{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "HUUZx52sc1LD" }, "outputs": [], "source": [ "import os\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks')" ] }, { "cell_type": "code", "source": [ "# импорт модулей\n", "from tensorflow import keras\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import sklearn" ], "metadata": { "id": "3Y-Ux1dadqdA" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка датасета\n", "from keras.datasets import mnist\n", "(X_train, y_train), (X_test, y_test) = mnist.load_data()" ], "metadata": { "id": "w25XE8ADdqP5" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# создание своего разбиения датасета\n", "from sklearn.model_selection import train_test_split\n", "# объединяем в один набор\n", "X = np.concatenate((X_train, X_test))\n", "y = np.concatenate((y_train, y_test))\n", "# разбиваем по вариантам\n", "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", "test_size = 10000,\n", "train_size = 60000,\n", "random_state = 19) #(5*4-1)" ], "metadata": { "id": "QcXt9zqCdqDH" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)" ], "metadata": { "id": "9Cd705vod51B", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Выводим 4 изображения\n", "plt.figure(figsize=(10, 3))\n", "for i in range(4):\n", " plt.subplot(1, 4, i + 1)\n", " plt.imshow(X_train[i], cmap='gray')\n", " plt.title(f'Label: {y_train[i]}')\n", " plt.axis('off')\n", "plt.tight_layout()\n", "plt.show()\n", "\n" ], "metadata": { "id": "vLYfI---d5rm", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# развернем каждое изображение 28*28 в вектор 784\n", "num_pixels = X_train.shape[1] * X_train.shape[2]\n", "X_train = X_train.reshape(X_train.shape[0], num_pixels) / 255\n", "X_test = X_test.reshape(X_test.shape[0], num_pixels) / 255\n", "print('Shape of transformed X train:', X_train.shape)" ], "metadata": { "id": "d0oyu59gd5fz", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# переведем метки в one-hot\n", "from keras.utils import to_categorical\n", "\n", "y_train = to_categorical(y_train)\n", "y_test = to_categorical(y_test)\n", "\n", "print('Shape of transformed y train:', y_train.shape)\n", "num_classes = y_train.shape[1]" ], "metadata": { "id": "Q227fINPeD1A", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from keras.models import Sequential\n", "from keras.layers import Dense" ], "metadata": { "id": "TzaA61smeDoO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# 1. создаем модель - объявляем ее объектом класса Sequential\n", "model = Sequential()\n", "# 2. добавляем выходной слой(скрытые слои отсутствуют)\n", "model.add(Dense(units=num_classes, activation='softmax'))\n", "# 3. компилируем модель\n", "model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "Liq39zruhz0d" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model.summary())" ], "metadata": { "id": "jMGGsq7piZOu", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "n_pCdxphiedM", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод графика ошибки по эпохам\n", "plt.plot(H.history['loss'])\n", "plt.plot(H.history['val_loss'])\n", "plt.grid()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('loss')\n", "plt.legend(['train_loss', 'val_loss'])\n", "plt.title('Loss by epochs')\n", "plt.show()" ], "metadata": { "id": "Sz_YOlsVivoR", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "hpJALaZGnyWF", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model.save('/content/drive/MyDrive/Colab Notebooks/models/model_zero_hide.keras')" ], "metadata": { "id": "Z6eSmpwXn1zM" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model100 = Sequential()\n", "model100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", "model100.add(Dense(units=num_classes, activation='softmax'))\n", "\n", "model100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "G1qGmPNF9afO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model100.summary())" ], "metadata": { "id": "2WtfjJKY9abn", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model100.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "rPuWd80o9aYD", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод графика ошибки по эпохам\n", "plt.plot(H.history['loss'])\n", "plt.plot(H.history['val_loss'])\n", "plt.grid()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('loss')\n", "plt.legend(['train_loss', 'val_loss'])\n", "plt.title('Loss by epochs')\n", "plt.show()" ], "metadata": { "id": "JLrW7S1g9aUe", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model100.