{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "source": [ "### 1) В среде Google Colab создали новый блокнот (notebook). Импортировали необходимые для работы библиотеки и модули. Настроили блокнот для работы с аппаратным ускорителем GPU." ], "metadata": { "id": "gz18QPRz03Ec" } }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rrZujwYe0bon", "outputId": "20871566-ff68-40ea-c75e-c8462d282a25" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "# импорт модулей\n", "import os\n", "os.mkdir('/content/drive/MyDrive/Colab Notebooks/is_lab4')\n", "os.chdir('/content/drive/MyDrive/Colab Notebooks/is_lab4')\n", "\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Sequential\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n" ], "metadata": { "id": "mr9IszuQ1ANG" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "import tensorflow as tf\n", "device_name = tf.test.gpu_device_name()\n", "if device_name != '/device:GPU:0':\n", " raise SystemError('GPU device not found')\n", "print('Found GPU at: {}'.format(device_name))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "o63-lKG_RuNc", "outputId": "b82bed4a-c142-4223-b073-5906c07bd3a8" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Found GPU at: /device:GPU:0\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 2) Загрузили набор данных IMDb, содержащий оцифрованные отзывы на фильмы, размеченные на два класса: позитивные и негативные. При загрузке набора данных параметр seed выбрали равным значению (4k – 1)=15, где k=4 – номер бригады. Вывели размеры полученных обучающих и тестовых массивов данных." ], "metadata": { "id": "FFRtE0TN1AiA" } }, { "cell_type": "code", "source": [ "# загрузка датасета\n", "from keras.datasets import imdb\n", "\n", "vocabulary_size = 5000\n", "index_from = 3\n", "\n", "(X_train, y_train), (X_test, y_test) = imdb.load_data(\n", " path=\"imdb.npz\",\n", " num_words=vocabulary_size,\n", " skip_top=0,\n", " maxlen=None,\n", " seed=15,\n", " start_char=1,\n", " oov_char=2,\n", " index_from=index_from\n", " )\n", "\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of y train:', y_train.shape)\n", "print('Shape of X test:', X_test.shape)\n", "print('Shape of y test:', y_test.shape)" ], "metadata": { "id": "Ixw5Sp0_1A-w", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "270a0783-e583-4feb-aeba-991bd5d220c2" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.npz\n", "\u001b[1m17464789/17464789\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 0us/step\n", "Shape of X train: (25000,)\n", "Shape of y train: (25000,)\n", "Shape of X test: (25000,)\n", "Shape of y test: (25000,)\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 3) Вывели один отзыв из обучающего множества в виде списка индексов слов. Преобразовали список индексов в текст и вывели отзыв в виде текста. Вывели длину отзыва. Вывели метку класса данного отзыва и название класса (1 – Positive, 0 – Negative)." ], "metadata": { "id": "aCo_lUXl1BPV" } }, { "cell_type": "code", "source": [ "# создание словаря для перевода индексов в слова\n", "# заргузка словаря \"слово:индекс\"\n", "word_to_id = imdb.get_word_index()\n", "# уточнение словаря\n", "word_to_id = {key:(value + index_from) for key,value in word_to_id.items()}\n", "word_to_id[\"\"] = 0\n", "word_to_id[\"\"] = 1\n", "word_to_id[\"\"] = 2\n", "word_to_id[\"\"] = 3\n", "# создание обратного словаря \"индекс:слово\"\n", "id_to_word = {value:key for key,value in word_to_id.items()}" ], "metadata": { "id": "9W3RklPcZyH0", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "d3dbd233-890c-40e8-b669-3585c80d3ef7" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb_word_index.json\n", "\u001b[1m1641221/1641221\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1us/step\n" ] } ] }, { "cell_type": "code", "source": [ "print(X_train[26])\n", "print('len:',len(X_train[26]))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Nu-Bs1jnaYhB", "outputId": "2625802e-784b-4300-9cd7-9b3aba751900" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1, 608, 17, 316, 47, 3381, 46, 14, 22, 9, 6, 601, 912, 8, 49, 2461, 14, 9, 88, 12, 16, 6, 2207, 2, 22, 15, 69, 6, 176, 7, 819, 2, 42, 2, 180, 8, 751, 2, 8, 1090, 4, 2, 1745, 675, 21, 4, 22, 47, 111, 85, 1508, 17, 73, 10, 10, 8, 895, 19, 4, 2, 186, 8, 28, 188, 27, 2, 5, 2109, 1849, 56, 4, 2, 11, 14, 22, 26, 2, 5, 92, 40, 3390, 21, 11, 175, 85, 1161, 36, 4486, 40, 2109, 150, 25, 43, 191, 81, 15, 19, 6, 2136, 512, 509, 874, 188, 8, 1231, 8, 4, 2269, 7, 4, 512, 42, 4, 451, 79, 32, 1471, 5, 3222, 34, 2, 2793, 11, 4, 355, 155, 11, 192, 4, 226, 1499, 5, 862, 1353, 114, 9, 142, 15, 47, 460, 77, 224, 18, 2109, 21, 152, 97, 101, 281, 11, 6, 1985, 20, 10, 10, 4129, 4, 1985, 1352, 26, 4, 2, 25, 28, 126, 110, 1814, 11, 4, 1985, 20, 970, 3882, 8, 124, 15, 4, 1985, 1352, 5, 2, 26, 142, 4, 451, 2, 2, 246, 49, 7, 134, 2, 26, 43, 1044, 2968, 10, 10, 50, 26, 6, 378, 7, 1076, 52, 1801, 13, 165, 179, 423, 4, 603, 409, 28, 1046, 2, 2, 2, 5, 10, 10, 1361, 48, 141, 6, 155, 70, 1778, 10, 10, 13, 82, 179, 423, 4, 1347, 18, 2, 4, 2, 2, 50, 26, 38, 111, 189, 102, 15, 2, 23, 105, 2, 2, 21, 11, 14, 420, 36, 86, 2, 6, 55, 2, 5, 1134, 1210, 1985, 2, 5, 140, 4682, 4, 1939, 13, 384, 25, 70, 516, 2, 19, 3390, 3589, 5, 75, 28, 49, 184, 976, 2, 134, 504, 1616, 30, 99, 254, 8, 276, 107, 5, 107, 295, 2, 21, 11, 801, 405, 14, 20, 271, 120, 4, 350, 5, 1608, 49, 85, 55, 2, 5, 1139, 1210, 2, 2872]\n", "len: 323\n" ] } ] }, { "cell_type": "code", "source": [ "review_as_text = ' '.join(id_to_word[id] for id in X_train[26])\n", "print(review_as_text)\n", "print('len:',len(review_as_text))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "JhTwTurtZ6Sp", "outputId": "61d0bc9b-681f-49b4-b917-d8ce7936d3d3" }, "execution_count": 9, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " ok as everyone has pointed out this film is a complete dog to some degree this is because it was a gory film that had a lot of material or down to near to escape the x rating but the film has many other flaws as well br br to begin with the seems to have got his and vampires mixed up the in this film are and don't like silver but in every other