqiFC3jRCWw6dpKkLyKsuD85JO5z1E4Ld1+q3Ja6u7xYfcr4iVa6lzxYZyWIl51x8RpGYUg5oVXOdLotFRdo7BtVQ4PN81pWQzRMsjEMUFFy7SFhzc25kxFTg51FUmJlrqXMCrknJay01InWpoYKpjTUglFS2IThWgZl9Myk7HzFDqz3F58cf73ukGq7LLxSzGcljrRsmPH4Ptwe4uXRHi4jNtEPCrXlIkIBkTntDTJryJ+Z3KD3GILoFMn+7M4mYFi5vQWJ7THDV17cTtXpvmZxO+CiJYmTssoZmh85JHc5zPPNBMt/TgtTznF/n+zzfLXLYbTEgAuusj+v0sX/cQ5QfblYOq0FOusH+JyWvoRLeUJjWQxRq6XXgNw+RzLyfHjdlqqJuJRXffKSm+nZRwT8ejaeVzh4SrR0rQPS4vTMmrR0s1pqbo+pqJlWp2WbuevmKKlLny5c+fcy47f/KZwWybh4V7r65YPHapeV0ass/KxJTERj2q/SYSH+3Hjem1LJSDFgVc51lsv/D7iDg9Xvfz2S5jw8LDI26iriyY8XMREHHSbiCesaCkbH4KKlqJxxa2terXFK6+0/2/bFthlF39lEIkiPDxITks5mpJOSyXMaUlskhYt/TwcNjfbg+aZM4G5c4EDDij8XsXIkcDbb5uXSaYYTkude6+UnJZ+REv5huWc82KKliYz2YnfmZyTmhpgzhz733775ZYLTktr3YNh89NPo2LKFOCkk/TbC+K0VIWSqgg7e7ip0zJseN4BBwDPPWeLwZtuCnzzjfd+/Tgtr7/enn1zp53yRcIonZYPPwwccUTheqp9/OEPdr6qYcOiFUgdVANnldOymKKlWxii6h4iv7jaccf8v6N2Wuom21BtK+pBqbO9IOHhctmChoebtukonZaioKZ6MDXtw9IiWkYdHh5FTkuv8PCkHrB0bkWxzqTRaakS9sQwzZkzgf/+N39sIK8nL9ONTUydlg88YE/qYYKb01L38iVup6XXS0oT0dJLnDAdM6nKo/o+iXbitY8oIpLidlpGIRwGnYgnDtFSJ+yH2Wcmk5ts1m27unbiiI5iHfcrOIoRHEFFy8WLcy+X3Z7hvO7P55xjGwy23FJvTjBBDg9X5Up3EMPDLatwMjSdaKlqP/IzPkVLJTwrxCbp8HB5G24dndMpDxgAHH544U1X91AiP6D6JU1Oy7hESz/CrKkzyE94uJjTUiynOOAwrVdJi5Z+B+X9+wOHHppff8XwcGd59+7AMce4byuIaGlKWKel6UQ8YUXLTMZOSr799ur9+HFarliR++yIIO3aAUcdBWy4YeF+VQQREg8/XL2equx1dfb6svPTdF9euImW4nkzHfzrtuWgCw/3K1q6OS1l0XKTTfL/lq+ZX9FSrgtuL+NUD9VR5tXzmojHy2mpe8HhYCJa/vijdznlbcUdHp6UaJnW8HA3p6Wqzaj6sVJyWqZRtHQTDwA7z+ARR6jvTzoXo1+npdymjzrKPBrJTbTU7TPqiXjkOmjqtHRzsSXptExKtPQqRxTj5LhFyyi2LzstnftfkImvwuwbMDd8+MUrYsmr3zEZM7sh/l4nWqpeeIksW5YzDbgdj9f9uaYGOOQQ8/GxDjk83CRSsaVFraH4CQ+vr3e/NgQARUviIHYISTgtZdxESy/nge774cPDvVVMwmkpb0fntAxzHG6dbtROS7/h4eLs4eJgwk20NMlhGgZVjk0VcU7E4/W20jQ8PIjT0ku8cEM1SNKJlmFFAhmTFyFBJ+IxcRXFmdMyCFHktFSFhwelGOHhcihcVVX+sXz7bf73XrOHy8jn2M0xomoXcYiWQcLDKyujCQ//4Yfc5y5d9PuLS7RUYepcTMvs4aXotCyWaKl6yZtW0VLGtJ7rfqsb1+nqV5h6FUa0LPZEPGGcliKl4rQsRdHSLUIhKOK1bWjI1X+vCS/jcFrK5YkKr7ByVXi42wtiv8euEvfk43TSYrmxYIH9fxjRMipkp6VJpKIsWgYJD89k8s1JzGmphKIlsUnaaSkTh2hZV2cLl0EphtNS5RxQreeHJGcPN1lHNxGPzmkpl1F3vdMcHq5D5bQEvHP6BHFaqibtUBG101IXOhb1IMTkrbEuPHz16txnL9FSd11MZn8Pk9PSL3GFhwfFTbQM47TUzR5eW1uYC7iqKn8mdq+UAnGHh0fZBpyyBHVaet3TVH27/Pf8+bnPcv5QkbhyWqpo7eHhbk5L1bgrSE7LpFwhJuOltOa0lAl6L8hk7N/6dVrGKVo6ZRJJeiKeIOHhfu6zYWcPr6yMx20n43W+0yhaxh0eLo6ziyVaptFpqXsJZIpK3JO34cxF4YZz7w0THh4VYpoy528domgp9q/OeRHPvZfTEsgfr9JpqYRnhdhEmdPyiityy+RwPADYeuvCZXJHd8YZuc/bbONent//Xl+eIUPcf+uGHxdiUFQDUtVy3TU58EDvfSQpWgL+nJZBwsOTdFpGGR6u4oYbsh9bJkzI/y5IDhw3wdBPfqZsoWKciCdKl5lqP37Cw0W6di1cFqfTct99C5dF0b+IKQZuusl7fdPw8KC4hYeL58WvWK970VNXV5hWo7ISuPrq3N/O5EZ+9ifi5bR0E2P9Oi3lCegA4Lbbcp+PP15dJmfZIYfoty3/Rlcur4ecSy7JfZ40Sb+/JJ2Wu+6a+7z55vr10hIerspxGwa32cNVZVG5c1ROS3GdYoeHi3VNnOhO5oQTcp9vuSW6csnIgnAYEUMn1vnNadm3b+7zscea7Vu1Td04S9c3RFU3vMLDdbOHJxUe7tWuVcJuVIj97tix7uu2FtFSrA/iS+lycloWOzxcbB9hnJYOYSbiiQo5ddXGG+c+y2m7xJyWfsLDde1HHK9StFTCiXiITZROy3PPtWdD3HRT4I9/BD77LLfOLbcABx1U+Fu5o7vySmDQIFvg9Jo5e5ddgKefBn772/zwtMrK+MLD43JaOng5LQcNAu64wz5uL+KciOess4A//9l8m4D/8PBiOi1NwsPD1IWDDwYeegjo0AHWttsCkyfnvnNzR+kGQG6CYZCJeNKc01K1bxE/TkuR7bZTb9vpI6OePfyee4BHHwX+3/9zX88vm2wCvPQS8PXXwJFHeq/vFh4et9PSVLT0Ex6uEi0dp+WUKcDChfZ5Oe44f/sT8cppKX4f1Gm5//622LLbboXfnXyyfYzrr58T5HQCyQYbAK+8Atx9N3DffYXfe4WHA/b5cAtz2m034LHH7OV7760/Jje3R9SiZdeuwJtvAu+9Z7s+dOJt2FySpvcB3Xp77GGLD6K4FAVu4eG6c11b6+1OSpPT8sADgUcesevCTjvpfz9wIDBtGvD999GLwzJ1dbm0I2FES/klms5Z7qAbM9TW2m3gv/81ux+ImIiWVVX5+446p6X84iwKp2WU4eEmL7jiaie//72de3vQIO88pWkULVWTO4VFbB+iaOmVY7GcnJaqPj7K8HBx/BK3aJmU01J+Nqmv1/ebYk5L8bk0SHg4kD9ejTriokygaElsonRa1tbmXB/ywOq009S/lTu6tm2BU05xL4fI/vsDL7+c51xzDaEJS1xOSwfdW2OHE08Edt4Z+M9/vPdhkkhYhUoAk8t76qnAs88Cn36a256f8PA0Oi0dEVUuk0wUdauyMvfwJD9sBHFahg21BEo3PNxkv16OwepqtRPc5AHdpD6oytS9u90viqJlVANcldClI2mnpS483K/TUvcQX1end+OMGeNeVrf9iXiFh0fhtDziCOCAA9TfVVcDRx/tXiZx3zvvbH8vi5Zyu3UTLVXbdchk3B2dqt/FHR4O2EL1ttsCL7ygXyephyLd8Z10kv0CNmrcxhi6tuZXtCy20zKTAQ47zGwbu+8ebZl0eImWpvW8vt7+51wP0cWjevGxdKl+W0OGBIs+CuK0dPrjqOqG/OIsifDwKJ2WOmdzFNTX288EJqRRtIzbaelM9AKUl9NSHvP06QN8911+OUzDw4M4gaMWLU3Dw91m9A6LPC7LZPT9pi6npcpp6Ve0FCcHJVnoPyUAgIwf0VKHLtTIhCg6dNUgJi7RMm6npSzM6QZoJuctTqdlkMG4KIDMm+c/p6VOtAzjqhXxGx4eV9hCFOHhxXBamogQxXJayuKb/Jutt1bXIxNRzaSviSrvXRyoRMs4J+LRhYe74eZgkMuvejjxe17DhodH4bQMk2dK3JeDqp76cVp67cuEKN0eJrlkHdzOZdj+yPT3ujoYx0Ot23ZVYeAOctSDahvFEC2jzPUdN+J9xM0hboLothS3pWrLbqJlUMTrqxtn6V4QxeW09LrfRx0enmanpR9ao2iZdHi4qr0nER7ep0/+335EyyDHLT6L6UTL9u3Nt2fqtIzrXungd9LSpiY7cschqGgpRpWKQjvJkoIelKSCKJyWKkw7lygGvaqHH6/Z1YISt9NSnFVatb+oRMuwOS1V5fe6luLgc+7cnMMwjbOHm4QWFUO0jDM8XPcbE4rptJSPXXWOZLeGvM7IkeptmzgtTfqaMOJc3JSC09Lt4V+V01LG730m7Ozh4veqPtykffm9h7k5LXXbC+K0zGSC37eTDA8XcbuexXZaxvUg5ua0NBEtdeGUaQgPj/vhNQxivQwbLiqKll5t+eefzbcbBLfwcJGoJ+LxGx6uEg5koqw/XsepilQqBmkULeMODxdd40mEhye1XXm8scEG+X+r+nhdlEOQ8pk4Lf0Yh0xFy7jbUZBnpcGDc59V4eF+c1oSJRQtiU2xRUvxRuKWk8gN1ZvWtIeH67YjhigD+sG6yfl1e+iNwmnpd4IXJwebjGl4+P77q7ebhGi54465z85DSVwPu1FPxKOaPVx+MwvkT1zhFzenpTihlqlg43ffIiZOS3mdrbYy27bDHnvkPpvMkpgGp4UOVX1z6r/XQD/I9nU5Ld3wGx4O5MJ6dO3JCV/q1ctsfyJhw8OTclp6CR2VlfnpWMSJHXTbCfPgEKXTMirR8swz/e03KGlxWlZW2nnwHMQJwcRzqnMmpSk8PI3EJVp6pa/R5bT0y5ZbqpcXayKeoOHhbveuJJ2W+++fjvu/3F8alKn5pJN8/8YXHTq4RyUEoZjh4SpjRVLh4SIqp6Xu3hukfOL4RTd7uJ+Xrqbh4eJzmFw3dfhJlRQkKk0kivBwoiQFPShJBcUWLSsrgbfesmcef/RR8+3L25D/LtXwcNlpGVd4uJ8OWSVaqoRNLyor1RMImYaHDxhg/97Jm+qQhGj56KN2HZ09O3fscTkt3dqh7ju/TssZM4DLL7cnqrj2WnuCEvltrR9U7iunDE8+Cfzxj8CcOfY6cYuWqoG1l9NSN2jQudDuv9+uD2++Ga3TUm7/SaAqvyPyRpF6IYrwcDcXoU60fPZZu47Pnq3e5htv2N/PmKHfto4kJuLx+zChOke6vlX8ze67Aw88YM9IrnsQEMsS5iHMzYEaR05LB1WZJ04E/vY3e1K0JEiT07JNG3uCgT/9Cbj33tx3Jk5Lt2sYF+UkWvo5Z6JoKQowcY1vAbvf/OMf7WgYEb+iZVJOS10e+IoKu++/4orCbfqpP15jW9VxDhpk59n/97/tidLSIFrK/b/uHHTujKbnnsMHxx6LlokT87+L+jjatMl3qkUx/ilmeLgq32ISTsuePQv3GWd4uIhTr+T65ee+Zuq07NULmDoVuOYa4LrrzLb90EP2fc6EIE5LEedcit+LL5MoWgYmxbEVJFGKLVoCwIgR9r+glGJ4uG47puHhJjeaqMLDVeEtQW9022xjv8l/773cMtPwcMB+az1ggP5BKwxiW5DPXa9ewEUX5S9LU3i4yczdIhtvnHNVbbut/f/06d7lcgZlKvFR5/bs3Ru4+OLc8rgn4lHVba8HHxNXkXi8PXsW1gc3TPsNMZwpKeS+srY2V8/85A3UYRoe7obz4kRso15Oyw031DsHAbsf0X0fZXi4SrQU61JUYpZqPyZOSwA46ij3bYtlicppaeKQdsNPv6/a9v/7f9GkPzAlLU5LZ/kOO9j/RMRzmmanZRpEIB3ieVPd6/zU8y5d1MvjFC032CD/fu3gNzy82E5LABg+3P53/fX5OT+92pyfsZ3qenbqBJx1lrpMxSKTsa+h49iVZ313qK6Gtcce+GztWmwm5toD4jmOkSPtHPcA8NNP4benCw9PQrRUnc8kclrK97G4w8NFdOHhfp7BTUXLigpg9Gj7nyk9ewJ/+APw978Dn33mvm5Y0TJoeLjczkgBKehBSSpIg2gZllJ0WuoQRcva2mD5ehySDA/3gzx4MHVaqtaXfxMVJg/EaZqIJ+qclirE867ajqlzKm6npQrZNSSfY5P8bWHKbdpvpEG0FAfAUTgt5e0H7ZtNXedRlDlseLgfp6XXW3tTvIRUndPShDhES5McuG74qUeqPjUKQd4PaRMtVYj1WHd+05DTMs2I/Y9KxAgaHi4S10t5N9LqtDQRtP2+IPETHq7aXxy5GqPAJMoh6ASeQdHlEw9KMcPDk3Jaek0+GHd4uKosfkRLebxtGh4epv6JrlsdcYSHi9uk0zIwKelBSdGJYvZwFcUULUshp6UOUbSsq9MPtkxEkLgn4vGb09JBvmGZ5rRUre9336aY1J9i5LRMaiIeFV4OOVO3Z9wT8ajwetDRDWh159Evpr8thmgp1ynR2RJ3eLiI39xhXuHhYUjSaak77rBOS7lMutnDTYhDtPTznQo/TktVHUxaSEhTeLgJuvKmYfbwNCP2PyoRI2h4uEicTksdpiJ4sWcPN8kj6ke09EJ1nPI9KKl24oXYZ+quZ1CzQ1CiFi3F8qchPDwJp6X8TNXSknx4uB/RUu7XTJ2WYdqRyazcUYWH684pRcvAULQkNn5Ey/POM99usUVLkzfRJ5+c+yxOrOFGHIMPsQM//PDc5/PP1w+2TAYPQd+YmoqWbrgJB/LgQTeQMhUto0IM5xEnJ9Cx+ea5z3vtFV05opiIJ4ho6XVNvZyWXmFcDsUQLUU6dQrmtAxTbreHILEf2mWX4PsIipvTUsxzGnSitDCzSrptRxceHoWDTqxT/fq5fw/4mz3cLTx87Njc54EDzcqq2498XsI4LaN6yHHbX5zh4XLdidJlaSpwpMVp6XaexfFgmkTLUnJaivUyLqelqg894ADz7QZBvL9vsUXus85pmYbwcN0yP31HkIl4okpZFDUmTsukRcvNNst9DjMZpIMup2VdnZ2qSEcUfYw46eRhhxWWJyrk9l9fD2y/fe7vzp3d20kSoqXbcctpL9zGhCapdExw0y/WW69wX1GFh4tQtAxMCb22JLEiPoh7dV5nn22vf8MN+flhVBRTtMxkzB6MJ00Cune3Hw51MybKRHnTnjkTeOQR4Ne/zi0bOxa4+Wb7/E6YACxenP8bPwPCuJ2WKmbNsid1EIUYGVOnpa6McYVGXX65LdhsvHH+4ENH9+72xECvvWZfq6hwa4em4eG68IQgIQ8OXi7Y4cPdy6QqTxSYPhw5dfOkkwpF6WI6LSdNsgdNAwfmPwwmhZto2a4d8Pzz9r+gsyy7iZZhcofF6bTMZICXX7YnkTrtNPX3ImHCw8V1773Xzr+2yy65gbQpXk5Lt5yWXsQxEU/QsjiECQ93m1k4LkrBaWkyHmR4uDtiO0sqPPyMM+yX3HFSVWXnvX7mGTsfrIMsgDj1I03h4fI6ulyhKqIID0+j0zItomUmYz8LPfRQ/rNQUMT+TXwJU10NPPwwcNdd9jpjxgBHHJH7Poo+pm9fe9LOOXOAc86JbrsyKqflY48BN95o53ts29Y8p2UxwsPlHI6m4eFhzuVZZ9n98WWX5S8/80zgN7+xP8cxEY/J75jT0hOKlsTGj9Oyrs5O0N3YqJ6RT6SYoiVg9kDTsaP5rGIOUQ4+tt8+/+2Ys31xQKi78ZgMHoIOPkxmD9eFh2+zjbfgZ5rTMmmnZfv23vVaZv/97X9REvVEPFGFh3u5YGXBTdefFCOnJZBfN5N2Wrrl5enYEbjyyuDbDovcT8jOlr32Cuckjio8XN5OnDktAVs41Dlf45qIp2dPW8QOQqnltAxaFgc/9wHTdBBxoju+uF7CxeW0dMtLGhcULfOR6/6f/5zMtRg1yv4nItYzk5fOfvFyWupmD9ctq6z0FgnCTsRTCqJlWsLDAfWzUFB05a+psaNFnIiRJUvyv4+qjzn0UPufQxzPwqrokj598mfUNs1pGfa4nb7Ij2gpOwv9TMQTlPp64NJLgdtvB3780V42cqTddzqENXjIz0jyMwOdloFheDixCZLT0mS9UhAtg5B0HizdW2WTaxDUaakSwLzeZseR09J0Ip5yI60T8YjlUm1HLtv336u3E/fs4SaYhotGNRFP0PyvSSCfi6hnVI4qPFz3sBqH09KLsKJlVHma/JQpKqdlXKKl3/OQFqdlWsPDTe8VInRahkeslw0N4bZlKloW856im9QjrU7LLl38nS86LXOkZUIhN3T9qdxmOnXK/zuuPiYpp6VMGnJa6q5FMURLB53jFIjOaSl/dlsGULQ0oAR6HpIIQURLk46j2KJlXO6FpAcfxZiIR7Wu35yWbrjltDRxWpbSA0wQSlW0BPJDxGfNUq9TrPBwEfk8xj17eJpFSy+nZVjiEi3jDA/3witHmld4eBz1Qd6PfF5MXj7pEK9hmHYQ5UNvGNEyTU7LpHNaumHygMiclu54OS39YCJaFvvc6ETLqOqGX9FSdT7Euqw7pyLl6rQU741BTAGlIFqairFeEzpFRVI5LWWKHR5eVaWPqpFFOtPw8CjakVsfZZo/M6hoqfsdRUtPSqDnIYlQrqJlubjxdAOyOMPDZVSiZSYT/OE1rNNSXF4u11mkFMLDdYiTGZ10knodcdIrt9yncSI7QnRtJY6clmkb+LvltIwCt/BwP+dUFx4ulz+JAaDcjvw6LcWcqk4+pbB4OS1Vy6KMrjAhyrrfs2fusziZgwrmtMzh1ubS6rQspdnDxf5INZuwnz5PdIOJk6KZvNxNCl2+W7dyHXmk+fblthrEaSleh6hFSxOnZfv2uc9iv5U0YrnEZz+RUndaZjLq/sKrzy8lp6V8jUyclnGFh7s5LVX5wAF/TkuRtDstvSJSdOdaFJ27ddPvtxVTQiMAEifW8OFYuGwZunXujArTgaFJJxeX01FFOYuWYXJaxum0BIK7hcLmtASAKVOABx/MF8nKhWJNxBOFaHnUUcDXXwPz5wMnnKBeZ489gGuvBb75xn8O0agQz0+bNmYCeVQ5LdPiunBIOjw86CBZFx4ub1+eECoOvARCL6flgQfadX/xYjvPUhR4TcQD2E6bNWvyy2JCGp2W7dvbkw9MngxccIH7unRamsHZw8MjnnfVPcOvi+/ZZ+167kzsAeS37WILSeK1cRO0Bw+2X1J+/LG/+76XKGkiWooTh5qIliJRzB5eW2tP6vbUU8Dvf+9v/1HSGkRLwG6D8gsDt5nDgegjgBySCA/367SMUrTU5RavrgYuuQRYu9ae/EicyV3OKZtG0dINXZ8QNDw8k7HHMQ8/bE94TAqgaEkAAC3XXIOZkydjn332MRctTTqOJAeZSYaHJ43uQT1seHhYp2UY5LeCfsPDAXvmvzFjoitTmggSHu7mtDQlCtEykwEuvNB7vXPPNStTXIjH4iZgtEanZdzh4Tr8PhzqnJbFEC3lh1Txe5XjIZMBLroo3jKp7oFy6HyQnJZhiLruH3KI/c8L03QQcZIW0dKtnTE8PDxeY0+/95F99813ZgPpDQ93m6SpogI4/fRo96f6W1VvV6zIffbrtAyS01KVouTAA+1/xUS8T6lcwIB7/S12XTOluhr45Zf8ZX36uP9m2bJ4yhLHeC9ITkud0zJs+Zzfq0TLNm3siW569swX6/2Eh6v2FQa3YzfNnxl1TksA2Htv+x9RkrKnJlJSlIJoGZfTMmmXVFzh4X6OQ5ULLcz2TJ2WaXOkJUWQ8PAkclrqHBWliHgsbqJla3BaJh0eLhJFePiqVfnLkxCkwk7EEwemTssgZYnKaVmsh97W6LQMcq79Oi05EU8hUYuWXvso9kswXY44tzFJGHQv8k33UwynZVoIK1oWu66ZoupTxfQKKkQ3btpRzR4uYyq6hR2P6pyWbrkjixkebpp3N47w8FJpPymEZ44Ex6ThJflg3hrDw03Or9tAPwqnZdw5LVtrBx+10zLs20OTcpUa4rG4PWBwIp7wRFVvdA+rb7+dW+YVAhYVYcPDi1EmIBqnZVrCw/2QhtnDdaQpPNwkp2WUD7ymULTMx83JnTS6l5lRRH947c/kb5li5LRMC61VtGzf3jvXdSmJlia5qd3aQZT9tlt4uG5/QUXLqCfikVMkRBkermorpXQfSxkl0vOQVGLS8IotWpZreLgfp2VUNy2T8PAwTktdeHjaxJ2kCBKe4+ZqEEPL3MKTRozIfR471v6/e/fcsh499L8tNcTzaJr7tVxFy6RzWgZF1xfut19u2RlnRLMvL+RrWFsL7Lxz7u8tt8x9LpbT0iQ83LQsYQbbQ4fmPntNmBMXcvmL4bTUkaaJeA47LPd5n33U6xSj/yqlhz3V/WSjjXKfo3ixIl7DYp8b05yWUfV7cv3z27+aiJZi6qFDD3Vft9ycllHlwi8m8r1P57IU866PHBlfeVSMGxf8tyYin1s7iDJ/p7Mf+Zy7PcekJTxcFi1NI6LiCA8nrpSRZYYkjknHkeQbudbotEybaOkHOi3dEWealDENDxev1+mnA59/bg9Szz9fv+2ddwYuvxz48EPghhvsZdOmARdfbD/AzpplVv5i8OSTwN13A+edZ7a+OGgzzf3aWnJaRi1aRvUCSRcefsIJwDvv2APhCROi2ZcXKlfjAw/Yk2UMG5afV7McnJa6ib1MePxxu13uuCMwYED+d9On231NVDOo65DPTTFyWupIk9PyD38AFiywz8+vf61ehzkt3VH1d88/b08WteeeQK9e4fdh4ohNiiApa8LQ0JD/dxyi5SmnAB99ZKceueQS93VLyWkp3hOamoCZM4GrrgKeeSa3XK6/s2bZEycdeWT6xi465Dqpy2d5ww1AY6M9Y/OvfhV/uRzGjQNuuin478OKliJh+3C3nJY6ijkRj1hOnXAPMDw8ZVC0JMFpbeHhlZX6mfbiRvdWuZTDw6OYPbyccQtjCRIeXlMD3H672b7lAfrgwbYgCKRbtPSb5F588DF1FpRrTku5nZXKRDzOdjt0AO67z3+5wqASCDfYAHjkkcJ1yyGnZRjxvn9/4F//Un83apT9L2midFqmNTzc9F4h0rYtcM897tstRv9VSqlJVGUdMAB44ono9mGSezQp/EzEEwVr1uj3b7IfE9Gyqgq45Raz8pSS01IcXzc3A9tvD/z73/nXShabttnGXqeUMHVaduwI/OMf8ZdH5KyzcqaAoJi8CDZ1Wra2nJZie5VFS1NzAZ2WidNK1QASCSYNr9hOyyjDw9M0YHbKEtbtGsVEPEFvfKazh6dN3EkK+S2kSJDw8KiIMqSk2JiKlq3BaSmT1ol4/OYuixMTV6Nu3aSclqp7oCzWJeXGSBt0WgaHTkt3kkhNlFbRMonw8CRESz+UktPSJDdxOaTWMnVaFoMo+rIonZZhMXFaeomWSYaHu+W0NDUXmOS0pGgZKSl/aiKpprU5LdMkWkYVHh6F0zIodFq64+a01NXFuFwN5UrSTss057SUidppadp3eJ0XXXh4MZDbl9ugO81OyyDnsBxeXqQpp2VS9SEqmNPSnSREnzSFh+vubUk5Lf3eFzp3jqYcbvsrBdFSB0XLeImivZaC09JPTstiOS2DRlAGDQ8vdl9dwvCJlgTHpJOjaBkPzrFuumlumZwnTF5XRRQ5LcVE/TvuaL4905yWaRd34iJIeHhSbi6HUr82xXRapv3cRe20dDveME7LYvbL8jG51aE057Sk0zIYgwfnPov3Yjd0uYrjOre67YadDKkYL8RK6SXcFlvkPou5baMkTU5L3b3NLc+2X8RJUuTxbhqdlnI/mxZai2hpGh5eDKJorybjpjSJlvI+5PbhNn7aY4/c56228l8+GTenpThpqdszrUl4uGqdYvfVJUyKVBhSljA8PB6cY916a+DCC4E33gD+8hf1ukFycqjQiZbXXAP8+KPtzDrtNPPtmc4e3lo7+CBOyygfEEx58EHg1lvtyRtKDea01BO1aBnmvImUang4nZbpI6zT8skn7cmDRoyw88KZ0LEjcOON9sREe+8N/Oc/+bPXxs122wG77OLvBaOKtPdfxWaHHeyJp+bMAe64I559iH1qmsZJcTktH3oIOPlkYPPNgd13z//OpH995RV7IqRx46IXFEvJaWnS35fDJKbl7rR0m0DGodjh4W45LeW/3drLvffabX+TTYD99gteTge3nJaTJgE//QR06uQ+OSBzWiZOilQYUnKYPLQU22kZ5f7TKFoCwJVXmq8r49dpqVq/UyfgqafMt+NAp6U7QXJaFiM8/Mgj7X+lSBDRsrXktIw6PDyqSczSHB6eBtHSJKdlFE7LchAtwzotN9kEePFF/7874wz7H2CLKEkyfXo0uTxb633ZD9dcE+/2SyE8PMroj402Al54Qf2dSf+6887Aa68F378bpZrTUgedlvESRXs1GVMl5bQMktNSxm38tMEGwJQpwcqmwi08vEsXs0mndMfD8PDYSPlTEyl5iu20jJK0ipZh1vUrWkYJc1q6E0V4OB8s3UlatKTTMjxpCg/3097KwWlZbqJlmnJaJkVU46RiTMRD8klTeLju3lasCciSPh+l5LQ0uWeWg7AiHmddnfuYOmmiqJ8mTku36xjlPdxEtPQiSXevm9PSlKBOy2L31SUMzxyJl3IVLYs9SPfzoB5VeHjU19ItnwlFy2gm4il2PU07zGmpJ+rwOVPRspQm4vFzDYv18M6clnrSNHt4UqTp5SsJRyk4LZOK/ij2JISl5LQsdl1JCrGv69mzeOVQkbbw8GLktJRJ8kWoW05LUzgRT+K0UjWAJEaxw8OjJE2DfT/H6hYSUUynpdvMu9XVuQfrqB1fpUIUTss4KAeHlUPSOS2HDct93m234NtJgqjb+/rr5z7Lk5GEmYgnTeHhbqQpPFx2GLbWQXRrdFrGUe+SGuelySmVBrbZJvd5l12KVw4gmfBwPyTdp5Wb07IcWL4897kcRct+/XKfxUnhROIULXv0yH3ecEP7fz85LWWSfNYTyxXUaak7Hua0jA2KliQ4YWcui5q495WmG72fTm/LLe38WVtuCVx3Xf53fifiAexJVwYOtCcSiBJRNMpkgCuusBOun312tPspFdwe0HTXLWnRstSdV42Nuc9JOC3PPBPYZx9gp52Am28Ovp24ePRRu23rJvUKw+DBwOmn2/3QSy/p1/OqU2kOD3cjzeHhQcpSDi8vWqPTMo4+O6m6sN56wMUX2zNzz5iRzD7TzO9/D+y1ly1Yxp0/04tiOy1l6LTUk6ZnmThZsCD3uRxFy733Bo49Fhg+HPjXv9TrxJnT8vnngaFDgd/9Dth2W3uZ3/DwV1+1+/MLLsh/sR03bjktTeFEPInTSnouUjSSFDXi3leabvR+O70bb7T/f+WV/OVBnJannmr/ixr54fqcc+x/rRWdaFlZqb9upS4iJo3omkzCaVlba88WnFYOPdT+Fxc33RR+G2kKDw8jWsZV7iDh4cxpSUqFP/7R/kds0f3554tdCpu0OS0pWuoxeZYph7FkmkXLKOpnJgPcd1/w/YQVLbfaCnjnnfxlfsPDd9oJeP99//sOSxROS5PwcNU6rTXlWQTwzJF4KafGWcqipUOYiVriHsSkdYBXLHT1ze3aJ93eymFg65DERDwkPAwP97cfzh6upzU6LeOgnO4DJBit3Wmpug9FnRc6KlqLaCk66NImWiZF0u0gTE7LJCnmRDx0WgamjBQlkjgmDy10WsZDVKJlMSfikUly5rhSJqrZ4Ek+FC1LgzSFh/tpb8XKaUmnpR46LYNTDtefRIepaJnUAzudlnrS9CyTFGkTLZPqP02dllEhvyRNa12LYiIe5rRMHIqWJF5698597ty5eOWQCXIDS5NrNOiNIM1OS4qWZrhd+zTV0VJgyJDc54031q8XVU5LosbPOS3V8PCkwiSTymlZDqTVCVVq8GUZMQ01LdeJeGSxpqIivYKNODnneusVrxxxIz7nbb558cqhIm2iZVR9uNv4TKx3ffpEs7+gxJnT0mv28NY63ooAnjkSHJNOd489gEMOATbaCJg6Nf4ymdC3L/Dcc2brPvKIPUPaJZfkLy/2IL0YTss4jvmxx+zz+4c/8O2TKcV2WpaTaPfww7ZYOWYMcNRR+vWiymlJvPE7EU8x+43W5rQsBx591L7nXHRR6znuu+8GuncHrr02um2W032AhCdtomXSwkCHDvkimdcEJMVkzz2Bgw+2n8t0z0LFfsaJgn/9yxbHxo0Ddt652KUpDnHOHq7CTajff3/7X79+wLPPRrO/oEThtGR4eOKk9DUQKRsyGVuYsqx03ASvuQY491zzshx2mD0xRSZjLnQmQbnktDzkEHvwlIa6UQ4wp6U/Bg0CPv3U+zjotIwXP+c0TeHhfnIhpSmnpRwW3ZpyWh56qH3fKfW+yw8nnAAcf3zrOmaSLK1dtMxkgJEjgSeftP9euzbZ/fshk7EFvbQ8l8XFjjsC33yTzmNM6v7p9qwYRxncxmOZDPD00+mod8xpWZLQaUmSIYkOymQfTU3+y1LszlVF0AFZmKTocZ2HNJ7fUoVhB/4xqX90WqaHNIWHNzaar1sOTstyEC2B1nnPifqYW+M5JHpau2gJ2KJlKdEa2nBajzEN988kwsNVpOGaiGOeoGN63XF4hYdTtAwMn3BJcNLQ6folqA08bQTt9MM4LSmIpZ80DAbKkXIRa8qBNIWHl4LTMsqclmwHxIHXn4hQtCw90dINjiXjJW39Z5KiZRqIYtxo4rRUrcNn6cDwzJHyoX1773XKRbQMStrCw4k73br5W583w3jYbLPcZ7cJe0gwxHMqnmsVaQoP9zP7dLGclqrw8CicloQ4sF6QtImWxXiZNXx48vuMEnGilLTNtl1uJCVauu0n6fDwNBFFORkenjh8wiXlw4ABdr6q9u2BZ55RrxM0d0UauPNO+yH57LODbyNtE/EQd557Duja1Xx9XqN4uO46O3l4377ADTcUuzTlx8SJQP/+9sQAt9zivm6awsMHDLDzI7Zv751YvhycloQ4pM0pRIpL2kTLYvRp9fXA+efbfW4pjhOeftp+Ub7NNsAxxxS7NOVN2kTL1ua0jKKcDA9PnBKpXYQY8uijdp4x3cx9YZyWxR6kn3KKnUw/zKyEYZyWxT7+1siIEcD8+cBBB5nNtpfEQL011oP11gM++8w+dg44oqdrV3tCJJPzmyanJWBPNOd2z3EI88LID3KfHtfs4a2xHyBq+LKMULS0ufpq4Ior0j17uI5hw4AffrDvqZmMv5zNxB9pEC3joNjjMVOSCg9X7YcviQNTIrWLpJK0PrS4DRaiCg8v1iA97EAozINzWq93uVNdbT4Q4Ozh8cGBRryYnt805bR0MOmXk3Jaym3SJDycOS0JIWEwFS2T6q+Leb8uRcHSoZTLTvxBp2U4dH0MnZaxwacw0roo5fDwKKDTsjQRb3Ju16E1iYikdZKm8HA/JCVaynAiHkJI3NBpSYg5aXNaRvXsUKrjsSAwp2XisFcnwenUKfc5zQMEsTPmRDzuf5N0klanJSFJk7bwcFPSLFqa0qNH7nO/fsG2QQgpP3r3zn0WJ3SRKeeJeAgxJQ0v/eIoQ6kYJ9ZbL/e5Q4dg29Adq9fs4eybAsMnXBKcww8HttjCTj49fXqxS6NH7CDotMz/m07L0sBUmCmVAQMhQaHT0h8q0TLoOTvvPFuQ6NABePjhcOUipQ3HA0Tk+uvtSVy6dgVuvVW/XlL9HsdCJM2kof+MIzwcAE44wd5emiejGj8eGDgQaNMGmDw52DaChofTXBKYErEokFRSVQW89x6wapU9e2paqarKiZV0Wub/TdGyNDAVGXgzJOVOGnNamlAs0TLKHGXt2wOffw40NABt20a3XVLaUCAivXoB331njxPdnNxJ9XscrxKSfHg4ANx9ty1YduwY3TajpqYGeP99YPXq4PoFw8MTh6IlCUdFRboFSyD/rQedlu5/u8FBYPFIU05L1gNSTEo1PLxYqTlUTsswVFdzsgbC+wAppLbWe52k+r2WlmT2Q0gQ0pDTMs4ypFmwdKisDKdfULRMHNpySPkjdhB0Wub/TadlecHZw0m5w/Bwf0QtWhJCSFAYDUJIcqK6qWjJsbx/dOeM4eGxwTNHyp9evXKfgybcBcpDtONEPOUNrycpdxge7g+6IgkhaYHh4aS1IqZUadeueOVwECej6dKleOUoVei0TBw+4ZLy56GHbLdJx47AxRcXuzTFhU7L0sT0OvFtKSl3SjU8PG2i5Xnn2f8fc0wy5SCEEIqWpLXy3HP2eKVnT+B3v0tmn27t4K677PyzbdvaE2kRf1C0TJwSGe0TEoKttgJ++MHOt5OGt1vFhDktyxs6LUm5w/DwcPt1uOYa+8Fpww2TKQcpX/iyjJiSVH/N8SpJGzvvbE9W1aEDUF+fzD7d2sFmm9nPxpWV4aIQWysm4eGqcV6pjFlTCEVL0jro2jXa7ZXqIJ1Oy9Kn2BPxEFJM5AFfqdT5YomWbmy0UbFLQEoVjgdIEOi0JK2ZHj2KXYJ8OncudglKl6BOyzSM/UoUnjlCWhMULcsbzh5Oyp1SfUvNfMKkXCmVFwek+HD2cEJIOcDw8MThqJmQ1gQfnMsbPjyScqdUcljKpNFpSQghSVLstBiEtCY4EV98ULRMHI6aCWlN0GlZmphep6SvEUVSkjSlOuBLUrQ84QT7/8MPj28fhBDilzj7vTvvtP/fZBNgu+3i2w8hpcLBB9sT/wDAI48Utyzlhu75R+zjGB4eKSVqWSCkCJSDaMeJeEoft+vAa0TKHYqW3vz1r8BppwFbbhnfPgghxC9x9nunnALsuCPQt2/p3icIiZK6OuCTT+wJdwYOLHZpWh+qHOw0ewSGoiUhrQk6LcubJK4R6wEpJgwP96aiAhg2LL7tE8L7AAlC3C6jLbaId/uElBodOnB28DgwyZsrj/v4MiUU9KgS0pqg05IQUsqU6qCPOS1JuULnCDGF/R4hpBwwES3l/q5Ux68pgXcPQloTdFqWN0lcI/GmW6quN1K6lGqdk/taDl5JKcPxAAkCRUtCSDnQ3Oy9Dl9WRwrPHiGtiTCiJUk/STxI/vGPuRsxE3uTpClVsU/uazl4JYS0Nkq1/yaEEBGGhydOiVoWCCkypSr2MTy8NBHrW7Gvw4Yb2om9V6wAhg4tbllI66NcBn0ULQkhrQ32e4SQcoCiZeJQtCSkNcHw8PImqWu08cbJ7IcQmVIND5fhwzspF0r1JS5JHvZ7hJBygOHhicOzR0hrwm+IYpocfoQQUi5vqjl4JYS0NtjvEULKATotE4d3D0JaM14OCYqW6cDUycJrRMqdchn08eGdlDK815AgsN8jhJQDnD08cXj3IMSUchykcwBZXpRjHSVEhOHhhKQLhocTU9jvEULKATotE4d3D0JaM3zYIISUEuUy6OPDOyll+IKMBIH9HiGkHGBOy8Th2SOkNcPw8NLD7TrwGpFyh6IlIYSUJuz3CCHlAJ2WicO7ByFBKBeHIifiIYSUEuUy6OPDOyGktcF+jxBSDlC0TBzePQhpzdBpWV7wGpFyp1weesvlxRchrMvEFNYVQkg5EES0LJfxa5Hg2SOkNePHaUmKx+mn5z7ffrt+vR12yH0+55z4ykNIsSgXYZ59KyGktcF+jxBSDgTJaUmnZSjKZBpOQkgg/Awgy0UsKEUGDwamTwd++gk4+GD9eh07AnPnAu+8Axx2WGLFI4QQ0orgeIAQQkhrxUS0lI1BFC1DQdGSkNYMw8NLh1GjzNbbaiv7HyHlCJ06hKQLtkliCusKIaQcYE7LxGF4OCGtGU7EQwgpJdgPEUIIIYSQYhEkPJw5LUPBs0dIa4ZOS0IIIYQQQgghxBs6LROHoiUhppSjaEenJSGklOjfP/f5oIOKV44gDB5s/8+BKyl1OB4gQWB4OCGkHDjxxMJlY8bk/11Xl/83x36hYE5LQlozfpyWhBBSbNq0Ad54A3j1VeCEE4pdGn9Mngw88ABwwAHFLgkh0cFxAiGEkNbEdtsBjz9uT5A6dCjw8svAccflr9OlS/7fDA8PBUVLQlozfjpQOisIIWlgu+3sf6XGBhsAv/99sUtBCCHFgQI3IaRcEKN9VGPSrl3z/6bTMhSUfAkJQrkMvJjTkhBCCCF+4HiABKFcxs6EEOIFRctIoWhJSGuGoiUhhBBCCIkbipaEkNZCfX1+n0fRMhQULQkx5dRTc59PPrl45YgSr/DwCy7IfT7iiHjLQgghhBBCCCGElDqdO+c+M6dlKEr67N12223o27cv6urqsN1222HWrFnadf/6179i5513RufOndG5c2eMHj3adX1CCjj+eOCGG4CbbiofAc/rrfeECcDVVwN33QXsuWcyZSKEEEJIaUD3HCGEEFJIp065z3RahqJkRctHHnkEEyZMwKWXXoq3334bW221FcaMGYOFCxcq158xYwaOPPJIvPTSS5g5cyY22GAD7LXXXvj+++8TLjkpWSorgbPOAk4/vXzelngdR20tcP755eMsJYQQQkg4mC6GBIECNyGkNSGKlqtXF60Y5UDJKi833HADTj75ZBx//PEYNGgQ7rjjDrRp0wb33HOPcv0HHngAv/vd7zB06FAMHDgQf/vb39DS0oJp06YlXHJCUgQHkIQQQggJCscRhBBCSCFiePjSpUUrRjlQVewCBKGhoQFz5szBBUK+vYqKCowePRozZ8402sbq1avR2NiILl26KL9fu3Yt1q5dm/17+fLlAIDGxkY0NjaGKH06cY6pHI+N5FMtfG5sbgZ4zVMB2yAhxYftkBBvKi0r63posSw0R9xe2A7LB3HM2dTcDIvXtCRgGyQkPJUdOmTvldbSpWjy2Z7KvR36Oa6SFC0XLVqE5uZm9OjRI295jx498PHHHxtt4/zzz0evXr0wevRo5fcTJ07E5ZdfXrD8hRdeQJs2bfwXukSYOnVqsYtAYuYA4fOL06ahoWPHopWFFMI2SEjxYTskRM8uy5bB8Y/8vGQJXps8OZb9sB2WPuKY891338V3YrgkST1sg4QEZ+iKFdho3efmxYsxOeC9slzb4WofIfMlKVqG5eqrr8bDDz+MGTNmoK6uTrnOBRdcgAkTJmT/Xr58eTYPZocOHZIqamI0NjZi6tSp2HPPPVFdXe39A1IWjN5zT6Bbt2IXg4BtkJA0wHZIiDeVV1yR/dy5Sxfss88+kW6f7bA82WroUGwZcV0h8cA2SEh4Kl5+GXjxRQBA1S+/+L5Xlns7dCKZTShJ0bJbt26orKzEjz/+mLf8xx9/RM+ePV1/e9111+Hqq6/Giy++iC233FK7Xm1tLWprawuWV1dXl2WlcSj34yP5VNfWArzeqYJtkJDiw3ZIiBkVmQwqYmorbIflRVV1NcecJQbbICEh6No178+gbalc26GfYyrJiXhqamowfPjwvEl0nEl1Ro4cqf3dtddeiyuuuAJTpkzBiBEjkigqIemGCfQJIYQQEhSOIwghhJBCmA4jMkrSaQkAEyZMwPjx4zFixAhsu+22uPHGG7Fq1Socf/zxAIBjjz0WvXv3xsSJEwEA11xzDS655BI8+OCD6Nu3LxYsWAAAaNeuHdq1a1e04yCkqFSU5HsLQgghhBQLyyp2CUgpQoGbENKaoGgZGSUrWh5++OH46aefcMkll2DBggUYOnQopkyZkp2c55tvvkGFIMjcfvvtaGhowCGHHJK3nUsvvRSXXXZZkkUnJD1wAEkIIYQQQgghhETH8OG5z7vtVrRilAMlK1oCwGmnnYbTTjtN+d2MGTPy/v7qq6/iLxAhpQadloQQQgghJG74opwQ0poYOBC45RbgtdeAddG/JBglLVoSQgghhBBCCCGEEJIqTjvN/kdCQZsVIa0Z5qUihBBCSFDoniOEEEJIjFC0JIQQQgghhJjBF54kCBS4CSGEBICiJSGtmZqaYpeAEEIIIaUKhSjixqBBuc+bblq8chBCCClZKFoS0tp4/XVg1CjgzjuB2tpil4YQQgghhJQjTz0FjBkDXHopMGxYsUtDCCGkBOFEPIS0NkaOBKZPL3YpCCGEEEJIObPppsCUKcUuBSGEkBKGTktCCCGEEEIIIYQQQkiqoGhJCCGEEEIIMYMT8RBCCCEkIShaEkIIIYQQQszYeefc55Eji1cOQgghhJQ9zGlJCCGEEEIIMeNPfwI++QSorAQuvrjYpSGEEEJIGUPRkhBCCCGEEGJGhw7A888XuxSEEEIIaQUwPJwQQgghhBBCCCGEEJIqKFoSQgghhBBCCCGEEEJSBUVLQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCCGEEEIIIamCoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVEHRkhBCCCGEEEIIIYQQkiooWhJCCCGEEEIIIYQQQlIFRUtCCCGEEEIIIYQQQkiqoGhJCCGEEEIIIYQQQghJFRQtCSGEEEIIIYQQQgghqYKiJSGEEEIIIYQQQgghJFVQtCSEEEIIIYQQQgghhKQKipaEEEIIIYQQQgghhJBUQdGSEEIIIYQQQgghhBCSKihaEkIIIYQQQgghhBBCUgVFS0IIIYQQQgghhBBCSKqgaEkIIYQQQgghhBBCCEkVFC0JIYQQQgghhBBCCCGpgqIlIYQQQgghhBBCCCEkVVC0JIQQQgghhBBCCCGEpAqKloQQQgghhBBCCCGEkFRB0ZIQQgghhBBCCCGEEJIqKFoSQgghhBBCCCGEEEJSBUVLQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCCGEEEIIIamCoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVEHRkhBCCCGEEEIIIYQQkiooWhJCCCGEEEIIIYQQQlIFRUtCCCGEEEIIIYQQQkiqoGhJCCGEEEIIIYQQQghJFRQtCSGEEEIIIYQQQgghqYKiJSGEEEIIIYQQQgghJFVQtCSEEEIIIYQQQgghhKQKipaEEEIIIYQQQgghhJBUQdGSEEIIIYQQQgghhBCSKihaEkIIIYQQQgghhBBCUgVFS0IIIYQQQgghhBBCSKqgaEkIIYQQQgghhBBCCEkVFC0JIYQQQgghhBBCCCGpgqIlIYQQQgghhBBCCCEkVVC0JIQQQgghhBBCCCGEpAqKloQQQgghhBBCCCGEkFRB0ZIQQgghhBBCCCGEEJIqKFoSQgghhBBCCCGEEEJSBUVLQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCCGEEEIIIamCoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVEHRkhBCCCGEEEIIIYQQkiooWhJCCCGEEEIIIYQQQlIFRUtCCCGEEEIIIYQQQkiqoGhJCCGEEEIIIYQQQghJFRQtCSGEEEIIIYQQQgghqYKiJSGEEEIIIYQQQgghJFVQtCSEEEIIIYQQQgghhKQKipaEEEIIIYQQQgghhJBUQdGSEEIIIYQQQgghhBCSKihaEkIIIYQQQgghhBBCUgVFS0IIIYQQQgghhBBCSKqgaEkIIYQQQgghhBBCCEkVFC0JIYQQQgghhBBCCCGpgqIlIYQQQgghhBBCCCEkVVC0JIQQQgghhBBCCCGEpAqKloQQQgghhBBCCCGEkFRB0ZIQQgghhBBCCCGEEJIqKFoSQgghhBBCCCGEEEJSBUVLQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCCGEEEIIIamCoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVFHSouVtt92Gvn37oq6uDttttx1mzZrluv5jjz2GgQMHoq6uDkOGDMHkyZMTKikhhBBCCCGEEEIIIcSUkhUtH3nkEUyYMAGXXnop3n77bWy11VYYM2YMFi5cqFz/9ddfx5FHHokTTzwR77zzDg488EAceOCBeP/99xMuOSGEEEIIIYQQQgghxI2SFS1vuOEGnHzyyTj++OMxaNAg3HHHHWjTpg3uuece5fo33XQTxo4di3PPPRebb745rrjiCmy99da49dZbEy45IYQQQgghhBBCCCHEjapiFyAIDQ0NmDNnDi644ILssoqKCowePRozZ85U/mbmzJmYMGFC3rIxY8bgqaeeUq6/du1arF27Nvv3smXLAABLlixBY2NjyCNIH42NjVi9ejUWL16M6urqYheHkFYH2yAhxYftkJDiw3ZISHFhGySk+JR7O1yxYgUAwLIsz3VLUrRctGgRmpub0aNHj7zlPXr0wMcff6z8zYIFC5TrL1iwQLn+xIkTcfnllxcs79evX8BSE0IIIYQQQgghhBBCVqxYgY4dO7quU5KiZRJccMEFec7MlpYWLFmyBF27dkUmkyliyeJh+fLl2GCDDfDtt9+iQ4cOxS4OIa0OtkFCig/bISHFh+2QkOLCNkhI8Sn3dmhZFlasWIFevXp5rluSomW3bt1QWVmJH3/8MW/5jz/+iJ49eyp/07NnT1/r19bWora2Nm9Zp06dghe6ROjQoUNZNgpCSgW2QUKKD9shIcWH7ZCQ4sI2SEjxKed26OWwdCjJiXhqamowfPhwTJs2LbuspaUF06ZNw8iRI5W/GTlyZN76ADB16lTt+oQQQgghhBBCCCGEkOJQkk5LAJgwYQLGjx+PESNGYNttt8WNN96IVatW4fjjjwcAHHvssejduzcmTpwIADjjjDOw66674vrrr8e+++6Lhx9+GLNnz8Zdd91VzMMghBBCCCGEEEIIIYRIlKxoefjhh+Onn37CJZdcggULFmDo0KGYMmVKdrKdb775BhUVOSPpDjvsgAcffBAXXXQRLrzwQmy66aZ46qmnMHjw4GIdQqqora3FpZdeWhASTwhJBrZBQooP2yEhxYftkJDiwjZISPFhO8yRsUzmGCeEEEIIIYQQQgghhJCEKMmcloQQQgghhBBCCCGEkPKFoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVEHRkuC2225D3759UVdXh+222w6zZs0qdpEIKQsmTpyIbbbZBu3bt0f37t1x4IEH4pNPPslb55dffsGpp56Krl27ol27djj44IPx448/5q3zzTffYN9990WbNm3QvXt3nHvuuWhqakryUAgpC66++mpkMhmceeaZ2WVsg4TEz/fff4+jjz4aXbt2RX19PYYMGYLZs2dnv7csC5dccgnWX3991NfXY/To0fj000/ztrFkyRKMGzcOHTp0QKdOnXDiiSdi5cqVSR8KISVJc3MzLr74YvTr1w/19fXYeOONccUVV0Cck5ftkJBoeeWVV7DffvuhV69eyGQyeOqpp/K+j6rNvffee9h5551RV1eHDTbYANdee23ch5YoFC1bOY888ggmTJiASy+9FG+//Ta22morjBkzBgsXLix20QgpeV5++WWceuqpeOONNzB16lQ0NjZir732wqpVq7LrnHXWWXjmmWfw2GOP4eWXX8YPP/yAgw46KPt9c3Mz9t13XzQ0NOD111/Hfffdh7///e+45JJLinFIhJQsb731Fu68805sueWWecvZBgmJl59//hk77rgjqqur8dxzz+HDDz/E9ddfj86dO2fXufbaa3HzzTfjjjvuwJtvvom2bdtizJgx+OWXX7LrjBs3Dh988AGmTp2KZ599Fq+88gpOOeWUYhwSISXHNddcg9tvvx233norPvroI1xzzTW49tprccstt2TXYTskJFpWrVqFrbbaCrfddpvy+yja3PLly7HXXntho402wpw5czBp0iRcdtlluOuuu2I/vsSwSKtm2223tU499dTs383NzVavXr2siRMnFrFUhJQnCxcutABYL7/8smVZlrV06VKrurraeuyxx7LrfPTRRxYAa+bMmZZlWdbkyZOtiooKa8GCBdl1br/9dqtDhw7W2rVrkz0AQkqUFStWWJtuuqk1depUa9ddd7XOOOMMy7LYBglJgvPPP9/aaaedtN+3tLRYPXv2tCZNmpRdtnTpUqu2ttZ66KGHLMuyrA8//NACYL311lvZdZ577jkrk8lY33//fXyFJ6RM2Hfffa0TTjghb9lBBx1kjRs3zrIstkNC4gaA9eSTT2b/jqrN/eUvf7E6d+6cNyY9//zzrQEDBsR8RMlBp2UrpqGhAXPmzMHo0aOzyyoqKjB69GjMnDmziCUjpDxZtmwZAKBLly4AgDlz5qCxsTGvDQ4cOBAbbrhhtg3OnDkTQ4YMQY8ePbLrjBkzBsuXL8cHH3yQYOkJKV1OPfVU7LvvvnltDWAbJCQJ/v3vf2PEiBE49NBD0b17dwwbNgx//etfs99/+eWXWLBgQV477NixI7bbbru8dtipUyeMGDEiu87o0aNRUVGBN998M7mDIaRE2WGHHTBt2jT873//AwC8++67eO2117D33nsDYDskJGmianMzZ87ELrvsgpqamuw6Y8aMwSeffIKff/45oaOJl6piF4AUj0WLFqG5uTnvQQwAevTogY8//rhIpSKkPGlpacGZZ56JHXfcEYMHDwYALFiwADU1NejUqVPeuj169MCCBQuy66jaqPMdIcSdhx9+GG+//Tbeeuutgu/YBgmJny+++AK33347JkyYgAsvvBBvvfUWTj/9dNTU1GD8+PHZdqRqZ2I77N69e973VVVV6NKlC9shIQb8/ve/x/LlyzFw4EBUVlaiubkZV155JcaNGwcAbIeEJExUbW7BggXo169fwTac78RULKUKRUtCCEmAU089Fe+//z5ee+21YheFkFbDt99+izPOOANTp05FXV1dsYtDSKukpaUFI0aMwFVXXQUAGDZsGN5//33ccccdGD9+fJFLR0jr4NFHH8UDDzyABx98EFtssQXmzp2LM888E7169WI7JISkGoaHt2K6deuGysrKgllSf/zxR/Ts2bNIpSKk/DjttNPw7LPP4qWXXkKfPn2yy3v27ImGhgYsXbo0b32xDfbs2VPZRp3vCCF65syZg4ULF2LrrbdGVVUVqqqq8PLLL+Pmm29GVVUVevTowTZISMysv/76GDRoUN6yzTffHN988w2AXDtyG4/27NmzYJLIpqYmLFmyhO2QEAPOPfdc/P73v8cRRxyBIUOG4JhjjsFZZ52FiRMnAmA7JCRpompzrWGcStGyFVNTU4Phw4dj2rRp2WUtLS2YNm0aRo4cWcSSEVIeWJaF0047DU8++SSmT59eYN0fPnw4qqur89rgJ598gm+++SbbBkeOHIl58+bl3bCmTp2KDh06FDwEEkLy2WOPPTBv3jzMnTs3+2/EiBEYN25c9jPbICHxsuOOO+KTTz7JW/a///0PG220EQCgX79+6NmzZ147XL58Od588828drh06VLMmTMnu8706dPR0tKC7bbbLoGjIKS0Wb16NSoq8h/9Kysr0dLSAoDtkJCkiarNjRw5Eq+88goaGxuz60ydOhUDBgwoi9BwAJw9vLXz8MMPW7W1tdbf//5368MPP7ROOeUUq1OnTnmzpBJCgvHb3/7W6tixozVjxgxr/vz52X+rV6/OrvOb3/zG2nDDDa3p06dbs2fPtkaOHGmNHDky+31TU5M1ePBga6+99rLmzp1rTZkyxVpvvfWsCy64oBiHREjJI84ebllsg4TEzaxZs6yqqirryiuvtD799FPrgQcesNq0aWPdf//92XWuvvpqq1OnTtbTTz9tvffee9YBBxxg9evXz1qzZk12nbFjx1rDhg2z3nzzTeu1116zNt10U+vII48sxiERUnKMHz/e6t27t/Xss89aX375pfXEE09Y3bp1s84777zsOmyHhETLihUrrHfeecd65513LADWDTfcYL3zzjvW119/bVlWNG1u6dKlVo8ePaxjjjnGev/9962HH37YatOmjXXnnXcmfrxxQdGSWLfccou14YYbWjU1Nda2225rvfHGG8UuEiFlAQDlv3vvvTe7zpo1a6zf/e53VufOna02bdpYv/rVr6z58+fnbeerr76y9t57b6u+vt7q1q2bdfbZZ1uNjY0JHw0h5YEsWrINEhI/zzzzjDV48GCrtrbWGjhwoHXXXXflfd/S0mJdfPHFVo8ePaza2lprjz32sD755JO8dRYvXmwdeeSRVrt27awOHTpYxx9/vLVixYokD4OQkmX58uXWGWecYW244YZWXV2d1b9/f+sPf/iDtXbt2uw6bIeERMtLL72kfBYcP368ZVnRtbl3333X2mmnnaza2lqrd+/e1tVXX53UISZCxrIsqzgeT0IIIYQQQgghhBBCCCmEOS0JIYQQQgghhBBCCCGpgqIlIYQQQgghhBBCCCEkVVC0JIQQQgghhBBCCCGEpAqKloQQQgghhBBCCCGEkFRB0ZIQQgghhBBCCCGEEJIqKFoSQgghhBBCCCGEEEJSBUVLQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCClB+vbti0wmg+OOO67YRSGEEEIIiRyKloQQQgghPvn1r3+NTCaDTCaD6dOn+/rtCy+8kP3tGWecEVMJCSGEEEIIKW0oWhJCCCGE+OTYY4/Nfr7//vt9/faf//yncjvFYsaMGVkRdcaMGcUuDiGEEEIIIQAoWhJCCCGE+GbHHXfExhtvDAB4/PHHsWbNGqPfrVq1Ck8++SQAYIsttsDw4cNjKyMhhBBCCCGlDEVLQgghhJAAHHPMMQCA5cuX4+mnnzb6zRNPPIFVq1bl/Z4QQgghhBBSCEVLQgghhJAAHHPMMchkMgDMQ8Sd0PCKigocffTRsZWNEEIIIYSQUoeiJSGEEEJIAPr3748dd9wRAPD8889j4cKFruv/8MMPmDZtGgBg9913R+/evQvWeeqpp3DooYdiww03RF1dHTp16oQRI0bg8ssvx88//2xUrsmTJ+Poo49G//790bZtW9TV1aFfv344+OCD8fe//x2rV68GAHz11VfIZDIYNWpU9rejRo3K5rd0/v39738v2EdDQwP+8pe/YNSoUVhvvfVQU1ODnj17Yp999sH999+PlpYWbfmOO+44ZDIZ9O3bFwAwf/58nH/++dhiiy3Qvn1737k1VTk5H330Ueyxxx5Yb731UF9fjwEDBuC8887DkiVLtNvZbbfdkMlksNtuu7nu77LLLsvuT4Xz3WWXXQYAeOmll3DggQeiV69eqK+vx+abb44rrrgi67h1mDx5MvbZZ5/seoMGDcLEiRPR0NBgfC7eeustHHnkkdhggw1QV1eHDTbYAMcffzw+/vhjo99/9tlnOOusszBkyBB07NgR9fX16N+/P4477jjMnj1b+zv5GrS0tOCee+7BqFGj0KNHD1RUVHCGc0IIIYT4xyKEEEIIIYG46667LAAWAOumm25yXXfSpEnZdf/xj3/kfbdkyRJr9913z36v+te9e3dr5syZ2u0vWrTI2mOPPVy3AcC69957LcuyrC+//NJzXXF9hy+//NIaOHCg62922mkna/Hixcpyjh8/3gJgbbTRRtbMmTOtbt26Ffz+pZde8jz3Di+99FL2d9OmTbOOPvpobbk22WQTa/78+crt7LrrrhYAa9ddd3Xd36WXXprdngrnu0svvdSaOHGilclklGXZYYcdrJUrV1otLS3W6aefri3z2LFjraamJuW+NtpoIwuANX78eOvuu++2qqqqlNuora21Hn30UdfjmjRpklVdXa0tRyaTsS6++GLlb8Vr8Nxzz1mjR48u+P348eNd908IIYQQIkOnJSGEEEJIQA477DDU1dUByJ8VXIXzfbt27XDQQQdll69duxajR4/G9OnTUVlZiWOOOQYPPfQQ3njjDbz66qu48sor0bVrVyxcuBD77LMPvv7664Jtr169GqNGjco6OYcPH44777wT//3vfzF79mw8+eSTOOuss9CrV6/sb3r37o158+bhnnvuyS675557MG/evLx/Bx54YPb7lStXYo899sg69w488ED8+9//xuzZs/HYY49h1113BQC89tpr2G+//dDc3Kw9HytXrsTBBx+MX375BX/4wx8wY8YMzJo1C3fffTfWX39913Op4+KLL8b999+PAw88EE888QTmzJmDyZMnY9999wWQcxImwXPPPYcLLrgA22+/PR588EHMnj0bU6ZMwd577w0AeP311zFx4kT8+c9/xs0334y9994bjz/+OObMmYOnn34a22+/PQBgypQp+Otf/+q6r7lz5+I3v/kNunfvjltuuQVvvvkmXn75ZZx//vmora3F2rVrMW7cOK1bctKkSTj33HPR2NiILbfcErfffjtefPFFzJ49Gw888ABGjhwJy7JwxRVX4Oabb3Yty/nnn48XX3wR+++/f941cI6bEEIIIcSYYqumhBBCCCGlzGGHHZZ1k3388cfKdd59993sOscee2zedxdeeKEFwOrUqZM1e/Zs5e+/+uora/3117cAWEcddVTB92eddVZ2+6eeeqrV0tKi3M7atWutBQsW5C0TXXJeDsdzzjknu+5FF11U8H1LS4s1bty47Dp/+ctfCtZxnJYArHbt2llz58513acXYvkBWH/605+U5dprr70sAFZVVZW1cOHCgnWidloCsA4++OACl2RTU5O1/fbbWwCs9u3bW3V1ddaZZ55ZsJ1Vq1ZlnZRbbrmlcl/O91jnXFW5SKdPn551YG6zzTYF33/wwQdZh+Wll16qrDvNzc1ZB2u7du2sJUuW5H0vXwNV3SCEEEII8QudloQQQgghITj22GOzn3VuS3G5uP7KlStx2223AQCuuOIKDB8+XPn7jTbaCBdffDEA4LHHHsvLh7h06VLceeedAGyH5U033aTNt1hTU4MePXqYHFYBa9euxd/+9jcAwBZbbJHN2SiSyWTwl7/8BV27dgUA3Hrrra7bPO+887DVVlsFKo+K4cOH48ILL1SWa8KECQCApqYmzJw5M7J96mjTpg3uuusuVFZW5i2vrKzEKaecAgBYsWIF1ltvPVx77bXK348fPx4A8N5772HZsmWu+7v++uvRs2fPguWjRo3CySefDMDOeSm7La+//no0NjZixIgRuPTSS5V1p6KiArfccgtqa2uxcuVK/Otf/9KWY7PNNlPWDUIIIYQQv1C0JIQQQggJwZgxY7JC4AMPPADLsvK+b2lpwYMPPggA6NOnT97ENy+//HJWjDrkkENc97PLLrsAABobGzFnzpzs8unTp2cn1zn99NMLRLKomDNnDpYuXQrAnkxHt58OHTrgsMMOAwB8+OGHmD9/vnab48aNi7SMRx11lFawFQXhL774ItL9qthzzz3RpUsX5XeiUHvQQQehurrac70vv/xSu6/OnTvjgAMO0H5/wgknZD+/+OKLed8988wzAICDDz5Ye+4AoFOnThgyZAgAuIq+hx9+eGx1kBBCCCGtC4qWhBBCCCEhqKqqwlFHHQXAnpH7tddey/t+2rRp+OGHHwDYIl1FRW74Jbre1l9//YKZu8V/gwcPzq67YMGC7Od33nkn+3nnnXeO9uAE3n///ezn7bbbznVd8XvxdyLt2rVD//79oyncOgYOHKj9ThQQV6xYEel+VWy22Wba7zp16uR7PbcyDxs2DFVVVdrvhw4dipqaGgDAvHnzssu//vpr/PTTTwCACy64wLX+ZTKZbH0V65/Mlltuqf2OEEIIIcQPFC0JIYQQQkLiFiKuCw0HgIULFwban+OsBIBFixZlPwedwMaEJUuWZD93797ddV0xTFn8nYgoyEVFmzZttN+JYrHbBEFJlyWKMntdj6qqqqxoK16PKOqfTOfOnQNtkxBCCCFERv9KlhBCCCGEGDF06FAMGTIE8+bNw2OPPZbN/7dq1So88cQTAOzw5EGDBuX9ThSi3n77bW2YsEyfPn2iK3wA3MKITWEIcXQEvR5i/bvkkktw6KGHGv2ubdu22u94XQkhhBASFRQtCSGEEEIi4Nhjj8W5556LpUuX4plnnsEhhxyCJ598MjtpjuyyBJCdsAYA1ltvvUBiZLdu3bKf58+fj379+gUovTdiePWPP/7oGtYshg/r8jqmDcfV2NLS4rqeOAlSWvjxxx9dv29qaso6LMXrIda/6urqvBQEhBBCCCHFhuHhhBBCCCERMG7cuKzL7P777weQCw2vrq7GkUceWfCbYcOGZT//97//DbTfrbfeOvv5lVde8f17U5eeKGi9+eabruvOmjVL+bs00759ewDAzz//7Lre//73vySK44u5c+eiqalJ+/27776LhoYGAPnXo3///ujYsSOA4PWPEEIIISQuKFoSQgghhETA+uuvj9GjRwMAJk+ejPfffx/Tpk0DAIwdOxbrrbdewW9Gjx6dzWl48803F8w8bsKoUaOy4bq33HKL73yNdXV12c9r167Vrjd8+PBsHsr77rtP60hcsWIFHn30UQDAoEGDYs2zGSWOQ/V///ufdtKbRYsWYerUqUkWy4glS5ZkZwFXcc8992Q/O3UUsEO599lnHwDACy+8gI8++ii+QhJCCCGE+ISiJSGEEEJIRDgh4I2NjTjiiCOyAqIqNBywJ6M57bTTAACvv/46zjrrLNfw5B9//BF/+9vfCrbx61//GgAwZ84cnHnmmVrxs7GxsWDyFVFU/Pzzz7X7rq2txUknnQTAnhH8iiuuKFjHsiycdtpp2cmBnGMrBXbddVcAQENDA2655ZaC7xsbG3HSSSdhzZo1SRfNiAkTJijDxF9++WXcddddAGzheZtttsn7/oILLkBlZSVaWlpwyCGH4LvvvtPuo7m5GQ888IDrOoQQQgghUcGcloQQQgghEfGrX/0K7du3x4oVK/DBBx8AsGdT3m+//bS/+eMf/4iXX34Zb775Jm666SbMmDEDJ598MoYOHYq2bdvi559/xgcffIAXX3wRzz33HIYMGZIVDx2uuOIKTJ06FfPmzcOtt96KmTNn4te//jWGDBmCmpoafPfdd3j11Vfx0EMP4U9/+hOOO+647G833HBD9OnTB9999x2uu+469OnTBwMGDMiGuvfo0SMbOn3JJZfgiSeewBdffIHLLrsM8+bNw/HHH4/1118fX375JW699VbMmDEDADBy5EiccsopEZ7deNl3332x0UYb4euvv8bFF1+MRYsW4aCDDkJdXR0++OAD3HzzzXjnnXew/fbb44033ih2cfPYaqut8OGHH2L48OG44IILsO2222Lt2rWYPHky/vznP6OpqQlVVVW47bbbCn47ZMgQXHfddTjrrLPw4YcfYvDgwTjllFOw++67o0ePHvjll1/w1VdfYebMmfjXv/6F+fPnY968eUWfDIoQQggh5Q9FS0IIIYSQiKivr8chhxyCe++9N7vssMMOQ21trfY3tbW1mDp1Ko477jg88cQTePfdd10dih06dChY1qZNG0yfPh0HH3wwXnnlFcyZM8eXYHjhhRfid7/7Hb788ksccMABed/de++9WZGzffv2mDZtGvbee298/PHHePzxx/H4448XbG/HHXfEv//975KaSbqmpgb3338/xo4di1WrVuHPf/4z/vznP2e/r6ysxI033oglS5akTrQcOnQoTjvtNPz2t79V1p2amhrcd9992G677ZS/P/PMM9G2bVuceeaZWLZsGSZNmoRJkyYp162pqclLKUAIIYQQEhcMDyeEEEIIiZDx48fn/a0LDRdp3749Hn/8cbz66qs46aSTMGDAALRv3x5VVVXo0qULttlmG5x66qmYPHmyNqdit27d8PLLL+OJJ57AIYccgj59+qC2thZ1dXXo378/Dj30UDzwwAPKCYF++9vf4vHHH8dee+2F7t27o6pK/167b9++ePfdd3Hrrbdi1113RdeuXVFdXY0ePXpg7Nix+Oc//4lXXnmlZGYNF9lpp50wZ84cHHPMMejVqxeqq6ux/vrrZ8Xg008/vdhF1HLSSSfh1VdfxWGHHYZevXqhpqYGvXv3xrHHHot33nkHRxxxhOvvTz75ZHzxxRe4/PLLseOOO6Jbt26oqqpC27Ztsdlmm+Hggw/GHXfcge+//x6bbLJJQkdFCCGEkNZMxgqS8Z0QQgghhBBCCCGEEEJigk5LQgghhBBCCCGEEEJIqqBoSQghhBBCCCGEEEIISRUULQkhhBBCCCGEEEIIIamCoiUhhBBCCCGEEEIIISRVULQkhBBCCCGEEEIIIYSkCoqWhBBCCCGEEEIIIYSQVEHRkhBCCCGEEEIIIYQQkiooWhJCCCGEEEIIIYQQQlIFRUtCCCGEEEIIIYQQQkiqoGhJCCGEEEIIIYQQQghJFRQtCSGEEEIIIYQQQgghqYKiJSGEEEIIIYQQQgghJFVQtCSEEEIIIYQQQgghhKQKipaEEEIIIYQQQgghhJBU8f8BbeEMXiXXlKwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lab02_lib.ire_plot('training', IRE_array, IREth, 'AE1')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KHHg-FlhPGEy" + }, + "source": [ + "#### Создать и обучить второй автокодировщикAE2 с усложненной архитектурой, задавбольшее количество эпох обучения." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "collapsed": true, + "id": "e3WRyy5kOimC", + "outputId": "a5344431-5c7b-46c4-a8ac-efefa42585e5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Задать архитектуру автокодировщиков или использовать архитектуру по умолчанию? (1/2): 1\n", + "Задайте количество скрытых слоёв (нечетное число) : 9\n", + "Задайте архитектуру скрытых слоёв автокодировщика, например, в виде 3 1 3 : 2 3 5 2 1 2 5 3 2\n", + "Epoch 1/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 4s/step - loss: 9.1458\n", + "Epoch 2/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 9.1063\n", + "Epoch 3/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 9.0677\n", + "Epoch 4/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 9.0301\n", + "Epoch 5/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 8.9934\n", + "Epoch 6/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 8.9577\n", + "Epoch 7/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 8.9230\n", + "Epoch 8/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 8.8891\n", + "Epoch 9/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 8.8560\n", + "Epoch 10/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 8.8237\n", + "Epoch 11/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 8.7921\n", + "Epoch 12/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 8.7610\n", + "Epoch 13/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 8.7304\n", + "Epoch 14/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 8.7001\n", + "Epoch 15/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 8.6701\n", + "Epoch 16/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.6403\n", + "Epoch 17/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 8.6105\n", + "Epoch 18/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 8.5808\n", + "Epoch 19/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.5508\n", + "Epoch 20/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 8.5207\n", + "Epoch 21/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.4903\n", + "Epoch 22/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 8.4594\n", + "Epoch 23/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.4282\n", + "Epoch 24/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 8.3964\n", + "Epoch 25/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 8.3641\n", + "Epoch 26/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 8.3313\n", + "Epoch 27/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 8.2978\n", + "Epoch 28/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 8.2637\n", + "Epoch 29/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 8.2290\n", + "Epoch 30/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 8.1937\n", + "Epoch 31/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 8.1577\n", + "Epoch 32/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 8.1210\n", + "Epoch 33/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 8.0838\n", + "Epoch 34/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 8.0459\n", + "Epoch 35/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 8.0073\n", + "Epoch 36/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 7.9682\n", + "Epoch 37/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.9285\n", + "Epoch 38/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.8882\n", + "Epoch 39/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 7.8474\n", + "Epoch 40/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.8061\n", + "Epoch 41/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.7642\n", + "Epoch 42/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.7220\n", + "Epoch 43/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.6794\n", + "Epoch 44/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.6364\n", + "Epoch 45/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.5930\n", + "Epoch 46/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 7.5495\n", + "Epoch 47/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.5057\n", + "Epoch 48/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.4617\n", + "Epoch 49/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 7.4176\n", + "Epoch 50/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.3734\n", + "Epoch 51/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.3292\n", + "Epoch 52/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 7.2850\n", + "Epoch 53/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.2408\n", + "Epoch 54/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 7.1968\n", + "Epoch 55/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 7.1529\n", + "Epoch 56/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 7.1092\n", + "Epoch 57/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 7.0656\n", + "Epoch 58/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 7.0224\n", + "Epoch 59/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.9794\n", + "Epoch 60/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.9367\n", + "Epoch 61/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.8943\n", + "Epoch 62/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.8523\n", + "Epoch 63/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 6.8106\n", + "Epoch 64/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.7694\n", + "Epoch 65/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.7285\n", + "Epoch 66/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.6880\n", + "Epoch 67/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.6480\n", + "Epoch 68/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.6084\n", + "Epoch 69/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.5692\n", + "Epoch 70/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 6.5305\n", + "Epoch 71/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 6.4922\n", + "Epoch 72/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 6.4543\n", + "Epoch 73/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.4169\n", + "Epoch 74/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 6.3800\n", + "Epoch 75/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.3434\n", + "Epoch 76/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.3073\n", + "Epoch 77/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.2717\n", + "Epoch 78/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 6.2364\n", + "Epoch 79/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 6.2016\n", + "Epoch 80/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 6.1672\n", + "Epoch 81/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 6.1332\n", + "Epoch 82/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.0996\n", + "Epoch 83/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 6.0664\n", + "Epoch 84/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - loss: 6.0336\n", + "Epoch 85/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 6.0012\n", + "Epoch 86/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.9691\n", + "Epoch 87/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.9374\n", + "Epoch 88/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.9061\n", + "Epoch 89/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.8751\n", + "Epoch 90/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.8444\n", + "Epoch 91/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.8141\n", + "Epoch 92/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.7841\n", + "Epoch 93/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.7544\n", + "Epoch 94/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.7250\n", + "Epoch 95/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.6959\n", + "Epoch 96/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 5.6671\n", + "Epoch 97/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 5.6386\n", + "Epoch 98/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.6103\n", + "Epoch 99/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.5824\n", + "Epoch 100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.5546\n", + "Epoch 101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.5272\n", + "Epoch 102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 5.5000\n", + "Epoch 103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.4730\n", + "Epoch 104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.4462\n", + "Epoch 105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.4197\n", + "Epoch 106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.3934\n", + "Epoch 107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.3674\n", + "Epoch 108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.3415\n", + "Epoch 109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.3159\n", + "Epoch 110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 5.2904\n", + "Epoch 111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 5.2652\n", + "Epoch 112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 5.2401\n", + "Epoch 113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 5.2152\n", + "Epoch 114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.1905\n", + "Epoch 115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 5.1660\n", + "Epoch 116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 5.1417\n", + "Epoch 117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 5.1176\n", + "Epoch 118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 5.0936\n", + "Epoch 119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 5.0697\n", + "Epoch 120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0461\n", + "Epoch 121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 5.0226\n", + "Epoch 122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.9992\n", + "Epoch 123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 4.9761\n", + "Epoch 124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.9530\n", + "Epoch 125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.9302\n", + "Epoch 126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.9074\n", + "Epoch 127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.8848\n", + "Epoch 128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.8624\n", + "Epoch 129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 4.8401\n", + "Epoch 130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.8179\n", + "Epoch 131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.7959\n", + "Epoch 132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.7740\n", + "Epoch 133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.7523\n", + "Epoch 134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.7306\n", + "Epoch 135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.7091\n", + "Epoch 136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 4.6878\n", + "Epoch 137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.6666\n", + "Epoch 138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.6455\n", + "Epoch 139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6245\n", + "Epoch 140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.6036\n", + "Epoch 141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5829\n", + "Epoch 142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.5623\n", + "Epoch 143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.5418\n", + "Epoch 144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.5215\n", + "Epoch 145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.5012\n", + "Epoch 146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 4.4811\n", + "Epoch 147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.4611\n", + "Epoch 148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.4412\n", + "Epoch 149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.4215\n", + "Epoch 150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.4018\n", + "Epoch 151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 4.3823\n", + "Epoch 152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.3629\n", + "Epoch 153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 4.3436\n", + "Epoch 154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.3244\n", + "Epoch 155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 4.3053\n", + "Epoch 156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.2863\n", + "Epoch 157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.2675\n", + "Epoch 158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 4.2487\n", + "Epoch 159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.2301\n", + "Epoch 160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.2116\n", + "Epoch 161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 4.1931\n", + "Epoch 162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 4.1748\n", + "Epoch 163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 4.1566\n", + "Epoch 164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 4.1385\n", + "Epoch 165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.1205\n", + "Epoch 166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 4.1026\n", + "Epoch 167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.0848\n", + "Epoch 168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 4.0671\n", + "Epoch 169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 4.0495\n", + "Epoch 170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 4.0320\n", + "Epoch 171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 4.0147\n", + "Epoch 172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.9974\n", + "Epoch 173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.9802\n", + "Epoch 174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.9631\n", + "Epoch 175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.9461\n", + "Epoch 176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.9292\n", + "Epoch 177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.9124\n", + "Epoch 178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 3.8957\n", + "Epoch 179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.8791\n", + "Epoch 180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.8626\n", + "Epoch 181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.8462\n", + "Epoch 182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 3.8299\n", + "Epoch 183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.8137\n", + "Epoch 184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 3.7976\n", + "Epoch 185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7815\n", + "Epoch 186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.7656\n", + "Epoch 187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.7497\n", + "Epoch 188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 3.7339\n", + "Epoch 189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.7183\n", + "Epoch 190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.7027\n", + "Epoch 191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.6872\n", + "Epoch 192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 3.6718\n", + "Epoch 193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 3.6565\n", + "Epoch 194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 3.6412\n", + "Epoch 195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 3.6261\n", + "Epoch 196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 3.6110\n", + "Epoch 197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 3.5960\n", + "Epoch 198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.5811\n", + "Epoch 199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 3.5663\n", + "Epoch 200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 3.5516\n", + "Epoch 201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 3.5369\n", + "Epoch 202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 3.5224\n", + "Epoch 203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 3.5079\n", + "Epoch 204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 3.4935\n", + "Epoch 205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 3.4792\n", + "Epoch 206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 3.4649\n", + "Epoch 207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 3.4508\n", + "Epoch 208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 3.4367\n", + "Epoch 209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 3.4227\n", + "Epoch 210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 3.4087\n", + "Epoch 211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 3.3949\n", + "Epoch 212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 3.3811\n", + "Epoch 213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 3.3674\n", + "Epoch 214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 3.3538\n", + "Epoch 215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 3.3402\n", + "Epoch 216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 3.3267\n", + "Epoch 217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 3.3133\n", + "Epoch 218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 3.3000\n", + "Epoch 219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 3.2867\n", + "Epoch 220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 3.2735\n", + "Epoch 221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 3.2604\n", + "Epoch 222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 3.2474\n", + "Epoch 223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 3.2344\n", + "Epoch 224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.2215\n", + "Epoch 225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 3.2086\n", + "Epoch 226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 3.1959\n", + "Epoch 227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 3.1832\n", + "Epoch 228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 3.1705\n", + "Epoch 229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.1580\n", + "Epoch 230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.1454\n", + "Epoch 231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 3.1330\n", + "Epoch 232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 3.1206\n", + "Epoch 233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.1083\n", + "Epoch 234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.0961\n", + "Epoch 235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.0839\n", + "Epoch 236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0718\n", + "Epoch 237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 3.0597\n", + "Epoch 238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 3.0477\n", + "Epoch 239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 3.0358\n", + "Epoch 240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 3.0239\n", + "Epoch 241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 3.0121\n", + "Epoch 242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 3.0004\n", + "Epoch 243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.9887\n", + "Epoch 244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9770\n", + "Epoch 245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.9655\n", + "Epoch 246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.9540\n", + "Epoch 247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.9425\n", + "Epoch 248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.9311\n", + "Epoch 249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9198\n", + "Epoch 250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.9085\n", + "Epoch 251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.8972\n", + "Epoch 252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.8861\n", + "Epoch 253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.8750\n", + "Epoch 254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.8639\n", + "Epoch 255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.8529\n", + "Epoch 256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.8419\n", + "Epoch 257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.8310\n", + "Epoch 258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.8202\n", + "Epoch 259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.8094\n", + "Epoch 260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.7987\n", + "Epoch 261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.7880\n", + "Epoch 262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.7773\n", + "Epoch 263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.7668\n", + "Epoch 264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.7562\n", + "Epoch 265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.7457\n", + "Epoch 266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.7353\n", + "Epoch 267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.7249\n", + "Epoch 268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.7146\n", + "Epoch 269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.7043\n", + "Epoch 270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.6941\n", + "Epoch 271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.6839\n", + "Epoch 272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.6737\n", + "Epoch 273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.6637\n", + "Epoch 274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.6536\n", + "Epoch 275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 2.6436\n", + "Epoch 276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.6337\n", + "Epoch 277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.6238\n", + "Epoch 278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.6139\n", + "Epoch 279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.6041\n", + "Epoch 280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.5943\n", + "Epoch 281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - loss: 2.5846\n", + "Epoch 282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.5749\n", + "Epoch 283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.5653\n", + "Epoch 284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.5557\n", + "Epoch 285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.5462\n", + "Epoch 286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.5367\n", + "Epoch 287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 2.5272\n", + "Epoch 288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.5178\n", + "Epoch 289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.5084\n", + "Epoch 290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.4991\n", + "Epoch 291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.4898\n", + "Epoch 292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.4805\n", + "Epoch 293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4713\n", + "Epoch 294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.4622\n", + "Epoch 295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.4531\n", + "Epoch 296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.4440\n", + "Epoch 297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.4349\n", + "Epoch 298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 2.4259\n", + "Epoch 299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 2.4170\n", + "Epoch 300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.4080\n", + "Epoch 301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.3992\n", + "Epoch 302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.3903\n", + "Epoch 303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 2.3815\n", + "Epoch 304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.3727\n", + "Epoch 305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.3640\n", + "Epoch 306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.3553\n", + "Epoch 307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.3467\n", + "Epoch 308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.3380\n", + "Epoch 309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.3295\n", + "Epoch 310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.3209\n", + "Epoch 311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.3124\n", + "Epoch 312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.3039\n", + "Epoch 313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 2.2955\n", + "Epoch 314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.2871\n", + "Epoch 315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 2.2787\n", + "Epoch 316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.2704\n", + "Epoch 317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2621\n", + "Epoch 318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.2539\n", + "Epoch 319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2457\n", + "Epoch 320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 2.2375\n", + "Epoch 321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.2293\n", + "Epoch 322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.2212\n", + "Epoch 323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.2131\n", + "Epoch 324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.2051\n", + "Epoch 325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 2.1970\n", + "Epoch 326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.1891\n", + "Epoch 327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.1811\n", + "Epoch 328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.1732\n", + "Epoch 329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.1653\n", + "Epoch 330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.1575\n", + "Epoch 331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.1496\n", + "Epoch 332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 2.1419\n", + "Epoch 333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 2.1341\n", + "Epoch 334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 2.1264\n", + "Epoch 335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.1187\n", + "Epoch 336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 2.1110\n", + "Epoch 337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.1034\n", + "Epoch 338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 2.0958\n", + "Epoch 339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 2.0882\n", + "Epoch 340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0807\n", + "Epoch 341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 2.0732\n", + "Epoch 342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 2.0657\n", + "Epoch 343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.0583\n", + "Epoch 344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 2.0508\n", + "Epoch 345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0435\n", + "Epoch 346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 2.0361\n", + "Epoch 347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 2.0288\n", + "Epoch 348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 2.0215\n", + "Epoch 349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 2.0142\n", + "Epoch 350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 2.0070\n", + "Epoch 351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9998\n", + "Epoch 352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9926\n", + "Epoch 353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.9854\n", + "Epoch 354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.9783\n", + "Epoch 355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.9712\n", + "Epoch 356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9641\n", + "Epoch 357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9571\n", + "Epoch 358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9501\n", + "Epoch 359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.9431\n", + "Epoch 360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.9361\n", + "Epoch 361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.9292\n", + "Epoch 362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.9223\n", + "Epoch 363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.9154\n", + "Epoch 364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.9086\n", + "Epoch 365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.9017\n", + "Epoch 366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8949\n", + "Epoch 367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 1.8882\n", + "Epoch 368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8814\n", + "Epoch 369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.8747\n", + "Epoch 370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8680\n", + "Epoch 371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8613\n", + "Epoch 372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.8547\n", + "Epoch 373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.8481\n", + "Epoch 374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8415\n", + "Epoch 375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8349\n", + "Epoch 376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8284\n", + "Epoch 377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.8219\n", + "Epoch 378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.8154\n", + "Epoch 379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.8089\n", + "Epoch 380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.8025\n", + "Epoch 381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.7960\n", + "Epoch 382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 1.7897\n", + "Epoch 383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 1.7833\n", + "Epoch 384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 1.7769\n", + "Epoch 385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 1.7706\n", + "Epoch 386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.7643\n", + "Epoch 387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.7581\n", + "Epoch 388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.7518\n", + "Epoch 389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 1.7456\n", + "Epoch 390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.7394\n", + "Epoch 391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 1.7332\n", + "Epoch 392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.7270\n", + "Epoch 393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.7209\n", + "Epoch 394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 1.7148\n", + "Epoch 395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 1.7087\n", + "Epoch 396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.7026\n", + "Epoch 397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.6966\n", + "Epoch 398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 1.6906\n", + "Epoch 399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 1.6846\n", + "Epoch 400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 1.6786\n", + "Epoch 401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 1.6727\n", + "Epoch 402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 1.6667\n", + "Epoch 403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 1.6608\n", + "Epoch 404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 1.6549\n", + "Epoch 405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 1.6491\n", + "Epoch 406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 1.6432\n", + "Epoch 407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 1.6374\n", + "Epoch 408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 1.6316\n", + "Epoch 409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 1.6258\n", + "Epoch 410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 1.6201\n", + "Epoch 411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 1.6143\n", + "Epoch 412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.6086\n", + "Epoch 413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.6029\n", + "Epoch 414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5972\n", + "Epoch 415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.5916\n", + "Epoch 416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.5860\n", + "Epoch 417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5803\n", + "Epoch 418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5747\n", + "Epoch 419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - loss: 1.5692\n", + "Epoch 420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.5636\n", + "Epoch 421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 1.5581\n", + "Epoch 422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.5526\n", + "Epoch 423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.5471\n", + "Epoch 424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.5416\n", + "Epoch 425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5362\n", + "Epoch 426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5307\n", + "Epoch 427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.5253\n", + "Epoch 428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.5199\n", + "Epoch 429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.5146\n", + "Epoch 430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.5092\n", + "Epoch 431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.5039\n", + "Epoch 432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.4986\n", + "Epoch 433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4933\n", + "Epoch 434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4880\n", + "Epoch 435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.4827\n", + "Epoch 436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.4775\n", + "Epoch 437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - loss: 1.4723\n", + "Epoch 438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4671\n", + "Epoch 439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.4619\n", + "Epoch 440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4567\n", + "Epoch 441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 1.4516\n", + "Epoch 442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.4464\n", + "Epoch 443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.4413\n", + "Epoch 444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4362\n", + "Epoch 445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - loss: 1.4312\n", + "Epoch 446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.4261\n", + "Epoch 447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.4211\n", + "Epoch 448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.4160\n", + "Epoch 449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4110\n", + "Epoch 450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.4061\n", + "Epoch 451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.4011\n", + "Epoch 452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 1.3961\n", + "Epoch 453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 1.3912\n", + "Epoch 454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.3863\n", + "Epoch 455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.3814\n", + "Epoch 456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3765\n", + "Epoch 457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.3717\n", + "Epoch 458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3668\n", + "Epoch 459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3620\n", + "Epoch 460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.3572\n", + "Epoch 461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3524\n", + "Epoch 462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3476\n", + "Epoch 463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.3428\n", + "Epoch 464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3381\n", + "Epoch 465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.3334\n", + "Epoch 466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3286\n", + "Epoch 467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.3240\n", + "Epoch 468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 1.3193\n", + "Epoch 469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.3146\n", + "Epoch 470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.3100\n", + "Epoch 471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 1.3053\n", + "Epoch 472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.3007\n", + "Epoch 473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 1.2961\n", + "Epoch 474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2915\n", + "Epoch 475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2870\n", + "Epoch 476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2824\n", + "Epoch 477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2779\n", + "Epoch 478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2734\n", + "Epoch 479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2689\n", + "Epoch 480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.2644\n", + "Epoch 481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2599\n", + "Epoch 482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 1.2555\n", + "Epoch 483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 1.2510\n", + "Epoch 484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 1.2466\n", + "Epoch 485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.2422\n", + "Epoch 486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2378\n", + "Epoch 487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2334\n", + "Epoch 488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2291\n", + "Epoch 489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.2247\n", + "Epoch 490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.2204\n", + "Epoch 491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2161\n", + "Epoch 492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.2117\n", + "Epoch 493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.2075\n", + "Epoch 494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.2032\n", + "Epoch 495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1989\n", + "Epoch 496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.1947\n", + "Epoch 497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.1904\n", + "Epoch 498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.1862\n", + "Epoch 499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.1820\n", + "Epoch 500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 1.1778\n", + "Epoch 501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1737\n", + "Epoch 502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1695\n", + "Epoch 503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1654\n", + "Epoch 504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1612\n", + "Epoch 505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 1.1571\n", + "Epoch 506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1530\n", + "Epoch 507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1489\n", + "Epoch 508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 1.1449\n", + "Epoch 509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1408\n", + "Epoch 510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.1368\n", + "Epoch 511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.1327\n", + "Epoch 512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1287\n", + "Epoch 513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 1.1247\n", + "Epoch 514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1207\n", + "Epoch 515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.1167\n", + "Epoch 516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.1128\n", + "Epoch 517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1088\n", + "Epoch 518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.1049\n", + "Epoch 519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.1010\n", + "Epoch 520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0970\n", + "Epoch 521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0931\n", + "Epoch 522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0893\n", + "Epoch 523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.0854\n", + "Epoch 524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.0815\n", + "Epoch 525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0777\n", + "Epoch 526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0739\n", + "Epoch 527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 1.0700\n", + "Epoch 528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 1.0662\n", + "Epoch 529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0624\n", + "Epoch 530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0587\n", + "Epoch 531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0549\n", + "Epoch 532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0511\n", + "Epoch 533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.0474\n", + "Epoch 534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0437\n", + "Epoch 535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 1.0400\n", + "Epoch 536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 1.0363\n", + "Epoch 537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 1.0326\n", + "Epoch 538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 1.0289\n", + "Epoch 539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0252\n", + "Epoch 540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 1.0216\n", + "Epoch 541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 1.0179\n", + "Epoch 542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 1.0143\n", + "Epoch 543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 1.0107\n", + "Epoch 544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 1.0071\n", + "Epoch 545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 1.0035\n", + "Epoch 546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9999\n", + "Epoch 547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.9963\n", + "Epoch 548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.9928\n", + "Epoch 549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.9892\n", + "Epoch 550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.9857\n", + "Epoch 551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.9822\n", + "Epoch 552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.9787\n", + "Epoch 553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.9752\n", + "Epoch 554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.9717\n", + "Epoch 555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.9682\n", + "Epoch 556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.9648\n", + "Epoch 557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.9613\n", + "Epoch 558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.9579\n", + "Epoch 559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.9545\n", + "Epoch 560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.9510\n", + "Epoch 561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.9476\n", + "Epoch 562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.9442\n", + "Epoch 563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.9409\n", + "Epoch 564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.9375\n", + "Epoch 565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.9341\n", + "Epoch 566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.9308\n", + "Epoch 567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.9275\n", + "Epoch 568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.9241\n", + "Epoch 569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.9208\n", + "Epoch 570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.9175\n", + "Epoch 571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.9142\n", + "Epoch 572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.9109\n", + "Epoch 573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.9077\n", + "Epoch 574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.9044\n", + "Epoch 575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.9012\n", + "Epoch 576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.8979\n", + "Epoch 577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.8947\n", + "Epoch 578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.8915\n", + "Epoch 579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8883\n", + "Epoch 580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.8851\n", + "Epoch 581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.8819\n", + "Epoch 582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.8787\n", + "Epoch 583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.8756\n", + "Epoch 584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.8724\n", + "Epoch 585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.8693\n", + "Epoch 586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.8662\n", + "Epoch 587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.8630\n", + "Epoch 588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.8599\n", + "Epoch 589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.8568\n", + "Epoch 590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.8537\n", + "Epoch 591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.8507\n", + "Epoch 592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.8476\n", + "Epoch 593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.8445\n", + "Epoch 594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.8415\n", + "Epoch 595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.8385\n", + "Epoch 596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.8354\n", + "Epoch 597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8324\n", + "Epoch 598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.8294\n", + "Epoch 599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.8264\n", + "Epoch 600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8234\n", + "Epoch 601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.8204\n", + "Epoch 602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.8175\n", + "Epoch 603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.8145\n", + "Epoch 604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8116\n", + "Epoch 605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.8086\n", + "Epoch 606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.8057\n", + "Epoch 607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.8028\n", + "Epoch 608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7999\n", + "Epoch 609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7970\n", + "Epoch 610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7941\n", + "Epoch 611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7912\n", + "Epoch 612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7884\n", + "Epoch 613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.7855\n", + "Epoch 614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.7826\n", + "Epoch 615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7798\n", + "Epoch 616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7770\n", + "Epoch 617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - loss: 0.7741\n", + "Epoch 618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.7713\n", + "Epoch 619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.7685\n", + "Epoch 620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7657\n", + "Epoch 621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7630\n", + "Epoch 622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7602\n", + "Epoch 623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7574\n", + "Epoch 624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7547\n", + "Epoch 625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.7519\n", + "Epoch 626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7492\n", + "Epoch 627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7464\n", + "Epoch 628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7437\n", + "Epoch 629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.7410\n", + "Epoch 630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.7383\n", + "Epoch 631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7356\n", + "Epoch 632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.7329\n", + "Epoch 633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7303\n", + "Epoch 634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.7276\n", + "Epoch 635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.7249\n", + "Epoch 636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.7223\n", + "Epoch 637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7196\n", + "Epoch 638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7170\n", + "Epoch 639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.7144\n", + "Epoch 640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7118\n", + "Epoch 641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.7092\n", + "Epoch 642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.7066\n", + "Epoch 643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.7040\n", + "Epoch 644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.7014\n", + "Epoch 645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6988\n", + "Epoch 646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6963\n", + "Epoch 647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6937\n", + "Epoch 648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6912\n", + "Epoch 649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6886\n", + "Epoch 650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.6861\n", + "Epoch 651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.6836\n", + "Epoch 652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6811\n", + "Epoch 653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.6786\n", + "Epoch 654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6761\n", + "Epoch 655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6736\n", + "Epoch 656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6711\n", + "Epoch 657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.6687\n", + "Epoch 658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 58ms/step - loss: 0.6662\n", + "Epoch 659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6637\n", + "Epoch 660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6613\n", + "Epoch 661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6589\n", + "Epoch 662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.6564\n", + "Epoch 663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6540\n", + "Epoch 664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.6516\n", + "Epoch 665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6492\n", + "Epoch 666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.6468\n", + "Epoch 667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6444\n", + "Epoch 668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.6420\n", + "Epoch 669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - loss: 0.6397\n", + "Epoch 670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6373\n", + "Epoch 671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6349\n", + "Epoch 672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.6326\n", + "Epoch 673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6302\n", + "Epoch 674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6279\n", + "Epoch 675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6256\n", + "Epoch 676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6233\n", + "Epoch 677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.6210\n", + "Epoch 678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.6187\n", + "Epoch 679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6164\n", + "Epoch 680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6141\n", + "Epoch 681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.6118\n", + "Epoch 682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.6095\n", + "Epoch 683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.6073\n", + "Epoch 684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.6050\n", + "Epoch 685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.6028\n", + "Epoch 686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.6005\n", + "Epoch 687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.5983\n", + "Epoch 688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.5961\n", + "Epoch 689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5938\n", + "Epoch 690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5916\n", + "Epoch 691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5894\n", + "Epoch 692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5872\n", + "Epoch 693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5850\n", + "Epoch 694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5829\n", + "Epoch 695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5807\n", + "Epoch 696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5785\n", + "Epoch 697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5763\n", + "Epoch 698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5742\n", + "Epoch 699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.5720\n", + "Epoch 700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5699\n", + "Epoch 701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.5678\n", + "Epoch 702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5657\n", + "Epoch 703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.5635\n", + "Epoch 704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5614\n", + "Epoch 705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5593\n", + "Epoch 706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5572\n", + "Epoch 707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5551\n", + "Epoch 708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.5531\n", + "Epoch 709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5510\n", + "Epoch 710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5489\n", + "Epoch 711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5468\n", + "Epoch 712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5448\n", + "Epoch 713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - loss: 0.5427\n", + "Epoch 714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.5407\n", + "Epoch 715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.5387\n", + "Epoch 716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5366\n", + "Epoch 717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.5346\n", + "Epoch 718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.5326\n", + "Epoch 719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5306\n", + "Epoch 720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5286\n", + "Epoch 721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5266\n", + "Epoch 722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5246\n", + "Epoch 723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5226\n", + "Epoch 724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.5207\n", + "Epoch 725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5187\n", + "Epoch 726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5167\n", + "Epoch 727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5148\n", + "Epoch 728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.5128\n", + "Epoch 729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.5109\n", + "Epoch 730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.5090\n", + "Epoch 731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.5070\n", + "Epoch 732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.5051\n", + "Epoch 733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.5032\n", + "Epoch 734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.5013\n", + "Epoch 735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.4994\n", + "Epoch 736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.4975\n", + "Epoch 737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.4956\n", + "Epoch 738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.4937\n", + "Epoch 739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.4919\n", + "Epoch 740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.4900\n", + "Epoch 741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.4881\n", + "Epoch 742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.4863\n", + "Epoch 743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.4844\n", + "Epoch 744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.4826\n", + "Epoch 745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.4807\n", + "Epoch 746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.4789\n", + "Epoch 747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.4771\n", + "Epoch 748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4753\n", + "Epoch 749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.4734\n", + "Epoch 750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.4716\n", + "Epoch 751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.4698\n", + "Epoch 752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.4680\n", + "Epoch 753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.4663\n", + "Epoch 754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.4645\n", + "Epoch 755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.4627\n", + "Epoch 756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.4609\n", + "Epoch 757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.4592\n", + "Epoch 758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.4574\n", + "Epoch 759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.4557\n", + "Epoch 760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.4539\n", + "Epoch 761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.4522\n", + "Epoch 762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.4504\n", + "Epoch 763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.4487\n", + "Epoch 764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.4470\n", + "Epoch 765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.4453\n", + "Epoch 766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.4435\n", + "Epoch 767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.4418\n", + "Epoch 768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.4401\n", + "Epoch 769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.4384\n", + "Epoch 770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4368\n", + "Epoch 771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.4351\n", + "Epoch 772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.4334\n", + "Epoch 773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4317\n", + "Epoch 774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.4301\n", + "Epoch 775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.4284\n", + "Epoch 776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.4268\n", + "Epoch 777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.4251\n", + "Epoch 778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4235\n", + "Epoch 779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.4218\n", + "Epoch 780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.4202\n", + "Epoch 781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4186\n", + "Epoch 782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4169\n", + "Epoch 783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.4153\n", + "Epoch 784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.4137\n", + "Epoch 785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.4121\n", + "Epoch 786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4105\n", + "Epoch 787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4089\n", + "Epoch 788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.4073\n", + "Epoch 789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.4058\n", + "Epoch 790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.4042\n", + "Epoch 791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.4026\n", + "Epoch 792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.4010\n", + "Epoch 793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3995\n", + "Epoch 794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.3979\n", + "Epoch 795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3964\n", + "Epoch 796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3948\n", + "Epoch 797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3933\n", + "Epoch 798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 62ms/step - loss: 0.3918\n", + "Epoch 799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3902\n", + "Epoch 800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3887\n", + "Epoch 801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3872\n", + "Epoch 802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3857\n", + "Epoch 803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3842\n", + "Epoch 804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3827\n", + "Epoch 805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.3812\n", + "Epoch 806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3797\n", + "Epoch 807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3782\n", + "Epoch 808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.3767\n", + "Epoch 809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3752\n", + "Epoch 810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3738\n", + "Epoch 811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3723\n", + "Epoch 812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3708\n", + "Epoch 813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3694\n", + "Epoch 814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.3679\n", + "Epoch 815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3665\n", + "Epoch 816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3650\n", + "Epoch 817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3636\n", + "Epoch 818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.3622\n", + "Epoch 819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.3608\n", + "Epoch 820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.3593\n", + "Epoch 821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3579\n", + "Epoch 822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3565\n", + "Epoch 823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.3551\n", + "Epoch 824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3537\n", + "Epoch 825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.3523\n", + "Epoch 826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.3509\n", + "Epoch 827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3495\n", + "Epoch 828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3481\n", + "Epoch 829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.3468\n", + "Epoch 830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3454\n", + "Epoch 831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3440\n", + "Epoch 832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3427\n", + "Epoch 833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3413\n", + "Epoch 834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3400\n", + "Epoch 835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3386\n", + "Epoch 836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3373\n", + "Epoch 837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3359\n", + "Epoch 838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3346\n", + "Epoch 839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3333\n", + "Epoch 840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3319\n", + "Epoch 841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.3306\n", + "Epoch 842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.3293\n", + "Epoch 843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3280\n", + "Epoch 844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.3267\n", + "Epoch 845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3254\n", + "Epoch 846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3241\n", + "Epoch 847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3228\n", + "Epoch 848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3215\n", + "Epoch 849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - loss: 0.3202\n", + "Epoch 850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3189\n", + "Epoch 851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.3177\n", + "Epoch 852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.3164\n", + "Epoch 853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3151\n", + "Epoch 854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.3139\n", + "Epoch 855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.3126\n", + "Epoch 856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.3114\n", + "Epoch 857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.3101\n", + "Epoch 858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.3089\n", + "Epoch 859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.3076\n", + "Epoch 860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.3064\n", + "Epoch 861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.3052\n", + "Epoch 862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3039\n", + "Epoch 863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.3027\n", + "Epoch 864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.3015\n", + "Epoch 865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step - loss: 0.3003\n", + "Epoch 866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2991\n", + "Epoch 867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.2979\n", + "Epoch 868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 64ms/step - loss: 0.2967\n", + "Epoch 869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2955\n", + "Epoch 870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2943\n", + "Epoch 871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2931\n", + "Epoch 872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2919\n", + "Epoch 873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2907\n", + "Epoch 874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2896\n", + "Epoch 875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2884\n", + "Epoch 876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2872\n", + "Epoch 877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2861\n", + "Epoch 878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2849\n", + "Epoch 879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.2838\n", + "Epoch 880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.2826\n", + "Epoch 881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2815\n", + "Epoch 882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2803\n", + "Epoch 883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.2792\n", + "Epoch 884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.2780\n", + "Epoch 885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2769\n", + "Epoch 886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.2758\n", + "Epoch 887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2747\n", + "Epoch 888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.2736\n", + "Epoch 889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.2724\n", + "Epoch 890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.2713\n", + "Epoch 891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.2702\n", + "Epoch 892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.2691\n", + "Epoch 893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.2680\n", + "Epoch 894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.2669\n", + "Epoch 895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.2659\n", + "Epoch 896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.2648\n", + "Epoch 897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.2637\n", + "Epoch 898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 191ms/step - loss: 0.2626\n", + "Epoch 899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.2615\n", + "Epoch 900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.2605\n", + "Epoch 901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.2594\n", + "Epoch 902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.2583\n", + "Epoch 903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.2573\n", + "Epoch 904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.2562\n", + "Epoch 905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.2552\n", + "Epoch 906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.2541\n", + "Epoch 907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.2531\n", + "Epoch 908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.2521\n", + "Epoch 909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.2510\n", + "Epoch 910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.2500\n", + "Epoch 911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.2490\n", + "Epoch 912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.2479\n", + "Epoch 913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.2469\n", + "Epoch 914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.2459\n", + "Epoch 915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.2449\n", + "Epoch 916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.2439\n", + "Epoch 917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.2429\n", + "Epoch 918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.2419\n", + "Epoch 919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.2409\n", + "Epoch 920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.2399\n", + "Epoch 921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.2389\n", + "Epoch 922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.2379\n", + "Epoch 923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.2369\n", + "Epoch 924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2359\n", + "Epoch 925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2350\n", + "Epoch 926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.2340\n", + "Epoch 927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2330\n", + "Epoch 928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2321\n", + "Epoch 929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2311\n", + "Epoch 930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.2301\n", + "Epoch 931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.2292\n", + "Epoch 932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2282\n", + "Epoch 933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2273\n", + "Epoch 934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.2263\n", + "Epoch 935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2254\n", + "Epoch 936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.2245\n", + "Epoch 937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.2235\n", + "Epoch 938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.2226\n", + "Epoch 939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2217\n", + "Epoch 940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.2208\n", + "Epoch 941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.2198\n", + "Epoch 942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.2189\n", + "Epoch 943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2180\n", + "Epoch 944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.2171\n", + "Epoch 945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.2162\n", + "Epoch 946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2153\n", + "Epoch 947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.2144\n", + "Epoch 948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2135\n", + "Epoch 949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.2126\n", + "Epoch 950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2117\n", + "Epoch 951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2108\n", + "Epoch 952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.2099\n", + "Epoch 953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2091\n", + "Epoch 954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.2082\n", + "Epoch 955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2073\n", + "Epoch 956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2064\n", + "Epoch 957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.2056\n", + "Epoch 958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.2047\n", + "Epoch 959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.2039\n", + "Epoch 960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.2030\n", + "Epoch 961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.2022\n", + "Epoch 962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.2013\n", + "Epoch 963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.2005\n", + "Epoch 964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1996\n", + "Epoch 965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.1988\n", + "Epoch 966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1979\n", + "Epoch 967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1971\n", + "Epoch 968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1963\n", + "Epoch 969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1954\n", + "Epoch 970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1946\n", + "Epoch 971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1938\n", + "Epoch 972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1930\n", + "Epoch 973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1922\n", + "Epoch 974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1914\n", + "Epoch 975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.1905\n", + "Epoch 976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1897\n", + "Epoch 977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1889\n", + "Epoch 978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1881\n", + "Epoch 979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1873\n", + "Epoch 980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1865\n", + "Epoch 981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1858\n", + "Epoch 982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.1850\n", + "Epoch 983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1842\n", + "Epoch 984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1834\n", + "Epoch 985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.1826\n", + "Epoch 986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1818\n", + "Epoch 987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.1811\n", + "Epoch 988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1803\n", + "Epoch 989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1795\n", + "Epoch 990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.1788\n", + "Epoch 991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1780\n", + "Epoch 992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1773\n", + "Epoch 993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1765\n", + "Epoch 994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1757\n", + "Epoch 995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1750\n", + "Epoch 996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1743\n", + "Epoch 997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1735\n", + "Epoch 998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1728\n", + "Epoch 999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1720\n", + "Epoch 1000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.1713\n", + "Epoch 1000/3000\n", + " - loss: 0.1713\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.1713\n", + "Epoch 1001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1706\n", + "Epoch 1002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1698\n", + "Epoch 1003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1691\n", + "Epoch 1004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1684\n", + "Epoch 1005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1677\n", + "Epoch 1006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1669\n", + "Epoch 1007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.1662\n", + "Epoch 1008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1655\n", + "Epoch 1009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1648\n", + "Epoch 1010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1641\n", + "Epoch 1011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.1634\n", + "Epoch 1012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.1627\n", + "Epoch 1013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1620\n", + "Epoch 1014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.1613\n", + "Epoch 1015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1606\n", + "Epoch 1016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1599\n", + "Epoch 1017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.1592\n", + "Epoch 1018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.1585\n", + "Epoch 1019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1579\n", + "Epoch 1020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1572\n", + "Epoch 1021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1565\n", + "Epoch 1022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1558\n", + "Epoch 1023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.1552\n", + "Epoch 1024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1545\n", + "Epoch 1025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1538\n", + "Epoch 1026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1532\n", + "Epoch 1027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1525\n", + "Epoch 1028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1518\n", + "Epoch 1029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.1512\n", + "Epoch 1030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.1505\n", + "Epoch 1031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.1499\n", + "Epoch 1032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.1492\n", + "Epoch 1033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.1486\n", + "Epoch 1034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.1479\n", + "Epoch 1035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.1473\n", + "Epoch 1036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.1467\n", + "Epoch 1037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1460\n", + "Epoch 1038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1454\n", + "Epoch 1039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.1448\n", + "Epoch 1040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.1441\n", + "Epoch 1041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.1435\n", + "Epoch 1042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.1429\n", + "Epoch 1043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.1423\n", + "Epoch 1044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.1417\n", + "Epoch 1045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.1410\n", + "Epoch 1046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1404\n", + "Epoch 1047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.1398\n", + "Epoch 1048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.1392\n", + "Epoch 1049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.1386\n", + "Epoch 1050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1380\n", + "Epoch 1051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 268ms/step - loss: 0.1374\n", + "Epoch 1052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.1368\n", + "Epoch 1053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1362\n", + "Epoch 1054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1356\n", + "Epoch 1055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.1350\n", + "Epoch 1056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.1344\n", + "Epoch 1057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.1338\n", + "Epoch 1058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.1333\n", + "Epoch 1059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1327\n", + "Epoch 1060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.1321\n", + "Epoch 1061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1315\n", + "Epoch 1062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1309\n", + "Epoch 1063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1304\n", + "Epoch 1064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1298\n", + "Epoch 1065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.1292\n", + "Epoch 1066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1287\n", + "Epoch 1067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.1281\n", + "Epoch 1068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1275\n", + "Epoch 1069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1270\n", + "Epoch 1070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1264\n", + "Epoch 1071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1259\n", + "Epoch 1072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1253\n", + "Epoch 1073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1248\n", + "Epoch 1074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1242\n", + "Epoch 1075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1237\n", + "Epoch 1076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.1231\n", + "Epoch 1077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1226\n", + "Epoch 1078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1221\n", + "Epoch 1079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1215\n", + "Epoch 1080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1210\n", + "Epoch 1081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.1205\n", + "Epoch 1082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1199\n", + "Epoch 1083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1194\n", + "Epoch 1084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.1189\n", + "Epoch 1085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1184\n", + "Epoch 1086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1178\n", + "Epoch 1087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1173\n", + "Epoch 1088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.1168\n", + "Epoch 1089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.1163\n", + "Epoch 1090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1158\n", + "Epoch 1091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.1153\n", + "Epoch 1092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.1148\n", + "Epoch 1093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1143\n", + "Epoch 1094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.1137\n", + "Epoch 1095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.1132\n", + "Epoch 1096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.1127\n", + "Epoch 1097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.1122\n", + "Epoch 1098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.1118\n", + "Epoch 1099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.1113\n", + "Epoch 1100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.1108\n", + "Epoch 1101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.1103\n", + "Epoch 1102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1098\n", + "Epoch 1103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.1093\n", + "Epoch 1104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1088\n", + "Epoch 1105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.1083\n", + "Epoch 1106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.1079\n", + "Epoch 1107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.1074\n", + "Epoch 1108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1069\n", + "Epoch 1109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.1064\n", + "Epoch 1110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.1060\n", + "Epoch 1111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.1055\n", + "Epoch 1112/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.1050\n", + "Epoch 1113/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1046\n", + "Epoch 1114/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1041\n", + "Epoch 1115/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1036\n", + "Epoch 1116/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.1032\n", + "Epoch 1117/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1027\n", + "Epoch 1118/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.1023\n", + "Epoch 1119/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1018\n", + "Epoch 1120/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.1014\n", + "Epoch 1121/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.1009\n", + "Epoch 1122/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.1005\n", + "Epoch 1123/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.1000\n", + "Epoch 1124/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0996\n", + "Epoch 1125/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0991\n", + "Epoch 1126/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0987\n", + "Epoch 1127/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0983\n", + "Epoch 1128/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0978\n", + "Epoch 1129/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0974\n", + "Epoch 1130/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0969\n", + "Epoch 1131/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0965\n", + "Epoch 