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "8jdS02JZ9aRc", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide.keras')" ], "metadata": { "id": "_bR3qoBy9aNy" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model300 = Sequential()\n", "model300.add(Dense(units=300,input_dim=num_pixels, activation='sigmoid'))\n", "model300.add(Dense(units=num_classes, activation='softmax'))\n", "\n", "model300.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "V4m3nGORGnPC" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model300.summary())" ], "metadata": { "id": "yETaYKzdA9fp", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model300.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "SFPh0Lw-A9Zq", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод графика ошибки по эпохам\n", "plt.plot(H.history['loss'])\n", "plt.plot(H.history['val_loss'])\n", "plt.grid()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('loss')\n", "plt.legend(['train_loss', 'val_loss'])\n", "plt.title('Loss by epochs')\n", "plt.show()" ], "metadata": { "id": "6mvOMGiLA9QE", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model300.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "WOJyUHP79Z86" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model300.save('/content/drive/MyDrive/Colab Notebooks/models/model300in_1hide.keras')" ], "metadata": { "id": "XsWc7S4aCyiE" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model500 = Sequential()\n", "model500.add(Dense(units=500,input_dim=num_pixels, activation='sigmoid'))\n", "model500.add(Dense(units=num_classes, activation='softmax'))\n", "\n", "model500.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "QSL-6YbkJxm0" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model500.summary())" ], "metadata": { "id": "Vs1x3ooKCybg" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model500.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "x3kzDT5qCyYY" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод графика ошибки по эпохам\n", "plt.plot(H.history['loss'])\n", "plt.plot(H.history['val_loss'])\n", "plt.grid()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('loss')\n", "plt.legend(['train_loss', 'val_loss'])\n", "plt.title('Loss by epochs')\n", "plt.show()" ], "metadata": { "id": "FwSLP5I8CyU0" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model500.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "5mDveUNPCyRH" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model500.save('/content/drive/MyDrive/Colab Notebooks/models/model500in_1hide.keras')" ], "metadata": { "id": "4IEeNu1rCyNj" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model10050 = Sequential()\n", "model10050.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", "model10050.add(Dense(units=50,activation='sigmoid'))\n", "model10050.add(Dense(units=num_classes, activation='softmax'))\n", "\n", "model10050.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "Ld4hMck_CyKT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model10050.summary())" ], "metadata": { "id": "GVZLuKvqNZEK" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model10050.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "UP0suqUbNY9R" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод графика ошибки по эпохам\n", "plt.plot(H.history['loss'])\n", "plt.plot(H.history['val_loss'])\n", "plt.grid()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('loss')\n", "plt.legend(['train_loss', 'val_loss'])\n", "plt.title('Loss by epochs')\n", "plt.show()" ], "metadata": { "id": "k-DhnF0SNY3K" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model10050.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "-7E0BUrMNYx9" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model10050.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_50in_2hide.keras')" ], "metadata": { "id": "yu11cXisCyCh" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "model100100 = Sequential()\n", "model100100.add(Dense(units=100,input_dim=num_pixels, activation='sigmoid'))\n", "model100100.add(Dense(units=100,activation='sigmoid'))\n", "model100100.add(Dense(units=num_classes, activation='softmax'))\n", "\n", "model100100.