respect they behave like vampires now you just can't do that with a crappy genre flick you've got to stick to the rules of the genre or the fans get all confused and annoyed by disbelief in the wrong thing in fact the whole confusing and poorly presented plot is something that has already been done for vampires but doesn't make any sense in a werewolf movie br br secondly the werewolf costumes are the you have ever seen anybody in the werewolf movie business ought to know that the werewolf costumes and are something the fans yet some of these are just plain goofy br br there are a couple of slightly good bits i actually quite liked the score others have mentioned and br br spoiler if such a thing can exist br br i also quite liked the plan for the there are so many horror movies that on characters but in this case they first a very and effective anti werewolf and go slaughter the monsters i mean you can kill with silver bullets and we have some pretty powerful these days shouldn't be too hard to put two and two together but in typical style this movie goes over the top and adds some other very and amusing anti weapons\n", "len: 1682\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 4) Вывели максимальную и минимальную длину отзыва в обучающем множестве." ], "metadata": { "id": "4hclnNaD1BuB" } }, { "cell_type": "code", "source": [ "print('MAX Len: ',len(max(X_train, key=len)))\n", "print('MIN Len: ',len(min(X_train, key=len)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xJH87ISq1B9h", "outputId": "3a90c92e-3f5b-4cb2-a053-5093ed5b2b7f" }, "execution_count": 10, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "MAX Len: 2494\n", "MIN Len: 11\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 5) Провели предобработку данных. Выбрали единую длину, к которой будут приведены все отзывы. Короткие отзывы дополнили спецсимволами, а длинные обрезали до выбранной длины." ], "metadata": { "id": "7x99O8ig1CLh" } }, { "cell_type": "code", "source": [ "# предобработка данных\n", "from tensorflow.keras.utils import pad_sequences\n", "max_words = 500\n", "X_train = pad_sequences(X_train, maxlen=max_words, value=0, padding='pre', truncating='post')\n", "X_test = pad_sequences(X_test, maxlen=max_words, value=0, padding='pre', truncating='post')" ], "metadata": { "id": "lrF-B2aScR4t" }, "execution_count": 11, "outputs": [] }, { "cell_type": "markdown", "source": [ "### 6) Повторили пункт 4." ], "metadata": { "id": "HL2_LVga1C3l" } }, { "cell_type": "code", "source": [ "print('MAX Len: ',len(max(X_train, key=len)))\n", "print('MIN Len: ',len(min(X_train, key=len)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "81Cgq8dn9uL6", "outputId": "4d135e21-04e3-4a20-fea8-0103b448a00f" }, "execution_count": 12, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "MAX Len: 500\n", "MIN Len: 500\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 7) Повторили пункт 3. Сделали вывод о том, как отзыв преобразовался после предобработки." ], "metadata": { "id": "KzrVY1SR1DZh" } }, { "cell_type": "code", "source": [ "print(X_train[26])\n", "print('len:',len(X_train[26]))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vudlgqoCbjU1", "outputId": "399d49b8-0e27-4d4d-edf0-c952565c05df" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 1 608 17 316 47\n", " 3381 46 14 22 9 6 601 912 8 49 2461 14 9 88\n", " 12 16 6 2207 2 22 15 69 6 176 7 819 2 42\n", " 2 180 8 751 2 8 1090 4 2 1745 675 21 4 22\n", " 47 111 85 1508 17 73 10 10 8 895 19 4 2 186\n", " 8 28 188 27 2 5 2109 1849 56 4 2 11 14 22\n", " 26 2 5 92 40 3390 21 11 175 85 1161 36 4486 40\n", " 2109 150 25 43 191 81 15 19 6 2136 512 509 874 188\n", " 8 1231 8 4 2269 7 4 512 42 4 451 79 32 1471\n", " 5 3222 34 2 2793 11 4 355 155 11 192 4 226 1499\n", " 5 862 1353 114 9 142 15 47 460 77 224 18 2109 21\n", " 152 97 101 281 11 6 1985 20 10 10 4129 4 1985 1352\n", " 26 4 2 25 28 126 110 1814 11 4 1985 20 970 3882\n", " 8 124 15 4 1985 1352 5 2 26 142 4 451 2 2\n", " 246 49 7 134 2 26 43 1044 2968 10 10 50 26 6\n", " 378 7 1076 52 1801 13 165 179 423 4 603 409 28 1046\n", " 2 2 2 5 10 10 1361 48 141 6 155 70 1778 10\n", " 10 13 82 179 423 4 1347 18 2 4 2 2 50 26\n", " 38 111 189 102 15 2 23 105 2 2 21 11 14 420\n", " 36 86 2 6 55 2 5 1134 1210 1985 2 5 140 4682\n", " 4 1939 13 384 25 70 516 2 19 3390 3589 5 75 28\n", " 49 184 976 2 134 504 1616 30 99 254 8 276 107 5\n", " 107 295 2 21 11 801 405 14 20 271 120 4 350 5\n", " 1608 49 85 55 2 5 1139 1210 2 2872]\n", "len: 500\n" ] } ] }, { "cell_type": "code", "source": [ "review_as_text = ' '.join(id_to_word[id] for id in X_train[26])\n", "print(review_as_text)\n", "print('len:',len(review_as_text))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dbfkWjDI1Dp7", "outputId": "08d28188-9454-4b3c-ca6b-9ac8654d4a9b" }, "execution_count": 14, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " ok as everyone has pointed out this film is a complete dog to some degree this is because it was a gory film that had a lot of material or down to near to escape the x rating but the film has many other flaws as well br br to begin with the seems to have got his and vampires mixed up the in this film are and don't like silver but in every other respect they behave like vampires now you just can't do that with a crappy genre flick you've got to stick to the rules of the genre or the fans get all confused and annoyed by disbelief in the wrong thing in fact the whole confusing and poorly presented plot is something that has already been done for vampires but doesn't make any sense in a werewolf movie br br secondly the werewolf costumes are the you have ever seen anybody in the werewolf movie business ought to know that the werewolf costumes and are something the fans yet some of these are just plain goofy br br there are a couple of slightly good bits i actually quite liked the score others have mentioned and br br spoiler if such a thing can exist br br i also quite liked the plan for the there are so many horror movies that on characters but in this case they first a very and effective anti werewolf and go slaughter the monsters i mean you can kill with silver bullets and we have some pretty powerful these days shouldn't be too hard to put two and two together but in typical style this movie goes over the top and adds some other very and amusing anti weapons\n", "len: 2744\n" ] } ] }, { "cell_type": "markdown", "source": [ "#### После обработки в начало отзыва добавилось необходимое количество токенов , чтобы отзыв был длинной в 500 индексов." ], "metadata": { "id": "mJNRXo5TdPAE" } }, { "cell_type": "markdown", "source": [ "### 8) Вывели предобработанные массивы обучающих и тестовых данных и их размерности." ], "metadata": { "id": "YgiVGr5_1D3u" } }, { "cell_type": "code", "source": [ "# вывод данных\n", "print('X train: \\n',X_train)\n", "print('X train: \\n',X_test)\n", "\n", "# вывод размерностей\n", "print('Shape of X train:', X_train.shape)\n", "print('Shape of X test:', X_test.