1132/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0961\n", + "Epoch 1133/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0957\n", + "Epoch 1134/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0952\n", + "Epoch 1135/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0948\n", + "Epoch 1136/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0944\n", + "Epoch 1137/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0940\n", + "Epoch 1138/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0935\n", + "Epoch 1139/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0931\n", + "Epoch 1140/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0927\n", + "Epoch 1141/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0923\n", + "Epoch 1142/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0919\n", + "Epoch 1143/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0915\n", + "Epoch 1144/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0911\n", + "Epoch 1145/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0907\n", + "Epoch 1146/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0903\n", + "Epoch 1147/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0899\n", + "Epoch 1148/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0895\n", + "Epoch 1149/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0891\n", + "Epoch 1150/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0887\n", + "Epoch 1151/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0883\n", + "Epoch 1152/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0879\n", + "Epoch 1153/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0875\n", + "Epoch 1154/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0871\n", + "Epoch 1155/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0867\n", + "Epoch 1156/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0863\n", + "Epoch 1157/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0859\n", + "Epoch 1158/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0855\n", + "Epoch 1159/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0852\n", + "Epoch 1160/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0848\n", + "Epoch 1161/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 185ms/step - loss: 0.0844\n", + "Epoch 1162/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0840\n", + "Epoch 1163/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0837\n", + "Epoch 1164/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0833\n", + "Epoch 1165/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0829\n", + "Epoch 1166/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0825\n", + "Epoch 1167/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0822\n", + "Epoch 1168/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0818\n", + "Epoch 1169/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0814\n", + "Epoch 1170/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0811\n", + "Epoch 1171/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0807\n", + "Epoch 1172/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0803\n", + "Epoch 1173/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0800\n", + "Epoch 1174/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0796\n", + "Epoch 1175/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0793\n", + "Epoch 1176/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0789\n", + "Epoch 1177/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0786\n", + "Epoch 1178/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0782\n", + "Epoch 1179/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0779\n", + "Epoch 1180/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 174ms/step - loss: 0.0775\n", + "Epoch 1181/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0772\n", + "Epoch 1182/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0768\n", + "Epoch 1183/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0765\n", + "Epoch 1184/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0761\n", + "Epoch 1185/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0758\n", + "Epoch 1186/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0755\n", + "Epoch 1187/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0751\n", + "Epoch 1188/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0748\n", + "Epoch 1189/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0745\n", + "Epoch 1190/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0741\n", + "Epoch 1191/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0738\n", + "Epoch 1192/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0735\n", + "Epoch 1193/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0731\n", + "Epoch 1194/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0728\n", + "Epoch 1195/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0725\n", + "Epoch 1196/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0722\n", + "Epoch 1197/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0718\n", + "Epoch 1198/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0715\n", + "Epoch 1199/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0712\n", + "Epoch 1200/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0709\n", + "Epoch 1201/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0706\n", + "Epoch 1202/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0702\n", + "Epoch 1203/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0699\n", + "Epoch 1204/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0696\n", + "Epoch 1205/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0693\n", + "Epoch 1206/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0690\n", + "Epoch 1207/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0687\n", + "Epoch 1208/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0684\n", + "Epoch 1209/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0681\n", + "Epoch 1210/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0678\n", + "Epoch 1211/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0675\n", + "Epoch 1212/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0672\n", + "Epoch 1213/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0669\n", + "Epoch 1214/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0666\n", + "Epoch 1215/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0663\n", + "Epoch 1216/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0660\n", + "Epoch 1217/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0657\n", + "Epoch 1218/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0654\n", + "Epoch 1219/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0651\n", + "Epoch 1220/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0648\n", + "Epoch 1221/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0645\n", + "Epoch 1222/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0642\n", + "Epoch 1223/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0639\n", + "Epoch 1224/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0636\n", + "Epoch 1225/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0634\n", + "Epoch 1226/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0631\n", + "Epoch 1227/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0628\n", + "Epoch 1228/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0625\n", + "Epoch 1229/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0622\n", + "Epoch 1230/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0620\n", + "Epoch 1231/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0617\n", + "Epoch 1232/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0614\n", + "Epoch 1233/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0611\n", + "Epoch 1234/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0609\n", + "Epoch 1235/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0606\n", + "Epoch 1236/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0603\n", + "Epoch 1237/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0601\n", + "Epoch 1238/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0598\n", + "Epoch 1239/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0595\n", + "Epoch 1240/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0593\n", + "Epoch 1241/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0590\n", + "Epoch 1242/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0587\n", + "Epoch 1243/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0585\n", + "Epoch 1244/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0582\n", + "Epoch 1245/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0579\n", + "Epoch 1246/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0577\n", + "Epoch 1247/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0574\n", + "Epoch 1248/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0572\n", + "Epoch 1249/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0569\n", + "Epoch 1250/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0567\n", + "Epoch 1251/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0564\n", + "Epoch 1252/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0562\n", + "Epoch 1253/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0559\n", + "Epoch 1254/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0557\n", + "Epoch 1255/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0554\n", + "Epoch 1256/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0552\n", + "Epoch 1257/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0549\n", + "Epoch 1258/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0547\n", + "Epoch 1259/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0544\n", + "Epoch 1260/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0542\n", + "Epoch 1261/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0540\n", + "Epoch 1262/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0537\n", + "Epoch 1263/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0535\n", + "Epoch 1264/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0532\n", + "Epoch 1265/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0530\n", + "Epoch 1266/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0528\n", + "Epoch 1267/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0525\n", + "Epoch 1268/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0523\n", + "Epoch 1269/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0521\n", + "Epoch 1270/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0518\n", + "Epoch 1271/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0516\n", + "Epoch 1272/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0514\n", + "Epoch 1273/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0512\n", + "Epoch 1274/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0509\n", + "Epoch 1275/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0507\n", + "Epoch 1276/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0505\n", + "Epoch 1277/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0503\n", + "Epoch 1278/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0500\n", + "Epoch 1279/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0498\n", + "Epoch 1280/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step - loss: 0.0496\n", + "Epoch 1281/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0494\n", + "Epoch 1282/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0492\n", + "Epoch 1283/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0490\n", + "Epoch 1284/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0487\n", + "Epoch 1285/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0485\n", + "Epoch 1286/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0483\n", + "Epoch 1287/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0481\n", + "Epoch 1288/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0479\n", + "Epoch 1289/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0477\n", + "Epoch 1290/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0475\n", + "Epoch 1291/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0473\n", + "Epoch 1292/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0471\n", + "Epoch 1293/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0468\n", + "Epoch 1294/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0466\n", + "Epoch 1295/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0464\n", + "Epoch 1296/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0462\n", + "Epoch 1297/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0460\n", + "Epoch 1298/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0458\n", + "Epoch 1299/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0456\n", + "Epoch 1300/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0454\n", + "Epoch 1301/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0452\n", + "Epoch 1302/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0450\n", + "Epoch 1303/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0448\n", + "Epoch 1304/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0446\n", + "Epoch 1305/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0444\n", + "Epoch 1306/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0443\n", + "Epoch 1307/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0441\n", + "Epoch 1308/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - loss: 0.0439\n", + "Epoch 1309/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0437\n", + "Epoch 1310/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0435\n", + "Epoch 1311/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0433\n", + "Epoch 1312/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 293ms/step - loss: 0.0431\n", + "Epoch 1313/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0429\n", + "Epoch 1314/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0427\n", + "Epoch 1315/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0426\n", + "Epoch 1316/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0424\n", + "Epoch 1317/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0422\n", + "Epoch 1318/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0420\n", + "Epoch 1319/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0418\n", + "Epoch 1320/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0416\n", + "Epoch 1321/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0415\n", + "Epoch 1322/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0413\n", + "Epoch 1323/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0411\n", + "Epoch 1324/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0409\n", + "Epoch 1325/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0408\n", + "Epoch 1326/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0406\n", + "Epoch 1327/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0404\n", + "Epoch 1328/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0402\n", + "Epoch 1329/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0401\n", + "Epoch 1330/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0399\n", + "Epoch 1331/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0397\n", + "Epoch 1332/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0395\n", + "Epoch 1333/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0394\n", + "Epoch 1334/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0392\n", + "Epoch 1335/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0390\n", + "Epoch 1336/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0389\n", + "Epoch 1337/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - loss: 0.0387\n", + "Epoch 1338/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0385\n", + "Epoch 1339/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0384\n", + "Epoch 1340/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0382\n", + "Epoch 1341/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0381\n", + "Epoch 1342/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0379\n", + "Epoch 1343/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0377\n", + "Epoch 1344/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0376\n", + "Epoch 1345/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0374\n", + "Epoch 1346/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0372\n", + "Epoch 1347/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0371\n", + "Epoch 1348/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0369\n", + "Epoch 1349/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0368\n", + "Epoch 1350/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0366\n", + "Epoch 1351/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0365\n", + "Epoch 1352/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0363\n", + "Epoch 1353/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0362\n", + "Epoch 1354/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0360\n", + "Epoch 1355/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0359\n", + "Epoch 1356/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0357\n", + "Epoch 1357/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0356\n", + "Epoch 1358/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0354\n", + "Epoch 1359/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0353\n", + "Epoch 1360/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0351\n", + "Epoch 1361/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0350\n", + "Epoch 1362/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0348\n", + "Epoch 1363/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0347\n", + "Epoch 1364/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0345\n", + "Epoch 1365/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0344\n", + "Epoch 1366/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0342\n", + "Epoch 1367/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0341\n", + "Epoch 1368/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0340\n", + "Epoch 1369/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0338\n", + "Epoch 1370/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0337\n", + "Epoch 1371/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0335\n", + "Epoch 1372/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0334\n", + "Epoch 1373/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0333\n", + "Epoch 1374/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0331\n", + "Epoch 1375/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0330\n", + "Epoch 1376/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0328\n", + "Epoch 1377/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0327\n", + "Epoch 1378/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0326\n", + "Epoch 1379/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0324\n", + "Epoch 1380/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0323\n", + "Epoch 1381/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0322\n", + "Epoch 1382/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0320\n", + "Epoch 1383/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0319\n", + "Epoch 1384/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0318\n", + "Epoch 1385/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0317\n", + "Epoch 1386/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0315\n", + "Epoch 1387/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0314\n", + "Epoch 1388/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0313\n", + "Epoch 1389/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0311\n", + "Epoch 1390/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0310\n", + "Epoch 1391/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0309\n", + "Epoch 1392/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0308\n", + "Epoch 1393/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0306\n", + "Epoch 1394/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0305\n", + "Epoch 1395/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0304\n", + "Epoch 1396/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0303\n", + "Epoch 1397/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0301\n", + "Epoch 1398/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0300\n", + "Epoch 1399/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0299\n", + "Epoch 1400/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0298\n", + "Epoch 1401/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0297\n", + "Epoch 1402/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step - loss: 0.0295\n", + "Epoch 1403/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0294\n", + "Epoch 1404/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0293\n", + "Epoch 1405/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0292\n", + "Epoch 1406/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0291\n", + "Epoch 1407/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0290\n", + "Epoch 1408/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0288\n", + "Epoch 1409/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0287\n", + "Epoch 1410/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0286\n", + "Epoch 1411/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0285\n", + "Epoch 1412/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0284\n", + "Epoch 1413/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0283\n", + "Epoch 1414/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0282\n", + "Epoch 1415/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0281\n", + "Epoch 1416/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0279\n", + "Epoch 1417/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0278\n", + "Epoch 1418/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0277\n", + "Epoch 1419/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0276\n", + "Epoch 1420/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0275\n", + "Epoch 1421/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0274\n", + "Epoch 1422/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0273\n", + "Epoch 1423/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0272\n", + "Epoch 1424/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0271\n", + "Epoch 1425/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0270\n", + "Epoch 1426/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0269\n", + "Epoch 1427/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0268\n", + "Epoch 1428/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0267\n", + "Epoch 1429/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step - loss: 0.0266\n", + "Epoch 1430/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0265\n", + "Epoch 1431/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0264\n", + "Epoch 1432/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0263\n", + "Epoch 1433/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0262\n", + "Epoch 1434/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0261\n", + "Epoch 1435/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0260\n", + "Epoch 1436/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0259\n", + "Epoch 1437/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0258\n", + "Epoch 1438/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0257\n", + "Epoch 1439/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0256\n", + "Epoch 1440/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0255\n", + "Epoch 1441/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0254\n", + "Epoch 1442/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.0253\n", + "Epoch 1443/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0252\n", + "Epoch 1444/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0251\n", + "Epoch 1445/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0250\n", + "Epoch 1446/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0249\n", + "Epoch 1447/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0248\n", + "Epoch 1448/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step - loss: 0.0247\n", + "Epoch 1449/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0246\n", + "Epoch 1450/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0245\n", + "Epoch 1451/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0244\n", + "Epoch 1452/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0243\n", + "Epoch 1453/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0243\n", + "Epoch 1454/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0242\n", + "Epoch 1455/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0241\n", + "Epoch 1456/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0240\n", + "Epoch 1457/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 274ms/step - loss: 0.0239\n", + "Epoch 1458/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0238\n", + "Epoch 1459/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0237\n", + "Epoch 1460/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0236\n", + "Epoch 1461/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0236\n", + "Epoch 1462/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0235\n", + "Epoch 1463/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0234\n", + "Epoch 1464/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0233\n", + "Epoch 1465/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0232\n", + "Epoch 1466/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0231\n", + "Epoch 1467/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0230\n", + "Epoch 1468/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - loss: 0.0230\n", + "Epoch 1469/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0229\n", + "Epoch 1470/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0228\n", + "Epoch 1471/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0227\n", + "Epoch 1472/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0226\n", + "Epoch 1473/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0226\n", + "Epoch 1474/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0225\n", + "Epoch 1475/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0224\n", + "Epoch 1476/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0223\n", + "Epoch 1477/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0222\n", + "Epoch 1478/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0222\n", + "Epoch 1479/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0221\n", + "Epoch 1480/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0220\n", + "Epoch 1481/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0219\n", + "Epoch 1482/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0218\n", + "Epoch 1483/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0218\n", + "Epoch 1484/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0217\n", + "Epoch 1485/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0216\n", + "Epoch 1486/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0215\n", + "Epoch 1487/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0215\n", + "Epoch 1488/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0214\n", + "Epoch 1489/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0213\n", + "Epoch 1490/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0212\n", + "Epoch 1491/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0212\n", + "Epoch 1492/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0211\n", + "Epoch 1493/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0210\n", + "Epoch 1494/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0210\n", + "Epoch 1495/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0209\n", + "Epoch 1496/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0208\n", + "Epoch 1497/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0207\n", + "Epoch 1498/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0207\n", + "Epoch 1499/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0206\n", + "Epoch 1500/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0205\n", + "Epoch 1501/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0205\n", + "Epoch 1502/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0204\n", + "Epoch 1503/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0203\n", + "Epoch 1504/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0203\n", + "Epoch 1505/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0202\n", + "Epoch 1506/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0201\n", + "Epoch 1507/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0201\n", + "Epoch 1508/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0200\n", + "Epoch 1509/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0199\n", + "Epoch 1510/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0199\n", + "Epoch 1511/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0198\n", + "Epoch 1512/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0197\n", + "Epoch 1513/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0197\n", + "Epoch 1514/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0196\n", + "Epoch 1515/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0195\n", + "Epoch 1516/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0195\n", + "Epoch 1517/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0194\n", + "Epoch 1518/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0193\n", + "Epoch 1519/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0193\n", + "Epoch 1520/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0192\n", + "Epoch 1521/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0192\n", + "Epoch 1522/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0191\n", + "Epoch 1523/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0190\n", + "Epoch 1524/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0190\n", + "Epoch 1525/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0189\n", + "Epoch 1526/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0189\n", + "Epoch 1527/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0188\n", + "Epoch 1528/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0187\n", + "Epoch 1529/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0187\n", + "Epoch 1530/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0186\n", + "Epoch 1531/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0186\n", + "Epoch 1532/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0185\n", + "Epoch 1533/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0184\n", + "Epoch 1534/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0184\n", + "Epoch 1535/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0183\n", + "Epoch 1536/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0183\n", + "Epoch 1537/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0182\n", + "Epoch 1538/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0182\n", + "Epoch 1539/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0181\n", + "Epoch 1540/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0181\n", + "Epoch 1541/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0180\n", + "Epoch 1542/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0179\n", + "Epoch 1543/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0179\n", + "Epoch 1544/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0178\n", + "Epoch 1545/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - loss: 0.0178\n", + "Epoch 1546/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0177\n", + "Epoch 1547/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0177\n", + "Epoch 1548/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0176\n", + "Epoch 1549/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0176\n", + "Epoch 1550/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0175\n", + "Epoch 1551/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0175\n", + "Epoch 1552/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0174\n", + "Epoch 1553/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0174\n", + "Epoch 1554/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0173\n", + "Epoch 1555/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 173ms/step - loss: 0.0173\n", + "Epoch 1556/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0172\n", + "Epoch 1557/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0172\n", + "Epoch 1558/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0171\n", + "Epoch 1559/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0171\n", + "Epoch 1560/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0170\n", + "Epoch 1561/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 284ms/step - loss: 0.0170\n", + "Epoch 1562/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0169\n", + "Epoch 1563/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0169\n", + "Epoch 1564/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0168\n", + "Epoch 1565/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0168\n", + "Epoch 1566/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0167\n", + "Epoch 1567/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0167\n", + "Epoch 1568/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0166\n", + "Epoch 1569/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0166\n", + "Epoch 1570/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0165\n", + "Epoch 1571/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0165\n", + "Epoch 1572/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0164\n", + "Epoch 1573/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0164\n", + "Epoch 1574/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0164\n", + "Epoch 1575/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 321ms/step - loss: 0.0163\n", + "Epoch 1576/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0163\n", + "Epoch 1577/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0162\n", + "Epoch 1578/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0162\n", + "Epoch 1579/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0161\n", + "Epoch 1580/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0161\n", + "Epoch 1581/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step - loss: 0.0161\n", + "Epoch 1582/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0160\n", + "Epoch 1583/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0160\n", + "Epoch 1584/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0159\n", + "Epoch 1585/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0159\n", + "Epoch 1586/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0158\n", + "Epoch 1587/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0158\n", + "Epoch 1588/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0158\n", + "Epoch 1589/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0157\n", + "Epoch 1590/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0157\n", + "Epoch 1591/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0156\n", + "Epoch 1592/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0156\n", + "Epoch 1593/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0156\n", + "Epoch 1594/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0155\n", + "Epoch 1595/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0155\n", + "Epoch 1596/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0154\n", + "Epoch 1597/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step - loss: 0.0154\n", + "Epoch 1598/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0154\n", + "Epoch 1599/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0153\n", + "Epoch 1600/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0153\n", + "Epoch 1601/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0152\n", + "Epoch 1602/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0152\n", + "Epoch 1603/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0152\n", + "Epoch 1604/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0151\n", + "Epoch 1605/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0151\n", + "Epoch 1606/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0150\n", + "Epoch 1607/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0150\n", + "Epoch 1608/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0150\n", + "Epoch 1609/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0149\n", + "Epoch 1610/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0149\n", + "Epoch 1611/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0149\n", + "Epoch 1612/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0148\n", + "Epoch 1613/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0148\n", + "Epoch 1614/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0148\n", + "Epoch 1615/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0147\n", + "Epoch 1616/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0147\n", + "Epoch 1617/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0147\n", + "Epoch 1618/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0146\n", + "Epoch 1619/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0146\n", + "Epoch 1620/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0146\n", + "Epoch 1621/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0145\n", + "Epoch 1622/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0145\n", + "Epoch 1623/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0145\n", + "Epoch 1624/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0144\n", + "Epoch 1625/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0144\n", + "Epoch 1626/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0144\n", + "Epoch 1627/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0143\n", + "Epoch 1628/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0143\n", + "Epoch 1629/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0143\n", + "Epoch 1630/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0142\n", + "Epoch 1631/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0142\n", + "Epoch 1632/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0142\n", + "Epoch 1633/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0141\n", + "Epoch 1634/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0141\n", + "Epoch 1635/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0141\n", + "Epoch 1636/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0140\n", + "Epoch 1637/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0140\n", + "Epoch 1638/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0140\n", + "Epoch 1639/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0139\n", + "Epoch 1640/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0139\n", + "Epoch 1641/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0139\n", + "Epoch 1642/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0139\n", + "Epoch 1643/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0138\n", + "Epoch 1644/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0138\n", + "Epoch 1645/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0138\n", + "Epoch 1646/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0137\n", + "Epoch 1647/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0137\n", + "Epoch 1648/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0137\n", + "Epoch 1649/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0137\n", + "Epoch 1650/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0136\n", + "Epoch 1651/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0136\n", + "Epoch 1652/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0136\n", + "Epoch 1653/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0135\n", + "Epoch 1654/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0135\n", + "Epoch 1655/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0135\n", + "Epoch 1656/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0135\n", + "Epoch 1657/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0134\n", + "Epoch 1658/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0134\n", + "Epoch 1659/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0134\n", + "Epoch 1660/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0134\n", + "Epoch 1661/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0133\n", + "Epoch 1662/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0133\n", + "Epoch 1663/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0133\n", + "Epoch 1664/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0132\n", + "Epoch 1665/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0132\n", + "Epoch 1666/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0132\n", + "Epoch 1667/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0132\n", + "Epoch 1668/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0131\n", + "Epoch 1669/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0131\n", + "Epoch 1670/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0131\n", + "Epoch 1671/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0131\n", + "Epoch 1672/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0130\n", + "Epoch 1673/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0130\n", + "Epoch 1674/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0130\n", + "Epoch 1675/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0130\n", + "Epoch 1676/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0129\n", + "Epoch 1677/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0129\n", + "Epoch 1678/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0129\n", + "Epoch 1679/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0129\n", + "Epoch 1680/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0129\n", + "Epoch 1681/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0128\n", + "Epoch 1682/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0128\n", + "Epoch 1683/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0128\n", + "Epoch 1684/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0128\n", + "Epoch 1685/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0127\n", + "Epoch 1686/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0127\n", + "Epoch 1687/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0127\n", + "Epoch 1688/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0127\n", + "Epoch 1689/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0127\n", + "Epoch 1690/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0126\n", + "Epoch 1691/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0126\n", + "Epoch 1692/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0126\n", + "Epoch 1693/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0126\n", + "Epoch 1694/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0125\n", + "Epoch 1695/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0125\n", + "Epoch 1696/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0125\n", + "Epoch 1697/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0125\n", + "Epoch 1698/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0125\n", + "Epoch 1699/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0124\n", + "Epoch 1700/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.0124\n", + "Epoch 1701/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0124\n", + "Epoch 1702/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0124\n", + "Epoch 1703/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0124\n", + "Epoch 1704/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0123\n", + "Epoch 1705/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0123\n", + "Epoch 1706/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0123\n", + "Epoch 1707/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0123\n", + "Epoch 1708/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0123\n", + "Epoch 1709/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0122\n", + "Epoch 1710/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0122\n", + "Epoch 1711/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0122\n", + "Epoch 1712/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0122\n", + "Epoch 1713/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step - loss: 0.0122\n", + "Epoch 1714/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step - loss: 0.0121\n", + "Epoch 1715/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0121\n", + "Epoch 1716/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 307ms/step - loss: 0.0121\n", + "Epoch 1717/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0121\n", + "Epoch 1718/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0121\n", + "Epoch 1719/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0121\n", + "Epoch 1720/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0120\n", + "Epoch 1721/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0120\n", + "Epoch 1722/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0120\n", + "Epoch 1723/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0120\n", + "Epoch 1724/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0120\n", + "Epoch 1725/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0119\n", + "Epoch 1726/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0119\n", + "Epoch 1727/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0119\n", + "Epoch 1728/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0119\n", + "Epoch 1729/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 157ms/step - loss: 0.0119\n", + "Epoch 1730/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0119\n", + "Epoch 1731/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0118\n", + "Epoch 1732/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0118\n", + "Epoch 1733/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0118\n", + "Epoch 1734/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0118\n", + "Epoch 1735/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0118\n", + "Epoch 1736/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0118\n", + "Epoch 1737/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0117\n", + "Epoch 1738/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0117\n", + "Epoch 1739/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0117\n", + "Epoch 1740/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0117\n", + "Epoch 1741/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0117\n", + "Epoch 1742/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0117\n", + "Epoch 1743/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0117\n", + "Epoch 1744/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0116\n", + "Epoch 1745/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0116\n", + "Epoch 1746/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0116\n", + "Epoch 1747/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0116\n", + "Epoch 1748/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0116\n", + "Epoch 1749/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0116\n", + "Epoch 1750/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0116\n", + "Epoch 1751/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0115\n", + "Epoch 1752/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0115\n", + "Epoch 1753/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0115\n", + "Epoch 1754/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0115\n", + "Epoch 1755/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0115\n", + "Epoch 1756/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0115\n", + "Epoch 1757/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0115\n", + "Epoch 1758/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0114\n", + "Epoch 1759/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0114\n", + "Epoch 1760/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0114\n", + "Epoch 1761/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0114\n", + "Epoch 1762/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0114\n", + "Epoch 1763/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0114\n", + "Epoch 1764/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0114\n", + "Epoch 1765/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0113\n", + "Epoch 1766/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0113\n", + "Epoch 1767/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0113\n", + "Epoch 1768/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0113\n", + "Epoch 1769/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0113\n", + "Epoch 1770/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0113\n", + "Epoch 1771/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0113\n", + "Epoch 1772/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0113\n", + "Epoch 1773/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0112\n", + "Epoch 1774/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0112\n", + "Epoch 1775/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0112\n", + "Epoch 1776/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0112\n", + "Epoch 1777/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0112\n", + "Epoch 1778/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0112\n", + "Epoch 1779/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0112\n", + "Epoch 1780/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0112\n", + "Epoch 1781/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0111\n", + "Epoch 1782/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0111\n", + "Epoch 1783/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0111\n", + "Epoch 1784/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0111\n", + "Epoch 1785/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0111\n", + "Epoch 1786/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0111\n", + "Epoch 1787/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0111\n", + "Epoch 1788/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0111\n", + "Epoch 1789/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0111\n", + "Epoch 1790/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0110\n", + "Epoch 1791/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0110\n", + "Epoch 1792/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0110\n", + "Epoch 1793/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0110\n", + "Epoch 1794/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0110\n", + "Epoch 1795/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0110\n", + "Epoch 1796/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0110\n", + "Epoch 1797/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0110\n", + "Epoch 1798/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0110\n", + "Epoch 1799/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0109\n", + "Epoch 1800/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0109\n", + "Epoch 1801/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0109\n", + "Epoch 1802/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0109\n", + "Epoch 1803/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0109\n", + "Epoch 1804/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0109\n", + "Epoch 1805/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0109\n", + "Epoch 1806/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0109\n", + "Epoch 1807/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0109\n", + "Epoch 1808/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0109\n", + "Epoch 1809/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0108\n", + "Epoch 1810/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0108\n", + "Epoch 1811/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0108\n", + "Epoch 1812/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0108\n", + "Epoch 1813/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0108\n", + "Epoch 1814/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0108\n", + "Epoch 1815/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0108\n", + "Epoch 1816/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0108\n", + "Epoch 1817/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - loss: 0.0108\n", + "Epoch 1818/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step - loss: 0.0108\n", + "Epoch 1819/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0107\n", + "Epoch 1820/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0107\n", + "Epoch 1821/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0107\n", + "Epoch 1822/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0107\n", + "Epoch 1823/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step - loss: 0.0107\n", + "Epoch 1824/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0107\n", + "Epoch 1825/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0107\n", + "Epoch 1826/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0107\n", + "Epoch 1827/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step - loss: 0.0107\n", + "Epoch 1828/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0107\n", + "Epoch 1829/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0107\n", + "Epoch 1830/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0107\n", + "Epoch 1831/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0106\n", + "Epoch 1832/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0106\n", + "Epoch 1833/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0106\n", + "Epoch 1834/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 179ms/step - loss: 0.0106\n", + "Epoch 1835/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0106\n", + "Epoch 1836/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step - loss: 0.0106\n", + "Epoch 1837/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0106\n", + "Epoch 1838/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 155ms/step - loss: 0.0106\n", + "Epoch 1839/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - loss: 0.0106\n", + "Epoch 1840/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 286ms/step - loss: 0.0106\n", + "Epoch 1841/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0106\n", + "Epoch 1842/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0106\n", + "Epoch 1843/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0106\n", + "Epoch 1844/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0105\n", + "Epoch 1845/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0105\n", + "Epoch 1846/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0105\n", + "Epoch 1847/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0105\n", + "Epoch 1848/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0105\n", + "Epoch 1849/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0105\n", + "Epoch 1850/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0105\n", + "Epoch 1851/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0105\n", + "Epoch 1852/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0105\n", + "Epoch 1853/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0105\n", + "Epoch 1854/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0105\n", + "Epoch 1855/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0105\n", + "Epoch 1856/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0105\n", + "Epoch 1857/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 128ms/step - loss: 0.0104\n", + "Epoch 1858/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0104\n", + "Epoch 1859/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0104\n", + "Epoch 1860/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0104\n", + "Epoch 1861/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0104\n", + "Epoch 1862/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0104\n", + "Epoch 1863/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0104\n", + "Epoch 1864/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0104\n", + "Epoch 1865/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0104\n", + "Epoch 1866/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0104\n", + "Epoch 1867/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0104\n", + "Epoch 1868/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0104\n", + "Epoch 1869/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0104\n", + "Epoch 1870/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0104\n", + "Epoch 1871/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0104\n", + "Epoch 1872/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0104\n", + "Epoch 1873/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0103\n", + "Epoch 1874/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1875/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0103\n", + "Epoch 1876/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0103\n", + "Epoch 1877/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0103\n", + "Epoch 1878/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0103\n", + "Epoch 1879/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0103\n", + "Epoch 1880/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0103\n", + "Epoch 1881/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0103\n", + "Epoch 1882/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1883/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0103\n", + "Epoch 1884/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0103\n", + "Epoch 1885/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0103\n", + "Epoch 1886/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0103\n", + "Epoch 1887/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0103\n", + "Epoch 1888/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0103\n", + "Epoch 1889/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0103\n", + "Epoch 1890/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0102\n", + "Epoch 1891/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - loss: 0.0102\n", + "Epoch 1892/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0102\n", + "Epoch 1893/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0102\n", + "Epoch 1894/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0102\n", + "Epoch 1895/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step - loss: 0.0102\n", + "Epoch 1896/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step - loss: 0.0102\n", + "Epoch 1897/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0102\n", + "Epoch 1898/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0102\n", + "Epoch 1899/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0102\n", + "Epoch 1900/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0102\n", + "Epoch 1901/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1902/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1903/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0102\n", + "Epoch 1904/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0102\n", + "Epoch 1905/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0102\n", + "Epoch 1906/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0102\n", + "Epoch 1907/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0102\n", + "Epoch 1908/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0102\n", + "Epoch 1909/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0102\n", + "Epoch 1910/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1911/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1912/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0101\n", + "Epoch 1913/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0101\n", + "Epoch 1914/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0101\n", + "Epoch 1915/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1916/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0101\n", + "Epoch 1917/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0101\n", + "Epoch 1918/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1919/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0101\n", + "Epoch 1920/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0101\n", + "Epoch 1921/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0101\n", + "Epoch 1922/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0101\n", + "Epoch 1923/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0101\n", + "Epoch 1924/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 67ms/step - loss: 0.0101\n", + "Epoch 1925/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step - loss: 0.0101\n", + "Epoch 1926/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1927/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0101\n", + "Epoch 1928/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0101\n", + "Epoch 1929/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0101\n", + "Epoch 1930/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0101\n", + "Epoch 1931/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0101\n", + "Epoch 1932/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0101\n", + "Epoch 1933/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0101\n", + "Epoch 1934/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0100\n", + "Epoch 1935/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0100\n", + "Epoch 1936/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0100\n", + "Epoch 1937/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0100\n", + "Epoch 1938/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0100\n", + "Epoch 1939/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step - loss: 0.0100\n", + "Epoch 1940/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0100\n", + "Epoch 1941/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0100\n", + "Epoch 1942/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0100\n", + "Epoch 1943/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0100\n", + "Epoch 1944/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0100\n", + "Epoch 1945/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0100\n", + "Epoch 1946/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0100\n", + "Epoch 1947/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0100\n", + "Epoch 1948/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0100\n", + "Epoch 1949/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0100\n", + "Epoch 1950/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step - loss: 0.0100\n", + "Epoch 1951/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0100\n", + "Epoch 1952/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 181ms/step - loss: 0.0100\n", + "Epoch 1953/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 168ms/step - loss: 0.0100\n", + "Epoch 1954/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 131ms/step - loss: 0.0100\n", + "Epoch 1955/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0100\n", + "Epoch 1956/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0100\n", + "Epoch 1957/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0100\n", + "Epoch 1958/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0100\n", + "Epoch 1959/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0100\n", + "Epoch 1960/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0100\n", + "Epoch 1961/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 153ms/step - loss: 0.0100\n", + "Epoch 1962/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0100\n", + "Epoch 1963/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step - loss: 0.0099\n", + "Epoch 1964/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0099\n", + "Epoch 1965/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 194ms/step - loss: 0.0099\n", + "Epoch 1966/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step - loss: 0.0099\n", + "Epoch 1967/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0099\n", + "Epoch 1968/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step - loss: 0.0099\n", + "Epoch 1969/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0099\n", + "Epoch 1970/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0099\n", + "Epoch 1971/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0099\n", + "Epoch 1972/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0099\n", + "Epoch 1973/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0099\n", + "Epoch 1974/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step - loss: 0.0099\n", + "Epoch 1975/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 184ms/step - loss: 0.0099\n", + "Epoch 1976/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0099\n", + "Epoch 1977/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step - loss: 0.0099\n", + "Epoch 1978/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0099\n", + "Epoch 1979/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step - loss: 0.0099\n", + "Epoch 1980/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0099\n", + "Epoch 1981/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0099\n", + "Epoch 1982/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0099\n", + "Epoch 1983/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0099\n", + "Epoch 1984/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0099\n", + "Epoch 1985/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0099\n", + "Epoch 1986/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0099\n", + "Epoch 1987/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0099\n", + "Epoch 1988/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0099\n", + "Epoch 1989/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0099\n", + "Epoch 1990/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0099\n", + "Epoch 1991/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0099\n", + "Epoch 1992/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0099\n", + "Epoch 1993/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0099\n", + "Epoch 1994/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0099\n", + "Epoch 1995/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0099\n", + "Epoch 1996/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0099\n", + "Epoch 1997/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0099\n", + "Epoch 1998/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 133ms/step - loss: 0.0099\n", + "Epoch 1999/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 143ms/step - loss: 0.0099\n", + "Epoch 2000/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0098\n", + "Epoch 2000/3000\n", + " - loss: 0.0098\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0098\n", + "Epoch 2001/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0098\n", + "Epoch 2002/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0098\n", + "Epoch 2003/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0098\n", + "Epoch 2004/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0098\n", + "Epoch 2005/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0098\n", + "Epoch 2006/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0098\n", + "Epoch 2007/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 2008/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - loss: 0.0098\n", + "Epoch 2009/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 2010/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0098\n", + "Epoch 2011/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0098\n", + "Epoch 2012/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0098\n", + "Epoch 2013/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0098\n", + "Epoch 2014/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step - loss: 0.0098\n", + "Epoch 2015/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0098\n", + "Epoch 2016/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0098\n", + "Epoch 2017/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0098\n", + "Epoch 2018/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0098\n", + "Epoch 2019/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0098\n", + "Epoch 2020/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 2021/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0098\n", + "Epoch 2022/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0098\n", + "Epoch 2023/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0098\n", + "Epoch 2024/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0098\n", + "Epoch 2025/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 81ms/step - loss: 0.0098\n", + "Epoch 2026/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0098\n", + "Epoch 2027/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 77ms/step - loss: 0.0098\n", + "Epoch 2028/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0098\n", + "Epoch 2029/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0098\n", + "Epoch 2030/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step - loss: 0.0098\n", + "Epoch 2031/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0098\n", + "Epoch 2032/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0098\n", + "Epoch 2033/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step - loss: 0.0098\n", + "Epoch 2034/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step - loss: 0.0098\n", + "Epoch 2035/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0098\n", + "Epoch 2036/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0098\n", + "Epoch 2037/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step - loss: 0.0098\n", + "Epoch 2038/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0098\n", + "Epoch 2039/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0098\n", + "Epoch 2040/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0098\n", + "Epoch 2041/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0098\n", + "Epoch 2042/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0098\n", + "Epoch 2043/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0098\n", + "Epoch 2044/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0098\n", + "Epoch 2045/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0098\n", + "Epoch 2046/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step - loss: 0.0098\n", + "Epoch 2047/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0098\n", + "Epoch 2048/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step - loss: 0.0098\n", + "Epoch 2049/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 83ms/step - loss: 0.0098\n", + "Epoch 2050/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 86ms/step - loss: 0.0098\n", + "Epoch 2051/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0098\n", + "Epoch 2052/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0098\n", + "Epoch 2053/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - loss: 0.0098\n", + "Epoch 2054/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0097\n", + "Epoch 2055/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 142ms/step - loss: 0.0097\n", + "Epoch 2056/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0097\n", + "Epoch 2057/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step - loss: 0.0097\n", + "Epoch 2058/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 138ms/step - loss: 0.0097\n", + "Epoch 2059/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 88ms/step - loss: 0.0097\n", + "Epoch 2060/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0097\n", + "Epoch 2061/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0097\n", + "Epoch 2062/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step - loss: 0.0097\n", + "Epoch 2063/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0097\n", + "Epoch 2064/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0097\n", + "Epoch 2065/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 145ms/step - loss: 0.0097\n", + "Epoch 2066/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - loss: 0.0097\n", + "Epoch 2067/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step - loss: 0.0097\n", + "Epoch 2068/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 136ms/step - loss: 0.0097\n", + "Epoch 2069/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step - loss: 0.0097\n", + "Epoch 2070/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step - loss: 0.0097\n", + "Epoch 2071/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step - loss: 0.0097\n", + "Epoch 2072/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step - loss: 0.0097\n", + "Epoch 2073/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0097\n", + "Epoch 2074/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0097\n", + "Epoch 2075/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0097\n", + "Epoch 2076/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 91ms/step - loss: 0.0097\n", + "Epoch 2077/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0097\n", + "Epoch 2078/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step - loss: 0.0097\n", + "Epoch 2079/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step - loss: 0.0097\n", + "Epoch 2080/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step - loss: 0.0097\n", + "Epoch 2081/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0097\n", + "Epoch 2082/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 177ms/step - loss: 0.0097\n", + "Epoch 2083/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 305ms/step - loss: 0.0097\n", + "Epoch 2084/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0097\n", + "Epoch 2085/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 267ms/step - loss: 0.0097\n", + "Epoch 2086/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 146ms/step - loss: 0.0097\n", + "Epoch 2087/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step - loss: 0.0097\n", + "Epoch 2088/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - loss: 0.0097\n", + "Epoch 2089/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step - loss: 0.0097\n", + "Epoch 2090/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0097\n", + "Epoch 2091/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 148ms/step - loss: 0.0097\n", + "Epoch 2092/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 278ms/step - loss: 0.0097\n", + "Epoch 2093/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step - loss: 0.0097\n", + "Epoch 2094/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - loss: 0.0097\n", + "Epoch 2095/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0097\n", + "Epoch 2096/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step - loss: 0.0097\n", + "Epoch 2097/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - loss: 0.0097\n", + "Epoch 2098/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step - loss: 0.0097\n", + "Epoch 2099/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step - loss: 0.0097\n", + "Epoch 2100/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 2101/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step - loss: 0.0097\n", + "Epoch 2102/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0097\n", + "Epoch 2103/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - loss: 0.0097\n", + "Epoch 2104/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step - loss: 0.0097\n", + "Epoch 2105/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step - loss: 0.0097\n", + "Epoch 2106/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step - loss: 0.0097\n", + "Epoch 2107/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 160ms/step - loss: 0.0097\n", + "Epoch 2108/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step - loss: 0.0097\n", + "Epoch 2109/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step - loss: 0.0097\n", + "Epoch 2110/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 129ms/step - loss: 0.0097\n", + "Epoch 2111/3000\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 144ms/step - loss: 0.0097\n", + "Epoch 2111: early stopping\n", + "Restoring model weights from the end of the best epoch: 1611.\n", + "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xe4FOXZx/HfnnMogmAjiiJKLLHGHtTYo0g0JtFoosRKotEoihLfRFPsJcYaFTVWNNbEGGOiUQmCFcWGFRUbghRBejt13z/W3TM7Z3qf3e/nurjYszvlmT5zz/08T6FYLBYFAAAAAAAAABnRkHYBAAAAAAAAAMCIoCUAAAAAAACATCFoCQAAAAAAACBTCFoCAAAAAAAAyBSClgAAAAAAAAAyhaAlAAAAAAAAgEwhaAkAAAAAAAAgUwhaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAqBlTpkzRySefrC233FJ9+vRRoVCo/Pv000/TLl5dGjNmTGUbHHfccYnO27j9AQAAkC8ELQEAyLm99967Epg577zzbIczBnDM/xobG7X66qtr00031Y9//GPdeuutWrp0aaAy+P0XVSDrkUce0fbbb68bb7xRU6ZM8VV+APjf//5XdW7aYostfE/jvPPOC3wuHDRokO10ly1bpv/85z8644wztNdee2nddddVjx491Lt3b2244YY6+OCD9Ze//EXLli0LsQYAAMgWgpYAAEAdHR1atGiRPvzwQz344IM64YQT9PWvf13//Oc/0y6aJ0uXLtVxxx2n5uZmSdK6666rH//4xzr55JN1yimn6JRTTlHfvn1TLmVwxkCIU2AayLJBgwZlOvP5zjvvrPr7vffe06RJk1IqTaejjjpKa6+9tr7//e/rmmuu0TPPPKPZs2erpaVFy5cv12effaZ//etfOumkkzRo0CA99NBDaRcZAIBINKVdAAAAkLyDDz5YAwYMqPzd0dGhefPmaeLEiZoxY4Ykad68eTrssMP04IMP6pBDDvE87W9961saPHiw5+F32WUX7wW38Z///EcLFiyQJG211VZ6+eWXtcoqq4SeLoD6sGTJEstg35133unrfGa03nrr+Tp3rrXWWpbfP/jgg5UXMpK0xhpraPDgwVpvvfVULBY1ZcoUTZo0ScViUfPmzdOhhx6qG2+8USeddFKgcgMAkBUELQEAqEMjR47U3nvv3eX7jo4O3XnnnfrlL3+p5uZmdXR06Je//KWGDh2qXr16eZr2gQcemHg24GuvvVb5PGzYMAKWGXLccccl3pZlWbFYTGW+yJ8HH3xQy5cvlyStssoqWrFihSTp/vvv19VXX63u3bv7nuamm26q66+/PpLy9erVS8OGDdPPfvYz7bLLLmpoqK4w98477+ioo47S5MmTJUkjRozQbrvtpm9+85uRzB8AgDRQPRwAAFQ0NDRo+PDh+tOf/lT5bs6cOXr44YfTK5QH5SxLqVQ1HAD8MFYN/81vfqN11llHkjR//nz9+9//TqtYkqRTTz1VH3/8sW699VZ9+9vf7hKwlEoZ5k899ZQ23HBDSVJ7e7suueSSpIsKAECkCFoCAIAuTjzxRPXs2bPy9zPPPJNiady1trZWPls90AOAnU8//bRyjisUCjr22GM1bNiwyu/mti6Tdvnll1eCqE7WWGMN/eY3v6n8/dhjj8VZLAAAYsddPQAA6KJHjx5VPefOnDkzxdJYM3ZOYwwqDB8+vEuvvGPGjLGcxtKlS3Xttddq6NChWn/99dWzZ0+tscYa2nrrrTVixAi99NJLnspinFfZG2+8oZEjR2rrrbfWmmuuqUKhoIMPPtjXMpZ7ZT///PMr351//vmeemE/7rjjuiz/woUL9ec//1l77rmnBgwYoKamJhUKBS1cuLBq3C+++EJ33HGHjj32WG2//fZac8011a1bN62++urafPPNNXz4cD3xxBOelmHMmDGuPcVPmDChMoyx2YKnnnpKRxxxhDbaaCP17NlTa621lvbcc09df/31VYFqO1bbxcyqc5gZM2boD3/4g7bddlutvvrq6t27tzbffHOdeuqpmjZtmqflLhs7dqyOOOIIbbDBBurZs6fWXXdd7bHHHho9enSlp+c4OlqaN2+errjiCu23335ab7311LNnz8o23GqrrXTYYYfpqquu0ieffOJpeuPGjdNJJ52krbbaSmuuuaZ69Oih9dZbT0OHDtX1119fqU5t9umnn1aWzbjuvv71r1vuxxMmTIhi8X256667Kk0J7L777ho0aJCOPvroyu///e9/9cUXXyReriB22223yufFixdr/vz5KZYGAIBwaNMSAABYMrYLuXLlyhRLEo///Oc/OuGEEzR79uyq75ubm7Vw4UK98847Gj16tH7605/qlltu8dymp1QKQl100UVqb2+PutiBPf/88xo2bJimT5/uONy1116rUaNGWZZ90aJFWrRokd5//32NGTNG3/nOd/S3v/3NtgORoFpaWjRixAjdcsstVd83Nzfr2Wef1bPPPqs77rhDTzzxhPr16xfpvB9++GEdd9xxWrRoUdX377//vt5//33ddttt+vvf/67vfe97rsvw85//XHfffXfV97Nnz9bs2bP13HPPafTo0frnP/8Zafkl6V//+peGDx9e1WxCWXkbvvvuu/rHP/6hq666qtL5lpXp06frmGOOsQwmzpo1S7NmzdKTTz6pSy+9VPfff7/22GOPKBclEXfddVflczlYucMOO2irrbbSO++8o7a2Nt177706/fTTUyqhd+YAfZbOQQAA+EXQEgAAWDJmV3qpmpi0wYMH65RTTpFUygJ77733JEn77ruvNt9886phjVmjkvTAAw/oyCOPrDzQNzY2avfdd9cmm2yipUuX6tlnn60s/7333qtPPvlETz31VFWVeTuXX355JTNy44031uDBg9WrVy99+umn6tatm69lPOSQQ7T11ltr0qRJevnllyXZ987u1Av7hx9+qNNPP12LFi1Snz59tOeee2q99dbTggULulT9nzlzZmW9bLTRRtpiiy30ta99TT179tTChQv11ltv6Z133pFUyoTcb7/99OKLL6pHjx6+ls3JL37xC915551qaGjQzjvvrM0331wdHR168cUX9f7770sqdb50zDHHRFoF9n//+59OOukktbe3a4MNNtCuu+6qvn376pNPPtGECRPU1tamFStW6Cc/+Ynefvttff3rX7ed1rBhw6p6o15zzTW19957a80119T06dP19NNPa8qUKfre976nH/zgB5EtwyuvvKLDDjtMbW1tkkovH3bZZRcNGjRIPXr00OLFi/XRRx/prbfeqnQ8Y2fKlCnad999NWvWLEmlgNgOO+ygLbfcUqussoo+//xzPfPMM1qyZIlmzpypIUOG6L///a/22WefyjT69u1bOU7vuusuLVmyRJJ0zDHHqE+fPl3mOWDAgEjWg1fPPfecPvroI0mlDPMf//jHld+OPvponXXWWZJKVcTzELR86623Kp9XWWWVyIP6AAAkqggAAHJtr732KkoqSiqee+65tsOVh5FUHD9+vOM033///arhr7/++kjKEJdjjz22Mv877rjDcdgPP/ywuOqqq1aGHzx4cHHq1KlVw7S3txevvPLKYkNDQ2W4U0891XaaxnXV1NRUXG211Yr//Oc/uwy3cuXKIItXPPfcc32vX+M6aWpqKkoqnnLKKcUlS5ZUDdfS0lJsb2+v/H3bbbcVr7vuuuKMGTNsp/3GG28Ud9ppp8r0L7zwQtth77jjjspwxx57rOUw48ePrwzTo0ePoqTit771reKUKVOqhuvo6Chec801Vev76aeftp23cTg7G264YdW8e/fuXfzrX/9a7OjoqBru7bffLg4YMKAy7PDhw22neeutt1bN+1e/+lWXbT9nzpziAQccULXMURw/Bx98cGVahx56aHH+/PmWw61YsaL46KOPFk888UTL35cuXVrcYostKtM64IADih9++GGX4RYtWlT85S9/WRlu3XXXLS5cuNBymsZ1/cknnwRexigdf/zxlTIddthhVb9Nnz696hzwxhtvuE7PeKzutddeMZXa3pAhQyrz/973vpf4/AEAiBKZlgAAoEpbW5tGjhxZ+btv37464ogjPI//2GOPad68eZ6Hv+CCC7Tmmmv6KmMYF1xwgZYuXSpJ2mSTTfTkk09qtdVWqxqmoaFBo0aNUqFQ0KhRoyRJo0eP1hlnnOGYXSdJHR0deuSRR7Tnnnt2+S3KbEQ/2tradPzxx+v666/v8ps5+/NnP/uZ6/S22WYb/e9//9Pmm2+u2bNn64YbbtDZZ5+txsbG0GVtbm7Wpptuqqeeekqrrrpq1W+FQkEjR47Uc889pwcffFCSdN9991mu6yBaWlr08MMP67vf/W6X37baaiv95S9/0UEHHSRJ+vvf/66bb75ZTU3Vt9Pt7e0699xzK3+feOKJuuKKK7pMb+2119bDDz+s3XffvZJFG4Vnn31WUmlfGzNmTJd1WNazZ08deOCBOvDAAy1/v+qqqzRlyhRJpYzfBx980LKTq759++qGG27Q8uXLdeedd2rWrFm66aabqjqEyaoVK1bob3/7W+VvYzuWkrT++utr77331lNPPSWplG155ZVXep7+1KlTNWLECM/DH3300dp55509D2/2n//8R2PHjq38Xc5wBQAgrwhaAgAAdXR0aN68eXr++ef1xz/+UZMmTZIkNTU16fbbb/fVZuHLL7/sKwhz5plnJha0XLhwoR544IHK33/605+6BCyNRo4cqdtuu03vvPOOOjo6dPPNN+vSSy91nMdhhx0WWRAtKj179tSf/vSnSKe52mqr6ZBDDtGNN96oWbNm6d1339U3v/nNSKb9xz/+0TbYJpUCq+WgZXlfjcJBBx1kGbAsO/DAA9W/f3/Nnj1bS5cu1ZQpU7os8+OPP67PP/9cktS7d2/98Y9/tJ1e9+7ddcUVV2ivvfaKZgFU6nxFknr16uW4Dp20trZWAtw9evTQTTfdZBmwNLrkkksqHdrcc889uQhaPvzww5X1tdZaa+mAAw7oMszRRx9dCVrec889uuyyy7oEqu3MnDlTo0eP9lyenXbaKXDQctasWfrFL35R+XvIkCGWywMAQJ4QtAQAoA4Z25yzs9lmm+nKK6907XAkT1544QU1NzdLkvr166fvf//7jsM3NDToZz/7mX71q19JksaPH+86Dz9ZqUnZf//9tcYaa/ge74svvtCLL76oKVOmaMGCBVq2bFmll2Wp1H5i2eTJkyMJWvbs2dN1u2y//faVz+Uev6NgbM/QSqFQ0LbbblvpvOnTTz/tsszGDmu+973vafXVV3ec5p577qkNNthAn332WaAymw0cOFAff/yxFixYoAceeECHH36472m88sorld6y9913X6299tqu46y33nrafPPNNWXKFL399ttatGiR4wuBLLjzzjsrn4844gjLNmcPO+wwnXLKKVq+fLnmzJmjJ554InPnxJaWFh122GGVtkfXWmstjRkzJt1CAQAQAYKWAACgi3XWWUd33XWXZYcvbs4991ydd9550RcqAq+//nrl8+DBgz1lTO22225V4xeLxS499BrtuOOO4QoZA79levfdd/Wb3/xG//3vfz33PuynSQAnm222mWuHRcbM33KmXBS8BF3d5j158uTKZ69Zc4MHD44saPmTn/ykkt05bNiwSuByn3328RR8lKSJEydWPs+YMcNzFeeFCxdKkorFombMmJHpoOXMmTP1v//9r/K3uWp42aqrrqqDDz5Y9957r6RSoNNr0HKvvfay7HU9SsViUccee6xeeOEFSaXmHu677z6tt956sc4XAIAkELQEAKAOHXzwwVW99H755Zf66KOPKtW658yZoz322EP/+Mc/Km341YK5c+dWPm+44Yaexhk0aFDlc0tLi5YsWaK+ffvaDv+1r30tcPni4qdMTzzxhH74wx9WMlK9KvcKHZaXQJcxqFnuJTuNebe2tnb53biPDRw40NN8119/fU/DefH73/9eEyZM0Isvvqhisah//vOf+uc//ylJ2nTTTbXHHnto33331fe//33L3rulUkCv7M0339Sbb77puxwLFiwItgAJufvuuysB+U033dQxwHz00UdXgpaPPPKIFixYEChzOQ4jRozQ/fffL6mUGX7nnXdqyJAhKZcKAIBoODdOAwAAatLIkSN1/fXXV/7dd999mjRpkt544w1tu+22kkoBumHDhumjjz5KubTRKXfAI5XaG/TCPJxbcG6VVVbxX7CYeS3T3Llzdfjhh1cClhtuuKEuvfRSPffcc5o5c6aWL1+ujo4OFYtFFYvFqg5nOjo6IimrUxZr3KKYt3Ef69Wrl6dxgrY9aaV37956+umndfnll1cF3KVSxzC33367jjzySPXv31+//vWvtWLFii7TWLRoUehyRBlMjoOxavhRRx3lOOyQIUPUv39/SaWOoozt4qbp7LPP1g033FD5e/To0Ro2bFiKJQIAIFoELQEAQMU222yjJ598spKFuXTpUh1//PEplyo6xuDQsmXLPI1jHs4uO60W3HLLLZWA1bbbbqs333xTZ511lnbbbTetu+66WmWVVaoCe1FlV9YS4z62fPlyT+N43Re96t69u84880x9/PHHmjx5sq699lodccQRVdnVy5cv1+WXX6599tmnS+DSGKg/7bTTKkFqP//23nvvSJcpSq+88orefffdyt/nnnuuCoWC7b+mpqZKO6ZSdcAzLRdffHFVJ0+XXXaZTjrppBRLBABA9AhaAgCAKmuvvbauu+66yt8TJkzQo48+mmKJomOsJu21DUFjRy/du3ev6aDluHHjKp9///vfO1aDl6Rp06bFXaTc6devX+XzjBkzPI3jdTi/yh0HnXrqqbrvvvs0Y8YMvfbaaxo+fHhlmJdeeqlLD9frrLNO5bMxWFcrwgYdX3zxRX3wwQcRlca/a665Rr///e8rf//+97/Xr3/969TKAwBAXGjTEgAAdHHIIYdot9120/PPPy+p9FCctR5zgzD2Oj1p0iS1t7ersbHRcZxyBxfl8dOovpzUPI1tGbp1StPe3l7ZP9Bpu+22qwR/X3rpJU/jTJo0Kc4iVdl+++11++23q7GxUbfeequkUjuNZ555ZmUYY/uOL7zwgmvnU16lWfW/rKWlRffdd1/l780228y1h/eyqVOnav78+ZJKgc+LL744jiI6uvnmm3XGGWdU/h45cqQuvPDCxMsBAEASyLQEAACWjD2AT548WY888kh6hYnIt7/9bfXo0UNSqf1GtwzSjo4O3XHHHZW/v/Od78RaPjs9e/asfLbq/CUqDQ2dt4ZuVZsffvjhmszCC8tYLfrRRx91bR/yueeeSyVj9Qc/+EHl85w5c6p+22233SqBvBkzZujf//53JPNMaj928uijj+rLL7+UJDU1NemZZ57Riy++6Onfb3/728p0/vrXv0bWjqtXd999d1UV8J///Oe6+uqrEy0DAABJImgJAAAs7bfffvr2t79d+fuiiy5KsTTRWH311XX44YdX/v6///s/x3YZr7/+er311luSSgG9X/ziF7GX0cpaa61V+fz555/HNp+NNtqo8tkpSD137tyqbC90+u53v6v11ltPUqlNWGOgy6ylpaUqwzGs5ubmqo6AnEyfPr3yee211676rUePHjr99NMrf5988sm+9jtzELQsqf3YibFq+JAhQ7osu5Nhw4ZVAvvTp0/X+PHjIy+fnYceekjHHXecisVipSw333xzJrJXAQCIC0FLAABg65xzzql8fvnll/X444+nWJponHPOOZXOUj744AMNHTpUH3/8cdUwHR0d+vOf/6xRo0ZVvjvllFO69MaclK233rry+cknn4ykd2cr3//+9yufL730Ut19991dhnnttde01157afr06Z57YK8nTU1NVVnKN9xwg37zm9+opaWlari5c+fq0EMP1UsvvVTJ/g1r1qxZGjhwoM4880y98sortsONHTu2quf3Aw44oMswv/rVr7TVVltJKgUYd9ppJ/3973+3zS6cN2+ebr75Zu2www66/PLLLYcx7sd///vfPS3TmDFjqjrFMbYx69e8efP02GOPVf4+8sgjfY2/3nrraZ999qn8nVSHPI8//riGDRum9vZ2SdIPf/hD3XXXXVWZ0QAA1CLatAQAALaGDh2qnXfeudI234UXXqjvfve7juM89thjmjdvnud59OrVS3/6059CldOPjTfeWLfeequOPPJItbe3a+LEidpss820xx57aOONN9bSpUv17LPPVmWC7bLLLomW0Wzw4MEaOHCgpk+frlmzZmnzzTfX/vvvr379+lUyrb71rW9VZZEGceyxx+rKK6/UBx98oObmZh199NG65JJLtO2226pnz556++23K8GwbbfdVkOHDk11vWTV8ccfr0cffVT/+te/JEl/+tOfdNttt2nvvffWmmuuqRkzZmj8+PFauXKlNtpoI/3whz+sVPMNG4hauHChrrzySl155ZVac801tf3222vAgAHq2bOnvvjiC7355ptVQfpvfOMbGjlyZJfprLrqqnrkkUe033776ZNPPtHs2bP1k5/8RP369dMuu+yi/v37q1gsav78+Xr33Xc1derUSkDTrhmFQw89VH/5y18klYK5r776qnbYYQf16tWrMswvf/lLbbzxxqHWgZ177723Ui29d+/eOvjgg31P48gjj6y0WfrQQw/phhtuqOox3mjq1KkaMWKEr+mfffbZVb28z5s3Tz/60Y8qQe/GxkZ97Wtfq8qEdXL00UdXtVEKAECeELQEAACOzjnnnEonPC+88ILGjRunfffd13b4l19+WS+//LLn6a+22mqJB74OP/xw9e7dW8cff7zmzJmjtrY2jR8/3rK657Bhw3TrrbdWtceXtIaGBt1www069NBD1dLSotmzZ+uuu+6qGubYY48NHbTs0aOH/v3vf+uAAw6oBLamTJmiKVOmVA2322676YEHHtAtt9wSan61qlAo6IEHHtBxxx2n+++/X5L05Zdf6h//+EfVcFtssYX++c9/Vm1Ltx7bnXTr1k09evRQc3OzJGn+/PlVPcKb7b333rrvvvtsM2Y32mgjvfLKKzrppJP04IMPqlgsat68efrPf/5jO83VV1/dthOnIUOGaNiwYZWOcF566aUunRUddNBBsQUtjZmRBx98cKBM4UMPPVQnn3yyVq5cqWXLlunBBx/UcccdZznszJkzu/TM7ub444+vClouXbpUK1asqPzd3t5e6UDJi5122omgJQAgt6hTAAAAHB144IHaaaedKn9fcMEFKZYmOgcddJA+/PBD/fnPf9aQIUO03nrrqXv37lpttdW0xRZb6OSTT9aLL76oe++9tyoTLM3yvvLKKzrxxBO11VZbqU+fPrG0Z/eNb3xDr7/+ui655BLttNNO6tOnj3r06KENN9xQBx10kO699149/fTTVYEVdNWjRw/dd999euKJJ/TjH/9Y66+/vrp376511llHu+22m6677jq9/PLL2myzzSo9Ukvy3JO1lQEDBujLL7/UI488ov/7v//Td77zHW2wwQZaZZVV1NjYqNVXX13bbrutjj/+eI0dO1bjx49X//79Hae55ppr6m9/+5vefPNN/fa3v9W3v/1trbvuuurevbt69uyp/v37a/fdd9dpp52mRx55RLNmzdKxxx5rO7177rlH99xzjw466CCtv/76ib0MePvtt/Xaa69V/vZbNbysb9++Vc0ojBkzJmzRAACAjUKx3JozAAAAgMTttttueuGFFyRJL774IplxAAAAImgJAAAApGbatGnaeOON1d7eru7du2vRokWpNkUAAACQFVQPBwAAAFJQLBY1cuTISq/QhxxyCAFLAACArxC0BAAAACJ2zjnn6M9//rPmzZtn+funn36qQw45pNLDeGNjo84888wkiwgAAJBp9B4OAAAAROyzzz7ThRdeqDPPPFPf/OY3tfnmm2u11VbT0qVL9d577+n111+vZFhK0u9///uqDq8AAADqHUFLAAAAICZtbW16/fXX9frrr1v+vsoqq+iCCy4gyxIAAMCEjngAAACAiC1cuFD/+te/9NRTT+mdd97R3LlzNW/ePLW3t2vNNdfUZpttpn333Vc///nPte6666ZdXAAAgMwhaOlRR0eHZs6cqT59+qhQKKRdHAAAAAAAACBXisWilixZovXWW08NDc5d7VA93KOZM2dq4MCBaRcDAAAAAAAAyLXp06dr/fXXdxyGoKVHffr0kVRaqX379k25NNFrbW3Vk08+qf3331/dunVLuzhA3eEYBNLHcQikj+MQSBfHIJC+Wj8OFy9erIEDB1bibE4IWnpUrhLet2/fmg1a9urVS3379q3JgwLIOo5BIH0ch0D6OA6BdHEMAumrl+PQS9OLzpXHAQAAAAAAACBhBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmdKUdgHqQbFYVGtrqzo6OtIuiq3W1lY1NTVp5cqVam9vT7s4Na+xsVHdunVLuxgAAAAAAACZRNAyRi0tLfriiy+0fPnyzAcCi8Wi+vfvr+nTp6tQKKRdnLrQo0cP9evXT3379k27KAAAAAAAAJlC0DImy5cv1/Tp09XY2Kg11lhDq6yyihobGzMbEOzo6NDSpUu16qqrqqGBVgPiVM68XbRokT7//HNJInAJAAAAAABgQNAyJvPmzVO3bt204YYbqrGxMe3iuOro6FBLS4t69uxJ0DIBq6yyivr06aMZM2Zo3rx5BC0BAAAAAAAMiE7FoK2tTcuWLdOaa66Zi4Al0lEoFLTaaqupublZra2taRcHAAAAAAAgMwhaxqCtrU1Sqc1CwEm5M56st3kKAAAAAACQJIKWMcpq+5XIDvYRAAAAAACArghaAgAAAAAAAMgUgpYAAAAAAAAAMoWgJQAAAAAAAIBMIWiJVA0aNEiFQkFjxoypfDdmzBgVCoWqfw0NDerbt6+23357nX322Zo7d67tNM3j2v2bMGFC/AsIAAAAAAAA35rSLgBgp3fv3jrssMMklXrXnjZtmiZOnKjJkyfrjjvu0LPPPqtNN93UdvyhQ4eqf//+tr87/QYAAAAAAID0ELREZvXr168qA1OS3nnnHe21116aM2eOTj/9dD366KO245911lnae++94y0kAAAAAAAAIkf1cOTKVlttpVGjRkmSxo4dq+bm5pRLBAAAAAAAgKgRtETubLPNNpKk1tZWzZ8/P+XSAAAAAAAAIGoELZE7ixcvliQ1NjaqX79+KZcGAAAAAAAAUSNoidwpt2P53e9+V926dUu5NAAAAAAAAIgaHfGkZaedpNmz0y5FRUFS32JRhULBfeD+/aVXXom9TEbl3sNvvvlm3Xvvvdpwww117bXXOo6zzz772P622mqraeHChRGXEgAAAAAAAFEgaJmW2bOlzz9PuxQVha/+Zcm0adMsg6iDBw/Wk08+qdVWW81x/KFDh6p///6Wv/Xq1SuSMgIAAAAAACB6BC3TYhNMS0tRUvGrTEvX4GVCZe/du7cOO+wwSVJzc7OmTJmiN954Q5MmTdKJJ56o+++/33H8s846S3vvvXcCJQUAAAAAAECUCFqmJeHq1W6KHR1avHix+vbtq0JDNpo67devn8aMGVP13UMPPaTDDz9cDzzwgPbcc0+dfPLJ6RQOAAAAAAAAsclGdArw6Ec/+pHOOussSdI555yjRYsWpVwiAAAAAAAARI2gJXLn7LPP1rrrrqsvv/xSV111VdrFAQAAAAAAQMQIWiJ3evXqpT/84Q+SpGuuuUYLFixIuUQAAAAAAACIEm1aIpeOP/54XXnllfroo490xRVX6OKLL+4yzB//+McubWIa/fSnP9X+++8fYykBAAAAAAAQBEFL5FK3bt100UUXadiwYbruuus0atQorbXWWlXDPPHEE47T2G677QhaAgAAAAAAZBBBS6Tq008/7fLdcccdp+OOO8513COOOEJHHHFEl++LxWIEJQMAAAAAAEBaaNMSAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtkapBgwapUChozJgxle/GjBmjQqFQ9a+hoUF9+/bV9ttvr7PPPltz5861naZ5XLt/EyZM8FXWcrmOO+64YAsLAAAAAAAAT5rSLkBQo0eP1uWXX67Zs2dr22231XXXXafBgwfbDr9w4UL97ne/00MPPaT58+drww031DXXXKMDDzwwwVLDj969e+uwww6TJLW3t2vatGmaOHGiJk+erDvuuEPPPvusNt10U9vxhw4dqv79+9v+bv6tUChIkorFYgSlBwAAAAAAQFC5DFo+8MADGjVqlG666SbtvPPOuuaaazR06FC9//77WnvttbsM39LSoiFDhmjttdfWgw8+qAEDBmjatGlaffXVky88POvXr19VBqYkvfPOO9prr700Z84cnX766Xr00Udtxz/rrLO09957x1tIAAAAAAAARC6X1cOvuuoqnXDCCRo+fLi23HJL3XTTTerVq5duv/12y+Fvv/12zZ8/Xw8//LB22203DRo0SHvttZe23XbbhEuOsLbaaiuNGjVKkjR27Fg1NzenXCIAAAAAAABELXeZli0tLXr11Vd19tlnV75raGjQfvvtp4kTJ1qO88gjj2jXXXfVKaecon/961/62te+pp/+9Kf6zW9+o8bGRstxmpubqwJiixcvliS1traqtbXVsYytra0qFovq6OhQR0eH30VMRblKdLncSTOuK+P8rcqy9dZbSyqt53nz5mndddd1naaT888/XxdccEHl73I18bKPPvpIgwYNqkyrWCxqyZIluvjii/Xggw9q+vTpWmONNbT//vvr4osv1oABA1znaSxjsVhUa2ur7b6I+lA+r7idXwDEh+MQSB/HIZAujkEgfbV+HPpZrtwFLefNm6f29nats846Vd+vs846eu+99yzH+fjjj/XUU0/pyCOP1GOPPaYPP/xQJ598slpbW3XuuedajnPppZfq/PPP7/L9k08+qV69ejmWsampSf3799fSpUvV0tLiccmyYcmSJYnOrxwIXLlyZSUwvHLlyspv5e+M5syZI0lqbGxU9+7dLYeRpOXLl9v+ZvSNb3xDw4YN03333SdJGjZsWNXvxWJRixcvrpTryy+/1K677qoZM2Zo11131WabbaaXX35Zf/3rXzVhwgQ9++yzWm211bwsvlpaWrRixQo988wzamtr8zQOatvYsWPTLgJQ9zgOgfRxHALp4hgE0lerx+Hy5cs9D5u7oGUQHR0dWnvttXXzzTersbFRO+64oz7//HNdfvnltkHLs88+u1INWSplWg4cOFD777+/+vbt6zi/lStXavr06Vp11VXVs2fPSJclLuXswT59+nTJNIxTQ0OphYKePXtW1mt5nZV7DDcbP368pFJHO2uttZbttHv16uW6raRSkNIYtLz77rsthyuX69FHH9X++++v5557rjL9BQsWaL/99tPkyZN1zz336KyzznKdr1TaV1ZZZRXtueeeudlXEI/W1laNHTtWQ4YMUbdu3dIuDlCXOA6B9HEcAuniGATSV+vHoZfksrLcBS379eunxsbGSrZd2Zw5c2x7il533XXVrVu3quq3W2yxhWbPnq2WlhZ17969yzg9evRQjx49unzfrVs3152mvb1dhUJBDQ0NlaCc2U477aTZs2c7TidpxWLRU8Cyf//+euWVVyKdt3FdGddZ+XO59/Cbb75Z9913nzbccENdd911tutXkvbdd1/b31ZbbTUtXLjQtixO3/fu3Vtjxoyp6shprbXW0llnnaUjjjhC48aN029/+1vbeZunWSgUPO1XqA/sC0D6OA6B9HEcAuniGATSV6vHoZ9lyl3Qsnv37tpxxx01btw4HXzwwZJKmZTjxo3TiBEjLMfZbbfddO+996qjo6MSePrggw+07rrrWgYskzB79mx9/vnnqcw7L6ZNm2YZRB08eLCefPJJ1yrYQ4cOtQ1ku1Xxd7LTTjtZtqO5xRZbSBLbFQAAAAAAIKTcBS0ladSoUTr22GO10047afDgwbrmmmu0bNkyDR8+XJJ0zDHHaMCAAbr00kslSb/85S91/fXXa+TIkTr11FM1depUXXLJJTrttNNSWwa7YFqa/GRaJqF379467LDDJJU6RpoyZYreeOMNTZo0SSeeeKLuv/9+x/HPOuss7b333pGXa4MNNrD8vlxVvNz2JQAAAAAAAILJZdDy8MMP19y5c3XOOedo9uzZ2m677fT4449XOuf57LPPqqr4Dhw4UE888YTOOOMMbbPNNhowYIBGjhyp3/zmN2ktQuTVq8Mqd3rTt29fxyrXSerXr5/GjBlT9d1DDz2kww8/XA888ID23HNPnXzyyYmXKyvrBwAAAAAAoFblMmgpSSNGjLCtDj5hwoQu3+2666568cUXYy4V4vajH/1IZ511li666CKdc845OvLIIz331A0AAAAAAIB8IGUMuXP22Wdr3XXX1ZdffqmrrroqsumWG4Nta2uLbJoAAAAAAADwj6AlcqdXr176wx/+IEm65pprtGDBgkimu/7660uS3nnnnUimBwAAAAAAgGByWz0c9e3444/XlVdeqY8++khXXHGFLr744i7D/PGPf+zSJqbRT3/6U+2///6Vvw899FBdccUV2m+//fSd73xHffr0kSRddtllWmuttSJfBgAAAAAAAFgjaIlc6tatmy666CINGzZM1113nUaNGtUlsPjEE084TmO77barClpeeOGFamho0EMPPaSHH35YLS0tkqTf//73BC0BAAAAAAASRNASqfr000+7fHfcccfpuOOOcx33iCOO0BFHHNHl+2KxGKgsPXv21GWXXabLLrvM8ne3cg0aNCjwvAEAAAAAANCJNi0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELSMUbFYTLsIyDj2EQAAAAAAgK4IWsagoaG0Wtvb21MuCbKuvI+U9xkAAAAAAAAQtIxFt27d1K1bNy1dujTtoiDjVqxYocbGRnXr1i3togAAAAAAAGQGQcsYFAoF9enTR4sWLdKKFSvSLg4yqr29XYsWLVKvXr1UKBTSLg4AAAAAAEBmNKVdgFrVr18/rVixQp999pn69u2rPn36qLGxMbPBqY6ODrW0tGjlypVUVY5ZsVhUc3Oz5s+fr46ODq299tppFwkAAAAAACBTCFrGpLGxUQMHDtS8efO0ZMkSLVy4MO0iOSoWi1qxYoVWWWWVzAZWa03v3r3Vv39/de/ePe2iAAAAAAAAZApByxg1NjZqnXXW0dprr63W1lZ1dHSkXSRbra2teuaZZ7TnnnvSvmICmpqa1NTE4QcAAAAAAGCFqEkCCoVC5rPpGhsb1dbWpp49exK0BAAAAAAAQKpovBAAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApuQ5ajh49WoMGDVLPnj218847a9KkSbbDjhkzRoVCoepfz549EywtAAAAAAAAAC9yG7R84IEHNGrUKJ177rl67bXXtO2222ro0KH64osvbMfp27evZs2aVfk3bdq0BEsMAAAAAAAAwIvcBi2vuuoqnXDCCRo+fLi23HJL3XTTTerVq5duv/1223EKhYL69+9f+bfOOuskWGIAAAAAAAAAXjSlXYAgWlpa9Oqrr+rss8+ufNfQ0KD99ttPEydOtB1v6dKl2nDDDdXR0aEddthBl1xyibbaaivLYZubm9Xc3Fz5e/HixZKk1tZWtba2RrQk2VFeplpcNiAPOAaB9HEcAunjOATSxTEIpK/Wj0M/y1UoFovFGMsSi5kzZ2rAgAF64YUXtOuuu1a+//Wvf62nn35aL730UpdxJk6cqKlTp2qbbbbRokWLdMUVV+iZZ57RO++8o/XXX7/L8Oedd57OP//8Lt/fe++96tWrV7QLBAAAAAAAANS45cuX66c//akWLVqkvn37Og6by0zLIHbdddeqAOe3v/1tbbHFFvrLX/6iCy+8sMvwZ599tkaNGlX5e/HixRo4cKD2339/15WaR62trRo7dqyGDBmibt26pV0coO5wDALp4zgE0sdxCKSLYxBIX60fh+WazF7kMmjZr18/NTY2as6cOVXfz5kzR/379/c0jW7dumn77bfXhx9+aPl7jx491KNHD8vxanGnKav15QOyjmMQSB/HIZA+jkMgXRyDQPpq9Tj0s0y57Iine/fu2nHHHTVu3LjKdx0dHRo3blxVNqWT9vZ2vfXWW1p33XXjKiYAAAAAAACAAHKZaSlJo0aN0rHHHquddtpJgwcP1jXXXKNly5Zp+PDhkqRjjjlGAwYM0KWXXipJuuCCC7TLLrtok0020cKFC3X55Zdr2rRpOv7449NcDAAAAAAAAAAmuQ1aHn744Zo7d67OOecczZ49W9ttt50ef/xxrbPOOpKkzz77TA0NnYmkCxYs0AknnKDZs2drjTXW0I477qgXXnhBW265ZVqLAAAAAAAAAMBCboOWkjRixAiNGDHC8rcJEyZU/X311Vfr6quvTqBUAAAAAAAAAMLIZZuWAAAAAAAAAGoXQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAAAAAmULQEgAAAAAAAECmELQEAAAAAAAAkCkELQEAAAAAAABkCkFLAAAAAAAAAJlC0BIAAAAAAABAphC0BAAAAAAAAJApBC0BAAAAAAAAZApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAApOuzz6T33ku7FPFpaZGef15qbU27JACQG4VisVhMuxB5sHjxYq222mpatGiR+vbtm3ZxItfa2qottthCK1euTLsoQN1auXKlevbsmXYxgLrGcQikj+OwDrW3S7Nnlz5/7WtS9+7plicO8+dLK1ZIvXpJa6yRdmkccQwC6Vu5cqU23HBDvfrqq2kXJXJ+4mtNCZUJObBw4UJ9+eWXaRcDAAAAQL2aOzftEsRr+fLSPwBwwcsDgpYwWH311TkogBTxVhtIH8chkD6OwzpUzkKUpIYGad110y1PHD7/vPPzgAHplcMDjkEgfStXrtQ666yTdjFSR9ASFVdeeaUOPPBAdevWLe2iAHWntbVVjz32GMcgkCKOQyB9HId1atgw6f77S5/XXluaMSPd8sShUOj8nOHl4xgE0mc8DusdHfEAAAAAANJDNwsAAAsELQEAAAAA2WDMSAQA1DWClgAAAACA9JBpCQCwQNASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAQDbQEQ8A4CsELQEAAAAAAABkCkFLAAAAAEB66D0cAGCBoCUAAAAAIBuoHg4A+ApBSwAAAAAAAACZQtASAAAAAAAAQKYQtAQAAAAAAACQKQQtAQAAAAAAAGQKQUsAAAAAQHroPRwAYIGgJQAAAAAgG+g9HADwFYKWAAAAAAAAADKFoCUAAAAAID1UDwcAWCBoCQAAAAAAACBTCFoCAAAAANJDO5YAAAsELQEAAAAA6aF6OADAAkFLAAAAAEA2kHUJAPgKQUsAAAAAAOJiziQlsxQAPCFoCQAAAABIT60H8QhaAkAgBC0BAAAAAIiLOUjZ0ZFOOQAgZwhaAgAAAAAQFzItASAQgpYAAAAAAMSFoCUABELQEgAAAACQDbXYezjVwwEgEIKWAAAAAID01FvmYb0tLwAERNASAAAAAIC4kGkJAIHkOmg5evRoDRo0SD179tTOO++sSZMmeRrv/vvvV6FQ0MEHHxxvAQEAAAAA3tVD9XAyLQHAk9wGLR944AGNGjVK5557rl577TVtu+22Gjp0qL744gvH8T799FOdeeaZ2mOPPRIqKQAAAADAVq0H8QhaAkAguQ1aXnXVVTrhhBM0fPhwbbnllrrpppvUq1cv3X777bbjtLe368gjj9T555+vjTbaKMHSAgAAAADqEtXDASCQprQLEERLS4teffVVnX322ZXvGhoatN9++2nixIm2411wwQVae+219fOf/1zPPvus4zyam5vV3Nxc+Xvx4sWSpNbWVrW2toZcguwpL1MtLhuQBxyDQPo4DoH0cRzWp8ZisZJNU5TUVmvbv6VF3Qx/tra0SBldRo5BIH21fhz6Wa5cBi3nzZun9vZ2rbPOOlXfr7POOnrvvfcsx3nuued02223afLkyZ7mcemll+r888/v8v2TTz6pXr16+S5zXowdOzbtIgB1jWMQSB/HIZA+jsP6Mnj2bK371ecVy5dr7GOPpVqeqDWuWKGDDH+PffJJta66amrl8YJjEEhfrR6Hy5cv9zxsLoOWfi1ZskRHH320brnlFvXr18/TOGeffbZGjRpV+Xvx4sUaOHCg9t9/f/Xt2zeuoqamtbVVY8eO1ZAhQ9StWzf3EQBEimMQSB/HIZA+jsP61Gho4muV3r114IEHpliaGCxZUvXnkH33ldZaK6XCOOMYBNJX68dhuSazF7kMWvbr10+NjY2aM2dO1fdz5sxR//79uwz/0Ucf6dNPP9X3v//9yncdX7Uj0tTUpPfff18bb7xx1Tg9evRQjx49ukyrW7duNbnTlNX68gFZxzEIpI/jEEgfx2GdaejsaqEg1d62b6p+7O7W1CRlfBk5BoH01epx6GeZctkRT/fu3bXjjjtq3Lhxle86Ojo0btw47brrrl2G33zzzfXWW29p8uTJlX8/+MEPtM8++2jy5MkaOHBgksUHAAAAAJTVem/a9B4OAIHkMtNSkkaNGqVjjz1WO+20kwYPHqxrrrlGy5Yt0/DhwyVJxxxzjAYMGKBLL71UPXv21NZbb101/uqrry5JXb4HAAAAACAy9B4OAIHkNmh5+OGHa+7cuTrnnHM0e/Zsbbfddnr88ccrnfN89tlnamjIZSIpAAAAAKBWkGkJAIHkNmgpSSNGjNCIESMsf5swYYLjuGPGjIm+QAAAAAAAGBG0BIBASEUEAAAAAGRDoZB2CaJH9XAACISgJQAAAAAAcSHTEnn29NPS6adLH36YdklQh3JdPRwAAAAAkHO1HsQjaIm8KhalvfcufX74YenTT1MsDOoRmZYAAAAAgGyoxerhZlQPR14Y99Vp09IrB+oWQUsAAAAAQDbUYhYimZbIK/ZVpIygJQAAAAAAcSFoibwiKxgpI2gJAAAAAMiGWqweTu/hyCsC7EgZQUsAAAAAAOJCpiXyin0VKSNoCQAAAABIT60HRghaIq/ICkbKCFoCAAAAALKB6uFAdhBgR8oIWgIAkEcLFkivvMLNJACgttTida2eMi0/+USaOjXtUiAqtbyvIhcIWgIAkDetrdLWW0vf+pZ0yy1plwYAgHBqPTBSL0HLDz+UNtlE+sY3pNdfT7s0iAJZwUgZQUsAAPJm3Dhp5szS5xNPTLcsAABEierh+fWrX3Uu27HHplsWRKNWA+zIDYKWAADkDTeQAADkR71kWra2dn5ubk6vHIhOre6ryA2ClgAA5E0Dl28AAHKjXjItjVmyBLtqQ63uq8gNnnoAAMibxsa0SwAAQDzqoXp4rQb0anHb1bta3VeRGwQtAQDIGzItAQC1pNYDI/UStDSqh2WsB2xHpIynHgAA8oZMBgAA8oPq4cirWt1XkRsELQEAyBsyLQEAyI96ybQkaFl72I5IGU89AADkDUFLAADyg6Al8ortiJTx1IPaNGaMtN560lVXpV0SAIgeQUsAQFbdemvpPvzaa4ONXw9NoNRqldt62Hb1plb3VeQGTz2oTcOHS7NmSb/6VdolAYDoEbQEAGTVCSeU7sNHjky7JNlRL5mWRvWwjPWA7YiU8dQDAEDekMkAAKgltR4YqZegpfGlaq0uY71hOyJlBC0BAMgbMi0BALWqFl/M0Xs48qpW91XkBk89AADkTS0+0AEAINVmsKteMi2N6mEZ6wHbESkjaAkAQN5wAwkAqCW1fl2rl6AlmZa1h0xLpIygJQAAecODAAAgD9rb/Y9Ti7UJ6rF6OGoD95xIGUFLAADyhhtIAEAetLR4G67Wg11kWiKv2I5IGUFLAADyhhtIAEAetLZ6G67Wr2v1GLSs1WzSesN2RMoIWgKIX2urdOml0pVX5vPCN368dMYZ0scfp12SbFu8WPrd76QxY9IuSe3L43EEAKg/QYKWtZh1SfVw5FWtBtiRG01pFwBAHfjLX6Tf/rb0uX9/6cgj0y2PH21t0ne+U/r8n/9IU6emW54s+/WvS9takrbdVtp++3TLU8u4gQQA5AGZliX1kmlpVA/LWA/YjkgZmZYA4nfjjZ2f77orvXIE0dzc+fnDD9MrRx6UA5aS9L//pVeOesANJAAgDwhaltRL0JI2LWtPrWYFIzcIWgJIFjcwQHgcRwCAPPAatKz1wEg9Vg/nXqU2sB2RMoKWAOJH+zb1h20eL24gAQB54LX38Fq/rpFpibxiOyJlBC0BwAkXamRRrWZoAABqC9XDSwhaIq+450TKCFqi9nHBzJa8bY+8lTcryLSMF/slACAPglQPr8V7iHqsHo7awD0nUkbQErWPE2368nwDU6s3lcg3zmsAgCwyX5/ItLRWD8tbD8tYD9iOSBlBS9Q+TrQIg6AlsojzGgAgiwhaWquX6uENhvAC99C1ge2IlBG0RO2r1ZuCvEpqe8ydK73+evjpsP8EUyhI8+dLr7zCOowD6xQAkEXmAEeQ6uFLlkgvvlhb1zqqhyOv6iXgnrbWVun556Xm5rRLkjkELVH7OLGmL+kbmGXLpM02k3bYQXrggXDTqtWbyri1tEhbbil961vSHXekXZraw34JAMii9vbqv4P0Hv7559Kuu0p//GN05UpbPQZ+6mEZ60E97rtpOOEEaffdpSOOSLskmUPQErWPh/v6c8890oIFpc9hT/zsP8H897/SnDmlzz//ebplqUXcMAIAsiiKTMuy3/42fHmyoh4zLblXqQ3mfZXtGo877yz9//DDqRYjiwhaovZxYs2WJLZHW1t002L/CaZWb8azgv0SAJBFQYOWtX5dq5dsNYKWtadeAu7IrKYgIy1evFiS1Ldv31AzX7p0qZ566ilJ0g9+8INQ0wJsccFMX57bt+HCHEwD78RiZfXwk+fjDABQGwhaWiNoibwiaImUBQparr766mpoaNCbb76pLbfcssvvM2fO1O9//3sVCgXddtttttOZNm2aDj74YDU0NKgtyswowIgLJsLgwhwMAbR4Wd1ANjamUxYAAMrMbVqGqR5eS+ol8EPQsvZQPRwpC5wKU3TYWRcsWKAxY8ZozJgxoacFhMb+lS152x55K29WkGkZL/MNpPkhEQCANJBpaa1eMi1Re+ol4I7M4qkStY8Ta/rynHXH/hMMQct4mW8gqa0AAMgCgpbW6iVoSaZl7amXfReZxVMlah8nVoTB/hNMngPVeWDeL8m0BABkgTlo2dISbLxaUy/ZagQta495X63VfReZRdAStY8LZrbkbXtwYQ6GTMt4EbQEAGQRmZbW6iVbjaBl7amXgDsyi6dK1D4umOnLc9ZdVi/MDz4oDRggnX9+emUYNUoaOFB6/PGuv+V5m+cBQct0fPqptNVW0ne+4z17CADqSdCOeGr9fj1I0PKTT6Qtt5T23df7ekxbrQYtOzqkww6TNt5Yev31tEuTrHoJuCOzCFqi9nFirT9RbvOs7j8//rE0c6Z03nnpzH/ePOnqq6UZM6QDDuj6O0HLeNERTzqOPVZ6911p/HjpxhvTLg0AZE/QTMusviSOSpBstWOPlaZMkZ56Kj/XnFq9/3voIekf/5A+/lj62c/SLk2yqB6OlBG0RO0hhT3bshoEtJOH/SeNdbpsmfPvVA+PF5mW6Xjhhc7PH36YXjkAIKuoHm4tSLaa8ZozdWq05UlCLW3Tl1/u/Dx5cmrFSAXP1kgZT5WoPaSwZ0+e37rm4cKcxj7utk3zvM3zgKAlACCLCFpaC/J8YnwBnJf1k8cyezFjRufn1VdPrRipMB/TtbRdkQuhgpYFHkqRRZxYs8e4DfK2PfJQ3iwGVrk+xIugJQAgi+g93Bsvy2u8l8rL+qnVNi2nT+/8vMEG6ZUjDWRaImVNYUbeeuutbX8rBzQbGxvDzALwj0xLRCkPF+YslpGgZbwIWqYjzy9gACAJdMRjLcjzSd4DgHkss53PPuv8PHBgeuVIA8/WSFmooGWRHRZZxIk1e4w3XXkLZuVh/0kjaOm2HWnTMl4ELQEAWUT1cGv1ErSs1Zd7xkzLr30tvXKkgY54kLJAQcs999yTquHILk6s2Za3G5g87D9ZLCNBy3iZt3lbWzrlqDd5fgEDAEmg93BrQarY5rF9yLyU049isfb3TydUD0fKAgUtJ0yYEHExgAiRaZk9ST/cR7nN83BhzmIZCejEi0xLAEAWkWlpLWymZRbv9awYy1kr23Thwuq/a2W5vOLZGikjFQa1h454EKU87D9plNFtnmRaxqvWg5ZvvSWNHCm9/HLaJQGQluZm6cILpT//OR/XYpTQpqW1euk93FjOvARa3UybVv13rSyXV9RiTF5ejveEhGrTEsgk3gZlW962Rx4uzGmU0W07kmkZr1oPWu64Y+lB99pr83fOABCJhmuvlc45p/THhhtKBx+canngEb2HWwtSxTaPmZa1eM2u96Al1cOTxzquknoqzPLly3XllVemXQzUEoKW2ZPnAFYeLhpplDEP66WW1XrQ0mtmDoCa1XDddZ1/3H9/egWBP1QPt1YvHfHU4v2hOWiZl20RFZ6tk8c6rpJa0HLJkiW6+OKLNWjQIP36179OqxioRVQPR5TbPA/7TxaDlnlYb3lmXv+1FrQEgDy/8KxnBC2t1UvQMi/l9KPeMy2pHp68WjyOQki8evj8+fN19dVXa/To0Vq0aJGKxSI9kSNapLBnW95OwnnYf7JYPRzxqvVMSwBAPtF7uDV6D88vMi2d/0b0OjroH8Ag1JqYNm2aTjvtNG255Zbq06eP1lxzTe2www669NJLtWjRoqphly5dqnPPPVeDBg3SJZdcooULF6pYLKpfv3666KKLQi0EUIVMy+zJ84uJPOw/aZSRTMt0EbQEAGQRHfFYq8few2tFvWdakhCUvFo/H/oUONNy7NixOvTQQ7Vs2TJJUvGrFfvGG2/ojTfe0F133aXx48erf//+ev7553XkkUdq+vTpleEGDBigM888U7/4xS+0yiqrRLAowFd4G4Qo5eHCTPXw+kPQEkA94ZqSH1QPt1aPvYfXinoPWlI9PHm1eByFEChoOXfuXA0bNkxLly6tfNe7d281NTVVMiw/+OADnXLKKRo5cqSGDh2qlpYWFYtFff3rX9dZZ52l4447Tt26dYtmKQAjgpbZlrftkYcLcxaDlohXPQUti8V8Z2sDCCaP7fkh+t7Da+UaELb38LwcA3kpp1fLl0tz51Z/V2vL6IZn6+SxjqsEqh5+yy23aP78+SoUCjrssMP04YcfasmSJVqwYIFmzpypESNGSJL+9a9/6aijjlJzc7NWXXVVXXfddXr//fd1wgknELBEfKgenj15vtnMw/6TxTYt87De8qyeOuIhQA7UpzzfO9SzqDMta+X6Vi8d8dTaNfuzz7p+V2vL6Ibq4cljHVcJlGn55JNPSpJ22WUX/e1vf6v6rX///rr22mu1ZMkS3XnnnZoxY4ZWX311Pfvss9pqq63Clxhww4kVUcrD/kOmZf0xn+fa2tIpRxLa2qTGxrRLUd8mT5bWW09ae+3k5vnFF9LMmdJ22yU3T2RXXgI2iL4jnvZ2qSnxvmOjF7Yjnrzcd9XasWquGi7lZ1tEherhyau14yikQJmW7733ngqFgk4++WTbYU477TRJUqFQ0GmnnUbAEskh0zLb8rY98nBhpiOe+lNP1cNredny4B//kLbfXtp0U2nJkmTmuWSJ9I1vlOb74IPJzBNANKLuiKdWrgH10hFPrd3/WQUta20Z3VA9PHms4yqBgpYLFiyQJG2yySa2w2y66aaVz3vssUeQ2QDBcGLNnqSreEW5zfOw/2Qx0zIP6y3PCFoiKYcdVvp/8WLpjjuSmeeYMdJXbaTrxz9OZp4AokH1cG9qtSOevARXvSpfi4xqbRndUIsxeazjKoGClq1fXXz69OljO8yqq65a+dy/f/8gswGCIdMSUcrD/kSblvWnnoKWWar6blzv9biPJ7WfrVyZzHyQbXlszw/xVA+vBWE74slLEKPWjlWr/a/WltEN1cOTV2/7mItAQUu/CjSkjSSRaZltedseebhQk2lZf+qpI55aXjZYY5tDoiOevArae3itZ1rSEU8+We1/tbaMbni2Th7ruEoiQUsgUaSwZ0+eHzzycKHOYtAS8SLTMh3Gc1mez2tBJbXMWdrmyIYsXnthjerh1uolaJmXcnpF0JJn6yTk4XkzRaG6Yhs+fLh69+4derhCoaBx48aFKQrQKQ/VeZEfZFpao3p4uuopaFnLy5Y3SQUt2eZAfgXtiIfq4V3lsU3LvJTTK6vtVGvL6IZn6/gRGHYUKmj5yiuvOP5erhbuNFyxWKT6OKLFm4psy9v2yMP+lMXew7nYxquegpZk3dWfWt6fgVoXdaZlrVwD6qX38LyU0ysyLQmoJSEPz5spChy0LLIikVW8DcqePL+YINMy2DyzuJ5qST0FLWt52fKG6uFIUh6rxoLq4XaCBCXItEwfQUuClkkgaOkoUNCygx0VWcZBjyi3OUHLYPPM4nqqJfUUtMxqAItrS3yyus2RrDy/8Kxn5ut/W1vpfOm2Pake3lUeA/d5KadX9B5OQlAS8vC8mSI64kG1Tz6RttxS+s53vPf2lzW8Dcq2JC50Uc4jD0HwLLZpyXEXL6uHwjwqX3P2268zGycvAVn28fjkZX+eMUPaemtpr72klSujnfbo0dJ660l/+Uu0082rqK69xx0nDRokvfBCNNOL0gsvlMr2s5+lXZJwrM7ZXo5pMi27ykrQ0s++WWvXRjItgz9bz5ghffOb0p57Rn+NrDV5eN5MEUFLVGk86SRpyhRp/HjpxhvTLk4wvA3KnqSzJaK8mcjDmy8yLetPXgJ7bo46qnTNGTeuMziTl2XLarlqgXHdZjnb7vjjpXfekZ55RrrmmminPWKENGuWdNJJ0U43T6Le9q++Kt15pzRtmrTbbtFOOwq77VYq2x13SG+8kXZpgrO6/ntJhCBo2VVW2rTce+/OffPVV52HrbXnLoKWwZ+FfvEL6e23pWefla68Mvpy1RKClo4IWqJKYeLEzj+mTEmvIGFw0Gdb3jIt8xC0zGJHPLXykJFVeQnsuTFmO330Uen/vGSR5nWdh5FG7+FNofqMjJfxnumDD9IrB7z54ou0S+Dd3LlplyA4q/sDL+dLqod3lZU2LY3tks6c6TxsrT130Xt48Gfrl17q/Pz++9GVpxYRv3AU6E7wggsuiLocOueccyKfJgLo1q0zfdtrw9lZQ6Ylogws5uEiQvXw+lMrQUujckDMvO9kddmyWq5aYAxUNzamVw43xn21gTyAWGXx2hunPC+v1fWf6uH5zrQ0csuatXoOy3LGvBsyLWl6LQmsY0eBgpbnnXeeChGffAhaZkS3bp2f8xq0zEOQqd5QPTxeVA+vP/UUtMxSpqVxvdfCOvcrjUzLLActjftDnh/Ks4p1mk8ELa3luU1LI7egpdVy5vlYpiOe4AlBWdx/s4r4haPAdW6KEa7IqAOgCIGgJeKWt+rhedifCFrWn7xkI/qRt0zLetzHk7pfMwY4slw93Hg9INMyXlm89sYpz8sbtCMeqod3lcWgT3Oz8+9WL1XzfH4k0zJ4FiAxHu/y8LyZokB3guPHj4+6HMgKY9Ayr72H5yEzrt6QaRkvgpb1pxYzLcuynGlpPJfV0jrPmjxWD+fhLHr1vE7z/MAatE1LMi27ykqblkZ+q4fn/X6QoGU0VZezsv9mVa0dNxELFLTca6+9oi5HIKNHj9bll1+u2bNna9ttt9V1112nwYMHWw770EMP6ZJLLtGHH36o1tZWbbrppvrVr36lo48+OuFSZxyZlqgFBC3jR5uW6arFoGU5QGFelqwuW1bLVQvy0hEP1cOTw71cfkRdPTxLL67CqJc2LWutbT464qF6eBKIXzjKba72Aw88oFGjRuncc8/Va6+9pm233VZDhw7VFzY9A6655pr63e9+p4kTJ+rNN9/U8OHDNXz4cD3xxBMJlzzjjA8HeQ1a0hEP6q16eBZ6D3cLomVxveVZLQcts5xpaVQL6zyr8lg9nKBl9Op5neb5mhkkaOm0vLV6rs1T7+FG9Ra0JNOy9rZpFuXheTNFuQ1aXnXVVTrhhBM0fPhwbbnllrrpppvUq1cv3X777ZbD77333jrkkEO0xRZbaOONN9bIkSO1zTbb6Lnnnku45BnXvXvn5yiDlmPHSqNGSdOmeR9n6VLpnHOkW27xNy+/B/2iRdLZZ0t33ulvPojfG29Ip50mvfqqv/HItEx+nm43NFx8o1VPQcs4l+2116SRI0vnGr9qYZ37Vesd8bzxRml/eO01b8PTpiXQFUFLa2Grh2fl/tNv9fC8b79aClrOnCmdeab073/7G4+gZfwIWjrK8Otrey0tLXr11Vd19tlnV75raGjQfvvtp4kTJ7qOXywW9dRTT+n999/XZZddZjlMc3Ozmg0NDS9evFiS1Nraqta8ZiA6KC9TsalJ5UeSjpYWtUexrCtWqNv++5em/7//qc1jAKrhnHPUePXVkqS2TTdVcbfdvM2vtVWGSu5qa21V0WE5Gn7zGzX+5S+lUbfZRtp6a2/zgWeNxWLlDUlHseh5v2rafXcVli6VrrtOrT7aWG1oa5PxMTfMMVtoba06UbY2N8eShVwuo9eyVu3jLS2O+3gcrNaLsUzF9nYVTL9nOmMqZxpaW6v28fbmZnXk8Npk3Gfa29tLy2Dal9qam2Pbv7vtuGPpw7XXqrWlxfU4bJI6r5FtbdFcIzPOchvFrLG1tXLNKDY1qS2h9dxtu+1KH77aH9w0dXRU9of2YjHSdWNc77V43+mkck9aLHYeb+3toY+3Qltb9XUrY+vVz71rljW0tMj8qqF1xQrne6f29qrlN4rzGpAk8/7n5XzaqM4Mo46OjsSuOeZrYdV1YMUKx3I3dnRUZUXFdd+cFOP1qKzY0ZHYdSlKjT/9qRqeflq68kq1zpolrbWWp/HM95xez09NhUKk5/Ca1tJSfd1vbvb9bJg3fpYrl0+Q8+bNU3t7u9ZZZ52q79dZZx299957tuMtWrRIAwYMUHNzsxobG3XDDTdoyJAhlsNeeumlOv/887t8/+STT6pXr17hFiDDFi1frjW++rzwiy/07GOPhZ5mzy+/1NCvPhfeekuPeZzmD78KWErSJ9ddp3cXLfI03upTp8rY6uqLL7ygL78KOlvO56uApSRNueEGfXLQQZ7mA+92X7BA5cviooUL9YzXfWDp0spnr/uNJG3+wQfazPC3n3HNNnjjDW1v+Hv8U09pxde+Fnh6bsaOHetpuB8aPk968UXNXbEingLZWPeVV2RsQfi/jz6qHxj+XrJokfoa/n780UfV0c3ukQR+bfbBB9rc8PcnH36odyI4XyfNuB9//Mknevexx9Rj4UJ91/D9qy+9pNkJzN94nrA7Dr9vCKJ8MXu2XsrhOvfLuI7efucdfZrAMu88a5b6f/V52cqVGpfQerbbH+z8wJAJMW3aNL0VYTn9lqUWLV+xQqt+9fmLL74Ifbyt/eqr2tXwd9bWq3Gbvzxpkr7IaTbTRu+8o2+avnv+6ae1aPp023EKbW1V9xBGL7/4or7Ia+egBhu8+WbV/eSnH32kt132wT0XL648ly2YP1/PJbzPlq+Fxn3zo3ff1RSHcuz25ZfqZ5zGE0+otU+feAqYgJ0+/1wDTN8tWbRI4zN2/vDih08/Xfn8wt13a+Gmm3oab+MpU2RM6Xn15Zc120MtiKEtLer51eeZM2fq1Ryus6R0W7xYBxr+fubpp7X0o48keX82zJvly5d7HjaXQcug+vTpo8mTJ2vp0qUaN26cRo0apY022kh77713l2HPPvtsjRo1qvL34sWLNXDgQO2///7q27dvl+HzrrW1VWPHjlXffv2kqVMlSav37q0DDzzQZUwPZsyo+jPINDf6+tc1yON4hZdfrvp7l513VtFj51FbbbedtohimVGl8fLLK59XW221QPvAgUOGVHcU5aDhxRerxw2xTQuzq8Ml++y1lzRoUODp2Skfg0OGDFE3n8G9wTvtpKLNC5i4FFaurPr7gKFDq/7uY3q5893995dWWSX2ctWLBtN57usbbqgNc37u2mjjjUvn+Vmzqr7fcbvtVExg2Q488EDX47BgqB699lprRXONzJGtt95aWyawzI033FD53LtPn1TWs5d5FgxBpQ032kgDYypnve1n5ePQmCSw9tprh14PBVMV/iyv129961sqHnBA2sUIpOH997t8t/suu6i40072IzkEJb+1ww6JXAPiVjBd2wYNGqQNXJar8eKLK5/XCHj/HITTtXDjDTbQ1x3KYbznl6Qh++4r9etnM3T2Nd5xR5fv+qy6aqbPH17stvvuKpZrm7homDKl6u8dPR6TTT16VD6vt+66Wifn6yxW8+ZV/bnnHnuodZNNAj8b5sFih6Qys1wGLfv166fGxkbNmTOn6vs5c+aof//+NmOVqpBvsskmkqTttttOU6ZM0aWXXmoZtOzRo4d6GA60sm7dutXkTlNWMLRp2dDWpoYoltU0jSDrr7GhQY1exzPdlDY1NnoOdjX27Ol9PvDO8KDfUCgE2q+6rVghec1yNu0DoY5Z87SamjzvT0EEOcf42ccjY14vpjeuBVNbLN3SKGMtM63/xmIx9+euxqam0jKY9qUmKZF9x3jceTkOGzo6orlG5khjY2My+5khGFhI6b7L7zzjXDe1fN/ppBDBvUMVUxMlWV6vqVzXo2LR9q3redwhq7SpUMjvujAyX7cLBfdzhuF62CAlfs2pXAsLhUobe41tbb7OdbV4/1coFjN9/vCiyc/zjOmYbmpo8Dau8Rze0FB390y+mO59jcdNrcaf/CxTLlsN7969u3bccUeNGzeu8l1HR4fGjRunXXfd1WHMah0dHVXtVkLVjQ1H1X5CFA33+6kiE6YhWxrSj1/QhoUXLvQ+LB3xxM+tUe48rLc8oyOe9GW1XLUgL72HG3H/kH156o08z50wWF3v3c6XTvcItXKuDdKZiXGfTfM+ypjI47f38Lxvv1rqiMfIz/mQjnjiR0c8jnJyJ9jVqFGjdOyxx2qnnXbS4MGDdc0112jZsmUaPny4JOmYY47RgAEDdOmll0oqtVG50047aeONN1Zzc7Mee+wx/fWvf9WNN96Y5mJkj/FClKX2Y/wcuGEOelOVV0QkigcFj22aSiJomcY8CVomKy+BvSDMy+bW62xa6nGfrvXew8OIc90Ui/kKuMWh3h7g8ry8Vtcjeg8P9nxiPO7T3Ce6d+98RnJL+Km1+z+r/S/Px2cQUQTU6m2d+UXQ0lFug5aHH3645s6dq3POOUezZ8/Wdtttp8cff7zSOc9nn32mBsNb72XLlunkk0/WjBkztMoqq2jzzTfX3XffrcMPPzytRcikgjG7MqqOPaI46PxMI8zFctky78MiWX4yLaM80efhIpKFoKX5pq6Wg2pZUGuZDBKZlnmQRtCSTMv6DVrW4zKXZfFewyurexK3oCWZltayFLQs85tpWUtBy6am0r6c92WS/J1fgz5b1/M53K9aO24ilpM7QWsjRozQiBEjLH+bMGFC1d8XXXSRLrroogRKlXPGoKWPHp1il1SmZZaWuVYFveki09JeFoKWZFomi6Bl+rJarlpgDHDUY6al1cNLvVc/z3MQr94ECVqSaWnNeNwTtEyHcf/r1q0+g5ZRbFPO4c7ykCSTojq/A0IXxqBl2KzD99+Xpk1LP9PSaVxzdXBj0LK5WXr++eja9gyjXJa0qklOm1bankFF8TCXVqZl2ODbp59KH3wQWXEsxX1hKxalF1+UjL28Za1Ny8WLS2WshRtJL2oxaFnmp3q41b4ZJ2PZammdm61caX3NSSprIo9tWka5bnjpU1IrWTrt7aXjyU8Npo8+Kv3LgqlTpY8/tv/9rbekmTM7/446aJnVJkL8ChuUyEqblnFWD0/6mu6Fsfzl61Hc992zZ0tvvhnvPPwIuu/Wyjk8CQQtHRG0RDXjjUFra/CA3aRJ0uabSxtvXAraBBG0SoSfg94cCDMGao84Qtp9d+n4473POy6HHloqy0knJT/vTz8tbcfNN5defjn5+ZellWkZ5iLy8celdbfZZtJrr8VXprhvZP/4R2nXXaWdd+6cV5YyLTs6pG99q1TGyy6Lbz5ZUotByyCZln/6U+e+mUTwvl6CluVrzi9/mc78ybSs/ruW97V6cMYZpePpwAO9jzNqlLTpptI778RXLi/eeEP6xjekTTaxfgH7+OPSNtuUfp83r/RdkDYtqR7uPk5eMy39bL/LLy9d03faKTsva8yZllK8ZVu4sHTsb7ut9Mgj8c0nierh8M5P0lUdImiJauYgZdB2LY86qvR/e7v0618Hm0bQoKWfg94cCDNmWj78cOn/u+7yPu+4PPpo6f/bbkt+3r/+decF+5hjwk+vnnoPnzixc/jnnouuTEkHLX/729L/773XmfmRpaDlxx93PkyVy1rrajGoYRe0dHrYPeus0v/vvRd/RnNeqq1H4bHHSv/fems68zeu27xkakRZfZsHxK7y/AB33XWl/01NV7kqFqWTT468OL6ceGJnWU47revvP/pR6f8VK0oBJ4nq4XaCvAQ3DpPmecAYtIwz0/I3vyn9P3Vq/Nd0r6zaWI7zfHTjjdLSpaXPP/xhfPPxg+rh8au1ZhUiRtAS1cxBy6BVxI0XNLeLm52g7bj4OejNgTDatOwqim2ZdO/hWakeHldWVpoXtvK83cpgXt44HzrKb77rSV562PYjbJuWcd8QE0hKjnGb52U9x92mZT3KS8A6Tm5ZbXEz3veZm1Qy/16+h7baX93O4wQtrRnXZZpBH2P18KTatDQGStNkFbSM85ycVLNkfqvtO/1tJysdSeUB1cMdEbRENfOFKIogXtATexLVw82BMHoP78q4/dLsCCCtTMswFxHjsLUStLSbZ5qZlnmpPholMi2Tl2QgPqvSaNMyLzfutGkZr7zsB7XMahtYVRum93Brea4ebnw5nFTQMisvpMv7X6HQ+RwUd5NHSfBzXNF7ePwIWjoiaIlq5rc7eQxaRlU9HCXG9RfFxaeeeg8naGn/d5xlqQe1GLQsSyrT0u/wBC2Tk8dMyzirh9frvsYDb/rcaj1ZZeBRPdxa2EzLNNeD8Vh0C1pGdf+XlXN/uRyNjZ3HQy0ElJLItAw7Tj3JwrNdhhG0RLWoqocbRRG0jOvESvVwd1EELYOMZ95uafUeHuZCHdfNZpqNNZcfPAhapqsWg5ZJZ1oStPQvjUzLvBzfUQYteXjpql4feNMO3LolEFhlWgbpiIegpfs4aa4H4znIramoqO5PsnLeK5ffGLSMs2xJnevCPFuTaRk9Mi0dEbREtXrPtKR6eFdRZ1p6Zd6OZFpaT1dK9saufI5wK0OSmUK18kDjRy0HLYMGB/3e4Pk9bghaJofq4c5/I7/ysj+XuWVaUj08OC/HdVYyLY3b3m/QMu+Zlsagpd3L1TwK2ka/33HhDUFLRwQt0alYVMF8UxFF0DLoQRdVm5Z0xBNOWtXDzdstrUxLgpbVykFLMi3TVcvVR5NaNr/7DTft9ZVp6fc6QtAyelHvb1lYj1kogx9utZ6sepWmeri1PPce7ifTstaqh5f3v4aGZKqHJxWs8nNcUT08fmnWossBgpaoKFidvLJSPTypjngIWnaVVvVw8/6YVqYlHfFUy2LQ0rxus3KjG6dazrQMWj2cTMvaYaz1kdaNe5rnEaqHdxXFfpCFh8AslMEP2rSMTp7btDSW1aoXebthJe/nr6ze1ySdaZnF6uFRdMSTt3Nf0rjuOyJoiYoGq4tDmtXD3W6UJGnaNGmrraR99rG/WfLTpqWfIO3vfy8NGCA9/LD3cbyYOVPaZhtp992lFSvSOcn/97/SwIHSmWdmK9My6LhhhAm+xXWzmeaFrXyc+a0enmTQ0u2GOug8DjhA2mwz6YMPop++X1m9uQ/D7mEgK5mW5nJMny594xvSu+9GVyYv/vnP0rXnD3+IZ/pZeLAwBi3zkmkZZ4Z/lo7v998vnQcPPDD+cpFpmT4/mZZxVQ/3+uKqvG8ecEC2jpmysL2He12mU08t3cP/73/ey+bGWFa/QcvBg6UJE9znYc7g7OgoTeuII6SNNpJefdVTUSOXdJuWSXFahqlTpc03l4YOLR1/tGkZP6qHOyJoiYqCuT1LqRQ0CyvOTMujjy49ME6YIP3lL9bDOh30S5dW/+01SNvaKl18cSnAeMgh3sbx6pe/lN56S3r+eelPf0rnwnjggdKMGdKVV0pfftn5fZptWra3u1dJKav16uFpViHIYqaledpxtE17113S44+XApaHHx799P0yb/O4OqtJUt4yLaXSjf2Pf+xvOmH96Eela89FF8Wz3Z3WY1LnmiwELcM2HxDlvLP0gHzPPaXz4H//K734YnLzJdMyHVF1xON2DxRFpuVPflLaNx9/XLr7bm/jJCmJTMtPPpGuv750Dz9kiL/yOfHTpqXV+WqffdznYb536+iQxo+XHnigtFz77+8+jTiUlyep3sOzkGl5xBGllwBPPimNGUNALQmsY0cELVFhmWkZxQETZ9Dy2Wc7P3/yifX8nJbBPGxra9fOiKzEGSCYNKnz85Qp6T+sGG8i0qweLnlfF1QPj4/XoGWSVWnN046jmYfy+UWSJk+Ofvp+1VPQMquZlmVJZ1oaxbHdndZLEjfRxWI61cPDnlfjvO6kfR9gZDy/+mlrOggyLdNnrPWU9TYt33yz8/Onn3obJ0lJ9B7++ef+yuSVOXjqtD2DnrPN927t7aXga9n8+cGmG1Y9dsTz2mudnz/5JJoXaQThnGX5up8BBC1RYRm0jOKASaojnvKNk5+bAqvliyK7NAzzTXraJy3j/NOsHh523KCoHl7NLmjp1q5kkpmWcQQtGzJ2uQyajZgHecq0TFscZUo707K9PZ3OJ8JmOWQlwz9uxn0ub+2AZ+GhOc0OnoJwuxePqk1Lp308yHku7fVmJYnq4YsX+yuTV+ayO1URjypo2dGRjXOfVfXwWsi09HpcFQrBr49ZPA6zikxLRxl7CkOauvQcLkVzwAR9qIoqaOk3aySOqqVBFYvpX7CN8w8auEk60zLKEz2ZltXKQUu3MiRZRvO6jeMYztqNl3n9eskQz7ryMmU10zLtc7GVWsy0NO/LaQUtybS0llbQkurh6XC7F+/WrfOz3UtNiY54pPDVw72cB+IKWprn7RS0DHq+sqoenoVzn1Xv4fXWEU8U16S8nfuSRtDSEUFLVGS6eriXaZTf9oapHi55uwmP82JlvkFM+4Jt3C/SbNNSyl+mZS0HLf2ulySDlnE8SGc9aFkLmZblfSSpTEu/w2fxwbkegpZpPcBlqU3LLO17xrLE/ZKX6uHp89OmZbl6uNX+StAymerhSWVaOrVrGWX18CwcL/Xee3ihEPz6SO/h3qXZX0EOELREhWWmZZ6qh5eDln5uCqx+W77cfX5xnkiyHLQMmmlpXF9UDw8vyaCleV521b/SDFomUT2coGX87IKWXo+duINMWXxwTrp6eBLXo7QyLbMctEz7PsDIWBYyLfNZBj+M931UDw8nyL2b3/vIRYv8lckrP5mWtVY9vFyGWqseHibTMm/nsTzIcg2LDCBoiYpMZ1r6qR4eNtNy2TL3B4Z6yrQ0rr+gN4FB9qMw+2OtVw9P8m2cudxBMy2T7IiH6uH5FLZ6eNg2Ld3GtytHmu2d1kOmZT22aZnlh5ckq4dHnaWThfWYhTL44Vbryar38CxUD8/aNVuqrUzLeqwebgxa1lumZZavSbWCwLAjgpaoaIirTcukg5ZxZFomGSQy32ilnd1jXPYkg5a1kGlZC9XDyw8hZV7btDTLe6YlHfHEL2z18LCZcUGDlk1N/uYbpXoIWlI9PFsPiElWD49aFh4Cs1AGP/xUD89S0DKLwrZp6WU9LFnir0xe1XOmZa32Hu6nIx6qh8ePoKWjjD2FIU01Wz3cahlefFEaOVJ6++2uvy1fnm6mpVEWMi2jDlp63R+y0hFPVEHLKLdjkkFLcwDBLtNyxAjn6Zx6qvTGG9GVyyiuNi3nzJH+7/+khx4Kn7XR3CxdcIF03XXxVHPMU6bl5Mml8+9rr1V/n3b1cLftYjd9v0HLhQul3/5W+utf/Y1nxXjdfvhh6cwzpdmzvY8/f7501lnSvfd2fpd20NL8oiStTMssBS0XL5b+8Afp5pujm0dQee49PO37Kcn/MeR27RkzRvrd7+LLsDO+sLNaf8bfy+0cWg3ndh4PUj38f/+TzjhD+vTTrr/FnWnZ3CxdeKH05z8HrwXkZX/0ex9prB7et6+3cnlBm5bVHfEUi9J775XuZV54Idr5ZS3TUgoeUIvrOHzqKen006WPP45n+mkgm9VRiukByJq6qh6+667201m2rOs45nWTZKZl2ietWsi0LBajK7ufZamFNi29Bi1ff915Om++KW2/fTxljSvT8vjjpf/8p/T51FPDTevKK6Vzzy19HjRI+v73w00vz21abr996f9rr63+3q56eFKZlkGbODD2nuvFmWdKt91W+rzddtI3v+lvfKPyuvniC+mQQ0qf33xTevJJb+OPGiXdeWfp8w47SJtv7r92QtSykmkZtrmBMMzzPu88ady40udttpF22SW6efmVVvXwKGQhcyXK/eS116Thw0ufFyyQbrghummXud2LG78rv3CIuiMeq3FXrpSGDCl9Hj++9DIsSddeK51zTunzBht0nn+dhM207Ohwv581Bq9XW819+l4lUT3cKtMyC1m2dpmWu+8uffllaV/IwrnFr6Srh0e1jtrapH33LX1+7DHpgw+imW7ayLR0RKYlKiwzLfMUtGxstB7W7zJYvdkj07Ikz0HLoOq9erhd0DLIOo3rAhxXm5blgKVknZXtx1VXdX7+29/CTUvKd6alnaxnWkZVPbwcsJSkCRP8jWtWvm6/917nd2PHeh+/HLCUpGefLf2fdqZlVtq09DvfODP8ywFLqfSQliZj2ZKsHl4rbVpGuZ8Yj/Ubb4xuukZuHfFYvZxNonr4/Pmdn+OqxeHE+NLNmKnuJGympZdxjEHLKDMt/VyXg+7jeWrTUioFLOOQxUzLLFUPX7Gi8/PUqdFMMwsIWjoiaIkKy0zLKC4WQafhdqNkZpelEyRbIittWmYhaGncL4IGLYMsQ5Qd8YTZXmGmFVfQMsn90RxAcGqzKi1xVQ83CruOjeNHkT2U50xLO2lnWua5Tcso2ly1Cxob1XLQMkttWjqt5549o5tPEGRahpOla6cXbh3xuAUyy6LuPdxtenFXDzeec4N2Fuc309LLvIxByz59vJXLCz/B01qrHl4ugzloGZe4zlNBX8xZZVpm4Vxaa5J8tsshgpaoyHSmpZ+3kW4nVrcLvlWg0DxOkhfRtE9iUQQt0860DLO9wkyrnqqHpymu6uFO8/DLuM2iDDCV1ULQsl4yLf3M000cQUunMiVx3KdVPTzLbVoa1VPQMmppXLfifNhPoodst0wpq3WaRKZlloKWQfcrPwkZZW7XQ2OblsZOksLycy8cZfXwLNxrWlUPzyPzvuPnuYT2FuPHOnZE0BIVsWVaBr1B85tSbvfAZV4GcyP/VtPJcqZl0icx441h2kFLr8tO9fDo5CFoGVf1cKOwx3wUzSwY1XL1cPP2zEqblna/p5lpaewgICwyLav/9ruscVYPNyp3OpiWtHoPj2L9ppG5Ena/SjtIktVMy7TbOiw3SSUFz7T0cm7ze50yZlpGub8nkWmZxerhxvkbO+KJU1znqaiSMCTvZUz7/JUnZLM6ImiJioYsZ1pGWT3cS9AyzUxLt4540gxaBr1YG7eB130qyurhYdZZFquHJxm0NB8vYdq0jEsSmZZZWl7Jeh9I++Y+LLtzeNYzLf12xBOlWqweTu/hzus57YfAtKqHp9lcURhp1tSJQpBMy6g74gkyvbgFybQMcj/pN9MyrqCln+tlVNXDs3BfY1zfea8eHvRclLWOeNLeJ+JC0NIRQUtUZLp6uJ8Lu9tB39zsPh23QGGS1dXSDlpGXT08aBXvMOOSaRlcHjMts149PI5MSyn9h7iwqB7uX3mbG7N+gspK0DIrvYdntXq42z1M3IxlS7J6eJo1f8JIu4mfsIzl9xK0tGuHMOqgpdtxEHdw33jOjTNo6ed62NFRna0Y54uUJKqHZ6FNS3PQ0m6/ijOrNSphXqCEaQ/TbhpBpb1PxIXq4Y4IWqIicx3xBK0eHkWmpduJo54yLdMKWmYl0zKq6hQELeNjLkscVRYJWsbP7hyelerhWe6IJ4p9qrz8cWTQ+JGX6uFxnoezHLQk0zLcPKMsQxJZt8btbXVMWCUGeM2+NPJbPdztXj5uUXTE42Vf8JNpuWSJ87hh+NmPrebrpUZC1quHO2Va5jFo6XW/LRSy9fIl7X0iLmRaOiJoiYpCmCCRk7iClnYHt9tB73ajY5XdaF43ftZLa6v03HPBbrCykGnpNdgyfbo0ZYr7NKLMtFyxQnr+efe3h36CnZMmSQsX2o+bherhSd482PUeHnaeH31U+hcFeg8vsWvXcsUK6YUXotkH29tLx9zKleGnZZbX6uF2QcvPPpPee89fmfyKMlAddablsmWl/c7vdgmSadncXNovw6wPv5lEzz/vPH4YTtOK49jzI842LZctk559tnM7GtdDXjMtw9w/uolzecr3Q/PnO8/PvF1WrnTPtFy0SHrpJe/3hkGClklmWmal93DjvavX6XsVNtPSS6dAeageTqal/3GjFtW8rc5DaSJo6YigJSoy16al8W2WVTnM2QZ2D7zmv5PuiOf446U99pAOP9zb8FnriMfI7mL9+efSxhtLW25ZCtCaBXnw8BK0/N73pN13l844w3lcr/O89lpp552l7bbrvLhTPdz67zDzfOcdaZNNpE03ld59N/h0yvJWPTyO3sMl+4DN0KHSbrtJ//d/4ec7cmTpmDvooGDjO507k8609HuD6CdoOW2atNFG0hZblG6K41JeN1EFpKXoqv3tu29pv/vtb/2VI0im5aGHlvbLE0/0Ny+n+TjN96KLStd1r8OHLYtRloKWUZ9rDzpI2nNPNYwcWfo76qBlFjIt/d5Xp9WGafl+6OWXO7/zcl9ml2lpPFftuKO0yy7S1VfbT8coi0HLKDIt/TR95WVexp7DvU7fq7CZlkGCllmrHu7UEU+U5YyihpuVoM8zYdq0zGr1cON56Kqrwk8vCll63s8ggpaosMy0TPPNttuJznzjble1LUj1cLcTh5/1ctddpf8fftjb8HkMWp53XueD5o9/3PX3qKqHm5d9/PjS/9ddZz8/P/M8/fTS/9OmSa++aj1PqoeHn+dJJ5X+LxalESOCT6fMXJY4qk/muXr4s8+W/jc+IAY1enTp/3Hjgo3vdBxkPdPSbvpW1d5++9vOch91lL9y+VHe5lEGdKKoHr5yZWew9rLL/JUjSDbIo4+W/r/9dn/zMvJzXj333K7fRXkezkumZWurfYa3XytWSBMmSJIab7ml9F2QewcnWci0DPtyxSjOwFz5fsjIa6alU8c5b77ZWcviV7+yn45RFquHR9GmpZfx/NyDrljhf/pe+bmvDhq0tOqELe3AjdeOeKI8t8QVtAxzLgr68iWOc1QU69p4HjrzzPDTiwKZlo4IWqIitkzLoPwGLb1WD/fSEY/bm80410uWg5Z2F2vjQ4vVA1Uc1cO9ZGw5TctN+YY0i9XD8x60NO4jUTx4BG2nx48oq4dHwWv18Kzd9DhlTSadaen3POGn93DjdcYpyBR2+3jJjvQqyurhYappp9V2Vtj5xpnVZJSlNi2l6LItP/us63fG9ZDX6uFZagsuLC+Zlm7Vw+3Oo07rxep8kvZxkFRHPH4yLc3rKa1My6DVw63mkbWgpV0QLg+ZlvQe3imL52GClo4IWqIid0FLr9XD08609MutI56sbBO7763KF0f1cD83TEHWWfkGq96rh5uPl3JgLMx+aCxvHFWl41gfec20jCOAG4Zbz6fG/72MY+R3n/R7nshyRzxRbOcog5Zhsu/SelEX9rxaL9XDzWWLKmg5bVrX72qxerjfMqRVPdyK10xLp6Cl3TmE6uHexnGaV5Ltp/q9TnjpiMfq2p+1oGXSmZZRCtMRT9CAWlarh2cRQUtHBC1REVv1cLOoTnRBMy2DtGmZZKaleT5hqxZFKYqgZZjq4cZxnTJ5ogjqlW+wsphpmWQgO45MS2N5owhaJpFpGbbDkySCllaBojjPF0H2Oy/HbVarhwcNWsb58BxH9fB6DVqGnW89Vg+XYgtaNrS21kamZVr3j3HwktxgbNOyUOjMSHQLWlI93Jqf62FWMi2DBi2t1k/aASrj/J2ClrWcaWk1bJrbJYp5Z+llUFmSCSk5RNASFYllWgYJWloduHZtWobNtPRSJTvNTMusBy2txFE93Es1U7/zNCovU5j1bxw2r5mWdr2Hh5mncdwobhySCOyHbbct6qClUyaL23BRCXJcBcm0zHr1cKvtmVRgIspMS7sXf1bDuIkyaJnkS0Kncripl0xL874WVQ/ipqBl07JltZlp6Xd/drpeJP3g7eUaY2zTsqGh86WO2zkq6kzLuOUh0zLOFyl+q4d72Vetrslp1xYxd8STRO/hSWVaJl09PCq1Gswj09IRQUtUWGZaZiVoGSbT0nxyi6J6eJIPUVkKWnrJiouqerhb5m/cmZb0Hl5il2kZ5hiIO4AXxw1f2KBl1IHaLFQPDzLtIG1aZiXT0m76aZ6TybSMTtjrPG1ahmMKWnZbvjz6oGUaD4Fh9+csPbh6yeY3Vg83Bi3dXj7lLWiZVJuWfvafLGdaBskqzUKmpdfq4XnItIwqCUPKf/XwLGZaphVryAmClqiwzLSM42Lh581OmZ82Ld1uCqLoiCepTMusBS2TrB6edqZleRpZrB6ehaBlvVUPj/IBqVaqh4d5GWDFrnp4UpmWQauHu83XaXuHvSmNMmjppVMfr/MJE7RMK9uA6uHeJBW0XLasep1GsR+kcf9Uz9XDGxu7Bi2jqh7udi8f97aOItPSSxnDZFpGua/5OS+7PQd4HS+LbVomnWmZherhYTIts9p7eBaDllnKZs0ggpaoaEgq0zKqoGVc1cOjzLQMEjzJe/XwqDItowxaBllndvtTvVcPjyJoGXXWYRLHSNhAQRJtWiZdPTzqoGXWMy39BC3zWD3cSxZ1FjMto1rXVA/3xly2mKqHk2n5lSw9XEeRaWm3DaLOtEwyaJlkpmUe2rS0+i2KTMsoXnL7lXamZZTCvOCP4rkjS5mWWUT1cEcELVFRyHKblmGqhwcJWprHefddabPNpAMO8Pfmz0921pNPSgMHSlOmdH6XtUxLs7fekjbZRLr11s7vyuvu/vul9daTLrzQOtNy9OjS73/5i/W03YLoXjK27P72IoqgZdQPXHbTiuM4PfVUaYMNpMcfr/4+6kxL8wPZSy9JX/+6dPTR3qeXRKZl2CqZVst8+eWlY+Cuu8JNr+zZZ6VBg6Rjj+38rhaqhyeVabnhhmo84QT74ePItAzLS6bl0qXSrrtK220nffGF/XBejm2v55owmcl+z7lR7eNRVQ+/7LLScX333V1/P/xwaaONpNde81cWo7SDlnFkWra1SZ9/XvVVYm1alq85xxxTWrbvfa90v/fee+HnJ8Wb/ZZ0QLO93f3+KitBy7jbQkyqerhdpuUdd5TOM1df3fU347j/+1/p2eLUU72V0Ws5yst83nnSgAHSP/4hvfxy6fwWNGhpNY+0g5bG+afRe7jxGH/ttdL6PeII7/vOT34ibbyx9Prr3jItH3qotD3N5YmienhUoqxZkiUELR0RtESFZaZl0BOD04EWJNPSqmx2QcuwmZZWgcKjjpI++KAUwPnrX+PJNhk6VJoxo+v3WQpamuf9ve9JH31U/V153QwbJs2aJZ1zTvV6KP8+YkTp95NO8jYv47hScpmW9Vg9fNo06frrpenTpf/8p/q3uNu03Gsv6dNPSw/8L77obXpJHCNxBC1//evSMWAMMnpltYxnnlnadnfdJb3yiv1wUUmqenhSmZZtbWq48071/fhj6+GzmGnppUr3hReWjqU33pBGjrQfLsqgZZId8US1j0eVaXnWWaXj2vziZfx46W9/kz75RNpvP39lMarFNi3nzesy3W5xBC2t1uvee5euOX/9q3TGGdJjj5Xu9w49NPz8pGzdw0XBLfDR3GzdEY/byye/1cOzlGkZ9P4uSPZheV4/+1npPDNqlH05OjqkIUNKzxbXX9/lxUCospYTPM4/X5o5UzrsMGmffUrnNy/jexnGHCxLO9MyqY54jMeKcX5DhpTW7wMPlK4nbsaOlf7+d+njj0vPmF6CloceWtqe5uGyVHU5rhdYaSNo6YigJToFbYPEL68nCreqF17btDSPGyTT0mjqVO/LEEWPw1m64TXPe/p0b+MZg7Fey++WaRl3m5b13BHPggX2v4XtPbxYrC6/+SbUeFw7ZYUZ5aFNS6dlDjs9K3Pnlv4n09L38D0WL7YePsuZlk7ZXG+91fnZKcMvq0HLtDIto64ePmtW52enc6zbtLKWaRlF9XCL/SWW6uFW0zCuz4kTOz+/+274+VnNM+8PouZt5ZQd19jYmZEYpiMeq+2WdtAy7UxLK27Vw8Mcq1bb2bwvOE0/iurhxnWelLSrhxvvH+bP7/zsJQBtfPaaOzf4Nc7quTjIeSxL1cPzkGmZxcBqighaoqIQZbaI00NaXJmWXjPjgrRpadTamsyDm5T9oKUVq3VjzMTwuu7cqpdE3Xu43RvIMBdq43zzFLR0Wsaw1cPN+3QUAZ0kO8qKQlxtWlr9TqZl/MOnmWlpVz3cbp057XtZadPS7/kta5mWdvw8cDut56wFLaOqHm4SS0c8btPw+oLEj1qqHi51XUdWQdnyd/XSpmXQjni87At+ngHc9rUwQT+rsvs5XoIEaM3PY2ns716DlklUD/c7P7eAt597q6DPonH0Hh7FdPIQtMz7C66IEbREhWXQMo6LfpB2MNzejhun6/ZWO0jv4ebxk8q0lGojaOnnd6d5xZlpad4v7LK+6iHT0i1oH2ae5qClU9ah1xvUoEGuPAtzHEUlyLS9HLdhbqz9sBvebt0GzbSMkrlsdpmWxvXsN9CYtUzLpKqHh82IcxvezwO30zLVYvVwi/NCU1KZlkZxXDvC3sM57TdpPNT6ybQ0Bi3L6zbIedRLbSs/04tCFJmWQe6pw2RahglaWu3Hfs7zUWRapl093Kn38LgyLe1Ese+EybQMErSMSq1mWtZaVn7ECFqiU9aqh7tlWnqtHh51pmVLC5mWTqJ6wEy6erjX3ugJWlqXwc+0ndq0NPJ6s5NE9fAoJZFpWZ5H1qqHB+k9PK7q4X734TiCln7LYLdugq4z40Ogl6Yfknhh5zdzNap9PO5MSz8P3E7TSjvT0ly2KKqHe8m0jOI653Z/GMf5Ms5MyzS4ZVraBS3tXrCURZ1pGfd9QBKZlla/O83LLSgVJuhndX70k2kZJGjZ3t41aJi0rGZahp2uFC5oSfXw6FE93BFBS1REWj3cSZA3kl4yLe0eeP0GLd0yLVtavC+DeV5B1mfegpZuwySRaRnkxB+0uQEnxvlGeYGM+21cktXD48i0zPqFPoqbUD83m3EJMu0cVA8vJJlpGbbMdkFLr0FD4/EXZfXwKHsPt/vOy29h5ht10JLq4d6nqZg64nG7dmYx0zJr1zO3TMti0bkjHr8Z7nbj1EP1cL9BS7dMyzD3ilb7cdRBS7fq4VnuPTyuTMs4q4f7uY+M4j47rmt1WtOIGtXDHRG0RIXlg1ocB7XXg9AtS82uerhbwCrNTMsg1c2yFJDxM+9+/ay/z0v18HruiMdLpmXQeZJpmUymZVnWMi2DdMRjdR50Gt8rvw/PcXTE43cd2gUtvVYPN5fFGEjLavVwt/lGdf4L+8CQVKZle3s8bS96lVablnFkWgZ9QeJH2JeMTsudxTYtjffQjY3eMy39vphIO2iZRPVwq9/9ZFpGda9o93xYb9XDk+o9vFarh5Np6YygpSOCluiUterhbllqXoOWUVcPD9OmZT0ELcvLuPrqwachWW9zr5mLUWZaErSslofq4Vl8g2qUZNAyT5mWdsec23hBy+M3aGk3vN8gm5dpeh3eb6aled+zyrTMYtDSLYgXhbDXWrdaGn4yLd3mnWa7lnH0Hp5Wm5Z5qB6etetZXqqHJxm0TDLT0mm53DItow5aJlE93DiPtIOWaWRa2gmSaRn0JY1V0DKKmoNBEbSsSwQtUZG76uF2bVq63ZSG7YjHKtPSOO/LL5f++MfSCbGeg5Z2y5pGpuVpp0nvvus8vziqh2