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])" ], "metadata": { "id": "pTTia0gmRFaV" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод информации об архитектуре модели\n", "print(model100100.summary())" ], "metadata": { "id": "XQHhKm8YRFW6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Обучаем модель\n", "H = model100100.fit(X_train, y_train, validation_split=0.1, epochs=50)" ], "metadata": { "id": "oCgqwCmPRFTT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "ke" ], "metadata": { "id": "YDdSpQO5RFPn" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Оценка качества работы модели на тестовых данных\n", "scores = model100100.evaluate(X_test, y_test)\n", "print('Loss on test data:', scores[0])\n", "print('Accuracy on test data:', scores[1])" ], "metadata": { "id": "D_WHUHCwRFMS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение модели на диск\n", "model100100.save('/content/drive/MyDrive/Colab Notebooks/models/model100in_1hide_100in_2hide.keras')" ], "metadata": { "id": "fkBAnNf2RFDL" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# сохранение лучшей модели в папку best_model\n", "model100.save('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" ], "metadata": { "id": "mXGyPCNdS91i" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Загрузка модели с диска\n", "from keras.models import load_model\n", "model = load_model('/content/drive/MyDrive/Colab Notebooks/best_model/model100.keras')" ], "metadata": { "id": "ILyFn-CJp1k8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод тестового изображения и результата распознавания\n", "n = 111\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "print('Real mark: ', str(np.argmax(y_test[n])))\n", "print('NN answer: ', str(np.argmax(result)))" ], "metadata": { "id": "cCk7Do1mp-xb" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод тестового изображения и результата распознавания\n", "n = 222\n", "result = model.predict(X_test[n:n+1])\n", "print('NN output:', result)\n", "plt.imshow(X_test[n].reshape(28,28), cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "print('Real mark: ', str(np.argmax(y_test[n])))\n", "print('NN answer: ', str(np.argmax(result)))" ], "metadata": { "id": "HrL0sv-1YosF" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка собственного изображения\n", "from PIL import Image\n", "file_data = Image.open('test.png')\n", "file_data = file_data.convert('L') # перевод в градации серого\n", "test_img = np.array(file_data)" ], "metadata": { "id": "tfARmJMip_D8" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод собственного изображения\n", "plt.imshow(test_img, cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "# предобработка\n", "test_img = test_img / 255\n", "test_img = test_img.reshape(1, num_pixels)\n", "# распознавание\n", "result = model.predict(test_img)\n", "print('I think it\\'s ', np.argmax(result))" ], "metadata": { "id": "60zdtlMduHhT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка собственного изображения\n", "from PIL import Image\n", "file2_data = Image.open('test_2.png')\n", "file2_data = file2_data.convert('L') # перевод в градации серого\n", "test2_img = np.array(file2_data)" ], "metadata": { "id": "JcO7pbCSuvrv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод собственного изображения\n", "plt.imshow(test2_img, cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "# предобработка\n", "test2_img = test2_img / 255\n", "test2_img = test2_img.reshape(1, num_pixels)\n", "# распознавание\n", "result_2 = model.predict(test2_img)\n", "print('I think it\\'s ', np.argmax(result_2))" ], "metadata": { "id": "2E0evx2su4y1" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка собственного изображения, повернутого на 90 градусов\n", "from PIL import Image\n", "file90_data = Image.open('test90.png')\n", "file90_data = file90_data.convert('L') # перевод в градации серого\n", "test90_img = np.array(file90_data)" ], "metadata": { "id": "ZsRQAhIIa_vD" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод собственного изображения\n", "plt.imshow(test90_img, cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "# предобработка\n", "test90_img = test90_img / 255\n", "test90_img = test90_img.reshape(1, num_pixels)\n", "# распознавание\n", "result_3 = model.predict(test90_img)\n", "print('I think it\\'s ', np.argmax(result_3))" ], "metadata": { "id": "nQnk_zZMbM01" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# загрузка собственного изображения, повернутого на 90 градусов\n", "from PIL import Image\n", "file902_data = Image.open('test90_2.png')\n", "file902_data = file902_data.convert('L') # перевод в градации серого\n", "test902_img = np.array(file902_data)" ], "metadata": { "id": "IXK_VfJqbhJ3" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# вывод собственного изображения\n", "plt.imshow(test902_img, cmap=plt.get_cmap('gray'))\n", "plt.show()\n", "# предобработка\n", "test902_img = test902_img / 255\n", "test902_img = test902_img.reshape(1, num_pixels)\n", "# распознавание\n", "result_4 = model.predict(test902_img)\n", "print('I think it\\'s ', np.argmax(result_4))" ], "metadata": { "id": "S5WcjVtMb-bp" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "n4-_iFTWXNTJ" }, "execution_count": null, "outputs": [] } ] }