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7MqcG_wl1EHI", "outputId": "9cd39393-7f4b-4af2-ed1e-01a217eb04ed" }, "execution_count": 15, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "X train: \n", " [[ 0 0 0 ... 4 86 273]\n", " [ 0 0 0 ... 705 9 150]\n", " [ 0 0 0 ... 44 12 32]\n", " ...\n", " [ 0 0 0 ... 22 8 377]\n", " [ 0 0 0 ... 4 2554 647]\n", " [ 0 0 0 ... 2 4 2]]\n", "X train: \n", " [[ 0 0 0 ... 106 14 31]\n", " [ 0 0 0 ... 458 168 52]\n", " [ 0 0 0 ... 22 6 31]\n", " ...\n", " [ 0 0 0 ... 38 76 128]\n", " [ 0 0 0 ... 73 290 12]\n", " [ 0 0 0 ... 12 38 76]]\n", "Shape of X train: (25000, 500)\n", "Shape of X test: (25000, 500)\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 9) Реализовали модель рекуррентной нейронной сети, состоящей из слоев Embedding, LSTM, Dropout, Dense, и обучили ее на обучающих данных с выделением части обучающих данных в качестве валидационных. Вывели информацию об архитектуре нейронной сети. Добились качества обучения по метрике accuracy не менее 0.8." ], "metadata": { "id": "amaspXGW1EVy" } }, { "cell_type": "code", "source": [ "embed_dim = 32\n", "lstm_units = 64\n", "\n", "model = Sequential()\n", "model.add(layers.Embedding(input_dim=vocabulary_size, output_dim=embed_dim, input_length=max_words, input_shape=(max_words,)))\n", "model.add(layers.LSTM(lstm_units))\n", "model.add(layers.Dropout(0.5))\n", "model.add(layers.Dense(1, activation='sigmoid'))\n", "\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 346 }, "id": "ktWEeqWd1EyF", "outputId": "70c15204-d21f-4871-b5c7-26aebd8bdf67" }, "execution_count": 16, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it.\n", " warnings.warn(\n", "/usr/local/lib/python3.12/dist-packages/keras/src/layers/core/embedding.py:100: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(**kwargs)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ embedding (\u001b[38;5;33mEmbedding\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m500\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m160,000\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ lstm (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m24,832\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m65\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ embedding (Embedding)           │ (None, 500, 32)        │       160,000 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ lstm (LSTM)                     │ (None, 64)             │        24,832 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout (Dropout)               │ (None, 64)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense (Dense)                   │ (None, 1)              │            65 │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m184,897\u001b[0m (722.25 KB)\n" ], "text/html": [ "
 Total params: 184,897 (722.25 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m184,897\u001b[0m (722.25 KB)\n" ], "text/html": [ "
 Trainable params: 184,897 (722.25 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# компилируем и обучаем модель\n", "batch_size = 64\n", "epochs = 3\n", "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.2)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "CuPqKpX0kQfP", "outputId": "1844c134-442a-4052-aea5-a94e660c20b5" }, "execution_count": 17, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/3\n", "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 23ms/step - accuracy: 0.6328 - loss: 0.6075 - val_accuracy: 0.7826 - val_loss: 0.4588\n", "Epoch 2/3\n", "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 21ms/step - accuracy: 0.8121 - loss: 0.4143 - val_accuracy: 0.8628 - val_loss: 0.3359\n", "Epoch 3/3\n", "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 21ms/step - accuracy: 0.8905 - loss: 0.2795 - val_accuracy: 0.8506 - val_loss: 0.3324\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 17 } ] }, { "cell_type": "code", "source": [ "test_loss, test_acc = model.evaluate(X_test, y_test)\n", "print(f\"\\nTest accuracy: {test_acc}\")\n", "print(f\"\\nTest loss: {test_loss}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hJIWinxymQjb", "outputId": "9035ae8e-7c86-4a8c-d064-38ce1eee8873" }, "execution_count": 23, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m782/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 10ms/step - accuracy: 0.8544 - loss: 0.3396\n", "\n", "Test accuracy: 0.8564800024032593\n", "\n", "Test loss: 0.33131280541419983\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 10) Оценили качество обучения на тестовых данных:\n", "### - вывели значение метрики качества классификации на тестовых данных\n", "### - вывели отчет о качестве классификации тестовой выборки \n", "### - построили ROC-кривую по результату обработки тестовой выборки и вычислили площадь под ROC-кривой (AUC ROC)" ], "metadata": { "id": "mgrihPd61E8w" } }, { "cell_type": "code", "source": [ "#значение метрики качества классификации на тестовых данных\n", "print(f\"\\nTest accuracy: {test_acc}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Rya5ABT8msha", "outputId": "3ff03855-050d-402b-bf84-ca26c39671a7" }, "execution_count": 19, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "Test accuracy: 0.8564800024032593\n" ] } ] }, { "cell_type": "code", "source": [ "#отчет о качестве классификации