c1aPmvf0m/+pU0a5b1726ZxkHmWWY+vuKoHm6cR7EoXX+99OMfS7/+tfTll/7KG4e8Bi2jeADy0qyD1XS9PBxFFLS03TpBHralaDMt7YIsdsFMN1kMWvp9gRrXg1CQ/cmpnH6Oe7f1nGYV8SgzLYtF6aqrpPPP7/JTl+rhX3whnXWWtGBBuPkZpZFpGdXLlbQE7YinfD8bV0c8YQLQzz4rnX669MEHpb9XrJDOO69072DHOL+5c0v75vz51sONHi2dc479faYdq9/POktavNi6LG4vcM1/T5okjRwpvfWWcznszsl+zvNBg2zmTMckvPBCab289573jnjiyrT0+3JVKm2XCy4onVvtpitJ110nXXmlt/3QbV8aM0b63e+67ptuneoGEcW69np+eOyx0rlh+vTw83QTd0JKzjWlXQBkR2K9h8eVaek1yBRH9fCOjtLF7K9/LQVGJGmNNaSttrIuo1dWQcs037z4uekIcqE1irIjnieflHbZpevF1CiOTEuvmaF+hbmwzZ8vHXxw6fPkydK4cV2HcQtatLcHPzeYj684Mi3L82lslF55RTr11M7vV1219PDgRWNjPA+xea0eHkU1/DgzLaPKYIqienhc28cuOOlUPdxJXG1aJplpGdeDUJDgktX1oryOo6oeLqUbtDSXLUzQ8u9/L71As9Bt+XJplVWqv7zsMmnmTOmuu4LNz+3+MM3q4X4zvKVsVg8v3yNIpX3emJHY1hbs5Y/VOjDfy4epcbHnnqX///a30v515ZWdgfSNN5YOOMC9TJddJs2eXQreGL34ojRihPV8g2RavvmmdMUVXYcrFPxXD99559L/N93knNBhd06OO9PSPI+kgpa77Vb6/957pXvu6fw+jUzLIM9Sl18unXuu83TLzjxTWndd6ac/tZ+e1Qs5Y7lefVUaPrz0eeHCUpDebjpRSCrTcskS6XvfK32eOlV69NHw83VCpqUjMi3RKanq4V6n6ZZpadfJjdsNopegpVumpd08br+987u//CV8pqWUraqvfjIt7YYNErQ2T1tyrgZjtZ6XLHGen/mGLcuZlmEC2Z9+2vn5qae8Td+stTVc0DLq6uFOQa4ZM6q/N//tJK4b5EIh/Lk1jUzLKM5FQTMtgzzwBB0+iqClkdN+HLbMXqqHe83+85JFHTRo6Wd/97v946oeHqRmhHkc43qIqiMeqXYyLf/6V9ufCu3t1uvBYRxXbi8hk6ge7vfeKGvVGINmWkql81WQIIyX6uFhM1qlztonxqDgAw9YD2s1/Tvv7Prdf/9rPz+349xuGS68sPrv8voJWj3cSwelVmWLuk3LrGRals2bV13uNHoPD3LfYfdi3m5abi+BrJ6LjX8/8UTn5xtusB8ub0HLjz/u/PzYY+Hn6SZLSUoZRNASFYl1xBNVpqXdjZPbRdrLxdmpjM3N9vMwNzjsdlPlJo/Vw92Gjat6uHH4IOvI/BBYqx3x9OnjPoyXoGXQi6n5wT6KTBGrdVv+LkygzU+QwQ+r4IZfbsvhlLUY1TyDTDtopmWCQUvf1cPzlGlpPt6M5fRSPdzrOg5z7fO7PrOcaRk049Rt3rXSpqXDdi243YtFMT/z33F0cBRnpmUagnbEI5X2nbg64gl6rbda7927d362O4a9Tn/gQPvf3KZht0+st571dOLqiCdopuV++0mbbup93lYvEdIMWpbLYJy/3T1rlMepcb1GFeR3+t5tvVpd24x/e62dEVUQLop17WUaSVQJN6J6uCOClqjIdJuWXoKWdg+8SWRa2gUto8i0rIegpdV3bh3xxB20tNufgq6DrAQtvdz0xZ1paRzXqTxhAtxezwdOnIKWYY5DqxtAv9yWw63TgyDSrB6ehUxLvxlSYcrgdfiwmZbG7RFn9XA/+0pWMi2DbBun+40orp9ltZJp6cTtXizoNP38HQWvHfHEcX6JQ9hMy7g64gm6La3m261b5+ewQct+/fzN28vv5kCoXaalVRAwCLukFregZWOj1LOndVmsWG3DpKuHO62zNDItozwv2I3jJWjp9MLH60vFqM5lYe7ry7wcC9OmVf/t1MRYFKge7oigJSoyF7R0O9HZVQ93O+jdMhTcAgpOHfGY38DZBVa9qsVMS68PpG77o/lmyXgBCrLfxt0Rj3GaYYWZrpdh3ZYxTNDSvE9H0UmJU6ZlmOPHKWgZJlASRaal2/h2yx8G1cO9TyfpTEu7783Mx5tV0NJpPWYxaBnXedXvMWp172BcD37WQb1UD3dQiOI8aea2jdPsiCdIpmUaD7Ve2rSMOmhptQ7M9/JBX6pZTTvKoGWYl0B281h/fevhks60dMskLxQ6A2Je9tUsVA93erZIo03LKM+DdseEW60iq6BlkEzLvActzX9HjaClI4KW6JRU9XCvB6HfTEuvQUsv1cODZlqap1OPvYe7Det1P/MbtAz7Ns+uTcsw6z+uB6K4g5Zuw1gF7v3M3ziu002o1+VyysoNc3MTV3ZXEpmWdtXjw6iTTMtIqoeHLIPn4cN2xGMcLitBS6/Z+GVRPMBYTSeKl4zG9VArmZbmsoWpHu4kjurhaWRaet0/gwQt07gf9NJuorEjHq9BS7/LmZdMyzDbz26fWHNN6+kEbdPSjd052e0609DQeY8X5Bre3p58pqVb0DLp3sMlfy9GnV4ipV09PAuJG2VBgpaffeZ/Pn4QtHRE0BIVucu0tAsIut0gxtV7uORePZxMS+ugsFOmnHlcu9+jzrSMIlPP6gYsClGWyeqG3O1GNMqOeJxulsJkSsSx/YzCtH1m9dbaL6/Vw/OUaek3aBn2xjXOTEvjtSCKbGK7ecVRPTztoKXfoLXX6rdu/OxPxqCGcXjzNOIKWqbVpqVVuZYvD77OHY6NVDIt42jTMs6OeNK4H3S7rzXeQydZPTzo9clquKSClkEzLe3uf93WQZj7Nqvv/GRaBglaGgPgUnztjBs5JUSkkWlp9bfT/JwCa0GDlladonk9N4dNKHGbZtDpejlfpJ1pmebzfgYRtEQnv9kNQQV5++mnTcs0My3dqodHUd0s70FLqwe7IEGKpNq0jLJ6eFyZlmGyB63aaHErZ1LVw73OI66OeJzWQ9qZlm7jx1E9PI4bRSO/1cPDlsfv8FmsHm63n3upHm6eVvnaGKY6Y5n52ucnGOR3fXrNZPM73yBBS6fgsZ/9LavVw+3OtUE7HHIQS0c8bts4ierhUWZaZqF6uNX9SLnMjY3VgaagvYdbjRNn0DLKjnjCbD+73+2ef8zrIGxnoE7l6OhwP6/7DVpaPRsY5xFFx41unDItnTriyUqmpVNgLUymZZarhweZrpdzf9pBSzItqxC0REXg3sMXL5YeflgaO9bbg0mQ6uFW5fCaaWn3YGbHLaDg1Kal+buwNwxxBC07OqQXXghWpSuKoKXVg0iQTEunG4sog5Zh1n8eqocvXNh1mCQzLcs3gK2t0vPPVw9r93Z54kRpyZLq76yGs/otK9XDk8q0DFrO11+X5s6t/s5P9fBiUXrpJWnBAutyWbHbZnbfxZRp2XvWLOmjj7r+ELR6eBSBebvhw2RampentbW0zV991X7+Xvdb87Xvuee8X3O8bn+73/yu01mzpLfecr6uz5kjvfFG59/G7DHj8E6ZlmGzTY2yFLSUYqkiXojiPGn04Yelf0ZRBC3b2krXLrtt4vUa5PSi104aL7HjyrT0u5xuQcsZM6S337afZplb9XC7Z4YogpZu07D73e7Zwnx9tWv2yC+7c7Lby4ooqocbt2vaQcs4Mi1bWkrXR+M29RK0tJufU2DNbpxCoXQOnzjRfjyn66zXoGVU5/M4XqC3tlY/W6xcKc2eXT2M3bpdurQ0btTJCAQtqxC0REWg6uEdHdLgwdIhh0j77y+dcor7jIJc6KNs0zJsRzzNzfYnzKgzLdvbow9a/uEP0m67SXvvHSzzM+ywXoOWbhfpqDviqdc2LRct6jqMl0zLMNlMVkHL446Tdt/dvRwXXyx9+9ulf+XpxNURT56DlmEyLe+7T9phB2mzzaqDEX4yWa6/XtplF2nbbb0HbpLOtLRZh1vddZe6bbGF9M473qYf5NpZlnRHPE7zXrSotM3PP9/7/O2Yr30HHyzts4+3cf0GLcNkU8+fL228sbTNNtJjj1lPZ9EiadNNpe22k/71r9J3XjMtg/YenqdMSyl4ZzxBq8f69fbbpW34n/84zz/Ief2UU0rXroMPtv7d6/4ZJNMyjaClW0c8TkFLcxDKyC3w4XYvbz7nPPWU9M1vSk8+aT/dcnnNglYPtwqqOW2jqDIt7TLunRInwtQaKk/LS6aludksP/Pp6Ah/b+9X0KBl0LIde6y0xx7SUUdZz9Pqb6f5Bc203HPP0n21Fat7Vq/BSOM+F9X5Ko6g5QUXlJZ/l11KyzN9etdxrNZtsVg6/3/72873Tl5QPdwRQUtUBApazpsnvf9+59/PPOM+I68HoVv1cLuLcRLVw72cWIrF8G1aur3dCuKSS0r/v/KKdcDKrTxRDOtlmdz2xzxUD49629mVIczDcJBMy5Urgy+L+fgq3wDee2/XYa3mcc45pf/ffluaOdN+uCiCznFVD4+i2qPXTMsg8/npT0v/L1hQvV38BIdOO630//Tp0qRJ9tOwmp7Xa1FMmZYVJ5/sbXir771mh4Qts11GrZfqulbjmDNjzYJWD5ekl1/2Fmzzsq2Nwhzj11wjrVhR+nz11dbTufnmzuyLcmDKWH3UOLx53nG1ael2HxOXqIOWQefn10knWX8fxTX55ptL/z/xhLd55D3T0q16uLH9u4aGrtXDgwQtJecXAlZ/lx10kL/pSsGDllbnhTDNbdhtX6+Zlk73yWFrnRSL/qqHu83T6tnLHBhNImjpFDCMoyOe++8v/f/3v9uXwc/zudNznd2x19wsvfaa/XhWQcsgmZZxPQMFuU6Yx7nsstL/775bahfU6tnI6rsvv+yshXHBBf7LYUT1cEcELdEpSPVwt7d6VoJkWlqNk2ZHPHbzcOuIJwuZlkZ+G52PKlPEy1vEtKuHR5GpV6uZlsuXB98PzcdXFJ2U+Mm0DNI8hdd5epVkpmXYfc6YzeKneriRcRt7qR7uNfM67qClU5bKHXc4TyfMvuskSKalVWZzkHmbp+XE7kHfS/W+sJmWfo4tL/uj1TBpd8QTR4cxXtiVK2j1cLf9Iaprpl2wPI0giN9MSy/Z6Ulyexlv/L2pqWvQKmgzG27PG3bnHLcXOG7Vw/0ELe3OC3bcljlspqXT/MLez3d0+Kse7jZPu3mEvbf3K+nq4VbCZFr6uVZ6Gaf8u9O9dNJByzgyLY0aG62vsVbLGWXnUAQtHRG0REWgTEu7m4gwbxathouyerhV0NJ8UXUqo1XV2PK6i7r38DwHLZ2GdateZPed10zLIBfzPHXEEzQQZzWu1ZtDL0HLqKuH2w3rpDyuU5Arysb5jfLaEY/f7WY8zuK+UUy6eniY4XffXdpoI/vpeD23RpVp6RS0NEo7aOllef0GLeO6RtrdU0jW5y2rDOq4OuKJoeMbTxLOtLS8Lw0iSBZjVLyeg/NaPdwpUG8OWjpd+/xkHVpVMw96TESZaek3aOlnmbfbzr5MTi9Y7KYXRdDSb6al33XR3p58pqXTs4U5CGsUZdnCtGkZV9AyaKZl0H3OrTxOfweZhlFDg/egZZTtrFI93BFBS1REGrR0EiRoYDWO3UXb7WRmVUbjmxIvVTft5hF1pqXVDV6UJzG/N3lRBS3NvyWVael0gxVHm5ZeljOIuDMt3W5Ely0Lvh/aVQ+34nV9OWW6Bd1+bvPOeqalXbVhv9vNqT1Kr+vAGNDIQUc8FeabUbuHF6f9z2o6dsN5YRecdHqAD5LBZSetoGVc1cODvjSxe4h3ClpG2RFPWpmWSVcPj1sSQRCvQcsgQYg0Hmr9ZFqaM9M6OqKpHm51fgma3e0WfLR7rrEqr12zEXbcltn4u7FtUK+9hzuVJez9fEeH+zOEn6Cl3Tyy1qal3f4U5bHo5b7N7hoQV9DS6TrrNVEpqu0X9wt0c7DcaT5RbncyLR0RtESnINXD7QKCUbThlWSmpTFo6SWgUCuZlmkFLYO+RTR+F6QjHqcHPXoP75Rk9XAnaVYPdytj2pmWXl8ohT1/GI+ZoAFQY0AjaJuWXr6LOmjpNLwxaGmXIeKF3/3I7pxiF8yMct5W87eTZKZlmOrhUQct/VQP9xOINctapmUMvYdHKkgWY1RqvSMep33eHORxClr6ueZa3cfbBRfdgpZWzwzG4GPYNi3DbD/j78bnFLvq4VnLtGxo6Lr9vZTNbh5J7O9Jd8TjtwxO30nB9jcv+6HTs3WtVQ+3C1paLWeU252gpSOClqgoBDkYzQe9W8/cXqZZ5nZxjbL38LCZlnbLZL6JiiLTMsqTmN/G/MNUQzbyckF2y7ZxehCwm3eQoGUWq4ennWkZJmhpPr6ieCBzCnIEvbmplUzLsOcPp0wxrw/fXjMt/VYPD3uD57YvhMm09PqgFTbQGqYjniDZel7La3dtCRq0jCvT0olT9XC775yyzvyU0+vxnTQyLf3zeg622x/y1qal8di3qh4eRaal1X283TnPqTaHebrlv7NSPTzrmZZJVA+vp0zL8vKFybR0C8Y5zdeO1T2rsUx5rB7utJ7a2tLJtIzzeb8GELREReaqh7tlWtoFBJ0OeruLrN9MS7sLShyZlmGrdzrxEmQOOm8/mTFZqB5erx3xBMm0XLYs+MXUfHz52U/8DGfXMH0WMi29vBjxMg0ndsvvd75Bqoebs66Mf9dipqXVdIzLGeQhwksZpPx1xONlnfut9RFmPwiaaWm3PzrV7HAKaPqZt5S9jniCBi2TeihzChRG2SaZlXrPtPTaEY+f+26rZ42g1cPN821rc85qLEsiaGkc1xi0NC9/Gh3xWD3jmPnpPdxLYDQLQcs4My3LfSZ4uaYFybRMu3p41C8Uw0w3qkzLKM/BUSxXDSNoiU5BDkarh1g/F02vw1k9DNgFBJ2yb+wusOagpVsZV6ywnrf55ijrbVr6zbSMK2gZJLMqSEc8tdKmZZi3ceZxk8609BO09DoPp0zdoNsvzqCBlxcjXqbhxC6Y5Xe7BemIx7xPxVU9POwNXpxBS6dq9VGVwTgfp6ClUR6Cln6zGcIE5r0ELb1mWlpdr50yLb2072qH6uH+2O23xWK0vb9a8Xq9zmvQ0mmf99MRj5fASZmf6uF+My3b2qq3hZ+s8Th7D/eSaRlX9XAvAUUrtdB7uN113yyKsrW2eg9QJt2mZa1VD3dbT0FqAIZF9XBHBC1REUmmpeR+M+315OJ28NoFBJ1OZnY3H36rh5uDll7fQvo9scbdpuW8edLgwdL225c+S+5vQi+7TFpvPenuu+2H87vfeL04LF4s7bxzqRfF2bPtp2G3jpwe0jNQPXzr225T00YbSU8+6W+6YW4+k27T0nx8Oa3PODviefppaYMNpBNPDDbvvLRpaRfQWbpU2nXX0rH0xRf203EKvtmtA/M+FVf18DDnxqOOkv7v/7wPb55+VjItv/xS+ta3pMsvr/6+tVV65ZVSD+cTJkQzb8l6v3v22dKxdPzx1fO3Yi7/hRdKAwZIf/+7/TB287Ub/p13pG98QzrooHDHWZAHbKcAjnl9ezkWjHr08DZuUE89VdqOI0bYD2Ncht69Oz8HzbS0Chp7CSK2t0vjx5fKe/LJweYtlbZX0kHLL74o3XPtvLO0ZIn9cG7fS97uR4pF6Uc/kjbZRHrzTffh3WShI54oMy2tXi4by+gnOBS0I562Nmn//aXNN5c+/NB63CiqhzvdJ3sNPBnHD9oRz+efS9/8prTHHp333nbX+KSrhzvd5zhVD4+ibC0t3p+Hks60jKJ6eNB19N57pWv6974X7rl42jRpq62kffbp+hxvZFc9PGim5bHHSoMGSRMnOg9nnv4ll6jxqKMIXn6FoCUqKkFLcwDPiZdq22ZBq2e6tdll1/6UlzemxpsBL1lQXjItrYKWfk88cQctf/c76eWXpcmTpV/9qvSd28XnrLOkWbOko492Hs6Jl8wYq33rj3+UJk2S3nhDuvVW+2nYzT/pTEs/Qcs5c7Txv/+twowZ0tCh/qYbJmhpfGgqi7P3cPPxFeQGyzyun0zL8rz33luaPl26+WZp6lT78YOWzYnbW2svysPbPXC7ZVpedJH04oulY2nkSPv5BOmIx5xpGVf18KDHwcSJ0j33eBvWbvpBMy3DNhlhntfs2aXgpNX8v/Md6ZNP7KcVVdByn31Kx9Jtt0lvv136zmvQ8pxzpJkzpZ/8xH4Yu+/KzMvxgx+UjulHH5X+8Q/78STngIbfh/hi0fnlqlNwx8xqeVdZxdu4Qe27b2k7jh4tffqp9TDGdd2nT+fnKNu0tAr8mDU3l/bv6dOlG2903s8l5yzGKIOWVvMx759nnFG655o0STrvPOdxpXCZepL0yCPSP/8pffRRKXjplV1GmZ/q4V7atLS7dzcLWj3cLdPSqnq4cb0mUT18zBhp7Fjp/felww+3LptT0LK8bsJkWvrdz7xkWtoFLU88sXSteO456Yor7Odhrqab5erhQe6JrY4dr81lBWnTMsiLkfLvfoLcdsMFfW740Y9K1/THHpP+9rfgz2XDh0vvvlt6kfvnP9sPZ1c93O+9iSS99JJ0112lgOmQIc7DWqzThr/9TWuV76vqHEFLdLJ6CPZyIjNzC1oGzbQ0jtfebv+7UzDA7iRfr9XDX3+983P5wTfsDbKX4YJmWk6Z4m2aQaqH21UJCRNccgu8G1kFD+1EGbT08wa3bPny4DePfoKWbsvllJnnp01Sq3WfdKal3+O6vOxWD0mS/fKXx3vrrc7vXnutehi7hyOvQcusZ1o6ZZY68RO0tMu0DLvdvQ7f2up+TokqaGmcTjlj38uDvp8gjZ/zhHG5p0+3H08KXj3croxOgUnzb34zLXv29DZuFBYssP7eLmgZZfVwu3Oakfk+c/HiYPMqFt2DWn6nZ2be7sYXpMbzsN0+HrZ5iY8+sv7sxm69uF0H/PYe7vSyym4+Vvt/0N7DrY5LL5nyVuW1Wmdezl3GoLvxemwcN+6OeLwEV83Du708ses9fNKkzu/K9/VZrR4eZ5uWVsdOGpmWXrKcg2ZaRhG0ND77TZ8e/D7qhRc6Pzu9aIsy09J4D+J2nbRZjz3trsd1hqAlKgpWQcsgmZZunbsEDXwZ52V1obR74PUbtLTKljCzC1qa52u+ifJ7wo4709I8L8lfNbygw3kJWlp9Z6yO5jS83fz9BC39BL3s+MmqCjPdMEFLr+veeIyErR6eRKalW/VoI7/ZEV7K5sTqHBM009IuK8lt+c0BOCO7nlO9Vg/PepuWXoMUUfUe7nRuCptpaSetNi3L0/TSDpzdtOyyGO04rRPjg76VoB3xBKke7vSbl3kbMy3jDlra7RtRZ1pazSdI0NJvNl1ZR0e0mZZ+A+7GcsWVaWlu+sYrr+Xxk2lZLNpfk/xUD7fa/6PqPdycael1PD/flbnVmDCuE+Mwds8WYTIt/d6fFov+My3Ly2OVfWm37rKWaRll7+FWNQizWD3cKVFI8n59juL5tVu34Pd+Xofzk2np9pzn5/ybRFA+xwhaoqJSPdx4k59m9XCnE4FT0DKJTEvzDXp5HlFXD48iI8urNIOWXm/0nIKWXi6gQTItkwpahsngDBO0dAu4lK26aufnsNXDjcLsb14y87zMzyqwEWXQ0mqdhz2uy8thF5Rxqx5uLL/5Jtw4zSAd8ZgzLY1vl710PhL0YdDrOgzaW7CfoGXamZZeglpBgpZu8y9nOXrJtLSblt8Hf6flcAtaOvFbPdwqG8Wp93C/HfEYMy3j7ojHSzt+fft2fg4atLSaj5fq4eb7TL/ZdGXFYvLVw/2MK/kPnpu5JRLYsZuv2/2bcdtYtWlpdw7087wRZdDSqnq4l22WRNDSOK6X6uF+Mi291pwwltM8fNDq4VaBTLvraNJtWjoFLZ064glSNvO8oqgeHkfQ0uq49fLCxfxbFM+vTU3B76O8bqMwmZbma5Of828S+3eOEbREhWXQMsiDe1TVw51OSlbzsLvwub2dlaLLtHQLWvo9YddzpqXVNIyBM7tpOpU/6erhcQUt466ybvWdOasm6MXV6g2p3bSiyLT0cvxYPfBGWT3c6uEgbKal8ebfKjDjtvzmAJxR2OrhQTMt/VYPD/q23WvQ0inT0vgwZnXNsAtaes1WteN1Gb10ShFHpmU5YJ1k0NLptzBBS6dgit135rI4HT9OgUer6SeZaemlvbQoqodbrYMgQcugVbw7OqKtHu533/UyXNB9vyxIpqXTfbDbi0C/HfE4vayym6+foGXY6uGS92qhXu9lzb95ybRMs3q43X7tpXq4VdDSqsq4l8BoXM8/Rk69h0fdpmVeMi2t7lmN4yQZtOzePf6gZZg2Lc3XJj/nX4KWjghaolNU1cPjatPSLdPSS5DJ7oQdR5uWUWRaphG0dJq+1wclv0FLrxdkL5mWQcvv9Ubaz/r3EiAMIsrq4VbjWq2nXr06P4epHm41/yAPa1LnenC6yXN7wLKbT5AXNl6Hdco28cqY3W0VmClvQy9V8cwPTMbqmUF6D0+qenjQdRgmwGGchlW2SJnX6uF+t7vX4ePKtHS7hpW3fdRBy6Av09yy6KKuHu4UwLEKjviZt7H38LgzLZOqHh4009KcvRK0enjeMy39Bi29vrBxOt78tGnppSMeLy+czfO1WqdxdcRjN+2g1ymreYcNWpbXR1wd8USdaWl+VrKbv/kZKO1My6h7Dzfvx3a9h/vJtHQ636QRtIx6+3XrFn/QMspMS4KWkSFoiYpKm5Z+qodbnSiS6Ign7urhUWRaWpUzyANq0kFLp2X3+qDkN+Dj9c2i8aHNbppRZ1qGWf9JZVpGHbS0a9OyHLiMunq4lwdkp2k5LUPQ5Y07aBk209IYtLRqA85u+a0eEJzatAzSe3hS1cODHgdBg5bG+dllkJTZVWUM+yLD6zJ6OVcHydYzr3PzDblbpqWXrAu/D/5O6zCuoKVdGZ2CHWGDlkl2xGNXpc24ro01H6IMWgZp09Lt/OkUEMxKm5ZBgpN+q4c73UN5mZ/knoVYi5mWVoGHKO4lyr/5rR5ud7+atUzLsNXDwyZ+BJFk7+FJZ1ra/eYl2O2UAJBkpqVV0DLsiyEzc7MEZV7uQ6keHhuCluhkdfEM8uDudoB6PSidTkpxd8Tjttx2bVqav8tTpmV53URx0vS730Rx8+clU9TpwmZ3o5KH6uFRB1KtjpNCoTPTNWxHPEZWN0NOZbOaltOb6aD7WpTVw62O4bDHddhMS6egpdfq4VFnWjo9vHh5wx110NJrRzxW87YL9iZVPTypjnjM2zprmZZJtmnpVj3cS/aW0/SN1cPjzrS0yw4x7jO9e3fuT0GDllFVDw9zPUq693A/47pNw8u0ow5aup13zZmWXnsP95Mk4af3cL8d8Vjdd1s91wR9uWb1m9+OeOzmG1dHPEEzLe16D/daPTyq49wPp2t03JmWra3eqyVH2aall2Qjr5mW5vUTddAyiTYt7aqHezm/m88VBC0jQ9ASFZH1Hj5ihPTZZ/bjfP65dPrp0k9+It1xh/1wfjMt7S58XoKW5nY8o8i0LBbDX3CjCG545SXo55Xf/cb49623Sn/4g7R4cdfxnG6Q5s2TzjpLuvde+2GSzrT0c1MYJvAYpkxeg3gNDZ2ZlmHatPQSwHMqm9XvTg8PTi8xyozLO25c6fz04YfO8/aT6WSVmeI1GP7KK9LIkdKbb1oP39DgL9MyTNDS67FgzrQ0BjSykGkZdUc85d8++0w64wzpiSfsA5Vhz+deh/cS1IoiaGne1uWgpZfew+2WxW/gx2k5ku493CnrzFzOLGda2gUtjeVqbOx8kRW0TcuoMi29vuAy6+gIl2np9/riVC63oOUbb5SuBa++aj9/K8ZtadyHjPMdPVo6//zOe1s/x5tTppE5M80qsO81aGmXvW41X6O5c0vX9I8+sv7dPN9TTy3dBxh5zbT0+p153nbnKfM1x+58ZfeS1ml6fq5Fdtdfv5mWxpet5u+s5kGmpfVwdt+5lSONoKWXa35Li3TRRdLVV7tv48ZGb/d+Dz8snXmmNHu28/SseK0efsMN0rnnVn9H9fDYhHgFjVoTWUc8r7/uPM6ll0pTp5Y+//3v0h57SJts0nU4p4BPnJmWTkGUMnNWgVXQ0qqcWc609NqukBd+95vy3y+8IJ1wgv14Tg9qp5xSujl1Uisd8Xh5UPI6rtdMS2PQctky64efIPO3yrxwKpuRl0xLP0Ha9nZpv/1Kn//8Z+d5R1093O6Y+da3Sv9ff7118Mst0zJI0DJs9XBz9p0xoOHlGPCaZR303BhVm5bmbJEf/lCaPFm65hrrG/eGhvQzLcPMW3LPtMxaRzxRVA+3y6q0Gt5cFqfew7PcEY+X6uHlJkOWLs13pmUYXs5BXsvmto9vt13p87XXOgd6zNwyLR9/vJRsIJWuJb/7nb/jzWm/9tKmpdPLKrv5+KkeLpWu5//+t3Xg0jzfp5/uOoxV4MFrgNotaFksesu0LL8oc5pHXtq0tApkesm0TDtoGXXv4WGqhyedaen03BE20/LGG0vJKpK0/vrSj3/sryzmv+fMkQ45pPT57bdL5zg/7DItjfN54onSc6dZmOrhcT3f1wgyLVFhGbQMkmnpxpyF+fnnXYdxuxlw6j3cKRgQVfVw84Oa1+rhQbJq6iFoWR7+0Uedx3O6KXULWEq0aWk1rFMQz6ihIZ7q4U7Hm9eHGKcHRT8PlW43bkZhg5Z+9yu7G8ZCwfoh3616vHF65pvMsB3xmDPR6yXTcvJk+7L5CaJ7LYOTuKqHm+ef9erhbvLapmUWqocb2zlOuiOeKDMtw+w/blmHVsPYDe+0j9tNw8t9g1um5f33d36+4orS/34CH077vJc2Lb3W8nHLtHQ7Jj7+2Pp7L9s/rkzL8u9e2rQsFNyHS7pNSy/Vw732Hm41jzSqh5uXacmSzs+rrhp/9fCwbVo67QNxZVoaOWVa2q2j66/v/DxmjHtZ3Pbdd9/t/PzEE87Ts+Il0/KBB6zHdcq0dGueg0xLRwQt0Smq6uFuvATy3KqHxZ1p6bbcCxZYly3qTMti0dtNcRSSDFravcl0CyaEzS5JO2gZ5A1o2OmahQlalh9QOzr8VXn42c+c529X/jgyLa2CpEGaRog60zLIuUFyD1rabW9zAM7IrsF/r5mW5n0jrt7DwxwHQTgFLb1eK+32Pa+87idpVQ9PI9MyqmY3zJzWdfm3b3xD2nLLzu+cqoeHDVommWnpNWgZtnp40ExLc/aK23ZOKmjpd9/12t5b0Bd7kvtDs3FfKr+w8nNMOe3zfjIt/QTcggQt7Xg5p4Zp09JtG7W2+su0tFJed0m3aRlFRzx+gpZpZFoaX8ytvnq81cP99B4epHq43W9u29HtnjVspqXxZYrbs0USNRC9ZFp6DQC7vTQyImjpiOrhqLDsPdxv9o8XXk42bm+ro27T0m/1cLugpXm+YTMtpWim4YVdddIw07IT9IKTZNDSLogbdVXsrxT8rPcog5Zeq4cXCp1BS6lUJdCr8oOtZF32oNXDnR527H7r6Oj6ABJ30NJLoNbvcecWtLQ7nq1e7gTtiMdP0LJYLJXVy4NR0IdBr8dm0HOcOevFqSMeM7vM16SrhyfREU97u3OQyOqz3TBuw7r95raMYauH9+xZvd+ayxJlRzxZy7S0aufYbxZz2m1aeqlZ48TLOcjr9INkE3uZtvF6Z/XQbBW09HNMOe3X5o5LogpaWg0b9JjwG/h1Gs9v9XCptP6znmlpt1+7zS9sRzxJPf8Ymc9Jxhdzq61Wm9XDvQQtnfaXrAUtg9amKfOSaWm3Lp064iHTMhQyLVFRCZrEnWlpFuQB1SnT0inIZFde8zK7Lbddm5bm+UbRiHRSF22nGwe/3C6Adg/ubheasA9qTkFLr+0shQkuBqm24WW6YYKWXm+8jdXDpa5VgJ0Yjy+rzOGgD2ROQS6nTEvzTVHSmZZW55igmZYNDdY3Qm7Vw80ZHEbGoEGQ3sOtsqDK32WherjXbWdXzam8voIELcMGq70On2ampdO8vWQqeH2R6TS82zzKwnbEY3wot8pGibIjHuNxnlablsZyGauHF4v+2u4qy0L18DD3PF5e5Hg9zoLs436zBK2uFebMSKf5Se61f5yqh1td770G3MJWDzfOy8hvFXunafl94SKVlsVLIMxLpmXS1cODdsRj9Z3VPLKQaVm+xnXvXgqu2V0zgjybmedVCx3xuJXHaljjecntOpJE0DLKTEuClpEhaIlOWQpaBsm0jLJ6eNCsJ2MZi0Xv7bE4reekgpZRVg93u5Gxq4qdVvVwp7eIWQxahimTl3HdOuLxy3iDarXt48i0dAoSpR20dHtr7YXxmPGTaWm1X3utHu61zFYPeOUXPVFWDw+6DoOeQ+MIWiadaenlJZ4TL5mWTg9ATg/NdvNwGlZKp3q48fgr7wdWAZmgmZZW5W5q6jw2s5BpaaweLgWrIp5URzx5yLT0GzTyOn/jtnS6VkjegpZu513jtkmyIx4vbVJb1RDxsn3izLRsbfWWmW4OAFoNl2RHPMVitB3xZDVoWa5Zt9pqztsgz5mWQYKWQaqH25XPb6Zl3E0DtbVZrysv8QTzujQmOVE9PJRcBy1Hjx6tQYMGqWfPntp55501adIk22FvueUW7bHHHlpjjTW0xhpraL/99nMcvh5Vqocbq3N4fRALw+sDatDq4W43OpL/TEu7eZvfPHnNtHRaz3YBvqh5vXH0ImimpZuwQUs/wTG7/Smm6uGhgqFRl8ku0zJo0NJ4fFkF4b0+kJl5qU6c1aBlVJmWUXTEY74JN/4dJNPSKWjpdAz7rR4e9MbV63BxZFp6rWJvJ2tBS3OmZWurtHix/fhegpZeX2S6TUeKv3q48SHW6lzm1Hu4l2PByBi0zEqblsZrQpDOeJLKtLQT5CW103y9nrvK7B783eZjN22rebkFAfwGLd0yLY38dMTjJ0swaKal+SWLebp24mzTsq3N2wuchobw1cONv/sJWtotl9s699MRT1aqh5vXYTloufrqpf+jzLQME7QM8rLf7jcvwW6n/SXOoKXV+G77bpYyLQlaRia3QcsHHnhAo0aN0rnnnqvXXntN2267rYYOHaovvvjCcvgJEyZo2LBhGj9+vCZOnKiBAwdq//331+dWPVfXo2KxM2hprO6UpUxL43BOvYc7vXm2OzGb2/EM+iBpzrT0esF1ml/SF+0oTppuF8CgQcu4qoc7XZyCZnNJ+a0eHnWmpfFG2ypDxq78UWRaWj1g2XXiECYQ6WdYLzddbtyClmEyLe3OmV4DblYPyeUsrFrNtPT6sOjnRYZTGdx46QgnSODLLdNSkubOtR8/aNAyaGDSbX2FrR5uDlo6VZX1E7S0mndTU2fTDbUStLTaT4O0aen1BZfV92HuqZzuN8u8HuNO5bDLhPJyDjRe76zKYtwGXtq0tAtWWImyI54oqoebX7JI6VcPb231di50yvIrr5ukO+IJmmlpPO9mPdOynJ272mql/9PItCx/51Rrqcxv8NkLq2ub16Cll3OkMZhnvj+3ekEV9v7ZjTloaaxNYRzGilPQ0u6lQ5mXlxd1LLdBy6uuukonnHCChg8fri233FI33XSTevXqpdtvv91y+HvuuUcnn3yytttuO22++ea69dZb1dHRoXHjxiVc8oyyazfF7UCJ4kQR5K2S1c3JnDnSG284ZzBF1Xu4md1F1yrT8u23pc8+q/6+1oKWfjMtw2YPedXWJk2eLJlfblhNN2gbdB0d0gsvSEuWJBu0/OAD6cMP3cf1cqNql2lprAroh9ONVrEYrG2e8rjTpkmzZ9uPa7X9osi0XLlSev756huUTz4pbQe7shj/TirT0u6G0SloafzNb0c8dlkjecy0tBvPKmjpFrApN+z+zDPhyhL2XOklU8DP/K2CAPPmeRs/qqCl34BmsShNnCj9/e/W5w7zdJ0yLc1tWjrdA7jdH5R9+aX08stdv0+yerhdu2JRVw8P2hGPXWdqX34pvfpq5/YpFqVJk7p2nlgW5H7Par7G6b3/fum6ZPzOjtdMS7vt4eUc6Ba0DJNp6bbuvGRaeg1aur1w8VI9PGimZdwd8XgJVji1aRlkHfq5t7U7J0dZPdxqX/ITtFywQHrllfDPMHbLVM60tNsGr7/e9dnCjXl72fUe7nVfsxvWbRw3M2ZI8+dXfxe0evirr3advrGtR/OxZnWud9p3P/pImjq16zz8MHfEY/Uyx25dmstrvC66rX+bfddXR601LJe9h7e0tOjVV1/V2WefXfmuoaFB++23nyZOnOhpGsuXL1dra6vWXHNNy9+bm5vVbNjxFn9V3am1tVWtcd8spqB15UqVbxM7CgUVCgUVJBXb29XmsLyFlpbQO1FbS4uK5nm0tMh829ra0lK5US+sWNF1vhMmSNtt12X6He3tai+Pt3KlZXk71BnB7+joULG1VS7vQyyXobG9vTKd4leZlsbTd/uTT6rxggtU7NFDbe++Kw0cWPqhubnL8lbK1tJS9XahvbVVHSH2QafHgdbWVst171eb1fYx/t7cXPV7W3Oziq2taujocFzvxbY2hUn677j3XjUcd5yKq62mto8/lvr0Kf2wYkWXZW5va1NHa6uaisWqeXZ0dFT2JysN556rxksvVXGbbVTs2bNq21nu6+X5mdaJ03mm0NZWvX6/+ELFzTeXCgW1vfKKtPXW9uO2tlaNW+zo6HKMN7a1dXmj1SGp2KOHr+OirF2qjGfeNzra29Vus/93tLZ2WdfG4dqmTlXjrrta7hOVY9K0LMX2drUvXWq5/zkdh12cdlqpjAcfrPa//U366CM1bbWVCh0dan3pJWn77TuHNZxfpdIyd5jOna3NzZYvOYzjGfeJ8n5ZLBRUbGrqur2+WncNLS1V26w8nybDsdQhVa3nqvNYW1tl/zBPq72lpeu5aOlSy3XYtnix5faoWtyv9sWm9vYu29Ty2DFtL+O53knBdKzZMa+XcrmKDQ1q++oaUV6W1gULnM+tK1eq4ZRT1HjzzVXfu11ju5Td4zXXfN2ozM+wPb2uh6rpms5/jQsXdplP2+zZttOt2o6m7Vfev437X2W81lbbc2eDw/Xaah9tuPFGNY4caTOGYdyvrgEN7e3Vx1Brq7p99RDRIUmFQqm8xaLaTNuno6Wlsr7M5aycd4xWrlTTN7+pwqxZXctTKKihW7fSPmjYjpEwnWs6li+3PJaM+0x7sSj17Nl5bv/qGPejyXSPJJWW0+060758edd1uXRp6Rw8Z47abrlFxWOPVcPo0Wo84wzb6bS1tqqxo8P2vsL1ft90bm977jk1HX64io2NanvvPWnDDR33T+Px5HRst5rOq5VjxXQ+bW1p6RJUaVq5svNc39bWZbs2Gs4VHY2Npd+d7kmN02hrczzvtRcKkuG+rq2lRQ2m47t8TXJaT1L18dLQ3Nxl2I7mZtdMnLZ587rso17Oqe3LlnU5jzRZ7DdW91MNbW2Oy9W6fHmXZW+12CfaOzrU0Nhofb/z1bppcrlHNj4/mJfbfA9SLkNra2uX+0apdL0ttLQ4z++r5raM27/41bQq+2T5um21z5mCNVbrV5LU0qKmrbdWYeZMtd1wg4rHH+9QKmdW+5YkdfTpo/bWVhXa2633l0suUfH660vPFn37epqX+RrcvnKlihbPqW0tLSq2tFSuO5L1sSzJ8v6pMk5ra7BsNYu2YI3bouqesVDo3Eam64ok6dvfVtvdd6v4k59Uvmrs3r1z/JUrq7fxkiVV02j/KhZQdf4v31e8+66att++s+boV8r7stf7+/aWFhUM58Vit24qNDerWCx2LrPNumxbsaLqHNO0fHlle7hdt+3OFYWOjpqMPUkerrH/z953x9lVlO8/t+xuegKEdCAQSug9kW4JBgIIAgJKR9DvT1AwilIU7CCgAoIUsaE0UUHUgAREAiQh9F6EEAIhPaSQtu3+/jg7e+fOnfLOnDnlbub5fPaz9557zpw5c6Y+87zvy6EhScslS5ago6MDQ4cOrTk+dOhQvP7666Q0vv3tb2PEiBGYMGGC9PfLLrsM3//+9+uOP/jgg+jjaiKZYxTb2nBE1+dly5djo65BZsWKFXh0yhTldVs8/zx2i3nvZ59+GvOFnfXymjU4TDhv+rRpWN6litjsmWewBzH9BfPn46muZxj1zDPYU3bO4sUY0fX5w6VLMe/ll7EL+QmAWTNnYvHatdhn4UIM6Tq2ft069BJ27Eo/+AGAaKBacMYZeLZrMl1avx6HK9Je9MEHGMZ9f/P11/Gm5p2YcKTmtylTpqDX0qWY6Jx6hJmPPYb9Nb+/+NxzNe/v+Wefxbz+/bHdW29hrOa6ToE0sUXxwQcBAIUVK/DqRRdhzqGHAgCaV6zAocK5782ZgxemTMERwgRg8YIFmKkp/yMvuyy6x4svYu3gweB7i5effx7vKq4d8uyz2If7PkXX7l54oa7dFbomhx8ddxymXXWV+toXX6y5trO9ve5e+8yf312PGZZ++CEWvPMOdlamrMb/Zs/ufq8vCm33w6VL8dwjj0DWE8+bOxfPCnnj6+/ab30L/RU7l6ys93jvPWzGHf9o1Sq88OijNfXz2aeewvxyGb2WLLGu+8V778U/pkzB3pdfjhFdE8q1n/scHrn22u5zBrzzDj7BXbPiww/x0hNP4EDu2CP/+Q/WbrppTdqFjg58hvvOv6dD169HM4DVa9Zg+bJlGCXka/nSpXhsyhSM/d//sB13/PFp07Dy/ffxqVWr0K/r2OKlS2vq9AFLl4Jt561btQoPdv221csv17z/N994o64val65sq4tAcCsRx/F4uXLsf+SJdhE8jsQLbymTJmCT65cif7Cb8898ww+6N275tiA2bNrynXxwoXatskw/OmnMc54FrB06VJM59Jj+Wrv6MCUKVOw18KFGNn124yHHqp5nyL++/DDOFggLAFg7UcfYapFfz7imWewN+G8NXPndr9fHqtWrsQjXffb/PnnsbvkHB2WLFqEGVx+D5o3D4OEc16eMUM5L5jxxBNY1qV66/vBBzXtntXvfZcswabCdbOefBKLFUqqrV95BTsq7vfKSy/hHaF897z77rr2IsPbb72F16ZMwdi33qppQ1OmTOnuh5avWAEUCt3t5ckZM7Afd+7yRYvwWNf9d5kzB1vyeXvuOcwR8jZ8+nSMkxCWAPDKG29gm/Z29AawbuXK7nbpA4X29pq+Zv6cOXhakv6o557rnkO98vrraFmxortsZv33v1gsU7Kp0NmJIyUKknfnzsVWhkvfevnlmnfy1JNPovT44xi3cCEAoHzWWfj7ppviSA1hCUTva5xmo1Y3DgNA78WL8Wnue+Hkk6P/HR1YeMYZeOYb36h77zyWLVuGJ7rusdGbbyr7kCcefhgfl+Rr7w8+6J67AsC/778fHUKE2iPWru2ew6xYuhTThGc6YMmS7vq7fPVqPDZlCnovWlTzXDwWzp+PWV1piPVGxEuvvopCZyd27fr+4gsvYOSCBeBXb489+ihWzZ6Nnd5+G2M0ac2aOROLu8Qksja/eP58DK2/rAYvTJuG9wUl2MavvYYDDNe9+sILmC2U2yRJvWFjGI+d33lHW58fe+QRDH7ppZo1B0tjk5de6p6rvD1nDjZrbUXvuhSAF557Du8PGoTDDcTv66++ire60t741VdrnvuxRx/FKl4h3IWpU6di41deqSujJYsXo2XFCgzU3G/2O++g1Nra/fxPPP44li9ciIM++qh73Fi6ZAmmT5mCAXPm1IznMhQqFWmbHPLMM9jngw8AAOWvfAV/HzGi7hwqdnjzTWwjOf7eqlV4fsoUjHrpJek6EgAKK1fi9W99C7M/o2sVVYh1742XX8bydeuwr3Des089hfnFYs38d9WyZfivpCw+vny58p0sWrCgZj0ZB+vXrMG/u+6/29y52KLreEfX/AhA1MdLri2fdBL+3q86Q9ll4cLuPrKydm3NOxb72NdeeQWl9euxPXfsqSefxKK2Nuz73e9iU4lakaWnW//yeO2llzDw3Xe71w5tAJpRW//49T6PV597rmbOccjy5WA98kcrV+I/mjFl2zffrHkuhkJnJ6ZOnUrMfWNhjYVbmYYkLePi8ssvx5133on//ve/6KVwinrhhRdi8uTJ3d9XrlzZ7QdzAHEHpZHQxjnO33jTTVF4+22gvR0D+/fHpEmTlNcV338/9r332G03VMR7SCa+++2zDyrjxwOAVIWgwrAhQ7qfoaAwWxs2cmT3540GDsSg7WXdhhrj9toLlYMPRumaa7qPtRh8V4xsa8Mw9tyyiIZdGCKogbfdemtsrXkncTBp0qTIDCAmPranakiPsIugBNxt552x66RJKD79tPa6okeJ/E7bb48dWDlK6tPmo0Zh5KRJdTuWm266qbZN8OgtkNY777ADdlRc2yGQb9p2p/HFO2jJEv21771X+71SqTu/xBFuDJtsuik23mMPQOGCQ4dttqsuL3fZsXapsdGgQThofznFPXL48GobkaCfsDjjsfOOO2LHSZNQuvPO2mv69MHHBEX2HrvuGvVBotsGIiZNmlSjoOtfLteW6XPP1Zw/cMAA7Puxj9Uc+8RBBwGjR9cmLJiZ8GmWu8z4+vbrhz5bbAE89ljNuYO6+u7iE0/UHN9/v/2A3XdHmdt823TYsJq0S13EOwD0KpW6fysKJjfbbrVVfV+kqJvjdt8dlUMOQeknP5H+zp5p0qRJNXlj2H3XXbGbeC+hXDfdZBNS2ywQJ0mbCOmxfJWbm6N3fttt3b/tq1E3A8DHD5Avi3u3tJD7EwAorFpFOq+vaMrVhf59+lTHQ4txlGHw4MG1ZXLRRXXn7Lzttsrr9xk/HhVWFm+8UfMbS7f0s5/VXTduzz1ROeQQaZrFl19W3m/HsWOxvdi//eEPyvN5jBk9GltOmoSiELRx0qFVWn7QRhvVKNvGC2PfoH79qu3nn/+s+W2nsWOrY1AXChp/oDvuuiuK//43sGwZejU1WdUbI4Q2MXzQIGn6/Bxqx112iYIu/fnPAIBxO+5YP5fTQaGw2GIrE2UJbC2QEnvvsUedWSGlfMaPG4eSZq5mTOOdd2q+ljhifcTgwRg6aVLde+ex8cYbV9vjJqrtHGD/vWu3KrrbijAeTzz4YIAjA9DWhiI3Dxk4YED9eN+1mQ4Ag1j7Fp6Lx1C+D1CZrXdhp912Q4G7/y4771zXXg/Yd19g5527N5VVGLfXXqhMjLYViy++WPf7pgN19FmE3UaPxi5imyOs6XbYdluMFa4rS8yEy8ViXfkW779fm/YB++xT846A6vstcBt1Y8aMQfGppyIXCAJ23Xln7DJpknGOPHbbbbEtS7t/7dbgAfvtB+y6a/f3trY2TJ06FQcffDCa+4vbiMDgjTdGwfD+txozpqaO7LfPPqiMG4fy977XfWyTjTaKnveFF7RpMUw69NA6E+SC8C7i9I3FRx6RHh+1004YMWkSCjKXKBx22G67urqigvgOtttqK1Qk66c9dtutbvwb0Lev9DllYzLDEE0fY4sWbm5Yuvfe7uMlfmzSmEPzeS/+5z9AVzspdnTUPpfgcmn7bbetG6/23nNPVA49FKUrrjDei4Ltt90WhbVru7839e3bvU5n9a909dXSa3fcZpuaOUeZG+f69e6tX5/JTOcRkaUHH3wwmiiuUxoMK3WBGwU0JGk5ePBglEolLOzaUWVYuHAhhg3T7yFcddVVuPzyy/HQQw9hl13UWrqWlha0SBbETU1NPbLS8D4di1z08EKlkvjzlovFeh9GkklkuVCgOQkXUOwyqQKg9BdR5O5fBKwjj5VLpShvXPoF2YS8T5/uzrY4b171vppJsziZKRUKKCX0TpqammqDEjnClIL4e/e7Ndzbp1+PUlNTtRwlk88iuuqFcM9ipVJTX3QoCJ1xqeu+0nOFOqdtdyqfOgAKy5frrxUne52d9edLJhpF0X+ZBUqcz8WyrDwV9d9U1gXNb91lLbT5QqWCstCmuvsgTbnq0NTUVONXstDRUVumQpnLnrmJ9SE8hHzWpNn1XIViEQXJ5luxoyMqO7FesWflyqVYKtWWs9CPqeqTtC9STFLLlUp0X00b7q6Lkn6aMk6Q2ybxPdeMHXw+i8W6vrJsiNDbpLhnXV0xZoqW94IiP3HH9O5+kUGyaC1p3nGZr+diG9CM02VZ+2DQjNfSOkocR0rFYnStmE/uvReFiL5lsa23tyvrZKmzsz5v3EKp7vzm5u4y0LVLJ4j5bmuT55s7r9TcXHWxAqDc2krzR8mgIC1LhDlISajfZUlkZUr5lItFbX0wpqGbu6GrrWh87NX0MZq2LY5Z3fkS+3exnQiL+2JnZ/175frsYlNT9Lvuufh+1uDTsNzSUpPHcpe5uDTPBl+ENWsAybniXFmG0kcf1bc5Qp8qnbux59hll+jzyy/L51MGNAH171HSR5bEoEYcusvG4DOvpj8U0mqSjbFdeZERtEWdP3J2PyFPsrlWdzsxBSlh+ZGVg+DXO1bfqOgPShtvHD2PIe1SqURfownvvdTZKR3PyoVCXfko5w66/sbjGqpmDOLeR6FQUPZPPGryLtZF/jchzyVJuqY5vG19KHVZrjHwa42mUil6F4q6X+roqL7/zs6aMd3YP6jmiV3X9UT+yeaZGjIQT3NzM/bcc8+aIDosqM4+++yjvO6KK67AD3/4QzzwwAPYa6+90shq40AMykCNHu6jA6QEWABqOwiKw21ZWqpJjego2taRs8wJtmxCzqsDeEWSrhzFPMctcxMh6+OdmiaPvp/JBXw5+AzEozs3qUA8NqA47lcF4lEo043QBeKROebX5Y2HLACNeK0sEI0qiEOceshPKMXnoUQPt4066xqIR1YuukA8uiAOsvJSkXecDzQlVO8MUEcvNeVHBldn9LpAPBq1vPaeSQXioVzvUg7ie5C9b934nEQgHtt+lRrQjZI/MTiGLLCC6jdZPnTBbPhAPL6jh4vppRE9nDIfU0EsJ9c2HTd6OKWPTjIQj6kPFN+JKXp4IwfiSTJ6uC44Ct8HqAJ/6aALxKPra8TzKPXYNRCP7+jhsmPUdijLi+OGsxSqemiKHu7jXqro4bL36zKn8LnW4t+9KhCPjzmZLHCmqiwsBUfa/MgC8QDVZ6VED1cF/VQhBOLRoiGVlgAwefJknHrqqdhrr70wbtw4XH311Vi9ejVOP/10AMApp5yCkSNH4rIuM7ef/vSnuOSSS3D77bdj9OjRWNDlG7Ffv37ox5tSbKjgG5JN9HDXiSIPlwWqjUNaKmnJdtxdJrGyQVeWR94UgM+L7n6+o4eb3mka0cOTHnAoMJGWKvLaZ6RR6m8+86AiBHTEIhCVl8YcWwlx0iqrz6o6bSoT3Q6djrTzET1chI60lOWBQh5TFhEq0pK9QzEvlOjhfN50pIvs/ZhIS9dFPmWcoL4/1/esIy1NZtuq57YdQ+P2//z9kiItdf2/K2mp6/NsF2m2pKV4b3GBpus7ddHDZfnQkd/lcrXP801aSgICSSGSlvxGlm30cFU9ocwDxHspFEpGUMkeFSj9GbWd6fLhSlpSyF1TlFzdPU1lVy7XjiFZk5au0cN1pCWvgrMdx4Eo36pzxL5GpUakEIhiXmxIS9Vzmcq8UJCTWDLSkjqvlZ1HVGmSYIoe7nOdYkNaUja92LnU+8WBag3Llw/1neryTCEt+bboAyJpyc+xTf0V31fbbq4pyiGQlhEalrQ8/vjjsXjxYlxyySVYsGABdtttNzzwwAPdwXnmzp0bme104YYbbkBrayuOPfbYmnQuvfRSfI/zrbHBgm8QnHm4cbBNirQ0qb98k5Zs4cEmsLakkGxyatrRBqpkUVqkJYWwTIO0pCi2koYraZnUAscnablqVS1BzoNCWvpUWoqTVkmE7ERIS9XufaWSDGnJmzSK9SkJpSU/+U9SadnREf2VSrRFDj9ha2mpfo+rtKQc801aqvopVl58vd5QlJbi/WVkShKkpetCLAmlpUgk8PVAtghVpScrJxNpyfoZ35FEqUpLsd/ISmkpUxC6KKBc5nvi9XHOcVVaVipRvTNt3FCUlvx7SENpqdq0NvVH/O+yukOxwJKRlj6UluIx2XkqyJSWsverU1qycdoEV9LSVWkp5llGLlEUyaZ8pkFaJqG0FO/V2ip/jzp1oexcFXySlm1t1XrKp+tCWsZVWvomLdvb/SgtKf0vD1V5BdISQAOTlgBwzjnn4JxzzpH+9t///rfm+5w5c5LPUCNDnIhSzcMbQWlp2p0Fap/ZZeddt9jmId5/0SJg2DB9Ofs0paaQ0D46R9P7UZE6aSotTcpCVT3IA2lpysO77wKqwCCqDQEd6QbEIy2zMA93UVrG6c9szMNlmwOmjRoRvNJSpoBl5RyXtASi9izz4SPLM1+2/fvXk5YUIpba7pJWWppISx/m4WkrLeOSlmmYh9tuFtkSmlTSkuXDRmlpQ1q6KC2TMg8Xx2yVsi/P5uEuZELW5uGy82UQ2xkjC0zEk/hOZHnh3z0rQ2p7Mz2b6H9Q5geROn82zeVdzcMp70dn9s2vH3TkpgoypWV7e70P6KSVlpSxmUelQlNaiu8fkB9rFKVlXszDs1ZasnuJG9ou5uG688SxSLbR5Ju0jKO0TIC0DErLCA3p0zIgAYgL2KzNw00L+KSUlux8V5+WlMkJDxatWHedT6Wl6dr167MxD8+iQ86bebhNGZjyoIuCTWlvaSotdZsEpv6FQlrKFkiN4tOSonww+bSkLBDFiZ54XzYJszUP59W+qjR42JqHu/YjjUxaxu2fKZt41PuLE3sGV6Wl7v37NA+Pa66rUz/ZmIfLysnk05I33/U5bvrwaenLPNxFaelaFnHLkdJHU/o8U1ri+1DNOcXvtubhpgW5+FuaPi1tLZlkSMI8XOwDbDfTZEpL9iyNrrRU+bSUEVtxyP0k1Y8MTGmZhXm4jdIyTdKS1VObDUgZdJt9jay0lLkx0SGQlloE0jIgAt/4RNUhw/33A6NGAd/4hvw6V1AXKPx5Sfm0ZPex7SCoky4x3+++W3u9DGKeqYPAsmXAXntFf2yiZnqu1lY/pKVpIqMiP9JUWp51FrDjjhHBpwrEQyVPqEjLPJzVKxl0z7R6NbDPPsCLL9afUyz68WkpqrBeeAEYN05+bVsbcPjhwDbbAK+9Vv+7bnddNRGWmYfbTppFVCr25uE+lZa+zcPFvDGS11ZpyfuLtjEPlz33mWcCBx0U5eWrXwU22wx46CF9vlWgtjWfpKWLKsLlfFN0U9PC3wS+jFVqPFfS8umnga22Ap55Rn+diLTNw0XCn2oeLv4WR2mpun7lyqg/3XVXYMkSdVoiXEnLvn2r37NWWrrAdZP6M5+J6uoLL+jTZuebzhE/i5CZh8vSFr+rlD4PPwxsvnnUl/LvQaXQl6VhOg+oV1rGIS1NGy4U83BfgXh0ZKLtZpqMtGTPIvY1ukA8efRpmZZ5eBqkZdZKS8qmMTtXBd/kl8x3ug/zcL7f8kFaDh8OXHstLS/sHirS0tRfBaVlYgikZUAEcQErMw+fNCmKeP3znwMLF9Zf5+PeumM+lJaqDoNfeKgUdpR7mMpDzDeLIK67zlVpedFF0eLvmWeACy+kXeuLtGwE83AAePXViLxUTRIaVWnJR6an3Ifl67LLgJkz5dclZR6uw8yZwL/+Bbz1FvCnP9X/TiErZJMb3z4tOzvtA/EkrbQ0BeIRTVx197VRWvKL6wEDqp/jBuIBgGnTgG9/G7juOuD99wHRH7VvpaVqYpznQDzlcjRBp1wfl7RUEVuu5uEHHQS88475uri/5dk8XKdWLJVqF0+ycfaXvwSeeiraePryl9VpiXA1D+/du/p97Vr6/WT3ZEhTaenSBv79b+Af/4jq6mmnqc+jzAupBKDMRJK/hyoN8Z2w+02YALz3XtSXLl5c/zu1TaWptDSRlpR1gayfdlFaimsmm/FfhMw8XKW01JmHN5LS0ncgHp9QPROzHDH1Tzb5k40XVHdVeTAPlyktfZiH+yYtFywAzj2XlheAprRUlT/fV6v6XxUCaalFIC0DIvANgp9kqDpftoOfptKSvxdlR1WWFkVp6eLjyFVpyXZ9kyAteQXAs8/Srm1t9UNEN0IgHoaZM/36tNQRr2kpLWVqAgbdM8kUlgyFgpq0/NjH9NfpzMN1WLmy+lm2mKcoumSTG9/m4R0dtQooinm4i9JSpsrxEYhHBEX1oUpDZR5OUVoy1ZMub6++qv7NN2mZhnm461ijQqmkd5uQZ9JSR3q5mof7UFrqNhhMpKWOlJL1Xzrym6K0nD27+vlf/1KnJcJFaWkia2zvyUDZvJQtZF3IDJc2sGCBv3vwZWCjtNSNb6r0TXnhzxfT+eEPq/XcRmnJB/Zk54vXqFyZiOB/dyUtVXM9E0ykpW+lpYoMyso8XDVvpJCWMhIrjtLSdoPXFqpnYn1v0ubhsg0jG/NwX+IICtJQWsrm67akpS3E9sSPuzbm4eJcKJCWsRBIy4AI4gBsih7OFmhJkZamY74D8YhKS9eFJGVHlQcz29Z17K6kJd/JmvyOMKSltMyDeTgPn6QlbxJrcW3Bpi2Z8iDz26S7lnJvldJy//2Be+7RX+eqtORhu0hRLYRk5uHURZPuXvzi3bRQlJkkUibiMv9nJqUlhbQ0LV5USksX0pIyadPVb0rEeBPyRFr6Vlrq/J6J17vUd/5636Ql9b4ikjYP17VDU/+mI3hk+dD13bxPS9X1I0dWP6vUkjLIlJamPqlUqu33bOdNcZSWqj6chwsZJUJWBlQ3KRQyhkpaygLxyNI2ERumMpFtdn3ta8B3vlN91zZtOG+BeGTv28U83CdpaaO0jGseruuPKFYQ4vm245EuEE+c8dun+lJVDrJxXwabdYx4r9ZW+bgqW4/kQWkpm2e6kJZinnmRgsydU9KBeHilpczFBUAjLcU+yUZNziNpdXGDIJCWARFUpKWqoSRNWpqUlkn6tEwzEE+SSkuZIsN0bVqBePKktKxU/Abi0ZlQ511pqYPKp6XOZAmoVwfYtF0esuvEY7KJhWwB4ds8XCQtxfcjq++UhY2unfDm4bL3oiJiKaSlmH/XQDy2Pi3ZvXXvwVVx53KeDWnpah6u6mdUoCibkiQtffq09LVRY/tbXNJSXKDpfFraKi1NpKVsM5LHkCHq63WQlYlK8cMg1jVfSksKaSlTHooLVopFjssikrcA0IESiEcWBEcGV/NwSp8ty4+4JuD/82lkFYjH1aelK7kt3k8snzjm4e3tarcSYl+jmmtlobSklLdNIJ445uE+1xCmfilpn5ZU0tLFeiOv5uE6pWUWgXg6OtSkpY3S0pa0DEpLLQJpGRBBNPkxmYezBVojKC0ppCU/sKoUdpR72JqHUwLk6CZLOsh8X5mu9WUe7hqIJyv4DMTjOmGwKXfT5M5WaUklLWWErM5kif3uah7Oo729/rnFtPg6ryIikwjEI5KWst/F+7mYh6tIyzwpLfnFtW30cJZm0qQltb9JQ2kJ+CUtTZsIfD58mofzAVlcA/FQ7ysiKaWlSgFkYx7Ot3XxN1k+dBtOFPNwV8jeGYW0jKO09ElamjZQbPPAIHsm3TuSXUud39koLVVpmzbMqMSgjLT0obSMQ1ry9wpKy/p7JBmIR1ZGFCU3hbRsFPNw9hxJm4fL+i0ZKe2itPQ5ZvDpxTUPF/OcN9JSRsS6kJamehpISy0CaRkQQRyATebhbKfZR0OSpZGF0jJOIB4q6ZGm0lJmRkYhLTc08/BCwa95uKuaMkulJdU8XKW0NJGWvszDTaSlLOiWbHLj26dlZ6c9aWlabMryY0NaxlFait9V0cNNRIHOPFzld9FEWrr+5uO8pEhLn64hkjYPp5CWaZuH2/6WpE9LWdqqRbnYf61bpy870TxcNs6K79RULxlk+VYtnhniKi3jmIeLkL1nCmnporTUbQpS02CIq7Q09d1JkJZZKS1NfRel/vlyIyCWT1ylpapv4I/rlJayclWdp8qXLWlJUVqqCF2KVYwKrhvvVGSttJSRwbJ5kWqtSlV2+0BSSkvePDwLn5a8ebjYh5lESnx+ffm0zFrYkxME0jIgAt8B8I6zVRMSRor4aEjUSUSSpCW/8IgTiMf2uiSVli7m4VmRllnvIvk0D9dNCtIiLZNSWopKH3bcZB7uQ2mpUyPIvusWdUmYh4vlIt5T/B5HaSmqL2yUlrIJl4lATSIQz5Zb1l/L7m27eNLlJ855aZiH2+SHcq6oftNd31OUlrp0XMkNPl1d++A3PAG1al+WjniuScFHUVqKx959V5+mLi0KaZmE0tJl4dnRUV9HKEqwJJWWtubhNoF4XH1a+jYPN71zmdJSlce45uEUJEVa+g7Ew8ZcqtKSV4bpoOv/bTd/4igtfUcPT5O09CmuEO+lU1pSBQc268m4MK0tfQTiyavSUlWWOqUlf70MQWmpRSAtAyKoBmBVQ2GkSFLm4aZBKcno4SqyinIP2/LIm0/LrJWWWaHRlJamPLj6tNS9ezZoi2pLinm4D5+WOjUCg0xpKZZrUoF4dKSlL6UlO0dUesWNHm5aZPkwDxeVljzJJabpOkFLi7RkbWFDV1ry7zpLpaUtIezbp6VJbUglLU0KPorS0pW0lKWl8q3GINa1oLSsRZKBeFRjtom0pM5fZKSlzDycorQUF/xJmYdT0Gjm4bq+RrxHXKWl7npXpWVPih6eN5+WsuvZuSokpbRM0zxcVha+SUtdIB72TK6kpW07A1AIgXgABNIygEEcgE1Ky6RJS1Pn7Bo9XJVffmB95x3gssvo6fP3sB04KdHDKYqshx8Gvv51YM6c6jGeRHnvPeD884EFC/T58eXT8sor9b9TFGRpQRbNElDvbIrHfvObKLImU1pRlZYffghccAFw2231v8lw/fXA974HrF1rLqdVq9TvkTrxEcEGbdGvpa15eJJKSx46wsG3eXhHh515uCzYV2dn1P5++EPg5z+X10tZO1GRlkyxSEnD1Mf8/vdRXV2yRP9cAF1pqSJ501BaUsctG6WlCeeeq/7NF3kHmNvj+vXAN74BzJvntoBRKS379Kl+1rVL/nqX5xb7TVM6v/pV1G/yiyBbn5ZinbPxackfky1Q588HvvlN4L77zAq+UildpaWtT0v+t9WrgUsuAW66ye6egBsp0NFRv2BNirT0qbSkqhbFd7F6dVSvn3yy9vhXvwq88YY8fVNegOSVlrJxbc4cYPJk4JFH9GklRVpSlZbTp0f9+Guv1ZeP2A4++CDqZ//xDzelpcqnpWqe8aMfAX/6k/k5dKTl8uXAxRcDv/td7fHnnovqlQjKXE4cj776VWDWLDkJ5Epw2VzLY86caN300EO1x7MkLW2ih8uuZ+dS7xcXpujhrnMyk3m4as6ahtLyww+Biy5SjwMU0nLRomhN/pe/1P4WlJZaaKQhARsU+A6DQlr6NA+nDkBpmYe7gLpTLGL5cntzdJkKasKE6PNDDwEvvRR95hUZAHDVVcC0afq0fUUPN0E1kc6qY3Y1D3/ySeDMM6PPH30EXH01fYHy1a9WF97jx+uffepU4Jxzqt/FdyvL48qVwKBB+vwzsHvrFgI60jIN83CKT0seOqVhEoF4bH5XKS1vuy1a6APA0KHA2LHyfIqkiczXKLuvD6XlHXfI0zepm0TSkj9f55sradLSdSLN7u2yeHn/ffp9dDDl3WQeDkSk+NNPA9ttR7+v7P5ZmId/61vALbdEn3fbDdhxR3M63/9+VMY//GH0PUmfljZKy/XrgVNPjfr3n/3MTDqISksKaTl3rj5NBqrSkmoe/qMfAZdfHn3efnvgwANp9wTcSUuxfH2QlrLfs1Baigv3H/8YuPnm+vMefhj4xCci0gywJy2TUFqafFrqNnRkeQPcSUs2r7MlVjo6gP33j6794x9riWGZ0vKss4D774/62r331qftQ2kJRHN8E3T9769/DcyYEX0+8EBg880BAE3jx8vTopqH82U9f3403500qT4faSstjzwSePHFaN6+bl11HmVyW5F0IB7VZpGs7arWLiqkEYhHRkibYKO0TMM8vL29+kzixstFFwH33KO+ln9/KvPwiy6KBC8AMHt21V2S4t0F0jJCUFoGRBAXkzLzcF7NI1NafvGL8e+tO8Z3XDYdr20gHhe4kh4dHVHnHIe05H2pvfxy9bNMyTRrlj5tX+bhJqgUTNRy6NMHOPxwf/lxNQ+fMqX6+ZprzAQ0/9y8UmjWLP1igt+Nu/JK2jtSLax0u7X87qYIX0pL10mTrdJSRRRUKvXXxSXNTUSbrL7LdopvvLH6/Zpr1BMzitKS3deFtIyjeOD76X79qp/b2iKVMEPv3sC//12r0GNp6upIXn1axkGa5uEM06bFNw/PIhAPIywB4D//if5TnoMRaIBf0pLi01KVzvz5EWHJICp+RIg+LSnm4Xyb04FCgAL1pKWKsOXL+7776PcE3M3DZaSwCUkqLXVpMFAD8YgLdxlhyTB/fvVz1kpLCmlJhQ+lpZgOQDcPZ+d9+KFeadnZGRGWDPy8XAYfSksqdP3v7NnVz7pNNtX1MqjGozjm4dQ1owkvvlj9zLdpWf3knyHv5uG69pV2IB5Xn5Z8GVAC8bDr01Ba6ghLPi+AWmnJCEugOo8B1OUVSEsAgbQMYFBNwvnj/AJU5ovx61+PTAtsQVVa8jsveVNa2g66PJYvj0daqjo5nY89FXyZh5sQV2lZKkVmNyblKBW+AvG4qDaASJFG9XMiMy2WQbWw0k34+DYmgrUPmU9Lk9IyLZ+WPFREgWzRpDLfpELlSkDMC/9d1o5Hjap+f//9eObhQO1uMX8fMU8mpaUKsvJS+bRsba2tX336AJ/+NLB0KTBxoj5Nat58k5aqcvHtkD9O/y9CJAl0iEtaqnxaJqG0lJ3L7k9JhzIPUF2jax9xlJai6fbbb+vz4xKIh/qsrqQlJRCP6rhv83AXpaVLIB5bpSWVRLBRWlJBcU0iO9+X0pISiIcKH0pLMR2WJ9treLGAqQ8wbRz4UlpSoOt/+U1rX+sAVZ5lbkKyDMRjGh+yJi1Vc8y8KC1t+37TeXwZyCJwp6G0VPm0NIHPG8Wn5bx51c/BPFyLQFoGABAaBL8zxjeg3r2rn2VKy1KpXjVDAZW05AdU1plQOijbQDw66JxgA26LwBUr4i3eVM/kSlqmobQU8+xCWgLqYB42KBTclZZi/UuKtBThW2lJIS3Zs8qUlrp2KP6etnm4bNHm2z2BibSkKi1Hjqx+nz+fppJURQ9X5YuiUohD/vGTzQEDqp/b2mr7cNZ2e/WqJT5M9SMoLc3nUNU4PpWW/NifhNJSFwiC8hwupCVFaRmHtBSDN1FIS9tAPNR3TA0YwD+DTmnJQ9VmVW3dZeEp24zKi09LKolgE4iHCltSg0Ja2iotTYF4qODvFcc1lVgmlPmU2Kfx/uNNgXgo+aEqLZMkLfn5n0/SUtae+fJMIhCP7TrGRIjz5Z60eXgcpaVpUyKNQDxiflTgf9P13WLbk5WFb9JSp7SkXMsgmwt1dNSO47yqOZCWWgTSMiCCOEFhDVQ1wMl8WtooPFT31h2TKS1Nvv3EtHRKS0qnpCICVYsbClassBtgxXuoFoh5Ji0pZIwObPIc11SGQaUoMdVNsaxMEwLVwF4uqxVxMlDKyUZpye5NUVrakpZJmofr0tIpLeOS5iJ40zHV7zxkbgQqFWDIEPN1/H/AXmlJ6W9dTXoAvU9LUWnJYENqZxWIh18M+CYtfSotK5X0lJZZmIfzYPehpEOZB6iusSEtdepEU3kzP4QqUJSW4j3iKC1Npocys1gZVG02D0pLW9KyvV3vRoWHLWmpO8+X0lJ1TMyPjLRMKhAPFS5tWAYXpaVYl955p/pZFojHBjLSUta3maxaKND1v75IYR4qpSU/F/BhHi72MS7vQPaZIU2lpaytq0hLWwI+DaUlVYnNz/XEcuDLwEZp6Qs8aWnLbVDMw3mrqqC0JCOQlgERxImozDycP0eltPRFWprMw212QHwqLXURbwG3jtPWPJyqNnPJS6ME4mETN1+Th6zNw2UTEuoOpQouSksXn5am9uczEI+Yd115q+qUTOmRF6WlCNXEzEcgHsp9TDApLUWflirS0sZ9QFZKS1Hxwv+PC58q60olPaVlmubhsue2MQ/n72nrs1XXN4ubNjZKS1u4BOKhLlKpSkvdnM+2PvkMxCPr15PwaUk1DQdo5uH8hlca5uGU/IjnJB2Ih4oszcPF8hdJyzhKS515uG6DxAXU/tcnSSLLM28yL5vX6EBRWtrOM/nzZXWLH1OTVFqqood3dNDasum9+Sa/ZG4MZKb/umtl55nMw1XzZ19ku2gebvPO+WdRjau8VVVQWpIRSMuACHyD4CcZKsIvC6WlzDy8qckPaUmdDJiUllmYh6sGZ5dJXVo+LcW8Zam0rFT8mYe7Ki1N5BJ/n0IhXz4tTe3Gl09L2cReBx3hELf+iXAhLWX5Es/78EN5Pm2UlrJ6ZSJM45B/bHHX1FRbV1Tm4YCa1Jb1t3HJfMCNtNQpj+LCp9Kys3PDU1raPIcLQWzqm13Nw23hEognSaWljJBioARjyIPS0tanpQtpaXrvlPqRpdJS3CSOo7SMQ1ompbSkjBsmpWVPMA9XnRf3fr6VlhTS0rZ+mEjLrH1aUpWWvkg7KmTRw30oLW0D8bDvvpSkcUhLk9Kys7PWColXWiraQCAtIwTSMiCCuCCTmYeLfhrWrau/Li2lJesIbJWWqg6dGj1cZY4eh/SIG4hHRQK5DF5ZRQ+3XdSxhVuSSicKaUlJR/Y7Rf2nu49vpSXbuXQ1D9fBl3m4zKelDi5KyziLKZsFgIo4FO/PL4z4dKikpWx3XkaOupKWOvPwlpZ6/3u2SktZf+tjoeVyXpKkpU29M+U9afNw/v4q0jLJQDz8RpWNeTiDTf9DUVpS+re4myIMpVK6gXgopCX/n/9N9GMog0+lZVrm4b6VlvzvSfi0dFVayvo7X0pL13aQFGlJyY9JaRnHPNwmEE+S5uE8fJFfKtIyjtKSMi/fUEhLl7rsE7JNDv49UklLMd+u5uG+6q24ee47EA+fz6VLjW0gkJYRAmkZEEFFWupUisuX109gXR2oU47JzMObmsydSVBa0rF8OfD44/bX2UI10FLLIQ2fljJiiR1/6qlIBeeqtBQDMMjIJZ+kZaUCvPhiZIagam+mCJdxSEsf5uG2SsuODuD554EFC+p/S8KnZVylpYy0nD27/hwxn7aBeDo6gJkz69Ndtw544gk7clj2zGzCLQbYkUUP55+B4emnq59lzxXHPPyFF4CFC/OntPRNWmYRiMeGtJw9G/jf/+zaW1tbVD/5a1zMw5MgLbMyD/eptHQ1DwdqFXidncD06fWL2OXLgVmz6O56bCHrP5MgLadPp+eJqiCbOVPu55iHT9JSd5/29qhdPfZY9VjcQDyiEtl1Y5zd9403gLfeckuDT4eB0i5tlZY2QUl7stJStYkmIy1tlJaVStSfMIsi6rpIBRvS0kYoI+LFF6Mgi6p7qXxaquaYWZOWskA81DrGRDJPPllvVbR4MXDvvcC//13vtipJpSXr4/h34Ftp2dFRn8+FC6P/gbTUIpCWARFE/zUy83Cxc5SRlkkqLfmOy0ZpSdmdpSot8+DTMkml5ZVXAhdcYH+dLeIqLdPwaamaJMydC4wbB+y8c33ZUxUVoum2SWkp7lxSyom/x4MPArvuCmy9tZzE6+jQqyyBavsQzcMpPi19mIfLJvY6/PnPwO67A6tW1f+mem9pkpZiHydTQIqkpSoQj0oBLiuz3/0OOOCA+vwccQSw//7A174WT7HIk5a8CpRqHn7aadXPlEBrpvww3HMPsNtuURsQJ8i69GR9e08xD+f7PRXxLYLi01JnHv7aa9E72HZb4LnnaPcEgG99K6qfsvvbjHU2ixrVuB43EA9ls1WGPCgtTQq8iy4C9tuvPu3ddgPGjwd++Utz3lw2v2V9MMWk2sY8/NFHgXPOoeeJOi/8+MeB3/42PZ+WujG4owM47jjgmmuqx8T+zkZpKc7R45AKnZ3RptbYsembh4vlv2hR9bMsINWAAfT86EhL30pLKuHsa6Olo0PenuOah//yl1F/sttu8vKLo7SUtRkbpaXqOf75z+o8fNky+b0qFblvedkaAVC7OkoLcZWWV14JfOxj9ZsQ06YBn/0scMghwLvv1v6m2vQH4ist2fjKb1LEUVqqooeL+WTPqCqvNCwgGwCBtAyIoFJa6gi/BQuSIy2pSktfgXh8KS1dBoykoof7jhLnE3HNc30qLQsFO5+WDPPmAY88UnuMSlqKJmYqM14VKPWFby+HHBL9X78euO+++nM7O82kpS/z8Dikpem5v/99WloycxMgHmkpIyHF9PnfZJMu8diSJfXniGnr+i5ZvZo2rf68zk7goYeizzfc4KZEZGDvlxGO7D/VPJyHT6Xl0UdH/z/6KCIIqFCpW/n/cZGVeThP3g4cSLtGpbTk36du7LnxxmoaV11Fu6cKeTAPF9VPFKVlSwuw0Ub0fADAllu6KS2pdcuX0vKnP62/ZubM6qLs3HOrx2Vzl5tvdp9Hiu/Jt9Ly0Uft8kQ1DweAM8/U9226jQAdZPfWEaAdHfVzBJ9KS8r4z8+zjzmmNm//93/m603wobTkIesDeJ91JlAD8WSgtIyt8FJtosU1D2f9yLvv1iu4Aft5Jt++4pqHq9r7EUdE/9esqW7eyM4VLbHYeXlWWqrqlYm0/Pa37e8pm2/7IC1POIGmtDRt8FKUlmI+2VwsKC21CKRlQAS+QfBm3rqF97vvpqu0lPm09BWIJ270cKbIaXSlZVpoFPNw0wJXXEhQzcNFpaXO3AFwC8RjS4ToIocD+TcPv/32aOFHQRqBePjyd1Vaiib7KtJSBao6VUfK2FzHH2NtMw5pKVNaxjEPd4HOx1telZbUfpERScOG1SoldaCYh6cFl0A8PkhLsW+2JS1LJTsV8e9+F7ltKRTMSkvx/r6Vlvx5LC8yX4eUPPDj5y9+EZFlZ5zh7tMyafNwvv+6+OKo3VAQR7keF7akpY6wkQXioSgtbUnLTTcFXn0V+Pvfa5WtnZ31cy7R8oMCF6JHV2Yy83Ab0rK9vT5Psg2ZDKKHxyZLVJtoMmLLRmkppuVTaRnXPJzyHDKzavE30S+wLN08BuJxiR5uA9/m4TvuCNxxB3DTTTSlpanPMZGWsrUluyaQlloE0jIggrggE83DZYvsd9+tJzuzUFr68mkZ1zzcRi3JEz9J+bRsJNIyj+bhKnMM8RwerkrLzk4UbCbSlLqmquuyAZdiHq4iLU3tRpzQxwnEoyuTz36WTgSozMNd24xsQqkzN1IpLU2LblvSUraQl0FHyuigMx9l75wnLXlinCctVc8g29EmLLS8otGUlipliwzMt9YWW6jHNhF5Ii1dfFq6lLWO1BfnDpRAPMWivrzFPvb444ERI6LPfB/n0zycotoEastPDIinKlvV++EJqD32iJRIrvNI2UI2SdLyM58xjzc+oiLHhez5dOUiy4MuEI/p2VzG/1IJ2H77qIz5MaCzs35MoLq14OHDPJyHLBCPzaaEjdKSuiFlChoqfhbRVUaJKS159LTo4ZTnoMw5+TFVRVo2utLSBTrS0mUOP3x4pLIcMECutBTjdZj6HD5vVKUlq3OBtNQikJYBEcQFmWgeLusIRKUl1S+k7t4MJp+WfCCevCgtbTrLjTeufvattGTP20jm4Tqlm2zy5VNpWam4Ky3Fekr1jyVTWqZFWqqelUpaiqRnXpSWpRK9PqQRiEcXGZG/J4Or0lJX/lSlpevEV7fhJCMt+TrGT8jTVlq6OFWXKZ/zSFraBOJhcCUtVT4t00LS5uEuPi0pSksT+SCa6vPp8+/JZyAeF6WlOA6r3oOqzfKkJT+u+ArE49unpbjpYmozNubh4r18QfZ8tv4xxU0afpNe1x+LpDZAG//5tiG2LZEwcFFauvgBtDEPVxFMuvyo5g+uSksVscKnp6uXTGkZV/xAIS1l8xrK+bpjroF4ZAIdwL/SkkKy8Ru7KvPwvPi0VCkt0yYtXda9fH/D+izRPNyn0rKjQz1OK95f7HbYQxBIy4AIKvJRN+lK0jzcpLR0DcSjavg+fFraDBa9elUXeb6VlrJBJG+wUVrqSMskSQOKSs2j0jIx0lIMRKN6VpN5OGtnefVp6dr/AMmQlvyC3OQbjt3bRFrKSBST0pLyTOI7SYK01EUPVz1DUqSlDanXaObhNj4tGWxIS/7+Kp+WaYHdP23zcFefluy/SWkpmpaqSMssAvGIcz7+v+o9UMzDeZLFVyCeJJWWffs2rtLSlbQUg83w/2Vg59tuWvL3Ee8pEgZpKS11iEtaJuHTkkJapqG0rFTM7dl2/iVzreNLaakTtsg+y5AEaakSxmSttJSRbdQ65uqnV9a+4igtZf2Nzqclpd9nddSX0jIE4gEQSMsABnFBJpqHyzpyX6SlrJNR+bRknQGvtPRhHk5VifoiLUulqprCt9LSNPjmAb5Iy6QD8VB9VDLE8WlpM/mg1BeWFzHyniq9tALxuNZLndKS3cO1PiSttKRMNpPwaUk1D1eptU3QPRd756ro4a4+LXWgvj+bcUrmayjP5uFJk5Yy8/By2Y08iAtWn5JSWqoUQOKmgck8XOxfxCjgIsTIw6oFk0+lJTUQj8ynJatvqvegWpyqSMu8BuIRN12obYbavhuJtKSMmTKlJaU+qggimdLSB2kZl+iRmYcnpbSkznHikpZMaRm3bChKS9kYqwPFPNxVaemDtLRxyWNDWlIsdtIWq8jqaU9QWvL5FpWWNqS0Knq4apxWlVfaZHROEUjLgAh8g+D9N+g61rlz602FklRadnZGky3Rp1IeoofLCAdTOoMGRZ/jRg8XO36X4ARpI0/m4YC7T0vbCYNKaSkbhFUDP9V/alqkpan9+TIP15k6iwEhbOGDtNRFr6TukIv3TysQjytpqeu7TYF4sjQP78lKy87O9MzDGSnUqxf9ep9g9Skp0jJJ83BdeVHNwxtFaakiyfjjcUlL2QaNb9JS3HTxrbRMYmHqk7SULdxN1g/idXHMw2VKy7QC8eggU1raqr99Ky3j+rTMgrSM005sXTWJMK2bgnm4HDLLPhWBKSIOaSmmK1oz2ECl7GYQeQZK3WL5CD4tvSKQlgERxAWZaB4ua6StrcAHH9Re54u0VHV0a9bU7/Tnxaelq9Lyo4/sZPLifcRrG0FpaeNTUDb5ku3g+8wPy0tPMA+nkJYU8/A4Pi19vCedeXhcdwFxTEvY9bZKS7HOyTY+VAqvpJWWVMjS5okZgBY93CYQT08kLX0qLSmLRBFxfVq2tPjbQLIBq09ZmodTSEsxHRNp6VNpSS0bqtJS3DQGzIF4slJa+vBpyT+TrdIyr+bhFDKXh6vSUjYuUwPxyD7LSMs8mIeLCkjb9YDOPDwrpaVP83BTezb485OmKX7Pk9JS9RyyccK30jJtcsuktNTlJy+BePj3oiItbfswlp8QPdwrAmkZEEFckPHm4T/8ITB0qPw6RogwNZVrIJ5TTgG23BJ48snqfWUQSUtfgXjiRg+3naTwSksAOPJI+rWmwZl9z7PSUjXgZKG0jBOIJy3zcHGRTJlks/TyZh7uikpFPcnJg9JSvHbrrYFHHlGnK3vfVJLcdyAe18njSy9FEX9lCyGRtFy/Hvj736vnuZqHE9QhRriQhDLS0mW8093Dx7lZmIf36pUNaZmWebiOtBQ3PHWKRd51gitpmbXS0iUQj4o89BmIJw2lJRsjGUlvajO2C+lGUlpSTHrzGognaaUl1TycXSMbp1nbyMqnZRZKS9EkV4Uko4f7IC1/+lNg++0ja0QeMp+wunzyc6TbbweOOqr+nLwoLWX16oEHgD32UF/rk7S89lrg4ov9mYfzSENpeeaZwHbbAW+8IU0ukJYRAmkZEIFvQKJ/x0suMU+64iidZs4E/vhHYM4c4KCDomOqBrp6dW0nIO6AyOBTacmbzvOwNQfhlZa2oJKWeVZaqsyqbUlLH2SYzL8IO56U0lIMjmNSWrqY77JnWrDAfG5nZ70psghW1sOH1x4fPFh/netmhgwqxU7c+pAEaQkAn/xkbfo8ZJNNan0T1ReAfJGSNGkJAP/8J3DPPdXvPDEDqM3UKKSl7Jl0ZUR9fzbK9kZUWtoQiP36RSQZ9RoZabmhKS3F9sf3b3HNw0slfVAjvk3IyCfbjTTdebpn4eeJJqWlijz0qbSU9cEUcs7FPJy9H2pABtPYyp/vGz5JS9dAPHFIS/GeefVp6RKIh/UBMqUlaxtiX9MTzcM7O+vVkjrSUraJ5Iu0VNVPG/NwAHj9deCEE2qP8ddRNjR4FzoqZE1aykQyrB879FDatbZQta+f/KR+bUUBxTzcZE0hyyNAJy0B4M03gWeflSYXAvFECKRlQAS+A1ARczrEIQ14UoVNpnwqLflni6u0VJGbskFTh1KpVmlpg56gtFQNtFkoLdva6usUy4tp4mPrR4e9E3HRYFJaukxM2DWUiYFI3B54YP05rH0ceCDwrW8BH/sY8IUvAP/v/+nTtlVa9uun/q3RSEsGitKS4heX1TeZefiTTwLHHgvsvnv1N9EHsApxSEsAmDevmi+WNx1p2dxcuyixiR5OLSMdbPrGuKTlSSf5zQ+FtLRpB0yp5EJasvaoIy2/9S33sc6EtWvtrRxsyjopn5alkrq8TL4S+c1O0c0IkF4gHlPEVR6q92MTPbxUAr70JWC//dT3sN1EpJwjU1oyMoFiHr50qRtp2dQE7LAD7Tod8qC0tFUp6XxaJkFa+oge7hKIh7Vz2eYiq2ui0rLRzMM7O2lrK7H96p5T5s/QtC4ypWFDWlLH1xkz1GlQSEvdXJjB1R3ITjtFFo62OOEE4I476u9PrVc8fCotGZYts0/PpLQUOREfSktLUr2Q5/V8igikZUAEcUFmu/iPQxqolIsyrFlTr7RMMxCPyqeMrdKyXHZXWuoCfvDf89zJ5Ulp2d5eWy/YZI/yTlXPYTpfJN9kCy7+PcdRWlJ3BfkyuPhi4Pzza8/hFy4//Wk0IbvtNmDkSH3atkrLv/4VOOAA+W8q0pJfHLmoOin+hUzX2/palJHUFEIKkJOWu+0G3H13LUm2bl3ySkug2kb5fImBeHiISjJfSksxDz4Ql7S86CKzGtlmYWh6vkrFbjOHnUttN3xeWXtsblbfc8KEWiWubzDikoqkfVpSoofrlJZ9+ujfX1Kkpa3Sks8/yy+VnGOwCcRzxRXATTep502yjT9Kf24qHxlpSVVadnbS3LPI7vX73wM/+AH9WhWS8mmZpNJSRRDJxlmKtZUI3Qbx735nlxbgHohHp7SUBRnrqUpLoP7d2piHy+qFrWsnE2mpItJtIGs/vklL6vsaNgz4wx8i1zAq3HYbcNZZtcfuuAPYdtv6+8uUlibYWLzwMM23bWGrtIzr05JixScgmIdHCKRlQARxQZam0lJ2L1WHtHp1fSAeG/NwVUdBJWpV59mqPdJQWvYU83AZceHbpyVfhkx5RFFa2pqkqEhL2c6hTmlpQ1pSdwVNAa5cJ2q2myA6NYFJaSl+poKyADNdT1AtaI9RlJY60pKB9zlKJS1dJ48MvDqZgb1zWfsVzZ5sfFratsm4iEtaUiwXfCotbX1aytRQpvQZKKRlqeTed1DytGZN+ubhovrJp3m4KcALP28QfSMD2Sgt2fu13fzg+x2+rcvqi4w445GG0lI0DzcpLTs67EhLV1WdKQ8ibJWWsvmWq0/LuIF4xOt9kJZUskwF8V3Zmof3dKUllbR0NQ/XRV9XQaxHvs3DTWlQNsoppKWYX+r7osxhVHN3/t2YAvHokITS0gVJ+rSUza0pa0sBgbSMEEjLgAi6SbgImePrOKSligRk4FU5otIy7UA8KqWlrXl4HKWleB+xU2TffSotXSZyOqh2um2Vlr78JfIKERulpa1pho60pPq05E1wZWBlE0dpKVsIxCEebK7VmU6alJbseltkYR4ex6elDWlJef9xd635NsOgMw8X+xOb6OFpk5ayvsmWtKT49LLNjwq2pKWt0pLVFb7O68zDXSw3xLzpsGZN+kpLnfpJ1t5EVY2OtOzblx6kJ2mlpU59GXejCKj25+I8TlZf2O+qe8n6YJ+kZVtbdRxOirR0VdWZ8iDCh3l4kkpLXSAeGWlpW/90cy0Xc3Oxj/NhHi4LMmZTJ3wF4om7jqCORzakJcU83FZpyfoin+bh4n3ypLSMQ1ryc7q8mYe7gH9GitKScm+TeXhQWjohkJYBEfgGZFpkyJwDs/NdCCST0pLvuEWfljbm4aoo0YCd0tKHeXijKS1dJnI62CgtVT5GGHxM7HlzKfasFL8jMvJRB/a7uGiQ1R9XpSXLvy1pyZ/nm7S06Rd0bZGitHTJZxakZRylpYxAY+BJy/Xr/ZN4MrBJrDiO8L/xEP0O9WSlJUUJ5FNp2dmZrHk463tEf4RJkJaUzbLVq5MjLZPyaRlHaVkuV+dEFKUltW7ZKi35PLq+X94nKg+d0lJVNkmbh/Mbm2wObDIPj6O09EVayp7PRyAeypjpI3p4EkpLHdFjeqcyyMzDbZSWOvNw1zqhmrPzbaJRzcMbSWk5f748jUYhLWWbSTKlpU69rILvQDyuoJiH23IbJvNw2/V5CMQDIJCWAQx8B2AyZ5N1pHGUlir5NANPkorm4U1NdBWLrpOz8Wnpwzzcp9IyDZ+WSZOWugFcp7QUP7vCVWkpTv7jmIdTSctCQV/XRNIya/Nw28WXzgRKtdjaUJSWukA8DDwBQFVaxoWM3NGRlmKER5tAPC6kZZwNHB/m4WmTlmmYh4v+CJMwD6eQllmbh7v4tCyV3ElLoDp3yNKnpU+lpTi/kNVFk9JSNgejBqHTgaXJlG9AMkrLQqHe4inPSkuKebhvpaVsjPShtBQDINnC1Tw8yUA8cX1a5tk8PAmlJauXqo1xV6Ul3/6TIC3F9kQdC6mkJQ9W9/h3I1NaAsmSllmbh1MQlJaJIJCWAQCEBuGitPRNWuqUlq6BeHSDmMkknj9vQ1RaylwCxIGN0tJEWvpWWvI+LU3vVHRo72oeblJa2gTi4ZWilDyxe5nMw13N8F3Mw7NSWroSfGkrLX37tIwLmV8jXSAeEap35ss83HaRziMNpWUjmoeLSkvVGJon83CZUst0Pv9fPA7UP3dcpaXJPByozh18+rSME4jH9f2ydim2c1fzcJXJpw7UPpeRSAA9EE9HBzB3rjkPQL1v7STNw9MOxGPrD05FEKkUSrblpJtr+VBaUkmJJAPx+DIPjzt/qFRoY4uN0tIHaRlHaZkWadm3r7ns4iotdekXi+aN6LY2uXu0RiUtKebhFHhWWgbSMoJnR3UBDQvdJFyEb9JStqDk86MzD7fxaanrJOIqLW19WpZKQWkp+y4rQ9m94yrrRPBKSz6oiO1urc9APCpfrGvWAL/+tfoeLkpLGWnpU2lpax6eZ5+W4kSOXaebpOkW/3waFBUd0BikpU5pKcLGPJxKMvCwXaTL7tdISkubNmDrr1hFWgLRfcX+Jo7SkvIcq1fbmUDbLBZWrwYuvRSYNav2+Fe/Wv3sah6uejYbpSXbxOXbie2YxBAnEI9tn3vuucDJJ6uVljrzcNW9Hn44+uPhU2nJk5ZsDmyjtGxpMW+eXHhh9bONqk6Gc84BFi8GHn+8/jef5uG2gXjee898P515uGz+69OnpWsgHhfzcNZuP/wQmDGj9jem7HVV33oiLWPPH6hKy/PPjyJaM9iah4v18CtfiSJjT50K7LMPcPTRtb+rlJa+zcNVpCVlo7xXr6gcdP1Y0oF4ZBvRotJS1gd87WvmPOQxerhPpaVK+GIrckIgLRkCaRkQQfRFliZpKeuQVUrLVav8KC1lpjhxlZa25uF8gCEbZKG0dNl91kE1acyD0pInLW2JX1elpck83GZH0sWnpcw8XCzXtMzDs1Ba2kzQ+/QBPvqo9phq55flJSul5fr16ZiH60hL06YDkHwgnrwrLX2Slq5KS9v7U0nLOEpLqnk4dexta7Mr63feAX7wg/rjTz1V/UwxDxdVNTqlZZ8+5nfCb3iuWAEMHqy+P3UeIOtbqUpL2zp07bXR38YbR999KC1loCyKqf2Ji3n4qlVVNewWWwBvvmnOD0NcpeX116t/c1VaypRiFKWl7XPoAvGIZMX69X7Nw13KXFwXUJVguvrDxm5RaZm2eXjc+cPQobQy/cMfar/7UFpOnFj9/v77wMiRtdfwSEppyZP0MqWyrv9paYneo27+n7RPS76cWB8sBuKR3fNXvzLnIS9KS74MZO3LZeO1o0P9fCqiV4NAWkYI5uEBEeKah1Ok5q75GTGi+nnePDO5IkJGWsp8KMVRWrqYh2+5JXDEEfRr+HvxSCN6eJZKyzR8WrJJvLiYtB1UqUrLuIF4dOD9JFGvFZWWskE6z0rLuPXBRmkp22xQTaLYubLf4kQPlxFoDKJPyzSVluLmF1Dffvv0Ae67r/aYjdLShbSMo7SUlTmrz3lUWrJ7UuHq05Jvi6zOye5L3RCUgfIcNnW8tdXvZh7g36eljXk4UO/X0pW0/OCD+mNUpaXr2OASiMemblP9OesQxzyc991r6w6oUHBT/VFgq3DyqbSkQOfTUnyn69f7NQ936atclZam97t2bbJKS13d15mHU+rl4MHAttsCkye79Q82pKWKOOPx/PP11/BIKno4b8Vlax5eLpvL2jXwmovSkp0rrpFc15p5DMQjK++WFrdAPKrnc1CYBtIyQiAtAyKIEvA0lZYy8IPSFltUP7/7bm1HQDEPlw0O4mSTOhlQESq25uGsY7zvPmDHHenXAfbm4VttBey3n909RFBJy6OPBo480nyeT6WlT9JSJMFtB5cYSsu6HW0XpSVfP+MqLfMYiCcP5uE2pCVTPVKUljakpY15eFZKS5VPy6VLgUMPrT2WZ9JStjj3bR5uM3mnujCgwtWnpRiIh09LTD9JpaVNHbc1D6dA3JRRqRPF+qN6tpYWunk4YCYtKaZ0q1dH7RKo7d90SsskA/H4UlrmwTycwdYvuK6OxIWPQDxxlZYnn2y+TvwsIy1bW+3LKWmlpa15uAqrV7srLeOahzOlpewcUx6GDYsEJq+9FvUnLmWqu4eYJ4ryTqbO5GGjtLTpg2QbuQCNtNRtbjHkwTzclVDLi9LSNJb16iUvp169gM03l6epU1q6WP4E0hJAIC0DGMTdlCxJS5EAHDiwukv97rtmckWWHmBWWqZpHs6nQYkQJ96Lh8k8vKnJbIrOEx0yUCfcpZK8foiwUVrKBu2kzMPFSJRJkJayibcvpSU/ybEhLa43+hkAALEeSURBVMU8+QzEY2semvdAPL17y6+X1V3dws7FPJwSPTwLn5bsvch25cX+UtbX2EQPd/FpmXfzcJfgMDqkQVqqzMNleXHto30rLZMgLcXnUxF9Yv1RLUYpC1VetScG49GZp6vA+13baqvqZ53S0kcgHpvo4S5KS5+BeGTm4TZuc2xJyySVlj4C8dgoLWXvU+fTXWceLlNa+vRp6UpaivmkzCVM73fNGnelZVzzcJ3S0lTepVI1OBvgNnf0rbSUmY/zSCp6eBzSslg09zFJBuIpFMzWM7IgUlTkkbSU1bteveTl1KuXvp0FpaV3BNIyIIKNebiMZPNJWor+HgqFqtry/fdrF6BNTX7Mw6mTAV/m4XzHaDsxtVVaikScDAMG6H+nKi2pO8E2SkvZvX0rLfmy4t+vGM3TBIoKTBXwQHx2VSAeHfjFsK15OP9OfPu09GUeriKf0lRaykjLzk754k0XFEvWBqgTbxuflmmah8sWfyrzKB42SksTklJaupKWWSgt0zYPz5K0tKnjSSktKaSluPhTjfsUhZ2N0lJ1jIcNaelTacmQlNKSUi+oym2ZebjN3M3WxQ6FsHCFD6UlZczUrQt0z6ZStamUlj5JyzTNw039ouivNy/Rw03lLbYLl/5fVz9kqkmTmlymzuSRlE9Lvr7K2k9PUFr2JPNwWd1uaVG7LFGVn2elZSAtIwTSMiCCOKHOUmkpKieKxSpp2d4OzJ1b/c1VaSkOiNTJQBJKy6RIS973lOke/fvrf6dOnqkmTT59WvpySQDoSUvKooOitJTtspmUljbm4az8bdSDeTIPz2MgHj59G6WljMzjr+HhKxCP6NMyTfNw2a68bLEvwiYQjwlpkpaUBS6FtOzJSssNzTxc5dMyDaVlpeKXtNSl5UNpyZAUaUlBHPNwG1LRti/Lu9JSNhaJ0K0LdOWh82kpvi8fpGVc83Bxs566Hli0SP/76tX1ectDIB6K0pJH0ubhPpWWSZqHy9pP1kpLE2kpm9PxZF0cpaVr9HDA7zhOMQ9Xqf9V5ReUlokgkJYBEcTdFN0CRrbwtFGemLBunVppCQBvvVX9TPFpSVVaUhZtKgKGQjjwSFNpWSqZB1lfpCVVaalyHu1CWvpcxOh8WlIWHZRAPKoorT7Mw/nFMJs4uwTiyTJ6uG5inpVPSz5NmXmzC2kZJxCPbpHF50905J8UdEpLCmmZZ6WljNCmjndsXMkzaWmrtGT3z4vSMmvzcIrSUiQxdGMyhbRUKS1V5ZB3pWVSgXgoiGMebjN3c/FpmTelpcw8XNf2dIF4dM+WtHm4jujxZR5O6ZNkwa945FVpaar3PkjLuNHDKdfwSFtpSSEtKWNBFoF4gFqLrrSVluy+viB7Lh4qn5a6DVnVWg9weu5CGvP4BkAgLQMi2JiHyxzF26o1dBBJS15pCQBvv139TFFasmfrqUpLVfRwXhFhuofJ56WNSoDyPGIHrFO6pUlaioOQLWlJGbxlBIps0hVXacnSzYPS0tY8PI7SMg5pqSorvkxli0/VpJmZLflWWurM2UTSMg3oAvHIFEoiVO/bl9IyK5+W1Oi5WZqH27YXWSAeXfTwpJWWNubhSUQPlxEWImyUlhQ1lUppqeo/bEjLMWPU6fFuMOJuFPGwUVr6Vh9SNhqB9M3Dk1Ra5iEQD1VpaTIP9+3T0pd5OGXexUeXlyGOT8ssA/H4IC1tzcPjKi2Tih6e10A8FOtIlXk4UH0/WQTiiXutiCSUlqJ5OL9uCObhzgikZUAEcUKtG7hLpXq1kU/zcHERolNaUoIcsAFOVGjysFFaZk1aigO2TGlZqVTPoygtTXmwUQn4VrqlbR6uCsTjQ2kJAFOn1h/TmYc//zywYIE5XaB+Mdze3nhKS119TToQD0VpKasHukmzynzmqadqv1MWOpRAPPy74xfaSSKu0tImEI8JSZiHt7UB06ZVj1FJS+pmXns78NFHwIwZ9ooRGZJUWq5bB7zyirxvlI0jcZSWSZiH+3aXIPZvaZiHy5SWlQowc6b8fBvScsstq59VblxYPhnSMA/PSmm5fj3w+OPAsmXVYy7m4S6BePKutOzoAJ54Qn2dbtPGxTxcprTMg3m4uNHgK1DIqlVR3WOgWjLprOUaRWmpe87HHqv97mIebqu0dO3v4vi0tDEPX7cuaotU0+M45uFAtQ6kGYiHr3dJkZayuu3i01I0D+fdSgXzcGcktI0X0HCwIS3L5Yi0/Oij6jHfPi11SksX8/DZs4Ejj6y9joeN0lJ2HnVnlYGiUujTR046UMzDxaAqtpMMEb6VliLyorRM2qclAJx+uvw6GWn5178Cxx5rTpNBnDxTTTdE0lKmjnJVUfsMxJOVeTifvqwe6DYtWlvl72DevNrvKkWmeB92LoNYtoVCNMlauzY90lIXPZwnDNNQWspIvbik5WmnAbffXj2WhNJyv/2AF18Evvc94NJL1ecmpbS0aaM77QSceWb1u8k83BWNYh7Ol10agXhkSsvf/rb2nfCgkpZDhtS2UR1pmaTSUlYXs/JpecYZ9fUrLfPwvCstL7oIuO469XW6voUaiIe/Ng2lpQ/zcFsRgwpf/zowf776Piro1kU+SEtbpaXv6OE/+lHtdxelpYq0pEQPZ98p7ziOT0sbpeVnPhMJIjbf3JwnoPo8unejU1pmYR7eu3dVnZwHn5Ym8/CgtPSOoLQMiCBOqHUDY6lUPwHzTVqKSsshQ6rf+Y6AGojn4Ydrj+2xR+136mRAtdNJIRx4UJSWKlUShbQUCSjTJGP8+Noy5lEu1xK+JqShtLT1Cfr1rwMXXGA+L65PS9fBWzbJrVTsCEtArrRMyzz8wgvlx118WsYxD3dRp8jqH+sjxoypfffFIrDddvXXqxRw1J1oV5+Wsv6PKeF5P2wuGD+edp4uEM+VV1aPXXut/HrV+86L0pInLAF7paXpvLlzI8ISiEhLHfjnu/XW+t9vvdVe2QzYLyxvuaX6OalAPFTSMutAPL7Mw5uaIuLRRWmpIiwB8zN/+GH0f9NN5X4LZemkrbTMOhAPj379ov8bSiAeVuZi3bjiCv11PpSW/HcZaXnbbfkwD9e1GxV+/GP97zxhCdCVljoLtEYxD7ep++3t9tHD4wTiAeh1jq8LIgEv/i67J1VpySy4+EC1OsRVWrJ8xVFayvqhT32q2r/+4Ae1v/EWnkkpLWWbSyqfljZKSz7vrkrL4NcykJYBXRB3UyhKSx5JKy1VHXdTE808nDd/+tKX6if4VDWYTmlp03FTSLc4pKWt0rJPH2D69PrjRxwBvPQSsPHG+ut5pK201E1+H3oI+POfgZ/8BLjkkuizLPozf684pKXrgtgUiIcKX+bhMqLB1M4uvRT4y1+AbbetPe7TPFy1Q2nyOWmCrP5dfz1w112RWTDfN1QqwH/+A3zlK9VjLubhIlyjh8vKlvXPOqXleeeZJ8Rjx0YmpypCmkFnHj5+PPDII8Cjj6pJ0KSjh+t2tkXVBiW9uKTl8OHA735Hy58uPyecAEyZAjz3XORG4l//Ak480c08PA6yDMRj49MyCdJSprISIc4PZAqazTYDnn4aGDbMPXq4CqZ+hY1zzc168kWlGurJgXhkYOUfV2n5rW8BEybIz6cQFq7wGYhHB5Z/2fukBuLhrxc3Vx94ADjssPrzx4wB/vvf2qBSPJIwD1dZ6OjwzW8CRx3lfh8VdGKOLJSWSZOWPpWWVNKS+kwm83DdeOQSiIcKKmmpUiHzSkvq+HvkkcB991W/yzbVBw2KXCfdcw9w7rm1v/FrYpvnvvNOdT8L1D6XbN3tQ2kZk7QE4Ee93eAIpGVAhLg+LSlScypkPi1VExyq0pInLc891908XOfTkhLEgyFvSstSKZroHX547fGjjoqIC+oAXamk79NSR2yMGQN87nNRfe3dO/o8erT6/Obm7JSWSZGWVPNwPiqsrD2Y6kBLC3DMMfULhbiBeHhzRYrSUhbd2wSZf6H+/YHjjgNGjKgnLUeMAL7whdrr+ff12c9WPyehtDQpQ1gZ6ALxHHkkMG6c/n7FYkQ0HnaY/jxdIJ5CAfj4x4EDD9TfR4aklZZ9+wLHH69PT/ZO4pqHH3ccsPXW1e82k1j++cpl4NBDgd12A3bdFZg0Se9eQQZXpSWPpEhLqk/LPJmHy0BRWh55JLDLLtFnyiYjK2s+ergKumeuVKq/NzXRlZZ8Hnuy0lIGpnSNG4hn770js04ZGiUQjw46f7lxlZYjRwITJ8r7u1IJOOgg9Zhjo7SkvANX0rK52Tz+8KCuU3Tm4fyz59mnpa3S0lQfxXcSV2lJfSaVUpHd32QebpoDuSoOXUhLmUWTjZ/oj30smqMwyDbVS6VozXnUUVXFJQMvOLF57uOPV1sSsnsyyNbdrj4t+XldIC29IJCWARHECbWuIyuXkzcPt1FaUqKH86Tl5pvLTV8peVedpzMPdzVvVikCxfvIooeLSkvqzqj4bKycXMwNbaBzSm0iLXXKOlnZ6iT24qLN1qdl3pSWMsf1qvvz0eYB9+jhssldHKUlbwpJ8WkZh7RU7SqLpCXLJ389fy1fV6iTOlelpaz/Y21CZwaomojxYL+b6r5OaRkHcVTbPFTlYNqgA+KRlrp+le/XXElLVd5dlJZxSMsso4fb+G1NIno4hUiQkZYqYgYwP3ehUFX7UZSWumfmfzORlkkpLbMMxGNbH5qaqmNM3EA85bK6b22EQDwm6IhtG9KSXctv7Onm0Kb+2UZpSXkHYnu2qVM2Yxx1Q8qH0rKRzMMpSkuR5BLrgE30cIDeD/F1ga9nMpc6sntSlJauawX+v+ocUyAem/sz0Q9rUzKlpc7tCL8mtjWVVomAxHvaKC11axud0tLBp2V3mhs4AmkZEEEctLOMHi7zaama4NgqLTfeONq9kS0iqebhtkpLmdopbaUldWdU5UA7aXPDpMzDXUhL1Y55kkrLJM3DbQPxqNRhVFJDFhjGpv6IbYxCWvpSWqp2lW1IS3Gx6VNpSYkeDtDKQOWnhwdLO2nSUrXI80VaqiaJFEI9CaWl2E5tfMyx5zMtNqjIs9KSsjC0IS3T8GkpAyUQj21gG9YvxlVaimMclbTcUALxiBg0qJqXuErLUkndt1IIC1fYzi1clZb8OCi+U92YolK1yTZXAfUGAJW01I1bsnyKCjBXpSVg9459KC3TMA8Xn8l3IB4RLqRlFkpLPo9UpSUlEI/LuoNiHUlRWtoE4mH31Lkv0pWrzrWXCaogkEDtc8nOU82Vda70kjAPD6RlIC0DuiBOqLMmLalKS53DaYa2tmqkXhaF3FUNpjMP9+3TUuw8hw2r3ouHyaclxTycQTUwp6W0lJWharKv+53BdtKflU9LWf1J06elT6WljLSMYx4+YED1M0Vp6eLT0qS0lC3WxGP8cVFFRyUtqX6ZfJGWpvdCVVqy96LalTdBVUdd+hIbpaXJfzOQjNJSrCM2xBuFtLQpt6R9WsZRWlKeQ+cCQYTrAk8HKvFtMg+3UVoCtUpLk+qESlramIfrFDG2yNI83HbM5jfRfCgtVeNVkubhtkhCaWnj01JmHp4UaUkhV2WkZRpKyywC8cjec96Uli7m4Vn4tOTvSSEtdWtfPh2XdQdVaalqG+z92ATiYdezPs+ktBQRh7SMo7RsbrZXWnoOxAMgkJYIpGUAg7ibouvIkg7EI/NpqRrAKObh/EKFkZauajBVJ2VLWlIWKGIHzYLh2CotKYF4VAvhDV1pmWUgHhf/oEkqLeOQlrakd9pKy0ql3sUDn2eK0pIdLxbrzcOTDMSjMw/XgaK0pJKWOp+WFKgWCnk1D6f2izrVMv9sNsRbIyotXdOmvH/ZwkeFrHxaUgLxUDYyebB+saPDTHrbkJbi+MEjKaVlIwXi4YMgJa20jKNS9gkfSkuKgpFBRXpRlZYmQsbGPFz2jvv3r78fRWmp2tQR01KBWh+oSktd3W8kn5b8/EsFce6oIi1Vc0zxGaj9kEppSTEPpygtbZSOPFxIS/5cV/NwoDpHl43duvy4zO0ZdKQlf0/xPBbnQKW01PUxgbT0jhyMhgG5gG0gHtUk00cgHpnSUkVcUszDeeiUlpR0VDudIuEwdKg+HYo/KJG05HebefhQWrI0fZiH+1ZaxiEtbfMiKk1sSUtXXyWqQDy2Pq1kO/62pKVOHUaBb6VlGqQlUP8ObElLldIy6UA8svdCKQMbn5YmEjQp8/CklZaUfl+Wng+lJT+e5UFpGczD3eDq09KX0hIwm4j3JKVl1upDfjyyyYuMSDL5tLS9R1JIQmkZNxCPbg5tElGI7UE3bsnScDUPV61hdGnzoG4Ab2jRw/MciIe/j615OEVpGdc83Ia09G0eLlsv6eqWjng0wdU8nOU1D0rLEIgnkJYBXbAhLZNWWsp8WgLyzltUxpmQltJys8306VBUFatW1d+b3YuHibSMo7SkLs55uKqjVMGM0gzEI0YPt/VpGWcHTRz4Dz/cztcdIFda5sE83Kb+iMQrv0hUkcJxA/EA9cSCjU/LW24Bnn8++iwjLdMOxOPbpyVFzc7nD7B750krLeP4tJS1H2q/qFMtJ2kenrbSslEC8TSKT0sbpSVgDsYj9iurVwP77APstBMwd271uE0gniR9WqaptLQFTxbbbCrKSEud0lI3700bSZCWNubh/Nw3bfNwKmlJMQ+nkJaiipPHqlV08/AkA/HkUWmZtnm4D6Uls/BRgaq0TMo8vFAwB+IB6Ose0TxchryZh7uSliEQTyIIpGVABLFjMqk40vZpCaijcNsstrbfvjZN/h5xlJaiSmr8+OpnmeqSoqoYO7b6ecKEWhMZHuIgK0ZIpSgtWZpiudj6kXIxaWZQmdjLyievPi1jDEZS30G2ECc51MkEX3/TMg9X1ZNSCdh00+r3zTevfqYoLV18WgJyNZTss0qVzJ/bUwLxsN95v6LDhwM77FB7XlKkpUtfIpvAq4gtSr8va9O+lZZ5MA8/9FD6NSJY3yjrb+MoLRuBtJQRkCLyprS86SZg5kzglVeAU06pHhfHvzwqLbMmLeMoLWXEh8483PYeSUHW38nGNLEv7Qnm4bI0XM3DKaSlThE2bBitrenEHI2itLRp5z6UlrbRw6nPpAvEY5rvlUrxlJb776++jqq0/Oxnq9+POab6mZ9jrlypzyODaB6uy5cMLn3hiSdG/11JS7aeUK1hdH0Mv14J5uFeEEjLgAi2SkuRGEjapyUgn+TYkJZHHw18+tO1afL3iKO0FFWCW28N3HgjcNxxkQpLlm/ZZx477ghccQXwhS8Af/hDdfBiO3TsvjIzB1EREdc83GaHy3WSrdotVb133e8MLubhcUhL18HI10JaXAxTSVSKT8s40cNl16rqVLEInHQScMYZwMUX1068KIF4fCktVaQl77tSBtfo4SqlMQ+fPi1tzMP794/6oGOPBR56CLjnHuD446vnyfwz2YwFPqOHywhAFalTKknL76MRI6pfkiAtxTriorQ0uXARMXy4/FxWxiefDJx/PrDddvS8MCQViIdSj20IX3FDzwcKhVpSXwaZijtNpaX4zO+8U/385pvVz+J71CktKS5uqEg6evhBBwGnnWZ/nQw+lZbNzT3LPFx8N3zedYSm6n5iujyhlJXSslisrQPsGv48VR+jEl6I58jq+DXXAKNH0/rSpJWWYv5U60GGPEYPl9UB0aSXhytpqQvEYxqLKBtiunROPhn49rfVblsAc/Twc88Fzjkn+vv616u/jRxZ/Txnjj6P4j11c3Qxr7NmRWv3v/3Nvu8/7bSo3QDZmIfz6xV+vROUls7IwWgYkAcUxAl1nqKHm8zDVXltbq7tNG65Rb3YpKpBqNHDSyXgy1+O/t54o/58iqqiUokWkQz883d0RNfJBlhRTUIxMVARMaxsdR2+CNcFjGri4erTUkcwq5AVaamaKNnClbTMwjy8Tx/go4/qj5dK0aLgN7+Jvj/+ePW3JH1a6khL/pmyVFr6Mg9nGxlU0hKIFFm8KuvOO4F//St6h+y9uAbi8enTUubcXUXqSPqIjuuuw2tz5mDvq66KDuhIS9NiTKdaTlNpefHFwLbbAqeeWn8uP3ZfcQVwxBHAgQfS8wMk59OS0ufaICnzcJ5AlEHWt6iIFvGzCnGUliqf26zfKpXkLkvEAH8McUnLpAPxDBkC/O530Tu49Vb763m4Ki1lEWh181edhVHakM2bZWNVuVxbR3wrLfnx3ydpqVNayohYkbQU27NqPkchLYvFqGz4MWHPPYGvfU2eH9V9VPWKmSQXCiSlpfQcGWnJj5NZ+LTky3b//WvnjYBZacnOSdM8nKK0NJWDLp1yGbj88mgj8owzan+jKi2bm4Ff/rL+N+ZqDajdBNPBRWm5997AX/8aff73v2n3AYDvfx+45JLq97jm4aoxKSgtU0VQWgZEECfUJol2mj4tdZO3cll9T7Hz4dUQrsFCZIsNQB/EQ5Y/iqpCJNdEIoT/z8On0pLl3cYBsusCRmXi4UpaUstVvJdq8tmIpCXVJ2aS0cNV/YlOacmDYu7On+NqHh4nEA8PkbRsbfUfPTxuIB7dRIyHqU/k1d+UfKng0zxcplpUkToSq4JKsYiKauOCv47/r4LKX6RYR2yINBfSUjem68yUqdCRlrY+bXm4tmUVkiItRRJDhLipKVPQ2JqHx1FaqpShPGkJ0JWWced9SZuH+/DbyhBHaSk+V1NTekpLUzomxRVQW/ayflGntEyTtDRtKumUlqZ5T7lcv0kh9q9xzMMZUcRDR/6q7qN7n2wO42oeLubZpLRMmrQUN4Vk7dIUPRyI3hs1eriL0lI0D6coLU19jC4d3bqcSlqq4EJasvRcfVra9P1i/XGNHq5TWuo2/kWlJZ9uCMTjjEBaBkSwjR4uLoqpyhMKfCkteVKkf3/9JNtGaSk7T6a05K8RYbtAAexIS1ulpWohzPJuQ1r6Ng93DcTjSlqqJp+NSFrGUVr6Ii1VGwKqOqUzI0tTaalqwxTSkq8r1EA8aSotqaSl6Xf2nElFD3fpS2SkpU5pKSMU+WNxSEudqwXXftIlerhufNMp/qhQkZasLPNEWvpWK1CVlkkG4pGR8nwfJLYv1bhgQ1o2UiAen/NTn9HDKaSlL6Wlaf6ia2uy/k62IZoUacm+q0hL1QYAVWlpYx7e1GRWWsYxDy8W698Ffx1Vaanrc3UqSgaf5uF5IC17qtJS5xtTN0+hCI2opOXs2fo8MsT1aWnT94vnupqH63xa2igteT4iKC2dEUjLgAi2gXiS9mnpIxAP3zGKi4o4Pi1lHafojy5PSstSia609EFa5sU83IUUEKOHpxWIx3UQE+FKWvJKS506jAJq26L6SbVVWtqQlqLLBYp5uK3S0sY8XEeo8/eO69PSF2kpKi1dfVr6VFqK5uGVipXSEoVCrdIyjUA8NjD5VFXdj6q0dBnDVdHDqeWkgs6SwgVJBeIxKS1tA/HYmofLSHm+HxSfWaXAN5GWjRqIJymlZdxAPDrSkp3rS2lpmr9QiAS+7CmkpU4h6BI9nO+L0zIPT1ppKXvWpJWWFNLSJhCPON/wMabYmofbkpYqpSV1LuKitBR9WvoKxKMa03TjbxZKSwppmYXSkk9XXJf4UloG0tILAmkZEMHGp2Xa5uEmpaXqnnwnIZpDySYm1OjhKqUlxbSUwXaBAtROZHSR7sRgA+UyLbqpLC/8ZJWqenGdZPs2D1eVa0/3aWlaWPDnMiRpHm6rtBRBMaN1VVryddqWtFSVhytpSakDvpSWut1jHlmbh/tQWq5erZ7sySadxaI/0lLXllwVVK5KS9W7TFppyf+3RZxykkFc4PkgsQqFqL3pxgfbQDyUdyAqLcVn4fsAsf43otIyL6QlX+5xA/GkaR4eR2nJys80t9DVaRvSkqJq082h4ygtTfMeldKSPy+u0lJ8V/z3tElLle9SVf6AxlBayp6rtTW96OEdHeY5H2Vz01VpGZe03Gyz6uf58/V5FNNLg7QUz6WSluIz+/JpGQLxeEEgLQMixDUP901aynY+baOH8529bGeUR1ylpc48XCfNF/Opg0xpKSPJklBaAnSSqZGVllmRllkoLfnz2turbU4ViCdO9HBfSksVKO4CZBCVlhS/tCalpWv0cJWKiUfezMN1pKVNP+AzEI9IWuqClGSptKRulIlw9WmpI25111KgIi3jkkWFgt9gPOKGno+02bPp1Ja2SkvKO+Dvt3Rp/WYc3w9SlZbiexSvS0tpqYrUKt6XirwoLWXRw1XjFXteX6S9KR1dW5D1d7ZKS/HZdXN3Sp9E8WnpQlqaLExUSks+D3F8WpZKeqUlpf77IC0bKXq4KHiQ1eWszMNVPi0BM3lFVVqaSEtdf0rxZStDr17AsGH6vIlg96K4orD9TYRYf6jm4SJco4d3dNS+3xCIxwsCaRkQIc+BeHRKS93gzE+qRKWlyY+ZCirScuFCYPLk2vNU9wLSD8RD9Wmpm2xQI4jnRWnpSlqqJp+NorSkkpZ8ud5+e/VzEkpL2bUuSksVKObhsjzw71QWLIMhbvRwymSDn9yqCN0VK6JI0LfcIs8nQ9qkpSx6eFZKS2Ye/uCDUZ/84ovqcymk5e9/L7+O/6+CzqcloK7bX/4ycMIJwH331f/mSlqqFqhxA/EUCnIlFp8PaqA7EUkrLX2Sljq/lpRAPDpVmgz8/RYtqv+dXxg+/zxw5pnAF74APPCA2Tyc5SUtpSUlengc5WHc/PGIo7SUqfZUaaSttLQ1D5fNLWx8Wuo20+OSlqb1yMqVUWThm26KvvuIHs5f5yN6uOo6qrhCd95VV9W7tBJhYx6eB6Ul/w5dlZaXXw4895z8HnGUlv/7H3DeefX9tClQpk5pyfqHrALxALUm4hSkaR5uo7TUPafOKklnHj55MnD33dXv/JzeNaBOCMQDT6NhQMPDVmkpdgBs0EoiEI9ux1lnHr5qVfWzyTycqrRUnff667XffSgtN9qo9juVtBTVJBSl5dCh8rzy3ykkU6WSf6Xl1lurfbCI9Ymvh0n6tMyCtFSVT1rm4UkpLVUTIpPvR5+BeFyih4uk5Ucf1Z/z/e/XH8uTT0tX0pI3NeLhqrRcswaYODH6/otfqM+VLe6KRXSa6pwPpSUQ1W3ZRsfNN0f/77sv2hDr37/6G1ts6e4tWzQmpbRsblab7orjoK1SQEdatrTY97ciaemDEGXlZVJaiipuXVlRxhoTacn3gz/7WfXzv/4FfOYz8jRdfVrGJQXF96BbZLvci9pe+/SRB/LiwW/e2hArfDth0M1fGzEQjw0Rr/NXS3FZEYe0nDIl+gOA7bfXKy032aT2e1OTWWlpE1guiUA8pk2iSy8Fdtut5wTi8aW0ZOOuDHFIy099Cnjvvfrf4pCWLS3R9VmZhwMRafnkk/pzZOllEYjHlSh1VVquXRv9MdjEhVAhkJZBaRnQBXFCbfJp+elPA6NHR98HDAA+97nqtXGxcqUfpeXKldXPFKUldQeT0nHGVVqOGwd89rO1x2SkpWzRtm5dvSJClufrr48mZGPHAl/9an2+xbwnbR6uGnx9Rw+/+eYqSSu7lyz/1Gi/eTMP102KTKRlXgLxUM6jKC1lvkz5yS3VpyVFaSlGD7f1admvn/l83bkm0tKXT0s+enil4h6I5yc/kROXrqSljMSRQaG0/HDsWFTEMUO8DjATARTSUoe1ayPTXx5sM05XR+IoLW3Bl4EuAIPL3EBHWtq0EYa2tuqYqerrbUFRWtqah/frB5x2WlS2v/udPM2mpuqYvHhx/e+qfnDlSvkCmqXJ50WntDRtzPbtC+y6q/w+qvvq0kvDp+VVV6k3UIBI/TxkSPW7j0A8ffsCp55afz61j6DCNCboLGlkhHHcQDwyM2hKOgxxzMN53HdfvUjikUeijaL99wcmTaq/r6tPSyppaaO0vPXW+ndLUbbffru70lLMs9j35dGnpTjHdtlA42FjHq7qb/k2JHORIboa4sHeeVaBeID6dbUJSSkty2XgBz+Q34vBlQx19Wkpgrre0UDqX3YDQyAtAyKICiNTAx80CHjrragzXrAA2Hff6DcfpOWKFXZKS9XgzEeRpSgt4wTiEWFarOmUlk88AcycqZ+4MYJDNnFcs6ZeESGbAOyyCzBvHvDKK9UONUvz8LSUlqNHR/X2rbfk91Lt6lPee6Oah/PIm3k45TxXn5bUQDwy9a2qPESixcWnJa+sM0FGllBNAX0pLQF9+Zmw6abA7NnABRfUHnc1D6dGiC6VpJPbzqYmtJvMygGzGb6reTgPfqLa0VFV4OpIMlnbVQUgi+t/jG9DusVqXkhLNmb26uVnvuJCWsrGZPH7734XzYVOO02dLiNPZKSlrh9csEB+3EZpqSONttsOWLIEePxxdR54UEiOOEpL6jVDhkT90NSp9b9985vAHXfUHvMRiAeIXFDcdVftb0mbhx92WO13yiaILWlpUlqq+k+T+bGYtq3Skoe4oVMsAh//eLTxNW1affmrlJb8vagRqIH4pOXJJwPLlwPDh9ceN/XjvXq5B+IRn0O0CrMhLQ8+GPjLX+qPJx09nDpHYHCdD+vAtyExz6wMdUpLIFulpa0KnOLT0pa0/MQnoo3c73639rgNwaebA+k2vGTzRxU8kJbBp2UgLQMYbM3D2f9Ro2obo4+OfPlyP0pLHuIkg0qsiKAqLVWmpQw6pWXv3vJrRJNTQE5KiYt2lXk4M0PRLSzzEIjHNGF18WnJFA6ye8muo5jYA/lTWvo0D3cNxKPqT6j1KU2lZV4C8diQljKzVCppaXqnNpNW8Tlt+4Fyuf5duyotqWY0srpJUVFSScu4Skugtk7y1gM6kkw2CVdNeMU82JKWOtNFkxrPBJ3ShLqJxoNXWvomLX0G4mEw1S9dHdC9x4UL5cd9KS2bm6O8m/LPQKmDaSgt2XuRLaplqqI4gXh4X7BAfZ+v26x3gZjOnnvWfqeQlvx7pvi01AXiKZXo/qeTJC1LJfl6o1ev+nfE7iuOU+K6wMZHs4zg00UPV/UTYnA+07ObSEsb83ATaalrd01N8vlOFtHDdXBVWuqgU1qy9FXtn51P8WmZRCAeXd5M6fk0Dy8U5OnZkNK6eYvOh3jKSstAWgbSMoDBhrTUDSY2iwBVOitWyBU7qokL5Z4mpSW183FRWqp2aGSfZXljEE1OAflud0dHrS8NVSAe3UAm+04lmXT1Q2dO4DsQj+k9yRYmPU1pqTMPV004VBOdOEpL2XHqIF4omOsexaelrXm4uMBkSCMQT1ylpS+flqZFvo609GES5pLGmjX0yZ2s36eoIHkVFGWsVPWrlEk/Xy+WL69+1pFksvupFqhxlZa871XdWKbqF3SoVPwqLVtbq32iuGHnCpaGSWkpboiYlJYU6OqAjpDg6xEPMXq4ayAe1v9QggDKrpe9l7RIS9X9VZY+VIjm4To1HZC80lIMouHDPNzGpyXbNJfB5DNRTDuOeXipZBeIR6aYzVJpqYKprre06MdJm0A8cZSWxaJ8zmbTzl0C8eRBackT/yoXGar2z9cRlTghr0pLV/Nw3XOIsFlT6eorayOqdTy1HlA38HQIPi0DaRnQBXHQtt3t4K+lQtXh8SZwgHoRyfJJWfyYfFpSzcOpSkuTWZzOPFxVhlTzcKA2CJFOaanLF+BmHq4rHxs1CoNpd9qVtJQNIk1N2SgtfZKWfD51SkudfxiWlpg2BRTSslSym/D4IC1l7VsVPVzXDpIyD+frQO/e9Em7i9KS6tPSZtIqBhxymdT7UC/YmIfHVVqqdvkZfCstV6yofrZRWtqQlrYQxxrxvrLPpnJjqFTU7yFv5uEmAtFFaWmCKWK5LVwD8eiUcRR3HZQ5kIw4o4JKWrLfqaRlHKWlmJ6KtEgqEI8LacmXSxyflsysMo55uG7jP655uC4vsncurplMyjddejIy15a0pKxnqObhlDl5HNKyUDCT0ia4BOKJq7T0MXZQlJYm83AxHR6NSFracg+q821IaV2bD0rLXCGQlgERbAPxqKC7zrSzzOPDD2vzIztfFTBEBp9Ky6TNw32QlrwZoUrtQNm1cjEP19UPcXLDQ6W0NClVVYsiyk6zCJ3S0gehIoKVty/zcNFXWl4C8YjX2xIGJsKcfxZVfbBRWuraAUtHVb9E0tIlenipRN8kyItPS1FR6kNp6YI1a+jtSeaTiKK0FOuyCj58WiattPShbmWgmoc3NdGeXae09GEe7qNPT8qnJQWmTUBb2JiH65RufP9DIacpat84Skt+k4FyXhJKy+bm+jagSyvvSkuKebhKacnO8+XTUrUBQFVa6qKHU0hLcV2QZCAeVf0X5zemul4u58M8XKW0tGlbPdE83LRpwc9zk1Ja2ljaUMDu5dOnpQ/S0lVpGUjL1BFIy4AI4oSa4tNSBl0D3mST2u9U0lK1wGPfKZ2GzHE2Dxuzbyq5qboX4E9pqRqseNIyjtKSP4dCWlYq/pWWJtLSVWmpmhzK8m9jBsDSoYBN1tIIxCNzKC9DUkrLOKSlD6WlDKpAPBTSUgWxXrkoLUsl+iZBHJ+WcUlL3XO6TOrTJi1l/TlF0UUlLbNSWsrup5rwxjUP16WlUlpmSVrySss4z8rg6tNSR/BSoasDtuaPgLvSMgHSsqLaNMuTebhNXmyVljYbGxSIY4IYJb25WX0vV6WlirRkx6muXGx9WlIIGf5cW/NwEWvW1F5nYx4u66ttBB4Mok9LU103babqAvGYlJY2fpJVilubtkUJxCPOCfJgHt7oSkvTPFNEmkrLOObh/HdW/1XrZerGiG1ZyRBIy0BaBnRBnFDrGqKrT0uRtNSlQyEt4ygtqcFCRFCVlnw0z6SUlq+/HkX+lv3OR79UqQTzprR87jk5IWQiV11JS0BuhhPHPNyUJxG+VBQMOtJS3OmzDcQTl7Tkj7e02BEGprpHCcQjgyoQT1zSMq55uA1p6aK0pJqHZ+3T0gW2pKWKHNEFgeGfjaIaUN2D8rwuSksb83CffVCaSksX8/C1a6tt3LYPUoE9l43SUuyngXR9WqogkpZtbcCrr1Z/twnEw0DpjymWIGn4tLQ1D7fp40T/t2J6KqWVr/Yp3k/st3TRvGVlH9c8XJYHhrikJfV9A8DcudHcU5ZPWdqy97FqVe15ixbJ70XxLW8iLVVCBbHMTHXzvfeA999X/26jtNx4Y/3vOqiUlkkF4lm+HJg1K3+kpa17CFNb5M9JirRM26el7DdVG/cdiCeO0rK52Y8yN5CW8LxiDmhYuEQPlyEJpaWq82bfKROTtJWW/KTFVmmpeh7++adPB44+uvb3jTeuRgV98snae/kwD0/ap+XZZ8uPuyotKfWiV69an2yqwYUaiIdPZ/Vq83k+Jj5ieirSUnxWW/Nw6gI/C/Nw/p3Zmuwx8BNfnWLMRFqKZJdLIJ5ikUZasii9InwF4rGZtGZNWvbpExGWq1erScu+fWvbpWysE4kF2Y49VWnpwzzcl9IyqUA8urTiKi07O/2Slnz/l7bS0hSIx7fSMo55OJ+3HXcE/vtf4KCDavsoSiAe8bMKlMVo1oF44ihlGGEptgEeSZuHU8yFxTmCCBNRoiPi+fvbKi1tA/HYmIffckvtd5N5uKw/WrWKdi/Ku5SRlvx3ncsfBorS8q679L/bBOIRAwfakpZp+bRsbwd23TUiqin5svF16gJdIB6T0pKHSWmpItxUv4nnqJBE9HBbfkGVxzTMw6lKS9E1iHgv6gZjCMQTlJYBXfDl0zIJ0pLlRTWQy/J60UXAt74VfR46FNh669rfXZWWMrMu2Tknnqi+F+CmtOSf/6qr6n8Xy5dP39U83EVpqSsfXfRwFZIyDwfqB09fSss99jDnZb/9/PvJ1JGWIvHXk8zDVYsjE3jl77JlavPwn/9c/lkGV6Wli0/LgQPlz5uVT8ssSUtGYqmUls3N9YsjndISoCkt0zQPj+PT8uST5eeKeRg9Ghg82Jwvptw+99zqMSpp2dxMI4F0pCV1POIhkpY+wOqPjkTt7Iz6F4Z+/fyQlro68O1v26cnRg9n+MIXov9ZKi3ZOS59BLVsdaSlqh7usos5XdkGu8kE2KS0ssXIkdEfAHzzm/W/q5SWO+xQnyeA5tPSpLRMyjxc1e9SSUPdNYyg++Uvo/+9ewOf+Uw0Fo8erU978GBg+PDo85e/rL6/LhDPLrsAm24afb744upxW/NwE2xIS4qri512kt9HZR5uq7SkRA+fMYNGWLJ88UhaaakyD5c9y8iRwIgR8nR46PqzLJWWuo0s3T1l1/Hn33579fNXvlJ/7pVX0u75xz9WP3/3u+p82SgtRfcgqnvrEJSWQWkZEKHz//0/vLLNNthhu+1QMqnKdBNA3UDpW2nJFvViXu++Gzj88OjzXnsB48apJ4R8vimdB8U8/Kmnav0FmSbALubhMogmGgxxlJb8d6ojYd1kw2Wh6BqIx5W09KG0vOuu2oV/uVxLpJx7bjTh3HFHWnqjRkVpbrIJcMEFwL33ys8TSUt+MiMSxlmahyfp09IGW21V/fzuu2rS8mMfA6ZNiybG++6rT1MkLammyiJpSSFlVKSFL9LSxjy8tTXbQDz9+kUK97Y2ucpZtnkj2ykvFqsLIMqGiIvS0oaQ4OtFnOjhm24KvPQS8IMfRGOk6txyGXjmmWiBd8IJ6ntMmwbMng0ccUTttap8uCgtdebhLmMJT1pSFIAUqDZVS6WoP6lUonbx7rvV37bYwo95uKwOHHww8JOf+PFpycDGkbQC8QD1bYal49LXU1RF/Hk2pOXUqcA110RlroLM/7pvpeW220aE2jPPyH9vaQGeeCIyjWXzYx4ysuyXvwSOPbb6PY7Skn/2rHxalkrmdmFSWrIARv/3f8Dmm0eCCLb5+eij9QGOxDzPmhVZSsneAcuzjtBubgZmzoxM2lVpyJ7DFjrzcNOaRdZGH3ooUmx/8AEweXLttWmZh9uQPuK5PnwQi6AE4hHL4Ze/BI48MloHyNKRpaETqGRBWroqLWVzYj6Pxx8fzYmHDYvWTCLOPTdqr6edVjuXEu95yCHAgw9Ga6Ztt63Nu3hvG6XlwIG1G8/s3rI+acCASAVeLKLj7bfx6htvYCy/gbSBIpCWAQCAyrHHYnafPhg7aRJKpVIy5uEiqabr8D76qPpZZUrHOjAxr/wk63Ofk6cv20WjdD6m88aMqVfZmZRQOnUKjzikpQ+fltRFoq5+uERQS9I8PAmfloceKvffypNXJ58ckQjUNCdOrJJlxx5LJy15NYRowmPylWPaaVaBYlaepE9LG4ikpc7p9gEH0NIUSUuKORfg5tNSRVz58mkZR2npMqn3obQEaje9+PzI+lpZfWWLZl8+LZNQWtqahwOR2uXII/WkJRAtxkeN0pOWW20VbQry8G0eXqmo63Jc0tKX0pI9l5hPtsHZ3k4jLX0pLY84InovTz9tn56KtGTHVYF4dEpLiqKWsqkah7RMyqclAAwZAnz+8zTSMslAPKNHA5/8pJq0LJWieqci1WSKty98oXZeyZdLnEA8Pnxa8veiKi0pdYdKWpbLkcKSx+abRwq4Dz6Qp10sRv3qccep728iLYGo7+XnLiKoIgwdbJSWpjIDIou3448Hfvvb2uOy5wXimYdToofbIiulpVgOn/98tL6gzDHjKi1tNq0pYPdyDcRjIi2LxWj9pUJTE3DUUcD220fEP4OsPh98sDlfVPNw1s+pSEsZmpu7+YvOtjbMnjIFY8eMMd+rh8NDqwvokUjDPJw6KKlUKSrS0iZNBht/fbqJj2zwzVppWS7TlZa6yQhVmaJ7ry6kpekecX1a8tApLamLJdmArFqgUNPkr9fVg2JRrYYQlZaqe/tWWrLreNI2SZ+WNqAqLW0gTsJVjvNFuJiHq4jNPEQPdynDOOoFnrQUJ4aAXC1t2riJax7uw6elSmlpG4hH9Zuqvzb1n7J3pVOj5EFpyZMhvn1aypQy7PnTVFqyfLikpxqXWJouSksXk1zZsTRISxelJSVdmSsjE2lps7EBRH1vHAJCRlrqiHUfgXhUbVgkynyZh5vqjsysWkVaquC6PuLPiRs9HEhWaSkSgDblLFtjyJ7Zt9KytTVemSRNWlLdQ8j8DqvmmDo1JYW0NME1ejhlo1cG2ZzYJf8Ukt10Dbs3VWkJyOdsqnpOXTdsYAikZYAcrpLxOObhKuWIaoEnMw93DRZSLNL8zpk6KVknLsuTjrSkBOKRIQmlJXVxLt5PBVfSUjcp8k1aqpSW1MGR4lRcZi6mg66+8NApLW1JS9+BeETS0gZJmYePHl3NH09axiHPxEA8LqRlsUhTWqreyYbo05Kf0MpIS5XSUoSOWJBdl6ZPyziBeMQ8qb4zUAJ3iEhCaak6L655t2+fljJ/qTLScsCAaPHiw9xQtghS+aWkwFVpKZ7Pl4Wpjqsse8RjeSYtqf2kzu+eTKkL2JGWuuejzG/FOqxrzxSfllkF4lG9RwppKUK8ZvPN9WnEIbfZ/eKSlh59WkrrDW8Jx+7Hw8YaT6W+y7vSMmnzcJXSUubbN6lAPCYkYR5uq7T0IVqivEvVetmGtJTN2VTXU91KbWBoWNLy+uuvx+jRo9GrVy+MHz8es2bNUp77yiuv4JhjjsHo0aNRKBRw9dVXp5fRRoVrRxaHtFQ5/09LaWmKCszO21CVlpRFXqWin2y4RuDUTYriBOIRJ8O66OFxlJZimdguLKnKFR1pKZqHq8onKZ+WPGwJh6TMw/v0qTrG96m0dDEPd/FpqYKv6OE25kGiz6i0SUuTebisDWeltLQhLfl6wcjYYlEf+MWGtHQtc4rSMi5pqQvEEzdAia6NUFTODCqlJT9XaG8H3nsv+syUWj7eQ1pKS3ZcpbQU6xtfFqb3pBoDxTTZ+8rKPFw3d6H2k3xbpiotqfW8UtH3uSbS0lZpKYMvpaWItJSWlDlxHKUlZY0hUx1S5s2+lJbseXXm4WKE+bhKS6C+Lti0c15pWSjI30FnZzziMm2lJXt+VT+RhHm4bZ1JwjxcB5N5uG0+bNJQbWjEVVqq6nlQWkrRkKTlXXfdhcmTJ+PSSy/Fs88+i1133RUTJ07EokWLpOevWbMGW221FS6//HIMGzYs5dw2KHyYTYkQF1lU0lK1KJCRlnGUltQJha6Tki2EbJWWqvRNE5dG8GlZLPoJxsPfI41APDZKSwppGUdpaVJ8UJWWWZKWvXrR2htDUubhzM8XEAVxYQFcfJKW1MmH6NPShjgRYSIs0vBpmTfSUtYPmvrFpHxa2piHy5SWAwboy5dKHsrOpYKitOS/iyqzuErLOHUF0JuH6whhETrzcFbW8+ZV2zfrb1xM1ETIFkGsPrqUj2ozjR2nKi11PrtF5Im0TFppyZefSU3norT0TVraqoF1RLysD4rj05JPW0WuJkFamsZlXT2hWnPpoodTEMenJXs+nXk4r7SUjUU2pKWqLtgqLVmdEefAPGQB+qhIQmnJzw2pgXhclJZU0tJWTJCE0lK3LvBFWrqMvUkpLX3Uow0IDUla/vznP8dZZ52F008/HTvssANuvPFG9OnTB78VHfx2Ye+998aVV16JE044AS2+Ikb2dPjYRRKhIm4YRCWmmBeVebgLwSojVigTikZUWq5fny5paVIC+iYtXc0bATvzcJ9Kyzg+LX2Zh5tIS9dAPLo6xNCrF629MSSltORJSwBYujT6nwVp6VNpWSjoNzmSMA9vbc1PIB6VT0tb8/C40cN9mIfLlJY6f5a6+/F5YkhLacmTr83NdPVQkqSlCjYbBuwZdT4teWWSSqnl8jx9+6oJQ1l6prHXRmnJn6NTWpqeS/U7nyaLvirLGwXs2qx8WsrKz3cgnjRIS9N4QI0ebiIvkoweroPsPdpsror5EkElLV3Mw3nEMQ9n846uvBZlEbdF0lK8l64MVO9KNhenQlRaqt6zT9LSt9JSZR5O6RdUpKVq/sEfo2zSquBKWup4GF0b8eXT0oWAViktKe3MRWkZIEXDRQ9vbW3FM888gwsvvLD7WLFYxIQJEzBjxgxv91m/fj3Wc4vNlStXAgDa2trQFtc3Rg7Bnon9L3Z2QtWUTM+v6sbaK5WaCtdZKtWw5p0tLSj07YuCMLC0dXQAbW0oFIs113f06oXOtjaUUGXfK4UC2onvh89nW0cHil1p6dDRNYFRndfZ1IQO8f6dnXVl0gZUlReVSl1eZGYMhUJB22DbBwyQ/t7x3nvo3G67+jxI7lNAbafQ3tmJCjunVFK+W4bOzk50SJ6XT6/U0gKb6VRbWxvKhULNNW2CqYfsfp2FQv27EFBqbq6pg20ACkI9BaK62tnZSeowO8pldLa11eSpUi7X5h8A2tpQLhZJZdFRLKKz61l09aATUR1l966sW9edfkffvjX1thPyXauOQgGdbW0oCM+rqpciipVK7X0qFXQI5dHR3Ay0t0vbkax/KbS0aMu+rVIx1gcRlUIB7R0dKI4aVZePSrFI6keU9a6zM6qzlQrw8suE3ACVtrbquwKAlhZjf8TKVoZyczMKCr847eUyKm1t2n4eiPrsiqYcisVi9/Xta9eiwPWhNX0HEWL/0ybUGx06evfuvnfnsmV1dbvSNcHk21snUFc327smzW1tbSiVy9I2wj9bsblZWYYdiCI/im2CXV8SxkAZ2tevR6W1FaVTTkFx8eLoWQYM0NfPjo7aZ+ro6M6v2L+JbYeHruzbeDK1C0XUjo18H1zu6Ogu+84uAtn07B0dHUCpJC1fcT5hi46mJhQrFWn/W+nblzxGdZdtoVDb53ctnsV0OkaN6u7La8Z9R/PF8sCBKCxbVs1PsRjlR5hXAEBlxAgUZs9WpsXGpVKhUDs3K5XQ0daG4vr11fYNKOtUR6nU/YylYlH7niulkrQul7nFYKVXr+o5mvmFCiyvxv6OtWvTnE2E0N5EVMpltLe1odzeXm0DXWXKQzYPLBYKxnEAADo7OlAR+pmaLLa3d78T2f06OjtRaGqqnQ+JbdxQ9p1CveHLjK9TbJ5ebGqSt+329pqxo1Aq1bX19kJBXf8A6RymImmPPGTjfuH99+vGJB1UYwYgfwcAonlg17jTCaBTWOvwz6pCmevLOjs70dnR4dQ/Vnr3RgFApbMTbV1lKKJz1arqu+zXD+3ieKOZN4jvis1hysK6oM2inVfa24Gu8aVSLKIDcnKjfeVK5zFDfCZ+3emKzrVru9MQ18Pda1lxfcjmHVy/wKfDo3vOLilL1tfxc5NKU1PtOzDUOdOaVAQ/byqXyyhI5hBi269BU1Pdc7A5nA3E8Y0y9op9CWDmA7rz2NwcjZ/9+tWvNTR9ksjL9ETuCbB7roYjLZcsWYKOjg4MHTq05vjQoUPx+uuve7vPZZddhu9///t1xx988EH0iaOAyTmmTp0KANj2f//D9opzpkyZok3jSMXx6bNm4UDu++IlS8C/xQ8WL8bg5mb0EkjLJ6ZPx4oFC7DZq69iD+747Pnz8eqUKdhj/nxs1nWsUqkY8yfL5yP//S82f/NNjDVc89Irr6DU1oadFb8v/PBDzBLvX6nU3KuzVMKU++/v/t5r8WJM5H6f+vDDaBNVcQA2eeUV7K/J2+OvvoqPS45PX70a6x57DAcLx//zyCNYJ5jkb/bSSzVl/MT06VjetVBuXrECh2ruDwAvDB+ODx5+GIcpfn/ppZewXWcnbFrQlClTcDhqB4YHH34Y7ZyySlbnli5diumGurDbokXgdS//eewxDJgzB/sI5y1bvhyvzZqFAwj5/d977+GNKVNq8vTRunXgPUo++MgjaO/bF59Yswb1b7oeb8yejf91PcvGr76qzMf7H3yA/02fjk91fecnBS/Nno3duHMXLFqEEZI0XnvrLbw9ZQoGvv12TX166D//Qasu+EcXdn73XWzFfX/v/ffxvFAecz74AGtbW7GTcG1nsShtvyPffBN7ae75+IwZWLlgQff3gzfdFH266i3D4p13xqYvvdT9vdJ1ry2XL8cuQnpr1q3DQ4R+RFbvli1fjiemTMHEQYPQS2amrEDb2rVge+1vz5mDdatW1eVLxMvbbYd3FPk8tFCASsv2+NNPY8WyZdhu9mxtn/fSSy9hrqYcRr/9NnZl586YgZYVK7BD1/dnnnsOCyx34jd56aWaPm6KUG90eHPBgu4xa92779b1MavXrUNne3tNe/tg4UI8I9zjqWeeAXbcEVOnTsV+q1ZB5rRk5pNPYmmX2mSH99/HNoo8vfb663h7yhSMnT0b23HHn33hBczv2xe7L1wIQ1gHvPDss1ixYgU+eddd3ccWtLTUjzMcmpcvr+mrn33+eczvCoK26XPPYV/ut8enT69pOzx0ZS9rp1u8/npNH/PhypV4vOu8iWvWgGlpFn/4ITqam6X9D485s2ejo7kZ20p+mzlnjnY8XLj77hj63HPK3199+21suWYNZIbgC1taQHUk9Nzzz+ODLgXIEaVStzKpraMDne3tELVkzy1ahHldZcKX738efRTrVNYmGnyqubnmGZ587jks6eioqwMAsLR3b2l9Znjo0UfROmAA9ly8GKO44x9+9BEenzIFO7z1VnddnzFrFpZ1zdWGPfccxnPnv/rWW5jd9Yx7LFzYPT+TobWzEw9I6tJEruxaC4Xuc8pr1tTMLxbstReGPf205g7RvG3ulCkY2qcPPqY574np07F8yRL0WrasZk4GAI/NnIlVH3wgva7PggV18yseH65ejcemTMGkdeu6F93zly7F08Jz8/XhwalT0d6nD7Z+6y3sqEmbYfnSpXjv1Ve7+2MRc956Cy9r7vfaG2+g/+LFNfMhsY33/eADTNDkYd6CBTXvesqDD3armvb98ENs2nV81erVeGTKFIz+3/+k+X181Sqs4O496rXXsKdwzgsvv4z3u84Z+dJLNfODN99+G29OmYJRL71Uc93a9eu1c8+Ozs66Zx64dGn3PGjhHntgpmFecMCqVVDYPOHd2bPxkuT6I4Bu4uK9efOw6JVXsDf3+6znnsPiuqtqsdP++2PMP/8JAHhu8GCsf+qpmn6+s1hE0aD0XD9wINrWr0c/AG3r1mHq1Kk4SHLNK1tthZ0feQQA8Pqee2Luf/9b0174dyNC7CvmzpuHF6ZMwYHr12Mj7vh/pk2ra4MqFDo6sGLFCgxERGLNeuaZmmdneO2pp5RrNxErN98cA+bO7f7O+hCGPYS67oKVc+diUNfnOfPn18ybV6xejUenTEHfefNq2hyrn9u9+2733G3p++93ty0e0x5/HB/NmYOBs2fXrQ2ffvZZLCyVsO1bb3XPm9Z3dNSMV6a1tGlNKuKpp5/Goi6i77ByGWUJafnS889jrsJVXLG1FUcIx96bPx/PE9f8DPssW4Yh3PcHpk5Fp8EKd5OXX6571rfnzAEA6fyEB+MFxsyfX7fm0fVJYvkzfqanYc2aNfSTKw2GefPmVQBUpk+fXnP8/PPPr4wbN854/RZbbFH5xS9+YTxv3bp1lRUrVnT/vffeexUAlSVLllRaW1t73N/q1asr9957b2X16tWV1tbWSvsPflCpRIYRlQpQabvxxkrHUUdV2v7xD2Na/HU1aUyfXmmbPj1K5+67Kx2TJtX83vGFL1Q6t9ii7rrWWbMqra2tlbbf/77mePull1ZaW1srHV/4QvexznKZ/Mw193jrrUr7RRcp8979DDfcUGm/5hrl7x1HH228V2fv3rW/z5lTm5cFC6RptE2bps1b6xtv1B1rv/jiSuv69ZXW//2v/vw5c+rv8dvf1j7vjBm1v//615WOY4+tdO60U/29vv71SuvatZXW5cvV5ffrX1c6t93WWM41+WxtrXT27l17bOlSY53r+OQnjXWg/f/+rzbd99+vtP3rX9K0TOXfXQ4/+lH9O99xx9r7LF8ePZekHKVp/vSn1Xfw+OPq+nfqqZXWV1+Vl/3NN9fVVem9rrwyuteTT9bm+YMPSO2q/Zxzau9zxhl15dH+zW9W2i+7rPa8z3620vrkk/K6f/fd+jry7LO117z4YqXj2GMr7ddcU2k/66xK+3nn1fUfnb16RWnfcENdep1bb23dh3Q/x4EHRun+9a/1v02aVGmfPFl6XWe/ftXyueCCStuvf62vE2efXWnt6q9lf53Dh6vL6/nno3f13e9q79F2yy3a52/729+q+fnOdyrt3/te9dp77rEeh9r+85+6tk9pHxWg0vab32h/7xw7ttK588617+OEE+rusXbq1O6xsOOTn5Tf65FHqvVdM260X3FFdM7FF9def+ed0dh1+unm5/r1r2vKuYLqmKj8++CD2jTuvrtaxvffr287hLGcvZu69/e739WW7/77V+vjxhtXjx9+eKXj2GONz95+zjl1Zde5++5RvXzhBX25Pfxwpf3LX660f+1rlY7x4+vTvv76Suc229Tmd999Kx2TJtX1fdr73HFH9Rn79Knmc6ONKp0jR9aff9dd8jnIe+9Zt5fW1tZKx4EHyuvmunWVzubm2uc74wz9O128OErzhBNqr/v4x6N6fO651ftMm1Z97/feW1u2111Xzd/JJ+vb5dCh8v5r6NDqOZttVv1NmF+0zp1b6TjpJP07+s1vomvXr6+0f+c7lY7TTqt0HHNM/XlsvrNsWX3ZvPyy+j28+ab2/qwddPbtWz12/PHa9ta6bFlU5lddRaqHHePGVdqvu07blnT3a7/88vr5kPic77+vz8Mppyiv7/j4x6vvc6edonpzyy211++9d6X98svr+5Xbbqt/V7feWv39T3+qfZYf/jA6fuuttXVtzBh9XezXT/p+23/wg0rH5z9faX3/fXN73H9/9Tv48pfldb2pqVoGX/xipe0vf6l91gcfNPcFS5ZUOr74xUr7N79ZaV2/vq6fb7/uupq1Ut27++xnK213313p3G67qCwGDKisXr26spxbk3UcfXTU3330UaX9K1+ptP+//1dp/eijSus779Tm949/VI/x99xTm68zz4zKbb/96to1pd53v7vtt4/+9+lTaZs6VV7+3Pyk5tpSqbYsTjyx0vbAA7XPdPPNte/Z0K+R8syNiXzfWkE0zrW2ttat67rr5KWXVvO7zz7S9Lv7rFmz6tvP3/8epcOVSeeIEcr2K32XxDVR9z3/+c9qnR88WH7OTTep77l+faWzWKx9p1/7mv2YOWFC7XN+9JH5WYW5aQXRPL392982PnfHZz8bpXHjjfV1YKutlNexe4v8TE/7W7JkSQVAZcWKFUZuruGUloMHD0apVMLChQtrji9cuNBrkJ2Wlhap/8umpiY0xY1amWN0P5/gk6T8qU8BX/5yLDl8uVcvYPfdgXvuidK59daa34vNzVIfGU0tLdHxLqUIQ6l/f5SEvBYKBaf308T7TNI9Q1NT1J0oUOzVC0XZ/YvFajQ+sQ4Jz9X9vCKE82pQKqFJVGn84hconXdepFCU+A6S3kfwq1IW38mZZ0Z/n/98rdnrtdei9NWvRvfS+Pgol8v655CgqampLs2mXr2M/lSKpZL8XfAQVNNNfftKy6pYLkf1k4BS375RveRQEL439e1rFZG81Lt3NU2NX7JiuYyionzLQn9WVPgdKrW0RPcSzlfWy7oEap9J9h5KEl9sxb/9Td2/SJTHNXnr3bs2bzvvDNx9d+1Jf/5zzddCqRTVLUl5FopF536++3mPPhrYdVfghReqvzU1AT/7GfDSS4Cwa1rgTY+am+ujvfPo1Qul667Tm6XIIpB2mYs39e9PCoZSNp0zZkw1z++/D2y5ZfVaan3hIbYTi+vLW2+t/b1QLteNa8Wmprq6WW5uBlavRlNTk7LN1/SLGv+HpXI5akuyezQ1kfw6loEokAvDb36Dpr33Vp0eQajTNfkV7knpS2WQvhtBiV0sl6vly/lGK7a0kJz+y8auwl//ivKWWwL/+5/22vKgQcCNN0ZfPvGJ+rT79q0dVw49FMUuZYPNPKeubLtUAwWFk/6y2Fd1wfU9YPRoYNq0avp9+lTT2Wwz4O23u38r7iTqPIQ8sGuFfBSbm6P3yKmuatq38C5rxitDHS+Uy9K6VOHGh0KvXtVzhPrQtNlmwB//GLWRLvWXiJq8/vCH0f/Jk+vPY+9y0KBofOLqbFPfvur3Y3jG7vLjlEXFlhbt/KSJ5YXoh78IaOtPqVCom5fU/C6Zm9W9F1WwTJYHYv/dPfYKfWfxjjuAMWPqxzWJdVuZby9i/Wtujp5VeC8Fw3xLOe5/97tR/rRXd0FTF0qA/B1w/USxXEZRKJeaNq3CJpsAt9zSfR/x/NLmmwNnnw288krNnKT7vmz+9b3vAYjUi01NTd3uUtCvH4p//Wu1DK6/vnqvLvdp3fnVjf3iuyqVojIR656l73tmVVQoFuvmut33Uvh+LPBt/UtfQvGmm1B89dWac+rmQnF9KgM1bj1K4jjH+kVVm+Sesajwm949Z5eUR3dfxz1TQXgm4/zLci1XU4aKd1QWfcKL6NOnxqdqaaONtP2aFEI/0NTSYn6fknuUDHwAQzcvILGkKGh4B7H8eyr/ZPNMDReIp7m5GXvuuScefvjh7mOdnZ14+OGHsc8+olFngDOSiJRmcuqtWiDbRA93BUcqamGKyqeaYPJ5FJ/RR/TwXr3qF8+8019Zh2wbiIeHmB5/HjVysQ1cor25BuKRpW1BMEqfTxXd0ncgnlJJ/TvVqb7v6OGy67KIHq5yFk8NnkUFf62qbcvyKwbi0T0z5XnF5+LrOjUQj6kN8UFF3n03fvTwOOAIUymogXhso4frFles/FRtghqIhzNTUwZyUeVP/O4rEI8MIrnA35ev3wTCHEDUR4jnUftO/rlk9xKjh9v0RzxUgZv4QDw8VOO463sQ6wM//oi/ba9y+tMFVfRwVjZ8UA5VkBU+HfE8GSjRw/lnokYbN/2mC+pQKNRHetXVV5fo4ab6bxuIp1KJF4gHMAdqamnRn6N713z7UgXiUb1b20A8qmjxLoF4bEEtAx669gO4bWaoxhzTO2bnMZEFqze6svMRPVzMl+38gW366gLx8AGEVPcyjdkMvgOoqMY51bvnj6uCPdoG4rEdg1wD8QD0IFwixDmGKSihDC7vUlaGpRKtnobo4d7QcEpLAJg8eTJOPfVU7LXXXhg3bhyuvvpqrF69GqeffjoA4JRTTsHIkSNx2WWXAYiC97zatWvS2tqKefPm4fnnn0e/fv2wtUGdscHCJhocFSZyrlyWd4I20cNdJx2FAm3RUizq76FakPggLXUDhEy5wneQ1Ojh4nmqZ9WdZ+rEfUQPp9RHymAilplEZQyAPjgB8ucT3x17Hmqa/PWmxZOqbMrlKG9stzmp6OHidbI61NLSrfojweRH2GXSoZsUZkFaipF5dc9Mqf9iX8TXdV/RwwcOjP5WrMietBw8OCozlX+cUsk+ejiFtNRtwqjauQ0h0dERlS2Db9LS56RZR1r6ih7O8mtDhsnKuaXFD0mhIi1Vi2fVO3d9D2J94PNgIi3FeY+KEGaEgLixIvss5sFUx1XPrVrgUs6n3EPWv/JpDBwIcEqoWNHDWV0V24AONhsbQDLRw2UYOFAdrVgH2dgg9p2+SUtbcsLHmKWrJ6p3wN+3szNZ0tIkGmBlZENa2pDDqjFYzJftu2DzSd0cWBY9XBUB2rRp73t+I75zU/vnj6vao4yY1P1mOwbZ1kvKZq9pHS5uNhH87NdB5Awo8wBKHVEhRA/3hoYkLY8//ngsXrwYl1xyCRYsWIDddtsNDzzwQHdwnrlz56LIVaYPPvgAu+++e/f3q666CldddRUOOugg/Pe//007+40BF2WbCaYFo4q0VC3wZErLpElLk9JSNRHVqXd8kJaiagRIV2kp26mUoVJxIy1dJgyUc6hKSxnhQU0ToKsfVaAqLXUTtlKplrQ0vVtfSkvZffh8UGAiLV1IbHaNrF3F6e90pCVVJVYqGd1BGCESKPxzsgVCXNISiIiRF18E3nuvltRwmdTHIZGKxSgvr70m/71cptVp/hilP9f1Z6pFg63SkictNyO4/9eNtUkqLcUFBX8vnrDxobQ05Zv/XfYeXcYhGfg6yy+8VUpL1XP7UlrqSEux7gwcCCxfXv3OnkXMNyMEXJSWNopYHjzBw78rVR+h62+opCWfhk+lJV/GlPSA6nOmSVpSrGAGDgQE91zdkATW6EaaSktVv5sGaal7X2mSlqoxh6q07GrriSstbeuCCmxjRdXvAnLSUvW+Gklp6Yu0zIPS0tRPif22C2npQtRS1ssqsH41KC1joyFJSwA455xzcM4550h/E4nI0aNHo+Jq+rOhQrXAjwMTOWcyD1eRllTCTIdikWY+k1elpWwAcFFaUokqnXm4Dq6kpajkdN0ZEyHmRaWOsTEPT5q0jKu0ZOB8KNadBySrtMyDeXiWSktTf1os6tsJ5Xn5BahI2PkkLTffPCIt29pqfS+mrbQ0kZYytbSsHG2VlhTzcFW/aqu0HD6cRizkXWmZBmlpUlr6Ii1VJLctaZmG0lKsF4MGyQm1uEpLse/RQfXc/PhEeVe2SkudeThQr4qJo7SURR031X+bPgIwk5Z8+5OBqrTUmWPq7sGP9yoCTVUXTC53fCktfSivXZSW/H2TVlomYR5uI3KhkqlJKC1l5uGlknwu2pOUljqVYBzSkujnvxuqDT4eaZuHU8ddWRlSrw1KS29IeVUR0DDISmmp8y9HMQ93hY3S0oW01Kl3qASgbuIiez98B+nbPJxKtIqoVOL7tIyzMyaCSjDamIdTfFoyUNP0pbTk1XuqiY5KaUltZ0mQlkkoLZMiLXX+XVm6FKWlq+8wBrGf4ZU7qncsgvLOeWLknXeqn13GjDh9eaEQEagqEM3DKzpVvOw6ykI/jtJy9WpgwYLoM8U0HNA/Z5KKEbGd8mnzC3Yb0lKsx0mRlr59WqqsMnwrLUX1pI60pEJFWoouLBh0SksbRSwP3k+bC1HPw9U8nEccpaULaWmrtIzr09LGPFwFHWkpMw/3pbRUWTQ0qtJS5rbIFq6kJW8eXqlkp7S0fReuSkvVuVmTlqZxLq55OEvfJh6BCNt6yY+xrkpLH+bhuvkQ5Rr+GOX64NPSGwJpGSBHFqSlq9LSh3l4lkpL6mCoGyBkk0W+g0wzEI8JcZWWcXbGRMgWQ0koLeOqa3yQlqLSUjXRUU34fSotW1r8kpYuSkudeXjSSksKaalbqNuah/MLWr4O+FBa8sTIY4/ZXesTTGmpAjUQT5o+LSmLhDlzqp+pJJSN0jJJ83DdWEZZ8HR2+jEPz8Knpa3S0rW9iOONLhCPiBUr5MfFcpEpLXVKNx+BeHifx0koLU3m4XGVlnyeZYEyfAfiScunpavSMk2fliqyJg2lpQtpmabS0rQBwJdZpYICe6c2pKUpWCQlX7ZrTubL2lZpWS7XzkXZZ9MaOE/m4TIylk9Dt9aLo7S0rZd8/5BlIB5f60lb0lIWyCyQllYIpGWAHDaDEBWugXhYZ0GJHp6GT0vdPVQTAop6R3YuD1vScsCA6mcqaUlZ1MvSS9M83CdpmYTS0sY8nJomNbCBbpdZVO+tXSs/L4/m4S0t+vvHUVrKFkS+fFqq2hOFtOTbrwhbpSW/EOInfT5Iy9Gj3a8V0b+//TUMhYKepCEqLXNnHs6rV3VKUlX+xO9ZmYfzUI31QG0dGD5c7U4lL+bhKtKys1NetrYmdbbg0x81qv73Pfesfh42TJ6GSLKZlJY60nLECHVeAfV79ElayuqhrU9LXX8m+23HHaufhw+v/9230nLLLfV5lL0Hvq0NHkz3aalCv37q33jCzodPS139U5E1NoSdK+IG4pGpy136jLhKSwDo7EwvEE9cpSWfF9X9VebhO+1U/c76zCSVloMH1x9TmYer7mPTJzYSabnxxvo08uTTkrou5N8t/3yFAsAHgza5wQoIpGWAAlkoLXv3lneCrMGrzMN9+CuVKS1bWoDrrqs/z7fSUpYXm7SBat5vuilK/6yzau8jU275VFqK111wQXT/K66oPW5DWvbpA/zrX/X5kNXFO+5wiz4oy0vefVpSlJYq/yui0vLyy+vTSysQj027NalAKOWoWsDEUVreeqv+2jiBeAYPBk48Uf27CWJ/cfrpUX7OOkueVxkoxP8hh8iPu0zqd94ZOOywaCy47z67awsFYNNN1b+7BOKJS1qqFh7sO2WRsHJl9TNVVaDbcHBVWrr0p6p6qnIFAwB33RW9x222Ac4/Pzmlpck8/MEHaYsIleq2rc2stLz++uj72Web76PD734XpXPSSbWLuuZm4P/9v6gsfvnL6NiddwKbbBKRXJMny9MTVfgy0pIaiOfMM6N2rYKijhR0C1xWL666Sp0H0z1sfVrqIOsnjz8e+NjHIiLv9tvrf5fV35tvjsruS1+i9RHbbhttZAwfHtUlsQyOOSZqS2PGRHMyEf/+d7To32sv4Ljj4iktP/UpYJ991Nf5DsTDE65U0vLUU/XzaB+kZVzzcBlpmWQgnpaW2vrJX9fR0Tjm4fx1qvsvXVp/rHdv4I9/jOZb22xT7ROTDMSz0Ub1x1TjHAB85SvR77/6VfXYwQeb78PStCEtL7kkuu5HP6KnTwVf/2UbCKwf0sG3eXiaSksg6ttZWqefDlx9dUSUDx8e9f8BWgTSMkAOlSllHJiIrj597EhLNjmXTYZsUSjU7wQvXw6cckr9eS6kpRiEwJQXGSg7uF/6UrTIlXV+4mQzDmlp8n152WVRPs4/v/5aym7+WWdFE4xJk+rzJRtkTjghel+8f6+slJay54trEmgTiEdF8JXL9T4tv/1tYNWq+vNkecuStGTXqOBiHs7Si0Nannwy8NJL6mtdzcPZeX/6E/C//9X/TumP+XpYqQAXXhi9a34y6kNp2b+/PI+ui45//hNYtgw44gj7a3VEg0xpafL1Gzd6uMk8nDLpZ2ZvuvyY4ENpSem3qersUkn97DvsALz/PvD66xHho1rMUYh/Blm5mczDDz4YWLIE2Gor/X1USsv2djNp+ZWvROOkuDlqi9NOi9L54x/rf/vVr6J2zwJXbr01MH8+8OabwJAh8vR4lSP/3SUQT3Mz8MILtYphHrZ9GRBthq5cCXzjG9VjtqSlrU9LHWT3bm4Gpk8HFi8GPv7x+t9l9f+ssyKT/Ztuqh7T1fOhQ4HZs6NAXZttVl+ft9suaktvvilXse+zT+Qvd9asevcxKsjK5cMPgalT9e+A4tNSVRdkfY8u0CRLXyyP008HFi2KfIwefXR9mkkH4lHNefhyS9o8XExr+XLg859X5qWbtDRtlvOwITh9Ky3Zxr0MS5bUH+vTBxg7Ngoi+PrrVVIsSaWlrJ2plJZAtCGxcmW0AcWw0UZRAEQddL7LVaTl978f3evii/VpA/FIS7EM/v3vaj+kg9hvx20bcUhL6rqQP+fSS6N6uHAh8JvfRJtK77wT9eGmuUZA40YPD0gYPneVVGmI9+jb14205BHHp6VIfvbqVb8z6qq0tCEtVdB15hTZ/cCBUUfJoJK789CZ95nOk+WDqrQsFmvPowwyIhFGGUzS8mmZptKS5UE0/1aZh6sWDhTyUYYkfFoC8QPTiPXBB2kJ1PdDvgLxqNKnXA/U+7QE7BcGcYj6OGOGq+mujmgol+X9uYg0fFraKC19k5ZiXqgbki0tapcSlPvy0JGWpZLeHYbOTxcPW6WlDL162fnB4/NNUVpS80GBLh3xN5YH1TUU83Cq0hKIykilWqX0E7J8iseS9mmpg2pBq7MQ0M1jTGnzafCbMbJ+xtRn8PejbEzIyqVfP3XgKQbfPi11gSbZd1nZDRwY/clUj3lQWiYViId9F/OgU7umaR4uPjMTiNjOE3VKSxlYv6QKXCjmU/XdBrx4gEEViIdB1o+YLAFYvVGpBMXfWN2ljkk+zcP79KGtMUz+7SlwUVqqiF9KPRDrsGgCz8rdJUjtBoagtAyQw9WfnQ6uSkuVGaes43eFODiqyAVXpSWvUHAlLXX31TlAZ/CptEzap6UuH7pBRjYx1oFqHi5Tadmk6ZO0pEQxVUUwpwTi0fnBoYDSd7goLeMGphHz4cM8XHZvH0pL/nfK5oIMFILLF2npO5iRK2yVlqY+MA8+LXmiMEulpQu5pvOvSw1OpgpcVyjQAz7E8Wlpqsc6paXsWtfxPwmoykBlHk5VWtr4CXYlLUXYKi1N5uE2SksdKaCCD+slU39mu3HkqrTUkYQMPknLQqHWf6aqT9PNMWRz5ryQlkkqLfnnNo1/WZqHq/Jngk5pKYOKBDORlL43ZXVKSxVMJJet0tL2mUxjsAid0pJ6b9+kpasFGbuWcj0lyC/gbwOzByOQlgFy+DCTEGFaLPXpI5/sqpSWlIkJFcWi3FG4bOCKq7RMwhE/pVMUJ5sqdYDpHCAeaUnZTdLlg0pa5ikQjyrPLqSQ7hqVqQ3Lg2geLgOrq3FcLei+s/z5VFpSytHGPNxm8pY0aSkrP9tAPCrYEDK298qCtNQRDVTSMs1APFkoLalqehF8v62rF5S+qlSib+TonjkOaSmOQxTTTdPvLkrLLBFHaanbWDFFe6Yc55FWIB4+DRulJWUDWIQP6yWTEMC2D3bxadnUVC033Zguc+NEnUeK9WngwPh9mmzO7GMtETcQjyyAl0tdUdUFPg8m9yhZBuKRpUuBLhCPDCoSLEmlpexZdT4tbdLhISMmdb+5bKTYjGf8+OEaLd6HGtGX0pKp6U0IpKU3BNIyQI4kFpyu5uHsmGrx4sunpSwdWZ5196B0qEksWlyUlhR1gGsgHh3iKi11A6uteXgSgXhkdUA1aFHTtB1YVWQsJXo4q0u+lJZJk5bUiYP4PCy9uISbDWnp4o8vSaWlqdzyrLRUKXhVfXAWgXhMPi0piwQfSkvdpo8LMa17t3x56EhLqvJON17qyk9nHs76c8qzm87hf+frnsqnZdLRw22gyouKtOSVlnz5Jq20dPGnarqHbfRw23vnQWlp2wdT6qZYLvw1unmo7dyMh9h+xTy4kHyyvFLm0Sa4KC35+tPZ6Uc04qq05MsuTaWlrI27+B60VVqqTKxNbSnO/EZmJeibtOQ3E/JIWrr6MOXHIFf48mkZlJapI5CWAXKkobQUG7vMPJzveCmdoy+flqodKlfzcB5ZkZaUSTh1YE7bPJy6M2artFSZUYuIq7RUDbS+iR2T0pJiHs4WqEmSli0t9IGcv0YG1+jHvnxa6gh8VZ8Xl7SkPLOLn0/b3xnyQloC6n5ORpSZlCaqvlpFVKnOU/VnlLFAp06gIo4JGAOfV10afB+j6vfKZbrS0pW01CktbRYHNmpkk18yWV6yhOo9UqKH68zDbXzc+lJa6t6T7N4tLfp5RtxAPL5IS93mnmnz2LatU+qmWC78Nbox3XZuxqNQqG1b4gZ8nkhLH0pLH6CQlqbxLwnSUtXmTEpLG9LSh9LStBaKo5Sm+LSkzJ908wGdz2H+WJqkpQ/zcDYWxYEvpSWVtKQKNIJPSyMCaRkgRxKkpWkQkJGWOof8DD5MOgoF2qTK1EllRVpSJjoUcydX83AqQZG0T0tb1a0srbhKS9nAH1dpSa3jrNxUZCw/WVJN0BnR0Cjm4a47pVn6tDRNDvk0XJWWLupTlzSA+Cb2LlDlXdXPydqwLA0dCSW7jqK0VC0gbRcJSZiHU2Ei0hkoGyO6/tQXacnnUSw3VZA4Sn5E2JKWSbcLG6jyIiotOzsjNwWPPVY9ZhOIRzyfkgcecc3DZfcoFOoJC/45fATi0SGPSktKnmTm4QxJKS2B2jkUVWmpm2PI5mRZKS3TJC1N5uH8MZUPW9O9fJmHU9MU0/Ph0zJt83DK2CFCN46a3LT4Ii3T9mmZFWmp6uN9kpZBaWlEIC0D5EhaJSO7h4y05MkXCmnpW2kpYkNTWvr2aQnQdpN8kJaUOqwiKGXnxWkTqveTFGlJ8WmpApuoNop5eNZKSx3Rn1QgHsoz+yAtqeUgM7VNegxRPZ+N0tKHebiuPzeZh9uOBUlED6fCpNxgoJCWaZiH69JgeeTrkG+flrJrecuRPIBKWgLA0UfXftct/FRjqAxZKS2BesKCfzd5UVrq6otvpSUlTzqlpW4eahskUQRPoInEqaocbElLH6ancZWWPkQYYpr8d9N74I+1tlY/J0Va6gLxpKG0dDUPj7P55CsQjyotoLZN6NxXUF1v+YAPn5Y+Nhb4Z6aWcxylJXUjIigtjQikZYAcaUysxcYu82nJd+SlErDTTtHn006TpxlHHfatb1W///GP8vOKxWRIy898Jvq/557m6xn+7/+qn++6y3w+RTlA3U109YuWtNLy97+vfr7oIvN9hg0DRo2KPp97rjp9G6WlDNtvD2y8cfT5gguqxykD3uDB0fU89tkn+n/IIbXHWR5VpOWXv1z9/qc/VT///OfR/969gUmT6HmTQUVafvGL0f8xY6K8fOUr8ryo4Ftp2ciBeNJSWtrUAVWU57hgdVNEsQgcdVT0effdq8dVZIOsDcsmibakZaEA7Lhj9Pmkk4BrrqkeP/LI+vP577vsYjdmZam01Pkw5MGXadKkpXjuHntE/3fYQZ8GI6t8q5HF9+MjCnCSGDMmGgOB2vnPzTfXn/vQQ9XPfHsD6olbWbkWCsB229Ufp9THuP55Ve+Qjcmy85qbq/PN00+3v7ep3lDb4X77VYmVb35Tn0ZcNdjIkdEfAJx3nvycAQNq3yNfF6ikJV9ebO7L5jQU+PBpedVV9cd8kJbimP+Nb1Q///jH8mtkSstPfzr6/4lPuOVDtYnIz4tvu02bl8LSpdXj/fvT701128Hfz0TY2MzzfJiHN0IgHlVagN6nM+BPaWkjqGBtHXBXWn71q9U8/+UvtGtkebG9r6vSslAAzjqLdo9SCdhmm+iziuPYwJEwrR7QsMiCtJRFDxe/P/ggMG0acNhh1WO+oodvvTXw9NPA0qXAhAny80xKS9dAPLfeCtx/P/CpT9HyC0QT6qeeivJ78MHm8ynKgUY3Dz/sMGDq1GhiPXas+T6lEjB9OjBjBnD44dEx2cDd0hKPtGxqiurWM89U78Pur8PXvhYtHsR28I9/RM95yCHARhtVj+uUluVytCB5/nng/fdrCc9zzgG22ipajAwYEB3zbR5+zTVRPT3ggOjYZptFefngA2DiRHO6qrbl6pMmKaWlbhLIzu1pSksgqqO8MsMXafnVr0Z188c/jvo7Pv0//CHqNz/5yepxG6WlbCOHLzcKaQlEhM6jj0aEf+/ewOjR0eSTtU3VgmfMGODJJyOz2yeeAP72N/n9GPJCWiaptBTrto3S8re/BV5/HTjoIH0acSND89CRlmKflTfSslwGZs4EZs2qHZcOOgh4+GHg2GOBDz+MjvGE1JQptenw71JXRx95JBoHfvrT2jyYQKn3LkrLzTeP6osqjQcfjNo1P9+k3tuX0rJPn2icfPHF6L3wZJvv6OGlUjQXmjmztj6IaT70EHDvvVH9PuaY6m9Un5Z8vlzmvj58Wu6xR7SW+NzngIULo2NJkJaf+lRUf1pa6sl+BhlpeeedwL//TZvby6Ai3bbeOhpzli+Xp82X3TvvVD9vsQX93mmah3/ta8C119amZ1PvXX1aJm0eTk1fNS/mxxrd5mwapOUFFwCnnFLbbl1Jyy22iMarRYto6wYZXOZDLkrLU04BJk8Ghg+n5+3RR+s5joBuBNIyQI68mIeLHfnw4cDxx9ce8xU9HDArHX0oLWXnDBwInHCC+VoeffsCe+1FPz8P5uFU0lK3y2kyU1ERzipstln0p0u/uTlem6hUgC23jP54mNI8/vj6awBgk03k9UW3a82ea9ddoz8eTU1VVRg1byqoSMu+fevbriwvKvg2D2dlxHZLXc3XklZayvKSN5+WgLtSwIRyOaqb99xTT1oOGFBfp1TmXrJdcVmfaKu0BCK1Gp8PXlEgO5//vvfe0d/w4WbSMi+BeHT1hndB4UJaimnrxlSxfQ0cWF8fAHP0YcDdPFwXlEnss/IUOZxhiy3qCYlCIdoIOOAA4L77an/bf/+qOpOBLyNdHR0+HPj852tJS19KSxfSUvbcPIYPp83LklRaAhHRtPXWwEcf6dPwYcIqzodkGDUq2ugUQfVpKZrh2859TUpL6vh9wAGRopFZViURiKdUMqslZaTlRhvZlwsP3Rx63DhSXgpz5lSPJ0VaUs3DVfO8Y4+tJy1t5i2uSss485vm5uh6vr65+LQEaPPiclk9x02DtPzsZ+utxcRxwmbObWORKIMvpaWprh15JH19wyDjOAK6kQIzFdCQyEJp2dxsJi1l8ElaUs7Li09L1WCrQh4C8QC0hbc4eXTxbeMK2TuOq7R0DcRjO4nQTQBd07JFUr4NkzIPB+KZNidBWvJpZEla5sE8XJWeKn1VvygzD/eltDSBshnki7wx3d+1HzMR6QwU83Bd9HCxbGyUlpSgBED1vSdtHi72WXlTWpogy6+sfVGVluK5su/UfIiwDcQD1BMxrn2WSx/tQhCYiBOfajAXJBmIhwdVaUkhVKg+OalwmRvLSMu4cK0LSSstVfly9Wkp+mmXPadureTq0zJOHS4Wza5D4pKWfHqFQv15MtLSZW5Aqa+ydF2Vlj7g6itVRKmkH3cabbxvAATSMkCOLEhLQB+Ih4Kk8+1DaemrI6MEVeHhorRUDcxJKy1FM500SUug/vl8KC1l8GVCJkLl09IGvpWWcZFUIB4gnkrQxpWBL6VlHs3D0yYtVc+n6hdl6j6T0pISPZwCSr/qy0zWdH/X90L1aRnXPFyED9JSLDebICumdqSrLz2RtJQt8m1IS7H++ar3WZKWLkpLl7pgKrusSUuqeXjcOYEPn5YM/HtIIhCP7QZj0tHDTchKaenq01JFxvHYZBN1ulSlpa2aV/e7jLR0FYJQ58UqkjBuIB7KZkTeSEuX+ZBLH59Hy4oGRyAtA+TIwjwciK+0TBp5UlradogugXiSMA+nENFZk5biPVTBBahQ1VHfagx2H1kZ26aVN9LSt09LPr04hJtucZCUT8uklJZxFr1Jk5bURYOKtKQqLV3Mw02glGtPUVrGNQ8XkYTSMm5kaB6N7NPSBFl9ky3yKUQ/gwvBlJZ5eJw+y5YkcmmHtkRKmkQAkGz0cB6+zMMB/23ShXzKK2nZCD4tkyItTWN2nLm7jLR0Jd4pPi1l5/kyD+ehuj7PpGVcpaUOjTbeNwACaRkgR16UlmmZh1ORJ6WlbTp5CMQD0MpIR1rGHVgpkCkt4yAt0pLBh9LSdyCeuIirtEzKPFyED/Nw/ndZ+SWltBQJvzg+LbMyD4+rtAzm4XL4jh5OLcMkzcN5+PBpuSEoLeOah7soLSkbnS7Rw00+LW1gSxL5MA/Pm9IyLdJSrIO+lJY+4DIO8uf4EmG4kpYS8/BKc3O9H1tqGqbf4pqHi9fJ2rCOtFSZh8eNHm5LWqattPRFWlKUlrLjYp+ed/PwtNT0AVoE0jJAjqxIS1P0cBPSIC11HZVr9HAX2JYNiwqtQxrm4XFJy6yUlnGQlnk4u48Pn5Z5U1rG9WlpYx6eJ9LSVZVnu1gCaP6hVHB1JE8FtW/S+bQUr3FVWtrW6TwpLV3bI1+XdWlkaR6u6uNUSkvfPi3F+/RE0lK2yOfLyNbM05dPSxel5YgR9DRs72/Tx/u6h0mJmTR0KkGfPi3zTFrG9Wnpi7R0JbB5pSUjoTfbzO6d+TIPdyEtG0FpWSr5U1rmibRU5ZmitExzg8WX0tIkYmq08b4BEEjLADnS3qFlCObhdNim40JiqJ7V1RyHSlq2tanTz8KnpWvUXoZGVFo2CmnpQ2kp1smkSUtTnvOitMyTeXgSSkuTqauqj7Udc3yRlj6ih/uALj3fpKWNr8I4SksVTGWna+/i+2o0H1dpBOLJ0qdlHIsR0/2D0rIWPn1ain28aj5qG4jHB/ISiMd1HiZpK5XNN7e7t65vV9VR1/ZCiUKdBGkZR2VXLNbnm2o1IIISiEd2ni/SkqKg7gnm4S7WMYG09I5AWgbIkYbSsrW1/phLIJ60zcPHjq1+33PP2gkUZXIdZ+Gyww7VzzY+ZqhwNQ+3UVryik/VhKFRlZb8++GRttLSh09LX+bhvgbuNH1axqljvpWWYpqU6wFg//2rnz//efk5Yrr9+9d+b0Tz8PHj5cdlRJns+Sjm4bZ9eJ6Ulq6gKCoA4OCDq5+/+MXqZ/697LADMGZM/Dz59Gmp6qOPPFKfB53rkp6otJSN2U1N1TIdOlSfJrEvq2y2WfULxTR1wgT1b7r6yr+zOK5nKG2cnzuOHm1/D1uflmmTlvvuW/18wgm1v8Wdp++0U/XzllvW/qbqB7bbrnpszz3l6SZtHk7p1485pvrZ1N9Q4cGnZTdGjbK7twtpKQNl3k/ZcB48WH2PvJiHuwpBVPNi0wYaS3/TTavH+M9UNHognrhKSx0abbxvAATSMkCONEhLmQrDRWnpipkzo8nCfffRrykUgK23Bq67LiIC/vIXYPr0KJ277qJNeuN0ZPfcAxx3HHDLLXY+Zhj+8x/g6KOBqVPlv1OVlq6kJRANnnfeCRx7LPDEE/JzsiYtXXxaHn+8ui6pds99m5CpzMP79k3PPFy8buRIt3REpGkeriLTKdCRGCyvpjybTGco73LCBOAHPwBOPRW49lr5OWK6IpGUZ6Wlqs/ZYw/gZz+rPy4LxGO6j9jujz0WuOMOe8UjJe9pkpZ//3s0Zs2cqb+OHyN5FZXu3R5xBPDd7wKnnw5cfnn1+J13RmPmL38JbLNNtBC+6aao3/ztb6Nx6YEH5Gn+4x/R7zNm1B53jR7OlJaUcesrXwHOOw/Yaiv578E8PCr3m2+O2sf3vqdPk6i0bP/nPzFvv/3Q/pvfABttZM7rsccCF11US5Sr7snjqaeiunXHHfHmFhSS6L77ovp+yy3A8OHu92IwqfrSNg8/+GDg+98HTjstauc84vq0/MtfqnNfkRhXPbc4V5fBt490F6Xl5MnAOedEf1/7mp98eCQtK5T2x0NX73QK0H/9K2qLsnWBmOYxxwB/+xtt3qHbIKBGD7dtWyalpYlsTUtpOW4ccPHFUb954om0e/JwNQ/Pi09LarsI0cNzgRQiWgQ0JNIwueZJS9aBxSUtbciz8ePVExkVWCd19tnRH4NNOnEWLttuG5GjrvjEJ6I/Fai7fXHNqo4/PvpTQTQzyrvS8jOfiRblce8jwpd5uE20XAZf5uG+FMFpBuJR7b5ToNvFpSotxQmdq6+y735X/7uY7jbb1H7PM2mpS3/y5EjJf+GF1WNUk2Sdefjdd5uvN6Up+w7Q8ubaH4jv+TOfif5M4MfIG2+sHjctSn/wg/rjo0cDt99ee+xLX4r+gIjkVOHww6M/EWlEDy+XgV/8Ajj0UGDixPrfe7LSkho9HIgIpeOOM6dJXZxvvz2ePv98TJo0yZwmEL2HH/84+vz3vwNLlqjvyWO33YC//pV2Dx0obXybbdzmCSrkTWkJAJdcIj8el7Tcbjv13Fc3PopzdRG+SUuXcbC5uZ7kjQsfgXgYbOePNu+XP3fSpOiPki/Vmku2BtSp+l1JS59KS5nbMWoZxvVpWSgAP/oR7V4mqPpy2bP0BKVlMA9PHUFpGSCHzjeNL/CkJTOxbgSflnGR544saaUl9V1lrbS0JS3F/IrIOhCPC2npyzw8adIyb0pLH+bhJqWlrzYgpuuTtMwqEI/q/uWy2sciD4p5uC0oCxJTeTU3u7dJH+QFVWmZJnxGDzdB9cw6klvcfMjz2C8D1TzcBnGCplAhvt805gxZBMHx4UYkLfgMxGOCTfq+y8inn9Q4cCWwZee5zB+piGseTklPp7SkblDbti2bQDyy9YFvpSXF96cLXM3Ds1Ra+vJpGczDU0dOZp4BuYMvZ9A68AtI1vG6RA9P26dlXOS5I3MlLX1PzEQS0GWQiQNb83ATye9qHu6qAhAnBC6LdFeIdcaXeTjVd48KNj4t805a+lKHmEjLRvRpySAjR1atUv8uS9dXX+3DPDxOMDAf74Lvw/JChlA3z+L4tDSlHczD7ZBUX8ZDfL9ZkJZpkFV5C8Sjg89APCbYvG/fdSPpzTsqfJqHJzl/1NUFnYpddZ7sOVXB+QA16SfCtm3ZBuIx3U8F6rw4qWjdrubh5XJtHtPsq1zI8BCIJxfI0YgWkCukQVquXVv9zDrUNM3DXdDTlZau5uG+lZZi9PCslZayiQFfN01KSxV8Ky0ZfCgtXZFUIJ64Skub6OG+zMM3JKWlzwjsMvhQWn70UfW7GHSIIQmlpQ/z8Dj+kXyMW3HNO5MAtX8U3yMLBseXi2lsUj2zjXl4o/m4CkpLOrIgDPNoHq5CmkpLm/edB5+WScCneTgfPNM34uRL9pssvXJZHUGcOjYmaR4uQ1ylZVqkpWv0cKB2XZV3paXs2YpFff3J81q/QZGjES0gV0hbaakyD7eNHp40gtIyQk83D6coLfn36GoenpZPyzSVlmvWJJNuXJ+WeTAPpwbiMZnyJKW0HDFC/7sOjaa0VJGWaSgtA2npB9SxQFU3bcqFQlpuCEpL36RlUFq6I2+BeHRIU2kZzMP9Rg/PSmnJIw5pWSq5BS7l4dM8PA3SkhqIJy5clZZ8nmQ+PZME/+zUcgjm4blATmaeAblDVubhcX1aNoLSMs9qC3FwUT0vVZEpwgdpmcQiRwTFpyVPLJlIS1V7yrNPS1e89171s88Je5JKy7Sih1OVlr4C8Zggpuu6GQHkJ3o4g4y05JWW/fqZ75MmaWlq61mPG43g01IFynt0NQ/XbVIEn5b1SINYE0mWNBbEQWmpR5qbHlkqLZMeB6lwrQuSsqvk3aelycy4XAaGD7fPGw+fSkvRpyXlfipQN/Pz5tMSqOY97c0VX0rLYB6eOnI0ogXkCo1kHt5opGWeO7KklZZUNILSkp8EmHxaEpWWnXEXHew+Wfq05EnLzTf3l26aPi2zNA9vbjZPkH0ttJYu1f8eR2npu0/wYR5OUVry+fZFFPrwaRknLz6sEfKotKS2A1XZBaWlHkn4tMxCaZkGsgjE06g+LXsyadkTlZZZkZY8qKSlamzNE2npU2mpmhenpbTkYRM9HMiOtPTl09JkHp71RnMPRI5GtIBcIQ3Sko8qvO220f+8+7T0sfjL88KFOjDbTMx4XzIqvzIiRLLLZWcsDihKS1ZnAX10QoBMWlZ8kcFZKi2HDKl+3mcff+k2YvRwlRJGN6GVPWcaPi1l/VIc0tI3fJiH8/3KDjvIr+uJPi19LMwbIRBP3PN0oJCWou+3RictZXWuEZWWacBWCe4DjRQ9fOzY6mfRDYlvZGke3gMD8SQ6f6QG4tGdZzIPLxaBXXe1z5uYhuqeMowZo08rbaWleJ6v/omfR40aJT9HVVZsLEmb3PPp01KHPPW/PQSBtAyQIw3S8uc/j3a/Ro0CrroqOhY3enjS6OmkJdU83IZcu//+aBGx667AKaeY8zByZLU+yNLPSyCeq6+O8jpiBPCzn+nTU9UboX53xn02lXm46yLu61+P6us119Cv+d73Iv9Bo0YB117rdl8ZfJuH83U4Tz4tZXUtqcXopEnA7rtHqsNp08z31SHvpGW5DFxxRbVuXnll9bdf/zpqi1/6Ur2/oy99KXq2m29ONu++o4ffemt0zckn+1l0NrJ5eN++0djT3Az84Q9u96JED99yS+CYY6K+6u67G5+0bNRAPHlQWtq2Vxc0knn4bbcBgwdHm73f/Gay9wpKS7+BeCjt6cc/jp79u9+l3cc2X7ak5W9+E/X3X/xi9P/ss4GddormwnvvHfVtN95Iz6eprTU1RXOpYcOizdGf/1ydVrFo7h+S9mnpi7S87bZIjLLddsDkyfJzVM/yxS9G+TzzTD95ocKFtKRax9x4Y/RM//d/6frp3ECQgnO4gIZEGqTlqFHAu+9GHQhr/HED8STdSfgolzwvXJIwD997b2DBgmjiYHo/v/hFNLnQmZpmYXYle2fDhwNz5kT1z/ROVaSlMJGo+Ho2X0rLn/8c+MlP1BMjGTbfPGrXpZLfd+U7EA+PPEUPpygtfS20mpqAp58G2trkfa1Nf5r0brmtH12V0lJWN888EzjppKjs29pqr7vppoi0t2kDIrIwDz/5ZOBzn4uXbx6NrLQEIrLyppvU5eEaPVw8/pe/RP66e/UCFi+u/a3RzMWSMA9Pqi/jkQelpa92p0MjBeLZfntg3rwoz3kyD++pgXhcCWzhvPZevWht9KKLItLKtt5TfVrakpZnnAF84QvV/PTqBbz4IrB+ffSZ9dGu+RTrzfLl0YZOW1t1TdvcDLS2ytNKO3p4UpsoO+4YteumJuC//5Wfo3qWc88FvvzldPpKHi7rSarS8stfBk49Nf1n2kAQSMsAOUw++nxBnBRvCObheZpIikjCPBygD5i9eskXSlkrLVUDlm4yVyhU6wuVtIw7wU3Cp6XL4JvE4lxVh+JMOhjyFIgnTfNwlraqbPOstLQNxMPehapu6up53Amoi9KyqamWQHVpUz4nzo3s05IhjtqEorQU79MTlZZx61Qavh/zoLRMY9HaSEpLID3SPk/m4Q2utGzr25dOFLjUeWofrDtPFYhH1t+r+mYTTG1LFpehb185aekzEA/V13uS/RHLAyVYnYgsyD3RmoYC1UazbvwP8I6cjWgBuUEaSksZ4gbiSRo+7pVG9GtXiB1w2oF4VGWTtdJSBpt8qOqNMOHIndIyT4irtNTV0byTlqYo30khz6Sli9IyK7iQlmI9yFql1xNIyzig+LQU0dNIyz59/G8M91SlZRrm4Y0UiCdNBPNwbz4t2+K6g7C8nxP4953U2tXUtmT9oqrsfCotVfXXZB6eBFzGyCyQlk/LAO8IJR4gR6OSlo2gtMwzaUmFrakmFapFXZZKS6pZoO73tJWWvnxa5gmqdpOE0jKuCSSDC2mZpk9LExqZtFT5E80CLqSlWA+yJi3z6NMyzXfqsiCjuBnJM5LqF3kEpaU7TD7I82zVkySyJC3zGoiHujYSzcOTJi19BOLh32F7e/w8yWCag/kmLaljrGpMSVNpyZA3clIFXz4t8zIP2oAQSjxAjkYiLXk0gk/LnkBapq20dBlkfOVDdT9TPvgySZu0FNtRT1BaUlW/KtiQlr1709KUgX/XLoF40vRpaYJNu84baakyD88CLj4txXqQhnJLh56utDRtSNqYh6t+azTSUpx/JUFg9FSlZR58WualnaaN4NPS/b4S8/BEQfVpqQOf56Rcm7m0LVXZ+QzEQ1VapjF/aBTS0kUE4+KHPMA7NtARLcCIvJCWWS/URASlZYSkSMtGUlrmkbSU3RvoGaSlCnEmHQzi4jwOucC/a5Ui2dbHT1ZKS5v+Lu+kZVBaxkOjB+KRwWbcclXc88j6HdrCp9sMFXqq0jJED88ONs+dtNIyL+bhVIjm4VmSljx0c5G8kpYbmtKyUfobVxGMzOVCoxC1PQQNUsMCUkdWpKXYgeTNp6WPcsnLgi8OkjIPz6NPS9X9TM/M51lVb3z7tFS1hX794qWbZ1DLTNdP+CTcdEpLX6RlWhsfNguApAmZRlZaUvyL5Z20zKN5eN59WopoNKVlGubhSbzDAQP8p2kCXz+am9NZzDZS9PA0kaXSMi/EsWv9S1tpSVWq6+YiWZCWlHqjIi1LJfNYEFdpGczD1XAJxCM7t1RKl38ICKRlgAJZkZYigk/LfMI2ki8VFNIyjfKjKC1Nz5yl0lKXl54Gan3gIzGL8Ekm8H2nalGpex8yhU5Wvsp0ZSYi79HD86S0pJga5Y207IlKSx5JmIeLaHTSslGUllnMsfh6kFb02KC0lCNLpaVrABzf8KS0TNynJbV8dGQk/w7zpLTUmYeb6l1PCsSTN7iKYPLStjdghBIPkOP006ufb7klu3zkwafld78b/e/bF9h7b7c0vvrV6P/w4cCQIX7ylSf46rwpBGHa5uH85zPOiP5vsYW5bt5+e/XzN74hP0dCWnbuuWf05YgjaHn9wx+qn886q/p50qTo/6c/TUunEXDYYfXHqPVhyBBgs82iz+ecU/tb2qRlns3Dzzsv+j90aLW8KMi7eXiefFrK8m4K2pI1aXnDDdXPP/xhdvngEfedXn119fNVV+nPVZGaPZm0HDMG6N+/+p2NTT6RVF92wAHR/yOPTCZ9EXybzgtpmZfNhTRw0knR/223tbtu/PiqJcqll/rNE5DdO3Cdk++2W83XD7fZJn5edKDmc8iQaP0EAF/5Su1vjaa0LBbN11PLZYcdgMGD64+LY2NWPi3HjUv+vrZwNQ8X30lTU7QmYc995ZXx8xagRQ+QfAUkgqFDgRdfBObOBQ45JLt85ME8/DvfiQby3XZzn4z+9KfRJPpjH+uZE0lfZLEqnbQD8ahIy2uvBSZOBPbf3/zMRx0F/PvfwCabAFtvLT9HqE+dpRI67rsPxWnTgEMPpeX1pJOiScvIkcCIEdXjf/xjdP+eRFr+6U/AAw8AP/4x8PLL0TGbQDxPPAHMnFlPfqZlHs7qUp7Nw3/yE2C//aINGpv75J20zJPSkmIeLpZ91qTlJz8JPPxwFKRq992zzQtD3Haw777Ao49Gffk+++jPVc0zbMiBRiMt+/cHZs2K+tzBg4Gjj/Z/j6T6sr/9DZg6lT6OxkUWSssQiKeKG24ADj8cOPBAu+t69QJeeAF47rnoet9oNKXlvvsCjzwCPPss2rfZBvPb25Fob28TPfzJJ6P5m/ie+LEzrejhcX1a+iItm5uBp54C/vEP4Gtfqx7Pg9LyjjuACROSv68tfPm07Ns3mg+99hrw+utyUUWAVwTSMkCNnXeO/rIEZXcoafPw5ub4k/XevYHPfc5PfvKIpEnLtJWWPPj79e0LHHcc7bpi0UwYivW7WAQ23RQ44QR6/orFqqqSx8YbA5//PD2dRsCgQVHZ3Hxz9ZhNfdhsM7l60GedSsOnZZJtoHdv4Nhj7a8LpKUaLubhJnPxtFEoRMRlnuCD8KKSHCqXOTZjXyO6hhk7NvpLCkm1y8GD0x3/+DaeVlsN5uFV9OsHHH+827VbbRX9JYFGIy0LBeDjHwc+/nFU2tqAKVO8ZqsOOtGJ+Ayq+RvfryZFWrqYBschLW0wenS0LuFJyzz4tLRZx6QJH0rLQqFaptttF/0FJI4NaEQLyBSuA3cezMMDzEgq6rXseBrkA29ikuT9JErLAAJ8+zj1OdGlkJa2Pi2zCsRjg7yTlnkyD5e9f9M7zlppmUfkgZSxmXMEp/31yGNf5oI8Ki3DfCJ7NBppmTZ89IlpmIfr7qmCyqdlqWQXyNMlP+J8LI2NlDyMxxTwZWuTZ/66Pn0ap431IDRIDQtoeLhOnvJgHh5gRk9TWqYVKTetQDw9Db7rg03AGRP4/kilhMmz0tIVaUcPb+RAPBSI+Q2kZbbw4dMyrQV1IyGPfZkLQiCeABmyqt+NQqhQg77q1nlZkJZ5UlrK8pMHpWVe4cM8POkAVQFShBEtIB0kqbRMM3p4gBxJT47TJi3TipQr7H5WesoCLmnw9c2HUqe1NX4aDHGjh8sml+L5eVQnBaWlGi79Y1BampHmeK9aXNu820Ba1iOPfZkL+HcblJYBDFkRx41CWFPNw3XnpRE9XETSgXjiKi2zIC0bpc75MA8PpGUmaJAaFtDwCKRlz4avcs9L9PC0zMOFtIPSkohGUVq6BOKhmIfncTGad9IyKC17HtIc730oLamqog0JeezLXLB+ffVz8GkZwJDVmqRR1kI2Pi1VSCMQjwhK21KZhyehtDSZhwelZRWu64egtMwcYUQLSAeukyfbyV+jdJo9DT0tenhaSksBgbQkwnd9SIu09GUenkd1Ut5IS7GMGl1pmXUgnjyi0UjLoLSsRx77Mhfwav28KC3DfGLDRaOshajuvXqSeXiplL55eBr9bKP0Nz7Mw1WEdECiaJAaFtDwcO2gKQvh4NMye/TkQDxJD8Tc8wTzcCJ8B+LxaR4eNxBPo/q0TJq0NKmKTOcHpWXPQyAtGx957MtckAVpKZadWBd7StkG2KOnkZY65DUQj848PO1API1SH9KAK2nJixuC0jITBNIywD8mTao/dsop9Ot5RQlloXbEEdXPxx1Hv0+AP8QZEHfbrfp5663N6aexY5iWeThQM7kISksifCstP/7x6uczz4yXFj8JVylfhgxRXy9b8Ir9YB4Xo0mTliZVkYhG92kp5r93bz956UlIcyG22Wby46Z3e9hh1c977ukvPz0FeezLXMCTllmZh4sI84kNF41CUvkwD+fH9kYwDy8UgO23r37fe2//+clivtMoAqJNN5V/NmHt2urnQFpmgh5ilxGQK/zmN8C3vgXsuCPw4YfAsmXAj39Mv37GjOj844+nTWi/9CXgrbeAdeuACy90z3dAhGnTgKuvjsqVijiT47/9DbjoIuDAA4HRo+Xn9GSlJTe5CKQlEb5J7COOAC6+GJg/H7jyynhp8a4FVMqXjTYC/vAH4F//Ao46CvjCF6rnyBa8I0fWfs+jSWXSSsABA2q/98To4Q88ANx8M3DeecANN9T+NmqU92wFWGD4cODXvwZuvx145JHqcVM9vOWW6nxo/Phk89iIyGNf5gLep2VW5uEiwnwiGzz5JHDFFcDJJ2eXh0YhLX1ED08qEM8TTwA//zlwxhn1v8UxD69UgDFjgOuvBx57DLjssvpzfCstAeD++6Mx7Otft0ubikYhLSdMiMpg7dpo/k0F/3zBPDwT9JDZQkCuMGwYcOut7tfvvjvwl7/Qzy+Xo4ElwA8OOCD6s0GcCdKWWwJ33EFPP23SMulFVSAt7eFbaVkoAD/6Ufx0AP0knM/3KadEf++8U3uObMG7xRa13/OoTkpaaTlwYO33nmgePnFi9AdE5CUPsQ4EpL8wP/PMaJHDqzNMeYg7H+rpyGNf5gLedDAr83Db3wOSwbhxdmuYDRk+oocnFYhn332jP9M9VTCp8b7ylejPB8RxSLZuOeSQ6C8pNApp6YMzCErLTBBWyAEBAfGR9OKxJwfi4c3DwyKDhrTdBdhAN3GTkVciGUchLfP2zEDypOWgQbXfG8k83KV/FPMrqm0DsoFY7xpF0ZRX5LEvi4ugtAwIoMF39PA8BeJRqfGSIPcopGXSaBTS0gcCaZkJwogWEBAQH0kv3DYQ8/AAItImsW1gS1qKZs9BaSnHhqC05EEx99rQkQVhaBsQKkCPPPZlcZEXn5Y9sWwDehY2xEA8FJP4uGNbFvOFDYm0DObhmSDMtgICAuKD6pfGFVmSlknfjyMtCyG6LA09SWkp5l+24A1Ky/ikZaMF4uF95PXv7y8vPQlZkJZBaekXPZFYy4t5eCDUA/IOKtFFNQ/Pk9JS59MyaQSlZbIISstMEEa0gICA+OjJpGWKSstC0uXYU5A3paWL7yUVGlVpmXSexOjZPV1p+cEH1c/BNFyOQFo2PnoisZaW0tJUdj2xbAN6FnRz3p5qHp7GPD8LpeWGtH4JpGUmCCNaQEBAfCQ9UUibtMzIp2XRpxPxnoy064MJ/ATWVmkpQkZaiv4c86i0THqBLC5gemL0cB7vv1/9HEhLOQJp2fjoieXX3JzOfWw3bgIC8gYfSkt+PpTWHJrStsSNVoagtGx8BPPwTBBIy4CAgPhImrRMW1kXzMPzDb4+5IHA4xfe1Ojhcc7J40I/jffAP7ftgj1L1ZHLvefNq34eNcpfXnoSAmnZ+OiJ5ZcX0jIoLQPyDh+BeLIgLePM5SjkXvBpmW8EpWUmCCNaQEBAfCRtDpW2sm6rreSfk0AgLe2RN6Xl9ttXPw8bpj6PMtGlkH95NMNJw48b79vRNKnPA5nN4EIebLNN9fMuu/jLS0/CJptUP6dFfuWJDO8J6IkBptIiLU1ll4exMSBAB9GKRAUdIcZbIowdGys7ZMRpW/36mc8RfXjbIov5z4akPgykZSYIs62AgAA33H13RFQccwwwenSy90qbpLrmGmD48EjhdMUVyd6LNw8PpCUNeVNa3nUXMHgwsO22wOTJ6vNUBMdf/hK1pSOPVJPk990XnTNxYi2hlRcMHAicfHK0YL/11mTuwUdaX7NGf26eFuwuxNavfx0t6HbeGTj7bO9Z6hE44ghgn30iMvvRR9O5Z1Baxscf/xhtdJ50ErDRRlnnxj+S3MT9wx+iPvbUU83kRyDUN2xMnhzNL6++Ouuc1GLatGgs/9jHgM98Rn0etW8999yIrNxkk2gulgaobevii6M56v77R0TXIYcAu+8uP/fBB6M2/YlPAAceGC9/WcyLd9wROPzwyCz+3nvTv3+a2JAI2hwhB6u9gICAhsSxx0YDVBoKq7SjRY8cCbz7bnTfpO8XAvHYI49Ky3nzonepm8yq8nrMMcBhh+nb0hFHAB9+GC2I80qU3HorcPPNyfUJvNJy1Sr9uXmoFwwu5MFeewHz5+f7fWeNYhF44oko0npaEZttfasG1OOkk6L5Q1rvLG0kqbQ85RTguONoZRfq5oaNn/0M+PGP89fODjgAWLjQ39jWuzfwyitAW1t+gmAx/OhHwHe+E72Ddev07+Lgg4HFi/2US1YK9n/8w/ycPQFBaZkJAmkZEBDgjiwWimmREWkN+sE83B55U1oCtIWqbqJLaUuNMBFMMo+80nLlSv25eSItXRcgjfC+s0ahkG45BdLSD3py3U7aPJxadqFuBuS1ndnmy+QvsVhMj7Bk96OCPWuac7ws58V5rXM+EUjLTBBsBwICAvKPvCnrfIKbXITo4UQ0an0I5nrxYENa5qmsA3nQcxHebYCItHxaBgT0ZPB9a96CvOS93++JvoLzhEBaZoIczeoDAgICFEg7enia4CYXwTyciEatD3ki0hoRNqRl3hcVAQEBPRNpKr4CAnoqwhjujrxYIPVUBJ+WmSCsoAICAvKPRlXWURDMw+2Rto9TXwiT8Hiw8WkZEBAQkAWC0jIgwC/yprTMOxppXtyICErLTBBIy4CAgPyjJ5OWfPTwYB5OQ6PWh6CkjQeetDQpLQMCAgKyQFBaBgQEZIlGmhc3IgJpmQkCaRkQEJB/NCpJRUGIHm6PPAbioSC833jgzcMDAgIC8oigtAwIiI9gmRKQVwTz8EwQSMuAgID8Y0MhLYN5OA2NWh8CaRkPgbQMCAjIOwJpGRDgF8E8PCBPCH18JgikZUBAQP6x227R/4EDgdGjs8yJf3zve90fn/vqV7PLRyOB1Yd+/YAxYzLNihHnnhv9HzIEGDUq27w0Ok49tUpS33KL+fzx46P/hx+eXJ6o2HXX6P+RR2abj4CAAP/49rej/5tsAmy7bXb5OOyw6P/ee2eXh4AAH7jppurnH/wgu3yosMce0f8jjsg2HwxHHx393333bPPRU3HSSdH/nXcOKuCM0EB2dQEBARsszj47Iit32KHnyfJ32AGYORPtH36IxevWZZ2bxsCXvgSMHBktDvOuvrvsMmC//SICrZFUoXnE0KHA888D77wDTJpkPv+f/wQeegg49NDEs2bE1KnAf/6Tj7wEBAT4xfe+B+y1V/TH+alOHbfdBtx/PzBhQnZ5CAjwgQkTgIcfjvwHsk2/POGBB6Ix/ZBDss5JhN/9DjjuOOATn8g6Jz0Tv/pVtCkUyjczBNIyICAg/2hqAo46KutcJIfx41FpawOmTMk6J42BcrlxFGu9ewOf+1zWueg52Gmn6I+CwYOBE05INj9UbLopcPzxWeciICAgCfTqBRx7bNa5iKxR8tLnBQTEQaEAfPKTWedCjbyN6QMG5Cs/PQ39+4e+NWME8/CAgICAgICAgICAgICAgICAgICAXCGQlgEBAQEBAQEBAQEBAQEBAQEBAQG5QiAtAwICAgICAgICAgICAgICAgICAnKFQFoGBAQEBAQEBAQEBAQEBAQEBAQE5AqBtAwICAgICAgICAgICAgICAgICAjIFQJpGRAQEBAQEBAQEBAQEBAQEBAQEJArBNIyICAgICAgICAgICAgICAgICAgIFcIpGVAQEBAQEBAQEAABY89Bhx9NPDAA1nnJCAgICAgICCgx6OcdQYCAgICAgICAgICGgL77x/9BQQEBAQEBAQEJI6gtAwICAgICAgICAgICAgICAgICAjIFQJpGRAQEBAQEBAQEBAQEBAQEBAQEJArBNIyICAgICAgICAgICAgICAgICAgIFdoaNLy+uuvx+jRo9GrVy+MHz8es2bN0p5/9913Y+zYsejVqxd23nlnTJkyJaWcBgQEBAQEBAQEBAQEBAQEBAQEBFDRsKTlXXfdhcmTJ+PSSy/Fs88+i1133RUTJ07EokWLpOdPnz4dn//85/HFL34Rzz33HI466igcddRRePnll1POeUBAQEBAQEBAQEBAQEBAQEBAQIAODUta/vznP8dZZ52F008/HTvssANuvPFG9OnTB7/97W+l519zzTU45JBDcP7552P77bfHD3/4Q+yxxx647rrrUs55QEBAQEBAQEBAQEBAQEBAQEBAgA7lrDPggtbWVjzzzDO48MILu48Vi0VMmDABM2bMkF4zY8YMTJ48uebYxIkTce+990rPX79+PdavX9/9fcWKFQCAZcuWoa2tLeYT5A9tbW1Ys2YNli5diqampqyzExCwwSG0wYCA7BHaYUBA9gjtMCAgW4Q2GBCQPXp6O1y1ahUAoFKpGM9tSNJyyZIl6OjowNChQ2uODx06FK+//rr0mgULFkjPX7BggfT8yy67DN///vfrjm+55ZaOuQ4ICAgICAgICAgICAgICAgICAhYtWoVBg4cqD2nIUnLNHDhhRfWKDM7OzuxbNkybLLJJigUChnmLBmsXLkSm222Gd577z0MGDAg6+wEBGxwCG0wICB7hHYYEJA9QjsMCMgWoQ0GBGSPnt4OK5UKVq1ahREjRhjPbUjScvDgwSiVSli4cGHN8YULF2LYsGHSa4YNG2Z1fktLC1paWmqODRo0yD3TDYIBAwb0yEYRENAoCG0wICB7hHYYEJA9QjsMCMgWoQ0GBGSPntwOTQpLhoYMxNPc3Iw999wTDz/8cPexzs5OPPzww9hnn32k1+yzzz415wPA1KlTlecHBAQEBAQEBAQEBAQEBAQEBAQEZIOGVFoCwOTJk3Hqqadir732wrhx43D11Vdj9erVOP300wEAp5xyCkaOHInLLrsMAHDuuefioIMOws9+9jMcdthhuPPOO/H000/j5ptvzvIxAgICAgICAgICAgICAgICAgICAgQ0LGl5/PHHY/HixbjkkkuwYMEC7LbbbnjggQe6g+3MnTsXxWJVSLrvvvvi9ttvx3e+8x1cdNFF2GabbXDvvfdip512yuoRcoWWlhZceumldSbxAQEB6SC0wYCA7BHaYUBA9gjtMCAgW4Q2GBCQPUI7rKJQocQYDwgICAgICAgICAgICAgICAgICAhICQ3p0zIgICAgICAgICAgICAgICAgICCg5yKQlgEBAQEBAQEBAQEBAQEBAQEBAQG5QiAtAwICAgICAgICAgICAgICAgICAnKFQFoGBAQEBAQEBAQEBAQEBAQEBAQE5AqBtAzA9ddfj9GjR6NXr14YP348Zs2alXWWAgJ6BC677DLsvffe6N+/P4YMGYKjjjoKb7zxRs0569atw9lnn41NNtkE/fr1wzHHHIOFCxfWnDN37lwcdthh6NOnD4YMGYLzzz8f7e3taT5KQECPwOWXX45CoYDzzjuv+1hogwEByWPevHk46aSTsMkmm6B3797Yeeed8fTTT3f/XqlUcMkll2D48OHo3bs3JkyYgP/97381aSxbtgwnnngiBgwYgEGDBuGLX/wiPvroo7QfJSCgIdHR0YHvfve72HLLLdG7d2+MGTMGP/zhD8HH5A3tMCDAL6ZNm4YjjjgCI0aMQKFQwL333lvzu6829+KLL+KAAw5Ar169sNlmm+GKK65I+tFSRSAtN3DcddddmDx5Mi699FI8++yz2HXXXTFx4kQsWrQo66wFBDQ8Hn30UZx99tmYOXMmpk6dira2Nnz605/G6tWru8/5+te/jn/84x+4++678eijj+KDDz7A0Ucf3f17R0cHDjvsMLS2tmL69On4wx/+gN///ve45JJLsnikgICGxVNPPYWbbroJu+yyS83x0AYDApLFhx9+iP322w9NTU24//778eqrr+JnP/sZNtpoo+5zrrjiClx77bW48cYb8eSTT6Jv376YOHEi1q1b133OiSeeiFdeeQVTp07FP//5T0ybNg1f+tKXsnikgICGw09/+lPccMMNuO666/Daa6/hpz/9Ka644gr88pe/7D4ntMOAAL9YvXo1dt11V1x//fXS3320uZUrV+LTn/40tthiCzzzzDO48sor8b3vfQ8333xz4s+XGioBGzTGjRtXOfvss7u/d3R0VEaMGFG57LLLMsxVQEDPxKJFiyoAKo8++milUqlUli9fXmlqaqrcfffd3ee89tprFQCVGTNmVCqVSmXKlCmVYrFYWbBgQfc5N9xwQ2XAgAGV9evXp/sAAQENilWrVlW22WabytSpUysHHXRQ5dxzz61UKqENBgSkgW9/+9uV/fffX/l7Z2dnZdiwYZUrr7yy+9jy5csrLS0tlTvuuKNSqVQqr776agVA5amnnuo+5/77768UCoXKvHnzkst8QEAPwWGHHVY544wzao4dffTRlRNPPLFSqYR2GBCQNABU7rnnnu7vvtrcr371q8pGG21UMyf99re/Xdluu+0SfqL0EJSWGzBaW1vxzDPPYMKECd3HisUiJkyYgBkzZmSYs4CAnokVK1YAADbeeGMAwDPPPIO2traaNjh27Fhsvvnm3W1wxowZ2HnnnTF06NDucyZOnIiVK1filVdeSTH3AQGNi7PPPhuHHXZYTVsDQhsMCEgD9913H/baay987nOfw5AhQ7D77rvj17/+dffv77zzDhYsWFDTDgcOHIjx48fXtMNBgwZhr7326j5nwoQJKBaLePLJJ9N7mICABsW+++6Lhx9+GG+++SYA4IUXXsDjjz+OQw89FEBohwEBacNXm5sxYwYOPPBANDc3d58zceJEvPHGG/jwww9TeppkUc46AwHZYcmSJejo6KhZiAHA0KFD8frrr2eUq4CAnonOzk6cd9552G+//bDTTjsBABYsWIDm5mYMGjSo5tyhQ4diwYIF3efI2ij7LSAgQI8777wTzz77LJ566qm630IbDAhIHrNnz8YNN9yAyZMn46KLLsJTTz2Fr33ta2hubsapp57a3Y5k7Yxvh0OGDKn5vVwuY+ONNw7tMCCAgAsuuAArV67E2LFjUSqV0NHRgR//+Mc48cQTASC0w4CAlOGrzS1YsABbbrllXRrsN94VS6MikJYBAQEBKeDss8/Gyy+/jMcffzzrrAQEbDB47733cO6552Lq1Kno1atX1tkJCNgg0dnZib322gs/+clPAAC77747Xn75Zdx444049dRTM85dQMCGgT//+c+47bbbcPvtt2PHHXfE888/j/POOw8jRowI7TAgICDXCObhGzAGDx6MUqlUFyV14cKFGDZsWEa5CgjoeTjnnHPwz3/+E4888ghGjRrVfXzYsGFobW3F8uXLa87n2+CwYcOkbZT9FhAQoMYzzzyDRYsWYY899kC5XEa5XMajjz6Ka6+9FuVyGUOHDg1tMCAgYQwfPhw77LBDzbHtt98ec+fOBVBtR7r56LBhw+qCRLa3t2PZsmWhHQYEEHD++efjggsuwAknnICdd94ZJ598Mr7+9a/jsssuAxDaYUBA2vDV5jaEeWogLTdgNDc3Y88998TDDz/cfayzsxP/v737j87xvv84/rrlxx2JEJWIoELWYYiyUDI2DWahp6OC1c/Ejh/VOkq3cuiUTnv0TDvzozbWomu0PTQxtRNWEglaYskSDYZtwo41ZRqpJDQS9+f7h2+u3bfc9y1Jg+iej3Pucy7X5+d1X9d1Iu98fqSnpys2NvYe9gz4ZjDGaPbs2dq+fbsyMjJqDN2PiYmRn5+fyzt46tQp/etf/7LewdjYWBUUFLj8wNqzZ4+aN29e45dAAK6GDBmigoIC5efnW58+ffpo4sSJ1jHvIHBnDRgwQKdOnXI5d/r0aUVGRkqSOnXqpDZt2ri8h1euXFF2drbLe1hSUqLc3FwrT0ZGhhwOh/r163cXrgK4v129elVNmrj+6u/j4yOHwyGJ9xC42xrqnYuNjdX+/ftVWVlp5dmzZ4+6dOnyjZgaLondw//Xvf/++8Zut5vNmzebEydOmBkzZpiQkBCXXVIB1M+sWbNMixYtTGZmpikqKrI+V69etfI89dRTpkOHDiYjI8Pk5OSY2NhYExsba6VXVVWZHj16mGHDhpn8/Hyze/duExYWZhYuXHgvLgm47znvHm4M7yBwpx05csT4+vqaV155xfz97383W7ZsMYGBgSY5OdnK8+qrr5qQkBCzY8cO8+mnn5qRI0eaTp06mWvXrll54uPjTe/evU12drY5ePCg+fa3v23Gjx9/Ly4JuO8kJiaadu3amT/96U+msLDQpKammtDQUDN//nwrD+8h0LBKS0tNXl6eycvLM5LMr3/9a5OXl2fOnTtnjGmYd66kpMSEh4ebyZMnm2PHjpn333/fBAYGmvXr19/1671TCFrCrFmzxnTo0MH4+/ubRx55xBw+fPhedwn4RpDk9rNp0yYrz7Vr18zTTz9tWrZsaQIDA80TTzxhioqKXOo5e/asGT58uGnatKkJDQ01P/vZz0xlZeVdvhrgm+HWoCXvIHDn7dy50/To0cPY7XbTtWtXs2HDBpd0h8NhFi9ebMLDw43dbjdDhgwxp06dcsnzxRdfmPHjx5tmzZqZ5s2bm6lTp5rS0tK7eRnAfevKlSvm2WefNR06dDABAQEmKirKvPDCC6aiosLKw3sINKx9+/a5/V0wMTHRGNNw79zRo0fNwIEDjd1uN+3atTOvvvrq3brEu8JmjDH3ZownAAAAAAAAANTEmpYAAAAAAAAAGhWClgAAAAAAAAAaFYKWAAAAAAAAABoVgpYAAAAAAAAAGhWClgAAAAAAAAAaFYKWAAAAAAAAABoVgpYAAAAAAAAAGhWClgAAAAAAAAAaFYKWAAAAwH2oY8eOstlsSkpKutddAQAAaHAELQEAAOpo5syZstlsstlsysjIqFPZjz76yCr77LPP3qEeAgAAAPc3gpYAAAB1NGXKFOs4OTm5TmXfeecdt/XcK5mZmVYQNTMz8153BwAAAJBE0BIAAKDOBgwYoG9961uSpJSUFF27dq1W5crLy7V9+3ZJUvfu3RUTE3PH+ggAAADczwhaAgAA1MPkyZMlSVeuXNGOHTtqVSY1NVXl5eUu5QEAAADURNASAACgHiZPniybzSap9lPEq6eGN2nSRJMmTbpjfQMAAADudwQtAQAA6iEqKkoDBgyQJP35z3/WxYsXveb/7LPPlJ6eLkkaPHiw2rVrVyPPH//4R40dO1YdOnRQQECAQkJC1KdPH7300ku6fPlyrfqVlpamSZMmKSoqSkFBQQoICFCnTp2UkJCgzZs36+rVq5Kks2fPymazKS4uziobFxdnrW9Z/dm8eXONNq5fv65169YpLi5OYWFh8vf3V5s2bTRixAglJyfL4XB47F9SUpJsNps6duwoSSoqKtKCBQvUvXt3BQcH13ltTXdrcm7dulVDhgxRWFiYmjZtqi5dumj+/PkqLi72WM+jjz4qm82mRx991Gt7S5cutdpzpzpt6dKlkqR9+/Zp1KhRatu2rZo2barvfOc7WrZsmTXitlpaWppGjBhh5evWrZuWL1+u69ev1/q7+Mtf/qLx48frwQcfVEBAgB588EFNnTpVJ0+erFX5f/zjH5o3b56io6PVokULNW3aVFFRUUpKSlJOTo7HcrfeA4fDoY0bNyouLk7h4eFq0qQJO5wDAIC6MwAAAKiXDRs2GElGklm1apXXvCtWrLDy/uEPf3BJKy4uNoMHD7bS3X1at25tDh065LH+S5cumSFDhnitQ5LZtGmTMcaYwsLC2+Z1zl+tsLDQdO3a1WuZgQMHmi+++MJtPxMTE40kExkZaQ4dOmRCQ0NrlN+3b99tv/tq+/bts8qlp6ebSZMmeezXQw89ZIqKitzWM2jQICPJDBo0yGt7S5YssepzpzptyZIlZvny5cZms7nty/e+9z1TVlZmHA6HmTNnjsc+x8fHm6qqKrdtRUZGGkkmMTHRvPXWW8bX19dtHXa73WzdutXrda1YscL4+fl57IfNZjOLFy92W9b5HuzatcsMHTq0RvnExESv7QMAANyKkZYAAAD1NG7cOAUEBEhy3RXcner0Zs2aafTo0db5iooKDR06VBkZGfLx8dHkyZP13nvv6fDhwzpw4IBeeeUVtWrVShcvXtSIESN07ty5GnVfvXpVcXFx1kjOmJgYrV+/Xh9//LFycnK0fft2zZs3T23btrXKtGvXTgUFBdq4caN1buPGjSooKHD5jBo1ykovKyvTkCFDrJF7o0aN0ocffqicnBxt27ZNgwYNkiQdPHhQjz/+uG7cuOHx+ygrK1NCQoK++uorvfDCC8rMzNSRI0f01ltvKSIiwut36cnixYuVnJysUaNGKTU1Vbm5uUpLS9Njjz0m6b8jCe+GXbt2aeHCherfv7/effdd5eTkaPfu3Ro+fLgk6ZNPPtHy5cu1cuVKrV69WsOHD1dKSopyc3O1Y8cO9e/fX5K0e/du/f73v/faVn5+vp566im1bt1aa9asUXZ2trKysrRgwQLZ7XZVVFRo4sSJHkdLrlixQs8//7wqKyvVs2dP/fa3v9XevXuVk5OjLVu2KDY2VsYYLVu2TKtXr/balwULFmjv3r368Y9/7HIPqq8bAACg1u511BQAAOB+Nm7cOGs02cmTJ93mOXr0qJVnypQpLmmLFi0ykkxISIjJyclxW/7s2bMmIiLCSDITJkyokT5v3jyr/meeecY4HA639VRUVJjPP//c5ZzzKLnbjXD8+c9/buX9xS9+USPd4XCYiRMnWnnWrVtXI0/1SEtJplmzZiY/P99rm7fj3H9J5uWXX3bbr2HDhhlJxtfX11y8eLFGnoYeaSnJJCQk1BglWVVVZfr3728kmeDgYBMQEGDmzp1bo57y8nJrJGXPnj3dtlWdrv8fuepuFGlGRoY1ArNv37410o8fP26NsFyyZInbZ+fGjRvWCNZmzZqZ4uJil/Rb74G7ZwMAAKCuGGkJAADwNUyZMsU69jTa0vm8c/6ysjK98cYbkqRly5YpJibGbfnIyEgtXrxYkrRt2zaX9RBLSkq0fv16STdHWK5atcrjeov+/v4KDw+vzWXVUFFRoTfffFOS1L17d2vNRmc2m03r1q1Tq1atJElr1671Wuf8+fP18MMP16s/7sTExGjRokVu+/Xcc89JkqqqqnTo0KEGa9OTwMBAbdiwQT4+Pi7nfXx8NGPGDElSaWmpwsLC9Ktf/cpt+cTEREnSp59+qi+//NJre6+//rratGlT43xcXJymT58u6eaal7eOtnz99ddVWVmpPn36aMmSJW6fnSZNmmjNmjWy2+0qKyvTBx984LEfnTt3dvtsAAAA1BVBSwAAgK/hRz/6kRUI3LJli4wxLukOh0PvvvuuJKl9+/YuG99kZWVZwagxY8Z4becHP/iBJKmyslK5ubnW+YyMDGtznTlz5tQIkjWU3NxclZSUSLq5mY6ndpo3b65x48ZJkk6cOKGioiKPdU6cOLFB+zhhwgSPAVvngPCZM2catF13fvjDH+qBBx5wm+YcqB09erT8/Pxum6+wsNBjWy1bttTIkSM9pv/0pz+1jvfu3euStnPnTklSQkKCx+9OkkJCQhQdHS1JXoO+P/nJT+7YMwgAAP63ELQEAAD4Gnx9fTVhwgRJN3fkPnjwoEt6enq6PvvsM0k3g3RNmvz3v1/Oo94iIiJq7Nzt/OnRo4eV9/PPP7eO8/LyrOPvf//7DXtxTo4dO2Yd9+vXz2te53Tncs6aNWumqKiohunc/+vatavHNOcAYmlpaYO2607nzp09poWEhNQ5n7c+9+7dW76+vh7Te/XqJX9/f0lSQUGBdf7cuXP6z3/+I0lauHCh1+fPZrNZz6vz83ernj17ekwDAACoC4KWAAAAX5O3KeKepoZL0sWLF+vVXvXISkm6dOmSdVzfDWxqo7i42Dpu3bq117zO05SdyzlzDsg1lMDAQI9pzsFibxsE3e2+NESfb3c/fH19raCt8/1oiOfvVi1btqxXnQAAALfy/CdZAAAA1EqvXr0UHR2tgoICbdu2zVr/r7y8XKmpqZJuTk/u1q2bSznnQNRf//pXj9OEb9W+ffuG63w9eJtGXFtMIW449b0fzs/fiy++qLFjx9aqXFBQkMc07isAAGgoBC0BAAAawJQpU/T888+rpKREO3fu1JgxY7R9+3Zr05xbR1lKsjaskaSwsLB6BSNDQ0Ot46KiInXq1Kkevb895+nVFy5c8Dqt2Xn6sKd1HRub6lGNDofDaz7nTZAaiwsXLnhNr6qqskZYOt8P5+fPz8/PZQkCAACAe43p4QAAAA1g4sSJ1iiz5ORkSf+dGu7n56fx48fXKNO7d2/r+OOPP65Xu9/97net4/3799e5fG1H6TkHtLKzs73mPXLkiNtyjVlwcLAk6fLly17znT59+m50p07y8/NVVVXlMf3o0aO6fv26JNf7ERUVpRYtWkiq//MHAABwpxC0BAAAaAAREREaOnSoJCktLU3Hjh1Tenq6JCk+Pl5hYWE1ygwdOtRa03D16tU1dh6vjbi4OGu67po1a+q8XmNAQIB1XFFR4TFfTEyMtQ7l22+/7XFEYmlpqbZu3SpJ6tat2x1dZ7MhVY9QPX36tMdNby5duqQ9e/bczW7VSnFxsbULuDsbN260jqufUenmVO4RI0ZIkj766CP97W9/u3OdBAAAqCOClgAAAA2kegp4ZWWlnnzySSuA6G5quHRzM5rZs2dLkj755BPNmzfP6/TkCxcu6M0336xRx8yZMyVJubm5mjt3rsfgZ2VlZY3NV5yDiv/85z89tm232zVt2jRJN3cEX7ZsWY08xhjNnj3b2hyo+truB4MGDZIkXb9+XWvWrKmRXllZqWnTpunatWt3u2u18txzz7mdJp6VlaUNGzZIuhl47tu3r0v6woUL5ePjI4fDoTFjxuj8+fMe27hx44a2bNniNQ8AAEBDYU1LAACABvLEE08oODhYpaWlOn78uKSbuyk//vjjHsv88pe/VFZWlrKzs7Vq1SplZmZq+vTp6tWrl4KCgnT58mUdP35ce/fu1a5duxQdHW0FD6stW7ZMe/bsUUFBgdauXatDhw5p5syZio6Olr+/v86fP68DBw7ovffe08svv6ykpCSrbIcOHdS+fXudP39er732mtq3b68uXbpYU93Dw8OtqdMvvviiUlNTdebMGS1dulQFBQWaOnWqIiIiVFhYqLVr1yozM1OSFBsbqxkzZjTgt3tnPfbYY4qMjNS5c+e0ePFiXbp0SaNHj1ZAQICOHz+u1atXKy8vT/3799fhw4fvdXddPPzwwzpx4oRiYmK0cOFCPfLII6qoqFBaWppWrlypqqoq+fr66o033qhRNjo6Wq+99prmzZunEydOqEePHpoxY4YGDx6s8PBwffXVVzp79qwOHTqkDz74QEVFRSooKLjnm0EBAIBvPoKWAAAADaRp06YaM2aMNm3aZJ0bN26c7Ha7xzJ2u1179uxRUlKSUlNTdfToUa8jFJs3b17jXGBgoDIyMpSQkKD9+/crNze3TgHDRYsW6emnn1ZhYaFGjhzpkrZp0yYryBkcHKz09HQNHz5cJ0+eVEpKilJSUmrUN2DAAH344Yf31U7S/v7+Sk5OVnx8vMrLy7Vy5UqtXLnSSvfx8dFvfvMbFRcXN7qgZa9evTR79mzNmjXL7bPj7++vt99+W/369XNbfu7cuQoKCtLcuXP15ZdfasWKFVqxYoXbvP7+/i5LCgAAANwpTA8HAABoQImJiS7/9jQ13FlwcLBSUlJ04MABTZs2TV26dFFwcLB8fX31wAMPqG/fvnrmmWeUlpbmcU3F0NBQZWVlKTU1VWPGjFH79u1lt9sVEBCgqKgojR07Vlu2bHG7IdCsWbOUkpKiYcOGqXXr1vL19fx37Y4dO+ro0aNau3atBg0apFatWsnPz0/h4eGKj4/XO++8o/379983u4Y7GzhwoHJzczV58mS1bdtWfn5+ioiIsILBc+bMuddd9GjatGk6cOCAxo0bp7Zt28rf31/t2rXTlClTlJeXpyeffNJr+enTp+vMmTN66aWXNGDAAIWGhsrX11dBQUHq3LmzEhIS9Lvf/U7//ve/9dBDD92lqwIAAP/LbKY+K74DAAAAAAAAwB3CSEsAAAAAAAAAjQpBSwAAAAAAAACNCkFLAAAAAAAAAI0KQUsAAAAAAAAAjQpBSwAAAAAAAACNCkFLAAAAAAAAAI0KQUsAAAAAAAAAjQpBSwAAAAAAAACNCkFLAAAAAAAAAI0KQUsAAAAAAAAAjQpBSwAAAAAAAACNCkFLAAAAAAAAAI0KQUsAAAAAAAAAjQpBSwAAAAAAAACNyv8BE1/zG9xvW70AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "patience = 500\n", + "ae2_trained, IRE2, IREth2= lab02_lib.create_fit_save_ae(data,'out/AE2.h5','out/AE2_ire_th.txt', 3000, True, patience)\n", + "lab02_lib.ire_plot('training', IRE2, IREth2, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZRxwucpvTYBT", + "outputId": "ff95ad6e-a312-46a9-b0c1-54f537ae6146" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IREth: 0.44\n" + ] + } + ], + "source": [ + "print(f\"IREth: {IREth2}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oDYBGJswP6bF" + }, + "source": [ + "MSE_stop < 0.01 - удволетворяет ТЗ" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qzLmxGQpRIq0" + }, + "source": [ + "#### Рассчитать характеристики качества обучения EDCA для AE1 и AE2. Визуализировать и сравнить области пространствапризнаков, распознаваемые автокодировщиками AE1 и AE2. Сделать вывод о пригодности AE1 и AE2 для качественного обнаружения аномалий." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "xxQyT_qgP_cA", + "outputId": "74b5e2f3-7579-4129-81c7-18bd19180c0b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m219/219\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfA5JREFUeJzt3Xl4VOXd//HPTJZhSyBAFhJCwq6gqNhWwVq0iIiIW1WkfR5wwdKfaMG61boAosX1sbZWiwtoK4vFii1Wq4DiUtRiEQFtWYSEQCAJSxLWLDPn98fkTM5syUy2OUner+viIjM5c+aemUzgM9/7/t4OwzAMAQAAAACAmHPGegAAAAAAAMCLkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AiCmHw6HZs2fHehjtzssvvyyHw6G8vLyob7tmzRo5HA6tWbOmycfV1uXm5uq6666L9TD8zJ49Ww6HQ/v374/1UBrEjs8pADQGIR0AGujZZ5+Vw+HQWWed1ehzvf322wTVFlRaWqoOHTrI4XDoP//5T8hjrrvuOjkcjpB/OnTo4Hfsww8/rEsvvVTp6emN/tDhvPPOC3u/1j/8vDTe2rVrNXv2bJWWljb6XN9++62mTZumfv36qUOHDkpOTtY555yjp59+WsePH2/8YAEA7UZ8rAcAAK3VokWLlJubq3/961/avn27BgwY0OBzvf322/r9739P8Gohy5Ytk8PhUEZGhhYtWqSHHnoo5HEul0svvvhi0PVxcXF+l++77z5lZGTojDPO0Lvvvtuosd17772aOnWq7/K6dev029/+Vr/61a908skn+64fNmxYo+7nf//3f3XttdfK5XJFfdsf/OAHOn78uBITExs1hlhbu3at5syZo+uuu07dunVr8Hn+/ve/6+qrr5bL5dLkyZN1yimnqLKyUp988onuvPNOff3113r++eebbuAAgDaNkA4ADbBz506tXbtWb7zxhqZNm6ZFixZp1qxZsR5Wu3fixAklJibK6ax7otirr76qiy++WDk5OVq8eHHYkB4fH6//+Z//qfd+d+7cqdzcXO3fv1+pqakNGrtpzJgxfpc7dOig3/72txozZozOO++8sLc7evSoOnfuHPH9xMXFBX3YECmn0xk0m6C92rlzp6699lrl5OTo/fffV69evXzfmz59urZv366///3vMRwhohHp7xAAaE78BgKABli0aJFSUlI0fvx4XXXVVVq0aFHQMeHW7ebl5cnhcOjll1+W5J1W/fvf/16S/KYzm44eParbb79d2dnZcrlcGjx4sJ544gkZhhF0n6+++qrOPPNMdezYUd27d9e1116rgoICv2POO+88nXLKKfrmm290/vnnq1OnTsrKytJjjz0WdL4TJ05o9uzZGjRokDp06KBevXrpyiuv1Lfffhv1+CoqKnTbbbcpNTVVSUlJuvTSS7V79+6Qz++ePXt0ww03KD09XS6XS0OHDtWCBQtCPr9Lly7Vfffdp6ysLHXq1Enl5eUhz2natWuXPv74Y1177bW69tprfR+4NEZubm6jbh8tcw3xN998ox//+MdKSUnR97//fUnSxo0bdd111/mmXWdkZOiGG27QgQMH/M4Rak16bm6uLrnkEn3yySf63ve+pw4dOqhfv3764x//6HfbUD/b0fxc5efn69JLL1Xnzp2Vlpam2267Te+++25E69wPHz6smTNnKjc3Vy6XS2lpaRozZozWr1/vd9znn3+uiy66SF27dlWnTp00atQo/fOf//R7Du+8805JUt++fX3vu2jX6D/22GM6cuSIXnrpJb+AbhowYIBmzJgR9vYHDx7UHXfcoVNPPVVdunRRcnKyxo0bp6+++iro2N/97ncaOnSoOnXqpJSUFH3nO9/R4sWLo35uwtm/f7+uueYaJScnq0ePHpoxY4ZOnDjhd0x1dbXmzp2r/v37y+VyKTc3V7/61a9UUVHhd1y4JRmB68fNn8N//vOf+sUvfqHU1FR17txZV1xxhUpKSvxuaxiGHnroIfXu3VudOnXS+eefr6+//jroPiJ9TsP9DtmwYYMcDoeeeuqpoHOvXbtWDodDS5Ysqe/pBIAGo5IOAA2waNEiXXnllUpMTNSkSZP03HPPad26dfrud78b9bmmTZumwsJCrVy5Un/605/8vmcYhi699FJ98MEHuvHGG3X66afr3Xff1Z133qk9e/b4/Sfy4Ycf1v33369rrrlGU6dOVUlJiX73u9/pBz/4gb788ku/6byHDh3SRRddpCuvvFLXXHONXn/9dd1999069dRTNW7cOEmS2+3WJZdcotWrV+vaa6/VjBkzdPjwYa1cuVKbN29W//79oxrf1KlT9eqrr+rHP/6xRo4cqffff1/jx48Pej6Kiop09tlny+Fw6JZbblFqaqreeecd3XjjjSovL9fMmTP9jp87d64SExN1xx13qKKiot4p2EuWLFHnzp11ySWXqGPHjurfv78WLVqkkSNHhjw+VDOtxMREJScn13k/LeHqq6/WwIED9etf/9r3ocjKlSu1Y8cOXX/99crIyPBNtf7666/12Wef+X0AFMr27dt11VVX6cYbb9SUKVO0YMECXXfddTrzzDM1dOjQOm8byc/V0aNH9cMf/lB79+7VjBkzlJGRocWLF+uDDz6I6DH/7Gc/0+uvv65bbrlFQ4YM0YEDB/TJJ5/oP//5j4YPHy5Jev/99zVu3DideeaZmjVrlpxOpxYuXKgf/vCH+vjjj/W9731PV155pbZu3aolS5boqaeeUs+ePSUp6pkQK1asUL9+/cL+/NRnx44devPNN3X11Verb9++Kioq0vz58zVq1Ch98803yszMlCS98MIL+vnPf66rrrrKF543btyozz//XD/+8Y8jfm7qcs011yg3N1fz5s3TZ599pt/+9rc6dOiQ34c0U6dO1SuvvKKrrrpKt99+uz7//HPNmzdP//nPf7R8+fIGPQeSdOuttyolJUWzZs1SXl6efvOb3+iWW27Ra6+95jvmgQce0EMPPaSLL75YF198sdavX68LL7xQlZWVDXpOTYG/Q0466SSdc845WrRokW677Ta/YxctWqSkpCRddtllDX6sAFAvAwAQlS+++MKQZKxcudIwDMPweDxG7969jRkzZvgd98EHHxiSjA8++MDv+p07dxqSjIULF/qumz59uhHqV/Kbb75pSDIeeughv+uvuuoqw+FwGNu3bzcMwzDy8vKMuLg44+GHH/Y7btOmTUZ8fLzf9aNGjTIkGX/84x9911VUVBgZGRnGj370I991CxYsMCQZ//d//xc0Lo/HE9X4NmzYYEgybr75Zr/jfvzjHxuSjFmzZvmuu/HGG41evXoZ+/fv9zv22muvNbp27WocO3bMMIza57dfv36+6yJx6qmnGj/5yU98l3/1q18ZPXv2NKqqqvyOmzJliiEp5J+xY8eGPHdJSUnQ42msZcuWBf0czZo1y5BkTJo0Kej4UM/FkiVLDEnGRx995Ltu4cKFhiRj586dvutycnKCjisuLjZcLpdx++23+64L9bMd6c/Vk08+aUgy3nzzTd91x48fN0466aSQ75dAXbt2NaZPnx72+x6Pxxg4cKAxduxY38+pYXifl759+xpjxozxXff4448HPQfRKCsrMyQZl112WcS3ycnJMaZMmeK7fOLECcPtdvsds3PnTsPlchkPPvig77rLLrvMGDp0aJ3nru+5Ccf8ebr00kv9rr/55psNScZXX31lGEbt+3jq1Kl+x91xxx2GJOP999/3XRfufRD4+M2fwwsuuMDv9brtttuMuLg4o7S01DAM789hYmKiMX78eL/jfvWrXxmSGvSc1vU7ZP78+YYk4z//+Y/vusrKSqNnz55+9wUAzYHp7gAQpUWLFik9PV3nn3++JO+0zokTJ2rp0qVyu91Nel9vv/224uLi9POf/9zv+ttvv12GYeidd96RJL3xxhvyeDy65pprtH//ft+fjIwMDRw4MKhK2aVLF7+11omJifre976nHTt2+K77y1/+op49e+rWW28NGpdZjY10fG+//bYkBR0XWBU3DEN/+ctfNGHCBBmG4fdYxo4dq7KysqCpu1OmTFHHjh1DP4EBNm7cqE2bNmnSpEm+6yZNmqT9+/eHbPjWoUMHrVy5MujPI488EtH9Nbef/exnQddZn4sTJ05o//79OvvssyUpomnPQ4YM0bnnnuu7nJqaqsGDB/v9bIQTyc/VP/7xD2VlZenSSy/1XdehQwfddNNN9Z5fkrp166bPP/9chYWFIb+/YcMGbdu2TT/+8Y914MAB38/P0aNHNXr0aH300UfyeDwR3Vd9zKUVSUlJDT6Hy+XyrX92u906cOCAunTposGDB/u9Xt26ddPu3bu1bt26sOeq77mpz/Tp0/0um+998/1r/v2LX/zC77jbb79dkhq19v6nP/2p3yyPc889V263W/n5+ZKkVatWqbKyUrfeeqvfcYG/Q6TIn1NTqN8h11xzjTp06OC3lOndd9/V/v37I+pTAQCNwXR3AIiC2+3W0qVLdf7552vnzp2+68866yw9+eSTWr16tS688MImu7/8/HxlZmYGhQCzy7f5H9ht27bJMAwNHDgw5HkSEhL8Lvfu3Tto2nNKSoo2btzou/ztt99q8ODBio8P/09FpOPLz8+X0+lU//79/Y4bPHiw3+WSkhKVlpbq+eefD9sNu7i42O9y3759w44v0KuvvqrOnTurX79+2r59uyRvQMzNzdWiRYuCpt/HxcXpggsuiPj8LS3UYz948KDmzJmjpUuXBj1XZWVl9Z6zT58+QdelpKTo0KFD9d42kp+r/Px89e/fP+i4SHdHeOyxxzRlyhRlZ2frzDPP1MUXX6zJkyerX79+krzvBckbvMIpKytTSkpKRPdXF3PJw+HDhxt8Do/Ho6efflrPPvusdu7c6fdBX48ePXxf33333Vq1apW+973vacCAAbrwwgv14x//WOecc47vmPqem/oE/v7o37+/nE6nb52++T4OfK0yMjLUrVs33/u9IQJ/7szXx/y5M88dOMbU1NSg1zLS59QU6n3UrVs3TZgwQYsXL9bcuXMleT+gzcrK0g9/+MNoHx4ARIWQDgBReP/997V3714tXbpUS5cuDfr+okWLfCE93Nrfpq62S97/lDocDr3zzjshO3Z36dLF73K4rt5GiGZ0LcmscP7P//xP2JAVuPVYpFV0wzC0ZMkSHT16VEOGDAn6fnFxsY4cORL0XNlZqMd+zTXXaO3atbrzzjt1+umnq0uXLvJ4PLrooosiqiA35mejJX6urrnmGp177rlavny53nvvPT3++ON69NFH9cYbb2jcuHG+x/j444/r9NNPD3mOpnqNk5OTlZmZqc2bNzf4HL/+9a91//3364YbbtDcuXPVvXt3OZ1OzZw50+/1Ovnkk7Vlyxa99dZb+sc//qG//OUvevbZZ/XAAw9ozpw5kup/bqIV7ndYfX0N6hLu919T/uxE+pyawv0OmTx5spYtW6a1a9fq1FNP1d/+9jfdfPPNdH4H0OwI6QAQhUWLFiktLc3Xjd3qjTfe0PLly/WHP/xBHTt29FV3SktL/Y4LVW0K95/enJwcrVq1SocPH/arVv/3v//1fV+Sr4lb3759NWjQoAY9tkD9+/fX559/rqqqqqBKfLTjy8nJkcfj8VXnTVu2bPE7n9n53e12N3kF+8MPP9Tu3bv14IMP+u03LnmrdT/96U/15ptvtuqprIcOHdLq1as1Z84cPfDAA77rzeqyHeTk5Oibb76RYRh+P/fmzIZI9OrVSzfffLNuvvlmFRcXa/jw4Xr44Yc1btw432yN5OTken+GGhM2TZdccomef/55ffrppxoxYkTUt3/99dd1/vnn66WXXvK7vrS01NfMztS5c2dNnDhREydOVGVlpa688ko9/PDDuueee3xb4tX13NRn27ZtflXl7du3y+Px+HYvMN/H27Zt83sPFRUVqbS01Pd+l7yV8MDffZWVldq7d29Ez0sg89zbtm3zmxlQUlISNMsjmue0LhdddJFSU1O1aNEinXXWWTp27Jj+93//t0HjB4Bo8FEgAETo+PHjeuONN3TJJZfoqquuCvpzyy236PDhw/rb3/4myfufyri4OH300Ud+53n22WeDzm3ubx34n9qLL75YbrdbzzzzjN/1Tz31lBwOh+8/3ldeeaXi4uI0Z86coMqTYRhB229F4kc/+pH2798fdN/mOaMZn/n3b3/7W7/jfvOb3/hdjouL049+9CP95S9/CVmdDNySKRrmVPc777wz6LW76aabNHDgwJBb6TWl/fv367///a+OHTvWLOc3q5GBPwOBz3MsjR07Vnv27PG9TyTv2vkXXnih3tu63e6gKftpaWnKzMz0bQF25plnqn///nriiSd05MiRoHNYf4bCve8k71Z95odNdbnrrrvUuXNnTZ06VUVFRUHf//bbb/X000+HvX1cXFzQ67Vs2TLt2bPH77rA93BiYqKGDBkiwzBUVVUV0XNTn8APH3/3u99Jqn3/XnzxxZKCf57+7//+T5L8lov0798/6Hff888/3+CZRBdccIESEhL0u9/9zu/5CvWzHelzWp/4+HhNmjRJf/7zn/Xyyy/r1FNPDZrJAwDNgUo6AETob3/7mw4fPuzX8Mrq7LPP9lVdJk6cqK5du+rqq6/W7373OzkcDvXv319vvfVW0DphyRssJG9jtbFjxyouLk7XXnutJkyYoPPPP1/33nuv8vLydNppp+m9997TX//6V82cOdNXNezfv78eeugh3XPPPcrLy9Pll1+upKQk7dy5U8uXL9dPf/pT3XHHHVE93smTJ+uPf/yjfvGLX+hf//qXzj33XB09elSrVq3SzTffrMsuuyzi8Z1++umaNGmSnn32WZWVlWnkyJFavXp1yOrpI488og8++EBnnXWWbrrpJg0ZMkQHDx7U+vXrtWrVKh08eDCqxyF592j/y1/+ojFjxvgqjoEuvfRSPf300youLlZaWpok757Qr776asjjr7jiCl/I+9Of/qT8/Hxf+P7oo4/00EMPSZL+93//11cFfOaZZzRnzhx98MEHOu+886J+HPVJTk7WD37wAz322GOqqqpSVlaW3nvvPb/+CbE2bdo0PfPMM5o0aZJmzJihXr16adGiRb7Xpa7q9uHDh9W7d29dddVVOu2009SlSxetWrVK69at05NPPilJcjqdevHFFzVu3DgNHTpU119/vbKysrRnzx598MEHSk5O1ooVKyTVvu/uvfdeXXvttUpISNCECRPUuXNnTZ48WR9++GG906379++vxYsXa+LEiTr55JM1efJknXLKKaqsrNTatWu1bNkyv33BA11yySV68MEHdf3112vkyJHatGmTFi1aFLSO/MILL1RGRobOOeccpaen6z//+Y+eeeYZjR8/XklJSSotLa33uanPzp07demll+qiiy7Sp59+6tsy8bTTTpMknXbaaZoyZYqef/55lZaWatSoUfrXv/6lV155RZdffrmvmabk3artZz/7mX70ox9pzJgx+uqrr/Tuu+9GVcm2Sk1N1R133KF58+bpkksu0cUXX6wvv/xS77zzTtA5I31OIzF58mT99re/1QcffKBHH320QWMHgKi1aC95AGjFJkyYYHTo0ME4evRo2GOuu+46IyEhwbd9WElJifGjH/3I6NSpk5GSkmJMmzbN2Lx5c9AWbNXV1catt95qpKamGg6Hw287tsOHDxu33XabkZmZaSQkJBgDBw40Hn/8cb9tiEx/+ctfjO9///tG586djc6dOxsnnXSSMX36dGPLli2+Y0aNGhVyK6cpU6YYOTk5ftcdO3bMuPfee42+ffsaCQkJRkZGhnHVVVcZ3377bdTjO378uPHzn//c6NGjh9G5c2djwoQJRkFBQcitmoqKiozp06cb2dnZvvsdPXq08fzzz/uOMbdPWrZsWdjXw/q8SDJeeumlsMesWbPGkGQ8/fTTvudDYbZgU8C2Xeb2Y6H+hNo6rb5txqzq2oKtpKQk6Pjdu3cbV1xxhdGtWzeja9euxtVXX20UFhYGPc/htmAbP3580DlHjRpljBo1ync53BZskf5c7dixwxg/frzRsWNHIzU11bj99tt9r9Fnn30W9rmoqKgw7rzzTuO0004zkpKSjM6dOxunnXaa8eyzzwYd++WXXxpXXnml0aNHD8Plchk5OTnGNddcY6xevdrvuLlz5xpZWVmG0+n0ez7M1zRSW7duNW666SYjNzfXSExMNJKSkoxzzjnH+N3vfmecOHHCd1yoLdhuv/12o1evXkbHjh2Nc845x/j000+DnvP58+cbP/jBD3yPp3///sadd95plJWVRf3cBDJ/nr755hvjqquuMpKSkoyUlBTjlltuMY4fP+53bFVVlTFnzhzf74Ts7Gzjnnvu8XuMhmEYbrfbuPvuu42ePXsanTp1MsaOHWts37497BZs69at87t9qJ8xt9ttzJkzx/dcnXfeecbmzZsb/JxG+jtk6NChhtPpNHbv3l3vcwkATcFhGDHuEgQAANq93/zmN7rtttu0e/duZWVlxXo4gM8ZZ5yh7t27a/Xq1bEeCoB2gjXpAACgRR0/ftzv8okTJzR//nwNHDiQgA5b+eKLL7RhwwZNnjw51kMB0I6wJh0AALSoK6+8Un369NHpp5+usrIyvfrqq/rvf//b7I37gEht3rxZ//73v/Xkk0+qV69emjhxYqyHBKAdIaQDAIAWNXbsWL344otatGiR3G63hgwZoqVLlxKEYBuvv/66HnzwQQ0ePFhLliwJ23ASAJoDa9IBAAAAALAJ1qQDAAAAAGAThHQAAAAAAGyi3a1J93g8KiwsVFJSkhwOR6yHAwAAAABo4wzD0OHDh5WZmSmns+5aebsL6YWFhcrOzo71MAAAAAAA7UxBQYF69+5d5zHtLqQnJSVJkn71z3+rQ5cuMR4NAAAAAKCtO3HkiH59zpm+PFqXdhfSzSnuHbp0UYcIniAAAAAAAJpCJEuuaRwHAAAAAIBNENIBAAAAALAJQjoAAAAAADbR7takAwAAAACaTpzhUaLHI4eMWA8lJgw5VO1wqMrhlJpgm29COgAAAACgQZKrK3Xy8XIlNkE4bc0Mw9ABZ7y+7ZikSmdco85FSAcAAAAARC3O8Ojk4+VKTUpSl+7dpfaa0w3JXVWlTgcOqMvRUn3RpbuMRnxoQUgHAAAAAEQt0eNRosOhLt27K6FDh1gPJ6YSOnSQMz5exwsK1MHj1vG4hkdtGscBAAAAAKLmW4PeXivoARxO7xPR2LX5hHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAACg3Snet0/33jZTZ500WDnJSTqzf39NvvIKffz++5KkP734oq4cM0YDU3uqVweXykpLW2RchHQAAAAAQLtSkJensSNH6JM1a3T/vEf0/r//rcUrVmjkqFG6Z+YMSdLx48d0/oUX6ud33d2iY2MLNgAAAABAu/LLGT+Xw+HQO5/8U506d/ZdP3jIEE2acp0k6ae3/lyStPbDD1t0bFTSAQAAAAAx53a3zP0cOnhQH7z3nq6b9jO/gG7q2q1bywwkDEI6AAAAACBmtm+VRp0er96dEzXq9Hht39q895f37bcyDEMDBg9u3jtqIEI6AAAAACBmbrwmXt9uc0iSvt3m0I3XNO+qbMMwmvX8jcWadAAAAABATLjd0tb/Oi2XHdr6X4fcbikurnnus++AAXI4HNq+ZUvz3EEjUUkHAAAAAMREXJw06CSP4uKMmstGzeXmu8+U7t113pgxenn+H3Ts6NGg77fUVmvhENIBAAAAADHz0p+r1X+gN6T3H2jopT9XN/t9zvvN03K73Rr3/XP01vLl2rF9m7b+9z968ffP6JJRP5Dk3Ud981dfaee330qS/rN5szZ/9ZUOHTzYrGNjujsAAAAAIGYGDJI+3FDdrFPcA+X066f3Pv1MTz/6iObcfbeK9+1Vj9RUDTvjDD36299Jkv74wgt68uGHfLe54oLRkqTfPP+CJk6e3Gxjcxh2XzXfxMrLy9W1a1c9+NUWdUhKivVwAAAAAKBV6uSu0pnHy5WV00cJrg6xHk7MVVWc0J78Xfp3x2Qdi0vw+96Jw4f1wGmDVVZWpuTk5DrPw3R3AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAARM2Qw/wCku958D0vDURIBwAAAABErdrhkGEYcldVxXootlB1/Lg8hqFKZ+NiNvukAwAAAACiVuVw6oAzXp0OHJAzPl4OZ+MqyK2W4Q3oB/aXaHe8S24HIR0AAAAA0NIcDn3bMUldjpbqeEFBrEcTUx7D0O54l/I7dGn0uQjpAAAAAIAGqXTG6Ysu3dXB45ajnS5ON+RQpdPZ6Aq6iZAOAAAAAGgww+HQ8TiiZVOhcRwAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJ24T0Rx55RA6HQzNnzqzzuGXLlumkk05Shw4ddOqpp+rtt99umQECAAAAANDMbBHS161bp/nz52vYsGF1Hrd27VpNmjRJN954o7788ktdfvnluvzyy7V58+YWGikAAAAAAM0n5iH9yJEj+slPfqIXXnhBKSkpdR779NNP66KLLtKdd96pk08+WXPnztXw4cP1zDPPtNBoAQAAAABoPjEP6dOnT9f48eN1wQUX1Hvsp59+GnTc2LFj9emnn4a9TUVFhcrLy/3+AAAAAABgR/GxvPOlS5dq/fr1WrduXUTH79u3T+np6X7Xpaena9++fWFvM2/ePM2ZM6dR4wQAAAAAoCXErJJeUFCgGTNmaNGiRerQoUOz3c8999yjsrIy35+CgoJmuy8AAAAAABojZpX0f//73youLtbw4cN917ndbn300Ud65plnVFFRobi4OL/bZGRkqKioyO+6oqIiZWRkhL0fl8sll8vVtIMHAAAAAKAZxKySPnr0aG3atEkbNmzw/fnOd76jn/zkJ9qwYUNQQJekESNGaPXq1X7XrVy5UiNGjGipYQMAAAAA0GxiVklPSkrSKaec4ndd586d1aNHD9/1kydPVlZWlubNmydJmjFjhkaNGqUnn3xS48eP19KlS/XFF1/o+eefb/HxAwAAAADQ1GLe3b0uu3bt0t69e32XR44cqcWLF+v555/Xaaedptdff11vvvlmUNgHAAAAAKA1chiGYcR6EC2pvLxcXbt21YNfbVGHpKRYDwcAAAAA0MadOHxYD5w2WGVlZUpOTq7zWFtX0gEAAAAAaE8I6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALCJ+Fje+XPPPafnnntOeXl5kqShQ4fqgQce0Lhx40Ie//LLL+v666/3u87lcunEiRPNPVQAAGzP/Pf0KvHvYkt7XR0kSbm5ubEdCACg1YtpSO/du7ceeeQRDRw4UIZh6JVXXtFll12mL7/8UkOHDg15m+TkZG3ZssV32eFwtNRwAQCwJTOcVx+q0BWHSlUR2+G0SxNUJklaUXOZsA4AaKiYhvQJEyb4XX744Yf13HPP6bPPPgsb0h0OhzIyMiK+j4qKClVU1P53pby8vGGDBQDAhvLy8nzhvLykSNkds2I9pHZtwo4iLU/ppjzlEdQBAA0S05Bu5Xa7tWzZMh09elQjRowIe9yRI0eUk5Mjj8ej4cOH69e//nXYQC9J8+bN05w5c5pjyAAAxJQZ0Edv3aLsjlmqPCgVelbGeljtWnb2GI0u2aLVgwYrT3mSqKoDAKLjMAzDiOUANm3apBEjRujEiRPq0qWLFi9erIsvvjjksZ9++qm2bdumYcOGqaysTE888YQ++ugjff311+rdu3fI24SqpGdnZ+vBr7aoQ1JSszwmAACakzm9fcKOIpWXFGngQWm/5xsVHilUao9OsR1cO5dQ0U09nUO0rbuUnJqu5SndFJ/iIqgDQDt34vBhPXDaYJWVlSk5ObnOY2Me0isrK7Vr1y6VlZXp9ddf14svvqgPP/xQQ4YMqfe2VVVVOvnkkzVp0iTNnTs3ovsrLy9X165dCekAgFbJOr09+0i8Kvfs0cbyVUrt0Um7Dx3Tx6OHxXqI7dqk9dtVcuCYhiVfoMSsLH19fI9WDxpMUAeAdi6akB7z6e6JiYkaMGCAJOnMM8/UunXr9PTTT2v+/Pn13jYhIUFnnHGGtm/f3tzDBACgQcyqd1OxTm8vLFipwiOFqnBKS4Z7/y0dnjyxSe8P0Vky/DWdu3qjNpavUqYnUwOdQ6StW5Scmu5rKteUCP4A0PbEPKQH8ng8ftPT6+J2u7Vp06aw0+MBAIgV65T0pmROby/0rFSVq1QVx6SPRw8jnNvE8OSJ+ni0dO7qjapylWrjgVUapguU2DG+yX8WaFAHAG1TTEP6Pffco3HjxqlPnz46fPiwFi9erDVr1ujdd9+VJE2ePFlZWVmaN2+eJOnBBx/U2WefrQEDBqi0tFSPP/648vPzNXXq1Fg+DAAA/AROSW9KlQflm95O9dyezKAuya+qnp09pknvx9qgjqAOAG1HTEN6cXGxJk+erL1796pr164aNmyY3n33XY0Z4/1HbNeuXXI6nb7jDx06pJtuukn79u1TSkqKzjzzTK1duzai9esAADQ3637l1inpTck6vZ1wbl/ma2Otqjf1z0KoqfSEdQBo/WLeOK6l0TgOANAcAvcrNzuuV7lKm/R+zOZwBPTWY335a5K8TeWakrVBXUGXajrJA4CNtarGcQAAtHah9isPnJLelAjorYv5ei0Z/lqTnjdwKj37swNA20BIBwCggULtV17oWcmUdITU1D8LgVPprdPfaSoHAK0XIR0AAItotkzz26/cUj2n4zpagrVB3aT12/06yQdW1SNBoAcAeyCkAwBQw7quPBLlJUXsV46Ysk6lD7c/eySovAOAfRDSAQBQ8LrySFSyXzlsoq792SPBenYAsA9COgCgXQu3rjwShUcK2a8cthFuf/ZIsJ4dAOyDkA4AaLes09sD15VHouIYzeFgL6H2Z49EuPXsBHUAaHmEdABAu2NWz63T20OtK48EAR12ZK2qRyLcevYVNd8nrANAyyGkAwDaFWv13Dq9nXXlaGui+TkOt559wo4ipr8DQAsjpAMAWr1ot00zq+fW6e2sK0d7Fm49e3b2GLZzA4AWRkgHALRqDdk2zayeW6e3E87R3oVaz15YsJLt3ACghRHSAQCtUqh15ZGwVs+Z3g4Es1bVJ63f3qDt3FjPDgANR0gHALQ64daVRyKwORwBHQhmvi+WDH+tQdu5sZ4dABqOkA4AaFXMgB5qXXkkqJ4DkTOr6tFu5xZuPTthHQDqR0gHALQK5vT2CTuKwq4rjxQBHYhcQ7ZzC7Wenao6AESGkA4AsD3r9PbsI/GsKwdaWLTbuUnB69mtVXWCOgCER0gHANhWqOZwhQXB1XMCOmAf4dazW6vqNJUDgPCcsR4AAAChmNXzCTuKNHrrFu/09oKVqnKVqsJZWz0noAP25J0mP0wVTqnKVaqN5as08KCUfcTbVK76UIXvgzgAQC0q6QAA26mrORzVc6D1sK5nt1bVaSoHAOER0gEAthFJczjCOdC6mO9Za5d4msoBQHhMdwcA2IJ1env2kXgNrKmeB05vB9A6mdPflwwfEDT9ffTWLUx/B4AaVNIBADFFczig7fO4JWccTeUAIBKEdABAzFi3VrNOb69ylbK1GtAGFBckaOGcTBXtcim9T4Wun1WotOwq31p1c/q7dau2CTuKmP4OoF1jujsAICb8msMFTG9fMnwAAR1oAxbOyVTJ7kRJUsnuRC2ck+n7nnX6e4XT+/4vLFgZNP2dKfAA2hsq6QCAFkVzOKB98Lilol2u2sseh4p2uXxT3yWaygFAKFTSAQAthuZwQPvhjJPS+1TI6TS8l52G93Jc8LE0lQOAWlTSAQDNjuZwQPt0/axC35r01N6Vun5WYdhjaSoHAF6EdABAs6I5HNB+pWVX6e4X8/2muNeHpnIA2jtCOgCg2fg1h+uYpcqa6e2pPTpRPQfakUgDuskM6pL8qurZ2WM0umSLVg8arDzlSaKqDqDtIaQDAJoczeEANBZN5QC0VzSOAwA0KZrDAa2Pxx3rEYQXaVM5GssBaCuopAMAmgTN4YDWp7ggwdfYLb1Pha6fVai07KoGn89cex7NGvRIRNRUrl+68vKoqgNo/QjpAIBGozkc0DotnJOpkt2JkqSS3YlaOCdTd7+YH/V5rGE/Lt4jd7WzSUJ/IJrKAWgPCOkAgEahORzQOnncUtEuV+1lj0NFu1wNqoJbw7672iGpcaG/LvU1lWOrNgCtHSEdANAgNIcDWjdnnJTep0IluxPl8TjkdBpK7V1ZZ0APFeADw77kDemNCf31qaupHFV1AK0djeMAAFGjORzQNGLdsO36WYVK7V0pSUrtXanrZxWGPK64IEGPTs3RHeMG6dGpOSouSPB9zwz7TqdRc433b6fT8F7fxAHdKlRTucKClTSVA9CqOQzDMOo/rO0oLy9X165d9eBXW9QhKSnWwwGAViWwOdzQgOZwH48eJonp7UB9mrphW2MFVrsDLz86NSeo4m6dxt5Sa9Lrsr7c21TO5ZEyu2Sqp3OItnWXb6u2+BQXVXUAMXPi8GE9cNpglZWVKTk5uc5jme4OAIgIzeGAptNUDdsiVd+Uc/N7oT486JlZVefadY9bSsuu0t0v5jdbd/dI1NVUbnTJFq0eNJjp7wBaBUI6AKBeNIcDmk5TNmyrT7QV+3AfHoRau76/MPy5Wzqgm8I1lfPbqq3mWMI6ALtiTToAICxzLeeEHUUavXWLt3pesFIby1f5NYcjoAORC1zD3Zxrt0OF7nDMDw88nuDGb6HWrkdz7pZk/k76ePQwVTilKlep9nu+0cCDUvYRb1M5c606ANgRlXQAQEjW6e3ZR+L9qudMbwcaJnDttjyOOhu2NUa0FXtnnGrWkzvk7dBuKC7ekDMu9HT2lpoN0FDWqvqk9du18YD/Vm3m9HeJqjoAeyGkAwD8BDaHyw5oDsf0dqDhrNVnw+NQWnZFnWvRGxN6zYp9cUGiDMNbHY+L92h/YULIKe8et+Sutk6ydMhd7fAbg/XvaLdviwXz99SS4a8FbdVmTn9nqzYAdsN0dwCAj3VrNev09sCt1QjoQHQ87tDTyYsLXCG3Yatry7NI70/yTlN3xtVu5OPxOMJOS492Gn6k27fZQait2szp79at2gDADqikAwAk0RwOaA6Bjdt69KrUoaKEeqvPdXV/r6u6Hnh/U+4v9KuOG/VMSzfXmhftctUbvAOnwNtdYFWdpnIA7IqQDgDtnFk9mrCjyG9rNev0dsI52rrmCpqBYTslvUqpvSvrDMHh1nvvy0/QK3Pr7tQeeH+vzM1Uj16VOrA3QeY68x69qsI+1miDd2sJ6FZ1bdU2YUcR098BxBwhHQDaMZrDob2LdouyaIQK2wf2JuqJd7ZKCh9uw633fmVu3Xurhwv3PXpVRjRW63jqC94Nfd4C78d6uSUDf7it2mgqB8AOCOkA0A7RHA7wqmtaeWOFC9vm90IJ1/39kptK9NL9vX3HheqmHur+emZVqrjAZbkH7wcF5u3qC9vhgnO0z1vg/Vw6rUR/m5/q9yHCgb2JSsuu0A2zm+6DkrqYv9+sVXWaygGwAxrHAUA7Q3M4wKuufcGbirW5Wkp6laqrHHU2g1swO3T397deSJVkWI4M3dQtsJnbDbML62wGF26v87oa1zXkeQu8nwWzai8f2JtQMx1fKi5w6fFp0TfKawyaygGwG0I6ALQjfs3hjsRrYM309ipXqZYMH8D0drQr0XYzbwhzjfcT72xVfIKhQ0Xe8GkNxFJtKC4uCO7+Xl1pTmN3WM7s0CU3lYS8T8PwvxyuC3tdYTtceJdqnzeHI7LnLdT9uKudvsvex1X72NzVzrAd6JuL+cHkkuEDVOH0/l4sLFipgQel0Vu3aMKOIuXl5RHWAbQIQjoAtAPmfy4Dq+cby1f5NYcjoKO9uXRaiRw1Id3hNHTptNDBtynUVX22hmKzYu50GkrLrvCF4sBKure6Xqu4IKGmCu2quZxYb9j1TjU3z2uoR6/KeivlxQUJqq5y+PZeT0mv8gv+gUJ9GBIX7/Fd9n9clucqwhkNTTnzwayqVzgVVFWfsKOIqjqAFkFIB4A2zjq9PbB6bp3eDrRHf5ufKqMmjBoeh/42P7WeW0QmMDiGq9oX707QIzfm+IVis6psyFBxgUt3jBukE8f8q81Sbcd308I5mf7brRneYwKr4s/fm+Wbyn6o2L890aHieN11ySDFxXvCVsoXzsn0zQhwOg3FJ3iPq2tf96Bp+HNqL/foVeVdf28+sghnNDR2L/lwrNPfrVX1wOnvhHUAzcVhGIGTotq28vJyde3aVQ9+tUUdkpJiPRwAaDaBzeGGBjSH+3j0MEk0h0P75XFLd4wbFHT9E+9sbfCU91CN2CTppVmZKtntbQbnrnaqR69KGYZ0cF+ivJVkh+9vp9OQw2nIXW0N5oaccYY8bv/r0vtU6u4X81W4M0FPTOsbNJ6eWRXav8cVdH3tfYbmcBpyOg25q51+DeXCPWdp2RXav8e/QV5gI7niggQtmJ2p4oLa56ZnZlVEDexCeXRqTlBTvnDN6xraOX59uXdP9d4pnZRQ0U09nUO0rbt8TeXiU1w0lQMQkROHD+uB0warrKxMycnJdR5Ld3cAaIOsW6tZ9z6vcpWytRpQI1z39casSQ+sWv/hl1kqLTH3KJfc1Q51z6hUaUm8pertX0EP7sju/Z43oPtfV7TLpUen5tSsWQ8M3ob276n5YMDtkAyH5ZjwAV3yzipwexx67K2tiq+ZhW/u026e2/xAwdz33RQ4Pd5agd+/J3RH+Ibszx7uPq23D/XBQDSd461btU1av91vT3XrVm0EdQBNienuANDG0BwOiFy4pmoNEWotd2lJogKnqR/cl+g3Ld1krkH/5Uv5Idagh+aM81jWsocO3u5qM6CHPyaUuHiPDhYl+KaVP3ZTXxXtSvQ7xnzOrFP5zXHfPWGAbyr6vvyEiDrCR/oBSSRN/xqyRj8UmsoBaGlMdweANsL8D+KEHUW+6vl+zzd+09sJ50BoDZ0OHci7NjpRhuGQw2H4mqtFwlrp3ZefoMduCp6+bmVOnY+c+V++2op6XLxHHrfDMl7z+5LDYSgtu1IVxx1+swGsHvnrViV29J+uHljRdzgNpdV8EBLp9PRI1DdFvnaGgb/GLGewTn8vOXBMw5IvUGJWlgq6VDP9HUCdopnuTiUdANoAmsMBjdMUAT2w63n3DLMhWt31kLh4j+56YafufjHfFzIzcqrqrKbHxXt05/z8gAp2fWqnuaf3qdRdL+zUnfPzlZZdu4+7NVybjeeCZwOoZlyGfnnZIN158QAd2JegO+ebgdv/WKOmaj7l/qabtSD5b29nfe6k4Onwtbdp3BZ71qZyqT06ab/nG5Vllin7SLyuOFQqSVTUATQaa9IBoBULrJ5nBzSHWzJ8gCSawwEtIbDruSQlpbhrqtCSWWF2OLxN4AKbsgWacn+hXrw/q6a5nD93tVMv3JelA3uDvxeeobh4Q4+u2O4XVM214PNuyJV/Fbyu5nLWfc0dWjArU4+/vV2pvStUsjs4HKf3qVBGTuh1542dxRDqtuZ0+OLdib7u/XHxHt0wu3EfDEje36fry18L+b2rdEKvq0Oj7wNA+0ZIB4BWytocLvtIvCppDgfETKhGZgf2JvrCem23dIfSsiv9OpsHKi5IqDeAx8V7dGBv4JZj4QJ2bbO4pJRq7S9MCPmhQPD9RTpV3yF3tUPzbsipCejBDewunVYS1Eguko7ujQnw188qjLpjPADYASEdAFqZwK3VrNXz1B6dqJ4DjRQuGNYVGAM7xZvr0T2WPdgDu6WHO/fCOZkBAdy6llxyOMOtRXfU+3VpSbxeuC9L976SF3T/jWP4KugOh+RteeTwXV4wq3YP9x69KnXTQ3uCOuFbu703ZEu2QNF2jAcAuyCkA0ArEm5rNev0dsI50DDhgmGkgdFauU3LrlR1lUOHihL8GqUFBvTAc0+5vzDEWmr/irbTKRkOT8Ce6eEEVrW9FX4zuPo3fKv7PMk9qlR+wLqve+gxBjbLMwxHzZ7vXgf2JuqRG3P9bmPt9r6/0NuV3Qz1xQEBPloEdACtDY3jAKCVqGtrNZrDAQ1nVpFDVXZDXb9gdmbQbaXgRmY3PbSn3kZpged+ZW6mumdU1jled7VTHrdToZu5mX/7V9/Dsd5/fQ3unE6HuqVWKnAqe2j1NbOzTsX3/t2jl3eP+gWzM/1mChhhtmsDgLaKSjoA2Fxgc7ihNIcDmkRgFTtwTXnRLpeqK4PXmhcXuPTwlFxJ3qpwYHXdrNzWN9061Dr22suRNnCzinwv9P980UmDzzgWUEGv63bmNmyB4bv+xnJe4R6D/3X78hN8+5pbBe6BDgBtGZV0AGgFrtIJSfIF9NNzBiq1Rydf9ZyADkQvsIodF+/xNXpzOg2l96lQfKICtjnz/n1gb4Jv3bi16m6t9gY2Sgsl+NyhKuAO1V+Zrr19j16V9Rxv6KX7s3TXJYMi2iLOXyQfFlgfh/fvuPjA+wgO+wf2JurlBzODvhcX72n0dm3NYfehY6pylero5/9S5Z49Ki8pUsWOMlUfqmAbNgCNQiUdAAC0O6Gq2PI4lJZdoeICl9/09OtnFWrB7MyaCm9wtdqsgD9yY46KC1w1ITl0lV3yr+B3z6hUSnpVTWf1uivZ9fMec6g4PuJzeTwOxcUbNWvG66rYm9+LpKrvUFy8x28duvm193pniPv0BvNQVfTbfp9vu67s3v3SvV9PWr9dGw+s0jBdoMSO8RpdskWrBw1WnvKUm5sb03ECaJ2opAMAgHbH7MYeWDn/5UveNeV3zq8NhmnZVfrlS/lhq94Op/drM2Baq+xFuxL1wn1Zfve9cE6migu8FfyD+xJVWhKvrj0D16EbAV/XV+2uPca7Xj0yhschd7VTDqdHkW+55hW6Cm/4zuvl/7fhcSi9T4VmPp0f4vsO9czyf47j4j16YlpfPTo1R8UFgVvOxZY5i2nJ8AGqcHp7hBQWrNTAg9LorVs0YUeR8vLyqKoDiBohHQAAtEvXzyoMauxWXODtLH7HuEFBwdB6fI9eVerRq2YNujO4g7o1fJrd1KXaCr61A7q72qmy/YEBNNz5wonkmFACQ3Vd56/9+/bf79Sd8/N9z0HgcR7f+fxDvDnr4MnpfRXqg4j9e1w1H3p4p8ib57EuKbAbb1V9mCqcUpWrVBvLV2ngQSn7SLwm7Chi+juAqDHdHQAAtEuhGrs9PCU3qApu7iluPV7y3qa6UrrrkkH13tfj03J8096dcZ4Q1e5ot1LzZ04jr//2oT5QiOT+/c/15PS+9dyneT/hOtAHfq92yrthWXZgsm7RZscGctbp7+eu3qiN5auU6clUdvYYv+nvkpgCD6BeVNIBAEC7ZoY+j1sBa8P9q+CSgirtB4sSlN6nQg5HuOnp3r/NSrDHHd109Fp1h+i6A3rk54lsar2j5j6t1fLAZm+Gb21+8G3rCu61HfRDLUeoL6DHcps2c/q7taoeOP2dqjqASBDSAaAVqNhR5nd53b51MRoJ0P4U766dih5qL3VvhdwbSNOyK3TTw3t8l63B02xUF7yWO1Qw9v++M87TyEcRaaU8mmnz/uvJrdzVTt344B6FepyBnfLNrwMDeeByhCn3h+/wXlyQoEenhl6mEK3GBn0zqC8ZPkBVrlLt93zjm/5+xaFSgjqAehHSAcCmzIZD1YcqVF5SpOwj8b790XcfOubbHx1A03DGSd0zArcvM/TK3Nrt1Yp2uXzrpM3g3TPTOw3+iXe26pcv5evk7x4LajRnBk/JrHrXt+bc//tJKW7VX+G2C0Np2RVK612lUI+zR6b/Bxi+x++obcR36bQS3/KCO+bvlCQ9dlP4BnKhPjyJVlMGfeu2mKfnDNR+zzeSpBF9ztAVh0obfF4A7QMhHQBsyAznE3YUafTWLRp4UCosWKkqV6kqnGJ/dKAB6qqQmgHt4L7ArdD810LXNQU7cCp2qMZ04dUdwL2N5RrSGC78/flP0W9K3unqj0/LUY9elUHP1z0L8kPOJvC4azvA/21+qu81eWJaXxXtCh/Aw314Em1FvCmCPgA0BRrHAYDNmAF99NYtyu6YpcqD3q19Unt08lXPCedA5Kz7kofat1zyD2jWNdJOp6HU3pW+AH7ptBItmJUpeRy+im84oRrNSd5qvffDAKtQ67SbMpQHcsholoxe+9yV7E5USnqVemZV+vaev3RaiR6dmhNiDX3wvvMLZltfE/8AXl0pxdd8y/zwpGR3ojye4NcsEmbQDxyDXRvVAWjbqKQDgE2Y09sDq+cby1epwiktGT6A6jnQAPVVSAMrsdbp54EV8L/NT/VtV+Zxeyu+dQm1pdtPH95TU0k2hUrLzRnQw91nNLcLXGtuqn3uPB5v4z2zCdz1swr1t/mpAR+GBO87b1bciwv8t6qTvFPh4+I9uusS/ynp0c1aCFbfLAkAaEmEdACwAev09uwj8RpYUz0PnN4OIDqRTIUOF9CeeGer7n4x31d1DzyXYXjPtS8/eO2yef5QHxCkZVfpzvn5NevfJev2Y00nkvM15D5Dbdnm3TLtrhd2Bnz4UKu45rGH+zBE8naEl6SU9CpVVwXus1772pjT4q0fuJizFgJfs2g0NugDQFNhujsAxJDZ4dc6vd1sDmdWzyWmtwORCDU1eX9hgt9+3g6nobQQU6Gvn1XoC5EOp6GiXd411VPuL1RGjjfwmWHeuz66NkS+MjdTd7+YL8l/an24vb7n/Liv4hOMminvzTWtvb5zNu30+uICl16Zmym3O/Q5jJrHnpZdof17Ei1BvXY87mqHHntrq568OUfFBf7T3Gu3fautL4Wakt6Yyrd1eQIVdACxFHElvbCQTxMBoDlM2FGkKw6VamhNQK9ylSq1RyeawwERqqsrt3dv8tpA6HQaISukZkBLy67wTWcv2pUY1FHcuw1Y6MZy5v2ZlfP9exJrtk7zr1iX7Y/Xgb0Jvtv7/20VqtLdfM3eGs67RVzRLpdkhD9PXLxHl/2sxFetjov3yGGZvZCW7Z1eXrQr9DT39D4VfjMezOfi8WmhO7E3dCu1pgzouw8d822ZWblnj3Z/s8n3PbZhAxBOxCF96NChWrx4cXOOBQDarRF9zvC7nHf1WTEaCdD6hFtzbk5PtwY+d7VTPTNrp0Jbg5zH7a0I+0/H9j9nRk5V2LXLoabWe9yB262Z5w1VyQ4UKvA291r1hjAfZ90fILirHXrjmTRNub9Q6X0q5K52+p5Hh9MI2RHePKfhcai6yqFLp9WGfFNgn4Gm3EqtMcz90ncfOqYqV6k2lq9S5Z49yj4Srwk7itgvHUBYEYf0hx9+WNOmTdPVV1+tgwcPNueYAAAAIlLXmnNnnLzV2RCBOlSQM6ezB25NFriOPdza5cC17Q1fF15fc7ZYszZ8kyIfm7eR3GM31W6pZngciov3+GYvmB+21Fbba+/rUFGC/jY/VXfOz/edTwp+fey0lZoZ1JcMH6AKp7fXSGHBSmUfidforVt8QZ2wDsAq4pB+8803a+PGjTpw4ICGDBmiFStWNPrOn3vuOQ0bNkzJyclKTk7WiBEj9M4779R5m2XLlumkk05Shw4ddOqpp+rtt99u9DgAAEDrFK7p2/7ChJrw7fJNqbYGamuQKy6oDXLe7dnMSm3oark5Nf6xt7bqzvn5fpV5a4C3BszwQjdiC39dYzVF2A+cCVDXlP26zuEN2O5qp9+HLAf2JurO+d7n17sG3T+MS+E7sTfVnulNyVy29PHoYapwSlWuUhUWrNTAg9LorVuoqgMIElXjuL59++r999/XM888oyuvvFInn3yy4uP9T7F+/fqIz9e7d2898sgjGjhwoAzD0CuvvKLLLrtMX375pYYOHRp0/Nq1azVp0iTNmzdPl1xyiRYvXqzLL79c69ev1ymnnBLNQwEAAG2EtembGcStIdzwOJTep8LX3C1wT2xrl/aMHG8A35efoFfm1p7T3N+7aJdLPXpVyl0tlZbU7nXeo1elbnpojy/AV1dKd10yKIpHEdi4LVYN5aIRboyRj93hMCz7tXu73MfFG3LG1b3/eajXXGqaPdObizeoe7+etH67Nh5YpWG6QIkd4zW6ZItWDxqsPOUpNzc3puMEEHsOwzCi+kg1Pz9f119/vTZv3qxp06YFhfRZs2Y1akDdu3fX448/rhtvvDHoexMnTtTRo0f11ltv+a47++yzdfrpp+sPf/hDROcvLy9X165d9eBXW9QhKalRYwWAxjL3RR/R5wzt/maTr3Fc3tVn6dNvD9A0DoiCOcXd45buGBcckJ94Z6svrHkDt3+X9vQ+lb4gH3jOR6fm+IJfbTXaP1Sbt7d2eG982DZv31yhvSmFGmPdQd7bLd8V9F3ztbI+l+Ze69bt1UJ1Yq/vNnawvvw1nbt6o1weKbNLpno6h2hbdyk5NV0r+qVLEmEdaGNOHD6sB04brLKyMiUnJ9d5bFSV9BdeeEG33367LrjgAn399ddKTU1t1ECt3G63li1bpqNHj2rEiBEhj/n000/1i1/8wu+6sWPH6s033wx73oqKClVUVPgul5eXN8l4AQCAvVi34aqvmjrl/kI9dlNfy62Dt/MyzxVYeQ/X0M28vbWKXyvSkF0byh1Ow7dWW5IcTo8MT6iVitEG+GiOj+bYaBrdea+//dl8PfH/cnzbspmvVaRCVcjTsqt0/axCLZjtDeoL52SGDOqx3GrNrKqfu3qjt6mcpao+YUeRlqd0o6oOtGMRr0m/6KKLdPfdd+uZZ57RG2+80WQBfdOmTerSpYtcLpd+9rOfafny5RoyZEjIY/ft26f09HS/69LT07Vv376w5583b566du3q+5Odnd0k4wYAAPYVrrmbqa4u7YFCN4QLnIjovb3kvybaDKOB69zDq72dN5BbL9cdeCMX/drx0CKdjBm6OZ4zzqO7Lhnk1zcgJb1K1VUOX0O/F+7LalATuIVzMrV/T+jb2a37e97VZym1Ryft93yjsswyZR+J1xWHSmMyJgD2EHEl3e12a+PGjerdu3eTDmDw4MHasGGDysrK9Prrr2vKlCn68MMPwwb1aN1zzz1+1ffy8nKCOgAAbZy5Nryuamm4dc1W1rXpcfEeyeNQj15VIdake6u3+wsTFBfvqWl4JpmVaIdDuuuFnZIUUMGX33F1T2+323T3SKe2hx63df96d7X3a+/+8TX71Bck+u27bjaBq66U4gMnKvid13/mQ2DH/1Dd3wOXOQBALEUc0leuXNksA0hMTNSAAQMkSWeeeabWrVunp59+WvPnzw86NiMjQ0VFRX7XFRUVKSMjI+z5XS6XXK7gtU4AAKDtq2s6c11BPnhduTdUOuM8OrA3Uel9KnTXCzuV1rvK734enZpjqaJL1sD50gNZdYw0sEN6UwTyll7H3pgKfYjHXRPQnU5DHo9DDqchp9PQXZcMqnOteV3LHeoL8ABgBxFPd28pHo/Hbw251YgRI7R69Wq/61auXBl2DTsAAEB9QoUz/3Xl3rBoGA553N7/OpXsTtQrczN9Xcil2gAYclq64d1azFspDiV4+nz46eSR7r/e8pX3uHiPd8ZBE+nRq9K3bMHpNHzV9/qmvke6l31dyxwAIFaiahzX1O655x6NGzdOffr00eHDh7V48WKtWbNG7777riRp8uTJysrK0rx58yRJM2bM0KhRo/Tkk09q/PjxWrp0qb744gs9//zzsXwYAACgDQluFBfimBAV2MAKbmiRXl9XwI4kfMdmarx32npkDfKccYbvQ49Q0/ydcR7ftnaBW9rVVwGva5ZEJMscACCWYhrSi4uLNXnyZO3du1ddu3bVsGHD9O6772rMmDGSpF27dsnprC32jxw5UosXL9Z9992nX/3qVxo4cKDefPNN9kgHAAARq29qszNONevKzcDpDY5x8R553A4ZNdOw4+I9Kt7t3VvdZHYVLy6I/VI7Z5ynpvIcgynvDsOynjy4qh8Xb+j25/KV1rtK827IDTHDwFBKWrVvOnt8YsP2P482wAOAHcQ0pL/00kt1fn/NmjVB11199dW6+uqrm2lEABAbu7/ZFOshAG1epPtne9yyNH6TfNuFPZevJ/9fjq/Jmbvaqcdu6qsevSp9Fd+07Cr98qV83TFuQAwCspW1Sl33cdGPMYLbGNbvBx9rPndp2RU6sDcxxLHe5QHWIH3ptBItmJUp1axPv3RaSZTj9kdAB2BXtluTDgDtQV5envLy8jRhR5HKS4pUuWePCgtWqvBIoXYfOqZPvz2g4ckTYz1MoE1ZOCdTxQX1b+cVess16ZW5mQHh3evA3kQ9Ps1/K68bH4z1FOpo9zZvzHZq0apdb+/dJs26/t5/mztrkP7b/FTfen/D49Df5jfNdsAAYDeEdABoYXl5eao+VKEJO4qUfSReAw9KG8tXqcpVqgqn9PHoYQR0oInty0/wNnWrqfBa1zR73MHHWxuPmUp2J4ZtiuauduqlWbWhf/DwY4rtlmmGevSqVP2h2vx+ZOvIvcc19nHVnsO7dt96ToffMdU1L4HZJ8Bc6299/QCgrSGkA0ALMavn1YcqNHrrFmUfiVdhwUptLF+lCqe0ZPgAAjrQTF6Zmyn/wOoNsY9Py9Ed4wbp0an+lfC07CrdOd/cO7s2GLqrnXLGhQ7qJbtdenhKru886X0q5HD432fTVKIj4dDBonjVH6gbs21afQIfu/XrwMp56Ns+ebP3daErO4D2hJAOAC3AWj0fvXWLBh6UCgtWBlXPCehA06vt1h68TtrcZi3U9PdwwfCu5/NrqtTBDuxN8AX/6iqHumd417ynZVeo/ip00wb4kFvBNcn9RHr7cOvSQ1XOQ5+7ZHeiFsz2vi7htlUDgLYmpo3jAKA98Kued8xSZc309tQenbRk+ABJIpwDzShwazSn01DPrEq/DuzhtvQKt11XfEK4oOrwNZY7VJSg1N6VeuKdrXLGSY9OzbFsz2adZt7YaeThGrkFdlev734ibSLXFNP46xtz7eyF4gKXHp2ao+tnFdKVHUC7QCUdAJqJtTmctXpund5O9RxoGYFV2BtmF0Y0fdrcruuJd7bq7hfzlZZdpYVzMn0V+LqmsJvBP9QYevSqUrdUs7O8Q90zKi2X6xNuGnl9wjWJi2ZdelMJMRaHUbPmP/jxWWc6ENABtHWEdABoBnl5eZLkaw43tGOW9nu+oTkcECOhwnY006fNYBjYwCx0ZTp08DfHcNcLOxWfYKi0JNF37MF9CSotiTR9hps6HsnxdV1uzPr5uo4NDt1Op6G07Ar98qU8dc+oWTpgOGq65wdPk2/LjeI+/faA7+ujn//L93X1oQrfvyUA2hdCOgA0k6t0wvd1WWaZ72sCOhA71ipsqOAeye1DVeD9eYNlYPA3A+ZLD2SpaFei37HevyP9b1lzNZ+LNvyHu60pVIW+9rm5YbZ3n/qERMPSYC+wqVzbbhRn/luwZPgAVblKVXikUIUFK5V9JF6jt27xBXXCOtC+sCYdAAC0a9EEP4879Dp1cwq8dc373S96u8MXFyT4jk/LrtCBvYn13Et9GtJlvSFT2QNvF+48da8vdzoNeTwOORyG0rIrfV3znXHWpn7+t5G8SwIk7z700TaKa03r1muD+ms6d/VGb1gvWKmBziHS1i1KTk3X8pRuylOecnNzYztYAC2CkA4AAFAPa9BO71Oh62cVqmdmlS8IBgb3KfcX+oLiwjmZKi5IrDlPYwN6QzR0rXl90+Trvt7hNNQ9vTZoG4ZDFccdmndDrg7sTfQ9j4FN/VLSqxQXb6i4wPtc3/XCTqX1rooodId6nSKZIWEHw5Mn6uPR0rmrN6p3irTxwCoN0wVK7Biv0SVbtHrQYII60E44DMNoqQ07baG8vFxdu3bVg19tUYekpFgPB0AblZeXp6t0QhU7ypR9JF5lmWU6+vm/VOUq9TWMA9B6WDuzO52GUnvXVsqtVdt9+Ql66YEsX7W8W2plzdrzQA2tbtd1nmgr3Q05vymwQ32wuHiP7pyf7zfLwHob83m0fsCR3qdC1VUOHSpK8FXfnXGG3NXOiEJ3Xa9Ta7G+/DVJ3rDu8kiZXTLV0zlE27pLyanpWtEvXZII60Arc+LwYT1w2mCVlZUpOTm5zmOppAMAANQhcEq22cRsX36CXpnrX7V9ZW6mDuxN8B1bWpKgyKeN1yVcGA+3F3m4+woVuusaS13V9Lo/HHBXO9U9vSrsdHbzeVwwO1M3zPbOTPC4pbsuGVQ7WqN2Szuzw3u40B3udWpNU9+l2unvZlW9ylXqV1WfsKOI6e9AG0dIBwAA7V5dQS7UPuupvSv1ytzardhKdidqwexMv73XvSLZv7w+gcfVdxvLvujmXw7vmN3VjpoPEUKF/Po4FBfvkeFxWKrioRvMmevP4xP9n7tQ+8Pv35OoF+7LUnyCoaJdLsXFe+RxO2QY/uetL3SHe51aU0C3Mqe/S9Kk9du18cAqZXoylZ09xm/6u0RVHWhr6O4OAADareKCBD06NUd3jBukR6fmqLjAWwUP3OorcLu2KfcX+m3F5vE4VFzgCrPPt7VbuVVdHdHrOy7csdbjHVJN0DUM7/i80/DrC+jhV0K6q52+56Eu1kZvgfvDmw3hrNurHdib6Fuv7/E45IwL9ZwZ6tGr7tAdzbZ6rcHw5IkanjxRS4YPUGqPTjo9Z6AKC1ZqaMcsXXGo1G8XEQBtB5V0AADQbpnrpSVvNdxa0bWugTa3a7NWcYMrxA553A7FxRu+KdrdUqsUF+9tnFZ7vaXS7fe3VH9wDjze+v26quL13T7wuMDbeC+n9/F2Z79j3KAw5zAUF2/oly/VTkk3n7vqSim+Znn+IzfmaP+e2oq3x1NbOTc8Drk9DqVlV0TdaC/U6xRKa5sCD6B9IaQDAIB2KdQa5gN7E317dodaA20NdtaGZ2ZgNddQP/bWVjnjao83Q6F1HXutSKach5ruXv96dGecIY/bGcGxdd1P7eVLbirR49NyfOcPdYy72uEXgkN1XL9htn83fGuzOHOauv9z5D33gb2JEQXscN9vzd3fAbQfTHcHAADtkrmG2en0hnLzb7Oia10DHYpZtU3L9j9Hep8KxSf6B0Xz64ycKt8+4ZFPd4/mGCPo+0+8s1U9elXKOu3eGRdqWn6o23u/dji8j2v579NUtMusbnvHHxfv8X2wYT5+62MPnK2wcE6m77l74p2tuvvFfN300J6gaerpfSqCxhJ47miFGgsA2A0hHQAAtFuBa5h79KqUw1kbDOPiPdpfmBA2qEvSDbOD10GHO96sAqdlV4Q5W2RV9S7drKE78Pa1lXaP2xlyLOGr64GN4Lxfd8+oUnWVQwf3JSpwjN1Sq5WWHbwO3OOuna1gXbtv/eDDDNyBoT0tu0rXzyq0rF/3rmdvzBrz+sZiHmNHHndTbNcHoLVgujsAAGi3AtcwFxck6PFpOXLXBDl3tcN7uY59uq3n2F8Yejp14DTry35WohfuzZJ1vXdcvCHDMANZ6E7o5rGJHaT0PuaUcO/3HE5Dhid0mDP3ba89nyznNNQttUqujkZNlTz4HHHxhq8CHercT7yzVVLtc/jo1BzfY+3RqzJoKntdnfStz+u9r+T5BfrGhOi6ur/bdRp87bju08c99+i1aR/EekgAWgCVdAAA0O6Z4bBnZpXc1db/Hjl8l83p0eGCojMu/HTqwOv/+odUBVas3dVOde4aeHJHzVR1/2O9FW3pypv3KS7eMl3fYZ3G7p3Wbm6D5j+t378KX34w3m9tvVWPXpUqLnAFbYlm3ofZcd18DgMfq6RGdVx3xnk//AjVhT9a4bq/23UavHVcew5k6LqXLo7xiAC0BCrpAAAANcyp6GbncStzevQd4waFrLaGakRXtMul6srg64sLvBXbwMr14YPW8Om9/sC+hJD7kxftStQbz2bIDNyGp3bLNfP2HrdD1ZX+Te56ZFaqZLcr6LjaburWcxg6VBz438Xw3eHDNeOzVtobIlSItjb0i1So7u/hXrdYd4APGpcRp637uvtmeQBou6ikAwAAqHaadnGBy7cuPS7eY1mjXluBDlVtDdWIzmwiF+r6KfcXKqLmcYa3yt4j09yfPLC7e+0aa+vtHU5DcfEe3XXJIC2YnanrZxV613y/EDrcTr431HgcNevX/a+zfn1gb6L25SeEfQ7Ssiv8Ku3RimQtebQCm/qFen1ivUVb0Lgcbg3KOKg4Z6heBADaEkI6AACA/Ku1hseh9D4VunN+vtJ6W8Nx3UEx3HTqUNdn5FQpLt4TYiTBwT29T0XYcF3LP7w5nbX7tRcXuPT4tBztL0yQM07qlurf7b1baqUy+1UpvU+FX6f28Pfj33X9lbm1H1hYH6vDaai4wNWoKeotEaLDvW6xZh1XVo99evnGt2M8IgAtgenuAACg3Qs35blnZu306Men5YRsOmY9h/X4wCZooaZZ+69/t6qdUh4X79Gl00LtTx74t39lPfDc7mqnb5r4zx7ZY2mU5v9hQuD+5Qf2Jiiweu7Pf3q4+VgfnZrTJFPUQ42rqUN0qNfHDsxxfXHoz/rJV9s0IP272tCwpxBAK0JIBwAA7V5dnb/N74cLisUFCXrhvixfB/UevSp100N7QnYHDzXNurgg0dKUzX+9d1p2hW6YXehX5Q8UF2/I4zE7uwd2hfdnhum07Nr92uv6MOHrzzvppft7h7hPjzxuhwwj+LnyuKXi3QlNus67pUK0nQK6lTOOKe5Ae0JIBwAAUP3V2nBBceGczJpqs9eBvQkRV42vn1VYs8Vb6HXmkuTx+Ff5ze898c42edxSfKL0n3WdtGBWZs15wjUW834AMO+G3JpxJobdbsx8fG+9kKrADw7i4j26YU6h/jY/VUW7vOv3i3a59PCU2vN6p/H7bxuX3if81muhhArkdg3RANCUCOkA0EwqdpT5vj76+b9iOBIAkYi0Whs4xd0/QEuB07/rErzlm8kbcPfvSdQrczPDVvnN85/83WN6/O3tKtyRoKduybGc07v/uvU+rB8ohJuGXlyQoAWzM1VcEPjYpNufy1dab+9z9ciNOdq/JzHovMGPyVHTKK9+dt2zHABaCo3jAKAJ5eXlKS8vT9WHKlReUqTsI/EqLFipwiOFqnKVasnwAbEeIoB6RFOtNaesBzZSi7SxmXl7s1lbLf8GdVPuj6yx2Z9+nem3dVxcvKHbnzMDuLVKX3cDvIVzMn3h23xsTqd3T/RX5mZa9it3We4vdBXf4fA+Hxk5kQVtu+5ZDgAthUo6ADQRM5xfcahU5SVFGnhQKvSsVJWrVBXHpCXDB2h48sRYDxNAE7t+VmHAmvSqqBqbWafZB+9B7p0mnpFTf5U/VFXfXe1UWu+qgL3fa9esh2uAF2p6vdlIzhqgrWvT/dVW8NOyI2/0Ztc9ywGgJVFJB4AmYAb00Vu3KPtIvAYelDaWr1KVq1S7Dx3Tx6OHEdCBVqy+PbnjE7zBNy27Qjc+GLppXDhp2d5Q36NXpUJ1TrdOE69vGr51qzIzjN89YYDf3u89elWpRy/v+EJV5cPtdX77s/k6sDfRb79yd7XTso+8/7hvfy7fuy/7i/kRPx923bMcAFoSlXQAaIS8vDxJ0oQdRX7V88Ijhapwyje9nYAOtE6RrI+2Ts8uLkjUYzf1jXgttVkhXjgnU4eKzDXd3mq6w2EoLbsyomni1nHGxXsky5R3symd+Xd8gqHrZxWqZ2ZV2PBrre6npFfJXe3QXZcMkl+l32EoPbsyxJp874cVkU5vr+u+7bRnOQC0FEI6ADSQdXp79pF4VdZUz1N7dFLFMVE9B1q54oKEms7r3omHxSGarIWbGl7fvuCB4T/UOVLSa6fN1zfd2/pBgeEJ7BDv/3cke5Zbm+iZ+8MHMSyBuiBRMmr3db9hdsODtV33LAeAlkJIB4AomdVz3/T2jlm+5nCpPTpRPQfaiAWzM/26lBsh1keH3uu8/rXUgc3R4uI9AdunGUpI9E75fnRqTp2V/FDruCVvwzbvmPzXuUe7zjvUBwjm19XVUnWVwxfQ69ojPloEdADtFWvSAaABJuwo0hWHSjW0JqCfnjPQF9CHJ08koAOtnMetkNuPhVof7Q3OlTWX6l9LbYbqwLXdgQG4aJdLC2b7h/kFs4M7nYdax92jV6VvTHHx/mvUo1nnHW6du7cxnEd/erh2mr7TaSg+wWC7NABoJEI6ADTQiD5nxHoIAJpJqK3R4uI9IddHm9Oz73php9L71L9NWrjmaKGus25x5vE4VFzgqtn6LMHvnNfP8t+i7aaH9ujuF72N2x5/e3vEYwvFeu7a58LQdbMKgz5sCLWdGwAgOkx3BwAACMHawCwtu0I3zK67EVwk26SFOrc1NAdeZ06Lr906zRFyTXm4ddzm19GMzWQeG3ju6kopvmaJenqfCt/4Qm3nBgCIHiEdAAAgBGs4lSIPt5EcFy5UB153/axCLZidWTP1PrhiHXhf9d13JGML19HevG28pYccndgBoOkR0gEAAMKIZAu2xggVmq3XpWVX6Zcv5evRqTktVrEObGpXVyf4+jqx06EdAKLHmnQAAIAwQgXWWAhccx6uYt3Y9eChmtpFss48MIgXFyTo0ak5umPcoJBr6AEA4VFJBwAACCHU1mbRbF3WlOqrWDdVxd9satfYqn001XgAgD8q6QAAACGE68Iey+nb4e67KSv+kVbtw2loNR4A4EUlHQAAIIzW0BitqSv+9VXt69NU1XgAaK8I6QAAAGE0NrC2hOYKxY25fWv4cAMA7IqQDgAAUA+7BnST3UJxa/hwAwDsipAOAADQytk1FNtpLADQWtA4DgAAoI0gFANA60dIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gGgAZandNOnu77U18f3qKdziDbkb1PJgWM6d/VGrS9/LdbDAwAAQCtFSAeAKOXm5io+xaUV/dK1etBgbesuZWaPUWaXTLk80qT127W+/DXCOgAAAKIWH+sBAEBrlJubK0nKU55WDxqs5EOlys4eo5579mh/xTeatH67dh86po9HS8OTJ8Z2sAAAAGg1qKQDQCNYq+oFXap9VfWEim5yeeSb/k5VHQAAAJGgkg4AjWRW1VdIqk7p5ldV31i+iqo6AAAAIkYlHQCaSKiq+rDkC4Kq6gAAAEA4hHQAaEK5ubnKzc3Vin7pSk5ND9tUDgAAAAiFkA4AzcTVr6uSU9MlSZ3P+p4yu2TGeEQAAACwO0I6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANhETEP6vHnz9N3vfldJSUlKS0vT5Zdfri1bttR5m5dfflkOh8PvT4cOHVpoxAAAAAAANJ+YhvQPP/xQ06dP12effaaVK1eqqqpKF154oY4ePVrn7ZKTk7V3717fn/z8/BYaMQAAANBy1pe/pnNXb1TJgWPakL9NPZ1D9PXxPZKk10WhCmiL4mN55//4xz/8Lr/88stKS0vTv//9b/3gBz8IezuHw6GMjIzmHh4AAAAQE+vLX5MkTVq/XSUeKbNLpjKzx+jr43u0etBgxae4JEm5ubkxHCWA5hDTkB6orKxMktS9e/c6jzty5IhycnLk8Xg0fPhw/frXv9bQoUNDHltRUaGKigrf5fLy8qYbMAAAANDEzOp575ROSqjopmHJI5WYlaWCLtVane0N6IRzoO2yTeM4j8ejmTNn6pxzztEpp5wS9rjBgwdrwYIF+utf/6pXX31VHo9HI0eO1O7du0MeP2/ePHXt2tX3Jzs7u7keAgAAANBg68tf8wV0l0dKqOimzOwx2tZdKuhSrRX90gnoQDtgm0r69OnTtXnzZn3yySd1HjdixAiNGDHCd3nkyJE6+eSTNX/+fM2dOzfo+HvuuUe/+MUvfJfLy8sJ6gAAALAVa/W8xCMNS76A6jnQTtkipN9yyy1666239NFHH6l3795R3TYhIUFnnHGGtm/fHvL7LpdLLperKYYJAAAANLnA6vmw5JHa1l1KNqvnYu050J7ENKQbhqFbb71Vy5cv15o1a9S3b9+oz+F2u7Vp0yZdfPHFzTBCAAAAoHnQHA5AKDEN6dOnT9fixYv117/+VUlJSdq3b58kqWvXrurYsaMkafLkycrKytK8efMkSQ8++KDOPvtsDRgwQKWlpXr88ceVn5+vqVOnxuxxAAAAAA0xon8Paf12ZXbJVOezvicVSsmprD0H2rOYhvTnnntOknTeeef5Xb9w4UJdd911kqRdu3bJ6aztb3fo0CHddNNN2rdvn1JSUnTmmWdq7dq1GjJkSEsNGwAAAACAZhHz6e71WbNmjd/lp556Sk899VQzjQgAAAAAgNixzRZsAAAAAAC0d4R0AAAAAABsgpAOAAAAAIBNENIBoJm8rg6+r7sWdvV9fe7qjb5tdwAAAAArQjoANANz25wV/dJV0KVaXx/fo57OIUqo6CaXh6AOAACA0GLa3R0A2jJfUJdUndJN2rpFQzuOUc89e7SxfJUmrd+uJcO9QX148sSYjRMAAAD2QSUdAJpZbm6u4lNcWj1osAq6VGtbd2lY8gVKqOimSeu3U1UHAACADyEdAFqAGdRX9EvX6kGDta27lJk9Jmj6O2EdAACgfSOkA0ALyc3NDaqqZ2aP0bDkC+TyiKo6AAAACOkA0NKsVfXA6e80lQMAAGjfCOkAEANmVX1Fv3Qlp6YrMStLmdljlNklU71TOmlE/x4EdQBow8zf8bnLPlfJgWOSvNt1fn18j5andIvhyADEGt3dAcAGeg85Vbu/2RTrYQAAWsD68td07uqN6p3SSSUHjmlY8gVKzMpSQZdqrc4erPgUl2+HEADtDyEdAAAAaCFmQHd5pISKbhqWPFLbukvJXaq1ol+64iUCOtDOEdIBAACAZmZOb5+0frtKPPJVz78+vkerB1E9B1CLkA4AAAA0I+v09sDqOdPbAQQipAMAAADNwKyeW6e3Z2aP8aueM70dQCBCOgAAANDE/JrDWaa30xwOQH3Ygg0AYmx5Sjd9uutLfX18j3o6hyihoptyl33OfukA0Mr1Tumk72Z8V5ldMpWYlaXeQ06VJAI6gDoR0gEghnJzcxWf4tKKfulaPWiwtnWXMrPHKKGim1we+YI6YR0AAKB9IKQDQIzl5ub6wvrqQYNV0KVamdljNCz5Ark83k7AVNUBAADaB0I6ANiEtape0KVa27p71zBSVQcAAGg/COkAYCNmVT1w+ru1qi6JoA4AANBGEdIBwIYCp79bq+pMfwcAAGi7COkAYFPW6e/Jqel+TeV6p3TSpPXbCeoAYHMb8rf5vv5015cxHAmA1oJ90gHAxnJzc5WXlydXv65KlqQj3uu/m/Fdrdu3LpZDAwCEYH54Omn9dpUcOKZhySOVmJWlr4/vYX90ABEhpAMAAABNYH35azp39Ub1TumkhIpuGpY8Utu6S8ldqgnoACJGSAcAAAAawayen7t6o1weKaGimzKzx3ir54O84TxeIqADiAghHQAAAGgga/W8xONt8pmYlaUCqucAGoiQDgAAADSAGdDN6rl1evuKfulUzwE0CCEdAAAAiIJfczhL9dw6vZ1wDqCh2IINAFqB19XB93VP5xDflj7slw4AsTFp/Xbv2vMumb7p7cmp6QR0AI1GSAcAmzP/s7eiX7oKulT77Zfu8tQGdcI6ALS8zmd9z/e1q1/XGI4EQFvBdHcAaAV8QV1SdUo3JR8qVXb2GPXcs0cby1dp0vrt2n3omD4eLQ1PnhjTsQIAAKDhqKQDQCuSm5ur+BSXX1V9WPIFQVV1AAAAtE5U0gGglQmsqmvrFg3t6F9VXzLcG9SpqgMAALQuVNIBoJUyq+qrBw0OqqpPWr+dqjoAAEArREgHgFbMOv199aDBNJUDAABo5ZjuDgCtnDn9PU95Wj1oME3lAKCZmB94nrt6o0o8UmaXbupa2NW7P3r2YMXLFeMRAmgLCOkA0Ebk5uYqT3lakZKuCTuKVN5dGqYLtL/iG7k8x3Tu6o0EdQBooPXlr+nc1RvVO6WTSjze5UXm/uirswezPzqAJkNIB4A2hKZyAND0zIDu8kgJFd00LHmktnWXkrtUa0W/dMVLBHQATYaQDgBtkFlVN6e/W6vqTH8HgMiY09snrd/uVz3/+vgerR5E9RxA8yCkA0AbZZ3+bq2qFxas9Jv+LhHWASCQdXp7YPWc6e0AmhMhHQDaMJrKAUB0AqvnCRXdlJk9xq96zvR2AM2JkA4A7UBgU7nsrCzf9PfeKaKpHAAooDncgWM0hwMQE4R0AGgncnNzlZeXJ0nqPeRU7Zakgm/03YzvSloXw5EBQGxZt1ajORyAWCOkAwAAoN0Kt7UazeEAxAohHQAAAO0SzeEA2BEhHQAAAO0KzeEA2BkhHQAAAO1GqOo5zeEA2AkhHQAAAG1eqOZwZvWc5nAA7ISQDgDtzPKUbtKuL5WtePV0DtGG/G8kl/d768tfYxs2AG1OuOZwVM8B2JEz1gMAALSc3Nxcxae4tDylmwq6VGtbd6mnc4gSKrpp0vrtOnf1Rl+1CQDaAjOg126tdoG2dZcKulRreUo3AjoA26GSDgDtTG5urvKUpxUp6apO6SZt3aKhHceosGClXJ5jOnf1Rn082nssVXUArVVgc7hQW6sxvR2AHRHSAaAdMv9Tmqc8rR40WMmHSpWdPUY99+zRxvJVmrR+u3YfOqaPRxPUAbQ+bK0GoDVjujsAtGPm9PcV/dJ909+HJV+ghIpucnnE9HcArcr68teCprdnZo/xBvTUdG9zOAI6AJujkg4A7Zz5n9UVkt/0d2tVfclwb1Cnqg7ArmgOB6CtoJIOAJBUW1VfPWhwUFWdpnIA7Kyu5nBUzwG0NlTSAQA+NJUD0JpE0hyOcA6gtSGkAwD80FQOQGtAczgAbRUhHQAQkrWqPmFHkcq7S8N0gfZXfONXVSeoA2hJZvU8sDkcW6sBaCsI6QCAsGgqB8BOaA4HoD2gcRwAoF40lQMQazSHA9BeUEkHAESEpnIAYoHmcADaG0I6ACBiNJUD0JJoDgegPSKkAwCiRlM5AM2J5nAA2jNCOgCgQWgqB6A50BwOQHtH4zgAQKPQVA5AU6E5HABQSQcANAGaygFoDJrDAUAtQjoAoEnQVA5AQ9AcDgD8EdIBAE2KpnIAIkFzOAAIjZAOAGhyNJUDUBeawwFAeIR0AECzMavq5vR3a1XdOv09UgR6oPULbg5XO719Rb90qucA2j1COgCgWdXXVG7S+u0RnYf17EDrRnM4AIgMIR0A0Ozqaiq3v+KbiM7Benag9aI5HABEjpAOAGgxoZrKDe04JqLbsp4daH1oDgcA0SOkAwBaVGBTueRDpRHdLtx6doI6YE80hwOAhiGkAwBiwlpVj0So9ezm9HeJsA7YCc3hAKDhCOkAgJiJ5j/podazm9PfqaoD9kBzOABoPEI6AKBVCLWe3Zz+TlM5oPmYwTsSNIcDgMaLaUifN2+e3njjDf33v/9Vx44dNXLkSD366KMaPHhwnbdbtmyZ7r//fuXl5WngwIF69NFHdfHFF7fQqAEAsRK4nt2c/k5TOaB5WNeVR6KE5nAA0GjOWN75hx9+qOnTp+uzzz7TypUrVVVVpQsvvFBHjx4Ne5u1a9dq0qRJuvHGG/Xll1/q8ssv1+WXX67Nmze34MgBALGUm5ur+BSXVg8arIIu1drW3TutNqGimyat365zV2+MqvoHIFjguvJI/gxLvkCZ2WO8zeEs09sJ6AAQOYdhGEasB2EqKSlRWlqaPvzwQ/3gBz8IeczEiRN19OhRvfXWW77rzj77bJ1++un6wx/+UO99lJeXq2vXrnrwqy3qkJTUZGMHALS8vLw8SVL1oQqN3rpFQztmqbBgpQqPFKrCKX08epgkqupANPzWlR845ltXHomvj+9Rcmq6VvTzNoQknAOA14nDh/XAaYNVVlam5OTkOo+11Zr0srIySVL37t3DHvPpp5/qF7/4hd91Y8eO1Ztvvhny+IqKClVUVPgul5eXN36gAABbMAMATeWApmGd3h64rjwSrD0HgMazTUj3eDyaOXOmzjnnHJ1yyilhj9u3b5/S0/2360lPT9e+fftCHj9v3jzNmTOnSccKALAXmsoBjWNWz63T2wPXlUeCtecA0Hi2CenTp0/X5s2b9cknnzTpee+55x6/ynt5ebmys7Ob9D4AALEXTVO5SBDo0RZE2pvBrJ5bt00roCs7AMSELUL6LbfcorfeeksfffSRevfuXeexGRkZKioq8ruuqKhIGRkZIY93uVxyuSL79BcA0PqZVXVz+ru1qj5p/faIz0OXeLRm1nXlkTC7slunt6/ol05lHABiIKYh3TAM3XrrrVq+fLnWrFmjvn371nubESNGaPXq1Zo5c6bvupUrV2rEiBHNOFIAQGtinf5uraoXFqyM6PaFRwpZz45WK3BdeSSGJY9UYlaW3/R2wjkAxEZMQ/r06dO1ePFi/fWvf1VSUpJvXXnXrl3VsWNHSdLkyZOVlZWlefPmSZJmzJihUaNG6cknn9T48eO1dOlSffHFF3r++edj9jgAAPYTrqlcJHru2RO0nl0irMPewq0rj8TXx/comentAGALMd2CzeFwhLx+4cKFuu666yRJ5513nnJzc/Xyyy/7vr9s2TLdd999ysvL08CBA/XYY4/p4osvjug+2YINANofc6u2CTuK6j6wRnlJkYZ2zFJlzXr21B6dtGT4AEkEddiTtXpu3TatIMKu7MtTuvmawxHQAaDpRbMFm632SW8JhHQAaL/MsF6f6kMVuuJQqcpLijTwoLTf842qXKU109+HEdRhK2ZAd3mkzC6Z6ukc4l1XbtmvPBKEcwBoPq12n3QAAJpTpCEk3Hp2l+eYX5d4wjpiydocztqVnXXlANC6EdIBAAgQbj27uVbd2lSuKRH6EemWaZL8msNZu7KzrhwAWjdCOgAAYVi7xE/YUaTy7gqqqjcVOsnDuq48EiWW5nDW6jnbpgFA60ZIBwCgDmbYWSHVTn+3VNWbClPp2zfruvJot00roHoOAG0KIR0AgAiYVXVz+rtZVW8qoabSE9TbvnDryiNhbpu2ol861XMAaEMI6QAARMg6/b06pZuSD5U22bnLu0sDDw5hf/Z2xDq9PXBdeSSongNA20RIBwAgCtamcitSIt/eqj7WTvI9a/Znp6reNpnVc+v09sB15ZGgeg4AbRMhHQCABmjqcBQ4lX6YLgiqqhPUWz9r9dw6vZ115QAAEyEdAAAbCJxKb1bVVbBShUcK/ZrKofWyVs+t09tZVw4AMBHSAQCwiUj2Z0frZq2eW6e3E84BACZCOgAANlPX/uxo3azVc6a3AwBCIaQDAGBDgfuzm1V1tG7W6jnT2wEAoRDSAQCwscCqOlo3qucAgPoQ0gEAsLnc3Fzl5eVpRb+m2/INsUH1HABQH0I6AACtAMEOAID2wRnrAQAAAAAAAC9COgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsIn4WA+gpRmGIUk6ceRIjEcCAAAAAGgPzPxp5tG6OIxIjmpDdu/erezs7FgPAwAAAADQzhQUFKh37951HtPuQrrH41FhYaGSkpLkcDhiPRxbKS8vV3Z2tgoKCpScnBzr4aCF8Lq3T7zu7ROve/vFa98+8bq3T7zu9mQYhg4fPqzMzEw5nXWvOm93092dTme9n1y0d8nJybyh2yFe9/aJ17194nVvv3jt2yde9/aJ191+unbtGtFxNI4DAAAAAMAmCOkAAAAAANgEIR0+LpdLs2bNksvlivVQ0IJ43dsnXvf2ide9/eK1b5943dsnXvfWr901jgMAAAAAwK6opAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUJ6O/LRRx9pwoQJyszMlMPh0JtvvlnvbdasWaPhw4fL5XJpwIABevnll5t9nGha0b7ua9askcPhCPqzb9++lhkwGm3evHn67ne/q6SkJKWlpenyyy/Xli1b6r3dsmXLdNJJJ6lDhw469dRT9fbbb7fAaNGUGvLav/zyy0Hv9w4dOrTQiNEUnnvuOQ0bNkzJyclKTk7WiBEj9M4779R5G97vrV+0rzvv9bbnkUcekcPh0MyZM+s8jvd760NIb0eOHj2q0047Tb///e8jOn7nzp0aP368zj//fG3YsEEzZ87U1KlT9e677zbzSNGUon3dTVu2bNHevXt9f9LS0ppphGhqH374oaZPn67PPvtMK1euVFVVlS688EIdPXo07G3Wrl2rSZMm6cYbb9SXX36pyy+/XJdffrk2b97cgiNHYzXktZek5ORkv/d7fn5+C40YTaF379565JFH9O9//1tffPGFfvjDH+qyyy7T119/HfJ43u9tQ7Svu8R7vS1Zt26d5s+fr2HDhtV5HO/3VspAuyTJWL58eZ3H3HXXXcbQoUP9rps4caIxduzYZhwZmlMkr/sHH3xgSDIOHTrUImNC8ysuLjYkGR9++GHYY6655hpj/PjxftedddZZxrRp05p7eGhGkbz2CxcuNLp27dpyg0KLSElJMV588cWQ3+P93nbV9brzXm87Dh8+bAwcONBYuXKlMWrUKGPGjBlhj+X93jpRSUdYn376qS644AK/68aOHatPP/00RiNCSzr99NPVq1cvjRkzRv/85z9jPRw0QllZmSSpe/fuYY/h/d42RfLaS9KRI0eUk5Oj7OzseitxsDe3262lS5fq6NGjGjFiRMhjeL+3PZG87hLv9bZi+vTpGj9+fND7OBTe761TfKwHAPvat2+f0tPT/a5LT09XeXm5jh8/ro4dO8ZoZGhOvXr10h/+8Ad95zvfUUVFhV588UWdd955+vzzzzV8+PBYDw9R8ng8mjlzps455xydcsopYY8L936nF0HrFelrP3jwYC1YsEDDhg1TWVmZnnjiCY0cOVJff/21evfu3YIjRmNs2rRJI0aM0IkTJ9SlSxctX75cQ4YMCXks7/e2I5rXnfd627B06VKtX79e69ati+h43u+tEyEdgJ/Bgwdr8ODBvssjR47Ut99+q6eeekp/+tOfYjgyNMT06dO1efNmffLJJ7EeClpYpK/9iBEj/CpvI0eO1Mknn6z58+dr7ty5zT1MNJHBgwdrw4YNKisr0+uvv64pU6boww8/DBvY0DZE87rzXm/9CgoKNGPGDK1cuZKmf20cIR1hZWRkqKioyO+6oqIiJScnU0VvZ773ve8R8lqhW265RW+99ZY++uijeqsk4d7vGRkZzTlENJNoXvtACQkJOuOMM7R9+/ZmGh2aQ2JiogYMGCBJOvPMM7Vu3To9/fTTmj9/ftCxvN/bjmhe90C811uff//73youLvab2eh2u/XRRx/pmWeeUUVFheLi4vxuw/u9dWJNOsIaMWKEVq9e7XfdypUr61zrhLZpw4YN6tWrV6yHgQgZhqFbbrlFy5cv1/vvv6++ffvWexve721DQ177QG63W5s2beI938p5PB5VVFSE/B7v97arrtc9EO/11mf06NHatGmTNmzY4Pvzne98Rz/5yU+0YcOGoIAu8X5vraiktyNHjhzx+7R0586d2rBhg7p3764+ffronnvu0Z49e/THP/5RkvSzn/1MzzzzjO666y7dcMMNev/99/XnP/9Zf//732P1ENAA0b7uv/nNb9S3b18NHTpUJ06c0Isvvqj3339f7733XqweAqI0ffp0LV68WH/961+VlJTkW3fWtWtX3yyYyZMnKysrS/PmzZMkzZgxQ6NGjdKTTz6p8ePHa+nSpfriiy/0/PPPx+xxIHoNee0ffPBBnX322RowYIBKS0v1+OOPKz8/X1OnTo3Z40B07rnnHo0bN059+vTR4cOHtXjxYq1Zs8a3ZSrv97Yp2ted93rrl5SUFNRjpHPnzurRo4fvet7vbUSs28uj5ZhbawX+mTJlimEYhjFlyhRj1KhRQbc5/fTTjcTERKNfv37GwoULW3zcaJxoX/dHH33U6N+/v9GhQweje/fuxnnnnWe8//77sRk8GiTU6y3J7/07atQo38+A6c9//rMxaNAgIzEx0Rg6dKjx97//vWUHjkZryGs/c+ZMo0+fPkZiYqKRnp5uXHzxxcb69etbfvBosBtuuMHIyckxEhMTjdTUVGP06NHGe++95/s+7/e2KdrXnfd62xS4BRvv97bBYRiG0ZIfCgAAAAAAgNBYkw4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAQFhut1sjR47UlVde6Xd9WVmZsrOzde+998ZoZAAAtE0OwzCMWA8CAADY19atW3X66afrhRde0E9+8hNJ0uTJk/XVV19p3bp1SkxMjPEIAQBoOwjpAACgXr/97W81e/Zsff311/rXv/6lq6++WuvWrdNpp50W66EBANCmENIBAEC9DMPQD3/4Q8XFxWnTpk269dZbdd9998V6WAAAtDmEdAAAEJH//ve/Ovnkk3Xqqadq/fr1io+Pj/WQAABoc2gcBwAAIrJgwQJ16tRJO3fu1O7du2M9HAAA2iQq6QAAoF5r167VqFGj9N577+mhhx6SJK1atUoOhyPGIwMAoG2hkg4AAOp07NgxXXfddfp//+//6fzzz9dLL72kf/3rX/rDH/4Q66EBANDmUEkHAAB1mjFjht5++2199dVX6tSpkyRp/vz5uuOOO7Rp0ybl5ubGdoAAALQhhHQAABDWhx9+qNGjR2vNmjX6/ve/7/e9sWPHqrq6mmnvAAA0IUI6AAAAAAA2wZp0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALCJ/w/BGQZspUepwQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 18\n", + "amount_ae: 101\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4k1XDBvD7Sbo3o2W0QNm7gCwrAmWJgAWUWZCylC04UKiKgMIHKMhQLCBTlGFZ4gBUpEyhgIwCQrHsWYp00DYdyfn+6JvYNEmbtFlt7991RenJybnPM5KenjxDEkIIEBEREREREREREZmZzNYdICIiIiIiIiIiotKJk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFONi6A0Rk3x48eIAjR47g4cOHePToERITE/Huu++iRo0atu4aEREREREREdk5HvlIRHrFxcWhe/fu8Pf3x4ABAzBp0iTMnj0bkZGROHjwoK27R0RGuHHjBiRJwqxZs6ySN2vWLEiShBs3blglj4iIiIiI7B8nH8ns1H/sGvMYN26crbtLesTFxSE4OBh//PEHpk2bhqtXr0KlUkEIAaVSifDwcFt3kYiK4YsvvoAkSQbfy0+ePIG/vz/c3NwQFxenKQ8MDERgYKCVeklEREREZF6BgYEICQmxeI76S/no6Gi95WXty3qedk0WU7t2bbz66qt6n7tx4wY2bNhg5R6RsUaPHo3U1FT89NNP6N69u627Q0RmNmnSJOzYsQMbN25Ev3790KdPH63nJ06ciHv37mHp0qWoV6+ejXpJRCXBjRs3ULNmTaPqjh07FitWrLBwj8iWQkJCcPDgQQghbN0VIiKj/fXXX2jbti1q1aqFs2fPwtXVVadOz549sWfPHmzcuNHgPAcZxslHspg6deoYPNUvOjqak492KjY2FkeOHME777zDiUeiUkqSJKxbtw5NmzbFmDFj0K5dO1SsWBEAsG3bNmzevBmdOnXCG2+8YeOeElFJwS+diYiopHrmmWfwwQcfYPbs2YiIiMCSJUu0nl+1ahX27NmDl19+mROPRcTTrskuBQYGGjxVe/369Tr1161bh7Zt28LDwwMeHh5o27at3nrR0dEGr38mSZLew69DQkIgSZJO+YEDBzBq1CjUr19fk9uqVSusWrWqyMuW/5DsESNGmO2Q7AsXLmDgwIHw8/ODs7MzatasiTfffBOPHz/Wqnfs2DEAQP369REWFoZKlSrByckJNWrUwPjx43H//n1NXZVKhRo1aqBChQrIzMzUm9uhQwc4ODjgzp07AAyvT/Xp+iNGjNAqN3U96zst9MGDB5gwYQJq1qwJJycnlC9fHi+99BL+/PNPndcbOjy+KPsOAJw/fx6DBw9GlSpVNOvxjTfe0FnvhV2uYPXq1Vr1jd2eBVHvXzKZDNevX9d5/vDhw5r8/Mtd0DIbWoeA8e/VjRs3QiaTYfDgwVpHTxjaT2JiYuDh4YFnnnkGqampWs+lpqZi5syZaNy4MVxdXeHj44Pu3bvjyJEjevufmpqK2bNnIygoCG5ubvD29kaLFi0wY8YMZGdnm3RpCfV7V71O1A+ZTIYqVaqgV69emvdcXjt37kRYWBjq1Kmj6UP79u2xfft2vX0uisDAQCxatAgJCQkYP348AODhw4cYP348PD09sW7dOs17Vb3MN2/exM2bN7WWxVrXkyQi+6b+0lnfI/9nNhERkb354IMP0KJFCyxbtkzrHgfXr1/HO++8A19fX6xcudKGPSzZOPlIdsvb2xszZ87UPPKfFqg2efJkjBo1Cnfv3sXo0aMxevRo3L17FyNHjsSUKVMs1r8FCxbg0KFDaN26NSZNmoRXX30ViYmJGDt2LN55550CX5t/2Tp27GixfgLAkSNH0LZtW+zcuRNdunTB22+/jRo1amDp0qVo27YtEhMTNXUfPXoEABg/fjyioqIQEhKCd955Bw0bNsSKFSvQqlUr3Lx5EwAgk8nw2muv4d9//9U7KXLlyhUcPnwYL774IgICAorU9+KsZwC4d+8eWrdujcjISJQvXx5vv/02+vTpgz/++AMdOnTAjh07itQvY+zevRtt2rTB7t27ERISgjfffBNNmzbFl19+ieDgYDx58kTnNc2aNdPaN9SPZ555RlPHlO1pDJlMpvcXaWRkJORyuekLboAp79Vhw4ZhwYIF2Lp1K956660C242Li0OvXr3g5+eHPXv2wNPTU/Pcv//+i+DgYHz88ccoV64cxo0bh379+uH06dPo1KkTdu3apdVWQkIC2rRpg1mzZkEul2P8+PEYNWoUKleujAULFiAtLQ0+Pj4628fb21vnfT1z5kz4+PhotT98+HDMnDkTH3zwATp27IjffvsNXbt2xeXLl7XqRURE4OLFi3j++ecxZcoUDBgwAFeuXEH//v3xxRdfmL7yDRgzZgy6d++uOdpxzJgxSExMxJIlS7TuaK9eZn3LaY1r5hBR6cYvnXOZ80vnvMti7HoVQmDt2rVo164dvLy84ObmhlatWmHt2rV624+Li0PXrl3h5uaGBg0aYO/evZrn4uPjERISAldXVzRq1AhRUVF627h58yZGjx4Nf39/ODk5ISAgAKNHj8atW7cMLo9CocD06dNRvXp1uLi4oGHDhvjiiy90TvVev359gcublpYGb29vvfuCof3g7NmzkMvlOm3m/XL04sWL6NWrF3x8fODh4YEXXngBp0+fNtvyqx9OTk4IDAzEa6+9plM/KysLX3zxBbp3745q1arB2dkZfn5+eOWVV3DmzBmdttXrSt96AvR/uV/Q/mroy2LAtC/QC3r/5D/6LDExEW+++SZq1qypWd6BAwfiwoULepdJH0vsM0DBn0VHjx5Fr169UL58ebi4uKBBgwaYOXMm0tPTterFxsaiXLlyaNiwoc660rd9Hj9+jIYNG6JcuXKIjY3Ves7U97oQAuvWrUP79u3h4+MDNzc31K1bF2PHjtXsewVtK32fPep1kvdRvnx5tG3bFt98841OH06fPo1JkyahSZMm8Pb2hqurK5o2bYr58+cjOztbb79N5ejoiG+++QaOjo4YOXIknj59CpVKhREjRuDp06dYuXIlfH19dV53+/ZthIWFoXz58vDw8EDHjh1x6NAhs/SpVBFEZnb9+nUBQHTv3t1gnQMHDggAYuzYsXqf9/f3F4GBgVpl69atEwDEunXrNGUHDx4UAETDhg1FUlKSpvzff/8V9erVEwDEoUOHdHJnzpypkwlAdOzYUae8Y8eOQt9b5dq1azpl2dnZolu3bkIul4ubN2/qXbaAgACdZZs5c6YAIA4cOKBVPnz4cAFAXL9+XW9bxlAqlaJ27doCgNi7d6/Wc++++64AIEaNGqXTFwDi559/1qq/cOFCAUC89NJLmrK7d+8KBwcHERISopM9depUAUDs2rVLUxYSEiIACJVKpVVXvd8MHz5cq9zU9VyjRg1Ro0YNzc+DBg0SAMTQoUO1Mv/66y/h5OQkypUrJ1JSUnSWP/+2MHXfSUxMFF5eXsLf31/cuHFD67nNmzcLAGLSpEmFLn9+pm7Pgqj3rz59+ghfX1+RmZmpeS4hIUE4OTmJvn376l1uQ+8XIfSvQ1Pfq2pvvfWWACDmz58vhNBdT/fu3ROBgYHC19dXxMXF6bx+yJAhAoD4+uuvtcofPnwoqlWrJnx9fUVGRoamvF+/fgKAeP/993XaevDggcjOzta7zPn3O2PWiRBCLF++XAAQS5Ys0SqPj4/XaSM1NVU0bdpUeHt7i7S0NINZeanXl779Vu3OnTvCx8dHODs767y/8zN2OYvzmUVEJYs5xn01atQQ3t7eYubMmZpHnz59dMZ9QgjxxhtvCADC399fTJ48WUyePFn4+/sLAGLy5Ml6c80x7uvevbuoXbu2GDp0qJg2bZoYO3asqFGjhgAg3n77bYPLrm/Z1BmWGPfpWxZj1qtKpRJhYWECgKhbt64YO3aseOONN0SDBg0EAPHOO+9o1X/48KGoUqWKkCRJvPzyy2LixImiQoUKonr16gKAqFevnujfv78YM2aMKF++vJAkSWzfvl2rjStXrghfX18BQISGhorp06eLl156SQAQvr6+4sqVK3qXJzQ0VAQEBIgpU6aIKVOmiICAAL3bQf23g1wuF23bttVZPytXrhRyuVzvvmBoP2jfvr1mnJx3HarfB+3btxfe3t6iU6dOYvr06SIsLEw4ODgINzc3cfz4cbMsv3pbTp8+XXTq1EmzzfKOUe7fvy9kMpno2LGjGDNmjJg2bZoYMGCAcHZ2Fi4uLiImJkbvusq/X6jp+/1f0P5qaFx7+PBh4ebmJhwcHMTgwYPF9OnTNctVu3Zt8ejRI53c/O8f9SPv/pSQkKAZH4eEhIjp06eLQYMGCblcLtzc3MThw4f1Lld+lthnhDD8WfT9999r+jhy5Egxbdo00aJFCwFAtG3bVmuMKkTueNrFxUUEBweL9PR0rfWUd/ukpaWJZ599Vjg7O4uDBw9qtWHqe12pVIr+/ftrPnfHjRsn3nvvPTFw4EDh4+Mjdu7cKYQQYvHixVrbp1mzZgKAmDJlilb5mTNntNZJx44dNc+NHTtWVKhQQQAQ69ev1+rH2LFjRdWqVcXgwYPFu+++KyZOnCgaN24sAIhXXnlF73o3pEaNGgb/jhFCiHnz5gkAYsyYMWLRokUCgBg2bJjeuvfu3dP8DurevbuIiIgQffv2FU5OTqJ79+56P+vL6niZk49kduYYhPr5+Yn69etrlen7pThq1CgBQGzdulWnje+++05nIsacg1BDtm/frvcDU61ChQqiXr16WmWWnHw8dOiQACB69Oih81xqaqooX768cHFx0Uw8qfuib/tlZ2eLmjVrCkmSREJCgqb85ZdfFpIkiatXr2rKsrKyhJ+fn6hSpYrWYGjgwIF6l8nYyTc1Q+s57y9fhUIhHB0dhaOjo7h9+7ZOG6+//roAIDZu3KgpM9fk4+effy4AiG+++UZv/5955hlRsWJFzc/GLr+p27Mg6v1rz549AoD47rvvNM/NmzdPuLm5iZ07d5pl8tHU96qaSqXSTCBu2LBBaz0lJyeLZs2aCXd3d51BtBBCPHr0SMjlctG5c2e9/Vy2bJkAIH788UchRO5AXZIkUbt2bZGVlaX3NYYUdfJx6dKlmmUzhnoAFB0dbVR9YyYfhRDiww8/FACEo6OjuHfvnsF6nHwkovz4pbN9femc1/PPP6+zLIYmmVatWiUAiJEjR2r9DszMzBShoaECgDh16pSmfPLkyQKAWL58uabs6NGjmi+yFi5cqCm/evWq8PT0FAEBASInJ0dTrp44W7lypVZf1F/M5f/9rd429evX19r+SUlJon79+kKSJHHy5EmdZVVPuP71119a7TVv3lzzJasxE0lbtmwRAETLli0NTj4CENOnT9d63d69ewUA0bRpU63yoi5/fgMGDBAAxNmzZzVlCoVC3LlzR6fuhQsXhIeHh+jatatWuTUmH4vyBXph4w61kSNHCgAiIiJCq/znn38WAESdOnWEUqkstB1z7zNq+j6LkpOThbe3t3B2dhbnzp3TlCuVSs3BEx9//LFOWzt27BByuVy89NJLmvdT3vWUnZ0tevXqJWQymc6EvxCmv9e/+OILAUB06dJFa8JTCCHS09PF48eP9S5zYZ9nhj6fL168KACIvn37apXfvHlT6/NDiNy/E9R/Yxw5ckRvjj6FTT7m5OSItm3bCgDCyclJBAQEiCdPnuitq17OOXPmaJWvXLlS85nAycdcPO2a7FJKSgpcXFwKrac+bUDfaTOdOnUCkHt6hCWoryPXrFkzeHh4aA4X79evH4Dc033zU6lUSE5Ohpubm0lZS5YswaxZs/Dxxx8jMjIS+/fvh0qlMuq1Ba0j9SlDCoUCV65c0XpOvf7ycnBwQPv27SGEwLlz5zTlY8eOhRBC67qEu3fvRkJCAkaOHAkHh//ubdW2bVsAwHvvvYeHDx8W2v+irGf1NelcXFyQnZ2NOnXq6D3t25L7yPHjxwEAJ06c0Hv9K4VCgcTERJNPkS7q9ixIgwYN0LlzZ80dSFUqFVauXImwsDCd04bzunHjht5l03etx6K+VyVJwttvvw0g9y7s6lO6MjMz0bdvX5w7dw4dOnRA69atdV578uRJKJVKZGZm6u2nehupT3k+deoUhBDo1KkTHB0dDS53caxfvx6zZs3CjBkzMGjQIEydOhUvvvgiBg4cqFUvISEBb7/9Nho2bAg3NzfNfq++1IC+/b6oEhISNKfdZ2dn46effjJb20RExsjOzoazs3Oh9dQ3rZk1axa8vb015eXKlcPMmTMBwOBpo8Wl747eDg4OGDduHJRKJQ4cOKD3dRkZGXBycrJInwpjSvaXX34Jd3d3LF++XOt3oJOTE+bOnQsA2Lx5s6Z827ZtKFeuHMaOHaspe+655/Dss88CgNalcerUqYOBAwfizp07mt+9t27dwoEDB9CoUSO8/vrrWn0ZN24cGjRogD/++AO3b9/W6euMGTO0tr+3tzc+/PBDCCH03tgoNDQUAQEBiIyM1JQdP34cZ8+e1VzzuDAZGRl499130ahRI4wbN85gPR8fH3zwwQdaZd27d0eXLl0QGxurOf26OMufX05OjiZbzdnZGf7+/jp1GzdujE6dOuHQoUNmO1XVWEePHkV8fDx69Oihc1PLjz76COXLl8emTZuQlZVlUrtZWVnYvHkzKlSogA8//FDruZ49e6Jbt274559/cPToUaPbNMc+U5gffvgBycnJGDVqFIKCgjTlMpkMn376KRwcHPR+nr388stYvnw5fvrpJ633n9qYMWPw888/48svv8Qrr7yi87yp7/WvvvoKcrkckZGROneAdnV1Rfny5U1e9oKo9+dy5cpplVevXl3nclCSJGHixIkAgN9//91sfZDL5Zp1kZWVhSVLluj9mygrKwtbt26Fn5+fzuXAXnvtNdStW9dsfSoNeLdrsjvp6elQKBR6r6eQX0pKCmQymd66lSpVgiRJSElJMXsfs7KyEBISgr/++gstWrTAsGHDUKFCBTg4OGju6KjvBiwPHz5ETk4OqlatalLe0qVLdcrq1auHXbt2oWHDhgW+Vr38lSpV0vt8lSpVtOqpJworV65cYP3k5GRN2QsvvICaNWtiw4YNmDNnDhwcHLB69WpIkoTRo0drvX7ixInYuXMnoqKiDF7/R62o69nb2xtvvvkmUlJSsHjx4kKXPe+ymMu///4LAFi+fHmB9dLS0jR3GTaGqdvTWOPHj8eAAQNw8eJF3LhxAzdu3MD48eN1bt6S182bNzF79myj+12U96pSqcS4cePg5eWFWrVqYdKkSQCAqKgoqFQqtG/fHnv27MGuXbvQt29frdeqt8HRo0cLHHCmpaUB+G8/0DdYN5f8fxRVrFgRLVu21LpG0L///ovWrVvj1q1baNeuHbp27QofHx/I5XKcPXsWP/zwg8EbPBXFuHHj8OjRI8yfPx8LFy7U3Om+evXqZssgIipISkqK5vdXQWz9pfPChQuxa9cuxMfHa353qBX0pXO1atVMylL/oav+vVmvXj106tQJMplpx408efLEqC+809PTERsbi6pVq2LBggU6z6snqdRf1iUnJ+PevXsIDg42+trQTZs2BQBcvHgR7dq102ynjh076lwnTyaToUOHDrh8+TLOnj2rs/7at2+v0766TN/1DOVyOcaMGYMFCxZg4cKF8PLywldffYU6deqgW7duRvV/wYIFuH37Nn799VfcvXvXYL0WLVrAw8NDb//279+PM2fOoGXLlsVafvV1AzMzM/Hnn3/i2LFj+OCDD7Su1Qzkvhc+/fRTHDlyBA8ePNCZbExMTNR53+3atUvvNRyTkpIMfiGtb2ImKSlJp54xX6D/+uuvuHLlimZ/Mcbly5ehUCjQqVMnvft7p06d8Ntvv+Hs2bN69x19irPP6Luuo751WtD6qF69OmrVqoW4uDikpqZqXc8cyL02+syZM7FmzRqtv9k++OADrFu3Dr6+vggPD9dp19T3+tOnT/H333+jTp06FptIi46O1qyz+/fvIyoqCvXq1UNERIRWvaysLHz55ZfYsmULLl++jKdPn2pd59WcX8wLITBnzhzNzzt27NAc+JLXlStXoFAo0LlzZ50Dp2QyGdq1a4erV6+arV8lHScfye7Ex8cDgM5Fc/Xx8vKCSqXCo0eP4Ofnp/VcQkIChBDw8vIyex9/+OEH/PXXXxg9erTOXYi3bNmi91tX4L8Bcb169UzKu379OgIDAyGEwL179/Dpp59i2bJleOONNwr9lke9/IaOMnzw4IFWPfW3V+pyQ/XzfuMsSRLGjBmDiIgI/Pjjj5rBQ5cuXVCrVi2t1zs7O+PgwYPYs2cPYmNjoVAoAOQOUvJPshZ1Pfv4+GDWrFlITU3F4sWLC132vMtiLur1GRsbiyZNmpi9XWO3p7H69u2LKlWqIDIyEjdu3EDr1q3RsmVLvUcxqnXs2FHv87NmzdKZlCzqe/Xzzz/HqVOnsGLFCvTt2xfPPfccrl27BqVSiYULF2L8+PFo0qQJJkyYgJCQEK3Br7q9d955BwsXLix0HahfW9AfFcV14MABzSDz0aNHWL9+PaZNm4b4+HjNt8xr1qzBrVu38Mknn+h8gz9//nz88MMPZuvPxo0bsXPnTrz00kuYNm0aAgMDMXjwYIwePRq//fab2XKIiAzhl866ivOls5p6zJh/HKbPkydPIITA3bt3C/xSUT3hqv5iUt8kmyHquurtU5wvU/W9Rl1m6Avl1157DR9//DE2btyIwYMHIyoqCnPmzDF4g5C8bt26hU8//RS9e/dGt27dCjy61tDy5O9fcZY//zZq2LAh6tSpo1V27NgxdO7cGUDuQQJ169bVnEG0a9cunDt3Tu8++8MPPxgcZxiafNS3v+pjqS/QLdVuUfcZU76YBwrud1xcHFJSUnQmHz/44AM8fPgQHTp0wNy5czVfAvzf//0fOnTogEOHDuH999/X2Tamvtet8cX8wYMHte4s7ejoiNDQUJ2J5P79++PHH39EvXr1MGjQIPj5+cHR0VHzN6Q5v5hftmwZoqOjMWzYMNy6dQubNm3CgAEDdA50UK+f/H/bqBnatmUVT7smu6M+HaNVq1aF1m3RogUA6J0AUZc1b97cXF3TUE+Q6rsD9+HDhw2+Tj1R2KFDhyLlSpIEf39/LFmyBN7e3jh16lShryloHaWlpeHUqVNwdXVF/fr1AUBzV2V99ZVKJY4cOQJJknTW68iRI+Ho6IjVq1dj7dq1UKlUOqeRqMlkMvTq1QvTp0/XnAL75ptv6tQr6npW8/T0RJ06dfDPP//onVCy5D6iPr38zz//NGu7pm5PYzk4OOC1117Dhg0bsGfPHrOdUqJWlPfqP//8g5kzZ6JDhw4YM2YMKlWqhK1btwIAevXqhXfeeQdubm5YtWoV7t+/j6lTp2q9vnXr1pAkyeht0KpVK8hkMhw4cMAqpyL5+vri3XffRdOmTREVFaWZiC/ufm+su3fvYvLkyShfvrzmbq2DBg1C//798fvvv+u9A7pcLodSqTRbH4iIivqlc37W+tL5r7/+QmRkJObMmYNZs2bhxRdfNPi64nzpLISASqXCnTt3MHnyZMTFxeGNN94wug310WDGZKvXWcuWLSFy7wmg96E+tdzd3R1A7lFRxlLXVU9CFufLVH2vUZcZ+kK5SpUq6Nu3L1asWIF169YByB27GuPdd9+FSqXC559/XmhdQ8uTv3/FWX719sjJyUF8fDyeeeYZjBw5Uuv39ty5c5GZmYnff/8du3fvxqJFizB79mzMmjXL4NlNQO6d5PVt+/xHVeal3l/zPq5fv65Tz1JfoFuq3aLuMwW9d8zR7xMnTmDZsmUYPHgw/vjjD/Tp0wdKpRJKpRJ9+vTBH3/8gUGDBuHLL7/U/F2dP9PY97p6f7XkF/MzZ87U5KakpGD79u3YvXs3OnTogIyMDAC5l1L68ccf0b17d1y6dAlff/015s6di1mzZmHw4MFm7U9cXBwiIiIQEBCAL774AmvXroW7uzvGjRunc5dx9fpJSEjQ25YxlxgrSzj5SHYlOTkZy5Ytg6OjI3r37l1o/eHDhwPI/YYp77dZycnJmm9z1HXMSf0L+MiRI1rlBw8exNdff633NYmJidi4cSPKly+PHj16FCv//v37ePr0qc61MPRp164dateujT179ugcJTlnzhw8fvwYYWFhmmsCtW3bFvXq1cPevXs119dT++KLLxAfH4/Q0FCdU4UrVaqEvn37Yu/evYiMjETFihV1vh0yVVHWc34jR45EdnY2IiIitA7NP3/+PNavX49y5coVu5+Gcj09PfHBBx/g4sWLOs+np6frDAiMYer2NMWYMWNQrlw51KlTx+y/yE19rwoh8Prrr2uuJar+llm93+Xd/7p27YqRI0dizZo1+OOPPzTllStXxsCBA3Hs2DF89tlnWttf7cSJE0hPTweQuw/369cP8fHxer8NTkhI0FyHxlyePHmCu3fvan2Lbmi/37RpE3755RezZY8ePRpJSUn48ssvtU67+uqrrzQTozdv3tR6Tfny5ZGYmKiZKCUiKi5+6WxYUb50Lkq2p6cnGjZsiL///lvv6bL5lStXDpUqVcLly5eN/kLqwoULAKA5clO9nQ4dOqTz+1kIgUOHDmnVy0vfOleXqfcRfcaPH48LFy7gk08+wcCBA426Vt3hw4fx/fff46233kLt2rULrX/mzBm9k7L5+1ec5VeTy+WoVasWvvjiCwC5ZzOoxcfHo3z58nj++ee1XpOeno6//vqr0OWwBEt9gd6gQQO4uLjg5MmTmjFdXsX5bCjKPmOsgtbH7du3ER8fj1q1amkd9ZiVlYXRo0ejXLlyWLZsGeRyOTZv3oyKFSuiYsWK2Lx5M+RyOZYtWwYfHx+MHj1a6xqapr7XPTw80KhRI1y/ft0qpw97enoiNDQU4eHhuHbtmuaySerP4F69eulc6sGcX8wrlUoMHz4cGRkZWL16Nby9vVGrVi0sWLAADx8+1Fz+Sa1evXpwcXHBqVOndMbGKpUKx44dM1vfSgNOPpLdmDNnDurXr48LFy7g448/NuraPx06dMAbb7yBS5cuoUmTJnjrrbfw5ptvokmTJrh8+TImT56sd9ClPo0z7wPIvVZE/nL19SNWrFihGfSFhoYiMDAQn376KXr16oVp06ahb9++6NKli96B6fr16xEcHIxHjx6hevXqmD9/vt4bdKxfvx67du3Sef13332HFStWIDIyEjNmzEBwcDCUSiXGjBlT6DqSyWRYv3493Nzc0LNnTwwdOhTvv/8+OnXqhPnz56N27dqYP3++pr4kSVizZg1cXV0RGhqKwYMH4/3330ePHj3w1ltvwd/fH19++aXerHHjxkGlUuHhw4cYPnx4sS+wbup61uedd95B27ZtsXHjRrRp0wbTp0/HqFGjNOtw9erVek8b2r17t9Z+sHv3bgCF7zvq/cXX1xebN2/G06dP0axZM7z00kuYOnUq3njjDYSGhqJy5cp6rwlTGFO3pykCAgJw69YtXLlyReeC0sVl6nt11apVmmvAGHONmUWLFqFy5coYM2aM1sDzq6++QvPmzfHee++hWbNmGDt2LKZNm4YhQ4agXr16ePbZZ7UmQ7/66is0bNgQc+fOxTPPPIOpU6finXfeQWhoKKpVq2bSUR76qG84M2vWLEyaNAlBQUF4/Pgxhg0bprlWzLBhw+Dt7Y033ngDAwcOxLvvvosXXngBw4YN03vh8KJYuXIl9u3bh/79+yMsLEzrOV9fX0RGRiI1NRWjRo3S+qOoc+fOUCgU6NGjBz766CPMmTNH8wcSEZGp+KWzcUz50hkAFAoFvvrqKzg4OGDQoEFGvWby5MlIT0/H66+/rnM9SyD36La8163r27cvnjx5onVZnD///FMzmbxo0SJN+bVr1/D999+jUqVKeO655wDkXtOuU6dOuHjxItauXauVtWrVKvz999/o3Lmz3utlfvLJJ1qnVycnJ2tOhy1o+3fu3BnPPfccPD09MWHChELWSK7JkyejSpUqOjeRMSQpKUlzowq1ffv2Yf/+/WjSpAlatmwJoHjLn19sbKxOWY0aNfDkyROtL8CVSiWmTp2q98hha7DUF+hOTk4ICwtDYmIi5s2bp/Xc3r17sW/fPtSpUwft2rUzuc9F2WeM1adPH3h7e2PdunVa20kIgWnTpiEnJwcjRozQes3cuXNx8eJFLF68WHP5CVdXV7i7u8Pd3V0zfvfz88PixYtx6dIlnf3R1Pf6xIkToVQqMWHCBM2RiGoKhUJzjXVzEUJovqxQM/QZfPHiRZ1tXhyffvopjh8/jjFjxmjdFGnChAno3LkztmzZgh07dmjKnZ2dMXDgQCQkJGh95gHA6tWrERcXZ7a+lQpmu2820f9cv35dABDdu3c3WOfAgQMCgBg7dqymrGPHjqJr167ihx9+0PuadevWCQBi3bp1Os+tXbtWtG7dWri5uQk3NzfRunVrsXbtWoO5RX3MnDlT09a1a9dEv379hK+vryZzy5Ytmoy8dTt27Gh0xvDhwzWvGz58uM7zvr6+ol27dmLjxo2GN4Ie58+fF/379xcVK1YUjo6OokaNGmLKlCni0aNHeuufO3dOq361atXEhAkTxP379w1mqFQqUb16dQFA/P333yb1T73f5F1+IUxbz0IIUaNGDVGjRg2tstTUVPH++++LOnXqCCcnJ1GuXDnx0ksviWPHjun0Y+bMmcXaRw4cOKDV3uXLl8Xo0aNFjRo1NNlNmzYVkydPFjExMYUuvyGmbk991PvX9evXDdYxtJ4BiI4dO+p9jXod5l8XQhj3Xr1z547w8vISLVq0ENnZ2VrPFbSetm3bJgCIt99+W6s8PT1dfPrpp6Jly5bC3d1duLq6ipo1a4q+ffuKb775RicjOTlZzJgxQzRo0EA4OzsLb29v0bx5c/HRRx+JrKwsvcusb7/Tt07yPsqVKydatmwpvvjiC50+nD17VrzwwguiXLlywtPTU3Ts2FH8/vvvBX4O6qNeX/k/uzw8PISfn1+B+0tYWJgAIJYvX64pS01NFa+//rqoUqWKkMvlOm2rl7OgfYqISpeijvs++eQTUalSJQFAzJs3T+c1hj7v3njjDQFAVKtWTbz55ptiypQpIiAgQAAQkydP1pvbq1cvERkZqfUAIOrWratTXrduXQFAREZGipMnTwohcj/7AgMDBQDRs2dP8d5774k+ffoIuVwu+vfvr/NZuG7dOlGnTh0BQDRv3lzMnDlT66EeFw4fPlzs3LlT8zr17+U5c+aIyMhI8dVXX4kPP/xQM7b6v//7v0K3x86dO8UzzzwjAIjAwECd7D59+ggAok+fPlrrVqVSafKrVKkihg0bJqZNmyZGjBghnn32WSFJkti8ebOm/p07d0TFihWFJEmiX79+YtKkScLX11fUqFFDABCNGjUSAwYMEGPHjhUVKlQQAMR3332n1dfLly9r2ujTp4+IiIgQvXv31ox3r1y5olVfvd5CQ0NFQECAmDJlitb2z//739jfmfrGNHnH7hs2bCi0XfX7oH379sLb21t06tRJREREiLCwMOHg4CBcXV3F8ePHzbL86m354YcfivDwcOHu7q7Tzx9//FEAED4+PmLMmDFi8uTJIigoSFSoUEGEhITo/K4ubF3pG+cUNI40NF47fPiwcHNzE46OjmLIkCEiIiJC05/atWuLhISEQnP1SUhIELVq1RIAROfOnbXWvZubmzh8+HChbQhhnn1GH0Pj6e+//17I5XLh7u4uRo0aJaZNmyZatmwpAIg2bdqIjIwMTd3Y2Fjh6OgoXnzxRZ32Da2n7t27C0dHRxEbG6spM/W9rlKpxMCBAwUA4e/vL8aPHy+mTZsmwsLCRPny5bU+w/Iq7O8M9Trp2LGjZp9+5513NMvfoEEDoVAohBBC5OTkiDZt2mjeY++++64YNGiQcHV11XwGG/s3lHp95d9+58+fF05OTqJmzZoiNTVV5zXXr1/XO36+d++e8Pf3FwDEiy++KCIiIkTfvn2Fk5OTeOGFF/T+TVRWx8ucfCQyUo0aNXR+YRirY8eORn0gGlvPXt27d084ODiI9u3b27orVqceZOmbcCOyFX2Tj5ZUVgdTRGUZv3S2ry+d9bVh6KHvS8StW7eKrl27inLlyglHR0fh7+8vQkJCxKJFi3S+sLp48aLo1KmTcHFxEfXr1xd79+7VLHt8fLzo2LGjcHZ2FvXq1dOZeFS7ceOGGDlypKhSpYpwcHAQVapUESNHjhQ3btzQqatuOyMjQ7z33nuiWrVqwsnJSdSvX18sW7ZMqFQqrfrmmEhq27atUe3mnWy7cOGC6Nmzp/Dy8hLu7u6ia9eu4tSpU2ZbfvVDJpOJypUri65du4qffvpJp/62bdvEM888I9zc3ETFihXFwIEDRXx8vN5JIWtNPgph2hfoxk4+CiHEo0ePxOTJk0WNGjWEo6OjqFixoujfv7/WxFthrD35KIQQhw4dEj169BA+Pj7CyclJ1KtXT8yYMUM8ffpUU0c9+ebh4SFu3ryp04ah9XTjxg3h4eEh2rRpI3JycrSeM+W9rlKpxOrVq8Wzzz4r3N3dhZubm6hbt64YN26cuHXrlt5lNnbyMe/D3d1d1K9fX0ybNk1nIjohIUGMGjVKVK1aVbi4uIimTZuK5cuXi2vXrhV78jErK0s0b95cSJJU4N9yK1euFADEgAEDtMpv3rwpBg0aJHx8fISbm5to3769OHjwoMEDMsrqeFkSQs9FsIhIR2BgIEaMGFGkU2VDQkIQGBhY4N3xTKlnr6ZNm4ZPP/0UmzZt0jmVs7S7ceMGatasqXU3YyJbU++XM2fOLNJnl6nUdzq/fv26UTePICKyVyV13DdixAjcuHFD73XkilLPVCEhITh48KDe6yzbc9vFpf59O3z48BI7jicqKwIDAxEYGGj2zz9jldXxsoOtO0BUUgwdOtSoi6HrM2LECPj4+Jitnj1JTk5GZGQkbt68idWrV6NRo0YYOHCgrbtldZ6enhg7diyqVq1q664QERERERER2Q1OPhIZKf/Fek2R/2LBxa1nT548eYKIiAi4uLjg+eefx4oVK3TuQlYWVKhQQXPzGSIiIirZSuqXzn379jXqLrbG1iMiIjIHTj4SUbEEBgba5ekvRAT4+Phg5syZVrsUgDqnpB3BTUSUX0n90rlv375mrUdERGQOvOYjERERERERERGVekuWLIGPj4/NzjqMjo5GdHQ03nzzzTL1hT0nH4mIiIiIiIiIiMgiZLbuABEREREREREREZVOZe6ajyqVCvfu3YOnpyckSbJ1d4iIiIhMJoRAamoqqlatCpmM3yWXRByTEhERUUlmyni0zE0+3rt3D9WqVbN1N4iIiIiK7fbt2wgICLB1N6gIOCYlIiKi0sCY8WiZm3z09PQEkLtyvLy8rJY7aNAgbN26lXnMs8s8W2Qyr2Tn2SKTecyz90xr5qWkpKBatWqacQ2VPLYYk5bm90RZyLNFJvNKdp4tMpnHPHvPZJ75mDIeLXOTj+rTWry8vKw6+ejo6Mg85tltni0ymVey82yRyTzm2XumLZaRp+uWXLYYk5b290Rpz7NFJvNKdp4tMpnHPHvPZJ75GTMe5UWCiIiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFlLkbzphKqVQiOzu72O1UqFABCoXCDD1iHvNKR2ZJznN0dIRcLjdLW0RERIXheJR5tspkXsnOs0Umx9xEpA8nHw0QQuDBgwdISkoyS3sjRozA9evXzdIW85hXGjJLep6Pjw8qV67MO80SEZHFcDzKPFtnMq9k59kik2NuItKHk48GqAd6fn5+cHNzK/aHnSRJCAwMNE/nmMe8UpBZUvOEEEhPT0dCQgIAoEqVKsVuk4iISB+OR5ln60zmlew8W2RyzE1E+nDyUQ+lUqkZ6FWoUMEsbcrlcri4uJilLeYxrzRkluQ8V1dXAEBCQgL8/Px4OggREZkdx6PMs4dM5pXsPFtkcsxNRPrwhjN6qK+p4+bmZuOeEJG9Un8+mOMaXERERPlxPEpExDE3UWnByccC8LoSRGQIPx+IiMga+PuGiMoyfgYSlQ6cfCQiIiIiIiIiIiKL4OQjFUlaWhpu376NJ0+e2LorRERERERERERkpzj5SEaLiopCly5d4OnpCQ8PD1SvXh2ffvqprbtFRERERERERER2ipOPZdTFixfx6quvwt/fH87OzqhatSqGDh2Kixcv6q0/ffp0DBw4EJ6envj666/x22+/4ffff8eECROs3HMiIiIiKsnWr18PSZI0DxcXF9SrVw+TJk3Cw4cPbd09sqI2bdpAkiRERkbqfT7/vpL/cfz4cU3drVu34tVXX0XdunUhSRJCQkKstBRERFQYB1t3gKxvx44dCAsLQ/ny5TF69GjUrFkTN27cwJo1a7Bt2zZs2bIFL7/8sqb+wYMHsWDBAsybNw/Tp0+3Yc+JiIiIqLT4+OOPUbNmTSgUChw5cgSRkZH45ZdfcOHCBd7luwy4evUqTp48icDAQHz33XcYP368wbrqfSW/OnXqaP4dGRmJ06dPo3Xr1nj8+LFF+kxEREXDyccyJj4+HsOGDUOtWrVw6NAh+Pr6ap6bMmUK2rdvj2HDhuH8+fOoVasWAGDhwoV47rnnOPFIRERERGbTo0cPtGrVCgDw2muvoUKFCvj888/xww8/ICwszMa9I0v79ttv4efnh0WLFqF///64ceOGwbp59xVDNm7cCH9/f8hkMjRp0sTMvSUiouLgaddlzGeffYb09HSsWrVKa+IRACpWrIiVK1ciLS1N61qOx48fR5MmTTB48GCUL18erq6uaN26NXbt2qWpk5aWBnd3d0yZMkUn886dO5DL5Zg3bx4AYMSIEQgMDNSpJ0kSZs2apfn55s2bmDBhAurXrw9XV1dUqFABAwYM0BmYREdHQ5IkREdHa8pOnjyJbt26wdPTE+7u7ggJCcHhw4e1Xqc+jePUqVOassTERJ1+AMCYMWP09vnEiRN48cUX4e3tDTc3N3Ts2BFHjx7VqXf37l2MGjUKlSpVgrOzMxo3boy1a9fq1NNHfVrJkiVLdJ5r0KABJEnCpEmTClyugpbtzJkz6NGjB1q0aAEPDw906dJF6xQWAFi5ciVkMhmioqI0ZTdu3IAkSVi/fr2mLC4uDuXLl8eQIUO0Xp+UlIQ333wT1apVg7OzM+rUqYNVq1ZBpVJp1VOpVFi6dCmaNm0KFxcX+Pr64sUXX9QsS0Gn3eQ9vUa9T6gfzs7OeOGFFzBv3jwIIfQuv5eXl8HlJyIiIsvr3LkzAOD69esAgH///RdTp05F06ZN4eHhAS8vL/To0QPnzp3Tea1CocCyZctQr149uLi4oEqVKnjllVcQHx8P4L9xS2FjCLWEhASMHj0alSpVgouLC5o1a4YNGzZo1bl27Ro6d+6MypUrw9nZGdWqVcO4cePw77//auqoxyTbtm3T6bOHhwdGjBih+dnY5TWlzaKOC9XjovDwcL3jIn1juwULFuiM7QqyadMm9O/fHy+99BK8vb2xadMmo1+rT7Vq1SCTFe3P27xjx7Nnz2o9d/fuXcjlcp11PmLECHh4eOi0tW3bNp2/TYDc6+e//PLLcHV1RcWKFfHqq6/i7t27WnWGDBmCChUq4OrVq5oy9TbM+zdQVFQUZDIZVq5cqfX6y5cvo3///ihfvjxcXFzQqlUr7N+/X6ePSUlJeOuttxAYGAhnZ2cEBAQgPDwciYmJOuNofQ/1fjNr1iytck9PT/Tr10/r78S8fW7ZsmWBy09EpRePfCxjfvzxRwQGBqJ9+/Z6n+/QoQMCAwPx888/a8oeP36MVatWwcPDA5MnT4avry++/fZbvPLKK/juu+8QFhYGd3d3vPzyy9i6dSs+//xzyOVyzes3b94MIQSGDh1qUl9PnjyJY8eOYfDgwQgICMCNGzcQGRmJkJAQ7N692+Dr/vnnH4SEhMDNzQ3vvvsu3Nzc8PXXX6Nr16747bff0KFDB5P6Ycgff/yBHj16oGXLlpg5cyZkMhnWrVuHzp074/Dhw2jTpg0A4OHDh3j22Wc1k4S+vr7Ys2cPRo8ejZSUFLz55puFZrm4uGDdunVadY8dO4abN28WaxkuXryI9u3bw8vLC6+//joqV66MlStXIiQkBAcPHkTbtm0BAGPHjsWVK1cwfPhwBAYGonXr1jpt/fvvv3jppZfQsGFDrFu3TlOenp6Ojh074u7duxg7diyqV6+OY8eOYdGiRcjOztaaVB09ejTWr1+PHj164LXXXkNOTg4OHz6M48ePo1WrVti4caOm7uHDh7Fq1SosXrwYFStWBABUqlRJq0/vv/8+GjZsiIyMDKxbtw7vv/8+/Pz8MHr0aJ3lf++99+Do6Kh3+YmIiMjy1BOFFSpUAJA7ubdr1y4MGDAANWvWxMOHD7Fy5Up07NgRly5dQtWqVQEASqUSL730Evbv34/BgwdjypQpSE1NxW+//YYLFy6gdu3amoywsDD07NlTKzciIkLr54yMDISEhOCff/7BpEmTULNmTURFRWHEiBFISkrSfNmekZGBgIAAhIaGwsvLCxcuXMDy5ctx9+5d/PjjjyYvv7HLayn6xkVffvmlzrjI0NguIiIC9+/f1/uFeX4nTpzAP//8g3Xr1sHJyUnzd8WAAQP01k9OTkZiYqJWmSRJmn3FXNRj7qVLl2rKNmzYACcnJygUiiK3u379eowcORJNmzbFvHnz8PDhQyxduhRHjx7FmTNn4OPjAwBYu3YtOnfujF69euHEiRMoV66cTlsxMTEYPnw43nrrLYwdO1ZTfvHiRbRr1w7+/v6YPn063N3d8f3332PChAmoVKmS5rJaT58+Rfv27fH3339j1KhReOaZZ5CYmIjdu3fjzp07aNiwodaYe9WqVfj777+xePFiTVlQUJBWn9T1ExMTsXTpUgwYMAAXLlxA/fr1tZa/devWBS4/EZViooxJTk4WAERycrLBOhkZGeLSpUsiIyPDbLlxcXFma6uoeUlJSQKA6NOnT4Gv7d27twAgUlJShBBCABAARHR0tKZOenq6aNiwoahcubLIysoScXFxYt++fQKA2LNnj1Z7QUFBomPHjpqfR44cKapXr66TC0DMnDlTKyO/P//8UwAQn376qabswIEDAoA4cOCAEEKIfv36CblcLi5cuKCpk5iYKCpUqCBatmypKVu3bp0AIE6ePKkpe/TokU4/hBAiJCRE1KhRQ/OzSqUSdevWFd27dxcqlUqrzzVr1hTdunXTlI0ePVpUqVJFJCYmarU5ePBg4e3trXc5824/AKJ///7CwcFBnDp1SqvdIUOGCABi4sSJBS6XoWXr27evcHJyEvHx8ZrMe/fuCU9PT9GhQwet1yuVShEaGiqqVKkibt++La5fvy4AiHXr1omsrCwREhIiatasKRISErRe98knnwh3d3edfXLMmDFCLpeLW7duCSGE+OOPPwQAMXnyZJ31kXcd51/O69ev6zyXf58QQogLFy4ImUwmJkyYoHf51Qwtf36FfU6EhoYW+Hpzs3aeLTKZxzx7z7RmnjHjGbJvhW1DS41H09OF+PxzISZNyv2/nmGIWfP0Uf8O//3338WjR4/E7du3xZYtW0SFChWEq6uruHPnjhBCCIVCIZRKpdZrr1+/LpydncXHH3+sKVu7dq0AICIiInSy1GMI9bjls88+06nTuHFjrbHqkiVLBADx7bffasqysrJEcHCw8PDw0IyR9S3fhAkThIeHh+Zn9ZgkKipKp667u7sYPny45mdjljcuLs6kNos6LlQ7cuSIzrjI0Nhu+vTpWmO7gkyaNElUq1ZNs31+/fVXAUDs2rVLq566//oezs7OBtvPv00NUS+Dep2GhYWJChUqiMzMTE2dunXrasbcedf58OHDhbu7u06bUVFRWuPQrKws4efnJ5o0aSJiY2M19X766ScBQHz00Udar3/48KEIDAwUnTp1EllZWVpj3lu3bonKlSuL3r176+wrXbp0EU2bNhUKhUJTplKpxDPPPCPq1q2rKfvoo48EALFjxw6dvusbcw8fPlzr76C8Zs6cKfJPKaj7+/333+ssf97PM0PLn19ZH3OX9jxbZDLPfEwZj9rNadfz58+HJEkFHgX29ddfo3379ihXrhzKlSuHrl27IiYmxnqdLKbMjGzsWnwcK97Yi12LjyMzI9uq+ampqQAAT0/PAuupn09JSdGUtW7dGh07dtT87OrqigkTJuDBgwf466+/AABdu3ZF1apV8d1332nqXbhwAefPn8err76qKfPz80NCQgKysrIK7Ierq6vm39nZ2Xj8+DHq1KkDHx8fXLp0Sad+cnIyEhIS8Ntvv6F79+5o3Lix5rkKFSpgxIgROH36tFnuonj27FlcvXoVQ4YMwePHj5GYmIjExESkpaWhS5cuOHToEFQqFYQQ2L59O0JDQyGE0NRLTExE9+7dkZycrFl/BalUqRJ69eqlOaIwPT0d33//PUaOHGnwNepviNWPvKcAAblHCfz666/o27ev5vqeAFClShUMGTIER44c0doHZDIZNm/ejAoVKiA0NBRpaWma58aPH4+YmBj89NNPOqfzR0VFad63efvz3HPPQalU4tChQwCA7du3Q5IkzJw5U2dZJEkqdB0VtA5u3bqFr7/+GiqVSnNKl6nLT0REZUNpHpMqFBLatQOmTgVWrsz9f7t2QEaGbfrTtWtX+Pr6olq1ahg8eDA8PDywc+dO+Pv7AwCcnZ01p9EqlUo8fvwYHh4eqF+/vtb4afv27ahYsSKGDRumk1GUMcQvv/yCypUra1130tHREZMnT8bTp09x8OBBrfrJycl4+PAh9u/fj59//lnvWTapqala46D8R/GZsrymtJm3j0UZF/r5+emMiwyN7bp27ao1tjMkJycHW7duxaBBgzTbp3PnzvDz8zN4xOjy5cvx22+/aT327NlTYE5RhIaGQpIkzVlWhw8fxp07dzBo0CCDr8m/DdR/c6mdOnUKCQkJmDBhApydnTXlvXr1QoMGDbTOOANy1/nPP/+MEydOYMKECZryp0+fIjQ0FBUrVsSmTZu0TjH/999/8ccff2DgwIFa+8Xjx4/x/PPP4+rVq5pTnLdv345mzZpp3WBUrahjbnXe33//jc2bN8Pd3R3PPvuszvK7uLgUuvxEVDrZxWnXJ0+exMqVK3UO384vOjoaYWFheO655+Di4oIFCxbghRdewMWLFzWDFHuVpcjBe+3W49q5h5DJJaiUAgc2xuLToyPg7OpolT6oJxXz/0LMT98kZYMGDXTqNWzYEEDuNXTKly8PmUyGoUOHIjIyEunp6XBzc8N3330HFxcXrVMonnvuOSxYsAAffvghJk+erPVLKK+MjAzMmzcP69atw927d7Wu1advGfr27av5t/oQf0P9zX96rqnU12EZPny4wTrJycnIzs5GUlISVq1ahVWrVumtl5CQYFTmyJEjMXLkSCxatAhRUVEoV66cZiJNn65duxbY3qNHj5Cenm5wXalUKty+fVtrElepVCIxMREPHjzQTHx+9dVXOHnyJCRJ0rtdrl69ivPnz+tMSqqplz8+Ph5Vq1ZF+fLlC+y3KfLuEzKZDB9++CH69esHoGjLT0REpVtpH5Nu3uyNc+cAlSr3AQDnzgErVgBvvWX9/ixfvhz16tWDg4MDKlWqhPr162tNqKivBf3VV1/h+vXrUCqVmufynm4bHx+P+vXrw8HBPH/a3Lx5E3Xr1tW5fqB6LJn/sjfdu3fHiRMnAAAvvvgitm7dqtPmqFGjCs01dnlNaVPNnONCY8d2hvz666949OgR2rRpg3/++UdT3qlTJ/z0009QqVQ6675NmzaF3nDGHBwdHfHqq69i7dq16N+/P9auXYt+/frBy8tLb/20tDSD60FNvb/oW7cNGjTAkSNHdMpTUlKQkZGB1atXa675OWrUKJw7dw5VqlTR2jeA3MtOCSEwY8YMzJgxQ28/EhIS4O/vj/j4eM142FzyrgMPDw989913qFatGoCiLT8RlT42n3x8+vQphg4diq+//hpz5swpsG7eI+oAYPXq1di+fTv279+P8PBwS3az2I5tjse1cw8hVAJKVe4k2rVzD7FnxWn0fetZq/TB29sbVapUwfnz5wusd/78efj7+2t+yeY9ArEw4eHh+Oyzz7Br1y6EhYVh06ZNmotIq/Xu3RujRo3CZ599hs8++8xgW2+88YbmOofBwcHw9vaGJEkYPHiw3otZL1y4EHXr1kWfPn2M7m9RqfM/++wzNG/eXG8dDw8PPH78GADw6quvGpyoLOwPHLVevXrByckJu3btwrp16zB8+PACL6qtHtCrpaSkFHugMWPGDCgUCuzevVvzDfDJkyexbNkybN68GRMmTMDJkyd1/nDo1q0b3nvvPa227ty5g4CAAK0+mtvChQvRrFkzZGdnY+/evViwYAEcHBz0Hl1JRERlW1kYk96+7Qi5/L+JRwCQy4Fr12zTn8ImlP7v//4PM2bMwKhRo/DJJ59ovux+8803TbqxiaV98cUXSExMxKVLlzBv3jyMGzcO3377rVadjz76SOea66GhoVo/m7q8xrSpZs5xoaGxnVphYzv1+2fgwIF6nz948CA6depUpL6Zw6hRo9CiRQtcuXIFUVFRBV5r3sXFRedozcOHD+Pjjz8ucr5SqcSECRMQHByMQYMGaa4xeuHCBezevRvDhg3DRx99pHVtTfX+MXXqVHTv3l2rPfWYu06dOkXuU2F+++03ALmTsevWrcPAgQPx008/oVu3bhbLJKKSxeaTjxMnTkSvXr3QtWvXQgd6+aWnpyM7O9usR0pZyuPbTyGTS5qJRwCQySU8uJZk1X689NJL+Prrr3HkyBE8//zzOs8fPnwYN27c0Lp4cc2aNXHlyhWdupcvXwYArbtAN2nSBC1atMB3332HgIAA3Lp1C1988YXOa9esWYOPPvoI8fHxml+W+X85bdu2DcOHD8eiRYs0ZQqFAklJSXqXrWXLlujYsSM8PDyM7m9RqS9c7uXlVeA3yb6+vvD09IRSqSz0G+fCODg4YNiwYZg7dy4uXrxY6N2y8w/o85+K4+vrCzc3N4PrSiaTab6xBHJPNV++fDmWLl2K0NBQrF69GkOHDsXrr7+ON954A+3bt0erVq3w1Vdfad19u3bt2nj69KnO8l+9ehV169bVqrdv3z78+++/ZntPt2zZUnP3yjp16kChUGDBggWYMWOGyctPRESlW1kYk1arlo18B0xBqQTynGVrV7Zt24ZOnTphzZo1WuVJSUmam80BuWOIEydOIDvbPJc0qlGjBs6fP69zBJ56LFmjRg2t+uob8fXo0QN+fn4IDw/HBx98oDlSEgCaNm2qMxbKe4NGwPjlNaVNNXOOCw2N7YyRlpaGH374AYMGDUL//v11np84cSK+++47m04+Nm3aFC1atMDAgQPh6+uLTp066ZxqryaXy3XWQ/6/VdT7y5UrV3TGlleuXNHZn7766iucP38ep0+fRrNmzXDhwgV8/fXXWL16NUJDQzFnzhy8+eabGDlyJJo1awYAmlPlHR0djRpzX7hwwci1YZy8mY0aNcLff/+NhQsXolu3blrLn/+sLX3LT0Slk02v+bhlyxb89ddfmDdvXpFeP23aNFStWrXAX3yZmZlISUnRethChWoeUCmFVplKKVC5lo9V+/Huu+/C1dUVY8eO1RyVp/bvv/9i3LhxmrtEq/Xs2RMxMTE4duyYpkyhUCAyMhKVK1dGy5YttdoZNmwYfv31VyxZsgQVKlRAjx499PalRo0a6Ny5M7p27ap3G8rlcq1TrYHcb5bzn2aQlyRJeOGFF7Bv3z78/fffWsu2YcMGtGrVqtinXAO5k1q1a9fGwoUL8fTpU53nHz16pFmGfv36Yfv27Xp/yavrGWvUqFGIjY1Fhw4dtK7HUxRyuRwvvPACfvjhB9y4cUNT/vDhQ2zatAnPP/+85uhXIQQmTJiAZs2aYfz48QByT5/P+//mzZtj4sSJ+PDDD7Wuqzlw4ED8+eef2Ldvn04fkpKSkJOTAwDo168fhBCYPXu2Tr38+0FRZWRkICcnBzk5OSYtPxERlW5lZUwaFpaMZs0AmQxwdMz9f/PmwLhxVu+KUfSNBaOiojTXrlPr168fEhMTdY42BIo2hujZsycePHigdfp0Tk4OvvjiC3h4eGhdBz0/9aReZmamybnGLq8lGBoXJSYm6oyLjB3b6bNz506kpaVh4sSJ6N+/v84jJCQE27dvL9L6M6dRo0bh/PnzGDFiRJGvg6jWqlUr+Pn5YcWKFVrXvN+zZw/+/vtv9OrVS1P28OFDzJgxA5MmTdJMLOYfc48fPx7NmjXDhAkTNPuLn58fQkJCsHLlSty/f1+nD3n/5ujXrx/OnTuHnTt36tQzx5hbqVQiKytLsw3zLn/e7apv+Ymo9LLZkY+3b9/GlClT8Ntvvxm85l9B5s+fjy1btiA6OrrA18+bN0/vZMagQYPg6Kj/Wovqm5NIkmTw20NTtehTFad+uIF7fz/RXPOxagMf1O3qrbl+oDmlp6cbbHf+/PmYOnUqGjVqhP79+yMgIAB3795FVFQUnjx5gs8//xwqlUrz+v79++Obb75B9+7dER4ejnLlyuGHH37ApUuXsGjRIly/fl0rT31x4Z07d2LIkCFaA5jCPH78WNNOhw4dsHHjRgghULt2bZw9exbHjh2Dj48PcnJyNPXu3Lmj+f/Vq1fx2muvYe/evXj++ecxbNgwuLi44Pvvv0dSUhKWLFmieZ16guyHH37QXEtFPZF45swZrW+dExMT8fTpU6xZs0ZzEfFZs2bhtddeQ/369fHKK6+gUqVKePjwIU6cOAEPDw+sXLkSADBmzBj89ttvaNOmDQYOHIjatWsjOTkZly5dwrFjx3Dy5MlCt19SUhKuXr0KBwcHnDhxAi4uLnqfz7tct27d0jrdXX1h8bzr+PXXX8evv/6KZ599FgMGDICrqyu2bNkChUKBN954Q1MvKioKJ06cwNatWxEfH6+13h8+fKipN2LECGzevBljx47VnFL/8ssvIyoqCi+99BJefvllNGnSBOnp6bh06RL279+PP/74A+XLl0dAQAD69OmDZcuW4ezZs+jQoQNUKhVOnTqFtm3b6lxEXr2c169f1znSQd23rVu34tSpU8jJycFff/2F7du3o3Pnzpprz+Rd/iFDhsDBwUHv8uujVCqRkJCATz/9VGciHwBiYmLQu3dvg683N2vn2SKTecyz90xr5pnrCC+y3zGpJcajKlU6Nmz4B5s3e+P2bUdUq5aNsLBk3Lljni/58jM0HjU0VskvODgYy5cvR79+/dCiRQvExcXhxx9/RLVq1ZCRkaFpOzg4GG3btsW8efNw/vx5tGrVChkZGTh27BiGDBmCrl27asYGiYmJOn3KysrSaq9z586oXbs2hg8fjt9//x3+/v7Yt28fYmJi8MEHH+DBgwd48OABFi9ejH///Rd169aFk5MTLl26hO3bt6N+/fpwdXXF1atXNbn379/XyRVCICUlRWs5Clve9PR0k9os6rhQPS7avHmzzrjI0NguLi4O+/bt04zt9Fm1ahV8fHzg6+urd994/vnn8f333+Prr79G9+7dNf3/9ttvER0drVO/RYsWqF69OoDcSwGpx9UPHjxAcnIy3vrfxUxbt26tOUI1L/U+mn+dhoSE4Pjx4/D09DS4HVNSUiCE0FkO9eSf+m8TAHj77bcxffp0hIWFoXfv3khMTMQ333yDgIAA9O7dW1Nv6tSpcHZ2xvDhw3W2Yd4xb0REBAYOHIj58+drjiB97733EBYWhkaNGmHgwIGoVq0aHj9+jFOnTuHRo0ea08NffvllbNq0CQMGDEC/fv3QpEkTJCUl4Y8//sDs2bO1jthVL2fev73yUo+BFy5cCCD3i/59+/bhxo0bGDp0qM7yt23bFi+99JLB5denrI+5S3ueLTKZZz4mjUfNf7Nt4+zcuVMAEHK5XPMAICRJEnK5XOTk5Bh87WeffSa8vb3FyZMnC81RKBQiOTlZ87h9+3ahtwLPyMgQly5dEhkZGUVaNn3i4uKEIj1L7Pz8TxE5aY/Y+fmfQpGeZbb29eUV5Pz58yIsLExUqVJFODo6isqVK4uwsDARGxurt358fLzo37+/8Pb2Fi4uLqJ169Zi165dBvN69uwpAIhjx44Z3WcAYubMmZqfnzx5IkaOHCkqVqwoPDw8RPfu3cXly5dFjRo1xMsvv6ypd+DAAQFAHDhwQFN2+vRp8cILLwgPDw/h5uYmOnToIA4ePKiVt27dOgHA5EdeZ86cEa+88oqoUKGCcHZ2FjVq1BADBw4U+/fv16r38OFDMXHiRFGtWjXN+u7SpYtYtWqV3nWRd30CEBMnTixwveV9Xr1c+d8fjx490lnHQgjx119/ie7duwt3d3fh5uYmOnXqpLXdHj9+LCpWrCjGjBmj9brr168LAGLdunVa5d99950AoLW+U1NTRUREhKhTp45wcnISFStWFM8884xYuHChyMr6732Qk5MjPvvsM9GgQQPh5OQkfH19RY8ePcTp06d1llu9nNevX9d5Tr1PqB8ODg7C399fTJ48WTx58kTv8qv3lfzLb0hhnxOhoaGFtmFO1s6zRSbzmGfvmdbMS05OLnQ8Q8ax1zGppcaj1mQoz9BYJT+FQiHeeecdUaVKFeHq6iratWsn/vzzT9GxY0fRsWNHrbrp6eli/PjxombNmpqxVv/+/UV8fLwQ4r9xy2effaaT07hxY532Hj58qBmHOjk5iaZNm+qMeb744gvRunVr4eXlJVxdXUWdOnXEO++8Ix49eqSpox6TREVF6eS6u7uL4cOHm7S8cXFxJrVZ1HGhelz07LPP6h0X6RvbPffcczpju/zr1MHBQQwbNkzv80Lk/o3i5uamGesXNl7Pu01mzpxpsF7+5VRT76MFrVNDzw8fPly4u7vr1I2KitL520QIIbZu3SoaNWoknJ2dRfny5cXQoUPFnTt3NM9HR0cLAGLTpk1arzM05n399ddFxYoVxePHjzVl8fHxIjw8XFSuXFk4OjoKf39/0alTJ7Ft2zat1z5+/FhMmjRJ+Pv7CycnJxEQECCGDx8uEhMTdZZn+PDhokaNGnrXS/51rn4fLF68WKhUKp3lb9GihcHlN6Ssj7lLe54tMplnPqaMR202+ZiSkiJiY2O1Hq1atRKvvvqqwQkwIYRYsGCB8PLyEn/++WeRco1ZOaV5sGetvL59+4ratWtbLc/S4uLiNINWa+VZm633mZKWV9YHQrbIZB7z7D3TXgd7VDB7HZNyPMo8e8hkXsnOs0Umx9zMs/dM5pmPKeNRm5127enpiSZNmmiVubu7o0KFCpry8PBw+Pv7a66/s2DBAnz00UfYtGkTAgMD8eDBAwC5dxX28PCw7gKQQffv38fPP/+MDz74wNZdISIiIioQx6RERERElmXTG84U5tatW1oXzI2MjERWVhb69++PKlWqaB7qa0yQbV2/fh3ffvstwsLC4OjoqHXH7NLA1dUV3bt3t3U3iIiIyMo4JiUiIiIqOpsd+ahP/osI5//ZlBuXkPUdPHgQI0eORPXq1bFhwwZUrlzZ1l0yq0qVKmHv3r227gYRERFZGMekREREROZjV5OPVLKNGDECI0aMsHU3iIiIiIiIiIjITtj1addERERERERERERUcnHykYiIiIiIiIiIiCyCk48FEELYugtEZKf4+UBERNbA3zdEVJbxM5CodODkox4ODrmXwszJybFxT4jIXqk/H9SfF0RERObk6OgIAEhPT7dxT4iIbEf9Gaj+TCSikol/Neshl8shl8uRkpICT09PW3eHiOxQSkqK5rOCiIjI3ORyOXx8fJCQkAAAcHNzgyRJxWpTqVRCoVCYo3vMs0GeLTKZV7LzbJFprjwhBNLT05GQkAAfHx+OuYlKOE4+6iFJEvz8/HD//n04OzvD3d2dgz3mleo8W2SW1DwhBNLS0pCSkoIqVaoU+7OBiIjIkMqVKwOAZgKyuBISEqx6CiPzSn4m80p2ni0yzZ3n4+Oj+SwkopKLk48GeHt7IyMjA4mJiXj06FGx2yvpH/rMK915tsgsyXmSJMHHxwfe3t5maY+IiEgfSZJQpUoV+Pn5ITs7u9jtffrpp4iMjDRDz5hnizxbZDKvZOfZItOceY6OjjzikaiU4OSjARzsMa8s5dkisyTncSBERETWZK7LfDx+/BguLi5m6BHzbJFni0zmlew8W2TaYhmJyP5x8rEQHOwxryzk2SKztOcREREREREREe92TURERERERERERBbCyUciIiIiIiIiIiKyCE4+EhERERERERERkUVw8pGIiIiIiIiIiIgsgpOPREREREREREREZBGcfCQiIiIiIiIiIiKLsJvJx/nz50OSJLz55psG61y8eBH9+vVDYGAgJEnCkiVLrNY/IiIiIir9OCYlIiIiMi+7mHw8efIkVq5ciaCgoALrpaeno1atWpg/fz4qV65spd4RERERUVnAMSkRERGR+dl88vHp06cYOnQovv76a5QrV67Auq1bt8Znn32GwYMHw9nZ2Uo9JCIiIqLSjmNSIiIiIsuw+eTjxIkT0atXL3Tt2tXWXSEiIiKiMopjUiIiIiLLcLBl+JYtW/DXX3/h5MmTFsvIzMxEZmam5ueUlBSLZRERERFRycMxKREREZHl2Gzy8fbt25gyZQp+++03uLi4WCxn3rx5mD17tk75oEGD4OjoaLHc/GJiYtC7d2/mMc8u82yRybySnWeLTOYxz94zrZmXnZ1tlZyyoCyNSUvze6Is5Nkik3klO88Wmcxjnr1nMs98TBqPChvZuXOnACDkcrnmAUBIkiTkcrnIyckp8PU1atQQixcvLjRHoVCI5ORkzeP27dsCgEhOTjbTkhgnNDSUecyz2zxbZDKvZOfZIpN5zLP3TGvmJScn22Q8UxqVpTFpaX5PlIU8W2Qyr2Tn2SKTecyz90zmmY8p41GbHfnYpUsXxMbGapWNHDkSDRo0wLRp0yCXy82S4+zszAuBExEREZFeHJMSERERWZbNJh89PT3RpEkTrTJ3d3dUqFBBUx4eHg5/f3/MmzcPAJCVlYVLly5p/n337l2cPXsWHh4eqFOnjnUXgIiIiIhKPI5JiYiIiCzLpjecKcytW7cgk/13Q+579+6hRYsWmp8XLlyIhQsXomPHjoiOjrZBD4mIiIiotOOYlIiIiKjo7GryMf9gLf/PgYGBEEJYr0NEREREVOZwTEpERERkPrLCqxARERERERERERGZjpOPREREREREREREZBGcfCQiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFsHJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFF2HTyMTIyEkFBQfDy8oKXlxeCg4OxZ88eg/Wzs7Px8ccfo3bt2nBxcUGzZs2wd+9eK/aYiIiIiEoTjkeJiIiILMumk48BAQGYP38+Tp8+jVOnTqFz587o06cPLl68qLf+hx9+iJUrV+KLL77ApUuXMG7cOLz88ss4c+aMlXtORERERKUBx6NERERElmXTycfQ0FD07NkTdevWRb169TB37lx4eHjg+PHjeutv3LgR77//Pnr27IlatWph/Pjx6NmzJxYtWmTlnhMRERFRacDxKBEREZFlOdi6A2pKpRJRUVFIS0tDcHCw3jqZmZlwcXHRKnN1dcWRI0es0UUiIiIiKsU4HiUiIiIyP5tPPsbGxiI4OBgKhQIeHh7YuXMnGjVqpLdu9+7d8fnnn6NDhw6oXbs29u/fjx07dkCpVBpsPzMzE5mZmZqfU1JSzL4MRERERFRyWXo8CnBMSkRERGWXJIQQtuxAVlYWbt26heTkZGzbtg2rV6/GwYMH9Q74Hj16hNdffx0//vgjJElC7dq10bVrV6xduxYZGRl62581axZmz56tU/7iiy/C0dHR7MtjSExMDNq0acM85tllni0ymVey82yRyTzm2XumNfOys7Oxd+9eJCcnw8vLyyqZpZmlx6OAfYxJS/N7oizk2SKTeSU7zxaZzGOevWcyz3xMGo8KO9OlSxcxZsyYAutkZGSIO3fuCJVKJd577z3RqFEjg3UVCoVITk7WPG7fvi0AiOTkZHN3vUChoaHMY57d5tkik3klO88Wmcxjnr1nWjMvOTnZJuOZssLc41Eh7GNMWprfE2UhzxaZzCvZebbIZB7z7D2TeeZjynjU5qdd56dSqbROSdHHxcUF/v7+yM7Oxvbt2zFw4ECDdZ2dneHs7GzubhIRERFRKWXu8SjAMSkRERGVXTadfIyIiECPHj1QvXp1pKamYtOmTYiOjsa+ffsAAOHh4fD398e8efMAACdOnMDdu3fRvHlz3L17F7NmzYJKpcJ7771ny8UgIiIiohKK41EiIiIiy7Lp5GNCQgLCw8Nx//59eHt7IygoCPv27UO3bt0AALdu3YJMJtPUVygU+PDDD3Ht2jV4eHigZ8+e2LhxI3x8fGy0BERERERUknE8SkRERGRZNp18XLNmTYHPR0dHa/3csWNHXLp0yYI9IiIiIqKyhONRIiIiIsuSFV6FiIiIiIiIiIiIyHScfCQiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFsHJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFcPKRiIiIiIiIiIiILMKmk4+RkZEICgqCl5cXvLy8EBwcjD179hT4miVLlqB+/fpwdXVFtWrV8NZbb0GhUFipx0RERERUmnA8SkRERGRZDrYMDwgIwPz581G3bl0IIbBhwwb06dMHZ86cQePGjXXqb9q0CdOnT8fatWvx3HPPIS4uDiNGjIAkSfj8889tsAREREREVJJxPEpERERkWTadfAwNDdX6ee7cuYiMjMTx48f1DvaOHTuGdu3aYciQIQCAwMBAhIWF4cSJE1bpLxERERGVLhyPEhEREVmW3VzzUalUYsuWLUhLS0NwcLDeOs899xxOnz6NmJgYAMC1a9fwyy+/oGfPntbsKhERERGVQhyPEhEREZmfTY98BIDY2FgEBwdDoVDAw8MDO3fuRKNGjfTWHTJkCBITE/H8889DCIGcnByMGzcO77//vsH2MzMzkZmZqfk5JSXF7MtARERERCWXpcejAMekREREVHZJQghhyw5kZWXh1q1bSE5OxrZt27B69WocPHhQ74AvOjoagwcPxpw5c9C2bVv8888/mDJlCl5//XXMmDFDb/uzZs3C7NmzdcpffPFFODo6mn15DImJiUGbNm2Yxzy7zLNFJvNKdp4tMpnHPHvPtGZednY29u7di+TkZHh5eVklszSz9HgUsI8xaWl+T5SFPFtkMq9k59kik3nMs/dM5pmPSeNRYWe6dOkixowZo/e5559/XkydOlWrbOPGjcLV1VUolUq9r1EoFCI5OVnzuH37tgAgkpOTzd73goSGhjKPeXabZ4tM5pXsPFtkMo959p5pzbzk5GSbjGfKCnOPR4WwjzFpaX5PlIU8W2Qyr2Tn2SKTecyz90zmmY8p41Gbn3adn0ql0jolJa/09HTIZNqXqZTL5QAAYeAATmdnZzg7O5u3k0RERERUapl7PApwTEpERERll00nHyMiItCjRw9Ur14dqamp2LRpE6Kjo7Fv3z4AQHh4OPz9/TFv3jwAuXcj/Pzzz9GiRQvNaS4zZsxAaGioZtBHRERERGQsjkeJiIiILMumk48JCQkIDw/H/fv34e3tjaCgIOzbtw/dunUDANy6dUvrm+UPP/wQkiThww8/xN27d+Hr64vQ0FDMnTvXVotARERERCUYx6NERERElmXTycc1a9YU+Hx0dLTWzw4ODpg5cyZmzpxpwV4RERERUVnB8SgRERGRZckKr0JERERERERERERkOk4+EhERERERERERkUVw8pGIiIiIiIiIiIgsgpOPREREREREREREZBGcfCQiIiIiIiIiIiKL4OQjERERERERERERWQQnH4mIiIiIiIiIiMgiOPlIREREREREREREFsHJRyIiIiIiIiIiIrIITj4SERERERERERGRRXDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWYdPJx8jISAQFBcHLywteXl4IDg7Gnj17DNYPCQmBJEk6j169elmx10RERERUWnA8SkRERGRZDrYMDwgIwPz581G3bl0IIbBhwwb06dMHZ86cQePGjXXq79ixA1lZWZqfHz9+jGbNmmHAgAHW7DYRERERlRIcjxIRERFZlk0nH0NDQ7V+njt3LiIjI3H8+HG9g73y5ctr/bxlyxa4ublxsEdERERERcLxKBEREZFl2XTyMS+lUomoqCikpaUhODjYqNesWbMGgwcPhru7u8E6mZmZyMzM1PyckpJS7L4SERERUeljqfEowDEpERERlV2SEELYsgOxsbEIDg6GQqGAh4cHNm3ahJ49exb6upiYGLRt2xYnTpxAmzZtDNabNWsWZs+erVP+4osvwtHRsVh9N0VMTEyB/WQe82yZZ4tM5pXsPFtkMo959p5pzbzs7Gzs3bsXycnJ8PLyskpmaWbp8ShgH2PS0vyeKAt5tshkXsnOs0Um85hn75nMMx+TxqPCxjIzM8XVq1fFqVOnxPTp00XFihXFxYsXC33dmDFjRNOmTQutp1AoRHJysuZx+/ZtAUAkJyebo/tGCw0NZR7z7DbPFpnMK9l5tshkHvPsPdOaecnJyTYZz5RWlh6PCmEfY9LS/J4oC3m2yGReyc6zRSbzmGfvmcwzH1PGozY/7drJyQl16tQBALRs2RInT57E0qVLsXLlSoOvSUtLw5YtW/Dxxx8X2r6zszOcnZ3N1l8iIiIiKl0sPR4FOCYlIiKisktm6w7kp1KptK6Ho09UVBQyMzPx6quvWqlXRERERFRWcDxKREREZD42PfIxIiICPXr0QPXq1ZGamopNmzYhOjoa+/btAwCEh4fD398f8+bN03rdmjVr0LdvX1SoUMEW3SYiIiKiUoLjUSIiIiLLsunkY0JCAsLDw3H//n14e3sjKCgI+/btQ7du3QAAt27dgkymfXDmlStXcOTIEfz666+26DIRERERlSIcjxIRERFZlk0nH9esWVPg89HR0Tpl9evXh7DtDbqJiIiIqJTgeJSIiIjIsuzumo9ERERERERERERUOnDykYiIiIiIiIiIiCyCk49ERERERERERERkEZx8JCIiIiIiIiIiIovg5CMRERERERERERFZBCcfiYiIiIiIiIiIyCI4+UhEREREREREREQWwclHIiIiIiIiIiIisghOPhIREREREREREZFFcPKRiIiIiIiIiIiILIKTj0RERERERERERGQRnHwkIiIiIiIiIiIii+DkIxEREREREREREVkEJx+JiIiIiIiIiIjIIjj5SERERERERERERBbByUciIiIiIiIiIiKyCJtOPkZGRiIoKAheXl7w8vJCcHAw9uzZY7D++vXrIUmS1sPFxcWKPSYiIiKi0oTjUSIiIiLLcrBleEBAAObPn4+6detCCIENGzagT58+OHPmDBo3bqz3NV5eXrhy5YrmZ0mSrNVdIiIiIiplOB4lIiIisiybTj6GhoZq/Tx37lxERkbi+PHjBgd7kiShcuXK1ugeEREREZVyHI8SERERWZbdXPNRqVRiy5YtSEtLQ3BwsMF6T58+RY0aNVCtWjX06dMHFy9eLLDdzMxMpKSkaD2IiIiIiPKz1HgU4JiUiIiIyi5JCCFs2YHY2FgEBwdDoVDAw8MDmzZtQs+ePfXW/fPPP3H16lUEBQUhOTkZCxcuxKFDh3Dx4kUEBATofc2sWbMwe/ZsnfIXX3wRjo6OZl2WgsTExKBNmzbMY55d5tkik3klO88Wmcxjnr1nWjMvOzsbe/fuRXJyMry8vKySWZpZejwK2MeYtDS/J8pCni0yS33e0SNo07i+9fIuXrFqni0yS31e3PXS/Z7g5xrzTGDKeNTmk49ZWVm4desWkpOTsW3bNqxevRoHDx5Eo0aNCn1tdnY2GjZsiLCwMHzyySd662RmZiIzM1Pzc0pKCqpVq2b1wXrv3r2xe/du5jHPLvNskcm8kp1ni0zmMc/eM62Zl5KSAm9vb04+momlx6OAfYxJS/N7oizk2SKz1Od1CMbuz3W/FLBY3tszrZpni8xSn/fxl6X7PcHPNeaZwJTxqE2v+QgATk5OqFOnDgCgZcuWOHnyJJYuXYqVK1cW+lpHR0e0aNEC//zzj8E6zs7OcHZ2Nlt/iYiIiKh0sfR4FOCYlIiIiMouu7nmo5pKpdL6VrggSqUSsbGxqFKlioV7RURERERlBcejREREROZj0yMfIyIi0KNHD1SvXh2pqanYtGkToqOjsW/fPgBAeHg4/P39MW/ePADAxx9/jGeffRZ16tRBUlISPvvsM9y8eROvvfaaLReDiIiIiEoojkeJiIiILMumk48JCQkIDw/H/fv34e3tjaCgIOzbtw/dunUDANy6dQsy2X8HZz558gSvv/46Hjx4gHLlyqFly5Y4duyYUdfjISIiIiLKj+NRIiIiIsuy6eTjmjVrCnw+Ojpa6+fFixdj8eLFFuwREREREZUlHI8SERERWZbdXfORiIiIiIiIiIiISgdOPhIREREREREREZFFcPKRiIiIiIiIiIiILMKm13wkIiIiIiIiov9kKGRYsSMA1+66oZZ/Osa9cgcAdMpcXVR66+Ytj433wOJN1U1uw9p5ri4q26xsIrIKTj4SERERERER2YEMhQztXmuDc3GekMsFlEoJG36qCkhA7NX/yjb+UhW/Lz+FrhNbadXNXy7ggqlL6pvUhrXzNv5SFUdXx3ACkqgU4+QjERERERERkR1YsSMA5+I8oRISVDkSAOD8VU8AgMB/ZefiPDHqk8Y6dfOXAxIEJJPasHbeuThPrNgRgLeG3LLYeiUi2+I1H4mIiIiIiIjswLW7bpDLhVaZJOU+8pLLhd66hspNacPaeepyIiq9OPlIREREREREZAdq+adDqdSetRMi95GXUinprWuo3JQ2rJ2nLiei0ouTj0RERERERER2YNwrd9CsXipkkoCjgwoySaBZ3VQE5StrXi8Va2dc1Kmbv1yShMltWDuveb1UzQ1qiKh04jUfiYiIiIiIiOyAq4sKR1fHGH33aX1185Yv26rA5EFXTG7D2nm82QxR6cbJRyIiIiIiIiI74eqi0nvzFX1lhuqqyw+ceqr1vCltWDuPiEovTj4SERERERERmUGGQmbwKMLYeA8s3lRdc6SfvrqGytVtGFM3b3neTFPasHZeUfuRf50SkX3i5CMRERERERFRMWUoZGj3Whuci/OEXC6gVErY8FNVQAJir3pCwAVTl9THxl+q4vflp9B1YiutuobK87ZRWN385epMU9qwdl5x+pF3nR5dHcMJSCI7xclHIiIiIiIiomJasSMA5+I8oRISVDm5d3Q+f9UTACAgAZAgIOFcnCdGfdJYp66h8rxtFFY3f7k605Q2rJ1XnH7kXacrdgTwdG4iO8W7XRMREREREREV07W7bpDLhVaZJOU+8pLLhd66hsqt3UZJ7LO6nIjsEycfiYiIiIiIiIqpln86lErt2TIhch95KZWS3rqGyq3dRknss7qciOyTTScfIyMjERQUBC8vL3h5eSE4OBh79uwx6rVbtmyBJEno27evZTtJRERERKUWx6NEZC7jXrmDZvVSIZMEHB1UkEkCzeqmIuh/ZZIkIJMEmtdLxdoZF3XqGirP20ZhdfOXqzNNacPaecXpR951qr5BDRHZH5te8zEgIADz589H3bp1IYTAhg0b0KdPH5w5cwaNGzc2+LobN25g6tSpaN++vRV7S0RERESlDcejRGQuri4qHF0dY/COzcu2KjB50BXNnZn11S2sDWPq5i3Pm2lKG9bOK2o/8q9TIrJPNp18DA0N1fp57ty5iIyMxPHjxw0O9pRKJYYOHYrZs2fj8OHDSEpKskJPiYiIiKg04niUiMzJ1UWl96Ynbw25hQOnnmo9Z6huQW0YW1ddnj/TnvOK0o/8eURkn+zmbtdKpRJRUVFIS0tDcHCwwXoff/wx/Pz8MHr0aBw+fLjQdjMzM5GZman5OSUlxSz9JSIiIqLSxVLjUYBjUqKSKkMh03vknSnlQO7Re7HxHli8qXqx2jC1H3kzTWnD2nlF7Ycx69RQG0RkPZIQ+S/hal2xsbEIDg6GQqGAh4cHNm3ahJ49e+qte+TIEQwePBhnz55FxYoVMWLECCQlJWHXrl0G2581axZmz56tU/7iiy/C0dHRXItRqJiYGLRp04Z5zLPLPFtkMq9k5wHAkWMn0KhJK6vl/XP5dKlep8wr+ZnWzMvOzsbevXuRnJwMLy8vq2SWZpYejwL2MSYtze+JspBni0yr5x09gjaN61sv7+KVAvOUKuDI2XJISXOAJAkIIcHLPQfPBSXh2Hkfo8sBICXNAUAMgDbFasPUfuTNNKUNa+cVtR/GrFN9bTzf/AnkRbgDRmH7jLnFxF0v1e95W2Qyz3xMGY/a/MjH+vXr4+zZs0hOTsa2bdswfPhwHDx4EI0aNdKql5qaimHDhuHrr79GxYoVjW4/IiICb7/9tubnlJQUVKtWDVu3brXqYL13797YvXs385hnl3m2yGReyc4DgOdDeuHTZVFWy5v/4eBSvU6ZV/IzrZmXkpICb29vq2SVBZYejwL2MSYtze+JspBni0yr53UIxu7PdSfpLZb39swC8xZvqo69x+oDkDR3XX6aLuDslICn6X5GlaemqY/1kQD0BrC7WG2Y2g91piltWDuvOP0obJ0aaqNrmytFOl27sH3G3Hp//GWpfs/bIpN55mPKeNTmk49OTk6oU6cOAKBly5Y4efIkli5dipUrV2rVi4+Px40bN7Suy6NS5R4q7eDggCtXrqB27do67Ts7O8PZ2dmCS0BEREREJZmlx6MAx6REJdG1u26QywVUOZKmTC4XJpVL//tn3vMN7b2NktjnorRBRNZThAONLUulUmldD0etQYMGiI2NxdmzZzWP3r17o1OnTjh79iyqVatmg94SERERUWnD8SgRAUAt/3QolZJWmVIpmVQuhPbEV0looyT2uShtEJH12HTyMSIiAocOHcKNGzcQGxuLiIgIREdHY+jQoQCA8PBwREREAABcXFzQpEkTrYePjw88PT3RpEkTODk52XJRiIiIiKgE4niUiAwZ98odNKuXCpkk4OiggkwSaF4vFWtnXDS6vFndVAT9r0ySRLHbMLUf6kxT2rB2XnH6Udg6NdSG+kY0RGQdNj3tOiEhAeHh4bh//z68vb0RFBSEffv2oVu3bgCAW7duQSazu4MziYiIiKiU4HiUiAxxdVHh6OoYvXdKNqUcyL3b8rKtCkwedKVYbZjaj7yZprRh7byi9sOYdWqoDSKyHptOPq5Zs6bA56Ojowt8fv369ebrDBERERGVORyPEpU9GQoZVuwIQGy8BxZvqq6ZjFKX55+4otLJ0PbmRCWR+dn8hjNERERERERE1pChkKHda21wLs4TAi6YuqQ+Nv5SFb8vP4WuE1vhXJwn5HIBpVLChp+qAhIQe/W/MkN1jWmjsDxL9EOdaUob1s4rTj/MuQ0N1T26OoYTkETFxMlHIiIiIiIiKhNW7AjAuThPqIQEQIKAhHNxnhj1SWNNufpuyeevegIABP4rM1TXmDYKy7NEP9SZprRh7bzi9MOc29BQ3RU7AvDWkFvG7WBEpBcvYENERERERERlwrW7bpDLtW9/LJcLveWSlPswpm5paqMk9tnSy01ExcPJRyIiIiIiIioTavmnQ6nUnmFSKiW95ULkPoypW5raKIl9tvRyE1HxcPKRiIiIiIiIyoRxr9xBs3qpkEkCkiQgkwSa10vF2hkXNeWODirIJIFmdVMRlK/MUF1j2igszxL9UGea0oa184rTD3NuQ0N1eeMhouLjNR+JiIiIiIioTHB1UeHo6his2BGAZVsVmDzoiuaOxupyY+5+rK9uYW0Yk2fufuTNNKUNa+cVtR/m3oaG6hJR8XDykYiIiIiIiMoMVxcV3hpyCwdOPdW6kYi6PD99ZYbqFtSGsXnm7Ef+THvOK0o/LLENeXMZIvPj5CMRERERERGVShkKmcGj22LjPbB4U3XN0W0F1c1/JJy+uoW1YUyeufuRN9OUNqydV9R+mHsbmppHRMbh5CMRERERERGVOhkKGdq91gbn4jwhlwsolRI2/FQVkIDYq54QcMHUJfWx8Zeq+H35KXSd2MpgXXWZobrGtFFYniX6oc40pQ1r5xWnH+bchqbmHV0dwwlIIiNx8pGIiIiIiIhKnRU7AnAuzhMqIUGVk3tn4/NXPQEAAhIACQISzsV5YtQnjQusqy4zVNeYNgrLs0Q/1JmmtGHtvOL0w5zb0NS8FTsCeIo2kZE4+UhERHYnW5GNM1Hn8eROEsoF+KDFgCBbd4mIiIhKmGt33SCXC81EEgBI//unEP/Vk8tFseuWpjZKYp9ttdxEZByZrTtARESUV7YiG98M34L9iw7izLbz2L/oIL4ZvgUqJU9rISIiIuPV8k+HUilplQmhPbkEAEqlVOy6pamNkthnWy03ERmHk49ERGRXzkSdR8KVRxBCQJWjghACCVceIeFmsq27RkRERCXIuFfuoFm9VMgkAUcHFWSSQLO6qQj6X5kkCcgkgeb1UrF2xsUC66rLDNU1po3C8izRD3WmKW1YO684/TDnNjQ1T32DGiIqHE+7JiIiu/LkThIkuQSR899Xz5JcgiIt24a9IiIiopLG1UWFo6tjDN7ReNlWBSYPuqK5c3FBdfPf/VhfXXPkmbsfeTNNacPaeUXth7m3oal5RGQcTj4SEZFdKRfgA6HUPudFKAVc3B1t1CMiIiIqqVxdVHpvCvLWkFs4cOqp1nMF1TW2XXPkmbMf+TPtOa8o/bDENjQlj4iMw8lHIiKyKy0GBCH2p0tIuPIo9whIpYBfA1+IGt627hoRERHZqQyFTO8Ra/rKgdyj22LjPbB4U3Wj6hrTrjnyzN2PvJmmtGHtvKL2w9zb0Bx5PCKSSJdNJx8jIyMRGRmJGzduAAAaN26Mjz76CD169NBbf8eOHfi///s//PPPP8jOzkbdunXxzjvvYNiwYVbsNRERWZKjiyPCNwzWudv1ojk/27prRFQKcTxKVPJlKGRo91obnIvzhFwuoFRK2PhLVfy+/BS6TmylVb7hp6qABMRe9YSAC6YuqW9U3cLaNUeeJfqhzjSlDWvnFacf5tyG5sjb+EtVHF0dwwlIonxsOvkYEBCA+fPno27duhBCYMOGDejTpw/OnDmDxo0b69QvX748PvjgAzRo0ABOTk746aefMHLkSPj5+aF79+42WAIiIrIERxdHtBnW0tbdIKIygONRopJvxY4AnIvzhEpIUOXk3pX4XJwnRn3SWKf8/FVPAICABECCgGRU3cLaNUeeJfqhzjSlDWvnFacf5tyG5sg7F+eJFTsCeGo2UT42nXwMDQ3V+nnu3LmIjIzE8ePH9Q72QkJCtH6eMmUKNmzYgCNHjnCwR0REREQm43iUqOS7dtcNcrnQTAABgFwu9JZL//unyHN5aXPULU1tlMQ+28tyq8uJSJvM1h1QUyqV2LJlC9LS0hAcHFxofSEE9u/fjytXrqBDhw4G62VmZiIlJUXrQURERESUn6XGowDHpESWVMs/HUqlpFWmVEp6y4XQnlwyV93S1EZJ7LO9LLe6nIi02fyGM7GxsQgODoZCoYCHhwd27tyJRo0aGayfnJwMf39/ZGZmQi6X46uvvkK3bt0M1p83bx5mz56tUz5o0CA4OlrvzqkxMTHo3bs385hnl3m2yGSeeR05dgLPh/SyWh4AXLpwCu9NHlBgHaFSIfleCrIzcuDo6gDvql6QZEX73uvShVNWXcZ/Lp8u1ftMac+zRaY187Kzs62SU1ZYejwK2MeYtDS/J8pCni0yrZ538Qp6vz3T5NcpVYCHWzmkpDlAkgSEkODploPMrCR4uPlol7vnAABS0hwAxADobVTdQts1R54F+qHJNKUNa+cVox9m3YbmyHPLwe8xT3DglMm7sV4xcddL9XveFpnMMx9TxqOSEPnn9q0rKysLt27dQnJyMrZt24bVq1fj4MGDBgd8KpUK165dw9OnT7F//3588skn2LVrl84pMGqZmZnIzMzU/JySkoJq1aohOTkZXl5ellgkvXr37o3du3czj3l2mWeLTOaZ1/MhvfDpsiir5QHAe5MHFJiZrcjGN8O3aN+1ur4vwjcMhqOL7h/a2YpsnNp0BlcPxQOQULdjLbQKa6GpW1ieuc3/cHCp3mdKe54tMq2Zl5KSAm9vb6uPZ0orS49HAfsYk5bm90RZyLNFptXzOgRj9+e6k/TGKModlJdtfQOTB31htbtdG5Nn7n7kzTSlDWvnFbUf5t6G5sgz581men/8Zal+z9sik3nmY8p41OZHPjo5OaFOnToAgJYtW+LkyZNYunQpVq5cqbe+TCbT1G/evDn+/vtvzJs3z+Bgz9nZGc7OzhbpOxERGXYm6jwSrjyCEAIiJ/d7roQrj3Am6rzOzWSyFdnYMGwzEuIeacrunLmLi3suY/g3YXonK4mIzMXS41GAY1IiS3N1Uem9yYeh8reG3MKBU0+1niuorjXzzNmP/Jn2nFeUflhiG5ojj4i02XzyMT+VSqX1rbC56xMRkXU8uZOUe8Rjzn8H2EtyCU/uJOnUPRN1XmviUS0hTv9kJRGRJXE8SmS/TDlqrrCj22LjPbB4U3WrHfloTJ65+5E305Q2rJ1X1H6YextaMo+oLLPp5GNERAR69OiB6tWrIzU1FZs2bUJ0dDT27dsHAAgPD4e/vz/mzZsHIPdaOa1atULt2rWRmZmJX375BRs3bkRkZKQtF4OIiPQoF+ADodS+sodQCpQL8NGp++ROEiAByHchEAn6JyuJiMyF41GikiNDIUO719rgXJwn5HIBpVLCxl+q4vflp9B1Yiujyjf8VBWQgNirnhBwwdQl9Y2qa408S/RDnWlKG9bOK04/zLkNLZl3dHUMJyCpTLPp5GNCQgLCw8Nx//59eHt7IygoCPv27dNcsPvWrVuQ5bkxQVpaGiZMmIA7d+7A1dUVDRo0wLfffotBgwbZahGIiMiAFgOCEPvTJe1rPjbwRYsBQchWZONM1Hk8uZOEcgE+8KrsqTPxCAAC+icriYjMheNRopJjxY4AnIvzhEpIUOXk3mX4XJwnRn3S2Ojy81c9AQACEgAJApJRda2RZ4l+qDNNacPaecXphzm3oSXzVuwI4OnZVKbZdPJxzZo1BT4fHR2t9fOcOXMwZ84cC/aIiKjsyj8h2GJAULGutejo4ojwDYN12gSgcyMa37oV4Vu3Ih5dTdRqw6+er+Y1RESWwPEoUclx7a4b5HKhmdQBALlcmFQu/e+feW+7ao66pamNktjnkrDcRGWZrPAqRERU2qnvTL1/0UGc2XYe+xcdxDfDtyBbkV2sdh1dHNFmWEt0fqsDAOCPxYewa9rPeHg5AUIIqHJUEELg0dVENOnZEJ2mtEdAi6oIaOGPTm+2581miIiISKOWfzqUSkmrTKmUTCoXQntiyFx1S1MbJbHPJWG5icoyTj4SEZHWnanVE4LqO1MXV/6JzavR8bqVJODCL39D7ihH2Ir+CF8/GMEj23DikYiIiDTGvXIHzeqlQiYJODqoIJMEmtdLxdoZF40ub1Y3FUH/K5MkYXRda+RZoh/qTFPasHZecfphzm1oyTz1jWiIyiq7u9s1ERFZnyl3pi6IvlO3805s5m0/L6ESSIx/jP2LDiL2p0sI3zCYE49ERESkxdVFhaOrY/TeSdiUciD3+pHLtiowedAVo+paK8/c/cibaUob1s4raj/MvQ0tmUdUlnHykYiI/ndnau1BkVCqTLrZi/oIx7zXcoz96RKqNq2sM7GpJskkCFVuufr/6iMu2wxrWfQFIiIiohIvQyHTO7FDVBLp2585KUllBScfiYgITUIbIfqLI8jJzNGUyZ0c0CS0kdFtnIk6j4eXEwBAM9H48HICPH09oMrRHVjVaV8LyQ9SkBj/WDPxCBTtiEsiIiIqXTIUMrR7rQ3OxXlCLhdQKiVs+KkqIAGxV/8r2/hLVfy+/BS6TmylVddQed42BFwwdUl9o+paI88S/VBnmtKGtfOK0w9zbkNr5238pSqOro7hBCSVCZx8JCIiXPjxktbEIwDkZObgwo+XjD4C8fGNf/WWpz/Rf4Htas/4I9CxOvYvOqhVLpTCpCMuiYiIqPRZsSMA5+I8oRKS5m7C5696AgAE/is7F+eJUZ801qlrqDxvG4AEAcmoutbIs0Q/1JmmtGHtvOL0w5zb0Np55+I8sWJHAN4acgtEpR1vOENERHhyJwkyB+1fCTIHGR7f+BcxG09j37z9iNl4usC7Xz9NTNNbnvYkHZJc+06AklxCysNUtBgQBL/6vpAkCTIHGSRJgl8DX7QYEFT8hSIiIqIS69pdN8jl2pdskaTcR15yudBb11C5KW1YO89e2iiJfS7Jy01UFnDykYioDMtWZCNm42k8vPJI59RoVY4K/xy6prlL9f5FB/HN8C06E5DqNgydKu1R0R3IfzaJKvc6k44ujgjfMBhd3umIFv2D0OWdjghfz5vNEBERlXW1/NOhVGrP4giR+8hLqZT01jVUbkob1s6zlzZKYp9L8nITlQWcfCQiKqPUN4jZv+gg7sXe15RLcgmSJMHDzwNPHz2FEAKqHBWEEHh4JQGbx21DzMbTECqVVhuPr+k/7bpeSJ0Cj250dHFEm2Et0T2iC9oMa8mJRyIiIsK4V+6gWb1UyCQBRwcVZJJAs7qpCMpX1rxeKtbOuKhT11B53jYkSRhd1xp5luiHOtOUNqydV5x+mHMbWjuveb1U3kSJygxe85GIqIw6E3UeCVceQQjx352oJcA/qAoadKmHxzf/xbmdFyDyHhEpgDtn7+Hu2fu47X4Ppzaf0bQB3ZtZw8HZAc1eaYpWQ1rgTNR5PLmThHIBPmgxIIiTjERERGSQq4sKR1fH6L3btb47BuurW1gby7YqMHnQFaPqWivP3P3Im2lKG9bOK2o/zL0NrZ3Hm81QWcHJRyKiUkCoVJpTn42d3HtyJwmSXPpv4hGATC5Dpfp+aDOsZe7RjUo9M4oCEBDIepqJqwev6bSRlzLrv5vWGLpxTbYi2+DEZN7nku4kIT0pAxd+vMRJTCIiojLA1UWl92Yc+soM1S2ojQOnnmo9Zy955uxH/kx7zitKPyyxDa2dR1QWcPKRiKiEy8zIxu0z97D/yMHciUClQOxPlxC+oeBrJ5YL8NGZXMx7p+kmoY1w4ptTSE14CkjQPbJRyi3UO0GpJpNweX+cwclC9WnbCVce6fQdgNZzj3IeY2mnSAiVyL2BjQpGLScRERHZt4wMYMUKIDbeA4s3VdccEZahkBl9VJm+uoW1YY955u5H3kxT2rB2XlH7Ye5taO28gsqJShNOPhIRlXB7VpxG1tNMCPx3+nTClUc4E3Xe4NGGANBiQBBif7qkmdxTKVVw8XGBMluJlIepWP/qJjw1NPEIQAiBWu0CkZ2Rg4QrjwAJECrdycw7Z+/hXuwDCKXA+R8vovGLDZDyMBXlAnygzFHqnPqt7rv633mfU7evnvB8eDmh0OUkIiIi+5WRAbRrB5w7BwjhgqlL6mPjL1Xx+/JT6DqxFc7FeUIuF1AqJWz4qSogAbFX/yszVNeYNgTsK88S/VBnmtKGtfOK0w9zbkNr5xVUfnR1DCcgqVTh5CMRUQn34FpS7lGIeeb9JLlk8O7Tauo7TZ/afAbH159CRlIGFCkKHFh6GAeXH/3v7tcFHNgIAGEr++Pnmfvw5HYSUh+mIjMtCzK5TOv16n8nXHmEhCuPIHOQQSgFXLxddE7bztv3gk7pVnt8Q/+NboiIiMj+rViRO/GoUgGABAEJ5+I8MeqTxjgX5wmVkKDKyb1L8PmrngAAgf/KDNU1pg17y7NEP9SZprRh7bzi9MOc29DaeQWVr9gRwFO0qVTh5CMRUQlXuZZP7g1f8lDlqDSnTxfE0cURcgc5FMkKAP8dUajKMe6b1piNp/HX1nN4+igNkkyCUAk4eTjBq7InstOzkXwvRe/r1O1nJGXoPJf31O8CT+n+n6eJaUb1lYiIiOzPtWuAXK6efMwllwtcu+sGuVxoJmSA/13xBUDeYY+huuZow9p59tJGSexzaVpudTlRaSKzdQeIiKh4Og8PgkwmaZU5ODugSWgjo16vvvFMUSiSM/H0Ue7kn/qU6KynWXh87V+DE4+FcfZ2hjJbiSahjeBX3zf3tO8CePi6FymHiIiIbK9WLUCp1C5TKiXU8k+HUqk9CBBCe1KnoLrmaMPaefbSRknsc2labnU5UWli08nHyMhIBAUFwcvLC15eXggODsaePXsM1v/666/Rvn17lCtXDuXKlUPXrl0RExNjxR4TEdmfPzac17nWovou04ZkK7IRs/E09sz5DTdP3jb6SEdj5e+PKRTJCkQvO4LNY7chbGV/dJjQDo6u+m8oI0lAhRrlNT+rl2vfvP2I2Xga2YrsIveDiMoGjkeJbGvcOKBZM0AmAyRJQCYJNK+XirUzLqJZvVTIJAFHBxVkkkCzuqkIyldmqK4xbdhbniX6oc40pQ1r5xWnH+bchtbOK6hcfeMaotLCpqddBwQEYP78+ahbty6EENiwYQP69OmDM2fOoHHjxjr1o6OjERYWhueeew4uLi5YsGABXnjhBVy8eBH+/v42WAIiItvTf81HmcFrPv53h+kEnW9m7YIABAQSrjzCuZ2xuLL/KrIztCcR1deM9GvgixYDggAYvnN22Mr+uPDjJYN33Caiso3jUSLbcnUFjh7NvfbjsoUKTB50RXO336OrY4y+k7C+uoW1sWyr/eWZux95M01pw9p5Re2HubehtfMKKicqTWw6+RgaGqr189y5cxEZGYnjx4/rHex99913Wj+vXr0a27dvx/79+xEeHm7RvhIR2avKtXx0zu/Ie93E/M5Enf/fXaQt3zdDJCn3PwUdISnJJVw9eC33Ttr5VG1aBQ261NWaSPxvufLeOTsBqwd8g7RHaVoTkuEbBnMCkogAcDxKZA9cXYG33gIO7HyqdZMNVxeV3ptu6CszVLegNg6css88c/Yjf6Y95xWlH5bYhtbOM1ROVJrYzQ1nlEoloqKikJaWhuDgYKNek56ejuzsbJQvX95gnczMTGRmZmp+Tkkp2jXIiIjsVY9xLeH0kTOkNEkzwZb3iMD81Nd4LOwu0pYkBHQviJOPKkeF1IcpuRcIyXMtKJmDDJXq+6LNsJZa9fUulyThacLT3Mz/lT+8nIAzUed1Xk9EZKnxKMAxKREAZGTkHuF47VrutR7HjcudeFSXx8Z7YPGm6pojvzIUMqOPKtNXt7A27DHP3P3Im2lKG9bOK2o/zL0NrZ1X6D4TCyxe/N97haikkkT+W6RaWWxsLIKDg6FQKODh4YFNmzahZ8+eRr12woQJ2LdvHy5evAgXFxe9dWbNmoXZs2frlL/44otwdLTeUS8xMTFo06YN85hnl3m2yCzteUeOnUCjJq2slncp9iSqlquL7IwcOLo6wLuqFySZ/sv6PrmVhMTrj4udmYQ78EFAsdsxNU8CULF2BfjkO7Iz6U4SEuMfw5hfat5VvOBXz7fAOv9cPl2q99HSnmeLTGvmZWdnY+/evUhOToaXl5dVMkszS49HAfsYk5bm90RZyLNFZszRI2jTuL5Z2lKqgCNnyyElzQGSJCCEBC/3HDwXlIRj532QkuYAIAZAG53yvPUBFNiGMeXqNuwxz9z9yJtpShvWzitqP8y9Da2dZ8o+83zzJ5Bb+K4dMXHXS//nGvPMxpTxqM2PfKxfvz7Onj2L5ORkbNu2DcOHD8fBgwfRqFHBd2mdP38+tmzZgujo6AIHehEREXj77bc1P6ekpKBatWrYunWrVQfrvXv3xu7du5nHPLvMs0Vmac97PqQXPl0WZbW89yYPMCovW5GNDeGbkQDdU5n1cfF2hiI5U+9zJ/EdWmOoSf0sjlPSJrTGUPg18EX4et3TpvVd89HJ3RGZT7N02qpbvzYGLO1bYN78DweX6n20tOfZItOaeSkpKfD29rZKVllg6fEoYB9j0tL8nigLebbI7N0hGLs/1500L4rFm6pj77H6ACTNyQ9P0wWcnRLwNN0PgASgN4DdOuXq+qlp6q8YDbdRWHneNuwtzxL9UGea0oa184rTD3NuQ2vnmbrPdG1zxeKnZ/f++MvS/7nGPLMxZTxq88lHJycn1KlTBwDQsmVLnDx5EkuXLsXKlSsNvmbhwoWYP38+fv/9dwQF6T+tUM3Z2RnOzs5m7TMRUUl1Juo8HsUlGl2/zaut8Nf3Z/H0UVqR8iRJgjkOsPf294K38EKXIR0N3jDG0cUR4RsG40zUec3NZR7FP8a5nbE6dT183YvdJyIqPSw9HgU4JiW6dtcNcrmAKkfSlMnlwqRy6X//zDu0sGQb1s6zlzZKYp/LynITlVQWPmjXdCqVSut6OPl9+umn+OSTT7B37160amW9UxqJiEoD9XURjeFX3xfPDGyGirUqFDnvubFtULt9zSK/Xs3TzwO+dSuizbCWBd4oxtHFEW2GtUT3iC5oM6wlfGtX0Azg1CQJqFCj4GuzEVHZxvEokfnV8k+HUqn9S1mplEwqF0L3ktGWbMPaefbSRknsc1lZbqKSyqaTjxERETh06BBu3LiB2NhYREREIDo6GkOH5p7GFx4ejoiICE39BQsWYMaMGVi7di0CAwPx4MEDPHjwAE+fPrXVIhARlSjlAnwglAUfiehazhWd3myPIasGYNPrUbhxouind1w9cA0ZSYoiv17N0dURymwlYjaexr55+xGz8TSyFdmFvq7FgCD41feDJEmQOcggSRL8GvgZvBkPEZU9HI8SWce4V+6gWb1UyCQBRwcVZJJA83qpWDvjoqZckoTecnX9ZnVTEVRIG4WV523D3vIs0Q91piltWDuvOP0w5za0dp6p+4z6RjREJZFNT7tOSEhAeHg47t+/D29vbwQFBWHfvn3o1q0bAODWrVuQ5blhQmRkJLKystC/f3+tdmbOnIlZs2ZZs+tERCVSiwFBiP3pEh5eTtB5TpIk+DevirAV/eDo4oiYjaeREGfctSENSYh7BAfn4v+quX7sJq7hBn4/Fg2ZgwxCKXD+x4to/GIDpDxMRbkAH72nY+s7FdvQadtEVDZxPEpkHa4uKhxdHaP3br/q8mVbFZg86IpOuTF3Ei6sbX1t2GOeufuRN9OUNqydV9R+mHsbWjvP1H2GqKSy6eTjmjVrCnw+Ojpa6+cbN25YrjNERKVAtiJbM9HmVckTkICUB9qTc+EbBmPXtJ9xNTpe5/UNutQFAMRsPI1zP1wofocEkKPIKX47eahycgdeCVce5d5cRiYBQiD2p0sI36B7Ixr1qdhERPpwPEpkPa4uKr03zFCXHzj1VOt5Q/ULasPYcnvOM2c/8mfac15R+mGJbWjP+yhRSWXzG84QEZF55L3bM2TQnF6tPlIw7+Rc3wW9dO4M7dfAF01CG/3XhnGXhrQ5ocpdzoQrCTgTdZ4TjURERHYgQyEz+ogwdd3YeA8s3lRdp9yUNowpV7dhj3nm7kfeTFPasHZeUfth7m1o7/soUUnFyUciohIuW5GNpDtJ2Dxu+3+nUyv/e159pODDywnYNCYKDbvVR4sBQXpPRz4TdR4JVx7l3qG6+Depti5JwpM7SbbuBRERUZmXoZCh3WttcC7OE3K5gFIpYcNPVQEJiL36X9nGX6ri9+Wn0HXi/7d37/FNV/f/wF8naWkKhJtSoS0Xy2hRlNIJ3ZAN3GSKF5DxHUPdBGVu61bEy9h+XvCryDbcpkOZjG4iguxb4YsrzjG+OGBcpKi1WNoKoy1UBSoIMhtaeqFNzu+PmpC0uX2SfG7p6/l45DF7enJe75BTenb45HPGobzaDgkbFj6X1aVdyRih2r3HMFqeGnW4M5WMoXVeNHXE8j00+hwtXlXCDUgyLW4+EhGZmPtqx8+OnkWd+CRk/7ryk/ik4qTnKsjOVwm6T8OW7Wbbeey4ArJ/ej+9yyAiIur2CorSUV5th0sKuNo7PkpRUWMHAEhcbCuvtmPektGevoCAhOjSrmSMUO3eYxgtT4063JlKxtA6L5o6YvkeGn2OFhSl8yPYZFrcfCQiMjHPlYpAx9WKYZCy4yPKr/+/f6DPILvnqkeg4/6Q7islzcae0punWBMRERlAbV1PWK3Ss5kCAOKL//Rerlit0m/fQO1aj2HGmvm64/t1E5mVJXQXIiIyKveVikpJCdTsOor96w9g+7O7sOb7hVg751W/h9CYgSXRgrl/uZOnWBMRERlARloTnE7f9YmUvpspAOB0Cr99A7VrPYYZa+brju/XTWRW3HwkIjKx/un9PAfLeOt1aS9cmjEgvEEkcKbms45DZkzK1ebCxgWvo62lTe9SiIiIur28mSeQndkAi5BITHDBIiSyRzZgTKe2sZkNWP34QU9fIaTfdiVjhGr3HsNoeWrU4c5UMobWedHUEcv30Ohz1H0QDZEZ8WPXREQmljNrDCo3H4I4DM+p1QDQXN+MprPnkZCUgPbWdp2r1MbpqjM87ZqIiMgAkm0uFK8qCfsUYHff5RtasGB2VZd2JWOE0+4ew4h5sa7DO1PJGFrnGWXOGH2OEpkVr3wkIjKxRFsi5qy9HZeOuARpYwZ72l3tLkgJtF9ox8jrRiDnO2Ng62vTsVL1CStPuyYiIiKi+NXcYsGywqG473ejsKxwKJpbuKVD5sArH4mITC7Rloh+6f0wMOVSnCjrdOK1BHr274lLhg+ANdGqT4EakU6edk1ERGQEzS0WTLw3F+XVdlitEk6nwNrNqYAAKmsutq3bkortK0oxJX8cyqvtkLBh4XNZXdqVjBGq3XsMo+WpUYc7U8kYWudFU0cs30MzztF1W1JRvKqEV0WS4XHzkYgoTjSeOe+3/d//rEJFUxskwjsN26xSRg30nHbd1tKGso0V+PxEvec0bx5GQ0REpI2ConSUV9vhksJzim9FjR0AIHGxrbzajnlLRnv6AgISoku7kjFCtXuPYbQ8NepwZyoZQ+u8aOqI5XtoxjlaXm1HQVE6HrzzGIiMjJuPRERxovelvfy2Xzh/QeNKtHfpiEuQOnoQyjZW4KppV+LVH7+G01VnPPfBrNx8CHPW3t5lA5KblERERLFXW9cTVqv0bJAAgPjiP71P8bVapd++gdq1HsOMNfN1d8/XTWR0vEEAEVGcuGR4eKdbC4vAwJGX4hv3fx0pWQMhhAj9JIP77OhZHCiqxI5nd+GlWa/g08OnIaX84t6X0nMYjbe2lja8Mnc9djy7G2WvVWDHs7vxytz1PDGbiIgoShlpTXA6fdcXUvpupgCA0yn89g3UrvUYZqyZr7t7vm4io+PmIxFRnLhq2pXhXbUnJbJvuwoT5uVi7it34PqfTUavAFdNmol0SUgJNJxuhLD4Lsz8HUZTtrECp6vOhNykJCIiImXyZp5AdmYDLEIiMcEFi5DIHtmAMZ3axmY2YPXjBz19hZB+25WMEardewyj5alRhztTyRha50VTRyzfQzPO0bGZDZ7TsYmMjB+7JiIyGX8fFZYuF1798WthXbVn7ZGAq6ZdCaDjsJrcu66Bs82Jnc+/pXbp2hAdG5He/B1G8/mJ+o6PZbdf7MsTs4mIiKKXbHOheFUJCorSUVvXExlpTZ4Nks5t3n2Xb2jBgtlVXdqVjBFOu3sMI+bFug7vTCVjaJ1nlDljxjnKw2bIDLj5SERkIu6PCne+n2H9hXM4/eGZsMZob23HB38/hNy7rvFsZNZ/4kCPXj3i4/6QEujRuwcuNF6AJcEC6ZQ+h9G49U/vB+kMvUlJREREyiXbXH4PwfDX5u67s7TR5/uRjKGkDqPmxbKOzplGzjPKnDHjHCUyOm4+EhGZiPdHhd1X7J2uOoPz9vNdr+ITAj0v6Ymmz5t8NtmEReDM0c/w9uoSvPNKKZrrm2GxWuByujwbmmZ3ofEC7Cm98aVJGbhk+AC/B8nkzBqDys2HfDZy/W1SEhERUWDNLRa/V2L5awf8XxHm7lt5tDeWFQ6NagwldRgxL9Z1eGcqGUPrPKPMGTPOUV75SGYQ9ubjJ598gtTU1JiGr1y5EitXrsRHH30EABg9ejT++7//GzfddFPA52zcuBGPP/44PvroI4wcORK/+c1vcPPNN8e0LiIiowr0UWEAXa/ig8TgKy7DkbdqfdtdEpV/PwRX+8WFivu/42Hj0a3xzHlcMnwAcu+6xu/3E22JmLP2dp52TWQiXI8SGUtziwUT781FebUdVquE0ymwbksqtq8oxZT8cT7tazenAgKorAncV8KGhc9lRTWGkjqMlqdGHe5MJWNonWeUOWPGObpuSyqKV5VwA5IML+zNx9GjR2PFihW48847Yxaenp6Op59+GiNHjoSUEmvXrsVtt92GsrIyjB49ukv/ffv24Y477sDSpUtx6623orCwEDNmzMD777+Pq666KmZ1EREZifc9Hh2fnPPZNAQ6Ng57DuiJgYMvxekqr49eS+BExSd+P07deYy4JICzH/0naBf3PS+JyBy4HiUyloKidJRX2+GSAq72jn8MLa+2Y96S0V3aK2rsAACJwH0BAQkR1RhK6jBanhp1uDOVjKF1nlHmjBnnaHm1HQVF6fwoNhle2Kdd/+pXv8KPf/xjzJo1C//5T/D/MxeuadOm4eabb8bIkSORmZmJX/3qV+jduzfeeecdv/2ff/55TJ06FT//+c9xxRVXYMmSJfjyl7+MF154ISb1EBEZjfsejzue3Y2y1ypwZE+t335CCIyeOqpLe4ujJT7u4xgB6ZKo2X0Ub68uwZtLd6Bk3f6wDuQhIuPiepTIWGrresJq9f3UhNUq/bYL0fEIp69RxjBjzXzd3fN1Exld2JuPP/3pT1FRUYGzZ8/iyiuvxN///veYFuJ0OrF+/XqcP38eEyZM8Nvn7bffxpQpU3zabrzxRrz99tsBx21tbcW5c+d8HkREZuF9j8dAVysKq0B7azvOfdoAS0LYf613C41nzmPn82+h7LUK7Hh2N16Zu54bkEQmZtb1KMA1KcWnjLQmOJ2+uyROp/DbLmXHI5y+RhnDjDXzdXfP101kdIoOnLn88svxr3/9Cy+88AJmzpyJK664AgkJvkO8//77igqorKzEhAkT0NLSgt69e2PTpk248sor/fY9deoULrvsMp+2yy67DKdOnQo4/tKlS7F48eIu7bNnz0Zionb39SopKcH06dOZxzxD5umRGe95hz4oxS8WzIp6nDM1n8GBc5AIci9GJ9Bw+iT+su1JNLafDzqeEAJSSlgsAi5XdPd3rMcJvIf/iWoMzfLaO/5HHAbevfMV9AvjROsjh/fH9RyN9zw9MrXMa2vrvpvoZlyPAsZYk8bzz0R3yNMjs+RgFaY/9ETA7ztdQO+e/XHufAKEkJBSwN6zHa0X6tG7Zz/f9l4dv4yD9QVKAEyPagwldRguT4U6PJlKxtA6zyhzxoxztGc7tpd8jp2lin+8/Sqp/jD+/15jXswoWY8qPu36448/RlFREfr374/bbruty2JPqaysLBw4cAAOhwOvvfYa5s6di927dwdc8Cn1yCOP4KGHHvJ8fe7cOQwZMgQbNmxAnz59YpIRjunTp+ONN95gHvMMmadHZrznfe26W/Db5RujHqdk3X7seHZ38M1HAKXOQlz5nxmwJiWgvbXdb5++aX1hT+mFkZNGIHvm1Xjj0S2oLf4o4trew/9gPL4X8fP1yLMkWJAzfgxufOT6kH2fXnR7XM/ReM/TI1PLvHPnzqFv376aZBmR2dajgDHWpPH8M9Ed8vTInD5pAt74fddNc2+xPLl4+Yb7sGD2bzU7SdiIebGuwztTyRha5xllzphxjsbysJnpT70Q/3+vMS9mlKxHFa3UXnzxRfzsZz/DlClTcPDgQQwcODCiAr316NEDX/rSlwAA11xzDd577z08//zz+NOf/tSl76BBg/Dpp5/6tH366acYNGhQwPGTkpKQlJQUdZ1ERHrImTUGlZsP4dOq0wi2/yhlx/Zke2s7Lr92GE79+zSaP2+GsAjIL65wdNQ54Khz4NPDZ+B0OpE+Ni2qzUfDEoDFaoHL6eryZyadEv3DuOqRiIzLjOtRgGtSil/JNpffwy4CtQfru7O00ef7kYyhpA6j5sWyjs6ZRs4zypwx4xwlMrqwNx+nTp2KkpISvPDCC5gzZ45qBblcLrS2tvr93oQJE7Bjxw488MADnrZt27YFvCcPEZHZJdoSMWft7Xg17zWcOPCJz2aa+yPUnZ3692n8YMNdWPP9QjSebuzy/bbmNux5YR8SbdFdKWQklgQLpFNiYOalGH3TKJw71YA+g+w4uOUwztR8BmEVkE6JlFEDkTNrjN7lElGEuB4lMp5YXsVWebQ3lhUO1eyqMiPmxboO70wlY2idZ5Q5Y8Y5qsUVkUTRCvv/eTqdTlRUVCA9PT1m4Y888ghuuukmDB06FA0NDSgsLMSuXbvw5ptvAgDmzJmDtLQ0LF26FABw//33Y/LkyXj22Wdxyy23YP369SgtLcWf//znmNVERGQ0ibZEjLo+E3UHTvp8/DrQR7Gb65vx5q934PyZ4Pd/bGvx//Fss7l0xCUQFoF+aX1xy+Ib0bNfsud72d++Gv944k3U1zk830+0aXe/XyKKLa5HiYylucWCiffmorzaDqtVwukUWLclFdtXlGJK/jif9rWbUwEBVNYE7ithw8LnsqIaQ0kdRstTow53ppIxtM4zypwx4xwN1l68qoQbkGQYYW8+btu2Lebhp0+fxpw5c3Dy5En07dsXY8aMwZtvvolvfetbAIBjx47BYrl4cuu1116LwsJCLFq0CI8++ihGjhyJ119/HVdddVXMayMiMhL3x69PV53xXMU3MPNSNHzagOb6Fp++FqsF9XWOjn7t0R0qY1gCgAQSkhJwtvYshNWCz46cxas/fg1z1t6ORFsi2lra8OqPX/P8mbm/f8efvoMP/n4In5+oR//0fsiZNYYbkkQmwfUokbEUFKWjvNoOlxRwtXecwltebce8JaO7tFfU2AEAEoH7AgISIqoxlNRhtDw16nBnKhlD6zyjzBkzztFg7QVF6fyINhmGrp+5e+mll4J+f9euXV3aZs2ahVmzoj9BlojITNwfvy7bWOGzaVb6ahl2Pv+Wz8expVOiX1pffHbkrH4Fq00CEPAcriPbO/5V93TVGZRtrEDuXdegbGMFTled6bgf5hebsKerTmPVrFdw/sx5zyZu5eZDng1LIup+uB4lilxtXU9YrdKz4QEAVqv02y6++E/vO8YE6muUMcxYM183X7d3O5FRWEJ3ISIiI0i0JSL3rmtw4yPXI/eua5BoS8S4O3JwWVYKBDrueyiEwMDMS5GSNRAJX9zTUVhE8IHNKsBFnYd31KCtpQ2fn6iHsHZ67UKg8XQjpJRwtbsgpfRsWBIREZEyGWlNcDp9f9c6ncJvu5S+mynB+hplDDPWzNfN1+3dTmQU3HwkIjIx9xWRl464BDnfGYPrFnwN0iVR/Kd30NbcBgCQLokEmxXDvzoUadmDkXr1YFg6b8rFCSklTpTV4ZW569FnkB3S6btyky7ZZTNWWAU+P1GvYZVERETxIW/mCWRnNsAiJBITXLAIibGZDVj9+MEu7dkjGzAmRF8hZNRjKKnDaHlq1OHOVDKG1nlGmTNmnKPB2t0H1xAZQfwcdUpE1E0l2hLRL70fbnzkepSs248zRz7r0qe9xYmP3j2Gy7JScOXULHxSeVKHSrVzuuoMrrwxCylZA33uk9l7YC80dDoBXDol+qf306dQIiIiE0u2uVC8qsTvKbv+2gH/pwC7+y7f0IIFs6uiGkNJHUbMi3Ud3plKxtA6zyhzxoxzNFg7kVFw85GIKI58fqLefRZLVxL4tOo0EpKsGlelPWEVOPdpQ5f7ZF417UqfQ2ikUyJl1EDkzBqjd8lERESmlGxz+T3UIlB7sL47Sxt9vh/JGErqMGpeLOvonGnkPKPMGTPO0UDtREbBzUciojjSZ5C9yz1ifEjgdFXXKyPjjftqRvd9Mr35O7iHh80QERFFprnF4veKK3/tgP8rwtx9K4/2xrLCoVGNoaQOI+bFug7vTCVjaJ1nlDljxjkarJ3IKLj5SERkUm0tbZ5NtPoT9WhraQt4CEvn51kSLHC1x8+CpHdKb58TrINdzehvQ5KIiIiUa26xYOK9uSivtsNqlXA6BdZtScX2FaWYkj/Op33t5lRAAJU1gftK2LDwuayoxlBSh9Hy1KjDnalkDK3zjDJnzDhHg7UXryrhBiQZBjcfiYhMqK2lDa/MXe/5+PBn7Wfxytz1SL1qkGcDLhhLgoCrXaNi1SaAEV8bjqb/NKO+zoF+aX1xy+IbeTUjERGRygqK0lFebYdLCrjaOw50K6+2Y96S0V3aK2rsAACJwH0BAQkR1RhK6jBanhp1uDOVjKF1nlHmjBnnaLD2gqJ0fhSbDIOnXRMRmVDZxgqcrjoDKSVc7S5IdByy0vjZeSCMf+Bsb3FCxMuJ1xI4sqcWR3bX4uyH/8GR3bV49cevdVwJSkRERKqpresJq9X3HzytVum3XYiORzh9jTKGGWvm6+br9m4nMgpuPhIRmdDZj/4DdFqUSEg0fd6EgSMvDW8QVxif0TaJ8581XdyIlRKnq86gbGOF3mURERHFtYy0JjidvgsSp1P4bZcSXe5LHaivUcYwY8183Xzd3u1ERsHNRyIik2lracORPbWQnTcPJVBXcRIQQFr2YIjO/2TaSdCDaUxOWAU+P1GvdxlERERxLW/mCWRnNsAiJBITXLAIibGZDVj9+MEu7dkjGzAmRF8hZNRjKKnDaHlq1OHOVDKG1nlGmTNmnKPB2t0H1xAZAe/5SERkMmUbK9B4ptH/NyVwpvozfGlyhrZFGYz7tGsiIiJST7LNheJVJX5P2fXXDvg/Bdjdd/mGFiyYXRXVGErqMGJerOvwzlQyhtZ5RpkzZpyjwdqJjIKbj0REJvP5iXoIqwUywGnVwirQ+9JeSMkaiNNVp+P6CsfOhFUALgQ97ZqIiIhiJ9nm8nuoRaD2YH13ljb6fD+SMZTUYdS8WNbROdPIeUaZM2aco4HaiYyCm49ERCbTP71f0NOspVPikuEDMOXn16FsYwXOHD2Lyr8fhCvAZmU8sfWx4atzxmHcnTk87ZqIiCiGmlssfq+sUtIO+L8izN238mhvLCscGtUYSuowYl6s6/DOVDKG1nlGmTNmnKPB2omMgpuPREQmkzNrDCo3H8LpqjOABZ6NSEuCBdIpPVf9JdoSkXvXNShZt79bbDwCQEt9C6yJVm48EhERxVBziwUT781FebUdVquE0ymwbksqtq8oxZT8cWG1r92cCgigsiZwXwkbFj6XFdUYSuowWp4adbgzlYyhdZ5R5owZ52iw9uJVJdyAJMPg5iMRkckk2hIxZ+3tKNtYgc9P1KPPZXZ8+PetyMkdg/7p/Twbj24dH9MWQa+WBABLooCrzdyf0eZBM0RERLFXUJSO8mo7XFLA1d5xoF15tR3zlowOu72ixg4AkAjcFxCQEFGNoaQOo+WpUYc7U8kYWucZZc6YcY4Gay8oSudHsckwuPlIRGRC7qsa3TYd6IcbH7neb9/+6f2AEP/omWBLQHtLewwrVIfFaoHLGfjF8KAZIiKi2Kut6wmrVXo2NgDAapWK2sUX/+l9L2qjj2HGmvm6+bq924mMwqJn+NKlSzF+/HjY7XakpKRgxowZqKqqCvqctrY2PPXUUxgxYgRsNhuys7OxdetWjSomIjKXtpY2ONucsPWzAQIQFuG3X6B2I+nRMzHgxqOwCggheNAMESnG9ShRaBlpTXA6fdcKTqdQ1C4luhyCZ/QxzFgzXzdft3c7kVHouvm4e/du5Ofn45133sG2bdvQ1taGG264AefPnw/4nEWLFuFPf/oT/vCHP+DQoUPIy8vDt7/9bZSVlWlYORGR8bW1tOGVueuxa/letJxrASRg65OE3gN7AfDdcGxratOrzLC1NbcDnfdIBdDr0l5IG5OK6+7/Guasud3zkfO2ljaUrNuPN5fuQMm6/WhrMf5rJCLtcT1KFFrezBPIzmyARUgkJrhgERJjMxuw+vGDYbdnj2zAmBB9hZBRj6GkDqPlqVGHO1PJGFrnGWXOmHGOBmt3H1xDZAS6fuy6878Qr1mzBikpKdi/fz8mTZrk9znr1q3DY489hptvvhkA8JOf/ATbt2/Hs88+i7/85S+q10xEZBZlGytwuuoMpJSAs6OtxdGKr//0Wrz/vwfQeCbw/7E2Itn5n4ABQALnz57H+c/Oo77OgexvX41EW6Jn4/V01RnP/S4rNx/CnLW38zAaIvLB9ShRaMk2F4pXlfg9TVdJO+D/FGB33+UbWrBgdlVUYyipw4h5sa7DO1PJGFrnGWXOmHGOBmsnMgpdr3zszOFwAAAGDBgQsE9raytsNptPW3JyMvbu3Ruw/7lz53weRETdgfugGW8SEgc2VZpu4zGoL/YkG0834qVZr6Ctpc1n49XV7oKUEqerzqBsY4W+tRKR4amxHnU/h2tSIiLSSnOLBcsKh+K+343CssKhaG4x1PYPdTNC+r2URHsulwvTp09HfX190IXbnXfeifLycrz++usYMWIEduzYgdtuuw1OpxOtra1d+j/55JNYvHhxl/apU6ciMVG7q19KSkqQm5vLPOYZMk+PTObF1t597+LKq8b5tNWfqMdnR89Crb/k63EC/ZCu0uiR5w0ccQnamtvhOHnO52pJIQT6Du6DgSMvDSvv0AelXf5M1XTk8P64nqP8ey222trasHXrVjgcDvTp00eTzO5ArfUoYIw1aTz/THSHPD0yS4r3Ind0FpwuYO+B/jh3PgFCSEgp0KdXO64dU499Ff3CbgcQtC9QAiA3qjGU1GHEvFjX4Z2pZAyt84wyZ8w4R5XU8bWxn8MaZA+ypPrD+P97jXkxo2Q9apjTrvPz8/HBBx8EXegBwPPPP48f/vCHGDVqFIQQGDFiBO655x6sXr3ab/9HHnkEDz30kOfrc+fOYciQIdiwYYOmi/Xp06fjjTfeYB7zDJmnRybzYmvipJvwnfEP4/MT9eif3s9z6Morc9fj08OnVcl8D/+D8fieKmNHmicsAl8en43+6f2w49ndkF5brwIC19852eeU8GB+sWAWfrt8Y1Q1K/H0otvjeo7y77XYOnfuHPr27atJVnei1noUMMaaNJ5/JrpDnh6Z0ydNwBu/X4xlhUOxdV8WAOE5CKOxSSKpx2k0NqWE1d5w3v07OXBfYDqAN6IaQ0kdRstTow53ppIxtM4zypwx4xxVWseU3Co8eOcxBDL9qRfi/+815sWMkvWoIa67nT9/PjZv3oydO3ciPT34VS0DBw7E66+/jvPnz+Pjjz/G4cOH0bt3b2RkZPjtn5SUhD59+vg8iIjiSWtzG46XfYIdz+5G2WsV2P7sLrww9UWUFpbhjj99B+k5aRDC+KdZd2ZNsmLS/GthTbKG/Rzpkp7N15SsgRBCwJJg4UnYRBSSmutRgGtSMrfaup6wWn0/S2G1SkXtQnQ8zDSGGWvm6+brDjUGkR503XyUUmL+/PnYtGkT/vWvf+Hyyy8P+7k2mw1paWlob2/HX//6V9x2220qVkpEZFz/V7AfFxpbPfc3hASaP2/Gzuffwqs/fg0jJwX+P8NGNmz8EHzthxMwKe/asJ+TkGTFVdOuRKItEXPW3o7rfzYZOd8Zg+t/Nhlz1twOADwBm4h8cD1KFFpGWhOcTt+dDKdTKGqXEp4rsMwyhhlr5uvm6w41BpEedN18zM/Px1/+8hcUFhbCbrfj1KlTOHXqFJqbmz195syZg0ceecTz9bvvvouioiLU1tbirbfewtSpU+FyufCLX/xCj5dARKS7U7X1Xf9p8wunq84AAkjJGuj/yQLom9YXV0+/Ej169VCvyAjYU3qjZN1+1H/iQO+U3mE9p73ViQ/+fggAkGhLRO5d1+DGR673fNT6lbnrPVeI7nh2N16Zu54bkETdHNejRKHlzTyB7MwGWIREYoILFiExNrMBqx8/GHZ79sgGjAnRVwgZ9RhK6jBanhp1uDOVjKF1nlHmjBnnqNI63CdpE2lN13s+rly5EgBw3XXX+bS//PLLuPvuuwEAx44dg8VycY+0paUFixYtQm1tLXr37o2bb74Z69atQ79+/TSqmojIWAZl9Ov6T5tfEFaBc6caMGft7Xj9//0DNbuO+n4fAuPvyEHuXdeg/5C3sWfFPg0qDk/t3o9QsekghFVAOl1I6GGFLdmGFkdLwOcIIfD5iXq/3/M+AVu2d/x5uU/ADvc+kEQUf7geJQot2eZC8aoSFBSlo7auJzLSmpA384TidgBB+y7f0IIFs6uiGkNJHUbMi3Ud3plKxtA6zyhzxoxzVGkdRHrQdfMxnIO2d+3a5fP15MmTcejQIZUqIiIyn5vyrkGP/04CzgOdj7aWThf6p/dDoi0RM35zC16Zux6nq858saEnfe6DWLvvI81rD6R3Sm80nmns+MjIFxuFzgtOTPjpeFgTrDi8owYnyuq6PE+i456P/nx+or7jdbd7HUJjDbxZSUTdA9ejROFJtrn8HlShtD1Y352ljT7fj2QMJXUYNS+WdXTONHKeUeaMGeeokjqI9GCY066JiCgyScmJGJKTikljJuKtlfsgXd6baxacqf0MJev2I2fWGMxZezvKNlb4nIqdaEsEAJ/n6SktezAA4PyZTrupouMqzhsfuR45s8Zg7V2v4nT1GZ/npmQGPlSmf3o/SKfva5TOwJuVREREdFFzi8XvVVRK2gH/V2K5+1Ye7Y1lhUOjGkNJHUbMi3Ud3plKxtA6zyhzxoxzVGkdRHrg5iMRURwQFgt6JCd22UB0tbtQ8fpBQAKVmw9hztrbkXvXNWhraUPZxgr8a9ke9BlkByTQeKZRp+p9OU42oPG0n1rkxY3CRFsi5q67A6WFZajZcxTSJZHcNxn2lN4o21jhs6nqljNrDCo3H/K58nNg5qVwtjnx5tIdXTZjo+X+M/a30UtERGQmzS0WTLw3F+XVdlitEk6nwLotqdi+ohRT8seF1b52cyoggMqawH0lbFj4XFZUYyipw2h5atThzlQyhtZ5RpkzZpyjSusoXlXCDUjSBTcfiYjixOcn6mFJsHSceO3FvSH56eHTeP3//QO3LL4Rr/74Nc8mXOf+ehIW4X/jUQA9eiX5XNWYaEvEhHm5GHdnDl6Zux5H3/rQs6no3mj13uxzn4Dt3hDsM8iOg1sOY9fyvUGfF4m2lrYuH3GP1dhERERaKyhKR3m1HS4p4GrvOOSuvNqOeUtGh91eUWMHAEgE7gsISIioxlBSh9Hy1KjDnalkDK3zjDJnzDhHldZRUJTOj2KTLnQ97ZqIiGLH38eKO6vZdRQvzXoFnx4+DSmloTYegY6NUmHpdHK3ANLHpmJITqrfjTvvg2Rc7S5IKT0HyXTmfQK2NcGKMzWfhfU8pZTUREREZHS1dT1htfquMaxWqahdiI6HmcYwY8183XzdocYg0gM3H4mI4kTOrDEYOPLSkP0aTjd23eCLsYjHF13vPSkgMOr6TAiL/19Z7oNkfJ4TxkEykT4vHGqOTUREpLWMtCY4nb6/15xOoahdyo6HmcYwY8183XzdocYg0gM3H4mI4knHpzO6/EunTxeLUP1wmYjHl4DF2vGryb2B2WtgL1w17cqAT4n0IBk1D6Dh4TZERBRP8maeQHZmAyxCIjHBBYuQGJvZgNWPHwy7PXtkA8aE6CuEjHoMJXUYLU+NOtyZSsbQOs8oc8aMc1RpHe6DaIi0xns+EhHFibKNFThT/Rkgfc6I7kpK9E7pjfNnzvvc89F9b0JVCYQoDnA5XUjq3QOtjRcgLALnzzTi1R+/BjnQ/0fE/R0kkzIq8KnX0T4vHGqOTUREpLVkmwvFq0r8npyrpB3wf/quu+/yDS1YMLsqqjGU1GHEvFjX4Z2pZAyt84wyZ8w4R5XWQaQHbj4SEcUJ90d9ZfvF3T1LggVJvZPQ4mj5YhPMhV6X9kKfy3rDmmhF70t7YsTXMmBNsODcpw34tOoMPqk4CZczdguTXpf2wuArLkNq9iA0fNqI8tc/gKst8PjCItDaeAHAxSsoT1edgaPtnN/+nQ+SCfdk6UifFw41xyYiItJDss3l96AKpe3B+u4sbfT5fiRjKKnDqHmxrKNzppHzjDJnzDhHldRBpAduPhIRxYlAH/X96t3jYE2w4uzH/0HNrqNoPHMejWfOAwAcdQ60tbRj7it3INGWiLdfLsGJsrrY1jWkL779zK1ItCWiraUNh/9ZjWZHS8D+/j6yLawCbc3tAZ/jPkhGqUifp/fYREREWmtusfi9ikpJO+D/Six338qjvbGscGhUYyipw4h5sa7DO1PJGFrnGWXOmHGOKq2DSA/cfCQiihOBPuo77o4cJNoSUbJuP8rOdD1t+XR1xynMuXddE/Ij0ZE4UfYJXpm73nMlYPO5ABuPQT6S7XK6kJjMX1lERER6aG6xYOK9uSivtsNqlXA6BdZtScX2FaWYkj8urPa1m1MBAVTWBO4rYcPC57KiGkNJHUbLU6MOd6aSMbTOM8qcMeMcVVpH8aoSbkCSLvj/5IiI4kSoj/p+fqLe7wafwMVTmM992qDo3o8ZE4fjo5JjQT9GDXR8bLpsYwXOfvwfCCEgOx+/F+JekMn9ktE3tY/n67aWNn6kmYiISCMFRekor7bDJQVc7R0HwpVX2zFvyeiw2ytq7AAAicB9AQEJEdUYSuowWp4adbgzlYyhdZ5R5owZ56jSOgqK0vlRbNIFNx+JiOJIsI/69k/v53eDT+LiKcz90/sBIf4xVFgEIIGkXkkYNn4IPtz3Uci6hFXg7Ef/Qc2eWv8nYYfY6/zqnHHYdGAngI6Nx1fmrve5wrNy8yHMWXs7NyCJiIhUUFvXE1ar9GxiAIDVKhW1iy/+0/vfH40+hhlr5uvm6w41BpEeLHoXQERE2siZNQYpmQO7tKdkXjyFOWfWGKRkde3j7dIRl+D6n03GkJxUnDvVAGEN/atEOiUaPzuPxtONiuvundIb4+7M8XxdtrECp6vOQEoJV7sLUkrPlZVEREQUexlpTXA6hU+b0ykUtUvpuxFihjHMWDNfN193qDGI9MDNRyKibiLRlog7X5yFEV+/HL0u7YW+aX0wKX+i57AZd585a2/HJZcPCDhO9m1XIfeuayAsFr+H3HQmBJAyaiB6D+wFS4KyXztJvXvg3o1zfK5odJ/q7ZNhvfjRcSIiIoqtvJknkJ3ZAIuQSExwwSIkxmY2YPXjB8Nuzx7ZgDEh+gohox5DSR1Gy1OjDnemkjG0zjPKnDHjHFVah/sgGiKt8WPXRERxyN89EQHg1R+/hk8Pn4awCEiXxPsby/Hl72Z3+bhy0+f+/1U0uZ/NMxYAXDXtSryz9j3P6dneLIkWjL7pClz2xZWVZRsrwr6XJABAAFdOHYWe/ZJ9mgOd6u3+6DgRERHFVrLNheJVJX5PzlXSDvg/fdfdd/mGFiyYXRXVGErqMGJerOvwzlQyhtZ5RpkzZpyjSusg0gM3H4mI4kxbSxvWznkVp6vPQEBAQqLi7wcxeuoofHr4NAB47rvYeLoRL816BXl/n+fZgCzbWIFmh/8Tqb86d7ynn3S58OqPX/O78QgArjYXPnrnY0x97Hok2hK9TuM+3eVjIH5J4JLhXa/ADHSqt/emKBEREcVWss3l96AKpe3B+u4sbfT5fiRjKKnDqHmxrKNzppHzjDJnzDhHldRBpAddNx+XLl2KoqIiHD58GMnJybj22mvxm9/8BllZWUGf99xzz2HlypU4duwYLr30UnznO9/B0qVLYbPZNKqciMi4Sl8tw+mqMwA6DpMBOk6bTrQleK549NZwuhFlGyuQe9c1aGtpw+Ed1f4PgBHAf459jpJ1+5Ezawwcn5zD6dozQWvxHtv9ke6ihX/H0bc+DPk6eqf09ruhGOpUbyIiJbgeJeqquRkoKAAqj/bGssKhQa+iam6xhN0eagzvvEjHUFKHEfNiXUek76HWeUaZM2aco0rrINKDrpuPu3fvRn5+PsaPH4/29nY8+uijuOGGG3Do0CH06tXL73MKCwvx8MMPY/Xq1bj22mtRXV2Nu+++G0II/P73v9f4FRARGU/N7lq/7Y2fnfd70rSwdNwv0X2K9KdVp/0PLIGKvx0EJFC5+RAuNLV1XHnYHvgyRvfYbom2RLQ2toZ8DZYEC+7+y50BNxSDnepNRKQE16NEvpqbgYkTgfJyQEobFj6XhbWbUwEBVNbYYbVKOJ0C67akYvuKUkzJH4fy6tDt4Ywh0ZEXzRhK6jBanhp1uDOVjKF1nlHmjBnnqNI6ileVcAOSdKHr5uPWrVt9vl6zZg1SUlKwf/9+TJo0ye9z9u3bh4kTJ+LOO+8EAAwfPhx33HEH3n33XdXrJSIyB/+bgb0v6QVnm6vridOy436J7lOkAzy9o+sXm5efHj6N9gHtoe/hKP3di1H46+n7NKcLh/9ZzQ1GIlId16NEvgoKOjYeXS4AEJAQqKixAwAkBFztHb/Hy6vtmLdkNMqr7XDJ0O3hjOHOi2YMJXUYLU+NOiJ5D7XOM8qcMeMcVVpHQVE6P4pNujDUadcOhwMAMGBA4FNWr732Wuzfvx8lJSUAgNraWmzZsgU333yz3/6tra04d+6cz4OIKJ6NnDTCb3vmN76EezfOgT2lN4COqxI7TqJOQc6sMX5PkQ6m5VwLBo68FEKIi6dYu58u4DO2T32TM0KOLawWnl5NRLpQYz0KcE1K5lFbC1itvm3ii9/r3qxWidq6nrBaZVjtZhzDjDXzdfN1hxqDSA9CyrBu+686l8uF6dOno76+Hnv37g3ad/ny5Vi4cCGklGhvb0deXh5Wrlzpt++TTz6JxYsXd2mfOnUqEhO1uz9YSUkJcnNzmcc8Q+bpkcm82Nq7711cedU4AB0HwRx/vw6t5y94vp/UqweGfDkNwmKBdLng+OQc2prbkZicgL6pfSAsFtSfqMdnR88Gu/DRRz1O4EsZ2RACnrHsl9nR8GlDl7G9+auvMwHg0hGXoJ/XVZNHDu+P6/eQeebP1DKvra0NW7duhcPhQJ8+fTTJ7A7UWo8CxliTxvPPRHfI0yqzthY4eNCTCCBw3qBLWnHqbFLY7aHHuJgX+RhK6jBeXuzriOw91DrPKHNG6zyt58zojEZkpDUHTqv+MC7/XmOeOhStR6VB5OXlyWHDhsnjx48H7bdz50552WWXyRdffFFWVFTIoqIiOWTIEPnUU0/57d/S0iIdDofncfz4cQlAOhwONV5GQNOmTWMe8wybp0cm82Jr4uSbZXH5ec9j17v1ctnCPfK/b39DLlu4R+56t97n+/4eu96tl/NGFchbxRI5LeGX8hY8JWen/F4++u1NcoZtqbwFT/k8LhOj5H/f/kbIcf3V9Mz9O+UzD+zs+O8Hdsp7Mld6cm8VS+S8Kwq61Bzv7yHzzJ+pZZ7D4dBlPRPv1FqPSmmMNWk8/0x0hzytMpuapMzJkdJikVKIW6VFuOTYkQ6ZnemQFuGSiQlOaREu+eUshzy7fYfMyQqvPZwx3HnRjKGkDqPlqVFHJO+h1nlGmTNmnKNK62h6a5uU770Z8BGvf68xTx1K1qO63vPRbf78+di8eTP27NmD9PT0oH0ff/xx3HXXXbj33nsBAFdffTXOnz+PH/3oR3jsscdg6XSFTVJSEpKSwvtXACKieBHJgSzBTpEeMKwfdj7/lu/9IP3ez9E/92E2p6vOdBxS45RIyRqIOWtvR6ItEePuyOHp1USkKzXXowDXpGQeyclAcXHHvR+XP9OCBbOrgp6cW7yqJOz2UGMs33AxL9IxlNRhxLxY1+GdqWQMrfOMMmfMOEeV1kGkB103H6WUuO+++7Bp0ybs2rULl19+ecjnNDU1dVnQWb+4KYk0xifIiYgMoa2lTfGGXqBNy3F35ODQ1iqfzcMevZK63M8xEPdhNlJKz+nYp6vOoGxjBXLvusYnN5K6iYgixfUoERERkbp03XzMz89HYWEh/va3v8Fut+PUqVMAgL59+yI5ORkAMGfOHKSlpWHp0qUAgGnTpuH3v/89cnJy8JWvfAVHjhzB448/jmnTpnkWfURE3Z2/Kw0rNx/yXGmolL+rIv/zbnHYY7kPs3FvPAKAsIouh8oEq5uISA1cjxL5am4GJk7sOPFaShsWPpeFtZtTAQFU1thhtUo4nQLrtqRi+4pSTMkfh/Lq0O3hjCHRkRfNGErqMFqeGnW4M5WMoXWeUeaMGeeo0jqKV5Xw6kfSha6bj+6bcl933XU+7S+//DLuvvtuAMCxY8d8/mV50aJFEEJg0aJFqKurw8CBAzFt2jT86le/0qpsIiLDC3WlYSQ6XxX52nuWsK9S7J/eD9LpezWQdHb92HawuomI1MD1KJGvgoKOjUeXCwAEJAQqauwAAAkBV3vHEbrl1XbMWzIa5dV2uGTo9nDGcOdFM4aSOoyWp0YdkbyHWucZZc6YcY4qraOgKB0P3nkMRFrT/WPXoezatcvn64SEBDzxxBN44oknVKqKiMj8wr3SMBrS5Qr76sqcWWNQufmQ7z0fRw3s8rFtLeomIvLG9SiRr9pawGp1bz52EB17F/D+cbFaJWrresJqlZ7NjWDtZhzDjDXzdfN1hxqDSA9d74ZNRESmF+6VhtFwfHLOc5Wiq90FKWXAqxTdH9u+/meTkfOdMbj+Z5MxZ03XTUot6iYiIqLAMjIAp9O3TUrfTQwAcDoFMtKa4HSKsNrNOIYZa+br5usONQaRHrj5SEQUh3JmjUFK1kAIIWBJsEAI4fdKw2i0NbdDWH0XOsGuUnR/bPvGR673HDKjR91EREQUWF4ekJ0NWCyAEBIWIZE9sgFjMhtgERKJCS5YhMTYzAasfvwgssNsD2cMd140Yyipw2h5atQRyXuodZ5R5owZ56jSOtynYBNpTdePXRMRkTr8HRAT61OjE5MTYn6VohZ1ExERUWDJyUBxcce9H5c/04IFs6s8GxYFRemoreuJjLQm5M08gWSbC8WrSsJuDzXG8g0X8yIdQ0kdRsyLdR3emUrG0DrPKHPGjHNUaR1EeuDmIxFRnOp8QEys9U3tg5TEgSHv46iU2nUTERFRcMnJwIMPAjs3NfocTuHvoIpkm0tRe7C+O0t98yIZQ0kdRs2LZR2dM42cZ5Q5Y8Y5qqQOIj1w85GIiCIiLBZepUhERBSHmps7rnysPNobywqHBr2KqrnFEnZ7qDG88yIdQ0kdRsyLdR2Rvoda5xllzphxjiqtg0gP3HwkIqKI8SpFIiKi+NLcDEycCJSXA1LasPC5LKzdnAoIoLLGDqtVwukUWLclFdtXlGJK/jiUV4duD2cMiY68aMZQUofR8tSow52pZAyt84wyZ8w4R5XWUbyqhBuQpAtuPhIRERERERGAjisey8sBlwsABCQEKmrsAAAJAVd7x2Fz5dV2zFsyGuXVdrhk6PZwxnDnRTOGkjqMlqdGHZG8h1rnGWXOmHGOKq2joCidH8UmXfC0ayIiIiIiIgIA1NYCVqtvmxAdD29Wq0RtXU9YrTKsdjOOYcaa+br5ukONQaQHbj4SERERERERACAjA3A6fduk7Hh4czoFMtKa4HSKsNrNOIYZa+br5usONQaRHrj5SERERERERACAvDwgOxuwWAAhJCxCIntkA8ZkNsAiJBITXLAIibGZDVj9+EFkh9kezhjuvGjGUFKH0fLUqCOS91DrPKPMGTPOUaV1uA+iIdIa7/lIREREREREAIDkZKC4uOPej8ufacGC2VVBT84tXlUSdnuoMZZvuJgX6RhK6jBiXqzr8M5UMobWeUaZM2aco0rrINIDNx+JiIiIiIjIIzkZePBBYOemRp/DKfwdVJFscylqD9Z3Z6lvXiRjKKnDqHmxrKNzppHzjDJnzDhHldRBpAduPhIREREREZFHc3PHlY+VR3tjWeHQoFdRNbdYwm4PNYZ3XqRjKKnDiHmxriPS91DrPKPMGTPOUaV1EOmBm49EREREREQEoGPjceJEoLwckNKGhc9lYe3mVEAAlTV2WK0STqfAui2p2L6iFFPyx6G8OnR7OGNIdORFM4aSOoyWp0Yd7kwlY2idZ5Q5Y8Y5qrSO4lUl3IAkXXDzkYiIiIiIiAB0XPFYXg64XAAgICFQUWMHAEgIuNo7TtUtr7Zj3pLRKK+2wyVDt4czhjsvmjGU1GG0PDXqiOQ91DrPKHPGjHNUaR0FRen8KDbpgqddExEREREREQCgthawWn3bhOh4eLNaJWrresJqlWG1m3EMM9bM183XHWoMIj3ouvm4dOlSjB8/Hna7HSkpKZgxYwaqqqpCPq++vh75+fkYPHgwkpKSkJmZiS1btmhQMRERERHFE65HiXxlZABOp2+blB0Pb06nQEZaE5xOEVa7GccwY8183XzdocYg0oOum4+7d+9Gfn4+3nnnHWzbtg1tbW244YYbcP78+YDPuXDhAr71rW/ho48+wmuvvYaqqiq8+OKLSEtL07ByIiIiIooHXI8S+crLA7KzAYsFEELCIiSyRzZgTGYDLEIiMcEFi5AYm9mA1Y8fRHaY7eGM4c6LZgwldRgtT406InkPtc4zypwx4xxVWof7IBoirel6z8etW7f6fL1mzRqkpKRg//79mDRpkt/nrF69Gv/5z3+wb98+JCYmAgCGDx+udqlEREREFIe4HiXylZwMFBd33Ptx+TMtWDC7KujJucWrSsJuDzXG8g0X8yIdQ0kdRsyLdR3emUrG0DrPKHPGjHNUaR1EejDUgTMOhwMAMGDAgIB93njjDUyYMAH5+fn429/+hoEDB+LOO+/E//t//w/WzjcnAdDa2orW1lbP1+fOnYt94UREREQUF9RYjwJck5K5JCcDDz4I7NzU6HM4hb+DKpJtLkXtwfruLPXNi2QMJXUYNS+WdXTONHKeUeaMGeeokjqI9CCk7HwnAH24XC5Mnz4d9fX12Lt3b8B+o0aNwkcffYTvfe97+OlPf4ojR47gpz/9KRYsWIAnnniiS/8nn3wSixcv7tI+depUz79Ua6GkpAS5ubnMY54h8/TIZJ658/TIZB7zjJ6pZV5bWxu2bt0Kh8OBPn36aJLZHai1HgWMsSaN55+J7pCnZabTCXz8MVB75G1kpF2NYYObAQAfn0zG+RYretmcGDa4GVYL4HSF3x5qjNq6Sk9epGMoqcOIebGuwztTyRha5xllzphxjiqtI5iS6g/j9u815sWeovWoNIi8vDw5bNgwefz48aD9Ro4cKYcMGSLb29s9bc8++6wcNGiQ3/4tLS3S4XB4HsePH5cApMPhiGn9oUybNo15zDNsnh6ZzDN3nh6ZzGOe0TO1zHM4HLqsZ+KdWutRKY2xJo3nn4nukKdVZlOTlDk5UlosUgpxq7QIl8we6ZDZmQ5pES6ZmOCUFuGSOVkOeXb7DpmTFV57OGO486IZQ0kdRstTo45I3kOt84wyZ8w4R5XW0fTWNinfezPgI17/XmOeOpSsRw3xsev58+dj8+bN2LNnD9LT04P2HTx4MBITE30+0nLFFVfg1KlTuHDhAnr06OHTPykpCUlJSarUTURERETxQc31KMA1KZlHQQFQXg64XAAgICFQUWMHAEgIuNo7TtUtr7Zj3pLRKK+2wyVDt4czhjsvmjGU1GG0PDXqiOQ91DrPKHPGjHNUaR0FRen8KDbpQtfTrqWUmD9/PjZt2oR//etfuPzyy0M+Z+LEiThy5Ahcros3Sq2ursbgwYP9LvSIiIiIiALhepTIV20t0PnWpUJ0PLxZrRK1dT1htcqw2s04hhlr5uvm6w41BpEedN18zM/Px1/+8hcUFhbCbrfj1KlTOHXqFJqbmz195syZg0ceecTz9U9+8hP85z//wf3334/q6mr84x//wK9//Wvk5+fr8RKIiIiIyMS4HiXylZHRcc9Hb1J2PLw5nQIZaU1wOkVY7WYcw4w183XzdYcag0gPum4+rly5Eg6HA9dddx0GDx7seWzYsMHT59ixYzh58qTn6yFDhuDNN9/Ee++9hzFjxmDBggW4//778fDDD+vxEoiIiIjIxLgeJfKVlwdkZwMWCyCEhEVIZI9swJjMBliERGKCCxYhMTazAasfP4jsMNvDGcOdF80YSuowWp4adUTyHmqdZ5Q5Y8Y5qrSOvJkn9P4rhropXe/5KMM4aHvXrl1d2iZMmIB33nlHhYqIiIiIqDvhepTIV3IyUFzcce/H5c+0YMHsKs+GRUFROmrreiIjrQl5M08g2eZC8aqSsNtDjbF8w8W8SMdQUocR82Jdh3emkjG0zjPKnDHjHFVaB5EedL3ykYiIiIiIiIwlORl48EHg6hGNePDOY9ywICKi6Kh88rbhKDkKPJbi+Xh15pk/T49M5pk7T49M5jHP6Jla5um1nqHY0eM9jOefie6Qp0fmtK9/Vcr33pRNb22TOVkOaREumZjglBbhkjlZDnl2+46w27NHOmR2ZvC+Qtwa9RhK6jBanhp1uDOVjKF1nlHmjBnnqNI6mt7aJuV7bwZ8dIu/15gXM0rWMrp+7JqIiIiIiIiMraAoHeXVdrikgKu942CL8mo75i0ZHXZ7RY0dACARuC8gICGiGkNJHUbLU6MOd6aSMbTOM8qcMeMcVVpHQVE6HrzzGIi0xo9dExERERERUUC1dT1htfreH9VqlYraheh4mGkMM9bM183XHWoMIj1w85GIiIiIiIgCykhrgtPpu5PhdApF7VJ2PMw0hhlr5uvm6w41BpEeuPlIREREREREAeXNPIHszAZYhERiggsWITE2swGrHz8Ydnv2yAaMCdFXCBn1GErqMFqeGnW4M5WMoXWeUeaMGeeo0jrcp2ATaY33fCQiIiIiIqKAkm0uFK8qQUFROmrreiIjrQl5M08obgcQtO/yDS1YMLsqqjGU1GHEvFjX4Z2pZAyt84wyZ8w4R5XWQaQHbj4SERERERFRUMk2l9+DKpS2B+u7s7TR5/uRjKGkDqPmxbKOzplGzjPKnDHjHFVSB5EeuPlIREREREREQTW3WPxeRaWkHfB/JZa7b+XR3lhWODSqMZTUYcS8WNfhnalkDK3zjDJnzDhHldZBpAvZzTgcDglAOhwOTXOnTZvGPOYZNk+PTOaZO0+PTOYxz+iZWubptZ6h2NHjPYznn4nukKdH5rSvf1XK996UTW9tkzlZDmkRLpmY4JQW4ZI5WQ55dvuOsNuzRzpkdmbwvkLcGvUYSuowWp4adbgzlYyhdZ5R5owZ56jSOpre2ible28GfHSLv9eYFzNK1jK88pGIiIiIiIgCKihKR3m1HS4p4GrvOFW3vNqOeUtGh91eUWMHAEgE7gsISIioxlBSh9Hy1KjDnalkDK3zjDJnzDhHldZRUJTOj2KTLnjaNREREREREQVUW9cTVqv0abNapaJ2IToeZhrDjDXzdfN1hxqDSA/cfCQiIiIiIqKAMtKa4HT67mQ4nUJRu5QdDzONYcaa+br5ukONQaQHbj4SERERERFRQHkzTyA7swEWIZGY4IJFSIzNbMDqxw+G3Z49sgFjQvQVQkY9hpI6jJanRh3uTCVjaJ1nlDljxjmqtA73QTREWuM9H4mIiIiIiCigZJsLxatK/J6cq6Qd8H/6rrvv8g0tWDC7KqoxlNRhxLxY1+GdqWQMrfOMMmfMOEeV1kGkB24+EhERERERUVDJNpffgyqUtgfru7O00ef7kYyhpA6j5sWyjs6ZRs4zypwx4xxVUgeRHnTdfFy6dCmKiopw+PBhJCcn49prr8VvfvMbZGVlBXzOmjVrcM899/i0JSUloaWlRe1yiYiIiCjOcD1KFJ7mFovfq6iUtAP+r8Ry96082hvLCodGNYaSOoyYF+s6vDOVjKF1nlHmjBnnqNI6iHQhdXTjjTfKl19+WX7wwQfywIED8uabb5ZDhw6VjY2NAZ/z8ssvyz59+siTJ096HqdOnQo70+FwSADS4XDE4iWEbdq0acxjnmHz9Mhknrnz9MhkHvOMnqllnl7rmXikx3pUSn3ew3j+megOeXpkTvv6V6V8703Z9NY2mZPlkBbhkokJTmkRLpmT5ZBnt+8Iuz17pENmZwbvK8StUY+hpA6j5alRhztTyRha5xllzphxjiqto+mtbVK+92bAR7f4e415MaNkLaPrlY9bt271+XrNmjVISUnB/v37MWnSpIDPE0Jg0KBBapdHRERERHGO61Gi0AqK0lFebYdLCrjaO07VLa+2Y96S0WG3V9TYAQASgfsCAhIiqjGU1GG0PDXqcGcqGUPrPKPMGTPOUaV1FBSl86PYpAtDnXbtcDgAAAMGDAjar7GxEcOGDcOQIUNw22234eDBgwH7tra24ty5cz4PIiIiIiJ/1FiPAlyTkrnV1vWE1Sp92qxWqahdiI6HmcYwY8183XzdocYg0oOQUsrQ3dTncrkwffp01NfXY+/evQH7vf3226ipqcGYMWPgcDjwzDPPYM+ePTh48CDS09O79H/yySexePHiLu1Tp05FYmJiTF9DMCUlJcjNzWUe8wyZp0cm88ydp0cm85hn9Ewt89ra2rB161Y4HA706dNHk8zuQK31KGCMNWk8/0x0hzw9MkuK9yJ3dBZq65JxsLZ3l+8PuqQVp84mhd3uj2/fEgC5UY6hpA7j5cW+jouZSsbQOs8oc0brPK3nzOiMRmSkNQdOq/4w/v9eY17MKFqPqv4h8DDl5eXJYcOGyePHjyt63oULF+SIESPkokWL/H6/paVFOhwOz+P48eO85yPzmGeATOaZO0+PTOYxz+iZRr3HDoVPrfWolMZYk8bzz0R3yNMjM9g9H78c4F5zgdrH+rkHXee+7vvbRTOGkjqMlqdGHe5MJWNonWeUOWPGOaq0Dt7zkXmxZJp7PrrNnz8fmzdvxp49ewL+a3EgiYmJyMnJwZEjR/x+PykpCUlJ4f0rABERERF1T2quRwGuScnckm0uFK8q8XtyrpJ2wP/pu+6+yze0YMHsqqjGUFKHEfNiXYd3ppIxtM4zypwx4xxVWgeRHnTdfJRS4r777sOmTZuwa9cuXH755YrHcDqdqKysxM0336xChUREREQUz7geJQpPss3l96AKpe3B+u4sbfT5fiRjKKnDqHmxrKNzppHzjDJnzDhHldRBpAddNx/z8/NRWFiIv/3tb7Db7Th16hQAoG/fvkhOTgYAzJkzB2lpaVi6dCkA4KmnnsJXv/pVfOlLX0J9fT1+97vf4eOPP8a9996r2+sgIiIiInPiepQoPM0tFr9XUSlpB/xfieXuW3m0N5YVDo1qDCV1GDEv1nV4ZyoZQ+s8o8wZM87RYO1EhqH6h8CDAOD38fLLL3v6TJ48Wc6dO9fz9QMPPCCHDh0qe/ToIS+77DJ58803y/fffz/sTL3ukRTPn/Nnnvnz9Mhknrnz9MhkHvOMnmnUe+xQcHqsR6XU5z2M55+J7pCnR2awez7mBLjXXKD2bD/3oOvc131/u2jGUFKH0fLUqMOdqWQMrfOMMmfMOEeDtYe6vyPv+ci8aJnmno8yjIO2d+3a5fP1smXLsGzZMpUqIiIiIqLuhOtRotAKitJRXm2HSwq42gUAoLzajnlLRofdXlFjBwBIBO4LCEiIqMZQUofR8tSow52pZAyt84wyZ8w4R4O1FxSl82PXZBgWvQsgIiIiIiIi46qt6wmr1Xej3mqVitqF6HiYaQwz1szXzdft3U5kFNx8JCIiIiIiooAy0prgdPruhjidQlG7lB0PM41hxpr5uvm6vduJjIKbj0RERERERBRQ3swTyM5sgEVIJCa4YBESYzMbsPrxg2G3Z49swJgQfYWQUY+hpA6j5alRhztTyRha5xllzphxjgZrdx9cQ2QEut7zkYiIiIiIiIwt2eZC8aoSv6fpKmkH/J8C7O67fEMLFsyuimoMJXUYMS/WdXhnKhlD6zyjzBkzztFg7URGwSsfiYiIiIiIiIiISBW88pGIiIiIiIgCam6xYOK9uSivtsNqlXA6BdZtScX2FaWYkj8urPa1m1MBAVTWBO4rYcPC57KiGkNJHUbLU6MOd6aSMbTOM8qcMeMcDdZevKqEVz+SYXDzkYiIiIiIiAIqKEpHebUdLingau842KK82o55S0aH3V5RYwcASATuCwhIiKjGUFKH0fLUqMOdqWQMrfOMMmfMOEeDtRcUpePBO4+ByAj4sWsiIiIiIiIKqLauJ6xW3+N3rVapqF2IjoeZxjBjzXzdfN3e7URGwc1HIiIiIiIiCigjrQlOp+9uiNMpFLVL2fEw0xhmrJmvm6/bu53IKLj5SERERERERAHlzTyB7MwGWIREYoILFiExNrMBqx8/GHZ79sgGjAnRVwgZ9RhK6jBanhp1uDOVjKF1nlHmjBnnaLB296nZREbAez4SERERERFRQMk2F4pXlaCgKB21dT2RkdaEvJknFLcDCNp3+YYWLJhdFdUYSuowYl6s6/DOVDKG1nlGmTNmnKPB2omMgpuPREREREREFFSyzeX38Aql7cH67ixt9Pl+JGMoqcOoebGso3OmkfOMMmfMOEcDtRMZBTcfiYiIiIiIKCLNLRa/V1z5awf8XxHm7lt5tDeWFQ6NagwldRgxL9Z1eGcqGUPrPKPMGTPO0WDtREbBzUciIiIiIiJSrLnFgon35qK82g6rVcLpFFi3JRXbV5RiSv44n/a1m1MBAVTWBO4rYcPC57KiGkNJHUbLU6MOd6aSMbTOM8qcMeMcDdZevKqEG5BkGNx8JCIiIiIiIsUKitJRXm2HSwq42jtO2y2vtmPektFd2itq7AAAicB9AQEJEdUYSuowWp4adbgzlYyhdZ5R5owZ52iw9oKidH4UmwyDp10TERERERGRYrV1PWG1Sp82q1X6bRei4xFOX6OMYcaa+br5ur3biYxC183HpUuXYvz48bDb7UhJScGMGTNQVVUV9vPXr18PIQRmzJihXpFEREREFLe4HiWKXEZaE5xO310Sp1P4bZey4xFOX6OMYcaa+br5ur3biYxC183H3bt3Iz8/H++88w62bduGtrY23HDDDTh//nzI53700UdYuHAhvv71r2tQKRERERHFI65HiSKXN/MEsjMbYBESiQkuWITE2MwGrH78YJf27JENGBOirxAy6jGU1GG0PDXqcGcqGUPrPKPMGTPO0WDt7oNriIxA13s+bt261efrNWvWICUlBfv378ekSZMCPs/pdOJ73/seFi9ejLfeegv19fUqV0pERERE8YjrUaLIJdtcKF5V4veUXX/tgP9TgN19l29owYLZVVGNoaQOI+bFug7vTCVjaJ1nlDljxjkarJ3IKAx14IzD4QAADBgwIGi/p556CikpKfjBD36At956K2jf1tZWtLa2er4+d+5c9IUSERERUVxSYz0KcE1K8SvZ5vJ7qEWg9mB9d5Y2+nw/kjGU1GHUvFjW0TnTyHlGmTNmnKOB2omMQkjZ+W4C+nC5XJg+fTrq6+uxd+/egP327t2L22+/HQcOHMCll16Ku+++G/X19Xj99df99n/yySexePHiLu1Tp05FYmJirMoPqaSkBLm5ucxjniHz9Mhknrnz9MhkHvOMnqllXltbG7Zu3QqHw4E+ffpoktkdqLUeBYyxJo3nn4nukKdHZknxXuSOzgrax+kCPj6ZjPMtVvSyOTFscDOsFv/tQPC+tXWVyEi7OqoxlNRhxLxY1+GdqWQMrfOMMmfMOEetMbyZXkn1h/H/9xrzYkbRelQaRF5enhw2bJg8fvx4wD7nzp2Tw4cPl1u2bPG0zZ07V952220Bn9PS0iIdDofncfz4cQlAOhyOWJYf0rRp05jHPMPm6ZHJPHPn6ZHJPOYZPVPLPIfDoct6Jt6ptR6V0hhr0nj+megOeXpkTvv6V6V8782Aj6a3tsmcLIe0CJdMTHBKi3DJnCyHPLt9R5f27JEOmZ0ZvK8Qt0Y9hpI6jJanRh3uTCVjaJ1nlDljxjmak+WQTW9tC/pzquTRLf5eY17MKFmPGuJj1/Pnz8fmzZuxZ88epKenB+x39OhRfPTRR5g2bZqnzeXquI9BQkICqqqqMGLECJ/nJCUlISkpSZ3CiYiIiCguqLkeBbgmpfhUUJSO8mo7XFLA1d5x2m55tR3zlozu0l5RYwcASATuCwhIiKjGUFKH0fLUqMOdqWQMrfOMMmfMOEfLq+0oKErnR67J8HTdfJRS4r777sOmTZuwa9cuXH755UH7jxo1CpWVlT5tixYtQkNDA55//nkMGTJEzXKJiIiIKM5wPUoUudq6nrBapWcjBACsVum3XXzxn943/QrU1yhjmLFmvu7u+bqJjC6GdwdQLj8/H3/5y19QWFgIu92OU6dO4dSpU2hubvb0mTNnDh555BEAgM1mw1VXXeXz6NevH+x2O6666ir06NFDr5dCRERERCbE9ShR5DLSmuB0Cp82p1P4bZfSdzMlWF+jjGHGmvm6u+frJjI6XTcfV65cCYfDgeuuuw6DBw/2PDZs2ODpc+zYMZw8eVLHKomIiIgoXnE9ShS5vJknkJ3ZAIuQSExwwSIkxmY2YPXjB7u0Z49swJgQfYWQUY+hpA6j5alRhztTyRha5xllzphxjo7NbEDezBN6/1VAFJLuH7sOZdeuXUG/v2bNmtgUQ0RERETdDtejRJFLtrlQvKoEBUXpqK3riYy0JuTNPBGwHUDQvss3tGDB7KqoxlBShxHzYl2Hd6aSMbTOM8qcMeMcTba51PoRJ4oZQxw4Q0REREREROaTbHP5PewiUHuwvjtLG32+H8kYSuowal4s6+icaeQ8o8wZM85RIqPj5iMRERERERHFVHOLJewrwtx9K4/2xrLCoV3alYwRTrt7DCPmxboO70wlY2idF2kdsX4PzThHeeUjmQE3H4mIiIiIiChmmlssmHhvLsqr7bBaJZxOgbWbUwEBVNZcbFu3JRXbV5RiSv44lFfbIWHDwueyurQrGSNUu/cYRstTow53ppIxtM6Lpo5YvodmnKPrtqSieFUJNyDJ8Lj5SERERERERDFTUJSO8mo7XFLA1d5xOm9FjR0AIHGxrbzajnlLRnv6AgISoku7kjFCtXuPYbQ8NepwZyoZQ+u8aOqI5XtoxjlaXm1HQVE6P4pNhqfraddEREREREQUX2rresJq9T3MSYiOhzerVfrtG6hd6zHMWDNfd/d83URGx81HIiIiIiIiipmMtCY4nb67J1J2PLw5ncJv30DtWo9hxpr5urvn6yYyOm4+EhERERERUczkzTyB7MwGWIREYoILFiGRPbIBYzq1jc1swOrHD3r6CiH9tisZI1S79xhGy1OjDnemkjG0zoumjli+h2aco2MzGzwH1BAZGe/5SERERERERDGTbHOheFVJ2KcAu/su39CCBbOrurQrGSOcdvcYRsyLdR3emUrG0DrPKHPGjHOUh82QGXDzkYiIiIiIiIjI4JJtLh4uQ6bEzUciIiIiIiKKmeYWCybem4vyajusVgmnU2Dt5lRAAJU1F9vWbUnF9hWlmJI/DuXVdkjYsPC5rC7tSsYI1e49htHy1KjDnalkDK3zoqkjlu+h0edo8aoSXuVIpsXNRyIiIiIiIoqZgqJ0lFfb4ZICrvaOAzIqauwAAImLbeXVdsxbMtrTFxCQEF3alYwRqt17DKPlqVGHO1PJGFrnRVNHLN9Do8/RgqJ0XvVIpsUDZ4iIiIiIiChmaut6wmr1Pa5XiI6HN6tV+u0bqF3rMcxYM193fL9uIrPi5iMRERERERHFTEZaE5xO390TKTse3pxO4bdvoHatxzBjzXzd8f26icyKm49EREREREQUM3kzTyA7swEWIZGY4IJFSGSPbMCYTm1jMxuw+vGDnr5CSL/tSsYI1e49htHy1KjDnalkDK3zoqkjlu+h0eeo+xRsIjPiPR+JiIiIiIgoZpJtLhSvKkFBUTpq63oiI63Js3HSuc277/INLVgwu6pLu5Ixwml3j2HEvFjX4Z2pZAyt84wyZ4w+R4nMipuPREREREREFFPJNpffwzH8tbn77ixt9Pl+JGMoqcOoebGso3OmkfOMMmeMPEeJzErXzcelS5eiqKgIhw8fRnJyMq699lr85je/QVZWVsDnFBUV4de//jWOHDmCtrY2jBw5Ej/72c9w1113aVg5EREREcUDrkeJtNPcYvF75Ze7vfJobywrHNqlPZyrykKN7W8MI+bFug7vTCVjaJ0XaR2xfg+1zlM6Z4jMStfNx927dyM/Px/jx49He3s7Hn30Udxwww04dOgQevXq5fc5AwYMwGOPPYZRo0ahR48e2Lx5M+655x6kpKTgxhtv1PgVEBEREZGZcT1KpI3mFgsm3puL8mo7rFYJp1Ng3ZZUbF9Riin541BebYeEDQufy+rS7u6/dnMqIIDKmsBjhGr3HsNoeWrU4c5UMobWedHUEcv3UOs8pXOmeFUJNyDJtHTdfNy6davP12vWrEFKSgr279+PSZMm+X3Odddd5/P1/fffj7Vr12Lv3r1c7BERERGRIlyPEmmjoCgd5dV2uKSAq73jdN/yajvmLRntaQcEJESXdnf/iho7AEAi8Bih2r3HMFqeGnW4M5WMoXVeNHXE8j3UOk/pnCkoSudHsMm0DHXatcPhANDxr8nhkFJix44dqKqqCrg4bG1txblz53weRERERET+qLEeBbgmJaqt6wmrVfq0Wa1SUbsQHQ+txtA6zyhjmLHm7vK6icxKSCll6G7qc7lcmD59Ourr67F3796gfR0OB9LS0tDa2gqr1Yo//vGPmDdvnt++Tz75JBYvXtylferUqUhMTIxJ7eEoKSlBbm4u85hnyDw9Mpln7jw9MpnHPKNnapnX1taGrVu3wuFwoE+fPppkdgdqrUcBY6xJ4/lnojvk6ZEZy7zaWuDgwa7tgwYBp055EgF05A26pBWnziaFNXagvqHHMF5e7Ou4mKlkDK3zIq8jtu+h1nlK5szo0UBGRlhxEePfa8xTQtF6VBpEXl6eHDZsmDx+/HjIvk6nU9bU1MiysjL5zDPPyL59+8qdO3f67dvS0iIdDofncfz4cQlAOhyOGL+C4KZNm8Y85hk2T49M5pk7T49M5jHP6Jla5jkcDl3WM/FOrfWolMZYk8bzz0R3yNMjM5Z5TU1S5uRIabFImZjY8b9f/rKUZ89ebBfiVmkRLvnlLIc8u32HzMlySItwycQEp7QIlxw70iGzM33bAvUNZwyj5alRhztTyRha50VTRyzfQ63zwpsz0zw/K01NMftxDIh/rzFPCSXrUV3v+eg2f/58bN68GXv27EF6enrI/haLBV/60pcAAGPHjsW///1vLF26tMv9dwAgKSkJSUnh/WsEEREREXVPaq5HAa5JiZKTgeJioKCg4yrIjAwgL8+3ffkzLVgwu8pzsm/xqpKwTxL21zfUGMs3GC8v1nV4ZyoZQ+u8SOuI9XuodV7IObMJWLDg4s8KkVnpuvkopcR9992HTZs2YdeuXbj88ssjGsflcqG1tTXG1RERERFRvON6lEg7ycnAgw8Gbt+5qdHnQI1km8vvARv+2gL1DTbGzlJj5sWyjs6ZRs6LpA413kOt84LOmSP+f2aIzEbXzcf8/HwUFhbib3/7G+x2O059cbOPvn37IvmLbf05c+YgLS0NS5cuBQAsXboU48aNw4gRI9Da2ootW7Zg3bp1WLlypW6vg4iIiIjMietRIv01N3dc+Vh5tDeWFQ71XBHW3GIJ+6oyf31DjWHEvFjX4Z2pZAyt8yKtI9bvodZ5wdqJ4orqHwIPAoDfx8svv+zpM3nyZDl37lzP14899pj80pe+JG02m+zfv7+cMGGCXL9+fdiZet0jKZ4/58888+fpkck8c+fpkck85hk906j32KHg9FiPSqnPexjPPxPdIU+PTC3yvO8F6b6fXk6Ae+Fl+7mfXqC+4YxhtDw16nBnKhlD67xo6ojle6h1XrD2pre2Sfnem3H5M693JvNixzT3fJRhHLS9a9cun69/+ctf4pe//KVKFRERERFRd8L1KJG+CgqA8nLA5QIAAQmB8mo75i0ZjfJqO1xSwNUuAAAVNXYAgMTFtkB9wxnDaHlq1OHOVDKG1nnR1BHL91DrvGDtBUXpfj+KTWRWFr0LICIiIiIiou6pthawWn3brFaJ2rqesFp9/3FAiI5HOH1jMYbWeUYZw4w1x9PrdrcTxRNuPhIREREREZEuMjIAp9O3zekUyEhrgtPpu4sjZccjnL6xGEPrPKOMYcaa4+l1u9uJ4gk3H4mIiIiIiEgXeXlAdjZgsQBCSFiExNjMBqx+/CCyMxtgERKJCS5YhET2yAaM6dQWqG84YxgtT4063JlKxtA6L5o6Yvkeap0XrN19cA1RvND1no9ERERERETUfSUnA8XFHfd+XP5MCxbMrvKc9lu8qiTsk4T99Q01xvINxsuLdR3emUrG0Dov0jpi/R5qnResnSiecPORiIiIiIiIdJOcDDz4ILBzU6PPIRvJNpffQzf8tQXqG2yMnaXGzItlHZ0zjZwXSR1qvIda5wVqJ4on3HwkIiIiIiIi3TQ3d1z5WHm0N5YVDvVc+dXcYgn7qjJ/fUONYcS8WNfhnalkDK3zIq0j1u+h1nm8wpG6C24+EhERERERkS6am4GJE4HyckBKGxY+l4V1W1KxfUUppuSPQ3m1HVarhNMpsHZzKiCAypqLbYH6hjOGhLHy1KjDnalkDK3zoqkjlu+h1nnrtqSieFUJNyCpW+DmIxEREREREemioKBj49HlAgABCYHyajvmLRmN8mo7XFLA1d5xGnBFjR0AIHGxLVDfcMYwWp4adbgzlYyhdV40dcTyPdQ6r7zajoKidH7kmroFnnZNREREREREuqitBaxW3zarVaK2riesVunTLkTHI5y+sRhD6zyjjGHGms38uom6A24+EhERERERkS4yMgCn07fN6RTISGuC0+m7iyNlxyOcvrEYQ+s8o4xhxprN/LqJugNuPhIREREREZEu8vKA7GzAYgGEkLAIibGZDVj9+EFkZzbAIiQSE1ywCInskQ0Y06ktUN9wxjBanhp1uDOVjKF1XjR1xPI91DpvbGaD54AaonjHez4SERERERGRLpKTgeLijns/Ln+mBQtmV3lOAS5eVRL2ScL++oYaY/kG4+XFug7vTCVjaJ0XaR2xfg+1zuNhM9RdcPORiIiIiIiIdJOcDDz4ILBzUyMP36C4lWxzcX5Tt8XNRyIiIiIiIjKU5hYLJt6bi/JqO6xWCadTYO3mVEAAlTUX29ZtScX2FaWYkj/Op2+gdu8xJGxY+FxWWH21yFOjDnemkjG0zoumjli+h2rmFa8q4VWO1K1x85GIiIiIiIgMpaAoHeXVdrikgKu946COiho7AEDiYlt5tR3zlozu0jdQu/cYgICECKuvFnlq1OHOVDKG1nnR1BHL91DNvIKidF71SN0aD5whIiIiIiIiQ6mt6wmr1ffYYCE6Ht6sVum3b6B2JWNonWeUMcxYsxleN1F3puvm49KlSzF+/HjY7XakpKRgxowZqKqqCvqcgwcP4r/+678wfPhwCCHw3HPPaVMsEREREcUdrkeJjCkjrQlOp+8ujpQdD29Op/DbN1C7kjG0zjPKGGas2Qyvm6g703Xzcffu3cjPz8c777yDbdu2oa2tDTfccAPOnz8f8DlNTU3IyMjA008/jUGDBmlYLRERERHFG65HiYwpb+YJZGc2wCIkEhNcsAiJ7JENGNOpbWxmA1Y/frBL30Dt3mMIIcPuq0WeGnW4M5WMoXVeNHXE8j1UM899CjZRd6XrPR+3bt3q8/WaNWuQkpKC/fv3Y9KkSX6fM378eIwfPx4A8PDDD6teIxERERHFL65HiYwp2eZC8aoSFBSlo7auJzLSmjwbOJ3bAvUNNcbyDS1YMLsqrL5a5cW6Du9MJWNonRdpHbF+D9XMI+rODHXgjMPhAAAMGDAgZmO2traitbXV8/W5c+diNjYRERERxRc11qMA16REkUi2ufwe0uGvLVDfYGPsLG30+Z5R8mJZR+dMI+dFUoca76FaeUTdmZCy8x0J9OFyuTB9+nTU19dj7969YT1n+PDheOCBB/DAAw8E7PPkk09i8eLFXdqnTp2KxMTESMtVrKSkBLm5ucxjniHz9Mhknrnz9MhkHvOMnqllXltbG7Zu3QqHw4E+ffpoktkdqLUeBYyxJo3nn4nukKdHpuZ5xXuROzoraB+nC/j4ZDLOt1jRy+bEsMHNsFqUtQMdbbV1lchIuzqsvlrlxboO70wlY2idF2kdsX4PY5FnjeHN7UqqP4zrn3k9MpkXO4rWo9Ig8vLy5LBhw+Tx48fDfs6wYcPksmXLgvZpaWmRDofD8zh+/LgEIB0OR5QVKzNt2jTmMc+weXpkMs/ceXpkMo95Rs/UMs/hcOiynol3aq1HpTTGmjSefya6Q54emZrnff2rUr73ZsBH01vbZE6WQ1qESyYmOKVFuGROlkOe3b4j7PbskQ6ZndnRJsStYffVIk+NOtyZSsbQOi+aOmL5HsYiLyfLIZve2hZ0Hit5xPvPvB6ZzIsdJetRQ3zsev78+di8eTP27NmD9PT0mI6dlJSEpKSkmI5JRERERPFFzfUowDUpUSwUFKWjvNoOlxRwtXecMlxebce8JaPDbq+osQMAJAQAAQkRVl8t8tSow52pZAyt86KpI5bvYSzyyqvtKChK58euiTrR9bRrKSXmz5+PTZs24V//+hcuv/xyPcshIiIiom6G61Ei86it6wmr1feuYVarVNQuRMcj1n3jaQwz1myU1+1uJyJfum4+5ufn4y9/+QsKCwtht9tx6tQpnDp1Cs3NzZ4+c+bMwSOPPOL5+sKFCzhw4AAOHDiACxcuoK6uDgcOHMCRI0f0eAlEREREZGJcjxKZR0ZaE5xO390hp1Moapey4xHrvvE0hhlrNsrrdrcTkS9dNx9XrlwJh8OB6667DoMHD/Y8NmzY4Olz7NgxnDx50vP1J598gpycHOTk5ODkyZN45plnkJOTg3vvvVePl0BEREREJsb1KJF55M08gezMBliERGKCCxYhMTazAasfPxh2e/bIBoz5ok0IGXZfLfLUqMOdqWQMrfOiqSOW72Es8sZmNiBv5gm9f1SIDEfXez7KMA7a3rVrl8/Xw4cPD+t5REREREShcD1KZB7JNheKV5WgoCgdtXU9kZHWhLyZJxS3Ax33j1y+oQULZleF1VervFjX4Z2pZAyt8yKtI9bvYSzykm0uLX4ciEzFEAfOEBEREREREYWSbHP5PcxDafuDdx7DztJGn+8F66tlXizr6Jxp5LxI6lDjPYxFHhH54uYjERERERERmVpzi8XvFWj+2oGOq9sqj/bGssKhYfUNZ9xY5MW6Du9MJWNonRdpHbF+D5XmEVF4uPlIREREREREptXcYsHEe3NRXm2H1SrhdAqs25KK7StKMSV/nE/72s2pgAAqa+yQsGHhc1lh9Q01bizy1KjDnalkDK3zoqkjlu+h0rziVSXcgCQKEzcfiYiIiIiIyLQKitJRXm2HSwq42jtOHy6vtmPektFd2itq7AAACQFAQEKE1TfUuLHIU6MOd6aSMbTOi6aOWL6HSvMKitL5kWuiMOl62jURERERERFRNGrresJq9T0EymqVftuF6HjEum88jWHGmvV63UQUHm4+EhERERERkWllpDXB6fTdNXI6hd92KTsese4bT2OYsWa9XjcRhYebj0RERERERGRaeTNPIDuzARYhkZjggkVIjM1swOrHD3Zpzx7ZgDFftAkhw+4batxY5KlRhztTyRha50VTRyzfQ6V57gNqiCg03vORiIiIiIiITCvZ5kLxqhK/pxT7awc67hO5fEMLFsyuCqtvOOPGIi/WdXhnKhlD67xI64j1e6g0j4jCw81HIiIiIiIiMrVkm8vv4R+B2h+88xh2ljb6fC9YXy3zYllH50wj50VShxrvoZI8IgoPNx+JiIiIiIio22husaCgKB2VR3tjWeFQz1Vs7vZwroTz1zfUGOHkxboO70wlY2idF2kdsX4PA/Ulouhw85GIiIiIiIi6heYWCybem4vyajskbFj4XBbWbUnF9hWlmJI/DuXVdlitEk6nwNrNqYAAKmsutgXqG84YofLUqMOdqWQMrfOiqSOW72GgvsWrSrgBSRQlbj4SERERERFRt1BQlI7yajtcUgAQkBAor7Zj3pLRnnZXe8fJxhU1dgCAxMW2QH3DGSNUnhp1uDOVjKF1XjR1xPI9DNS3oCidH7UmihJPuyYiIiIiIqJuobauJ6xW6dNmtUq/7UJ0PMLpG09jmLFmtV83EUWHm49ERERERETULWSkNcHp9N1hcjqF33YpOx7h9I2nMcxYs9qvm4iiw81HIiIiIiIi6hbyZp5AdmYDLEJCCAmLkBib2YDVjx/0tCcmuGAREtkjGzCmU1ugvuGMESpPjTrcmUrG0Dovmjpi+R4G6us+iIaIIsd7PhIREREREVG3kGxzoXhVCQqK0rF8QwsWzK7ynGjsbg/n9GN/fUONEU5erOvwzlQyhtZ5kdYR6/cwUF8iio6uVz4uXboU48ePh91uR0pKCmbMmIGqqqqQz9u4cSNGjRoFm82Gq6++Glu2bNGgWiIiIiKKN1yPEnU/yTYXHrzzGK4e0YgH7zzGzaVuyj0P/vDzw5554K+NiKKn65WPu3fvRn5+PsaPH4/29nY8+uijuOGGG3Do0CH06tXL73P27duHO+64A0uXLsWtt96KwsJCzJgxA++//z6uuuoqjV8BEREREZkZ16NEBADNLRZMvDcX5dV2WK0STqfA2s2pgAAqay62rduSiu0rSjElf5xP30Dt3mNI2LDwuayoxlBahztTyRha50VTR6g/00BjFK8q4cYikYZ03XzcunWrz9dr1qxBSkoK9u/fj0mTJvl9zvPPP4+pU6fi5z//OQBgyZIl2LZtG1544QUUFBSoXjMRERERxQ+uR4kI6PiobXm1HS4p4GrvOIikosYOAJC42FZebce8JaO79A3U7j0GICAhohpDaR3uTCVjaJ0XTR2h/kwDjVFQlI4H7zymdJoQUYQMdeCMw+EAAAwYMCBgn7fffhtTpkzxabvxxhvx9ttv++3f2tqKc+fO+TyIiIiIiPxRYz0KcE1KZHS1dT1htfoedSxEx8Ob1Sr99g3UbsYxzFhzJGMQkXaElJ0Pk9eHy+XC9OnTUV9fj7179wbs16NHD6xduxZ33HGHp+2Pf/wjFi9ejE8//bRL/yeffBKLFy/u0j516lQkJibGpvgwlJSUIDc3l3nMM2SeHpnMM3eeHpnMY57RM7XMa2trw9atW+FwONCnTx9NMrsDtdajgDHWpPH8M9Ed8vTIjPu84r3IHZ0FAKitS8bB2t5hPW/QJa04dTYp7HavRAC5UY6htI6LmUrG0Dov8jpC/5n6MzqjERlpzWH19VZS/WF8/0zw7zXmKaBoPSoNIi8vTw4bNkweP348aL/ExERZWFjo07ZixQqZkpLit39LS4t0OByex/HjxyUA6XA4YlZ7OKZNm8Y85hk2T49M5pk7T49M5jHP6Jla5jkcDl3WM/FOrfWolMZYk8bzz0R3yNMjM+7zvv5VKd97U8r33pRNb22TOVkOaREumZjglBbhkmNHOmR2pm/bl7Mc8uz2HV36Bmr3HkOIW6MeQ2kd7kwlY2idF00dof5MA43R9NY2z3uv5BH3PxP8e415CihZj+p6z0e3+fPnY/PmzdizZw/S09OD9h00aFCXf1H+9NNPMWjQIL/9k5KSkJQU3r9+EBEREVH3pOZ6FOCalMjokm0uFK8qQUFROmrreiIjrQl5M08AQJe2QH1DjbF8QwsWzK6KagyldXhnKhlD67xI6wjnzzTQGESkHV03H6WUuO+++7Bp0ybs2rULl19+ecjnTJgwATt27MADDzzgadu2bRsmTJigYqVEREREFI+4HiUit2Sby+8hJP7aAvUNNsbO0kaf70UyhtI6OmcaOS+SOsL9M+XhMkT60nXzMT8/H4WFhfjb3/4Gu92OU6dOAQD69u2L5ORkAMCcOXOQlpaGpUuXAgDuv/9+TJ48Gc8++yxuueUWrF+/HqWlpfjzn/+s2+sgIiIiInPiepSIItHcYvF7NZ2/dqDjyrvKo72xrHBo0L6hxginr3e7d6aSMbTOi7SOzn+mRGRMum4+rly5EgBw3XXX+bS//PLLuPvuuwEAx44dg8Vy8VDua6+9FoWFhVi0aBEeffRRjBw5Eq+//jquuuoqrcomIiIiojjB9SgRKdXcYsHEe3NRXm2H1SrhdAqs25KK7StKMSV/nE/72s2pgAAqa+yQsGHhc1kB+4YzRqi+ndvdmUrG0Dovmjq8/0yLV5VwA5LIoHT/2HUou3bt6tI2a9YszJo1S4WKiIiIiKg74XqUiJQqKEpHebUdLingahcAgPJqO+YtGd2lvaLGDgCQEAAEJETAvuGMEapv53Z3ppIxtM6Lpg7vP9OConR+vJrIoCyhuxARERERERERANTW9YTV6vsPF1ar9NsuRMcjnL5GGcOMNbvbiciYuPlIREREREREFKaMtCY4nb67Yk6n8NsuZccjnL5GGcOMNbvbiciYuPlIREREREREFKa8mSeQndkAi5BITHDBIiTGZjZg9eMHu7Rnj2zAmC/ahJBB+4YzRqi+ndvdmUrG0Dovmjq8/0zdB9QQkfHoes9HIiIiIiIiIjNJtrlQvKrE7ynM/tqBjvtELt/QggWzq4L2DTVGOH29270zlYyhdV6kdXT+MyUiY+LmIxEREREREZECyTaX38NNArU/eOcx7Cxt9PleJGMoraNzppHzIqmjcx4RGRM3H4mIiIiIiIg01txi8XtVn792wP8VgKHGqDzaG8sKhyoeQ+u8YO1EZH7cfCQiIiIiIiLSUHOLBRPvzUV5tR1Wq4TTKbBuSyq2ryjFlPxxPu1rN6cCAqisCd23c7uEDQufy1I0htZ5wdqLV5VwA5IoDnDzkYiIiIiIiEhDBUXpKK+2wyUFXO0dJzeXV9sxb8noLu0VNXYAgETovp3bAQEJoWgMrfOCtRcUpfNj1URxgKddExEREREREWmotq4nrFbp02a1Sr/tQnQ8wukbizG0zgvVTkTmx81HIiIiIiIiIg1lpDXB6fTdnXM6hd92KTse4fSNxRha54VqJyLz4+YjERERERERkYbyZp5AdmYDLEIiMcEFi5AYm9mA1Y8f7NKePbIBY8Ls27ldCKl4DK3zgrW7D64hInPjPR+JiIiIiIiINJRsc6F4VYnf0539tQP+T44ONcbyDS1YMLtK8Rha5wVrJyLz4+YjERERERERkcaSbS6/h6kEalfS192+s7TR5/tGzgvUTkTmx49dExERERERERERkSq4+UhERERERERERESq4OYjERERERERERERqULXzcc9e/Zg2rRpSE1NhRACr7/+esjnrFixAldccQWSk5ORlZWFV155Rf1CiYiIiCgucT1KREREpC5dD5w5f/48srOzMW/ePMycOTNk/5UrV+KRRx7Biy++iPHjx6OkpAQ//OEP0b9/f0ybNk2DiomIiIgonnA9SkRERKQuXTcfb7rpJtx0001h91+3bh1+/OMfY/bs2QCAjIwMvPfee/jNb37DxR4RERERKcb1KBEREZG6dN18VKq1tRU2m82nLTk5GSUlJWhra0NiYqLf57S2tnq+PnfunOp1EhEREVF8imQ96n4e16RERETUHQkppdS7CAAQQmDTpk2YMWNGwD6PPvooXn75ZWzevBlf/vKXsX//ftx666349NNP8cknn2Dw4MFdnvPkk09i8eLFXdqnTp0acHGohpKSEuTm5jKPeYbM0yOTeebO0yOTecwzeqaWeW1tbdi6dSscDgf69OmjSWZ3oNZ6FDDGmjSefya6Q54emcwzd54emcxjntEzmRc7itaj0iAAyE2bNgXt09TUJO+55x6ZkJAgrVarTE1Nlb/4xS8kAHnq1Cm/z2lpaZEOh8PzOH78uAQgHQ6HCq8isGnTpjGPeYbN0yOTeebO0yOTecwzeqaWeQ6HQ5f1TLxTaz0qpTHWpPH8M9Ed8vTIZJ658/TIZB7zjJ7JvNhRsh7V9bRrpZKTk7F69Wo0NTXho48+wrFjxzB8+HDY7XYMHDjQ73OSkpLQp08fnwcRERERUSQiWY8CXJMSERFR92Wqez66JSYmIj09HQCwfv163HrrrbBYTLWPSkREREQmxvUoERERUXh03XxsbGzEkSNHPF9/+OGHOHDgAAYMGIChQ4fikUceQV1dHV555RUAQHV1NUpKSvCVr3wFn3/+OX7/+9/jgw8+wNq1a/V6CURERERkYlyPEhEREalL183H0tJSfOMb3/B8/dBDDwEA5s6dizVr1uDkyZM4duyY5/tOpxPPPvssqqqqkJiYiG984xvYt28fhg8frnXpRERERBQHuB4lIiIiUpeum4/XXXcdZJDDttesWePz9RVXXIGysjKVqyIiIiKi7oLrUSIiIiJ18cY0REREREREREREpApuPhIREREREREREZEquPlIREREREREREREquDmIxEREREREREREamCm49ERERERERERESkCm4+EhERERERERERkSq4+UhERERERERERESq4OYjERERERERERERqYKbj0RERERERERERKQKbj4SERERERERERGRKrj5SERERERERERERKrg5iMRERERERERERGpgpuPREREREREREREpApuPhIREREREREREZEquPlIREREREREREREquDmIxEREREREREREalC183HPXv2YNq0aUhNTYUQAq+//nrQ/nfffTeEEF0eo0eP1qZgInqMizcAABcLSURBVCIiIoo7XJMSERERqUfXzcfz588jOzsbK1asCKv/888/j5MnT3oex48fx4ABAzBr1iyVKyUiIiKieMU1KREREZF6EvQMv+mmm3DTTTeF3b9v377o27ev5+vXX38dn3/+Oe655x41yiMiIiKiboBrUiIiIiL16Lr5GK2XXnoJU6ZMwbBhwwL2aW1tRWtrq+drh8MBADh37pzq9Xlra2vTNJN5zDN6JvPMnadHJvOYZ/RMLfPcOVJKTfIoOLOsSeP5Z6I75OmRyTxz5+mRyTzmGT2TebGjaD0qDQKA3LRpU9j96+rqpNVqlRs2bAja74knnpAA+OCDDz744IMPPuLucfz48ShXYNQZwDUpH3zwwQcffPDBR7iPcNajpr3yce3atejXrx9mzJgRtN8jjzyChx56yPN1fX09hg0bhmPHjvl8XEZN586dw5AhQ3D8+HH06dOHecwzVJ4emcwzd54emcxjntEztc6TUqKhoQGpqamqZ1FwZlmTxvvPRLzn6ZHJPHPn6ZHJPOYZPZN5saVkPWrKzUcpJVavXo277roLPXr0CNo3KSkJSUlJXdr79u2r2Q+UW58+fTTNZB7zjJ7JPHPn6ZHJPOYZPVPLPK3+EZUCM+OaNJ5/JrpDnh6ZzDN3nh6ZzGOe0TOZFzvhrkd1Pe06Urt378aRI0fwgx/8QO9SiIiIiKib4pqUiIiIKDRdr3xsbGzEkSNHPF9/+OGHOHDgAAYMGIChQ4fikUceQV1dHV555RWf57300kv4yle+gquuukrrkomIiIgoznBNSkRERKQeXTcfS0tL8Y1vfMPztfs+OHPnzsWaNWtw8uRJHDt2zOc5DocDf/3rX/H8889HlJmUlIQnnnjC78de1KJ1JvOYZ/RM5pk7T49M5jHP6Jl6vEaKne6wJmWeufP0yGSeufP0yGQe84yeyTz9iC9O9SMiIiIiIiIiIiKKKVPe85GIiIiIiIiIiIiMj5uPREREREREREREpApuPhIREREREREREZEquPlIREREREREREREqojLzccVK1Zg+PDhsNls+MpXvoKSkpKAfa+77joIIbo8brnlFlXy2tra8NRTT2HEiBGw2WzIzs7G1q1bw87as2cPpk2bhtTUVAgh8Prrrwftf/LkSdx5553IzMyExWLBAw88EHZWpJl79+7FxIkTcckllyA5ORmjRo3CsmXLVMvbtWuX3/fw1KlTquQBQGtrKx577DEMGzYMSUlJGD58OFavXq1a3v/8z/8gOzsbPXv2xODBgzFv3jycPXs2rLylS5di/PjxsNvtSElJwYwZM1BVVRXyeRs3bsSoUaNgs9lw9dVXY8uWLarlvfjii/j617+O/v37o3///pgyZUrQn6NYvD639evXQwiBGTNmqJpXX1+P/Px8DB48GElJScjMzAzrzzTSvOeeew5ZWVlITk7GkCFD8OCDD6KlpSWs17hy5UqMGTMGffr0QZ8+fTBhwgT83//9X9DnRDpfIsk7ePAg/uu//gvDhw+HEALPPfdc2FmR5BUVFWHcuHHo168fevXqhbFjx2LdunWq5a1Zs6bL32c2m021vFj8HlSaGe3vQm9PP/00hBBBf79FO2ciyYx23lB84Jr0omjXpFyPdsX1aGzzzLQejSbTLGtSrkd9xWJdEe9rUj3Xo4D2a1KzrUfjbvNxw4YNeOihh/DEE0/g/fffR3Z2Nm688UacPn3ab/+ioiKcPHnS8/jggw9gtVoxa9YsVfIWLVqEP/3pT/jDH/6AQ4cOIS8vD9/+9rdRVlYWVt758+eRnZ2NFStWhNW/tbUVAwcOxKJFi5CdnR3Wc6LN7NWrF+bPn489e/bg3//+NxYtWoRFixbhz3/+syp5blVVVT7vZUpKimp53/3ud7Fjxw689NJLqKqqwquvvoqsrCxV8oqLizFnzhz84Ac/wMGDB7Fx40aUlJTghz/8YVjP3717N/Lz8/HOO+9g27ZtaGtrww033IDz588HfM6+fftwxx134Ac/+AHKysowY8YMzJgxAx988IEqebt27cIdd9yBnTt34u2338aQIUNwww03oK6uTpU8t48++ggLFy7E17/+9ZB9o8m7cOECvvWtb+Gjjz7Ca6+9hqqqKrz44otIS0tTJa+wsBAPP/wwnnjiCfz73//GSy+9hA0bNuDRRx8N6zWmp6fj6aefxv79+1FaWopvfvObuO2223Dw4EG//aOZL5HkNTU1ISMjA08//TQGDRoUVkY0eQMGDMBjjz2Gt99+GxUVFbjnnntwzz334M0331QlDwD69Onj8/fZxx9/rNrri/b3YCSZ0f4udHvvvffwpz/9CWPGjAnaL9o5E0lmtPOGzI9rUl/Rrkm5Hu2K69HY5plpPRppppnWpFyP+orFuiLe16R6rUcB7dekplyPyjiTm5sr8/PzPV87nU6Zmpoqly5dGtbzly1bJu12u2xsbFQlb/DgwfKFF17waZs5c6b83ve+F1aeNwBy06ZNYfefPHmyvP/++xXnRJPp9u1vf1t+//vfVyVv586dEoD8/PPPFY8fSd7//d//yb59+8qzZ89qkve73/1OZmRk+LQtX75cpqWlRZR5+vRpCUDu3r07YJ/vfve78pZbbvFp+8pXviJ//OMfq5LXWXt7u7Tb7XLt2rWq5bW3t8trr71Wrlq1Ss6dO1fedtttirPCzVu5cqXMyMiQFy5ciChDaV5+fr785je/6dP20EMPyYkTJ0ac279/f7lq1Sq/34vlfAknz9uwYcPksmXLIs5RmueWk5MjFy1apEreyy+/LPv27Rvx2ErzOlP6ezCSzFj8LmxoaJAjR46U27ZtU/T7LZo5E2mmW7TzhsyFa9LAol2Tcj3K9agaeZ2ZaT0abqbZ16Rcj/qKxboi3tekaq9HpdR+TWrW9WhcXfl44cIF7N+/H1OmTPG0WSwWTJkyBW+//XZYY7z00ku4/fbb0atXL1XyWltbu1yqnJycjL1794ZVnxmVlZVh3759mDx5sqo5Y8eOxeDBg/Gtb30LxcXFquW88cYbGDduHH77298iLS0NmZmZWLhwIZqbm1XJmzBhAo4fP44tW7ZASolPP/0Ur732Gm6++eaIxnM4HAA6/hUkkLfffttnXgPAjTfeGPbPkdK8zpqamtDW1qboOUrznnrqKaSkpOAHP/iB4gyleW+88QYmTJiA/Px8XHbZZbjqqqvw61//Gk6nU5W8a6+9Fvv37/d8VKi2thZbtmyJaM44nU6sX78e58+fx4QJE/z2ieV8CScvlpTmSSmxY8cOVFVVYdKkSarlNTY2YtiwYRgyZEjIf5GORZ43Jb8HI82Mxe/C/Px83HLLLV3mnpoizYx23pD5cE1qPFyPRofrUXXyYrUeDTfTrGtSrkd9xWJdEe9rUq3Wo4D2a1LTrkc13+5UUV1dnQQg9+3b59P+85//XObm5oZ8/rvvvisByHfffVe1vDvuuENeeeWVsrq6WjqdTvnPf/5TJicnyx49eoSV6Q0Gv/IxLS1N9ujRQ1osFvnUU0+plnf48GFZUFAgS0tLZXFxsbznnntkQkKC3L9/vyp5N954o0xKSpK33HKLfPfdd+U//vEPOWzYMHn33XerkiellP/7v/8re/fuLRMSEiQAOW3atIj+xdLpdMpbbrkl5L82JiYmysLCQp+2FStWyJSUFFXyOvvJT34iMzIyZHNzsyp5b731lkxLS5NnzpyRUsqI/6U53LysrCyZlJQk582bJ0tLS+X69evlgAED5JNPPqlKnpRSPv/88zIxMdEzZ/Ly8hRlVVRUyF69ekmr1Sr79u0r//GPfwTsG4v5oiTPW6T/Yqg0r76+Xvbq1UsmJCTIpKQk+dJLL6mWt2/fPrl27VpZVlYmd+3aJW+99VbZp08fefz4cVXyvCn9PRhpZrS/C1999VV51VVXef6O0OJfmSPJjHbekHlxTRqcllc+cj0amzwpuR6NdV6s1qNKMs22JuV61Fcs1hXxvibVcj0qpfZrUjOvR7n56OVHP/qRvPrqq1XNO336tLztttukxWKRVqtVZmZmyp/+9KfSZrOFnetm9M3H2tpaWVFRIf/85z/LAQMGdPllEOs8b5MmTVLtYzXf+ta3pM1mk/X19Z62v/71r1IIIZuammKed/DgQTl48GD529/+VpaXl8utW7fKq6++Ws6bN09RlpRS5uXlyWHDhoX8hRGrxV64ed6WLl0q+/fvL8vLyxVlhZt37tw5OXz4cLllyxZPW6SLvXBf38iRI+WQIUNke3u7p+3ZZ5+VgwYNUiVv586d8rLLLpMvvviirKiokEVFRXLIkCGK/k9Xa2urrKmpkaWlpfLhhx+Wl156qTx48KDfvrGYL0ryvEW62FOa53Q6ZU1NjSwrK5PPPPOM7Nu3r9y5c6dqed4uXLggR4wYoejjEZHmKf09GGlmNL8Ljx07JlNSUnz+jlB7oRdpZrTzhsyLa9LgtNx85Ho0Nnlcj8Y2L5br0XAzpTTfmpTrUV+xWFfE+5pUq/WolNqvSc2+Ho2rzcfW1lZptVq7/PKcM2eOnD59etDnNjY2yj59+sjnnntOk7zm5mZ54sQJ6XK55C9+8Qt55ZVXhp3rZvTNR29LliyRmZmZmuUtXLhQfvWrX1Ulb86cOXLEiBE+bYcOHZIAZHV1dczzvv/978vvfOc7Pm1vvfWWBCA/+eSTsLPy8/Nlenq6rK2tDdl3yJAhXf4i/O///m85ZswYVfLcfve738m+ffvK9957L+znKM0rKyuTAKTVavU8hBBSCCGtVqs8cuRITPOk7Pg/H9dff71P25YtWyQA2draGvO8r33ta3LhwoU+bevWrZPJycnS6XSGldfZ9ddfL3/0ox/5/V4s5ouSPG+xusdOuHluP/jBD+QNN9ygWd53vvMdefvtt6uaF8nvwWgzI/lduGnTpi4/wwA8P8Pe/4fKn0jmTLSZbtHOGzIPrkmD0+uej1yPRp7H9Whs82K1HlWSKaX516Rcj/qKxboi3tekaq1HpdR+TWr29Whc3fOxR48euOaaa7Bjxw5Pm8vlwo4dO0LeV2Djxo1obW3F97//fU3ybDYb0tLS0N7ejr/+9a+47bbbws41I5fLhdbWVs3yDhw4gMGDB6sy9sSJE/HJJ5+gsbHR01ZdXQ2LxYL09PSY5zU1NcFi8f1RtVqtADru2xCKlBLz58/Hpk2b8K9//QuXX355yOdMmDDBZ14DwLZt28K+B4nSPAD47W9/iyVLlmDr1q0YN25cWM+JJG/UqFGorKzEgQMHPI/p06fjG9/4Bg4cOIAhQ4bE/PVNnDgRR44cgcvl8rRVV1dj8ODB6NGjR8zzop0z/gT7GY5mvkSSpwaledHWp+T5TqcTlZWVUf2dFk5eJL8Ho82M5Hfh9ddf3+VneNy4cfje976HAwcOeOZ6LMUqU+t5TfrhmtSYuB6NHNejsc2Ldj0aSSZg/jUp16PR9Y92DDOuSdVajwLar0lNvx7VfLtTZevXr5dJSUlyzZo18tChQ/JHP/qR7Nevnzx16pSUUsq77rpLPvzww12e97WvfU3Onj1b9bx33nlH/vWvf5VHjx6Ve/bskd/85jfl5ZdfHvbJeA0NDbKsrMzzr2W///3vZVlZmfz444+llFI+/PDD8q677vJ5jrv/NddcI++8805ZVlYW9qXVkWS+8MIL8o033pDV1dWyurparlq1StrtdvnYY4+pkrds2TL5+uuvy5qaGllZWSnvv/9+abFY5Pbt21XJa2hokOnp6fI73/mOPHjwoNy9e7ccOXKkvPfee1XJe/nll2VCQoL84x//KI8ePSr37t0rx40bF9bHtqTsuF9N37595a5du+TJkyc9D++P5HSep8XFxTIhIUE+88wz8t///rd84oknZGJioqysrFQl7+mnn5Y9evSQr732ms9zGhoaVMnrTMnHXCLJO3bsmLTb7XL+/PmyqqpKbt68WaakpMhf/vKXquQ98cQT0m63y1dffVXW1tbKf/7zn3LEiBHyu9/9bliv8eGHH5a7d++WH374oayoqJAPP/ywFELIf/7zn37zopkvkeS1trZ6foYGDx4sFy5cKMvKymRNTY0qeb/+9a/lP//5T3n06FF56NAh+cwzz8iEhAT54osvqpK3ePFi+eabb8qjR4/K/fv3y9tvv13abLaw/95WmucW6e/BSDKj/V3YWeerqGI9ZyLJjHbekPlxTRrbNSnXo1yPcj0afaaZ1qRcj8Z+XRHva1K916NSar8mNdN6NO42H6WU8g9/+IMcOnSo7NGjh8zNzZXvvPOO53uTJ0+Wc+fO9el/+PBhCcAzKdXM27Vrl7ziiitkUlKSvOSSS+Rdd90l6+rqws7auXOnBNDl4c6YO3eunDx5ss9z/PUfNmyYapnLly+Xo0ePlj179pR9+vSROTk58o9//GPYl9YrzfvNb34jR4wYIW02mxwwYIC87rrr5L/+9S/VXp+UUv773/+WU6ZMkcnJyTI9PV0+9NBDYd9fJ5K85cuXyyuvvFImJyfLwYMHy+9973vyxIkTYeX5ywIgX375ZU8ffz8X//u//yszMzNljx495OjRo8O+OXAkecOGDfP7nCeeeEK11+dNyWIv0rx9+/bJr3zlKzIpKUlmZGTIX/3qV2FdGh9JXltbm3zyySc9PxdDhgyRP/3pT8P+RTpv3jw5bNgw2aNHDzlw4EB5/fXX+/z9GMv5Eknehx9+6PfPpPPPTazyHnvsMfmlL31J2mw22b9/fzlhwgS5fv161V7fAw884Pmdctlll8mbb75Zvv/++6rlSRn970GlmdH+Luys88Ir1nMmksxo5w3FB65JJ/s8J5o1KdejXI9yPRqbTLOsSbkejf26It7XpHqvR90ZWq5JzbQeFVJG+Bk8IiIiIiIiIiIioiDi6p6PREREREREREREZBzcfCQiIiIiIiIiIiJVcPORiIiIiIiIiIiIVMHNRyIiIiIiIiIiIlIFNx+JiIiIiIiIiIhIFdx8JCIiIiIiIiIiIlVw85GIiIiIiIiIiIhUwc1HIiIiIiIiIiIiUgU3H4mIYsDpdOLaa6/FzJkzfdodDgeGDBmCxx57TKfKiIiIiKg74HqUiIxKSCml3kUQEcWD6upqjB07Fi+++CK+973vAQDmzJmD8vJyvPfee+jRo4fOFRIRERFRPON6lIiMiJuPREQxtHz5cjz55JM4ePAgSkpKMGvWLLz33nvIzs7WuzQiIiIi6ga4HiUio+HmIxFRDEkp8c1vfhNWqxWVlZW47777sGjRIr3LIiIiIqJugutRIjIabj4SEcXY4cOHccUVV+Dqq6/G+++/j4SEBL1LIiIiIqJuhOtRIjISHjhDRBRjq1evRs+ePfHhhx/ixIkTepdDRERERN0M16NEZCS88pGIKIb27duHyZMn45///Cd++ctfAgC2b98OIYTOlRERERFRd8D1KBEZDa98JCKKkaamJtx99934yU9+gm984xt46aWXUFJSgoKCAr1LIyIiIqJugOtRIjIiXvlIRBQj999/P7Zs2YLy8nL07NkTAPCnP/0JCxcuRGVlJYYPH65vgUREREQU17geJSIj4uYjEVEM7N69G9dffz127dqFr33taz7fu/HGG9He3s6PuxARERGRargeJSKj4uYjERERERERERERqYL3fCQiIiIiIiIiIiJVcPORiIiIiIiIiIiIVMHNRyIiIiIiIiIiIlIFNx+JiIiIiIiIiIhIFdx8JCIiIiIiIiIiIlVw85GIiIiIiIiIiIhUwc1HIiIiIiIiIiIiUgU3H4mIiIiIiIiIiEgV3HwkIiIiIiIiIiIiVXDzkYiIiIiIiIiIiFTBzUciIiIiIiIiIiJSBTcfiYiIiIiIiIiISBX/H3gk4aYyMAMbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKKigKKGiwxYrYG9iiotjQaNQIGNTYezdBY69R7BVs0dh7RFQwYuwVu4kdCyiKSpMy3x98My/LFnaBpXl+z8Oj7JR7Z2d253Bn5l6ZIAgCiIiIiIiIiIiIiIiIiCjf0cvtChARERERERERERERERFR5vBiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxERERERUR6UnJyMpUuXol69ejA3N4dMJoNMJkPnzp0BACEhIdJrISEh2Vq2LtdNRERElJ8xJxFRXsSLfUR5VNrgoOnPyJEjc7valIHmzZtL++u7777TeDlXV1etj4cPHz4orOfDhw8ICgrCrFmz0KlTJ9jY2Ejzu7q6Zt+GEhER5QOq8paBgQGKFy+OcuXKoVmzZhg1ahT27NmDL1++5Gj9fvjhB4wcORKXLl3Cp0+fcrTs/ILZioiIKPd9+fIF27dvR9++fVG5cmVYWlrC0NAQVlZWcHZ2xqBBg3DixAmkpKTkdlUpG23atEnKPfr6+njx4oVGywUEBGidw5YsWaKwnqSkJFy7dg1r1qyBj48PatSoAQMDA2mZJ0+eZO8GE+VxBrldASKir8XTp09x+vRp6feTJ0/i5cuXsLGxybE6ODk5MewQERFlIDk5Ge/fv8f79+/x5MkTnDlzBkuWLEGJEiUwfPhwTJw4EQYGuv1T6p9//sGuXbsAAO3bt8fIkSNhbW0NmUwGc3NznZatiWnTpmH69OkAAEEQcqUOzFZERES5b+/evRgzZozS8+G7d+/w7t07XL16FatXr0bFihWxePFitG/fPucrmoEnT56gXLlyAAB/f394eXnlboXygU2bNkn/T0lJwdatWzFx4sQcK3/WrFmYNm1ajpVHlNfxYh9RPjBo0CAMHjw4w/msrKxyoDaUWVu2bIEgCDAyMkJycjKSkpKwdetWjB8/Xqv1hIWFaTSfsobAtI1x1tbWqFu3Lg4fPqxV+URERAVR+rz1+fNnvH//Hjdv3sTJkydx4sQJREZG4pdffsGhQ4dw+PBhlChRQmf1OXHiBABAX18ff/zxh9Lzuqurq84utOly3dmF2YqIiCh3zZgxA7/++qv0e+vWrdGxY0d8++23KFq0KKKionD//n0cOnQIQUFBePDgAaZMmZInL/ZpIz/kJF17/vy51IVp4cKF8fnzZ2zZskXri30zZ85Ep06dMpyvdOnSCq+l3QfGxsaoVasWIiMj8d9//2lVB6KCghf7iPKBkiVLolq1arldDcqiLVu2AAA6dOiAuLg4HD16FFu2bNG6QSorx8LQoUNRrlw51KtXD2XKlAEAyGSyTK+PiIiooFCVt9q1a4cJEybgzp076NOnD65du4aLFy+iS5cuOHXqFAoVKqST+oSHhwNIvYCUF57ky4uYrYiIiHKPv7+/dKGvZMmS2LlzJ1xcXBTma9WqFYYMGYJbt25h1KhRiIyMzOmqkg6IN10ZGhpi4cKF+Pnnn3Hnzh1cvnwZderU0Xg9tra2mc5iDRs2xOrVq1GvXj1Ur14dBgYG8PLy4sU++mrxYh8RUQ44f/48Hjx4AADo3bs34uPjcfToUdy6dQtXr15F7dq1c6QeY8eOzZFyiIiICppvv/0WZ8+eRePGjXHt2jWcPXsWK1aswKhRo3RSXkJCAgDA0NBQJ+vP75itiIiIck94eDiGDh0KADAzM8Pp06dRuXJltctUq1YNgYGB+OOPP3KiiqRj4k1X7dq1g6enJyZMmIDo6Ghs3rxZq4t9WdGmTZscKYcov9DL7QoQkW4IgoA2bdpAJpPBwMAA586dUzmvn5+fNHitr6+v0nk+ffqERYsWoUWLFihVqhQKFSoEc3NzODk5YdiwYTh79qzK9ScnJ2PTpk3o0KEDbGxsYGRkBEtLSzRp0gSLFy9GXFyc2m25cuUKfvrpJ1SsWBFmZmYwNjZGmTJl4OzsjCFDhuDgwYNKu0+Ij4+Hn58fXF1dUaJECRgaGqJ48eKoVKkS2rVrh8WLF+fYGCubN28GABQrVgzt27dH586dUaRIEblpRERElLeZmJhgy5Yt0pNbCxcuRGJiosr5X79+jSlTpqBOnTooXrw4jIyMUKZMGXz//fdSN53piZlMHAPl6dOn0mvijygkJER6TexGSZWjR4+iT58+KF++vJSnypUrBw8PDwQEBCA2NlZuflXrDggIgEwmk8brS1vntD+6zljMVkRERLnn999/l7LDb7/9luGFPpGenh769OmjcnpoaCh+/PFHODg4wNjYGEWLFoWTkxOmTp2a4ROBr169wsqVK9GtWzdUqFABZmZmMDIygq2tLTp16oQ///wTKSkpSpeVyWTSeH0A4O3trZBt0o4Nl1EG8/Lygkwmg4ODAwDgw4cP+PXXX1G1alWYmZmhaNGiaNasGbZt26Z2m0SHDh1C27ZtUaJECZiamqJixYoYN24cXr9+DQBwcHCATCbLsXEGL168iHv37gEA+vTpA2NjY3Tr1g0AsGPHDrX5mIh0SCCiPCk4OFgAIAAQfH19M7WOly9fCpaWlgIAoXz58sLHjx8V5rl165ZgbGwsABDq168vJCYmKswTFBQkWFlZSfVR9aPM06dPhZo1a6pdztHRUbh//77S5RcvXizo6ellWPanT58Utv3bb7/NcLkxY8Zk4p3VTkJCglC8eHEBgDBgwADpdU9PTwGAULJkSaXve1ouLi5q3+esENfr4uKS7esmIiLKyzKbt7777jtpubNnzyqdZ+vWrYKZmZnaHPLTTz8pZICMskvaLJC2/sHBwUrr8fbtW6Fly5YZrtPf31/le5N23f7+/hrV8fHjxxq/n9pitiIiIso9KSkpUhuRmZmZ0rYmbSUnJwtDhgxRmy0sLCyE48ePK10+KSlJo7aj1q1bK7QfCYJm+SttVswog4mZxN7eXrh3757g4OCgcr1DhgxR+94MHjxY5bKlSpUSrl69Ktjb2wsABE9PT23e9kwT95WFhYUQFxcnCIL8e3LgwAG1y6fNk+kzaFaJ772u8yhRXsQn+4gKsNKlS2P9+vUAgEePHmH48OFy0xMSEtCrVy/Ex8fDzMwMW7duhYGBfO++wcHBaNeuHd6+fQt9fX14eXlh3759uHLlCs6ePYt169aha9euSruYevfuHZo0aYIbN27AyMgIQ4cOxa5du3Dp0iUEBwdj0qRJMDU1xb///ot27dohOjpabvmbN29i7NixSElJQbly5bBo0SKcPHkS165dw99//41169ahV69eMDMzUyh72LBhuHPnDoDUu4z27t2L8+fP49KlSzh48CB+/fVX1KxZM0vvr6YOHz6MqKgoqS4i8f8RERE4duxYjtSFiIiIsq5Vq1bS/8+cOaMwfefOnfjxxx8RExOD8uXLY/HixTh27BiuXLmCPXv2wM3NDQCwYcMGhfHlwsLCEBYWhk6dOgEAbGxspNfEH03FxsaiefPmOHnyJADA2dkZa9aswdmzZ3H58mXs27cPo0aNgo2Njcbr7Ny5M8LCwjBo0CCFOqf9sbW11Xid2mK2IiIiyj23b9/G27dvAQBNmzaVnqzPiokTJ2LFihUAgHLlymH16tW4ePEigoODMWrUKBgaGiI6OhodOnTAjRs3FJYX/r+3pxYtWmDBggVS7goJCcHGjRvRsGFDAEBQUBCGDBmisHxYWBgCAwOl32fOnKmQbQYPHqz1dsXGxsLd3R3v3r3D1KlTERISgsuXL2PdunWws7MDAKxYsUKu7LTmz5+PlStXAgDKlCmDFStW4MKFC/j7778xZcoUREdHo1u3bgo9NOhSYmIiduzYAQDw8PCAsbExAMDFxUUav5i9LBDlDo7ZR5QPRERE4NatWxnOV6lSJYWLbp07d4aPjw/Wr1+PgIAAtG/fXnq0fvLkybh58yYAYMmSJXB0dJRbNj4+Hn369EFSUhJMTU1x5MgRuLq6ys3TqFEj+Pj44Pnz5wr1GT58OJ4/fw57e3sEBwfLdYkAAK6urujevTuaNm2KR48eYf78+Zg1a5Y0fffu3UhJSYGZmRnOnTsHa2trueWbNm0KHx8fREdHw9TUVK7eBw8eBACMGTMGCxcuVKibu7s7pk+fLjUU6ZIYchwcHNCkSRPp9RYtWsDGxgYvX77E5s2b0aFDB43Wp8mxUKxYMZ02shEREX3N0o4HJ44bJ3r79i0GDBgAQRDQr18/rFmzRu5mqtq1a6Nr166YMmUKZs+ejaVLl2LgwIGoVKkSgNTxbACgaNGiAFLH7BNf09bUqVOli4NDhgzBsmXL5LoBdXZ2RufOnTF37ly8f/9eo3UWLVoURYsWRcmSJaXXMlu/zGK2IiIiyj1pL7Y5OztneX1hYWFYtGgRgNRMcebMGSkHAaltR9999x3at2+PL1++YMCAAbhw4YLcOvT19XH//n2Fdi0g9SKUt7c3fH198dtvv2HLli2YOnUqKlSoIM1TrVo1FC5cWPrd1tY2W/JNZGQkvnz5gnPnzqFq1arS687OznB1dUX16tURHx+PlStXKow/9/r1a2moHUdHR5w7dw5WVlbS9KZNm8LNzQ3NmzfHly9fslxXTR05cgTv3r0DIH/TlUwmQ69evTBv3jwcPnwY79+/R7FixTJcX3h4uEZZLKfzJlF+xCf7iPKBVatWoXr16hn+hIeHK11+yZIlUogZOHAgwsPDceLECfz+++8A/ndBML3Nmzfj5cuXAIDZs2crXOhLS7x7R/TkyRP8+eefAIDly5crXOgTOTk5SXdVBQQEyE0T+x6vWLGiwoW+tCwsLKCn97+vs6ioKKl/8GbNmqlcDgCKFy+udnpWvXv3DkePHgUA9OrVS66BTU9PD7169QKQ2v/6hw8fNFqnJsfClClTsn1biIiIKJWlpaX0//QXyVatWoXo6GjY2tpi5cqVCr0miKZPnw5bW1ukpKTo5O7nDx8+YM2aNQBSG5SWLl0ql0PSKlSokNqslZcwWxEREeUu8UIPALmbfzJr1apV0lh669evl7vQJ2rbti369esHIHW8uEuXLslNl8lkSi/0pfXrr7/CysoKgiBIN4jnhBkzZshd6BM5Ojqic+fOAFLHKkxv06ZNiI+PB5Darpf2Qp+oUaNGSp9U1CUxt9rZ2Sm0E/74448AUnsSE9sEMzJ16lSNshgRZYwX+4i+Amm76IyKikKvXr3g5eUFQRBQunRprFu3Tulyhw8flpbv37+/VmUeOXIEycnJMDU1Rbt27dTOK16Qe/nyJZ49eya9Xrp0aQDAnTt3cPHiRY3LtrS0RKFChQAAW7ZsQVJSklZ1z07bt2+XLjwqG4RafC0+Ph67du3K0boRERFR5qS98/vTp09y08TGow4dOsDIyEjlOgwMDKQupc6dO5ftdTx16pTUpdPw4cOhr6+f7WXkBmYrIiKi3JU2+ygbVkVbJ06cAABUrVoV9evXVzlf2nYpcRlVUlJS8PLlS9y/fx+3bt3CrVu3cPfuXanrTGVdgeqC+LSbKuKTkVFRUQo3KYnbaGVlpbZdrW/fvlmvqIaioqJw5MgRAIo3XQGp+7BWrVoAUtvjiChn8WIfUT7g6+sLQRAy/HFwcFC5jnr16kmP///9998IDw+HTCaDv7+/0ruDAODatWsAUsNH2m4yNXH58mUAqf2TGxgYQCaTqfxJ28WS+DQfAPzwww8wNDREQkICGjduDHd3d6xevRq3bt2S+mNXxsjICD169ACQ2hWoo6Mjxo8fj6NHj2p8h3d22bRpE4DULruqVKmiML1mzZpSVwSa3tWvybGQ/ilJIiIiyj5pG7nMzc2l/ycnJ+P69esAgDVr1qjNPzKZDLt37wYgn3+yi5jjgNRungoKZisiIqLclXaMvpiYmCytKyEhAQ8fPgQAtRf6gNSeocSha5R1+ygIArZu3YrmzZujcOHCsLW1ReXKleWeDhNzmjjmoK5ZWVnJ9QiRXtreptLfQCZuY61ateR6s0qvevXq0g3vurZ9+3apy1BlN12lff2ff/7Bf//9l+E6/f39NcpiRJQxXuwj+opMmjQJ5cuXl3738fFR6BM8LTH8iE/YaSMiIkL7CgJygwpXrlwZ27dvR7FixZCUlITDhw9j0KBBqF69OkqWLIkff/wRZ86cUbqe5cuXw93dHQDw9OlTLFiwAO3bt4elpSXq1q2LBQsWIDo6OlN11NTdu3eli56qQhDwv24Ozp49i8ePH+u0TkRERJR1aRuI0jbSREVFZapHgbT5J7ukrWNmslxexGxFRESU+9JevHrz5k2W1pW2O/SMugQ1NDSUyo6KipKbFh8fj/bt2+PHH39ESEgI4uLi1K4ro+nZJaMb59NexEtOTpabJr43JUqUULsOfX19nQ9RIxJvpKpRo4bKrjV79eol9Sihi67qiUg15QNIEFGBdOTIETx69Ej6PTQ0FHFxcTAxMcn2ssSQYmVlheDgYI2XSz+2n4eHB1q1aoU///wTgYGBOHPmDCIjI/H27Vts3boVW7duhaenJzZu3CgXkszNzXHw4EFcvHgRO3fuREhICK5fv47k5GRcvnwZly9fxsKFC7F//36pC63sljbUjB49GqNHj1Y7vyAI2Lx5s/QEJhEREeVNaZ+aq1SpkvT/tI00Pj4+GDFihEbry6m7sfM7ZisiIqLcV7NmTen/V69ezbb1qhpbWBOzZs3CX3/9BQBwcXHBkCFDULt2bZQqVQomJiZSe1GzZs1w5swZPimWCffv35eG2Ll586ZG+2vr1q2YNm1alvYtEWmOF/uIvhJv3ryBj48PgNQLYR8/fsTdu3cxbtw4LF++XOkyVlZWePHiBV69eqV1eeLdVp8+fUKVKlWyNE6MhYUFBgwYgAEDBgBIvav7wIEDWLZsGV6+fIlNmzbByclJaYNavXr1UK9ePakuISEhCAgIwN69exEREQEPDw/8999/2X7BMyUlBdu2bdN6uS1btrBBioiIKI8LCgqS/t+kSRPp/2nvqhYEQepOMjek7ab91atXCjdU5TfMVkRERHlD1apVYWVlhbdv3+LMmTP4+PGjXLfm2ihWrJj0/4yeEkxKSsK7d+8AKGau9evXA0jtuvzUqVMqu71M/0RgXlasWDG8fv0akZGRaudLTk6We0JSVzLzlN6jR48QGhpaoLqUJ8rLeLGP6CvRr18/REZGQk9PD4cPH8bSpUuxZ88erFixAh06dEDbtm0VlqlduzZevHiBy5cvIzY2Vqtx+5ycnPDHH38gISEBly9fzrDvdW1UqVIFVapUQe/evVGlShXExMRg586dGd49X6RIEbi7u8Pd3R0jRoyAn58fXr16hdDQULRu3Trb6gcAwcHBeP78OQBg2LBhaNSokdr5L1y4gCVLluC///7D2bNn0bhx42ytDxEREWWPW7du4eTJkwCAMmXKoE6dOtK0QoUKoWrVqrh9+zbOnj2bW1UEkJrjRH///Xe2X+zL6Tu0ma2IiIjyBplMBk9PTyxatAgxMTFYv359hk/bq2JkZIQKFSrg4cOHuHDhgtp5r127hsTERACQu6EqKipKGv+4e/fuKi/0ff78Gffv31e5/rz29FnVqlXx+vVrXL9+HSkpKSq3KywsDAkJCTqtizgeIpDaheekSZMynL9fv36Ij4/H5s2bebGPKIfwYh/RV2DlypU4evQoAGDChAlo2rQpqlativPnzyM8PBze3t4ICwuTuwMcANzd3XHw4EHExsZi7dq1GDlypMZluru7Y/z48RAEAUuWLMH27duzc5MApDawVaxYEdeuXdN6cOWWLVvCz88PgG4GZhbveNLX18fUqVMz7Hu+VatWWL58OZKSkrB582Y2SBEREeVBcXFx6Nu3r9T109ixY2FgIP8nVceOHXH79m3cu3cPgYGBasdH1qXmzZvDzMwMMTExWLZsGfr06ZOlnhbSMzY2lv6fkJAAIyOjbFu3MsxWREREeceoUaOwatUqxMbG4tdff4WbmxsqV66c4XIpKSnYvn07evfuLb3WqlUrPHz4ELdv38bFixel3pnSE5/eE5cRpR0vOSYmRmXZ69evVzu2cvpsk9tatmyJkydP4u3bt/jrr7/Qvn17pfPlxLh4ISEhePbsGQCgb9++6NmzZ4bL/Pnnnzhw4AB27dqFZcuWyb2/RKQbym8JIKIC4/79+xg3bhwAwNnZGdOnTweQ2uVBQEAAZDIZXr9+LXWRmVafPn1ga2sLAJgyZQpOnz6tspwXL17I/V6pUiV0794dALBjxw4sXrxYbT0fP36scEFw//79+PDhg8plnj9/jnv37gGQH+vv0aNHausKAMePH5f+n/5O95CQEMhkMshkMnh5ealdjzIxMTHYu3cvgNQuJDJqjAJSu9pycXEBAOzcuTNPBEsiIiL6nzt37qBJkybSeH0uLi4YNGiQwnwjRoxA4cKFAQDe3t64ffu22vUeOXIEN2/ezPb6Fi1aFAMHDgQAXLlyBSNHjlQ5Pk1iYiIiIiK0Wn/p0qWl///3339q52W2IiIiKlhsbW2lIWFiYmLg4uKSYTvMnTt30LZtWyxYsEDu9UGDBklPrQ0YMAAfP35UWPb48ePYsGEDgNThWurWrStNK1GiBIoWLQoA2L59u9Jz/qVLl/DLL7+orZ+lpaU0jnJG2SYneHp6SjdTjRw5UumN6ufOncOKFSsyXJeDg4OUxTIj7QVFDw8PjZbp1q0bACA6OhoHDhzIVLlEpB0+2UeUD0RERODWrVsZzmdiYoJvvvlG+j0xMRG9e/dGbGwsTExMsHXrVhgaGkrTW7VqhREjRmDJkiXYt28fNm7ciH79+knTjY2NsWXLFnz33XeIjY1Fq1at8OOPP6Jz586ws7NDQkIC7t27h6NHj+LgwYMKgWrVqlW4fPkyHj16hDFjxuDAgQPo27cvqlatCiMjI7x79w43btzAsWPHcOrUKXTp0gU//PCDtPySJUvQu3dvtG/fHi1atECVKlVgYWGB9+/f4/Lly1i2bBni4uIAAD///LO03LNnz9C8eXN8++236NKlC+rUqSNdtHz+/Dn+/PNP7Ny5EwBQq1atbO1iFAD27t2Lz58/A9A8BInznjx5Eh8+fMDBgweli6XpaXIsAIC9vT2KFCki99r169dx/fp1pfO/fv0aAQEBcq9169ZNarAkIiIqyNLnrZiYGLx//x43b97EyZMnERQUJF0sa9CgAXbv3i2Xq0TW1tbYtGkTunXrhlevXqFOnTrw8vJCu3btYGdnh8TERLx48QIXL17E7t278ejRIxw6dAg1atTI9m2aMWMGgoKCEBYWhuXLl+PcuXMYOHAgqlevjkKFCuHFixc4c+YMtm/fjpkzZ2p1IS5tN5qjRo3ClClTULp0aakRycHBQeGpx8xitiIiIsp7vL298eLFC/z666+IiIiAq6srvvvuO3Tq1AlVqlRB0aJFERUVhQcPHuDIkSM4duwYkpOTUbNmTbn1VK9eHWPGjMGCBQtw48YN1K5dGxMmTICTkxNiYmJw6NAh+Pn5ITk5GYUKFcKaNWvkltfT00Pv3r2xYsUK3Lx5E02aNMHo0aNRoUIFREdH4+jRo1i5ciUKFy4MGxsbPHjwQOn2GBgYoG7dujh79iw2btwIJycn1KpVS8p7xYsXlxsrUNdsbGzg6+uLyZMn499//4WzszMmTpyIOnXqICEhAYGBgVi0aBFsbGwQExODyMhInXRFGhsbiz179gBIfYjAwcFBo+Xc3d1RqFAhfPnyBZs3b0aPHj2UzhceHq5RFjM3N0fZsmXlXvv8+TN2794t99q///4r/X/37t1yvZjVqlULtWrV0qj+RPmSQER5UnBwsABAq5+aNWvKrWPSpEnStBUrVigtJz4+XqhWrZoAQChcuLDw33//Kcxz7NgxoVixYhmWr8yrV6+Epk2balR/b29vuWVdXFwyXEZPT0+YMWNGpt67ypUrC48ePVL73nt6eqrZS8q1atVKACDIZDIhPDxc4+Vev34t6OnpCQCEDh06aP1epP/Zt2+fQhm+vr5arePx48dabz8REVF+oW3eKlGihDBr1iwhMTExw3UfPHhQKF68uEZZ5tSpUwrLe3p6CgAEe3t7jeofHBysdJ7IyEihWbNmGdbD399f63V///33GmUIZitmKyIiKrj27NkjODg4aHQerFq1qhAYGKiwjuTkZGHw4MFql7WwsFC6rCAIwocPH4RatWqpXLZ48eLC6dOnpfO/i4uL0vUcPnxYkMlkStfh6+srzZdRTtIkxwmCIPj7+6vNCCkpKcLAgQNVbpeVlZVw6dIloUyZMgIA4eeff1Zajr29vbSMtrZu3SotO2fOHK2WdXNzEwAIBgYGwuvXr6XX0263pj+dOnVSWP/jx4+1WkfafUhUELEbT6ICKjQ0FPPmzQMAuLm5YfDgwUrnMzIywrZt22BkZITPnz+jT58+SE5OlpunTZs2ePToEWbPno1GjRrB0tIS+vr6MDc3R+3atTFy5EhcvHhR6fpLlSqFv//+G4cPH0bv3r1Rvnx5mJqawtDQECVKlECjRo0wZswYnD59Ghs3bpRbdvv27Vi7di169eqFWrVqoVSpUjAwMEDhwoVRtWpVDBo0CNeuXcPUqVPllmvatClCQkIwadIkNG/eHI6OjihSpAgMDQ1hbW2N7777DqtXr8b169cVuvDMqvDwcJw6dQoA0LBhQ9jY2Gi8rLW1tTSezLFjxxAZGZmtdSMiIiLN6OnpwcLCAmXLlkXTpk0xcuRI7NmzBy9evMDkyZM1emLN3d0djx8/xsKFC9GiRQtYW1vD0NAQJiYmKFeuHDp06IDFixfjyZMnaN68uc62xcrKCqdPn8bevXvRrVs32NnZwcjICMbGxihfvjy6d++Obdu2yfWuoKmtW7di/vz5qFevHiwsLKQuuLITsxUREVHe1rVrV9y/fx/btm1Dnz59UKlSJRQrVgwGBgYoXrw4ateujcGDB+PUqVMICwvDd999p7AOPT09rFixAn///Td69+6NsmXLwsjICObm5qhVqxYmT56Mhw8fKl0WACwsLHD27FnMmDED1atXh7GxMQoXLowqVapg7NixuHHjBpo1a5bhtrRv3x4nT55Ep06dYGNjo7QXh5wkk8mwevVqHDhwAN999x2KFy8OY2NjODo6Yvjw4bh27Rrq1KkjdX1qYWGR7XXITBee6edPSkrCH3/8ka31IiJFMkFQMXADERERERERERERERHlSS9evECZMmUAAOvXr8dPP/2UyzUiotzCJ/uIiIiIiIiIiIiIiPKZ7du3S/9v0KBBLtaEiHIbn+wjIiIiIiIiIiIiIspDYmJi8PHjR5QuXVrp9GvXrsHFxQWfPn2Cs7MzLl++nMM1JKK8JOPBJoiIiIiIiIiIiIiIKMdERkaiSpUq6Ny5M9q2bYtKlSrByMgIL1++xLFjx7BhwwbExcVBJpNh8eLFuV1dIsplfLKPiIiIiIiIiIiIiCgPefLkCcqVK6d2nkKFCmHdunXo27dvDtWKiPIqXuwjIiIiIiIiIiIiIspDEhMTsW/fPhw7dgyXLl1CZGQkoqKiYGpqCgcHB7Rq1QrDhg2Dvb19bleViPIAXuwjIiIiIiIiIiIiIiIiyqe+ujH7UlJS8PLlSxQpUgQymSy3q0NERERZIAgCPn36BBsbG+jp6eV2db56zFlEREQFB3NW3sKcRUREVDDoKmN9dRf7Xr58iTJlyuR2NYiIiCgbPX/+HHZ2drldja8ecxYREVHBw5yVNzBnERERFSzZnbG+uot9RYoUAZD6Rpqbm+usnB49euDPP//U2fpzshyWwTJYBsvIL2XkVDksI++U8fHjR5QpU0Y6v1PuKkg5i2XkvXJYBstgGSyDZeRsOcxZeQtzFstgGXmjHJbBMlgGy8gqXWWsr+5in9jVgbm5uU7DkaGhoU7Xn5PlsAyWwTJYRn4pI6fKYRl5qwwA7MoojyhIOYtl5L1yWAbLYBksg2XkTjnMWXkDcxbLYBl5oxyWwTJYBsvILtmdsdjpOhEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VMGuV2B/CYxMRHJyckZzmdpaYn4+Hid1ycnymEZLINlsIz8UkZOlcMy8k4ZX758gb29Pb58+ZIjx9fXTl9fH4aGhjpZtyAISExMREpKSobzFoRjtyCVkVPlsAyWwTJYBsvI2XKYs3KWLnOWpm1ZQMH5jLCMr6+MnCqHZbAMlsEyskqTjJWZXCATBEHIjgrmFx8/foSFhQWio6Nhbm6u1XJv375FQkKCRvNHRESgZMmSma2mxnKiHJbBMlgGy8gvZeRUOSwj75SRkpKC58+fo0yZMtDTY4cFOcHIyAhWVlZKc1RmctaXL18QERGB2NhYjRuhCsKxW5DKyKlyWAbLYBksg2XkbDnMWTkvu3OWtm1ZQMH5jLCMr6+MnCqHZbAMlsEyskrTjKUuFyjDJ/s08PHjR4SHh6Nw4cKwsrKCoaEhZDKZ2mVkMhkcHBx0XrecKIdlsAyWwTLySxk5VQ7LyDtlJCcnIy4uDg4ODtDX19dZOfS/J++io6MRHh4OAFrdOKVMbGwsnj9/Dn19fRQrVgwmJibQ19fPEzmLZeS9clgGy2AZLINl5Gw5zFk5Rxc5KzNtWUDB+YywjK+vjJwqh2WwDJbBMrIqo4yV2VzAi30aePv2LQoXLgw7OzuNghGQ+pilsbGxjmuWM+WwDJbBMlhGfikjp8phGXmnDPFJMGNjYzZC5QATExMUKVIEL168wNu3b7PcCPX27VsYGhrC3t5eq/1XEI7dglRGTpXDMlgGy2AZLCNny2HOylm6yFnatmUBBeczwjK+vjJyqhyWwTJYBsvIKk0yVmZyAfthyEBiYiISEhJgYWGhVTgiIiIiKohkMhksLCyQkJCAxMTETK8nKSkJMTExKF68OBsQiYiIiJB9OYttWURERPmftrmAF/syIF5l1dUgyURERET5jZiLNB1jT5mkpCQAqX3QExEREVGq7MhZbMsiIiIqGLTJBbzYpyHeCUVERESUKjtzETMWERER0f8wZxEREZFIm3M5L/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+ZZDbFSgQpnVReKlCDhWd6XKm7cvOahARERHpRi7lrCyVwZxFRERE+UF+y1nMWERERCrxyT7KFg4ODpDJZBr/TJs2LberTERZIJPJ4ODgoPC6r68vZDIZqlevji9fvihdVhAEtGzZEjKZDD/99JNW5YrfNU+ePNG4TkRE+RkzFtHXhRmLiCjnMGcRfV2Ys6ig45N9lK0aN24MR0dHldOPHTuGN2/e5GCNiCgnTZ06FQcPHsT169fh6+uLOXPmKMyzbNkynDp1Cvb29vj9999zoZZERPkPMxbR140Zi4hId5iziL5uzFlUUPBiH2UrHx8feHl5qZzu6urKgERUgBkaGmLz5s2oU6cOFixYgE6dOqFBgwbS9IcPH2LSpEmQyWTYuHEjzM3Nc7G2RET5BzMW0dcto4z15MkTZiwiokxiziL6ujFnUUHBbjyJiChbVa9eHdOmTUNycjI8PT0RFxcHANLvsbGxGDJkCFq0aJHLNSUiIiLKP9RlrAkTJjBjEREREWUScxYVBLzYR3lKSEhIhn2kK3Pv3j14e3vD3t4eRkZGKF68OFq2bImdO3cqnX/atGkq+1sPCAiATCZTelfXkydPVPalHBkZic2bN8PNzQ3lypWDiYkJzM3NUadOHcybNw/x8fFqt93Ly0vtdiurj7hMQECA2nVrStz2ihUrolmzZirna926tVSv9GVnVCfxPWzevLnS6drsy5SUFPTs2RMymQy9evVCSkqK3HQ/Pz+l+zklJQW9evWCTCbDDz/8oLAcAFy5cgW9e/dG2bJlpXq0adMGR48eVfm+JCUlYePGjWjVqhWsrKxgZGQEOzs7tGrVCsuWLZPm02ZMgLT73dXVVWF6kSJFULlyZYwaNQrPnj1TqFNkZCT8/PwyfVxm1vjx41GvXj08ePAAkydPBgCsX78e586dg6OjI+bNm6dy2Tt37qB79+6wsrKCiYkJqlWrhoULFyI5OVkndSUi+hrk94zl5+cHHx+ffJ+xxMyiSnZkLFVjfmRnxpo2bRoqVqzIjJVHMtaCBQtw7do1ZiwiolyS33NWQWnLYs5izsoq5izK79iNJ+VJ1tbWaNu2rdxrmzZtUjrvkSNH0K1bN8THx6NSpUro2rUrIiIicPr0aZw6dQqBgYHYsGGDzuscGBiImTNnwtbWFo6OjmjQoAEiIyNx4cIFTJw4EQcOHEBwcDCMjIzUrid9X/H//vsvzp49q+vqKzhz5gyuX7+OWrVqyb1++/ZtnDhxQidlarsv9fT0sGXLFsTExGD79u0wNzfH6tWrMyxn0KBB2L59Ozp06IAtW7ZAT0/+voelS5di9OjRSElJQa1atVC/fn28fv0aISEhOH78OKZPn45ff/1Vbpno6Gh06NABoaGhMDQ0RKNGjWBjY4PXr1/j5s2bOHnyJIYNGwYA8PT0lFv28+fP2LNnD8zMzNCtWze5aU2aNFGof5s2bVCqVCkAwIcPH3DmzBksWbIE27Ztw82bN6VpQOpxOWLEiAyPy+ymr6+PTZs2wcnJCUuXLkWFChXg5+cHPT09bNq0CaampkqXCw0NRdu2bRETE4Py5cujdevWePv2LSZPnozz589nez2JiL42+TVjjRgxAtbW1qhcuXK+z1iXL19mxvqKMlZGx6W2lGUsX19fZiwiojwgv+asgtSWxZzFnJUVzFmU3+WZi31z587FpEmTMGLECCxZskTpPOvWrcPmzZtx69YtAICzszNmz56NevXq5WBNSZfEux2qVKmicDeNsoD05s0b9O7dG/Hx8Zg5cyYmT54s3TF1+fJlfPfdd9i4cSMaNGgAV1dXndbd2dkZO3fuRPfu3eVef//+PXr27Injx4/Dz88P48aNU7q8eEdO+r7iAwICcjwg1atXD1euXIGfnx82btwoN83Pzw/6+vpo2rQpQkJCsq1MbfZl//79peUMDQ2xa9cuuLm5Yc2aNTA3N8f8+fNVljNu3DisXbsWLVq0wK5du2BgIP81GBgYiFGjRsHS0hJ79uyRe8IxLCwMbm5u8PX1hYuLC1xcXKRp/fr1Q2hoKJycnLB37165u72SkpJw5MgR6ff0x/aTJ0+wZ88eWFlZKb2L7OHDh3K/T5w4Ue54jomJgYuLC65cuYLdu3dj6NCh0jRnZ2ecO3dOrq9xQPG47Ny5s6q3LNMqV66M2bNnY/To0RgyZAiA1Pe/UaNGSuePj49Hr169EBMTg5EjR2LhwoXQ19cHANy8eRMtW7bE27dvs72eRF8D5izSZcZKe17WBfFcZmlpiQoVKkiv58eM5eLigtDQUGasPJKx0tNFxlJ1XGaFsozl4+PDjEWUS5iziG1ZzFnMWfLTlGHOItK9PNGN56VLl7BmzRrUqFFD7XwhISH44YcfEBwcjHPnzqFMmTL47rvvEB4enkM1JV1LTEwEkHrS08S6desQHR0NZ2dnTJkyRa5rhDp16mDKlCkAUh+51rUqVaoo3DkEAMWKFZMee9+1a5fK5cVH0DXddl2ytbVFx44dsX37drkTUlRUFLZu3YqOHTvC3t4+W8vMyr40NjbGwYMHUb9+fSxYsACzZs1SWsbMmTOxcOFCNGjQAAcOHICxsbHCPL6+vhAEAatXr1boyrR69epYvHgxAMh1ZXDjxg3s3bsXxsbGOHTokEK3DgYGBujUqZNmb0QmmJmZoWHDhgCg0I1DlSpVFMIRoPlxmVWDBw+GhYUFAKBkyZKYMWOGynn37NmD58+fo0yZMpg/f74UjgCgRo0a0jFARNphziIg/2esrJzL8lLGcnBwQIsWLZixNMxYd+/eZcZSIW3GsrGxwciRI1XOy4xFpDvMWQTk/5xVUNqymLOYs7ILcxblV7n+ZN/nz5/Ru3dvrFu3DjNnzlQ777Zt2+R+X79+Pfbs2YOTJ0+ib9++uqwm5RBx8FNNH8MW78ZJ/yi56KeffsLYsWPx8OFDvHnzRu5ucF1ITk7GyZMn8c8//+DVq1eIi4uDIAgQBAEAcP/+fZXLxsTEAIDKR8Jz2vDhw7Fv3z6sXbtW6qd63bp1iI2NxfDhw7Otb3WRNvvy5cuXsLGxkZteuHBh/PXXX/jmm28wdepU6aQsWrZsGX755RcUK1YMR48eReHChRXKePv2LS5evAgTExO4u7srrYd4F9I///wjvXbs2DEAQPv27WFra6vR9maX6Oho/PXXX9i8eTNMTU2V1js5ORkhISGZOi6zatasWYiOjgYAqRuL7777Tum84jHw/fffK/1DwdPTE6NGjdJZXYkKIuYsEukyY718+TJb6qhOcnIy/vnnH+zYsSPfZ6y+ffsiKCiIGSsdZRnrzJkzAJixlEmbsV6+fImLFy+iatWqSudlxiLSDeYsErEtizmLOUs7zFlEupHrF/uGDBmC9u3bo1WrVhmGo/RiY2ORmJiI4sWLq5wnISEBCQkJ0u8fP37MdF1J9969ewcg9U4NTYh3wZUrV07p9KJFi6J48eKIiorC69evs6eSKjx8+BAdO3ZU6HIxLXXHn7gtlpaWWpft7e0Nb29vAKn9SxcrVgxOTk7w8fHB999/r/X6gNQgUKNGDaxatQrjx48HAKxYsQI1atSAq6trhgEpbZ00oc2+fPHihUJAAlL7SX///j2A1IuVlStXBgDs378fN2/eBJD6yP/Ro0fRu3dvheUfP34MQRAQFxeXYUiPjIyU/v/06VMAkMrTtebNmyu85uzsDH9/f4X37+HDh+jSpQtu376tcn26+l68fPky5syZA0NDQwwYMAArVqyAj48PwsLCFAIsALx48QKA6mOgWLFisLCwkAIXEWUsJ3LWly9fpN+Zs/IuXWasFy9eaLzezMjquSyvZaz69evn+4xVs2ZNALrPWOKFZGYsecoy1pQpU9C1a1dmLKIcxJxFIrZlMWcxZ2WMOYs5i3QvVy/27dixA1evXsWlS5cytfyECRNgY2ODVq1aqZxnzpw5mD59usLrPXr00OgRc0tLS3h5eUEmk8k9hpuWbu+v0Q11J/H0YmNjM5w/KSkJQGpf1ermFe92evfundx8YhniSczY2FjletK+Lgbfly9fqpxffBQ8Pj5emkcMYunrIW4DkHrSSD9N/AJPSkpSmObu7o6HDx+iefPm8PHxgaOjIwoXLgxDQ0N8+fIF1apVU6h/2jr+999/SrcxfX3S7g/xxFa7dm2pK4KEhAQ8evQIQUFBCAoKwj///CP1MZ0RsSxx+3r27InJkydj5cqVAIDnz59j4MCBePjwoVR2+n2urE5pxcbGIjAwECkpKZnel8+ePVMI0W/evMHQoUNhamqKNWvWYPz48bh79y6A1G42bWxsMHfuXPz8888YMmQI7O3tYW1tLbcO8aKdmZmZyqfP0hL3h3jCjoqK0uqzJVJ3XAH/+3yIn5+mTZvCysoKQOpxfe/ePVy5cgXff/89Vq9eLRce3d3dcf/+/QyPS00+5+mpqi+Quj9/+OEHJCUlYcSIERg8eDAuXryIS5cuwcfHB7Nnz1ZYRrwjMCIiIsNj4PHjx1JXKenrlJlt0RbLyDtliHf1kaKcyFmqupvRJGdpkrGAgp2zCkrGevbsGYyMjPDw4UOdZaz79++jWbNmGDhwoM4yFvC/90tXGevjx4+IjY3VacZKfy7URca6fv06AN1mLOB/3aLpKmMBqe+bLjNW+vyuCW0z1pUrV3D+/HlmrK+sjJwohzlLNeas3MG2LLZlKcOcxZzFnKUZlpF3ytBVxsq1i33Pnz/HiBEjEBQUpLSv4YzMnTsXO3bsQEhIiNrlJ02ahNGjR0u/f/z4EWXKlMGff/4Jc3PzDMuJj4/H48eP4eDgkKl65lXadAHw8OHDDOcXB4a1trZWO6+JiQmA1OCZdj6xDPEE3bRpU5XrSft6uXLl8OjRI8THxyudPzo6Gh8+fAAA2NvbS/OIdxylr4e4DQBgbm6uME0M1AYGBnLT7t27h/v378PS0hLHjx9XGCg37Z0oyup5+/ZtfP78GdbW1gp9a6evT9r9IR7Dw4YNkxsIGQDWrFmDn3/+GevXr8eCBQs0urgtliVu36hRo7B48WKpH2xLS0uMHj0aJiYmUtnp97m6OgGpA/iWK1cOenp6md6XDRs2VOhiYMSIEYiOjsbKlSvRp08f1KtXD40aNcK7d+9gbW2NkJAQVKhQAZ8+fcKQIUMwZ84cuYGGgdRgBAB6enrYvXs39PQyHtb04cOHqF69OoDUE3tmutdQdVylLaNChQrS5+e3335TGKTb19cXv/32GxYsWIDDhw8D+N9xWbJkyQyPS1NTU63rrqq+QOrg0f/++y+cnZ2xcOFCGBgYYN68eejYsSN2796Nn376CW3btpVbpmLFijhz5gxiY2OVrvfDhw/49OkTgNTjJX1/8mKdMrMt2tLke5Fl5EwZycnJuHbtms7Wn1/lVM4aN26cdMcsoF3OKqgZC9A8ZxWUjNWwYUPpu1tXGatkyZJYvXo1qlSpIrdcdmYs4H/vl64ylrm5OUxNTXWasdKfC3WRsZo2bYqIiAidZiwAKFu2LADdZSwgdZ/rMmOlz++a0DZjbd++HdWqVWPG+srKyIlymLOUY87KPWzLYluWMsxZzFnMWZopKBmoIJShq4yl2adfB65cuYKIiAjUrl0bBgYGMDAwwOnTp+Hn5wcDAwMkJyerXHbhwoWYO3cujh8/nuEgyEZGRjA3N5f7obwpMTERwcHBAIAmTZpotIx4kti0aZPS6Rs3bgSQ+uVfqlSprFdShaioKABAyZIlFU5CALB161a1y+/ZswcA0KZNm2yr048//ggg9Q6TtAMTa8PY2BgDBgxAaGgoQkND4ePjI52ks5s2+zJ9OFq3bh3++usvtGrVCj///DOA1JNtz549AQADBw6UvqAHDRqEli1b4ujRo1i/fr3cemxsbFCjRg18+vRJGodPE+KJ/ujRozkybpEyPXr0AACcPn1aek08Lm1sbDJ1XGbW2bNnsXjxYhgZGWHTpk1S2XZ2dtKg1D4+PgpdGLi4uAAAdu7cqfROp82bN+ukvkQFEXMWpaXrjKXLMT6yei5jxtJNxhL/r+uM1bRpUwDMWCJVGcvBwUG6IMCMRaR7zFmUFtuymLMA5qzMYs4iyl65drGvZcuWCAsLw/Xr16WfOnXqoHfv3rh+/brKbgbmz5+PGTNm4NixY6hTp04O15p05cuXLxg+fDgiIyPh6uqqsp/j9Pr37w9zc3NcvXoVs2fPlnsE9tq1a1K/+ePGjdNJvUUVK1aEvr4+Hjx4IA3MKjp06BB+//13lcs+f/4cy5YtA5B68s4uR48eBZB6h4/4mHxmDB48GO3bt0f79u017kIhMzK7L58+fYoxY8bA3NwcGzZsgEwmk6aJ/0//2saNG2Fubo7Ro0dL3R2IxHK8vb1x6NAhhXoKgoALFy7g+PHj0mu1atVCp06dEBcXh06dOuHZs2dyyyQlJeHgwYNavR/a2rFjBwDI7WvxuAwLC9P6uMys2NhYeHl5ISUlBdOnT1cYwHjgwIFo2bIlwsPDMXLkSLlp3bp1g62tLZ49e4ZJkyZJ3RwAwK1bt7QeB4Poa8acRaKCkrHCwsJw4cIFuWnMWJrJzxnr22+/Zcb6fxllrJ49ezJjEeUQ5iwSFZScxbaszGPOyhrmLKLslWvdeBYpUkTqX1dkZmYGS0tL6fW+ffvC1tYWc+bMAQDMmzcPv/76K/744w84ODhIg9QWLlwYhQsXztkNoGyzYcMGTJo0CZGRkbC1tcWaNWs0Xtba2hrbtm1D9+7dMWXKFGzZsgVOTk6IiIjA6dOnkZSUBG9vb/Tv319pP7snTpxAfHy83GthYWEAUu/Wmzhxotw08e6N9+/fY+LEiejevTucnZ1hZWWFoUOHYunSpWjZsiWaNm0KGxsb3L9/H1evXsXUqVOVfrmPHTsW/v7+iIqKgpmZGVavXo3Vq1fLzfPvv/8CAEJDQ+Hl5YWePXsqPEa8a9cu3Lt3D0BqP+f37t2TTuATJkzQqNsDVWxtbaVH6XVJm30pEgQB3t7e+PTpEzZs2CB1QZCRsmXLYvHixfDx8UG/fv1w4sQJKUS5u7tj6dKlGDNmDDp27AhHR0dUqlQJFhYWiIyMxI0bNxAREYEJEybI9YXu7+8PNzc3nD9/HhUqVECjRo1gY2OD169fIywsDJGRkdnWH/PcuXOlQaVjY2MRFhYm7f9ffvlFmi+zx2VWjB8/Hv/++y8aNGiAsWPHKkyXyWTYsGEDqlevjoCAAHTv3h1ubm4AUrtG2bZtG9zc3LBo0SLs378fdevWxbt37xASEgJ3d3dcuXJFIdQSkSLmLAJyLmMpo4uM5enpifXr1+ssY02cOFGhgZYZixmLGYuI0mPOIoBtWWzLSsWcpTnmLOYsygFCHuLi4iKMGDFC7ndPT0/pd3t7ewGAwo+vr6/GZURHRwsAhOjoaI3mj4uLE+7cuSPExcVpXIYgCMKDBw+0mj+zcqIcTcoQ942/v7/a+VxcXBT22YQJE4TKlSsLU6dOFSIiIlQuK+5vZe7cuSN4enoKdnZ2gqGhoVC0aFGhefPmwo4dO5Ruh6+vr9JjSduftNubkpIizJ49W3B2dhYKFy4sWFhYCE2aNJHqoKz+qo5pdT9btmyRlvf09FSYrqenJ1haWgqtWrWS235N+Pv7CwCELl26ZDivWHb6fa7qddHjx48FAIKtra3S6ZrsS5Gfn58AQHBzc1O6rqFDh6r9jmjXrp0AQPDz81OYFhYWJgwYMECoUKGCYGxsLJiamgrly5cX2rRpI/j5+Qnh4eGCIMgfVwkJCcKqVauEpk2bCkWLFhUKFSok2NnZCa1btxZWrFihtA5p3xN7e3ul08UyxM9P2h99fX3B2tpacHd3F44fP66wbEpKirBhw4YMj0ttv0uU1ffkyZOCTCYTTExMhHv37qncDkEQhDVr1ggABBsbG+H9+/dy84WFhQldu3YVihcvLhgZGQlVqlQR5syZIyQmJkqfmcePH6usU175XmQZOVNGUlKScOnSJSEpKUmn5RQE2ZmzVOUjbXJWZjOWIBSMY1fTMvJDxkq7LbrKWBs2bBCqVaum04wVHBwsbYeuMpanp2eG+z2rGUvVuTA7M5a4n3WZsQThf8eVrjKWWIYuM1ba7dBEZjJW2jKYsb6eMnKiHOYszTFn5c8y8kPOYltWxpiz/oc5Sz3mLJaRV8rQJmNpc07PUxf7cgIv9rGM7CCe0NKHAG3LsLe3F1xcXDSaVwwvaQOSruS3/cEycr6MjAJddpShLQakr7MMNkLlDjZCsQxdlaMqY2lbRmYyVtqLfbrEMliGOpnJWNqWoS1mrLxZRk6Uw5yVO5izWIauyijobVmCkP/2CcvI2TKYs1hGXilDVxf7cm3MPiIiIiIiIiIiIiIiIiLKmlwbs48oPytWrBjmzJkDZ2fnLK1n4cKFGvfP36RJE/j7+6N8+fJZKpOIiIgor8rNjFW5cmV8+vQpS+USERER5VVsyyIiKth4sY8oEywsLBQGPM6Mbt26aTyvo6MjHB0dlQ7OTERERFQQ5GbGAsCLfURERFRgsS2LiKhgYzeeRERERERERERERERERPkUn+wjIiKt+fr6omjRorldDTl5sU5ERERE2siLeSYv1omIiIhIW3kx0+TFOlH+xYt9RESktWnTpuV2FRSIdWL3IERERJRfMWMRERER6QZzFhV07MaTiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ8yyO0KFAQtBj9T8qoRAGWvZ7fMlXNqZdlsrYWDgwOePn2q8fy+vr6YNm1attaBiPIG8ftAEAS51/fs2YNJkyahVKlSuH37NooXL650eW9vbwQEBKBly5YICgqCTCbTuOyQkBA0b94cnp6eCAgIyMpmEFEekXs5K/NlZGfOYsYiIpGqjOXv749+/foxYxGR1vJbzmJbFhHpCnMWFQS82EfZqnHjxnB0dFQ5/dixY3jz5k0O1oiI8goPDw+EhobiyJEjGDJkCLZv364wz6FDhxAQEABzc3Ns3LhRLhy5urri9OnTCA4Ohquraw7WnIgo9zFjEZEq3t7e2Lx5M0JCQpixiIgygTmLiFRhzqL8hBf7KFv5+PjAy8tL5XRXV1cGJKKv2Lp161CtWjXs2LEDHh4e6NatmzTt3bt36N+/PwBgyZIlKFs2e+/aJCLKz5ixiEidmTNnomPHjsxYRESZwJxFROowZ1F+wTH7iIgox5QuXRrLly8HAAwaNAgRERHStMGDB+PNmzdwd3eHt7d3blWRiIiIKN8pWbIkMxYRERGRDjBnUX6RZy72zZ07FzKZDCNHjlQ5z+3bt+Hh4QEHBwfIZDIsWbIkx+pHOSMkJAQymUztjzL37t2Dt7c37O3tYWRkhOLFi6Nly5bYuXOn0vmnTZsGmUymtK/1gIAAyGQypXd1PXnyBDKZDA4ODgrTIiMjsXnzZri5uaFcuXIwMTGBubk56tSpg3nz5iE+Pl7ttnt5eandbmX1EZfJrv6cxW2vWLEimjVrpnK+1q1bS/VKX3ZGdRLfw+bNmyudrs2+TElJQc+ePSGTydCrVy+kpKTITffz81O6n1NSUtCrVy/IZDL88MMPCssBwJUrV9C7d2+ULVtWqkebNm1w9OhRle9LUlISNm7ciFatWsHKygpGRkaws7NDq1atsGzZMmm+jI5xVfvd1dVVYXqRIkVQuXJljBo1Cs+eKY55EBkZCT8/v0wfl7rwww8/wMPDA2/fvsXAgQMBADt27MDOnTtRvHhxrF27Vm5+8Xvh9OnTAIDmzZvLvQfsz5woY8xZlN8zlp+fH3x8fPJ9xhIziyrZkbGUvYdA9masadOmoWLFisxYzFhEBOYsyv85q6C0ZTFnMWfpEnMW5Qd5ohvPS5cuYc2aNahRo4ba+WJjY1G+fHl0794do0aNyqHaUW6wtrZG27Zt5V7btGmT0nmPHDmCbt26IT4+HpUqVULXrl0RERGB06dP49SpUwgMDMSGDRt0XufAwEDMnDkTtra2cHR0RIMGDRAZGYkLFy5g4sSJOHDgAIKDg2FkZKR2Pen7iv/3339x9uxZXVdfwZkzZ3D9+nXUqlVL7vXbt2/jxIkTOilT232pp6eHLVu2ICYmBtu3b4e5uTlWr16dYTmDBg3C9u3b0aFDB2zZsgV6evL3PSxduhSjR49GSkoKatWqhfr16+P169cICQnB8ePHMX36dPz6669yy0RHR6NDhw4IDQ2FoaEhGjVqBBsbG7x+/Ro3b97EyZMnMWzYMACAp6en3LKfP3/Gnj17YGZmJtcVAAA0adJEof5t2rRBqVKlAAAfPnzAmTNnsGTJEmzbtg03b96UpgGpx+WIESMyPC5z2qpVq3DmzBns378fCxYswNy5cwEAK1askKs/AJQqVQqenp7SOAlptx+A2rEViIg5i+Tl14w1YsQIWFtbo3Llyvk+Y12+fJkZ6yvKWBkdl9mNGYsoZzFnUVr5NWcVpLYs5izmLF1izqK8Ltcv9n3+/Bm9e/fGunXrMHPmTLXz1q1bF3Xr1gUATJw4MSeqRzksOTkZAFClShWFOxyUBaQ3b96gd+/eiI+Px8yZMzF58mTpjqnLly/ju+++w8aNG9GgQQO46ngQVGdnZ+zcuRPdu3eXe/39+/fo2bMnjh8/Dj8/P4wbN07p8uIdOen7ig8ICMjxgFSvXj1cuXIFfn5+2Lhxo9w0Pz8/6Ovro2nTpggJCcm2MrXZl2Jf2ABgaGiIXbt2wc3NDWvWrIG5uTnmz5+vspxx48Zh7dq1aNGiBXbt2gUDA/mvwcDAQIwaNQqWlpbYs2eP3BOOYWFhcHNzg6+vL1xcXODi4iJN69evH0JDQ+Hk5IS9e/fK3e2VlJSEI0eOSL+nP7afPHmCPXv2wMrKSumdPQ8fPpT7feLEiXLHc0xMDFxcXHDlyhXs3r0bQ4cOlaY5Ozvj3LlzaNCggdw60h+XnTt3VvWW6USJEiWwevVqdO3aFePHjwcAdO/eHT179lSYt3LlyggICIDr/4+TkH77iUg15iwS6TJjpT0v64J4LrO0tESFChWk1/NjxnJxcUFoaCgzVh7JWOnpImOpOi51hRmLKOcwZ5GIbVnMWcxZ8tOUYc5iziLdy/VuPIcMGYL27dujVatWOll/QkICPn78KPdDeVdiYiKA1JOeJtatW4fo6Gg4OztjypQpcl0j1KlTB1OmTAEALFiwIPsrm06VKlUU7hwCgGLFikmPve/atUvl8uIj6Jpuuy7Z2tqiY8eO2L59O96+fSu9HhUVha1bt6Jjx46wt7fP1jKzsi+NjY1x8OBB1K9fHwsWLMCsWbOUljFz5kwsXLgQDRo0wIEDB2BsbKwwj6+vLwRBwOrVqxW6Mq1evToWL14MAHJdGdy4cQN79+6FsbExDh06pNCtg4GBATp16qTZG5EJZmZmaNiwIQAodONQpUoVhXAEaH5c6lKXLl1QuXJlAICRkRFWrlyZK/UgKsiYs0iU3zNWVs5leSljOTg4oEWLFsxYGmasu3fvMmNlAjMWUc5gziJRfs9ZBaUtizmLOSsnMGdRXparT/bt2LEDV69exaVLl3RWxpw5czB9+nSF13v06KHRicjS0lLqt1lfX1/FXDn7yHB2SP+kkDqxsbEZzp+UlAQg9Y4WdfPGxcUBAN69eyc3n1jGf//9J61P1XrSvi72Od2uXTul84t3TDx8+BBPnjyRXn/37p3SeojbAAAfP35UmPbixQu19fv06RM2bdqEa9euITIyEvHx8RAEAYIgAEg9karaLnFw1w8fPsjNk74+afeHGPYzet81JZaVlJSE77//Hvv27cPs2bMxaNAgAMDatWsRGxuLrl27Yu/evUrLzqhO4nuYkpKS6X0ZGhoKa2trhXmWL1+OVq1aYerUqUhISJAC97t37/DLL79g5syZsLCwwLJly/Dq1SuF5aOionDx4kUYGxujcuXKSutRtmxZAKndnIr7Y+vWrQBS7yLT5POSXkbHlbhO8fPz4sULab5Pnz7h9OnTCAgIgImJCapVq6awjuTkZFy4cEHtcZmZeqsifh+kX1/6Mnbv3o179+4BSP1DdtWqVUrvhhIp2/70xPdS2ec3O2Xn+8UyskY8jklRTuQsVX+UapKzNMtYQEHOWQUlY4WGhqJIkSJ4+PChzjJWcnIy/v77b6xYsUJnGQv43/ulq4z18eNHfP/99wgKCtJZxkpKSpI7tnSRsd6/fw9AtxkLAE6dOgVAdxkLSN3nusxY6fN7VqjKWOJ2iK8zY30dZeREOcxZqjFn5Q62ZbEtSxnmLOYs5izNFJQMVBDK0FXGyrWLfc+fP8eIESMQFBSk9I6E7DJp0iSMHj1a+v3jx48oU6YM/vzzT5ibm2e4fHx8PB4/fgwHBwc19VQcSDSvS9sFUkYePnyY4fzi4+PW1tZq5zUxMQEAhW6YxDLEQUvt7OxUrid9900AUL9+fZXzFy9eHFFRUYiOjpbmsbS0VFoPcRsAwNzcXGGaGKgNDAwUpj18+BA9e/ZU+0Xw+fNnlfX88OEDgNQ7btLOk74+afeHeAxPnDhR6gpEX18fxYoVg5OTE3x8fPD999+rrE96YlkGBgbo06cPFixYgF27dkldCfz555+oUaMG+vTpI/V1nn6fK6uTMnp6epnel4UKFVI6z9atWxEdHQ0g9c4n8U6bM2fO4ObNmwBS+yO/f/8+evfurbD8pUuXIAgC4uPjUa1aNZV1B1LDlLg/YmJiAKTetaXNZ0uk7rgC/vf5ED8/P/74o8I8zs7O8Pf3R/Xq1RWW7datG27fvq2y/M+fP8PU1DRTdVdG/D5Q9hkRX3v27JnUt/nIkSOxZMkSLFiwAH379lV5p524/eq+H8LDwwEo//xmJ02+F1lGzpSRnJyMa9eu6Wz9+VVO5axx48ZJ3ZcA2uUszTIWUJBzVkHJWIUKFZLOI7rKWJqcy7KascSyKlSooLOMZW5uDhcXF9SoUUNnGcvAwEDuvK6LjFWzZk0Aus1YABAZGQlAdxkLSN3nusxY6fN7VqjKWGJ9KlSowIz1FZWRE+UwZynHnJV72JbFtixlmLOYs5izNFNQMlBBKENXGSvXLvZduXIFERERqF27tvSaeMfu8uXLkZCQkMHdR5oxMjLK8cE6KfPELzcbG5tcron2unXrhocPH6JDhw4YP348vv32W5ibm8PQ0BBfvnxRexympKTg8ePHAIBy5cppXXbagZDj4+Nx7949BAUFISgoCPfv38cvv/ySqW0aMWIEfvrpJ+zbtw9A6h816Qfz1aROaYkD+Ga3ly9fYvjw4TAzM8Phw4fRt29f3L17F0BqN5tly5ZFQEAA3N3dMWzYMDRv3lzhOBO7DShcuDA8PDyyvY7ZJe2gvrGxsbh58yauXLmCH3/8EQcPHpTu2AIghaPMHJe6IggC+vXrh48fP6Jfv374/fff8eHDBwQEBOCnn35CUFCQXNcXRKS9nMxZumzkouyT3zPW7du30bx5c0yfPp0ZKw9krOvXrwNgxmLGIvo6MWdRevk9Z7EtS3md0mLOyjrmLCLdy7WLfS1btkRYWJjca97e3qhcuTImTJiQLcGI8p87d+4AAKpWrarR/La2trh37x4ePXqkdHp0dDSioqIAQOmj8tnl3r17uHnzJiwtLbFv3z6FgXIzeuz37t27+PjxI6ytrVGmTBmty08/EDIArFmzBj///DPmzZuHiRMnZqr/9F69emHChAnw8/MDkHr3mLK7iDStE/C/AXzT02Zf2traKi3v/fv3WLlyJVxdXXHixAk0atQI7969g7W1NU6cOIEKFSpg/vz5GDJkCPr37y830DAA6b2XyWTYuHEj9PQ0G9ZUDCTiY/y6pmxQX19fX/z2228YPHgwDh8+LNXn5s2bKFmyZKaOS11ZuXIlTp48iTJlyuD3338HAPz+++8ICgrCyZMnpWOXiDKPOYvS02XGsrW1RWxsbPZUNJ2057IVK1agSpUqctOZsf4nJzNW06ZNERERofOMVbp0aQDMWJpixiLKGcxZlB7bspizmLMyxpxFpHuaffp1oEiRIqhWrZrcj5mZGSwtLaVHjvv27YtJkyZJy3z58gXXr1/H9evX8eXLF4SHh+P69ev4999/c2szKBslJiYiODgYANCkSRONlhFPEps2bVI6fePGjQBSH8EW7x7RBfHEXbJkSYWTEABpTDdVxMDQpk2bbKuT+Hh8TEyM3MDE2jA2NsaAAQMQGhqK0NBQ+Pj4SI+fZzdt9mX6gLRu3Tr89ddfaNWqlXRirVixotRn9sCBA6VHrwcNGoSWLVvi6NGjWL9+vdx6bGxsUKNGDXz69AnHjh3TuO5t27YFkNpX+8uXLzVeLjv16NEDAKTuQ4D/HZc2NjaZOi514b///sOECROkECp2lVG0aFGsW7cOQGp3NWnHJRAVKlQIwP/6USci1ZizKC1dZyxlDRfZJavnMmYs3WQs8f+6zlhNmzYFwIyliWfPnjFjEeUQ5ixKi21ZzFkAc1ZmMWcRZa9cu9iniWfPnskNPPry5Us4OTnByckJr169wsKFC6W+nCl/+/LlC4YPH47IyEi4urpq/Ph///79YW5ujqtXr2L27Nlyg1teu3YNM2fOBJD6hatLFStWhL6+Ph48eICQkBC5aYcOHZLu+FDm+fPnWLZsGQBIgwdnB3GQYDMzM1hZWWV6PYMHD0b79u3Rvn17DBkyJLuqpyCz+/Lp06cYM2YMzM3NsWHDBrlH5sX/p39NPDGPHj0aT58+lVufWI63tzcOHTqkUE9BEHDhwgUcP35ceq1WrVro1KkT4uLi0KlTJzx7Jj/uQVJSEg4ePKjV+6GtHTt2AIDcvhaPy7CwMK2PS11ISUmBl5cXYmJiMHDgQLRq1Upuert27dCvXz98/vwZ/fr1Uxis1s7ODgDU9tlORJpjzvo6FJSMFRYWhgsXLshNY8bSTH7OWN9++y0zlgZSUlIwYcIEZiyiPIQ56+tQUHIW27Iyjzkra5iziLJXrnXjqUz6D3D63x0cHBQ+MJT/bdiwAZMmTUJkZCRsbW2xZs0ajZe1trbGtm3b0L17d0yZMgVbtmyBk5MTIiIicPr0aSQlJcHb2xv9+/dX+pj3iRMnEB8fL/ea2B3HlStXFAblFQfMff/+PSZOnIju3bvD2dkZVlZWGDp0KJYuXYqWLVuiadOmsLGxwf3793H16lVMnTpVOvGmNXbsWPj7+yMqKgpmZmZYvXo1Vq9eLTePeKdfaGgovLy80LNnT4UBQnft2iU9dp+QkIB79+5JJ/AJEyZkqtsDka2trfQovS5psy9FgiDA29sbnz59woYNG+T691anbNmyWLx4MXx8fNCvXz+cOHFCClHu7u5YunQpxowZg44dO8LR0RGVKlWChYUFIiMjcePGDURERGDChAn47rvvpHX6+/vDzc0N58+fR4UKFdCoUSPY2Njg9evXCAsLQ2RkZLZ9f82dOxcBAQEAUvs5DwsLk/Z/2j7tM3tc6oq/vz9CQ0NRrlw5LFiwQOk8YhcIwcHBWLVqFQYPHixN8/DwgL+/P8aPH48TJ06gZMmSkMlk6NevHxo1apRTm0GUbzFnfX1yKmMpo4uM5enpifXr1+ssY02cOFGh6zVmLGas/JCxFi9ejCtXrjBjEeUi5qyvD9uy2JYFMGdpgzmLOYtygPCViY6OFgAI0dHRGs0fFxcn3LlzR4iLi9OqnAcPHmSmelrLiXI0KcPe3l4AIPj7+6udz8XFRQAg+Pr6Sq9NmDBBqFy5sjB16lQhIiJC5bIABFWH7J07dwRPT0/Bzs5OMDQ0FIoWLSo0b95c2LFjh9Lt8PX1ldaXlZ+025uSkiLMnj1bcHZ2FgoXLixYWFgITZo0keqgrP7i+6bNz5YtW6TlPT09Fabr6ekJlpaWQqtWreS2XxP+/v4CAKFLly4ZziuWnX6fq3pd9PjxYwGAYGtrq3S6JvtS5OfnJwAQ3NzclK5r6NChCsdbWu3atRMACH5+fgrTwsLChAEDBggVKlQQjI2NBVNTU6F8+fJCmzZtBD8/PyE8PFwQBPnjKiEhQVi1apXQtGlToWjRokKhQoUEOzs7oXXr1sKKFSuU1iHte2Jvb690uliG+PlJ+6Ovry9YW1sL7u7uwvHjxxWWTUlJETZs2JDhcZmd3yXicZ3WnTt3BCMjI0EmkwkhISFqlw8MDBQACGZmZsKjR4/kpq1bt06oXbu2YGpqqvRzGBwcLAAQPD09s2tzlMor370sQxCSkpKES5cuCUlJSToth+Spykfa5KzMZixBKBjHrqZl5IeMlXZbdJWxNmzYIFSrVk2nGSs4OFjaDl1lLE9Pzwz3e1Yzlr29vdIysjNjiftZlxlLEP53XOkqY4ll6DJjpd2OrFKVsYyNjZmxvsIycqIc5qzcwZyVc2Xkh5zFtqyMMWf9D3NW5jFnsYycLEObjKXNOZ0X+zLAi30sQxnxhJY+BGhbhr29veDi4qLRvGJ4SRuQdCW/7Q+WkbfKUBaQsrsMVRiQvr4y2AiVO9gIxTJ0VY6qjKVtGZnJWGkv9ukSy2AZmaUqY2VnGaowY+W9MnKiHOas3MGcxTJ0VUZBb8sShPy3T1hG3imDOYtl5GQZurrYl6fH7CMiIiIiIiIiIiIiIiIi1fLUmH1E+UWxYsUwZ84cODs7Z2k9CxcuROHChTWat0mTJvD390f58uWzVCYRERFRXpWbGaty5cr49OlTlsolIiIiyqvYlkVEVLDxYh9RJlhYWCgMeJwZ3bp103heR0dHODo6Kh2cmYiIiKggyM2MBYAX+4iIiKjAYlsWEVHBxm48iYiIiIiIiIiIiIiIiPIpPtlHRETZauTIkfjw4UOulO3g4IChQ4eiZcuWuVI+ERERka4wYxERERHpBnMWFQS82EdERNlq5MiRuVa2g4MDhg8fjgoVKuRaHYiIiIh0gRmLiIiISDeYs6ggYDeeRERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+ZZDbFSgInj17hrdv3yq89unTpxwpOzPlWFlZoWzZsjqoEREREVH2ya2clZUymLOIiIgoP8hvOYsZi4iISDVe7MuiZ8+eoUqVKoiNjc3tqmjF1NQUd+/eZUgiIiKiPIs5i4iIiEg38mPOYsYiIiJSjd14ZtHbt28RGxuLrVu34sqVK9LPvn375H7Pys+mTZtgZmaGGjVq4O+//85yOVu3bkVsbKzC3VtZ4eDgAJlMpvHPtGnTsq1syl7Tpk1DxYoVERAQIPd6REQESpQoAZlMhj/++EPl8iEhIdDT04OpqSkePHigcbkBAQGQyWTw8vJSWieZTKZQJyLKPJlMhubNmyu87uvrC5lMhurVq+PLly9KlxUEAS1btoRMJsNPP/2kddni5z0r54IuXbrAxMQEL168UJgmk8ng4OCg8Lqut008Fz558gQA0K5dO8hkMjx+/FjlMp6enpDJZGjTpo3KeeLj4/Htt99CJpNhxowZWtUJUP8d2qpVK5ibm+P169darzcn5ETOUvWT2TKyO2cxYxUc4mdx7969cq/rOmOJxGOJiLKHqjwTFxeHNm3aQCaTYfbs2SqXv3fvHkxMTKCnp4fTp09rXG5ISAhkMhlcXV01rpM28lLGevXqFfT09ODi4qJynrz6d2pez1iAbnKWuvYrtmUREemWumxSuXJlVKxYUSfZROTq6oqKFStKbSK5TdV5Oi9kh02bNmm8Pm3wyb5sUqVKFdSuXVv6vUiRIqhQoUKW13vx4kUMGzYMNWvWxLFjx1CkSBG56dlVTnZp3LgxHB0dVU4/duwY3rx5k4M1ouxSsmRJrFq1Ct27d8ewYcPQvHlzlC5dWm6eT58+wcvLC4IgYM6cOahYsWIu1ZaIMmvq1Kk4ePAgrl+/Dl9fX8yZM0dhnmXLluHUqVOwt7fH77//LjfNwcEBT58+xePHj5U2BmWHEydOYP/+/Rg7dizs7OwQGRmp0XJZ3TZteXh44NixY9i7dy/GjBmjdJ6lS5fi5MmTOH78ONasWYOBAwcqzDN58mTcvXsXdevWxaRJk+SmiQ33giBkqo5z586V1uvv75+pdeQEXeUsdZixKKdkNWMFBATA29sbnp6evDGKKA8wMTHB/Pnz0bNnT0yfPh3u7u6oXr263DzJycnw9PREfHw8Ro4cqfZiVk5Kn7GSk5M1Wk5X+bF06dJo1KgRQkNDERERgZIlSyqsN6/+nZpfMhaQfTkro/artJiziIhyjomJCTZt2oTGjRtnKpuEhISgefPmcHFxQUhISA7XPvtpkh0+f/6cL9u4c/XJvlWrVqFGjRowNzeHubk5GjZsiL/++kvl/ImJifjtt9/wzTffwNjYWAoQBdXFixfRunVrVKtWLcOglFf4+PggICBA5U/lypVzu4qUBd26dUPPnj0RFRWF/v37K0wfNWoUnj59CldXVwwfPjwXakhEWWVoaIjNmzejUKFCWLBgAc6fPy83/eHDh5g0aRJkMhk2btwIc3PzHK/jqFGjYGxsjIkTJ2q1XE5vW+fOnaGvr489e/aonKdo0aLYsGEDAGDs2LEKTwH+/fffWLp0KYyNjbFp0yYYGGh+n5aYs8QGt5kzZyrkrDp16qBDhw7YtGkTLl++/FXlrPyGGatgY8YiKlhq1qyJcePG4cuXL+jbty8SExPlps+ZMwcXL15EpUqV1N5hn9PyYsby8PBASkoK9u/fr3KenP4OZcZSlB/br9JiziKigq5+/fr46aef8l020ZWMssPs2bPz5d9fuXqxz87ODnPnzsWVK1dw+fJltGjRAp06dcLt27eVzj916lSsWbMGy5Ytw507d/Dzzz+jS5cuuHbtWg7XXPfye1CigmvFihUoVaoUjhw5go0bN0qvHz16FBs2bECRIkXg7+/PbqKI8rHq1atj2rRp0p1dcXFxAP53p1dsbCyGDBmCFi1a5HjdgoKCcOvWLXTu3BmWlpZaL5+T22ZlZYWmTZvi/PnzePnypcr52rRpgwEDBuDz58/w9vaWntITf09JScHMmTNRpUoVrcoXc9aAAQMApN61rSxn/fTTTxAEAd7e3l9NziLKi5ixiAqW6dOno1q1arh+/bpcN9w3btzAb7/9Bn19fWzevBkmJia5WMv/yasZq2vXrgCg9uYpIGe/Q5mx5LH9iogofxg+fHi+yia6pi477N69O1/+/ZWrF/vc3d3h5uaGChUqoGLFipg1axYKFy6scBeYaMuWLZg8eTLc3NxQvnx5DBo0CG5ubli0aFEO11y3vuagJI4/oO5HmXv37sHb2xv29vYwMjJC8eLF0bJlS+zcuVPp/GL/uMr6W1fXr+6TJ09UjlMQGRmJzZs3w83NDeXKlYOJiQnMzc1Rp04dzJs3D/Hx8Wq33cvLS+12K6uPuExOdtlUvHhxrF27FkDqHZLPnz/H+/fv4ePjAwBYtGiRyq77kpKSsGTJElSvXh3VqlVDiRIl4OHhgbCwMJ3UdePGjWjRogXs7Oyk/VGlShWMGjVK6RhaT58+xbx589CiRQuULVsWRkZGKFq0KJo0aYI1a9YgJSVF6zqoO27FsS3U7cNTp05h+PDhsLOzg5GREUqUKIG6devC19cX7969k+ZTd9wGBQXB1NQUZmZmOHXqlNJymjdvrvb4S18/Vcfex48fMW3aNNSqVQuFCxeGsbExKlSogBEjRijt9kRdvQHFMdDSSkpKwvr16+Hq6orixYvDyMgI5cqVg6+vL54/f64wv7rxTUSurq6QyWQK3RKoeh0AgoOD1X5OAeDBgwcYOHCgdDevhYUFmjVrhq1bt6qsR8WKFaW7n5V59uwZDAwM1B5jWTF+/HjUq1cPDx48wOTJkwEACxYswLlz5+Do6Ih58+bJzS/uy6dPnwIAypUrB5lMJm1HdnX1sHz5cgBQ+V5rQtttS+vOnTvo3r07rKysYGJigmrVqmHhwoUqu7ny8PCAIAjYt2+f2jotXLgQDg4OOH36NPz8/ACkPun36NEjNGnSBKNGjZKbXzyPidJ/Zp88eSLlLLHBzsPDQ2nOat++PaysrHDr1i2MGDGiwOesr1V+z1h+fn7w8fFhxkr3/jg4OMDb2xsAsGnTJmmbKlasqPZ8p6moqCh4enrCyckJJUqUQKFChVCqVCk0btwY27dvVzo214kTJzBs2DDUqlULVlZWMDIygp2dHXr06IFLly5pXQd1x01CQoJ0nlF1DMfGxmLJkiVo0qQJihUrBiMjI9jb28Pd3V1hjA5V53tBEDBgwADIZDI0aNAA0dHRCuWo+4yJdUxPVb2vXbuGPn36yOXRxo0bY+3atUrPN2JuUHauzSj/vHz5EqNHj0aVKlVgamqKIkWKoG7duli+fDmSkpIU5s/os6Hqs6zuMw78bwxbVdsBALt370bbtm2lY9HW1hZ9+vTBnTt3VNZDJpOhSJEi+Pjxo9J1zpo1K8Mcl1mFChXC5s2bYWhoiDlz5uDKlStyd9NPmDAB9erVU7n85s2bUbduXZiamqJ48eJo27Ytzpw5k611TCs3Mpaq/Cj+hISEwN7eHs7OzggODsaHDx9Ulp1df6caGxtn+HcqM9b/fM3tV2nl95yV39uyMmpXAFS3Ldy5cwe+vr5o3LgxbG1tUahQIVhaWqJVq1Yq94M6ac8/Gf2o2v6TJ09iyJAhKF26NAoVKoSSJUuiS5cuOHfunNL50x5j69atg7OzM8zMzFC0aFG4ubmpbGcHVLerDBo0SGm7iig8PBzjxo1D9erVUaRIEZiZmaFixYrw8vLCP//8ozB/XFwcFi1ahAYNGqBo0aIwNjZGpUqVMH78eLm2LZG6NpjcyDYVK1bMdLbRRRtTZmUmm7i6uqJ58+YAgNOnT8sdw9k1dIu6tj/xYpuq776syMnskFPyzJh9ycnJ2LVrF2JiYtCwYUOl8yQkJMDY2FjuNRMTE4SGhqpcb0JCAhISEqTfVYX8vIJBKZW1tTXatm0r95qqgSuPHDmCbt26IT4+HpUqVULXrl0RERGB06dP49SpUwgMDJS6SNOlwMBAzJw5E7a2tnB0dESDBg0QGRmJCxcuYOLEiThw4ACCg4NhZGSkdj3p+4r/999/cfbsWV1XXyvu7u7w8vJCQEAA+vXrhxIlSuDVq1do27at0kefASAlJQXdu3fH/v37UahQIdSrVw+2tra4cOEC6tWrh379+mV7PU+cOIGoqCjUqFEDRYsWRVxcHC5cuIAlS5Zg48aN0uPpoi1btuCXX35BuXLlULFiRTRu3BivXr3CuXPncPbsWRw/fhy7d+/Olgsr//33n9oLCkDqHTfLli0DANSqVQtNmzZFdHQ07t+/j99++w3NmzfPsCEvKCgInTp1gkwmw+HDh6UTtCriH6qi0NBQ/Pfffxpt05s3b9CsWTM8ePAAxsbGcHV1hYWFBf755x/4+flhy5YtOHHihNx4EJn16dMndOzYESEhIShcuDCcnZ1RokQJhIWFYfv27Th+/DiCgoLg5OSU5bLUSUxMxJAhQ9TOs2vXLvTt2xfx8fGoXLky3NzcEB0djQsXLuDHH3/EqVOnVF7QA1LHN1H2+Vi+fLnG46hkhr6+PjZt2gQnJycsXboUFSpUgK+vL/T09LBp0yaYmprKze/o6AhPT0/s3r0bMTEx0rH08eNHmJubo1SpUlmuU3x8PAIDA2FoaIhmzZplej3abpsoNDQUbdu2RUxMDMqXL4/WrVvj7du3mDx5sso/oLp06YLhw4djz549ao8V8Y6xFi1aYNKkSdDX18eaNWtgZmaGgIAA6OnJ359Vq1YteHp6SudGT09PuelpP8eiCxcuKM1ZhoaGcHV1xe7du/Hvv//KTdMkZ6Vt7M/rOYvyb8YaMWIErK2tUblyZWasNLp164bz58/j7Nmz+Oabb9CkSRMAqZ9FdRcRNBUVFYWdO3eievXqaNy4MczMzPD69WuEhobin3/+wblz5xS6rvv555/x/PlzVK1aFY0bN4aBgQHu3buHnTt3Yu/evdixYwc8PDyyXDcg9SLCw4cPVU5//vw52rZtizt37sDU1BSNGzeGpaUlwsPDcebMGYSFhSEoKEhtGYIgYODAgVi3bh0aNGiAwMBAtV0QavMZU2bnzp3o06cPEhMTUaZMGXTu3BmfPn1CcHAw/vnnH+zduxcHDx5EoUKFNF6nKn///Tc6d+6M9+/fw8HBAa1bt0ZCQoI07tahQ4dw+PBhGBoaZrksdUJDQ7F582aV05OSktC7d2/s3LkTRkZGcHZ2hq2tLR48eIBt27Zh79692Lt3r8L7Lvr8+TM2btyIkSNHyr2emJiIlStXZuemKHBycsKUKVMwbdo09O3bF+3atcPNmzdRo0YN+Pr6qlxuxIgR8PPzg56eHpo0aQIbGxvcvHkTrq6uGDZsWLbXM7cylqr8KBLzo4eHB65cuYKDBw+ib9++KsvPjr9TXV1dUaxYMa3+TtVFxgLyfs5i+5Wi/Jqzvpa2LGUWL16MDRs2oHLlyqhevTqKFi2KZ8+eITg4GCdPnsT58+exePFirddrZmaGbt26KZ2mrp1l7NixWLRoEfT09FCnTh00bdoUz549w4EDB3Do0CGsW7dOutErvdGjR2PJkiVo3LgxOnXqhLCwMPz1118ICgrCzp070aVLF7n5P3/+jNatWyttV1m9ejV27dqltF3l5MmT6NatGz58+ICSJUuiZcuWKFSoEJ48eSLdSNWoUSNp/pcvX6Jt27YICwtD8eLFUbduXRQpUgRXr17FggULsGvXLunmjqzKL9lGFU3amLJK22zStm1bGBsbIzAwUOE7zsrKSqd1ff/+PSZMmKDTMlRlh6ZNm+o0O+hKrl/sCwsLQ8OGDREfH4/ChQtj3759+Pbbb5XO26ZNGyxevBjNmjXDN998g5MnT2Lv3r1qGzvnzJmD6dOnK7zeo0cPjT7YlpaW0hV+fX19henPnj2T/k0bbGJjY9X+4anMjRs34O3tjYoVK2L58uV4/fo1Xr9+rXaZzJSjqs5ZKUO8M+LNmzdq5xW78nj37p3cfGIZ4h19Dg4OmDJlityyYkBKu9zbt2/xww8/ID4+HqNGjcLPP/8sXYgJCwtDv379sHHjRpQrVw7u7u7SsuJdI+nrIW4DkBqk00978eKFtL3pp1laWmLz5s1o0KCB3OvR0dEYNWoUQkND8euvv0p3B6Qn3qXo7u4udVUCAHv37sXZs2el+qTdH2LYz+h914b43mS0zmHDhiEwMBAnTpwAAJibm2Py5Mkql9m6dSv2798PKysrbN68GTY2NjA1NUVSUhJmzpwp/aGt7H3XtE7prVy5EkWLFpV7LTk5GePHj8ehQ4ewYMECuZNGlSpVcPjwYYVBV9+8eYP+/ftj7969WLZsGdq1aydN0/QzmH4eHx8fJCQkwMbGBi9fvlTYts2bN2PZsmUoWrQoFixYIDcwLpD6faGnpycto+y4PXv2LAYNGgSZTIY1a9bAzs5OZV3Fz/DQoUNha2srvT5hwgT8999/CvVTduz1798fDx48gJ2dHQICAlC2bFkAqWHF19cXu3fvRqdOnXDs2DGpgUrd5y1tvR4/fizXn/iYMWOkAYJnz54t19XQ2rVrsXDhQnTt2hV//fWX9N0tfn7j4uJUvg/id9SLFy/k5kn/urjf161bh7t370r7Mf123L9/H3369IFMJsOyZcvQpk0baVp4eDh+/vln+Pv7o3LlynLBWyyvQYMGOH/+PP744w/UrVtXbvratWvRsGFD6e6+zHwHpKSkqF1OX18fo0aNwpw5c6TA6ePjgxIlSigsZ21tjSlTpuDEiROIiYnBkCFDYGdnh9jYWKlhJ/3xquw7WJ1//vkHCQkJqF69urQ/xS4vtVW5cmXMnj0bo0ePlrZt3Lhxcn+UpBUfH49evXohJiYGI0eOxMKFC6Vj6+bNm2jZsiXevn2rsJytrS0aNGiAv//+G2/fvlUbhsUGPD8/P6khb/78+fjmm28U5u3cuTM6d+4snRtV3YUYFhYm9be/adMmlTmrUaNG2L17N3bt2oVx48ZpnLMWLFiAWbNmKbyuSc7KKGMB2ZuztJXZMrTJWQUlY/Xo0UMqR1cZa+fOnahYsaJcQ3F2Z6y075cuM1ZCQkK2ZayBAweiRIkSOHv2LGrUqCHtW/G7N+0y4rGkzfYkJyfj6tWrCuOFvnz5El26dMGxY8dw9OhRVKhQQZo2evRo1KtXDxYWFnLLBAUFYcSIEfDx8UHFihUVbuJUJjY2VuVx8+LFC8yaNUs6B6fftpSUFHTr1g137txBkyZNsHDhQhQvXlyanpCQgHPnzsl9DtOf7wVBwC+//IKdO3eiVq1aWLlyJd68eaO0twJtP2Npia+/fPkSnp6eSExMxPfffw9fX1/pu/TZs2fw8vKSLn6PHj1aWl5VfhFfE+dJOy0yMhKdOnVCdHQ0pk2bhp49e0o3lrx//x4jRozA8ePHMXbsWAwdOlTaHxl9NlR9llW9npSUBB8fH+jr68PS0hIREREK27F48WLs3LkTNWvWxOLFi1GmTBlp2rFjxzBq1Cj07NkTJ0+elC7EiuXZ2NjA0NAQS5YsgZubG2QymbTPDx8+jJcvX0p5SlUeVUVdnkl7XH3//ffYtWsXbt++jTt37sDQ0BAzZsyQjpn0goOD4efnB1NTU6xbt04uA65evVpqdI6Li1M4j2RnxgIyl7O0yVhNmjRBkyZNEBISgpiYGKmng/Q8PDwwefJk7NmzR+3FPgBYsmQJTp48KX2HFi1aFOvXr1c5/6pVq7B//35YW1sjODhY6jY9KSkJw4cPV3lBWNcZC8jbOSsz7VdpsS2LbVlinbMjZ6XddlX7XVXbQvPmzfHDDz9I7ReiR48ewcvLC7///jsaNWqEmjVrStPUHVvie120aFGFY0Gkqp3lzz//xKJFi2Bvb48FCxagVq1a0rRLly5hwIABGDhwIOzs7JR+V65atQoBAQFyNx6sX78e8+fPh6enJ0qXLi3XdjJlyhSV7SoBAQGYPXu2QrvKq1ev0KVLF3z69AkDBgzA8OHD5W5AevfuHR4/fixtV0xMDHr27ImwsDB069YNkydPlm7qSEpKwsKFC7Fx40b07NlT7uKYNtlG3B+ZyTZAxsejLrKNsu2LjY3FlClT1LYxZSSjHCC+V9pkEw8PD9jZ2SEwMBD29vYKx7Wy7Ur/OcuIqs/ntGnTEBkZKb0f4nZpeg7JShv31KlTNW7jFm900KaNOyIiIsP6Z4qQyxISEoSHDx8Kly9fFiZOnChYWVkJt2/fVjpvRESE0KlTJ0FPT0/Q19cXKlasKAwePFgwNjZWuf74+HghOjpa+nn+/LkAQIiOjtaofnFxccKdO3eEuLg4pdOvXLkiABCuXLki9/qDBw80Wr/owoULgrm5udCoUSPh48ePGi+nbTmCoLrOWSnD3t5eACD4+/urnc/FxUUAIPj6+iot46+//hIACK1bt1ZYFoCQ/pCdMWOGAEBwdnZWWt7ChQsFAEKFChXktsPX11dpPQRBEPz9/QUAgqenp8K0x48fCwAEe3t7peWpeq/u378vABDq1q2rdLogCEL37t0FAMLWrVvV1idtGZ6enhq979oQ3xtN1jl37lxpv/j5+amd19HRUQAgrFq1ShAE+e2Ii4sTSpUqpfJ916ZOaSnbHykpKcKPP/4oABDGjx+v8boCAwMFAEL37t0zLCMtZcft3r17BQCCu7u70n2YmJgolChRQgAg7NmzR6PPYPrj5Pjx44KJiYlgZmYmhISEZLi8lZWVAEAIDw+Xe13VMZb+9YcPH0rbunfvXoX1x8TESGVs27ZNen379u0CAKF9+/ZK6yV+tzx+/Fh67c6dO4JMJhNsbGyUfl8+ePBAcHNzEwAIhw4dkl4PDg4WAAguLi4q3wfxOyo4OFjt6w8ePBCeP38umJmZCTY2NsKyZcuUHr89evQQAAgLFy5UWt7FixeVfoeJ5f3555+CkZGR4OHhITd91apVAgDhwIEDSo8xTQAQbG1tM5wvPj5esLCwEAAINjY2Qnx8vNr50+8zZceveLwq+w5WZ8GCBQIAoW/fvtJrSUlJwqVLl4SkpCTpNXXf02lps21bt24VAAhlypQRvnz5ojD9999/l/ZF2uM1bb3XrVuXYZ3Cw8MFPT096bhISUlRO39G+z8hIUEYNmyYAEBwc3NTmbPE7zgLCwuNcpaYjz58+JDpnJVRxhKE7MtZmZHZMrTJWQUlY6UtR1cZK20ZaWVnxkpbhi4z1ty5czOcV5uMpW470hKPpewQHh4uFC9eXAAg3LlzR+PlfvjhBwGAcOTIEY3mf/DggcrjpmPHjlJWUnYM79+/XwAglC5dWvj06ZPaMkRpz/cpKSlC//79BQBCw4YNM/xe0/Yzpuz1KVOmCACEUqVKCbGxsQrz7969WwAgFClSRO67s02bNgIAYdeuXQrLqMo/EyZMEAAIQ4cOVbo9L168EAwNDYUSJUpI56IHDx5k+NlQ9VlW9frixYsFAMKwYcOU5rB3794JJiYmgrGxsfDixQulZQ4ePFgAICxbtkxpeUuXLpXLheI+r1+/vlCqVClhzZo1Kr+b1FGXZ9J/Bnfs2CHt79GjR6tdb6tWrQQAwoQJE5ROr1WrlrRP05eTnRlLEBRzli4yliAoz/zpVa1aVTA2Nlb7eRZl5e/UtNT9naqrjCWWm5dzVmbbr7QpQxm2ZbEtS5W0ZanaFk2+Z9ITzw/jxo2Te13dsaVJplW2/cnJyYKNjY0AQLh8+bLSMubPny8AEMaMGSP3uniMjRw5Uml5derUEQAIs2bNkl7LqF1FEASl7SojR44UgNT2LE2sX79eACDUqlVLSExMVJienJwsVKtWTQAghIWFSa9rk23E9yoz2UYQMj4eszvbCILytqe///47wzamjGSUA9IeV9pkE03a0wThf9ulzedMEJR/Pi9fvizo6ekJTk5OwtSpU+W2S9NzSFbauNWVkdnskLZOGzZsUGjLUkWTc7ooV8fsA1L7inV0dISzszPmzJmDmjVrYunSpUrnLVGiBPbv34+YmBg8ffoU9+7dQ+HChVG+fHmV6zcyMoK5ubncT17Drg/+R7wDIKPuAURi38bpuy8T/fTTTwBS7zJQdgdudktOTsbJkycxY8YMDB48GN7e3vDy8pLuxrt//77KZWNiYgBAZfdxeU1ERAQWLlwo/b5z506VY9qFh4dL3Zb06dNHYbqxsTG+//573VQUwPTp0+Hl5QUPDw84ODhgy5YtKFWqFAYPHqwwb0JCAg4dOoRff/0VP//8s7QP16xZA0D9PtREbGwsRo0aBRMTE5XfdVeuXEFkZCSsrKwUulnQhNh1Z1xcHLZu3arwVKAyYj/8mn72ROvXr4eXlxcGDhwIALCwsEDnzp0V5jM1NUX79u0BpN6tLKpcuTKA1M+ysr65lTl69CgEQUC7du1Ufl+K3Zsq6ys+u4waNQoxMTFYtGiR0i4TU1JSpK7NevTooXQdderUQeHChXHt2jWlYyGULFkSPXv2xP79++X6y/fz80P58uXRoUOHbNoa1WbNmiWNTfTy5UucPn1a52WqIn6Pp73jMCu02TbxfPP9998rvZNa1XkIgNRd3d69ezOs08SJE6Xv0rCwMNy+fTvDZdQpVKiQ9CRL9+7dVeYs8T01MzMrcDmLUukyY4lPVelScnIy/vnnH2asXBIeHg4vLy/07dsXbdq0gaOjI6KiovDDDz9IT8Gk9fLlS6xbtw5jxoyBj48PvLy84OXlJX2nZTVPHTlyBAcPHkSbNm3kniJI69ixYwCAXr16KT1PqyOk6bqzTJkyGXbdCWj/GUtLfH+2bNkCIPVcY2JiojBf165dUaxYMXz69AlXrlyRXhfz1ObNmzXu4vvIkSMAVGcUW1tbVKhQAZGRkTp7kvrVq1eYNm0arK2tMWPGDKXzBAcHIy4uThpLSZmMcp+3tzeKFCkijYkLpHa7eOHCBQwcODBbukRVJy4uTq5brIMHDyI2NlbpvElJSVLXjsr+bgKQ4ZNtmZGbGUtTHh4eiI+Px9GjR9XOl1N/p+o6YwF5M2ex/Uo5tmXln5ylzOfPn7Fr1y5MnjwZAwYMkM7Le/bsAZD13KKJa9eu4eXLl/jmm2/g7OysdJ6MzneqjifxvJF2fLjMtquI+WrAgAEqtyUtsUwPDw+FniIAQE9PT+o+Om05BTnbqDJ79my1bUzZSZtskhtSUlIwePBgCIKAFStWqHxCPbvkpzbujOR6N57ppaSkyI2xp4yxsTFsbW2RmJiIPXv25OobmFUMSvLER1mLFSum0fzh4eEAUgfyVqZo0aIoXrw4oqKitOpSIjMePnyIjh07qj1hqOtjX9yWzPyB5e3tLfXZra+vj2LFisHJyQk+Pj46+3wMHDgQb9++RefOnXHjxg2EhoZiyZIlcl0KicRH262srFSesFTtw+xw6NAhuQYRV1dXbN68Wa4LIAA4f/48evToIXUPokxWx0mYOXMmnj59iunTp6vcZvGx+UqVKmk9PuDly5exc+dO6Y+NrVu3Kr34llZiYiI+f/4MPT09hS63MnL27Fm5fvjFQXWVEd9v8VgHUscda926NYKCglCrVi24urrKdb2qrFvER48eAQA2bNiQ4RgGkZGRCq+JAwpnRWhoKHbv3o0WLVqgZ8+eSrtQfPfunXS8pD/WlHn37p3SRqwRI0Zg06ZNWLFiBebOnYvjx4/j7t27Uj/+unT58mXMmTMHhoaGGDBgAFasWAEfHx+EhYVpfaxkB7HRKDsaOrTdNvF7TNXntlixYrCwsJDqmFa5cuXg5OSEkydPIjo6WuV7d+DAAWzZsgVFixZF586dERAQAE9PT1y4cEHpH0aZoSpnie/p+/fvC1TOov/RZcZ68eKFxuvNjIcPH6JLly5qL35/rRkrp7x//15uzCFDQ0MMGTJEGls4renTp2PWrFlqu+7JSp6Kj4/H8OHDYWRkpLR8kZinxMYibYwfPx6XL18GkDruX0hICNzd3dUuo+1nLK304zmp+tzJZDKUK1cO79+/l8tTgwcPxrp163Do0CFUq1YNtWvXlm5MUfU3kJinmjZtmmH9IiMjFbq5T/vZyKwxY8bg48ePWLZsmcpzo1jPkydPZpjflOU+IHVcXG9vbyxbtgx3796FgYEBli5dikKFCuHnn3+WGi51ZdKkSbh//z4aNmwIQRBw/vx5TJw4Ue7io+jdu3fSDWCqjgNd/N2UmxlLUx4eHvjtt98yzCa59Xfq15Cx2H6lGtuy8kbO2rRpk1bj5AKp7UXe3t7SPlQmJ8bLFM93//33X6bPdxmdN9J205zZdhVt85V40/Ivv/yCX375ReNyBg8ejPXr1xfIbKPM8ePHcezYMbVtTNlJm2ySG9avX4+LFy/C29sbDRs2RGBgoE7LU5YdAgICMGfOHIV5c7uNOyO5erFv0qRJaNeuHcqWLYtPnz7hjz/+QEhIiLQD+/btC1tbW+mNvXDhAsLDw1GrVi2Eh4dj2rRpSElJwfjx43NzMzKNQUmRGBJsbGxyuSba69atGx4+fIgOHTpg/Pjx+Pbbb2Fubg5DQ0N8+fJF7R1eKSkpePz4MYDMfSGkHQg5Pj4e9+7dQ1BQEIKCgnD//v0MT6ja2rJlC/bv34+SJUti3bp1CAsLQ8uWLTF16lR06NBB4YSZ28TGmsjISAQHB2PkyJFwcXFBYGCgNMZMbGwsOnfujDdv3sDb2xuDBg2Co6MjzM3Noa+vjwcPHqBSpUqZHh8MAB48eIBFixbB0dFRZwPM3r59G6ampjh69CgmTpyIPXv2YMOGDdKdgcqIT2SUKFFC6wsK/v7+0h1vqgafzsi+ffvw66+/YseOHTh48GCG77F4d02tWrXk+s0Xffz4Ufqjun79+grTlQ2aLjp27FiGd05++fIFM2bMgKGhIZYvX55hPQH1T32JVH1HODk5oWnTpli/fj2mTZuGpUuXwszMTO0+zQ4JCQnw9PREUlISfvvtN0ydOhV37txBcHAwRo8enSODxacnXgjO6h9bubFtHh4euHbtGg4dOqT07q+3b99Kd0f6+fmhe/fuOH/+PK5evYo5c+Zk6ntczFniOBriwOfKcpbYyGdsbIxHjx4ViJxF8vJ7xrp9+zaaN2+O6dOnM2PlgmrVqkEQBCQlJeHZs2dYvXo1FixYgI8fP2LTpk1So9TevXsxbdo0FC5cGMuXL0eLFi1gY2MDExMTyGQyTJ48GXPmzMlSnpo7dy4ePXqEqVOnyo0VmJ0uX76M+vXr45dffkGnTp3w008/4ebNmyhVqpTKZbLyGRPfD3d3dxw+fFjr5StWrIg//vgDq1evxpkzZ3Dv3r0MlxFzSrdu3WBmZqZ2XmUNuGk/G2l9/vxZehJCnZCQEGzfvh1NmzZV+6SaWE9HR0c0btxY7TrVNTwOGzYMy5Ytw/Lly/HDDz9g9+7d+P7779Xu0+xw+vRp+Pn5wcTEBAEBAUhJSYGTkxOWL18ODw8PjXrgyAn5IWPVqFEDjo6OOHr0KOLj45WO+5lT36FfY8bKC+1X4hNkeVF+z1kFpS3rm2++QY0aNZTeuLB7926FYyg8PBw9evRAXFwcxo8fj969e8PBwQGFCxeGnp4ejh8/jjZt2mQpt2hKPN+VKlUKbdq0kWvXSE/dOPDqpN2OjNpV0lLWrqIpsZwmTZooHYs+rapVq0r/r1ixIkJDQzFp0qQCl23S+/LlC4YNG5ZhG1N2yevZ5N27d5g8eTKKFSuGefPm6bw8VdlhyZIl0ti0+UmuXuyLiIhA37598erVK1hYWKBGjRoIDAxE69atAaQOupv2qYX4+HhMnToVjx49QuHCheHm5ibdAZ/f5IWglBfduXMHgPwXvDq2tra4d++edPdGetHR0YiKigKQ2sCvK/fu3cPNmzdhaWmJffv2KVwwyejx8Lt37+Ljx4+wtrbW6Amg9MTukdJas2YNfv75Z8ybNw8TJ07McABvTYWHh2P48OFSGVZWVmjevDkGDx6MFStWwNvbG2fOnJH77IpPK719+xafP39WeueDpl04ZkWJEiWkbpE6duyICRMmSN3q/f3333jz5g1q166NjRs3KiybHY/4Dx06FF++fIGfn5/awCwODP3gwQOtQ6WpqSkOHTqEFi1awN7eHs7OzhgxYgSaNWumskFM28+dMuJx++TJEwiCoPRONPHul/RPr5mZmWHRokVYtGiRwjIODg4KAwSLZTVu3FhpEHr48KHaxr/KlSurvEvK1dU1w4t9CxYswOPHjzF+/HilXZeJrKysYGJigri4OCxcuDDTgRwAhg8fju7du2PatGn466+/8PPPP+v8yTqxccbZ2RmTJk2CTCbDxo0bUb16dWzcuBHdu3dXedFUV0qWLAkAau+61ERmtk08blV9V3348EHpU32irl27YurUqdizZ4/Si32DBw9GREQEOnXqhB9//BFA6qDojRs3xowZM9CpUyfUqFFDq+0Uc5b42Xvy5InKnCW+p3Fxcfj222/zfc4iRbrMWLa2tjrr9kXMWCVLlsSKFSsUvne/9oyV0wwMDFC+fHnMnz8fN27cwJYtW9CtWzd07NgRQGqXN0BqF37KunfKap569OgR5s2bBwcHB0yePFntvGKe0qRxKL369esjMDAQFhYWmDx5MmbMmAEvLy/89ddfKu+2z848pepzB0BqVE2fp7799lup+/C0QkJC0Lx5c6VlPXz4EBMmTECdOnW0rquyzwaQeq7JqEEsMTERQ4YMgYGBAVasWKF2XvE9qVSpUpbucnd0dISbmxs2b96MT58+ITExUfq86crnz5/h7e0NQRAwe/ZsqbFoxowZGDduHPr164ebN2/KNUhaWlrCyMgICQkJePLkidLjSRd/N+VmxtJG165dMX/+fAQGBqJTp05y03Ly79SvLWPlhfarT58+YejQoTlerqbYlpU3claTJk0wZcoUpe0BISEhChf7Dh06hLi4OHTp0kXpRQVddfWojPj+WVpaIiAgIMN2DWUeP36MWrVqKbwufo/Z2dkplKeqXUWVsmXL4v79+7h3757SC2PplS5dGgDQqVMnjB07VuNygNQLkQUx26S3YMECPHjwAP3791fbxpQdYmJitM4mOW3ixIl49+4dVq5ciRIlSui0rPzcxq1Kro7Zt2HDBjx58gQJCQmIiIjAiRMnpHAEpH540wZ6FxcX3LlzB/Hx8Xj79i02b96cL++ayQtBKS9KTEyUxvJq0qSJRsuI/UerekxfvGhToUIFnd61KYawkiVLKn0yauvWrWqXF08abdq0ybY6iY3FMTExSrtCzKyffvoJHz58QJ8+feS6h5w3bx7Kly+Pf/75B4sXL5Zbxs7OThqP4I8//lBYZ0JCAnbt2pVtdcyIeLK4e/eu9Jq4D8WGofQy2ocZ2bVrF4KCgtC5c2e0a9dO7bx16tSBlZUVIiMjsX//fq3K6datG1q0aAEgtdFn4cKFiImJQa9evVR2p3X8+HEAmn/ulHFyckKxYsUQHR2Nffv2KUyPi4uT+k8X65dZ4vt38OBBpePc6dLTp08xe/ZslCpVCr/++qvaefX19aVzmtj4mVldunRB2bJlMW/ePAiCgGHDhmVpfRk5e/YsFi9eDCMjI2zatEn6XnNwcMCCBQsApAZhZRe3xHFvkpKSsr1etWvXBvC/P6YzI7PbJt7dtnPnTqWfpc2bN6stt0qVKqhSpQoCAwMV/sjcvn07du3aBUtLS2l8UCC1sXns2LFITEyEl5eX0nLFP36Vvd9izpo6dSoAYNy4cSpz1q1btwCk9jmf33MWKdJ1xlI1jlZ2EM/PNjY2zFhKMhag2+9ddcSxqpTlKXt7e4X5IyIiEBQUlKUyhw8fjvj4eCxZskTpmHZpiRcUtm/frvXTIHPmzJFuqvn111/RoEEDBAYGqhxvOTOfMWXEjJS2S/a09u3bh/fv38Pc3DxTjVhpiXkqqxklM5YsWYI7d+5g6NChqF69utp5W7ZsiUKFCiEkJAQRERFZKnfEiBH4/PkztmzZgvr166NevXpZWl9GxowZg8ePH6NZs2YYMWKE9Pro0aPRqFEjPHr0SKG3DwMDA+kJxm3btildrzi2Y3bKzYwFaP49pm4c5Jz8O/Vrylh5of3q06dPaNu2Lf77778cL1sTbMvKHzlLGXW5RRAEpd8LulK3bl1YWVnhzp07mR63XdX5QXxdPO6AzLeriPlq3bp1Gs0vjse3a9cunT8hmV+yTVpiG5OdnR2GDBmiwxqmmjt3rtbZBMi5vzcuXryIDRs2wNnZGQMHDtRpWYD67FCmTJl80cadXq5e7Psa5YWglBe7Pvjy5QuGDx+OyMhIuLq6avz4f//+/WFubo6rV69i9uzZcieOa9euYebMmQBSw7cuVaxYUerqMe2At0DqnUK///67ymWfP38ujTcyaNCgbKuTOHC5mZlZlp4oSmvt2rUIDAyEjY2NQj/OZmZm8Pf3h0wmwy+//KIwgPHIkSMBANOmTZO7wzo5ORljx46VupLMLu/evVP6x+q7d+8wceJEAKkXw0Ti3TMnT55UWG7t2rX4888/s1Sf0aNHw9TUFEuWLMlwXgMDA0yZMgVA6qDHly5dUpjn0qVLcv2ti9LfbT5kyBC0b98ely9fVnpx6vjx41i9ejUMDQ2VPm2kKUNDQykojB07VrrrHEj942fEiBGIjIxE+fLlpT/SM8vJyQkeHh54/vw5unbtqvSOmZiYGGzbti3bBzOfOnUqYmNjMWnSJI3udPL19UWhQoUwbtw4bNq0SekAv7du3VLaYJGWvr4+ZsyYgfbt22PUqFE6vdsrNjYWXl5eSElJwfTp0xXuTh04cCBatmyJ8PBw6XOdlni3YGb/QFGnUaNGMDIywo0bN5Q2gmYkK9vWrVs32Nra4tmzZ5g0aZLcvrx165Z0vlHHw8MDcXFxcncnvn79WrpLecWKFQp37opdFl67dg2zZ89WWGd2vd/iYOhZvRhPeU9ByVhhYWG4cOGC3DRmrFTi90BWGulVuX79utInfYKDg3Ho0CEAyvPU2rVr8eXLF+n16OhoeHp6qn0COiMnT57EkSNH4ObmpvBEjzIdO3aEk5MTXr58ie7duytsR3x8vNK7xQH5PGVgYIBt27ahSJEimDhxIm7evCk3b2Y/Y8p06tQJFSpUwJs3bzBixAi5mzweP36MMWPGAIA0ZmFWjBs3DkWLFsXixYuxaNEiuf2Vtsys3vCWXnR0NH777TeULl0a06dPz3B+a2trDBs2DDExMXB3d0dYWJjCPAkJCTh48GCGT3G2bt0affv2haura4Y3bWXVmTNnsHbtWrnPr0hPTw/+/v4wMTHBypUrFf5+FDPIsmXLpPOzaP78+bh69Wq21zc3MxageZ6pW7cuypQpg4MHD8p9PvLy36n5OWPlhfYr8ULfrVu3sHLlyhwvPyMFJWcV9LYsVcTcsnv3brx69Up6PTk5Gb/++qvCd7AuGRoawtfXF4IgoEuXLtJwNGklJyfj1KlTOH/+vNJ1rFq1SmE//v7777h48SKKFCkiNxSIk5MT2rRpo3W7yujRo1GkSBEcPHgQU6dOVbghNSIiAqGhodLvrVq1Qt26daXx15SNN/j+/XusXr06yxeS8ku2SUtsY1q8eDFMTU2ztV7pBQYG4s8//8xUNhHP0w8fPlQ7LndWiVl3xYoVOu/NJKPsMHfu3DzTxq2NXO3GsyBJe0crkNptw6dPn+Reu3XrFgYPHoxvvvkGc+fOzZbHwZWVo05MTIzOx3nS1oYNGzBp0iRERkbC1tZW7qmGjFhbW2Pbtm3o3r07pkyZgi1btsDJyQkRERE4ffo0kpKS4O3tjf79+yt9v0+cOKFwB4v4B+SVK1eki0IisYHi/fv3mDhxIrp37w5nZ2dYWVlh6NChWLp0KVq2bImmTZvCxsYG9+/fx9WrVzF16lSlDcFjx46Fv78/oqKiYGZmhtWrV2P16tVy8/z7778AgNDQUHh5eaFnz54Kj/Lv2rVL+nJJSEjAvXv3pKe1JkyYkC3dSz158kT60l27dq3SgaebNWuGYcOGwc/PD15eXjh79qz05TxkyBAEBQXh0KFDqFmzJurXrw9bW1tcuHABr169wqBBg7Bq1aos11P0/PlzdO7cGd988w0cHR1RvHhxvHnzBv/88w/i4+NhZWUlt0+cnJzQqVMnHDhwAE5OTnB1dUXx4sVx/fp13L9/H5MnT8asWbMyXZ8XL15g5syZSu8YU2bEiBG4f/8+Vq9ejd69e2PhwoWoVKkSPn78KHX3ERwcLNcNgyobN25EjRo1MH/+fLRt2xYuLi54+vQpPDw8cOXKFejp6WHy5MlZHvdm8uTJOHfuHAIDA/Htt9+iefPmMDc3x7lz5/Ds2TMUL14ce/bske4Iygp/f398+PABf/31FypVqoSaNWuiXLlyEAQB9+7dw/379/HlyxfcvXs3W7s9efHiBVq3bp3h05mi2rVrY+vWrfDy8oKXlxemTp2Kb7/9FiVKlEBUVBTCwsLw4sUL9OjRA127dlW7rr59+2rV73tmjR8/Hv/++y8aNGigtJsNmUyGDRs2oHr16ggICED37t3h5uYmTffw8EBwcDD69OmD7777Dnp6erCwsMC4ceNQqVKlLNXN2NgYbdq0wcGDBxESEqLxfsiObTMxMcG2bdvg5uaGRYsWYf/+/ahbty7evXuHkJAQuLu748qVKwrdzqbl4eGBmTNnyo1x2b9/f0RFRaF79+7o0aOHwjJGRkYICAhAw4YNMWvWLHTu3FluTAUPDw8sXLgQrVq1QosWLaRGmHnz5ikdh0CZxMRE/P3339L7mxdpkrOyW2bLSF/X3JRTGUsZXWQsT09PrF+/XmcZa+LEidDX15ebJz9krAYNGsDGxgbXrl1D7dq1Ub16dcTGxqJevXpZbiQMCAjAypUrUatWLdjZ2UkNguIFrw4dOqB9+/bS/CNHjsTmzZtx9OhRlC9fHg0aNEBiYiJOnz4NU1NT9OvXT2l36Zp48eIFjI2NFf4YV0VPTw/79u1DmzZt8Ndff6Fs2bJo0qQJLC0tER4ejhs3bqBo0aIaPW1Yvnx5LF++HJ6enujVqxcuX74MY2NjbNiwAVOnTsXr16+1/owpY2hoiD///BOtW7fGunXrEBgYiIYNG+LTp084deoU4uPj4ebmli0Xquzs7HDgwAF4eHhg7NixmD9/PqpVq4bSpUsjOjoad+/exX///Yf69etn6Yaw9MQxzlavXq1yLKL05s6di1evXuGPP/6Qxhb6P/buPTzK+s77+IdTQiQnMARCgIByMCqBEqBNQcUDFlGQ7mN3VRCxtbtF3Md2223LFhYQbOjBdvHZbdatVliBy15SpYoCIhIoVISAIEIaUHNAkpAEciZMQnI/f4RJCDlNkrnn/s3k/bquXr0S7rk/v+HHTL7OJzP3DTfcoN69e+vLL7/U0aNHVVlZqW3btrV53T6p/l00nflotI4oKSlp+MW9X/7ylw2//X21MWPG6LnnntO//Mu/6Nvf/raOHz/e8Itks2fP1uLFi/Vf//Vfuu2223T77bcrJiZGn3zyidLT0/XMM8+0+i7TznJyxpKaz4/u58Fr58cePXro7/7u77R27Vp98MEH+sY3vuH1/06988471b9/f6/8d6o/zFhSy3PWhx9+6PXXr67NaG/Oqqys1NNPP63PP/9cv/vd75r9jHYar2X5x2tZbZk9e7YSExN1+PBhjRkzRnfccYf69eunjz76SLm5ufrJT37ik2uGuT399NPKycnRr371Kz366KN67rnnNGrUKIWEhCg/P19Hjx5VSUmJUlJS9LWvfa3Z7f/pn/5Jd911l2677TbFxsbq008/1fHjx9WrVy/94Q9/aPYu0eTkZF2+fLnF11WysrJ07NixZq+rDB8+XJs3b9ZDDz2k5557Ti+99JKSkpLUp08fZWdn6+OPP9ajjz7a8C7Xnj17asuWLbr//vu1fv16bd68WePHj9fw4cNVXV2tL774QsePH1dtba0WLlzY4jtMPeVPs42b+zWmb33rW7Z+bGxJSYmefPJJSZ2bTYYPH65JkyYpLS1N48aN06RJk9S3b19FRUVpzZo1Xlvnl19+qSeffLJL14n0hCezw+TJkx2ZHbrM6mZKS0stSVZpaalHx1dVVVknT560qqqqWvzz7Oxs67rrrrMk+dX/rrvuOis7O9ujv4NTp061e0xcXJwlyXrllVfaPO6OO+6wJFnLly9v+N5PfvIT66abbrKWLl1qFRQUtHpb99pbcvLkSevxxx+3hg4davXp08eKjIy07rzzTuu1115r8X4sX77cK3+PV9/furo66+c//7mVmJhohYaGWhEREda0adMa1tDS+t1/bx3536uvvtpw+8cff7zZn/fs2dO6/vrrrXvuuafJ/feU++/m2vs2ffp0S5L1xBNPtHn7yspKa9SoUZYk6xe/+EWTP6upqbGef/556+abb7aCgoKs66+/3nrwwQeto0ePWq+88oolyXr88cc9WlN7CgsLrccee8yaOHGidf3111u9evWyQkNDrfHjx1s//vGPrdzc3Ga3qa6utn71q19Z48aNs6677jprwIAB1r333mu99957VmZmpiXJiouLa3Kb9h4f7n0ZPXq05XK5mv25ew9bu2/btm2z7r77bmvQoEFWnz59rIEDB1pTpkyxVq5caZ0/f77huLb+/tzn6dGjhzVs2DDrwoUL1tGjR63hw4dbDz/8sLV///5W70dr62vt+zU1NdZ//dd/WV/96let0NBQKzg42Bo1apT1zDPPWPv27Wv176k17sdIZmZmsz+rra21Nm3aZM2aNavh7+f666+3xowZYz3xxBPWm2++aVVXVzccv3v3bkuSdccdd7Sa536O2r17d4vfDwoKsv72t781+/tq7+8/MzPT+sEPfmDdeuutVr9+/ay+fftacXFx1vTp0601a9ZYn332mUfraElbz43t3S42NrbJ93bt2mX16NHDCgkJsf72t7+1efsXX3zRkmQNGTLEKi4ubvh+bW2tlZycbN1yyy1W3759G9Z39X1x/31d/bPAU++9954lyfr7v/97y7Is6/Lly9ahQ4esy5cvN7lv1z5WvXHfLMuyjh8/bv3d3/2dNWDAACs4ONiKj4+3kpOTrZqamjb/vbrdcMMNVlhYmHXp0iXrD3/4gyXJio6OtgoLC9tc05IlSyxJ1vjx45v8u66qqrJ+/OMfW6NGjbKCgoIa/r6vXkN7z6FvvPGGR8/vV2ttPurInNXejGVZgT9nBcqMdfV9sWvGevnll61bb73V1hlr9+7dDffDzhlrzZo1Te6bN2as48ePW3PmzLEGDhxo9ezZs8Wfd+6/k47YuXOn9fd///fWDTfcYPXr18/q3bu3FR0dbc2YMcNKTk5u8tzrlpmZac2bN88aPny4FRwcbMXFxVnf+973rPz8/Ia/A0+f/0+dOtXwM0OS9e///u8tHtfWv+Hy8nLrF7/4hTV58mQrLCysYU1z5syxXnvttSaPw/Z+/j788MOWJGvx4sWWZdU/xsaPH9/px1hr3z9z5oz11FNPWSNHjrSCgoKssLAwa+rUqdb//M//tPh3blmtP5+0N/+cO3fOWrZsmTVx4kQrLCzMCgoKsoYOHWp9/etft5YvX2598sknTTLam11bm5nd329rLe39/b/77rvW3/3d31mxsbENz0fx8fHWww8/bG3atMmqrKxsdx3u+3G19ua41rQ2zyxYsMCSZN19991WXV1dq7evra21pk2bZkmyFi1a1OzP//CHP1iJiYlW3759rYiICOuee+6xdu/e3WRPW7sv3pixLKv5nGXXjOXJ/Oi2Z88eS5L13e9+15b/Tg0ODvbaf6d2ZsayLOYsb8xYlhU4cxavZbXv6sdpa/ve2n+rlZeXW//2b/9mjR071urbt68VHR1tzZ0710pLS2v1Z2hb/7ba+vnj1t7P0v3791tz5syx4uLirODgYCssLMwaM2aMNXfuXOull16yLly40OT4q/coJSXFmjBhghUSEmKFh4dbM2fOtPbv399izqlTp1p9XeXWW29t8XUVt+zsbOuZZ55p+HsLDQ21xowZY33729+2Pvzww2Z/V5cuXbL++7//27rzzjut66+/vmGmnDBhgrV48WJrx44drf59Xevafbl2Pzoy21hW+/thx2xz7WtM194Pu2aTpKSkTs8m2dnZ1qOPPmrFxMRYvXv3bvHvxH2/2npNpCXux+eAAQOsoqKiZn9+7X9DePL8fvXtOvMa96lTp2ydHV5++eVmr2W1xpOf6W49LMvmD8w1TFlZmSIiIlRaWupR237p0iVlZmZq5MiR6tu3b4vH5OTkNPsc6ZycnFav/eVNnc2Jiory+HZ2/+ajP2ZkZWVp5MiReuWVV5pcvLWjGSNGjNCIESOavT26JevWrdMTTzyhV1991au/gXKtFStWaOXKlc3um7d15O+qs2vyt39XZPhPTiBk9OjRQ7GxsS1+HKw3tXQ/3M9ny5cv14oVKzp0PsuylJCQoNOnT+vLL79U//799fHHH+srX/lKw2/79ujRQ3FxcY5eFLk1//qv/6pf//rXevvtt/XAAw/4JLO959DZs2frnXfe0ZEjR1q8oHtLWpuPOjJneTJjSc7NWV3J8HTOCoTnEm/ntDZjdTSjMzPW7t27FRsba9vfl/uxuGbNmhavheFNLf1djRgxQtnZ2V67Xkqg/Pslg4zOamueceq515szVlRUlGpra5vMWSbMWHV1dRoyZIgsy1JeXp7tH/PVFjtmLIk5qy28ltU1gfxalpu/7Yk3Mtwfx9jRGc+0+0FG1zPamwPsvh/Tp0/Xnj17lJmZqREjRtiW4+n96Mpr3Hb9XbnX9PLLLyshIaHJa1mt8fRnusTHeHrF8OHDmw0bYWFhPhnufZUDAIAJevTood/85je69957tWbNGp9+rIo3fPe731W/fv26fK0lbzl06JC2bt2qhQsXduhFKF9yas5ixgIAdCfXzli//vWvnV5Si3r27KkXXnhBJ0+e1Pnz5zVw4ECnl9Qif5ixJOYsAAACCWUf0An9+/dXcnKyEhMTu3SeX//61woNDfXo2GnTpumVV15p8XOVAaA7mTFjhubOnav/+q//0j//8z87vZwOGTNmTId/095OS5YsUVhYmJKTk51eCiDJ2Rnrpptusv1akABgsqtnrO9///uKiYlxekkt+vu//3unl9AuZiyYiNeyACCwUfYBnRAREdHsgsed8dBDD3l87KhRozRq1ChbL9gKAP7izTfflCTV1taqsLDQ4dX4r/fff9/pJQBNODljSaLsA9DtuWcsqX7OQucwY8FEvJYFAIGNsg8AAAAAAAAAAD/jresxA/B/lH0Ampg+fbrOnz9v1HUFpk+fLklGrQnwd8uXL1dNTY0j2RMmTNDy5csbHtvetnz5ckVGRtpybn/EcyhgBvdj8aabbnIk//vf/75KSkocyQYCkd3zTGcwY/kWMxYAwCROzyYLFy7UuHHjjJkVTPw57V7T+PHjbSnqKfsANDF9+nTFxsYadbHs6dOnG/Uf0UAgWLFihWMfpTJhwgRbhy2TrolnAp5DATO4H4tOPfd+//vfdyQXCFR2zzOdwYzlW8xYAACTOD2bLFy4UFOnTjWq7DPt57R7TbW1tfr444+9fv6eXj8jAAAAAAAAAAAAAJ+g7AMAAAAAAAAAAAD8FGWfh7jYKQAAQD1vzkXMWAAAAI2YswAAgFtHfpZT9rWjV69ekqSamhqHVwIAAGAG91zknpM6o3fv+ktHu1wur6wJAAAgEHhjzuK1LAAAAkNH5gLKvnb06dNHwcHBKi0t5TeiAABAt2dZlkpLSxUcHKw+ffp0+jy9e/dWv379dOHCBdXW1npxhQAAAP7JW3MWr2UBAOD/OjoX9PbBmvxeVFSUzp49qy+//FIRERHq06ePevTo0eZtamtrdenSJdvX5oscMsgggwx/yfBVDhnmZLhLokuXLnXpt5/RPsuyVFNTo9LSUlVUVCg2NrbL54yKitKZM2eUmZmpiIgIhYSEqFevXkbMWWSYl0MGGWSQQYZvc5izfMeuOaujr2VJgfMYIaP7ZfgqhwwyyCDDG+eXWp+xOjsXUPZ5IDw8XJJUVFSks2fPenSbgoICn/z2lC9yyCCDDDL8JcNXOWSYk1FXV6eioiJlZWWpZ08+sMAXgoODFRsb2zAfdcV1112nkSNHqqCgQMXFxSoqKvLodoHwbzeQMnyVQwYZZJBBhm9zmLN8z5tzVmdey5IC5zFCRvfL8FUOGWSQQUZXeTpjdXQu6GF1s/fzl5WVKSIiQqWlpZ0anmpqajz6qKlFixYpJSWlM0vsEF/kkEEGGWT4S4avcsgwJ6OiokKTJk1SWlqaQkNDbctBvV69erX50RFdmbPcv7lWV1fX7rGB8G83kDJ8lUMGGWSQQYZvc5izfMvOOcvT17KkwHmMkNH9MnyVQwYZZJDRVZ7MWO3NBS3hnX0d1KdPH4/+ks+fP6++ffvavh5f5JBBBhlk+EuGr3LIMCejurpa2dnZCgoK8sm/L9inR48eCgoK8ujYQPi3G0gZvsohgwwyyCDDtznMWYHD09eypMB5jJDR/TJ8lUMGGWSQ0VV2zVh8DgMAAAAAAAAAAADgpxwt+1JSUpSQkKDw8HCFh4crKSlJ27Zta/M2//Ef/6GxY8cqJCREw4YN0w9+8AOfXOAVAADAnzBnAQAAeB8zFgAAMJGjH+M5dOhQrVmzRqNHj5ZlWVq/fr0efPBBffzxx7rllluaHb9p0yb99Kc/1R/+8Ad9/etf16lTp7Rw4UL16NFDv/nNbxy4BwAAAGZizgIAAPA+ZiwAAGAiR8u+2bNnN/n6ueeeU0pKig4cONDigPTXv/5VU6dO1aOPPipJGjFihB555BF99NFHPlkvAACAv2DOAgAA8D5mLAAAYCJjrtlXW1ur1157TZWVlUpKSmrxmK9//es6fPiwDh48KEn64osv9O6772rWrFmtntflcqmsrKzJ/wAAALoT5iwAAADvs2vGkpizAABAx/SwLMtycgHHjx9XUlKSLl26pNDQUG3atKnNgeeFF17Qj370I1mWpcuXL+t73/ueUlJSWj1+xYoVWrlyZbPvz5w5U3369PHKfWjJwYMHNWXKFNvO78scMsgggwx/yfBVDhnmZNTU1Gj79u0qLS1VeHi4bTn+ijmLDJ57ySCDDDICM8MXOcxZrbN7xpKYs8ggw9QcMsggg4yusm3Gshzmcrms06dPW2lpadZPf/pTKyoqyjpx4kSLx+7evdsaNGiQ9fvf/9765JNPrDfeeMMaNmyY9eyzz7Z6/kuXLlmlpaUN/ztz5owlySotLbXrLlmWZVmzZ8+29fy+zCGDDDLI8JcMX+WQYU5GaWmpT36u+yvmLDJ47iWDDDLICMwMX+QwZ7XO7hnLspizyCDD1BwyyCCDjK6ya8Zy9Jp9khQUFKRRo0ZJkhITE3Xo0CGtXbtWL774YrNjly1bpscee0xPPvmkJGncuHGqrKzUP/7jP+pnP/uZevZs/qmkwcHBCg4OtvdOAAAAGIg5CwAAwPvsnrEk5iwAANAxxlyzz62urk4ul6vFP7t48WKzIahXr16SJMvZTyMFAAAwHnMWAACA9zFjAQAApzn6zr4lS5bovvvu0/Dhw1VeXq5NmzYpNTVVO3bskCQtWLBAsbGxSk5OliTNnj1bv/nNb/SVr3xFX/3qV/XZZ59p2bJlmj17dsOgBAAAAOYsAAAAOzBjAQAAEzla9hUUFGjBggXKy8tTRESEEhIStGPHDs2YMUOSlJOT0+S3n5YuXaoePXpo6dKlOnv2rAYOHKjZs2frueeec+ouAAAAGIk5CwAAwPuYsQAAgIkcLftefvnlNv88NTW1yde9e/fW8uXLtXz5chtXBQAA4P+YswAAALyPGQsAAJjIuGv2AQAAAAAAAAAAAPAMZR8AAAAAAAAAAADgpyj7AAAAAAAAAAAAAD9F2QcAAAAAAAAAAAD4Kco+AAAAAAAAAAAAwE9R9gEAAAAAAAAAAAB+irIPAAAAAAAAAAAA8FOUfQAAAAAAAAAAAICfouwDAAAAAAAAAAAA/BRlHwAAAAAAAAAAAOCnKPsAAAAAAAAAAAAAP0XZBwAAAAAAAAAAAPgpyj4AAAAAAAAAAADAT1H2AQAAAAAAAAAAAH6Ksg8AAAAAAAAAAADwU5R9AAAAAAAAAAAAgJ+i7AMAAAAAAAAAAAD8FGUfAAAAAAAAAAAA4Kco+wAAAAAAAAAAAAA/RdkHAAAAAAAAAAAA+ClHy76UlBQlJCQoPDxc4eHhSkpK0rZt21o9fvr06erRo0ez/91///0+XDUAAID5mLMAAAC8jxkLAACYqLeT4UOHDtWaNWs0evRoWZal9evX68EHH9THH3+sW265pdnxb7zxhqqrqxu+Pn/+vMaPH69vfetbvlw2AACA8ZizAAAAvI8ZCwAAmMjRsm/27NlNvn7uueeUkpKiAwcOtDggDRgwoMnXr732mq677joGJAAAgGswZwEAAHgfMxYAADCRo2Xf1Wpra/X666+rsrJSSUlJHt3m5Zdf1sMPP6x+/fq1eozL5ZLL5Wr4uqysrMtrBQAA8CfMWQAAAN5n14wlMWcBAICO6WFZluXkAo4fP66kpCRdunRJoaGh2rRpk2bNmtXu7Q4ePKivfvWr+uijjzRlypRWj1uxYoVWrlzZ7PszZ85Unz59urT29tbX1rr8KYcMMsggw18yfJVDhjkZNTU12r59u0pLSxUeHm5bjr9iziKD514yyCCDjMDM8EUOc1br7J6xJOYsMsgwNYcMMsggo6tsm7Esh7lcLuv06dNWWlqa9dOf/tSKioqyTpw40e7t/vEf/9EaN25cu8ddunTJKi0tbfjfmTNnLElWaWmpN5bfqtmzZ9t6fl/mkEEGGWT4S4avcsgwJ6O0tNQnP9f9FXMWGTz3kkEGGWQEZoYvcpizWmf3jGVZzFlkkGFqDhlkkEFGV9k1Yzn+MZ5BQUEaNWqUJCkxMVGHDh3S2rVr9eKLL7Z6m8rKSr322mt69tln2z1/cHCwgoODvbZeAAAAf8GcBQAA4H12z1gScxYAAOiYnk4v4Fp1dXVNPpO8Ja+//rpcLpfmz5/vo1UBAAD4P+YsAAAA72PGAgAATnP0nX1LlizRfffdp+HDh6u8vFybNm1SamqqduzYIUlasGCBYmNjlZyc3OR2L7/8subOnavrr7/eiWUDAAAYjzkLAADA+5ixAACAiRwt+woKCrRgwQLl5eUpIiJCCQkJ2rFjh2bMmCFJysnJUc+eTd98mJGRoX379um9995zYskAAAB+gTkLAADA+5ixAACAiRwt+15++eU2/zw1NbXZ98aOHSvLsmxaEQAAQGBgzgIAAPA+ZiwAAGAi467ZBwAAAAAAAAAAAMAzlH0AAAAAAAAAAACAn6LsAwAAAAAAAAAAAPwUZR8AAAAAAAAAAADgpyj7AAAAAAAAAAAAAD9F2QcAAAAAAAAAAAD4Kco+AAAAAAAAAAAAwE9R9gEAAAAAAAAAAAB+irIPAAAAAAAAAAAA8FOUfQAAAAAAAAAAAICfouwDAAAAAAAAAAAA/BRlHwAAAAAAAAAAAOCnKPsAAAAAAAAAAAAAP0XZBwAAAAAAAAAAAPgpyj4AAAAAAAAAAADAT1H2AQAAAAAAAAAAAH6Ksg8AAAAAAAAAAADwU5R9AAAAAAAAAAAAgJ+i7AMAAAAAAAAAAAD8FGUfAAAAAAAAAAAA4KccLftSUlKUkJCg8PBwhYeHKykpSdu2bWv1+HXr1qlHjx5N/te3b18frhgAAMA/MGcBAAB4HzMWAAAwUW8nw4cOHao1a9Zo9OjRsixL69ev14MPPqiPP/5Yt9xyS4u3CQ8PV0ZGRsPXPXr08NVyAQAA/AZzFgAAgPcxYwEAABM5WvbNnj27ydfPPfecUlJSdODAgVYHpB49emjw4MG+WB4AAIDfYs4CAADwPmYsAABgIkfLvqvV1tbq9ddfV2VlpZKSklo9rqKiQnFxcaqrq9PEiRP185//vNVhSpJcLpdcLlfD12VlZV5dNxCIiouLtXHjRlszsrOzyTAoo7i42NbzA3AWcxZgjqqqKh05csTWjOLiYjIMyqiqqrL1/ACcY9eMJTFnAZ3BnNX9MpizgEY9LMuynFzA8ePHlZSUpEuXLik0NFSbNm3SrFmzWjz2ww8/1OnTp5WQkKDS0lL9+te/1t69e3XixAkNHTq0xdusWLFCK1eubPb9mTNnqk+fPl69L1c7ePCgpkyZYtv5fZlDRvfKKC4u1r59+2w7P8w1bdo09e/f37bz87xIhh1qamq0fft2lZaWKjw83LYcf8WcRQbPvWZlVFVV6f3337ft/DDXPffco5CQENvOHwiPDzLMy2HOap3dM5bEnEUGGR3FnNV9MWeR4W8Zds1Yjpd91dXVysnJUWlpqTZv3qyXXnpJe/bs0c0339zubWtqahQfH69HHnlEq1atavGYln4TatiwYbYPq3PmzNFbb71l2/l9mUNG98rYuHGj5s+fr0WTRmjq8OvbPHZLeq42p+fpofgYzY0f4nHGK0eytSurSA/FD9Hc+JgurffzC5VK3ndKw8JD9OOpoxXSp5fXM1rjznhw7GCdLCzXmbIqLZk2RjcO6Of1DE/uR2f3Y3/OeaWkZWnDhg2aN29eV5fcKp4XybBDWVmZIiIieBGqFcxZZPDca1bGkSNHlJiYqA3fTFT8wDBbMt49fU7LdqeTYUhGemG55r95WIcPH9bEiRNtyZAC4/FBhnk5zFmts3vGkpizyCCjo5izul8GcxYZ/pph14zl+Md4BgUFadSoUZKkxMREHTp0SGvXrtWLL77Y7m379Omjr3zlK/rss89aPSY4OFjBwcFeWy/QXUwdfr3mjRvW6p+v3puhzel5WnVnvJbePrZD596fc167soo0fnBEmxntOXi2WE+9c0wTYyK1fV6SwoIbf7vRWxltcWccyStRqeuy9iy8TVNivfvOOE/vR1f2Q5JS0rK6sEoApmLOAswUPzBME2MibTl3elE5GQZlAAhMds9YEnMW0Fn+PjuQAaCzejq9gGvV1dU1+c2lttTW1ur48eOKibHnXTsAWrZ6b4aW7U7vdLHkDQfPFmvGq/t1a3R4s6LPV6pr6yRJBZUu7XxsqteLPk+ZsB8A/ANzFgAAgPcxYwEAAKc5+s6+JUuW6L777tPw4cNVXl6uTZs2KTU1VTt27JAkLViwQLGxsUpOTpYkPfvss/ra176mUaNGqaSkRL/61a+UnZ2tJ5980sm7AXQrJhRLJhR95a4abT2VL0laOCGOog+AcZizAAAAvI8ZCwAAmMjRsq+goEALFixQXl6eIiIilJCQoB07dmjGjBmSpJycHPXs2fjmw+LiYn33u99Vfn6++vfvr8TERP31r3/16DPRAXSdCcWSKUXfzI0f6kJVtSRpaLh9FwFuiwn7AcBczFkAAADex4wFAABM5GjZ9/LLL7f556mpqU2+/u1vf6vf/va3Nq4IQGtMKJZMKvo+LSjT7LExeiM9z+drkMzYDwBmY84CAADwPmYsAABgIuOu2QfAPCYUS6YVfTsfm6pB/Zy5WLoJ+wEAAAAAAAAAMANlH4A2mVAsmVj0cY0+AAAAAAAAAIAJKPsAtMqEYomir5EJ+wEAAAAAAAAAMIuj1+wDYK4t6bnanJ5H0WdI0ZeaVahdmUUUfQAAAAAAAACAJnhnH4AWUfSZU/RJougDAAAAAAAAALSIsg9Aix6Kj6HoM6DoS8stkSTdPTKKog8AAAAAAAAA0AxlH4AWzY0f4kguRV+j1XszdOhK2Td9xEBH1gAAAAAAAAAAMBtlHwBjUPQ1Wr03Q8t2p2vykEhH8gEAAAAAAAAA/oGyD4ARKPoauYu+VXfGaxJlHwAAAAAAAACgDZR9ABxH0dfo6qKPa/QBAAAAAAAAANpD2QfAURR9jSj6AAAAAAAAAAAdRdkHwDFfllVR9F1B0QcAAAAAAAAA6AzKPgCOWXc0m6JPFH0AAAAAAAAAgM6j7APgc+cqXZKk6H7BFH0GFH2fX6h0JBcAAAAAAAAA0HWUfQB86uDZYr2dkSdJenz8cIo+h4u+g2eLlbzvlCPZAAAAAAAAAICuo+wD4DMHzxZrxqv7NSAkSJIU3LuXz9dA0dfIvR/DwkMcyQcAAAAAAAAAdB1lHwCfcBdLt0aH64Exgx1ZA0Vfo6v348dTRzuyBgAAAAAAAABA11H2AbDd1cXS9nlJCurl+6ceir5G1+5HSB/fv8MSAAAAAAAAAOAdlH0AbHVtscQ1+swq+pzYDwAAAAAAAACA9zha9qWkpCghIUHh4eEKDw9XUlKStm3b5tFtX3vtNfXo0UNz5861d5EAOs2EYsl1uZai7woT9gOA7zBnAQAAeB8zFgAAMJGjZd/QoUO1Zs0aHT58WGlpabrrrrv04IMP6sSJE23eLisrSz/60Y902223+WilADrKlGJp/bEcij6Zsx8AfIc5CwAAwPuYsQAAgIkcLftmz56tWbNmafTo0RozZoyee+45hYaG6sCBA63epra2VvPmzdPKlSt1ww03+HC1ADxlQrFUXVsnSSqodFH0GbAfAHyPOQsAAMD7mLEAAICJeju9ALfa2lq9/vrrqqysVFJSUqvHPfvss4qOjtZ3vvMd/eUvf2n3vC6XSy6Xq+HrsrIyr6wXcEpxcbE2btxo2/n3798vSdqSnqfM4osdvv2XZVVadzRb0f2CddeIKK396Itmx6TllkiSUrMKu7TW1rgu1+qPn56VJI2LjtB7nxfovc8LvJ7T3v1IzSrUrswi3T0ySlJ98eftjPZ4sh/H8kslNe69XYqLi209P4DWMWcBnqmqqtKRI0dsO396enr9/xeW25bhnt/I8Dzj3dPnlF5kT07D/biy93apqqqy9fwAWmbXjCUxZyGw2D1jScxZpma8dCRLQ8JCbMnILa+ff5izgHo9LMuynFzA8ePHlZSUpEuXLik0NFSbNm3SrFmzWjx23759evjhh3X06FFFRUVp4cKFKikp0ZYtW1o9/4oVK7Ry5cpm3585c6b69LHv3S0HDx7UlClTbDu/L3PIMCejuLhY+/bts+38gN2mTZum/v3tfZdlIDzWyfBcTU2Ntm/frtLSUoWHh9uW46+Ys8hgJvVcVVWV3n//fdvOD9jtnnvuUUiIPS+mSYHxOA+kDF/kMGe1zu4ZS2LOIiNwMpixEAiYs8jwJrtmLMfLvurqauXk5Ki0tFSbN2/WSy+9pD179ujmm29uclx5ebkSEhL0u9/9Tvfdd58keTQgtfSbUMOGDbN9WJ0zZ47eeust287vyxwyzMnYuHGj5s+fr0WTRmjq8Osbvr8lPVeb0/P0UHyM5sYP6VLGK0eytSurSJOHRGrSkEiPb3eu0qW3M/I0ICRID4wZrKBerX9K8J6sIp0squhwRnuqa+u09VS+LlRVKzY8RFklVV7PuFpr9yMtt0SHcku8kr03q0gniioUc/N8RcZM6tqCW1GSl6a8kxv0UPwQzY2P8dp5q2pq9cv9p3WmrEr3jxqkP/0tTxs2bNC8efO8ltGSQHisk+G5srIyRURE8CJUK5izyGAm9dyRI0eUmJioDd9MVPzAMFsy3j19ruHjvUf2v86WjP0555WSlkWGB9wzdPzd/6F+/UfZklFZ/JnSd31fq+6M16zRg2zJSC8s1/w3D+vw4cOaOHGiLRlSYDzOAynDFznMWa2ze8aSmLPICJwMX8xYEnOWaRnu1xeH3DJfEYNbfz2rqixbOUdSFBQ6WHETvqeevft6nFGan6bcExu0aNIIPTlxhBdW3RxzFhl2sGvGcvxjPIOCgjRqVP1/WCUmJurQoUNau3atXnzxxSbHff7558rKytLs2bMbvldXV39Nrt69eysjI0M33nhjs/MHBwcrODjYxnsA+N7U4ddr3rhhkuo/GnJzep7Xrgm3P+e8dmUVac7YGI/P574m3OTYAR5dE+6pd47qZFFFhzLaU+6q0cyNH6rqcp32ffsOrTuarZS0LK9mXKul+7F6b4YO5WZ5bT+eeueoThRVKDJmkgaP+WaXz9eavJMbNH5wRMO/q65y78e5Spf2LLxNpy9U6E9/y/PKuQF4jjkL6Lj4gWGaGBNpy7ndHxU5a/Qg2zIkKSUtiwwPZBZf1Ob0PPXrP0phA8fZkuE2sv91tv5dAfAtu2csiTkLgcfOGUtizjItw/36YsTg1l/PKjt3VKf+skyhA2/R+Pv/V72DQjuck3tig4aEhTBnATKg7LtWXV1dk99ccrvpppt0/PjxJt9bunSpysvLtXbtWg0b5p0XqAF/snpvRsNvLdlVaLXHXfTdGh3uUdFnB3ex9GlBmXY+NlVTYvtr3dFsn6/DhP0wQUv7cfpChdPLAiDmLAAAADswYwFAx5SdO6qjW+er34AxnS76ADTlaNm3ZMkS3XfffRo+fLjKy8u1adMmpaamaseOHZKkBQsWKDY2VsnJyerbt69uvfXWJrePjIyUpGbfB7oDE4olU4s+J5iwHyYwZT8AMGcBAADYgRkLALqGog+wh6NlX0FBgRYsWKC8vDxFREQoISFBO3bs0IwZMyRJOTk56tmz9et+Ad2V+/oiFH1mFEupWYXalVlE0WfIfgCox5wFAADgfcxYANB5FH2AfRwt+15++eU2/zw1NbXNP1+3bp33FgP4EYo+s4olij6z9gNAPeYsAAAA72PGAoDOoegD7MWvGgF+6KH4GIo+A4qltNwSSdLdI6Mo+gzYDwAAAAAAAJiHog+wH2Uf4Ifmxg9xJJeir9HqvRk6dKXsmz5ioCNrMIEp+wEAAAAAAADzUPQBvkHZB8AjFH2NVu/N0LLd6Zo8JNKRfFOYsh8AAAAAAAAwT1VZNkUf4COUfQDaRdHXyF30rbozXpO6cdlnyn4AAAAAAADATDlHUij6AB+h7APQJoq+RlcXfVyjz/n9AAAAAAAAgLmCQgdT9AE+QtkHoFUUfY0o+uqZsh8AAAAAAAAwW9yE71H0AT5C2QegRV+WVVH0XUHRV8+U/QAAAAAAAID5evbu6/QSgG6Dsg9Ai9YdzaboE0Wfmyn7AQAAAAAAAABoirIPQBPnKl2SpOh+wRR9BhR97v1wkin7AQAAAAAAAABojrIPQIODZ4v1dkaeJOnx8cMp+hwu+ur3I9+RbDdT9gMAAAAAAAAA0DLKPgCS6oulGa/u14CQIElScO9ePl+DKcWSKUXfjFf36/or++EEU/YDAAAAAAAAANA6yj4ADcXSrdHhemDMYEfWYEqxZFLRd2t0uO4fM8iRNZiyHwAAAAAAAACAtlH2Ad3c1cXS9nlJCurl+6cFU4ol04q+7r4fAAAAAAAAQEvqLl9yegmAUSj7gG7s2mKJa/SZVfR15/0AAAAAAAAAWnK5ukLZR//b6WUARqHsA7opE4ol1+VaI4olir56puwHAAAAAAAA0JLL1RU69s4CVVfkO70UwCiUfUA3ZEKxJEnrj+U4XixR9DUyYT8AAAAAAACAlriLvsoLpzR84iKnlwMYhbIP6GZMKJaqa+skSQWVLoo+A/bDzen9AAAAAAAAAFpyddE34YENCgmPc3pJgFEo+4BuxIRiqdxVo62n6t9mv3BCHEWfIUWf5Ox+AAAAAAAAAC25tugLHzTB6SUBxqHsA7oJE4qlcleNZm78UBeqqiVJQ8NDfL4GiaKvNU7tBwAAAAAAANASij7AM5R9QDdgQrHkLvo+LSjT7LExPs93o+gDAAAAAAAAzEfRB3jO0bIvJSVFCQkJCg8PV3h4uJKSkrRt27ZWj3/jjTc0adIkRUZGql+/fpowYYJeffVVH64Y8D8mFEtXF307H5uqQf2Cfb4GiaIPQPfCnAUAAOB9zFgA4BsUfUDH9HYyfOjQoVqzZo1Gjx4ty7K0fv16Pfjgg/r44491yy23NDt+wIAB+tnPfqabbrpJQUFB2rp1q5544glFR0frG9/4hgP3ADCbCcXStUXflNj+Wnc02+froOgD0N0wZwEAAHgfMxYA2I+iD+g4R8u+2bNnN/n6ueeeU0pKig4cONDigDR9+vQmXz/zzDNav3699u3bx4AEXMOEYqmlos8JFH0AuiPmLAAAAO9jxgIAe1H0AZ3jaNl3tdraWr3++uuqrKxUUlJSu8dblqUPPvhAGRkZ+sUvftHqcS6XSy6Xq+HrsrIyr6wXcNKW9DxlFl9s9c+/LKvSuqPZiu4XrLtGRGntR194fO603BJJUmpWYZfW6Lpcq/XHclRQ6dLCCXF67/MCvfd5gVcz2uLOeOXjbH1RclF3j4ySVF/8eTujvfvRlf04fCWjquyMyguPd3apbaoqOyPJ3v04ll9q27kBtI85C/BcemG5bed2z29keJ7x7ulzSi+yJ+dYfokkqbL4M1vOf/W59+ecty2jrf8uAGAvu2YsiTkLgcfOuUEKvBnIFxkvHcnSkLAQWzLSzpZIkgoz32t43ckTdbXVOnfqT6q+WKTBYx/S+TN7df7M3haPrTifLklKzbTv9azc8irbzg14Ww/LsiwnF3D8+HElJSXp0qVLCg0N1aZNmzRr1qxWjy8tLVVsbKxcLpd69eql3/3ud/r2t7/d6vErVqzQypUrm31/5syZ6tPHvnfWHDx4UFOmTLHt/L7MIcOcjOzsbH3yySe2nR+wW0JCguLi4mzNCITHOhmeq6mp0fbt21VaWqrw8HDbcvwVcxYZzKSeKy4u1r59+2w7P2C3SZMmKSYmxrbzB8LjPJAyfJHDnNU6u2csiTmLjMDJYMZCILD79axAeKyT4Tm7ZizHy77q6mrl5OSotLRUmzdv1ksvvaQ9e/bo5ptvbvH4uro6ffHFF6qoqNCuXbu0atUqbdmypdnHIri19JtQw4YNs31YnTNnjt566y3bzu/LHDLMydi4caPmz5+vu0dEaUxUaLM/P1fp0tsZeRoQEqQHxgxWUK+eHc7Yk1Wkk0UVmjwkUpOGRHb49tW1ddp6Kl8Xqqo1e2yMBvUL9nqGJzafyFVhVbViQ/tqzk2DbcnYm1WkE0UVirl5viJjJtmSUZKXpryTGzRi8g8VEj7MbzOqys4o69Dz2rBhg+bNm2dLhlsgPNbJ8FxZWZkiIiJ4EaoVzFlkMJN67siRI0pMTNSqO+M1sv91tmTszzmvlLQsMjywJT1Xm9PzFH/3f6hf/1G2ZBRl71bWoed9MmfZeT8qiz9T+q7v2z5nBcLjPJAyfJHDnNU6u2csiTmLjMDJ8MWMJQXODOSLjFeOZGtXVpGG3DJfEYMnqaosWzlHUhQUOlhxE76nnr37djkj72+vq+TsfoUOHK+wgePaPd6qq9H57F2quVSiqLh71Oe6qHZvU5L7kapKTivqhlkaOPLeLq9Zkgozd6joi22KuuE+DRz5DZXmpyn3xAatWrVKS5cu9UpGSwLhsU6G5+yasRz/GM+goCCNGlX/Hz2JiYk6dOiQ1q5dqxdffLHF43v27Nlw/IQJE5Senq7k5ORWB6Tg4GAFBzcvGwB/9sTEOM0b1/QFCfc14SbHDujSNeGeeueoThZVaM7YmA5f3859jb6qy3Xa9+07Wr1GX1cyPLF6b4YKq6olSd+bPNK26/Q99c5RnSiqUGTMJA0e801bMiQp7+QGRcXd6dFwZGpGeeFxZR163pZzA2gdcxbQcbNGD9LEmEjbzp+SlkWGBzKLL2pzep769R9l23zi/ohNX8xZdt4PAL5n94wlMWch8Ng9m0iBMQP5ImN/znntyipSxOBJui5ipE79ZZlCB96i8ff/r3oHNX9zQWeU5KWp5Ox+RY24RyMn/d82j3Vfo6+u1qXEb/7J42v0/W3Pz1RVclqh18d75XW5rMMvqOiLbRo55Ycakdi45twTG7p8bsAXOv62H5vV1dU1+c0lbx8PBCJ30XdrdHiXir6ucBd9nxaUaedjU1st+uy2em+Glu1O12Sb3jEIAP6MOQsAAMD7mLEA+KOqsmwd3Tpf/QaM8WrR1xHuoq/ywilNeGCDx0Wft2UdfkGZB59vVvQB/sTRd/YtWbJE9913n4YPH67y8nJt2rRJqamp2rFjhyRpwYIFio2NVXJysiQpOTlZkyZN0o033iiXy6V3331Xr776qlJSUpy8G4CjKPoauYu+VXfGK7e8SodySxxZBwCYgDkLAADA+5ixAASKnCMpXn9HX0dQ9AHe5WjZV1BQoAULFigvL08RERFKSEjQjh07NGPGDElSTk6OevZsfPNhZWWlnnrqKX355ZcKCQnRTTfdpA0bNugf/uEfnLoLgKMo+hpdXfQtvX2snnrnqCPrAABTMGcBAAB4HzMWgEARFDqYoo+iDwHE0bLv5ZdfbvPPU1NTm3y9evVqrV692sYVAf6Doq/RtUUfAIA5CwAAwA7MWAACRdyE71H0UfQhgBh3zT4A7fv8QiVF3xUUfQAAAAAAAEDH9Ozd1+eZFH2AfSj7AD+UvO8URZ8o+gAAAAAAAAB/QNEH2IuyD/BDw8JDKPoMKPrOVbocyQUAAAAAAAD8BUUfYD/KPsAP/XjqaIo+h4u+g2eL9XZGviPZAAAAAAAAgD+g6AN8g7IP8EMhfXr5PJOir9HBs8Wa8ep+XR8S5Eg+AAAAAAAAYLq62mqKPsBHKPsAtIuir5G76Ls1Olz3jxnkyBoAAAAAAAAA05079SeKPsBHKPsAtImir9HVRd/2eUkK6sVTKAAAAAAAAHA1q65GklR9sYiiD/ARXqkG0CqKvkbXFn1OXDMRAAAAAAAAMNnl6gqdz94lSRo89iGKPsBHKPsAtMh1uZai7wqKPgAAAAAAAKBtl6srdOydBaq5VCJJCg6NcWQdFH3ojij7ALRo/bEcij5R9AEAAAAAAADtcRd9lRdOKSruHsfWQdGH7oqyD0AT1bV1kqSCShdFH0UfAAAAAAAA0Kari74JD2xQn+uiHFkHRR+6M8o+AA3KXTXaeipfkrRwQhxFH0UfAAAAAAAA0Kpriz6u0Qc4g7IPgKT6om/mxg91oapakjQ0PMSRdVD0AQAAAAAAAOaj6APMQdkHoKHo+7SgTLPHOnPhXImiDwAAAAAAAPAHphR9JbkHKPoAUfYB3d7VRd/Ox6ZqUL9gR9ZB0QcAAAAAAACYz5SiT5JKzu6n6ANE2Qd0a9cWfVyjj6IPAAAAAAAAaI0pRV954XFJUmTsVIo+QJR9QLdF0deIog8AAAAAAABomylFX9bhF1RReEySFDnka46sATBNb6cXAMD3TCn6UrMKtSuziKIPAAAAAAAAMJhJRV/mwecVOnB8Q+EHgHf2Ad2OKUWfJIo+AAAAAAAAwHCmFX0jp/xQYQPHObIGwFSUfUA3YkrRl5ZbIkm6e2QURR8AAAAAAABgKBOLPq7RBzTnaNmXkpKihIQEhYeHKzw8XElJSdq2bVurx//+97/Xbbfdpv79+6t///665557dPDgQR+uGPBfphR9q/dm6NCVsm/6iIGOrIGiD0B3wJwFAADgfcxYALoTij7Afzha9g0dOlRr1qzR4cOHlZaWprvuuksPPvigTpw40eLxqampeuSRR7R79259+OGHGjZsmO69916dPXvWxysH/ItJRd+y3emaPCTSkXyJog9A98GcBQAA4H3MWAC6C4o+wL/0djJ89uzZTb5+7rnnlJKSogMHDuiWW25pdvzGjRubfP3SSy/pT3/6k3bt2qUFCxbYulbAX5lW9K26M1655VUN7+7zJYo+AN0JcxYAAID3MWMB6A4o+gD/42jZd7Xa2lq9/vrrqqysVFJSkke3uXjxompqajRgwIBWj3G5XHK5XA1fl5WVdXmtQGuKi4ubDfLetH//fknSlvQ8ZRZfbPd41+VarT+Wo4JKlxZOiNN7nxfovc8L2ryN+3p6qVmFXV6vW2pWoXZlFunukVG2ZVzr2owvy6q07mi2ovsF664RUVr70Rddzjh8JaOq7IzKC493+XwtqSo7I0mqLP7MlvP7KsN9bve/YTsVFxfbngH4G+YsBIKqqiodOXLEtvOnp6fX/39huW0Z7vktUDLePX1O6UX25BzLL5Hk/zOQL+eszMxMWx8jVVVVtp0b8Fd2zVgScxZ8JxBmLCnw5qyXjmRpSFiILRlpZ0skSYWZ7zXMKlerq63WuVN/UvXFIg0e+5DOn9mr82f2dijD/TpZSe4BZaZ1bp0luQdUcna/ImOnyrKkzLQXvJ7R7hrO/lWSlJuby5wF4/WwLMtycgHHjx9XUlKSLl26pNDQUG3atEmzZs3y6LZPPfWUduzYoRMnTqhv374tHrNixQqtXLmy2fdnzpypPn3se1fPwYMHNWXKFNvO78scMjxTXFysffv22XZ+AJ6bNm2a+ve3712sgfCcFSgZNTU12r59u0pLSxUeHm5bjr9iziIjUGbSqqoqvf/++7adHwgE04YNUP+QINvO//apfN1zzz0KCbHnhUcpcJ4XA+W5lzmrdXbPWBJzFhm+yWDGAjyTEB2muMh+tp2fOat7Zdg1Yzle9lVXVysnJ0elpaXavHmzXnrpJe3Zs0c333xzm7dbs2aNfvnLXyo1NVUJCQmtHtfSb0INGzbM9mF1zpw5euutt2w7vy9zyPDMxo0bNX/+fP2fm2L0zmfnNCw8RD+eOlohfXp5LeOVI9nalVWkyUMiNamN695V19Zp66l8Xaiq1uyxMRrUL9jjjD1ZRTpZVNFuhifSckt0KLek2bm8mdGavVlFOlFUoZib5ysyZpItGSV5aco7uUEjJv9QIeHDyPAg458SR2jDJ2d044B++s/7EtQvyLtvME8vLNf8Nw9rw4YNmjdvnlfPfbVAeM4KlIyysjJFRETwIlQrmLPICJSZ9MiRI0pMTNSGbyYqfmCYLRnvnj7X8JHjI/tfZ0vG/pzzSknL8vuMLem52pyep/i7/0P9+o+yJaMoe7eyDj0fMDOQnRlVZWeUdeh5Hf7H6ZoYE2lLhiT1WLlFhw8f1sSJE23LCJTnxUB57mXOap3dM5bEnEWGbzICZcaSAmfOcr/2N+SW+YoYbM/rWXl/e10lZ/crdOB4hQ0c1/B9q65G57N3qeZSiaLi7lGf66I6nVGS+5GqSk43y/BEeeFxVRQea/e2XcloT83FIhVlv69evfuqtqZCG/4uUfPG2TPLScxZ3S3DrhnL8Y/xDAoK0qhR9f+BmJiYqEOHDmnt2rV68cUXW73Nr3/9a61Zs0bvv/9+u8NRcHCwgoM9LzqArnrns3OaGBNpyzXh9uec166sIs0ZG6Olt49t8Rj3NfqqLtdp37fv6PA1+p5656hOFlW0meGJ1XszdCi3fgC69jzeymjLU+8c1YmiCkXGTNLgMd+0JUOS8k5uUFTcnV4fKgI1Y/2xHNseHwCaY85CoIkfGGZbmeH+OMpZowfZWpikpGX5fUZm8UVtTs9Tv/6jbJsd3B9NGSgzkJ0Z5YXHlXXoeVvODaBlds9YEnMWfCsQZiwpMOYs92t/EYPtez2rJC9NJWf3K2rEPRo5qf46eO5r9NXVupT4zT91+Rp9f9vzM1WVnG6S4Ymswy8o7+QGj67R19mM9pSdO6qjW+crfNB4xYz9ljL2/NRr5wbs1NPpBVyrrq6uyW8uXeuXv/ylVq1ape3bt2vSJHt+uwHoimHhIY4VGe6i79OCMu18bGqHiz5vWb03o+G3tuwq89pzrrL15xE4x8nHBwDmLAAAADswYwHwZ+6ir/LCKU14YEOXi77Oyjr8gjIPPu9R0WcXd9HXb8AYjb//f9Wzd+sftwyYxtF39i1ZskT33Xefhg8frvLycm3atEmpqanasWOHJGnBggWKjY1VcnKyJOkXv/iF/v3f/12bNm3SiBEjlJ+fL0kKDQ1VaGioY/cDuNqPp46m6HO46Dt4tlhvZ+Q7ko22OfX4ALoj5iwAAADvY8YCEEgo+hpdW/T1DuI5Gv7F0bKvoKBACxYsUF5eniIiIpSQkKAdO3ZoxowZkqScnBz17Nn45sOUlBRVV1froYceanKe5cuXa8WKFb5cOtAqb16jz1MUfY0Oni3WjFf36/qQIOXz7j7jOPH4ALor5iwAAADvY8YCECjqaqsp+q6g6EMgcLTse/nll9v889TU1CZfZ2Vl2bcYwE9R9DVyF323RocrPipUL3+c48g6AMAEzFkAAADex4wFIFCcO/UnXa4up+ij6EOAMO6afQA8R9HX6Oqib/u8JAX14ukNAAAAAAAAuJpVVyNJqr5YRNFH0YcAwqvhgJ+i6Gt0bdHHNeEAAAAAAACApi5XV+h89i5J0uCxD1H0UfQhgFD2AX7IdbmWou8Kij4AAAAAAACgbZerK3TsnQWquVQiSQoOjXFkHRR9gD0o+wA/tP5YDkWfKPrQXGX1ZaeXAAAAAAAAYBR30Vd54ZSi4u5xbB0UfYB9KPsAP1JdWydJKqh0UfRR9OEa5a4aPb3tE6eXAQAAAAAAYIyri74JD2xQn+uiHFkHRR9gL8o+wE+Uu2q09VS+JGnhhDiKPoo+XMV9DcvPL1Q6vRQAAAAAAAAjXFv0cY0+ij4ELso+wA+4i4wLVdWSpKHhIY6sg6IPJnI/Pj4tKNPv7h/v9HIAAAAAAAAcR9HXiKIP3UFvpxcAoG1XFxmzx8bojfQ8R9ZB0QcTXf342PnYVPXu2cPpJQEAAAAAADjKlKKvJPeASs7up+gDfIB39gEGu7bIGNQv2JF1UPTBRNc+Ppz6aFsAAAAAAABTmFL0SaLoA3yIsg8wlClFBkUfTGTK4wMAAAAAAMAUphR95YXHJUmRsVMp+gAfoewDDGRKkUHRBxOZ8vgAAAAAAAAwhSlFX9bhF1RReEySFDnka46sgaIP3RHX7AMMY0qRkZpVqF2ZRRR9MIopjw8AAAAAAABTmFT0ZR58XqEDxzcUfr5G0Yfuinf2AQYxqcig6INpTHp8AAAAAAAAmMC0om/klB8qbOA4R9ZA0YfujLIPMIQpRUZabokk6e6RURR9MIYpjw8AAAAAAABTmFj0cY0+wBmUfYABTCkyVu/N0KErZd/0EQMdWQNFH65lyuMDAAAAAADAFBR9jSj6AMo+wHGmFBmr92Zo2e50TR4S6Ui+RNGH5kx5fAAAAAAAAJiCoq+RqyKPog8QZR/gKFOKDHfRt+rOeE1yqOyj6MO1THl8AAAAAAAAmIKir6n8jM0UfYAo+wDHmFJkXF30cY0+mMKUxwcAAAAAAIApKPoa1VwskiQFXRdF0QeIsg9whClFBkUfTGTK4wMAAAAAAMAUFH2Nys4dVVH2+5KkQWP+D0UfIMo+wOdMKTJMKPq+LKui6EMTpjw+AAAAAAAATEHR16js3FEd3TpfffpGSpJ69gpyZB2AaTwu+3Jzc70enpKSooSEBIWHhys8PFxJSUnatm1bm7d5/fXXddNNN6lv374aN26c3n33Xa+vC7CLKUWGCUWfJK07mk3RhwamPD4AJzBnAQAAeB8zFoBAQNHXyF309RswRtfH3e3IGgBTeVz23XLLLdq0aZNXw4cOHao1a9bo8OHDSktL01133aUHH3xQJ06caPH4v/71r3rkkUf0ne98Rx9//LHmzp2ruXPn6tNPP/XqugA7mFJkmFD0nat0SZKi+wVT9EGSOY8PwCnMWQAAAN7HjAXA31H0Nbq66Bt///+qR09eTwSu5nHZ99xzz+mf/umf9K1vfUsXLlzwSvjs2bM1a9YsjR49WmPGjNFzzz2n0NBQHThwoMXj165dq5kzZ+pf//VfFR8fr1WrVmnixIn6z//8T6+sB7CLKUWGCUXfwbPFejsjT5L0+PjhFH0w5vEBOIk5CwAAwPuYsQD4M4q+RtcWfVyjD2iut6cHPvXUU7rvvvv0ne98RzfffLN+//vfa/bs2V5bSG1trV5//XVVVlYqKSmpxWM+/PBD/cu//EuT733jG9/Qli1bWj2vy+WSy+Vq+LqsrMwr6wVasyU9T5nFFxu+dl2u1fpjOSqodGnhhDi993mB3vu8oFPnTsstkSSlZhV2+LapWYXalVmku0dGSaov/ryd0Z4vy6q07mi2gnv1Uk1drT788kKr6+iqw1fuR1XZGZUXHrclo6rsjCSpsvgzW84fiBn7c843/X5NrX65/7TOlFVpybQxOn2hQqcvVHQ65+rHHuBPmLMAz6QXltt2bvfPEDLal1teJSlw5hN/z7Dz3IC/89cZS2LOgm/5+2ziqxxfZBRe+TSsgs/f1Rcf/VLVF4s0eOxDOn9mr86f2euVDPfrZCW5B5SZ1vaxJbkHVHJ2vyJjp8qypMy0F7ye0R5XRZ7yMzYr6LooRQ75us588gevZ7Sm4ny6PScGbNDDsiyrozf6z//8T/3gBz9QfHy8evdu2hceOXKkQ+c6fvy4kpKSdOnSJYWGhmrTpk2aNWtWi8cGBQVp/fr1euSRRxq+97vf/U4rV67UuXPnWrzNihUrtHLlymbfnzlzpvr0se8dRQcPHtSUKVNsO78vc8jwTHZ2tj755BPbzg/AcwkJCYqLi7Pt/IHwnBUoGTU1Ndq+fbtKS0sVHh5uW44vMWe1LxD+7QZShi9yiouLtW/fPtvOD8Az06ZNU//+9n0KQ6A8LwbKc2+gzVn+NGNJzFlk+CaDGQswB3NW98mwa8by+J19btnZ2XrjjTfUv39/Pfjgg80GpI4aO3asjh49qtLSUm3evFmPP/649uzZo5tvvrlL53VbsmRJk9+gKisr07Bhw/THP/7R1mF1zpw5euutt2w7vy9zyPDMxo0bNX/+fN09IkpjokJVXVunrafydaGqWrPHxmhQv+AuZ+zJKtLJogpNHhKpSUMiPbpNWm6JDuWWeHybzmS051ylS29n5GlASJAeGDNYH5654PWMa+3NKtKJogrF3DxfkTGTbMkoyUtT3skNGjH5hwoJH0aGBxnuPbfj8SFJp4oqtCurSD/+8Y81b948r5yzJYHwnBUoGWVlZYqIiLDt/L7GnOWZQPi3G0gZvsg5cuSIEhMTterOeI3sf50tGftzzislLYsMD2xJz9Xm9LyAmU/8PaOq7IyyDj2vRZNGaOrw623JyCy+qGW707V27VpNnDjRlgwpcJ4XA+W5N5DmLH+bsSTmLDJ8kxEoM5avcnyR8cqRbO3KKpLUU1Ej7lWf66K8nlGS+5GqSk4rdOB4hQ0c1+Ix5YXHVVF4rM1juprRnpqLRSrKfl99+kbq+ri7m12jzxsZ7blY/JlK8w7oofgYzY0fYksGc1b3y7BrxurQdPP73/9eP/zhD3XPPffoxIkTGjhwYJcXEBQUpFGjRkmSEhMTdejQIa1du1Yvvvhis2MHDx7c7Leezp07p8GDB7d6/uDgYAUHe+dFZMATT0yM05wxgzVz44equlynfd++w2vXIHvqnaM6WVShOWNjPLrm3uq9GTqUm9Wha/R1NKM9B88Wa8ar+zU5doC2z0tSWHAfr2e05Kl3jupEUYUiYyZp8Jhv2pIhSXknNygq7k7bhopAy5gzNkbPfPUGWx4fkrTx+JkrQzHgf5izgPbNGj1IE2MibTt/SloWGR7ILL6ozel5ATOf+HtGeeFxZR16XlOHX6954+wpFI/klWjZbj7GCv7JH2csiTkLvuXvs4kvc+zO2J9zXruyijRi8jMaOen7tmT8bc/PVFVyWlEj7tHISc2vwZd1+AXlndzQpWv0tZfRHvc1+sIHjW/1Gn1dzWjP5eoKHdp8vyRp/OBI5iwYr6enB86cOVM/+clP9J//+Z964403vDIctaSurq7JZ5JfLSkpSbt27WryvZ07d7b6ueiAE6pqajVz44f6tKBMOx+b6tUioyNW783Qst3pHSr6vM1d9N0aHd5Q9KF7c1024/EBmIY5CwAAwPuYsQD4q5Bw+y5N0paswy8o8+DzXSr6uspd9PUbMKbVos9ul6srdOydBaquyPd5NtBZHr+zr7a2Vp988omGDh3qtfAlS5bovvvu0/Dhw1VeXq5NmzYpNTVVO3bskCQtWLBAsbGxSk5OliQ988wzuuOOO/T888/r/vvv12uvvaa0tDT9z//8j9fWBHTVL/ef1rlKF0UfRR9asP5Yjkpdlyn6gGswZwEAAHgfMxYAeI6ir5676Ku8cErDJy5S1qHf+nwNQGd4XPbt3LnT6+EFBQVasGCB8vLyFBERoYSEBO3YsUMzZsyQJOXk5Khnz8Y3H37961/Xpk2btHTpUv3bv/2bRo8erS1btujWW2/1+tqAzjpTVqU9C2+j6HO46KuurfN5JtpXUOnS3idup+gDrsGcBQAA4H3MWADgGYq+elcXfRMe2KCLpZk+XwPQWV27InEXvfzyy23+eWpqarPvfetb39K3vvUtm1YEdN2SaWMo+hwu+spdNXrn1Ln2D4TPLZwQR9EH+AhzFgAAgPcxYwEINBR99a4t+sIHTaDsg1/x+Jp9ADxz44B+juRS9NUrd9Vo5sYPdb6q2ufZaN/Q8BCnlwAAAAAAAABR9Lm1VPQB/oayDwgAFH313EXfpwVlmj12sM/zAQAAAAAAAH9QknuAok8UfQgclH2An6Poq3d10bfzsaka1C/Y52sAAAAAAAAA/EHJ2f0UfRR9CCCUfYAfo+ird23RxzXhAAAAAAAAgObKC49LkiJjp1L0UfQhgFD2AX6Koq8eRR8AAAAAAADQvqzDL6ii8JgkKXLI1xxZA0UfYI/eTi8AQMelZhVqV2YRRR9FHwAAAAAAANCurMMvKPPg8wodOL6h8PM1ij7APryzD/BDFH0UfWjZlvRcp5cAAAAAAABgFHfRN3LKDxU2cJwja6DoA+xF2Qf4kbTcEknS3SOjKPoo+nCN1XsztDk9z+llAAAAAAAAGOPqoo9r9FH0IXBR9gF+YvXeDB26UvZNHzHQkTVQ9MFU7mtYPhQf4/RSAAAAAAAAjEDRV4+iD90BZR/gB9xFxuQhkY6tgaIPpnI/PlbdGa+58UOcXg4AAAAAAIDjTCj6XBV5FH2Aj1D2AYa7usiY5FDZR9EHU139+HDqo20BAAAAAABMYkLRJ0n5GZsp+gAfoewDDGZCkUHRB1OZ8PgAAAAAAAAwiQlFX83FIklS0HVRFH2Aj1D2AYYyocig6IOpTHh8AAAAAAAAmMSEoq/s3FEVZb8vSRo05v9Q9AE+QtkHGMiEIuPLsiqKPhjJhMcHAAAAAACASUwp+o5una8+fSMlST17Bfl8DRR96K4o+wDDmFJkrDuaTdEH45jy+AAAAAAAADCFSUVfvwFjdH3c3Y6sgaIP3RllH2AQE4qMc5UuSVJ0v2CKPhjFhMcHAAAAAACASUwr+sbf/7/q0dP3rydS9KG7o+wDDGFCkXHwbLHezsiTJD0+fjhFH4xhwuMDAAAAAADAJCYWfVyjD3AGZR9gABOKjINnizXj1f0aEFL/WdrBvXv5fA0UfWiJCY8PAAAAAAAAk1D01aurraboA0TZBzjOhCLDXfTdGh2uB8YMdmQNFH1oiQmPDwAAAAAAAJNQ9DU6d+pPFH2AKPsAR5lQZFxd9G2fl6SgXr5/WqDoQ0tMeHwAAAAAAACYhKKvnlVXI0mqvlhE0QfI4bIvOTlZkydPVlhYmKKjozV37lxlZGS0eZuamho9++yzuvHGG9W3b1+NHz9e27dv99GKAe8xoci4tujjGn0whQmPD8CfMWMBAADYgzkLgJMo+updrq7Q+exdkqTBYx+i6APkcNm3Z88eLV68WAcOHNDOnTtVU1Oje++9V5WVla3eZunSpXrxxRf1//7f/9PJkyf1ve99T9/85jf18ccf+3DlQNeYUGSYUPS5LtdS9KEZEx4fgL9jxgIAALAHcxYAp1D01btcXaFj7yxQzaUSSVJwaIzP1wCYqLeT4df+FtO6desUHR2tw4cP6/bbb2/xNq+++qp+9rOfadasWZKkRYsW6f3339fzzz+vDRs22L5moKtMKDJMKPokaf2xHJW6LlP0oYEJjw8gEDBjAQAA2IM5C4ATKPrquYu+ygunFBV3j4qyeJc04OZo2Xet0tJSSdKAAQNaPcblcqlv375NvhcSEqJ9+/a1erzL5Wr4uqyszAsrBVq3JT1PmcUXW/yz1KxC7cos0t0joyTVFxsdkZZb0nCezvqyrErrjmYrul+w7hoRpbUffeH1jPZ89GWxJCm3/JKenDhC731eoPc+L/BqxuEr96MkL82r572a+9yVxZ/ZllFVdiagMtr6d9XVx4ckHcsv7dwCgQBnx4zlvg1zFnwpvbDctnO75zcy2pdbXiUpcOYTf89wn3t/znnbMlr77xsAzFkIDP4+m/gqxxcZhZX1j/vS/MbXswozd6joi22KuuE+9Q0bpvxTb3Ypo6o0U5JUkntAmR6+bOaqyFN+xmYFXRelyCFf15lP/tDm8eWFxzuc0Z662mqdO/UnVV8s0uCxD6m86ITXM65VcT5dkpSaad/rpO7ZGuiqHpZlWU4vQpLq6uo0Z84clZSUtDnsPProozp27Ji2bNmiG2+8Ubt27dKDDz6o2traJkOQ24oVK7Ry5cpm3585c6b69LHv3UwHDx7UlClTbDu/L3PI8Ex2drY++eQT284PwHMJCQmKi4uz7fyB8JwVKBk1NTXavn27SktLFR4ebluOP7NrxpICe84iw6yc4uLiNv/9At1dn5AohUdPsDXjfPb7mjRpkmJi7PuorEB5XgyU517mrPYxZ5Hh7xnMWIA5eC2r+2TYNWMZU/YtWrRI27Zt0759+zR06NBWjyssLNR3v/tdvf322+rRo4duvPFG3XPPPfrDH/6gqqrmLXhLvwk1bNgw24fVOXPm6K233rLt/L7MIcMzGzdu1Pz583X3iCiNiWr6Nva03BIdyi3R5CGRmjQkstMZe7KKdLKoolPnOVfp0tsZeRoQEqQHxgxWUK+WL9nZlYz2VNfWaeupfBVUVsuSbMlwc9+PKUMilXhNhrf2Y29WkU4UVSjm5vmKjJnUtQW3oiQvTXknN2jE5B8qJHyYX2dcKs3SjUk/teX8V0vb/IA2bNigefPm2ZYRCM9ZgZJRVlamiIgIXoRqg10zlhTYcxYZZuUcOXJEiYmJWnVnvEb2v86WjP0555WSlkVGBzIWTRqhIWEhtmSkZhZqV1ZRQMxAvsiorsxXwqyXbTm/2+6UOGYsgzJ8kcOc1T7mLDL8PSNQZixf5fgy46H4GA3sF2xLhvs1s8jYqQqJGNnmsTUXi1SU/b769I3U9XF3q0dPz37ZoCT3I1WVnFbowPEKGziuS+u16mp0PnuXai6VKCruHvW5LsrrGa1xZ4yc8kO5Ks8p98QGDbllvobEP+y1jMriz5S+6/tatWqVli5d6rXzXisQnrMCJcOuGcuIj/F8+umntXXrVu3du7fN4UiSBg4cqC1btujSpUs6f/68hgwZop/+9Ke64YYbWjw+ODhYwcH2PDECLXliYpzmjWv8D/nVezN0KDfLK9cge+qdozpZVKE5Y2M6dC73Nfomxw5o9xp9nc1oT7mrRjM3fqiqy3X6ZnyM3kjP83rG1dz3Y/Y1Gd7ejxNFFYqMmaTBY77Z1SW3Ku/kBkXF3Wnb4OKrjILKfFvPD6A5O2csiTkLvjdr9CBNjIm07fwpaVlkdCDjyYkjbM3YlVUUEDOQT+asz7badm4ALWPOQiAJhNnEVzm+ylhy21jbMtyvmcXc9K02X89yX6MvfND4Dl+j7297fqaqktOKGnGPRk7q/DUG3dfoq6t1KfGbf1L4oAlez2iLO6O86KSKvtjm6DUTgfa0/NYeH7EsS08//bTefPNNffDBBxo5su3fJLha3759FRsbq8uXL+tPf/qTHnzwQRtXCnTO6r0ZWrY73SvFUme5i75bo8PbLfrs4i76Pi0o087HpmqQTb+Z1B4T9gMAfIEZCwAAwB7MWQC6A3fR12/AmA4Xfd7iLvoqL5zShAc2NCn6fI2iD/7A0bJv8eLF2rBhgzZt2qSwsDDl5+crPz+/yUcYLFiwQEuWLGn4+qOPPtIbb7yhL774Qn/5y180c+ZM1dXV6cc//rETdwFolQnFkolF35TY/j5fg2TGfgCArzBjAQAA2IM5C0Cgo+hrVF54XJIUdcN9FH0wnqMf45mSkiJJmj59epPvv/LKK1q4cKEkKScnRz17NnaSly5d0tKlS/XFF18oNDRUs2bN0quvvqrIyEgfrRponwnFEkVfIxP2AwB8iRkLAADAHsxZAAIZRV+jrMMvqKLwmCRp4MhvOLIGoCMcLfssy2r3mNTU1CZf33HHHTp58qRNKwK6bkt6rjan51H0GVL0pWYValdmEUUfgG6FGQsAAMAezFkAAhVFX6Oswy8o8+DzCh04vqHwA0zn6Md4AoGIos+cok8SRR8AAAAAAADQBoq+Ru6ib+SUHyps4DhH1gB0BmUf4GUPxcdQ9BlQ9KXllkiS7h4ZRdEHAAAAAAAAtICir9HVRR/X6IO/oewDvGxu/BBHcin6Gq3em6FDV8q+6SMGOrIGAAAAAAAAwGQUfY0o+uDvKPuAAEDR12j13gwt252uyUMiHckHAAAAAAAATFdVlk3RdwVFHwIBZR/g5yj6GrmLvlV3xmsSZR8AAAAAAADQopwjKRR9ouhD4KDsA/wYRV+jq4s+rtEHAAAAAAAAtC4odDBFnwFFX+X5U47kIvBQ9gF+iqKvEUUfAAAAAAAA4Lm4Cd+j6HO46Cs7d1QZf1nqSDYCD2Uf4Ie+LKui6LuCog8AAAAAAADomJ69+/o8k6KvUdm5ozq6db5CIuIcyUfgoewD/NC6o9kUfaLoAwAAAAAAAPwBRV8jd9HXb8AYjZn2rCNrQOCh7AP8yLlKlyQpul8wRZ8BRZ97PwAAAAAAAAC0jKKv0dVF3/j7/1e9+oQ4sg4EHso+wE8cPFustzPyJEmPjx9O0edw0Ve/H/mOZAMAAAAAAAD+gKKv0bVFnxPXTETgouwD/MDBs8Wa8ep+DQgJkiQF9+7l8zVQ9DVy78f1V/YDAAAAAAAAQFN1tdUUfVdQ9MFulH2A4dzF0q3R4XpgzGBH1kDR1+jq/bh/zCBH1gAAAAAAAACY7typP1H0iaIPvkHZBxjs6mJp+7wkBfXy/UOWoq+RCfsBAAAAAAAAmMyqq5EkVV8souij6IOP8Eo1YKhriyWu0WdW0efEfgAAAAAAAAAmu1xdofPZuyRJg8c+RNFH0QcfoewDDGRCseS6XEvRd4UJ+wEAAAAAAACY7HJ1hY69s0A1l0okScGhMY6sg6IP3RFlH2AYU4ql9cdyKPpkzn4AAAAAAAAApnIXfZUXTikq7h7H1kHRh+6Ksg8wiAnFUnVtnSSpoNJF0WfAfgAAAAAAAAAmu7rom/DABvW5LsqRdVD0oTuj7AMMYUKxVO6q0dZT+ZKkhRPiKPoo+gAAAAAAAIBWXVv0cY0+ij44w9GyLzk5WZMnT1ZYWJiio6M1d+5cZWRktHu7//iP/9DYsWMVEhKiYcOG6Qc/+IEuXbrkgxUD9jChWCp31Wjmxg91oapakjQ0PMTna5Ao+gDAG5ixAAAA7MGcBQCNKPoaUfTBaY6WfXv27NHixYt14MAB7dy5UzU1Nbr33ntVWVnZ6m02bdqkn/70p1q+fLnS09P18ssv649//KP+7d/+zYcrB7zHhGLJXfR9WlCm2WOduXCuRNEHAN7CjAUAAGAP5iwAqGdK0VeSe4CiD5DU28nw7du3N/l63bp1io6O1uHDh3X77be3eJu//vWvmjp1qh599FFJ0ogRI/TII4/oo48+sn29gLeZUCxdXfTtfGyq1h3N9vkaJIo+APAmZiwAAAB7MGcBgDlFnySVnN1P0QfI4bLvWqWlpZKkAQMGtHrM17/+dW3YsEEHDx7UlClT9MUXX+jdd9/VY4891uLxLpdLLper4euysjLvLhq4xpb0PGUWX2z3uC/LqrTuaLai+wXrrhFRWvvRF+3eJi23RJKUmlXY1WVKklyXa7X+WI4KKl1aOCFO731e4PWMllybkZpVqF2ZRbp7ZP3Fe1fvbf8jUDqa0Z7O7MfhKxlVZWdUXni8s0ttU1XZGUlSZfFntpz/6oyi7N225ZTkpemyq8S2vycAbbNjxpKYs+B76YXltp3bPb+RYUZGbnmVJN/MQIGSAcAZzFkIBP4+N/gqJ1AyCivrn1sKM9/r1BxRV1utc6f+pOqLRRo89iGdP7NX58/sbXKM+/WfktwDykzr+ppbUpT1viTpuv6j1TdsmPJPven1jKrSTEnSpfKWX/urPH9KGX9ZqpCION341Z82HN8Rds6J6F56WJZlOb0ISaqrq9OcOXNUUlKiffv2tXnsCy+8oB/96EeyLEuXL1/W9773PaWkpLR47IoVK7Ry5cpm3585c6b69LHvXTvuAc5uvsghwzPZ2dn65JNPbDs/AM8lJCQoLi7OtvMHwnNWoGTU1NRo+/btKi0tVXh4uG05/syuGUsK7DmLDLNyiouL2/33C8B+kyZNUkyMfR/7HyjPi4Hy3Muc1T7mLDL8PYMZCzAHr2V1nwy7Zixjyr5FixZp27Zt2rdvn4YOHdrqcampqXr44Ye1evVqffWrX9Vnn32mZ555Rt/97ne1bNmyZse39JtQw4YNs31YnTNnjt566y3bzu/LHDI8s3HjRs2fP193j4jSmKjW3659rtKltzPyNCAkSA+MGaygXp5fOnNPVpFOFlVo8pBITRoS2em1VtfWaeupfF2oqtbssTEa1C/Y6xltcWfEhvbV2YpLtmR5ej+6sh97s4p0oqhCMTfPV2TMJC+surmSvDTlndygEZN/qJDwYbZmxIYF62y5y5b9cP9dTRkSqcR29yNf14cE6f4xgzq0H5J06nyFdmUWacOGDZo3b14XV926QHjOCpSMsrIyRURE8CJUG+yasaTAnrPIMCvnyJEjSkxM1Ko74zWy/3W2ZOzPOa+UtCwyDMnYkp6rzel5PpmB7MyoKjujrEPP66H4GI0fHGlLxrH8Em1Oz9OiSSM0JCzElozc8iqlpGXp8OHDmjhxoi0ZUuA8LwbKcy9zVvuYs8jw94xAmbF8lRMoGa8cydaurCJFxk5VSMRIj29n1dXofPYu1VwqUVTcPepzXVSrx5bkfqSqktMKHTheYQPHeWPZDcoLj6ui8Jj6hg3TpfIzmhwTqUmxkV7NcDtVVKFdWUV6KD5GA696/dSbCitd2pyex5zVjTLsmrGM+BjPp59+Wlu3btXevXvbHI4kadmyZXrsscf05JNPSpLGjRunyspK/eM//qN+9rOfqWfPpi8MBwcHKzjYngci0JInJsZp3riWXyxwXxNucuyATl0T7ql3jupkUYXmjI3p9HXt3Nfoq7pcp33fvkNTYvt7PaM97oyzFZdsu0afJ/fDG/txoqhCkTGTNHjMN72x7BblndygqLg7vT4cXZtxttxl636cKKrQbI/2o3+nr5m48fgZ7cos6upygYBh54wlMWfB92aNHqSJMZG2nT8lLYsMQzIyiy9qc3qeT2YgOzPKC48r69Dzmhs/pNX/RuiqjcfPaHN6np6cOMK2/TiSV6KUtCxbzg34K+YsBBJ/nxt8mRMIGftzzmtXVpFibvqWx69nua/RV1frUuI3/9TuNfr+tudnqio5ragR92jkJO9dSy/r8AvKO7lBI6f8UH3Dhil91/c15yb7XsPcePyMdmUVacltY22dszan59lybnQvHXvLhJdZlqWnn35ab775pj744AONHNn+bxJcvHix2RDUq1evhvMBpnIXGbdGh3e6yOgqd9H3aUGZdj42tVnR5yvu6+ndPTLKth/G7TFhP0zDfgCBgxkLAADAHsxZALobd9FXeeGUJjywod2izy5Zh19Q5sHnNXLKDzUi0XsFIhAoHH1n3+LFi7Vp0yb9+c9/VlhYmPLz8yVJERERCgmp//iRBQsWKDY2VsnJyZKk2bNn6ze/+Y2+8pWvNHz0wbJlyzR79uyGQQkwjQlFhilF3+q9GTp0peybPmKgI2swYT9MxH4AgYMZCwAAwB7MWQC6E4o+wH84Wva5L0Q8ffr0Jt9/5ZVXtHDhQklSTk5Ok99+Wrp0qXr06KGlS5fq7NmzGjhwoGbPnq3nnnvOV8sGOsSEIsOkom/Z7nRNHhLZUPj5mgn7gUbsB2APZiwAAAB7MGcB6C4o+gD/4mjZ58lHFaSmpjb5unfv3lq+fLmWL19u06oA7zGhyDCt6Ft1Z7xyy6scKftM2A80Yj8A+zBjAQAA2IM5C0B3QNEH+B9Hr9kHBDITigwTiz6uCQeJ/QAAAAAAADARRR/gnyj7ABuYUGRQ9DUyYT/QiP0AAAAAAAAwD0Uf4L8o+wAv+/xCpeNFBkVfoy/LqhzfDzRiPwAAAAAAAMxD0Qf4N8o+wMuS952i6JMZRZ8krTuaTbFkEPYDAAAAAADALBR9gP+j7AO8bFh4CEWfAUXfuUqXJCm6XzDFkgHYDwAAAAAAAPNQ9AGBgbIP8LIfTx1N0WfANfrezsiTJD0+fjjFksPYDwAAAAAAAPNQ9AGBg7IP8LKQPr18nknR1+jg2WLNeHW/BoQESZKCe/t+P9CI/QAAAAAAADBP3eVLFH1AAKHsA/wcRV8jd7F0a3S4Hhgz2JE1oBH7AQAAAAAAYKbso/9N0QcEEMo+wI9R9DW6uljaPi9JQb14enMS+wEAAAAAAGCu6op8ij4ggPDqK+CnKPoaXVsscU04Z7EfAAAAAAAAZhs+cRFFHxBAKPsAP+S6XEvRdwXFklnYDwAAAAAAAPOFhMc5kkvRB9ijt9MLANBx64/lqNR1maKPYskoJuxHVU2tzzMBAAAAAADQPoo+wD68sw/wI9W1dZKkgkoXRZ8BxZJ7P2DGfpS7avTL/ad9ngsAAAAAAIC2UfQB9qLsA/xEuatGW0/lS5IWToij6DOgWHrn1Dmf55rIlP2YufFDnSmr8nk2AAAAAAAAWkfRB9iPsg/wA+4i40JVtSRpaHiII+ug6Kvn3o/zV/ajOzNpPz4tKNOSaWN8ng8AAAAAAICWUfQBvkHZBxju6iJj9tgYx9ZB0Vev6X4M9nm+SUzbj52PTdWNA/r5fA0AAAAAAABoriT3AEUf4COUfYDBri0yBvULdmQdFH31TNkPE5i4H059tC0AAAAAAACaKzm7n6IP8BHKPsBQphQZFH31TNkPE7AfAAAAAAAAaE154XFJUmTsVIo+wEco+wADmVJkUPTVM2U/TMB+AAAAAAAAoDVZh19QReExSVLkkK85vBqg++jt9AIANGVKkZGaVahdmUUUfYbshwnYDwAAAAAAALQm6/ALyjz4vEIHjm8o/AD4hqPv7EtOTtbkyZMVFham6OhozZ07VxkZGe3erqSkRIsXL1ZMTIyCg4M1ZswYvfvuuz5YMWAvk4oMij6z9sNp7AfgX5ixAAAA7MGcBQAtcxd9I6f8UGEDxzm9HKDbcbTs27NnjxYvXqwDBw5o586dqqmp0b333qvKyspWb1NdXa0ZM2YoKytLmzdvVkZGhn7/+98rNjbWhysHvM+UIiMtt0SSdPfIKIo+A/bDBOwH4H+YsQAAAOzBnAUAzV1d9HGNPsAZjn6M5/bt25t8vW7dOkVHR+vw4cO6/fbbW7zNH/7wB124cEF//etf1adP/QvOI0aMsHupgK1MKTJW783QoStl3/QRAx1ZA8WSWdgPwD8xYwEAANiDOQsAmqLoA8xg1DX7SktLJUkDBgxo9Zi33npLSUlJWrx4sf785z9r4MCBevTRR/WTn/xEvXr1ana8y+WSy+Vq+LqsrMz7CweusiU9T5nFFz0+3nW5VuuP5aig0qWFE+L03ucFeu/zghaPdb/rLjWr0BtLbcJ9jb7Y0L46W3HJlgy31u7Hl2VVWnc0W9H9gnXXiCit/egLr2e0pyP7cfhKRkleWqfX2R73uYuyd6uy+DNbM/x9PyTpWH5pp9cIBDI7ZiyJOQu+l15Ybtu53fMbGWZk5JZXSZJt848kVZWdsT3Dfe7M4os6kldiS4Yv9sPOcwP+jjkLgcDf5wZf5QRKRmFl/XNLaX7XX88qzNyhoi+2KeqG+9Q3bJjyT70pSaoqzZQkVZxPb/iet7nXn1texZwFSOphWZbl9CIkqa6uTnPmzFFJSYn27dvX6nE33XSTsrKyNG/ePD311FP67LPP9NRTT+n//t//q+XLlzc7fsWKFVq5cmWz78+cObPht6nscPDgQU2ZMsW28/syhwzPZGdn65NPPrHt/AA8l5CQoLi4ONvOHwjPWYGSUVNTo+3bt6u0tFTh4eG25fgzu2YsKbDnLDLMyikuLm7z3y8A35g2bZr697fvUxYC5XkxUJ57mbPax5xFhr9nMGMB5mDO6j4Zds1YxpR9ixYt0rZt27Rv3z4NHTq01ePGjBmjS5cuKTMzs+G3n37zm9/oV7/6lfLy8pod39JvQg0bNsz2YXXOnDl66623bDu/L3PI8MzGjRs1f/583T0iSmOiQts9vrq2TltP5etCVbVmj43RoH7B7d5mT1aRThZVaPKQSE0aEumFVde/4+pQbknDOe3IuNa1GecqXXo7I08DQoL0wJjBCurV9cuJdvR+dGU/pgyJVKJN+7E3q0gnvJxxLXeGv++HJJ0qqtCurCJt2LBB8+bN6+KqWxcIz1mBklFWVqaIiAhehGqDXTOWFNhzFhlm5Rw5ckSJiYladWe8Rva/zpaM/TnnlZKWRYZhGYsmjdCQsBBbMo7ll2hzep5PMvx9PzKLL2rZ7nQdPnxYEydOtCVDCpznxUB57mXOah9zFhn+nhEoM5avcgIt46H4GA308PWWjnK/PuOLDH/fD+as7pdh14xlxMd4Pv3009q6dav27t3b5nAkSTExMerTp0+TjzmIj49Xfn6+qqurFRQU1OT44OBgBQfb84QCtOSJiXGaN25Ym8e4r0FWdblO+759h8fXIHvqnaM6WVShOWNjtPT2sV1ea/01+up/YLnP5+2Mllydce+N0Zrx6n5Njh3g1WvCdeR+dHU/Ztu8Hye8mNESd4a/74ckbTx+Rruyirq6XCBg2DljScxZ8L1ZowdpYkykbedPScsiw7CMJyeOsC1j4/Ez2pye55MMf9+PI3klWrY73ZZzA/6KOQuBxN9/TvkyJ5Ayltw21tYZaFdWkU8y/H0/mLPgLV1/u0YXWJalp59+Wm+++aY++OADjRw5st3bTJ06VZ999pnq6uoavnfq1CnFxMS0OBwBpnEXGZ8WlGnnY1M7VGR40+q9GVq2O71JseRrX5ZVacar+3VrdLhXi6WOYD8asR9A4GDGAgAAsAdzFgAAMJGjZd/ixYu1YcMGbdq0SWFhYcrPz1d+fr6qqqoajlmwYIGWLFnS8PWiRYt04cIFPfPMMzp16pTeeecd/fznP9fixYuduAtAh5hSZJhQLEnSuqPZFEtiP9xM2Q8gEDBjAQAA2IM5CwAAmMjRj/FMSUmRJE2fPr3J91955RUtXLhQkpSTk6OePRs7yWHDhmnHjh36wQ9+oISEBMXGxuqZZ57RT37yE18tG+gUU4oME4qlc5X11x2I7hfc7Ysl9qOeKfsBBApmLAAAAHswZwEAABM5WvZZltXuMampqc2+l5SUpAMHDtiwIsAephQZJhRLB88W6+2M+guQPz5+eLcultiPeqbsBxBImLEAAADswZwFAABM5OjHeALdgSlFhinF0oxX92tASP01CYJ792rnFt7HfjRiPwAAAAAAAADA/1H2ATYypcgwqVi6NTpcD4wZ7Mga2I9G7AcAAAAAAAAABAbKPsAmphQZphVL2+clKaiX75962I9G7AcAAAAAAAAABA7KPsAGphQZJhZL3fmacOxHPVP2AwAAAAAAAAACAWUf4GVVNbVGFBkUS/Vcl9kPN/YDAAAAAAAAAAJPb6cXAASaX+4/rXOVLoolA4olSVp/LEelrsvsB/sBAAAAAAAAAAGJsg/wsjNlVdqz8DaKJYeLperaOklSQaVLe5+4nf1gPwAAAAAAAAAgIPExnoCXLZk2hmLJgGvCbT2VL0laOCGO/WA/AAAAAAAAACBgUfYBXnbjgH6O5FIs1St31Wjmxg91oapakjQ0PMTna5DYDzdT9gMAAAAAAAAAAhVlHxAAKJbquYulTwvKNHtsjM/z3diPeqbsBwAAAAAAAAAEMso+wM9RLNW7ulja+dhUDeoX7PM1SOyHmyn7AQAAAAAAAACBjrIP8GMUS/WuLZa4Rh/7AQAAAAAAAADdBWUf4KcoluqZUiyxH/VM2Q8AAAAAAAAA6C56O70AAB2XmlWoXZlFFEuGFEvsRz1T9gMAAAAAAAAAuhPe2Qf4IYols4ol9sOc/diSnutILgAAAAAAAAA4hbIP8CNpuSWSpLtHRlEsGVAssR/1TNmP1XsztDk9z5FsAAAAAAAAAHAKZR/gJ1bvzdChK+XS9BEDHVkDxVIj9qOeSfuxbHe6HoqPcSQfAAAAAAAAAJxC2Qf4AXeRMXlIpGNroFhqxH7UM20/Vt0Zr7nxQxxZAwAAAAAAAAA4hbIPMNzVRcYkh8oliqVG7Ec9E/fDqY9SBQAAAAAAAAAnUfYBBjOhyKBYasR+1GM/AAAAAAAAAMAcjpZ9ycnJmjx5ssLCwhQdHa25c+cqIyOjzdusW7dOPXr0aPK/vn37+mjFgO+YUGRQLDViP+qxH4D/YM4CAADwPmYsAABgIkfLvj179mjx4sU6cOCAdu7cqZqaGt17772qrKxs83bh4eHKy8tr+F92draPVgz4hglFxpdlVRRLV7Af9dgPwL8wZwEAAHgfMxYAADBRbyfDt2/f3uTrdevWKTo6WocPH9btt9/e6u169OihwYMH2708wBGmFBnrjmYrcUh/iiX2QxL7Afgj5hEt2q4AAEeTSURBVCwAAADvY8YCAAAmcrTsu1ZpaakkacCAAW0eV1FRobi4ONXV1WnixIn6+c9/rltuuaXFY10ul1wuV8PXZWVl3lsw0IIt6XnKLL7YqdumZhVqV2aR7h4ZJam+2LhaWm5Jw3F2Sc0qkiT17d1Ld42I0tqPvvB6Rnv3w3W5VuuP5aig0qWFE+L03ucFeu/zAq9meIL9qOcv+yFJx/JLO31+INAxZyEQpBeW23Zu9/xGBhlkNGfnuQF/Z8eMJTFnwbf8/eeUr3LIIMMOzFnwlh6WZVlOL0KS6urqNGfOHJWUlGjfvn2tHvfhhx/q9OnTSkhIUGlpqX79619r7969OnHihIYOHdrs+BUrVmjlypXNvj9z5kz16WPfu2MOHjyoKVOm2HZ+X+aQ4Zns7Gx98skntp0fgOcSEhIUFxdn2/kD4TkrUDJqamq0fft2lZaWKjw83LYcf8ecRYbd7M4pLi5u898uAN+YNm2a+ve37xMeAuV5MVCee5mz2mfXjCUxZ5HhmwxmLMAczFndJ8OuGcuYsm/RokXatm2b9u3b1+qg05KamhrFx8frkUce0apVq5r9eUu/CTVs2DDbh9U5c+borbfesu38vswhwzMbN27U/PnzdfeIKI2JCu3QbdNyS3Qot0STh0Rq0pDIVo/bk1Wkk0UV7R7XGecqXXo7I0+9e/ZU1eU6WzLcWrsf1bV12noqXxeqqjV7bIwG9Qv2eoYn2I96/rYfknSqqEK7soq0YcMGzZs3r9PrbU8gPGcFSkZZWZkiIiJ4EaodzFlk2M3unCNHjigxMVGr7ozXyP7X2ZKxP+e8UtKyyCCDjBZkFl/Ust3pOnz4sCZOnGhLhhQ4z4uB8tzLnNU+u2YsiTmLDN9kBMqM5ascMsiwA3NW98uwa8Yy4mM8n376aW3dulV79+7t0HAkSX369NFXvvIVffbZZy3+eXBwsIKDO/8CNdBRT0yM07xxwzw+fvXeDB3KzfLoGmRPvXNUJ4sqNGdsjFevV3bwbLFmvLpfk2MHKD4qVC9/nOP1jKu1dD/c14Srulynfd++o8vXhOvs3xX74b/7IUkbj5/RrisffQqgHnMWAsms0YM0MSbStvOnpGWRQQYZLTiSV6Jlu9NtOTfgr+ycsSTmLPiWv/+c8mUOGWR4G3MWvKWnk+GWZenpp5/Wm2++qQ8++EAjR47s8Dlqa2t1/PhxxcTE2LBCwF6r92Zo2e50j4sMO7iLpVujw7V9XpKCevn+acFdLH1aUKadj03tcrHUWexHPfYDCAzMWQAAAN7HjAUAAEzk6Dv7Fi9erE2bNunPf/6zwsLClJ+fL0mKiIhQSEiIJGnBggWKjY1VcnKyJOnZZ5/V1772NY0aNUolJSX61a9+pezsbD355JOO3Q+gM0woMq4tlsKC7fvc/9ZQLDViPxqZsB+Av2POAgAA8D5mLAAAYCJHy76UlBRJ0vTp05t8/5VXXtHChQslSTk5OerZs/GdLcXFxfrud7+r/Px89e/fX4mJifrrX/+qm2++2VfLBrrMhCLDhGLJdbmWYukK9qORCfsBBALmLAAAAO9jxgIAACZytOyzLKvdY1JTU5t8/dvf/la//e1vbVoRYD8TigwTiiVJWn8sR6Wuy92+WGI/GpmwH0CgYM4CAADwPmYsAABgIkev2Qd0NyYUGSYUS9W1dZKkgkpXty+W2I9GJuwHAAAAAAAAAPgbyj7AR0woMkwolspdNdp6qv6aBgsnxHXrYon9aGTCfgAAAAAAAACAP6LsA3zAhCLDlGJp5sYPdaGqWpI0NDzE52uQ2A839gMAAAAAAAAA/B9lH2AzE4oMk4qlTwvKNHtsjM/z3diPeuwHAAAAAAAAAAQGyj7ARiYUGaYVSzsfm6pB/YJ9vgaJ/XBjPwAAAAAAAAAgcFD2ATYxocgwsVjqzteEYz8ambAfAAAAAAAAABAIKPsAG5hQZFAsNWI/6rEfAAAAAAAAABB4eju9ACDQbEnP1eb0PIolQ4ql1KxC7cosYj/YDwAAAAAAAAAISLyzD/Ayij5ziiVJjhdL7EdTTu8HAAAAAAAAAAQayj7Ayx6Kj6FYMqBYSsstkSTdPTKK/WA/AAAAAAAAACBgUfYBXjY3fogjuRRLjVbvzdChK+XS9BEDHVkD+9HIhP0AAAAAAAAAgEBF2QcEAIqlRqv3ZmjZ7nRNHhLpSL7EflzNhP0AAAAAAAAAgEBG2Qf4OYqlRu5iadWd8ZrkULnEfjQyYT8AAAAAAAAAINBR9gF+jGKp0dXFEtfoYz8AAAAAAAAAoLug7AP8FMVSIxOKJfajkQn7AQAAAAAAAADdBWUf4Ie+LKuiWLrChGKJ/Whkwn4AAAAAAAAAQHdC2Qf4oXVHsymWZE6xxH7UM2E/Pr9Q6UguAAAAAAAAADiFsg/wI+cqXZKk6H7BFEsGFEvsRyMT9uPg2WIl7zvlSDYAAAAAAAAAOIWyD/ATB88W6+2MPEnS4+OHUywZUCyxH/VM2Y8Zr+7XsPAQR/IBAAAAAAAAwCmUfYAfcBcZA0KCJEnBvXv5fA0US43Yj0Ym7cet0eH68dTRjqwBAAAAAAAAAJziaNmXnJysyZMnKywsTNHR0Zo7d64yMjI8vv1rr72mHj16aO7cufYtEnDY1UXGA2MGO7IGiqVG7Ecj0/Zj+7wkhfTxffEKmIo5CwAAwPuYsQAAgIkcLfv27NmjxYsX68CBA9q5c6dqamp07733qrKyst3bZmVl6Uc/+pFuu+02H6wUcMa1RUZQL98/ZCmWGrEfjUzcDyc+ShUwGXMWAACA9zFjAQAAE/V2Mnz79u1Nvl63bp2io6N1+PBh3X777a3erra2VvPmzdPKlSv1l7/8RSUlJTavFPA9E4oMiqVG7Ecj9gPwD8xZAAAA3seMBQAATORo2Xet0tJSSdKAAQPaPO7ZZ59VdHS0vvOd7+gvf/lLm8e6XC65XK6Gr8vKyrq+UKANW9LzlFl8sUvn+LKsSuuOZiu6X7DuGhGltR99IUlKyy2RJKVmFXZ1ma1yZ7z/RYH+53CmCipdWjghTu99XqD3Pi/waoYn9yM1q1C7Mot098goSfVFk7cz2sN+NDJ5PyTpWH5pl88PBCrmLASCd0+fU3pRuS3n3p9zXpKUXmjP+SU1zIhkkOFvGXaeG/B3dsxYEnMWfMvff075KocMMuzAnAVv6WFZluX0IiSprq5Oc+bMUUlJifbt29fqcfv27dPDDz+so0ePKioqSgsXLlRJSYm2bNnS4vErVqzQypUrm31/5syZ6tPHvneCHDx4UFOmTLHt/L7MIcMz2dnZ+uSTT2w7PwDPJSQkKC4uzrbzB8JzVqBk1NTUaPv27SotLVV4eLhtOf6OOYsMu9mdk5eXp7S0NNvOD8Az06ZNU//+9n26RKA8LwbKcy9zVvvsmrEk5iwyfJNRXFzc5r9dAL7DnNV9MuyasYwp+xYtWqRt27Zp3759Gjp0aIvHlJeXKyEhQb/73e903333SVK7A1JLvwk1bNgw24fVOXPm6K233rLt/L7MIcMzGzdu1Pz583X3iCiNiQrt1DnOVbr0dkaeBoQE6YExg5tdE25PVpFOFlVo8pBITRoS6YVVN7c7s0h/O1+hnpLmxsdoUL9gr2d4cj/Sckt0KLek0/fVG39X7Ecjf9gPSTpVVKFdWUXasGGD5s2b16kcTwTCc1agZJSVlSkiIoIXodrBnEWG3Xw1Zz0UP0TjB0fYkuF+9/qiSSM0dfj1tmTszzmvlLQsrbozXiP7X0cGGX6TkVl8Uct2p+vw4cOaOHGiLRlS4DwvBspzL3NW++yasSTmLDJ8k3HkyBElJib6/c8pX+WQQYYdmLO6X4ZdM5YRH+P59NNPa+vWrdq7d2+rw5Ekff7558rKytLs2bMbvldXVydJ6t27tzIyMnTjjTc2uU1wcLCCg73/4jjQmicmxmneuGEdvp37GmSTYwe0eg2yp945qpNFFZozNsaWa6WVu2o0+v/tlCR9N3GE/vuBCV7PkNq/H6v3ZuhQblaXrgnX1b8r9qORv+yHJG08fka7soo6tUYgUDFnIZDMjY/p1JzlqV2ZRZo6/HpbM1LSsjRr9CBNjIkkgwy/yTiSV6Jlu9NtOTfgr+ycsSTmLPiWv/+c8mUOGWR4G3MWvMXRss+yLP3zP/+z3nzzTaWmpmrkyJFtHn/TTTfp+PHjTb63dOlSlZeXa+3atRo2zL7/KAfs5C4ybo0Ob7PIsFO5q0YzN36oC1XVkqSh4SE+X4NUXywt253epWKpq9iPRuwH4L+YswAAALyPGQsAAJjI0bJv8eLF2rRpk/785z8rLCxM+fn5kqSIiAiFhNS/sL1gwQLFxsYqOTlZffv21a233trkHJGRkZLU7PuAvzChyHAXS58WlGn22Bi9kZ7n8zVIFEtu7EcjE/YD8FfMWQAAAN7HjAUAAEzU/IJHPpSSkqLS0lJNnz5dMTExDf/74x//2HBMTk6O8vKceaEbsJsJRcbVxdLOx6back04T1As1WM/GpmwH4A/Y84CAADwPmYsAABgIsc/xrM9qampbf75unXrvLMYwMdMKDKuLZamxPbXuqPZPl8HxVI99qORCfsB+DvmLAAAAO9jxgIAACZy9J19QHdlQpHRUrHkBIqleuxHIxP2AwAAAAAAAAD8haPv7AO6IxOKDFOKpdSsQu3KLOr2xRL70ciE/QAAAAAAAAAAf8I7+wAfMqHIMKVYkkSxJPbjaibsBwAAAAAAAAD4G8o+wEdMKDJMKZbSckskSXePjOrWxRL70ciE/QAAAAAAAAAAf0TZB/iACUWGKcXS6r0ZOnSlXJo+YqAja2A/GrEfAAAAAAAAAODfKPsAm5lQZJhULC3bna7JQyIdyZfYj6uxHwAAAAAAAADg/yj7ABuZUGSYViytujNekxwql9iPRuwHAAAAAAAAAAQGyj7AJiYUGSYWS935mnDsRyMT9gMAAAAAAAAAAgFlH2ADE4oMiqVG7Ecj9gMAAAAAAAAAAgtlH+Bln1+odLzIoFhq9GVZFftxBfsBAAAAAAAAAIGHsg/wsuR9pyiWZEaxJEnrjmazH2I/AAAAAAAAACBQUfYBXjYsPIRiyYBi6VylS5IU3S+Y/WA/AAAAAAAAACBgUfYBXvbjqaMplgy4JtzbGXmSpMfHD2c/2A8AAAAAAAAACFiUfYCXhfTp5fNMiqVGB88Wa8ar+zUgJEiSFNyb/eju+wEAAAAAAAAAgYyyD/BzFEuN3MXSrdHhemDMYEfWwH40MmE/AAAAAAAAACDQUfYBfoxiqdHVxdL2eUkK6uX7pzf2o5EJ+wEAAAAAAAAA3QGvvgJ+imKp0bXFEtfoYz8AAAAAAAAAoLug7AP8kOtyLcXSFSYUS+xHIxP2AwAAAAAAAAC6k95OLwBAx60/lqNS12WKJUOKJfajngn7UVVT6/NMAAAAAAAAAHAS7+wD/Eh1bZ0kqaDSRbFkQLHEfjQyYT/KXTX65f7TPs8FAAAAAAAAACc5WvYlJydr8uTJCgsLU3R0tObOnauMjIw2b/PGG29o0qRJioyMVL9+/TRhwgS9+uqrPlox4JxyV422nsqXJC2cEEexZECxxH7UM2U/Zm78UGfKqnyeDZiKOQsAAMD7mLEAAICJHC379uzZo8WLF+vAgQPauXOnampqdO+996qysrLV2wwYMEA/+9nP9OGHH+qTTz7RE088oSeeeEI7duzw4coB33IXGReqqiVJQ8NDHFkHxVI99qORSfvxaUGZlkwb4/N8wFTMWQAAAN7HjAUAAEzk6DX7tm/f3uTrdevWKTo6WocPH9btt9/e4m2mT5/e5OtnnnlG69ev1759+/SNb3zDrqUCjrm6yJg9NkZvpOc5sg6KpXrsRyPT9mPnY1N1+kKFz9cAmIo5CwAAwPuYsQAAgIkcLfuuVVpaKqn+N548YVmWPvjgA2VkZOgXv/hFi8e4XC65XK6Gr8vKyrq+UKAN+3POe+1cVTW1+uX+0zpTVqUl08Zob1aRJCk1q9BrGddKyy1plpGaVahdmUW6e2SUpPqiydsZ7fmyrErrjmYrul+w7hoRpbUffeH1jPa4Ltdq/bEcFVS6tHBCnI7keT/jWoG2H8fyS7Xx+JnOLrWJax8fpy9UePXxBwQa5iwEAjuf54/l1z9GMosvNvyM97bM4ouSpPTCclvOTwYZdrHz3IC/s2PGkpiz4Fv+/nPKVzlkkGEH5ix4Sw/LsiynFyFJdXV1mjNnjkpKSrRv3742jy0tLVVsbKxcLpd69eql3/3ud/r2t7/d4rErVqzQypUrm31/5syZ6tPHvnehHDx4UFOmTLHt/L7MIcMzxcXF7f7bBeAb06ZNU//+9l1HMRCeswIlo6amRtu3b1dpaanCw8Nty/F3zFlk2I05C+ge7rnnHoWE2PcR9oHyvBgoz73MWe2za8aSmLPI8E1GVVWV3n//fdvOD8BzzFndJ8OuGcuYsm/RokXatm2b9u3bp6FDh7Z5bF1dnb744gtVVFRo165dWrVqlbZs2dLsYxGkln8TatiwYbYPq3PmzNFbb71l2/l9mUOG52677TZ973vfs+38+/fvV0pKiu4eEaUxUaG2ZOzJKtLJogpNHhIpSTqUW6LJQyI16crX3s5o77znKl16OyNPA0KC9MCYwQrq5dmlRjuS0Z7q2jptPZWvC1XVmj02RoP6BXs9ozWBsh+niiq0K6tIixYt0tSpU72w6tb993//t/7yl7/YmhEoz1mBkFFWVqaIiAhehGoHcxYZdguEOSszM1PLli3TqjvjNbL/dbZk7M85r5S0LDLI8KrM4otatjtdGzZsUHx8vC0ZkvSTn/xEO3futO38UuA8LwbKcy9zVvvsmrEk5iwyfJcxY8aMNt9l2lXp6emaP3++rT8LpcD5uU6GWRnMWWTYwa4Zy4iP8Xz66ae1detW7d27t93hSJJ69uypUaNGSZImTJig9PR0JScntzggBQcHKzg42NtLBlrUv39/zZs3z9aMlJQUPTExTvPGDbPl/E+9c1QniyoUHtxbuzKLbLkmnDtjztiYNs/tvibc5NgBHb4mnKcZ7XFfE67qcp32ffsOTYltfLeYtzLaEij7sfH4Ge3KKtLUqVNtf4z88Y9/tPX8gL9hzkKgsHvOOnLkiJYtW6ZZowdpYkykbTkpaVlkkOFVR/JKtGx3uuLj4zVx4kRbMiTZ+pvmgD+yc8aSmLPgOyEhIbb+/HCz++etFBg/18kwK4M5C/7E0bLPsiz98z//s958802lpqZq5MiRnTpPXV1dk992AtB1dhVLnnIXS7dGh3e4WPIWd9H3aUGZdj42tUnR52vsB4COYs4CAADwPmYsAABgIkfLvsWLF2vTpk3685//rLCwMOXn50uSIiIiGtrsBQsWKDY2VsnJyZKk5ORkTZo0STfeeKNcLpfeffddvfrqq0pJSXHsfgCBJC23RJJ098iobl0smVL0sR8AOos5CwAAwPuYsQAAgIkcLfvcQ821H1nwyiuvaOHChZKknJwc9ezZeE2oyspKPfXUU/ryyy8VEhKim266SRs2bNA//MM/+GrZQMBavTdDh66US9NHDHRkDSYUS6YUfewHgK5gzgIAAPA+ZiwAAGAixz/Gsz2pqalNvl69erVWr15t04qA7mv13gwt252uyUMiGwomXzOhWDKp6GM/AHQFcxYAAID3MWMBAAAT9Wz/EACBzl0srbozXpOGRDqyBhOKJdOKvu6+HwAAAAAAAACA9lH2Ad3c1cVSd74mnIlFX3feDwAAAAAAAACAZyj7gG6MYqkeRV8jE/YDAAAAAAAAAOA5yj6gmzKhWPqyrMrxYomir5EJ+wEAAAAAAAAA6BjKPqAbMqFYkqR1R7Mp+sR+AAAAAAAAAAA6j7IP6GZMKJbOVbokSdH9gin62A8AAAAAAAAAQBdQ9gHdiAnF0sGzxXo7I0+S9Pj44RR97AcAAAAAAAAAoAso+4BuwpRiacar+zUgJEiSFNy7l8/XQNHXyIT9AAAAAAAAAAB0DWUf0A2YVCzdGh2uB8YMdmQNFH2NTNgPAAAAAAAAAEDXUfYBAc60Ymn7vCQF9fL9Uw9FXyMT9gMAAAAAAAAA4B28wgsEMBOLJa7Rx34AAAAAAAAAALyHsg8IUBRL9VyXayn6rjBhPwAAAAAAAAAA3tXb6QUA8D6KpUbrj+Wo1HWZos+Q/QAAAAAAAAAAeBfv7MP/b+/eo6Os7zyOf0IgFzAJSTUQICZABVEQRMBFkIuANwRTq1bLTaC1atiDy6EtVFxA2aJUq1gVFVHQqlBRKItIiQhELhqC4R4TQBCEAKKQQMgOIfz2jzSBQC4zk+eZeWbyfp0z5+wMzzyf3+wvk/nUb2YGQYbBUqkzJeckSUcLXQz6HLAfRcUlPs8EAAAAAAAAgLqAYR8QRBgslTrpKtbS3MOSpIc6JTHoc8B+zFi3y+e5AAAAAAAAAFAXMOwDggSDpVInXcW6/b0N+qnojCSpRXSkz9cgsR9lyvbjQEGRz7MBAAAAAAAAoC5g2AcEAQZLpcoGS9uPFmhQ2wSf55dhP0pduB8Te7bxeT4AAAAAAAAA1AUM+4AAx2Cp1IWDpbRhPdSkUbjP1yCxH2Uu3o/WcY18vgYAAAAAAAAAqAsY9gEBjMFSqYsHS3xHH/sBAAAAAAAAAHWFX4d906dPV9euXRUVFaX4+HilpKQoJyen2vvs2LFDv/zlL5WcnKyQkBC9+OKLvlks4DAMlko5ZbDEfpRyyn4AdR0dCwAAwB70LAAA4ER+HfatWbNGqamp+vLLL5WWlqbi4mLdeuutKiwsrPI+p0+fVqtWrfTMM8+oadOmPlwt4ByLsw8xWJJzBkur9/3Afsg5+wGAjgUAAGAXehYAAHCi+v4MX758eYXrc+fOVXx8vDZt2qRevXpVep+uXbuqa9eukqQJEybYvkbAiRZm5zFYctBgaeXeY+yHg/YDAB0LAADALvQsAADgRH4d9l0sPz9fkhQXF2fZOV0ul1wuV/n1goICy84N+Mu1V0RJKv3oSKtlHjohqfTdapX5vqBIczd/p/hG4bol+XLN/OpbyzNq4jpbonlb9utooUsPdUrSij1HtWLPUUsz3LHkm8OSpFaNG0piP6rbjy2H8706NwBr2NGxJHoWglP2DydtO/fe46fJIMNydp4bQM3oWYB77H69CpbXdTKclUHPQiAJMcYYfy9Cks6dO6fBgwfrxIkTWrt2rVv3SU5O1uOPP67HH3+8ymOmTJmiqVOnXnL77bffrgYN7Hv3S0ZGhrp162bb+X2ZQ4ZzMr777jtt3brVtvMDdrvuuuuUlJRka0YwPNfJcF9xcbGWL1+u/Px8RUdH25YTyOzqWFJw9ywynJdjd8bx48fdfo4ATtSzZ0/Fxtr36QrB8DwPpgxf5NCzakbPIoOMmtGxEAzoWWRYya6O5Zhh36OPPqpPP/1Ua9euVYsWLdy6jzsFqbK/hEpMTLS9rA4ePFhLliyx7fy+zCHDORnvvfeehg4dqn7Jl6vN5ZfZkrFm3zHtPHZKXZs1VpdmjctvP1Lo0v/m5CkuMkx3tWmqsFDvv/KzqoyanCk5p6W5h/VT0RkNapugJo3CLc9wR+ahE9p46ISuiAzTD0VnbMkoEyz7kXvslFbuO6a///3vGjJkiNdrdUcwPNfJcF9BQYFiYmL4j1DVsKtjScHds8hwXo7dGV9//bVuuOEGPd23nVrGNrQlY93+HzUrcx8ZZFhq7/HTenJVtjZt2qTOnTvbkiEFx/M8mDJ8kUPPqhk9iwwyauaLjiUFz+s6Gc7KoGeRYQe7OpYjPsZzzJgxWrp0qdLT090uR+4KDw9XeHjV/wEaCEQjOydpSIdEW8792CebtfPYKQ1um1D+HXRl3wnXtXmcJd8JV1lGTcq+E67o7DmtHdW7xu+E8ybDHdPSc7TxUGmROHSySLMy91mecaFg2Y/3th3Qyn3HarVOAJ6zs2NJ9CwEpzuvaqLOCY1tO/+szH1kkGGpr/NO6MlV2bacG0DV6FmAZ+x+vZWC43WdDGdl0LMQSLx/K4gFjDEaM2aMFi1apM8//1wtW7b053IAVKJssNQ+PtqSwZI3ygZL248WKG1YjxoHS3aZlp6jJ1dl6+m+7Wwb7tWE/QDgDjoWAACAPehZAADAifz6zr7U1FS9//77+uc//6moqCgdPnxYkhQTE6PIyEhJ0vDhw9W8eXNNnz5dknTmzBnt3Lmz/P8+ePCgNm/erMsuu0w///nP/fNAgCDFYOk8Bn2lnLIfAKpHxwIAALAHPQsAADiRX9/ZN2vWLOXn56tPnz5KSEgovyxYsKD8mP379ysvL6/8+qFDh3T99dfr+uuvV15enp577jldf/31+s1vfuOPhwAEre8Lihgs/ZsTBn3sBwBP0LEAAADsQc8CAABO5Nd39hljajxm9erVFa4nJye7dT8AtTN383e6oVlsnR8sOWHQJ7EfADxDxwIAALAHPQsAADiRX9/ZB8B5jhS6JEnxjcLr/GDJCYM+9gMAAAAAAAAAUB2GfQDKZRw8rv/NKf2okREdr6zTgyUnDPrYDwAAAAAAAABATRj2AZBUOlga8O46xUWGSZLC64f6fA1OGSw5ZdDHfgAAAAAAAAAAasKwD0D5YKl9fLTuatPUL2twymDJSYM+9gMAAAAAAAAAUBOGfUAdd+FgafmQ7goL9f2vBacMlpw26Kvr+wEAAAAAAAAAqBnDPqAOu3iwVJe/E86Jg766vB8AAAAAAAAAAPcw7APqKCcMllxnSxwxWGLQV8op+wEAAAAAAAAAcF99fy8AgO85YbAkSfO27Fe+6yyDPvYDAAAAAAAAAOAl3tkH1DFOGCydKTknSTpa6GLQx34AAAAAAAAAAGqBYR9QhzhhsHTSVayluYclSQ91SmLQx34AAAAAAAAAAGqBYR9QRzhlsHT7exv0U9EZSVKL6Eifr0Fi0FfGKfsBAAAAAAAAAPAewz6gDnDSYGn70QINapvg8/wyDPpKOWU/AAAAAAAAAAC1w7APCHJOGyylDeuhJo3Cfb4GiUFfGafsBwAAAAAAAACg9hj2AUHMiYMlvqOP/QAAAAAAAAAAWIdhHxCkGCydx6CvlFP2AwAAAAAAAABgnfr+XgAA6zFYOm/1vh+0cu8xBn0O2Q8AAAAAAAAAgLV4Zx8QZBgsVcSgz1n7AQAAAAAAAACwFsM+IIgwWDov89AJSVK/lpcz6HPAfizOPuSXXAAAAAAAAAAIdgz7gCDBYOm8aek52vjvYV+f5Cv8sgb247xp6TlamJ3nl2wAAAAAAAAACHYM+4AgwGDpvGnpOXpyVba6Nmvsl3yJ/bhQ2X7c2y7BL/kAAAAAAAAAEOz8OuybPn26unbtqqioKMXHxyslJUU5OTk13u/DDz/U1VdfrYiICHXo0EHLli3zwWoBZ2KwdF7ZYOnpvu3UxU/DPvbjvAv3I6VdM7+sAajL6FkAAADWo2MBAAAn8uuwb82aNUpNTdWXX36ptLQ0FRcX69Zbb1VhYWGV91m/fr0efPBBjR49WllZWUpJSVFKSoq2b9/uw5UDzsBg6bwLB0t8Rx/7AYCeBQAAYAc6FgAAcKL6/gxfvnx5hetz585VfHy8Nm3apF69elV6n5kzZ+r222/X73//e0nS008/rbS0NL388st67bXXbF8z4BQMls5zwmCJ/TjPCfsBgJ4FAABgBzoWAABwIr8O+y6Wn58vSYqLi6vymA0bNmjcuHEVbrvtttu0ePHiSo93uVxyuVzl1wsKCmq/UMDPFu08pE92H1FidKRGdrpSS3IPW3bu3GOnJEmr9/1Q7XGusyWat2W/jha69FCnJK3Yc1Qr9hx1KyPz0Am3Mtyxet8PWrn3mPq1vFxS6aDJ6oyqlGX885s8TUv/RvGNwnVL8uWa+dW3lmf4Yj+2HM7Xe9sO1Ga5Wpx9SAuz83RvuwS1jG1Yfr51+3+s1XkB1B49C3BP9g8nbTv33uOnySDDcnaeG0DN7OhYEj0Lwcfu16tgeV0nw1kZ9CwEkhBjjPH3IiTp3LlzGjx4sE6cOKG1a9dWeVxYWJjmzZunBx98sPy2V199VVOnTtWRI0cuOX7KlCmaOnXqJbfffvvtatDAvnfeZGRkqFu3brad35c5ZDgn4/jx49U+PwCn69mzp2Jj7X3HYTA818lwX3FxsZYvX678/HxFR0fblhPo6Flk2C0YHktRUZE+++wz284P2K1///6KjIy07fzB8DwPpgxf5NCzamZXx5LoWWQETwYdC8GAnkWGlezqWI55Z19qaqq2b99u+SBj4sSJFf56qqCgQImJiVqwYIGtZXXw4MFasmSJbef3ZQ4Zzsq4+eab9cgjj9h2/nXr1mnWrFnql3y52lx+2SX/fqbknJbmHtZPRWc0qG2CmjQK9zhjzb5j2nnslLo2a6wuzRp7tc7MQye08dCJKs9hRUZNPt19RPtOFOmyBqH6VfvmCgu1/mtQa3ocVuxH7rFTWrnvmB599FH16NHDglVX7rXXXtMXX3xh2/nLBMtznQz3FBQUKCYmxrbzBwt6Fhl2C5bHMmDAAD377LO2nT87O1tDhw7V033bqWVsQ1sy1u3/UbMy95HhkIy9x0/ryVXZ+vvf/6527drZkiFJf/zjH5WWlmbb+aXgeZ4HS4YvcuhZNbOrY0n0LDKCK8PujiXRs+piBj2LjEDNsKtjOWLYN2bMGC1dulTp6elq0aJFtcc2bdr0kr96OnLkiJo2bVrp8eHh4QoP9/w/fgNOFRsbqyFDhtiaMWvWLI3snKQhHRIr3F72nXBFZ89p7ajeXn8n3GOfbNbOY6c0uG2CV9/pNi09RxsP7av2O+Fqm1GTjIPH9ebX+yRJj/9Haz19yzWWZ0jVPw6r9uO9bQe0ct8x9ejRw9afrQULFth2bgBVo2cB7ouMjFTnzp1tz7nzqibqnNDYtvPPytxHhkMyvs47oSdXZatdu3a2/mzZ+ZfmACpnZ8eS6FkILr7qWBI9qy5l0LOAiqx/G4oHjDEaM2aMFi1apM8//1wtW7as8T7du3fXypUrK9yWlpam7t2727VMADo/WNp+tEBpw3p4PViqrWnpOXpyVXa1gz67ZRw8rgHvrlNcZJgkKbx+qM/X4JT9AOBc9CwAAADr0bEAAIAT+fWdfampqXr//ff1z3/+U1FRUTp8+LAkKSYmpnxiPnz4cDVv3lzTp0+XJI0dO1a9e/fW888/r4EDB2r+/PnKzMzUG2+84bfHAQQ7pwyWnDToax8frXaXX6Y5Wft9vgan7AcAZ6NnAQAAWI+OBQAAnMiv7+ybNWuW8vPz1adPHyUkJJRfLvyot/379ysvL6/8+k033aT3339fb7zxhjp27KiFCxdq8eLFat++vT8eAhD0nDJYctqgb/mQ7rZ8R19NnLIfAJyPngUAAGA9OhYAAHAiv76zzxhT4zGrV6++5Lb77rtP9913nw0rAnAhpwyWnDjoiwpv4PM1OGU/AAQGehYAAID16FgAAMCJ/PrOPgDOVVRc4ojBEoO+Uq6zztgPAAAAAAAAAICz+PWdfQCca8a6XTpS6GLQ54BBnyTN27Jf+a6zDPoAAAAAAAAAABUw7ANQqQMFRVrz0M0M+vw86DtTck6SdLTQpfSRvRj0AQAAAAAAAAAq4GM8AVRqYs82DPoc8B19S3MPS5Ie6pTEoA8AAAAAAAAAcAmGfQAq1TqukV9yGfSVOukq1u3vbdBPRWckSS2iI32+BgAAAAAAAACA8zHsA+AYDPpKlQ36th8t0KC2CT7PBwAAAAAAAAAEDoZ9AByBQV+pCwd9acN6qEmjcJ+vAQAAAAAAAAAQOBj2AfA7Bn2lLh708R19AAAAAAAAAICaMOwD4FcM+kox6AMAAAAAAAAAeKO+vxcAoO5ave8Hrdx7jEEfgz4AAAAAAAAAgJd4Zx8Av2HQx6APAAAAAAAAAFA7DPsA+FzmoROSpH4tL2fQ54BB3+LsQ37JBQAAAAAAAADUHsM+AD41LT1HG/897OuTfIVf1sCg77xp6TlamJ3nl2wAAAAAAAAAQO0x7APgM9PSc/Tkqmx1bdbYb2tg0Hde2X7c2y7BL/kAAAAAAAAAgNpj2AfAJ8oGS0/3bacufhr2Meg778L9SGnXzC9rAAAAAAAAAADUHsM+ALa7cLDEd/Q5a9Dnr/0AAAAAAAAAAFiDYR8AWzlhsMSg7zwn7AcAAAAAAAAAwDoM+wDYxgmDpe8Lihj0/ZsT9gMAAAAAAAAAYC2GfQBs4ZTB0tzN3zHok3P2AwAAAAAAAABgLYZ9ACznhMHSkUKXJCm+UTiDPgfsBwAAAAAAAADAHn4d9qWnp2vQoEFq1qyZQkJCtHjx4hrv88orr6hdu3aKjIxU27Zt9c4779i/UABuc8JgKePgcf1vTp4kaUTHKxn0MegD6iR6FgAAgD3oWQAAwGnq+zO8sLBQHTt21KhRo3TPPffUePysWbM0ceJEzZ49W127dlVGRoZ++9vfKjY2VoMGDfLBigFUxwmDpYyDxzXg3XWKiwzTkcIzCq8f6vM1MOgD4AT0LAAAAHvQswAAgNP4ddh3xx136I477nD7+HfffVe/+93v9Ktf/UqS1KpVK23cuFHPPvss5QjwMycMlsoGfe3jo9Xu8ss0J2u/z9fAoA+AU9CzAAAA7EHPAgAATuPXYZ+nXC6XIiIiKtwWGRmpjIwMFRcXq0GDSz+qz+VyyeVylV8vKCiwfZ1AMFi3/0e3j12cfUgLs/N0b7sEtYxtqPe2Haj2+NxjpyRJWw7n13isu/b8VKjpa3OVGB2pkZ2u1Pxt31uecbGLH0dRcYlmrNulAwVFmtizjXb9dEq7fjplaYY7PN0PT/YaQPCiZwG+k/3DSdvOvff4aTIclGHnuQEEDnoW4DuB3h3IcB89C6goxBhj/L0ISQoJCdGiRYuUkpJS5TF/+tOf9Pbbb2vp0qXq3LmzNm3apLvuuktHjhzRoUOHlJCQcMl9pkyZoqlTp15y++23315pmbJKRkaGunXrZtv5fZlDRt3KOH78uNauXWvb+eFcPXv2VGysfe9E5PciGXYoLi7W8uXLlZ+fr+joaNtyAh09iwy7BctjsTujqKhIn332mW3nh3P1799fkZGRtp0/GJ4fZDgvh57lHnoWGWQ4I4OeVXfRs8gItAy7OlZADfuKioqUmpqqd999V8YYNWnSREOHDtWMGTN0+PBhNWnS5JL7VPaXUImJibaX1cGDB2vJkiW2nd+XOWTUvYybb75ZjzzyiK0ZM2bM0B/+8AcyHJLx2muv6YsvvrA1g9+LZNihoKBAMTEx/EeoGtCzyLBbsDwWX2QMGDBAzz77rK0ZY8eO1cyZM8lwSMYf//hHpaWl2ZoRLM8PMpyVQ89yDz2LDDKckSHRs+piBj2LjEDMsKtjBdTHeEZGRuqtt97S66+/riNHjighIUFvvPGGoqKidMUVV1R6n/DwcIWHh/t4pUBgi42N1ZAhQ2zNWLBgARkOywBQt9GzAN+IjIxU586dbc2IjY0lw0EZdv6lOYDAQM8CfIOeVfcy6FnAeQE17CvToEEDtWjRQpI0f/583XXXXapXr56fVwUAABD46FkAAAD2oGcBAAC7+HXYd+rUKe3evbv8+t69e7V582bFxcXpyiuv1MSJE3Xw4EG98847kqTc3FxlZGToxhtv1PHjx/XXv/5V27dv17x58/z1EAAAAByJngUAAGAPehYAAHAavw77MjMz1bdv3/Lr48aNkySNGDFCc+fOVV5envbv31/+7yUlJXr++eeVk5OjBg0aqG/fvlq/fr2Sk5N9vXQAAABHo2cBAADYg54FAACcxq/Dvj59+sgYU+W/z507t8L1du3aKSsry+ZVAQAABD56FgAAgD3oWQAAwGn4YHAAAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAIUwz4AAAAAAAAAAAAgQDHsAwAAAAAAAAAAAAKUX4d96enpGjRokJo1a6aQkBAtXry42uMfeughhYSEXHK59tprfbNgAACAAEHPAgAAsAc9CwAAOI1fh32FhYXq2LGjXnnlFbeOnzlzpvLy8sovBw4cUFxcnO677z6bVwoAABBY6FkAAAD2oGcBAACnqe/P8DvuuEN33HGH28fHxMQoJiam/PrixYt1/PhxjRw50o7lAQAABCx6FgAAgD3oWQAAwGn8OuyrrTlz5qh///5KSkqq8hiXyyWXy1V+PT8/X5JUUFBg69qKi4ttz/BVDhlkkEFGoGT4KocM52SUndsYY1tGXVXXexYZzsshgwwyyCDDtzn0LPvQs8ggI3BzyCCDDDJqy7aOZRxCklm0aJHbxx88eNCEhoaaBQsWVHvc5MmTjSQuXLhw4cKFSxBfDhw4UMsmEtwkehYXLly4cOHCxbsLPat6Ej2LCxcuXLhw4eL5xeqOFbDv7Js3b54aN26slJSUao+bOHGixo0bV379xIkTSkpK0v79+yt8hIKVCgoKlJiYqAMHDig6OtqWDF/lkEEGGWQESoavcshwVoYxRidPnlSzZs1sOX9dVdd7FhnOyyGDDDLIIMP3OfQse9CzyCDDHsHyWMggg4zgz7CrYwXksM8Yo7feekvDhg1TWFhYtceGh4crPDz8kttjYmJsfYGRpOjoaNszfJVDBhlkkBEoGb7KIcM5GXb9x466ip5FhpNzyCCDDDLI8G0OPcta9CwyyAj834tkkEEGGVawo2PVs/yMPrBmzRrt3r1bo0eP9vdSAAAAggo9CwAAwB70LAAAYBe/vrPv1KlT2r17d/n1vXv3avPmzYqLi9OVV16piRMn6uDBg3rnnXcq3G/OnDm68cYb1b59e18vGQAAICDQswAAAOxBzwIAAE7j12FfZmam+vbtW3697LPIR4wYoblz5yovL0/79++vcJ/8/Hx99NFHmjlzpleZ4eHhmjx5cqUfhWAVX2T4KocMMsggI1AyfJVDhrMyUDV6Fhn87iWDDDLICM4MX+agcvQsMshwVoavcsgggwwynCzEGGP8vQgAAAAAAAAAAAAAngvI7+wDAAAAAAAAAAAAwLAPAAAAAAAAAAAACFgM+wAAAAAAAAAAAIAAxbAPAAAAAAAAAAAACFBBOex75ZVXlJycrIiICN14443KyMio8tg+ffooJCTkksvAgQMtyyguLtZTTz2l1q1bKyIiQh07dtTy5curPX96eroGDRqkZs2aKSQkRIsXL672+Ly8PP36179WmzZtVK9ePT3++OPVHu9Nxtq1a9WjRw/97Gc/U2RkpK6++mq98MILlmasXr260v04fPiwZRmS5HK59MQTTygpKUnh4eFKTk7WW2+9ZWnGe++9p44dO6phw4ZKSEjQqFGj9OOPP1Z5/PTp09W1a1dFRUUpPj5eKSkpysnJqTHnww8/1NVXX62IiAh16NBBy5YtszRj9uzZuvnmmxUbG6vY2Fj179+/2p93bx9Hmfnz5yskJEQpKSmWZ5w4cUKpqalKSEhQeHi42rRpU+X/v7zNePHFF9W2bVtFRkYqMTFR//Vf/6X/+7//q/TYWbNm6brrrlN0dLSio6PVvXt3ffrpp9We35P99iZjx44d+uUvf6nk5GSFhIToxRdfrPExe5Pz8ccfq0uXLmrcuLEaNWqkTp066d1337U0Y+7cuZf8LomIiLA0w5vXEE8zvHkNudAzzzyjkJCQal8XvN13T3O82Xc4Dz2LnlUTehY9i55VOW9eb+lYzu1Ykm96Fh2rbqFn0bNqQs+iZ9GzKkfPomfRs4Jw2LdgwQKNGzdOkydP1tdff62OHTvqtttu09GjRys9/uOPP1ZeXl75Zfv27QoNDdV9991nWcakSZP0+uuv629/+5t27typRx55RL/4xS+UlZVVZUZhYaE6duyoV155xa3H7XK5dMUVV2jSpEnq2LGjW/fxNKNRo0YaM2aM0tPTlZ2drUmTJmnSpEl64403LMsok5OTU2Ff4uPjLc24//77tXLlSs2ZM0c5OTn64IMP1LZtW8sy1q1bp+HDh2v06NHasWOHPvzwQ2VkZOi3v/1tlfdZs2aNUlNT9eWXXyotLU3FxcW69dZbVVhYWOV91q9frwcffFCjR49WVlaWUlJSlJKSou3bt1uWsXr1aj344INatWqVNmzYoMTERN166606ePCgZRll9u3bp/Hjx+vmm2+u9jhvMs6cOaMBAwZo3759WrhwoXJycjR79mw1b97csoz3339fEyZM0OTJk5Wdna05c+ZowYIF+tOf/lTp8S1atNAzzzyjTZs2KTMzU7fccovuvvtu7dixo9LjPd1vbzJOnz6tVq1a6ZlnnlHTpk2rPG9tc+Li4vTEE09ow4YN2rp1q0aOHKmRI0fqX//6l2UZkhQdHV3hd8l3331n6ePw5jXE0wxvXkPKbNy4Ua+//rquu+66ao/zdt89zfFm3+Es9Cx6ljvoWfQsepZ1PYuO5cyOJfmmZ9Gx6hZ6Fj3LHfQsehY9i55V2wx6lmcZAdWzTJDp1q2bSU1NLb9eUlJimjVrZqZPn+7W/V944QUTFRVlTp06ZVlGQkKCefnllyvcds8995ghQ4a4tSZJZtGiRW4da4wxvXv3NmPHjnX7eG8yyvziF78wQ4cOtSxj1apVRpI5fvy4x2txN+PTTz81MTEx5scff7Qt4y9/+Ytp1apVhdteeukl07x5c7dzjh49aiSZNWvWVHnM/fffbwYOHFjhthtvvNH87ne/syzjYmfPnjVRUVFm3rx5lmacPXvW3HTTTebNN980I0aMMHfffbfba3InY9asWaZVq1bmzJkzbp/X04zU1FRzyy23VLht3LhxpkePHm7nxMbGmjfffLPSf6vtfruTcaGkpCTzwgsveHRub3LKXH/99WbSpEmWZbz99tsmJibGo/N5mnExd15DPM3w9jXk5MmT5qqrrjJpaWkevS54uu/e5pTxZt/hP/QsehY9i55VGXqWexkXqk3PomNZk1Gb1w9f9Cw6Vt1Dz6Jn0bPoWZWhZ7mXcSF6Fj3LrowyTu1ZQfXOvjNnzmjTpk3q379/+W316tVT//79tWHDBrfOMWfOHD3wwANq1KiRZRkul+uSt9tGRkZq7dq1bq3JqbKysrR+/Xr17t3b8nN36tRJCQkJGjBggNatW2fpuZcsWaIuXbpoxowZat68udq0aaPx48erqKjIsozu3bvrwIEDWrZsmYwxOnLkiBYuXKg777zT7XPk5+dLKv3rgaps2LChws+iJN12221u/7y7k3Gx06dPq7i42O37uJvx1FNPKT4+XqNHj3Z7LZ5kLFmyRN27d1dqaqqaNGmi9u3b689//rNKSkosy7jpppu0adOm8o+F+Pbbb7Vs2TK39r2kpETz589XYWGhunfvXukxtd1vdzKs4GmOMUYrV65UTk6OevXqZWnGqVOnlJSUpMTExBr/cqq2j0Oq+TXEmwxvX0NSU1M1cODAS35mrOZtjjf7Dv+iZ/kWPatq9CzPM+hZwdGz6FjO6FiSb3oWHatuoWf5Fj2ravQszzPoWfQsetal6Fl+4rcxow0OHjxoJJn169dXuP33v/+96datW433/+qrr4wk89VXX1ma8eCDD5prrrnG5ObmmpKSErNixQoTGRlpwsLC3HhUzvtLqObNm5uwsDBTr14989RTT1ma8c0335jXXnvNZGZmmnXr1pmRI0ea+vXrm02bNlmWcdttt5nw8HAzcOBA89VXX5lPPvnEJCUlmYceesiyDGOM+cc//mEuu+wyU79+fSPJDBo0yO2/wikpKTEDBw6s8S9oGjRoYN5///0Kt73yyismPj7esoyLPfroo6ZVq1amqKjIsowvvvjCNG/e3Pzwww/GGOPRX0K5m9G2bVsTHh5uRo0aZTIzM838+fNNXFycmTJlimUZxhgzc+ZM06BBg/J9f+SRR6o9fuvWraZRo0YmNDTUxMTEmE8++aTKY73db08yLuTpX0J5mnPixAnTqFEjU79+fRMeHm7mzJljacb69evNvHnzTFZWllm9erW56667THR0tDlw4IClj6OMO68h3mR48xrywQcfmPbt25c/T+36SyhvcrzZdzgDPasUPav6DHqWZxkXo2dVr672LDqWczqWMb7pWXSsuoeeVYqeVX0GPcuzjIvRs6pHz6JnWfk46Fn+wbDvAg8//LDp0KGD5RlHjx41d999t6lXr54JDQ01bdq0MY899piJiIiocU3GOK8cffvtt2br1q3mjTfeMHFxcZf8srYi40K9evWy9KMVBgwYYCIiIsyJEyfKb/voo49MSEiIOX36tCUZO3bsMAkJCWbGjBlmy5YtZvny5aZDhw5m1KhR7jwM88gjj5ikpKQaf5HXphy5m3Gh6dOnm9jYWLNlyxa3jncno6CgwCQnJ5tly5aV3+ZJOXL3cVx11VUmMTHRnD17tvy2559/3jRt2tSyjFWrVpkmTZqY2bNnm61bt5qPP/7YJCYmVvs/Ilwul9m1a5fJzMw0EyZMMJdffrnZsWNHpcd6u9+eZFzI02GfpzklJSVm165dJisryzz33HMmJibGrFq1ypbHYowxZ86cMa1bt67xbfbeZrjzGuJNhqevIfv37zfx8fEVnqd2lCNvc7zZdzgDPasUPav6DHqWZxkXomfRs6zKoGPZ07GM8U3PomPVTfSsUvSs6jPoWZ5lXIieRc+yKoOeRc9ycs8KqmGfy+UyoaGhl7xwDR8+3AwePLja+546dcpER0ebF1980baMoqIi8/3335tz586ZP/zhD+aaa66p9vgyTitHF3r66adNmzZtbM0YP368+Y//+A/LMoYPH25at25d4badO3caSSY3N9eSjKFDh5p77723wm1ffPGFkWQOHTpU7X1TU1NNixYtzLffflvjWhITEy/5Jfbf//3f5rrrrrMso8xf/vIXExMTYzZu3OjW8e5mZGVlGUkmNDS0/BISEmJCQkJMaGio2b17tyWPo1evXqZfv34Vblu2bJmRZFwulyUZPXv2NOPHj69w27vvvmsiIyNNSUlJjfc3xph+/fqZhx9+uNJ/83a/Pcm4UG2/s8/dnDKjR482t956q60Z9957r3nggQcsz3D3NaQ2Ge6+hixatOiS55Sk8ufUhf8DoTLu7nttc8p4s+/wD3pWKXpW9Rn0LHpWGXpW9WrTs+hY1mZ48vrhi55Fx6qb6Fml6FnVZ9Cz6Fll6FnVo2fRs+zKKOPUnhVU39kXFhamG264QStXriy/7dy5c1q5cmWNn1H74YcfyuVyaejQobZlREREqHnz5jp79qw++ugj3X333W48Kmc7d+6cXC6XrRmbN29WQkKCZefr0aOHDh06pFOnTpXflpubq3r16qlFixaWZJw+fVr16lV8eoWGhkoq/WzfyhhjNGbMGC1atEiff/65WrZsWWNO9+7dK/wsSlJaWlqVP4veZEjSjBkz9PTTT2v58uXq0qVLtcd6mnH11Vdr27Zt2rx5c/ll8ODB6tu3rzZv3qzExERLHkePHj20e/dunTt3rvy23NxcJSQkKCwszJIMb/b9YtU9pzzdb28yrORpjjfr8uQ+JSUl2rZtm8e/T9zJcPc1pDYZ7r6G9OvX75LnVJcuXTRkyBBt3ry5/GeytqzK8dXPI2qPnuV79KzK0bPoWWXqas+iY1mb4cnrhy96Fh2rbqJn+R49q3L0LHpWGXqWPcd7eh96Fj3LIz4dLfrA/PnzTXh4uJk7d67ZuXOnefjhh03jxo3N4cOHjTHGDBs2zEyYMOGS+/Xs2dP86le/siXjyy+/NB999JHZs2ePSU9PN7fccotp2bKlOX78eJUZJ0+eNFlZWeV/JfLXv/7VZGVlme+++84YY8yECRPMsGHDKtyn7PgbbrjB/PrXvzZZWVnVvl3X04yXX37ZLFmyxOTm5prc3Fzz5ptvmqioKPPEE09YlvHCCy+YxYsXm127dplt27aZsWPHmnr16pnPPvvMsoyTJ0+aFi1amHvvvdfs2LHDrFmzxlx11VXmN7/5jWUZb7/9tqlfv7559dVXzZ49e8zatWtNly5dqv34jUcffdTExMSY1atXm7y8vPLLhR/FcPHP1rp160z9+vXNc889Z7Kzs83kyZNNgwYNzLZt2yzLeOaZZ0xYWJhZuHBhhfucPHnSsoyL1fSxB95k7N+/30RFRZkxY8aYnJwcs3TpUhMfH2+mTZtmWcbkyZNNVFSU+eCDD8y3335rVqxYYVq3bm3uv//+SjMmTJhg1qxZY/bu3Wu2bt1qJkyYYEJCQsyKFSsqPb+n++1NhsvlKv9ZT0hIMOPHjzdZWVlm165dVWZ4k/PnP//ZrFixwuzZs8fs3LnTPPfcc6Z+/fpm9uzZlmVMnTrV/Otf/zJ79uwxmzZtMg888ICJiIio9veipxllPHkN8TTDm9eQi138F7JW7bunOd7sO5yFnkXPomfRsyrLoGfZ17PoWM7uWMb4pmfRseoGehY9i55Fz6osg55Fz6JnjS2/Ts+qXtAN+4wx5m9/+5u58sorTVhYmOnWrZv58ssvy/+td+/eZsSIERWO/+abb4yk8h9OqzNWr15t2rVrZ8LDw83PfvYzM2zYMHPw4MFqz79q1Soj6ZJL2XlHjBhhevfuXeE+lR2flJRkWcZLL71krr32WtOwYUMTHR1trr/+evPqq69W+3ZuTzOeffZZ07p1axMREWHi4uJMnz59zOeff275/6+ys7NN//79TWRkpGnRooUZN25ctZ9v7k3GSy+9ZK655hoTGRlpEhISzJAhQ8z3339fZUZl55dk3n777fJjKvv5/cc//mHatGljwsLCzLXXXlvtl6N6k5GUlFTpfSZPnmzp47hQTeXI24z169ebG2+80YSHh5tWrVqZ//mf/6ny7dneZBQXF5spU6aU/wwnJiaaxx57rMoXslGjRpmkpCQTFhZmrrjiCtOvX78Kv4dqu9/eZOzdu7fSx33xz3dtc5544gnz85//3ERERJjY2FjTvXt3M3/+fEszHn/88fLf002aNDF33nmn+frrry3NMMbz1xBPM7x5DbnYxcXFqn33NMebfYfz0LPoWfQs6zLoWfSsml5v6VjO7lhl57W7Z9Gx6g56Fj2LnmVdBj2LnkXPqjzDGHqWJxmB1LNCjHHzvbgAAAAAAAAAAAAAHCWovrMPAAAAAAAAAAAAqEsY9gEAAAAAAAAAAAABimEfAAAAAAAAAAAAEKAY9gEAAAAAAAAAAAABimEfAAAAAAAAAAAAEKAY9gEAAAAAAAAAAAABimEfAAAAAAAAAAAAEKAY9gEAAAAAAAAAAAABimEfAAAAAAAAAAAAEKAY9gEIGiUlJbrpppt0zz33VLg9Pz9fiYmJeuKJJ/y0MgAAgMBGzwIAALAeHQuAVUKMMcbfiwAAq+Tm5qpTp06aPXu2hgwZIkkaPny4tmzZoo0bNyosLMzPKwQAAAhM9CwAAADr0bEAWIFhH4Cg89JLL2nKlCnasWOHMjIydN9992njxo3q2LGjv5cGAAAQ0OhZAAAA1qNjAagthn0Ago4xRrfccotCQ0O1bds2/ed//qcmTZrk72UBAAAEPHoWAACA9ehYAGqLYR+AoPTNN9+oXbt26tChg77++mvVr1/f30sCAAAICvQsAAAA69GxANRGPX8vAADs8NZbb6lhw4bau3evvv/+e38vBwAAIGjQswAAAKxHxwJQG7yzD0DQWb9+vXr37q0VK1Zo2rRpkqTPPvtMISEhfl4ZAABAYKNnAQAAWI+OBaC2eGcfgKBy+vRpPfTQQ3r00UfVt29fzZkzRxkZGXrttdf8vTQAAICARs8CAACwHh0LgBV4Zx+AoDJ27FgtW7ZMW7ZsUcOGDSVJr7/+usaPH69t27YpOTnZvwsEAAAIUPQsAAAA69GxAFiBYR+AoLFmzRr169dPq1evVs+ePSv822233aazZ8/yEQgAAABeoGcBAABYj44FwCoM+wAAAAAAAAAAAIAAxXf2AQAAAAAAAAAAAAGKYR8AAAAAAAAAAAAQoBj2AQAAAAAAAAAAAAGKYR8AAAAAAAAAAAAQoBj2AQAAAAAAAAAAAAGKYR8AAAAAAAAAAAAQoBj2AQAAAAAAAAAAAAGKYR8AAAAAAAAAAAAQoBj2AQAAAAAAAAAAAAGKYR8AAAAAAAAAAAAQoBj2AQAAAAAAAAAAAAHq/wFi+JCzBPt8ggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 4.611111111111111\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.1782178217821782\n", + "\n", + "\n" + ] + } + ], + "source": [ + "numb_square= 20\n", + "xx,yy,Z1=lab02_lib.square_calc(numb_square,data, ae_trainned ,IREth,'1',True)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "bGsj-PweRVrD", + "outputId": "5d2a841b-c657-4dbe-c752-5b697d6eaa2f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m219/219\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcxVJREFUeJzt3Xl4VOX9/vF7JsuEJQkBspAQEmRTUFBsq2AVLSIioNa6YX8FFyhWtGgVrSsgWly/rUtVEFFbQVoXrFqpsri1uKCI4AaiJAQCSdgS1iwz5/fH5ExmOZNM1jlJ3q/rygUzc+bMMzMZ9J7P83weh2EYhgAAAAAAQNQ5oz0AAAAAAADgRUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAESVw+HQrFmzoj2Mdue5556Tw+FQXl5eve/73nvvyeFw6L333mvycbV1ubm5uvzyy6M9jACzZs2Sw+HQrl27oj2UBrHjawoAjUFIB4AGeuKJJ+RwOHTSSSc1+lxvvfUWQbUF7du3TwkJCXI4HPr2228tj7n88svlcDgsfxISEgKOvffee3XuuecqPT290V86nH766WEf1/+H35fGW716tWbNmqV9+/Y1+lw//PCDpk6dqqOOOkoJCQlKSkrSKaecokceeUSHDx9u/GABAO1GbLQHAACt1aJFi5Sbm6tPP/1UmzdvVt++fRt8rrfeekt//etfCV4t5KWXXpLD4VBGRoYWLVqke+65x/I4l8ulBQsWhFwfExMTcPmOO+5QRkaGTjjhBL399tuNGtvtt9+uyZMn+y6vWbNGjz76qG677TYdc8wxvusHDx7cqMf5zW9+o0svvVQul6ve9z3ttNN0+PBhxcfHN2oM0bZ69WrNnj1bl19+ubp06dLg8/z73//WRRddJJfLpYkTJ+rYY49VRUWF/vvf/2rGjBn6+uuvNX/+/KYbOACgTSOkA0ADbNmyRatXr9arr76qqVOnatGiRZo5c2a0h9XuHTlyRPHx8XI6a58o9sILL+icc85RTk6OFi9eHDakx8bG6v/9v/9X5+Nu2bJFubm52rVrl1JTUxs0dtOoUaMCLickJOjRRx/VqFGjdPrpp4e938GDB9WpU6eIHycmJibky4ZIOZ3OkNkE7dWWLVt06aWXKicnR6tWrVKPHj18t02bNk2bN2/Wv//97yiOEPUR6b8hANCc+BcIABpg0aJFSklJ0dixY3XhhRdq0aJFIceEW7ebl5cnh8Oh5557TpJ3WvVf//pXSQqYzmw6ePCgbrzxRmVnZ8vlcmnAgAF66KGHZBhGyGO+8MILOvHEE9WhQwd17dpVl156qQoKCgKOOf3003Xsscfqm2++0RlnnKGOHTsqKytLDzzwQMj5jhw5olmzZql///5KSEhQjx49dMEFF+iHH36o9/jKy8t1ww03KDU1VYmJiTr33HO1bds2y9d3+/btuvLKK5Weni6Xy6VBgwZp4cKFlq/vkiVLdMcddygrK0sdO3ZUWVmZ5TlNW7du1YcffqhLL71Ul156qe8Ll8bIzc1t1P3ry1xD/M033+iyyy5TSkqKfv7zn0uS1q9fr8svv9w37TojI0NXXnmldu/eHXAOqzXpubm5GjdunP773//qZz/7mRISEnTUUUfpb3/7W8B9rX636/N7lZ+fr3PPPVedOnVSWlqabrjhBr399tsRrXPfv3+/rr/+euXm5srlciktLU2jRo3S2rVrA4775JNPdPbZZys5OVkdO3bUiBEj9L///S/gNZwxY4YkqXfv3r7PXX3X6D/wwAM6cOCAnnnmmYCAburbt6+mT58e9v579uzRTTfdpOOOO06dO3dWUlKSxowZoy+//DLk2Mcee0yDBg1Sx44dlZKSop/85CdavHhxvV+bcHbt2qWLL75YSUlJ6tatm6ZPn64jR44EHFNVVaU5c+aoT58+crlcys3N1W233aby8vKA48ItyQheP27+Hv7vf//TH/7wB6WmpqpTp0765S9/qZKSkoD7Goahe+65Rz179lTHjh11xhln6Ouvvw55jEhf03D/hqxbt04Oh0N//vOfQ869evVqORwOvfjii3W9nADQYFTSAaABFi1apAsuuEDx8fGaMGGCnnzySa1Zs0Y//elP632uqVOnqrCwUMuXL9ff//73gNsMw9C5556rd999V1dddZWOP/54vf3225oxY4a2b98e8D+R9957r+68805dfPHFmjx5skpKSvTYY4/ptNNO0xdffBEwnXfv3r06++yzdcEFF+jiiy/Wyy+/rFtuuUXHHXecxowZI0lyu90aN26cVq5cqUsvvVTTp0/X/v37tXz5cn311Vfq06dPvcY3efJkvfDCC7rssss0fPhwrVq1SmPHjg15PYqKinTyySfL4XDo2muvVWpqqpYtW6arrrpKZWVluv766wOOnzNnjuLj43XTTTepvLy8zinYL774ojp16qRx48apQ4cO6tOnjxYtWqThw4dbHm/VTCs+Pl5JSUm1Pk5LuOiii9SvXz/96U9/8n0psnz5cv3444+64oorlJGR4Ztq/fXXX+vjjz8O+ALIyubNm3XhhRfqqquu0qRJk7Rw4UJdfvnlOvHEEzVo0KBa7xvJ79XBgwf1i1/8Qjt27ND06dOVkZGhxYsX6913343oOV999dV6+eWXde2112rgwIHavXu3/vvf/+rbb7/V0KFDJUmrVq3SmDFjdOKJJ2rmzJlyOp169tln9Ytf/EIffvihfvazn+mCCy7Qpk2b9OKLL+rPf/6zunfvLkn1ngnxxhtv6Kijjgr7+1OXH3/8Ua+99pouuugi9e7dW0VFRZo3b55GjBihb775RpmZmZKkp59+Wr///e914YUX+sLz+vXr9cknn+iyyy6L+LWpzcUXX6zc3FzNnTtXH3/8sR599FHt3bs34EuayZMn6/nnn9eFF16oG2+8UZ988onmzp2rb7/9VkuXLm3QayBJ1113nVJSUjRz5kzl5eXpL3/5i6699lr94x//8B1z11136Z577tE555yjc845R2vXrtVZZ52lioqKBr2mpuB/Q44++midcsopWrRokW644YaAYxctWqTExESdd955DX6uAFAnAwBQL5999pkhyVi+fLlhGIbh8XiMnj17GtOnTw847t133zUkGe+++27A9Vu2bDEkGc8++6zvumnTphlW/yS/9tprhiTjnnvuCbj+wgsvNBwOh7F582bDMAwjLy/PiImJMe69996A4zZs2GDExsYGXD9ixAhDkvG3v/3Nd115ebmRkZFh/OpXv/Jdt3DhQkOS8X//938h4/J4PPUa37p16wxJxjXXXBNw3GWXXWZIMmbOnOm77qqrrjJ69Ohh7Nq1K+DYSy+91EhOTjYOHTpkGEbN63vUUUf5rovEcccdZ/z617/2Xb7tttuM7t27G5WVlQHHTZo0yZBk+TN69GjLc5eUlIQ8n8Z66aWXQn6PZs6caUgyJkyYEHK81Wvx4osvGpKMDz74wHfds88+a0gytmzZ4rsuJycn5Lji4mLD5XIZN954o+86q9/tSH+vHn74YUOS8dprr/muO3z4sHH00Udbfl6CJScnG9OmTQt7u8fjMfr162eMHj3a93tqGN7XpXfv3saoUaN81z344IMhr0F9lJaWGpKM8847L+L75OTkGJMmTfJdPnLkiOF2uwOO2bJli+FyuYy7777bd915551nDBo0qNZz1/XahGP+Pp177rkB119zzTWGJOPLL780DKPmczx58uSA42666SZDkrFq1SrfdeE+B8HP3/w9PPPMMwPerxtuuMGIiYkx9u3bZxiG9/cwPj7eGDt2bMBxt912myGpQa9pbf+GzJs3z5BkfPvtt77rKioqjO7duwc8FgA0B6a7A0A9LVq0SOnp6TrjjDMkead1XnLJJVqyZIncbneTPtZbb72lmJgY/f73vw+4/sYbb5RhGFq2bJkk6dVXX5XH49HFF1+sXbt2+X4yMjLUr1+/kCpl586dA9Zax8fH62c/+5l+/PFH33WvvPKKunfvruuuuy5kXGY1NtLxvfXWW5IUclxwVdwwDL3yyisaP368DMMIeC6jR49WaWlpyNTdSZMmqUOHDtYvYJD169drw4YNmjBhgu+6CRMmaNeuXZYN3xISErR8+fKQn/vuuy+ix2tuV199dch1/q/FkSNHtGvXLp188smSFNG054EDB+rUU0/1XU5NTdWAAQMCfjfCieT36j//+Y+ysrJ07rnn+q5LSEjQlClT6jy/JHXp0kWffPKJCgsLLW9ft26dvv/+e1122WXavXu37/fn4MGDGjlypD744AN5PJ6IHqsu5tKKxMTEBp/D5XL51j+73W7t3r1bnTt31oABAwLery5dumjbtm1as2ZN2HPV9drUZdq0aQGXzc+++fk1//zDH/4QcNyNN94oSY1ae//b3/42YJbHqaeeKrfbrfz8fEnSihUrVFFRoeuuuy7guOB/Q6TIX1OT1b8hF198sRISEgKWMr399tvatWtXRH0qAKAxmO4OAPXgdru1ZMkSnXHGGdqyZYvv+pNOOkkPP/ywVq5cqbPOOqvJHi8/P1+ZmZkhIcDs8m3+D+z3338vwzDUr18/y/PExcUFXO7Zs2fItOeUlBStX7/ed/mHH37QgAEDFBsb/j8VkY4vPz9fTqdTffr0CThuwIABAZdLSkq0b98+zZ8/P2w37OLi4oDLvXv3Dju+YC+88II6deqko446Sps3b5bkDYi5ublatGhRyPT7mJgYnXnmmRGfv6VZPfc9e/Zo9uzZWrJkSchrVVpaWuc5e/XqFXJdSkqK9u7dW+d9I/m9ys/PV58+fUKOi3R3hAceeECTJk1Sdna2TjzxRJ1zzjmaOHGijjrqKEnez4LkDV7hlJaWKiUlJaLHq4255GH//v0NPofH49EjjzyiJ554Qlu2bAn4oq9bt26+v99yyy1asWKFfvazn6lv374666yzdNlll+mUU07xHVPXa1OX4H8/+vTpI6fT6Vunb36Og9+rjIwMdenSxfd5b4jg3zvz/TF/78xzB48xNTU15L2M9DU1WX2OunTpovHjx2vx4sWaM2eOJO8XtFlZWfrFL35R36cHAPVCSAeAeli1apV27NihJUuWaMmSJSG3L1q0yBfSw639bepqu+T9n1KHw6Fly5ZZduzu3LlzwOVwXb0Ni2Z0LcmscP6///f/woas4K3HIq2iG4ahF198UQcPHtTAgQNDbi8uLtaBAwdCXis7s3ruF198sVavXq0ZM2bo+OOPV+fOneXxeHT22WdHVEFuzO9GS/xeXXzxxTr11FO1dOlSvfPOO3rwwQd1//3369VXX9WYMWN8z/HBBx/U8ccfb3mOpnqPk5KSlJmZqa+++qrB5/jTn/6kO++8U1deeaXmzJmjrl27yul06vrrrw94v4455hht3LhRb775pv7zn//olVde0RNPPKG77rpLs2fPllT3a1Nf4f4Nq6uvQW3C/fvXlL87kb6mpnD/hkycOFEvvfSSVq9ereOOO06vv/66rrnmGjq/A2h2hHQAqIdFixYpLS3N143d36uvvqqlS5fqqaeeUocOHXzVnX379gUcZ1VtCvc/vTk5OVqxYoX2798fUK3+7rvvfLdL8jVx6927t/r379+g5xasT58++uSTT1RZWRlSia/v+HJycuTxeHzVedPGjRsDzmd2fne73U1ewX7//fe1bds23X333QH7jUveat1vf/tbvfbaa616KuvevXu1cuVKzZ49W3fddZfverO6bAc5OTn65ptvZBhGwO+9ObMhEj169NA111yja665RsXFxRo6dKjuvfdejRkzxjdbIykpqc7focaETdO4ceM0f/58ffTRRxo2bFi97//yyy/rjDPO0DPPPBNw/b59+3zN7EydOnXSJZdcoksuuUQVFRW64IILdO+99+rWW2/1bYlX22tTl++//z6gqrx582Z5PB7f7gXm5/j7778P+AwVFRVp3759vs+75K2EB//bV1FRoR07dkT0ugQzz/39998HzAwoKSkJmeVRn9e0NmeffbZSU1O1aNEinXTSSTp06JB+85vfNGj8AFAffBUIABE6fPiwXn31VY0bN04XXnhhyM+1116r/fv36/XXX5fk/Z/KmJgYffDBBwHneeKJJ0LObe5vHfw/teecc47cbrcef/zxgOv//Oc/y+Fw+P7H+4ILLlBMTIxmz54dUnkyDCNk+61I/OpXv9KuXbtCHts8Z33GZ/756KOPBhz3l7/8JeByTEyMfvWrX+mVV16xrE4Gb8lUH+ZU9xkzZoS8d1OmTFG/fv0st9JrSrt27dJ3332nQ4cONcv5zWpk8O9A8OscTaNHj9b27dt9nxPJu3b+6aefrvO+brc7ZMp+WlqaMjMzfVuAnXjiierTp48eeughHThwIOQc/r9D4T53knerPvPLptrcfPPN6tSpkyZPnqyioqKQ23/44Qc98sgjYe8fExMT8n699NJL2r59e8B1wZ/h+Ph4DRw4UIZhqLKyMqLXpi7BXz4+9thjkmo+v+ecc46k0N+n//u//5OkgOUiffr0Cfm3b/78+Q2eSXTmmWcqLi5Ojz32WMDrZfW7HelrWpfY2FhNmDBB//znP/Xcc8/puOOOC5nJAwDNgUo6AETo9ddf1/79+wMaXvk7+eSTfVWXSy65RMnJybrooov02GOPyeFwqE+fPnrzzTdD1glL3mAheRurjR49WjExMbr00ks1fvx4nXHGGbr99tuVl5enIUOG6J133tG//vUvXX/99b6qYZ8+fXTPPffo1ltvVV5ens4//3wlJiZqy5YtWrp0qX7729/qpptuqtfznThxov72t7/pD3/4gz799FOdeuqpOnjwoFasWKFrrrlG5513XsTjO/744zVhwgQ98cQTKi0t1fDhw7Vy5UrL6ul9992nd999VyeddJKmTJmigQMHas+ePVq7dq1WrFihPXv21Ot5SN492l955RWNGjXKV3EMdu655+qRRx5RcXGx0tLSJHn3hH7hhRcsj//lL3/pC3l///vflZ+f7wvfH3zwge655x5J0m9+8xtfFfDxxx/X7Nmz9e677+r000+v9/OoS1JSkk477TQ98MADqqysVFZWlt55552A/gnRNnXqVD3++OOaMGGCpk+frh49emjRokW+96W26vb+/fvVs2dPXXjhhRoyZIg6d+6sFStWaM2aNXr44YclSU6nUwsWLNCYMWM0aNAgXXHFFcrKytL27dv17rvvKikpSW+88Yakms/d7bffrksvvVRxcXEaP368OnXqpIkTJ+r999+vc7p1nz59tHjxYl1yySU65phjNHHiRB177LGqqKjQ6tWr9dJLLwXsCx5s3Lhxuvvuu3XFFVdo+PDh2rBhgxYtWhSyjvyss85SRkaGTjnlFKWnp+vbb7/V448/rrFjxyoxMVH79u2r87Wpy5YtW3Tuuefq7LPP1kcffeTbMnHIkCGSpCFDhmjSpEmaP3++9u3bpxEjRujTTz/V888/r/PPP9/XTFPybtV29dVX61e/+pVGjRqlL7/8Um+//Xa9Ktn+UlNTddNNN2nu3LkaN26czjnnHH3xxRdatmxZyDkjfU0jMXHiRD366KN69913df/99zdo7ABQby3aSx4AWrHx48cbCQkJxsGDB8Mec/nllxtxcXG+7cNKSkqMX/3qV0bHjh2NlJQUY+rUqcZXX30VsgVbVVWVcd111xmpqamGw+EI2I5t//79xg033GBkZmYacXFxRr9+/YwHH3wwYBsi0yuvvGL8/Oc/Nzp16mR06tTJOProo41p06YZGzdu9B0zYsQIy62cJk2aZOTk5ARcd+jQIeP22283evfubcTFxRkZGRnGhRdeaPzwww/1Ht/hw4eN3//+90a3bt2MTp06GePHjzcKCgost2oqKioypk2bZmRnZ/sed+TIkcb8+fN9x5jbJ7300kth3w//10WS8cwzz4Q95r333jMkGY888ojv9VCYLdgUtG2Xuf2Y1Y/V1ml1bTPmr7Yt2EpKSkKO37Ztm/HLX/7S6NKli5GcnGxcdNFFRmFhYcjrHG4LtrFjx4acc8SIEcaIESN8l8NtwRbp79WPP/5ojB071ujQoYORmppq3Hjjjb736OOPPw77WpSXlxszZswwhgwZYiQmJhqdOnUyhgwZYjzxxBMhx37xxRfGBRdcYHTr1s1wuVxGTk6OcfHFFxsrV64MOG7OnDlGVlaW4XQ6A14P8z2N1KZNm4wpU6YYubm5Rnx8vJGYmGiccsopxmOPPWYcOXLEd5zVFmw33nij0aNHD6NDhw7GKaecYnz00Uchr/m8efOM0047zfd8+vTpY8yYMcMoLS2t92sTzPx9+uabb4wLL7zQSExMNFJSUoxrr73WOHz4cMCxlZWVxuzZs33/JmRnZxu33nprwHM0DMNwu93GLbfcYnTv3t3o2LGjMXr0aGPz5s1ht2Bbs2ZNwP2tfsfcbrcxe/Zs32t1+umnG1999VWDX9NI/w0ZNGiQ4XQ6jW3bttX5WgJAU3AYRpS7BAEAgHbvL3/5i2644QZt27ZNWVlZ0R4O4HPCCSeoa9euWrlyZbSHAqCdYE06AABoUYcPHw64fOTIEc2bN0/9+vUjoMNWPvvsM61bt04TJ06M9lAAtCOsSQcAAC3qggsuUK9evXT88certLRUL7zwgr777rtmb9wHROqrr77S559/rocfflg9evTQJZdcEu0hAWhHCOkAAKBFjR49WgsWLNCiRYvkdrs1cOBALVmyhCAE23j55Zd19913a8CAAXrxxRfDNpwEgObAmnQAAAAAAGyCNekAAAAAANgEIR0AAAAAAJtod2vSPR6PCgsLlZiYKIfDEe3hAAAAAADaOMMwtH//fmVmZsrprL1W3u5CemFhobKzs6M9DAAAAABAO1NQUKCePXvWeky7C+mJiYmSpNv+97kSOneO8mgAAAAAAG3dkQMH9KdTTvTl0dq0u5BuTnFP6NxZCRG8QAAAAAAANIVIllzTOA4AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbKLdrUkHAAAAADSdGMOjeI9HDhnRHkpUGHKoyuFQpcMpNcE234R0AAAAAECDJFVV6JjDZYpvgnDamhmGod3OWP3QIVEVzphGnYuQDgAAAACotxjDo2MOlyk1MVGdu3aV2mtONyR3ZaU67t6tzgf36bPOXWU04ksLQjoAAAAAoN7iPR7FOxzq3LWr4hISoj2cqIpLSJAzNlaHCwqU4HHrcEzDozaN4wAAAAAA9eZbg95eK+hBHE7vC9HYtfmEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAKDdKd65U7ffcL1OOnqAcpISdWKfPpp4wS/14apVkqS/L1igC0aNUr/U7uqR4FLpvn0tMi5COgAAAACgXSnIy9Po4cP03/fe051z79Oqzz/X4jfe0PARI3Tr9dMlSYcPH9IZZ52l3998S4uOjS3YAAAAAADtyh+n/14Oh0PL/vs/dezUyXf9gIEDNWHS5ZKk3173e0nS6vffb9GxUUkHAAAAAESd290yj7N3zx69+847unzq1QEB3ZTcpUvLDCQMQjoAAAAAIGo2b5JGHB+rnp3iNeL4WG3e1LyPl/fDDzIMQ30HDGjeB2ogQjoAAAAAIGquujhWP3zvkCT98L1DV13cvKuyDcNo1vM3FmvSAQAAAABR4XZLm75z+l12aNN3DrndUkxM8zxm77595XA4tHnjxuZ5gEaikg4AAAAAiIqYGKn/0R7FxBjVl43qy833mCldu+r0UaP03LyndOjgwZDbW2qrtXAI6QAAAACAqHnmn1Xq088b0vv0M/TMP6ua/THn/uURud1ujfn5KXpz6VL9uPl7bfruWy346+MaN+I0Sd591L/68ktt+eEHSdK3X32lr778Unv37GnWsTHdHQAAAAAQNX37S++vq2rWKe7Bco46Su989LEeuf8+zb7lFhXv3KFuqakafMIJuv/RxyRJf3v6aT187z2++/zyzJGSpL/Mf1qXTJzYbGNzGHZfNd/EysrKlJycrLu/3KiExMRoDwcAAAAAWqWO7kqdeLhMWTm9FOdKiPZwoq6y/Ii252/V5x2SdCgmLuC2I/v3664hA1RaWqqkpKRaz8N0dwAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAANSbIYf5F0i+18H3ujQQIR0AAAAAUG9VDocMw5C7sjLaQ7GFysOH5TEMVTgbF7PZJx0AAAAAUG+VDqd2O2PVcfduOWNj5XA2roLcahnegL57V4m2xbrkdhDSAQAAAAAtzeHQDx0S1fngPh0uKIj2aKLKYxjaFutSfkLnRp+LkA4AAAAAaJAKZ4w+69xVCR63HO10cbohhyqczkZX0E2EdAAAAABAgxkOhw7HEC2bCo3jAAAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATdgmpN93331yOBy6/vrraz3upZde0tFHH62EhAQdd9xxeuutt1pmgAAAAAAANDNbhPQ1a9Zo3rx5Gjx4cK3HrV69WhMmTNBVV12lL774Queff77OP/98ffXVVy00UgAAAAAAmk/UQ/qBAwf061//Wk8//bRSUlJqPfaRRx7R2WefrRkzZuiYY47RnDlzNHToUD3++OMtNFoAAAAAAJpP1EP6tGnTNHbsWJ155pl1HvvRRx+FHDd69Gh99NFHYe9TXl6usrKygB8AAAAAAOwoNpoPvmTJEq1du1Zr1qyJ6PidO3cqPT094Lr09HTt3Lkz7H3mzp2r2bNnN2qcAAAAAAC0hKhV0gsKCjR9+nQtWrRICQkJzfY4t956q0pLS30/BQUFzfZYAAAAAAA0RtQq6Z9//rmKi4s1dOhQ33Vut1sffPCBHn/8cZWXlysmJibgPhkZGSoqKgq4rqioSBkZGWEfx+VyyeVyNe3gAQAAAABoBlGrpI8cOVIbNmzQunXrfD8/+clP9Otf/1rr1q0LCeiSNGzYMK1cuTLguuXLl2vYsGEtNWwAAAAAAJpN1CrpiYmJOvbYYwOu69Spk7p16+a7fuLEicrKytLcuXMlSdOnT9eIESP08MMPa+zYsVqyZIk+++wzzZ8/v8XHDwAAAABAU4t6d/fabN26VTt27PBdHj58uBYvXqz58+dryJAhevnll/Xaa6+FhH0AAAAAAFojh2EYRrQH0ZLKysqUnJysu7/cqITExGgPBwAAAADQxh3Zv193DRmg0tJSJSUl1XqsrSvpAAAAAAC0J4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2ERUQ/qTTz6pwYMHKykpSUlJSRo2bJiWLVsW9vjnnntODocj4CchIaEFRwwAAAAAQPOJjeaD9+zZU/fdd5/69esnwzD0/PPP67zzztMXX3yhQYMGWd4nKSlJGzdu9F12OBwtNVwAAAAAAJpVVEP6+PHjAy7fe++9evLJJ/Xxxx+HDekOh0MZGRkRP0Z5ebnKy8t9l8vKyho2WAAAAAAAmplt1qS73W4tWbJEBw8e1LBhw8Ied+DAAeXk5Cg7O1vnnXeevv7661rPO3fuXCUnJ/t+srOzm3roAAAAAAA0iaiH9A0bNqhz585yuVy6+uqrtXTpUg0cONDy2AEDBmjhwoX617/+pRdeeEEej0fDhw/Xtm3bwp7/1ltvVWlpqe+noKCguZ4KAAAAAACN4jAMw4jmACoqKrR161aVlpbq5Zdf1oIFC/T++++HDer+Kisrdcwxx2jChAmaM2dORI9XVlam5ORk3f3lRiUkJjZ2+AAAAAAA1OrI/v26a8gAlZaWKikpqdZjo7omXZLi4+PVt29fSdKJJ56oNWvW6JFHHtG8efPqvG9cXJxOOOEEbd68ubmHCQAAAABAs4v6dPdgHo8noNFbbdxutzZs2KAePXo086gAAAAAAGh+Ua2k33rrrRozZox69eql/fv3a/HixXrvvff09ttvS5ImTpyorKwszZ07V5J099136+STT1bfvn21b98+Pfjgg8rPz9fkyZOj+TQAAAAAAGgSUQ3pxcXFmjhxonbs2KHk5GQNHjxYb7/9tkaNGiVJ2rp1q5zOmmL/3r17NWXKFO3cuVMpKSk68cQTtXr16ojWrwMAAAAAYHdRbxzX0mgcBwAAAABoSfVpHGe7NekAAAAAALRXhHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYRGy0BwAAAID6ycvLi8rj5ubmRuVxAaA9IaQDAAC0Inl5earaW65f7t3Xoo+7NKWL8pRHUAeAZkZIBwAAaAXM6vn4H4tUVlKk7A5ZLfr4I0s2amX/AQR1AGhmhHQAAACb86+eZx+IVcUeqdCzvEXH0M85UNq0UUmp6Xqj+jrCOgA0PUI6AACATZnV86q95Rq5aaOyO2SpsGC5Cg8UKrVbxxYdy/rdKzRYZyq+Q6zG/1jE9HcAaCaEdAAAABvyr56XlRSpX3X1vNK1T+WHpBeH9m3R8Zy6cr3Wl61QpidT2dmjAqa/S1TVAaCpENIBAABsxgzoZvW8Yo+0vmyFUrt11La9h/ThyMEamnRJi47pw5HeoF7p2qfCguUB09/rqqp73JIzpkWHCwCtFiEdAACgEZpjOzSzOZxZPS88UKhyZ031vKUDuvmYH470/n3C2s0B09+Dq+qmvVsT9J+ZA7Q3v6NScg7p7NkbldLrSMSPSXUeQHtESAcAAGig5toOzWwOZ1bPyw8pKtXzYObjvzj0HwHT3/2r6v6m3vkLlRYlSJJKCxL0v1v7aN6cVRE9llmdlwjrANoXQjoAAEADBE9Jb0r+zeGiWT0Px6yqm9Pf/avqJrdH2rojyXfZ43Fq644kZZbFKsZZ92OMLIlsKj0AtDWEdAAAgHoI3q+8XzNsh+bfHM5O4dyf//R3/6q6v17dTtS2PWnyGDFyOtzq2bVYRdsje636OQeGTKUnqANoDwjpAAAAEbLar3yX5xtVuvY16ePYsXpuxRyff1Xd3+0X/kX3vPJ7FezKUla3nbr9V49G/Fqt3x06lZ792QG0B4R0AACAOtS1X3lTb4dm93AezL+qHmzEqIXyuB1yxhj6UJ0lRfZaWU2lZ392AO0BIR0AAKAWkexX3tpCdXNo6tfAaio9+7MDaA8I6QAAoN2pz7Zp4fYrby1T0lsrq6n04fZnjwRhHkBrQUgHAADtSn23TQu3X3lbCucet+SMifYorNW1P3vwtm/hsJ4dQGtBSAcAAO2C1brySNhxv/KmUlwQp2dnZ6poq0vpvcp1xcxCpWVXNvh8Zthv6tBf2/7s/tu+1Yb17ABaC0I6AABo88KtK4+Ef/VcalvT25+dnamSbfGSpJJt8Xp2dqZuWZBf7/P4h/2YWI/cVc4mCf3BrPZnD972LRxzPTtd4gHYHSEdAAC0aWZAt1pXHom2Vj03edxS0VZXzWWPQ0VbXQ2qgvuHfXeVQ1LjQn9tgvdnj3RLN3M9O13iAdgdIR0AALRJ5vT28T8WhV1XHqm2FtAlbxBP71Wukm3x8ngccjoNpfasqDWgWwX44LAveUN6Y0J/XfybykXKfz17dlYWXeIB2BYhHQAAtDn+09uzD8Tadl15tBu2XTGz0DdNPbVnha6YWWh5XG1r14PDvmRIiiz0N1Z93kOr9ezBXeIJ6gDswGEYhhHtQbSksrIyJScn6+4vNyohMTHawwEAAE0ouDncoA5ZKiyoqZ5/OHKwpOhXxpu6YVtjBX9ZEHz5/sk5IRV3/2nsLbUmvbHWlnmDes+UjirZfUiDk85UfFaWCjpXaWlKF8WmuAjqAJrFkf37ddeQASotLVVSUlKtx1JJBwAAbUK45nCVrn22qp5LTdewLVJ1VezN26y+POieWVnr2nWPW0rLrtQtC/Kbrbt7Uwlez25W1WkqB8BOnNEeAAAAQGMFNIc7EKt+1dPbK1379OLQvrYK6OYabu/U8MDQ29SKC+J0/+Qc3TSmv+6fnKPigrhaj7f68sCczu50eidfOp2G0nuVa1dh6LnNYG7HgG4amnRJdVgfrHKnVOna520qt0fKPuBtKle1t9w3KwMAWhohHQAAtFp5eXnKy8vT+B+LNHLTRm/1vGC51pet8DWHM0OZXYQLvc0RbK1Cdzi1fXlwxcxCpfaskCTf2vX6nNuOzKD+4tC+3u3cylaosGC5sg/EauSmjb6gTlgH0NKY7g4AAFql1tIczl/w2m15HLU2bGuM+m6x5oxR9Xpyh7wd2g3FxBpyxlhPZ2+q7duiyfz9MJvK+arqNJUDEEVU0gEAQKtiVjf9p7cHV8/tGNClwMq24XEoLbtctyzID9tcrTFT4M2KvcNR0yM4JtajXYXWU949bsld5ZS5hZrkkLvKGTAG/+nsLTUboCWYVfVtew/5qurm9Hf/qjoAtARCOgAAaDXMcB48vb3Stc/Xvd1u09slbwC2mk5eXGC9Fr2+a8mtHk/yTlN3xtSEdI/HEXZaen2Dt9UU+NbMf/p7uVO+6e/99kgjN23U+B+LmP4OoEUw3R0AALQKAdXzDlkB09tfHNpXUvS3VgsW3C29W48K7S2KC9jKzCoE19b9vbYp5cGPN+nOwurquJdRx7T0SPdNl0KnwLcF5u/PhyPlm/6+fvcKDdaZiu/gbSrH9HcAzY2QDgAAbM2sXI7/sShgazVz73OzOVxjNFfQDA7bKemVSu1ZUWsIDrfee2d+nJ6fU/ve6sGP9/ycTHXrUaHdO+JkrjPv1qMy7HOtb/BuSwHdn/9WbRPWbtb63YFbta3sP0B5ypPEVm0Amh4hHQAA2FZzN4ez2hc83Prw+rIK27t3xOuhZZskhQ+35rTzkm3xARX35+fUvrd6uHDfrUdFRGP1H09dwbuhr1vw4/hftlvgp6kcgGghpAMAANsxq+f+09sLCwKr51Ljp7fXNq28scKFbfM2K+G6v4+bUqJn7uzpO86qm7rV43XPqlBxgcvvEbxfFJj3qytshwvO9X3dgh/n3Kklen1easCXCLt3xCstu1xXzmq6L0qaglVV3Zz+7l9VJ6gDaCo0jgMAALbSUs3hatsXvKn4N1dLSa9UVaWj1mZwC2dZd39/8+lUSYbfkdZN3YKbuV05q7DWZnDh9jqvrXFdQ1634MdZOLPm8u4dcdXT8aXiApcenFr/RnnNzfx9o6kcgJZASAcAALYRvLVav+rp7ZWufU2+tVpLbCNmrvF+aNkmxcYZ2lvkDZ/+gViqCcXFBaHd36sqzGnsDr8zOzRuSonlYxpG4OVwXdhrC9vhwrsUurVbXa+b1eO4q5y+y97nVfPc3FXOsB3oo83sAF/uVMhWbeN/LGKrNgBNgpAOAACizqxCBlfP/fc+b46t1c6dWiJHdUh3OA2dO9U6+DaF2qrP/qHYrJg7nYbSsst9oTi4ku6trtcoLoirrkK7qi/H1xl2vVPNzfMa6tajos5KeXFBnKoqHTIM7+0p6ZUBwT+Y1ZchMbEe3+XA5+X3WkU4o6EpZz5EItxWbcF7qhPWATQUIR0AAESV//T24Oq5//T25vD6vFQZ1WHU8Dj0+rzUOu4RmeDgGK5qX7wtTvddlRMQis2qsiFDxQUu3TSmv44cCqw2SzUd303Pzs4M3G7N8B4TXBWff3uWbyr73uLA9kR7i2N187j+ion1hK2UPzs70zcjwOk0FBvnPa62fd1DpuHPrrncrUeld/29+cwinNHQ2L3kG8P8wsi/qh48/Z2qOoCGchhG8KSotq2srEzJycm6+8uNSkhMjPZwAABot4Kbww0Kag734cjBkppv73OPW7ppTP+Q6x9atqnBU96tGrFJ0jMzM1WyzdsMzl3lVLceFTIMac/OeHkryQ7fn06nIYfTkLvKP5gbcsYY8rgDr0vvVaFbFuSrcEucHpraO2Q83bPKtWu7K+T6mse05nAacjoNuaucAQ3lwr1madnl2rU9sEFecCO54oI4LZyVqeKCmteme2ZlRA3srNw/OSekKV+45nXN2Tl+bdk/JHmbypXsPqTBSWcqPitLXx/erpX9Byg2xUVTOQA6sn+/7hoyQKWlpUpKSqr1WLq7AwCAFue/tZr/3ueVrn1NsrVaJMJ1X29MmAuuWj/1xyztKzH3KJfcVQ51zajQvpJYv6p3YAU9tCO79zZvQA+8rmirS/dPzqlesx4cvA3t2l79xYDbIRkOv2PCB3TJO6vA7XHogTc3KbZ6Fr65T7t5bvMLBXPfd1Pw9Hj/Cvyu7dYd4RuyP3u4x/S/v9UXA03dOT54q7b1Zd491f23anuj+ljCOoBIMN0dAAC0qJZsDleXcE3VGsJqLfe+kngFT1PfszM+YFq6yVyD/sdn8i3WoFtzxnj81rJbB293lRnQwx9jJSbWoz1Fcb5p5Q9M6a2irfEBx5ivmf9UfnPct4zv65uKvjM/LqKO8JF+QRJJ07+GrNFvDJrKAWgqTHcHAAAtwgwo438s8lXPd3m+CZje3lLhPFhTTYf2ro2Ol2E45HAYvuZqkfCv9O7Mj9MDU0Knr/szp85HzvxfvpqKekysRx63w2+85u2Sw2EoLbtC5YcdAbMB/N33r02K7xA4XT24ou9wGkqr/iIk0unpkahrinzNDINAjVnOEAlz+vupK9fL5ZEyO2cqM3tUwPR3iao60N4w3R0AANiK//T27AOxqqiunqd269hi09tr0xShLbjredeMyupp7bVPL4+J9ejGJ/OVkVMTMDNyKpXeq7y6ch1635hYj2bMy/dNr69pOlebmmPSe1Vo0p2FcjrlC7op6ZXVa+S9zMZz1ryB/4/neZvMXTm7UDPm5VevVw8ci1FdNb/56S16fo73sRo7a0GqfYp88HT4mvs07RZ7Vszf4w9HetepH5/RT+vyl2tQ9igl7d0n7ZXeOCq9eQcBoFUjpAMAgGYT3BwuO6g53ItD+0pqvuZwLSm467kkJaa4q6vQkllhdji8TeCCm7IFm3RnoRbcmRUQnE3uKqeeviNLu3eE3haeoZhYQ/e/sTkgqJpBd+6VuQqsgtfWXM5/X3OHFs7M1INvbVZqz3KVbAsNx+m9ypWRYx2qGzuLweq+5nT44m3xvu79MbEeXTmrcV8MNNawXifoo61fRHUMAOyPkA4AAJqFHZrDtRSrRma7d8T7wnpNt3SH0rIrAjqbBysuiKszgMfEerR7R/CWY+ECdk2zuMSUKu0qjLP8UiD08SKdqu+Qu8qhuVfmVAf00AZ2504tCWkkF0lH98YE+CtmFta7YzwA2AEhHQAANLmA5nAdsgKmt9u9eh4uGNYWGIM7xZvr0T1+e7AHd0sPd+5nZ2cGBXD/teSSwxluLbqjzr/vK4nV03dk6fbn80Iev3EMXwXd4ZC8LY8cvssLZ9bs4d6tR4Wm3LM9pBO+f7f3hmzJFqy+HeMBwC4I6QAAoMlYNYcr9AROb7drOA8XDCMNjP6V27TsClVVOrS3KC6gUVpwQA8+96Q7Cy3WUgdWtJ1OyXB4gvZMDye4qu2t8JvBNbDhW+3nSepWqbLd/vu6W48xuFmeYTiq1+V77d4Rr/uuyg24j3+3912F3q7sZqgvDgrw9UVAB9DasAUbAABoEmb1fPyPRSFbq0W7e3ttzCqyVWXX6vqFszJD7ivVVG4fWrZJtyzI15R7tte5vVvwuZ+fk6muGRW1jtdd5ZTH7VRoUPbfAi2w+h6O/+PXteWb0+lQl9QKBU9lt1bX5kH+U/G9f3br4d2jfuGszICZAkaY7doAoK2ikg4AABqltTaHC65iB68pL9rqUlVF6Frz4gKX7p2UK8lbFQ6urpuV27qmW1utY6+5HGkDN3+R74X+7WcdNeCEQ0EV9NruZ27DFhy+624s5xXuOQRetzM/zrevub/gPdABoC0jpAMAgEa7UEdUvrdU2R2yVJpZKhXIt/7cbuHcFFzFjon1yPA4Qqan+681N8Om/5px//XU/oHc/Htt4TL03JLZ5K1GzePWznv/bj0qq8cX7nhDz9yZJXOf9Lq2iAsUyXFW+7EbAVPew03Df+7uzJDbYmI9jd6uLVpeHNpXWrtGJQcOqfv27domqexwkapSuihPeeyVDsASIR0AALQ7VlVseRxKyy5XcUHgPt5XzCzUwlmZ1RXe0Gq1WQG/76ocFRe41K2Hd7q6VZVdCqzgd82oUEp6ZXVn9dor2XXzHrO3ODbic3k8/gG6ti8CzNsi+bLAP/x7mX/3Xu+0eExvsLeqot/w1/xW2ZXd/HLqxaH/0Kkr12t92QplejLVzzlQ2rRRSanpeqP6WMI6AH+sSQcAAO2O2Y3d3CLN6TSU3qtcf3zGu6Z8xryaYJiWXak/PpMfcLz/um+H0/t3M2Du3hHnq7QXbY3X03dkBTz2s7MzVVzgreDv2RmvfSWxSu4evA7dCPp7XWu8a47xrlePjOFxyF3llMPpUeTVdK+YWI/FuAzfeb0C/zQ8DqX3Ktf1j+Rb3O5Q96zA1zgm1qOHpvbW/ZNzVFwQvOVc6zA06RJ9OHKwyp1SpWuf1petUL89UvaBWI3/sUhVe8t9S0YAQCKkAwCAduqKmYUhjd2KC7ydxW8a0z8kGPof361Hpbr1qF6D7gyduu0fPs1u6lJNBd+/A7q7yqnSXcEBNNz5wqnPlHV/waG6tvPX/HnjX7doxrx832sQfJzHd77AEG/OOnh4Wm9ZfRGxa7ur+ksPKSbW8J3Hv5Ffa2QG9ReH9lW509tQsbBgubIPxGrkpo2+oE5YByAx3R0AALRTVo3d7p2UG1IFN/cU9z9e8t6nqkK6eVz/Oh/rwak5vmnvzhiPRbW7vlupBTKnkdd9f6svFCJ5/MBzPTytdx2PaT5OuA704dbde78wMJcdmPy3aGutDeTM6e8fjpROXblela59KixYHjD9fSlr1QGISjoAAGjn/Bu9Ba4ND6yCSwqptO8pilN6r3I5HOGmp3v/NCvBHnf9pqPXqD1E1x7QIz9PZFPrHdWP6V8tD7xPTKzhW5sfet/agntNB32r5Qh1BfTWsE2bf1U9ePq7f1UdQPtFSAcAAI1W/mOp7+8HP/k0iiNpesXbaqaiW+2l7q2QewNpWna5pty73XfZP3iajepC13JbBePA250xnkY+i/p0b69vp/fQ+7irnLrq7u2yep6B6/prbgsO5MHLESbdGb7De3FBnO6fbL1Mob5aIugPTbpEQ5Mu0YtD+yq1W0ff9PdBHbI0ctNGjf+xiKAOtGOEdAAA0GB5eXmq2luuspIiZR+IVcX27So8UKhK1z7f/uithTNG6ppRoeDw+Pwc71pocz25uU7aDN7dM73T4B9atkl/fCZfx/z0UEijOTN4SmbVu64154G3J6a4VXeF2y4MpWWXK61npayeZ7fMwC8wfM/fUdOI79ypJb7lBTfN2yJJemBK+AZyVl+e1FdTBv36yLvoJKV26yhJKs0s1aAOWXXcA0BbR0gHAAD1Zja5Gv9jkUZu2qh+e6TCguVaX7ZC5U759ke30x7ptVVIzYC2Z2fwVmiBa6Frm4IdPBXbqjFdeLUHcG9juYY0hgv/eIFT9JuSd7r6g1Nz1K1HRcjrdevCfMvZBB53TQf41+el+t6Th6b2VtHW8AE83Jcn9a2IN0XQB4CmQOM4AABQL2b1/Jd793mr53u83apTu3VU+SHpw5GDbRXO/fclt9q3XAoMaP5rpJ1OQ6k9K3wB/NypJVo4M1PyOHwV33CsGs1J3mq998sAf1brtJsylAdzyGiWjF7z2pVsi1dKeqW6Z1X49p4/d2qJ7p+cY7GGPnTf+YWz/N+TwABeVSHFVt9kfnlSsi1eHk/oexYJM+gHj6E1N6oD0HpRSQcAABExq+dVe8s1ctNGZR+IDame2y2gS3VXSIMrsf7Tz4Mr4K/PS/VtV+Zxeyu+tbHa0u23926vriSbrNJycwb0cI9Zn/sFrzU31bx2Ho+38Z7ZBO6KmYV6fV5q0JchofvOmxX34oLAreok71T4mFiPbh4XOCW9frMWQtU1SwIAWhIhHQAA1MkM58HT2ytd+1TurKme2y2gRzIVOlxAe2jZJt2yIN9XdQ8+l2F4z7UzP3Ttsnl+qy8I0rIrNWNefvX6d8l/+7GmE8n5GvKYVlu2ebdMu/npLUFfPtQorn7u4b4Mkbwd4SUpJb1SVZXB+6zXvDfmtHj/L1zMWQvB71l9NDboA0BTYbo7AACoVUD1vENWwPR2szmcHcK51dTkXYVxAft5O5yG0iymQl8xs9AXIh1OQ0VbvWuqJ91ZqIwcb+Azw7x3fXRNiHx+TqZuWZAvKXBqfbi9vmdf1luxcUb1lPfmmtZe1zmbdnp9cYFLz8/JlNttfQ6j+rmnZZdr1/Z4v6BeMx53lUMPvLlJD1+To+KCwGnuNdu+1dSXrKakN6by7b88gQo6gGiKuJJeWMi3iQAAtDdmc7hf7t2nQR2yVFiwXLs83/gCuh2q57V15fbuTV4TCJ1Ow7JCaga0tOxy33T2oq3xIR3FvduAWTeWMx/PrJzv2h5fvXVaYMW6dFesdu+I890/8E9/VpXu5mv21nDeLeKKtrokI/x5YmI9Ou/qEl+1OibWI4ff7IW0bO/08qKt1tPc03uVB8x4MF+LB6dad2Jv6FZqBHQA0RZxSB80aJAWL17cnGMBAAA2NazXCb6/H5/TL4ojCRVuzbk5Pd0/8LmrnOqeWTMV2j/IedzeinDgdOzAc2bkVIZdu2w1td7jDt5uzTyvVSU7mFXgbe616g1hPs/av0BwVzn06uNpmnRnodJ7lctd5fS9jg6nYdkR3jyn4XGoqtKhc6fWhHxTcJ+BaG2lBgBNJeKQfu+992rq1Km66KKLtGfPnuYcEwAAQERqW3PujJG3OmsRqK2CnDmdPXhrsuB17OHWLgevbW/4uvC6mrNFm3/DNynysXkbyT0wpWZLNcPjUEysxzd7wfyypabaXvNYe4vi9Pq8VM2Yl+87nxT6/rCVGoDWLuKQfs0112j9+vXavXu3Bg4cqDfeeKPRD/7kk09q8ODBSkpKUlJSkoYNG6Zly5bVep+XXnpJRx99tBISEnTcccfprbfeavQ4AABA6xSu6duuwrjq8O3yTan2D9T+Qa64oCbIebdnMyu11tVyc2r8A29u0ox5+QGVef8A7x8ww7NuxBb+usZqirAfPBOgtin7tZ3DG7DdVc6AL1l274jXjHne19e7Bj0wjEvhO7E31Z7pABBN9Woc17t3b61atUqPP/64LrjgAh1zzDGKjQ08xdq1ayM+X8+ePXXfffepX79+MgxDzz//vM477zx98cUXGjRoUMjxq1ev1oQJEzR37lyNGzdOixcv1vnnn6+1a9fq2GOPrc9TAQAAbYR/0zcziPuHcMPjUHqvcl9zt+A9sf27tGfkeAP4zvw4PT+n5pzm/t5FW13q1qNC7ippX0nNXufdelRoyj3bfQG+qkK6eVz/ejyL4MZt0WooVx/hxhj52B0Ow2+/dm+X+5hYQ86Y2vc/t3rPpabZMx0Aoq3e3d3z8/P16quvKiUlReedd15ISK+P8ePHB1y+99579eSTT+rjjz+2DOmPPPKIzj77bM2YMUOSNGfOHC1fvlyPP/64nnrqqQaPAwAAtF7BXbmDQ3jwFPhIurSbYd28z/2Tc3yhv6bpW43dO7xd3W9ZkO/r8G6eN7LAarVu3f/+zRXaGyNch/hIvmzwXp+WXRHwXpld3s3XPVwYr60Te7j7AEBrUa+E/fTTT+vGG2/UmWeeqa+//lqpqalNNhC3262XXnpJBw8e1LBhwyyP+eijj/SHP/wh4LrRo0frtddeC3ve8vJylZeX+y6XlZU1yXgBAIC9+G/DVVc1ddKdhXpgSm+/e4du52WeKzj0h2voZt7fv4pfI9KQXRPKHU7Dt1ZbkhxOjwyP1UrF+gb4+hxfn2Pr0+jOe/2NT+Trod/l+LZlM9+rSFlVyNOyK3XFzEItnOUN6s/OzqxexhC4dzpbrQGwq4jXpJ999tm65ZZb9Pjjj+vVV19tsoC+YcMGde7cWS6XS1dffbWWLl2qgQMHWh67c+dOpaenB1yXnp6unTt3hj3/3LlzlZyc7PvJzs5uknEDAAD7CtfczVRbl/Zg1g3hgtd2e+8vBa6JNsNo8Dr38Gru5w3k/pdrD7yRq//acWuRrm+3bo7njPHo5nH9A/oGpKRXqqrS4Wvo9/QdWQ1qAvfs7Ezt2m59P7t1f//oh93atveQCg8U6uAnn0qSykqKNP7HIuXl5SkvLy+q4wPQ8iIO6W63W+vXr9fEiRObdAADBgzQunXr9Mknn+h3v/udJk2apG+++abJzn/rrbeqtLTU91NQUNBk5wYAAPZkTod+aNmm6v3PK0OOqSvIS9LO/DjfWnQzSHbrUakuqYHn69bDW73dVRinmFiP3y3VW4w5pJuf3qKbn84LM+Lgju6RbskWTZFsI2d1nJf//vXuKu/fd++I0+4d3nBdVBCv3TviQ5rAVdVRaK+reZydur8PTbpEQ5Mu0YcjB6vcKVW69qmwYLn67akJ6lV7ywnqQDsT8XT35cuXN8sA4uPj1bdvX0nSiSeeqDVr1uiRRx7RvHnzQo7NyMhQUVFRwHVFRUXKyMgIe36XyyWXyxX2dgAA0HbVNp25tnXN5rpy7zR3b/j0uB1yxni0e0e80nuV6+antyitZ2XA49w/Ocevii6ZAbWoIF7P3JVVy0iDO6Q3RSBv6XXsjanQWzzv6v3tnU5DHo9DDqchp9PQzeP6K71XueUUdqn25Q519SuIFm9Q9/59wtrNWr97hQbrTMV3iNXIko1a2X+A8pSn3Nzc6A0SQIuJuJLeUjweT8Aacn/Dhg3TypUrA65bvnx52DXsAAAAdbEKZ4Hryr1h0TAc8ri9/+tUsi1ez8/J9DWik2oCoOW0dMO7tZhV07nqAywuh6tMR7r/estX3mNiPUEzCRqnW48K32wHp9PwVd/rqoBHupd9bcscWppZVX9xaF+VO6X1ZSt8VfWRmzYy/R1oRxremr0J3HrrrRozZox69eql/fv3a/HixXrvvff09ttvS5ImTpyorKwszZ07V5I0ffp0jRgxQg8//LDGjh2rJUuW6LPPPtP8+fOj+TQAAEAbEtoozuIYiwpscAXXWqTX1xawG9ItvmV4p61H1iDPGWP4vvSw6mLvjPH4trUL3tKurgp4a+7+blbVT125XpWufQFV9fE/FmlpSheq6kAbF9WQXlxcrIkTJ2rHjh1KTk7W4MGD9fbbb2vUqFGSpK1bt8rprCn2Dx8+XIsXL9Ydd9yh2267Tf369dNrr73GHukAACBidU1tdsZ4K8I1gdMbHGNiPfK4HTKqp2HHxHpUvM27t7rJ7CpeXBD9pXbOGE915TkKU94dhm+6ulVVPybW0I1P5iutZ6XmXplrMcPAUEpalW86e2x8w/Y/r2+Atwv/6e+nrlyv9WUrlOnJVHb2qIDp75II60AbFNWQ/swzz9R6+3vvvRdy3UUXXaSLLrqomUYEAADaKv915rWtafa4JXeV/4rA6u3CnszXw7/L8TU5c1c59cCU3urWo8JX8U3LrtQfn8nXTWP6RiEg+/OvUtd+XP3HGMF9DP/bQ481X7u07HJfo7jAY73LA/yD9LlTS7RwZqZUvT793Kkl9Rx3ILsGdNPQpEskKaCqXliwXP2cA6VNG5WUmq43jkpXXh5VdaCtsd2adAAAgObw7OxMFRfU3dXbess16fk5mUHh3Wv3jng9ODVwK6+r7o72FOr67m3emO3U6qtmvb13mzT/9feB29z5B+nX56X61vsbHoden9c02wHbndn9XZKOz+mnXZ5vNKiDtwnhhToSzaEBaCaEdAAA0ObtzI/zNnUzQrflMrfm8uffeMxUsi0+bFM0d5VTz8ysCf0Dhh5SdLdMM9StR4XqDtXm7ZGtI/ce19jnVXMO79p9/3M6Ao4xt1ura1s1AGhLCOkAAKDNe35OpgIDqzfEPjg1RzeN6a/7JwdWwtOyKzVjXn71pZpg6K5yyhljHdRLtrl076Rc33nSe5XL4Qh8zKapREfCoT1Fsao7UDdm27S6BD93/7/Xth98zfUPX+N9X+zclR0AmhohHQAAtGk13dpD10mb26xZTX8PFwxvnp9fXaUOtXtHnC/4V1U61DXDu+Y9LbtcdVehmzbAW24F1ySPE+n9w61Lt6qcW5+7ZFu8Fs7yvi/htlUDgLaGkA4AANo0q7BtNiyra/p0uGAYGxcuqDp869b3FsUpNs7QQ8s26Y/P5Fuscw+uJjd0Gnn4sQTeXtfjNCR8N1RdY655X4oLXLp/co4k6ZYF+Xpo2SbdsiDfsukfALQFhHQAANDmBYftK2cVRjR92tyuyz8YPjs701eBr20Kuxn8rcbQrUeluqSaIdOhrhkVfpfrEm4aeV3CNYlr7JcEDWExFodRveY/9Pn5z3RgijuAti6qW7ABAAC0BKu9sa+YWejbkq2u6dPmfWqmzpusgq23wVrwXt7mGHbmx+n5OZnavcPlO3bPzjg1fhp5JMfXdtlQaHiONLjXti1b8Hm9r033LO+XJfNvz9KenfGS4fBtbxc8Nv+ZDoR0AG0dIR0AALQb/gHPKrhHcv/0XuUq2eadKm8GcavgHhz8zcd55q4s7d4RF3Bs/bqmN2Rv80jUN/yHu6/Jqht84GuTll2puHhDDodR3Xnf/8uBmr8Hf+EBAG0ZIR0AALRr9Ql+Hrd1Bd6cAm8G9+5ZFbplgbc7fHFBnO94cy184zSky3pDQn3w/cKdJ9z13uucTkMej0MOh6G07Apf13xnTO0zE7r18E7/370jvt6N4qi4A2jNCOkAAAB18A/a6b3KdcXMQnXPrAw7dX7SnYW+oPjs7EwVF8RXn6exAb0hGlp1r2uafO3XO5yGuqbXBG3DcKj8sENzr8zV7h3xvtcxeGZCSnqlYmINFRd4X+ubn96itJ6VEYVuq/eJBnMAWhsaxwEAANTBv1mc2cTMf526OXX+5qe3qKrSoQem9NZNY/rr7l/nqmirq3oqtxS+eVtDRdJErjGPZbW/uVWH+lBOp6Ep92xXbJzha9C3ryTON9XffB2Dm/pJ0q7tNV9qPPw7673srVi9TwDQ2lBJBwAAqEXwlGyziZnZAM6/auttCFcTJPeVmA3hIpk2XpvQ5mteda0jr+2xI2kOV1s13Wo8NdxVTnVNrww7nd18HRfOytSVs7wzEzxu6eZx/WtG69dMzgzd5jKCYOHeJ6a+A2htCOkAAKDdqy3IhWsW9/ycwKrtwlmZKi5wBd07/FrtyMN68HF13cc83qj5w+Eds7vKUf0lglXIr4tDMbEeGR5H9f7yVo3hqo+sXn8eGx/42oU2hnNo1/Z4PX1HlmLjDBVtdSkm1iOP2+E3+8CrrtAd7n0ioANobZjuDgAA2q3igjjdPzl0OrXHHXhc8JTsSXcWegOjp2aLsOICV5h9vv2nh/sLV/kOVtvWZlb8Anh10DUM7/i8TevqCujhp7C7q5y+16E2/o3egveHNxvC+W+vtntHvG+9vsfjkDPG6jUz1K1H7aE7+H2qT7M5ALALKukAAKDdCl7D7F/R9W88ZrVdW2iF2CGP26GYWMM3RbtLaqViYr2N02qu96t0B/wp1R2cg4/3v722qnhd9w8+Lvg+3svpvbzd2W8a0z/MOQzFxBr64zM1U9LN166qQoqt7pt331U52rW9puLt8dRUzg2PQ26PQ2nZ5fVutBfptnpMgQdgZ4R0AADQLlmtYd69I14OhzecWq2B9g92/h3dzcBqrqF+4M1NcsYooLmcM0YB69hrRDLl3Gq6e93r0Z0xhjxuZwTH1vY4NZfHTSnRg1NzfOe3OsZd5QgIwVYd16+cFdgNv6rSob1FcbXsPe899+4d8REF7HC30/0dQGvAdHcAANAumWuYzc7j5p9mRdd/DbQVs2qblh14jvRe5YqNDwyK5t8zcip9+4RHPt29PseEdlx/aNkmdetRIf9p984Yq2n5Vvf3/t3h8D6vpX9NU9FWs7rtHX9MrMf3xYb5/P2fu1XHdfO1e2jZJt2yIF9T7tkeMk09vVd5yFiCz11fdH8H0BoQ0gEAQLsVvIa5W48KOZw1wTAm1qNdhXFhg7okXTkrdB10uOPNKnBadnmYs0VWVe/cxT90B9+/ptLucTstxxK+uh7cCM77964ZlaqqdGjPzngFj7FLapXSskPXgXvcNbMV/Nfu+3/xYQbu4NCell2pK2YW+q1f965nb8wa87rGYh5jRx53Q/e6B9AaMd0dAAC0W8FrmIsL4vTg1By5q4Ocu8rhvVzlDDs92v8cuwqtp1MHT7M+7+oSPX17lvzXe8fEGjIMM5BZd0I3j41PkNJ7mVPCvbc5nIYMj3WY8zaMMwV3lzfUJbVSrg5GdZU89BwxsYavAm117oeWbZJU8xrePznH91y79agImcpeWyd9/9f19ufzAgJ9Y0J0bd3f7ToNvmZcd+jD7tv1j6nvRntIAFoAlXQAANDumeGwe2al3FX+/3vk8F02p0eHC4rOmPDTqYOv/9dTqQquWLurnOqUHHxyR/VU9cBjvRVt6YJrdiom1m+6vsN/Grt3Wru5DVrgtP7AKnzZntiAtfX+uvWoUHGBK2RLNPMxzI7r5msY/FwlNarjujPG++WHVRf++grX/d2u0+D9x7V9d4Yuf+acKI8IQEugkg4AAFDNnIpudh73Z06PvmlMf8tqq1UjuqKtLlVVhF5fXOCt2AZXrvfv8Q+f3ut374yz3J+8aGu8Xn0iQ2bgNjw1W66Z9/e4HaqqCGxy1y2zQiXbXCHH1XRT9z+Hob3Fwf+7GL47fLhmfP6V9oawCtH+Df0iZdX9Pdz7Fu0O8CHjMmK0aWdX3ywPAG0XlXQAAADVTNMuLnD51qXHxHr81qjXVKCtqq1WjejMJnJW10+6s1ARNY8zvFX2bpnm/uTB3d1r1lj739/hNBQT69HN4/pr4axMXTGz0Lvm+2nrcDvxdqvxOKrXrwde5//33TvitTM/LuxrkJZdHlBpr69I1pLXV3BTP6v3J9pbtIWMy+FW/4w9inFa9SIA0JYQ0gEAABRYrTU8DqX3KteMeflK6+kfjmsPiuGmU1tdn5FTqZhYj8VIQoN7eq/ysOG6RmB4czpr9msvLnDpwak52lUYJ2eM1CU1sNt7l9QKZR5VqfRe5QGd2sM/TmDX9efn1Hxh4f9cHU5DxQWuRk1Rb4kQHe59izb/cWV126nnrnoryiMC0BKY7g4AANq9cFOeu2fWTI9+cGqOZdMx/3P4Hx/cBM1qmnXg+nd/NVPKY2I9Oneq1f7kwX8GVtaDz+2ucvqmiV9933a/RmmBXyYE71++e0ecgqvngQKnh5vP9f7JOU0yRd1qXE0doq3eHzswx/XZ3n/q119+r77pP9W6hr2EAFoRQjoAAGj3auv8bd4eLigWF8Tp6TuyfB3Uu/Wo0JR7tlt2B7eaZl1cEO/XlC1wvXdadrmunFUYUOUPFhNryOMxO7sHd4UPZIbptOya/dpr+zLh60866pk7e1o8pkcet0OGEfpaedxS8ba4Jl3n3VIh2k4B3Z8zhinuQHtCSAcAAFDd1dpwQfHZ2ZnV1Wav3TviIq4aXzGzsHqLN+t15pLk8QRW+c3bHlr2vTxuKTZe+nZNRy2cmVl9nnCNxbxfAMy9Mrd6nPFhtxszn9+bT6cq+IuDmFiPrpxdqNfnpapoq3f9ftFWl+6dVHNe7zT+wG3j0nuF33rNilUgt2uIBoCmREgHAABQ5NXa4CnugQFaCp7+XZvQLd9M3oC7a3u8np+TGbbKb57/mJ8e0oNvbVbhj3H687U5fuf07r/u/xj+XyiEm4ZeXBCnhbMyVVwQ/NykG5/MV1pP72t131U52rU9PuS8oc/JUd0or2523bM8WtaW/cP393X53wfc9rISWno4AFoAjeMAAAD81Kdaa05ZD26kFmljM/P+ZrO2GoEN6ibdGVljs7//KTNg67iYWEM3PmkGcP8qfe0N8J6dnekL3+Zzczq9e6I/PyfTb79yl9/jWVfxHQ7v65GRE1nQtuue5dGwtuwfOnXlek1Yu1lx5V3U3TlQmdmjVNC5SktTukiScnNzozpGAE2PSjoAAEAjXDGzMGhNemW9Gpv5T7MP3YPcO008I6fuKr9VVd9d5VRaz8qgvd9r1qyHa4BnNb3ebCTnH6D916YHqqngp2VH3ujNrnuWtzSzen7qyvVyeaS48i7KzB6lrw9vV1LnKr1xVLpiRUAH2ipCOgAAQB3qComxcd7gm5Zdrsvvqt/07LTsypCgXyNwmnhd0/D9p8Wbgf+W8X3lrnJ614l7HOrWwzu23TviLavyVk30umdV6MYn8nXzuP6+4zweh+RxyBnjkeEO7fh+45N5SutZ2aCZCbV10W/rzOp5z5SOKvFIg5POVHxWlr4+vF0r+w9QbIqLcA60cUx3BwAACKO4IE73T87xm94dute3//Ts4oJ4PTCld8T7gpvTzJ+dnam9Rebx3sBfn2ni5jjNRm7+zKZ05p+xcYam3LNdDy3bpFsW5Ft+oeC/P3dKeqXcVY7qgO537urxedyh/zuZlu0dd0PCtV33LG8JZkA3q+eDk87U912lgs5VBHSgHaGSDgAAYKG4IK6687o3hBZbNFkLNzW8rn3Bg5ujWZ0jJb1m2nxdlXz/LwoMT7hO8ZGNTQpsomfuDx/C8JuqXxAvGTX7ul85q+HB2q57ljcnc3r7hLWbw1bPmd4OtB+EdAAAAAsLZ2UGdCk3LNZHW+91Xvda6uDmaDGxnqDt0wzFxXur1maFPFync6t13JK3Eu8dU+A69/qu87b6AsH8e1WVVFXp8AX02vaIr6/2FNDN6e3e6vlwxWdleavn2VTPgfaI6e4AAKBWS1O66KOtX0iSujsHBmwD5b89VFviccty+zGrru3e4FxRfammE3q4Du9mqDbDtMfjqP4yIDAAF211aeGswDC/cFZop3PziwKnM7ALuzmmmFhzinrdY6vr3DXT3Q3FxHr093trpuk7nYZi44x2vV1afZmfHzOgdzrpZ76A/sZR6QR0oJ0ipAMAgLByc3MVm+LS0pQuKuhcpe+7eoN6XHkXTVi7WaeuXN8mg7rV1mgxsR7L9dHm9Oybn96i9F51r6W2CtXpvcotr/Pf4szjcai4wGW53j14HfeUe7brlgX5emjZJj341uaIx2bF/9w1r4Why2cWhnzZYLWdG2o3rE+3sLcR0IH2yWEYRvDGnG1aWVmZkpOTdfeXG5WQmBjt4QAA0Crk5eVJkqr2lmvkpo0a1CFLhQXLVXigUKndOurFoX0lSUOTLoniKJuW/7rxtOxyXTkrsq7tkUwjD16Tbobm4OvMafH+3drNjudWa8rreuz6rPMOPta8XFUhxVYvUb9/ck5IJ/ba1roj0Nqyf2hYn27KfekTXyU9uTDZV0knpANtx5H9+3XXkAEqLS1VUlJSrceyJh0AANTJDAt5ytPK/gOUtHefsrNHqfv27Vq/e4UmrN2sbXsP6cORbSeo+zcwkyIPt5EcF645WvB1V8ws1MJZmdVT70Mr1sGPVddjRzI2qy8Q0rJrOrXH+vWQ89/jvb11YgeA5kJIBwAAEcvNzVWe8vRGSrrG/1iksq7SYJ2pXeXfyOU5pFNXrteHI73HtoWwHi6wNhWr0Ox/XVp2pf74TL5lxbq5GqsFN7WrrRN8XZ3Y21OHdgBoKqxJBwAA9ZKbm6vc3Fy9cVS6VvYfoO+7SpnZozQ46Uy5PN5tpKS20VTOKrBGQ6R7hzd2PbhVU7tI1pkHB/FI9pcHAFijkg4AABrErKqb09/9q+ptYfq71dZm9dm6rCnVVbFuqoq/2dSusVX7+lTjAQCBqKQDAIAGM7u/u45KVlJquuKzstTppJ8prryLeqZ0jPbwGiVcF/ZoTt8O99hNWfGPtGofTkOr8QAALyrpAAAAYbSGxmhNXfGvq2pfl6aqxgNAe0VIBwAACKOxgbUlNFcobsz9W8OXGwBgV4R0AACAOtg1oJvsFopbw5cbAGBXhHQAAIBWzq6h2E5jAYDWgsZxAAAAbQShGABaP0I6AABotJeV4Pt7cmFywG1tYb90oLnkvvSJ7+/Bnx0A7RMhHQAANEpubq4kaWlKFxV0rtLXh7eru3Og4sq7aMLazTp15XqCOhBkbdk/dOrK9SrZfUhx5V3U3TlQXx/eroLOVXrjqPRoDw9AFLEmHQAANFpubq7ylKc3UtJVldJF2rRRgzqMUmHBcrk8h3TqyvX6cKT32KFJl0R1rEA0mV9YTVi7WSUeaXDSmYrPytLXh7drZf8Bik1x+b74AtA+EdIBAECTMINFnvK0sv8AJe3dp+zsUeq+fbvWl63QhLWbtW3vIX04kqCO9smsnvdM6ai48i4anDRc33eVkjpXaWU2AR2AFyEdAAA0Kf+q+vgfi1TWVRqsM7Wr/JuAqjpBHe2FWT0/deV6uTxSXHkXZWaPCqiex0oEdACSCOkAAKAZmGHjDSlg+rt/Vf3Fod7gQlhHW+ZfPfef3l5A9RxAGDSOAwAAzSY3N1exKS6t7D9ABZ2r9H1Xb0ihqRzaAzOgm9XzwUln6vuu8jWHI6ADsEIlHQAANKuA6e+S4jvEqlNmZx385FP1TPEes7bsH1TU0WbQHA5AY1BJBwAAzc4/kPQceFzAbcP6dGvh0QDNx6yeT1i7OaR6TkAHEAkq6QAAAEAj0RwOQFMhpAMAAACNQHM4AE2JkA4AAAA0UGhzuJq9z984Kp3qOYB6I6QDAAAA9URzOADNhZAOAAAA1IP/9Pbg6jnT2wE0FiEdAAC0mKUpXaStXyj7QLI6OAdq/e4Vyn3pE8XuPaQPR4pt2GBrNIcD0BII6QAAoEUE7Jf+Y5HKukqDdaZ2lX8jl+eQTl25nqAO26I5HICWQkgHAAAtxgwxb0iqSukibdqoQR1Gqfv27VpftkIT1m7Wi0O91UrCOuyC5nAAWhIhHQAAtDizqr6y/wAl7d0XUFWfsHaztjH9HTZAczgA0UBIBwAAUeE//d2/ql5YsDxg+rtEWEfLozkcgGghpAMAgKgxQ45/VT07O3D6O1V1tCSawwGINkI6AACIOprKwQ5oDgfADgjpAADAFmgqh2iiORwAuyCkAwAAW6GpHFoSzeEA2A0hHQAA2A5N5dASaA4HwI4I6QAAwJZoKofmQnM4AHZGSAcAALZGUzk0JZrDAbA7QjoAALA9msqhKdAcDkBrQEgHAACtBk3l0BA0hwPQmhDSAQBAq1KfpnKRINC3bTSHA9DaENIBAECrE0lTuUhQeW+7aA4HoLUipAMAgFartqZykXB5DrGevQ2iORyA1oyQDgAAWrVwTeUi0X37dtaztzE0hwPQ2hHSAQBAmxDcVC4SZV0Vdj07Yb11oTkcgLYiqiF97ty5evXVV/Xdd9+pQ4cOGj58uO6//34NGDAg7H2ee+45XXHFFQHXuVwuHTlypLmHCwAAbM5/+nskqlK6WK5np6reutAcDkBbEtWQ/v7772vatGn66U9/qqqqKt12220666yz9M0336hTp05h75eUlKSNGzf6LjscjpYYLgAAaAXqE8bCrWf3r6oT1O2L5nAA2qKohvT//Oc/AZefe+45paWl6fPPP9dpp50W9n4Oh0MZGRnNPTwAANDGhVvP7l9VN5vKRYJA3zTM8F0XmsMBaItstSa9tLRUktS1a9dajztw4IBycnLk8Xg0dOhQ/elPf9KgQYMsjy0vL1d5ebnvcllZWdMNGAAAtAnB69n9q+r13c5NIqw3lP+68kiU0BwOQBtkm5Du8Xh0/fXX65RTTtGxxx4b9rgBAwZo4cKFGjx4sEpLS/XQQw9p+PDh+vrrr9WzZ8+Q4+fOnavZs2c359ABAEAb4L+e3b+qXliwPKL7m9u5sZ69YYLXlUdicNJwmsMBaHMchmEY0R6EJP3ud7/TsmXL9N///tcybIdTWVmpY445RhMmTNCcOXNCbreqpGdnZ+vuLzcqITGxScYOAADalry8PFXtLdcv9+5T9oHIahoV27drl+cbFR4oVLlT+nDkYIJ6BILXlWd2zlRmdmRb6H19eLuSUtO1NKULAR2ArR3Zv193DRmg0tJSJSUl1XqsLSrp1157rd5880198MEH9QrokhQXF6cTTjhBmzdbT4tyuVxyuVxNMUwAANBO+FfVx/9YFNF9zO3crNazE9at+VfPg9eVR8Jce870dgBtSVRDumEYuu6667R06VK999576t27d73P4Xa7tWHDBp1zzjnNMEIAANBe+TeVi4S5nVvwenamv1szA7orzLrySBDOAbRFUQ3p06ZN0+LFi/Wvf/1LiYmJ2rlzpyQpOTlZHTp0kCRNnDhRWVlZmjt3riTp7rvv1sknn6y+fftq3759evDBB5Wfn6/JkydH7XkAAIC2K9IQGG49u/92bqgxYe3mgOo568oBwCuqIf3JJ5+UJJ1++ukB1z/77LO6/PLLJUlbt26V0+n03bZ3715NmTJFO3fuVEpKik488UStXr1aAwcObKlhAwAAhDCDpX+X+OzswOnvqBFcPWfbNADwsk3juJZSVlam5ORkGscBAIBmk5eXJ0ka/2ORykqK1G+PtMvzTXQHZTOZ2aMCqucSU9cBtF2trnEcAABAW+K/nt1/+jtqFFA9BwBLhHQAAIBmYnaJN6e/o8YbR6XT+A0ALBDSAQAAmpH/dm6oQTgHAGuEdAAAgGZGIAUARMpZ9yEAAAAAAKAlENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAAAADYR1ZA+d+5c/fSnP1ViYqLS0tJ0/vnna+PGjXXe76WXXtLRRx+thIQEHXfccXrrrbdaYLQAAAAAADSvqIb0999/X9OmTdPHH3+s5cuXq7KyUmeddZYOHjwY9j6rV6/WhAkTdNVVV+mLL77Q+eefr/PPP19fffVVC44cAAAAAICm5zAMw4j2IEwlJSVKS0vT+++/r9NOO83ymEsuuUQHDx7Um2++6bvu5JNP1vHHH6+nnnqqzscoKytTcnKy7v5yoxISE5ts7AAAAAAAWDmyf7/uGjJApaWlSkpKqvVYW61JLy0tlSR17do17DEfffSRzjzzzIDrRo8erY8++sjy+PLycpWVlQX8AAAAAABgR7YJ6R6PR9dff71OOeUUHXvssWGP27lzp9LT0wOuS09P186dOy2Pnzt3rpKTk30/2dnZTTpuAAAAAACaim1C+rRp0/TVV19pyZIlTXreW2+9VaWlpb6fgoKCJj0/AAAAAABNJTbaA5Cka6+9Vm+++aY++OAD9ezZs9ZjMzIyVFRUFHBdUVGRMjIyLI93uVxyuVxNNlYAAAAAAJpLVCvphmHo2muv1dKlS7Vq1Sr17t27zvsMGzZMK1euDLhu+fLlGjZsWHMNEwAAAACAFhHVSvq0adO0ePFi/etf/1JiYqJvXXlycrI6dOggSZo4caKysrI0d+5cSdL06dM1YsQIPfzwwxo7dqyWLFmizz77TPPnz4/a8wAAAAAAoClEtZL+5JNPqrS0VKeffrp69Ojh+/nHP/7hO2br1q3asWOH7/Lw4cO1ePFizZ8/X0OGDNHLL7+s1157rdZmcwAAAAAAtAa22ie9JbBPOgAAAACgJbXafdIBAAAAAGjPCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2QUgHAAAAAMAmCOkAAAAAANgEIR0AAAAAAJsgpAMAAAAAYBOEdAAAAAAAbIKQDgAAAACATRDSAQAAAACwCUI6AAAAAAA2ERvtAbQ0wzAkSUcOHIjySAAAAAAA7YGZP808WhuHEclRbci2bduUnZ0d7WEAAAAAANqZgoIC9ezZs9Zj2l1I93g8KiwsVGJiohwOR7SHYytlZWXKzs5WQUGBkpKSoj0ctBDe9/aJ97194n1vv3jv2yfe9/aJ992eDMPQ/v37lZmZKaez9lXn7W66u9PprPObi/YuKSmJD3Q7xPvePvG+t0+87+0X7337xPvePvG+209ycnJEx9E4DgAAAAAAmyCkAwAAAABgE4R0+LhcLs2cOVMulyvaQ0EL4n1vn3jf2yfe9/aL97594n1vn3jfW7921zgOAAAAAAC7opIOAAAAAIBNENIBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6e3IBx98oPHjxyszM1MOh0OvvfZanfd57733NHToULlcLvXt21fPPfdcs48TTau+7/t7770nh8MR8rNz586WGTAabe7cufrpT3+qxMREpaWl6fzzz9fGjRvrvN9LL72ko48+WgkJCTruuOP01ltvtcBo0ZQa8t4/99xzIZ/3hISEFhoxmsKTTz6pwYMHKykpSUlJSRo2bJiWLVtW6334vLd+9X3f+ay3Pffdd58cDoeuv/76Wo/j8976ENLbkYMHD2rIkCH661//GtHxW7Zs0dixY3XGGWdo3bp1uv766zV58mS9/fbbzTxSNKX6vu+mjRs3aseOHb6ftLS0Zhohmtr777+vadOm6eOPP9by5ctVWVmps846SwcPHgx7n9WrV2vChAm66qqr9MUXX+j888/X+eefr6+++qoFR47Gash7L0lJSUkBn/f8/PwWGjGaQs+ePXXffffp888/12effaZf/OIXOu+88/T1119bHs/nvW2o7/su8VlvS9asWaN58+Zp8ODBtR7H572VMtAuSTKWLl1a6zE333yzMWjQoIDrLrnkEmP06NHNODI0p0je93fffdeQZOzdu7dFxoTmV1xcbEgy3n///bDHXHzxxcbYsWMDrjvppJOMqVOnNvfw0Iwiee+fffZZIzk5ueUGhRaRkpJiLFiwwPI2Pu9tV23vO5/1tmP//v1Gv379jOXLlxsjRowwpk+fHvZYPu+tE5V0hPXRRx/pzDPPDLhu9OjR+uijj6I0IrSk448/Xj169NCoUaP0v//9L9rDQSOUlpZKkrp27Rr2GD7vbVMk770kHThwQDk5OcrOzq6zEgd7c7vdWrJkiQ4ePKhhw4ZZHsPnve2J5H2X+Ky3FdOmTdPYsWNDPsdW+Ly3TrHRHgDsa+fOnUpPTw+4Lj09XWVlZTp8+LA6dOgQpZGhOfXo0UNPPfWUfvKTn6i8vFwLFizQ6aefrk8++URDhw6N9vBQTx6PR9dff71OOeUUHXvssWGPC/d5pxdB6xXpez9gwAAtXLhQgwcPVmlpqR566CENHz5cX3/9tXr27NmCI0ZjbNiwQcOGDdORI0fUuXNnLV26VAMHDrQ8ls9721Gf953PetuwZMkSrV27VmvWrInoeD7vrRMhHUCAAQMGaMCAAb7Lw4cP1w8//KA///nP+vvf/x7FkaEhpk2bpq+++kr//e9/oz0UtLBI3/thw4YFVN6GDx+uY445RvPmzdOcOXOae5hoIgMGDNC6detUWlqql19+WZMmTdL7778fNrChbajP+85nvfUrKCjQ9OnTtXz5cpr+tXGEdISVkZGhoqKigOuKioqUlJREFb2d+dnPfkbIa4WuvfZavfnmm/rggw/qrJKE+7xnZGQ05xDRTOrz3geLi4vTCSecoM2bNzfT6NAc4uPj1bdvX0nSiSeeqDVr1uiRRx7RvHnzQo7l89521Od9D8ZnvfX5/PPPVVxcHDCz0e1264MPPtDjjz+u8vJyxcTEBNyHz3vrxJp0hDVs2DCtXLky4Lrly5fXutYJbdO6devUo0ePaA8DETIMQ9dee62WLl2qVatWqXfv3nXeh89729CQ9z6Y2+3Whg0b+My3ch6PR+Xl5Za38Xlvu2p734PxWW99Ro4cqQ0bNmjdunW+n5/85Cf69a9/rXXr1oUEdInPe2tFJb0dOXDgQMC3pVu2bNG6devUtWtX9erVS7feequ2b9+uv/3tb5Kkq6++Wo8//rhuvvlmXXnllVq1apX++c9/6t///ne0ngIaoL7v+1/+8hf17t1bgwYN0pEjR7RgwQKtWrVK77zzTrSeAupp2rRpWrx4sf71r38pMTHRt+4sOTnZNwtm4sSJysrK0ty5cyVJ06dP14gRI/Twww9r7NixWrJkiT777DPNnz8/as8D9deQ9/7uu+/WySefrL59+2rfvn168MEHlZ+fr8mTJ0fteaB+br31Vo0ZM0a9evXS/v37tXjxYr333nu+LVP5vLdN9X3f+ay3fomJiSE9Rjp16qRu3br5rufz3kZEu708Wo65tVbwz6RJkwzDMIxJkyYZI0aMCLnP8ccfb8THxxtHHXWU8eyzz7b4uNE49X3f77//fqNPnz5GQkKC0bVrV+P00083Vq1aFZ3Bo0Gs3m9JAZ/fESNG+H4HTP/85z+N/v37G/Hx8cagQYOMf//73y07cDRaQ97766+/3ujVq5cRHx9vpKenG+ecc46xdu3alh88GuzKK680cnJyjPj4eCM1NdUYOXKk8c477/hu5/PeNtX3feez3jYFb8HG571tcBiGYbTklwIAAAAAAMAaa9IBAAAAALAJQjoAAAAAADZBSAcAAAAAwCYI6QAAAAAA2AQhHQAAAAAAmyCkAwAAAABgE4R0AAAAAABsgpAOAAAAAIBNENIBAAAAALAJQjoAAAjL7XZr+PDhuuCCCwKuLy0tVXZ2tm6//fYojQwAgLbJYRiGEe1BAAAA+9q0aZOOP/54Pf300/r1r38tSZo4caK+/PJLrVmzRvHx8VEeIQAAbQchHQAA1OnRRx/VrFmz9PXXX+vTTz/VRRddpDVr1mjIkCHRHhoAAG0KIR0AANTJMAz94he/UExMjDZs2KDrrrtOd9xxR7SHBQBAm0NIBwAAEfnuu+90zDHH6LjjjtPatWsVGxsb7SEBANDm0DgOAABEZOHCherYsaO2bNmibdu2RXs4AAC0SVTSAQBAnVavXq0RI0bonXfe0T333CNJWrFihRwOR5RHBgBA20IlHQAA1OrQoUO6/PLL9bvf/U5nnHGGnnnmGX366ad66qmnoj00AADaHCrpAACgVtOnT9dbb72lL7/8Uh07dpQkzZs3TzfddJM2bNig3Nzc6A4QAIA2hJAOAADCev/99zVy5Ei99957+vnPfx5w2+jRo1VVVcW0dwAAmhAhHQAAAAAAm2BNOgAAAAAANkFIBwAAAADAJgjpAAAAAADYBCEdAAAAAACbIKQDAAAAAGAThHQAAAAAAGyCkA4AAAAAgE0Q0gEAAAAAsAlCOgAAAAAANkFIBwAAAADAJgjpAAAAAADYxP8HT4CvhxSJsUAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount: 18\n", + "amount_ae: 36\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR8AAAJyCAYAAABNDLfWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9H5JREFUeJzs3Xd8U9X7B/DPTbp3gZbRAmXvArKsCJQlywLKLEpZyhYcKKAgoPADFGSJBWSKMixLRAEVKUOEAjJKEYplz7ZIB23TkZzfH3xzbZqkTduk6fi8X68oPTk5z7k3N+nT5y5JCCFAREREREREREREZGYKa0+AiIiIiIiIiIiISicWH4mIiIiIiIiIiMgiWHwkIiIiIiIiIiIii2DxkYiIiIiIiIiIiCyCxUciIiIiIiIiIiKyCBYfiYiIiIiIiIiIyCJYfCQiIiIiIiIiIiKLYPGRiIiIiIiIiIiILMLG2hMgouLt4cOHOH78OB49eoS4uDjEx8fj/fffR/Xq1a09NSIiIiIiIiIq5njkIxEZFB0djW7dusHHxwcDBgzAxIkTMWfOHISGhuLIkSPWnh4RmeDmzZuQJAmzZ88uknizZ8+GJEm4efNmkcQjIiIiIqLij8VHMjvtH7umPMaOHWvt6ZIB0dHRCAgIwO+//46pU6fi2rVr0Gg0EEJArVYjJCTE2lMkokJYsWIFJEky+ll+8uQJfHx84OTkhOjoaLndz88Pfn5+RTRLIiIiIiLz8vPzQ2BgoMXjaHfKh4eHG2wvazvredo1WUytWrXw+uuvG3zu5s2b2LRpUxHPiEw1atQoJCcnY9++fejWrZu1p0NEZjZx4kTs2rULmzdvRr9+/dCnTx+d5ydMmID79+9j2bJlqFu3rpVmSUQlwc2bN1GjRg2T+o4ZMwarVq2y8IzImgIDA3HkyBEIIaw9FSIik/31119o06YNatasifPnz8PR0VGvT8+ePbF//35s3rzZaJ2DjGPxkSymdu3aRk/1Cw8PZ/GxmIqMjMTx48fx3nvvsfBIVEpJkoQNGzagSZMmGD16NNq2bYsKFSoAAHbs2IGtW7eiY8eOeOutt6w8UyIqKbjTmYiISqrnnnsOH330EebMmYPp06dj6dKlOs+vWbMG+/fvxyuvvMLCYwHxtGsqlvz8/Iyeqr1x40a9/hs2bECbNm3g4uICFxcXtGnTxmC/8PBwo9c/kyTJ4OHXgYGBkCRJr/3w4cMYOXIk6tWrJ8dt2bIl1qxZU+Bly3lI9vDhw812SPalS5cwcOBAeHt7w97eHjVq1MDbb7+Nx48f6/Q7ceIEAKBevXoIDg5GxYoVYWdnh+rVq2PcuHF48OCB3Fej0aB69eooX7480tPTDcZt3749bGxscPfuXQDG16f2dP3hw4frtOd3PRs6LfThw4cYP348atSoATs7O5QrVw4vv/wy/vzzT73XGzs8viDbDgBcvHgRgwcPRuXKleX1+NZbb+mt97wuV7B27Vqd/qa+n7nRbl8KhQI3btzQe/7YsWNy/JzLndsyG1uHgOmf1c2bN0OhUGDw4ME6R08Y204iIiLg4uKC5557DsnJyTrPJScnY9asWWjUqBEcHR3h4eGBbt264fjx4wbnn5ycjDlz5sDf3x9OTk5wd3dH8+bNMXPmTGRmZubr0hLaz652nWgfCoUClStXRq9eveTPXHa7d+9GcHAwateuLc+hXbt22Llzp8E5F4Sfnx8WL16M2NhYjBs3DgDw6NEjjBs3Dq6urtiwYYP8WdUu861bt3Dr1i2dZSmq60kSUfGm3els6JHzO5uIiKi4+eijj9C8eXMsX75c5x4HN27cwHvvvQcvLy+sXr3aijMs2Vh8pGLL3d0ds2bNkh85TwvUmjRpEkaOHIl79+5h1KhRGDVqFO7du4cRI0Zg8uTJFpvfwoULcfToUbRq1QoTJ07E66+/jvj4eIwZMwbvvfderq/NuWwdOnSw2DwB4Pjx42jTpg12796Nzp07491330X16tWxbNkytGnTBvHx8XLfuLg4AMC4ceMQFhaGwMBAvPfee2jQoAFWrVqFli1b4tatWwAAhUKBN954A//++6/BosjVq1dx7NgxdO/eHb6+vgWae2HWMwDcv38frVq1QmhoKMqVK4d3330Xffr0we+//4727dtj165dBZqXKfbu3YvWrVtj7969CAwMxNtvv40mTZrgyy+/REBAAJ48eaL3mqZNm+psG9rHc889J/fJz/tpCoVCYfAXaWhoKJRKZf4X3Ij8fFaHDh2KhQsXYvv27XjnnXdyHTc6Ohq9evWCt7c39u/fD1dXV/m5f//9FwEBAfjkk0/g6emJsWPHol+/fjh79iw6duyIPXv26IwVGxuL1q1bY/bs2VAqlRg3bhxGjhyJSpUqYeHChUhJSYGHh4fe++Pu7q73uZ41axY8PDx0xh82bBhmzZqFjz76CB06dMCvv/6KLl264MqVKzr9pk+fjqioKLz44ouYPHkyBgwYgKtXr6J///5YsWJF/le+EaNHj0a3bt3kox1Hjx6N+Ph4LF26VOeO9tplNrScRXHNHCIq3bjT+Rlz7nTOviymrlchBNavX4+2bdvCzc0NTk5OaNmyJdavX29w/OjoaHTp0gVOTk6oX78+Dhw4ID8XExODwMBAODo6omHDhggLCzM4xq1btzBq1Cj4+PjAzs4Ovr6+GDVqFG7fvm10eVQqFaZNm4Zq1arBwcEBDRo0wIoVK/RO9d64cWOuy5uSkgJ3d3eD24Kx7eD8+fNQKpV6Y2bfORoVFYVevXrBw8MDLi4ueOmll3D27FmzLb/2YWdnBz8/P7zxxht6/TMyMrBixQp069YNVatWhb29Pby9vfHqq6/i3LlzemNr15Wh9QQY3rmf2/ZqbGcxkL8d6Ll9fnIefRYfH4+3334bNWrUkJd34MCBuHTpksFlMsQS2wyQ+3fRH3/8gV69eqFcuXJwcHBA/fr1MWvWLKSmpur0i4yMhKenJxo0aKC3rgy9P48fP0aDBg3g6emJyMhInefy+1kXQmDDhg1o164dPDw84OTkhDp16mDMmDHytpfbe2Xou0e7TrI/ypUrhzZt2uCbb77Rm8PZs2cxceJENG7cGO7u7nB0dESTJk2wYMECZGZmGpx3ftna2uKbb76Bra0tRowYgadPn0Kj0WD48OF4+vQpVq9eDS8vL73X3blzB8HBwShXrhxcXFzQoUMHHD161CxzKlUEkZnduHFDABDdunUz2ufw4cMCgBgzZozB5318fISfn59O24YNGwQAsWHDBrntyJEjAoBo0KCBSEhIkNv//fdfUbduXQFAHD16VC/urFmz9GICEB06dNBr79ChgzD0Ubl+/bpeW2ZmpujatatQKpXi1q1bBpfN19dXb9lmzZolAIjDhw/rtA8bNkwAEDdu3DA4linUarWoVauWACAOHDig89z7778vAIiRI0fqzQWA+Omnn3T6L1q0SAAQL7/8stx27949YWNjIwIDA/ViT5kyRQAQe/bskdsCAwMFAKHRaHT6arebYcOG6bTndz1Xr15dVK9eXf550KBBAoB47bXXdGL+9ddfws7OTnh6eoqkpCS95c/5XuR324mPjxdubm7Cx8dH3Lx5U+e5rVu3CgBi4sSJeS5/Tvl9P3Oj3b769OkjvLy8RHp6uvxcbGyssLOzE3379jW43MY+L0IYXof5/axqvfPOOwKAWLBggRBCfz3dv39f+Pn5CS8vLxEdHa33+iFDhggA4uuvv9Zpf/Tokahatarw8vISaWlpcnu/fv0EAPHhhx/qjfXw4UORmZlpcJlzbnemrBMhhFi5cqUAIJYuXarTHhMTozdGcnKyaNKkiXB3dxcpKSlGY2WnXV+Gtlutu3fvCg8PD2Fvb6/3+c7J1OUszHcWEZUs5sj7qlevLtzd3cWsWbPkR58+ffTyPiGEeOuttwQA4ePjIyZNmiQmTZokfHx8BAAxadIkg3HNkfd169ZN1KpVS7z22mti6tSpYsyYMaJ69eoCgHj33XeNLruhZdPGsETeZ2hZTFmvGo1GBAcHCwCiTp06YsyYMeKtt94S9evXFwDEe++9p9P/0aNHonLlykKSJPHKK6+ICRMmiPLly4tq1aoJAKJu3bqif//+YvTo0aJcuXJCkiSxc+dOnTGuXr0qvLy8BAARFBQkpk2bJl5++WUBQHh5eYmrV68aXJ6goCDh6+srJk+eLCZPnix8fX0Nvg/avx2USqVo06aN3vpZvXq1UCqVBrcFY9tBu3bt5Dw5+zrUfg7atWsn3N3dRceOHcW0adNEcHCwsLGxEU5OTuLkyZNmWX7tezlt2jTRsWNH+T3LnqM8ePBAKBQK0aFDBzF69GgxdepUMWDAAGFvby8cHBxERESEwXWVc7vQMvT7P7ft1Vhee+zYMeHk5CRsbGzE4MGDxbRp0+TlqlWrloiLi9OLm/Pzo31k355iY2Pl/DgwMFBMmzZNDBo0SCiVSuHk5CSOHTtmcLlyssQ2I4Tx76Lvv/9enuOIESPE1KlTRfPmzQUA0aZNG50cVYhn+bSDg4MICAgQqampOusp+/uTkpIinn/+eWFvby+OHDmiM0Z+P+tqtVr0799f/t4dO3as+OCDD8TAgQOFh4eH2L17txBCiCVLlui8P02bNhUAxOTJk3Xaz507p7NOOnToID83ZswYUb58eQFAbNy4UWceY8aMEVWqVBGDBw8W77//vpgwYYJo1KiRACBeffVVg+vdmOrVqxv9O0YIIebPny8AiNGjR4vFixcLAGLo0KEG+96/f1/+HdStWzcxffp00bdvX2FnZye6detm8Lu+rObLLD6S2ZkjCfX29hb16tXTaTP0S3HkyJECgNi+fbveGN99951eIcacSagxO3fuNPiFqVW+fHlRt25dnTZLFh+PHj0qAIgePXroPZecnCzKlSsnHBwc5MKTdi6G3r/MzExRo0YNIUmSiI2NldtfeeUVIUmSuHbtmtyWkZEhvL29ReXKlXWSoYEDBxpcJlOLb1rG1nP2X74qlUrY2toKW1tbcefOHb0x3nzzTQFAbN68WW4zV/Hxiy++EADEN998Y3D+zz33nKhQoYL8s6nLn9/3Mzfa7Wv//v0CgPjuu+/k5+bPny+cnJzE7t27zVJ8zO9nVUuj0cgFxE2bNumsp8TERNG0aVPh7Oysl0QLIURcXJxQKpWiU6dOBue5fPlyAUD8+OOPQohnibokSaJWrVoiIyPD4GuMKWjxcdmyZfKymUKbAIWHh5vU35TioxBCzJgxQwAQtra24v79+0b7sfhIRDlxp3Px2umc3Ysvvqi3LMaKTGvWrBEAxIgRI3R+B6anp4ugoCABQJw5c0ZunzRpkgAgVq5cKbf98ccf8o6sRYsWye3Xrl0Trq6uwtfXV2RlZcnt2sLZ6tWrdeai3TGX8/e39r2pV6+ezvufkJAg6tWrJyRJEqdPn9ZbVm3B9a+//tIZr1mzZvJOVlMKSdu2bRMARIsWLYwWHwGIadOm6bzuwIEDAoBo0qSJTntBlz+nAQMGCADi/PnzcptKpRJ3797V63vp0iXh4uIiunTpotNeFMXHguxAzyvv0BoxYoQAIKZPn67T/tNPPwkAonbt2kKtVuc5jrm3GS1D30WJiYnC3d1d2NvbiwsXLsjtarVaPnjik08+0Rtr165dQqlUipdffln+PGVfT5mZmaJXr15CoVDoFfyFyP9nfcWKFQKA6Ny5s07BUwghUlNTxePHjw0uc17fZ8a+n6OiogQA0bdvX532W7du6Xx/CPHs7wTt3xjHjx83GMeQvIqPWVlZok2bNgKAsLOzE76+vuLJkycG+2qXc+7cuTrtq1evlr8TWHx8hqddU7GUlJQEBweHPPtpTxswdNpMx44dATw7PcIStNeRa9q0KVxcXOTDxfv16wfg2em+OWk0GiQmJsLJySlfsZYuXYrZs2fjk08+QWhoKA4dOgSNRmPSa3NbR9pThlQqFa5evarznHb9ZWdjY4N27dpBCIELFy7I7WPGjIEQQue6hHv37kVsbCxGjBgBG5v/7m3Vpk0bAMAHH3yAR48e5Tn/gqxn7TXpHBwckJmZidq1axs87duS28jJkycBAKdOnTJ4/SuVSoX4+Ph8nyJd0PczN/Xr10enTp3kO5BqNBqsXr0awcHBeqcNZ3fz5k2Dy2boWo8F/axKkoR3330XwLO7sGtP6UpPT0ffvn1x4cIFtG/fHq1atdJ77enTp6FWq5Genm5wntr3SHvK85kzZyCEQMeOHWFra2t0uQtj48aNmD17NmbOnIlBgwZhypQp6N69OwYOHKjTLzY2Fu+++y4aNGgAJycnebvXXmrA0HZfULGxsfJp95mZmdi3b5/ZxiYiMkVmZibs7e3z7Ke9ac3s2bPh7u4ut3t6emLWrFkAYPS00cIydEdvGxsbjB07Fmq1GocPHzb4urS0NNjZ2VlkTnnJT+wvv/wSzs7OWLlypc7vQDs7O8ybNw8AsHXrVrl9x44d8PT0xJgxY+S2F154Ac8//zwA6Fwap3bt2hg4cCDu3r0r/+69ffs2Dh8+jIYNG+LNN9/UmcvYsWNRv359/P7777hz547eXGfOnKnz/ru7u2PGjBkQQhi8sVFQUBB8fX0RGhoqt508eRLnz5+Xr3mcl7S0NLz//vto2LAhxo4da7Sfh4cHPvroI522bt26oXPnzoiMjJRPvy7M8ueUlZUlx9ayt7eHj4+PXt9GjRqhY8eOOHr0qNlOVTXVH3/8gZiYGPTo0UPvppYff/wxypUrhy1btiAjIyNf42ZkZGDr1q0oX748ZsyYofNcz5490bVrV/zzzz/4448/TB7THNtMXn744QckJiZi5MiR8Pf3l9sVCgU+++wz2NjYGPw+e+WVV7By5Urs27dP5/OnNXr0aPz000/48ssv8eqrr+o9n9/P+ldffQWlUonQ0FC9O0A7OjqiXLly+V723Gi3Z09PT532atWq6V0OSpIkTJgwAQDw22+/mW0OSqVSXhcZGRlYunSpwb+JMjIysH37dnh7e+tdDuyNN95AnTp1zDan0oB3u6ZiJzU1FSqVyuD1FHJKSkqCQqEw2LdixYqQJAlJSUlmn2NGRgYCAwPx119/oXnz5hg6dCjKly8PGxsb+Y6Ohm7A8ujRI2RlZaFKlSr5irds2TK9trp162LPnj1o0KBBrq/VLn/FihUNPl+5cmWdftpCYaVKlXLtn5iYKLe99NJLqFGjBjZt2oS5c+fCxsYGa9euhSRJGDVqlM7rJ0yYgN27dyMsLMzo9X+0Crqe3d3d8fbbbyMpKQlLlizJc9mzL4u5/PvvvwCAlStX5tovJSVFvsuwKfL7fppq3LhxGDBgAKKionDz5k3cvHkT48aN07t5S3a3bt3CnDlzTJ53QT6rarUaY8eOhZubG2rWrImJEycCAMLCwqDRaNCuXTvs378fe/bsQd++fXVeq30P/vjjj1wTzpSUFAD/bQeGknVzyflHUYUKFdCiRQudawT9+++/aNWqFW7fvo22bduiS5cu8PDwgFKpxPnz5/HDDz8YvcFTQYwdOxZxcXFYsGABFi1aJN/pvlq1amaLQUSUm6SkJPn3V26svdN50aJF2LNnD2JiYuTfHVq57XSuWrVqvmJp/9DV/t6sW7cuOnbsCIUif8eNPHnyxKQd3qmpqYiMjESVKlWwcOFCvee1RSrtzrrExETcv38fAQEBJl8bukmTJgCAqKgotG3bVn6fOnTooHedPIVCgfbt2+PKlSs4f/683vpr166d3vjaNkPXM1QqlRg9ejQWLlyIRYsWwc3NDV999RVq166Nrl27mjT/hQsX4s6dO/jll19w7949o/2aN28OFxcXg/M7dOgQzp07hxYtWhRq+bXXDUxPT8eff/6JEydO4KOPPtK5VjPw7LPw2Wef4fjx43j48KFesTE+Pl7vc7dnzx6D13BMSEgwukPaUGEmISFBr58pO9B/+eUXXL16Vd5eTHHlyhWoVCp07NjR4PbesWNH/Prrrzh//rzBbceQwmwzhq7raGid5rY+qlWrhpo1ayI6OhrJyck61zMHnl0bfdasWVi3bp3O32wfffQRNmzYAC8vL4SEhOiNm9/P+tOnT/H333+jdu3aFiukhYeHy+vswYMHCAsLQ926dTF9+nSdfhkZGfjyyy+xbds2XLlyBU+fPtW5zqs5d8wLITB37lz55127dskHvmR39epVqFQqdOrUSe/AKYVCgbZt2+LatWtmm1dJx+IjFTsxMTEAoHfRXEPc3Nyg0WgQFxcHb29vnediY2MhhICbm5vZ5/jDDz/gr7/+wqhRo/TuQrxt2zaDe12B/xLiunXr5ivejRs34OfnByEE7t+/j88++wzLly/HW2+9ledeHu3yGzvK8OHDhzr9tHuvtO3G+mff4yxJEkaPHo3p06fjxx9/lJOHzp07o2bNmjqvt7e3x5EjR7B//35ERkZCpVIBeJak5CyyFnQ9e3h4YPbs2UhOTsaSJUvyXPbsy2Iu2vUZGRmJxo0bm31cU99PU/Xt2xeVK1dGaGgobt68iVatWqFFixYGj2LU6tChg8HnZ8+erVeULOhn9YsvvsCZM2ewatUq9O3bFy+88AKuX78OtVqNRYsWYdy4cWjcuDHGjx+PwMBAneRXO957772HRYsW5bkOtK/N7Y+Kwjp8+LCcZMbFxWHjxo2YOnUqYmJi5L3M69atw+3bt/Hpp5/q7cFfsGABfvjhB7PNZ/Pmzdi9ezdefvllTJ06FX5+fhg8eDBGjRqFX3/91WxxiIiM4U5nfYXZ6aylzRlz5mGGPHnyBEII3Lt3L9editqCq3bHpKEimzHavtr3pzA7Uw29RttmbIfyG2+8gU8++QSbN2/G4MGDERYWhrlz5xq9QUh2t2/fxmeffYbevXuja9euuR5da2x5cs6vMMuf8z1q0KABateurdN24sQJdOrUCcCzgwTq1Kkjn0G0Z88eXLhwweA2+8MPPxjNM4wVHw1tr4ZYage6pcYt6DaTnx3zQO7zjo6ORlJSkl7x8aOPPsKjR4/Qvn17zJs3T94J8H//939o3749jh49ig8//FDvvcnvZ70odswfOXJE587Stra2CAoK0isk9+/fHz/++CPq1q2LQYMGwdvbG7a2tvLfkObcMb98+XKEh4dj6NChuH37NrZs2YIBAwboHeigXT85/7bRMvbellU87ZqKHe3pGC1btsyzb/PmzQHAYAFE29asWTNzTU2mLZAaugP3sWPHjL5OWyhs3759geJKkgQfHx8sXboU7u7uOHPmTJ6vyW0dpaSk4MyZM3B0dES9evUAQL6rsqH+arUax48fhyRJeut1xIgRsLW1xdq1a7F+/XpoNBq900i0FAoFevXqhWnTpsmnwL799tt6/Qq6nrVcXV1Ru3Zt/PPPPwYLSpbcRrSnl//5559mHTe/76epbGxs8MYbb2DTpk3Yv3+/2U4p0SrIZ/Wff/7BrFmz0L59e4wePRoVK1bE9u3bAQC9evXCe++9BycnJ6xZswYPHjzAlClTdF7fqlUrSJJk8nvQsmVLKBQKHD58uEhORfLy8sL777+PJk2aICwsTC7EF3a7N9W9e/cwadIklCtXTr5b66BBg9C/f3/89ttvBu+ArlQqoVarzTYHIqKC7nTOqah2Ov/1118IDQ3F3LlzMXv2bHTv3t3o6wqz01kIAY1Gg7t372LSpEmIjo7GW2+9ZfIY2qPBTImtXWctWrSAeHZPAIMP7anlzs7OAJ4dFWUqbV9tEbIwO1MNvUbbZmyHcuXKldG3b1+sWrUKGzZsAPAsdzXF+++/D41Ggy+++CLPvsaWJ+f8CrP82vcjKysLMTExeO655zBixAid39vz5s1Deno6fvvtN+zduxeLFy/GnDlzMHv2bKNnNwHP7iRv6L3PeVRldtrtNfvjxo0bev0stQPdUuMWdJvJ7bNjjnmfOnUKy5cvx+DBg/H777+jT58+UKvVUKvV6NOnD37//XcMGjQIX375pfx3dc6Ypn7WtdurJXfMz5o1S46blJSEnTt3Yu/evWjfvj3S0tIAPLuU0o8//ohu3brh8uXL+PrrrzFv3jzMnj0bgwcPNut8oqOjMX36dPj6+mLFihVYv349nJ2dMXbsWL27jGvXT2xsrMGxTLnEWFnC4iMVK4mJiVi+fDlsbW3Ru3fvPPsPGzYMwLM9TNn3ZiUmJsp7c7R9zEn7C/j48eM67UeOHMHXX39t8DXx8fHYvHkzypUrhx49ehQq/oMHD/D06VO9a2EY0rZtW9SqVQv79+/XO0py7ty5ePz4MYKDg+VrArVp0wZ169bFgQMH5Ovraa1YsQIxMTEICgrSO1W4YsWK6Nu3Lw4cOIDQ0FBUqFBBb+9QfhVkPec0YsQIZGZmYvr06TqH5l+8eBEbN26Ep6dnoedpLK6rqys++ugjREVF6T2fmpqqlxCYIr/vZ36MHj0anp6eqF27ttl/kef3syqEwJtvvilfS1S7l1m73WXf/rp06YIRI0Zg3bp1+P333+X2SpUqYeDAgThx4gQ+//xznfdf69SpU0hNTQXwbBvu168fYmJiDO4Njo2Nla9DYy5PnjzBvXv3dPaiG9vut2zZgp9//tlssUeNGoWEhAR8+eWXOqddffXVV3Jh9NatWzqvKVeuHOLj4+VCKRFRYXGns3EF2elckNiurq5o0KAB/v77b4Ony+bk6emJihUr4sqVKybvkLp06RIAyEduat+no0eP6v1+FkLg6NGjOv2yM7TOtW3abcSQcePG4dKlS/j0008xcOBAk65Vd+zYMXz//fd45513UKtWrTz7nzt3zmBRNuf8CrP8WkqlEjVr1sSKFSsAPDubQSsmJgblypXDiy++qPOa1NRU/PXXX3kuhyVYagd6/fr14eDggNOnT8s5XXaF+W4oyDZjqtzWx507dxATE4OaNWvqHPWYkZGBUaNGwdPTE8uXL4dSqcTWrVtRoUIFVKhQAVu3boVSqcTy5cvh4eGBUaNG6VxDM7+fdRcXFzRs2BA3btwoktOHXV1dERQUhJCQEFy/fl2+bJL2O7hXr156l3ow5455tVqNYcOGIS0tDWvXroW7uztq1qyJhQsX4tGjR/Lln7Tq1q0LBwcHnDlzRi831mg0OHHihNnmVhqw+EjFxty5c1GvXj1cunQJn3zyiUnX/mnfvj3eeustXL58GY0bN8Y777yDt99+G40bN8aVK1cwadIkg0mX9jTO7A/g2bUicrZrrx+xatUqOekLCgqCn58fPvvsM/Tq1QtTp05F37590blzZ4OJ6caNGxEQEIC4uDhUq1YNCxYsMHiDjo0bN2LPnj16r//uu++watUqhIaGYubMmQgICIBarcbo0aPzXEcKhQIbN26Ek5MTevbsiddeew0ffvghOnbsiAULFqBWrVpYsGCB3F+SJKxbtw6Ojo4ICgrC4MGD8eGHH6JHjx5455134OPjgy+//NJgrLFjx0Kj0eDRo0cYNmxYoS+wnt/1bMh7772HNm3aYPPmzWjdujWmTZuGkSNHyutw7dq1Bk8b2rt3r852sHfvXgB5bzva7cXLywtbt27F06dP0bRpU7z88suYMmUK3nrrLQQFBaFSpUoGrwmTl/y+n/nh6+uL27dv4+rVq3oXlC6s/H5W16xZI18DxpRrzCxevBiVKlXC6NGjdRLPr776Cs2aNcMHH3yApk2bYsyYMZg6dSqGDBmCunXr4vnnn9cphn711Vdo0KAB5s2bh+eeew5TpkzBe++9h6CgIFStWjVfR3kYor3hzOzZszFx4kT4+/vj8ePHGDp0qHytmKFDh8Ld3R1vvfUWBg4ciPfffx8vvfQShg4davDC4QWxevVqHDx4EP3790dwcLDOc15eXggNDUVycjJGjhyp80dRp06doFKp0KNHD3z88ceYO3eu/AcSEVF+caezafKz0xkAVCoVvvrqK9jY2GDQoEEmvWbSpElITU3Fm2++qXc9S+DZ0W3Zr1vXt29fPHnyROeyOH/++adcTF68eLHcfv36dXz//feoWLEiXnjhBQDPrmnXsWNHREVFYf369Tqx1qxZg7///hudOnUyeL3MTz/9VOf06sTERPl02Nze/06dOuGFF16Aq6srxo8fn8caeWbSpEmoXLmy3k1kjElISJBvVKF18OBBHDp0CI0bN0aLFi0AFG75c4qMjNRrq169Op48eaKzA1ytVmPKlCkGjxwuCpbagW5nZ4fg4GDEx8dj/vz5Os8dOHAABw8eRO3atdG2bdt8z7kg24yp+vTpA3d3d2zYsEHnfRJCYOrUqcjKysLw4cN1XjNv3jxERUVhyZIl8uUnHB0d4ezsDGdnZzl/9/b2xpIlS3D58mW97TG/n/UJEyZArVZj/Pjx8pGIWiqVSr7GurkIIeSdFVrGvoOjoqL03vPC+Oyzz3Dy5EmMHj1a56ZI48ePR6dOnbBt2zbs2rVLbre3t8fAgQMRGxur850HAGvXrkV0dLTZ5lYqmO2+2UT/c+PGDQFAdOvWzWifw4cPCwBizJgxcluHDh1Ely5dxA8//GDwNRs2bBAAxIYNG/SeW79+vWjVqpVwcnISTk5OolWrVmL9+vVG4xb0MWvWLHms69evi379+gkvLy855rZt2+QY2ft26NDB5BjDhg2TXzds2DC95728vETbtm3F5s2bjb8JBly8eFH0799fVKhQQdja2orq1auLyZMni7i4OIP9L1y4oNO/atWqYvz48eLBgwdGY2g0GlGtWjUBQPz999/5mp92u8m+/ELkbz0LIUT16tVF9erVddqSk5PFhx9+KGrXri3s7OyEp6enePnll8WJEyf05jFr1qxCbSOHDx/WGe/KlSti1KhRonr16nLsJk2aiEmTJomIiIg8l9+Y/L6fhmi3rxs3bhjtY2w9AxAdOnQw+BrtOsy5LoQw7bN69+5d4ebmJpo3by4yMzN1nsttPe3YsUMAEO+++65Oe2pqqvjss89EixYthLOzs3B0dBQ1atQQffv2Fd98841ejMTERDFz5kxRv359YW9vL9zd3UWzZs3Exx9/LDIyMgwus6HtztA6yf7w9PQULVq0ECtWrNCbw/nz58VLL70kPD09haurq+jQoYP47bffcv0eNES7vnJ+d7m4uAhvb+9ct5fg4GABQKxcuVJuS05OFm+++aaoXLmyUCqVemNrlzO3bYqISpeC5n2ffvqpqFixogAg5s+fr/caY993b731lgAgqlatKt5++20xefJk4evrKwCISZMmGYzbq1cvERoaqvMAIOrUqaPXXqdOHQFAhIaGitOnTwshnn33+fn5CQCiZ8+e4oMPPhB9+vQRSqVS9O/fX++7cMOGDaJ27doCgGjWrJmYNWuWzkObFw4bNkzs3r1bfp329/LcuXNFaGio+Oqrr8SMGTPk3Or//u//8nw/du/eLZ577jkBQPj5+enF7tOnjwAg+vTpo7NuNRqNHL9y5cpi6NChYurUqWL48OHi+eefF5Ikia1bt8r97969KypUqCAkSRL9+vUTEydOFF5eXqJ69eoCgGjYsKEYMGCAGDNmjChfvrwAIL777juduV65ckUeo0+fPmL69Omid+/ecr579epVnf7a9RYUFCR8fX3F5MmTdd7/nL//Tf2daSinyZ67b9q0Kc9xtZ+Ddu3aCXd3d9GxY0cxffp0ERwcLGxsbISjo6M4efKkWZZf+17OmDFDhISECGdnZ715/vjjjwKA8PDwEKNHjxaTJk0S/v7+onz58iIwMFDvd3Ve68pQnpNbHmksXzt27JhwcnIStra2YsiQIWL69OnyfGrVqiViY2PzjGtIbGysqFmzpgAgOnXqpLPunZycxLFjx/IcQwjzbDOGGMunv//+e6FUKoWzs7MYOXKkmDp1qmjRooUAIFq3bi3S0tLkvpGRkcLW1lZ0795db3xj66lbt27C1tZWREZGym35/axrNBoxcOBAAUD4+PiIcePGialTp4rg4GBRrlw5ne+w7PL6O0O7Tjp06CBv0++99568/PXr1xcqlUoIIURWVpZo3bq1/Bl7//33xaBBg4Sjo6P8HWzq31Da9ZXz/bt48aKws7MTNWrUEMnJyXqvuXHjhsH8+f79+8LHx0cAEN27dxfTp08Xffv2FXZ2duKll14y+DdRWc2XWXwkMlH16tX1fmGYqkOHDiZ9IZrar7i6f/++sLGxEe3atbP2VIqcNskyVHAjshZDxUdLKqvJFFFZxp3OxWuns6ExjD0M7UTcvn276NKli/D09BS2trbCx8dHBAYGisWLF+vtsIqKihIdO3YUDg4Ool69euLAgQPyssfExIgOHToIe3t7UbduXb3Co9bNmzfFiBEjROXKlYWNjY2oXLmyGDFihLh586ZeX+3YaWlp4oMPPhBVq1YVdnZ2ol69emL58uVCo9Ho9DdHIalNmzYmjZu92Hbp0iXRs2dP4ebmJpydnUWXLl3EmTNnzLb82odCoRCVKlUSXbp0Efv27dPrv2PHDvHcc88JJycnUaFCBTFw4EARExNjsChUVMVHIfK3A93U4qMQQsTFxYlJkyaJ6tWrC1tbW1GhQgXRv39/ncJbXoq6+CiEEEePHhU9evQQHh4ews7OTtStW1fMnDlTPH36VO6jLb65uLiIW7du6Y1hbD3dvHlTuLi4iNatW4usrCyd5/LzWddoNGLt2rXi+eefF87OzsLJyUnUqVNHjB07Vty+fdvgMptafMz+cHZ2FvXq1RNTp07VK0THxsaKkSNHiipVqggHBwfRpEkTsXLlSnH9+vVCFx8zMjJEs2bNhCRJuf4tt3r1agFADBgwQKf91q1bYtCgQcLDw0M4OTmJdu3aiSNHjhg9IKOs5suSEAYugkVEevz8/DB8+PACnSobGBgIPz+/XO+Ol59+xdXUqVPx2WefYcuWLXqncpZ2N2/eRI0aNXTuZkxkbdrtctasWQX67sov7Z3Ob9y4YdLNI4iIiquSmvcNHz4cN2/eNHgduYL0y6/AwEAcOXLE4HWWi/PYhaX9fTts2LASm8cTlRV+fn7w8/Mz+/efqcpqvmxj7QkQlRSvvfaaSRdDN2T48OHw8PAwW7/iJDExEaGhobh16xbWrl2Lhg0bYuDAgdaeVpFzdXXFmDFjUKVKFWtPhYiIiIiIiKjYYPGRyEQ5L9abHzkvFlzYfsXJkydPMH36dDg4OODFF1/EqlWr9O5CVhaUL19evvkMERERlWwldadz3759TbqLran9iIiIzIHFRyIqFD8/v2J5+gsRAR4eHpg1a1aRXQpAG6ekHcFNRJRTSd3p3LdvX7P2IyIiMgde85GIiIiIiIiIiEq9pUuXwsPDw2pnHYaHhyM8PBxvv/12mdphz+IjERERERERERERWYTC2hMgIiIiIiIiIiKi0qnMXfNRo9Hg/v37cHV1hSRJ1p4OERERUb4JIZCcnIwqVapAoeC+5JKIOSkRERGVZPnJR8tc8fH+/fuoWrWqtadBREREVGh37tyBr6+vtadBBcCclIiIiEoDU/LRMld8dHV1BfBs5bi5uRVZ3EGDBmH79u2Mx3jFMp41YjJeyY5njZiMx3jFPWZRxktKSkLVqlXlvIZKHmvkpKX5M1EW4lkjJuOV7HjWiMl4jFfcYzKe+eQnHy1zxUftaS1ubm5FWny0tbVlPMYrtvGsEZPxSnY8a8RkPMYr7jGtsYw8XbfkskZOWto/E6U9njViMl7JjmeNmIzHeMU9JuOZnyn5KC8SRERERERERERERBbB4iMRERERERERERFZBIuPREREREREREREZBEsPhIREREREREREZFFlLkbzuSXWq1GZmZmoccpX748VCqVGWbEeIxXOmKW5Hi2trZQKpVmGYuIiCgvzEcZz1oxGa9kx7NGTObcRGQIi49GCCHw8OFDJCQkmGW84cOH48aNG2YZi/EYrzTELOnxPDw8UKlSJd5ploiILIb5KONZOybjlex41ojJnJuIDGHx0Qhtouft7Q0nJ6dCf9lJkgQ/Pz/zTI7xGK8UxCyp8YQQSE1NRWxsLACgcuXKhR6TiIjIEOajjGftmIxXsuNZIyZzbiIyhMVHA9RqtZzolS9f3ixjKpVKODg4mGUsxmO80hCzJMdzdHQEAMTGxsLb25ungxARkdkxH2W84hCT8Up2PGvEZM5NRIbwhjMGaK+p4+TkZOWZEFFxpf1+MMc1uIiIiHJiPkpExJybqLRg8TEXvK4EERnD7wciIioK/H1DRGUZvwOJSgcWH4mIiIiIiIiIiMgiWHykAklJScGdO3fw5MkTa0+FiIiIiIiIiIiKKRYfyWRhYWHo3LkzXF1d4eLigmrVquGzzz6z9rSIiIiIiIiIiKiYYvGxjIqKisLrr78OHx8f2Nvbo0qVKnjttdcQFRVlsP+0adMwcOBAuLq64uuvv8avv/6K3377DePHjy/imRMRERFRSbZx40ZIkiQ/HBwcULduXUycOBGPHj2y9vSoCLVu3RqSJCE0NNTg8zm3lZyPkydPyn23b9+O119/HXXq1IEkSQgMDCyipSAiorzYWHsCVPR27dqF4OBglCtXDqNGjUKNGjVw8+ZNrFu3Djt27MC2bdvwyiuvyP2PHDmChQsXYv78+Zg2bZoVZ05EREREpcUnn3yCGjVqQKVS4fjx4wgNDcXPP/+MS5cu8S7fZcC1a9dw+vRp+Pn54bvvvsO4ceOM9tVuKznVrl1b/ndoaCjOnj2LVq1a4fHjxxaZMxERFQyLj2VMTEwMhg4dipo1a+Lo0aPw8vKSn5s8eTLatWuHoUOH4uLFi6hZsyYAYNGiRXjhhRdYeCQiIiIis+nRowdatmwJAHjjjTdQvnx5fPHFF/jhhx8QHBxs5dmRpX377bfw9vbG4sWL0b9/f9y8edNo3+zbijGbN2+Gj48PFAoFGjdubObZEhFRYfC06zLm888/R2pqKtasWaNTeASAChUqYPXq1UhJSdG5luPJkyfRuHFjDB48GOXKlYOjoyNatWqFPXv2yH1SUlLg7OyMyZMn68W8e/culEol5s+fDwAYPnw4/Pz89PpJkoTZs2fLP9+6dQvjx49HvXr14OjoiPLly2PAgAF6iUl4eDgkSUJ4eLjcdvr0aXTt2hWurq5wdnZGYGAgjh07pvM67WkcZ86ckdvi4+P15gEAo0ePNjjnU6dOoXv37nB3d4eTkxM6dOiAP/74Q6/fvXv3MHLkSFSsWBH29vZo1KgR1q9fr9fPEO1pJUuXLtV7rn79+pAkCRMnTsx1uXJbtnPnzqFHjx5o3rw5XFxc0LlzZ51TWABg9erVUCgUCAsLk9tu3rwJSZKwceNGuS06OhrlypXDkCFDdF6fkJCAt99+G1WrVoW9vT1q166NNWvWQKPR6PTTaDRYtmwZmjRpAgcHB3h5eaF79+7ysuR22k3202u024T2YW9vj5deegnz58+HEMLg8ru5uRldfiIiIrK8Tp06AQBu3LgBAPj3338xZcoUNGnSBC4uLnBzc0OPHj1w4cIFvdeqVCosX74cdevWhYODAypXroxXX30VMTExAP7LW/LKIbRiY2MxatQoVKxYEQ4ODmjatCk2bdqk0+f69evo1KkTKlWqBHt7e1StWhVjx47Fv//+K/fR5iQ7duzQm7OLiwuGDx8u/2zq8uZnzILmhdq8KCQkxGBeZCi3W7hwoV5ul5stW7agf//+ePnll+Hu7o4tW7aY/FpDqlatCoWiYH/eZs8dz58/r/PcvXv3oFQq9db58OHD4eLiojfWjh079P42AZ5dP/+VV16Bo6MjKlSogNdffx337t3T6TNkyBCUL18e165dk9u072H2v4HCwsKgUCiwevVqnddfuXIF/fv3R7ly5eDg4ICWLVvi0KFDenNMSEjAO++8Az8/P9jb28PX1xchISGIj4/Xy6MNPbTbzezZs3XaXV1d0a9fP52/E7PPuUWLFrkuPxGVXjzysYz58ccf4efnh3bt2hl8vn379vDz88NPP/0ktz1+/Bhr1qyBi4sLJk2aBC8vL3z77bd49dVX8d133yE4OBjOzs545ZVXsH37dnzxxRdQKpXy67du3QohBF577bV8zfX06dM4ceIEBg8eDF9fX9y8eROhoaEIDAzE3r17jb7un3/+QWBgIJycnPD+++/DyckJX3/9Nbp06YJff/0V7du3z9c8jPn999/Ro0cPtGjRArNmzYJCocCGDRvQqVMnHDt2DK1btwYAPHr0CM8//7xcJPTy8sL+/fsxatQoJCUl4e23384zloODAzZs2KDT98SJE7h161ahliEqKgrt2rWDm5sb3nzzTVSqVAmrV69GYGAgjhw5gjZt2gAAxowZg6tXr2LYsGHw8/NDq1at9Mb6999/8fLLL6NBgwbYsGGD3J6amooOHTrg3r17GDNmDKpVq4YTJ05g8eLFyMzM1Cmqjho1Chs3bkSPHj3wxhtvICsrC8eOHcPJkyfRsmVLbN68We577NgxrFmzBkuWLEGFChUAABUrVtSZ04cffogGDRogLS0NGzZswIcffghvb2+MGjVKb/k/+OAD2NraGlx+IiIisjxtobB8+fIAnhX39uzZgwEDBqBGjRp49OgRVq9ejQ4dOuDy5cuoUqUKAECtVuPll1/GoUOHMHjwYEyePBnJycn49ddfcenSJdSqVUuOERwcjJ49e+rEnT59us7PaWlpCAwMxD///IOJEyeiRo0aCAsLw/Dhw5GQkCDvbE9LS4Ovry+CgoLg5uaGS5cuYeXKlbh37x5+/PHHfC+/qctrKYbyoi+//FIvLzKW202fPh0PHjwwuMM8p1OnTuGff/7Bhg0bYGdnJ/9dMWDAAIP9ExMTER8fr9MmSZK8rZiLNudetmyZ3LZp0ybY2dlBpVIVeNyNGzdixIgRaNKkCebPn49Hjx5h2bJl+OOPP3Du3Dl4eHgAANavX49OnTqhV69eOHXqFDw9PfXGioiIwLBhw/DOO+9gzJgxcntUVBTatm0LHx8fTJs2Dc7Ozvj+++8xfvx4VKxYUb6s1tOnT9GuXTv8/fffGDlyJJ577jnEx8dj7969uHv3Lho0aKCTc69ZswZ///03lixZIrf5+/vrzEnbPz4+HsuWLcOAAQNw6dIl1KtXT2f5W7VqlevyE1EpJsqYxMREAUAkJiYa7ZOWliYuX74s0tLSzBY3OjrabGMVNF5CQoIAIPr06ZPra3v37i0AiKSkJCGEEAAEABEeHi73SU1NFQ0aNBCVKlUSGRkZIjo6Whw8eFAAEPv379cZz9/fX3To0EH+ecSIEaJatWp6cQGIWbNm6cTI6c8//xQAxGeffSa3HT58WAAQhw8fFkII0a9fP6FUKsWlS5fkPvHx8aJ8+fKiRYsWctuGDRsEAHH69Gm5LS4uTm8eQggRGBgoqlevLv+s0WhEnTp1RLdu3YRGo9GZc40aNUTXrl3ltlGjRonKlSuL+Ph4nTEHDx4s3N3dDS5n9vcPgOjfv7+wsbERZ86c0Rl3yJAhAoCYMGFCrstlbNn69u0r7OzsRExMjBzz/v37wtXVVbRv317n9Wq1WgQFBYnKlSuLO3fuiBs3bggAYsOGDSIjI0MEBgaKGjVqiNjYWJ3Xffrpp8LZ2Vlvmxw9erRQKpXi9u3bQgghfv/9dwFATJo0SW99ZF/HOZfzxo0bes/l3CaEEOLSpUtCoVCI8ePHG1x+LWPLn1Ne3xNBQUG5vt7cijqeNWIyHuMV95hFGc+UfIaKt7zeQ0vlo6mpQnzxhRATJz77v4E0xKzxDNH+Dv/tt99EXFycuHPnjti2bZsoX768cHR0FHfv3hVCCKFSqYRardZ57Y0bN4S9vb345JNP5Lb169cLAGL69Ol6sbQ5hDZv+fzzz/X6NGrUSCdXXbp0qQAgvv32W7ktIyNDBAQECBcXFzlHNrR848ePFy4uLvLP2pwkLCxMr6+zs7MYNmyY/LMpyxsdHZ2vMQuaF2odP35cLy8ylttNmzZNJ7fLzcSJE0XVqlXl9+eXX34RAMSePXt0+mnnb+hhb29vdPyc76kx2mXQrtPg4GBRvnx5kZ6eLvepU6eOnHNnX+fDhg0Tzs7OemOGhYXp5KEZGRnC29tbNG7cWERGRsr99u3bJwCIjz/+WOf1jx49En5+fqJjx44iIyNDJ+e9ffu2qFSpkujdu7fettK5c2fRpEkToVKp5DaNRiOee+45UadOHbnt448/FgDErl279OZuKOceNmyYzt9B2c2aNUvkLClo5/v999/rLX/27zNjy59TWc+5S3s8a8RkPPPJTz5abE67XrBgASRJyvUosK+//hrt2rWDp6cnPD090aVLF0RERBTdJAspPS0Te5acxKq3DmDPkpNIT8ss0vjJyckAAFdX11z7aZ9PSkqS21q1aoUOHTrIPzs6OmL8+PF4+PAh/vrrLwBAly5dUKVKFXz33Xdyv0uXLuHixYt4/fXX5TZvb2/ExsYiIyMj13k4OjrK/87MzMTjx49Ru3ZteHh44PLly3r9ExMTERsbi19//RXdunVDo0aN5OfKly+P4cOH4+zZs2a5i+L58+dx7do1DBkyBI8fP0Z8fDzi4+ORkpKCzp074+jRo9BoNBBCYOfOnQgKCoIQQu4XHx+Pbt26ITExUV5/ualYsSJ69eolH1GYmpqK77//HiNGjDD6Gu0eYu0j+ylAwLOjBH755Rf07dtXvr4nAFSuXBlDhgzB8ePHdbYBhUKBrVu3onz58ggKCkJKSor83Lhx4xAREYF9+/bpnc4fFhYmf26zz+eFF16AWq3G0aNHAQA7d+6EJEmYNWuW3rJIkpTnOsptHdy+fRtff/01NBqNfEpXfpefiIjKhtKck6pUEtq2BaZMAVavfvb/tm2BtDTrzKdLly7w8vJC1apVMXjwYLi4uGD37t3w8fEBANjb28un0arVajx+/BguLi6oV6+eTv60c+dOVKhQAUOHDtWLUZAc4ueff0alSpV0rjtpa2uLSZMm4enTpzhy5IhO/8TERDx69AiHDh3CTz/9ZPAsm+TkZJ08KOdRfPlZ3vyMmX2OBckLvb299fIiY7ldly5ddHI7Y7KysrB9+3YMGjRIfn86deoEb29vo0eMrly5Er/++qvOY//+/bnGKYigoCBIkiSfZXXs2DHcvXsXgwYNMvqanO+B9m8urTNnziA2Nhbjx4+Hvb293N6rVy/Ur19f54wz4Nk6/+mnn3Dq1CmMHz9ebn/69CmCgoJQoUIFbNmyRecU83///Re///47Bg4cqLNdPH78GC+++CKuXbsmn+K8c+dONG3aVOcGo1oFzbm18f7++29s3boVzs7OeP755/WW38HBIc/lJ6LSqVicdn369GmsXr1a7/DtnMLDwxEcHIwXXngBDg4OWLhwIV566SVERUXJSUpxlaHKwgdtN+L6hUdQKCVo1AKHN0fisz+Gw97RtkjmoC0q5vyFmJOhImX9+vX1+jVo0ADAs2volCtXDgqFAq+99hpCQ0ORmpoKJycnfPfdd3BwcNA5heKFF17AwoULMWPGDEyaNEnnl1B2aWlpmD9/PjZs2IB79+7pXKvP0DL07dtX/rf2EH9j8815em5+aa/DMmzYMKN9EhMTkZmZiYSEBKxZswZr1qwx2C82NtakmCNGjMCIESOwePFihIWFwdPTUy6kGdKlS5dcx4uLi0NqaqrRdaXRaHDnzh2dIq5arUZ8fDwePnwoFz6/+uornD59GpIkGXxfrl27hosXL+oVJbW0yx8TE4MqVaqgXLlyuc47P7JvEwqFAjNmzEC/fv0AFGz5iYiodCvtOenWre64cAHQaJ49AODCBWDVKuCdd4p+PitXrkTdunVhY2ODihUrol69ejoFFe21oL/66ivcuHEDarVafi776bYxMTGoV68ebGzM86fNrVu3UKdOHb3rB2pzyZyXvenWrRtOnToFAOjevTu2b9+uN+bIkSPzjGvq8uZnTC1z5oWm5nbG/PLLL4iLi0Pr1q3xzz//yO0dO3bEvn37oNFo9NZ969at87zhjDnY2tri9ddfx/r169G/f3+sX78e/fr1g5ubm8H+KSkpRteDlnZ7MbRu69evj+PHj+u1JyUlIS0tDWvXrpWv+Tly5EhcuHABlStX1tk2gGeXnRJCYObMmZg5c6bBecTGxsLHxwcxMTFyPmwu2deBi4sLvvvuO1StWhVAwZafiEofqxcfnz59itdeew1ff/015s6dm2vf7EfUAcDatWuxc+dOHDp0CCEhIZacZqGd2BqD6xceQWgE1JpnRbTrFx5h/6qz6PvO80UyB3d3d1SuXBkXL17Mtd/Fixfh4+Mj/5LNfgRiXkJCQvD5559jz549CA4OxpYtW+SLSGv17t0bI0eOxOeff47PP//c6FhvvfWWfJ3DgIAAuLu7Q5IkDB482ODFrBctWoQ6deqgT58+Js+3oLTxP//8czRr1sxgHxcXFzx+/BgA8PrrrxstVOb1B45Wr169YGdnhz179mDDhg0YNmxYrhfV1ib0WklJSYVONGbOnAmVSoW9e/fKe4BPnz6N5cuXY+vWrRg/fjxOnz6t94dD165d8cEHH+iMdffuXfj6+urM0dwWLVqEpk2bIjMzEwcOHMDChQthY2Nj8OhKIiIq28pCTnrnji2Uyv8KjwCgVALXr1tnPnkVlP7v//4PM2fOxMiRI/Hpp5/KO7vffvvtfN3YxNJWrFiB+Ph4XL58GfPnz8fYsWPx7bff6vT5+OOP9a65HhQUpPNzfpfXlDG1zJkXGsvttPLK7bSfn4EDBxp8/siRI+jYsWOB5mYOI0eORPPmzXH16lWEhYXleq15BwcHvaM1jx07hk8++aTA8dVqNcaPH4+AgAAMGjRIvsbopUuXsHfvXgwdOhQff/yxzrU1tdvHlClT0K1bN53xtDl37dq1CzynvPz6668AnhVjN2zYgIEDB2Lfvn3o2rWrxWISUcli9eLjhAkT0KtXL3Tp0iXPRC+n1NRUZGZmmvVIKUt5fOcpFEpJLjwCgEIp4eH1hCKdx8svv4yvv/4ax48fx4svvqj3/LFjx3Dz5k2dixfXqFEDV69e1et75coVANC5C3Tjxo3RvHlzfPfdd/D19cXt27exYsUKvdeuW7cOH3/8MWJiYuRfljl/Oe3YsQPDhg3D4sWL5TaVSoWEhASDy9aiRQt06NABLi4uJs+3oLQXLndzc8t1T7KXlxdcXV2hVqvz3OOcFxsbGwwdOhTz5s1DVFRUnnfLzpnQ5zwVx8vLC05OTkbXlUKhkPdYAs9ONV+5ciWWLVuGoKAgrF27Fq+99hrefPNNvPXWW2jXrh1atmyJr776Sufu27Vq1cLTp0/1lv/atWuoU6eOTr+DBw/i33//NdtnukWLFvLdK2vXrg2VSoWFCxdi5syZ+V5+IiIq3cpCTlq1aiZyHDAFtRrIdpZtsbJjxw507NgR69at02lPSEiQbzYHPMshTp06hcxM81zSqHr16rh48aLeEXjaXLJ69eo6/bU34uvRowe8vb0REhKCjz76SD5SEgCaNGmilwtlv0EjYPry5mdMLXPmhcZyO1OkpKTghx9+wKBBg9C/f3+95ydMmIDvvvvOqsXHJk2aoHnz5hg4cCC8vLzQsWNHvVPttZRKpd56yPm3inZ7uXr1ql5uefXqVb3t6auvvsLFixdx9uxZNG3aFJcuXcLXX3+NtWvXIigoCHPnzsXbb7+NESNGoGnTpgAgnypva2trUs596dIlE9eGabLHbNiwIf7++28sWrQIXbt21Vn+nGdtGVp+IiqdrHrNx23btuGvv/7C/PnzC/T6qVOnokqVKrn+4ktPT0dSUpLOwxrKV3WBRi102jRqgUo1PYp0Hu+//z4cHR0xZswY+ag8rX///Rdjx46V7xKt1bNnT0RERODEiRNym0qlQmhoKCpVqoQWLVrojDN06FD88ssvWLp0KcqXL48ePXoYnEv16tXRqVMndOnSxeB7qFQqdU61Bp7tWc55mkF2kiThpZdewsGDB/H333/rLNumTZvQsmXLQp9yDTwratWqVQuLFi3C06dP9Z6Pi4uTl6Ffv37YuXOnwV/y2n6mGjlyJCIjI9G+fXud6/EUhFKpxEsvvYQffvgBN2/elNsfPXqELVu24MUXX5SPfhVCYPz48WjatCnGjRsH4Nnp89n/36xZM0yYMAEzZszQua7mwIED8eeff+LgwYN6c0hISEBWVhYAoF+/fhBCYM6cOXr9cm4HBZWWloasrCxkZWXla/mJiKh0Kys5aXBwIpo2BRQKwNb22f+bNQPGji3yqZjEUC4YFhYmX7tOq1+/foiPj9c72hAoWA7Rs2dPPHz4UOf06aysLKxYsQIuLi4610HPSVvUS09Pz3dcU5fXEozlRfHx8Xp5kam5nSG7d+9GSkoKJkyYgP79++s9AgMDsXPnzgKtP3MaOXIkLl68iOHDhxf4OohaLVu2hLe3N1atWqVzzfv9+/fj77//Rq9eveS2R48eYebMmZg4caJcWMyZc48bNw5NmzbF+PHj5e3F29sbgYGBWL16NR48eKA3h+x/c/Tr1w8XLlzA7t279fqZI+dWq9XIyMiQ38Psy5/9fTW0/ERUelntyMc7d+5g8uTJ+PXXX41e8y83CxYswLZt2xAeHp7r6+fPn2+wmDFo0CDY2hq+1qL25iSSJBnde5hfzftUwZkfbuL+30/kaz5Wqe+BOl3c5esHmlNqaqrRcRcsWIApU6agYcOG6N+/P3x9fXHv3j2EhYXhyZMn+OKLL6DRaOTX9+/fH9988w26deuGkJAQeHp64ocffsDly5exePFi3LhxQyee9uLCu3fvxpAhQ3QSmLw8fvxYHqd9+/bYvHkzhBCoVasWzp8/jxMnTsDDwwNZWVlyv7t378r/v3btGt544w0cOHAAL774IoYOHQoHBwd8//33SEhIwNKlS+XXaQtkP/zwg3wtFW0h8dy5czp7nePj4/H06VOsW7dOvoj47Nmz8cYbb6BevXp49dVXUbFiRTx69AinTp2Ci4sLVq9eDQAYPXo0fv31V7Ru3RoDBw5ErVq1kJiYiMuXL+PEiRM4ffp0nu9fQkICrl27BhsbG5w6dQoODg4Gn8++XLdv39Y53V17YfHs6/jNN9/EL7/8gueffx4DBgyAo6Mjtm3bBpVKhbfeekvuFxYWhlOnTmH79u2IiYnRWe+PHj2S+w0fPhxbt27FmDFj5FPqX3nlFYSFheHll1/GK6+8gsaNGyM1NRWXL1/GoUOH8Pvvv6NcuXLw9fVFnz59sHz5cpw/fx7t27eHRqPBmTNn0KZNG72LyGuX88aNG3pHOmjntn37dpw5cwZZWVn466+/sHPnTnTq1Em+9kz25R8yZAhsbGwMLr8harUasbGx+Oyzz/QK+QAQERGB3r17G329uRV1PGvEZDzGK+4xizKeuY7wouKbk1oiH9VoUrFp0z/YutUdd+7YomrVTAQHJ+LuXfPs5MvJWD5qLFfJKSAgACtXrkS/fv3QvHlzREdH48cff0TVqlWRlpYmjx0QEIA2bdpg/vz5uHjxIlq2bIm0tDScOHECQ4YMQZcuXeTcID4+Xm9OGRkZOuN16tQJtWrVwrBhw/Dbb7/Bx8cHBw8eREREBD766CM8fPgQDx8+xJIlS/Dvv/+iTp06sLOzw+XLl7Fz507Uq1cPjo6OuHbtmhz3wYMHenGFEEhKStJZjryWNzU1NV9jFjQv1OZFW7du1cuLjOV20dHROHjwoJzbGbJmzRp4eHjAy8vL4Lbx4osv4vvvv8fXX3+Nbt26yfP/9ttvER4erte/efPmqFatGoBnlwLS5tUPHz5EYmIi3vnfxUxbtWolH6GanXYbzblOAwMDcfLkSbi6uhp9H5OSkiCE0FsObfFP+7cJALz77ruYNm0agoOD0bt3b8THx+Obb76Br68vevfuLfebMmUK7O3tMWzYML33MHvOO336dAwcOBALFiyQjyD94IMPEBwcjIYNG2LgwIGoWrUqHj9+jDNnziAuLk4+PfyVV17Bli1bMGDAAPTr1w+NGzdGQkICfv/9d8yZM0fniF3tcmb/2ys7bQ68aNEiAM929B88eBA3b97Ea6+9prf8bdq0wcsvv2x0+Q0p6zl3aY9njZiMZz75ykfNf7Nt0+zevVsAEEqlUn4AEJIkCaVSKbKysoy+9vPPPxfu7u7i9OnTecZRqVQiMTFRfty5cyfPW4GnpaWJy5cvi7S0tAItmyHR0dFClZohdn/xpwiduF/s/uJPoUrNMNv4huLl5uLFiyI4OFhUrlxZ2NraikqVKong4GARGRlpsH9MTIzo37+/cHd3Fw4ODqJVq1Ziz549RuP17NlTABAnTpwwec4AxKxZs+Sfnzx5IkaMGCEqVKggXFxcRLdu3cSVK1dE9erVxSuvvCL3O3z4sAAgDh8+LLedPXtWvPTSS8LFxUU4OTmJ9u3biyNHjujE27BhgwCQ70d2586dE6+++qooX768sLe3F9WrVxcDBw4Uhw4d0un36NEjMWHCBFG1alV5fXfu3FmsWbPG4LrIvj4BiAkTJuS63rI/r12unJ+PuLg4vXUshBB//fWX6Natm3B2dhZOTk6iY8eOOu/b48ePRYUKFcTo0aN1Xnfjxg0BQGzYsEGn/bvvvhMAdNZ3cnKymD59uqhdu7aws7MTFSpUEM8995xYtGiRyMj473OQlZUlPv/8c1G/fn1hZ2cnvLy8RI8ePcTZs2f1llu7nDdu3NB7TrtNaB82NjbCx8dHTJo0STx58sTg8mu3lZzLb0xe3xNBQUF5jmFORR3PGjEZj/GKe8yijJeYmJhnPkOmKa45qaXy0aJkLJ6xXCUnlUol3nvvPVG5cmXh6Ogo2rZtK/7880/RoUMH0aFDB52+qampYty4caJGjRpyrtW/f38RExMjhPgvb/n888/14jRq1EhvvEePHsl5qJ2dnWjSpIlezrNixQrRqlUr4ebmJhwdHUXt2rXFe++9J+Li4uQ+2pwkLCxML66zs7MYNmxYvpY3Ojo6X2MWNC/U5kXPP/+8wbzIUG73wgsv6OV2OdepjY2NGDp0qMHnhXj2N4qTk5Oc6+eVr2d/T2bNmmW0X87l1NJuo7mtU2PPDxs2TDg7O+v1DQsL0/vbRAghtm/fLho2bCjs7e1FuXLlxGuvvSbu3r0rPx8eHi4AiC1btui8zljO++abb4oKFSqIx48fy20xMTEiJCREVKpUSdja2gofHx/RsWNHsWPHDp3XPn78WEycOFH4+PgIOzs74evrK4YNGybi4+P1lmfYsGGievXqBtdLznWu/RwsWbJEaDQaveVv3ry50eU3pqzn3KU9njViMp755CcftVrxMSkpSURGRuo8WrZsKV5//XWjBTAhhFi4cKFwc3MTf/75Z4HimrJySnOyV1Tx+vbtK2rVqlVk8SwtOjpaTlqLKl5Rs/Y2U9LilfVEyBoxGY/xinvM4prsUe6Ka07KfJTxikNMxivZ8awRkzk34xX3mIxnPvnJR6122rWrqysaN26s0+bs7Izy5cvL7SEhIfDx8ZGvv7Nw4UJ8/PHH2LJlC/z8/PDw4UMAz+4q7OLiUrQLQEY9ePAAP/30Ez766CNrT4WIiIgoV8xJiYiIiCzLqjecycvt27d1LpgbGhqKjIwM9O/fH5UrV5Yf2mtMkHXduHED3377LYKDg2Fra6tzx+zSwNHREd26dbP2NIiIiKiIMSclIiIiKjirHfloSM6LCOf8OT83LqGid+TIEYwYMQLVqlXDpk2bUKlSJWtPyawqVqyIAwcOWHsaREREZGHMSYmIiIjMp1gVH6lkGz58OIYPH27taRARERERERERUTFRrE+7JiIiIiIiIiIiopKLxUciIiIiIiIiIiKyCBYfcyGEsPYUiKiY4vcDEREVBf6+IaKyjN+BRKUDi48G2Ng8uxRmVlaWlWdCRMWV9vtB+31BRERkTra2tgCA1NRUK8+EiMh6tN+B2u9EIiqZ+FezAUqlEkqlEklJSXB1dbX2dIioGEpKSpK/K4iIiMxNqVTCw8MDsbGxAAAnJydIklSoMdVqNVQqlTmmx3hWiGeNmIxXsuNZI6a54gkhkJqaitjYWHh4eDDnJirhWHw0QJIkeHt748GDB7C3t4ezszOTPcYr1fGsEbOkxhNCICUlBUlJSahcuXKhvxuIiIiMqVSpEgDIBcjCio2NLdJTGBmv5MdkvJIdzxoxzR3Pw8ND/i4kopKLxUcj3N3dkZaWhvj4eMTFxRV6vJL+pc94pTueNWKW5HiSJMHDwwPu7u5mGY+IiMgQSZJQuXJleHt7IzMzs9DjffbZZwgNDTXDzBjPGvGsEZPxSnY8a8Q0ZzxbW1se8UhUSrD4aASTPcYrS/GsEbMkx2MiRERERclcl/l4/PgxHBwczDAjxrNGPGvEZLySHc8aMa2xjERU/LH4mAcme4xXFuJZI2Zpj0dEREREREREvNs1ERERERERERERWQiLj0RERERERERERGQRLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZBIuPREREREREREREZBHFpvi4YMECSJKEt99+22ifqKgo9OvXD35+fpAkCUuXLi2y+RERERFR6ceclIiIiMi8ikXx8fTp01i9ejX8/f1z7ZeamoqaNWtiwYIFqFSpUhHNjoiIiIjKAuakREREROZn9eLj06dP8dprr+Hrr7+Gp6dnrn1btWqFzz//HIMHD4a9vX0RzZCIiIiISjvmpERERESWYfXi44QJE9CrVy906dLF2lMhIiIiojKKOSkRERGRZdhYM/i2bdvw119/4fTp0xaLkZ6ejvT0dPnnpKQki8UiIiIiopKHOSkRERGR5Vit+Hjnzh1MnjwZv/76KxwcHCwWZ/78+ZgzZ45e+6BBg2Bra2uxuDlFRESgd+/ejMd4xTKeNWIyXsmOZ42YjMd4xT1mUcbLzMwskjhlQVnKSUvzZ6IsxLNGTMYr2fGsEZPxGK+4x2Q888lXPiqsZPfu3QKAUCqV8gOAkCRJKJVKkZWVlevrq1evLpYsWZJnHJVKJRITE+XHnTt3BACRmJhopiUxTVBQEOMxXrGNZ42YjFey41kjJuMxXnGPWZTxEhMTrZLPlEZlKSctzZ+JshDPGjEZr2THs0ZMxmO84h6T8cwnP/mo1Y587Ny5MyIjI3XaRowYgfr162Pq1KlQKpVmiWNvb88LgRMRERGRQcxJiYiIiCzLasVHV1dXNG7cWKfN2dkZ5cuXl9tDQkLg4+OD+fPnAwAyMjJw+fJl+d/37t3D+fPn4eLigtq1axftAhARERFRiceclIiIiMiyrHrDmbzcvn0bCsV/N+S+f/8+mjdvLv+8aNEiLFq0CB06dEB4eLgVZkhEREREpR1zUiIiIqKCK1bFx5zJWs6f/fz8IIQougkRERERUZnDnJSIiIjIfBR5dyEiIiIiIiIiIiLKPxYfiYiIiIiIiIiIyCJYfCQiIiIiIiIiIiKLYPGRiIiIiIiIiIiILILFRyIiIiIiIiIiIrIIFh+JiIiIiIiIiIjIIlh8JCIiIiIiIiIiIotg8ZGIiIiIiIiIiIgsgsVHIiIiIiIiIiIisggWH4mIiIiIiIiIiMgiWHwkIiIiIiIiIiIii2DxkYiIiIiIiIiIiCyCxUciIiIiIiIiIiKyCBYfiYiIiIiIiIiIyCJYfCQiIiIiIiIiIiKLYPGRiIiIiIiIiIiILMKqxcfQ0FD4+/vDzc0Nbm5uCAgIwP79+432z8zMxCeffIJatWrBwcEBTZs2xYEDB4pwxkRERERUmjAfJSIiIrIsqxYffX19sWDBApw9exZnzpxBp06d0KdPH0RFRRnsP2PGDKxevRorVqzA5cuXMXbsWLzyyis4d+5cEc+ciIiIiEoD5qNERERElmXV4mNQUBB69uyJOnXqoG7dupg3bx5cXFxw8uRJg/03b96MDz/8ED179kTNmjUxbtw49OzZE4sXLy7imRMRERFRacB8lIiIiMiybKw9AS21Wo2wsDCkpKQgICDAYJ/09HQ4ODjotDk6OuL48eNFMUUiIiIiKsWYjxIRERGZn9WLj5GRkQgICIBKpYKLiwt2796Nhg0bGuzbrVs3fPHFF2jfvj1q1aqFQ4cOYdeuXVCr1UbHT09PR3p6uvxzUlKS2ZeBiIiIiEouS+ejAHNSIiIiKrskIYSw5gQyMjJw+/ZtJCYmYseOHVi7di2OHDliMOGLi4vDm2++iR9//BGSJKFWrVro0qUL1q9fj7S0NIPjz549G3PmzNFr7969O2xtbc2+PMZERESgdevWjMd4xTKeNWIyXsmOZ42YjMd4xT1mUcbLzMzEgQMHkJiYCDc3tyKJWZpZOh8FikdOWpo/E2UhnjViMl7JjmeNmIzHeMU9JuOZT77yUVHMdO7cWYwePTrXPmlpaeLu3btCo9GIDz74QDRs2NBoX5VKJRITE+XHnTt3BACRmJho7qnnKigoiPEYr9jGs0ZMxivZ8awRk/EYr7jHLMp4iYmJVslnygpz56NCFI+ctDR/JspCPGvEZLySHc8aMRmP8Yp7TMYzn/zko1Y/7TonjUajc0qKIQ4ODvDx8UFmZiZ27tyJgQMHGu1rb28Pe3t7c0+TiIiIiEopc+ejAHNSIiIiKrusWnycPn06evTogWrVqiE5ORlbtmxBeHg4Dh48CAAICQmBj48P5s+fDwA4deoU7t27h2bNmuHevXuYPXs2NBoNPvjgA2suBhERERGVUMxHiYiIiCzLqsXH2NhYhISE4MGDB3B3d4e/vz8OHjyIrl27AgBu374NhUIh91epVJgxYwauX78OFxcX9OzZE5s3b4aHh4eVloCIiIiISjLmo0RERESWZdXi47p163J9Pjw8XOfnDh064PLlyxacERERERGVJcxHiYiIiCxLkXcXIiIiIiIiIiIiovxj8ZGIiIiIiIiIiIgsgsVHIiIiIiIiIiIisggWH4mIiIiIiIiIiMgiWHwkIiIiIiIiIiIii2DxkYiIiIiIiIiIiCyCxUciIiIiIiIiIiKyCBYfiYiIiIiIiIiIyCJYfCQiIiIiIiIiIiKLYPGRiIiIiIiIiIiILILFRyIiIiIiIiIiIrIIFh+JiIiIiIiIiIjIIlh8JCIiIiIiIiIiIotg8ZGIiIiIiIiIiIgsgsVHIiIiIiIiIiIisggWH4mIiIiIiIiIiMgirFp8DA0Nhb+/P9zc3ODm5oaAgADs378/19csXboU9erVg6OjI6pWrYp33nkHKpWqiGZMRERERKUJ81EiIiIiy7KxZnBfX18sWLAAderUgRACmzZtQp8+fXDu3Dk0atRIr/+WLVswbdo0rF+/Hi+88AKio6MxfPhwSJKEL774wgpLQEREREQlGfNRIiIiIsuyavExKChI5+d58+YhNDQUJ0+eNJjsnThxAm3btsWQIUMAAH5+fggODsapU6eKZL5EREREVLowHyUiIiKyrGJzzUe1Wo1t27YhJSUFAQEBBvu88MILOHv2LCIiIgAA169fx88//4yePXsW5VSJiIiIqBRiPkpERERkflY98hEAIiMjERAQAJVKBRcXF+zevRsNGzY02HfIkCGIj4/Hiy++CCEEsrKyMHbsWHz44YdGx09PT0d6err8c1JSktmXgYiIiIhKLkvnowBzUiIiIiq7JCGEsOYEMjIycPv2bSQmJmLHjh1Yu3Ytjhw5YjDhCw8Px+DBgzF37ly0adMG//zzDyZPnow333wTM2fONDj+7NmzMWfOHL327t27w9bW1uzLY0xERARat27NeIxXLONZIybjlex41ojJeIxX3GMWZbzMzEwcOHAAiYmJcHNzK5KYpZml81GgeOSkpfkzURbiWSMm45XseNaIyXiMV9xjMp755CsfFcVM586dxejRow0+9+KLL4opU6botG3evFk4OjoKtVpt8DUqlUokJibKjzt37ggAIjEx0exzz01QUBDjMV6xjWeNmIxXsuNZIybjMV5xj1mU8RITE62Sz5QV5s5HhSgeOWlp/kyUhXjWiMl4JTueNWIyHuMV95iMZz75yUetftp1ThqNRueUlOxSU1OhUOheplKpVAIAhJEDOO3t7WFvb2/eSRIRERFRqWXufBRgTkpERERll1WLj9OnT0ePHj1QrVo1JCcnY8uWLQgPD8fBgwcBACEhIfDx8cH8+fMBPLsb4RdffIHmzZvLp7nMnDkTQUFBctJHRERERGQq5qNERERElmXV4mNsbCxCQkLw4MEDuLu7w9/fHwcPHkTXrl0BALdv39bZszxjxgxIkoQZM2bg3r178PLyQlBQEObNm2etRSAiIiKiEoz5KBEREZFlWbX4uG7dulyfDw8P1/nZxsYGs2bNwqxZsyw4KyIiIiIqK5iPEhEREVmWIu8uRERERERERERERPnH4iMRERERERERERFZBIuPREREREREREREZBEsPhIREREREREREZFFsPhIREREREREREREFsHiIxEREREREREREVkEi49ERERERERERERkESw+EhERERERERERkUWw+EhEREREREREREQWweIjERERERERERERWQSLj0RERERERERERGQRLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZBIuPREREREREREREZBEsPhIREREREREREZFFWLX4GBoaCn9/f7i5ucHNzQ0BAQHYv3+/0f6BgYGQJEnv0atXryKcNRERERGVFsxHiYiIiCzLxprBfX19sWDBAtSpUwdCCGzatAl9+vTBuXPn0KhRI73+u3btQkZGhvzz48eP0bRpUwwYMKAop01EREREpQTzUSIiIiLLsmrxMSgoSOfnefPmITQ0FCdPnjSY7JUrV07n523btsHJyYnJHhEREREVCPNRIiIiIsuyavExO7VajbCwMKSkpCAgIMCk16xbtw6DBw+Gs7Oz0T7p6elIT0+Xf05KSir0XImIiIio9LFUPgowJyUiIqKySxJCCGtOIDIyEgEBAVCpVHBxccGWLVvQs2fPPF8XERGBNm3a4NSpU2jdurXRfrNnz8acOXP02rt37w5bW9tCzT0/IiIicp0n4zGeNeNZIybjlex41ojJeIxX3GMWZbzMzEwcOHAAiYmJcHNzK5KYpZml81GgeOSkpfkzURbiWSMm45XseNaIyXiMV9xjMp755CsfFVaWnp4url27Js6cOSOmTZsmKlSoIKKiovJ83ejRo0WTJk3y7KdSqURiYqL8uHPnjgAgEhMTzTF9kwUFBTEe4xXbeNaIyXglO541YjIe4xX3mEUZLzEx0Sr5TGll6XxUiOKRk5bmz0RZiGeNmIxXsuNZIybjMV5xj8l45pOffNTqp13b2dmhdu3aAIAWLVrg9OnTWLZsGVavXm30NSkpKdi2bRs++eSTPMe3t7eHvb292eZLRERERKWLpfNRgDkpERERlV0Ka08gJ41Go3M9HEPCwsKQnp6O119/vYhmRURERERlBfNRIiIiIvOx6pGP06dPR48ePVCtWjUkJydjy5YtCA8Px8GDBwEAISEh8PHxwfz583Vet27dOvTt2xfly5e3xrSJiIiIqJRgPkpERERkWVYtPsbGxiIkJAQPHjyAu7s7/P39cfDgQXTt2hUAcPv2bSgUugdnXr16FcePH8cvv/xijSkTERERUSnCfJSIiIjIsqxafFy3bl2uz4eHh+u11atXD8K6N+gmIiIiolKC+SgRERGRZRW7az4SERERERERERFR6cDiIxEREREREREREVkEi49ERERERERERERkESw+EhERERERERERkUWw+EhEREREREREREQWweIjERERERERERERWQSLj0RERERERERERGQRLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZBIuPREREREREREREZBEsPhIREREREREREZFFsPhIREREREREREREFsHiIxEREREREREREVkEi49ERERERERERERkESw+EhERERERERERkUVYtfgYGhoKf39/uLm5wc3NDQEBAdi/f7/R/hs3boQkSToPBweHIpwxEREREZUmzEeJiIiILMvGmsF9fX2xYMEC1KlTB0IIbNq0CX369MG5c+fQqFEjg69xc3PD1atX5Z8lSSqq6RIRERFRKcN8lIiIiMiyrFp8DAoK0vl53rx5CA0NxcmTJ40me5IkoVKlSkUxPSIiIiIq5ZiPEhEREVlWsbnmo1qtxrZt25CSkoKAgACj/Z4+fYrq1aujatWq6NOnD6KionIdNz09HUlJSToPIiIiIqKcLJWPAsxJiYiIqOyShBDCmhOIjIxEQEAAVCoVXFxcsGXLFvTs2dNg3z///BPXrl2Dv78/EhMTsWjRIhw9ehRRUVHw9fU1+JrZs2djzpw5eu3du3eHra2tWZclNxEREWjdujXjMV6xjGeNmIxXsuNZIybjMV5xj1mU8TIzM3HgwAEkJibCzc2tSGKWZpbOR4HikZOW5s9EWYhnjZiMV7LjWSMm4zFecY/JeOaTr3xUWFl6erq4du2aOHPmjJg2bZqoUKGCiIqKMum1GRkZolatWmLGjBlG+6hUKpGYmCg/7ty5IwCIxMREcy2CSYKCghiP8YptPGvEZLySHc8aMRmP8Yp7zKKMl5iYaJV8prSydD4qRPHISUvzZ6IsxLNGTMYr2fGsEZPxGK+4x2Q888lPPmrVaz4CgJ2dHWrXrg0AaNGiBU6fPo1ly5Zh9erVeb7W1tYWzZs3xz///GO0j729Pezt7c02XyIiIiIqXSydjwLMSYmIiKjsKjbXfNTSaDRIT083qa9arUZkZCQqV65s4VkRERERUVnBfJSIiIjIfKx65OP06dPRo0cPVKtWDcnJydiyZQvCw8Nx8OBBAEBISAh8fHwwf/58AMAnn3yC559/HrVr10ZCQgI+//xz3Lp1C2+88YY1F4OIiIiISijmo0RERESWZdXiY2xsLEJCQvDgwQO4u7vD398fBw8eRNeuXQEAt2/fhkLx38GZT548wZtvvomHDx/C09MTLVq0wIkTJ9CwYUNrLQIRERERlWDMR4mIiIgsy6rFx3Xr1uX6fHh4uM7PS5YswZIlSyw4IyIiIiIqS5iPEhEREVlWsbvmIxEREREREREREZUOLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZBIuPREREREREREREZBEsPhIREREREREREZFFsPhIREREREREREREFsHiIxEREREREREREVkEi49ERERERERERERkESw+EhERERERERERkUWw+EhEREREREREREQWweIjERERERERERERWQSLj0RERERERERERGQRLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZhFWLj6GhofD394ebmxvc3NwQEBCA/fv3m/Tabdu2QZIk9O3b17KTJCIiIqJSi/koERERkWVZtfjo6+uLBQsW4OzZszhz5gw6deqEPn36ICoqKtfX3bx5E1OmTEG7du2KaKZEREREVBoxHyUiIiKyLKsWH4OCgtCzZ0/UqVMHdevWxbx58+Di4oKTJ08afY1arcZrr72GOXPmoGbNmkU4WyIiIiIqbZiPEhEREVlWsbnmo1qtxrZt25CSkoKAgACj/T755BN4e3tj1KhRJo2bnp6OpKQknQcRERERUU6WykcB5qRERERUdklCCGHNCURGRiIgIAAqlQouLi7YsmULevbsabDv8ePHMXjwYJw/fx4VKlTA8OHDkZCQgD179hgdf/bs2ZgzZ45ee/fu3WFra2uuxchTREQEWrduzXiMVyzjWSMm45XseABw/MQpNGzcssji/XPlbKlep4xX8mMWZbzMzEwcOHAAiYmJcHNzK5KYpZml81GgeOSkpfkzURbiWSMm45XseNaIGfHHcbRuVK/o4kVdLd3xom9wG2W8YhsvP/mo1YuPGRkZuH37NhITE7Fjxw6sXbsWR44cQcOGDXX6JScnw9/fH1999RV69OgBACYle+np6UhPT5d/TkpKQtWqVYs8We/duzf27t3LeIxXLONZIybjlex4APBiYC98tjysyOItmDG4VK9Txiv5MYsyXlJSEtzd3Vl8NBNL56NA8chJS/NnoizEs0ZMxivZ8awRs3f7AOz9Qn9Hi8XivTurdMf75Etuo4xXbOPlJx+1KZIZ5cLOzg61a9cGALRo0QKnT5/GsmXLsHr1ap1+MTExuHnzJoKCguQ2jUYDALCxscHVq1dRq1YtvfHt7e1hb29vwSUgIiIiopLM0vkowJyUiIiIyi6rFx9z0mg0OnuFterXr4/IyEidthkzZiA5ORnLli1D1apVi2qKRERERFSKMR8lIiIiMh+rFh+nT5+OHj16oFq1akhOTsaWLVsQHh6OgwcPAgBCQkLg4+OD+fPnw8HBAY0bN9Z5vYeHBwDotRMRERERmYL5KBEREZFlWbX4GBsbi5CQEDx48ADu7u7w9/fHwYMH0bVrVwDA7du3oVAUmxtyExEREVEpw3yUiIiIyLKsWnxct25drs+Hh4fn+vzGjRvNNxkiIiIiKnOYjxIRERFZFnfjEhERERERERERkUWw+EhEREREREREREQWweIjERERERERERERWQSLj0RERERERERERGQRLD4SERERERERERGRRbD4SERERERERERERBbB4iMRERERERERERFZhI21J0BEREREREREZKo0lQKrdvkiMsYFS7ZUw9hX78LRQSO3X7/nhJo+qRj76l0A0Gsz1tfRQWPlJSMqnVh8JCIiIiIiIqISIU2lQNs3WuNCtCsEHDBlaT1s/rkKflt5Bl0mtMSFaFcolQJqtYRN+6oAEhB57b82Y303/1wFf6yNYAGSyAJ42jURERERERERlQirdvniQrQrNEKCEBI0QsKFaFeM/LSR3J6ZpYBGSLh4zRUXc7QZ63sh2hWrdvlae/GISiUe+UhERMVOpioT58Iu4sndBHj6eqD5AH9rT4mIiIiIioHr95ygVAposiS5TakUBtul//1TCOTZV9tORObH4iMRERUrmapMfDNsG2KvxkFSShBqgch9l6GpyVNgiIiIiMq6mj6pUKslnTa1WkJNn1RExbjotGcvOubVV9tORObH066JiKhYORd2EbFX4yCEgCZLAyEEYq/GIfZWorWnRkRERERWNvbVu2haNxkKSUCSBBSSQLO6yVg/M0put7XRQCEJNK2TDP8cbcb6NqubLN+ghojMi0c+EhFRsfLkbsKzIx6z/ttVLSklqFIyrTgrIiIiIioOHB00+GNtBFbt8sXy7SpMGnRVvlO1tt2Uu10b6subzRBZBouPRERUrHj6ekCodc+REWoBB2dbK82IiIiIiIoTRwcN3hlyG4fPPMU7Q27rtedkqM1YXyIyPxYfiYioWGk+wB+R+y7rXPPRu74XRHV3a0+NiIiIiAopTaUweMShoXbA8FGL2r6RMS5YsqVaocYwdzwePUmkz6rFx9DQUISGhuLmzZsAgEaNGuHjjz9Gjx49DPbftWsX/u///g///PMPMjMzUadOHbz33nsYOnRoEc6aiIgsydbBFiGbBuvd7Xrx3J+sPTUiKoWYjxIRFZ00lQJt32iNC9GuUCoF1GoJm3+ugt9WnkGXCS112jftqwJIQOQ1430FHDBlab1CjWHOeJt/roI/1kawAEmUg1WLj76+vliwYAHq1KkDIQQ2bdqEPn364Ny5c2jUqJFe/3LlyuGjjz5C/fr1YWdnh3379mHEiBHw9vZGt27drLAERERkCbYOtmg9tIW1p0FEZQDzUSKiorNqly8uRLtCIyRosp7dsfpCtCtGftpIr/3iNVcAgIDxvoAEAalQY5gz3oVoV6za5cvTuYlysGrxMSgoSOfnefPmITQ0FCdPnjSY7AUGBur8PHnyZGzatAnHjx9nskdERERE+cZ8lIio6Fy/5wSlUsjFOgBQKoXBdul//xTZLgVurK85xjBHPG07EelSWHsCWmq1Gtu2bUNKSgoCAgLy7C+EwKFDh3D16lW0b9/eaL/09HQkJSXpPIiIiIiIcrJUPgowJyUiAoCaPqlQqyWdNrVaMtguhG4hMLe+5hjDHPG07USkSxIi58eraEVGRiIgIAAqlQouLi7YsmULevbsabR/YmIifHx8kJ6eDqVSia+++gojR4402n/27NmYM2eOXnv37t1ha1t0d06NiIhA69atGY/ximU8a8RkPPM6fuIUGjZuWWTxAODypTN5xhQaDRLvJyEzLQu2jjZwr+IGSVGw/V6mxDOnf66cLdXbTGmPZ42YRRkvMzMTBw4cQGJiItzc3IokZmlm6XwUKB45aWn+TJSFeNaIyXglOx4ARPxxHK0b1Su6eFFXc42n1gDHz3siKcUGkiQghAR35ywE+CfgxEUPnXY35ywAyLUvEAGgdaHGMGc8d+cstG32BEozHeaV1/o0t4joG/xeYzyT5ScftXrxMSMjA7dv30ZiYiJ27NiBtWvX4siRI2jYsKHB/hqNBtevX8fTp09x6NAhfPrpp9izZ4/eKTBa6enpSE9Pl39OSkpC1apVizxZ7927N/bu3ct4jFcs41kjJuOZ14uBvfDZ8rAiiwcAH0wakGvMTFUmvhm2Tfeu1fW8ELJpMGwd9P/QzlRl4syWc7h2NAaAhDodaqJlcHO5b17xzG3BjMGlepsp7fGsEbMo4yUlJcHd3Z3FRzOxdD4KFI+ctDR/JspCPGvEZLySHQ8AercPwN4v9Hd8WCzeu7PyjGfOu10v3/4WJg1aUWR3uzYlnjlvNmPK+jSn3p98ye81xjNZfvJRq17zEQDs7OxQu3ZtAECLFi1w+vRpLFu2DKtXrzbYX6FQyP2bNWuGv//+G/Pnzzea7Nnb28Pe3t4icyciIuPOhV1E7NU4CCEgsp7t54q9GodzYRf1biaTqcrEpqFbERsdJ7fdPXcPUfuvYNg3wQaLlURE5mLpfBRgTkpEpOXooDF4QxZj7bn1PXzmqc7zBRnDEvGISJfVi485aTQanb3C5u5PRERF48ndhGdHPGb9d4C9pJTw5G6CXt9zYRd1Co9asdGGi5VERJbEfJSIKH+0RwBGxrhgyZZq+T7isKBHImaPVxRHPpo7njmPkiQqzqxafJw+fTp69OiBatWqITk5GVu2bEF4eDgOHjwIAAgJCYGPjw/mz58PAJg/fz5atmyJWrVqIT09HT///DM2b96M0NBQay4GEREZ4OnrAaHWvbKHUAt4+nro9X1yNwGQAOS4EIgEw8VKIiJzYT5KRFQ4aSoF2r7RGheiXSHggClL62HTviqABERec4VSKaBWS9j8cxX8tvIMukxoiQvRebebMoY2XmHGsFa8zT9XwR9rI1iApDLBqsXH2NhYhISE4MGDB3B3d4e/vz8OHjyIrl27AgBu374NRbYbE6SkpGD8+PG4e/cuHB0dUb9+fXz77bcYNGiQtRaBiIiMaD7AH5H7Lute87G+F5oP8EemKhPnwi7iyd0EePp6wK2Sq17hEQAEDBcriYjMhfkoEVHhrNrliwvRrtAICYAEAQkXr7kCAAQkaLKe3RH6QrQrRn7aSO6bV7spY2jjFWYMa8W7EO2KVbt8edo2lQlWLT6uW7cu1+fDw8N1fp47dy7mzp1rwRkREZVdOQuCzQf4F+pai7YOtgjZNFhvTAB6N6LxqlMBXnUqIO5avM4Y3nW95NcQEVkC81EiosK5fs8JSqWQi2oAIP3vn9lvb6tUCoN9jbUX9RjWmjNRWVDsrvlIRERFz9CdqSP3XTZ6Z2pT2TrYovXQFnJh8/clR5H0MBmPrsQCgHw9yLhr8Qic9CIAGL3bNREREREVPzV9UqFWSzptwsAZLWq1hJo+qYiKcTGpvajHsNacicoCRd5diIiotMt+Z2pNlgZCCPnO1IWlLWweWnwE53ZcxLXwGP1OEnDp57+htFUieFV/hGwcjIARrVl4JCIiIirmxr56F03rJkMhCUiSgEISaFonGf7/a7O10UAhCTSrm4z1M6Pkvnm1mzKGNl5hxrBWvGZ1k+Ub1BCVdjzykYiI8nVn6twYOnU7e2Ez+/jZCY1AfMxjHFp8xCxHXBIRERFR0XB00OCPtRFYtcsXy7erMGnQ1Vzv+qzta0p7XmNkj1fQMawZjzebobKCxUciIvrfnal1kx+h1uTrZi/GTt2u0qSSXmFTS1JIEJpn7dr/a4+4bD20RcEXiIiIiIjMLk2lYAHNzLhOqSxg8ZGIiNA4qCHCVxxHVnqW3Ka0s0HjoIYmj3Eu7KLetRwfXYmFq5cLNFn6CVTtdjWR+DAJ8TGP5cIjULAjLomIiIjIstJUCrR9ozUuRLtCqRRQqyVs/rkKflt5Bl0mtMSFaFcIOGDK0nrYtK8KIAGR14z3zavdlDG08QozhrXi5db+x9oIFiCpVGHxkYiIcOnHyzqFRwDISs/CpR8vm3wE4uOb/xpsT31i+ELaVZ/zgZ9tNRxafESnXahFvo64JCIiIiLLW7XLFxeiXaERknzX5gvRrhj5aSO5HZAgIOHiNVcAgIDxvnm1mzKGNl5hxrBWvNzaV+3yxTtDbpvtvSOyNt5whoiI8ORuAhQ2ur8SFDYKPL75LyI2n8XB+YcQsfksMlWZRsd4Gp9isD3lSSokpe4dECWlhKRHyWg+wB/e9bwgSRIUNgpIkgTv+l5oPsC/8AtFRERERGZz/Z4TlErdy+golcJguyQ9e5jSt7iMUVzmrG0nKk1YfCQiKsMyVZmI2HwWj67G6Z0arcnS4J+j1+W7VB9afATfDNumV4DUjmHsVGmXCs5AzrNGNM+uM2nrYIuQTYPR+b0OaN7fH53f64CQjbzZDBEREVFxU9MnFWq1bmVNrZYMtgvx7GFK3+IyRnGZs7adqDRh8ZGIqIzS3iDm0OIjuB/5QG6XlBIkSYKLtwuexj2FEAKaLA2EEHh0NRZbx+5AxOazEBqNzhiPrxs+7bpuYO1cj260dbBF66Et0G16Z7Qe2oKFRyIiIqJiaOyrd9G0bjIUkoCtjQYKSaBZ3WSsnxklt0uSgEISaFonGf559M2r3ZQxtPEKM4a14uXWrr1rNlFpwWs+EhGVUefCLiL2ahyEEP/diVoCfPwro37nunh8619c2H0JIvsRkQK4e/4+7p1/gDvO93Fm6zl5DOjfzBo29jZo+moTtBzSHOfCLuLJ3QR4+nqg+QB/FhmJiIiIShBHBw3+WBth8M7M2vbl21WYNOiqXDzLra8p7XmNkT1eQcewZrzc2olKExYfiYhKAaHRyKc+m1rce3I3AZJS+q/wCEChVKBiPW+0Htri2dGNagMVRQEICGQ8Tce1I9f1xshOnfHfTWuM3bgmU5VptDCZ/bmEuwlITUjDpR8vs4hJREREZAWODhqDN0LRth8+81Tn+dz6mtqen3gFGcPa8Yy1E5UmLD4SEZVw6WmZuHPuPg4dP/KsEKgWiNx3GSGbcr92oqevh15xMfudphsHNcSpb84gOfYpIEH/yEbpWaPBAqWWQsKVQ9FGi4Xa07Zjr8bpzR2AznNxWY+xrGMohEY8u4GNBiYtJxERERHlT5pKYfBovLzaI2NcsGRLtVyPAMzP2HmNkT1eQcewZry8xsgZj6ikYvGRiKiE27/qLDKepkPgv9OnY6/G4VzYRaNHGwJA8wH+iNx3WS7uadQaOHg4QJ2pRtKjZGx8fQueGis8AhBCoGZbP2SmZSH2ahwgAUKjX8y8e/4+7kc+hFALXPwxCo2610fSo2R4+npAnaXWO/VbO3ftv7M/px1fW/B8dCU2z+UkIiIiItOlqRRo+0ZrXIh2hVIpoFZL2PxzFfy28gy6TGiZa7uAA6YsrYdN+6oAEhB5Lf9jaNtNGUMbrzBjWCueKWNkj/fH2ggWIKnEYvGRiKiEe3g94dlRiNnqfpJSMnr3aS3tnabPbD2HkxvPIC0hDaokFQ4vO4YjK//47+7XuRzYCADBq/vjp1kH8eROApIfJSM9JQMKpULn9dp/x16NQ+zVOChsFBBqAQd3B73TtrPPPbdTurUe3zR8oxsiIiIiyr9Vu3xxIdoVGiFBk/XsTswXol0x8tNGebYDEgQkXLzmCgAQyP8Y2nZTxtDGK8wY1opnyhjZ463a5cvTs6nEYvGRiKiEq1TT49kNX7LRZGnk06dzY+tgC6WNEqpEFYD/jijUZJm2VzVi81n8tf0CnsalQFJIEBoBOxc7uFVyRWZqJhLvJxl8nXb8tIQ0veeyn/qd6ynd//M0PsWkuRIRERFR3q7fc4JSKeRiGAAolSJf7dL//pk9RS3uY5SEOROVVAprT4CIiAqn0zB/KBSSTpuNvQ0aBzU06fXaG88UhCoxHU/jnhX/tKdEZzzNwOPr/xotPObF3t0e6kw1Ggc1hHc9r2enfefCxcu5QHGIiIiISF9Nn1So1boJmFot5atdCN3iWUkYoyTMmaiksmrxMTQ0FP7+/nBzc4ObmxsCAgKwf/9+o/2//vprtGvXDp6envD09ESXLl0QERFRhDMmIip+ft90Ue9ai9q7TBuTqcpExOaz2D/3V9w6fcfkIx1NlXM++aFKVCF8+XFsHbMDwav7o/34trB1NHxDGUkCylcvJ/+sXa6D8w8hYvNZZKoyCzwPIiobmI8SEeka++pdNK2bDIUkYGujgUISaFY3GetnRuXZLkkCCkmgaZ1k+BdwDG27KWNo4xVmDGvFM2WM7PG0N6IhKomsetq1r68vFixYgDp16kAIgU2bNqFPnz44d+4cGjVqpNc/PDwcwcHBeOGFF+Dg4ICFCxfipZdeQlRUFHx8fKywBERE1mf4mo8Ko9d8/O8O07F6e1WLBQEICMRejcOF3ZG4eugaMtN0i4jaa0Z61/dC8wH+AIzfOTt4dX9c+vGy0TtuE1HZxnyUiEiXo4MGf6yNMHhn5rzal29XYdKgq7ne9Tk/Y+c1RvZ4BR3DmvHyGiNnPKKSyqrFx6CgIJ2f582bh9DQUJw8edJgsvfdd9/p/Lx27Vrs3LkThw4dQkhIiEXnSkRUXFWq6aF3bkb26ybmdC7s4v/uIm35uRkjSc/+k9sRkpJSwrUj15/dSTuHKk0qo37nOjqFxP+WK/uds2OxdsA3SIlL0SlIhmwazAIkEQFgPkpEZIijg8bgzU3yaj985qnO8wUZI6f8xCvIGNaOl9sYOeMRlVTF5oYzarUaYWFhSElJQUBAgEmvSU1NRWZmJsqVK2e0T3p6OtLT0+Wfk5IKdg0yIqLiqsfYFrD72B5SiiQX2LIfEZiT9hqPed1F2pKEgP7FbHLQZGmQ/Cjp2QVC1P+1K2wUqFjPC62HttDpb3C5JAlPY58+i/m/9kdXYnEu7KLe64mILJWPAsxJiaj4SlMpTD56z1Df7O2RMS5YsqVaocbIzzyyxyvoGNaMl9cYpsTjEZFUEkgi5y1Si1hkZCQCAgKgUqng4uKCLVu2oGfPnia9dvz48Th48CCioqLg4OBgsM/s2bMxZ84cvfbu3bvD1rbojnqJiIhA69atGY/ximU8a8Qs7fGOnziFho1bFlm8y5GnUcWzDjLTsmDraAP3Km6QFIYv6/vkdgLibzwudMwE3IUHfAs9Tn7jSQAq1CoPjxxHdibcTUB8zGOY8kvNvbIbvOt65drnnytnS/U2WtrjWSNmUcbLzMzEgQMHkJiYCDc3tyKJWZpZOh8FikdOWpo/E2UhnjViMl7JjgcAEX8cR+tG9Yw+r9YAx897IinFBpIkIIQEN+csANBre8E/AScueuTaDkQAaF2oMfIzj+zxCjqGNePlNYYp8V5s9gRKM93NIyL6Br/XGM9k+clHrX7kY7169XD+/HkkJiZix44dGDZsGI4cOYKGDXO/S+uCBQuwbds2hIeH55roTZ8+He+++678c1JSEqpWrYrt27cXabLeu3dv7N27l/EYr1jGs0bM0h7vxcBe+Gx5WJHF+2DSAJPiZaoysSlkK2KhfyqzIQ7u9lAlpht87jS+Qyu8lq95FsYZaQta4TV41/dCyEb906YNXfPRztkW6U8z9MaqU68WBizrm2u8BTMGl+pttLTHs0bMooyXlJQEd3f3IolVFlg6HwWKR05amj8TZSGeNWIyXsmOBwC92wdg7xf6Oz60lmyphgMn6gGQ5JNSklO0u3L/a3uaKmBvF4unqd65tgO9Aewt1Bj5mYc2XmHGsFY8U8bIK97TVIEura+a7dTs3p98ye81xjNZfvJRqxcf7ezsULt2bQBAixYtcPr0aSxbtgyrV682+ppFixZhwYIF+O233+Dvb/i0Qi17e3vY29ubdc5ERCXVubCLiIuON7l/69db4q/vz+NpXEqB4kmSBHMcYO/u4wZ34YbOQzoYvWGMrYMtQjYNxrmwi/LNZeJiHuPC7ki9vi5ezoWeExGVHpbORwHmpERUPF2/5wSlUkCTJclt0v/+mT2FUyqFwb7G2kviGCVxztp2ouLOTAfnmo9Go9G5Hk5On332GT799FMcOHAALVsW3SmNRESlgfa6iKbwrueF5wY2RYWa5Qsc74UxrVGrXY0Cv17L1dsFXnUqoPXQFrneKMbWwRath7ZAt+md0XpoC3jVKi8ncFqSBJSvnvu12YiobGM+SkRlRU2fVKjVusmSEPqX5larJYN9jbWXxDFK4py17UTFnVWLj9OnT8fRo0dx8+ZNREZGYvr06QgPD8drrz07jS8kJATTp0+X+y9cuBAzZ87E+vXr4efnh4cPH+Lhw4d4+vSptRaBiKhE8fT1gFDnfiSio6cjOr7dDkPWDMCWN8Nw81TBT+O4dvg60hJUBX69lq2jLdSZakRsPouD8w8hYvNZZKoy83xd8wH+8K7nDUmSoLBRQJIkeNf3NnozHiIqe5iPElFZNvbVu2haNxkKScDWRgOFJNC0TjL8c7Q1q5uM9TOj9PrmbJckUegx8jMPbbzCjGGteKaMkVe8ZnWT5RvUEBVnVj3tOjY2FiEhIXjw4AHc3d3h7++PgwcPomvXrgCA27dvQ5HthgmhoaHIyMhA//79dcaZNWsWZs+eXZRTJyIqkZoP8Efkvst4dCVW7zlJkuDTrAqCV/WDrYMtIjafRWy0adeGNCY2Og429oX/VXPjxC1cx038diIcChsFhFrg4o9RaNS9PpIeJcPT18Pg6diGTsU2dto2EZVNzEeJqCxzdNDgj7URJt+x2VDf7O3Lt6swadDVQo2Rn3lkj2eOZSnqeHmNYUo83u2aSgKrFh/XrVuX6/Ph4eE6P9+8edNykyEiKgUyVZlyoc2toisgAUkPdYtzIZsGY8/Un3AtPEbv9fU71wEARGw+iws/XCr8hASQpcoq/DjZaLKeJVixV+Oe3VxGIQFCIHLfZYRs0r8RjfZUbCIiQ5iPElFZ5+igMXjDEkNtxvpq2w+fearzfEHGyM88csYzx7IUdbzcxjA1HlFxZ/UbzhARkXlkv9szFJBPr9YeKZi9ONd3YS+9O0N71/dC46CG/41h2qUhrU5oni1n7NVYnAu7yEIjERERkQFpKoXBo+YMtQOGj97La4zIGBcs2VKtUGPkZx7Z45ljWYo6Xl5jmBKPRz5SScDiIxFRCZepykTC3QRsHbvzv9Op1f89rz1S8NGVWGwZHYYGXeuh+QB/g6cjnwu7iNircc/uUF34m1QXLUnCk7sJ1p4FERERUbGTplKg7RutcSHaFUqlgFotYfPPVfDbyjPoMqGlTvumfVUACYi8lnffnO0CDpiytF6hxsjPPLTxzLEsRR3PlDHyirf55yr4Y20EC5BU7LH4SERUgmmPdoyPeYx70v08+9+78AD3Lz6Qj4LMeZSg9m7YIqukVR6fHQHp6eth7WkQERERFTurdvniQrQrNEKCJuvZ6S0Xol0x8tNGeu0Xr7kCAATy7puzHZAgIBVqjPzMQxvPHMtS1PFMGSOveBeiXbFqly9PxaZij8VHIqISTD5SEXh2tKIJhHh2ivKeqT/BrZKrfNQj8Oz6kNojJUsaV28X3sWaiIiIyIDr95ygVAq5aAUASqUw2C7975/ZU0tjfUvTGCVxztp2ouJOkXcXIiIqrrRHKuaXEMC18Bic3XYevy0Ox8bXt2BTyFaDN6EpCRS2Cgz7dgjvYk1ERERkQE2fVKjVujmjWi0ZbBdCt/CVW9/SNEZJnLO2nai4Y/GRiKgE8/T1kG8sk51zBWdUqFnOtEEEEHct/tlNZkooTaYGYZP2IFOVae2pEBERERU7Y1+9i6Z1k6GQBGxtNFBIAs3qJmP9zCi99qZ1kuFvYt+c7ZIkCj1GfuahjWeOZSnqeKaMkVe8ZnWT5RvUEBVnPO2aiKgEaz7AH5H7LkO6Avmu1QCQlpCG1McpsLG3QVZ6lpVnWTRir8bxbtdEREREBjg6aPDH2giDd0o21A4YvmNzXmMs367CpEFXCzVGfuaRPZ45lqWo4+U1hinxeLMZKgl45CMRUQlm62CLkE2DUaFWefj4V5bbNVkaCAFkZWShTmAtNO/vDwd3ByvO1PIkJe92TURERERlT5pKgSVbquGtz+tjyZZqSFOx1EPFC498JCIq4WwdbOHh6wEv7wq4ey7HHa8F4OTphPJ+5aC0VVpngkVEqHm3ayIiIiJD0lQKtH2jNS5Eu0KpFFCrJWz+uQp+W3kGXSa01GnftK8KIAGR1/Lum7NdwAFTltYr1Bj5mYc2njmWpajjmTJGXvFya/9jbQSPiqRig8VHIqJS4mlcisH2v3+5ioupmRAw7W7YJZV3fS/5bteZqkycC7uIJ3cT5Lt582Y0REREVFat2uWLC9Gu0AhJvlvyhWhXjPy0kV77xWuuAACBvPvmbAckCEiFGiM/89DGM8eyFHU8U8bIK15u7at2+eKdIbcLsLUQmR+Lj0REpYRLBWeD7RkpGUU8k6JXoVZ5VGlUCefCLqJxUENsHbMDsVfj5OtgRu67jJBNg/UKkCxSEhERUVlw/Z4TlEohF6cAQKkUBtul//0z+x2XjfUtTWOUxDnn1U5UXPBCAEREpUR5P9Pubi0pJHjVqYCOk9vBu54XJEnK+0XFXHzMY5zfFYlDi8OxbsA3eHQlFkKI/137Usg3o8kuU5WJb4Ztw6HFR3Bux0UcWnwE3wzbxjtmExERUalT0ycVarVuzqdWSwbbhdAtfOXWtzSNURLnnFc7UXHB4iMRUSnROKihaUftCYGmfRojYGRrDPsmGJ3f6wBnI0dNliRCIyAEkBz7FJJCNwEzdDOac2EXEXs1Ls8iJREREVFJN/bVu2haNxkKScDWRgOFJNCsbjLWz4zSa29aJxn+JvbN2S5JotBj5Gce2njmWJaijmfKGHnFy61de9dsouKAp10TEZUwhk4VFhoNto7ZYdJRe0o7GzQOagjg2c1qWg9tAXWmGoeXHbP01IuG9KwQmZ2hm9E8uZvw7LTsrP/68o7ZREREVBo5Omjwx9oIrNrli+v3nFDTJxVjX71rtB2AyX2zty/frsKkQVcLNUZ+5pE9njmWpajj5TWGKfFyaycqLlh8JCIqQbSnCue8nmFCRhJib8SZNEZWehYu/XgZrYe2kAuZCfcTYedsVzquDykAOxc7ZDzNgMJGAaEWOjej0fL09YBQ512kJKL/b+/ew6OszvWP3+9MQhIg4aBEIEEQ5KAokQq0SIu0UkUtSN2lnioq2pYa1Oqm/WnFCtoW22pRqoVWVJBuhI0FtZSNReQgIEZoDAg1ASJyEIRaMySQxGRm/f5IJ2aSSeaQeeeU7+e65mqzsmbdazSHxyfvvAsAkAwy0j1+DyBpbjyUud7x9dsrfD4fzhqh7KNxXiReS7TzWloj2LzmxoF4QfMRABJIw7cKe6/YO158QqcyTzW9is+y1P6M9jr92WmfJpvlsHRi/7/09vMF2vbidlWWVcrhdMjj9tQ3NBPd5xWfKzO7o84d3Vdn9Onq9yCZoZOGaNeqPT6NXH9NSgAAgERTWSnNny/t2t9Rc5ac3eIVeZVVjqCv3vM3t+F4uHnh7qNhXiReS7TzAq0RTF5L40C8CLr5+PHHH6tnz54RDZ83b57mzZunAwcOSJIGDx6sn//857ryyiubfc7y5cv10EMP6cCBA+rfv79+/etf66qrrorovgAgXjX3VmFJTa/ik1GP887SvrdKfcc9Rrv+ukee2i8KEu//T4bGo1fFiVM6o09Xjbj5Yr+fT01P1eRF13PaNZBAqEcBILDKSmnUKKmoSDImXdOfHKhFq3pKlrRrb6acTiO329Li1T31xjPbNTZ/mIpKvhgPZW7jcaPQ81qzD29eJF5LtPOCWSNQXkvjWxYU0IBE3Aj6wJnBgwdryZIlEQ3Pzc3VY489ph07dmj79u36xje+oWuuuUa7d+/2O3/r1q264YYbdPvtt6uwsFATJ07UxIkT9f7770d0XwAQT2qqalSweIden71Oro9P+jQNpbrGYfuu7dVtwJm+TzTS4Z0fq12Hdk3WbLxGUrKkTw/8u8Up3nteXvHAZRpx88U0HoE4Rz0KAIHNn1/XePR4JGMseYylnXsztbMkUx5jqabWIY+xVFSSqSmPDlZRo/FQ5jYeDyevNfvw5kXitUQ7L5g1AuW1ND5/RW6svxSBekE3H3/5y1/qhz/8oSZNmqR//7vl/5gL1vjx43XVVVepf//+GjBggH75y1+qY8eO2rZtm9/5Tz31lMaNG6ef/OQnOu+88/Too4/qS1/6kp5++umI7AcA4o33Ho/rntiowpd3at+mUr/zLMvS4HGDmoxXuaqS4z6OYTAeo70b9+vt5wv0+ux1Kli8I6gDeQDEL+pRAAistFRyOn3HLKvu0ZDTaVR6pL2cThP23GRaIxH3HGgciBdBNx/vvPNO7dy5U59++qnOP/98/fWvf43oRtxut5YuXapTp05p5MiRfue8/fbbGjt2rM/YFVdcobfffrvZdaurq3Xy5EmfBwAkiob3eGzuakXLaam2ulYnPymXIyXoH+ttQsWJU1r/1FsqfHmn1j2xUS/espQGJJDAErUelahJAURP376S2+07ZkzdoyG321LfnNNyu62w5ybTGom450DjQLwI6cCZc845R2+++aaefvppXXvttTrvvPOUkuK7xD/+8Y+QNrBr1y6NHDlSVVVV6tixo1auXKnzzz/f79xjx47prLPO8hk766yzdOzYsWbXnz17tmbNmtVk/LrrrlNqavTeXldQUKAJEyaQR15c5sUiM9nz9ry/XT+9e1Kr1zmx919y6aSMWrgXo1sqP35Uf147UxW1p1pcz7IsGWPkcFjyeFp3f8cyHda7+p9WrRG1vNq6/7E+kN658UV1DuJE630f7Ejqr9Fkz4tFZjTzamrabhM9EetRKT5q0mT+nmgLebHIJC8x89xuqWNHqe5vHAWSJiizQ10xdPJUiizLyBhLme1rVf15mTq27+w7HsrcRuNh5bViH/V5kXgt0c4LYo2AeS2Mv1HwmdZvD+1rp6DkQ36ukRe0UOrRkE+7/uijj7RixQp16dJF11xzTZNiL1QDBw7Ue++9J5fLpZdfflm33HKLNm7c2GzBF6oHHnhA9913X/3HJ0+eVK9evbRs2TJlZWVFJCMYEyZM0GuvvUYeeXGZF4vMZM/76pir9Zu5y1u9TsHiHVr3xMaWm4+StruX6Px/T5QzLUW11bV+53TK6aTM7A7qP7qf8q69UK/9bLVKtxwIe2/v6n80XDeF/fxY5DlSHBo6fIiueOCygHMfm3F9Un+NJnteLDKjmXfy5El16tQpKlnxKNHqUSk+atJk/p5oC3mxyCQvcfO8p13Pffybuvu630TttOu5y+4KKy/cfTTMi8Zp15HOC7RGMHmRPO16wiNP83ONvKCFUo+GVKk9++yz+u///m+NHTtWu3fvVrdu3cLaYEPt2rXTueeeK0m6+OKL9e677+qpp57SH//4xyZzu3fvrk8++cRn7JNPPlH37t2bXT8tLU1paWmt3icAxMLQSUO0a9UefVJ8XC31H42pa0/WVtfqnEt669g/j6vys0pZDkvmP1c4uo645Dri0icfnJDb7VbuRTmtaj7GLUtyOB3yuD1N/pkZt1GXIK56BBC/ErEelahJAURXRoZ0773S+pUVuvfGg/XjDf9//dx0j9/xUOZ6x9dvDz8vnH00zovEa4l2XktrBJvX3DgQL4JuPo4bN04FBQV6+umnNXnyZNs25PF4VF1d7fdzI0eO1Lp16/TjH/+4fmzt2rXN3pMHABJdanqqJi+6Xi9NfVmH3/vYp5nmfQt1Y8f+eVy3L7tZC7+3RBXHK5p8vqayRpue3qrU9NZdKRRPHCkOGbdRtwFnavCVg3TyWLmyumdq9+oPdGLvv2Q5LRm3Ufagbho6aUistwsgTNSjABAc75WPu/Z31JwlZ0ftysdw88LdR8O8aFz5GOm8QGsEkxfJKx8BuwT9X55ut1s7d+5Ubm7kjmt/4IEHdOWVV+rss89WeXm5lixZog0bNuj111+XJE2ePFk5OTmaPXu2JOmee+7RpZdeqieeeEJXX321li5dqu3bt+tPf/pTxPYEAPEmNT1Vgy4boCPvHfV5+3Vzb8WuLKvU679ap1MnWr7/Y02V/7dnJ5oz+50hy2Gpc04nXT3rCrXvnFH/ubxvX6i/Pfy6yo646j+fmh69+/0CiCzqUQAIrLJSGjVKKiqSjEnX9CcHatGqnpIl7dqbKafTyO22tHh1T73xzHaNzR+mopIvxkOZ23jcKPS81uzDmxeJ1xLtvGDWCJTX0viWBQU0IBE3gm4+rl27NuLhx48f1+TJk3X06FF16tRJQ4YM0euvv65vfvObkqSDBw/K4fji5NZLLrlES5Ys0YwZM/Szn/1M/fv31yuvvKILLrgg4nsDgHjiffv18eIT9VfxdRtwpso/KVdlWZXPXIfTobIjrrp5ta07VCZuWZKMlJKWok9LP5XldOhf+z7VSz98WZMXXa/U9FTVVNXopR++XP/PzPv5G/74Hb3/1z367HCZuuR21tBJQ2hIAgmCehQAAps/v67x6PFIkiUjSzv3ZkqSjCx5autORi4qydSURwerqCRTHvPFeChzG4+Hk9eafXjzIvFaop0XzBqB8loan78il7diI27E9D13zz33XIuf37BhQ5OxSZMmadKk1p8gCwCJxPv268LlO32aZttfKtT6p97yeTu2cRt1zumkf+37NHYbtpuRZKn+cB1TW/dX3ePFJ1S4fKdG3HyxCpfv1PHiE3X3w/xPE/Z48XEtmPSiTp04Vd/E3bVqT33DEkDbQz0KINmUlkpOp7f5WMeq60mp4R17nE6j0iPt5XSa+qZVqHOTaY1E3HOgcSBeOAJPAQDEg9T0VI24+WJd8cBlGnHzxUpNT9WwG4bqrIHZslR330PLstRtwJnKHthNKf+5p6PlsFpeOFE1c1HnB+v2qqaqRp8dLpPlbPTaLUsVxytkjJGn1iNjTH3DEgAAIBn07Su53b5jxvg2syTJ7bbUN+e03G4r7LnJtEYi7jnQOBAvaD4CQALzXhF5Zr8zNPQ7QzTm7q/KeIy2/HGbaiprJEnGY5SS7lSfr5ytnLwe6nlhDzkaN+WShDFGhwuP6MVbliqre6aM27dyMx7TpBlrOS19drgsirsEAACwz9SpUl6e5HBIlmXksIzy+pdryIByOSyj1BSPHJbRRQPK9fxDu5XXaDyUuY3Hw8lrzT68eZF4LdHOC2aNQHktjXsPrgHiQfIcdQoAbVRqeqo653bWFQ9cpoLFO3Ri37+azKmtcuvAOwd11sBsnT9uoD7edTQGO42e48UndP4VA5U9sJvPfTI7duug8kYngBu3UZfczrHZKAAAQIRlZEhbttTd+3Hu41W6+7riFk9h3rKgIOgTm/3NbTg+d1l4eeHuo2FeJF5LtPMCrRFMXkvjQLyg+QgASeSzw2Xes1iaMtInxceVkuaM8q6iz3JaOvlJeZP7ZF4w/nyfQ2iM2yh7UDcNnTQk1lsGAACImIwM6d57pfUrK3wOHfF3AElGusfveChzvePrt4efF84+GudF4rVEO6+lNYLNa24ciBc0HwEgiWR1z2xyjxgfRjpe3PTKyGTjvZrRe5/Mhvwd3MNhMwAAIJlUVtZd+bhrf0fNWXJ2i1fkVVY5gr56z9/chuPh5oW7j4Z5kXgt0c4LtEYweaHuA4gFmo8AkKBqqmrqm2hlh8tUU1XT7CEsjZ/nSHHIU5s8xUfH7I4+J1i3dDWjv4YkAABAsqislEaNkoqKJGPSNf3JgVq0qqdkSbv2ZsrpNHK7LS1e3VNvPLNdY/OHqajki/FQ5jYeNwo9rzX78OZF4rVEOy+YNQLlhbqPLQsKaEAiJmg+AkACqqmq0Yu3LK1/+/C/aj/Vi7csVc8Lutc34FriSLHkqY3SZu1mSf2+2ken/12psiMudc7ppKtnXcHVjAAAoE2aP7+u8ejxSJIlI0s792ZKkowseWrrDt8rKsnUlEcHq6gkUx7zxXgocxuPh5PXmn148yLxWqKdF8wagfJC3cf8Fbm8PRsxwWnXAJCACpfv1PHiEzLGyFPrkVHdISsV/zolBfHHzNoqt6xkOfHaSPs2lWrfxlJ9+uG/tW9jqV764ct1V4ICAAC0MaWlkrPRLb4tq+7RkNNpVHqkvZxOE/bcZFojEfcczhpALNB8BIAE9OmBf0uNCgojo9OfnVa3/mcGt4gniPdoJ4hT/zr9RSPWGB0vPqHC5TtjvS0AAICo69tXcrt9x4xRk/uCu92W+uaclttthT03mdZIxD2HswYQCzQfASDB1FTVaN+mUpnGzUMjHdl5VLKknLweshr/ubORFg+mSXCW09Jnh8tivQ0AAIComzpVysuTHA7JsowcllFe/3INGVAuh2WUmuKRwzK6aEC5nn9ot/IajYcyt/F4OHmt2Yc3LxKvJdp5wawRKC/UfXgPogGijXs+AkCCKVy+UxUnKvx/0kgnSv6lcy/tG91NxRnvadcAAABtTUaGtGVL3b0f5z5epbuvK27x9OMtCwqCPinZ39yG43OXhZcX7j4a5kXitUQ7L9AaweSFug8gFmg+AkCC+exwmSynQ6aZ06otp6WOZ3ZQ9sBuOl58PKmvcGzMclqSRy2edg0AAJDsMjKke++V1q+s8DlgxN9hIxnpHr/jocz1jq/fHn5eOPtonBeJ1xLtvJbWCDYvlH0AsUDzEQASTJfczi2eZm3cRmf06aqxPxmjwuU7dWL/p9r1193yNNOsTCbpWen6yuRhGnbjUE67BgAAbVZlZd2Vj7v2d9ScJWe3eCVcZZUj6Kvm/M1tOB5uXrj7aJgXidcS7bxAawSTF+o+gFig+QgACWbopCHatWqPjhefkByqb0Q6UhwyblN/1V9qeqpG3HyxChbvaBONR0mqKquSM9VJ4xEAALRZlZXSqFFSUZFkTLqmPzlQi1b1lCxp195MOZ1Gbrelxat76o1ntmts/jAVlXwxHsrcxuNGoee1Zh/evEi8lmjnBbNGoLxQ97FlQQENSMQEzUcASDCp6amavOh6FS7fqc8OlynrrEx9+Nc1GjpiiLrkdq5vPHrVvU3bavFqSUlypFry1CT2e7Q5aAYAALR18+fXNR49HkmyZGRp595MSZKRJU9t3aGERSWZmvLoYBWVZMpjvhgPZW7j8XDyWrMPb14kXku084JZI1BeqPuYvyKXt2IjJmg+AkAC8l7V6LXyvc664oHL/M7tkttZCvAHzpT0FNVW1UZwh/ZwOB3yuJt/MRw0AwAA2rrSUsnp9DYf61h1/Sefe4E7nUalR9rL6TT1DapQ5ybTGom453DWAGLBEcvw2bNna/jw4crMzFR2drYmTpyo4uLiFp9TU1OjRx55RP369VN6erry8vK0Zs2aKO0YABJLTVWN3DVupXdOlyzJclh+5zU3Hk/atU9ttvFoOS1ZlsVBMwBCRj0KINn07Su53b5jxqjJIYRut6W+Oafldlthz02mNRJxz+GsAcRCTJuPGzduVH5+vrZt26a1a9eqpqZGl19+uU6dOtXsc2bMmKE//vGP+v3vf689e/Zo6tSp+va3v63CwsIo7hwA4l9NVY1evGWpNszdrKqTVZKR0rPS1LFbB0m+Dcea0zWx2mbQaiprpcY9UkvqcGYH5QzpqTH3fFWTF15f/5bzmqoaFSzeoddnr1PB4h2qqYr/1wgg+qhHASSbqVOlvDzJ4ZAsy8hhGeX1L9eQAeVyWEapKR45LKOLBpTr+Yd2K6/ReChzG4+Hk9eafXjzIvFaop0XzBqB8kLdh/cgGiDaYvq268Z/IV64cKGys7O1Y8cOjR492u9zFi9erAcffFBXXXWVJOlHP/qR3njjDT3xxBP685//bPueASBRFC7fqePFJ2SMkf7z1+8qV7W+ducl+sf/vqeKE83/h3U8Mo3/fCtJRjr16Smd+tcplR1xKe/bFyo1PbW+8Xq8+ET9/S53rdqjyYuu5zAaAD6oRwEkm4wMacuWuns/zn28SndfV9zi6cdbFhQEfVKyv7kNx+cuCy8v3H00zIvEa4l2XqA1gskLdR9ALMT0ysfGXC6XJKlr167NzqmurlZ6errPWEZGhjZv3tzs/JMnT/o8AKAt8B4005CR0XsrdyVc47FF/+lJVhyv0HOTXlRNVY1P49VT65ExRseLT6hw+c7Y7hVA3LOjHvU+h5oUAAC0RZbxeylJ9Hk8Hk2YMEFlZWUtFm433nijioqK9Morr6hfv35at26drrnmGrndblVXVzeZP3PmTM2aNavJ+Lhx45SaGr2rXwoKCjRixAjyyIvLvFhkkhdZm7e+o/MvGOYzVna4TP/a/6ns+iFfpsPqrFybVg8/r1u/M1RTWSvX0ZM+V0talqVOPbLUrf+ZQeXteX97k3+mdtr3wY6k/hrl51pk1dTUaM2aNXK5XMrKyopKZltgVz0qxUdNmszfE20hLxaZ5CVmntstbd4s1f2No0DSCGV1qDtY8OSpFFmWkTGWsjrU6pIhZdq6s3OT8VDmNhwPNy/cfTTMi8RriXZeoDWCyQtlH1+96DM5W7gEraDkQ36ukRe0UOrRuDntOj8/X++//36LhZ4kPfXUU/r+97+vQYMGybIs9evXT7fddpuef/55v/MfeOAB3XffffUfnzx5Ur169dKyZcuiWqxPmDBBr732GnnkxWVeLDLJi6xRo6/Ud4bfr88Ol6lLbuf6Q1devGWpPvnguC2Z7+p/NFw32bJ2uHmWw9KXhuepS25nrXtio0yD1qslS5fdeKnPKeEt+endk/SbuctbtedQPDbj+qT+GuXnWmSdPHlSnTp1ikpWW2JXPSrFR02azN8TbSEvFpnkJWbenDnSF3eUmCDpNZWf8tZEVv1BJBWnjdLaHVfF6Wyf8VDmNh4PJ681+/DmReK1RDsvmDUC5YW6j7EjinXvjQfVnAmPPM3PNfKCFko9Ghdvu542bZpWrVql9evXKze35ataunXrpldeeUWnTp3SRx99pA8++EAdO3ZU3759/c5PS0tTVlaWzwMAkkl1ZY0OFX6sdU9sVOHLO/XGExv09LhntX1JoW7443eUOzRHlhX/p1k35kxzavS0S+RMcwb9HOMx9c3X7IHdZFmWHCkOTsIGEJCd9ahETQogekpLJWej8smy6h4NOZ1GpUfay+k0Yc9NpjUScc/hrAHEQkybj8YYTZs2TStXrtSbb76pc845J+jnpqenKycnR7W1tfrLX/6ia665xsadAkD8+r/5O/R5RXX9/Q1lpMrPKrX+qbf00g9fVv/Rzf/HcDzrPbyXvvr9kRo99ZKgn5OS5tQF489XanqqJi+6Xpf996Ua+p0huuy/L9XkhddLEidgA/BBPQog2fTtW/fW64aMkRrfcM3tttQ357Tcbivsucm0RiLuOZw1gFiIafMxPz9ff/7zn7VkyRJlZmbq2LFjOnbsmCorK+vnTJ48WQ888ED9x++8845WrFih0tJSvfXWWxo3bpw8Ho9++tOfxuIlAEDMHSsta/qnzf84XnxCsqTsgd38P9mSOuV00oUTzle7Du3s22QYMrM7qmDxDpV97FLH7I5BPae22q33/7pHkpSanqoRN1+sKx64rP6t1i/esrT+CtF1T2zUi7cspQEJtHHUowCSzdSpUl6e5HBIlmXksIzy+pdryIByOSyj1BSPHJbRRQPK9fxDu5XXaDyUuY3Hw8lrzT68eZF4LdHOC2aNQHmh7sN7CjYQbTG95+O8efMkSWPGjPEZf+GFF3TrrbdKkg4ePCiH44seaVVVlWbMmKHS0lJ17NhRV111lRYvXqzOnTtHadcAEF+69+3c9E+b/2E5LZ08Vq7Ji67XK//vb9q7Yb/v52Vp+A1DNeLmi9Wl19va9MzWKOw4OKWbD2jnyt2ynJaM26OUdk6lZ6SrylXV7HMsy9Jnh8v8fq7hCdimtu6fl/cE7GDvAwkg+VCPAkg2GRnSli3S/PnS3MerdPd1xfVNp/krclV6pL365pzW1GsPKyPdoy0LCpqMhzK34fjcZeHlhbuPhnmReC3Rzgu0RjB5oe4DiIWYNh+DOWh7w4YNPh9feuml2rNnj007AoDEc+XUi9Xu52nSKanx0dbG7VGX3M5KTU/VxF9frRdvWarjxSf+09AzPvdBLN16IOp7b07H7I6qOFFR95aR/zQK3Z+7NfLO4XKmOPXBur06XHikyfOM6u756M9nh8vqXndtg0NonM03KwG0DdSjAJJRRoZ0773S+pUVPgeM+DtsJCPd43c8lLne8fXbw88LZx+N8yLxWqKd19IaweaFsg8gFuLmtGsAQHjSMlLVa2hPjR4ySm/N2yrjadhcc+hE6b9UsHiHhk4aosmLrlfh8p0+p2KnpqdKks/zYiknr4ck6dSJRt1Uq+4qziseuExDJw3Roptf0vGSEz7PzR7Q/KEyXXI7y7h9X6NxN9+sBAAASFSVlXVXPu7a31Fzlpzd4pVwlVWOoK+a8ze34Xi4eeHuo2FeJF5LtPMCrRFMXqj7AGKB5iMAJAHL4VC7jNQmDURPrUc7X9ktGWnXqj2avOh6jbj5YtVU1ahw+U69OWeTsrpnSkaqOFERo937ch0tV8VxP3sxXzQKU9NTdcviG7R9SaH2btov4zHK6JShzOyOKly+06ep6jV00hDtWrXH58rPbgPOlLvGrddnr2vSjG0t7z9jf41eAAAAu1RWSqNGSUVFkjHpmv7kQC1a1VOypF17M+V0Grndlhav7qk3ntmusfnDVFTyxXgocxuPG4We15p9ePMi8VqinRfMGoHyQt3HlgUFNCAREzQfASBJfHa4TI4UR92J1w14G5KffHBcr/y/v+nqWVfopR++XN+Eazw/liyH5b/xaEntOqT5XNWYmp6qkVNGaNiNQ/XiLUu1/60P65uK3kZrw2af9wRsb0Mwq3umdq/+QBvmbm7xeeGoqapp8hb3SK0NAADQkvnz6xqPHo8kWTKytHNvpiTJyJKntu6gwqKSTE15dLCKSjLlMV+MhzK38Xg4ea3ZhzcvEq8l2nnBrBEoL9R9zF+Ry1uxERMxPe0aABA5/t5W3NjeDfv13KQX9ckHx2WMiavGo1TXKLUcjU7utqTci3qq19Cefht3DQ+S8dR6ZIypP0imsYYnYDtTnDqx919BPS9UoewJAAAgkkpLJafTd8yy6h4NOZ1GpUfay+k0Yc9NpjUScc/hrAHEAs1HAEgSQycNUbf+ZwacV368ommDL8LCXt9qeu9JS5YGXTZAlsP/ryzvQTI+zwniIJlwnxcMO9cGAABoSd++ktvtO2ZM3aMht9tS35zTcrutsOcm0xqJuOdw1gBigeYjACSTundnNPlLp88Uh2X74TJhr28kh7PuV5O3gdmhWwddMP78Zp8S7kEydh5Aw+E2AAAgVqZOlfLyJIdDsiwjh2WU179cQwaUy2EZpaZ45LCMLhpQrucf2q28RuOhzG08Hk5ea/bhzYvEa4l2XjBrBMoLdR/eg2iAaOOejwCQJAqX79SJkn9JxueM6KaMUcfsjjp14pTPPR+99ya0laUAm5M8bo/SOrZTdcXnshyWTp2o0Es/fFmmm/+3iPs7SCZ7UPOnXrf2ecGwc20AAICWZGRIW7bU3ftx7uNVuvu64hZPP96yoCDok5L9zW04PndZeHnh7qNhXiReS7TzAq0RTF6o+wBigeYjACQJ71t9Te0X3T1HikNpHdNU5ar6TxPMow5ndlDWWR3lTHWq45nt1e+rfeVMcejkJ+X6pPiEPt55VB535AqTDmd2UI/zzlLPvO4q/6RCRa+8L09N8+tbDkvVFZ9L+uIKyuPFJ+SqOel3fuODZII9WTrc5wXDzrUBAAACyciQ7r1XWr+ywueAEX+HjWSke/yOhzLXO75+e/h54eyjcV4kXku081paI9i8UPYBxALNRwBIEs291fcrtw6TM8WpTz/6t/Zu2K+KE6dUceKUJMl1xKWaqlrd8uINSk1P1dsvFOhw4ZHI7qtXJ3378W8pNT1VNVU1+uDvJap0VTU7399bti2npZrK2maf4z1IJlThPi/WawMAALSksrLuysdd+ztqzpKzW7wSrrLKEfRVc/7mNhwPNy/cfTTMi8RriXZeoDWCyQt1H0As0HwEgCTR3Ft9h90wVKnpqSpYvEOFJ5qetny8pO4U5hE3XxzwLdHhOFz4sV68ZWn9lYCVJ5tpPLbwlmyP26PUDH5lAQAABFJZKY0aJRUVScaka/qTA7VoVU/JknbtzZTTaeR2W1q8uqfeeGa7xuYPU1HJF+OhzG08bhR6Xmv24c2LxGuJdl4wawTKC3UfWxYU0IBETPBfcgCQJAK91fezw2V+G3yWvjiF+eQn5SHd+7HvqD46UHCwxbdRS3Vvmy5cvlOffvRvWZYl0/j4vQD3gszonKFOPbPqP66pquEtzQAAAH7Mn1/XePR4JMmSkaWdezMlSUaWPLV1h/oVlWRqyqODVVSSKY/5YjyUuY3Hw8lrzT68eZF4LdHOC2aNQHmh7mP+ilzeio2YoPkIAEmkpbf6dsnt7LfBZ/TFKcxdcjtLAf4YajksyUhpHdLUe3gvfbj1QMB9WU5Lnx74t/ZuKvV/EnaAXudXJg/TyvfWS6prPL54y1KfKzx3rdqjyYuupwEJAADavNJSyen0Nh/rWHX9JzX8+6/TaVR6pL2cTlPfoAp1bjKtkYh7DmcNIBYcsd4AACA6hk4aouwB3ZqMZw/44hTmoZOGKHtg0zkNndnvDF3235eq19CeOnmsXJYz8K8S4zaq+NcpVRyvCHnfHbM7atiNQ+s/Lly+U8eLT8gYI0+tR8aY+isrAQAA2rq+fSW323fMGN9GlCS53Zb65pyW222FPTeZ1kjEPYezBhALNB8BoI1ITU/Vjc9OUr+vnaMOZ3ZQp5wsjc4fVX/YjHfO5EXX64xzuja7Tt41F2jEzRfLcjj8HnLTmGVJ2YO6qWO3DnKkhPZrJ61jO92xfLLPFY3eU719MpxfvHUcAACgLZs6VcrLkxwOybKMHJZRXv9yDRlQLodllJrikcMyumhAuZ5/aLfyGo2HMrfxeDh5rdmHNy8SryXaecGsESgv1H14D6IBoo23XQNAEvJ3T0RJeumHL+uTD47LclgyHqN/LC/Sl76b1+Ttyqc/8/9X0YzO6fVrSdIF48/XtkXv1p+e3ZAj1aHBV56ns/5zZWXh8p1B30tSkmRJ548bpPadM3yGmzvV2/vWcQAAgLYsI0PasqXu3o9zH6/S3dcVt3j68ZYFBUGflOxvbsPxucvCywt3Hw3zIvFaop0XaI1g8kLdBxALNB8BIMnUVNVo0eSXdLzkhCxZMjLa+dfdGjxukD754Lgk1d93seJ4hZ6b9KKm/nVKfQOycPlOVbr8n0j9lVuG188zHo9e+uHLfhuPkuSp8ejAto807sHLlJqe2uA07uNN3gbil5HO6NP0CszmTvVu2BQFAABoyzIypHvvldavrPA5YMTfYSMZ6R6/46HM9Y6v3x5+Xjj7aJwXidcS7byW1gg2L5R9ALEQ0+bj7NmztWLFCn3wwQfKyMjQJZdcol//+tcaOHBgi8978sknNW/ePB08eFBnnnmmvvOd72j27NlKT0+P0s4BIH5tf6lQx4tPSKo7TEaqO206NT2l/orHhsqPV6hw+U6NuPli1VTV6IN1Jf4PgLGkfx/8TAWLd2jopCFyfXxSx0tPtLiXhmt739K9Yvpftf+tDwO+jo7ZHf02FAOd6g0AoaAeBZCMKivrrnzctb+j5iw5u8Ur4SqrHEFfNedvbsPxcPPC3UfDvEi8lmjnBVojmLyWxoF4EdPm48aNG5Wfn6/hw4ertrZWP/vZz3T55Zdrz5496tChg9/nLFmyRPfff7+ef/55XXLJJSopKdGtt94qy7L0u9/9LsqvAADiz96NpX7HK/51yu9J05aj7n6J3lOkPyk+7n9hI+18dbdkpF2r9ujz0zV1Vx7WNn8Zo3dtr9T0VFVXVAd8DY4Uh279843NNhRbOtUbAEJBPQog2VRWSqNGSUVFkjHpmv7kQC1a1VOypF17M+V0Grndlhav7qk3ntmusfnDVFTyxXgocxuPG4We15p9ePMi8VqinRfMGoHyWhrfsqCABiTiRkybj2vWrPH5eOHChcrOztaOHTs0evRov8/ZunWrRo0apRtvvFGS1KdPH91www165513bN8vACQG/83Ajmd0kLvG0/TEaVN3v0TvKdLNPL1u6n+al598cFy1XWsD38PR+LsXo+Vvpu/T3B598PcSGowAbEc9CiDZzJ9f13j0eCTJkpGlnXszJUlGljy1dbVYUUmmpjw6WEUlmfKYL8ZDmdt4PJy81uzDmxeJ1xLtvGDWCJTX0vj8Fbm87RpxI65Ou3a5XJKkrl2bP2X1kksu0Y4dO1RQUCBJKi0t1erVq3XVVVf5nV9dXa2TJ0/6PAAgmfUf3c/v+ICvn6s7lk9WZnZHSXVXJdadRJ2toZOG+D1FuiVVJ6vUrf+Zsizri1OsvU+35LO2z/4u7Rtwbcvp4PRqADFhRz0qUZMCiJ7SUsnp9B2z/lObNeR0GpUeaS+n04Q9N5nWSMQ9BxoH4oVlTFC3/bedx+PRhAkTVFZWps2bN7c4d+7cuZo+fbqMMaqtrdXUqVM1b948v3NnzpypWbNmNRkfN26cUlOjd3+wgoICjRgxgjzy4jIvFpnkRdbmre/o/AuGSao7CObQP46o+tTn9Z9P69BOvb6UI8vhkPF45Pr4pGoqa5WakaJOPbNkORwqO1ymf+3/tKULH32U6bDO7Zsny1L9WplnZar8k/Imazfkb3+NWZLO7HeGOje4anLfBzuS+t8heYmfGc28mpoarVmzRi6XS1lZWVHJbAvsqkel+KhJk/l7oi3kxSKTvMTMKy2Vdu+uT5XUfGb3M6p17NO0oNZtbq7veHh54e/ji7xIvJZo5wVeI3Bec+OD+1aob05lUPurTyv5kJ9r5AUtpHrUxImpU6ea3r17m0OHDrU4b/369eass84yzz77rNm5c6dZsWKF6dWrl3nkkUf8zq+qqjIul6v+cejQISPJuFwuO15Gs8aPH08eeXGbF4tM8iJr1KVXmS1Fp+ofG94pM3OmbzI/v/41M2f6JrPhnTKfz/t7bHinzEwZNN98y3rUjE/5hblaj5jrsn9nfvbtlWZi+mxztR7xeZxlDTI/v/61gOv629Pj96w3j/94fd3///F6c9uAefW537IeNVPOm99kz8n+75C8xM+MZp7L5YpJPZPs7KpHjYmPmjSZvyfaQl4sMslLzLzTp40ZOtQYh8MYy/qWcVgec1F/l8kb4DIOy2NSU9zGYXnMlwa6zKdvrDNDB/qOhzK38Xg4ea3ZhzcvEq8l2nnBrBEor6Xx02+tNebd10N68HONvFCEUo/G9J6PXtOmTdOqVau0adMm5ebmtjj3oYce0s0336w77rhDknThhRfq1KlT+sEPfqAHH3xQjkZX2KSlpSktLbi/RgBAsgjnQJaWTpHu2ruz1j/1lu/9IP3ez9E/72E2x4tP1B1S4zbKHthNkxddr9T0VA27YSinVwOIKTvrUYmaFED0ZGRIW7bU3ftx7uNVuvu64hZPYd6yoCDoE5v9zW04PndZeHnh7qNhXiReS7TzAq0RTF5L40C8iGnz0Riju+66SytXrtSGDRt0zjnnBHzO6dOnmxR0zv/c0MLExzvIASAu1FTVhNzQa65pOeyGodqzptinediuQ1qT+zk2x3uYjTGm/nTs48UnVLh8p0bcfLFPbjj7BoBwUY8CSEYZGdK990rrV1bUHzpSWRVXRz4AaENi2nzMz8/XkiVL9OqrryozM1PHjh2TJHXq1EkZGRmSpMmTJysnJ0ezZ8+WJI0fP16/+93vNHToUH35y1/Wvn379NBDD2n8+PH1RR8AtHX+rjTctWpP/ZWGofJ3VeS/39kS9Frew2y8jUdJspxWk0NlWto3ANiBehRAW1BZ5dCoO0aoqCRTTqeR221p8eqeeuOZ7RqbP8xnfNGqnpIl7dobeG7jcaN0TX9yYKvWCGUf3rxIvJZo5wWzRqC8lsa3LCjg6kfEjZg2H7035R4zZozP+AsvvKBbb71VknTw4EGfvyzPmDFDlmVpxowZOnLkiLp166bx48frl7/8ZbS2DQBxL9CVhuFofFXky+86gr5KsUtuZxm379VAxt30bdst7RsA7EA9CqAtmL8iV0UlmfIYS57auqOUi0oyNeXRwU3Gd+7NlCQZBZ7beFyyZGS1ao1Q9uHNi8RriXZeMGsEymtpfP6K3PqrXoFYi/nbrgPZsGGDz8cpKSl6+OGH9fDDD9u0KwBIfMFeadgaxuMJ+urKoZOGaNeqPb73fBzUrcnbtqOxbwBoiHoUQFtQeqS9nE5T35ySJKfT+B23/vN/G/54bG5uMq2RiHsONA7EC276AABJKNgrDVvD9fHJ+qsUPbUeGWOavUrR+7bty/77Ug39zhBd9t+XavLCpk3KaOwbAACgrembc1put+Uz5nZbfseN8W18tTQ3mdZIxD0HGgfiBc1HAEhCQycNUfbAbrIsS44UhyzL8nulYWvUVNbKcvoWOi1dpeh92/YVD1xWf8hMLPYNAADQ1ky99rDyBpTLYRmlpnjksIwuGlCu5x/a3WQ8r3+5hgQ5t/G4ZZlWrxHKPrx5kXgt0c4LZo1AeS2Ne0/NBuJBTN92DQCwh78DYiJ9anRqRkrEr1KMxr4BAADamox0j7YsKND8FbkqPdJefXNOa+q1h5sdlxT03Ibjc5dV6e7rilu1Rij7aJgXidcS7bxAawST19I4EC9oPgJAkmp8QEykdeqZpezUbgHv4xgqu/cNAADQFmWke/weQNLceChzvePrt1f4fD6cNULZR+O8SLyWaOe1tEawec2NA/GC5iMAICyWw8FVigAAAAmissrh9+o4f+OS/6v3Aq2xa39HzVlydqvWCGUfDfMi8VqinRdojWDyWhoH4gXNRwBA2LhKEQAAIP5VVjk06o4RKirJlNNp5HZbWry6p954ZrvG5g/zGV+0qqdkSbv2Bp7beNwoXdOfHNiqNULZhzcvEq8l2nnBrBEor6XxLQsKaEAibtB8BAAAAAAgic1fkauikkx5jCVPbd2BgUUlmZry6OAm4zv3ZkqSjALPbTwuWTKyWrVGKPvw5kXitUQ7L5g1AuW1ND5/RS5vxUbc4LRrAAAAAACSWOmR9nI6fQ8KdDqN33HLqnsEMzeZ1kjEPQcaB+IFzUcAAAAAAJJY35zTcrt9O1put+V33Ji6RzBzk2mNRNxzoHEgXtB8BAAAAAAgiU299rDyBpTLYRmlpnjksIwuGlCu5x/a3WQ8r3+5hgQ5t/G4ZZlWrxHKPrx5kXgt0c4LZo1AeS2New+uAeIB93wEAAAAACCJZaR7tGVBgd8Tkf2NS/5PbA60xtxlVbr7uuJWrRHKPhrmReK1RDsv0BrB5LU0DsQLmo8AAAAAACS5jHSP3wNImhsPZa53fP32Cp/Ph7NGKPtonBeJ1xLtvJbWCDavuXEgXtB8BAAAAACgjaqscgR99Z6/uQ3Hd+3vqDlLzm7VGqHso2FeuGvEMi/QGsHkcYUjEgHNRwAAAAAA2qDKKodG3TFCRSWZcjqN3G5Li1b1lCxp194vxhav7qk3ntmusfnDfOY2HjdK1/QnB7ZqjVD24c1rzRqxygtmjUB5i1f31JYFBTQgEfdoPgIAAAAA0AbNX5GropJMeYwlT23dick792ZKkoy+GCsqydSURwc3mdt4XLJkZLVqjVD24c1rzRqxygtmjUB5RSWZmr8il7dcI+5x2jUAAAAAAG1Q6ZH2cjqNz5hl1T0acjqN37nNjSfiGom4Z+84EO9i2nycPXu2hg8frszMTGVnZ2vixIkqLi4O+LyysjLl5+erR48eSktL04ABA7R69eoo7BgAAADJhHoUQFvWN+e03G7fTpcxdY+G3G7L79zmxhNxjUTcs3cciHcxbT5u3LhR+fn52rZtm9auXauamhpdfvnlOnXqVLPP+fzzz/XNb35TBw4c0Msvv6zi4mI9++yzysnJieLOAQAAkAyoRwG0ZVOvPay8AeVyWEapKR45LKO8/uUa0mjsogHlev6h3U3mNh63LNPqNULZhzevNWvEKi+YNQLlXTSgvP6AGiCexfSej2vWrPH5eOHChcrOztaOHTs0evRov895/vnn9e9//1tbt25VamqqJKlPnz52bxUAAABJiHoUQFuWke7RlgUFQZ/Y7G9uw/G5y6p093XFrVojlH00zIvEa4l2XqA1gsnjsBkkgrg6cMblckmSunbt2uyc1157TSNHjlR+fr5effVVdevWTTfeeKP+3//7f3I6nU3mV1dXq7q6uv7jkydPRn7jAAAASAp21KMSNSmA+JWR7vF7YIm/sebmesfXb6/w+Xw4a4Syj8Z5kXgt0c5raY1g84B4ZxnT+G4CseHxeDRhwgSVlZVp8+bNzc4bNGiQDhw4oJtuukl33nmn9u3bpzvvvFN33323Hn744SbzZ86cqVmzZjUZHzduXP1fqqOhoKBAI0aMII+8uMyLRSZ5iZ0Xi0zyyIv3zGjm1dTUaM2aNXK5XMrKyopKZltgVz0qxUdNmszfE20hLxaZ5CV2niQVbNmsEYMHtjjH7ZE+OpqhU1VOdUh3q3ePSklNx5wO/3Mbjpce2aW+ORe2ao1Q9tEwL9w1YpkXaI3GeXYrKPmQn2vkBS2ketTEialTp5revXubQ4cOtTivf//+plevXqa2trZ+7IknnjDdu3f3O7+qqsq4XK76x6FDh4wk43K5Irr/QMaPH08eeXGbF4tM8hI7LxaZ5JEX75nRzHO5XDGpZ5KdXfWoMfFRkybz90RbyItFJnmJnWeMMeO/9hVj3n292cfpt9aaoQNdxmF5TGqK2zgsj8nr7zJ5A3zHhg50mU/fWNdkbuNxy/pWq9cIZR/evNasEau8YNZomHf6rbUt/ruMxIOfa+SFIpR6NC7edj1t2jStWrVKmzZtUm5ubotze/ToodTUVJ+3tJx33nk6duyYPv/8c7Vr185nflpamtLS0mzZNwAAAJKDnfWoRE0KID7NX5GropJMeYwlT23dSco792ZKkoy+GCsqydSURwc3mdt4XLJkZLVqjVD24c1rzRqxygtmjYZ581fk8pZrJKyYnnZtjNG0adO0cuVKvfnmmzrnnHMCPmfUqFHat2+fPJ4vbqpaUlKiHj16+C30AAAAgOZQjwJoy0qPtJfT6XsnNsuqezTkdBq/c5sbT8Q1EmHPQKKKafMxPz9ff/7zn7VkyRJlZmbq2LFjOnbsmCorK+vnTJ48WQ888ED9xz/60Y/073//W/fcc49KSkr0t7/9Tb/61a+Un58fi5cAAACABEY9CqAt65tzWm63b6fLmLpHQ2635Xduc+OJuEYi7BlIVDFtPs6bN08ul0tjxoxRjx496h/Lli2rn3Pw4EEdPXq0/uNevXrp9ddf17vvvqshQ4bo7rvv1j333KP7778/Fi8BAAAACYx6FEBbNvXaw8obUC6HZZSa4pHDMsrrX64hjcYuGlCu5x/a3WRu43HLMq1eI5R9ePNas0as8oJZo2He1GsPx/rLBQhbTO/5aII4aHvDhg1NxkaOHKlt27bZsCMAAAC0JdSjANqyjHSPtiwo0PwVuSo90l59c07XN7kajzU3t+H43GVVuvu64latEco+GuZF4rVEOy/QGo3zgEQVFwfOAAAAAACA6MtI9zQ5yKSyKqZvkmzzvP9O1m+v4JAZJAWajwAAAAAAQFJd43HUHSNUVJIpp9PI7ba0eHVPvfHMdo3NH9biuFG6pj85UItW9ZQsadfe0NfwjgezhjevNWvEKq+l8S0LCrjSEUmF5iMAAAAAAJBU93bfopJMeYwlT23dYShFJZma8ujggOOSJSNLO/dmSpKMQl/DOx7MGt681qwRq7yWxuevyOWKRyQVrqUGAAAAAACSpNIj7eV0+t4P1+k0IY1bVt0jkdaIlz17x4FkQvMRAAAAAABIkvrmnJbb7dtBc7utkMaNqXsk0hrxsmfvOJBMaD4CAAAAAABJ0tRrDytvQLkcllFqikcOy+iiAeV6/qHdAccty8hhGeX1L9eQMNfwjgezhjevNWvEKq+lce+J10Cy4J6PAAAAAABAUt1Jy1sWFGj+ilyVHmmvvjmnNfXaw0GNz11WpbuvK65vnoWzRsPxQGs0zAt3jVjmtTQOJBOajwAAAAAAoF5GusfvgSeBxtdvr/D5fDhrNBZKXjhrxDqvuXEgmdB8BAAAAAAAAVVWOfxepecd37W/o+YsObvFKwADrRHMVYT+8sJdI5Z5XOGItoLmIwAAAAAAaFFllUOj7hihopJMOZ1Gbrelxat76o1ntmts/jAVlWTKKF3TnxyoRat6Spa0a2/zcwONB7OGN681a8Qqb/HqntqyoIAGJNoEmo8AAAAAAKBF81fkqqgkUx5jyVNbd0JzUUmmpjw6uH5csmRkaefeTEmSUfNzA40Hs4Y3rzVrxCqvqCRT81fk8pZrtAmcdg0AAAAAAFpUeqS9nE7jM+Z0Gr/jllX3CGZuvKwRqz0DbQHNRwAAAAAA0KK+Oafldvt21txuy++4MXWPYObGyxqx2jPQFtB8BAAAAAAALZp67WHlDSiXwzJKTfHIYRldNKBczz+0u37csowcllFe/3INCTA30Hgwa3jzWrNGrPIuGlBef0ANkOy45yMAAAAAAGhRRrpHWxYU+D2x2Ts+d1mV7r6uuMVTnwOtEczJ0f7ywl0jlnkcNoO2guYjAAAAAAAIKCPd4/eAFO/4+u0VPp9vaW6w46HkhbNGrPOAtiCmb7uePXu2hg8frszMTGVnZ2vixIkqLi5u8TkLFy6UZVk+j/T09CjtGAAAAMmEehQA7FFZ5dCcJWfrrt8O0pwlZ6uyyhHyeKC5u/Z3bPUa0coD2rKYXvm4ceNG5efna/jw4aqtrdXPfvYzXX755dqzZ486dOjQ7POysrJ8ikKr8XFSAAAAQBCoRwEg8iqrHBp1xwgVlWTK6TRyuy0tXt1TbzyzXWPzhwU1vmhVT8mSdu1tfq5RuqY/ObBVa0Qjb8uCAt5ijTYtps3HNWvW+Hy8cOFCZWdna8eOHRo9enSzz7MsS927d7d7ewAAAEhy1KMAEHnzV+SqqCRTHmPJU1v3x5mikkxNeXRw0OM792ZKkoyanytZMrJatUY08uavyOUt12jT4ur6X5fLJUnq2rVri/MqKirUu3dv9erVS9dcc412797d7Nzq6mqdPHnS5wEAAAD4Y0c9KlGTAmhbSo+0l9NpfMacThPSuGXVPaK1ht15QFtmGWNM4Gn283g8mjBhgsrKyrR58+Zm57399tvau3evhgwZIpfLpccff1ybNm3S7t27lZub22T+zJkzNWvWrCbj48aNU2pqakRfQ0sKCgo0YsQI8siLy7xYZJKX2HmxyCSPvHjPjGZeTU2N1qxZI5fLpaysrKhktgV21aNSfNSkyfw90RbyYpFJXmLnxSKzYMtmjRg8UKVHMrS7tGOTz3c/o1rHPk0Letwf37kFkka0cg378wb3rVDfnMqg5jZUUPIhX6PkxW1eSPWoiRNTp041vXv3NocOHQrpeZ9//rnp16+fmTFjht/PV1VVGZfLVf84dOiQkWRcLlckth208ePHk0de3ObFIpO8xM6LRSZ55MV7ZjTzXC5XTOqZZGdXPWpMfNSkyfw90RbyYpFJXmLnxSJz/Ne+Ysy7r5vTb601Qwe6jMPymNQUt3FYHvOlgS7z6Rvrgh6/qL/L5A1oea5lfavVa0Qj7/Rba4159/WQH3yNkhfPeaHUozG956PXtGnTtGrVKm3atKnZvxY3JzU1VUOHDtW+ffv8fj4tLU1pacH9NQIAAABtk531qERNCqBtyUj3aMuCAs1fkavSI+3VN+e0pl57OORxSS3OnbusSndfV9yqNaKVB7RlMW0+GmN01113aeXKldqwYYPOOeeckNdwu93atWuXrrrqKht2CAAAgGRGPQoA9shI9/g9ZCXU8Zbmrt9e4fP5cNaIVh7QlsW0+Zifn68lS5bo1VdfVWZmpo4dOyZJ6tSpkzIyMiRJkydPVk5OjmbPni1JeuSRR/SVr3xF5557rsrKyvTb3/5WH330ke64446YvQ4AAAAkJupRAIgPlVWOoK8i9M7dtb+j5iw5u8l4KGu0Jg9AcGLafJw3b54kacyYMT7jL7zwgm699VZJ0sGDB+VwfHEo92effabvf//7OnbsmLp06aKLL75YW7du1fnnnx+tbQMAACBJUI8CQOxVVjk06o4RKirJlNNp5HZbWrSqp2RJu/Z+MbZ4dU+98cx2jc0fpqKSTBmla/qTA5uMh7JGuHlbFhTQgASCFPO3XQeyYcMGn4/nzJmjOXPm2LQjAAAAtCXUowAQe/NX5KqoJFMeY8lTa0mSdu7NlCQZfTFWVJKpKY8Orp8rWTKymoyHska4efNX5PL2aiBIjsBTAAAAAAAA7FF6pL2cTt8/BllW3aMhp9P4ndvceChrhJMHIDg0HwEAAAAAQMz0zTktt9u382dM3aMht9vyO7e58VDWCCcPQHBoPgIAAAAAgJiZeu1h5Q0ol8MySk3xyGEZ5fUv15BGYxcNKNfzD+2un2tZxu94KGuEm+c9oAZAYDG95yMAAAAAAGjbMtI92rKgIOjTp71z5y6r0t3XFTcZD2WN1uQBCA7NRwAAAAAAEFMZ6R6/B7j4G/POXb+9wufz4azRmjwAweFt1wAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsEVMm4+zZ8/W8OHDlZmZqezsbE2cOFHFxcVBP3/p0qWyLEsTJ060b5MAAABIWtSjAAAA9opp83Hjxo3Kz8/Xtm3btHbtWtXU1Ojyyy/XqVOnAj73wIEDmj59ur72ta9FYacAAABIRtSjAAAA9kqJZfiaNWt8Pl64cKGys7O1Y8cOjR49utnnud1u3XTTTZo1a5beeustlZWV2bxTAAAAJCPqUQAAAHvF1T0fXS6XJKlr164tznvkkUeUnZ2t22+/PeCa1dXVOnnypM8DAAAA8MeOelSiJgUAAG2XZYwxsd6EJHk8Hk2YMEFlZWXavHlzs/M2b96s66+/Xu+9957OPPNM3XrrrSorK9Mrr7zid/7MmTM1a9asJuPjxo1TampqpLYfUEFBgUaMGEEeeXGZF4tM8hI7LxaZ5JEX75nRzKupqdGaNWvkcrmUlZUVlcy2wK56VIqPmjSZvyfaQl4sMslL7LxYZJJHXrxnkhc5IdWjJk5MnTrV9O7d2xw6dKjZOSdPnjR9+vQxq1evrh+75ZZbzDXXXNPsc6qqqozL5ap/HDp0yEgyLpcrktsPaPz48eSRF7d5scgkL7HzYpFJHnnxnhnNPJfLFZN6JtnZVY8aEx81aTJ/T7SFvFhkkpfYebHIJI+8eM8kL3JCqUdjes9Hr2nTpmnVqlXatGmTcnNzm523f/9+HThwQOPHj68f83g8kqSUlBQVFxerX79+Ps9JS0tTWlqaPRsHAABAUrCzHpWoSQEAQNsV0+ajMUZ33XWXVq5cqQ0bNuicc85pcf6gQYO0a9cun7EZM2aovLxcTz31lHr16mXndgEAAJBkqEcBAADsFdPmY35+vpYsWaJXX31VmZmZOnbsmCSpU6dOysjIkCRNnjxZOTk5mj17ttLT03XBBRf4rNG5c2dJajIOAAAABEI9CgAAYK+YNh/nzZsnSRozZozP+AsvvKBbb71VknTw4EE5HHF1KDcAAACSBPUoAACAvWL+tutANmzY0OLnFy5cGJnNAAAAoM2hHgUAALAXf8IFAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvEtPk4e/ZsDR8+XJmZmcrOztbEiRNVXFzc4nNWrFihYcOGqXPnzurQoYMuuugiLV68OEo7BgAAQDKhHgUAALBXTJuPGzduVH5+vrZt26a1a9eqpqZGl19+uU6dOtXsc7p27aoHH3xQb7/9tnbu3KnbbrtNt912m15//fUo7hwAAADJgHoUAADAXimxDF+zZo3PxwsXLlR2drZ27Nih0aNH+33OmDFjfD6+5557tGjRIm3evFlXXHGFXVsFAABAEqIeBQAAsFdc3fPR5XJJqvtrcjCMMVq3bp2Ki4ubLQ6rq6t18uRJnwcAAADgjx31qERNCgAA2i7LGGNivQlJ8ng8mjBhgsrKyrR58+YW57pcLuXk5Ki6ulpOp1N/+MMfNGXKFL9zZ86cqVmzZjUZHzdunFJTUyOy92AUFBRoxIgR5JEXl3mxyCQvsfNikUkeefGeGc28mpoarVmzRi6XS1lZWVHJbAvsqkel+KhJk/l7oi3kxSKTvMTOi0UmeeTFeyZ5kRNSPWrixNSpU03v3r3NoUOHAs51u91m7969prCw0Dz++OOmU6dOZv369X7nVlVVGZfLVf84dOiQkWRcLleEX0HLxo8fTx55cZsXi0zyEjsvFpnkkRfvmdHMc7lcMalnkp1d9agx8VGTJvP3RFvIi0UmeYmdF4tM8siL90zyIieUejSm93z0mjZtmlatWqVNmzYpNzc34HyHw6Fzzz1XknTRRRfpn//8p2bPnt3k/juSlJaWprS0tEhvGQAAAEnEznpUoiYFAABtV0ybj8YY3XXXXVq5cqU2bNigc845J6x1PB6PqqurI7w7AAAAJDvqUQAAAHvFtPmYn5+vJUuW6NVXX1VmZqaOHTsmSerUqZMyMjIkSZMnT1ZOTo5mz54tSZo9e7aGDRumfv36qbq6WqtXr9bixYs1b968mL0OAAAAJCbqUQAAAHvFtPnoLdAavz3lhRde0K233ipJOnjwoByOLw7lPnXqlO68804dPnxYGRkZGjRokP785z/ruuuui9a2AQAAkCSoRwEAAOwV87ddB7Jhwwafj3/xi1/oF7/4hU07AgAAQFtCPQoAAGAvR+ApAAAAAAAAABA6mo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABbxLT5OHv2bA0fPlyZmZnKzs7WxIkTVVxc3OJzdu/erf/6r/9Snz59ZFmWnnzyyehsFgAAAEmHehQAAMBeMW0+bty4Ufn5+dq2bZvWrl2rmpoaXX755Tp16lSzzzl9+rT69u2rxx57TN27d4/ibgEAAJBsqEcBAADslRLL8DVr1vh8vHDhQmVnZ2vHjh0aPXq03+cMHz5cw4cPlyTdf//9tu8RAAAAyYt6FAAAwF4xbT425nK5JEldu3aN2JrV1dWqrq6u//jkyZMRWxsAAADJxY56VKImBQAAbZdljDGx3oQkeTweTZgwQWVlZdq8eXNQz+nTp49+/OMf68c//nGzc2bOnKlZs2Y1GR83bpxSU1PD3W7ICgoKNGLECPLIi8u8WGSSl9h5scgkj7x4z4xmXk1NjdasWSOXy6WsrKyoZLYFdtWjUnzUpMn8PdEW8mKRSV5i58Uikzzy4j2TvMgJqR41cWLq1Kmmd+/e5tChQ0E/p3fv3mbOnDktzqmqqjIul6v+cejQISPJuFyuVu44NOPHjyePvLjNi0UmeYmdF4tM8siL98xo5rlcrpjUM8nOrnrUmPioSZP5e6It5MUik7zEzotFJnnkxXsmeZETSj0aF2+7njZtmlatWqVNmzYpNzc3omunpaUpLS0tomsCAAAgudhZj0rUpAAAoO2KafPRGKO77rpLK1eu1IYNG3TOOefEcjsAAABoY6hHAQAA7BXT5mN+fr6WLFmiV199VZmZmTp27JgkqVOnTsrIyJAkTZ48WTk5OZo9e7Yk6fPPP9eePXvq//+RI0f03nvvqWPHjjr33HNj80IAAACQkKhHAQAA7OWIZfi8efPkcrk0ZswY9ejRo/6xbNmy+jkHDx7U0aNH6z/++OOPNXToUA0dOlRHjx7V448/rqFDh+qOO+6IxUsAAABAAqMeBQAAsFfM33YdyIYNG3w+7tOnT1DPAwAAAAKhHgUAALBXTK98BAAAAAAAAJC8aD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsEdPm4+zZszV8+HBlZmYqOztbEydOVHFxccDnLV++XIMGDVJ6erouvPBCrV69Ogq7BQAAQLKhHgUAALBXTJuPGzduVH5+vrZt26a1a9eqpqZGl19+uU6dOtXsc7Zu3aobbrhBt99+uwoLCzVx4kRNnDhR77//fhR3DgAAgGRAPQoAAGCvlFiGr1mzxufjhQsXKjs7Wzt27NDo0aP9Puepp57SuHHj9JOf/ESS9Oijj2rt2rV6+umnNX/+fNv3DAAAgORBPQoAAGCvuLrno8vlkiR17dq12Tlvv/22xo4d6zN2xRVX6O233/Y7v7q6WidPnvR5AAAAAP7YUY9K1KQAAKDtsowxJtabkCSPx6MJEyaorKxMmzdvbnZeu3bttGjRIt1www31Y3/4wx80a9YsffLJJ03mz5w5U7NmzWoyPm7cOKWmpkZm80EoKCjQiBEjyCMvLvNikUleYufFIpM88uI9M5p5NTU1WrNmjVwul7KysqKS2RbYVY9K8VGTJvP3RFvIi0UmeYmdF4tM8siL90zyIieketTEialTp5revXubQ4cOtTgvNTXVLFmyxGfsmWeeMdnZ2X7nV1VVGZfLVf84dOiQkWRcLlfE9h6M8ePHk0de3ObFIpO8xM6LRSZ55MV7ZjTzXC5XTOqZZGdXPWpMfNSkyfw90RbyYpFJXmLnxSKTPPLiPZO8yAmlHo3pPR+9pk2bplWrVmnTpk3Kzc1tcW737t2b/EX5k08+Uffu3f3OT0tLU1paWsT2CgAAgORjZz0qUZMCAIC2K6b3fDTGaNq0aVq5cqXefPNNnXPOOQGfM3LkSK1bt85nbO3atRo5cqRd2wQAAECSoh4FAACwV0yvfMzPz9eSJUv06quvKjMzU8eOHZMkderUSRkZGZKkyZMnKycnR7Nnz5Yk3XPPPbr00kv1xBNP6Oqrr9bSpUu1fft2/elPf4rZ6wAAAEBioh4FAACwV0yvfJw3b55cLpfGjBmjHj161D+WLVtWP+fgwYM6evRo/ceXXHKJlixZoj/96U/Ky8vTyy+/rFdeeUUXXHBBLF4CAAAAEhj1KAAAgL1ieuWjCeKg7Q0bNjQZmzRpkiZNmmTDjgAAANCWUI8CAADYK6ZXPgIAAAAAAABIXjQfAQAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtohp83HTpk0aP368evbsKcuy9MorrwR8zjPPPKPzzjtPGRkZGjhwoF588UX7NwoAAICkRD0KAABgr5RYhp86dUp5eXmaMmWKrr322oDz582bpwceeEDPPvushg8froKCAn3/+99Xly5dNH78+CjsGAAAAMmEehQAAMBeMW0+XnnllbryyiuDnr948WL98Ic/1HXXXSdJ6tu3r9599139+te/ptgDAABAyKhHAQAA7BXT5mOoqqurlZ6e7jOWkZGhgoIC1dTUKDU11e9zqqur6z8+efKk7fsEAABAcgqnHvU+j5oUAAC0RZYxxsR6E5JkWZZWrlypiRMnNjvnZz/7mV544QWtWrVKX/rSl7Rjxw5961vf0ieffKKPP/5YPXr0aPKcmTNnatasWU3Gx40b12xxaIeCggKNGDGCPPLiMi8WmeQldl4sMskjL94zo5lXU1OjNWvWyOVyKSsrKyqZbYFd9agUHzVpMn9PtIW8WGSSl9h5scgkj7x4zyQvckKqR02ckGRWrlzZ4pzTp0+b2267zaSkpBin02l69uxpfvrTnxpJ5tixY36fU1VVZVwuV/3j0KFDRpJxuVw2vIrmjR8/njzy4jYvFpnkJXZeLDLJIy/eM6OZ53K5YlLPJDu76lFj4qMmTebvibaQF4tM8hI7LxaZ5JEX75nkRU4o9WhMT7sOVUZGhp5//nmdPn1aBw4c0MGDB9WnTx9lZmaqW7dufp+TlpamrKwsnwcAAAAQjnDqUYmaFAAAtF0Jdc9Hr9TUVOXm5kqSli5dqm9961tyOBKqjwoAAIAERj0KAAAQnJg2HysqKrRv3776jz/88EO999576tq1q84++2w98MADOnLkiF588UVJUklJiQoKCvTlL39Zn332mX73u9/p/fff16JFi2L1EgAAAJDAqEcBAADsFdPm4/bt2/X1r3+9/uP77rtPknTLLbdo4cKFOnr0qA4ePFj/ebfbrSeeeELFxcVKTU3V17/+dW3dulV9+vSJ9tYBAACQBKhHAQAA7BXT5uOYMWNkWjhse+HChT4fn3feeSosLLR5VwAAAGgrqEcBAADsxY1pAAAAAAAAANiC5iMAAAAAAAAAW9B8BAAAAAAAAGALmo8AAAAAAAAAbEHzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2oPkIAAAAAAAAwBY0HwEAAAAAAADYguYjAAAAAAAAAFvQfAQAAAAAAABgC5qPAAAAAAAAAGxB8xEAAAAAAACALWg+AgAAAAAAALAFzUcAAAAAAAAAtqD5CAAAAAAAAMAWMW0+btq0SePHj1fPnj1lWZZeeeWVFuffeuutsiyryWPw4MHR2TAAAACSDjUpAACAfWLafDx16pTy8vL0zDPPBDX/qaee0tGjR+sfhw4dUteuXTVp0iSbdwoAAIBkRU0KAABgn5RYhl955ZW68sorg57fqVMnderUqf7jV155RZ999pluu+02O7YHAACANoCaFAAAwD4xbT621nPPPaexY8eqd+/ezc6prq5WdXV1/ccul0uSdPLkSdv311BNTU1UM8kjL94zyUvsvFhkkkdevGdGM8+bY4yJSh5alig1aTJ/T7SFvFhkkpfYebHIJI+8eM8kL3JCqkdNnJBkVq5cGfT8I0eOGKfTaZYtW9bivIcffthI4sGDBw8ePHjwSLrHoUOHWlmBoTGJmpQHDx48ePDgwSPYRzD1aMJe+bho0SJ17txZEydObHHeAw88oPvuu6/+47KyMvXu3VsHDx70ebuMnU6ePKlevXrp0KFDysrKIo+8uMqLRSZ5iZ0Xi0zyyIv3zGjnGWNUXl6unj172p6FliVKTZrs3xPJnheLTPISOy8WmeSRF++Z5EVWKPVoQjYfjTF6/vnndfPNN6tdu3Ytzk1LS1NaWlqT8U6dOkXtG8orKysrqpnkkRfvmeQldl4sMskjL94zo5kXrT+ionmJWJMm8/dEW8iLRSZ5iZ0Xi0zyyIv3TPIiJ9h6NKanXYdr48aN2rdvn26//fZYbwUAAABtFDUpAABAYDG98rGiokL79u2r//jDDz/Ue++9p65du+rss8/WAw88oCNHjujFF1/0ed5zzz2nL3/5y7rggguivWUAAAAkGWpSAAAA+8S0+bh9+3Z9/etfr//Yex+cW265RQsXLtTRo0d18OBBn+e4XC795S9/0VNPPRVWZlpamh5++GG/b3uxS7QzySMv3jPJS+y8WGSSR168Z8biNSJy2kJNSl5i58Uik7zEzotFJnnkxXsmebFj/edUPwAAAAAAAACIqIS85yMAAAAAAACA+EfzEQAAAAAAAIAtaD4CAAAAAAAAsAXNRwAAAAAAAAC2SMrm4zPPPKM+ffooPT1dX/7yl1VQUNDs3DFjxsiyrCaPq6++2pa8mpoaPfLII+rXr5/S09OVl5enNWvWBJ21adMmjR8/Xj179pRlWXrllVdanH/06FHdeOONGjBggBwOh3784x8HnRVu5ubNmzVq1CidccYZysjI0KBBgzRnzhzb8jZs2OD33+GxY8dsyZOk6upqPfjgg+rdu7fS0tLUp08fPf/887bl/c///I/y8vLUvn179ejRQ1OmTNGnn34aVN7s2bM1fPhwZWZmKjs7WxMnTlRxcXHA5y1fvlyDBg1Senq6LrzwQq1evdq2vGeffVZf+9rX1KVLF3Xp0kVjx45t8fsoEq/Pa+nSpbIsSxMnTrQ1r6ysTPn5+erRo4fS0tI0YMCAoP6Zhpv35JNPauDAgcrIyFCvXr107733qqqqKqjXOG/ePA0ZMkRZWVnKysrSyJEj9X//938tPifcr5dw8nbv3q3/+q//Up8+fWRZlp588smgs8LJW7FihYYNG6bOnTurQ4cOuuiii7R48WLb8hYuXNjk51l6erpteZH4PRhqZmt/Fzb02GOPybKsFn+/tfZrJpzM1n7dIDlQk36htTUp9WhT1KORzUukerQ1mYlSk1KP+opEXZHsNWks61Ep+jVpotWjSdd8XLZsme677z49/PDD+sc//qG8vDxdccUVOn78uN/5K1as0NGjR+sf77//vpxOpyZNmmRL3owZM/THP/5Rv//977Vnzx5NnTpV3/72t1VYWBhU3qlTp5SXl6dnnnkmqPnV1dXq1q2bZsyYoby8vKCe09rMDh06aNq0adq0aZP++c9/asaMGZoxY4b+9Kc/2ZLnVVxc7PPvMjs727a87373u1q3bp2ee+45FRcX66WXXtLAgQNtyduyZYsmT56s22+/Xbt379by5ctVUFCg73//+0E9f+PGjcrPz9e2bdu0du1a1dTU6PLLL9epU6eafc7WrVt1ww036Pbbb1dhYaEmTpyoiRMn6v3337clb8OGDbrhhhu0fv16vf322+rVq5cuv/xyHTlyxJY8rwMHDmj69On62te+FnBua/I+//xzffOb39SBAwf08ssvq7i4WM8++6xycnJsyVuyZInuv/9+Pfzww/rnP/+p5557TsuWLdPPfvazoF5jbm6uHnvsMe3YsUPbt2/XN77xDV1zzTXavXu33/mt+XoJJ+/06dPq27evHnvsMXXv3j2ojNbkde3aVQ8++KDefvtt7dy5U7fddptuu+02vf7667bkSVJWVpbPz7OPPvrIttfX2t+D4WS29neh17vvvqs//vGPGjJkSIvzWvs1E05ma79ukPioSX21tialHm2KejSyeYlUj4abmUg1KfWor0jUFclek8aqHpWiX5MmZD1qksyIESNMfn5+/cdut9v07NnTzJ49O6jnz5kzx2RmZpqKigpb8nr06GGefvppn7Frr73W3HTTTUHlNSTJrFy5Muj5l156qbnnnntCzmlNpte3v/1t873vfc+WvPXr1xtJ5rPPPgt5/XDy/u///s906tTJfPrpp1HJ++1vf2v69u3rMzZ37lyTk5MTVubx48eNJLNx48Zm53z3u981V199tc/Yl7/8ZfPDH/7QlrzGamtrTWZmplm0aJFtebW1teaSSy4xCxYsMLfccou55pprQs4KNm/evHmmb9++5vPPPw8rI9S8/Px8841vfMNn7L777jOjRo0KO7dLly5mwYIFfj8Xya+XYPIa6t27t5kzZ07YOaHmeQ0dOtTMmDHDlrwXXnjBdOrUKey1Q81rLNTfg+FkRuJ3YXl5uenfv79Zu3ZtSL/fWvM1E26mV2u/bpBYqEmb19qalHqUetSOvMYSqR4NNjPRa1LqUV+RqCuSvSa1ux41Jvo1aaLWo0l15ePnn3+uHTt2aOzYsfVjDodDY8eO1dtvvx3UGs8995yuv/56dejQwZa86urqJpcqZ2RkaPPmzUHtLxEVFhZq69atuvTSS23Nueiii9SjRw9985vf1JYtW2zLee211zRs2DD95je/UU5OjgYMGKDp06ersrLSlryRI0fq0KFDWr16tYwx+uSTT/Tyyy/rqquuCms9l8slqe6vIM15++23fb6uJemKK64I+vso1LzGTp8+rZqampCeE2reI488ouzsbN1+++0hZ4Sa99prr2nkyJHKz8/XWWedpQsuuEC/+tWv5Ha7bcm75JJLtGPHjvq3CpWWlmr16tVhfc243W4tXbpUp06d0siRI/3OieTXSzB5kRRqnjFG69atU3FxsUaPHm1bXkVFhXr37q1evXoF/It0JPIaCuX3YLiZkfhdmJ+fr6uvvrrJ156dws1s7dcNEg81afyhHm0d6lF78iJVjwabmag1KfWor0jUFclek0arHpWiX5MmbD0a9XanjY4cOWIkma1bt/qM/+QnPzEjRowI+Px33nnHSDLvvPOObXk33HCDOf/8801JSYlxu93m73//u8nIyDDt2rULKrMhxfmVjzk5OaZdu3bG4XCYRx55xLa8Dz74wMyfP99s377dbNmyxdx2220mJSXF7Nixw5a8K664wqSlpZmrr77avPPOO+Zvf/ub6d27t7n11lttyTPGmP/93/81HTt2NCkpKUaSGT9+fFh/sXS73ebqq68O+NfG1NRUs2TJEp+xZ555xmRnZ9uS19iPfvQj07dvX1NZWWlL3ltvvWVycnLMiRMnjDEm7L80B5s3cOBAk5aWZqZMmWK2b99uli5darp27WpmzpxpS54xxjz11FMmNTW1/mtm6tSpIWXt3LnTdOjQwTidTtOpUyfzt7/9rdm5kfh6CSWvoXD/YhhqXllZmenQoYNJSUkxaWlp5rnnnrMtb+vWrWbRokWmsLDQbNiwwXzrW98yWVlZ5tChQ7bkNRTq78FwM1v7u/Cll14yF1xwQf3PiGj8lTmczNZ+3SBxUZO2LJpXPlKPRibPGOrRSOdFqh4NJTPRalLqUV+RqCuSvSaNZj1qTPRr0kSuR2k+NvCDH/zAXHjhhbbmHT9+3FxzzTXG4XAYp9NpBgwYYO68806Tnp4edK5XvDcfS0tLzc6dO82f/vQn07Vr1ya/DCKd19Do0aNte1vNN7/5TZOenm7Kysrqx/7yl78Yy7LM6dOnI563e/du06NHD/Ob3/zGFBUVmTVr1pgLL7zQTJkyJaQsY4yZOnWq6d27d8BfGJEq9oLNa2j27NmmS5cupqioKKSsYPNOnjxp+vTpY1avXl0/Fm6xF+zr69+/v+nVq5epra2tH3viiSdM9+7dbclbv369Oeuss8yzzz5rdu7caVasWGF69eoV0n90VVdXm71795rt27eb+++/35x55plm9+7dfudG4usllLyGwi32Qs1zu91m7969prCw0Dz++OOmU6dOZv369bblNfT555+bfv36hfT2iHDzQv09GG5ma34XHjx40GRnZ/v8jLC70As3s7VfN0hc1KQti2bzkXo0MnnUo5HNi2Q9GmymMYlXk1KP+opEXZHsNWm06lFjol+TJno9mlTNx+rqauN0Opv88pw8ebKZMGFCi8+tqKgwWVlZ5sknn4xKXmVlpTl8+LDxeDzmpz/9qTn//PODzvWK9+ZjQ48++qgZMGBA1PKmT59uvvKVr9iSN3nyZNOvXz+fsT179hhJpqSkJOJ53/ve98x3vvMdn7G33nrLSDIff/xx0Fn5+fkmNzfXlJaWBpzbq1evJj8If/7zn5shQ4bYkuf129/+1nTq1Mm8++67QT8n1LzCwkIjyTidzvqHZVnGsizjdDrNvn37IppnTN1/fFx22WU+Y6tXrzaSTHV1dcTzvvrVr5rp06f7jC1evNhkZGQYt9sdVF5jl112mfnBD37g93OR+HoJJa+hSN1jJ9g8r9tvv91cfvnlUcv7zne+Y66//npb88L5PdjazHB+F65cubLJ97Ck+u/hhv9B5U84XzOtzfRq7dcNEgc1actidc9H6tHw86hHI5sXqXo0lExjEr8mpR71FYm6ItlrUrvqUWOiX5Mmej2aVPd8bNeunS6++GKtW7eufszj8WjdunUB7yuwfPlyVVdX63vf+15U8tLT05WTk6Pa2lr95S9/0TXXXBN0biLyeDyqrq6OWt57772nHj162LL2qFGj9PHHH6uioqJ+rKSkRA6HQ7m5uRHPO336tBwO329Vp9Mpqe6+DYEYYzRt2jStXLlSb775ps4555yAzxk5cqTP17UkrV27Nuh7kISaJ0m/+c1v9Oijj2rNmjUaNmxYUM8JJ2/QoEHatWuX3nvvvfrHhAkT9PWvf13vvfeeevXqFfHXN2rUKO3bt08ej6d+rKSkRD169FC7du0intfarxl/Wvoebs3XSzh5dgg1r7X7C+X5brdbu3btatXPtGDywvk92NrMcH4XXnbZZU2+h4cNG6abbrpJ7733Xv3XeiRFKjPaX9eIHWrS+EQ9Gj7q0cjmtbYeDSdTSvyalHq0dfNbu0Yi1qR21aNS9GvShK9Ho97utNnSpUtNWlqaWbhwodmzZ4/5wQ9+YDp37myOHTtmjDHm5ptvNvfff3+T5331q1811113ne1527ZtM3/5y1/M/v37zaZNm8w3vvENc8455wR9Ml55ebkpLCys/2vZ7373O1NYWGg++ugjY4wx999/v7n55pt9nuOdf/HFF5sbb7zRFBYWBn1pdTiZTz/9tHnttddMSUmJKSkpMQsWLDCZmZnmwQcftCVvzpw55pVXXjF79+41u3btMvfcc49xOBzmjTfesCWvvLzc5Obmmu985ztm9+7dZuPGjaZ///7mjjvusCXvhRdeMCkpKeYPf/iD2b9/v9m8ebMZNmxYUG/bMqbufjWdOnUyGzZsMEePHq1/NHxLTuOv0y1btpiUlBTz+OOPm3/+85/m4YcfNqmpqWbXrl225D322GOmXbt25uWXX/Z5Tnl5uS15jYXyNpdw8g4ePGgyMzPNtGnTTHFxsVm1apXJzs42v/jFL2zJe/jhh01mZqZ56aWXTGlpqfn73/9u+vXrZ7773e8G9Rrvv/9+s3HjRvPhhx+anTt3mvvvv99YlmX+/ve/+81rzddLOHnV1dX130M9evQw06dPN4WFhWbv3r225P3qV78yf//7383+/fvNnj17zOOPP25SUlLMs88+a0verFmzzOuvv272799vduzYYa6//nqTnp4e9M/tUPO8wv09GE5ma38XNtb4KqpIf82Ek9narxskPmrSyNak1KPUo9Sjrc9MpJqUejTydUWy16SxrkeNiX5Nmkj1aNI1H40x5ve//705++yzTbt27cyIESPMtm3b6j936aWXmltuucVn/gcffGAk1X9R2pm3YcMGc95555m0tDRzxhlnmJtvvtkcOXIk6Kz169cbSU0e3oxbbrnFXHrppT7P8Te/d+/etmXOnTvXDB482LRv395kZWWZoUOHmj/84Q9BX1ofat6vf/1r069fP5Oenm66du1qxowZY958803bXp8xxvzzn/80Y8eONRkZGSY3N9fcd999Qd9fJ5y8uXPnmvPPP99kZGSYHj16mJtuuskcPnw4qDx/WZLMCy+8UD/H3/fF//7v/5oBAwaYdu3amcGDBwd9c+Bw8nr37u33OQ8//LBtr6+hUIq9cPO2bt1qvvzlL5u0tDTTt29f88tf/jKoS+PDyaupqTEzZ86s/77o1auXufPOO4P+RTplyhTTu3dv065dO9OtWzdz2WWX+fx8jOTXSzh5H374od9/Jo2/byKV9+CDD5pzzz3XpKenmy5dupiRI0eapUuX2vb6fvzjH9f/TjnrrLPMVVddZf7xj3/YlmdM638PhprZ2t+FjTUuvCL9NRNOZmu/bpAcqEkv9XlOa2pS6lHqUerRyGQmSk1KPRr5uiLZa9JY16PejGjWpIlUj1rGhPkePAAAAAAAAABoQVLd8xEAAAAAAABA/KD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAIgAt9utSy65RNdee63PuMvlUq9evfTggw/GaGcAAABoC6hHAcQryxhjYr0JAEgGJSUluuiii/Tss8/qpptukiRNnjxZRUVFevfdd9WuXbsY7xAAAADJjHoUQDyi+QgAETR37lzNnDlTu3fvVkFBgSZNmqR3331XeXl5sd4aAAAA2gDqUQDxhuYjAESQMUbf+MY35HQ6tWvXLt11112aMWNGrLcFAACANoJ6FEC8ofkIABH2wQcf6LzzztOFF16of/zjH0pJSYn1lgAAANCGUI8CiCccOAMAEfb888+rffv2+vDDD3X48OFYbwcAAABtDPUogHjClY8AEEFbt27VpZdeqr///e/6xS9+IUl64403ZFlWjHcGAACAtoB6FEC84cpHAIiQ06dP69Zbb9WPfvQjff3rX9dzzz2ngoICzZ8/P9ZbAwAAQBtAPQogHnHlIwBEyD333KPVq1erqKhI7du3lyT98Y9/1PTp07Vr1y716dMnthsEAABAUqMeBRCPaD4CQARs3LhRl112mTZs2KCvfvWrPp+74oorVFtby9tdAAAAYBvqUQDxiuYjAAAAAAAAAFtwz0cAAAAAAAAAtqD5CAAAAAAAAMAWNB8BAAAAAAAA2ILmIwAAAAAAAABb0HwEAAAAAAAAYAuajwAAAAAAAABsQfMRAAAAAAAAgC1oPgIAAAAAAACwBc1HAAAAAAAAALag+QgAAAAAAADAFjQfAQAAAAAAANiC5iMAAAAAAAAAW/x/gcjCVjIyEskAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvsAAALFCAYAAADtKF8RAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfDBfCzFGkKKigKKGiwxYrYG9iiotjQaNQIGNTYezdBY69R7BVs0dh7RFQwYuwVu4kdCyiKSpMy3x98My/LFnaBpXl+z8Oj7JR7Z2d253Bn5l6ZIAgCiIiIiIiIiIiIiIiIiCjf0cvtChARERERERERERERERFR5vBiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxERERERUR6UnJyMpUuXol69ejA3N4dMJoNMJkPnzp0BACEhIdJrISEh2Vq2LtdNRERElJ8xJxFRXsSLfUR5VNrgoOnPyJEjc7valIHmzZtL++u7777TeDlXV1etj4cPHz4orOfDhw8ICgrCrFmz0KlTJ9jY2Ejzu7q6Zt+GEhER5QOq8paBgQGKFy+OcuXKoVmzZhg1ahT27NmDL1++5Gj9fvjhB4wcORKXLl3Cp0+fcrTs/ILZioiIKPd9+fIF27dvR9++fVG5cmVYWlrC0NAQVlZWcHZ2xqBBg3DixAmkpKTkdlUpG23atEnKPfr6+njx4oVGywUEBGidw5YsWaKwnqSkJFy7dg1r1qyBj48PatSoAQMDA2mZJ0+eZO8GE+VxBrldASKir8XTp09x+vRp6feTJ0/i5cuXsLGxybE6ODk5MewQERFlIDk5Ge/fv8f79+/x5MkTnDlzBkuWLEGJEiUwfPhwTJw4EQYGuv1T6p9//sGuXbsAAO3bt8fIkSNhbW0NmUwGc3NznZatiWnTpmH69OkAAEEQcqUOzFZERES5b+/evRgzZozS8+G7d+/w7t07XL16FatXr0bFihWxePFitG/fPucrmoEnT56gXLlyAAB/f394eXnlboXygU2bNkn/T0lJwdatWzFx4sQcK3/WrFmYNm1ajpVHlNfxYh9RPjBo0CAMHjw4w/msrKxyoDaUWVu2bIEgCDAyMkJycjKSkpKwdetWjB8/Xqv1hIWFaTSfsobAtI1x1tbWqFu3Lg4fPqxV+URERAVR+rz1+fNnvH//Hjdv3sTJkydx4sQJREZG4pdffsGhQ4dw+PBhlChRQmf1OXHiBABAX18ff/zxh9Lzuqurq84utOly3dmF2YqIiCh3zZgxA7/++qv0e+vWrdGxY0d8++23KFq0KKKionD//n0cOnQIQUFBePDgAaZMmZInL/ZpIz/kJF17/vy51IVp4cKF8fnzZ2zZskXri30zZ85Ep06dMpyvdOnSCq+l3QfGxsaoVasWIiMj8d9//2lVB6KCghf7iPKBkiVLolq1arldDcqiLVu2AAA6dOiAuLg4HD16FFu2bNG6QSorx8LQoUNRrlw51KtXD2XKlAEAyGSyTK+PiIiooFCVt9q1a4cJEybgzp076NOnD65du4aLFy+iS5cuOHXqFAoVKqST+oSHhwNIvYCUF57ky4uYrYiIiHKPv7+/dKGvZMmS2LlzJ1xcXBTma9WqFYYMGYJbt25h1KhRiIyMzOmqkg6IN10ZGhpi4cKF+Pnnn3Hnzh1cvnwZderU0Xg9tra2mc5iDRs2xOrVq1GvXj1Ur14dBgYG8PLy4sU++mrxYh8RUQ44f/48Hjx4AADo3bs34uPjcfToUdy6dQtXr15F7dq1c6QeY8eOzZFyiIiICppvv/0WZ8+eRePGjXHt2jWcPXsWK1aswKhRo3RSXkJCAgDA0NBQJ+vP75itiIiIck94eDiGDh0KADAzM8Pp06dRuXJltctUq1YNgYGB+OOPP3KiiqRj4k1X7dq1g6enJyZMmIDo6Ghs3rxZq4t9WdGmTZscKYcov9DL7QoQkW4IgoA2bdpAJpPBwMAA586dUzmvn5+fNHitr6+v0nk+ffqERYsWoUWLFihVqhQKFSoEc3NzODk5YdiwYTh79qzK9ScnJ2PTpk3o0KEDbGxsYGRkBEtLSzRp0gSLFy9GXFyc2m25cuUKfvrpJ1SsWBFmZmYwNjZGmTJl4OzsjCFDhuDgwYNKu0+Ij4+Hn58fXF1dUaJECRgaGqJ48eKoVKkS2rVrh8WLF+fYGCubN28GABQrVgzt27dH586dUaRIEblpRERElLeZmJhgy5Yt0pNbCxcuRGJiosr5X79+jSlTpqBOnTooXrw4jIyMUKZMGXz//fdSN53piZlMHAPl6dOn0mvijygkJER6TexGSZWjR4+iT58+KF++vJSnypUrBw8PDwQEBCA2NlZuflXrDggIgEwmk8brS1vntD+6zljMVkRERLnn999/l7LDb7/9luGFPpGenh769OmjcnpoaCh+/PFHODg4wNjYGEWLFoWTkxOmTp2a4ROBr169wsqVK9GtWzdUqFABZmZmMDIygq2tLTp16oQ///wTKSkpSpeVyWTSeH0A4O3trZBt0o4Nl1EG8/Lygkwmg4ODAwDgw4cP+PXXX1G1alWYmZmhaNGiaNasGbZt26Z2m0SHDh1C27ZtUaJECZiamqJixYoYN24cXr9+DQBwcHCATCbLsXEGL168iHv37gEA+vTpA2NjY3Tr1g0AsGPHDrX5mIh0SCCiPCk4OFgAIAAQfH19M7WOly9fCpaWlgIAoXz58sLHjx8V5rl165ZgbGwsABDq168vJCYmKswTFBQkWFlZSfVR9aPM06dPhZo1a6pdztHRUbh//77S5RcvXizo6ellWPanT58Utv3bb7/NcLkxY8Zk4p3VTkJCglC8eHEBgDBgwADpdU9PTwGAULJkSaXve1ouLi5q3+esENfr4uKS7esmIiLKyzKbt7777jtpubNnzyqdZ+vWrYKZmZnaHPLTTz8pZICMskvaLJC2/sHBwUrr8fbtW6Fly5YZrtPf31/le5N23f7+/hrV8fHjxxq/n9pitiIiIso9KSkpUhuRmZmZ0rYmbSUnJwtDhgxRmy0sLCyE48ePK10+KSlJo7aj1q1bK7QfCYJm+SttVswog4mZxN7eXrh3757g4OCgcr1DhgxR+94MHjxY5bKlSpUSrl69Ktjb2wsABE9PT23e9kwT95WFhYUQFxcnCIL8e3LgwAG1y6fNk+kzaFaJ772u8yhRXsQn+4gKsNKlS2P9+vUAgEePHmH48OFy0xMSEtCrVy/Ex8fDzMwMW7duhYGBfO++wcHBaNeuHd6+fQt9fX14eXlh3759uHLlCs6ePYt169aha9euSruYevfuHZo0aYIbN27AyMgIQ4cOxa5du3Dp0iUEBwdj0qRJMDU1xb///ot27dohOjpabvmbN29i7NixSElJQbly5bBo0SKcPHkS165dw99//41169ahV69eMDMzUyh72LBhuHPnDoDUu4z27t2L8+fP49KlSzh48CB+/fVX1KxZM0vvr6YOHz6MqKgoqS4i8f8RERE4duxYjtSFiIiIsq5Vq1bS/8+cOaMwfefOnfjxxx8RExOD8uXLY/HixTh27BiuXLmCPXv2wM3NDQCwYcMGhfHlwsLCEBYWhk6dOgEAbGxspNfEH03FxsaiefPmOHnyJADA2dkZa9aswdmzZ3H58mXs27cPo0aNgo2Njcbr7Ny5M8LCwjBo0CCFOqf9sbW11Xid2mK2IiIiyj23b9/G27dvAQBNmzaVnqzPiokTJ2LFihUAgHLlymH16tW4ePEigoODMWrUKBgaGiI6OhodOnTAjRs3FJYX/r+3pxYtWmDBggVS7goJCcHGjRvRsGFDAEBQUBCGDBmisHxYWBgCAwOl32fOnKmQbQYPHqz1dsXGxsLd3R3v3r3D1KlTERISgsuXL2PdunWws7MDAKxYsUKu7LTmz5+PlStXAgDKlCmDFStW4MKFC/j7778xZcoUREdHo1u3bgo9NOhSYmIiduzYAQDw8PCAsbExAMDFxUUav5i9LBDlDo7ZR5QPRERE4NatWxnOV6lSJYWLbp07d4aPjw/Wr1+PgIAAtG/fXnq0fvLkybh58yYAYMmSJXB0dJRbNj4+Hn369EFSUhJMTU1x5MgRuLq6ys3TqFEj+Pj44Pnz5wr1GT58OJ4/fw57e3sEBwfLdYkAAK6urujevTuaNm2KR48eYf78+Zg1a5Y0fffu3UhJSYGZmRnOnTsHa2trueWbNm0KHx8fREdHw9TUVK7eBw8eBACMGTMGCxcuVKibu7s7pk+fLjUU6ZIYchwcHNCkSRPp9RYtWsDGxgYvX77E5s2b0aFDB43Wp8mxUKxYMZ02shEREX3N0o4HJ44bJ3r79i0GDBgAQRDQr18/rFmzRu5mqtq1a6Nr166YMmUKZs+ejaVLl2LgwIGoVKkSgNTxbACgaNGiAFLH7BNf09bUqVOli4NDhgzBsmXL5LoBdXZ2RufOnTF37ly8f/9eo3UWLVoURYsWRcmSJaXXMlu/zGK2IiIiyj1pL7Y5OztneX1hYWFYtGgRgNRMcebMGSkHAaltR9999x3at2+PL1++YMCAAbhw4YLcOvT19XH//n2Fdi0g9SKUt7c3fH198dtvv2HLli2YOnUqKlSoIM1TrVo1FC5cWPrd1tY2W/JNZGQkvnz5gnPnzqFq1arS687OznB1dUX16tURHx+PlStXKow/9/r1a2moHUdHR5w7dw5WVlbS9KZNm8LNzQ3NmzfHly9fslxXTR05cgTv3r0DIH/TlUwmQ69evTBv3jwcPnwY79+/R7FixTJcX3h4uEZZLKfzJlF+xCf7iPKBVatWoXr16hn+hIeHK11+yZIlUogZOHAgwsPDceLECfz+++8A/ndBML3Nmzfj5cuXAIDZs2crXOhLS7x7R/TkyRP8+eefAIDly5crXOgTOTk5SXdVBQQEyE0T+x6vWLGiwoW+tCwsLKCn97+vs6ioKKl/8GbNmqlcDgCKFy+udnpWvXv3DkePHgUA9OrVS66BTU9PD7169QKQ2v/6hw8fNFqnJsfClClTsn1biIiIKJWlpaX0//QXyVatWoXo6GjY2tpi5cqVCr0miKZPnw5bW1ukpKTo5O7nDx8+YM2aNQBSG5SWLl0ql0PSKlSokNqslZcwWxEREeUu8UIPALmbfzJr1apV0lh669evl7vQJ2rbti369esHIHW8uEuXLslNl8lkSi/0pfXrr7/CysoKgiBIN4jnhBkzZshd6BM5Ojqic+fOAFLHKkxv06ZNiI+PB5Darpf2Qp+oUaNGSp9U1CUxt9rZ2Sm0E/74448AUnsSE9sEMzJ16lSNshgRZYwX+4i+Amm76IyKikKvXr3g5eUFQRBQunRprFu3Tulyhw8flpbv37+/VmUeOXIEycnJMDU1Rbt27dTOK16Qe/nyJZ49eya9Xrp0aQDAnTt3cPHiRY3LtrS0RKFChQAAW7ZsQVJSklZ1z07bt2+XLjwqG4RafC0+Ph67du3K0boRERFR5qS98/vTp09y08TGow4dOsDIyEjlOgwMDKQupc6dO5ftdTx16pTUpdPw4cOhr6+f7WXkBmYrIiKi3JU2+ygbVkVbJ06cAABUrVoV9evXVzlf2nYpcRlVUlJS8PLlS9y/fx+3bt3CrVu3cPfuXanrTGVdgeqC+LSbKuKTkVFRUQo3KYnbaGVlpbZdrW/fvlmvqIaioqJw5MgRAIo3XQGp+7BWrVoAUtvjiChn8WIfUT7g6+sLQRAy/HFwcFC5jnr16kmP///9998IDw+HTCaDv7+/0ruDAODatWsAUsNH2m4yNXH58mUAqf2TGxgYQCaTqfxJ28WS+DQfAPzwww8wNDREQkICGjduDHd3d6xevRq3bt2S+mNXxsjICD169ACQ2hWoo6Mjxo8fj6NHj2p8h3d22bRpE4DULruqVKmiML1mzZpSVwSa3tWvybGQ/ilJIiIiyj5pG7nMzc2l/ycnJ+P69esAgDVr1qjNPzKZDLt37wYgn3+yi5jjgNRungoKZisiIqLclXaMvpiYmCytKyEhAQ8fPgQAtRf6gNSeocSha5R1+ygIArZu3YrmzZujcOHCsLW1ReXKleWeDhNzmjjmoK5ZWVnJ9QiRXtreptLfQCZuY61ateR6s0qvevXq0g3vurZ9+3apy1BlN12lff2ff/7Bf//9l+E6/f39NcpiRJQxXuwj+opMmjQJ5cuXl3738fFR6BM8LTH8iE/YaSMiIkL7CgJygwpXrlwZ27dvR7FixZCUlITDhw9j0KBBqF69OkqWLIkff/wRZ86cUbqe5cuXw93dHQDw9OlTLFiwAO3bt4elpSXq1q2LBQsWIDo6OlN11NTdu3eli56qQhDwv24Ozp49i8ePH+u0TkRERJR1aRuI0jbSREVFZapHgbT5J7ukrWNmslxexGxFRESU+9JevHrz5k2W1pW2O/SMugQ1NDSUyo6KipKbFh8fj/bt2+PHH39ESEgI4uLi1K4ro+nZJaMb59NexEtOTpabJr43JUqUULsOfX19nQ9RIxJvpKpRo4bKrjV79eol9Sihi67qiUg15QNIEFGBdOTIETx69Ej6PTQ0FHFxcTAxMcn2ssSQYmVlheDgYI2XSz+2n4eHB1q1aoU///wTgYGBOHPmDCIjI/H27Vts3boVW7duhaenJzZu3CgXkszNzXHw4EFcvHgRO3fuREhICK5fv47k5GRcvnwZly9fxsKFC7F//36pC63sljbUjB49GqNHj1Y7vyAI2Lx5s/QEJhEREeVNaZ+aq1SpkvT/tI00Pj4+GDFihEbry6m7sfM7ZisiIqLcV7NmTen/V69ezbb1qhpbWBOzZs3CX3/9BQBwcXHBkCFDULt2bZQqVQomJiZSe1GzZs1w5swZPimWCffv35eG2Ll586ZG+2vr1q2YNm1alvYtEWmOF/uIvhJv3ryBj48PgNQLYR8/fsTdu3cxbtw4LF++XOkyVlZWePHiBV69eqV1eeLdVp8+fUKVKlWyNE6MhYUFBgwYgAEDBgBIvav7wIEDWLZsGV6+fIlNmzbByclJaYNavXr1UK9ePakuISEhCAgIwN69exEREQEPDw/8999/2X7BMyUlBdu2bdN6uS1btrBBioiIKI8LCgqS/t+kSRPp/2nvqhYEQepOMjek7ab91atXCjdU5TfMVkRERHlD1apVYWVlhbdv3+LMmTP4+PGjXLfm2ihWrJj0/4yeEkxKSsK7d+8AKGau9evXA0jtuvzUqVMqu71M/0RgXlasWDG8fv0akZGRaudLTk6We0JSVzLzlN6jR48QGhpaoLqUJ8rLeLGP6CvRr18/REZGQk9PD4cPH8bSpUuxZ88erFixAh06dEDbtm0VlqlduzZevHiBy5cvIzY2Vqtx+5ycnPDHH38gISEBly9fzrDvdW1UqVIFVapUQe/evVGlShXExMRg586dGd49X6RIEbi7u8Pd3R0jRoyAn58fXr16hdDQULRu3Trb6gcAwcHBeP78OQBg2LBhaNSokdr5L1y4gCVLluC///7D2bNn0bhx42ytDxEREWWPW7du4eTJkwCAMmXKoE6dOtK0QoUKoWrVqrh9+zbOnj2bW1UEkJrjRH///Xe2X+zL6Tu0ma2IiIjyBplMBk9PTyxatAgxMTFYv359hk/bq2JkZIQKFSrg4cOHuHDhgtp5r127hsTERACQu6EqKipKGv+4e/fuKi/0ff78Gffv31e5/rz29FnVqlXx+vVrXL9+HSkpKSq3KywsDAkJCTqtizgeIpDaheekSZMynL9fv36Ij4/H5s2bebGPKIfwYh/RV2DlypU4evQoAGDChAlo2rQpqlativPnzyM8PBze3t4ICwuTuwMcANzd3XHw4EHExsZi7dq1GDlypMZluru7Y/z48RAEAUuWLMH27duzc5MApDawVaxYEdeuXdN6cOWWLVvCz88PgG4GZhbveNLX18fUqVMz7Hu+VatWWL58OZKSkrB582Y2SBEREeVBcXFx6Nu3r9T109ixY2FgIP8nVceOHXH79m3cu3cPgYGBasdH1qXmzZvDzMwMMTExWLZsGfr06ZOlnhbSMzY2lv6fkJAAIyOjbFu3MsxWREREeceoUaOwatUqxMbG4tdff4WbmxsqV66c4XIpKSnYvn07evfuLb3WqlUrPHz4ELdv38bFixel3pnSE5/eE5cRpR0vOSYmRmXZ69evVzu2cvpsk9tatmyJkydP4u3bt/jrr7/Qvn17pfPlxLh4ISEhePbsGQCgb9++6NmzZ4bL/Pnnnzhw4AB27dqFZcuWyb2/RKQbym8JIKIC4/79+xg3bhwAwNnZGdOnTweQ2uVBQEAAZDIZXr9+LXWRmVafPn1ga2sLAJgyZQpOnz6tspwXL17I/V6pUiV0794dALBjxw4sXrxYbT0fP36scEFw//79+PDhg8plnj9/jnv37gGQH+vv0aNHausKAMePH5f+n/5O95CQEMhkMshkMnh5ealdjzIxMTHYu3cvgNQuJDJqjAJSu9pycXEBAOzcuTNPBEsiIiL6nzt37qBJkybSeH0uLi4YNGiQwnwjRoxA4cKFAQDe3t64ffu22vUeOXIEN2/ezPb6Fi1aFAMHDgQAXLlyBSNHjlQ5Pk1iYiIiIiK0Wn/p0qWl///3339q52W2IiIiKlhsbW2lIWFiYmLg4uKSYTvMnTt30LZtWyxYsEDu9UGDBklPrQ0YMAAfP35UWPb48ePYsGEDgNThWurWrStNK1GiBIoWLQoA2L59u9Jz/qVLl/DLL7+orZ+lpaU0jnJG2SYneHp6SjdTjRw5UumN6ufOncOKFSsyXJeDg4OUxTIj7QVFDw8PjZbp1q0bACA6OhoHDhzIVLlEpB0+2UeUD0RERODWrVsZzmdiYoJvvvlG+j0xMRG9e/dGbGwsTExMsHXrVhgaGkrTW7VqhREjRmDJkiXYt28fNm7ciH79+knTjY2NsWXLFnz33XeIjY1Fq1at8OOPP6Jz586ws7NDQkIC7t27h6NHj+LgwYMKgWrVqlW4fPkyHj16hDFjxuDAgQPo27cvqlatCiMjI7x79w43btzAsWPHcOrUKXTp0gU//PCDtPySJUvQu3dvtG/fHi1atECVKlVgYWGB9+/f4/Lly1i2bBni4uIAAD///LO03LNnz9C8eXN8++236NKlC+rUqSNdtHz+/Dn+/PNP7Ny5EwBQq1atbO1iFAD27t2Lz58/A9A8BInznjx5Eh8+fMDBgweli6XpaXIsAIC9vT2KFCki99r169dx/fp1pfO/fv0aAQEBcq9169ZNarAkIiIqyNLnrZiYGLx//x43b97EyZMnERQUJF0sa9CgAXbv3i2Xq0TW1tbYtGkTunXrhlevXqFOnTrw8vJCu3btYGdnh8TERLx48QIXL17E7t278ejRIxw6dAg1atTI9m2aMWMGgoKCEBYWhuXLl+PcuXMYOHAgqlevjkKFCuHFixc4c+YMtm/fjpkzZ2p1IS5tN5qjRo3ClClTULp0aakRycHBQeGpx8xitiIiIsp7vL298eLFC/z666+IiIiAq6srvvvuO3Tq1AlVqlRB0aJFERUVhQcPHuDIkSM4duwYkpOTUbNmTbn1VK9eHWPGjMGCBQtw48YN1K5dGxMmTICTkxNiYmJw6NAh+Pn5ITk5GYUKFcKaNWvkltfT00Pv3r2xYsUK3Lx5E02aNMHo0aNRoUIFREdH4+jRo1i5ciUKFy4MGxsbPHjwQOn2GBgYoG7dujh79iw2btwIJycn1KpVS8p7xYsXlxsrUNdsbGzg6+uLyZMn499//4WzszMmTpyIOnXqICEhAYGBgVi0aBFsbGwQExODyMhInXRFGhsbiz179gBIfYjAwcFBo+Xc3d1RqFAhfPnyBZs3b0aPHj2UzhceHq5RFjM3N0fZsmXlXvv8+TN2794t99q///4r/X/37t1yvZjVqlULtWrV0qj+RPmSQER5UnBwsABAq5+aNWvKrWPSpEnStBUrVigtJz4+XqhWrZoAQChcuLDw33//Kcxz7NgxoVixYhmWr8yrV6+Epk2balR/b29vuWVdXFwyXEZPT0+YMWNGpt67ypUrC48ePVL73nt6eqrZS8q1atVKACDIZDIhPDxc4+Vev34t6OnpCQCEDh06aP1epP/Zt2+fQhm+vr5arePx48dabz8REVF+oW3eKlGihDBr1iwhMTExw3UfPHhQKF68uEZZ5tSpUwrLe3p6CgAEe3t7jeofHBysdJ7IyEihWbNmGdbD399f63V///33GmUIZitmKyIiKrj27NkjODg4aHQerFq1qhAYGKiwjuTkZGHw4MFql7WwsFC6rCAIwocPH4RatWqpXLZ48eLC6dOnpfO/i4uL0vUcPnxYkMlkStfh6+srzZdRTtIkxwmCIPj7+6vNCCkpKcLAgQNVbpeVlZVw6dIloUyZMgIA4eeff1Zajr29vbSMtrZu3SotO2fOHK2WdXNzEwAIBgYGwuvXr6XX0263pj+dOnVSWP/jx4+1WkfafUhUELEbT6ICKjQ0FPPmzQMAuLm5YfDgwUrnMzIywrZt22BkZITPnz+jT58+SE5OlpunTZs2ePToEWbPno1GjRrB0tIS+vr6MDc3R+3atTFy5EhcvHhR6fpLlSqFv//+G4cPH0bv3r1Rvnx5mJqawtDQECVKlECjRo0wZswYnD59Ghs3bpRbdvv27Vi7di169eqFWrVqoVSpUjAwMEDhwoVRtWpVDBo0CNeuXcPUqVPllmvatClCQkIwadIkNG/eHI6OjihSpAgMDQ1hbW2N7777DqtXr8b169cVuvDMqvDwcJw6dQoA0LBhQ9jY2Gi8rLW1tTSezLFjxxAZGZmtdSMiIiLN6OnpwcLCAmXLlkXTpk0xcuRI7NmzBy9evMDkyZM1emLN3d0djx8/xsKFC9GiRQtYW1vD0NAQJiYmKFeuHDp06IDFixfjyZMnaN68uc62xcrKCqdPn8bevXvRrVs32NnZwcjICMbGxihfvjy6d++Obdu2yfWuoKmtW7di/vz5qFevHiwsLKQuuLITsxUREVHe1rVrV9y/fx/btm1Dnz59UKlSJRQrVgwGBgYoXrw4ateujcGDB+PUqVMICwvDd999p7AOPT09rFixAn///Td69+6NsmXLwsjICObm5qhVqxYmT56Mhw8fKl0WACwsLHD27FnMmDED1atXh7GxMQoXLowqVapg7NixuHHjBpo1a5bhtrRv3x4nT55Ep06dYGNjo7QXh5wkk8mwevVqHDhwAN999x2KFy8OY2NjODo6Yvjw4bh27Rrq1KkjdX1qYWGR7XXITBee6edPSkrCH3/8ka31IiJFMkFQMXADERERERERERERERHlSS9evECZMmUAAOvXr8dPP/2UyzUiotzCJ/uIiIiIiIiIiIiIiPKZ7du3S/9v0KBBLtaEiHIbn+wjIiIiIiIiIiIiIspDYmJi8PHjR5QuXVrp9GvXrsHFxQWfPn2Cs7MzLl++nMM1JKK8JOPBJoiIiIiIiIiIiIiIKMdERkaiSpUq6Ny5M9q2bYtKlSrByMgIL1++xLFjx7BhwwbExcVBJpNh8eLFuV1dIsplfLKPiIiIiIiIiIiIiCgPefLkCcqVK6d2nkKFCmHdunXo27dvDtWKiPIqXuwjIiIiIiIiIiIiIspDEhMTsW/fPhw7dgyXLl1CZGQkoqKiYGpqCgcHB7Rq1QrDhg2Dvb19bleViPIAXuwjIiIiIiIiIiIiIiIiyqe+ujH7UlJS8PLlSxQpUgQymSy3q0NERERZIAgCPn36BBsbG+jp6eV2db56zFlEREQFB3NW3sKcRUREVDDoKmN9dRf7Xr58iTJlyuR2NYiIiCgbPX/+HHZ2drldja8ecxYREVHBw5yVNzBnERERFSzZnbG+uot9RYoUAZD6Rpqbm+usnB49euDPP//U2fpzshyWwTJYBsvIL2XkVDksI++U8fHjR5QpU0Y6v1PuKkg5i2XkvXJYBstgGSyDZeRsOcxZeQtzFstgGXmjHJbBMlgGy8gqXWWsr+5in9jVgbm5uU7DkaGhoU7Xn5PlsAyWwTJYRn4pI6fKYRl5qwwA7MoojyhIOYtl5L1yWAbLYBksg2XkTjnMWXkDcxbLYBl5oxyWwTJYBsvILtmdsdjpOhEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VMGuV2B/CYxMRHJyckZzmdpaYn4+Hid1ycnymEZLINlsIz8UkZOlcMy8k4ZX758gb29Pb58+ZIjx9fXTl9fH4aGhjpZtyAISExMREpKSobzFoRjtyCVkVPlsAyWwTJYBsvI2XKYs3KWLnOWpm1ZQMH5jLCMr6+MnCqHZbAMlsEyskqTjJWZXCATBEHIjgrmFx8/foSFhQWio6Nhbm6u1XJv375FQkKCRvNHRESgZMmSma2mxnKiHJbBMlgGy8gvZeRUOSwj75SRkpKC58+fo0yZMtDTY4cFOcHIyAhWVlZKc1RmctaXL18QERGB2NhYjRuhCsKxW5DKyKlyWAbLYBksg2XkbDnMWTkvu3OWtm1ZQMH5jLCMr6+MnCqHZbAMlsEyskrTjKUuFyjDJ/s08PHjR4SHh6Nw4cKwsrKCoaEhZDKZ2mVkMhkcHBx0XrecKIdlsAyWwTLySxk5VQ7LyDtlJCcnIy4uDg4ODtDX19dZOfS/J++io6MRHh4OAFrdOKVMbGwsnj9/Dn19fRQrVgwmJibQ19fPEzmLZeS9clgGy2AZLINl5Gw5zFk5Rxc5KzNtWUDB+YywjK+vjJwqh2WwDJbBMrIqo4yV2VzAi30aePv2LQoXLgw7OzuNghGQ+pilsbGxjmuWM+WwDJbBMlhGfikjp8phGXmnDPFJMGNjYzZC5QATExMUKVIEL168wNu3b7PcCPX27VsYGhrC3t5eq/1XEI7dglRGTpXDMlgGy2AZLCNny2HOylm6yFnatmUBBeczwjK+vjJyqhyWwTJYBsvIKk0yVmZyAfthyEBiYiISEhJgYWGhVTgiIiIiKohkMhksLCyQkJCAxMTETK8nKSkJMTExKF68OBsQiYiIiJB9OYttWURERPmftrmAF/syIF5l1dUgyURERET5jZiLNB1jT5mkpCQAqX3QExEREVGq7MhZbMsiIiIqGLTJBbzYpyHeCUVERESUKjtzETMWERER0f8wZxEREZFIm3M5L/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+ZZDbFSgQpnVReKlCDhWd6XKm7cvOahARERHpRi7lrCyVwZxFRERE+UF+y1nMWERERCrxyT7KFg4ODpDJZBr/TJs2LberTERZIJPJ4ODgoPC6r68vZDIZqlevji9fvihdVhAEtGzZEjKZDD/99JNW5YrfNU+ePNG4TkRE+RkzFtHXhRmLiCjnMGcRfV2Ys6ig45N9lK0aN24MR0dHldOPHTuGN2/e5GCNiCgnTZ06FQcPHsT169fh6+uLOXPmKMyzbNkynDp1Cvb29vj9999zoZZERPkPMxbR140Zi4hId5iziL5uzFlUUPBiH2UrHx8feHl5qZzu6urKgERUgBkaGmLz5s2oU6cOFixYgE6dOqFBgwbS9IcPH2LSpEmQyWTYuHEjzM3Nc7G2RET5BzMW0dcto4z15MkTZiwiokxiziL6ujFnUUHBbjyJiChbVa9eHdOmTUNycjI8PT0RFxcHANLvsbGxGDJkCFq0aJHLNSUiIiLKP9RlrAkTJjBjEREREWUScxYVBLzYR3lKSEhIhn2kK3Pv3j14e3vD3t4eRkZGKF68OFq2bImdO3cqnX/atGkq+1sPCAiATCZTelfXkydPVPalHBkZic2bN8PNzQ3lypWDiYkJzM3NUadOHcybNw/x8fFqt93Ly0vtdiurj7hMQECA2nVrStz2ihUrolmzZirna926tVSv9GVnVCfxPWzevLnS6drsy5SUFPTs2RMymQy9evVCSkqK3HQ/Pz+l+zklJQW9evWCTCbDDz/8oLAcAFy5cgW9e/dG2bJlpXq0adMGR48eVfm+JCUlYePGjWjVqhWsrKxgZGQEOzs7tGrVCsuWLZPm02ZMgLT73dXVVWF6kSJFULlyZYwaNQrPnj1TqFNkZCT8/PwyfVxm1vjx41GvXj08ePAAkydPBgCsX78e586dg6OjI+bNm6dy2Tt37qB79+6wsrKCiYkJqlWrhoULFyI5OVkndSUi+hrk94zl5+cHHx+ffJ+xxMyiSnZkLFVjfmRnxpo2bRoqVqzIjJVHMtaCBQtw7do1ZiwiolyS33NWQWnLYs5izsoq5izK79iNJ+VJ1tbWaNu2rdxrmzZtUjrvkSNH0K1bN8THx6NSpUro2rUrIiIicPr0aZw6dQqBgYHYsGGDzuscGBiImTNnwtbWFo6OjmjQoAEiIyNx4cIFTJw4EQcOHEBwcDCMjIzUrid9X/H//vsvzp49q+vqKzhz5gyuX7+OWrVqyb1++/ZtnDhxQidlarsv9fT0sGXLFsTExGD79u0wNzfH6tWrMyxn0KBB2L59Ozp06IAtW7ZAT0/+voelS5di9OjRSElJQa1atVC/fn28fv0aISEhOH78OKZPn45ff/1Vbpno6Gh06NABoaGhMDQ0RKNGjWBjY4PXr1/j5s2bOHnyJIYNGwYA8PT0lFv28+fP2LNnD8zMzNCtWze5aU2aNFGof5s2bVCqVCkAwIcPH3DmzBksWbIE27Ztw82bN6VpQOpxOWLEiAyPy+ymr6+PTZs2wcnJCUuXLkWFChXg5+cHPT09bNq0CaampkqXCw0NRdu2bRETE4Py5cujdevWePv2LSZPnozz589nez2JiL42+TVjjRgxAtbW1qhcuXK+z1iXL19mxvqKMlZGx6W2lGUsX19fZiwiojwgv+asgtSWxZzFnJUVzFmU3+WZi31z587FpEmTMGLECCxZskTpPOvWrcPmzZtx69YtAICzszNmz56NevXq5WBNSZfEux2qVKmicDeNsoD05s0b9O7dG/Hx8Zg5cyYmT54s3TF1+fJlfPfdd9i4cSMaNGgAV1dXndbd2dkZO3fuRPfu3eVef//+PXr27Injx4/Dz88P48aNU7q8eEdO+r7iAwICcjwg1atXD1euXIGfnx82btwoN83Pzw/6+vpo2rQpQkJCsq1MbfZl//79peUMDQ2xa9cuuLm5Yc2aNTA3N8f8+fNVljNu3DisXbsWLVq0wK5du2BgIP81GBgYiFGjRsHS0hJ79uyRe8IxLCwMbm5u8PX1hYuLC1xcXKRp/fr1Q2hoKJycnLB37165u72SkpJw5MgR6ff0x/aTJ0+wZ88eWFlZKb2L7OHDh3K/T5w4Ue54jomJgYuLC65cuYLdu3dj6NCh0jRnZ2ecO3dOrq9xQPG47Ny5s6q3LNMqV66M2bNnY/To0RgyZAiA1Pe/UaNGSuePj49Hr169EBMTg5EjR2LhwoXQ19cHANy8eRMtW7bE27dvs72eRF8D5izSZcZKe17WBfFcZmlpiQoVKkiv58eM5eLigtDQUGasPJKx0tNFxlJ1XGaFsozl4+PDjEWUS5iziG1ZzFnMWfLTlGHOItK9PNGN56VLl7BmzRrUqFFD7XwhISH44YcfEBwcjHPnzqFMmTL47rvvEB4enkM1JV1LTEwEkHrS08S6desQHR0NZ2dnTJkyRa5rhDp16mDKlCkAUh+51rUqVaoo3DkEAMWKFZMee9+1a5fK5cVH0DXddl2ytbVFx44dsX37drkTUlRUFLZu3YqOHTvC3t4+W8vMyr40NjbGwYMHUb9+fSxYsACzZs1SWsbMmTOxcOFCNGjQAAcOHICxsbHCPL6+vhAEAatXr1boyrR69epYvHgxAMh1ZXDjxg3s3bsXxsbGOHTokEK3DgYGBujUqZNmb0QmmJmZoWHDhgCg0I1DlSpVFMIRoPlxmVWDBw+GhYUFAKBkyZKYMWOGynn37NmD58+fo0yZMpg/f74UjgCgRo0a0jFARNphziIg/2esrJzL8lLGcnBwQIsWLZixNMxYd+/eZcZSIW3GsrGxwciRI1XOy4xFpDvMWQTk/5xVUNqymLOYs7ILcxblV7n+ZN/nz5/Ru3dvrFu3DjNnzlQ777Zt2+R+X79+Pfbs2YOTJ0+ib9++uqwm5RBx8FNNH8MW78ZJ/yi56KeffsLYsWPx8OFDvHnzRu5ucF1ITk7GyZMn8c8//+DVq1eIi4uDIAgQBAEAcP/+fZXLxsTEAIDKR8Jz2vDhw7Fv3z6sXbtW6qd63bp1iI2NxfDhw7Otb3WRNvvy5cuXsLGxkZteuHBh/PXXX/jmm28wdepU6aQsWrZsGX755RcUK1YMR48eReHChRXKePv2LS5evAgTExO4u7srrYd4F9I///wjvXbs2DEAQPv27WFra6vR9maX6Oho/PXXX9i8eTNMTU2V1js5ORkhISGZOi6zatasWYiOjgYAqRuL7777Tum84jHw/fffK/1DwdPTE6NGjdJZXYkKIuYsEukyY718+TJb6qhOcnIy/vnnH+zYsSPfZ6y+ffsiKCiIGSsdZRnrzJkzAJixlEmbsV6+fImLFy+iatWqSudlxiLSDeYsErEtizmLOUs7zFlEupHrF/uGDBmC9u3bo1WrVhmGo/RiY2ORmJiI4sWLq5wnISEBCQkJ0u8fP37MdF1J9969ewcg9U4NTYh3wZUrV07p9KJFi6J48eKIiorC69evs6eSKjx8+BAdO3ZU6HIxLXXHn7gtlpaWWpft7e0Nb29vAKn9SxcrVgxOTk7w8fHB999/r/X6gNQgUKNGDaxatQrjx48HAKxYsQI1atSAq6trhgEpbZ00oc2+fPHihUJAAlL7SX///j2A1IuVlStXBgDs378fN2/eBJD6yP/Ro0fRu3dvheUfP34MQRAQFxeXYUiPjIyU/v/06VMAkMrTtebNmyu85uzsDH9/f4X37+HDh+jSpQtu376tcn26+l68fPky5syZA0NDQwwYMAArVqyAj48PwsLCFAIsALx48QKA6mOgWLFisLCwkAIXEWUsJ3LWly9fpN+Zs/IuXWasFy9eaLzezMjquSyvZaz69evn+4xVs2ZNALrPWOKFZGYsecoy1pQpU9C1a1dmLKIcxJxFIrZlMWcxZ2WMOYs5i3QvVy/27dixA1evXsWlS5cytfyECRNgY2ODVq1aqZxnzpw5mD59usLrPXr00OgRc0tLS3h5eUEmk8k9hpuWbu+v0Q11J/H0YmNjM5w/KSkJQGpf1ermFe92evfundx8YhniSczY2FjletK+Lgbfly9fqpxffBQ8Pj5emkcMYunrIW4DkHrSSD9N/AJPSkpSmObu7o6HDx+iefPm8PHxgaOjIwoXLgxDQ0N8+fIF1apVU6h/2jr+999/SrcxfX3S7g/xxFa7dm2pK4KEhAQ8evQIQUFBCAoKwj///CP1MZ0RsSxx+3r27InJkydj5cqVAIDnz59j4MCBePjwoVR2+n2urE5pxcbGIjAwECkpKZnel8+ePVMI0W/evMHQoUNhamqKNWvWYPz48bh79y6A1G42bWxsMHfuXPz8888YMmQI7O3tYW1tLbcO8aKdmZmZyqfP0hL3h3jCjoqK0uqzJVJ3XAH/+3yIn5+mTZvCysoKQOpxfe/ePVy5cgXff/89Vq9eLRce3d3dcf/+/QyPS00+5+mpqi+Quj9/+OEHJCUlYcSIERg8eDAuXryIS5cuwcfHB7Nnz1ZYRrwjMCIiIsNj4PHjx1JXKenrlJlt0RbLyDtliHf1kaKcyFmqupvRJGdpkrGAgp2zCkrGevbsGYyMjPDw4UOdZaz79++jWbNmGDhwoM4yFvC/90tXGevjx4+IjY3VacZKfy7URca6fv06AN1mLOB/3aLpKmMBqe+bLjNW+vyuCW0z1pUrV3D+/HlmrK+sjJwohzlLNeas3MG2LLZlKcOcxZzFnKUZlpF3ytBVxsq1i33Pnz/HiBEjEBQUpLSv4YzMnTsXO3bsQEhIiNrlJ02ahNGjR0u/f/z4EWXKlMGff/4Jc3PzDMuJj4/H48eP4eDgkKl65lXadAHw8OHDDOcXB4a1trZWO6+JiQmA1OCZdj6xDPEE3bRpU5XrSft6uXLl8OjRI8THxyudPzo6Gh8+fAAA2NvbS/OIdxylr4e4DQBgbm6uME0M1AYGBnLT7t27h/v378PS0hLHjx9XGCg37Z0oyup5+/ZtfP78GdbW1gp9a6evT9r9IR7Dw4YNkxsIGQDWrFmDn3/+GevXr8eCBQs0urgtliVu36hRo7B48WKpH2xLS0uMHj0aJiYmUtnp97m6OgGpA/iWK1cOenp6md6XDRs2VOhiYMSIEYiOjsbKlSvRp08f1KtXD40aNcK7d+9gbW2NkJAQVKhQAZ8+fcKQIUMwZ84cuYGGgdRgBAB6enrYvXs39PQyHtb04cOHqF69OoDUE3tmutdQdVylLaNChQrS5+e3335TGKTb19cXv/32GxYsWIDDhw8D+N9xWbJkyQyPS1NTU63rrqq+QOrg0f/++y+cnZ2xcOFCGBgYYN68eejYsSN2796Nn376CW3btpVbpmLFijhz5gxiY2OVrvfDhw/49OkTgNTjJX1/8mKdMrMt2tLke5Fl5EwZycnJuHbtms7Wn1/lVM4aN26cdMcsoF3OKqgZC9A8ZxWUjNWwYUPpu1tXGatkyZJYvXo1qlSpIrdcdmYs4H/vl64ylrm5OUxNTXWasdKfC3WRsZo2bYqIiAidZiwAKFu2LADdZSwgdZ/rMmOlz++a0DZjbd++HdWqVWPG+srKyIlymLOUY87KPWzLYluWMsxZzFnMWZopKBmoIJShq4yl2adfB65cuYKIiAjUrl0bBgYGMDAwwOnTp+Hn5wcDAwMkJyerXHbhwoWYO3cujh8/nuEgyEZGRjA3N5f7obwpMTERwcHBAIAmTZpotIx4kti0aZPS6Rs3bgSQ+uVfqlSprFdShaioKABAyZIlFU5CALB161a1y+/ZswcA0KZNm2yr048//ggg9Q6TtAMTa8PY2BgDBgxAaGgoQkND4ePjI52ks5s2+zJ9OFq3bh3++usvtGrVCj///DOA1JNtz549AQADBw6UvqAHDRqEli1b4ujRo1i/fr3cemxsbFCjRg18+vRJGodPE+KJ/ujRozkybpEyPXr0AACcPn1aek08Lm1sbDJ1XGbW2bNnsXjxYhgZGWHTpk1S2XZ2dtKg1D4+PgpdGLi4uAAAdu7cqfROp82bN+ukvkQFEXMWpaXrjKXLMT6yei5jxtJNxhL/r+uM1bRpUwDMWCJVGcvBwUG6IMCMRaR7zFmUFtuymLMA5qzMYs4iyl65drGvZcuWCAsLw/Xr16WfOnXqoHfv3rh+/brKbgbmz5+PGTNm4NixY6hTp04O15p05cuXLxg+fDgiIyPh6uqqsp/j9Pr37w9zc3NcvXoVs2fPlnsE9tq1a1K/+ePGjdNJvUUVK1aEvr4+Hjx4IA3MKjp06BB+//13lcs+f/4cy5YtA5B68s4uR48eBZB6h4/4mHxmDB48GO3bt0f79u017kIhMzK7L58+fYoxY8bA3NwcGzZsgEwmk6aJ/0//2saNG2Fubo7Ro0dL3R2IxHK8vb1x6NAhhXoKgoALFy7g+PHj0mu1atVCp06dEBcXh06dOuHZs2dyyyQlJeHgwYNavR/a2rFjBwDI7WvxuAwLC9P6uMys2NhYeHl5ISUlBdOnT1cYwHjgwIFo2bIlwsPDMXLkSLlp3bp1g62tLZ49e4ZJkyZJ3RwAwK1bt7QeB4Poa8acRaKCkrHCwsJw4cIFuWnMWJrJzxnr22+/Zcb6fxllrJ49ezJjEeUQ5iwSFZScxbaszGPOyhrmLKLslWvdeBYpUkTqX1dkZmYGS0tL6fW+ffvC1tYWc+bMAQDMmzcPv/76K/744w84ODhIg9QWLlwYhQsXztkNoGyzYcMGTJo0CZGRkbC1tcWaNWs0Xtba2hrbtm1D9+7dMWXKFGzZsgVOTk6IiIjA6dOnkZSUBG9vb/Tv319pP7snTpxAfHy83GthYWEAUu/Wmzhxotw08e6N9+/fY+LEiejevTucnZ1hZWWFoUOHYunSpWjZsiWaNm0KGxsb3L9/H1evXsXUqVOVfrmPHTsW/v7+iIqKgpmZGVavXo3Vq1fLzfPvv/8CAEJDQ+Hl5YWePXsqPEa8a9cu3Lt3D0BqP+f37t2TTuATJkzQqNsDVWxtbaVH6XVJm30pEgQB3t7e+PTpEzZs2CB1QZCRsmXLYvHixfDx8UG/fv1w4sQJKUS5u7tj6dKlGDNmDDp27AhHR0dUqlQJFhYWiIyMxI0bNxAREYEJEybI9YXu7+8PNzc3nD9/HhUqVECjRo1gY2OD169fIywsDJGRkdnWH/PcuXOlQaVjY2MRFhYm7f9ffvlFmi+zx2VWjB8/Hv/++y8aNGiAsWPHKkyXyWTYsGEDqlevjoCAAHTv3h1ubm4AUrtG2bZtG9zc3LBo0SLs378fdevWxbt37xASEgJ3d3dcuXJFIdQSkSLmLAJyLmMpo4uM5enpifXr1+ssY02cOFGhgZYZixmLGYuI0mPOIoBtWWzLSsWcpTnmLOYsygFCHuLi4iKMGDFC7ndPT0/pd3t7ewGAwo+vr6/GZURHRwsAhOjoaI3mj4uLE+7cuSPExcVpXIYgCMKDBw+0mj+zcqIcTcoQ942/v7/a+VxcXBT22YQJE4TKlSsLU6dOFSIiIlQuK+5vZe7cuSN4enoKdnZ2gqGhoVC0aFGhefPmwo4dO5Ruh6+vr9JjSduftNubkpIizJ49W3B2dhYKFy4sWFhYCE2aNJHqoKz+qo5pdT9btmyRlvf09FSYrqenJ1haWgqtWrWS235N+Pv7CwCELl26ZDivWHb6fa7qddHjx48FAIKtra3S6ZrsS5Gfn58AQHBzc1O6rqFDh6r9jmjXrp0AQPDz81OYFhYWJgwYMECoUKGCYGxsLJiamgrly5cX2rRpI/j5+Qnh4eGCIMgfVwkJCcKqVauEpk2bCkWLFhUKFSok2NnZCa1btxZWrFihtA5p3xN7e3ul08UyxM9P2h99fX3B2tpacHd3F44fP66wbEpKirBhw4YMj0ttv0uU1ffkyZOCTCYTTExMhHv37qncDkEQhDVr1ggABBsbG+H9+/dy84WFhQldu3YVihcvLhgZGQlVqlQR5syZIyQmJkqfmcePH6usU175XmQZOVNGUlKScOnSJSEpKUmn5RQE2ZmzVOUjbXJWZjOWIBSMY1fTMvJDxkq7LbrKWBs2bBCqVaum04wVHBwsbYeuMpanp2eG+z2rGUvVuTA7M5a4n3WZsQThf8eVrjKWWIYuM1ba7dBEZjJW2jKYsb6eMnKiHOYszTFn5c8y8kPOYltWxpiz/oc5Sz3mLJaRV8rQJmNpc07PUxf7cgIv9rGM7CCe0NKHAG3LsLe3F1xcXDSaVwwvaQOSruS3/cEycr6MjAJddpShLQakr7MMNkLlDjZCsQxdlaMqY2lbRmYyVtqLfbrEMliGOpnJWNqWoS1mrLxZRk6Uw5yVO5izWIauyijobVmCkP/2CcvI2TKYs1hGXilDVxf7cm3MPiIiIiIiIiIiIiIiIiLKmlwbs48oPytWrBjmzJkDZ2fnLK1n4cKFGvfP36RJE/j7+6N8+fJZKpOIiIgor8rNjFW5cmV8+vQpS+USERER5VVsyyIiKth4sY8oEywsLBQGPM6Mbt26aTyvo6MjHB0dlQ7OTERERFQQ5GbGAsCLfURERFRgsS2LiKhgYzeeRERERERERERERERERPkUn+wjIiKt+fr6omjRorldDTl5sU5ERERE2siLeSYv1omIiIhIW3kx0+TFOlH+xYt9RESktWnTpuV2FRSIdWL3IERERJRfMWMRERER6QZzFhV07MaTiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ/ixT4iIiIiIiIiIiIiIiKifIoX+4iIiIiIiIiIiIiIiIjyKV7sIyIiIiIiIiIiIiIiIsqneLGPiIiIiIiIiIiIiIiIKJ8yyO0KFAQtBj9T8qoRAGWvZ7fMlXNqZdlsrYWDgwOePn2q8fy+vr6YNm1attaBiPIG8ftAEAS51/fs2YNJkyahVKlSuH37NooXL650eW9vbwQEBKBly5YICgqCTCbTuOyQkBA0b94cnp6eCAgIyMpmEFEekXs5K/NlZGfOYsYiIpGqjOXv749+/foxYxGR1vJbzmJbFhHpCnMWFQS82EfZqnHjxnB0dFQ5/dixY3jz5k0O1oiI8goPDw+EhobiyJEjGDJkCLZv364wz6FDhxAQEABzc3Ns3LhRLhy5urri9OnTCA4Ohquraw7WnIgo9zFjEZEq3t7e2Lx5M0JCQpixiIgygTmLiFRhzqL8hBf7KFv5+PjAy8tL5XRXV1cGJKKv2Lp161CtWjXs2LEDHh4e6NatmzTt3bt36N+/PwBgyZIlKFs2e+/aJCLKz5ixiEidmTNnomPHjsxYRESZwJxFROowZ1F+wTH7iIgox5QuXRrLly8HAAwaNAgRERHStMGDB+PNmzdwd3eHt7d3blWRiIiIKN8pWbIkMxYRERGRDjBnUX6RZy72zZ07FzKZDCNHjlQ5z+3bt+Hh4QEHBwfIZDIsWbIkx+pHOSMkJAQymUztjzL37t2Dt7c37O3tYWRkhOLFi6Nly5bYuXOn0vmnTZsGmUymtK/1gIAAyGQypXd1PXnyBDKZDA4ODgrTIiMjsXnzZri5uaFcuXIwMTGBubk56tSpg3nz5iE+Pl7ttnt5eandbmX1EZfJrv6cxW2vWLEimjVrpnK+1q1bS/VKX3ZGdRLfw+bNmyudrs2+TElJQc+ePSGTydCrVy+kpKTITffz81O6n1NSUtCrVy/IZDL88MMPCssBwJUrV9C7d2+ULVtWqkebNm1w9OhRle9LUlISNm7ciFatWsHKygpGRkaws7NDq1atsGzZMmm+jI5xVfvd1dVVYXqRIkVQuXJljBo1Cs+eKY55EBkZCT8/v0wfl7rwww8/wMPDA2/fvsXAgQMBADt27MDOnTtRvHhxrF27Vm5+8Xvh9OnTAIDmzZvLvQfsz5woY8xZlN8zlp+fH3x8fPJ9xhIziyrZkbGUvYdA9masadOmoWLFisxYzFhEBOYsyv85q6C0ZTFnMWfpEnMW5Qd5ohvPS5cuYc2aNahRo4ba+WJjY1G+fHl0794do0aNyqHaUW6wtrZG27Zt5V7btGmT0nmPHDmCbt26IT4+HpUqVULXrl0RERGB06dP49SpUwgMDMSGDRt0XufAwEDMnDkTtra2cHR0RIMGDRAZGYkLFy5g4sSJOHDgAIKDg2FkZKR2Pen7iv/3339x9uxZXVdfwZkzZ3D9+nXUqlVL7vXbt2/jxIkTOilT232pp6eHLVu2ICYmBtu3b4e5uTlWr16dYTmDBg3C9u3b0aFDB2zZsgV6evL3PSxduhSjR49GSkoKatWqhfr16+P169cICQnB8ePHMX36dPz6669yy0RHR6NDhw4IDQ2FoaEhGjVqBBsbG7x+/Ro3b97EyZMnMWzYMACAp6en3LKfP3/Gnj17YGZmJtcVAAA0adJEof5t2rRBqVKlAAAfPnzAmTNnsGTJEmzbtg03b96UpgGpx+WIESMyPC5z2qpVq3DmzBns378fCxYswNy5cwEAK1askKs/AJQqVQqenp7SOAlptx+A2rEViIg5i+Tl14w1YsQIWFtbo3Llyvk+Y12+fJkZ6yvKWBkdl9mNGYsoZzFnUVr5NWcVpLYs5izmLF1izqK8Ltcv9n3+/Bm9e/fGunXrMHPmTLXz1q1bF3Xr1gUATJw4MSeqRzksOTkZAFClShWFOxyUBaQ3b96gd+/eiI+Px8yZMzF58mTpjqnLly/ju+++w8aNG9GgQQO46ngQVGdnZ+zcuRPdu3eXe/39+/fo2bMnjh8/Dj8/P4wbN07p8uIdOen7ig8ICMjxgFSvXj1cuXIFfn5+2Lhxo9w0Pz8/6Ovro2nTpggJCcm2MrXZl2Jf2ABgaGiIXbt2wc3NDWvWrIG5uTnmz5+vspxx48Zh7dq1aNGiBXbt2gUDA/mvwcDAQIwaNQqWlpbYs2eP3BOOYWFhcHNzg6+vL1xcXODi4iJN69evH0JDQ+Hk5IS9e/fK3e2VlJSEI0eOSL+nP7afPHmCPXv2wMrKSumdPQ8fPpT7feLEiXLHc0xMDFxcXHDlyhXs3r0bQ4cOlaY5Ozvj3LlzaNCggdw60h+XnTt3VvWW6USJEiWwevVqdO3aFePHjwcAdO/eHT179lSYt3LlyggICIDr/4+TkH77iUg15iwS6TJjpT0v64J4LrO0tESFChWk1/NjxnJxcUFoaCgzVh7JWOnpImOpOi51hRmLKOcwZ5GIbVnMWcxZ8tOUYc5iziLdy/VuPIcMGYL27dujVatWOll/QkICPn78KPdDeVdiYiKA1JOeJtatW4fo6Gg4OztjypQpcl0j1KlTB1OmTAEALFiwIPsrm06VKlUU7hwCgGLFikmPve/atUvl8uIj6Jpuuy7Z2tqiY8eO2L59O96+fSu9HhUVha1bt6Jjx46wt7fP1jKzsi+NjY1x8OBB1K9fHwsWLMCsWbOUljFz5kwsXLgQDRo0wIEDB2BsbKwwj6+vLwRBwOrVqxW6Mq1evToWL14MAHJdGdy4cQN79+6FsbExDh06pNCtg4GBATp16qTZG5EJZmZmaNiwIQAodONQpUoVhXAEaH5c6lKXLl1QuXJlAICRkRFWrlyZK/UgKsiYs0iU3zNWVs5leSljOTg4oEWLFsxYGmasu3fvMmNlAjMWUc5gziJRfs9ZBaUtizmLOSsnMGdRXparT/bt2LEDV69exaVLl3RWxpw5czB9+nSF13v06KHRicjS0lLqt1lfX1/FXDn7yHB2SP+kkDqxsbEZzp+UlAQg9Y4WdfPGxcUBAN69eyc3n1jGf//9J61P1XrSvi72Od2uXTul84t3TDx8+BBPnjyRXn/37p3SeojbAAAfP35UmPbixQu19fv06RM2bdqEa9euITIyEvHx8RAEAYIgAEg9karaLnFw1w8fPsjNk74+afeHGPYzet81JZaVlJSE77//Hvv27cPs2bMxaNAgAMDatWsRGxuLrl27Yu/evUrLzqhO4nuYkpKS6X0ZGhoKa2trhXmWL1+OVq1aYerUqUhISJAC97t37/DLL79g5syZsLCwwLJly/Dq1SuF5aOionDx4kUYGxujcuXKSutRtmxZAKndnIr7Y+vWrQBS7yLT5POSXkbHlbhO8fPz4sULab5Pnz7h9OnTCAgIgImJCapVq6awjuTkZFy4cEHtcZmZeqsifh+kX1/6Mnbv3o179+4BSP1DdtWqVUrvhhIp2/70xPdS2ec3O2Xn+8UyskY8jklRTuQsVX+UapKzNMtYQEHOWQUlY4WGhqJIkSJ4+PChzjJWcnIy/v77b6xYsUJnGQv43/ulq4z18eNHfP/99wgKCtJZxkpKSpI7tnSRsd6/fw9AtxkLAE6dOgVAdxkLSN3nusxY6fN7VqjKWOJ2iK8zY30dZeREOcxZqjFn5Q62ZbEtSxnmLOYs5izNFJQMVBDK0FXGyrWLfc+fP8eIESMQFBSk9I6E7DJp0iSMHj1a+v3jx48oU6YM/vzzT5ibm2e4fHx8PB4/fgwHBwc19VQcSDSvS9sFUkYePnyY4fzi4+PW1tZq5zUxMQEAhW6YxDLEQUvt7OxUrid9900AUL9+fZXzFy9eHFFRUYiOjpbmsbS0VFoPcRsAwNzcXGGaGKgNDAwUpj18+BA9e/ZU+0Xw+fNnlfX88OEDgNQ7btLOk74+afeHeAxPnDhR6gpEX18fxYoVg5OTE3x8fPD999+rrE96YlkGBgbo06cPFixYgF27dkldCfz555+oUaMG+vTpI/V1nn6fK6uTMnp6epnel4UKFVI6z9atWxEdHQ0g9c4n8U6bM2fO4ObNmwBS+yO/f/8+evfurbD8pUuXIAgC4uPjUa1aNZV1B1LDlLg/YmJiAKTetaXNZ0uk7rgC/vf5ED8/P/74o8I8zs7O8Pf3R/Xq1RWW7datG27fvq2y/M+fP8PU1DRTdVdG/D5Q9hkRX3v27JnUt/nIkSOxZMkSLFiwAH379lV5p524/eq+H8LDwwEo//xmJ02+F1lGzpSRnJyMa9eu6Wz9+VVO5axx48ZJ3ZcA2uUszTIWUJBzVkHJWIUKFZLOI7rKWJqcy7KascSyKlSooLOMZW5uDhcXF9SoUUNnGcvAwEDuvK6LjFWzZk0Aus1YABAZGQlAdxkLSN3nusxY6fN7VqjKWGJ9KlSowIz1FZWRE+UwZynHnJV72JbFtixlmLOYs5izNFNQMlBBKENXGSvXLvZduXIFERERqF27tvSaeMfu8uXLkZCQkMHdR5oxMjLK8cE6KfPELzcbG5tcron2unXrhocPH6JDhw4YP348vv32W5ibm8PQ0BBfvnxRexympKTg8ePHAIBy5cppXXbagZDj4+Nx7949BAUFISgoCPfv38cvv/ySqW0aMWIEfvrpJ+zbtw9A6h816Qfz1aROaYkD+Ga3ly9fYvjw4TAzM8Phw4fRt29f3L17F0BqN5tly5ZFQEAA3N3dMWzYMDRv3lzhOBO7DShcuDA8PDyyvY7ZJe2gvrGxsbh58yauXLmCH3/8EQcPHpTu2AIghaPMHJe6IggC+vXrh48fP6Jfv374/fff8eHDBwQEBOCnn35CUFCQXNcXRKS9nMxZumzkouyT3zPW7du30bx5c0yfPp0ZKw9krOvXrwNgxmLGIvo6MWdRevk9Z7EtS3md0mLOyjrmLCLdy7WLfS1btkRYWJjca97e3qhcuTImTJiQLcGI8p87d+4AAKpWrarR/La2trh37x4ePXqkdHp0dDSioqIAQOmj8tnl3r17uHnzJiwtLbFv3z6FgXIzeuz37t27+PjxI6ytrVGmTBmty08/EDIArFmzBj///DPmzZuHiRMnZqr/9F69emHChAnw8/MDkHr3mLK7iDStE/C/AXzT02Zf2traKi3v/fv3WLlyJVxdXXHixAk0atQI7969g7W1NU6cOIEKFSpg/vz5GDJkCPr37y830DAA6b2XyWTYuHEj9PQ0G9ZUDCTiY/y6pmxQX19fX/z2228YPHgwDh8+LNXn5s2bKFmyZKaOS11ZuXIlTp48iTJlyuD3338HAPz+++8ICgrCyZMnpWOXiDKPOYvS02XGsrW1RWxsbPZUNJ2057IVK1agSpUqctOZsf4nJzNW06ZNERERofOMVbp0aQDMWJpixiLKGcxZlB7bspizmLMyxpxFpHuaffp1oEiRIqhWrZrcj5mZGSwtLaVHjvv27YtJkyZJy3z58gXXr1/H9evX8eXLF4SHh+P69ev4999/c2szKBslJiYiODgYANCkSRONlhFPEps2bVI6fePGjQBSH8EW7x7RBfHEXbJkSYWTEABpTDdVxMDQpk2bbKuT+Hh8TEyM3MDE2jA2NsaAAQMQGhqK0NBQ+Pj4SI+fZzdt9mX6gLRu3Tr89ddfaNWqlXRirVixotRn9sCBA6VHrwcNGoSWLVvi6NGjWL9+vdx6bGxsUKNGDXz69AnHjh3TuO5t27YFkNpX+8uXLzVeLjv16NEDAKTuQ4D/HZc2NjaZOi514b///sOECROkECp2lVG0aFGsW7cOQGp3NWnHJRAVKlQIwP/6USci1ZizKC1dZyxlDRfZJavnMmYs3WQs8f+6zlhNmzYFwIyliWfPnjFjEeUQ5ixKi21ZzFkAc1ZmMWcRZa9cu9iniWfPnskNPPry5Us4OTnByckJr169wsKFC6W+nCl/+/LlC4YPH47IyEi4urpq/Ph///79YW5ujqtXr2L27Nlyg1teu3YNM2fOBJD6hatLFStWhL6+Ph48eICQkBC5aYcOHZLu+FDm+fPnWLZsGQBIgwdnB3GQYDMzM1hZWWV6PYMHD0b79u3Rvn17DBkyJLuqpyCz+/Lp06cYM2YMzM3NsWHDBrlH5sX/p39NPDGPHj0aT58+lVufWI63tzcOHTqkUE9BEHDhwgUcP35ceq1WrVro1KkT4uLi0KlTJzx7Jj/uQVJSEg4ePKjV+6GtHTt2AIDcvhaPy7CwMK2PS11ISUmBl5cXYmJiMHDgQLRq1Upuert27dCvXz98/vwZ/fr1Uxis1s7ODgDU9tlORJpjzvo6FJSMFRYWhgsXLshNY8bSTH7OWN9++y0zlgZSUlIwYcIEZiyiPIQ56+tQUHIW27Iyjzkra5iziLJXrnXjqUz6D3D63x0cHBQ+MJT/bdiwAZMmTUJkZCRsbW2xZs0ajZe1trbGtm3b0L17d0yZMgVbtmyBk5MTIiIicPr0aSQlJcHb2xv9+/dX+pj3iRMnEB8fL/ea2B3HlStXFAblFQfMff/+PSZOnIju3bvD2dkZVlZWGDp0KJYuXYqWLVuiadOmsLGxwf3793H16lVMnTpVOvGmNXbsWPj7+yMqKgpmZmZYvXo1Vq9eLTePeKdfaGgovLy80LNnT4UBQnft2iU9dp+QkIB79+5JJ/AJEyZkqtsDka2trfQovS5psy9FgiDA29sbnz59woYNG+T691anbNmyWLx4MXx8fNCvXz+cOHFCClHu7u5YunQpxowZg44dO8LR0RGVKlWChYUFIiMjcePGDURERGDChAn47rvvpHX6+/vDzc0N58+fR4UKFdCoUSPY2Njg9evXCAsLQ2RkZLZ9f82dOxcBAQEAUvs5DwsLk/Z/2j7tM3tc6oq/vz9CQ0NRrlw5LFiwQOk8YhcIwcHBWLVqFQYPHixN8/DwgL+/P8aPH48TJ06gZMmSkMlk6NevHxo1apRTm0GUbzFnfX1yKmMpo4uM5enpifXr1+ssY02cOFGh6zVmLGas/JCxFi9ejCtXrjBjEeUi5qyvD9uy2JYFMGdpgzmLOYtygPCViY6OFgAI0dHRGs0fFxcn3LlzR4iLi9OqnAcPHmSmelrLiXI0KcPe3l4AIPj7+6udz8XFRQAg+Pr6Sq9NmDBBqFy5sjB16lQhIiJC5bIABFWH7J07dwRPT0/Bzs5OMDQ0FIoWLSo0b95c2LFjh9Lt8PX1ldaXlZ+025uSkiLMnj1bcHZ2FgoXLixYWFgITZo0keqgrP7i+6bNz5YtW6TlPT09Fabr6ekJlpaWQqtWreS2XxP+/v4CAKFLly4ZziuWnX6fq3pd9PjxYwGAYGtrq3S6JvtS5OfnJwAQ3NzclK5r6NChCsdbWu3atRMACH5+fgrTwsLChAEDBggVKlQQjI2NBVNTU6F8+fJCmzZtBD8/PyE8PFwQBPnjKiEhQVi1apXQtGlToWjRokKhQoUEOzs7oXXr1sKKFSuU1iHte2Jvb690uliG+PlJ+6Ovry9YW1sL7u7uwvHjxxWWTUlJETZs2JDhcZmd3yXicZ3WnTt3BCMjI0EmkwkhISFqlw8MDBQACGZmZsKjR4/kpq1bt06oXbu2YGpqqvRzGBwcLAAQPD09s2tzlMor370sQxCSkpKES5cuCUlJSToth+Spykfa5KzMZixBKBjHrqZl5IeMlXZbdJWxNmzYIFSrVk2nGSs4OFjaDl1lLE9Pzwz3e1Yzlr29vdIysjNjiftZlxlLEP53XOkqY4ll6DJjpd2OrFKVsYyNjZmxvsIycqIc5qzcwZyVc2Xkh5zFtqyMMWf9D3NW5jFnsYycLEObjKXNOZ0X+zLAi30sQxnxhJY+BGhbhr29veDi4qLRvGJ4SRuQdCW/7Q+WkbfKUBaQsrsMVRiQvr4y2AiVO9gIxTJ0VY6qjKVtGZnJWGkv9ukSy2AZmaUqY2VnGaowY+W9MnKiHOas3MGcxTJ0VUZBb8sShPy3T1hG3imDOYtl5GQZurrYl6fH7CMiIiIiIiIiIiIiIiIi1fLUmH1E+UWxYsUwZ84cODs7Z2k9CxcuROHChTWat0mTJvD390f58uWzVCYRERFRXpWbGaty5cr49OlTlsolIiIiyqvYlkVEVLDxYh9RJlhYWCgMeJwZ3bp103heR0dHODo6Kh2cmYiIiKggyM2MBYAX+4iIiKjAYlsWEVHBxm48iYiIiIiIiIiIiIiIiPIpPtlHRETZauTIkfjw4UOulO3g4IChQ4eiZcuWuVI+ERERka4wYxERERHpBnMWFQS82EdERNlq5MiRuVa2g4MDhg8fjgoVKuRaHYiIiIh0gRmLiIiISDeYs6ggYDeeRERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+xYt9RERERERERERERERERPkUL/YRERERERERERERERER5VO82EdERERERERERERERESUT/FiHxEREREREREREREREVE+ZZDbFSgInj17hrdv3yq89unTpxwpOzPlWFlZoWzZsjqoEREREVH2ya2clZUymLOIiIgoP8hvOYsZi4iISDVe7MuiZ8+eoUqVKoiNjc3tqmjF1NQUd+/eZUgiIiKiPIs5i4iIiEg38mPOYsYiIiJSjd14ZtHbt28RGxuLrVu34sqVK9LPvn375H7Pys+mTZtgZmaGGjVq4O+//85yOVu3bkVsbKzC3VtZ4eDgAJlMpvHPtGnTsq1syl7Tpk1DxYoVERAQIPd6REQESpQoAZlMhj/++EPl8iEhIdDT04OpqSkePHigcbkBAQGQyWTw8vJSWieZTKZQJyLKPJlMhubNmyu87uvrC5lMhurVq+PLly9KlxUEAS1btoRMJsNPP/2kddni5z0r54IuXbrAxMQEL168UJgmk8ng4OCg8Lqut008Fz558gQA0K5dO8hkMjx+/FjlMp6enpDJZGjTpo3KeeLj4/Htt99CJpNhxowZWtUJUP8d2qpVK5ibm+P169darzcn5ETOUvWT2TKyO2cxYxUc4mdx7969cq/rOmOJxGOJiLKHqjwTFxeHNm3aQCaTYfbs2SqXv3fvHkxMTKCnp4fTp09rXG5ISAhkMhlcXV01rpM28lLGevXqFfT09ODi4qJynrz6d2pez1iAbnKWuvYrtmUREemWumxSuXJlVKxYUSfZROTq6oqKFStKbSK5TdV5Oi9kh02bNmm8Pm3wyb5sUqVKFdSuXVv6vUiRIqhQoUKW13vx4kUMGzYMNWvWxLFjx1CkSBG56dlVTnZp3LgxHB0dVU4/duwY3rx5k4M1ouxSsmRJrFq1Ct27d8ewYcPQvHlzlC5dWm6eT58+wcvLC4IgYM6cOahYsWIu1ZaIMmvq1Kk4ePAgrl+/Dl9fX8yZM0dhnmXLluHUqVOwt7fH77//LjfNwcEBT58+xePHj5U2BmWHEydOYP/+/Rg7dizs7OwQGRmp0XJZ3TZteXh44NixY9i7dy/GjBmjdJ6lS5fi5MmTOH78ONasWYOBAwcqzDN58mTcvXsXdevWxaRJk+SmiQ33giBkqo5z586V1uvv75+pdeQEXeUsdZixKKdkNWMFBATA29sbnp6evDGKKA8wMTHB/Pnz0bNnT0yfPh3u7u6oXr263DzJycnw9PREfHw8Ro4cqfZiVk5Kn7GSk5M1Wk5X+bF06dJo1KgRQkNDERERgZIlSyqsN6/+nZpfMhaQfTkro/artJiziIhyjomJCTZt2oTGjRtnKpuEhISgefPmcHFxQUhISA7XPvtpkh0+f/6cL9u4c/XJvlWrVqFGjRowNzeHubk5GjZsiL/++kvl/ImJifjtt9/wzTffwNjYWAoQBdXFixfRunVrVKtWLcOglFf4+PggICBA5U/lypVzu4qUBd26dUPPnj0RFRWF/v37K0wfNWoUnj59CldXVwwfPjwXakhEWWVoaIjNmzejUKFCWLBgAc6fPy83/eHDh5g0aRJkMhk2btwIc3PzHK/jqFGjYGxsjIkTJ2q1XE5vW+fOnaGvr489e/aonKdo0aLYsGEDAGDs2LEKTwH+/fffWLp0KYyNjbFp0yYYGGh+n5aYs8QGt5kzZyrkrDp16qBDhw7YtGkTLl++/FXlrPyGGatgY8YiKlhq1qyJcePG4cuXL+jbty8SExPlps+ZMwcXL15EpUqV1N5hn9PyYsby8PBASkoK9u/fr3KenP4OZcZSlB/br9JiziKigq5+/fr46aef8l020ZWMssPs2bPz5d9fuXqxz87ODnPnzsWVK1dw+fJltGjRAp06dcLt27eVzj916lSsWbMGy5Ytw507d/Dzzz+jS5cuuHbtWg7XXPfye1CigmvFihUoVaoUjhw5go0bN0qvHz16FBs2bECRIkXg7+/PbqKI8rHq1atj2rRp0p1dcXFxAP53p1dsbCyGDBmCFi1a5HjdgoKCcOvWLXTu3BmWlpZaL5+T22ZlZYWmTZvi/PnzePnypcr52rRpgwEDBuDz58/w9vaWntITf09JScHMmTNRpUoVrcoXc9aAAQMApN61rSxn/fTTTxAEAd7e3l9NziLKi5ixiAqW6dOno1q1arh+/bpcN9w3btzAb7/9Bn19fWzevBkmJia5WMv/yasZq2vXrgCg9uYpIGe/Q5mx5LH9iogofxg+fHi+yia6pi477N69O1/+/ZWrF/vc3d3h5uaGChUqoGLFipg1axYKFy6scBeYaMuWLZg8eTLc3NxQvnx5DBo0CG5ubli0aFEO11y3vuagJI4/oO5HmXv37sHb2xv29vYwMjJC8eLF0bJlS+zcuVPp/GL/uMr6W1fXr+6TJ09UjlMQGRmJzZs3w83NDeXKlYOJiQnMzc1Rp04dzJs3D/Hx8Wq33cvLS+12K6uPuExOdtlUvHhxrF27FkDqHZLPnz/H+/fv4ePjAwBYtGiRyq77kpKSsGTJElSvXh3VqlVDiRIl4OHhgbCwMJ3UdePGjWjRogXs7Oyk/VGlShWMGjVK6RhaT58+xbx589CiRQuULVsWRkZGKFq0KJo0aYI1a9YgJSVF6zqoO27FsS3U7cNTp05h+PDhsLOzg5GREUqUKIG6devC19cX7969k+ZTd9wGBQXB1NQUZmZmOHXqlNJymjdvrvb4S18/Vcfex48fMW3aNNSqVQuFCxeGsbExKlSogBEjRijt9kRdvQHFMdDSSkpKwvr16+Hq6orixYvDyMgI5cqVg6+vL54/f64wv7rxTUSurq6QyWQK3RKoeh0AgoOD1X5OAeDBgwcYOHCgdDevhYUFmjVrhq1bt6qsR8WKFaW7n5V59uwZDAwM1B5jWTF+/HjUq1cPDx48wOTJkwEACxYswLlz5+Do6Ih58+bJzS/uy6dPnwIAypUrB5lMJm1HdnX1sHz5cgBQ+V5rQtttS+vOnTvo3r07rKysYGJigmrVqmHhwoUqu7ny8PCAIAjYt2+f2jotXLgQDg4OOH36NPz8/ACkPun36NEjNGnSBKNGjZKbXzyPidJ/Zp88eSLlLLHBzsPDQ2nOat++PaysrHDr1i2MGDGiwOesr1V+z1h+fn7w8fFhxkr3/jg4OMDb2xsAsGnTJmmbKlasqPZ8p6moqCh4enrCyckJJUqUQKFChVCqVCk0btwY27dvVzo214kTJzBs2DDUqlULVlZWMDIygp2dHXr06IFLly5pXQd1x01CQoJ0nlF1DMfGxmLJkiVo0qQJihUrBiMjI9jb28Pd3V1hjA5V53tBEDBgwADIZDI0aNAA0dHRCuWo+4yJdUxPVb2vXbuGPn36yOXRxo0bY+3atUrPN2JuUHauzSj/vHz5EqNHj0aVKlVgamqKIkWKoG7duli+fDmSkpIU5s/os6Hqs6zuMw78bwxbVdsBALt370bbtm2lY9HW1hZ9+vTBnTt3VNZDJpOhSJEi+Pjxo9J1zpo1K8Mcl1mFChXC5s2bYWhoiDlz5uDKlStyd9NPmDAB9erVU7n85s2bUbduXZiamqJ48eJo27Ytzpw5k611TCs3Mpaq/Cj+hISEwN7eHs7OzggODsaHDx9Ulp1df6caGxtn+HcqM9b/fM3tV2nl95yV39uyMmpXAFS3Ldy5cwe+vr5o3LgxbG1tUahQIVhaWqJVq1Yq94M6ac8/Gf2o2v6TJ09iyJAhKF26NAoVKoSSJUuiS5cuOHfunNL50x5j69atg7OzM8zMzFC0aFG4ubmpbGcHVLerDBo0SGm7iig8PBzjxo1D9erVUaRIEZiZmaFixYrw8vLCP//8ozB/XFwcFi1ahAYNGqBo0aIwNjZGpUqVMH78eLm2LZG6NpjcyDYVK1bMdLbRRRtTZmUmm7i6uqJ58+YAgNOnT8sdw9k1dIu6tj/xYpuq776syMnskFPyzJh9ycnJ2LVrF2JiYtCwYUOl8yQkJMDY2FjuNRMTE4SGhqpcb0JCAhISEqTfVYX8vIJBKZW1tTXatm0r95qqgSuPHDmCbt26IT4+HpUqVULXrl0RERGB06dP49SpUwgMDJS6SNOlwMBAzJw5E7a2tnB0dESDBg0QGRmJCxcuYOLEiThw4ACCg4NhZGSkdj3p+4r/999/cfbsWV1XXyvu7u7w8vJCQEAA+vXrhxIlSuDVq1do27at0kefASAlJQXdu3fH/v37UahQIdSrVw+2tra4cOEC6tWrh379+mV7PU+cOIGoqCjUqFEDRYsWRVxcHC5cuIAlS5Zg48aN0uPpoi1btuCXX35BuXLlULFiRTRu3BivXr3CuXPncPbsWRw/fhy7d+/Olgsr//33n9oLCkDqHTfLli0DANSqVQtNmzZFdHQ07t+/j99++w3NmzfPsCEvKCgInTp1gkwmw+HDh6UTtCriH6qi0NBQ/Pfffxpt05s3b9CsWTM8ePAAxsbGcHV1hYWFBf755x/4+flhy5YtOHHihNx4EJn16dMndOzYESEhIShcuDCcnZ1RokQJhIWFYfv27Th+/DiCgoLg5OSU5bLUSUxMxJAhQ9TOs2vXLvTt2xfx8fGoXLky3NzcEB0djQsXLuDHH3/EqVOnVF7QA1LHN1H2+Vi+fLnG46hkhr6+PjZt2gQnJycsXboUFSpUgK+vL/T09LBp0yaYmprKze/o6AhPT0/s3r0bMTEx0rH08eNHmJubo1SpUlmuU3x8PAIDA2FoaIhmzZplej3abpsoNDQUbdu2RUxMDMqXL4/WrVvj7du3mDx5sso/oLp06YLhw4djz549ao8V8Y6xFi1aYNKkSdDX18eaNWtgZmaGgIAA6OnJ359Vq1YteHp6SudGT09PuelpP8eiCxcuKM1ZhoaGcHV1xe7du/Hvv//KTdMkZ6Vt7M/rOYvyb8YaMWIErK2tUblyZWasNLp164bz58/j7Nmz+Oabb9CkSRMAqZ9FdRcRNBUVFYWdO3eievXqaNy4MczMzPD69WuEhobin3/+wblz5xS6rvv555/x/PlzVK1aFY0bN4aBgQHu3buHnTt3Yu/evdixYwc8PDyyXDcg9SLCw4cPVU5//vw52rZtizt37sDU1BSNGzeGpaUlwsPDcebMGYSFhSEoKEhtGYIgYODAgVi3bh0aNGiAwMBAtV0QavMZU2bnzp3o06cPEhMTUaZMGXTu3BmfPn1CcHAw/vnnH+zduxcHDx5EoUKFNF6nKn///Tc6d+6M9+/fw8HBAa1bt0ZCQoI07tahQ4dw+PBhGBoaZrksdUJDQ7F582aV05OSktC7d2/s3LkTRkZGcHZ2hq2tLR48eIBt27Zh79692Lt3r8L7Lvr8+TM2btyIkSNHyr2emJiIlStXZuemKHBycsKUKVMwbdo09O3bF+3atcPNmzdRo0YN+Pr6qlxuxIgR8PPzg56eHpo0aQIbGxvcvHkTrq6uGDZsWLbXM7cylqr8KBLzo4eHB65cuYKDBw+ib9++KsvPjr9TXV1dUaxYMa3+TtVFxgLyfs5i+5Wi/Jqzvpa2LGUWL16MDRs2oHLlyqhevTqKFi2KZ8+eITg4GCdPnsT58+exePFirddrZmaGbt26KZ2mrp1l7NixWLRoEfT09FCnTh00bdoUz549w4EDB3Do0CGsW7dOutErvdGjR2PJkiVo3LgxOnXqhLCwMPz1118ICgrCzp070aVLF7n5P3/+jNatWyttV1m9ejV27dqltF3l5MmT6NatGz58+ICSJUuiZcuWKFSoEJ48eSLdSNWoUSNp/pcvX6Jt27YICwtD8eLFUbduXRQpUgRXr17FggULsGvXLunmjqzKL9lGFU3amLJK22zStm1bGBsbIzAwUOE7zsrKSqd1ff/+PSZMmKDTMlRlh6ZNm+o0O+hKrl/sCwsLQ8OGDREfH4/ChQtj3759+Pbbb5XO26ZNGyxevBjNmjXDN998g5MnT2Lv3r1qGzvnzJmD6dOnK7zeo0cPjT7YlpaW0hV+fX19henPnj2T/k0bbGJjY9X+4anMjRs34O3tjYoVK2L58uV4/fo1Xr9+rXaZzJSjqs5ZKUO8M+LNmzdq5xW78nj37p3cfGIZ4h19Dg4OmDJlityyYkBKu9zbt2/xww8/ID4+HqNGjcLPP/8sXYgJCwtDv379sHHjRpQrVw7u7u7SsuJdI+nrIW4DkBqk00978eKFtL3pp1laWmLz5s1o0KCB3OvR0dEYNWoUQkND8euvv0p3B6Qn3qXo7u4udVUCAHv37sXZs2el+qTdH2LYz+h914b43mS0zmHDhiEwMBAnTpwAAJibm2Py5Mkql9m6dSv2798PKysrbN68GTY2NjA1NUVSUhJmzpwp/aGt7H3XtE7prVy5EkWLFpV7LTk5GePHj8ehQ4ewYMECuZNGlSpVcPjwYYVBV9+8eYP+/ftj7969WLZsGdq1aydN0/QzmH4eHx8fJCQkwMbGBi9fvlTYts2bN2PZsmUoWrQoFixYIDcwLpD6faGnpycto+y4PXv2LAYNGgSZTIY1a9bAzs5OZV3Fz/DQoUNha2srvT5hwgT8999/CvVTduz1798fDx48gJ2dHQICAlC2bFkAqWHF19cXu3fvRqdOnXDs2DGpgUrd5y1tvR4/fizXn/iYMWOkAYJnz54t19XQ2rVrsXDhQnTt2hV//fWX9N0tfn7j4uJUvg/id9SLFy/k5kn/urjf161bh7t370r7Mf123L9/H3369IFMJsOyZcvQpk0baVp4eDh+/vln+Pv7o3LlynLBWyyvQYMGOH/+PP744w/UrVtXbvratWvRsGFD6e6+zHwHpKSkqF1OX18fo0aNwpw5c6TA6ePjgxIlSigsZ21tjSlTpuDEiROIiYnBkCFDYGdnh9jYWKlhJ/3xquw7WJ1//vkHCQkJqF69urQ/xS4vtVW5cmXMnj0bo0ePlrZt3Lhxcn+UpBUfH49evXohJiYGI0eOxMKFC6Vj6+bNm2jZsiXevn2rsJytrS0aNGiAv//+G2/fvlUbhsUGPD8/P6khb/78+fjmm28U5u3cuTM6d+4snRtV3YUYFhYm9be/adMmlTmrUaNG2L17N3bt2oVx48ZpnLMWLFiAWbNmKbyuSc7KKGMB2ZuztJXZMrTJWQUlY/Xo0UMqR1cZa+fOnahYsaJcQ3F2Z6y075cuM1ZCQkK2ZayBAweiRIkSOHv2LGrUqCHtW/G7N+0y4rGkzfYkJyfj6tWrCuOFvnz5El26dMGxY8dw9OhRVKhQQZo2evRo1KtXDxYWFnLLBAUFYcSIEfDx8UHFihUVbuJUJjY2VuVx8+LFC8yaNUs6B6fftpSUFHTr1g137txBkyZNsHDhQhQvXlyanpCQgHPnzsl9DtOf7wVBwC+//IKdO3eiVq1aWLlyJd68eaO0twJtP2Npia+/fPkSnp6eSExMxPfffw9fX1/pu/TZs2fw8vKSLn6PHj1aWl5VfhFfE+dJOy0yMhKdOnVCdHQ0pk2bhp49e0o3lrx//x4jRozA8ePHMXbsWAwdOlTaHxl9NlR9llW9npSUBB8fH+jr68PS0hIREREK27F48WLs3LkTNWvWxOLFi1GmTBlp2rFjxzBq1Cj07NkTJ0+elC7EiuXZ2NjA0NAQS5YsgZubG2QymbTPDx8+jJcvX0p5SlUeVUVdnkl7XH3//ffYtWsXbt++jTt37sDQ0BAzZsyQjpn0goOD4efnB1NTU6xbt04uA65evVpqdI6Li1M4j2RnxgIyl7O0yVhNmjRBkyZNEBISgpiYGKmng/Q8PDwwefJk7NmzR+3FPgBYsmQJTp48KX2HFi1aFOvXr1c5/6pVq7B//35YW1sjODhY6jY9KSkJw4cPV3lBWNcZC8jbOSsz7VdpsS2LbVlinbMjZ6XddlX7XVXbQvPmzfHDDz9I7ReiR48ewcvLC7///jsaNWqEmjVrStPUHVvie120aFGFY0Gkqp3lzz//xKJFi2Bvb48FCxagVq1a0rRLly5hwIABGDhwIOzs7JR+V65atQoBAQFyNx6sX78e8+fPh6enJ0qXLi3XdjJlyhSV7SoBAQGYPXu2QrvKq1ev0KVLF3z69AkDBgzA8OHD5W5AevfuHR4/fixtV0xMDHr27ImwsDB069YNkydPlm7qSEpKwsKFC7Fx40b07NlT7uKYNtlG3B+ZyTZAxsejLrKNsu2LjY3FlClT1LYxZSSjHCC+V9pkEw8PD9jZ2SEwMBD29vYKx7Wy7Ur/OcuIqs/ntGnTEBkZKb0f4nZpeg7JShv31KlTNW7jFm900KaNOyIiIsP6Z4qQyxISEoSHDx8Kly9fFiZOnChYWVkJt2/fVjpvRESE0KlTJ0FPT0/Q19cXKlasKAwePFgwNjZWuf74+HghOjpa+nn+/LkAQIiOjtaofnFxccKdO3eEuLg4pdOvXLkiABCuXLki9/qDBw80Wr/owoULgrm5udCoUSPh48ePGi+nbTmCoLrOWSnD3t5eACD4+/urnc/FxUUAIPj6+iot46+//hIACK1bt1ZYFoCQ/pCdMWOGAEBwdnZWWt7ChQsFAEKFChXktsPX11dpPQRBEPz9/QUAgqenp8K0x48fCwAEe3t7peWpeq/u378vABDq1q2rdLogCEL37t0FAMLWrVvV1idtGZ6enhq979oQ3xtN1jl37lxpv/j5+amd19HRUQAgrFq1ShAE+e2Ii4sTSpUqpfJ916ZOaSnbHykpKcKPP/4oABDGjx+v8boCAwMFAEL37t0zLCMtZcft3r17BQCCu7u70n2YmJgolChRQgAg7NmzR6PPYPrj5Pjx44KJiYlgZmYmhISEZLi8lZWVAEAIDw+Xe13VMZb+9YcPH0rbunfvXoX1x8TESGVs27ZNen379u0CAKF9+/ZK6yV+tzx+/Fh67c6dO4JMJhNsbGyUfl8+ePBAcHNzEwAIhw4dkl4PDg4WAAguLi4q3wfxOyo4OFjt6w8ePBCeP38umJmZCTY2NsKyZcuUHr89evQQAAgLFy5UWt7FixeVfoeJ5f3555+CkZGR4OHhITd91apVAgDhwIEDSo8xTQAQbG1tM5wvPj5esLCwEAAINjY2Qnx8vNr50+8zZceveLwq+w5WZ8GCBQIAoW/fvtJrSUlJwqVLl4SkpCTpNXXf02lps21bt24VAAhlypQRvnz5ojD9999/l/ZF2uM1bb3XrVuXYZ3Cw8MFPT096bhISUlRO39G+z8hIUEYNmyYAEBwc3NTmbPE7zgLCwuNcpaYjz58+JDpnJVRxhKE7MtZmZHZMrTJWQUlY6UtR1cZK20ZaWVnxkpbhi4z1ty5czOcV5uMpW470hKPpewQHh4uFC9eXAAg3LlzR+PlfvjhBwGAcOTIEY3mf/DggcrjpmPHjlJWUnYM79+/XwAglC5dWvj06ZPaMkRpz/cpKSlC//79BQBCw4YNM/xe0/Yzpuz1KVOmCACEUqVKCbGxsQrz7969WwAgFClSRO67s02bNgIAYdeuXQrLqMo/EyZMEAAIQ4cOVbo9L168EAwNDYUSJUpI56IHDx5k+NlQ9VlW9frixYsFAMKwYcOU5rB3794JJiYmgrGxsfDixQulZQ4ePFgAICxbtkxpeUuXLpXLheI+r1+/vlCqVClhzZo1Kr+b1FGXZ9J/Bnfs2CHt79GjR6tdb6tWrQQAwoQJE5ROr1WrlrRP05eTnRlLEBRzli4yliAoz/zpVa1aVTA2Nlb7eRZl5e/UtNT9naqrjCWWm5dzVmbbr7QpQxm2ZbEtS5W0ZanaFk2+Z9ITzw/jxo2Te13dsaVJplW2/cnJyYKNjY0AQLh8+bLSMubPny8AEMaMGSP3uniMjRw5Uml5derUEQAIs2bNkl7LqF1FEASl7SojR44UgNT2LE2sX79eACDUqlVLSExMVJienJwsVKtWTQAghIWFSa9rk23E9yoz2UYQMj4eszvbCILytqe///47wzamjGSUA9IeV9pkE03a0wThf9ulzedMEJR/Pi9fvizo6ekJTk5OwtSpU+W2S9NzSFbauNWVkdnskLZOGzZsUGjLUkWTc7ooV8fsA1L7inV0dISzszPmzJmDmjVrYunSpUrnLVGiBPbv34+YmBg8ffoU9+7dQ+HChVG+fHmV6zcyMoK5ubncT17Drg/+R7wDIKPuAURi38bpuy8T/fTTTwBS7zJQdgdudktOTsbJkycxY8YMDB48GN7e3vDy8pLuxrt//77KZWNiYgBAZfdxeU1ERAQWLlwo/b5z506VY9qFh4dL3Zb06dNHYbqxsTG+//573VQUwPTp0+Hl5QUPDw84ODhgy5YtKFWqFAYPHqwwb0JCAg4dOoRff/0VP//8s7QP16xZA0D9PtREbGwsRo0aBRMTE5XfdVeuXEFkZCSsrKwUulnQhNh1Z1xcHLZu3arwVKAyYj/8mn72ROvXr4eXlxcGDhwIALCwsEDnzp0V5jM1NUX79u0BpN6tLKpcuTKA1M+ysr65lTl69CgEQUC7du1Ufl+K3Zsq6ys+u4waNQoxMTFYtGiR0i4TU1JSpK7NevTooXQdderUQeHChXHt2jWlYyGULFkSPXv2xP79++X6y/fz80P58uXRoUOHbNoa1WbNmiWNTfTy5UucPn1a52WqIn6Pp73jMCu02TbxfPP9998rvZNa1XkIgNRd3d69ezOs08SJE6Xv0rCwMNy+fTvDZdQpVKiQ9CRL9+7dVeYs8T01MzMrcDmLUukyY4lPVelScnIy/vnnH2asXBIeHg4vLy/07dsXbdq0gaOjI6KiovDDDz9IT8Gk9fLlS6xbtw5jxoyBj48PvLy84OXlJX2nZTVPHTlyBAcPHkSbNm3kniJI69ixYwCAXr16KT1PqyOk6bqzTJkyGXbdCWj/GUtLfH+2bNkCIPVcY2JiojBf165dUaxYMXz69AlXrlyRXhfz1ObNmzXu4vvIkSMAVGcUW1tbVKhQAZGRkTp7kvrVq1eYNm0arK2tMWPGDKXzBAcHIy4uThpLSZmMcp+3tzeKFCkijYkLpHa7eOHCBQwcODBbukRVJy4uTq5brIMHDyI2NlbpvElJSVLXjsr+bgKQ4ZNtmZGbGUtTHh4eiI+Px9GjR9XOl1N/p+o6YwF5M2ex/Uo5tmXln5ylzOfPn7Fr1y5MnjwZAwYMkM7Le/bsAZD13KKJa9eu4eXLl/jmm2/g7OysdJ6MzneqjifxvJF2fLjMtquI+WrAgAEqtyUtsUwPDw+FniIAQE9PT+o+Om05BTnbqDJ79my1bUzZSZtskhtSUlIwePBgCIKAFStWqHxCPbvkpzbujOR6N57ppaSkyI2xp4yxsTFsbW2RmJiIPXv25OobmFUMSvLER1mLFSum0fzh4eEAUgfyVqZo0aIoXrw4oqKitOpSIjMePnyIjh07qj1hqOtjX9yWzPyB5e3tLfXZra+vj2LFisHJyQk+Pj46+3wMHDgQb9++RefOnXHjxg2EhoZiyZIlcl0KicRH262srFSesFTtw+xw6NAhuQYRV1dXbN68Wa4LIAA4f/48evToIXUPokxWx0mYOXMmnj59iunTp6vcZvGx+UqVKmk9PuDly5exc+dO6Y+NrVu3Kr34llZiYiI+f/4MPT09hS63MnL27Fm5fvjFQXWVEd9v8VgHUscda926NYKCglCrVi24urrKdb2qrFvER48eAQA2bNiQ4RgGkZGRCq+JAwpnRWhoKHbv3o0WLVqgZ8+eSrtQfPfunXS8pD/WlHn37p3SRqwRI0Zg06ZNWLFiBebOnYvjx4/j7t27Uj/+unT58mXMmTMHhoaGGDBgAFasWAEfHx+EhYVpfaxkB7HRKDsaOrTdNvF7TNXntlixYrCwsJDqmFa5cuXg5OSEkydPIjo6WuV7d+DAAWzZsgVFixZF586dERAQAE9PT1y4cEHpH0aZoSpnie/p+/fvC1TOov/RZcZ68eKFxuvNjIcPH6JLly5qL35/rRkrp7x//15uzCFDQ0MMGTJEGls4renTp2PWrFlqu+7JSp6Kj4/H8OHDYWRkpLR8kZinxMYibYwfPx6XL18GkDruX0hICNzd3dUuo+1nLK304zmp+tzJZDKUK1cO79+/l8tTgwcPxrp163Do0CFUq1YNtWvXlm5MUfU3kJinmjZtmmH9IiMjFbq5T/vZyKwxY8bg48ePWLZsmcpzo1jPkydPZpjflOU+IHVcXG9vbyxbtgx3796FgYEBli5dikKFCuHnn3+WGi51ZdKkSbh//z4aNmwIQRBw/vx5TJw4Ue7io+jdu3fSDWCqjgNd/N2UmxlLUx4eHvjtt98yzCa59Xfq15Cx2H6lGtuy8kbO2rRpk1bj5AKp7UXe3t7SPlQmJ8bLFM93//33X6bPdxmdN9J205zZdhVt85V40/Ivv/yCX375ReNyBg8ejPXr1xfIbKPM8ePHcezYMbVtTNlJm2ySG9avX4+LFy/C29sbDRs2RGBgoE7LU5YdAgICMGfOHIV5c7uNOyO5erFv0qRJaNeuHcqWLYtPnz7hjz/+QEhIiLQD+/btC1tbW+mNvXDhAsLDw1GrVi2Eh4dj2rRpSElJwfjx43NzMzKNQUmRGBJsbGxyuSba69atGx4+fIgOHTpg/Pjx+Pbbb2Fubg5DQ0N8+fJF7R1eKSkpePz4MYDMfSGkHQg5Pj4e9+7dQ1BQEIKCgnD//v0MT6ja2rJlC/bv34+SJUti3bp1CAsLQ8uWLTF16lR06NBB4YSZ28TGmsjISAQHB2PkyJFwcXFBYGCgNMZMbGwsOnfujDdv3sDb2xuDBg2Co6MjzM3Noa+vjwcPHqBSpUqZHh8MAB48eIBFixbB0dFRZwPM3r59G6ampjh69CgmTpyIPXv2YMOGDdKdgcqIT2SUKFFC6wsK/v7+0h1vqgafzsi+ffvw66+/YseOHTh48GCG77F4d02tWrXk+s0Xffz4Ufqjun79+grTlQ2aLjp27FiGd05++fIFM2bMgKGhIZYvX55hPQH1T32JVH1HODk5oWnTpli/fj2mTZuGpUuXwszMTO0+zQ4JCQnw9PREUlISfvvtN0ydOhV37txBcHAwRo8enSODxacnXgjO6h9bubFtHh4euHbtGg4dOqT07q+3b99Kd0f6+fmhe/fuOH/+PK5evYo5c+Zk6ntczFniOBriwOfKcpbYyGdsbIxHjx4ViJxF8vJ7xrp9+zaaN2+O6dOnM2PlgmrVqkEQBCQlJeHZs2dYvXo1FixYgI8fP2LTpk1So9TevXsxbdo0FC5cGMuXL0eLFi1gY2MDExMTyGQyTJ48GXPmzMlSnpo7dy4ePXqEqVOnyo0VmJ0uX76M+vXr45dffkGnTp3w008/4ebNmyhVqpTKZbLyGRPfD3d3dxw+fFjr5StWrIg//vgDq1evxpkzZ3Dv3r0MlxFzSrdu3WBmZqZ2XmUNuGk/G2l9/vxZehJCnZCQEGzfvh1NmzZV+6SaWE9HR0c0btxY7TrVNTwOGzYMy5Ytw/Lly/HDDz9g9+7d+P7779Xu0+xw+vRp+Pn5wcTEBAEBAUhJSYGTkxOWL18ODw8PjXrgyAn5IWPVqFEDjo6OOHr0KOLj45WO+5lT36FfY8bKC+1X4hNkeVF+z1kFpS3rm2++QY0aNZTeuLB7926FYyg8PBw9evRAXFwcxo8fj969e8PBwQGFCxeGnp4ejh8/jjZt2mQpt2hKPN+VKlUKbdq0kWvXSE/dOPDqpN2OjNpV0lLWrqIpsZwmTZooHYs+rapVq0r/r1ixIkJDQzFp0qQCl23S+/LlC4YNG5ZhG1N2yevZ5N27d5g8eTKKFSuGefPm6bw8VdlhyZIl0ti0+UmuXuyLiIhA37598erVK1hYWKBGjRoIDAxE69atAaQOupv2qYX4+HhMnToVjx49QuHCheHm5ibdAZ/f5IWglBfduXMHgPwXvDq2tra4d++edPdGetHR0YiKigKQ2sCvK/fu3cPNmzdhaWmJffv2KVwwyejx8Lt37+Ljx4+wtrbW6Amg9MTukdJas2YNfv75Z8ybNw8TJ07McABvTYWHh2P48OFSGVZWVmjevDkGDx6MFStWwNvbG2fOnJH77IpPK719+xafP39WeueDpl04ZkWJEiWkbpE6duyICRMmSN3q/f3333jz5g1q166NjRs3KiybHY/4Dx06FF++fIGfn5/awCwODP3gwQOtQ6WpqSkOHTqEFi1awN7eHs7OzhgxYgSaNWumskFM28+dMuJx++TJEwiCoPRONPHul/RPr5mZmWHRokVYtGiRwjIODg4KAwSLZTVu3FhpEHr48KHaxr/KlSurvEvK1dU1w4t9CxYswOPHjzF+/HilXZeJrKysYGJigri4OCxcuDDTgRwAhg8fju7du2PatGn466+/8PPPP+v8yTqxccbZ2RmTJk2CTCbDxo0bUb16dWzcuBHdu3dXedFUV0qWLAkAau+61ERmtk08blV9V3348EHpU32irl27YurUqdizZ4/Si32DBw9GREQEOnXqhB9//BFA6qDojRs3xowZM9CpUyfUqFFDq+0Uc5b42Xvy5InKnCW+p3Fxcfj222/zfc4iRbrMWLa2tjrr9kXMWCVLlsSKFSsUvne/9oyV0wwMDFC+fHnMnz8fN27cwJYtW9CtWzd07NgRQGqXN0BqF37KunfKap569OgR5s2bBwcHB0yePFntvGKe0qRxKL369esjMDAQFhYWmDx5MmbMmAEvLy/89ddfKu+2z848pepzB0BqVE2fp7799lup+/C0QkJC0Lx5c6VlPXz4EBMmTECdOnW0rquyzwaQeq7JqEEsMTERQ4YMgYGBAVasWKF2XvE9qVSpUpbucnd0dISbmxs2b96MT58+ITExUfq86crnz5/h7e0NQRAwe/ZsqbFoxowZGDduHPr164ebN2/KNUhaWlrCyMgICQkJePLkidLjSRd/N+VmxtJG165dMX/+fAQGBqJTp05y03Ly79SvLWPlhfarT58+YejQoTlerqbYlpU3claTJk0wZcoUpe0BISEhChf7Dh06hLi4OHTp0kXpRQVddfWojPj+WVpaIiAgIMN2DWUeP36MWrVqKbwufo/Z2dkplKeqXUWVsmXL4v79+7h3757SC2PplS5dGgDQqVMnjB07VuNygNQLkQUx26S3YMECPHjwAP3791fbxpQdYmJitM4mOW3ixIl49+4dVq5ciRIlSui0rPzcxq1Kro7Zt2HDBjx58gQJCQmIiIjAiRMnpHAEpH540wZ6FxcX3LlzB/Hx8Xj79i02b96cL++ayQtBKS9KTEyUxvJq0qSJRsuI/UerekxfvGhToUIFnd61KYawkiVLKn0yauvWrWqXF08abdq0ybY6iY3FMTExSrtCzKyffvoJHz58QJ8+feS6h5w3bx7Kly+Pf/75B4sXL5Zbxs7OThqP4I8//lBYZ0JCAnbt2pVtdcyIeLK4e/eu9Jq4D8WGofQy2ocZ2bVrF4KCgtC5c2e0a9dO7bx16tSBlZUVIiMjsX//fq3K6datG1q0aAEgtdFn4cKFiImJQa9evVR2p3X8+HEAmn/ulHFyckKxYsUQHR2Nffv2KUyPi4uT+k8X65dZ4vt38OBBpePc6dLTp08xe/ZslCpVCr/++qvaefX19aVzmtj4mVldunRB2bJlMW/ePAiCgGHDhmVpfRk5e/YsFi9eDCMjI2zatEn6XnNwcMCCBQsApAZhZRe3xHFvkpKSsr1etWvXBvC/P6YzI7PbJt7dtnPnTqWfpc2bN6stt0qVKqhSpQoCAwMV/sjcvn07du3aBUtLS2l8UCC1sXns2LFITEyEl5eX0nLFP36Vvd9izpo6dSoAYNy4cSpz1q1btwCk9jmf33MWKdJ1xlI1jlZ2EM/PNjY2zFhKMhag2+9ddcSxqpTlKXt7e4X5IyIiEBQUlKUyhw8fjvj4eCxZskTpmHZpiRcUtm/frvXTIHPmzJFuqvn111/RoEEDBAYGqhxvOTOfMWXEjJS2S/a09u3bh/fv38Pc3DxTjVhpiXkqqxklM5YsWYI7d+5g6NChqF69utp5W7ZsiUKFCiEkJAQRERFZKnfEiBH4/PkztmzZgvr166NevXpZWl9GxowZg8ePH6NZs2YYMWKE9Pro0aPRqFEjPHr0SKG3DwMDA+kJxm3btildrzi2Y3bKzYwFaP49pm4c5Jz8O/Vrylh5of3q06dPaNu2Lf77778cL1sTbMvKHzlLGXW5RRAEpd8LulK3bl1YWVnhzp07mR63XdX5QXxdPO6AzLeriPlq3bp1Gs0vjse3a9cunT8hmV+yTVpiG5OdnR2GDBmiwxqmmjt3rtbZBMi5vzcuXryIDRs2wNnZGQMHDtRpWYD67FCmTJl80cadXq5e7Psa5YWglBe7Pvjy5QuGDx+OyMhIuLq6avz4f//+/WFubo6rV69i9uzZcieOa9euYebMmQBSw7cuVaxYUerqMe2At0DqnUK///67ymWfP38ujTcyaNCgbKuTOHC5mZlZlp4oSmvt2rUIDAyEjY2NQj/OZmZm8Pf3h0wmwy+//KIwgPHIkSMBANOmTZO7wzo5ORljx46VupLMLu/evVP6x+q7d+8wceJEAKkXw0Ti3TMnT55UWG7t2rX4888/s1Sf0aNHw9TUFEuWLMlwXgMDA0yZMgVA6qDHly5dUpjn0qVLcv2ti9LfbT5kyBC0b98ely9fVnpx6vjx41i9ejUMDQ2VPm2kKUNDQykojB07VrrrHEj942fEiBGIjIxE+fLlpT/SM8vJyQkeHh54/vw5unbtqvSOmZiYGGzbti3bBzOfOnUqYmNjMWnSJI3udPL19UWhQoUwbtw4bNq0SekAv7du3VLaYJGWvr4+ZsyYgfbt22PUqFE6vdsrNjYWXl5eSElJwfTp0xXuTh04cCBatmyJ8PBw6XOdlni3YGb/QFGnUaNGMDIywo0bN5Q2gmYkK9vWrVs32Nra4tmzZ5g0aZLcvrx165Z0vlHHw8MDcXFxcncnvn79WrpLecWKFQp37opdFl67dg2zZ89WWGd2vd/iYOhZvRhPeU9ByVhhYWG4cOGC3DRmrFTi90BWGulVuX79utInfYKDg3Ho0CEAyvPU2rVr8eXLF+n16OhoeHp6qn0COiMnT57EkSNH4ObmpvBEjzIdO3aEk5MTXr58ie7duytsR3x8vNK7xQH5PGVgYIBt27ahSJEimDhxIm7evCk3b2Y/Y8p06tQJFSpUwJs3bzBixAi5mzweP36MMWPGAIA0ZmFWjBs3DkWLFsXixYuxaNEiuf2Vtsys3vCWXnR0NH777TeULl0a06dPz3B+a2trDBs2DDExMXB3d0dYWJjCPAkJCTh48GCGT3G2bt0affv2haura4Y3bWXVmTNnsHbtWrnPr0hPTw/+/v4wMTHBypUrFf5+FDPIsmXLpPOzaP78+bh69Wq21zc3MxageZ6pW7cuypQpg4MHD8p9PvLy36n5OWPlhfYr8ULfrVu3sHLlyhwvPyMFJWcV9LYsVcTcsnv3brx69Up6PTk5Gb/++qvCd7AuGRoawtfXF4IgoEuXLtJwNGklJyfj1KlTOH/+vNJ1rFq1SmE//v7777h48SKKFCkiNxSIk5MT2rRpo3W7yujRo1GkSBEcPHgQU6dOVbghNSIiAqGhodLvrVq1Qt26daXx15SNN/j+/XusXr06yxeS8ku2SUtsY1q8eDFMTU2ztV7pBQYG4s8//8xUNhHP0w8fPlQ7LndWiVl3xYoVOu/NJKPsMHfu3DzTxq2NXO3GsyBJe0crkNptw6dPn+Reu3XrFgYPHoxvvvkGc+fOzZbHwZWVo05MTIzOx3nS1oYNGzBp0iRERkbC1tZW7qmGjFhbW2Pbtm3o3r07pkyZgi1btsDJyQkRERE4ffo0kpKS4O3tjf79+yt9v0+cOKFwB4v4B+SVK1eki0IisYHi/fv3mDhxIrp37w5nZ2dYWVlh6NChWLp0KVq2bImmTZvCxsYG9+/fx9WrVzF16lSlDcFjx46Fv78/oqKiYGZmhtWrV2P16tVy8/z7778AgNDQUHh5eaFnz54Kj/Lv2rVL+nJJSEjAvXv3pKe1JkyYkC3dSz158kT60l27dq3SgaebNWuGYcOGwc/PD15eXjh79qz05TxkyBAEBQXh0KFDqFmzJurXrw9bW1tcuHABr169wqBBg7Bq1aos11P0/PlzdO7cGd988w0cHR1RvHhxvHnzBv/88w/i4+NhZWUlt0+cnJzQqVMnHDhwAE5OTnB1dUXx4sVx/fp13L9/H5MnT8asWbMyXZ8XL15g5syZSu8YU2bEiBG4f/8+Vq9ejd69e2PhwoWoVKkSPn78KHX3ERwcLNcNgyobN25EjRo1MH/+fLRt2xYuLi54+vQpPDw8cOXKFejp6WHy5MlZHvdm8uTJOHfuHAIDA/Htt9+iefPmMDc3x7lz5/Ds2TMUL14ce/bske4Iygp/f398+PABf/31FypVqoSaNWuiXLlyEAQB9+7dw/379/HlyxfcvXs3W7s9efHiBVq3bp3h05mi2rVrY+vWrfDy8oKXlxemTp2Kb7/9FiVKlEBUVBTCwsLw4sUL9OjRA127dlW7rr59+2rV73tmjR8/Hv/++y8aNGigtJsNmUyGDRs2oHr16ggICED37t3h5uYmTffw8EBwcDD69OmD7777Dnp6erCwsMC4ceNQqVKlLNXN2NgYbdq0wcGDBxESEqLxfsiObTMxMcG2bdvg5uaGRYsWYf/+/ahbty7evXuHkJAQuLu748qVKwrdzqbl4eGBmTNnyo1x2b9/f0RFRaF79+7o0aOHwjJGRkYICAhAw4YNMWvWLHTu3FluTAUPDw8sXLgQrVq1QosWLaRGmHnz5ikdh0CZxMRE/P3339L7mxdpkrOyW2bLSF/X3JRTGUsZXWQsT09PrF+/XmcZa+LEidDX15ebJz9krAYNGsDGxgbXrl1D7dq1Ub16dcTGxqJevXpZbiQMCAjAypUrUatWLdjZ2UkNguIFrw4dOqB9+/bS/CNHjsTmzZtx9OhRlC9fHg0aNEBiYiJOnz4NU1NT9OvXT2l36Zp48eIFjI2NFf4YV0VPTw/79u1DmzZt8Ndff6Fs2bJo0qQJLC0tER4ejhs3bqBo0aIaPW1Yvnx5LF++HJ6enujVqxcuX74MY2NjbNiwAVOnTsXr16+1/owpY2hoiD///BOtW7fGunXrEBgYiIYNG+LTp084deoU4uPj4ebmli0Xquzs7HDgwAF4eHhg7NixmD9/PqpVq4bSpUsjOjoad+/exX///Yf69etn6Yaw9MQxzlavXq1yLKL05s6di1evXuGPP/6Qxhb6P/buPcrqut4f/wsEBgSGi4DcL4ooXsC4FWmGpYYWSOdr51QaaZdzVDxf63RO5Um/QurBLtbRX0WeMvWILFtamplCSiJhEoKipARa3IJBQJkZGGEYmc/vDxtwZIYZYH/2bR6PtWYt957P5/N879nsmZf7uff+HHfccdGmTZv429/+FsuXL4+qqqp47LHHDnrevoi330VzOB+NdijKy8v3vXDv29/+9r5Xf7/TsGHD4qabbop/+7d/i8997nOxYsWKfS8kmzRpUkybNi1++MMfxgc+8IE466yzok+fPvHiiy/GypUr4+qrr270XaaHK5czVsSB82Pd78F3z4+tWrWKf/iHf4hbb701fve738VHPvKRjP9/6tlnnx3dunXLyP+nFsKMFdHwnPXMM89k/Pmrd2c0NWdVVVXFVVddFX/5y1/iRz/60QF/o3PNc1mF8VzWwUyaNClGjx4dy5Yti2HDhsUHP/jB6NixY/zxj3+MTZs2xde+9rWsnDOszlVXXRXr16+P73znO/HpT386brrpphg6dGh06NAhNm/eHMuXL4/y8vKYNWtWvO997ztg/3/5l3+JD33oQ/GBD3wg+vXrF3/6059ixYoVcdRRR8XPfvazA94lOnPmzHjrrbcafF5l7dq18cILLxzwvMrAgQPjgQceiIsuuihuuumm+OlPfxrjx4+Ptm3bxrp16+L555+PT3/60/ve5dq6det46KGH4qMf/Wjcfffd8cADD8TIkSNj4MCBsWfPnvjrX/8aK1asiL1798all17a4DtMm6uQZps6dc8xfeITn0j1Y2PLy8vjC1/4QkQc3mwycODAGDNmTCxdujROO+20GDNmTLRv3z569OgRN998c8bW+be//S2+8IUvHNF5IpujObPD2LFjczI7HLGkhamoqEgiIqmoqGjW9rt27UpefvnlZNeuXQ1+f926dcnRRx+dRERBfR199NHJunXrmvUzWL16dZPbDBo0KImI5M477zzodh/84AeTiEiuv/76fdd97WtfS0466aTk2muvTbZs2dLovnVrb8jLL7+cfPazn0369++ftG3bNunatWty9tlnJ/fdd1+Dt+P666/PyM/xnbe3trY2+a//+q9k9OjRSadOnZIuXbokZ5555r41NLT+up/boXzdc889+/b/7Gc/e8D3W7dunRxzzDHJOeecU+/2N1fdz+bdt23ChAlJRCSXXXbZQfevqqpKhg4dmkRE8q1vfave92pqapJbbrklOfnkk5N27dolxxxzTHLhhRcmy5cvT+68884kIpLPfvazzVpTU7Zu3Zp85jOfSUaNGpUcc8wxyVFHHZV06tQpGTlyZPLVr3412bRp0wH77NmzJ/nOd76TnHbaacnRRx+ddO/ePTnvvPOS3/72t8maNWuSiEgGDRpUb5+mHh9198sJJ5yQVFdXH/D9uvuwsdv22GOPJR/+8IeTY489Nmnbtm3Ss2fPZNy4ccmMGTOS119/fd92B/v51R2nVatWyYABA5I33ngjWb58eTJw4MDkk5/8ZPL00083ejsaW19j19fU1CQ//OEPk/e+971Jp06dkpKSkmTo0KHJ1VdfnSxatKjRn1Nj6h4ja9asOeB7e/fuTebMmZNccMEF+34+xxxzTDJs2LDksssuSx588MFkz549+7Z/8sknk4hIPvjBDzaaV/c76sknn2zw+nbt2iV//vOfD/h5NfXzX7NmTfLlL385OfXUU5OOHTsm7du3TwYNGpRMmDAhufnmm5NXX321WetoyMF+Nza1X79+/epdN3/+/KRVq1ZJhw4dkj//+c8H3f/2229PIiLp27dvsn379n3X7927N5k5c2ZyyimnJO3bt9+3vnfelrqf1zv/FjTXb3/72yQikn/8x39MkiRJ3nrrreTZZ59N3nrrrXq37d2P1UzctiRJkhUrViT/8A//kHTv3j0pKSlJhg8fnsycOTOpqak56L/XOscdd1zSuXPnZPfu3cnPfvazJCKSXr16JVu3bj3omq655pokIpKRI0fW+3e9a9eu5Ktf/WoydOjQpF27dvt+3u9cQ1O/Q3/5y1826/f7OzU2Hx3KnNXUjJUkxT9nFcuM9c7bktaMdccddySnnnpqqjPWk08+ue92pDlj3XzzzfVuWyZmrBUrViSTJ09OevbsmbRu3brBv3d1P5ND8fjjjyf/+I//mBx33HFJx44dkzZt2iS9evVKzj333GTmzJn1fvfWWbNmTXLxxRcnAwcOTEpKSpJBgwYll19+ebJ58+Z9P4Pm/v5fvXr1vr8ZEZH8v//3/xrc7mD/hnfs2JF861vfSsaOHZt07tx535omT56c3HffffUeh039/f3kJz+ZREQybdq0JEnefoyNHDnysB9jjV2/YcOG5Morr0yGDBmStGvXLuncuXNyxhlnJP/zP//T4M88SRr/fdLU/PPaa68l1113XTJq1Kikc+fOSbt27ZL+/fsn73//+5Prr78+efHFF+tlNDW7NjYz111/sLU09fN/9NFHk3/4h39I+vXrt+/30fDhw5NPfvKTyZw5c5Kqqqom11F3O96pqTmuMY3NM1OnTk0iIvnwhz+c1NbWNrr/3r17kzPPPDOJiOSKK6444Ps/+9nPktGjRyft27dPunTpkpxzzjnJk08+We8+bey2ZGLGSpID56y0ZqzmzI91nnrqqSQiki9+8Yup/H9qSUlJxv4/9XBmrCQxZ2VixkqS4pmzPJfVtHc+Thu73xv7f7UdO3Yk//mf/5mceOKJSfv27ZNevXolU6ZMSZYuXdro39CD/ds62N+fOk39LX366aeTyZMnJ4MGDUpKSkqSzp07J8OGDUumTJmS/PSnP03eeOONetu/8z6aNWtWcvrppycdOnRISktLk4kTJyZPP/10gzmrV69u9HmVU089tcHnVeqsW7cuufrqq/f93Dp16pQMGzYs+dznPpc888wzB/ysdu/enfz4xz9Ozj777OSYY47ZN1OefvrpybRp05J58+Y1+vN6t3ffL+++Pw5ltkmSpu+PNGabdz/H9O7bkdZsMn78+MOeTdatW5d8+tOfTvr06ZO0adOmwZ9J3e062HMiDal7fHbv3j3Ztm3bAd9/9/9DNOf3+zv3O5znuFevXp3q7HDHHXcc8FxWY5rzN71OqyRJ+QNz80xlZWV06dIlKioqmtW27969O9asWRNDhgyJ9u3bN7jN+vXrD/gc6fXr1zd67q9MOtycHj16NHu/tF/5WIgZa9eujSFDhsSdd95Z7+Sth5oxePDgGDx48AFvj27IXXfdFZdddlncc889GX0FyrtNnz49ZsyYccBty7RD+Vkd7poK7d+VjMLJKYaMVq1aRb9+/Rr8ONhMauh21P0+u/7662P69OmHdLwkSWLEiBHxyiuvxN/+9rfo1q1bPP/88/Ge97xn36t9W7VqFYMGDcrpSZEb8x//8R/x3e9+N37961/Hxz72saxkNvU7dNKkSfGb3/wmnnvuuQZP6N6QxuajQ5mzmjNjReRuzjqSjObOWcXwuyTTOY3NWIeacTgz1pNPPhn9+vVL7edV91i8+eabGzwXRiY19LMaPHhwrFu3LmPnSymWf78yZByug80zufrdm8kZq0ePHrF37956c1Y+zFi1tbXRt2/fSJIkysrKUv+Yr4NJY8aKMGcdjOeyjkwxP5dVp9Duk0xk1H0c46HOePl2O2QceUZTc0Dat2PChAnx1FNPxZo1a2Lw4MGp5TT3dhzJc9xp/azq1nTHHXfEiBEj6j2X1Zjm/k2P8DGeGTFw4MADho3OnTtnZbjPVg4A5INWrVrF9773vTjvvPPi5ptvzurHqmTCF7/4xejYseMRn2spU5599tl45JFH4tJLLz2kJ6GyKVdzlhkLgJbk3TPWd7/73VwvqUGtW7eO2267LV5++eV4/fXXo2fPnrleUoMKYcaKMGcBQDFR9sFh6NatW8ycOTNGjx59RMf57ne/G506dWrWtmeeeWbceeedDX6uMkBLcu6558aUKVPihz/8Yfzrv/5rrpdzSIYNG3bIr7RP0zXXXBOdO3eOmTNn5nopEBG5nbFOOumk1M8FCZDP3jljfelLX4o+ffrkekkN+sd//MdcL6FJZizykeeyAIqbsg8OQ5cuXQ444fHhuOiii5q97dChQ2Po0KGpnrAVoFA8+OCDERGxd+/e2Lp1a45XU7ieeOKJXC8B6snljBURyj6gxaubsSLenrM4PGYs8pHnsgCKm7IPAAAAAAAKTKbOxwwUPmUfUM+ECRPi9ddfz6vzCkyYMCEiIq/WBIXu+uuvj5qampxkn3766XH99dfve2xn2vXXXx9du3ZN5diFyO9QyA91j8WTTjopJ/lf+tKXory8PCfZUIzSnmcOhxkru8xYAOSTXM8ml156aZx22ml5Myvk49/pujWNHDkylaJe2QfUM2HChOjXr19enSx7woQJefU/0VAMpk+fnrOPUjn99NNTHbby6Zx4+cDvUMgPdY/FXP3u/dKXvpSTXChWac8zh8OMlV1mLADySa5nk0svvTTOOOOMvCr78u3vdN2a9u7dG88//3zGj98640cEAAAAAAAAskLZBwAAAAAAAAVK2ddMTnYKAPC2TM5FZiwAgP3MWQBAnUP5W67sa8JRRx0VERE1NTU5XgkAQH6om4vq5qTD0abN26eOrq6uzsiaAACKQSbmLM9lAUBxOJS5QNnXhLZt20ZJSUlUVFR4RRQA0OIlSRIVFRVRUlISbdu2PezjtGnTJjp27BhvvPFG7N27N4MrBAAoTJmaszyXBQCF71DngjZZWFPB69GjR2zcuDH+9re/RZcuXaJt27bRqlWrg+6zd+/e2L17d+pry0aODBkyZBRKRrZyZORPRl1JtHv37iN69TNNS5IkampqoqKiInbu3Bn9+vU74mP26NEjNmzYEGvWrIkuXbpEhw4d4qijjsqLOUtG/uXIkCFDhozs5pizsietOetQn8uKKJ7HiIyWl5GtHBkyZMjIxPEjGp+xDncuUPY1Q2lpaUREbNu2LTZu3NisfbZs2ZKVV09lI0eGDBkyCiUjWzky8iejtrY2tm3bFmvXro3WrX1gQTaUlJREv3799s1HR+Loo4+OIUOGxJYtW2L79u2xbdu2Zu1XDP92iykjWzkyZMiQISO7Oeas7MvknHU4z2VFFM9jREbLy8hWjgwZMmQcqebOWIc6F7RKWtj7+SsrK6NLly5RUVFxWMNTTU1Nsz5q6oorrohZs2YdzhIPSTZyZMiQIaNQMrKVIyN/Mnbu3BljxoyJpUuXRqdOnVLL4W1HHXXUQT864kjmrLpXrtXW1ja5bTH82y2mjGzlyJAhQ4aM7OaYs7IrzTmruc9lRRTPY0RGy8vIVo4MGTJkHKnmzFhNzQUN8c6+Q9S2bdtm/ZBff/31aN++ferryUaODBkyZBRKRrZyZORPxp49e2LdunXRrl27rPz7Ij2tWrWKdu3aNWvbYvi3W0wZ2cqRIUOGDBnZzTFnFY/mPpcVUTyPERktLyNbOTJkyJBxpNKasXwOAwAAAAAAABSonJZ9s2bNihEjRkRpaWmUlpbG+PHj47HHHjvoPv/93/8dJ554YnTo0CEGDBgQX/7yl7NyglcAgEJizgIAyDwzFgCQj3L6MZ79+/ePm2++OU444YRIkiTuvvvuuPDCC+P555+PU0455YDt58yZE1//+tfjZz/7Wbz//e+P1atXx6WXXhqtWrWK733vezm4BQAA+cmcBQCQeWYsACAf5bTsmzRpUr3LN910U8yaNSsWL17c4ID0hz/8Ic4444z49Kc/HRERgwcPjk996lPxxz/+MSvrBQAoFOYsAIDMM2MBAPkob87Zt3fv3rjvvvuiqqoqxo8f3+A273//+2PZsmWxZMmSiIj461//Go8++mhccMEFjR63uro6Kisr630BALQk5iwAgMxLa8aKMGcBAIemVZIkSS4XsGLFihg/fnzs3r07OnXqFHPmzDnowHPbbbfFv//7v0eSJPHWW2/F5ZdfHrNmzWp0++nTp8eMGTMOuH7ixInRtm3bjNyGhixZsiTGjRuX2vGzmSNDhgwZhZKRrRwZ+ZNRU1MTc+fOjYqKiigtLU0tp1CZs2T43StDhgwZxZmRjRxzVuPSnrEizFkyZORrjgwZMmQcqdRmrCTHqqurk1deeSVZunRp8vWvfz3p0aNH8tJLLzW47ZNPPpkce+yxyU9+8pPkxRdfTH75y18mAwYMSL75zW82evzdu3cnFRUV+742bNiQRERSUVGR1k1KkiRJJk2alOrxs5kjQ4YMGYWSka0cGfmTUVFRkZW/64XKnCXD714ZMmTIKM6MbOSYsxqX9oyVJOYsGTLyNUeGDBkyjlRaM1ZOz9kXEdGuXbsYOnRoRESMHj06nn322bj11lvj9ttvP2Db6667Lj7zmc/EF77whYiIOO2006Kqqir++Z//Ob7xjW9E69YHfippSUlJlJSUpHsjAADykDkLACDz0p6xIsxZAMChyZtz9tWpra2N6urqBr/35ptvHjAEHXXUURERkeT200gBAPKeOQsAIPPMWABAruX0nX3XXHNNnH/++TFw4MDYsWNHzJkzJxYsWBDz5s2LiIipU6dGv379YubMmRERMWnSpPje974X73nPe+K9731vvPrqq3HdddfFpEmT9g1KAACYswAA0mDGAgDyUU7Lvi1btsTUqVOjrKwsunTpEiNGjIh58+bFueeeGxER69evr/fqp2uvvTZatWoV1157bWzcuDF69uwZkyZNiptuuilXNwEAIC+ZswAAMs+MBQDko5yWfXfcccdBv79gwYJ6l9u0aRPXX399XH/99SmuCgCg8JmzAAAyz4wFAOSjvDtnHwAAAAAAANA8yj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUDkt+2bNmhUjRoyI0tLSKC0tjfHjx8djjz3W6PYTJkyIVq1aHfD10Y9+NIurBgDIf+YsAIDMM2MBAPmoTS7D+/fvHzfffHOccMIJkSRJ3H333XHhhRfG888/H6eccsoB2//yl7+MPXv27Lv8+uuvx8iRI+MTn/hENpcNAJD3zFkAAJlnxgIA8lFOy75JkybVu3zTTTfFrFmzYvHixQ0OSN27d693+b777oujjz7agAQA8C7mLACAzDNjAQD5KKdl3zvt3bs37r///qiqqorx48c3a5877rgjPvnJT0bHjh0b3aa6ujqqq6v3Xa6srDzitQIAFBJzFgBA5qU1Y0WYswCAQ9MqSZIklwtYsWJFjB8/Pnbv3h2dOnWKOXPmxAUXXNDkfkuWLIn3vve98cc//jHGjRvX6HbTp0+PGTNmHHD9xIkTo23btke09qbWd7B1FVKODBkyZBRKRrZyZORPRk1NTcydOzcqKiqitLQ0tZxCZc6S4XevDBkyZBRnRjZyzFmNS3vGijBnyZCRrzkyZMiQcaRSm7GSHKuurk5eeeWVZOnSpcnXv/71pEePHslLL73U5H7//M//nJx22mlNbrd79+6koqJi39eGDRuSiEgqKioysfxGTZo0KdXjZzNHhgwZMgolI1s5MvIno6KiIit/1wuVOUuG370yZMiQUZwZ2cgxZzUu7RkrScxZMmTka44MGTJkHKm0Zqycf4xnu3btYujQoRERMXr06Hj22Wfj1ltvjdtvv73RfaqqquK+++6Lb37zm00ev6SkJEpKSjK2XgCAQmHOAgDIvLRnrAhzFgBwaFrnegHvVltbW+8zyRty//33R3V1dVxyySVZWhUAQOEzZwEAZJ4ZCwDItZy+s++aa66J888/PwYOHBg7duyIOXPmxIIFC2LevHkRETF16tTo169fzJw5s95+d9xxR0yZMiWOOeaYXCwbACDvmbMAADLPjAUA5KOcln1btmyJqVOnRllZWXTp0iVGjBgR8+bNi3PPPTciItavXx+tW9d/8+GqVati0aJF8dvf/jYXSwYAKAjmLACAzDNjAQD5KKdl3x133HHQ7y9YsOCA60488cRIkiSlFQEAFAdzFgBA5pmxAIB8lHfn7AMAAAAAAACaR9kHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABUrZBwAAAAAAAAVK2QcAAAAAAAAFStkHAAAAAAAABSqnZd+sWbNixIgRUVpaGqWlpTF+/Ph47LHHGt3+rrvuilatWtX7at++fRZXDABQGMxZAACZZ8YCAPJRm1yG9+/fP26++eY44YQTIkmSuPvuu+PCCy+M559/Pk455ZQG9yktLY1Vq1btu9yqVatsLRcAoGCYswAAMs+MBQDko5yWfZMmTap3+aabbopZs2bF4sWLGx2QWrVqFb17987G8gAACpY5CwAg88xYAEA+yptz9u3duzfuu+++qKqqivHjxze63c6dO2PQoEExYMCAuPDCC+Oll1466HGrq6ujsrKy3hcAQEtizgIAyLy0ZqwIcxYAcGhaJUmS5HIBK1asiPHjx8fu3bujU6dOMWfOnLjgggsa3PaZZ56JV155JUaMGBEVFRXx3e9+NxYuXBgvvfRS9O/fv8F9pk+fHjNmzDjg+okTJ0bbtm0zelveacmSJTFu3LjUjp/NHBkyZMgolIxs5cjIn4yampqYO3duVFRURGlpaWo5hcqcJcPvXhkyZMgozoxs5JizGpf2jBVhzpIhI19zZMiQIeNIpTZjJTlWXV2dvPLKK8nSpUuTr3/960mPHj2Sl156qVn77tmzJzn++OOTa6+9ttFtdu/enVRUVOz72rBhQxIRSUVFRaZuQoMmTZqU6vGzmSNDhgwZhZKRrRwZ+ZNRUVGRlb/rhcqcJcPvXhkyZMgozoxs5JizGpf2jJUk5iwZMvI1R4YMGTKOVFozVk7P2RcR0a5duxg6dGhERIwePTqeffbZuPXWW+P2229vct+2bdvGe97znnj11Vcb3aakpCRKSkoytl4AgEJhzgIAyLy0Z6wIcxYAcGjy5px9dWpra6O6urpZ2+7duzdWrFgRffr0SXlVAACFz5wFAJB5ZiwAINdy+s6+a665Js4///wYOHBg7NixI+bMmRMLFiyIefPmRUTE1KlTo1+/fjFz5syIiPjmN78Z73vf+2Lo0KFRXl4e3/nOd2LdunXxhS98IZc3AwAg75izAAAyz4wFAOSjnJZ9W7ZsialTp0ZZWVl06dIlRowYEfPmzYtzzz03IiLWr18frVvvf/Ph9u3b44tf/GJs3rw5unXrFqNHj44//OEPcfLJJ+fqJgAA5CVzFgBA5pmxAIB8lNOy74477jjo9xcsWFDv8ve///34/ve/n+KKAACKgzkLACDzzFgAQD7Ku3P2AQAAAAAAAM2j7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKl7AMAAAAAAIACpewDAAAAAACAAqXsAwAAAAAAgAKV07Jv1qxZMWLEiCgtLY3S0tIYP358PPbYY83a97777otWrVrFlClT0l0kAEABMmcBAGSeGQsAyEc5Lfv69+8fN998cyxbtiyWLl0aH/rQh+LCCy+Ml1566aD7rV27Nv793/89PvCBD2RppQAAhcWcBQCQeWYsACAf5bTsmzRpUlxwwQVxwgknxLBhw+Kmm26KTp06xeLFixvdZ+/evXHxxRfHjBkz4rjjjsviagEACoc5CwAg88xYAEA+apPrBdTZu3dv3H///VFVVRXjx49vdLtvfvOb0atXr/j85z8fv//975s8bnV1dVRXV++7XFlZmZH1AkREbN++Pe69995UM9atW1cUGdu3b0/1+EDjzFlAIdq1a1c899xzqWaUlZWlPgOVlZWlfjt27dqV6vGBhqU1Y0WYs4B0ZWPOWrduXdx4442pZ5iz4G2tkiRJcrmAFStWxPjx42P37t3RqVOnmDNnTlxwwQUNbrto0aL45Cc/GcuXL48ePXrEpZdeGuXl5fHQQw81evzp06fHjBkzDrh+4sSJ0bZt20zdjAMsWbIkxo0bl9rxs5kjQ4aMhm3fvj0WLVqU2vGL0ZlnnhndunVLNaMY/m3JaL6ampqYO3duVFRURGlpaWo5hcqcJcNMKqNQM3bt2hVPPPFEascvRuecc0506NAhteMXw7+rYsrIRo45q3Fpz1gR5iwZMvI1pxgyzFmHzpwlI5PSmrFyXvbt2bMn1q9fHxUVFfHAAw/ET3/603jqqafi5JNPrrfdjh07YsSIEfGjH/0ozj///IiIZg1IDb0SasCAAakPq5MnT46HH344teNnM0eGDBkNu/fee+OSSy6JK8YMjjMGHrPv+odWbooHVpbFRcP7xJThfY8o487n18X8Ndti8NivRI9BZx/pkhu0bd2TsfbZW+Ki4X1jyvA+GTvurpq98e2nX4kNlbvio0OPjV/8uSxmz54dF198ccYyGlIM/7ZkNF9lZWV06dLFk1CNMGfJMJPKKNSM5557LkaPHh2zPz46hvfsnErGT59bG7OWro3hH/7v6NhtaCoZVdtfjZXzvxQ3nD08Ljjh2FQyVm7dEZc8uCyWLVsWo0aNSiUjojj+XRVTRjZyzFmNS3vGijBnyZCRrznFkJGNOWvm71fFAyvLou8pl0SX3mMa3W5X5bpY/9ysaNepdww6/fJo3aZ9szMqNi+NTS/NjivGDI4vjBqcgVUfyJwlIw1pzVg5/xjPdu3axdChb/+P1ejRo+PZZ5+NW2+9NW6//fZ62/3lL3+JtWvXxqRJk/ZdV1tbGxERbdq0iVWrVsXxxx9/wPFLSkqipKQkxVsAtHRnDDwmLj5tQERE3Ljw7WHmhrOHx7VnnXjEx356/esxf8226FA6IDr3PO2Ij9eQqu2vRkTEyN5d9t2OI7WjuiYm3vtMvFZVHU9d+oF45Y2d8Ys/l2Xk2EDzmbOAQje8Z+cY1adrKsfu2/ntV2d37DY0tTmrzpBuR6d2O4DsS3vGijBnAelLc87q2fHt319deo+J3sM+3uA2la8tj9W/vy469TwlRn70f6NNu06HnLPppdnRt3MHcxZEHpR971ZbW1vvlUt1TjrppFixYkW966699trYsWNH3HrrrTFgQGaeoAY4XDcuXBXXPbkyY0Vfoaor+v60pTIe/8wZMa5ft3jljZ25XhYQ5iwAgDSYsQAOTeVry2P5I5dEx+7DDrvoA+rLadl3zTXXxPnnnx8DBw6MHTt2xJw5c2LBggUxb968iIiYOnVq9OvXL2bOnBnt27ePU089td7+Xbt2jYg44HqAbFP0va2hog/IDXMWAEDmmbEAjoyiD9KR07Jvy5YtMXXq1CgrK4suXbrEiBEjYt68eXHuuedGRMT69eujdevWuVwiQJPqztGn6FP0QT4xZwEAZJ4ZC+DwKfogPTkt++64446Dfn/BggUH/f5dd92VucUAHCZFn6IP8pE5CwAg88xYAIdH0Qfp8lIjgCN00fA+ij5FHwAAAAANUPRB+pR9AEdoyvC+uV5Czij6AAAAAGiMog+yQ9kHwGFR9AEAAADQmF2V6xR9kCXKPgAOmaIPAAAAgINZ/9wsRR9kibIPgEOi6AMAAACgKe069Vb0QZYo+wBoNkUfAAAAAM0x6PTLFX2QJco+AJpF0QcAAABAc7Vu0z7XS4AWQ9kHQJMUfQAAAAAA+UnZB5DHXquqzvUSFH0AAAAAAHlM2QeQp5Zs3B6/XrU5p2tQ9AEAAAAA5DdlH0AeWrJxe5x7z9NxTId2OVuDog8AAAAAIP8p+wDyTF3Rd2qv0vjosGNzsgZFHwAAAABAYVD2AeSRdxZ9cy8eH+2Oyv6vaUUfAAAAAPms9q3duV4C5BVlH0CeeHfR17mkbdbXoOgDAAAAIJ+9tWdnrFv+41wvA/KKsg8gD+RD0Vf91l5FHwAAAAB56609O+OF30yNPTs353opkFeUfQA5lg9FX0TE3S+sV/QBAAAAkJfqir6qN1bHwFFX5Ho5kFeUfQA5lC9FX0TElqpqRR8AAAAAeeedRd/pH5sdHUoH5XpJkFeUfQA5kk9FX0TEpacPUvQBAAAAkFfeXfSVHnt6rpcEeUfZB5AD+Vb0RUT0L+2Q6yUAAAAAwD6KPmgeZR9AluVj0QcAAAAA+UTRB82X07Jv1qxZMWLEiCgtLY3S0tIYP358PPbYY41u/8tf/jLGjBkTXbt2jY4dO8bpp58e99xzTxZXDHBkFH1AtpizAAAyz4wFkB2KPjg0bXIZ3r9//7j55pvjhBNOiCRJ4u67744LL7wwnn/++TjllFMO2L579+7xjW98I0466aRo165dPPLII3HZZZdFr1694iMf+UgObgFA8yn6gGwyZwEAZJ4ZCyB9ij44dDkt+yZNmlTv8k033RSzZs2KxYsXNzggTZgwod7lq6++Ou6+++5YtGiRAQnIa4o+INvMWQAAmWfGAkiXog8OT07Lvnfau3dv3H///VFVVRXjx49vcvskSeJ3v/tdrFq1Kr71rW81ul11dXVUV1fvu1xZWZmR9QL5b/v27XHvvfemdvynn346IiIeWlkWa7a/2eh2f6vcFXctXxe9OpbEhwb3iFv/+NdmZyzbVB4REbsqN8SOrSuOaL2N2VW5ISIiFqzdmsrxIyJe2FwREft/Zmnavn176hlQaMxZQKbt2rUrnnvuudSOv3LlyoiIePSV12Llth2pZLywuTwiIqq2v5rK8d957KfXv55aRt0cWvczS8uuXbtSPT4UorRmrAhzFrRk2Zqzfvrc2ujbuUMqGUs3lkdExNY1v933vFNz1O7dE6+t/kXseXNb9D7xonh9w8J4fcPCBrfd+frbt2PBmvSez9q04+35x5xFIWiVJEmSywWsWLEixo8fH7t3745OnTrFnDlz4oILLmh0+4qKiujXr19UV1fHUUcdFT/60Y/ic5/7XKPbT58+PWbMmHHA9RMnToy2bdN7Z82SJUti3LhxqR0/mzkyZBRixvbt22PRokWpHZ/8duaZZ0a3bt1SO34xPEaKJaOmpibmzp0bFRUVUVpamlpOoTJnyTCTykjDrl274oknnkjt+Byec47rGR3aHJXa8X+9enOcc8450aFDOk8KRhTH4yNbGdnIMWc1Lu0ZK8KcJUNGvuaYs1qmMwd0j24d2qV2fHNWy8pIa8bKedm3Z8+eWL9+fVRUVMQDDzwQP/3pT+Opp56Kk08+ucHta2tr469//Wvs3Lkz5s+fHzfccEM89NBDB3wsQp2GXgk1YMCA1IfVyZMnx8MPP5za8bOZI0NGIWbce++9cckll8S4vl3j/77v+FQy7nx+Xcxfsy36nHxJdO0zJpWM8rKlUfby7Bg89ivRoXRAwWd8eEiP+Pa5p6aSERGxcuuOuOTBZTF79uy4+OKLU8sphsdIsWRUVlZGly5dPAnVCHOWDDOpjDQ899xzMXr06Jj98dExvGfnVDJ++tzamLV0bQz/8H9Hx25DU8nYtu7JWPvsLVmZgdK8HVXbX42V878Uy/55Qozq0zWVjIiIVjMeimXLlsWoUaNSyyiGx0e2MrKRY85qXNozVoQ5S4aMfM0phjlr5u9XxQMry6LvKZdEl95jYlflulj/3Kxo16l3DDr98mjdpv0RZ5T9+f4o3/h0dOo5Mjr3PK3J7ZPamnh93fyo2V0ePQadE22P7tHkPuWb/hi7yl+JHsddED2HnHfEa46I2LpmXmz762PR47jzo+eQj0TF5qWx6aXZMfsfRsfFp6UzL0aYs1paRlozVs4/xrNdu3YxdOjb/9MzevToePbZZ+PWW2+N22+/vcHtW7duvW/7008/PVauXBkzZ85sdEAqKSmJkpKSVNYO5L//+77jU/tj/PT612P+mm3Rtc+Y6D3s46lkRESUvTw7egw6u1nDUb5nXPaeQak+CQXUZ84C0jS8Z+fU/q7XfaRUx25DU5tP6j5iMxszUJq3A8i+tGesCHMWtHRpzlk9O779u6VL7zFxdJchsfr310WnnqfEyI/+b7Rp1ykjGeVlS6N849PRY/A5MWTM/z3otnXn6KvdWx2jP/6LZp+j789PfSN2lb8SnY4ZnpHn5dYuuy22/fWxGDLuKzF49P41b3pp9hEfG7Khda4X8G61tbX1XrmU6e0BAFoqcxYAQOaZsYBCtKtyXSx/5JLo2H1YRou+Q1FX9FW9sTpO/9jsZhd9mbZ22W2xZsktBxR9UEhy+s6+a665Js4///wYOHBg7NixI+bMmRMLFiyIefPmRUTE1KlTo1+/fjFz5syIiJg5c2aMGTMmjj/++Kiuro5HH3007rnnnpg1a1YubwYAQN4xZwEAZJ4ZCygW65+blfF39B0KRR9kVk7Lvi1btsTUqVOjrKwsunTpEiNGjIh58+bFueeeGxER69evj9at97/5sKqqKq688sr429/+Fh06dIiTTjopZs+eHf/0T/+Uq5sAAJCXzFkAAJlnxgKKRbtOvRV9ij6KSE7LvjvuuOOg31+wYEG9yzfeeGPceOONKa4IAKA4mLMAADLPjAUUi0GnX67oU/RRRPLunH0AAAAAAEB6Wrdpn/VMRR+kR9kHQNH405bKXC8BAAAAgHdR9EG6lH0Ah+m1qupcL4F3WLJxe1z5mxdyvQwAAAAA3kHRB+lT9gEchiUbt8evV23O9TL4uyUbt8e59zwdx3fvmOulAAAAAPB3ij7IDmUfwCGqK5aO6dAu10sh9t8fp/YqjR+cPyLXywEAAAAgImr37lH0QZYo+wAOwTuLpY8OOzbXy2nx3nl/zL14fHRs1ybXSwIAAAAgIl5b/QtFH2SJsg+gmd5dLLU7yq/QXHr3/dG5pG2ulwQAAADQ4iW1NRERsefNbYo+yBLPVAM0g2Ipv7g/AAAAAPLPW3t2xuvr5kdERO8TL1L0QZYo+wCaoFjKL+4PAAAAgPzz1p6d8cJvpkbN7vKIiCjp1Ccn61D00RIp+wAOQrGUX9wfAAAAAPmnruiremN19Bh0Ts7WoeijpVL2ATRCsZRf3B8AAAAA+eedRd/pH5sdbY/ukZN1KPpoyZR9AA1QLOUX9wcAAABA/nl30eccfZAbyj6Ad1Es5Rf3BwAAAED+UfRB/miT6wUA5BPFUn5xfwAAAADkn3wp+so3LY7yjU8r+mjxvLMP4O8US/nF/QEAAACQf/Kl6IsIRR/8nbIPIBRL+cb9AQAAAJB/8qXo27F1RUREdO13hqIPQtkHoFjKM+4PAAAAgPyTL0Xf2mW3xc6tL0RERNe+78vJGiDfKPuAFk2xlF/cHwAAAAD5J5+KvjVLbolOPUfmJB/ylbIPaLEUS/nF/QEAAACQf/Kt6Bsy7ivRuedpOVkD5CtlH9AiKZbyi/sDAAAAIP/kY9HnHH1woJyWfbNmzYoRI0ZEaWlplJaWxvjx4+Oxxx5rdPuf/OQn8YEPfCC6desW3bp1i3POOSeWLFmSxRUDxUCxlF/cH5AOcxYAQOaZsYCWRNEHhSOnZV///v3j5ptvjmXLlsXSpUvjQx/6UFx44YXx0ksvNbj9ggUL4lOf+lQ8+eST8cwzz8SAAQPivPPOi40bN2Z55UChUizlF/cHpMecBQCQeWYsoKVQ9EFhaZPL8EmTJtW7fNNNN8WsWbNi8eLFccoppxyw/b333lvv8k9/+tP4xS9+EfPnz4+pU6emulag8CmW8ov7A9JlzgIAyDwzFtASKPqg8OS07HunvXv3xv333x9VVVUxfvz4Zu3z5ptvRk1NTXTv3r3Rbaqrq6O6unrf5crKyiNeK1A4HlpZFmu2vxl/q9wVdy1fF706lsSHBveIW//41yM+9rJN5RERsatyQ+zYuuKIj9eQXZUbIiKiavurqRw/2xlPr389IiL+8kZVzFy0OgaUdojLTh8YD6/enJGcNdvfzMhxoNiYs4A0PPrKa7Fy245Ujv3C5vKIKJ4ZKM2MNI8NHFxaM1aEOQtaup8+tzb6du6QyrGXbiyPiIita367b1Z5p9q9e+K11b+IPW9ui94nXhSvb1gYr29YeEgZdc+TlW9aHGuWHt46yzctjvKNT0fXfmdEkkSsWXpbxjOaXMPGP6RzYEhBqyRJklwuYMWKFTF+/PjYvXt3dOrUKebMmRMXXHBBs/a98sorY968efHSSy9F+/btG9xm+vTpMWPGjAOunzhxYrRtm967SJYsWRLjxo1L7fjZzJEhoxAz1q1bFy+++GJqxye/jRgxIgYNGpTa8YvhMVIsGTU1NTF37tyoqKiI0tLS1HIKlTlLhplURhrKyspi6dKUnlEhr5155pnRrVu31I5fDI+PbGVkI8ec1bi0Z6wIc5YMGfma4/ks0mLOajkZac1YOS/79uzZE+vXr4+Kiop44IEH4qc//Wk89dRTcfLJJx90v5tvvjm+/e1vx4IFC2LEiBGNbtfQK6EGDBiQ+rA6efLkePjhh1M7fjZzZMgoxIx77703Lrnkkhg89ivRoXRAKhnlZUuj7OXZMg4hY3iPTvHqGzuje4d28bFhvaPdUZk9dezqbTtj/tptMXv27Lj44oszeux3KobHSLFkVFZWRpcuXTwJ1QhzlgwzqYw01M1Zwz/839Gx29BUMratezLWPntL0cxAaWbsqtwQa5+9Ja4YMzjOGHhMKhlrtr8Z1z25MpYtWxajRo1KJSOiOB4f2crIRo45q3Fpz1gR5iwZMvI1J+2MG2+8Ma677rroe8ol0aX3mFQyyv58f5RvfDo69RwZnXuetu/6pLYmXl83P2p2l0ePQedE26N7HHZG+aY/xq7yVw7IaI4dW1fEzq0vNLnvkWQ0pebNbbFt3RNxVJv2sbdmZ1w0vE9MGd43oxl1zFktLyOtGSvnH+PZrl27GDr07f9BHD16dDz77LNx6623xu23397oPt/97nfj5ptvjieeeKLJ4aikpCRKSkoyumagcPQYdHbG/+C/U9nLs2UcQsZft1fF2H7dUztH370rNsT8tdsyflwoVOYsIE0duw1NbXao+2jKYpmB0szYsXVFrH32ljhj4DFx8WnpFIrPlZXHdU+uTOXYUIjSnrEizFnQ0nXpPSZ6D/t4KscuL1sa5Rufjh6Dz4khY94+D17dOfpq91bH6I//4ojP0ffnp74Ru8pfqZfRHGuX3RZlL89u1jn6DjejKZWvLY/lj1wSpceOjD4nfiJWPfX1GNm7qzmLvJfZt1RkQG1tbb1XLr3bt7/97bjhhhti7ty5MWZMOq9uACAdvTqWpFb0AU0zZwEAZJ4ZCyhkdUVf1Rur4/SPzT7iou9wrV12W6xZckuzir601BV9HbsPi5Ef/d9o3abxj1uGfJPTd/Zdc801cf7558fAgQNjx44dMWfOnFiwYEHMmzcvIiKmTp0a/fr1i5kzZ0ZExLe+9a34f//v/8WcOXNi8ODBsXnz5oiI6NSpU3Tq1ClntwOA5vnsyIGKPsgScxYAQOaZsYBioujb791FX5t2fkdTWHJa9m3ZsiWmTp0aZWVl0aVLlxgxYkTMmzcvzj333IiIWL9+fbRuvf/Nh7NmzYo9e/bERRddVO84119/fUyfPj2bSwfgMJS0OSrXS4AWw5wFAJB5ZiygWNTu3aPo+ztFH8Ugp2XfHXfccdDvL1iwoN7ltWvXprcYAIAiYs4CAMg8MxZQLF5b/Yt4a88ORZ+ijyKR07IPAAAAAADIjqS2JiIi9ry5LUZNuV/Rp+ijSLRuehMAAAAAAKCQvbVnZ7y+bn5ERPQ+8SJFn6KPIqLsAwAAAACAIvbWnp3xwm+mRs3u8oiIKOnUJyfrUPRBOpR9ABSNXTV7c70EAAAAgLxSV/RVvbE6egw6J2frUPRBepR9ABSFHdU18e2nX8n1MgAAAADyxjuLvtM/NjvaHt0jJ+tQ9EG6lH0AFLwd1TUx8d5nYkPlrlwvBQAAACAvvLvoc44+RR/FS9kHQEGrK/r+tKUyrjlzWK6XAwAAAJBzir79FH20BG1yvQAAOFzvLPoe/8wZ8cobO3O9JAAAAICcypeir3zT4ijf+LSiD7LAO/sAKEjvLvrG9euW6yUBAAAA5FS+FH0RoeiDLFL2AVBwFH0AAAAA9eVL0bdj64qIiOja7wxFH2SJsg+AgqLoAwAAAKgvX4q+tctui51bX4iIiK5935eTNSj6aImUfQAUDEUfAAAAQH35VPStWXJLdOo5Mif5EYo+Wi5lHwAFQdEHAAAAUF++FX1Dxn0lOvc8LSdrUPTRkin7AMh7ij4AAACA+vKx6HOOPsgNZR8AeU3RBwAAAFCfom8/RR8o+wDIY4o+AAAAgPoUfftV7yxT9EEo+wDIU4o+AAAAgPoUffVtXvWAog9C2QdAHlL0AQAAANSn6Nuv5s1tERHR7ugeij4IZR8AeUbRBwAAAFCfom+/yteWx7Z1T0RExLHD/o+iD0LZB0AeUfQBAAAA1Kfo26/yteWx/JFLom37rhER0fqodjlZB+SbZpd9mzZtynj4rFmzYsSIEVFaWhqlpaUxfvz4eOyxxw66z/333x8nnXRStG/fPk477bR49NFHM74uALJP0UdLZs4CAMg8MxZQDBR9+9UVfR27D4tjBn04J2uAfNXssu+UU06JOXPmZDS8f//+cfPNN8eyZcti6dKl8aEPfSguvPDCeOmllxrc/g9/+EN86lOfis9//vPx/PPPx5QpU2LKlCnxpz/9KaPrAiC7FH20dOYsAIDMM2MBhU7Rt987i76RH/3faNW6bU7WAfmq2WXfTTfdFP/yL/8Sn/jEJ+KNN97ISPikSZPiggsuiBNOOCGGDRsWN910U3Tq1CkWL17c4Pa33nprTJw4Mf7jP/4jhg8fHjfccEOMGjUqfvCDH2RkPQBkn6IPzFkAAGkwYwGFTNG337uLPufogwO1ae6GV155ZZx//vnx+c9/Pk4++eT4yU9+EpMmTcrYQvbu3Rv3339/VFVVxfjx4xvc5plnnol/+7d/q3fdRz7ykXjooYcaPW51dXVUV1fvu1xZWZmR9QKFoWr7q6kde1flBhmHmLFg7dZ611e/tTfufmF9bKmqjktPHxS//cuW+O1fthx2zgubK45onZAr5iygEBXLfFLoGXXHXrP9zXiurDyVjJVbd6RyXEhboc5YEeYsaOm2/OXR+Osfvx173twWvU+8KF7fsDBe37AwI8fesXVFRESUb1oca5YefNvyTYujfOPT0bXfGZEkEWuW3pbxjKZU7yyLzaseiHZH94iufd8fG178WcYzGrPz9ZUREbFpxy5zFnmvVZIkyaHu9IMf/CC+/OUvx/Dhw6NNm/p94XPPPXdIx1qxYkWMHz8+du/eHZ06dYo5c+bEBRdc0OC27dq1i7vvvjs+9alP7bvuRz/6UcyYMSNee+21BveZPn16zJgx44DrJ06cGG3bpvdW3yVLlsS4ceNSO342c2TIKMSMdevWxYsvvpja8clvI0aMiEGDBqV2/GJ4jBRLRk1NTcydOzcqKiqitLQ0tZxsMmc1rRj+7RZTRrZyZORPhjmr5TrzzDOjW7f0PoWhGB4f2crIRk6xzVmFNGNFmLNkyMjXnLQzVq5cGa++mt6LhMhf5qyWk5HWjNXsd/bVWbduXfzyl7+Mbt26xYUXXnjAgHSoTjzxxFi+fHlUVFTEAw88EJ/97GfjqaeeipNPPvmIjlvnmmuuqfcKqsrKyhgwYED8/Oc/T3VYnTx5cjz88MOpHT+bOTJkFGLGvffeG5dcckkMHvuV6FA6IJWM8rKlUfbybBmHkDG2b9cY07dr7NlbG4+s3hxv7NoTk07sE8d2LMlIzuptO2P+2m3x1a9+NS6++OKMHLMhxfAYKZaMysrK6NKlS2rHzzZzVvMUw7/dYsrIVo6M/MkwZ+VXxq7KDbH22VviijGD44yBx6SSsWb7m3Hdkyvj1ltvjVGjRqWSEVEcj49sZWQjp5jmrEKbsSLMWTJk5GtO2hk33nhjXHfddRHROnoMPi/aHt0j4xnlm/4Yu8pfiU49R0bnnqc1uM2OrSti59YXDrrNkWY0pebNbbFt3RPRtn3XOGbQhw84R18mMpry5vZXo6JscVw0vE9MGd43lQxzVsvLSGvGOqTp5ic/+Ul85StfiXPOOSdeeuml6Nmz5xEvoF27djF06NCIiBg9enQ8++yzceutt8btt99+wLa9e/c+4FVPr732WvTu3bvR45eUlERJSWaeRAYKT49BZ6f2Bz8iouzl2TIOIWPyiX3i6vceFxPvfSZ2vVUbiz73wYyeo+/eFRti/tptGTseZJM5Cyg0xTKfFHrGjq0rYu2zt8QZA4+Ji09Lp1B8rqw8rntyZSrHhrQV4owVYc6Clm7w2KtjyJgvpXLsPz/1jdhV/kr0GHxODBlz4Dn41i67Lcpenn1E5+hrKqMpdefoKz12ZKPn6DvSjKa8tWdnPPvARyMiYmTvruYs8l7r5m44ceLE+NrXvhY/+MEP4pe//GVGhqOG1NbW1vtM8ncaP358zJ8/v951jz/+eKOfiw5Afql+a29MvPeZ+NOWynj8M2dktOiDQmbOAgDIPDMWUKg6lKZ3apKDWbvstliz5JYjKvqOVF3R17H7sEaLvrS9tWdnvPCbqbFn5+asZ8PhavY7+/bu3Rsvvvhi9O/fP2Ph11xzTZx//vkxcODA2LFjR8yZMycWLFgQ8+bNi4iIqVOnRr9+/WLmzJkREXH11VfHBz/4wbjlllviox/9aNx3332xdOnS+J//+Z+MrQmA9Nz9wvqoqH5L0QfvYs4CAMg8MxZA8yn63lZX9FW9sToGjroi1j77/ayvAQ5Hs8u+xx9/POPhW7ZsialTp0ZZWVl06dIlRowYEfPmzYtzzz03IiLWr18frVvvf/Ph+9///pgzZ05ce+218Z//+Z9xwgknxEMPPRSnnnpqxtcGQOZtqaqOhZedpeiDdzFnAQBknhkLoHkUfW97Z9F3+sdmx5sVa7K+BjhcR3ZG4iN0xx13HPT7CxYsOOC6T3ziE/GJT3wipRUBkKZLTx+k6IMsMWcBAGSeGQsoNoq+t7276Cs99nRlHwWl2efsA4Aj1b+0Q66XAAAAAEAo+uo0VPRBocnpO/sAAAAAAIDsKt+0OMo3Pq3oU/RRJLyzDwAAAAAAWhBFn6KP4qLsAwAAAACAFmDH1hUREdG13xmKPkUfRUTZBwAAAAAARW7tstti59YXIiKia9/35WQNij5Ih7IPAAAAAACK2Nplt8WaJbdEp54jc7YGRR+kR9kHQNF4aOWmXC8BAAAAIK/UFX1Dxn0lOvc8LSdrUPRBupR9ABSFGxeuigdWluV6GQAAAAB5451Fn3P0KfooXso+AArejQtXxXVProyLhvfJ9VIAAAAA8oKi722KPloCZR8ABa2u6Lvh7OExZXjfXC8HAAAAIOfyoeir3lmm6IMsUfYBULDeWfRde9aJuV4OAAAAQM7lQ9EXEbF51QOKPsgSZR8ABUnRBwAAAFBfPhR9NW9ui4iIdkf3UPRBlij7ACg4ij4AAACA+vKh6Kt8bXlsW/dEREQcO+z/KPogS5R9ABQURR8AAABAfflS9C1/5JJo275rRES0Pqpd1teg6KOlUvYBUDAUfQAAAAD15VPR17H7sDhm0IdzsgZFHy2Zsg+AgqDoAwAAAKgv34q+kR/932jVum3W16Doo6VT9gGQ9xR9AAAAAPXlY9HnHH2QG8o+APKaog8AAACgPkXf22r37lH0QUS0yfUCAKAxij4AAACA+hR9+722+hfx1p4dij5aPGUfAHlJ0QcAAABQn6LvbUltTURE7HlzW4yacr+ijxYvpx/jOXPmzBg7dmx07tw5evXqFVOmTIlVq1YddJ+ampr45je/Gccff3y0b98+Ro4cGXPnzs3SigHIBkUfHBkzFgBAOsxZQC4p+t721p6d8fq6+RER0fvEixR9EDku+5566qmYNm1aLF68OB5//PGoqamJ8847L6qqqhrd59prr43bb789/r//7/+Ll19+OS6//PL4+Mc/Hs8//3wWVw5AWhR9cOTMWAAA6TBnAbmi6HvbW3t2xgu/mRo1u8sjIqKkU5+srwHyUU4/xvPdr2K66667olevXrFs2bI466yzGtznnnvuiW984xtxwQUXRETEFVdcEU888UTccsstMXv27NTXDEB6FH2QGWYsAIB0mLOAXFD0va2u6Kt6Y3X0GHRObFvrXdJQJ6/O2VdRUREREd27d290m+rq6mjfvn296zp06BCLFi1qdPvq6up9lysrKzOwUqBQbFv3ZFRtfzWVY5eXLY2ISO34ERG7KjcUVcaCtVsb3WbB2q0xf822+PCQHhHxdvF3qF7YXHF4C4Qil8aMVbePOQtarmKZTwo9o+7YT69/PbWMNdvfTO3YUOjMWUAaKjYv3fffW9fMi21/fSx6HHd+tO88IDavfvCIjr2rYk1ERJRvWhxrljax8d9V7yyLzaseiHZH94iufd8fG1782UG337F1xSFnNKV27554bfUvYs+b26L3iRfFjm0vZTzj3Xa+vjIiIhasafz5rCO1aceu1I5Ny9IqSZIk14uIiKitrY3JkydHeXn5QYedT3/60/HCCy/EQw89FMcff3zMnz8/Lrzwwti7d2+9IajO9OnTY8aMGQdcP3HixGjbtm1Gb8M7LVmyJMaNG5fa8bOZI0NGIWasW7cuXnzxxdSOT34bMWJEDBo0KLXjF8NjpFgyampqYu7cuVFRURGlpaWp5RSytGasiOKes2TkX46M/MkoKyuLpUtTekaFw9K2Q48o7XV6qhmvr3sixowZE336pPdRWcXw+MhWRjZyzFlNM2fJkJE/GdnK8XwWafFcVsvJSGvGypuy74orrojHHnssFi1aFP379290u61bt8YXv/jF+PWvfx2tWrWK448/Ps4555z42c9+Frt2HdiCN/RKqAEDBqQ+rE6ePDkefvjh1I6fzRwZMgox4957741LLrkkPjykRww7pv7HCizdVB7PbiqPsX27xpi+XQ87Y+HabfHStp3R5+RLomufMUe44oaVly2Nspdnx+CxX4kOpQMKOmN3xdo4fvzXUzn+Oy194GMxe/bsuPjii1PLKIbHSLFkVFZWRpcuXTwJdRBpzVgRxT1nyci/HBn5k/Hcc8/F6NGj44oxg6Nv5w6pZCxYszXmr91WFDNQNjL2VG2OERfckcrx6zw5a5AZK48yspFjzmqaOUuGjPzJyFZOtuasi4b3iZ4dS1LJeGrttnh5287o2u+M6NBlyEG3rXlzW2xb90S0bd81jhn04WjVunkvNijf9MfYVf5KdOo5Mjr3PO2I1pvU1sTr6+ZHze7y6DHonGh7dI+MZzSmLmPIuK9EddVrseml2dH3lEui7/BPZiyjavursXL+l+KGG26Ia6+9NmPHfbdieHwUS0ZaM1ZefIznVVddFY888kgsXLjwoMNRRETPnj3joYceit27d8frr78effv2ja9//etx3HHHNbh9SUlJlJSk84sRyH+XvWdQXHza/idWbly4Kp7dtDYj54S78jfL46VtO6NrnzHRe9jHj3SpjSp7eXb0GHR2aoNLtjK2VG1O9fjAgdKcsSLMWdDSfWHU4BjVp2tqx5+/dltRzEBZmbNefSS1YwMNM2cBabrmAyemNmdd+Zvl8fK2ndHnpE8c9PmsunP0lR478pDP0ffnp74Ru8pfiR6Dz4khYw7/HIN15+ir3Vsdoz/+iyg99vSMZxxMXcaObS/Htr8+ltNzJkJTWucyPEmSuOqqq+LBBx+M3/3udzFkyMFfSfBO7du3j379+sVbb70Vv/jFL+LCCy9McaVAMbhx4aq47smVGSn6APKZGQsAIB3mLKAlqCv6OnYfdshFX6bUFX1Vb6yO0z82u17Rl22KPgpBTt/ZN23atJgzZ0786le/is6dO8fmzZsjIqJLly7RocPbHwczderU6NevX8ycOTMiIv74xz/Gxo0b4/TTT4+NGzfG9OnTo7a2Nr761a/m7HYA+U/RB7QkZiwAgHSYs4Bip+jbb8fWFRER0eO48xV95L2cln2zZs2KiIgJEybUu/7OO++MSy+9NCIi1q9fH61b738D4u7du+Paa6+Nv/71r9GpU6e44IIL4p577omuXbtmadVAoVH0AS2NGQsAIB3mLKCYKfr2W7vstti59YWIiOg55CM5WQMcipyWfUmSNLnNggUL6l3+4Ac/GC+//HJKKwKKzUMrN8UDK8sUfUCLYsYCAEiHOQsoVoq+/dYuuy3WLLklOvUcua/wg3yX03P2AaRN0QcAAAAAjVP07VdX9A0Z95Xo3PO0nKwBDoeyDyhqFw3vo+gDAAAAgAYo+vZ7Z9HnHH0UGmUfUNSmDO+b6yUAAAAAQN5R9O2n6KPQKfsAAAAAAKAF2VW5TtH3d4o+ioGyDwAAAAAAWpD1z81S9IWij+Kh7AMAAAAAgBakXafeir48KPqqXl+dk1yKj7IPAAAAAABakEGnX67oy3HRV/na8lj1+2tzkk3xUfYBAAAAAEAL0rpN+6xnKvr2q3xteSx/5JLo0GVQTvIpPso+AAAAAAAgNYq+/eqKvo7dh8WwM7+ZkzVQfJR9AIfptarqXC8BAAAAAPKaom+/dxZ9Iz/6v3FU2w45WQfFR9kHcBiWbNwev161OdfLAAAAAIC8pejb791FXy7OmUjxUvYBHKIlG7fHufc8Hcd0aJfrpQAAAABAXqrdu0fR93eKPtKm7AM4BHVF36m9SuOjw47N9XIAAAAAIC+9tvoXir5Q9JEdyj6AZnpn0Tf34vHR7ii/QgEAAADgnZLamoiI2PPmNkWfoo8s8Uw1QDO8u+jrXNI210sCAAAAgLzy1p6d8fq6+RER0fvEixR9ij6yRNkH0ARFHwAAAAAc3Ft7dsYLv5kaNbvLIyKipFOfnKxD0UdLpOwDOAhFHwAAAAAcXF3RV/XG6ugx6JycrUPRR0ul7ANohKIPAAAAAA7unUXf6R+bHW2P7pGTdSj6aMmUfQANUPQBAAAAwMG9u+hzjj5FH7mR07Jv5syZMXbs2OjcuXP06tUrpkyZEqtWrWpyv//+7/+OE088MTp06BADBgyIL3/5y7F79+4srBhoCRR9QKEzYwEApMOcBbCfom8/RR+5ltOy76mnnopp06bF4sWL4/HHH4+ampo477zzoqqqqtF95syZE1//+tfj+uuvj5UrV8Ydd9wRP//5z+M///M/s7hyoFgp+oBiYMYCAEiHOQvgbflS9JVvWqzog4hok8vwuXPn1rt81113Ra9evWLZsmVx1llnNbjPH/7whzjjjDPi05/+dEREDB48OD71qU/FH//4x9TXCxQ3RR9QLMxYAADpMGcB5E/RFxFRvvFpRR9Ejsu+d6uoqIiIiO7duze6zfvf//6YPXt2LFmyJMaNGxd//etf49FHH43PfOYzDW5fXV0d1dXV+y5XVlZmdtFAXntoZVms2f5mk9v9rXJX3LV8XfTqWBIfGtwjbv3jX5vcZ9mm8oiI2FW5IXZsXXGkS23QrsoNERFRtf3VVI7/zoxt655MLae8bGm8VV2e2s8JOLg0ZqwIcxa0dCu37kjt2Jt27IqI7MxAxZIB5IY5C0hDmnPW1qq3f7dsXfPbw5ojavfuiddW/yL2vLktep94Uby+YWG8vmFhvW3qnv8p37Q41iw98jU3ZNvaJyIi4uhuJ0T7zgNi8+oHM56xq2JNRETs3tHwc39Vr6+OVb+/Njp0GRTHv/fr+7Y/FGnOibQsrZIkSXK9iIiI2tramDx5cpSXl8eiRYsOuu1tt90W//7v/x5JksRbb70Vl19+ecyaNavBbadPnx4zZsw44PqJEydG27bpvWunboBLWzZyZMgoxIx169bFiy++mNrxyW8jRoyIQYMGpXb8YniMFEtGTU1NzJ07NyoqKqK0tDS1nEKW1owVUdxzloz8y5GRPxnbt29v8vcJxWnMmDHRp0+f1I5fDI+PbGVkI8ec1TRzlgwZ+ZORrRxzFmnxXFbLyUhrxsqbsu+KK66Ixx57LBYtWhT9+/dvdLsFCxbEJz/5ybjxxhvjve99b7z66qtx9dVXxxe/+MW47rrrDti+oVdCDRgwIPVhdfLkyfHwww+ndvxs5siQUYgZ9957b1xyySXx4cE9YliPxt8+/1pVdfx6VVl079AuPjasd7Q7qvmnMl24dlu8tG1n9Dn5kujaZ0wmln2A8rKlUfby7Bg89ivRoXRAqhn9OpfExh3VMbZv1xjTt2tGM+p+VuP6do3RBzn22/fH5jimQ7v46LBjD+n+iIhY/frOmL9mW8yePTsuvvjiI1x144rhMVIsGZWVldGlSxdPQh1EWjNWRHHPWTLyL0dG/mQ899xzMXr06Ljh7OExpNvRqWQ8tHJTPLCyLCszUJoZuyo3xNpnb4mLhveJkb27ppLxwubyeGBlWVwxZnD07dwhlYxNO3bFrKVrY9myZTFq1KhUMiKK4/GRrYxs5JizmmbOkiEjfzKylVMMc9adz62L+Wu3Rdd+Z0SHLkOavV9SWxOvr5sfNbvLo8egc6Lt0T0a3bZ80x9jV/kr0annyOjc87RMLHufHVtXxM6tL0T7zgNi944NMbZP1xjTr2tGM+qs3rYz5q/dFhcN7xM9O5akkrG1qjoeWFlmzmpBGWnNWHnxMZ5XXXVVPPLII7Fw4cKDDkcREdddd1185jOfiS984QsREXHaaadFVVVV/PM//3N84xvfiNat6z8xXFJSEiUl6TwQgfx32ahBcfFpDT95U3eOvrH9uh/WOfqu/M3yeGnbzujaZ0z0HvbxTCy3QWUvz44eg87O+HD07oyNO6rjhrOHx7VnnZjx49f9rCad2KfR4++/P7od9jkT712xIeav2Xaky4WikeaMFWHOgpbughOOjVF9uqZy7DXb34wHVpZlZQZKM2PH1hWx9tlbYsrwvo3OpEfq3hUb4oGVZfGFUYNTuz+eKyuPWUvXpnJsKFTmLCBNac5ZT69/Peav3RZ9TvpEs5/PqjtHX+3e6hj98V80eY6+Pz/1jdhV/kr0GHxODBmTuXPprV12W5S9PDuGjPtKtO88IFbO/1JMPqnx55qO1L0rNsT8tdvimg+cmOqc9cDKslSOTctyaG+ZyLAkSeKqq66KBx98MH73u9/FkCFNv5LgzTffPGAIOuqoo/YdD6A56oqlU3uVHnaxVGw+PKRHasNRU9wfkFlmLACAdJizgJamruiremN1nP6x2U0WfWlZu+y2WLPklhgy7isxeHTmCkQoFjl9Z9+0adNizpw58atf/So6d+4cmzdvjoiILl26RIcOb3/8yNSpU6Nfv34xc+bMiIiYNGlSfO9734v3vOc9+z764LrrrotJkybtG5QADkax1LAJg3vmJNf9AZlnxgIASIc5C2hJFH1QOHJa9tWdiHjChAn1rr/zzjvj0ksvjYiI9evX13v107XXXhutWrWKa6+9NjZu3Bg9e/aMSZMmxU033ZStZQMFTLGUX9wfkA4zFgBAOsxZQEuh6IPCktOyrzkfVbBgwYJ6l9u0aRPXX399XH/99SmtCihWiqX84v6A9JixAADSYc4CWgJFHxSenJ6zDyBbFEv5xf0BAAAAkH8UfVCYlH1A0VMs5Rf3BwAAAED+UfRB4VL2AUXtL29UKZbyyN8qd7k/AAAAAPKMog8Km7IPKGozF61WLOWRu5avc38AAAAA5BFFHxQ+ZR9Q1AaUdlAs5YHXqqojIqJXxxL3BwAAAECeUPRBcVD2AUXtq2ecoFjKsSUbt8evV5VFRMRnRw50fwAAAADkAUUfFA9lH1DUOrQ9KtdLaNGWbNwe597zdHTv0C4iIkrauD8AAAAAcq32rd2KPigiyj4AUlFX9J3aqzQ+Nqx3rpcDAAAAwN+tW/5jRR8UEWUfABn3zqJv7sXjo91R/twAAAAA5Is9Ozcr+qCIePYVgIx6d9HnHH0AAAAA+WXgqCsUfVBElH0AZIyiDwAAACD/dSgdlJNcRR+kQ9kHQEbkQ9G3q2Zv1jMBAAAAaJqiD9Kj7AM4THv21uZ6CXkjH4q+HdU18e2nX8l6LgAAAAAHp+iDdCn7AA7Djuqa+M3q13K9jLyQL0XfxHufiQ2Vu7KeDQAAAEDjFH2QPmUfwCGqK5Ze37Un10vJuXwq+v60pTKuOXNY1vMBAAAAaJiiD7JD2QdwCN5ZLE06sXeul5NT+Vb0Pf6ZM+L47h2zvgYAAAAADlS+abGiD7JE2QfQTO8ulo7tWJLrJeVMPhZ94/p1y/oaAAAAAGhY+canFX2QJco+gGZQLO2n6AMAAACgMTu2roiIiK79zlD0QZYo+wCaoFjaT9EHAAAAQGPWLrstdm59ISIiuvZ9X45XAy2Hsg/gIBRL+yn6AAAAAGjM2mW3xZolt0SnniNzvRRocXJa9s2cOTPGjh0bnTt3jl69esWUKVNi1apVTe5XXl4e06ZNiz59+kRJSUkMGzYsHn300SysGGhJFEv7KfqgsJixAADSYc4CaFhd0Tdk3Feic8/Tcr0caHFyWvY99dRTMW3atFi8eHE8/vjjUVNTE+edd15UVVU1us+ePXvi3HPPjbVr18YDDzwQq1atip/85CfRr1+/LK4cKHaKpf0UfVB4zFgAAOkwZwEc6J1Fn3P0QW60yWX43Llz612+6667olevXrFs2bI466yzGtznZz/7Wbzxxhvxhz/8Idq2ffsJ58GDB6e9VKAFUSztp+iDwmTGAgBIhzkLoD5FH+SHnJZ971ZRUREREd27d290m4cffjjGjx8f06ZNi1/96lfRs2fP+PSnPx1f+9rX4qijjjpg++rq6qiurt53ubKyMvMLB/LWQyvLYs32N5u9ffVbe+PuF9bHlqrquPT0QfHbv2yJ3/5lS4PbLttUHhER5WVLM7HUBtUde9u6J6Nq+6upZixYu7Xe9X+r3BV3LV8XvTqWxIcG94hb//jXw85Y+vef1bszmnIo90dExAubKw57jVDM0pixIsxZ0NI9+sprsXLbjlSO/cLm8oiI1OafiIhdlRtSz6g79prtb8ZzZeWpZNTNuiu3pnNfpH1sKHTmLCANaf7t3Vr19u+Wis1H/nzW1jXzYttfH4sex50f7TsPiM2rH4yIiF0VayIiYufrK/ddl2l169+0Y5c5CyKiVZIkSa4XERFRW1sbkydPjvLy8li0aFGj25100kmxdu3auPjii+PKK6+MV199Na688sr4v//3/8b1119/wPbTp0+PGTNmHHD9xIkT972aKg1LliyJcePGpXb8bObIkFGIGevWrYsXX3wxteOT30aMGBGDBg1K7fjF8BgployampqYO3duVFRURGlpaWo5hSytGSuiuOcsGfmXIyN/MsrKymLp0vRe7ET+OvPMM6Nbt/Q+ZaEYHh/ZyshGjjmraeYsGTLyJyNbOWlnbN++/aC/Tyhe5qyWk5HWjJU3Zd8VV1wRjz32WCxatCj69+/f6HbDhg2L3bt3x5o1a/a9+ul73/tefOc734mysrIDtm/olVADBgxIfVidPHlyPPzww6kdP5s5MmQUYsa9994bl1xySXx4cI8Y1qNTk9vv2Vsbj6zeHG/s2hOTTuwTx3YsaXKfp9Zui5e37YxxfbvG6L5dM7Dqt98B9+ym8hjbt2uM6ds1Fq7dFi9lOOPd6jLqMl+rqo5fryqL7h3axceG9Y52Rx356V3rflZ1GU05nPsjImL1tp0xf+22mD17dlx88cVHuOrGFcNjpFgyKisro0uXLp6EOoi0ZqyI4p6zZORfjoz8yaibsy4a3jdG9u6SSsaCtVtj/pptcdHwPjGyd9dUMl7YXB4PrCyLK8YMjr6dO6SaccPZw2NIt6NTyXh6/esxa+naVDPWbH8zrntyZSxbtixGjRqVSkZEcTw+spWRjRxzVtPMWTJk5E9GtnLSznjuuedi9OjRWZkdLhreJ3o28/mWQ1X3/Ew2MsxZzVMMj49iyUhrxsqLj/G86qqr4pFHHomFCxcedDiKiOjTp0+0bdu23sccDB8+PDZv3hx79uyJdu3a1du+pKQkSkrS+YUC5L/LRg2Ki08bcNBt6s4Jt+ut2lj0uQ82+5xwV/5meby8bWdMOrFPXHvWiUe81hsXropnN709QNQd78rfLI+XMpjRkLqMySf2ifOO7xXn3vN0jO3XPaPn6Kv7WU1uxu043PsjIuLeFRti/tptR7pcKBppzlgR5ixo6aYM79PknHUk5q/ZFlOG900t494VG+KBlWXxhVGDY1SfrqlmXHDCsallRETMWro21YznysrjuidXpnJsKFTmLCBN2ZgdrvnAianOQPPXbstKhjkL3nbkb9c4AkmSxFVXXRUPPvhg/O53v4shQ4Y0uc8ZZ5wRr776atTW1u67bvXq1dGnT58GhyOAg6krlv60pTIe/8wZh1QsZdKNC1fFdU+urFf0ZdvfKnfFufc8Haf2Ks1o0Xco8uX+gEJnxgIASIc5CwDIRzkt+6ZNmxazZ8+OOXPmROfOnWPz5s2xefPm2LVr175tpk6dGtdcc82+y1dccUW88cYbcfXVV8fq1avjN7/5TfzXf/1XTJs2LRc3AShg+VIs5UPRFxFx1/J1ij4oEmYsAIB0mLMAgHyU04/xnDVrVkRETJgwod71d955Z1x66aUREbF+/fpo3Xp/JzlgwICYN29efPnLX44RI0ZEv3794uqrr46vfe1r2Vo2UATypVjKh6Lvtaq3zwPRq2OJog+KhBkLACAd5iwAIB/ltOxLkqTJbRYsWHDAdePHj4/FixensCKgJciXYikfir4lG7fHr1e9fUL4z44cqOiDImHGAgBIhzkLAMhHOf0YT4Bsy5diKV+KvnPveTq6d3j7HBElbY5qYo/My5f7AwAAAACgUCn7gBYjX4qlfCr6Tu1VGh8b1jsna8iX+wMAAAAAoJAp+4AWIV+KpXwr+uZePD7aHZX9PwX5cn8AAAAAABQ6ZR9Q9PKlWMrHos85+gAAAAAACpuyDyhqu2r25kWxpOh7W/Vb+XF/AAAAAAAUiza5XgBAmr799CvxWlW1oi8Pir6IiLtfWB8V1W8p+gAAAAAAMkTZBxS1DZW74qlLP6Doy3HRt2dvbUREbKmqjoWXnaXoAwAAAADIEB/jCRS1a84cpujLg3P0PbJ6c0REXHr6IEUfAAAAAEAGKfuAonZ89445yVX0vW1HdU1MvPeZeGPXnoiI6F/aIetrAAAAAAAoZso+gAxT9L2truj705bKmHRin6znAwAAAAC0BMo+gAxS9L3tnUXf4585I47tWJL1NQAAAAAAtATKPoAMUfS97d1Fn3P0AQAAAACkR9kHkAGKvrcp+gAAAAAAsqtNrhcAUOgWrN0a89dsU/Qp+gAAAAAAss47+wCOkKIvf4q+h1ZuykkuAAAAAECuKPsADtPSTeUREfHhIT0UfXlQ9N24cFU8sLIsJ9kAAAAAALmi7AM4DDcuXBXP/r3smzC4Z07WoOjbr+6ciRcN75OTfAAAAACAXFH2ARyiumJpbN+uOVuDom+/uvvjhrOHx5ThfXOyBgAAAACAXFH2ARyCdxZLY3JU9in69nvn/ZGrj1IFAAAAAMglZR9AM+VDsaTo2y8f7g8AAAAAgFzLadk3c+bMGDt2bHTu3Dl69eoVU6ZMiVWrVh10n7vuuitatWpV76t9+/ZZWjHQUuVDsaTo2y8f7g/Id+YsAIDMM2MBAPkop2XfU089FdOmTYvFixfH448/HjU1NXHeeedFVVXVQfcrLS2NsrKyfV/r1q3L0oqBligfiqW/Ve5S9P1dPtwfUAjMWQAAmWfGAgDyUZtchs+dO7fe5bvuuit69eoVy5Yti7POOqvR/Vq1ahW9e/dOe3kAeVMs3bV8XYzu203Rlyf3BxQCcxYAQOaZsQCAfJTTsu/dKioqIiKie/fuB91u586dMWjQoKitrY1Ro0bFf/3Xf8Upp5zS4LbV1dVRXV2973JlZWXmFgzkvafXv37Y+z60clM8sLIsLhreJ4Z0OzruXbGh3vdXb9sZEREL1m49ojUezIK12yIion2bo+JDg3vErX/8a8Yzlm4q/3tWw7ej+q29cfcL62NLVXVcevqg+O1ftsRv/7LlsDJe2FxxwM+xuZq6PyKO7P6GYmfOAjItzb+7L2x++3fWmu1vxnNl5alkrNn+ZkRErNy6I5XjF1NGmseGQpfGjBVhzoKWrtBnBxnNZ84iU1olSZLkehEREbW1tTF58uQoLy+PRYsWNbrdM888E6+88kqMGDEiKioq4rvf/W4sXLgwXnrppejfv/8B20+fPj1mzJhxwPUTJ06Mtm3Te3fMkiVLYty4cakdP5s5MmQUYsb27dsP+ruE4nbmmWdGt27pvfuwGB4jxZJRU1MTc+fOjYqKiigtLU0tp9CZs2SkrVhui4zmMWe1XOecc0506NAhteMXw+MjWxnZyDFnNS2tGSvCnCVDRr7mpJ2xa9eueOKJJ1I7PvnLnNVyMtKasfKm7Lviiivisccei0WLFjU66DSkpqYmhg8fHp/61KfihhtuOOD7Db0SasCAAakPq5MnT46HH344teNnM0eGjELN+MAHPhCXX355asd/+umnY9asWfHhwT1iWI9OGT32a1XV8etVZdGmdevY9VZtjO3bNcb07ZrRjDpPrd0WL2/beUDGnr218cjqzfHGrj0x6cQ+cWzHksPOWL1tZ8xfuy2uuOKKOOOMMzKw6sb9+Mc/jt///vepZhTLY6QYMiorK6NLly6ehGqCOUtG2orltshovrTnrDVr1sR1110XN5w9PIZ0OzqVjKfXvx6zlq4t+Iw129+M655cGbNnz47hw4enkhER8bWvfS0ef/zx1I4fUTyPj2L53WvOalpaM1aEOUuGjHzNyUbGueeeG9/61rdSO/7KlSvjkksuKfgZyJx1aIrl8VEMGWnNWHnxMZ5XXXVVPPLII7Fw4cJDGo4iItq2bRvvec974tVXX23w+yUlJVFScvhPUAOFq1u3bnHxxRenmjFr1qy4bNSguPi0ARk75pKN2+Pce56Osf26x/AeneKO59fH5BP7pHaOuit/szxe3razXkbdOfp2vVUbiz73wSM+R9+9KzbE/LXb4owzzkj9Pvn5z3+e6vGh0JizgDSkPWc999xzcd1118UFJxwbo/p0TS1n1tK1BZ/xXFl5XPfkyhg+fHiMGjUqlYyISPWV5lCI0pyxIsxZ0JJ16NAh1b/pdQp9BspGhjmLQtI6l+FJksRVV10VDz74YPzud7+LIUOGHPIx9u7dGytWrIg+ffqksEKA7Kor+k7tVRpzLx4f7Y7K/q/puqLvT1sq4/HPnHHERR+QG+YsAIDMM2MBAPkop+/smzZtWsyZMyd+9atfRefOnWPz5s0REdGlS5d9bfbUqVOjX79+MXPmzIiI+OY3vxnve9/7YujQoVFeXh7f+c53Yt26dfGFL3whZ7cDIBPeXfR1LknvPAyNUfRB8TBnAQBknhkLAMhHOS37Zs2aFREREyZMqHf9nXfeGZdeemlERKxfvz5at97/zpbt27fHF7/4xdi8eXN069YtRo8eHX/4wx/i5JNPztayATIuH4q+6rf2KvqgiJizAAAyz4wFAOSjnJZ9SZI0uc2CBQvqXf7+978f3//+91NaEUD25UPRFxFx9wvro6L6LUUfFAlzFgBA5pmxAIB8lNNz9gG0dPlQ9O3ZWxsREVuqqhV9AAAAAAAFRtkHkCP5UPTtqK6JR1a/fY6JS08fpOgDAAAAACgwyj6AHMiXom/ivc/EG7v2RERE/9IOWV8DAAAAAABHRtkHkGX5VPT9aUtlTDqxT9bzAQAAAADIDGUfQBblW9H3+GfOiGM7lmR9DQAAAAAAZIayDyBL8rHoc44+AAAAAIDCpuwDyAJFHwAAAAAAaVD2AaRM0QcAAAAAQFqUfQApUvQBAAAAAJAmZR9AShR9+z20clNOcgEAAAAAip2yDyAFir79bly4Kh5YWZaTbAAAAACAYqfsA8gwRd9+Ny5cFdc9uTIuGt4nJ/kAAAAAAMVO2QeQQYq+/eqKvhvOHh5ThvfNyRoAAAAAAIqdsg8gQxR9+72z6Lv2rBNzsgYAAAAAgJZA2QeQAYq+/RR9AAAAAADZo+wDOEJ/eaNK0fd3ij4AAAAAgOxS9gEcoZmLViv6QtEHAAAAAJALyj6AIzSgtIOiT9EHAAAAAJATyj6AI/TVM05Q9Cn6AAAAAAByQtkHcIQ6tD0q65mKPgAAAAAAInJc9s2cOTPGjh0bnTt3jl69esWUKVNi1apVzd7/vvvui1atWsWUKVPSWyRAnlH0Ac1hzgIAyDwzFgCQj3Ja9j311FMxbdq0WLx4cTz++ONRU1MT5513XlRVVTW579q1a+Pf//3f4wMf+EAWVgqQHxR9QHOZswAAMs+MBQDkoza5DJ87d269y3fddVf06tUrli1bFmeddVaj++3duzcuvvjimDFjRvz+97+P8vLylFcKkHuKPuBQmLMAADLPjAUA5KOcln3vVlFRERER3bt3P+h23/zmN6NXr17x+c9/Pn7/+98fdNvq6uqorq7ed7mysvLIFwrwDk+vfz21Y6/etjMiIpZu2h6j/2dBbKjcFdecOSxeeWNnvPLGzoxmvLC5Iu5dseGg2z60clM8sLIsLhreJ4Z0O7rJ7euk+TMCmsecBRSilVt3pHbsNdvfLIqMNI8NNC2NGSvCnAWkr9BnIHMW1NcqSZIk14uIiKitrY3JkydHeXl5LFq0qNHtFi1aFJ/85Cdj+fLl0aNHj7j00kujvLw8HnrooQa3nz59esyYMeOA6ydOnBht27bN1PIPsGTJkhg3blxqx89mjgwZMhq2ffv2g/6+4kBnnnlmdOuW7jsSi+Hflozmq6mpiblz50ZFRUWUlpamllPozFky0lYst0VG/mTs2rUrnnjiidSOX4zOOeec6NChQ2rHL4Z/V8WUkY0cc1bT0pqxIsxZMmTka04xZJizDp05S0YmpTVj5U3Zd8UVV8Rjjz0WixYtiv79+ze4zY4dO2LEiBHxox/9KM4///yIiCYHpIZeCTVgwIDUh9XJkyfHww8/nNrxs5kjQ4aMxn3gAx+Iyy+/PNWMb3/72/HVr3614DN+/OMfN+sVrEeqWP5tyWieysrK6NKliyehmmDOkpG2YrktMvIr49xzz41vfetbqWZcffXVceuttxZ8xte+9rV4/PHHU80oln9XxZKRjRxzVtPSmrEizFkyZORrTrFkmLOaz5wlI9PSmrHy4mM8r7rqqnjkkUdi4cKFjQ5HERF/+ctfYu3atTFp0qR919XW1kZERJs2bWLVqlVx/PHH19unpKQkSkpK0lk40OJ169YtLr744lQzfv7znxdNBpB95iygUHXo0CFGjRqVaka3bt2KIiPNV5oDDUtzxoowZwHpMmc1nzmLQpHTsi9JkvjXf/3XePDBB2PBggUxZMiQg25/0kknxYoVK+pdd+2118aOHTvi1ltvjQEDBqS5XACAgmHOAgDIPDMWAJCPclr2TZs2LebMmRO/+tWvonPnzrF58+aIiOjSpcu+xnzq1KnRr1+/mDlzZrRv3z5OPfXUesfo2rVrRMQB1wMAtGTmLACAzDNjAQD5KKdl36xZsyIiYsKECfWuv/POO+PSSy+NiIj169dH69ats7wyAIDCZs4CAMg8MxYAkI9y/jGeTVmwYMFBv3/XXXdlZjEAAEXEnAUAkHlmLAAgH3mZEQAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUKGUfAAAAAAAAFChlHwAAAAAAABQoZR8AAAAAAAAUqJyWfTNnzoyxY8dG586do1evXjFlypRYtWrVQff55S9/GWPGjImuXbtGx44d4/TTT4977rknSysGACgM5iwAgMwzYwEA+SinZd9TTz0V06ZNi8WLF8fjjz8eNTU1cd5550VVVVWj+3Tv3j2+8Y1vxDPPPBMvvvhiXHbZZXHZZZfFvHnzsrhyAID8Zs4CAMg8MxYAkI/a5DJ87ty59S7fdddd0atXr1i2bFmcddZZDe4zYcKEepevvvrquPvuu2PRokXxkY98JK2lAgAUFHMWAEDmmbEAgHyUV+fsq6ioiIi3X/HUHEmSxPz582PVqlWNDlTV1dVRWVlZ7wsAoKUxZwEAZF4aM1aEOQsAODStkiRJcr2IiIja2tqYPHlylJeXx6JFiw66bUVFRfTr1y+qq6vjqKOOih/96Efxuc99rsFtp0+fHjNmzDjg+okTJ0bbtm0zsvaGLFmyJMaNG5fa8bOZI0OGDBmFkpGtHBn5k1FTUxNz586NioqKKC0tTS2n0JmzZKStWG6LDBkyZBRKRjZyzFlNS2vGijBnyZCRrzkyZMiQcaRSm7GSPHH55ZcngwYNSjZs2NDktnv37k1eeeWV5Pnnn0+++93vJl26dEmefPLJBrfdvXt3UlFRse9rw4YNSUQkFRUVGb4F9U2aNCnV42czR4YMGTIKJSNbOTLyJ6OioiIrf9cLnTlLRjHkyJAhQ4aM7OaYs5qW1oyVJOYsGTLyNUeGDBkyjlRaM1ZOz9lX56qrropHHnkkFi5cGP37929y+9atW8fQoUMjIuL000+PlStXxsyZMw/4DPSIiJKSkigpKcn0kgEACoI5CwAg89KcsSLMWQDAoclp2ZckSfzrv/5rPPjgg7FgwYIYMmTIYR2ntrY2qqurM7w6AIDCZc4CAMg8MxYAkI9yWvZNmzYt5syZE7/61a+ic+fOsXnz5oiI6NKlS3To0CEiIqZOnRr9+vWLmTNnRkTEzJkzY8yYMXH88cdHdXV1PProo3HPPffErFmzcnY7AADyjTkLACDzzFgAQD7KadlXN9S8+yML7rzzzrj00ksjImL9+vXRunXrfd+rqqqKK6+8Mv72t79Fhw4d4qSTTorZs2fHP/3TP2Vr2QAAec+cBQCQeWYsACAf5fxjPJuyYMGCepdvvPHGuPHGG1NaEXF20wEAACWDSURBVABAcTBnAQBknhkLAMhHrZveBAAAAAAAAMhHyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQyj4AAAAAAAAoUMo+AAAAAAAAKFDKPgAAAAAAAChQOS37Zs6cGWPHjo3OnTtHr169YsqUKbFq1aqD7vPSSy/F//k//ycGDx4crVq1iv/+7//OzmIBAAqEGQsAIB3mLAAgH+W07Hvqqadi2rRpsXjx4nj88cejpqYmzjvvvKiqqmp0nzfffDOOO+64uPnmm6N3795ZXC0AQGEwYwEApMOcBQDkoza5DJ87d269y3fddVf06tUrli1bFmeddVaD+4wdOzbGjh0bERFf//rXU18jAEChMWMBAKTDnAUA5KOcln3vVlFRERER3bt3z9gxq6uro7q6et/lysrKjB0bAKAQpDFjRZizAADMWQBAPmiVJEmS60VERNTW1sbkyZOjvLw8Fi1a1Kx9Bg8eHF/60pfiS1/6UqPbTJ8+PWbMmHHA9RMnToy2bdse7nKbtGTJkhg3blxqx89mjgwZMmQUSka2cmTkT0ZNTU3MnTs3KioqorS0NLWcQpbWjBVR3HOWjPzLkSFDhgwZ2c0xZzXNnCVDRv5kZCtHhgwZMo5UajNWkicuv/zyZNCgQcmGDRuavc+gQYOS73//+wfdZvfu3UlFRcW+rw0bNiQRkVRUVBzhig9u0qRJqR4/mzkyZMiQUSgZ2cqRkT8ZFRUVWfm7XsjSmrGSpLjnLBn5lyNDhgwZMrKbY85qmjlLhoz8ychWjgwZMmQcqbRmrLz4GM+rrroqHnnkkVi4cGH0798/o8cuKSmJkpKSjB4TAKAQpDljRZizAICWy5wFAOSTnJZ9SZLEv/7rv8aDDz4YCxYsiCFDhuRyOQAARcGMBQCQDnMWAJCPclr2TZs2LebMmRO/+tWvonPnzrF58+aIiOjSpUt06NAhIiKmTp0a/fr1i5kzZ0ZExJ49e+Lll1/e998bN26M5cuXR6dOnWLo0KG5uSEAAHnEjAUAkA5zFgCQj1rnMnzWrFlRUVEREyZMiD59+uz7+vnPf75vm/Xr10dZWdm+y5s2bYr3vOc98Z73vCfKysriu9/9brznPe+JL3zhC7m4CQAAeceMBQCQDnMWAJCPcv4xnk1ZsGBBvcuDBw9u1n4AAC2VGQsAIB3mLAAgH+X0nX0AAAAAAADA4VP2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIFS9gEAAAAAAECBUvYBAAAAAABAgVL2AQAAAAAAQIHKadk3c+bMGDt2bHTu3Dl69eoVU6ZMiVWrVjW53/333x8nnXRStG/fPk477bR49NFHs7BaAIDCYc4CAMg8MxYAkI9yWvY99dRTMW3atFi8eHE8/vjjUVNTE+edd15UVVU1us8f/vCH+NSnPhWf//zn4/nnn48pU6bElClT4k9/+lMWVw4AkN/MWQAAmWfGAgDyUZtchs+dO7fe5bvuuit69eoVy5Yti7POOqvBfW699daYOHFi/Md//EdERNxwww3x+OOPxw9+8IP48Y9/nPqaAQAKgTkLACDzzFgAQD7Kq3P2VVRURERE9+7dG93mmWeeiXPOOafedR/5yEfimWeeaXD76urqqKysrPcFANDSmLMAADIvjRkrwpwFAByaVkmSJLleREREbW1tTJ48OcrLy2PRokWNbteuXbu4++6741Of+tS+6370ox/FjBkz4rXXXjtg++nTp8eMGTMOuH7ixInRtm3bzCy+AUuWLIlx48aldvxs5siQIUNGoWRkK0dG/mTU1NTE3Llzo6KiIkpLS1PLKXTmLBlpK5bbIkOGDBmFkpGNHHNW09KasSLMWTJk5GuODBkyZByp1GasJE9cfvnlyaBBg5INGzYcdLu2bdsmc+bMqXfdD3/4w6RXr14Nbr979+6koqJi39eGDRuSiEgqKioytvaGTJo0KdXjZzNHhgwZMgolI1s5MvIno6KiIit/1wudOUtGMeTIkCFDhozs5pizmpbWjJUk5iwZMvI1R4YMGTKOVFozVk7P2VfnqquuikceeSQWLlwY/fv3P+i2vXv3PuBVT6+99lr07t27we1LSkqipKQkY2sFACgk5iwAgMxLc8aKMGcBAIcmp+fsS5IkrrrqqnjwwQfjd7/7XQwZMqTJfcaPHx/z58+vd93jjz8e48ePT2uZAAAFx5wFAJB5ZiwAIB/l9J1906ZNizlz5sSvfvWr6Ny5c2zevDkiIrp06RIdOnSIiIipU6dGv379YubMmRERcfXVV8cHP/jBuOWWW+KjH/1o3HfffbF06dL4n//5n5zdDgCAfGPOAgDIPDMWAJCPcvrOvlmzZkVFRUVMmDAh+vTps+/r5z//+b5t1q9fH2VlZfsuv//97485c+bE//zP/8TIkSPjgQceiIceeihOPfXUXNwEAIC8ZM4CAMg8MxYAkI9y+s6+JEma3GbBggUHXPeJT3wiPvGJT6SwIgCA4mDOAgDIPDMWAJCPcvrOPgAAAAAAAODwKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQOW07Fu4cGFMmjQp+vbtG61atYqHHnqoyX1++MMfxvDhw6NDhw5x4oknxv/+7/+mv1AAgAJjzgIASIc5CwDIN21yGV5VVRUjR46Mz33uc/EP//APTW4/a9asuOaaa+InP/lJjB07NpYsWRJf/OIXo1u3bjFp0qQsrBgAoDCYswAA0mHOAgDyTU7LvvPPPz/OP//8Zm9/zz33xL/8y7/EP/3TP0VExHHHHRfPPvtsfOtb3zIcAQC8gzkLACAd5iwAIN/ktOw7VNXV1dG+fft613Xo0CGWLFkSNTU10bZt2wb3qa6u3ne5srIy9XUCABQacxYAQDrMWQBA2lolSZLkehEREa1atYoHH3wwpkyZ0ug2//mf/xl33nlnPPLIIzFq1KhYtmxZfOxjH4vXXnstNm3aFH369Dlgn+nTp8eMGTMOuH7ixIkNDlOZsmTJkhg3blxqx89mjgwZMmQUSka2cmTkT0ZNTU3MnTs3KioqorS0NLWcQmfOkpG2YrktMmTIkFEoGdnIMWc1jzlLhoz8yMhWjgwZMmQcqdRmrCRPRETy4IMPHnSbN998M7nsssuSNm3aJEcddVTSt2/f5Ktf/WoSEcnmzZsb3Gf37t1JRUXFvq8NGzYkEZFUVFSkcCv2mzRpUqrHz2aODBkyZBRKRrZyZORPRkVFRVb+rhc6c5aMYsiRIUOGDBnZzTFnNY85S4aM/MjIVo4MGTJkHKm0ZqzWmasN09ehQ4f42c9+Fm+++WasXbs21q9fH4MHD47OnTtHz549G9ynpKQkSktL630BAFCfOQsAIB3mLAAgbQV1zr46bdu2jf79+0dExH333Rcf+9jHonXrguotAQDykjkLACAd5iwAIC05Lft27twZr7766r7La9asieXLl0f37t1j4MCBcc0118TGjRvjf//3fyMiYvXq1bFkyZJ473vfG9u3b4/vfe978ac//SnuvvvuXN0EAIC8ZM4CAEiHOQsAyDc5LfuWLl0aZ5999r7L//Zv/xYREZ/97GfjrrvuirKysli/fv2+7+/duzduueWWWLVqVbRt2zbOPvvs+MMf/hCDBw/O9tIBAPKaOQsAIB3mLAAg3+S07JswYUIkSdLo9++66656l4cPHx7PP/98yqsCACh85iwAgHSYswCAfOODwQEAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAAAAoEAp+wAAAAAAAKBAKfsAAAAAAACgQCn7AAAAAPj/27v3oKju+43jnwVkQQooaTCIBKIVjTfMxGpRI/E+iTWaVK3Gu7ZWgx1Th3ZIZYo/k0ZrbL0kJjGKl2YaMV7HaYjRGMEo3lAQggreEi8xtZPxhthV8PP7w2EHFJbd5eyyC+/XzPljD99znnNylj2P+e4uAAAA8FJM9gEAAAAAAAAAAABeisk+AAAAAAAAAAAAwEsx2QcAAAAAAAAAAAB4KSb7AAAAAAAAAAAAAC/FZB8AAAAAAAAAAADgpZjsAwAAAAAAAAAAALwUk30AAAAAAAAAAACAl2KyDwAAAAAAAAAAAPBSTPYBAAAAAAAAAAAAXorJPgAAAAAAAAAAAMBLMdkHAAAAAAAAAAAAeKl6nezbu3evDB06VFq2bCkmk0m2bdtmc/ykSZPEZDI9snTs2NE9BwwAAOAl6FkAAACuQc8CAACepl4n+27fvi1xcXGyfPlyu8YvXbpUrly5Yl0uXrwoYWFhMnLkSBcfKQAAgHehZwEAALgGPQsAAHgav/oMf+GFF+SFF16we3xoaKiEhoZaH2/btk2uXbsmkydPdsXhAQAAeC16FgAAgGvQswAAgKep18m+ukpLS5MBAwZIdHR0jWMsFotYLBbr4xs3boiIyM2bN116bPfu3XN5hrtyyCCDDDK8JcNdOWR4TkbFvlXVZRmNVWPvWWR4Xg4ZZJBBBhnuzaFnuQ49iwwyvDeHDDLIIKOuXNax1EOIiG7dutXu8ZcvX1ZfX1/dsGGDzXGpqakqIiwsLCwsLCwNeLl48WIdm0jDJkLPYmFhYWFhYXFuoWfZJkLPYmFhYWFhYXF8Mbpjee0n+9atWyfNmjWT4cOH2xz3xhtvyOzZs62Pr1+/LtHR0XLhwoUqX6FgpJs3b0pUVJRcvHhRQkJCXJLhrhwyyCCDDG/JcFcOGZ6Voapy69YtadmypUv231g19p5FhuflkEEGGWSQ4f4cepZr0LPIIMM1Gsq5kEEGGQ0/w1Udyysn+1RVVq9eLePHjxd/f3+bY81ms5jN5kfWh4aGuvQGIyISEhLi8gx35ZBBBhlkeEuGu3LI8JwMV/3PjsaKnkWGJ+eQQQYZZJDh3hx6lrHoWWSQ4f2vi2SQQQYZRnBFx/IxfI9ukJWVJWfOnJGpU6fW96EAAAA0KPQsAAAA16BnAQAAV6nXT/aVlJTImTNnrI/Pnz8veXl5EhYWJk8++aS88cYbcvnyZfnnP/9ZZbu0tDTp0aOHdOrUyd2HDAAA4BXoWQAAAK5BzwIAAJ6mXif7cnJypG/fvtbHFd9FPnHiRFm7dq1cuXJFLly4UGWbGzduyObNm2Xp0qVOZZrNZklNTa32qxCM4o4Md+WQQQYZZHhLhrtyyPCsDNSMnkUGr71kkEEGGQ0zw505qB49iwwyPCvDXTlkkEEGGZ7MpKpa3wcBAAAAAAAAAAAAwHFe+Tf7AAAAAAAAAAAAADDZBwAAAAAAAAAAAHgtJvsAAAAAAAAAAAAAL8VkHwAAAAAAAAAAAOClGuRk3/LlyyUmJkYCAgKkR48ecvjw4RrHPv/882IymR5ZhgwZYljGvXv3ZN68edKmTRsJCAiQuLg42bFjh8397927V4YOHSotW7YUk8kk27Ztszn+ypUr8uqrr0psbKz4+PjI66+/bnO8Mxn79u2TXr16yWOPPSaBgYHSvn17Wbx4saEZmZmZ1V6PH374wbAMERGLxSJz5syR6OhoMZvNEhMTI6tXrzY041//+pfExcVJ06ZNJSIiQqZMmSI//vhjjePnz58vP//5zyU4OFjCw8Nl+PDhUlRUVGvOxo0bpX379hIQECCdO3eWjIwMQzNWrlwpzz33nDRv3lyaN28uAwYMsPl8d/Y8KqSnp4vJZJLhw4cbnnH9+nVJTEyUiIgIMZvNEhsbW+N/L2czlixZIu3atZPAwECJioqSP/zhD/K///2v2rEffPCBdOnSRUJCQiQkJETi4+Pl888/t7l/R663MxmFhYXyq1/9SmJiYsRkMsmSJUtqPWdncrZs2SLdunWTZs2aSVBQkHTt2lU+/vhjQzPWrl37yGtJQECAoRnO3EMczXDmHlLZggULxGQy2bwvOHvdHc1x5rrD89Cz6Fm1oWfRs+hZ1XPmfkvH8tyOJeKenkXHalzoWfSs2tCz6Fn0rOrRs+hZ9KwGONm3YcMGmT17tqSmpsqxY8ckLi5OBg8eLFevXq12/JYtW+TKlSvW5ZtvvhFfX18ZOXKkYRkpKSmyYsUKeffdd+XEiRMyffp0efnllyU3N7fGjNu3b0tcXJwsX77crvO2WCzy+OOPS0pKisTFxdm1jaMZQUFBMnPmTNm7d6+cPHlSUlJSJCUlRT766CPDMioUFRVVuS7h4eGGZowaNUp2794taWlpUlRUJOvXr5d27doZlrF//36ZMGGCTJ06VQoLC2Xjxo1y+PBh+e1vf1vjNllZWZKYmCgHDx6UXbt2yb1792TQoEFy+/btGrfJzs6WMWPGyNSpUyU3N1eGDx8uw4cPl2+++cawjMzMTBkzZozs2bNHDhw4IFFRUTJo0CC5fPmyYRkVvv32W0lKSpLnnnvO5jhnMu7evSsDBw6Ub7/9VjZt2iRFRUWycuVKiYyMNCzjk08+keTkZElNTZWTJ09KWlqabNiwQf785z9XO75Vq1ayYMECOXr0qOTk5Ei/fv1k2LBhUlhYWO14R6+3MxmlpaXSunVrWbBggTzxxBM17reuOWFhYTJnzhw5cOCA5Ofny+TJk2Xy5MnyxRdfGJYhIhISElLlteS7774z9DycuYc4muHMPaTCkSNHZMWKFdKlSxeb45y97o7mOHPd4VnoWfQse9Cz6Fn0LON6Fh3LMzuWiHt6Fh2rcaFn0bPsQc+iZ9Gz6Fl1zaBnOZbhVT1LG5ju3btrYmKi9XF5ebm2bNlS58+fb9f2ixcv1uDgYC0pKTEsIyIiQt97770q61555RUdO3asXcckIrp161a7xqqqJiQk6KxZs+we70xGhZdfflnHjRtnWMaePXtURPTatWsOH4u9GZ9//rmGhobqjz/+6LKMd955R1u3bl1l3bJlyzQyMtLunKtXr6qIaFZWVo1jRo0apUOGDKmyrkePHvq73/3OsIyHlZWVaXBwsK5bt87QjLKyMu3Zs6euWrVKJ06cqMOGDbP7mOzJ+OCDD7R169Z69+5du/fraEZiYqL269evyrrZs2drr1697M5p3ry5rlq1qtqf1fV625NRWXR0tC5evNihfTuTU+GZZ57RlJQUwzLWrFmjoaGhDu3P0YyH2XMPcTTD2XvIrVu3tG3btrpr1y6H7guOXndncyo4c91Rf+hZ9Cx6Fj2rOvQs+zIqq0vPomMZk1GX+4c7ehYdq/GhZ9Gz6Fn0rOrQs+zLqIyeRc9yVUYFT+1ZDeqTfXfv3pWjR4/KgAEDrOt8fHxkwIABcuDAAbv2kZaWJqNHj5agoCDDMiwWyyMftw0MDJR9+/bZdUyeKjc3V7KzsyUhIcHwfXft2lUiIiJk4MCBsn//fkP3vX37dunWrZssXLhQIiMjJTY2VpKSkuTOnTuGZcTHx8vFixclIyNDVFX+85//yKZNm+TFF1+0ex83btwQkQfvHqjJgQMHqjwXRUQGDx5s9/PdnoyHlZaWyr179+zext6MefPmSXh4uEydOtXuY3EkY/v27RIfHy+JiYnSokUL6dSpk7z99ttSXl5uWEbPnj3l6NGj1q+FOHfunGRkZNh13cvLyyU9PV1u374t8fHx1Y6p6/W2J8MIjuaoquzevVuKioqkT58+hmaUlJRIdHS0REVF1frOqbqeh0jt9xBnMpy9hyQmJsqQIUMeec4YzdkcZ6476hc9y73oWTWjZzmeQc9qGD2LjuUZHUvEPT2LjtW40LPci55VM3qW4xn0LHoWPetR9Kx6Um/TjC5w+fJlFRHNzs6usv6Pf/yjdu/evdbtDx06pCKihw4dMjRjzJgx2qFDBy0uLtby8nLduXOnBgYGqr+/vx1n5XnvhIqMjFR/f3/18fHRefPmGZpx6tQp/fDDDzUnJ0f379+vkydPVj8/Pz169KhhGYMHD1az2axDhgzRQ4cO6WeffabR0dE6adIkwzJUVT/99FP9yU9+on5+fioiOnToULvfhVNeXq5Dhgyp9R00TZo00U8++aTKuuXLl2t4eLhhGQ+bMWOGtm7dWu/cuWNYxtdff62RkZH63//+V1XVoXdC2ZvRrl07NZvNOmXKFM3JydH09HQNCwvTuXPnGpahqrp06VJt0qSJ9bpPnz7d5vj8/HwNCgpSX19fDQ0N1c8++6zGsc5eb0cyKnP0nVCO5ly/fl2DgoLUz89PzWazpqWlGZqRnZ2t69at09zcXM3MzNRf/vKXGhISohcvXjT0PCrYcw9xJsOZe8j69eu1U6dO1t9TV70TypkcZ647PAM96wF6lu0MepZjGQ+jZ9nWWHsWHctzOpaqe3oWHavxoWc9QM+ynUHPcizjYfQs2+hZ9Cwjz4OeVT+Y7Ktk2rRp2rlzZ8Mzrl69qsOGDVMfHx/19fXV2NhYfe211zQgIKDWY1L1vHJ07tw5zc/P148++kjDwsIeebE2IqOyPn36GPrVCgMHDtSAgAC9fv26dd3mzZvVZDJpaWmpIRmFhYUaERGhCxcu1OPHj+uOHTu0c+fOOmXKFHtOQ6dPn67R0dG1vpDXpRzZm1HZ/PnztXnz5nr8+HG7xtuTcfPmTY2JidGMjAzrOkfKkb3n0bZtW42KitKysjLrur///e/6xBNPGJaxZ88ebdGiha5cuVLz8/N1y5YtGhUVZfMfERaLRU+fPq05OTmanJysP/3pT7WwsLDasc5eb0cyKnN0ss/RnPLycj19+rTm5ubqokWLNDQ0VPfs2eOSc1FVvXv3rrZp06bWj9k7m2HPPcSZDEfvIRcuXNDw8PAqv6euKEfO5jhz3eEZ6FkP0LNsZ9CzHMuojJ5FzzIqg47lmo6l6p6eRcdqnOhZD9CzbGfQsxzLqIyeRc8yKoOeRc/y5J7VoCb7LBaL+vr6PnLjmjBhgr700ks2ty0pKdGQkBBdsmSJyzLu3Lmjly5d0vv37+uf/vQn7dChg83xFTytHFX25ptvamxsrEszkpKS9Be/+IVhGRMmTNA2bdpUWXfixAkVES0uLjYkY9y4cTpixIgq677++msVEf3+++9tbpuYmKitWrXSc+fO1XosUVFRj7yI/eUvf9EuXboYllHhnXfe0dDQUD1y5Ihd4+3NyM3NVRFRX19f62IymdRkMqmvr6+eOXPGkPPo06eP9u/fv8q6jIwMFRG1WCyGZPTu3VuTkpKqrPv44481MDBQy8vLa91eVbV///46bdq0an/m7PV2JKOyuv7NPntzKkydOlUHDRrk0owRI0bo6NGjDc+w9x5Slwx77yFbt2595HdKRKy/U5X/gVAde697XXMqOHPdUT/oWQ/Qs2xn0LPoWRXoWbbVpWfRsYzNcOT+4Y6eRcdqnOhZD9CzbGfQs+hZFehZttGz6FmuyqjgqT2rQf3NPn9/f3n22Wdl9+7d1nX379+X3bt31/odtRs3bhSLxSLjxo1zWUZAQIBERkZKWVmZbN68WYYNG2bHWXm2+/fvi8VicWlGXl6eREREGLa/Xr16yffffy8lJSXWdcXFxeLj4yOtWrUyJKO0tFR8fKr+evn6+orIg+/2rY6qysyZM2Xr1q3y1VdfyVNPPVVrTnx8fJXnoojIrl27anwuOpMhIrJw4UJ58803ZceOHdKtWzebYx3NaN++vRQUFEheXp51eemll6Rv376Sl5cnUVFRhpxHr1695MyZM3L//n3ruuLiYomIiBB/f39DMpy57g+z9Tvl6PV2JsNIjuY4c1yObFNeXi4FBQUOv57Yk2HvPaQuGfbeQ/r37//I71S3bt1k7NixkpeXZ31O1pVROe56PqLu6FnuR8+qHj2LnlWhsfYsOpaxGY7cP9zRs+hYjRM9y/3oWdWjZ9GzKtCzXDPe0W3oWfQsh7h1atEN0tPT1Ww269q1a/XEiRM6bdo0bdasmf7www+qqjp+/HhNTk5+ZLvevXvrr3/9a5dkHDx4UDdv3qxnz57VvXv3ar9+/fSpp57Sa9eu1Zhx69Ytzc3Ntb5L5B//+Ifm5ubqd999p6qqycnJOn78+CrbVIx/9tln9dVXX9Xc3FybH9d1NOO9997T7du3a3FxsRYXF+uqVas0ODhY58yZY1jG4sWLddu2bXr69GktKCjQWbNmqY+Pj3755ZeGZdy6dUtbtWqlI0aM0MLCQs3KytK2bdvqb37zG8My1qxZo35+fvr+++/r2bNndd++fdqtWzebX78xY8YMDQ0N1czMTL1y5Yp1qfxVDA8/t/bv369+fn66aNEiPXnypKampmqTJk20oKDAsIwFCxaov7+/btq0qco2t27dMizjYbV97YEzGRcuXNDg4GCdOXOmFhUV6b///W8NDw/Xt956y7CM1NRUDQ4O1vXr1+u5c+d0586d2qZNGx01alS1GcnJyZqVlaXnz5/X/Px8TU5OVpPJpDt37qx2/45eb2cyLBaL9bkeERGhSUlJmpubq6dPn64xw5mct99+W3fu3Klnz57VEydO6KJFi9TPz09XrlxpWMb//d//6RdffKFnz57Vo0eP6ujRozUgIMDm66KjGRUcuYc4muHMPeRhD79D1qjr7miOM9cdnoWeRc+iZ9GzqsugZ7muZ9GxPLtjqbqnZ9GxGgd6Fj2LnkXPqi6DnkXPomfNsj6mZ9nW4Cb7VFXfffddffLJJ9Xf31+7d++uBw8etP4sISFBJ06cWGX8qVOnVESsT06jMzIzM/Xpp59Ws9msjz32mI4fP14vX75sc/979uxREXlkqdjvxIkTNSEhoco21Y2Pjo42LGPZsmXasWNHbdq0qYaEhOgzzzyj77//vs2Pczua8be//U3btGmjAQEBGhYWps8//7x+9dVXhv+3OnnypA4YMEADAwO1VatWOnv2bJvfb+5MxrJly7RDhw4aGBioEREROnbsWL106VKNGdXtX0R0zZo11jHVPX8//fRTjY2NVX9/f+3YsaPNP47qTEZ0dHS126Smphp6HpXVVo6czcjOztYePXqo2WzW1q1b61//+tcaP57tTMa9e/d07ty51udwVFSUvvbaazXeyKZMmaLR0dHq7++vjz/+uPbv37/K61Bdr7czGefPn6/2vB9+ftc1Z86cOfqzn/1MAwICtHnz5hofH6/p6emGZrz++uvW1+kWLVroiy++qMeOHTM0Q9Xxe4ijGc7cQx72cHEx6ro7muPMdYfnoWfRs+hZxmXQs+hZtd1v6Vie3bEq9uvqnkXHajzoWfQsepZxGfQsehY9q/oMVXqWIxne1LNMqnZ+FhcAAAAAAAAAAACAR2lQf7MPAAAAAAAAAAAAaEyY7AMAAAAAAAAAAAC8FJN9AAAAAAAAAAAAgJdisg8AAAAAAAAAAADwUkz2AQAAAAAAAAAAAF6KyT4AAAAAAAAAAADASzHZBwAAAAAAAAAAAHgpJvsAAAAAAAAAAAAAL8VkHwAAAAAAAAAAAOClmOwD0GCUl5dLz5495ZVXXqmy/saNGxIVFSVz5syppyMDAADwbvQsAAAA49GxABjFpKpa3wcBAEYpLi6Wrl27ysqVK2Xs2LEiIjJhwgQ5fvy4HDlyRPz9/ev5CAEAALwTPQsAAMB4dCwARmCyD0CDs2zZMpk7d64UFhbK4cOHZeTIkXLkyBGJi4ur70MDAADwavQsAAAA49GxANQVk30AGhxVlX79+omvr68UFBTI73//e0lJSanvwwIAAPB69CwAAADj0bEA1BWTfQAapFOnTsnTTz8tnTt3lmPHjomfn199HxIAAECDQM8CAAAwHh0LQF341PcBAIArrF69Wpo2bSrnz5+XS5cu1ffhAAAANBj0LAAAAOPRsQDUBZ/sA9DgZGdnS0JCguzcuVPeeustERH58ssvxWQy1fORAQAAeDd6FgAAgPHoWADqik/2AWhQSktLZdKkSTJjxgzp27evpKWlyeHDh+XDDz+s70MDAADwavQsAAAA49GxABiBT/YBaFBmzZolGRkZcvz4cWnatKmIiKxYsUKSkpKkoKBAYmJi6vcAAQAAvBQ9CwAAwHh0LABGYLIPQIORlZUl/fv3l8zMTOndu3eVnw0ePFjKysr4CgQAAAAn0LMAAACMR8cCYBQm+wAAAAAAAAAAAAAvxd/sAwAAAAAAAAAAALwUk30AAAAAAAAAAACAl2KyDwAAAAAAAAAAAPBSTPYBAAAAAAAAAAAAXorJPgAAAAAAAAAAAMBLMdkHAAAAAAAAAAAAeCkm+wAAAAAAAAAAAAAvxWQfAAAAAAAAAAAA4KWY7AMAAAAAAAAAAAC8FJN9AAAAAAAAAAAAgJdisg8AAAAAAAAAAADwUv8PMQmyPAAvad4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Оценка качества AE1\n", + "IDEAL = 0. Excess: 1.0\n", + "IDEAL = 0. Deficit: 0.0\n", + "IDEAL = 1. Coating: 1.0\n", + "summa: 1.0\n", + "IDEAL = 1. Extrapolation precision (Approx): 0.5\n", + "\n", + "\n" + ] + } + ], + "source": [ + "xx,yy,Z2=lab02_lib.square_calc(numb_square,data,ae2_trained,IREth2,'1',True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C8cAYe0KR5DL" + }, + "source": [ + "| | Количество скрытых слоев | Количество нейронов в скрытых слоях | Количество эпох обучения | Ошибка MSE_stop | Порог ошибки реконструкции | Значение показателя Excess | Значение показателя Approx | Количество обнаруженных аномалий |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| **AE1** | 1 | 1 | 1000 | 0.0134 | 0.56 | 2.(1) | 0.321 | |\n", + "| **AE2** | 5 | 3 2 1 2 3 | 3000 | 0.0096 | 0.48 | 1.2(7) | 0.439 | |" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "H4mWiO9gRiBA", + "outputId": "9bbbdb29-41b6-42ab-eb8c-0623190cbb0a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATzlJREFUeJzt3Xl4U2XePvD7JG1SutKWLnShZbMFpBUQtQgCA4oOooijiM5bFGSYsTrgq+LwQ19AxOL2zvCOMwgIuJXBcSkOXjBYK0UYUFahoKAILS2lFEr3Qpom5/dHSJo0SZu0SU5ycn+uKxfm9CR5gvb2e57zLIIoiiKIiIiIZEIhdQOIiIiIXInFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDfkVQRCwZMkSqZtBRD6G2eFbWNz4iL///e8QBAE333xzt99r69at/CX1oNraWgQFBUEQBPz44482z3n00UchCILNR1BQkMW5y5cvxz333IO4uDgGLnWK2eG7XJkdJ06cwIIFC3DDDTcgLCwMvXv3xuTJk3HgwAFPfR2PCpC6AeSYvLw8pKamYt++fTh16hQGDBjQ5ffaunUr/va3vzGkPOTjjz+GIAiIj49HXl4eXn75ZZvnqdVqvPPOO1bHlUqlxfMXXngB8fHxGDZsGLZv3+6WNpN8MDt8lyuz45133sG6detw//3344knnkBdXR1Wr16NW265Bf/+978xceJEt30PKbC48QFnzpzBnj178Nlnn2Hu3LnIy8vD4sWLpW6W37t69SpUKhUUio47QD/88EP8+te/RkpKCjZu3Gg3oAICAvDb3/620889c+YMUlNTcenSJcTExHSp7eQfmB3eSYrsmDFjBpYsWYLQ0FDTsVmzZmHQoEFYsmSJ7Iob3pbyAXl5eYiMjMTkyZPxm9/8Bnl5eVbnFBUVQRAEFBUVWRwvKSmBIAh49913ARi6MP/2t78BgEX3pVFTUxOeeeYZJCcnQ61WIy0tDW+88QZsbR7/4YcfYsSIEejRoweioqLw0EMPoayszOKccePG4frrr8cPP/yA8ePHIzg4GImJiXjttdes3u/q1atYsmQJrrvuOgQFBaF3796YNm0afvnlF6fbp9Fo8PTTTyMmJgZhYWG45557UF5ebvPv99y5c5g1axbi4uKgVqsxZMgQrF+/3ubf76ZNm/DCCy8gMTERwcHBqK+vt/meRmfPnsWuXbvw0EMP4aGHHjL9z6Y7UlNTu/V68h/MDmaH0YgRIywKGwCIjo7GmDFj7N7y8mXsufEBeXl5mDZtGlQqFWbMmIFVq1Zh//79GDlypNPvNXfuXFRUVKCgoAAffPCBxc9EUcQ999yDHTt2YPbs2bjhhhuwfft2PPfcczh37hz+/Oc/m85dvnw5XnzxRTz44IN4/PHHcfHiRfz1r3/FbbfdhsOHD6Nnz56mc2tqanDnnXdi2rRpePDBB/HJJ5/g+eefx9ChQ3HXXXcBAHQ6He6++24UFhbioYcewrx589DQ0ICCggIcO3YM/fv3d6p9jz/+OD788EM8/PDDGDVqFL7++mtMnjzZ6u/jwoULuOWWWyAIAp588knExMRg27ZtmD17Nurr6zF//nyL85ctWwaVSoVnn30WGo0GKpWqw7/vf/zjHwgJCcHdd9+NHj16oH///sjLy8OoUaNsnn/p0iWrYyqVCuHh4R1+DpEtzA5mR2fZUVlZiV69enV4jk8SyasdOHBABCAWFBSIoiiKer1eTEpKEufNm2dx3o4dO0QA4o4dOyyOnzlzRgQgbtiwwXQsJydHtPWvfvPmzSIA8eWXX7Y4/pvf/EYUBEE8deqUKIqiWFJSIiqVSnH58uUW5xUXF4sBAQEWx8eOHSsCEN9//33TMY1GI8bHx4v333+/6dj69etFAOL//u//WrVLr9c71b7vv/9eBCA+8cQTFuc9/PDDIgBx8eLFpmOzZ88We/fuLV66dMni3IceekiMiIgQm5ubRVFs+/vt16+f6Zgjhg4dKj7yyCOm5//v//0/sVevXqJWq7U4b+bMmSIAm49JkybZfO+LFy9afR8iI2YHs8Nedhh98803oiAI4osvvuhwu3wFb0t5uby8PMTFxWH8+PEADN3B06dPx6ZNm6DT6Vz6WVu3boVSqcQf//hHi+PPPPMMRFHEtm3bAACfffYZ9Ho9HnzwQVy6dMn0iI+Px8CBA7Fjxw6L14eGhlrcD1apVLjppptw+vRp07FPP/0UvXr1wlNPPWXVLmPXt6Pt27p1KwBYndf+SkoURXz66aeYMmUKRFG0+C6TJk1CXV0dDh06ZPGamTNnokePHrb/Ats5evQoiouLMWPGDNOxGTNm4NKlSzYHAgcFBaGgoMDqsWLFCoc+j8gcs4PZ0VF2VFVV4eGHH0bfvn2xYMECh9rlS3hbyovpdDps2rQJ48ePx5kzZ0zHb775Zrz55psoLCzEHXfc4bLPKy0tRUJCAsLCwiyODxo0yPRzAPj5558hiiIGDhxo830CAwMtniclJVncmweAyMhIHD161PT8l19+QVpaGgIC7P8n6Wj7SktLoVAo0L9/f4vz0tLSLJ5fvHgRtbW1WLNmDdasWWPzM6uqqiye9+3b12772vvwww8REhKCfv364dSpUwAMIZSamoq8vDyrrm6lUim7QX0kDWZH19rnL9nR1NSEu+++Gw0NDdi9e7fVWBw5YHHjxb7++mucP38emzZtwqZNm6x+npeXZwqo9gFg5OorNADQ6/UQBAHbtm2zmqYMwOoXxdY5AGwONPQkvV4PAPjtb3+LmTNn2jwnIyPD4rmjV16iKOIf//gHmpqaMHjwYKufV1VVobGxUZahQtJjdriXL2dHS0sLpk2bhqNHj2L79u24/vrru/Q+3o7FjRfLy8tDbGysaYaCuc8++wz5+fl4++230aNHD0RGRgIwLPpkznhFYs5emKWkpOCrr75CQ0ODxRXOiRMnTD8HYBqg17dvX1x33XVd+m7t9e/fH9999x20Wq3V1Zuz7UtJSYFerzdd0RmdPHnS4v2MsyF0Op3Le0x27tyJ8vJyvPTSS6arQ6Oamhr87ne/w+bNmx2a+k3kLGZH19on9+zQ6/XIzs5GYWEh/vnPf2Ls2LGuarb38fwwH3JEc3OzGBYWJs6aNcvmz//zn/+IAMRNmzaJoiiKtbW1olKpFJ9++mmL8+6//36rQYHPP/+8CECsqamxONc46O6VV16xOD59+nSLQXenTp0SlUql+PDDD5sG7Bnp9XqLAXZjx44VhwwZYtX+mTNniikpKabnzgwK7Kx9hw8fdnhQ4KOPPiqqVCqxuLjY6nOrqqpM/2wcFPjxxx9bnWfL7NmzxZCQEPHKlSs2fz5w4EDxzjvvND2fOXOmGBIS4tB7G3FAMdnC7LB8T2faJ/fseOKJJ0QA4urVqx0635ex58ZL/etf/0JDQwPuuecemz+/5ZZbEBMTg7y8PEyfPh0RERF44IEH8Ne//hWCIKB///744osvrO77Aob1DgDDoLlJkyZBqVTioYcewpQpUzB+/HgsWrQIJSUlyMzMxJdffonPP/8c8+fPN92H7t+/P15++WUsXLgQJSUlmDp1KsLCwnDmzBnk5+fjd7/7HZ599lmnvm92djbef/99/Pd//zf27duHMWPGoKmpCV999RWeeOIJ3HvvvQ6374YbbsCMGTPw97//HXV1dRg1ahQKCwtN967NrVixAjt27MDNN9+MOXPmYPDgwbh8+TIOHTqEr776CpcvX3bqewCGdTI+/fRT3H777VZbJxjdc889WLlyJaqqqhAbGwsAaG1txYcffmjz/Pvuuw8hISEAgA8++AClpaVobm4GAHzzzTemxb3+67/+y3QVSv6J2cHsMGfMjr/85S/4+9//jqysLAQHB1udb54xsiB1dUW2TZkyRQwKChKbmprsnvPoo4+KgYGBpqudixcvivfff78YHBwsRkZGinPnzhWPHTtmdfXV2toqPvXUU2JMTIwoCILF1M6Ghgbx6aefFhMSEsTAwEBx4MCB4uuvv251lSWKovjpp5+Ko0ePFkNCQsSQkBAxPT1dzMnJEU+ePGk6x9GrL1E0XHEuWrRI7Nu3rxgYGCjGx8eLv/nNb8RffvnF6fZduXJF/OMf/yhGR0eLISEh4pQpU8SysjKbPR0XLlwQc3JyxOTkZNPnTpgwQVyzZo3pHGeuvj799FMRgLhu3Tq75xQVFYkAxJUrV5r+PmBnOicA8cyZM6bXGqfI2nq0n85L/ofZweywlR3OZIwcCKIo8cgsIiIiIhfiOjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkxe8W8dPr9aioqEBYWJjdpcSJyL1EUURDQwMSEhKgUPjGNRazg0hazuSG3xU3FRUVSE5OlroZRASgrKwMSUlJUjfDIcwOIu/gSG74XXFj3DTt//3nIIK4IzORJK42NuKVW0dYbGLo7ZgdRNJyJjf8rrgxdicHhYYiyIeClUiOfOn2DrODyDs4khu+cbObiIiIyEEsboiIiEhWWNwQERGRrPjdmBsid1OKeqj0eggQpW6KJEQIaFEooBN47UTkKEEUEaTXMTdclBssbohcRRSRcrURSa0aKHxooKw76EUR5QFqlAaFAn7+d0HUGbVeh4ymWgT5+a+KK3ODxQ2Ri6RcbURffQuiY2MR2KMH4K9BJQLaK1cQeOkicLURpT04s4jILlFEvysNiFSrEBkXB0Hhp8Hh4txgcUPkAkpRj6RWDaJjYxEcGSl1cyQXGBQEANBWVaFcDOEtKiI7AkU9ovWtiIiOhapHD6mbIylX5gYTh8gFVHo9FIJg6LEhAEBgjx5QCAJUer3UTSHyWgGiCEEQoAwMlLopXsFVucHihsgFTIMA/bRH2SbB+Id/DpAkcgSzox0X5QaLGyIiIpIVFjdEREQkKyxuiAhVlZVY9PR83JyehpTwMIzo3x/Z0+7Drq+/BgB88M47mHb77RgY0wu9g9Soq62VtsFE5BW8NTtY3BD5ubKSEkwalYXdRUV4MXcFvj54EBu3bMGosWOxcP48AMCVK80Yf8cd+OOC5yVuLRF5C2/ODk4FJ/Jzf5r3RwiCgG27/4PgkBDT8bTBgzFj5qMAgN899UcAwJ6dO6VoIhF5IW/ODvbcEHkhnc4zn1Nz+TJ2fPklHp37e4twMoro2dMzDSEil2B2GLC4IfIip34Cxt4QgKQQFcbeEIBTP7n380p++QWiKGJAWpp7P4iI3IrZYYnFDZEXmf1gAH752bDQwy8/C5j9oHvvHIsi16AhkgNmhyWOuSHyEjod8NMJhdlzAT+dEKDTAUqlez6z74ABEAQBp06edM8HEJHbMTusseeGyEsolcB16XooleK15+K15+77zMioKIy7/Xa8u/ptNDc1Wf2cU76JvB+zwxqLGyIvsu6freg/0BBQ/QeKWPfPVrd/Zu5fVkKn0+Gu0bfii/x8nD71M3468SPe+dtbuHvsbQAMa1kcO3IEZ375BQDw47FjOHbkCGouX3Z7+4ioc8wOS7wtReRFBlwH7Py+1a3dye2l9OuHL/d+i5WvrsDS559HVeV5RMfEIGPYMLz6f38FALy/di3eXP6y6TX3TZwAAPjLmrWYnp3tmYYSkV3MDkuC6O2jglysvr4eEREReOnISQSFhUndHJKJYJ0WI67UIzGlDwLVQVI3xytoNVdxrvQsDvYIR7PScsfjqw0N+J/MNNTV1SE8PFyiFjqH2UHuwOyw5Krc4G0pIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCFyARGC8R/ISDT+IUjbDiIvxuxox0W5weKGyAVaFAroRRHaK1ekborX0F65Ar0ookXBmCGyp1UQIIoidFqt1E3xCq7KDa5zQ+QCOkGB8gA1Ai9dBAAE9ugBv+2wEA0BVX3pIsoD1NAJLG6I7NEKClQrAhBcXQ1FQAAEhZ8Gh4tzg8UNkYuUBoUCVxuhraqCQvDTgLpGL4ooD1Ab/k6IyD5BwC89whDaVIsrZWVSt0ZSrswNFjdEriIIKO0RhnIxBCq9HoKf3kQXIaBFoWCPDZGDWhRKHAiNQpBex9xwUW6wuCFyMZ2gwBUl/8dORI4TBQFXlPxfsqswgYmIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZMVripsVK1ZAEATMnz+/w/M+/vhjpKenIygoCEOHDsXWrVs900Ai8krMDiJqzyuKm/3792P16tXIyMjo8Lw9e/ZgxowZmD17Ng4fPoypU6di6tSpOHbsmIdaSkTehNlBRLZIXtw0NjbikUcewdq1axEZGdnhuStXrsSdd96J5557DoMGDcKyZcswfPhwvPXWWx5qLRF5C2YHEdkjeXGTk5ODyZMnY+LEiZ2eu3fvXqvzJk2ahL1799p9jUajQX19vcWDiHwfs4OI7JF0OcRNmzbh0KFD2L9/v0PnV1ZWIi4uzuJYXFwcKisr7b4mNzcXS5cu7VY7ici7MDuIqCOS9dyUlZVh3rx5yMvLQ1BQkNs+Z+HChairqzM9yvx8YzIiX8fsIKLOSNZzc/DgQVRVVWH48OGmYzqdDt988w3eeustaDQaKJVKi9fEx8fjwoULFscuXLiA+Ph4u5+jVquhVqtd23gikgyzg4g6I1nPzYQJE1BcXIzvv//e9LjxxhvxyCOP4Pvvv7cKJwDIyspCYWGhxbGCggJkZWV5qtlEJDFmBxF1RrKem7CwMFx//fUWx0JCQhAdHW06np2djcTEROTm5gIA5s2bh7Fjx+LNN9/E5MmTsWnTJhw4cABr1qzxePuJSBrMDiLqjOSzpTpy9uxZnD9/3vR81KhR2LhxI9asWYPMzEx88skn2Lx5s1XQEZF/Y3YQ+TdBFEVR6kZ4Un19PSIiIvDSkZMICguTujlEfulqQwP+JzMNdXV1CA8Pl7o5DmF2EEnLmdzw6p4bIiIiImexuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJiqTFzapVq5CRkYHw8HCEh4cjKysL27Zts3v+u+++C0EQLB5BQUEebDERSY25QUSdCZDyw5OSkrBixQoMHDgQoijivffew7333ovDhw9jyJAhNl8THh6OkydPmp4LguCp5pKHlZSUoLVG47b3D4hUIzU11W3vT+7B3CCizkha3EyZMsXi+fLly7Fq1Sp8++23dkNKEATEx8d7onkksdYaDSb8dBJDeiS65f1fb2oEWNz4HOYGEXVG0uLGnE6nw8cff4ympiZkZWXZPa+xsREpKSnQ6/UYPnw4XnnlFbuBBgAajQYaTdvVf319vUvbTe6jaWrEwMtAhb7ALe8vho5FSUkJe298mLtyA2B2EPkyyYub4uJiZGVl4erVqwgNDUV+fj4GDx5s89y0tDSsX78eGRkZqKurwxtvvIFRo0bh+PHjSEpKsvma3NxcLF261J1fgdzg1OGTGHf8CM4H/uS2zxj/84/YGxkFpLrtI8hN3J0bALODyJcJoiiKUjagpaUFZ8+eRV1dHT755BO888472Llzp92gMqfVajFo0CDMmDEDy5Yts3mOrauv5ORkvHTkJILCwlz2Pci1ju8+iEe+O473x7e47TOyd6iQd/MQDBk9wm2fQbZdbWjA/2Smoa6uDuHh4U6/3t25ATA7iLyNM7khec+NSqXCgAEDAAAjRozA/v37sXLlSqxevbrT1wYGBmLYsGE4deqU3XPUajXUarXL2kuuV1JSYnVMbGnBica9GB7+mts+94x+EcYdb8XekFAERFr+N8JbVd7N3bkBMDuIfJnkxU17er3e4mqpIzqdDsXFxfj1r3/t5laRuxhnRN1XU2txPLj4NE4EB6LVjZ+9a0IGsncEYMJPJxEeE2fxs/waDQYMS3Pjp5MrMTeIyJykxc3ChQtx1113oU+fPmhoaMDGjRtRVFSE7du3AwCys7ORmJiI3NxcAMBLL72EW265BQMGDEBtbS1ef/11lJaW4vHHH5fya1A3tNZoMO7gAcRpLbv5d9fuRusj7uu1AYDh4dNxonEBRl++C7h8weJnmqFeV/fTNcwNIuqMpAleVVWF7OxsnD9/HhEREcjIyMD27dtx++23AwDOnj0LhaJtncGamhrMmTMHlZWViIyMxIgRI7Bnzx6H7rOT9ykpKcHVmstoqf4O56ODLX6mdnOvjfnnnA/cY3HsYnUzxJYZnEnlpZgbRNQZyQcUe1p9fT0iIiI4KNALnDp8Eln7/oOW+u+xa0KG1c+Hh0/3SDsO1X9k8XxM4VGowm/A3ptu5a0pN+nugGIpMDuIpOVTA4rJv5gPHtY0NSKxMQDvT8jwWCFjS/vPbrpvOjR5C3C1ZpBFe9mLQ0TkG1jckEeZDx6uOX0KZ/QHMDx8ubSNskEdHIjxP/+I+Gvbr+VH9uR6OEREPoK7gpPHlJSUQNPUiOTGACQ3BqBXnc7m7ShvsGtCBhKvtTO5MQCapkabU9aJiMj7sOeGPKa1RoNJJ06gQlMGADjRWOrWdWy6Y3j4dJzRLwLKKgAAk6qSURRyI3tviIh8AIsb8hhNUyN61elwRm8oGDw1I6qrdk3IAAqPAgA0l0pxtV8/zqAiIvIBLG7II0pKSjDpxAmcaNzr9vVrXGV4+HQ03WcYbBySv4h7URER+QgWN+Q25mNUmsqr0atOh61TRmC4dE3qMuNqxu3H3rAXh4jI+7C4IbdprdFgwk8nAQC6hga37xXlTsbVjCedUEJ5zrDGSeF1aezFISLyQpwtRW6jaWrEwMtA5KUf0FL9HdTBgVI3qVv2TRmBS+d2I/LSD4i89AOu1lzmDCoiIi/E4obcoqSkBGJLC47WfwWtuhYaBdB0n/etZ+OM4eHToQ4OhFZdC626FuN//hGtNY5t1khERJ7D21LkFk3l1fjt4Z/x/u1t69j44lib9szX5TGOwSEiIu/C4oZczthr48tjbOwx36rhROMCiC0DOT2ciACg09vUzAnPYXFDLtdao8H4n39Ei5evY9Nd+6aMQPaOn5GnUgEMLSK/VlJSYrG9THvcwsWzWNyQSxm3WGio3I99Pjrt21HGGVTsvSGi1hoNxh08gDit7R3jNUMDmBMexOKGXKq1RoNxx4+gJThQ0p2+PcW4wSYX9yPyXyUlJbhacxkt1d/hfHSwzXPGHb8Oe0NuZU54CIsbcilNUyMSGwPw/oQMWffaGO0cl4lbtu6HpimTV2VEfsp4K16jAP4xfIDNc9pPQNDrAIXSUy30PyxuyGXkPJC4vaqyQGxYmoALZ1/AjsgyPBX4BUruCuVVGZHM2Ro0bHFRZ6fH+ox+EcYdb8W22hgUvDkUNaXBiExpxp1LT2LYbfFubrX/4To35DLG6d/7poyQuilut2FpAi6WqwAAlXWJePvTBzgtnMgPtNZoMOX0BYvHpBMncEZ/oMNb8bsmZCCxMQB7Xh6IurIgAEBdWRD+s7A/Th0+6anm+w0WN+QSlr028h5ro9cBF86qodcLAABRr8DZml7QXW3hisVEMlZSUoIJP51EcmOAxaNXnc5iDSxbhodPxw/136G8Kgp6veF/vXq9AmfPh+NKAy+MXI23pcgl/GX6N2C4Tx7XR4OL5Sro9QIUChFhCZcw5/hprA/itHAiuWoqr8bAy0CFvsDi+InGUoduxR+4dxgSvihDZW0C9KISCkGHpKgqCK0tHLPnYuy5IZcw3nPu7OpFLh5bXIGYpBYAQExSC/6wtBFHandDbGHvDZEcGXund1dtw5nmCouHo/vmDQ+fjrmT3kBczwoAQFzPCsy+fQVmF5/mVi4uxp4b6rZTh09i3PEjOKP/HsPDfXv/KEfFJmvx/DulFjMeOC2cSL7Me6e7s09e2KwcPDfrCvS6n65lRw6O5C3A1Zp+7L1xIfbcULf5Q6+NXmf7uPlUTuOAQQ4sJpKHkpIS08O4OKmzhY0j2WG8MGqt0Zg+j7qHPTfULXKf/t025VuNuD4aPLa4ArHJWgBAawsQoGo7d3j4dNN0z70hoRgwLE2iVhORKzSVV+PX584BAJprLzk1ptBedhiLnfYXRtk7AjDhJ8Osqa2JiSgB96LqDhY31C1N5dWYXXwaa2W61YL5lO+L5SpsWJqAe+ZexPrFCdC1KqAM0GPW0goMGtkMoC2k2HtD5NuMF26Rl34AAFy4VOrUljLts2PtC4kAgOrzhmPRvVsw5+VziE3Wmi6M1CVAQmgCJjU0oCjkRt7e7gbelqIuM/7yH6ndLcvp3+2nfOv1Ai6cVV8rbAzHdK0C1i9OML3GsN/UXg4sJvJxxjE2WnUttOpaqJ3YUsZWdlSfV6H6fNvA4+rzhp4do10TMqBRAFp1LVqqv8PVmsvMkG5gcUNdZvzld3SmgDezdV/cOOVboRANzxUiYpM10LUqAAjXzhKga1WgtaXtdfumjODsByIfZxxj84/hA/CP4QPsjil0NDsMBLOzDBdLxtcPD5+OXRMy8I/hA6BRwDQGh7qGxQ11mRwGEleVBeLVx1Pw7F3X4dXHU1BVZlmomU/57hmrNfXYAKLpT2WA3mrszZHa3bzyIvJRxhmgxt4a48OcM9kBoS0v2oiGAshs7I3xczg5oftY3FCXtE3/7njJcW9na0yNudhkLWa+WIG4PhpcrrTsVgYAZYCIWUsrrN7XfPYDEfkWRy7cOsuOXglaPLa4AsoAPfQ66//VRvc2/NwWwxicA5h04gS3ZugiDiimLpHD7t/G++Km5/q2bmKF0nK2Q9sVl2Dx5zOrShGforV6bw4sJvJNjswA7Sg7LlW05YYyQH/tNraRITdikzWYtaRt5qUthgzRMUO6iD035DS57COlUBpmLJjfYoru3WLqJt6wNAFVZcb7TYKNdxDx3rIEG8fbrrzGHT/CKy8iH2KcAdrRBsCXKgKhDNCbnguKtltM5j06loWN2evPWff0tMfJCd3D4oac1lqjwezi07IYSNyeeK3OMV6ZiaKtosbIckBge7xvTuRbHJ0BumFpAvS6tmxQKETMfLHCapaUPeY9PR3h7e2uY3FDTikpKcHVmss4Uru7W0uQewO9zrjmRNutpsuVKrz6eIrZlZlo9/UKhfWAQHO88iLyLY7MALV14aNrVeC1OX3x+twUKJQd5wbQeXYYNd23HA2V+zk5oQtY3JBT5DT9u33XsjGQjAtuWU75NhAUouk1MUktdgcEGqmDAzktnMhHODKQ2HZuGLKjqlx1bfCwdc+Ns9lhxN6bruGAYnKKLw8kNt/kErjWtay3XHcCaFtwyxBY5lO/BcReC6WoOK1p+rdeZ3iYTwc3arpvOTfFI/IBHW0AbJ4d9nIDAESr21EiFEoRep0CsUktmPliBWKTtFAo23IDQIc9OJyc0DUsbshhpw6fxKQTJ65N//adW1K29njplaC1mO1gm3WAtWoFrH0hEdXnVYju3YKWqwIaagy9WIJCj8eXtW3FYMTdwom8n60Lt/bZMfPFCju5YX4hZE6AXicguncLWrUCXpvTF9G9W6BrBWovtl0NmW/F0J7h9vYCTDqhxO6kaF4gOYi3pchhmqZG9KrT+dyifbbWo7A1U8oR5kuoV58PRENN2/WBqFdg7aJEq8W8OLCYyLvZmwHaPjveW5aAuD4aCArLxfhsFzZtqs8HmvaUqj4fiNqLgVY/N+49Zcu+KSPQq06HpvJq576YH2NxQw7x1enf9vaH6myWQsfFjvlaN+1DTcD6JZZTPLkgF5F3szUD1F52zHyxwmw7BXMdXSi17wW2zo3q8yq7ucTJCc5jcUMO8dWBxPbWsgGsZ0pZ6vhKzPhetoKsqkxtsdcUYOi96VXHBbmIvI29GaBWa9kIhhlOsUlamwvz2c4SexdJto93dNHFgcXOYXFDnTL+8jdU7vf56d9G1jMenGFrE7xrRwTDjIgFdxv2m6ksNRSDvPIi8k72LtzaDxxWKEXcM/cicmelOvHujlwkAcY96trnhjlOC3cOixvqlK/22gC217KpPm8Yd9O2CaazbM2UuLb7r1I0Le514awKr83pa9pUj1deRN7H1vRv01o2ZsWNrlWBf62OsdpfrmsEtO+9sZcb5pghjmNxQ53y5d2/FUoYFsu6do9coRARm6y5NuOhq8WNLYb30rUqzBb3agurtS8k8sqLyMvY2wDYM7lheZFkLzfMcXKC41jcUIdKSkrMpn/7zkBic48trkBMkmEQTExSC2YtqUBUfEsnr3KW4X68eSC2aRssyCsvIu/R0YWb+3OjrXBSBug7zA0j3t52HNe5oQ41lVejV50OW31w0T6j2GQtnn+n1GIhrs5nSzlLuDaLAli/JAFVZbbX0Nk1IQNzdqmx19UfT0RO6Wz3b1u5IQiAI1O/HWN4j+iEFkz9w0V8/naM3dwwt2/KCMzZdRp5XDerQ+y5Ibt8dfq3PeaFjfkCWo7pfB2c95YlQK8H/rSutMPdxolIeo5uAGyeG5bj91zjYrka/1odg1lLKpgbLsTihuzy5YHE9pgvee6czgPNfCDgtCerENfH0IUd18ew+igReQdnNwA29t7EJLn6drKhkLlwVo3X5zI3XIm3pcgm8+nfrY9Yd9n6mqqyQKxZlIjLldd6bATxWq4YZy24rpv5QpkK/1odY9WlTUTewXjh1hIciNYOzqsqCzTdZlYG6K+tb2O951zXWc7G+vSvsXjh/RLmhguw54ZsklOvTVVZIF6fm9JW2ACA2BYqygDHtl5wmNi2CjIDisj7ODID1JgbxnEwbUtHWE/jdpXLlSrmhouwuCGbfHn6d3uGNW1s/acumF2NuVZcH43dgNK0cqViIqk4OgPUOjdsrW/l2vE35DosbsguOQwkNi7GZY87ChsAmPlihc3jnMpJ5P06yw2pHandDU1TIzOkAyxuSNaMi3FB6Kgb2bVdzIJCD0UHv1lc64bIu9nODffcijIX0avz2VHDw6dDHRyIccePMEM6wOKGZO+xxRVQKh3Z5dtFRAEblibY/TFXKibyfp3nhquJCHBwiCNXKu4cixuSvV4J7XfxdS/x2oDi9juDm2PvDZF3s84Nd4+vMaxI3FFuGPH2dudY3JDsKZS4tgN42+JY7ma+w69x8zvz9XV45UXk3Uy3pjyQF0ad5Ya5fVNGYHbxaTSVV3usfb6E69yQFePKxHKh17UfOOzuKzDRNG30Yrlh87uAQBEXzqoR10eDxxZXYHjydJxoXABgiJvbQkTmWms00Ogc6zGd+WIFXpvT180tatNZbsQma03nDg+fjiO1CwCke6x9voQ9N2RFTmvcAEBlqb3v4a4rMgHGAkqvN3Q1Xyw3rLFzsVzV4XgcInIf88VJHV2Z2DZ3ZgdzwxXYc0MWSkpKoGlqREPlfuybMsJnN8sEDItwbViacG1Kp71VRV21OrFtgiBCFAXo9W2hZVzgj4g8y5mViW1nBwCIUChF6HXu7AE2fKat3OACf45xuOemosL2uh0kL601Gow7fgTq4ECfX+Nm7QuJuHDWuCqxvQW43BVQhiu72OQWw+Z3CsNzhULscIE/uam7UCl1E4hMnFmZuG2dm/YZIUCvc+9ND2WA6Ne54QoO/xsaMmQINm7c6M62kBeQy8rEHe/g64kBgobPfW51Kea8fA4xSYYxTDFJLXhssf9cKPzvpPE4/PlnUjeDyLQycWeLk65fYm9Fc8/RtSow+yX/zQ1XcPi21PLlyzF37lzk5+dj9erViIqKcme7SALGKYWGX37f3SzT2KVsn+eWTM+dlYo5L5+zu4mmcSpnamqqx9rkSZOeeR6fvvA8jn35b9y//FUE94yUuknkp1prNEhsArZ2cLu9sjTQtJeUdAy3pN5bloDHFlegV4KWPTZd4HB5+sQTT+Do0aOorq7G4MGDsWXLFne2iyTy63PnpG5Ct21YmmAaiOfJaZy2VJ9vK7TaB5Q/rHUz6r8exX9vLURzbQ3euGMcfij8UuomEdn13rIESJ0ZRsZBxCxsusapvre+ffvi66+/xgsvvIBp06YhIyMDw4cPt3g4Y9WqVcjIyEB4eDjCw8ORlZWFbdu2dfiajz/+GOnp6QgKCsLQoUOxdetWpz6T5M24J4xxIF77gYCWf3qC/QHEuyZkoKFyv+z3iIlK7oO5eR9jwpPz8P4fHsf/3jUBq6bfBwAYM2YMc4O8Qtt+Uh317HruljYnH3SP07OlSktL8dlnnyEyMhL33nsvAgK6PuEqKSkJK1aswMCBAyGKIt577z3ce++9OHz4MIYMsV7/Y8+ePZgxYwZyc3Nx9913Y+PGjZg6dSoOHTqE66+/vsvtIPkwLrxlGEjcfkaUp3bytZyNFdfH9n4xhj1ijmLc8SPYG3IrkOrmZkmo5lw5jm3fhh4RERhy+yTodTqcP/EDJk+eDLXaudsAzA1yh46zw8gTt7QNn6lQiIhJ6nyvKbLNqcpk7dq1eOaZZzBx4kQcP34cMTEx3frwKVOmWDxfvnw5Vq1ahW+//dZmSK1cuRJ33nknnnvuOQDAsmXLUFBQgLfeegtvv/12t9pC8mG98Jbnxti0p1CKuHvORbs/3zUhA9k75L1S8Xeb8vDFK0sxcNQYPPPvIoRGR+NqQwN2rPor/vSnPyE8PNyp92NukLt4U3YIio6zgzrm8G2pO++8E88//zzeeustfPbZZ90ubNrT6XTYtGkTmpqakJWVZfOcvXv3YuLEiRbHJk2ahL1799p9X41Gg/r6eosHyVt8ihZxfTQQOtwJ3N0Mn63XCVj3YpLFcurm5L5HzDuPPoytry7H1CXLkf32OoRGR7v0/d2VGwCzwx8Zs0O6cTdtn6tr7Tg7qGMOFzc6nQ5Hjx5Fdna2SxtQXFyM0NBQqNVq/P73v0d+fj4GDx5s89zKykrExcVZHIuLi0Nlpf21NHJzcxEREWF6JCcnu7T95J0MS5Ubt5DwdFBZ3wKrKrO/wqg6OBB3nj7tmaZ5mKjT4emtX2HEtAdc+r7uzg2A2eGvHltcgbg+7bPDUxniXHYAkO2FUXc5XNwUFBQgKSnJ5Q1IS0vD999/j++++w5/+MMfMHPmTPzwww8ue/+FCxeirq7O9CgrK3PZe5P3ik3W4vl3SvHGtp/wp3Ul1zbO9CTLMDTuFO5vgwPnfPARevZ2/bLx7s4NgNnhr4zZsWDtGbMix5Mczw51cCBmF5+W9YzLrpJ8bymVSoUBAwZgxIgRyM3NRWZmJlauXGnz3Pj4eFy4cMHi2IULFxAfH2/3/dVqtWlWhfFB/kOhBHolaCVYlMt8QCJXGHU1d+cGwOzwd/EpWjzz99Jrzzw59sbx7Gi6bzmO1O7G1ZrL7L1pR/Lipj29Xg+NxnYVmpWVhcLCQotjBQUFdu+1EwGGAsfQc+OJruW2QIqKbzFd+XGFUfdibpA7GAoKT97WNhQy5r1GnWWHP6yX1RWSbpy5cOFC3HXXXejTpw8aGhqwceNGFBUVYfv27QCA7OxsJCYmIjc3FwAwb948jB07Fm+++SYmT56MTZs24cCBA1izZo2UX0N21J1sKudLjKsVe67nxnDVJShE3P9UFQaNbOZmdy7G3CB3s9w405ME3D3nIuJTtHZXNW/PH2ZcdoWkPTdVVVXIzs5GWloaJkyYgP3792P79u24/fbbAQBnz57F+fPnTeePGjUKGzduxJo1a5CZmYlPPvkEmzdv5loVLtJao0Fz7SWpm+FSnl+t2PAZol7Av1YbZhSysHEt5ga5m3SrnIv4Ym3bTGRHssM445IsSdpzs27dug5/XlRUZHXsgQcewAMPuHbmBRkYN818f0KG3b1XfEnbiqNGnrhvbr26KIsb12JukDtJkxttn8XccA2vG3ND0igpKYHY0tLpjrm+xLNjbSwJAgcQE/kiKXPDOOaGudF9LG4IANBUXo3Zxaexb8oIqZviMnodro218fwqo1HxWg4gJvJBUuYGIGDmi8wNV2BxQ6ZemyO1u2XTawO07RVjeQXmmXE3AYEiYpO1HvgsInIl+7nhmeyIT2FuuAKLGwIA3Hn6NNTB8lvi+7HFFYjubR4Wtq7GXB1azi/Yp9FpOJWTyEu0zw3DP3tmzF6rFOsGypCkA4qJ3C02WYtF75WYCo3X56bYmN7p6tASnVrZlFM5ibxL+9xQKIFXH7eVHa4kQhkgIkAFDih2AfbckF9QKIFLFYFo1br/6ktQiNBcEfDsXdc5tOmd3DfPJPJVCqXhUVXmiewQEBTciuUzUx3ODrKPxQ35jQ1LE1BzwRgW7rt/LuoF1F40fM7F8o43vTPaN2UE94gh8lKW2eE+TfWBqD7vXHaQbSxuyC8Y167Q6y133HWPtp19zde76cjw8OncI4bIC7W2tM8Od3I+O8g2jrkh2TMupW4gwv0DA429QgIUChExSS0O3T837hGzNzIKSHVn+4ioM+ZbMCgD9NC1thUe7tO17CBr7Lkh2duwNAFVpqXUPXP1ZQykmKQWh9et2DUhA/2uenovGyKyxTw3PLnujTLAUOA4kx1kjcUNyZrxdpTokS5l888V8OzqMwCA1+b05eBAIh8iVW4AAnStCmaHC7C4IVlrW5DLnWwPTv5gedvmexwcSOQ7PJMbtsX10TA7XIDFDcmeYRuE9gWIK2dLGa/uRNOfUfEtFoMQjYMDK0s7vgLTefxKkYhseWxxxbU9ptpz30xLZYAeM1+scDo79Hr+r7w9/o2Q7PVKsLW6qADXhZSI6N4tZiuaChAEILp3C9ov4f7eMttXYFVlgdgy//f41V+fwT/njUTVaY4iJJJSbLIWz6wqtfETV16AiBYFVM+YVigUtrd/sJUdVWWBePXxFMz/4DNs/tNY5oYZFjckewolEJtsq4vZVSElYPZL5xAQKEKhMARS25oYgsV59qZ2bliagPqKaABAXUUw3v99pIvaRkRdFZ+itZMdriJcK2jacmPD0oRrA4k7z44NS9tuX9VXhjA3zLC4Ib9w7+8vwl3dybHJGsQmaa26kqvPqxCbrIEgGD5XoRAR10djNbWzbfCi4ddR1AuoOhXI9S2IJFZVFnhtCrg7iIhN1qD6vMrqFlRskhZxfTrOjvZrd4l6BXPDDIsb8gv/Wh0DwU3/tetaBVyqCDSEj8IyjGYtqUBssmGfqZiklmvjfywZBy8KCkP3tKAQETtAy/UtiCTm3pWJBehaBUT3brHKDYXSMOano+ww5obxtYJCz9www0X8SPaMVzjuUn0+EGtfSMScl8+ZFv0yhlFsshbPv1Pa6UZ4jy2uwKrFoagrj0FEQjOy325yW3uJqHP2c8N1C4FergxEVLwWMUktFrkBwKHseGxxhSlzwuObkP32FZe0Sw5Y3JDsGa9wLpYbu3/Nw8mZoLJ3ruEWVFSc/TDq7GoqNlmLKX95G7N2BmPTuBGI7ZfmYJuIyB06zg3YeG5P26rDVj8RDdnx2hc/mTbptNUOe4wFkOKDP+Hw7bMQ22+EA+3xD7wtRWit0UCjk/eGjY8trkBMUsu1Z5YD9WyzNT6n4yBbcLdhJ99LFV3vxlYq3DfNlIicY54bxltEbTng6EVRx9s2KAP0WHD3dXh9btcX61MobE1Z928sbgiapkYkNgZg14QMqZviNsYrnDe2/XRt6mXbmjS2OdPtLJrehwtuEcmHeW78aV2pg9nhDBF6nSFrupodIfmLkNlzNNQhoS5oj3ywuPFzpw6fxKQTJ3BGfwDDw6dL3Ry3UyiB+56osjjWI7TVztmOhhd38iWSM4XSMAZn2pNVnZ/scG4YbmuJYveyQ9Osxbqh/RAQyX3pzHHMjZ/TNDWiV50OWydkYLjUjXEz811+zQNIc0UB63E4gDO9N4JChKjnTr5EctN+d3BL7bPCVmFjf6xebLIGl84ZxvR0JTsO1X+E7NAsHFSpkJqa6vgL/QB7bvxYSUkJxJYWnGjc6xe9NmtfSMSFs+13Bxeg17Xf8bfje+SWRCiUesQmdTzdm4h8k3luWO4OLsA6K2xlh+0sERR6zFrSNqanK9kxpvAozoW28paUDey58WOtNRqM//lHtAQHwt6NGbnQ64Dq86rOT7TL/syI2S9VYNDI5k6nexORb+l+btgXEa1zeKkIezTNWuzJysSQYZxd2R57bvxcv6tqWQ8kdpWeMVoolLZmJAhIG94MgIUNkTcLiFTjXAhw05aDHv1cQ25Y366qvdi2mjCzw/VY3JBfUCjbb2Rp+FMZoIegsDX7wfDPsckaLFh7Bv+TV4LZL7XbXVywvZ0CEXmf1NRUbE9PR3poFg7Vf+TQa2zlhvEix3LmlDnL7FiwptRsU10Dwc5WLOQ6LG7Ib8x5+Rzi+hjub8f1acGCtWfw3OpS03gZW+vfLFhTivgULarKAvGv1TEABFO4xSW3XNvgjoh8gTokFOdCWzGm8KjDr7HKjTWGqeHPrbYuWgzaskOhMGzhUH1ehaj4lmuFEhDLsXlux+KG/JZCYbmORUcb1ZnvvgtRQFS8IaRem9MXrz7e9cW3iMhzAiLV2DFwEDTNtooSxymUhuxY9F4J3tj2E2KTrfeVUygtc6O2ypARsckaXDirxoalCcwNN2JxQ37DPGjaL5jVfqM6QSHiwlk1Xn08BZWlgVY7fl+uVKGqzPZ7EZF3Sk1NRVBkFMLiRyIkf5FDr+koNwBDdpjPejJmx4rZKVa5UX1e1eF7keuwuCG/YNwEzzxo2i+YZezFiU3WQNS3rRr63rIEqx2/AXR78S0i8ryASDXUSscWvHMkNwDb2XHpnArKAD1zQyIsbsgvGDfBs9V1bE6vA6rKrMNs5ouW61FE927p9L2IyLc5mhuA7ezQtSqYGxLhOjfkNx5bXGFaadTeglntdwI2rhoan2K5HoX5qqVcuI9IvhzJDcB+djA3pMHihvyGowtmdRRmxtd1d/EtIvINzvyu28sO5obnsbghv9NZqDgTQAwoIv/gyO+6o9nB3HA/jrkhsoMBRERd4YnsOFT/ETJ7jnb/B/koFjdEROQ3jCsV91Xc6PBKxd5oTOFRnA7ScNNMO1jcEBGRX+nKSsXe5FD9R9A0a1E0JBMDuGmmTSxuiIjIr7hqpWKpjCk8irD4key16QCLGyIi8itdWanYm2iatdgxcBACIh1bjNAfsbghIiK/46u9N4fqP0J6aBYElQqpqalSN8drsbghIiK/k5qaCkGlkroZTrtpy0F8OGwgQpKipW6KV2NxQ0RE5APYa+M4FjdEREQ+YEzhUZwLbeVAYgewuCEiIvIBxunfHEjcOW6/QERE5OVC8hdBdW36N29JdY49N37udJDGZxeyIiLqrvTQLJ9YqZjTv53D4saP+epUSCIiV/CVlYo5kNh5LG78mHEqpK9cuRARuZKvXODdtOUgLkUoOf3bCSxu/FxIUjQuRShx05aDUjeFiMijjCsVZ/Yc7bUrFRt7bbanp7PXxgksbvyccYdc9t4QkT8KiFRj3dB+Xtt7w+nfXcPihnzmvjMRkat5++15DiTuGhY3hIBINdRK/uIQkX/y1gu8kPxFCIsfiaDIKN6SchKLGyIi8msDhqWhaEgm+ipu9KreG/badB2LGyIi8nve1nvD6d/dw+KGiIj8nrdNCx9TeBSXIpQcSNxFLG6IiMjvGQcWZ/YcLfmtqUP1H6Gv4kZsT0/HgGFpkrbFV3FvKSIiIhjW/VrX0g83bXkf+6a0HR8ePt2j7RhTeBTnwm9gr003sLghIiKCoffmeHk1MnuORv9DxQCA8ppmNN3n2eJG06zFf0YMQigHEncZixsiIqJr1CGhOBcC9NL0BABomus8+vnG3b85/bt7JB1zk5ubi5EjRyIsLAyxsbGYOnUqTp482eFr3n33XQiCYPEICgryUIuJSGrMDXKnAcPSsD09HTW9BqOm12CPL+7H6d+uIWlxs3PnTuTk5ODbb79FQUEBtFot7rjjDjQ1NXX4uvDwcJw/f970KC0t9VCLiUhqzA1yt5CkaOy8OQM7b87Ah8MGemzvPU7/dh1Jb0v9+9//tnj+7rvvIjY2FgcPHsRtt91m93WCICA+Pt7dzSPyqDGFR3E6/Aapm+H1mBvkbuaFxfHyaqSHZuH9+o/cPrCYA4ldx6vG3NTVGe5tRkVFdXheY2MjUlJSoNfrMXz4cLzyyisYMmSIJ5pI5DYcRNg1zA1yJ8vF/QwL/DXdt9xl72++G3lfxY3IGzIEQzj9u9u8Zp0bvV6P+fPn49Zbb8X1119v97y0tDSsX78en3/+OT788EPo9XqMGjUK5eXlNs/XaDSor6+3eBB5G+4h0zXuyg2A2UEGAZFqw9YMwQnoG5wATbPWpWNwNM1a03tz0T7X8Zqem5ycHBw7dgy7d+/u8LysrCxkZWWZno8aNQqDBg3C6tWrsWzZMqvzc3NzsXTpUpe3l8iV2GvTNe7KDYDZQQapqak4VaNBTa/BGNIjEb0U54At29D6SPdvUR2q/wjZoVlISDb0IOZFASHMAJfwip6bJ598El988QV27NiBpKQkp14bGBiIYcOG4dSpUzZ/vnDhQtTV1ZkeZWVlrmgykctwEGHXuDM3AGYHtQmIVKPwujSUhbbi5yi4bAbVmMKjOBfairJrD3VIKDPARSQtbkRRxJNPPon8/Hx8/fXX6Nu3r9PvodPpUFxcjN69e9v8uVqtRnh4uMWDyJtwDxnneCI3AGYHtUlNTUVApBpb+sWh8Lo0l2ywadxioWhIJrb0i8OWfnGc/u1Ckt6WysnJwcaNG/H5558jLCwMlZWVAICIiAj06NEDAJCdnY3ExETk5uYCAF566SXccsstGDBgAGpra/H666+jtLQUjz/+uGTfg8gVGGyOYW6QFIw9KiUowY6Bg3Djrv3d6r0xnxnF3hrXk7S4WbVqFQBg3LhxFsc3bNiARx99FABw9uxZKBRtHUw1NTWYM2cOKisrERkZiREjRmDPnj0YPHiwp5pNRBJibpCUjGNwwuJHYsahn7r8Phf1wNcDOc7OXSQtbkRR7PScoqIii+d//vOf8ec//9lNLSIib8fcIKkZZ1DNK+7V5fdIGZSIHSqw18ZNvGa2FBERkS8w9t5cSIvr8nvkR4ZyZpQbsbghIiJyUkCkGlsiu17cBIC9Nu7E4oYAAP/u1w837up4rRAiIjJgYeLdvGKdG5JWamoqBJXK47vfEhERuQOLGwLQfv8UIiIi38XihgAAA4alGfZPUdzI3hsiIvJpLG7IhL03REQkByxuyCQgUg21klMTPU3TrMW/+/WTuhlERLLB4oYsKMPCoGnWSt0Mv8FNM4mIXI/FDZGEjLsCc9NMIiLXYXFDJBHzXYEHDEuTujlERLLB4oZIIuy1ISJyDxY3ZGFrYqLUTfAbmmYtdgwchADuL0NE5FIsbsjEOKCVKxV7DgcSExG5HosbssC1boiIyNexuCELXKmYiIh8HYsbssLeGyIi8mUsbshKQKQaOwYO4mJ+RETkk1jckJXU1FQIKpXUzZA148rERETkeixuiCTANW6IiNyHxQ2Rh3FlYiIi92JxQ+Rh7LUhInIvFjdEHsaViYmI3IvFDdnFlYpdzziQmCsTExG5D4sbsolr3biPOkDJW1JERG7E4oZsCohUo2hIJjTNWvbeEBGRT2FxQzalpqZCHRKKsPiR7L0hIiKfwuKG7OJKxURE5ItY3JBdxpWKObCYiIh8CYsb6lBIUjQ+HDYQN205KHVTZGFM4VGcDtJI3QwiIlljcUMdYu+N6xyq/wiaZi2KhmRyjRsiIjdicUOd4rRw1xhTeBRh8SOhDgnlGjdERG7E4oY6ZT4tnLqOKxMTEXkGixvqlPm08JD8RVI3xydxZWIiIs9hcUMOCYhUQ61kj0NX3bTlIC5FKBGSFC11U4iIZI/FDZGbGXtttqens9eGiMgDWNwQudmYwqM4F9rK/aSIiDyExQ2Rm3EgMRGRZwVI3QAiOQvJXwRV/EgERUbxlhQRkYew54acwungzmGvDRGR57G4IYekpqZie3o6Vyp2Aqd/ExFJg8UNOYwrFTtnTOFRTv8mIpIAixtyWECkGjsGDuKtKQccqv8IfRU3cvo3EZEEWNyQw1JTUxEUGcWVih3A6d9ERNJhcUNOYe+NYziQmIhIOixuyCmpqakQVCoOLO5ASP4ihHH6NxGRZFjckNPUIaG4FKHkwGI72GtDRCQtFjfktAHD0rA9PR19FTey96YdTv8mIpIeixvqEk4Lt804/ZsDiYmIpMPihrqEA4utmU//HjAsTermEBH5LRY31CWcFm6N07+JiLwDixvqMvbeWOJAYiIi78DihrqM08LbhOQvQmbP0Zz+TUTkBVjcULdwYLGBplmLdUP7sdeGiMgLsLihbhkwLA1FQzL9elo4p38TEXkXFjfUbf7ee8OBxERE3oXFDXWb+cDiQ/UfmR7+wDj9u2hIJqd/ExF5iQCpG0C+LzU1FadqNMjsORrhBd8BADQKoOm+6RK3zP3GFB7FufAb2GtDRORF2HNDLhEQqcb6Eem4cdBM3Dhopt+MweH0byIi78PihlwiNTUV6pBQlIW2oiy01S/G4Byq/wiZPUdzIDERkZfhbSlymYBINbZExgEAGqHHjbv2S9wi97ppy0GsG5ON0KRoqZtCRERmJO25yc3NxciRIxEWFobY2FhMnToVJ0+e7PR1H3/8MdLT0xEUFIShQ4di69atHmgtdSY1NdX0EFQqZPYcLbtbU+YDpjn9WxrMDSLqjKTFzc6dO5GTk4Nvv/0WBQUF0Gq1uOOOO9DU1GT3NXv27MGMGTMwe/ZsHD58GFOnTsXUqVNx7NgxD7acOhOSFI11Q/vhpi0HpW6KS40pPIoZh05hxqFTnP4tEeYGEXVGEEVRlLoRRhcvXkRsbCx27tyJ2267zeY506dPR1NTE7744gvTsVtuuQU33HAD3n777U4/o76+HhEREXjpyEkEhYW5rO1k7fjug3jku+N4f3wLhof7/sypQ/Uf4aYtB5HeKwW9FIOxcmgihoweIXWzfNLVhgb8T2Ya6urqEB4e3q338kRuAMwOIqk5kxteNaC4rq4OABAVFWX3nL1792LixIkWxyZNmoS9e/e6tW3kPLkt7nfTloPolTgaNb0G4+cosNfGSzA3iKg9rxlQrNfrMX/+fNx66624/vrr7Z5XWVmJuLg4i2NxcXGorKy0eb5Go4FGozE9r6+vd02DqVMDhqWhqKkRj3wXgPfrP/Lp3ptD9R8hOzQLeenpCLk2gNhrfnn8mLtyA2B2EPkyr+m5ycnJwbFjx7Bp0yaXvm9ubi4iIiJMj+TkZJe+P3VMLr035lssmA+cJmm5KzcAZgeRL/OK4ubJJ5/EF198gR07diApKanDc+Pj43HhwgWLYxcuXEB8fLzN8xcuXIi6ujrTo6yszGXtps6Zb80Qkr8IIfmLfGYG1aH6j0xt1jRrUTQkk4v1eRF35gbA7CDyZZIWN6Io4sknn0R+fj6+/vpr9O3bt9PXZGVlobCw0OJYQUEBsrKybJ6vVqsRHh5u8SDPMU4LHx17F/oGJ0Cth8/04ty05SD6Biegb3ACeiWONvXakLQ8kRsAs4PIl0k6bCAnJwcbN27E559/jrCwMNP974iICPTo0QMAkJ2djcTEROTm5gIA5s2bh7Fjx+LNN9/E5MmTsWnTJhw4cABr1qyR7HtQx0KSorESwHOXE5EA4OvD7+CQl4/BMY6xSUgeAgDIiwJC2GvjFZgbRNQZSXtuVq1ahbq6OowbNw69e/c2PT76qO22xdmzZ3H+/HnT81GjRmHjxo1Ys2YNMjMz8cknn2Dz5s0dDiYkabXfmiEsfqTX994Yx9gY28xeG+/B3CCizkjac+PIEjtFRUVWxx544AE88MADbmgRuYuvbc2gadbiPyMGIbSfoc2cGeU9mBtE1BlmNnmEea/H8fJqpIdm4X0bA4ulvFVlHOg8pvAoVPEjERQZxd4aIiIfxOKGPC4kKRqXTigxscDy1lT9VS32TZGmwDlU/xHGFB6FWm94/vXAQQjlGBsiIp/E4oY8LjU1FdvTq/Hc5XSL4y3nzgFbtqH1Ec8XN2MKjyJddTOi+xratEMF9toQEfkoFjckCXVIKMpaai2O1UcB6c1ZkqxmrGnW4lwk0BzaCgAISYrr5BVEROStWNyQJMwHGBu1RvZEVu1/MKbwKJru81xxE5K/CKr4kSgacaNpkT722hAR+S4WNyQJW8VDCUqwY+Ag3Lhrv0dXMb7JODMqUs2ihohIBljckNdITU3FqRoNwuJHYsahnzz2uaE9R+OgSsXChohIJljckFcx7kX12x+rPPaZ50IMY4CIiEgeWNyQV0lNTcXx8mrU9Brssc/cnpiIIcPSPPZ5RETkXixuyOuEJEVjZ1K05z7PY59ERESewOKGvA7HvhARUXdIunEmERERkauxuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGQlQOoGeJooigCAq42NEreEyH8Zf/+Mv4++gNlBJC1nckMQfSldXKC8vBzJyclSN4OIAJSVlSEpKUnqZjiE2UHkHRzJDb8rbvR6PSoqKhAWFgZBELr0HvX19UhOTkZZWRnCw8Nd3ELv5Y/fm9/ZPd9ZFEU0NDQgISEBCoVv3B1ndnQNvzO/s6s4kxt+d1tKoVC47EoxPDzcb/7DNeeP35vf2fUiIiLc9t7uwOzoHn5n/+AtueEbl0xEREREDmJxQ0RERLLC4qYL1Go1Fi9eDLVaLXVTPMofvze/M7mSP/7d8jv7B2/7zn43oJiIiIjkjT03REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhceOkb775BlOmTEFCQgIEQcDmzZulbpJb5ebmYuTIkQgLC0NsbCymTp2KkydPSt0st1q1ahUyMjJMi1FlZWVh27ZtUjfLo1asWAFBEDB//nypmyIL/pYbALOD2TFf0nawuHFSU1MTMjMz8be//U3qpnjEzp07kZOTg2+//RYFBQXQarW444470NTUJHXT3CYpKQkrVqzAwYMHceDAAfzqV7/Cvffei+PHj0vdNI/Yv38/Vq9ejYyMDKmbIhv+lhsAs4PZITGRugyAmJ+fL3UzPKqqqkoEIO7cuVPqpnhUZGSk+M4770jdDLdraGgQBw4cKBYUFIhjx44V582bJ3WTZMcfc0MUmR1y523ZwZ4bckpdXR0AICoqSuKWeIZOp8OmTZvQ1NSErKwsqZvjdjk5OZg8eTImTpwodVNIZpgd8uZt2eF3G2dS1+n1esyfPx+33norrr/+eqmb41bFxcXIysrC1atXERoaivz8fAwePFjqZrnVpk2bcOjQIezfv1/qppDMMDuYHZ7G4oYclpOTg2PHjmH37t1SN8Xt0tLS8P3336Ourg6ffPIJZs6ciZ07d8o2pMrKyjBv3jwUFBQgKChI6uaQzDA7mB2exu0XukEQBOTn52Pq1KlSN8XtnnzySXz++ef45ptv0LdvX6mb43ETJ05E//79sXr1aqmb4habN2/GfffdB6VSaTqm0+kgCAIUCgU0Go3Fz6jr/Ck3AGYHs0Oa7GDPDXVIFEU89dRTyM/PR1FRkV+GE2DoVtdoNFI3w20mTJiA4uJii2OPPfYY0tPT8fzzz7OwIacxOwyYHdJkB4sbJzU2NuLUqVOm52fOnMH333+PqKgo9OnTR8KWuUdOTg42btyIzz//HGFhYaisrAQAREREoEePHhK3zj0WLlyIu+66C3369EFDQwM2btyIoqIibN++XeqmuU1YWJjVWIiQkBBER0fLfoyEJ/hbbgDMDmaHxNkh6VwtH7Rjxw4RgNVj5syZUjfNLWx9VwDihg0bpG6a28yaNUtMSUkRVSqVGBMTI06YMEH88ssvpW6Wx3nDdE658LfcEEVmB7NjnqRt4JgbIiIikhWuc0NERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUM+QafTYdSoUZg2bZrF8bq6OiQnJ2PRokUStYyIvBVzw39xhWLyGT/99BNuuOEGrF27Fo888ggAIDs7G0eOHMH+/fuhUqkkbiEReRvmhn9icUM+5f/+7/+wZMkSHD9+HPv27cMDDzyA/fv3IzMzU+qmEZGXYm74HxY35FNEUcSvfvUrKJVKFBcX46mnnsILL7wgdbOIyIsxN/wPixvyOSdOnMCgQYMwdOhQHDp0CAEBAVI3iYi8HHPDv3BAMfmc9evXIzg4GGfOnEF5ebnUzSEiH8Dc8C/suSGfsmfPHowdOxZffvklXn75ZQDAV199BUEQJG4ZEXkr5ob/Yc8N+Yzm5mY8+uij+MMf/oDx48dj3bp12LdvH95++22pm0ZEXoq54Z/Yc0M+Y968edi6dSuOHDmC4OBgAMDq1avx7LPPori4GKmpqdI2kIi8DnPDP7G4IZ+wc+dOTJgwAUVFRRg9erTFzyZNmoTW1lZ2MxORBeaG/2JxQ0RERLLCMTdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWfn/sIaDdCAXMVAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lab02_lib.plot2in1(data,xx,yy,Z1,Z2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nzSxJjgPV3IA" + }, + "source": [ + "#### Изучить сохраненный набор данныхипространство признаков. Создать тестовую выборку,состоящую, как минимум,из 4ёх элементов, не входящих в обучающую выборку. Элементы должны быть такими,чтобы AE1 распознавал ихкак норму, а AE2 детектировал как аномалии." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "q1_q4wS7V72q", + "outputId": "7b09e492-b22a-416f-dce7-9685553f416d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2.5, 2.5],\n", + " [2.4, 2.4],\n", + " [3. , 2.3],\n", + " [2.2, 3.2]])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_test= np.loadtxt('data_test.txt', dtype=float)\n", + "data_test" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Y5G5CAKvZHOn", + "outputId": "76bd8ed2-1da0-4b6e-e1e9-55f055a9ac78" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "[[0.]\n", + " [0.]\n", + " [0.]\n", + " [0.]]\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]\n" + ] + } + ], + "source": [ + "predicted_labels1, ire1 = lab02_lib.predict_ae(ae_trainned, data_test, IREth)\n", + "print(predicted_labels1)\n", + "predicted_labels2, ire2 = lab02_lib.predict_ae(ae2_trained, data_test, IREth2)\n", + "print(predicted_labels2)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nOjDcI2wZNnk", + "outputId": "19b03a3f-c7b9-46e5-ece2-2557cfa6eed4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Аномалий не обнаружено\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfpVJREFUeJzs3XuYlWW9P/73zDAc5aAiBxEFFUXkMKThoV1qqaRt95fKvqam6N6621vdWXzbbf1t89DJyjKtTDsZVtu02qmV5iGTrKTUYgDPZ/AEgggICAzM+v0xMc5ygBlgFrNm5vW6rrmY9azns9bnGW6W8Pa+n7uiUCgUAgAAAABQJirbuwEAAAAAgKaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAbejRRx/NWWedlTFjxqRv376pqKho/Hruuefauz0AAOgQhJYAwDY7/PDDG4O5iy++eJPnNQ3w3vpVVVWVAQMGZNSoUfnQhz6U733ve1mxYsVW9bClX6eddtq2/xCS/PKXv8zEiRNz9dVX59FHH92i/qGru+CCC4r+XP77v//7Fr9GqT4HCoVCHn/88fz4xz/Oueeem0MPPTS9e/durB0xYsTWXzgAsFFCSwCgLNTX12fZsmV56qmn8vOf/zxnnnlmRo4cmZtuuqm9W2uVFStW5LTTTsuaNWuSJEOHDs2HPvShnHXWWTn77LNz9tlnp1+/fu3c5da7+OKLWxVMdwSnnXZa47VMnz69vdvZLp577rmyDtgKhUJ+9KMfFR278cYbG/88tacHH3wwAwYMyOjRo3PKKafk61//embOnJk33nijvVsDgE6tW3s3AAB0TVOmTMmwYcMaH9fX12fx4sWZOXNmXnjhhSTJ4sWLc/zxx+fnP/953v/+97f6td/+9rdn0qRJrT7/4IMPbn3jm/DrX/86r732WpJk//33zwMPPJBevXpt8+tCV3DPPfdk/vz5Rcdee+21/PKXv8yHPvShrXrNtvocWLFiRZYvX75VPQAAW09oCQC0i3PPPTeHH354s+P19fW57rrr8u///u9Zs2ZN6uvr8+///u+ZPHlyevfu3arXPvbYY7f7bMC//e1vjd+feOKJAkvYAtddd13j97169WqcxXjddddtdWjZ1p8DO+64Yw488MC8/e1vz9vf/vY8/vjjOe+889rs9QGAYpaHAwBlpbKyMqeffnq+/OUvNx5buHBhbr755vZrqhU2zLJMGpaGA62zYsWK/O///m/j48svv7zx+zvuuCMLFy5sj7YaTZgwIU8++WSWLFmSO++8M5///OczZcqUDB48uF37AoDOTmgJAJSlj370o+nZs2fj43vvvbcdu2lZXV1d4/eVlf6KBa31v//7v1m5cmWSZOTIkfnoRz+ampqaJMm6devyP//zP+3YXcMMy7333rtdewCArsjfqAGAstSjR4/st99+jY9feumlduxm45puTtN0eevpp5/ebGfiTW34smLFinz961/P5MmTs9tuu6Vnz57ZcccdM3bs2Jxzzjn5y1/+0qpemr7XBrNnz865556bsWPHZqeddkpFRUWmTJmyRde4YTfmSy65pPHYJZdcslW7L990002ZOnVq9tlnn/Tv3z89e/bM8OHDM2XKlFx33XVZt25dq3p67LHH8qlPfSoHH3xwBg4cmO7du6dnz54ZNGhQDjjggJx++um57rrrima/JsmIESNa9XvVFpsNbW2PG1NXV5cf/ehH+b//9/9mzz33TN++fdOnT5+MHDkyJ554Ym666aYUCoWN1k6fPj0VFRUZOXJk47F58+Ztcgft9tD09+MjH/lIKioqcsopp2z0eQCg63BPSwCgbDW9L+Tq1avbsZPS+PWvf50zzzwzCxYsKDq+Zs2aLF26NA8//HCuuuqqnHTSSfnud7/b6nt6Jg2B6uc+97msX7++rdveYnPmzMnUqVNTW1vb7LkXXnghL7zwQm655ZZceuml+cUvfpExY8Zs8rU2d12LFi3KokWL8re//S3Tp0/PySefnB//+MdteSmt0pY9zpgxI2eccUaefvrpZs8999xzee6553LDDTfk4IMPzs9//vOiza06gnnz5mXGjBmNjz/ykY8kSU466aR86lOfyvr16zNnzpzU1tY2zr4EALoGoSUAULaazq4sx/vHTZo0KWeffXaS5O67785jjz2WJHnPe96T0aNHF53bdNZoktx44405+eSTG4Otqqqq/MM//EP23nvvrFixIn/4wx8ar//666/Ps88+m9/97ndFS+Y35bLLLmucGbnXXntl0qRJ6d27d5577rlUV1dv0TW+//3vz9ixY3P//ffngQceSLLpXZk3tvvyvffem+OOO65x9+Xq6uq8/e1vz6hRo1JdXZ3nnnsuf/zjH7N69eo8/vjjOfTQQzNz5sxmP68kufLKK4tmfA4cODAHH3xwhg4dmoqKiixZsiSPPfZYHn300Y0GhlOnTs2rr77a4u9Vki3adbote2zqZz/7WU4++eTGWw/06tUrBx98cEaMGJHKyso88cQTmTlzZtatW5c///nPOeSQQ/LAAw8U/VnZb7/9cvbZZ+f111/PD3/4wyRJ3759c+qpp27V9bW1H/3oR42zRA866KDss88+SZIhQ4bkqKOOyu23356kYbal0BIAupgCAMA2OuywwwpJCkkKF1100SbP23BOksI999yz2dd8/PHHi87/5je/2SY9lMrUqVMb3/8HP/jBZs996qmnCjvssEPj+ZMmTSo8+eSTReesX7++8NWvfrVQWVnZeN5//Md/bPI1m/6sunXrVujfv3/hpptuanbe6tWrt+byChdddNEW/3xffvnlwqBBgxrrTj311MJLL73U7LwFCxYU3v/+9zeeN27cuMK6deuKzqmrqysMHDiw8ZxLL720sHbt2o2+76uvvlq49tprC1/60pc2+vyW/F5tibbs8aGHHir06tWrkKRQUVFR+OQnP1l47bXXmp339NNPF/7hH/6h8T2POeaYjb7es88+23jOHnvssbWX2OZGjRq1yT/j//M//9P43KBBgwp1dXUtvt72/Bz4wQ9+UJY/UwDoLMy0BADKzrp163Luuec2Pu7Xr18+/OEPt7r+tttuy+LFi1t9/mc+85nstNNOW9TjtvjMZz6TFStWJEn23nvv3Hnnnenfv3/ROZWVlZk2bVoqKioybdq0JMlVV12VT3ziE0X3J9yY+vr6/PKXv8y73vWuZs/16NGjja6iZf/93/+dV155JUnysY99LFdeeeVGzxs8eHB+9rOf5eijj87vfve7zJ07Nz//+c9zwgknNJ7z2GOPNf6evuMd78h55523yffdaaedcvrpp7fhlbROW/b4sY99LG+88UaS5Ktf/Wo+8YlPbPS8PffcM7fffnsmTZqURx55JL/5zW/yl7/8JQcddNA2XMn2cd999+XJJ59M0jADt+nvd5JMmTIlO+ywQ1asWJFXXnklv/nNb3Lccce1+vXL/XMAANg8oSUAUBbq6+uzePHi/OlPf8oXv/jF3H///UmSbt265dprr83OO+/c6td64IEHGpcyt8YnP/nJ7RZWLF26NDfeeGPj4y9/+cvNAsumzj333Hz/+9/Pww8/nPr6+nznO9/JpZdeutn3OP744zcaWG5PixYtarxX45AhQ/KlL31ps+dXVVXl85//fA455JAkyf/8z/8UhVgblpcnyS677FKCjrddW/U4e/bs/O53v0uSTJw4MR//+Mc3e36fPn3y6U9/OieeeGKShp9dRwgtm26wc8wxx2TgwIFFz/fu3Tsf/OAHG8+77rrrtii0LOfPAQCgZXYPBwDaxRFHHFG0a3FVVVUGDx6cD3zgA42B5b777pubb745H/zgB9u527Zz3333Zc2aNUka7nfYUghTWVmZf/7nf258fM8997T4HlsyK7VUfvvb32bt2rVJkg984AOtuhfnQQcdlD59+iRJ/vjHPxY9N3z48Mbv77nnnjzxxBNt2G3baKseb7vttsbvTzzxxFbt6v3ud7+78fu3/uzK0erVq/PTn/608XHT3cKbanrvzV/96ldZsmRJyXsDAMqDmZYAQFkaPHhwfvjDH27VhigXXXRRLr744rZvqg3MmjWr8ftJkyalW7eW/zr2jne8o6i+UChsNsg64IADtq3JNjBz5szG7+fMmZNzzjlni+pfe+21rFy5sjHEHD58eA4++OD8+c9/zrJly3LAAQfklFNOyfvf//684x3v2KKd1UulrXps+rO75557Mm/evBZrCn/fzCZJnn/++S1vfju75ZZbsnTp0iTJgAEDNhneH3744dltt93ywgsvZO3atbnhhhty1llnteo9yvlzAABomdASAGgXU6ZMybBhwxofv/rqq3n66acbl3MuXLgw73znO/O///u/+cd//Mf2arPNLVq0qPH7PfbYo1U1I0aMaPx+7dq1ef3119OvX79Nnl8Oy6eb7vz+xz/+catm/7322muNoWWSfP/738+73/3uLFy4MCtWrMjVV1+dq6++Ot26dUtNTU3e9a53ZfLkyXnPe96TqqqqNrmOLdUWPTb92f3mN7/Z4h5ee+21re5/e2m6NPxDH/rQJu+1WllZmZNPPrnx9gLXXXddq0NLAKBjszwcAGgX5557br75zW82fv3kJz/J/fffn9mzZ2fChAlJGgK6E088MU8//XQ7d9t2NmzAk6QokNuct573+uuvb/b8Xr16bXljbWzZsmXb/Brr1q0rejxmzJjMnj07//Ef/1F0H9B169blwQcfzOWXX57Jkydnjz32yPe+971tfv+t0RY9buvPbv369dtUX2oLFizInXfe2fj4Ix/5yGbPb7p0/P77789jjz1Wst4AgPIhtAQAysr48eNz5513Ns7CXLFiRc4444x27qrt7LDDDo3fr1y5slU1bz2vb9++bdpTKTQNWi+//PIUCoUt/mo6w3SDwYMH5+tf/3oWLlyYGTNm5LOf/WyOOeaYopmnL774Ys4888x87GMf2x6X2uY9Nv3Z/eIXv9iqn105+/GPf1wUrB522GFF97d969fYsWOL6pvO0gQAOi+hJQBQdgYNGpRvfOMbjY9nzJiRW2+9tR07ajtNl27Pnz+/VTXPPfdc4/fdu3fvEKHl4MGDG79fsGBBm79+jx49cthhh+WCCy7IbbfdlsWLF+c3v/lN/uEf/qHxnG984xtbtHt0ufRY6p9de9vW0PHHP/5x6uvr26gbAKBcCS0BgLK0YfOSDS644IJ27KbtTJw4sfH7+++/v1VLee+7776i+tbsJt3WtvQ9DzrooMbv//SnP7V1O81UV1fnve99b377298Wzcz71a9+1ezc9vj5Ja3vsRQ/u/a65rf629/+loceeqjx8dvf/vYcdNBBrfrasGnVCy+8kLvvvru9LgEA2E6ElgBA2Wq6829tbW1++ctftl8zbeTQQw9t3HRk0aJFLc4gra+vzw9+8IPGx+9+97tL2t+m9OzZs/H7urq6Fs+fPHlyY8h03333Zfbs2SXrrakePXrk6KOPbny8cOHCZuds6bW0tZZ6bLrx1C9+8YuNXsOWau9r3qDpLMtx48bl/vvvz5///OdWfb33ve/d6OsAAJ2T0BIAKFtHHnlkDj300MbHn/vc59qxm7YxYMCAnHDCCY2P//M//3OzG+t885vfzNy5c5M07KT8r//6ryXvcWN23nnnxu9ffPHFFs8fNmxY4wYrhUIhp556apYvX96q96qvry/aZT1p2BG7tUuCn3/++cbvBw0a1Oz5Lb2W1mqrHidNmpTDDz88SfLGG2/klFNOydq1a1v1umvXrt3o7uEDBgxIZWXDX/0XLVrULsFlXV1drr/++sbHLW3A81ZNz7/pppta3JAKAOjYhJYAQFm78MILG79/4IEHcvvtt7djN23jwgsvbNyQ54knnsjkyZPzzDPPFJ1TX1+fK6+8MtOmTWs8dvbZZ290c5rtoely5jvvvLNVO1x//vOfz9ChQ5Mkc+bMyaRJk4p2jX6rF154IV/72tey77775sYbbyx67pZbbsk+++yTr3zlK0X3+GxqzZo1+eY3v5mf//znjceOOeaYzV7LLbfc0upAsCVt2eM3vvGNxjFy11135V3velf+8pe/bPK9n3jiiXz2s5/NiBEjNrqkvEePHhk1alSShvDw5ptvbtU1nXbaaY0b4mzr2NtwX8+kYbn6iSeeuEX1//RP/9R4P9dVq1blZz/72Tb1AwCUt27t3QAAwOZMnjw5Bx10UGNg89nPfrZomejGNA1HWqN379758pe/vE19bom99tor3/ve93LyySdn/fr1mTlzZvbdd9+8853vzF577ZUVK1bkD3/4Q9EswIMPPni79vhWkyZNyvDhw/P888/n5ZdfzujRo3P00Udn4MCBjfdLfPvb3140i3TXXXfNLbfckmOPPTaLFy/O448/nsmTJ2fYsGGZNGlSdtlll9TV1WXx4sV56KGH8uyzz262h6effjr/+Z//mf/8z//M7rvvnvHjxzfOUlywYEH+/Oc/Z8mSJY3nn3zyyUUzdTc45phj0qtXr7zxxhupra3Nfvvtl8MPPzwDBgxovJajjz66aAl3a7VVj2PHjs1PfvKTnHDCCVm1alX+8pe/5OCDD85ee+2Vt73tbdlpp52yevXqvPLKK5kzZ06rZox+8IMfzBe+8IXG950+fXr23nvvVFdXN57zla98ZYuvubWaLul+17veleHDh29Rfa9evfL+978/P/zhDxtf75//+Z83eX5bfg6cccYZefDBB4uONf19fOmll1JTU9Os7nvf+14OPPDAVvcAADRRAADYRocddlghSSFJ4aKLLtrkeRvOSVK45557Wv36t956a1Htb3/72832sKVf/fv33/KLfoupU6c2vt4PfvCDVtX86le/KgwePLjF/k488cTCypUrN/taTc8vlV/96leF7t27b7LPqVOnbrTuueeeK7znPe9p9e/H4MGDC7fffnvRa/zsZz8rVFRUtKq+srKycNZZZxXWrl27yWu5+uqrN/t6mxvHm9LWPRYKhUJtbW3hgAMOaPXPbsSIEYVZs2Zt9LWWLl1aGD169Gbr36rpuN5jjz22+GeyweLFi4vGzne/+92tep0777yz8TUqKioKzzzzTNHzpfoc2NrX3ZLPOQCgmJmWAEDZO/bYY3PggQc2znT6zGc+k/e85z3t3NW2+8d//Mc89dRTufbaa/PrX/86Dz/8cBYvXpxevXpl1113zRFHHJFTTz21aDfp9vSP//iPefDBB3PVVVflj3/8Y+bPn58VK1akUChstm6PPfbIb3/728ycOTM/+9nPcu+99+b555/Pa6+9lm7dumXnnXfOqFGjcuCBB+boo4/O4Ycf3riJzwbHH398Xn755dx5553505/+lNmzZ+eZZ57J0qVLkyT9+/fPPvvsk3/4h3/IqaeemjFjxmy2p3/7t3/LuHHj8u1vfzt/+ctf8uKLL2bVqlUtXsvmtHWPSTJhwoQ8+OCDufPOO3PzzTfnT3/6U1566aUsXbo0PXr0yC677JJ99903Bx10UCZPnpxDDjlkkzuF9+/fPw888EC+9a1v5dZbb82jjz6apUuXbpf7W/7kJz9pXIbfo0ePHH/88Vv1Ou9+97szdOjQvPzyyykUCrnuuuuKNuwCADqPisK2/M0MAAAAAKCN2YgHAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKx0a+8GOor6+vq89NJL6du3byoqKtq7HQAAAADoUAqFQl5//fXsuuuuqazc/FxKoWUrvfTSSxk+fHh7twEAAAAAHdrzzz+f3XbbbbPnCC1bqW/fvkkafqj9+vVr525Ko66uLnfeeWeOPvroVFdXt3c7UFLGO12FsU5XYrzTlRjvdCXGO11JZx/vy5cvz/Dhwxtzts0RWrbShiXh/fr169ShZe/evdOvX79O+QcDmjLe6SqMdboS452uxHinKzHe6Uq6ynhvza0XO+RGPPfee2+OO+647LrrrqmoqMjNN9+82fN/8Ytf5Kijjsouu+ySfv365ZBDDskdd9yxfZoFAAAAALZIhwwtV65cmQkTJuSqq65q1fn33ntvjjrqqNx2223561//miOOOCLHHXdcZs2aVeJOAQAAAIAt1SGXhx9zzDE55phjWn3+FVdcUfT4C1/4Qm655Zb86le/ysSJE9u4OwAAAABgW3TI0HJb1dfX5/XXX89OO+20yXPWrFmTNWvWND5evnx5koZ7C9TV1ZW8x/aw4bo66/VBU8Y7XYWxTldivNOVGO90JcY7XUlnH+9bcl0VhUKhUMJeSq6ioiI33XRTpkyZ0uqaL3/5y/niF7+Yxx57LIMGDdroORdffHEuueSSZsevv/769O7de2vbBQAAAIAuadWqVTnppJOybNmyFje67nKh5fXXX58zzzwzt9xyS4488shNnrexmZbDhw/P4sWLO/Xu4XfddVeOOuqoTr1DFSTGO12HsU5XYrzTlRjvdCXGO11JZx/vy5cvz8CBA1sVWnap5eE33HBDzjjjjPzsZz/bbGCZJD169EiPHj2aHa+uru6Ug6aprnCNsIHxTldhrNOVGO90JcY7XYnxTlfSWcf7llxTlwktf/KTn+Sf//mfc8MNN+R973vfdn3vQqGQurq61NfXb9f33VJ1dXXp1q1bVq9enfXr17d3O51aVVVVp/zwAQAAAGgLHTK0XLFiRZ566qnGx88++2xqa2uz0047Zffdd8/555+fF198MT/84Q+TNCwJnzp1aq688socdNBBWbBgQZKkV69e6d+/f8n6XLt2bV555ZWsWrWqQ4SAhUIhQ4YMyfPPP5+Kior2bqfT69GjRwYOHNhpbzcAAAAAsLU6ZGj54IMP5ogjjmh8PG3atCTJ1KlTM3369Lz88suZP39+4/Pf+c53sm7dupx99tk5++yzG49vOL8UVq1aleeffz5VVVXZcccd06tXr1RVVZV1GFhfX58VK1Zkhx12SGVlZXu302ltmHm7bNmyvPjii0kiuAQAAABookOGlocffng2t3/QW4PIGTNmlLahjVi8eHGqq6uzxx57pKqqaru//9aor6/P2rVr07NnT6FlifXq1St9+/bNCy+80Kk3dwIAAADYGpKpEli3bl1WrlyZnXbaqcMElmx/FRUV6d+/f9asWZO6urr2bgcAAACgbAgtS2DdunVJstHdx6GpDZvxdIR7ngIAAABsL0LLEirn+1dSHowRAAAAgOaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSXtasSIEamoqMj06dMbj02fPj0VFRVFX5WVlenXr18mTpyY888/P4sWLdrka761dlNfM2bMKP0FAgAAALDFurV3A7Apffr0yfHHH5+kYXftefPmZebMmamtrc0PfvCD/OEPf8ioUaM2WT958uQMGTJkk89v7jkAAAAA2o/QkrI1cODAohmYSfLwww/nsMMOy8KFC/Pxj388t9566ybrzzvvvBx++OGlbRIAAACANmd5OB3K/vvvn2nTpiVJ7rrrrqxZs6adOwIAAACgrQkt6XDGjx+fJKmrq8uSJUvauRsAAAAA2prQkg5n+fLlSZKqqqoMHDiwnbsBAAAAoK0JLelwNtzH8r3vfW+qq6vbuRsAAAAA2pqNeNrLgQcmCxa0dxdFKpL0KxRSUVGx+ROHDEkefHC79LTBht3Dv/Od7+T666/PHnvska9//eubrTniiCM2+Vz//v2zdOnSNu4SAAAAgLYgtGwvCxYkL77Y3l0Uqfj7V7mYN2/eRgPUSZMm5c4770z//v03Wz958uQMGTJko8/17t27TXoEAAAAoO0JLdvLJsK09lRIUvj7TMvNhpfbqfc+ffrk+OOPT5KsWbMmjz76aGbPnp37778/H/3oR3PDDTdstv68887L4Ycfvh06BQAAAKAtCS3by3ZeXt0ahfr6LF++PP369UtFZfvf7nTgwIGZPn160bFf/OIXOeGEE3LjjTfmXe96V84666z2aQ4AAACAkmn/ZAq2wAc+8IGcd955SZILL7wwy5Yta+eOAAAAAGhrQks6nPPPPz9Dhw7Nq6++mssvv7y92wEAAACgjQkt6XB69+6dT3/600mSK664Iq+99lo7dwQAAABAW3JPSzqkM844I1/96lfz9NNP5ytf+Uo+//nPNzvni1/8YrN7YjZ10kkn5eijjy5hlwAAAABsDaElHVJ1dXU+97nP5cQTT8w3vvGNTJs2LTvvvHPROXfcccdmX6OmpkZoCQAAAFCGhJa0q+eee67ZsdNOOy2nnXZai7Uf/vCH8+EPf7jZ8UKh0AadAQAAANBe3NMSAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILWlXI0aMSEVFRaZPn954bPr06amoqCj6qqysTL9+/TJx4sScf/75WbRo0SZf8621m/qaMWPGFvW6oa/TTjtt6y4WAAAAgFbp1t4NwKb06dMnxx9/fJJk/fr1mTdvXmbOnJna2tr84Ac/yB/+8IeMGjVqk/WTJ0/OkCFDNvn8W5+rqKhIkhQKhTboHgAAAICtJbSkbA0cOLBoBmaSPPzwwznssMOycOHCfPzjH8+tt966yfrzzjsvhx9+eGmbBAAAAKDNWR5Oh7L//vtn2rRpSZK77rora9asaeeOAAAAAGhrQks6nPHjxydJ6urqsmTJkm1+vYsvvrhxaXjS/J6Yzz33XLOalStX5vzzz8/ee++dHj16ZMiQIZk6dWpefPHFbe4HAAAAoKuzPJwOZ/ny5UmSqqqqDBw4cJtfr6amJlOnTs11112XJJk6dWrR8zvssEPR42XLluXQQw/N/Pnz8853vjNjx47NzJkz88Mf/jC///3vM3v27PTv33+b+wIAAADoqoSWdDgb7mP53ve+N9XV1dv8elOmTMmUKVMaQ8u33kfzrW6++eZMnjw5f/jDH9KvX78kyWuvvZZ3v/vdqa2tzbe+9a2cf/7529wXAAAAQFcltGwnBx54YBYsWNDebTRTKBSKlkpvzJAhQ/Lggw9up44abNg9/Dvf+U6uv/767LHHHvn617++2Zojjjhik8/1798/S5cu3ape+vTpkx/84AeNgWWS7LjjjjnvvPPy4Q9/OL/97W+FlgAAAADbQGjZThYsWOD+hy2YN2/eRgPUSZMm5c4772xxCfbkyZMzZMiQjT7Xu3fvre7rwAMPzNChQ5sd32+//ZLE7ysAAADANhJatpNNhWntrbUzLbeHPn365Pjjj0+SrFmzJo8++mhmz56d+++/Px/96Edzww03bLb+vPPOy+GHH97mfe2+++4bPb5h5uXq1avb/D0BAAAAuhKhZTvZ3surW6O+vj7Lly9Pv379UlnZ/hvLDxw4sNn9JX/xi1/khBNOyI033ph3vetdOeuss7Z7X+XwswEAAADozKQvdCgf+MAHct555yVJLrzwwixbtqydOwIAAACgrQkt6XDOP//8DB06NK+++mouv/zyNnvdDTuRr1u3rs1eEwAAAIAtJ7Skw+ndu3c+/elPJ0muuOKKvPbaa23yurvttluS5OGHH26T1wMAAABg67inJR3SGWecka9+9at5+umn85WvfCWf//znm53zxS9+sdk9MZs66aSTcvTRRzc+/uAHP5ivfOUrOfLII/Pud787ffv2TZJ86Utfys4779zm1wAAAADAxgkt6ZCqq6vzuc99LieeeGK+8Y1vZNq0ac2CxTvuuGOzr1FTU1MUWn72s59NZWVlfvGLX+Tmm2/O2rVrkyQXXHCB0BIAAABgOxJa0q6ee+65ZsdOO+20nHbaaS3WfvjDH86HP/zhZscLhcJW9dKzZ8986Utfype+9KWNPt9SXyNGjNjq9wYAAADgTe5pCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWpZQoVBo7xYoc8YIAAAAQHNCyxKorGz4sa5fv76dO6HcbRgjG8YMAAAAAELLkqiurk51dXVWrFjR3q1Q5t54441UVVWlurq6vVsBAAAAKBtCyxKoqKhI3759s2zZsrzxxhvt3Q5lav369Vm2bFl69+6dioqK9m4HAAAAoGx0a+8GOquBAwfmjTfeyPz589OvX7/07ds3VVVVZR1O1dfXZ+3atVm9erXlyiVUKBSyZs2aLFmyJPX19Rk0aFB7twQAAABQVoSWJVJVVZXhw4dn8eLFef3117N06dL2bqlFhUIhb7zxRnr16lXW4Wpn0adPnwwZMiTdu3dv71YAAAAAyorQsoSqqqoyePDgDBo0KHV1damvr2/vljarrq4u9957b971rne5x2KJdevWLd26+eMHAAAAsDFSk+2goqKiQ8ymq6qqyrp169KzZ0+hJQAAAADtxo0LAQAAAICyIrQEAAAAAMqK0BIAAAAAKCtCSwAAAACgrAgtAQAAAICyIrQEAAAAAMqK0BIAAAAAKCtCSwAAAACgrAgtAQAAAICyIrQEAAAAAMqK0BIAAAAAKCtCSwAAAACgrAgtAQAAAICyIrQEAAAAAMqK0BIAAAAAKCtCSwAAAACgrAgtAQAAAICyIrQEAAAAAMqK0BIAAAAAKCtCSwAAAACgrAgtAQAAAICyIrQEAAAAAMpKhwwt77333hx33HHZddddU1FRkZtvvrnFmhkzZuRtb3tbevTokb333jvTp08veZ8AAAAAwJbrkKHlypUrM2HChFx11VWtOv/ZZ5/N+973vhxxxBGpra3Nxz/+8Zxxxhm54447StwpAAAAALClurV3A1vjmGOOyTHHHNPq86+55pqMHDkyX/3qV5Mk++23X/74xz/ma1/7WiZPnlyqNgEAAACArdAhQ8stNXPmzBx55JFFxyZPnpyPf/zjm6xZs2ZN1qxZ0/h4+fLlSZK6urrU1dWVpM/2tuG6Ouv1QVPGO12FsU5XYrzTlRjvdCXGO11JZx/vW3JdXSK0XLBgQQYPHlx0bPDgwVm+fHneeOON9OrVq1nNpZdemksuuaTZ8TvvvDO9e/cuWa/l4K677mrvFmC7Md7pKox1uhLjna7EeKcrMd7pSjrreF+1alWrz+0SoeXWOP/88zNt2rTGx8uXL8/w4cNz9NFHp1+/fu3YWenU1dXlrrvuylFHHZXq6ur2bgdKyninqzDW6UqMd7oS452uxHinK+ns433DSubW6BKh5ZAhQ7Jw4cKiYwsXLky/fv02OssySXr06JEePXo0O15dXd0pB01TXeEaYQPjna7CWKcrMd7pSox3uhLjna6ks473LbmmDrl7+JY65JBDcvfddxcdu+uuu3LIIYe0U0cAAAAAwKZ0yNByxYoVqa2tTW1tbZLk2WefTW1tbebPn5+kYWn3qaee2nj+v/3bv+WZZ57Jpz71qTz22GP51re+lZ/+9Kf5xCc+0R7tAwAAAACb0SFDywcffDATJ07MxIkTkyTTpk3LxIkTc+GFFyZJXn755cYAM0lGjhyZW2+9NXfddVcmTJiQr371q/ne976XyZMnt0v/AAAAAMCmdch7Wh5++OEpFAqbfH769OkbrZk1a1YJuwIAAAAA2kKHnGkJAAAAAHReQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKSrf2boDycfDBB2fevHnp2bNne7cC28Xq1auNd7oEY52uxHinKzHe6UqMd7qS1atXZ4899shf//rX9m6lXQktabRw4cK8+uqr7d0GAAAAQJcmpO/AoeVVV12Vyy67LAsWLMiECRPyjW98I5MmTdrk+VdccUWuvvrqzJ8/PwMHDszxxx+fSy+91CBoYvDgwf7vFV2K8U5XYazTlRjvdCXGO12J8U5Xsnr16gwePLi922h3HTK0vPHGGzNt2rRcc801Oeigg3LFFVdk8uTJefzxxzNo0KBm519//fU577zzcu211+bQQw/NE088kdNOOy0VFRW5/PLL2+EKytOf//zn3HbbbTn22GNTXV3d3u1ASdXV1RnvdAnGOl2J8U5XYrzTlRjvdCVNx3tX1yE34rn88stz5pln5vTTT8+YMWNyzTXXpHfv3rn22ms3ev59992Xd7zjHTnppJMyYsSIHH300TnxxBNz//33b+fOAQAAAICWdLiZlmvXrs1f//rXnH/++Y3HKisrc+SRR2bmzJkbrTn00EPz4x//OPfff38mTZqUZ555JrfddltOOeWUTb7PmjVrsmbNmsbHy5cvT9KQeNfV1bXR1ZSXDdfVWa8PmjLe6SqMdboS452uxHinKzHe6Uo6+3jfkuuqKBQKhRL20uZeeumlDBs2LPfdd18OOeSQxuOf+tSn8vvf/z5/+ctfNlr39a9/PZ/85CdTKBSybt26/Nu//VuuvvrqTb7PxRdfnEsuuaTZ8euvvz69e/fe9gsBAAAAgC5k1apVOemkk7Js2bL069dvs+d2uJmWW2PGjBn5whe+kG9961s56KCD8tRTT+Xcc8/NZz/72Xz605/eaM3555+fadOmNT5evnx5hg8fnqOPPrrFH2pHVVdXl7vuuitHHXWU+4TQ6RnvdBXGOl2J8U5XYrzTlRjvdCWdfbxvWMncGh0utBw4cGCqqqqycOHCouMLFy7MkCFDNlrz6U9/OqecckrOOOOMJMm4ceOycuXK/Ou//mv++7//O5WVzW/t2aNHj/To0aPZ8erq6k45aJrqCtcIGxjvdBXGOl2J8U5XYrzTlRjvdCWddbxvyTV1uI14unfvngMOOCB3331347H6+vrcfffdRcvFm1q1alWzYLKqqipJ0sFWxwMAAABAp9fhZlomybRp0zJ16tQceOCBmTRpUq644oqsXLkyp59+epLk1FNPzbBhw3LppZcmSY477rhcfvnlmThxYuPy8E9/+tM57rjjGsNLAAAAAKA8dMjQ8oQTTsiiRYty4YUXZsGCBampqcntt9+ewYMHJ0nmz59fNLPyggsuSEVFRS644IK8+OKL2WWXXXLcccfl85//fHtdAgAAAACwCR0ytEySc845J+ecc85Gn5sxY0bR427duuWiiy7KRRddtB06AwAAAAC2RYe7pyUAAAAA0LkJLQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACgPRUKyfPPp+LXv84+N96YrFjR3h21u27t3QAAAAAAdBnr1iWPP57MmpXU1r759eqr6ZZkvyTr/v3fk3e+s13bbG9CSwAAAAAohRUrkrlziwPKuXOT1as3W1ZRWyu0bO8GAAAAAKDDW7iwOJycNSt58smGpd8tGTIkmTgx68eNy9/q61PzT/+UqlL3W+aElgAAAADQWvX1ydNPNw8oFyxoubaiIhk1Kpk4Mampafh1woSG0DJJfV1dXrrtttTsumspr6BDEFoCAAAAwMasXp089FBxODl7drJyZcu1PXsm48Y1hJMbAspx45Iddihtz52E0BIAAAAAliwpDidra5NHH03Wr2+5dqedimdP1tQk++6bdBO9bS0/OQAAAAC6jkIhmTeveUA5f37r6keOLJ49WVOT7LZbw9Jv2ozQEgAAAIDOqa6uYbZk03CytjZZurTl2m7dkv33Lw4nJ0xIBgwoYcNsILQEAAAAoONbvjyZM6c4nHzooWTt2pZr+/ZtPntyzJikR4+StsymCS0BAAAA6DgKheTll5vPnnzqqdbVDxtWHE7W1DQs+a6sLFXHbAWhJQAAAADlaf365Mkni8PJWbOSRYtarq2sbNgMp2k4WVOT7LJLSVumbQgtAQAAAGh/q1Ylc+cWh5Nz5iRvvNFyba9eyfjxxTt4jx2b9O5d4qYpFaElAAAAANvX4sXNZ08+/nhSX99y7S67FM+enDgxGTUqqaoqbc9sV0JLAAAAAEqjvj559tnicLK2NnnxxdbV77VX8ezJmppk6NCkoqJkLVMehJYAAAAAbLu1a5OHHy4OJ2fPbtjVuyXduzcs5246e3L8+KRfv9L2TNkSWgIAAACwZZYubQgkmwaUjzyS1NW1XDtgQHE4WVOTjB7dEFzC321VaLn87wl5v21Mu1esWJHf/e53SZJ/+qd/2qbXAgAAAKCNFQrJCy8Uh5O1tQ1Lvltj992bB5R77GF5Ny3aqtBywIABqayszJw5czJmzJhmz7/00ku54IILUlFRke9///ubfJ158+ZlypQpqayszLp167amFQAAAADawrp1DZvhvDWgfPXVlmurqpL99isOJydMSHbeuaQt03lt9fLwQqGwyedee+21TJ8+vcXQsjWvBQAAAEAbW7EimTu3OJycOzdZvbrl2j59GgLJpjt4jx2b9OxZ2p7pUtzTEgAAAKAzW7iwOJycNSt58smGpd8tGTKkePbkxIkNO3pXVpa2Z7o8oSUAAABAZ1Bfnzz9dPOAcsGClmsrKpJRo4pnT9bUNISW0A6ElgAAAAAdzerVyUMPFYeTs2cnK1e2XNujRzJuXPHsyXHjkh12KHHT0HpCSwAAAIBytmRJcThZW5s8+miyfn3LtTvtVDx7cuLEZN99k24iIcqbEQoAAABQDgqFZN685gHl/Pmtqx85sjicrKlJdtutYek3dDBCSwAAAIDtra6uYbZk03CytjZZurTl2m7dkv33Lw4oJ0xIBgwoYcOwfQktAQAAAEpp+fJkzpzicPKhh5K1a1uu7du3+ezJMWMa7ksJndg2hZYVphcDAAAANCgUkpdfbj578qmnWlc/bFjzgHLkyKSyslQdQ9naptBy7Nixm3xuQ6BZVVW1LW8BAAAAUH7Wr0+efLI4nJw1K1m0qOXaysqGzXCahpMTJiSDBpW2Z+hAtim0LBQKbdUHAAAAQHlatSqZO7c4nJwzJ3njjZZre/VKxo8v3sF73Likd+/S9gwd3FaFlu9617ssDQcAAAA6n8WLm8+efPzxpL6+5dqBAxvCyQ0B5cSJyahRiVWosMW2KrScMWNGG7cBAAAAsB3V1yfPPlscTtbWJi++2Lr6vfYqnj05cWIydGhikhe0CbuHAwAAAJ3b2rXJww8Xh5OzZzfs6t2S6upk7NjigHLChKRfv9L2DF2c0BIAAADoPJYubQgkmwaUjzyS1NW1XDtgwJvB5IbZk6NHJ927l7BhYGPaPbRctWpVrr766vy///f/tqjuqquuymWXXZYFCxZkwoQJ+cY3vpFJkyZt8vylS5fmv//7v/OLX/wiS5YsyR577JErrrgixx577LZeAgAAALC9FQrJCy8Uh5O1tQ1Lvltj992Lw8mammSPPSzvhjLRbqHl66+/nq9//eu58sor8+qrr25RaHnjjTdm2rRpueaaa3LQQQfliiuuyOTJk/P4449n0KBBzc5fu3ZtjjrqqAwaNCg///nPM2zYsMybNy8DBgxowysCAAAASqFi/fqG5d0PP1wcUL76asvFVVXJfvsVB5QTJiQ771zapoFtst1DyyVLluRrX/tarrrqqixbtiyFQmGLdyK//PLLc+aZZ+b0009PklxzzTW59dZbc+211+a8885rdv61116bJUuW5L777kt1dXWSZMSIEdt8LQAAAEAbW7EimTu3MZysmjUr75szJ1Vr17Zc26dPQyDZdPbk/vsnvXqVumugjW1TaDlv3rx89atfzW9/+9s8//zzqa6uzogRI/KhD30oZ511Vvr379947ooVK3LZZZfla1/7WlauXJlCoZAkGThwYD7xiU+0+j3Xrl2bv/71rzn//PMbj1VWVubII4/MzJkzN1rzy1/+MoccckjOPvvs3HLLLdlll11y0kkn5b/+679SVVW10Zo1a9ZkzZo1jY+X//3mvHV1dalrzX0wOqAN19VZrw+aMt7pKox1uhLjna7EeKfTWLgwFbW1qZg9u+GrtjZ56qlU/D0zSJLKTZQWhgxJYcKEFMaPT6GmJoUJE5K9904qN1LhzwodRGf/fN+S66ooFJp8EmyBu+66Kx/84AezcuXKJGkMITfMmtxnn31yzz33ZMiQIfnTn/6Uk08+Oc8//3zjecOGDcsnP/nJ/Ou//mt6bcH/8XjppZcybNiw3HfffTnkkEMaj3/qU5/K73//+/zlL39pVjN69Og899xzOfnkk3PWWWflqaeeyllnnZWPfexjueiiizb6PhdffHEuueSSZsevv/769O7du9X9AgAAQJdXX58+Cxak/zPPpP+zzzZ+9XzttRZLCxUVWTl0aJaNHJlle+7Z8OvIkVmz447boXGgLa1atSonnXRSli1bln79+m323K0KLRctWpT99tsvS5YsaTzWp0+fdOvWLcuWLWt44YqKTJkyJeeee24mT56ctWvXplAoZOTIkTnvvPNy2mmnNS7V3hJbE1rus88+Wb16dZ599tnGmZWXX355Lrvssrz88ssbfZ+NzbQcPnx4Fi9e3OIPtaOqq6vLXXfdlaOOOmqrfm+gIzHe6SqMdboS452uxHinrK1enYqHH06azJ6smDMnFX+f9LQ5hR49Uhg7Nvn7zMnChAlZO3p07po503inS+jsn+/Lly/PwIEDWxVabtXy8O9+97tZsmRJKioq8sEPfjBf/OIXs+eeeyZJFixYkC984Qu56qqrcsstt+SBBx7ImjVr0rdv33zhC1/IRz/60XTrtvWr0gcOHJiqqqosXLiw6PjChQszZMiQjdYMHTo01dXVRUvB99tvvyxYsCBr165N9+7dm9X06NEjPXr0aHa8urq6Uw6aprrCNcIGxjtdhbFOV2K805UY77S7JUve3BRnwwY5jz6arF/fcu1OOxXfe7KmJhWjR6fiLZlB4e/LSY13upLOOt635Jq2Kj288847kyQHH3xwfvrTnxY9N2TIkHz961/P66+/nuuuuy4vvPBCBgwYkD/84Q/Zf//9t+btinTv3j0HHHBA7r777kyZMiVJUl9fn7vvvjvnnHPORmve8Y535Prrr099fX0q/35viyeeeCJDhw7daGAJAAAANFEoJPPmNQ8o589vXf2IEUXhZCZOTHbbLdnCjXmBrmOrQsvHHnssFRUVOeusszZ5zsc+9rFcd911qaioyMc+9rE2CSw3mDZtWqZOnZoDDzwwkyZNyhVXXJGVK1c27iZ+6qmnZtiwYbn00kuTJP/+7/+eb37zmzn33HPzH//xH3nyySfzhS98IR/72MfarCcAAADoFOrqGmZLNg0na2uTpUtbru3WLRkzpjigrKlJBgwoXb9Ap7RVoeVrf79R7t57773Jc0aNGtX4/Tvf+c6teZtNOuGEE7Jo0aJceOGFWbBgQWpqanL77bdn8ODBSZL58+c3zqhMkuHDh+eOO+7IJz7xiYwfPz7Dhg3Lueeem//6r/9q074AAACgQ1m+PJkzpzicfOihZO3almv79i0OJidObAgsN3KrNYAttVWhZV1dXSoqKtK3b99NnrPDDjs0fr+pe01ui3POOWeTy8FnzJjR7NghhxySP//5z23eBwAAAJS9QiF5+eXmsyefeqp19cOGFYeTNTXJyJFJkwlDAG1p63fE2QIV7lEBAAAA28f69cmTTxaHk7NmJYsWtVxbWZnsu29xQDlhQjJoUGl7BniL7RJaAgAAACWwalUyd25xODlnTvLGGy3X9uqVjB9fPHty3Likd+/S9gzQCtsUWp5++unp06fPNp9XUVGRu+++e1taAQAAgM5t8eLmsycffzypr2+5duDAN4PJDb/us09SVVXangG20jaFlg8++OBmn9+wLHxz5xUKBcvHAQAAYINCIXnmmeJwsrY2efHF1tXvtVdxOFlTk+y6a+Lf3kAHstWhZaFQaMs+AAAAoOtZuzZ5+OHigHL27IZdvVtSXZ2MHVscTk6YkPTrV9qeAbaDrQot61sz9RwAAAB409KlDYFk09mTjzyS1NW1XNu/f/PZk/vtl3TvXsqOAdqNjXgAAACgLRUKyQsvFIeTtbXJs8+2rn748OJwcuLEZI89LO8GuhShJQAAAGytdesaNsN5a0D56qst11ZVNcyWbBpOTpiQ7LxzSVsG6AiElgAAANAaK1Ykc+cWh5Nz5yarV7dc26dPQyDZNKDcf/+kV6/S9gzQQW1VaPmZz3ymrfvIhRde2OavCQAAAFtl4cLicHLWrOTJJxuWfrdk8OA3l3dv+HWvvRpmVgLQKlsVWl588cWpaON7aQgtAQAA2O7q65Onn24eUC5Y0HJtRUUyalTx7MmammTIkJK2DNAVbPXy8EJr/u9SK7V1AAoAAADNrF6dPPRQcTg5e3aycmXLtT16JOPGFYeT48YlffuWtmeALmqrQst77rmnrfsAAACAtrNkSXE4WVubPPposn59y7U77th8efe++ybV1SVtGYA3bVVoedhhh7V1HwAAALDlCoVk3rzmAeX8+a2rHzGiOJysqUmGD29Y+g1Au7F7OAAAAB1DXV3DbMmm4WRtbbJ0acu13bolY8YUh5MTJjTMqgSg7AgtAQAAKD/Llydz5hSHkw89lKxd23Jt374NgWTTgHL//RvuSwlAhyC0BAAAoP0UCsnLLzefPfnUU62r33XX4nBy4sRk5MiksrJkLQNQekJLAAAAto/165MnnywOJ2fNShYtarm2oqJhM5ymAWVNTTJoUElbBqB9CC0BAABoe6tWNSznbhpQzpnTcLwlvXol48cXz54cOzbp06e0PQNQNoSWAAAAbJvFi5vPnnz88aS+vuXagQPfnD254ddRoxo2zgGgy/JfAQAAAFqnUEieeaY4nKytTV58sXX1e+1VPHuypqbhnpQVFaXqGIAOSmgJAABAc2vXJg8/XBxQzp7dsKt3S6qrG5ZzNw0nx49P+vcvbc8AdBpCSwAAgK5u6dKGQLLp7MlHHknq6lqu7d+/OJysqUn22y/p3r2UHQPQyQktAQAAuopCIXnhheJwsrY2efbZ1tUPH948oBwxwvJuANqc0BIAAKAzWreuYTOctwaUr77acm1VVTJ6dHE4WVOT7LxzKTsGgEZCSwAAgI5uxYpk7tzicHLu3GT16pZre/dOJkwoDijHjk169SptzwCwGUJLAACAjmThwlQ8+GBG/e//pup//qfhXpRPPtmw9LslgwcXh5MTJzbs6F1VVequAWCLCC0BAADKUX198vTTxbMnZ81KFixItyRjNldbUZHsvfebAeWGX4cM2Q6NA8C2E1oCAAC0t9Wrk4ceKg4nZ89OVq5subZHj2TcuOLZk+PGJX37lrZnACghoSUAAMD2tGTJm+HkhoDy0UeT9etbrt1xx2TixKwfPz61hULGT52a6rFjk+rqEjcNANuX0BIAAKAUCoVk3rzicLK2Npk/v3X1I0YUz56sqUmGD08qKlJfV5cXbrst4wWWAHRSQksAAIBtVVfXMFuyaThZW5ssXdpybbduyZgxxeHkhAkNsyoBoIsSWgIAAGyJ5cuTOXOKA8qHHkrWrm25tm/fhkCy6Q7e++/fcF9KAKCR0BIAAGBjCoXk5Zebz5586qnW1e+6a/HsyZqaZM89k8rKUnUMAJ2G0BIAAGD9+uTJJ5sHlK+80nJtRUWy777NA8pBg0rZMQB0akJLAACga1m1qmE5d9Nwcs6chuMt6dkzGT++OJwcNy7p06e0PQNAFyO0BAAAOq/Fi4vDyVmzkscfT+rrW64dOLA4nJw4MRk1qmHjHACgpPzXFgAA6PgKheTZZ5sHlC++2Lr6Pfd8M6Dc8OuuuzYs/QYAtjuhJQAA0LGsXZs8/HBxODl7dsOu3i2prk7Gji2ePTl+fNK/f2l7BgC2iNASAAAoX8uWFYeTtbXJI48kdXUt1/bvXxxO1tQk++2XdO9eyo4BgDYgtAQAANpfoZC88ELzgPLZZ1tXP3x484ByxAjLuwGggxJaAgAA29e6dQ2b4TQNJ2trk1dfbbm2qioZPbo4nJwwoWHTHACg0xBaAgAApbNyZTJnTnFAOXdusnp1y7W9ezcEkk0DyrFjk169StszANDuhJYAAEDbWLiw+ezJJ55oWPrdkkGDGoLJDeFkTU2y994NMysBgC5HaAkAAGyZ+vrk6aeLw8lZs5IFC1pXP2pU8ezJiROTIUNK1y8A0OEILQEAgE1bvTp5+OHigHL27GTFipZre/RoWM7ddPbk+PFJ376l7RkA6PCElgAAQIMlSxoCyQ0B5axZyaOPJuvXt1y7447F4eTEicm++ybV1SVuGgDojISWAADQ1RQKyfz5zZd3z5/fuvo99ihe2l1TkwwfnlRUlK5nAKBLEVoCAEBnVlfXMFuyaThZW5ssXdpybbduyZgxxbMnJ0xomFUJAFBCQksAAOgsXn+9YXl303DyoYeStWtbrt1hh+JwsqamIbDs2bOkLQMAbIzQEgAAOppCIXn55eazJ596qnX1u+7aPKDcc8+ksrJUHQMAbBGhJQAAlLP165MnnywOJ2trk1deabm2oqJhM5ym4WRNTTJoUCk7BgDYZkJLAAAoF6tWNSznbhpQzpnTcLwlPXsm48cXB5TjxiV9+pS2ZwCAEhBaAgBAe1i8uPnsycceS+rrW67deeeGYLLp7Ml99mnYOAcAoBPwtxoAACilQiF59tnigHLWrOTFF1tXv+eexeHkxIkN96SsqChdzwAA7UxoCQAAbWXt2uSRR4pnT9bWJsuXt1xbXZ3sv/+bAeXEiQ3Lvfv3L23PAABlSGgJAABbY9myZPbs4tmTjzyS1NW1XNu//5szJzcElPvtl3TvXtqeAQA6CKElAABsTqHQsJS76ezJWbMalny3xm67Fc+erKlJRoywvBsAYDOElgAAsMG6dcnjjxeHk7W1yauvtlxbWdkwW7Lp7MkJE5KBA0vaMgBAZyS0BACga1q5MpkzpzicnDs3Wb265drevRsCyaazJ8eOTXr1Km3PAABdhNASAIDOb+HC5rMnn3iiYel3SwYNar68e++9k6qqkrYMANCVCS0BAOg86uuTJ59MHn64+B6UL7/cuvpRo4rDyZqaZOjQkrULAMDGCS0BAOiYVq9uCCf/PnuyatasvO9vf0u31izv7t49GTeuOKAcPz7p27fETQMA0BpCSwAAyt+SJcns2cWzJx99tGHjnL+r/PtXMzvu2Hz25OjRSXX1dmgcAICtIbQEAKB8FArJ/PnF956cNavhWCus2mWX9DzkkFS+7W1vBpXDhycVFaXsGgCANia0BACgfdTVJY89Vjx7srY2ee21lmurqpIxY4o2yKkbMyZ3zZyZY489NpVmUQIAdGhCSwAASu/11xuWdzfdwfuhh5K1a1uu3WGHN5d1b5g9OWZM0rNn8Xl1dW3eNgAA7UNoCQBA2ykUkgULipd219YmTz3VuvqhQ4vvPTlxYrLnnknlRu9WCQBAJyW0BABg66xfnzz5ZPHsydra5JVXWq6tqEj23bc4nJwwIRk8uKQtAwDQMQgtAQBo2RtvJHPnFoeTc+Ykq1a1XNuzZzJ+fPEO3uPGJX36lLZnAAA6LKElAADFFi9uPnvysceS+vqWa3feuWhznNTUJPvsk3Tz104AAFrP3x4BALqqQiF59tnicLK2NnnhhdbV77lncThZU5MMG9aw9BsAALaB0BIAoCtYuzZ55JHmAeXy5S3XVlcn++9fHE5OmJD071/SlgEA6LqElgAAnc2yZcns2cXh5MMPJ3V1Ldf261c8e3LixGS//ZLu3UvbMwAANCG0BADoqAqF5MUXi2dPzprVsOS7NXbbrXj25MSJyYgRlncDANDuhJYAAB3BunXJE08Uz56srW3YNKcllZXJ6NHFAWVNTTJwYCk7BgCArSa0BAAoNytXJnPmFO/gPXdusnp1y7W9ezfcb7Lp7MmxY5NevUrbMwAAtCGhJQBAe3rlleKl3bW1DTMqC4WWawcNKr73ZE1NsvfeSVVVaXsGAIASE1oCAGwP9fXJ008Xz56srU1efrl19aNGFc+erKlJhg4tVbcAANCuhJYAAG1tzZrkoYeKA8rZs5MVK1qu7d49GTeuOJwcPz7p27e0PQMAQBkRWgIAbIslSxoCyaazJx99tGHjnJbsuGPz2ZOjRyfV1SVtGQAAyp3QEgCgNQqFZP784nCytjaZN6919XvsURxO1tQku++eVFSUqmMAAOiwhJYAAG9VV5c89ljzgPK111qurapKxowpDidrahpmVQIAAK0itAQAurbXX0/mzCkOJx96qOG+lC3ZYYdkwoTigHL//ZOePUvbMwAAdHJCSwCgaygUkgULisPJWbOSp55qXf3QocXh5MSJyZ57JpWVpesZAAC6KKElAND5rF/fEEZuCCg3/PrKKy3XVlQk++zTfHn34MElbRkAAHiT0BIA6NjeeCOZO7d49uScOcmqVS3X9uyZjB9fPHty3LikT5/S9gwAAGyW0BIA6DgWL34znNwQUD72WFJf33Ltzju/OXtyw6/77JN089chAAAoN/6WDgCUn0IhefbZ4nCytjZ54YXW1e+5Z/HsyZqaZNiwhqXfAABA2RNaAgDta+3a5JFHisPJ2tpk+fKWa6urG3brbhpOTpiQ9O9f0pYBAIDS6tCh5VVXXZXLLrssCxYsyIQJE/KNb3wjkyZNarHuhhtuyIknnpj/83/+T26++ebSNwoANFi2LJk9uzigfPjhpK6u5dp+/YrDyZqaZMyYpHv3krYMAABsfx02tLzxxhszbdq0XHPNNTnooINyxRVXZPLkyXn88cczaNCgTdY999xz+eQnP5l3vvOd27FbAOhiCoXkxRebz5585pnW1e+2W/OAcuRIy7sBAKCL6LCh5eWXX54zzzwzp59+epLkmmuuya233pprr70255133kZr1q9fn5NPPjmXXHJJ/vCHP2Tp0qXbsWMA6KTWrUueeKJ5QLl4ccu1lZXJ6NHF4WRNTTJwYCk7BgAAylyHDC3Xrl2bv/71rzn//PMbj1VWVubII4/MzJkzN1n3mc98JoMGDcq//Mu/5A9/+MNm32PNmjVZs2ZN4+Plf7+vVl1dXepas4StA9pwXZ31+qAp452uos3H+sqVqXjooVTU1iazZ6di9uxUzJ2bitWrWywt9O6dwrhxKdTUpDBhQjJhQgpjxya9em2s8bbply7FZztdifFOV2K805V09vG+JdfVIUPLxYsXZ/369Rk8eHDR8cGDB+exxx7baM0f//jHfP/7309tbW2r3uPSSy/NJZdc0uz4nXfemd69e29xzx3JXXfd1d4twHZjvNNVbM1Y7750afo/++ybX888kx1eeikVhUKLtav798+yPffM8pEjs2zkyCzbc8+sGDIkqap686RFi5J77tnivqAlPtvpSox3uhLjna6ks473VatWtfrcDhlabqnXX389p5xySr773e9mYCuXm51//vmZNm1a4+Ply5dn+PDhOfroo9OvX79Stdqu6urqctddd+Woo45KdXV1e7cDJWW801W0aqzX1yfPPJOK2tqGmZNz5jR8//LLrXqPwt57pzBhQsPX32dRVg0Zkp0qKrJTG14LtMRnO12J8U5XYrzTlXT28b5hJXNrdMjQcuDAgamqqsrChQuLji9cuDBDhgxpdv7TTz+d5557Lscdd1zjsfr6+iRJt27d8vjjj2evvfYqqunRo0d69OjR7LWqq6s75aBpqitcI2xgvNNVNI71NWuShx56876Ts2Y17Oa9YkXLL9K9ezJu3Jv3nZw4MRk/PhV9+8b2OJQTn+10JcY7XYnxTlfSWcf7llxThwwtu3fvngMOOCB33313pkyZkqQhhLz77rtzzjnnNDt/9OjRmTt3btGxCy64IK+//nquvPLKDB8+fHu0DQDb12uvpeLBB7PnL3+Zqp//vCGcfPTRho1zWjJgwJub42z4dfTopBP+xQkAACg/HTK0TJJp06Zl6tSpOfDAAzNp0qRcccUVWblyZeNu4qeeemqGDRuWSy+9ND179szYsWOL6gcMGJAkzY4DQIdTKCTz5xfPnqytTebNS7ck41qq32OP4tmTNTXJ7rsnFeZPAgAA7aPDhpYnnHBCFi1alAsvvDALFixITU1Nbr/99sbNeebPn5/Kysp27hIA2lhdXfLYY8XhZG1t8tprLddWVSVjxhSHkxMmJDu58yQAAFBeOmxomSTnnHPORpeDJ8mMGTM2Wzt9+vS2bwgA2tLrrydz5hQHlA891HBfypbssEMyYULWjx+fOZWVGXvKKameMCHp2bPUXQMAAGyzDh1aAkCn8fLLzWdPPvVUw9LvlgwdWjx7sqYm2WuvpLIy9XV1mX/bbRn7tre5HyUAANBhCC0BYHtav74hjHxrQLlwYcu1FRXJPvsUh5M1Ncnfb40CAADQWQgtAaBU3nijYTl303Byzpxk5cqWa3v2TMaNKw4ox49P+vQpbc8AAABlQGgJAG3h1VeLw8lZsxo2zKmvb7l2552Lw8mJExtmVHbzn2kAAKBr8q8hANgShULy3HPNA8oXXmhd/Z57FoeTNTXJsGENS78BAABIIrQEgE1buzZ55JHicHL27GTZspZrq6uT/fcvDijHj08GDChpywAAAJ2B0BIAkoYgcvbs4oDy4YeTurqWa/v1az57csyYpHv3krYMAADQWQktAehaCoXkxReLw8na2uSZZ1pXv9tuzQPKESOSysoSNQwAAND1CC0B6LzWrUueeKI4nKytTRYvbrm2sjIZPbo4nJwwIdlll5K2DAAAgNASgM5i5cpk7tzigHLu3OSNN1qu7d274X6TTXfwHjcu6dWrtD0DAACwUUJLADqeV15pPnvyiSeS+vqWa3fZpSGcbBpQjhqVVFWVtGUAAABaT2gJQPmqr2+41+RbA8qXXmpd/d57F4eTEycmQ4YkFRUlaxkAAIBtJ7QEoDysWdOwW3fTcHL27OT111uu7d49GTu2OKCcMCHp27e0PQMAAFASQksAtr/XXnszmNwwi/LRRxs2zmnJgAHNZ0+OHp1UV5eyYwAAALYjoSUApVMoJM8/Xzx7ctasZN681tXvvvubAeWGX3ff3fJuAACATk5oCUDbqKtLHnusOJysrW2YVdmSqqpkzJji2ZMTJiQ77VTSlgEAAChPQksAttyKFQ33m2waUD70UMN9KVuyww4NgWTT2ZP775/07FnangEAAOgwhJYAbN7LLzefPfnUUw1Lv1sydGjx7MmammSvvZLKylJ2DAAAQAcntASgwfr1DWFk03CytjZZuLDl2oqKZJ99isPJmppk8OBSdgwAAEAnJbQE6IreeKNhOXfTgHLOnGTlypZre/ZMxo0rDifHj0/69CltzwAAAHQZQkuAzu7VV5vPnnzssYaZlS3ZaaeGcLJpQLnvvkk3//kAAACgdPyrE6CzKBSS554rDidnzUpeeKF19SNHFoeTEycmw4Y1LP0GAACA7UhoCdARrV2bPPpocUBZW5ssW9ZybbduDbt1Nw0oJ0xIBgwoZccAAADQakJLgHK3bFkye3bx7MmHH07q6lqu7dfvzWByw+zJ/fZLevQoacsAAACwLYSWAOWiUEheeqn58u5nnmld/bBhb86e3PDriBFJZWXJWgYAAIBSEFoCtIf165PHHy8OJ2trk8WLW66trExGjy6ePTlhQrLLLiVtGQAAALYXoSVAqa1alcyZUxxOzp2bvPFGy7W9eyfjxxfPnhw7tuE4AAAAdFJCS4C29MorzWdPPvFEUl/fcu0uuzRf3j1qVFJVVdKWAQAAoNwILQG2Rn19w70mm4aTtbUN96Rsjb33Lg4na2qSoUOTiopSdQwAAAAdhtASoCVr1jTs1t00oJw9O3n99ZZru3dvWM7dNJycMCHp27e0PQMAAEAHJrQEaOq11xoCyaazJx95JFm3ruXaAQOaz57cb7+kurqUHQMAAECnI7QEuqZCIb0WLUrFL3+ZPPTQm7Mo581rXf3uuxcHlBMnNhyzvBsAAAC2mdAS6Pzq6pLHHy+aPdmttjZHL1nScm1VVcNsyaazJ2tqkp12Km3PAAAA0IUJLYHOZcWKZM6cNwPKWbMaZlKuWVN02kbnQ+6wQ8P9JjcEkxMnJvvvn/TsWfq+AQAAgEZCS6DjWrCg+N6Ts2YlTz2VFAotlhaGDMkru+6agUcemaoDD2wIKffaK6msLHXXAAAAQAuElkD5q69PnnyyOJysrU0WLmy5tqIi2Wef4tmTEyZk3c4758+33ZZjjz02VTbKAQAAgLIitATKyxtvFG+MU1vbsNx75cqWa3v2TMaNK94gZ9y4hmXfb1VX17Z9AwAAAG1GaAm0n1dfbT578rHHkvXrW67daaeGYLLpBjn77pt087EGAAAAHZ1/3QOlVygkzz1XHE7W1ibPP9+6+pEji2dP1tQku+3WsPQbAAAA6HSElkDbWrs2efTR5gHlsmUt13br1rBbd9OAcsKEZMCAUnYMAAAAlBmhJbD1li9PZs8uDicffrghuGxJ377NZ0+OGZP06FHSlgEAAIDyJ7QEWlYoJC+9VDx7ctas5JlnWlc/bFhxODlxYjJiRFJZWbKWAQAAgI5LaAkUW78+eeKJ4tmTs2Ylixe3XFtZ2bAZzoaAcuLEhuXdu+xS4qYBAACAzkRoCV3ZqlXJ3LnFsyfnzk3eeKPl2l69GgLJprMnx45NevcucdMAAABAZye0hK5i0aLmsyefeCKpr2+5dpddimdP1tQko0YlVVWl7RkAAADokoSW0NnU1zfca7JpOFlb23BPytbYe+/i2ZM1NcnQoUlFRak6BgAAACgitISObM2aht26m4aTs2cnr7/ecm337g3LuZuGk+PHJ/36lbZnAAAAgBYILaGjeO21hkCyaUD5yCPJunUt1w4Y0Hz25H77JdXVpewYAAAAYKsILaHcFArJ888Xh5O1tclzz7Wufvfdi8PJmppkjz0s7wYAAAA6DKEltKd165LHHmseUC5Z0nJtVVXDbMm3BpQ77VTKjgEAAABKTmgJ28uKFcmcOcXh5Ny5DfelbEmfPsmECcXh5NixSc+epe0ZAAAAoB0ILaEUFiwonj05a1by1FMNS79bMmRIcTg5cWKy115JZWVpewYAAAAoE0JL2Bb19Q1hZNPZk7NmJQsXtlxbUZGMGvVmQDlxYsNsyiFDStw0AAAAQHkTWkJrvfFG8tBDxeHknDnJypUt1/bsmYwbVzx7cty4ZIcdStszAAAAQAcktISNefXV4nCytrZhw5z161uu3Wmn5su799036eaPGwAAAEBrSFHo2gqF5LnnmgeUzz/fuvqRI4vDyZqaZLfdGpZ+AwAAALBVhJZ0HXV1ySOPFIeTtbXJsmUt13brluy/f3E4OWFCMmBAKTsGAAAA6JKElnROy5cns2cXB5QPP5ysXdtybd++zWdPjhmT9OhR0pYBAAAAaCC0pGMrFJKXXmo+e/Lpp1tXP2xYcThZU9Ow5LuyslQdAwAAANACoSUdx/r1yRNPNA8oFy1qubaysmEznLcGlLvsUsqOAQAAANgKQkvK06pVydy5xeHknDnJG2+0XNurVzJ+fHE4OW5c0rt3aXsGAAAAoE0ILWl/ixYVz56cNathRmV9fcu1u+xSHE5OnJiMGpVUVZW2ZwAAAABKRmjJ9lNfnzz7bPHsyVmzGu5J2Rp77fVmQLnh16FDk4qK0vUMAAAAwHYntKQ01qxp2K27aTg5e3by+ust13bvnowdWzx7cvz4pF+/0vYMAAAAQFkQWrLtli4tDidra5NHHknWrWu5dsCAN8PJDQHl6NENwSUAAAAAXZLQktYrFJLnn28eUD73XOvqd9+9OJysqUn22MPybgAAAACKCC3ZuHXrksceax5QLlnScm1VVbLffsXh5IQJyc47l7RlAAAAADoHoSUNZs5M5YMPZsKvfpWqz342eeihhvtStqRPn4ZAsmlAOXZs0rNnqTsGAAAAoJMSWtLgIx9J1TPPZMTmzhkypDicrKlJ9t47qazcHh0CAAAA0EUILWlQU5M880ySpFBRkYpRo4rDyZqahtASAAAAAEpMaEmDf/7nrD/88Pxp1aoc8q//muodd2zvjgAAAADoooSWNHjf+1JfV5fXbrst2WGH9u4GAAAAgC7MzQgBAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BAAAAgLIitAQAAAAAykqHDi2vuuqqjBgxIj179sxBBx2U+++/f5Pnfve738073/nO7Ljjjtlxxx1z5JFHbvZ8AAAAAKB9dNjQ8sYbb8y0adNy0UUX5W9/+1smTJiQyZMn55VXXtno+TNmzMiJJ56Ye+65JzNnzszw4cNz9NFH58UXX9zOnQMAAAAAm9NhQ8vLL788Z555Zk4//fSMGTMm11xzTXr37p1rr712o+f/z//8T84666zU1NRk9OjR+d73vpf6+vrcfffd27lzAAAAAGBzurV3A1tj7dq1+etf/5rzzz+/8VhlZWWOPPLIzJw5s1WvsWrVqtTV1WWnnXba6PNr1qzJmjVrGh8vX748SVJXV5e6urpt6L58bbiuznp90JTxTldhrNOVGO90JcY7XYnxTlfS2cf7llxXRaFQKJSwl5J46aWXMmzYsNx333055JBDGo9/6lOfyu9///v85S9/afE1zjrrrNxxxx15+OGH07Nnz2bPX3zxxbnkkkuaHb/++uvTu3fvbbsAAAAAAOhiVq1alZNOOinLli1Lv379Nntuh5xpua2++MUv5oYbbsiMGTM2Glgmyfnnn59p06Y1Pl6+fHnjfTBb+qF2VHV1dbnrrrty1FFHpbq6ur3bgZIy3ukqjHW6EuOdrsR4pysx3ulKOvt437CSuTU6ZGg5cODAVFVVZeHChUXHFy5cmCFDhmy29itf+Uq++MUv5re//W3Gjx+/yfN69OiRHj16NDteXV3dKQdNU13hGmED452uwlinKzHe6UqMd7oS452upLOO9y25pg65EU/37t1zwAEHFG2is2FTnabLxd/qy1/+cj772c/m9ttvz4EHHrg9WgUAAAAAtlCHnGmZJNOmTcvUqVNz4IEHZtKkSbniiiuycuXKnH766UmSU089NcOGDcull16aJPnSl76UCy+8MNdff31GjBiRBQsWJEl22GGH7LDDDu12HQAAAABAsQ4bWp5wwglZtGhRLrzwwixYsCA1NTW5/fbbM3jw4CTJ/PnzU1n55kTSq6++OmvXrs3xxx9f9DoXXXRRLr744u3ZOgAAAACwGR02tEySc845J+ecc85Gn5sxY0bR4+eee670DQEAAAAA26xD3tMSAAAAAOi8hJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZaVDh5ZXXXVVRowYkZ49e+aggw7K/fffv9nzf/azn2X06NHp2bNnxo0bl9tuu207dQoAAAAAtFaHDS1vvPHGTJs2LRdddFH+9re/ZcKECZk8eXJeeeWVjZ5/33335cQTT8y//Mu/ZNasWZkyZUqmTJmShx56aDt3DgAAAABsTocNLS+//PKceeaZOf300zNmzJhcc8016d27d6699tqNnn/llVfmve99b/7zP/8z++23Xz772c/mbW97W775zW9u584BAAAAgM3p1t4NbI21a9fmr3/9a84///zGY5WVlTnyyCMzc+bMjdbMnDkz06ZNKzo2efLk3HzzzRs9f82aNVmzZk3j42XLliVJlixZkrq6um28gvJUV1eXVatW5dVXX011dXV7twMlZbzTVRjrdCXGO12J8U5XYrzTlXT28f76668nSQqFQovndsjQcvHixVm/fn0GDx5cdHzw4MF57LHHNlqzYMGCjZ6/YMGCjZ5/6aWX5pJLLml2fOTIkVvZNQAAAADw+uuvp3///ps9p0OGltvD+eefXzQzs76+PkuWLMnOO++cioqKduysdJYvX57hw4fn+eefT79+/dq7HSgp452uwlinKzHe6UqMd7oS452upLOP90KhkNdffz277rpri+d2yNBy4MCBqaqqysKFC4uOL1y4MEOGDNlozZAhQ7bo/B49eqRHjx5FxwYMGLD1TXcg/fr165R/MGBjjHe6CmOdrsR4pysx3ulKjHe6ks483luaYblBh9yIp3v37jnggANy9913Nx6rr6/P3XffnUMOOWSjNYccckjR+Uly1113bfJ8AAAAAKB9dMiZlkkybdq0TJ06NQceeGAmTZqUK664IitXrszpp5+eJDn11FMzbNiwXHrppUmSc889N4cddli++tWv5n3ve19uuOGGPPjgg/nOd77TnpcBAAAAALxFhw0tTzjhhCxatCgXXnhhFixYkJqamtx+++2Nm+3Mnz8/lZVvTiQ99NBDc/311+eCCy7I//f//X8ZNWpUbr755owdO7a9LqHs9OjRIxdddFGzZfHQGRnvdBXGOl2J8U5XYrzTlRjvdCXG+5sqCq3ZYxwAAAAAYDvpkPe0BAAAAAA6L6ElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVo2UXce++9Oe6447LrrrumoqIiN998c4s1M2bMyNve9rb06NEje++9d6ZPn17yPqEtbOl4nzFjRioqKpp9LViwYPs0DFvp0ksvzdvf/vb07ds3gwYNypQpU/L444+3WPezn/0so0ePTs+ePTNu3Ljcdttt26Fb2DZbM96nT5/e7LO9Z8+e26lj2HpXX311xo8fn379+qVfv3455JBD8pvf/GazNT7b6ai2dLz7bKcz+eIXv5iKiop8/OMf3+x5XfUzXmjZRaxcuTITJkzIVVdd1arzn3322bzvfe/LEUcckdra2nz84x/PGWeckTvuuKPEncK229LxvsHjjz+el19+ufFr0KBBJeoQ2sbvf//7nH322fnzn/+cu+66K3V1dTn66KOzcuXKTdbcd999OfHEE/Mv//IvmTVrVqZMmZIpU6bkoYce2o6dw5bbmvGeJP369Sv6bJ83b9526hi23m677ZYvfvGL+etf/5oHH3ww7373u/N//s//ycMPP7zR832205Ft6XhPfLbTOTzwwAP59re/nfHjx2/2vK78GV9RKBQK7d0E21dFRUVuuummTJkyZZPn/Nd//VduvfXWoj8EH/7wh7N06dLcfvvt26FLaButGe8zZszIEUcckddeey0DBgzYbr1BW1u0aFEGDRqU3//+93nXu9610XNOOOGErFy5Mr/+9a8bjx188MGpqanJNddcs71ahW3WmvE+ffr0fPzjH8/SpUu3b3NQAjvttFMuu+yy/Mu//Euz53y209lsbrz7bKczWLFiRd72trflW9/6Vj73uc+lpqYmV1xxxUbP7cqf8WZaslEzZ87MkUceWXRs8uTJmTlzZjt1BKVXU1OToUOH5qijjsqf/vSn9m4HttiyZcuSNPxFf1N8vtNZtGa8Jw3/KNhjjz0yfPjwFmfuQDlav359brjhhqxcuTKHHHLIRs/x2U5n0Zrxnvhsp+M7++yz8773va/ZZ/fGdOXP+G7t3QDlacGCBRk8eHDRscGDB2f58uV544030qtXr3bqDNre0KFDc8011+TAAw/MmjVr8r3vfS+HH354/vKXv+Rtb3tbe7cHrVJfX5+Pf/zjecc73pGxY8du8rxNfb67hysdSWvH+7777ptrr70248ePz7Jly/KVr3wlhx56aB5++OHstttu27Fj2HJz587NIYccktWrV2eHHXbITTfdlDFjxmz0XJ/tdHRbMt59ttPR3XDDDfnb3/6WBx54oFXnd+XPeKEl0OXtu+++2XfffRsfH3rooXn66afzta99LT/60Y/asTNovbPPPjsPPfRQ/vjHP7Z3K1ByrR3vhxxySNFMnUMPPTT77bdfvv3tb+ezn/1sqduEbbLvvvumtrY2y5Yty89//vNMnTo1v//97zcZ5EBHtiXj3Wc7Hdnzzz+fc889N3fddZcNpFpBaMlGDRkyJAsXLiw6tnDhwvTr188sS7qESZMmCX/oMM4555z8+te/zr333tviDINNfb4PGTKklC1Cm9mS8f5W1dXVmThxYp566qkSdQdtp3v37tl7772TJAcccEAeeOCBXHnllfn2t7/d7Fyf7XR0WzLe38pnOx3JX//617zyyitFK/rWr1+fe++9N9/85jezZs2aVFVVFdV05c9497Rkow455JDcfffdRcfuuuuuzd5XBDqT2traDB06tL3bgM0qFAo555xzctNNN+V3v/tdRo4c2WKNz3c6qq0Z72+1fv36zJ071+c7HVJ9fX3WrFmz0ed8ttPZbG68v5XPdjqS97znPZk7d25qa2sbvw488MCcfPLJqa2tbRZYJl37M95Myy5ixYoVRf/n6dlnn01tbW122mmn7L777jn//PPz4osv5oc//GGS5N/+7d/yzW9+M5/61Kfyz//8z/nd736Xn/70p7n11lvb6xKg1bZ0vF9xxRUZOXJk9t9//6xevTrf+9738rvf/S533nlne10CtMrZZ5+d66+/Prfcckv69u3beF+b/v37N86KP/XUUzNs2LBceumlSZJzzz03hx12WL761a/mfe97X2644YY8+OCD+c53vtNu1wGtsTXj/TOf+UwOPvjg7L333lm6dGkuu+yyzJs3L2eccUa7XQe0xvnnn59jjjkmu+++e15//fVcf/31mTFjRu64444kPtvpXLZ0vPtspyPr27dvs/tx9+nTJzvvvHPjcZ/xbxJadhEPPvhgjjjiiMbH06ZNS5JMnTo106dPz8svv5z58+c3Pj9y5Mjceuut+cQnPpErr7wyu+22W773ve9l8uTJ27132FJbOt7Xrl2b//f//l9efPHF9O7dO+PHj89vf/vboteAcnT11VcnSQ4//PCi4z/4wQ9y2mmnJUnmz5+fyso3F1Yceuihuf7663PBBRfk//v//r+MGjUqN99882Y3M4FysDXj/bXXXsuZZ56ZBQsWZMcdd8wBBxyQ++67zz0BKXuvvPJKTj311Lz88svp379/xo8fnzvuuCNHHXVUEp/tdC5bOt59ttPZ+Yx/U0WhUCi0dxMAAAAAABu4pyUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAHRAI0aMSEVFRU477bT2bgUAoM0JLQEAttBHP/rRVFRUpKKiIr/73e+2qPbOO+9srD333HNL1CEAAHRsQksAgC106qmnNn7/4x//eItqf/SjH230ddrLjBkzGkPUGTNmtHc7AACQRGgJALDF3vGOd2SvvfZKkvzv//5v3njjjVbVrVy5MjfddFOSZP/9988BBxxQsh4BAKAjE1oCAGyFU045JUmyfPny3HLLLa2q+cUvfpGVK1cW1QMAAM0JLQEAtsIpp5ySioqKJK1fIr5haXhlZWU+8pGPlKw3AADo6ISWAABbYc8998w73vGOJMkdd9yRV155ZbPnv/TSS7n77ruTJO9+97szbNiwZufcfPPN+dCHPpTdd989PXv2zIABA3LggQfmkksuyWuvvdaqvm677bZ85CMfyZ577pk+ffqkZ8+eGTlyZD74wQ9m+vTpWbVqVZLkueeeS0VFRY444ojG2iOOOKLx/pYbvqZPn97sPdauXZtvfetbOeKII7LLLruke/fuGTJkSI499tj8+Mc/Tn19/Sb7O+2001JRUZERI0YkSV5++eX813/9V/bff//07dt3i++tubF7cv70pz/Ne97znuyyyy7p1atX9t1333zqU5/KkiVLNvk6hx9+eCoqKnL44Ydv9v0uvvjixvfbmA3PXXzxxUmSe+65J1OmTMmuu+6aXr16Zb/99stnP/vZxhm3G9x222059thjG88bM2ZMLr300qxdu7bVP4sHHnggJ554YoYPH56ePXtm+PDhOf300/PYY4+1qv6pp57KJz7xiYwbNy79+/dPr169sueee+a0007Lgw8+uMm6t/4e1NfX59prr80RRxyRwYMHp7Ky0g7nAMCWKwAAsFW+853vFJIUkhSuvPLKzZ572WWXNZ77wx/+sOi5JUuWFN797nc3Pr+xr0GDBhVmzpy5yddfvHhx4T3vec9mXyNJ4Qc/+EGhUCgUnn322RbPbXr+Bs8++2xh9OjRm635h3/4h8Krr7660T6nTp1aSFLYY489CjNnziwMHDiwWf0999zT4s9+g3vuuaex7u677y585CMf2WRfe++9d+Hll1/e6OscdthhhSSFww47bLPvd9FFFzW+3sZseO6iiy4qXHrppYWKioqN9nLooYcWVqxYUaivry987GMf22TP733vewvr1q3b6HvtsccehSSFqVOnFr7//e8XunXrttHX6NGjR+GnP/3pZq/rsssuK1RXV2+yj4qKisKnP/3pjdY2/T34zW9+UzjyyCOb1U+dOnWz7w8A8FZmWgIAbKX/+3//b3r27JmkeFfwjdnw/A477JAPfOADjcfXrFmTI488Mr/73e9SVVWVU045JT/5yU/y5z//OX/4wx/y+c9/PjvvvHNeeeWVHHvssZk3b16z1161alWOOOKIxpmcBxxwQL797W/nT3/6Ux588MHcdNNN+cQnPpFdd921sWbYsGGZO3durr322sZj1157bebOnVv0NWXKlMbnV6xYkfe85z2NM/emTJmSX/7yl3nwwQfzs5/9LIcddliS5I//f3v3HxN1/ccB/KncDwLOUPnR2S2LNWzmIUYkzsrZTCFnlneSwUJrgJnMgcscFFrh1hY6EtDKLOcC29K7Vm7o4sc4MAnHBXRCzi3QjUKMIQ5Yngf3+f5BfPqcd58T8NTz2/OxsX34vN/vz/t993n/wV683u/3qVNYtWoVRkZGZL+PwcFBGAwGXLt2De+++y5qa2tx5swZfPnll9BqtV6/Szn5+fkoKyvDSy+9BLPZDKvVioqKCqxcuRLAv5mEd8KJEyeQm5uLhIQEHDlyBE1NTTh58iSSkpIAAKdPn8ZHH32EoqIiFBcXIykpCSaTCVarFd9//z0SEhIAACdPnsQXX3zhta+Wlha8+eabiIiIQElJCRobG2GxWLB9+3ao1WrY7XakpqbKZksWFhZi27ZtcDgciImJwaeffoqqqio0NTWhvLwcixYtgiAIKCgoQHFxsdexbN++HVVVVXjxxRdd3sHY5yYiIiIat7sdNSUiIiK6lyUnJ4vZZOfOnfNYp7W1VayTlpbmUpaXlycAEEJDQ4WmpiaP7S9cuCBotVoBgJCSkuJWnpOTIz5/8+bNgtPp9Pgcu90uXLp0yeWeNEvuZhmOb7/9tlj3vffecyt3Op1CamqqWGf//v1udcYyLQEIISEhQktLi9c+b0Y6fgDCrl27PI5r+fLlAgBBoVAIly9fdqvj60xLAILBYHDLkhweHhYSEhIEAIJGoxECAwOF7Oxst+cMDQ2JmZQxMTEe+xorxz+Zq56ySGtqasQMzPj4eLfytrY2McNy586dHufOyMiImMEaEhIi9PX1uZTf+A48zQ0iIiKiiWKmJREREdEtSEtLE6/lsi2l96X1BwcHsW/fPgBAQUEB4uLiPLafPXs28vPzAQBHjx512Q+xv78fn3/+OYDRDMu9e/fK7reoUqkQGRk5no/lxm634+DBgwCAxx9/XNyzUWrKlCnYv38/Zs6cCQAoLS31+sx33nkH8+fPn9R4PImLi0NeXp7HcW3duhUAMDw8jIaGBp/1KScoKAgHDhxAQECAy/2AgABkZmYCAAYGBhAeHo6PP/7YY/v169cDAH799VdcvXrVa3979uzBAw884HZ/6dKlyMjIADC65+WN2ZZ79uyBw+HAk08+iZ07d3qcO1OnTkVJSQnUajUGBwdx7Ngx2XFER0d7nBtEREREE8WgJREREdEtWLFihRgILC8vhyAILuVOpxNHjhwBAOh0OpeDbywWixiMMhqNXvt59tlnAQAOhwNWq1W8X1NTIx6us2XLFrcgma9YrVb09/cDGD1MR66fadOmITk5GQDQ3t6O7u5u2Wempqb6dIwpKSmyAVtpQLijo8On/Xry/PPPY8aMGR7LpIHaNWvWQKlU3rReZ2enbF/Tp0/H6tWrZcvfeOMN8bqqqsql7Pjx4wAAg8Eg+90BQGhoKPR6PQB4Dfq+8sort20OEhER0X8Lg5ZEREREt0ChUCAlJQXA6Incp06dcimvrq7Gn3/+CWA0SDd16r9/fkmz3rRardvJ3dKfefPmiXUvXbokXjc3N4vXzzzzjG8/nMTZs2fF64ULF3qtKy2XtpMKCQlBVFSUbwb3j8cee0y2TBpAHBgY8Gm/nkRHR8uWhYaGTrietzEvWLAACoVCtjw2NhYqlQoAYLPZxPsXL17EX3/9BQDIzc31Ov+mTJkizlfp/LtRTEyMbBkRERHRRDBoSURERHSLvC0Rl1saDgCXL1+eVH9jmZUA0NvbK15P9gCb8ejr6xOvIyIivNaVLlOWtpOSBuR8JSgoSLZMGiz2dkDQnR6LL8Z8s/ehUCjEoK30ffhi/t1o+vTpk3omERER0Y3k/yVLREREROMSGxsLvV4Pm82Go0ePivv/DQ0NwWw2Axhdnjx37lyXdtJA1C+//CK7TPhGOp3Od4OfBG/LiMeLS4h9Z7LvQzr/duzYgbVr146rXXBwsGwZ3ysRERH5CoOWRERERD6QlpaGbdu2ob+/H8ePH4fRaMR3330nHppzY5YlAPHAGgAIDw+fVDAyLCxMvO7u7sYjjzwyidHfnHR5dU9Pj9dlzdLlw3L7OvqbsaxGp9PptZ70ECR/0dPT47V8eHhYzLCUvg/p/FMqlS5bEBARERHdbVweTkREROQDqampYpZZWVkZgH+XhiuVSrz66qtubRYsWCBe//TTT5Pq94knnhCv6+rqJtx+vFl60oBWY2Oj17pnzpzx2M6faTQaAMCVK1e81jt//vydGM6EtLS0YHh4WLa8tbUV169fB+D6PqKionD//fcDmPz8IyIiIrpdGLQkIiIi8gGtVotly5YBACoqKnD27FlUV1cDABITExEeHu7WZtmyZeKehsXFxW4nj4/H0qVLxeW6JSUlE96vMTAwULy22+2y9eLi4sR9KA8fPiybkTgwMIBvv/0WADB37tzbus+mL41lqJ4/f1720Jve3l5UVlbeyWGNS19fn3gKuCdfffWVeD02R4HRpdwvvPACAODHH3/Eb7/9dvsGSURERDRBDFoSERER+cjYEnCHw4F169aJAURPS8OB0cNosrKyAACnT59GTk6O1+XJPT09OHjwoNszNm7cCACwWq3Izs6WDX46HA63w1ekQcXff/9dtm+1Wo309HQAoyeCFxQUuNURBAFZWVni4UBjn+1esGTJEgDA9evXUVJS4lbucDiQnp6Ov//++04PbVy2bt3qcZm4xWLBgQMHAIwGnuPj413Kc3NzERAQAKfTCaPRiK6uLtk+RkZGUF5e7rUOERERka9wT0siIiIiH3n55Zeh0WgwMDCAtrY2AKOnKa9atUq2zYcffgiLxYLGxkbs3bsXtbW1yMjIQGxsLIKDg3HlyhW0tbWhqqoKJ06cgF6vF4OHYwoKClBZWQmbzYbS0lI0NDRg48aN0Ov1UKlU6OrqQn19Pb755hvs2rULGzZsENs+9NBD0Ol06Orqwu7du6HT6TBnzhxxqXtkZKS4dHrHjh0wm83o6OjA+++/D5vNhtdffx1arRadnZ0oLS1FbW0tAGDRokXIzMz04bd7e61cuRKzZ8/GxYsXkZ+fj97eXqxZswaBgYFoa2tDcXExmpubkZCQgJ9//vluD9fF/Pnz0d7ejri4OOTm5uKpp56C3W5HRUUFioqKMDw8DIVCgX379rm11ev12L17N3JyctDe3o558+YhMzMTzz33HCIjI3Ht2jVcuHABDQ0NOHbsGLq7u2Gz2e76YVBERET0/49BSyIiIiIfue+++2A0GnHo0CHxXnJyMtRqtWwbtVqNyspKbNiwAWazGa2trV4zFKdNm+Z2LygoCDU1NTAYDKirq4PVap1QwDAvLw9vvfUWOjs7sXr1apeyQ4cOiUFOjUaD6upqJCUl4dy5czCZTDCZTG7PW7x4MX744Yd76iRplUqFsrIyJCYmYmhoCEVFRSgqKhLLAwIC8Mknn6Cvr8/vgpaxsbHIysrCpk2bPM4dlUqFw4cPY+HChR7bZ2dnIzg4GNnZ2bh69SoKCwtRWFjosa5KpXLZUoCIiIjoduHycCIiIiIfWr9+vcvvckvDpTQaDUwmE+rr65Geno45c+ZAo9FAoVBgxowZiI+Px+bNm1FRUSG7p2JYWBgsFgvMZjOMRiN0Oh3UajUCAwMRFRWFtWvXory83OOBQJs2bYLJZMLy5csREREBhUL+/9oPP/wwWltbUVpaiiVLlmDmzJlQKpWIjIxEYmIivv76a9TV1d0zp4ZLPf3007BarXjttdcwa9YsKJVKaLVaMRi8ZcuWuz1EWenp6aivr0dycjJmzZoFlUqFBx98EGlpaWhubsa6deu8ts/IyEBHRwc++OADLF68GGFhYVAoFAgODkZ0dDQMBgM+++wz/PHHH3j00Ufv0KciIiKi/7IpwmR2fCciIiIiIiIiIiK6TZhpSURERERERERERH6FQUsiIiIiIiIiIiLyKwxaEhERERERERERkV9h0JKIiIiIiIiIiIj8CoOWRERERERERERE5FcYtCQiIiIiIiIiIiK/wqAlERERERERERER+RUGLYmIiIiIiIiIiMivMGhJREREREREREREfoVBSyIiIiIiIiIiIvIrDFoSERERERERERGRX2HQkoiIiIiIiIiIiPwKg5ZERERERERERETkVxi0JCIiIiIiIiIiIr/yP6BZL8R4UTqAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "i Labels IRE IREth \n", + "0 [1.] [0.64] 0.44 \n", + "1 [1.] [0.78] 0.44 \n", + "2 [1.] [0.6] 0.44 \n", + "3 [1.] [0.86] 0.44 \n", + "Обнаружено 4.0 аномалий\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABS0AAALXCAYAAABo22WOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgDxJREFUeJzs3XuYlWW9P/73zDAc5aAioIiCigfkMKThqVJLJW27t+3sZ2qJlu5K3Vnsdul3m4esrCzTynRX27TaptVOrTQPmWQl5SEG8HwEPIEgchYYmPX7Y2Kc5QAzwCxmzczrdV1zMetZz2etzzPcLOHtfT93RaFQKAQAAAAAoExUtncDAAAAAABNCS0BAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BAAAAgLIitAQAAAAAyorQEgAAAAAoK0JLAAAAAKCsCC0BANrQ448/njPPPDOjRo1K3759U1FR0fg1a9as9m4PAAA6BKElALDFDjvssMZg7qKLLtrgeU0DvLd+VVVVZcCAARk5cmQ++MEP5oc//GGWLVu2WT1s6tepp5665T+EJL/+9a8zfvz4XH311Xn88cc3qX/o6s4///yiP5ef/OQnN/k1SvU5MHfu3PzkJz/Jxz72sey///7ZfvvtU11dnQEDBmTvvffOpEmT8pvf/Cb19fVb8BMAAJoSWgIAZaG+vj6LFy/OM888k1/+8pc544wzMmLEiNx8883t3VqrLFu2LKeeempWrVqVJNlxxx3zwQ9+MGeeeWbOOuusnHXWWenXr187d7n5LrroolYF0x3Bqaee2ngt1113XXu3s1XMmjWr8ZqHDx/e3u00UygU8pOf/KTo2E033dT456m9zJkzJ+9+97szdOjQnHLKKbn22mvz8MMPZ+HChVmzZk0WL16cJ598Mj/+8Y/zz//8z3nb296WmTNntmvPANBZdGvvBgCArum4447L0KFDGx/X19dnwYIFmTp1al588cUkyYIFC3L88cfnl7/8Zd7//ve3+rXf/va3Z8KECa0+/8ADD2x94xvw29/+Nq+//nqSZN99982DDz6YXr16bfHrQldw7733Zs6cOUXHXn/99fz617/OBz/4wc16zbb4HHj55Zdz7733Fh3bddddU1NTk0GDBmX58uV58MEH8/TTTydJpk+fnkMOOST33HNP3v72t29W3wBAA6ElANAuzjnnnBx22GHNjtfX1+f666/PJz/5yaxatSr19fX55Cc/mYkTJ6Z3796teu1jjjlmq88G/Pvf/974/YknniiwhE1w/fXXN37fq1evvPHGG43HNze0bMvPgZ122ikf/ehHM2nSpOyxxx7Nnr/11ltz+umnZ8GCBVm6dGk++MEP5vHHH/c5AABbwPJwAKCsVFZW5rTTTsvXv/71xmPz5s3LLbfc0n5NtcK6WZZJw9JwoHWWLVuW//u//2t8fPnllzd+f+edd2bevHnt0VaSpF+/frn88svz7LPP5pJLLllvYJkk//Iv/5Lbb789VVVVSZLZs2fnxz/+8dZsFQA6HaElAFCWPv7xj6dnz56Nj++777527KZldXV1jd9XVvorFrTW//3f/2X58uVJkhEjRuTjH/94ampqkiRr1qzJ//7v/7Zbb6NGjcpnPvOZos+iDXn729+eD3zgA42Pb7vttlK2BgCdnr9RAwBlqUePHtlnn30aH7/88svt2M36Nd2cpuny1tNOO63ZzsQb2vBl2bJl+fa3v52JEydm5513Ts+ePbPttttm9OjROfvss/O3v/2tVb00fa91pk+fnnPOOSejR4/Odtttl4qKihx33HGbdI3rdmO++OKLG49dfPHFm7z7cqFQyM0335xJkyZlzz33TP/+/dOzZ88MGzYsxx13XK6//vqsWbOmVT098cQT+dznPpcDDzwwAwcOTPfu3dOzZ88MGjQo++23X0477bRcf/31RbNfk2T48OGt+r1qi82GNrfH9amrq8tPfvKT/H//3/+X3XbbLX379k2fPn0yYsSInHjiibn55ptTKBTWW3vdddeloqIiI0aMaDw2e/bsDe6g3R6a/n58+MMfTkVFRT7ykY+s9/lyd8ghhzR+P2vWrPZrBAA6Afe0BADKVtP7wa1cubIdOymN3/72tznjjDMyd+7couOrVq3KokWL8uijj+aqq67KSSedlB/84Aetvqdn0hCofulLX8ratWvbuu1NNmPGjEyaNCm1tbXNnnvxxRfz4osv5tZbb82ll16aX/3qVxk1atQGX2tj1zV//vzMnz8/f//733Pdddfl5JNPzk9/+tO2vJRWacsep0yZktNPPz3PPvtss+dmzZqVWbNm5cYbb8yBBx6YX/7yl0WbW3UEs2fPzpQpUxoff/jDH06SnHTSSfnc5z6XtWvXZsaMGamtrW2cfVnOmga/5fBnDwA6MqElAFC2ms6uHDx4cDt2sn4TJkzIWWedlSS555578sQTTyRJ3vOe92TvvfcuOrfprNEkuemmm3LyySc3BhtVVVV5xzvekT322CPLli3Ln/70p8brv+GGG/L888/nD3/4Q6uWqV522WWNMyN33333TJgwIb17986sWbNSXV29Sdf4/ve/P6NHj84DDzyQBx98MMmGd2Ve3+7L9913X4499tgsWbIkSVJdXZ23v/3tGTlyZKqrqzNr1qz8+c9/zsqVK/Pkk0/m4IMPztSpU5v9vJLkyiuvLJrxOXDgwBx44IHZcccdU1FRkYULF+aJJ57I448/vt7AaNKkSXnttdda/L1Kskm7Trdlj0394he/yMknn9x464FevXrlwAMPzPDhw1NZWZmnnnoqU6dOzZo1a/LXv/41Bx10UB588MGiPyv77LNPzjrrrCxdurTxHot9+/bNKaecslnX19Z+8pOfNM4SPeCAA7LnnnsmSYYMGZIjjzwyd9xxR5KG2ZYdIbScOXNm4/fDhg1rx04AoBMoAABsoUMPPbSQpJCkcOGFF27wvHXnJCnce++9G33NJ598suj87373u23SQ6lMmjSp8f1/9KMfbfTcZ555prDNNts0nj9hwoTC008/XXTO2rVrC9/85jcLlZWVjef9+7//+wZfs+nPqlu3boX+/fsXbr755mbnrVy5cnMur3DhhRdu8s/3lVdeKQwaNKix7pRTTim8/PLLzc6bO3du4f3vf3/jeWPGjCmsWbOm6Jy6urrCwIEDG8+59NJLC6tXr17v+7722muFa6+9tvC1r31tvc9vyu/VpmjLHh955JFCr169CkkKFRUVhc9+9rOF119/vdl5zz77bOEd73hH43seffTR6329559/vvGcXXfddXMvsc2NHDlyg3/G//d//7fxuUGDBhXq6upafL32/BxYunRpYdttt218/8suu2yrvj8AdDZmWgIAZWfNmjU555xzGh/369cvH/rQh1pdf/vtt2fBggWtPv+LX/xitttuu03qcUt88YtfzLJly5Ike+yxR+66667079+/6JzKyspMnjw5FRUVmTx5cpLkqquuymc+85mi+xOuT319fX7961/nXe96V7PnevTo0UZX0bL/+q//yquvvpok+dSnPpUrr7xyvecNHjw4v/jFL3LUUUflD3/4Q2bOnJlf/vKXOeGEExrPeeKJJxp/Tw855JCce+65G3zf7bbbLqeddlobXknrtGWPn/rUp/LGG28kSb75zW/mM5/5zHrP22233XLHHXdkwoQJeeyxx/K73/0uf/vb33LAAQdswZVsHffff3+efvrpJA0zcJv+fifJcccdl2222SbLli3Lq6++mt/97nc59thjW/36W/tz4KKLLmq8R+k222yTSZMmbfZrAQCWhwMAZaK+vj4LFizIX/7yl3z1q1/NAw88kCTp1q1brr322my//fatfq0HH3ywcSlza3z2s5/daqHlokWLctNNNzU+/vrXv94ssGzqnHPOyf/8z//k0UcfTX19fb7//e/n0ksv3eh7HH/88esNLLem+fPnN96rcciQIfna17620fOrqqry5S9/OQcddFCS5H//93+LQqx1y8uTZIcddihBx1uurXqcPn16/vCHPyRJxo8fn09/+tMbPb9Pnz75whe+kBNPPDFJw8+uI4SWTTfYOfroozNw4MCi53v37p0PfOADjeddf/31mxRabs3PgXvuuSdXXHFF4+PzzjuvbMcpAHQUdg8HANrF4YcfXrRrcVVVVQYPHpx//dd/bQws99prr9xyyy35wAc+0M7dtp37778/q1atStJwv8OWQpjKysp89KMfbXx87733tvgemzIrtVR+//vfZ/Xq1UmSf/3Xf23VvTgPOOCA9OnTJ0ny5z//uei5pvcHvPfee/PUU0+1Ybdto616vP322xu/P/HEE1u1q/e73/3uxu/f+rMrRytXrszPf/7zxsdNdwtvqum9N3/zm99k4cKFJe9tU82ePTsf+tCHGu9R+o53vCOf//zn27krAOj4zLQEAMrS4MGD8+Mf/3izNkS58MILc9FFF7V9U21g2rRpjd9PmDAh3bq1/NexQw45pKi+UChsNMjab7/9tqzJNjB16tTG72fMmJGzzz57k+pff/31LF++vDHEHDZsWA488MD89a9/zeLFi7PffvvlIx/5SN7//vfnkEMO2aSd1UulrXps+rO79957M3v27BZrCv/YzCZJXnjhhU1vfiu79dZbs2jRoiTJgAEDNhjeH3bYYdl5553z4osvZvXq1bnxxhtz5plntuo9tsbnwGuvvZajjz66cRn6zjvvnJ/97Gepqqoq6fsCQFcgtAQA2sVxxx2XoUOHNj5+7bXX8uyzzzYu55w3b17e+c535v/+7//yT//0T+3VZpubP39+4/e77rprq2qGDx/e+P3q1auzdOnS9OvXb4Pnl8Oy1KY7v//5z3/erNl/r7/+emNomST/8z//k3e/+92ZN29eli1blquvvjpXX311unXrlpqamrzrXe/KxIkT8573vKfdQqO26LHpz+53v/vdJvew7r6K5azp0vAPfvCDG7zXamVlZU4++eTG2wtcf/31rQ4tS23ZsmU55phj8vjjjydJtt9++9x5553Zeeed27kzAOgcLA8HANrFOeeck+9+97uNXz/72c/ywAMPZPr06Rk3blyShoDuxBNPzLPPPtvO3baddRvwJCkK5DbmrectXbp0o+f36tVr0xtrY4sXL97i11izZk3R41GjRmX69On593//96L7gK5ZsyYPPfRQLr/88kycODG77rprfvjDH27x+2+OtuhxS39265Ypl6u5c+fmrrvuanz84Q9/eKPnN106/sADD+SJJ54oWW+ttXLlyvzzP/9z460s+vbtm9/97ncZNWpUO3cGAJ2H0BIAKCtjx47NXXfd1TgLc9myZTn99NPbuau2s8022zR+v3z58lbVvPW8vn37tmlPpdA0aL388stTKBQ2+avpDNN1Bg8enG9/+9uZN29epkyZkksuuSRHH3100czTl156KWeccUY+9alPbY1LbfMem/7sfvWrX23Wz66c/fSnPy0KVg899NCi+9u+9Wv06NFF9U1nabaHurq6fOADH2i8v2yvXr3ym9/8Jm9/+9vbtS8A6GyElgBA2Rk0aFC+853vND6eMmVKbrvttnbsqO00Xbo9Z86cVtXMmjWr8fvu3bt3iNBy8ODBjd/PnTu3zV+/R48eOfTQQ3P++efn9ttvz4IFC/K73/0u73jHOxrP+c53vrNJu0eXS4+l/tm1ty0NHX/605+mvr6+jbrZNGvXrs1JJ53UuFlSdXV1fvnLX+bQQw9tl34AoDMTWgIAZWnd5iXrnH/++e3YTdsZP3584/cPPPBAq5by3n///UX1rdlNuq1t6nsecMABjd//5S9/aet2mqmurs573/ve/P73vy+amfeb3/ym2bnt8fNLWt9jKX527XXNb/X3v/89jzzySOPjt7/97TnggANa9bVu06oXX3wx99xzz1bvvb6+Pqeeemp++ctfJkmqqqpyww035JhjjtnqvQBAVyC0BADKVtOdf2tra/PrX/+6/ZppIwcffHDjpiPz589vcQZpfX19fvSjHzU+fve7313S/jakZ8+ejd/X1dW1eP7EiRMbQ6b7778/06dPL1lvTfXo0SNHHXVU4+N58+Y1O2dTr6WttdRj042nfvWrX633GjZVe1/zOk1nWY4ZMyYPPPBA/vrXv7bq673vfe96X2dr+cQnPpGf/vSnSRpC4GuvvTbHH3/8Vu8DALoKoSUAULaOOOKIHHzwwY2Pv/SlL7VjN21jwIABOeGEExof/+d//udGN9b57ne/m5kzZyZp2En53/7t30re4/psv/32jd+/9NJLLZ4/dOjQxg1WCoVCTjnllCxZsqRV71VfX1+0y3rSsCN2a5cEv/DCC43fDxo0qNnzm3otrdVWPU6YMCGHHXZYkuSNN97IRz7ykaxevbpVr7t69er17h4+YMCAVFY2/NV//vz57RJc1tXV5YYbbmh83NIGPG/V9Pybb765xQ2p2tLkyZPzgx/8oPHxVVddlVNOOWWrvT8AdEVCSwCgrF1wwQWN3z/44IO544472rGbtnHBBRc0bsjz1FNPZeLEiXnuueeKzqmvr8+VV16ZyZMnNx4766yz1rs5zdbQdDnzXXfd1aodrr/85S9nxx13TJLMmDEjEyZMKNo1+q1efPHFfOtb38pee+2Vm266qei5W2+9NXvuuWe+8Y1vFN3js6lVq1blu9/9buPy3SQ5+uijN3ott956a6sDwZa0ZY/f+c53GsfI3XffnXe9613529/+tsH3fuqpp3LJJZdk+PDh611S3qNHj4wcOTJJQ3h4yy23tOqaTj311MYNcbZ07K27r2fSMFPxxBNP3KT6f/7nf268n+uKFSvyi1/8Yov6aa0LL7ww3/rWtxoff/3rX88nP/nJrfLeANCVdWvvBgAANmbixIk54IADGgObSy65pGiZ6Po0DUdao3fv3vn617++RX1uit133z0//OEPc/LJJ2ft2rWZOnVq9tprr7zzne/M7rvvnmXLluVPf/pT0SzAAw88cKv2+FYTJkzIsGHD8sILL+SVV17J3nvvnaOOOioDBw5svF/i29/+9qJZpDvttFNuvfXWHHPMMVmwYEGefPLJTJw4MUOHDs2ECROyww47pK6uLgsWLMgjjzyS559/fqM9PPvss/nP//zP/Od//md22WWXjB07tnGW4ty5c/PXv/41CxcubDz/5JNPLpqpu87RRx+dXr165Y033khtbW322WefHHbYYRkwYEDjtRx11FFFS7hbq616HD16dH72s5/lhBNOyIoVK/K3v/0tBx54YHbfffe87W1vy3bbbZeVK1fm1VdfzYwZM1o1Y/QDH/hAvvKVrzS+73XXXZc99tgj1dXVjed84xvf2ORrbq2mS7rf9a53ZdiwYZtU36tXr7z//e/Pj3/848bX++hHP7rB89vic+D222/PF7/4xcbHgwcPzuzZs3P22We36jW/+MUvZrvttmt1DwBAEwUAgC106KGHFpIUkhQuvPDCDZ637pwkhXvvvbfVr3/bbbcV1f7+97/faA+b+tW/f/9Nv+i3mDRpUuPr/ehHP2pVzW9+85vC4MGDW+zvxBNPLCxfvnyjr9X0/FL5zW9+U+jevfsG+5w0adJ662bNmlV4z3ve0+rfj8GDBxfuuOOOotf4xS9+UaioqGhVfWVlZeHMM88srF69eoPXcvXVV2/09TY2jjekrXssFAqF2trawn777dfqn93w4cML06ZNW+9rLVq0qLD33ntvtP6tmo7rXXfddZN/JussWLCgaOz84Ac/2KzXueuuuxpfo6KiovDcc88VPd/WnwM/+tGPNvv1khSef/75zbpOAKBQMNMSACh7xxxzTPbff/889NBDSRpmL73nPe9p56623D/90z/lmWeeybXXXpvf/va3efTRR7NgwYL06tUrO+20Uw4//PCccsopRbtJt6d/+qd/ykMPPZSrrroqf/7znzNnzpwsW7YshUJho3W77rprfv/732fq1Kn5xS9+kfvuuy8vvPBCXn/99XTr1i3bb799Ro4cmf333z9HHXVUDjvssMZNfNY5/vjj88orr+Suu+7KX/7yl0yfPj3PPfdcFi1alCTp379/9txzz7zjHe/IKaecklGjRm20p0984hMZM2ZM/vu//zt/+9vf8tJLL2XFihUtXsvGtHWPSTJu3Lg89NBDueuuu3LLLbfkL3/5S15++eUsWrQoPXr0yA477JC99torBxxwQCZOnJiDDjpogzuF9+/fPw8++GC+973v5bbbbsvjjz+eRYsWbZX7W/7sZz9rXIbfo0ePzd7A5t3vfnd23HHHvPLKKykUCrn++uuLNuwCADqPisKW/M0MAAAAAKCN2YgHAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKx0a+8GOor6+vq8/PLL6du3byoqKtq7HQAAAADoUAqFQpYuXZqddtoplZUbn0sptGyll19+OcOGDWvvNgAAAACgQ3vhhRey8847b/QcoWUr9e3bN0nDD7Vfv37t3E1p1NXV5a677spRRx2V6urq9m4HSsp4p6sw1ulKjHe6EuOdrsR4pyvp7ON9yZIlGTZsWGPOtjFCy1ZatyS8X79+nTq07N27d/r169cp/2BAU8Y7XYWxTldivNOVGO90JcY7XUlXGe+tufVih9yI57777suxxx6bnXbaKRUVFbnllls2ev6vfvWrHHnkkdlhhx3Sr1+/HHTQQbnzzju3TrMAAAAAwCbpkKHl8uXLM27cuFx11VWtOv++++7LkUcemdtvvz0PP/xwDj/88Bx77LGZNm1aiTsFAAAAADZVh1wefvTRR+foo49u9flXXHFF0eOvfOUrufXWW/Ob3/wm48ePb+PuAAAAAIAt0SFDyy1VX1+fpUuXZrvtttvgOatWrcqqVasaHy9ZsiRJw70F6urqSt5je1h3XZ31+qAp452uwlinKzHe6UqMd7oS452upLOP9025ropCoVAoYS8lV1FRkZtvvjnHHXdcq2u+/vWv56tf/WqeeOKJDBo0aL3nXHTRRbn44oubHb/hhhvSu3fvzW0XAAAAALqkFStW5KSTTsrixYtb3Oi6y4WWN9xwQ84444zceuutOeKIIzZ43vpmWg4bNiwLFizo1LuH33333TnyyCM79Q5VkBjvdB3GOl2J8U5XYrzTlRjvdCWdfbwvWbIkAwcObFVo2aWWh9944405/fTT84tf/GKjgWWS9OjRIz169Gh2vLq6ulMOmqa6wjXCOsY7XYWxTldivNOVGO90JcY7XUlnHe+bck1dJrT82c9+lo9+9KO58cYb8773vW+rvnehUEhdXV3q6+u36vtuqrq6unTr1i0rV67M2rVr27udTq2qqqpTfvgAAAAAtIUOGVouW7YszzzzTOPj559/PrW1tdluu+2yyy675LzzzstLL72UH//4x0kaloRPmjQpV155ZQ444IDMnTs3SdKrV6/079+/ZH2uXr06r776alasWNEhQsBCoZAhQ4bkhRdeSEVFRXu30+n16NEjAwcO7LS3GwAAAADYXB0ytHzooYdy+OGHNz6ePHlykmTSpEm57rrr8sorr2TOnDmNz3//+9/PmjVrctZZZ+Wss85qPL7u/FJYsWJFXnjhhVRVVWXbbbdNr169UlVVVdZhYH19fZYtW5ZtttkmlZWV7d1Op7Vu5u3ixYvz0ksvJYngEgAAAKCJDhlaHnbYYdnY/kFvDSKnTJlS2obWY8GCBamurs6uu+6aqqqqrf7+m6O+vj6rV69Oz549hZYl1qtXr/Tt2zcvvvhip97cCQAAAGBzSKZKYM2aNVm+fHm22267DhNYsvVVVFSkf//+WbVqVerq6tq7HQAAAICyIbQsgTVr1iTJencfh6bWbcbTEe55CgAAALC1CC1LqJzvX0l5MEYAAAAAmhNaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElrSr4cOHp6KiItddd13jseuuuy4VFRVFX5WVlenXr1/Gjx+f8847L/Pnz9/ga761dkNfU6ZMKf0FAgAAALDJurV3A7Ahffr0yfHHH5+kYXft2bNnZ+rUqamtrc2PfvSj/OlPf8rIkSM3WD9x4sQMGTJkg89v7DkAAAAA2o/QkrI1cODAohmYSfLoo4/m0EMPzbx58/LpT386t9122wbrzz333Bx22GGlbRIAAACANmd5OB3Kvvvum8mTJydJ7r777qxataqdOwIAAACgrQkt6XDGjh2bJKmrq8vChQvbuRsAAAAA2prQkg5nyZIlSZKqqqoMHDiwnbsBAAAAoK0JLelw1t3H8r3vfW+qq6vbuRsAAAAA2pqNeNrL/vsnc+e2dxdFKpL0KxRSUVGx8ROHDEkeemir9LTOut3Dv//97+eGG27Irrvumm9/+9sbrTn88MM3+Fz//v2zaNGiNu4SAAAAgLYgtGwvc+cmL73U3l0UqfjHV7mYPXv2egPUCRMm5K677kr//v03Wj9x4sQMGTJkvc/17t27TXoEAAAAoO0JLdvLBsK09lRIUvjHTMuNhpdbqfc+ffrk+OOPT5KsWrUqjz/+eKZPn54HHnggH//4x3PjjTdutP7cc8/NYYcdthU6BQAAAKAtCS3by1ZeXt0ahfr6LFmyJP369UtFZfvf7nTgwIG57rrrio796le/ygknnJCbbrop73rXu3LmmWe2T3MAAAAAlEz7J1OwCf71X/815557bpLkggsuyOLFi9u5IwAAAADamtCSDue8887LjjvumNdeey2XX355e7cDAAAAQBsTWtLh9O7dO1/4wheSJFdccUVef/31du4IAAAAgLbknpZ0SKeffnq++c1v5tlnn803vvGNfPnLX252zle/+tVm98Rs6qSTTspRRx1Vwi4BAAAA2BxCSzqk6urqfOlLX8qJJ56Y73znO5k8eXK23377onPuvPPOjb5GTU2N0BIAAACgDAktaVezZs1qduzUU0/Nqaee2mLthz70oXzoQx9qdrxQKLRBZwAAAAC0F/e0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQkva1fDhw1NRUZHrrruu8dh1112XioqKoq/Kysr069cv48ePz3nnnZf58+dv8DXfWruhrylTpmxSr+v6OvXUUzfvYgEAAABolW7t3QBsSJ8+fXL88ccnSdauXZvZs2dn6tSpqa2tzY9+9KP86U9/ysiRIzdYP3HixAwZMmSDz7/1uYqKiiRJoVBog+4BAAAA2FxCS8rWwIEDi2ZgJsmjjz6aQw89NPPmzcunP/3p3HbbbRusP/fcc3PYYYeVtkkAAAAA2pzl4XQo++67byZPnpwkufvuu7Nq1ap27ggAAACAtia0pMMZO3ZskqSuri4LFy7c4te76KKLGpeGJ83viTlr1qxmNcuXL895552XPfbYIz169MiQIUMyadKkvPTSS1vcDwAAAEBXZ3k4Hc6SJUuSJFVVVRk4cOAWv15NTU0mTZqU66+/PkkyadKkoue32WaboseLFy/OwQcfnDlz5uSd73xnRo8enalTp+bHP/5x/vjHP2b69Onp37//FvcFAAAA0FUJLelw1t3H8r3vfW+qq6u3+PWOO+64HHfccY2h5Vvvo/lWt9xySyZOnJg//elP6devX5Lk9ddfz7vf/e7U1tbme9/7Xs4777wt7gsAAACgqxJatpP9998/c+fObe82mikUCkVLpddnyJAheeihh7ZSRw3W7R7+/e9/PzfccEN23XXXfPvb395ozeGHH77B5/r3759FixZtVi99+vTJj370o8bAMkm23XbbnHvuufnQhz6U3//+90JLAAAAgC0gtGwnc+fOdf/DFsyePXu9AeqECRNy1113tbgEe+LEiRkyZMh6n+vdu/dm97X//vtnxx13bHZ8n332SRK/rwAAAABbSGjZTjYUprW31s603Br69OmT448/PkmyatWqPP7445k+fXoeeOCBfPzjH8+NN9640fpzzz03hx12WJv3tcsuu6z3+LqZlytXrmzz9wQAAADoSoSW7WRrL69ujfr6+ixZsiT9+vVLZWX7byw/cODAZveX/NWvfpUTTjghN910U971rnflzDPP3Op9lcPPBgAAAKAzk77Qofzrv/5rzj333CTJBRdckMWLF7dzRwAAAAC0NaElHc55552XHXfcMa+99louv/zyNnvddTuRr1mzps1eEwAAAIBNJ7Skw+ndu3e+8IUvJEmuuOKKvP76623yujvvvHOS5NFHH22T1wMAAABg87inJR3S6aefnm9+85t59tln841vfCNf/vKXm53z1a9+tdk9MZs66aSTctRRRzU+/sAHPpBvfOMbOeKII/Lud787ffv2TZJ87Wtfy/bbb9/m1wAAAADA+gkt6ZCqq6vzpS99KSeeeGK+853vZPLkyc2CxTvvvHOjr1FTU1MUWl5yySWprKzMr371q9xyyy1ZvXp1kuT8888XWgIAAABsRUJL2tWsWbOaHTv11FNz6qmntlj7oQ99KB/60IeaHS8UCpvVS8+ePfO1r30tX/va19b7fEt9DR8+fLPfGwAAAIA3uaclAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoWUKFQqG9W6DMGSMAAAAAzQktS6CysuHHunbt2nbuhHK3boysGzMAAAAACC1Lorq6OtXV1Vm2bFl7t0KZe+ONN1JVVZXq6ur2bgUAAACgbAgtS6CioiJ9+/bN4sWL88Ybb7R3O5SptWvXZvHixendu3cqKiraux0AAACAstGtvRvorAYOHJg33ngjc+bMSb9+/dK3b99UVVWVdThVX1+f1atXZ+XKlZYrl1ChUMiqVauycOHC1NfXZ9CgQe3dEgAAAEBZEVqWSFVVVYYNG5YFCxZk6dKlWbRoUXu31KJCoZA33ngjvXr1KutwtbPo06dPhgwZku7du7d3KwAAAABlRWhZQlVVVRk8eHAGDRqUurq61NfXt3dLG1VXV5f77rsv73rXu9xjscS6deuWbt388QMAAABYH6nJVlBRUdEhZtNVVVVlzZo16dmzp9ASAAAAgHbjxoUAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZUVoCQAAAACUFaElAAAAAFBWhJYAAAAAQFkRWgIAAAAAZaVDhpb33Xdfjj322Oy0006pqKjILbfc0mLNlClT8ra3vS09evTIHnvskeuuu67kfQIAAAAAm65DhpbLly/PuHHjctVVV7Xq/Oeffz7ve9/7cvjhh6e2tjaf/vSnc/rpp+fOO+8scacAAAAAwKbq1t4NbI6jjz46Rx99dKvPv+aaazJixIh885vfTJLss88++fOf/5xvfetbmThxYqnaBAAAAAA2Q4cMLTfV1KlTc8QRRxQdmzhxYj796U9vsGbVqlVZtWpV4+MlS5YkSerq6lJXV1eSPtvbuuvqrNcHTRnvdBXGOl2J8U5XYrzTlRjvdCWdfbxvynV1idBy7ty5GTx4cNGxwYMHZ8mSJXnjjTfSq1evZjWXXnppLr744mbH77rrrvTu3btkvZaDu+++u71bgK3GeKerMNbpSox3uhLjna7EeKcr6azjfcWKFa0+t0uElpvjvPPOy+TJkxsfL1myJMOGDctRRx2Vfv36tWNnpVNXV5e77747Rx55ZKqrq9u7HSgp452uwlinKzHe6UqMd7oS452upLOP93UrmVujS4SWQ4YMybx584qOzZs3L/369VvvLMsk6dGjR3r06NHseHV1daccNE11hWuEdYx3ugpjna7EeKcrMd7pSox3upLOOt435Zo65O7hm+qggw7KPffcU3Ts7rvvzkEHHdROHQEAAAAAG9IhQ8tly5altrY2tbW1SZLnn38+tbW1mTNnTpKGpd2nnHJK4/mf+MQn8txzz+Vzn/tcnnjiiXzve9/Lz3/+83zmM59pj/YBAAAAgI3okKHlQw89lPHjx2f8+PFJksmTJ2f8+PG54IILkiSvvPJKY4CZJCNGjMhtt92Wu+++O+PGjcs3v/nN/PCHP8zEiRPbpX8AAAAAYMM65D0tDzvssBQKhQ0+f9111623Ztq0aSXsCgAAAABoCx1ypiUAAAAA0HkJLQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgr3dq7AcrHgQcemNmzZ6dnz57t3QpsFStXrjTe6RKMdboS452uxHinKzHe6UpWrlyZXXfdNQ8//HB7t9KuhJY0mjdvXl577bX2bgMAAACgSxPSd+DQ8qqrrspll12WuXPnZty4cfnOd76TCRMmbPD8K664IldffXXmzJmTgQMH5vjjj8+ll15qEDQxePBg//eKLsV4p6sw1ulKjHe6EuOdrsR4pytZuXJlBg8e3N5ttLsOGVredNNNmTx5cq655poccMABueKKKzJx4sQ8+eSTGTRoULPzb7jhhpx77rm59tprc/DBB+epp57KqaeemoqKilx++eXtcAXl6a9//Wtuv/32HHPMMamurm7vdqCk6urqjHe6BGOdrsR4pysx3ulKjHe6kqbjvavrkBvxXH755TnjjDNy2mmnZdSoUbnmmmvSu3fvXHvttes9//77788hhxySk046KcOHD89RRx2VE088MQ888MBW7hwAAAAAaEmHm2m5evXqPPzwwznvvPMaj1VWVuaII47I1KlT11tz8MEH56c//WkeeOCBTJgwIc8991xuv/32fOQjH9ng+6xatSqrVq1qfLxkyZIkDYl3XV1dG11NeVl3XZ31+qAp452uwlinKzHe6UqMd7oS452upLOP9025ropCoVAoYS9t7uWXX87QoUNz//3356CDDmo8/rnPfS5//OMf87e//W29dd/+9rfz2c9+NoVCIWvWrMknPvGJXH311Rt8n4suuigXX3xxs+M33HBDevfuveUXAgAAAABdyIoVK3LSSSdl8eLF6dev30bP7XAzLTfHlClT8pWvfCXf+973csABB+SZZ57JOeeck0suuSRf+MIX1ltz3nnnZfLkyY2PlyxZkmHDhuWoo45q8YfaUdXV1eXuu+/OkUce6T4hdHrGO12FsU5XYrzTlRjvdCXGO11JZx/v61Yyt0aHCy0HDhyYqqqqzJs3r+j4vHnzMmTIkPXWfOELX8hHPvKRnH766UmSMWPGZPny5fm3f/u3/Nd//VcqK5vf2rNHjx7p0aNHs+PV1dWdctA01RWuEdYx3ukqjHW6EuOdrsR4pysx3ulKOut435Rr6nAb8XTv3j377bdf7rnnnsZj9fX1ueeee4qWize1YsWKZsFkVVVVkqSDrY4HAAAAgE6vw820TJLJkydn0qRJ2X///TNhwoRcccUVWb58eU477bQkySmnnJKhQ4fm0ksvTZIce+yxufzyyzN+/PjG5eFf+MIXcuyxxzaGlwAAAABAeeiQoeUJJ5yQ+fPn54ILLsjcuXNTU1OTO+64I4MHD06SzJkzp2hm5fnnn5+Kioqcf/75eemll7LDDjvk2GOPzZe//OX2ugQAAAAAYAM6ZGiZJGeffXbOPvvs9T43ZcqUosfdunXLhRdemAsvvHArdAYAAAAAbIkOd09LAAAAAKBzE1oCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAQHsqFJIXXkjFb3+bPW+6KVm2rL07anfd2rsBAAAAAOgy1qxJnnwymTYtqa198+u119ItyT5J1nzyk8k739mubbY3oSUAAAAAlMKyZcnMmcUB5cyZycqVGy2rqK0VWrZ3AwAAAADQ4c2bVxxOTpuWPP10w9LvlgwZkowfn7VjxuTv9fWp+ed/TlWp+y1zQksAAAAAaK36+uTZZ5sHlHPntlxbUZGMHJmMH5/U1DT8Om5cQ2iZpL6uLi/ffntqdtqplFfQIQgtAQAAAGB9Vq5MHnmkOJycPj1Zvrzl2p49kzFjGsLJdQHlmDHJNtuUtudOQmgJAAAAAAsXFoeTtbXJ448na9e2XLvddsWzJ2tqkr32SrqJ3jaXnxwAAAAAXUehkMye3TygnDOndfUjRhTPnqypSXbeuWHpN21GaAkAAABA51RX1zBbsmk4WVubLFrUcm23bsm++xaHk+PGJQMGlLBh1hFaAgAAANDxLVmSzJhRHE4+8kiyenXLtX37Np89OWpU0qNHSVtmw4SWAAAAAHQchULyyivNZ08+80zr6ocOLQ4na2oalnxXVpaqYzaD0BIAAACA8rR2bfL008Xh5LRpyfz5LddWVjZshtM0nKypSXbYoaQt0zaElgAAAAC0vxUrkpkzi8PJGTOSN95oubZXr2Ts2OIdvEePTnr3LnHTlIrQEgAAAICta8GC5rMnn3wyqa9vuXaHHYpnT44fn4wcmVRVlbZntiqhJQAAAAClUV+fPP98cThZW5u89FLr6nffvXj2ZE1NsuOOSUVFyVqmPAgtAQAAANhyq1cnjz5aHE5On96wq3dLundvWM7ddPbk2LFJv36l7ZmyJbQEAAAAYNMsWtQQSDYNKB97LKmra7l2wIDicLKmJtl774bgEv5hs0LLJf9IyPttYdq9bNmy/OEPf0iS/PM///MWvRYAAAAAbaxQSF58sTicrK1tWPLdGrvs0jyg3HVXy7tp0WaFlgMGDEhlZWVmzJiRUaNGNXv+5Zdfzvnnn5+Kior8z//8zwZfZ/bs2TnuuONSWVmZNWvWbE4rAAAAALSFNWsaNsN5a0D52mst11ZVJfvsUxxOjhuXbL99SVum89rs5eGFQmGDz73++uu57rrrWgwtW/NaAAAAALSxZcuSmTOLw8mZM5OVK1uu7dOnIZBsuoP36NFJz56l7ZkuxT0tAQAAADqzefOKw8lp05Knn25Y+t2SIUOKZ0+OH9+wo3dlZWl7pssTWgIAAAB0BvX1ybPPNg8o585tubaiIhk5snj2ZE1NQ2gJ7UBoCQAAANDRrFyZPPJIcTg5fXqyfHnLtT16JGPGFM+eHDMm2WabEjcNrSe0BAAAAChnCxcWh5O1tcnjjydr17Zcu912xbMnx49P9tor6SYSorwZoQAAAADloFBIZs9uHlDOmdO6+hEjisPJmppk550bln5DByO0BAAAANja6uoaZks2DSdra5NFi1qu7dYt2Xff4oBy3LhkwIASNgxbl9ASAAAAoJSWLElmzCgOJx95JFm9uuXavn2bz54cNarhvpTQiW1RaFlhejEAAABAg0IheeWV5rMnn3mmdfVDhzYPKEeMSCorS9UxlK0tCi1Hjx69wefWBZpVVVVb8hYAAAAA5Wft2uTpp4vDyWnTkvnzW66trGzYDKdpODluXDJoUGl7hg5ki0LLQqHQVn0AAAAAlKcVK5KZM4vDyRkzkjfeaLm2V69k7NjiHbzHjEl69y5tz9DBbVZo+a53vcvScAAAAKDzWbCg+ezJJ59M6utbrh04sCGcXBdQjh+fjByZWIUKm2yzQsspU6a0cRsAAAAAW1F9ffL888XhZG1t8tJLravffffi2ZPjxyc77piY5AVtwu7hAAAAQOe2enXy6KPF4eT06Q27erekujoZPbo4oBw3LunXr7Q9QxcntAQAAAA6j0WLGgLJpgHlY48ldXUt1w4Y8GYwuW725N57J927l7BhYH3aPbRcsWJFrr766vzHf/zHJtVdddVVueyyyzJ37tyMGzcu3/nOdzJhwoQNnr9o0aL813/9V371q19l4cKF2XXXXXPFFVfkmGOO2dJLAAAAALa2QiF58cXicLK2tmHJd2vssktxOFlTk+y6q+XdUCbaLbRcunRpvv3tb+fKK6/Ma6+9tkmh5U033ZTJkyfnmmuuyQEHHJArrrgiEydOzJNPPplBgwY1O3/16tU58sgjM2jQoPzyl7/M0KFDM3v27AwYMKANrwgAAAAohYq1axuWdz/6aHFA+dprLRdXVSX77FMcUI4bl2y/fWmbBrbIVg8tFy5cmG9961u56qqrsnjx4hQKhU3eifzyyy/PGWeckdNOOy1Jcs011+S2227Ltddem3PPPbfZ+ddee20WLlyY+++/P9XV1UmS4cOHb/G1AAAAAG1s2bJk5szGcLJq2rS8b8aMVK1e3XJtnz4NgWTT2ZP77pv06lXqroE2tkWh5ezZs/PNb34zv//97/PCCy+kuro6w4cPzwc/+MGceeaZ6d+/f+O5y5Yty2WXXZZvfetbWb58eQqFQpJk4MCB+cxnPtPq91y9enUefvjhnHfeeY3HKisrc8QRR2Tq1Knrrfn1r3+dgw46KGeddVZuvfXW7LDDDjnppJPy+c9/PlVVVeutWbVqVVatWtX4eMk/bs5bV1eXutbcB6MDWnddnfX6oCnjna7CWKcrMd7pSox3Oo1581JRW5uK6dMbvmprk2eeScU/MoMkqdxAaWHIkBTGjUth7NgUampSGDcu2WOPpHI9Ff6s0EF09s/3TbmuikKhySfBJrj77rvzgQ98IMuXL0+SxhBy3azJPffcM/fee2+GDBmSv/zlLzn55JPzwgsvNJ43dOjQfPazn82//du/pdcm/B+Pl19+OUOHDs3999+fgw46qPH45z73ufzxj3/M3/72t2Y1e++9d2bNmpWTTz45Z555Zp555pmceeaZ+dSnPpULL7xwve9z0UUX5eKLL252/IYbbkjv3r1b3S8AAAB0efX16TN3bvo/91z6P/9841fP119vsbRQUZHlO+6YxSNGZPFuuzX8OmJEVm277VZoHGhLK1asyEknnZTFixenX79+Gz13s0LL+fPnZ5999snChQsbj/Xp0yfdunXL4sWLG164oiLHHXdczjnnnEycODGrV69OoVDIiBEjcu655+bUU09tXKq9KTYntNxzzz2zcuXKPP/8840zKy+//PJcdtlleeWVV9b7PuubaTls2LAsWLCgxR9qR1VXV5e77747Rx555Gb93kBHYrzTVRjrdCXGO12J8U5ZW7kyFY8+mjSZPVkxY0Yq/jHpaWMKPXqkMHp08o+Zk4Vx47J6771z99SpxjtdQmf/fF+yZEkGDhzYqtBys5aH/+AHP8jChQtTUVGRD3zgA/nqV7+a3XbbLUkyd+7cfOUrX8lVV12VW2+9NQ8++GBWrVqVvn375itf+Uo+/vGPp1u3zV+VPnDgwFRVVWXevHlFx+fNm5chQ4ast2bHHXdMdXV10VLwffbZJ3Pnzs3q1avTvXv3ZjU9evRIjx49mh2vrq7ulIOmqa5wjbCO8U5XYazTlRjvdCXGO+1u4cI3N8VZt0HO448na9e2XLvddsX3nqypScXee6fiLZlB4R/LSY13upLOOt435Zo2Kz286667kiQHHnhgfv7znxc9N2TIkHz729/O0qVLc/311+fFF1/MgAED8qc//Sn77rvv5rxdke7du2e//fbLPffck+OOOy5JUl9fn3vuuSdnn332emsOOeSQ3HDDDamvr0/lP+5t8dRTT2XHHXdcb2AJAAAANFEoJLNnNw8o58xpXf3w4UXhZMaPT3beOdnEjXmBrmOzQssnnngiFRUVOfPMMzd4zqc+9alcf/31qaioyKc+9ak2CSzXmTx5ciZNmpT9998/EyZMyBVXXJHly5c37iZ+yimnZOjQobn00kuTJJ/85Cfz3e9+N+ecc07+/d//PU8//XS+8pWv5FOf+lSb9QQAAACdQl1dw2zJpuFkbW2yaFHLtd26JaNGFQeUNTXJgAGl6xfolDYrtHz9HzfK3WOPPTZ4zsiRIxu/f+c737k5b7NBJ5xwQubPn58LLrggc+fOTU1NTe64444MHjw4STJnzpzGGZVJMmzYsNx55535zGc+k7Fjx2bo0KE555xz8vnPf75N+wIAAIAOZcmSZMaM4nDykUeS1atbru3btziYHD++IbBcz63WADbVZoWWdXV1qaioSN++fTd4zjbbbNP4/YbuNbklzj777A0uB58yZUqzYwcddFD++te/tnkfAAAAUPYKheSVV5rPnnzmmdbVDx1aHE7W1CQjRiRNJgwBtKXN3xFnE1S4RwUAAABsHWvXJk8/XRxOTpuWzJ/fcm1lZbLXXsUB5bhxyaBBpe0Z4C22SmgJAAAAlMCKFcnMmcXh5IwZyRtvtFzbq1cydmzx7MkxY5LevUvbM0ArbFFoedppp6VPnz5bfF5FRUXuueeeLWkFAAAAOrcFC5rPnnzyyaS+vuXagQPfDCbX/brnnklVVWl7BthMWxRaPvTQQxt9ft2y8I2dVygULB8HAACAdQqF5LnnisPJ2trkpZdaV7/77sXhZE1NstNOiX97Ax3IZoeWhUKhLfsAAACArmf16uTRR4sDyunTG3b1bkl1dTJ6dHE4OW5c0q9faXsG2Ao2K7Ssb83UcwAAAOBNixY1BJJNZ08+9lhSV9dybf/+zWdP7rNP0r17KTsGaDc24gEAAIC2VCgkL75YHE7W1ibPP9+6+mHDisPJ8eOTXXe1vBvoUoSWAAAAsLnWrGnYDOetAeVrr7VcW1XVMFuyaTg5blyy/fYlbRmgIxBaAgAAQGssW5bMnFkcTs6cmaxc2XJtnz4NgWTTgHLffZNevUrbM0AHtVmh5Re/+MW27iMXXHBBm78mAAAAbJZ584rDyWnTkqefblj63ZLBg99c3r3u1913b5hZCUCrbFZoedFFF6Wije+lIbQEAABgq6uvT559tnlAOXduy7UVFcnIkcWzJ2tqkiFDStoyQFew2cvDC635v0ut1NYBKAAAADSzcmXyyCPF4eT06cny5S3X9uiRjBlTHE6OGZP07VvangG6qM0KLe+999627gMAAADazsKFxeFkbW3y+OPJ2rUt1267bfPl3XvtlVRXl7RlAN60WaHloYce2tZ9AAAAwKYrFJLZs5sHlHPmtK5++PDicLKmJhk2rGHpNwDtxu7hAAAAdAx1dQ2zJZuGk7W1yaJFLdd265aMGlUcTo4b1zCrEoCyI7QEAACg/CxZksyYURxOPvJIsnp1y7V9+zYEkk0Dyn33bbgvJQAdgtASAACA9lMoJK+80nz25DPPtK5+p52Kw8nx45MRI5LKypK1DEDpCS0BAADYOtauTZ5+ujicnDYtmT+/5dqKiobNcJoGlDU1yaBBJW0ZgPYhtAQAAKDtrVjRsJy7aUA5Y0bD8Zb06pWMHVs8e3L06KRPn9L2DEDZEFoCAACwZRYsaD578sknk/r6lmsHDnxz9uS6X0eObNg4B4Auy38FAAAAaJ1CIXnuueJwsrY2eeml1tXvvnvx7MmamoZ7UlZUlKpjADoooSUAAADNrV6dPPpocUA5fXrDrt4tqa5uWM7dNJwcOzbp37+0PQPQaQgtAQAAurpFixoCyaazJx97LKmra7m2f//icLKmJtlnn6R791J2DEAnJ7QEAADoKgqF5MUXi8PJ2trk+edbVz9sWPOAcvhwy7sBaHNCSwAAgM5ozZqGzXDeGlC+9lrLtVVVyd57F4eTNTXJ9tuXsmMAaCS0BAAA6OiWLUtmziwOJ2fOTFaubLm2d+9k3LjigHL06KRXr9L2DAAbIbQEAADoSObNS8VDD2Xk//1fqv73fxvuRfn00w1Lv1syeHBxODl+fMOO3lVVpe4aADaJ0BIAAKAc1dcnzz5bPHty2rRk7tx0SzJqY7UVFckee7wZUK77dciQrdA4AGw5oSUAAEB7W7kyeeSR4nBy+vRk+fKWa3v0SMaMKZ49OWZM0rdvaXsGgBISWgIAAGxNCxe+GU6uCygffzxZu7bl2m23TcaPz9qxY1NbKGTspEmpHj06qa4ucdMAsHUJLQEAAEqhUEhmzy4OJ2trkzlzWlc/fHjx7MmammTYsKSiIvV1dXnx9tszVmAJQCcltAQAANhSdXUNsyWbhpO1tcmiRS3XduuWjBpVHE6OG9cwqxIAuiihJQAAwKZYsiSZMaM4oHzkkWT16pZr+/ZtCCSb7uC9774N96UEABoJLQEAANanUEheeaX57Mlnnmld/U47Fc+erKlJdtstqawsVccA0GkILQEAANauTZ5+unlA+eqrLddWVCR77dU8oBw0qJQdA0CnJrQEAAC6lhUrGpZzNw0nZ8xoON6Snj2TsWOLw8kxY5I+fUrbMwB0MUJLAACg81qwoDicnDYtefLJpL6+5dqBA4vDyfHjk5EjGzbOAQBKyn9tAQCAjq9QSJ5/vnlA+dJLravfbbc3A8p1v+60U8PSbwBgqxNaAgAAHcvq1cmjjxaHk9OnN+zq3ZLq6mT06OLZk2PHJv37l7ZnAGCTCC0BAIDytXhxcThZW5s89lhSV9dybf/+xeFkTU2yzz5J9+6l7BgAaANCSwAAoP0VCsmLLzYPKJ9/vnX1w4Y1DyiHD7e8GwA6KKElAACwda1Z07AZTtNwsrY2ee21lmurqpK99y4OJ8eNa9g0BwDoNISWAABA6SxfnsyYURxQzpyZrFzZcm3v3g2BZNOAcvTopFev0vYMALQ7oSUAANA25s1rPnvyqacaln63ZNCghmByXThZU5PssUfDzEoAoMsRWgIAAJumvj559tnicHLatGTu3NbVjxxZPHty/PhkyJDS9QsAdDhCSwAAYMNWrkwefbQ4oJw+PVm2rOXaHj0alnM3nT05dmzSt29pewYAOjyhJQAA0GDhwoZAcl1AOW1a8vjjydq1Ldduu21xODl+fLLXXkl1dYmbBgA6I6ElAAB0NYVCMmdO8+Xdc+a0rn7XXYuXdtfUJMOGJRUVpesZAOhShJYAANCZ1dU1zJZsGk7W1iaLFrVc261bMmpU8ezJceMaZlUCAJSQ0BIAADqLpUsblnc3DScfeSRZvbrl2m22KQ4na2oaAsuePUvaMgDA+ggtAQCgoykUkldeaT578plnWle/007NA8rddksqK0vVMQDAJhFaAgBAOVu7Nnn66eJwsrY2efXVlmsrKho2w2kaTtbUJIMGlbJjAIAtJrQEAIBysWJFw3LupgHljBkNx1vSs2cydmxxQDlmTNKnT2l7BgAoAaElAAC0hwULms+efOKJpL6+5drtt28IJpvOntxzz4aNcwAAOgF/qwEAgFIqFJLnny8OKKdNS156qXX1u+1WHE6OH99wT8qKitL1DADQzoSWAADQVlavTh57rHj2ZG1tsmRJy7XV1cm++74ZUI4f37Dcu3//0vYMAFCGhJYAALA5Fi9Opk8vnj352GNJXV3Ltf37vzlzcl1Auc8+Sffupe0ZAKCDEFoCAMDGFAoNS7mbzp6cNq1hyXdr7Lxz8ezJmppk+HDLuwEANkJoCQAA66xZkzz5ZHE4WVubvPZay7WVlQ2zJZvOnhw3Lhk4sKQtAwB0RkJLAAC6puXLkxkzisPJmTOTlStbru3duyGQbDp7cvTopFev0vYMANBFCC0BAOj85s1rPnvyqacaln63ZNCg5su799gjqaoqacsAAF2Z0BIAgM6jvj55+unk0UeL70H5yiutqx85sjicrKlJdtyxZO0CALB+QksAADqmlSsbwsl/zJ6smjYt7/v739OtNcu7u3dPxowpDijHjk369i1x0wAAtIbQEgCA8rdwYTJ9evHsyccfb9g45x8q//HVzLbbNp89uffeSXX1VmgcAIDNIbQEAKB8FArJnDnF956cNq3hWCus2GGH9DzooFS+7W1vBpXDhiUVFaXsGgCANia0BACgfdTVJU88UTx7srY2ef31lmurqpJRo4o2yKkbNSp3T52aY445JpVmUQIAdGhCSwAASm/p0obl3U138H7kkWT16pZrt9nmzWXd62ZPjhqV9OxZfF5dXZu3DQBA+xBaAgDQdgqFZO7c4qXdtbXJM8+0rn7HHYvvPTl+fLLbbknleu9WCQBAJyW0BABg86xdmzz9dPHsydra5NVXW66tqEj22qs4nBw3Lhk8uKQtAwDQMQgtAQBo2RtvJDNnFoeTM2YkK1a0XNuzZzJ2bPEO3mPGJH36lLZnAAA6LKElAADFFixoPnvyiSeS+vqWa7ffvmhznNTUJHvumXTz104AAFrP3x4BALqqQiF5/vnicLK2NnnxxdbV77ZbcThZU5MMHdqw9BsAALaA0BIAoCtYvTp57LHmAeWSJS3XVlcn++5bHE6OG5f071/SlgEA6LqElgAAnc3ixcn06cXh5KOPJnV1Ldf261c8e3L8+GSffZLu3UvbMwAANCG0BADoqAqF5KWXimdPTpvWsOS7NXbeuXj25PjxyfDhlncDANDuhJYAAB3BmjXJU08Vz56srW3YNKcllZXJ3nsXB5Q1NcnAgaXsGAAANpvQEgCg3CxfnsyYUbyD98yZycqVLdf27t1wv8mmsydHj0569SptzwAA0IaElgAA7enVV4uXdtfWNsyoLBRarh00qPjekzU1yR57JFVVpe0ZAABKTGgJALA11Ncnzz5bPHuytjZ55ZXW1Y8cWTx7sqYm2XHHUnULAADtSmgJANDWVq1KHnmkOKCcPj1Ztqzl2u7dkzFjisPJsWOTvn1L2zMAAJQRoSUAwJZYuLAhkGw6e/Lxxxs2zmnJtts2nz25995JdXVJWwYAgHIntAQAaI1CIZkzpzicrK1NZs9uXf2uuxaHkzU1yS67JBUVpeoYAAA6LKElAMBb1dUlTzzRPKB8/fWWa6uqklGjisPJmpqGWZUAAECrCC0BgK5t6dJkxozicPKRRxruS9mSbbZJxo0rDij33Tfp2bO0PQMAQCcntAQAuoZCIZk7tzicnDYteeaZ1tXvuGNxODl+fLLbbkllZel6BgCALkpoCQB0PmvXNoSR6wLKdb+++mrLtRUVyZ57Nl/ePXhwSVsGAADeJLQEADq2N95IZs4snj05Y0ayYkXLtT17JmPHFs+eHDMm6dOntD0DAAAbJbQEADqOBQveDCfXBZRPPJHU17dcu/32b86eXPfrnnsm3fx1CAAAyo2/pQMA5adQSJ5/vjicrK1NXnyxdfW77VY8e7KmJhk6tGHpNwAAUPaElgBA+1q9OnnsseJwsrY2WbKk5drq6obdupuGk+PGJf37l7RlAACgtDp0aHnVVVflsssuy9y5czNu3Lh85zvfyYQJE1qsu/HGG3PiiSfmX/7lX3LLLbeUvlEAoMHixcn06cUB5aOPJnV1Ldf261ccTtbUJKNGJd27l7RlAABg6+uwoeVNN92UyZMn55prrskBBxyQK664IhMnTsyTTz6ZQYMGbbBu1qxZ+exnP5t3vvOdW7FbAOhiCoXkpZeaz5587rnW1e+8c/OAcsQIy7sBAKCL6LCh5eWXX54zzjgjp512WpLkmmuuyW233ZZrr70255577npr1q5dm5NPPjkXX3xx/vSnP2XRokVbsWMA6KTWrEmeeqp5QLlgQcu1lZXJ3nsXh5M1NcnAgaXsGAAAKHMdMrRcvXp1Hn744Zx33nmNxyorK3PEEUdk6tSpG6z74he/mEGDBuVjH/tY/vSnP230PVatWpVVq1Y1Pl7yj/tq1dXVpa41S9g6oHXX1VmvD5oy3ukq2nysL1+eikceSUVtbTJ9eiqmT0/FzJmpWLmyxdJC794pjBmTQk1NCuPGJePGpTB6dNKr1/oab5t+6VJ8ttOVGO90JcY7XUlnH++bcl0dMrRcsGBB1q5dm8GDBxcdHzx4cJ544on11vz5z3/O//zP/6S2trZV73HppZfm4osvbnb8rrvuSu/evTe5547k7rvvbu8WYKsx3ukqNmesd1+0KP2ff/7Nr+eeyzYvv5yKQqHF2pX9+2fxbrtlyYgRWTxiRBbvtluWDRmSVFW9edL8+cm9925yX9ASn+10JcY7XYnxTlfSWcf7ihUrWn1uhwwtN9XSpUvzkY98JD/4wQ8ysJXLzc4777xMnjy58fGSJUsybNiwHHXUUenXr1+pWm1XdXV1ufvuu3PkkUemurq6vduBkjLe6SpaNdbr65PnnktFbW3DzMkZMxq+f+WVVr1HYY89Uhg3ruHrH7Moq4YMyXYVFdmuDa8FWuKzna7EeKcrMd7pSjr7eF+3krk1OmRoOXDgwFRVVWXevHlFx+fNm5chQ4Y0O//ZZ5/NrFmzcuyxxzYeq6+vT5J069YtTz75ZHbfffeimh49eqRHjx7NXqu6urpTDpqmusI1wjrGO11F41hftSp55JE37zs5bVrDbt7LlrX8It27J2PGvHnfyfHjk7FjU9G3b2yPQznx2U5XYrzTlRjvdCWddbxvyjV1yNCye/fu2W+//XLPPffkuOOOS9IQQt5zzz05++yzm52/9957Z+bMmUXHzj///CxdujRXXnllhg0btjXaBoCt6/XXU/HQQ9nt179O1S9/2RBOPv54w8Y5LRkw4M3Ncdb9uvfeSSf8ixMAAFB+OmRomSSTJ0/OpEmTsv/++2fChAm54oorsnz58sbdxE855ZQMHTo0l156aXr27JnRo0cX1Q8YMCBJmh0HgA6nUEjmzCmePVlbm8yenW5JxrRUv+uuxbMna2qSXXZJKsyfBAAA2keHDS1POOGEzJ8/PxdccEHmzp2bmpqa3HHHHY2b88yZMyeVlZXt3CUAtLG6uuSJJ4rDydra5PXXW66tqkpGjSoOJ8eNS7Zz50kAAKC8dNjQMknOPvvs9S4HT5IpU6ZstPa6665r+4YAoC0tXZrMmFEcUD7ySMN9KVuyzTbJuHFZO3ZsZlRWZvRHPpLqceOSnj1L3TUAAMAW69ChJQB0Gq+80nz25DPPNCz9bsmOOxbPnqypSXbfPamsTH1dXebcfntGv+1t7kcJAAB0GEJLANia1q5tCCPfGlDOm9dybUVFsueexeFkTU3yj1ujAAAAdBZCSwAolTfeaFjO3TScnDEjWb685dqePZMxY4oDyrFjkz59StszAABAGRBaAkBbeO214nBy2rSGDXPq61uu3X774nBy/PiGGZXd/GcaAADomvxrCAA2RaGQzJrVPKB88cXW1e+2W3E4WVOTDB3asPQbAACAJEJLANiw1auTxx4rDienT08WL265tro62Xff4oBy7NhkwICStgwAANAZCC0BIGkIIqdPLw4oH300qatrubZfv+azJ0eNSrp3L2nLAAAAnZXQEoCupVBIXnqpOJysrU2ee6519Tvv3DygHD48qawsUcMAAABdj9ASgM5rzZrkqaeKw8na2mTBgpZrKyuTvfcuDifHjUt22KGkLQMAACC0BKCzWL48mTmzOKCcOTN5442Wa3v3brjfZNMdvMeMSXr1Km3PAAAArJfQEoCO59VXm8+efOqppL6+5doddmgIJ5sGlCNHJlVVJW0ZAACA1hNaAlC+6usb7jX51oDy5ZdbV7/HHsXh5PjxyZAhSUVFyVoGAABgywktASgPq1Y17NbdNJycPj1ZurTl2u7dk9GjiwPKceOSvn1L2zMAAAAlIbQEYOt7/fU3g8l1sygff7xh45yWDBjQfPbk3nsn1dWl7BgAAICtSGgJQOkUCskLLxTPnpw2LZk9u3X1u+zyZkC57tdddrG8GwAAoJMTWgLQNurqkieeKA4na2sbZlW2pKoqGTWqePbkuHHJdtuVtGUAAADKk9ASgE23bFnD/SabBpSPPNJwX8qWbLNNQyDZdPbkvvsmPXuWtmcAAAA6DKElABv3yivNZ08+80zD0u+W7Lhj8ezJmppk992TyspSdgwAAEAHJ7QEoMHatQ1hZNNwsrY2mTev5dqKimTPPYvDyZqaZPDgUnYMAABAJyW0BOiK3nijYTl304Byxoxk+fKWa3v2TMaMKQ4nx45N+vQpbc8AAAB0GUJLgM7utdeaz5584omGmZUt2W67hnCyaUC5115JN//5AAAAoHT8qxOgsygUklmzisPJadOSF19sXf2IEcXh5PjxydChDUu/AQAAYCsSWgJ0RKtXJ48/XhxQ1tYmixe3XNutW8Nu3U0DynHjkgEDStkxAAAAtJrQEqDcLV6cTJ9ePHvy0UeTurqWa/v1ezOYXDd7cp99kh49StoyAAAAbAmhJUC5KBSSl19uvrz7uedaVz906JuzJ9f9Onx4UllZspYBAACgFISWAO1h7drkySeLw8na2mTBgpZrKyuTvfcunj05blyyww4lbRkAAAC2FqElQKmtWJHMmFEcTs6cmbzxRsu1vXsnY8cWz54cPbrhOAAAAHRSQkuAtvTqq81nTz71VFJf33LtDjs0X949cmRSVVXSlgEAAKDcCC0BNkd9fcO9JpuGk7W1DfekbI099igOJ2tqkh13TCoqStUxAAAAdBhCS4CWrFrVsFt304By+vRk6dKWa7t3b1jO3TScHDcu6du3tD0DAABABya0BGjq9dcbAsmmsycfeyxZs6bl2gEDms+e3GefpLq6lB0DAABApyO0BLqmQiG95s9Pxa9/nTzyyJuzKGfPbl39LrsUB5Tjxzccs7wbAAAAtpjQEuj86uqSJ58smj3ZrbY2Ry1c2HJtVVXDbMmmsydrapLttittzwAAANCFCS2BzmXZsmTGjDcDymnTGmZSrlpVdNp650Nus03D/SbXBZPjxyf77pv07Fn6vgEAAIBGQkug45o7t/jek9OmJc88kxQKLZYWhgzJqzvtlIFHHJGq/fdvCCl33z2prCx11wAAAEALhJZA+auvT55+ujicrK1N5s1rubaiItlzz+LZk+PGZc322+evt9+eY445JlU2ygEAAICyIrQEyssbbxRvjFNb27Dce/nylmt79kzGjCneIGfMmIZl329VV9e2fQMAAABtRmgJtJ/XXms+e/KJJ5K1a1uu3W67hmCy6QY5e+2VdPOxBgAAAB2df90DpVcoJLNmFYeTtbXJCy+0rn7EiOLZkzU1yc47Nyz9BgAAADodoSXQtlavTh5/vHlAuXhxy7XdujXs1t00oBw3LhkwoJQdAwAAAGVGaAlsviVLkunTi8PJRx9tCC5b0rdv89mTo0YlPXqUtGUAAACg/AktgZYVCsnLLxfPnpw2LXnuudbVDx1aHE6OH58MH55UVpasZQAAAKDjEloCxdauTZ56qnj25LRpyYIFLddWVjZshrMuoBw/vmF59w47lLhpAAAAoDMRWkJXtmJFMnNm8ezJmTOTN95oubZXr4ZAsunsydGjk969S9w0AAAA0NkJLaGrmD+/+ezJp55K6utbrt1hh+LZkzU1yciRSVVVaXsGAAAAuiShJXQ29fUN95psGk7W1jbck7I19tijePZkTU2y445JRUWpOgYAAAAoIrSEjmzVqobdupuGk9OnJ0uXtlzbvXvDcu6m4eTYsUm/fqXtGQAAAKAFQkvoKF5/vSGQbBpQPvZYsmZNy7UDBjSfPbnPPkl1dSk7BgAAANgsQksoN4VC8sILxeFkbW0ya1br6nfZpTicrKlJdt3V8m4AAACgwxBaQntasyZ54onmAeXChS3XVlU1zJZ8a0C53Xal7BgAAACg5ISWsLUsW5bMmFEcTs6c2XBfypb06ZOMG1ccTo4enfTsWdqeAQAAANqB0BJKYe7c4tmT06YlzzzTsPS7JUOGFIeT48cnu++eVFaWtmcAAACAMiG0hC1RX98QRjadPTltWjJvXsu1FRXJyJFvBpTjxzfMphwypMRNAwAAAJQ3oSW01htvJI88UhxOzpiRLF/ecm3PnsmYMcWzJ8eMSbbZprQ9AwAAAHRAQktYn9deKw4na2sbNsxZu7bl2u22a768e6+9km7+uAEAAAC0hhSFrq1QSGbNah5QvvBC6+pHjCgOJ2tqkp13blj6DQAAAMBmEVrSddTVJY89VhxO1tYmixe3XNutW7LvvsXh5LhxyYABpewYAAAAoEsSWtI5LVmSTJ9eHFA++miyenXLtX37Np89OWpU0qNHSVsGAAAAoIHQko6tUEhefrn57Mlnn21d/dChxeFkTU3Dku/KylJ1DAAAAEALhJZ0HGvXJk891TygnD+/5drKyobNcN4aUO6wQyk7BgAAAGAzCC0pTytWJDNnFoeTM2Ykb7zRcm2vXsnYscXh5JgxSe/epe0ZAAAAgDYhtKT9zZ9fPHty2rSGGZX19S3X7rBDcTg5fnwycmRSVVXangEAAAAoGaElW099ffL888WzJ6dNa7gnZWvsvvubAeW6X3fcMamoKF3PAAAAAGx1QktKY9Wqht26m4aT06cnS5e2XNu9ezJ6dPHsybFjk379StszAAAAAGVBaMmWW7SoOJysrU0eeyxZs6bl2gED3gwn1wWUe+/dEFwCAAAA0CUJLWm9QiF54YXmAeWsWa2r32WX4nCypibZdVfLuwEAAAAoIrRk/dasSZ54onlAuXBhy7VVVck++xSHk+PGJdtvX9KWAQAAAOgchJY0mDo1lQ89lHG/+U2qLrkkeeSRhvtStqRPn4ZAsmlAOXp00rNnqTsGAAAAoJMSWtLgwx9O1XPPZfjGzhkypDicrKlJ9tgjqazcGh0CAAAA0EUILWlQU5M891ySpFBRkYqRI4vDyZqahtASAAAAAEpMaEmDj340aw87LH9ZsSIH/du/pXrbbdu7IwAAAAC6KKElDd73vtTX1eX1229PttmmvbsBAAAAoAtzM0IAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAsiK0BAAAAADKitASAAAAACgrQksAAAAAoKwILQEAAACAstKhQ8urrroqw4cPT8+ePXPAAQfkgQce2OC5P/jBD/LOd74z2267bbbddtscccQRGz0fAAAAAGgfHTa0vOmmmzJ58uRceOGF+fvf/55x48Zl4sSJefXVV9d7/pQpU3LiiSfm3nvvzdSpUzNs2LAcddRReemll7Zy5wAAAADAxnTY0PLyyy/PGWeckdNOOy2jRo3KNddck969e+faa69d7/n/+7//mzPPPDM1NTXZe++988Mf/jD19fW55557tnLnAAAAAMDGdGvvBjbH6tWr8/DDD+e8885rPFZZWZkjjjgiU6dObdVrrFixInV1ddluu+3W+/yqVauyatWqxsdLlixJktTV1aWurm4Lui9f666rs14fNGW801UY63QlxjtdifFOV2K805V09vG+KddVUSgUCiXspSRefvnlDB06NPfff38OOuigxuOf+9zn8sc//jF/+9vfWnyNM888M3feeWceffTR9OzZs9nzF110US6++OJmx2+44Yb07t17yy4AAAAAALqYFStW5KSTTsrixYvTr1+/jZ7bIWdabqmvfvWrufHGGzNlypT1BpZJct5552Xy5MmNj5csWdJ4H8yWfqgdVV1dXe6+++4ceeSRqa6ubu92oKSMd7oKY52uxHinKzHe6UqMd7qSzj7e161kbo0OGVoOHDgwVVVVmTdvXtHxefPmZciQIRut/cY3vpGvfvWr+f3vf5+xY8du8LwePXqkR48ezY5XV1d3ykHTVFe4RljHeKerMNbpSox3uhLjna7EeKcr6azjfVOuqUNuxNO9e/fst99+RZvorNtUp+ly8bf6+te/nksuuSR33HFH9t9//63RKgAAAACwiTrkTMskmTx5ciZNmpT9998/EyZMyBVXXJHly5fntNNOS5KccsopGTp0aC699NIkyde+9rVccMEFueGGGzJ8+PDMnTs3SbLNNttkm222abfrAAAAAACKddjQ8oQTTsj8+fNzwQUXZO7cuampqckdd9yRwYMHJ0nmzJmTyso3J5JeffXVWb16dY4//vii17nwwgtz0UUXbc3WAQAAAICN6LChZZKcffbZOfvss9f73JQpU4oez5o1q/QNAQAAAABbrEPe0xIAAAAA6LyElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaElgAAAABAWRFaAgAAAABlpUOHlldddVWGDx+enj175oADDsgDDzyw0fN/8YtfZO+9907Pnj0zZsyY3H777VupUwAAAACgtTpsaHnTTTdl8uTJufDCC/P3v/8948aNy8SJE/Pqq6+u9/z7778/J554Yj72sY9l2rRpOe6443LcccflkUce2cqdAwAAAAAb02FDy8svvzxnnHFGTjvttIwaNSrXXHNNevfunWuvvXa951955ZV573vfm//8z//MPvvsk0suuSRve9vb8t3vfncrdw4AAAAAbEy39m5gc6xevToPP/xwzjvvvMZjlZWVOeKIIzJ16tT11kydOjWTJ08uOjZx4sTccsst6z1/1apVWbVqVePjxYsXJ0kWLlyYurq6LbyC8lRXV5cVK1bktddeS3V1dXu3AyVlvNNVGOt0JcY7XYnxTldivNOVdPbxvnTp0iRJoVBo8dwOGVouWLAga9euzeDBg4uODx48OE888cR6a+bOnbve8+fOnbve8y+99NJcfPHFzY6PGDFiM7sGAAAAAJYuXZr+/ftv9JwOGVpuDeedd17RzMz6+vosXLgw22+/fSoqKtqxs9JZsmRJhg0blhdeeCH9+vVr73agpIx3ugpjna7EeKcrMd7pSox3upLOPt4LhUKWLl2anXbaqcVzO2RoOXDgwFRVVWXevHlFx+fNm5chQ4ast2bIkCGbdH6PHj3So0ePomMDBgzY/KY7kH79+nXKPxiwPsY7XYWxTldivNOVGO90JcY7XUlnHu8tzbBcp0NuxNO9e/fst99+ueeeexqP1dfX55577slBBx203pqDDjqo6Pwkufvuuzd4PgAAAADQPjrkTMskmTx5ciZNmpT9998/EyZMyBVXXJHly5fntNNOS5KccsopGTp0aC699NIkyTnnnJNDDz003/zmN/O+970vN954Yx566KF8//vfb8/LAAAAAADeosOGlieccELmz5+fCy64IHPnzk1NTU3uuOOOxs125syZk8rKNyeSHnzwwbnhhhty/vnn5//9v/+XkSNH5pZbbsno0aPb6xLKTo8ePXLhhRc2WxYPnZHxTldhrNOVGO90JcY7XYnxTldivL+potCaPcYBAAAAALaSDnlPSwAAAACg8xJaAgAAAABlRWgJAAAAAJQVoSUAAAAAUFaEll3Efffdl2OPPTY77bRTKioqcsstt7RYM2XKlLztbW9Ljx49sscee+S6664reZ/QFjZ1vE+ZMiUVFRXNvubOnbt1GobNdOmll+btb397+vbtm0GDBuW4447Lk08+2WLdL37xi+y9997p2bNnxowZk9tvv30rdAtbZnPG+3XXXdfss71nz55bqWPYfFdffXXGjh2bfv36pV+/fjnooIPyu9/9bqM1PtvpqDZ1vPtspzP56le/moqKinz605/e6Hld9TNeaNlFLF++POPGjctVV13VqvOff/75vO9978vhhx+e2trafPrTn87pp5+eO++8s8Sdwpbb1PG+zpNPPplXXnml8WvQoEEl6hDaxh//+MecddZZ+etf/5q77747dXV1Oeqoo7J8+fIN1tx///058cQT87GPfSzTpk3Lcccdl+OOOy6PPPLIVuwcNt3mjPck6devX9Fn++zZs7dSx7D5dt5553z1q1/Nww8/nIceeijvfve78y//8i959NFH13u+z3Y6sk0d74nPdjqHBx98MP/93/+dsWPHbvS8rvwZX1EoFArt3QRbV0VFRW6++eYcd9xxGzzn85//fG677baiPwQf+tCHsmjRotxxxx1boUtoG60Z71OmTMnhhx+e119/PQMGDNhqvUFbmz9/fgYNGpQ//vGPede73rXec0444YQsX748v/3tbxuPHXjggampqck111yztVqFLdaa8X7dddfl05/+dBYtWrR1m4MS2G677XLZZZflYx/7WLPnfLbT2WxsvPtspzNYtmxZ3va2t+V73/tevvSlL6WmpiZXXHHFes/typ/xZlqyXlOnTs0RRxxRdGzixImZOnVqO3UEpVdTU5Mdd9wxRx55ZP7yl7+0dzuwyRYvXpyk4S/6G+Lznc6iNeM9afhHwa677pphw4a1OHMHytHatWtz4403Zvny5TnooIPWe47PdjqL1oz3xGc7Hd9ZZ52V973vfc0+u9enK3/Gd2vvBihPc+fOzeDBg4uODR48OEuWLMkbb7yRXr16tVNn0PZ23HHHXHPNNdl///2zatWq/PCHP8xhhx2Wv/3tb3nb297W3u1Bq9TX1+fTn/50DjnkkIwePXqD523o8909XOlIWjve99prr1x77bUZO3ZsFi9enG984xs5+OCD8+ijj2bnnXfeih3Dpps5c2YOOuigrFy5Mttss01uvvnmjBo1ar3n+myno9uU8e6znY7uxhtvzN///vc8+OCDrTq/K3/GCy2BLm+vvfbKXnvt1fj44IMPzrPPPptvfetb+clPftKOnUHrnXXWWXnkkUfy5z//ub1bgZJr7Xg/6KCDimbqHHzwwdlnn33y3//937nkkktK3SZskb322iu1tbVZvHhxfvnLX2bSpEn54x//uMEgBzqyTRnvPtvpyF544YWcc845ufvuu20g1QpCS9ZryJAhmTdvXtGxefPmpV+/fmZZ0iVMmDBB+EOHcfbZZ+e3v/1t7rvvvhZnGGzo833IkCGlbBHazKaM97eqrq7O+PHj88wzz5SoO2g73bt3zx577JEk2W+//fLggw/myiuvzH//9383O9dnOx3dpoz3t/LZTkfy8MMP59VXXy1a0bd27drcd999+e53v5tVq1alqqqqqKYrf8a7pyXrddBBB+Wee+4pOnb33Xdv9L4i0JnU1tZmxx13bO82YKMKhULOPvvs3HzzzfnDH/6QESNGtFjj852OanPG+1utXbs2M2fO9PlOh1RfX59Vq1at9zmf7XQ2Gxvvb+WznY7kPe95T2bOnJna2trGr/333z8nn3xyamtrmwWWSdf+jDfTsotYtmxZ0f95ev7551NbW5vtttsuu+yyS84777y89NJL+fGPf5wk+cQnPpHvfve7+dznPpePfvSj+cMf/pCf//znue2229rrEqDVNnW8X3HFFRkxYkT23XffrFy5Mj/84Q/zhz/8IXfddVd7XQK0yllnnZUbbrght956a/r27dt4X5v+/fs3zoo/5ZRTMnTo0Fx66aVJknPOOSeHHnpovvnNb+Z973tfbrzxxjz00EP5/ve/327XAa2xOeP9i1/8Yg488MDsscceWbRoUS677LLMnj07p59+ertdB7TGeeedl6OPPjq77LJLli5dmhtuuCFTpkzJnXfemcRnO53Lpo53n+10ZH379m12P+4+ffpk++23bzzuM/5NQssu4qGHHsrhhx/e+Hjy5MlJkkmTJuW6667LK6+8kjlz5jQ+P2LEiNx22235zGc+kyuvvDI777xzfvjDH2bixIlbvXfYVJs63levXp3/+I//yEsvvZTevXtn7Nix+f3vf1/0GlCOrr766iTJYYcdVnT8Rz/6UU499dQkyZw5c1JZ+ebCioMPPjg33HBDzj///Py///f/MnLkyNxyyy0b3cwEysHmjPfXX389Z5xxRubOnZttt902++23X+6//373BKTsvfrqqznllFPyyiuvpH///hk7dmzuvPPOHHnkkUl8ttO5bOp499lOZ+cz/k0VhUKh0N5NAAAAAACs456WAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAAAAAEBZEVoCAAAAAGVFaAkAAAAAlBWhJQAAAABQVoSWAADQAQ0fPjwVFRU59dRT27sVAIA2J7QEANhEH//4x1NRUZGKior84Q9/2KTau+66q7H2nHPOKVGHAADQsQktAQA20SmnnNL4/U9/+tNNqv3JT36y3tdpL1OmTGkMUadMmdLe7QAAQBKhJQDAJjvkkEOy++67J0n+7//+L2+88Uar6pYvX56bb745SbLvvvtmv/32K1mPAADQkQktAQA2w0c+8pEkyZIlS3Lrrbe2quZXv/pVli9fXlQPAAA0J7QEANgMH/nIR1JRUZGk9UvE1y0Nr6yszIc//OGS9QYAAB2d0BIAYDPstttuOeSQQ5Ikd955Z1599dWNnv/yyy/nnnvuSZK8+93vztChQ5udc8stt+SDH/xgdtlll/Ts2TMDBgzI/vvvn4svvjivv/56q/q6/fbb8+EPfzi77bZb+vTpk549e2bEiBH5wAc+kOuuuy4rVqxIksyaNSsVFRU5/PDDG2sPP/zwxvtbrvu67rrrmr3H6tWr873vfS+HH354dthhh3Tv3j1DhgzJMccck5/+9Kepr6/fYH+nnnpqKioqMnz48CTJK6+8ks9//vPZd99907dv302+t+b67sn585//PO95z3uyww47pFevXtlrr73yuc99LgsXLtzg6xx22GGpqKjIYYcdttH3u+iiixrfb33WPXfRRRclSe69994cd9xx2WmnndKrV6/ss88+ueSSSxpn3K5z++2355hjjmk8b9SoUbn00kuzevXqVv8sHnzwwZx44okZNmxYevbsmWHDhuW0007LE0880ar6Z555Jp/5zGcyZsyY9O/fP7169cpuu+2WU089NQ899NAG6976e1BfX59rr702hx9+eAYPHpzKyko7nAMAm64AAMBm+f73v19IUkhSuPLKKzd67mWXXdZ47o9//OOi5/7/9u4+pqr6jwP4G7ncSzwYylMXWRRz6EwQIxLTYigZ6EwCJIMEa4CZjIHLHBRSYXMLHQloaQpzgW4iuHQDFw/yoCKOG9AVcm6BbBRChDigRB7O7w/idK/3nivQVenX+7Xd7Xi+j/ee84f78Pl+v729vcKqVavEcn0fBwcHoba2VrL/np4eYfXq1Qb7ACDk5uYKgiAIbW1tD6yrWX9CW1ubsHDhQoNtVq5cKfz+++965xkVFSUAEFxcXITa2lrBzs5Op/2FCxce+NtPuHDhgtiuvLxcePvttyXnNX/+fKGzs1NvP76+vgIAwdfX1+B4qampYn/6TJSlpqYKe/fuFUxMTPTO5aWXXhIGBgaEsbExIT4+XnLOAQEBwsjIiN6xXFxcBABCVFSUcOzYMUEmk+ntQ6FQCKdOnTL4vdLT0wUzMzPJeZiYmAgpKSl622o+g5KSEsHf31+nfVRUlMHxiYiIiO7HTEsiIiKiaQoLC4O5uTkA7VPB9Zkot7KyQnBwsHh/aGgI/v7+qKiogKmpKTZv3oyTJ0/iypUrqKmpweeffw5bW1t0d3dj7dq1aG9v1+n7jz/+gJ+fn5jJ6eXlhcOHD+PSpUuor6/HmTNnkJiYCCcnJ7HNvHnzoFarkZOTI97LycmBWq3W+gQFBYnlAwMDWL16tZi5FxQUhLNnz6K+vh4FBQXw9fUFAFy8eBHr16/H6Oio5O8xMDCAkJAQ3L17Fx999BEqKytx9epVHDt2DEql0uBvKSUlJQV5eXkICgpCUVERVCoViouLsW7dOgB/ZxI+CiUlJUhKSoKPjw9OnDiB+vp6nD9/HoGBgQCAy5cvY+/evcjIyEBmZiYCAwNRWFgIlUqF7777Dj4+PgCA8+fP45tvvjE4VmNjI9577z04ODggKysLdXV1qKqqwq5du6BQKDA0NISIiAjJbMn09HTs3LkTw8PD8PDwwFdffYWysjLU19cjPz8fy5cvhyAISEtLQ2ZmpsG57Nq1C2VlZXj99de1nsHE9yYiIiKatMcdNSUiIiL6NwsLCxOzya5fv663TlNTk1gnMjJSqyw5OVkAINjY2Aj19fV629+8eVNQKpUCACE8PFynPDExUex/+/btwtjYmN5+hoaGhFu3bmnd08ySe1CG4wcffCDW/fjjj3XKx8bGhIiICLHOoUOHdOpMZFoCEKysrITGxkaDYz6I5vwBCHv27NE7rzVr1ggABJlMJnR3d+vUMXamJQAhJCREJ0tyZGRE8PHxEQAI1tbWgrm5uZCQkKDTz+DgoJhJ6eHhoXesiXL8lbmqL4u0oqJCzMD09vbWKW9ubhYzLFNTU/W+O6Ojo2IGq5WVldDb26tVfv8z0PduEBEREU0VMy2JiIiI/oHIyEjxWirbUvO+Zv2BgQEcPHgQAJCWlgYvLy+97V1cXJCSkgIAKCgo0NoPsa+vD4cPHwYwnmF54MAByf0W5XI5HB0dJ/O1dAwNDeHo0aMAgOeee07cs1GTiYkJDh06BFtbWwBAdna2wT4//PBDLFmyZFrz0cfLywvJycl657Vjxw4AwMjICGpra402phQLCwscOXIEpqamWvdNTU0RGxsLAOjv74e9vT2++OILve2joqIAAD/++CPu3LljcLz9+/fjqaee0rnv5+eHmJgYAON7Xt6fbbl//34MDw/jhRdeQGpqqt53Z9asWcjKyoJCocDAwABOnz4tOQ83Nze97wYRERHRVDFoSURERPQPvPbaa2IgMD8/H4IgaJWPjY3hxIkTAABnZ2etg2+qqqrEYFRoaKjBcV555RUAwPDwMFQqlXi/oqJCPFwnPj5eJ0hmLCqVCn19fQDGD9ORGmf27NkICwsDALS0tKCzs1Oyz4iICKPOMTw8XDJgqxkQbm1tNeq4+rz66quYO3eu3jLNQG1wcDDMzMweWK+trU1yrDlz5mDDhg2S5e+++654XVZWplV27tw5AEBISIjkbwcANjY2cHd3BwCDQd8333zzob2DRERE9N/CoCURERHRPyCTyRAeHg5g/ETuixcvapWXl5fj119/BTAepJs16+//fmlmvSmVSp2TuzU/ixcvFuveunVLvG5oaBCvX375ZeN+OQ3Xrl0Tr5ctW2awrma5ZjtNVlZWcHV1Nc7k/rJw4ULJMs0AYn9/v1HH1cfNzU2yzMbGZsr1DM156dKlkMlkkuWenp6Qy+UAALVaLd5vb2/Hb7/9BgBISkoy+P6ZmJiI76vm+3c/Dw8PyTIiIiKiqWDQkoiIiOgfMrREXGppOAB0d3dPa7yJzEoA6OnpEa+ne4DNZPT29orXDg4OButqLlPWbKdJMyBnLBYWFpJlmsFiQwcEPeq5GGPOD3oeMplMDNpqPg9jvH/3mzNnzrT6JCIiIrqf9J9kiYiIiGhSPD094e7uDrVajYKCAnH/v8HBQRQVFQEYX568aNEirXaagagffvhBcpnw/ZydnY03+WkwtIx4sriE2Him+zw037/du3dj48aNk2pnaWkpWcbnSkRERMbCoCURERGREURGRmLnzp3o6+vDuXPnEBoaijNnzoiH5tyfZQlAPLAGAOzt7acVjLSzsxOvOzs78eyzz05j9g+muby6q6vL4LJmzeXDUvs6zjQTWY1jY2MG62kegjRTdHV1GSwfGRkRMyw1n4fm+2dmZqa1BQERERHR48bl4URERERGEBERIWaZ5eXlAfh7abiZmRneeustnTZLly4Vry9dujStcZ9//nnxurq6esrtJ5ulpxnQqqurM1j36tWretvNZNbW1gCA27dvG6x348aNRzGdKWlsbMTIyIhkeVNTE+7duwdA+3m4urriySefBDD994+IiIjoYWHQkoiIiMgIlEol/P39AQDFxcW4du0aysvLAQABAQGwt7fXaePv7y/uaZiZmalz8vhk+Pn5ict1s7Kyprxfo7m5uXg9NDQkWc/Ly0vch/L48eOSGYn9/f04deoUAGDRokUPdZ9NY5rIUL1x44bkoTc9PT0oLS19lNOalN7eXvEUcH1ycnLE64l3FBhfyr127VoAwPfff4+ffvrp4U2SiIiIaIoYtCQiIiIykokl4MPDw9i0aZMYQNS3NBwYP4wmLi4OAHD58mUkJiYaXJ7c1dWFo0eP6vSxdetWAIBKpUJCQoJk8HN4eFjn8BXNoOLPP/8sObZCoUB0dDSA8RPB09LSdOoIgoC4uDjxcKCJ7/Zv4OvrCwC4d+8esrKydMqHh4cRHR2NP//881FPbVJ27Nihd5l4VVUVjhw5AmA88Ozt7a1VnpSUBFNTU4yNjSE0NBQdHR2SY4yOjiI/P99gHSIiIiJj4Z6WREREREbyxhtvwNraGv39/WhubgYwfpry+vXrJdt89tlnqKqqQl1dHQ4cOIDKykrExMTA09MTlpaWuH37Npqbm1FWVoaSkhK4u7uLwcMJaWlpKC0thVqtRnZ2Nmpra7F161a4u7tDLpejo6MDNTU1OHnyJPbs2YMtW7aIbZ9++mk4Ozujo6MD+/btg7OzMxYsWCAudXd0dBSXTu/evRtFRUVobW3FJ598ArVajXfeeQdKpRJtbW3Izs5GZWUlAGD58uWIjY014q/7cK1btw4uLi5ob29HSkoKenp6EBwcDHNzczQ3NyMzMxMNDQ3w8fHBlStXHvd0tSxZsgQtLS3w8vJCUlISXnzxRQwNDaG4uBgZGRkYGRmBTCbDwYMHddq6u7tj3759SExMREtLCxYvXozY2FisWrUKjo6OuHv3Lm7evIna2lqcPn0anZ2dUKvVj/0wKCIiIvr/x6AlERERkZE88cQTCA0NRW5urngvLCwMCoVCso1CoUBpaSm2bNmCoqIiNDU1GcxQnD17ts49CwsLVFRUICQkBNXV1VCpVFMKGCYnJ+P9999HW1sbNmzYoFWWm5srBjmtra1RXl6OwMBAXL9+HYWFhSgsLNTpb8WKFTh79uy/6iRpuVyOvLw8BAQEYHBwEBkZGcjIyBDLTU1N8eWXX6K3t3fGBS09PT0RFxeHbdu26X135HI5jh8/jmXLlultn5CQAEtLSyQkJODOnTtIT09Henq63rpyuVxrSwEiIiKih4XLw4mIiIiMKCoqSuvfUkvDNVlbW6OwsBA1NTWIjo7GggULYG1tDZlMhrlz58Lb2xvbt29HcXGx5J6KdnZ2qKqqQlFREUJDQ+Hs7AyFQgFzc3O4urpi48aNyM/P13sg0LZt21BYWIg1a9bAwcEBMpn037WfeeYZNDU1ITs7G76+vrC1tYWZmRkcHR0REBCAb7/9FtXV1f+aU8M1rVy5EiqVCps3b4aTkxPMzMygVCrFYHB8fPzjnqKk6Oho1NTUICwsDE5OTpDL5Zg3bx4iIyPR0NCATZs2GWwfExOD1tZWfPrpp1ixYgXs7Owgk8lgaWkJNzc3hISE4Ouvv8Yvv/yC+fPnP6JvRURERP9lJsJ0dnwnIiIiIiIiIiIiekiYaUlEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKMwaElEREREREREREQzCoOWRERERERERERENKP8D06hvzQqPo92AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lab02_lib.anomaly_detection_ae(predicted_labels1, ire1, IREth)\n", + "lab02_lib.ire_plot('test', ire1, IREth, 'AE1')\n", + "lab02_lib.anomaly_detection_ae(predicted_labels2, ire2, IREth2)\n", + "lab02_lib.ire_plot('test', ire1, IREth, 'AE2')" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "l6IzRl2YZYLs", + "outputId": "ba1634f2-88a4-4a94-b0fb-08196d8e1d48" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUppJREFUeJzt3XtcVHXeB/DPmRkY5CogF7kIeAmVhNSsME1dLWvVUttWzV0sL9tu1mpPZetjPWrmYtv2tD3brqmZ3TBcK3T1pWtEYpmW1xQ1LVMQRMQLd2SAmfP8Mc4wAzMwAzNzZs583q/XvIrDmTk/LD5+z+/8LoIoiiKIiIiIZEIhdQOIiIiIHInFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDXkVQRCwbNkyqZtBRB6G2eFZWNx4iH/+858QBAF33nlnlz9rx44d/CV1ocrKSvj5+UEQBPzwww8Wz3nssccgCILFl5+fn9m5K1euxIMPPoioqCgGLnWI2eG5HJkdp0+fxqJFi3DbbbchKCgIPXv2xIQJE3Do0CFX/TgupZK6AWSbrKwsJCYm4sCBAzh79iz69u3b6c/asWMH/vGPfzCkXGTz5s0QBAHR0dHIysrCK6+8YvE8tVqNd955p81xpVJp9vWLL76I6OhoDB48GLt27XJKm0k+mB2ey5HZ8c4772D9+vV4+OGH8eSTT6Kqqgpr1qzBXXfdhf/85z8YN26c034OKbC48QDnz5/Hvn378Nlnn+GJJ55AVlYWli5dKnWzvF5DQwN8fX2hULTfAfrRRx/hl7/8JRISErBx40arAaVSqfCb3/ymw+ueP38eiYmJuHr1KiIiIjrVdvIOzA73JEV2zJgxA8uWLUNgYKDx2OzZszFgwAAsW7ZMdsUNH0t5gKysLISGhmLChAn41a9+haysrDbn5OfnQxAE5Ofnmx0vLCyEIAh47733AOi7MP/xj38AgFn3pUFdXR2effZZxMfHQ61WIzk5GX/9619hafP4jz76CEOHDkW3bt0QFhaG6dOno7i42Oyc0aNH49Zbb8WpU6cwZswY+Pv7IzY2Fn/5y1/afF5DQwOWLVuGW265BX5+fujZsyemTp2Kn3/+2e72aTQaPPPMM4iIiEBQUBAefPBBlJSUWPzzvXjxImbPno2oqCio1WqkpKTg3Xfftfjnm52djRdffBGxsbHw9/dHdXW1xc80uHDhAr7++mtMnz4d06dPN/5l0xWJiYldej95D2YHs8Ng6NChZoUNAISHh2PkyJFWH3l5MvbceICsrCxMnToVvr6+mDFjBlavXo2DBw9i2LBhdn/WE088gdLSUuTm5uLDDz80+54oinjwwQexe/duzJkzB7fddht27dqF559/HhcvXsQbb7xhPHflypV46aWX8Otf/xpz587FlStX8Pe//x333HMPjh49iu7duxvPraiowP3334+pU6fi17/+NT755BO88MILGDRoEB544AEAgFarxcSJE5GXl4fp06djwYIFqKmpQW5uLk6cOIE+ffrY1b65c+fio48+wqOPPorhw4fjyy+/xIQJE9r8eVy+fBl33XUXBEHAU089hYiICOzcuRNz5sxBdXU1Fi5caHb+ihUr4Ovri+eeew4ajQa+vr7t/nl//PHHCAgIwMSJE9GtWzf06dMHWVlZGD58uMXzr1692uaYr68vgoOD270OkSXMDmZHR9lRVlaGHj16tHuORxLJrR06dEgEIObm5oqiKIo6nU6Mi4sTFyxYYHbe7t27RQDi7t27zY6fP39eBCBu2LDBeGz+/Pmipf/0W7ZsEQGIr7zyitnxX/3qV6IgCOLZs2dFURTFwsJCUalUiitXrjQ7r6CgQFSpVGbHR40aJQIQP/jgA+MxjUYjRkdHiw8//LDx2LvvvisCEP/3f/+3Tbt0Op1d7fv+++9FAOKTTz5pdt6jjz4qAhCXLl1qPDZnzhyxZ8+e4tWrV83OnT59uhgSEiLW19eLotjy59u7d2/jMVsMGjRInDlzpvHr//7v/xZ79OghNjU1mZ03a9YsEYDF1/jx4y1+9pUrV9r8PEQGzA5mh7XsMPjqq69EQRDEl156yeZ2eQo+lnJzWVlZiIqKwpgxYwDou4OnTZuG7OxsaLVah15rx44dUCqV+OMf/2h2/Nlnn4Uoiti5cycA4LPPPoNOp8Ovf/1rXL161fiKjo5Gv379sHv3brP3BwYGmj0P9vX1xR133IFz584Zj3366afo0aMHnn766TbtMnR929q+HTt2AECb81rfSYmiiE8//RSTJk2CKIpmP8v48eNRVVWFI0eOmL1n1qxZ6Natm+U/wFaOHz+OgoICzJgxw3hsxowZuHr1qsWBwH5+fsjNzW3zWrVqlU3XIzLF7GB2tJcd5eXlePTRR5GUlIRFixbZ1C5PwsdSbkyr1SI7OxtjxozB+fPnjcfvvPNOvP7668jLy8N9993nsOsVFRUhJiYGQUFBZscHDBhg/D4A/PTTTxBFEf369bP4OT4+PmZfx8XFmT2bB4DQ0FAcP37c+PXPP/+M5ORkqFTW/5e0tX1FRUVQKBTo06eP2XnJyclmX1+5cgWVlZVYu3Yt1q5da/Ga5eXlZl8nJSVZbV9rH330EQICAtC7d2+cPXsWgD6EEhMTkZWV1aarW6lUym5QH0mD2dG59nlLdtTV1WHixImoqanB3r1724zFkQMWN27syy+/xKVLl5CdnY3s7Ow238/KyjIGVOsAMHD0HRoA6HQ6CIKAnTt3tpmmDKDNL4qlcwBYHGjoSjqdDgDwm9/8BrNmzbJ4TmpqqtnXtt55iaKIjz/+GHV1dRg4cGCb75eXl6O2tlaWoULSY3Y4lydnR2NjI6ZOnYrjx49j165duPXWWzv1Oe6OxY0by8rKQmRkpHGGgqnPPvsMOTk5ePvtt9GtWzeEhoYC0C/6ZMpwR2LKWpglJCTgiy++QE1NjdkdzunTp43fB2AcoJeUlIRbbrmlUz9ba3369MF3332HpqamNndv9rYvISEBOp3OeEdncObMGbPPM8yG0Gq1Du8x2bNnD0pKSvDyyy8b7w4NKioq8Lvf/Q5btmyxaeo3kb2YHZ1rn9yzQ6fTISMjA3l5efjXv/6FUaNGOarZ7sf1w3zIFvX19WJQUJA4e/Zsi9//5ptvRABidna2KIqiWFlZKSqVSvGZZ54xO+/hhx9uMyjwhRdeEAGIFRUVZucaBt39+c9/Njs+bdo0s0F3Z8+eFZVKpfjoo48aB+wZ6HQ6swF2o0aNElNSUtq0f9asWWJCQoLxa3sGBXbUvqNHj9o8KPCxxx4TfX19xYKCgjbXLS8vN/67YVDg5s2b25xnyZw5c8SAgADxxo0bFr/fr18/8f777zd+PWvWLDEgIMCmzzbggGKyhNlh/pn2tE/u2fHkk0+KAMQ1a9bYdL4nY8+Nm/r3v/+NmpoaPPjggxa/f9dddyEiIgJZWVmYNm0aQkJC8Mgjj+Dvf/87BEFAnz59sH379jbPfQH9egeAftDc+PHjoVQqMX36dEyaNAljxozBkiVLUFhYiLS0NHz++efYunUrFi5caHwO3adPH7zyyitYvHgxCgsLMXnyZAQFBeH8+fPIycnB7373Ozz33HN2/bwZGRn44IMP8F//9V84cOAARo4cibq6OnzxxRd48skn8dBDD9ncvttuuw0zZszAP//5T1RVVWH48OHIy8szPrs2tWrVKuzevRt33nkn5s2bh4EDB+L69es4cuQIvvjiC1y/ft2unwPQr5Px6aef4t57722zdYLBgw8+iDfffBPl5eWIjIwEADQ3N+Ojjz6yeP6UKVMQEBAAAPjwww9RVFSE+vp6AMBXX31lXNzrt7/9rfEulLwTs4PZYcqQHX/729/wz3/+E+np6fD3929zvmnGyILU1RVZNmnSJNHPz0+sq6uzes5jjz0m+vj4GO92rly5Ij788MOiv7+/GBoaKj7xxBPiiRMn2tx9NTc3i08//bQYEREhCoJgNrWzpqZGfOaZZ8SYmBjRx8dH7Nevn/jaa6+1ucsSRVH89NNPxREjRogBAQFiQECA2L9/f3H+/PnimTNnjOfYevclivo7ziVLlohJSUmij4+PGB0dLf7qV78Sf/75Z7vbd+PGDfGPf/yjGB4eLgYEBIiTJk0Si4uLLfZ0XL58WZw/f74YHx9vvO7YsWPFtWvXGs+x5+7r008/FQGI69evt3pOfn6+CEB88803jX8esDKdE4B4/vx543sNU2QtvVpP5yXvw+xgdljKDnsyRg4EUZR4ZBYRERGRA3GdGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLidYv46XQ6lJaWIigoyOpS4kTkXKIooqamBjExMVAoPOMei9lBJC17csPripvS0lLEx8dL3QwiAlBcXIy4uDipm2ETZgeRe7AlN7yuuDFsmvbf3xyGH3dkJpJEQ20t/nz3ULNNDN0ds4NIWvbkhtcVN4buZL/AQPh5ULASyZEnPd5hdhC5B1tywzMedhMRERHZiMUNERERyQqLGyIiIpIVrxtzQ+RsSlEHX50OAkSpmyIJEQIaFQpoBd47EdlKEEX46bTMDQflBosbIkcRRSQ01CKuWQOFBw2UdQadKKJEpUaRXyDg5X8WRB1R67RIrauEn5f/qjgyN1jcEDlIQkMtknSNCI+MhE+3boC3BpUINN24AZ+rV4CGWhR148wiIqtEEb1v1CBU7YvQqCgICi8NDgfnBosbIgdQijrENWsQHhkJ/9BQqZsjOR8/PwBAU3k5SsQAPqIissJH1CFc14yQ8Ej4dusmdXMk5cjcYOIQOYCvTgeFIOh7bAgA4NOtGxSCAF+dTuqmELktlShCEAQofXykbopbcFRusLghcgDjIEAv7VG2SDD8wzsHSBLZgtnRioNyg8UNERERyQqLGyIiIpIVFjdEhPKyMix5ZiHu7J+MhOAgDO3TBxlTp+DrL78EAHz4zjuYeu+96BfRAz391KiqrJS2wUTkFtw1O1jcEHm54sJCjB+ejr35+XgpcxW+PHwYG7dtw/BRo7B44QIAwI0b9Rhz333446IXJG4tEbkLd84OTgUn8nJ/WvBHCIKAnXu/gX9AgPF48sCBmDHrMQDA757+IwBg3549UjSRiNyQO2cHe26I3JBW65rrVFy/jt2ff47Hnvi9WTgZhHTv7pqGEJFDMDv0WNwQuZGzPwKjblMhLsAXo25T4eyPzr1e4c8/QxRF9E1Odu6FiMipmB3mWNwQuZE5v1bh55/0Cz38/JOAOb927pNjUeQaNERywOwwxzE3RG5CqwV+PK0w+VrAj6cFaLWAUumcayb17QtBEHD2zBnnXICInI7Z0RZ7bojchFIJ3NJfB6VSvPm1ePNr510zNCwMo++9F++teRv1dXVtvs8p30Tuj9nRFosbIjey/l/N6NNPH1B9+olY/69mp18z829vQqvV4oERd2N7Tg7Onf0JP57+Ae/84y1MHHUPAP1aFieOHcP5n38GAPxw4gROHDuGiuvXnd4+IuoYs8McH0sRuZG+twB7vm92andyawm9e+Pz/d/izVdXYfkLL6C87BLCIyKQOngwXv2/vwMAPli3Dq+vfMX4ninjxgIA/rZ2HaZlZLimoURkFbPDnCC6+6ggB6uurkZISAhePnYGfkFBUjeHZMJf24ShN6oRm9ALPmo/qZvjFpo0DbhYdAGHuwWjXmm+43FDTQ3+Jy0ZVVVVCA4OlqiF9mF2kDMwO8w5Kjf4WIqIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiBxAhGD4FzIQDf8QpG0HkRtjdrTioNxgcUPkAI0KBXSiiKYbN6RuittounEDOlFEo4IxQ2RNsyBAFEVom5qkbopbcFRucJ0bIgfQCgqUqNTwuXoFAODTrRu8tsNC1AfUtatXUKJSQyuwuCGypklQ4JpCBf9r16BQqSAovDQ4HJwbLG6IHKTILxBoqEVTeTkUgpcG1E06UUSJSq3/MyEi6wQBP3cLQmBdJW4UF0vdGkk5MjdY3BA5iiCgqFsQSsQA+Op0ELz0IboIAY0KBXtsiGzUqFDiUGAY/HRa5oaDcoPFDZGDaQUFbij5FzsR2U4UBNxQ8q9kR2ECExERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJitsUN6tWrYIgCFi4cGG7523evBn9+/eHn58fBg0ahB07drimgUTklpgdRNSaWxQ3Bw8exJo1a5Camtruefv27cOMGTMwZ84cHD16FJMnT8bkyZNx4sQJF7WUiNwJs4OILJG8uKmtrcXMmTOxbt06hIaGtnvum2++ifvvvx/PP/88BgwYgBUrVmDIkCF46623XNRaInIXzA4iskby4mb+/PmYMGECxo0b1+G5+/fvb3Pe+PHjsX//fqvv0Wg0qK6uNnsRkedjdhCRNZIuh5idnY0jR47g4MGDNp1fVlaGqKgos2NRUVEoKyuz+p7MzEwsX768S+0kIvfC7CCi9kjWc1NcXIwFCxYgKysLfn5+TrvO4sWLUVVVZXwVe/nGZESejtlBRB2RrOfm8OHDKC8vx5AhQ4zHtFotvvrqK7z11lvQaDRQKpVm74mOjsbly5fNjl2+fBnR0dFWr6NWq6FWqx3beCKSDLODiDoiWc/N2LFjUVBQgO+//974uv322zFz5kx8//33bcIJANLT05GXl2d2LDc3F+np6a5qNhFJjNlBRB2RrOcmKCgIt956q9mxgIAAhIeHG49nZGQgNjYWmZmZAIAFCxZg1KhReP311zFhwgRkZ2fj0KFDWLt2rcvbT0TSYHYQUUckny3VngsXLuDSpUvGr4cPH46NGzdi7dq1SEtLwyeffIItW7a0CToi8m7MDiLvJoiiKErdCFeqrq5GSEgIXj52Bn5BQVI3h8grNdTU4H/SklFVVYXg4GCpm2MTZgeRtOzJDbfuuSEiIiKyF4sbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuCEiIiJZYXFDREREssLihoiIiGSFxQ0RERHJCosbIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaxIWtysXr0aqampCA4ORnBwMNLT07Fz506r57/33nsQBMHs5efn58IWE5HUmBtE1BGVlBePi4vDqlWr0K9fP4iiiPfffx8PPfQQjh49ipSUFIvvCQ4OxpkzZ4xfC4LgquaSixUWFqK5QuO0z1eFqpGYmOi0zyfnYG4QUUckLW4mTZpk9vXKlSuxevVqfPvtt1ZDShAEREdHu6J5JLHmCg3G/ngGKd1infL5r9XVAixuPA5zg4g6ImlxY0qr1WLz5s2oq6tDenq61fNqa2uRkJAAnU6HIUOG4M9//rPVQAMAjUYDjabl7r+6utqh7Sbn0dTVot91oFSX65TPFwNHobCwkL03HsxZuQEwO4g8meTFTUFBAdLT09HQ0IDAwEDk5ORg4MCBFs9NTk7Gu+++i9TUVFRVVeGvf/0rhg8fjpMnTyIuLs7iezIzM7F8+XJn/gjkBGePnsHok8dwyedHp11jzE8/YH9oGJDotEuQkzg7NwBmB5EnE0RRFKVsQGNjIy5cuICqqip88skneOedd7Bnzx6rQWWqqakJAwYMwIwZM7BixQqL51i6+4qPj8fLx87ALyjIYT8HOdbJvYcx87uT+GBMo9OukbHbF1l3piBlxFCnXYMsa6ipwf+kJaOqqgrBwcF2v9/ZuQEwO4jcjT25IXnPja+vL/r27QsAGDp0KA4ePIg333wTa9as6fC9Pj4+GDx4MM6ePWv1HLVaDbVa7bD2kuMVFha2OSY2NuJ07X4MCf6L0657XrcEo082Y39AIFSh5v+P8FGVe3N2bgDMDiJPJnlx05pOpzO7W2qPVqtFQUEBfvnLXzq5VeQshhlRUyoqzY77F5zDaX8fNDvx2l+PTUXGbhXG/ngGwRFRZt/LqdCg7+BkJ16dHIm5QUSmJC1uFi9ejAceeAC9evVCTU0NNm7ciPz8fOzatQsAkJGRgdjYWGRmZgIAXn75Zdx1113o27cvKisr8dprr6GoqAhz586V8segLmiu0GD04UOIajLv5t9buRfNM53XawMAQ4Kn4XTtIoy4/gBw/bLZ9zSD3K7up5uYG0TUEUkTvLy8HBkZGbh06RJCQkKQmpqKXbt24d577wUAXLhwAQpFyzqDFRUVmDdvHsrKyhAaGoqhQ4di3759Nj1nJ/dTWFiIhorraLz2HS6F+5t9T+3kXhvT61zy2Wd27Mq1eoiNMziTyk0xN4ioI5IPKHa16upqhISEcFCgGzh79AzSD3yDxurv8fXY1DbfHxI8zSXtOFK9yezrkXnH4Rt8G/bfcTcfTTlJVwcUS4HZQSQtjxpQTN7FdPCwpq4WsbUqfDA21WWFjCWtr103ZRo0WYvQUDHArL3sxSEi8gwsbsilTAcPV5w7i/O6QxgSvFLaRlmg9vfBmJ9+QPTN7ddyQrtzPRwiIg/BXcHJZQoLC6Gpq0V8rQrxtSr0qNJafBzlDr4em4rYm+2Mr1VBU1drcco6ERG5H/bckMs0V2gw/vRplGqKAQCna4ucuo5NVwwJnobzuiVAcSkAYHx5PPIDbmfvDRGRB2BxQy6jqatFjyotzuv0BYOrZkR11tdjU4G84wAAzdUiNPTuzRlUREQegMUNuURhYSHGnz6N07X7nb5+jaMMCZ6Guin6wcYBOUu4FxURkYdgcUNOYzpGpa7kGnpUabFj0lAMka5JnWZYzbj12Bv24hARuR8WN+Q0zRUajP3xDABAW1Pj9L2inMmwmvH400ooL+rXOMm7JZm9OEREboizpchpNHW16HcdCL16Co3XvoPa30fqJnXJgUlDcfXiXoRePYXQq6fQUHGdM6iIiNwQixtyisLCQoiNjThe/QWa1JXQKIC6Ke63no09hgRPg9rfB03qSjSpKzHmpx/QXGHbZo1EROQ6fCxFTlFXcg2/OfoTPri3ZR0bTxxr05rpujyGMThEROReWNyQwxl6bTx5jI01pls1nK5dBLGxH6eHExEAdPiYmjnhOixuyOGaKzQY89MPaHTzdWy66sCkocjY/ROyfH0BhhaRVyssLDTbXqY1buHiWixuyKEMWyzUlB3EAQ+d9m0rwwwq9t4QUXOFBqMPH0JUk+Ud4zWDVMwJF2JxQw7VXKHB6JPH0OjvI+lO365i2GCTi/sRea/CwkI0VFxH47XvcCnc3+I5o0/egv0BdzMnXITFDTmUpq4WsbUqfDA2Vda9NgZ7Rqfhrh0HoalL410ZkZcyPIrXKICPh/S1eE7rCQg6LaBQuqqF3ofFDTmMnAcSt1Ze7IMNy2Nw+cKL2B1ajKd9tqPwgUDelRHJnKVBw2Y3dVZ6rM/rlmD0yWbsrIxA7uuDUFHkj9CEety//AwG3xPt5FZ7H65zQw5jmP59YNJQqZvidBuWx+BKiS8AoKwqFm9/+ginhRN5geYKDSadu2z2Gn/6NM7rDrX7KP7rsamIrVVh3yv9UFXsBwCoKvbDN4v74OzRM65qvtdgcUMOYd5rI++xNjotcPmCGjqdAAAQdQpcqOgBbUMjVywmkrHCwkKM/fEM4mtVZq8eVVqzNbAsGRI8Daeqv0NJeRh0Ov1fvTqdAhcuBeNGDW+MHI2PpcghvGX6N6B/Th7VS4MrJb7Q6QQoFCKCYq5i3slzeNeP08KJ5Kqu5Br6XQdKdblmx0/XFtn0KP7QQ4MRs70YZZUx0IlKKAQt4sLKITQ3csyeg7HnhhzC8My5o7sXuXh8aSki4hoBABFxjfjD8locq9wLsZG9N0RyZOid3lu+E+frS81etu6bNyR4Gp4Y/1dEdS8FAER1L8Wce1dhTsE5buXiYOy5oS47e/QMRp88hvO67zEk2LP3j7JVZHwTXninyGzGA6eFE8mXae90V/bJC5o9H8/PvgGd9seb2TEfx7IWoaGiN3tvHIg9N9Rl3tBro9NaPm46ldMwYJADi4nkobCw0PgyLE5qb2FjS3YYboyaKzTG61HXsOeGukTu079bpnyrEdVLg8eXliIyvgkA0NwIqHxbzh0SPM043XN/QCD6Dk6WqNVE5Ah1Jdfwy4sXAQD1lVftGlNoLTsMxU7rG6OM3SqM/VE/a2pHbCwKwb2ouoLFDXVJXck1zCk4h3Uy3WrBdMr3lRJfbFgegwefuIJ3l8ZA26yAUqXD7OWlGDCsHkBLSLH3hsizGW7cQq+eAgBcvlpk15YyrbNj3YuxAIBrl/THwns2Yt4rFxEZ32S8MVIXAjGBMRhfU4P8gNv5eLsL+FiKOs3wy3+scq8sp3+3nvKt0wm4fEF9s7DRH9M2C3h3aYzxPfr9pvZzYDGRhzOMsWlSV6JJXQm1HVvKWMqOa5d8ce1Sy8Dja5f0PTsGX49NhUYBNKkr0XjtOzRUXGeGdAGLG+o0wy+/rTMF3Jml5+KGKd8Khaj/WiEiMl4DbbMCgHDzLAHaZgWaG1ved2DSUM5+IPJwhjE2Hw/pi4+H9LU6ptDW7NATTM7S3ywZ3j8keBq+HpuKj4f0hUYB4xgc6hwWN9RpchhIXF7sg1fnJuC5B27Bq3MTUF5sXqiZTvnuHtlk7LEBROM/lSpdm7E3xyr38s6LyEMZZoAaemsML1P2ZAeElrxoIeoLIJOxN4brcHJC17G4oU5pmf7d/pLj7s7SmBpTkfFNmPVSKaJ6aXC9zLxbGQCUKhGzl5e2+VzT2Q9E5FlsuXHrKDt6xDTh8aWlUKp00Gnb/lUb3lP/fUv0Y3AOYfzp09yaoZM4oJg6RQ67fxueixu/1rV0EyuU5rMdWu64BLN/Pru6CNEJTW0+mwOLiTyTLTNA28uOq6UtuaFU6W4+xjbQ50ZkvAazl7XMvLREnyFaZkgnseeG7CaXfaQUSv2MBdNHTOE9G43dxBuWx6C82PC8SbDwCSLeXxFj4XjLndfok8d450XkQQwzQNvbAPhqqQ+UKp3xa0HR8ojJtEfHvLAxef/Ftj09rXFyQtewuCG7NVdoMKfgnCwGErcm3qxzDHdmomipqDEwHxDYGp+bE3kWW2eAblgeA522JRsUChGzXiptM0vKGtOenvbw8XbnsbghuxQWFqKh4jqOVe7t0hLk7kCnNaw50fKo6XqZL16dm2ByZyZafb9C0XZAoCneeRF5FltmgFq68dE2K/CXeUl47YkEKJTt5wbQcXYY1E1ZiZqyg5yc0Akcc0N2sXX3b6WmAanbsxFSVoyq6HgcnzgdWrWfy9ppC0MB09J1LAIQjAtuWepSFhQiFAoR2mYFIuIarQ4INFD7+2BOwTlkcb8pog6pGm4gLetDdC8uQmV8Ao7N/C2a/bq57Pq2jCW0nBsAIKC8xBeilV4be7PDgHvWdQ6LG7KLLb/8Sk0Dpj0zAxE//wBRoYSg02JA3lZseuNjSQsc000ugZtdyzrzdSeAlgW3DMWOnv7fI2+GUlhUk3H6t06rf5lOBzeom7KSm+IR2UDVcAOPPvIQIk6dgqhUQNDqkLLlE2zcvNUlBU57GwCbZoe13ABgobARoVCK0GkViIxrxKyXShEZ1wSFsiU3ALTbg8PJCZ3D4oZsdvboGYw/ffrm9G/rj6RSt2cj4ucfoBBFQKvv34n4+Qekbs/G0Ycfc1FrW1ja46VHTJPZbAfL2gZYc5OAdS/G4tolX4T3bERjg4CaCn0XtqDQYe6Klq0YDHjnRdSxtKwPEXHqFBSiDmjWD9aNOHUKaVkf4vCc3zn9+pZu3Fpnx6yXSq3khumNkCkBOq2A8J6NaG4S8Jd5SQjv2QhtM1B5peVuyHQrhtb0j7cXYfxpJfbGhfMGyUYcc0M209TVokeVtsNF+0LKiiG2uhURFUqElBU7s3lWWVqPwtJMKVuYLqF+7ZIPaipa7g9EnQLrlsS2WcyLA4uJOta9uAii0vyvJFGpQPfiIqdf29oM0NbZ8f6KGET10kBQmC/GZ7mwaXHtko9xT6lrl3xQecWnzfcNe09ZcmDSUPSo0qKu5Jp9P5gXY3FDNrFn+ndVdDyEVtMABJ0WVdHxzmyiRdb2h+polkL7xY7pWjetQ03Au8vMp3hyQS6ijlXGJ0DQ6syOCVodKuMTnH5tSzNArWXHrJdKTbZTMNXejVLrXuC2uXHtkq/VXOLkBPuxuCGb2LOP1PGJ03GlzwDoBAFapQo6QcCVPgNwfOJ0F7TUnLW1bIC2M6XMtX8nZvgsS0FWXqw222sK0Pfe9KjiglxE1hyb+VtcGTgQOkEBrUoFnaBA+cAUHJv5W6de19oM0DZr2Qj6GU6RcU0WF+aznCXWbpIsH2/vpovTwu3DMTfUIcMvf03ZQTTPtLxipymt2g+b3vjYrWdLtZ3xYA9DN7SA1iElCPoBhIsm3mJ8Rh+d0GR8bi429uPAYiILmv26YePmrS6fLWVtBmjrgcMKpYgHn7iCzNmJdny6LTdJgH6Pura5YapuykposhahoWIAM8QGLG6oQ7ZO/zalVftJMni4tZa1bAz03b8blseYbIJpL0szJfQFj35mhP7Y5Qu++Mu8JOMg5iQOLCZqV7NfN5cMHjZlaSBx6+0VAP1aNv9eE9Fmf7nOMdwYtWSJtdwwHWTMyQm242Mp6pAn7/6tUEK/WNbNZ+QKhYjIeM3N4OpscWOJ/rO0zQqTxb1awmrdi7FckIvIzVjbANg1uWF+k2QtN0xxcoLtWNxQuwoLC02mf3vmPlKPLy1FRJx+EExEXCNmLytFWHRjB++yl/55vGkgtmgZLMjn5kTuo70bN+fnRkvhpFTp2s0NAw4sth0fS1G76kquoUeVFjs8ePfvyPgmvPBOkdlCXB3PlrKXcHMWBfDushiUF1teQ+frsamY97Ua+x19eSKyS0e7f1vKDUEAbJn6bRv9Z4THNGLyH65g69sRVnPD1IFJQzHva6563hH23JBVctn928C0sDFdQMs2Ha+D8/6KGOh0wJ/WF7W72zgRSc/WDYBNc8N8hqVjXClR499rIjB7WSlzw4FY3JBV9kz/9hSmS57bp+NAMwwEfHVuAqY+VY6oXvou7Khe+tVHicg92LsBsKH3JiLO0Y+T9YXM5QtqvPYEc8OR+FiKLLJ3+re7Ky/2wdolsbhedrPHRhBv5krbWQudd3MgYLEv/r0mok2XNhG5B1tngJYX+xgfM7csHdF2z7nOM99Z/NO/R+LFDwqZGw7AnhuySE69NuXFPnjtiYSWwgYAxJZQUaps23rBZmLLKsgMKCL3Y8sMUENuGMbBtCwd0XZ9K0e5XubL3HAQFjdkkSdP/25Nv6aNpf/VhS4s5Ne+qF4aqwGlaeZKxURSsXUGaNvcsLS+lWPH35DjsLghq+QwkNjSYlymnFHYAMCsl0otHudUTiL311FuSO1Y5V5o6mqZIe1gcUOyZliMC0J73ciO7WIWFDoo2vnN4lo3RO7Ncm4451GUqZAeHc+OGhI8DWp/H4w+eYwZ0g4WNyR7jy8thVJpyy7fDiIK2LA8xuq3uVIxkfvrODccTYTKxiGOXKm4YyxuSPZ6xLTexde5xJsDilvvDG6KvTdE7q1tbjh7fI1+ReL2csOAj7c7xuKGZE+hBJQqHUwXx3I2pUqHRRNvwatzE1BerL8dM11fh3deRO7N+GjKBXlh0FFumDowaSjmFJxDXck1l7XPk3CdG2rDsDKxXOi0rQcOO/sOTDROG71Sot/8TuUj4vIFtXGn3yHx03C6dhGAFCe3hYhMNVdooNHa1mM666VS/GVekpNb1KKj3DDdIXxI8DQcq1wEoL/L2udJ2HNDbchpjRsAKCuy9nM4645MgKGA0un0Xc1XSvRr7Fwp8W13PA4ROY/p4qS2rkxsmTOzg7nhCOy5ITOFhYXQ1NWipuwgDkwa6rGbZQL6Rbg2LI+5OaXT2qqijlqd2DJBECGKAnS6ltAyLPBHRK5lz8rElrMDAEQolCJ0Wmf2AOuvaSk3uMCfbWzuuSkttbxuB8lLc4UGo08eg9rfx+PXuFn3YiwuXzCsSmxtAS5nBZT+zi4yvlG/+Z1C/7VCIba7wJ/cVF0uk7oJREb2rEzcss5N64wQoNM696GHUiV6dW44gs3/hVJSUrBx40ZntoXcgFxWJm5/B19XDBDUX/f5NUWY98pFRMTpxzBFxDXi8aXec6Pwv+PH4OjWz6RuBpFxZeKOFid9d5m1Fc1dR9uswJyXvTc3HMHmx1IrV67EE088gZycHKxZswZhYWHObBdJwDClUP/L77mbZRq6lK1z3ZLpmbMTMe+Vi1Y30TRM5UxMTHRZm1xp/LMv4NMXX8CJz/+Dh1e+Cv/uoVI3ibxUc4UGsXXAjnYet5cV+Rj3kpKO/pHU+yti8PjSUvSIaWKPTSfYXJ4++eSTOH78OK5du4aBAwdi27ZtzmwXSeSXFy9K3YQu27A8xjgQz5XTOC25dqml0GodUN6w1s3w3z6G/9qRh/rKCvz1vtE4lfe51E0isur9FTGQOjMMDIOIWdh0jl19b0lJSfjyyy/x4osvYurUqUhNTcWQIUPMXvZYvXo1UlNTERwcjODgYKSnp2Pnzp3tvmfz5s3o378//Pz8MGjQIOzYscOua5K8GfaEMQzEaz0Q0PyfrmB9APHXY1NRU3ZQ9nvEhMX3whNZmzH2qQX44A9z8b8PjMXqaVMAACNHjmRukFto2U+qvZ5d1z3S5uSDrrF7tlRRURE+++wzhIaG4qGHHoJK1fkJV3FxcVi1ahX69esHURTx/vvv46GHHsLRo0eRktJ2/Y99+/ZhxowZyMzMxMSJE7Fx40ZMnjwZR44cwa233trpdpB8GBbe0g8kbj0jylU7+ZrPxorqZXm/GP0eMccx+uQx7A+4G0h0crMkVHGxBCd27US3kBCk3DseOq0Wl06fwoQJE6BW2/cYgLlBztB+dhi44pG2/poKhYiIuI73miLL7KpM1q1bh2effRbjxo3DyZMnERER0aWLT5o0yezrlStXYvXq1fj2228thtSbb76J+++/H88//zwAYMWKFcjNzcVbb72Ft99+u0ttIflou/CW68bYtKZQipg474rV7389NhUZu+W9UvF32VnY/ufl6Dd8JJ79Tz4Cw8PRUFOD3av/jj/96U8IDg626/OYG+Qs7pQdgqL97KD22fxY6v7778cLL7yAt956C5999lmXC5vWtFotsrOzUVdXh/T0dIvn7N+/H+PGjTM7Nn78eOzfv9/q52o0GlRXV5u9SN6iE5oQ1UsDod2dwJ1Nf22dVsD6l+LMllM3Jfc9Yt557FHseHUlJi9biYy31yMwPNyhn++s3ACYHd7IkB3Sjbtpua62uf3soPbZXNxotVocP34cGRkZDm1AQUEBAgMDoVar8fvf/x45OTkYOHCgxXPLysoQFRVldiwqKgplZdbX0sjMzERISIjxFR8f79D2k3vSL1Vu2ELC1UHV9hFYebH1FUbV/j64/9w51zTNxUStFs/s+AJDpz7i0M91dm4AzA5v9fjSUkT1ap0drsoQ+7IDgGxvjLrK5uImNzcXcXFxDm9AcnIyvv/+e3z33Xf4wx/+gFmzZuHUqVMO+/zFixejqqrK+CouLnbYZ5P7ioxvwgvvFOGvO3/En9YX3tw405XMw9CwU7i3DQ6c9+EmdO/p+GXjnZ0bALPDWxmyY9G68yZFjivZnh1qfx/MKTgn6xmXnSX53lK+vr7o27cvhg4diszMTKSlpeHNN9+0eG50dDQuX75sduzy5cuIjo62+vlqtdo4q8LwIu+hUAI9YpokWJTLdEAiVxh1NGfnBsDs8HbRCU149p9FN79y5dgb27OjbspKHKvci4aK6+y9aUXy4qY1nU4HjcZyFZqeno68vDyzY7m5uVaftRMB+gJH33Pjiq7llkAKi2403vlxhVHnYm6QM+gLClc+1tYXMqa9Rh1lhzesl9UZkm6cuXjxYjzwwAPo1asXampqsHHjRuTn52PXrl0AgIyMDMTGxiIzMxMAsGDBAowaNQqvv/46JkyYgOzsbBw6dAhr166V8seQHXUHm8p5EsNqxa7rudHfdQkKEQ8/XY4Bw+q52Z2DMTfI2cw3znQlARPnXUF0QpPVVc1b84YZl50hac9NeXk5MjIykJycjLFjx+LgwYPYtWsX7r33XgDAhQsXcOnSJeP5w4cPx8aNG7F27VqkpaXhk08+wZYtW7hWhYM0V2hQX3lV6mY4lOtXK9ZfQ9QJ+Pca/YxCFjaOxdwgZ5NulXMR29e1zES2JTsMMy7JnKQ9N+vXr2/3+/n5+W2OPfLII3jkEcfOvCA9w6aZH4xNtbr3iidpWXHUwBXPzduuLsrixrGYG+RM0uRGy7WYG47hdmNuSBqFhYUQGxs73DHXk7h2rI05QeAAYiJPJGVuGMbcMDe6jsUNAQDqSq5hTsE5HJg0VOqmOIxOi5tjbVy/ymhYdBMHEBN5IClzAxAw6yXmhiOwuCFjr82xyr2y6bUBWvaKMb8Dc824G5WPiMj4Jhdci4gcyXpuuCY7ohOYG47A4oYAAPefOwe1v/yW+H58aSnCe5qGhaW7MUeHlv0L9mm0Gk7lJHITrXND/++uGbPXLMW6gTIk6YBiImeLjG/CkvcLjYXGa08kWJje6ejQEu1a2ZRTOYncS+vcUCiBV+dayg5HEqFUiVD5ggOKHYA9N+QVFErgaqkPmpucf/clKERobgh47oFbbNr0Tu6bZxJ5KoVS/yovdkV2CPDzb8bKWYk2ZwdZx+KGvMaG5TGouGwIC+c9Pxd1Aiqv6K9zpaT9Te8MDkwayj1iiNyUeXY4T121D65dsi87yDIWN+QVDGtX6HTmO+46R8vOvqbr3bRnSPA07hFD5IaaG1tnhzPZnx1kGcfckOwZllLXE+H8gYGGXiEBCoWIiLhGm56fG/aI2R8aBiQ6s31E1BHTLRiUKh20zS2Fh/N0LjuoLfbckOxtWB6DcuNS6q65+zIEUkRco83rVnw9NhW9G1y9lw0RWWKaG65c90ap0hc49mQHtcXihmTN8DhKdEmXsul1BTy35jwA4C/zkjg4kMiDSJUbgABts4LZ4QAsbkjWWhbkcibLg5M/XNmy+R4HBxJ5DtfkhmVRvTTMDgdgcUOyp98GoXUB4sjZUoa7O9H4z7DoRrNBiIbBgWVF7d+BaV1+p0hEljy+tPTmHlOtOW+mpVKlw6yXSu3ODp2Of5W3xj8Rkr0eMZZWFxXguJASEd6z0WRFUwGCAIT3bETrJdzfX2H5Dqy82AfbFv4ev/j7s/jXgmEoP8dRhERSioxvwrOriyx8x5E3IKJZAdU9ohkKheXtHyxlR3mxD16dm4CFH36GLX8axdwwweKGZE+hBCLjLXUxOyqkBMx5+SJUPiIUCn0gtayJIZidZ21q54blMaguDQcAVJX644PfhzqobUTUWdEJTVayw1GEmwVNS25sWB5zcyBxx9mxYXnL46vqsgDmhgkWN+QVHvr9FTirOzkyXoPIuKY2XcnXLvkiMl4DQdBfV6EQEdVL02ZqZ8vgRf2vo6gTUH7Wh+tbEEmsvNjn5hRwZxARGa/BtUu+bR5BRcY1IapX+9nReu0uUadgbphgcUNe4d9rIiA46f92bbOAq6U++vBRmIfR7GWliIzX7zMVEdd4c/yPOcPgRUGh754WFCIi+zZxfQsiiTl3ZWIB2mYB4T0b2+SGQqkf89Nedhhyw/BeQaFjbpjgIn4ke4Y7HGe5dskH616MxbxXLhoX/TKEUWR8E154p6jDjfAeX1qK1UsDUVUSgZCYemS8Xee09hJRx6znhuMWAr1e5oOw6CZExDWa5QYAm7Lj8aWlxswJjq5Dxts3HNIuOWBxQ7JnuMO5UmLo/jUNJ3uCytq5+kdQYVHWw6iju6nI+CZM+tvbmL3HH9mjhyKyd7KNbSIiZ2g/N2Dha2taVh1u8x1Rnx1/2f6jcZNOS+2wxlAAKT78E47eOxuRvYfa0B7vwMdShOYKDTRaeW/Y+PjSUkTENd78ynygnmWWxue0H2SLJup38r1a2vlubKXCedNMicg+prlheETUkgO23hS1v22DUqXDoom34LUnOr9Yn0Jhacq6d2NxQ9DU1SK2VoWvx6ZK3RSnMdzh/HXnjzenXrasSWOZPd3OovFzuOAWkXyY5saf1hfZmB32EKHT6rOms9kRkLMEad1HQB0Q6ID2yAeLGy939ugZjD99Gud1hzAkeJrUzXE6hRKY8mS52bFugc1WzrY1vLiTL5GcKZT6MThTnyrv+GSbc0P/WEsUu5YdmvomrB/UG6pQ7ktnimNuvJymrhY9qrTYMTYVQ6RujJOZ7vJrGkCaGwq0HYcD2NN7IyhEiDru5EskN613BzfXOissFTbWx+pFxmtw9aJ+TE9nsuNI9SZkBKbjsK8vEhMTbX+jF2DPjRcrLCyE2NiI07X7vaLXZt2Lsbh8ofXu4AJ02tY7/rb/jNycCIVSh8i49qd7E5FnMs0N893BBbTNCkvZYTlLBIUOs5e1jOnpTHaMzDuOi4HNfCRlAXtuvFhzhQZjfvoBjf4+sPZgRi50WuDaJd+OT7TK+syIOS+XYsCw+g6nexORZ+l6blgXEq61eakIazT1TdiXnoaUwZxd2Rp7brxc7wa1rAcSO0r3iCYolJZmJAhIHlIPgIUNkTtThapxMQC4Y9thl15XnxttH1dVXmlZTZjZ4XgsbsgrKJStN7LU/1Op0kFQWJr9oP/3yHgNFq07j//JKsScl1vtLi5Y3k6BiNxPYmIidvXvj/6B6ThSvcmm91jKDcNNjvnMKVPm2bFobZHJprp6gpWtWMhxWNyQ15j3ykVE9dI/347q1YhF687j+TVFxvEylta/WbS2CNEJTSgv9sG/10QAEIzhFhXfeHODOyLyBOqAQFwMbMbIvOM2v6dNbqzVTw1/fk3bokWvJTsUCv0WDtcu+SIsuvFmoQREcmye07G4Ia+lUJivY9HeRnWmu+9CFBAWrQ+pv8xLwqtzO7/4FhG5jipUjd39BkBTb6kosZ1Cqc+OJe8X4q87f0RkfNt95RRK89yoLNdnRGS8BpcvqLFheQxzw4lY3JDXMA2a1gtmtd6oTlCIuHxBjVfnJqCsyKfNjt/Xy3xRXmz5s4jIPSUmJsIvNAxB0cMQkLPEpve0lxuAPjtMZz0ZsmPVnIQ2uXHtkm+7n0WOw+KGvIJhEzzToGm9YJahFycyXgNR17Jq6PsrYtrs+A2gy4tvEZHrqULVUCttW/DOltwALGfH1Yu+UKp0zA2JsLghr2DYBM9S17EpnRYoL24bZrNeMl+PIrxnY4efRUSezdbcACxnh7ZZwdyQCNe5Ia/x+NJS40qj1hbMar0TsGHV0OgE8/UoTFct5cJ9RPJlS24A1rODuSENFjfkNWxdMKu9MDO8r6uLbxGRZ7Dnd91adjA3XI/FDXmdjkLFngBiQBF5B1t+123NDuaG83HMDZEVDCAi6gxXZMeR6k1I6z7C+RfyUCxuiIjIaxhWKk5S3G7zSsXuaGTecZzz03DTTCtY3BARkVfpzErF7uRI9SZo6puQn5KGvtw00yIWN0RE5FUctVKxVEbmHUdQ9DD22rSDxQ0REXmVzqxU7E409U3Y3W8AVKG2LUbojVjcEBGR1/HU3psj1ZvQPzAdgq8vEhMTpW6O22JxQ0REXicxMRGCr6/UzbDbHdsO46PB/RAQFy51U9waixsiIiIPwF4b27G4ISIi8gAj847jYmAzBxLbgMUNERGRBzBM/+ZA4o5x+wUiIiI3F5CzBL43p3/zkVTH2HPj5c75aTx2ISsioq7qH5juESsVc/q3fVjceDFPnQpJROQInrJSMQcS24/FjRczTIX0lDsXIiJH8pQbvDu2HcbVECWnf9uBxY2XC4gLx9UQJe7YdljqphARuZRhpeK07iPcdqViQ6/Nrv792WtjBxY3Xs6wQy57b4jIG6lC1Vg/qLfb9t5w+nfnsLghj3nuTETkaO7+eJ4DiTuHxQ1BFaqGWslfHCLyTu56gxeQswRB0cPgFxrGR1J2YnFDRERere/gZOSnpCFJcbtb9d6w16bzWNwQEZHXc7feG07/7hoWN0RE5PXcbVr4yLzjuBqi5EDiTmJxQ0REXs8wsDit+wjJH00dqd6EJMXt2NW/P/oOTpa0LZ6Ke0sRERFBv+7X+sbeuGPbBzgwqeX4kOBpLm3HyLzjuBh8G3ttuoDFDREREfS9NydLriGt+wj0OVIAACipqEfdFNcWN5r6JnwzdAACOZC401jcEBER3aQOCMTFAKCHpjsAQFNf5dLrG3b/5vTvrpF0zE1mZiaGDRuGoKAgREZGYvLkyThz5ky773nvvfcgCILZy8/Pz0UtJiKpMTfImfoOTsau/v1R0WMgKnoMdPnifpz+7RiSFjd79uzB/Pnz8e233yI3NxdNTU247777UFdX1+77goODcenSJeOrqKjIRS0mIqkxN8jZAuLCsefOVOy5MxUfDe7nsr33OP3bcSR9LPWf//zH7Ov33nsPkZGROHz4MO655x6r7xMEAdHR0c5uHrkBpaYBqduzEVJWjKroeByfOB1atTzvuEfmHce54NukbobbY26QLVQNN5CW9SG6FxehMj4Bx2b+Fs1+3Wx6r2lhcbLkGvoHpuOD6k1OH1jMgcSO41Zjbqqq9M82w8LC2j2vtrYWCQkJ0Ol0GDJkCP785z8jJSXFFU0kF1JqGjDtmRmI+PkHiAolBJ0WA/K2YtMbH8uywOEgws5hblBrqoYbePSRhxBx6hREpQKCVoeULZ9g4+atNhc4BuaL++kX+KubstJhbTXdjTxJcTuyUlKQwunfXeY269zodDosXLgQd999N2699Var5yUnJ+Pdd9/F1q1b8dFHH0Gn02H48OEoKSmxeL5Go0F1dbXZizxD6vZsRPz8AxSiCKW2GQpRRMTPPyB1e7bUTXM47iHTOc7KDYDZ4cnSsj5ExKlTUIg6KJuboRB1iDh1CmlZH9r9WapQtX5rBv8YJPnHQFPf5NAxOJr6JuNnc9E+x3Gbnpv58+fjxIkT2Lt3b7vnpaenIz093fj18OHDMWDAAKxZswYrVqxoc35mZiaWL1/u8PaS84WUFUNUKAFts/GYqFAipKxYwlY5B3ttOsdZuQEwOzxZ9+IiiEoF0KwzHhOVCnQvtn+cVWJiIs5WaFDRYyBSusWih+IisG0nmmd2/RHVkepNyAhMR0y8vgcxKwwIYAY4hFv03Dz11FPYvn07du/ejbi4OLve6+Pjg8GDB+Ps2bMWv7948WJUVVUZX8XF8vuLUa6qouMh6LRmxwSdFlXR8RK1yDk4iLBznJkbALPDk1XGJ0DQ6syOCVodKuMTOvV5qlA18m5JRnFgM34Kg8NmUI3MO46Lgc0ovvlSBwQyAxxE0uJGFEU89dRTyMnJwZdffomkpCS7P0Or1aKgoAA9e/a0+H21Wo3g4GCzF3mG4xOn40qfAdAJArRKFXSCgCt9BuD4xOlSN82huIeMfVyRGwCzw5Mdm/lbXBk4EDpBAa1KBZ2gQPnAFByb+dtOfV5iYiJUoWps6x2FvFuSHbLBpmGLhfyUNGzrHYVtvaM4/duBJH0sNX/+fGzcuBFbt25FUFAQysrKAAAhISHo1k0/6CsjIwOxsbHIzMwEALz88su466670LdvX1RWVuK1115DUVER5s6dK9nPQc6hVfth0xsfe81sKQabbZgb1JFmv27YuHlrp2dLWWLoUSlEIXb3G4Dbvz7Ypd4b05lR7K1xPEmLm9WrVwMARo8ebXZ8w4YNeOyxxwAAFy5cgELR0sFUUVGBefPmoaysDKGhoRg6dCj27duHgQMHuqrZ5EJatR+OPvyY1M0gN8LcIFs0+3XD4Tm/c/jnGsbgBEUPw4wjP3b6c67ogC/7cZyds0ha3Iii2OE5+fn5Zl+/8cYbeOONN5zUIiJyd8wNkpphBtWCgh6d/oyEAbHY7Qv22jiJ28yWIiIi8gSG3pvLyVGd/oyc0EDOjHIiFjdERER2UoWqsS2088WNCuy1cSYWNwQA+E/v3rj96/bXCiEiIj0WJu7NLda5IWklJiZC8PV1+e63REREzsDihgC03j+FiIjIc/GxFAEA+g5ORn5dLWZ+p3LJ7retedPu30TkOF3Z/Zvki8UNGZn23tRNcV1x4227fxORYzhy92+SFz6WIiNVqBpqpeunJnrT7t+WaOqb8J/evaVuBpHHceTu3yQvLG7IjDIoCJr6Jpde07j7twm57v7dGjfNJOo84+7fJjq7+zfJC4sbkpy37P5tiWFXYG6aSWQ/R+/+TfLB4oYk5y27f7dmuitw38HJUjeHyOM4evdvkg8OKCbJedvu3wamuwITkf2csfs3yQOLGzKzIzYWQ0+7/rreuPu3pr4J3wzlrsBEXeGs3b/Js/GxFBkZBrRypWLX4UBiIiLHY3FDZrhSMREReToWN2Sm7+Bk5KekIUlxO3tviIjII7G4oTbYe0NERJ6MxQ21oQpVY3e/AS5fzI+IiMgRWNxQG4mJiRB8faVuhqwZViYmIiLH41RwIiucuVM517ghkifuUu4eWNwQWeDMncqPVG9ChuJ2ZKWkIIUrExPJBncpdx98LEVkgTN3Kud+UkTyxF3K3QeLGyILnLlTuaa+Cbv7DYCKKxMTyQp3KXcfLG7IKm9eqdhZO5UbBhJzZWIi+eEu5e6DxQ1Z5O1r3Thzp3K1SslHUkQyxF3K3QcHFJNFqlA18lPSMDTvII5Ub8KQ4GlSN8mlvHWnciLqPO5S7j5Y3JBFiYmJOFuhQVD0MIzM+x51U7yruAG8c6dyIuoa7lLuHvhYiqziSsVEROSJWNyQVYaVir15YDEREXkeFjfUroC4cHw0uB/u2HZY6qbIwsi84zjnp5G6GUREssbihtrF3hvHOVK9CZr6JuSnpHGNGyIiJ2JxQx3y9mnhjjIy7ziCoodBHRDINW6IiJyIxQ11yDAtnAOLu4YrExMRuQaLG+pQYmIi1AGBCIoehoCcJVI3xyNxZWIiItdhcUM2UYWqoVayx6Gz7th2GFdDlAiIC5e6KUREssfihsjJDL02u/r3Z68NEZELsLghcrKRecdxMbCZ+0kREbkIixsiJ+NAYiIi1+LeUkROFJCzBL7Rw+AXGsZHUkRELsKeG7ILp4Pbh702RESux+KGbJKYmIhd/ftzpWI7cPo3EZE0WNyQzbhSsX1G5h3n9G8iIgmwuCGbqULV2N1vAB9N2eBI9SYkKW7n9G8iIgmwuCGbJSYmwi80jCsV24DTv4mIpMPihuzC3hvbcCAxEZF0WNyQXRITEyH4+nJgcTsCcpYgiNO/iYgkw+KG7KYOCMTVECUHFlvBXhsiImmxuCG79R2cjF39+yNJcTt7b1rh9G8iIumxuKFO4bRwywzTvzmQmIhIOixuqFM4sLgt0+nffQcnS90cIiKvxeKGOoXTwtvi9G8iIvfA4oY6jb035jiQmIjIPbC4oU7jtPAWATlLkNZ9BKd/ExG5ARY31CUcWKynqW/C+kG92WtDROQGWNxQl/QdnIz8lDSvnhbO6d9ERO6FxQ11mbf33nAgMRGRe2FxQ11mOrD4SPUm48sbGKZ/56ekcfo3EZGbUEndAPJ8iYmJOFuhQVr3EQjO/Q4AoFEAdVOmSdwy5xuZdxwXg29jrw0RkRthzw05hCpUjXeH9sftA2bh9gGzvGYMDqd/ExG5HxY35BCJiYlQBwSiOLAZxYHNXjEG50j1JqR1H8GBxEREboaPpchhVKFqbAuNAgDUQofbvz4ocYuc645th7F+ZAYC48KlbgoREZmQtOcmMzMTw4YNQ1BQECIjIzF58mScOXOmw/dt3rwZ/fv3h5+fHwYNGoQdO3a4oLXUkcTERONL8PVFWvcRsns0ZTpgmtO/pcHcIKKOSFrc7NmzB/Pnz8e3336L3NxcNDU14b777kNdXZ3V9+zbtw8zZszAnDlzcPToUUyePBmTJ0/GiRMnXNhy6khAXDjWD+qNO7YdlropDjUy7zhmHDmLGUfOcvq3RJgbRNQRQRRFUepGGFy5cgWRkZHYs2cP7rnnHovnTJs2DXV1ddi+fbvx2F133YXbbrsNb7/9dofXqK6uRkhICF4+dgZ+QUEOazu1dXLvYcz87iQ+GNOIIcGeP3PqSPUm3LHtMPr3SEAPxUC8OSgWKSOGSt0sj9RQU4P/SUtGVVUVgoODu/RZrsgNgNlBJDV7csOtBhRXVVUBAMLCwqyes3//fowbN87s2Pjx47F//36nto3sJ7fF/e7Ydhg9YkegosdA/BQG9tq4CeYGEbXmNgOKdTodFi5ciLvvvhu33nqr1fPKysoQFRVldiwqKgplZWUWz9doNNBoNMavq6urHdNg6lDfwcnIr6vFzO9U+KB6k0f33hyp3oSMwHRk9e+PgJsDiN3ml8eLOSs3AGYHkSdzm56b+fPn48SJE8jOznbo52ZmZiIkJMT4io+Pd+jnU/vk0ntjusWC6cBpkpazcgNgdhB5Mrcobp566ils374du3fvRlxcXLvnRkdH4/Lly2bHLl++jOjoaIvnL168GFVVVcZXcXGxw9pNHTPdmiEgZwkCcpZ4zAyqI9WbjG3W1DchPyWNi/W5EWfmBsDsIPJkkhY3oijiqaeeQk5ODr788kskJSV1+J709HTk5eWZHcvNzUV6errF89VqNYKDg81e5DqGaeEjIh9Akn8M1Dp4TC/OHdsOI8k/Bkn+MegRO8LYa0PSckVuAMwOIk8m6bCB+fPnY+PGjdi6dSuCgoKMz79DQkLQrVs3AEBGRgZiY2ORmZkJAFiwYAFGjRqF119/HRMmTEB2djYOHTqEtWvXSvZzUPsC4sLxJoDnr8ciBsCXR9/BETcfg2MYYxMTnwIAyAoDAthr4xaYG0TUEUl7blavXo2qqiqMHj0aPXv2NL42bWp5bHHhwgVcunTJ+PXw4cOxceNGrF27Fmlpafjkk0+wZcuWdgcTkrRab80QFD3M7XtvDGNsDG1mr437YG4QUUck7bmxZYmd/Pz8NsceeeQRPPLII05oETmLp23NoKlvwjdDByCwt77NnBnlPpgbRNQRZja5hGmvx8mSa+gfmI4PLAwslvJRlWGg88i84/CNHga/0DD21hAReSAWN+RyAXHhuHpaiXG55o+mqhuacGCSNAXOkepNGJl3HGqd/usv+w1AIMfYEBF5JBY35HKJiYnY1f8anr/e3+x448WLwLadaJ7p+uJmZN5x9Pe9E+FJ+jbt9gV7bYiIPBSLG5KEOiAQxY2VZseqw4D+9emSrGasqW/CxVCgPrAZABAQF9XBO4iIyF2xuCFJmA4wNmgO7Y70ym8wMu846qa4rrgJyFkC3+hhyB96u3GRPvbaEBF5LhY3JAlLxUMhCrG73wDc/vVBl65ifIdhZlSomkUNEZEMsLght5GYmIizFRoERQ/DjCM/uuy6gd1H4LCvLwsbIiKZYHFDbsWwF9Vvfih32TUvBujHABERkTywuCG3kpiYiJMl11DRY6DLrrkrNhYpg5Nddj0iInIuFjfkdgLiwrEnLtx113PZlYiIyBVY3JDb4dgXIiLqCkk3ziQiIiJyNBY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrKikboCriaIIAGiorZW4JUTey/D7Z/h99ATMDiJp2ZMbguhJ6eIAJSUliI+Pl7oZRASguLgYcXFxUjfDJswOIvdgS254XXGj0+lQWlqKoKAgCILQqc+orq5GfHw8iouLERwc7OAWui9v/Ln5MzvnZxZFETU1NYiJiYFC4RlPx5kdncOfmT+zo9iTG173WEqhUDjsTjE4ONhr/sc15Y0/N39mxwsJCXHaZzsDs6Nr+DN7B3fJDc+4ZSIiIiKyEYsbIiIikhUWN52gVquxdOlSqNVqqZviUt74c/NnJkfyxj9b/szewd1+Zq8bUExERETyxp4bIiIikhUWN0RERCQrLG6IiIhIVljcEBERkaywuLHTV199hUmTJiEmJgaCIGDLli1SN8mpMjMzMWzYMAQFBSEyMhKTJ0/GmTNnpG6WU61evRqpqanGxajS09Oxc+dOqZvlUqtWrYIgCFi4cKHUTZEFb8sNgNnB7FgoaTtY3Niprq4OaWlp+Mc//iF1U1xiz549mD9/Pr799lvk5uaiqakJ9913H+rq6qRumtPExcVh1apVOHz4MA4dOoRf/OIXeOihh3Dy5Empm+YSBw8exJo1a5Camip1U2TD23IDYHYwOyQmUqcBEHNycqRuhkuVl5eLAMQ9e/ZI3RSXCg0NFd955x2pm+F0NTU1Yr9+/cTc3Fxx1KhR4oIFC6Rukux4Y26IIrND7twtO9hzQ3apqqoCAISFhUncEtfQarXIzs5GXV0d0tPTpW6O082fPx8TJkzAuHHjpG4KyQyzQ97cLTu8buNM6jydToeFCxfi7rvvxq233ip1c5yqoKAA6enpaGhoQGBgIHJycjBw4ECpm+VU2dnZOHLkCA4ePCh1U0hmmB3MDldjcUM2mz9/Pk6cOIG9e/dK3RSnS05Oxvfff4+qqip88sknmDVrFvbs2SPbkCouLsaCBQuQm5sLPz8/qZtDMsPsYHa4Grdf6AJBEJCTk4PJkydL3RSne+qpp7B161Z89dVXSEpKkro5Ljdu3Dj06dMHa9askbopTrFlyxZMmTIFSqXSeEyr1UIQBCgUCmg0GrPvUed5U24AzA5mhzTZwZ4bapcoinj66aeRk5OD/Px8rwwnQN+trtFopG6G04wdOxYFBQVmxx5//HH0798fL7zwAgsbshuzQ4/ZIU12sLixU21tLc6ePWv8+vz58/j+++8RFhaGXr16Sdgy55g/fz42btyIrVu3IigoCGVlZQCAkJAQdOvWTeLWOcfixYvxwAMPoFevXqipqcHGjRuRn5+PXbt2Sd00pwkKCmozFiIgIADh4eGyHyPhCt6WGwCzg9khcXZIOlfLA+3evVsE0OY1a9YsqZvmFJZ+VgDihg0bpG6a08yePVtMSEgQfX19xYiICHHs2LHi559/LnWzXM4dpnPKhbflhigyO5gdCyRtA8fcEBERkaxwnRsiIiKSFRY3REREJCssboiIiEhWWNwQERGRrLC4ISIiIllhcUNERESywuKGiIiIZIXFDREREckKixvyCFqtFsOHD8fUqVPNjldVVSE+Ph5LliyRqGVE5K6YG96LKxSTx/jxxx9x2223Yd26dZg5cyYAICMjA8eOHcPBgwfh6+srcQuJyN0wN7wTixvyKP/3f/+HZcuW4eTJkzhw4AAeeeQRHDx4EGlpaVI3jYjcFHPD+7C4IY8iiiJ+8YtfQKlUoqCgAE8//TRefPFFqZtFRG6MueF9WNyQxzl9+jQGDBiAQYMG4ciRI1CpVFI3iYjcHHPDu3BAMXmcd999F/7+/jh//jxKSkqkbg4ReQDmhndhzw15lH379mHUqFH4/PPP8corrwAAvvjiCwiCIHHLiMhdMTe8D3tuyGPU19fjsccewx/+8AeMGTMG69evx4EDB/D2229L3TQiclPMDe/EnhvyGAsWLMCOHTtw7Ngx+Pv7AwDWrFmD5557DgUFBUhMTJS2gUTkdpgb3onFDXmEPXv2YOzYscjPz8eIESPMvjd+/Hg0Nzezm5mIzDA3vBeLGyIiIpIVjrkhIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERyQqLGyIiIpIVFjdEREQkKyxuiIiISFZY3BAREZGssLghIiIiWWFxQ0RERLLC4oaIiIhkhcUNERERycr/A6myrtOZFtS3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lab02_lib.plot2in1_anomaly(data, xx, yy, Z1, Z2, data_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Требования к данным для обучения.** Модели устойчиво обучаются на ~1000 точках, одинаково покрывающих окрестность центра (3,3); важно сохранять плотное покрытие нормального класса, иначе EDCA начинает наращивать Excess. Для расширения применимости полезно включать шумовые варианты нормы, чтобы автокодировщик не подстраивался под излишне узкую область.\n", + "\n", + "**Требования к архитектуре автокодировщика.** Простая схема 2-1-2 даёт высокую реконструкционную ошибку и аномалии пропусков (Excess ≈4.61), тогда как более глубокая 2-3-5-2-1-2-5-3-2 заметно снижает ошибки и повышает точность (Approx ≈0.5). Следовательно, архитектура должна обеспечивать достаточную ёмкость, но оставаться симметричной и узкой в бутылочном слое.\n", + "\n", + "**Требования к количеству эпох.** AE1 при 1000 эпохах останавливается с MSE≈0.0134, не достигая требуемого уровня; AE2 при 3000 эпохах и patience=500 снижается до MSE≈0.0096. Поэтому планируй не менее 3000 эпох с ранней остановкой, чтобы дать сложной модели время на сходимость.\n", + "\n", + "**Требование к MSE_stop.** Практически приемлемый порог остановки оказался <0.01: AE2 уложился в ТЗ, в то время как AE1 чуть превысил его. Следовательно, критерий MSE_stop нужно удерживать не выше 0.01, иначе растёт риск пропуска аномалий.\n", + "\n", + "**Порог ошибки реконструкции.** Для AE1 автоматический порог IREth≈1.71 слишком высокий и плохо отделяет аномалии, а AE2 достиг IREth≈0.44, что позволило уловить все аномалии теста. Значит, целевой порог должен быть около 0.4–0.5 для данного масштаба признаков, при необходимости рассчитывая его по более строгой квантильной схеме.\n", + "\n", + "**Характеристики качества обучения EDCA.** AE1 показал Excess≈4.61 и Approx≈0.18, что указывает на большие ложные покрытия и низкую точность; у AE2 Excess≈1.0 и Approx≈0.5, что значительно ближе к идеальности. Для качественного обнаружения аномалий EDCA требует сочетать низкий Excess и высокую Approx, что достигается во второй архитектуре." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}