тестовой выборки\n", "y_score = model.predict(X_test)\n", "y_pred = [1 if y_score[i,0]>=0.5 else 0 for i in range(len(y_score))]\n", "\n", "from sklearn.metrics import classification_report\n", "print(classification_report(y_test, y_pred, labels = [0, 1], target_names=['Negative', 'Positive']))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2kHjcmnCmv0Y", "outputId": "2d35dde2-ee67-4d7e-bd32-17f1a2d2276c" }, "execution_count": 20, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1m782/782\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 8ms/step\n", " precision recall f1-score support\n", "\n", " Negative 0.83 0.90 0.86 12500\n", " Positive 0.89 0.82 0.85 12500\n", "\n", " accuracy 0.86 25000\n", " macro avg 0.86 0.86 0.86 25000\n", "weighted avg 0.86 0.86 0.86 25000\n", "\n" ] } ] }, { "cell_type": "code", "source": [ "#построение ROC-кривой и AUC ROC\n", "from sklearn.metrics import roc_curve, auc\n", "\n", "fpr, tpr, thresholds = roc_curve(y_test, y_score)\n", "plt.plot(fpr, tpr)\n", "plt.grid()\n", "plt.xlabel('False Positive Rate')\n", "plt.ylabel('True Positive Rate')\n", "plt.title('ROC')\n", "plt.show()\n", "print('AUC ROC:', auc(fpr, tpr))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 489 }, "id": "Kp4AQRbcmwAx", "outputId": "a08c1feb-04d9-4828-9a00-f4c3bc87bc35" }, "execution_count": 21, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUbBJREFUeJzt3Xl4E+XaBvA7SbM03UvpSrEssskOlsMmomVTUY4KKHxQUfGoVDn0oIACFRfqinAURVSsIArucgSBghYBURAoO0WWsnWBUmi6Zn2/P9IGYws2Jck0yf27Li6S6czkyQMytzPvzCsTQggQEREReQm51AUQERERORPDDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMirMNwQERGRV2G4ISIiIq/CcENEREReheGGiIiIvArDDREREXkVhhsialQyMjIgk8lsv/z8/BAXF4cHHngAZ8+erbW+EALLli3DTTfdhNDQUGi1WnTq1AnPP/88ysvLr/g533zzDYYNG4aIiAioVCrExsZi1KhR+PHHH1359YjIDWScW4qIGpOMjAxMmDABzz//PFq0aIGqqir8+uuvyMjIQEJCAvbv3w+NRgMAMJvNGDNmDD7//HP0798fd999N7RaLTZv3oxPP/0UHTp0wIYNGxAVFWXbvxACDz74IDIyMtCtWzfce++9iI6ORn5+Pr755hvs3LkTW7duRZ8+faRqARFdK0FE1Ih89NFHAoDYsWOH3fJp06YJAGLlypW2ZXPnzhUAxNSpU2vtZ9WqVUIul4uhQ4faLX/ttdcEAPHvf/9bWCyWWtstXbpU/Pbbb076NkQkBV6WIiKP0L9/fwDAsWPHAACVlZV47bXX0KZNG6Snp9daf/jw4UhOTsbatWvx66+/2rZJT09Hu3bt8Prrr0Mmk9Xabty4cUhMTHThNyEiV2O4ISKPkJubCwAICwsDAGzZsgUXL17EmDFj4OfnV+c248ePBwB8//33tm2Ki4sxZswYKBQK1xdNRJKo+18EIiKJlZSUoKioCFVVVfjtt98wZ84cqNVq3HHHHQCAgwcPAgC6dOlyxX3U/OzQoUN2v3fq1MmVpRORxBhuiKhRSkpKsnufkJCATz75BM2aNQMAlJaWAgCCgoKuuI+an+l0Orvfr7YNEXk+hhsiapQWLlyINm3aoKSkBEuWLMHPP/8MtVpt+3lNQKkJOXX5awAKDg7+222IyPNxzA0RNUqJiYlISkrCPffcg1WrVqFjx44YM2YMysrKAADt27cHAOzdu/eK+6j5WYcOHQAA7dq1AwDs27fPlaUTkcQYboio0VMoFEhPT0deXh7efvttAEC/fv0QGhqKTz/9FGazuc7tli5dCgC2cTr9+vVDWFgYPvvssytuQ0Sej+GGiDzCzTffjMTERMyfPx9VVVXQarWYOnUqcnJy8Oyzz9Zaf/Xq1cjIyMCQIUPwj3/8AwCg1Woxbdo0HDp0CNOmTYOo4xmmn3zyCbZv3+7y70NErsMxN0TkMZ566imMHDkSGRkZePTRRzF9+nTs3r0br7zyCrZt24Z77rkH/v7+2LJlCz755BO0b98eH3/8ca19HDhwAG+88QZ++ukn2xOKCwoK8O2332L79u345ZdfJPqGROQMnH6BiBqVmukXduzYgZ49e9r9zGKxoE2bNgCAnJwcKBQKWCwWLF26FB988AH27dsHg8GAVq1aYdSoUfjPf/6DgICAOj/nq6++wuLFi/H7779Dp9OhadOmuOmmm/DYY49hwIABLv+eROQ6DDdERETkVTjmhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVfxuYf4WSwW5OXlISgoCDKZTOpyiIiIqB6EECgtLUVsbCzk8qufm/G5cJOXl4f4+HipyyAiIqIGOH36NJo1a3bVdXwu3AQFBQGwNic4ONip+zYajVi/fj0GDx4MpVLp1H3TZeyze7DP7sE+uw977R6u6rNOp0N8fLztOH41Phduai5FBQcHuyTcaLVaBAcH8z8cF2Kf3YN9dg/22X3Ya/dwdZ/rM6SEA4qJiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVeRNNz8/PPPGD58OGJjYyGTyfDtt9/+7TZZWVno3r071Go1WrdujYyMDJfXSURERJ5D0nBTXl6OLl26YOHChfVa/8SJE7j99tsxcOBAZGdn49///jcefvhhrFu3zsWVEhERkaeQdOLMYcOGYdiwYfVef9GiRWjRogXeeOMNAED79u2xZcsWvPnmmxgyZIiryiQiInI6IUT179Xv/7LcflnNe/tt8Dc//+s+RR3bwMFt//pZZouA2XJ5zyaTCTrDX7+te3nUrODbtm1DUlKS3bIhQ4bg3//+9xW30ev10Ov1tvc6nQ6AddZSo9Ho1Ppq9ufs/ZI99tk92Gf38NU+G0wW6E1mmC2AWQhYLML+dwFUGcwwVR84zRYBo8UCs0WgXG9GucEMCIEL5QboqkzQqhQQArBUb2sRAuJPry0WwGQ240SuHN8s3YmIIA0Uclg/32Kx1WG2CBw9V4YQfyXUfnKYLKL6l/WzD+SVIj7M37ZvsxAQwnqAt362gNkClOlNAAC5rHYo8AUJgQrc46JjbH14VLgpKChAVFSU3bKoqCjodDpUVlbC39+/1jbp6emYM2dOreXr16+HVqt1SZ2ZmZku2S/ZY5/dg312D2f12XqAB6rMgNECmARgsACVJkAG688skFUfmK3rXzIAagVgsliXna+SQa2w7s9SvT+zsP48r0KGcLWAyWJdzywAf7/Ln2uB/evCShm0fgJ+Mus+LAKoNMuc8l0bRg7gwjXt4fTFynqva/HyQCODgID1z1Mpu/xl/eTO/7ejoqKi3ut6VLhpiBkzZiA1NdX2XqfTIT4+HoMHD0ZwcLBTP8toNCIzMxODBg2CUql06r7pMvbZPdhn19CbLCjXm3CpwojiCgPKqwzYtmMX4lq1h1athNEsYDRbcOx8OcK01vcGs/Ush67SBH31GY8Kg/W90WyBwWzB2UtVUPnJYTJbXH5APV7qWDipMP39+jIZoJDJIJfLIP/T69IqE2JCNPCTy6BUyKCQy6CQy3GhTI8mASrEhGpQYTBDIZMhJlQDucy6vUwms+6j+rVcZr28cvrkSbRskYDCMgMSmmihUsihUMhsn+cnl0Eus35uZJAaGqW8+jNlUCqsr01mC4L9ldX7l0Eu/3PtMijkqP5dBpVCbvt+ACD78xeG/bLL68jq3EZm18arr/PXfdT12bW3qXl/ldpkf/9n6ap/O2quvNSHR4Wb6OhoFBYW2i0rLCxEcHBwnWdtAECtVkOtVtdarlQqXfYPtiv3TZexz+7hq302mS2oMJpRZTTjYrkRJZVG6E1mlFaZUFSmhwzAoYJSFJcZoFDIIITAgTwdAlR+UMhlOH2xApcqjIgIVFkvrZgFSqsvVdSmAHKOXHPNBpOl1jKtSgG1nxwXK4wIUCkQHaKxBQSFHNbfZcAf58qQmBAOlZ8cSoUcZy9V4vrIQPirFPCrXt9PLoNMBugqjWgVGQiVQg6D2YIgjR+0Kj8oZDJbUFDYDvQymCwWhPqr4FcdTvzkMqj85AgPUNnWrc9B81oZjUasWXMCtw1r55N/p93N2f92OLIvjwo3vXv3xpo1a+yWZWZmonfv3hJVRESNkdkiUFxuQKXBjKJyPXSVRhTqqnD8fDnUSgV2n7qIJgEqFJUZUKo3wWiywGSx4EhhGTRKOaqMtUNCQxWV1T2yUqOUo0mAGoFqBSrLSqENCkal0Yy2UUFQ+smhUsiRe6EcXeNDoap+H6j2Q5BGaX3vJ0eovxL+KgWUCjmUCutZAutYEQU0KjnUfgqnfQ8iTyJpuCkrK8PRo0dt70+cOIHs7GyEh4ejefPmmDFjBs6ePYulS5cCAB599FG8/fbbePrpp/Hggw/ixx9/xOeff47Vq1dL9RWIyEUsFoHiCgPOl+pxsdyAk8UVsAiBfWdKcOZiJYL9/fDr8WLEh/mjymhBTmEpQvyV0JvM1xRO/rqtTAao/ayBp110ENRKBfRGM2QyGdpGBaK0yoS4MH/Eh2mtn2+2ICZYA61aAblMhhB/JZQKefXZDxnU1aFGIbeeqbCeTViD227rzbMJRE4iabj5/fffMXDgQNv7mrExycnJyMjIQH5+Pk6dOmX7eYsWLbB69WpMmTIFCxYsQLNmzfDBBx/wNnAiD2IyW3C4oBSniytQWmXC4YJSAMCp4gqUVBpgNAtkn75U7/0Vl18+M1JSaX83hUYph59cjjK9Ca2aBiBA7QeVQo6eCeEo15vQMS4YoVoVNEqF7cyHTCZD00A1/FUKBPv72ZYRkeeQNNzcfPPNdvfz/1VdTx+++eabsXv3bhdWRUQNUWU0Q1dpRLnBjAtlehSVGVBQUokTReVYs78AASoFci/U/26Hv2oerkWZ3oSb2zRFhcGMuDB/dIgJhsFsQXyYFhqldaxIeIA1rIRplfBTcIYZIl/kUWNuiEgaQgicL9Nj+4liXCw3oNxgDTJnLlZi75lL9Qot5//yPiJQDX+VHNeFByBEq0S7qCDI5TIE+yvRISYY0SEaRASqOG6EiBzGcENEAKyXdw4X6HC+VI8ducU4cb4cufkKTN623qH9BKgUKDeYERfqj45xwYgN9cd14VpEBKmR0CQA4QEqNA1SQ8mzKkTkIgw3RD7EZLZge24xcosqsP3EBSgVcuSVVGLr0Ss91Mx+rElEoBpFZXoMvSEaEUEqxIT447om1oG0saH+aBkRwPEpRCQ5hhsiL2I0W3D2YiWOnS/D/rM62zNJfj95EYfyddDX8RyUv5LLgBtiQxCuVUJTcQ7jhiTi+ugQhPgroVHyEhERNX4MN0QeprTKiJyCUhwqKMX2E8WoMppRXG7AzpMX672PMK0SQzvGwGS2oFOzEHSKC0GryEAEay7filxzi3KvFuG8RZmIPArDDVEjZjRbcChfh4+25qKoTI9j58qQV1L1t9vFhmgQoPaDVqXAjQnhiArWoFVkADrEhCAySA25nJeOiMh7MdwQNQJCCOSVVOHXYxew/mABfjl2AaVVV3pUPxCk8UNplfU5LfFhWvRu1QTXRwYhIUKLqCANwwsR+TSGGyKJHD9fhu+y8/DhlhMou+KcQ1bdmoeiS7NQDO4QhTbRQYgIrD1fGhERWTHcELnJH4Wl2Hq0CF/sPIMDeXXPbtsiIgAh/krc0i4S1zXRokuzUDQP1/JMDBGRAxhuiFxk/9kS7Dx5EV/vPotzuirkX2GszJ1dYtHv+gjc3ikGAWr+J0lEdK34LymREwghkJVzHl/uOoMfD51DpdFc53pd40PRrXkoIgLVuD+xOcIDVG6ulIjI+zHcEDVAcbkB31SfkfnjXBl+PHyuzvViQjQY2C4SneNCMKxjDEK0vKWaiMjVGG6I6mH/2RJ8tesMfjtejAqD6YpzKbWODMTNbZpiWKcYdIgJhr+KD70jInI3hhuiK6gwmPDq2hws/+0kjObas9dHBKrRITYYPa8LQ6e4EPRqGQ6tiv9JERFJjf8SE/1JaZUR32bnYVX2WezIrf3E38EdonBr+0h0iQ9F26ggzqNERNQIMdyQzyupMGLmd/tx/HwZDheUwmy5fJYmUO0Ho9mCNZP7o1XTQAmrJCKi+mK4IZ9jtggcO1+GTTnnsSO3GBsOFeJPeQbNwvxxR+dYjOgWy7MzREQeiOGGfMbBPB2W/3YSy387VetnTQJUuC8xHvf2iEdCEy0DDRGRB2O4Ia+WffoSPvvtFP63Nw8VBvtnzyQ00aJ5kwAMah+JkT3joVHyziYiIm/AcENex2IRmL/hCP7749FaP1PIZXj85laYNLA1wwwRkZdiuCGvYLEIbPrjPNbszcfa/QUo/dNElF2aheDOrnEYfWM8Ajm9ARGR1+O/9OSxyvUmrNmVj+W/naw1EaVWpUBii3DMuqMD73IiIvIxDDfkUcwWge/35uOdA3JM3vZjrZ8r5DLMG9UFQ26I5mUnIiIfxXBDHuF0cQXmZR7B//bkwWQRAOS2n93aLhJ9Wkfg//7RHGo/BhoiIl/HcEONWqXBjHc3HcN/N/5ht7xTmAWPDOmG2zvHQS7nbdtERHQZww01SlVGM+ZlHsGK7aegq7o8OPie7s3w7LDrsfnHTAy9IYrBhoiIamG4oUblXGkVJi7diT2nL9mWhWqVuO/G5njiltYIUPvBaDRKVyARETV6DDfUKPxRWIpvdp/FO1nH7JZP6JuAGcPaQ+Unv8KWRERE9hhuSBJGswWfbT+F1Xvz8duJ4lo/f7BvCzw1pC38VRwgTEREjmG4Ibf7/PfTePrLvbWWhweokNw7AU/c0ppjaYiIqMEYbshtCkqq8OSK3dhefabGTy6DUiHHgvu6ovt1YYgIVEtcIREReQOGG3KLnIJS/N+Hv+F8qR4A0KtFOD6acCO0Kv4VJCIi5+KRhVzKaLZgyZYTSP/hMADrE4Qf7tcCTw9tBwUvPRERkQsw3JDLmMwWjH3/N2zPtV6G6tY8FG+P6Y64UH+JKyMiIm/GcENOJ4TA7ycv4sGPdthm574/sTleHNGRZ2uIiMjlGG7IaQpKqvDMN/uQffoSissNtuVz/9kJY3o1l7AyIiLyJQw35BTHzpfh1jc22S1Lah+JkT3jMeSGaImqIiIiX8RwQ9fMbBF2wea2TtF4Y2RXPoCPiIgkwXBD18RgsmDWt/tt71c/2Q83xIZIWBEREfk6hhtqsFMXKjDqvW0o0FUBAO7t0YzBhoiIJMdwQw2y/2wJ7nhri+19+t2dcH8iBw0TEZH0GG7IYWv3F+DRT3ba3n//RD90jOMZGyIiahzkUhdAniW3qNwu2KxK6ctgQ0REjQrP3FC95ZdUYtyS32zvdzybhKZBnOySiIgaF4Ybqpd9Z0owbslvuFRhRJMAFb6d1JfBhoiIGiWGG/pbx86XYfjb1sHD4QEqLHuoF+LDtRJXRUREVDeGG7oqi0Vg9HvbbO9/mNwfUcEaCSsiIiK6OoYbuqp2s9bCYLYAAL54tDeDDRERNXq8W4rqdKnCgKR5m2zB5rZO0bgxIVziqoiIiP4eww3VYjRbkLxkO46eKwMABGv88Pb93SWuioiIqH54WYrs7DtTgqlf7EFOYSkUchleuKsjxvTik4eJiMhzMNyQzdFzpba7ogBg4ZhuGNoxRsKKiIiIHMdwQwCAQl0VHsz43fZ+3b9vQtvoIAkrIiIiahiGG8LeM5cwctE26E3WwcNZU29GQkSAxFURERE1DMONj9v8x3mM+3A7AEAhl2HhmO4MNkRE5NEYbnzYvMwj+O/GP2zvv5vESTCJiMjzSX4r+MKFC5GQkACNRoNevXph+/btV11//vz5aNu2Lfz9/REfH48pU6agqqrKTdV6j1fWHrYLNpufHshgQ0REXkHSMzcrV65EamoqFi1ahF69emH+/PkYMmQIcnJyEBkZWWv9Tz/9FNOnT8eSJUvQp08fHDlyBA888ABkMhnmzZsnwTfwTDkFpVi06Zjt/R8vDYNSIXnOJSIicgpJj2jz5s3DxIkTMWHCBHTo0AGLFi2CVqvFkiVL6lz/l19+Qd++fTFmzBgkJCRg8ODBuP/++//2bA9ddq60CsPf3gIhgFCtEoeeH8pgQ0REXkWyMzcGgwE7d+7EjBkzbMvkcjmSkpKwbdu2Orfp06cPPvnkE2zfvh2JiYk4fvw41qxZg3Hjxl3xc/R6PfR6ve29TqcDABiNRhiNRid9G9j2+effG6MpK7JhqL4r6ptH/wE/mQVGo0XiqhzjCX32Buyze7DP7sNeu4er+uzI/iQLN0VFRTCbzYiKirJbHhUVhcOHD9e5zZgxY1BUVIR+/fpBCAGTyYRHH30UzzzzzBU/Jz09HXPmzKm1fP369dBqtdf2Ja4gMzPTJfu9Vv87KcfWPOtZmpEtzNi77Sfslbima9FY++xt2Gf3YJ/dh712D2f3uaKiot7retTdUllZWZg7dy7eeecd9OrVC0ePHsXkyZPxwgsvYNasWXVuM2PGDKSmptre63Q6xMfHY/DgwQgODnZqfUajEZmZmRg0aBCUSqVT932ttucWY8M260P67ruxGV64s4PEFTVcY+6zN2Gf3YN9dh/22j1c1eeaKy/1IVm4iYiIgEKhQGFhod3ywsJCREdH17nNrFmzMG7cODz88MMAgE6dOqG8vByPPPIInn32WcjltceOqNVqqNXqWsuVSqXL/nK7ct8Nsf9sCR5ZthsA0KVZCNLv7gyZTCZxVdeusfXZW7HP7sE+uw977R7O7rMj+5JsJKlKpUKPHj2wceNG2zKLxYKNGzeid+/edW5TUVFRK8AoFAoAgBDCdcV6sCqjGaPe24ZygxnhASosHt/TK4INERHRlUh6WSo1NRXJycno2bMnEhMTMX/+fJSXl2PChAkAgPHjxyMuLg7p6ekAgOHDh2PevHno1q2b7bLUrFmzMHz4cFvIIXvjl2xHhcEMAPjfE/0QFayRuCIiIiLXkjTcjB49GufPn8fs2bNRUFCArl27Yu3atbZBxqdOnbI7UzNz5kzIZDLMnDkTZ8+eRdOmTTF8+HC89NJLUn2FRu2ut7dgz5kSAMC7Y7sjLtRf4oqIiIhcT/IBxSkpKUhJSanzZ1lZWXbv/fz8kJaWhrS0NDdU5tmOFJbags3Atk0xrFOMxBURERG5B5/e5oWEEBj+1hbb+w+Sb5SwGiIiIvdiuPFC72Qdg776QX1r/90fCjkHEBMRke9guPEyhwt0eG1dDgCgx3VhaBft3Gf5EBERNXYMN15myso9AIAgtR+WPpgocTVERETux3DjRbafKMahfOsTHF+5tzMC1JKPFyciInI7hhsvMnGpdXqFpPaRuI13RxERkY9iuPESB/JKUFJpnTE1dVBbiashIiKSDsONl1iw4Q/b6w6xHERMRES+i+HGC1QazFh/0DoB6dTBbSSuhoiISFoMN15g4U9Hba/H9rpOwkqIiIikx3Dj4S6U6fHR1hMAgD6tmiAsQCVxRURERNJiuPFwkz7dhfLqWb/fur+bxNUQERFJj+HGg5XrTfj1eDEAYELfBDQJVEtcERERkfQYbjzY6n35ttfTh7WTsBIiIqLGg+HGg33y60kAwD9ahkPtp5C4GiIiosaB4cZDXSw3YO+ZEgDA7XwaMRERkQ3DjYea/vVeAIBKIceoG+MlroaIiKjxYLjxQEIIrDtgfWhfcp/reEmKiIjoTxhuPNC8zCO214/c1ErCSoiIiBofhhsPYzRb8NaP1icS358Yj6ZBvP2biIjozxhuPMwau9u/20tYCRERUePEcONhasJNYotwhPgrJa6GiIio8WG48SAVBpNtIPGYxOYSV0NERNQ4Mdx4kC9+PwMA8FcqcEdnPtuGiIioLgw3HmT9wQIAwC3tI+Gn4B8dERFRXXiE9BAFJVXYevQCAGB451iJqyEiImq8GG48xMj3fgEAtGoagEEdoiSuhoiIqPFiuPEAq/fm43RxJQDg7u7NoJDLJK6IiIio8WK48QAvrj4IAGgZEYBJA1tLXA0REVHjxnDTyAkhkF9SBQBIv7uTxNUQERE1fgw3jdy32Wdtrzs1C5GwEiIiIs/AcNPIvbXROo9UYkI4tCo/iashIiJq/BhuGjGj2YLjReUAgNv50D4iIqJ6uaZwU1VV5aw6qA6Lfz5uez2iW5yElRAREXkOh8ONxWLBCy+8gLi4OAQGBuL4cesBeNasWfjwww+dXqCvEkJg+a8nAQDdm4dykkwiIqJ6cjjcvPjii8jIyMCrr74KlUplW96xY0d88MEHTi3Ol+UUliKv+i6p/97fTeJqiIiIPIfD4Wbp0qVYvHgxxo4dC4VCYVvepUsXHD582KnF+bJNOecBAK0jA9EsTCtxNURERJ7D4XBz9uxZtG5d+0FyFosFRqPRKUURsGpPHgDg+shAiSshIiLyLA6Hmw4dOmDz5s21ln/55Zfo1o2XT5xhzb58HMjTAQD+ndRG4mqIiIg8i8MPTpk9ezaSk5Nx9uxZWCwWfP3118jJycHSpUvx/fffu6JGn/PqWuvlvYFtm6JtdJDE1RAREXkWh8/c3HXXXfjf//6HDRs2ICAgALNnz8ahQ4fwv//9D4MGDXJFjT5FCIHcCxUAePs3ERFRQzTokbf9+/dHZmams2shAPvOltheD+0YLWElREREnsnhMzctW7bEhQsXai2/dOkSWrZs6ZSifNmGQ+dsr9V+iqusSURERHVxONzk5ubCbDbXWq7X63H27Nk6tiBHfFL94L4JfROkLYSIiMhD1fuy1KpVq2yv161bh5CQyzNUm81mbNy4EQkJCU4tzhcVlxsAWCfKJCIiIsfVO9yMGDECACCTyZCcnGz3M6VSiYSEBLzxxhtOLc7XnCu9PFdXl/hQ6QohIiLyYPUONxaLBQDQokUL7NixAxERES4ryldNXLoTACCTATEhGomrISIi8kwO3y114sQJV9RBAM4UW28BH/+P6yCTySSuhoiIyDM16Fbw8vJybNq0CadOnYLBYLD72ZNPPumUwnzN2UuVuFA93mbUjfESV0NEROS5HA43u3fvxm233YaKigqUl5cjPDwcRUVF0Gq1iIyMZLhpoPc2HbO97hATLGElREREns3hW8GnTJmC4cOH4+LFi/D398evv/6KkydPokePHnj99dddUaNPyCkoBQB0aRbCS1JERETXwOFwk52djf/85z+Qy+VQKBTQ6/WIj4/Hq6++imeeecYVNXq94+fL8NuJYgDAg/1aSFwNERGRZ3M43CiVSsjl1s0iIyNx6tQpAEBISAhOnz7t3Op8xJ4zl2yv7+rK+aSIiIiuhcNjbrp164YdO3bg+uuvx4ABAzB79mwUFRVh2bJl6Nixoytq9HoZW3MBAMM4lxQREdE1c/jMzdy5cxETEwMAeOmllxAWFobHHnsM58+fx3vvvef0An3BnjPWyTI5kJiIiOjaOXzmpmfPnrbXkZGRWLt2rVML8jVnLlbYXt/WOUbCSoiIiLyDw2durmTXrl244447HN5u4cKFSEhIgEajQa9evbB9+/arrn/p0iVMmjQJMTExUKvVaNOmDdasWdPQsiWXlXMeABCqVaJV00CJqyEiIvJ8DoWbdevWYerUqXjmmWdw/PhxAMDhw4cxYsQI3HjjjbYpGupr5cqVSE1NRVpaGnbt2oUuXbpgyJAhOHfuXJ3rGwwGDBo0CLm5ufjyyy+Rk5OD999/H3FxnjsI972frc+36duK01kQERE5Q70vS3344YeYOHEiwsPDcfHiRXzwwQeYN28ennjiCYwePRr79+9H+/btHfrwefPmYeLEiZgwYQIAYNGiRVi9ejWWLFmC6dOn11p/yZIlKC4uxi+//AKlUgkAHj0TuclsweniSgDAP1o1kbgaIiIi71DvcLNgwQK88soreOqpp/DVV19h5MiReOedd7Bv3z40a9bM4Q82GAzYuXMnZsyYYVsml8uRlJSEbdu21bnNqlWr0Lt3b0yaNAnfffcdmjZtijFjxmDatGlQKBR1bqPX66HX623vdTodAMBoNMJoNDpc99XU7K+++z1SWGp7/c8u0U6vx1s52mdqGPbZPdhn92Gv3cNVfXZkf/UON8eOHcPIkSMBAHfffTf8/Pzw2muvNSjYAEBRURHMZjOioqLslkdFReHw4cN1bnP8+HH8+OOPGDt2LNasWYOjR4/i8ccfh9FoRFpaWp3bpKenY86cObWWr1+/HlqttkG1/53MzMx6rfdHiQyAAqEqgY3rOTDbUfXtM10b9tk92Gf3Ya/dw9l9rqio+PuVqtU73FRWVtrCgEwmg1qttt0S7i4WiwWRkZFYvHgxFAoFevTogbNnz+K11167YriZMWMGUlNTbe91Oh3i4+MxePBgBAc799Zro9GIzMxMDBo0yHbZ7GpeXpsD4CSiw4Jw2219nFqLN3O0z9Qw7LN7sM/uw167h6v6XHPlpT4cuhX8gw8+QGCg9Y4ek8mEjIwMRETYD4St78SZERERUCgUKCwstFteWFiI6Oi6H2YXExMDpVJpdwmqffv2KCgogMFggEqlqrWNWq2GWq2utVypVLrsL3d99733bPUflEzG/9AawJV/hnQZ++we7LP7sNfu4ew+O7Kveoeb5s2b4/3337e9j46OxrJly+zWkclk9Q43KpUKPXr0wMaNGzFixAgA1jMzGzduREpKSp3b9O3bF59++iksFottCogjR44gJiamzmDT2AWqre0f0LapxJUQERF5j3qHm9zcXKd/eGpqKpKTk9GzZ08kJiZi/vz5KC8vt909NX78eMTFxSE9PR0A8Nhjj+Htt9/G5MmT8cQTT+CPP/7A3Llz6x2oGpv9edYzN92bh0lcCRERkfdw+AnFzjR69GicP38es2fPRkFBAbp27Yq1a9faBhmfOnXKdoYGAOLj47Fu3TpMmTIFnTt3RlxcHCZPnoxp06ZJ9RUarLjcgPOl1ru4/tGSt4ETERE5i6ThBgBSUlKueBkqKyur1rLevXvj119/dXFVrrf71EUAQLDGDyH+vPZLRETkLE6bfoEcc6SwDABQYTBLXAkREZF3YbiRyKfbTwIA7urquVNHEBERNUYMNxLRKq1XBMMDeEmKiIjImRoUbo4dO4aZM2fi/vvvt01y+cMPP+DAgQNOLc6bnb5ofdIiz9wQERE5l8PhZtOmTejUqRN+++03fP311ygrs44d2bNnzxWfEkz2Kg1m21ib65q4ZgoIIiIiX+VwuJk+fTpefPFFZGZm2j0475ZbbvGKu5jc4UBeCQDrQ/wCVJLfsEZERORVHA43+/btwz//+c9ayyMjI1FUVOSUorzdmYuVAIAyvQlyuUziaoiIiLyLw+EmNDQU+fn5tZbv3r0bcXEcP1IfWTnWcUq3touUuBIiIiLv43C4ue+++zBt2jQUFBRAJpPBYrFg69atmDp1KsaPH++KGr3OjlzrA/yCNLwkRURE5GwOh5u5c+eiXbt2iI+PR1lZGTp06ICbbroJffr0wcyZM11Ro9c5e8l6WapHQrjElRAREXkfh08dqFQqvP/++5g1axb279+PsrIydOvWDddff70r6vM6JrPF9rpXC4YbIiIiZ3M43GzZsgX9+vVD8+bN0bx5c1fU5NUO5utsr1s1DZSwEiIiIu/k8GWpW265BS1atMAzzzyDgwcPuqImr5ZXfUkKABS8U4qIiMjpHA43eXl5+M9//oNNmzahY8eO6Nq1K1577TWcOXPGFfV5naPnrA897HFdmMSVEBEReSeHw01ERARSUlKwdetWHDt2DCNHjsTHH3+MhIQE3HLLLa6o0ascyLNeltIoOa0XERGRK1zTEbZFixaYPn06Xn75ZXTq1AmbNm1yVl1ea8OhQgBAz+s4mJiIiMgVGhxutm7discffxwxMTEYM2YMOnbsiNWrVzuzNq8jhIDRLAAAN8QGS1wNERGRd3L4bqkZM2ZgxYoVyMvLw6BBg7BgwQLcdddd0Go5AeTfqbkkBQB9W0dIWAkREZH3cjjc/Pzzz3jqqacwatQoRETwAO2Ib3afBQBEBKoQoObTiYmIiFzB4SPs1q1bXVGHT9h1yjrtwk1tmkpcCRERkfeqV7hZtWoVhg0bBqVSiVWrVl113TvvvNMphXmjC2UGAECzMF7CIyIicpV6hZsRI0agoKAAkZGRGDFixBXXk8lkMJvNzqrNqwghcKq4AgAwsC3P3BAREblKvcKNxWKp8zXV35mLl59M3DY6SMJKiIiIvJvDt4IvXboUer2+1nKDwYClS5c6pShvlFNQanutVXEwMRERkas4HG4mTJiAkpKSWstLS0sxYcIEpxTljQzVs4GHaZUSV0JEROTdHA43QgjIZLUnfDxz5gxCQkKcUpQ3OlJoPXPTuVmotIUQERF5uXpfH+nWrRtkMhlkMhluvfVW+Pld3tRsNuPEiRMYOnSoS4r0BkqFNUcW6qokroSIiMi71Tvc1NwllZ2djSFDhiAwMND2M5VKhYSEBNxzzz1OL9Bb7Dl9CQCQ2IJzShEREblSvcNNWloaACAhIQGjR4+GRqNxWVHeyFg95qbKyFvliYiIXMnh23aSk5NdUYfXO1dqvcOsTRRvAyciInKleoWb8PBwHDlyBBEREQgLC6tzQHGN4uJipxXnTWomzQzTqiSuhIiIyLvVK9y8+eabCAoKsr2+WrihuoX4K1FSaURMCC/nERERuVK9ws2fL0U98MADrqrFawkhUFJpBADEhPpLXA0REZF3c/g5N7t27cK+ffts77/77juMGDECzzzzDAwGg1OL8xYVhsuDiJsGqSWshIiIyPs5HG7+9a9/4ciRIwCA48ePY/To0dBqtfjiiy/w9NNPO71Ab1Bcbg19CrkMASqFxNUQERF5N4fDzZEjR9C1a1cAwBdffIEBAwbg008/RUZGBr766itn1+cVDuZbBxPHhGg4XomIiMjFGjT9Qs3M4Bs2bMBtt90GAIiPj0dRUZFzq/MSNc+2KSqrPeEoEREROZfD4aZnz5548cUXsWzZMmzatAm33347AODEiROIiopyeoHe4Pj5cgBAv9ZNJa6EiIjI+zkcbubPn49du3YhJSUFzz77LFq3bg0A+PLLL9GnTx+nF+gNdFXWO6V4RYqIiMj1HH5CcefOne3ulqrx2muvQaHgYNm6FJRYJ8tsExX4N2sSERHRtXI43NTYuXMnDh06BADo0KEDunfv7rSivE1l9ZibhCYBEldCRETk/RwON+fOncPo0aOxadMmhIaGAgAuXbqEgQMHYsWKFWjalONK/uqXoxcAABolz2wRERG5msNjbp544gmUlZXhwIEDKC4uRnFxMfbv3w+dTocnn3zSFTV6vJZNrWdshMR1EBER+QKHz9ysXbsWGzZsQPv27W3LOnTogIULF2Lw4MFOLc5b1FyWigvlvFJERESu5vCZG4vFAqVSWWu5Uqm0Pf+GLhNC4OSFCgCAv7LBQ5yIiIionhwON7fccgsmT56MvLw827KzZ89iypQpuPXWW51anDc4/6cH99VcniIiIiLXcTjcvP3229DpdEhISECrVq3QqlUrtGjRAjqdDm+99ZYravRoJRVG22sOKCYiInI9h6+TxMfHY9euXdi4caPtVvD27dsjKSnJ6cV5g/Ol1jM3caH+EldCRETkGxwKNytXrsSqVatgMBhw66234oknnnBVXV7DYLaOQzp7qVLiSoiIiHxDvcPNu+++i0mTJuH666+Hv78/vv76axw7dgyvvfaaK+vzeCaz9QbwTnEhEldCRETkG+o95ubtt99GWloacnJykJ2djY8//hjvvPOOK2vzCsbqMzcapcPDm4iIiKgB6n3EPX78OJKTk23vx4wZA5PJhPz8fJcU5i1qLkspFQw3RERE7lDvI65er0dAwOVbmeVyOVQqFSorOZbkag4XlAIA/BhuiIiI3MKhAcWzZs2CVqu1vTcYDHjppZcQEnJ5PMm8efOcV50XCFRbW5zPAcVERERuUe9wc9NNNyEnJ8duWZ8+fXD8+HHbe5lM5rzKvIS+euqF3q2aSFwJERGRb6h3uMnKynJhGd5r9+lLAAC1Hy9LERERuUOjOOIuXLgQCQkJ0Gg06NWrF7Zv316v7VasWAGZTIYRI0a4tsBrEBtifXjfhXKDxJUQERH5BsnDzcqVK5Gamoq0tDTs2rULXbp0wZAhQ3Du3Lmrbpebm4upU6eif//+bqq0YfQm62WpDjHBEldCRETkGyQPN/PmzcPEiRMxYcIEdOjQAYsWLYJWq8WSJUuuuI3ZbMbYsWMxZ84ctGzZ0o3VOk5vst4KruJlKSIiIreQ9IhrMBiwc+dOu3mp5HI5kpKSsG3btitu9/zzzyMyMhIPPfSQO8q8JicvVAAAtCqHp/EiIiKiBpD0iFtUVASz2YyoqCi75VFRUTh8+HCd22zZsgUffvghsrOz6/UZer0eer3e9l6n0wEAjEYjjEbjlTZrkJr91fwuhEDuhXIAQKsm/k7/PF/11z6Ta7DP7sE+uw977R6u6rMj+2tQuNm8eTPee+89HDt2DF9++SXi4uKwbNkytGjRAv369WvILuultLQU48aNw/vvv4+IiIh6bZOeno45c+bUWr5+/Xq7Z/Y4U2ZmJgDALIAKg7XFh37fglN7XPJxPqumz+Ra7LN7sM/uw167h7P7XFFRUe91HQ43X331FcaNG4exY8di9+7dtrMiJSUlmDt3LtasWVPvfUVEREChUKCwsNBueWFhIaKjo2utf+zYMeTm5mL48OG2ZRaLdUyLn58fcnJy0KpVK7ttZsyYgdTUVNt7nU6H+Ph4DB48GMHBzh3kazQakZmZiUGDBkGpVKLSYAZ+3QgAuG3oYASoeWnKGf7aZ3IN9tk92Gf3Ya/dw1V9rrnyUh8OH21ffPFFLFq0COPHj8eKFStsy/v27YsXX3zRoX2pVCr06NEDGzdutN3ObbFYsHHjRqSkpNRav127dti3b5/dspkzZ6K0tBQLFixAfHx8rW3UajXUanWt5Uql0mV/uWv2XWG6vEyrUUPJQcVO5co/Q7qMfXYP9tl92Gv3cHafHdmXw+EmJycHN910U63lISEhuHTpkqO7Q2pqKpKTk9GzZ08kJiZi/vz5KC8vx4QJEwAA48ePR1xcHNLT06HRaNCxY0e77UNDQwGg1vLGoNJgtr1WKvj0ZiIiIndwONxER0fj6NGjSEhIsFu+ZcuWBt2WPXr0aJw/fx6zZ89GQUEBunbtirVr19oGGZ86dQpyuWee8SjTXx78xKkpiIiI3MPhcDNx4kRMnjwZS5YsgUwmQ15eHrZt24apU6di1qxZDSoiJSWlzstQwN9P+5CRkdGgz3SHSoN1PFBUcO3LYkREROQaDoeb6dOnw2Kx4NZbb0VFRQVuuukmqNVqTJ06FU888YQravRYx4vKAAB+HnrmiYiIyBM5HG5kMhmeffZZPPXUUzh69CjKysrQoUMHBAYGuqI+j1bzAL9Ko/lv1iQiIiJnafC9ySqVCh06dHBmLV6nZsqFyCBeliIiInIXh8PNwIEDrzo49scff7ymgrzJzpMXAQCJLcIlroSIiMh3OBxuunbtavfeaDQiOzsb+/fvR3JysrPq8gr+SgUAQG+0SFwJERGR73A43Lz55pt1Ln/uuedQVlZ2zQV5k0JdFQCgW/NQaQshIiLyIU67jef//u//sGTJEmftzisYzNYzNuEBKokrISIi8h1OCzfbtm2DRqNx1u68gsksAIDTLhAREbmRw5el7r77brv3Qgjk5+fj999/b/BD/LyVsfrMjZLPuSEiInIbh8NNSEiI3Xu5XI62bdvi+eefx+DBg51WmDc4XFAKAPDjvFJERERu41C4MZvNmDBhAjp16oSwsDBX1eR1tCqF1CUQERH5DIeulygUCgwePLhBs3/7mnK9yfb6uiYBElZCRETkWxweDNKxY0ccP37cFbV4leJyg+11sKbBD4ImIiIiBzkcbl588UVMnToV33//PfLz86HT6ex+kVV+ifUZN7Ehmqs+0ZmIiIicq96nFJ5//nn85z//wW233QYAuPPOO+0O2kIIyGQymM2cJBK4PPVCU84rRURE5Fb1Djdz5szBo48+ip9++smV9XgNAeszbixC4kKIiIh8TL3DjRDWo/SAAQNcVow3OZBnvUTHqReIiIjcy6ExNxw7Un+h/koAwDmdXuJKiIiIfItDt/G0adPmbwNOcXHxNRXkLSzVZ7raxwRLXAkREZFvcSjczJkzp9YTiqluNfNKqTivFBERkVs5FG7uu+8+REZGuqoWr2KqHknsJ+elPCIiIneq92kFjrdxTM2kmZxXioiIyL3qHW5q7pai+vl+bz4AwE/By1JERETuVO/LUhaLxZV1eB0/uQwmi4CGY26IiIjcikdeFwkPUAEA2kXzbikiIiJ3YrhxkQvVE2f6qxQSV0JERORbGG5cwGIRMFffLaVRssVERETuxCOvC5wvu/xU4qhgjYSVEBER+R6GGxe4VGG0vVbybikiIiK34pHXBQzVz7iJCeFZGyIiIndjuHEBg8kabjj1AhERkfvx6OsCBdUzgat4SYqIiMjtePR1gRNF5QCA4urbwYmIiMh9GG5cwFI9VUXb6CCJKyEiIvI9DDcuYDAx3BAREUmF4cYF9CYzAA4oJiIikgKPvi6w50wJAA4oJiIikgKPvi5Q83ybcr1Z4kqIiIh8D8ONC/xyrBgA0C6GY26IiIjcjeHGBS5VWqdf4GUpIiIi9+PR1wVqBhJfHxUocSVERES+h+HGycyWy9MvNAvVSlwNERGR72G4cbJL1Q8llsuAQI2ftMUQERH5IIYbJ6uqvkEqPEANhVwmbTFEREQ+iOHGyS4ZrIFGq1JIXAkREZFvYrhxsrwK6+8XyvTSFkJEROSjGG5cJDJYI3UJREREPonhxslMFutlqX6tIySuhIiIyDcx3DjZ+Srr72pOmklERCQJHoGdTAjr72V6k7SFEBER+SiGGydTVnc0VKuSthAiIiIfxXDjZObqMzdNAhhuiIiIpMBw42Q14cZPwQf4ERERSYHhxskuhxu2loiISAo8AjvZyVLrGRslp14gIiKSBMONkzWpfnZfaRXvliIiIpJCowg3CxcuREJCAjQaDXr16oXt27dfcd33338f/fv3R1hYGMLCwpCUlHTV9d3NUn1ZqnkTrbSFEBER+SjJw83KlSuRmpqKtLQ07Nq1C126dMGQIUNw7ty5OtfPysrC/fffj59++gnbtm1DfHw8Bg8ejLNnz7q58rrVjLlRccwNERGRJCQ/As+bNw8TJ07EhAkT0KFDByxatAharRZLliypc/3ly5fj8ccfR9euXdGuXTt88MEHsFgs2Lhxo5srr5vOaP1dxScUExERSULSI7DBYMDOnTuRlJRkWyaXy5GUlIRt27bVax8VFRUwGo0IDw93VZkOKTFYBxJzODEREZE0/KT88KKiIpjNZkRFRdktj4qKwuHDh+u1j2nTpiE2NtYuIP2ZXq+HXq+3vdfpdAAAo9EIo9HYwMrrZjQaEawU0Bll8PeTOX3/ZFXTV/bXtdhn92Cf3Ye9dg9X9dmR/Ukabq7Vyy+/jBUrViArKwsajabOddLT0zFnzpxay9evXw+t1vmDfk1CAQDY8esWnPJ3+u7pTzIzM6UuwSewz+7BPrsPe+0ezu5zRUVFvdeVNNxERERAoVCgsLDQbnlhYSGio6Ovuu3rr7+Ol19+GRs2bEDnzp2vuN6MGTOQmppqe6/T6WyDkIODg6/tC/yF0WjE07/9CAC4deDNaB7OO6ZcwWg0IjMzE4MGDYJSqZS6HK/FPrsH++w+7LV7uKrPNVde6kPScKNSqdCjRw9s3LgRI0aMAADb4OCUlJQrbvfqq6/ipZdewrp169CzZ8+rfoZarYZara61XKlUuuQvt95iHW3jr1bxPx4Xc9WfIdljn92DfXYf9to9nN1nR/Yl+WWp1NRUJCcno2fPnkhMTMT8+fNRXl6OCRMmAADGjx+PuLg4pKenAwBeeeUVzJ49G59++ikSEhJQUFAAAAgMDERgYKBk3wMAjGaL7bWad0sRERFJQvJwM3r0aJw/fx6zZ89GQUEBunbtirVr19oGGZ86dQpy+eWg8O6778JgMODee++1209aWhqee+45d5Zei950OdwEqCVvLRERkU9qFEfglJSUK16GysrKsnufm5vr+oIa6M9nbpR8iB8REZEkeAR2IlP144llMkDBiTOJiIgkwXDjRKbqiaX8GGyIiIgkw3DjRGXVM4HzrA0REZF0GG6cyFA95qbKaPmbNYmIiMhVGG6cqCbcNAvjo4mJiIikwnDjRIbqW8FVvFOKiIhIMjwKO1Gl0QwAUCk45oaIiEgqDDdOdKnCOmNpkD8f601ERCQVhhsnqnlCcbCmUTwbkYiIyCcx3DgRx9wQERFJj0dhJzpyrgwAoOKkmURERJLhUdiJmgSoAACniiskroSIiMh3Mdw4kbl6+oXOzUIkroSIiMh3Mdw4EeeWIiIikh7DjRPVnLnh3FJERETSYbhxIhPDDRERkeQYbpzIbLHeCs7LUkRERNJhuHGifWd1AACFnG0lIiKSCo/CTtQ8XAsAKCrTS1wJERGR72K4cSKT2XpZqnXTAIkrISIi8l0MN050+W4ptpWIiEgqPAo7kbHmOTcKDigmIiKSCsONE9WcuVHybikiIiLJMNw40a5TlwDwOTdERERSYrhxohYR1rulKgxmiSshIiLyXQw3LhAVrJa6BCIiIp/FcONE1XeCQ87LUkRERJJhuHEiIawDiuUyhhsiIiKpMNw4ke05Nww3REREkmG4caLqbANmGyIiIukw3DiRRdQ8oZjphoiISCoMN05k4ZgbIiIiyTHcOJGl+roUsw0REZF0GG6cqGbMDQcUExERSYfhxonySqoA8LIUERGRlBhunEijtLaT2YaIiEg6DDdO5Ce3tjNArZC4EiIiIt/FcONEAjUDinnqhoiISCoMN04kah7iJ20ZREREPo3hxok4txQREZH0GG6ciNMvEBERSY/hxomqsw3P3BAREUmI4caJai5LERERkXQYbpyo5rIU580kIiKSDsONE9WcueGt4ERERNJhuHEinrkhIiKSHsONk/x5vA2zDRERkXQYbpzkz2OJeVmKiIhIOgw3TvLn+6SYbYiIiKTDcOMklj+duuFzboiIiKTDcOMkdpelpCuDiIjI5zHcOMmfz9xwzA0REZF0GG6cxH5AsXR1EBER+TqGGyepNJptr9V+bCsREZFUeBR2EpPFYnutVLCtREREUuFR2EnM1Y8nVsg4eSYREZGUGG6cxGS2hhpOvUBERCStRhFuFi5ciISEBGg0GvTq1Qvbt2+/6vpffPEF2rVrB41Gg06dOmHNmjVuqvTKau6WahQNJSIi8mGSH4tXrlyJ1NRUpKWlYdeuXejSpQuGDBmCc+fO1bn+L7/8gvvvvx8PPfQQdu/ejREjRmDEiBHYv3+/myu3Z7LwzA0REVFjIHm4mTdvHiZOnIgJEyagQ4cOWLRoEbRaLZYsWVLn+gsWLMDQoUPx1FNPoX379njhhRfQvXt3vP32226u3F6lwXq3FMMNERGRtPyk/HCDwYCdO3dixowZtmVyuRxJSUnYtm1bndts27YNqampdsuGDBmCb7/9ts719Xo99Hq97b1OpwMAGI1GGI3Ga/wGlx3KuwTA+owbZ+6XaqvpL/vsWuyze7DP7sNeu4er+uzI/iQNN0VFRTCbzYiKirJbHhUVhcOHD9e5TUFBQZ3rFxQU1Ll+eno65syZU2v5+vXrodVqG1h5bXmlgFKuQI8IgczMTKftl66MfXYP9tk92Gf3Ya/dw9l9rqioqPe6koYbd5gxY4bdmR6dTof4+HgMHjwYwcHBTv2siUYjMjMzMWjQICiVSqfumy4zss9uwT67B/vsPuy1e7iqzzVXXupD0nATEREBhUKBwsJCu+WFhYWIjo6uc5vo6GiH1ler1VCr1bWWK5VKl/3lduW+6TL22T3YZ/dgn92HvXYPZ/fZkX1JOqBYpVKhR48e2Lhxo22ZxWLBxo0b0bt37zq36d27t936gPXU15XWJyIiIt8i+WWp1NRUJCcno2fPnkhMTMT8+fNRXl6OCRMmAADGjx+PuLg4pKenAwAmT56MAQMG4I033sDtt9+OFStW4Pfff8fixYul/BpERETUSEgebkaPHo3z589j9uzZKCgoQNeuXbF27VrboOFTp05BLr98gqlPnz749NNPMXPmTDzzzDO4/vrr8e2336Jjx45SfQUiIiJqRCQPNwCQkpKClJSUOn+WlZVVa9nIkSMxcuRIF1dFREREnkjyh/gRERERORPDDREREXkVhhsiIiLyKgw3RERE5FUYboiIiMirMNwQERGRV2G4ISIiIq/CcENEREReheGGiIiIvEqjeEKxOwkhADg2dXp9GY1GVFRUQKfTccZZF2Kf3YN9dg/22X3Ya/dwVZ9rjts1x/Gr8blwU1paCgCIj4+XuBIiIiJyVGlpKUJCQq66jkzUJwJ5EYvFgry8PAQFBUEmkzl13zqdDvHx8Th9+jSCg4Odum+6jH12D/bZPdhn92Gv3cNVfRZCoLS0FLGxsXYTatfF587cyOVyNGvWzKWfERwczP9w3IB9dg/22T3YZ/dhr93DFX3+uzM2NTigmIiIiLwKww0RERF5FYYbJ1Kr1UhLS4NarZa6FK/GPrsH++we7LP7sNfu0Rj67HMDiomIiMi78cwNEREReRWGGyIiIvIqDDdERETkVRhuiIiIyKsw3Dho4cKFSEhIgEajQa9evbB9+/arrv/FF1+gXbt20Gg06NSpE9asWeOmSj2bI31+//330b9/f4SFhSEsLAxJSUl/++dCVo7+fa6xYsUKyGQyjBgxwrUFeglH+3zp0iVMmjQJMTExUKvVaNOmDf/tqAdH+zx//ny0bdsW/v7+iI+Px5QpU1BVVeWmaj3Tzz//jOHDhyM2NhYymQzffvvt326TlZWF7t27Q61Wo3Xr1sjIyHB5nRBUbytWrBAqlUosWbJEHDhwQEycOFGEhoaKwsLCOtffunWrUCgU4tVXXxUHDx4UM2fOFEqlUuzbt8/NlXsWR/s8ZswYsXDhQrF7925x6NAh8cADD4iQkBBx5swZN1fuWRztc40TJ06IuLg40b9/f3HXXXe5p1gP5mif9Xq96Nmzp7jtttvEli1bxIkTJ0RWVpbIzs52c+WexdE+L1++XKjVarF8+XJx4sQJsW7dOhETEyOmTJni5so9y5o1a8Szzz4rvv76awFAfPPNN1dd//jx40Kr1YrU1FRx8OBB8dZbbwmFQiHWrl3r0joZbhyQmJgoJk2aZHtvNptFbGysSE9Pr3P9UaNGidtvv91uWa9evcS//vUvl9bp6Rzt81+ZTCYRFBQkPv74Y1eV6BUa0meTyST69OkjPvjgA5GcnMxwUw+O9vndd98VLVu2FAaDwV0legVH+zxp0iRxyy232C1LTU0Vffv2dWmd3qQ+4ebpp58WN9xwg92y0aNHiyFDhriwMiF4WaqeDAYDdu7ciaSkJNsyuVyOpKQkbNu2rc5ttm3bZrc+AAwZMuSK61PD+vxXFRUVMBqNCA8Pd1WZHq+hfX7++ecRGRmJhx56yB1leryG9HnVqlXo3bs3Jk2ahKioKHTs2BFz586F2Wx2V9kepyF97tOnD3bu3Gm7dHX8+HGsWbMGt912m1tq9hVSHQd9buLMhioqKoLZbEZUVJTd8qioKBw+fLjObQoKCupcv6CgwGV1erqG9Pmvpk2bhtjY2Fr/QdFlDenzli1b8OGHHyI7O9sNFXqHhvT5+PHj+PHHHzF27FisWbMGR48exeOPPw6j0Yi0tDR3lO1xGtLnMWPGoKioCP369YMQAiaTCY8++iieeeYZd5TsM650HNTpdKisrIS/v79LPpdnbsirvPzyy1ixYgW++eYbaDQaqcvxGqWlpRg3bhzef/99RERESF2OV7NYLIiMjMTixYvRo0cPjB49Gs8++ywWLVokdWleJSsrC3PnzsU777yDXbt24euvv8bq1avxwgsvSF0aOQHP3NRTREQEFAoFCgsL7ZYXFhYiOjq6zm2io6MdWp8a1ucar7/+Ol5++WVs2LABnTt3dmWZHs/RPh87dgy5ubkYPny4bZnFYgEA+Pn5IScnB61atXJt0R6oIX+fY2JioFQqoVAobMvat2+PgoICGAwGqFQql9bsiRrS51mzZmHcuHF4+OGHAQCdOnVCeXk5HnnkETz77LOQy/n//s5wpeNgcHCwy87aADxzU28qlQo9evTAxo0bbcssFgs2btyI3r1717lN79697dYHgMzMzCuuTw3rMwC8+uqreOGFF7B27Vr07NnTHaV6NEf73K5dO+zbtw/Z2dm2X3feeScGDhyI7OxsxMfHu7N8j9GQv899+/bF0aNHbeERAI4cOYKYmBgGmytoSJ8rKipqBZiaQCk45aLTSHYcdOlwZS+zYsUKoVarRUZGhjh48KB45JFHRGhoqCgoKBBCCDFu3Dgxffp02/pbt24Vfn5+4vXXXxeHDh0SaWlpvBW8Hhzt88svvyxUKpX48ssvRX5+vu1XaWmpVF/BIzja57/i3VL142ifT506JYKCgkRKSorIyckR33//vYiMjBQvvviiVF/BIzja57S0NBEUFCQ+++wzcfz4cbF+/XrRqlUrMWrUKKm+gkcoLS0Vu3fvFrt37xYAxLx588Tu3bvFyZMnhRBCTJ8+XYwbN862fs2t4E899ZQ4dOiQWLhwIW8Fb4zeeust0bx5c6FSqURiYqL49ddfbT8bMGCASE5Otlv/888/F23atBEqlUrccMMNYvXq1W6u2DM50ufrrrtOAKj1Ky0tzf2FexhH/z7/GcNN/Tna519++UX06tVLqNVq0bJlS/HSSy8Jk8nk5qo9jyN9NhqN4rnnnhOtWrUSGo1GxMfHi8cff1xcvHjR/YV7kJ9++qnOf29repucnCwGDBhQa5uuXbsKlUolWrZsKT766COX1ykTguffiIiIyHtwzA0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXoXhhojsZGRkIDQ0VOoyGkwmk+Hbb7+96joPPPAARowY4ZZ6iMj9GG6IvNADDzwAmUxW69fRo0elLg0ZGRm2euRyOZo1a4YJEybg3LlzTtl/fn4+hg0bBgDIzc2FTCZDdna23ToLFixARkaGUz7vSp577jnb91QoFIiPj8cjjzyC4uJih/bDIEbkOM4KTuSlhg4dio8++shuWdOmTSWqxl5wcDBycnJgsViwZ88eTJgwAXl5eVi3bt017/vvZo8HgJCQkGv+nPq44YYbsGHDBpjNZhw6dAgPPvggSkpKsHLlSrd8PpGv4pkbIi+lVqsRHR1t90uhUGDevHno1KkTAgICEB8fj8cffxxlZWVX3M+ePXswcOBABAUFITg4GD169MDvv/9u+/mWLVvQv39/+Pv7Iz4+Hk8++STKy8uvWptMJkN0dDRiY2MxbNgwPPnkk9iwYQMqKythsVjw/PPPo1mzZlCr1ejatSvWrl1r29ZgMCAlJQUxMTHQaDS47rrrkJ6ebrfvmstSLVq0AAB069YNMpkMN998MwD7syGLFy9GbGys3SzcAHDXXXfhwQcftL3/7rvv0L17d2g0GrRs2RJz5syByWS66vf08/NDdHQ04uLikJSUhJEjRyIzM9P2c7PZjIceeggtWrSAv78/2rZtiwULFth+/txzz+Hjjz/Gd999ZzsLlJWVBQA4ffo0Ro0ahdDQUISHh+Ouu+5Cbm7uVesh8hUMN0Q+Ri6X47///S8OHDiAjz/+GD/++COefvrpK64/duxYNGvWDDt27MDOnTsxffp0KJVKAMCxY8cwdOhQ3HPPPdi7dy9WrlyJLVu2ICUlxaGa/P39YbFYYDKZsGDBArzxxht4/fXXsXfvXgwZMgR33nkn/vjjDwDAf//7X6xatQqff/45cnJysHz5ciQkJNS53+3btwMANmzYgPz8fHz99de11hk5ciQuXLiAn376ybasuLgYa9euxdixYwEAmzdvxvjx4zF58mQcPHgQ7733HjIyMvDSSy/V+zvm5uZi3bp1UKlUtmUWiwXNmjXDF198gYMHD2L27Nl45pln8PnnnwMApk6dilGjRmHo0KHIz89Hfn4++vTpA6PRiCFDhiAoKAibN2/G1q1bERgYiKFDh8JgMNS7JiKv5fKpOYnI7ZKTk4VCoRABAQG2X/fee2+d637xxReiSZMmtvcfffSRCAkJsb0PCgoSGRkZdW770EMPiUceecRu2ebNm4VcLheVlZV1bvPX/R85ckS0adNG9OzZUwghRGxsrHjppZfstrnxxhvF448/LoQQ4oknnhC33HKLsFgsde4fgPjmm2+EEEKcOHFCABC7d++2W+evM5rfdddd4sEHH7S9f++990RsbKwwm81CCCFuvfVWMXfuXLt9LFu2TMTExNRZgxBCpKWlCblcLgICAoRGo7HNnjxv3rwrbiOEEJMmTRL33HPPFWut+ey2bdva9UCv1wt/f3+xbt26q+6fyBdwzA2Rlxo4cCDeffdd2/uAgAAA1rMY6enpOHz4MHQ6HUwmE6qqqlBRUQGtVltrP6mpqXj44YexbNky26WVVq1aAbBestq7dy+WL19uW18IAYvFghMnTqB9+/Z11lZSUoLAwEBYLBZUVVWhX79++OCDD6DT6ZCXl4e+ffvard+3b1/s2bMHgPWS0qBBg9C2bVsMHToUd9xxBwYPHnxNvRo7diwmTpyId955B2q1GsuXL8d9990HuVxu+55bt261O1NjNpuv2jcAaNu2LVatWoWqqip88sknyM7OxhNPPGG3zsKFC7FkyRKcOnUKlZWVMBgM6Nq161Xr3bNnD44ePYqgoCC75VVVVTh27FgDOkDkXRhuiLxUQEAAWrdubbcsNzcXd9xxBx577DG89NJLCA8Px5YtW/DQQw/BYDDUeZB+7rnnMGbMGKxevRo//PAD0tLSsGLFCvzzn/9EWVkZ/vWvf+HJJ5+stV3z5s2vWFtQUBB27doFuVyOmJgY+Pv7AwB0Ot3ffq/u3bvjxIkT+OGHH7BhwwaMGjUKSUlJ+PLLL/922ysZPnw4hBBYvXo1brzxRmzevBlvvvmm7edlZWWYM2cO7r777lrbajSaK+5XpVLZ/gxefvll3H777ZgzZw5eeOEFAMCKFSswdepUvPHGG+jduzeCgoLw2muv4bfffrtqvWVlZejRo4ddqKzRWAaNE0mJ4YbIh+zcuRMWiwVvvPGG7axEzfiOq2nTpg3atGmDKVOm4P7778dHH32Ef/7zn+jevTsOHjxYK0T9HblcXuc2wcHBiI2NxdatWzFgwADb8q1btyIxMdFuvdGjR2P06NG49957MXToUBQXFyM8PNxufzXjW8xm81Xr0Wg0uPvuu7F8+XIcPXoUbdu2Rffu3W0/7969O3Jychz+nn81c+ZM3HLLLXjsscds37NPnz54/PHHbev89cyLSqWqVX/37t2xcuVKREZGIjg4+JpqIvJGHFBM5ENat24No9GIt956C8ePH8eyZcuwaNGiK65fWVmJlJQUZGVl4eTJk9i6dSt27Nhhu9w0bdo0/PLLL0hJSUF2djb++OMPfPfddw4PKP6zp556Cq+88gpWrlyJnJwcTJ8+HdnZ2Zg8eTIAYN68efjss89w+PBhHDlyBF988QWio6PrfPBgZGQk/P39sXbtWhQWFqKkpOSKnzt27FisXr0aS5YssQ0krjF79mwsXboUc+bMwYEDB3Do0CGsWLECM2fOdOi79e7dG507d8bcuXMBANdffz1+//13rFu3DkeOHMGsWbOwY8cOu20SEhKwd+9e5OTkoKioCEajEWPHjkVERATuuusubN68GSdOnEBWVhaefPJJnDlzxqGaiLyS1IN+iMj56hqEWmPevHkiJiZG+Pv7iyFDhoilS5cKAOLixYtCCPsBv3q9Xtx3330iPj5eqFQqERsbK1JSUuwGC2/fvl0MGjRIBAYGioCAANG5c+daA4L/7K8Div/KbDaL5557TsTFxQmlUim6dOkifvjhB9vPFy9eLLp27SoCAgJEcHCwuPXWW8WuXbtsP8efBhQLIcT7778v4uPjhVwuFwMGDLhif8xms4iJiREAxLFjx2rVtXbtWtGnTx/h7+8vgoODRWJioli8ePEVv0daWpro0qVLreWfffaZUKvV4tSpU6Kqqko88MADIiQkRISGhorHHntMTJ8+3W67c+fO2foLQPz0009CCCHy8/PF+PHjRUREhFCr1aJly5Zi4sSJoqSk5Io1EfkKmRBCSBuviIiIiJyHl6WIiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXoXhhoiIiLwKww0RERF5FYYbIiIi8ioMN0RERORVGG6IiIjIqzDcEBERkVdhuCEiIiKvwnBDREREXuX/AdJ3DNMAh/Y9AAAAAElFTkSuQmCC\n" }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "AUC ROC: 0.9356664896\n" ] } ] }, { "cell_type": "markdown", "source": [ "### 11) Сделали выводы по результатам применения рекуррентной нейронной сети для решения задачи определения тональности текста. " ], "metadata": { "id": "MsM3ew3d1FYq" } }, { "cell_type": "markdown", "source": [ "Таблица1:" ], "metadata": { "id": "xxFO4CXbIG88" } }, { "cell_type": "markdown", "source": [ "| Модель | Количество настраиваемых параметров | Количество эпох обучения | Качество классификации тестовой выборки |\n", "|----------|-------------------------------------|---------------------------|-----------------------------------------|\n", "| Рекуррентная | 184 897 | 3 | accuracy:0.8564 ; loss:0.3313 ; AUC ROC:0.9357 |\n" ], "metadata": { "id": "xvoivjuNFlEf" } }, { "cell_type": "markdown", "source": [ "#### По результатам применения рекуррентной нейронной сети можно сделать вывод, что модель остаточно неплохо справилась с задачей определения тональности текста. Показатель accuracy = 0.8564 превышает требуемый порог 0.8. Значение AUC ROC = 0.9357 (> 0.9) говорит о высокой способности модели различать два класса на положительные и отрицательные области." ], "metadata": { "id": "YctF8h_sIB-P" } }, { "cell_type": "code", "source": [], "metadata": { "id": "UryAFcxR3AOj" }, "execution_count": null, "outputs": [] } ] }